
USENIX Association

April 16–18, 2024
Santa Clara, CA, USA

Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’24)

© 2024 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
 employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-939133-39-7

Symposium Organizers
Program Co-Chairs
Laurent Vanbever, ETH Zürich
Irene Zhang, Microsoft Research

Program Committee
Sangeetha Abdu Jyothi, University of California, Irvine,

and VMware Research
Mohammad Alizadeh, Massachusetts Institute of Technology
Peter Alvaro, University of California, Santa Cruz
Gianni Antichi, Politecnico di Milano and Queen Mary

University of London
Maria Apostolaki, Princeton University
Vaibhav Bajpai, CISPA Helmholtz Center for Information Security
Tom Barbette, Université catholique de Louvain
Adam Belay, MIT CSAIL
Sonia Ben Mokhtar, LIRIS CNRS
Yérom-David Bromberg, Inria de l’Université de Rennes
Rodrigo Bruno, INESC-ID and Instituto Superior Técnico,

University of Lisbon
Matthew Caesar, University of Illinois at Urbana–Champaign
Balakrishnan Chandrasekaran, Vrije Universiteit Amsterdam
Kang Chen, Tsinghua University
Rong Chen, Shanghai Jiao Tong University
Vijay Chidambaram, The University of Texas at Austin and

EPFL
Marco Chiesa, KTH Royal Institute of Technology
Young-ri Choi, UNIST (Ulsan National Institute of Science

and Technology)
Paolo Costa, Microsoft Research
Italo Cunha, Universidade Federal de Minas Gerais
Bruce Davie, Systems Approach
Shuwen Deng, Yale University
Aline Eid, University of Michigan
Eric Eide, University of Utah
Anja Feldmann, Max Planck Institute for Informatics
Ronaldo A. Ferreira, Universidade Federal de Mato Grosso do Sul
Fragkouli Georgia, ETH Zurich
Yasaman Ghasempour, Princeton University
Soudeh Ghorbani, Johns Hopkins University
Brighten Godfrey, University of Illinois at Urbana–Champaign

and VMware
Sergey Gorinsky, IMDEA Networks Institute
Lisandro Zambenedetti Granville, Universidade Federal

do Rio Grande do Sul
Arpit Gupta, University of California, Santa Barbara
Dongsu Han, Korea Advanced Institute of Science and

Technology (KAIST)
Haitham Hassanieh, EPFL
Oliver Hohlfeld, University of Kassel
Yu Hua, Huazhong University of Science and Technology
Qun Huang, Peking University
Romain Jacob, ETH Zurich
Junchen Jiang, University of Chicago
Xin Jin, Peking University
Raj Joshi, National University of Singapore
Myoungsoo Jung, Korea Advanced Institute of Science and

Technology (KAIST)

Kostis Kaffes, Google
Anuj Kalia, Microsoft
Zerina Kapetanovic, Stanford University
Sanidhya Kashyap, EPFL
Antoine Kaufmann, Max Planck Institute for Software Systems

(MPI-SWS)
Daehyeok Kim, The University of Texas at Austin
Shir Landau Feibish, The Open University of Israel
Yanfang Le, AMD
Ben Leong, National University of Singapore
Philip Levis, Stanford University and Google
Amit Levy, Princeton University
Huaicheng Li, Virginia Tech
Jialin Li, National University of Singapore
Yuanjie Li, Tsinghua University
John Liagouris, Boston University
Kate Ching-Ju Lin, National Yang-Ming Chiao Tung University
Alan Zaoxing Liu, Boston University
Guyue Liu, New York University Shanghai
Ming Liu, University of Wisconsin—Madison
Mohammad Mazaheri, University of Waterloo
James Mickens, Harvard University
Akshay Narayan, University of California, Berkeley
Srinivas Narayana, Rutgers University
Deepak Narayanan, NVIDIA
Neha Narula, Massachusetts Institute of Technology
Ravi Netravali, Princeton University
Dave Oran, Network Systems Research & Design
Amy Ousterhout, University of California, San Diego
Kay Ousterhout, Lightstep
Jonggyu Park, University of Washington
Seo Jin Park, University of Southern California and Google
Luis Pedrosa, INESC-ID and Instituto Superior Técnico,

University of Lisbon
Cristel Pelsser, Université catholique de Louvain
Amar Phanishayee, Microsoft Research
Dan Ports, Microsoft Research
Lili Qiu, The University of Texas at Austin
Rachee Singh
Barath Raghavan, University of Southern California
Costin Raiciu, Politehnica University of Bucharest
Gábor Rétvári, Budapest University of Technology and Economics
Michael Schapira, The Hebrew University of Jerusalem
Yizhou Shan, Huawei Cloud
Naveen Kr. Sharma, Google
Anirudh Sivaraman, New York University
Georgios Smaragdakis, Delft University of Technology
Elahe Soltanaghai, University of Illinois Urbana–Champaign
Ravi Soundararajan, VMware
Theano Stavrinos, University of Washington
Adriana Szekeres, VMware Research
Mina Tahmasbi Arashloo, University of Waterloo
Alain Tchana, Grenoble INP
Deepak Vasisht, University of Illinois Urbana–Champaign
Rashmi Vinayak, Carnegie Mellon University

Stefano Vissicchio, University College London
Zhaoguo Wang, Shanghai Jiao Tong University
Xingda Wei, Shanghai Jiao Tong University
Chenren Xu, Peking University
Hong Xu, The Chinese University of Hong Kong
Le Xu, The University of Texas at Austin
Neeraja J. Yadwadkar, The University of Texas at Austin

and VMware Research
Francis Y. Yan, Microsoft Research
Suli Yang, Google
Nofel Yaseen, Meta
Yasir Zaki, New York University
Lixia Zhang, University of California, Los Angeles
Yongle Zhang, Purdue University
Wenting Zheng, Carnegie Mellon University
Danyang Zhuo, Duke University

Poster Session Co-Chairs
Kostis Kaffes, Google
Chenren Xu, Peking University

Test of Time Awards Committee
Mahesh Balakrishnan, Yale University
Manya Ghobadi, MIT CSAIL
Jon Howell, VMware Research
Jay Lorch, Microsoft Research
James Mickens, Harvard University
Amar Phanishayee, Microsoft Research
Minlan Yu, Harvard University

Steering Committee
Mahesh Balakrishnan, Yale University
Manya Ghobadi, MIT CSAIL
Casey Henderson-Ross, USENIX Association
Jon Howell, VMware Research
Jay Lorch, Microsoft Research
James Mickens, Harvard University
Amar Phanishayee, Microsoft Research
George Porter, University of California, San Diego
Renata Teixeira, Netflix
Minlan Yu, Harvard University

External Reviewers
Ryan Beckett

Chen Ding
Kyle Jamieson

Kyle Kingsbury
Lefteris Kokoris-Kogias

Jonathan Mace
Ilias Marinos
Ying Zhang

Message from the
NSDI ’24 Program Co-Chairs

Welcome to NSDI ’24! This was a year of firsts for the conference. This is the first NSDI to have more than 100 PC members
and accept more than 100 papers! It is also the first time that we have had an open call for PC members, leading to more PC
members from different continents, countries, and institutions than ever before. Finally, for the first time ever, we had all
PC members sign a code of conduct, which encouraged PC members to treat everyone involved in the review process (i.e.,
other PC members and authors) with respect and empathy. The reviewing process for a prestigious conference like NSDI is a
stressful time for everyone, and we believe that the code of conduct led to a more productive outcome for everyone.

We are extremely pleased to have accepted a record 112 papers out of 601 submissions (a 7% increase with respect to
NSDI ’23, which was already a record year), yielding an 18.6% acceptance rate. 115 PC members were required over two
deadlines to review this record number of submissions. For each of the two deadlines, the reviewing process consisted
of two rounds of double-blind reviewing (which led to over 2500 written reviews) and an extensive online discussion. To
accommodate the large number of PC members, both PC meetings were held over a three-day period. We are especially
grateful to all of the PC members who called in (especially at odd hours) and made the PC meetings exceptionally smooth
and pleasant. We’d also like to thank our Ph.D. students and post-doc scribes who managed PC members over 14 time zones
(some of them changing time zones during the meeting!) for the online discussions.

Co-chairing NSDI is a hugely collaborative effort, and while it would be impossible for us to acknowledge every single
person who helped us, we are incredibly indebted to the USENIX staff for all their hard work behind the scenes. We would
also like to acknowledge the previous NSDI chairs and the NSDI steering committee members for sharing their experience
and guiding us throughout the process. Last but not least, we would like to thank all the authors for submitting their best
work to NSDI.

We look forward to seeing you all in Santa Clara for the NSDI ’24!

Laurent Vanbever, ETH Zürich
Irene Zhang, Microsoft Research
NSDI ’24 Program Co-Chairs

21st USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’24)

April 16–18, 2024
Santa Clara, CA, USA

Tuesday, April 16
Clouds but Faster
Horus: Granular In-Network Task Scheduler for Cloud Datacenters . 1
Parham Yassini, Simon Fraser University; Khaled Diab, Hewlett Packard Labs; Saeed Zangeneh and Mohamed Hefeeda,
Simon Fraser University

Fast Vector Query Processing for Large Datasets Beyond GPU Memory with Reordered Pipelining 23
Zili Zhang, Fangyue Liu, Gang Huang, Xuanzhe Liu, and Xin Jin, School of Computer Science, Peking University

LoLKV: The Logless, Linearizable, RDMA-based Key-Value Storage System . 41
Ahmed Alquraan and Sreeharsha Udayashankar, University of Waterloo; Virendra Marathe, Oracle Labs; Bernard Wong
and Samer Al-Kiswany, University of Waterloo

Making Kernel Bypass Practical for the Cloud with Junction . 55
Joshua Fried and Gohar Irfan Chaudhry, MIT CSAIL; Enrique Saurez, Esha Choukse, and Íñigo Goiri, Azure Research –
Systems; Sameh Elnikety, Microsoft Research; Rodrigo Fonseca, Azure Research – Systems; Adam Belay, MIT CSAIL

Scheduling the Network
Sifter: An Inversion-Free and Large-Capacity Programmable Packet Scheduler . 75
Peixuan Gao, Anthony Dalleggio, Jiajin Liu, and Chen Peng, New York University; Yang Xu, Fudan University;
H. Jonathan Chao, New York University

Flow Scheduling with Imprecise Knowledge . 95
Wenxin Li, Xin He, Yuan Liu, and Keqiu Li, Tianjin University; Kai Chen, Hong Kong University of Science and
Technology and University of Science and Technology of China; Zhao Ge and Zewei Guan, Tianjin University;
Heng Qi, Dalian University of Technology; Song Zhang, Tianjin University; Guyue Liu, New York University Shanghai

Pudica: Toward Near-Zero Queuing Delay in Congestion Control for Cloud Gaming . 113
Shibo Wang, Xi’an Jiaotong University and Tencent Inc.; Shusen Yang, Xi’an Jiaotong University; Xiao Kong,
Chenglei Wu, and Longwei Jiang, Tencent Inc.; Chenren Xu, Peking University; Cong Zhao, Xi’an Jiaotong University;
Xuesong Yang, Bonree; Jianjun Xiao and Xin Liu, Tencent Inc.; Changxi Zheng, Pixel Lab, Tencent America, and
Columbia University; Jing Wang and Honghao Liu, Tencent Inc.

Revisiting Congestion Control for Lossless Ethernet . 131
Yiran Zhang, Tsinghua University and Beijing University of Posts and Telecommunications; Qingkai Meng,
Tsinghua University and Beihang University; Chaolei Hu and Fengyuan Ren, Tsinghua University

Serverless
Autothrottle: A Practical Bi-Level Approach to Resource Management for SLO-Targeted Microservices 149
Zibo Wang, University of Science and Technology of China and Microsoft Research; Pinghe Li, ETH Zurich;
Chieh-Jan Mike Liang, Microsoft Research; Feng Wu, University of Science and Technology of China; Francis Y. Yan,
Microsoft Research

Jolteon: Unleashing the Promise of Serverless for Serverless Workflows . 167
Zili Zhang, Chao Jin, and Xin Jin, School of Computer Science, Peking University

Can’t Be Late: Optimizing Spot Instance Savings under Deadlines . 185
Zhanghao Wu, Wei-Lin Chiang, Ziming Mao, and Zongheng Yang, University of California, Berkeley; Eric Friedman
and Scott Shenker, University of California, Berkeley, and ICSI; Ion Stoica, University of California, Berkeley

Towards Intelligent Automobile Cockpit via A New Container Architecture . 205
Lin Jiang and Feiyu Zhang, Xi’an Yunzhiji Technology; Jiang Ming, Tulane University

MuCache: a General Framework for Caching in Microservice Graphs . 221
Haoran Zhang, Konstantinos Kallas, Spyros Pavlatos, Rajeev Alur, Sebastian Angel, and Vincent Liu, University of Pennsylvania

Network Protocols
A large-scale deployment of DCTCP . 239
Abhishek Dhamija and Balasubramanian Madhavan, Meta; Hechao Li, Netflix; Jie Meng, Shrikrishna Khare,
and Madhavi Rao, Meta; Lawrence Brakmo; Neil Spring, Prashanth Kannan, and Srikanth Sundaresan, Meta; Soudeh
Ghorbani, Meta and Johns Hopkins University

TECC: Towards Efficient QUIC Tunneling via Collaborative Transmission Control . 253
Jiaxing Zhang, Alibaba Group and University of Chinese Academy of Sciences; Furong Yang, Alibaba Group; Ting Liu,
Alibaba Group and University of Chinese Academy of Sciences; Qinghua Wu, University of Chinese Academy of Sciences and
Purple Mountain Laboratories, China; Wu Zhao, Yuanbo Zhang, Wentao Chen, Yanmei Liu, Hongyu Guo, and Yunfei Ma,
Alibaba Group; Zhenyu Li, University of Chinese Academy of Sciences and Purple Mountain Laboratories, China

iStack: A General and Stateful Name-based Protocol Stack for Named Data Networking . 267
Tianlong Li, Tian Song, and Yating Yang, Beijing Institute of Technology

Cloudcast: High-Throughput, Cost-Aware Overlay Multicast in the Cloud . 281
Sarah Wooders and Shu Liu, UC Berkeley; Paras Jain, Genmo AI; Xiangxi Mo and Joseph Gonzalez, UC Berkeley; Vincent
Liu, University of Pennsylvania; Ion Stoica, UC Berkeley

Understanding Routable PCIe Performance for Composable Infrastructures . 297
Wentao Hou, University of Wisconsin-Madison; Jie Zhang and Zeke Wang, Zhejiang University; Ming Liu,
University of Wisconsin-Madison

Distributed Systems: Part 1
Alea-BFT: Practical Asynchronous Byzantine Fault Tolerance . 313
Diogo S. Antunes, Afonso N. Oliveira, André Breda, Matheus Guilherme Franco, Henrique Moniz,
and Rodrigo Rodrigues, Instituto Superior Técnico (ULisboa) and INESC-ID

Harmony: A Congestion-free Datacenter Architecture . 329
Saksham Agarwal, Qizhe Cai, Rachit Agarwal, and David Shmoys, Cornell University; Amin Vahdat, Google

SwiftPaxos: Fast Geo-Replicated State Machines . 345
Fedor Ryabinin, IMDEA Software Institute and Universidad Politécnica de Madrid; Alexey Gotsman, IMDEA Software
Institute; Pierre Sutra, Télécom SudParis and INRIA

The Bedrock of Byzantine Fault Tolerance: A Unified Platform for BFT Protocols Analysis, Implementation,
and Experimentation . 371
Mohammad Javad Amiri, Stony Brook University; Chenyuan Wu, University of Pennsylvania; Divyakant Agrawal
and Amr El Abbadi, UC Santa Barbara; Boon Thau Loo, University of Pennsylvania; Mohammad Sadoghi, UC Davis

Dint: Fast In-Kernel Distributed Transactions with eBPF . 401
Yang Zhou, Harvard University; Xingyu Xiang, Peking University; Matthew Kiley, Harvard University;
Sowmya Dharanipragada, Cornell University; Minlan Yu, Harvard University

Programming the Network: Part 1
Brain-on-Switch: Towards Advanced Intelligent Network Data Plane via NN-Driven Traffic Analysis
at Line-Speed . 419
Jinzhu Yan and Haotian Xu, Tsinghua University Zhuotao Liu, Qi Li, Ke Xu, Mingwei Xu, and Jianping Wu,
Tsinghua University and Zhongguancun Laboratory

The Eternal Tussle: Exploring the Role of Centralization in IPFS . 441
Yiluo Wei, Hong Kong University of Science & Technology (GZ); Dennis Trautwein and Yiannis Psaras, Protocol Labs;
Ignacio Castro, Queen Mary University of London; Will Scott, Protocol Labs; Aravindh Raman, Brave Software;
Gareth Tyson, Hong Kong University of Science & Technology (GZ)

BBQ: A Fast and Scalable Integer Priority Queue for Hardware Packet Scheduling . 455
Nirav Atre, Hugo Sadok, and Justine Sherry, Carnegie Mellon University

Sirius: Composing Network Function Chains into P4-Capable Edge Gateways . 477
Jiaqi Gao, Jiamin Cao, Yifan Li, Mengqi Liu, Ming Tang, Dennis Cai, and Ennan Zhai, Alibaba Cloud

Empower Programmable Pipeline for Advanced Stateful Packet Processing . 491
Yong Feng and Zhikang Chen, Tsinghua University; Haoyu Song, Futurewei Technologies; Yinchao Zhang, Hanyi Zhou,
Ruoyu Sun, Wenkuo Dong, Peng Lu, Shuxin Liu, and Chuwen Zhang, Tsinghua University; Yang Xu, Fudan University;
Bin Liu, Tsinghua University

Video
GRACE: Loss-Resilient Real-Time Video through Neural Codecs . 509
Yihua Cheng, Ziyi Zhang, Hanchen Li, Anton Arapin, and Yue Zhang, The University of Chicago; Qizheng Zhang,
Stanford University; Yuhan Liu, Kuntai Du, and Xu Zhang, The University of Chicago; Francis Y. Yan, Microsoft;
Amrita Mazumdar, NVIDIA; Nick Feamster and Junchen Jiang, The University of Chicago

LiFteR: Unleash Learned Codecs in Video Streaming with Loose Frame Referencing . 533
Bo Chen, University of Illinois at Urbana-Champaign; Zhisheng Yan, George Mason University; Yinjie Zhang,
Zhe Yang, and Klara Nahrstedt, University of Illinois at Urbana-Champaign

MadEye: Boosting Live Video Analytics Accuracy with Adaptive Camera Configurations . 549
Mike Wong and Murali Ramanujam, Princeton University; Guha Balakrishnan, Rice University; Ravi Netravali,
Princeton University

Gemino: Practical and Robust Neural Compression for Video Conferencing . 569
Vibhaalakshmi Sivaraman, Pantea Karimi, Vedantha Venkatapathy, and Mehrdad Khani, Massachusetts Institute
of Technology; Sadjad Fouladi, Microsoft Research; Mohammad Alizadeh, Frédo Durand, and Vivienne Sze,
Massachusetts Institute of Technology

ARTEMIS: Adaptive Bitrate Ladder Optimization for Live Video Streaming . 591
Farzad Tashtarian, Christian Doppler Laboratory ATHENA, Alpen-Adria Universität Klagenfurt; Abdelhak Bentaleb,
Concordia University; Hadi Amirpour, Christian Doppler Laboratory ATHENA, Alpen-Adria Universität Klagenfurt;
Sergey Gorinsky, IMDEA Networks Institute; Junchen Jiang, University of Chicago; Hermann Hellwagner and
Christian Timmerer, Christian Doppler Laboratory ATHENA, Alpen-Adria Universität Klagenfurt

Sharing the Network
Credence: Augmenting Datacenter Switch Buffer Sharing with ML Predictions . 613
Vamsi Addanki, Maciej Pacut, and Stefan Schmid, TU Berlin

Seer: Enabling Future-Aware Online Caching in Networked Systems . 635
Jason Lei and Vishal Shrivastav, Purdue University

Reverie: Low Pass Filter-Based Switch Buffer Sharing for Datacenters with RDMA and TCP Traffic 651
Vamsi Addanki, TU Berlin; Wei Bai, Microsoft Research; Stefan Schmid, TU Berlin; Maria Apostolaki, Princeton University

Precise Data Center Traffic Engineering with Constrained Hardware Resources . 669
Shawn Shuoshuo Chen, Carnegie Mellon University; Keqiang He, Airbnb; Rui Wang, Google; Srinivasan Seshan
and Peter Steenkiste, Carnegie Mellon University

Multitenant In-Network Acceleration with SwitchVM . 691
Sajy Khashab, Alon Rashelbach, and Mark Silberstein, Technion

Wednesday, April 17
ML at Scale
Characterization of Large Language Model Development in the Datacenter . 709
Qinghao Hu, Shanghai AI Laboratory and S-Lab, Nanyang Technological University; Zhisheng Ye, Shanghai AI Laboratory
and Peking University; Zerui Wang, Shanghai AI Laboratory and Shanghai Jiao Tong University; Guoteng Wang,
Shanghai AI Laboratory; Meng Zhang and Qiaoling Chen, Shanghai AI Laboratory and S-Lab, Nanyang Technological
University; Peng Sun, Shanghai AI Laboratory and SenseTime Research; Dahua Lin, Shanghai AI Laboratory and CUHK;
Xiaolin Wang and Yingwei Luo, Peking University; Yonggang Wen and Tianwei Zhang, Nanyang Technological University

QuickUpdate: a Real-Time Personalization System for Large-Scale Recommendation Models 731
Kiran Kumar Matam, Hani Ramezani, Fan Wang, Zeliang Chen, Yue Dong, Maomao Ding, Zhiwei Zhao, Zhengyu Zhang,
Ellie Wen, and Assaf Eisenman, Meta, Inc.

MegaScale: Scaling Large Language Model Training to More Than 10,000 GPUs . 745
Ziheng Jiang and Haibin Lin, ByteDance; Yinmin Zhong, Peking University; Qi Huang, Yangrui Chen, Zhi Zhang,
Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, Yulu Jia, Sun He, Hongmin Chen, Zhihao Bai, Qi Hou, Shipeng Yan,
Ding Zhou, Yiyao Sheng, Zhuo Jiang, Haohan Xu, Haoran Wei, Zhang Zhang, Pengfei Nie, Leqi Zou, Sida Zhao,
Liang Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, and Jianxi Ye, ByteDance; Xin Jin, Peking University; Xin Liu, ByteDance

Resiliency at Scale: Managing Google’s TPUv4 Machine Learning Supercomputer .761
Yazhou Zu, Alireza Ghaffarkhah, Hoang-Vu Dang, Brian Towles, Steven Hand, Safeen Huda, Adekunle Bello,
Alexander Kolbasov, Arash Rezaei, Dayou Du, Steve Lacy, Hang Wang, Aaron Wisner, Chris Lewis, and Henri Bahini, Google

Satellites and Things
NN-Defined Modulator: Reconfigurable and Portable Software Modulator on IoT Gateways 775
Jiazhao Wang and Wenchao Jiang, Singapore University of Technology and Design; Ruofeng Liu, University of Minnesota;
Bin Hu, University of Southern California; Demin Gao, Nanjing Forestry University; Shuai Wang, Southeast University

Democratizing Direct-to-Cell Low Earth Orbit Satellite Networks . 791
Lixin Liu, Tsinghua University; Yuanjie Li and Hewu Li, Tsinghua University and Zhongguancun Laboratory;
Jiabo Yang, Wei Liu, Jingyi Lan, Yufeng Wang, and Jiarui Li, Tsinghua University; Jianping Wu, Qian Wu, Jun Liu,
and Zeqi Lai, Tsinghua University and Zhongguancun Laboratory

Known Knowns and Unknowns: Near-realtime Earth Observation Via Query Bifurcation in Serval 809
Bill Tao, Om Chabra, Ishani Janveja, Indranil Gupta, and Deepak Vasisht, University of Illinois Urbana-Champaign

Spectrumize: Spectrum-efficient Satellite Networks for the Internet of Things . 825
Vaibhav Singh, Tusher Chakraborty, and Suraj Jog, Microsoft Research; Om Chabra and Deepak Vasisht, UIUC;
Ranveer Chandra, Microsoft Research

Wide-Area and Edge
Application-Level Service Assurance with 5G RAN Slicing . 841
Arjun Balasingam, MIT CSAIL; Manikanta Kotaru and Paramvir Bahl, Microsoft

Chisel: An optical slice of the wide-area network . 859
Abhishek Vijaya Kumar, Cornell University; Bill Owens, NYSERnet; Nikolaj Bjørner, Binbin Guan, Yawei Yin,
and Paramvir Bahl, Microsoft; Rachee Singh, Cornell University

LuoShen: A Hyper-Converged Programmable Gateway for Multi-Tenant Multi-Service Edge Clouds 877
Tian Pan, Kun Liu, Xionglie Wei, Yisong Qiao, Jun Hu, Zhiguo Li, Jun Liang, Tiesheng Cheng, Wenqiang Su, Jie Lu, Yuke
Hong, Zhengzhong Wang, Zhi Xu, Chongjing Dai, Peiqiao Wang, Xuetao Jia, Jianyuan Lu, Enge Song, and Jun Zeng, Alibaba
Cloud; Biao Lyu, Zhejiang University and Alibaba Cloud; Ennan Zhai, Alibaba Cloud; Jiao Zhang and Tao Huang, Purple
Mountain Laboratories; Dennis Cai, Alibaba Cloud; Shunmin Zhu, Tsinghua University and Alibaba Cloud

Sprinter: Speeding Up High-Fidelity Crawling of the Modern Web . 893
Ayush Goel and Jingyuan Zhu, University of Michigan; Ravi Netravali, Princeton University; Harsha V. Madhyastha,
University of Southern California

Hairpin: Rethinking Packet Loss Recovery in Edge-based Interactive Video Streaming . 907
Zili Meng, Tsinghua University, Hong Kong University of Science and Technology, and Tencent; Xiao Kong
and Jing Chen, Tsinghua University and Tencent; Bo Wang and Mingwei Xu, Tsinghua University; Rui Han
and Honghao Liu, Tencent; Venkat Arun, UT Austin; Hongxin Hu, University at Buffalo, SUNY; Xue Wei, Tencent

Verification
Finding Adversarial Inputs for Heuristics using Multi-level Optimization . 927
Pooria Namyar, Microsoft and University of Southern California; Behnaz Arzani and Ryan Beckett, Microsoft;
Santiago Segarra, Microsoft and Rice University; Himanshu Raj and Umesh Krishnaswamy, Microsoft;
Ramesh Govindan, University of Southern California; Srikanth Kandula, Microsoft

Towards provably performant congestion control . 951
Anup Agarwal, Carnegie Mellon University; Venkat Arun, University of Texas at Austin; Devdeep Ray, Ruben Martins,
and Srinivasan Seshan, Carnegie Mellon University

EPVerifier: Accelerating Update Storms Verification with Edge-Predicate . 979
Chenyang Zhao, Yuebin Guo, Jingyu Wang, Qi Qi, Zirui Zhuang, Haifeng Sun, and Lingqi Guo, State Key Laboratory
of Networking and Switching Technology, Beijing University of Posts and Telecommunications; Yuming Xie, Huawei
Technologies Co., Ltd; Jianxin Liao, State Key Laboratory of Networking and Switching Technology, Beijing University
of Posts and Telecommunications

Netcastle: Network Infrastructure Testing At Scale . 993
Rob Sherwood, NetDebug.com; Jinghao Shi, Ying Zhang, Neil Spring, Srikanth Sundaresan, Jasmeet Bagga,
Prathyusha Peddi, Vineela Kukkadapu, Rashmi Shrivastava, Manikantan KR, Pavan Patil, Srikrishna Gopu, Varun Varadan,
Ethan Shi, Hany Morsy, Yuting Bu, Renjie Yang, Rasmus Jönsson, Wei Zhang, Jesus Jussepen Arredondo, and Diana Saha,
Meta Platforms Inc.; Sean Choi, Santa Clara University

MESSI: Behavioral Testing of BGP Implementations . 1009
Rathin Singha and Rajdeep Mondal, University of California Los Angeles; Ryan Beckett, Microsoft; Siva Kesava
Reddy Kakarla, Microsoft Research; Todd Millstein and George Varghese, University of California Los Angeles

Networking at Scale
A High-Performance Design, Implementation, Deployment, and Evaluation of The Slim Fly Network 1025
Nils Blach and Maciej Besta, ETH Zürich; Daniele De Sensi, ETH Zürich and Sapienza University of Rome; Jens Domke,
RIKEN Center for Computational Science (R-CCS); Hussein Harake, Swiss National Supercomputing Centre (CSCS);
Shigang Li, ETH Zürich and BUPT, Beijing; Patrick Iff, ETH Zürich; Marek Konieczny, AGH-UST; Kartik Lakhotia,
Intel Labs; Ales Kubicek and Marcel Ferrari, ETH Zürich; Fabrizio Petrini, Intel Labs; Torsten Hoefler, ETH Zürich

Crescent: Emulating Heterogeneous Production Network at Scale . 1045
Zhaoyu Gao and Anubhavnidhi Abhashkumar, ByteDance; Zhen Sun, Cornell University; Weirong Jiang
and Yi Wang, ByteDance

Reasoning about Network Traffic Load Property at Production Scale . 1063
Ruihan Li, Peking University and Alibaba Cloud; Fangdan Ye, Yifei Yuan, Ruizhen Yang, Bingchuan Tian, Tianchen Guo,
Hao Wu, Xiaobo Zhu, Zhongyu Guan, Qing Ma, and Xianlong Zeng, Alibaba Cloud; Chenren Xu, Peking University;
Dennis Cai and Ennan Zhai, Alibaba Cloud

PoseiDon: A Consolidated Virtual Network Controller that Manages Millions of Tenants via Config Tree 1083
Biao Lyu, Zhejiang University and Alibaba Cloud; Enge Song, Tian Pan, Jianyuan Lu, Shize Zhang, Xiaoqing Sun, Lei Gao,
Chenxiao Wang, Han Xiao, Yong Pan, Xiuheng Chen, Yandong Duan, Weisheng Wang, Jinpeng Long, Yanfeng Wang, Kunpeng
Zhou, and Zhigang Zong, Alibaba Cloud; Xing Li, Zhejiang University and Alibaba Cloud; Guangwang Li and Pengyu Zhang,
Alibaba Cloud; Peng Cheng and Jiming Chen, Zhejiang University; Shunmin Zhu, Tsinghua University and Alibaba Cloud

OPPerTune: Post-Deployment Configuration Tuning of Services Made Easy .1101
Gagan Somashekar, Stony Brook University; Karan Tandon and Anush Kini, Microsoft Research; Chieh-Chun Chang
and Petr Husak, Microsoft; Ranjita Bhagwan, Google; Mayukh Das, Microsoft365 Research; Anshul Gandhi,
Stony Brook University; Nagarajan Natarajan, Microsoft Research

ML but Faster
Parcae: Proactive, Liveput-Optimized DNN Training on Preemptible Instances . 1121
Jiangfei Duan, The Chinese University of Hong Kong; Ziang Song, ByteDance; Xupeng Miao and Xiaoli Xi,
Carnegie Mellon University; Dahua Lin, The Chinese University of Hong Kong; Harry Xu, University of California,
Los Angeles; Minjia Zhang, Microsoft; Zhihao Jia, Carnegie Mellon University

Accelerating Neural Recommendation Training with Embedding Scheduling .1141
Chaoliang Zeng, Xudong Liao, Xiaodian Cheng, Han Tian, Xinchen Wan, Hao Wang, and Kai Chen, iSING Lab,
Hong Kong University of Science and Technology

DistMM: Accelerating Distributed Multimodal Model Training . 1157
Jun Huang, The Ohio State University; Zhen Zhang, Amazon Web Services; Shuai Zheng, Boson AI;
Feng Qin, The Ohio State University; Yida Wang, Amazon Web Services

Approximate Caching for Efficiently Serving Text-to-Image Diffusion Models .1173
Shubham Agarwal and Subrata Mitra, Adobe Research; Sarthak Chakraborty, UIUC; Srikrishna Karanam,
Koyel Mukherjee, and Shiv Kumar Saini, Adobe Research

THC: Accelerating Distributed Deep Learning Using Tensor Homomorphic Compression 1191
Minghao Li, Harvard University; Ran Ben Basat, University College London; Shay Vargaftik, VMware Research;
ChonLam Lao, Kevin Xu, Michael Mitzenmacher, and Minlan Yu, Harvard University

Distributed Systems: Part 2
Accelerating Skewed Workloads With Performance Multipliers in the TurboDB Distributed Database 1213
Jennifer Lam, Jeffrey Helt, and Wyatt Lloyd, Princeton University; Haonan Lu, University at Buffalo

sieve is Simpler than LRU: an Efficient Turn-Key Eviction Algorithm for Web Caches . 1229
Yazhuo Zhang, Emory University; Juncheng Yang, Carnegie Mellon University; Yao Yue, Pelikan Foundation;
Ymir Vigfusson, Emory University and Keystrike; K.V. Rashmi, Carnegie Mellon University

Harvesting Idle Memory for Application-Managed Soft State with Midas . 1247
Yifan Qiao, UCLA; Zhenyuan Ruan, MIT CSAIL; Haoran Ma, UCLA; Adam Belay, MIT CSAIL; Miryung Kim
and Harry Xu, UCLA

Efficient Exposure of Partial Failure Bugs in Distributed Systems with Inferred Abstract States 1267
Haoze Wu and Jia Pan, Johns Hopkins University; Peng Huang, University of Michigan

Load is not what you should balance: Introducing Prequal . 1285
Bartek Wydrowski, Google Research; Robert Kleinberg, Google Research and Cornell; Stephen M. Rumble, Google (YouTube);
Aaron Archer, Google Research

Wireless Hardware
Orthcatter: High-throughput In-band OFDM Backscatter with Over-the-Air Code Division 1301
Caihui Du and Jihong Yu, Beijing Institute of Technology; Rongrong Zhang, Capital Normal University;
Ju Ren, Tsinghua University; Jianping An, Beijing Institute of Technology

EdgeRIC: Empowering Realtime Intelligent Optimization and Control in NextG Cellular Networks 1315
Woo-Hyun Ko, Texas A&M University; Ushasi Ghosh, University of California San Diego; Ujwal Dinesha,
Texas A&M University; Raini Wu, University of California San Diego; Srinivas Shakkottai, Texas A&M University;
Dinesh Bharadia, University of California San Diego

ADR-X: ANN-Assisted Wireless Link Rate Adaptation for Compute-Constrained Embedded Gaming Devices . . 1331
Hao Yin, University of Washington; Murali Ramanujam, Princeton University; Joe Schaefer, Stan Adermann, Srihari Narlanka,
and Perry Lea, Microsoft; Ravi Netravali, Princeton University; Krishna Chintalapudi, Microsoft Research

RFID+: Spatially Controllable Identification of UHF RFIDs via Controlled Magnetic Fields 1351
Donghui Dai, The Hong Kong Polytechnic University; Zhenlin An, The Hong Kong Polytechnic University and Princeton
University; Zheng Gong, The Hong Kong Polytechnic University; Qingrui Pan, The Hong Kong Polytechnic University
and The University of Edinburgh; Lei Yang, Shenzhen Research Institute, The Hong Kong Polytechnic University

SMUFF: Towards Line Rate Wi-Fi Direct Transport with Orchestrated On-device Buffer Management 1369
Chengke Wang, Peking University; Hao Wang, Shenzhen Kaihong Digital Industry Development Co., Ltd.; Yuhan Zhou
and Yunzhe Ni, Peking University; Feng Qian, University of Southern California; Chenren Xu, Peking University,
Zhongguancun Laboratory, and Key Laboratory of High Confidence Software Technologies, Ministry of Education (PKU)

Thursday, April 18
ML Scheduling
Vulcan: Automatic Query Planning for Live ML Analytics . 1385
Yiwen Zhang and Xumiao Zhang, University of Michigan; Ganesh Ananthanarayanan, Microsoft; Anand Iyer,
Georgia Institute of Technology; Yuanchao Shu, Zhejiang University; Victor Bahl, Microsoft Corporation;
Z. Morley Mao, University of Michigan and Google; Mosharaf Chowdhury, University of Michigan

Cassini: Network-Aware Job Scheduling in Machine Learning Clusters . 1403
Sudarsanan Rajasekaran and Manya Ghobadi, Massachusetts Institute of Technology; Aditya Akella, UT Austin

Towards Domain-Specific Network Transport for Distributed DNN Training .1421
Hao Wang and Han Tian, iSING Lab, Hong Kong University of Science and Technology; Jingrong Chen, Duke University;
Xinchen Wan, Jiacheng Xia, and Gaoxiong Zeng, iSING Lab, Hong Kong University of Science and Technology;
Wei Bai, Microsoft; Junchen Jiang, University of Chicago; Yong Wang and Kai Chen, iSING Lab, Hong Kong University
of Science and Technology

Swing: Short-cutting Rings for Higher Bandwidth Allreduce . 1445
Daniele De Sensi, Sapienza University of Rome; Tommaso Bonato, ETH Zurich; David Saam, RWTH Aachen University;
Torsten Hoefler, ETH Zurich

Cloud Scheduling
LitePred: Transferable and Scalable Latency Prediction for Hardware-Aware Neural Architecture Search 1463
Chengquan Feng, University of Science and Technology of China; Li Lyna Zhang, Microsoft Research; Yuanchi Liu,
University of Science and Technology of China; Jiahang Xu and Chengruidong Zhang, Microsoft Research; Zhiyuan Wang,
University of Science and Technology of China; Ting Cao and Mao Yang, Microsoft Research; Haisheng Tan, University of
Science and Technology of China

Harmonic: Hardware-assisted RDMA Performance Isolation for Public Clouds .1479
Jiaqi Lou, University of Illinois Urbana-Champaign; Xinhao Kong, Duke University; Jinghan Huang, University of
Illinois Urbana-Champaign; Wei Bai, Microsoft; Nam Sung Kim, University of Illinois Urbana-Champaign;
Danyang Zhuo, Duke University

LDB: An Efficient Latency Profiling Tool for Multithreaded Applications . 1497
Inho Cho, MIT CSAIL; Seo Jin Park, University of Southern California; Ahmed Saeed, Georgia Tech;
Mohammad Alizadeh and Adam Belay, MIT CSAIL

UFO: The Ultimate QoS-Aware Core Management for Virtualized and Oversubscribed Public Clouds 1511
Yajuan Peng, Southern University of Science and Technology and Shenzhen Institutes of Advanced Technology,
Chinese Academy of Science; Shuang Chen and Yi Zhao, Shuhai Lab, Huawei Cloud; Zhibin Yu, Shuhai Lab,
Huawei Cloud, and Shenzhen Institutes of Advanced Technology, Chinese Academy of Science

Programming the Network: Part 2
1531

1551

Automatic Parallelization of Software Network Functions .
Francisco Pereira, Fernando M. V. Ramos, and Luis Pedrosa, INESC-ID, Instituto Superior Técnico, University of Lisbon

AutoSketch: Automatic Sketch-Oriented Compiler for Query-driven Network Telemetry .
Haifeng Sun and Qun Huang, National Key Laboratory for Multimedia Information Processing, School of Computer Science,
Peking University; Jinbo Sun, Institute of Computing Technology, Chinese Academy of Sciences; Wei Wang, Northeastern
University, China; Jiaheng Li, National Key Laboratory for Multimedia Information Processing, School of Computer Science,
Peking University; Fuliang Li, Northeastern University, China; Yungang Bao, Institute of Computing Technology, Chinese
Academy of Sciences; Xin Yao and Gong Zhang, Huawei Theory Department

Leo: Online ML-based Traffic Classification at Multi-Terabit Line Rate . 1573
Syed Usman Jafri, Sanjay Rao, Vishal Shrivastav, and Mohit Tawarmalani, Purdue University

Sequence Abstractions for Flexible, Line-Rate Network Monitoring . 1593
Andrew Johnson, Princeton University; Ryan Beckett, Microsoft Research; Xiaoqi Chen, Princeton University;
Ratul Mahajan, University of Washington; David Walker, Princeton University

OctoSketch: Enabling Real-Time, Continuous Network Monitoring over Multiple Cores .1621
Yinda Zhang, University of Pennsylvania; Peiqing Chen and Zaoxing Liu, University of Maryland

Wireless Sensing
NR-Surface: NextG-ready µW-reconfigurable mmWave Metasurface .1641
Minseok Kim, Namjo Ahn, and Song Min Kim, KAIST

Cyclops: A Nanomaterial-based, Battery-Free Intraocular Pressure (IOP) Monitoring System
inside Contact Lens . 1659
Liyao Li, University at Buffalo SUNY and Northwest University; Bozhao Shang and Yun Wu, Northwest University
and Shaanxi International Joint Research Centre for the Battery-Free Internet of Things; Jie Xiong, University of
Massachusetts Amherst and Microsoft Research Asia; Xiaojiang Chen, Northwest University and Shaanxi International
Joint Research Centre for the Battery-Free Internet of Things; Yaxiong Xie, University at Buffalo SUNY

Habitus: Boosting Mobile Immersive Content Delivery through Full-body Pose Tracking
and Multipath Networking . 1677
Anlan Zhang, University of Southern California; Chendong Wang, University of Wisconsin — Madison; Yuming Hu,
University of Minnesota — Twin Cities; Ahmad Hassan and Zejun Zhang, University of Southern California; Bo Han,
George Mason University; Feng Qian, University of Southern California; Shichang Xu, Google

BFMSense: WiFi Sensing Using Beamforming Feedback Matrix . 1697
Enze Yi and Dan Wu, Peking University; Jie Xiong, University of Massachusetts Amherst; Fusang Zhang, Institute of Software,
Chinese Academy of Sciences and University of Chinese Academy of Sciences; Kai Niu, Beijing Xiaomi Mobile Software
Company Ltd.; Wenwei Li, Peking University; Daqing Zhang, Peking University and Institut Polytechnique de Paris

mmComb: High-speed mmWave Commodity WiFi Backscatter .1713
Yoon Chae and Zhenzhe Lin, George Mason University; Kang Min Bae and Song Min Kim, Korea Advanced Institute
of Science and Technology (KAIST); Parth Pathak, George Mason University

Security
Where The Wild Things Are: Brute-Force SSH Attacks In The Wild And How To Stop Them 1731
Sachin Kumar Singh and Shreeman Gautam, University of Utah; Cameron Cartier, University of Utah and
Black Hills Information Security; Sameer Patil and Robert Ricci, University of Utah

A System to Detect Forged-Origin BGP Hijacks .1751
Thomas Holterbach and Thomas Alfroy, University of Strasbourg; Amreesh Phokeer, Internet Society; Alberto Dainotti,
Georgia Tech; Cristel Pelsser, UCLouvain

NetVigil: Robust and Low-Cost Anomaly Detection for East-West Data Center Security .1771
Kevin Hsieh, Microsoft; Mike Wong, Princeton University and Microsoft; Santiago Segarra, Microsoft and Rice University;
Sathiya Kumaran Mani, Trevor Eberl, and Anatoliy Panasyuk, Microsoft; Ravi Netravali, Princeton University;
Ranveer Chandra and Srikanth Kandula, Microsoft

tango: Secure Collaborative Route Control across the Public Internet .1791
Henry Birge-Lee, Sophia Yoo, Benjamin Herber, Jennifer Rexford, and Maria Apostolaki, Princeton University

Sidekick: In-Network Assistance for Secure End-to-End Transport Protocols . 1813
Gina Yuan, Matthew Sotoudeh, and David K. Zhang, Stanford University; Michael Welzl, University of Oslo;
David Mazières and Keith Winstein, Stanford University

Mobile Things
VILAM: Infrastructure-assisted 3D Visual Localization and Mapping for Autonomous Driving 1831
Jiahe Cui, Beihang University, The Chinese University of Hong Kong, and Tianmushan Laboratory; Shuyao Shi and
Yuze He, The Chinese University of Hong Kong; Jianwei Niu, Beihang University; Guoliang Xing, The Chinese University of
Hong Kong; Zhenchao Ouyang, Tianmushan Laboratory and International Innovation Institute of Beihang University

Catch Me If You Can: Laser Tethering with Highly Mobile Targets . 1847
Charles J. Carver, Hadleigh Schwartz, and Qijia Shao, Columbia University; Nicholas Shade, Joseph Lazzaro,
Xiaoxin Wang, Jifeng Liu, and Eric Fossum, Dartmouth College; Xia Zhou, Columbia University

MobileConfig: Remote Configuration Management for Mobile Apps at Hyperscale . 1867
Matt Guo, Meta Platforms; Soteris Demetriou, Imperial College London; Joey Yang, Michael Leighton, Diedi Hu,
Tong Bao, Amit Adhikari, Thawan Kooburat, Annie Kim, and Chunqiang Tang, Meta Platforms

Passengers’ Safety Matters: Experiences of Deploying a Large-Scale Indoor Delivery Monitoring System 1883
Xiubin Fan, City University of Hong Kong; Zhongming Lin, The Hong Kong University of Science and Technology;
Yuming Hu, University of Minnesota - Twin Cities; Tianrui Jiang, The Hong Kong University of Science and Technology;
Feng Qian, University of Southern California; Zhimeng Yin, City University of Hong Kong; S.-H. Gary Chan, The Hong
Kong University of Science and Technology; Dapeng Wu, City University of Hong Kong

augur: Practical Mobile Multipath Transport Service for Low Tail Latency in Real-Time Streaming 1901
Yuhan Zhou, School of Computer Science, Peking University and Tencent Inc.; Tingfeng Wang, Tencent Inc.;
Liying Wang, School of Computer Science, Peking University; Nian Wen, Rui Han, Jing Wang, Chenglei Wu, Jiafeng
Chen, and Longwei Jiang, Tencent Inc.; Shibo Wang, Xi’an Jiaotong University and Tencent Inc.; Honghao Liu, Tencent
Inc.; Chenren Xu, School of Computer Science, Peking University and Zhongguancun Laboratory and Key Laboratory of
High Confidence Software Technologies, Ministry of Education (PKU)

Cloud Systems
Zombie: Middleboxes that Don’t Snoop .1917
Collin Zhang, Cornell; Zachary DeStefano, Arasu Arun, and Joseph Bonneau, NYU; Paul Grubbs, University of Michigan;
Michael Walfish, NYU

Solving Max-Min Fair Resource Allocations Quickly on Large Graphs . 1937
Pooria Namyar, Microsoft and University of Southern California; Behnaz Arzani and Srikanth Kandula, Microsoft;
Santiago Segarra, Microsoft and Rice University; Daniel Crankshaw and Umesh Krishnaswamy, Microsoft;
Ramesh Govindan, University of Southern California; Himanshu Raj, Microsoft

Cloud-LoRa: Enabling Cloud Radio Access LoRa Networks Using Reinforcement Learning Based
Bandwidth-Adaptive Compression . 1959
Muhammad Osama Shahid, Daniel Koch, Jayaram Raghuram, and Bhuvana Krishnaswamy, University of Wisconsin-Madison;
Krishna Chintalapudi, Microsoft Research; Suman Banerjee, University of Wisconsin-Madison

Cloudy with a Chance of Cyberattacks: Dangling Resources Abuse on Cloud Platforms . 1977
Jens Frieß, National Research Center for Applied Cybersecurity ATHENE and Technische Universität Darmstadt;
Tobias Gattermayer, National Research Center for Applied Cybersecurity ATHENE and Fraunhofer Institute for Secure
Information Technology SIT; Nethanel Gelernter, IONIX; Haya Schulmann, National Research Center for Applied
Cybersecurity ATHENE and Goethe-Universität Frankfurt; Michael Waidner, National Research Center for Applied
Cybersecurity ATHENE, Technische Universität Darmstadt, and Fraunhofer Institute for Secure Information Technology SIT

Modeling Networks
CAPA: An Architecture For Operating Cluster Networks With High Availability . 1995
Bingzhe Liu, UIUC; Colin Scott, Mukarram Tariq, Andrew Ferguson, Phillipa Gill, Richard Alimi, Omid Alipourfard,
Deepak Arulkannan, Virginia Jean Beauregard, and Patrick Conner, Google; P. Brighten Godfrey, UIUC; Xander Lin,
Joon Ong, Mayur Patel, Amr Sabaa, Arjun Singh, Alex Smirnov, Manish Verma, Prerepa V Viswanadham, and
Amin Vahdat, Google

NetAssistant: Dialogue Based Network Diagnosis in Data Center Networks . 2011
Haopei Wang, Anubhavnidhi Abhashkumar, Changyu Lin, Tianrong Zhang, Xiaoming Gu, Ning Ma, Chang Wu,
Songlin Liu, Wei Zhou, Yongbin Dong, Weirong Jiang, and Yi Wang, ByteDance Inc

Klonet: an Easy-to-Use and Scalable Platform for Computer Networks Education . 2025
Tie Ma, Long Luo, and Hongfang Yu, University of Electronic Science and Technology of China; Xi Chen,
Southwest Minzu University; Jingzhao Xie, Chongxi Ma, Yunhan Xie, Gang Sun, and Tianxi Wei, University of Electronic
Science and Technology of China; Li Chen, Zhongguancun Laboratory; Yanwei Xu and Nicholas Zhang, Theory Lab,
Central Research Institute, 2012 Labs, Huawei Technologies Co., Ltd.

exChain: Exception Dependency Analysis for Root Cause Diagnosis . 2047
Ao Li, Carnegie Mellon University; Shan Lu, Microsoft Research and University of Chicago; Suman Nath, Microsoft Research;
Rohan Padhye and Vyas Sekar, Carnegie Mellon University

Horus: Granular In-Network Task Scheduler for Cloud Datacenters

Parham Yassini∗1, Khaled Diab∗2, Saeed Zangeneh1 and Mohamed Hefeeda1

1School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
2Hewlett Packard Labs, United States

Abstract
Short-lived tasks are prevalent in modern interactive data-
center applications. However, designing schedulers to assign
these tasks to workers distributed across the whole datacenter
is challenging, because such schedulers need to make deci-
sions at a microsecond scale, achieve high throughput, and
minimize the tail response time. Current task schedulers in the
literature are limited to individual racks. We present Horus, a
new in-network task scheduler for short tasks that operates at
the datacenter scale. Horus efficiently tracks and distributes
the worker state among switches, which enables it to schedule
tasks in parallel at line rate while optimizing the scheduling
quality. We propose a new distributed task scheduling policy
that minimizes the state and communication overheads, han-
dles dynamic loads, and does not buffer tasks in switches. We
compare Horus against the state-of-the-art in-network sched-
uler in a testbed with programmable switches as well as using
simulations of datacenters with more than 27K hosts and thou-
sands of switches handling diverse and dynamic workloads.
Our results show that Horus efficiently scales to large data-
centers, and it substantially outperforms the state-of-the-art
across all performance metrics, including tail response time
and throughput.

1 Introduction

The slowdown of Moore’s law and the end of Dennard scaling
have changed how cloud datacenters deploy and manage their
hardware resources and software services. Instead of continu-
ally increasing the frequency of CPU cores, microprocessor
vendors have been shipping more cores per processor with
only slight frequency increases. As a result, the available num-
ber of cores in datacenters has been steadily and substantially
increasing over the last several years [30]. From the software
perspective, numerous interactive and user-facing datacenter
applications have been deployed. Examples of such latency-
sensitive applications include key-value stores [11–13], mul-

*Both authors contributed equally to this work.

timedia applications [16, 34], distributed interactive analyt-
ics [49, 56], network function virtualization [56], and web
search [9, 21]. To take advantage of the availability of many
cores and reduce deployment costs, designers of these large-
scale applications have recently started to embrace various
practices such as micro-services and function-as-a-service.

The emerging hardware trends and the requirements of
recent large-scale applications have increased the demands
for fine-grain management of the datacenter computing re-
sources. This is sometimes referred to as the granular com-
puting paradigm [52]. In this paradigm, many applications are
decomposed into large numbers of short-lived tasks, which
are executed in parallel on 100’s–1000’s of cores that poten-
tially span multiple server racks. Each task typically has a
tight response time, in the order of 10’s–100’s of microsec-
onds [20, 52]. And since the performance of applications is
affected by their slowest tasks, granular computing platforms
strive to minimize the task tail response time [20]. Granu-
lar computing platforms are also expected to support high
scheduling throughput as the number of concurrent tenants
and their application demands are rapidly growing [69].

Granular computing can be viewed as the generalization
of recent initiatives from academia and industry for offering
more flexible, finer-grain, cost-effective, and shorter latency
computing infrastructures. For example, Amazon Lambda [2]
handles task execution times in the order of 100’s of millisec-
onds using the Firecracker microVMs [14]. Apache Open-
Whisk [1] offers a serverless framework to seamlessly execute
functions while handling the provisioning of the underlying
computing resources. Efforts from Microsoft [68] and oth-
ers [45,70] have introduced mechanisms to reduce the cost of
cold-starts in serverless frameworks to support low-latency ap-
plications. Furthermore, recent operating system schedulers,
e.g., [43,64], offer support for microsecond-scale tasks within
individual servers. Granular computing aims at pushing the
boundaries even further, by efficiently supporting microsec-
ond tasks at a datacenter scale. This paper contributes to the
realization of granular computing.

As illustrated in Figure 1, datacenter operators deploy mul-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1

tiple software components to manage applications and com-
puting resources [1, 71, 73], including a resource manager,
worker pools, and task schedulers. The resource manager al-
locates a worker pool for each application according to its
required level of fault tolerance and performance using mech-
anisms such as [43, 68, 70]. Then, a task scheduler assigns
each submitted task of an application to a worker from its
worker pool. Resource managers, such as YARN [72] and
Mesos [39], decouple resource allocation from task schedul-
ing. This enables deploying multiple task schedulers targeting
different application needs. This paper presents a granular
task scheduler designed for latency-sensitive applications.

Designing a granular task scheduler is, however, challeng-
ing because such a scheduler needs to make decisions at a
microsecond scale, achieve high throughput, and minimize
the task tail response time. Minimizing the tail response time
requires balancing the load across workers, which is difficult
to achieve because of the substantial diversity in the task exe-
cution times and the scale of modern datacenter applications
that could have thousands of workers distributed across many
racks. Further, since tasks are short-lived, the load on workers
is highly dynamic. Thus, naively tracking the load on workers
could result in substantial communication, processing, and
memory overheads on the scheduler.

Current software schedulers, e.g., Borg [73], Twine [71],
and Atoll [70], introduce significant network and process-
ing delays. These delays are sometimes larger than the task
execution time itself, which makes software schedulers un-
suitable for short-lived tasks. In addition, scheduling granular
workloads requires a substantial amount of computing re-
sources [66, 73], which is difficult to realize using traditional
application-layer schedulers. For example, consider a system
with 20K tasks and a task mean execution time of 100 µs. The
system would need to make 200M scheduling decisions per
second and handle around the same number of packets for pro-
cessing the state update messages. This scale of throughput is
not possible to achieve using software schedulers [66].

In-network schedulers, on the other hand, schedule tasks
in the data plane as packets carrying these tasks pass through
switches. Thus, they significantly reduce the scheduling la-
tency and, in turn, the response time of tasks. However, recent
in-network schedulers, e.g., [48, 50, 78], can only schedule
tasks within individual racks. Therefore, they cannot meet
the growing demand of large-scale applications that require
executing thousands of tasks across multiple racks.

To support current latency-sensitive applications and future
granular computing platforms, we propose Horus, the first
datacenter-wide in-network scheduling system in the litera-
ture, to the best of our knowledge. One of our key insights in
designing Horus is that scheduling operations should run at
different time scales for efficiency and scalability. For exam-
ple, assigning a task to a worker should be done at a microsec-
ond scale, whereas tracking the load on workers can occur
at a millisecond scale. Leveraging this insight, we divide the

Resource
Manager

Schedule Task

Submit Task

Application

Spark SchedulerGranular Task Scheduler
Policy State

Rack
Server
Worker
Task Task

Application Application

MapReduce Scheduler

Worker
Pool

Allocate

Fig. 1: Overview of resource management in datacenters.

operations of Horus into two components. The first assigns
tasks to workers, and the second tracks, aggregates, and main-
tains the load on workers. Horus offloads both components to
switches in the network and optimizes them independently,
which enables efficient scheduling of granular tasks.

The contributions of this paper are as follows.
• We propose an in-network task scheduling architecture for

latency-sensitive datacenter applications, in §3.

• We present a new scheduling policy that does not queue
tasks at switches and runs at line rate, in §3.3.

• We design multiple data structures to realize the proposed
policy in modern programmable switches, which have a re-
stricted programming model and limited memory resources.

• We propose efficient mechanisms to distribute the load in-
formation among schedulers, which maintain the freshness
of load values and minimize overheads on switches, in §3.4.

• We implement Horus in a testbed using a Tofino switch
and compare it against the state-of-art in-network scheduler,
which is RackSched [78], in §4. In single-rack settings, our
results show that Horus reduces the tail response time by
up to 75% and increases the throughput by up to 1.9X com-
pared to RackSched, for the considered realistic workloads.
Since RackSched does not support multiple racks, we show
that Horus substantially outperforms two natural extensions
of RackSched in multi-rack settings.

• We also conduct large-scale simulations for datacenters
with more than 27K hosts and thousands of switches han-
dling diverse and dynamic workloads, in §5. Our results
show that Horus outperforms RackSched and its extensions
across all performance metrics. We also show the robustness
of Horus against failures, packet losses, and link delays.

Due to space limitations, some details and evaluation results
are presented in the Appendix.

2 Background and Related Work

2.1 Task Scheduling in Datacenters
Granular applications, e.g., key-value stores and microser-
vices, create many short-lived tasks with diverse execution

2 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

times, ranging from tens of microseconds to hundreds of mil-
liseconds or even longer. These tasks need to be assigned to
workers for execution. Recent intra-server schedulers, e.g.,
Shinjuku [43] and ZygOS [64], support microsecond tasks.
These task schedulers are, however, limited to single servers.

A natural question is then: can we use load balancers with
server schedulers to scale beyond individual servers? Zhu et
al. [78] showed that this policy is ineffective and may yield
long tail response time. This is because most load balancers,
e.g., [19, 33, 57], typically make their decisions based on
hashing various fields in the packets. Zhu et al. [78] proposed
RackSched to extend task scheduling to the rack level, where
the top-of-rack (ToR) switch approximates the load on servers
within its rack and assigns tasks to them accordingly.

Scaling task scheduling beyond single racks is an important
and challenging research problem. There are many practical
scenarios where applications require and/or benefit from exe-
cution on cores across racks. For example, running applica-
tions across racks in different fault domains improves their
fault tolerance and availability [4,7,22]. This is especially crit-
ical for latency-sensitive applications since most of them are
user-facing. A recent study from Facebook [6] indicates that
the traffic of many latency-sensitive applications is mostly not
rack-local. In addition, in public datacenters, it is not uncom-
mon that tenants’ VMs are placed on different racks due to
unavailable resources at the time or for improved fault toler-
ance [40]. Therefore, there is a need to run tasks across racks
in the datacenter. However, simple extensions of rack-level
schedulers that use load balancers to distribute tasks to racks
and then to servers may lead to long tail response time for
the same reason mentioned above: load balancers are oblivi-
ous to the current queue lengths of workers, which could be
impacted by the diversity in the task execution times.

To demonstrate the limitations of using the state-of-the-
art approach, which is RackSched [78], for scheduling tasks
across racks, we conduct simulations with representative
workloads and datacenter configurations similar to prior
works [43, 54, 67, 78]; the details of our simulations are given
in §5.1. Briefly, we simulate a tree-based datacenter with
27,648 servers, each having 32 cores, and we consider large
workloads and diverse task distribution times and arrival pat-
terns. We implemented the scheduling policy of RackSched,
which we refer to as RS. We complemented RS with a dat-
acenter load balancer that uniformly (at random) distributes
tasks to racks. Tasks are then scheduled to servers within
racks using RS. We refer to this scheduling system as RS-LB.

In addition, to show the potential performance gains, we
simulate a global version of the Join Shortest Queue (JSQ)
policy. JSQ tracks queue lengths at individual servers, and it
schedules tasks to the server with the shortest queue. As ana-
lyzed in [79], JSQ produces optimal results across different
performance metrics, e.g., waiting time and throughput, and
for tasks with low- and high-dispersion execution times. We
simulate an ideal/theoretical version of JSQ that immediately

0 5 25 50 75 99
Load (%)

0.0

2.0

4.0

6.0

99
%

 R
es

p.
 T

im
e

(μ
s)

×103 JSQ RS-LB

(a) Exponential

0 5 25 50 75 99
Load (%)

0.0

2.0

4.0

6.0

99
%

 R
es

p.
 T

im
e

(μ
s)

×103 JSQ RS-LB

(b) Bimodal

Fig. 2: Limitations of current rack-level task scheduling sys-
tems when scaled to the whole datacenter.

updates queue lengths to show the performance bounds. The
results of our simulation are presented in Figure 2 for two
representative task execution time distributions: Exponential
and Bimodal. The figure plots the tail (99%) response time as
the normalized workload increases for different task schedul-
ing systems. The results reveal the substantial performance
gap between JSQ and RS-LB. For example, in Figure 2a, the
tail response time increases rapidly as the normalized load
exceeds 50% when RS-LB is used, whereas it stays low for
JSQ even for a load around 90%.

Although JSQ theoretically provides optimal results, it is
not possible to implement in practice for large-scale datacen-
ters, especially for microsecond tasks. This is because JSQ
requires knowing the queue lengths at all servers, which takes
time to either probe servers (one RTT) or wait for servers to
send their updates (which may arrive asynchronously and/or
delayed/aggregated). Thus, by the time the scheduler deter-
mines the server with the least load, the situation might have
already changed. In addition, JSQ and similar global policies
may cause task herding, which occurs because once a server
is reported to have the least load, the scheduler may keep send-
ing tasks to it until the server sends an update. Since updates
may take a relatively long time compared to task execution
times, a burst of too many tasks could have already been
sent to the server, which leads to severe load imbalance and
long response time. Finally, implementing JSQ would require
extensive computation resources at the scale of a datacenter.

2.2 Related Work
Software Schedulers. Traditional schedulers are designed as
software processes that run on one or multiple servers [37,
62, 73]. These schedulers focus on service times in the range
of seconds to hours, and they can make complex decisions
and support a wide range of resource allocation policies. To
scale up and support higher throughput, distributed schedulers
have been proposed [28, 29, 31, 46, 60]. The shortest task
service time supported by distributed schedulers is still in
the order of hundreds of milliseconds [31, 52, 60]. This is
because of the relatively long time such schedulers take to

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 3

allocate tasks to servers. Sparrow [60] and Eagle [28], for
example, maintain queues of submitted tasks at schedulers.
Each scheduler then pushes reservation probes to randomly-
selected workers. When a worker becomes idle, it pulls the
next reserved task from that scheduler’s queue, introducing a
scheduling delay of at least two RTTs.

In contrast, Horus is designed for granular tasks with execu-
tion times in the order of tens of µs, which can be smaller than
a single RTT [20]. Horus is also designed to support millions
of scheduling decisions per second. In addition, multiple prior
works, e.g., YARN [72] and Mesos [39], decouple resource
allocation from task scheduling. Horus can complement such
works by offering fine-grain task scheduling on the allocated
resources for large-scale datacenter applications.
In-network Computing. Emerging programmable switches
enable offloading of various operations and functions to
the network to achieve high throughput and low latency for
datacenter applications, such as caching [41], data aggrega-
tion [65], concurrency control [53], and lock management
[77].

Similarly, in-network task scheduling has been considered
before [48, 50, 78]. RackSched and prior in-network sched-
ulers, however, support only single racks. In contrast, Horus
scales to multiple racks across the whole datacenter network.
RackSched [78] was shown to outperform prior works, and
it is considered state-of-the-art. Thus, we compare a simple
version of Horus against RackSched in single racks. We also
extend RackSched to support scheduling across multiple racks
and compare Horus against these extensions.

3 Proposed In-Network Scheduling

In this section, we first summarize the principles that guided
the design of Horus. Then, we describe the proposed in-
network task scheduling approach. This is followed by de-
scribing our efficient methods for distributing state among
various components of Horus. Finally, we describe various
deployment options for Horus. Due to space limitations, we
present some details in the Appendix, including handling fail-
ures and packet losses (§A.3), supporting multi-packet tasks
(§A.4), overhead analysis (§A.5), and pseudo code (§A.6).

3.1 Design Principles
The design of Horus is based on the following principles:
• P1: Load-aware Scheduling. The load on workers in dat-

acenters is subject to spatial and temporal variations due
to resource allocation policies, application requirements,
and the seasonality of workloads [71, 73]. And as shown
in prior works, e.g., [78], and by our simulations in §2.1,
not considering the actual worker load in the scheduling
decisions may lead to long tail response times. We propose
a zero-queue scheduling system that efficiently tracks the
load of workers, minimizes the task tail response time, and

avoids task herding. By not buffering tasks in switches, the
memory requirements become independent of the task rate,
which helps Horus to scale.

• P2: Lazy State Update. Horus makes scheduling decisions
based on the maintained state without queuing tasks. Thus,
updating this state is important to reflect the latest changes.
This, however, may increase the communication overhead
and limit scalability. Our idea is that a switch may not
need to immediately update its state if it can make accurate
decisions using its current state. Our approach identifies
when an update is needed by calculating a drift between
actual load values and the load information available at
schedulers, and it only updates the state of a scheduler when
the drift may negatively impact the scheduling quality.

• P3: Localized State. Horus avoids the complexity of repli-
cating state across all switches in the datacenter by logically
grouping the distributed schedulers and maintaining the
state within each group. This allows each scheduler to up-
date its view of a subset of workers without querying other
schedulers. Localization of state enables Horus to further
reduce the overheads on switches, achieve high throughput,
and handle failures efficiently.

3.2 Overview and Workflow

Overview. Horus is a distributed, in-network, granular task
scheduling architecture designed for datacenters. It can be
viewed as one of the components in the software suite man-
aging computing resources in datacenters, as illustrated in
Figure 1. For example, Horus can be integrated with existing
platforms such as OpenWhisk [1], and it can coexist with
schedulers of long-lived tasks such as Borg [73].

As shown in Figure 3, Horus consists of a set of schedulers,
a centralized controller, an agent per server, and APIs.

Schedulers in Horus are distributed to handle high task
rates and tolerate failures. Horus decomposes task scheduling
into two components. The first maintains and aggregates the
load information of workers, whereas the second executes the
scheduling policy to assign tasks to workers using this main-
tained information. Both components run in the data plane
of the switches. Schedulers do not require specific network
topology, and thus, Horus can easily be deployed on different
datacenter networks. For clarity of the presentation, however,
we focus on the widely-deployed leaf-spine topology [15,42],
which is shown in Figure 3. In this case, Horus schedulers
run as data plane programs on leaf and spine switches; no
schedulers run on core switches. Leaf schedulers track and
use the load information about workers in their racks (P1),
and they aggregate and efficiently distribute this information
to spine schedulers (P2).

The centralized controller realizes various functions, such
as addressing and handling failures. It assigns a fixed ID to
each scheduler, and it interacts with the resource manager to

4 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

retrieve the placement information for the workers of each ap-
plication. Using this information, the controller assigns a leaf
scheduler to each rack that has workers. It then divides leaf
schedulers into disjoint groups, where each group is assigned
a spine scheduler and forms a logical tree. Horus uses a sim-
ple approach that aligns groups with datacenter pods, where
a pod usually has 32-64 racks. In this case, the worker state
is localized and maintained by schedulers within each pod
(P3). This approach is efficient because packets exchanged
between the spine and leaf schedulers within a pod traverse
only one hop, which reduces packet latency and load on links,
compared to the case where the spine is in a different pod.

Horus agents are lightweight processes that run on servers
to track the load of workers. They also run a health check
mechanism with the control plane of the leaf schedulers,
which enables Horus to detect and react to worker failures.
Agents are not involved in the scheduling decisions.

Horus offers APIs to datacenter applications to seamlessly
submit tasks for execution and receive their results. To sub-
mit a task, Horus attaches a layer-4 header to packets, which
makes Horus compatible with various routing protocols. The
header includes a unique ID for each task, taskID. The
uniqueness of task IDs is ensured by concatenating the appli-
cation ID and a monotonically increasing sequence number.
The application ID is computed by hashing the application
pathname and adding a random number to ensure uniqueness.
A sequence number of 32 bits is sufficient for all practical
scenarios. Since tasks are expected to finish within micro or
milliseconds, by the time the sequence number wraps around,
if it ever does, earlier tasks would have been long completed.

Horus is designed for granular tasks, which are mostly con-
tained within single packets as they typically carry parameters
and paths to data. For example, in key-value stores [11–13],
segments of the data are typically pre-distributed to workers,
and tasks carry the queries to be executed on the data. For the
common case of single-packet tasks, Horus does not maintain
any per-task state at schedulers. Horus does support multi-
packet tasks and maintains task-worker affinity using ideas
similar to prior works, e.g., [57], as discussed in §A.4.
Horus Workflow. Workers of latency-sensitive applications
are pre-deployed on CPU cores and initialized to be ready
to execute tasks. A worker runs in a virtualized environment
such as a container or microVM [14], and is allocated one or
more cores. Horus assigns tasks to worker queues and does not
dictate any intra-worker scheduling policy for distributing the
tasks across the worker’s cores. All workers of an application
are assigned an anycast IP address by the controller. Tasks use
the anycast address as the destination address in their packets.
Tasks are scheduled in a recursive manner. When a task is
submitted for execution, its packets are randomly forwarded to
one of the spine schedulers assigned to this application (Step
1 in Figure 3). Since the controller knows the distribution of

workers across racks, the random selection of spine schedulers
is weighted in proportion to the number of workers per pod.

Horus Agent

Resource Manager

Leaf

Spine

Servers

Schedulers

Horus APIs
Application

3

Submit Task

Schedule Task

P2P1 P3

Distribute State

Horus Controller
Management

Worker Pools

ETHIP
type

poolID
srcID
qLen taskID

dstID

payload

TCP/UDP

1

Busy worker
Idle worker

Policy
Execution

L0

Pod 0

L1

L1 L2 L3 L4 L5

State

Pod n

2

Fig. 3: The proposed Horus scheduling architecture.

This ensures load balancing across pods, which is important
in case workers are non-uniformly distributed. The spine
scheduler runs its policy to select a downstream leaf scheduler
to handle the task, which in turn assigns the task to one of the
workers in its rack (Step 2).

After a worker completes a task, the agent running on that
worker includes the latest load information into the header of
the reply packet and sends it to the leaf scheduler in the rack
(Step 3). Upon receiving a reply packet, the leaf scheduler
updates the load information in its memory and sends an
update message to upstream spine schedulers, if needed, using
our aggregated state update method in §3.4.

3.3 Scheduling Tasks in the Network

Switch Model. We consider the common switch model used
by several switch vendors [10, 24, 61], in which a packet
goes through a pipeline of multiple stages, where each stage
has processing and memory components. This switch model
supports line-rate packet processing by realizing two main
design choices: (i) atomic memory updates and (ii) bounded
packet latency. The first allows a packet to access up to one
memory location at each stage, and the second limits the
number of processing stages. As a result, the total available
processing and memory resources for the stages are limited.
To mitigate the impact of these design choices, a packet may
have to be recirculated from the egress to the ingress for
additional processing or to access the same memory block
again at the cost of increased delay [74]. While this restrictive
model enables line-rate packet processing, it makes it difficult
to implement in-network task scheduling.
Proposed Scheduling Policy. In Horus, all spine and leaf
schedulers employ the same scheduling policy and main-
tain the same data structures. Thus, we abstractly present
the scheduling policy as follows. A scheduler assigns an arriv-
ing task to a lower-layer node. A node for a spine scheduler

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 5

is a rack of servers, whereas it is a worker for a leaf scheduler.
Optimally scheduling a task requires knowing the load of all
downstream nodes and assigning the task to the least loaded
one, i.e., implementing a JSQ-like policy. As we discussed in
§2, JSQ is difficult to realize at the datacenter scale because it
imposes high communication and processing overheads, and
it may introduce task herding, where a burst of many tasks is
sent to a node leading to periods of significant load imbalance.

Horus strives to approximate the JSQ scheduling policy
at the datacenter scale while considering the dynamic nature
of workloads and the restrictions of programmable switches.
Specifically, Horus divides the scheduling decisions into two
cases: (i) when some idle nodes are available and (ii) when
all nodes are busy. In the first case, when a task arrives at a
scheduler and the scheduler is aware of some idle nodes, it
will send the task to one of them. For spine schedulers, an idle
node is a rack that has at least one idle worker. In this case, the
spine scheduler will send the task to the leaf scheduler of that
rack, which in turn will select an idle worker within the rack,
resulting in zero queuing time and minimizing the response
time under light load. The challenge here is to track idle
nodes at a large scale and in a way that can be implemented in
programmable switches. We present the details of our solution
later in this section.

In the second case, when a task arrives at a scheduler and
all nodes are busy, the scheduler takes 2 random samples from
the queue lengths of nodes and selects the least loaded node
among the sampled values. This is referred to as the power-
of-2 policy and is known to reduce the response time [58]. In
addition, the randomization in taking samples prevents task
herding, since it is unlikely that the same node will be repeat-
edly chosen for several consecutive tasks. Randomization is
critically important for scheduling granular tasks as they are
more susceptible to task herding. This is because granular
tasks have short execution times, and load updates from work-
ers may take relatively long times to reach various schedulers
distributed across the datacenter. Implementing the power-of-
2 policy at scale and in programmable switches with limited
resources and strict constraints is challenging. We present
new data structures to realize this policy later in this section
and efficient methods to distribute load information among
schedulers in §3.4.
Scheduling Tasks to Idle Nodes. We design a data struc-
ture, called idleNodes, for schedulers to track the IDs of idle
nodes. Our data structure supports fast addition, removal, and
retrieval of nodes with constant time in the switch data plane.
It also requires a small number of memory accesses and mini-
mal dependencies among memory blocks, which reduces the
number of allocated processing stages in switches.

An insight that we used is that a scheduler needs only to
know whether there exists an idle node in the list. It does not
need to identify the temporal order of when nodes became
idle. Building on this insight, we design a data structure that
guarantees the following invariant:

01

0 1 2 3 4 5 6 7

idleIndex

idleList

4 63 7

2 3

p

(a) Main structure

01

0 1 2 3 4 5 6 7

idleIndex

idleList p

4 63 7

2 3

removedIdx = 1
lastNode = 7

data

(b) Remove: pass #1

0

0 1 2 3 4 5 6 7

idleIndex

idleList

4 67 7

2 1

p

(c) Remove: pass #2

Fig. 4: The proposed idleNodes data structure, which is de-
signed to support fast operations in programmable switches.

If there are idle nodes, they will be contiguously stored at
the top of the list.

Maintaining this invariant allows the scheduler to quickly
find idle nodes. Notice that the data structure has to satisfy
the invariant even when any arbitrary node is removed, i.e.,
becomes busy.

Figure 4a illustrates the main components of the proposed
data structure. It has an idleList array of N items of node IDs,
where N is the number of downstream nodes. It also has a
pointer p that points to the first non-idle item in the list. p
is initialized to zero. In addition, the data structure has an
idleIndex array, which stores the indices of idle nodes. In
Figure 4a, nodes 4, 3, 6, and 7 are idle, and idleIndex contains
their locations in idleList.

Adding a node to idleNodes occurs when a scheduler re-
ceives an idleAdd message about a node n becoming idle. The
scheduler writes the ID of n in idleList[p] and p in idleIn-
dex[n]. It then increments p. Current programmable switches
support an atomic read-modify-write operation in a single
stage. This means that a scheduler can read the current p,
increment it, and write it back in one stage. Thus, adding an
idle node requires three processing stages only, one to update
each of p, idleList, and idleIndex.

To schedule an incoming task to an idle node, a scheduler
retrieves the node at idleList[p-1]. If this is a leaf scheduler,
the retrieved node is removed from idleList by decrementing p
and clearing the corresponding location of the retrieved node
in idleIndex. This is because a node in this case represents
a single worker, which will no longer be idle after sending
the task to it. On the other hand, a node in a spine scheduler
represents a whole rack, and sending a task to an idle leaf
does not necessarily mean that the rack no longer has idle
workers. Therefore, a spine scheduler does not remove the
retrieved node idleList[p-1]. An idle node is removed from a
spine scheduler only when it receives an explicit idleRemove
message from the leaf scheduler represented by this node.

For both the spine and leaf schedulers, an incoming task is
scheduled to an idle node without any delay or buffering and
at line rate, since all operations on idleNodes are performed in
a few consecutive processing stages in the switch. In addition,
it is straightforward to show that the operations of adding a
new idle node at idleList[p] and removing the idle node at
idleList[p-1] maintain the invariant mentioned above.

Finally, the idleNodes data structure should support remov-

6 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ing any arbitrary node n, while still maintaining the invariant.
This is needed when a scheduler receives an idleRemove mes-
sage for n. A scheduler removes node n by replacing it with
the last idle node in the list. This ensures maintaining the
invariant that all idle nodes are contiguously placed at the top
of the list. It also allows the scheduler to conserve memory
and use a constant number of processing stages. This oper-
ation needs to be performed in two passes because current
programmable switches do not allow a packet to access the
same memory location more than once in the same pass. In
the first pass, the scheduler examines idleIndex to get the in-
dex of n in idleList, which is referred to as removedIdx. The
scheduler also decrements p to retrieve the ID of the last idle
node, which is called lastNode. In the second pass, the sched-
uler resubmits the packet with the additional data lastNode
and removedIdx, where lastNode is then written into idleIn-
dex[removedIdx]. An example is shown in Figures 4b and 4c.

We note that current programmable switches do not pre-
serve the order of processing of resubmitted packets. For
example, before processing the second pass of an idleRemove
packet A, the first pass of another packet B could be processed
by the switch, which may result in incorrect values of the in-
dices. To prevent this potential race condition, we use a single
memory location as a logical lock. The lock is acquired in
the first pass and released in the second one. An idleRemove
packet is dropped if it fails to acquire the lock. The sending
node will resend a new idleRemove packet after receiving
another task from the scheduler.
Scheduling Tasks to Busy Nodes. When there are no idle
nodes (p = 0), a scheduler needs to realize the power-of-
2 policy, which is more challenging than the case of idle
nodes. This is because a scheduler needs to read two randomly
selected indices from the loadList, while the switch model
does not allow reading more than one item per packet from
the same memory block. To address this restriction, Horus
maintains two identical copies of the loadList in two different
stages, where each array stores the load of all downstream
nodes (one node per slot). Storing two copies allows the
scheduler to read one random index from each copy and then
compare them. When a new state update for a node arrives at
a scheduler, it writes the updated load value to both copies.

After making a decision, a scheduler should update its view
on the load information, which is stored in the loadList. This
requires the scheduler to write back the updated load value to
the corresponding loadList slot. As described earlier, the same
memory block cannot be accessed twice per packet. A straight-
forward solution is to resubmit each packet to the pipeline
and update the load state on the second pass. This, however,
results in additional processing overhead and increases the
scheduling latency. To address this issue, we propose a lazy
state update algorithm, which resubmits a packet only if it
will impact future scheduling decisions. That is, a scheduler
keeps processing tasks using the potentially stale view of the
loadList until it detects an update is needed.

Specifically, for a node m, we decompose its actual queue
length qm into a load value lm and a drift value dm, where
qm = lm + dm. We define the drift value as the number of
tasks scheduled to a node that has not been reflected in its
load value, and we store the drift values of all nodes in a
data structure called driftList. Each scheduler maintains two
copies of the driftList placed in two stages. Next, we find
the necessary condition to resubmit a packet to update the
load values. Upon receiving the first packet of a new task, a
scheduler picks two random nodes m and n, and it reads their
load values lm and ln from loadList. Without loss of generality,
assume that lm < ln. Then, the scheduler should resubmit the
packet iff qm > qn. That is, lm +dm > ln +dn. We rearrange
the inequality to find the necessary condition to resubmit a
packet as:

dm > (ln− lm)+dn. (1)

The above condition means that as far as the drift in the
load of node m is less than or equal to the difference between
the load of n and the load of m plus the drift in the load of n,
the scheduler will make the correct decision by choosing the
node with the smaller load, which is m, by comparing their
lm and ln stored in the loadList.

The proposed lazy state update algorithm works as follows.
It first reads the load values of nodes m and n. It then identifies
the node with the smaller load, say m, and it computes the
difference (ln− lm). Then, it reads dm from the first copy of
driftList to check how many more tasks are actually queued
at m. If the drift value is lower than the difference between
load values, i.e., dm < (ln− lm), the algorithm increments the
corresponding drift value in each copy of the driftList for
node m. Otherwise, when dm > (ln− lm), the algorithm re-
submits the packet to update ln and lm. The algorithm does
not include dn in its calculations because it would violate
the atomicity requirement in current programmable switches.
The algorithm, however, does guarantee selecting the least
loaded node among m and n. This is because dm > (ln− lm)
still satisfies the necessary condition dm > (ln− lm)+dn. The
less restrictive condition used by our algorithm allows im-
plementing the power-of-2 policy in programmable switches
at the cost of possibly resubmitting some extra packets than
absolutely needed by the necessary condition.

An example illustrating this algorithm is given in §A.1.

3.4 Distributing State Among Schedulers
We design efficient mechanisms to distribute the necessary
information among leaf and spine schedulers to update their
states. This enables the execution of the proposed scheduling
policy using fresh information with minimal overheads.
Distributing Worker State to the Leaf Layer. Since schedul-
ing tasks to workers is only done by leaf schedulers, each leaf
scheduler updates its state when selecting a worker for a task
(§3.3). When a task is done executing on a worker, the agent
modifies the qLen field in the header (Figure 3) and uses the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 7

reply packet to report the updated load to the leaf scheduler. If
the reply packet indicates the worker is idle, the leaf scheduler
adds the srcId to the idleList and updates the loadList for
the corresponding index.
Distributing Rack State to the Spine Layer. We consider
two types of information to be distributed to the spine layer:
(i) idleness of the rack and (ii) average load of the rack.
Idle State Update. When a leaf scheduler becomes aware
of an idle worker, it sends an idleAdd packet to the spine
scheduler it is linked with. This simple strategy balances and
localizes the information about idle racks among the upper-
layer spine schedulers. Once there are no more idle workers
in a rack, the leaf scheduler in that rack sends an idleRemove
packet to the linked spine to remove the leaf from its idleList.
Load State Update. Each spine scheduler tracks the load of
a subset of racks that contain workers. Each leaf scheduler
calculates the average load across workers in its racks and
sends it to the linked spine. Directly calculating averages in
programmable switches is, however, infeasible due to their
restrictive programming model. We describe how we approxi-
mate averages in §A.2.

Since Horus is designed for short-lived tasks, continually
sending every updated average load value to the spine would
result in large communication and processing overheads on
switches, without significantly modifying the average at the
spine. Instead, we make each leaf scheduler locally compute
the current average and maintain the previously sent average
to the spine. Then, a leaf scheduler sends the update message
only if the difference between the current and previous aver-
age load values is greater or equal to one, because this is the
smallest integer value of load changes that could impact the
scheduling decision. This aggregated update mechanism sub-
stantially reduces the number of update packets sent to spine
schedulers without sacrificing the scheduling performance. In
addition, we piggyback the state update information with the
response packets sent by workers after completing tasks to
minimize the communications overhead of Horus.

3.5 Horus Deployment Options

Horus does not rely on the structure of the datacenter net-
work in its operation, and thus, it can be deployed in various
networks. In addition, it does not dictate a specific routing
protocol since it utilizes layer-4 headers. Furthermore, Ho-
rus can be incrementally deployed in datacenters. Suppose
a fraction of the spine and leaf switches are upgraded to be
programmable to support latency-sensitive applications. In
this case, workers of these applications can be allocated in
the racks with programmable switches, and the centralized
controller in Horus can be configured to only use the pro-
grammable spine switches.

A more restrictive deployment scenario occurs when only
a fraction of the spine switches are upgraded and all leaf
switches are legacy. In this case, we can implement the leaf

Application
Horus APIs

Application
Horus APIs

Switch ASIC
Spine Scheduler

Leaf Schedulers

Physical Servers
Workers Application

Horus APIs
Workers Workers

L0 L1 L2 L3

S0

10 Gbps Links

Tofino Switch Switch CPU

Centralized Ctrl.

gRPC Endpoint

Handle Dynamics

Monitor Health

100 Gbps Links

Handle Dynamics TopologygRPC
Event

BfRt
Client

PCIe

Fig. 5: Testbed setup.

scheduler on a server in each rack using efficient techniques
such as kernel bypassing, as in prior works, e.g., Maglev [33].
These techniques were shown to process packets in microsec-
onds. Workers and Horus agents in each rack would be con-
figured to first direct their messages through the software leaf
scheduler in the rack. This adds an additional delay, but it is
deterministic and limited by the small RTT within racks.

Finally, the ideas of Horus can be used without any pro-
grammable switches. For example, leaf schedulers can be
implemented in software as above, and the functionality of
the spine schedulers can be integrated with the datacenter
load balancers handling the submission of tasks.

4 Evaluation in a Testbed

4.1 Experimental Setup
Testbed. Our testbed, illustrated in Figure 5, has one 3.2 Tbps
Intel Tofino switch, which has two hardware pipelines. We
configure one of the hardware pipelines as a spine switch
and run the spine scheduler of Horus on it. We emulate four
leaf switches on the other hardware pipeline, where each
switch represents a rack of servers. Leaf switches run the
leaf schedulers of Horus. We connect the leaf switches to
the spine switch using logical 100 Gbps links. In addition,
the testbed has seven servers connected to the leaf switches
through 10 Gbps links, where each server is equipped with an
Intel 82599ES 10 GbE NIC. These servers are used as clients
to generate tasks and as workers to execute tasks.
Horus Implementation. We have implemented a proof-of-
concept of Horus consisting of leaf and spine schedulers,
switch and centralized controllers, agents, and client APIs. All
source code, testing scripts, and datasets are open source [3].

The leaf and spine schedulers are implemented in P4 [23]
and deployed to the switch ASIC; a brief description of our P4
implementation can be found in §A.6. We implemented the
switch and centralized controllers using Golang in about 6K
lines of code. The controllers handle failures and dynamics,
and they update the switch data structures accordingly. We
implemented a set of APIs in C using DPDK to submit tasks
and receive their results. We implemented the Horus agent in

8 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

about 100 lines of C code. The agent adds the worker load
information to the reply packet after task execution is done.

For workers, we need to dispatch and run microsecond
tasks. Recent intra-server OSes, e.g., ZygOs [64] and Shinjuku
[43], support microsecond tasks and offer various schedul-
ing policies. We modified the more recent Shinjuku [43] to
dispatch tasks to worker queues based on Horus headers. In
our experiments, we use one core per worker, bypassing Shin-
juku’s scheduling policy. We note that Horus does not dictate
the use of any specific intra-server scheduling policy or OS.
Systems Compared Against. To the best of our knowledge,
Horus is the first task scheduler that scales to the whole dat-
acenter. RackSched [78] is the state-of-the-art in-network
task scheduler, but it only scales to a single rack. We com-
pare a simple version of Horus versus RackSched (referred
to as RS) for single rack settings. We use the open-source P4
implementation of RackSched [8].

In addition, we consider two natural extensions of
RackSched to support multiple racks. The first one integrates
RackSched with a load balancer that uniformly distributes
tasks to top-of-rack switches, which in turn run RackSched to
assign tasks to workers within their racks. We refer to this sys-
tem as RS-LB. In the second extension, we use RackSched hi-
erarchically, meaning that we deploy it on both spine and leaf
switches, where spine switches assign tasks to leaf switches
using RackSched, which in turn assign tasks to workers also
using RackSched. We refer to this system as RS-H. To ensure
fair comparisons, we make each leaf scheduler send the load
state update from workers to the spine scheduler immediately
after each task is done.
Worker Placement. We consider two setups for worker dis-
tribution across racks: (1) Uniform: a total of 32 workers
are uniformly distributed across all racks, where each rack
has eight workers running on a physical server attached to
the leaf switch (1 worker/core). The 32 workers run on four
identical servers, each has Intel Xeon E-2186G CPU, 3.80
GHz, 12 cores, and 32 GB memory. (2) Skewed: a total of
48 workers are distributed as follows: two racks have four
workers each, one rack has eight workers, and one rack has 32
workers (running on three physical servers, where one of the
servers has Intel Xeon E5-2650 CPU, 2.3 GHz, 40 cores, 128
GB memory and runs 16 workers and the other two servers
have the same specifications as the ones used in the Uniform
setup and run 8 workers each).
Workloads. We evaluate Horus using two practical workload
scenarios. The first scenario runs real tasks on the RocksDB
engine [13], which is a high-performance key-value store
developed by Facebook and is widely deployed in produc-
tion [25]. The second scenario is synthetic and uses the TPC-
C benchmark [5], which is an online transaction processing
benchmark emulating e-commerce systems.

We create multiple RocksDB workloads with parame-
ters similar to prior works [32, 43, 44, 78]. Specifically, our
RocksDB workloads contain SCAN and GET tasks, where

the first scans a range of objects (i.e., a relatively long task),
and the second retrieves a specified number of objects (i.e.,
a short task). We construct the SCAN and GET tasks such
that their dispersion is one order of magnitude: a SCAN re-
quest scans 5K objects with a median service time of 650 µs,
whereas a GET request retrieves 60 objects where the median
time of each request is 40 µs. We then employ two realistic
distributions to generate concurrent long and short tasks. The
first distribution is similar to workload A in the YCSB bench-
mark [26], and it consists of 50% GET and 50% SCAN tasks.
The second one consists of 90% GET and 10% SCAN tasks,
which is similar to Facebook’s USR workload [17].

The TPC-C benchmark [5] consists of five tasks (or trans-
actions) with different service times. We employ the profiled
model in [32] of the benchmark to build a synthetic workload
following the same task distribution and dispersion ratios. The
five tasks have service times of 21.6, 22.68, 71.28, 332.64,
and 378 µs, distributions of 44%, 4%, 44%, 4%, and 4%, and
dispersion ratios of 1X, 1.05X, 3.3X, 15.4X, and 17.5X, re-
spectively. We scaled the service times, compared to the pro-
filed model in [32], so that clients in our testbed can smoothly
generate tasks at high rates.
Task Arrival Model. We stress the system by generating
tasks following a Poisson arrival process [78]. The Poisson
process results in non-uniform inter-arrival delays and gen-
erates bursts that can cause temporary queue imbalance and
impact the tail latency [32, 64].

Horus schedulers have no prior knowledge about the ser-
vice times, workloads, or arrival distributions.
Methodology and Performance Metrics. We vary the sys-
tem load by incrementally increasing the number of tasks
submitted for scheduling. The system load is measured in
kilo requests per second (KRPS). We keep increasing the
system load until we reach the capacity of the system, where
the response time becomes unacceptably high for latency-
sensitive applications (e.g., seconds or even minutes for tasks
that should complete in micro or milliseconds). The response
time is the period between submitting a task to a spine sched-
uler until it finishes execution on a worker.

An important metric for scheduling systems is the achiev-
able throughput, which we define as the maximum system
load that can be processed while meeting a given bound on
a target performance metric, e.g., the tail (99th percentile)
response time should not exceed 3ms.

4.2 Comparison against State-of-the-Art

Horus vs. RackSched: Single Rack. We report the tail
response time achieved by Horus and RackSched for the
RocksDB and TPC-C workloads in Figure 6. There is no
worker placement method used in this case, as all workers are
located within the same rack. The results show that Horus
consistently achieves much lower tail response times than
RackSched, especially at high system loads. For example,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 9

25 50 75 100
Load (KRPS)

0.0

2.5

5.0

7.5

10.0

99
%

 R
es

p.
 T

im
e

(μ
s) 1e3 Horus RS

(a) RocksDB

200 400 550
Load (KRPS)

0

1

2

99
%

 R
es

p.
 T

im
e

(μ
s) 1e3 Horus RS

(b) TPC-C

Fig. 6: Comparing Horus vs. RackSched in single-rack setups.

for the RocksDB workload with 50% GET and 50% SCAN
(Figure 6a) and at 80 KRPS system load, Horus reduces the
tail response time by up to 75% compared to RackSched.

Horus achieves these significant gains because it tracks the
loads on workers in a more accurate and efficient way than
RackSched. Specifically, Horus identifies and uses idle work-
ers within the rack, which results in low and constant response
times at moderate loads. In contrast, RackSched does not ex-
plicitly track idle workers and relies only on the power of 2
policy of its scheduler, which may not always assign tasks to
idle workers. In addition, RackSched relies on response mes-
sages from workers to update the load values. Since response
messages are generated only after the completion of tasks,
they may not capture the current state of workers by the time
they arrive at the scheduler. In contrast, Horus updates the
load values once it assigns a task to a worker, which enables
it to have a real-time view of the workers’ loads.
Horus vs. RackSched’s Extensions: Datacenter. We com-
pare Horus against RS-H and RS-LB for the different work-
loads and worker placements mentioned in §4.1. Representa-
tive samples of our results are shown in Figure 7 and Figure 8;
the plots for all other scenarios are similar and given in §B.
The results show that Horus consistently and substantially out-
performs RS-H and RS-LB across all workloads and worker
setups. For example, in the Uniform worker setup with 50%
GET and 50% SCAN RocksDB requests (Figure 7a), Ho-
rus reduces the tail response time by up to 50% compared
to RS-H when the system load is 80 KRPS; RS-LB could
not support this load. This also means that Horus can achieve
much higher throughputs than RS-H and RS-LB. For the same
example in Figure 7a, if the target tail response time is 2 ms,
Horus can achieve a throughput of up to 80 KRPS, whereas
RS-LB and RS-H can only achieve up to 25 and 40 KRPS,
respectively. That is, Horus can improve the throughput by up
to 3.2X and 2X compared to RS-LB and RS-H, respectively,
in this case. The results for the Skewed worker placement for
the RocksDB workloads exhibit even higher gains, as shown
in Figure 7b for the 90% GET and 10% SCAN workload. Sim-
ilar gains are observed for TPC-C workloads with Unifrom
and Skewed placements as shown in Figure 8.

Horus achieves these gains across various workloads be-
cause its scheduling policy uses idle information to schedule

25 50 75 100
Load (KRPS)

0

2

4

6

8

99
%

 R
es

p.
 T

im
e

(μ
s) 1e3 Horus RS-H RS-LB

(a) Uniform

200 400
Load (KRPS)

0

2

4

6

8

99
%

 R
es

p.
 T

im
e

(μ
s) 1e3 Horus RS-H RS-LB

(b) Skewed

Fig. 7: Comparing Horus vs. RackSched extensions in multi-
rack settings: Sample results from the RocksDB workloads.

200 400 550
Load (KRPS)

0.0
0.5
1.0
1.5
2.0
2.5

99
%

 R
es

p.
 T

im
e

(μ
s) 1e3 Horus RS-H RS-LB

(a) Uniform

100 300 500 700
Load (KRPS)

0

1

2

3

99
%

 R
es

p.
 T

im
e

(μ
s) 1e3 Horus RS-H RS-LB

(b) Skewed

Fig. 8: Comparing Horus vs. RackSched extensions in multi-
rack settings: Sample results from the TPC-C workloads.

tasks to any available idle workers, and it implements the
efficient power-of-two method whenever there are no idle
workers. In addition, Horus schedulers utilize the lazy update
method to maintain up-to-date information about the worker
loads, which significantly reduces the load imbalance across
workers, as we show using large-scale simulations in §5.

4.3 Responsiveness and Overheads of Horus
We assess the performance of Horus in response to various
dynamic events and analyze its overheads.
Dynamic Task Rate. We start with one client generating tasks
at a rate of 30 KRPS. Every 10 seconds, a new client joins
the system and sends additional tasks at a rate of 20 KRPS
till the total task rate reaches 90 KRPS after 30s. Starting at
40s, we remove one client at a time at the same 10-second
intervals. Figure 9a depicts the tail response time per second
for the considered scenario. The results show that Horus can
quickly react to the workload dynamics as the tail response
time quickly drops after the task rate is decreased.
Dynamic Resource Scaling. In this scenario, one client starts
sending tasks at a rate of 45 KRPS, where Horus schedules
them to two racks of 16 workers. After 10s, we add a new
server with 8 workers from another rack to the available
worker pools. As Figure 9b shows, the tail response time
drops to 1,416 µs after adding the server. We increase the
task rate after 20s to 65 KRPS, which increases the response
time. After 30s, we add another server with 8 workers, which
reduces the response times to 1,644 µs. It takes between 1–2

10 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 10 20 30 40 50 60 70
Time (s)

0

2

4

99
%

 R
es

p.
 T

im
e

(μ
s) 1e3

Add Client
Add Client

Add Client
Remove Client

Remove Client

Remove Client

(a) Dynamic task rate

0 10 20 30 40
Time (s)

0

1

2

3

99
%

 R
es

p.
 T

im
e

(μ
s) 1e3

Add Server

Add Client

Add Server

(b) Dynamic resource scaling

0 5 10 15 20 25
Time (s)

0

1

2

3

99
%

 R
es

p.
 T

im
e

(μ
s) 1e3

Fail Leaf
Add Workers

(c) Handling failures

500 1000 1500
Processing Time (ns)

0

25

50

75

100

Fr
ac

tio
n

of
 T

as
ks

 (%
)

Horus Spine
Horus Leaf
Total

(d) Latency

Fig. 9: Responsiveness and robustness of Horus to various dynamic events in (a)–(c), and its scheduling latency in (d).

seconds from when a resource allocation request is sent to the
Horus controller till the response time is reduced.
Handling Failures. Initially, we use four leaf switches, and
the client sends tasks at a rate of 65 KRPS. After 5s, we inject
one leaf switch failure while the other three leaf schedulers
remain active. We fail a switch by disabling its ports. Since
the testbed has only one spine switch, we could not fail it.
However, we analyze spine failures using simulations in §C.

As shown in Figure 9c, Horus can effectively use the re-
maining resources across other available racks to schedule
tasks without interruption. While the spine scheduler has not
been updated yet, a small fraction of the tasks sent to the
failed leaf switch will be lost. At the rate of 65 KRPS, a leaf
switch failure results in 1,444 failed tasks which are 2% of the
total submitted tasks per second. At time 15s, we add another
leaf scheduler with a rack of 8 workers. The response time is
reduced within two seconds of adding the leaf scheduler.
Latency Overheads. We measure the total scheduling latency
for a task at a switch by collecting the hardware timestamps
at the beginning and end of the switch pipeline. Figure 9d
shows the CDF of the measured scheduling latency at spine
and leaf switches. As shown in the figure, the total latency
is less than 1.6 µs for all tasks. We note that the small step
increase observed in Figure 9d is due to the resubmitted tasks;
recall that Horus resubmits a small fraction of tasks through
the switch to update its state.
Other Results. We present more results in §B, including
analyzing the fraction of resubmitted tasks.

5 Evaluation using Simulation

5.1 Simulation Setup

Datacenter Topology. We simulate a large datacenter with
characteristics similar to the ones used in prior works, e.g., [54,
67]. Specifically, we simulate a network with a multi-rooted
Clos topology composed of common 48-port switches with
fully connected pods. The network has 1,152 leaf switches
interconnected with the same number of spine switches. Each
leaf switch manages a rack of 24 servers, leading to a network
with a total of 27,648 servers. Each server has 32 cores and
accommodates a maximum of 32 workers. The average per-
hop delay between switches is set to 5 µs [35, 55], and the

average packet loss rate is set to 1e−3% [38, 80].
Worker Placement. We simulate 1K concurrent worker pools,
where each worker pool processes tasks of a large-scale dat-
acenter application. Similar to [54, 67], we allocate workers
to pools following an exponential distribution with min=50,
max=20K, and mean=685. The total number of workers is
685K. Each worker has a private task queue and runs an FCFS
policy to process tasks.
Workloads. To analyze the performance in realistic settings,
we generate three workloads with different distributions for
the task processing time: (1) Exp (100) is an exponential
distribution with mean=100 µs, which represents the process-
ing time of a single type of tasks with its variability, such as
tasks that occur in in-memory key-value stores and caching
servers [43, 78], (2) Bimodal (50%–50 µs, 50%–500 µs), and
(3) Trimodal (33.3%–50 µs, 33.3%–500 µs, 33.3%–5000 µs),
which together simulate patterns observed in a mix of simple
and complex tasks such as get/put and scan operations [63].
These workloads are similar to the ones used to evaluate
RackSched, which ensures fair comparisons.
Task Arrival Model. We generate tasks following a Poisson
process to stress the system under bursty arrival and non-
uniform patterns. We keep increasing the system load until
we reach the maximum for each worker pool, which is given
by λ = n/s, where n is the number of workers in the pool and
s is the mean task execution time. In the figures, we report the
system load as a percentage of the maximum load.

5.2 Comparison against the State-of-Art

Horus vs. RackSched: Single Rack. We compare the per-
formance of Horus versus RackSched in single rack settings.
Additionally, we compare against JSQ to show how far Horus
is from the theoretical performance bounds; as we discussed
in §2, JSQ is not implementable in real environments. We
simulate a hypothetical switch that executes JSQ with zero-
delay state updates. To be able to compute the optimal results
by JSQ, we consider only 10 concurrent applications with
workers deployed within the same rack. Figure 10 shows the
tail response times for different workloads. Horus substan-
tially outperforms RackSched, and its performance is close to
JSQ. This is because Horus tracks the loads on workers more
accurately than RackSched, as discussed before in §4.2.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 11

0 25 50 75 99
Load (%)

1

2

99
%

 R
es

p.
 T

im
e

(μ
s)

×103 Horus RS JSQ

(a) Exponential

0 25 50 75 99
Load (%)

2

4

99
%

 R
es

p.
 T

im
e

(μ
s)

×103 Horus RS JSQ

(b) Bimodal

0 25 50 75 99
Load (%)

20

40

99
%

 R
es

p.
 T

im
e

(μ
s)

×103 Horus RS JSQ

(c) Trimodal

Fig. 10: Comparing Horus against RackSched and JSQ in
single-rack settings using simulation.

0 25 50 75 99
Load (%)

1

2

99
%

 R
es

p.
 T

im
e

(μ
s)

×103 Horus RS-H RS-LB

(a) Exponential

0 25 50 75 99
Load (%)

2

4

99
%

 R
es

p.
 T

im
e

(μ
s)

×103 Horus RS-H RS-LB

(b) Bimodal

0 25 50 75 99
Load (%)

20

40

99
%

 R
es

p.
 T

im
e

(μ
s)

×103 Horus RS-H RS-LB

(c) Trimodal

Fig. 11: Comparing Horus against RackSched’s extensions in
multi-rack settings using simulation.

Horus vs. RackSched’s Extension: Datacenter. We com-
pare Horus versus the extensions of RackSched described
in 4. To ensure fair comparisons with RS-H, we make each
leaf scheduler send the load state of the rack to every avail-
able spine scheduler. Figure 11 depicts the tail response time
observed by the worker pool with the median size for Ho-
rus, RS-LB, and RS-H. The figure shows that Horus reduces
the tail response time by up to 3X at moderate loads, and it
achieves higher throughput for any target tail response time.
The gains are more significant when the dispersion in the
task execution times is high, as shown for the Bimodal (Fig-
ure 11b) and Trimodal distributions (Figure 11c) compared
to the exponential distribution (Figure 11a). This is because
the high diversity in the task execution time, coupled with the
variability introduced by the Poisson inter-arrivals of tasks,
may introduce imbalance in the queues at workers, which are
better addressed by Horus.

To analyze the reasons behind the achieved gains, we mea-
sure the imbalance in the queues at workers. We define the
imbalance as the ratio between the maximum queue length
and the average queue length within each worker pool. We
measure the imbalance every 50 µs and plot the results in Fig-
ure 12a, as an interquartile range (1st and 99th percentiles).
The results show that Horus spreads the load more uniformly
across workers because it tracks their loads more accurately.

5.3 Analysis of Horus

Impact of Network Delay. We analyze the impact of network
delays on the scheduling performance of Horus. We increase
the average per-hop delay between switches from 0 to 100
µs and measure the tail response time. Figure 12b shows the
interquartile range of the tail response time of different appli-

50 70 90
Load (%)

0

2

4

Q
ue

ue
 Im

ba
la

nc
e

(%
)

×103 Horus RS-H RS-LB

(a) Queue imbalance

0 5 10 50 100
Per-Hop Delay(μs)

0

8

16

24

99
%

 R
es

p.
 T

im
e

(μ
s)

×103 Horus

(b) Impact of delay

0.0 0.01 0.1 0.5 1.0
Loss Rate (%)

0.8

1.0

99
%

 R
es

p.
 T

im
e

(μ
s)

×103 Horus

(c) Impact of losses

Fig. 12: Analysis of Horus.

cations. As the figure shows, even when the per-hop delay is
10 µs, which is twice the average in real environments [35,55],
Horus maintains a low tail response time with small variation.
As the per-hop delay increases further to unrealistically high
values (50 and 100 µs), the delayed updates from the leaf to
spine layer start to impact the scheduling quality of Horus,
because such updates may deliver stale information about the
worker status in different racks, as shown in Figure 12b.
Impact of Packet Losses. Datacenter networks have very
low loss rates, up to 0.01% [38, 80]. We vary the average
packet loss rate from 0 to 1%, which is 100X the loss rate in
real datacenters. Figure 12c shows the tail response time of
different applications versus the packet loss rate. Even when
the average loss rate is 10X (i.e., 0.1%) the normal rate, Horus
is not significantly impacted by packet losses. This is because
Horus re-transmits the important information such as idleAdd
and idleRemove messages. However, with extreme loss rates,
states maintained at switches can be stale for short periods,
which causes an increase in response times.
Other Results. We present more results in §C, including
analyzing the impact of worker placement, scheduler failures,
and the contributions of Horus components to its performance.

6 Conclusions

We presented the design, implementation, and evaluation of
Horus, a granular task scheduler for multi-tenant datacen-
ters. In contrast to traditional schedulers, Horus offloads the
scheduling of latency-sensitive tasks to network switches,
which enables scheduling them at high rates in real time.
Horus distributes the load information of workers among net-
work switches, and it introduces a new scheduling policy that
minimizes the task response time and does not buffer tasks
in switches. We presented multiple ideas and data structures
to efficiently realize the scheduling policy in programmable
switches. We also designed methods to propagate updated
load values among schedulers. We implemented Horus in a
testbed with a modern programmable switch and compared
its performance against RackSched [78], the state-of-art in-
network task scheduler. We also evaluated the performance of
Horus in large-scale simulations. Our experimental and simu-
lation results showed that Horus is scalable and robust, and it
substantially outperforms RackSched across all performance
metrics in both single- and multi-rack settings.

12 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Apache openwhisk. https://openwhisk.apache.
org/. [Online; accessed September 2022].

[2] Aws lambda. https://aws.amazon.com/lambda/.
[Online; accessed September 2022].

[3] Network and Multimedia Systems Lab (NMSL) at SFU.
https://nmsl.cs.sfu.ca/.

[4] Placement groups - amazon elastic compute cloud.
https://bit.ly/3zMuugf. [Online; accessed April
2023].

[5] Tpc-c. https://www.tpc.org/tpcc/. [Online; ac-
cessed September 2022].

[6] Data sharing on traffic pattern inside facebook’s data
center network. https://bit.ly/3tLgIqz, Jan 2017.
[Online; accessed April 2023].

[7] Fault tolerance through optimal workload placement.
https://bit.ly/2VMR6wQ, Sep 2020. [Online; ac-
cessed April 2023].

[8] Racksched Git Repository. https://github.com/
netx-repo/RackSched, 2020. [Online; accessed
September 2022].

[9] Apache Lucene search engine. https://lucene.
apache.org/, 2021. [Online; accessed September
2022].

[10] Intel Tofino ASIC. https://intel.ly/3fmIP8Q,
2021. [Online; accessed September 2022].

[11] Memcached key-value store. http://memcached.
org/, 2021. [Online; accessed September 2022].

[12] Redis in-memory data structure store. https://redis.
io/, 2021. [Online; accessed September 2022].

[13] RocksDB. https://rocksdb.org/, 2021. [Online;
accessed September 2022].

[14] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight Virtualiza-
tion for Serverless Applications. In Proc. of USENIX
NSDI’20, pages 419–434, Santa Clara, CA, February
2020.

[15] Mohammad Alizadeh, Tom Edsall, Sarang Dharma-
purikar, Ramanan Vaidyanathan, Kevin Chu, Andy Fin-
gerhut, Vinh The Lam, Francis Matus, Rong Pan, Navin-
dra Yadav, and George Varghese. Conga: Distributed
congestion-aware load balancing for datacenters. In
Proc. of ACM SIGCOMM’14, page 503–514, Chicago,
IL, August 2014.

[16] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and
George Porter. Sprocket: A Serverless Video Processing
Framework. In Proc. of ACM SoCC’18, pages 263–274,
Carlsbad, CA, October 2018.

[17] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a
large-scale key-value store. In Proc. of ACM SIGMET-
RICS’12, page 53–64, London, United Kingdom, June
2012.

[18] Hitesh Ballani, Keon Jang, Thomas Karagiannis,
Changhoon Kim, Dinan Gunawardena, and Greg
O’Shea. Chatty tenants and the cloud network sharing
problem. In Proc. of USENIX NSDI’13, pages 171–184,
Lombard, IL, April 2013.

[19] Tom Barbette, Chen Tang, Haoran Yao, Dejan Kostić,
Gerald Q. Maguire Jr., Panagiotis Papadimitratos, and
Marco Chiesa. A High-Speed Load-Balancer design
with guaranteed Per-Connection-Consistency. In In
Proc. of USENIX Symposium on Networked Systems
Design and Implementation (NSDI’20), pages 667–683,
Santa Clara, CA, February 2020. USENIX Association.

[20] Luiz Barroso, Mike Marty, David Patterson, and
Parthasarathy Ranganathan. Attack of the killer mi-
croseconds. Communications of the ACM, 60(4):48–54,
March 2017.

[21] Luiz André Barroso, Jeffrey Dean, and Urs Holzle. Web
search for a planet: The google cluster architecture.
IEEE micro, 23(2):22–28, 2003.

[22] Peter Bodík, Ishai Menache, Mosharaf Chowdhury,
Pradeepkumar Mani, David A Maltz, and Ion Stoica.
Surviving failures in bandwidth-constrained datacen-
ters. In Proc. of ACM SIGCOMM’12, pages 431–442,
Helsinki, Finland, August 2012.

[23] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review,
44(3):87–95, 2014.

[24] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: fast
programmable match-action processing in hardware for
SDN. In Proc. of ACM SIGCOMM’13, pages 99–110,
Hong Kong, China, August 2013.

[25] Zhichao Cao, Siying Dong, Sagar Vemuri, and
David H.C. Du. Characterizing, modeling, and bench-
marking rocksdb key-value workloads at facebook. In

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 13

https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://aws.amazon.com/lambda/
https://nmsl.cs.sfu.ca/
https://bit.ly/3zMuugf
https://www.tpc.org/tpcc/
https://bit.ly/3tLgIqz
https://bit.ly/2VMR6wQ
https://github.com/netx-repo/RackSched
https://github.com/netx-repo/RackSched
https://lucene.apache.org/
https://lucene.apache.org/
https://intel.ly/3fmIP8Q
http://memcached.org/
http://memcached.org/
https://redis.io/
https://redis.io/
https://rocksdb.org/

Proc. of USENIX FAST’20, pages 209–223, Santa Clara,
CA, February 2020.

[26] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proc. of ACM SoCC’10,
page 143–154, Indianapolis, IN, June 2010.

[27] Penglai Cui, Heng Pan, Zhenyu Li, Jiaoren Wu,
Shengzhuo Zhang, Xingwu Yang, Hongtao Guan, and
Gaogang Xie. Netfc: Enabling accurate floating-point
arithmetic on programmable switches. In Proc. of IEEE
ICNP’21, pages 1–11, Virtual Event, November 2021.

[28] Pamela Delgado, Diego Didona, Florin Dinu, and Willy
Zwaenepoel. Job-aware scheduling in eagle: Divide and
stick to your probes. In Proc. of ACM SOCC’16, pages
497–509, Santa Clara, CA, October 2016.

[29] Pamela Delgado, Florin Dinu, Anne-Marie Kermar-
rec, and Willy Zwaenepoel. Hawk: Hybrid datacenter
scheduling. In Proc. of USENIX ATC’15, pages 499–
510, Santa Clara, CA, July 2015.

[30] Christina Delimitrou and Christos Kozyrakis. Quasar:
Resource-efficient and qos-aware cluster management.
In Proc. of ACM ASPLOS’14, page 127–144, Salt Lake
City, UT, February 2014.

[31] Christina Delimitrou, Daniel Sanchez, and Christos
Kozyrakis. Tarcil: Reconciling scheduling speed and
quality in large shared clusters. In Proc. of ACM
SoCC’15, pages 97–110, Kohala Coast, HI, August
2015.

[32] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich,
Marios Kogias, Boon Thau Loo, Linh Thi Xuan Phan,
and Irene Zhang. When idling is ideal: Optimizing
tail-latency for heavy-tailed datacenter workloads with
perséphone. In Proc. of ACM SOSP’21, pages 621–637,
Virtual Event, October 2021.

[33] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A fast and reliable soft-
ware network load balancer. In In Proc. of USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI’16), pages 523–535, Santa Clara, CA,
March 2016. USENIX Association.

[34] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, fast and slow: Low-Latency
video processing using thousands of tiny threads. In
Proc. of USENIX NSDI’17, pages 363–376, Boston, MA,
March 2017.

[35] Peter Xiang Gao, Akshay Narayan, Sagar Karandikar,
Joao Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network requirements for re-
source disaggregation. In Proc. of OSDI’16, volume 16,
pages 249–264, Savannah, GA, 2016.

[36] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan.
Understanding network failures in data centers: mea-
surement, analysis, and implications. In Proc. of ACM
SIGCOMM’11, pages 350–361, Toronto, Canada, Au-
gust 2011.

[37] Ionel Gog, Malte Schwarzkopf, Adam Gleave,
Robert NM Watson, and Steven Hand. Firmament:
Fast, centralized cluster scheduling at scale. In Proc.
of USENIX OSDI’16, pages 99–115, Savannah, GA,
November 2016.

[38] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, et al. Pingmesh: A large-scale
system for data center network latency measurement
and analysis. In Proc. of ACM SIGCOMM’15, pages
139–152, London, United Kingdom, August 2015.

[39] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D Joseph, Randy H Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In Proc. of
USENIX NSDI’11, pages 22–22, Boston, MA, March
2011.

[40] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby
Moncaster. Silo: Predictable message latency in the
cloud. In Proc. of ACM SIGCOMM’15, pages 435–448,
London, United Kingdom, August 2015.

[41] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In Proc. of ACM SOSP’17, pages
121–136, Shanghai, China, October 2017.

[42] Sangeetha Abdu Jyothi, Mo Dong, and P. Brighten God-
frey. Towards a flexible data center fabric with source
routing. In Proc. of ACM SOSR’15, pages 1–8, Santa
Clara, CA, June 2015.

[43] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for µsecond-scale tail
latency. In Proc. of USENIX NSDI’19, pages 345–360,
Boston, MA, February 2019.

[44] Kostis Kaffes, Jack Tigar Humphries, David Mazières,
and Christos Kozyrakis. Syrup: User-defined scheduling
across the stack. In Proc. of ACM SOSP’21, pages 605–
620, Virtual Event, October 2021.

14 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[45] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos
Kozyrakis. Practical Scheduling for Real-World Server-
less Computing. November 2021. arXiv: 2111.07226.

[46] Konstantinos Karanasos, Sriram Rao, Carlo Curino,
Chris Douglas, Kishore Chaliparambil, Giovanni Mat-
teo Fumarola, Solom Heddaya, Raghu Ramakrishnan,
and Sarvesh Sakalanaga. Mercury: Hybrid centralized
and distributed scheduling in large shared clusters. In
Proc. of USENIX ATC’15, pages 485–497, Santa Clara,
CA, July 2015.

[47] D. Katz and D. Ward. Bidirectional forwarding detection
(bfd). RFC 5880, RFC Editor, June 2010.

[48] Ibrahim Kettaneh, Sreeharsha Udayashankar, Ashraf
Abdel-hadi, Robin Grosman, and Samer Al-Kiswany.
Falcon: Low latency, network-accelerated scheduling.
In Proc. of EuroP4’20, pages 7–12, Barcelona, Spain,
December 2020.

[49] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic ephemeral storage for serverless analytics. In
Proc. of USENIX OSDI’18, pages 427–444, Carlsbad,
CA, October 2018.

[50] Marios Kogias, George Prekas, Adrien Ghosn, Jonas
Fietz, and Edouard Bugnion. R2p2: Making rpcs first-
class datacenter citizens. In Proc. of USENIX ATC’19,
pages 863–880, Renton, WA, July 2019.

[51] Leslie Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[52] Collin Lee and John Ousterhout. Granular Computing.
In Proc. of ACM HotOS’19, pages 149–154, Bertinoro,
Italy, May 2019.

[53] Jialin Li, Ellis Michael, and Dan RK Ports. Eris:
Coordination-free consistent transactions using in-
network concurrency control. In Proc. of ACM SOSP’17,
pages 104–120, Shanghai, China, October 2017.

[54] Xiaozhou Li and Michael J Freedman. Scaling ip
multicast on datacenter topologies. In Proc. of ACM
CoNEXT’13, pages 61–72, Santa Barbara, CA, Decem-
ber 2013.

[55] Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan
Wassel, Peter Hochschild, Dave Platt, Simon Sabato,
Minlan Yu, Nandita Dukkipati, Prashant Chandra, et al.
Sundial: Fault-tolerant clock synchronization for data-
centers. In Proc. of OSDI’20, pages 1171–1186, 2020.

[56] Ming Liu, Simon Peter, Arvind Krishnamurthy, and
Phitchaya Mangpo Phothilimthana. E3: Energy-
Efficient microservices on SmartNIC-Accelerated

servers. In Proc. of USENIX ATC’19, pages 363–378,
Renton, WA, July 2019.

[57] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making stateful layer-
4 load balancing fast and cheap using switching asics.
In Proc. of ACM SIGCOMM ’17, pages 15–28, Los
Angeles, CA, August 2017.

[58] Michael Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on Par-
allel and Distributed Systems, 12(10):1094–1104, 2001.

[59] Radhika Niranjan Mysore, Andreas Pamboris, Nathan
Farrington, Nelson Huang, Pardis Miri, Sivasankar Rad-
hakrishnan, Vikram Subramanya, and Amin Vahdat.
Portland: A scalable fault-tolerant layer 2 data center
network fabric. In Proc. of ACM SIGCOMM’09, pages
39–50, Barcelona, Spain, August 2009.

[60] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and
Ion Stoica. Sparrow: distributed, low latency scheduling.
In Proc. of ACM SOSP’13, pages 69–84, Farminton,
Pennsylvania, November 2013.

[61] Recep Ozdag. Intel® Ethernet Switch FM6000 Series -
Software Defined Networking. Intel, page 8, 2012.

[62] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu,
and Chuanxiong Guo. Optimus: an efficient dynamic
resource scheduler for deep learning clusters. In Proc.
of ACM EuroSys’18, pages 1–14, Porto, Portugal, April
2018.

[63] Markus Pilman, Kevin Bocksrocker, Lucas Braun, Re-
nato Marroquin, and Donald Kossmann. Fast scans
on key-value stores. Proc. of the VLDB Endowment,
10(11):1526–1537, 2017.

[64] George Prekas, Marios Kogias, and Edouard Bugnion.
Zygos: Achieving low tail latency for microsecond-scale
networked tasks. In Proc. of ACM SOSP’17, pages 325–
341, Shanghai, China, October 2017.

[65] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with
in-network aggregation. In Proc. of USENIX NSDI’21,
pages 785–808, Virtual Event, April 2021.

[66] Malte Schwarzkopf. Cluster scheduling for data centers:
Expert-curated guides to the best of cs research: Dis-
tributed cluster scheduling. ACM Queue, 15(5):78–89,
October 2017.

[67] Muhammad Shahbaz, Lalith Suresh, Jen Rexford, Nick
Feamster, Ori Rottenstreich, and Mukesh Hira. Elmo:

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 15

Source-routed multicast for public clouds. In Proc. of
ACM SIGCOMM’19, pages 458–471. Beijing, China,
August 2019.

[68] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the Wild: Characterizing and
Optimizing the Serverless Workload at a Large Cloud
Provider. In Proc. of USENIX ATC’20, pages 205–218,
Virtual Event, July 2020.

[69] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, Anand Kana-
gala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim
Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vahdat.
Jupiter rising: A decade of clos topologies and central-
ized control in google’s datacenter network. In Proc.
of ACM SIGCOMM’15, page 183–197, London, United
Kingdom, August 2015.

[70] Arjun Singhvi, Arjun Balasubramanian, Kevin Houck,
Mohammed Danish Shaikh, Shivaram Venkataraman,
and Aditya Akella. Atoll: A Scalable Low-Latency
Serverless Platform. In Proc. of ACM SoCC’21, pages
138–152, Seattle, WA, November 2021.

[71] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan,
Jonathan Kaldor, Scott Michelson, Thawan Kooburat,
Aravind Anbudurai, Matthew Clark, Kabir Gogia, Long
Cheng, Ben Christensen, Alex Gartrell, Maxim Khutor-
nenko, Sachin Kulkarni, Marcin Pawlowski, Tuomas
Pelkonen, Andre Rodrigues, Rounak Tibrewal, Vaish-
navi Venkatesan, and Peter Zhang. Twine: A unified
cluster management system for shared infrastructure.
In Proc. of USENIX OSDI’20, pages 787–803, Virtual
Event, November 2020.

[72] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, et al. Apache hadoop yarn: Yet another resource
negotiator. In Proc. of SOCC’13, pages 1–16, Santa
Clara, California, October 2013.

[73] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at google with borg. In Proc.
ACM EuroSys’15, pages 1–17, Bordeaux, France, April
2015.

[74] Dingming Wu, Ang Chen, T. S. Eugene Ng, Guohui
Wang, and Haiyong Wang. Accelerated Service Chain-
ing on a Single Switch ASIC. In Proc. of ACM Hot-
Nets’19, pages 141–149, Princeton, NJ, November 2019.

[75] Dingming Wu, Yiting Xia, Xiaoye Steven Sun,
Xin Sunny Huang, Simbarashe Dzinamarira, and TS Eu-
gene Ng. Masking failures from application perfor-
mance in data center networks with shareable backup.
In Proc. of ACM SIGCOMM’18, pages 176–190, Bu-
dapest, Hungary, August 2018.

[76] Yiting Xia, Xiaoye Steven Sun, Simbarashe Dzina-
marira, Dingming Wu, Xin Sunny Huang, and TS Eu-
gene Ng. A tale of two topologies: Exploring convertible
data center network architectures with flat-tree. In Proc.
of ACM SIGCOMM’17, pages 295–308, Los Angeles,
CA, August 2017.

[77] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman,
Mosharaf Chowdhury, and Xin Jin. Netlock: Fast, cen-
tralized lock management using programmable switches.
In Proc. of ACM SIGCOMM’20, pages 126–138, Virtual
Event, August 2020.

[78] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu,
Christos Kozyrakis, Ion Stoica, and Xin Jin. Racksched:
A microsecond-scale scheduler for rack-scale comput-
ers. In Proc. of USENIX OSDI’20, pages 1225–1240,
November 2020.

[79] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu,
Christos Kozyrakis, Ion Stoica, and Xin Jin. Racksched:
A microsecond-scale scheduler for rack-scale comput-
ers(technical report). 10 2020.

[80] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-
Tycho Förster, Arvind Krishnamurthy, and Thomas An-
derson. Understanding and mitigating packet corruption
in data center networks. In Proc. of ACM SIGCOMM’17,
pages 362–375, Los Angeles, CA, 2017.

16 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Appendix A More Details of Horus

This appendix describes additional details that we could not
fit into the main paper.

A.1 Example: Lazy State Update

We illustrate the implementation of the lazy state update al-
gorithm in programmable switches in Figure 13. The figure
shows the processing of a resubmitted packet. The two copies
of loadList are maintained in stages 1 and 2, and the two
copies of driftList are in stages 4 and 5. Each of stages 1 and
2 randomly selects a node and passes the ID of this node and
its load to the subsequent stages as metadata (shown at the
bottom of the figure). The selected nodes in this example are
m = 0 from stage 1 and n = 2 from stage 2. Stage 3 chooses
the node with the smaller load, m, and computes the difference
in the load between m and n, ln− lm = 1.

In stage 4, the drift, dm = 3, is found to be greater than the
load difference between m and n, i.e., dm > (ln− lm). This
means that the initial scheduling decision (assuming qm < qn)
may not be accurate, since it could be underestimating the
actual load of m. Thus, a flag is set to resubmit this packet to
update all lists and select the correct node. The drift for the
second node, dn, is read in stage 5 from the second copy of
driftList and passed to stage 6, which calculates the actual
load of both nodes qm and qn as the sum of drift and load
values and resubmits the packet with this data.

In the resubmission pass, the scheduler becomes aware of
the actual load values of the two nodes, i.e., qm = 3+3 = 6
and qn = 4+1 = 5, and it selects the least loaded node, which
is now n = 2. The scheduler then increments the loadList
of the least loaded node. The loadList is updated with the
new values, and the corresponding entries in the driftList are
reset to 0. Notice that in the resubmission pass, we do not
read items from the loadList or driftList as these values are
injected in the resubmitted packet. This allows us to increment
the load list values while respecting the strict memory access
requirement of programmable switches.

Finally, we note that memory updates in programmable
switches are done atomically: a packet may update memory
locations at different stages of the pipeline, but the follow-
ing packet will not observe such updates until they re fully
completed. loadList and driftList values are only updated
upon receiving Load Update packets from downstream nodes.
driftList is only incremented* in the first pass for task packets,
and loadList is only incremented in the resubmission pass.
Therefore, even with re-ordering of resubmitted packets and
other state updates, Horus does not introduce any race condi-
tions.

*An atomic read-modify-write operation that prevents race conditions in
the pipeline.

Stage 1 Stage 3Stage 2 Stage 4 Stage 5

3 4 6

0 1 2 N

Load

Node ID

3 3 6

0 1 2 N

Load

Node ID

Compare
2 1 0

0 1 2 N

Drift

Node ID

3 2 0

0 1 2 N

Drift

Node ID

Stage 6

Sum Load
and Drift

nodeID1=0
load1=3

nodeID2=2
load2=4

selID=0
diff=1

load1 load2

selID

33 4

val > diff

1

resub == 1
? ?

resub=1
driftSel=3

driftOther=1

load1
load2
nodeID1
nodeID2

Resubmit

Metadata

Fig. 13: Example of resubmitting a packet while scheduling
tasks to busy workers.

A.2 Realizing Average Queue Length

Calculating an average value in the switch data plane is infea-
sible due to the lack of support for floating-point arithmetic
in programmable switches. To mitigate this issue, we approx-
imate the calculation of the average by using a fixed-point
representation. We use a 32-bit number to represent an aver-
age load value, which is communicated among switches using
the qLen field in Figure 3. The 32 bits are divided equally
among the integer and fraction parts, which can support an
accuracy of 2−16 that is sufficient for most practical cases.
We note that Horus can support existing approximations of
floating-point operations, e.g., [27], at the cost of additional
switch resources.

When the resource manager allocates w workers in a rack
for a worker pool, the Horus controller calculates an additive
factor with a value of 1/w using the fixed-point represen-
tation, and updates the corresponding leaf switch with this
value, which is maintained in a table. For example, when a
worker pool has 8 workers in a rack, then the additive factor
is 0x00002000, which is interpreted as 1/8. Notice that this
value can be maintained in switches as a 32-bit number.

The calculation of an average value is a sequence of incre-
ments/decrements of the corresponding additive factor. The
leaf scheduler uses the poolID as a key to access the table, and
uses add/subtract of the additive factor to increase/decrease
the average value for every started/finished task. As an exam-
ple, when the 8 workers have 11 tasks in their queues, then
the average queue length is 11/8 = 1+ 3/8, which can be
represented as 0x00016000.

A.3 Handling Failures and Packet Losses

Horus employs simple mechanisms to notify the impacted
schedulers about various failures to reduce disrupting ongo-
ing tasks. These mechanisms are deployed at the centralized
controller and switches’ controllers. We rely on existing pro-
tocols [47, 59, 75] to detect failures and notify the fabric man-
ager. We assume that the centralized controller is replicated
on multiple servers using algorithms such as Paxos [51], and
it receives failure events from the fabric manager.
Switch Failures. Upon receiving a leaf or spine switch fail-
ure event, the centralized controller instructs all impacted

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 17

switches’ controllers to remove the failed switch from their
memories and reset any state linkage information. Thus, the
failed switch will not be used for scheduling incoming tasks.
We note that leaf switch failures usually result in network
partitioning. Therefore, no new tasks could be assigned to
workers inside the rack during leaf switch failures, and Horus
does not attempt to retrieve the workers’ soft state stored at
the failed leaf switch.
Server Failures. The leaf switch controller locally detects the
failures of servers in the rack based on heartbeat packets and
a fixed timeout value. This localizes the state maintenance
at the rack level. After detecting a failure, the leaf controller
decreases the number of available workers and instructs its
data plane to remove the failed worker from its data structures.
Packet Losses. Packets carrying the submitted tasks as well as
packets sent to update the state at different schedulers can be
lost. Horus delegates handling the first case to the submitting
applications. Since Horus is designed for short-lived (µ or
millisecond sec) tasks, applications typically submit multiple
tasks in parallel and ignore the failed ones, as the latency of
resubmitting a failed task can be larger than the execution
time of the task itself.

Horus only retransmits the lost Idle Add/Remove messages
that are sent from a leaf to a spine. To detect a lost update
packet, the leaf and spine schedulers use a simple protocol:
Spine schedulers set the qLen field of the scheduled task to
idleSelected when it selects a rack from the idleList. When the
task arrives at the leaf, it checks the header field to determine
the state of the rack in the spine’s memory. If it mismatches the
current state, it will resend an Idle Add/Remove packet to the
spine based on the correct state. Horus frequently sends Load
Update packets to maintain the state at different schedulers.
Horus does not retransmit lost Load update packets, since
this would be costly and ineffective for the target application
environment. Rather, it relies on subsequent update packets
carrying fresh information to bring the state up to date. Recall
that Horus strives to approximate the current load on workers;
it is nearly impossible to make schedulers track the exact load
on every single worker, given the very short execution time
of tasks and the high dynamics nature of the workload.

A.4 Handling Multi-packet Tasks

When a task is composed of multiple packets, Horus sched-
ulers need to send these packets to the same worker. This
is known as task affinity. Applications expecting to submit
multi-packet tasks, set the isLastPacket flag to 0 for all packets
of the task except the last one. Also, for the non-first packets
of the task they should set the type in the Horus header to
taskContinuation (Figure 3).

Similar to prior approaches, e.g., [57, 78], Horus maintains
a connection table at switches. When the first packet of a
task arrives at a spine or leaf scheduler, the scheduler assigns
it to a node using its normal operation. Let us denote the

ID of this node by nodeID, which can be an ID of a rack
(in the case of a spine scheduler) or an ID of a worker (in
the case of a leaf scheduler). If the isLastPacket field is not
set for the first packet of task, the scheduler adds the entry
⟨hash(poolID, taskID), nodeID⟩ to its connection table. For
subsequent packets with the same taskID, the scheduler for-
wards them to the same node using the connection table. We
note that the leaf scheduler adds another field to each entry of
the connection table: spineID, which specifies the ID of the
spine switch from which the packet came.

Entries in the connection table are removed in one of two
ways. First, when a task submission by client completes, the
final packet with type of taskContinuation comes and the is-
LastPacket flag is set to 1, then the scheduler removes the
corresponding connection table entry. The second way to re-
move an entry from the connection table is through timeout.
Each entry automatically disappears after a pre-specified pe-
riod of time (in the order of 10s of milliseconds). This takes
care of failed tasks and lost final packets.

We note that the connection table is only maintained for
multi-packet tasks, not for short-lived granular tasks that are
composed of single packets.

A.5 Horus Overheads
Horus imposes multiple types of overheads. First, it attaches
a small header of size 11 bytes to include information such
as task ID and queue length as shown in Figure 3. Second, it
maintains state at switches to enable realizing a load-aware
scheduling policy. This consumes part of the memory of the
programmable switches. For granular tasks, which is the main
target of Horus, the maintained state at switches is indepen-
dent of task rates, which is an important property that makes
Horus scalable.*

The state, however, grows with the number of applications
submitting tasks and the number of workers assigned to each
of them. Let us consider one datacenter application with a
total of W workers allocated across R racks, where typically
R≪W . Spine schedulers do not maintain state about individ-
ual workers. Rather, they maintain the average worker load
in different racks. Thus, the memory requirements on spine
schedulers are in the order of O(R). Specifically, each spine
scheduler maintains one copy of the idleList and two copies
of each of the loadList and driftList data structures. It also
maintains a table mapping each rack to the fractional fixed-
point additive factor for updating the load values. The number
of entries in each list is R, each is 16 bits.

Leaf schedulers maintain a state about workers in their
racks, which is on average O(W/R) when workers are uni-
formly allocated across racks, and O(W) in the worst case

*For multi-packet tasks, Horus maintains a connection table to ensure task
affinity. As discussed in §A.4, applications expected to submit multi-packet
tasks set the isLastPacket field to 0 in the Horus header (Figure 3), and
only state about such tasks are maintained in the connection table.

18 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 Scheduling and state updates for idle nodes
- p: reg. pointing to the next available slot in idleList
- idleList: reg. array that holds the IDs of idle nodes
- idleIndex: reg. array holding indices of the nodes in
idleList.

1: // On an idleAdd pkt received
2: function ADD(pkt)
3: readInc(p)
4: idleList[p]← pkt.srcID // pkt.srcID is idle node ID
5: idleIndex[pkt.srcID]← p

6: function SCHEDULETASKIDLE(pkt)
7: readDec(p) // Only a leaf scheduler decrements p
8: selectedNode← idleList[p−1]
9: Update pkt with IP of selectedNode and Forward

10: A On an idleRemove pkt received: First Path
11: function REMOVE(pkt)
12: readDec(p)
13: lastNodeID← idleList[p]
14: removedNodeIdx← idleIndex[pkt.srcID]
15: resubmit(lastNodeID,removedNodeIdx)

16: B On an idleRemove pkt received: Resubmit Path
17: function REMOVE(lastNodeID, removedNodeIdx)
18: idleList[removedNodeIdx]← lastNodeID
19: idleIndex[lastNodeID]← removedNodeIdx

when all workers are in the same rack. Leaf schedulers main-
tain the same idleList, loadList, and driftList data structures
as spine schedulers.

For illustration, consider an application with W = 10,000
workers uniformly distributed across R = 10 racks. A spine
scheduler would need up to 120 bytes of memory, whereas
a leaf scheduler would need approximately 1000 bytes. The
recent Tofino switch has a few hundred Megabytes of memory.

In addition, Horus exchanges messages to update the state
at schedulers. However, following our design principles, we
keep the worker state localized within individual racks, and we
only send aggregated updates to spine schedulers. In addition,
Horus piggybacks the update messages with response packets
of tasks.

A.6 Pseudo Code and P4 Implementation

Algorithm 1 and Algorithm 2 show the high-level pseudo
code of Horus for handling idle nodes and busy nodes. Our
implementation only uses the stages in the ingress pipeline
of the switch. Upon receiving a task, Horus schedulers will
access and read the number of available idle noads and only
use the procedure in Algorithm 2 (line 15) if there are no
available idle nodes.

Recall that removing an idle node after being selected by
SCHEDULETASKIDLE depends on the scheduler type. A leaf
scheduler removes the selected idle worker immediately after

50 150 250 350
Load (KRPS)

0

2

4

6

8

99
%

 R
es

p.
 T

im
e

(μ
s) 1e3 Horus RS-H RS-LB

(a) Uniform

25 50 75 100 125
Load (KRPS)

0

2

4

6

8

99
%

 R
es

p.
 T

im
e

(μ
s) 1e3 Horus RS-H RS-LB

(b) Skewed

Fig. 14: Testbed results for the RocksDB workload. Compar-
ing Horus vs RackSched extensions in multi-rack settings: (a)
90%-GET, 10%-SCAN, (b) 50%-GET, 50%-SCAN distribu-
tions.

sending a task to it because the worker is no longer idle. A
spine scheduler, however, only reads p and does not decre-
ment it, since removing an idle node in a spine scheduler is
triggered by an idleRemove packet sent by a leaf scheduler.

The UPDATE procedure (Algorithm 2, line 2) is triggered
by receiving a reply packet from the worker at leaf sched-
ulers. At the spine layer, updates are explicitly triggered by
loadUpdate packets sent by leaf schedulers. Note that leaf
schedulers increment the load or drift values after selecting
the target worker by one, which reflects the selected worker
queue length after the assignment. At the spine layer, the val-
ues are incremented by the additive factor for the selected
rack (1/#workers), based on the value stored in the tables as
described in §A.2, which is not shown in the pseudo codes
for simplicity.

Generating state update messages in the data plane can
be challenging since packet generation is triggered based on
the real-time state of the workers. Limiting the processing to
the ingress pipeline of the switch enables us to realize this
efficiently, without recirculating the packets. The leaf switch
checks the trigger conditions when processing each arriving
packet. If the condition to send an update is met, it dupli-
cates the original packet via the traffic manager and sends the
original copy to its destination. The switch then modifies the
header fields of the other copy and sends it as an update mes-
sage to the upper layer. As an example, idleRemove packet
is generated when the switch receives a task and becomes
aware that no more idle workers are available. The switch du-
plicates the packet, forwards the original packet to the worker,
changes the type field to idleRemove, sets the srcId to the ID
of the leaf switch, and sends the copied packet header to the
spine.

Appendix B More Results from Testbed

This appendix provides more evaluation results obtained from
the testbed.
Response Time. We present additional results for comparing
Horus against RackSched’s extensions in the multi-rack set-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 19

10 30 50 70 90 98
Load (KRPS)

0

20

40

Fr
ac

tio
n

of
 T

as
ks

 (%
)

Horus Leaf
Horus Spine

(a) RocksDB (50-50)

25 125 225 325 350
Load (KRPS)

0

10

20

30

Fr
ac

tio
n

of
 T

as
ks

 (%
)

Horus Leaf
Horus Spine

(b) RocksDB (90-10)

100 200 300 400 525 555
Load (KRPS)

0

20

40

Fr
ac

tio
n

of
 T

as
ks

 (%
)

Horus Leaf
Horus Spine

(c) TPC-C

20 50 80 110 125
Load (KRPS)

0

5

10

Fr
ac

tio
n

of
 T

as
ks

 (%
)

Horus Leaf
Horus Spine

(d) RocksDB (50-50)

50 150 250 350 420
Load (KRPS)

0

5

10

Fr
ac

tio
n

of
 T

as
ks

 (%
)

Horus Leaf
Horus Spine

(e) RocksDB (90-10)

100 250 400 550 675
Load (KRPS)

0

5

10

Fr
ac

tio
n

of
 T

as
ks

 (%
)

Horus Leaf
Horus Spine

(f) TPC-C

Fig. 15: Fraction of resubmitted tasks for the Uniform worker placement in (a)-(c) and for the Skewed worker placement (d)-(f).

10 30 50 70 90 98
Load (KRPS)

0.0

0.1

0.2

0.3

#M
sg

s/
ta

sk

Load Updates
Idle Add/Remove

(a) RocksDB (50-50)

25 125 225 325 350
Load (KRPS)

0.0

0.1

0.2

0.3

#M
sg

s/
ta

sk

Load Updates
Idle Add/Remove

(b) RocksDB (90-10)

100 200 300 400 525 555
Load (KRPS)

0.0

0.1

0.2

0.3

#M
sg

s/
ta

sk

Load Updates
Idle Add/Remove

(c) TPC-C

20 50 80 110 125
Load (KRPS)

0.00

0.05

0.10

0.15

#M
sg

s/
ta

sk

Load Updates
Idle Add/Remove

(d) RocksDB (50-50)

50 150 250 350 420
Load (KRPS)

0.00

0.05

0.10

0.15

#M
sg

s/
ta

sk

Load Updates
Idle Add/Remove

(e) RocksDB (90-10)

100 250 400 550 675
Load (KRPS)

0.00

0.05

0.10

0.15

#M
sg

s/
ta

sk

Load Updates
Idle Add/Remove

(f) TPC-C

Fig. 16: Rate of state update messages for the Uniform work placement in (a)-(c) and for the Skewed worker placement in (d)-(f).

tings in Figure 14. As shown in Figure 14a, for the workload
with 90%-GET and 10%-SCAN requests, even using uniform
worker placement across the racks, Horus achieves signifi-
cantly lower tail latency at moderate and high loads. Similarly,
Figure 14b shows that for the workload with 50%-GET and
50%-SCAN requests, under a skewed worker placement, the
system maintains a lower latency and sustains up to 125 KRPS
throughput, which is 60% higher than RS-H and 400% higher
than RS-LB.
More Overhead Results. A Horus scheduler may selectively
resubmit a fraction of task packets to the switch pipeline to
update the scheduler view after making a scheduling decision.
We measure the fraction of task packets that are processed
twice by a spine or leaf switch in our experiments. Figure 15
shows that the maximum fractions of resubmitted tasks are
38% and 13% for the Uniform and Skewed placement setups,
respectively. When the load is low, the scheduler does not
need to resubmit tasks as most of the tasks are scheduled
based on idle nodes, and the rate of reply packets is high
enough to automatically update the scheduler state. We note
that simple solutions to update the state would result in a
100% resubmission rate because they resubmit every packet
after scheduling a task.

Further, we note that the rate of resubmitted packets is cor-
related with the placement of workers and the size of worker
pool. Recall that resubmissions are triggered when the drift
value is greater than the difference between the two sampled
load values while scheduling a task. Therefore, the rate of
resubmissions at the spine is impacted by the closeness of
the average load values of the racks in the spine memory.
In addition, the number of available racks impacts the rate
of resubmissions at the spine layer. That is, having a small
number of racks increases the probability of triggered resub-
missions as this increases the likelihood of drawing the same
two random samples for multiple arriving tasks before the

state update arrives, which results in a resubmission.
Next, we analyze the different types of state update mes-

sages processed by the spine scheduler in our testbed. Since
leaf schedulers passively track the load by processing tasks
and reply packets passing through them, there are no extra
overheads for state updates inside the racks. We measure and
plot the rate of messages normalized by the task rate across
different workloads and worker settings in Figure 16. There
are two types of messages sent to the spine layer. Selective
Load Updates are sent to update the average load of the rack,
and Idle Add/Remove messages are sent when the state of the
rack changes from busy to idle and vice versa.

As shown in Figure 16, the rate of the Load Update mes-
sages at the highest workload is less than 0.15. Horus signif-
icantly reduces the overheads compared to previous works
(e.g., [48, 60, 78]), which require at least processing one mes-
sage per task. The figure also shows a small rate for the Idle
Add/Remove messages. Similar to the fraction of resubmitted
packets, the rate of messages is impacted by the placement
of workers and the size of the worker pool. The number of
workers in each rack impacts the rate of oscillation between
the idle states as well as the rate of required average load
updates.

Appendix C More Results from Simulation

This appendix includes additional results from our simulation.
Analysis of Horus Components. We analyze the contribu-
tions of the two components of the proposed scheduling pol-
icy: (i) scheduling tasks to idle nodes using idleness informa-
tion and (ii) scheduling tasks to busy nodes using the power-
of-two policy. In this experiment, we focus on five sample
worker pools with sizes ranging from 50 to 20,000 workers
each, and we use the Bimodal task distribution.

20 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 2 Scheduling and state updates for busy nodes
- loadList: reg. array that holds the queue length of nodes
(two identical copies maintained).
- driftList: reg. array holding the difference between val-
ues in loadList and actual load (two identical copies main-
tained).

1: // On a taskReply or loadUpdate pkt received
2: function UPDATE(pkt)
3: loadList1[pkt.srcID]← pkt.qlen
4: loadList2[pkt.srcID]← pkt.qlen
5: dri f tList1[pkt.srcID]← 0
6: dri f tList2[pkt.srcID]← 0
7: // Atomic, read-modify-write operation on the reg.
8: function CHECKDRIFT(selectedIdx,di f f Samples)
9: if dri f tList1[selectedIdx]≤ di f f Samples then

10: Increment dri f tList1[selectedIdx]
11: return NORESUB
12: else
13: return dri f tList1[selectedIdx]
14: A On an task pkt received: First Path
15: function SCHEDULETASKBUSY(pkt)
16: randIdx1,randIdx2← genRandomSamples()
17: sample1← loadList1[randIdx1]
18: sample2← loadList2[randIdx2]
19: selectedIdx,di f f Samples←CompareSamples()
20: dri f tSelected←CheckDri f t()
21: if dri f tSelected == NORESUB then
22: Increment dri f tList2[selectedIdx]
23: Update pkt headers and Forward
24: else
25: load1← dri f tSelected + loadSelected
26: load2← dri f tList2[otherIdx]+ loadOther
27: resubmit(selectedIdx, load1,otherIdx, load2)
28: B On an task pkt received: Resubmit Path
29: function SCHEDULETASKBUSY(selectedIdx, load1,

otherIdx, load2)
30: selectedIdx←CompareSamples()
31: Increment loadList1[selectedIdx]
32: Increment loadList2[selectedIdx]
33: Update pkt headers and Forward

We simulate two variants of the power-of-two policy. The
first relies only on reply packets from workers to update the
state, as done in RackSched [78]. This is referred to as Pow-
of-2 Delayed Updated (DU). The second variant, which is
used in Horus, updates the state while scheduling tasks, and it
may require resubmitting packets through the switch. We also
simulate a scheduler that uses the idle node selection only: it
schedules tasks to idle nodes, and if there are no idle nodes, it
will assign tasks to nodes randomly.

The results are presented in §C, where we present the aver-
age response time versus the system load. The results show

0 25 50 75 99
Load (%)

0.5

0.8

1.0

A
vg

. R
es

p.
 T

im
e

(μ
s) ×103

Horus
Pow-of-2
Pow-of-2 (DU)
Idle Selection

Fig. 17: Analysis of Horus components.

the impact and importance of the two components of Horus.
That is, Horus achieves its performance by effectively tracking
the load on nodes and assigning tasks to idle nodes whenever
they are available. And when there are no idle nodes, Horus
uses the power-of-2 policy with accurate load information to
assign tasks to nodes with lower loads. Further, the random-
ness in the power-of-2 policy makes Horus robust against the
task herding problem.
Impact of Scheduler Failures. We analyze the impact of
spine scheduler failures while all of the 1K worker pools are
running. Upon detecting a failure, the centralized controller
notifies the leaf schedulers impacted by the failed spine sched-
uler. Similar to [38], we add latency to the control messages
carrying the failure notices based on the number of hops be-
tween the failed spine and each impacted leaf. The experiment
is repeated 30 times; each time, we fail a random spine sched-
uler. Notice that burst failures of spine switches are rare; the
median time between failures of such switches is multiple
hours [36]. Therefore, we only consider single spine failures.

We define r as the ratio of leaf to spine schedulers to control
the number of spine schedulers per worker pool. For exam-
ple, r = 40 indicates using four times fewer spine schedulers
compared to r = 10, for the same number of leaf schedulers.

Figures 18a and 18b show the impact of spine scheduler
failures and the trade-off for using different numbers of spine
schedulers for worker pools. Figure 18a shows the number
of messages sent from the centralized controller to the leaf
switches as a result of the failure. When the state is distributed
among more spine schedulers (i.e., small r), a failure results
in more control messages sent. This is because the Horus
controller sends a message to each leaf switch that needs to
update its state. In the worst case (r = 10), an average of
306 (maximum 624) messages need to be sent for each spine
failure event, which is a small message rate; centralized con-
trollers in today’s datacenters can send thousands of updates
per second [59, 76].

Figure 18b shows the fraction of aborted scheduling tasks
during spine switch failures. For all r values, less than 0.1%
of the total submitted tasks are aborted on average during a

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 21

0 200 400 600
Control Msgs to Leaves

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 fa

ilu
re

s

Ratio (r)
40
20
10

(a) Overhead during failure

40 20 10
Leaf/Spine Scheduler Ratio

0.00

0.05

0.10

A
bo

rte
d

Ta
sk

s (
%

)

(b) Aborted tasks during failure

Fig. 18: Impact of spine scheduler failures.

spine failure. This is because of the distributed scheduling in
Horus, which enables multiple spine schedulers to handle the
tasks submitted to a worker pool. Horus equally distributes
the tasks belonging to a worker pool among spine schedulers.
Therefore, before the failed switch is removed from the list of
schedulers, only a small fraction of tasks that were sent to that
switch may be affected. The aborted tasks can be re-launched
by the application, which will be routed to the other active
spine schedulers. Using more spine schedulers per worker
pool provides better availability for the worker pools that
were using the failed spine scheduler, because the scheduling
requests of each worker pool are distributed uniformly among
a larger number of spine schedulers.
Impact of Worker Placement. Datacenter operators may use
different policies, e.g., [18], to allocate workers to worker
pools, which can result in various worker distributions across
racks. We analyze the impact of worker distribution on the
performance of the task scheduler. Recall that we simulate 1K
worker pools that have different numbers of workers (accord-
ing to exponential distribution) randomly distributed across
racks. We quantify the diversity in worker distribution by com-
puting the variance in the number of workers per worker pool.
A high variance indicates more scattered workers. We group
worker pools that observed similar variance in the worker
distributions together.

We plot, in Figure 19a, the average of the tail response time
(at 90% load) observed by various worker pools. We also plot
in the same figure, as error bars, the average plus/minus one
standard deviation. The figure shows that as the variance in the

20 60 100 140
Variance of #Workers per Rack

0

20

40

99
%

 R
es

p.
 T

im
e

(μ
s) ×103

133.1 133.9

Horus
RS-H
RS-LB

(a) Worker placement

0.0 0.01 0.1 0.5 1.0
Loss Rate (%)

0.0

0.1

0.2

#M
sg

s/
ta

sk

Idle Add/Remove
Load Updates

(b) Packet losses

Fig. 19: Impact of worker placement and packet losses.

worker distribution increases, RS-H and RS-R result in higher
and more variable tail response times, whereas the response
time of Horus remains stable across all worker distributions.
For example, when the workers are highly scattered across
racks (i.e., variance is 140), Horus reduces the tail response
times by up to 94% and 99% compared to RS-R and RS-H,
respectively.

The results in Figure 19a imply that the performance
of Horus is robust against different worker distributions,
which offers flexibility to datacenter operators to employ var-
ious worker allocation policies. The robustness of Horus is
achieved by more accurately tracking the load on workers
compared to RS-R and RS-H.
Impact of Packet Losses on Update Messages. Figure 19b
shows the impact of packet loss on the rate of different types
of update messages. Since Horus sends average load updates
periodically based on the number of tasks that enter and exit
the rack, the rate of load updates is not sensitive to packet
losses. The idleAdd and idleRemove messages are, however,
re-transmitted in case of loss. For example, when an idleRe-
move packet from a leaf to a spine is lost, it re-transmits the
message until the leaf is removed from the idle list. This adds
extra overhead on switches. As the figure shows, the rate of
idleAdd and idleRemove messages increased by only 15%
when the loss rate is 0.1%. Even with the much higher loss
rates of 0.5 and 1%, Horus still functions properly, albeit at
increased rates of idleAdd and idleRemove messages.

22 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Fast Vector Query Processing for Large Datasets Beyond GPU Memory
with Reordered Pipelining

Zili Zhang Fangyue Liu Gang Huang Xuanzhe Liu Xin Jin

School of Computer Science, Peking University

Abstract
Vector query processing powers a wide range of AI applica-
tions. While GPUs are optimized for massive vector opera-
tions, today’s practice relies on CPUs to process queries for
large vector datasets, due to limited GPU memory.

We present RUMMY, the first GPU-accelerated vector query
processing system that achieves high performance and sup-
ports large vector datasets beyond GPU memory. The core
of RUMMY is a novel reordered pipelining technique that
exploits the characteristics of vector query processing to effi-
ciently pipeline data transmission from host memory to GPU
memory and query processing in GPU. Specifically, it lever-
ages three ideas: (i) cluster-based retrofitting to eliminate
redundant data transmission across queries in a batch, (ii)
dynamic kernel padding with cluster balancing to maximize
spatial and temporal GPU utilization for GPU computation,
and (iii) query-aware reordering and grouping to optimally
overlap transmission and computation. We also tailor GPU
memory management for vector queries to reduce GPU mem-
ory fragmentation and cache misses. We evaluate RUMMY
with a variety of billion-scale benchmarking datasets. The
experimental results show that RUMMY outperforms IVF-
GPU with CUDA unified memory by up to 135×. Compared
to the CPU-based solution (with 64 vCPUs), RUMMY (with
one NVIDIA A100 GPU) achieves up to 23.1× better perfor-
mance and is up to 37.7× more cost-effective.

1 Introduction
The breakthroughs in Deep Learning (DL) [1] enable un-
structured data (e.g., images, videos, and audios) [2, 3] to be
represented as high-dimensional feature vectors for serving
a wide range of AI applications [4–12]. In particular, recent
advancements in Large Language Models (LLMs) [13, 14]
have catalyzed the emergence of a new generation of AI appli-
cations. However, LLMs only support a short-term memory
(32k tokens limit for GPT-4 [15]). Vector databases [16–20]
can provide persistence and long-term memory for LLMs.
Consequently, Retrieval Augmented Generation (RAG) is ap-
plied to augment LLMs by dynamically retrieving relevant
documents from a database during the generation process,
thereby expanding LLMs’ knowledge base and contextual
understanding. Specifically, RAG first converts personal or or-

ganizational documents into vectors to build a vector database.
When users post a question, it first issues a vector query to
identify a set of documents that may contain the answer (i.e.,
find the most similar vectors from a vector database for a given
vector). These documents, along with the original question,
are then fed into an LLM, which analyzes the text information
and returns the final answer. Additionally, vector query pro-
cessing is also adopted in a wide range of applications, such
as recommendation systems [4–6, 21], recognition [7–9, 22],
and information retrieval [10–12].

With the explosive growth of the dataset scale, vector query
becomes a performance bottleneck for AI applications. To
reduce query overhead, GPUs, optimized for massive vector
operations, are a natural choice to process vector queries. This
is exemplified by early GPU-based vector query processing
systems that load vector datasets into GPU memory [23]. A
key problem is that they cannot support large datasets due to
limited GPU memory. The explosion of unstructured data [3]
and the increasing adoption of DL in production [4–9, 21, 22]
make this problem particularly acute. Even high-end GPUs
like NVIDIA H100 and A100, with tens of GB of memory,
fall short of today’s large vector datasets [24, 25] containing
billions of items with a memory footprint of hundreds of GB.
Thus, CPU-based solutions [16, 19, 23] are still the de facto
choice for billion-scale datasets in production.

Conceivably, GPU memory can be augmented with host
memory to support large datasets. A straightforward solution
is to divide the dataset into multiple parts in host memory.
Each part can be transmitted into GPU memory in rotation to
process vector queries. This solution performs transmission
and computation sequentially and cannot well utilize GPU re-
sources. Another possible solution is to integrate a GPU-based
solution with CUDA unified memory [26], which automati-
cally handles GPU memory swapping and supports parallel
transmission and computation. As CUDA unified memory is
unaware of vector queries, this solution would incur massive
GPU memory page faults, leading to low performance.

We present RUMMY, the first GPU-accelerated vector query
processing system that (i) supports large vector datasets be-
yond GPU memory, and (ii) achieves higher performance and
is more cost-effective than CPU-based solutions. The core
of RUMMY is a novel reordered pipelining technique that

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 23

exploits the characteristics of vector query processing to effi-
ciently pipeline data transmission from host memory to GPU
memory and query processing in GPU.

Three primary technical challenges must be overcome to
realize RUMMY, each pertaining to a different aspect: trans-
mission, computation, and pipelining. First, redundant trans-
mission occurs when processing vector queries in a batch.
Due to limited GPU memory, the same data subset is trans-
mitted and evicted repeatedly for different queries in the same
batch. Leveraging the fact that each subset’s processing is in-
dependent, we design cluster-based retrofitting to restructure
the query plan for each vector query and completely eliminate
redundant transmission.

Second, the Streaming Multiprocessors (SMs) in the GPU
suffer from low utilization due to pipelining-caused load im-
balance. Specifically, pipelining segregates the query process-
ing into groups, each corresponding to a GPU kernel. A kernel
comprises a grid of thread blocks, and each block is executed
within an SM. A kernel for a small group is launched with a
small grid of thread blocks, resulting in idle SMs (i.e., spatial
underutilization). Besides, the discrepancy between the size
of different data parts causes stragglers—some thread blocks
execute longer than others (i.e., temporal underutilization). To
maximize utilization, we introduce dynamic kernel padding
with cluster balancing. Cluster balancing equalizes data part
sizes offline. Dynamic kernel padding fills idle SMs with
padding thread blocks online to enhance GPU occupancy.

Third and most importantly, directly applying pipelining
suffers from limited overlapping between transmission and
computation, and has high pipelining overhead due to fre-
quent API invocations and synchronizations. The problem is
exacerbated by that the pipelining plan can only be decided
at runtime when queries arrive, as the quality of a particular
plan is query-dependent. We design query-aware reordering
and grouping, which dynamically reorders the query plan and
divides the plan into groups with two algorithms. The reorder-
ing algorithm hides small transmission operations with large
computation operations as many as possible to maximize
the overlapping. The grouping algorithm finds the best trade-
off between pipelining efficiency and pipelining overhead.
The two algorithms are lightweight with negligible runtime
overhead. We prove that the two algorithms achieve optimal
pipelining performance, respectively.

In addition, we also tailor the GPU memory management
for vector query processing. RUMMY pre-allocates GPU mem-
ory and re-allocates the memory to each transmission task,
without involving the general-purpose but costly GPU mem-
ory manager. We also exploit the vector query processing to
reduce GPU memory fragmentation and cache misses.

We remark that the runtime reordered pipelining technique
in RUMMY is distinct from canonical pipelining techniques
adopted in microprocessor architectures [27, 28], DL sys-
tems [29, 30], and task schedulers [31, 32]. Those techniques
rely on dependent and deterministic execution flows. For

instance, DL models have a pre-defined layer-by-layer com-
putation graph, which enables solutions like PipeDream [30]
and PipeSwitch [29] to compute a pipelining plan offline.
Besides, to ensure correctness, the deterministic computa-
tion graph cannot be reordered. In contrast, a vector query
plan is non-deterministic and can be executed in any order
since the processing of each subset is independent. The key
novelty of RUMMY is that it leverages the independent and
non-deterministic nature of vector query processing to dynam-
ically decide the pipelining plan with reordering at runtime,
and achieves optimal parallelism between transmission and
computation.

In summary, we make the following contributions.
• We present RUMMY, to the best of our knowledge, the

first GPU-accelerated vector query processing system that
achieves high performance and supports large vector
datasets beyond GPU memory.

• We introduce a new runtime reordered pipelining technique,
which leverages cluster-based retrofitting, dynamic kernel
padding with cluster balancing, and query-aware reorder-
ing and grouping to efficiently pipeline data transmission
and query processing.

• We implement a RUMMY prototype. The evaluation shows
that RUMMY outperforms IVF-GPU with CUDA unified
memory by up to 135×. Compared to the state-of-the-art
CPU solution (with 64 vCPUs), RUMMY (with one NVIDIA
A100 GPU) achieves up to 23.1× better performance and
is up to 37.7× more cost-effective.

2 Background and Motivation
In this section, we first introduce the background of vector
query processing. We then describe GPU-based solutions to
accelerate vector query processing. Finally, we summarize the
challenges to support billion-scale datasets for GPU-based
vector queries, which motivate the design of RUMMY.

2.1 Vector Query Processing

DL models convert unstructured data into high-dimensional
feature vectors to serve applications [4–12, 21, 22]. These
vector datasets [24, 25] are utilized to construct a vector
database [16–20] as the persistence and long-term mem-
ory. Specifically, RAG leverages these datasets to enhance
the quality of LLM-based AI applications. For instance,
TEXT1B [24] contains one billion data entries from both
textual and visual modalities, which can be used to enhance
multimodal LLMs. Vector queries are referred to as the mem-
ory retrieval part in RAG and are widely used in emerging
LLM-based AI applications [33–35].

Specifically, a vector query is to find the top-k nearest neigh-
bors (KNN) in a vector dataset that are most similar to the
given vector. KNN returns the exact top-k results and requires
searching on the entire dataset. KNN becomes impractical
for large datasets due to high query latency. Approximate
top-k nearest neighbor (ANN) search trades query accuracy

24 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Query-1 (𝐐𝟏) : 𝐂𝟏 𝐂𝟒 𝐂𝟑

𝐂𝟐 𝐂𝟓 𝐂𝟏
𝐂𝟑 𝐂𝟔 𝐂𝟐

Top-3
Clusters

𝐆𝟏 𝐆𝟐 𝐆𝟑

Query-2 (𝐐𝟐) :

Query-3 (𝐐𝟑) :

Figure 1: Query plan for a batch of three queries.

for query latency. Previous works [36] show that ANN can
achieve 99% accuracy while only searching on 1% of the
dataset. Even for accuracy-sensitive scenarios, ANN can meet
the requirements of applications and outperform KNN by
hundreds of times. Since DL models inherently introduce er-
rors when generating vectors, ANN is widely used in existing
vector databases for large datasets [16, 18, 19, 37–40].

The basic idea of ANN search is to build an index struc-
ture [41–44] to sample a subset of the dataset for answering a
vector query. There are two representative ANN indexes, in-
verted file index (IVF) [41,45,46] and graph index [42,47,48].
While graph index is more accurate, it is more expensive to
build and maintain due to its large memory footprint and
building time. When confronting billion-scale datasets, IVF
is proved to be more efficient and accurate than the state-of-
the-art graph index [48] with the same memory consumption
according to recent work [46]. Thus, IVF is more suitable for
very large datasets. While IVF has many variants, their gen-
eral workflow is similar. At offline, IVF trains a list of clusters
({C1,C2, ...Cl}) by k-means clustering [49], and each vector
is assigned to the closest cluster. Online, it performs pairwise
comparison between the query vector and each vector in the
top-n closest clusters to produce the approximate top-k near-
est neighbor vectors. The number of sampled clusters n is a
configurable parameter to make a tradeoff between accuracy
and latency.

For example, Figure 1 shows a query plan of the batch
of three queries ({Q1,Q2,Q3}). IVF selects top-3 nearest
clusters (i.e., n = 3) for each query, e.g., {C1,C4,C3} for Q1.
Q1 is compared with each vector in the three clusters, in which
the top-k nearest vectors are returned as the result.

2.2 GPU Acceleration

Vector query processing is compute-intensive and involves
massive vector operations. GPUs are a natural choice to ac-
celerate vector processing [23]. The pairwise distance com-
putation between high-dimensional vectors is a good fit for
the GPU architecture. A detailed comparison between CPUs
and GPUs on IVF and graph index in terms of performance
and cost is listed in Appendix A.2, which demonstrates the
benefits of GPU-based vector query processing systems.

Vector query processing in GPUs. A GPU consists of many
SMs, each including numerous CUDA cores for extensive
vector operations. Such hardware architecture involves a hier-
archical parallel computation model [50]: each computation
consists of multiple CUDA kernels; each CUDA kernel in-

cludes a grid of thread blocks; and each block comprises a
number of threads. A block of threads can be executed simul-
taneously within one SM, where each thread is executed on a
CUDA core. To process a vector query in a GPU, the computa-
tion of the query on one cluster (e.g., Q1→C1 in Figure 1) is
a thread block. The computations of different queries on their
corresponding clusters (e.g., {Q1→C1,Q2→C2,Q3→C3})
form a grid of thread blocks, i.e., a CUDA kernel.

Limitation: GPU memory capacity. Existing GPU-based
vector query systems [23] load the entire dataset in the GPU.
Today’s large vector datasets [24, 25] contain billions of vec-
tors, which have a memory footprint of hundreds of GB. GPU
memory is too limited compared to large datasets. For ex-
ample, NVIDIA A100 GPUs are equipped with up to 80GB
of memory, while the size of the TEXT1B dataset [24] is
750GB. It requires at least ten NVIDIA A100 GPUs to store
the TEXT1B dataset. Using multiple GPUs causes a mis-
match between GPU compute resources and GPU memory
resources. In particular, as we have explained in §2.1 and
Figure 1, ANN search only performs vector operations on a
small subset of the dataset, which exacerbates this mismatch
and causes low utilization of expensive GPU resources.

The natural idea is to expand GPU memory with host mem-
ory. For example, the dataset is stored in host memory and is
divided into multiple parts, each of which can fit GPU mem-
ory. To process a query, each part is transmitted from host
memory to GPU memory in rotation. After iterating over all
parts, the intermediate results of each part are aggregated to
produce the final result. This solution has a long transmission
time, and because it performs transmission and computation
sequentially, it has low GPU utilization.

Another strawman solution is to integrate existing GPU-
based query systems with CUDA unified memory [26].
CUDA unified memory automatically handles data transmis-
sion at runtime, and performs parallel transmission and com-
putation to fully utilize the GPU copy engine and kernel
engine. However, it is a general memory swapping technique
that is unaware of vector queries. It incurs massive GPU mem-
ory page faults for data transmission. Besides, the overlapping
between transmission and computation is also limited as it is
agnostic of vector queries. Therefore, applying CUDA unified
memory introduces a large gap from the ideal performance.

2.3 Challenges

Opportunity: pipelining transmission and computation.
We can pipeline transmission and computation to increase
GPU utilization and improve performance. Specifically, we
divide the query processing into groups, e.g., {G1,G2,G3}
in Figure 1. The transmission of one group can be pipelined
with the computation of the preceding group. Figure 2(a)
shows how to pipeline the three groups in Figure 1, where
PCIe represents data transmission from host to GPU memory
over PCIe, and GPU represents computation in GPU. The
transmission of G2 is pipelined with the computation of the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 25

PCIe

GPU
(a)

(b)

PCIe

GPU
(c)

PCIe

GPU

𝐆𝟑𝟏

𝐆𝟏 𝐆𝟐 𝐆𝟑
𝐆𝟏 𝐆𝟐 𝐆𝟑

𝐆𝟏

𝐆𝟏

𝐆𝟑
𝐆𝟑

𝐆𝟐
𝐆𝟐

𝐆𝟑𝟐
𝐆𝟑𝟏 𝐆𝟑𝟐𝐆𝟏

𝐆𝟏

𝐆𝟐
𝐆𝟐

Figure 2: Examples for the pipelining plans (ignore data reuse).

preceding group G1, partly hiding the transmission overhead.
We summarize three challenges to exploit this opportunity and
achieve optimal pipelining efficiency, which focus on three
system aspects: transmission, computation, and pipelining.

Challenge 1: cross-query redundant transmission. The
first challenge is that processing a batch of vector queries
introduces redundant transmission. As Figure 1 shows, if the
GPU memory capacity equals three clusters and the execu-
tion order is [G1,G2,G3]. Initially, the GPU is empty. The
system transmits G1 = {C1,C2,C3} to the GPU, which fills
up the GPU memory. Next, to transmit {C4,C5,C6} for G2,
it first evicts {C1,C2,C3} and then starts the transmission.
As for G3, it clears the GPU memory again and then trans-
mits {C1,C2,C3} back to GPU memory. In total, the order
[G1,G2,G3] transmits nine clusters, among which C1, C2 and
C3 are transmitted twice each. Alternatively, swapping the
order between G2 and G3 only needs to transmit six clusters.
In this case, the system reuses the data {C1,C2,C3} for G3
after processing G1. Reordering G2 and G3 eliminates the
redundant transmission.

Challenge 2: spatial and temporal GPU underutilization.
The second challenge is the SMs in the GPU have low utiliza-
tion due to the load imbalance of thread blocks. The compu-
tation of G1 in Figure 1 corresponds to a kernel that contains
three thread blocks (i.e., {Q1 → C1, Q2 → C2, Q3 → C3}).
Qi → C j represents the thread block of the computation of
query Qi on cluster C j. Each thread block is executed within
one SM and cannot be migrated to other SMs [50]. As shown
in Figure 3, when processing G1, there are only three thread
blocks to run, if the GPU has four SMs, then one SM (i.e.,
SM4) is idle, causing spatial underutilization. Besides, be-
cause the clusters have different sizes, the thread blocks for
larger clusters take a longer time to run, i.e., stragglers. As
shown in Figure 3, SM2 and SM3 are idle after completing
their thread blocks, leading to temporal underutilization as
they wait for SM1 to finish. In summary, spatial underutiliza-
tion stems from a mismatch between the number of SMs and
thread blocks, while temporal underutilization is caused by
cluster heterogeneity.

Challenge 3: transmission and computation overlapping.
The third challenge is to maximize the overlapping between
transmission and computation in the pipeline. The overlap-
ping is affected by both the ordering and granularity of the

G
PU

Spatial
underutilization

Time
Temporary

underutilization

𝐐𝟏 → 𝐂𝟏𝐒𝐌𝟏

𝐒𝐌𝟐

𝐒𝐌𝟑

𝐒𝐌𝟒

Idle

Idle

Idle

𝐐𝟐 → 𝐂𝟐

𝐐𝟑 → 𝐂𝟑

Figure 3: Spatial and temporal GPU underutilization.

groups in the pipeline. We illustrate each of them in Figure 2,
and we do not consider data reuse in this example. Figure 2(a)
shows a primitive pipelining plan based on the execution or-
der [G1,G2,G3]. First, as shown in Figure 2(b), if we reorder
G2 and G3, then the transmission of G2 is completely hidden
by the computation of G3, which increases the overlapping.
Second, as shown in Figure 2(c), dividing G3 into two smaller
groups, G1

3 and G2
3, also improves the overlapping, because

finer-grained grouping can hide more transmission operations
with computation operations. However, finer-grained group-
ing also introduces more system overhead due to frequent
API invocations and synchronizations.

The challenge is exacerbated by the runtime nature of the
problem. The pipelining plan depends on the input vector
queries, as different queries process different clusters, which
affects the ordering and grouping decisions of the pipeline.
Let N be the number of thread blocks. The search space of
exhaustive search contains O(N!×2N) choices, as there are
O(N!) ordering cases and O(2N) grouping cases. It is chal-
lenging to find the best plan among these choices. In addition,
the system also needs an accurate profiler to precisely esti-
mate the transmission and computation time for a given group
at runtime.

3 RUMMY Overview
We present RUMMY, a GPU-accelerated vector query process-
ing system to support large vector datasets beyond GPU mem-
ory. RUMMY exploits the characteristics of vector queries to
achieve fast and cost-effective query processing. RUMMY
achieves so by pipelining transmission and computation
through a novel reordered pipelining technique. This tech-
nique eliminates redundant data transmission (§4.1), maxi-
mizes GPU utilization (§4.2), and finds out optimal pipelining
plans with negligible runtime overhead (§4.3). Here we pro-
vide a brief overview of RUMMY as Figure 4 shows. RUMMY
consists of an offline part and an online part.

Offline. RUMMY first builds a primitive IVF index for the
dataset, which can be extended into many variants of IVF. IVF
divides the vectors into a few clusters. RUMMY extends the
index building with cluster balancing to alleviate the strag-
gler problem (§4.2). The dataset is stored in host memory and
is transmitted to the GPU memory over PCIe online under
the control of the GPU memory management system (§4.4).
RUMMY also builds a profiler offline to measure the com-
putation and transmission time (§4.3.1) for online decision
making.

26 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Database
Vectors

Index Building

Profiler (§4.3.1)

Original Components RUMMY Components

Data Loader

UserBatch
Queries

Select Top-n
Clusters

Query Plan
Retrofitting (§4.1)

Pipelining Scheduler
(§4.3.2 §4.3.3)

. . . Group
Queue

MM (§4.4)

GPU Host

KC (§4.2)

. . .

Result

SM

Push
Notify

Offline Online

Cluster Balance
(§4.2)

Figure 4: RUMMY overview.

Online. At runtime, RUMMY processes vector queries that
arrive at the system. RUMMY has the following three major
components in the query runtime.

Query plan. After the top-n closest clusters of each query are
determined through IVF, RUMMY retrofits the query plan (i.e.,
queries to clusters as shown in Figure 1) of each query, which
eliminates the redundant data transmission (§4.1).

Pipelining scheduler. The runtime pipelining scheduler re-
ceives the retrofitted query plan. Based on the prediction time
provided by the profiler, the scheduler reorders the plan with
a greedy algorithm, which finds the optimal order that mini-
mizes the total time on per-cluster granularity (§4.3.2). After
the order is determined, the scheduler groups the query plan
with a dynamic programming algorithm, which finds the best
tradeoff between pipelining efficiency and pipelining over-
head (§4.3.3). Each group is pushed into a global group queue
for transmission and computation.

GPU Runtime. The GPU runtime of RUMMY consists of two
components: kernel controller (KC) and GPU memory man-
agement system (MM). The two components maintain two
local group queues respectively. They pull tasks from the
global group queue. MM starts transmission immediately as
long as its local group queue is not empty (§4.4). When fin-
ishing the transmission of a group Gi (i.e., T(Gi)), it notifies
KC to set the computation of Gi (i.e., E(Gi)) executable and
pops the next task for transmission. KC pops the task E(Gi)
and executes it if the kernel engine is idle and E(Gi) is ex-
ecutable. Besides, when launching E(Gi), KC will estimate
whether E(Gi) is able to saturate all SMs in the GPU. If not,
KC dynamically pads the kernel with more thread blocks to
utilize idle SMs (§4.2). After finishing the computation of all
groups in a batch, KC returns the final result to the user.

4 RUMMY Design
In this section, we present the design of RUMMY, i.e., re-
ordered pipelining that includes three main techniques. The
first is cluster-based retrofitting to eliminate redundant trans-
mission (§4.1). The second is dynamic kernel padding with
cluster balancing to maximize GPU utilization (§4.2). The

Symbol Description

Ci The ith cluster
Qi The ith query vector
Gi The ith group
{C1,C2...} A set of original clusters
[C1,C2...] The execution order of original clusters
{B1,B2...} A set of balanced clusters
[B1,B2...] The execution order of balanced clusters
ρ The fixed size of balanced clusters (the number of vectors)
T (G) The transmission (time) of group G
E(G) The computation (time) of group G
Qi→ B j The computation (thread block) of Qi on B j

Table 1: Key notations in the design.

third is query-aware reordering and grouping to overlap trans-
mission and computation (§4.3). Besides, we describe how
to tailor GPU memory management for vector query pro-
cessing (§4.4) based on IVF. The key notations are listed in
Table 1.

4.1 Cluster-based Retrofitting

The key observation behind our idea, namely cluster-based
retrofitting, is that the processing of each subset is independent
of vector query processing. This observation allows us to
retrofit the query plan of each query without changing its
correctness. We retrofit the query plan from two aspects, intra-
batch and inter-batch, to completely eliminate the cross-query
redundant transmission.

Intra-batch. Figure 1 shows an original vector query plan.
The order, [G2,G1,G3], eliminates the three redundant trans-
mission (§2.3). A strawman approach might attempt to find
the optimal order by enumerating all possibilities. It is imprac-
tical at runtime due to the problem’s combinatorial nature.

RUMMY’s solution, namely cluster-based retrofitting, is
based on the key insight: the optimal number of cluster trans-
missions is no smaller than the number of involved clusters.
In Figure 1, six clusters {C1,C2...C6} necessitate a minimum
of six transmissions, where each cluster is transmitted at least
once. As such, our goal is to transmit each involved clus-
ter only once. Figure 5(a) depicts a retrofitted query plan
based on Figure 1. We represent this process by a matrix
M. M[i, j] = 1 means that C j is involved in the i-th query
Qi, otherwise M[i, j] = 0. When transmitting a cluster C j, the
retrofitted plan instantly processes the corresponding queries
{Qi...} for i∈{1,2...BS} and M[i, j] = 1, with BS as the batch
size. For instance, it processes Q1 and Q2 immediately after
transmitting C1. In this way, cluster-based retrofitting com-
pletely eliminates the redundant transmission. Besides, the
retrofitting only traverses the original query plan once, result-
ing in a negligible linear time complexity.

Inter-batch. In intra-batch retrofitting, the cluster order is
irrelevant, and every permutation of [C1,C2...C6] transmits
six clusters. Conversely, inter-batch considers order. Let
GPU memory accommodate two clusters C5 and C6 initially.
Then it additionally eliminates two redundant transmissions

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 27

𝐐𝟏 :
𝐂𝟏
1

𝐂𝟐 𝐂𝟑 𝐂𝟒 𝐂𝟓 𝐂𝟔

𝐐𝟐 :
𝐐𝟑 :

(a) 1
0

0
1
1

1
0
1

1
0
0

0
1
0

0
0
1

𝐐𝟏 :
𝐂𝟓
0

𝐂𝟔 𝐂𝟏 𝐂𝟐 𝐂𝟑 𝐂𝟒

𝐐𝟐 :
𝐐𝟑 :

(b) 1
0

0
0
1

1
1
0

0
1
1

1
0
1

1
0
0

Figure 5: Retrofit the vector query plan.

by moving C5 and C6 to the front, i.e., [C5,C6,C1...,C4] as
shown in Figure 5(b). To maximize data reuse from preced-
ing batches, RUMMY prioritizes moving the clusters already
present in the GPU to the forefront of the execution order.
Moreover, this mechanism works together with the reordering
algorithm, which will be described in §4.3.2.

4.2 Dynamic Kernel Padding with Cluster Balancing

Cluster balancing. The straggler causes temporal GPU under-
utilization by delaying the entire kernel. To address this issue,
we design a cluster balancing technique that equilibrates the
sizes of various clusters offline. Specifically, a cluster Ci is
divided into a set of balanced clusters {Bi1 ,Bi2 ...}. Each bal-
anced cluster B j is in equal size, denoted by ρ. The detailed
balancing algorithm is summarized in Appendix A.3. We
emphasize that this technique balances the clusters in host
memory offline, and the balanced cluster is transmitted into
the GPU at runtime to answer the queries. After eliminat-
ing the discrepancy between different clusters, the straggler
thread block is split into multiple balanced blocks, which
maximizes temporal GPU utilization. For instance, suppose
that the group G consists of two clusters, C5 and C6, in Fig-
ure 5(b). C5 is split into {B5}, and C6 is split into {B6,B7}.
The computation of G comprises three balanced thread blocks:
{Q2→ B5,Q3→ B6,Q3→ B7}. Each thread block completes
in the same time as illustrated by Figure 6(a). However, the
spatial GPU underutilization still exists (SM4 is always idle).

Dynamic kernel padding. Runtime kernel padding is a tech-
nique to address spatial GPU underutilization. An intuitive
solution is to process different groups simultaneously through
GPU space sharing and provision idle SMs to the subsequent
group of computation. This principle resembles the kernel
padding technique [51] in DNN schedulers, which shares the
GPU with various jobs. However, it is infeasible in the context
of pipelining, as the subsequent group remains unprepared
until its transmission is finalized. Two groups cannot be exe-
cuted simultaneously. We design a dynamic kernel padding
technique to pad one individual group of kernel execution.

The thread block, Qi → B j, receives Qi and a pointer Pj
to B j as inputs and returns the top-k nearest vectors as the
intermediate result. The inputs and outputs are both resident
in GPU memory. Suppose the size of each balanced cluster is
ρ and the dimension of each vector is d. The balanced cluster
is divided into two parts with two pointers: Pj and Pj +ρ×

G
PU

Time
𝐒𝐌𝟏

𝐒𝐌𝟐

𝐒𝐌𝟑

𝐒𝐌𝟒 Idle

𝐐𝟐 → 𝐁𝟓

𝐐𝟑 → 𝐁𝟔

𝐐𝟑 → 𝐁𝟕

(a) Cluster balancing.

Time
𝐒𝐌𝟏

𝐒𝐌𝟐

𝐒𝐌𝟑

𝐒𝐌𝟒

G
PU

(b) Dynamic kernel padding.

Figure 6: Dynamic kernel padding with cluster balancing.

d/2. Thus, Qi→ B j is divided into two smaller thread blocks,
namely kernel padding. The split number is decided by Kernel
Controller according to the number of SMs and the query plan
to achieve 100% SM utilization and high GPU occupancy [52].
As shown in Figure 6(b), the split number is 8 and the number
of padded blocks is 24. Every SM is utilized to achieve 100%
spatial utilization. As for GPU occupancy [52], two blocks run
on each SM concurrently to further improve the computation
efficiency. Since dynamic kernel padding only operates the
data pointers, its runtime overhead is negligible.

A natural question is why not solve the straggler problem
through kernel padding online only, given that straggler blocks
can easily be split at runtime. The reason is that computing
the split strategy incurs extra runtime overhead, as different
clusters need different split numbers. Thus, our design shifts
some work offline to simplify the online decision.

4.3 Pipelining Scheduler

As we describe in §2.3, it is impossible to enumerate every
pipelining plan to find out the optimal solution at runtime.
We break the entire problem into two individual tractable sub-
problems and design query-aware reordering and grouping
algorithms that reorder the retrofitted query plan and divide
the plan into groups. The algorithms compute optimal so-
lutions for each sub-problem, and the combination of them
achieves near-optimal results empirically (§6).

4.3.1 Profiler

Transmission profiler. The goal of the transmission profiler
is to measure T (Gi) for a given group Gi. The transmission
time from host memory to GPU memory can be divided into
two components: the propagation time and the overhead of
API invocation. Let Gi consist of m balanced clusters. The
propagation time is directly proportional to m. The overhead
of API invocation can be estimated as a fixed value. Therefore,
T (Gi) is estimated by the following formula: T (Gi) = a×ρ×
m+b, where a and b are parameters fitted offline, and ρ is the
size of balanced clusters (§4.2). Querying the transmission
profiler for T (Gi) only costs constant time.

Computation profiler. The goal of the computation profiler
is to measure E(Gi). We define the computation quantity as
Com = ρ×SIZE(Gi), where ρ is the size of balanced clusters
and SIZE(Gi) is the number of elements, whose value is 1, in
the retrofitted and balanced query plan of Gi (i.e., the matrix

28 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

PCIe

GPU
(a)

𝚼(𝐎[𝟏: 𝟑])

𝚼(𝐎[𝟏: 𝟐])

Delay

PCIe

GPU
(b)

𝚼(𝐎[𝟏: 𝟐])
𝚼(𝐎[𝟏: 𝟑])

𝐁𝟏

Delay

𝐁𝟐
𝐁𝟏

𝐁𝟑
𝐁𝟐 𝐁𝟑

𝐁𝟏
𝐁𝟏

𝐁𝟐
𝐁𝟐

𝐁𝟑
𝐁𝟑

Figure 7: Two cases of the recurrence formula in formulation.

in Figure 5 with balanced clusters). Apparently, the degree
of parallelism (i.e., the number of thread blocks) and Com
dominate the computation time. Therefore, we map Com with
different block numbers to computation time offline. For the
intermediate point between the map keys, we use percentile-
wise linear interpolation to estimate its value. Similarly to
the transmission profiler, querying the unordered map of the
computation profiler online also only costs constant time.

4.3.2 Reordering

Problem formulation. The first sub-problem is to reorder
the clusters to maximize the overlapping between transmis-
sion and computation (i.e., minimize the total time). Let the
set of the involved balanced clusters be {B1,B2...Bm}, and
[B1,B2...Bm] represents an execution order. [o1,o2...om] is a
permutation of [1,2...m]. Due to cluster balancing, each Bi is
in equal size and introduces the same T (Bi) = η, unless Bi is
already in the GPU from the preceding batch (i.e., T (Bi) = 0).
The order [Bo1 ,Bo2 ...Bom] is represented as O, and O[i : j] is
a slice of O and is also a new order. ϒ(O) is the total time
based on the order O, where O = [Bo1 ,Bo2 ...Bom].

Based on these definitions, we have the following recur-
rence formula to calculate ϒ(O):

ϒ(O[1 : i]) = max(ϒ(O[1 : i−1])+E(Boi),

i

∑
k=1

T (Bok)+E(Boi)). (1)

The entire computation of an arbitrary order is always later
than its transmission, which introduces a delay. Figure 7
shows the delay of three clusters (i.e., i = 3). The first formula
in the max function introduces that T (Boi) (i.e., the transmis-
sion of the last cluster in O[1 : i]) is not able to compensate
for the delay of O[1 : i−1] in Figure 7(a). Figure 7(b) demon-
strates T (Boi) is able to compensate for the delay, causing
the second formula in the max function. Consequently, the
maximal case is the final result, i.e., ϒ(O[1 : i]).

In summary, the reordering problem is formulated as the
following optimization problem, where the objective is to

PCIe

GPU
(a)

PCIe

GPU
(b)

PCIe

GPU
(c)

𝐁𝟏 𝐁𝟐 𝐁𝟑
𝐁𝟏 𝐁𝟐 𝐁𝟑 𝐁𝟒

𝐁𝟒

𝐁𝟏
𝐁𝟏

𝐁𝟐
𝐁𝟐

𝐁𝟑
𝐁𝟑

𝐁𝟏𝐁𝟒

𝐁𝟏 𝐁𝟐
𝐁𝟐

𝐁𝟑
𝐁𝟑

Figure 8: Examples for the reordering algorithm.

minimize the total time ϒ(O) based on Formula 1.

Min. ϒ(O).

s.t. O = [Bo1 ,Bo2 ...Bom],

[o1,o2...om] = permutation([1,2...m]). (2)

To solve this optimization problem, one can use a search
algorithm with pruning or leverage existing solvers for opti-
mization problems. However, such solutions are complex and
infeasible due to the vast search space (m! possibilities), the
recursive nature of the objective function, and the discrete con-
straint (a permutation array). Designing an algorithm capable
of rapidly finding the optimal order during runtime poses a
substantial challenge.

Insights. We leverage two insights to address the challenge.
As described in the problem formulation, the transmission
time of each balanced cluster is either a fixed value, η, or
zero. However, the computation time of each balanced cluster
E(Bi) varies since each cluster relates to a different number
of queries. Such characteristics provide an opportunity to
simplify the problem with two insights. To demonstrate the
insights, we give an example of four balanced clusters in
Figure 8(a), and the execution order is [B1,B2...B4] where B4
is already in the GPU (i.e., T (B4) = 0).

The first insight is that moving a cluster with a transmission
time of zero to the front increases the overlapping. In the
example of Figure 8, T (B4) = 0. When moving B4 to the
front, i.e., [B4,B1,B2,B3], the overlapping increases as T (B1)
is hidden by E(B4) as shown in Figure 8(b).

The second insight is that moving a cluster with a large
computation time forward increases the overlapping. In the ex-
ample of Figure 8, B3 has the largest computation time. Mov-
ing B3 to the second, i.e., [B4,B3,B1,B2], further increases
the overlapping as shown in Figure 8(c). The intuition is that
E(B3) compensates the non-overlapping area between E(Bi)
and T (Bi) for i ∈ {1,2}.

Algorithm. Based on the two insights, we design a greedy
algorithm that reorders the clusters to maximize the over-
lapping and minimize the total time, and we prove that the
greedy algorithm is optimal. Algorithm 1 shows the pseudo-
code. The function FindOptOrder finds the optimal execution
order based on the greedy policy: moving the balanced clus-
ters with zero transmission time and large computation time

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 29

Algorithm 1 Optimal greedy reordering algorithm
1: function FINDOPTORDER({B1, ...,Bm})
2: opt_order← /0

3: for i = 1→ m do
4: if T [Bi] == 0 then
5: Bi.priority←+∞

6: else
7: Bi.priority← E[Bi]

8: opt_order.append(Bi)

9: Sort opt_order in descending order based on Bi.priority
10: return opt_order

to the front. It takes the m balanced clusters. It uses opt_order
to store the execution order and initializes this variable with
none (line 2). It iterates over the balanced clusters, and as-
signs a priority to each cluster based on the greedy policy
(line 3-8). It then sorts opt_order in descending order based
on the priority of each cluster (line 9). Given m balanced
clusters, the critical path is the sort operation. Therefore, the
time complexity of Algorithm 1 is O(m log m), which enables
RUMMY to quickly find the optimal order at runtime. We have
the following theorem for the reordering algorithm.

Theorem 4.1 Algorithm 1 finds the optimal execution order
of balanced clusters that minimizes the total time for the
pipelining on per-cluster granularity.

The main idea of the proof is to show that any transformation
of the optimal execution order does not decrease the total time.
The proof is in Appendix A.1. Since the reordering algorithm
moves the clusters with zero transmission time to the front, it
solves the inter-batch retrofitting problem described in §4.1.

4.3.3 Grouping

The second sub-problem is to group the balanced clusters af-
ter the order is determined. The basic way for pipelining is to
pipeline on per-cluster granularity, i.e., transmitting and com-
putes cluster by cluster. However, such fine-grain pipelining
introduces two sources of pipelining overheads: the overhead
of the frequent invocations and the synchronization overhead
between each group of transmission and computation. An-
other way for pipelining is to group all clusters together. It
eliminates the pipelining overhead, but there would be no
overlapping between transmission and computation at all.

We employ a dynamic programming algorithm, similar to
previous works [29, 30], to find the optimal grouping plan in
the context of pipelining. To further reduce the search space,
we use a heuristic pruning method, maintaining a global vari-
able to record the best time in the current search space. During
the search tree traversal, the lower bound of a node’s subtree
is calculated by completely overlapping leftover transmission
and computation while ignoring the pipelining overhead. If
such lower bound is greater than the best time, the subtree is
pruned. The time complexity of the dynamic programming
algorithm is polynomial, and the algorithm with the pruning

heuristic enables RUMMY to quickly find the optimal group-
ing plan at runtime.

4.4 GPU Memory Management

Existing GPU-based vector query processing systems lack
support for runtime GPU memory management and load the
entire dataset into the GPU offline. RUMMY provides runtime
GPU memory management tailored for vector query process-
ing. It leverages GPU’s native interfaces, like cudaMalloc
and cudaFree in NVIDIA GPUs, to pre-allocate the entire
GPU memory to RUMMY at system startup and manage the
memory internally. This avoids frequent invocations to GPU’s
native interfaces. RUMMY handles data transmission tasks
from its local task queue (§3), and notifies the kernel controller
upon completion. Below, we describe the GPU memory lay-
out and page replacement policy to reconcile vector query
processing with the limited GPU memory capacity. RUMMY
pins host memory to further reduce the transmission time.

GPU memory layout. The entire GPU memory is treated as
a consecutive memory space in RUMMY. RUMMY’s memory
layout is able to eradicate both internal memory fragmenta-
tion and external memory fragmentation. RUMMY allocates
GPU memory on page granularity for transmission tasks, en-
abling clusters to be stored in discontinuous space. RUMMY
returns several discontinuous pages for the allocation of a
transmission task. Thus, each free memory fragment (i.e., a
free page) can be allocated for any task, which minimizes the
external fragmentation issue. Besides, a large page size intro-
duces internal memory fragmentation while a small page size
introduces extra overhead of massive paging operations. Due
to cluster balancing (§4.2), the cluster size is fixed. Setting
the page size to the cluster size ensures that each page is fully
utilized and the overhead of paging is minimized, thereby
easily solving internal fragmentation issues.

GPU page replacement policy. When the GPU memory is
full, RUMMY has to evict a page (balanced cluster) for the
subsequent allocation. RUMMY’s GPU page replacement pol-
icy accounts for both intra-batch and inter-batch to minimize
the miss rate. For intra-batch, RUMMY traverses the local task
queue of the current batch, and pins the intersection clusters
between the future involvement in the current batch and those
already in the GPU, without evicting pinned clusters. As for
inter-batch, we observe that certain clusters (hot) are referred
to frequently, while others (cold) are occasionally referred to.
RUMMY records the referred count of each cluster. At runtime,
RUMMY evicts the cluster with the smallest counter if it is
not pinned, which is akin to LFU [53]. There are some canon-
ical page replacement policies, e.g., LRU. However, they are
not well-suited to vector query processing. Specifically, LRU
evicts the cluster that is least recently used. A vector query
with a large batch size uses every cluster. LRU may replace
the hot clusters, those accessed early in the batch, with cold
clusters, those accessed late in the batch. This leads to a high

30 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

miss rate in the subsequent batch that predominantly relies on
hot clusters (i.e., small batch size).

Host memory pinning. The operating system swaps host
memory pages to the disk if this page is inactive for a cer-
tain time. This mechanism causes severe page faults during
GPU runtime data transmission, as GPU can’t directly transfer
pages from the disk. To mitigate the problem, RUMMY uses
page-locked host memory (i.e., pin memory) to store the clus-
ters through cudaMallocHost in NVIDIA GPUs. The pinned
memory, accessible directly by GPU, allows read/write oper-
ations with higher bandwidth compared to pageable memory
allocated by standard malloc.

5 Implementation
We implement a system prototype of RUMMY with 12K lines
of codes in CUDA and C++, and integrate it with Faiss [23],
a state-of-the-art vector query processing system adopted
by many vector databases, like Milvus [16], Zilliz [17] and
AnalyticDB-V [19]. RUMMY can be integrated with any
vector query system. We choose Faiss as it is the most
widely used GPU-based vector query processing system, and
is adopted in production like Meta. RUMMY is built on top
of IVF index rather than graph index, because the former
is proved to be more efficient on billion-scale datasets [46]
with limited memory capacity. Moreover, graph index (e.g.,
HNSW) cannot be easily integrated into GPU due to its ran-
dom access pattern. The code of RUMMY is open-source and
is publicly available at https://github.com/pkusys/Rummy.

Kernel controller. The kernel controller executes GPU ker-
nels. It learns the GPU hardware information (e.g., the number
of SMs) by reading CUDA macros. We extend CUDA kernels
in Faiss to dynamically pad the thread blocks according to
the split number. A larger split number means a larger block
number to saturate the GPU (SMs).

Memory management. RUMMY divides GPU memory into
two areas: auxiliary and primary memory. The auxiliary mem-
ory stores the query vectors, the query plan, and the intermedi-
ate results. The primary memory holds the clusters of vector
datasets. The auxiliary memory is managed as a stack, which
orchestrates memory for temporary data created and deleted
in order during query processing. The primary memory is or-
ganized as a heap to cache the clusters. Each page in the heap
is either free or allocated to a cluster. RUMMY uses an AVL
tree to manage these pages to quickly retrieve an allocated
page or allocate a free page.

System optimizations. Faiss spawns one CUDA stream to
process a vector query and synchronizes all operations by de-
fault. In contrast, RUMMY uses three CUDA streams: one for
launching CUDA kernel, another for GPU-to-host memory
transmission, and the third for host-to-GPU memory trans-
mission. This trio of streams allows RUMMY to parallelize
computation and two types of transmission in the pipeline.

Dataset Dimensions Database Query Distance Memory
Vectors Vectors Footprint

SIFT1B [25] 128 1B 10K Euclidean 480 GB
DEEP1B [24] 96 1B 10K Euclidean 361 GB
TEXT1B [24] 200 1B 100K Angular 748 GB
SIFT40M [25] 128 40M 10K Euclidean 31 GB
DEEP50M [24] 96 50M 10K Euclidean 29 GB
TEXT30M [24] 200 30M 100K Angular 32 GB
SIFT10M [25] 128 10M 10K Euclidean 9 GB

Table 2: Datasets used in the evaluation.

RUMMY wraps up each stream with a host thread to simplify
function invocations and metadata (e.g., AVL tree) changes.
RUMMY groups concurrent requests into one batch. The con-
current requests (i.e., one batch) are primarily processed on
the GPU. The host thread is responsible for generating the
query plan and directing the GPU to process the batch.

6 Evaluation
In this section, we first use end-to-end experiments to demon-
strate the overall performance improvements of RUMMY over
existing GPU-based and CPU-based solutions on billion-scale
datasets. Next, we use microbenchmarks to deep dive into
RUMMY and show the effectiveness of each component in
RUMMY under a variety of settings. As we discuss in §2.2,
IVF is more suitable for billion-scale datasets than graph in-
dex schemes (e.g., HNSW). Thus, we focus on the IVF index
in the evaluation. The baselines are also implemented based
on Faiss.

6.1 End-to-End Experiments

Setup. All experiments are conducted on AWS. The end-to-
end experiments use two types of AWS EC2 instances. One
is p4d.24xlarge configured with eight NVIDIA A100 GPUs
with 40 GB GPU memory each, 1152 GB host memory and
PCIe 4.0×16. The GPU instance is used to compare RUMMY
with existing GPU-based solutions (§2.2). While we only use
one GPU, we use p4d.24xlarge because it is the only type of
instance on AWS that has high-end GPU, A100. The other is
x1.16xlarge configured with 64 vCPUs (Intel Xeon E7-8880)
and 976 GB of host memory. The CPU instance is used to
compare RUMMY with the existing CPU-based solution.

Workloads. Table 2 summarizes the benchmarking datasets,
and the top three are used in end-to-end experiments.
The datasets include SIFT1B [25], DEEP1B [24], and
TEXT1B [24]. They consist of one billion database vectors
and some query vectors. These datasets are standard bench-
marks for vector database retrieval used by both academic and
industry. They can also be integrated with LLMs to support
retrieval augmented generation, e.g., TEXT1B (a cross-model
dataset) can be used to enhance multimodal LLMs. The mem-
ory footprint of the 1B datasets is in the hundreds of GB
range, which oversubscribes the 40 GB GPU memory, but
these datasets can be held in the host memory. Query vectors
are divided into two batch sizes, 2048 (large) and 8 (small),
representing offline and online workloads, respectively.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 31

https://github.com/pkusys/Rummy

SIFT DEEP TEXT

(a) Different datasets with large BS.

102

103

104

Ti
m

e
pe

r q
ue

ry
 (m

s)

SIFT DEEP TEXT

(b) Different datasets with small BS.

102
103
104
105

Ti
m

e
pe

r q
ue

ry
 (m

s)

Lower Bound RUMMY IVF-Rotation IVF-CUM

Figure 9: Overall performance on GPUs.

Metrics. We use the average end-to-end time per query as
the main metric. In addition, when comparing GPU-based
solutions to CPU-based solutions, we also use per-dollar per-
formance, to evaluate the cost-effectiveness. Specifically, per-
dollar performance is calculated as Price

Time per Query , where Price
is the AWS EC2 On-Demand hourly rate [54].

Baselines. IVF is a state-of-the-art ANN index and has been
widely deployed in production for billion-scale datasets. It is
supported on both GPUs and CPUs in Faiss [23]. Its GPU ver-
sion requires the dataset to be fully loaded into GPU memory.
There are no existing GPU-based systems that support large
datasets beyond GPU memory. We extend the GPU version
of IVF to implement two baseline systems to compare with
RUMMY. Specifically, we compare RUMMY to the following
three baselines while keeping the same searching parameters
under two different batch sizes.
• IVF-Rotation. It extends the GPU version of IVF with

the strawman rotation method described in §2.2 to support
large datasets beyond GPU memory.

• IVF-CUM. It extends the GPU version of IVF with CUDA
unified memory [26] to expand GPU with host memory.

• IVF-CPU. It is the CPU version of IVF, which exploits
Intel AVX [55] to speed up vector operations.

Overall performance. We first compare the time per query
of RUMMY to the GPU-based baselines, IVF-Rotation and
IVF-CUM, and keep the same searching parameters. The
experiments are conducted on p4d.24xlarge with three billion-
scale datasets. We only use one GPU in p4d.24xlarge since
one GPU is enough for RUMMY and p4d.24xlarge is the only
instance configured with A100 GPUs on AWS. RUMMY out-
performs the baselines by hundreds of times and achieves
near-optimal performance with reordered pipelining. The re-
sults are shown in Figure 9. We summarize as follows.
• The lower bound is calculated by the larger value of trans-

mission and computation time per query. It represents an
ideal case that has the maximum overlapping between trans-
mission and computation without any pipelining overhead.
Figure 9 shows that RUMMY processes a query within a
few milliseconds and is close to the lower bound, i.e., it
achieves near-optimal performance.

• RUMMY outperforms IVF-Rotation by 10.7-11.7× under
large BS and hundreds of times under small BS. The per-
formance gap is larger on small BS, as IVF-Rotation iter-

SIFT DEEP TEXT

(a) Different datasets with large BS.

200
400
600
800

Ti
m

e
pe

r q
ue

ry
 (m

s)

SIFT DEEP TEXT

(b) Different datasets with small BS.

300
600
900

1200

Ti
m

e
pe

r q
ue

ry
 (m

s)

RUMMY IVF-CPU

Figure 10: Comparison between RUMMY and IVF-CPU.

102 103 104

(a) Large BS.

60
70
80
90

100

A
cc

ur
ac

y
(%

)

Time per query (ms)
103 104 105

(b) Small BS.

60
70
80
90

100

A
cc

ur
ac

y
(%

)

Time per query (ms)

RUMMY IVF-CPU

Figure 11: Comparison under different accuracy.

ates over all data parts and introduces a fixed transmission
time under any batch sizes. When confronting small BS,
the query time is dominated by the fixed transmission time,
which introduces a large performance gap between RUMMY
and IVF-Rotation.

• RUMMY outperforms IVF-CUM by 121-135× under large
BS and by 2.1-3.7× under small BS. RUMMY outperforms
IVF-CUM by a large margin under large BS, since large
BS introduces heavier computation and more interference
between GPU SMs. This interference causes severe GPU
memory page faults.

Comparison to CPU. We then compare RUMMY and IVF-
CPU. The results are shown in Figure 10. RUMMY (with
one A100 GPU) achieves 2.4-23.1× higher performance than
IVF-CPU (with 64 vCPUs). Besides time per query, RUMMY
also achieves better per-dollar performance (26.7-37.7× un-
der large BS), i.e., RUMMY is more cost-effective. As the
batch size grows, the performance gap becomes larger. This
is because large BS introduces high computation parallelism
for RUMMY with GPUs but high computation interference
for CPU solutions. It is notable that the performance of two
GPU baselines (IVF-CUM and IVF-Rotation) falls short of
IVF-CPU. This is because the datasets exceed the GPU mem-
ory and existing GPU solutions are not optimized for such
scenario (§2.2). This emphasizes the necessity for RUMMY
on large datasets.

Moreover, Figure 11 demonstrates the performance im-
provement of RUMMY over IVF-CPU under different accu-
racy on SIFT1B. RUMMY constantly outperforms IVF-CPU
under any configuration.

6.2 Deep Dive of RUMMY

Setup & workloads. We use two AWS EC2 GPU instances to
deep dive into RUMMY and evaluate the effectiveness of each

32 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2−8 2−7 2−6 2−5 2−4 2−3 2−2

(a) Large BS (V100).

1

2

3

4

Ti
m

e
pe

r q
ue

ry
 (m

s)

Ratio
2−8 2−7 2−6 2−5 2−4 2−3 2−2

(b) Large BS (T4).

3

6

9

12

Ti
m

e
pe

r q
ue

ry
 (m

s)

Ratio
2−8 2−7 2−6 2−5 2−4 2−3 2−2

(c) Small BS (V100).

2

4

6

8

Ti
m

e
pe

r q
ue

ry
 (m

s)

Ratio
2−8 2−7 2−6 2−5 2−4 2−3 2−2

(d) Small BS (T4).

3

6

9

12

Ti
m

e
pe

r q
ue

ry
 (m

s)

Ratio

RUMMY IVF-GPU

Figure 12: Effectiveness of RUMMY’s dynamic kernel padding with cluster balancing.

100 200 300

(a) Transmission profiler on V100.

100

200

300

Ti
m

e
(m

s)

Tranmission quantity
100 200 300

(b) Transmission profiler on T4.

200

400

600

Ti
m

e
(m

s)

Tranmission quantity
5000 10000 15000 20000

(c) Computation profiler on V100.

50
100
150
200

Ti
m

e
(m

s)

Computation quantity
5000 10000 15000 20000

(d) Computation profiler on T4.

200

400

600

Ti
m

e
(m

s)

Computation quantity

SIFT DEEP TEXT

Figure 13: Effectiveness of RUMMY’s profiler.

component in RUMMY. One is p3.2xlarge configured with
one NVIDIA V100 GPU with 16 GB GPU memory. The other
is g4dn.2xlarge configured with one NVIDIA T4 GPU with
16 GB GPU memory. In addition, we reduce large BS to 256
and the scale of the datasets since the computing power and
memory of T4 and V100 is not a patch on that of A100. The
four micro-datasets are listed at the bottom of Table 2, and
the top three all oversubscribe the 16 GB GPU memory. The
reason to use small GPUs and datasets is to reduce evaluation
costs due to our limited budget. Besides, the experiments
on million-scale datasets show that RUMMY maintains its
effectiveness even with moderately sized datasets.

6.2.1 Dynamic Kernel Padding with Cluster Balancing

We measure the computation performance with SIFT10M,
which can be held in GPU memory, and do not consider trans-
mission in this experiment. We run the vector queries under
various top-n. The baseline is IVF-GPU without the two tech-
niques. The two both operate the memory pointers. Thus,
the negligible overhead of index building and query is not
included in the evaluation.

As shown in Figure 12, the x-axis represents the ratio of
top-n to the number of all clusters. As the ratio grows, the
performance decreases. Meanwhile, large BS introduces high
computation density causing high time per query. As Fig-
ure 12(c) and Figure 12(d) show, RUMMY outperforms IVF-
GPU by up to 15.5× under small BS. The performance im-
provement is mainly from the dynamic kernel padding since
IVF-GPU cannot utilize the SMs under small BS. The perfor-
mance gap becomes smaller under small BS as illustrated by
Figure 12(a) and Figure 12(b). Both RUMMY and IVF-GPU
fully utilize the SMs, but RUMMY still has a better perfor-
mance (1.1-2.3×) due to the cluster balancing that mitigates
the straggler block in the entire kernel.

6.2.2 Profiler

We use SIFT40M, DEEP50M, and TEXT30M to evaluate
the effectiveness of RUMMY’s profiler, and run the vector
queries on V100 and T4 GPUs with two batch sizes. We
record the profiler’s estimated time of each group and mea-
sure the group’s actual transmission or computation time.
Figure 13 shows the results. The colored lines represent the
actual time, and the black lines represent the estimated time.
We plot the points of two batch sizes in one line. The x-axis
represents the transmission quantity or the computation quan-
tity (defined in §4.3.1). The results confirm that the profiler
closely tracks the actual time, thereby demonstrating the ef-
fectiveness of the simple yet practical formulas in §4.3.1.

6.2.3 Pipelining Scheduler & Cluster-based Retrofitting

We use SIFT40M, DEEP50M, and TEXT30M in this experi-
ment. We compare the following techniques discussed in §4.1
and §4.3, while keeping other components the same.
• Lower bound. It is the theoretical lower bound of time.
• RUMMY. It is RUMMY with all the techniques.
• No retrofitting. It does not use retrofitting.
• No reordering. It does not use Algorithm 1 for reordering.
• Per-cluster pipeline. It groups the clusters on per-cluster

granularity and processes the query cluster by cluster.
• One-group pipeline. It groups all clusters into one group.
Figure 14 shows the performance of the above techniques
under two batch sizes and two GPU instances. RUMMY’s
cluster-based retrofitting improves the performance by 1.1-
5.7× through eliminating the redundant transmission. The
reordering algorithm improves the performance by 1.5-2.4×
under large BS while only having a slight improvement under
small BS. This is because a larger batch size leads to a com-
plex query plan (allowing the reordering algorithm to identify

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 33

SIFT DEEP TEXT

(a) Different datasets with large BS (V100).

5
10
15
20

Ti
m

e
pe

r q
ue

ry
 (m

s)

SIFT DEEP TEXT

(b) Different datasets with large BS (T4).

10

20

30

Ti
m

e
pe

r q
ue

ry
 (m

s)

SIFT DEEP TEXT

(c) Different datasets with small BS (V100).

15

135

Ti
m

e
pe

r q
ue

ry
 (m

s)

30
105

//

SIFT DEEP TEXT

(d) Different datasets with small BS (T4).

30

60

90

Ti
m

e
pe

r q
ue

ry
 (m

s)

Lower bound RUMMY No retrofitting No reorder Per-cluster pipeline One-group pipeline

Figure 14: Effectiveness of RUMMY’s reordering and grouping with cluster-based retrofitting.

SIFT DEEP TEXT

(a) Different datasets with large BS (V100).

4

8

12

Ti
m

e
pe

r q
ue

ry
 (m

s)

SIFT DEEP TEXT

(b) Different datasets with large BS (T4).

6

12

18

Ti
m

e
pe

r q
ue

ry
 (m

s)

SIFT DEEP TEXT

(c) Different datasets with small BS (V100).

25

50

75

Ti
m

e
pe

r q
ue

ry
 (m

s)

SIFT DEEP TEXT

(d) Different datasets with small BS (T4).

40

80

120

Ti
m

e
pe

r q
ue

ry
 (m

s)

Lower bound RUMMY No replacement policy No pin memory No memory management

Figure 15: Effectiveness of RUMMY’s GPU memory management.

Workload Reorder Group Total
Overhead Overhead Time

SIFT40M (BS=256, V100) 7.4 µs (0.31%) 10 µs (0.44%) 2.4 ms
SIFT40M (BS=256, T4) 6.3 µs (0.12%) 7.4 µs (0.15%) 5.1 ms
SIFT40M (BS=8, V100) 57 µs (0.45%) 47 µs (0.37%) 12 ms

SIFT40M (BS=8, T4) 55 µs (0.2%) 42 µs (0.16%) 27.3 ms

Table 3: Runtime overhead of reordering and grouping.

a greater scope for optimization), while a smaller batch size
only has a few clusters for computation and the reordering
algorithm has little room for optimization. The per-cluster and
one-group pipelining are two extreme grouping plans, which
lead to the maximum pipelining overhead and the minimum
overlapping, respectively. RUMMY’s grouping plan achieves
the optimal tradeoff between them (1.1-13.8× performance
improvement). The one-group pipelining fails to process vec-
tor queries under large BS since it requires a large amount of
data transmission for one group, and thereby oversubscribing
the GPU memory. The lower bound is the theoretical lowest
time per query. RUMMY achieves the closest performance to
the lower bound with the aforementioned techniques.

The runtime scheduling overheads of the reordering and
grouping are listed in Table 3 on SIFT40M. The overhead
per query is within tens of microseconds, which is relatively
small compared to the total time per query (≤ 0.5%).

6.2.4 Memory Management

The setup is the same as §6.2.3. We do not compare RUMMY’s
memory management to CUDA unified memory, since the
comparison is already included in §6.1. We compare the fol-
lowing memory management mechanisms discussed in §4.3,
while keeping other components the same.
• Lower bound. The same with the lower bound in §6.2.3.
• RUMMY. It is RUMMY with all the techniques.

• No memory management. It allocates and frees GPU mem-
ory at runtime through cudaMalloc and cudaFree.

• No replacement policy. It evicts a random page (cluster).
• No pin memory. It uses pageable host memory.
As shown in Figure 15, the replacement policy improves the
performance by 1.2-1.6× under small BS while having little
effect under large BS. This is because large BS transmits most
of the clusters, including cold clusters. The differentiation be-
tween cold and hot clusters becomes meaningless. As for the
pin memory and the memory layout with pre-allocated mem-
ory techniques, they improve the performance by 1.3-1.6×
and 2.8-8.6×, respectively. This is because the pin memory
improves the overall memory transmission bandwidth, and
the memory layout reduces memory fragmentation and fre-
quent invocations to CUDA native interfaces. This experi-
ment demonstrates that all memory management techniques
of RUMMY are effective and the combination of them achieves
the closest performance to the ideal case.

7 Discussion

System, not index. We emphasize that RUMMY is not a new
ANN index, but a new vector query processing system (with
new techniques on query pipelining) to support billion-scale
datasets beyond GPU memory. RUMMY is built on the vector
query processing system, Faiss and ANN index, primitive IVF.
Many works (e.g., SPANN [46] and Auncel [56]) propose
variations of IVF to improve query efficiency. We do not
compare these works to RUMMY, as the underlying hardware-
backends and index algorithms differ significantly. However,
RUMMY is orthogonal to these algorithmic works and can
be integrated into these variations of IVF to support GPU
acceleration. We do not directly compare RUMMY to vector

34 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

databases, since RUMMY focuses on the query processing
part.

Vector quantization. Vector quantization [57] is proposed to
reduce the memory footprint of large datasets. It compresses
high-dimensional vectors into low-dimensional space, thereby
reducing the memory usage. RUMMY supports vector queries
beyond GPU memory through system techniques and is or-
thogonal to vector quantization. Besides, vector quantization
can be integrated into RUMMY’s primitive IVF index to fur-
ther reduce memory usage and improve query efficiency.

Reordered pipelining. Pipelining, a common technique to
enhance computer system performance, is uniquely imple-
mented in RUMMY, which differs from traditional methods.
RUMMY leverages the independent and non-deterministic na-
ture of computational units in vector query processing on IVF.
RUMMY’s reordered pipelining is also applicable to other
domains, such as batch request processing in LLM inference.
Specifically, when using host memory to store the key-value
tensors, it offers a strategy to decide the group (i.e., batch)
and order of requests, which can efficiently parallelize the
computation and key-value tensor transmission between host
memory and GPU memory.

8 Related Work
A variety of ANN algorithms (e.g., inverted file [41, 45,
46], locality-sensitive hashing [44, 58–60], and graph algo-
rithms [42, 47, 48]) are proposed for vector query processing.
IVF and graph index are among the most popular ANN al-
gorithms. They have different system characteristics. There
are several reasons why we choose IVF to build RUMMY
to support billion-scale datasets beyond GPU memory. First,
IVF is proved to be more efficient than graph index on billion-
scale datasets with the same memory footprint according to
the recent work [46]. This work demonstrates the benefits of
IVF and the limitations of graph index, which applies IVF
and significantly outperforms the state-of-the-art graph index,
DiskANN [48]. Second, graph index maintains a huge graph
which introduces 4× memory usage [61] than IVF. As a re-
sult, graph index is not suitable for billion-scale datasets with
limited GPU memory. Last, graph index (e.g., HNSW) cannot
be easily integrated into GPU due to its random access pattern.
This paper focuses on IVF-GPU, and we leave the support of
different ANN algorithms in RUMMY as future work.

A set of works [56, 62, 63] focuses on parameter tuning
to improve the accuracy and query latency. For example,
LAET [63] leverages a decision tree model to early terminate
a query when it is hard to improve query accuracy. These
optimizations can be integrated into RUMMY since RUMMY
focuses on system techniques and does not change any index
characteristics. ANN algorithms can be accelerated by hard-
ware accelerators, such as GPUs [23] and FPGAs [6]. How-
ever, prior solutions are not suitable for large vector datasets
and require the datasets to be preloaded into the global mem-

ory of the accelerators. We can exploit RUMMY’s core idea
(i.e., reordered pipelining) to expand the accelerator memory
with host memory as well.

With the proliferation of unstructured data and deep learn-
ing, ANN algorithms on embedding vectors become a key
component (long-term memory retrieval) in many AI appli-
cations, such as recommendation systems [4, 5, 21], recogni-
tion [7–9, 22], information retrieval [10–12] and LLM-based
AI applications [33–35]. RUMMY benefits these applications
by accelerating vector query processing and reducing cost. Re-
cent industrial vector databases [16,17,19,64] adopt Faiss [23]
as their query engine. RUMMY, based on Faiss, can be inte-
grated into these systems. Big data processing [65–67] is
prevalent in cloud services. RUMMY can be integrated into
these services with GPUs to manage large unstructured data
and accelerate vector query processing.

9 Conclusion
We present RUMMY, the first GPU-based system for billion-
scale vector query processing beyond GPU memory. RUMMY
expands GPU memory with host memory to achieve high
performance and low cost by leveraging a novel reordered
pipelining technique. We evaluate RUMMY on various bench-
marking datasets with billions of items and show that it outper-
forms GPU-based baselines by up to 135× with near-optimal
performance. Our experiments also show that RUMMY is
capable of achieving better performance and cost than the
state-of-the-art CPU-based solution.

Acknowledgments. We sincerely thank our shepherd Yu Hua
and the anonymous reviewers for their valuable feedback on
this paper. This work was supported by the National Natu-
ral Science Foundation of China under the grant numbers
62325201, 62172008, and the National Natural Science Fund
for the Excellent Young Scientists Fund Program (Overseas).
Xin Jin and Xuanzhe Liu are the corresponding authors. Zili
Zhang, Fangyue Liu, Gang Huang, Xuanzhe Liu, and Xin Jin
are also with the Key Laboratory of High Confidence Software
Technologies (Peking University), Ministry of Education.

References
[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”

Nature, 2015.

[2] R. Blumberg and S. Atre, “The problem with unstruc-
tured data,” Dm Review, 2003.

[3] “Eighty Percent of Your Data Will Be Unstructured in
Five Years,” 2023. https://solutionsreview.com/
data-management/.

[4] A. S. Das, M. Datar, A. Garg, and S. Rajaram, “Google
news personalization: scalable online collaborative fil-
tering,” in WWW, 2007.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 35

https://solutionsreview.com/data-management/
https://solutionsreview.com/data-management/

[5] M. Grbovic and H. Cheng, “Real-time personalization
using embeddings for search ranking at airbnb,” in ACM
SIGKDD, 2018.

[6] C. Zeng, L. Luo, Q. Ning, Y. Han, Y. Jiang, D. Tang,
Z. Wang, K. Chen, and C. Guo, “FAERY : An fpga-
accelerated embedding-based retrieval system,” in
USENIX OSDI, 2022.

[7] R. He, Y. Cai, T. Tan, and L. Davis, “Learning pre-
dictable binary codes for face indexing,” Pattern recog-
nition, 2015.

[8] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A
unified embedding for face recognition and clustering,”
in IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

[9] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and
Q. Tian, “Scalable person re-identification: A bench-
mark,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2015.

[10] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and
T. Blaschke, “The rise of deep learning in drug discov-
ery,” Drug discovery today, 2018.

[11] A. C. Mater and M. L. Coote, “Deep learning in chem-
istry,” Journal of chemical information and modeling,
2019.

[12] K. Berlin, S. Koren, C.-S. Chin, J. P. Drake, J. M. Lan-
dolin, and A. M. Phillippy, “Assembling large genomes
with single-molecule sequencing and locality-sensitive
hashing,” Nature biotechnology, 2015.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Advances in Neural Infor-
mation Processing Systems, 2017.

[14] “Introducing chatgpt,” 2023. https://openai.com/
blog/chatgpt.

[15] OpenAI, “Gpt-4 technical report,” arXiv preprint
arXiv:2303.08774, 2023.

[16] J. Wang, X. Yi, R. Guo, H. Jin, P. Xu, S. Li, X. Wang,
X. Guo, C. Li, X. Xu, et al., “Milvus: A purpose-built
vector data management system,” in ACM SIGMOD,
2021.

[17] “Introducing zilliz,” 2023. https://zilliz.com/.

[18] “Introducing pinecone,” 2023. https://www.
pinecone.io/.

[19] C. Wei, B. Wu, S. Wang, R. Lou, C. Zhan, F. Li, and
Y. Cai, “Analyticdb-v: A hybrid analytical engine to-
wards query fusion for structured and unstructured data,”
in Proceedings of the VLDB Endowment, 2020.

[20] “Introducing qdrant,” 2023. https://qdrant.tech/.

[21] J. Wang, P. Huang, H. Zhao, Z. Zhang, B. Zhao, and
D. L. Lee, “Billion-scale commodity embedding for
e-commerce recommendation in alibaba,” in ACM
SIGKDD, 2018.

[22] X. Liu, W. Liu, H. Ma, and H. Fu, “Large-scale vehicle
re-identification in urban surveillance videos,” in ICME,
2016.

[23] J. Johnson, M. Douze, and H. Jégou, “Billion-scale sim-
ilarity search with GPUs,” IEEE Transactions on Big
Data, 2019.

[24] “yandex billion-scale datasets,” 2023. https://
research.yandex.com/datasets/biganns.

[25] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg,
“Searching in one billion vectors: re-rank with source
coding,” in ICASSP, 2011.

[26] “CUDA Unified Memory,” 2023. https://devblogs.
nvidia.com/unified-memory-cuda-beginners/.

[27] J. Hennessy, N. Jouppi, S. Przybylski, C. Rowen,
T. Gross, F. Baskett, and J. Gill, “Mips: A microproces-
sor architecture,” ACM SIGMICRO Newsletter, 1982.

[28] A. Hartstein and T. R. Puzak, “The optimum pipeline
depth for a microprocessor,” ACM Sigarch Computer
Architecture News, 2002.

[29] Z. Bai, Z. Zhang, Y. Zhu, and X. Jin, “Pipeswitch: Fast
pipelined context switching for deep learning applica-
tions,” in USENIX OSDI, 2020.

[30] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri,
N. R. Devanur, G. R. Ganger, P. B. Gibbons, and M. Za-
haria, “PipeDream: generalized pipeline parallelism for
DNN training,” in ACM SOSP, 2019.

[31] H. Zhang, Y. Tang, A. Khandelwal, J. Chen, and I. Stoica,
“Caerus: Nimble task scheduling for serverless analytics,”
in USENIX NSDI, 2021.

[32] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo,
“A unified architecture for accelerating distributed
DNN training in heterogeneous GPU/CPU clusters,” in
USENIX OSDI, 2020.

[33] “Chatgpt plugin: Retrieval,” 2023. https://openai.
com/blog/chatgpt-plugins#retrieval.

36 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://zilliz.com/
https://www.pinecone.io/
https://www.pinecone.io/
https://qdrant.tech/
https://research.yandex.com/datasets/biganns
https://research.yandex.com/datasets/biganns
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://openai.com/blog/chatgpt-plugins#retrieval
https://openai.com/blog/chatgpt-plugins#retrieval

[34] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai,
J. Sun, and H. Wang, “Retrieval-augmented generation
for large language models: A survey,” arXiv preprint
arXiv:2312.10997, 2023.

[35] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin,
N. Goyal, H. Küttler, M. Lewis, W.-t. Yih, T. Rock-
täschel, et al., “Retrieval-augmented generation for
knowledge-intensive nlp tasks,” in Advances in Neural
Information Processing Systems, 2020.

[36] “Benchmarking nearest neighbors,” 2023. https://
github.com/erikbern/ann-benchmarks/.

[37] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and
L. Schmidt, “Practical and optimal lsh for angular dis-
tance,” in Advances in Neural Information Processing
Systems, 2015.

[38] M. Muja and D. Lowe, “Flann-fast library for approxi-
mate nearest neighbors user manual,” VISAPP, 2009.

[39] “Annoy,” 2023. https://github.com/spotify/
annoy.

[40] L. Boytsov and B. Naidan, “Engineering efficient and
effective non-metric space library,” in SISAP, 2013.

[41] A. Babenko and V. Lempitsky, “The inverted multi-
index,” TPAMI, 2014.

[42] Y. A. Malkov and D. A. Yashunin, “Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs,” TPAMI, 2018.

[43] K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-time
kd-tree construction on graphics hardware,” ACM TOG,
2008.

[44] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni,
“Locality-sensitive hashing scheme based on p-stable
distributions,” in Proceedings of the twentieth annual
symposium on Computational geometry, 2004.

[45] D. Baranchuk, A. Babenko, and Y. Malkov, “Revisiting
the inverted indices for billion-scale approximate nearest
neighbors,” in ECCV, 2018.

[46] Q. Chen, B. Zhao, H. Wang, M. Li, C. Liu, Z. Li,
M. Yang, and J. Wang, “SPANN: Highly-efficient
billion-scale approximate nearest neighbor search,” in
Advances in Neural Information Processing Systems,
2021.

[47] C. Fu, C. Xiang, C. Wang, and D. Cai, “Fast approximate
nearest neighbor search with the navigating spreading-
out graph,” in Proceedings of the VLDB Endowment,
2019.

[48] S. Jayaram Subramanya, F. Devvrit, H. V. Simhadri,
R. Krishnawamy, and R. Kadekodi, “Diskann: Fast ac-
curate billion-point nearest neighbor search on a single
node,” in Advances in Neural Information Processing
Systems, 2019.

[49] J. A. Hartigan and M. A. Wong, “Algorithm as 136:
A k-means clustering algorithm,” Journal of the royal
statistical society. series c (applied statistics), 1979.

[50] “CUDA Refresher: The CUDA Programming Model,”
2023. https://developer.nvidia.com/blog/
cuda-refresher-cuda-programming-model/.

[51] M. Han, H. Zhang, R. Chen, and H. Chen, “Microsecond-
scale preemption for concurrent gpu-accelerated dnn
inferences,” in USENIX OSDI, 2022.

[52] “Nvidia Achieved Occupancy,” 2023. https:
//docs.nvidia.com/gameworks/content/
developertools/desktop/analysis/
report/cudaexperiments/kernellevel/
achievedoccupancy.htm.

[53] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho,
and C. S. Kim, “Lrfu: A spectrum of policies that sub-
sumes the least recently used and least frequently used
policies,” IEEE Transactions on Computers, 2001.

[54] “Amazon EC2 On-Demand Pricing,” 2023. https://
aws.amazon.com/ec2/pricing/on-demand/.

[55] “Intel Advanced Vector Extensions,” 2023.
https://www.intel.com/content/www/
us/en/architecture-and-technology/
avx-512-overview.html.

[56] Z. Zhang, C. jin, L. Tang, X. Liu, and X. Jin, “Fast,
approximate vector queries on very large unstructured
datasets,” in USENIX NSDI, 2023.

[57] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product
quantization for approximate nearest neighbor search,”
in IEEE Conference on Computer Vision and Pattern
Recognition, 2013.

[58] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li,
“Multi-probe lsh: efficient indexing for high-dimensional
similarity search,” in Proceedings of the VLDB Endow-
ment, 2007.

[59] Y. Zheng, Q. Guo, A. K. Tung, and S. Wu, “Lazylsh:
Approximate nearest neighbor search for multiple dis-
tance functions with a single index,” in ACM SIGMOD,
2016.

[60] L. Gong, H. Wang, M. Ogihara, and J. Xu, “idec: index-
able distance estimating codes for approximate nearest

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 37

https://github.com/erikbern/ann-benchmarks/
https://github.com/erikbern/ann-benchmarks/
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html

neighbor search,” in Proceedings of the VLDB Endow-
ment, 2020.

[61] W. Zhao, S. Tan, and P. Li, “Song: Approximate nearest
neighbor search on gpu,” in 2020 IEEE 36th Interna-
tional Conference on Data Engineering (ICDE), 2020.

[62] A. Gogolou, T. Tsandilas, T. Palpanas, and A. Bezeri-
anos, “Progressive similarity search on time series data,”
in BigVis, 2019.

[63] C. Li, M. Zhang, D. G. Andersen, and Y. He, “Improving
approximate nearest neighbor search through learned
adaptive early termination,” in ACM SIGMOD, 2020.

[64] “Pinecone: Introduction to Facebook AI Similarity
Search (Faiss),” 2023. https://www.pinecone.io/
learn/series/faiss/faiss-tutorial/.

[65] “Google BigQuery,” 2023. https://cloud.google.
com/bigquery/.

[66] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov,
A. Avanes, J. Bock, J. Claybaugh, D. Engovatov,
M. Hentschel, J. Huang, et al., “The snowflake elastic
data warehouse,” in Proceedings of the 2016 Interna-
tional Conference on Management of Data, 2016.

[67] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak,
S. Stefani, and V. Srinivasan, “Amazon redshift and the
case for simpler data warehouses,” in ACM SIGMOD,
2015.

38 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.pinecone.io/learn/series/faiss/faiss-tutorial/
https://www.pinecone.io/learn/series/faiss/faiss-tutorial/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/

A Appendix
A.1 Proof of Theorem§ 4.1

Proo f . To further elaborate the problem formulation in §4.3.2,
let the final result of Algorithm 1 be O = [Bo1 ,Bo2 ...Bom], and
there are m∗ balanced clusters that are already in the GPU
(i.e., T (Boi) = 0, 0 < i≤ m∗). η is the constant transmission
time of the leftover balanced clusters since these clusters have
the same size (i.e., T (Boi) = η, m∗ < i≤ m).

Based on Formula 1 and Formula 2, we employ greedy
exchange to show that FindOptOrder outputs the optimal
order. The original order is denoted by O. The exchanged
order is denoted by O∗. The general exchange can be trans-
ferred into the adjacent exchange. Our target is to prove that
ϒ(O)≤ ϒ(O∗) is always true if we exchange Boi and Boi+1 in
O, 1≤ i≤m−1. Boi has a higher priority than Boi+1 , and the
priority is shown in Algorithm 1. We classify the exchange
paradigm into the following three cases.

Case 1: T (Boi) = T (Boi+1) = 0. The balanced clusters, Boi

and Boi+1 , are already in the GPU and their transmission time
is both zero. Because of the delay, we have ϒ(O[1 : j]) ≥
∑

j
k=1 T (Bok)≥ ∑

j−1
k=1 T (Bok) where 1≤ j ≤ m. As such,

ϒ(O[1 : i+1]) = max(ϒ(O[1 : i]),
i−1

∑
k=1

T (Bok))+E(Boi+1)

= ϒ(O[1 : i])+E(Boi+1)

= max(ϒ(O[1 : i−1]),
i−1

∑
k=1

T (Bok))+E(Boi)+E(Boi+1)

= ϒ(O[1 : i−1])+E(Boi)+E(Boi+1) (3)

Similarly, we have:

ϒ(O∗[1 : i+1]) = ϒ(O∗[1 : i−1])+E(Boi)+E(Boi+1) (4)

Since O∗ is the exchanged order of O which only swaps Boi

and Boi+1 , we get O∗[1 : i−1] = O[1 : i−1] and O∗[i+1 : m]
= O[i+ 1 : m] (m is the number of input balance clusters).
Based on Formula 3 and Formula 4, we conclude that ϒ(O[1 :
i+1]) = ϒ(O∗[1 : i+1]). Besides, O∗[i+1 : m] = O[i+1 : m],
and ∑

j
k=1 T (Bok) is the same in the recurrence formula of O

and O∗ when j ≥ i+1. Therefore, ϒ(O) = ϒ(O∗).

Case 2: T (Boi) = 0 and T (Boi+1) = η. First, Boi is already
in the GPU and its transmission time is zero. η represents
the constant time to transmit a balanced cluster. According to
Formula 1,

ϒ(O[1 : i+1]) = max(ϒ(O[1 : i]),n×η)+E(Boi+1)

ϒ(O∗[1 : i+1]) = max(ϒ(O∗[1 : i]),n×η)+E(Boi) (5)

where n×η = ∑
i+1
k=1 T (Bok). Also, we have ϒ(O∗[1 : i]) =

max(ϒ(O∗[1 : i− 1]),n× η) + E(Boi+1) and ϒ(O[1 : i]) =
max(ϒ(O[1 : i−1]),(n−1)×η)+E(Boi) = ϒ(O[1 : i−1])+

E(Boi) because ϒ(O[1 : i− 1]) ≥ (n− 1)×η. As ϒ(O∗[1 :
i]) = max(ϒ(O∗[1 : i−1]),n×η)+E(Boi+1), we derive that

ϒ(O∗[1 : i])≥ n×η+E(Boi+1) (6)

As O[1 : i−1] =O∗[1 : i−1], we get ϒ(O[1 : i−1]) =ϒ(O∗[1 :
i−1])≤max(ϒ(O∗[1 : i−1]),n×η). Therefore, we conclude
that

ϒ(O[1 : i−1])≤ max(ϒ(O∗[1 : i−1]),n×η)

=⇒ ϒ(O[1 : i])−E(Boi)≤ ϒ(O∗[1 : i])−E(Boi+1)

=⇒ ϒ(O[1 : i])+E(Boi+1)≤ ϒ(O∗[1 : i])+E(Boi) (7)

Besides, we have the following formula based on Formula 5.

ϒ(O[1 : i+1])=

{
n×η+E(Boi+1), n×η≥ ϒ(O[1 : i])

ϒ(O[1 : i])+E(Boi+1), n×η < ϒ(O[1 : i])

No matter which case is true, we have ϒ(O[1 : i + 1]) ≤
ϒ(O∗[1 : i])+E(Boi) ≤ max(ϒ(O∗[1 : i]),n×η)+E(Boi) =
ϒ(O∗[1 : i + 1]) according to Formula 6 and Formula 7.
∑

j
k=1 T (Bok) is the same in the recurrence formula of O and

O∗ when j ≥ i+1. Therefore, ϒ(O)≤ ϒ(O∗).

Case 3: T (Boi) = T (Boi+1) = η and E(Boi) ≥ E(Boi+1). In
this case, we have a similar formula to Formula 5:

ϒ(O[1 : i+1]) = max(ϒ(O[1 : i])+E(Boi+1),

i+1

∑
k=1

T (Bok)+E(Boi+1))

ϒ(O∗[1 : i+1]) = max(ϒ(O∗[1 : i])+E(Boi),

i+1

∑
k=1

T (Bok)+E(Boi)) (8)

Also, we have ϒ(O∗[1 : i]) = max(ϒ(O∗[1 : i −
1]),∑i−1

k=1 T (Bok) + η) + E(Boi+1) and ϒ(O[1 : i]) =

max(ϒ(O[1 : i − 1]),∑i−1
k=1 T (Bok) + η) + E(Boi). As

O[1 : i−1] = O∗[1 : i−1], we have

ϒ(O[1 : i])−E(Boi) = ϒ(O∗[1 : i])−E(Boi+1)

=⇒ ϒ(O[1 : i])+E(Boi+1) = ϒ(O∗[1 : i])+E(Boi) (9)

Since Boi has a higher priority than Boi+1 , we get

E(Boi)≥ E(Boi+1)

=⇒
i+1

∑
k=1

T (Bok)+E(Boi+1)≤
i+1

∑
k=1

T (Bok)+E(Boi) (10)

Combining Formula 8, Formula 9 and Formula 10, we con-
clude

ϒ(O[1 : i+1])≤ ϒ(O∗[1 : i+1])

Because ∑
j
k=1 T (Bok) is the same in the recurrence formula

of O and O∗ when j ≥ i+1, we derive ϒ(O)≤ ϒ(O∗).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 39

Batch Size IVF-GPU (T4) IVF-GPU (T4) IVF-CPU (r5.2xlarge) IVF-CPU (r5.2xlarge) HNSW-CPU (r5.2xlarge) HNSW-CPU (r5.2xlarge)
Time per Query (ms) Per-Dollar Performance Time per Query (ms) Per-Dollar Performance Time per Query (ms) Per-Dollar Performance

8 0.394 3370.81 20.62 96.2 11.37 174.42
32 0.366 3631.12 18.34 108.163 10.5 188.96

128 0.356 3729.54 17.07 116.23 9.79 202.52
512 0.354 3755.30 16.29 121.77 9.47 209.37
2048 0.355 3740.74 16.25 122.05 9.51 208.55

Table 4: Comparison between GPU and CPU on different ANN indexes.

It’s easy to extend the three adjacent exchange cases to
a general exchange paradigm, i.e., exchanging two arbitrary
balanced clusters rather than an adjacent pair. We prove that
exchanging will reduce the overlapping and Algorithm 1 is
able to find the optimal order on per-cluster granularity.

A.2 Comparison between GPU and CPU

We perform a measurement to compare the performance and
the price of GPU-based and CPU-based (IVF and the state-of-
the-art graph index, HNSW) vector query processing systems.
The current GPU vector query processing systems are based
on IVF since the graph index requires random vector access
and is not suitable for the continuous memory access pattern
on GPUs. The setup is described as follows.

Setup. This measurement is conducted on AWS. We use three
EC2 instance types, including two GPU instances (p3.2xlarge
and g4dn.2xlarge) and one CPU instance (r5.2xlarge).
p3.2xlarge is configured with one NVIDIA V100 GPU
while g4dn.2xlarge is configured with one NVIDIA T4 GPU.
Both of the GPUs are equipped with 16 GB GPU mem-
ory. r5.2xlarge is configured with 8 vCPUs (Intel Platinum
8259CL) with 64 GB host memory. We use SIFT10M [25]
(with around 9GB memory footprint on GPU) in this mea-
surement and fix the parameters in index building and query
processing (e.g., similar memory footprint and accuracy, re-
call@10) for fair comparison. The per-dollar performance
is calculated by Price/Time per Query. Price is AWS EC2
On-Demand hourly rate [54].

Table 4 shows the time per query and per-dollar perfor-
mance of different devices under different batch sizes. The
GPU-based system [23] has lower cost per query than the
CPU-based system (IVF-CPU and HNSW-CPU). The larger
batch size introduces higher computation parallelism, which
fully utilizes the GPU resources. In summary, leveraging
GPUs to accelerate vector query processing provides higher
performance and is more cost-effective. It is notable that the
dataset can be held in the GPU memory, but when the scale of
datasets grows, existing GPU-based vector query processing
systems cannot support large datasets beyond GPU memory.

A.3 Cluster Balancing Algorithm

The pseudo-code is in Algorithm 2. The function BALANCE
balances the original clusters in host memory and returns the
balanced clusters with equal size. It takes two inputs: the l
original clusters and a configurable standard deviation. It uses
cluster_sizes to store the original clusters’ sizes, and uses

Algorithm 2 Cluster balancing algorithm
1: function BALANCE({C1, ...,Cl}, dev)
2: cluster_sizes← /0,map_sizes← /0

3: for i = 1→ l do
4: // SIZE function returns the size of the cluster
5: cluster_sizes.append(SIZE(Ci))
6: map_sizes.append(/0)

7: ρ←Min(cluster_sizes)
8: // χ is a configured value
9: while ρ≥ χ do

10: for i = 1→ l do
11: size← cluster_sizes[i]
12: while size≥ 0 do
13: if size≥ ρ then
14: map_sizes[i].append(ρ)
15: else
16: map_sizes[i].append(size)
17: size← size−ρ

18: // DEV function returns the standard deviation
19: cur_dev← DEV (map_sizes)
20: if cur_dev≤ dev then
21: break
22: else
23: ρ← ρ/2
24: for i = 1→ l do
25: map_sizes[i]← /0

26: BC← /0

27: for i = 1→ l do
28: start← 0
29: for j = 0→ SIZE(map_sizes[i]) do
30: BC.append(Ci[start : start +map_sizes[i][j]])
31: start← start +map_sizes[i][j]
32: return BC

map_sizes to store the balanced clusters’ sizes and their re-
lated original clusters. ρ represents the fixed size of balanced
clusters while χ is the minimal threshold specified by the user.
The function first initializes array cluster_sizes through a for
loop and initializes ρ as the minimum value in cluster_sizes
(line 3-7). It then starts a while loop that splits the original
clusters until the variance of the generated clusters is less
than the given standard deviation, dev (line 9-25). Finally, it
generates the balanced clusters with the appropriate sizes and
returns them (line 26-32). The algorithm runs offline, and the
overhead is negligible compared to the index building time.

40 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

LoLKV: The Logless, Linearizable, RDMA-based Key-Value Storage System
Ahmed Alquraan∗, Sreeharsha Udayashankar∗, Virendra Marathe#, Bernard Wong∗, Samer Al-Kiswany∗

∗University of Waterloo, Canada
#Oracle Labs, USA

Abstract

We present LoLKV, a novel logless replicated key-value stor-
age system. LoLKV follows a fundamentally different ap-
proach for designing a linearizable key-value storage system
compared to state-of-the-art systems. LoLKV forgoes the clas-
sical log-based design and uses lock-free approach to allow
multiple threads to concurrently update objects. It presents a
novel leader election and consolidation approach to handle
complex failure scenarios. LoLKV’s followers are passive,
reducing their overall CPU usage. Our evaluation shows that
LoLKV achieves 1.7–10× higher throughput and 20–92%
lower tail latency than other state-of-the-art low-latency key-
value stores.

1 Introduction
Online services, such as financial services [1, 2] and inter-
active applications [3], have strict tail latency requirements
in the microsecond ranges [4]. Systems supporting these ser-
vices must achieve high throughput at a low tail latency. A
central category of systems supporting this class of services
is replicated and strongly consistent key-value stores [5, 6, 7].

State-of-the-art low-latency key-value stores such as APUS
[5], DARE [6], Mu [7], and uKharon-KV[8] use RDMA-
based consensus protocols, which replicate data across multi-
ple nodes in a few microseconds. While these systems achieve
acceptable tail latencies under low load, our evaluation (Sec-
tion 6) shows that these systems are unable to maintain these
low tail latencies under high load. The main reason for this in-
efficiency is that these systems follow the classical log-based
design [9, 10] for building a linearizable storage.

The classical log-based design has two steps for executing
operations that update objects: replication and application.
During the replication step, a leader stores and replicates
a new operation to a replicated log. Once the operation is
replicated on a majority of followers, the application step
applies the operation to the key-value store on all followers.

The log-based design [9, 10] has three fundamental ineffi-
ciencies when considering low tail latency workloads. First,
the log represents a single point of serialization, limiting con-
currency and prohibiting current systems from effectively
leveraging multi-core machines. To address this inefficiency,
modern systems resort to sharding [5, 6, 7, 11, 12, 13, 14],
such that each shard serves a subset of the key space. Each
shard has a separate process with its own memory, threads,
and followers on other nodes. Current systems use sharding
for two purposes. First, to distribute shards among nodes to
scale to large clusters. Second, to have multiple active shards

per node to leverage multiple CPU cores. Unfortunately, de-
ploying multiple active shards per node leads to inefficient
memory use, especially when paired with RDMA, as each
shard process has its own pinned memory region causing
memory fragmentation. Furthermore, having a large number
of shards complicates supporting multi-key operations and
leads to lower performance for skewed workloads, in which a
few shards hold popular keys.

The second fundamental inefficiency is that the classical
log-based design separates data replication from application.
In key-value stores this leads to an extra memory copy as new
objects need to be first stored in the log [5, 6, 7] and later,
when committed, copied to the key-value store.

Finally, the classical design requires all followers to re-
execute every operation. This significantly increases system
overhead. For instance, with a replication level of three, every
operation is executed three times in the cluster.

We present the Logless Linearizable Key-Value (LoLKV)
storage system. LoLKV follows a fundamentally different
design approach compared to the state-of-the-art systems.
LoLKV forgoes the replicated log design and avoids placing
multiple active shards on a node. In LoLKV, a node may have
a single active leader shard and multiple passive follower
shards. The leader shard is multi-threaded and utilizes all of
the node’s CPU cores. The passive follower shards are not
involved in processing put and get operations. The leader
shard uses one-sided RDMA to replicate new objects on fol-
lowers. Once the new object is replicated on a majority of
nodes, the hash table is updated with a pointer to the new
object.

This approach overcomes the aforementioned shortcom-
ings. First, it uses multiple threads to utilize all CPU cores
and to concurrently replicate objects. It avoids extra memory
copies by only having pointers in the hash table. Finally, the
leader replicates the updates to the memory and hash table of
followers without requiring the follower to re-execute opera-
tions. This enables LoLKV to use all available resources on all
nodes to serve client requests, leading to higher performance.

While the proposed design increases system concurrency,
it introduces new challenges for leader election and data con-
solidation. The proposed design complicates fault tolerance
because LoLKV uses multiple concurrent threads that can
leave the system in an inconsistent state under leader failure
scenarios. Applying insert and delete operations directly in
the key-value store complicates garbage collection as well.
To realize LoLKV, we design novel leader election and data
consolidation protocols that identify the latest updates for
each memory segment and sync a new leader with the latest

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 41

system state. In addition, LoLKV uses a replicated garbage
collection approach to maintain the storage system memory
in sync during garbage collection.

We implemented LoLKV and compared it to the state-
of-the-art systems. Our evaluation shows that for uniform
workloads, LoLKV achieves 1.69–2.9× higher throughput
and 20–55% lower tail latency over DARE [6], and 4–10×
higher throughput and 56–92% lower tail latency over APUS
[5], Mu [7] and uKharon [8]. In addition, our evaluation shows
that LoLKV achieves similar results under skewed workloads
and under different read and write ratios. Our evaluation of
system scalability shows that LoLKV can scale to efficiently
use all system resources and achieve up to 18 million op/s
which is 4×, 7×, 10×, and 36× higher than DARE, uKharon,
Mu, and APUS, respectively.

The rest of the paper is organized as follows. Section 2 dis-
cusses RDMA and RDMA-based consensus protocols. Sec-
tion 3 and 4 discuss the design and implementation of LoLKV.
Section 5 discusses the correctness of LoLKV. Section 6
presents the results of our evaluation. Section 7 discusses ad-
ditional related work before the paper concludes in Section 8.

2 Background and Related Work
2.1 Remote Direct Memory Access
Remote direct memory access (RDMA) [15] allows a machine
to directly access the memory of a remote machine without
involving the remote CPU. RDMA offers a low-latency and
high throughput communication mechanism as it bypasses
the kernel network stack.

Applications communicate over RDMA by establishing
queue pairs. Each queue pair consists of a send and a receive
queue. RDMA supports two main types of operations: two-
sided and one-sided operations. Two-sided operations include
Send and Receive operations and involve the CPUs of both
the sender and receiver. One-sided operations do not involve
the CPU on the receiving side. The sender specifies the data’s
remote address. One-sided operations have lower latency and
higher throughput compared to two-sided operations [16].

Current implementations of RDMA support three transport
protocols: Reliable Connected (RC), Unreliable Connected
(UC), and Unreliable Datagram (UD). In RC and UC, a con-
nection is established between two queue pairs, one on the
sender and one on the receiver, which communicate exclu-
sively with each other. RC guarantees that messages are deliv-
ered at most once, in order, and without corruption. In a UD
protocol, one queue pair can communicate with one or more
queue pairs. UD supports only two-sided operations.

In LoLKV, we use one-sided Writes over RC for data
replication and two-sided operations over UD for client com-
munication.

2.2 RDMA-based Consensus
Several RDMA-based leader-based consensus protocols have
been recently proposed. In leader-based systems, one replica

acts as a leader while others are followers. The leader is
responsible for processing client requests. The leader appends
new operations to the log and then replicates the log entry on
followers. The operation is considered committed only if it is
replicated on a majority of replicas. The leader then applies
the operation to the state machine and replies to the client.

DARE [6] is an in-memory RDMA-based consensus pro-
tocol that adopts the Raft protocol [9]. Replication in DARE
requires 2 RTT of one-sided Write operations. The first set of
Writes appends the log entry to the follower logs while the
second updates their tail indices. When both Writes succeed
on a majority of replicas, the leader updates its commit in-
dex and posts another Write to update the followers’ commit
indices. Followers check their commit index periodically to
apply newly committed entries to their state machines.

APUS [5] is a Paxos-based [10] consensus protocol which
uses RDMA. The leader stores new operations to its local
log and then replicates log entries to follower logs using one-
sided Writes and waits for acknowledgments. In contrast
to DARE, APUS followers actively participate in replication.
Each follower notifies the leader when it accepts a log entry by
sending an RDMA Write to update the entry in the leader’s
log. The leader commits an entry if it is accepted by a majority
of replicas. Committing an entry in APUS requires 2 RTTs.

Mu [7] is an RDMA-based consensus protocol that targets
microsecond-scale applications. The leader uses an RDMA
Write to append operations to follower logs. The operation is
considered committed if it is replicated on a majority. Follow-
ers poll committed requests from the log and pass them to the
application. The leader does not start replicating a log entry
until the previous one is committed. Mu requires a single RTT
to replicate an operation in the common case.

uKharon [8] is an RDMA-based consensus protocol opti-
mized for microsecond-scale failure recovery. uKharon uses
one-sided RDMA-based Paxos to achieve fast leader failover
times. To enable one sided Paxos, uKharon’s consensus en-
gine uses an RDMA Write and a Compare-and-Swap (CAS)
operation in the ACCEPT phase while Mu [7] only uses an
RDMA Write. While this additional CAS improves failure
recovery times, the authors mention that it causes uKharon to
perform worse than Mu in failure-free scenarios. In addition,
uKharon does not offer ways for failed or network-partitioned
nodes to rejoin the system.

These systems have three fundamental shortcomings.
Firstly, at the core of each of these systems is a replicated
log. The log limits concurrency because it introduces a serial-
ization point. New operations are inserted serially in the log.
Furthermore, in Mu, a new object is replicated only when the
previous object is committed.

We evaluate the overhead of having multiple threads ap-
pending to a log. Figure 1 shows the time a thread waits until
it acquires the lock protecting the log in APUS and Mu. Re-
sults show that the average wait time for 8 threads is 14.9×
and 38.5× higher than that with one thread for APUS and

42 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5 6 7 8
Number of Threads

102

103

104

W
ai

t T
im

e
(n

s)

APUS Mu

Figure 1: The average time needed to acquire the lock pro-
tecting the operation log in APUS and Mu.

Mu, respectively. Mu has a higher overhead as Mu holds
onto the lock until the operation is replicated and committed,
while APUS releases the lock after appending the request
to the log. Given the low latency that RDMA provides, the
delay imposed by the log serialization mechanism introduces
a bottleneck that limits the performance of the system.

Second, the log-based design imposes an additional data
copy. New objects are first inserted into the log and then
copied to the key-value store. Finally, to efficiently leverage
all CPU cores, multiple leader shards are deployed per node.
Deploying multiple leader shards per node requires physical
partitioning of memory between co-located shards, leading
to inefficient memory usage. Also, sharding leads to lower
performance under skewed workloads.

LoLKV adopts a fundamentally different design approach
to overcome these shortcomings. LoLKV adopts a logless
design that co-designs the storage and index data structures to
avoid unnecessary memory copies. LoLKV deploys a single
multi-threaded leader shard per node, which is able to effi-
ciently utilize all CPU cores. It also uses novel techniques
for leader election, data consolidation, and garbage collection.
These design decisions lead to higher concurrency and lower
system overhead.

3 LoLKV Design
LoLKV supports get, put, and delete requests, which read,
write, and delete entire objects respectively. Figure 2 shows
the architecture of LoLKV. The system consists of a set of
nodes (i.e., replicas or replica set) connected using an RDMA-
capable network, such as InfiniBand [15].

LoLKV adopts a leader-based replication protocol, in
which one replica acts as a leader while others are follow-
ers. All client requests are handled by the leader, which runs
multiple worker threads to process them. LoLKV does not
partition the key space among the threads, i.e., any thread can
process put or get requests for any object.

Similar to Raft [9] and Multi-paxos [17], LoLKV divides
time into terms with a single leader per term. Each term has a
unique term_id that is assigned in a strictly increasing order.
When the leader fails, a new leader is elected using a leader
election protocol (Section 3.4).

1

Object 1

Metadata

Object K

Replica 2

t1

Leader

. ..
tN

Hash Table
Segment Store

Client

Replica 3

Segment
Store
Hash
Table

Segment
Store
Hash
Table

2

3

3

6

4

6
5

Figure 2: LoLKV Architecture.

LoLKV has two components: the segment store, which
holds objects within memory segments; and the hash table,
which contains pointers to these objects. To store a new value,
the leader first stores the value in its local segment store (Step
2 in Figure 2) before replicating it on follower nodes (Step 3).
A new value is considered committed only if it is stored in
the segment store of a majority of followers. After an entry
is committed, the leader updates its local hash table (Step 4)
and replies to the client (Step 5). Updates to the hash table
are replicated lazily to the followers (Step 6) since the object
metadata stored in the segment store has enough information
to recover the hash table in case of leader failure.

LoLKV guarantees linearizability at the object level; up-
dates to the same object appear to be executed in a single
global order. While updates to different objects can proceed
concurrently. To manage concurrency within the segment
store, each worker thread has exclusive access to a subset
of the memory segments. The hash table is shared among
all threads and uses CAS operations to serialize concurrent
updates by multiple threads.

3.1 Segment Store
LoLKV divides allocated memory into equal sized segments
which hold objects. Each segment contains a metadata sec-
tion and an array of ObjectEntries. All objects within a
single segment have the same size but objects across different
segments may have different sizes. LoLKV’s segment store
design is inspired by the Hoard memory allocator [18].

A segment can be owned by a single worker thread at a time.
The thread which owns a segment has exclusive write access
to its objects. A segment can be free meaning it is unowned,
active meaning it has space for new objects, or sealed meaning
that it is full and its objects cannot be modified. As stored
objects are immutable, any thread can read any object from
any segment. Each thread typically owns multiple segments
with different object sizes.

3.1.1 Segment Metadata

Figure 3a shows the fields of a segment’s metadata:

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 43

SegmentMetadata {
bit<64> owner_id;
bit<64> term_id;
bit<4> status;
bit<64> seg_ver;
bit<32> object_size;
bit<64> tail_idx;
}

(a) Segment Metadata

ObjectEntry {
bit<64> term_id;
bit<64> seq_num;
bit<64> incarnation;
byte<64> key;
byte<var> value;

}

(b) ObjectEntry
Figure 3: LoLKV data structures.

• owner_id : ID of the thread that owns the segment.
• term_id : Term during which the latest change to the

segment metadata occurred.
• status : Indicates whether a segment is active or sealed.
• seg_ver : Updated when a thread owns a segment.
• object_size : Size of objects within the segment. Ob-

ject size may differ between segments.
• tail_idx : Index of the latest inserted entry in the seg-

ment.

3.1.2 Owning a Segment

To claim ownership of a new segment, a thread traverses the
segments array in the segment store to find a segment that is
“free”. The thread then uses a CAS operation to change the
owner_id field of the metadata of the free segment. Following
this, the thread sets the seq_num for all ObjectEntries to
-1 to indicate that they are free. Then, it sets the fields of
the segment metadata: term_id to the current term number,
status to “active”, and tail_idx to 0.

LoLKV commits segment ownerships one at a time on
a majority of replicas. The thread owning a new segment
acquires a lock, increments a counter shared across threads,
copies the counter’s value to the seg_ver field in the segment
metadata, and then replicates this metadata. Once the opera-
tion is committed via replication on a majority of followers,
the thread releases the lock and uses the segment to store new
objects. This process guarantees that a segment’s ownership
is committed before it is used.

3.1.3 Sealing and Releasing a Segment

A thread seals a segment when it is full and all its objects
have been applied to the hash table. A segment remains sealed
until all its entries are garbage collected. After that, the thread
can release the segment. To release a segment, a thread will
change the owner_id to -1 and set the status to “free”. When
a segment is released, it becomes available for other threads
to own. Sealing and releasing a segment are performed by
changing the status field to “sealed” or “free”, respectively.

Segment sealing and releasing operations are not replicated.
If a leader fails after sealing or releasing a segment, a future
leader will perform the same operations as the old leader. If it
finds a full segment, it will seal the segment, and if it finds an
empty segment, it will release the segment.

3.2 Hash Table
The hash table stores pointers to ObjectEntries stored in
segments; The goal of the hash table is to implement efficient
get operations. The size of each hash table entry is 64 bits.

A hash table entry stores the offset of an ObjectEntry
within the segment store, to ensure portability across repli-
cas. While segment stores may have different base addresses
across replicas, an ObjectEntry in a segment will have the
same offset on all replicas. The hash table is shared among
all worker threads.

The main fields of an ObjectEntry are shown in Fig-
ure 3b:

• <key,value>: The object’s key and value.
• term_id : Term during which this entry was written.
• seq_num : Operation sequence number assigned by the

worker thread. Used to order all operations of a thread
within a term.

3.3 Replication Protocol
The leader runs multiple worker threads to process client
requests. Each request is processed by one worker thread.
Worker threads are independent; each thread has its own
RDMA resources (e.g., queue pairs and work completion
queues).

3.3.1 Worker Thread Metadata

Each worker thread maintains the following metadata
fields: sequence_number and latest_operation. The
sequence_number is a strictly increasing counter that is used
to assign a sequence number for put operations processed by
the thread. The latest_operation field stores the address
of the last ObjectEntry inserted by the thread.

The thread also maintains two metadata fields for
each follower: latest_replicated_operation and
latest_applied_operation. The thread uses these to
identify operations not yet replicated or applied at the
follower.

3.3.2 Put Requests

The processing of a put request has three main phases: cre-
ation, replication, and application phases.
Creation Phase. When a thread receives a put request, the
thread creates an ObjectEntry and populates its fields. The
thread increments its sequence_number and assigns it to the
entry. The thread writes the object to a segment. The thread
updates its latest_operation field and tail_idx field of
the segment metadata to point to the newly inserted entry.
Replication Phase. The thread commits the ObjectEntry by
replicating it on a majority of replicas. The thread replicates
entries in order of seq_num. Threads use RC transport to
replicate objects, which guarantees in-order message delivery.

44 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Once an ObjectEntry is replicated on a majority of repli-
cas, the request is considered committed. The thread updates
its latest_replicated_operation field whenever it repli-
cates an entry on a follower. The <term_id, seq_num> tuple
specifies the order of all operations processed by a thread.
Application Phase. After an ObjectEntry is committed,
the thread updates the hash table entry to point to the newly
inserted object. To guarantee consistency, entries must be
applied in the order specified by <term_id, seq_num> tuple.

LoLKV uses a linear probing hash table. The thread first
checks if the key already exists in the hash table. The thread
hashes the key K to determine the entry to begin probing from.
The thread checks that hash table entry and all successive
entries one by one. Probing terminates when the thread finds
either a hash table entry pointing to an ObjectEntry of the
key K or an empty entry. If the thread finds an entry pointing
to the key K, the thread only updates the entry if the insert is
a newer operation than the existing version (Section 3.3.3). If
probing ends at an empty entry, the key is inserted into the
empty entry.

As the hash table is shared among all worker threads, multi-
ple threads may concurrently try to update the same hash table
entry. To ensure correctness, hash table entries are updated
atomically using CAS operations. If a CAS operation fails,
the thread repeats the probing process.

After the thread applies the entry locally, it returns an ac-
knowledgement to the client. In the background, the thread
replicates the hash table updates to the followers. Periodically,
the thread updates segments’ tail_idx on followers.

3.3.3 Concurrent Put Requests to the Same Key

In LoLKV, multiple put requests for the same key might be
replicated concurrently by different threads. As a result, an
ordering mechanism is needed to ensure the correctness of
the system. LoLKV uses the incarnation array to ensure
operations are serialized. The incarnation array is an array of
K atomic counters. LoLKV divides the key-space into groups
and each group is mapped to a counter in the incarnation
array. The counter is atomically incremented whenever a put
operation for a key within the group is processed. This value
is then stored in the incarnation field of the ObjectEntry.

Before applying an ObjectEntry to the hash table,
its <term_id, incarnation> tuple is verified to ensure
that it is larger than the <term_id, incarnation> of the
ObjectEntry currently pointed to by the hash table. If it
is not larger, the hash table update is discarded since the
ObjectEntry currently pointed to by the hash table is newer.

The incarnation array is not replicated as it is only used
to order writes by leader threads. When a new term starts,
the new leader resets its incarnation array. The size of the
incarnation array is far larger than the number of worker
threads, which reduces the chance of false sharing between
concurrent put operations.

3.3.4 Get Requests

In LoLKV, get requests are served locally by the leader. Any
thread can process any get request for any key as a thread
can read objects from all segments, even a segment it does
not own. The worker thread probes the hash table in the same
manner used for put requests. The thread will return a value
to the client only if the hash table entry points to a valid
ObjectEntry. It is safe to serve get requests using only the
leader state because the leader obtains a lease [19] from a
majority of replicas. During the lease, other replicas will not
try to become a leader.

3.3.5 Delete Requests

Delete requests follow the same steps of the put requests
with a small difference: a tombstone object is replicated in
the segment store and the hash table is updated with to point
to the tombstone object.

3.4 Leader Election
LoLKV divides time into terms, and each term has at most
one leader. Before a replica becomes a leader, it must get the
votes of a majority of replicas. Each replica can vote only
once in a term. LoLKV relies on dynamically managing the
state of the RC QPs to ensure that only the current leader
has remote access to the system’s data structures. Before
accepting a vote request from a candidate, replicas revoke the
old leader’s access by transitioning the associated QPs into a
non-operational state.
Failure detection. LoLKV employs a heartbeating mecha-
nism to detect failures. Each replica maintains a heartbeat data
structure which consists of three fields: term_id, leader_id,
and counter. The counter field is incremented periodically.
The leader election protocol starts when a follower suspects
that the leader has failed (i.e., misses N heartbeats from the
leader). To detect leader failure, followers read the leader’s
heartbeat data structure periodically via RDMA. Followers
verify that the leader’s counter field has changed and that
the leader’s ID and term_id match their data structure. If a
follower cannot access the leader’s heartbeat data structure
or the leader’s counter does not change for a specific dura-
tion, the follower assumes that the leader has failed. Similarly,
the leader checks the followers heartbeat data structures pe-
riodically and steps down if it no longer has a majority of
followers.
Leader election. Leader election protocols of some systems
(e.g., Raft [20]) elect the most up-to-date replica as a leader.
However, using this approach in LoLKV is not feasible. In
LoLKV, different worker threads are independent. Different
threads may replicate different requests on different replicas.
That is, two committed operations could be replicated on two
different majorities. As a result, after a leader failure, there
could be no replica that is up-to-date for all threads.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 45

In LoLKV, each replica scans its segments to find the the
segment with the largest <term_id, seg_ver>. Replicas ex-
change their largest <term_id, seg_ver>. The replica with
the largest <term_id, seg_ver> becomes a leader. If mul-
tiple nodes have the same <term_id, seg_ver>, the node
with the smallest IP address among them becomes the leader.
Data consolidation. The elected leader may not have all the
segments up-to-date. Updating segments requires identifying
the most up-to-date replica for each thread. To do this, the
leader sends a request to each follower asking for the highest
<term_id, seq_num> of each thread. Using this information,
the leader identifies its missing operations for each thread and
the replicas which have these operations. The leader contacts
the most up-to-date follower to get the missing operations.
The leader commits any uncommited operations and applies
them to the hash table.
Update Followers. During the leader election and data
consolidation steps, the leader finds the highest <term_id,
seg_ver> for each follower and the highest <term_id,
seq_num> for all threads of the follower. The leader uses this
information to complete the work of the previous leader by
committing all uncommitted memory ownership operations
and put operations.

Once the leader completes this process, the leader has all
committed values and its segment store is up-to-date. After
that, the leader starts serving new client requests.

3.5 Fault Tolerance
Follower Failure. LoLKV is designed to tolerate N replica
failures given 2N + 1 replicas. When a follower fails,
the leader removes it from the active set and stops repli-
cating operations on that replica. Hence, follower fail-
ures do not affect the safety of the system. When a fol-
lower rejoins the system, the leader first finds the high-
est <term_id, seg_ver> of the follower, and then it repli-
cates all memory ownership operations that the follower
misses. Then, the leader recovers the worker threads metadata
for that follower (i.e., latest_replicated_operation and
latest_applied_operation). After that, the leader starts
replicating ObjectEntries on the follower.
Leader Failure. When the leader fails, the system will not be
available until a new leader is elected and the data consolida-
tion process completes. For any thread, it is guaranteed that at
least one replica in any majority has all committed entries that
are committed by the failed leader. The new leader will use
the data consolidation mechanism (Section 3.4) to bring itself
up-to-date. Hence, although a leader failure might affect the
availability of the system, it does not affect its correctness.
Message Loss. Client requests and responses are sent over
UD QPs, which do not guarantee delivery of messages. If a
request or a response is lost, the client times out and resubmits
the request again. Note that it is safe to process requests again
since they are idempotent. On the other hand, replication is
implemented on top of RDMA RC transport which offers

reliable and in-order message delivery.
Data Corruption. The data structures described in Section
3 can be accessed simultaneously by both local and remote
threads. As a result, the correctness of any data read must be
verified. LoLKV facilitates this by augmenting each struc-
ture with verification information. ObjectEntries are aug-
mented with a byte appended to the end of each entry. For seg-
ment metadata entries and heartbeat data structures, a counter
field is stored at the beginning of the data structure and again
at the end of the data structure. If a failure occurs while up-
dating this data structure, the counter field at the beginning
will not match the one at the end.

Self-verifying data structures [13] are able to detect cor-
ruptions at the remote side as well (e.g., incomplete RDMA
Write) because RDMA NICs guarantee that writes are per-
formed in an increasing address order, i.e., the verification
bytes at the end are not written before other bytes in the data
structure.

4 Implementation Details

4.1 Garbage Collection
The system will eventually run out of space if segments are not
released by owner threads. The garbage collection process is
responsible for releasing segments. A segment is not released
until all ObjectEntries in the segment become invalid, i.e.,
they are inaccessible through the hash table.

Each thread periodically checks its sealed segments to iden-
tify any segments that should be freed. In LoLKV, a segment
is freed if the ratio of valid objects in a segment drops below
a configurable threshold. Before a segment is released, all its
valid entries must be moved to another active segment. The
owner thread moves these entries to a new segment while pre-
serving their incarnation and term_id values in order to
avoid overwriting a newer entry of the same key. The thread
then inserts the objects in the hash table using the same prob-
ing mechanism. An entry in the hash table is updated with a
new address only if its incarnation equals that of the moved
object. Once the segment does not have any valid entries, the
thread releases the segment by updating its metadata.

4.2 Reusing Tombstones
While processing a put, if during the probing step the thread
reaches an empty hash table entry, this indicates that the key
does not exist. During probing, the thread records the first
hash table entry that points to a tombstone with a term number
smaller than the current term number. If probing terminates
at an empty hash table entry (i.e., the key is not found), the
thread updates the hash table tombstone to point to the new
ObjectEntry. If no tombstone is found, the empty hash table
entry is updated to point to the new ObjectEntry. We only
reuse tombstones from previous terms to avoid conflicts with
delete requests in the current term.

46 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 Correctness
LoLKV design is based on the following assumptions; the
network is unreliable and asynchronous, as packets could be
dropped or take arbitrary time to arrive at the destination.
There is no limit on the time a node takes to process a request.
We assume a non-byzantine failure model in which nodes
may stop working but will never send erroneous messages.

LoLKV guarantees linearizability at the object level. All
operations for an object appear to be executed in a single
global order. We used the TLA+ model checking tool [21] to
verify LoLKV’s correctness. We use TLA+ model checking
to verify the correctness of the segment store, the hash table,
the replication protocol, and the leader election. In this section
we sketch out the proof of LoLKV’s correctness and discuss
the correctness of the segment store and the hash table. To
simplify the discussion, we sketch the proof without garbage
collection.
Property I. Memory ownership is safe, meaning if a segment
is owned by a thread, the segment ownership operation will
be present in all future leaders. To prove this, we use three
invariants:

1. A leader in term i commits segment ownership opera-
tions in order of the seg_ver. When a thread owns a
new segment, it acquires a lock, increments seg_ver and
assigns it to the new segment, commits the ownership
operation on a majority of followers, then releases the
lock. Using a lock guarantees that segments are assigned
an increasing seg_ver and are committed in order of
seg_ver.

2. For a given term i, if a follower has segment with
term_id = i and seg_ver = n, it is guaranteed that it
also has all segments with term_id = i and seg_ver < n.
Following the argument in the previous invariant, seg-
ment ownership operations are committed in order of
seg_ver. Furthermore, LoLKV uses RC transport to repli-
cate memory ownership operation. RC guarantees or-
dered delivery of messages. This means if a node re-
ceived seg_ver, then it must have received all previous
messages sent on that channel.

3. The last segment ownership operation committed in term
i is present in the leader of term i+1. The leader elec-
tion protocol elects a leader with the highest <term_id,
seg_ver> among a majority of replicas. If the last com-
mitted ownership operation on a majority in term i has
seg_ver = n, then the leader of term i+1 will have an
ownership operation with term id = i and seg_ver >= n.
Following invariant 1 above, the leader of term i+1 will
have the last committed entry in term i.

Invariant 3 indicates that a leader of term i has the latest
memory ownership committed in term i−1. Hence, invariant
2 implies that the leader of term i also has all segment owner-
ship committed in term i−1. By induction, the leader of term
i has all the segment ownership committed in all previous

terms.
Property II. The data consolidation process guarantees that
a leader has all committed entries from the previous term.
Without loss of generality, we sketch the proof for a single
thread here using the following invariants:

4. The leader thread in term i replicates put operations in
order of the seq_num. To commit an operation, the leader
thread increments the seq_num, stores the operation in
the local segment store, then replicates the operations to
followers.

5. If a follower in term i receives an operation with
seq_num = n, then this follower has received all opera-
tions from this thread in term i with seq_num < n. This
follows from invariant 4, and that we use RDMA RC
transport for replication. The RC transport guarantees
in-order delivery of messages.

6. For a given thread in term i, if an operation with
seq_num = n is committed, then all operations for that
thread in term i with seq_num < n are committed. If
operation with seq_num = n in term i is committed,
then this operation has been received by a majority of
nodes. From invariant 5 above, those nodes that received
seq_num = n must have received all operations in term
i with seq_num < n. Given that those are a majority of
nodes, then all operations in term i with seq_num <= n
are committed.

7. A node that has the highest seq_num in term i among
a majority of nodes has all of the committed entries in
term i. Assume that in term i, the largest seq_num on a
majority of nodes is n, and that the last committed entry
in term i is m. Given that seq_num = m is replicated on a
majority, then m <= n. Following invariant 5 above, the
node that has n also has all operations with seq_num < n,
including m. Following invariant 6, it has all committed
entries in term i.

The newly elected leader has the highest term number on
a majority of nodes, but may not have all committed entries
from the previous term. Before processing new requests, the
leader runs the data consolidation process. For each thread,
data consolidation looks for the highest <term_id, seq_num>
on a majority of replicas. If a follower has a seq_num higher
than the seq_num of the leader thread, then the consolidation
process updates the leader with all missing operations. At
the end of this process, for a given thread, the leader has all
operations from the previous term with the highest seq_num
among a majority of nodes. Following invariant 7 above, the
leader has all committed entries in that term for that thread,
verifying property II.
Property III. LoLKV guarantees if an object is committed by
a leader it will be present in the segment store of all future
leaders. From property II above, if a leader commits an oper-
ation in term i, the data consolidation process guarantees that
this operation will exist in the segment store in the leader of
term i+1. By induction, a committed entry will exist in the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 47

segment store of all future leaders.

5.1 Correctness of the Hash Table
We do not need to replicate updates to the hash table entries for
correctness. The object store has all the information needed to
recover the hash table on a new leader. LoLKV threads lazily
replicate updates to the hash table in the order of seq_num
only to optimize leader recovery.

We discuss safety when multiple threads try to update the
same slot in the hash table under two scenarios: concurrency
between threads updating the same slot with different keys
and concurrency between threads updating the same slot with
the same key.

The hash table uses CAS to update its slots. If a thread
finds an empty slot in the table and its CAS operation fails to
update that slot, the thread repeats the probing operation to
find the target slot for the new object.
Property IV. LoLKV applies updates to the hash table follow-
ing the order specified by the incarnation. If two threads
are processing a put request for the same key, one of them will
insert the update first in the table using CAS. While probing,
the second thread will find that the key already exists, but
since the object was inserted by a different thread, we cannot
use the seq_num to order these updates. For this scenario,
we rely on the incarnation field. When processing a put
request, a thread atomically increments the incarnation array
to get a unique increasing incarnation for its put operation.
We use this number to order operations on the same key. If a
thread finds the object in the table with incarnation higher
than the incarnation of its put operation, it discards its put
operation, otherwise it updates the hash table.
Property V. In LoLKV, A get request returns the latest com-
mitted object for the target key. In LoLKV, get requests are
served locally by the leader without contacting the followers.
To serve a get request, a worker thread probes the hash table
in the same manner used for a put request. If the thread finds
the target key in the table, the thread reads the object from the
object store. The thread verifies that the hash table slot was
not modified while the thread is reading from the object store
by verifying that the slot still contains the same object store
address. If the slot has a different address, the thread repeats
the process and reads the newer object of the key. Since a
key can have at most one slot in the hash table, and since
hash table slots point only to committed objects, the thread is
guaranteed to return the latest committed object for the key.
Property VI. LoLKV guarantees linearizability at the object
level. Properties I, II, and III guarantee that if a leader com-
mits an entry in the segment store, the entry will be present
in the segment store of all future leaders. Multiple threads
may concurrently commit entries for the same key. Property
IV shows how LoLKV uses the incarnation to create a
global order of updates to the same key. Finally, Property V
guarantees that get operations return the latest committed
entry. These properties guarantee that LoLKV is linearizable

for put and get operations per key.

6 Evaluation
We evaluate the performance of LoLKV and compare its
latency and throughput against the state-of-the-art alternatives
using uniform and skewed workload distributions.
Testbed. We conducted the experiments using a 12-node
cluster on Cloudlab Utah [22]. Each machine has a Xeon
E5-2450 8-core CPU with hyperthreading, 16GB of RAM,
and a Mellanox Dual port FDR CX3 adapter. Machines are
connected using a 56 Gbps Infiniband [15] network.
Alternatives. We compare LoLKV against DARE [6], APUS
[5], Mu [7], and uKharon [8]. DARE and uKharon imple-
mentations come bundled with an in-memory key-value store.
For APUS and Mu, we implemented an in-memory key-value
store following the same design as LoLKV’s in-memory key-
value store. Newly inserted keys are stored in the APUS or
Mu logs and then copied to the segment store during the
apply phase. We also evaluated LogCabin [20], a strongly-
consistent key-value store based on Raft [9]. LogCabin uses
TCP/IP stack for communication. Our results with write-only
workload show that LogCabin has a throughput of 12,500 ops,
which is at least two orders of magnitude lower than other
RDMA-based systems, and its latency is around 1.5ms, which
is three orders of magnitude higher latency than other RDMA-
based systems. We also evaluated HERD [12], an unreplicated
key-value store that uses a mixture of RDMA Writes and
RDMA Send and Receive for communication with clients. Re-
sults show that HERD achieves 4×, 8×, 8×, and 50× higher
throughput compared to LoLKV, DARE, Mu, and APUS, re-
spectively. This performance difference is mainly because
HERD is an unreplicated key-value store, while other systems
implement a replicated and linearizable key-value store. We
omit adding the results of LogCabin and HERD to the figures
for clarity.
Experiment Configuration. We run the systems in a multi-
sharded setting, in which multiple processes of a system are
deployed. Each process represents a replica of a single shard.
We benchmark each system and select the number of shards
and configurations that maximize its performance. We used a
replication factor of three in all our experiments. All replicas
of all shards were distributed among the same three nodes,
while other nodes are used to run clients. Unless otherwise
specified, we deploy the leader replicas of all shards on one
node. However, we evaluate the scenario when the leaders are
equally distributed among nodes in Section 6.6.
Shard Configuration. We run LoLKV with 8 threads, DARE
with 8 shards, APUS with 7 shards, and Mu and uKharon
with 4 shards. APUS does not scale to 8 shards as it runs a
background process to establish RDMA multicast commu-
nication paths. Mu does not scale to 8 shards as each shard
uses 4 threads; one thread performs log replication while 3
threads perform heart beating, monitoring, and permissions
management. uKharon also does not scale to 8 shards as each

48 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

LoLKV Mu DARE APUS uKharon

0 1 2 3 4 5 6
Throughput (Mops)

0

20

40

60

80

La
te

nc
y

- 9
9t

h
%

ile
 (u

s)

Write-only Workload

0 1 2 3 4 5 6 7 8 9
Throughput (Mops)

0

20

40

60

80 YCSB Workload A (50% Writes)

0 3 6 9 12 15
Throughput (Mops)

0

20

40

60

80 YCSB Workload B (5% Writes)

0 3 6 9 12 15 18
Throughput (Mops)

0

20

40

60

80 Read-only Workload

Figure 4: Throughput and tail latency using uniform YCSB workloads.

0 1 2 3 4 5 6
Throughput (Mops)

0

20

40

60

80

La
te

nc
y

- 9
9t

h
%

ile
 (u

s)

Write-only Workload

0 1 2 3 4 5 6 7 8 9
Throughput (Mops)

0

20

40

60

80 YCSB Workload A (50% Writes)

0 3 6 9 12 15 18
Throughput (Mops)

0

20

40

60

80 YCSB Workload B (5% Writes)

0 3 6 9 12 15 18
Throughput (Mops)

0

20

40

60

80 Read-only Workload

Figure 5: Throughput and tail latency using skewed YCSB workloads.

shard uses two threads, one for processing client requests and
replication and one for monitoring and detecting failures.

Multi-shard deployment of DARE, APUS, Mu, and
uKharon requires sharding the key space into partitions, with
all requests to keys within a partition being served by the
same replica set. In our experiments with these systems, a
client picks the right shard for a request based on the hash
of the key. On the other hand, as LoLKV does not have a
fixed assignment of keys to threads, its clients send requests
to threads in a round-robin fashion.
Workload. We used the YCSB benchmark [23] in our experi-
ments with both uniform and skewed workloads. The skewed
workload follows the Zipf distribution with a skewness param-
eter of 0.99. We experimented with 100,000, 1 million, and
10 million keys. As the results obtained in all these cases are
similar, we present the results with 1 million keys. The key
and value sizes are 24 and 64 bytes respectively. We report
the averages from running 10 trials for each experiment. The
standard deviation of all our experiments is below 5%.

6.1 Performance Evaluation
We compare the throughput and latency of all systems using
the YCSB workloads with uniform and skewed key popularity
distributions (Figure 4 and Figure 5).

For uniform workloads (Figure 4), LoLKV achieves 1.7–
2.9× higher throughput and 20–55% lower latency compared
to DARE. LoLKV also achieves 4–10× higher throughput
and 56–92% lower latency compared to uKharon, Mu, and
APUS. Figure 5 shows that LoLKV’s performance is not
affected by workload skewness. On the other hand, DARE,
uKharon, Mu, and APUS achieve 14%, 16%, 6%, and 18%

lower throughput with the skewed write-only workload com-
pared to their throughput with uniform workload.

LoLKV outperforms other alternatives for several reasons.
First, LoLKV requires only one RDMA Write operation to
replicate an object. Second, LoLKV combines the replication
phase and the apply phase by replicating operations directly
to the object store, avoiding an extra memory operation to
copy the data from the operation log to the object store.

APUS has the lowest performance because replication in
APUS requires two RDMA Write operations: one from the
leader to followers to replicate log entries and one from fol-
lowers to the leader to indicate the acceptance of a log entry.
Hence, in APUS, the CPUs of the followers are involved in the
replication process, which reduces throughput and increases
latency. Replication in Mu and uKharon requires only one
RDMA write operation from the leader to the followers, which
results in higher throughput and lower latency compared to
APUS. However, Mu and uKharon do not employ batching in
the replication process, which imposes long queuing delays
under heavy workloads. DARE achieves better performance
than APUS and Mu as it employs batching. However, DARE
requires two RDMA Write operations to replicate a batch of
operations: the first operation replicates log entries on follow-
ers and the second one updates the tail index of the followers.

LoLKV outperforms other systems even under read-heavy
workloads due to two reasons. First, even with a small percent-
age of put requests, the overhead of replicating and applying
operations limits the performance of get requests. Second,
APUS, Mu, and uKharon are multi-threaded systems but not
all threads are utilized to serve client requests. As a result,
given the same amount of resources, LoLKV and DARE can

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 49

LoLKV Mu DARE APUS uKharon

0 30 60 90 120 150 180
Put Latency (us)

(a)

0.0

0.5

1.0
Pe

rc
en

ta
ge

 o
f R

eq
ue

st
s

0 25 50 75 100
Commit Latency (us)

(b)

0.0

0.5

1.0

Pe
rc

en
ta

ge
 o

f R
eq

ue
st

s

0 1 2 3
Apply Latency (us)

(c)

0.0

0.5

1.0

Pe
rc

en
ta

ge
 o

f R
eq

ue
st

s

Figure 6: Latency CDF with a uniform write-only workload (a) put latency. (b) commit latency. (c) apply latency.

LoLKV Mu DARE APUS uKharon

0.5 0.6 0.7 0.8 0.9 1.0
Zipfian Constant

(a)

1
2
3
4
5

Th
ro

ug
hp

ut
 (M

op
s)

0.5 0.6 0.7 0.8 0.9 1.0
Zipfian Constant

(b)

30
60
90

120
150

Av
er

ag
e

La
te

nc
y

(u
s)

0.5 0.6 0.7 0.8 0.9 1.0
Zipfian Constant

(c)

200

400

600

800

La
te

nc
y

- 9
9t

h
%

ile
 (u

s)

Figure 7: Throughput (a), average latency (b), and 99th percentile of latency (c) when varying skewness with write-only workload.

be deployed with larger number of threads/shards than APUS,
Mu, and uKharon. Finally, DARE’s batching mechanism
batches similar operations only (i.e., a batch can have only
get or put requests). This approach leads to small batches
and degrades DARE’s performance significantly when the
workload has both get or put requests.

6.2 Latency Evaluation
Figure 6.a shows the CDF of put latency for a uniform write-
only workload. Other workloads in the YCSB benchmark
have a similar pattern. LoLKV lowers the 90th percentile of
put latency by 30%, 42%, 80% and 91% compared to DARE,
uKharon, Mu, and APUS, respectively.

Figure 6.b and Figure 6.c show the breakdown of the put
latency into commit time and apply time under the uniform
write-only workload. We measure the commit time as the time
from when the leader polls a client request until the leader
commits the request. LoLKV lowers the 90th percentile of
commit latency by 33%, 73% and 89% compared to uKharon,
Mu, and APUS, respectively. DARE’s commit latency is com-
parable to LoLKV. However, DARE has a large queuing delay
as it polls requests one by one. The impact of this polling
mechanism appears in Figure 6.a. LoLKV outperforms other
systems as requests are replicated concurrently and commit-
ting an operation requires only one RDMA Write operation.

Figure 6.c shows the CDF of the apply time of different
systems under the uniform write-only workload. The apply
time is the time needed by the system to update the key-value
store. LoLKV lowers the 90th percentile of the apply latency
by 26%, 63%, 39%, and 45%, compared to DARE, uKharon,
Mu and APUS respectively. In LoLKV, applying an operation
requires only updating the hash table to point to the new

object. In all other systems, in addition to updating the hash
table, the object is copied from the log to the segment store.

6.3 Workload Skewness
We evaluate the impact of workload skewness on the through-
put (Figure 7.a), the average latency (Figure 7.b), and the
99th percentile latency (Figure 7.c) when varying the skew-
ness factor between 0.5 and 0.999 for the write-only work-
load. Results show that LoLKV handles extremely skewed
workload efficiently; its throughput and latency are not af-
fected by the workload skewness. With a skewness factor of
0.999, the throughput of DARE, uKharon, Mu, and APUS is
reduced by 14%,16%, 6%, and 18%, and their average laten-
cies is increased by 27%, 13%, 4%, and 27% compared to
their throughput and latencies with a skewness factor of 0.5.

Increasing the skewness factor does not result in a signif-
icant performance degradation for all systems. The reason
for this is that with a skewness factor of 0.999, 50% of the
requests target only 209 keys. However, we found that these
keys are distributed among different shards. Hence, the load
generated by the clients is still distributed among all shards.
As a result, we do not see a noticeable difference in the per-
formance when comparing uniform and skewed workloads.

Modern key-value stores allow clients to select a partition
function that maps keys to shards. These functions often group
related keys in a single shards. To better understand the im-
pact of workload skewness on the performance, we conducted
an experiment in which we control the percentage of requests
targeting a shard. Figure 8.a shows the systems throughput,
Figure 8.b shows the average latency, and Figure 8.c shows
the 99th percentile latency when we vary the percentage of
requests that are handled by a specific shard. For ease of com-

50 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

LoLKV Mu DARE APUS uKharon

0 30 50 70 90
Percentage of Operations (%)

(a)

0
1
2
3
4
5

Th
ro

ug
hp

ut
 (M

op
s)

0 30 50 70 90
Percentage of Operations (%)

(b)

0

200

400

600

Av
er

ag
e

La
te

nc
y

(u
s)

0 30 50 70 90
Percentage of Operations (%)

(c)

250

500

750

1000

La
te

nc
y

- 9
9t

h
%

ile
 (u

s)

Figure 8: Throughput (a), average latency (b), and 99th tail latency (c) when changing the percentage of requests targeting a
shard under write-only workload.

LoLKV Mu DARE APUS uKharon

0.5 0.6 0.7 0.8 0.9 1.0
Read Operations Percentage

(a)

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (M

op
s)

0.5 0.6 0.7 0.8 0.9 1.0
Read Operations Percentage

(b)

20

40

60
Av

er
ag

e
La

te
nc

y
(u

s)

0.5 0.6 0.7 0.8 0.9 1.0
Read Operations Percentage

(c)

0

100

200

300

La
te

nc
y

- 9
9t

h
%

ile
 (u

s)

Figure 9: Throughput (a), average latency (b), and 99th tail latency (c) of different systems when varying the percentage of read
requests.

parison, Figure 8 also shows the performance when requests
are uniformly distributed among shards ("U" in Figure 8).
Results show a significant degradation in the performance of
DARE, Mu, uKharon, and APUS. For instance, comparing the
uniform distribution to when 50% of requests are served by
one shard, the throughput of DARE, uKharon, Mu, and APUS
is reduced by 61%, 52%, 45%, and 62%, respectively. Simi-
larly, the average latencies of DARE, uKharon, Mu, and APUS
are 5.3× , 3.4×, 4.5×, and 5.9× their average latencies with
uniform distribution, and their 99th percentile latencies are
2.7×, 3.2×, 4×, and 2.8× of their 99th percentile latencies
with uniform request distribution.

LoLKV’s performance is not affected by the workload
skewness because LoLKV does not shard the key space
among worker threads and all threads can participate in serv-
ing requests for popular objects. Concurrent put operations
on the same key can be committed in parallel by different
threads. Concurrent updates are ordered when updating the
hash table. For all other systems, the commit and apply oper-
ations are serialized when there are concurrent updates to the
same key and all operations for a popular key are handled by
a single shard while other shards could be idle.

6.4 Read-to-Write Ratio
Figure 9 shows the throughput, the average latency, and the
99th percentile latency when varying the get requests per-
centage. Increasing the percentage of get requests increases
the throughput and lowers the latency of all systems as get
requests are served by the leader in all systems. Nonetheless,
LoLKV outperforms other systems for all read-to-write ra-
tios. For instance, when 70% of requests are get requests,

LoLKV achieves 2.8×, 2.75×, 4× and 6.3× higher through-
put compared to DARE, uKharon, Mu, and APUS, respec-
tively. LoLKV outperforms Mu and uKharon for read-only
workloads because LoLKV uses higher number of threads to
serve requests. DARE polls one request at a time which limits
its throughput even under read-only workloads.

6.5 LoLKV Failover

In Figure 10, we evaluate the recovery time of LoLKV when
the leader fails, including the time it takes to elect a new leader
and perform data consolidation. In this experiment, we use
the same uniform write-only workload we use in Figure 4.a
with the configuration that achieves the maximum throughput
of 5.7 Mops. We kill the leader process at the 50 ms mark.
The throughput drops to zero when the leader fails and the
system remains unavailable until a new leader is elected.

The total recovery time is around 4.5ms. Detecting the
leader failure and electing a new leader takes around 1.4ms.
This is dominated by waiting for 3 heartbeat periods (300µs
each) to start leader election. Around 3ms are spent bringing
the new leader up-to-date. Once the new leader is active, the
throughput of the system returns to 5.7 Mops. We note that the
current implementation of LoLKV is not optimized for fast
failure recovery. For instance, in the current implementation
one thread sequentially performs data consolidation for all
thread segments before the leader can begin serving client
requests. This can be parallelized by making each thread
update the segments it owns. We will explore optimizing
failure recovery in future work.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 51

0
1
2
3
4
5
6

0 10 20 30 40 50 60 70 80 90 100

Th
ro

u
gh

p
u

t
(M

o
p

s)

Time (ms)
Figure 10: Recovery time of LoLKV.

6.6 Scalability
In this section, we evaluate the scalability as we increase
the number of shards or threads. We deploy the systems on
three nodes and uniformly distribute shard leaders across
nodes, i.e., each node is a leader for one third of the shards
and a follower for others. Figure 11 shows the throughput of
different systems with increasing number of shards/threads.
The results show that LoLKV can scale to efficiently use
all hardware threads (i.e., 24 threads) on the three machines
and achieve up to 18 Mops which is 4× higher than DARE,
7× higher than uKharon, 10× higher than Mu, and over 36×
higher than APUS. LoLKV’s performance drops when having
more than 24 threads due to fully utilizing all CPU cores.

LoLKV efficiently use all CPU cores because followers
in LoLKV are not active during normal operations. Conse-
quently, all available CPU cores on each node are used to host
leader shards serving client requests. The other systems do
not scale as well because each node is a leader for n shards
and a follower for 2×n shards. Thus, two thirds of a node’s
resources are used by follower processes. Furthermore, in Mu,
uKharon and APUS not all threads are used for processing
client requests. For each shard process, Mu uses 4 threads
on the leader and 4 on each follower, out of which only one
of the leader’s threads processes client requests. APUS and
uKharon use 2 threads on the leader and every follower per
shard. DARE is a single-threaded system and thus it scales to
a larger number of shards. Each DARE shard uses one thread
on the leader and each follower.

7 Additional Related Work
Consensus optimizations. Numerous software-based ap-
proaches towards optimizing consensus protocols exist in cur-
rent literature. EPaxos [24] is a leaderless replication protocol
designed to optimize commit latencies. CURP [25] utilizes
commutativity to improve replication speeds. While these op-
timizations improve performance, they still result in latencies
in the hundreds of microseconds or millisecond ranges.
Network-accelerated consensus. FLAIR [26], NetChain
[27] and NetPaxos [28] utilize programmable switches to
accelerate consensus. However, FLAIR only optimizes read
operations while NetChain and NetPaxos are only suitable
for systems with data sizes of a few megabytes or less.
Micro-scale optimizations. Several software optimizations
have been developed to support microsecond range workloads,

LoLKV Mu DARE APUS uKharon

1 4 7 10 13 16 19 22 25 28 31
Number of Threads/Shards

10−1

100

101

Th
ro

ug
hp

ut
 (M

op
s)

Figure 11: The throughput of different systems when varying
the number of shards/threads with leaders distributed on three
nodes.

such as low-latency network stacks [29, 30] and intra-node
schedulers [31, 32]. These optimizations are orthogonal to
LoLKV, as we explore a novel design for micro-scale lineariz-
able key-value storage.
Unreplicated RDMA KV Stores. The clients in Pilaf [13]
and XStore [14] use RDMA to access server-side data struc-
tures to reduce latency. HERD [12] uses RDMA writes when
clients submit requests to the server. The server polls these
requests for processing. To leverage multi-core machines,
scaling these systems requires key-space sharding and pro-
cessing all requests for a shard by a thread/process.
Distributed Transactional Systems. DrTM [33] and
DrTM+R [34] use RDMA and hardware transactional mem-
ory to support distributed transactions. RDMA-based CAS
operations are used to replicate local transactions supported
by HTM. These works are orthogonal to ours as we focus on
using RDMA to build a logless replicated key-value store.

8 Conclusion

We present LoLKV, a novel logless key-value storage system
which provides data replication and linearizability guaran-
tees while avoiding the shortcomings of modern log-based
key-value stores. LoLKV uses multi-threading to scale and
handle client requests, applies operations directly to the un-
derlying data structures of the object store, and uses RDMA
to accelerate its operations. LoLKV followers are passive,
enabling the efficient use of their resources. Our evaluation
shows that LoLKV achieves significantly lower tail latency
and higher throughput compared to the state-of-the-art sys-
tems. LoLKV shows that strong consistency guarantees can
be achieved without being restricted to classical log-based
consensus designs.

Acknowledgments

We thank Alex Kogan, Mina Tahmasbi Arashloo, and the
anonymous reviewers for their insightful feedback. This re-
search was supported by grants from Oracle and NSERC.
Ahmed Alquraan is supported by an IBM PhD fellowship.

52 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Xinhui Tian, Rui Han, Lei Wang, Gang Lu, and Jianfeng

Zhan. Latency critical big data computing in finance.
The Journal of Finance and Data Science, 1(1):33–41,
2015.

[2] Stephen F. Elston and Melinda J. Wilson. Big data and
smart trading. https://www.risktech-forum.com/
media/download/61681/download.

[3] Sol Boucher, Anuj Kalia, David G. Andersen, and
Michael Kaminsky. Putting the "micro" back in mi-
croservice. In 2018 USENIX Annual Technical Confer-
ence (USENIX ATC 18), pages 645–650, Boston, MA,
July 2018. USENIX Association.

[4] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Commun. ACM, 56(2):74–80, 2013.

[5] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi,
and Heming Cui. Apus: Fast and scalable paxos on
rdma. In Proceedings of the 2017 Symposium on Cloud
Computing, SoCC ’17, page 94–107, New York, NY,
USA, 2017. Association for Computing Machinery.

[6] Marius Poke and Torsten Hoefler. Dare: High-
performance state machine replication on rdma net-
works. In Proceedings of the 24th International Sym-
posium on High-Performance Parallel and Distributed
Computing, HPDC ’15, page 107–118, New York, NY,
USA, 2015. Association for Computing Machinery.

[7] Marcos K. Aguilera, Naama Ben-David, Rachid Guer-
raoui, Virendra J. Marathe, Athanasios Xygkis, and Igor
Zablotchi. Microsecond consensus for microsecond ap-
plications. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
599–616. USENIX Association, November 2020.

[8] Rachid Guerraoui, Antoine Murat, Javier Picorel,
Athanasios Xygkis, Huabing Yan, and Pengfei Zuo.
uKharon: A membership service for microsecond appli-
cations. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22), pages 101–120, Carlsbad, CA, July
2022. USENIX Association.

[9] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In 2014 USENIX
annual technical conference (USENIX ATC 14), pages
305–319, 2014.

[10] Leslie Lamport. Paxos made simple. 2001.

[11] Diego Didona and Willy Zwaenepoel. Size-aware shard-
ing for improving tail latencies in in-memory key-value
stores. In NSDI, pages 79–94, 2019.

[12] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Using rdma efficiently for key-value services. SIG-
COMM Comput. Commun. Rev., 44(4):295–306, aug
2014.

[13] Christopher Mitchell, Yifeng Geng, and Jinyang Li.
Using One-Sided RDMA reads to build a fast, CPU-
Efficient Key-Value store. In 2013 USENIX Annual
Technical Conference (USENIX ATC 13), pages 103–
114, San Jose, CA, June 2013. USENIX Association.

[14] Xingda Wei, Rong Chen, and Haibo Chen. Fast RDMA-
based ordered Key-Value store using remote learned
cache. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), pages 117–
135. USENIX Association, November 2020.

[15] Rajkumar Buyya, Toni Cortes, and Hai Jin. An introduc-
tion to the infiniband architecture. In High Performance
Mass Storage and Parallel I/O: Technologies and Appli-
cations, pages 616–632, 2002.

[16] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Design guidelines for high performance RDMA
systems. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 437–450, Denver, CO, June
2016. USENIX Association.

[17] Robbert Van Renesse and Deniz Altinbuken. Paxos
made moderately complex. ACM Computing Surveys
(CSUR), 47(3):1–36, 2015.

[18] Emery D. Berger, Kathryn S. McKinley, Robert D. Blu-
mofe, and Paul R. Wilson. Hoard: A scalable memory
allocator for multithreaded applications. SIGPLAN Not.,
35(11):117–128, nov 2000.

[19] C. Gray and D. Cheriton. Leases: An efficient fault-
tolerant mechanism for distributed file cache consistency.
In Proceedings of the Twelfth ACM Symposium on Op-
erating Systems Principles, SOSP ’89, page 202–210,
New York, NY, USA, 1989. Association for Computing
Machinery.

[20] Diego Ongaro. LogCabin.
https://github.com/logcabin/logcabin.

[21] Leslie Lamport. The TLA+ Home Page.
https://lamport.azurewebsites.net/tla/tla.html.

[22] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The Design
and Operation of Cloudlab. In Proceedings of the 2019
USENIX Conference on Usenix Annual Technical Con-
ference, pages 1–14, 2019.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 53

https://www.risktech-forum.com/media/download/61681/download
https://www.risktech-forum.com/media/download/61681/download

[23] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, pages 143–154,
2010.

[24] Iulian Moraru, David G Andersen, and Michael Kamin-
sky. There is more consensus in egalitarian parliaments.
In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pages 358–372, 2013.

[25] Seo Jin Park and John K Ousterhout. Exploiting com-
mutativity for practical fast replication. In NSDI’19,
pages 47–64, 2019.

[26] Hatem Takruri, Ibrahim Kettaneh, Ahmed Alquraan,
and Samer Al-Kiswany. Flair: Accelerating reads with
consistency-aware network routing. In NSDI’20, pages
723–737, 2020.

[27] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. Netchain: Scale-free sub-rtt coordination. In
15th {USENIX} Symposium on Networked Systems De-
sign and Implementation ({NSDI} 18), pages 35–49,
2018.

[28] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fer-
nando Pedone, and Robert Soulé. Netpaxos: Consensus
at network speed. In Proceedings of the 1st ACM SIG-
COMM Symposium on Software Defined Networking
Research, pages 1–7, 2015.

[29] George Prekas, Marios Kogias, and Edouard Bugnion.
Zygos: Achieving low tail latency for microsecond-scale
networked tasks. Proceedings of the 26th Symposium
on Operating Systems Principles, pages 325–341, 2017.

[30] Dominik Scholz. A look at intel’s dataplane devel-
opment kit. https://api.semanticscholar.org/
CorpusID:11483651, 2014.

[31] Sarah McClure, Amy Ousterhout, Scott Shenker, and
Sylvia Ratnasamy. Efficient scheduling policies for
Microsecond-Scale tasks. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 22), pages 1–18, Renton, WA, April 2022.
USENIX Association.

[32] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for usecond-scale tail
latency. pages 345–360, 2019.

[33] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing
using rdma and htm. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles, SOSP ’15, page

87–104, New York, NY, USA, 2015. Association for
Computing Machinery.

[34] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and
Haibo Chen. Fast and general distributed transactions
using rdma and htm. In Proceedings of the Eleventh Eu-
ropean Conference on Computer Systems, EuroSys ’16,
New York, NY, USA, 2016. Association for Computing
Machinery.

54 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://api.semanticscholar.org/CorpusID:11483651
https://api.semanticscholar.org/CorpusID:11483651

Making Kernel Bypass Practical for the Cloud with Junction
Joshua Fried, Gohar Irfan Chaudhry, Enrique Saurez†, Esha Choukse†, Íñigo Goiri†,

Sameh Elnikety‡, Rodrigo Fonseca†, Adam Belay
MIT CSAIL †Azure Research – Systems ‡Microsoft Research

Abstract. Kernel bypass systems have demonstrated order of
magnitude improvements in throughput and tail latency for
network-intensive applications relative to traditional operating
systems (OSes). To achieve such excellent performance, how-
ever, they rely on dedicated resources (e.g., spinning cores,
pinned memory) and require application rewriting. This is
unattractive to cloud operators because they aim to densely
pack applications, and rewriting cloud software requires a
massive investment of valuable developer time. For both rea-
sons, kernel bypass, as it exists, is impractical for the cloud.

In this paper, we show these compromises are not neces-
sary to unlock the full benefits of kernel bypass. We present
Junction, the first kernel bypass system that can pack thou-
sands of instances on a machine while providing compatibility
with unmodified Linux applications. Junction achieves high
density through several advanced NIC features that reduce
pinned memory and the overhead of monitoring large numbers
of queues. It maintains compatibility with minimal overhead
through optimizations that exploit a shared address space with
the application. Junction scales to 19–62× more instances
than existing kernel bypass systems and can achieve similar or
better performance without code changes. Furthermore, Junc-
tion delivers significant performance benefits to applications
previously unsupported by kernel bypass, including those that
depend on runtime systems like Go, Java, Node, and Python.
In a comparison to native Linux, Junction increases through-
put by 1.6–7.0× while using 1.2–3.8× less cores across seven
applications.

1 Introduction
Network-intensive applications have experienced remark-

able performance improvements (i.e., order of magnitude
better tail latency and throughput) from kernel bypass sys-
tems [6, 15, 28, 29, 37, 43, 44, 67]. Their key idea is to map
network queues into userspace, so applications can communi-
cate directly with the NIC and avoid kernel overheads.

Junction is a new kernel bypass system that targets cloud
applications (e.g., microservices, serverless, etc.). Like pre-
vious kernel bypass systems, Junction delivers significant
performance improvements, including higher throughput and
greater CPU efficiency, as well as order of magnitude reduc-
tions in tail latency relative to traditional OSes. At the same
time, Junction is the first kernel bypass system that retains
compatibility with unmodified Linux binaries and is capable
of achieving high density (i.e., the ability to scale to thousands
of instances on a machine). Junction delivers these benefits

while maintaining strict isolation between applications with a
narrower attack surface than existing cloud isolation schemes.

Prior kernel bypass systems make compromises that ren-
der them impractical for use in the cloud. For example, they
require dedicated, busy-spinning cores and pinned memory,
so very few instances can be packed on a machine. More-
over, they make significant changes to the programming
model [6, 14, 21, 33, 52] that break compatibility and sacrifice
the enormous investment made in existing software. Finally,
most kernel bypass systems provide no isolation of their own,
so they must be combined with virtualization—and its as-
sociated overheads (e.g., VM exit costs, nested page tables,
etc.)—to be deployed safely in a cloud setting.

Junction is able to retain the full performance benefits of
kernel bypass without these compromises through a set of
design contributions that target isolation, density, and compat-
ibility. To achieve strong isolation while avoiding virtualiza-
tion overheads, Junction runs each instance inside a normal
Linux process and installs a filter that limits access to sys-
tem calls. Within an instance, Junction runs as a library that
shares an address space with the application. Because Junc-
tion is able to build all of its OS abstractions on top of kernel
bypass hardware (e.g., NIC queues, CPU features, etc.) it re-
quires only minimal interactions with the kernel, just enough
to enable resource multiplexing (≈ a dozen system calls).

To achieve high density, Junction efficiently multiplexes
both cores and memory. For cores, Junction builds upon prior
work on a dedicated scheduler core, but overcomes the pre-
viously unaddressed challenge of scaling to a large number
of instances. To do so, Junction makes novel use of a NIC
hardware feature that delivers packet arrival notifications on
a dedicated queue instead of requiring each receive queue
to be polled individually. For memory, Junction employs a
variety of new techniques to reduce the footprint of packet
buffers, including configuring NIC hardware to share a queue
of receive buffers across multiple cores, as well as allowing
multiple packets to be posted in each receive buffer. Junction
also securely exposes the Linux page cache to share read-only
memory across instances.

To achieve Linux compatibility, Junction provides its own
implementation of the Linux Kernel system call interface.
This was challenging to do in a way that maintains the per-
formance benefits of kernel bypass. Junction exploits the
fact that it runs in the same address space as the application
to unlock optimizations that minimize the cost of compat-
ibility. For example, Junction safely converts system calls
into function calls, avoids transient execution mitigations,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 55

Density Compatibility

System Mem. overhead
(single core)

Mem. overhead
per instance per core

Max instances
(128GB RAM)

Ported
Application

Lines of code Compatible w/
existing clients

Added Removed Modified

eRPC [30] 24 MB 24 MB # of cores Masstree 551 0 0 ✗
Demikernel [67] 167 MB – # of cores Redis 926 819 213 ✓
Caladan [15] 648 MB 9 MB 200 Memcached 393 539 637 ✓

Junction 29 MB 0.47 MB 3,500 No porting – – – ✓

Table 1: Existing kernel bypass systems require large amounts of dedicated host resources and invasive changes to applications.

accesses arguments directly without copying them, exploits
undefined behavior to eliminate locking, and uses vector in-
structions without the need to save and restore register state.
Junction also provides many OS features that are missing
in existing kernel bypass systems (e.g., signals, thread-local
storage, randomness, file systems, timers, etc.) but are crucial
to supporting cloud applications. It maintains a kernel bypass
approach to delivering these features by exploiting modern
CPU extensions to avoid traps into the kernel.
Results. Junction helps to pave a path toward practical deploy-
ment of kernel bypass in the cloud by showing it is possible to
deliver high performance without sacrificing security, density,
or compatibility. For example, Junction can run unmodified
Linux binaries while matching or exceeding the performance
of three state-of-the-art kernel bypass systems that require
significant code changes. Moreover, Junction’s reliance on
kernel bypass hardware allows it to reduce the number of
system calls in its attack surface by 69%–87% relative to
two security-focused library OSes, and Junction’s buffer man-
agement and queue polling optimizations allow it to pack
thousands of instances on a machine. Finally, Junction is the
first system to bring the performance benefits of kernel bypass
to unmodified applications with complex language runtimes
(e.g., Python, Node, Go, Java, etc.). It improves throughput by
1.6–7.0× and reduces CPU use by 1.2–3.8× for seven appli-
cations relative to Linux. Junction is available as open source
software: https://github.com/JunctionOS/junction.

2 Background & Motivation
Kernel bypass systems eliminate the kernel from the net-

work datapath, and replace it with an optimized user-level
networking stack that communicates directly with the NIC.
In this section, we first discuss why the existing approach to
kernel bypass has shortcomings that hinder adoption, espe-
cially in a cloud setting where density and compatibility are
crucial issues. Next, we discuss current progress in making
kernel bypass more general purpose. Finally, we discuss how
a lack of security further compounds these issues.
Density challenges. Cloud providers commonly pack many
instances on a machine to improve density [16, 55, 62, 68].
This is necessary because latency-sensitive applications have
variability in their demand for resources, and utilization can
only be kept high by filling in idle resources with best-effort

applications. Furthermore, in serverless environments, it is
typical for thousands of instances to remain active on a single
machine to prevent cold start delays [1].

Unfortunately, kernel bypass systems today can only sup-
port a limited number of instances on a machine (left side of
Table 1). One major problem is the widespread use of busy
spinning and dedicated cores [30, 67]. Because this approach
requires a minimum of one core per instance (and often many
more), the maximum number of instances is limited by the
number of cores.

New approaches to CPU scheduling that speed up core
allocation can overcome this limitation and eliminate waste
from busy spinning without sacrificing tail latency [15,42,50].
However, these systems rely on a dedicated core to make
scheduling decisions, so their scalability is still limited. For
example, Caladan is unable to scale beyond a few hundred
instances because of bottlenecks in its scheduler core.

Finally, the memory footprint of kernel bypass systems is
also a significant barrier to achieving high density. This is
especially true for kernel bypass systems that handle TCP
connections, like the Demikernel and Caladan, because they
cannot guarantee the application will consume packet buffers
the moment they arrive (e.g., what if they arrive out of order?),
so they must reserve a significant number of buffers to avoid
packet drops. There is also an additional per-core cost for
packet buffers in multicore kernel bypass systems because
each core must post enough receive buffers to handle a worst
case burst in traffic, which could be uneven across cores.

Compatibility challenges. Ideally, a kernel bypass system
should support unmodified binaries. Existing kernel bypass
systems instead require applications to be ported by devel-
opers (right side of Table 1). This is a significant barrier to
adoption. For example, at the time of writing, three recent,
state-of-the-art kernel bypass systems (eRPC, Demikernel,
and Caladan) support just a handful of applications. More-
over, all of these applications are key-value stores written
in C or C++, which are less challenging to port than typical
cloud applications. A recent survey of serverless functions
found that Node and Python were among the most popular
languages [57], and both require a full language runtime with
a complex set of OS dependencies that cannot be met by
existing kernel bypass systems.

Breaking compatibility is not easy in the cloud because of

56 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/JunctionOS/junction

Junction Kernel
…

Scheduler
uProc #0 uProc #0

Timer
Wheel

uProc #1

Instance #0

Host Kernel (e.g, Linux)
Junction Kernel

Instance #1

NIC Packet
Queues

NIC Event
Queue

Figure 1: Junction’s system architecture.

the significant investment developers have made in existing
software. One obvious solution would be to focus on rewriting
just the most popular applications. Unfortunately, this would
have little impact on efficiency overall because, even together,
these applications do not account for a large enough fraction
of overall resource usage [31].

Making kernel bypass general purpose. There have been
several recent efforts to make kernel bypass more general
purpose. For example, normally kernel bypass systems use
run-to-completion to optimize for short requests [6], but this
leaves them vulnerable to high tail latency when there is
dispersion in request service times. Shinjuku [29] and Persé-
phone [9] solve this through efficient, fine-grained preemption
and steering of short requests to separate cores respectively.
Many kernel bypass systems also use “share nothing” designs
that harm tail latency under load imbalance, an issue that
ZygOS addresses through work stealing [47]. Demikernel
provides unifying abstractions on top of different hardware
backends (e.g., RDMA vs. Ethernet) to reduce developer ef-
fort [67]. Finally, Arachne [50] and Shenango [42] show that
threading can be made fast enough to be used with kernel
bypass networking. Junction adopts several ideas from these
systems while solving the previously unaddressed challenges
of density and compatibility.

Security challenges. Most kernel bypass systems eschew
isolation and must be run as root. As a result, they depend on
other isolation mechanisms to be deployed safely in the cloud.
The most viable option is to run each instance in a separate
VM, but this increases overheads including extra TLB misses,
VM exit costs, and a larger memory footprint caused by the
guest kernel. In most cases, VMs also cannot take advantage
of the page cache, which further limits their density.

3 Junction Overview
Figure 1 provides an overview of Junction and highlights its

main components. Junction is designed to handle thousands of
instances on a machine. An instance is an isolated container
that runs one or more application binaries. From the host
kernel’s perspective, this container consists of a single process
(called a kProc) with a fixed set of threads (called kThreads)
that are statically initialized at startup time. The kThreads
are scheduled on cores by a centralized scheduler (left side
of Figure 1). An instance can load and run multiple binaries
in its shared address space (placing each at different offsets

in virtual memory). Each binary within an instance runs in a
userspace process abstraction called a uProc.

A copy of the Junction kernel runs inside each instance and
shares an address space with its uProcs. It directly handles
system calls from uProcs and provides OS abstractions (e.g.,
threading, networking, filesystems, signals, etc.) in userspace,
similar to a library OS [10, 46]. The Junction kernel supports
the Linux system call interface so that it can run existing
software without modifications.

The Junction kernel uses kernel bypass hardware (both
networking queues and CPU features) to provides its OS
abstractions. As a result, most system calls can be handled
entirely in userspace and it is only necessary to make system
calls into the host kernel to multiplex resources (i.e., cores and
memory)—all other host kernel system calls can be blocked.
Shifting OS functionality into userspace improves perfor-
mance by reducing the frequency of boundary crossings, and
limits the attack surface by allowing untrusted programs to
exercise only very small parts of trusted host kernel code.

Throughout this paper, we assume Linux is used as the
host kernel, but any standard OS could serve this purpose.
Junction can coexist with normal Linux processes that do not
use Junction. As a result, Junction can take full advantage of
existing debugging and profiling tools; and the control plane
and management functions of a standard Linux environment.

Networking and communication. Like other kernel bypass
systems, Junction instances are provisioned with one NIC
send and receive queue pair per kThread. This improves per-
formance by allowing concurrent access to the NIC with-
out synchronization. The Junction kernel provides a high-
performance TCP/IP and UDP networking stack, which en-
able uProcs to communicate with the outside world. uProcs
within the same instance can communicate with each other
using standard inter-process communication (IPC) primitives
(e.g., pipes), but different instances on the same host may only
communicate via loopback networking through the NIC.

Threading. The Junction kernel includes a high-performance,
user-level threading library that uses work stealing to balance
light weight user-level threads (uThreads) across kThreads.
uProc threads (i.e., those created when starting or via
clone3()) are mapped to uThreads. uThreads are also used
for various internal tasks like network protocol processing.
Each kThread runs a scheduling loop that polls local queues
for packets and timeouts, and runs pending uThreads.

Core scheduling. Junction relies on a microkernel-style
scheduler to make core allocation decisions [15, 23, 42, 48]. It
runs on a dedicated core and busy polls control signals to de-
cide how and when cores should be allocated to each instance
(indicated by the red double arrow in Figure 1). Instances can
use as few as zero cores when idle, or more than one if de-
mand justifies it (up to a per-instance limit). For each instance,
the scheduler monitors timer expirations and queueing delays
in both thread and network queues, which are made visible

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 57

to the scheduler through shared memory. When the scheduler
grants a core to an instance, it selects one of its idle kThreads
and pins it to the core for the duration of the grant.

In addition to performing core allocation, the scheduler
assists the threading library in implementing fine-grained
timeslicing by sending user IPIs (UIPIs) [25] to cores where
a running uThread has exceeded its timeslice quantum. This
ensures that all uThreads can make progress, and that packet
queues are drained in a timely manner. It is also beneficial for
reducing tail latency when service time dispersion is high [29].
As an optimization, these interrupts are only sent when queued
packets or runnable threads are waiting to be processed.

Because Junction aims to support thousands of instances,
it employs novel techniques to ensure that control signals
can be monitored in a scalable way. A timer wheel keeps
track of the next timeout for each instance and a NIC event
queue provides notifications of packets arrivals. These reduce
how often the scheduler has to poll shared state inside each
instance to determine if it could benefit from additional cores.
We discuss these optimizations in more detail in §5.

4 Security
The conventional wisdom is to use virtual machines as

the isolation boundary for the cloud to reduce interactions
between untrusted code and the host kernel. However, virtu-
alization still exercises a large amount of trusted code in the
host kernel, resulting in a significant attack surface [3, 65].
Junction, by contrast, delivers OS abstractions directly on
top of kernel bypass hardware, significantly reducing its re-
liance on the host kernel. In this section, we discuss Junction’s
security design in more detail.

4.1 Threat Model
We assume each instance can run arbitrary and potentially

malicious code, so strong memory isolation is needed between
instances and the host kernel. We are particularly concerned
about a malicious user exploiting a bug in the host kernel
through a system call or VM exit. Today’s host kernels have
wide attacks surfaces that can exercise millions of lines of
code, and transient execution attacks potentially expose ad-
ditional vulnerabilities in this code [4]. This poses a large
security risk in cloud deployments [1, 17].

The Junction kernel, by contrast, runs as a separate copy
in each instance. Each copy shares an address space and has
fate sharing with the uProcs it handles, but is strictly isolated
from other instances. Therefore, if a uProc corrupts its mem-
ory or exploits a bug in a system call implementation, it can
only harm its own availability. Through the same reasoning,
validating system call arguments or preventing transient exe-
cutions attacks is not required for isolation with the Junction
kernel. This unlocks many opportunities for optimization that
are not available to the host kernel (§6.2). uProcs that are mu-
tually trusting can run in the same instance at lower overhead,

Category Syscalls

CPU scheduling yield_core()
Memory management mmap(), munmap(), madvise(),

mprotect(), mremap()
Loading binaries open(), close(), pread64()
Logging (optional) write()
Process management exit_group()

Table 2: System calls that Junction requires from the host kernel.

or in separate instances if isolation is needed.
The NIC is trusted and we assume it can provide network

virtualization and packet scheduling across multiple instances.
NICs with these capabilities are commonly deployed in pub-
lic clouds today (e.g., Microsoft Catapult [12] and Amazon
Nitro [2]).

4.2 Host Kernel Isolation

Isolation mechanisms. Junction relies on kProcs, which are
normal Linux processes, for isolation of its instances. Each
kProc installs a strict seccomp filter that limits access to a
restrictive set of system calls. Because Junction uses the
page cache to improve density, an instance is given read-only
access to a chroot jail directory with needed binaries and
shared libraries. Junction instances also have direct access
to the NIC through a set of queues and a dedicated page for
MMIO doorbell writes to PCIe. The NIC is aware of distinct
Junction instances, and provides each instance with its own
queues, pinned memory, and doorbell page.

Allowed system calls. Junction requires only 11 system
calls, as shown in Table 2. Two of these are used only
rarely: write() is used for debug logging to stdout, and
exit_group() is used only once when the instance ex-
its. Similar to Caladan [15], Junction uses a single block-
ing system call, yield_core(), to yield and allocate cores.
This call is provided by a custom Linux Kernel module,
and coordinates with the scheduler—informing it when a
kThread yields voluntarily. The module allows the scheduler
to wake a kThread on a specific core and unblock it from its
yield_core() call.

Junction requires five system calls to manage memory. This
is important for density because instances rarely need all of
the memory they reserve [1]. First, Junction relies on mmap()
to allocate anonymous memory and to map files. Second, it
relies on mprotect() and munmap() to change mapping per-
missions and remove mappings respectively. Third, mremap()
is needed to adjust existing mappings. Finally, madvise() is
exposed to provide hints to the Linux Kernel, such as releas-
ing unused memory without modifying the VMA, which has
lower overhead than munmap().

Page cache. To minimize the attack surface, we initially con-
sidered a design where Junction did not access the Linux
Kernel file system at all, instead delivering files over the net-

58 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

work (e.g., 9P) or in memory. However, we realized that to
achieve density, limited access to the Linux file system is
necessary. This is because the host kernel is the only layer
that can mediate access to the page cache, allowing differ-
ent processes to share read-only mappings to the same disk
blocks. Reducing the memory footprint in this way allows
Junction to achieve higher density (§8.6).

Our goal, therefore, is to expose just enough of the file
system to make it possible to leverage the page cache. Using
the chroot jail, an instance can use open() to access allowed
files in read-only mode and close() when done. mmap()
is used to map the files into memory (i.e., ELF segments),
enabling use of the page cache. pread64(), which takes an
offset and is designed to scale well across cores, is also made
available to allow the contents of files to be read before they
are mapped into memory. Before adopting its syscall filter,
an instance scans the files and folders in its jail and caches
the metadata (e.g., file size), so it does not need access to any
further file-system calls when running.

5 Optimizing for Density
Junction’s goal is to deliver high networking throughput

and low latency, like existing kernel bypass systems, while
also packing significantly more instances on a machine. This
required us to resolve several problems related to the use of a
large number of NIC receive queues.

Normally, kernel bypass systems assign a separate receive
queue to each core in order to avoid synchronization over-
heads so they can scale linearly with the number of cores.
Although Junction differs in that it adjusts cores dynamically
based on load, it still must assign enough receive queues to
each instance so that one will be available for each kThread
that might be running. As a result, the number of queues
needed is the maximum number of cores per instance times
the number of instances.

Modern NICs can easily scale to thousands of queues, but
using them to pack many instances on a machine still poses
significant challenges. First, buffer memory consumption is
a key limit for density because each receive queue must post
enough buffers to accommodate a worst-case burst in arriving
packets, which is exacerbated by the unevenness in traffic
across cores. Second, the cost of polling every queue in the
core scheduler becomes prohibitive, with cache pollution caus-
ing a performance collapse. We now discuss our solution to
each of these problems in more detail.

5.1 Minimizing Buffer Memory Consumption
Existing kernel bypass systems maintain large pools of

memory for buffers that are used to send and receive pack-
ets through the NIC. These buffers must be available to the
NIC for direct memory access, so the backing memory must
be pinned to prevent the host kernel from swapping it out.
Pinning buffers at the time of sending/receive packets is pro-

Refill
thread Shared

buffer queue

RQ 1

RQ 2

RQ 3

Pkt 1

Pkt 2

Pkt 3
Buffer

Figure 2: Junction reduces memory use through (A) a shared buffer
queue that supplies per-core receive queues (RQs), and (B) packing
many packets in each buffer (even when delivered to different RQs).
A refill thread replenishes buffers.

hibitively expensive, so it is instead better to maintain a pool
of pinned buffers. Sizing this pool requires consideration of
several factors, including the number of open connections
(i.e., the total outstanding send and receive windows for a
protocol like TCP), the worst-case delay in packet processing
time, and the network round trip time. To handle variability
in processing time and to absorb bursts, it is common to keep
receive rings full with buffers so that packets are not dropped.

Kernel bypass systems often provision pinned memory well
in excess of the minimum amount needed. One major factor
that contributes to this is the use of per-core receive queues.
Traffic is distributed among receive queues using RSS, which
is susceptible to skew and can lead to bursts on some queues.
Each queue must have enough posted buffers to ensure that
it can handle any traffic distributed to it. For example, kernel
bypass network stacks can drive a single TCP flow at speeds
greater than 100Gb/s. Because such a flow would be hashed
to one receive queue at random, each queue must have enough
buffers available to handle this high rate of traffic, despite the
fact that only one queue’s buffers will be consumed. Thus
the amount of buffer memory needs to scale linearly with the
number of cores an instance may be using.

A second factor that contributes to wasted memory is the
need to support variably-sized packets. Normally, each packet
that arrives consumes a single posted buffer, which must be at
least MTU-sized. Small packets consume only a fraction of
these buffers, so to ensure that enough bytes are available to
buffer small packets that arrive at high rates, the buffer pool
must be made proportionally larger.

As shown in Figure 2, Junction takes advantage of recent
NIC hardware to overcome both of these problems. First, it
uses a per-instance shared buffer queue to post buffers instead
of posting them separately in each receive queue. This allows
posted buffers to be shared amongst the receive queues, elim-
inating the need to scale the buffer pool with the number of
cores. Second, it avoids fragmentation in large packet buffers
by allowing many packets to be placed consecutively in each
buffer, reducing the minimum memory consumed per-packet
from MTU size (between 1500B to 9000B) to 256B.

Using a shared buffer queue requires coordination across
cores, which can add overhead and limit scalability. The host
cannot refill a slot in the buffer queue until the NIC has fin-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 59

ished writing to it, which is detected by tracking arrivals at
each receive queue. Additionally, because many packets can
be stored in a single buffer, a buffer cannot be reused until
all of its packets are freed. This is especially challenging be-
cause packets from a single buffer can be spread across many
receive queues, requiring coordination across cores when free-
ing packets and refilling the shared buffer queue.

Prior work on ShRing [45] proposed hardware modifica-
tions to the NIC to enable efficient coordination. However,
Junction reduces synchronization overhead with a software-
only approach by using per-core reference counters for each
slot in the shared buffer queue and each buffer in the buffer
pool (i.e., no cachelines are shared). Because buffer sizes
can be large (we picked 16KB), the shared buffer queue can
be kept small, resulting in low per-core memory overhead
(about 512B). A high-priority refill thread is responsible for
managing the shared buffer queue: it scans the counters and
replenishes queue slots with free buffers. We provide more
details on our approach and how it compares to ShRing in
Appendix B.

5.2 Scalable Queue Polling

Using a spinning core for rapid core scheduling eliminates
the need for each instance to spin-poll its own receive queues,
allowing idle cores to be reallocated to applications that need
them (§2). The scheduler polls shared memory locations in a
loop to monitor queueing delays across each instance’s net-
work receive queues, thread runqueues, and timers. With large
numbers of instances, the polling loop can take a long time to
complete, leading to delays in wakeups and increases in la-
tency. Furthermore, polling many locations pollutes the cache
for the scheduler, leading to additional slowdowns. Junction
avoids polling thread runqueues for inactive applications, but
must still track pending timers and arriving packets as both
may warrant an immediate core allocation for an idle instance.

Junction makes two main modifications to the scheduler
core model to dramatically improve its scalability by reduc-
ing the amount of memory that the scheduler must inspect
in each scheduling pass. First, it uses a set of NIC features
in a novel way to avoid continuously polling idle network
queues. Junction allocates a single event queue and a ded-
icated doorbell page for the scheduler core. Each time the
scheduler observes an empty receive queue, it arms the queue
by marking the index of the current head pointer and writing
to the doorbell. When a packet arrives on an armed queue,
the NIC writes an event into the event queue and disarms the
queue. The scheduler continually polls the event queue and
can react immediately when a packet arrives at an idle queue.
This feature is available on modern Mellanox NICs.

Expiring timers may also require cores to be allocated
to idle instances. High resolution timers are important for
datacenter workloads; for example, they may used to detect
when TCP segments need to be retransmitted, or an RPC

Subsystem Hardware Feature Syscall Alternative

Networking NIC Queues socket(),recv(),send()
Randomness RDRAND, RDSEED getrandom()
Threading (TLS) WRFSBASE arch_prctl()
Signals SENDUIPI, XSAVEC tgkill()

XRSTOR, UIRET rt_sigreturn()

Table 3: Kernel bypass hardware features used by Junction.

has failed. In order to ensure that instances with timers are
woken with minimal delay, Junction’s scheduler employs a
second optimization: a high resolution (16 µs) hierarchical
timer wheel [61]. The timer wheel allows the scheduler to
ignore instances with timers that expire far out in the future
and monitor only instances that are either active or have im-
mediately pending timeouts.

We also optimize the memory footprint of the data struc-
tures used by Junction’s scheduler to ensure that the state
from each instance occupies as few cache lines as possible.
Additionally, state is arranged to avoid false sharing, i.e., state
needed only when an application is active is kept separate
from state needed when an instance is idle. Together, these
optimizations overcome the scalability bottlenecks of a cen-
tralized core scheduler and enable Junction’s scheduler to
manage thousands of active instances without latency issues.

6 Linux Compatibility

In line with experiences reported by other researchers, we
found that it was tractable for a small team to implement
enough of the Linux interface to run a wide range of applica-
tions [20, 22, 46]. Constraining our goal to only supporting
cloud applications made this easier. For example, we could ig-
nore desktop features like graphics, input devices, and sound,
which would have required significantly more developer ef-
fort. In addition, most cloud applications are built for specific
runtime systems and do not perform system calls directly.
Therefore, targeting all the system calls needed by a partic-
ular runtime can enable a broad swath of compatibility. For
example, we found Junction could run any Go program after
implementing the set of system calls needed by its runtime.

We had to overcome two challenges to achieve Linux com-
patibility. First, we had to provide OS features that are not
available in prior kernel bypass systems, but are necessary for
cloud applications. Second, we had to minimize the overhead
of compatibility in order to not squander the performance
benefits of kernel bypass. We address the first challenge by
shifting OS abstractions into userspace and by building them
on top of kernel bypass hardware (Table 3). We address the
second challenge by exploiting fate sharing and a shared ad-
dress space to unlock performance optimizations. We discuss
each solution in more detail next.

60 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6.1 Adapting OS Features to Kernel Bypass

Loader and multiprocess support. The Junction kernel in-
cludes its own ELF loader to load uProcs inside an instance.
The ELF loader is invoked automatically at startup to load
the first uProc—a path to the program image is provided as a
configuration parameter. The ELF loader can also be invoked
later by the execve() system call, which enables loading of
additional uProcs. During ELF loading, Junction creates a
new uThread and populates its stack with environment vari-
ables, arguments, and an auxiliary vector. The auxiliary vector
contains several important parameters that are needed to emu-
late a Linux process environment [35].

In an earlier prototype of Junction, the Junction kernel was
instead deployed as a library that was linked with the appli-
cation, similar to a Unikernel [24, 34]. We decided against
this approach, however, because it required compiling a new
binary for each program. This breaks compatibility with exist-
ing Linux binaries and also makes it more difficult to support
multiple processes within an instance.

Multiprocess support is an important feature for some cloud
applications (e.g., microservices) because they rely on side-
cars for RPC handling, logging, and other services. Sidecars
are normally trusted by the application, so it is acceptable to
run them together, potentially without memory isolation [56].
In Linux, a new process is created via fork(), which spawns
a separate address space. However, Junction is a single ad-
dress space OS, so it cannot fork to create new uProcs.

To launch multiple uProcs, Junction instead relies on
vfork(), an optimized version of fork() that delays the cre-
ation of a new address space until execve() is called. Linux
uses this to fuse the fork operation with the loading of the
program, eliminating the need to clone the page table. How-
ever, Junction transparently co-opts the vfork() + execve()
sequence to provide a different behavior. Instead of creating
a new address space, it finds an empty location in the exist-
ing address space and loads the program there, allowing it
to support multiple uProcs in one instance. To avoid colli-
sions, a program must work correctly in any location in the
address space, so at most one uProc can be compiled without
position-independent code (PIC) enabled. Fortunately, for se-
curity reasons, PIC is enabled by default in most datacenters.

Threading. User-level threading packages are gaining trac-
tion because of their increased performance (e.g., Java’s
Project Loom [49] and the Go Runtime [39]). Junction brings
the same benefits to unmodified binaries by shifting all thread-
ing operations (e.g., creating threads, acquiring mutexes, con-
text switching, etc.) into userspace instead of going through
the host kernel. Junction maintains a separate uThread run-
queue in each kThread and uses packet arrivals, timeouts,
signals, and other events to wake uThreads.

Junction provides threading support at two layers of ab-
straction. First, it supports the low-level Linux system calls
that are required for threading (e.g., futex(), clone(), etc.).

This is needed to achieve compatibility with programs that use
nonstandard threading libraries. Second, for greater efficiency,
it overrides glibc’s pthread library, and provides a custom im-
plementation that is integrated directly with Junction and does
not make use of these system calls. For example, futex()
must normally do a hash table lookup to find if a thread is
blocking on an address, but Junction can instead reference the
mutex object directly to find the blocking uThread. Another
challenge not addressed in prior kernel bypass systems is sup-
port for thread-local storage (TLS). Junction’s solution is to
rely on the WRFSBASE instruction to switch between thread-
local regions during each uThread context switch. Without
this instruction, performance would be significantly worse as
the host kernel’s arch_prctl() system call would have to
be invoked at each context switch (§8.6).

Signals. Surprisingly, we found that many cloud applications
depend on signals for normal operation. For example, Go
uses signals to preempt and reschedule Go Routines, and the
Hotspot JVM uses signals as an optimization to avoid explicit
NULL pointer checks. This reflects two separate forms of
signals supported by Linux: 1) those that are sent internally
by an application (e.g., via tgkill()) and 2) those that are
generated by CPU exceptions (e.g., page faults).

The difficulty in supporting signals is that their behavior is
highly customizable (e.g., setting handlers, masking signals,
using alternate stacks, etc.). However, exposing sigaction()
and sigaltstack() through the host kernel would signifi-
cantly widen the attack surface. Signals also compose poorly
with Junction’s threading layer, because signals must nor-
mally wake or preempt a specific uThread, but the host kernel
is only aware of kThreads.

Instead, Junction uses UIPIs [25] to reduce the involvement
of the host kernel. When a uThread invokes tgkill() to send
an internal signal, the Junction kernel uses the SENDUIPI
instruction to send a UIPI (if preemption is necessary). We
discuss our implementation with UIPIs further in Appendix A.

CPU exceptions, however, still requires involvement from
the host kernel because the CPU does not support user-level
handling of these faults. Junction statically configures the host
kernel with handlers for every possible CPU exception signal
(using an alternate signal stack) before dropping privileges.
When a uThread triggers a CPU exception, the host kernel
sets up a trapframe on an alternate stack and invokes Junc-
tion’s signal handler. Thankfully, UIPI’s UIRET instruction
obviates the need for the host kernel’s rt_sigreturn() sys-
tem call since it can atomically restore stack and instruction
pointers. Though a system call is typically needed to unblock
signals that are masked during delivery, Junction configures
its Linux signal handlers to never alter the signal mask. This
is appropriate because CPU exceptions cannot be masked.

When an interrupt or Linux signal is delivered, Junction
uses its internal knowledge of uProcs and their signal configu-
ration to route the signal to the right handler, which pushes the
signal’s trap frame onto a uThread’s stack. This potentially

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 61

includes waking a uThread or preempting a running uThread.
Other OS features. Junction provides support for network-
ing sockets, IPC (e.g., pipe() and loopback networking),
waiting for events (e.g., select(), poll(), epoll(), and
eventfd()), a virtual filesystem, memory management (e.g.,
mmap()), time keeping, and many more OS features not found
in prior kernel bypass systems. We adopted several novel
strategies to reduce overheads, discussed next in more detail.

6.2 Performance Optimizations

System call handling. The main mechanism for intercept-
ing system calls in Linux is seccomp, which can generate a
signal for each system call it intercepts. Junction uses this
mechanism as an occasional fallback, but we found that it
had a prohibitive level of overhead for intercepting all system
calls. A more efficient alternative would be to patch occur-
rences of the SYSCALL instruction so they jump directly into
the Junction kernel. Researchers recently discovered a clever
trick to support this without exceeding the instruction length
of SYSCALL, eliminating the need for binary rewriting [66].

However, Junction uses a different strategy to squeeze out
even more performance. When a program is loaded, Junc-
tion’s ELF loader transparently replaces glibc with a modified
version. We found that nearly all system calls are performed
through glibc so this was a good place to intercept them. The
modified library is designed to call into Junction during each
system call. This includes the use of a trampoline page that
finds the location of Junction, which is randomized for ASLR.

One key benefit to this approach is that it allows each sys-
tem call to be invoked like a normal function call with stan-
dard calling conventions. This is favorable for performance
because some general purpose registers and all floating point
and vector registers can be safely clobbered. As a result, un-
like the Linux Kernel, the Junction kernel can be compiled
with all optimizations enabled, including those that use vector
instructions. This also means that significantly less register
state has to be saved and restored when context switching be-
tween threads that are blocked. However, preempted threads
still require all state to be restored. Because of fate sharing,
there is also no need to apply transient execution attack mitiga-
tions during system calls [4]. Instead, these are only necessary
when entering the host kernel.
Reducing compatibility overheads. Junction further reduces
overheads by changing the way system calls are implemented.
First, Junction does not need to mitigate time-of-check to time-
of-use (TOCTOU) attacks, again because of fate sharing. As a
result, Junction does not copy system call arguments. Second,
the UNIX standard has many examples of undefined behavior.
In the Linux Kernel these have to be implemented carefully
to avoid compromising security, but in Junction they can be
implemented in whatever way achieves the best performance.

A good example of this opportunity is that if a file descrip-
tor is closed while select() is monitoring it, the behavior

is undefined. The Linux Kernel still requires extra locking to
prevent race conditions. On the other hand, Junction allows
these race conditions to happen and avoids the cost of locking
because it assumes a correctly written program will never trig-
ger undefined behavior. However, Junction must still perform
all standard argument checking (e.g., is a file descriptor valid)
because Linux programs depend on these behaviors.

7 Implementation
Junction is implemented in about 12,000 lines of C++23

code and runs on modern x86 CPUs. It is linked against Cal-
adan’s runtime (14,000 LOC), which it uses as a low-level
library for networking and threading routines. Caladan pro-
vided useful support for centralized core scheduling. However,
we had to heavily modify it to scale to more instances and
to run under our restricted host kernel interface. Moreover,
we completely replaced its mlx5 driver (for modern Mellanox
NICs) to enable shared buffer queues and multi-packet receive
buffers (5,000 LOC); and we modified its kernel module to
support UIPIs (500 LOC). The modified NIC driver replaces
Linux’s ibverbs and tightly integrates with the scheduler, al-
lowing it to expose the NIC event queue.
Linux compatibility. Junction’s current implementation sup-
ports 126 Linux system calls. We found this subset sufficient
to run language frameworks including Python, Go, Node.js,
and Java, as well as a variety of applications written in C,
C++, and Rust. With the exception of Go, Junction runs all
of these as unmodified Linux binaries. Go programs belong
to a rare class of applications that make most of their system
calls outside of libc (the only one we encountered). To deliver
the best performance, we added a new OS target to the Go
compiler that uses function calls and our trampoline instead
of system calls. However, seccomp can still handle system
calls even for unmodified Go binaries.

8 Evaluation
Our evaluation aims to answer the following questions:

1. How does Junction’s performance compare to state-of-
the-art kernel bypass systems (§8.2)?

2. How many active instances can Junction pack on a ma-
chine (§8.3)?

3. Can Junction achieve compatibility with unmodified
cloud applications (§8.4)?

4. Can Junction be securely deployed in a multi-tenant
cloud (§8.5)?

5. What factors contribute to Junction’s better performance
and higher density (§8.6)?

8.1 Methodology

Experimental setup. Most experiments are run on a server
with an Intel Xeon 6354 3.6 GHz 18-core CPU, 64GB of
RAM, and a 200GbE Mellanox ConnectX-6 NIC. Scaling

62 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Files Net. Mem. Process
Threads/

Sync. Signals Rand. Timers
Multi-

threaded
Garbage
Collected

Kernel
Time (%)

Memcached (C) 6 20 4 12 4 2 1 1 ✓ ✗ 86.4
Redis (C) 11 14 5 9 5 3 1 1 ✗ ✗ 84.2
Masstree (C++) 4 14 5 6 4 4 0 1 ✓ ✗ 83.2
nginx (C) 5 9 4 10 2 0 1 1 ✗ ✗ 76.1
Node.js HTTP 7 12 6 14 4 2 1 0 ✗ ✓ 44.7
Python HTTP 11 10 4 11 3 1 1 0 ✗ ✗ 63.5
Go HTTP 4 9 4 6 4 3 1 1 ✓ ✓ 55.3
Rocket (Rust) 7 13 5 7 4 0 1 0 ✓ ✗ 44.7
Tomcat (Java) 15 18 5 15 5 4 1 2 ✓ ✓ 51.6

Table 4: Characteristics of evaluated applications, including unique system calls used grouped by kernel subsystem, whether an application is
multithreaded or uses garbage collection, and ratio of time spent in the kernel (when running in Linux).

Linux eRPC Junction
0
5

10
15
20

Th
ro

ug
hp

ut
(M

 O
PS

)

Masstree

Linux Demikernel Junction
0.0

0.25
0.5

0.75
1.0

Redis

Linux Caladan Junction
0
5

10
15

Memcached

Figure 3: Performance comparison of Junction with state-of-the-art kernel bypass systems. Junction offers higher throughput than eRPC and
Demikernel and is competitive with Caladan despite requiring no code modifications.

experiments run on a server with an Intel Xeon 5420+ 2.7GHz
28-core CPU and 128GB of RAM. Unless otherwise noted,
we use a set of client machines connected to a 100GbE switch
to generate load. The server runs Linux Kernel version 6.2,
with the default mitigations enabled for CPU vulnerabilities.
We use an open-loop kernel bypass load generator with Pois-
son arrivals [42] for latency measurements.

Systems. We compare Junction to three state-of-the-art ker-
nel bypass systems: eRPC [30], Demikernel [67], and Cal-
adan [15]. We also compare Junction to two state-of-the-art
cloud isolation systems: Firecracker [1], a micro-VM iso-
lation system, and gVisor [17], a secure container isolation
system that also implements the Linux system call interface
in userspace. Finally, we show performance relative to native
Linux. We made every effort to tune each system for its max-
imum performance, and ensured that performance matched
what is reported in other studies.

Applications. Table 4 characterizes the applications that we
use throughout the evaluation, which include a range of web
servers and various in-memory database and key-value stores.

8.2 Comparison to other kernel bypass systems
Figure 3 shows that Junction delivers performance to un-

modified binaries that is on-par with or better than existing
kernel bypass systems that require modifications to applica-
tions. The set of applications that have been ported to existing
kernel bypass systems is limited and disjoint, making it dif-
ficult to use the same application to evaluate each system.
Instead, we select one of the ported applications that was used
originally to evaluate each kernel bypass system and compare
to an unmodified Linux binary running in Junction and Linux.

Table 1 shows the porting effort required for each of them.
Except for Demikernel, which doesn’t support multiple cores,
we configure each system to use up to 16 cores.
eRPC. We compare against eRPC using the in-memory
database called Masstree [36]. eRPC’s port of Masstree re-
places its included TCP/UDP server with its own wrapper
around the database and a custom wire format. We compare
the performance of eRPC running with RoCE versus Junc-
tion and Linux using standard TCP. We provision 128 client
threads across 8 machines to issue a mixture of 50% GET
and 50% PUT requests to the server (with four outstanding
requests per thread). Because of eRPC’s custom wire proto-
col, we use eRPC’s client to measure eRPC’s performance,
and the Linux binary running in Junction to measure Linux
and Junction. Junction achieves higher throughput (over 21
MOp/s) than eRPC (19.3 MOp/s), both significant improve-
ments over the Linux baseline. We observe that eRPC spends
up to 10% of its CPU time handling futexes while allocating
memory, an overhead that Junction largely eliminates.
Demikernel. We benchmark Demikernel using Redis and its
included redis-benchmark utility. We run the redis-benchmark
client inside Junction to measure throughput of GET and SET
requests over TCP connections. The Linux baseline achieves
260,000 RPS while consuming 1.5 CPU cores (this includes
softirq time). Demikernel improves throughput by about 7%
while using only 1 CPU core. Junction improves through-
put by 248% over Linux, while also using only 1 CPU core.
Junction’s TCP stack is more efficient (e.g., it uses a fast-
path [32]), and we suspect this is the main contributor to its
performance advantage relative to Demikernel in this setting.
Caladan. We use memcached [13] to compare performance
to Caladan [15], with additional detail on tail latency in Fig-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 63

0 2M 4M 6M 8M 10M 12M 14M 16M
Offered Load (Requests/s)

100

102

104

La
te

nc
y

P9
9

(μ
s)

Memcached
Linux (libevent)
Junction (libevent)
Junction (threaded)
Caladan (threaded)

Figure 4: Latency for native memcached binaries (libevent) run-
ning in Linux and Junction, as well as two ported versions that
replace libevent with per-connection threads (threaded) written
against POSIX and Caladan interfaces. Junction can nearly match
the throughput of Caladan in both cases, but the added overheads of
libevent harm latency at higher throughputs.

103

105

La
te

nc
y

P9
9

(μ
s)

Firecracker
Caladan*

Linux
Junction

0 500 1000 1500 2000 2500 3000 3500 4000
Number of applications

0
30
60
90

120

M
em

or
y

Us
ed

(G
B)

Figure 5: Performance and resource consumption while varying
the number of single-threaded Rocket web servers packed into one
machine. Load is fixed at 150K RPS and spread evenly across all
instances. Junction supports up to 3,500 active instances while using
3.33× less memory per instance than Firecracker and keeping tail
latency 35× lower than Linux.

ure 4. This comparison highlights the performance costs of
using unmodified binaries because the two systems share a
user threading library and TCP stack. We found that the while
the native Linux binary in Junction could nearly match the
throughput of Caladan, its tail latency degraded more quickly.
This is because the Caladan version of memcached entirely
removes libevent and epoll(), which were used to mul-
tiplex large numbers of connections across a smaller set of
threads. We performed the same set of modifications to the
Linux binary and evaluated its performance on Junction. The
modified version (threaded) shows that Junction can match
the latency profile of Caladan, suggesting that limiting the
number of threads is important for OSes with high kernel
crossing overheads, but can be detrimental otherwise due
to head-of-line blocking. Thus, an optimal version of mem-
cached for Junction would merely spawn a thread for each
connection. Nevertheless, this result shows that Junction can
offer dramatic improvement for low-latency applications even
without modifications.

8.3 Density
We now demonstrate that Junction can densely pack many

active instances on a machine and deliver low tail latency.
Figure 5 shows an experiment where we provision increasing
numbers of instances of a multi-threaded HTTP server written
in Rust called Rocket. We use a host with 128GB of RAM.
Each instance is provisioned with 8 threads. We offer a total
load of 150,000 RPS to the machine, evenly divided across all
instances. At each instance count, we show the aggregate tail
latency experienced across all instances and the total memory
consumption. We compare Junction to a Linux baseline and
to Firecracker (designed to have a low per-instance memory
footprint while providing an isolated VM environment). We
also show Caladan*, which mixes Junction with Caladan’s
network stack that is not optimized for density; this scales
to only 180 instances. Linux consumes hardly any memory
per instance (<1MB) and can scale far beyond Junction, but
has poor tail latency. Firecracker’s memory overhead is 8.6×
lower than Caladan’s but suffers from even poorer tail latency.
Junction scales to 3,500 instances before running out of mem-
ory, with p99 latency below 350 µs, a 35× improvement over
Linux.

8.4 Compatibility
We demonstrate that Junction achieves broad compatibility

for cloud workloads by benchmarking a suite of HTTP servers
written in several popular languages/frameworks. This col-
lection includes (1) nginx [51], a popular load-balancer and
proxy written in C, (2) Node.js’s built-in web server [40], (3)
a simple web server written in Python [60], (4) Go’s built-in
HTTP package [39], (5) the Rocket framework in Rust [53],
and (6) the Apache Tomcat framework in Java [58]. These
applications cannot be supported by any existing kernel by-
pass system without a large porting effort. We compare them
to native Linux, and to both gVisor and Firecracker. We con-
figure each application to use up to 8 cores, though several
are single-threaded. All are configured to deliver small static
responses (14–600 bytes); nginx is the only one configured
to read its response from a file (stored in a RAM-backed file
system). We use 200 concurrent connections with connection
keep-alives to avoid the cost of additional TCP handshakes.

Figure 6 shows the p99 latency and total CPU utilization
across varying load for each application. For all applications,
Junction provides superior throughput, latency, and CPU ef-
ficiency. Relative to Linux, Junction improves throughput
by 1.62-3.69× and uses 19-65% less CPU when handling
Linux’s peak loads. Junction shows even larger gains against
Firecracker and gVisor.

8.5 Attack Surface
Junction’s use of kernel bypass reduces the host kernel

attack surface relative to existing security-focused library

64 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0
500

1000
1500
2000
2500

La
te

nc
y

P9
9

(μ
s)

nginx (C) Node.js HTTP Python HTTP Go HTTP Rocket (Rust) Tomcat (Java)

0 175 350
0
2
4
6
8

10

CP
U

Us
e

No
. o

f c
or

es

0 40 80 0 125 250 0 450 900 0 275 550 0 300 600

Firecracker gVisor Linux Junction

Offered Load (Thousand Requests/s)
Figure 6: Service response-time and corresponding CPU usage at varying offered loads. Junction offers higher throughput and lower tail
latency while also using fewer cores compared to other systems.

Total Mem.
Threads/

Procs Sync I/O Misc.

Junction 11 5 2 0 4 0
gVisor (Sentry) [19] 64 7 11 2 34 10
gVisor (Gofer) [18] 57 4 11 1 36 5
Drawbridge 36 3 7 7 12 7

Table 5: Comparison of allowed syscalls to the host kernel for
Junction and two other library operating systems.

Unique syscalls Total syscalls (/s) VMEXITs (/s)

Junction 4 9,603 n/a
Firecracker [1] 5 68,162 102,027
gVisor [17] 21 99,879 13,084
Linux 14 34,087 n/a

Table 6: Kernel crossings (per second) when running Rocket for 10s
with an offered load of 10,000 RPS.

OSes. To demonstrate this, Table 5 shows the total number
of syscalls required to run Junction, compared to gVisor and
Drawbridge [46]. Drawbridge is a library OS that provides
applications with a Windows 7 interface (in total over 100,000
API calls) using 36 system calls. gVisor is broken down into
its two components, the Sentry and Gofer; the Sentry imple-
ments much of the system call interface but proxies access to
files through the Gofer to add defense in depth. Because Junc-
tion uses kernel bypass NIC and CPU features to implement
OS functionality, it requires 3.2–7.6× fewer syscalls to run.

Table 6 further demonstrates Junction’s lack of reliance
on the host kernel by showing profiling output from strace
while running an 8-threaded Rocket instance at 10K RPS (af-
ter initialization). We report host kernel interactions through
both system calls and VMExits. 99% of Junction’s syscalls
are to yield_core(), which is called when the application
idles between requests, enabling other applications to run. The
remaining 1% of calls are exclusively allocating and releasing
memory. Linux, gVisor, and Firecracker all rely heavily on

system calls that read from, send to, and block on file descrip-
tors. Firecracker and gVisor interact with a Linux TAP device
and virtio queues, while the Linux instance interacts with
sockets. Both gVisor and Firecracker use ioctl() to interact
with KVM. gVisor also heavily uses futexes and timers.

8.6 Performance Analysis
To better understand Junction’s performance, we evaluated

the impact of several of our design choices and mechanisms.

Performance optimizations. Figure 7 demonstrates how vari-
ous aspects of Junction’s design contribute to its performance.
Both (1) using the Linux TAP driver to send and receive pack-
ets (as gVisor and Firecracker do) and (2) using seccomp
filters to trap and intercept syscalls severely limit throughput
for Junction instances. Per-core kernel bypass queues allow
it to scale to significantly higher rates. Additional optimiza-
tions to enable compatibility with unmodified binaries further
improve performance: both the use of hardware instructions
to support TLS (WRFSBASE) and the optimization to allow
it to clobber floating point state during system calls. These
techniques allow Junction to nearly match the performance
of Caladan (i.e., the same TCP stack without compatibility).

Pinned memory. We quantify the improvements from adopt-
ing shared buffer queues and multi-packet buffers on the mem-
ory footprint of a Junction instance in Figure 8a, which shows
the amount of memory consumed by 8-threaded instances
with buffer pools sized to accommodate peak throughput. En-
abling shared buffer queues shrinks the footprint by 35%,
and enabling multi-packet buffers shrinks the footprint by an
additional 48%, yielding a 33MB footprint per instance.

Scaling core allocation. We evaluate the two techniques
discussed in §5.2 to scale the core allocator in Figure 8b.
This experiment uses the same scenario as Figure 5. Enabling
notifications from the NIC to a centralized queue allows the
scheduler to scale to handle an additional 4× the number of

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 65

Page Cache Sharing Total CPU Utilization
None 65%
+ Sharing Junction Kernel 60%
+ Sharing common libraries 59%
+ Sharing Rocket binary 36%

Table 7: Impact on CPU consumption of varying page cache sharing
strategies for Rocket in Junction with 1500 instances.

0 2 4 6 8 10 12 14 16
Max requests per second (millions)

Baseline (TAP)
+ 1 Kernel bypass queue
+ Patched glibc

+ Per-core queues
+ WRFSBASE
+ FP optimization

Caladan

Figure 7: Contributions of several elements of Junction’s design to
its performance (using memcached).

0 20 40 60 80 100
Memory per instance (MB)

No Buffer Pool Optimizations
+ Shared buffer queues
+ Multi-packet buffers

No Buffer Pool Optimizations
+

(a) Memory optimizations.

0 1000 2000 3000
Max instances

No Scheduler Optimizations
+ NIC Notifications
No Scheduler Optimizations
+
+ Timer Wheel

(b) Scheduler scalability.

Figure 8: Contributions of techniques to improve density (allowing
more instances to be packed on a machine).

instances; the timer wheel scales it by an additional 1.69×.

Impact of page cache sharing We investigate the impact
of Junction’s page cache sharing (unsupported by VMs) in
Table 7 by varying which binaries and dynamically linked
libraries can be deduplicated. This experiment shows that
in extreme case where a large number of identical binaries
are operating at once, allowing page cache sharing results in
a 44% decrease in CPU consumption. This is because data
in instruction caches can be shared across instances, which
suggests that operators that favor statically-linked binaries
may be squandering performance under dense deployments.

9 Discussion

Hardware features. The CPU features Junction relies on are
available on all modern Intel and AMD x86 CPUs. The only
exception is UIPIs, which were recently introduced in Intel’s
Sapphire Rapid CPUs, so their availability is more limited.
On older hardware, Junction falls back to the host kernel
(tgkill() and rt_sigreturn()) for signals. Junction also
relies on features in recent Mellanox NICs (ConnectX-5 and
later) to reduce buffer memory consumption and make polling

scalable, but can still support other NICs with potentially
higher memory use and less scalability.

In the future, Junction could benefit from additional hard-
ware support. For example, Junction could take advantage of
the ability to handle CPU exceptions in userspace without
involving the host kernel, as discussed in §6.1 and below.

Host kernel platform. Building Junction on Linux has many
advantages. However, better security might be achievable
by adopting a clean-slate approach, creating a purpose-built
kernel for Junction’s restricted host kernel interface. Such a
kernel could be extremely minimal and even formally verified,
reducing the chances of an exploit. uKVM provides a monitor
similar to this idea for the Solo5 library OS [64], and we plan
to investigate this for Junction in future work.

Another interesting tradeoff that such a platform could al-
low us to investigate is whether Junction should use Intel’s
VT-x and EPT extensions. An advantage could be that it
would enable Junction to manipulate its page table and handle
CPU exceptions directly, further reducing its reliance on the
host kernel. Indeed, Dune demonstrates that these extensions
can be configured in a way that maintains a process-like envi-
ronment (i.e., not a full VM) [5]. However, this would incur
extra costs when entering and exiting the host kernel.

Performance isolation. Providing performance isolation
across tenants is a challenging and important goal for cloud
providers. Tenants can contend for CPU time, memory,
network bandwidth, and microarchitectural CPU resources
(caches, memory bandwidth, etc.). Junction is in a good po-
sition to handle this because it builds on Caladan, which
already controls multiple forms of microarchitectural CPU
interference [15]. While not in our current prototype, Junc-
tion’s centralized core scheduler can easily implement priority
scheduling and enforce CPU shares, and Linux cgroups can
be used to enforce memory allocation limits. Finally, network
bandwidth allocation can be offloaded to the NIC (§4).

10 Conclusion
This paper presented Junction, a system that retains the

performance benefits of kernel bypass while scaling to thou-
sands of instances and maintaining compatibility with exist-
ing Linux applications. Junction uses kernel bypass hardware
(NIC queues and CPU features) to reduce its reliance on the
host kernel, and it restricts the host kernel interface to enable
efficient resource multiplexing with a minimal attack surface.
It exploits a variety of advanced NIC features and scheduler
optimizations to enable higher density. It also adapts OS sub-
systems to a kernel bypass setting and reduces system call
overheads to maintain compatibility without sacrificing per-
formance. Our evaluation shows that Junction can bring large
benefits to existing applications without modifications, deliv-
ering superior tail latency, throughput, CPU efficiency, and
density relative to state-of-the-art kernel bypass and cloud
isolation systems.

66 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgements
We thank our shepherd Kostis Kaffes, the anonymous re-

viewers, Frans Kaashoek, Robert Morris, and other members
of the MIT PDOS group for their helpful feedback. This work
was funded in part by a Facebook Research Award; a Google
Faculty Award; the DARPA FastNICs program under contract
#HR0011-20-C-0089; the NSF under award CNS-2104398
and CNS-2212099; and VMware.

A UIPI Support
Junction uses UIPIs to support preemptive core allocation,

timeslicing, and realtime POSIX signals between uThreads in
the same instance. UIPIs are a recent Intel CPU feature that
allow IPIs to be directly sent and received in userspace. At the
time of writing, UIPI support is not yet a part of the mainline
Linux Kernel, but Intel has proposed a patchset to add support
for it [38]. Junction’s design (e.g., the assumption that one
kThread runs on a core at a time) unlocks simplifications to
host kernel support for UIPI that diverge from this patchset.
Therefore, we implemented UIPI support from scratch as a
small Linux Kernel module (§7) that is integrated with the
central core scheduler.
Hardware interface. UIPIs build upon Intel’s existing posted
interrupt hardware, which was used previously to deliver in-
terrupts directly into VMs without involving the host ker-
nel. UIPIs instead allow IPIs to be sent between normal OS
threads (kThreads in Junction) without going through the
host kernel. Each interrupt receiver (i.e., a thread or vCPU)
is associated with a posted interrupt descriptor in memory,
which serves as a link between the interrupt sender and re-
ceiver. When the receiver is scheduled on a core, the host
kernel configures the core with several pieces of information:
(1) the address of the receiver’s descriptor, (2) a physical
interrupt vector to use for posted interrupts, and (3) the han-
dler (or guest interrupt vector) that should be invoked when
a posted interrupt is received. At the same time, the host ker-
nel writes information about the core into the descriptor (i.e.,
its APIC ID and the physical interrupt vector). This allows
a sender to send interrupts by only referencing a receiver’s
descriptor, which can be inspected by the CPU at send time
to find up-to-date information about which core is running
the receiver.

The ability to send UIPIs is restricted by target tables man-
aged by the host kernel, which enumerate the addresses of
descriptors that a thread is allowed to send to. To send a UIPI,
a program invokes the SENDUIPI instruction with an operand
that indexes this table. When this instruction is invoked, hard-
ware writes a pending interrupt flag to the target descriptor.
It then inspects the descriptor to determine whether or not to
send an IPI—if another interrupt is pending or the receiver
is not running, it skips sending an IPI. Otherwise, it uses the
information in the descriptor to deliver an IPI to the receiver’s
core. When a core receives an interrupt on its posted interrupt

vector, it inspects its current descriptor for pending interrupts
and delivers them to the receiver.

UIPI Driver. UIPI support for Junction is managed by its
UIPI kernel module. The kernel module receives notifications
from the core scheduling kernel module whenever a core
is reallocated, so it can appropriately program the core for
the next running kThread. Junction does not need to send
IPIs to inactive Junction kthreads, so we opt to use a single
interrupt descriptor for each core, instead of using one for
each kThread. Each Junction instance is provisioned with its
own target table for SENDUIPI with one entry for each core’s
descriptor. Rows that correspond to cores actively allocated
to this Junction instance are marked as valid, and all other
rows are invalidated. The core scheduler’s target table gives
it permission to interrupt any core on the machine so it can
use SENDUIPI when it needs to send an IPI. To correctly
implement support for UIPIs, the driver must interpose on
all context switches and system call entry and exit points for
Junction kthreads. It does so by registering itself for callbacks
through the Linux Kernel’s lightweight tracepoint system.

How Junction uses UIPIs. Both the scheduler and the Junc-
tion kernel can send UIPIs to kick cores that are running
kThreads and force them into the Junction kernel’s handler.
The handler determines the reason for the IPI and performs
the appropriate action (e.g., rescheduling uThreads, scanning
network queues, or yielding the core).

Junction’s core scheduler uses IPIs to notify kThreads when
their core is being revoked or when a uThread running on the
core has exceeded its timeslice. This works well when the
scheduler needs to send just a single IPI at a time. However,
because the scheduler implements microsecond-scale schedul-
ing, it often needs to send multiple IPIs. While the interrupt
controller supports IPI multicasting, a feature that reduces
the cost of sending multiple IPIs, there is no instruction that
exposes this functionality to userspace.

Our workaround is to take advantage of the fact that any
interrupt sent on a core’s posted interrupt vector can trigger
user interrupt handlers on the receiving side. We mapped
the interrupt descriptors for each core into the scheduler’s
memory so it can directly post the interrupt information, and
exposed a custom system call through the UIPI kernel module
that sends a multicast interrupt on the posted interrupt vector
(we use the same vector on all cores). Upon receipt of the
interrupt, hardware observes the interrupt in the descriptor
and transfers control to the userspace interrupt handler. This
approach still requires the scheduler to perform a system
call, but this cost is amortized across multiple interrupts. If
necessary, the APIC could be exposed directly to the scheduler
in the future since it is a trusted component. The receiver side
still benefits because it avoids interacting with the kernel.

Register saving. uThreads that are interrupted by UIPIs must
save their registers as well as extended CPU state, which in-
cludes all vector registers and can total many kilobytes. x86

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 67

provides an instruction pair, XSAVE and XRSTOR, that can be
used in usermode to save and restore extended CPU states. It
also provides two variants of XSAVE that aim to reduce over-
head. XSAVEOPT avoids saving states that were not modified
since the previous XRSTOR, while XSAVEC reduces memory
fragmentation by saving to a compacted memory layout. Both
instructions save only active states. Intel warns that XSAVEOPT
is not recommended for user applications, because it is pos-
sible for the processor to mistakenly correlate save/restore
pairs between different applications [26]. We invested some
effort to ensure that XSAVEOPT was only used when it was
paired with a correct XRSTOR, however, we found that XSAVEC
was just as fast as XSAVEOPT, so Junction uses this instruction
when saving extended states.

Interactions with system calls. POSIX signals delivered
during a blocking interruptible system call should cause the
system call to return immediately with an error, so that sig-
nal handlers can run without delay. Junction must support
this at two levels. First, system calls that block inside the
Junction kernel (e.g., blocking network socket reads) must
be unblocked by signals. Each uThread in Junction has an
atomic flag that is used to coordinate blocking with wake-
ups from signal senders. Second, a uProc system call that
results in a host kernel system call (e.g., mmap()) must also
be unblocked when a signal is sent. Junction’s UIPI kernel
module handles this by redirecting the local core’s posted
interrupt vector whenever a Junction kThread enters a Linux
system call. This causes future interrupts on this vector (i.e.,
those sent by SENDUIPI or multicast) to be delivered to the
kernel module. Because the centralized core scheduler assigns
kThreads to cores with exclusive grants, the kernel module is
able to easily locate and wake up the blocked kThread.

Evaluation. We examined the impact of UIPIs on core al-
location, timeslicing, and inter-thread signalling. We found
that it only marginally improved latency and efficiency when
replacing Linux signals for preempting kThreads to reallocate
cores. We also have yet to find any real-world applications that
use signals frequently enough to benefit from the speedups
of UIPIs. We did observe, however, a significant reduction
in overhead for Junction’s uThread timeslicing. In Figure 9,
we measure this overhead for a range of scheduler quantums
with UIPIs and Linux signals. We observe that UIPIs reduce
timeslicing overhead by an average of 2.35×. In practice,
this unlocks the ability to timeslice uThreads at much finer
granularity, which is beneficial for reining in the tail latency
of microsecond-scale workloads with high service time dis-
persion [9, 27, 29].

B Buffer Management
Keeping the buffer memory footprint of a kernel bypass

application low is critical for density. To address this, Junction
leverages two NIC hardware features simultaneously—shared
buffer queues and multi-packet receive buffers.

0 20 40 60 80 100 120 140
Preemption Interval (μs)

0

5

10

15

20

25

30

W
or

kl
oa

d
slo

wd
ow

n
(%

)

UIPIs
Linux signals

Figure 9: Comparison of preemption overheads for UIPIs versus
Linux signals for a synthetic workload performing square root com-
putations. UIPIs on average reduce slowdowns by 2.35×.

Using a shared buffer queue with per-core receive queues
introduces the need to coordinate across cores. Posting buffers
to the shared buffer queue involves two steps: writing the
buffer address into an available descriptor in the queue, and
advancing the index pointer forward to notify the NIC that
the descriptor is ready. When a core receives a packet on
its receive queue, it can immediately refill the correspond-
ing descriptor in the shared buffer queue with a new buffer.
However, it must wait to update the index pointer because the
preceding buffers may have not yet been received by other
cores. Therefore, if a core is slow to poll its receive queue, it
could stall the entire buffer posting process.

Using multi-packet buffers adds additional complexity,
since posted contiguous buffers are split into many smaller
packets and distributed to multiple cores. In addition to coor-
dinating updates to the index pointer, cores must coordinate
(A) when to refill an individual descriptor, which cannot hap-
pen until all of its individual packets are delivered; and (B)
when to mark a buffer as eligible to be reposted, which can-
not happen until packet processing has freed each individual
packet in that buffer.

Prior work on ShRing also explored using these hardware
features, but for a different goal of optimizing DDIO cache us-
age [45]. The authors argued for hardware changes to enable
efficient coordination. They proposed out-of-order posting
to shared buffer queues, to prevent a busy core from delay-
ing freeing slots. Instead, other cores can continue to supply
buffers to the NIC without waiting. This change is coupled
with a change to reduce the high cost of reference counting
buffers. Their solution is for the hardware to batch multiple
packets into a single buffer, but not deliver multiple packets
within one buffer to multiple cores. Instead, a buffer becomes
associated with a core when the first packet is delivered, and
only future deliveries to that core can use the buffer.

To the contrary, Junction shows that low coordination over-
head can be achieved with existing hardware (i.e., without
these changes). First, Junction relies on both UIPIs and work

68 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

stealing across kThread receive queues to ensure that pro-
cessing delays cannot starve the shared buffer queue. Second,
Junction’s per-core reference counting reduces synchroniza-
tion overhead by allowing kThreads to update reference coun-
ters without frequently modifying shared cache lines.

When a kThread receives a packet, it increments a core-
local counter corresponding to the packet’s descriptor by the
number of bytes consumed. Once the sum of the per-core
counters is equal to the full size of the buffer, no further data
can be written, so it is safe to replenish the slot with a new
buffer. Similarly, after a packet is dequeued from the NIC, it
undergoes protocol processing and is delivered to the appli-
cation. Eventually, a core frees a packet by incrementing its
local counter corresponding to the buffer backing the packet.
Once all the packets in a buffer are free, the buffer can be
reused. The scheduler core monitors the number of posted
buffers and sends a notification over shared memory when
the queue needs to be refilled. This notification triggers a
high-priority refill thread that is responsible for managing
the shared buffer queue, which collects the reference counter
sums and refills the queue. This thread’s logic is shown in
algorithm 1.

C Additional Benchmarks

C.1 Threading & Networking
In this section, we evaluate the performance of Junction’s

threading and networking primitives.

Threading microbenchmarks. Figure 10a shows a set of
microbenchmarks that measure the performance of several
common threading operations. We use the same binary for
each system except Caladan, which required a custom im-
plementation due to its lack of compatibility. Each operation
is performed in a loop for 1,000,000 iterations to determine
the time per operation. The GetPID benchmark measures the
baseline cost of performing a syscall (getpid()). In Junc-
tion, syscalls are replaced with function calls, resulting in low
overheads (≈ 10 ns). Linux, Firecracker, and gVisor pay a
penalty for switching between user and kernel mode, while
gVisor pays additional penalties for its system call intercep-
tion techniques.

Yield and SpawnJoin measure overheads of the threading
subsystems. Relative to Caladan, Junction can context switch
between threads nearly as fast, but pays additional costs for
thread creation and teardown because of POSIX compatibility
and support for TLS—each thread must allocate and initialize
thread local variables when created. CondVar and Pipe mea-
sure the costs of synchronizing two threads using condition
variables and pipes; the Poll benchmark does the same but
uses poll() on non-blocking pipes. In most cases, Junction
fares at least an order of magnitude better than the systems
that rely on kernel crossings. Caladan’s performance on the
CondVar benchmark is slightly better than Junction’s in part

Algorithm 1: Refill Pool Algorithm

1 Function RefillPool():
2 // Refill free slots in the shared queue
3 while true do
4 index← CompletedBufs mod |RQ|
5 cnt← 0
6 foreach cpu do
7 cnt += SlotCompletions[cpu][index]
8 end
9 if cnt = PKTS_PER_BUF then

10 ResetSlotRefs(index)
11 BusyBufs.append(SharedQ[index])
12 SharedQ[index]← FreeBufs.pop()
13 CompletedBufs += 1
14 else
15 break
16 end
17 end
18 // Find free buffers
19 foreach buf in BusyBufs do
20 index← index_of(buf)
21 cnt← 0
22 foreach cpu do
23 cnt += BufCompletions[cpu][index]
24 end
25 if cnt = PKTS_PER_BUF then
26 ResetBufRef(index)
27 FreeBufs.push(buf)
28 BusyBufs.erase(buf)
29 end
30 end

due to its ability to inline synchronization functions (while in
Junction these calls must traverse the trampoline page).
PARSEC. We now show how these threading primitives trans-
late to Junction’s end-to-end performance in the PARSEC
benchmark suite [7], which consists of a set of compute-bound
applications that exhibit high degrees of parallelism with vary-
ing synchronization strategies. Figure 11 shows the time taken
to execute each PARSEC benchmark relative to Linux. As
expected, due to the low overall frequency of system calls,
Junction, Firecracker, and gVisor achieve mostly comparable
performance to Linux. However, in benchmarks where there
is heavier thread synchronization, Junction outperforms Fire-
cracker and gVisor because of its better load balancing and
more efficient system calls.
TCP Microbenchmarks. We evaluate the performance of
Junction’s kernel bypass networking and TCP/IP stack using
the standard netperf benchmark (TCP-Stream and TCP-RR).
For each experiment, we use a single flow and configure each
system with a single thread (but do not restrict SoftIRQ pro-
cessing on other cores). We use the same binary for every
system but Caladan, for which we wrote a compatible imple-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 69

GetPID ∗ Yield Spawn
Join

CondVar
PingPong

Pipe ∗ Poll ∗

0.01

0.1

1

10

100

Ti
m

e
(μ

s)

(∗ not supported by Caladan)

Caladan
Junction

Firecracker
gVisor

Linux

(a) Thread benchmark.

TCP-Stream
0

50

100

150

Th
ro

ug
hp

ut
(G

bp
s)

TCP-RR
0

25

50

75

100
TX

 R
at

e
(1

00
0

TX
/s

)

(b) Networking benchmark.

Figure 10: Performance comparison with threading and network-
ing microbenchmarks. On most threading benchmarks, Junction
improves performance nearly 10× relative to non-kernel bypass
systems. Junction is also able to to sustain TCP throughputs of up
to 146Gbps with a single flow on a single core, a 2.2× improve-
ment over Linux. Junction’s low overhead network stack enables it
to achieve high transaction rates (100,000 messages per second), a
3.2–6.0× speedup over Firecracker and gVisor.

Bla
cks
cho

les

Bo
dy
tra
ck

Ca
nn
ea
l

De
du
p

Fac
esi
m

Fer
ret

Flu
ida
nim

ate

Fre
qm
ine

Str
ea
mc
lus
ter

Sw
ap
tio
ns Vip

s
X2
64

0.00

0.25

0.50

0.75

1.00

1.25

Sp
ee

du
p

Junction gVisor Firecracker

Figure 11: PARSEC benchmark speedup, normalized to Linux. Junc-
tion is able to offer comparable performance to Linux, while other
systems perform worse in situations with heavier synchronization.

mentation. This benchmark runs between two machines that
are connected back-to-back with a 200GbE link.

The TCP-Stream benchmark measures data transfer rates.
Figure 10b shows that Junction and Caladan are able to
achieve 146 and 154 Gbps respectively, greater than 2.2× the
performance of the next best system (Linux). Junction’s im-
provements are even more pronounced relative to Firecracker
and gVisor, improving throughput 5.4–7.1×.

TCP-RR benchmarks the request/response rate which is
determined by the round trip latency between two TCP stacks.
Both Junction and Caladan achieve close to 100,000 transac-
tions per second, indicating a round trip time of 10 µs. Linux
adds marginal overhead with round trip times of 11 µs. Fire-
cracker and gVisor, however, have 32 µs and 60 µs latencies
respectively. They both use TAP devices for networking, re-

0

5

10

La
te

nc
y

P5
0

(m
s) containerd

Junction

0 2K 4K 6K 8K 10K 12K
Offered Load (Requests/s)

0

5

10

La
te

nc
y

P9
9

(m
s)

Figure 12: Benefits of using Junction in an end-to-end experiment
with the serverless framework faasd. Accelerating each component
in the system using Junction leads to compounding benefits for tail
latency and throughput, with 3.5× lower tail latency and 10× higher
total system throughput.

sulting in additional scheduling and processing hops on top
of Linux.

C.2 FaaS Benchmark

We also evaluate the end-to-end performance of Junction
with a cloud framework to study the impact of adopting it
across a distributed system instead of just one application. We
use faasd [11], an open source serverless orchestration frame-
work based on OpenFaaS [41]. faasd uses Linux containers
to sandbox untrusted user applications, deployed by contain-
erd [8]. It includes two orchestration services written in Go:
a front-end load balancer and a per-host provider that com-
municates with containerd. To demonstrate the performance
benefits of Junction, we replace containerd with junctiond, a
C++ component that manages local instances of Junction. We
also run the two orchestration services inside Junction. We
evaluate the setup using invocations of a serverless function
from vSwarm [59,63] that encrypt a 600 byte input with AES.
We do not evaluate cold-starts here, but we separately profiled
the startup costs for a single-threaded Junction instance and
found that Junction takes 3.4ms to initialize. These exper-
iments used two machines with 10 core Xeon 4114 CPUs
running at 2.2GHz, 48GB of RAM, and 100GbE NICs.

Figure 12 shows the median and tail latency across varying
request rates offered via the front-end load balancer. Junction
can sustain up to 10× more throughput while lowering the
latency by ∼ 2× at the median and ∼ 3.5× at the tail. This
reflects the compounding end-to-end benefit of using Junction
across multiple components running in separate instances.
More discussion of the faasd architecture and this experiment
are available in [54].

References

[1] Alexandru Agache, Marc Brooker, Andreea Florescu,
Alexandra Iordache, Anthony Liguori, Rolf Neugebauer,
Phil Piwonka, and Diana-Maria Popa. Firecracker:
Lightweight Virtualization for Serverless Applications.
In NSDI, 2020.

70 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[2] Amazon Web Services. The Security Design of the
AWS Nitro System: AWS Whitepaper. Technical report,
November 2022.

[3] Anjali, Tyler Caraza-Harter, and Michael M. Swift.
Blending Containers and Virtual Machines: A Study
of Firecracker and GVisor. In VEE, 2020.

[4] Jonathan Behrens, Adam Belay, and M. Frans Kaashoek.
Performance evolution of mitigating transient execution
attacks. In EuroSys, 2022.

[5] Adam Belay, Andrea Bittau, Ali José Mashtizadeh,
David Terei, David Mazières, and Christos Kozyrakis.
Dune: Safe User-level Access to Privileged CPU Fea-
tures. In OSDI, 2012.

[6] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In OSDI, 2014.

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,
and Kai Li. The PARSEC Benchmark Suite: Characteri-
zation and Architectural Implications. In PACT, 2008.

[8] containerd. containerd overview, 2023.

[9] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich,
Marios Kogias, Boon Thau Loo, Linh Thi Xuan Phan,
and Irene Zhang. When Idling is Ideal: Optimizing Tail-
Latency for Heavy-Tailed Datacenter Workloads with
PerséPhone. In SOSP, 2021.

[10] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exoker-
nel: An Operating System Architecture for Application-
Level Resource Management. In SOSP, 1995.

[11] faasd. A lightweight & portable FaaS engine, 2023.

[12] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg.
Azure Accelerated Networking: SmartNICs in the Pub-
lic Cloud. In NSDI, 2018.

[13] Brad Fitzpatrick. Distributed caching with memcached.
Linux journal, 2004.

[14] Linux Foundation. Data Plane Development Kit
(DPDK), 2015.

[15] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating Interference at Mi-
crosecond Timescales. In OSDI, 2020.

[16] Alexander Fuerst, Stanko Novaković, Íñigo Goiri, Go-
har Irfan Chaudhry, Prateek Sharma, Kapil Arya, Kevin
Broas, Eugene Bak, Mehmet Iyigun, and Ricardo Bian-
chini. Memory-Harvesting VMs in Cloud Platforms. In
ASPLOS, 2022.

[17] Google. gVisor Documentation, 2019.

[18] Google. gVisor Gofer Syscalls, 2022.

[19] Google. gVisor Sentry Syscalls, 2023.

[20] Boncheol Gu, Andre S Yoon, Duck-Ho Bae, Insoon Jo,
Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moon-
sang Kwon, Chanho Yoon, Sangyeun Cho, et al. Biscuit:
A framework for near-data processing of big data work-
loads. In ISCA, 2016.

[21] Sangjin Han, Scott Marshall, Byung-Gon Chun, and
Sylvia Ratnasamy. MegaPipe: A New Programming
Interface for Scalable Network I/O. In OSDI, 2012.

[22] Steven Hand, Andrew Warfield, Keir Fraser, Evangelos
Kotsovinos, and Daniel J Magenheimer. Are Virtual
Machine Monitors Microkernels Done Right? In HotOS,
2005.

[23] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule,
Ofir Weisse, Barret Rhoden, Josh Don, Luigi Rizzo,
Oleg Rombakh, Paul Turner, and Christos Kozyrakis.
GhOSt: Fast & Flexible User-Space Delegation of Linux
Scheduling. In SOSP, 2021.

[24] Takayuki Imada. Mirageos unikernel with network
acceleration for iot cloud environments. In ICCBDC,
2018.

[25] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual - Volume 2B, December
2022.

[26] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual - Volume 1, June 2023.

[27] Rishabh Iyer, Musa Unal, Marios Kogias, and George
Candea. Achieving Microsecond-Scale Tail Latency
Efficiently with Approximate Optimal Scheduling. In
SOSP, SOSP ’23, New York, NY, USA, 2023.

[28] Eun Young Jeong, Shinae Woo, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. MTCP: A Highly Scalable User-Level
TCP Stack for Multicore Systems. In NSDI, 2014.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 71

[29] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive Scheduling for µSecond-Scale
Tail Latency. In NSDI, 2019.

[30] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Datacenter RPCs Can Be General and Fast. In NSDI,
2019.

[31] Svilen Kanev, Juan Pablo Darago, Kim M. Hazelwood,
Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon
Wei, and David M. Brooks. Profiling a warehouse-scale
computer. In ISCA, 2015.

[32] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr. Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP Acceleration as an OS
Service. In EuroSys, 2019.

[33] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Na-
dav Har’El, Don Marti, and Vlad Zolotarov. OSv: Opti-
mizing the Operating System for Virtual Machines. In
USENIX ATC, 2014.

[34] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre,
Sharan Santhanam, Alexander Jung, Gaulthier Gain,
Cyril Soldani, Costin Lupu, Ştefan Teodorescu, Costi
Răducanu, et al. Unikraft: fast, specialized unikernels
the easy way. In EuroSys, 2021.

[35] H.J. Lu, Michael Matz, Jan Hubicka, Andreas Jaeger,
and Mark Mitchell. System V Application Binary In-
terface. AMD64 Architecture Processor Supplement,
2018.

[36] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache craftiness for fast multicore key-value storage. In
EuroSys, 2012.

[37] Ilias Marinos, Robert N.M. Watson, and Mark Hand-
ley. Network Stack Specialization for Performance. In
SIGCOMM, 2014.

[38] Sohil Mehta. x86 User Interrupts support, 2021.
Available at https://lore.kernel.org/lkml/
20210913200132.3396598-1-sohil.mehta@intel.
com/.

[39] Jeff Meyerson. The Go programming language. IEEE
software, 31(5):104–104, 2014.

[40] Node.js. Node.js, 2023.

[41] OpenFaaS. Serverless functions made simple, 2023.

[42] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achiev-
ing high cpu efficiency for latency-sensitive datacenter
workloads. In NSDI, 2019.

[43] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego Ongaro,
Seo Jin Park, Henry Qin, Mendel Rosenblum, Stephen
Rumble, Ryan Stutsman, and Stephen Yang. The ram-
cloud storage system. ACM Trans. Comput. Syst., 33(3),
aug 2015.

[44] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The Operating System Is
the Control Plane. In OSDI, 2015.

[45] Boris Pismenny, Adam Morrison, and Dan Tsafrir.
ShRing: Networking with Shared Receive Rings. In
OSDI, 2023.

[46] Donald E Porter, Silas Boyd-Wickizer, Jon Howell,
Reuben Olinsky, and Galen C Hunt. Rethinking the
library OS from the top down. In ASPLOS, 2011.

[47] George Prekas, Marios Kogias, and Edouard Bugnion.
ZygOS: Achieving Low Tail Latency for Microsecond-
scale Networked Tasks. In SOSP, 2017.

[48] George Prekas, Mia Primorac, Adam Belay, Christos
Kozyrakis, and Edouard Bugnion. Energy proportional-
ity and workload consolidation for latency-critical appli-
cations. In Proceedings of the Sixth ACM Symposium on
Cloud Computing, SoCC ’15, page 342–355, New York,
NY, USA, 2015. Association for Computing Machinery.

[49] Ron Pressler. On the performance of user-mode threads
and coroutines, 8 2020. Accessed: September 2023.

[50] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and
John Ousterhout. Arachne: Core-Aware Thread Man-
agement. In OSDI, 2018.

[51] Will Reese. Nginx: the high-performance web server
and reverse proxy. Linux Journal, 2008.

[52] Luigi Rizzo. netmap: a novel framework for fast packet
I/O. In USENIX Security, 2012.

[53] Rocket. Rocket, 2016.

[54] Enrique Saurez, Joshua Fried, Gohar Irfan Chaudhry,
Esha Choukse, Íñigo Goiri, Sameh Elnikety, Adam Be-
lay, and Rodrigo Fonseca. Junctiond: Extending FaaS
Runtimes with Kernel-Bypass, March 2024.

[55] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-
Malek, and John Wilkes. Omega: Flexible, scalable
schedulers for large compute clusters. In EuroSys, 2013.

72 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://lore.kernel.org/lkml/20210913200132.3396598-1-sohil.mehta@intel.com/
https://lore.kernel.org/lkml/20210913200132.3396598-1-sohil.mehta@intel.com/
https://lore.kernel.org/lkml/20210913200132.3396598-1-sohil.mehta@intel.com/

[56] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bag-
dasaryan, Christina Delimitrou, Robbert Van Renesse,
and Hakim Weatherspoon. X-containers: Breaking
down barriers to improve performance and isolation
of cloud-native containers. In ASPLOS, 2019.

[57] Mike Stemle. The State of Serverless, 2023.

[58] Tomcat. Tomcat, 1999.

[59] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, and
Edouard Bugnionand Boris Grot. Benchmarking, anal-
ysis, and optimization of serverless function snapshots.
In ASPLOS, 2021.

[60] Guido Van Rossum and Fred L. Drake. Python 3 Refer-
ence Manual. CreateSpace, Scotts Valley, CA, 2009.

[61] George Varghese and Anthony Lauck. Hashed and hi-
erarchical timing wheels: efficient data structures for
implementing a timer facility. IEEE/ACM transactions
on networking, 5(6):824–834, 1997.

[62] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
Scale Cluster Management at Google with Borg. In
EuroSys, 2015.

[63] vSwarm. Serverless benchmarking suite, 2023.

[64] Dan Williams and Ricardo Koller. Unikernel Moni-
tors: Extending Minimalism Outside of the Box. In
HotCloud, 2016.

[65] Dan Williams, Ricardo Koller, and Brandon Lum. Say
goodbye to virtualization for a safer cloud. In HotCloud,
2018.

[66] Kenichi Yasukata, Hajime Tazaki, Pierre-Louis Aublin,
and Kenta Ishiguro. zpoline: a system call hook mecha-
nism based on binary rewriting. In USENIX ATC, 2023.

[67] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk
Olynyk, Jacob Nelson, Omar S. Navarro Leija, Ash-
lie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay
Jayakar, Pedro Henrique Penna, Max Demoulin, Piali
Choudhury, and Anirudh Badam. The Demikernel Data-
path OS Architecture for Microsecond-Scale Datacenter
Systems. In SOSP, 2021.

[68] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal,
Vrigo Gokhale, and John Wilkes. CPI2: CPU perfor-
mance isolation for shared compute clusters. In EuroSys,
2013.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 73

Sifter: An Inversion-Free and Large-Capacity Programmable Packet Scheduler

Peixuan Gao
New York University

Anthony Dalleggio
New York University

Jiajin Liu
New York University

Chen Peng
New York University

Yang Xu *

Fudan University
H. Jonathan Chao

New York University

Abstract
Packet schedulers play a crucial role in determining the or-
der in which packets are served. They achieve this by as-
signing a rank to each packet and sorting them based on
these ranks. However, when dealing with a large number
of flows at high packet rates, sorting functions can become
extremely complex and time-consuming. To address this
issue, fast-approximating packet schedulers have been pro-
posed, but they come with the risk of producing schedul-
ing errors, or packet inversions, which can lead to unde-
sirable consequences. We present Sifter, a programmable
packet scheduler that offers high accuracy and large capac-
ity while ensuring inversion-free operation. Sifter employs
a unique sorting technique called “Sift Sorting” to coarsely
sort packets with larger ranks into buckets, while accurately
and finely sorting those with smaller ranks using a small
Push-In-First-Out (PIFO) queue in parallel. The sorting pro-
cess takes advantage of the “Speed-up Factor”, which is a
function of the memory bandwidth to output link bandwidth
ratio, to achieve Sift Sorting and ensure accurate scheduling
with low resource consumption. Sifter combines the ben-
efits of PIFO’s accuracy and FIFO-based schedulers’ large
capacity, resulting in guaranteed delivery of packets in an
accurate scheduling order. Our simulation results demon-
strate Sifter’s efficiency in achieving inversion-free schedul-
ing, while the FPGA-based hardware prototype validates that
Sifter supports a throughput of 100Gbps without packet in-
version errors.

1 Introduction
The Programmable Data Plane has seen increased interest in
both academia and industry to enhance the flexibility and the
programmability of ultra-high-speed networks without com-
promising the throughput and latency performance [9] [27]
[56] [53] [55] [23]. The academic and industry communities
have built a sophisticated ecosystem for the programmable
data plane including the P4 programming language (P4) [8],
cross-platform high-level languages and their compilers [42]
[38], programmable switch devices [11], [17], and a variety
of re-configurable network chip architectures [18] [10].

Recent research has focused on enhancing the pro-

*Corresponding author

grammability of packet scheduling in the data plane. Various
packet scheduling disciplines sort packets based on a “rank”
value assigned by the scheduler to represent their transmis-
sion order. [48] [49] [35].

However, implementing a priority queue that sorts packets
in an ultra-high-speed data plane is challenging. The sched-
uler needs to serve each packet within a very limited time
budget. For a 64-byte packet on a 100 Gbps Ethernet link, the
packet processing time is less than 7 ns. Packet schedulers
such as Sequencer [13] [14] [15] and PIFO[48] [49] manage
to sort packets with ultra-low time complexity by sacrific-
ing buffer capacity. To accommodate larger buffer sizes and
reduce the implementation complexity, the community pro-
posed a number of approximating packet schedulers such as
PCQ [45], SP-PIFO [2], Gearbox [24] and AIFO [54] that
trade-off scheduling accuracy for simplicity and scalability.

Scheduling errors, also known as packet inversions [2],
are introduced by approximating packet schedulers and may
impact network performance. These packet inversions cause
throughput fluctuation, affect fairness, introduce delay, and
slow down the flow completion time (FCT). Failure to rig-
orously adhere to the scheduling order of bandwidth alloca-
tion algorithms can negatively affect performance and fair-
ness, which are essential for network isolation [31] [6] [46]
[30] [41] [50]. Moreover, emerging applications, such as
self-driving vehicles and remote surgery, exhibit a high sen-
sitivity to packet inversions. As a result, there is a press-
ing requirement for precise packet scheduling to maintains
strict packet order, not only for delay-sensitive applications
but also for algorithms that react adversely to packet inver-
sions.

Accuracy and scalability of the scheduler are often con-
flicting requirements. We want a scheduler that can accu-
rately serve packets by the strict order of their ranks (e.g.,
PIFO) and also support a large buffer size with low hardware
resource consumption.

We present Sifter, an accurate and large-capacity pro-
grammable packet scheduler that operates free of packet in-
versions and supports a large buffer size with low imple-
mentation overhead. Sifter sorts packets by “Sift Sorting”,
a sorting method consisting of two parallel processes. Sifter
sorts packets with larger ranks coarsely into a FIFO-based
“Rotating Calendar Queue” (RCQ) and packets with smaller

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 75

ranks accurately using a mini PIFO. Sifter is intended for
next-generation programmable switches and smart NICs. By
taking advantage of the “Speed-up Factor” provided by the
hardware architecture, Sifter combines the advantages of ac-
curate scheduling of a PIFO with the large capacity provided
by FIFO-based approximate schedulers. Based on our sim-
ulation results and our hardware prototype, Sifter eliminates
packet inversions1 while supporting a large buffer capacity
and low implementation complexity. The contributions of
this paper are summarized as follows:

• Analysis of the impact of packet inversions on network
performance. Starting from the different scheduling goals
of packet scheduling algorithms, this paper discusses the
impact of packet inversion errors on network performance.
Various scheduling algorithms have different sensitivities
to packet inversions, and delay-guarantee scheduling algo-
rithms are the most sensitive to the accuracy of the packet
scheduling order.

• Design of an accurate and large-capacity packet sched-
uler with inversion-free operation. This paper presents
Sifter, an accurate and large-capacity packet scheduler
that operates free of packet inversions without sacrificing
scalability or increasing implementation complexity using
“Sift Sorting”. By exploiting the “Speed-up Factor”, Sifter
combines the accuracy of PIFO and the large capacity of
RCQ, a FIFO-based scheduler.

• Definition of the conditions for achieving inversion-free
operation. This paper presents a quantitative analysis to
determine the conditions under which Sifter guarantees
operation with no packet inversions.

• Comprehensive simulation of Sifter on NS3 and exper-
iments on an FPGA-based Sifter prototype. We imple-
mented Sifter in the NS3 simulator and in VHDL on an
AMD/Xilinx Alveo U250 FPGA card [4] with a mid-speed
grade XCVU13P FPGA. In the NS3 [37] simulator, we
conduct comprehensive evaluations of Sifter using multi-
ple metrics, demonstrating that it provides packet schedul-
ing performance that is close to the ideal PIFO. Our hard-
ware testbed results show the FPGA-based Sifter prototype
operates at 322 MHz and achieves a line rate of 100 Gbps
for packets larger than 370 bytes2 without any inversions.

The rest of the paper is organized as follows. Section 2
provides the background and motivation of our work. Sec-
tion 3 presents the detailed architecture, scheduling pro-
cesses of Sifter and the conditions for inversion-free schedul-
ing. Section 4 provides a detailed Sifter prototype implemen-
tation and Section 5 presents the packet-based NS3 and the
hardware testbed evaluations. We discuss related works in
Section 6 and conclude the paper in Section 7.

1See Section 3.5 for the conditions for inversion-free scheduling.
2See Appendix H for more details.

2 Background and Motivation

2.1 Programmable Packet Scheduling
The concept of programmable packet scheduling is to en-
able network administrators to schedule packets using dif-
ferent packet scheduling algorithms. According to previ-
ous literature [48] [49] [35], different packet scheduling al-
gorithms determine the packet scheduling order to achieve
certain goals, such as max-min fairness in bandwidth allo-
cation [20] [39] [40] [25] [26] [57], minimizing FCT [43]
[3] as well as delay guarantee [34] [35]. When a gener-
alized scheduler serves packets in ascending order of their
rank values, it effectively implements the scheduling order
dictated by a specific scheduling algorithm. Consequently,
the abstraction of programmable packet scheduling involves
two key steps: (1) establishing the sequence for scheduling
each packet (Rank Calculation) and (2) enforcing this packet
scheduling sequence (Rank Sorting).

The calculation of packet rank can be programmed at the
end-hosts before the packet is sent out, or even in the pro-
grammable ingress and egress switch pipeline [9][8]. When
the packet arrives at the scheduler, the switch needs to en-
force the scheduling order by sorting the packets by their
rank values. Based on this theory, multiple works have im-
plemented generic programmable packet schedulers [45] [2]
[24] [54].

2.2 Packet Inversions
To deliver a correct packet scheduling order, an ideal packet
scheduler needs to serve packets strictly according to the in-
creasing order of the rank of each packet. However, due
to limited packet processing time and implementation com-
plexity, many generic packet scheduler designs cannot serve
packets in such an ideal order and instead, schedule pack-
ets in an approximate increasing order, which may introduce
packet inversions. We formally define packet inversions3.

Packet Inversions: When a packet with rank r departs
from the scheduler, there exists packet(s) with a smaller rank
r′ (where smaller rank has higher priority, r′ < r) in the
scheduler.

2.2.1 Impact of Packet Inversions
Packet inversions have various impacts on different packet
scheduling algorithms according to their logic and goals.

Fairness The impact of packet inversions on fairness-
based scheduling algorithms varies from fluctuation in short-
term bandwidth allocation to fairness impairment. Most
of the fairness-based algorithms [20] [39] [40] [25] [47]
[26] [57] are derived from GPS, which serves flows based
on round-robin logic by assigning a departure time to each
packet. Packet inversions can have several negative effects,

3We further extend Packet Inversions by Inversion Magnitude to quantify
the severity of packet inversions in AppendixA.

76 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

including short-term fairness issues and fluctuations in both
throughput and delay.

However, for the fairness-based scheduling algorithms
that update the virtual clock according to the departure times
of packets [25] [26], the consequence of packet inversions
could be much more severe. When there is a packet inversion
and a packet with a very large timestamp (rank) t ′ departs
early, the scheduler updates its current virtual clock from t
to a much larger value t ′ in advance. The skew on the vir-
tual clock can prevent any newly arrived packet from getting
a departure time between t and t ′. As a consequence, exist-
ing packets with departure times smaller than t ′ would take
up the bandwidth and lead to starvation of the newly arrived
flows. The accumulation of such packet inversions can lead
to performance degradation and impairment of network iso-
lation [31] [6] [46] [30] [41] [50].

Minimizing FCT Other packet scheduling algorithms,
such as those designed to minimize average FCT [43] [3]
[28], can be significantly impacted by packet order inver-
sions. The core logic of minimizing FCT is to always serve
the flow with the minimum remaining flow size. However, if
packet inversions occur, the scheduler may serve other flows
with larger remaining sizes and may possibly serve multiple
flows at the same time. For example, when packet inversions
occur, the packet scheduler may fail to differentiate between
multiple flows that have similar remaining sizes. As a result,
the scheduler may start serving multiple flows in a round-
robin fashion instead of serving the flow with the minimum
size, which can dramatically increase the average FCT.

Delay Guarantee (Tail Packet Delay) Scheduling disci-
plines that are most affected by packet inversions are those
that provide a delay guarantee [34] [52]. Typically, these
scheduling algorithms cater to delay-sensitive applications
that impose strict end-to-end delay requirements, such as Ve-
hicle to Everything (V2X) and remote surgery. These algo-
rithms usually assign a delay budget to each packet (“slack
time”), which represents the end-to-end delay requirement.
Upon the arrival of each packet, the packet scheduler sorts
packets according to their urgency and always schedules the
packet with the least “slack time”. In this case, the accu-
racy of the packet scheduler is critical. A minor inversion in
scheduling could result in a series of packets missing their
deadlines and having a major negative impact on the perfor-
mance of the application.

Evaluating Impacts of Packet Inversions We evaluated
the impacts of packet inversions by running Start-Time Fair
Queueing (SFQ) [26] on approximate schedulers and a PIFO.
The evaluation setup is described in detail in Appendix F.

Figure 1(a) shows the impact of packet inversion on packet
delay. When packet inversions occur, packets with larger
ranks are scheduled prior to other packets with smaller ranks,
which leads to extra queuing delay for the packets that should

(a) Inversion impact on delay (b) Inversion impact on FCT

Figure 1: Impacts of Packet Inversions

have been scheduled earlier. Furthermore, Figure 1(b) shows
the impact of packet inversion on FCT. Approximate packet
schedulers introduce extra delay and unfairness in through-
put due to packet inversions, which impairs the FCT of small
flows.

We have also noted that the introduction of randomness
through packet inversion amplifies both throughput and de-
lay uncertainties. Certain applications like autonomous ve-
hicles and remote surgery heavily depend on consistent con-
nection performance.

2.3 Achieving accurate packet scheduling
2.3.1 Causes of Packet Inversions
As discussed in Section 2.2, existing implementations of ap-
proximating packet schedulers [44] [45] [2] [24] [54] are
subject to packet inversions. These approximating sched-
ulers are implemented with one or more FIFO queues and
packets from each FIFO queue are served on a first-come-
first-served basis, which can lead to packet inversions be-
tween the packets from the same FIFO queue. Although
such a FIFO-based structure has the advantages of low time-
complexity, high scalability, and implementation simplicity,
the potential packet inversions may result in various conse-
quences as discussed in Section 2.2.1. The key to eliminating
those packet inversions is to resolve any packet misordering
within each FIFO queue.

2.3.2 Proactive and Reactive Packet Sorting
An intuitive solution to resolve packet misordering is to sort
the packets in each FIFO queue before they are dequeued.
The existing solutions of packet sorting can be categorized
into two classes, proactive and reactive. The proactive ap-
proach sorts each packet upon arrival and maintains a sorted
priority queue [19]. As Figure 2(a) shows, each packet is
inserted into the correct place upon arrival. Such sorting
algorithms are subject to a fairly large time complexity of
O(logN) for each packet enqueue 4. This sorting is diffi-
cult to complete within the limited packet processing time in
ultra-high-speed data planes. A number of works [13] [14]
[15] [48] [49] overcome this challenge and provide proactive
packet sorters operating at line rate, however, they usually
cannot support a large buffer capacity. The reactive approach

4N is the total number of packets inside the packet sorter

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 77

Figure 2: Proactive and Reactive Sorters

sorts packets as part of the dequeue process [45]. As shown
in Figure 2(b), reactive solutions enqueue packets into a set
of strict priority FIFO queues and sort them with finer granu-
larity when the scheduler is about to serve these packets. Al-
though these reactive sorters provide a fast enqueue process
and large capacity, the sorting process is time-consuming and
might lead to blocking in the dequeue process.

2.3.3 Speed-up Factor

We can achieve a perfect packet sorting solution that com-
bines the advantages of non-blocking dequeue from proac-
tive sorters and large capacity from reactive sorters. The key
to our approach to accomplish this is sorting packets in par-
allel with the dequeue process.

Memory bandwidth is usually higher than the output links
bandwidth on hardware switches and network interface cards
(NIC). In addition, packet schedulers usually schedule de-
scriptors5 that represent packets. Packet descriptors are
much smaller than the average size of a packet. Combin-
ing the above facts, hardware switches can access multi-
ple packet descriptors during the time of dequeuing a sin-
gle packet. We adopt the concept of “Speed-up Factor” K,
a number that measures the relative speed between the de-
scriptor access speed and packet dequeue speed.

K = ⌊RM

Ro
· minLP

Ld
⌋ (1)

where K is the minimum Speed-up factor6, RM is the
memory bandwidth, Ro is the output link line rate, minLP
is the minimum packet size and Ld is the byte-length of the
packet descriptor. For illustration purposes, let us consider
a system with RM = 64 Gbps (64-bit memory running at 1
GHz), Ld = 64 bits, minLP = 64 bytes, and Ro = 100 Gb/s,
then

K = ⌊ 64 ·109

100 ·109 · 64 ·8
64

⌋= ⌊5.12⌋= 5 (2)

A speed-up factor K means the scheduler can access at
least K packet descriptors during the time of dequeuing a

5A packet descriptor is also known as metadata.
6When packet sizes are larger than the minimum packet size minLP, the

speed-up factor would be larger accordingly.

packet. By taking advantage of the speed-up factor, the re-
active FIFO-based sorter can sort packets with a proactive
priority queue (PIFO) in parallel without causing blocking.

3 Sifter: An Accurate and Large-Capacity
Programmable Packet Scheduler

3.1 Concept and Architecture
The previous sections establish a need for a programmable
packet scheduler with accuracy and scalability, combining
the advantages of both a perfect and an approximating PIFO.

We introduce Sifter, a scalable PIFO to support large-
capacity programmable packet scheduling without packet in-
versions. As shown in Figure 3, Sifter consists of two ma-
jor components: (1) A Mini-PIFO and (2) An RCQ. The
Mini-PIFO stores the packets with relatively smaller ranks.
It performs a strict sorting of packets and always outputs the
packet with the smallest rank. The RCQ holds the rest of
the packets with relatively larger ranks. It stores and sorts
packets with coarse granularity7 similarly to [12] [51] [44]
[45] [2] [24] by a set of strict-priority FIFO queues and is
therefore widely scalable in rank range and capacity.

Sifter uses an algorithm, “Sift Sorting”, which consists
of two parallel processes to schedule packets in strict order:
The first process is Enqueue, in which packets are stored in
different components according to their ranks. The pack-
ets with larger ranks enter the RCQs and are sorted with
coarse granularity while the packets with smaller ranks en-
ter the Mini-PIFO and are strictly sorted. The second pro-
cess called “Sifting” operates in parallel. When packets de-
queue from the Mini-PIFO and there is available space, the
RCQ keeps migrating (sifting) the packets from FIFOs with
smaller ranks to the Mini-PIFO. The Mini-PIFO therefore
eliminates the potential misordering of ranks in a FIFO in the
RCQ using only minimal-sized sifting registers. By combin-
ing the RCQ and Mini-PIFO, Sifter schedules packets in the
correct order while supporting a large capacity.

The name Sifter is derived from its sorting method. If
each packet is a particle in the sifter, the rank of each packet
would represent the size of the particle. Sifter “filters” the
larger particles from the upper layers and passes through the
smaller particles, as shown in Figure 3. Since the Mini-
PIFO always holds the packets with the smallest ranks in
the scheduler, Sifter dequeues packets from the head of the
Mini-PIFO. For a more in-depth look at Sifter’s operation,
we introduce its three major processes: Enqueue, Dequeue,
and Sifting in Section 3.2.

Sifter only schedules packet descriptors8. In this paper,
“packets” refer to the packet descriptor in the scheduler. To

7Granularity: the rank range that a FIFO in the RCQ accommodates.
8Packets are stored in a shared-memory buffer [1] [16] and the sched-

uler only deals with their descriptors. An example of packet descriptor is
provided in Appendix E

78 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 3: Sifter Architecture

Table 1: TERMS AND NOTATIONS

Notation Description
P(i,k) kth packet in flow i
R(i,k) Rank of packet P(i,k)
K Speed-up factor of Sifter
RM Memory bandwidth
Ro Line rate of the output link
minLP Minimal packet size
Ld Byte length of a packet descriptor
SF Max size of a FIFO in the RCQ
F Total number of FIFOs in the RCQ
g Granularity of a FIFO in the RCQ
OP Current occupancy of the Mini-PIFO
SP Max size of the Mini-PIFO
T hS Sifting threshold of the Mini-PIFO
s Rank value of the Sentinel

better illustrate the detailed schemes in Sifter, we summarize
the related concepts and notations in Table 1.

3.2 Enqueue, Dequeue and Sifting Processes
Sifter has three major processes: Enqueue, Dequeue, and
Sifting. Figure 4 shows the workflow of Sifter. When pack-
ets arrive at Sifter, those with larger ranks enter the RCQ
and those with smaller ranks enqueue directly into the Mini-
PIFO. When the Mini-PIFO’s occupancy is below a given
threshold described below, Sifter moves packets from the
RCQ to the Mini-PIFO through “Sifting”. If the Mini-PIFO
becomes full, the packet with the largest rank is evicted from
the tail of the Mini-PIFO back to the RCQ as it is replaced
with a smaller-rank packet. In the dequeue process, Sifter
dequeues the packet with the smallest rank from the head of
the Mini-PIFO.

Enqueue The enqueue process decides whether the packet
should be placed in the RCQ or the Mini-PIFO. As described
in Section 3.1, the Mini-PIFO stores the packets with the
smallest ranks in the scheduler. To preserve this property,
if a newly arriving packet has a rank smaller than the small-
est rank in the RCQ, it is stored in the Mini-PIFO. Here we
introduce the concept of Sentinel, which represents the max-

Figure 4: Sifter Workflow

imum rank value of a packet that can enter the Mini-PIFO.
In most cases9, Sentinel is equal to the smallest rank among
the packets in the RCQ.

The enqueue process consists of two steps: (1) Deter-
mine the target storage element (RCQ or Mini-PIFO) and
(2) Enqueue into that storage element. The target storage
element of a packet depends on the comparison between its
rank and the Sentinel value. If a packet has a rank smaller
than or equal to the Sentinel value, it is stored in the Mini-
PIFO, otherwise, it is stored in the RCQ. For the second
(enqueue) step, packets are enqueued in the Mini-PIFO and
the RCQ differently. Enqueuing in the RCQ is straightfor-
ward: the packet is stored in the FIFO that accommodates its
rank based on the FIFOs’ granularity g. To enqueue in the
Mini-PIFO, the packet’s position in the PIFO is determined
by its rank. If the Mini-PIFO is full when a new packet is
enqueued, the packet with the largest rank is evicted back to
the RCQ. Sifter updates the Sentinel to the evicted packet’s
rank and stores that packet in the RCQ as described above.

Dequeue Based on the property that the Mini-PIFO always
holds the packets with the smallest rank in the scheduler,
Sifter always dequeues the packet at the head of the Mini-
PIFO. As long as Sifter maintains the above property and
keeps sifting the packets with smaller ranks from the RCQ
into the Mini-PIFO, the dequeue process will always output
the packet with the smallest rank in the scheduler.

Sifting The sifting process is triggered by a “Sifting
Threshold”, denoted as T hS. When the occupancy of the
Mini-PIFO is lower than T hS and the RCQ is not empty,
Sifter finds the earliest10 non-empty FIFO in the RCQ and
transfers packets from it to the Mini-PIFO. The function and
configuration of the Sifting Threshold T hS are discussed in
further detail in Section 3.4

The process of sifting the packets from the RCQ into the
Mini-PIFO results in a strict ordering of the smallest ranks in
the Mini-PIFO. Since the RCQ sorts packets with granular-
ity g in each FIFO queue, the earliest non-empty FIFO queue
contains the packets with the smallest rank in RCQ. Sifter
needs to traverse all the packets in this FIFO to ensure that
the packets it migrates to the Mini-PIFO have ranks smaller

9When outside of the Sifting process.
10Earliest FIFO: the FIFO that covers the lowest-valued rank range.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 79

than all other packets remaining in the RCQ. This is accom-
plished by transferring all the packets from this FIFO to the
Mini-PIFO such that the packets with the smaller ranks will
remain in the Mini-PIFO while the others are evicted back to
the RCQ if the Mini-PIFO overflows.

To start the sifting process, Sifter first updates the Sentinel
value s to the maximum rank that the FIFO queue accom-
modates to guarantee that the Sentinel does not block that
FIFO’s packets from entering the Mini-PIFO. If the Mini-
PIFO becomes full, as new packets enter the Mini-PIFO and
the packets with the largest ranks are evicted back to the
RCQ, Sifter updates the Sentinel s to the rank of the last
evicted packet, as in the enqueue process. We further ex-
plain the Sentinel update mechanism in Section 3.3. When
all packets from the earliest non-empty FIFO are transferred,
the sifting process is completed and, as a result, the packets
with the smallest ranks are held in the Mini-PIFO. If, follow-
ing a sifting round, the Mini-PIFO occupancy is still lower
than the sifting threshold T hS, Sifter again finds the next ear-
liest non-empty FIFO and repeats the sifting process until the
occupancy of the Mini-PIFO is higher than T hS.

We describe the Enqueue, Dequeue and Sifting processes
in pseudo-code in Appendix I.

3.3 Sentinel Updates

The Sentinel s is a key element that controls the selection
of storage elements (Mini-PIFO vs. RCQ) when a packet
is enqueued. As described in Section 3.2, the sentinel rep-
resents the smallest rank in the RCQ and therefore guaran-
tees that the packets that enqueue into the Mini-PIFO have
ranks smaller than all packets in the RCQ. To maintain this
property, the Sentinel needs to be updated with each eviction
from the Mini-PIFO. Since the most recently evicted packet
has the smallest rank among the evicted packets, it is always
correct to update the Sentinel with the rank of the recently
evicted packet11.

Figure 5 illustrates an example of a sifting process with
Sentinel updates. At stage (1), the occupancy of the Mini-
PIFO is lower than the “Sifting Threshold” T hS, which
means Sifter needs to sift packets from the earliest non-
empty FIFO in the RCQ into the Mini-PIFO. Sifter deter-
mines the FIFO that it needs to sift from, which covers the
rank range from 20 to 29. To make sure all packets have
the opportunity to enter the Mini-PIFO, the Sentinel value
s is updated to 29, the highest possible rank in the FIFO.
As Sifter transfers packets from the RCQ to the Mini-PIFO,
the Mini-PIFO fills up and evicts the packet with the largest
rank as shown in stage (2). In this example, the packet with
a rank of 28 is evicted and sent back to the RCQ. Note that
this packet with a rank of 28 will stay in the RCQ until the
next sifting round, which means that other packets with ranks

11Before updating the Sentinel, Sifter compares the current Sentinel s
with the rank of the evicted packet and updates s to the smaller rank

larger than 28 will not enter the Mini-PIFO until then. To
achieve this, Sifter updates the Sentinel value s to 28 as de-
scribed in Section 3.2. In stage (3), although the Mini-PIFO
is not full, the packet with rank 29 cannot enqueue into the
Mini-PIFO since its rank is larger than the Sentinel value s
(28). The Sentinel guards the entrance of the Mini-PIFO to
keep the packets with larger ranks out and thus guarantees
all the packets in the Mini-PIFO have ranks smaller than any
packet in the RCQ after each sifting round 12.

3.4 Sifting Threshold

The configuration of the Sifting Threshold T hS is critical to
the performance of Sifter. It serves as a watermark below
which the Mini-PIFO is guaranteed to hold the packets with
the smallest ranks. As stated in Section 3.2, Sifter replen-
ishes the Mini-PIFO when its occupancy is below this thresh-
old using the sifting process that must traverse all the packets
in the earliest non-empty FIFO of the RCQ. Therefore, this
threshold T hS must be high enough, with enough packets
below it to guarantee that the Mini-PIFO will not underrun
before the sifting process is complete.

Although it would be reasonable to propose that the sifting
threshold T hS be large, at the limit as large as the size of
the Mini-PIFO SP, which would keep the Mini-PIFO fully
utilized, a large sifting threshold would result in too-frequent
sifting operations. If T hS is set as large as SP, Sifter would
trigger the sifting process after each packet dequeue. Since
the sifting process requires the transfer of all packets from
the earliest non-empty FIFO, frequent sifting rounds would
be unnecessarily wasteful, consuming a lot of energy with no
performance gain. Therefore, the sifting threshold T hS must
be the smallest value that guarantees that the Mini-PIFO does
not underrun.

Figure 6 shows the Mini-PIFO of size SP and a sifting
threshold, T hS. According to Figure 6, the Mini-PIFO is
bisected by the sifting threshold T hS. The segment below
(to the right of) T hS is guaranteed to be occupied as long as
packets are available in the RCQ. As mentioned above, this
segment holds enough packets to dequeue before the sifting
process is completed. The segment above (to the left of) T hS
determines the interval between two sifting rounds. Typi-
cally, the sizes of the FIFOs in the RCQ SF are larger than the
Mini-PIFO SP, which means the Mini-PIFO would be filled
up after each Sifting process and it would take SP −T hS de-
queues until the Mini-PIFO occupancy triggers the next Sift-
ing. In other words, a larger segment above T hS leads to less
frequent sifting.

We provide the quantitative relationship between the FIFO
size SF , the Mini-PIFO size SP and the sifting threshold T hS
that guarantees the condition for strict-order scheduling in
Section 3.5. In Appendix C, we evaluate the average num-

12Sentinel is initialized to ∞ and will be reset to ∞ if RCQ is empty.

80 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5: Sifting and Sentinel Updates

Figure 6: The Mini-PIFO and the Sifting Threshold

ber of extra memory accesses13 per packet to show that a
larger space above the sifting threshold T hS would decrease
the number of extra memory accesses introduced by the sift-
ing process.

3.5 Condition for Inversion-free Scheduling
To guarantee there are no packet inversions in Sifter, we
must ensure that each dequeue will output the packet with
the smallest rank in the scheduler. According to the dequeue
process described in Section 3.2, Sifter always dequeues the
packet at the head of the Mini-PIFO. Therefore, Sifter needs
to guarantee that the Mini-PIFO always holds the packet with
the smallest rank at its head. We introduce Property 1 of
Sifter:

Property 1: The Mini PIFO always holds the packet with
the smallest rank at its head.

To maintain Property 1, Sifter needs to guarantee that all
the packets sifted into the Mini-PIFO have smaller ranks than
the ones that remain in the RCQ after each sifting process.
Thus Sifter needs to traverse all the packets in the earliest
FIFO before the original packets in the Mini-PIFO drain out.
That is the packets below the sifting threshold T hS multiplied
by the speed-up factor K should be larger than the maximum
size of a FIFO SF in the RCQ. We have:

T hS ∗K ≥ SF (3)

In addition to condition (3), Sifter must ensure that the
Mini-PIFO holds at least T hS packets before traversing
through the earliest FIFO in the RCQ.

13Average number of extra memory accesses: the average number of extra
memory access of a packet descriptor from the time it enters and until it
leaves the packet scheduler when compared with a simple FIFO queue.

The size of the Mini-PIFO region between SP and T hS
determines the number of packets transferred to the Mini-
PIFO in each sifting process, assuming the source FIFO has
enough packets. When Sifter sifts from a FIFO that has more
than (SP −T hS) packets, the Mini-PIFO will be loaded with
(SP − T hS) newly sifted elements at the end of the sifting
process. If the earliest FIFO in the RCQ has fewer than
(SP − T hS) packets, Sifter will keep transferring from the
next FIFOs until the Mini-PIFO fill level reaches T hS as de-
scribed in Section 3.2. Accordingly, Sifter guarantees a min-
imal Mini-PIFO fill level after each sifting as follows:

min{(SP −T hS),T hS} (4)

Since Sifter needs to ensure there are at least T hS packets
at the beginning of the sifting process, we have the following
additional condition:

SP −T hS ≥ T hS (5)

Rearranging terms:

SP ≥ 2∗T hS (6)

Combining conditions (3) and (6), Sifter always guaran-
tees Property 1, regardless of the state of the sifting process.
Therefore, Sifter guarantees there are no packet inversions.

4 Sifter Hardware Prototype

Figure 7 shows an abstraction of the system-level application
of a programmable packet scheduler.

Usually, the size of the packet descriptor14 is much smaller
than the packet itself. Thus, packet schedulers in high-speed
data planes need to process only the descriptors rather than
the packets themselves due to the limited packet processing
time. According to Figure 7, there are two paths in the sys-
tem: the Packet Path and the Descriptor Path. In the Packet

14In general, a packet descriptor in the data plane includes metadata re-
lated to the packet, including length, flow ID, memory pointer, etc.)

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 81

Figure 7: System-Level Packet Scheduler Application

Path, the ingress packets are stored in the packet buffer and
wait to be dequeued or dropped. The packet scheduling takes
place in the Descriptor Path. The packet classifier and parser
extract the packet information from the packet header and
generate a packet descriptor by combining it with the mem-
ory address of the packet in the buffer. Next, the packet
rank calculator computes the rank of the packet according
to the applicable scheduling algorithm and updates the de-
scriptor. Finally, the system enqueues the descriptor into
the packet scheduler15, which drops or dequeues descriptors
according to their ranks. When the scheduler dequeues or
drops a packet descriptor, the system accesses the associated
packet in the buffer, referenced by its memory address, and
dequeues or drops the corresponding packet. Since this paper
focuses on programmable packet scheduling, the hardware
prototype design section also targets the Descriptor Path in
the system.

Hardware Prototype Architecture We implemented the
Sifter hardware prototype in VHDL according to the algo-
rithms in Section 3. Figure 8 shows a block diagram of
the Sifter hardware prototype. The RCQ and Mini-PIFO
hold descriptors during the enqueue and dequeue operations.
The Enqueue block stores the packet in one of the FIFOs in
the RCQ or in the Mini-PIFO according to the descriptor’s
rank. The Sifting process transfers the descriptors between
the RCQ and the Mini-PIFO to ensure that those with the
smallest ranks are held in the Mini-PIFO. Finally, the De-
queue block outputs the descriptors with the smallest rank.

There are multiple scaling parameters in the VHDL im-
plementation of Sifter, including: (1) the number and size
of FIFOs in the RCQ, (2) the size and sifting threshold of
the Mini-PIFO, and (3) other sizing parameters for memo-
ries and logic. These parameters improve the flexibility and
scalability of our design16.

We evaluate the performance impact and the resource
overhead of adjusting different design parameters in Ap-
pendix D.

We designed a 72-bit packet descriptor17 for the Sifter
hardware prototype, and Sifter schedules packets according
to a 20-bit Packet Rank field.

15Sifter is a specific implementation of such a packet scheduler.
16The VHDL code, test bench, and FPGA implementation files are avail-

able at https://github.com/Sifter-NSDI24/Sifter-NSDI24
17The details of the packet descriptor are revealed in Appendix E.

Figure 8: Sifter Block Diagram, VHDL Implementation

Rank Computation We programmed SFQ[26], a virtual-
clock-based fairness packet scheduling scheme, on the Sifter
hardware prototype. The transmission time is pre-calculated
by the packet classifier and stored in the Packet Rank field in
the packet descriptor. The Enqueue Process module updates
the Packet Rank by the system virtual clock and the last rank
of the corresponding flow.

According to the definition of programmable packet
scheduling in Section 2.1, most packet scheduling schemes
compute the ranks in the end-hosts or flow tables prior to
entering the packet scheduler[35] [48] [49]. Therefore, it
would be straightforward to extend the Sifter prototype to
support a wide variety of packet scheduling schemes with
the pre-calculated ranks in the packet descriptors.

Fast RCQ FIFO Indexing For each packet descriptor that
enqueues into the RCQ module, Sifter needs to find the FIFO
associated with its rank. We call this operation FIFO index-
ing. RCQ performs FIFO indexing when a new packet de-
scriptor arrives or when a packet descriptor is evicted from
the Mini-PIFO, which occurs whenever the Mini-PIFO be-
comes full and additional descriptors need to be stored in
the RCQ. Thus, FIFO indexing must be extremely fast in the
hardware implementation.

Rather than scanning through the rank bounds of each
FIFO, RCQ directly finds the corresponding FIFO index by
extracting a range of bits in the Packet Rank. We config-
ured the number of FIFOs F and the granularity g as powers
of two to be able to use bit slice selection and shifting op-
erations in the hardware implementation rather than slower
math operations, such as multiplication18.

Mini-PIFO The Mini-PIFO is implemented using a shift
register structure and performs a push operation in two clock
cycles. In the first clock cycle when a new descriptor is
pushed, its rank is compared in parallel to those of all de-
scriptors stored in the Mini-PIFO and an insertion position is
determined. In the second clock cycle, the descriptors with
higher ranks are shifted one position towards the tail, and the
new descriptor is inserted in the newly created “hole”. In the
process of shifting towards the tail, one descriptor may be
evicted and stored in the RCQ if the Mini-PIFO was previ-
ously full. The pop operation simply outputs the descriptor

18Additional details of fast FIFO indexing are provided in Appendix E

82 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

at the head of the Mini-PIFO and shifts all other descriptors
toward the head. Once the Mini-PIFO fill level reaches the
reload threshold, the sifting process starts a reload operation
to replenish the PIFO from the RCQ.

The Mini-PIFO can also handle simultaneous push and
pop operations, whether the arriving descriptor needs to be
popped immediately or inserted in a Mini-PIFO location.

In addition, the Mini-PIFO has a logic “wrapper” that han-
dles the resolution of race conditions that may occur if en-
queue and reload operations generate simultaneous push op-
erations toward the PIFO.

Search for The First Non-empty FIFO When the Mini-
PIFO triggers a sifting process, RCQ finds the earliest non-
empty FIFO queue to replenish the Mini-PIFO with packet
descriptors. The FIFOs in the RCQ are organized as a cir-
cular list with an index indicating the current FIFO (earliest
time range) corresponding to the current value of the virtual
clock. The search for the first non-empty FIFO is performed
in parallel on two groups of FIFOs: (1) First Group: From
the current FIFO to the highest numbered FIFO in the range;
(2) Second Group: From FIFO zero to the FIFO preceding
the current FIFO.

Because of the circular structure, FIFOs in the First Group
hold descriptors that have smaller ranks than those in the
Second Group. Therefore, if the first non-empty FIFO is
found in the First Group, it is selected as the next non-empty
FIFO. Otherwise, the first non-empty FIFO in the Second
Group is selected.

5 Evaluation
In Section 5.1 and 5.2, we evaluate Sifter using the NS3 [37]
packet-based simulator and show the advantages of Sifter in
fairness, FCT, and delay due to the elimination of packet
scheduling inversions. Furthermore, we demonstrate the
flexibility of Sifter with two use cases. Finally, in Section 5.3
we implement Sifter on an AMD/Xilinx Alveo U250 FPGA
board and evaluate its functionality, performance as well as
resource utilization.

5.1 Micro-benchmark Evaluation
We first set up a micro-benchmark to evaluate the perfor-
mance of Sifter in detail at the packet level. The evaluated
performance metrics include fairness in short-term band-
width allocation shown in Section 5.1.2, the FCT and end-to-
end delay given in Appendix F, as well as the average extra
number of memory accesses shown in Appendix C.

5.1.1 Micro-benchmark setup

Topology Given that the micro-benchmark aims to assess
the intricate packet-level performance of schedulers, it is
advisable to maintain a compact topology scale. This ap-
proach facilitates a more straightforward observation of de-

tailed metrics. In the micro-benchmark, we set up a single-
node star topology with multiple end hosts connected via one
switch with programmable packet schedulers. All links have
a bandwidth of 10 Gbps and a delay of 3µs.

Traffic We prepared two sets of traffic for different eval-
uation proposes: (1) A set with small-scale traffic that con-
tains 8 flows to evaluate the convergence of fair bandwidth
allocation and (2) A set with large-scale traffic that contains
approximately 1k flows to evaluate the FCT and end-to-end
delay. To create network congestion on the bottleneck link,
we generate the TCP flows19 in an in-cast traffic pattern.

Schedulers Setup We applied packet schedulers on the
bottleneck link to evaluate their performance under conges-
tion conditions. The evaluated schedulers include Sifter, Pro-
grammable Calendar Queues (PCQ) [45] and SP-PIFO [2].
Each of the schedulers has 16 FIFO queues with a depth of
6420. Sifter has a mini-PIFO with a capacity of 32 descrip-
tors. In addition, we also introduce an ideal PIFO[48][49]
with a capacity of 1024 and a standalone Mini-PIFO with a
capacity of 32 to serve as benchmarks.

5.1.2 Convergence to fair bandwidth allocation

There are 8 TCP flows in the micro-benchmark test with the
small-scale traffic, with each flow becoming active at succes-
sive 2 ms intervals. Flow 8 stops 2 ms after its arrival, and
other flows stop progressively in reverse order of their arrival
at intervals of 2 ms. To evaluate the fairness of short-term
bandwidth allocation, we measure the throughput of each
TCP flow in a window size of 120 µs, which is ten times
the RTT. The evaluation results are shown in Figure 9.

Sifter converges to fairness in bandwidth allocation
Figure 9 shows that Sifter has a fair bandwidth allocation
close to that of an ideal PIFO. The 8 TCP connections in
Sifter converge to the fair share of bandwidth very fast and
with minimum fluctuations. On the other hand, PCQ and
SP-PIFO experience packet inversions, which result in fluc-
tuations in the short-term throughput as shown in Figure 9.
The fluctuation is due to the fact that PCQ and SP-FIFO store
packets in FIFOs. Packets in the same FIFO are scheduled
on a first-come-first-served basis, which means that multiple
packets from a flow could continuously enter the same FIFO
in a short burst, and later leave the scheduler continuously
in a burst. Such burstiness impairs the short-term fairness of
bandwidth allocation and the steadiness of the throughput.

Sifter eliminates packet inversions In the simulation re-
sults, we observe no inversions in Sifter while PCQ and SP-
PIFO exhibit a significant number of packet inversions with
large magnitudes due to their FIFO-based architectures. The

19We use TCP New Reno in our micro-benchmark simulation
20An Insufficient FIFO size can result in sub-optimal performance due to

overflows for both FIFO-based schedulers and Sifter. We will discuss the
overflows in Sifter in Appendix B.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 83

Figure 9: Convergence for fair bandwidth allocation

consequence of inversions is reflected in the fluctuations of
flow throughput as shown in Figure 9.

5.2 Large-scale Packet-based Simulation
To evaluate the performance of packet schedulers in data-
center environments, we use large-scale packet-based simu-
lations with a fat-tree topology with a variety of larger-scaled
empirical traffic loads.

We evaluate two use cases of programmable packet sched-
ulers: (1) Weighted max-min fairness in bandwidth alloca-
tion with SFQ [26] in Section 5.2.2 and (2) Minimizing FCT
with modified SRPT[3] in Appendix G.

5.2.1 Simulation Setup

Network topology We extend the topology to a 3-tier fat-
tree consisting of 4 core switches, 8 aggregation switches,
and 8 ToR switches. All the switch nodes are connected with
40Gbps links with 1µs delay. A total of 256 hosts are con-
nected by the fat-tree topology. Each ToR switch connects
with 32 hosts and the links between each host and the ToR
switch each have a bandwidth of 10Gbps with 10ns delay.

Simulation Traffic We generate two types of empirical
traffic with different patterns: (1) random pattern and (2)
incast pattern. For the random pattern, each generated TCP
flow randomly selects a source node and a destination node
among the 256 hosts in the topology, while the flows in the
incast pattern randomly select a source node but always have
a fixed destination node to represent an in-cast traffic pattern.
The arrival time of each TCP flow follows a Poisson distri-
bution, and the flow size follows the Web-search distribution
in data centers [3].

5.2.2 Use Case: Start-time Fair Queuing for weighted
max-min fairness in bandwidth allocation

Weighted max-min fairness in bandwidth allocation is one
of the most important goals of packet scheduling [46] [6]
[41] [32] [36]. Among the algorithms derived from Weighted
Fair Queueing (WFQ), Start-time Fair Queueing (SFQ) [26]

is the most popular one due to its simplicity and accuracy.
Therefore, we applied SFQ to all the schedulers in the simu-
lation. We configured all three schedulers (Sifter, PCQ, and
SP-PIFO) with 32 FIFO queues with a depth of 256 entries.
In addition, Sifter has a Mini-PIFO with 64 entries21. Fur-
thermore, we set two PIFO benchmarks with different sizes:
an ideal PIFO with a large capacity of 1024 entries and a
standalone Mini-PIFO with 64 entries to match the Mini-
PIFO in Sifter.

Sifter is a close approximation to the ideal PIFO Fig-
ure 10 (a)− (d) shows the Normalized FCT22 performance
of the different packet schedulers under random pattern and
in-cast pattern respectively. As shown in Figure 10, Sifter
has an FCT performance that is nearly identical to the ideal
PIFO. Similarly, the end-to-end delay performance of Sifter
matches closely that of the ideal PIFO. Figure 10 (e)− (h)
shows the 95th percentile end-to-end delay of the small flows
(≤50MB) with different setups. By providing an accurate
scheduling order, Sifter guarantees that packets with smaller
ranks are scheduled without the extra delay that would be
caused by scheduling inversions.

Compared with the standalone Mini-PIFO, the RCQ of
Sifter extends the buffer capacity and thus reduces the packet
loss rate for mid-sized flows. As Figure 10 (a) − (d)
shows, Sifter outperforms the Mini-PIFO among the mid-
sized flows by reducing packet loss and re-transmissions.

Sifter is stable under different traffic patterns Approxi-
mate packet schedulers are subject to the impacts of certain
traffic patterns while Sifter achieves a stable performance
close to that of the ideal PIFO.

As shown in Figure 10, PCQ has poor FCT and tail-
latency performance for small-sized flows for both random
and in-cast patterns. As illustrated in Section 2.3.1, the
FIFO-based calendar queue structure of PCQ introduces in-
versions and extra delays for packets within one FIFO queue.
The packets with small ranks from the short flows are signifi-
cantly affected by the extra delay, which results in significant
performance degradation for small flows between PCQ and
other schedulers.

Although SP-PIFO provides decent performance with the
random pattern, its performance degrades as the congestion
level increases for the in-cast pattern. Queue-bound adjust-
ments in SP-PIFO tend to put packets with larger ranks into
the queues with lower priorities. Since SFQ is a virtual-
clock-based scheduling algorithm where the ranks of incom-
ing packets keep increasing as the congestion persists, SP-
PIFO stores most of the packets in the last few FIFO queues.
We observe that SP-PIFO does not fully utilize all of its

21In the Mini-PIFO of Sifter, we set the Sift threshold T hS = 32 (half of
the PIFO size), and used a speed-up factor K = 4 to fulfill the conditions in
Section 3.5.

22Normalized FCT: The measured FCT normalized to the ideal FCT.

84 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 10: Normalized FCT and End-to-End Delay with SFQ

available FIFO queues, and that the last few FIFOs become
particularly crowded under heavy congestion. This queue
congestion increases the end-to-end delay as Figure 10 (g)
and (h) shows and degrades the FCT of large flows as shown
in Figure 10 (c) and (d).

5.3 FPGA Hardware Testbed

We built a hardware testbed for the Sifter prototype on an
AMD/Xilinx Alveo U250 board [4], which uses an FPGA
similar in size to an UltraScale+ VU13P with mid-speed
grade. The hardware evaluation of the Sifter prototype cov-
ers three aspects: (1) Line rate measurement; (2) Verification
of no inversions in the output of Sifter to validate error-free
scheduling; (3) Evaluation of the hardware resources for dif-
ferent configurations by varying the design parameters.

Hardware Testbed Structure According to Section 4, we
focus on the descriptor path in the system. Therefore, in our
hardware testbed evaluation, we feed packet descriptors to
our hardware prototype and scale their input and output rates
to achieve a line rate of 100Gbps.

Figure 11 shows the structure of the hardware testbed. We
use two sets of packet descriptors parsed from a PCAP file.

For simulation purposes, we implemented the testbed in
Cocotb [21], a Python-based HDL simulation environment.
For the hardware testing, we implemented the same testbed
using Exegy’s nxFramework [22], which provides the PCIe
connectivity and C++ device drivers to access registers and
memories within Sifter.

The input packet descriptors are originally generated from
a PCAP packet capture [33]. We load the input packet de-
scriptors in the Input Buffer module on the FPGA, along
with time gaps between packets to set a line rate equiva-
lent to 100Gbps. The Enq Rate Ctl module reads the de-

Figure 11: Sifter Hardware Testbed

scriptors from the input buffer and enqueues them into Sifter
at the specified rate. After a software-programmable delay,
the Deq Rate Ctl module starts dequeuing packet descrip-
tor from Sifter at a rate equivalent to 100Gbps, by using
the packet length information to control the descriptor de-
queue rate. Dequeued descriptors are written to the Out-
put Recorder block along with timestamps and read out and
written to an output file by software at the end of the test.
We analyze the packet descriptor output file from the Output
Recorder to measure the line rate and validate that there are
no packet inversions or missing descriptors.

Running Sifter on an FPGA We configured Sifter with
32 FIFOs with 32 locations each and a Mini-PIFO with 32
locations. We used Vivado 2021.2 to generate a bitstream of
the test bed including the Exegy PCIe memory-mapped I/O
(MMIO) logic and loaded it on an AMD/Xilinx Alveo U250
board [4]. With the above design parameters, the Sifter pro-
totype achieved a frequency of 322MHz and used less than
1.25% of the FPGA. 23 We used C++ code and the Exegy
MMIO device drivers to write the input data into the Input
Buffer and read the output data from the Output Recorder.

23Additional information about the trade-off of different design parame-
ters with FPGA resource overhead is given in Appendix D.2.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 85

Figure 12: Inversion-free Scheduling Order of Sifter Prototype

Figure 13: Sifter Hardware Throughput and Packet Rate

Traffic Trace We generated the packet descriptor inputs
by parsing a PCAP packet capture, which includes 13708
packets and 941 flows. The average packet size of the input
trace is 823 Bytes. With the max frequency of 322 MHz of
its FPGA prototype, Sifter can achieve a line rate of 100Gbps
with packets larger than 370 Bytes24.Therefore, we modified
the packet size of the PCAP file and generated two sets of
packet descriptor inputs: (1) A fixed packet size input where
all the packets have the same size of 370 Bytes and (2) A
varying packet size input by modifying the small packets size
to 370 Bytes while preserving the original packet sizes of
other packets that are larger than 370 Bytes

Inversion-free Packet Scheduling Figure 12 shows the
packet descriptor scheduling order from the output of our
testbed. For both fixed and varying packet size traces, there
are no inversions in the packet scheduling order and the
packet loss rate25 of both input traces is lower than 0.6%.

Scaling to 100Gbps Line Rate Figure 13 shows the
throughput and the packet rate of Sifter’s hardware prototype
under fixed and varying packet size inputs. From the output
of our hardware testbed, Sifter reaches the line rate of 100
Gbps for both types of input. For the fixed packet size input,
the Sifter prototype operates at a constant packet rate of 32.2
Mpps, since the packet processing time of Sifter is 10 clock
cycles. On the other hand, for the varying packet size input,
the line rate is also 100Gbps with an average packet rate of
21.6 Mpps because the average packet size is larger.

24This packet length allows Sifter to dequeue at 100Gbps without inver-
sions on our prototype. With a higher clock frequency, Sifter supports a
100Gbps line rate with 64-byte packets. See Appendix E and H for details

25Packet loss may occur if FIFOs become full and is not related to Sifter’s
operation. See Appendix B for more information on overflows in Sifter.

6 Related Work

In the 1990s, early implementations of general packet sched-
ulers such as Sequencer [13] [14] [15] sort packets accurately
by their ranks based on a shift-register design. However, the
architecture of these ASIC-based packet schedulers limits
their capacity. In the 2000s, pipeline-Heap (pHeap) [7][29]
was proposed, which serves as an accurate packet scheduler
that supports a large buffer capacity. However, the high im-
plementation overhead of pHeap takes up a significant area
on the switch chip. This issue would be compounded if a
pHeap is used for each port on the switch.

In the 2010s, the advent of the programmable data plane
brought to light the topic of implementing general packet
schedulers in academia and industry. PIFO [48] [49] is a
fundamental building block for programmable packet sched-
ulers. However, while its design achieves accurate pro-
grammable packet scheduling with a small chip area over-
head, it is still limited by its capacity and the require-
ment of special hardware support such as Ternary Content-
Addressable Memory (TCAM).

PCQ [45] and SP-PIFO [2] are two approximate pro-
grammable packet schedulers based on strict-priority queues.
While they greatly reduce implementation overhead and
boost the capacity of the scheduler, the impact of the packet
inversions they introduce is not negligible. Approximate
Fair Queuing (AFQ) [44] and Gearbox [24] are two other
approximate packet schedulers focused on fair queuing and
weighted fair queuing, but are not generalized for pro-
grammable packet scheduling.

AIFO [54] is a programmable packet scheduler design,
which only requires a single FIFO queue and filters the in-
coming packets using admission control. However, AIFO
can cause packet inversions similar to the above-mentioned
approximate packet schedulers, and scaling it to support a
large buffer capacity would be challenging.

7 Conclusion

In this paper, we present Sifter, an accurate, programmable
packet scheduler that operates free of packet inversions and
supports a large buffer size with low implementation over-
head. By taking advantage of the “Speed-up Factor”, Sifter
sorts packets by “Sift Sorting” and combines the advantages
of accurate scheduling of a PIFO with the large capacity pro-
vided by FIFO-based approximate schedulers. Our simula-
tions in NS3 show that Sifter achieves better fairness, lower
FCT, and delay by eliminating packet inversions. We im-
plemented Sifter in VHDL, targeting an AMD/Xilinx Alveo
U250 FPGA card [4] with a mid-speed grade XCVU13P
FPGA. Our FPGA-based hardware prototype operates at 322
MHz and reaches a line rate of 100 Gb/s for packets larger
than 370 bytes. Sifter uses less than 1.25% of the FPGA
resources.

86 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] ADDANKI, V., APOSTOLAKI, M., GHOBADI, M., SCHMID, S., AND

VANBEVER, L. Abm: active buffer management in datacenters. In
Proceedings of the ACM SIGCOMM 2022 Conference (2022), pp. 36–
52.

[2] ALCOZ, A. G., DIETMÜLLER, A., AND VANBEVER, L. Sp-pifo:
Approximating push-in first-out behaviors using strict-priority queues.
In 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20) (2020), pp. 59–76.

[3] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCKEOWN,
N., PRABHAKAR, B., AND SHENKER, S. pfabric: Minimal near-
optimal datacenter transport. In ACM SIGCOMM Computer Commu-
nication Review (2013), vol. 43, ACM, pp. 435–446.

[4] AMD/XILINX. AMD/Xilinx Alveo U250 Data Center Ac-
celerator Card. https://www.xilinx.com/products/

boards-and-kits/alveo/u250.html, 2021.

[5] AMD/XILINX. Vivado Design Suite, Integrated Design Envi-
ronment. https://www.xilinx.com/products/design-tools/
vivado.html, 2021.

[6] BALLANI, H., COSTA, P., KARAGIANNIS, T., AND ROWSTRON, A.
Towards predictable datacenter networks. In ACM SIGCOMM com-
puter communication review (2011), vol. 41, ACM, pp. 242–253.

[7] BHAGWAN, R., AND LIN, B. Fast and scalable priority queue archi-
tecture for high-speed network switches. In Proceedings IEEE INFO-
COM 2000. Conference on Computer Communications. Nineteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies (Cat. No. 00CH37064) (2000), vol. 2, IEEE, pp. 538–547.

[8] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN,
N., REXFORD, J., SCHLESINGER, C., TALAYCO, D., VAHDAT, A.,
VARGHESE, G., ET AL. P4: Programming protocol-independent
packet processors. ACM SIGCOMM Computer Communication Re-
view 44, 3 (2014), 87–95.

[9] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G., MCKE-
OWN, N., IZZARD, M., MUJICA, F., AND HOROWITZ, M. For-
warding metamorphosis: Fast programmable match-action processing
in hardware for sdn. ACM SIGCOMM Computer Communication Re-
view 43, 4 (2013), 99–110.

[10] BROADCOM. Broadcom StrataDNX™ BCM88480 Traffic Man-
agement Architecture. https://docs.broadcom.com/doc/

88480-DG1-PUB, 2021.

[11] BROADCOM. High Capacity StrataXGS®Trident II Ethernet Switch
Series. http://www:broadcom:com/products/Switching/

Data-Center/BCM56850-Series., 2021.

[12] BROWN, R. Calendar queues: a fast 0 (1) priority queue implemen-
tation for the simulation event set problem. Communications of the
ACM 31, 10 (1988), 1220–1227.

[13] CHAO, H. J. Architecture emersesign for regulating and scheduling
user’s traffic in atm networks. In ACM SIGCOMM Computer Com-
munication Review (1992), vol. 22, ACM, pp. 77–87.

[14] CHAO, H. J., CHENG, H., JENQ, Y.-R., AND JEONG, D. Design of
a generalized priority queue manager for atm switches. IEEE Journal
on Selected Areas in Communications 15, 5 (1997), 867–880.

[15] CHAO, H. J., JENQ, Y.-R., GUO, X., AND LAM, C.-H. Design of
packet-fair queuing schedulers using a ram-based searching engine.
IEEE Journal on Selected Areas in Communications 17, 6 (1999),
1105–1126.

[16] CHOUDHURY, A. K., AND HAHNE, E. L. Buffer management in a
hierarchical shared memory switch. In Proceedings of INFOCOM’94
Conference on Computer Communications (1994), IEEE, pp. 1410–
1419.

[17] CISCO. Cisco Nexus 7700 F3-Series 12-Port 100 Gi-
gabit Ethernet Module Data Sheet. https://www.

cisco.com/c/en/us/products/collateral/switches/

nexus-7000-series-switches/data_sheet_c78-728423.

html, 2019.

[18] CISCO. Cisco Silicon One Product Family White Paper. https:

//www.cisco.com/c/en/us/solutions/silicon-one.html,
2021.

[19] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN,
C. Introduction to algorithms. MIT press, 2009.

[20] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and sim-
ulation of a fair queueing algorithm. In ACM SIGCOMM Computer
Communication Review (1989), vol. 19, ACM, pp. 1–12.

[21] DEVELOPMENT GROUP, C. Cocotb chip design testbench. In
https://www.cocotb.org/. 2023, 2023, p. 1.

[22] EXEGY. Exegy nxframework. In
https://www.enyx.com/nxframework/. 2022, 2022, p. 1.

[23] FENG, Y., CHEN, Z., SONG, H., XU, W., LI, J., ZHANG, Z., YUN,
T., WAN, Y., AND LIU, B. Enabling in-situ programmability in net-
work data plane: From architecture to language. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22) (2022), pp. 635–649.

[24] GAO, P., DALLEGGIO, A., XU, Y., AND CHAO, H. J. Gearbox:
A hierarchical packet scheduler for approximate weighted fair queu-
ing. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22) (2022), pp. 551–565.

[25] GOLESTANI, S. J. A self-clocked fair queueing scheme for broad-
band applications. In Proceedings of INFOCOM’94 Conference on
Computer Communications (1994), IEEE, pp. 636–646.

[26] GOYAL, P., VIN, H. M., AND CHEN, H. Start-time fair queueing:
a scheduling algorithm for integrated services packet switching net-
works. In ACM SIGCOMM Computer Communication Review (1996),
vol. 26, ACM, pp. 157–168.

[27] HOGAN, M., LANDAU-FEIBISH, S., ARASHLOO, M. T., REXFORD,
J., AND WALKER, D. Modular switch programming under resource
constraints. In 19th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 22) (2022), pp. 193–207.

[28] HONG, C.-Y., CAESAR, M., AND GODFREY, P. Finishing flows
quickly with preemptive scheduling. In Proceedings of the ACM SIG-
COMM 2012 conference on Applications, technologies, architectures,
and protocols for computer communication (2012), ACM, pp. 127–
138.

[29] IOANNOU, A., AND KATEVENIS, M. G. Pipelined heap (priority
queue) management for advanced scheduling in high-speed networks.
IEEE/ACM Transactions on Networking (ToN) 15, 2 (2007), 450–461.

[30] JANG, K., SHERRY, J., BALLANI, H., AND MONCASTER, T. Silo:
Predictable message latency in the cloud. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication
(2015), pp. 435–448.

[31] JEYAKUMAR, V., ALIZADEH, M., MAZIÈRES, D., PRABHAKAR,
B., GREENBERG, A., AND KIM, C. {EyeQ}: Practical network
performance isolation at the edge. In 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13) (2013),
pp. 297–311.

[32] JEYAKUMAR, V., ALIZADEH, M., MAZIERES, D., PRABHAKAR,
B., AND KIM, C. Eyeq: Practical network performance isolation for
the multi-tenant cloud. In Presented as part of the (2012).

[33] KLASSEN, F., AND APPNETA. Tcpreplay. In
https://tcpreplay.appneta.com/wiki/captures.html. 2023, 2023,
p. 1.

[34] LEUNG, J. Y.-T. A new algorithm for scheduling periodic, real-time
tasks. Algorithmica 4, 1-4 (1989), 209.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 87

[35] MITTAL, R., AGARWAL, R., RATNASAMY, S., AND SHENKER,
S. Universal packet scheduling. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16) (2016),
pp. 501–521.

[36] NAGARAJ, K., BHARADIA, D., MAO, H., CHINCHALI, S., AL-
IZADEH, M., AND KATTI, S. Numfabric: Fast and flexible bandwidth
allocation in datacenters. In Proceedings of the 2016 ACM SIGCOMM
Conference (2016), ACM, pp. 188–201.

[37] NETWORK SIMULATOR DEVELOPMENT GROUP, T. The network sim-
ulator 3. In https://www.nsnam.org/. 2022, 2022, p. 1.

[38] OPEN, H.-L. L. F. D. F.-R. S. F. P. N. P. Broadcom. np. In
https://nplang.org/. 2019, 2019, p. 1.

[39] PAREKH, A. K., AND GALLAGER, R. G. A generalized processor
sharing approach to flow control in integrated services networks: the
single-node case. IEEE/ACM transactions on networking, 3 (1993),
344–357.

[40] PAREKH, A. K., AND GALLAGER, R. G. A generalized proces-
sor sharing approach to flow control in integrated services networks:
the multiple node case. IEEE/ACM transactions on networking 2, 2
(1994), 137–150.

[41] POPA, L., KUMAR, G., CHOWDHURY, M., KRISHNAMURTHY, A.,
RATNASAMY, S., AND STOICA, I. Faircloud: sharing the network
in cloud computing. ACM SIGCOMM Computer Communication Re-
view 42, 4 (2012), 187–198.

[42] RUFFY, F., WANG, T., AND SIVARAMAN, A. Gauntlet: Finding bugs
in compilers for programmable packet processing. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20) (2020), pp. 683–699.

[43] SCHRAGE, L. A proof of the optimality of the shortest remaining
processing time discipline. Operations Research 16, 3 (1968), 687–
690.

[44] SHARMA, N. K., LIU, M., ATREYA, K., AND KRISHNAMURTHY,
A. Approximating fair queueing on reconfigurable switches. In 15th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 18) (2018), pp. 1–16.

[45] SHARMA, N. K., ZHAO, C., LIU, M., KANNAN, P. G., KIM, C.,
KRISHNAMURTHY, A., AND SIVARAMAN, A. Programmable calen-
dar queues for high-speed packet scheduling. In 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 20)
(2020), pp. 685–699.

[46] SHIEH, A., KANDULA, S., GREENBERG, A. G., KIM, C., AND
SAHA, B. Sharing the data center network. In NSDI (2011), vol. 11,
pp. 23–23.

[47] SHREEDHAR, M., AND VARGHESE, G. Efficient fair queuing using
deficit round-robin. IEEE/ACM Transactions on networking, 3 (1996),
375–385.

[48] SIVARAMAN, A., SUBRAMANIAN, S., AGRAWAL, A., CHOLE, S.,
CHUANG, S.-T., EDSALL, T., ALIZADEH, M., KATTI, S., MCKE-
OWN, N., AND BALAKRISHNAN, H. Towards programmable packet
scheduling. In Proceedings of the 14th ACM workshop on hot topics
in networks (2015), ACM, p. 23.

[49] SIVARAMAN, A., SUBRAMANIAN, S., ALIZADEH, M., CHOLE, S.,
CHUANG, S.-T., AGRAWAL, A., BALAKRISHNAN, H., EDSALL, T.,
KATTI, S., AND MCKEOWN, N. Programmable packet scheduling at
line rate. In Proceedings of the 2016 ACM SIGCOMM Conference
(2016), ACM, pp. 44–57.

[50] STEPHENS, B., SINGHVI, A., AKELLA, A., AND SWIFT, M. Ti-
tan: Fair packet scheduling for commodity multiqueue nics. In 2017
USENIX Annual Technical Conference (USENIX ATC 17) (2017),
pp. 431–444.

[51] VARGHESE, G., AND LAUCK, A. Hashed and hierarchical timing
wheels: efficient data structures for implementing a timer facility.
IEEE/ACM transactions on networking 5, 6 (1997), 824–834.

[52] WILSON, C., BALLANI, H., KARAGIANNIS, T., AND ROWTRON, A.
Better never than late: Meeting deadlines in datacenter networks. In
ACM SIGCOMM Computer Communication Review (2011), vol. 41,
ACM, pp. 50–61.

[53] XING, J., HSU, K.-F., KADOSH, M., LO, A., PIASETZKY, Y.,
KRISHNAMURTHY, A., AND CHEN, A. Runtime programmable
switches. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22) (2022), pp. 651–665.

[54] YU, Z., HU, C., WU, J., SUN, X., BRAVERMAN, V., CHOWDHURY,
M., LIU, Z., AND JIN, X. Programmable packet scheduling with
a single queue. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference (2021), pp. 179–193.

[55] YUAN, Y., ALAMA, O., FEI, J., NELSON, J., PORTS, D. R., SA-
PIO, A., CANINI, M., AND KIM, N. S. Unlocking the power of in-
line {Floating-Point} operations on programmable switches. In 19th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 22) (2022), pp. 683–700.

[56] ZENO, L., PORTS, D. R., NELSON, J., KIM, D., LANDAU-FEIBISH,
S., KEIDAR, I., RINBERG, A., RASHELBACH, A., DE-PAULA, I.,
AND SILBERSTEIN, M. {SwiSh}: Distributed shared state abstrac-
tions for programmable switches. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22) (2022),
pp. 171–191.

[57] ZHANG, H., AND BENNETT, J. C. Wf2q: worst-case fair weighted
fair queueing. In IEEE INFOCOM (1996), vol. 96, pp. 120–128.

88 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Appendix

A Inversion Magnitude

In Section 2.2 we defined Packet Inversions. However, the
number of packet inversions alone cannot fully reflect the
severity of errors that an approximating packet scheduler
may introduce. To quantify the severity of each packet in-
version, we extend the concept of packet inversion with In-
version Magnitude.

Inversion Magnitude: When a packet with rank r departs
from the scheduler and a packet with smaller rank r′26 exists
in the scheduler, the inversion magnitude is r− r′.

Take the example in Figure 14: There are packet inver-
sions in both scenarios shown in Figure 14 (b) and (c), but
the severities are different. In the case of Figure 14 (c), a
large packet with rank = 25 is scheduled prior to a packet
with a smaller rank = 2. When compared with the case of
Figure 14 (b), packets with smaller ranks experience longer
delays in Figure 14 (c).

As mentioned in Section 2.2.1, packet inversions with
larger magnitudes lead to more severe consequences. For
scheduling algorithms such as SCFQ [25] and SFQ [26],
which update a virtual clock using packet departure times,
a larger inversion magnitude leads to a worse skew of the
virtual clock and results in worse throughput loss or addi-
tional delay on newly arrived flows. For the scheduling dis-
ciplines that aim to minimize tail packet delay, a larger inver-
sion magnitude can cause packets with the least slack time to
experience longer delays.

(a) Ideal scheduling order

(b) Inverse between rank 2 and rank 3

(c) Inverse between rank 2 and rank 25

Figure 14: Packet Inversion and Inversion Magnitude

B Overflows in Sifter

There are two types of overflows in Sifter: (1) FIFO Over-
flow and (2) Calendar Queue Overflow.

FIFO Overflow FIFO overflows are the cases where a
packet is dropped when the associated FIFO is full. As
shown in Figure 15 (a), a packet with rank 15 is dropped

26The smaller rank has higher priority

Figure 15: Overflows in Sifter

since the FIFO that covers the rank range from 10 to 19 is al-
ready full. Such overflows lead to a different outcome when
compared with an ideal PIFO. PIFO always drops the packet
with the largest rank when the capacity is full, while Sifter
may drop packets with relatively smaller ranks in the cases
of FIFO overflow.

The solutions to mitigate FIFO overflow is straightfor-
ward: (1) extend the size of each FIFO in the RCQ or (2)
reduce the FIFO granularity g so that each FIFO covers a
narrower rank range, which reduces the number of packets
in each FIFO. In Appendix D, we show that the above adjust-
ments in the design parameters reduce the FIFO overflows.

Calendar Queue Overflow A Calendar Queue Overflow,
occurs when an incoming packet has a rank value larger than
the maximum rank that the scheduler covers. Figure 15 (b)
presents an example of Calendar Queue Overflow, where
the rank value of an incoming packet is 100 and the max-
imum rank value that the scheduler supports is 99. Such
overflows have a similar effect as overflows in PIFOs, where
packets with the largest ranks are dropped. Calendar Queue
Overflow can be mitigated by increasing the rank range that
the scheduler covers, however, if overflows are unavoidable,
packets with the largest ranks are the ones to be dropped in
most cases.

We further evaluate the impact of overflows and how the
above solutions mitigate them in Appendix D.

C Average Number of Extra Memory Ac-
cesses

According to Section 3, the key idea for Sifter to eliminate
packet inversions is to apply “Sift Sorting”, which moves
packet descriptors between the RCQ and the Mini-PIFO.
While Sifter ensures accurate packet scheduling, the trade-
off is the extra memory accesses introduced by the sift-
ing process. In our evaluation, we quantify the number of
extra memory accesses that Sifter introduces to guarantee
inversion-free packet scheduling.

As defined in Section 3.4, the average extra number of

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 89

Figure 16: Average number of extra memory accesses per-packet.

memory accesses refers to the additional number of accesses
to a packet descriptor between the times it is enqueued and
dequeued from the packet scheduler when compared with a
simple FIFO queue. For all FIFO-based packet schedulers,
the number of memory accesses for each packet descriptor
is equivalent to that of a simple FIFO queue, which is one
access when writing the packet descriptor into the FIFO and
another access when reading it out.

We conducted multiple tests with our single-node micro-
benchmark in Section 5.1 to evaluate the average number of
extra memory accesses with different Mini-PIFO sizes SP.
We used a configuration with 25 FIFOs with a depth of 40
and a Mini-PIFO size SP between 10 and 20 in the evalua-
tion.

Figure 16 shows the average number of extra memory ac-
cesses per packet scheduled by Sifter with different Mini-
PIFO sizes SP under different traffic loads27. From the eval-
uation results in Figure 16, Sifter has an average number of
extra memory accesses of less than 2 in most cases, which,
in total, is less than twice the baseline (the number of mem-
ory accesses for FIFO-based schedulers). This indicates un-
der most circumstances that the packet descriptors in Sifter
would at most experience one Sifting Process which intro-
duces one extra read and one extra write operation before
the dequeue operation. As the Mini-PIFO size SP increases,
Sifter can achieve nearly zero extra memory accesses since
more packets would enqueue and dequeue directly from the
Mini-PIFO, bypassing the RCQ FIFOs and the Sifting pro-
cess.

D Evaluation of Design Parameters

As described in Section 3 and Section 4, there are multiple
design parameters in Sifter including the number of FIFOs F ,
the FIFO size SF , the PIFO size SP, as well as the granularity
g. In this section, we explore the performance and FPGA
resource consumption as a function of the design parameters.

27We applied empirical traffic based on web-search flow distributions [3].
The configured traffic loads control the arrival rate of flows.

D.1 FCT Performance
We set up a series of evaluations on the single-node micro-
benchmark28 to test the performance with different design
parameters.

FIFO size As stated in Appendix B, the FIFO overflow oc-
currence largely depends on the FIFO size SF . Here we eval-
uate the impact of the FIFO size SF on FCT. We set up four
Sifter schedulers with 32 FIFO queues with different FIFO
sizes SF ranging from 32 to 256 locations. The Mini-PIFO
size SP of all four Sifter schedulers is set to 32. In order
to meet the inversion-free condition (3) and (6), we set the
speed-up factor K of the four Sifter schedulers to range be-
tween 2 and 16.

Figure 17(a) shows that when the FIFO size SF is large
enough to hold the incoming packets associated with each
rank range, FIFO overflows are essentially eliminated and
Sifter delivers an identical performance of an ideal PIFO.

PIFO size To investigate how the Mini-PIFO size SP im-
pacts performance, we start with a design parameter config-
uration to induce overflows with a specific traffic profile. We
set up four Sifter schedulers with 32 FIFO queues, each with
a FIFO size SF = 64. We configured different Mini-PIFO
sizes SP as 32, 64, 128, and 256 to investigate whether a
larger PIFO would reduce overflow events.

Figure 17(b) shows the FCT performance of Sifter sched-
ulers with increasing Mini-PIFO sizes. From the results, a
larger Mini-PIFO provides better FCT performance for the
smaller flows (whose packets tend to have smaller ranks).
In addition, according to section 3.4 and Appendix C, a
larger Mini-PIFO decreases the frequency of Sifting opera-
tion, thereby reducing the number of extra memory accesses.

Number of FIFOs According to Appendix B, FIFO over-
flow occurs when the packets associated with a FIFO exceed
the FIFO capacity. In addition to increasing the FIFO size
SF , another solution to reduce FIFO overflows is to decrease
the rank range associated with each FIFO. To cover the same
overall rank range when reducing the rank range associated
with each FIFO, we increase the total number F of the FIFO
queues.

We set the FIFO size SF = 64 to observe the performance
improvements due only to increasing the total number of
FIFOs. All the Sifter schedulers cover the same total rank
range of 512. When increasing the number F of FIFOs from
8 to 64, the granularity g (the rank range that each FIFO cov-
ers) of each FIFO is decreased from 64 to 8.

Figure 17(c) shows the FCT performance of Sifter sched-
ulers with increasing the number of FIFO. Similarly to in-
creasing the FIFO size SF in the previous evaluations, in-

28Details of the micro-benchmark topology are given in Section 5.1.

90 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

creasing the number of FIFOs F also decreases the occur-
rence of FIFO overflows. When the number of FIFOs F is
large enough to eliminate FIFO overflows, Sifter provides
performance that matches that of an ideal PIFO.

D.2 Resource Overhead
In this section, we assess the logic resource utilization of the
Sifter scheduler with different design parameters.

We synthesized the Sifter VHDL implementation with dif-
ferent parameter setups using AMD/Xilinx’s Vivado soft-
ware [5] targeting an AMD/Xilinx Alveo U250 FPGA board
[4], which we used to implement the Sifter hardware proto-
type described in Section 5.3. Figure 18 shows the increase
in resource consumption as we increase the FIFO size SF ,
Mini-PIFO size SP as well as the total number of FIFOs
F . The evaluated resources on the FPGA device are Look
Up Tables (LUT), Flip Flops (FF), and Look Up Table RAM
(LUTRAM).

FIFO size To observe how the resource utilization grows
as a function of the FIFO size SF , we configured Sifter with
32 FIFOs and a Mini-PIFO of size 32 and increased the FIFO
size SF from 32 to 256.

Figure 18(a) shows the growth of the resource utilization
as we increased the FIFO size SF . The results indicate that
the extra resources due to increasing the FIFO size SF are
not significant. From Figure 18(a), the resource consump-
tion is around 1.5% when we apply a fairly large FIFO size
SF = 256. Combined with the performance evaluations in
Appendix D.1, increasing the FIFO size SF of Sifter is the
most efficient way to reduce the occurrence of FIFO over-
flows and to match the performance of an ideal PIFO.

PIFO size According to Section 3.5, Sifter needs to fulfill
condition (3) and (6) to guarantee inversion-free operation.
To meet the above conditions, Sifter needs a larger Mini-
PIFO to support larger FIFO sizes.

We increased the Mini-PIFO size SP from 32 to 256 us-
ing the same parameter setup as in the previous evaluation,
where we fixed the total number of FIFOs F to 32 and set the
size of FIFOs SF as 256.

Figure 18(b) shows how the resource utilization grows as
the Mini-PIFO size SP increases. From the results, we find
that increasing the Mini-PIFO size SP consumes more re-
sources on the FPGA when compared with increasing the
FIFO size SF .

Number of FIFOs As stated in Appendix B and D, another
way to reduce FIFO overflows is to increase the number of
FIFOs F .

To evaluate the effect of increasing the number of FIFOs
on resource utilization, we fixed the size of FIFOs SF and the

size of the Mini-PIFO SP to 32 locations, while increasing
the number of FIFOs F from 8 to 128. Figure 18(c) shows
the growth of the resource utilization as we increase the num-
ber of FIFOs F . FIFOs consume fewer resources when com-
pared with the Mini-PIFO. According to the results in Figure
18(c), a configuration with 64 FIFOs only consumes 2% of
the resources on the FPGA while one with 128 FIFOs costs
around 3.3% of the available resources.

Combining the results of resource consumption in Fig-
ure 18(a) and 18(c), both solutions of increasing FIFO size
SF and increasing the number of FIFOs F are efficient ap-
proaches to reduce FIFO overflows.

E Sifter Hardware Prototype Details

Packet Descriptor We used a 72-bit packet descriptor for
the Sifter hardware prototype as shown in Figure 19. There
are 5 fields in the descriptor: (1) a 15-bit Packet Pointer for
the address of the packet in packet buffer, (2) an 11-bit Packet
Length for the packet length in bytes, (3) a 20-bit Packet
Rank for the assigned scheduling order of each packet, (4)
a 10-bit Flow ID to identify the flow and (5) a 16-bit Packet
ID for packet identification29.

Figure 19: Packet Descriptor Structure

Packet Rank and FIFO indexing According to Section
4, we designed a fast RCQ FIFO indexing operation to find
the index of the FIFO associated with the packet rank by bit
slice selection and shifting. By configuring the number of
FIFOs F and the granularity g as powers of two, the associ-
ated FIFO index is always equivalent to a grouping of bits in
the packet rank.

In the configuration shown in Figure 20, the scheduler has
32 FIFOs in the RCQ, and the granularity g of each FIFO
is 32 (each FIFO covers a rank range of 32). We subdivide
the 20-bit packet rank into three sections: 10 Rotation bits,
5 Index bits and 5 Lower bits. Since the granularity g = 32,
the RCQ does not discriminate between descriptors that have
equal (15) upper bits but different (5) Lower bits. Since the
RCQ has 32 FIFOs in total, the FIFO index contains 5 bits.
Sifter uses the Index bits (9th down to 5th bits, inclusive) in
the packet rank to find the FIFO associated with the rank
value. The Rotation bits in the packet rank only indicates

29The Packed ID may not be necessary in many applications but we added
it to detect and identify missing packets

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 91

(a) Different FIFO sizes SF (b) Different PIFO sizes SP (c) Different FIFO numbers F

Figure 17: Normalized FCT with Different Design Parameters

(a) Different FIFO sizes SF (b) Different PIFO sizes SP (c) Different FIFO numbers F

Figure 18: Resource Overhead with Different Design Parameters

the number of times the RCQ has rotated and does not af-
fect FIFO indexing. In the following example in Figure 20,
Sifter needs to find the FIFO index associated with packet
rank 996. After we convert 996 into binary and select the
Index bits, the value is 11111 and matches index 31 of the
associated FIFO. This approach was used to implement fast
RCQ FIFO indexing to avoid using time-consuming math
operations.

Figure 20: Fast RCQ FIFO Indexing

Speed-up Factor in Sifter Prototype In Section 3.5, we
provided the conditions that Sifter must meet to guarantee
inversion-free packet scheduling. Specifically, for a given
FIFO size SF and Sifting threshold T hR, Sifter must provide
a speed-up factor K that satisfies condition (3). In our Sifter
prototype implementation, this speed-up factor K needs to be
greater than 2.

Our Sifter FPGA prototype implementation requires a
minimum of 5 clock cycles for each Enqueue and Dequeue
operation, as well as the operation to simultaneously “sift”
a packet descriptor between the RCQ and the Mini-PIFO.
However, to ensure inversion-free packet scheduling, we
need to provide a speed-up factor K = 2, which means that

the operation to sift a packet descriptor needs to be twice as
fast as the dequeue operation. Therefore, our hardware pro-
totype can sustain a dequeue interval of 10 clock cycles to
achieve the necessary speed-up factor.

F Micro-benchmark Evaluation: FCT and
end-to-end delay

We analyzed multiple flows using the micro-benchmark to
evaluate the FCT and end-to-end delay performance of dif-
ferent packet schedulers. We extended the single-node star
topology with 129 end-hosts to create a 128-to-1 in-cast pat-
tern. We generated empirical traffic according to web-search
flow size distributions in data centers [3]. The arrival pattern
of the TCP flows follows a Poisson distribution, where the
average arrival rate is determined by the configured traffic
load. Upon the arrival of each TCP flow, the simulator ran-
domly selects a sender host and starts a TCP connection30 to
the receiver host.

Sifter has the closest FCT to the ideal PIFO Figure 21
shows the FCT of Sifter, PCQ, SP-PIFO, the ideal PIFO, and
the stand-alone Mini-PIFO in this single-node star topology.
Overall, Sifter has the FCT performance that is closest to
the ideal PIFO. For the small-sized flows, Sifter outperforms
PCQ and SP-PIFO by eliminating packet inversions. When
compared with the stand-alone Mini-PIFO, Sifter has a much

30For simplicity, all packets in our packet-based simulation have the same
size of 1500 bytes and each TCP flow shares the same weight in SFQ.

92 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Single-node FCT, 70% load (b) Single-node FCT, 90% load

Figure 21: FCT with single-node topology

(a) Average delay, 70% load (b) Average delay, 90% load

Figure 22: Average end-to-end delay with the single-node topology

better capacity to reduce packet losses, which leads to fewer
re-transmissions and lower FCT for the mid-sized flows.

Sifter provides lower delay for short flows We examine
the effect of scheduling inversions on short-flow delays be-
cause they are more susceptible to those inversions.

Figure 22 shows the end-to-end delay for packets of short
flows. When compared with PCQ and SP-PIFO, Sifter has
a lower end-to-end average delay in most cases. As dis-
cussed in Section 2.2.1, packet scheduling inversions have
a larger impact on the delays of short-flow packets. When
packets with larger timestamps depart before packets with
smaller timestamps from the short flows, packets from the
short flows experience longer delays.

G Use Case: Modified Shortest Remaining
Processing Time to minimize FCT

Shortest Remaining Processing Time (SRPT) [43] is an ef-
fective scheduling algorithm for minimizing average FCT.
However, SRPT may lead to starvation and packet misor-
dering within each flow. There are two mainstream solu-
tions for these issues: per-flow queues and pFabric’s star-
vation prevention [3]. However, these solutions have costly
implementations. The per-flow queue solution requires the
scheduler to support a number of queues equal to the num-
ber of active flows (> 10K flows [49]), which is imprac-
tical for current switches. The second solution, starvation
prevention by bit-wise comparison among packets from the
same flow, requires complex hardware implementation and
is power-hungry.

Figure 23: Normalized FCT with Modified SRPT

Figure 24: End-to-End Delay with Modified SRPT

pFabric also proposed a modification to the SRPT
scheduling algorithm to make it more practical with negligi-
ble impact on FCT performance. Instead of setting the rank
of each packet using the remaining flow size, this modified
SRPT algorithm simply sets the rank of all the packets from
the same flow as the total flow size. Although the rank does
not reflect the remaining size of each flow, the packet out-of-
order and starvation issues are eliminated.

In this part of the simulation, we applied the modified
SRPT algorithm for Sifter, PCQ, and SP-PIFO. Each of the
schedulers has 16 FIFOs with a depth of 64 and Sifter has
a Mini-PIFO with a capacity of 32. We also set up an ideal
PIFO with a capacity of 1024 and a standalone Mini-PIFO
with a capacity of 32, the same as Sifter.

We applied two types of traffic in the evaluation: Pois-
son arrival traffic and bursty arrival traffic. We generated the
Poisson arrival traffic following the procedure in Appendix F.
The flow size follows empirical distributions of Web-search
traffic [3] and the arrival pattern of the TCP flows follows
a Poisson distribution. In addition, we added short bursts of
TCP flows with Poisson arrivals to form bursty arrival traffic,
aiming to create congestion on the bottleneck link.
Sifter achieves FCT and delay performance matching an
ideal PIFO In the use case of the modified SRPT algo-
rithm, each packet’s rank is equivalent to the flow size it be-
longs to. As a result, the range of packet ranks is not larger
than that of active flow sizes, which makes packet schedul-
ing much easier. Therefore, all packet schedulers can achieve
near-optimal FCT and delay performance, as shown in Fig-
ure 23 (a) and Figure 24 (a).

To increase the range of packet ranks, we introduced short
bursts in flow arrivals. Figure 23 (b) and Figure 24 (b) show
that with a wider range of packet ranks and heavier packet

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 93

(a) Throughput and Packet Rate

(b) Scheduling Order

Figure 25: ASIC Simulation

congestion, the performance of PCQ and SP-PIFO degrades
while Sifter still closely approximates the benchmark of an
ideal PIFO.

H Simulated ASIC Performance

As discussed in Section 5.3, the FPGA prototype sustains a
100 Gbps line rate for packets larger than 370 bytes, due to
the limitation of the clock frequency of 322 MHz achiev-
able in the target FPGA. The 370-byte value is derived as
follows: The 322 MHz clock has a period of 3.1 ns. As
explained in Appendix E it takes 10 clocks to achieve a K
factor of 2. Sifter’s FPGA prototype can dequeue a packet
every 10 x 3.1 = 31 ns, which is equivalent to 3100 bits (387
bytes) at 100 Gbps. The 387-byte length includes 20 bytes of
Ethernet overhead (Preamble, SFD, Interframe Gap), which
makes the actual packet 367 bytes. We rounded up this value
to 370 bytes so that we can easily control the dequeue rate
in hardware by counting down 37 bytes per clock (10 x 37
= 370). To demonstrate that Sifter can achieve 100 Gbps
with a faster clock rate (e.g., in an ASIC), we ran a simula-
tion using our Python-based Cocotb test environment [21],
where we set the clock frequency to 1.7 GHz. As shown in
Figure 25 (a), Sifter can sustain a 100 Gbps line rate with
the minimum size packets of 64 bytes. Figure 25 (b) shows
that Sifter’s VHDL implementation performs inversion-free
scheduling for 64-byte packets when running at 1.7 GHz.

I Pseudo-code of Sifter

We summarize the Enqueue, Dequeue, and Sifting processes
with pseudo-code in Algorithm 1.

Algorithm 1 Enqueue, Dequeue and Sifting process of Sifter

1: function INITIALIZATION
2: Initialize Sentinel s = ∞

1: function ENQUEUE PACKET(P(i,k))
2: if R(i,k) ≤ s then
3: Mini-PIFO enqueue P(i,k)
4: if P(i′,k′) evicted from Mini-PIFO then
5: RCQ enqueue P(i′,k′)
6: else
7: RCQ enqueue P(i,k)

1: function DEQUEUE PACKET()
2: Dequeue packet P(i,k) from Mini-PIFO
3: if OP ≤ T hS then
4: SIFTING()

1: function SIFTING()
2: Find earliest non-empty FIFO f in RCQ
3: Update s as the largest rank covered by FIFO f
4: for Packet P(i,k) in f do
5: if R(i,k) ≤ s then
6: Mini-PIFO enqueue P(i,k)
7: if P(i′,k′) evicted from Mini-PIFO then
8: RCQ enqueue P(i′,k′)
9: s = MAX{R(i′,k′),s}

10: else
11: RCQ enqueue P(i,k)
12: if RCQ is empty then
13: Reset Sentinel s = ∞

14: else if OP ≤ T hS then
15: SIFTING()

For variable names and definitions, please refer to Table 1.

Acknowledgements

We acknowledge AMD/Xilinx for providing the Alveo U250
board and Exegy for providing the nxFramework, both of
which enabled the FPGA prototyping of Sifter. We extend
our sincere gratitude to our shepherd, Brent Stephens, and
the anonymous NSDI reviewers for their valuable feedback.

94 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Flow Scheduling with Imprecise Knowledge

Wenxin Li1 Xin He1 Yuan Liu1 Keqiu Li1 Kai Chen2,3 Zhao Ge1 Zewei Guan1

Heng Qi4 Song Zhang1 Guyue Liu5

1Tianjin Key Laboratory of Advanced Networking, Tianjin University
2Hong Kong University of Science of Technology 3University of Science and Technology of China

4Dalian University of Technology 5New York University Shanghai

Abstract
Most existing data center network (DCN) flow schedul-
ing solutions aim to minimize flow completion times
(FCT). However, these solutions either require precise
flow information (e.g., per-flow size), which is challeng-
ing to implement on commodity switches (e.g., pFab-
ric [7]), or no prior flow information at all, which is at
the cost of performance (e.g., PIAS [10]). In this work,
we present QCLIMB, a new flow scheduling solution de-
signed to minimize FCT by utilizing imprecise flow in-
formation. Our key observation is that although obtain-
ing precise flow information can be challenging, it is pos-
sible to accurately estimate each flow’s lower and upper
bounds with machine learning techniques.

QCLIMB has two key parts: i) a novel scheduling
algorithm that leverages the lower bounds of different
flows to prioritize small flow over large flows from the
beginning of transmission, rather than at later stages; and
ii) an efficient out-of-order handling mechanism that ad-
dresses practical reordering issues resulting from the al-
gorithm. We show that QCLIMB significantly outper-
forms PIAS (88% lower average FCT of small flows) and
is surprisingly close to pFabric (around 9% gap) while
not requiring any switch modifications.

1 Introduction
Flow scheduling is an effective scheme for low latency
data center network (DCN) transport design [7, 10, 24,
41, 27, 37, 33]. One of the most important goals of flow
scheduling is to minimize flow completion times (FCT),
which is essential for many critical DCN applications,
such as web search [5], key value store [2, 40, 3], and
machine learning training [23]. These applications are
dominated by small messages and have stringent latency
requirements, as a result, even a very small delay can
significantly degrade application performance [37].

There are two lines of prior work aimed at mini-
mizing FCT, known as clairvoyant and non-clairvoyant
scheduling. The clairvoyant scheduling [7, 41, 37, 24]

assumes prior knowledge of precise flow size informa-
tion and uses it to approximate the Shortest Remain-
ing Processing Time (SRPT). This approach can theo-
retically achieve optimal performance, but is very chal-
lenging to be deployed in current DCNs, e.g., requir-
ing too many priority queues [7] or re-factor the entire
TCP/IP stack [41, 37, 24]. The non-clairvoyant schedul-
ing [10, 11, 21, 48] requires no prior flow information
and dynamically estimates flow size (e.g., based on the
bytes the flow has sent [10]). While this approach is easy
to implement in practice, it cannot precisely distinguish
between large and small flows at the beginning, thus fail-
ing to minimize FCTs for latency sensitive short flows.

To minimize FCT and be practical, we explore a new
design space that lies between existing clairvoyant and
non-clairvoyant scheduling solutions. Rather than rely-
ing on precise flow information or no prior flow infor-
mation at all, we ask: Is it possible to use imprecise flow
information to minimize FCT with commodity switches?

Answering this question requires identifying useful,
yet imprecise, flow information and incorporating it into
flow scheduling. Some existing work [23, 42] employ
machine learning (ML) techniques to estimate per-flow
size but fail to get high accuracy (§2.2). Utilizing im-
precise flow information is also very challenging. Sim-
ply feeding imprecise information to existing clairvoyant
schedulers significantly degrades their performance [23].

We address these challenges with QCLIMB, a practi-
cal flow scheduling solution that uses imprecise flow in-
formation to minimize FCT in DCNs. QCLIMB is based
on a key observation that although determining per-flow
size of DCN applications can be difficult, it is possi-
ble to accurately estimate each flow’s lower and upper
bounds. Our experiments (§2.3) on realistic DCN work-
loads have shown that the actual sizes of a majority of
flows (> 99.9%) fall within their lower and upper bounds
estimated by random forest (RF) model. Moreover, we
found the actual sizes of small flows are generally close
to their lower bounds, while medium and large flows may

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 95

have a larger gaps between their actual sizes and lower
bounds. These findings provide an opportunity to pre-
cisely differentiate small flows from large flows based on
their lower bounds, making it possible to prioritize small
flows over large ones from the start, rather than in later
stages of transmission.

Based on these findings, we develop a novel schedul-
ing algorithm consisting of two main phases: queue-
climbing-up and queue-climbing-down. Each flow is
initially mapped to a priority queue based on its lower
bound. During the queue-climbing-up phase, the flow is
gradually promoted to higher-priority queues based on
its remaining data size relative to the lower bound. If
the flow is not yet completed after the first phase, it en-
ters the queue-climbing-down phase. During this phase,
QCLIMB gradually demotes the flow to lower-priority
queues based on its bytes sent, and once its upper bound
finishes, it is pulled directly to the lowest priority queue.

QCLIMB’s algorithm is effective at prioritizing small
flows over large ones for two reasons: i) small flows are
close to their lower bounds and thus can finish in the first
few higher priority queues during the queue-climbing-
up phase; and ii) medium and large flows will be trans-
mitted behind small flows during the queue-climbing-up
phase because their lower bounds are relatively larger.
They will also be penalized to the last few lower priority
queues during the queue-climbing-down phase.

In addition to designing the scheduling algorithm, we
must also tackle practical out-of-order (OOO) issues.
This is because during the queue-climbing-up phase, the
later packets of a flow can enter higher-priority queues
than the earlier ones. The default TCP OOO handling
mechanism considers this event as a packet loss and trig-
gers unnecessary retransmissions. This results in serious
performance degradation, especially for small flows (de-
tails in §5.2).

Addressing the OOO issue needs to overcome two
practical challenges: First, how to differentiate reorder-
ings caused by QCLIMB’s scheduling algorithm from
actual packet loss? Second, for packets reordered by
QCLIMB, how to efficiently reorder them at the receiver
side? Simply relying on the default TCP reordering
mechanism will cause redundant retransmissions.

To tackle the first challenge, we present a priority-
based loss detection mechanism at the receiver (§3.2.1).
The idea is to leverage the fact that the packets carrying
the same priority belonging to the same flow should be in
order, and a gap within the same priority is identified as
a loss. For the second challenge, we take a non-intrusive
approach by customizing ACKs for OOO packets at the
receiver to bypass the default TCP ACKing mechanism.
Through this way, normal TCP ACKs will not be sent for
OOO packets, and the senders have no chance to trigger
redundant retransmissions (§3.2.2). Moreover, with the

customized ACK, the sender can quickly retransmit the
lost packet without waiting for timeout (§3.2.3).

We have implemented a QCLIMB prototype (§4),
which only requires end host implementation and the
built-in function (e.g., strict priority queuing) in exist-
ing commodity switches. We implement the schedul-
ing logic and RF model inferencing as Linux kernel
modules, which reside between the NIC driver and the
TCP/IP stack as a shim layer. Further, OOO handling is
implemented within the TCP and IP layers and requires
minimal modifications to the kernel source code but does
not touch the core TCP congestion control code.

We build a small-scale 25G testbed with eight servers
and a Barefoot Tofino switch1, together with large-scale
simulations at 40/100G network, to evaluate the perfor-
mance of QCLIMB (§5). We find that:
• Compared to PIAS [10] that requires no flow size,

QCLIMB reduces the overall average FCT and the
average/tail FCT of small flows by up to 49.5% and
88%/97%, respectively. It also improves the query per-
formance by 70%∼97% in a Memcached application.

• Compared to pFabric [7] that assumes precise flow in-
formation, QCLIMB can deliver an average gap of 9%
for overall performance and even show a 6.8% lower
tail FCT of small flows in a PageRank workload.

• QCLIMB’s design components are effective for the
performance. QCLIMB is resilient to extreme cases
with model-application mismatching, coexisting appli-
cations, and tiny workload. Yet, it outperforms PIAS
even with two queues and low model accuracy.

2 Background and Motivation
2.1 Limitations of Existing Approaches
As shown in Table 1, existing DCN flow scheduling so-
lutions can be classified into two categories:
Clairvoyant solutions: Clairvoyant solutions attempt to
approximate the Shortest Remaining Processing Time
(SRPT) scheduling based on prior knowledge of pre-
cise flow size information. In general, they can provide
good performance but have significant limitations in de-
ployability. First, pFabric [7] uses millions of priorities
to implement SRPT, whereas such fine-grained priority
queues require clean-slate switches and are not supported
by existing commodity switches. Second, pHost [24],
Homa [37] and EPN [34] use limited number of priority
queues, but need to re-factor the network stack or rely
on programmable switches. Finally, PDQ [28] and Fast-
Pass [41] do not use priorities but are impractical as well.
For instance, PDQ [28] requires non-trivial switch modi-
fication to adjust the flow rate to implement flow preemp-
tion. FastPass [41], as a centralized scheduling design, is
challenging to be deployed in a large cluster.

1Though the switch is P4-programmable, we use it as a commodity
hardware in our evaluation.

96 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Schemes
Requiring no switch changes

or advanced hardware
Using limited number

of priority queues
Retaining existing

TCP/IP network stacks
Using lower bounds
for flow scheduling

Clairvoyant

pFabric [7] No No No No
PDQ [28] No × (priority queues are not required) No No
EPN [34] No Yes Yes No

FastPass [41] Yes (but centralized arbiter is required) × (priority queues are not required) No No
pHost [24] Yes Yes No No
Homa [37] Yes Yes No No

Non-Clairvoyant PIAS [10] Yes Yes Yes No
QCLIMB Yes Yes Yes Yes

Table 1: Summary of main DCN flow scheduling schemes in literature and comparison to QCLIMB.

Non-clairvoyant solutions: Non-clairvoyant schedulers
are agnostic about flow size information and generally
use the idea of flow aging to estimate the pending data
with the bytes a flow has already sent. For exam-
ple, PIAS [10] gives the highest priority to new flows
and then gradually demotes their priorities as they send
more data. It is a readily-deployable solution that works
with multiple priority queues available in commodity
switches and is compatible with legacy TCP/IP stacks.
However, PIAS has limited ability in minimizing FCT
(§5).
In short, this short analysis inspires us to think about if
there is a middle-point design between clairvoyant and
non-clairvoyant schedulers, i.e., scheduling flows with
imprecise knowledge and with commodity switches.

2.2 Imprecise Flow Information
Indeed, researchers have shown the possibility to learn
flow size information from past traces using prevailing
ML techniques [23, 42, 35, 30]. Nevertheless, the esti-
mated flow sizes of ML models are often imprecise. To
validate this point, we use a widespread ML technique—
RF, over three workloads2: K-Means, PageRank, and
SGD, provided by [23]. Fig. 1 plots the gap between ac-
tual and estimated flow sizes for different-scale RF mod-
els we trained (i.e., different maximum tree depth d). In
general, a larger d leads to higher prediction accuracy.
However, the gap between actual and estimated flow
sizes always exists. Under d = 10, the mean/maximum
gap can reach 856KB/296811KB, 820KB/333271KB,
and 55KB/54446KB, for the K-Means, PageRank and
SGD workloads, respectively. In particular, for PageR-
ank under d = 10 RF model, 34% of flows have a gap of
over 100KB to their estimated sizes.

Little work can utilize imprecise knowledge well. The
only work, FLUX [23], directly takes imprecisely esti-
mated flow sizes as input for clairvoyant schedulers (e.g.,
pFabric [7]), which, however, suffers degraded FCT per-
formance. Indeed, we did a simulation and the results
show that the average FCT of small flows achieved by
pFabric with imprecise knowledge can be slowed down
by up to 22.8× (appendix A). Even though the estimated

2We did not use traditional DCN workloads like web search [5] and
data mining [25] because they only provide flow size distribution. The
workloads of [23] are collected from university clusters running real
ML applications and contain enough information for learning.

K-Means PageRank SGD

100KB

G
ap

 (b
yt

es
)

1

103

106

109

Maximum tree depth d
1 2 3 4 5 6 7 8 9 10

Figure 1: The gap between predicted and actual flow sizes.

flow sizes are imprecise, in what follows we demonstrate
that the lower bound part is highly accurate.

2.3 Motivation: Lower Bound on Flow Size
2.3.1 Application Examples
We begin by introducing a few application examples in
which lower bounds on flow sizes indeed exist:

Distributed ML: Training ML models in parallel is an
increasingly important workload in datacenters. During
the model training, each generated flow needs to transfer
at least one parameter update (e.g., a 32-bit integer). This
means that the flow is at least ∼40 bytes, considering
the length of various headers including TCP and IP. As
a concrete example, we inspect the flow size distribution
of a SGD workload [23] and find that all flows are more
than 44 bytes (see §5.1).

Web Search: Large-scale web search application is an-
other example, where a query might be sent to many
aggregators and workers, each responsible for a dif-
ferent part of the index. From a networking perspec-
tive, it contains query traffic, delay-sensitive short mes-
sages for cluster coordination, and background traffic
for response-quality-oriented massive data transfer. The
smallest flow comes from the query traffic, e.g., transfer-
ring the index of at least one page between workers and
aggregators, which is typically lager than 1.6KB [5].

2.3.2 Experimental Observations
The above examples only provide application-level iden-
tical lower bounds for all flows. These bounds are loose
for individual flows. That said, they may be far away
from the actual flow sizes, thus limiting the effect of flow
scheduling. To provide a tight lower bound for each in-
dividual flow at its start, we use the RF technique [15].
Specifically, we keep the full conditional distribution of
each RF tree’s decisions and use a quantile regression
forest (QRF) method [36] to build a prediction interval
for each flow’s size (see appendix B). Fig. 2 gives an in-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 97

Small flow
Medium flow
Large flow

Ac
tu

al
 s

iz
es

 a
nd

 p
re

di
ct

io
n

in
te

rv
al

s
(c

en
te

re
d)

−2
×1

0
8

0
2×

10
8

ordered samples (flows)
0 10,000

(a) K-Means (d = 5)

Ac
tu

al
 s

iz
es

 a
nd

 p
re

di
ct

io
n

in
te

rv
al

s
(c

en
te

re
d)

−2
×1

0
8

0
2×

10
8

ordered samples (flows)
0 10,000

(b) PageRank (d = 5)

Ac
tu

al
 s

iz
es

 a
nd

 p
re

di
ct

io
n

in
te

rv
al

s
(c

en
te

re
d)

−5
×1

0
7

0
5×

10
7

ordered samples (flows)
0 50,000

(c) SGD (d = 5)
Small flow
Medium flow
Large flow

Ac
tu

al
 s

iz
es

 a
nd

 p
re

di
ct

io
n

in
te

rv
al

s
(c

en
te

re
d)

−2
×1

0
8

0
2×

10
8

ordered samples (flows)
0 10,000

(d) K-Means (d = 10)

Ac
tu

al
 s

iz
es

 a
nd

 p
re

di
ct

io
n

in
te

rv
al

s
(c

en
te

re
d)

−2
×1

0
8

0
2×

10
8

ordered samples (flows)
0 10,000

(e) PageRank (d = 10)

Ac
tu

al
 s

iz
es

 a
nd

 p
re

di
ct

io
n

in
te

rv
al

s
(c

en
te

re
d)

−5
×1

0
7

0
5×

10
7

ordered samples (flows)
0 50,000

(f) SGD (d = 10)

Figure 2: Relationship between actual flow sizes and pre-
diction intervals. For better visualization, flows are ordered
according to their prediction intervals.

tuitive visual feeling3 for the prediction intervals. We
have the following observations that inform our design.
Observation 1 (O1): With RF model, each flow can have
a bounded interval on its data size, and the vast majority
of flows can be accurately bounded.

A flow is bounded if its actual size falls exactly within
its lower and upper bounds; otherwise, it is an out-of-
bound flow. As shown in Table 2, the ratio of bounded
flows accounts for 99.9055%∼100%. This result stems
from the fact that QRF keeps the full conditional distri-
bution of the estimated size; thus, the obtained prediction
intervals can cover each flow with high probability.
Observation 2 (O2): For small flows, their actual sizes
are mostly close to their lower bounds.

From Fig. 2, we see that small flows are mostly scat-
tered around their lower bounds. The average gap of
small flows’ actual sizes to their lower bounds can be
only 12983B, 12630B, and 213B, for K-Means, PageR-
ank, and SGD workloads, respectively. For the root
cause of this phenomenon, an intuitive conjecture is that
these workloads exhibit a long-tail distribution where
most flows are short. This makes an RF model have
many small values in its leaf nodes, thus predicting a
lower bound close to the small flow’s size.
Observation 3 (O3): Medium and large flows’ lower
bounds are relatively larger than those of small ones.

Across all the cases we examined, the aver-
age lower bound of small flows is 52B∼12KB,
1002B∼1198B, and 80B∼664B, for K-Means, PageR-
ank, and SGD workloads, respectively, For medium
(large) flows, the average lower bound is 52B∼124KB
(52B∼26899KB), 1002B∼2090B (1002B∼19060KB),
and 255KB∼ 260KB (260KB∼1109KB) for the three
workloads, respectively.
Observation 4 (O4): For out-of-lower-bound flows, the
small flows have a smaller gap to relevant lower bounds

3Fig. 2 only shows two settings (i.e., the maximum tree depth d = 5
and 10), but our observations are condensed from all settings we tested.

Workloads
The ratio of

bounded flows
The ratio of

out-of-bound flows

K-Means d = 5 99.9936% 0.0064%
d = 10 99.9301% 0.0699%

PageRank d = 5 100% 0
d = 10 99.9055% 0.0945%

SGD d = 5 100% 0
d = 10 99.9877% 0.0123%

Table 2: The ratio of bounded and out-of-bound flows.

than medium and large ones.
We gather the out-of-lower-bound flows and explore

how far their actual flow sizes are from their lower
bounds. We observe that this differs in different types of
flows. For small flows, the average gap between their ac-
tual sizes and lower bounds is only 2.8B∼25KB, across
the cases we tested. For medium and large flows, this
gap can reach 68KB∼743KB and 6863KB∼77072KB,
respectively.

Observation 5 (O5): For out-of-upper-bound flows, they
are primarily medium and large flows and may go be-
yond their relevant upper bounds a lot.

We barely see any small flows going beyond their up-
per bounds in our experiments. The out-of-upper-bound
flows are dominated by medium and large ones; yet, their
actual flow sizes have a substantial gap to relevant upper
bounds, i.e., 54KB∼2322KB and 262KB∼43252KB for
medium and large flows, respectively.

Observations O4 and O5 can be intuitively caused by
different densities of flow size between small and medi-
um/large flows. Compared to small flows, medium/large
flows have a more sparse distribution of flow size value;
thus, if being out-of-bound, they are more likely to have
a larger gap to their bounds.
Discussion: The observations above might not manifest
for applications without long-tail flow size distributions,
e.g., local file system [22] and archival data [43]. This
is expected because regular RF shows high predictabil-
ity for majority class samples, while small flows in these
applications are minority classes. A possible way would
be to modify the weighting strategy in regular RF [45] to
bias small-value samples and consequently make better
predictions for small flows than medium/large ones.

3 QCLIMB Design

3.1 Lower-bound-based scheduling
The above findings offer an opportunity to differentiate
small flows from large flows precisely, based on their
lower bounds. This makes it possible to prioritize small
flows over large ones from the start, rather than in later
stages of transmission. Based on this insight, we develop
a novel flow scheduling algorithm consisting of two main
phases: queue-climbing-up and queue-climbing-down.
Phase 1: Queue-Climbing-Up. The observations O1 in
§2.3 indicate that the lower bound of each flow is highly

98 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Priority
Tagging

1 2 3 4 5 6

1 2 3

LB=4
AS=7

LB=3
AS=3

Queue 1

Queue 2

Queue 3

Queue 4…

Time
2 4 6 8 10

1

…

…

2

3

1

2 3

4

5 6

77
Incoming pkts of f2

Incoming pkts of f1

Queue K

f1
climbing
up

0

f2
climbing
up

f2
climbing
down

Figure 3: A queue-climbing-up&-down example with two
flows: f1 and f2. AS: actual size; LB: lower bound.

credible. That said, each flow’s actual size is, with a high
probability, larger than its lower bound. So, QCLIMB
hypothetically believes that each flow’s size equals its
lower bound. In particular, QCLIMB lets each flow en-
ter a lower-bound-matched initial priority queue first and
then gradually promotes it from this initial queue to the
higher-priority ones based on the remaining bytes to its
lower bound (see Fig. 3). In this phase, flows with
smaller lower bounds but the same bytes sent or larger
bytes sent but the same lower bounds are likely to have
higher priority.
Phase 2: Queue-Climbing-Down. The hypothetical
judgment made above can be wrong for the flow not yet
completed after its lower bound part finishes. QCLIMB
thus takes an additional queue-climbing-down phase as
a remedy. Specifically, QCLIMB pulls back the flow to
its initially entered priority queue and punishes it by de-
moting it to lower-priority queues gradually based on its
bytes sent. Moreover, if the bytes sent exceed the upper
bound, QCLIMB takes a greater punishment by dragging
the flow down to the lowest priority queue.
Why this works. Our scheduling algorithm is able to
effectively prioritize small flows over large ones for the
following reasons. First, if a flow is a small one, its size
is near the lower bound (O2); thus, it can finish with the
first few higher priorities. Second, small flows can keep
relatively higher priorities than medium and large flows
during the queue-climbing-up phase since their lower
bounds are somewhat smaller (O3). Third, despite very
few small out-of-lower-bound flows, they will not enter
a priority queue lower than the one mapping their actual
sizes because of their small gap to lower bounds (O4)
and the relatively large flow size range of each priority
queue. Fourth, a medium or large flow will eventually
be penalized to lower-priority queues or even the lowest
priority queue (O5).

In comparison to the non-clairvoyant solutions such as
PIAS [10], which demotes flows as they transmit more
data, medium/large flows can only be detected and sep-
arated into low-priority queues after they coexist with
short flows in higher-priority queues for a short period.

In contrast, QCLIMB separates flows into different pri-
ority queues once they start, using their lower bounds.
Putting it all together: QCLIMB adopts multiple prior-
ity queues available in commodity switches. Packets car-
rying different priorities will enter into different priority
queues. Packets in different queues are scheduled with
strict priority, while packets in the same queue follow
FIFO scheduling. Packet priority tagging (appendix C)
is distributed at each end-host, which is triggered when-
ever a new packet p arrives. It first gets the bytes sent B,
lower bound L, and upper bound U for the parent flow
of the arriving packet p. It then relies on the following
three steps working cooperatively.

1. Priority Promoting: If B < L, we invoke get priority
for determining packet p’s priority, which scans queue
thresholds bottom-up and returns the first priority hav-
ing a threshold smaller or equal to L−B. Meaning, a
flow is initially mapped to a priority queue according
to its lower bound. Then, it climbs up from this initial
queue to higher-priority queues gradually based on the
remaining bytes to its lower bound.

2. Delay Demoting: A flow may only contain minor er-
rors: its lower/upper bounds map to the same priority.
Such flow can only remain a small amount of data af-
ter the first phase. So, we take a delay demoting ap-
proach here, i.e., we keep each flow’s priority (mostly
the highest one) for a short while to transmit a slack
size S more data to hope it can finish.

3. Priority Demoting: At this point, if a flow is not yet
completed, we will change the strategy and gradually
demote its packets to lower-priority queues according
to its bytes sent. If the flow is not end even after the
upper bound portion finishes, we move it to the lowest
priority queue directly.

Choice of Slack Size S: A larger slack size S may al-
low more flows to complete before switching to lower-
priority queues while leading more large flows to coexist
with small flows. The optimal value of S in terms of aver-
age FCT is closely related to the gap between the actual
sizes and lower bounds of flows, and varies under differ-
ent traffic patterns and different RF models. However,
as mentioned earlier, almost all small flows are close
to their lower bounds and can finish within the queue-
climbing-up phase, making QCLIMB beneficial under a
wide range of S (see §5.2).

3.2 Out-of-Order Handling
In addition to designing the scheduling algorithm, we
must also tackle practical out-of-order (OOO) issues.
This is because during the queue-climbing-up phase, the
later packets of a flow can enter higher-priority queues
than the earlier ones. As a result, the subsequent pack-
ets of a flow may arrive at the receiver before previous
ones, i.e., out-of-order (OOO). The default TCP OOO

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 99

0-99 100-199 300-399

Seq. num. list monitored by the receiver

With different priority?
NoYes

reordering is required retransmission is required

Figure 4: Priority-based loss detection.

handling may treat this event as loss, thus triggering un-
necessary retransmissions and significantly hurting the
performance, especially for the tail FCT of small flows
(see Fig. 15 in §5.2). Addressing the OOO issue needs
to overcome two practical challenges: (i) how to differ-
entiate reorderings caused by QCLIMB’s scheduling al-
gorithm from actual packet loss? and (ii) for packets re-
ordered by QCLIMB, how to efficiently reorder them at
the receiver side?
3.2.1 Loss detection
To detect if an OOO event is due to loss, QCLIMB adopts
a priority-based loss detection mechanism at the receiver.
This mechanism leverages the fact that for each flow, the
packets carrying the same priority traverse the same pri-
ority queue in each switch along the transmission path4

and should be in-order. A gap within the same priority is
assumed to be a loss. For a better intuition of this point,
we consider a concrete example in Fig. 4. As we can
see, there appears a sequence number gap. We check if
the left-hand packet of this gap has different priority as
the right-hand packet. If yes, the packet may be in-flight,
and reordering is required (§3.2.2); Otherwise, the rel-
evant packet must be lost, and the retransmission logic
will be invoked (§3.2.3). Note that because a flow may
transmit multiple packets using the same priority, there
could be a corner case. More specifically, when the gap
occurs at the boundary of a priority, it will not be iden-
tified as a loss with the above mechanism, but it is still
likely to be a loss. In this paper, we leave such loss de-
tection to timeout.
3.2.2 Packet reordering
Packet reordering is conducted by separating OOO pack-
ets into slow path, as detailed below. Starting from the
bottom to up, packets arrive at the NIC and are read into
the kernel as skbs. Once a packet is copied to skb, it will
be pushed up to the TCP layer, where QCLIMB checks if
it is in-ordered. If yes, this packet will be sent along the
fast path that directly connects to the application layer re-
ceiver buffer. Otherwise, this packet will be identified as
an OOO packet. As such, QCLIMB will send this packet
along the slow path and store it in an OOO receive queue.
After the missing packets arrive, QCLIMB will forward
it up to the application layer receive buffer.

While the reordering is simple, the OOO event caused
by QCLIMB’s scheduling may mislead the default TCP

4We consider single-path routing for each flow, i.e., ECMP [29].

stack to trigger duplicate ACKs from receiver to sender,
thus leading to redundant retransmissions. To avoid this
phenomenon, we let the receiver bypass the default TCP
ACKing mechanism by directly sending a customized
ACK to the sender on receiving any OOO packet. Mean-
while, we let the sender maintain a scoreboard to track
which packets have been cumulatively and selectively
acknowledged. Here, each customized ACK carries the
cumulative acknowledgment (indicating its expected se-
quence number), a scoreboard update flag, and a SACK
tag (indicating the OOO packet received). Upon receiv-
ing such ACK, the QCLIMB sender checks if this ACK
contains an update flag. If yes, the sender will update its
scoreboard to allow TCP to continue as usual. As such,
the sender will not have a chance to trigger redundant re-
transmissions because the TCP’s normal ACKs for OOO
packets will not be sent.
3.2.3 Packet retransmission
When a loss is detected, the receiver will not discard
the OOO packet, and the sender will retransmit the lost
packet. More precisely, the receiver also sends a cus-
tomized ACK, which has the same format as that in
§3.2.2 but has a different (retransmission) flag. Upon
receiving such an ACK, the QCLIMB sender checks if
this ACK contains a retransmission flag. If yes, it enters
loss recovery mode, where the sender retransmits the first
packet that corresponds to the cumulative acknowledg-
ment value. Any subsequent packet will be retransmit-
ted if the sender receives another ACK carrying a higher
cumulative acknowledgment value and a retransmission
signal. Through this way, we can quickly retransmit the
lost packets without waiting for the timeout.

Note that to guarantee the delivery of all ACKs, we
transmit them at the highest priority. Moreover, we also
give the highest priority to retransmitted packets because
we want to fill the gap as soon as possible to minimize
the resequencing buffer’s memory footprint.

4 Implementation
We have implemented a QCLIMB prototype under the
Linux 4.15 kernel, as detailed below.

4.1 Sender
Flow monitoring: We implement this module in Linux
kernel space and integrate it with the RF inferencing and
packet tagging modules. It collects flow information us-
ing the Netfilter hook [1]. For each new flow, we collect
its start time, flow gap (time since the end of the previ-
ous flow), flow sizes for the last 5 flows, and TCP 5-tuple
(i.e., source/destination IPs and ports, protocol ID) and
feed them into the RF inference module. During the flow
lifetime, we also record its bytes sent to guide the packet
tagging. For each finished flow, we append its flow size
to the features and transfer the collected information to

100 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5 6 7 8

Pkt. PriorityUnused ECN
Retx. or Scoreboard

Update Flag

Figure 5: The TOS field format used in QCLIMB.

RF training using the netlink channel.
RF training: This module is in user-space. It receives
flow information and performs RF training. We trans-
fer the trained RF model to the RF inferencing module,
again using the netlink channel.
RF inferencing: We implement this module in the ker-
nel space to avoid frequent cross-space communication
between packet tagging and RF inferencing. Specifically,
we use C to implement the RF model in the kernel. This
module performs online inference to obtain the lower/up-
per bounds for each flow and passes the inferred informa-
tion to the packet tagging module for flow scheduling.
Packet tagging: This module enforces the scheduling
policies of QCLIMB algorithms by marking packets with
priorities at end hosts. We implement it as a Linux ker-
nel module, locating between TCP/IP stack and Linux
TC. For each outgoing packet, this module has three key
operations. First, it maintains a hash-based flow table
that stores the 5-tuple and bytes sent. Second, it iden-
tifies the flow the packet belonging to and updates the
bytes sent of the relevant entry in the flow table. Third,
based on the lower/upper bounds and bytes sent of the
flow, it calculates a priority for this packet and invokes
the ipv4 change dsfield function to tag the priority
into this packet’s IP header using three bits of the TOS
field (as shown in Fig. 5). Note that three bits can repre-
sent 8 priorities at most, which can match the number of
priority queues in most commodity switches.
Packet retransmission: This module is mainly respon-
sible for retransmitting the lost packet identified by the
priority-based loss detection mechanism. Specifically,
we have two operations. First, using some newly added
codes in the tcp rcv established function, we check
if an arriving ACK contains a flag (the 2nd and 3rd bit in
TOS field). If no, the TCP/IP stack continues as usual.
Otherwise, we go to the second operation, which first
further checks the value of this flag. If the flag equals to
01, retransmission is needed; if it is 10, only scoreboard
update is required. For retransmission, we get the se-
quence number of the lost packet according to the ACK’s
ack seq field and then invokes the tcp transmit skb

function to retransmit the lost packet.
Rate control: Since our implementation does not touch
the congestion control code, QCLIMB is compatible
with any TCP-like congestion control implementations
(e.g., TCP, DCTCP). Note that when a loss is detected
by the priority-based detection mechanism (§3.2.1), we
halve the window size of the relevant flow to avoid in-
jecting too many traffic in the network.

K-Means
PangeRank
SGD

C
D

F

0

0.5

1.0

Flow size (B)
102 104 106 108

Figure 6: Workloads used for evaluation.

4.2 Receiver
Loss detection: This module contains three opera-
tions to enforce the loss detection mechanism described
in §3.2.1. First, as packets are read in off the wire
and converted to skbs, the packet priority is copied to
the skb->priority field. Second, we compare the
skb->priority of the first segment in the OOO receive
queue with that of the last segment in the in-order TCP
receive buffer to check if there is a missing gap. Third,
QCLIMB adds a new skb->flag field in skb buff. The
skb->flag equals to 0 by default and skb->flag=1
means that the lost packet needs retransmission. Note
that skb->flag is in the receiver’s kernel, we need to
send it over the network to the relevant sender. To do this,
we call a newly added function, tcp send ack qclimb,
to send a customized ACK and tag the skb->flag in
this ACK packet. Specifically, we copy the skb->flag

value to the 2nd&3rd bits of the TOS field in this ACK’s
IP header. Note here, when an OOO event is not due to
loss, we will also send a customized ACK, but set the
skb->flag value to 2 and copy it to the ACK’s header
to notify the sender to update the scoreboard solely.
Packet reordering: As OOO packets and in-order pack-
ets are separated into different queues, the reordering
module is quite simple. Whenever there is a data packet,
the receiver scans the OOO receive queue to move any
in-sequence packets to the in-order receive buffer. After
that, users leverage recv function to copy data from the
TCP receive buffer to application layer receive buffer.
Remark: On the switch side, QCLIMB only needs to
configure strict priority queuing (SP); if TCP/ECN trans-
port is in use, ECN is also required. Both SP and ECN
are standard features in existing commodity switches.

5 Evaluation
We evaluate QCLIMB through a combination of testbed
experiments and large-scale simulations and show that
• QCLIMB achieves lower FCTs than PIAS (§5.1).
• QCLIMB’s design components are effective (§5.2).
• QCLIMB works well in large datacenters (§5.3).

5.1 Testbed Experiments
Testbed: We build a small-scale testbed consisting of
8 servers connected to a Barefoot Tofino switch using
25Gbps links. Each server is equipped with a 16-core
CPU (Intel Xeon Silver 4314@2.4GHz), 64G memory,
a 25G NIC (Mellonax CX5), and installed with Ubuntu
(kernel version 4.15.1). The switch runs SONIC and is

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 101

PIAS
QCLIMB
QCLIMB-PS

FC
T

(m
s)

0.2

0.4

0.6

0.8

Load0.3 0.5 0.7 0.9

(a) K-Means

FC
T

(m
s)

0.5

1.0

1.5

Load0.3 0.5 0.7 0.9

(b) PageRank

FC
T

(m
s)

0

0.5

1.0

Load0.3 0.5 0.7 0.9

(c) SGD
Figure 7: Average FCT of 0-100KB small flows.

PIAS
QCLIMB
QCLIMB-PS

FC
T

(m
s)

0

5

10

15

Load0.3 0.5 0.7 0.9

(a) K-Means

FC
T

(m
s)

0

5

10

15

Load0.3 0.5 0.7 0.9

(b) PageRank

FC
T

(m
s)

0

5

10

15

Load0.3 0.5 0.7 0.9

(c) SGD
Figure 8: 99th percentile tail FCT of 0-100KB small flows.

configured with strict priority queuing with at most 8
queues. We use the DCTCP as the rate control.
Comparisons: We compare QCLIMB with PIAS [10]
and QCLIMB-PS. We chose PIAS because it has the
same practical features as QCLIMB but falls short
in FCT minimization. QCLIMB-PS is a variant of
QCLIMB that takes precise flow sizes as input and pro-
motes a flow to higher-priority queues based on its re-
maining bytes. For OOO handling, it uses the same com-
ponent as in §3.2. QCLIMB-PS is essentially a clair-
voyant scheduler and is used for quantifying how far
QCLIMB is from the scheme that has precise knowledge.
Workloads: As mentioned in §2, we mainly use three
workloads provided by the paper [23]: K-Means, PageR-
ank and SGD. Their distributions are shown in Fig. 6.
All the three workloads exhibit a heavy-tailed distribu-
tion, where most flows are short and most of the traffic
are dominated by a small percent of large flows. To re-
play these workloads in our testbed, we strictly keep the
message arrival order and let message sizes follow the
original testing traces. We reset the inter-arrival time of
requests to match a particular network load.
Setup: For each workload, we first train an RF model
(with the maximum tree depth d = 10 by default) for ∼3
minutes using 80% of the dataset and then use the trained
RF model for testing with the remaining dataset to con-
duct our evaluation. We use 8 priority queues by default.
We use the same queue thresholds as the PIAS paper [10]
for all workloads. We set slack size S to 100KB by de-
fault. We set the RTOmin to 10ms and use a per-port
buffer of 350KB at each switch.
Performance of small flows: Fig. 7 and Fig. 8 first
show the average and tail FCT of small flows, respec-
tively, for the K-Means, PageRank and SGD workloads
with the network load varying from 0.3 to 0.9. We
have the following two observations. First, for all work-
loads, QCLIMB outperforms PIAS in both the average
and tail FCT of small flows. Compared to PIAS, it
reduces the average/tail FCT of small flows by up to
44%/96%, 58%/96%, and 88%/97%, for the K-Means,
PageRank, and SGD workloads, respectively. This is be-

PIAS
QCLIMB
QCLIMB-PS

FC
T

(m
s)

3

4

5

6

Load0.3 0.5 0.7 0.9

(a) K-Means

FC
T

(m
s)

5

10

15

Load0.3 0.5 0.7 0.9

(b) PageRank

FC
T

(m
s)

5

10

15

Load0.3 0.5 0.7 0.9

(c) SGD
Figure 9: Average FCT of 100KB-10MB medium flows.

PIAS
QCLIMB
QCLIMB-PS

FC
T

(m
s)

500

1000

1500

Load0.3 0.5 0.7 0.9

(a) K-Means

FC
T

(m
s)

500

1000

1500

2000

Load0.3 0.5 0.7 0.9

(b) PageRank

FC
T

(m
s)

100

200

300

400

Load0.3 0.5 0.7 0.9

(c) SGD
Figure 10: Average FCT of >10MB large flows.

cause QCLIMB promotes a flow’s priority until its lower
bound part finishes, while small flows are mostly scat-
tered around their lower bounds. Therefore, unlike PIAS,
QCLIMB will not let small flows suffer from the queue-
climbing-down phase (see §5.2). Second, QCLIMB
shows a comparable average and tail FCT of small flows
with QCLIMB-PS. Particularly, compared to QCLIMB-
PS at 0.7 network load, QCLIMB has a 3% gap for the
small average FCT in PageRank workload and a 5% gap
for the small tail FCT in SGD workload.
Performance of other flows: Fig. 9, Fig. 10 and Fig. 11
depict the FCT statistics for the other flows. The first ob-
servation is that QCLIMB outperforms PIAS for medium
flows. Under a moderate 0.5 load, QCLIMB reduces the
average FCT of medium flows over PIAS by 8%, 24%,
and 8% for the K-Means, PageRank, and SGD work-
loads, respectively. This is expected because medium
flows are more likely to leave a small amount of data
after their lower bound parts finish (see Fig. 2), thus are
more likely to complete in QCLIMB’s delay demoting
step. As the second observation, we find that QCLIMB
even performs slightly better than PIAS for large flows in
some cases. For instance, compared to PIAS, QCLIMB
reduces the average FCT of large flows by 5% on aver-
age across all network loads in the SGD workloads. The
last observation is for the average FCT of all flows. More
precisely, QCLIMB shows up to 6%, 15%, and 23% re-
ductions in overall average FCT over PIAS for the K-
Means, PageRank, and SGD workloads, respectively.
Results with the Memcached application: We further
build a Memcached application to evaluate QCLIMB’s
performance. We use one host as the client and the re-
maining 7 hosts as servers. Before sending each GET
query (i.e., memcached get()), the client will first send
a SET (i.e., memcached set()) request to pre-populate
each server with a key-value pair. The key is flow id.
The value is flow size which is randomly chosen ac-
cording to a Facebook Memcached workload [8]. Once
the SET request is completed, the client immediately
sends a GET query to each server to get the value just
populated by the SET request. We repeat this process

102 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

PIAS
QCLIMB
QCLIMB-PS

FC
T

(m
s)

5

10

15

20

25

Load0.3 0.5 0.7 0.9

(a) K-Means

FC
T

(m
s)

10

20

30

40

Load0.3 0.5 0.7 0.9

(b) PageRank

FC
T

(m
s)

2
4
6
8

10
12

Load0.3 0.5 0.7 0.9

(c) SGD
Figure 11: Average FCT of all flows.

PIAS
QCLIMB

Q
C

T
(m

s)

0

2

4

Background Traffic Load
0.3 0.5 0.7 0.9

(a) Overall average QCT

Q
C

T
(m

s)
0

2

4

Background Traffic Load
0.3 0.5 0.7 0.9

(b) Avg. QCT of <100KB queries

Q
C

T
(m

s)

1

10

100

Background Traffic Load
0.3 0.5 0.7 0.9

(c) Tail QCT of <100KB queries

Q
C

T
(m

s)

0

20

40

Background Traffic Load
0.3 0.5 0.7 0.9

(d) Avg. QCT of >100KB queries
Figure 12: QCT statistics across different query sizes.

roughly 140000 times and thus generate around 140000
GET queries. A GET query completes only when the
client receives all servers’ responses. We only consider
GET queries and measure the query completion time
(QCT) as the application performance metric. We also
inject background traffic, which is a mix of small and
large flows generated according to a Web Search work-
load [5]. The background traffic load varies from 0.3
to 0.9. We calculate each query’s size as the sum of
its individual flows’ size. Fig. 12 compares the QCT
of QCLIMB with that of PIAS, across different query
sizes and different background traffic loads. Compared
to PIAS, QCLIMB reduces the overall average QCT
by 70%∼97%, the average/tail QCT of 0-100KB small
queries by 70%∼97%/6%∼99.8%, and the average QCT
of >100KB queries by 21%∼94%. Note that QCLIMB’s
QCT does not increase with background traffic load.
This is because background traffic is transmitted with the
lowest priority, while all queries’ traffic is in flows less
than 100MB and will not overlap with background traffic
in the same queue under QCLIMB’s scheduling logic.
Tiny workload: We further evaluate QCLIMB in a Ten-
sorflow workload from the Flux dataset [23]. This work-
load contains a significant proportion (i.e., 77%) of very
tiny flows (i.e., with less than 100B) and thus is more
likely to cause congestion than the other workloads. De-
spite this, we can observe from Fig. 13 that QCLIMB
still shows superior performance. Compared to PIAS, it
reduces the overall average FCT by up to 81.1%. For
the average/tail FCT of small flows, the improvement of
QCLIMB over PIAS is up to 70%/96.4%. The reduc-
tions of QCLIMB in small flows do not penalize other
flows. In fact, QCLIMB even reduces the average FCT
of >100KB flows by 22.7%∼44.2%, compared to PIAS.

PIAS
QCLIMB
QCLIMB-PS

FC
T

(m
s)

0
1
2
3

Load
0.3 0.5 0.7 0.9

(a) Overall average FCT

FC
T

(m
s)

0.5

1.0

Load
0.3 0.5 0.7 0.9

(b) Avg. FCT of <100KB flows

FC
T

(m
s)

0

5

10

15

Load
0.3 0.5 0.7 0.9

(c) Tail FCT of <100KB flows

FC
T

(m
s)

5

10

Load
0.3 0.5 0.7 0.9

(d) Avg. FCT of >100KB flows
Figure 13: FCT statistics across different flow sizes under
Tensorflow workload.

QCLIMB-FP with imprec. size
QCLIMB

QCLIMB-PP with imprec. size
QCLIMB

0.
96 3.

01

27
.2

1.
03 2.

48

25
.4

1.
19 3.

29

30
.3

1.
14 2.

07

27
.8

1.
11 2.

15

1.
44

1.
09 1.
59

1.
2

1

10

100

1000

K-Means
All Avg.

Small Avg.

Small Tail

PageRank
All Avg.

Small Avg.

Small Tail

SGD
All Avg.

Small Avg.

Small Tail

Figure 14: Effectiveness of error-tolerant scheduling.

5.2 QCLIMB Deep Dive
5.2.1 Effectiveness of the design components
Effect of lower-bound-based scheduling: We first
check the effectiveness of QCLIMB’s scheduling design.
We construct two baselines, both of which directly use
the estimated flow sizes for scheduling. The first one,
QCLIMB-FP, determines a flow’s priority only once by
comparing its estimated flow size with queue thresholds.
The second one, QCLIMB-PP, has two more steps than
QCLIMB-FP. More precisely, it gradually promotes a
flow’s priority according to its remaining bytes to the
estimated size. Afterward, if the flow is not yet ended
and the sent bytes exceeds the estimated size, it directly
pulls this flow to the lowest priority queue. Fig. 14 shows
the results for different workloads under load 0.5. We
observe that compared to QCLIMB-FP and QCLIMB-
PP, respectively, QCLIMB brings up to 16% and 12%
improvements in overall average FCT, and especially,
it brings up to 70%/97% and 60%/96% improvements
in average/tail FCT of small flows. Since QCLIMB is
at most 1.63× slower than QCLIMB-PS for the aver-
age FCT of small flows (see 0.7 load in Fig. 7a), the
3.29× speedup of QCLIMB over QCLIMB-PP means
that QCLIMB reduces the impact of prediction size er-
rors on small flows by 3.29−1.63

3.29−1 = 72%.
Effect of priority-based loss recovery: To quantify the
effectiveness of our priority-based loss recovery mecha-
nism, we construct a variant of QCLIMB, which aban-
dons the proposed OOO design (§3.2) and uses the
default TCP loss recovery mechanism. Fig. 15 com-
pares the FCT performance achieved by this variant and
QCLIMB for the K-Means, PageRank and SGD work-
loads under load 0.7. As we can see from this figure,
QCLIMB outperforms the constructed variant signifi-
cantly, with the overall average FCT and the average/tail

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 103

K-Means

1.
09 1.

86

17
.2

1.
04 1.
46

16
.6

1.
12

1.
02

3.
15

PageRank SGD
Q

C
LI

M
B

w.
o.

 O
O

O
Q

C
LI

M
B

1

10

100

All Avg.

Small Avg.

Small Tail
All Avg.

Small Avg.

Small Tail
All Avg.

Small Avg.

Small Tail

Figure 15: Effectiveness of priority-based loss recovery.
climb down
slacking

climb up
inference

0

5

603.0

603.5

Ti
m

e
(μ

s)

0

1000

2000

3000

PIAS QCLIMB

(a) Small flows

0

5

Ti
m

e
(μ

s)

0

2000

4000

6000

8000

PIAS QCLIMB

(b) Medium flows

0
1
2

0
0.002
0.004

Ti
m

e
(m

s)

0

500

1000

1500

2000

PIAS QCLIMB

(c) Large flows
Figure 16: Performance breakdown.

FCT of small flows being reduced by up to 1.12× and
1.86×/17.2×, respectively. Meaning, the priority-based
loss recovery design brings up to 11% and 46%/94% im-
provements for the two flow types, respectively.
Performance breakdown: QCLIMB differs from PIAS
because it has an additional scheduling step—queue-
climbing-up, making it complete small flows with the
first few higher-priority queues while separating medi-
um/large flows into relatively low-priority queues. To
confirm this, we conduct a performance breakdown eval-
uation for QCLIMB and PIAS under the PageRank
workload at load 0.7. As we can see from Fig. 16, though
QCLIMB has more processing steps for flow schedul-
ing, it delivers significantly lower FCTs than PIAS. We
further observe that for small flows in QCLIMB, only
0.52% of the FCT is spent for RF model inference, and
the queue-climb-up step accounts for 99.47%, the re-
maining 0.01% is for the slacking step. By contrast,
PIAS only contains a queue-climbing-down step and will
keep demoting small flows to lower-priority queues, thus
delivering poor performance. Medium and large flows in
QCLIMB first go through model inference step and then
climb up to higher-priority queues. They will stay in the
highest-priority queue for short while using the slack-
ing step, and finally will be penalized to lower-priority
queues using the queue-climbing-down step. Owing to
the queue-climbing-up step, QCLIMB achieves lower
FCTs of medium/large flows than PIAS. Note that across
all flow types, the model inference time is ∼3.1 µs,
which is negligible as compared to the FCT of flows
(603µs∼784 ms). This means QCLIMB can quickly ob-
tain the lower/upper bounds for each flow and has the
potential to apply to high-speed datacenter networks.
OOO handling Overhead: We conduct a testbed evalu-
ation and consider two types of OOO handling overheads
at receivers: the average CPU utilization (including soft-
ware interrupts) and the OOO buffer space. Fig. 17 first
compares the CPU overheads of QCLIMB with that of a
QCLIMB variant using default TCP OOO. We observe
that QCLIMB incurs up to 17.4% less CPU overhead

w.o. OOO (kernel)
w. OOO (kernel)
w.o. OOO (interrupt)
w. OOO (interrupt)

C
PU

 O
ve

rh
ea

d

0

0.5

1.0

Load
0.3 0.5 0.7 0.9

(a) K-Means

C
PU

 O
ve

rh
ea

d

0

0.5

1.0

Load
0.3 0.5 0.7 0.9

(b) PageRank

C
PU

 O
ve

rh
ea

d

0

0.5

1.0

Load
0.3 0.5 0.7 0.9

(c) SGD

Figure 17: CPU overhead and software interrupts for ker-
nel packet processing.

Load K-Means PageRank SGD
QCLIMB

(TCP OOO) QCLIMB QCLIMB
(TCP OOO) QCLIMB QCLIMB

(TCP OOO) QCLIMB

0.3 1338.70 591.66 1204.25 604.39 1793.06 936.81
0.5 2776.05 1548.54 1924.27 769.42 2006.02 1812.35
0.7 5752.96 4979.13 3133.81 2620.44 2316.89 1888.72
0.9 8077.62 6096.89 3436.34 2787.49 3333.34 2016.14

Table 3: Buffer length (bytes) for storing OOO packets.

than the baseline. Yet, the software interrupts only oc-
cupy 6.2%∼17% of the total CPU overhead. Table 3
further shows the buffer length for OOO packet storing.
We observe that QCLIMB incurs 194B∼623B less OOO
buffer than the default TCP OOO, equaling a 10%∼60%
reduction. The reason why QCLIMB incurs less CPU
overhead and OOO buffer space is that QCLIMB can
quickly detect the loss and retransmit the lost packets to
fill the gap in the receiver’s sequence number list. Thus,
OOO packets do not need to stay too long in the OOO
buffer and can be quickly removed from this buffer.
5.2.2 Never-seen-before flow handling
One can either use QCLIMB or simply fall-back to PIAS
for handling never-seen-before flows.
Using QCLIMB: Using QCLIMB for never-seen-before
flow scheduling forms a model-application mismatching
scenario. To test QCLIMB in this case, we evaluate the
performance of the PageRank workload at 0.7 network
load while using the RF models trained based on the
K-Means and SGD workloads. Fig. 18 shows the FCT
statistics. We observe that when using the SGD model
for the PageRank workload, the average FCT of all flows
and small flows can be prolonged by 3.63× and 2.33×,
respectively. This is expected because the PageRank and
SGD workloads have very different flow size distribu-
tions (see Fig. 6). By contrast, when using the RF model
derived from a workload having a similar flow size dis-
tribution, the FCTs will not be affected too much. For
example, the average FCT of small flows is slowed down
by only 0.5% when using the K-Means RF model for the
PageRank workload.
Using PIAS: Using PIAS for never-seen-before flows
leads to QCLIMB flows coexisting with PIAS ones. To
show how these flows affect each other, we conduct
an experiment where PIAS traffic uses the WebSearch
workload [5] at load 0.3, and QCLIMB traffic is the
PageRank workload at load 0.5. We compare this mix-
ing solution with a baseline that uses PIAS for all traffic.
Fig. 19 shows the results. We see that for both workloads,

104 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

with PR model with KM model with SGD model

5.79

0.378 0.483

4.34

929

7

0.38 0.58

5

1001

21

0.88 1.4
6.6

1273
FC

T
(m

s)

10−1

1

101

102

103

104

All Avg Small Avg Small Tail Mid Avg Large Avg

Figure 18: PageRank workload with mismatched models.

All PIAS
QCLIMB+PIAS

40.8

14.7
31.6

13.8

1.9
3.44

0.709
3.08

16
32.1

13.1
30.3

All avg

Small avg

Small tail

FC
T

(m
s)

0
20
40
60

FC
T

(m
s)

0

5

10

FC
T

(m
s)

0

20

40

PageRank WebSearch

Figure 19: Mixing PIAS
with QCLIMB.

PIAS
QCLIMB+PIAS
QCLIMB

All avg

Small avg

Small tail

FC
T

(m
s)

0
5

10
15

FC
T

(m
s)

0.5

1.0

1.5
FC

T
(m

s)

17
18
19

QCLIMB-enabled flow ratio
0.2 0.4 0.6 0.8

Figure 20: Impact of
QCLIMB flow ratio.

the mixing solution achieves lower FCTs than the base-
line. Particularly, the average FCT of small flows can be
reduced by 62.7% and 10.1% for the PageRank and Web-
Search workloads, respectively. This implies that mixing
QCLIMB traffic in the network helps improve the perfor-
mance of non-QCLIMB traffic. Moreover, as the PIAS
flows does not use QCLIMB, the reduction of their FCTs
under the mixing solution is less than that of QCLIMB-
enabled PageRank flows.
Varying QCLIMB-enabled flow ratio: We proceed to
investigate the impact of the QCLIMB-enabled flow ra-
tio. We use PageRank workload at network load 0.7
and divide the traffic into two parts. The first part is
non-QCLIMB flows that use PIAS for scheduling, while
the second is QCLIMB-enabled flows. We vary the
QCLIMB-enabled flow ratio from 0.2 to 0.8. We com-
pare PIAS, QCLIMB, and the QCLIMB+PIAS mixing
solution. Fig. 20 depicts the results. As expected, the
performance of the mixing solution is between PIAS and
QCLIMB. Even when there are 20% QCLIMB flows, the
mix solution delivers ∼10% lower average FCT of small
flows than PIAS. We further observe that the higher the
QCLIMB-enabled flow ratio, the more flows can depart
quicker, thus leaving more room for non-QCLIMB flows
and consequently delivering lower FCTs.
5.2.3 Sensitivity to parameter settings
Impact of number of queues: To validate the impact of
the number of queues on QCLIMB, we further conduct
the testbed evaluation with 2 and 4 priority queues under
the PageRank workload at 0.7 load. Fig. 21 shows the re-
sults. We observe that in general, QCLIMB outperforms
PIAS under all shown settings. Even with two queues,
QCLIMB works well and reduces the overall average
FCT and the average/tail FCT of small flows by 28.6%
and 74.3%/96.3%, respectively, compared to PIAS.
Impact of model accuracy: To understand the impact of
the flow size predictor, we tested QCLIMB in the PageR-

14

2.
3

1610

0.
59

0.
59

9.
2

0.
5 0.
58

11

1.
2

159.
4

0.
51

0.
53

8.
4

0.
48

0.
5

PIAS QCLIMB QCLIMB-PS

FC
T

(m
s)

1

10

100

Q=2
All Avg. Small Avg. Small Tail

Q=4
All Avg. Small Avg. Small Tail

Figure 21: Impact of number of queues.

FC
T

(m
s)

25

30

35

maximum tree depth d
1 5 10

(a) Overall Avg.

FC
T

(m
s)

0.6

0.8

1.0

1.2

maximum tree depth d
1 5 10

(b) Small Avg.

PIAS
QCLIMB
QCLIMB-PSFC

T
(m

s)

0

5

10

15

maximum tree depth d
1 5 10

(c) Small Tail

Figure 22: PageRank workload with different RF models.

ank workload at 0.5 load, under different RF models with
varying maximum tree depth d. Fig. 15 shows the re-
sults. It is clear that the overall average FCT decreases
as d grows. This means that the higher the RF model’s
accuracy, the better performance QCLIMB achieves. We
can further find that even under d = 5, QCLIMB still
performs significantly better than PIAS, with the over-
all average FCT reduced by 16.3% and the average/tail
FCT of small flows by 50%/93.8%. Note that for the
extreme case of d = 1, the RF model may predict a wide
size range for each flow, thus making QCLIMB achieve a
similar overall average FCT with PIAS. But the predicted
lower bounds of this d = 1 model might help QCLIMB
complete most small flows during the queue-climbing-
up phase. This makes QCLIMB achieve a dramatically
lower average/tail FCT of small flows than PIAS (see
Fig. 22b and Fig. 22c).
Impact of slack size S: QCLIMB allows each flow to
transmit a slack size S more data after its lower bound
part finishes. QCLIMB outperforms PIAS under a wide
range of S, and setting S to 100KB achieves the best per-
formance for QCLIMB (appendix D).

5.3 Large-scale Simulations
Settings: In our simulations, we use the same topology
as prior evaluations of PIAS [10] and pFabric [7], con-
sisting of 144 hosts divided among 9 racks with a 2-level
switching fabric; the difference is that we use 40Gbps
host links and 100Gbps core links. Again, we use the
K-Means, PageRank, and SGD workloads as above. We
vary the load from 0.3 to 0.9.
Comparison with PIAS: Fig. 23 compares the
FCT statistics of QCLIMB with that of PIAS.
Compared to PIAS, QCLIMB reduces the over-
all average FCT by 17.4%∼47.9%, 9.1%∼38.3%,
and 37.9%∼49.5%, for the K-Means, PageRank
and SGD workloads, respectively. QCLIMB also
achieves 1%∼30.1%/1%∼62%, 1%∼35.1%/1%∼55%,
and 3%∼46.5%/2%∼42.5% lower average/tail FCT of
small flows than PIAS, in the K-Means, PageRank and
SGD workloads, respectively. Such good results demon-
strate the effectiveness of QCLIMB’s scheduling. Note

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 105

K-Means

1.
21

1.
92

1.
48

1.
41

1.
01 1.

39

1.
43

1.
43

1.
01

2.
63

1.
47

1.
31

1.
1 1.

62

1.
47

1.
27

1.
01 1.

53

1.
54

1.
15

1.
01

2.
22

1.
31

1.
01 1.

61 1.
91 1.
98

1.
97

1.
03

1.
79 1.
87

1.
67

1.
02

1.
72

1.
74

1.
59

Overall Avg. Small Avg. Small Tail

PageRank SGD

FC
T

of
 P

IA
S

FC
T

of
 Q

C
LI

M
B

0

2

4

Load
0.3 0.5 0.7 0.9

Load
0.3 0.5 0.7 0.9

Load
0.3 0.5 0.7 0.9

Figure 23: Comparison with PIAS in simulations.
QCLIMB
QCLIMB-PS
pFabric

O
ve

ra
ll

av
g.

 F
C

T
(n

or
m

. t
o

pF
ab

ric
)

1.0

1.2

1.4

Load
0.3 0.5 0.7 0.9

(a) KM: all avg.

O
ve

ra
ll

av
g.

 F
C

T
(n

or
m

. t
o

pF
ab

ric
)

1.0

1.2

1.4

Load
0.3 0.5 0.7 0.9

(b) PR: all avg.

O
ve

ra
ll

av
g.

 F
C

T
(n

or
m

. t
o

pF
ab

ric
)

1.0

1.2

1.4

Load
0.3 0.5 0.7 0.9

(c) SGD: all avg.

QCLIMB
QCLIMB-PS
pFabric

Sm
al

l a
vg

. F
C

T
(n

or
m

. t
o

pF
ab

ric
)

1.00

1.05

1.10

Load
0.3 0.5 0.7 0.9

(d) KM: small avg.

Sm
al

l a
vg

. F
C

T
(n

or
m

. t
o

pF
ab

ric
)

1.00

1.05

1.10

Load
0.3 0.5 0.7 0.9

(e) PR: small avg.

Sm
al

l a
vg

. F
C

T
(n

or
m

. t
o

pF
ab

ric
)

1.00

1.05

1.10

Load
0.3 0.5 0.7 0.9

(f) SGD: small avg.

QCLIMB
QCLIMB-PS
pFabric

Sm
al

l t
ai

l F
C

T
(n

or
m

. t
o

pF
ab

ric
)

0.95

1.00

1.05

1.10

Load
0.3 0.5 0.7 0.9

(g) KM: small tail

Sm
al

l t
ai

l F
C

T
(n

or
m

. t
o

pF
ab

ric
)

0.9

1.0

1.1

Load
0.3 0.5 0.7 0.9

(h) PR: small tail

Sm
al

l t
ai

l F
C

T
(n

or
m

. t
o

pF
ab

ric
)

1.00

1.05

1.10

Load
0.3 0.5 0.7 0.9

(i) SGD: small tail

Figure 24: Comparison with QCLIMB-PS and pFabric in
simulations (KM: K-Means; PR: PageRank).
that QCLIMB’s overall improvement over PIAS in SGD
workload is relatively larger than those in other work-
loads. The reason is that the SGD workload is more
skewed. Around∼95% and∼74% flows in the K-Means
and PageRank workloads, respectively, are smaller than
100KB, while only ∼66% flows in the SGD workload,
are smaller than 100KB. In such case, large flows are
more likely to coexist with short flows under PIAS.
QCLIMB is less likely to be affected by such problems,
as medium and large flows have relatively higher lower
bounds and take less time in queue-climbing-up phase,
thus exhibiting less time to coexist with small flows.
Comparison with precise-knowledge-aware schemes:
We compare QCLIMB, QCLIMB-PS (§5.1) and pFab-
ric [7]. Note that QCLIMB-PS and pFabric take precise
flow sizes as scheduling input. Fig. 24 depicts the re-
sults and reveals the following findings. First, QCLIMB
does not show severely worse overall performance in
the K-Means and PageRank workloads. Specifically,
under K-Means, QCLIMB achieves 0.4%∼1.4% and
12%∼17% higher overall average FCT than QCLIMB-
PS and pFabric, respectively. For PageRank, this gap is
1.6%∼5.9% to QCLIMB-PS and 4.6%∼13.1% to pFab-
ric. The average gap of QCLIMB to pFabric is 9% in
PageRank workload. Second, for the SGD workload,
QCLIMB’s overall performance has a relatively large
gap to QCLIMB-PS and pFabric. This is because that
the SGD workload is more skewed, leading large flows
in QCLIMB to be more likely to coexist with small flows.
Third, QCLIMB can achieve comparable performance

Flow bins
Small
flows

Medium
flows

Large
flows

All
flows

QCLIMB 0 0 124
124

(83 by loss detection)

pFaric 10 25 414
414

(all by timeout)

Table 4: Loss events comparison (K-Means, 0.7 load).
with QCLIMB-PS for small flows.For the average FCT
of small flows, QCLIMB has 1%∼2.8%, −0.2%∼5.7%,
and 0.4%∼10.5%, for the K-Means, PageRank and SGD
workloads, respectively. Fourth, we find that the per-
formance gap between QCLIMB and QCLIMB-PS in
the K-Means workload is smaller than that in the other
workloads. This is because the RF model trained over
K-Means has a higher prediction accuracy than that over
the PageRank and SGD workloads. Note that QCLIMB
does not severely penalize large flows. In fact, Compared
to PIAS, it achieves up to 48.2% lower average FCT of
large flows. Further, it has at most 15% gap to pFabric in
the average FCT of large flows. For more details on the
performance of large flows, please see appendix D.
Remark: Fig. 24g and Fig. 24h reveal that QCLIMB can
even deliver a slightly lower tail FCT of small flows than
pFabric. This is because QCLIMB incurs fewer packet
loss events than pFabric. As a concrete example, Table 4
shows that QCLIMB has 70% fewer loss events than
pFabric and incurs no packet loss for small and medium
flows, under the K-Means workload at network load 0.7.
Moreover, 83 of these 124 loss events can be quickly de-
tected by QCLIMB’s priority-based loss detection mech-
anism (§3.2.1), whereas the packet loss events in pFabric
can only be detected by timeout.

6 Conclusion
Scheduling flows with imprecise knowledge is an impor-
tant and practical problem that has been neglected by
prior work in this field. QCLIMB bridges this gap with a
key observation that it is possible to accurately estimate
each flow’s lower bounds with ML techniques. QCLIMB
employs a lower-bound-based flow scheduling scheme to
ensure small flows can be prioritized over medium/large
ones from the beginning of transmission. It also con-
tains fast priority-based lost recovery and packet reorder-
ing mechanisms to handle OOO issues resulting from the
scheduling. We have implemented a QCLIMB prototype
using all commodity hardware, and evaluated it through
small-scale testbed experiments and large-scale simula-
tions. The results show that QCLIMB is a viable solution
for scheduling flows with imprecise size information.

Acknowledgments
We thank the anonymous NSDI reviewers and our shep-
herd Prof. Rachit Agarwal for their constructive feed-
back and suggestions. This work was supported in part
by the NSFC Grant (62202325, 62062005), the Hong
Kong RGC TRS T41-603/20-R. Keqiu Li is the corre-
sponding author: keqiu@tju.edu.cn.

106 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Linux netfilter. http://www.netfilter.org/.

[2] memcached: a distributed memory object caching
system. http://www.memcached.org/, 2011.

[3] Redis. https://redis.io/, 2021.

[4] Mohammad Alizadeh, Tom Edsall, Sarang
Dharmapurikar, Ramanan Vaidyanathan, Kevin
Chu, Andy Fingerhut, Vinh The Lam, Francis
Matus, Rong Pan, Navindra Yadav, et al. Conga:
Distributed congestion-aware load balancing for
datacenters. In Proc. of ACM SIGCOMM, 2014.

[5] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prab-
hakar, Sudipta Sengupta, and Murari Sridharan.
Data center tcp (dctcp). In Proc. of ACM SIG-
COMM, 2010.

[6] Mohammad Alizadeh, Abdul Kabbani, Tom Ed-
sall, Balaji Prabhakar, Amin Vahdat, and Masato
Yasuda. Less is more: trading a little bandwidth
for ultra-low latency in the data center. In Proc. of
USENIX NSDI, 2012.

[7] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar,
and Scott Shenker. pfabric: Minimal near-optimal
datacenter transport. ACM SIGCOMM Computer
Communication Review, 43(4):435–446, 2013.

[8] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg,
Song Jiang, and Mike Paleczny. Workload analysis
of a large-scale key-value store. In Proc. of ACM
SIGMETRICS, 2012.

[9] Wei Bai, Kai Chen, Shuihai Hu, Kun Tan, and
Yongqiang Xiong. Congestion control for high-
speed extremely shallow-buffered datacenter net-
works. In Proc. of the Asia-Pacific Workshop on
Networking (APNet), 2017.

[10] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen
Tian, and Hao Wang. Information-agnostic flow
scheduling for commodity data centers. In Proc.
of USENIX NSDI, 2015.

[11] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen
Tian, and Hao Wang. Pias: Practical information-
agnostic flow scheduling for commodity data cen-
ters. IEEE/ACM Transactions on Networking,
2017.

[12] Wei Bai, Li Chen, Kai Chen, and Haitao Wu. En-
abling {ECN} in multi-service multi-queue data
centers. In Proc. of USENIX NSDI, 2016.

[13] Wei Bai, Shuihai Hu, Kai Chen, Kun Tan, and
Yongqiang Xiong. One more config is enough:
Saving (dc) tcp for high-speed extremely shallow-
buffered datacenters. In Proc. of IEEE INFOCOM,
2020.

[14] Steven Blake, David Black, Mark Carlson, Elwyn
Davies, Zheng Wang, and Walter Weiss. An archi-
tecture for differentiated services. 1998.

[15] Leo Breiman. Random forests. Machine learning,
45(1):5–32, 2001.

[16] Qizhe Cai, Mina Tahmasbi Arashloo, and Rachit
Agarwal. dcpim: Near-optimal proactive datacen-
ter transport. In Proc. of ACM SIGCOMM, 2022.

[17] Li Chen, Kai Chen, Wei Bai, and Mohammad Al-
izadeh. Scheduling mix-flows in commodity data-
centers with karuna. In Proc. of ACM SIGCOMM,
2016.

[18] Li Chen, Shuihai Hu, Kai Chen, Haitao Wu,
and Danny HK Tsang. Towards minimal-delay
deadline-driven data center tcp. In Procs. of ACM
HotNets, 2013.

[19] Li Chen, Justinas Lingys, Kai Chen, and Feng
Liu. Auto: Scaling deep reinforcement learning for
datacenter-scale automatic traffic optimization. In
Proc. of ACM SIGCOMM, 2018.

[20] Inho Cho, Keon Jang, and Dongsu Han. Credit-
scheduled delay-bounded congestion control for
datacenters. In Proc. of ACM SIGCOMM, 2017.

[21] Mosharaf Chowdhury and Ion Stoica. Efficient
coflow scheduling without prior knowledge. In
Proc. of ACM SIGCOMM, 2015.

[22] Allen B Downey. The structural cause of file size
distributions. In Proceedings of the 2001 ACM SIG-
METRICS, 2001.

[23] Vojislav Dukic, Sangeetha Abdu Jyothi, Bojan Kar-
las, Muhsen Owaida, Ce Zhang, and Ankit Singla.
Is advance knowledge of flow sizes a plausible as-
sumption? In Proc. of USENIX NSDI, 2019.

[24] Peter X Gao, Akshay Narayan, Gautam Kumar,
Rachit Agarwal, Sylvia Ratnasamy, and Scott
Shenker. phost: Distributed near-optimal datacen-
ter transport over commodity network fabric. In
Proc. of ACM CoNext, 2015.

[25] Albert Greenberg, James R Hamilton, Navendu
Jain, Srikanth Kandula, Changhoon Kim, Parantap
Lahiri, David A Maltz, Parveen Patel, and Sudipta

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 107

http://www.netfilter.org/
http://www.memcached.org/
https://redis.io/

Sengupta. Vl2: a scalable and flexible data center
network. In Proc. of ACM SIGCOMM, 2009.

[26] Matthew P Grosvenor, Malte Schwarzkopf, Ionel
Gog, Robert NM Watson, Andrew W Moore,
Steven Hand, and Jon Crowcroft. Queues dont
matter when you can {JUMP} them! In Proc. of
USENIX NSDI, 2015.

[27] Mark Handley, Costin Raiciu, Alexandru Agache,
Andrei Voinescu, Andrew W Moore, Gianni An-
tichi, and Marcin Wójcik. Re-architecting datacen-
ter networks and stacks for low latency and high
performance. In Proc. of ACM SIGCOMM, 2017.

[28] Chi-Yao Hong, Matthew Caesar, and P Brighten
Godfrey. Finishing flows quickly with preemptive
scheduling. ACM SIGCOMM Computer Communi-
cation Review, 42(4):127–138, 2012.

[29] Christian Hopps et al. Analysis of an equal-cost
multi-path algorithm. Technical report, RFC 2992,
November, 2000.

[30] Kurt Hornik, Maxwell Stinchcombe, and Halbert
White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–
366, 1989.

[31] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong
Wang, Baochen Qiao, Kai Chen, Kun Tan, and
Yi Wang. Aeolus: A building block for proactive
transport in datacenters. In Proc. of ACM SIG-
COMM, 2020.

[32] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, et al.
Hpcc: High precision congestion control. In Proc.
of ACM SIGCOMM, 2019.

[33] Ziyang Li, Wei Bai, Kai Chen, Dongsu Han, Yim-
ing Zhang, Dongsheng Li, and Hongfang Yu. Rate-
aware flow scheduling for commodity data center
networks. In Proc. of IEEE INFOCOM, 2017.

[34] Yuanwei Lu, Guo Chen, Larry Luo, Kun Tan,
Yongqiang Xiong, Xiaoliang Wang, and Enhong
Chen. One more queue is enough: Minimizing flow
completion time with explicit priority notification.
In Proc. of IEEE INFOCOM, 2017.

[35] Larry Medsker and Lakhmi C Jain. Recurrent neu-
ral networks: design and applications. CRC press,
1999.

[36] Nicolai Meinshausen and Greg Ridgeway. Quantile
regression forests. Journal of Machine Learning
Research, 7(6), 2006.

[37] Behnam Montazeri, Yilong Li, Mohammad Al-
izadeh, and John Ousterhout. Homa: A receiver-
driven low-latency transport protocol using net-
work priorities. In Proc. of ACM SIGCOMM, 2018.

[38] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N.
Ismail, M. S. Iqbal, and B. Khan. Minimizing flow
completion times in data centers. In Proc. of IEEE
INFOCOM, 2013.

[39] Ali Munir, Ghufran Baig, Syed M Irteza, Ihsan A
Qazi, Alex X Liu, and Fahad R Dogar. Friends, not
foes: synthesizing existing transport strategies for
data center networks. In Proc. of ACM SIGCOMM,
2014.

[40] John Ousterhout, Arjun Gopalan, Ashish Gupta,
Ankita Kejriwal, Collin Lee, Behnam Montazeri,
Diego Ongaro, Seo Jin Park, Henry Qin, Mendel
Rosenblum, et al. The ramcloud storage system.
ACM Transactions on Computer Systems (TOCS),
33(3):1–55, 2015.

[41] Jonathan Perry, Amy Ousterhout, Hari Balakrish-
nan, Devavrat Shah, and Hans Fugal. Fastpass: a
centralized” zero-queue” datacenter network. In
Proc. of ACM SIGCOMM, 2014.

[42] Pascal Poupart, Zhitang Chen, Priyank Jaini, Fred
Fung, Hengky Susanto, Yanhui Geng, Li Chen, Kai
Chen, and Hao Jin. Online flow size prediction for
improved network routing. In Proc. of IEEE ICNP,
2016.

[43] Vaidyanathan Ramaswami, Kaustubh Jain, Rittwik
Jana, and Vaneet Aggarwal. Modeling heavy tails
in traffic sources for network performance evalua-
tion. In Proceedings of ICC3, 2014.

[44] Alon Rashelbach, Ori Rottenstreich, and Mark Sil-
berstein. A computational approach to packet clas-
sification. In Proc. of ACM SIGCOMM, 2020.

[45] Marko Robnik-Šikonja. Improving random forests.
In Proceedings of Springer ECML, 2004.

[46] Erico Vanini, Rong Pan, Mohammad Alizadeh,
Parvin Taheri, and Tom Edsall. Let it flow:
Resilient asymmetric load balancing with flowlet
switching. In Proc. of USENIX NSDI, 2017.

[47] Christo Wilson, Hitesh Ballani, Thomas Kara-
giannis, and Ant Rowtron. Better never than
late: Meeting deadlines in datacenter networks.
ACM SIGCOMM Computer Communication Re-
view, 41(4):50–61, 2011.

108 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[48] Hong Zhang, Li Chen, Bairen Yi, Kai Chen,
Mosharaf Chowdhury, and Yanhui Geng. Coda:
Toward automatically identifying and scheduling
coflows in the dark. In Proc. of ACM SIGCOMM,
2016.

[49] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen,
and Mosharaf Chowdhury. Resilient datacenter
load balancing in the wild. In Proc. of ACM SIG-
COMM, 2017.

[50] Junxue Zhang, Wei Bai, and Kai Chen. Enabling
ecn for datacenter networks with rtt variations. In
Proc. of ACM CoNEXT, 2019.

[51] Yiwen Zhang, Gautam Kumar, Nandita Dukkipati,
Xian Wu, Priyaranjan Jha, Mosharaf Chowdhury,
and Amin Vahdat. Aequitas: admission control for
performance-critical rpcs in datacenters. In Pro-
ceedings of ACM SIGCOMM, 2022.

A The Performance of pFabric under Im-
precise Knowledge

In this section, we want to know how pFabric [7] per-
forms when scheduling flows with imprecise flow sizes.
We use the same topology and workloads as §5.3. The
load is 0.7. Fig. 25 shows the FCT statics across different
flow sizes when using imprecise flow sizes for pFabric
[7] as compared to using precise knowledge. From this
figure, we observe that due to the errors in flow sizes,
the FCT achieved by pFabric can be slowed down signif-
icantly. More specifically, the overall average/tail FCT
achieved by pFabric with imprecise flow sizes can be in-
creased by up to 1.8×/2.2×. Moreover, the average FCT
slowdown of small flows can even reach 22.8×.

B Obtaining Prediction Intervals
For brevity, let us consider an RF model with T trees,
trained over a set of flows, i.e., N = {1, . . . ,n}. Each
flow i is identified by (Xi,yi), where Xi contains the flow
features and yi is the flow size. For a new (testing)
flow with its X = x, each tree t will drop it down to
a specific leaf node l. Let Nl denote the set of flows
falling in l. The tree t will predict a size for this flow
as the weighted average over the sizes of all flows in
Nl , i.e., yt = ∑

n
i=1 wi(x, t) · yi, where wi(x, t) = 1/|Nl |

if flow i ∈ Nl and 0 otherwise. For the entire RF,
the predicted size is thus the average prediction of all
trees, i.e., y = 1

T ∑
T
t=1 yt = ∑

n
i=1 wi(x) · yi, where wi(x) =

1
T ∑

T
t=1 wi(x, t) represents the weight of flow i in pre-

dicting the new flow’s size. This implies that the con-
ditional mean of y, given X = x, is approximated by a
weighted mean over the sizes of all flows in N , namely,
E(y|X = x) = ∑

n
i=1 wi(x)yi.

K-Means PageRank SGD

1.
3

1.
2

1.
1

1.
1

1 1 1 1 1 1

1.
8

1.
5

1.
4

1.
4

1.
4

1.
4

1.
4

1.
4

1.
4

1.
3

1.
6

1.
3

1.
2

1.
2

1.
2

1.
2

1.
2

1.
2

1.
2

1.
1

O
ve

ra
ll

av
g.

 u
nd

er
 im

pr
ec

. s
iz

e
O

ve
ra

ll
av

g.
 u

nd
er

 p
re

c.
 s

iz
e

0

1

2

Maximum tree depth d
1 2 3 4 5 6 7 8 9 10

(a) Slowdown in overall average FCT
K-Means PageRank SGD

2.
2

1.
7

1.
3 1.

4

1.
3 1.
4

1.
4

1.
4

1.
3 1.

4

1.
3

1.
2

1.
2

1.
2 1.
2

1.
2

1.
2

1.
2

1.
2

1.
2

1.
1

1.
1

1.
1

1.
1

1.
1

1.
1

1.
1

1 1.
1

1

O
ve

ra
ll

ta
il

un
de

r i
m

pr
ec

. s
iz

e
O

ve
ra

ll
ta

il
un

de
r p

re
c.

 s
iz

e

0

1

2

Maximum tree depth d
1 2 3 4 5 6 7 8 9 10

(b) Slowdown in overall tail FCT

22
.8

14
.2

13 11
.7

7.
39

6.
59

6.
57

6.
1

5.
66

5.
11

Sm
al

l a
vg

. u
nd

er
 im

pr
ec

. s
iz

e
Sm

al
l a

vg
. u

nd
er

 p
re

c.
 s

iz
e

0

10

20

Maximum tree depth d
1 2 3 4 5 6 7 8 9 10

(c) Slowdown in avg. FCT of small flows with PageRank
Figure 25: FCT slowdown across different flow sizes when
using imprecise flow sizes for pFabric [7] as compared to
using precise knowledge.

Unlike RF focusing on the conditional mean, QRF
considers the conditional distribution of y under X =
x by defining it as the probability that for X = x, y
is smaller than y′, i.e., F(y′|X = x) = P(y ≤ y′|X =
x) = E(1{y≤y′}|X = x). Just as the way approxi-
mating E(y|X = x), E(1{y≤y′}|X = x) can be approx-
imated by the weighted mean over the observations
of 1{y≤y′}. This leads to F(y′|X = x) = ∑

n
i=1 wi(x) ·

1{y≤y′}. With this function, the α-quantile Qα(x) is
defined such that the probability of y being smaller
than Qα(x) is, for a given X = x, exactly equal to α ,
i.e., Qα(x) = inf{y′ : F(y′|X = x)≥ α}. Using Qα(x),
one can build a prediction interval. For instance, a
β (0 ≤ β ≤ 1) prediction interval for the value of y
is [Q(1−β)/2(x),Q(1+β)/2(x)]. Thus, Q(1−β)/2(x) and
Q(1+β)/2(x) are taken as the lower and upper bounds, re-
spectively, for the estimated size of the new flow. We set
β to 1 unless otherwise specified.

C QCLIMB’s Scheduling Algorithm

Algorithm 1 shows the pseudocode of QCLIMB’s
lower-bound-based scheduling. To understand this pro-
cedure, we use an illustrating example in Fig. 26. In this
example, there are two flows (i.e., f1 and f2) and one
switch port capable of transmitting 1 unit of data at each
time. This port has three priority queues (i.e., Q1, Q2,
and Q3), with queue thresholds being≤ 2, [3,5], and≥ 6,
respectively. We consider S = 0 for ease of presentation.
As shown in Fig. 26(a), f1 is actually larger than f2, but
its predicted size is smaller than f2’s. Purely performing
queue-climbing-up according to predicted size will make

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 109

Load
K-Means PageRank SGD

PIAS QCLIMB-PS pFabric PIAS QCLIMB-PS pFabric PIAS QCLIMB-PS pFabric
0.3 1.21/1.67 0.99/1.0 0.89/1.07 1.11/1.41 0.99/1.0 0.96/1.09 1.25/1.11 1.0/1.01 1.06/1.06
0.5 1.93/1.53 0.99/1.0 0.86/0.95 1.60/1.84 0.99/1.0 0.95/1.07 1.22/1.16 1.02/1.05 1.07/1.08
0.7 1.48/1.37 0.99/0.99 0.85/1.07 1.47/1.56 0.99/1.0 0.92/1.10 1.29/1.23 1.05/1.04 1.10/1.10
0.9 1.41/1.25 0.99/1.01 0.86/1.08 1.34/1.58 0.99/1.01 0.91/1.09 1.36/1.27 1.06/1.05 1.08/1.07

Table 5: Average/tail FCT of large flows achieved by different schemes in simulation (norm. to QCLIMB).

Algorithm 1 QCLIMB’s Priority Tagging Algorithm

Require: An incoming packet p; A slack size S;
Queue priorities P= {P1, . . . ,Pk} and thresholds α =
{α1, . . . ,αk}

1: procedure PRIORITYTAGGING
2: B← bytes sent of parent flow(p)
3: L← lower bound of parent flow(p)
4: U ← upper bound of parent flow(p)
5: if B < L then . priority promoting
6: v← get priority(L−B, P, α)
7: else if B < L+S then . delay demoting
8: v← the value of the highest priority P1
9: else if B <U then . priority demoting

10: v← get priority(B, P, α)
11: else
12: v← the value of the lowest priority PK
13: end if
14: Tag v into the packet p’s header
15: end procedure

AS

1 2 3 4 5 6 7 8
LB

f2

1 2 3 4 5
AS&PS&
LB&UB

f1

UB

PS

Time

Q3

Q2

Q1

1

6

� 6

[3, 5]

 2

f2 ends f1 ends

2 4 6 8 9

3

2 3

5

4

2

1

6

Time

Q3

Q2

Q1 5

� 6

[3, 5]

 2

f1 ends f2 ends

2 4 6 8 9

3 4

6

1

3

2

2

1

AS: Actual Size
PS: Predicted Size

(b) purely queue-climbing-up (c) queue-climbing-up & -down

LB: Lower Bound
UB: Upper Bound

(a) example setting

Figure 26: An example for illustrating QCLIMB’s error-
tolerant scheduling.

f1 complete faster than f2 and result in an average FCT of
6+9

2 = 7.5. Conversely, QCLIMB lets f1 and f2 initially
enter Q3 and Q2, respectively, according to their lower
bounds. As a result, f2 has a higher priority than f1 to
transmit data and will be promoted to Q1 when its lower
bound portion reduces to 2. At time 3, since its lower
bound portion has finished, f2 will be moved back to the
queue it initially entered, i.e., Q2, where it finishes its
last packet transmission. After that, f1 starts data trans-
mission until time 10. Thus, the average FCT is reduced
to 3+9

2 = 6.

D Supplementary Experiment Results
Impact of slack size S [Testbed]: QCLIMB allows
each flow to transmit a slack size S more data after
its lower bound part finishes. To understand the im-

QCLIMB w.r.t. PIAS

PIAS

Overall Avg. Small Avg. Small Tail

N
or

m
. F

C
T

of
 Q

C
LI

M
B

0

0.5

1.0

Slack Size S (KB)
40 80 100 400 800

Slack Size S (KB)
40 80 100 400 800

Slack Size S (KB)
40 80 100 400 800

Figure 27: Sensitivity to the parameter of slack size S.

pact of S, we measure the FCT statistics of QCLIMB
with different S in the PageRank workload at load 0.7.
As we can see from Fig. 27, with various settings
of S, QCLIMB reduces the overall average FCT by
4.1%∼18.3% and the average/tail FCT of small flows by
48.6%∼62.2%/15.6%∼93.4%, compared to PIAS. We
further observe that the overall average FCT of QCLIMB
reduces as S increases at the beginning (e.g., before S
reaches 100KB). This is reasonable because a larger S
makes more flows (especially small ones) complete at
the delay demoting step. However, as S keeps increas-
ing, this step will introduce more medium and large
flows to coexist with small flows in high-priority queues.
That’s why the FCTs of QCLIMB go up after S=100KB.
In general, QCLIMB shows performance improvements
over PIAS under a wide range of S, and we consider set-
ting S to 100KB (§5.1) is a feasible choice.
Large flow performance [Simulation]: Table 5 fur-
ther summarizes the average and tail FCT of large flows
achieved by different schemes in simulations. We have
the following observations. First, QCLIMB achieves
10%∼48.2%/10%∼45.7% lower average/tail FCT of
large flows than PIAS, across all workloads at all loads.
Second, for the average FCT of large flows, QCLIMB
is worse than pFabric by 14%∼4% across the K-Means
and PageRank workloads, and outperforms pFabric by
6%∼10% in the SGD workload. Third, QCLIMB main-
tains a lower tail FCT of large flows than pFabric for
most of the tested cases. In particular, it cuts the tail
FCT of large flows by 10% in both PageRank and SGD
workloads at 0.7 load, compared to pFabric. The rea-
son is again that pFabric detects packet loss too late with
timeout, deferring the retransmission of lost packets and
prolonging tail FCTs accordingly.
Comparison with Homa [Simulation]: We compare
QCLIMB with Homa [37] under the PageRank work-
load. The results are shown in Fig. 28. We ob-
serve that QCLIMB has up to a 12.5% gap to Homa

110 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

QCLIMB
QCLIMB-PS
Homa

O
ve

ra
ll

av
g.

 F
C

T
(n

or
m

. t
o

H
om

a)

0.9

1.0

1.1

1.2

Load
0.3 0.5 0.7 0.9

(a) All avg.

QCLIMB
QCLIMB-PS
Homa

Sm
al

l a
vg

. F
C

T
(n

or
m

. t
o

H
om

a)

0.8

1.0

1.2

Load
0.3 0.5 0.7 0.9

(b) Small avg.

QCLIMB
QCLIMB-PS
Homa

Sm
al

l t
ai

l F
C

T
(n

or
m

. t
o

pF
ab

ric
)

0.8

1.0

1.2

Load
0.3 0.5 0.7 0.9

(c) Small tail
Figure 28: Comparison with Homa in simulation.

QCLIMB
pFabric impre.
Homa impre.

O
ve

ra
ll

av
g.

 F
C

T
(n

or
m

. t
o

Q
C

LI
M

B)

1.0

1.2

1.4

Load
0.3 0.5 0.7 0.9

(a) All avg.

Sm
al

l a
vg

. F
C

T
(n

or
m

. t
o

Q
C

LI
M

B)

0

2

4

6

8

Load
0.3 0.5 0.7 0.9

(b) Small avg.

Sm
al

l t
ai

l F
C

T
(n

or
m

. t
o

Q
C

LI
M

B)

0

20

40

Load
0.3 0.5 0.7 0.9

(c) Small tail
Figure 29: Comparison with pFabric and Homa using im-
precise knowledge in simulation.

for the overall average FCT. This is expected because
QCLIMB uses the reactive DCTCP for rate control. By
contrast, Homa can proactively allocate bandwidth as
”grants” to senders, who can then send scheduled pack-
ets at the correct rate to realize high utilization. Homa’s
improvements mainly come from medium/large flows.
In fact, our experiments show that Homa can achieve
up to 24.6%/6.7% lower average FCT of medium/large
flows (for brevity, we omit the detailed figures). For
small flows, Homa performs worse than our QCLIMB.
As shown in Fig. 28b and Fig. 28c, the reduction of
QCLIMB over Homa in the average/tail FCT of small
flows is up to 14.6%/24.2%. This is mainly because
of Homa’s proactive nature, which enforces Homa to
blindly transmit unscheduled packets in the first RTT,
causing traffic bursts, non-trivial queuing delay, and
eventually, packet losses. Such first RTT issue will se-
riously affect the performance of small flows [31].
Comparison with pFabric and Homa using impre-
cise knowledge [Simulation]: Readers may wonder
if QCLIMB can outperform pFabric and Homa with
imprecise knowledge as scheduling input. To answer
this, we conduct an experiment over PageRank work-
load with varying network load. The results are shown
in Fig. 29. Compared to pFabric and Homa with impre-
cise knowledge, QCLIMB can reduce the average FCT
of all flows by up to 18.8% and 25.6%, respectively. For
the average/tail FCT of small flows, the reductions of
QCLIMB are even larger: 85.9%∼87.1%/96.6%∼97.6%
and 74.5%∼79.8%/93%∼94.7% over pFabric and Homa
with imprecise knowledge, respectively.

E Discussion
The QCLIMB testbed measurements in this paper were
based on 25 Gbps link speeds, but QCLIMB may still
work in higher-speed networks. The reason is that the
dominant overhead of an end-to-end QCLIMB flow is
the end-host processing delay. Such processing delay is
independent of the line-rates and is mainly caused by ker-

nel network stack processing. In our evaluation, we ob-
serve that a 100KB flow requires roughly 200µs for the
end-host processing on both sender and receiver sides.
By contrast, QCLIMB’s model inference takes only 3µs,
which is negligible as compared to such processing de-
lay. One can further reduce this inference latency to 1µs
with advanced FPGA hardware [23] or may even reduce
it to tens of nanoseconds by carefully pipelining RF’s de-
cision tree on hardware [44].

F Other Related Work

We have discussed the closely related works [7, 28,
10, 34, 41, 24, 37, 23] extensively in §2.1. Here, we
only review some other DCN flow scheduling ideas that
have not been discussed elsewhere. For example, NDP
[27] uses receiver-driven scheduling but can only ac-
count for fair sharing rather than SRPT. Moreover, it re-
lies on special hardware support from switches to pro-
vide receivers a full view of the traffic demand. Ae-
olus [31] adds selective dropping and loss recovery on
top of receiver-driven transports (e.g., Home [37], NDP
[27], ExpressPass[20]), suffering the same issues as
above. dcPIM [16] takes multiple rounds of matching
to compute conflict-free pairings of sender and receiver
to achieve high utilization, but relies on precise flow size
information and also needs to refactor the network stack.
QJUMP [26] applies Internet QoS-like techniques (e.g.,
DiffServ [14]) to schedule flows of datacenter applica-
tions but requires the application itself to specify the pri-
orities. Karuna [17] schedules a mix of flows with and
without deadlines. It uses PIAS-like mechanisms for
non-deadline flows and hence suffers from the same ef-
fectiveness problems as PIAS. PASE [39] synthesizes ex-
iting transport designs to provide good performance, but
requires non-trivial switch modification or complex con-
trol plane for arbitration. Auto [19] applies deep rein-
forcement learning (DRL) techniques to flow scheduling
and traffic optimization. Aequitas [51] uses weighted fair
queuing (WFQ) to guarantee RPC-level service-level ob-
jectives (SLOs), while QCLIMB employs strict priority
queuing for prioritizing small flows to minimize FCTs.
Above all, there exist no existing schedulers in the litera-
ture that can address the flow scheduling problems under
imprecise flow sizes.

There are other DCN research efforts such as con-
gestion control (e.g., DCTCP [5], D3 [47], MCP [18],
L2DCT [38], HULL [6], HPCC [32], BCC [13, 9],
MQECN [12], and ECN] [50]) and multi-path load bal-
ancing (e.g., CONGA[4], Flowlet [46], and Hermes
[49]). These designs are insufficient for FCT minimiza-
tion as in-network priority queues are not used.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 111

Pudica: Toward Near-Zero Queuing Delay in Congestion Control for Cloud Gaming

Shibo Wang†‡, Shusen Yang†, Xiao Kong‡, Chenglei Wu‡, Longwei Jiang‡, Chenren Xu∗, Cong Zhao†,
Xuesong Yang•, Jianjun Xiao‡, Xin Liu‡, Changxi Zheng◦, Jing Wang‡, Honghao Liu‡

†Xi’an Jiaotong University, ‡Tencent Inc., ∗Peking University, •Bonree,
◦Pixel Lab, Tencent America, and Columbia University

Abstract
Congestion control (CC) plays a pivotal role in cloud gam-

ing services. However, existing CC methods often cause self-
induced bottleneck queuing. As a result, they may largely
delay game frame transmission and undermine the player’s
gaming experience. We present a new end-to-end CC algo-
rithm named Pudica that strives to achieve near-zero queuing
delay and high link utilization while respecting cross-flow
fairness. Pudica introduces several judicious approaches to
utilize the paced frame to probe the bandwidth utilization ratio
(BUR) instead of bandwidth itself. By leveraging BUR esti-
mations, Pudica designs a holistic bitrate adjustment policy to
balance low queuing, efficiency, and fairness. We conducted
thorough and comprehensive evaluations in real networks. In
comparison to baseline methods, Pudica reduces the average
and tailed frame delay by 3.1× and 4.9× respectively, and
cuts down the stall rate by 10.3×. Meanwhile, it increases the
frame bitrate by 12.1%. Pudica has been deployed in a large-
scale cloud gaming platform, serving millions of players.

1 Introduction
The digital world has been largely on the “cloud”, a metaphor
suggesting that storage- and computation-heavy applications
should be in the ether, available through the Internet whenever
and wherever we need them. The recent emergence of next
generation internet infrastructures such as WiFi-7, 5G, and
full fibre broadband catalyzes more cloud-based applications,
and one of the most notable is cloud gaming. Thanks to the
academic research effort [1–5] and industrial investment [6–
9], cloud gaming has already gained worldwide popularity
while still under rapid growth [10].

In the cloud gaming setup (see Fig. 1), the end device col-
lects user operations (e.g., mouse clicks and finger taps) and
immediately sends them to the cloud server, which runs the
entire game engine. Then, the corresponding game frame is
rendered on the server, streamed to the end device, and dis-
played locally. In this way, the often heavy-duty game engine
is moved to the cloud; the end device is only responsible for
user interactions, and thus, it can be lightweight, portable, and
low-cost while still providing engaging gaming experiences.

This is a promising paradigm for gaming, but a key premise
of this paradigm is that the game frames rendered on the cloud
must be transmitted to the end device at a consistent ultra-low
delay, typically within 50 ms. High frame delays, even if oc-

casional, would severely undermine the gaming interactivity
and in turn the player’s quality of experience (QoE) (see our
studies in §2.3). While many congestion control (CC) algo-
rithms [11–17] have been proposed to restrict the inflation
of bottleneck queuing, none of these solutions actually offers
ultra-low frame delays in both average and tail (§5.2).

Prior delay-aware CC methods [11, 12, 18, 19] strive for
approaching an ideal state with high link utilization, zero
queuing, and fair allocation, which is indeed a state we long
for as well. However, these methods often require a substantial
queue buildup initially to probe the link status before making
adjustments toward the ideal state. The periodic nature of
overshooting-based probing actions leads to frequent self-
induced queuing. Recently, some CC methods [13,20] achieve
low latency in single-flow or isolated environments, but they
fail to maintain low queuing when multiple flows coexist.

To achieve both stringent delay control and the highest pos-
sible bitrate, a cloud gaming system must be equipped with
a carefully designed CC algorithm that meets the following
three requirements. Firstly, it should be able to reach high link
utilization (i.e., efficiency) without resorting to overshoot-
based network probing. Secondly, heavy queuing should be
also prevented when multiple homogeneous flows run concur-
rently. Thirdly, when the link condition suddenly degrades, the
CC agent must promptly react to it and drain the bottleneck
queue (if any) as soon as possible. The last is crucial because
there exists a large amount of urgent bandwidth degradation
on the Internet (see our measurements in §2.2).

With the above principles in mind, we design a new CC al-
gorithm, which we call Pudica1, for large-scale cloud gaming
services. Under the constraint of consistent low frame delay,
Pudica achieves high bandwidth utilization and cross-flow
fairness (if applicable) in both single-flow cases and scenarios
where it contends with other homogeneous flows. Pudica has
been successfully deployed on a commercial cloud gaming
platform (Tencent START [9]), serving millions of players.

Unlike existing CC frameworks [11, 12, 18], which inten-
tionally trigger queue buildups to probe the link condition, we
estimate the link’s bandwidth utilization ratio (BUR) rather
than the bandwidth per se. This signal has been exploited
in [22,23] with explicit notifications, but in the context of end-
to-end CC design, we propose a new probing method with

1Pudica is a plant known for its sensitivity and rapid movement [21].

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 113

Cloud gaming server

Internet

End device (Client) Operation
commands

Game frames

Frame
encoder

Graphics
renderer

Command
sender

Frame
receiver

Command
receiver

Frame
sender

Frame
decoder

Screen
display

Pacing rate Bitrate

Congestion controller

Figure 1: A typical cloud gaming system. The congestion controller
adjusts both frame bitrates and packet pacing rates before transmit-
ting game frames from the gaming server to the end device.

adaptive pacing control and complementary probe packets to
estimate the BUR based on end-side feedback.

Based on the BUR estimation, Pudica multiplicatively in-
creases the bitrate to exponentially ramp up the link utilization
while ensuring that it remains below 100%. Then, Pudica can
sustain the state without heavy queuing, and at the same time,
quickly converge toward cross-flow fairness. This is achieved
by applying additive increase (AI) and multiplicative decrease
(MD) simultaneously and adaptively. In addition to smoothed
BUR estimations, short-term BUR signals are also utilized in
Pudica to make prompt reactions to any overshoots or urgent
link degradation. The proposed mechanisms, including tem-
porary bitrate fallback and active queue draining, facilitate
the minimization of queuing delay.

We implemented Pudica and several baselines, including
Copa [11], Salsify2 [13], and SQP [20], on Tencent START
cloud gaming production [9] for A/B tests. The final evalu-
ation involved real-world wired and wireless networks, and
more than 57,000 gaming sessions. In comparison to the
baselines, our experiments confirm Pudica’s advantages: i) It
reduces the average frame delay, the 95%-tailed frame delay,
and the 99%-tailed frame delay by 3.1×, 5.1×, and 4.7×,
respectively. ii) It reduces the percentages of frames whose
transmission to the end device exceeds 100 ms and 200 ms by
6.2× and 14.4×, respectively. And iii) it increases the frame
bitrate by 12.1%, better utilizing networks’ capacity.

Furthermore, we used a large-scale, in-the-wild network
testing platform [24] to assess Pudica’s efficiency and fair-
ness. It shows that Pudica offers a superior balance between
link utilization, cross-flow fairness, and convergence speed.
Additionally, we conducted comprehensive microbenchmarks
to justify the gains offered by Pudica.

2 Background and Related Work
In this section, we introduce the control variables, network
characteristics, and control objectives of cloud gaming sys-
tems, which necessitates a new CC algorithm. We also review
related CC algorithms and discuss their limitations.

2.1 Congestion Control for Cloud Gaming

Unlike the traditional transport-layer CC, the cloud gaming
CC agent operates on the application layer, and controls two

2In this paper, Salsify refers to its frame size control part solely.

factors on the fly, namely the frame bitrate and packet send-
ing pace (see Fig. 1). The bitrate is a parameter to the im-
age compression process that encodes the stream of game
frames before sending them to the end device. A lower bi-
trate reduces the bandwidth consumption but also sacrifices
displayed quality. The game frames after compression are
chopped into network packets, and the sending pace controls
how hastily the packets are sent to the network. Typically,
the sending interval of packets within a frame is the same.
Thus, we measure the pace based on the sending behavior of
the last packet for each frame. We quantify the pace using
a pace multiplier ρ, a scalar indicates that the last packet is
sent to the network within the time duration of L/ρ, where L
is the interval of frame sending (16.67 ms for the frame rate
of 60). For example, a pace with a multiplier of two means
that all packets of a frame are sent over within 8.34 ms after
encoding. Given a pace multiplier, the exact packet sending
interval (a.k.a., packet pacing rate) depends on the number
of packets within a frame, which is in turn up to the frame
bitrate, or more precisely, the frame size.

2.2 Network Measurement in Real Gaming Systems

We present two observations from real cloud gaming systems,
which greatly influence the rationale behind our CC design.

Short base RTTs. Edge computing has become the de facto
infrastructure for cloud gaming services in industry [2, 25],
which dramatically shortens the feedback loop of CC agents.
We conducted measurements of the base RTT (a.k.a, minimal
RTT) for over one million real cloud gaming sessions. As
depicted in Fig. 3, the base RTT for 50% and 90% gaming
sessions is below 10 ms and 20 ms, respectively, for both Eth-
ernet and WiFi networks. Such unique network characteristics
play an important role in our CC design. It not only helps
us narrow down the scope of issues to be addressed but also
opens up new possibilities for achieving a more suitable CC
solution for cloud gaming systems.

Frequent urgent bandwidth decreases. The available
bandwidth frequently encounters urgent, large reductions over
the Internet, e.g., due to channel degradation. We carried out
the consistent bandwidth measurement by mildly flooding-
based probing methods. The bandwidth was estimated and
recorded with a granularity of 100 ms interval. As shown in
Fig. 4, approximately 5.6% of Ethernet users and 35.5% of
WiFi users encounter at least five occurrences of dramatic
bandwidth reduction (i.e. reduction by more than 50% within
100 ms) per minute, which poses a non-trivial challenge to
achieving consistent low latency in real-world networks.

2.3 Control Goals through Real-World Case Studies

In this section, we crystalize our congestion control goals
through real-world case studies of user engagement on Ten-
cent START cloud gaming app [9].

We conducted case studies on two popular games, a multi-
player online battle arena (MOBA) game and a first-person

114 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 15 30 45

50

100

Pl
ay

 ti
m

e
(m

in
)

MOBA

5 15 30 45

20

40

60
FPS

0.0 0.2 0.4 0.6 0.8 1.0
Stall rate ()

0.00

0.25

0.50

0.75

1.00

(a) Stall rate v.s. Playing time

20 40

50

100

Pl
ay

 ti
m

e
(m

in
)

MOBA

20 40

20

40

60
FPS

0.0 0.2 0.4 0.6 0.8 1.0
Frame delay (ms)

0.00

0.25

0.50

0.75

1.00

(b) Avg. frame delay v.s. Playing time

Low High

50

100

Pl
ay

 ti
m

e
(m

in
)

MOBA

Low High

20

40

60
FPS

0.0 0.2 0.4 0.6 0.8 1.0
Bitrate

0.00

0.25

0.50

0.75

1.00

(c) Avg. bitrate v.s. Playing time

[0, 1
)

[1 , 2
)

[2 , 1)
[1 , 1%)

[1%, 1)

Stall rate range

0

2

4

6

FB
 ra

tio
 (

)

(d) Stall rate v.s. Feedback ratio
Figure 2: A case study on cloud gaming QoE analysis: the effects of stall rate (i.e., the frame ratio with delay >100ms), average frame delay,
and average bitrate on playing time (as a proxy of QoE). The dataset involves two hot games (i.e., MOBA and FPS) and one million gaming
sessions from a production cloud gaming service. Transmission-unrelated factors, such as decoding delay, are excluded from these metrics.

0 10 20
Base RTT (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Eth.
WiFi

Figure 3: Base RTTs in edge-
based cloud gaming services.

0 5 10 15 20
Num. of reductions

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Eth.
WiFi

Figure 4: Num. of bandwidth re-
ductions (≥ 50%) per minute.

shooting (FPS) game. We collected logs of more than a mil-
lion gaming sessions to study how network performance af-
fects user engagement in gaming. Following [26], we use the
user playing time (i.e., the length of a gaming session) to mea-
sure user engagement. We consider three metrics for network
performance: the average delay of game frames, the average
bitrate, and the stall rate. The last measures how often a player
experiences a stall, defined as the percentage of frames whose
delivery to the user device is delayed by more than 100 ms.

The results of our studies are plotted in Fig. 2. The stall
rate has a significant impact on user engagement (Fig. 2a):
as the stall rate increases linearly, the playing time rapidly
decreases in a superlinear manner. Average frame delay also
affects gaming engagement (Fig. 2b). But when the average
delay is sufficiently small (e.g., <40 ms), the negative impact
caused by an increased average delay is not as significant
as the stall rate, which reflects the long-tailed portion on the
distribution of frame delays (as opposed to the average delay).
Not surprisingly, the bitrate is also crucial to the user engage-
ment, since it determines the image display quality (Fig. 2c).
Lastly, Fig. 2d illustrates the percentage of sessions that re-
ceived user complaints with respect to different ranges of stall
rates. When the stall rate is in [1‰,1%), the percentage of
user-indicated unappealing gaming sessions is 10× more than
the percentage when the stall rate is within [0,1‱).

Our CC goals. To reduce the frame delay and stall rate, we
aim to achieve ultra-low (or nearly zero) queuing delay at the
bottleneck. To achieve the highest possible bitrate, we seek
to maximize bandwidth utilization; however, it should be pur-
sued only after the achievement of low frame delays. A high
bitrate with a high frame delay or stall rate is meaningless for
cloud gaming. We also value fairness among homogeneous
flows. It is noteworthy that, we specifically focus on achieving
frame-level zero queuing, which directly impacts the QoE.
This means that the queue induced by a frame should be
drained by the time the next frame arrives at the bottleneck,

rather than aiming for no queuing for every packet, although
these two levels of queuing are correlated.

2.4 Existing CC Solutions and Their Limitations

Many CC algorithms have been proposed with the aim of
reducing end-to-end delay, but they cannot simultaneously
fulfill the three specific requirements we mentioned in §1.

Delay-bounding CC. In previous studies, various delay-
bounding CC algorithms [11, 18, 19, 27–34] has been pro-
posed. Most of these algorithms, such as BBR [18] and PCC
Vivace [19], periodically increase packet sending rate beyond
the estimated bandwidth in order to dynamically probe net-
work bandwidth. This strategy, however, leads to frequent
queue buildup, and thus may cause the delay to oscillate per-
sistently even when the bandwidth stays stable. Other algo-
rithms (e.g., Vegas [27], Fast [28], and Copa [11]) use packet
delay as the congestion signal to avoid bufferbloat. When the
bottleneck queue is nearly empty, these methods tend to reck-
lessly raise the sending rate (even with an increasing step size)
until the queue is constructed, since these delay-based meth-
ods can only accurately assess link utilization when there is
sufficient queuing in the network. Thus, their CC frameworks
are fundamentally unable to maintain zero queuing.

RTC-oriented CC. Recent years have also witnessed the
development of CC algorithms specifically for real-time com-
munication (RTC) applications [12–17,35]. GCC [12] reduces
the bitrate only when the delay variation, rather than the delay
per se, becomes high. So, GCC is unable to empty the queue
promptly when an urgent congestion occurs. Similar to packet
delay-based methods, the network estimator in GCC works
only when there exists enough queuing in the network. As a
consequence, GCC has to often introduce queue buildups by
itself (as illustrated in Fig. 16, Appendix).

Salsify [13] (built upon Sprout [29]) adjusts frame sizes
based on the estimation of packet inter-arrival time. Using
samples in a short time scale for estimation, Salsify is sensible
to network changes and can respond to congestion quickly.
However, in real networks, the inter-arrival time at the packet
level suffers from significant fluctuations, which raise the
chances of estimation mistakes. Additionally, Salsify, which
is designed based on the assumption of independent queues,
is unable to detect other competing flows unless they intersect.
Furthermore, the aggressiveness of Salsify magnifies the im-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 115

pact of estimation errors stemming from the aforementioned
issues, ultimately leading to suboptimal performance.

SQP [20] utilizes frame-based packet trains to estimate
available bandwidth and adjusts the frame bitrate with AIMD-
style updates. This approach may allow SQP to achieve high
link utilization and avoid heavy queuing in an isolated envi-
ronment. However, when multiple flows coexist, SQP faces
challenges in accurately estimating the available bandwidth,
especially when the flows are staggered. This may result in
overshoots and queue buildups. Furthermore, SQP tries to
achieve competitive bandwidth shares when competing with
queue-building flows and may incorrectly identify a network
degradation as the competition of buffer-filling flows (as ex-
plained in Fig. 12). Consequently, SQP fails to promptly drain
the bottleneck queue in such situations.

3 Challenges and Rationale
Before diving into Pudica’s algorithmic details (in §4), we de-
scribe the challenges that Pudica aims to address for clouding
gaming applications and the rationale that leads to its design.

3.1 Network Probing and Estimation

Existing bandwidth estimation methods are unable to sustain
a nearly empty bottleneck queue at the frame level. In Pudica,
we opt to estimate the BUR (i.e., bandwidth utilization ratio)
rather than the bandwidth itself, and to achieve this, we design
a new network probing method.

Limitations of traditional methods. Many CC algorithms
aim to estimate the available bandwidth or capacity between
two ends of a connection [18–20]. Here, to eliminate ambigu-
ity, we refer to [36] to define the term "available bandwidth"
as the maximum rate that the path can provide to a flow,
without reducing the rate of the rest of the traffic. Similarly,
"available capacity" is defined as the amount of data that
can be inserted into a network path at a certain time, so that
the transit delay of these packets remains within a specified
maximum permissible delay (for further details, refer to [36]).

For estimating bandwidth or capacity, most of the existing
frameworks require the intentional and periodic introduction
of heavy queuing at the bottleneck to assess whether the link
is fully utilized. This network probing method is not at our
disposal, because we aim for a consistently empty queue. Re-
cently, a few low-latency CC methods try to probe the link
condition without resorting to heavy queuing [13, 20]. How-
ever, these designs often begin with a potential assumption
that the sender runs in a single-flow environment, without
giving due consideration to the collective dynamics of multi-
ple flows. This oversight may result in an overestimation of
available network resources when multiple streams coexist.

In fact, even with exact knowledge of the remaining band-
width or capacity, we cannot guarantee a rate increase without
surpassing the available resources. This is due to the fact that,
as an end-to-end CC agent, we lack information regarding
the number of flows utilizing the identical bottleneck link,

Sender Router

𝑡!

𝑡"

Cross trafficOur flow Probe packet

𝑡!
in out

Sender ReceiverRouter
in out

(a) Bursty flow w/o cross traffic (b) Paced flow w/ cross traffic

Receiver

𝑡"

Next
frame

Agnostic
period

Sensible
period

Next
frame

𝐿

𝑡!#

𝑡!###

𝑡"###

𝑡"#
𝑡!#

𝑡"#
𝑡"##

𝑡!##
𝑡!##

𝑡! 𝑡!

𝑡"###

𝑡!###
𝐷!"#

𝑡"##

𝐷!"#

𝐷!"#

Figure 5: An illustration of our BUR probing and estimation method
with the router acting as the bottleneck.

and consequently, an appropriate allocation for aggregated
resources remains unattainable. This limitation is inherent to
the signal of available bandwidth/capacity.

What to estimate? As will be mentioned repeatedly, it
is the requirement of nearly zero queuing delays for game
frames that profoundly shapes Pudica’s design in many as-
pects. As the prerequisite for control actions, not only should
the probing process keep no queuing, but the chosen signal
after probing must also enable the rate controller to avoid
queue buildups during the efficiency-convergence process,
particularly when multiple streams coexist.

Inspired by VCP [23], Pudica probes the BUR as a feedback
signal for CC, rather than the bandwidth per se. The BUR, a
scalar, is defined as the ratio of current bandwidth usage to the
link capacity, which provides an indicator of the precise level
of link utilization. It not only indicates whether congestion is
occurring (congested when BUR >1), but also distinguishes
between different utilization regions. As proved by [23], by
leveraging the BUR information, we can achieve efficiency
and fairness under the constraint of consistently low queuing,
regardless of the number of concurrent flows or link capacity.

How to probe? Our goal is to estimate BUR by relying
solely on end-to-end feedback. Basically, a queuing delay
greater than zero serves as a reliable indicator of the full-
load duration at the bottleneck. Since we aim for nearly zero
queuing at the frame level, for probing BUR, packet-level
queuing delay must be introduced judiciously.

To illustrate this, we present an example in Fig. 5, where
the router acts as the bottleneck. In the absence of cross traffic
(refer to Fig. 5a), all packets of a frame are transmitted in a
bursty manner by the sender between time t0 and t1, and they
reach the router between time t ′0 and t ′1. Due to the limitation
of network bandwidth, the queuing time of the last packet can
be denoted as (t ′′1 − t ′′0), during which the link utilization is
100%. In this case, the bandwidth utilization can be calculated
as (t ′′1 − t ′′0)/L = (t ′′′1 − t ′′′0)/L = (t ′′′1 − t0 −Dmin)/L, where
Dmin is the minimum one-way delay from the sender to the
receiver, and L is the interval of frame sending.

However, when cross traffic exists, traffic arriving at the
router after t ′1 cannot be detected by the receiver. To address

116 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

this issue, we intentionally slow down the frame transmis-
sion slightly, allowing a portion of the cross traffic to arrive
between t ′0 and t ′1, as depicted in Fig. 5b. This enables the
receiver to observe the presence of such traffic. Although
extending the time period between t0 and t1 allows for more
cross traffic to arrive in this period, once the instantaneous
utilization drops below 100%, the packet-level queuing delay
becomes zero, and then we lose the ability to determine the
level of bandwidth utilization accurately. Therefore, our goal
is to send each frame as slowly as possible while maintaining
a packet-level queuing delay greater than zero (at least for the
last packet of each frame). To achieve this, we dynamically
and adaptively adjust the pace multiplier. As a result, we can
still basically estimate the BUR as (t ′′′1 − t0 −Dmin)/L, which
remains consistent with the no-cross-traffic cases.

Nonetheless, we are actually uncertain about the cross traf-
fic arriving after t ′1. To complement this, we employ a small
number of extra probe packets beyond frame data to measure
the queuing time and robustify the BUR estimation. Even
though a competing flow that consistently sends at a low rate
and causes zero queuing delay may still go undetected, this
complementary probing mechanism can greatly reduce the
occurrence of BUR underestimation (see Fig. 7). Furthermore,
the lack of awareness of such low-rate flows diminishes as
the link utilization approaches 100%.

3.2 Bitrate Adaptation based on BUR Estimations

Basically, Pudica utilizes BUR estimation to dynamically ad-
just the frame bitrate. When BUR is low, we multiplicatively
increase the rate for efficiency; when BUR is high (but less
than one), we operate AI and MD for fairness; when BUR
exceeds one, we reduce the bitrate to quickly drain the bottle-
neck queue. Within this framework, Pudica introduces several
meticulously designed methods to minimize queuing delay.

Coping with queuing caused by possible estimation errors.
Despite significant improvements in the accuracy of BUR
estimation, we acknowledge that there is still a gap between
the predicted value and the actual value. Therefore, we rec-
ognize the need for adaptive steps in bitrate upgrading, i.e.,
the step should be smaller (applied more cautiously) as the
BUR increases. Furthermore, we design a temporary fallback
mechanism to minimize the adverse effects of potential es-
timation errors. Specifically, Pudica timely and moderately
reduces the bitrate whenever it detects a significant delay in
any individual frame. To enhance resilience against jitters,
this reduction is limited to the subsequent frame only, ensur-
ing its transient nature. This fallback strategy is particularly
useful for cloud gaming due to the smaller RTT (§2.2). With
shorter feedback loops, we can effectively manage the effects
of minor overshoots through prompt corrections.

Balancing fairness and queuing. A common way to pro-
mote fairness in CC design is through additive increase and
multiplicative decrease (referred to as AI/MD) of the bitrate. It

additively increases the bitrate until a high queuing delay (or
overflow-induced packet loss) is detected, and then it switches
to multiplicatively decrease the bitrate.

Again, for cloud gaming this strategy falls short, because
we wish to minimize queue buildups. We therefore propose
a different strategy: While we additively increase the bitrate,
we do not wait until the queue is built up to begin the MD op-
eration. Instead, we apply MD earlier, concurrently with each
AI action, to proactively free up a portion of bandwidth before
the bitrate causes any queue buildup. In this way, MD-based
de-allocation occurs simultaneously with AI-based allocation,
executed more frequently as well. Thereby, fairness across
competing flows can be reached in a faster way while avoid-
ing excessive queuing. To distinguish it from the traditional
AI/MD, this strategy is referred to as AI-MD.

Yet, a naïve implementation of AI-MD with fixed MD am-
plitudes and AI steps may hinder link utilization. For instance,
in high-bandwidth scenarios, the de-allocation amount from
the MD operation may exceed AI’s allocation, leading to a
bitrate decrease even with a low utilization of overall band-
width. Our remedy to this limitation is by applying bitrate
AI in an adaptive manner. The step of AI gradually increases
from an initial small value until the link is close to being
fully utilized. This approach ensures high utilization and low
queuing during the convergence process toward fairness.

Handling bandwidth fluctuations. As a commercially de-
ployed system, Pudica must be able to cope with frequent
network fluctuations, especially urgent bandwidth degrada-
tion (which has been shown in §2.2). When the link degrades,
a belated bitrate reduction would result in severe queuing;
conversely, a timely response to this degradation would sig-
nificantly reduce the tailed delay and stall rate.

To achieve a timely response to bandwidth reduction, Pu-
dica relies on not only the smoothed BUR estimation but
also the BUR feedback from the latest frames, to judge if
congestion has occurred. When the BURs of three consecu-
tive frames both exceed one, Pudica will reduce the bitrate
to a value below the packet receiving rate. The underlying
insight is that when the link utilization exceeds 100%, the
short-term receiving rate can serve as a dependable indicator
of the achievable maximum throughput. At this time, if every
flow in the network can set its bitrate below the receiving rate,
the queue at the bottleneck can be drained quickly.

4 Pudica Design
We propose a new probing framework that achieves high-
accuracy BUR estimation. By leveraging both smoothed
(from long-term history) and short-term BUR estimations,
we design multiple bitrate control strategies to enhance effi-
ciency and fairness while minimizing the queuing delay. We
provide a brief overview of our control policy:
• MI for efficiency when smoothed BUR (or R̃) is low;
• AI-MD for fairness when R̃ is high but not more than one;

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 117

𝒕-frame
Timeline of
sendingFirst packet

Sending probe packets

𝒕 + 𝟏 -th
𝐿Last packet

𝐿	/	𝜌

Figure 6: Pudica sends several payload-free probe packets beyond
frame data during the intermission of frame sending to detect the
existing competing flows during the agnostic period.

• MD for queue draining when short-term BUR exceeds one.

4.1 BUR Probing and Estimation

Pudica utilizes all packets within each game frame as a short
burst (namely a packet train) to probe the link utilization (i.e.
BUR). To improve the accuracy of BUR estimation, Pudica
introduces an innovative adaptive pacing control algorithm,
accompanied by a complementary approach that uses a small
number of probe packets to detect competing flows.

As illustrated in Fig. 5 and §3.1, during the period of
[t0 +Dmin, t ′′′1], the queuing delay keeps non-zero, and in turn,
the bottleneck link is fully utilized. We refer to this period
as the sensible period. On the contrary, [t ′′′1 , t0 +L+Dmin] is
the agnostic period, during which there is no feedback from
the network. We adaptively adjust the pace multiplier such
that it introduces just a slight amount of packet-level queuing
for effective probing while maximizing the duration of the
sensible period. In the agnostic period, we insert several addi-
tional probe packets without payload to measure the potential
queuing time during this period.

BUR estimation. We estimate the BUR of a frame (denoted
by R) by calculating the difference between the transmission
delay of this frame and the physically minimal delay:

R =
D−Dmin

L
. (1)

Here, D is the one-way frame delay (in sec), i.e., the duration
from the sent time of the first packet to the received time of
the last packet for this frame. Dmin (in sec) is estimated as the
smallest packet one-way delay over the period of ten seconds.
L is the interval of frame sending (in sec). There is no clock
synchronization issue here, as the same errors for both D and
Dmin cancel each other out.

Adaptive pacing control. To extend the sensible period
while sustaining a slight burstiness, Pudica dynamically sets
the pacing multiplier ρ as:

ρ =
γρ

min(R, 1)
, (2)

where γp is a constant greater than one, empirically assigned
a value of 1.25. Using this method, the sending duration be-
tween the first packet and the last packet in a frame (i.e.,
t1− t0 in Fig. 5) is slightly shorter than the queuing delay (i.e.,
D−Dmin), which introduces just a slight packet-level queuing
in the bottleneck buffer. By bounding the denominator up
to one, all packets of each frame are sent within the frame
interval, to avoid superfluous waiting time at the sender.

Competing flow detection with probe packets. To detect
potential competing flows after the sensible period, Pudica
sends Npacket (set as four) payload-free probe packets during
the agnostic period, as illustrated in Fig. 6. These probe pack-
ets are sent out evenly, i.e., the sending interval Tpacket (in sec)
between probe packets is set to be (1−1/ρ)×L

Npacket+1 .
Then, Pudica uses the feedback of probe packets to robus-

tify the BUR estimation within this frame interval. Let Di
denote the one-way delay (in sec) of the i-th probe packet
(i = 1, . . . ,Npacket). If the competing flows that occupy the
network resource during the agnostic period block the probe
packets, the queuing delay Ti, i.e., Di−Dmin, for the i-th probe
packet will be non-zero and should be taken into account.

However, the queuing delay also occurs when probe pack-
ets are blocked by the game frame data sent by Pudica itself.
Such queuing delay needs to be removed as it has already
been counted in the sensible period. If the frame data delays
the i-th probe packet, the actual queuing delay caused by com-
peting flows is the duration (in sec) between the arrival of
the frame’s last packet to the arrival of the i-th probe packet.
Such delay is smaller than Di −Dmin in this case, defined as
Hi. So far, a reasonable queuing delay can be expressed as:

Ti = min(Di −Dmin, Hi). (3)
Furthermore, if the queuing delay of the i-th probe packet

(i.e., Ti) is larger than the packet sending interval (i.e., Tpacket),
it will also affect the queuing delay of the following probe
packet (i.e., Ti+1). To avoid repetitively counting the queuing
delay that has been already experienced by the previous probe
packets, Ti should be bounded by Tpacket in computation. The
rectified queuing delay is finally defined as:

Ti = min(Di −Dmin, Hi, Tpacket). (4)
With the above analysis, Pudica can leverage the cross-

traffic-induced queuing delay of probe packets to obtain a
more accurate BUR estimation, i.e., Rcorrected :

Rcorrected = R+Σ
Npacket
i=1

Ti

L
. (5)

Validation of usefulness. We validated the effectiveness
of our BUR estimation method through a large-scale Internet
test. The details of the validation methodology are explained
in Appendix A. Fig. 7 depicts the BUR estimation perfor-
mance of different probing methods. Our probing approach
(see Fig. 7d), which incorporates both adaptive paces and ex-
tra probe packets, outperforms other alternatives in accurately
estimating BUR. Furthermore, as the actual BUR increases,
the estimation distributions exhibit reduced variance, indicat-
ing enhanced reliability. Fixed 2× pacing (used in SQP [20],
see Fig. 7a) and burst sending (see Fig. 7b) are prone to
unawareness of competing flows and consequently lead to
BUR underestimation, particularly in high-utilization scenar-
ios. The use of probe packets not only corrects unawareness-
induced BUR underestimation, but also guides the pacer to-
ward smaller multipliers. This, in turn, extends the sensible
period and enhances the precision of BUR estimation.

118 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 20 30 40 50 60 70 80 90 100
Actual utilization (%)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Es
tim

at
ed

 u
til

iza
tio

n

Optimal

(a) Fixed paces (2× pacing).

10 20 30 40 50 60 70 80 90 100
Actual utilization (%)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Es
tim

at
ed

 u
til

iza
tio

n

Optimal

(b) Fixed paces (burst sending).

10 20 30 40 50 60 70 80 90 100
Actual utilization (%)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Es
tim

at
ed

 u
til

iza
tio

n

Optimal

(c) Adaptive paces (w/o probe packet).

10 20 30 40 50 60 70 80 90 100
Actual utilization (%)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Es
tim

at
ed

 u
til

iza
tio

n

Optimal

(d) Pudica (complete).
Figure 7: Validation of various BUR estimation methods. Each method involves more than 2,000 groups of test data in real networks. Our
method, which combines adaptive paces and probe packets, significantly improves the accuracy of BUR estimation over the alternatives.

4.2 Bitrate Adaptation over the Smoothed BUR

In this section, we introduce how Pudica leverages a smoothed
BUR estimation as an indicator to dynamically adjust its bi-
trate for optimizing link utilization and cross-flow fairness
while sustaining near-zero bottleneck queuing.

Smoothed BUR computation. To obtain the smoothed
BUR (a scalar, denoted by R̃), we utilize historical BUR esti-
mation samples from Nsample frames over the past Twd ms. Twd
is set to 200, as most flows have base RTTs less than 200 ms.
This choice strikes a balance between the likelihood of aware-
ness for competing flows and the freshness of the data [23].
We employ the weighted average method to calculate R̃ as:

R̃ = ∑
Nsample
k=1 ωk ×Rk ×

B
Bk

, (6)

with weight coefficients ωk subject to ∑
Nsample
k=1 ωk = 1 (detailed

in Appendix B). Here, Rk and Bk represent the BUR feedback
and bitrate of the k-th frame, respectively. B is the current
bitrate for frame encoding, which is dynamically updated on
the fly. To address possible differences between B and Bk
(both in units of Mbps), we use the ratio of the two values
to rectify any deviation and ensure that the smoothed BUR
estimation aligns with the current state.

Multiplicative increase (MI) for efficiency. Similar to
VCP [23], Pudica decouples efficiency control and fairness
control. When the smoothed BUR estimation (i.e., R̃) is low,
Pudica prioritizes efficiency over fairness, by adjusting bi-
trate with MI operations. Then, when R̃ is high but less than
one, the goal of Pudica is to converge toward fairness while
maintaining nearly full utilization (will be introduced later).

Pudica employs a threshold, denoted by α, to determine
whether to activate the efficiency control or fairness control
phase. The value of α is empirically determined to be 0.85.
When R̃ ≤ α, the bitrate is multiplied to rapidly converge
toward efficiency, which can be expressed as:

Bnew = B× (1+ξ), (7)

ξ = γMI ×
(α+1)/2− R̃

R̃
, (8)

where γMI is a discounting coefficient, empirically set as 0.3.
Note that the next adjustment is postponed until the feedback
regarding the current adjustment is received, to prevent over-
aggressive rate increases and mitigate bitrate oscillation.

Simultaneous AI and MD for fairness. When R̃ > α, we
do not apply the traditional AI technique which linearly in-
creases the bitrate until the queue is built up. Instead, Pu-
dica operates AI and MD bitrate adjustment simultaneously
(namely AI-MD), by replacing the fixed AI step (used in clas-
sical AI/MD frameworks) with an adaptive step A :

Bnew = B+A , (9)

A = I − γMD ×B, (10)
where I is the linear part of the adjustment step (in Mbps), and
γMD is the MD parameter of the multiplicative part (set to be
0.05, empirically). Simultaneously performing AI and MD in
one step significantly augments the prospects for bandwidth
reallocation, thereby accelerating the convergence to fairness.
In practice, we enforce both upper and lower bounds on A to
prevent excessive bitrate oscillation during this stage.

Given an MD ratio (i.e., γMD), a fixed linear increase (i.e.,
I) may be too small to fully utilize bandwidth for a high link
rate, or conversely, it may cause rate oscillation and delay
spikes for low link bandwidth. To solve this dilemma, we
design an AI step adaptation mechanism to match the link
rate. Specifically, the value of I is determined by the equation
(Bmax +

2τ

log(B))× (γMD
2). Here, Bmax is the maximum bitrate

limited by the application (set as 50 Mbps in our implementa-
tion). τ denotes the accumulated number of received frames
after initialization (discussed later). This equation is designed
to be inversely related to the current bitrate B, to enhance
fairness convergence by increasing the value of I more slowly
for flows with higher bitrates.

Since the value of I keeps increasing, Pudica resets τ to
be zero when R̃ > 1, in order to prevent a heavy queuing
caused by an overlarge I. This initialization method relies on
BUR estimations, which may not be flawless. Thus, Pudica
further implements a time-driven initialization mechanism
to avoid severe unfairness. To be specific, τ is initialized
every five seconds. This periodical and highly synchronized τ

initialization enhances the robustness of our AI-MD scheme.
By applying AI-MD with an adaptive AI step, Pudica can
achieve faster convergence to fairness while avoiding frequent
queue buildups (further illustrated in Appendix C).

4.3 Bitrate Adaptation over the Short-Term BUR

Using a smoothed BUR estimation that combines multiple
BUR samples from the past can provide more robustness to

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 119

network noises, compared to relying solely on a single-frame
BUR. However, due to its lagging nature, the smoothed BUR
may not be able to respond promptly to improper control de-
cisions or sudden network changes. To address this issue and
achieve more timely adaptations, we propose two additional
bitrate adjustment approaches that utilize the short-term BUR,
particularly the BUR of recently received frames. By combin-
ing the responsiveness of short-term BUR with the robustness
of smoothed BUR, Pudica strikes a superior balance between
timeliness and stability in bitrate control.

Temporary bitrate fallback. Upon detecting a potential
overshoot or congestion for the first time, Pudica instantly
takes action by temporarily reducing the bitrate. Specifically,
when the BUR feedback of any single frame exceeds one,
Pudica will reduce the bitrate by ζ (set to be 15%, empirically)
for the subsequent frame to be encoded. This bitrate reduction
is temporary, meaning that after adjusting the bitrate for the
next to-be-encoded frame, the encoder will revert back to the
previous bitrate setting.

It is important to highlight that in cases of sudden conges-
tion, the sender may experience delays in receiving feedback
regarding network degradation, which can lead to delayed
bitrate fallback. To address this issue, we monitor the frames
that have been sent to the network but have not yet been ac-
knowledged. We introduce the concept of next delay, which
represents the elapsed time from the moment the next to-be-
received frame (i.e., the earliest sent frame among the in-flight
frames) was sent until the current time. When the next delay
is significant, Pudica performs the bitrate fallback as well.
The introduction of the next delay signal enables Pudica to
respond to congestion more swiftly and timely.

This fallback scheme could reduce queue buildups caused
by potential overshoots since we acknowledge the inherent
difficulty in achieving flawless BUR predictions. The tran-
sient nature of the bitrate reduction helps minimize the impact
of incorrect fallback due to jitter-induced delay variations.

Active queue draining. When the BUR feedback of three
recently received frames both exceeds one, Pudica enters the
queue-draining phase with active undershooting. At this time,
the bitrate is set to be:

Bnew = α× receiving_rate−draining_rate, (11)

where receiving_rate is the average data receiving rate from
the onset of congestion to the present moment. It serves as
a reliable estimation of the maximum throughput achievable
during this period. Additionally, Pudica employs a calculation
to determine the required additional throughput rates (referred
to as draining_rate) needed to clear the self-induced queuing
at the bottleneck within the next 200 ms. Here, the volume
of self-induced queued data is quantified by measuring the
number of in-flight packets. By carrying out an active queue
draining over the Eq. 11, Pudica is able to efficiently and
swiftly empty the existing queue at the bottleneck.

Algo. Avg.
delay

95%/99%
-tile delay

Stall rate
>100/200ms

Avg.
bitrate

Copa 26.9ms 47.2/79.9ms 1.68%/0.77% 42.9Mbps
Salsify 21.5ms 30.0/67.0ms 0.48%/0.09% 42.4Mbps
SQP 41.8ms 101.7/147.8ms 1.27%/1.03% 43.7Mbps

Pudica 19.5ms 25.0/30.6ms 0.07%/0.004% 47.5Mbps
Table 1: Overall system-level performance at scale (Ethernet).

Algo. Avg.
delay

95%/99%
-tile delay

Stall rate
>100/200ms

Avg.
bitrate

Copa 76.5ms 305.2/672.8ms 7.7%/3.9% 22.6Mbps
Salsify 195.5ms 631.7/982.5ms 22.9%/13.5% 32.6Mbps
SQP 302.2ms 815.2/1218.5ms 10.3%/8.7% 23.2Mbps

Pudica 33.7ms 74.9/175.6ms 2.5%/0.72% 31.2Mbps
Table 2: Overall system-level performance at scale (WiFi).

On the other hand, when the congestion vanishes, gradually
increasing the bitrate from a low value can lead to suboptimal
utilization due to the delayed nature of smoothed BUR estima-
tion. Therefore, when the BUR of a recently arrived frame is
less than one, Pudica recalculates the current receiving_rate
and directly restores the bitrate to match it. Considering the
delay sensitivity of the queue draining mechanism, this one-
step recovery scheme improves resilience to network jitters
and consequently enhances link utilization, by promptly re-
covering when the delay returns to normal.

5 Evaluation
We deployed Pudica and the state-of-the-art CC algorithms
on a commercial cloud gaming platform, and conducted ex-
tensive evaluations in real-world wired and wireless networks.
We also evaluated the ability of convergence to efficiency
and fairness through a large-scale, in-the-wild network testing
platform. We demonstrated the reason for Pudica’s gain by
miscellaneous emulation experiments. Finally, we proved the
effects of several selected algorithm components on end-to-
end performances by microbenchmarks. All timeline-based
line charts in this section are presented at a frame-wise level.

5.1 Methodology for Large-Scale Algorithm Evaluation

We deployed four CC approaches, including Pudica, Sal-
sify [13], Copa [11], and SQP [20] on Tencent START cloud
gaming platform [9] for large-scale A/B tests3. The START
system integrates the customized network protocol stack and
video codec, supporting submillisecond-class pacing, packet-
level acknowledging, and frame-level size control.

Experiment setups. Our commercial system operates on
fully public networks over the Internet. The evaluation fi-
nally involved more than 57,000 gaming sessions across 15
cities, two network types (Ethernet and WiFi), and three ISPs
over five weeks. We randomly chose one of the CC algo-
rithms for each session and kept the other system modules the
same for a fair comparison. We set the frame rate as 60 and
the maximal bitrate as 50 Mbps4 for all algorithms. We set

3A preliminary emulation experiment is conducted in Appendix D.
4In production cloud gaming services, the gaming bitrate above 50 Mbps

is bandwidth-costly with low marginal benefits on player QoE.

120 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 20 30 40 50
Average frame delay (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F Pudica

SQP
Salsify
Copa

(a) Avg. frame delay (y∼[0-1]).

101 102 103 104

Average frame delay (ms)
0.90
0.92
0.94
0.96
0.98
1.00

CD
F Pudica

SQP
Salsify
Copa

(b) Avg. frame delay (y∼[0.9-1]).

101 102 103 104

95%ile frame delay (ms)
0.75
0.80
0.85
0.90
0.95
1.00

CD
F Pudica

SQP
Salsify
Copa

(c) 95% tailed frame delay.

101 102 103 104

99%ile frame delay (ms)
0.5
0.6
0.7
0.8
0.9
1.0

CD
F Pudica

SQP
Salsify
Copa

(d) 99% tailed frame delay.

10 5 10 4 10 3 10 2 10 1 100

Stall rate (>100ms)
0.68

0.76

0.84

0.92

1.00

CD
F Pudica

SQP
Salsify
Copa

(e) Stall rate (>100ms).

10 5 10 4 10 3 10 2 10 1 100

Stall rate (>200ms)
0.84

0.88

0.92

0.96

1.00

CD
F Pudica

SQP
Salsify
Copa

(f) Stall rate (>200ms).

0 10 20 30 40 50
Average bitrate (Mbps)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Pudica
SQP
Salsify
Copa

(g) Average bitrate.

0 10 20 30 40 50
Average valid bitrate (Mbps)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Pudica
SQP
Salsify
Copa

(h) Average valid bitrate.
Figure 8: Performance at scale on a commercial cloud gaming platform over the Internet (Ethernet). X-axis in some figures is in log scale.

101 102 103 104

Average frame delay (ms)
0.0
0.2
0.4
0.6
0.8
1.0

CD
F Pudica

SQP
Salsify
Copa

(a) Avg. frame delay (y∼[0-1]).

101 102 103 104

Average frame delay (ms)
0.90
0.92
0.94
0.96
0.98
1.00

CD
F

Pudica
SQP
Salsify
Copa

(b) Avg. frame delay (y∼[0.9-1]).

101 102 103 104

95%ile frame delay (ms)
0.0
0.2
0.4
0.6
0.8
1.0

CD
F Pudica

SQP
Salsify
Copa

(c) 95% tailed frame delay.

101 102 103 104

99%ile frame delay (ms)
0.0
0.2
0.4
0.6
0.8
1.0

CD
F Pudica
SQP
Salsify
Copa

(d) 99% tailed frame delay.

10 5 10 4 10 3 10 2 10 1 100

Stall rate (>100ms)
0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Pudica
SQP
Salsify
Copa

(e) Frame stall rate (>100ms).

10 5 10 4 10 3 10 2 10 1 100

Stall rate (>200ms)
0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Pudica
SQP
Salsify
Copa

(f) Frame stall rate (>200ms).

0 10 20 30 40 50
Average bitrate (Mbps)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F Pudica

SQP
Salsify
Copa

(g) Average frame bitrate.

0 10 20 30 40 50
Average valid bitrate (Mbps)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F Pudica

SQP
Salsify
Copa

(h) Average valid bitrate.
Figure 9: Performance at scale on a commercial cloud gaming platform over the Internet (WiFi). X-axis in some figures is in log scale.

the delay constraint as (L+Dmin) in Salsify. Following [20],
Copa was implemented with a setting of δ = 0.1 and without
mode switching. For CWND-based methods, the frame bitrate
was determined based on the ratio of the CWND size to the
smoothed RTT.

Evaluation metrics. To evaluate operation interactivity, we
computed several metrics for each gaming session, including
the average, 95%ile, and 99%ile round-trip frame delay, and
the stall rates for frame delays exceeding 100 ms and 200 ms.
For display quality, we computed the average values of frame
bitrate and valid bitrate for each session. The valid bitrate
refers to the average bitrate of frames that have a low delay,
specifically less than 50 ms. While a delayed frame may have
a high bitrate, the information it carries could be outdated and
therefore useless to the player experience.

5.2 System-Level Performance at Scale

We list evaluation results by averaging across all sessions
in Tab. 1 and Tab. 2, and we plot the CDF curves of the
various metrics in Fig. 8 and Fig. 9. In summary: i) Pudica
significantly reduces frame delay and stall rate, and cuts the
delay tail. ii) Pudica achieves an equivalent or higher bitrate.
iii) Pudica strikes a better balance between delay and bitrate.

Average and tailed frame delay. Fig. 8a–8d illustrates that
compared to the baselines, Pudica reduces the frame-level
average delay, 95%ile delay, and 99%ile delay by 1.5×, 2.4×,

and 3.2×, respectively, over Ethernet networks. Similarly,
over WiFi networks (Fig. 9a–9d), the corresponding reduc-
tions are 5.7×, 7.8×, and 5.5×, respectively. We observed
that Salsify experienced lower delays in situations of highly
underutilized bandwidth (especially on wired networks) due
to its relatively bursty sending, as compared to methods with
conservative pacing control. However, Salsify exhibited exces-
sive sensitivity to intensive packet arrival or jitters, which are
common occurrences in WiFi networks, leading to dramatic
overshoots, high queuing delays, and frequent stalls.

Stall rate. Compared to the alternatives, Pudica reduces the
stall rate with thresholds of 100 ms and 200 ms by 16.3× and
22.5×, respectively, over Ethernet networks (Fig. 8e–8f). On
WiFi networks (Fig. 9e–9f), the reductions are 5.5×–12.1×.
We noticed that many users had access to sufficiently high
bandwidth, and as a result, experienced negligible stall rates
regardless of the CC algorithm employed, due to the upper
limit of 50 Mbps set in our experiments. Nonetheless, there is
still a notable proportion of sessions that can derive benefits
from the implementation of Pudica.

Frame bitrate. As depicted in Fig. 8g and 9g, Pudica
achieves a 1.10× and 1.19× bitrate enhancement on aver-
age over the Ethernet and WiFi networks, respectively. While
Salsify outperforms Pudica in average bitrate for WiFi scenar-
ios, its average delay and stall rate is 5.8× and 9.2× higher
than Pudica, respectively. From Fig. 8h and Fig. 9h, we can

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 121

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Pudica
SQP
Salsify
Copa

(a) Avg. utilization.

0 2 4 6 8 10 12 14 16 18
Time to convergence (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F Pudica

SQP
Salsify
Copa

(b) Convergence speed (efficiency).

0.0 0.2 0.4 0.6 0.8 1.0
Jain's fairness index

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Pudica
SQP
Salsify
Copa

(c) Fairness.

0 2 4 6 8 10 12 14 16
Time to converge to fairness (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F Pudica

SQP
Salsify
Copa

(d) Convergence speed (fairness).
Figure 10: Convergence ability evaluation for efficiency and fairness through a large-scale, in-the-wild network testing platform [24].

Copa Salsify SQP Pudica

0.2

0.4

0.6

0.8

1.0

Bi
tra

te
 d

ist
rib

ut
io

n
fo

r f
ra

m
es

 o
f >

50
m

s

Copa Salsify SQP Pudica
0

8

16

24

32

of
 st

al
le

d
fra

m
es

pe
r s

ta
ll

ev
en

t
<10Mbps 10-20Mbps 20-30Mbps 30-40Mbps >40Mbps

Figure 11: The proportion of different bitrates for frames with a delay
greater than 50 ms (Left), and the average number of consecutively
stalled frames per occurrence of stall event (Right).

see that Pudica achieves the highest valid bitrate over both
Ethernet and WiFi networks.

Deeper analysis. To gain a better understanding of how
Pudica reduces the stall rate and cuts the delay tail, we fo-
cused on frames with large delays and observed how these
CC schemes respond to stalls. In Fig. 11, we present the bi-
trate distribution for frames with a delay exceeding 50 ms
(left-side), and the number/bitrate of consecutively stalled
frames per occurrence of stall event (right-side). Here, we set
a threshold of 100 ms for judgment of stall events/frames. Our
analysis shows that for Pudica, low-bitrate (<10 Mbps) frames
make up more than half of frames with a delay exceeding 50
ms (similar results for consecutively stalled frames), indicat-
ing Pudica’s superior performance in reducing CC-induced
queuing. When a stall event occurs, Pudica can quickly re-
spond to it by reducing the bitrate, resulting in a significant
reduction in the average stall count to 10.9 frames.

5.3 In-the-Wild Evaluation for Efficiency and Fairness

We used a large-scale network test platform [24] (detailed
in Appendix E) to evaluate the efficiency and fairness of
various CC algorithms, as well as the speed at which they
reached "steady state" and "fair state". A flow is deemed to
be in a steady state if it does not experience a bitrate change
exceeding 2% within the last two seconds. The fair state is
defined as a situation wherein the mean throughput of any two
flows does not diverge by more than 20% within a two-second
interval, or both flows have reached steady states.

Efficiency. Efficiency and its convergence are measured by
bandwidth utilization and the duration necessitated for each
algorithm to attain the steady state. Each test involved mea-
suring available bandwidth over a 90-second span, followed
by the random selection and execution of one CC algorithm
for 60 seconds. The average bandwidth utilization of the last
30 seconds of each test was calculated, as shown in Fig. 10a.

The findings indicate that Pudica achieved an average utiliza-
tion of 77.6%, while SQP, Copa, and Salsify achieved 76.8%,
70.8%, and 68.7%, respectively. Fig. 10b plots the time to
reach a steady state. The majority of flows (>80%) in Pu-
dica and Salsify converged within 6 seconds, whereas SQP
required an average of 9.7 seconds to reach a steady state.

Fairness. Fairness and its convergence are measured using
Jain’s fairness index and the time necessitated for each al-
gorithm to reach the fair state. In each test, we initiated one
flow, followed by the second and third flows with the same
algorithm after 20 and 40 seconds, respectively. Jain’s fair-
ness index was calculated using the throughput data collected
during the 45-60 second interval, as plotted in Fig.10c. Pudica
achieved an average fairness index of 0.95, while SQP, Copa,
and Salsify achieved 0.735, 0.965, and 0.947, respectively.
Fig. 10d illustrates the time to reach the fair state. We can see
that, Salsify achieved the fastest fairness convergence, while
SQP required the longest time to converge to a fair state.

Summary. Pudica provides high utilization and good fair-
ness, while also achieving rapid convergence to both. Con-
sequently, Pudica strikes a better balance between efficiency,
fairness, and low latency, compared to the baselines.

5.4 Pudica Deep Dive over Emulation

We assessed Pudica’s convergence capability over the Mahi-
mahi emulation [37], elucidating the reason for improvement.

Consistent convergence to low-queuing efficiency. As de-
picted in Fig. 12, Pudica exhibits a faster and more stable
adaptation to network variations, both in terms of bandwidth
decrease and increase, compared to the baselines. When the
bandwidth abruptly reduces, Pudica employs the active queue
draining mechanism (§4.3) to trigger a dramatic bitrate fall-
back in response to congestion. This allows Pudica to quickly
empty the queue, a process that typically takes only 200 ms.
Once the queue has been emptied, Pudica recovers the bitrate
by one step, ensuring a reasonable level of link utilization.
This strategy also provides Pudica with robustness against
network jitters, as demonstrated in Appendix F. As a con-
sequence, Pudica achieves a superior balance between low
queuing and efficiency. On the other hand, SQP exhibits slow
adaptation to reduced bandwidth, taking nearly five seconds
to drain the queue, resulting in high delay spikes and pro-
longed stall duration. Salsify and Copa are badly sensitive
to both transient packet queuing and empty queues, causing
choppy rate decisions and persistent delay oscillations.

122 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

8000 12000 16000 20000
Timeline (ms)

5
10
15
20
25
30
35
40

Fr
am

e
bi

tra
te

 (M
bp

s) Salsify
Copa
Pudica

SQP
Bandw.

Queue
draining One-step

recovery

(Zoomed in)

8000 12000 16000 20000
Timeline (ms)

101

102

103

Fr
am

e
de

la
y

(m
s) Salsify

Copa
Pudica
SQP

Figure 12: Comparison of convergence to low-queuing efficiency: bitrate and delay of each frame as the bandwidth alters. Pudica reconciles the
low queuing delay and high bandwidth utilization by merging responsive queue draining and rapid, stable bandwidth approaching.

0 10000 20000 30000 40000
Timeline (ms)

0
10
20
30
40

Bi
tra

te
(M

bp
s)

0 10000 20000 30000 40000
Timeline (ms)

101

102

103

Fr
m

. d
el

ay
(m

s)

(a) Pudica

0 10000 20000 30000 40000
Timeline (ms)

0
10
20
30
40

Bi
tra

te
(M

bp
s)

0 10000 20000 30000 40000
Timeline (ms)

101

102

103

Fr
m

. d
el

ay
(m

s)

(b) SQP

0 10000 20000 30000 40000
Timeline (ms)

0
10
20
30
40

Bi
tra

te
(M

bp
s)

0 10000 20000 30000 40000
Timeline (ms)

101

102

103

Fr
m

. d
el

ay
(m

s)

(c) Copa

0 10000 20000 30000 40000
Timeline (ms)

0
10
20
30
40

Bi
tra

te
(M

bp
s)

0 10000 20000 30000 40000
Timeline (ms)

101

102

103

Fr
m

. d
el

ay
(m

s)

(d) Salsify
Figure 13: Comparison of fairness convergence: bitrate and delay of each frame for multiple competing flows as they gradually enter and quit.
Up to three flows share a 30 Mbps bottleneck. Pudica achieves rapid, stable convergence to fairness with sustaining low frame delays.

Rapid and stable convergence to fairness. As shown in
Fig. 13, Pudica achieves rapid and consistent fairness conver-
gence for both throughput and delay whenever a new stream
enters or leaves the same link. Pudica also prevents the for-
mation of significant queues in the presence of competing
flows. SQP utilizes an essentially MIMD-based rate adjust-
ment approach, leading to poor fairness, especially when a
slow-start newcomer encounters multiple existing high-bitrate
flows. Further, multiple concurrent SQP flows would mistak-
enly regard each other as the buffer-filling flow and enter the
competing mode by continually raising the estimate of min-
imum delay, resulting in an increasing delay. While Salsify
and Copa achieve decent fairness, they suffer from significant
bitrate and delay oscillation when multiple flows are present.

5.5 Microbenchmark

We conducted a microbenchmark in real networks to quantify
the contribution of different design elements to overall per-
formance. We plot the key evaluation results in Fig. 14 and
provide more detailed information in Appendix G.

Different BUR estimation methods. We replaced the BUR
estimator in Pudica with the network estimation methods in-
troduced in SQP [20] and Salsify [13]. SQP uses the frame as
a burst to probe the available bandwidth, while Salsify utilizes
packet trains to probe the available capacity. Therefore, these
methods do not directly estimate the BUR indicator. That
being said, we evaluated the performance of their probing
methods within the Pudica framework. To accomplish this,
we considered the ratio of the current bitrate to the estimated
available bandwidth/capacity as the BUR estimation in the
Pudica variants. As depicted in Fig. 14a, Pudica achieves
lower stall rates and tailed delay, particularly in multi-flow

scenarios, when compared to the variants. This confirms the
advantages of our BUR estimation approach.

AI-MD v.s. AI/MD. Fig. 14a also compares the strategy of
simultaneous AI and MD in Pudica (i.e., AI-MD) with the tra-
ditional AI/MD method. For AI/MD, we additively increase
the bitrate when the BUR is between α and one; we multi-
plicatively decrease the bitrate when the BUR exceeds one.
Our findings demonstrate that Pudica with AI/MD achieves
comparable performance to AI-MD in single-flow scenarios.
However, when three flows operate simultaneously on the
same link, AI-MD exhibits the advantage of reducing stall
rate and tailed delay (as well as fairness, see Appendix G).

Temporary bitrate fallback and active queue draining.
Fig. 14b evaluates the contributions of two bitrate adjustment
methods driven by short-term BUR signals (§4.3). Evidently,
the introduction of temporary fallback and active queue drain-
ing significantly improves the stall rate and tailed delay.

Sensitivity analysis for algorithm parameters. We as-
sessed the impacts of several parameter choices in Pudica. Tab.
6 in the Appendix shows that Pudica maintains consistent per-
formance across various parameter configurations, indicating
its lesser dependence on specific parameter settings.

6 Discussion
Granularity for periodic bursts. Pudica uses a network
probing approach where all packets within a frame are treated
as a burst, minimizing sender-side delay and aligning with
our focus on frame-level end-to-end delay. This granularity is
suitable for our context. However, periodic burst transmission
at different granularities could also be effective, especially for
applications beyond frame-level performance assessment.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 123

Single Three
Number of flows

0

5

10

St
al

l r
.(>

50
m

s)
(%

)

Pudica Pudica w/ BUR estimate of SQP Pudica w/ BUR estimate of Salsify Pudica w/ AI/MD

Single Three
Number of flows

0.00

0.02

0.04

0.06

St
al

l (
>2

00
m

s)
(%

)

Single Three
Number of flows

0

20

40

60

99
%

ile
 d

el
ay

 (m
s)

0.00

0.05

0.10

0.15

0.20

St
al

l r
. (

>2
00

m
s)

(%
)

Pudica w/o temporary bitrate fallback
Pudica w/o active queue draining

0

20

40

60

99
%

ile
 d

el
ay

 (m
s)

Figure 14: Key microbenchmark results: (a) Different BUR estimation; AI-MD v.s. AI/MD. (b) Responsive reaction.

Balancing feedback usefulness and cross-traffic detection.
Pudica may intentionally slow the pace multiplier to boost
the chance of detecting competing flows. While this packet
pacing may reduce feedback usefulness by eliminating packet
queuing, it shortens the agnostic period and lessens BUR
underestimation due to cross flow unawareness. This is a
trade-off between feedback precision and flow detection. Our
method may overrate BUR compared to fully bursty transmis-
sion, impacting efficiency convergence. However, it improves
delay performance, a more fitting trade-off for cloud gaming.

Handling packet losses. Since Pudica estimates available
bandwidth based on the actual arrived size of frames, it would
inherently respond to packet losses, triggering bitrate de-
creases, due to the reduced amount of arrived packets when
losses occur. However, the nature of the frame-as-a-whole
sending pattern in video streaming, coupled with various types
of network bottlenecks, can still result in losses despite BUR
being below 100% (e.g. in shallow buffer scenarios), causing
additional frame delays and unnecessary bitrate downgrades.
Moving forward, our research aims to explore practical strate-
gies for mitigating the impact of packet losses through both
proactive and reactive ways.

Competitiveness with buffer-filling flows. Pudica achieves
a decent fairness for homogeneous flows. However, unlike
mode-switched CC methods (e.g., Copa [11], Nimbus [33]),
Pudica does not explicitly compete with buffer-filling or in-
elastic flows. Instead, Pudica concedes to them by lowering
the bitrate whenever the queue becomes full. This approach
is adopted because sacrificing delay for high bitrate is mean-
ingless for cloud gaming. Actually, Pudica keeps fair com-
petitiveness with loss-based flows under the circumstance of
shallow bottleneck buffers (see Appendix H).

User-centric QoE optimization. Pudica primarily aims to
achieve the highest possible bitrate while maintaining low
latency. However, it may not necessarily result in the optimal
user QoE. For instance, excessively high bitrates may only
marginally enhance video quality but can make the streaming
session more susceptible to bandwidth fluctuations. In the
future, we will explore the opportunity that leverages cross-
layer and user-centric approaches (e.g., introducing visual
quality instead of bitrate) to further enhance player QoE.

Potential gains for other low-latency applications. While
Pudica is designed for cloud gaming, we believe that the con-
cepts and principles embedded within our CC framework

could be beneficial for other networked applications that re-
quire both low latency and high throughput. We intend to
investigate its potential across various domains.

7 Other Related Work
Prior works [22, 23, 35, 38] utilize explicit signals to judge
the precise level of utilization or congestion, enabling con-
vergence to both low queuing, efficiency, and fairness. How-
ever, it remains challenging to deploy these methods at scale.
Nimbus [33] tries to detect the elasticity of cross traffic and
dynamically switches between throughput-competitive and
delay-controlling modes based on its detection. It still prior-
itizes throughput over delay, which is unable to satisfy the
need for consistent low delay. Several works explore the use
of deep reinforcement learning on bitrate adaptation for video
telephony [14–16]. They partly imitate the behavior of GCC
agents or take GCC as the protective backup, thereby with
similar limitations as GCC. Moreover, cross-flow fairness is
not carefully handled by these methods. A detailed compar-
ison between our network probing method and traditional
packet-train techniques is included in Appendix I.

8 Conclusion
We present Pudica, a practical congestion control (CC) algo-
rithm designed for cloud gaming systems. Given a constraint
of near-empty bottleneck queues, we rethink how to achieve
efficiency and fairness in end-to-end CC design, regardless
of single-flow or multiple-flow scenarios. To reach this goal,
we propose a novel network probing method to estimate the
bandwidth utilization ratio (BUR) of the bottleneck link. By
leveraging both long-term and short-term BUR estimations,
we design several intuitive but effective control strategies to
minimize the queuing delay while maintaining efficiency and
fairness. By conducting large-scale experiments on Tencent
START cloud gaming services in both wired and wireless
networks, we demonstrate that Pudica considerably reduces
the frame delay and stall rate while preserving high bitrate
and decent fairness, compared to the alternatives.

Acknowledgements: We sincerely thank our anonymous re-
viewers for their valuable comments. This work was sup-
ported by Tencent Rhino-Bird Research Elite Program, Na-
tional Key Research and Development Program of China un-
der Grant 2021YFB2401300, and National Natural Science
Foundation of China under Grant U21A6005. Shusen Yang,
Jing Wang, and Honghao Liu are the corresponding authors.

124 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Hao Chen, Xu Zhang, Yiling Xu, Ju Ren, Jingtao Fan,

Zhan Ma, and Wenjun Zhang. T-gaming: A cost-
efficient cloud gaming system at scale. IEEE Transac-
tions on Parallel and Distributed Systems, 30(12):2849–
2865, 2019.

[2] Xu Zhang, Hao Chen, Yangchao Zhao, Zhan Ma, Yil-
ing Xu, Haojun Huang, Hao Yin, and Dapeng Oliver
Wu. Improving cloud gaming experience through mo-
bile edge computing. IEEE Wireless Communications,
26(4):178–183, 2019.

[3] Pouya Hamadanian, Doug Gallatin, Mohammad Al-
izadeh, and Krishna Chintalapudi. Ekho: Synchronizing
cloud gaming media across multiple endpoints. In SIG-
COMM, pages 533–549, 2023.

[4] Jiangkai Wu, Yu Guan, Qi Mao, Yong Cui, Zongming
Guo, and Xinggong Zhang. Zgaming: Zero-latency 3d
cloud gaming by image prediction. In SIGCOMM, pages
710–723, 2023.

[5] Sandeepa Bhuyan, Shulin Zhao, Ziyu Ying, Mahmut T
Kandemir, and Chita R Das. End-to-end characterization
of game streaming applications on mobile platforms.
Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 6(1):1–25, 2022.

[6] Amazon. Amazon luna: Amazon’s cloud gaming ser-
vice. https://luna.amazon.com/.

[7] Microsoft. Xbox cloud gaming (beta) on xbox.com.
https://www.xbox.com/en-us/play.

[8] NVIDIA. Your games. your devices. play anywhere
| nvidia geforce now. https://www.nvidia.com/
en-us/geforce-now/.

[9] Tencent. START Cloud Gaming. https://start.qq.
com/.

[10] Grand View Research. Cloud gaming mar-
ket size, share & trends analysis report.
https://www.grandviewresearch.com/
industry-analysis/cloud-gaming-market.

[11] Venkat Arun and Hari Balakrishnan. Copa: Practical
delay-based congestion control for the internet. In NSDI,
pages 329–342, 2018.

[12] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and
Saverio Mascolo. Congestion control for web real-time
communication. IEEE/ACM Transactions on Network-
ing, 25(5):2629–2642, 2017.

[13] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine
Wu, Riad S Wahby, and Keith Winstein. Salsify: Low-
latency network video through tighter integration be-
tween a video codec and a transport protocol. In NSDI,
pages 267–282, 2018.

[14] Anfu Zhou, Huanhuan Zhang, Guangyuan Su, Leilei
Wu, Ruoxuan Ma, Zhen Meng, Xinyu Zhang, Xiufeng
Xie, Huadong Ma, and Xiaojiang Chen. Learning to co-
ordinate video codec with transport protocol for mobile
video telephony. In MOBICOM, pages 1–16, 2019.

[15] Huanhuan Zhang, Anfu Zhou, Jiamin Lu, Ruoxuan Ma,
Yuhan Hu, Cong Li, Xinyu Zhang, Huadong Ma, and Xi-
aojiang Chen. Onrl: improving mobile video telephony
via online reinforcement learning. In MOBICOM, pages
1–14, 2020.

[16] Huanhuan Zhang, Anfu Zhou, Yuhan Hu, Chaoyue Li,
Guangping Wang, Xinyu Zhang, Huadong Ma, Leilei
Wu, Aiyun Chen, and Changhui Wu. Loki: improving
long tail performance of learning-based real-time video
adaptation by fusing rule-based models. In MOBICOM,
pages 775–788, 2021.

[17] Xiaoqing Zhu and Rong Pan. Nada: A unified conges-
tion control scheme for low-latency interactive video. In
International Packet Video Workshop, pages 1–8. IEEE,
2013.

[18] Neal Cardwell, Yuchung Cheng, C Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. Bbr:
Congestion-based congestion control: Measuring bottle-
neck bandwidth and round-trip propagation time. Queue,
14(5):20–53, 2016.

[19] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan,
Yossi Gilad, Brighten Godfrey, and Michael Schapira.
Pcc vivace: Online-learning congestion control. In
NSDI, pages 343–356, 2018.

[20] Devdeep Ray, Connor Smith, Teng Wei, David Chu,
and Srinivasan Seshan. Sqp: Congestion control for
low-latency interactive video streaming. arXiv preprint
arXiv:2207.11857, 2022.

[21] Wikipedia. Mimosa pudica. https://en.wikipedia.
org/wiki/Mimosa_pudica.

[22] Dina Katabi, Mark Handley, and Charlie Rohrs. Conges-
tion control for high bandwidth-delay product networks.
In SIGCOMM, pages 89–102, 2002.

[23] Yong Xia, Lakshminarayanan Subramanian, Ion Stoica,
and Shivkumar Kalyanaraman. One more bit is enough.
In SIGCOMM, 2005.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 125

https://luna.amazon.com/
https://www.xbox.com/en-us/play
https://www.nvidia.com/en-us/geforce-now/
https://www.nvidia.com/en-us/geforce-now/
https://start.qq.com/
https://start.qq.com/
https://www.grandviewresearch.com/industry-analysis/cloud-gaming-market
https://www.grandviewresearch.com/industry-analysis/cloud-gaming-market
https://en.wikipedia.org/wiki/Mimosa_pudica
https://en.wikipedia.org/wiki/Mimosa_pudica

[24] Bonree. Data - bonree one. https://www.bonree.
com/.

[25] Zili Meng, Tingfeng Wang, Yixin Shen, Bo Wang, Ming-
wei Xu, Rui Han, Honghao Liu, Venkat Arun, Hongxin
Hu, and Xue Wei. Enabling high quality real-time com-
munications with adaptive frame-rate. In NSDI, 2023.

[26] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica,
Dilip Joseph, Aditya Ganjam, Jibin Zhan, and Hui
Zhang. Understanding the impact of video quality on
user engagement. SIGCOMM CCR, 41(4):362–373,
2011.

[27] Lawrence S Brakmo, Sean W O’Malley, and Larry L
Peterson. Tcp vegas: New techniques for congestion
detection and avoidance. In SIGCOMM, pages 24–35,
1994.

[28] David X Wei, Cheng Jin, Steven H Low, and Sanjay
Hegde. Fast tcp: motivation, architecture, algorithms,
performance. IEEE/ACM Transactions on Networking,
14(6):1246–1259, 2006.

[29] Keith Winstein, Anirudh Sivaraman, and Hari Balakr-
ishnan. Stochastic forecasts achieve high throughput
and low delay over cellular networks. In NSDI, pages
459–471, 2013.

[30] Keith Winstein and Hari Balakrishnan. Tcp ex machina:
Computer-generated congestion control. SIGCOMM,
43(4):123–134, 2013.

[31] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey,
and Michael Schapira. Pcc: Re-architecting congestion
control for consistent high performance. In NSDI, pages
395–408, 2015.

[32] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshmi-
narayanan Subramanian, and Carmelita Görg. Adaptive
congestion control for unpredictable cellular networks.
In SIGCOMM, pages 509–522, 2015.

[33] Prateesh Goyal, Akshay Narayan, Frank Cangialosi,
Srinivas Narayana, Mohammad Alizadeh, and Hari Bal-
akrishnan. Elasticity detection: A building block for
internet congestion control. In SIGCOMM, pages 158–
176, 2022.

[34] Soheil Abbasloo, Chen-Yu Yen, and H Jonathan Chao.
Classic meets modern: A pragmatic learning-based con-
gestion control for the internet. In SIGCOMM, pages
632–647, 2020.

[35] Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Justine
Sherry, Hongqiang Harry Liu, and Mingwei Xu. Achiev-
ing consistent low latency for wireless real-time commu-
nications with the shortest control loop. In SIGCOMM,
pages 193–206, 2022.

[36] Manish Jain and Constantinos Dovrolis. End-to-end
available bandwidth: Measurement methodology, dy-
namics, and relation with tcp throughput. SIGCOMM
CCR, 32(4):295–308, 2002.

[37] Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens, and
Hari Balakrishnan. Mahimahi: Accurate record-and-
replay for http. In ATC, pages 417–429, 2015.

[38] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Moham-
mad Alizadeh, and Hari Balakrishnan. ABC: A simple
explicit congestion controller for wireless networks. In
NSDI, pages 353–372, 2020.

[39] Xinlei Yang, Xianlong Wang, Zhenhua Li, Yunhao Liu,
Feng Qian, Liangyi Gong, Rui Miao, and Tianyin Xu.
Fast and light bandwidth testing for internet users. In
NSDI, pages 1011–1026, 2021.

[40] SpeedTest. The global broadband speed test. https:
//www.speedtest.net/.

[41] Dah-Ming Chiu and Raj Jain. Analysis of the increase
and decrease algorithms for congestion avoidance in
computer networks. Computer Networks and ISDN sys-
tems, 17(1):1–14, 1989.

[42] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a
new tcp-friendly high-speed tcp variant. ACM SIGOPS
operating systems review, 42(5):64–74, 2008.

[43] Constantinos Dovrolis, Parameswaran Ramanathan, and
David Moore. Packet-dispersion techniques and a
capacity-estimation methodology. IEEE/ACM Trans-
actions on Networking, 12(6):963–977, 2004.

[44] Ravi Prasad, Constantine Dovrolis, Margaret Murray,
and Kimberly Claffy. Bandwidth estimation: metrics,
measurement techniques, and tools. IEEE Network,
17(6):27–35, 2003.

[45] Constantinos Dovrolis, Parameswaran Ramanathan, and
David Moore. What do packet dispersion techniques
measure? In INFOCOM, volume 2, pages 905–914.
IEEE, 2001.

A Validation Methodology for BUR Estima-
tion Methods

In this section, we present the methodology used to validate
the effectiveness of our BUR estimation method. Following
[39], we regard the estimated bandwidth obtained through a
flooding-based probing approach (similar to SpeedTest [40])
as the ground truth of bottleneck bandwidth, denoted by C. For
each round of tests, after a short period of probing to judge C,
we conducted two simultaneous flows on the same connection.

126 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.bonree.com/
https://www.bonree.com/
https://www.speedtest.net/
https://www.speedtest.net/

0.0 0.2 0.4 0.6 0.8 1.0
Flow 1's bandwidth allocation ratio x1

0.0

0.2

0.4

0.6

0.8

1.0

Fl
ow

 2
's

ba
nd

wi
dt

h
al

lo
ca

tio
n

ra
tio

 x
2

Fairness line

Efficiency line

x1 + x2 = 1
x1 + x2 =
x1 = x2

Zoomed in

x1 + x2 = 1
x1 + x2 =
x1 = x2

(a) Traditional AI/MD

0.0 0.2 0.4 0.6 0.8 1.0
Flow 1's bandwidth allocation ratio x1

0.0

0.2

0.4

0.6

0.8

1.0

Fl
ow

 2
's

ba
nd

wi
dt

h
al

lo
ca

tio
n

ra
tio

 x
2

Fairness line

Efficiency line

x1 + x2 = 1
x1 + x2 =
x1 = x2

Zoomed in

x1 + x2 = 1
x1 + x2 =
x1 = x2

(b) AI-MD w/ bitrate-independent adaptive AI

0.0 0.2 0.4 0.6 0.8 1.0
Flow 1's bandwidth allocation ratio x1

0.0

0.2

0.4

0.6

0.8

1.0

Fl
ow

 2
's

ba
nd

wi
dt

h
al

lo
ca

tio
n

ra
tio

 x
2

Fairness line

Efficiency line

x1 + x2 = 1
x1 + x2 =
x1 = x2

Zoomed in

x1 + x2 = 1
x1 + x2 =
x1 = x2

(c) AI-MD w/ bitrate-dependent adaptive AI
Figure 15: Fairness convergence trajectory for the traditional AI/MD paradigm and our AI-MD method (i.e., simultaneous AI and MD). Here,
these diagrams are presented for illustration purposes and do not exactly align with the proposed algorithms in Pudica.

One flow adopted our probing strategies and was set to a fixed
bitrate B. The other flow acted as the competing flow with a
random pace multiplier (to simulate complex traffic patterns)
and the same bitrate B. To evaluate the performance of various
BUR estimation methods, we use the ratio (2×B)/C as the
actual BUR. This allowed us to assess how well the estimation
methods performed in estimating the true BUR.

B Sample Weights for Smoothed BUR Compu-
tation

Due to the interdependence of sending behaviors and network
feedback, we assign different weights to the BUR samples to
enhance estimation robustness. Specifically, we set:

ω
I
k = min

(
Rk +1, 2

)
, (12)

ω
II
k = min

(
Bk +10, 50

)
, (13)

ω
III
k = k+20, (14)

ωk =
ωI

k ×ωII
k ×ωIII

k

∑
Npacket
j=1 ωI

j ×ωII
j ×ωIII

j

. (15)

ωk symbolizes the importance weight given to the k-th BUR
sample, comprising three elements. ωI

k assigns higher impor-
tance to samples with longer frame delays, as they spend more

time in flight. ωII
k assigns higher importance to samples with

larger frame sizes, as they exhibit greater estimation robust-
ness against delay jitters. ωIII

k assigns higher importance to
more recent samples, as they provide fresher feedback.

C Fairness Convergence Trajectory for Differ-
ent AI-and-MD Schemes

As referenced in [41], we plotted the trajectories of a two-flow
system starting from the same point using various AI-and-
MD policies via numerical simulation, which is depicted in
Fig. 15. On the figures, the horizontal axis represents the
bandwidth allocation ratio of Flow 1 (denoted by x1), while
the vertical axis corresponds to Flow 2 (denoted by x2). Al-
locations satisfying x1 + x2 = 1 indicate efficient allocations,
representing 100% bandwidth utilization (refer to Efficiency
line). Allocations satisfying x1 = x2 represent fair allocations
(refer to Fairness line). The optimal point is the intersection
of these two lines. The objective of control schemes should
be to converge the system to this optimal point, irrespective
of the initial position.

In the AI/MD method (see Fig. 15a), we additively increase
the bitrate when the BUR exceeds α but remains below one;
we multiplicatively decrease the bitrate by 15% when the
BUR surpasses one. For AI-MD methods, Fig. 15b illustrates

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 127

0 900 1800 2700 3600 4500
Timeline (ms)

4
8

12
16
20
24
28
32
36

Fr
am

e
bi

tra
te

 (M
bp

s)

Salsify Copa GCC SQP Pudica Bandwidth

0 900 1800 2700 3600 4500
Timeline (ms)

20
30
40
50
60
70
80
90

Fr
am

e
de

la
y

(m
s)

Figure 16: Preliminary validation: the performance of various base-
line algorithms using Mahimahi emulations with a plain trace featur-
ing a constant bandwidth of 20 Mbps.

the trajectory of AI-MD with a bitrate-independent adaptive
AI scheme, where the AI step (i.e., I) is linearly increased. In
contrast, the AI-MD method in Pudica (see Fig. 15c) adopts a
bitrate-dependent adaptive AI scheme, where the magnitude
of increased AI steps (i.e., ∆I) is inversely proportional to the
bitrate. Compared to the AI/MD method, AI-MD reduces the
occurrences of over-sending and thus lowers the average queu-
ing delay, by executing MD before queue construction. At
the same time, AI-MD speeds up fairness convergence by in-
creasing the frequency of throughput reallocation. Moreover,
the implementation of bitrate-dependent AI step adaptation
further enhances the convergence speed toward fairness.

D Preliminary Evaluation for Various CC Al-
gorithms through Emulation

Prior to conducting large-scale experiments over the Internet,
we evaluated Pudica and the other potential solutions (i.e.,
GCC [12], Copa [11], Salsify [13], and SQP [20]) on the
Mahimahi network emulator [37]. These evaluations were
performed using a trace that maintained a constant bandwidth
of 20 Mbps and RTTs of 20 ms. As depicted in Fig. 16, Pu-
dica and SQP achieve consistent bandwidth convergence with
negligible queuing delays. Salsify and Copa maintain low
frame delays in spite of significant oscillations in bitrates.
In contrast, GCC fails to consistently achieve low latency,
displaying periodic delay spikes even under a constant band-
width. Therefore, we selected Pudica, Salsify, Copa, and SQP
for further performance testing at scale (shown in §5.2).

E A Large-Scale Dummy Client Platform
In our study, we utilized a specialized dummy client platform
called Bonree [24], instead of the real-user platform (i.e.,
START [9]), to evaluate the convergence ability of efficiency
and fairness in the wild. We opted for the Bonree platform
due to the additional client privileges required for testing
the aforementioned metrics, such as the permission to run
multiple streams simultaneously. These privileges cannot be
accommodated by our profit-oriented cloud gaming services.

Bonree offers millions of end devices (e.g., PCs) distributed
globally to emulate real user clients. These end devices pos-
sess computing capacities and network resources similar to
those commonly used by consumers. They can install cus-
tomized software, e.g., the cloud gaming client app, and es-

0 300 600 900 1200 1500
Timeline (ms)

100

101

102

Fr
am

e
bi

tra
te

 (M
bp

s)

Salsify Copa Pudica SQP Bandwidth

0 300 600 900 1200 1500
Timeline (ms)

30

60

90

120

150

Fr
am

e
de

la
y

(m
s)

Figure 17: Robustness test with a 40 ms jitter per period of 500
ms. Pudica achieves a good balance between fast responsiveness to
potential congestion and jitter resilience.

tablish connections with the cloud gaming servers designated
by us over the Internet. As a result, the gaming server can
transmit frame streams to these end devices and receive their
feedback. Additionally, these devices can record the necessary
logs as per our requirements. Unlike real users, we can im-
pose more demands on these devices without concerns about
user experience. Thus, we employed Bonree to conduct exper-
iments regarding efficiency and fairness convergence. Note
that the end devices on Bonree communicate with servers
through fully public networks. Consequently, the information
within the network remains unknown.

F Pudica Robustness to Network Jitters
In Fig. 17, we assessed Pudica’s robustness to delay jitters by
introducing a 40ms jitter every 500ms period. While this jitter
delays some packet arrivals, it does not impact the bandwidth.
These delayed packets eventually reach the receiver with sub-
sequent packets, leading to a burst arrival. The results show
that Pudica effectively balances sensitivity to high delay and
resilience against jitters. While SQP shows strong robustness
to jitters, it struggles with slow bandwidth adaptation (Fig.
12). The burst packet arrival can mislead Salsify and Copa
to momentarily overrate network conditions, which causes
bitrate overshoots and high delay spikes.

G Additional Microbenchmark Results
This section presents more statistics from our microbench-
mark experiment. Tab. 3 and Tab. 4 showcase the perfor-
mances of multiple Pudica variants under a single flow and
three simultaneous flows, respectively. These experimental re-
sults confirm the efficacy of Pudica’s BUR estimation method
and AI-MD technique. For Pudica with AI/MD, we substi-
tute our AI-MD scheme with the sole additive increase when
α < BUR ≤ 1. MD operations will be triggered by our queue-
draining scheme when BUR > 1. Tab. 5 shows the effective-
ness of Pudica’s control schemes driven by short-term BUR
signals in reducing tail delays and stall rates. Tab. 6 presents
Pudica’s performance under various parameter settings.

H Competitiveness with Buffer-Filling Flows
Figure 18 depicts the Pudica performance when it encounters
a buffer-filling flow. Upon initiating a Pudica flow, we subse-
quently launched and terminated a Cubic flow [42] at 5s and

128 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algo. Avg.
delay

95%/99%
-tile delay

Stall rate
>50/100/200ms

Avg.
bitrate

Vanilla Pudica 18.0ms 22.3/29.2ms 0.73%/0.09%/0.0083% 46.940Mbps
Pudica w/ BUR estimation of SQP 20.1ms 26.1/39.0ms 1.25%/0.21%/0.0229% 47.103Mbps

Pudica w/ BUR estimation of Salsify 18.4ms 22.9/34.2ms 0.84%/0.13%/0.015% 41.164Mbps
Pudica w/ AI/MD 18.3ms 22.7/32.2ms 0.91%/0.10%/0.0117% 46.181Mbps

Table 3: Microbenchmarks: the performance of different Pudica variants when launching a single flow.

Algo. Avg.
delay

95%/99%
-tile delay

Stall rate
>50/100/200ms

Avg.
bitrate

Fairness
index

Vanilla Pudica 21.5ms 29.2/38.6ms 1.60%/0.11%/0.0164% 31.962Mbps 0.958
Pudica w/ BUR estimation of SQP 31.9ms 49.2/67.5ms 9.77%/0.42%/0.0391% 33.132Mbps 0.952

Pudica w/ BUR estimation of Salsify 21.7ms 34.2/51.8ms 2.81%/0.25%/0.0538% 33.185Mbps 0.941
Pudica w/ AI/MD 22.3ms 32.8/61.2ms 2.10%/0.29%/0.0747% 32.209Mbps 0.944

Table 4: Microbenchmarks: the performance of different Pudica variants when simultaneously launching three flows on the same link.

Algo. Avg.
delay

95%/99%
-tile delay

Stall rate
>100/200ms

Avg.
bitrate

Vanilla Pudica 20.6ms 27.3/33.6ms 0.17%/0.009% 46.21Mbps
Pudica w/o temporary bitrate fallback 20.9ms 28.4/38.3ms 0.29%/0.031% 46.19Mbps

Pudica w/o active queue draining 23.7ms 36.0/60.5ms 1.40%/0.193% 47.16Mbps
Table 5: Microbenchmarks: performances of multiple Pudica variants to explain the contribution of our short-term BUR-driven control schemes.

Algo. Avg.
delay

95%/99%
-tile delay

Stall rate
>100ms

Avg.
bitrate

Pudica 18ms 21.3/28.5ms 0.061% 47.86Mbps
α=0.8 17.9ms 21.3/29.1ms 0.075% 47.55Mbps
α=0.9 18.8ms 21.9/28.0ms 0.049% 48.28Mbps

γMI=0.20 18.5ms 22.1/30.7ms 0.084% 47.26Mbps
γMI=0.25 17.8ms 21.4/28.1ms 0.08% 48.14Mbps
ζ=10% 18.5ms 22.4/30.4ms 0.066% 47.99Mbps
ζ=20% 18.9ms 21.5/27.9ms 0.054% 47.42Mbps
Twd=150 18.5ms 22.0/30.6ms 0.058% 47.96Mbps
Twd=250 18.4ms 21.6/28.6ms 0.066% 47.82Mbps

Table 6: Sensitivity analysis for algorithm parameters.

10s, respectively. We can see that Pudica exhibits a certain
level of competitiveness when the buffer size of the bottle-
neck queue is small. However, when the buffer size increases,
Pudica fails to compete effectively against Cubic.

I Difference Between Our BUR Estimation
and Traditional Packet-Train Methods

Pudica leverages all packets within a frame as a short burst,
which can be regarded as a packet train, to probe the link
condition. The difference between our method and traditional
packet-train network estimation approaches lies in what ex-
actly to estimate and how to probe.

Traditional packet-train methods [43, 44] utilize the disper-
sion of a packet train, i.e., the gap in arrival time between
the first and last packets, to estimate the available bandwidth
or capacity. For a detailed definition of packet train and its
estimation method, see [43]. In a single-flow environment,
packet-train dispersion indicates the bottleneck link capacity,
which also represents the available bandwidth. However, for
a multi-flow scenario, the estimated value by these methods
is actually neither available bandwidth nor capacity [45].

By contrast, Pudica leverages the queuing delay of a packet
train to estimate the link utilization (i.e., BUR) during a frame
interval. As per [43], a link is either transmitting at full capac-

0 5000 10000 15000
Timeline (ms)

0

20

40

60
Fr

am
e

bi
tra

te
(M

bp
s) Pudica Bandwidth

(a) Buffer size: 10,000 bytes.

0 5000 10000 15000
Timeline (ms)

0

20

40

60

Fr
am

e
bi

tra
te

(M
bp

s) Pudica Bandwidth

(b) Buffer size: 50,000 bytes.
Figure 18: Pudica performance in the presence of a Cubic flow, with
different buffer size settings of the bottleneck queue.

ity or idle at any given moment, meaning its instantaneous
utilization is either zero or one. Therefore, BUR is defined
as the time-averaged instantaneous utilization over a specific
interval. In our case, this interval is the frame sending interval
(i.e., L), typically 16.67 ms for a 60 frame rate. Then, the
BUR of the time period (t, t +L) can be expressed as:

R(t, t +L) =
1
L

∫ t+L

t
r(x)dx (16)

where r(x) is the instantaneous link utilization at time x.
Traditional packet-train probing methods typically imple-

ment a fixed pace multiplier (as defined in §2.1). These meth-
ods can only adjust the pacing rate by resorting to bitrate
adjustments. In contrast, Pudica introduces an adaptive pace
multiplier algorithm that enables appropriate queuing even
when the bitrate remains unchanged. Another difference is
that Pudica proposes a supplementary probing technique via a
small number of probe packets beyond application data. This
method enables Pudica to effectively probe the link condition
even during the agnostic period.

Note that in Pudica, the BUR probing and estimation
method introduced in §4.1 is only used when the link uti-
lization is below one. When the link utilization exceeds one,
the agnostic period is eliminated, and we rely on the packet
receiving rate to estimate the available bandwidth (see §4.3),
which is similar to traditional packet-train techniques.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 129

Revisiting Congestion Control for Lossless Ethernet

Yiran Zhang1,2, Qingkai Meng1,3, Chaolei Hu1, Fengyuan Ren1

1Tsinghua University, 2Beijing University of Posts and Telecommunication, 3Beihang University

Abstract
Congestion control is a key enabler for lossless Ethernet at
scale. In this paper, we revisit this classic topic from a new
perspective, i.e., understanding and exploiting the intrinsic
properties of the underlying lossless network. We experi-
mentally and analytically find that the intrinsic properties of
lossless networks, such as packet conservation, can indeed
provide valuable implications in estimating pipe capacity and
the precise number of excessive packets. Besides, we derive
principles on how to treat congested flows and victim flows
individually to handle HoL blocking efficiently. Then, we
propose ACK-driven congestion control (ACC) for lossless
Ethernet, which simply resorts to the knowledge of ACK time
series to exert a temporary halt to exactly drain out excessive
packets of congested flows and then match its rate to pipe
capacity. Testbed and large-scale simulations demonstrate
that ACC ameliorates fundamental issues in lossless Ethernet
(e.g., congestion spreading, HoL blocking, and deadlock) and
achieves excellent low latency and high throughput perfor-
mance. For instance, compared with existing schemes, ACC
improves the average and 99th percentile FCT performance
of small flows by 1.3~3.3⇥ and 1.4~11.5⇥, respectively.

1 Introduction

As the adoption of RDMA continues to grow in Ethernet-
based data centers, there is a wave of the deployment of
lossless networks. A lossless network can harness the full
potential of RDMA and benefit application latency perfor-
mance that used to be affected by packet loss [6, 15, 17].

Lossless Ethernet employs hop-by-hop flow control, i.e.,
Priority-based Flow Control (PFC) [1], to ensure that pack-
ets are not dropped due to buffer overflow. However, when
persistent congestion occurs, PFC may impose a backpres-
sure effect on upstream ports, and the cascade reaction can
even spread to remote switches. Flows not destined to the
congestion point are also paused, which is well-known as the
Head-of-Line (HoL) blocking issue [42, 49]. The frequent

trigger of PFC may also be along with deadlock and unfair-
ness issues [21,25,26,34,42,49]. The root cause of the above
side effects is that PFC itself can not allocate appropriate
bandwidth for each flow, so network congestion can not be
eliminated but only spreads. As a result, end-to-end conges-
tion control becomes a key enabler for high-performance
lossless Ethernet at scale [21, 49].

Many efforts have been devoted to developing congestion
control to facilitate the deployment of lossless Ethernet. DC-
QCN [49] employs widely-used ECN in switches to detect
congestion and heuristically throttles congested flows. Never-
theless, ECN solely based on queue length may not provide
the correct congestion indicator once PFC takes effect [45].
HPCC [29] relies on high-precision INT [2] to guide conges-
tion control but incurs high per-packet overhead and sacrifices
throughput performance. TIMELY [33] advocates RTT-based
congestion control. Still, the RTT samples may mislead con-
gestion judgment when RTT suddenly increases owing to
HoL blocking. Recently, TCD [45] makes a new attempt to
accurately detect congested flows but still follows the heuris-
tic rate control rules as traditional congestion controls, which
makes it essentially hard to achieve low latency and high
throughput simultaneously.

Reflecting on these efforts, we notice that instead of de-
signing congestion control for lossless Ethernet from scratch,
almost all existing works weave unfitted pieces into their
schemes thus resulting in sub-optimal performance. In partic-
ular, congestion detection is the foundation while rate control
is indeed the core of achieving appropriate bandwidth allo-
cation for each flow. Both of them should consider essential
features of lossless Ethernet and work harmoniously together
to realize high-performance congestion control. Therefore,
we ask this question: can we take a step back and rethink con-
gestion control for lossless Ethernet by taking full advantage
of its intrinsic properties?

The crux to understanding the intrinsic properties of loss-
less Ethernet is to recognize the profound impact of hop-
by-hop flow control (i.e., PFC). For instance, the ON-OFF
regulation of hop-by-hop flow control introduces a new ON-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 131

OFF style port state in switches, changing the foundation of
congestion detection. More importantly, no packet dropping
at intermediate switches in turn enables an end-to-end loss-
less path, which alters the view of the network pipe and opens
new opportunities for flow-level bandwidth allocation. In fact,
previous efforts unconsciously neglect one intrinsic yet pow-
erful property, i.e., packet conservation: packets are not lost
in the lossless network1. All injected packets are eventually
delivered to receivers and acknowledged by ACKs, before
which they fly in the network pipe or queue at switches.

In this paper, based on the understanding of above intrinsic
properties and in-depth experimental investigations, we de-
rive two key principles to build a desirable congestion control
for lossless Ethernet: (1) Since packet conservation property
implies that the number of ACKs equals to the number of
packets injected into the network, the ACK-driven paradigm
should gain renewed emphasis in lossless Ethernet to infer
network pipe capacity and the exact number of excessive pack-
ets (§ 3.2). (2) To handle HoL blocking efficiently, congested
flows should be suppressed sufficiently to eliminate accumu-
lated buffers as soon as possible; victim flows should adapt to
the severity of congestion to balance HoL blocking alleviation
and throughput performance (§ 3.3).

Armed with the above principles, we propose a new conges-
tion control for lossless Ethernet called ACC (ACK-Driven
Congestion Control). ACC utilizes TCD [45] to accurately
detect congested flows and victim flows. For congested flows,
ACC gracefully employs a two-step strategy: senders first
wait for the excessive packets to drain out via a temporary
halt and then match the rate to network pipe capacity. In de-
tail, by correlating ACK sequences across multiple periods
and ACK arrival rate, ACC senders figure out the number of
excessive packets and the exact time to be drained at switches.
For victim flows, ACC senders collect the duration pattern of
ACK markings to perceive the severity of congestion and only
adjust the rate when congestion spreading lasts long.

Our key contributions are summarized as follows:
• Understanding the implications of intrinsic properties of

lossless Ethernet (e.g., packet conservation) on congestion
control and deriving basic principles for handling congested
flows and victim flows. Our perspective strikes out a new
path of exploiting intrinsic properties to guide the precise rate
control for lossless networks.

• Developing a new congestion control scheme called ACC
for lossless Ethernet. As ACK can correspond to each injected
packet precisely, ACC utilizes ACK time series to derive exact
backlogged packets in switches and network pipe capacity.
ACC can quickly converge to the proper rate in one RTT and
empty accumulated queues rapidly.

1Note that in lossy networks where packets can be dropped due to buffer
overflow, the number of packets injected into the network is not equal to
the number of ejected packets (i.e., acknowledged by receivers). So packet
conservation property does not hold in lossy networks. In addition, we do not
consider packet loss due to packet corruption or device failure in this paper.

• Implementing ACC in SoftRoCE [36] and evaluating
ACC via extensive experiments. Results show that ACC well
alleviates congestion spreading and HoL blocking issues and
can achieve low latency and high throughput. For instance,
compared with state-of-the-art schemes, ACC improves the
average and 99th percentile FCT performance of small flows
by 1.3~3.3⇥ and 1.4~11.5⇥, respectively.

2 Design Space
2.1 Desirable Properties
We begin with reexamining the desirable properties of conges-
tion control for lossless Ethernet. Specifically, we target the
scenario of a single RDMA domain deployed with a single
CC scheme, which is common in Ethernet-based datacenters.

(1) Fast convergence. The primary goal of congestion
control is allocating the proper rate for each flow thus the ag-
gregation rate converges to the bottleneck capacity. However,
in lossless Ethernet, fast convergence is particularly crucial
to the following issues:
• Restricting the spreading of congestion and alleviating

HoL blocking. Without fast convergence, a congestion point
is likely to spread into a congestion tree with cascading ac-
cumulated queues along branches. Take Figure 1(a) as an
example. After congestion happens at port P4, P4 becomes
the root of the congestion tree. Once the PFC pause prop-
agates to upstream switches, the paths of congested flows
(e.g., <S1-R1>) become the main branch of the congestion
tree. When other flows (e.g., F0) destined for non-congestion
points pass through the main branch, the backpressure of PFC
may further induce the secondary branch. Thus, HoL blocking
occurs. Flows not destined for congestion points innocently
suffer from PFC pause. The accordingly secondary branch
in Figure 1(b) is <P1-S0>. When the congestion tree grows,
the input and output of the switches along the branches are
prone to be modulated into an ON-OFF pattern by PFC (i.e.,
alternating between sending and pausing), thus disturbing con-
gestion detection and subsequent rate regulation. If multiple
congestion points are in the same congestion tree (i.e., a larger
congestion tree covers a smaller congestion tree), congestion
point in the larger congestion tree will be first eliminated then
the smaller congestion tree.
• Lowering the risk of deadlock. Deadlock is a silent killer

in the lossless network [21, 25, 26, 38]. The typical causes
of deadlock in today’s data centers are as follows: Initially,
owing to reasons such as routing misconfiguration, switch
firmware failure, or link failure, a Cyclic Buffer Dependency
(CBD) emerges in the topology. Then if congestion happens
and the congestion control fails to converge quickly, the fre-
quent trigger of PFC may be induced. Eventually, PFC pause
propagates to the whole cycle and all switches wait for its
upstream to send PFC resume, thus a deadlock occurs. From
another perspective, even if CBD exists, the fast convergence
of congestion control can make it resilient against deadlock.

132 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

HN
…

R1

R0

S1

SW2 SW3 SW4

F1

SW1S0

H1

F0

P1 P2 P3
P4

(a) Topology and flows (N > 1)

P4

HNH1S1 S0

P3

P1
P2

…

(b) Congestion tree

Figure 1: Typical scenario.

(2) Low latency and high throughput. Today’s applica-
tions increasingly pursue stringent latency and throughput
performance [23,27]. In lossless Ethernet, offloading network
stacks into hardware (i.e., RDMA) helps sustain the criti-
cal latency and bandwidth requirements at hosts but leads to
the network becoming the bottleneck. On the one hand, for
increasingly dominant storage workloads with NVMe-over-
Fabrics technology [10,27], the overall completion latency for
a single storage operation is determined by the latency of the
slowest network operation. Each storage operation involves
messages with a size of only several KB and may require
microsecond-scale latency [3, 19, 47, 48]. On the other hand,
data processing applications [16, 44] and AI applications in-
creasingly involve communicating among high computation
speed devices at scale [29, 39, 51]. These applications pe-
riodically transfer a large volume of data and the average
transfer time of each round directly impacts the overall pro-
cessing/training time and cost, which imposes high require-
ments on throughput performance. To sum up, congestion
control should be able to achieve low latency for short flows
and predictable high throughput for longer flows.

2.2 Ternary Flow States in Lossless Ethernet
The foundation of congestion control in lossless Ethernet is
understanding the network state space under the influence
of PFC. We notice that a recent work TCD [45] develops a
ternary congestion signal tailored to lossless networks, which
can distinguish between switch ports that are roots of con-
gestion trees (i.e., congestion ports) and switch ports on the
branches that are only affected by PFC (i.e., undetermined
ports). TCD terms the new state as "undetermined" because
the real states of these ports are masked due to intermittent
ON-OFF sending pattern when PFC triggers. TCD-enabled
switches mark packets passing through a congested port with
CE and mark packets passing through an undetermined port
with UE, which indicates “congestion encountered” and “un-
determined encountered”, respectively. Besides, UE can only
be marked when the packet is not marked with CE. As a result,
TCD can notify end hosts of ternary flow states: congested
flows that pass through congestion ports, undetermined flows
2 that only pass through undetermined ports, and uncongested
flows. As shown in Figure 1, port P4 is the congestion port,
while all other nodes of the congestion tree are undetermined
ports. F1 is the congested flow, while F0 is the victim flow.

2We interchangeably use “victim flows” and “undetermined flows”
throughout the paper.

(a) F1: inflight packets and packets
backlogged in switch buffers

(b) Packets arriving pattern

Figure 2: [N = 20] F1: packets backlogged in switches and
data/ACK arriving pattern.

However, although TCD can be useful for perceiving net-
work states, it remains an essential issue on how to deal with
these refined flows to fulfill the desirable properties for con-
gestion control. Concretely, for congested flows that are actual
contributors to congestion, congestion control should regu-
late its rate to converge quickly to the proper value and stay
near it. By doing so, emerging congestion can be eliminated
rapidly and prevents the potential risk of congestion spread-
ing. Still, chances are that congestion spreads (e.g., caused
by bursty traffic or first RTT traffic) and thus may accompany
the emergence of HoL blocking and victim flows.

3 Principles
In this section, we aim to present design principles to answer
key questions for congestion control in lossless Ethernet:

(1) How to adjust the rate of congested flows to achieve
fast convergence? (§ 3.2)

(2) How to treat congested flows and victim flows individ-
ually to handle HoL blocking? (§ 3.3)

3.1 Experiment Setup
To provide vivid illustration, we conduct detailed investiga-
tions via ns-3 simulations. The network topology is shown
in Figure 1(a). The link capacity is 100Gbps with 2 µs prop-
agation delay. F0 and F1 are long-lived flows. H1⇠HN send
concurrent 64KB bursts lasting for about 2ms and can hardly
be regulated by end-to-end congestion control as the size is
smaller than bandwidth-delay-product (BDP). For rate de-
crease algorithms at hosts, we adopt the widely-used DC-
QCN [49]. The PFC threshold is 512KB.

The switches support TCD so hosts are aware of ternary
states of flows. Specifically, assume F0 and F1 start simul-
taneously and achieve their fair bandwidth allocation, then
bursts start. After congestion occurs at port P4, F0 becomes
the victim flow in the branch <P4-S1>. We introduce differ-
ent congestion degrees by changing the value of N, which
indicates the number of concurrent senders. A larger N in-
duces more severe congestion at port P4, resulting in a deeper
congestion tree.

3.2 The Power of ACK-Driven
To explore the potential principle to throttle congested flows,
we first take a close look by combining the in-network per-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 133

(a) F1:DCQCN (b) F1 stops 20µs and sends
at PCrate

(c) F1 stops 180µs and sends
at PCrate

Figure 3: [N = 20] Queue occupancy at Port P3. PCrate: the rate
corresponding to the pipe capacity of the flow.

(a) F1: DCQCN (b) F1 stops 90µs and sends
at PCrate

Figure 4: [N = 10] Queue occupancy at Port P3.

spective (e.g., congested packets backlogged in switches) and
the end-host perspective (e.g., inflight bytes seen by senders).

Figure 2(a) shows the evolution of F1 packets backlogged
in each switch port (the upper subfigure) and the inflight
bytes maintained at the sender H1 (the lower subfigure) under
Setting I (N = 20). The inflight bytes are derived from the
difference between the next sending byte sequence and the
unacknowledged byte sequence. After congestion occurs at
1ms, F1 packets are only queued at P4 till 1.1ms. As PFC takes
effect and congestion gradually spreads to upstream switches,
the number of backlogged bytes at ports P3, P2, and P1 rise
one by one. For congested flow F1, the maximum amount
of traffic that can be delivered per RTT is C⇥RT T/(N +1),
also called as the network pipe capacity of this flow (around
0.012MB in this scenario). As shown in Figure 2(a), we notice
that the number of inflight bytes closely tracks the sum of total
backlogged packets (i.e., packets queued in P4, P3, P2, and
P1) and the network pipe capacity of F1.

From the end-host perspective, Figure 2(b) depicts the pack-
ets arriving pattern of congested flow F1 at R1 and its ACKs
at S1. After congestion occurs at 1ms, the arriving pattern of
F1 data packets is continuous for a long time period at first
because excessive packets would eventually go through the
continuously-ON congested port P4. The arriving pattern of
ACKs corresponds well to data packets. We also record the
arriving rate of F1 ACKs. For congested flow F1, the arriving
rate of ACKs (around 4.7Gbps) is exactly the available band-
width of F1, which can also deduce the capacity of network
pipe (i.e., available bandwidth⇥ RT T). In summary, we have
Observation 1: For congested flows: (1) the number of exces-
sive packets backlogged in switches is exactly the difference
between inflight packets and the network pipe capacity; and
(2) the ACK arrival rate can imply the available bandwidth.

Indeed, the above observations corroborate an intrinsic
property of lossless Ethernet: packet conservation, i.e., sent
packets are never lost. Different from traditional lossy net-
works where packets may be dropped due to buffer overflow,
in lossless Ethernet, excessive packets will backlog in switch
buffers along the branch after filling the pipe. Thus all of them
are eventually delivered and acknowledged by ACKs.

The implications behind packet conservation property lie
in that: the precise number of excessive packets and the net-
work pipe capacity of congested flow can both be inferred

from the ACK time series. Thus, the ACK-driven paradigm
really comes into its own in a lossless network with packet
conservation property. To this end, we derive Principle 1: In
lossless Ethernet, the ACK-driven paradigm is a powerful
knob to infer the proper throttled rate and the precise
number of excessive packets for congested flows.

3.3 Handling HoL Blocking
Once PFC takes effect, victim flows may emerge and suffer
from HoL blocking. The following question is how to treat
congested flows and victim flows individually to handle HoL
blocking. Ideally, HoL blocking should be eliminated as soon
as possible without incurring unnecessary performance loss.

Next, we focus on the effect of rate control strategies of
congested flows on HoL blocking alleviation and victim flows
under different degrees of congestion (e.g., N = 20 and N =
10). We enable TCD in switches thus flows with packets
marked as UE are identified as victim flows. The default rate
control strategy is that only congested flows will be throttled
once detected, and victim flows will adjust the sending rate
the same as uncongested flows according to DCQCN.

Figure 3(a) reports the queue occupancy of individual flows
at the switch port P3 when N = 20 with DCQCN. After bursts
start at 1ms, congestion emerges at port P4. Then conges-
tion spreads to upstream switches and packets accumulate at
ports P3 and P2 (not shown in the figure). The HoL blocking
process lasts for about 2ms. We notice that the queue accumu-
lation of F0 accompanies with the queue buildup of F1, which
confirms that HoL blocking originates from queue buildup of
congested flows along the branch.

Further, to understand how congested flows with precise
rate adjustment may impact HoL blocking, we let congested
flow F1 first empty the accumulated packets along switches
by stopping for a while (after congestion is detected) and then
send at the rate corresponding to the network pipe capacity
(i.e., PCrate). As shown in Figure 3(b), congestion spreading at
P3 is largely alleviated. The queue occupancy of F1 is quickly
suppressed and the total blocking time of F0 is reduced. We
also estimate an ideal stopping time (i.e., 180us) and Figure
3(c) depicts the queue occupancy. With sufficiently long time
to empty the accumulated packets along switches, the duration
of HoL blocking is much shorter than in Figure 3(b). However,
F0 is still blocked at port P3 and has queue buildup. This is
because although congested flow F1 are stopped precisely,

134 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

pause frames may still be triggered due to large ingress queue
previously accumulated at the downstream port 3.

When N = 10, we see a more desired impact on alleviat-
ing HoL blocking. As shown in Figure 4(a), the congestion
degree is smaller when N = 10, where the duration time of
HoL blocking is short. With DCQCN, the queue occupancy
of F0 is even much larger than F1 at port P3. However, as
depicted in Figure 4(b), once congested flow F1 stops for a
sufficient time to empty the queue and then sends at the rate
corresponding to the network pipe capacity, HoL blocking
can even be eliminated. With fewer accumulated packets and
a faster draining rate at the downstream congested port, the
corresponding ingress queue falls below the PFC threshold
faster. In this scenario, victim flows can safely pass without
causing pause frames and HoL blocking. In summary, we
have Observation 2: Stopping congested flows sufficiently
long can eliminate associated buffers as soon as possible.
However, under different congestion situations, HoL blocking
may still occur and victim flows have the risk of inducing
further congestion spreading.

The above observations tell that although stopping con-
gested flows does not necessarily stop pause frames from
affecting victim flows, it does help get rid of such blocking
states as soon as the accumulated buffer of congested flow is
sufficiently drained. During this process, victim flows may
still emerge and have the risk of congestion spreading. Thus,
we advocate treating victim flows dynamically to adapt to
different congestion situations, rather than treat them iden-
tically. We derive Principle 2: Stopping congested flows
sufficiently long is the foremost means to suppressing HoL
blocking. While congested flows are stopping, victim flows
should balance HoL blocking alleviation and throughput
by adapting to the severity of congestion.

Incorporating Principle 1 and Principle 2, we come to the
following strategies for congested flows and victim flows in
lossless Ethernet: Congested flows should first stop to wait for
accumulated congested queues to drain out, and then send at
the rate of network pipe capacity. While victim flows should
sacrifice throughput as little as possible and benefit HoL block-
ing alleviation. Such collaborative strategies can rapidly sup-
press congestion spreading without link underutilization, and
benefit latency and throughput performance.

4 ACK-Driven Congestion Control
Following the above principles, we present the design of ACK-
driven congestion control (ACC). The switch supports TCD
and marks ternary congestion notification in data packets.
A CE marked packet indicates a congested flow that passes
through a congestion port. A UE marked packet indicates that
the flow only passes through ports affected by PFC. The flow
is uncongested if neither CE nor UE is marked (denoted by

3PFC is triggered based on the ingress queue length. In today’s commodity
shared-buffer switches, the ingress queue length is a counter which is updated
when packets enqueue the ingress and dequeue the egress [21].

Sending

Congested

Uncongested

Undetermined

Source Halt

Receiving
ACK

CE

UE

NO

Rate
decrease

Rate increase

Rate keep or decrease

ACK
arrival rate

ACK
sequence

Figure 5: ACC state machine.

NO). The receiver copies the TCD marking to the correspond-
ing ACK and sends it back to the sender.

At its core, ACC conducts ACK-driven rate adjustment in-
cluding enforcing a source halt according to ACK sequences
(§ 4.2), and referring to ACK arrival rate to guide rate decrease
for congested flows (§ 4.3). The source halt state involves a
halt time which guarantees draining out accumulated packets
in the network while avoiding link under-utilization. For vic-
tim flows, ACC adaptively adjusts the rate according to the
feature of duration time of ACK markings (§ 4.4).

4.1 State Machine Overview
The ACC sender makes rate adjustment decisions every period
T (e.g., base RTT, see § 5). At the end of each period T , the
sender identifies the current state of the flow according to
TCD marking and conducts corresponding rate adjustment.

Figure 5 illustrates the state machine of ACK-driven rate
adjustment at ACC senders. TCD marking is aggregated in
each T with the priority order CE > UE > NO. If there is
ACK with CE received, the flow may experience congestion.
The ACC sender records the number of CE marked ACKs of
each flow. If the marking fraction of CE is above a threshold
(i.e., 90%) during a period T , it is considered a steadily con-
gested flow. If there is no ACK with CE received but with UE
marking received, the flow is regarded as a victim flow that
experiences an undetermined state. Only when neither UE nor
CE marking is received, the flow is uncongested. Specifically,
when the flow is identified as congested, it will first enter into
a source halt state where the connection ceases transmission
and the ACK arrival rate is recorded for later sending. After
leaving the source halt state, congested flows are throttled at
the proper rate derived from the ACK arrival rate. For uncon-
gested flows, the sender directly increases the sending rate.
For victim flows, the sender adjusts the sending rate according
to the duration pattern of UE markings.

4.2 Halting Congested Flows
For congested flows, ACC introduces a source halt state which
actively stops the transmission of congested flows before
sending at the appropriate rate (§ 3.2 Principle 2). The crux
of the source halt is the halt time. An appropriate halt time
should ensure that accumulated packets are drained without
under-utilizing the link. Indeed, a proper number of packets
should fill the network pipe without causing queue buildup
in the switch buffer. Specifically, ACC senders calculate the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 135

ACK

…

Sender k ReceiverSwitch

Draining time of the queue: !/#
Draining time of flow k in the queue: (∆%! – ∆&!) / (!

ACK ACK ACK

…

…

Arrival rate: !!

Link capacity: "

Sent:

Acked:

SenderM

! = ∑ (+%! – +&!)"
!#$

#$"

#%"

Figure 6: The rationale of calculating tHalt .

duration of the source halt state according to the time series
of ACK sequences (§ 3.2 Principle 1).

Concretely, for each flow, the sender maintains a value
called tNextPkt to represent when the next packet is transmitted.
Initially, tNextPkt is set to 0 and is assigned by the congestion
control algorithm. With ACC, tNextPkt is updated as follows
when the sender enters into the source halt state:

tNextPkt tNextPkt + tHalt (1)

where tHalt is calculated based on the estimated draining time.
After tHalt , a sender considers that the accumulated queues
have drained out. Figure 6 illustrates the rationale under the
typical incast scenario with M senders. Assume for flow k,
DSk is the total sent out bytes in one period T (i.e., base RTT).
DAk is the total acknowledged bytes in the next period. Ideally,
all packets sent in one period should be acknowledged in the
next period when there is no congestion (i.e., DAk = DSk).
Once congestion happens, the excessive packets build up the
queue. The total excessive sent packets are ÂM

k=1(DSk�DAk).
Then the draining time of the bottleneck queue is ÂM

k=1(DSk�
DAk)/C, where C is link capacity. Since flow k can only pass
through the bottleneck with the rate Rk, the draining time of
total packets belonging to flow k in the bottleneck queue can
be calculated as (DSk�DAk)/Rk, which is the expected tHalt
of flow k. For clarity, in the following, we use DS and DA to
denote DSk and DAk for flow k, respectively.

Each flow maintains a sequence space to calculate DS and
DA. Assume snd_una denotes the first sequence that has been
sent but not acknowledged, and snd_nxt denotes the next
sequence to be sent. snd_una is updated every time an ACK
is received. When a packet is sent, snd_nxt is also updated.
Then DS is the difference between snd_nxt at the end of the
current period and snd_nxt at the beginning of the current
period. DA is the difference between snd_una at the end of the
next period and snd_una at the beginning of the next period.
When severe congestion causes no ACK to arrive during a
period, DS should accumulate until an ACK is received.

In detail, ACC senders manipulate DS and DA among sev-
eral periods to calculate tHalt and exert source halt as shown in
Figure 7: (1) Period Ti�1 in normal transmission; (2) Period Ti
starts receiving ACKs of packets sent in Ti�1 and sends at the
same rate as Ti�1; (3) The first period Ti+1 enters the source
halt state and stops transmission; (4) Period Ti+n leaves the
source halt state and starts transmission. Assume the sender
starts a flow and then experiences congestion during Ti�1. The
available bandwidth is derived from ACK arrival rate, and

Sender

Receiver

Ti Ti+1
Enter the
source halt

First period
in source halt:

…

Leave the source halt
and send normally

Ti+n

…

First ACK
Ti-1 ……

tHalt

packets sent in Ti	
are inflight

Figure 7: The timeline of entering and exiting source halt.

Ti�1 period directly uses ACK sequences received in Ti period
to obtain the excessive packets in Ti�1. Indeed only Ti period
will use the excessive rate to infer the excessive packets. The
detailed process of exerting source halt is as follows:
• At the end of Ti, the sender identifies the flow as congested

and prepares to exert source halt. tHalt is calculated by (DS�
DA)/R and the flow halts until over period Ti+1. DS is obtained
during Ti�1, while DA and R is obtained in Ti. Note that the
flow still sends packets at the previous rate during Ti, where
excessive packets sent in Ti may also lead to queue buildup.
• At the end of Ti+1, the sender already enters the source

halt state and stops transmission. The sender should estimate
excessive packets sent in Ti and extend the insufficient halt
time calculated at the end of Ti. We notice that the excessive
packets sent in Ti can be inferred according to how much the
sending rate exceeds the available bandwidth, without the
need to wait for the arrival of ACKs. Concretely, based on the
sending rate Rs in the period before source halt (i.e., sending
rate of Ti�1) and the current available bandwidth R (i.e., the
ACK arrival rate in Ti), the number of excessive sent packets
r in Ti equals to DS subtracting the estimated pipe capacity
(line 7 in Algorithm 1). Finally, tHalt is extended by textend
(line 8-9 in Algorithm 1).

• During Ti+n, the sender leaves the source halt state and
starts transmission. The sender should only consider ACKs
of new packets sent after leaving the source halt state for
following ACK-driven rate adjustment. To this end, the sender
records snd_nxt before entering into the source halt state. For
each received ACK, only when the current snd_una is greater
than the recorded snd_nxt, the ACK is considered eligible
(line 2 in Algorithm 1).

4.3 Throttling Congested Flows
For congested flows, after leaving the source halt state, the
sender utilizes the ACK arrival rate to guide rate decrease
(§ 3.2 Principle 1). ACK arrival rate (line 3 in Algorithm
1) can reflect the data receiving rate at the receiver 4. The
aggregate receiving rate is the capacity of the bottleneck link.
To reduce the disturbance due to congestion in the reverse
path, ACKs are sent with higher priority than data packets
to avoid a significant queueing delay. The effectiveness of
this method has been confirmed in [33]. Besides, the arrival

4Currently, we only consider per-packet ACKs for accurately estimating
excessive packets and network pipe capacity. However, if there is ACK
coalescing, the precise number of excessive packets can still be inferred from
cumulative ACK sequences.

136 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Variables Description
snd_una The current unacknowledged byte
snd_nxt_start The next sending byte when the sender

is allowed to send, initialized as 0
halt Whether the sender has halted
Rs The current sending rate
RI The rate increment value
tNextPkt The next sending time
Nu The number of consecutive uncon-

gested periods
Nv The number of consecutive periods re-

ceiving UE
Pthresh The threshold of Nv to throttle victim

flows

Table 1: Variables of ACC sender algorithm.

rate of ACKs may be so small that just one ACK arrives in
several periods. To address this corner case, the sender also
records the inter-arrival time of ACKs. When the inter-arrival
time is larger than T , the sender estimates the arrival rate by
replacing T with the inter-arrival time.

4.4 Adapting Undetermined Flows
If ACKs marked with UE are received in a period T , the cor-
responding flow is an undetermined flow (i.e., victim flow).
ACC treats victim flows adaptively according to the severity
of congestion (§ 3.3 Principle 2). Indeed, the duration of re-
ceiving UE marks can indicate the severity of congestion. If
congestion is not severe, ACC senders will receive few UE
marks (e.g., only within one period) as congestion may not
spread or can be quickly suppressed due to source halt of
congested flows. However, if congestion is severe, congestion
spreading may last long and ACC senders are likely to ob-
serve UE marks stretching across multiple periods. Thus, after
identifying victim flows, ACC senders continuously observe
the arriving pattern of UE marks to adjust the sending rate.

Concretely, ACC senders first keep the rate and then reduce
the sending rate according to the number of consecutive peri-
ods with UE marks. As shown in Algorithm 1 (lines 23-24), if
the number of consecutive periods with UE marks exceeds a
period threshold Pthresh, victim flows will decrease the current
rate by half to reduce the injection rate and prevent further
congestion spreading. In this way, victim flows avoids blindly
decreasing the rate with the side effect of losing throughput,
but help alleviate HoL blocking when congestion spreading
lasts long.

4.5 Rate Increase for Uncongested Flows
If neither CE nor UE marked ACKs are received during period
T , the flow is uncongested and should attempt to increase the
sending rate. The principles are as follows:

(1) The increase step of uncongested flows should consider
the current sending rate. A flow with a small sending rate
should increase more, while a flow with a large sending rate

Algorithm 1 ACC sender algorithm.
1: function CONGESTED(recvNum,snd_nxt_start,snd_una)
2: if halt == f alse and snd_una > snd_nxt_start then
3: R = recvNum⇤MTU/T ; //calculating ACK arrival rate
4: Rs = R;
5: SourceHalt(R,DS,DA); //calculating the halt time
6: else if Halt == true then
7: r = DS�DS⇤R/Rs;
8: textend = r/R;
9: tHalt tHalt + textend ;

10: tNextPkt tNextPkt + textend ;
11: end if
12: end function
13: function UNCONGESTED
14: if Nu < 2 then
15: RI = RILow;
16: else
17: RI = RIHigh;
18: end if
19: Rs = Rs +

(lineRate�Rs)
lineRate ⇤RI;//increasing the sending rate

20: Nu = Nu +1;
21: end function
22: function UNDETERMINED
23: if Nv > Pthresh then
24: Rs = Rs/2;
25: end if
26: end function
27: function SOURCEHALT(R,DS,DA)
28: if DS > DA then
29: tHalt = (DS�DA)/R;
30: tNextPkt tNextPkt + tHalt ;
31: halt = true;
32: snd_nxt_start = snd_nxt;
33: end if
34: end function

should increase less.
(2) The rate increase process should be gradual at first to

avoid causing congestion immediately while aggressive after
available bandwidth is considered adequate.

ACC senders make rate adjustments following the law in
lines 13-21 in Algorithm 1. Generally, the sender increases
the sending rate by adding an amount proportional to the dif-
ference between lineRate and the current sending rate. Note
that lineRate means the maximum rate of NIC which may
vary if NIC speed changes. There are two stages for the rate
increase. RI is the maximum increase amount per period with
different values for two stages and is proportional to lineRate.
For the early stage, RI is set as a small value RILow. After two
consecutive increase periods, the maximum increase amount
per period RI is set as a large value RIHigh. RILow and RIHigh
are both proportional to RI. In this way, uncongested flows
increase gradually at first, then aggressively with a large in-
crease step and finally increase less per period as the sending
rate gets closer to the line rate.
4.6 Theoretical Analysis
We build a fluid model of ACC and analyze its performance,
including convergence and fairness. The main conclusions are
summarized in the following propositions, and the detailed
proof is listed in Appendix A.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 137

Kernel rxe_completer

rxe_comp_queue_pkt

Completion
Queue

check_ack

complete_wqe

1. Get TCD flag,
ACK arrival rate
2. Start timer
3. Update tNextPkt

rxe_requester

rate pacer

req_next_wqe

init_packet

rxe_xmit_packet

Hold until
tNextPkt

Record the newest
trasmit time

Init TCD flag，
per-packet ack

Ethernet NIC

(a) Sending data and receiving ACKs

Kernel

rxe_resp_queue_pkt

Response
Queue

rxe_responder

send_ack
execute

rxe_xmit_packet

Acknowledge
Piggyback
TCD flag

Ethernet NIC

(b) Receiving data and send-
ing ACKs

Figure 8: ACC implementation in SoftRoCE.

Proposition 1: When the aggregate sending rate is larger
than the bottleneck link bandwidth, ACC can converge the
aggregate sending rate towards the bottleneck link bandwidth
within one control period T .
Proposition 2: ACC can always guarantee fair bandwidth
allocation regardless of the initial sending rate of the flow, i.e.,

Si!
C
N

Si is the sending rate of flow i, C is the bottleneck link band-
width, N is the number of flows sharing the bottleneck link.

5 Implementation
In this section, we describe the Linux implementation of
ACC using SoftRoCE, which is a software implementation of
RDMA and fulfills the RoCE NIC function on Ethernet NICs.
Figure 8 illustrates the kernel SoftRoCE architecture with our
ACC extensions shaded in gray. ACC involves modifications
in three main modules, as described below.
rxe_completer This module is responsible for process-
ing received ACKs at the sender. We modify the check_ack
function to implement the ACC algorithm and maintain the
state machine of ACC. For the first ACK of each flow, we start
a timer for periodically checking ACKs in ACC. The ACC
algorithm determines the sending rate of each flow accord-
ing to current state (congested, undetermined or uncongested)
and converts the rate to pacing delay among packets. Based
on the latest sending time and pacing delay, the function can
calculate tNextPkt . tNextPkt is also updated once the flow enters
the source halt state (Equation 1).
rxe_requester This module is responsible for sending
data at the sender. Since the original SoftRoCE does not
support congestion control, we add a rate pacer to controlling
the transmission time of packets according to tNextPkt . The
rate pacer continues comparing current time with tNextPkt , and
source halt can be enforced by holding back the next packet
until tNextPkt .
rxe_responder This module receives data packets and
triggers the generation of ACKs. For ACC, after processing
the data packets and prepare to generate ACK, it will piggy-
back the TCD marking to ACK packets.
Discussion on NIC implementation. In RDMA NICs, the QP
Context (QPC) maintains for a QP all its contexts, including

the DMA states and connection states (e.g., expected packet
sequence numbers and sending rate). For ACC, the additional
QPC size required for each QP is less than 40B (including
ternary states and variables in Table 1), so the total required
size for 1K QPs can be less than 40KB, which is acceptable for
on-chip memory consumption. Besides, current commercial
RDMA NICs already support around 1K rate limiters based
on timers [43].

6 Evaluation
6.1 Evaluation Setup
Testbed. We build a testbed consisting of 5 servers connected
to one switch. Each server is equipped with AMD Ryzen 9
3950X CPU@3.5GHz, 64GB RAM, an Intel 82599ES 10GbE
NIC and runs Ubuntu 20.04 with Linux kernel 5.4.127. All
hosts are connected via a 32⇥100Gbps Tofino switch. We use
the default shared buffer setting in the Tofino switch, and also
implement ACC and DCQCN [49] in SoftRoCE [36].
Schemes compared. We focus on the comparison among
ACC, ECN-based DCQCN [49], RTT-based TIMELY [33]
and INT-based HPCC [29]. We use the open-source code of
DCQCN, TIMELY and HPCC provided in the HPCC sim-
ulator [28] and implement ACC (including the support of
TCD in switches). HPCC and DCQCN are state-of-the-art
and state-of-the-practice in data centers, respectively. Note
that HPCC requires INT support from switches to obtain pre-
cise link load. In large-scale simulations, we also compare
ACC with DCQCN+TCD and TIMELY+TCD [45], which are
congestion control schemes enhanced by accurate congestion
detection in TCD. TCD preliminarily proposes to reduce the
rate of congested flows aggressively and adjust victim flows
gently via heuristically modifying the parameters of existing
algorithms.
Network topology. We adopt a fat-tree [5] topology in large-
scale simulations. There are 320 servers in 20 racks, 20 aggre-
gation switches and 16 core switches. Each server has a 100
Gbps link connected to ToR switches. All links between core,
aggregation and ToR switches are 400 Gbps. Each link has
1µs delay. The switch buffer size is set to 32MB according
to real device configurations. PFC is enabled by default and
XOFF is set to 512KB.
Workloads. We generate flows according to Web Search [6]
and Cache Follower [40] workloads. The overall load is 80%.
We also use Hadoop [40] workload (load 50%) adding in-
cast traffic (load 20%). For each incast, 64 randomly selected
senders send 20KB to one receiver. These workloads contain
typical traffic patterns in data centers with most traffic consti-
tuted by few but large flows [6, 11]. Cache Follower and Web
Search workloads contain more heavy flows. Hadoop work-
load is the lightest, around 70% flows smaller than 10KB.
Parameter setting. The core parameters of ACC include the
period T , RI (i.e., RILow and RIHigh) and Pthresh. Since ACC
relies on the difference between sent bytes and acknowledged
bytes in a period T to figure out excessive data, T must be

138 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) DCQCN (b) ACC

Figure 9: Testbed experiment.

the base RTT to ensure that ACKs can arrive during the next
period when there is no congestion. RILow and RIHigh are the
maximum increase amount in each period. As the aggres-
sive source halt state would directly cease transmission, RILow
and RIHigh can be set large to rapidly occupy available band-
width. We recommend setting RILow as 1/250 of the line rate
while RIHigh = 10RILow. For example, RILow is 400Mbps and
RIHigh is 4Gbps when link capacity is 100Gbps. We recom-
mend setting the queue length threshold in TCD as a small
value, i.e., 2MTU. A small but non-zero threshold ensures
that congestion can be sensed at the onset while not too sen-
sitive to transient jitter. By default, we set RIHigh = 4Gbps,
RILow = 400Mbps and Pthresh = 1. The experiments also indi-
cate that our default parameters are proper (Appendix B).

For congestion detection at switches, TCD relies on
max(Ton) to determine the maximum duration of a continuous
ON period to detect the ternary state transitions. According to
the equation in [45], max(Ton) is set to 24µs in our large-scale
simulations. For HPCC, we use the default parameter with
h= 0.95 and maxStage= 5. For DCQCN, we set Kmin = 5KB
and Kmax = 200KB following the parameter setting in [31,49].
For TIMELY, a = 0.875 and b = 0.8, as suggested in [50].

6.2 Testbed
We implement ACC and DCQCN in SoftRoCE referring to
[49]. In our testbed, RTT is around 20µs. Since the period
of generating CNPs in DCQCN is 50µs, we set the period
T in ACC also to 50µs. The congestion detection results of
TCD are equal with ECN in this incast scenario. We configure
SoftRoCE such that ACK is generated for every packet5.

We let each of the four servers start a long flow and record
the aggregated sending rates calculated by the congestion
control algorithm. Note that in ACC, the sender maintains a
sending rate driven by ACK arrival rate and the rate increase
algorithm. As shown in Figure 9(a) and Figure 9(b), ACC
outperforms DCQCN in terms of fast convergence and stabil-
ity. After the congestion occurs, DCQCN gradually reduces
the sending rate. Due to the heuristic rate regulation, it takes
about 0.5ms (⇠25RTT) to reduce to 10Gbps, and then the
aggregation sending rate is reduced to 1Gbps. Finally, it takes
around 18ms to converge to the fair share. By contrast, ACC
can directly adjust the rate to the proper rate (i.e., 10Gbps)

5We set MTU to 4000B due to the performance issue of SoftRoCE.

(a) Queue length (b) Halt time in ACC

(c) Bottleneck link utilization (d) Fair rate

Figure 10: Convergence, link utilization and fairness.

after one period. The subgraph in each figure shows the ag-
gregate sending rate just after the congestion occurs. The rate
determined by the ACC algorithm is maintained as 10Gbps
under the guidance of the ACK arrival rate. The actual sending
is halted because the flows firstly enter the source halt.

6.3 Microbenchmarks
We first conduct fine-grained simulations to evaluate the basic
performance of ACC (e.g., convergence, link utilization and
fairness). Then we focus on its ability in dealing with typical
issues in lossless Ethernet such as congestion spreading, HoL
blocking and deadlock.
ACC can quickly eliminate congestion, maintain near full
link utilization and attain fair rate allocation: We let ten
source nodes send long-lived traffic to a single destination
node through a switch. All links are 100Gbps. Figure 10(a)
shows the bottleneck queue length evolution. ACC quickly
suppresses the deep queue. Thus congestion is eliminated
rapidly. This benefits from the source halt state based on pre-
cise excessive packet information in ACC. As depicted in
Figure 10(b), the actual halt time of each flow after enter-
ing the source halt state is close to the ideal halt time (i.e.,
the maximum bottleneck queue length divided by link band-
width), but DCQCN and TIMELY fail to rapidly eliminate
the congestion and maintain a low-standing queue.

As for link utilization, both DCQCN and TIMELY incur un-
stable utilization and underutilize the link due to step-by-step
rate adjustment rules. Since HPCC trades high throughput for
low latency, it maintains a 95% link utilization. Overall, ACC
can achieve steady and near-full link utilization.

As illustrated in Figure 10(d), each flow attains the expected
average fair rate (i.e., 10Gbps) with ACC. DCQCN, TIMELY,
and HPCC also achieves reasonable fairness. The aggregate
flow rate attained in DCQCN, TIMELY, and HPCC are lower
than expected. The reasons are that HPCC reserves 5% link
bandwidth headroom and the heuristic rate adjustment in

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 139

(a) DCQCN (b) TIMELY

(c) HPCC (d) ACC
Figure 11: Buffer occupancy at the congested port P4/SW4
and the number of received PAUSEs.

DCQCN and TIMELY.
ACC can effectively suppress congestion spreading and al-
leviate HoL blocking under challenging bursty traffic: We
adopt the topology in Figure 1 to further evaluate the ability
to deal with congestion spreading and HoL blocking under
bursty traffic in simulation (N=15). Note that uncongested
flow F0 shares links with congested flow F1 in SW1⇠SW3.
Figure 11 depicts the individual buffer occupancy of F1 and
burst at the congested port P4, as well as the number of re-
ceived PAUSEs in switches and hosts. DCQCN and TIMELY
both receive PAUSEs at switches and hosts, indicating that
congestion spreading is severe and the congestion tree grows
many branches. The backlogged packets of F1 can not be
drained rapidly due to sluggish rate decrease in DCQCN and
TIMELY. HoL blocking (i.e., F0 is blocked) also occurs be-
cause PAUSEs are received at SW1⇠SW3 where uncongested
flow F0 sharing ports with F1.

With ACC and also HPCC, congestion spreading is sup-
pressed rapidly with many fewer PAUSEs received at both
switches and hosts. ACC and HPCC receive no PAUSEs in
SW1⇠SW3, indicating that there is no HoL blocking and F0
avoids becoming a victim. Only a few PAUSEs are received
due to uncontrollable bursts from H1⇠H15. Besides, HPCC
drastically drains the queue at first, then suffers a standing
queue for a long period, i.e., from 2ms to 2.7ms, as illus-
trated in Figure 11(c). This is because the total sending rate
has matched the bottleneck bandwidth while there are still
backlogged packets. As shown in Figure 11(d), ACC drains
backlogged packets at the congested port at the maximum
rate, with 2ms to empty the long-standing queue. This is be-
cause ACC senders timely enter the source halt state and refer
to the precise information of excessive packets.
ACC is resilient against deadlock: To validate the signifi-
cance of congestion control in preventing deadlock in lossless
Ethernet, we adopt a typical topology as illustrated in Fig-

L1 L2

T1 T2 T3 T4

… …

400Gbps

100Gbps

Figure 12: Topology

Scheme Fraction
DCQCN 6%
TIMELY 74%

HPCC 0%
ACC 0%

Table 2: Fraction of deadlock

ure 12, which is a common unit in Clos topology. To emulate
the typical scenarios where deadlock is prone to appear, we
artificially let link L0-T3 and link L1-T0 fail to form a CBD.
There are eight servers under each ToR switch. We simulate
ACC, DCQCN, TIMELY, and HPCC with Web Search work-
load [6]. The load is 60%. We run simulations 50 times with
different traffic traces, and every simulation lasts for 100ms.
Table 2 shows the fraction of deadlock runs. We identify a
deadlock by finding whether there are flows with infinite com-
pletion times. Among 50 simulations, there is no deadlock in
ACC and HPCC. However, DCQCN and TIMELY encounter
deadlocks 3 and 37 times, respectively. With fast convergence,
ACC is resilient against deadlock.

6.4 Large-Scale Simulations
We conduct large-scale simulations to evaluate the over-
all FCT performance of ACC. For each workload, we clas-
sify flows into small (<100KB), medium (�100KB and
< 10MB), and large (>10MB) flows. Note that in Hadoop
workload, the size of large flows is larger than 1MB.
ACC achieves low latency for small and medium flows:
Figure 13(a) exhibits the average FCT and 99th percentile
FCT under Web Search workload. On the whole, DCQCN
and TIMELY have undesirable performance. For DCQCN,
the average FCT for small flows is 3.3⇥ of ACC, and the 99th
percentile FCT is 11.5⇥ of ACC. This is because ACC can
quickly converge to the appropriate rate through the ACK
arrival rate. Besides, the FCT performance of ACC is better
than HPCC. For small flows, ACC reduces the average FCT
by 29% compared to HPCC, and the 99th percentile FCT
drops by 40%. The performance gain on small flows comes
from the source halt that directly stops the transmission of the
congested flow so that the queues can be rapidly drained.

Under Cache Follower workload, ACC achieves better FCT
performance than HPCC, with lower FCT even for small and
medium flows. For medium flows, ACC reduces the 99th
percentile FCT by 41% compared with HPCC. For DCQCN,
the average FCT and 99th percentile FCT are 2.4⇥ and 1.7⇥
larger than ACC, respectively.

Under Hadoop workload, the FCT performance of ACC is
close to HPCC. As shown in Figure 13(c), ACC achieves com-
parable FCT performance with HPCC for small and medium
flows. The flow sizes in Hadoop workload are smaller, with
55% of flows being less than 1KB. Such flow size distribution
induces less persistent congestion than the other two work-
loads. As a result, the queuing delay dominates the FCT for

140 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Web Search 80% load (b) Cache Follower 80% load (c) Hadoop (50% load)+incast (20% load)

Figure 13: Average and tail (99th percentile) FCT performance under various workloads.

(a) Web Search 80% load (b) Cache Follower 80% load

Figure 14: FCT slowdown performance

(a) Web Search 80% load (b) Cache Follower 80% load

Figure 15: Number of PFC PAUSEs

small flows. As HPCC sacrifices link utilization leading to
queue underflow, thus benefiting FCT performance for small
and medium flows.
ACC does not sacrifice throughput of large flows: Fig-
ure 14(a) and Figure 14(b) depict the detailed FCT slowdown
under Cache Follower and Web Search workload. For numer-
ous small and medium flows, ACC achieves comparable or
even better 99th percentile FCT slowdown than HPCC under
both workloads while always attaining better performance
than HPCC for relatively large flows. For example, for flows
larger than 30MB/10MB, the 99th percentile FCT slowdown
with ACC is 26% and 27% lower than HPCC, respectively. In
Figure 13(b), ACC also outperforms HPCC by 30% for the
99th percentile FCT of large flows. ACC does not sacrifice
the throughput of large flows because it precisely drains out
excessive packets and does not underflow the queues to waste
link bandwidth.
ACC outperforms DCQCN+TCD and TIMELY+TCD
enhanced with heuristic rules: Figure 13 also demon-
strates that with accurate congestion detection and heuris-
tic rules on adjusting the rate of congested/victim flows,
both DCQCN+TCD and TIMELY+TCD improve the aver-
age and tail FCT performance compared with DCQCN and
TIMELY. However, since DCQCN+TCD and TIMELY+TCD
still heuristically decrease the rate of congested flows follow-
ing the original paradigm, they can not drain congested queues

(a) FCT slowdown (b) PFC PUASEs

Figure 16: Impact of source halt

rapidly and allocate the proper rate precisely under various
workloads. Thus, DCQCN+TCD and TIMELY+TCD may
suffer from slow convergence and long-standing queues. For
instance, under Cache Follower workload, ACC improves tail
FCT performance of small flows by 3.9⇥ and 5.1⇥ compared
with DCQCN+TCD and TIMELY+TCD, respectively.
ACC greatly reduces PFC PAUSE generation: The number
of received PAUSEs in different layers under Web Search
and Cache Follower workload is drawn in Figure 15. The
results show that ACC almost has no trigger of PFC messages
because of fast convergence and the ability to maintain low-
standing queues. Thus there is little HoL blocking. In Web
Search workload, for DCQCN and TIMELY, most PAUSEs
are received in the aggregation layer because the challenging
incast pattern happens in the ToR layer. In Cache Follower
workload, most PAUSEs are received at the aggregation layer
and servers, indicating that congestion spreading is severe
hence many innocent senders are affected.
Source halt benefits low latency for small flows and re-
duces the risk of PFC PAUSEs: Aiming at understanding
the significance of source halt, we take a closer look at the
comparison between ACC and ACC w/o halt. ACC w/o halt
removes the source halt state and directly decreases the send-
ing rate of congested flows according to the ACK arrival rate.
Figure 16(a) manifests that ACC w/o halt can achieve sim-
ilar performance for medium and large flows, while small
flows suffer from larger FCT. Small flows experience undesir-
able queueing delays as congested queues can not be rapidly
drained out. ACC w/o halt can still fulfill fast convergence ow-
ing to the guidance of ACK arrival rate. Besides, as illustrated
in Figure 16(b), since there are more long-standing queues,
the risk of triggering PFC PAUSEs increases. ACC signifi-
cantly reduces the PFC PAUSEs at each layer compared with
ACC w/o halt. The congestion spreading is also restricted

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 141

effectively, with many fewer PAUSEs received at the servers,
ToR, and the core layer.

7 Related Work
Lossless Ethernet vs. Lossy Ethernet. There has been
an ongoing discussion about lossless and lossy Ethernet in
RDMA-based datacenter. Lossless Ethernet can benefit appli-
cation performance but comes with side effects of deploying
PFC (i.e., HoL blocking, congestion spreading, deadlock, etc).
However, ACC reveals that besides its side effects, PFC also
gives a unique packet conservation property which can facili-
tate precise congestion control and in turn mitigate the side
effects of PFC. In contrast, although lossy Ethernet can essen-
tially avoid the side effects of PFC, it may suffer from latency
degradation due to packet losses and imposes higher imple-
mentation requirements on RDMA NICs (e.g., more complex
loss recovery and reorder logic). Thus, existing efforts can
be mainly classified into two lines: (i) Developing conges-
tion control (or flow control) to minimize the side effects
of PFC: For example, CC schemes including DCQCN [49],
PCN [13], TCD/TCD-MQ [45, 46], ACC, etc, and new link-
layer flow control like deadlock-free GFC [38]. (ii) Develop-
ing advanced loss recovery to improve RDMA performance:
For example, IRN [34] first introduces selective retransmis-
sion into RDMA NICs. TLT [30] proposes to reduce timeouts
by protecting important packets. SLR [32] utilizes switches
to send loss notifications to request fast retransmissions and
is compatible with default Go-back-N retransmission.
Congestion control in lossless interconnects. Besides loss-
less Ethernet, there are other lossless interconnects, e.g., In-
finiBand [9] and Fibre Channel [8]. For example, InfiniBand
deploys credit-based flow control to guarantee no packet loss,
which also suffers from HoL blocking, congestion spreading,
and deadlock problems [9, 22, 41]. Despite the fact that ACC
is designed for lossless Ethernet employing PFC, we think
our key insights (e.g., utilizing the ACK-driven paradigm to
infer excessive packets and throttled rate) are also suitable for
congestion control in other lossless interconnects with packet
conservation property.
Receiver-driven and other advanced congestion controls.
Recently several receiver-driven congestion controls have
been proposed, such as ExpressPass [14], pHost [18], NDP
[23], and Homa [35]. The core of receiver-driven congestion
control is “request and allocation” style transport [24]. These
receiver-driven schemes are first proposed in lossy Ethernet,
where new flows blindly transmit unscheduled packets in the
first RTT. Hence congestion may also occur with the risk of
packet loss. Besides, NDP and ExpressPass utilize CP [12] or
explicitly drop credits to enforce a bounded queue. PCN [13]
is a receiver-driven congestion control scheme designed in
lossless Ethernet while only utilizing the receiving rate at
the receiver to guide rate decrease, thus accumulated queues
may still be eliminated slowly and HoL blocking can not
be suppressed rapidly. There are also other advanced con-

gestion controls designed for datacenters. For instance, Pow-
erTCP [4] proposes to fulfill fine-grained congestion control
by adapting to Power (i.e., bandwidth-window product) based
on INT. Bolt [7] leverages sub-RTT signals provided by pro-
grammable switches to enable reacting to congestion faster
than the RTT control loop, which realizes low queueing and
benefits minimal packet loss under bursty workloads. Besides,
Fasspass [37] first proposes to delegate all control (i.e., when
each packet should be transmitted and what path it should
follow) to a centralized arbiter.

ACC stands out as it fully builds on the simple yet powerful
packet conservation law in lossless Ethernet while achieving
low latency and high throughput simultaneously.
Source halt. On-Ramp [31] proposes to pause the source
actively to deal with transient and equilibrium tension in tra-
ditional lossy Ethernet. The source PAUSE technique in On-
Ramp is similar to the source halt state in ACC. However,
On-Ramp relies on clock synchronization [20] to obtain ac-
curate one-way delay measurement and roughly estimates
the pause time without knowing network pipe capacity. The
source halt state in ACC precisely drains out accumulated
packets of congested flows while only relying on the ACK
time series. To the best of our knowledge, none of the existing
congestion control schemes in lossless Ethernet proposes to
accurately and rapidly drain out backlogged packets.

8 Conclusion
In this paper, we revisit congestion control for lossless Ether-
net from the perspective of unlocking its intrinsic properties,
e.g., packet conservation. We propose a new congestion con-
trol called ACC, which essentially treats the ACKs as accurate
"tokens" of the network pipe to guide the traffic injection rate
and timing, i.e., waiting for backlogged packets to drain out
and then sending with the rate corresponding to network pipe
capacity. Extensive experiments show that ACC alleviates
thorny issues in lossless Ethernet, such as congestion spread-
ing, HoL blocking, and deadlock. Besides, ACC achieves low
latency and high throughput simultaneously under various
workloads and even outperforms state-of-the-art congestion
control schemes. We believe that the philosophy of exploiting
intrinsic properties opens new avenues for rethinking con-
gestion control and other traffic management mechanisms in
lossless Ethernet.

Acknowledgements
We thank the anonymous reviewers and our shepherd Naveen
Kr. Sharma, for their valuable comments and helpful sug-
gestions. This work is supported in part by the National
Key Research and Development Program of China (No.
2022YFB2901404), and by National Natural Science Foun-
dation of China (NSFC) under Grant No. 62132007, No.
62221003 and No. 62302055, and by the China Post-Doctoral
Science Foundation under Grant No. 2023M730172, as well
as gifts from Huawei. Corresponding author: Qingkai Meng
and Fengyuan Ren.

142 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Ieee 802.1 qbb - priority-based flow control. http://

www.ieee802.org/1/pages/802.1bb.html, 2010.

[2] In-band network telemetry (int) dataplane specifica-
tion. https://p4.org/p4-spec/docs/INT_v2_1.

pdf, 2020.

[3] Nvm express over fabrics revision 1.1a. https:

//nvmexpress.org/wp-content/uploads/NVMe-o

ver-Fabrics-1.1a-2021.07.12-Ratified.pdf,
2021.

[4] Vamsi Addanki, Oliver Michel, and Stefan Schmid. Pow-
erTCP: Pushing the performance limits of datacenter
networks. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
51–70, Renton, WA, April 2022. USENIX Association.

[5] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network
architecture. In Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication, SIGCOMM
’08, page 63–74, New York, NY, USA, 2008. Association
for Computing Machinery.

[6] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center tcp
(dctcp). In Proceedings of the ACM SIGCOMM 2010
Conference, SIGCOMM ’10, page 63–74, New York,
NY, USA, 2010. Association for Computing Machinery.

[7] Serhat Arslan, Yuliang Li, Gautam Kumar, and Nandita
Dukkipati. Bolt: Sub-RTT congestion control for Ultra-
Low latency. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
219–236, Boston, MA, April 2023. USENIX Associa-
tion.

[8] Fibre Channel Industry Association. Fibre channel.
https://fibrechannel.org/, 2022.

[9] InfiniBand Trade Association. Infiniband architecture
specification volume 2 release 1.3.1. https://cw.i

nfinibandta.org/document/dl/8125, 2016.

[10] Luiz Barroso, Mike Marty, David Patterson, and
Parthasarathy Ranganathan. Attack of the killer mi-
croseconds. Commun. ACM, 60(4):48–54, mar 2017.

[11] Theophilus Benson, Aditya Akella, and David A. Maltz.
Network traffic characteristics of data centers in the wild.
In Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement, IMC ’10, page 267–280, New
York, NY, USA, 2010. Association for Computing Ma-
chinery.

[12] Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang Lin.
Catch the whole lot in an action: Rapid precise packet
loss notification in data center. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 14), pages 17–28, 2014.

[13] Wenxue Cheng, Kun Qian, Wanchun Jiang, Tong Zhang,
and Fengyuan Ren. Re-architecting congestion man-
agement in lossless ethernet. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 19–36, 2020.

[14] Inho Cho, Keon Jang, and Dongsu Han. Credit-
scheduled delay-bounded congestion control for data-
centers. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, SIG-
COMM ’17, page 239–252, New York, NY, USA, 2017.
Association for Computing Machinery.

[15] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56(2):74–80, 2013.

[16] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Sim-
plified data processing on large clusters. Commun. ACM,
51(1):107–113, jan 2008.

[17] Nandita Dukkipati, Neal Cardwell, Yuchung Cheng, and
Matt Mathis. Tail Loss Probe (TLP): An Algorithm
for Fast Recovery of Tail Losses. Internet-Draft draft-
dukkipati-tcpm-tcp-loss-probe-01, Internet Engineering
Task Force, February 2013. Work in Progress.

[18] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit
Agarwal, Sylvia Ratnasamy, and Scott Shenker. Phost:
Distributed near-optimal datacenter transport over com-
modity network fabric. In Proceedings of the 11th ACM
Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’15, New York, NY, USA, 2015.
Association for Computing Machinery.

[19] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan Liu,
Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng
Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang,
Dennis Cai, and Jiesheng Wu. When cloud storage
meets RDMA. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 21),
pages 519–533. USENIX Association, April 2021.

[20] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Bal-
aji Prabhakar, Mendel Rosenblum, and Amin Vahdat.
Exploiting a natural network effect for scalable, fine-
grained clock synchronization. In 15th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI 18), pages 81–94, Renton, WA, April 2018.
USENIX Association.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 143

http://www.ieee802.org/1/pages/802.1bb.html
http://www.ieee802.org/1/pages/802.1bb.html
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1a-2021.07.12-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1a-2021.07.12-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1a-2021.07.12-Ratified.pdf
https://fibrechannel.org/
https://fibrechannel.org/
https://cw.infinibandta.org/document/dl/8125
https://cw.infinibandta.org/document/dl/8125

[21] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. Rdma
over commodity ethernet at scale. In Proceedings of
the 2016 ACM SIGCOMM Conference, SIGCOMM ’16,
page 202–215, New York, NY, USA, 2016. Association
for Computing Machinery.

[22] M. Gusat, D. Craddock, W. Denzel, T. Engbersen, N. Ni,
G. Pfister, W. Rooney, and J. Duato. Congestion control
in infiniband networks. In 13th Symposium on High
Performance Interconnects (HOTI’05), pages 158–159,
2005.

[23] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In
Proceedings of the Conference of the ACM Special In-
terest Group on Data Communication, SIGCOMM ’17,
page 29–42, New York, NY, USA, 2017. Association
for Computing Machinery.

[24] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang,
Baochen Qiao, Kai Chen, Kun Tan, and Yi Wang. Ae-
olus: A building block for proactive transport in data-
centers. In Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication, SIGCOMM ’20,
page 422–434, New York, NY, USA, 2020. Association
for Computing Machinery.

[25] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Deadlocks
in datacenter networks: Why do they form, and how to
avoid them. In Proceedings of the 15th ACM Workshop
on Hot Topics in Networks, HotNets ’16, page 92–98,
New York, NY, USA, 2016. Association for Computing
Machinery.

[26] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Tagger: Prac-
tical pfc deadlock prevention in data center networks.
IEEE/ACM Trans. Netw., 27(2):889–902, apr 2019.

[27] Gautam Kumar, Nandita Dukkipati, Keon Jang, Has-
san MG Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, et al. Swift: Delay is simple and effective for con-
gestion control in the datacenter. In ACM SIGCOMM,
pages 514–528, 2020.

[28] Yuliang Li. HPCC NS-3 simulator.
https://github.com/alibaba-edu/High-Pre

cision-Congestion-Control, 2019.

[29] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. Hpcc: High precision congestion control. In
Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM ’19, page 44–58,
New York, NY, USA, 2019. Association for Computing
Machinery.

[30] Hwijoon Lim, Wei Bai, Yibo Zhu, Youngmok Jung,
and Dongsu Han. Towards timeout-less transport in
commodity datacenter networks. In Proceedings of the
Sixteenth European Conference on Computer Systems,
EuroSys ’21, page 33–48, New York, NY, USA, 2021.
Association for Computing Machinery.

[31] Shiyu Liu, Ahmad Ghalayini, Mohammad Alizadeh,
Balaji Prabhakar, Mendel Rosenblum, and Anirudh
Sivaraman. Breaking the Transience-Equilibrium nexus:
A new approach to datacenter packet transport. In 18th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 47–63. USENIX As-
sociation, April 2021.

[32] Qingkai Meng, Yiran Zhang, Shan Zhang, Zhiyuan
Wang, Tong Zhang, Hongbin Luo, and Fengyuan Ren.
Switch-assistant loss recovery for rdma transport con-
trol. IEEE/ACM Transactions on Networking, pages
1–16, 2023.

[33] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin Vah-
dat, Yaogong Wang, David Wetherall, and David Zats.
Timely: Rtt-based congestion control for the datacen-
ter. SIGCOMM Comput. Commun. Rev., 45(4):537–550,
aug 2015.

[34] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan
Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Scott Shenker. Revisiting network support for rdma. In
Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
’18, page 313–326, New York, NY, USA, 2018. Associ-
ation for Computing Machinery.

[35] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
’18, page 221–235, New York, NY, USA, 2018. Associ-
ation for Computing Machinery.

[36] NVIDIA. How To Configure Soft-RoCE.
https://enterprise-support.nvidia.com/s/

article/howto-configure-soft-roce, 2023.

144 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://enterprise-support.nvidia.com/s/article/howto-configure-soft-roce
https://enterprise-support.nvidia.com/s/article/howto-configure-soft-roce
https://enterprise-support.nvidia.com/s/article/howto-configure-soft-roce

[37] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Devavrat Shah, and Hans Fugal. Fastpass: a centralized
"zero-queue" datacenter network. In Proceedings of the
2014 ACM Conference on SIGCOMM, SIGCOMM ’14,
page 307–318, New York, NY, USA, 2014. Association
for Computing Machinery.

[38] Kun Qian, Wenxue Cheng, Tong Zhang, and Fengyuan
Ren. Gentle flow control: Avoiding deadlock in lossless
networks. In Proceedings of the ACM Special Inter-
est Group on Data Communication, SIGCOMM ’19,
page 75–89, New York, NY, USA, 2019. Association
for Computing Machinery.

[39] Sudarsanan Rajasekaran, Manya Ghobadi, Gautam Ku-
mar, and Aditya Akella. Congestion control in machine
learning clusters. In Proceedings of the 21st ACM Work-
shop on Hot Topics in Networks, pages 235–242, 2022.

[40] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C. Snoeren. Inside the social network’s (dat-
acenter) network. SIGCOMM Comput. Commun. Rev.,
45(4):123–137, aug 2015.

[41] J.R. Santos, Y. Turner, and G. Janakiraman. End-to-end
congestion control for infiniband. In IEEE INFOCOM
2003. Twenty-second Annual Joint Conference of the
IEEE Computer and Communications Societies (IEEE
Cat. No.03CH37428), volume 2, pages 1123–1133 vol.2,
2003.

[42] Brent Stephens, Alan L. Cox, Ankit Singla, John Carter,
Colin Dixon, and Wesley Felter. Practical dcb for im-
proved data center networks. In IEEE INFOCOM 2014 -
IEEE Conference on Computer Communications, pages
1824–1832, 2014.

[43] Zilong Wang, Xinchen Wan, Chaoliang Zeng, and Kai
Chen. Accurate and scalable rate limiter for rdma nics.
In Proceedings of the 7th Asia-Pacific Workshop on Net-
working, APNET ’23, page 15–20, New York, NY, USA,
2023. Association for Computing Machinery.

[44] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tatha-
gata Das, Michael Armbrust, Ankur Dave, Xiangrui
Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker,
and Ion Stoica. Apache spark: A unified engine for
big data processing. Commun. ACM, 59(11):56–65, oct
2016.

[45] Yiran Zhang, Yifan Liu, Qingkai Meng, and Fengyuan
Ren. Congestion detection in lossless networks. In
Proceedings of the ACM SIGCOMM Conference, SIG-
COMM ’21, page 370–383, New York, NY, USA, 2021.
Association for Computing Machinery.

[46] Yiran Zhang, Qingkai Meng, Yifan Liu, and Fengyuan
Ren. Revisiting congestion detection in lossless
networks. IEEE/ACM Transactions on Networking,
31(5):2361–2375, 2023.

[47] Yiwen Zhang, Gautam Kumar, Nandita Dukkipati, Xian
Wu, Priyaranjan Jha, Mosharaf Chowdhury, and Amin
Vahdat. Aequitas: admission control for performance-
critical rpcs in datacenters. In Proceedings of the ACM
SIGCOMM 2022 Conference, pages 1–18, 2022.

[48] Yiying Zhang and Steven Swanson. A study of appli-
cation performance with non-volatile main memory. In
2015 31st Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–10, 2015.

[49] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale rdma deploy-
ments. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIG-
COMM ’15, page 523–536, New York, NY, USA, 2015.
Association for Computing Machinery.

[50] Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra
Padhye. Ecn or delay: Lessons learnt from analysis of
dcqcn and timely. In Proceedings of the 12th Interna-
tional on Conference on Emerging Networking EXperi-
ments and Technologies, CoNEXT ’16, page 313–327,
New York, NY, USA, 2016. Association for Computing
Machinery.

[51] Siyuan Zhuang, Zhuohan Li, Danyang Zhuo, Stephanie
Wang, Eric Liang, Robert Nishihara, Philipp Moritz, and
Ion Stoica. Hoplite: Efficient and fault-tolerant collec-
tive communication for task-based distributed systems.
In Proceedings of the 2021 ACM SIGCOMM 2021 Con-
ference, SIGCOMM ’21, page 641–656, New York, NY,
USA, 2021. Association for Computing Machinery.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 145

Parameter Definition

C Bottleneck link bandwidth
N The number of flows
T Control period
k The kth period
RI Rate increment
Si(k) Sending rate of flow i at kth period
Ri(k) Actual sending rate of flow i considering

the source halt state at kth period
Q(k) Bottleneck queue length at kth period
ji(k) Allocated bandwidth fraction of flow i at

kth period, ji(k) =
Si(k)

ÂSi(k)

Table 3: Parameter list

APPEDNDIX

A. Theoretical Analysis

In this section, we analyze the convergence and fairness of
ACC in theory. The key parameters are listed in Table 3. We
assume that the receiver will generate ACK for each received
packet and the delay of generating ACK is negligible.

Convergence: Without loss of generality, assuming that the
switch queue corresponding to the bottleneck link is initially
empty, the sending rate of N flows is arbitrary. There are
following two cases:

(1) ÂSi(0)>C: If the aggregate sending rate of the initial
N flows exceeds the bottleneck link bandwidth, congestion
occurs and queues start to accumulate. All congested flows
will enter the source halt state:

8
<

:

Q(1) = (ÂSi(0)�C)T
Ri(1) = 0
Si(1) = ji(0)C

(2)

As shown in Figure 17(a), after each flow enters the source
halt state, the actual sending rate Ri(1) = 0. Flow i stops
transmission to wait for the queue to be emptied. During this
period, the sending rate Si(1) derived from ACK arrival rate
is ji(0)C, and is recorded for following transmission. The
congested queue drains at the rate C, and needs dÂSi(0)�C

C e
periods to approach 0:

8
<

:

Q(k) = (ÂSi(0)�C)T � (k�1)CT
Ri(k) = ji(0)C
Si(k) = ji(0)C

(3)

Thus, we derive ÂSi(k) = Âji(0)C = Â Si(0)
ÂSi(0)

C = C, in-
dicating that the aggregate sending rate ÂSi(k) converges
to C within one period. After leaving the source halt state,
Ri(k) = Si(k) and flow i starts normal transmission.

(2) ÂSi(0)C: If the initial aggregate sending rate of N
flows is less than or equal to the bottleneck link bandwidth,

Queue
length

!!

"!

0 Time(T)

0
"! 0 #

"! 0 #

[∑&!(0) − #]T
−#Draining rate：

1

(a) ÂSi(0)>C

Queue
length

!!

"!

0 Time(T)

0
"! #0 $

"! #0 $

[∑'!(#0) − $]T

−$

k0 k0+1

(b) ÂSi(0)C

Figure 17: Convergence of ACC

all flows will try to increase the sending rate. Eventually, the
aggregate sending rate of N flows will exceed the bottleneck
bandwidth after k0 periods, then the evolution behavior of
the congested queue and aggregate sending rate of N flows is
consistent with those in the previous case. Figure 17(b) shows
the evolution of bottleneck queue length, Ri and Si.

To sum up, when the aggregate sending rate is larger than
the bottleneck link bandwidth, ACC can converge to the bot-
tleneck link bandwidth within one control period T and elimi-
nate queue accumulation at the fastest speed of the bottleneck
link bandwidth.

Fairness: Assuming that the above convergence process
ends at the beginning of the k1 period, when the switch queue
has been emptied, and the sending rate of the flow i starts to
increase from ji(k0)C. Let r = RI

C , we have
8
<

:

Q(k1) = 0
Si(k1) = (1� r)ji(k0)C+ rC
Ri(k1) = Si(k1)

(4)

We have

ji(k1) =
Si(k1)

ÂSi(k1)
=

(1� r)ji(k0)+ r
1� r+ rN

(5)

146 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Since N > 1, it is obvious that ÂSi(k1) = (1+ rN� r)C >C.
The link is congested, and the flow i will slow down in the
next period and enter the source halt state:

8
<

:

Q(k1 +1) = (rN� r)CT
Si(k1 +1) = ji(k1)C
Ri(k1 +1) = 0

(6)

The switch queue will be drained at a rate of C, during which
the sending rate Si is kept unchanged, we have

8
<

:

Q(k1 +m) = (rN� r�m+1)CT
Si(k1 +m) = ji(k1)C
Ri(k1 +m) = 0

(7)

Let M = drN� r+1e. Finally, at the beginning of the k1 +
M period, the queue length is 0, and the flow i will start to
increase the sending rate again. We have

8
<

:

Q(k1 +M) = 0
Si(k1 +M) = (1� r)ji(k1)C+ rC
Ri(k1 +M) = Si(k1 +M)

(8)

We have

ji(k1 +M) =
Si(k1 +M)

ÂSi(k1 +M)
=

(1� r)ji(k1)+ r
1� r+ rN

(9)

Comparing Equation (5) and Equation (9), it can be seen
that ACC will repeat the process of rate increase for one
period and rate decrease for M�1 periods. At the same time,
according to Equation (5) and Equation (9), we can calculate
ji(k1 + kM) as follows:

ji(k1 + kM) =
(1� r)ji(k1 +(k�1)M)+ r

1� r+ rN

=
1� r

1� r+ rN
ji(k1 +(k�1)M)+

r
1� r+ rN

· · ·

= (
1� r

1� r+ rN
)

k+1
ji(k0)+

k

Â
j=0

(
1� r

1� r+ rN
)

j
(

r
1� r+ rN

)

(10)

When k! •, as 1�r
1�r+rN < 1, so (1�r

1�r+rN)
k+1 approaches

zero. We have:

ji(k1 + kM)!
r

1�r+rN

1� (1�r
1�r+rN)

=
1
N

(11)

Equation (11) indicates that ACC can achieve fair rate alloca-
tion.

(a) Average slowdown

(b) The 99th percentile slowdown

Figure 18: Parameter sensitivity of RI, 80% load (WebSearch)

B. Supplementary of Evaluations

To better understand the parameter sensitivity and link utiliza-
tion performance of ACC, we supplement experiment results
in this section. In §B.1, we present the parameter sensitivity
of RI and Pthresh. After that, we present the simulation results
under typical bursty traffic (§B.2).

B.1 Parameter Sensitivity of RI and Pthresh

Parameter RI: In ACC, the key parameter in the rate increase
process is RI. A larger RI indicates a more aggressive rate
increase. To explore the performance sensitivity of ACC on
RI, we use the same Web Search workload and topology as
in Figure 14(a) but vary RI between 1G and 8G. Figure 18
shows the average FCT slowdown of small, medium, and large
flows. On the whole, a larger RI yields higher throughput
for large flows but may introduce larger FCT for small and
medium flows. Due to the source halt state and ACK arrival
rate guidance in ACC, the sending rate can quickly drop
once the aggressive rate increase induces congestion. As a
result, the average FCT slowdown of small and medium flows
is not sensitive to RI. The overall results indicate that our
recommended value of RI is reasonable.
Parameter Pthresh: In ACC, Pthresh controls the rate regulation
of victim flows. Victim flows will keep its rate until Pthresh
consecutive periods. A smaller Pthresh will enforce the victim
flow to throttle its rate earlier to help mitigate the congestion
spreading. To explore the performance sensitivity of ACC on
Pthresh especially when HoL blocking happen frequently, we
run a challenging workload consisting of foreground traffic

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 147

(a) Average slowdown (b) The 99th percentile slowdown (c) The number of PFC PAUSEs

Figure 19: Parameter sensitivity of Pthresh, 80% load (WebSearch + incast)

(a) N = 10

(b) N = 20

Figure 20: Utilization of link <SW3-SW4>. Bursts start at
time 5ms. Topology is Figure 1(a)..

and background traffic: 60% Web Search workload as the
foreground traffic with 20% load of 64-1 incast workload as
the background traffic. For each incast, 64 randomly selected
senders send 50KB to one receiver. We vary Pthresh from 0
to 3. Note that Pthresh = 0 represents that victim flows will
always reduce half of the sending rate per T .

Figure 19(a) and Figure 19(b) show the average and 99th
percentile FCT slowdown of the foreground WebSearch work-
load. As Pthresh increases, medium flows and large flows have
better FCT slowdown performance. For example, for large
flows, the 99th percentile FCT slowdown with Pthresh = 0 is
1.22⇥ of when Pthresh = 1. For medium and large victim flows,
by keeping the sending rate until Pthresh periods, they lose less
throughput with a larger Pthresh. While the FCT slowdown per-
formance of small flows with size less than 10KB are mainly

determined by queueing delay. As a result, the average and
tail FCT slowdown of small flows are not sensitive to Pthresh.

However, as shown in Figure 19(c), a larger Pthresh may
trigger more PFC PAUSEs at each layer, indicating heavier
HoL blocking and more risks of PFC. This is because with a
large Pthresh, victim flows react very late to congestion spread-
ing, at which HoL blocking already occurs for a long time
and propagations to multiple switches. Indeed, throttling the
rate of victim flows early can aggressively reduce the injected
traffic around the blocked switch ports, thus speeding up the
alleviation of HoL blocking. On the whole, the results indi-
cate that our recommended value of Pthresh (i.e., 1) is proper,
which can balance the FCT performance and alleviation of
HoL blocking.

B.2 Link Utilization
We adopt the same topology and traffic pattern as in Fig-
ure 1(a) to evaluate the link utilization performance especially
under bursty traffic. Note that uncongested flow F0 shares
links with congested flow F1 in SW1⇠SW3. At time 5ms,
concurrent bursts with size of 64KB start. Then the congested
flow F1 should be throttled while uncongested flow F0 should
be unaffected and occupy available bandwidth. We use N = 10
and N = 20 to introduce different degree of burstiness.

As illustrated in Figure 20(a), after time 5ms, both DCQCN
and TIMELY incur low link utilization lasting for around
1.5ms and 6ms, respectively. Figure 20(b) shows that when
N = 20, DCQCN and TIMELY get worse burst tolerance
performance, with around 7ms and 12ms to recover to full
link utilization. Due to step-by-step rate adjustment rules of
DCQCN and TIMELY, they can not eliminate congestion
at SW4 quickly and congestion spreads to upstream SW3,
thus link <SW3-SW4> is blocked. The low link utilization
is also attributed to the uncongested flow F0 being throttled
mistakenly due to misleading queue-based (or delay-based)
congestion signals. ACC incurs not full link utilization lasting
for about 1.5ms (N = 10) and 2ms (N = 20), which is the
time required for uncongested flow F0 to increase the sending
rate. HPCC can ramp up quickly after bursts start but only
maintains a 95% link utilization in steady state.

148 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Autothrottle: A Practical Bi-Level Approach to
Resource Management for SLO-Targeted Microservices

Zibo Wang†§, Pinghe Li¶, Chieh-Jan Mike Liang§, Feng Wu†, Francis Y. Yan§

†University of Science and Technology of China, ¶ETH Zurich, §Microsoft Research

Abstract
Achieving resource efficiency while preserving end-user

experience is non-trivial for cloud application operators.
As cloud applications progressively adopt microservices, re-
source managers are faced with two distinct levels of system
behavior: end-to-end application latency and per-service re-
source usage. Translating between the two levels, however,
is challenging because user requests traverse heterogeneous
services that collectively (but unevenly) contribute to the end-
to-end latency. We present Autothrottle, a bi-level resource
management framework for microservices with latency SLOs
(service-level objectives). It architecturally decouples applica-
tion SLO feedback from service resource control, and bridges
them through the notion of performance targets. Specifically,
an application-wide learning-based controller is employed
to periodically set performance targets—expressed as CPU
throttle ratios—for per-service heuristic controllers to attain.
We evaluate Autothrottle on three microservice applications,
with workload traces from production scenarios. Results show
superior CPU savings, up to 26.21% over the best-performing
baseline and up to 93.84% over all baselines.

1 Introduction

To ensure a seamless end-user experience, many user-facing
latency-sensitive applications impose an SLO (service-level
objective) on the end-to-end latency. Traditionally, cloud ap-
plication operators resort to resource over-provisioning to
avoid SLO violations, yet doing so unnecessarily wastes re-
sources [21, 32]. Previous efforts have demonstrated signif-
icant savings if the excess resources could be harvested or
reclaimed for co-located applications in a multi-tenant envi-
ronment [13, 29, 30, 39, 57, 62].

A key enabler for such resource saving is SLO-targeted re-
source management. Its goal is to continuously minimize the
total resources allocated, while still satisfying the end-to-end
latency SLO. Unfortunately, modern cloud applications can be
beyond current resource managers, due to the progressive shift
from monolithic to distributed architecture [11, 25, 31, 40, 64].
They are a topology of cloud-native services or microser-
vices1, and user requests traverse a chain of execution de-
pendencies among services of logic, databases, and machine
learning (ML) model serving. Notably, this creates distinct
levels of system behavior—the macro perspective reveals the

1In this paper, we use “services” and “microservices” interchangeably.

R
P

S
20

0
20

0
40

0
60

0

Application (“Social-Network”) RPS

La
te

nc
y

(m
s)

0
10

0
30

0 Application (“Social-Network”) P99 latency

C
P

U
 (

co
re

s)
C

P
U

 (
co

re
s)

0
8

16
24 Service (“media-filter-service”) CPU usage

0 360 720 1080 1440 1800 2160 2520 2880 3240 3600

0
1

2

Time (min)

Service (“write-home-timeline-rabbitmq”) CPU usage

Figure 1: Individual microservices (bottom two panels) can
exhibit vastly different resource usage patterns and short-term
fluctuations. In addition, they do not necessarily have a strong
correlation with the end-to-end application-level measure-
ments (top two panels).

end-to-end performance (e.g., user request latencies) and SLO,
and the micro perspective is scoped to local measurements
(e.g., service CPU usage) and resource control.

The distributed nature of microservices brings unique impli-
cations to resource management. First, heterogeneous services
can exhibit vastly different resource usage patterns, due to
how various user requests stress each service. The bottom two
panels in Figure 1 contrast the CPU usage of two services in
an application, Social-Network [22]. Second, application per-
formance and per-service resource usage are measurements at
different levels, without necessarily exhibiting a strong corre-
lation (top two vs. bottom two panels in Figure 1). Translating
between them requires knowing each user request’s actual re-
source requirements and its service-to-service execution flow.
Moreover, this execution chain incurs undesirable delays in
observing effects of allocation changes on the end-to-end
performance, further complicating resource management.

At first glance, it appears that resource managers could
implicitly address the distributed nature by either consider-
ing application-wide dependencies [17, 28, 43, 44, 63] or em-
ploying heuristics with operator-defined rules on individual
services [5]. The former centralizes resource control with a

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 149

global view of the service topology, while the latter delegates
control to each service that acts on locally observed resource
usage. Nevertheless, maintaining a global view is susceptible
to topology changes and evolution [50,64], and relying solely
on local speculations may not achieve global optimality.

Instead, we embrace the distinct levels of distributed sys-
tem behavior, and architecturally decouple mechanisms of
application-level SLO feedback and service-level resource
control. We design Autothrottle, a bi-level learning-assisted
resource management framework for SLO-targeted microser-
vices. The goal is to better use the visibility into application
performance and SLO, to assist services in autonomously ad-
justing their own resource allocations. Autothrottle conveys
this bridging “assistance” through performance targets, which
translate the desired application performance to local proxy
metrics measurable by services. Doing so hides low-level
resource control details from the SLO feedback mechanism.
In this paper, we use CPUs to discuss the framework design—
not only is the CPU harder to manage due to its higher usage
fluctuation over time [13, 22, 40], but it also has an immense
impact on microservice response time [38, 57, 63].

At each microservice, Autothrottle locally runs a light-
weight resource controller called Captain. Captain swiftly
adjusts CPU allocations through OS APIs (e.g., CPU quota in
Linux’s cgroups), to ensure its governed microservice reaches
the given performance target. Autothrottle represents this tar-
get using an unconventional metric—CPU throttles, namely
the number of times a service exhausts its CPU quota in a time
period. Not only are CPU throttles sufficiently cheap to sam-
ple at high frequency to enable Captains’ timely adjustments,
but we also observe that they have higher correlation with
latencies than other proxy metrics such as CPU utilization
(§5.3). These characteristics make CPU throttles an indicative
target to track locally, for maintaining an end-to-end SLO.
At the application level, Autothrottle employs a centralized
SLO feedback controller called Tower. It observes the ap-
plication workload measured by RPS (requests per second)
and learns to determine the most cost-effective performance
targets that maintain the SLO, using a lightweight online al-
gorithm known as contextual bandits [14].

This paper makes the following key contributions:

• We examine unique implications that SLO-targeted mi-
croservices introduce to resource management (§2). Since
there is no strong correlation between the end-to-end appli-
cation performance and per-service resource usage, directly
computing the optimal resource allocations is non-trivial.

• Autothrottle is a bi-level learning-assisted framework (§3),
to embrace distinct levels of distributed system behavior. It
separately designs mechanisms of application-level SLO
feedback and service-level resource control, and introduces
CPU-throttle-based performance targets to bridge them.

• Comprehensive experiments (§5) demonstrate Autothrot-
tle’s superior CPU savings over state-of-the-art heuristics

and ML-based baselines, in three SLO-targeted applica-
tions: Train-Ticket [52], Social-Network [63], and Hotel-
Reservation [22]. Compared with the best-performing base-
line in each application, Autothrottle maintains the SLO for
the 99th percentile latency while saving up to 26.21% CPU
cores for Train-Ticket, up to 25.93% for Social-Network,
and up to 7.34% for Hotel-Reservation, across four real-
world workload patterns. Finally, running Social-Network
over a 21-day period with production workloads from a
global cloud provider, Autothrottle saves up to 35.2 CPU
cores while reducing hourly SLO violations by 13.2×.

2 Background and Motivation

Our goal of SLO-targeted resource management is to mini-
mize the total CPU allocations to microservice-based appli-
cations, while avoiding SLO violations on the user request
latency. Following real-world findings [19], our SLO is an
upper limit on tail latencies, specifically the 99th percentile
(P99) request latencies unless otherwise noted.

2.1 Implications of microservices

Unlike monolithic applications, the distributed nature of mi-
croservices implies that multiple services collectively con-
tribute to the end-to-end latency. This section presents obser-
vations, to motivate its implications on computing per-service
resource allocations from the end-to-end latency SLO.

2.1.1 Service execution dependencies

As user requests traverse services, their end-to-end latency is
a function of per-service performance (and hence resource
usage). Being functionally different, services can consume re-
sources differently. Moreover, service execution dependencies
can introduce complex correlations to this function—not only
are there various patterns such as parallelism, but services can
also exhibit unexpected increases in resource demand.

An illustrative example is backpressure [22]—as an under-
provisioned service undergoes performance degradation dur-
ing request processing, the resource manager can misinter-
pret its idling parent’s longer response time as the culprit.
Simply identifying all parent-child relations does not fully
solve the problem, as backpressure can vary subtly depend-
ing on service implementations. In one case we encountered,
the CPU usage of a waiting parent unexpectedly increased
with the number of requests, which was counterintuitive as
waiting for child services should result in idle CPUs. Fur-
ther investigations revealed that the parent service spawned
a separate thread for each outstanding request (i.e., Thrift’s
TThreadedServer RPC model), leading to excessive thread
maintenance and spurious context switching. An alternative
implementation with non-blocking or asynchronous I/O (e.g.,
Thrift’s TNonBlockingServer) eliminated the problem.

150 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

To grapple with the complexities arising from service de-
pendencies, prior work considers how the end-to-end perfor-
mance directly correlates with application-wide execution
dependencies. However, maintaining an accurate and up-to-
date global view of these dependencies is both challenging
and costly. First, the interdependencies among services are
constantly evolving during development, often with multiple
versions of the same service coexisting [50], requiring fre-
quent updates to the global view. Second, although ML-based
resource management strategies [43, 63] have the potential to
comprehend complex and large-scale service dependencies,
they may entail substantial training and retraining expenses.
Third, fine-grained distributed tracing (beyond the basic mon-
itoring through sampling-based tracing) may be necessary for
resource managers to observe and analyze service dependen-
cies [23, 44], resulting in additional system overheads from
increased instrumentation and telemetry collection.

Observation #1: Maintaining an up-to-date global view
of service dependencies can be impractical.

2.1.2 Delayed end-to-end performance feedback

The chain of service execution dependencies brings about the
delayed effect, i.e., a time delay for the impact of any changes
in resource allocations or workloads to be fully observed in
the end-to-end performance. This prevents resource managers
from immediately responding to misallocations. The delayed
effect is often amplified. One source is service queues—under-
provisioning of resources will cause requests to accumulate
in queues, and thus SLO violations are not detected until all
queued requests are eventually processed or timed out. Even
if resources are scaled at this point, it takes time to flush
queues [22,63]. Another amplification is that SLO is typically
defined on aggregated performance data (e.g., percentiles),
which require a sufficient number of requests to be profiled.

In light of the delayed effect, prior work [63] proposes to
proactively predict the long-term impact of resource changes
on the end-to-end performance. Such performance predictions
are theoretically possible but they usually involve expensive
data collection and model training. On the other hand, prema-
turely deploying ML models can result in a high percentage of
mispredictions. For instance, our efforts to fully train Sinan’s
neural networks [63] for a 28-microservice application took
14+ hours, plus ∼6 hours to collect 20,000 training data points.
Despite reproducing the published prediction accuracy, we
observed that mispredictions can trick resource managers to
overallocate at least 40.75% more CPU cores (§5).

Observation #2: Predicting end-to-end application per-
formance under the delayed effect can be unreliable.

2.2 A practical approach
In light of the observations in §2.1, a more promising ap-
proach for SLO-targeted resource managers is to embrace the

distributed nature of microservices by taking into account of
the distinct levels of system behavior—the macro perspective
reveals the end-to-end performance (e.g., user request laten-
cies) and SLO, whereas the micro perspective is scoped to
local measurements (e.g., service CPU usage) and control.

Naturally, these two levels can map to: (1) application-level
SLO feedback, which compares the end-to-end performance
and SLOs, and (2) service-level resource control, which com-
putes resource allocations based on local measurements. In
fact, if we architecturally decouple these mechanisms, it be-
comes feasible to position them close to their required inputs.
Doing so brings the benefit of fast reaction, which opens up
opportunities for resource managers to relax the requirement
of computing the optimal resource allocations. Rather than
striving to accurately model service dependencies (§2.1.1)
or predict long-term application-wide behavior (§2.1.2), we
can now employ lightweight service-level controllers that
autonomously and swiftly adjust resource allocations, as-
sisted by periodic guidance computed at the application level
through a lightweight online learning approach.

In summary, SLO-targeted resource managers for microser-
vices should incorporate the following design principles.

1. Decouple mechanisms of application-level SLO feedback
and service-level resource control.

2. Rapidly drive per-service resource control with local per-
formance targets and near-term prospects.

3. Achieve practicality through lightweight solutions.

3 The Autothrottle Framework

Following the design principles laid out in §2.2, we present
Autothrottle, a practical and readily deployable resource man-
agement framework for SLO-targeted microservices.

3.1 Overview
Autothrottle is a bi-level learning-assisted framework, consist-
ing of an application-wide global controller and per-service
local controllers. The application-level controller is based on
online learning, periodically assisting local resource control
with its visibility into application workloads, end-to-end la-
tencies, and SLO violations. The service-level controllers, on
the other hand, are heuristic-based, continuously performing
fast and fine-grained CPU scaling using local metrics as well
as the assistance from the global controller.

The “assistance” bridging the two levels is based on the
notion of performance target, a target performance level set
by the application-wide controller for per-service controllers
to attain. Autothrottle implements the performance target
with CPU throttle ratio—the fraction of time a microservice
is stopped by the underlying CPU scheduler. This design is
motivated by the strong correlation between CPU throttles
and service latencies revealed by our correlation test (§5.3).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 151

Maintaining a CPU throttle ratio locally also allows tolerating
a certain range of workload fluctuations (§5.3). When per-
service controllers fail to rein in end-to-end latencies (e.g.,
the workload exceeds the tolerable range), the application-
wide controller issues lower throttle targets to guide local
controllers to allocate more CPUs. Conversely, higher throttle
targets are assigned in the event of CPU over-provisioning.

Acting as a broker, the performance target allows Autothrot-
tle to decouple the mechanisms of application-level SLO
feedback and service-level resource control. Consequently,
we are able to simplify the learning process of the application-
level controller by concealing low-level resource details and
avoiding the overhead of aggregating them, while enabling
per-service controllers to focus on a self-contained in-situ
task—reaching a given performance target using locally avail-
able information. Our bi-level design sets us apart from ap-
proaches that directly infer resource demands with proxy
metrics (e.g., [5]) or machine learning (e.g., [63]).

Figure 2 depicts the architecture of Autothrottle. We re-
fer to the per-service controllers as Captains (§3.2), and the
application-wide controller as the Tower (§3.3).2

Autothrottle Captains. At the local level, each microservice
runs a Captain instance, which periodically receives perfor-
mance targets—CPU throttle ratios—from the Tower and
strives to realize these targets using heuristic control. The
heuristic control algorithm collects statistics on CPU usage
and throttles, and employs two feedback control loops to scale
CPUs up and down, respectively. This lightweight design en-
sures swift and fine-grained CPU autoscaling of the Captain
even amid rapidly fluctuating workloads.

Autothrottle Tower. At the global level, the Tower leverages
contextual bandits [14], a lightweight class of online rein-
forcement learning (RL), to dynamically determine suitable
performance targets that maintain the SLO. It monitors ap-
plication workload (e.g., RPS) and observes CPU allocations
and end-to-end latencies (along with associated SLO viola-
tions) as feedback for its output targets. This online learning
approach is directly applicable to any microservices, elimi-
nating the need for extensive offline profiling or training.

Overall, Autothrottle takes a pragmatic stance and provides
a resource management framework that is readily deployable
across diverse latency-sensitive microservice applications.
Next, we elaborate on Autothrottle from the bottom up, start-
ing off with Captains (§3.2), followed by the Tower (§3.3).

3.2 Per-service controllers—Captains
Each Captain periodically (e.g., every minute) receives a tar-
get CPU throttle ratio from the Tower. Given a throttle target,
Captain focuses on a self-contained, in-situ task—scaling up
and down the CPUs made available to its governed service

2The air traffic control “tower” (application-wide controller) assigns
“routes” (performance targets) to flights, while each “captain” (per-service
controller) follows the assigned route by actually steering the aircraft.

Gateway

Application

Tower (§3.3)

RPS,

latency

SLO

Captain (§3.2)

CPU scheduler

throttle,

usage
quota

CPU allocation performance target

(Tower)

Figure 2: Autothrottle features bi-level resource management:
The application-level learning-based controller (Tower), ob-
serving end-to-end latencies and workloads, periodically sets
performance targets, expressed as CPU throttle ratios, for per-
service heuristic controllers (Captains) to meet.

in order to meet the throttle target upon changing demand.
Algorithms 1 and 2 present the pseudocode of Captain’s main
components, which we describe in detail below.

3.2.1 Resource metrics and knobs

Common CPU schedulers in the OS, such as the Linux CFS
scheduler we use as a running example in this paper, assign
each microservice a CPU quota (e.g., cpu.cfs_quota_us)
to limit and isolate resource usage. To accomplish the task
of maintaining a target CPU throttle ratio, Captain continu-
ously collects two statistics exposed by the OS in each time
window—CPU throttle count and CPU usage.

CPU throttle count. The Linux CFS scheduler maintains
a CPU throttle count for each microservice in the variable
cpu.stat.nr_throttled, which represents the cumulative
number of CFS periods (100 ms by default) during which
the CPU quota has been exhausted. Intuitively, if the CPU
quota is used up early in a CFS period before a request can be
fulfilled, the request will be approximately delayed by the re-
maining period, underscoring the importance of avoiding CPU
throttles when maintaining latency SLOs. Anecdotal evidence
in blog posts [15, 34] corroborates our intuition. To calculate
the CPU throttle ratio over a time window, we divide the in-
crease in the CPU throttle count (cpu.stat.nr_throttled)
by the number of elapsed CFS periods.

CPU usage. The Linux CFS scheduler also reports the total
CPU time consumed by a microservice as cpuacct.usage.
This metric is particularly useful when the CPU is over-
provisioned, as it reveals the actual (lower) CPU demand.
Otherwise, this actual demand would be capped by the allo-
cated CPUs if under-provisioned and thus remain unknown.

3.2.2 Multiplicative scale-up

In every time window of N (N = 10 by default) CFS periods,
each Captain compares the measured CPU throttle ratio at its
microservice with the target ratio. When the measured ratio
exceeds the target, it indicates the CPU is under-provisioned,

152 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1: Captain: scaling up and down
1 /* executes every N periods */
2 throttleCount = throttle count during last N periods;
3 throttleRatio = throttleCount/N;
4 margin = max(0, margin+ throttleRatio− throttleTarget);
5 if throttleRatio > α× throttleTarget then
6 /* multiplicatively scale up */
7 quota = quota× (1+ throttleRatio−α× throttleTarget);
8 else
9 /* instantaneously scale down */

10 history = CPU usage history in the last M periods;
11 proposed = max(history)+margin×stdev(history);
12 if proposed ≤ βmax ×quota then
13 quota = max(βmin ×quota, proposed);
14 end
15 end

Algorithm 2: Captain: rollback mechanism
1 /* executes every period for N periods after each scale-down */
2 lastQuota = CPU quota before scale-down;
3 throttleCount = throttle count since scale-down;
4 throttleRatio = throttleCount/N;
5 if throttleRatio > α× throttleTarget then
6 /* revert to the previous (higher) quota before scale-down
7 with an additional allocation equal to the quota difference */
8 quota = lastQuota+(lastQuota−quota);
9 margin = margin+ throttleRatio− throttleTarget;

10 end

demanding a prompt increase in the CPU quota to prevent
imminent SLO violations at the application level.

To ensure that any desired target can be reached quickly
within several steps, Captain increases the current CPU quota
multiplicatively. We further make the size of the increase
proportional to the difference between the measured CPU
throttle ratio and the target ratio. This represents a form of
proportional control, where a larger difference results in a
larger stride in the CPU quota increase. The rationale is that
when the difference is significant, a queue of requests is likely
to have built up, thus requiring more CPUs to drain.

In practice, we find that the local workload arriving at a
microservice is naturally bursty and irregular—regardless
of the pattern of end-to-end requests—tricking Captains into
spurious scale-ups. Hence, we execute the scale-up only when
the CPU throttle ratio surpasses “α× target ratio” (α ≥ 1),
where α is a customizable weight that controls the sensitivity
to transient load spikes. Correspondingly, the CPU quota
is also multiplied by “1+ throttle ratio−α× target ratio” in
each step. The pseudocode is in Line 5–7 of Algorithm 1.

3.2.3 Instantaneous scale-down

Under frequent CPU throttling, Captain is forced to incremen-
tally probe the actual CPU demand of the service. In contrast,
when the measured throttle ratio is below the target ratio,

the service’s CPU demand has been adequately met. Con-
sequently, historical CPU usage begins to more accurately
reflect the actual (less throttled) CPU demand and help instan-
taneously determine the desired CPU quota.

Motivated by this characteristic of over-provisioning, the
Captain maintains a sliding window of CPU usage over the
most recent M (M = 50 by default) CFS periods, and cal-
culates a new CPU quota based on two statistics from the
sliding window: the maximum and the standard deviation of
CPU usage. Specifically, the proposed quota is “max CPU
usage + margin× standard deviation of CPU usage,” where
margin ≥ 0 is a dynamically tuned parameter that generally
increases when the CPU throttle ratio exceeds the target ratio
and decreases otherwise. To avoid unnecessary fluctuations
in CPU allocation, the proposed quota is put into action only
when it represents a significant-yet-moderate change. The
details are described in Line 9–14 of Algorithm 1.

Our scale-down design draws inspiration from prior
work [45,46], but differs in the carefully maintained parameter
margin that depends on CPU throttles. Intuitively, if the CPU
is recently throttled more often than desired, we should be
more conservative by using a larger margin in the subsequent
scale-down to avoid overreacting to momentary tranquility
amid workload spikes; and vice versa. In summary, historical
CPU usage in the sliding window allows for instantaneous
scale-down, reclaiming extra CPU allocations in a single step.

3.2.4 Rollback mechanism after scaling down

Accidentally scaling up CPUs only leads to resource waste
(and existing cloud applications tend to be over-provisioned);
however, mistakenly scaling down the CPU allocation to any
microservice may cause SLO violations at the application
level. Thus, we introduce a fast rollback mechanism to the
Captain to revert “reckless” scale-downs as follows.

After each scale-down, we continuously check whether it is
“reckless”—if it has caused the CPU throttle ratio to exceed
α× target ratio—during every CFS period within the next N
periods. We note that the triggering condition is the same as
that used for scaling up, but due to the urgency of initiating
a rollback, this check is performed more frequently, without
waiting for the Captain’s regular decision-making interval
(N periods). After a rollback is triggered, the current CPU
quota is restored to the previous (higher) quota used before
the scale-down, plus an additional allocation equal to the
difference between the two quotas. We grant slightly more
CPUs to account for the potential processing delays that may
have occurred since the erroneous scale-down. Details of the
rollback mechanism are presented in Algorithm 2.

3.3 Application-level controller—Tower

In Autothrottle, Tower delegates the in-situ resource control
to per-service Captains and only provides periodic assistance
by dispatching the target CPU throttle ratios for Captains to

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 153

meet. This indirection via throttle targets effectively avoids
the latency overhead associated with distributed tracing and
logging, while retaining Tower’s global perspective on end-
to-end requests and SLO feedback.

We design Tower to compute a new target throttle ratio in-
frequently, e.g., once a minute, leaving ample time for tail re-
quest latencies and average CPU usage to stabilize as the new
target settles in. Importantly, doing so minimizes the influ-
ence of Tower’s previous decisions, simplifying the problem
into a “one-step” decision-making process: Tower only needs
to determine the optimal CPU throttle targets for the current
step, without considering their long-term consequences.

This “one-step” nature motivates us to employ contextual
bandits, a lightweight class of online reinforcement learning
(RL) algorithms. In the taxonomy of RL, contextual bandits
can be viewed as one-step RL and are well suited for real-time
online scenarios in which the algorithm is required to learn
efficiently from a limited amount of sample data.

3.3.1 Primer on contextual bandits

Recent work has modeled resource management with se-
quential decision-making paradigms and seen the applica-
tion of multi-armed bandits [46, 47] and reinforcement learn-
ing [41, 44, 59]. Contextual bandits are intermediate between
multi-armed bandits and the full-fledged RL [54].

Contextual bandits are like multi-armed bandits in that
they are well suited to problems where an action (e.g., CPU
throttle targets) taken at a step (e.g., one-minute interval) does
not have long-term impact beyond that step. They receive
a cost (negative reward) as feedback for the chosen action,
and aim to minimize the cumulative cost (e.g., comprising
CPU allocations and SLO violations). Conversely, contextual
bandits also differ from multi-armed bandits by their ability to
make decisions based on the observation of the system state,
known as the context (e.g., RPS). This context can provide
valuable information that aids in the learning process (§5.3).

In contrast to the full RL, which optimizes a sequence of
future steps, contextual bandits only optimize the current step
owing to their assumption that each chosen action only af-
fects the immediate outcome without long-term consequences.
Moreover, full RL typically demands extensive offline train-
ing before deployment as well as frequent retraining (e.g.,
upon significant changes in microservices), whereas contex-
tual bandits are more lightweight (with simpler models) and
suitable for online learning with considerably fewer samples.

In solving contextual bandit problems, a common approach
is to train a cost-prediction model that estimates the cost of
taking each action within a context. Due to their inherent
partial observability, however, contextual bandits can only
observe the costs of actions they select but not the costs of
others. To enhance their performance and sample efficiency,
a widely adopted improvement is to estimate the costs of un-
used actions via counterfactual estimates [12, 20, 48]. This
approach reduces contextual bandit problems to cost-sensitive

classification [35], which can then be addressed using stan-
dard supervised learning. We adopt this approach and refer
the reader to Bietti et al. [14] for more details.

3.3.2 Realizing contextual bandits in Tower

Next, we describe the contextual bandit algorithm used in
Tower. The algorithm operates with a step size of one minute,
and it aims to learn to output an action that incurs the lowest
cost given the observed context at each step.
Context. Tower selects the average RPS observed in the last
step as the context because the optimal CPU throttle target
depends on the RPS (§5.3). We refrain from predicting the
RPS for the next step due to the inherent difficulty in accu-
rately forecasting RPS; moreover, our Captains have been
intentionally designed to tolerate short-term RPS fluctuations
(§5.3). Other metrics such as CPU usage are not included
in the context as they are merely the byproducts of applying
a throttle target to an RPS, with the RPS serving as the pri-
mary causal factor. The composition of the workload (i.e.,
the distribution of different request types) is relevant, but our
focus in this work remains on constant workload composition
(Appendix A), following the setup in prior work [22, 63].
Action. Given an instantiation of the Captain’s resource
control algorithm, we search for a ladder of CPU throttle
targets as the actions. The search is a one-time process for
all applications. By default, our action space consists of 9
throttle targets, ranging from 0 to 0.3 (§4).
Reduction of action space. A microservice-based applica-
tion can contain 10–1000s of services [11, 25, 31, 40, 64]. In
the case of 9 throttle targets, generating a different CPU throt-
tle target for each individual service would result in 9#services

actions, rendering it infeasible for contextual bandits to learn.
As a solution, Tower clusters microservices into two classes
and outputs an action for each class, effectively reducing the
action space to 92 = 81. To implement the clustering, we use
the standard k-means algorithm [37] to group microservices
based on their average CPU usage. Our empirical results in
§5.3 suggest a diminishing return beyond two clusters.
Cost function. We define the cost received per step as follows.
When the SLO is met after the step, we only use the total CPU
allocation as the cost, since the actual latencies below SLO
matter no more. To this end, Tower requests Captains to send
their actual CPU allocations as feedback every minute, and
then normalizes the total allocation linearly into [0,1]. On
the other hand, when the SLO is violated, we set the cost
to only contain the tail latency, linearly normalized to [2,3]
considering the higher priority of SLO violations. We arrived
at the two normalization ranges above based on their empirical
performance compared with other ranges we tested, but we
do not claim our cost function is the best.
Noise reduction for costs. Our contextual bandit algorithm
learns online and updates its model weights on every (context,
action, cost) tuple, i.e., most recent RPS, two throttle targets,

154 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and the incurred cost. In reality, however, we observe highly
noisy costs that result in confusion and poor performance
of the model, supposedly due to the complex microservice
system and the dynamics in Captains. To address this, we
buffer and group recent samples using (context, action) as the
index after quantizing the RPS. Given a new sample, we use
the median cost of the group it falls into—rather than the cost
computed for that individual sample—to update the model.
Doing so significantly reduces the noise in costs and stabilizes
the online learning process.

Exploration. Similar to multi-armed bandits and RL, contex-
tual bandits rely on exploration to acquire knowledge about
the costs of different actions, e.g., using ε-greedy [35] to
choose a random action with a small probability of ε (the best
action is selected otherwise). Despite a reduced action space,
randomly exploring all 81 actions within a context remains
inefficient as each sample requires one minute to complete;
repeated sampling is further required to calibrate noisy cost
estimates. To ensure efficient exploration without impeding
online learning, we explore only the neighbors of the best
action in the action space. Given a sorted ladder of the avail-
able CPU throttle target , r1 < r2 < .. . < r9, if the best action
consists of (ri, r j), 1 ≤ i, j ≤ 9, then each of its neighbors
(ri, r j−1), (ri, r j+1), (ri−1, r j), (ri+1, r j) is explored next with
an equal probability of ε/4 (subject to boundary conditions).
The rationale is that the throttle target ladder is monotonic,
allowing Tower to move upward or downward one step at a
time without missing the optimal action.

4 Implementation

Our current implementation supports microservice applica-
tions deployed as pods on Kubernetes, but it can be easily
extended to other container orchestration frameworks (e.g.,
OpenShift and Docker Swarm). Autothrottle is open-sourced
at https://github.com/microsoft/autothrottle.

Captain. Each microservice is associated with a Captain
co-located on the same worker node, so we deploy Captains
as processes on worker nodes of the Kubernetes cluster. Cap-
tain implements the following three functionalities. First, it
communicates with the Tower over a TCP socket, exchang-
ing CPU throttle targets and allocations. Second, it collects
CPU throttling and usage statistics from Linux cgroup API
in every CFS period of 100 ms, as the input to the local re-
source controller. Third, it runs the resource controller for
all microservices on the same worker node, and sets their
CPU quotas (cpu.cfs_quota_us) accordingly. As Captain
only comprises lightweight heuristic-based control loops, it
does not require any pre-deployment training.

The pseudocode of Captain is outlined in Algorithms 1
and 2. Our default parameters are N = 10, M = 50, α = 3,
βmax = 0.9, βmin = 0.5. They can be adjusted accordingly. A
larger N or M lowers sensitivity to the noise in CPU usage,

hence slower reaction. α sets the supported range of throttle
ratios to (0, 1/α). A smaller α increases the upper bound but
decreases the tolerance on throttle ratio fluctuations. βmax and
βmin prevent overly small or large allocation changes.

Tower. One instance of Tower runs globally alongside the
application (i.e., in the same cluster), initialized with a user-
specified SLO. It collects average RPS and tail latencies from
the Locust workload generator, but can be extended to hook
up to an application gateway. Furthermore, Tower receives
the actual CPU allocations from Captains after dispatching
CPU throttle targets to them every minute.

Tower leverages the widely used Vowpal Wabbit (VW) li-
brary [10] to implement contextual bandits. For each group
of microservices, the model outputs one of the 9 throttle tar-
gets: 0.00, 0.02, 0.04, 0.06, 0.10, 0.15, 0.20, 0.25, and 0.30.
Designed for efficient online learning, VW offers lightweight
model options such as linear regression or a shallow neural
network with a single hidden layer. We opt for a neural net-
work model with 3 hidden units after performing an ablation
study (§5.3), and train it with a learning rate of 0.5. The dou-
bly robust estimator [20] is employed in the bandits for policy
evaluation to estimate the costs of untaken actions. Moreover,
we disable the native ε-greedy algorithm to implement our
customized exploration strategy (§3.3.2). The specific VW
usage is detailed in Appendix B.

Online training starts with an exploration stage, which al-
lows VW to randomly explore how different CPU throttle
targets would impact application latencies. During this stage,
each randomly chosen action will be executed for 2 minutes.
Only the second minute is used for cost calculation and train-
ing, in order to avoid interference from the previous chosen
action. This exploration stage lasts ∼6 hours, during which
application latencies may exceed the SLO.

After the exploration stage, Tower starts to exploit the best
action, while still exploring neighboring actions with a total
of 10% probability using ε-greedy. Tower runs every minute
to collect last minute’s (context, action, cost) sample. All
recent samples are grouped using (context, action) as the
index with RPS quantized into bins of 20, and each group’s
cost is defined as the median cost of the group. Since training
each unique (context, action) only once is insufficient for
contextual bandits, 10,000 training data points are sampled
from these groups randomly. A contextual bandit model is
then trained on these samples, and predicts the next best action
based on RPS. As a reference, this training-and-prediction
process takes less than one second in our setup.

5 Evaluation

We evaluate Autothrottle’s superior resource saving with three
SLO-targeted microservice applications, against state-of-the-
art heuristic- and ML-based baselines. Major results include:

(1) Over the best-performing baseline in each application,
Autothrottle maintains the given application P99 latency SLO,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 155

https://github.com/microsoft/autothrottle

while achieving a CPU core saving up to 26.21% for Train-
Ticket, up to 25.93% for Social-Network, and up to 7.34% for
Hotel-Reservation. Over all baselines, its savings can be up
to 93.84%, 55.32%, and 83.99%, respectively.

(2) A 21-day study of Social-Network (with real-world
workload trace from a global cloud provider) shows a sav-
ing up to 35.2 CPU cores, over the best-performing baseline.
Meanwhile, it reduces hourly SLO violations from 71 to 5.

(3) Microbenchmarks evaluate Autothrottle’s design and
tolerance to workload fluctuations and load-stressing.

5.1 Methodology

Benchmark applications. We deploy three SLO-targeted mi-
croservice applications: (1) Train-Ticket [52], with 68 distinct
services, (2) Hotel-Reservation from DeathStarBench [22],
with 17 distinct services, and (3) Social-Network used in
Sinan [63], a variant of the Social-Network application from
DeathStarBench, with 28 distinct services including two ML
inference serving services: a CNN-based image classifier and
an SVM-based text classifier. These applications are repre-
sentative of real-world microservices, with stateless services
(e.g., business logic), data services (e.g., key-value stores),
and gateways. Deployments are managed by Docker and Ku-
bernetes. Parent-child service communications are through
popular RPC frameworks such as gRPC and Thrift.

Application SLOs are specified on the hourly P99 la-
tency [19]—1,000 ms for Train-Ticket, 200 ms for Social-
Network, and 100 ms for Hotel-Reservation.

Comparison baselines. Baselines include (1) Kubernetes de-
fault autoscalers [5] (denoted as “K8s-CPU” and “K8s-CPU-
Fast”), and (2) state-of-the-art ML-driven solution, Sinan [63].

K8s-CPU locally maintains each service’s average CPU
utilization, with respect to the user-specified CPU utilization
threshold (e.g., 50%). Every m=15 seconds, it measures ser-
vice’s CPU usage, and computes the optimal allocation by
“CPU usage / CPU utilization threshold.” Then, it sets the CPU
limit to the largest allocation computed in the last s=300 sec-
onds. We also include a faster version called K8s-CPU-Fast,
which has m=1 and s=20. Since Kubernetes relies on users
to properly translate the application SLO to CPU utilization
threshold, we manually try different thresholds to find the
appropriate one for each experiment (Appendix F).

Sinan leverages ML models (e.g., a convolutional neural
network and a boosted tree model) to globally assess each
service’s resource allocation. Starting with the open-sourced
Sinan [8], we follow instructions to train application-specific
models offline for 20+ hours. Since Sinan relies on users to
properly set several hyperparameters, we manually tune for
each application. During experiments, we run Sinan every
second—given historical resource usage and latencies, Sinan
tries to predict the optimal CPU allocation that is unlikely to
violate the SLO over both the short and long terms.

Time (min)

R
P

S

0 12 24 36 48 60

1
0
0

3
0
0

5
0
0

7
0
0

(a) Diurnal

Time (min)

R
P

S

0 12 24 36 48 60

1
0
0

3
0
0

5
0
0

7
0
0

(b) Constant

Time (min)

R
P

S

0 12 24 36 48 60

1
0
0

3
0
0

5
0
0

7
0
0

1
0
0

2
0
0

3
0
0

(c) Noisy

Time (min)

R
P

S

0 12 24 36 48 60

1
0
0

3
0
0

5
0
0

7
0
0

(d) Bursty

Figure 3: Our workload traces capture common patterns of
RPS (requests per second) on an hourly basis. These patterns
have been observed in real-world scenarios: Puffer stream-
ing requests [60], Google cluster usage [58], and Twitter
tweets [9]. We also recorded a full 21-day workload trace
from a global cloud provider for long-term evaluation. We
scale these traces accordingly for each benchmark application
to saturate the cluster (Appendix E).

Experiment setup. We generate workloads with Locust [7],
which is configured to mix application requests (Appendix A)
to stress as many services as possible. Locust replays work-
load traces to reproduce RPS (requests per second). The first
set of traces captures hourly RPS patterns, which are com-
monly observed in production environments: Puffer’s stream-
ing requests [60], Google’s cluster usage [58], and Twitter
tweets [9]. Figure 3 illustrates these patterns: diurnal, con-
stant, noisy, and bursty. We also keep a full 21-day workload
trace from a global cloud provider for long-term evaluation.
Depending on the complexity of benchmark applications, we
scale traces accordingly to saturate the cluster (Appendix E).

Each experiment ends when Locust finishes replaying a
trace. For comparisons, we record the following per-hour mea-
surements: (1) the average number of CPU cores allocated,
and (2) the application end-to-end P99 latency.

Our testbeds consist of a 160-core cluster (over five 32-
core Azure VMs with AMD EPYC 7763 processors) and a
512-core cluster (over six 64-core and four 32-core physical
servers with Intel Xeon Silver 4216 processors).

5.2 Application SLO and resource saving

We evaluate the amount of CPU resources that Autothrottle
saves over baselines, while every algorithm tries to maintain
the hourly SLO over time. To ensure that all baselines can
achieve their best results, we manually identify and tune their
settings prior to experiments (Appendix F).

Table 1 summarizes empirical results on the 160-core clus-
ter, and Autothrottle outperforms baselines in all applications.

156 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Workload Autothrottle K8s-CPU K8s-CPU-Fast Sinan

Diurnal 30.4 58.0 (↓47.59%) 41.2 (↓26.21%) 278.4 (↓89.08%)
Constant 21.7 24.8 (↓12.50%) 27.3 (↓20.51%) 279.9 (↓92.25%)
Noisy 15.5 23.6 (↓34.32%) 17.7 (↓12.43%) 251.8 (↓93.84%)
Bursty 17.7 27.1 (↓34.69%) 21.9 (↓19.18%) 268.3 (↓93.40%)

(a) Train-Ticket application (SLO: 1,000 ms P99 latency)

Workload Autothrottle K8s-CPU K8s-CPU-Fast Sinan

Diurnal 77.5 93.9 (↓17.47%) 115.5 (↓32.90%) 162.7 (↓52.37%)
Constant 88.7 115.6 (↓23.27%) 118.8 (↓25.34%) 149.7 (↓40.75%)
Noisy 57.5 66.5 (↓13.53%) 105.1 (↓45.29%) 105.2 (↓45.34%)
Bursty 50.0 67.5 (↓25.93%) 99.7 (↓49.85%) 111.9 (↓55.32%)

(b) Social-Network application (SLO: 200 ms P99 latency)

Workload Autothrottle K8s-CPU K8s-CPU-Fast Sinan

Diurnal 15.3 15.7 (↓2.55%) 16.5 (↓7.27%) 45.5 (↓66.37%)
Constant 11.2 11.5 (↓2.61%) 11.3 (↓0.88%) 21.2 (↓47.17%)
Noisy 10.8 12.1 (↓10.74%) 11.6 (↓6.90%) 65.9 (↓83.61%)
Bursty 10.1 15.7 (↓35.67%) 10.9 (↓7.34%) 63.1 (↓83.99%)

(c) Hotel-Reservation application (SLO: 100 ms P99 latency)

Table 1: Average number of CPU cores that Autothrottle and
baselines allocate to satisfy the SLO (and thus latencies are
elided). Percentages in parentheses quantify Autothrottle’s
CPU savings over each baseline. The overall best-performing
baseline for each application is highlighted in gray. For K8s-
CPU and K8s-CPU-Fast, we manually search for their optimal
utilization thresholds (to minimize the average CPU alloca-
tion), per application and workload trace (Appendix F).

We make the following observations, with respect to heuristic-
based baselines. First, in Social-Network, Autothrottle saves
up to 25.93% of CPU resources (or 17.5 cores) over K8s-CPU,
and up to 49.85% of CPU resources (or 49.7 cores) over K8s-
CPU-Fast. Delving into empirical results, Figure 4 suggests
that tuning the baselines’ CPU utilization thresholds does
not make them outperform Autothrottle. Taking the diurnal
workload as an example, the figure shows that Autothrottle
is able to maintain the application SLO with the minimum
CPU allocation—Autothrottle achieves a P99 latency of 178
ms with only 77.5 cores, whereas K8s-CPU achieves 177 ms
with 115.5 cores and K8s-CPU-Fast achieves 171 ms with
93.9 cores, at best. When allocating a comparable number of
CPUs (∼80 cores) to Autothrottle, K8s-CPU and K8s-CPU-
Fast would violate the SLO, resulting in latencies of 252 ms
and 418 ms respectively. Second, Autothrottle has a relatively
low resource reduction on Hotel-Reservation. This is due to
the application simplicity where requests traverse an average
of only 3 microservices. A similar observation can be made
for the constant workload trace, where the relatively static
RPS pattern simplifies scaling decisions.

Furthermore, Table 1 shows that Autothrottle outperforms
the ML-enabled baseline, Sinan. Its CPU saving is at least

CPU allocation (cores)

P
99

 la
te

nc
y

(m
s)

SLO

75 90 105 120 135 150 165

15
0

30
0

45
0

Autothrottle
K8s-CPU
K8s-CPU-Fast
Sinan

Figure 4: Application latency vs. CPU allocations, as we
vary the two baselines’ CPU utilization threshold for Social-
Network under the diurnal workload trace. Dashed red line
illustrates the 200 ms SLO. Autothrottle is able to maintain
the SLO with the minimum CPU allocation.

C
P

U
 (

c
o
re

s)
ord

er-m
ongo

tra
ve

l-s
erv

ice

basic
-s

erv
ice

sta
tio

n-s
erv

ice

tic
ke

tin
fo-s

erv
ice

ord
er-s

erv
ice

ro
ute-s

erv
ice

se
at-s

erv
ice

tra
in-s

erv
ice

sta
tio

n-m
ongo

tra
in-m

ongo

co
nfig

-s
erv

ice

ro
ute-m

ongo

tra
ve

l-m
ongo

pric
e-s

erv
ice

0
3

6
9

Average CPU allocation
Average CPU usage

Figure 5: Autothrottle tailors CPU allocations to each mi-
croservice’s resource usage. Figure shows top 15 microser-
vices with the highest CPU usage in Train-Ticket under the
diurnal workload trace.

40.75% (or 61 cores for Social-Network). Deeper investiga-
tions suggest two reasons for this gap. First, while we are able
to achieve the model accuracy published by authors (e.g., train-
ing RMSE of 22.39 and validation RMSE of 22.07, for Social-
Network) after 20+ hours of training, this non-negligible error
can still mislead scaling decisions, especially for non-constant
workloads. Second, in order to reduce training costs, Sinan
learns to make relatively coarse-grained CPU allocation ad-
justments (i.e., ±1 core, ±10% cores, and ±50% cores).

Resource savings from Table 1 are due to Autothrottle’s
ability to tailor CPU allocations across services and over time.
For example, Figure 5 looks at top 15 microservices with the
highest CPU usage, under diurnal workload in Train-Ticket.
We note that CPU allocation is noticeably lower for services
with less CPU usage (e.g., price-service). Under the same
workload, Figure 6 illustrates how Tower updates performance
targets—as the RPS varies over time, Tower selects appropri-
ate throttle targets to adjust CPU allocations and maintain the
P99 latency. Note that per-minute P99 latencies are displayed
in this figure, different from the hourly P99 latencies shown
in the remaining evaluation.

5.3 Microbenchmarks

Correlation of proxy metrics to latencies. Compared with
the prevalent proxy metric for estimating resource demand—

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 157

Time (min)

P
9

9
 la

te
n

cy
 (

m
s)

0 12 24 36 48 60

1
0
0

2
0
0

3
0
0

(a) Application latency
Time (min)

C
P

U
 (

co
re

s)

0 12 24 36 48 60

20
60

10
0

14
0

Allocation
Usage

(b) CPU allocation and usage

Time (min)

T
h

ro
tt

le
 t
a

rg
e
t

0 12 24 36 48 60

0
.0

0
.1

0
.2

0
.3

(c) Throttle target #1
Time (min)

T
h

ro
tt

le
 t
a

rg
e
t

0 12 24 36 48 600
.0

0
0
.0

5
0
.1

0

(d) Throttle target #2

Figure 6: Measurements of Social-Network under diurnal
workload. Figures (a) and (b) show the latency and CPU statis-
tics achieved by Autothrottle. Figures (c) and (d) demonstrate
how Tower adjusts throttle targets in response to time-varying
workload for the two CPU usage groups (Appendix C).

CPU utilization, our use of CPU throttles is motivated by the
higher correlation with application latencies as demonstrated
by Figure 7. For each service in Social-Network, we manually
set its CPU quota (i.e., cpu.cfs_quota_us) to 40 uniformly
distributed values. Then, we measure CPU utilization, CPU
throttle counts, and application P99 latency, at 300 RPS. We
compute the Pearson correlation coefficient for (1) latency vs.
CPU throttles, and (2) latency vs. CPU utilization. Figure 7a
focuses on Social-Network microservices using the most CPU
cores. In all cases, CPU throttles exhibit a higher correlation
than CPU utilization, suggesting a stronger linear relationship.
Figure 7b shows the same conclusion for Hotel-Reservation.

Recall that Captains continuously collect local CPU throt-
tles for resource control (§3.2.2), and Tower distributes CPU-
throttle-based performance targets (§3.3.2). A high correla-
tion suggests that CPU throttling is indicative of the latency
and suitable to track locally in Captain as a target for main-
taining the SLO. The learning process in Tower can also be
simplified given a clear relationship between CPU throttles
and application latencies.

Tolerance to short-term workload fluctuations. Figure 8
shows that Captains can tolerate short-term local workload
fluctuations, even with static throttle targets. The experiment
starts by finding a throttle target for Social-Network’s 200
ms SLO, at 300 RPS. Then, we reuse this target while instru-
menting Locust to fluctuate RPS in a one-minute window for
60 minutes. The fluctuation ranges from 100 (i.e., RPS=250–
350) to 600 (i.e., RPS=1–600). In Figure 8a, boxplots sum-
marize the latency variance of 60 windows. Autothrottle can
keep the application P99 latency under SLO for a fluctua-
tion range up to 300 (i.e., RPS=150–450), or up to 500 (i.e.,

P
e
a

rs
o

n
 c

o
e

ffi
ci

e
n

t

nginx-t
hrif

t

post-
stg

post-
stg

-m
ongo

home-tim
elin

e

use
r-t

im
elin

e

co
m

pose
-p

ost0
.4

0
.6

0
.8

1

(a) Social-Network

P
ea

rs
on

 c
oe

ffi
ci

en
t

profile rate

rese
rva

tio
n

geo
se

arch

fro
ntend

0.
4

0.
6

0.
8

1

Throttles Utilization

(b) Hotel-Reservation

Figure 7: As a proxy metric, CPU throttles exhibit a higher
correlation with application latencies than CPU utilization.
The figure shows top microservices with highest CPU usage.

RPS range

P
9

9
 la

te
n

cy
 (

m
s)

SLO

250–350

200–400

150–450

100–500

50–550

1–600

300

1
0
0

2
0
0

3
0
0

4
0
0

(a) Social-Network
RPS range

P
9

9
 la

te
n

cy
 (

m
s)

SLO

1800–2200

1600–2400

1200–2800

800–3200

400–3600

200–3800

2000

0
1
0
0

2
0
0

(b) Hotel-Reservation

Figure 8: Captain maintains latency SLO under some work-
load fluctuations. Boxplots show latency variances, from
reusing the first blue boxplot’s performance target.

RPS=50–550) if we consider the median value instead. Sim-
ilarly, Figure 8b shows RPS fluctuation tolerance up to 800
(i.e., RPS=1,600–2,400) for Hotel-Reservation.

The tolerance to short-term workload fluctuations stems
from the use of performance targets (vs. exact resource alloca-
tions), which hide service-level resource details from Tower
and enable Captains to autonomously adjust resource allo-
cations. This tolerance is vital as it frees Tower from the
excessive recomputation of performance targets (§3.3.2).

Number of performance targets. Rather than generating
separate performance targets for individual microservices,
Tower clusters microservices into two categories based on
their average CPU usage, reducing the action space to two tar-
gets (§3.3.2). To assess this design, we empirically compare
the performance of 1, 2, 3, and 4 targets, under the constant
workload trace. In each scenario, we manually search for the
best-performing set of throttle targets that satisfy the SLO us-
ing the minimum number of CPU cores. For Social-Network,
Autothrottle allocates 70.8, 55.9, 55.1, and 54.7 cores with 1
to 4 targets, respectively. Hotel-Reservation consistently uses
the largest target (0.3) to meet the SLO on this trace, regard-
less of the number of targets. For Train-Ticket, the allocation
is 18.6, 18.1, and 18.1 cores with 1 to 3 targets (exhaustive
search is infeasible for 4 targets). Overall, these results sug-
gest a diminishing return beyond 2 targets.

Load-stressing to the limit. We stress resource managers, by
pushing Locust’s RPS to the application’s upper limit. This is
the breaking point (before application crashing) when almost

158 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Time (hour)

 C

P
U

 a
llo

ca
tio

n
(c

or
es

)

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408 432 456 480Warm-up

20
60

10
0

14
0

Autothrottle K8s-CPU

(a) CPUs allocated by Autothrottle and the K8s-CPU baseline. Red boxes highlight hours of K8s-CPU’s SLO violations.

Time (hour)

 P

99
 la

te
nc

y
(m

s)

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408 432 456 480Warm-up

10
0

20
0

30
0

Autothrottle K8s-CPU

SLO

(b) Social-Network’s P99 latency, as achieved by Autothrottle and the K8s-CPU baseline. Dashed red line illustrates the 200 ms SLO.

Figure 9: A 21-day study on Social-Network with real-world workload trace from a global cloud provider. Compared with
Autothrottle, the K8s-CPU baseline over-allocates an average of 12.1 and up to 35.2 cores, and triggers 71 hourly SLO violations.

all CPU cores are allocated. To this end, we stress Social-
Network at constant RPS of 600 and 700, on the 160-core
cluster. At 600 RPS, Autothrottle still achieves a CPU core
saving of 27.67% and better SLO—it achieves a P99 latency
of 202 ms with only 98.3 cores, whereas K8s-CPU achieves
216 ms with 135.9 cores and K8s-CPU-Fast achieves 235 ms
with 133.1 cores. Finally, at 700 RPS, Autothrottle achieves a
P99 latency of 452 ms with only 106.8 cores, whereas K8s-
CPU achieves 600 ms with 153.1 cores, and K8s-CPU-Fast
achieves 551 ms with 143.8 cores.

Ablation study for contextual bandits. We investigate two
aspects that can impact Tower’s contextual bandits. The first
is the number of available throttle targets to choose from in
the action space (§3.3.2). For the constant workload trace,
reducing from 9 to 4 throttle targets results in over-allocating
5.6 CPU cores (or 10.03%) for Social-Network, and 0.7 CPU
cores (or 3.49%) for Train-Ticket. The second is the use of
neural networks (§4). Under various workload patterns on
Social-Network, we test a linear model and neural networks
with different numbers of hidden units, but their difference in
CPU allocation is small. None of the tested models violates
the SLO. We include the results in Appendix B.

5.4 Long-term evaluation

We perform a 21-day study with real-world workload trace
from a global cloud provider. Experiments are performed with
Social-Network on the 160-core cluster, and an hourly SLO
of 200 ms is set on P99 latency. We compare Autothrottle

with K8s-CPU, the best-performing baseline from §5.2. We
use day 1 for training and tuning Autothrottle and K8s-CPU.
For the former, we train the Tower’s model. For the latter,
we spend 24 man-hours to manually identify its best CPU
utilization threshold.

Figure 9 illustrates the results over the entire period. Fig-
ure 9a shows the CPU core saving that Autothrottle achieves
every hour, over the K8s-CPU baseline. First, Autothrottle
can save up to 35.2 cores (or an average saving of 12.1 cores)
over K8s-CPU. Second, although there are days when K8s-
CPU allocates fewer CPUs (e.g., an hourly average of −2.77
CPU cores on day 4), these are also the days when K8s-CPU
has a high chance of triggering SLO violations. In total, K8s-
CPU violates the hourly SLO 71 times (highlighted by red
boxes in Figure 9a). On the other hand, Autothrottle reduces
SLO violations to only 5 times—an investigation reveals that
these hours’ workloads appear anomalous (i.e., recorded RPS
jumps between 0 and ∼400) and unforeseen.

Figure 9b shows Social-Network’s P99 latency per hour.
One observation is that Autothrottle is able to continuously
maintain a P99 latency closer to the 200 ms SLO. Since its
P99 latency exhibits a much lower variance over time, this
results in a more stable application performance.

5.5 Large-scale evaluation
We now show Autothrottle’s scalability on the larger 512-core
cluster. It allows us to push RPS beyond the breaking point
of the 160-core cluster (§5.3), up to 1,200 on Social-Network
(the upper limit for comparison baselines). To fully allocate

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 159

Figure 10: Number of CPU cores that Autothrottle and base-
lines allocate, to satisfy Social-Network’s P99 SLO. Figure
shows Autothrottle’s scalability on the larger 512-core cluster.

all cores, we replicate Social-Network’s CPU-intensive mi-
croservices: Nginx (×3) and ML-based image classifier (×6).

Figure 10 shows that Autothrottle is able to allocate fewer
CPU cores while meeting Social-Network’s 200 ms P99 SLO.
Compared to the best-performing baselines, K8s-CPU and
K8s-CPU-fast, Autothrottle saves up to 28.24% (or 150 CPU
cores) and at least 5.92% (or 24 CPU cores). Finally, we note
that K8s-CPU-Fast can have a higher CPU allocation than
K8s-CPU, especially for the noisy workload trace. Since K8s-
CPU-Fast is more sensitive to CPU utilization changes than
K8s-CPU, it can sometimes accidentally scale down and lead
to SLO violations. As a result, conservatively setting K8s-
CPU-Fast results in the trade-off of higher CPU allocation.

6 Related Work

Cloud resource management. Cloud vendors have long
offered services that enable elastic scaling of VMs and their
associated resources according to user-defined rules [1, 3, 4].
In addition to rule-based scaling, researchers have proposed
predictive scaling, which involves forecasting future demand
and adjusting resource allocation in advance of any demand
changes [2, 26, 42, 51]. Despite the cost effectiveness of these
mechanisms in meeting SLOs, they are primarily designed
for VMs (e.g., targeting monolithic applications or relying on
VM-specific techniques such as live migration), and cannot be
directly applied to microservices. Other cluster management
frameworks [18, 27, 49, 55, 56] that schedule jobs to clusters
may be used in conjunction with Autothrottle.

Vertical scaling of microservices. Vertical autoscalers adjust
the resource limits in a fine-grained manner, e.g., milli-cores.
Kubernetes Vertical Pod Autoscaler (VPA) [6] heuristically
adjusts resource limits to maintain a user-specified utilization
threshold. Autopilot [46] focuses on vertical scaling, selecting
resource limits based on moving windows of historical usage
and an ML technique akin to multi-armed bandit. Sinan [63]
trains ML models to infer the likelihood of SLO violations
given a set of proposed CPU limits. FIRM [44] reacts to SLO
violations and pinpoints a microservice as the root cause, us-
ing reinforcement learning to scale up the service. A recent
work [36] (also named “Autothrottle”) adjusts the CPU quota

of containers using closed-loop control to satisfy their individ-
ual network SLOs (e.g., throughput), rather than application
latency SLOs. Autothrottle differs from these approaches with
its bi-level design and the use of CPU throttle targets.
Horizontal and hybrid scaling of microservices. Horizontal
autoscalers operate at a coarse-grained level by adjusting the
number of replicas of a microservice. Kubernetes Horizontal
Pod Autoscaling (HPA) [5] employs a mechanism similar to
VPA at its core, except for choosing the appropriate number
of pods to meet an input utilization threshold. GRAF [43]
leverages graph neural networks to model service dependen-
cies. COLA [47] uses a multi-armed bandit to collectively
determine the number of replicas for each microservice. In
addition, there are hybrid autoscalers that combine vertical
and horizontal scaling and apply them selectively [24, 33].
Autothrottle focuses on vertical scaling due to its fine-grained
and rapid reaction that empowers per-service controllers. As
future work, we plan to explore the integration of horizontal
scaling with Autothrottle.
Proxy metrics for estimating resource demand. In compar-
ison to CPU throttles, alternative service-level proxy metrics
fall short in maintaining end-to-end latency under workload
changes. Kubernetes defaults to CPU utilization [5], but high
CPU usage does not always indicate an issue if requests can
still complete within the SLO [34,47]. Queue length [61], the
number of requests pending at a service, overlooks the com-
plexity of individual requests, while queuing delay [16, 64]
depends on the service’s threading model [53] and may re-
quire manual instrumentation of each service. The scattered
nature of queues across the application, OS, and network,
further complicates precise measurement of queue length or
queuing delay [63]. Regardless, dynamically adapting the
thresholds for these metrics may require an application-level
controller as proposed by Autothrottle.

7 Conclusion

Autothrottle is a bi-level learning-assisted resource manage-
ment framework for SLO-targeted microservices. It decou-
ples mechanisms of SLO feedback and resource control, and
bridges them through CPU-throttle-based performance tar-
gets. Going forward, we are extending to additional resource
types such as memory and storage, and exploring integrations
with additional scaling strategies such as horizontal scaling.

Acknowledgments

We are grateful to Yang Yue and Jiayi Mao for their contri-
butions in the early stage of this work. We thank Neeraja
J. Yadwadkar for shepherding our paper and the anonymous
reviewers for their helpful comments and feedback. We also
thank Haidong Wang, Chuanjie Liu, Qianxi Zhang, Yawen
Wang, Yu Gan, Fan Yang, Mao Yang, Lidong Zhou, and Victor
Bahl for their support or insightful discussions.

160 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] AWS Auto Scaling. https://aws.amazon.com/autoscali
ng/.

[2] AWS Predictive Scaling. https://docs.aws.amazon.com/
autoscaling/ec2/userguide/ec2-auto-scaling-predictiv
e-scaling.html.

[3] Azure Autoscale. https://azure.microsoft.com/en-us/pr
oducts/virtual-machines/autoscale/.

[4] Google Cloud Autoscaler. https://cloud.google.com/c
ompute/docs/autoscaler/.

[5] Kubernetes Autoscaling. https://kubernetes.io/docs/tas
ks/run-application/horizontal-pod-autoscale/.

[6] Kubernetes Vertical Pod Autoscaler. https://github.com
/kubernetes/autoscaler/tree/master/vertical-pod-autos
caler#vertical-pod-autoscaler.

[7] Locust: An Open Source Load Testing Tool. https:
//locust.io.

[8] Sinan Open-sourced Repository. https://github.com/z
yqCSL/sinan-local.

[9] Twitter Data for Academic Research. https://developer.
twitter.com/en/use-cases/do-research/academic-resea
rch/resources. Accessed in 2022.

[10] Vowpal Wabbit. https://vowpalwabbit.org.

[11] Adam Gluck. Introducing Domain-Oriented Microser-
vice Architecture, 2020.

[12] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Lang-
ford, Lihong Li, and Robert Schapire. Taming the mon-
ster: A fast and simple algorithm for contextual ban-
dits. In International Conference on Machine Learning,
pages 1638–1646. PMLR, 2014.

[13] Pradeep Ambati, Inigo Goiri, Felipe Frujeri, Alper Gun,
Ke Wang, Brian Dolan, Brian Corell, Sekhar Pasupuleti,
Thomas Moscibroda, Sameh Elnikety, Marcus Fontoura,
and Ricardo Bianchini. Providing SLOs for Resource-
Harvesting VMs in Cloud Platforms. In OSDI. USENIX,
2020.

[14] Alberto Bietti, Alekh Agarwal, and John Langford. A
contextual bandit bake-off. J. Mach. Learn. Res.,
22:133–1, 2021.

[15] Dave Chiluk. Unthrottled: Fixing CPU Limits in the
Cloud (blog post). https://engineering.indeedblog.com
/blog/2019/12/unthrottled-fixing-cpu-limits-in-the-clo
ud/.

[16] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park, Mo-
hammad Alizadeh, and Adam Belay. Overload Control
for µs-scale RPCs with Breakwater. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 299–314, 2020.

[17] Byungkwon Choi, Jinwoo Park, Chunghan Lee, and
Dongsu Han. pHPA: A Proactive Autoscaling Frame-
work for Microservice Chain. In APNet. ACM, 2021.

[18] Christina Delimitrou, Daniel Sanchez, and Christos
Kozyrakis. Tarcil: Reconciling Scheduling Speed and
Quality in Large Shared Clusters. In SoCC. ACM, 2015.

[19] Jianru Ding, Ruiqi Cao, Indrajeet Saravanan, Nathaniel
Morris, and Christopher Stewart. Characterizing Ser-
vice Level Objectives for Cloud Services: Realities and
Myths. In ICAC. IEEE, 2019.

[20] Miroslav Dudík, John Langford, and Lihong Li. Doubly
robust policy evaluation and learning. arXiv preprint
arXiv:1103.4601, 2011.

[21] David Lo et al. Towards Energy Proportionality for
Large-scale Latency-critical Workloads. In ISCA, 2014.

[22] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. An Open-Source Benchmark
Suite for Microservices and Their Hardware-Software
Implications for Cloud and Edge Systems. In ASPLOS.
ACM, 2019.

[23] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan
He, Meghna Pancholi, and Christina Delimitrou. Seer:
Leveraging Big Data to Navigate the Complexity of
Performance Debugging in Cloud Microservices. In
ASPLOS. ACM, 2019.

[24] Alim Ul Gias, Giuliano Casale, and Murray Woodside.
ATOM: Model-driven Autoscaling for Microservices.
In ICDCS. IEEE, 2019.

[25] Giulio Santoli. Microservices Architectures: Become a
Unicorn like Netflix, Twitter and Hailo, 2016.

[26] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. PRESS:
Predictive Elastic Resource Scaling for Cloud Systems.
In CNSM. IEEE, 2010.

[27] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott
Shenker, and Ion Stoica. Mesos: A Platform for Fine-
Grained Resource Sharing in the Data Center. In NSDI.
USENIX, 2011.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 161

https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-predictive-scaling.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-predictive-scaling.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-predictive-scaling.html
https://azure.microsoft.com/en-us/products/virtual-machines/autoscale/
https://azure.microsoft.com/en-us/products/virtual-machines/autoscale/
https://cloud.google.com/compute/docs/autoscaler/
https://cloud.google.com/compute/docs/autoscaler/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#vertical-pod-autoscaler
https://locust.io
https://locust.io
https://github.com/zyqCSL/sinan-local
https://github.com/zyqCSL/sinan-local
https://developer.twitter.com/en/use-cases/do-research/academic-research/resources
https://developer.twitter.com/en/use-cases/do-research/academic-research/resources
https://developer.twitter.com/en/use-cases/do-research/academic-research/resources
https://vowpalwabbit.org
https://engineering.indeedblog.com/blog/2019/12/unthrottled-fixing-cpu-limits-in-the-cloud/
https://engineering.indeedblog.com/blog/2019/12/unthrottled-fixing-cpu-limits-in-the-cloud/
https://engineering.indeedblog.com/blog/2019/12/unthrottled-fixing-cpu-limits-in-the-cloud/

[28] Xiaofeng Hou, Chao Li, Jiacheng Liu, Lu Zhang,
Shaolei Ren, Jingwen Leng, Quan Chen, and Minyi
Guo. AlphaR: Learning-Powered Resource Manage-
ment for Irregular, Dynamic Microservice Graph. In
IPDPS. IEEE, 2021.

[29] Calin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh
Elnikety, Manoj Syamala, Vivek Narasayya, Herodotos
Herodotou, Paulo Tomita, Alex Chen, Jack Zhang, and
Junhua Wang. PerfIso: Performance isolation for com-
mercial latency-sensitive services. In ATC. USENIX,
2018.

[30] Seyyed Ahmad Javadi, Amoghavarsha Suresh, Muham-
mad Wajahat, and Anshul Gandhi. Scavenger: A Black-
Box Batch Workload Resource Manager for Improving
Utilization in Cloud Environments. In SoCC, 2019.

[31] Jeremy Cloud. Decomposing Twitter: Adventures in
Service Oriented Architecture, 2013.

[32] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,
Shravan Matthur Narayanamurthy, Alexey Tumanov,
Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goirin, Subru
Krishnan, Janardhan Kulkarni, and Sriram Rao. Mor-
pheus: Towards Automated SLOs for Enterprise Clus-
ters. In OSDI, 2016.

[33] Anthony Kwan, Jonathon Wong, Hans-Arno Jacobsen,
and Vinod Muthusamy. HyScale: Hybrid and Network
Scaling of Dockerized Microservices in Cloud Data Cen-
tres. In ICDCS. IEEE, 2019.

[34] Cheuk Lam, Enlin Xu, and David Blinn. Kubernetes
CPU Throttling: The Silent Killer of Response Time —
and What to Do About It (blog post). https://communit
y.ibm.com/community/user/aiops/blogs/dina-henders
on/2022/06/29/kubernetes-cpu-throttling-the-silent-k
iller-of-res.

[35] John Langford and Tong Zhang. The Epoch-Greedy Al-
gorithm for Multi-Armed Bandits with Side Information.
NIPS, 2007.

[36] Kyungwoon Lee, Kwanhoon Lee, Hyunchan Park, Jae-
hyun Hwang, and Chuck Yoo. Autothrottle: Satisfy-
ing Network Performance Requirements for Containers.
IEEE Transactions on Cloud Computing, 2022.

[37] Stuart Lloyd. Least squares quantization in PCM. IEEE
Transactions on Information Theory, 28(2):129–137,
1982.

[38] Wes Lloyd, Shruti Ramesh, Swetha Chinthalapati, Lan
Ly, and Shrideep Pallickara. Serverless Computing:
An Investigation of Factors Influencing Microservice
Performance. In ICCE. IEEE, 2018.

[39] David Lo, Liqun Cheng, Rama Govindaraju,
Parthasarathy Ranganathan, and Christos Kozyrakis.
Heracles: Improving Resource Efficiency at Scale. In
ISCA, 2015.

[40] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye,
Guoyao Xu, Liping Zhang, Yu Ding, Jian He, and
Chengzhong Xu. Characterizing Microservice Depen-
dency and Performance: Alibaba Trace Analysis. In
SoCC. ACM, 2021.

[41] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja
Venkatakrishnan, Zili Meng, and Mohammad Alizadeh.
Learning Scheduling Algorithms for Data Processing
Clusters. In SIGCOMM. ACM, 2019.

[42] Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman
Subbiah, and John Wilkes. AGILE: Elastic distributed
resource scaling for infrastructure-as-a-service. In
10th International Conference on Autonomic Computing
(ICAC 13), pages 69–82, 2013.

[43] Jinwoo Park, Byungkwon Choi, Chunghan Lee, and
Dongsu Han. GRAF: A graph neural network based
proactive resource allocation framework for SLO-
oriented microservices. In Proceedings of the 17th
International Conference on emerging Networking EX-
periments and Technologies, pages 154–167, 2021.

[44] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbig-
niew T. Kalbarczyk, and Ravishankar K. Iyer. FIRM: An
Intelligent Fine-grained Resource Management Frame-
work for SLO-Oriented Microservices. In OSDI. ACM,
2020.

[45] Gourav Rattihalli, Madhusudhan Govindaraju, Hui Lu,
and Devesh Tiwari. Exploring potential for non-
disruptive vertical auto scaling and resource estimation
in Kubernetes. In 2019 IEEE 12th International Con-
ference on Cloud Computing (CLOUD), pages 33–40.
IEEE, 2019.

[46] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski,
Przemyslaw Zych, Przemyslaw Broniek, Jarek Kus-
mierek, Pawel Nowak, Beata Strack, Piotr Witusowski,
Steven Hand, et al. Autopilot: workload autoscaling
at Google. In Proceedings of the Fifteenth European
Conference on Computer Systems, pages 1–16, 2020.

[47] Vighnesh Sachidananda and Anirudh Sivaraman. Col-
lective autoscaling for cloud microservices, 2021.
arXiv:2112.14845.

[48] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh,
Navin Chandak, and Thorsten Joachims. Recommen-
dations as treatments: Debiasing learning and evalua-
tion. In International Conference on Machine Learning,
pages 1670–1679. PMLR, 2016.

162 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://community.ibm.com/community/user/aiops/blogs/dina-henderson/2022/06/29/kubernetes-cpu-throttling-the-silent-killer-of-res
https://community.ibm.com/community/user/aiops/blogs/dina-henderson/2022/06/29/kubernetes-cpu-throttling-the-silent-killer-of-res
https://community.ibm.com/community/user/aiops/blogs/dina-henderson/2022/06/29/kubernetes-cpu-throttling-the-silent-killer-of-res
https://community.ibm.com/community/user/aiops/blogs/dina-henderson/2022/06/29/kubernetes-cpu-throttling-the-silent-killer-of-res

[49] Malte Schwarzkopf, Andy Konwinski, Michael Abd-
El-Malek, and John Wilkes. Omega: flexible, scalable
schedulers for large compute clusters. In Proceedings
of the 8th ACM European Conference on Computer
Systems, pages 351–364, 2013.

[50] Vishwanath Seshagiri, Darby Huye, Lan Liu, Avani
Wildani, and Raja R. Sambasivan. [SoK] identifying
mismatches between microservice testbeds and indus-
trial perceptions of microservices. Journal of Systems
Research, 2(1), 2022.

[51] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and
John Wilkes. CloudScale: elastic resource scaling for
multi-tenant cloud systems. In Proceedings of the 2nd
ACM Symposium on Cloud Computing, pages 1–14,
2011.

[52] Software Engineering Laboratory of Fudan University.
Train Ticket: A Benchmark Microservice System. https:
//github.com/FudanSELab/train-ticket.

[53] Akshitha Sriraman and Thomas F. Wenisch. µTune:
Auto-tuned threading for OLDI microservices. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 177–194, 2018.

[54] Richard S. Sutton and Andrew G. Barto. Reinforcement
learning: An introduction (second edition). MIT press,
2020.

[55] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, et al. Apache Hadoop YARN: Yet Another Re-
source Negotiator. In SoCC, pages 1–16. ACM, 2013.

[56] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In Pro-
ceedings of the Tenth European Conference on Com-
puter Systems, pages 1–17, 2015.

[57] Yawen Wang, Kapil Arya, Marios Kogias, Manohar
Vanga, Aditya Bhandari, Neeraja J. Yadwadkar, Sid-
dhartha Sen, Sameh Elnikety, Christos Kozyrakis, and
Ricardo Bianchini. SmartHarvest: Harvesting Idle CPUs
Safely and Efficiently in the Cloud. In EuroSys. ACM,
2021.

[58] John Wilkes. Google cluster data – 2019 traces. https:
//github.com/google/cluster-data/blob/master/ClusterD
ata2019.md, 2020.

[59] Zhengxu Xia, Yajie Zhou, Francis Y. Yan, and Junchen
Jiang. Genet: Automatic curriculum generation for
learning adaptation in networking. In Proceedings of
the ACM SIGCOMM 2022 Conference, pages 397–413,
2022.

[60] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad
Fouladi, James Hong, Keyi Zhang, Philip Levis, and
Keith Winstein. Learning in situ: a randomized ex-
periment in video streaming. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 495–511, Santa Clara, CA, February
2020. USENIX Association.

[61] Hailong Yang, Quan Chen, Moeiz Riaz, Zhongzhi Luan,
Lingjia Tang, and Jason Mars. PowerChief: Intelligent
Power Allocation for Multi-Stage Applications to Im-
prove Responsiveness on Power Constrained CMP. In
Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture, pages 133–146, 2017.

[62] Yanqi Zhang, Inigo Goiri, Gohar Irfan Chaudhry, Ro-
drigo Fonseca, Sameh Elnikety, Christina Delimitrou,
and Ricardo Bianchini. Faster and Cheaper Serverless
Computing on Harvested Resources. In SOSP. ACM,
2021.

[63] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Ed-
ward Suh, and Christina Delimitrou. Sinan: ML-based
and QoS-Aware Resource Management for Cloud Mi-
croservices. In ASPLOS. ACM, 2021.

[64] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin
She, Sifan Liu, Rui Gu, Beng Chin Ooi, and Junfeng
Yang. Overload Control for Scaling WeChat Microser-
vices. In SoCC. ACM, 2018.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 163

https://github.com/FudanSELab/train-ticket
https://github.com/FudanSELab/train-ticket
https://github.com/google/cluster-data/blob/master/ClusterData2019.md
https://github.com/google/cluster-data/blob/master/ClusterData2019.md
https://github.com/google/cluster-data/blob/master/ClusterData2019.md

Appendices

A Application workload details

We present the workload composition used in our experiments.
Our workload generator, Locust, follows the ratios specified
below when generating requests at a given RPS:

Train-Ticket:
• Mainpage: 29.41%
• Travel: 58.82%
• Assurance: 2.94%

• Food: 2.94%
• Contact: 2.94%
• Preserve: 2.94%

Hotel-Reservation:
• Search: 60%
• Recommend: 39%

• Reserve: 0.5%
• Login: 0.5%

Social-Network:
• Read-home-timeline: 65%
• Read-user-timeline: 15%

• Compose-post: 20%

B Vowpal Wabbit usage

The following VW parameters are used in our experiments.
• The doubly robust estimator [20] is employed for policy

evaluation: –-cb_type dr

• Number of available actions: –-cb_explore 81

• The native ε-greedy is disabled to implement our cus-
tomized exploration strategy (§3.3.2): –-epsilon 0

• Number of hidden units in the neural network: –-nn 3

• Learning rate: -l 0.5

We also compare different VW models—a linear model
and neural networks with 2, 3, 4 and hidden units, on Social-
Network under the same workload patterns (Figure 3). Fig-
ure 11 shows that Autothrottle perform similarly across differ-
ent models. We select the neural network model with 3 hidden
units, as it performs slightly better on the bursty workload (as
indicated by the lower whiskers in boxplots).

C Microservice clustering

Tower clusters microservices into two groups based on their
average CPU usage, denoted “High” and “Low”, using a stan-
dard k-means clustering algorithm (§3.3.2). Table 2 presents
a breakdown of the number of services in each group.

D Microservice replicas

Train-Ticket and Hotel-Reservation deploy each service with
one replica. For Social-Network, we employ three replicas of
media-filter-service except in the large-scale evaluation
(§5.5). In §5.5, 6 replicas of media-filter-service and 3
replicas of nginx-thrift are employed.

C
P

U
 c

o
re

s

linear nn-2 nn-3 nn-4

5
0

7
0

9
0

1
0
0

Figure 11: Different VW models—a linear model and neural
networks with 2, 3, and 4 hidden units—perform similarly on
Social-Network under various workloads (Figure 3).

Application “High” group “Low” group

Train-Ticket 8 60
Hotel-Reservation 6 11
Social-Network (160-core cluster) 1 27
Social-Network (512-core cluster) 2 26

Table 2: Number of services in each application assigned to
the “High” and “Low” CPU usage groups.

E RPS range of workload traces

We scale the traces presented in Figure 3 to saturate the cluster
for each application, as documented in Table 3.

F CPU utilization thresholds in K8s-CPU and
K8s-CPU-Fast

In evaluating K8s-CPU and K8s-CPU-Fast, we test and select
the best-performing CPU utilization threshold from the set
{0.1,0.2, . . . ,0.9}, for each application and each workload
trace. The selected thresholds are presented in Table 4.

G Evaluation methodology details

All experiments are performed using one-hour workload
traces. Prior to testing, certain applications require additional
preparations. We warm up Hotel-Reservation by sending 200
requests per second for 15 seconds and waiting for 60 sec-
onds. For Social-Network, we populate the database with
962 users, 18,812 edges, and 20,000 posts. We then warm up
for 3 minutes by incrementally increasing the RPS by 10%
every 5 seconds, up to the initial RPS in the one-hour trace.
The warm-up phase is excluded from the calculation of P99
latency and resource allocation.

Autothrottle shown in Table 1 is warmed up for 12 hours.
The first 6 hours are the (random) exploration stage, followed
by 6 hours of normal learning with ε=0.5. We use a separate
1-hour diurnal trace, which is different from the one used for
testing but has the same RPS range. Warm up involves running
12 repetitions of this trace. During testing, exploration is
turned off completely (with ε set to 0). For Hotel-Reservation,

164 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Workload Min RPS Average RPS Max RPS

Diurnal 145 262 411
Constant 152 200 252
Noisy 75 157 252
Bursty 62 163 442

(a) Train-Ticket

Workload Min RPS Average RPS Max RPS

Diurnal 1721 2627 4003
Constant 1855 2002 2183
Noisy 793 1575 2470
Bursty 768 1633 4037

(b) Hotel-Reservation

Workload Min RPS Average RPS Max RPS

Diurnal 227 394 656
Constant 390 500 588
Noisy 105 236 390
Bursty 104 245 648
Long-term (§5.4) 1 230 592

(c) Social-Network

Workload Min RPS Average RPS Max RPS

Diurnal 479 787 1214
Constant 882 1001 1131
Noisy 232 472 771
Bursty 205 489 1266

(d) Social-Network, large-scale evaluation (§5.5)

Table 3: The RPS range of workload traces after being scaled
to saturate the cluster for each application.

RPS is grouped into bins of 200 due to its high RPS, while
other applications use the default bin size of 20.

H Captain performance

We demonstrate Captain’s ability to achieve Tower’s given
performance target of CPU throttle ratio (§3.2). This is one
factor that determines Autothrottle’s effectiveness in main-
taining the end-to-end SLO. To this end, Figure 12 dives into
Social-Network and illustrates two services from “High” and
“Low” CPU usage groups (§C): media-filter-service and
post-storage-service. Two subfigures compare the target
throttle ratio and the actual throttle ratio, over a period of 60
min. Captain’s heuristics meets the targets relatively well and
reacts quickly to target changes, especially when the target
is low (Figure 12b). In Figure 12a, we note that the actual
throttle ratio is lower than the target. The reason is that the
throttle ratio is very sensitive to CPU allocation, especially
when the target is high. As a result, Captain tries to err on
the safe side, and it can over-allocate to avoid exceeding the
targeted throttle ratio due to estimation errors.

Workload K8s-CPU K8s-CPU-Fast

Diurnal 0.4 0.6
Constant 0.6 0.6
Noisy 0.5 0.7
Bursty 0.5 0.6

(a) Train-Ticket

Workload K8s-CPU K8s-CPU-Fast

Diurnal 0.7 0.7
Constant 0.7 0.8
Noisy 0.6 0.7
Bursty 0.5 0.7

(b) Hotel-Reservation

Workload K8s-CPU K8s-CPU-Fast

Diurnal 0.5 0.5
Constant 0.5 0.6
Noisy 0.5 0.4
Bursty 0.5 0.4
Long-term (§5.4) 0.5 –

(c) Social-Network

Workload K8s-CPU K8s-CPU-Fast

Diurnal 0.6 0.7
Constant 0.5 0.8
Noisy 0.5 0.5
Bursty 0.5 0.7

(d) Social-Network, large-scale evaluation (§5.5)

Table 4: The best-performing CPU utilization thresholds for
comparison baselines, per application and workload trace.

Time (min)

T
h
ro

tt
le

 r
a
tio

0 10 20 30 40 50 60

0
.0

0
0

.1
5

0
.3

0
0

.4
5

0
.6

0

Target Actual

(a) media-filter-service

Time (min)

T
h
ro

tt
le

 r
a
tio

0 10 20 30 40 50 60

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Target Actual

(b) post-storage-service

Figure 12: Captain is able to follow the given performance
target over time, by adjusting per-service resources.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 165

Jolteon: Unleashing the Promise of Serverless for Serverless Workflows

Zili Zhang Chao Jin Xin Jin

School of Computer Science, Peking University

Abstract
Serverless computing promises automatic resource provision-
ing to relieve the burden of developers. Yet, developers still
have to manually configure resources on current serverless
platforms to satisfy application-level requirements. This is be-
cause cloud applications are orchestrated as serverless work-
flows with multiple stages, exhibiting a complex relationship
between resource configuration and application requirements.

We propose Jolteon, an orchestrator to unleash the promise
of automatic resource provisioning for serverless workflows.
At the core of Jolteon is a stochastic performance model that
combines the benefits of whitebox modeling to capture the ex-
ecution characteristics of serverless computing and blackbox
modeling to accommodate the inherent performance variabil-
ity. We formulate a chance constrained optimization problem
based on the performance model, and exploit sampling and
convexity to find optimal resource configurations that satisfy
user-defined cost or latency bounds. We implement a system
prototype of Jolteon and evaluate it on AWS Lambda with
a variety of serverless workflows. The experimental results
show that Jolteon outperforms the state-of-the-art solution,
Orion, by up to 2.3× on cost and 2.1× on latency.

1 Introduction
Serverless computing [1–6] aims to simplify cloud program-
ming and relieve developers from infrastructure management.
It exposes cloud functions as a key abstraction to developers.
Developers use cloud functions to build cloud applications,
and the serverless computing platform handles underlying
hardware resource management. Serverless computing pro-
vides fine-grained resource elasticity and billing at the granu-
larity of functions.

The potential benefits of serverless computing attract many
applications, such as data analytics [7–9], video process-
ing [10–12], and machine learning [13–15]. Applications are
typically orchestrated as serverless workflows on serverless
computing platforms [16–19]. Specifically, an application is
decomposed into a set of functions, and a serverless workflow
corresponds to a directed acyclic graph (DAG) that organizes
these functions to implement the application logic.

Cloud platforms are expected to satisfy application-level
requirements for cloud applications [20–22]. These require-
ments typically refer to latency and cost bounds. For example,
a developer may expect the end-to-end latency to process a
request for an application (i.e., the corresponding serverless
workflow) to be no larger than 100ms, or the per-request cost

to be no larger than $1. There exists a trade-off between la-
tency and cost. Provisioning more resources results in lower
latency but higher cost, and vice versa. Given a bound on
one metric (e.g., a latency bound), it is desirable to provision
resources to minimize the other metric (e.g., minimize cost).

Serverless computing promises automatic resource provi-
sioning to relieve the burden of developers. Resource provi-
sioning includes two parts, i.e., resource configuration (i.e.,
the function instance size and the number of function in-
stances for each stage for a workflow instance) and resource
scaling (i.e., the number of workflow instances). While cur-
rent serverless platforms provide auto-scaling based on the
realtime load, developers still have to manually configure
resources for workflows to satisfy application-level require-
ments. AWS Lambda provides Power Tuning [23] for devel-
opers to profile the latency-cost curve for a particular function
and optimize the configuration for one function based on the
latency-cost curve. However, Power Tuning does not support
tuning the serverless workflow.

Several recent works have explored resource configura-
tion for serverless workflows [7–9, 24, 25]. Orion [24] uses
a blackbox model to approximate the latency-cost curve for
a workflow, and a heuristic algorithm to search for resource
configurations. The nature of the blackbox approach results
in inaccurate models and the resource configurations found
by the heuristic are sub-optimal. Ditto [9] enables developers
to optimize either latency or cost for a workflow. It only pro-
vides two extremes (minimum latency or minimum cost), and
does not allow developers to explore other trade-offs between
latency and cost. A 7% sacrifice on latency may bring a 1.8×
reduction on cost, which may be more preferable than the
configuration with the minimum latency.

We present Jolteon, a workflow orchestrator that provides
automatic resource configuration to satisfy application-level
requirements for serverless applications. Developers only
need to specify either a latency or cost bound for a work-
flow. Jolteon automatically configures resources to minimize
the execution latency for a cost bound or minimize the cost
for a latency bound. By doing so, Jolteon delivers a serverless
experience for workflow orchestration, and more importantly,
enables developers to navigate the entire latency-cost Pareto
front of the configuration space.

There are two challenges in realizing Jolteon. The first chal-
lenge is to build an accurate performance model to capture
the complex relationship between resource configuration and
application requirements. Existing works [7–9, 24, 25] rely

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 167

Jolteon
Orion [24]

Ditto [9]
Caerus [8]

Locus [7]
Aquatope [25]

Stepconf [26]

CostPre [27]
Power-Tuning [23]

Cose [28]

Analytical performance model? Y N Y Y Y N Y N Y Y

Distribution-aware performance model? Y Y N N N Y N Y N N
Achieving the Pareto front

and guaranteeing the performance bound?
Y N N N N N N N Y Y

Supporting serverless workflow? Y Y Y Y Y Y Y Y N N

Table 1: The design space of Jolteon against existing works of serverless computing.

on either blackbox modeling or whitebox modeling. Black-
box models capture the performance variability of serverless
computing, but lack explainability and ignore the execution
characteristics of serverless workflows. In contrast, white-
box models employ deterministic formulas to represent the
execution characteristics, which is faster and more accurate
on average prediction. However, whitebox models ignore
the inherent variability of serverless computing and fail to
guarantee the performance bound. Jolteon builds a stochastic
performance model. The model uses analytical formulas to
capture the execution characteristics of workflow execution,
which make the model more accurate and efficient (i.e., the
benefit of whitebox modeling). The model uses stochastic
functions to capture the performance variability, which can be
used to bound the performance (i.e., the benefit of blackbox
modeling). This approach leverages the benefits of whitebox
and blackbox models, and avoids their drawbacks.

Given the stochastic performance model, the next challenge
is to find the optimal resource configuration under a latency
or cost bound. As we use random variables to model the exe-
cution variability, the problem is mathematically formulated
as a chance constrained optimization problem, which is a type
of stochastic optimization problem. To solve the problem,
we first convert it to a deterministic formulation via Monte
Carlo sampling and guarantee the performance bound through
a novel inequality. Enumerating all possible configurations
under the deterministic formulation is not practical given the
large search space and the vast number of constraints. We
prove that our formulation is convex. Thus, we leverage the
convexity and use an efficient gradient descent algorithm to
find the optimal resource configuration under the bound.

We implement a system prototype of Jolteon and evaluate it
on AWS Lambda with a variety of serverless workflows. The
experimental results show that Jolteon outperforms Orion [24]
by up to 2.3× on cost and 2.1× on latency. Compared to
Ditto [9] which provides either minimum latency or minimum
cost, Jolteon is able to reduce cost by 1.8× or latency by 3.3×,
with a ≤11% reduction on the other metric. The evaluation
also confirms that Jolteon can satisfy different latency or cost
bounds given by users.

In summary, we make the following contributions.
• We present Jolteon, a workflow orchestrator for serverless

computing that provides automatic resource configuration
to satisfy application-level requirements.

• We propose a stochastic performance model that captures
both the execution characteristics and variability, and a
bound guaranteed sampler to transform the stochastic op-
timization problem. We further prove the convexity of the
problem and apply a gradient descent algorithm to find the
latency-cost Pareto front of the configuration space.

• We implement a Jolteon prototype. The experimental results
show that Jolteon outperforms the state-of-the-art solution,
Orion, by up to 2.3× on cost and 2.1× on latency.

2 Background and Motivation
In this section, we first introduce the background of serverless
computing and application workflows. Then we discuss the
limitations of existing work, which motivate the design of
Jolteon. Finally, we describe the technical challenges to find
the optimal resource configuration that satisfies performance
bounds for serverless workflows.

2.1 Serverless Workflows

Serverless computing simplifies cloud programming for cloud
application developers. It enables developers to create short-
lived, stateless functions triggered by events (e.g., HTTP re-
quest). Serverless platforms are responsible for resource scal-
ing and fault tolerance, allowing developers to concentrate
on application logic without managing cloud resources [5, 6].
Known for its high elasticity and pay-as-you-go billing, server-
less computing meters function run-time at a fine granularity,
one millisecond in major platforms [1–3], and bills users only
for the resources consumed during function execution.

These benefits lead to a shift of traditional serverful appli-
cations to serverless platforms across many fields, including
data analytics [7,8], video processing [10–12], machine learn-
ing [13–15], and vector query processing [29]. A serverless
application is orchestrated into a workflow, represented as a
DAG. Each stage (i.e., node) in the DAG consists of a col-
lection of parallel function instances. The quantity of cloud
resources dedicated to a stage is the product of the number
of function instances and the function size (e.g., the number
of vCPUs). Edges in the DAG denote data dependencies be-
tween consecutive stages. The intermediate data is transmitted
between stages via external storage services, such as S3 [30],

Developers expect that cloud applications are executed to
meet different application-level requirements. For instance,
they typically prioritize latency in online applications and

168 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5 6
Resource (# vCPUs)

1
2
3
4
5

Ti
m

e
(N

or
m

al
iz

ed
)

Transmission Computation

Figure 1: Ditto’s performance model.

focus on cost efficiency for offline applications. A key require-
ment for workflow resource configuration is to minimize one
metric (e.g., minimize cost) while adhering to the limit on
another (e.g., a latency bound). Current serverless platforms
only offer auto-scaling to scale the workflow instances, and
delegate resource configuration (e.g., the function size and the
number of function instances in a workflow stage) to develop-
ers. To meet the application-level requirements, developers
have to understand the resource-to-performance mapping of
serverless workflows. This is cumbersome and error-prone,
as identifying the optimal trade-off between latency and cost
(i.e., Pareto front) is complex and most developers lack exper-
tise in the underlying system characteristics.

2.2 Existing Work and Challenges

In this subsection, we compare Jolteon with existing works
and describe the challenges. Table 1 summarizes the key
differences of Jolteon against other resource management
systems of serverless computing.

Whitebox and analytical performance model. To achieve
automatic resource configuration, an essential prerequisite
is to capture the resource-to-performance relationship with
a comprehensive and accurate performance model. Several
works [7–9] leverage whitebox approaches to deterministi-
cally predict the function execution time with analytical equa-
tions. For instance, Locus [7] observes that the data shuffling
time decreases with the increase in resources. Based on Locus,
Caerus [8] and Ditto further divide the execution into several
fine-grained steps (e.g., transmission and computation). They
build individual equations for each step based on its logic.

As depicted in Figure 1, Ditto’s performance model divides
function execution into transmission and computation steps.
The model recognizes that the transmission time remains con-
stant when the number of vCPUs surpasses one, given that a
single vCPU can fully saturate the network bandwidth. Hence,
it employs a piecewise function, using one vCPU as the bound-
ary, to characterize the relationship between resources and
transmission time. These efforts capture the underlying logic
of serverless computing and achieve fast and accurate predic-
tions of average performance. However, the model neglects
the intrinsic performance variability in serverless computing,
thus failing to guarantee the performance bound.

Blackbox and distribution-aware performance model.
Other works [24, 25, 27] note that real-world serverless plat-
forms suffer from performance variability. This variability

1 2 3 4 5 6
Resource (# vCPUs)

1
2
3
4
5

Ti
m

e
D

is
tri

bu
tio

n
 (N

or
m

al
iz

ed
)

Linear Interpolation

Sample Prediction

Figure 2: Orion’s performance model.

stems from the skew of the input data characteristics, network
traffic, workflow structure, and invocation pattern, etc. To ad-
dress this, these works [24, 25, 27] employ distribution-aware
performance models to capture such performance variabil-
ity. Specifically, they first collect function execution traces
as sampling data, and then fit a blackbox model to cover the
function execution process.

Among these, Orion [24] utilizes a linear interpolation
method. As depicted in Figure 2, the two sampling distribu-
tions are illustrated by probability distribution functions. The
predicted distribution is fitted through linear interpolation.
Aquatope [25] and CostPre [27] rely on Bayesian optimiza-
tion and mixture density networks, respectively. Although
these techniques capture the performance variability, they
overlook underlying serverless computing characteristics, re-
sulting in imprecise predictions and time-consuming blackbox
fitting. The characteristics of serverless computing refer to
the step-by-step breakdown of function execution, i.e., ini-
tialization, transmission, and computation. We can exploit
the characteristics of each step to build a more accurate and
efficient performance model, e.g., the time of transmission
step is influenced by the available network bandwidth. We
will discuss the details in §4.1.
Pareto front and performance bound. Optimizing the cost
or latency for serverless workflows has been explored in prior
work. Caerus [8] and Locus [7] utilize proportional resource
allocation based on input data size. However, for applications
insensitive to data size, these approaches yield sub-optimal
performance. To rectify this, Ditto [9] introduces a bottom-up
DAG traversal algorithm to minimize either cost or latency,
and achieves near-optimal results. Nevertheless, these studies
do not support finding the optimal resource configuration
under specific performance bounds, and their deterministic
models fail to guarantee the performance bound under the
variability of serverless computing.

Orion [24], Stepconf [26] and Aquatope [25] aim to reduce
cost within a pre-defined latency budget. Orion, considered
as the state-of-the-art, leverages a best-first search algorithm
that explores resource configurations and selects the first one
that satisfies the given latency constraint. Similarly, Stepconf
applies heuristic search methods, while Aquatope resorts to
Bayesian techniques. Notably, the search space of the three
systems is limited, and they cannot enumerate all possible
resource configurations. Consequently, they fail to achieve
the Pareto front between latency and cost while guaranteeing
the performance bound.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 169

Supporting serverless workflows. At the function level,
some works such as AWS Lambda Power Tuning [23] and
Cose [28] characterize the deterministic latency-cost curve
for specific functions. They profile the latency-cost curve for a
particular function, and allow users to optimize latency or cost
under a given bound of the other metric. However, a serverless
workflow (i.e., a DAG) is composed of many functions with
varying data dependencies. These works are inadequate for
supporting the optimization of serverless workflows.

Challenges. Our goal is to provide automatic resource config-
uration to meet application-level requirements. Specifically,
the system is expected to configure resources automatically
to minimize the execution latency for a user-specified cost
bound or minimize the cost for a user-specified latency bound.
To achieve this goal, two main challenges must be addressed.

The first challenge is to build a performance model to ac-
curately capture the complex relationship between resource
configurations and application requirements (e.g., latency and
cost). As described above, whitebox models successfully cap-
ture the underlying logic of serverless computing and there-
fore provide fast and accurate predictions of average perfor-
mance. However, their deterministic nature fails to capture the
performance variability. Blackbox models, on the other hand,
concentrate on the performance variability but overlook the
underlying system characteristics, resulting in imprecise pre-
dictions and time-consuming blackbox fitting. It is desirable
to develop a performance model that leverages the benefits of
whitebox and blackbox while mitigating their shortcomings.

The second challenge is to identify the optimal resource
configuration within the given performance bound. With the
performance model including distributional factors, the opti-
mization problem becomes stochastic which cannot be solved
directly. Even if the problem is deterministic, the huge search
space of resource configurations and intricate formulation of
the problem make it hard to find the optimal solution. In short,
the second challenge lies in the formulation of the stochas-
tic optimization problem with performance guarantees and
efficiently solving the problem to find the optimal result.

3 Jolteon Overview
Jolteon is a serverless workflow orchestrator that facilitates
automatic resource configuration to meet application-level
requirements (i.e., latency or cost). It employs a novel stochas-
tic performance model to accurately profile the resource-to-
performance relationship in serverless computing (§4.1). It
formulates the chance constrained optimization problem. It
then converts it into a deterministic problem with Monte-
Carlo sampling and guarantees the performance bound via a
novel inequality (§4.2). It employs a gradient descent algo-
rithm that leverages the problem’s convexity to achieve the
optimal result (§4.3). Figure 3 shows the overview.

User interface. Users define their serverless workflow DAGs
and requirements (latency or cost bounds) as input to Jolteon.

Stage 1

Jolteon Monitor
... More Stages

Jolteon Orchestrator

Convex Optimizer

Performance Bound
User

Loggers

Workflow Management

Result
Serverless Runtime

Performance
Profiler

Bound Guaranteed
Sampler

Figure 3: Jolteon overview.

A workflow DAG includes the functions for each stage and
the data dependencies between the stages. Jolteon assesses the
validity of a DAG (e.g., confirming the absence of cycles) and
deploys the functions to the serverless platform. Jolteon then
processes the invocation requests for the workflow, and exe-
cutes the workflow with the optimal resource configuration.
The results are returned upon the completion of the requests.

Jolteon orchestrator. The orchestrator receives workflow
DAGs and requirements from users, and generates resource
configurations. It contains the following components.

Performance profiler. After a workflow is registered, Jolteon’s
performance profiler periodically polls the data logs of the cor-
responding workflow. It learns and updates the performance
model (§4.1) of each workflow stage, modeled by stochas-
tic functions. The stochastic functions are able to leverage
the advantages of both whitebox and blackbox models while
mitigating their shortcomings. Specifically, the performance
model treats every parameter in the analytical formula as a
random variable and fits it as a distribution.

Bound guaranteed sampler. Jolteon formulates the chance
constrained optimization problem based on the workflow
information and user-specified bound. In the formulation,
resource configurations are regarded as independent variables.
Since chance constrained optimization cannot be solved di-
rectly, this module converts it into a deterministic problem
through Monte-Carlo sampling. More samplings lead to a
higher confidence level, but more complicated formulation
with larger solving time. Jolteon proposes a novel inequal-
ity to decide the minimal sample size that guarantees the
performance bound with a high confidence level (§4.2).

Convex optimizer. After sampling, the chance constrained op-
timization problem is converted into a deterministic opti-
mization problem. Solving such problem with existing algo-
rithms [31] is both time-consuming and sub-optimal. Jolteon
leverages one key insight: the problem is convex. Conse-
quently, Jolteon employs a gradient descent algorithm to effi-
ciently find the optimal resource configuration (§4.3). More-
over, Jolteon prunes the constraints with the support constraint

170 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Symbol Description

di The number of function instances of the ith stage

vi The number of vCPUs of one function in the ith stage

d The array of di of all stages

v The array of vi of all stages

Tj(d,v) The transmission time of the jth function in one stage

C j(d,v) The computation time of the jth function in one stage

LSi(d,v) The latency of the ith stage

CSi(d,v) The cost of the ith stage

LW (d,v) The latency of the entire workflow

CW (d,v) The cost of the entire workflow

Table 2: Key notations in the design.

technique to further reduce formulation complexity. The con-
figuration is then sent to the serverless runtime for execution.

Serverless runtime. The serverless runtime receives the
serverless workflow and the optimal resource configuration
from the orchestrator. It then executes (i.e., through function
invocations) the workflow and records the execution logs. The
logs are used by the profiler to build the performance model.
The execution results are returned to the users.

4 Jolteon Design
In this section, we first describe the stochastic performance
model (§4.1). Then we formulate the chance constrained
optimization problem and introduce the bound guaranteed
sampler (§4.2). Finally, we introduce the convex optimizer
to solve the problem (§4.3). The key notations are listed in
Table 2. Lowercase symbols represent deterministic values
(e.g., x), uppercase symbols represent random variables (e.g.,
X), and bold symbols represent vectors (e.g., x).

4.1 Performance Profiler

Jolteon’s performance profiler collects the function logs to
periodically update the stochastic performance model. In this
subsection, we introduce the details of the stochastic perfor-
mance model which integrates the benefits of both whitebox
and blackbox models while mitigating their drawbacks.

The model first divides each workflow stage (i.e., each node
of the DAG) into functions and phases. A stage consists of
many parallel function instances. The latency of the stage is
the maximum latency of all function instances. Each function
instance is divided into two phases: initialization and execu-
tion. The initialization phase refers to setting up the function
environment while the execution phase is to run the user code.
The phase is further divided into fine-grained steps as follows.

Initialization phase. The initialization phase is to receive the
request and set up the function environment. The first step
involves a network delay and front door execution. The net-
work delay spans from the moment the function is triggered
to when it reaches the API gateway. It is inherently variable,
influenced by the network status. Subsequently, front door
execution includes request authentication, function routing,

70 80 90 100 110 120 130 140
Network Delay + Front Door Time (ms)

1

2

3

D
en

si
ty

 (%
)

Density Histogram

Figure 4: Time distribution of the first step in initialization.

and load balancing. The latency of this process is likewise
unpredictable, shaped by the overall system load. This step is
inevitable and irrelevant to resource configuration. We have
gathered data on the latency from AWS Lambda, where func-
tions are triggered at 30-second intervals via HTTP requests.
We omit the failed invocation requests and only record the
time of requests with a status code of 200. Evidently, this
latency is not stable, as illustrated in Figure 4. We model the
latency with a random variable, denoted by D.

The next step is to set up the function environment. The
serverless platform determines if a corresponding function
instance (e.g., VM or container) is present in the instance
pool. In the absence of such an instance (i.e., cold start), the
platform will allocate a new one, pull the function image,
and initiate the function runtime. Conversely, if an instance
does exist (i.e., warm start), the existing function instance
is reused. The latency is negligible for warm start. Jolteon
profiles cold or warm start according to the specific policy
(e.g., pre-warming or keep-alive) and employs the following
formula to approximate the time of this step, where C is a
random variable of cold start time.

G =

{
0, Warm start
C, Cold start.

Execution phase. In the execution phase, the function in-
cludes two steps: data transmission and computation. Typi-
cally, a workflow stage downloads the data from its preceding
stage, processes the data, and uploads the result to its subse-
quent stage. The allocation of computational resources has a
notable influence on the latency of these two steps. Specifi-
cally, more vCPUs result in higher network bandwidth and
higher computational capacity.

Transmission step. In the data transmission step, data is either
downloaded from or uploaded to external storage. We model
downloading as an example. Relevant factors for this step
include the data size, the available network bandwidth, and
the API overhead. The input data may vary due to the diversity
of data sources and the stochastic nature of data generation.
We model input data size (denoted as S) as a random variable.
The stage comprises d parallel function instances. Let the
available network bandwidth and the number of vCPUs of
a function instance be b and v, respectively. Our goal is to
formulate a model for the transmission time of a function,
based on the given resource configuration, d and v.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 171

1 2 3 4 5 6
Resource (# vCPUs)

1
2
3
4
5

Ti
m

e
D

is
tri

bu
tio

n
(N

or
m

al
iz

ed
)

A Time Distribution

Transmission SF Computation SF

Figure 5: Jolteon’s stochastic performance model.

The data transmission time for a serverless function has two
components: the propagation time and API invocation over-
head. The propagation time is influenced by the data size and
the available network bandwidth. The data of the entire stage
(with size of S) is partitioned into d parts, one for each func-
tion instance. The propagation time of each function instance
is S/(d ×b), where b represents the available bandwidth. b
scales with the number of allocated vCPUs (i.e., v). However,
the bandwidth reaches a saturation point when v is sufficiently
large. Thus, b is approximated by min(v×W,B), where B is
the maximum bandwidth and W is the per-vCPU bandwidth.
The API invocation overhead is independent of resource allo-
cation and denoted by OT . Therefore, the transmission time
for a function instance is summarized as follows:

T (d,v) =
S

d ×min(v×W, B)
+OT . (1)

Computation step. In the computation step, each function han-
dles a data subset of size S/d with v vCPUs. However, the
function logics are diverse. For example, in the frame extrac-
tion stage of video analytics, the function ingests S/d videos
and cycles through each frame with multi-core processing.
The computation time is A× S

dv , where A is the time to process
one video. Conversely, in the map stage of data analytics, the
function sorts the S/d data units. Since the time complexity
of sort is O(x lnx), the time is B× S

dv × ln S
dv , where B is the

time to operate one data unit with one vCPU.
To tackle such complexity, we propose a model that mathe-

matically characterizes the distinct computational logics with
appropriate equations. Specifically, we focus on two typical
function logics: those with polynomial complexity and loga-
rithmic complexity. The execution time of polynomial logic is
represented by ∑

l
i=0 Ai×xi, and the time for logarithmic logic

is lnx× (∑m
i=0 Bi × xi). Here, Ai and Bi are positive random

variables and x is defined as S
dv . For functions without the

relevant logic, the coefficients are set to zero. Consequently,
the computation time of a function instance is expressed as:

C(d,v) =
l

∑
i=0

Ai × (
S
dv

)i + ln
S
dv

×
m

∑
i=0

Bi × (
S
dv

)i. (2)

l and m are decided when fitting the parameters (Ai,Bi) with
historical data. Specifically, Ai is fitted one by one in ascend-
ing order. The fitting process terminates when a specific num-
ber of zero Ai are encountered, and l is the last index i. The

profiler monitors if the function supports multi-processing.
If latency remains the same when v > 1, it is deemed single-
processing. Consequently, the function’s performance model
restricts v’s feasible domain to (0,1]. Another concern is that
Formula 2 is not applicable to function logic with other com-
plexities (e.g., exhaustive search with exponential complexity
rather than polynomial complexity). However, since the fea-
sible domain of v and d is discrete and finite (e.g., v ∈ (0,6]),
other complexities can be approximated by the above poly-
nomial complexity, i.e., Lagrange interpolating polynomial.

Function model to stage model. The aforementioned per-
formance model pertains to an individual function instance.
We must consider the d parallel function instances for a stage.
The latency of the entire stage is the maximum latency of the
d parallel functions. We define the stage latency as LS(d,v):

LS(d,v) = max
{

D j +G j +Tj(d,v)+C j(d,v), j = 1 . . .d
}
.

(3)

Regarding the cost of a stage, current serverless platforms
do not bill users for initialization time. Therefore, the cost
is defined as follows, where α is the cost per second of one
vCPU and β is the cost per invocation.

CS(d,v) =
d

∑
j=1

(
(Tj(d,v)+C j(d,v))× v×α+β

)
. (4)

Stochastic model. The above formulas serve as analytical
(i.e., whitebox) models, and the parameters (e.g., C,W,Ai) are
fitted with historical data. The independent variables d and
v are the resource configuration. As we discussed in §2.2,
treating the parameters (e.g., C,W,Ai) as static values fails to
account for the inherent variability. We instead model these
parameters as random variables, transforming the determinis-
tic functions to stochastic functions. These random variables
are fitted as distributions and marked as uppercase letters. As
shown in Figure 5, when the resource configuration is given,
the stochastic function (SF) outputs a distribution of the pre-
dicted latency rather than a fixed value. Compared to blackbox
models, this stochastic model captures the underlying system
characteristics through the simple yet potent formulas, which
allows higher accuracy and lower fitting overhead. In short,
this stochastic model captures not only the variability but also
the underlying system characteristics, which leverages the
benefits of both whitebox and blackbox models.

4.2 Bound Guaranteed Sampler

Formulation of chance constrained optimization. We first
extend the above stage performance model to the entire work-
flow. In the workflow DAG, the latency of the complete work-
flow is modeled as the maximum latency of paths in the DAG.
One path is a sequence of stages that are connected by edges
and its latency is the sum of all sequential stages’ latency. The
workflow latency, denoted as LW (d,v), is calculated through

172 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 3 4 5 6 7 8
0
1
2
3
4
5
6

D
en

si
ty

 (%
)

2 3 4 5 6 7 8
0

1

2

Theoretical Curve Sampling Points

(a) Sample size = 100. (b) Sample size = 10,000.

Figure 6: Sampling under different sample size.

either addition or maximum on stage latency, LSi(di,vi). Here,
d and v are p-dimensional arrays where di and vi specify the
resource configuration of the i-th stage (p stages in total). As
for the cost of the workflow, denoted as CW , it is the sum of
all stage cost, i.e., CW (d,v) = ∑

p
i=1 CSi(di,vi).

We then mathematically formulate this stochastic problem
as a chance constrained optimization problem. The objective
is to minimize either latency or cost, subject to the constraint
of guaranteeing the performance bound. The problem is for-
mulated as follows (with cost as the objective function):

Minimize CW (d,v).
s.t. Confidence

(
LW (d,v)≤ εl

)
≥ δ. (5)

In this formulation, certain parameters are random variables
and the constraint mandates that the latency bound εl be guar-
anteed with a predetermined confidence level δ. The formula-
tion to minimize latency under a cost bound is similar.

Bound guaranteed sampling. Chance constrained optimiza-
tion, a subfield of stochastic optimization, deals with uncertain
parameters in constraint functions, while ensuring the con-
straints are guaranteed with a high confidence level. Such
problem has been extensively studied in various research
fields [32–34]. However, adapting this method to our specific
problem introduces two challenges.

The first challenge is that the objective and constraint func-
tions contain random variables. Jolteon employs Monte Carlo
sampling to transform the chance constraint into a set of deter-
ministic constraints. As for the objective function, the random
variables are usually regarded as their expectation values in
optimization. Let function G(d,v,X) be the constraint func-
tion in Formula 5, where X is the set of the random variables
defined in §4.1, represented as a random vector. For example,
G(d,v,X) = LW (d,v)− εl if user specifies a latency bound.
Monte Carlo sampling is used to sample n vectors from the
random variables in the constraint functions, e.g., xi is a de-
terministic sample vector of X. This converts the original
stochastic constraint into a series of deterministic constraints:

{G(d,v,xi) ≤ 0, for i = 1...n}. (6)

All random variables are replaced by their corresponding sam-
ple values. The deterministic problem can be solved directly.

The second challenge is to determine the number of sam-
ples to ensure the performance bound with a high confidence

level. Conceivably, the more samples, the higher confidence
the solution has. For example, assume that the random vector,
X, only contains one random variable, X . X conforms to nor-
mal distribution as shown in Figure 6. The figure contrasts
two different sample sizes: Figure 6(a) uses 100 samples,
while Figure 6(b) uses 10,000 samples. More samples yield
a higher confidence. Specifically, the prediction error for the
95% percentile is 13% in Figure 6(a) and only 0.15% in
Figure 6(b). However, a large sample size introduces high
sampling overhead and intricate problem formulation with
large solving time. The two illustrations in Figure 6 exemplify
a single random variable on two specific sample sizes. How-
ever, the actual problem arises with many random variables,
which further complicates the determination of sample size.

Jolteon leverages Hoeffding’s inequality and sample ap-
proximation theory to find the lower bound of sample size n.
This lower bound allows Jolteon to guarantee the performance
bound at confidence level δ while minimizing the sampling
overhead and simplifying the problem formulation. The lower
bound of sample size is as follows:

1
2× (1−percentile)2 log(

|D|
1−δ

). (7)

In this content, D denotes the domain of independent vari-
ables v and d. δ refers to the confidence level. Jolteon sets δ to
99.9% which is large enough for most user cases. percentile
refers to the percentile for the target bound, such as P95 la-
tency bound. The two parameters are both configurable for
developers. The theoretical proof of the lower bound of n to
guarantee the performance bound is given in Appendix A.1.
The proof is based on Hoeffding’s inequality [35] and sample
approximation theory [36, 37].

The definition domain, D, depends on the structure of work-
flow DAG and is a large value due to the large resource con-
figuration space. In real workflow executions, n may reach
up to thousands, according to Formula 7. However, the sub-
sequent convex optimizer reduces such number with pruning
technique and the evaluation (§6.4) shows that solving with
thousands of constraints is still efficient and fast.

4.3 Convex Optimizer

The sampler transforms the chance constrained optimization
problem (Formula 5) into a deterministic problem with a set
of constraints, i.e., random variables become the sampling
values. Thus, we replace the uppercase symbols with low-
ercase symbols. However, solving such problem at runtime
remains a challenge due to the complex constraints and huge
search space. Jolteon leverages an important insight: the op-
timization problem is convex. A convex problem means the
objective function and all constraints are convex functions.
This confers a significant advantage—the local extremum
also serves as the global extremum, enabling rapid, optimal
solutions via established algorithms [31]. We first prove the
convexity of the above deterministic problem.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 173

Resource Config Gradient Descent

Entry Point

Feasible
Domain

Probe

Figure 7: Process diagram of optimization algorithm.

Convexity analysis. According to the definition of convex op-
timization problems [38], we need to prove that CW (d,v) and
LW (d,v) are convex, where (d,v) are independent variables
and all other parameters are constants after sampling.

Since the sum and maximum of convex functions remain
convex, we only need to prove that CSi(di,vi) and LSi(di,vi)
are convex. Formula 3 and 4 further simplify the proof by nar-
rowing the focus on proving T (d,v) and C(d,v) are convex.
We focus on one stage and omit the index i. All variables and
constants are positive due to their real-world meanings.

For the computation step, C(d,v) (i.e., Formula 2), is the
sum of two parts: the polynomial part and the logarithmic part.
Function f (x) = xi is convex and monotonically increasing.
s

dv is convex because its Hessian matrix is positive-definite.
Therefore, the polynomial part is convex due to the convexity
of composite functions. Since s is significantly larger than d×
v due to its real-world meaning (i.e., s

dv > 1), the logarithmic
part is also convex according to its positive-definite Hessian
matrix. Therefore, C(d,v), the sum of two parts, is a convex
function. For the transmission step, T (d,v) (i.e., Formula 1),
is also a convex function due to the convexity of piecewise
maximum functions, where s,w,ot are constants.

The detailed analysis of the convexity of the above sum,
maximum, composite, logarithmic, polynomial, and piecewise
maximum functions is given in Appendix A.2. In summary,
the sampling deterministic problem is convex.

Optimization algorithm. Based the convexity, we propose an
efficient algorithm to optimally solve the problem, as outlined
in Figure 7. Each point in the figure represents one resource
configuration (i.e., d,v). The feasible domain circles out the
points that satisfy the sampling constraints. The first proce-
dure is a gradient descent algorithm. It starts from a random
entry point and takes iterative steps following the gradient
until it approaches a local extremum. The second procedure is
a probe process. Due to the discrete nature of resource config-
urations in the real world, the continuous local extremum may
not be feasible. To address this, the probe process iteratively
examines feasible points surrounding this extremum to find
the final configuration. Given that the problem is convex, the
local extremum is also globally optimal. Thus, the optimiza-
tion algorithm is capable of identifying the optimal solution
under a given performance bound (i.e., Pareto front).

An excessive number of sample constraints complicate the
optimization process and exacerbate the constraints checking
overhead. To mitigate this, we employ a support constraint
technique to prune redundant constraints. This technique iden-

PCA

Test

Merge

Train

Split

Extract

Preprocess

Classify Reduce

Map1

GroupBy

Map2

Join1

Join2

Map3

Map4

ML
Pipeline

Video
Analytics

TPC-DS
Query

Figure 8: DAGs of the serverless workflows in the evaluation.

tifies a minimal subset of {c1,c2, ...,cα} while preserving the
feasible domain. If xi < xj (xi is the parameter vector of ci),
then the feasible domain defined by c j becomes a subset of
that defined by ci. Thus, ci can be pruned. This is valid under
the assumption that all constants and variables are positive
and the inequality sign of constraint is ≤. For example, if c1
is x+ y ≤ 1 and c2 is 2x+2y ≤ 1, the feasible domain of c2
is encompassed by that of c1 when x,y > 0.

The solving time of convex optimizer occupies the majority
of Jolteon’s orchestration time. In particular, the solving time
escalates rapidly with the increasing number of constraints
and complexity of the workflow DAG. In §6.4, we evaluate
the solving time of the optimizer and show that it is efficient
and fast under most use cases. In summary, Jolteon’s convex
optimizer is capable of identifying the Pareto front, and is
efficient with the support constraint pruning technique.

5 Implementation
We implement a system prototype with ∼3,800 lines of code
in Python. Our prototype supports AWS Lambda [1] as the
serverless platform, and uses AWS S3 [30] as the external
storage. Jolteon handles execution failures by re-executing
the serverless workflow. Existing fault tolerance mechanisms
for serverless workflows [39–41] are orthogonal to Jolteon.
The code of Jolteon is open-source and is publicly available
at https://github.com/pkusys/Jolteon.

Performance profiler. The performance profiler periodically
polls the data from the serverless runtime and fits a stochastic
performance model through SciPy [42]. We employ the non-
linear least squares method to fit the parameters. The profiler
updates the expectation value and covariance matrix of each
parameter to characterize the distribution. These distributions
are then used to generate samples by the sampler.

Bound guaranteed sampler. The sampler module generates
a set of sample constraints to transform the original problem
into a deterministic problem. The sample size is determined
through Formula 7. Since the distributional parameters con-
stitute a multivariate distribution, the sampling process is
implemented through joint probability distribution with each
parameter’s expectation value and covariance matrix.

Convex optimizer. After sampling, we employ the SLSQP
(Sequential Least Squares Quadratic Programming) method as
the gradient descent algorithm in Figure 7. This method uses a

174 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/pkusys/Jolteon

20 40 60 80
End-to-end Latency (s)

1.6

1.8

2.0

2.2

C
os

t (
$0

.0
1) Ditto-L

Ditto-C
Caerus

Jolteon
Orion

5 20 40 60 80
End-to-end Latency (s)

0.6

1.2

1.8

2.4

C
os

t (
$0

.0
1) Ditto-L

Ditto-C
Caerus

Jolteon
Orion

10 20 40 60 80
End-to-end Latency (s)

0.5

1.0

1.5

2.0

C
os

t (
$0

.0
1) Ditto-L

Ditto-C
Caerus

Jolteon
Orion

(a) TPC-DS Query. (b) Video Analytics. (c) ML Pipeline.
Figure 9: Overall performance for different serverless workflows.

series of quadratic approximations to find the optimum under
a set of nonlinear constraint functions. Given that it performs
optimally when the objective function and constraints are
convex, it aligns well with the nature of our problem. The
probe procedure is implemented by breadth first search at a
fixed depth to iterate the points around the local extremum.

6 Evaluation
In this section, we evaluate Jolteon from the following as-
pects: (i) overall performance against state-of-the-art solu-
tions (§ 6.1); (ii) performance guarantees provided by Jolteon
(§ 6.2); (iii) effectiveness of the performance model (§ 6.3);
(iv) time analysis for running Jolteon (§ 6.4). We also evalu-
ate the sensitivity of Jolteon to various initial configurations
(i.e., entry points) in Appendix A.3.

Setup. We conduct all experiments on AWS. The Jolteon
orchestrator is deployed on one c5.12xlarge EC2 instance
with 48 vCPUs and 96 GB memory. Jolteon executes the
serverless workflow applications on AWS Lambda [1] and
uses AWS S3 [30] as the external storage.

Workloads. Our experiments use three representative server-
less applications. The workflows of these applications have
different characteristics in terms of the number of stages, data
dependencies, I/O and compute demands. Figure 8 shows the
three workflow DAGs, and the details are as follows.
• ML Pipeline is a machine learning workflow adopted from

Cirrus [13]. It consists of four stages connected as a chain:
dimensionality reduction (PCA), model training, merging,
and testing. Using the LightGBM library [43], the training
stage runs multiple parallel functions to train a set of de-
cision tree models, and the merging stage combines them
into a random forest. Each workflow execution trains on
5K images and tests on 2K images of MNIST dataset [44].

• Video Analytics is adopted from Pocket [45] and is com-
posed of four stages: video splitting, frame extraction, pre-
processing and frame classification. There exists one branch
in the workflow, where some frames are preprocessed and
then classified by a pre-trained YOLO model [46], while the
others are directly dispatched to classification. Each work-
flow execution processes 32 YouTube videos in “Music”
and “News” categories, each with one minute duration.

• TPC-DS Query is a data analytics job (Query 95 in TPC-
DS benchmark [47]). This workflow is composed of eight
stages with complex dependencies. The stages perform

a series of filter, groupby, and join operations. Each
workflow execution processes 10 GB TPC-DS data.

Baselines. We compare Jolteon with the following baselines.
• Caerus [8] is a serverless scheduler that uses a heuristic

proportional resource allocation strategy based on input
data size to optimize latency and cost for a workflow.

• Ditto [9] is a state-of-the-art serverless scheduler that uti-
lizes whitebox modeling to provide either minimum latency
or minimum cost for a workflow execution, which we refer
to as Ditto-L and Ditto-C, respectively.

• Orion [24] is a state-of-the-art serverless scheduler that
employs blackbox modeling on the function instance size
and uses deterministic numbers of parallel functions. It then
uses a heuristic search algorithm with the blackbox model
to minimize cost under varying latency requirements.

Metrics. We use end-to-end latency and cost of the workflow
execution as the main metrics. The latency refers to the time
span from the submission of a workflow request to the receipt
of its execution results by the user. The cost is the expense
for the serverless function execution, which is extracted from
AWS Lambda’s “Billed Duration” log entry. We do not use
throughput, because throughput is determined by the number
of workflow instances, which is controlled by the auto-scaling
mechanism of serverless platforms, and the throughput of a
single instance, which is the reciprocal of latency.

6.1 Overall Performance

We first compare the overall performance of Jolteon against
the baselines. For systems that can meet varying performance
requirements (i.e., Jolteon and Orion), we set different la-
tency and cost bounds to obtain the latency-cost curve. For
those that do not explore the latency-cost curve (i.e., Ditto and
Caerus), we measure the best performance they can achieve.
We run the workflows under each resource configuration sev-
eral times and report the average latency and cost. The results
are shown in Figure 9, which we summarize as follows.
• Jolteon outperforms Caerus in both latency and cost. Specif-

ically, Jolteon achieves 1.75× lower latency and 1.33×
lower cost than Caerus for Video Analytics. This is because
the performance model of Caerus only considers the in-
put data size rather than the inherent logic of a serverless
function. As a result, it fails to capture the performance ac-
curately and thus the resource configuration is sub-optimal.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 175

30 40 50 60 70 80
Latency Bound (s)

0

20

40

60

80

95
-ti

le
La

te
nc

y
(s

)

Ideal
Jolteon

20 40 60 80 100 120
Latency Bound (s)

0
20
40
60
80

100

95
-ti

le
La

te
nc

y
(s

)

Ideal
Jolteon

20 40 60 80 100 120
Latency Bound (s)

0
20
40
60
80

100

95
-ti

le
La

te
nc

y
(s

)

Ideal
Jolteon

(a) TPC-DS Query. (b) Video Analytics. (c) ML Pipeline.
Figure 10: Latency guarantee of Jolteon.

1.8 2.0 2.2 2.4
Cost Bound ($0.01)

1.6

1.8

2.0

2.2

2.4

95
-ti

le
 C

os
t (

$0
.0

1)

Ideal
Jolteon

1.0 1.5 2.0 2.5
Cost Bound ($0.01)

0.5

1.0

1.5

2.0

2.5

95
-ti

le
 C

os
t (

$0
.0

1)

Ideal
Jolteon

1 2 3
Cost Bound ($0.01)

0.5

1.0

1.5

2.0

2.5

95
-ti

le
 C

os
t (

$0
.0

1)

Ideal
Jolteon

(a) TPC-DS Query. (b) Video Analytics. (c) ML Pipeline.
Figure 11: Cost guarantee of Jolteon.

• Ditto-L and Ditto-C achieve minimum latency and cost,
respectively. However, Ditto does not support the trade-
off on the Pareto-optimal latency-cost curve. In serverless
workflow execution, a small sacrifice on one metric (e.g., la-
tency) may bring a significant reduction on the other metric
(e.g., cost). Compared to Ditto, Jolteon is able to trade-off
between latency and cost. With only 7% sacrifice on la-
tency, Jolteon reduces the cost by up to 1.77× compared
with Ditto-L. And an 11% increase on cost enables Jolteon
to reduce the latency by 2.44–3.25× against Ditto-C.

• Orion approximates the latency-cost curve and is able to
meet varying performance requirements. But it uses heuris-
tic search that returns as soon as one configuration meets the
performance requirement and only adjusts function sizes.
This approach significantly narrows the algorithm’s search
space and is far from the Pareto-optimal. Compared to
Orion, Jolteon achieves 1.45–2.07× on latency with the
same cost, and 1.04–2.3× on cost with the same latency.

6.2 Performance Guarantees

This set of experiments evaluates the effectiveness of Jolteon
to provide performance guarantees. We set the percentile of
the target performance requirement to 95%.

Latency guarantee. To evaluate the latency guarantee of
Jolteon, we set different latency bounds and measure the la-
tency. Figure 10 shows the actual 95% latency and the ideal
latency for the three workflows. The measured actual 95% la-
tency is consistently less than and close to the ideal line, which
demonstrates the capability of Jolteon to provide latency guar-
antee. When we increase the latency bound, the actual 95%
latency monotonically increases, indicating that Jolteon can
adapt to varying latency bounds. The actual latency does not
increase when the bound is loose (e.g., >80 seconds for Video
Analytics in Figure 10(b)), since the resource configuration
hits the floor to enable the execution.

Cost guarantee. We also evaluate the cost guarantee of
Jolteon by setting different cost bounds. Figure 11 shows
the actual and ideal 95% cost for the three workflows. Similar
to the latency guarantee, Jolteon is able to provide bounded
cost for all workflows. When the cost bound is relatively loose
(e.g., >$0.02 per run in Figure 11(b)), the actual cost is nearly
unchanged. This is because the optimization objective is la-
tency. Increasing resources does not further reduce latency. In
such cases, Jolteon avoids unnecessary allocation of resources.

6.3 Effectiveness of the Performance Model

To evaluate the performance model, we conduct step-level,
stage-level, and workflow-level experiments.

Step-level effectiveness. We first evaluate the performance
model for the critical execution steps in the workflow. The
critical steps have the longest execution time and the highest
cost in the workflow. Figure 12 shows the actual execution
time and the predicted time distributions against the total
number of vCPUs. The total number of vCPUs is defined
as the product of the number of function instances and the
number of vCPUs allocated to each function for the step.

The three workflows exhibit different characteristics. TPC-
DS Query is an I/O-intensive workflow, where the critical
step is to read the data from S3. Since S3 offers a steady
bandwidth for reading [7], the execution time of the step under
the same vCPU allocation remains stable in Figure 12(a), and
can be precisely predicted by the performance mode with
less than 1% error. Video Analytics and ML Pipeline are
compute-intensive, where the critical steps are computation
steps in video splitting and model training stages, respectively.
These steps have more variable execution time due to the
performance variability of serverless computing, as shown in
Figure 12(b) and Figure 12(c). The stochastic performance
model predicts the execution time distributions that cover
most of the actual execution time.

176 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 25 50 75
#vCPUs

0

10

20

30

40

E
xe

cu
tio

n
Ti

m
e

(s
)

Actual Time
Predicted Max Time
Predicted Mean Time
Predicted Min Time

0 50 100 150
#vCPUs

0

20

40

60

80

E
xe

cu
tio

n
Ti

m
e

(s
)

Actual Time
Predicted Max Time
Predicted Mean Time
Predicted Min Time

0 50 100 150
#vCPUs

0

20

40

60

80

E
xe

cu
tio

n
Ti

m
e

(s
)

Actual Time
Predicted Max Time
Predicted Mean Time
Predicted Min Time

(a) TPC-DS Query, map1, read. (b) Video Analytics, splitting, compute. (c) ML Pipeline, training, compute.
Figure 12: Effectiveness of the performance model for critical execution steps.

Video Splitting Stage

Resource Config: (d,v) P50 P95

Large: (16, 4) -6.07% 0.29%

Medium: (8, 2) 6.87% 5.47%

Small: (4, 1) -5.80% -4.50%

MAPE 6.25% 3.42%

Table 3: Errors of Jolteon for stage execution time prediction.

Resource Config #Funcs (d) #vCPUs/Func (v) #vCPUs in Total

Config 0 (32, 16, 8, 8) (2.5, 4, 2.5, 2.5) 184

Config 1 (32, 16, 16, 16) (2, 1.5, 1.5, 2) 144

Config 2 (16, 32, 8, 16) (2, 1.5, 1.5, 1.5) 116

Config 3 (16, 16, 16, 8) (1, 1.5, 1.5, 1.5) 76

Config 4 (8, 16, 4, 4) (1.5, 1, 1, 1) 36

Config 5 (4, 8, 4, 4) (1.5, 1.5, 1.5, 1.5) 30

Table 4: Six resource configurations to run Video Analytics.

Stage-level effectiveness. Then we use large, medium, and
small amounts of resources to examine the effectiveness of
the stage-level performance model. Table 3 lists the predic-
tion errors for the video splitting stage (i.e., the critical stage)
in Video Analytics. d represents the number of function in-
stances, and v represents the number of vCPUs per function.
The error range is [-6.07%, 6.87%]. The mean absolute per-
centage error (MAPE) is 6.25% for P50 and 3.42% for P95
time prediction, indicating that Jolteon is accurate and is able
to capture the performance variability for the stage.

Workflow-level effectiveness. Finally, we evaluate Jolteon’s
errors in predicting the end-to-end latency distributions for
the entire workflow, and compare it with Orion’s blackbox
and Ditto’s whitebox models. We vary the resource configura-
tions with different number of function instances (i.e., d) and
different number of vCPUs per function (i.e., v). The total
number of vCPUs is the dot product of vector d and v. The
detailed configurations are shown in Table 4. As shown in
Table 5 for Video Analytics, Jolteon has an error range in
[-7.59%, 9.29%] for P50 and P95 latency prediction, with a
MAPE under 4%. The two baselines perform much worse.
Orion experiences a MAPE exceeding 30% for both P50 and
P95 latency predictions since its linear interpolation is inac-
curate under large configuration space. Ditto has a MAPE of
33.98% for P50 and 28.00% for P95 latency predictions due
to its inability to accommodate performance variability in its
analytical model.

Video Analytics

Resource

Config

#vCPUs

in Total

Jolteon Orion Ditto

P50 P95 P50 P95 P50 P95

Config 0 184 0.88% -7.58% 20.00% 14.62% 51.75% 40.91%

Config 1 144 3.23% -1.21% 34.38% 36.03% 51.71% 40.89%

Config 2 116 9.29% 5.26% 32.86% 30.20% 75.71% 61.84%

Config 3 76 4.21% 2.56% 52.63% 57.52% 10.88% 8.03%

Config 4 36 3.46% -1.54% 43.53% 44.28% 9.39% 16.31%

Config 5 30 -2.19% -1.38% 12.23% 20.12% -4.46% -0.02%

MAPE 3.88% 3.26% 32.62% 33.80% 33.98% 28.00%

Table 5: Errors for end-to-end latency prediction of different models.

6.4 Time analysis for Jolteon
Performance model training time. We evaluate the offline
time to train the performance model. For each workflow,
Jolteon collects tens of execution profiles with different re-
source configurations. Then, it uses non-linear least squares
to fit the distributions of the random variables (parameters)
in the performance model. Table 6 reports the training time
for the three workflows. The training time is less than 70
milliseconds, which is negligible compared to the end-to-end
latency of tens of seconds.
Solving time. We measure the time of Jolteon’s gradient
descent algorithm in the convex optimizer. We vary the sam-
ple size from 10 to 10,000. Figure 13 shows the results. In
the case of latency bound, the algorithm finishes under 0.5
seconds when sample size is less than 5,000. When a cost
bound is specified, the algorithm finishes within 0.05 seconds.
The higher solving time under a latency bound is due to the
specifics of our implementation. With SLSQP as the algorithm,
constraint functions are smooth and differentiable. The pres-
ence of the max operator in the latency constraint violates
this condition. To address this, we replace the single latency
constraint for the entire workflow with individual latency con-
straints for each DAG path. It eliminates the use of the max
operator but increases the number of constraints.

More complex workflows result in longer solving time.
Among the three workflows, TPC-DS Query has the most
stages and complicated data dependencies (e.g., eight stages).
Our experiment on TPC-DS Query involves 4048 sampling
constraints. As Figure 13(a) shows, Jolteon can solve the
problem within 0.5 seconds. According to the characteriza-
tion on Azure Durable Functions [24], 95% of the serverless
workflows have fewer than eight stages, which indicates that
Jolteon provides sub-second solving time for most use cases.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 177

Training Time

TPC-DS Query 0.065 s

Video Analytics 0.016 s

ML Pipeline 0.014 s

Table 6: Training time for the performance model.

7 Discussion
Memory in serverless computing. Besides vCPU, the mem-
ory size of a serverless function also impacts its performance.
In AWS Lambda, the memory size of a function is propor-
tional to the configured vCPU. Therefore, the Jolteon proto-
type, which is on top of AWS Lambda, leverages this prop-
erty and uses the vCPU as the main influence factor. Recent
work [48] decouples the memory size from the vCPU in the
resource configuration of a serverless function. In such cases,
Jolteon chooses the memory size greater than the peak mem-
ory usage for the function and adjusts the number of vCPUs
to meet different application requirements.

Auto-scaling. Resource provisioning includes two parts: re-
source configuration and resource scaling. Resource scaling
(e.g., auto-scaling) is used to scale the workflow instances to
meet the realtime execution load. It is orthogonal to resource
configuration and is not the focus of Jolteon’s design.

Limitations of Jolteon’s performance model. One limita-
tion is that the IO model does not reflect intricate IO patterns.
For example, the serverless function may issue a SQL query
to an external database. The IO time is determined by the
SQL query’s logic rather than the returned data size. Another
limitation is that the performance model does not consider
pipelining in serverless workflows. The upload of the up-
stream function and the download of the downstream func-
tion can be pipelined to reduce latency. Jolteon’s performance
model can be extended to capture these complex scenarios.

8 Related Work
Characteristics of serverless computing. Different from
other cloud computing paradigms, serverless computing
exhibits unique performance characteristics. Serverless-
Wild [49] and Orion [24] analyze the performance of server-
less functions in Azure Functions [2], and emphasize the
performance variability and the impact of cold starts. FaaS-
Cache [50] categorizes a serverless function’s lifespan into
initialization and execution phases. Caerus [8] and Ditto [9]
view the function execution as fine-grained transmission and
computation steps. Jolteon integrates the above insights and
introduces a novel stochastic performance model to capture
the characteristics of serverless computing.

Resource configuration for serverless computing. Resource
configuration is critical to satisfy application-level require-
ments in cloud computing [20, 22, 51–53] and even more
important in serverless computing due to its fine-grained re-
source allocation [7, 8]. Existing works either use whitebox

10 100 1000 5000 10000
Samples

10
−2

10
−1

10
0

S
ol

vi
ng

 T
im

e
(s

)

TPC-DS Query
Video Analytics
ML Pipeline

10 100 1000 5000 10000
Samples

10
−3

10
−2

10
−1

S
ol

vi
ng

 T
im

e
(s

)

TPC-DS Query
Video Analytics
ML Pipeline

(a) Latency bound. (b) Cost bound.
Figure 13: Solving time of Jolteon.

models [7–9, 23, 26, 28] or blackbox models [24, 25, 27] to
predict the performance of serverless functions and perform
optimization. Jolteon leverages the advantages of both white-
box and blackbox models while mitigating their drawbacks
in the performance model.

Serverless workflow orchestration. Many cloud providers
identify the necessity for serverless workflow orchestration
to facilitate the development of complex cloud applications.
Centralized workflow orchestrators, such as AWS Step Func-
tions [16], Google Workflows [19], and Azure Durable Func-
tions and Logic Apps [17,18], are adopted by major serverless
platforms. Recent works [54–56] propose decentralized work-
flow orchestrators to improve scalability and reduce network
latency. Jolteon can be integrated with them to provide auto-
matic resource configuration.

Serverless workflow execution. Some works [39–41, 57]
focus on the fault tolerance of serverless workflows to guar-
antee the exactly-once semantics. Jolteon can be integrated
with them by capturing the overhead of logging in the perfor-
mance model. Some works [9, 58, 59] exploit shared memory
to reduce data transmission time by co-locating two adjacent
stags in serverless workflows. Jolteon uses S3 as the external
storage and its performance model is also applicable to data
transmission through shared memory.

9 Conclusion
We present Jolteon, a serverless workflow orchestrator
that facilitates automatic resource configuration to satisfy
application-level requirements for serverless applications.
Jolteon employs a novel stochastic performance model to
capture both the execution characteristics and variability, a
bound guaranteed sampler to transform the stochastic prob-
lem and an efficient convex optimizer to find Pareto-optimal
configurations. We evaluate Jolteon with a variety of server-
less workflows. The experimental results show that Jolteon
outperforms the state-of-the-art solution by up to 2.3× on
cost and 2.1× on latency.

Acknowledgments. We sincerely thank our shepherd Rodrigo
Bruno and the anonymous reviewers for their valuable feed-
back on this paper. This work was supported by the National
Key Research and Development Program of China under the
grant number 2022YFB4500700. Xin Jin is the corresponding
author. Zili Zhang, Chao Jin and Xin Jin are also with the
Key Laboratory of High Confidence Software Technologies
(Peking University), Ministry of Education.

178 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] “AWS Lambda.” https://aws.amazon.com/

lambda/.

[2] “Azure Functions.” https://azure.microsoft.com/
products/functions/.

[3] “Google Cloud Functions.” https://cloud.google.
com/functions/.

[4] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski,
“The rise of serverless computing,” Communications of
the ACM, 2019.

[5] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai,
A. Khandelwal, Q. Pu, V. Shankar, J. Carreira, K. Krauth,
N. J. Yadwadkar, J. E. Gonzalez, R. A. Popa, I. Stoica,
and D. A. Patterson, “Cloud programming simplified: A
berkeley view on serverless computing,” Technical Re-
port UCB/EECS-2019-3, EECS Department, University
of California, Berkeley, 2019.

[6] J. Schleier-Smith, V. Sreekanti, A. Khandelwal, J. Car-
reira, N. J. Yadwadkar, R. A. Popa, J. E. Gonzalez, I. Sto-
ica, and D. A. Patterson, “What serverless computing is
and should become: The next phase of cloud computing,”
Communications of the ACM, 2021.

[7] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast
and slow: Scalable analytics on serverless infrastructure,”
in USENIX NSDI, 2019.

[8] H. Zhang, Y. Tang, A. Khandelwal, J. Chen, and I. Stoica,
“Caerus: Nimble task scheduling for serverless analyt-
ics.,” in USENIX NSDI, 2021.

[9] C. Jin, Z. Zhang, X. Xiang, S. Zou, G. Huang, X. Liu,
and X. Jin, “Ditto: Efficient serverless analytics with
elastic parallelism,” in ACM SIGCOMM, 2023.

[10] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubra-
maniam, W. Zeng, R. Bhalerao, A. Sivaraman, G. Porter,
and K. Winstein, “Encoding, fast and slow: Low-Latency
video processing using thousands of tiny threads,” in
USENIX NSDI, 2017.

[11] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li,
“Lavea: Latency-aware video analytics on edge comput-
ing platform,” in Proceedings of the Second ACM/IEEE
Symposium on Edge Computing, 2017.

[12] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter,
“Sprocket: A serverless video processing framework,”
in ACM Symposium on Cloud Computing, 2018.

[13] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and
R. Katz, “Cirrus: A serverless framework for end-to-end
ml workflows,” in ACM Symposium on Cloud Comput-
ing, 2019.

[14] H. Wang, D. Niu, and B. Li, “Distributed machine learn-
ing with a serverless architecture,” in IEEE INFOCOM,
2019.

[15] C. Zhang, M. Yu, W. Wang, and F. Yan, “Mark: Exploit-
ing cloud services for cost-effective, slo-aware machine
learning inference serving,” in USENIX ATC, 2019.

[16] “AWS Step Functions.” https://aws.amazon.com/
step-functions/.

[17] “Azure Logic Apps.” https://azure.microsoft.
com/products/logic-apps/.

[18] “Azure Durable Functions.” https://learn.
microsoft.com/azure/azure-functions/
durable/.

[19] “Google Workflows.” https://cloud.google.com/
workflows.

[20] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman,
M. Yu, and M. Zhang, “Cherrypick: Adaptively un-
earthing the best cloud configurations for big data ana-
lytics,” in USENIX NSDI, 2017.

[21] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych,
P. Broniek, J. Kusmierek, P. Nowak, B. Strack, P. Witu-
sowski, S. Hand, et al., “Autopilot: workload autoscaling
at google,” in EuroSys, 2020.

[22] R. Bhardwaj, K. Kandasamy, A. Biswal, W. Guo,
B. Hindman, J. Gonzalez, M. Jordan, and I. Stoica,
“Cilantro: Performance-aware resource allocation for
general objectives via online feedback,” in USENIX
OSDI, 2023.

[23] “AWS Lambda Power Tuning.” https://github.
com/alexcasalboni/aws-lambda-power-tuning.

[24] A. Mahgoub, E. B. Yi, K. Shankar, S. Elnikety,
S. Chaterji, and S. Bagchi, “Orion and the three rights:
Sizing, bundling, and prewarming for serverless dags,”
in USENIX OSDI, 2022.

[25] Z. Zhou, Y. Zhang, and C. Delimitrou, “Aquatope: Qos-
and-uncertainty-aware resource management for multi-
stage serverless workflows,” in ACM ASPLOS, 2023.

[26] Z. Wen, Y. Wang, and F. Liu, “Stepconf: Slo-aware dy-
namic resource configuration for serverless function
workflows,” in IEEE INFOCOM, 2022.

[27] S. Eismann, J. Grohmann, E. Van Eyk, N. Herbst, and
S. Kounev, “Predicting the costs of serverless work-
flows,” in Proceedings of the ACM/SPEC international
conference on performance engineering, 2020.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 179

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/products/functions/
https://azure.microsoft.com/products/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://azure.microsoft.com/products/logic-apps/
https://azure.microsoft.com/products/logic-apps/
https://learn.microsoft.com/azure/azure-functions/durable/
https://learn.microsoft.com/azure/azure-functions/durable/
https://learn.microsoft.com/azure/azure-functions/durable/
https://cloud.google.com/workflows
https://cloud.google.com/workflows
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://github.com/alexcasalboni/aws-lambda-power-tuning

[28] N. Akhtar, A. Raza, V. Ishakian, and I. Matta, “Cose:
Configuring serverless functions using statistical learn-
ing,” in IEEE INFOCOM, 2020.

[29] “AWS Serverless Vector Engine.” https:
//aws.amazon.com/opensearch-service/
serverless-vector-engine/.

[30] “Amazon simple storage service (S3).” https://aws.
amazon.com/s3/.

[31] S. Ruder, “An overview of gradient descent optimization
algorithms,” arXiv preprint arXiv:1609.04747, 2016.

[32] M. A. Lejeune and A. Ruszczyński, “An efficient tra-
jectory method for probabilistic production-inventory-
distribution problems,” Operations Research, 2007.

[33] M. C. Campi and S. Garatti, “A sampling-and-discarding
approach to chance-constrained optimization: feasibil-
ity and optimality,” Journal of optimization theory and
applications, 2011.

[34] A. K. Takyi and B. J. Lence, “Surface water quality man-
agement using a multiple-realization chance constraint
method,” Water Resources Research, 1999.

[35] W. Hoeffding, “Probability inequalities for sums of
bounded random variables,” The collected works of
Wassily Hoeffding, 1994.

[36] J. Luedtke and S. Ahmed, “A sample approximation
approach for optimization with probabilistic constraints,”
SIAM Journal on Optimization, 2008.

[37] M. C. Campi and S. Garatti, “The exact feasibility of
randomized solutions of uncertain convex programs,”
SIAM Journal on Optimization, 2008.

[38] S. P. Boyd and L. Vandenberghe, Convex optimization.
2004.

[39] H. Zhang, A. Cardoza, P. B. Chen, S. Angel, and V. Liu,
“Fault-tolerant and transactional stateful serverless work-
flows,” in USENIX OSDI, 2020.

[40] Z. Jia and E. Witchel, “Boki: Stateful serverless com-
puting with shared logs,” in ACM SOSP, 2021.

[41] S. Zhuang, S. Wang, E. Liang, Y. Cheng, and I. Stoica,
“Exoflow: A universal workflow system for exactly-once
dags,” in USENIX OSDI, 2023.

[42] “Scipy.” https://scipy.org/.

[43] “LightGBM Python Library.” https://lightgbm.
readthedocs.io/en/latest/Python-Intro.html.

[44] L. Deng, “The mnist database of handwritten digit im-
ages for machine learning research [best of the web],”
IEEE Signal Processing Magazine, 2012.

[45] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle,
and C. Kozyrakis, “Pocket: Elastic ephemeral storage
for serverless analytics,” in USENIX OSDI, 2018.

[46] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,
“You only look once: Unified, real-time object detection,”
in IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[47] “TPC-DS.” https://www.tpc.org/tpcds/.

[48] M. Bilal, M. Canini, R. Fonseca, and R. Rodrigues,
“With great freedom comes great opportunity: Rethink-
ing resource allocation for serverless functions,” in Eu-
roSys, 2023.

[49] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum,
J. Cooke, E. Laureano, C. Tresness, M. Russinovich, and
R. Bianchini, “Serverless in the wild: Characterizing
and optimizing the serverless workload at a large cloud
provider,” in USENIX ATC, 2020.

[50] A. Fuerst and P. Sharma, “Faascache: keeping serverless
computing alive with greedy-dual caching,” in ACM
ASPLOS, 2021.

[51] S. Chen, C. Delimitrou, and J. F. Martínez, “Parties:
Qos-aware resource partitioning for multiple interactive
services,” in ACM ASPLOS, 2019.

[52] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and
R. K. Iyer, “Firm: An intelligent fine-grained resource
management framework for {SLO-Oriented} microser-
vices,” in USENIX OSDI, 2020.

[53] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delim-
itrou, “Sinan: Ml-based and qos-aware resource man-
agement for cloud microservices,” in ACM ASPLOS,
2021.

[54] D. H. Liu, A. Levy, S. Noghabi, and S. Burckhardt, “Do-
ing more with less: Orchestrating serverless applications
without an orchestrator,” in USENIX NSDI, 2023.

[55] M. Yu, T. Cao, W. Wang, and R. Chen, “Following the
data, not the function: Rethinking function orchestration
in serverless computing,” in USENIX NSDI, 2023.

[56] Z. Li, Y. Liu, L. Guo, Q. Chen, J. Cheng, W. Zheng, and
M. Guo, “Faasflow: Enable efficient workflow execution
for function-as-a-service,” in ACM ASPLOS, 2022.

[57] S. Qi, X. Liu, and X. Jin, “Halfmoon: Log-optimal fault-
tolerant stateful serverless computing,” in ACM SOSP,
2023.

180 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://aws.amazon.com/opensearch-service/serverless-vector-engine/
https://aws.amazon.com/opensearch-service/serverless-vector-engine/
https://aws.amazon.com/opensearch-service/serverless-vector-engine/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://scipy.org/
https://lightgbm.readthedocs.io/en/latest/Python-Intro.html
https://lightgbm.readthedocs.io/en/latest/Python-Intro.html
https://www.tpc.org/tpcds/

[58] S. Shillaker and P. Pietzuch, “Faasm: Lightweight iso-
lation for efficient stateful serverless computing,” in
USENIX ATC, 2020.

[59] S. Qi, L. Monis, Z. Zeng, I.-c. Wang, and K. Ramakr-
ishnan, “Spright: extracting the server from serverless
computing! high-performance ebpf-based event-driven,
shared-memory processing,” in ACM SIGCOMM, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 181

A Appendix
A.1 Lower bound of sample size

Theorem A.1 One of the lower bounds of the sample size, n,
to guarantee the performance bound under confidence level
δ, (0 < δ < 1) is:

1
2× (1−percentile)2 log(

|D|
1−δ

)

Proof . Let Pr be the probability function, i.e., the percentile
function of a random variable, D be the definition domain and
FD be the feasible domain of (d,v). FD (i.e., the ideal feasible
domain) is constrained by Confidence

(
Pr{G(d,v,xi) ≤ 0}≥

percentile
)
≥ δ with percentile as Pr function, while FD′ (i.e.,

the sampling feasible domain) is constrained by n samples
{G(d,v,xi) ≤ 0, for i = 1...n}.

For simplicity, percentile is replaced by p. With
the percentile of performance metric (i.e., p), we have:
Pr{G(d,v,xi) ≤ 0} ≥ p if (d,v)∈ FD and Pr{G(d,v,xi) ≤
0} < p if (d,v) /∈ FD. We define the random variable Zi
by Zi = 1 if G(d,v,xi) ≤ 0 and Zi = 0 otherwise. Now, we
consider the probability of ∃(d,v) ∈ FD′ but (d,v) /∈ FD
(denoted by pro).

pro = Pr{
n

∑
i=1

Zi ≥ n and E(Zi)< p}

≤ Pr{
(n

∑
i=1

Zi −E(
n

∑
i=1

Zi)
)
≥ n−np}

According to Hoeffding’s inequality (0 ≤ Zi ≤ 1), we have:

pro ≤ e−2n(1−p)2

Since there may be |D| points in this domain, one of the
upper bounds of 1− δ (i.e., the probability of violating the
confidence level) is:

1−δ < 1− (1− pro)|D| < |D|× e−2n(1−p)2

Therefore, one of the lower bounds of sample size n is
1

2×(1−p)2 log(|D|
1−δ

).

A.2 Convexity Analysis

Lemma A.1 Given two convex functions f (x) and g(x),
h(x) = f (x)+g(x) is also a convex function, x ∈ D .

Proof . Functions f (x) and g(x) are convex, which satisfy the
following inequality:

f (λx1 +(1−λ)x2)≤ λ f (x1)+(1−λ) f (x2)

g(λx1 +(1−λ)x2)≤ λg(x1)+(1−λ)g(x2)

Here, λ is an arbitrary value in [0,1] and x1,x2 ∈ D . We have:

h(λx1 +(1−λ)x2) = f (λx1 +(1−λ)x2)+g(λx1 +(1−λ)x2)

≤ λ f (x1)+(1−λ) f (x2)+λg(x1)+(1−λ)g(x2)

= λh(x1)+(1−λ)h(x2)

Therefore, h(x) is a convex function.

Lemma A.2 Given two convex functions f (x) and g(x),
h(x) = max(f (x),g(x)) is also a convex function, x ∈ D .

Proof . First, we prove a basic inequality for max operation:

max(α1,α2)+max(β1,β2)

= max(α1 +max(β1,β2),α2 +max(β1,β2))

≥ max(α1 +β1,α2 +β2) (8)

We can set α1 = λ f (x1), α2 = λg(x1), β1 = (1−λ) f (x2) and
β2 = (1−λ)g(x2), where x1,x2 ∈ D . Based on Formula 8 and
Lemma A.1, we have:

h(λx1 +(1−λ)x2) = max(f (λx1 +(1−λ)x2),g(λx1 +(1−λ)x2))

≤ max(λ f (x1)+(1−λ) f (x2),λg(x1)+(1−λ)g(x2))

≤ max(λ f (x1),λg(x1))+max((1−λ) f (x2),(1−λ)g(x2))

= λh(x1)+(1−λ)h(x2)

Therefore, h(x) is a convex function.

Lemma A.3 Given two convex functions f (x) and g(x) (f (x)
is a monotonically increasing function), h(x) = f (g(x)) is
also a convex function, x,g(x) ∈ D .

Proof . ∀x1,x2 ∈ D and λ ∈ [0,1], we have f (g(λx1 +(1−
λ)x2)) ≤ f (λg(x1)+ (1− λ)g(x2)) since f (x) is monotoni-
cally increasing and g(x) is convex. Based on this, we derive:

h(λx1 +(1−λ)x2) = f (g(λx1 +(1−λ)x2))

≤ f (λg(x1)+(1−λ)g(x2))

≤ λ f (g(x1))+(1−λ) f (g(x2)) = λh(x1)+(1−λ)h(x2)

Therefore, h(x) is a convex function.

Lemma A.4 (s
xy)

α × ln s
xy is a bivariate convex function,

where s is a positive constant, s
xy ∈ (1,∞), x,y ∈ (0,∞) and α

is a nonnegative integer.

Proof . We divide the proof into two cases.

Case one: α = 0. Since ln s
xy has second derivatives when

s
xy ∈ (1,∞). We calculate the Hessian matrix of the bivariate
function:

Hessian(ln
s

xy
) =

[
1
x2 0

0 1
y2

]

Evidently, such matrix is positive semi-definite and ln s
xy is a

convex function.

Case two: α ≥ 1. We define f (z) = zα × lnz, and g(x,y) =
s

xy . We first calculate the derivative of f (z) (z > 1): f ′(z) =
(1+α lnz)× zα−1 > 0. Therefore, f (z) is a monotonically
increasing function. Then, we prove that f (z) is a convex

182 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Initial Config #Funcs (d) #vCPUs/Func (v) #vCPUs in Total

Large (16, 16, 16, 16) (4, 4, 4, 4) 256

Medium (8, 8, 8, 8) (2, 2, 2, 2) 64

Small (4, 4, 4, 4) (1, 1, 1, 1) 16

Mix1 (4, 8, 16, 4) (1, 2, 4, 1) 88

Mix2 (16, 4, 8, 16) (4, 1, 2, 4) 148

Table 7: Detailed initial configurations.

function when z > 1. When α = 1, we calculate the second
derivative f (z) = zα × lnz as follows:

f ′′(z) = (lnz+1)′ =
1
z
> 0

When α ≥ 2, we calculate the second derivative as follows:

f ′′(z) = ((1+α lnz)× zα−1)′

= α(α−1)zα−2 lnz+(2α−1)zα−2 > 0 (z > 1,α ≥ 2)

Therefore, f (z) is a convex function when z > 1. Last, we
need to prove that g(x,y) is a convex function. We calculate
the Hessian matrix of g(x,y) as follows (s,x,y are positive
and s is constant):

Hessian(g(x,y) =
s

xy
) =

[
2s
x3y

s
x2y2

s
x2y2

2s
xy3

]

Since s,x,y are all positive, this matrix is positive semi-
definite. Therefore, g(x,y) is a convex function. In sum-
mary, f (z) is a monotonically increasing convex function,
and g(x,y) is a convex function. Based on Lemma A.3, we
derive that h(x,y) = f (g(x,y)) is a convex function.

Lemma A.5 f (x,y) = s
x×min(y,w) is a bivariate convex func-

tion, where s,w are positive constants and x,y are positive
independent variables.

Proof . We are able to convert to f (x,y) to max(s
x×w ,

s
x×y).

The Hessian matrix of s
x×w is:[

2s
wx3 0

0 0

]

It is a positive semi-definite matrix, and s
x×w is a convex func-

tion. As for s
x×y , its convexity is proved in Lemma A.4. Ac-

cording to Lemma A.2, f (x,y) = s
x×min(y,w) = max(s

x×w ,
s

x×y)

is a convex function.

A.3 Sensitivity of Jolteon

To evaluate the sensitivity of Jolteon’s convex optimizer al-
gorithm (§4.3) to various initial configurations (i.e., entry
points), we use five different initial configurations for Video
Analytics: large, medium, small, mix1, and mix2, with total
number of vCPUs ranging from 16 to 256. Table 7 shows them

Initial

Config

Output Config

Tight Bound (12 s) Moderate Bound (36 s) Loose Bound (80 s)

Large Config A Config B Config C

Medium Config A Config B Config C

Small Config A Config B Config D

Mix1 Config A Config B Config C

Mix2 Config A Config B Config C

Table 8: Output configurations of Jolteon for Video Analytics under
different initial configurations and bounds.

Output Config #Funcs (d) #vCPUs/Func (v) #vCPUs in Total

Config A (32, 16, 16, 16) (5, 1.5, 1.5, 5) 288

Config B (8, 8, 8, 8) (1.5, 1.5, 1.5, 1.5) 48

Config C (4, 4, 4, 4) (1, 1, 1.5, 1.5) 20

Config D (4, 4, 4, 4) (1, 1.5, 1.5, 1) 20

Table 9: Detailed output configurations of Jolteon.

in detail, where d and v represent the vectors (four stages)
of the number of function instances and the number of vC-
PUs per function instance, respectively. We run Jolteon with
three different latency bounds: 12 seconds for tight bound, 36
seconds for moderate bound, and 80 seconds for loose bound.

As Table 8 indicates, Jolteon produces identical configu-
rations across all initial configurations under the tight and
moderate bounds. Under the loose bound, Jolteon generates a
slightly different configuration for the small initial configu-
ration. Table 9 further illustrates these output configurations.
Notably, Config C and Config D under the loose bound share
the same number of function instances and total vCPUs. The
slight discrepancy between them lies in the specific allocation
of vCPUs, i.e., (1, 1, 1.5, 1.5) vs. (1, 1.5, 1.5, 1). We run Video
Analytics under these two configurations and obtain similar
performance. Config C and Config D yield end-to-end latency
of 75.9 and 74.5 seconds and cost of $0.00916 and $0.00874,
respectively. The difference between the two configurations in
latency and cost are negligible, which are 1.9% and 4.8%, re-
spectively. In summary, Jolteon’s convex optimizer algorithm
is insensitive to initial configurations.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 183

Can’t Be Late: Optimizing Spot Instance Savings under Deadlines

Zhanghao Wu, Wei-Lin Chiang, Ziming Mao,
Zongheng Yang, Eric Friedman†, Scott Shenker†, Ion Stoica
University of California, Berkeley †UC Berkeley and ICSI

Abstract
Cloud providers offer spot instances alongside on-demand
instances to optimize resource utilization. While economically
appealing, spot instances’ preemptible nature causes them
ill-suited for deadline-sensitive jobs. To allow jobs to meet
deadlines while leveraging spot instances, we propose a
simple idea: use on-demand instances judiciously as a backup
resource. However, due to the unpredictable spot instance
availability, determining when to switch between spot and
on-demand to minimize cost requires careful policy design. In
this paper, we first provide an in-depth characterization of spot
instances (e.g., availability, pricing, duration), and develop a
basic theoretical model to examine the worst and average-case
behaviors of baseline policies (e.g., greedy). The model serves
as a foundation to motivate our design of a simple and effective
policy, Uniform Progress, which is parameter-free and requires
no assumptions on spot availability. Our empirical study, based
on three-month-long real spot availability traces on AWS,
demonstrates that it can (1) outperform the greedy policy by
closing the gap to the optimal policy by 2× in both average
and bad cases, and (2) further reduce the gap when limited
future knowledge is given. These results hold in a variety of
conditions ranging from loose to tight deadlines, low to high
spot availability, and on single or multiple instances. By im-
plementing this policy on top of SkyPilot, an intercloud broker
system, we achieve 27%-84% cost savings across a variety of
representative real-world workloads and deadlines. The spot
availability traces are open-sourced for future research.1

1 Introduction
As organizations continue to migrate their workloads to

clouds, the need to minimize operational costs has become
a critical concern [41]. One of the top contributors to cloud
spending is the cost of compute instances [8], which are
typically offered in two pricing models: on-demand and spot.2

On-demand instances are available but come at a premium

1See spot traces: https://github.com/skypilot-org/spot-traces
2In this paper, we do not consider “reserved” instances, whose economics

involves volume contracts and is more complex.

V100 GPU 64-core CPU

AWS 3× 2–6×
Azure 3–6× 3–10×
GCP 3× 4–11×

Table 1: Cost savings of spot vs. on-demand instances.
cost. In contrast, spot instances are typically 3–10× cheaper
(Table 1), but are less available and they can be preempted unex-
pectedly. As a result, more applications such as analytics [13],
AI [28, 37, 40], HPC [29], and CI/CD workloads [1], are lever-
aging spot instances to reduce costs. To handle preemptions,
these jobs either checkpoint periodically and recover from the
last checkpoint on restart [25, 46], or re-execute the entire job.

However, while many applications can tolerate uncertainties
introduced by spot instance preemptions, others cannot. One
such category is delay-sensitive applications where a job needs
to finish by a certain deadline [24]. Examples include process-
ing new user data to keep an AI model up-to-date in a recom-
mendation system, or analyzing the latest information to make
timely decisions in a trading application. Therefore, most of
deadline-sensitive applications eschew spot instances in favor
of on-demand instances, thus trading off cost for predictability.

In this paper, we resolve this tradeoff by enabling an applica-
tion to leverage spot instances while still meeting its deadline.
For simplicity, we focus on recoverable jobs running on a sin-
gle instance, and assume the running time of the job is known,
as well as its deadline. A job can be in one of three states:
(1) running on a spot instance, (2) running on an on-demand
instance, or (3) idle, i.e., waiting for a spot instance to become
available. We design scheduling policies that periodically
decide whether a job should remain in the same state or switch
to another state. When a job switches to a non-idle state we as-
sume there is a delay, e.g., the overhead of provisioning/setting
up a new instance, and re-starting from a previous checkpoint.
Due to the high unpredictability in spot instance availability
(§2.2), the key challenge lies in striking a balance between cost
optimization and deadline adherence to effectively leverage
the low cost of spot instances without missing the deadline.

A simple solution to this problem would be for a job to

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 185

https://github.com/skypilot-org/spot-traces

use a spot instance up to the point at which the remaining
computation time equals the remaining time to deadline, and
then switch to an on-demand instance until it finishes. While
this “greedy” policy (§3.4) guarantees that the job will meet
its deadline, we show that it is sub-optimal. We do so by
developing a theoretical framework to study the worst-case
behavior (e.g., competitive ratio) of the policy (§4).

To address the limitations of “greedy” policy, we propose
a simple and effective policy, called Uniform Progress, which
aims to make uniform progress towards deadline, by distribut-
ing the job computation uniformly across the time. Uniform
Progress requires no assumption about spot instances’ avail-
ability and is parameter-free. Using simulations on real-world
traces we show that Uniform Progress outperforms greedy pol-
icy and approaches an optimal policy with limited knowledge
of the future (knowing how long the next spot instance is going
to last) in a variety of scenarios—from loose to tight deadlines,
and from low to high spot availability. We build a prototype
of Uniform Progress and evaluate it in a cloud setting on three
real-world workloads: ML training, scientific batch jobs, and
data analytics. Results show that Uniform Progress achieves
27–84% cost savings while meeting deadlines.

This paper is organized as follows. First, we provide an
in-depth characterization of spot instances across various
cloud regions, examining their availability patterns, pricing,
and lifetime to inform our policy design (§2). Next, we develop
a theoretical model that captures the essential dynamics of
spot instances, which enables us to examine the worst-case
behavior of a given policy (§3, §4). We then present our
policies for jobs with both single and multiple instances (§5)
and conduct a comprehensive empirical study on months-long
real-world traces of spot instances (§6). We build a prototype
implementation that supports the proposed policies in a
cloud setting, and evaluate these policies on three real-world
workloads (§7). Finally, we review related work in §8.

In summary, this paper makes the following contributions:
1. We introduce a problem of using spot instances to min-

imize the cost of running a job with deadline adherence.
2. We develop a theoretical framework to study the worst

and average-case behavior of baseline policies, providing
insights on the tradeoff between cost and deadline.

3. We propose Uniform Progress, a simple but effective pol-
icy which is parameter-free and requires no assumptions
on spot availability. Empirically, we show the significant
improvement of the policy in a wide variety of scenarios.

4. We implement a prototype system with Uniform Progress,
and evaluate it on real-world workloads.

Finally, we open source our three-month traces of spot instance
availability to encourage future research in this area.

2 Characterization of Spot Instances
In this section, we characterize spot instance availability and

pricing over time and across availability zones. We observe
high volatility in availability but a smooth pricing pattern. We

04/22 04/24 04/25 04/27 04/28 04/30

Availability

Preemption

Figure 1: Real spot preemptions and availability are highly
correlated. Trace is in AWS us-west-2b. Upper: preemptions.
Horizontal lines represent a running spot instance. Vertical
bars are preemptions. Lower: availability. Horizontal lines are
spot instance available periods. Vertical bars are changes from
availability to unavailability. Grey gaps are unavailability pe-
riods. Note that although some vertical bars look immediately
followed by a horizontal line, there are still gaps in between.

use these insights to drive the design of our scheduling policy.
2.1 Methodology of Spot Trace Collection

We collect spot availability traces from public clouds. A
trace is a time series showing whether a particular spot instance
type is available at a given time in a zone. We collect these
traces over a three-month period and in nine AWS availability
zones (three in us-west-2, four in us-east-1, two in us-east-2).

A key challenge of trace collection is that it can be pro-
hibitively expensive. For example, a spot V100 instance costs
about $1/hour. If we collect a real preemption trace where an in-
stance is kept live as much as possible modulo preemptions, col-
lecting three-month long traces in all nine zones could cost over
$10,000. Instead, we propose an approximation: we collect
availability traces, where we try to launch a spot instance every
10 minutes to probe if it is available and then immediately termi-
nate it. To validate this approach, Figure 1 shows a high correla-
tion between the real preemption and availability signals over
a week-long period. This approach reduces the cost of trace
collection by about 100×. For completeness, we also include
real preemption traces in our evaluation of policy performance
on multi-instance jobs (§6.6) and real-world workloads (§7.2).

In this work, we focus on a few scarce instance types, i.e.,
Nvidia V100 and K80 GPU instances, which are now in high
demand [4] due to the rise of Generative AI and large language
models (LLMs). Focusing on these scarce instance types is thus
both useful and interesting, as they are frequently preempted,
providing a good testing ground for scheduling policies.
2.2 High Variance in Spot Availability

Our analysis reveals that spot availability varies significantly
across zones and over time. Figure 2 (left) shows the avail-
ability traces of 9 AWS zones over 2 weeks (4 example zones
are in Figure 2 and the rest 5 zones are in §A.1). We observe
a large difference across zones (e.g., us-west-2a vs us-east-1a).
The periods of unavailability can last for hours or even days.

To understand spot availability distributions, we overlay
6-hour windows on a 2-week period (thus, 14× 24/6 = 56
windows per zone) and count the fraction of availability
probes that succeeded in each window. Figure 2 (right)
plots the distributions of spot availability fractions in the 56
windows per zone, which approximate the fraction of time
spot instances are available in each zone. We observe that each

186 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

02/17 02/19 02/22 02/24 02/27 03/01

us-east-2b

us-east-1d

us-east-1a

us-west-2a

0% 20% 40% 60% 80% 100%

us-east-2b

us-east-1d

us-east-1a

us-west-2a

Figure 2: Spot Availability is highly unpredictable and volatile. Traces are across four of nine AWS zones collected. Left: Availability.
Horizontal lines are available periods. Vertical bars are changes from available to unavailable, followed by grey gaps indicating un-
available period. Right: Boxplots of spot availability fraction, i.e., percentage of the time an instance is available in 6-hour windows.

02/17 02/20 02/23 02/26 03/01
0%

50%

100%
us-east-2a

Availability
Price ratio

Figure 3: High volatility of spot availability fraction. Avail-
ability can jump from 100% to 0% within hours. Price ratio:
spot price divided by on-demand price.

zone can go from being highly available to mostly unavailable
across time (e.g., in us-east-2b, the difference between p25
and p75 is about 70%) and there is little correlation across
zones. In addition, Figure 3 shows changes in spot availability
fractions over time. We observe a highly volatile pattern:
availability can change from 100% to 0% within hours.

The results above suggest that scheduling policies should
be robust to highly unpredictable availability patterns. For
generality, in this paper, we make no assumptions on spot
availability patterns. We discuss existing prediction-based
approaches in §8 and leave this direction to future work.

2.3 Relative Stability in Spot Pricing
In contrast, we observe that spot pricing is much more stable

than availability. Figure 3 shows the price ratio of spot to
on-demand for AWS stays almost constant despite significant
changes in availability. In the three-month-long trace, we ob-
serve only a 5% price variation on average over any one-week
period, validating the recently introduced smooth pricing
model on AWS [5]. GCP’s spot instance prices are even more
stable as it is guaranteed to only change once every 30 days [3].

2.4 Correlation of Multi-Instance Availability
To understand the behavior of multiple spot instances, we

analyze 2-week preemption traces and 2-week availability
traces for clusters of 4 and 16 instances, respectively (see §6.1
for details). Notably, over 94% of the time, either all or none of
the instances are available in each cluster. This suggests avail-
ability tends to change simultaneously for multiple instances
(bulk preemption is also observed in [16]), up to a count of 16.

3 Using Spot for Deadline-Sensitive Jobs
In this section, we present a simple model to formulate the

problem, discuss when a policy matters, and then give three
rules for policy design followed by a basic greedy policy.

3.1 Problem Setup
We consider two types of instances with the same hardware:

an on-demand instance, which is always available,3 and a spot
instance, whose availability is unpredictable. We assume that
spot availability is non-adversarial, meaning that it is indepen-
dent of the job’s choices and observable factors, except for §4.1,
where we adopt competitive analysis for the worst case study.

We focus on long-running (hours to days) jobs where
preemptions are likely. We firstly assume each job uses one
instance. We will extend it to multiple instances in §5.5 and
evaluate it in §6.6.

For a deadline-sensitive job, we denote remaining compu-
tation time at time t as C(t) and remaining time-to-deadline as
R(t). This implies that the job’s total computation time is C(0),
and deadline is R(0). Based on the definition, we can derive that
R(t)=R(0)−t and when a job is progressing, ∂C(t)/∂t=−1.

We assume that both C(0) and R(0) are given and the
job is fault-tolerant to interruptions. For example, ML
training typically has a consistent per-epoch time, indicating
a predictable total runtime, and the model weights can be
checkpointed and resumed for fault tolerance. Additionally,
computation times for many recurring jobs (e.g., data analytics,
scientific HPC, CI/CD) can be derived from past executions.

To account for overheads of starting the job on a new
instance, we introduce changeover delay, d, which includes the
time required to launch an instance, set up dependencies, and
recover any potential progress loss caused by gaps between
checkpoints or restarting the most recent unsaved execution.
Whenever a job switches to a new spot or on-demand instance,
a changeover delay occurs, meaning that C(t) does not
decrease for a duration of d while R(t) continues to decrement.
A delay d is charged at the new instance type’s price. Switching
from an instance to idle (i.e., termination) does not incur a
delay. We will extend the model to consider variety with C(0)
and d in §5.6, and evaluate it in §6.7.

The goal is to minimize the cost for completing job’s
computation time C(0) before deadline R(0), i.e., C(R(0))≤0,
using spot and on-demand instances. For simplicity, we define
the price for an on-demand instance to be k > 1, and a spot
instance to be 1. We assume that cloud providers charge every
second when an instance is alive.4 Based on the observation

3This is a simplifying assumption. In practice, some on-demand instance
types can hit unavailability.

4Cloud providers have different billing practices, e.g., AWS does not

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 187

IDLE
SPOT

VM
Spot Availability

0 10 20 30 40 50 60
Elapsed Time (hours)

IDLE
SPOT

VM C(t) = R(t) Optimal for d = 0 ($381.85)

(a) Without changeover delay.

0 10 20 30 40 50 60
Elapsed Time (hours)

IDLE
SPOT

VM C(t) = R(t) + 2d Greedy for d > 0 ($658.13)

(b) With changeover delay.

Figure 4: Example decision traces of policies on real spot
availability on AWS.

in §2.3, we assume both the on-demand and spot price are
fixed throughout the time before deadline R(0).
3.2 Scheduling Policy

At any time t, a job can be in one of the following three
states: idle, running on a spot instance, or running on an
on-demand instance. While we assume that on-demand
instances are always available, spot instances can be in one
of two states: available or unavailable. The job’s state space is
the combination of any of the instance state and the spot state,
except for an impossible case where the instance state is spot
with spot state unavailable (Table 2). A scheduling policy is
invoked to decide how a job moves across instance states.

Spot State \ Instance State Idle Spot On-Demand

Spot Available ① ③ ④
Spot Unavailable ② - ⑤

Table 2: State space for a job.
In the ideal case where changeover delay d=0, the problem

is simple. An optimal policy is to use a spot instance whenever
it is available, i.e., transition between state ② and ③, until
C(t)=R(t). After that, the job cannot stay idle, as it needs to
utilize all the remaining time before deadline to make progress.
Since there is no changeover delay, the policy can use spot
whenever it is available and switch to on-demand when it is
not, i.e., transition between ③ and ⑤. This policy is optimal
because it utilizes all available spot instance lifetimes before
the deadline, without additional cost. Figure 4a shows an ex-
ample decision trace of how this policy performs for a job with
C(0)=48 hours and R(0)=60 hours on a real spot availability
trace, where the policy utilizes every spot lifetime, and runs
the remaining computation with on-demand instances.

However, when changeover delay d>0, which is the practi-
cal case, the problem becomes non-trivial. The policy now has
to decide whether it is worth switching to a different instance at
the expense of losing time d without making progress, which
increases the risk of missing the deadline. For example, apply-
ing the optimal policy above for d>0 would result in missing

charge for spot instances preempted within the first hour, while GCP does.

the deadline, since every switch costs an additional time d.
In the remainder of this paper, we focus on designing

policies for the more practical d>0 scenario.
3.3 Rules for Policy Design

Based on the problem setting, we propose three basic rules
that all policies without future knowledge should follow to
avoid unnecessary cost or missing the deadline.
Thrifty Rule. The job should remain idle after C(t)=0.
Safety Net Rule. When a job is idle and R(t) < C(t) + 2d,
switch to on-demand and stay on it until the end.

The policy is required to guarantee the job finished by
the deadline. After R(t) < C(t) + 2d becomes true, it is no
longer safe to move from idle to spot. Otherwise, when the
changeover delay of the spot finishes, the remaining time will
become R(t)<C(t)+d, which means any preemption to the
spot instance will result in missing deadline. Note that one
could wait until R(t)=C(t)+d then move to on-demand, but
there is no gain for waiting an additional d if the job is idle.
Exploitation Rule. Once start using a spot instance, stay on
it until it is preempted.

If the job is on a spot instance, any progress made will
always cost the minimum price any policy could get, i.e.,
the spot price. Voluntarily switching from spot to idle or
on-demand will have no benefit, but less progress or more cost.

This rule will not violate the deadline because the Safety
Net Rule guarantees that R(t) ≥ C(t) + 2d holds at the
time t when the job is moved to the current spot instance.
After the changeover delay is incurred and the job starts
progressing, R(t)−C(t) will not change, i.e., R(t)≥C(t)+d
holds, meaning the remaining time is enough for at least one
changeover even if the current spot is preempted. The job will
be able to switch to on-demand when Safety Net Rule kicks in.
3.4 Greedy Policy

Based on the three rules, we propose a straightforward
greedy policy. The greedy policy behaves as follows:

1. Stay on any available spot instance until it is preempted
(Exploitation Rule), and keep waiting if no spot instance
is available, i.e., transition between ② and ③ in Table 2.

2. (Safety Net Rule) When R(t)<C(t)+2d holds and the
job is idle, move to on-demand and stay there until the end.

In Figure 4b, we show the decision trace of the greedy policy
on the same spot availability trace as before (Figure 4a). The
greedy policy acts much more conservatively than the previous
optimal policy without changeover delay. That is because
greedy can no longer afford frequent switches between
on-demand and spot instances as before without missing the
deadline. Thus, we now turn our attention to: can we do better
than greedy while not assuming future knowledge?

4 Theoretical Analysis
In this section, we delve into theoretical aspects of the

problem and prove the existence of a policy that is better than
greedy in both worst and average cases.

188 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

n-sliced greedy

6420

Shifted (n-1)-sliced greedy

Look for Spot Go to On-Demand

Figure 5: Example slicing for randomized shifted greedy (RSF)
policy, where deadline R(0)=6, computation time C(0)=3,
and slices n=3. Dashed lines indicate boundaries of slices.

4.1 Worst Case with Competitive Analysis
We first look into the worst case by investigating the

competitive ratio c of a policy without knowledge of future
spot availability, which is the ratio of the cost of the policy to
the best omniscient policy with full knowledge of future spot
availability. By “worst” case, we assume that spot instances
are chosen by an oblivious adversary, who can base their
decisions on complete knowledge of the job’s policy but not
on random coin flips used by the policy. Our goal is to prove
that there is a policy with lower competitive ratio c than greedy,
i.e., performs better in the worst case.

To simplify the presentation, we assume changeover delay d
is small and ignore the term O(d). Also, we use R(t)=C(t)+d
as Safety Net Rule’s condition, instead of R(t) =C(t)+ 2d,
which will not affect the conclusion, due to negligible O(d).

A natural bound for c is 1≤ c≤ k, where k can be reached
when the oblivious adversary choose a case that a given policy
have to use all on-demand, and the omniscient policy could use
all spot instances. We can prove that for any R(0),C(0), a deter-
ministic policy cannot perform better than greedy (see §A.2.1).
Theorem 1. For any deterministic policy P, c≥k−O(d).

With Theorem 1, we can conclude that a policy has to be ran-
domized to beat greedy, whose competitive ratio c=k, as an ad-
versary can simply make spot available from t ′, where R(t ′)=
C(t ′)+d. We now construct a better policy on top of greedy.
We first extend greedy to an n-sliced greedy policy, in which
we divide the time into n even slices with length R(0)

n and apply
greedy in each of these slices with C(0)

n progress to make. The
upper figure in Figure 5 is an example of n-sliced greedy, with a
deadline R(0)=6 and 3 slices. In each slice, the policy enforces
the job to make ≥ C(0)

n =1 units of progress within R(0)
n =2.

We then shift the n-sliced greedy policy by C(0)
n to get shifted

(n−1)-sliced greedy policy, which uses on-demand for time
C(0)

n from start (1 in the example Figure 5) and then applies
(n−1)-sliced greedy from t= C(0)

n until t=R(0)− R(0)−C(0)
n .

Although both policies have c = k, we can define a
randomized shifted greedy (RSF) policy by using either
the n-sliced or the shifted (n − 1)-sliced greedy with equal
probability at any time t. We can prove that the competitive
ratio for RSF is bounded and lower than greedy (see §A.2.1).
Theorem 2. If R(0) ≥ 2C(0), then for RSF policy has
c≤ k+1

2 + k−1
2n +O(d)<k.

When deadline R(0) is more than 2× longer than computa-

50 100 150
Actual Greedy Cost

50

100

150

Th
eo

re
tic

al
C

os
t

pearsonr=0.97

(a) Theoretical vs actual greedy
cost with delay d=0.01h.

0 50
#Slices

0.1

0.2

Va
ria

nc
e

us-east-1a
us-east-1f
us-east-2b
us-west-2c

(b) Variance vs number of slices
with an 80-hour deadline.

Figure 6: Numerical results for validating the theoretical
greedy cost and the assumption for increasing variance in the
stochastic model. Both analysis are conducted on sampling
sub-traces from 2-month AWS spot availability traces.

tion timeC(0), the worst case (the largest gap to omniscient pol-
icy) for RSF policy is bounded, i.e., provably better than greedy.

For R(0) ≤ 2C(0), we can simply use on-demand until
R(t) = 2C(t) then start using RSF policy. We denote this
modified RSF (MRSF) policy.

Corollary 1. Let a= R(0)
C(0)−1 for 0<a≤1. MRSF policy has:

c≤k−ak+a(
k+1

2
+

k−1
2n

)+O(d)=k− a(k−1)(n−1)
2n

+O(d)<k

With MRSF policy, we shown that there exists a policy that
performs better than greedy for any R(0), C(0) in worst cases
by randomization and distributing job progress.
4.2 Average Case with Stochastic Model

Since spot availability is a complex stochastic process, we
propose a simpler model that is analytically tractable for the de-
velopment of practical policies. With that model, we will show
that n-sliced greedy is better than greedy in the average case.

In order to model the spot process, we consider a smoothed
version where we assume that a fractional spot is always
available, with a ratio r<1, i.e., a job running on the fractional
spot makes r amount of progress per unit of time. For example,
if spots have 4-hour average lifetimes and 1-hour average wait
times after preemption. Then, the fractional spot has a ratio,
r = 4/(4+1) = 0.8, and a job using it makes 0.8 amount of
progress per unit of time.

Similar as §4.1, for simplicity, we assume that d is relatively
small and ignore terms of O(d). We first consider greedy policy.
It will use the fractional spot until R(t ′) =C(t ′)+O(d) and
then switch to on-demand. At time t ′, the job progress on the
fractional spot would be C(0)−C(t ′)=rt ′−O(d), i.e., C(t ′)=
C(0)− rt ′+O(d), and the remaining time would be R(t ′) =
R(0)−t ′. We can derive t ′ and expected payment (total cost) p:

R(t ′)=C(t ′) =⇒ R(0)−t ′=C(0)−rt ′+O(d) (1)

t ′=
R(0)−C(0)+O(d)

1−r
(2)

p=rt ′+(R(0)−t ′)k+O(d)=(r−k)t ′+kR(0)+O(d) (3)

We can observe that the payment depends on the fractional
spot ratio r. For simplicity, we will drop O(d) in following
formulas. Since r−k< 0, payment p reduces when the time

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 189

t ′ spent on the fractional spot increases.
In Figure 6a, we calculate both actual and theoretical costs,

p, for greedy policy on real availability traces for a 48-hour job
with various deadlines (52 to 92 hours) and small changeover
delays. It illustrates that theoretical costs with the significant
simplified stochastic modeling matches well with actual costs.

We now consider the n-sliced greedy policy from §4.1. For
a fixed r, the n-sliced greedy has the same expected payment
as original greedy. However, when we started considering
the expected payment across difference traces, variance for
fractional spot involves. We show that n-sliced greedy works
better than original greedy in average.

Consider spot fraction R as a random variable with mean
r and variance v. We can prove that the expected time on the
fractional spot E[t ′] increases with the variance v (see A.2.2).
With the formula in §A.2.2, we calculate the difference of
n-sliced (with variance v̂) to original greedy (with variance v):

∆=
R(0)−C(0)
(1−r)3 (v̂−v)

where v̂ is the variance over slices with length R(0)
n and v is

the variance for traces with length R(0). Since R is averaged
over time, we expect v̂ > v (shown in Figure 6b), i.e., ∆ > 0.
We can conclude that n-sliced greedy has larger E[t ′], leading
to a lower expected cost p than original greedy in average case.
Also, as v increases with n, n-sliced policy can achieve better
performance with more slices, when d is relatively small.

5 Methodology
Building on our theoretical analysis, we now propose poli-

cies for real-world cloud settings. In this section, we will exam-
ine the performance of a Time Sliced policy derived from the
theoretical analysis, and extend it to a parameter-free Uniform
Progress policy. Additionally, we present a upper bound of cost
savings through the Omniscient policy, which has the knowl-
edge of future spot availability, and a Partial Lookahead Omni-
scient policy that only has a shorter lookahead of the future (e.g.,
6 hours). Then, we will discuss an interesting scenario when
the next spot lifetime is given, and propose an extension that
combines Uniform Progress with a Next Spot Lifetime Oracle.
Lastly, we extend the policies to multiple instances, and relaxed
job computation times and changeover delays for generality.
5.1 Time Sliced

Based on the n-sliced greedy policy in §4.1, we propose the
Time Sliced policy. We divide the time before deadline, R(0),
into slices, and assign each slice a proportionate computation
time C(0)/n and deadline R(0)/n, denoted as Ci and Ri for
slice i. In each time slice, we apply greedy policy – switching
to on-demand instances when Ri(t)<Ci(t)+2d. We make two
changes compared to the n-sliced greedy policy: (1) jobs can
continue on spot instances whenever available after Ci(t)≤0,
and (2) if a slice makes more progress than required, we reduce
the required computation in the succeeding slice, Ci+1. We do
not apply randomness as in the competitive analysis for sim-
plicity based on the assumption that clouds are non-adversarial.

IDLE
SPOT

VM
Spot Availability

IDLE
SPOT

VM
Greedy ($666.32)

0 10 20 30 40 50 60
Elapsed Time (hours)

IDLE
SPOT

VM
Time Sliced (7) ($467.60)

Figure 7: Example decision traces comparing Time Sliced
and greedy policy. Time Sliced policy cuts costs by better
utilization of available spot near deadline.

0.80 0.92
Job fraction

0

20

40

C
os

ts
av

in
gs

(%
)

29

18

39

25

us-west-2a

n=8

n=10

33%

35%

0.80 0.92
Job fraction

14

6

23

9

us-west-2b

n=10
n=3

60%

62%

Greedy Time Sliced (Best #slices)

Figure 8: Cost savings (higher is better) vs. on-demand with
Greedy and Time Sliced policies. Job fraction is C(0)

R(0) , and n
is the best number of slices chosen for the Time Sliced policy.

Figure 7 presents example decision traces for both greedy
and Time Sliced. The spot availability trace shows when spot is
available on cloud. The greedy policy utilizes all available spot
until R(t)<C(t)+2d. At this point, the job cannot tolerate
another changeover delay and must stay on on-demand until
the end, rendering available spots close to deadline unusable.
In contrast, Time Sliced policy’s decision is divided into seven
slices (with alternating colors), with greedy applied in each
slice. Due to the progress made in earlier slices, Time Sliced
allows more slacks to switch between spot and on-demand
instances when the deadline is close. This enables better
utilization of spot instances, reducing total cost. In this specific
example, Time Sliced reduces 30% cost compared to greedy.

In Figure 8, we evaluate Time Sliced by comparing it to
greedy in terms of average cost savings across 600 random
p3.2xlarge availability traces on AWS. Picking the optimal
number of slices enables Time Sliced to achieve 33-62% addi-
tional cost savings for relatively tight deadlines. These results
suggest that ensuring uniform progress throughout a job’s life-
time leads to better utilization of spot availability in expectation.
We apply this idea in the design of Uniform Progress below.
5.2 Uniform Progress

Although Time Sliced policy with the best slice number n
outperforms greedy, selecting the optimal n for different cases
is not practical. We take the uniform progress idea from Time
Sliced policy and design a parameter-free policy, denoted as
Uniform Progress.
5.2.1 Pushing the Slices to the Extreme

Time Sliced policy guarantees uniform progress by
enforcing it in discrete slices. While progress can be left
behind within a slice, it is ensured by the end of each slice.

190 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

IDLE
SPOT

VM
Spot Availability

IDLE
SPOT

VM
Greedy ($563.51)

IDLE
SPOT

VM
Uniform Progress (plain) ($531.08)

0 10 20 30 40 50 60
Elapsed Time (hours)

IDLE
SPOT

VM
Uniform Progress ($469.88)

Figure 9: An example decision trace for Uniform Progress.

At the end of a slice i, ti = i R(0)
n , i.e., i = ti n

R(0) . The current
progress, cp(ti) = C(0) − C(ti), is guaranteed to meet the
expected progress, ep(ti):

cp(ti)≥ep(ti)= i
C(0)

n
= ti

C(0)
R(0)

(4)

Note that when the slice number n=1, there is only one ti,
i.e., t1 = R(0), and Time Sliced becomes greedy policy and
only enforces progress C(0) at deadline R(0). When more
slices involve, with larger n, (4) applies to more time steps
t ∈{R(0)

n , 2R(0)
n ,..., nR(0)

n }. According to the stochastic model
in §4.2, n-sliced greedy will perform better when n increases,
given small changeover delays. Intuitively, this is due to a more
aggressive enforcement of progress. For instance, increasing
n from 2 to 10 within a 50-hour deadline ensures expected
progress made every 5 hours instead of every 25 hours.

We adapt this idea into Time Sliced by pushing n → ∞,
making each slice infinitesimal. That enforces (4) at any
t≤R(0), i.e., fully distributing progress within the deadline:

cp(t)≥ep(t)= t
C(0)
R(0)

,∀t≤R(0) (5)

5.2.2 Uniform Progress Policy
We propose a parameter-free policy, called Uniform

Progress (plain), that switches among three instance states:
idle, spot, and on-demand. The policy, based on (5) and the
rules in §3, has the following rules:

1. Uniform Progress: When the job is idle and cp(t)<ep(t),
switch to on-demand and stay on it to catch up progress.

2. Taking Risks: Switch to spot whenever it is available
(even when cp(t) < ep(t)). Stay on the spot until it is
preempted (Exploitation Rule).

To avoid missing deadline, we also apply Safety Net Rule on
top. The first rule asks the policy to maintain steady progress,
while Taking Risks rule allows the policy to utilize any available
spot instances by taking the risk of changeover delays.

In Figure 9, we show an example decision trace. Similar to
Time Sliced, Uniform Progress (plain) can achieve better cost
savings compared to the greedy policy by evenly distributing
progress within the deadline. However, during periods when
spot life/wait time are relatively short, the policy suffers from
frequent switches between spot and on-demand instances.
When the job is on on-demand, and a spot becomes available,

 , spot slice ends, spot

spot
IdleSpot On-

Demand

slice ends, spot

(a) Time Sliced

spot

spot
IdleSpot On-

Demand
 , spot

 , spot

(b) Uniform Progress

Figure 10: State machine diagram for Time Sliced and Uniform
Progress. spot means spot unavailable and spot means spot
available. The Safety Net Rule is left out for simplicity.

our policy will immediately switch to spot. If the spot is
preempted by the cloud shortly, the job may make little
progress. When that happens, cp(t)<ep(t) can still hold and
the job will be scheduled to on-demand again, wasting two
changeover delays, 2d (one for spot and one for on-demand).

To address that, we propose adding hysteresis to the policy.
Although the policy does not know or control the lifetime
of a spot instance, it can ensure that the progress made on
on-demand instances is sufficient to compensate for potential
losses in the worst-case scenario. We thus add another rule:

3. Hysteresis: When the job is on on-demand, stay on it
until cp(t)≥ep(t+2d).

We call the resulting policy Uniform Progress. Figure 9 shows
that the hysteresis mitigates frequent switching by enforcing
more progress on on-demand, and improves cost savings.

Figure 10 compares the state transitions of Uniform
Progress and Time Sliced. Both policies share the uniform
progress idea, but Time Sliced is discretized, relying on Safety
Net Rule within each slice and slice boundaries to jump off
an on-demand instance. In comparison, Uniform Progress
replaces slice parameters with a global uniform progress
checker, cp(t)≥ep(t), and a hysteresis, cp(t)≥ep(t+2d).

We will evaluate the policies above in §6. In order to
properly assess a policy’s performance relative to the best cost
savings, we next discuss several policies, which have access to
future knowledge, and use them as cost saving upper bounds.

5.3 Omniscient
First, we propose the Omniscient policy, which assumes full

future knowledge and generates the theoretically optimal plan.

5.3.1 Omniscient Policy
The Omniscient policy minimizes cost for a given availabil-

ity trace and deadline R(0). We define some binary variables:
• a(t) whether a spot instance is available at time t.
• s(t), v(t) indicate the policy choose to use a spot/on-

demand instance at time t.
• x(t), y(t) represent changeover delays happen to a

spot/on-demand instance at time t.
By discretizing time, we can represent the policy as a cost

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 191

minimization problem:

min
s(t),v(t)

R(0)

∑
t=0

[s(t)+v(t)k] (6)

∀t, s(t)+v(t)≤1, s(t)≤a(t) (7)
R(0)

∑
t=0

[s(t)+v(t)]≥d
R(0)

∑
t=1

(x(t)+y(t))+C(0) (8)

∀t, x(t)≤s(t), x(t)≤1−s(t−1), x(t)≥s(t)−s(t−1) (9)
∀t, y(t)≤v(t), y(t)≤1−v(t−1), y(t)≥v(t)−v(t−1) (10)

(7) ensures the policy to choose only one instance at a time
and only use spot when it is available; (8) requires the total
time on spot and on-demand instances to be larger than sum of
the time spent on changeover delays and the job runtime; (9)
and (10) set variables x(t) and y(t) to 1 when a changeover
occurs for spot and on-demand instances, respectively. The
resulting formula is an integer linear programming (ILP)
problem and can be solved using ILP solvers [14, 31].
5.3.2 Partial Lookahead Omniscient Policy

Omniscient, with complete knowledge of future spot
availability, produces an unachievable bound. To better
understand the impact of partial knowledge, we propose
Partial Lookahead Omniscient, which has limited foresight
into future spot availability. By partitioning the deadline into
n slices, it can only see complete availability within each
slice. To incorporate that knowledge, we modify Omniscient
formula to minimize the average cost of progress made in a
slice i while ensuring the job progress at the end to be at least
iC(0)/n. Further details can be found in §A.3.
5.4 Next Spot Lifetime Oracle

Both Omniscient and Partial Lookahead Omniscient
policies assume complete knowledge of future availability
with different lookahead windows. We propose a more
realistic scenario where cloud providers offer an oracle o(t)
that returns the lifetime of the next spot instance a job can
acquire at the current time t. This assumption is reasonable
as providers can determine when to reclaim a spot instance.

Uniform Progress can be extended to leverage this oracle.
We introduce two new conditions to replace the hysteresis:

1. If the job is idle, we only switch to spot when the average
cost per unit of progress is lower than on-demand cost

o(t)
o(t)−d <k, i.e., o(t)> kd

k−1 .
2. If the job is on on-demand instance, we switch to spot only

when the average cost per unit of progress, considering
switching to spot and back to on-demand, is less than stay-
ing on the current on-demand: o(t)+kd

o(t)−d <k, i.e., o(t)> 2kd
k−1 .

5.5 Extending to Multiple Instances
All the discussions above are based on single-instance

scenario. We now extend the policies to multiple instances. We
assume gang-scheduling is required, i.e., all instances must
be running for a job to progress. This is typical in distributed
ML training [22, 23, 36] and HPC workloads [11]. A cluster
may consist solely of spot instances, on-demand instances,
or a mix of both. We call clusters with an identical resource

type homogeneous and those with a mix heterogeneous.
Changeover delays are incurred when a cluster is reconfigured,
i.e., the number of spot/on-demand instances in it changes,
unless it has no instance after reconfiguration.

We introduce a new rule for all multi-instance policies:
Polarization Rule. For a job requiring N > 1 instances, a
policy should either use no instance or N instances at any time.

Since gang-scheduling is required, a cluster with fewer than
N instances incurs unnecessary costs without job progress.
Thus, once any instance is preempted, a policy should
immediately reconfigure the cluster to either 0 or N instances.

We now extend previous policies to multiple instances.
Extending Greedy and Uniform Progress. First, observing
that spot availability tends to change simultaneously for
multiple instances (§2.4), we propose each policy should
produce homogeneous clusters. We will show that this
assumption does not harm performance on reasonably large
clusters (§6.6). Combining this with Polarization Rule, the
action space for a policy is simplified to either: N spot, N
on-demand, or no instances at any time t.

The problem for multiple instances is now equivalent to the
single instance, with the one-to-one mapping of states (§3.2):

• Cluster state: N spot, N on-demand, or no instances map
to spot, on-demand or idle states for single-instance jobs.

• Spot state: If available spot instances a(t)<N, it is equiv-
alent to a spot being unavailable in the single-instance
scenario, and a(t)=N maps to a spot being available.

Thus, for multi-instance jobs, we directly execute greedy
and Uniform Progress using the mappings above.
Extending Omniscient. For Omniscient, we can also restrict
it to produce homogeneous clusters and get Omniscient (Ho-
mogeneous). The detailed formulation is in §A.7.2. To obtain
a better theoretical upper bound for cost savings, however, we
further adapt Omniscient to support heterogeneous clusters,
denoted as Omniscient (Heterogeneous), by modifying the
ILP (6) to factor in a mixed cluster configuration (§A.7.3).
5.6 Relaxing Computation Time and Changeover Delay

In real-world scenarios, exact computation times and
changeover delays may be uncertain. We generalize our model
to accommodate such variability.
Computation time. To account for the inaccuracies of a user-
provided job computation time C̄(0), we denote the difference
to the actual job computation time as δ=C(0)−C̄(0). Given
that no policy can predict C(0) precisely beforehand, we
adjust the deadline guarantee of the policies to be best effort,
ensuring a finish time within the original deadline plus the
difference, R(0)+δ. This is guaranteed by having all policies
stay on the current instance and switch to on-demand,5 after
the job does not finish but has already made C̄(0) progress,
i.e., C̄(t)≤0. When a user overestimates a job’s computation
time C̄(0)>C(0), it should finish before the original deadline.

5If the job was on a spot instance, it should switch to on-demand after the
spot instance is preempted (Exploitation Rule).

192 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Otherwise, if the job computation time is underestimated
C̄(0)<C(0), the job should finish within the original deadline
plus the difference. Note that there is no additional d, as Safety
Net Rule guarantees that when C̄(t)→0, the job should either
be on on-demand already or R(t) ≥ C̄(t)+ d, i.e., there is a
spare d for the job to switch to on-demand.
Changeover delay. We now adjust the model to factor in sys-
tem stragglers and variations in changeover delay. We assume
that no policies can foresee the exact changeover delay until its
occurrence, though the average changeover delay is given. If
the maximum possible changeover delay, d̂, is also given (e.g.,
the most significant possible progress loss is triggered), we can
prove that policies should be able to ensure a deadline of R(0)+
2(d̂−d). The proof can be found in §A.4. If a user would like to
ensure the original deadline with a given maximum changeover
delay, they can specify a new deadline R(0)−2(d̂−d).

With the new model, policies can account for the variety, by
guaranteeing a bounded relaxed deadline R(0)+δ+2(d̂−d).

6 Evaluation
In this section, we conduct experiments to assess the

performance of the proposed policies using real spot instance
traces collected from the cloud.
6.1 Datasets and Setup

We collected spot availability traces on AWS (§2.1). These
traces include a 2-week availability trace started on 10/26/2022,
with four instance types: p3.2xlarge/p3.16xlarge (1/8 V100),
p2.2xlarge/p2.16xlarge (1/8 K80), and two availability zones:
us-west-2a and us-west-2b. Moreover, we collect a 2-month
long availability trace started on 02/15/2023 for p3.2xlarge
instances across nine zones from regions, us-east-1, us-east-2,
and us-west-2. For multiple instances, we collect 2-week
preemption traces for 4 p3.2xlarge in 3 AWS zones (us-east-1f,
us-east-2a, us-west-2c), and 2-week availability traces for 16
p3.2xlarge in 3 zones (us-east-2a, us-west-2b, us-west-2c). All
the availability traces were collected with a 10-minute probe
interval. As demonstrated in §2.1, availability and preemption
traces are highly correlated, indicating that the performance of
the policies on availability traces should reflect their real-world
performance. We will use preemption traces in §6.6 for mul-
tiple instances benchmark and §7.2 for real system evaluation.

We evaluate the policies on both 2-week traces, and 2-month
traces. For all experiments, we randomly sample 300 starting
points for each trace, considering each pair of instance type
and zone. We consider cases where the job fraction C(0)

R(0) >0.6,
i.e., the deadline is relatively tight, as the problem becomes
less interesting when deadlines are loose and available spot
instances within deadline are sufficient to complete the job.
For loose deadlines, jobs can utilize spot instances whenever
they are available until the remaining time-to-deadline R(t)
is relatively tight compared to the remaining computation
time C(t), and then start applying policies (details in §A.8).
The computation time is set to 48 hours for consistent
comparison across different settings (experiments for different

Policy On-Demand (hours) Spot (hours) Spot Util.

On-Demand 48.0 ± 0.0 0.0 ± 0.0 0%
Greedy 30.8±17.7 17.2 ± 17.7 63%
Uniform Progress 25.1±15.3 22.9 ± 15.4 84%

Omniscient 20.7±15.5 27.4 ± 15.5 100%

Table 3: Compute time spent on on-demand and spot instances,
averaged across 8 scenarios for a job fraction of 0.8. “Spot
Util.” indicates the fraction of compute time on spot leveraged
by a policy vs. the Omniscient policy.

0

20

40

60

C
os

ts
av

in
gs

(%
)

1xK80 (0.95) 1xV100 (0.68) 1xV100 (0.60) 8xK80 (0.59)

0.6 0.8
Job Fraction

0

20

40

60

C
os

ts
av

in
gs

(%
)

8xK80 (0.55)

0.6 0.8
Job Fraction

8xV100 (0.34)

0.6 0.8
Job Fraction

8xV100 (0.33)

0.6 0.8
Job Fraction

1xK80 (0.25)

Greedy Omniscient Uniform Progress (Ours)
Omniscient (8 slices) Uniform Progress (w. next spot oracle)

Figure 11: Cost savings (higher is better) against on-demand
instances on real spot availability traces. Omniscient (8 slices)
is Partial Lookahead Omniscient. Larger job fraction means
tighter deadline. Each sub-plot is on a (instance type, zone)
trace. Values in ‘(x)’ are average spot fractions (percentages of
time a spot instance is available) across all samples in the trace.

computation times can be found in §A.9). Unless noted,
changeover delays d are set to 0.2 hours and costs are
normalized by on-demand costs in all experiments.

Baselines. To our knowledge, existing methods in literature
(§8) do not consider switching between spot and on-demand
in a cost optimization and deadline adherence setting for batch
jobs. Thus, we compare our results against policies with future
knowledge, which serve as strong upper bounds.
6.2 Time Spent on On-demand and Spot Instances

We first show different policies’ overall compute times
on on-demand vs. spot instances, which exclude changeover
delays. Such breakdowns examine how well spot instances
are utilized. Table 3 shows the results with a fixed job fraction
C(0)
R(0) = 0.8 on the 2-week traces, averaging across eight (in-
stance type, availability zone) pairs, each with 300 randomly
sampled traces. We observe that our Uniform Progress runs
on spot instances 21% longer than greedy policy on average,
reducing the gap to Omniscient’s spot usage by 57%.
6.3 Various Deadlines

Figure 11 evaluates the cost savings achieved by the
policies across various deadlines (represented as job fractions)

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 193

Spot: Low
Deadline: Loose

0

10

20

30

40

50

C
os

td
iff

er
en

ce
to

O
m

ni
sc

ie
nt

(%
)

11 10
6 4

Spot: Low
Deadline: Tight

10 10
7

2

Spot: High
Deadline: Loose

12
9 7 5

Spot: High
Deadline: Tight

19
14

10

5

Greedy
Time Sliced (Best #slices)

Uniform Progress (Ours)
Uniform Progress (w. next spot oracle)

Figure 12: Cost difference compared to Omniscient policy
(normalized by on-demand cost, lower is better), measuring
a policy’s proximity to Omniscient. Error bars range from
p25 to p75. “Spot” represents spot fraction. It is on 2-week
availability traces, aggregated on 300×8=2400 sampled traces.

on the 2-week availability traces. Our Uniform Progress
consistently surpasses the greedy in cost savings in all cases,
while approaching savings of Omniscient policy.

While Uniform Progress excels, there is still a gap to Omni-
scient. We compare Uniform Progress with Partial Lookahead
Omniscient policy with 8 slices, which assumes strong knowl-
edge of the future (around 6 hours of lookahead): Uniform
Progress achieves similar performance in most cases, despite
lacking future knowledge. This suggests any other policy
without future knowledge may not yield much higher savings.

We also investigate the potential improvement of Uniform
Progress policy by assuming cloud providers offering an
oracle for the lifetime of the next spot instance (§5.4). With
such knowledge, cost savings improve significantly, nearing
the theoretical optimum when deadlines are tighter.

The conclusions also hold on the 2-month traces (§A.5).
6.4 Impact of Spot Fraction and Deadline

To better understand the influence of spot fractions (the per-
centage of time a spot instance is available) and deadlines on
policy performance, we categorize them into two dimensions:
low or high spot fraction, and loose or tight deadline. Tight
deadline represents job fraction C(0)

R(0) >75%, while high spot
fractions are defined as those exceeding 50%. Our 2-week
traces have an even distribution between high and low spot
fractions, while the 2-month traces show a dominance of high
spot fractions, which forms 72% of all cases. This aligns with
our earlier observation of the volatile nature of spot instance
availability (§2.2). Figure 12 presents the performance of the
policies compared to Omniscient policy (theoretical upper
bounds for cost savings) in the four categories. Results based
on the 2-month traces are covered in §A.5.

For tight deadlines, the number of feasible instance switches
is limited to at most R(0)−C(0)

d , demanding strategic planning of
each changeover. When spot availability is high and deadline
tight (the rightmost group of bars), all policies lacking future
knowledge exhibit a relatively large gap to the optimal.

0

20

40

60

C
os

ts
av

in
gs

(%
)

1xK80 (0.95) 1xV100 (0.68) 1xV100 (0.60) 8xK80 (0.59)

0.02 0.2 0.4
Delay (hours)

0

20

40

60

C
os

ts
av

in
gs

(%
)

8xK80 (0.55)

0.02 0.2 0.4
Delay (hours)

8xV100 (0.34)

0.02 0.2 0.4
Delay (hours)

8xV100 (0.33)

0.02 0.2 0.4
Delay (hours)

1xK80 (0.25)

Greedy Omniscient Uniform Progress (Ours)
Omniscient (8 slices) Uniform Progress (w. next spot oracle)

Figure 13: Impact of changeover delays (d). Values in ‘(x)’
are average spot fractions over all samples in the trace.

Nevertheless, Uniform Progress still reduces the gap by ∼2×
compared to the greedy policy. This efficiency arises from its
uniform progress guarantee and hysteresis, which optimize
spot utilization within the deadline while avoiding frequent
changeovers. The small gap between Uniform Progress with
the next spot lifetime oracle and Omniscient policy confirms
that the ability to skip short spot lifetimes and strategically
switching from on-demand to spot with the opportunity cost
in mind is crucial to achieve close to optimal performance.

As deadlines loosen and spot availability increases, all
policies perform closer to Omniscient policy, as jobs have
greater flexibility to wait for spot instances and switch between
resource types, i.e., judicious planning becomes less important.

Additionally, we show the performance of Time Sliced
policy with the best number of slices (within 50 slices).
Time Sliced policy outperforms Greedy because of uniform
progress it guarantees, but worse than Uniform Progress,
potentially due to a higher overhead between slice switches.

Regardless of the different categories, our Uniform Progress
policy reduces the gap to optimal by nearly 2× compared to
greedy policy for both average and tail (p75) cases.
6.5 Different Changeover Delays

In Figure 13, we evaluate the performance of policies across
various changeover delays. Our Uniform Progress performs
consistently similar to the Partial Lookahead Omniscient
policy. As changeover delays increase, cost savings compared
to on-demand instances are reduced. This is because for each
spot instance being used, a larger changeover delay means we
pay the same price for less actual progress, so that switching
to spot instances becomes less economical. Both Uniform
Progress and Partial Lookahead Omniscient approach the
greedy policy as d increases. However, Uniform Progress
combined with the next spot lifetime oracle consistently
remains close to the upper bound, due to its ability to skip
short spot lifetimes and judiciously calculate the opportunity

194 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Spot: Low
Deadline: Loose

0

10

20

30

40

50

C
os

td
iff

er
en

ce
to

O
m

ni
sc

ie
nt

(%
)

9
5 5

1

Spot: Low
Deadline: Tight

6
4 2 1

Spot: High
Deadline: Loose

8 6 5
0

Spot: High
Deadline: Tight

17

10

4
0

Greedy
Uniform Progress (Ours)

Uniform Progress (w. next spot oracle)
Omniscient (Homogenous)

Figure 14: Cost savings for jobs on 4 instances, compared to
Omniscient with heterogeneous clusters.

cost of switching from an on-demand to a spot instance.
6.6 Multiple Instances

We now evaluate the policies on multi-instance jobs.
Figure 14 shows the cost savings on 4-instance clusters for
various policies compared to the theoretical upper bound set by
our Omniscient (Heterogeneous) policy (§5.5). The difference
between Omniscient (Homogeneous) and Omniscient
(Heterogeneous) is negligible (at most 1%), which validates
the use of homogeneous clusters in our policy formulation.
Our Uniform Progress consistently outperforms the greedy
policy, especially in high-spot-availability, tight-deadline con-
ditions, which agrees with the conclusion on single-instance
jobs (§6.4). We observe a similar win for clusters with 16
instances (§A.7.4). Due to monetary budget limits, we leave
the extension to larger clusters (N>16) to future work.
6.7 Relaxed Computation Time and Changeover Delay

We show that the variations for computation time and
changeover delays introduced in §5.6, marginally influence
the cost savings. In Figure 15, we apply a uniformly distributed
variance to the computation time and changeover delays, and
compare all policies with Omniscient policy, which possesses
exact knowledge of the job and delays. The experiments
are conducted in the same settings as §6.4, with a single
instance, high spot fraction, and tight deadline. All policies
can guarantee deadlines in the new model. The performance of
Omniscient with only spot availability information degrades
when the variance of computation time increases. When
a user-provided job computation time is larger than the
actual one C̄(0)>C(0) (overestimate), it cannot fully utilize
spot instances close to the deadline, while, for C̄(0) < C(0)
(underestimate), it has to use on-demand after exceeding the
original deadline R(0). Similarly, it performs worse when the
variance of changeover delay increases, due to sub-optimal
decisions made with partial information. However, in all cases,
we observe Uniform Progress outperforms greedy with a
relatively stable gap, indicating its robustness.

7 Practical Usage
In this section, we discuss our implementation of the

prototype and evaluate it with three real-workload: machine

Original
0

10

20

30

40

50

C
os

td
iff

er
en

ce
to

O
m

ni
sc

ie
nt

(%
)

20

11
5

0

Job Var.
1 hours

18

12
6

1

Job Var.
5 hours

21
15

8
4

Delay Var.
0.02 hours

20

11
5

0

Delay Var.
0.1 hours

20

12
6

1

Greedy
Uniform Progress (Ours)

Uniform Progress (w. next spot oracle)
Omniscient (Only Spot Avail.)

Figure 15: Cost savings with relaxed job computation time
or changeover delays. All policies are compared against
Omniscient knowing exact spot availability, computation time,
and changeover delays in advance. Omniscient (Only Spot
Avail.) only has the information of spot availability.

learning training, bioinformatics (HPC), and data analytics.
7.1 Implementation

We implemented the policies on top of a real multi-cloud
system, SkyPilot [44], that supports launching instances on
the public cloud providers. Given an availability zone and
an instance type to use, our policies drive a job’s resource
provisioning and switching decisions.

In the system, a controller is in charge of monitoring spot
availability and managing the job with heartbeats. All policies
are invoked by the controller behind a simple interface as fol-
lows. Periodically, the policy observes current_instance_state
(in {idle, spot, on-demand}) and a boolean is_spot_available
through the controller, and then uses them to compute a
decision (in the same state set). If the decided state differs
from the current instance state, the decision is executed by the
system’s provisioner module (e.g., switch from on-demand to
spot). To obtain the boolean is_spot_available, the controller
invokes cloud-specific capacity reservation APIs (e.g., AWS
EC2 offers a create_capacity_reservation API) which return
whether a zone has capacity for a spot instance type.
7.2 Real Workloads

We validate our policy across AWS and GCP platforms using
real-world preemption traces with spot availabilities ranging
from 70% to 90%. Metrics like changeover delays and other
system lags are measured directly from the implementation and
included in the evaluation. We summarize the settings of the
three workloads, Machine Learning (ML) Training, Bioinfor-
matics, Data Analytics, in Table 4 and explain details in §A.6.

We consider two different deadlines (job fractions 90%
and 75%) for each workload. We first present detailed cost
breakdowns for the ML workload with loose deadlines in
Figure 16. Uniform Progress achieves 48% cost savings
compared to only using on-demand. It outperforms Greedy
(15%) and approaches the optimal (55%). Similar patterns are
observed in the other two workloads. We show the cost savings
in Table 5. For Bioinfo’s c3-highcpu-88, the spot price is 91%

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 195

Workload Location Instance Type Spot Price (Discount) Computation Deadlines Changeover Delay

ML Training AWS (us-west-2b) p3.2xlarge $0.92/hr (-67%) 72 hrs 84/100 hrs 4+5+9 mins ≈0.3 hrs
Bioinformatics GCP (us-east1-b) c3-highcpu-88 $0.34/hr (-91%) 22.5 hrs 24/28 hrs 2+1+8 mins ≈0.2 hrs
Data Analytics AWS (us-east-1c) r5.16xlarge $1.85/hr (-55%) 27 hrs 30/36 hrs 4+1+7 mins ≈0.2 hrs

Table 4: Detailed characteristics of real workloads. Deadlines are derived from job fractions 90% and 75%, and changeover delays
are the sum of VM provisioning, environment setup, and job recovery progress loss time.

Uniform Progress
Workload On-demand Tight DDL (0.9) Loose DDL (0.75)

ML $233.5 $138.2 (-41%) $122.0 (-48%)
Bioinfo $140.5 $51.9 (-63%) $22.8 (-84%)
Analytics $109.6 $80.0 (-27%) $74.1 (-32%)

Table 5: Cost savings for real workloads. Results of two
deadlines are shown (job fractions 0.9 and 0.75).

cheaper than on-demand. This allows Uniform Progress to
achieve 63% cost savings even when the deadline is tight and
84% savings when the deadline is loose. For the analytics
workload, the spot price discount is much smaller (55%). In
this case, Uniform Progress achieved 27% and 32% savings
for tight and loose deadlines, respectively. Note, however,
these savings still approach those achieved by the Omniscient
(32% and 46%, for tight and loose deadlines).

8 Related Work
Spot pricing and availability modeling. AWS pioneered spot
instances in 2009, using a bidding mechanism to monetize
unused cloud capacity [5]. The pricing model has evolved
to offer more stability, diminishing bidding, with other cloud
providers adopting similar strategies, such as GCP’s constant
30-day spot price [2], Oracle Cloud’s fixed 50% discount
for preemptible instances [6], and Azure’s stable regional
pricing [21]. While spot pricing is relatively stable, modeling
spot availability remains challenging due to its black box
nature. While prior work attempted to model preemption pat-
terns [20] and employed ML prediction methods [16, 42, 43],
we design our policy to be robust against potential changes
in spot eviction strategies of the cloud providers.
Applications using spot instances. The cost-effective nature
of spot instances has driven their adoption for savings. Frame-
works like Bamboo [38], Spotnik [40], and Srifty [28], was
developed for machine learning on spot instances. Narayanan
et al. [33] showed significant reductions in machine learning
training costs using spot instances across multiple clouds.
CompuCache [47] leverages spot instances for in-memory
data caching. However, preemptions can negatively impact
application performance [10, 43], and deadline-constrained
applications may struggle to effectively utilize spot instances.
Job scheduling with preemptions. Running jobs on preemp-
tive devices is investigated on intermittent systems, where
jobs can be interrupted due to sporadic harvestable energy.
Many studies [12, 15, 18] focus on scheduling multiple real-
time IoT tasks, due to the limited computation resources on
these devices. Spot instances introduce preemption to resource-

0 50 100 150 200 Cost ($)

Omniscient
Uniform Progress (Ours)

Greedy

On-Demand

103
122

199
233

48%

Spot Delay On-Demand Delay Spot On-Demand

Figure 16: Cost breakdown of each policy for ML workload.

demanding batch jobs on clouds. From the cloud providers’ per-
spective, existing work [9,17,19] investigates how to maximize
revenue, or enhance runtime guarantees. For end-users, earlier
studies explored bidding-based policies for bag of tasks with
deadlines [30, 35, 39, 45], but these approaches are less appli-
cable to current spot markets due to changes in pricing model.
Recently, Snape [43] investigates using a mix of spot and on-
demand instances for long-running services. It optimizes for
SLO which require the number of instances available to be
close to the target one at any time. It is different from deadline-
sensitive batch jobs studied in this paper, where the job can
stay idle for long periods, as long as it can meet the deadline.

9 Conclusion
Spot instances are economically appealing, but unreliable

due to the preemptions. In this paper, we resolve a critical
challenge of minimizing the cost for delay-sensitive jobs by
utilizing a mix of spot and on-demand instances. Our work fea-
tures a comprehensive analysis of spot instances and presents
a theoretical framework to assess policies in both worst and
average cases. This inspires the development of our proposed
policy, Uniform Progress, which is simple, parameter-free, and
effective without relying on assumptions of spot availability.
Our empirical study using 3-month real-world traces demon-
strates a significant improvement in cost savings compared to
the greedy policy, closing gaps with the optimal policy by ap-
proximately 2× on both single or multiple instances. We also
find that if cloud providers were willing to offer an oracle for the
next spot instance’s lifetime, it could further improve applica-
tions’ cost efficiency, by enabling our Uniform Progress to ap-
proach the upper bound of cost savings. We implemented a pro-
totype on top of SkyPilot, and showcased the effectiveness of
Uniform Progress on three real workloads, reducing the cost by
27%-84%. We open source the spot traces for future research.

Acknowledgements. We thank the NSDI reviewers for their
valuable feedback. This work is in part supported by gifts from
Accenture, AMD, Anyscale, Google, IBM, Intel, Microsoft,
Mohamed Bin Zayed University of Artificial Intelligence,
Samsung SDS, Uber, and VMware.

196 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Amazon EC2 Spot customers. https://aws.amazon.

com/ec2/spot/customers/.

[2] GCP Spot VMs Pricing. https://cloud.google.
com/compute/docs/instances/spot#pricing.

[3] Google Cloud Spot VM Pricing. https:
//cloud.google.com/compute/docs/instances/
spot#pricing.

[4] Navigating the High Cost of AI Compute.
https://a16z.com/2023/04/27/navigating-
the-high-cost-of-ai-compute/.

[5] New Amazon EC2 Spot pricing model: Simpli-
fied purchasing without bidding and fewer interrup-
tions. https://aws.amazon.com/blogs/compute/
new-amazon-ec2-spot-pricing/.

[6] Oracle Computing Pricing. https://www.oracle.
com/cloud/compute/pricing/.

[7] Pretraining RoBERTa using your own data.
https://github.com/facebookresearch/
fairseq/blob/main/examples/roberta/README.
pretraining.md.

[8] Vantage Cloud Cost Breakdown Report. https://www.
vantage.sh/cloud-cost-report/2023-q1.

[9] F. Alzhouri, A. Agarwal, and Y. Liu. Maximizing cloud
revenue using dynamic pricing of multiple class virtual
machines. IEEE Transactions on Cloud Computing,
9(2):682–695, 2018.

[10] P. Ambati, I. Goiri, F. Frujeri, A. Gun, K. Wang, B. Dolan,
B. Corell, S. Pasupuleti, T. Moscibroda, S. Elnikety,
M. Fontoura, and R. Bianchini. Providing SLOs for
Resource-Harvesting VMs in cloud platforms. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 735–751. USENIX
Association, Nov. 2020.

[11] I. Buch, M. J. Harvey, T. Giorgino, D. P. Anderson, and
G. De Fabritiis. High-throughput all-atom molecular
dynamics simulations using distributed computing.
Journal of Chemical Information and Modeling,
50(3):397–403, 2010.

[12] M. Chetto. Optimal scheduling for real-time jobs in en-
ergy harvesting computing systems. IEEE Transactions
on Emerging Topics in Computing, 2(2):122–133, 2014.

[13] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. N.
Tantawi, and C. Krintz. See spot run: using spot instances
for mapreduce workflows. HotCloud, 10:7–7, 2010.

[14] J. Forrest, T. Ralphs, H. G. Santos, S. Vigerske, J. Forrest,
L. Hafer, B. Kristjansson, jpfasano, EdwinStraver,
M. Lubin, Jan-Willem, rlougee, jpgoncal1, S. Brito, h-i
gassmann, Cristina, M. Saltzman, tosttost, B. Pitrus,
F. MATSUSHIMA, and to st. coin-or/cbc: Release
releases/2.10.10, Apr. 2023.

[15] H. E. Ghor, M. Chetto, and R. H. Chehade. A real-time
scheduling framework for embedded systems with
environmental energy harvesting. Computers &
Electrical Engineering, 37(4):498–510, 2011.

[16] A. Harlap, A. Chung, A. Tumanov, G. R. Ganger, and
P. B. Gibbons. Tributary: spot-dancing for elastic
services with latency SLOs. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 1–14,
Boston, MA, July 2018. USENIX Association.

[17] S. M. Iqbal, H. Li, S. Bergsma, I. Beschastnikh, and A. J.
Hu. Cospot: A cooperative vm allocation framework for
increased revenue from spot instances. In Proceedings
of the 13th Symposium on Cloud Computing, SoCC ’22,
page 540–556, New York, NY, USA, 2022. Association
for Computing Machinery.

[18] B. Islam and S. Nirjon. Scheduling computational and
energy harvesting tasks in deadline-aware intermittent
systems. In 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages
95–109. IEEE, 2020.

[19] N. Jain, I. Menache, J. Naor, and J. Yaniv. Near-optimal
scheduling mechanisms for deadline-sensitive jobs in
large computing clusters. ACM Transactions on Parallel
Computing (TOPC), 2(1):1–29, 2015.

[20] J. Kadupitige, V. Jadhao, and P. Sharma. Modeling the
temporally constrained preemptions of transient cloud
vms. In Proceedings of the 29th International Sympo-
sium on High-Performance Parallel and Distributed
Computing, HPDC ’20, page 41–52, New York, NY,
USA, 2020. Association for Computing Machinery.

[21] S. Lee, J. Hwang, and K. Lee. Spotlake: Diverse
spot instance dataset archive service. In 2022 IEEE
International Symposium on Workload Characterization
(IISWC), pages 242–255, 2022.

[22] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling
distributed machine learning with the parameter server.
In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 583–598,
Broomfield, CO, Oct. 2014. USENIX Association.

[23] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis,
T. Li, A. Paszke, J. Smith, B. Vaughan, P. Damania, et al.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 197

https://aws.amazon.com/ec2/spot/customers/
https://aws.amazon.com/ec2/spot/customers/
https://cloud.google.com/compute/docs/instances/spot#pricing
https://cloud.google.com/compute/docs/instances/spot#pricing
https://cloud.google.com/compute/docs/instances/spot#pricing
https://cloud.google.com/compute/docs/instances/spot#pricing
https://cloud.google.com/compute/docs/instances/spot#pricing
https://a16z.com/2023/04/27/navigating-the-high-cost-of-ai-compute/
https://a16z.com/2023/04/27/navigating-the-high-cost-of-ai-compute/
https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/
https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/
https://www.oracle.com/cloud/compute/pricing/
https://www.oracle.com/cloud/compute/pricing/
https://github.com/facebookresearch/fairseq/blob/main/examples/roberta/README.pretraining.md
https://github.com/facebookresearch/fairseq/blob/main/examples/roberta/README.pretraining.md
https://github.com/facebookresearch/fairseq/blob/main/examples/roberta/README.pretraining.md
https://www.vantage.sh/cloud-cost-report/2023-q1
https://www.vantage.sh/cloud-cost-report/2023-q1

Pytorch distributed: Experiences on accelerating data
parallel training. Proceedings of the VLDB Endowment,
13(12), 2019.

[24] R. Liaw, R. Bhardwaj, L. Dunlap, Y. Zou, J. E. Gonzalez,
I. Stoica, and A. Tumanov. Hypersched: Dynamic
resource reallocation for model development on a
deadline. In Proceedings of the ACM Symposium on
Cloud Computing, pages 61–73, 2019.

[25] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gon-
zalez, and I. Stoica. Tune: A research platform for
distributed model selection and training. arXiv preprint
arXiv:1807.05118, 2018.

[26] H. Liu, Q. Zeng, J. Zhou, A. Bartlett, B.-A. Wang,
P. Berube, W. Tian, M. Kenworthy, J. Altshul, J. R. Nery,
H. Chen, R. G. Castanon, S. Zu, Y. E. Li, J. Lucero, J. K.
Osteen, A. Pinto-Duarte, J. Lee, J. Rink, S. Cho, N. Emer-
son, M. Nunn, C. O’Connor, Z. Yao, K. A. Smith, B. Tasic,
H. Zeng, C. Luo, J. R. Dixon, B. Ren, M. M. Behrens,
and J. R. Ecker. Single-cell dna methylome and 3d
multi-omic atlas of the adult mouse brain. bioRxiv, 2023.

[27] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019.

[28] L. Luo, P. West, P. Patel, A. Krishnamurthy, and L. Ceze.
Srifty: Swift and thrifty distributed neural network
training on the cloud. Proceedings of Machine Learning
and Systems, 4:833–847, 2022.

[29] A. Marathe, R. Harris, D. K. Lowenthal, B. R. de Supin-
ski, B. Rountree, and M. Schulz. Exploiting redundancy
and application scalability for cost-effective, time-
constrained execution of hpc applications on amazon
ec2. IEEE Transactions on Parallel and Distributed
Systems, 27(9):2574–2588, 2015.

[30] I. Menache, O. Shamir, and N. Jain. On-demand, spot, or
both: Dynamic resource allocation for executing batch
jobs in the cloud. In 11th International Conference
on Autonomic Computing (ICAC 14), pages 177–187,
Philadelphia, PA, June 2014. USENIX Association.

[31] S. Mitchell, M. O’Sullivan, and I. Dunning. PuLP: A
Linear Programming Toolkit for Python. 2011.

[32] R. O. Nambiar and M. Poess. The Making of TPC-DS.
In Proceedings of the 32nd International Conference
on Very Large Data Bases, VLDB ’06, page 1049–1058.
VLDB Endowment, 2006.

[33] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phan-
ishayee, and M. Zaharia. Analysis and exploitation
of dynamic pricing in the public cloud for ml training.

In Workshop on Distributed Infrastructure, Systems,
Programming, and AI, August 2020.

[34] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng,
D. Grangier, and M. Auli. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of the
2019 Conference of the North American Chapter of the
Association for Computational Linguistics (Demonstra-
tions), pages 48–53, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics.

[35] D. Poola, K. Ramamohanarao, and R. Buyya. Fault-
tolerant workflow scheduling using spot instances on
clouds. Procedia Computer Science, 29:523–533,
2014. 2014 International Conference on Computational
Science.

[36] A. Sergeev and M. Del Balso. Horovod: fast and easy
distributed deep learning in tensorflow. arXiv preprint
arXiv:1802.05799, 2018.

[37] J. Thorpe, P. Zhao, J. Eyolfson, Y. Qiao, Z. Jia, M. Zhang,
R. Netravali, and G. H. Xu. Bamboo: Making pre-
emptible instances resilient for affordable training of
large DNNs. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
497–513, Boston, MA, Apr. 2023. USENIX Association.

[38] J. Thorpe, P. Zhao, J. Eyolfson, Y. Qiao, Z. Jia, M. Zhang,
R. Netravali, and G. H. Xu. Bamboo: Making pre-
emptible instances resilient for affordable training of
large DNNs. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
497–513, Boston, MA, Apr. 2023. USENIX Association.

[39] P. Varshney and Y. Simmhan. Autobot: Resilient and
cost-effective scheduling of a bag of tasks on spot vms.
IEEE Transactions on Parallel and Distributed Systems,
30(7):1512–1527, 2019.

[40] M. Wagenländer, L. Mai, G. Li, and P. Pietzuch. Spotnik:
Designing distributed machine learning for transient
cloud resources. In Proceedings of the 12th USENIX
Conference on Hot Topics in Cloud Computing, pages
4–4, 2020.

[41] S. Wang and M. Casado. The Cost of Cloud, a
Trillion Dollar Paradox. https://a16z.com/2021/
05/27/cost-of-cloud-paradox-market-cap-
cloud-lifecycle-scale-growth-repatriation-
optimization.

[42] F. Yang, B. Pang, J. Zhang, B. Qiao, L. Wang, C. Cou-
turier, C. Bansal, S. Ram, S. Qin, Z. Ma, I. n. Goiri,
E. Cortez, S. Baladhandayutham, V. Rühle, S. Rajmohan,
Q. Lin, and D. Zhang. Spot virtual machine eviction pre-
diction in microsoft cloud. In Companion Proceedings

198 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization

of the Web Conference 2022, WWW ’22, page 152–156,
New York, NY, USA, 2022. Association for Computing
Machinery.

[43] F. Yang, L. Wang, Z. Xu, J. Zhang, L. Li, B. Qiao,
C. Couturier, C. Bansal, S. Ram, S. Qin, Z. Ma, I. n. Goiri,
E. Cortez, T. Yang, V. Rühle, S. Rajmohan, Q. Lin, and
D. Zhang. Snape: Reliable and low-cost computing with
mixture of spot and on-demand vms. In Proceedings of
the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems,Volume 3,ASPLOS 2023,page 631–643,New York,
NY, USA, 2023. Association for Computing Machinery.

[44] Z. Yang, Z. Wu, M. Luo, W.-L. Chiang, R. Bhardwaj,
W. Kwon, S. Zhuang, F. S. Luan, G. Mittal, S. Shenker,
and I. Stoica. SkyPilot: An intercloud broker for sky
computing. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
437–455, Boston, MA, Apr. 2023. USENIX Association.

[45] M. Zafer, Y. Song, and K.-W. Lee. Optimal bids for
spot vms in a cloud for deadline constrained jobs. In
2012 IEEE Fifth International Conference on Cloud
Computing, pages 75–82, 2012.

[46] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust,
A. Dave, X. Meng, J. Rosen, S. Venkataraman, M. J.
Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and
I. Stoica. Apache spark: A unified engine for big data
processing. Commun. ACM, 59(11):56–65, oct 2016.

[47] Q. Zhang, P. Bernstein, D. S. Berger, B. Chandramouli,
B. T. Loo, and V. Liu. Compucache: Remote computable
caching using spot vms. In Conference on Innovative
Data Systems Research (CIDR 2022), January 2022.

A Appendix
A.1 Spot Availability and Preemption Traces

In Section 2.2, we highlighted the variability in spot
availability across four out of nine AWS availability zones.
For a comprehensive view, Figure 17 presents data for all nine
zones. It demonstrates the fluctuations in spot availability both
across zones and over time.
A.2 Proofs for Theoretical Analysis

In this section, we show the detailed proofs for the theorems
and statements in our theoretical analysis (§4).
A.2.1 Worst Case with Competitive Analysis

We first prove Theorem 1 (see §4.1), which states that a
deterministic policy cannot perform better than the greedy
policy in competitive analysis.
Theorem 1. For any deterministic policy P, c≥k−O(d).

Proof. Since the policy P is deterministic, the adversary can
choose spot availability as follows. It makes the spot available
only when P starts using on-demand or R(t)=C(t)+d. If P

switches to the spot, the adversary waits for d units of time,
then preempts the spot, so P makes no progress on any spot
instances, i.e., must use at least C(0) units of on-demand.

With that adversary,we examine P have to use all on-demand
while omniscient policy can finish the job with all spots. Con-
sider the first time t ′, where R(t ′) =C(t ′)+d. Over t ′ ≤ t ≤
R(0), P cannot switch to spot, but the omniscient policy could
as it knows the spot will remain available, i.e., P makes C(t ′)
progress on on-demand, while omniscient is on spot. Next, P
must have accumulated the C(0)−C(t ′) before t ′. Due to the
adversary, any work accumulated before t ′ should be on on-
demand when a spot is available. Thus, the omniscient policy
can makeC(0)−C(t ′) of progress on those spots before t ′.

We now show the proof for Theorem 2, i.e., the competitive
ratio for randomized shifted greedy (RSF) policy is bounded
and lower than greedy.
Theorem 2. If R(0)≥2C(0), then for RSF policy has c<k.

Proof. By ignoring the terms of O(d), at any time t before the
last split, at least one of the policies is looking to use a spot
(as shown in Figure 5), so any available spot is used for at least
half of the time. Thus, except for the last C(0)/n progress, at
least half of the remaining progress is done on spot instances:

c≤(
1
n
+

1−1/n
2

)k+
1−1/n

2
+O(d)=

k+1
2

+
k−1
2n

+O(d)<k

A.2.2 Average Case with Stochastic Model
In §4.2, we inferred that the expected payment (total cost), p,

for greedy policy in the stochastic model decreases (lower the
better) when the time t ′ spent on the fractional spot increases.
Consider spot fraction R as a random variable with mean r
and variance v. We now prove that the expected time spent on
the fraction spot E[t ′] increases when v increases, i.e., larger
v indicates lower expected cost.

Proof. Let R =r+δ. Based on (2), we have E[t ′]:

E[t ′]=E[
R(0)−C(0)
1−(r+δ)

]=
R(0)−C(0)

1−r
E[1+

δ

1−r
+

δ2

(1−r)2 +···]

where the second equation is derived from Taylor expansion
for δ→0. By construction, E[δ]=0 and E[δ2]=v>0. When
we take the first three terms, we get an approximation:

E[t ′]=
R(0)−C(0)

1−r
(1+

v
(1−r)2)

We calculate the difference of the expected time on the
fractional spot E[t ′] for policies with variance v1 and v2

∆=
R(0)−C(0)
(1−r)3 (v1−v2)

Since ∆>0 when v1>v2, we can conclude that E[t ′] increases
with the variance v.

A.3 Partial Lookahead Omniscient Formulation
Instead of minimizing the total cost for the progress, in

Partial Lookahead Omniscient policy, a job can make more
progress than it is assigned in each slice and reduce the
computation time required in the next slice by the additional

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 199

02/17 02/19 02/22 02/24 02/27 03/01

us-east-2b

us-east-2a

us-east-1f

us-east-1d

us-east-1c

us-east-1a

us-west-2c

us-west-2b

us-west-2a

0% 20% 40% 60% 80% 100%

us-east-2b

us-east-2a

us-east-1f

us-east-1d

us-east-1c

us-east-1a

us-west-2c

us-west-2b

us-west-2a

Figure 17: Spot availability is highly unpredictable and volatile. Traces are across nine AWS zones collected.

progress made. Therefore, we modify the ILP formula for the
Omniscient policy with the following formula for a slice i to
minimize the average cost of the progress made in that slice:

min
s(t>ti−1),v(t>ti−1)

ti

∑
t=ti−1

[s(t)+v(t)k]/Pi (11)

∀t, s(t)+v(t)≤1, s(t)≤a(t) (12)

Pi=
ti

∑
t=ti−1

[s(t)+v(t)]−d
ti

∑
t=ti−1+1

(x(t)+y(t)) (13)

Pi≥
iC(0)

n
−

i−1

∑
j=1

Pj (14)

i

∑
j=1

Pi≤C(0) (15)

∀t, x(t)≤s(t), x(t)≤1−s(t−1), x(t)≥s(t)−s(t−1) (16)
∀t, y(t)≤v(t), y(t)≤1−v(t−1), y(t)≥v(t)−v(t−1) (17)

where the (13) ensures the total progress at the end of the slice
is at least cp(ti)≥ iC(0)/n, and the (15) avoids making more
total progress than the job computation time.
A.4 Deadline for Changeover Delay Extension

In §5.6, we relaxed the model to account for the variations of
the changeover delay. We now prove that with the extension, the
deadline guaranteed by all policies should be R(0)+2(d̂−d).

Proof. With the assumptions, all variance of changeover delay
will be directly reflected in C(t).

We consider the last moment a job is idle before it finishes
(at time t), there are three cases:

1. R(t) > C(t) + 2d: Safety Net Rule should never be
triggered, causing the maximum time the job finishes to
be R(0)−R(t)+C(t)+d̂<R(0)+d̂−2d.

2. R(t) =C(t)+2d: Safety Net Rule kicks in at t +ε, and
the guaranteed deadline should be R(0)−R(t)+C(t)+d̂,
i.e., R(0)+d̂−2d.

3. R(t) < C(t) + 2d: It means the job was on a spot
instance and got preempted. In this case, at the time
t ′ the job jumped onto the spot instance, we have
R(t ′) ≥ C(t ′) + 2d. Thus, the worst case for the
guaranteed deadline would be the job experience
two maximum changeover delays, once for jumping
onto a spot, and once for jumping onto an on-demand

0

25

50

C
os

ts
av

in
gs

(%
) us-west-2b (0.90) us-west-2c (0.89) us-west-2a (0.88)

0

25

50

C
os

ts
av

in
gs

(%
) us-east-2a (0.76) us-east-2b (0.68) us-east-1f (0.59)

0.6 0.8
Job Fraction

0

25

50

C
os

ts
av

in
gs

(%
) us-east-1c (0.47)

0.6 0.8
Job Fraction

us-east-1d (0.45)

0.6 0.8
Job Fraction

us-east-1a (0.17)

Greedy Omniscient Uniform Progress (Ours)

Omniscient (8 slices) Uniform Progress (w. next spot oracle)

Figure 18: Cost Savings against on-demand instance for
different policies on 2 months of spot availability traces.

instance. That said, the bound for the finish time would
be R(0)−R(t ′)+C(t ′)+2d̂≤R(0)+2(d̂−d).

Combining the three cases, the bound for the deadline
guaranteed should be R(0)+2(d̂−d)

A.5 Performance on 2-month Availability Traces
Various Deadlines. Figure 18 shows the cost savings of differ-
ent policies we consider on the 2-month spot availability trace.
Similar conclusions as §6.3 can be drawn from the figure that
our Uniform Progress has a much lower gap to the Omniscient
policy, with similar performance as the Partial Lookahead
Omniscient policy in various cases, including loose and tight
deadline as well as low and high spot fraction. The Next Spot
Lifetime Oracle improves our Uniform Progress even further
making the performance approach to the theoretical optimum.
Impact of Spot Fraction and Deadline. Figure 20 compares
the cost saving difference of the policies against Omniscient
policy on 2-month spot availability traces. Similar conclusions
as in §6.4 can be drawn that Uniform Progress consistently
outperforms greedy policy in all the scenarios, and applying

200 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

25

50

C
os

ts
av

in
gs

(%
) us-west-2b (0.90) us-west-2c (0.89) us-west-2a (0.88)

0

25

50

C
os

ts
av

in
gs

(%
) us-east-2a (0.76) us-east-2b (0.68) us-east-1f (0.59)

0.2 0.4
Delay (hours)

0

25

50

C
os

ts
av

in
gs

(%
) us-east-1c (0.47)

0.2 0.4
Delay (hours)

us-east-1d (0.45)

0.2 0.4
Delay (hours)

us-east-1a (0.17)

Greedy Omniscient Uniform Progress (Ours)

Omniscient (8 slices) Uniform Progress (w. next spot oracle)

Figure 19: Cost savings against on-demand instances for
different changeover delays.

Spot: Low
Deadline: Loose

0

10

20

30

40

C
os

td
iff

er
en

ce
to

O
m

ni
sc

ie
nt

(%
)

10 9
5

3

Spot: Low
Deadline: Tight

10 10
6

2

Spot: High
Deadline: Loose

5 6
4 3

Spot: High
Deadline: Tight

13
11

7

2

Greedy
Time Sliced (Best #slices)

Uniform Progress (Ours)
Uniform Progress (w. next spot oracle)

Figure 20: Cost difference compared to the Omniscient
policy (normalized by on-demand cost, lower is better). It
is on 2-month availability traces starting from 2/15/2023,
aggregated on 300×9=2700 sampled traces.

Next Spot Lifetime Oracle further increases the cost savings.
Different Changeover Delays. We also evaluate the per-
formance of the policies for different changeover delays on
the 2-month availability trace. Figure 19 illustrates that our
policy performs consistently better than the greedy policy
for different changeover delays. Similarly as §6.5, the gap of
Uniform Progress to the Omniscient policy increases while
the Next Spot Lifetime Oracle helps it regain the advantage.
A.6 Setup of Real Workloads

We benchmark all policies on real workloads in §7.2. We
describe detailed setups of the workloads in this section.
Machine Learning Training. We consider pre-training a
RoBERTa [27] model on a subset of Wikipedia, WikiText-103,
with a V100 GPU instance (p3.2xlarge) on AWS. We follow
the configuration of FairSeq’s reproduction [7, 34] to train the
model for around 110 epochs (each takes about 40 minutes).

To be fault-tolerant, we checkpoint the model weights twice
per epoch to a cloud object store (AWS S3). The average
progress loss and the time to reload the model into GPU are
included in the changeover delay.
Bioinformatics. We run a bioinformatics workload of map-
ping DNA cells of sequencing data [26] on GCP. The workload
has 90 independent tasks, each with a relatively short duration
(15 minutes). Each task requires a powerful multi-core CPUs
for parallelization. We use GCP’s latest C3 generation of com-
pute instance, c3-highcpu-88. In this workload, interrupted
tasks need to be recomputed entirely after recovery. We use the
average task duration as the changeover delay (see Table 4).
Data Analytics. We run Apache Spark [46] (v3.2.0) on a
widely-used benchmark, TPC-DS [32]. We use scale factor
1000 to generate 300 GB of data on a 64-core CPU instance
(r5.16xlarge). The data is stored on a persistent disk, which
is attachable for future instances. We run all queries 10 times.
Similar to the bioinformatics workload, each query needs to
start over if interrupted. We add a weighted average of query
runtimes (7 mins) as progress loss into the changeover delay.
A.7 Extending to Multiple Instances

We extend Omniscient policy to gang-scheduling jobs with
multiple instances as mentioned in §5.5.
A.7.1 Omniscient policy

We extend Omniscient’s ILP (6) to multiple instances.
A.7.2 Omniscient with homogeneous clusters.

We first extend the formula for the homogeneous cluster
case, where all instances in a cluster with N instances should
be the same type (all spot, all on-demand, or none). We revise
the semantics of the original variables:

• a(t): the number of spot instances available at time t.
• s(t), v(t) indicate the policy chooses to use all spot or all

on-demand for the cluster at time t.
• x(t), y(t) represent the changeover delay that happens

to the spot/on-demand cluster at time t.
The Omniscient policy with the same instance type can be

represented as:

min
s(t),v(t)

R(0)

∑
t=0

N[s(t)+v(t)k] (18)

∀t, s(t)+v(t)≤1, s(t)≤a(t)/N (19)
R(0)

∑
t=0

[s(t)+v(t)]≥d
R(0)

∑
t=1

(x(t)+y(t))+C(0) (20)

∀t, x(t)≤s(t), x(t)≤1−s(t−1), x(t)≥s(t)−s(t−1) (21)
∀t, y(t)≤v(t), y(t)≤1−v(t−1), y(t)≥v(t)−v(t−1) (22)

A.7.3 Omniscient with heterogeneous clusters.
We further generalize the Omniscient policy to support

heterogeneous clusters, allowing a mix of spot and on-demand
instances in a cluster. This is the theoretical upper bound of the
cost saving we can achieve under the problem setting in §5.5.
We update the definition of variables as follows:

• s(t), v(t): the number of spot and on-demand instances
in the cluster at time t.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 201

Spot: Low
Deadline: Loose

0

10

20

30

C
os

td
iff

er
en

ce
to

O
m

ni
sc

ie
nt

(%
)

8
5 3

1

Spot: Low
Deadline: Tight

7 6
3

0

Spot: High
Deadline: Loose

11

7 5
1

Spot: High
Deadline: Tight

13
9 9

3

Greedy
Uniform Progress (Ours)

Uniform Progress (w. next spot oracle)
Omniscient (Homogenous)

Figure 21: Cost savings for gang-scheduling jobs on 16-
instance clusters, compared against theoretical upper bound
(Omniscient policy allowing heterogeneous clusters). Uniform
Progress consistently outperforms greedy policy.

• p(t): whether the cluster is UP at time t.
• z(t): whether changeover delay is triggered at time t.
• m(t), n(t), j(t), k(t): intermediate binary variables.
The following is the Omniscient policy for multi-nodes

with gang scheduling.

min
s(t),v(t)

R(0)

∑
t=0

[s(t)+v(t)k] (23)

∀t, s(t)+v(t)−N ·p(t)=0, s(t)≤a(t) (24)
R(0)

∑
t=0

[s(t)+v(t)]≥d
R(0)

∑
t=1

z(t)+C(0) (25)

∀t, s(t)−s(t−1)≤N ·z(t) (26)
∀t, v(t)−v(t−1)≤N ·z(t) (27)

∀t, m(t)≤s(t)−s(t−1)+(N+1)· j(t) (28)
∀t, m(t)≤s(t−1)−s(t)+(N+1)·(1− j(t)) (29)

∀t, n(t)≤v(t)−v(t−1)+(N+1)·k(t) (30)
∀t, n(t)≤v(t−1)−v(t)+(N+1)·(1−k(t)) (31)

∀t, z(t)≤m(t)+n(t) (32)

(26) and (27) set z(t) = 1, when either the number of spot
or on-demand increases in the cluster; (28) to (32) enforces
z(t)=0 when s(t)= s(t−1)∧v(t)=v(t−1), i.e., the number
of spot or on-demand used by the job does not change. That
said, (26) to (32) make sure z(t) = 1 iff changeover delay
happens at time t.
A.7.4 Cost Savings on 16 Instances

We scale up the experiments to 16 instances using real
spot preemption traces. In Figure 21, we can observe that the
homogeneous cluster constraint only has negligible influence
on the Omniscient policy on 16-instance clusters, which is also
because the spot market is efficient enough, similar availability
of all the 16 instances in a cluster. Our Uniform Progress still
outperforms greedy policy on all 4 different scenarios with
a smaller gap to the best cost savings a system can achieve.
A.8 Loose Deadline

In this paper, we mainly discuss policy design for jobs with
relatively tight deadlines, as very loose deadlines will likely

0

20

40

60

C
os

ts
av

in
gs

(%
)

1xK80
spot frac: 0.95

1xV100
spot frac: 0.68

1xV100
spot frac: 0.60

8xK80
spot frac: 0.59

.25 .5 .75
Job Fraction

0

20

40

60

C
os

ts
av

in
gs

(%
)

8xK80
spot frac: 0.55

.25 .5 .75
Job Fraction

8xV100
spot frac: 0.34

.25 .5 .75
Job Fraction

8xV100
spot frac: 0.33

.25 .5 .75
Job Fraction

1xK80
spot frac: 0.25

Greedy
Omniscient

Uniform Progress (Ours)
Uniform Progress (w. switch point)

Figure 22: Cost savings for policies with very loose deadlines.

0

20

40

60

C
os

ts
av

in
gs

(%
)

1xK80 (0.95) 1xV100 (0.68) 1xV100 (0.60) 8xK80 (0.59)

3 25 50
Compute (hr)

0

20

40

60

C
os

ts
av

in
gs

(%
)

8xK80 (0.55)

3 25 50
Compute (hr)

8xV100 (0.34)

3 25 50
Compute (hr)

8xV100 (0.33)

3 25 50
Compute (hr)

1xK80 (0.25)

Greedy
Omniscient

Uniform Progress (Ours)
Uniform Progress (w. next spot oracle)

Figure 23: Cost savings with various job computation time.
Job fraction (computation time/deadline) is set to 85%.

lead to jobs able to finish on spot instances only. As mentioned
in §6.1, when a loose deadline is given, a job can utilize spot
instances whenever available until timestamp t0, when the
remaining time to deadline R(t0) becomes tight compared
to the job progress C(t0), and apply the policy. We conduct
experiments for loose deadlines, by setting the switch point
at C(t0)

R(t0)
=0.7.

In Figure 22, we can see that greedy policy gets close to the
upper bound of the cost savings for very loose deadlines, as
jobs are likely to be able to finish on spot instances only. It is
worth noticing that job fraction 0.25 represents the deadline

202 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

is 4x longer than the job duration. By allowing jobs to utilize
as many spot instances as possible when the remaining time is
abundant, all policies perform similarly in cases where loose
deadlines are given.
A.9 Various Job Computation Time

We compare the cost savings for the policies across
different job computation times with the same job fraction
85% in Figure 23. When job computation time is very
small (comparable to the changeover delay), all policies’
cost savings drop quickly, as switching between spot and
on-demand instances is not worth the cost caused by the
changeover delay. However, when the job computation time
increases, there is more optimization opportunity for the
policies, as more changeover delay can be tolerated, leading
to a larger gap between Uniform Progress and greedy policy.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 203

Towards Intelligent Automobile Cockpit via A New Container Architecture∗

Lin Jiang†

Xi’an Yunzhiji Technology, China
pppaass@163.com

Feiyu Zhang
Xi’an Yunzhiji Technology, China

1123022283@qq.com

Jiang Ming†

Tulane University, USA
jming@tulane.edu

Abstract
An intelligent cockpit is now crucial in automobiles, not

just to provide digital instrumentation and in-vehicle controls
but also to offer a wide range of entertainment functional-
ities. To cater to the demands of these intelligent vehicles,
the automotive industry starts employing virtualization tech-
nology to offer a unified hardware and software architecture
that can simplify system management and enhance resource
utilization. Particularly in the domain of intelligent cockpits,
virtualization can tightly integrate systems with different crit-
icality levels (e.g., safety and real-time) on a single hardware
platform, improving inter-system communication quality and
the timely response to user-initiated requests. Currently, mi-
crohypervisor virtualization has been used in production to
achieve intelligent automobile cockpit. However, in addition
to the performance concern and high production costs, this
solution is suffering from the global shortage of chips capable
of running microhypervisor systems.

Our key insight is that, most functions within intelligent
cockpit systems are non-safety-critical and non-real-time mul-
timedia tasks. Based on this characteristic, in this paper we
present AutoVP, a new cockpit virtualization architecture. The
hardware foundation of AutoVP consists of two low-cost
chips: 1) a consumer-grade System-on-Chip (SoC) multi-core
processor as the main chip; 2) a typical automotive-grade
Microcontroller Unit (MCU) as the auxiliary chip. The MCU
auxiliary chip is responsible for hosting real-time and safety-
critical tasks, while the SoC main chip primarily handles mul-
timedia tasks, such as entertainment systems and digital instru-
mentation. Further more, we construct an Android container
virtual environment on the SoC main chip. This environment
integrates multiple media functions onto a single chip, result-
ing in efficient utilization of chip computational resources
and high system scalability. Our comparative performance
evaluation demonstrates that AutoVP is a cost-effective and
efficient solution to build intelligent cockpits.

*Operational Systems Track
†Corresponding authors.

1 Introduction

The automotive electrical and electronic systems comprise
hundreds of sensors, actuators, and Electronic Control Units
(ECUs). These units are responsible for running various
subsystems, such as instrumentation, entertainment, and ad-
vanced driver assistance systems. They collaborate while re-
maining relatively independent, ensuring the highest level of
performance, safety, and functionality. Today’s automobiles
are approaching the limits of their complexity. In the future,
the automotive industry will provide always-connected vehi-
cles, operating advanced autonomous driving functions and
an increasing array of cutting-edge applications. In this envi-
ronment, both the hardware and software components within
vehicles are experiencing exponential growth in line with the
increasing number of applications, leading to an explosion in
the complexity of vehicle architectures [1]. Furthermore, the
proliferation of connectivity and applications also results in a
larger attack surface [2]. This distributed computing architec-
ture is making automotive electrical and electronic systems
increasingly bulky, with challenges emerging in wiring, ther-
mal management, and power distribution [3].

A promising approach to address the aforementioned prob-
lem involves the adoption of a virtualization solution. Virtu-
alization primarily serves the purpose of integrating multi-
ple business subsystems that originally operated on different
ECUs [4, 5], thus reducing software and hardware costs, and
shortening product time-to-market. At the beginning of the
21st century, this technology was first adopted as a centralized
software technique for avionics systems [6]. Nowadays, sev-
eral commercial virtualization solutions in the market have
achieved significant success in safety-critical applications,
including aerospace, national defense, and healthcare. There
is currently a drive to promote virtualization as the preferred
integrated solution within the automotive electrical and elec-
tronic architecture [1].

In the automotive landscape, vehicles can be categorized
into various functional domains, including the Powertrain
domain, Chassis domain, Body/Comfort domain, Cockpit/In-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 205

fotainment domain, and Autonomous Driving domain [7].
The Cockpit/Infotainment domain encompasses both safety-
critical tasks such as instrumentation and driver assistance, as
well as non-critical multimedia entertainment functions like
central control and heads-up displays. These subsystems op-
erate relatively independently while collaborating, interacting
directly with users to provide intelligent experiences [8, 9].
By employing a centralized virtualization solution to inte-
grate multiple subsystems within the Cockpit/Infotainment
domain, it can reduce costs, enhance collaborative processing
efficiency, and optimize user experience.

Currently, commercial intelligent cockpit virtualization
products are dominated by the hypervisor-based solution [10,
11], such as QNX Hypervisor [12], INTEGRITY Multivi-
sor [13], and PikeOS Hypervisor [14]. They enable the opera-
tion of multiple virtual systems on a single set of hardware
(e.g., ECU), with each virtual system running in a relatively
independent virtual environment, hosting different functions.

These vehicle hypervisor solutions typically adopt a micro-
kernel architecture [15, 16]. However, compared with user-
attractive Android applications, microkernel architecture has
a notable drawback, namely the absence of a rich software
ecosystem [17–21]. For instance, if the cockpit needs to run
advanced driver assistance systems (ADAS) functions (e.g.,
automated parking), they require support for deep learning,
computer vision, video encoding/decoding, and 3D graphics,
necessitating substantial resource investment for development.
Furthermore, existing hypervisor solutions must handle both
safety-critical tasks and complex multimedia operations, lead-
ing to specific hardware requirements. Consumer-grade SoC
chips or even standard automotive-grade MCU chips fail to
meet these demands. Automotive-grade SoC chips are capa-
ble of accommodating such intricate software systems [22],
but their development entails significant challenges and high
production costs. Even worse, the auto industry is facing a
global shortage of automotive-grade SoC chips [23–25].

We have three observations motivating a new cockpit vir-
tualization design: 1) only a minority of functions within an
intelligent cockpit are safety-critical (e.g., instrumentation and
driver assistance), while the majority of modules classified
as non-critical operations (e.g., all multimedia entertainment
tasks); 2) a typical automotive-grade MCU chip can host
these real-time and safety-critical functions, while a cheap
consumer-grade SoC chip (e.g., smartphone chips) can han-
dle the remaining non-critical functions; 3) these two kinds
of chips are affordable, and they have not been significantly
impacted by recent supply chain shortages. As a result, this
paper presents a cost-effective virtualization architecture for
constructing an intelligent cockpit, called AutoVP.

As shown in Figure 1, AutoVP employs Android container
technology [26, 27] to integrate non-safety-critical subsys-
tems, such as instrument display, central control system, and
passenger entertainment system, into a single entity, which
is deployed on a cheap consumer-grade SoC chip. Container

Consumer-grade SoC (SMP multi-core platform)

Linux Kernel (Real-Time)

Automotive-grade
MCU

Safety Functions

Vehicle Bus

interconnect

Host

AutoVP
Control
Plane

Figure 1: AutoVP’s mixed-criticality decoupled design.

is a lightweight virtualization technology [28–30] that can
efficiently leverages the computational power of the SoC chip
while ensuring the independent operation of each business
subsystem, thereby enhancing service quality. Safety-critical
tasks such as safety monitoring and vehicle bus, are handled
by an automotive-grade MCU chip. Interconnection between
the SoC chip and MCU chip is facilitated through inter-chip
communication technologies, forming a complete intelligent
cockpit system. Please note that AutoVP’s mixed-criticality
decoupled design also complies with automotive functional
safety requirements, as outlined in ISO 26262 [31].

We developed a new Android container framework on top
of Cells [26, 27]. This container imposes no specific hard-
ware requirements and incurs very small virtualization perfor-
mance overhead, making it suitable for widespread deploy-
ment across various low-power SoC chips. Besides, in the
automotive industry, the deployment of safety-critical tasks
using automotive-grade MCU chips is a well-established and
mature method [32]. In addition to container-based virtualiza-
tion, AutoVP’s differences in design also involve monitoring
mechanisms, implementing corrective measures for abnormal
behaviors, and ultimately isolating the safety-critical tasks
from the business functions. Hence, deploying the AutoVP-
powered cockpit system within intelligent vehicles is rela-
tively straightforward.

We compared AutoVP with a commercial hypervisor prod-
uct on the same automotive-grade platform. Our extensive
performance experiments demonstrate that AutoVP incurs
significantly lower performance overhead. When examining
various aspects such as CPU overhead, memory usage, power
consumption, startup time, peripheral performance, and frame
rate, AutoVP’s container outperforms the hypervisor solution.

In a nutshell, we make the following key contributions:

• We propose a mixed-criticality decoupled architecture
to address the need for centralized deployment of vari-
ous business subsystems within the intelligent cockpit
domain, all while offering ease of construction, low pro-
duction costs, and small performance overhead.

• We present a new Android container framework tailed
for intelligent cockpits. Our work represents the latest
progress in mobile container-based virtualization, and it
is an ideal solution to host the non-safety-critical subsys-
tems that require display screens for user interaction.

206 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

• Our evaluation and real-world deployment demonstrate
that AutoVP is a viable in-vehicle virtualization alterna-
tive to mitigate the ongoing automotive chip crisis.

Real-world Deployment AutoVP has been deployed in two
flagship electric vehicle models under a leading automotive
manufacturer.* The installation volume in the past year has
exceeded one million units.
Open Source We have released a prototype of AutoVP’s
container to facilitate reproduction and reuse, as all found at
https://github.com/jianglin-code/AutoVP.

2 Background and Related Work

In this section, we first provide background information on
the evolution of in-car virtualization. We also review existing
approaches for intelligent cockpit virtualization and identify
their limitations, which have prompted our work. Next, we
underline the need of using the Linux container technology
for in-car virtualization. Finally, we introduce the specific
Android container framework that we leverage to implement
AutoVP’s container.

2.1 The Development of In-Car Virtualization
With the emergence of multi-core embedded System-on-Chip
(SoC) devices, the integration of multiple applications with
varying levels of criticality on a single platform has be-
come increasingly popular. This platform is referred to as
a mixed-criticality system, which needs to meet various re-
quirements, including real-time constraints, operating system
(OS) scheduling, and memory/OS isolation [33].

The cockpit system of intelligent vehicles represents a typi-
cal mixed-criticality system. It comprises non-critical subsys-
tems such as entertainment, networking, and voice systems,
as well as safety-critical subsystems like the vehicle bus and
advanced driver assistance systems (ADAS). The non-critical
subsystems often involve multimedia subsystems that rely on
hardware modules for tasks such as display, encoding/decod-
ing, networking, AI, and voice processing. Therefore, these
subsystems are typically deployed on SoC chips to provide
users with a seamless intelligent experience. On the other
hand, safety-critical subsystems must adhere to functional
safety requirements to ensure error-free operation [31]. They
are usually deployed on automotive-grade MCU chips, offer-
ing users a stable safety and automated experience.

A key challenge in the design of mixed-criticality systems
is the isolation of software applications with varying degrees
of criticality on a common hardware platform. In the automo-
tive domain, a common practice for isolating safety-critical
applications is through the proliferation of multiple hardware
Electronic Control Units (ECUs). These control units are

*Until the publication of this paper, we have not been granted authoriza-
tion to disclose the name of the automotive manufacturer.

Automotive-grade SoC (multi-core platform)

Microhypervisor

VMM Fast-Boot Applications

Security Applications

Safety Applications

Real-Time Applications

HostVirtual Machine

Figure 2: In-vehicle microhypervisor architecture.

dedicated to various tasks, including basic operations like
intelligent infotainment, as well as critical functions such
as automated parking and adaptive cruise control. However,
this approach is highly inefficient, as many of the resources
within these ECUs often remain underutilized. However, with
the evolution of multi-core architectures and the introduction
of new hardware extensions such as virtualization, securely
executing multiple applications on the same platform while
reducing costs and vehicle weight to enhance resource utiliza-
tion has become feasible [33].

Virtualization is considered a solution for isolating oper-
ating systems within virtual machines, and its advantages
include cost reduction through the abstraction of the host plat-
form [10]. Additionally, features provided by a hypervisor,
such as the abstraction of memory, CPU, and interrupts, aid
in the isolation of operating systems. This approach, as exem-
plified by commercial products like QNX Hypervisor [12],
INTEGRITY Multivisor [13], and PikeOS Hypervisor [14],
can be applied to create mixed-criticality systems. A common
industry practice is to employ a hypervisor system with a
microkernel architecture to ensure real-time capabilities and
functional safety [15, 19]. We will further discuss the pros
and cons of this approach in §2.2 and §2.3.

Android Automotive [34] is a new vehicle OS based on
Android, designed to run in-vehicle infotainment systems
and pre-installed Android applications. However, Android
Automotive is not a virtualization solution and thus lacks a
mechanism for system isolation. If several different types of
services are running on the same Android Automotive system
at the same time, sharing system resources, such as network,
storage, multimedia, etc., these services will interfere with
each other, affecting the user experience and in-vehicle safety.

2.2 Microkernel + Hypervisor
Embedded systems in vehicles often adopt microkernel-based
operating systems due to their inherent real-time and security
features. Such microkernel OSs are responsible for hosting
safety-critical tasks; besides, they employ hypervisor tech-
niques to run virtual OSs that have a richer software ecosys-
tem, addressing the limitation of their own software ecosys-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 207

https://github.com/jianglin-code/AutoVP

Table 1: Comparison of three in-vehicle chips. The unit prices
displayed represent their median ranges.

Chips Production Unit Supply Chain
Cost Price ($) Shortages?

Automotive-grade SoC High 300∼500 Yes
Consumer-grade SoC Low 70∼150 No

Automotive-grade MCU Minimum 5∼10 No

tem [12–14]. Running this type of software-configured kernel
is referred to as a “microhypervisor,” which combines both
microkernel and hypervisor functionalities [35].

The microhypervisor is responsible for providing resource
containers, execution contexts, scheduling, inter-process com-
munication, and synchronization mechanisms for its user
mode. As shown in Figure 2, the user mode of the micro-
hypervisor can directly run applications, making it suitable
for executing real-time tasks, fast boot tasks, and functional
safety tasks, among others. Furthermore, the user mode of
the microhypervisor can also run virtual machines through a
virtual machine manager, making it suitable for running OSs
with a rich software ecosystem, such as virtual Linux systems.

From a functional safety perspective, because virtual OSs
have a vast software ecosystem that can support complex
hardware for business tasks, while the microhypervisor sys-
tem can directly host safety-critical tasks, this approach is a
feasible design for in-vehicle virtualization. The hypervisor
host domain serves as the guardian of the virtual machine
domain, similar to the role of an independent MCU.

2.3 Limitations of In-Vehicle Microhypervisor
However, in-vehicle microhypervisor solutions present two
significant challenges. One is the requirement for a specific
high-end hardware base, and the other is the performance
of inter-process communication (IPC), which can become a
bottleneck for the entire software-hardware system.

The microkernel can provide verified real-time capabilities
and a minimal trusted computing base for safety-sensitive ap-
plications, thus requiring a hardware platform with safety and
reliability. Furthermore, the microkernel can run complex mul-
timedia and intelligent AI tasks by executing virtual machines.
In this scenario, it demands a hardware foundation with sub-
stantial computational power, abundant peripheral modules
such as display units, GPU modules, AI components, and net-
work modules. Consumer-grade SoC chips lack safety and re-
liability assurances, while automotive-grade MCU chips often
cannot meet the computational and peripheral requirements of
complex multimedia tasks. Typically, automotive-grade SoC
chips are needed to simultaneously run safety-critical and
non-critical tasks. However, as shown in Table 1, the produc-
tion costs of automotive-grade SoC chips are exceptionally
high, and they are currently being adversely affected by global
supply chain shortages [23–25].

Fr
am

eb
uf

fe
r

G
PU

Bi
nd

er

N
et

w
or

ki
ng

...

Device Namespace

Linux Kernel

IPC

Po
w

er

M
an

ag
em

en
t

Root
Namespace

 Virtual Phone 1
(Foreground)

 Virtual Phone 4 Virtual Phone 4
 Virtual Phone 3 Virtual Phone 3
 Virtual Phone 2

(Background)
 Virtual Phone 2

(Background)

 Virtual Phone 4
 Virtual Phone 3
 Virtual Phone 2

(Background)

Figure 3: The overview of Cells [26, 27]. Only the virtual
phone running in the foreground is displayed at any time.

Furthermore, within microkernels, any communication be-
tween different user processes is based on IPC, and this is an
operation-intensive process. For instance, if a client process
writes data to an external block device, it first communicates
with the file system, which then notifies the disk device driver
to write data to the block device. All communication is car-
ried out through IPC. Therefore, IPC performance is a crucial
technical metric for microkernels [36].

2.4 Linux Container for In-Car Virtualization
One way to address the challenges discussed in §2.3 is to com-
bine a consumer-grade SoC chip with an automotive-grade
MCU chip. High-computational tasks like deep learning, com-
puter vision, video encoding/decoding, and 3D graphics run
on the ordinary SoC chip, while critical tasks run on the
MCU chip. This approach not only alleviates the shortages of
automotive-grade SoC chips but also reduces costs. Further-
more, this combined chip structure does not require the use of
a complicated microhypervisor. Instead, the Linux container
technology, together with an independent MCU solution, can
better meet the “one-core, multiple-screen” requirements of
intelligent cockpits [37]. The entire solution involves isolat-
ing non-critical subsystems using the container technology to
ensure software service quality. Simultaneously, it employs a
dedicated MCU chip to host safety-critical tasks.

2.5 Android Container Framework
The Linux container technique used by AutoVP is derived
from the Cells project [26, 27], a lightweight Android virtual-
ization framework. It enables multiple containerized Android

208 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Consumer-grade SoC

...

MEM a-b

CPU 0

Cgroup 0 Cgroup 1 Cgroup 2

Display 0

MEM c-d

CPU 1

...

SPI0

Input 0

Display 1

MEM e-f

CPU 2

Sensor

Wi-Fi

Input 1

...

SPI Driver

VM Namespace 1 VM Namespace 2Root Namespace

AutoVP
Deamon

Qt UI

Qt NATIVE

Qt HAL

CAN Data
Service

Android Frameworks

Android HAL

Android System

APP APP

 Isolation

Safety Monitor

CAN Gateway

…

Sensors

Networks

Binder

safety

real-time

Automotive-grade
MCU

SPI

chroot cgroup namespace MPAM

Software Test
Libraries

VM Namespace 3

Cgroup 3

...

CPU 3

MEM g-h

isolation

Figure 4: Overview of AutoVP’s architecture. AutoVP supports multiple Android containers. For example, both driver and
co-driver can have their own in-vehicle infotainment systems running on isolated Android containers.

instances to run simultaneously on the same mobile device
in an isolated manner. As shown in Figure 3, Cells intro-
duces the concept of foreground and background container
systems, where only one container system is displayed in the
foreground while others operate in the background. Cells im-
plements a new device namespace mechanism and user-level
proxy method, which, in conjunction with Linux namespaces,
allows for the multiplexing of hardware resources across mul-
tiple containerized Android instances while providing nearly
lossless performance.

However, the foreground-background design used by Cells
is not applicable to the automotive application scenario, in
which, each virtual system needs to directly provide services
to users simultaneously; in other words, all virtual systems
must be running in the foreground. Additionally, Cells pri-
marily focuses on how to share hardware resources among
multiple virtual Android systems through software virtual-
ization methods. In contrast, in the automotive application
scenario, the emphasis is on isolating and decoupling multiple
virtual systems and reducing interference between them.

Therefore, the virtualization methods of Cells, such as user-
level proxy and mutual-exclusion use of hardware modules,
may not be applicable in automotive cockpits. Furthermore,
in Cells, all virtual phones share hardware resources such as
CPU and memory. When multiple virtual phones run simulta-
neously, they contend for these resources, leading to mutual
interference. In automotive systems, hardware resources also
need to be forcibly isolated.

3 AutoVP Overview

Figure 4 illustrates the architecture of AutoVP, including the
mixed-criticality decoupled design using two low-cost chips.
The consumer-grade SoC chip runs a root namespace and two
container spaces. The root namespace runs AutoVP’s con-
trol plane (0 in Figure 4), which has a small software stack
primarily responsible for managing the startup, shutdown, re-
source allocation, and isolation functions of container systems.
The other two container spaces are dedicated to instrument
cluster (IC) display and in-vehicle infotainment (IVI) func-
tions, respectively. These container systems have undergone
software-based resource isolation for CPU, memory, and pe-
ripheral resources. Additionally, the separate MCU chip hosts
safety-critical operations, such as safety monitoring and Con-
troller Area Network (CAN bus). Interconnection between the
SoC chip and MCU chip is facilitated through inter-chip com-
munication technologies such as Serial Peripheral Interface
(SPI). AutoVP employs software virtualization techniques for
various devices such as binder, WiFi network, and sensors,
allowing multiple virtual systems to simultaneously utilize
these devices.

The container hosting the instrument cluster display (1 in
Figure 4) consists of the Qt framework abstraction layer [38],
Qt native API, Qt UI, CAN message parsing service, and in-
strument display app. The vehicle data required for the digital
instrumentation comes from the vehicle standard communi-
cation service running on the MCU chip. The instrument
display app on the SoC chip exchanges data with the MCU
chip through the SPI interface (3 in Figure 4). This con-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 209

tainer needs to occupy GPU and display hardware resources
to visualize instrument graphical interfaces.

The second container (2 in Figure 4) runs a complete
Android system. It is responsible for hosting complex in-
vehicle infotainment functions such as high-definition navi-
gation map, voice broadcasting, Bluetooth headset, and WiFi
network services. It also provides smooth interactive func-
tions to respond promptly to user command operations. This
container occupies most of the SoC chip’s hardware resources,
such as GPU, display, WiFi, camera, Bluetooth, and USB.

Both the two containers are configured with independent
touchscreens for user operations. The display and input sub-
systems of the two containers are completely independent.
Please note that AutoVP supports multiple Android contain-
ers. For example, two isolated Android containers (2 vs. 6
in Figure 4) can host separate in-vehicle infotainment systems
for the driver and co-driver, respectively.

For safety-critical functions, AutoVP utilizes a hardware-
based isolation by employing an external MCU chip to host
them (4 in Figure 4). This MCU chip is responsible for run-
ning safety-critical functions such as automotive regulation
communication on an embedded real-time OS, serving as a
guardian system to the main SoC chip.

4 In-Vehicle Container Implementation

The development of an in-vehicle container presents a
plethora of challenges, ranging from intricate hardware re-
source multiplexing to the need for a fine-grained isolation
mechanism, and to interactions with safety-critical tasks. In
this regard, AutoVP has made significant advancements over
the Cells solution [26, 27]† to fulfill the requirements of an
intelligent cockpit. Unlike Cells, AutoVP does not rely on the
foreground-background container system design. Instead, all
container systems operate in the foreground. Therefore, our
approach’s crux is to ensure that these virtual systems operate
independently without interfering with each other.

Compared to Cells, AutoVP’s container mainly differs in
three perspectives: device virtualization methods, isolation,
and monitoring mechanisms. AutoVP’s monitoring mecha-
nism allows for the early detection of potential failures in
complex systems running on the SoC chip. We will introduce
them in the follow-up subsections.

4.1 Device Virtualization Methods
AutoVP’s device virtualization involves a significant work-
load, encompassing various board-level and peripheral de-
vices. In particular, the device virtualization methods can be
summarized as follows.

†Cells’s virtualization methods to many hardware devices (e.g., filesystem,
network, display, and power) have been obsolete since Android 6.0.

Table 2: The list of virtualized devices and services. Virtualiza-
tion method ID: (1) multiple identical devices; (2) kernel-level
device virtualization; (3) user-level device virtualization.

Virtualization Virtualized
Method ID Devices and Services

(1) Display, Input, Audio, Bluetooth

(2) Binder, Power Management, Network
Sensors, GPS, SELinux

(3) WiFi, Adb

1. Multiple Identical Devices: In this approach, the hard-
ware base supports multiple instances of the same type
of device, each serving different virtual systems. For in-
stance, in an automotive cockpit, there may be multiple
touchscreen displays. These displays can be allocated
to different virtual systems by modifying the system
configuration.

2. Kernel-level Device Virtualization: In cases where the
hardware base is equipped with a single device, such as
power management, we made modifications to the kernel
power driver to provide data isolation and multiplexing
capabilities for that hardware module, allowing the hard-
ware module to respond to power control requests from
multiple virtual systems simultaneously.

3. User-level Device Virtualization: In scenarios where vir-
tualization at the kernel level for complex devices is chal-
lenging, like the WiFi module, modifications are made to
the user-level WiFi service process. Then, we implement
a system-level IPC mechanism to enable multiple virtual
systems to share the WiFi functionality provided by the
customized WiFi service process.

AutoVP employs the above methods to conduct specific
device virtualization work, resulting in the list as shown in
Table 2. Simultaneously, in order to meet the requirements of
smart cockpit applications, adjustments have been made to
the virtualization methods of certain modules.
One-Core, Multiple-Screen To fulfill the demand for a “one-
core, multiple-screen” smart cockpit, the SoC chip supports
multiple display interfaces, such as Camera Serial Interface
and DisplayPort, allowing the system to connect to multiple in-
dependent touchscreens. We configure separate touchscreens
for both the IC display container (1 in Figure 4) and the IVI
container (2 in Figure 4) to accommodate user interactions.
The display and input subsystems of these two containers are
entirely independent.
Inter-system Communication Within the automotive cock-
pit, multiple touchscreens are positioned in close proximity.
This configuration necessitates frequent collaboration among
these screens, such as sharing map services from the driver’s
in-vehicle infotainment (IVI) system to the instrument display
screen or sharing a video between the driver’s IVI and the

210 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

co-driver’s IVI systems. Therefore, the inter-system commu-
nication mechanism becomes pivotal.

AutoVP achieves this by virtualizing the binder IPC mech-
anism [39], ensuring that each virtual machine (VM) has its
own virtual binder node. The binder driver is a pseudo device
in the kernel and does not correspond to any actual hardware.
We modify the binder driver so that each VM has its own
independent set of data structures within the binder driver;
these binder data structures for different VMs do not interfere
with each other. Furthermore, we introduce a routing and for-
warding mechanism, adding “bridges” between virtual binder
nodes, making it easier for virtual machines to access each
other’s functional services. The virtual binder routing and
forwarding mechanism effectively meets the requirements for
inter-VM screen casting and data transmission. For instance,
AutoVP provides compositor image stacking services in the
IC display container, allowing the IVI container to access
the compositor service to project navigation maps onto the
instrument cluster display screen, thereby enhancing the user
experience.

4.2 Isolation Mechanisms
As an intelligent cockpit system, ensuring an isolation among
different functions is imperative to prevent interference be-
tween them. AutoVP achieves the isolation of various busi-
ness subsystems through several mechanisms within the host
system. First, it employs the chroot mechanism to isolate
the file system environment, thereby separating the software
stacks of each business subsystem. Second, it utilizes the
cgroups mechanism to allocate system hardware resources
such as CPU, memory, and peripherals, ensuring that high-
priority tasks have independent resources to execute critical
functions. Third, AutoVP employs the namespace mechanism
to segregate the kernel resources of different systems, effec-
tively hiding them from each other, thereby reducing inter-
system coupling and ensuring minimal interference among
the various business subsystems. Additionally, it leverages
the new MPAM (Memory System Resource Partitioning and
Monitoring) feature [40] to dynamically isolate resources like
cache and memory bandwidth, thus mitigating performance
interference between different workloads at the hardware level
and ensuring stable performance for high-priority tasks.
Cgroups AutoVP employs the cgroup mechanism [41] to iso-
late the hardware resources utilized by each business subsys-
tem, thus reducing coupling and interference between these
subsystems (5 in Figure 4). For instance, the cpuset subsys-
tem is used to allocate independent CPU cores and memory
nodes to task groups; the memory subsystem is employed
to allocate memory usage to task groups, and the devices
subsystem is utilized to allocate peripheral resources to task
groups. AutoVP, taking into account the characteristics of
each business subsystem, engages in precise management of
the hardware resources consumed by these subsystems. This

resctrl

PARTID CPBM

0 0

1 70%

2 30%

PARTID MB Fraction

0 5%

1 15%

2 80%

Instrument Cluster
Display Group

PARTID PMG

In-Vehicle
Infotainment Group

PARTID PMG

Cache Memory

MSC

Memory Controller

MSC

Figure 5: MPAM utilizes PARTID (Propagation of a Parti-
tion ID) and PMG (Performance Monitoring Group) to label
business groups, and it employs MSC (Memory-System Com-
ponent) configuration list for various hardware modules.

Table 3: Cache and memory bandwidth allocation strategies
for various business subsystems.

Business Subsystem Cache Memory Bandwidth

Instrument Cluster Display 70% 15%
(1 in Figure 4)

In-Vehicle Infotainment 30% 80%
(2 in Figure 4)

Root Namespace 0 5%
(0 in Figure 4)

prevents resource contention among the business subsystems
during their operation, thereby avoiding mutual interference.
For example, in certain scenarios where the IVI container (2
in Figure 4) plays multiple videos, consuming a significant
amount of memory resources, this might lead to memory star-
vation in the IC display functions running in 1 of Figure 4.
By implementing resource isolation through the cgroup mech-
anism, AutoVP effectively ensures the long-term stability and
robust operation of each business subsystem.
Namespace AutoVP utilizes the namespace mechanism [42]
to isolate the kernel resources of each system, such as pro-
cesses, networking, file systems, and driver data. This separa-
tion allows multiple business subsystems to hide from each
other, reducing coupling between subsystems and striving to
ensure the independent operation of each business subsystem
without mutual interference. For instance, it becomes possible
to halt a specific business subsystem without affecting the
normal operation of other business subsystems.
MPAM MPAM (Memory System Resource Partitioning and
Monitoring) is a new feature introduced in ARM v8 [43],
enabling the allocation and monitoring of resources such as
cache, memory bandwidth, and SMMU (System Memory
Management Unit). This feature, operating at the hardware

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 211

Userspace

Kernel

Key-Entity A

System APIs

Key-Entity B

open
read
write

close ...

Filesystems
file 1
file 2
dir 1

node 1 ...

Computing Network
CPU

MEM

Key-Entity C

CAN-SPI
LIN-SPI

SoC

kCollectD

Electrical
Characteristics

Frequency
Temperature

Voltage

GPU

FLASH

Safety Monitor

Embeded RTOS

MCU

Figure 6: The kernel kCollectD module periodically collects data related to critical entities’ interactions with kernel resources
and hardware characteristics. This data is then stored in an external flash memory. The Safety Monitor module running on the
MCU chip analyzes the data stored in the flash memory and provides a determination or assessment.

level, reduces the interference between different workloads,
ensuring the stability of high-priority task performance.

AutoVP leverages the hardware feature of MPAM to dy-
namically isolate resources at runtime for various business
subsystems. For instance, cache and memory bandwidth for
the IC display subsystem (1 in Figure 4) and the IVI sub-
system (2 in Figure 4) are isolated using MPAM. As shown
in Figure 5, different configurations of cache and memory
bandwidth access policies are tagged with PARTID (Propa-
gation of a Partition ID). These PARTIDs are then bound to
the IC display subsystem and the IVI subsystem, respectively.
Consequently, every time cache and memory resources are
accessed, the resource queries the resource usage policy of the
subsystem associated with the bound PARTID. This control
of resource utilization boundaries reduces resource conflicts
and competition when the IC display subsystem and the IVI
subsystem access cache and memory resources.

We empirically configure cache and memory bandwidth
allocation strategies for business subsystems based on their
specific characteristics, as outlined in Table 3. The IC display
subsystem, although much smaller compared to the IVI sub-
system, demands higher real-time performance. Therefore, it
is allocated a greater share of cache space and a smaller por-
tion of memory bandwidth. This resource allocation strategy
allows the instrument cluster subsystem to dominate more
than half of the cache resources, significantly enhancing cache
hit rates. Besides, it is also assigned 15% of the memory band-
width, reducing interference from the complex central control
Android container. By employing this configuration strategy
to elevate the priority of dynamic resource utilization for crit-
ical instrument cluster tasks, we are able to reduce IC display
function latency and improve stability.

4.3 Monitoring Mechanisms
In Figure 4, the subsystems built on top of the main SoC chip
primarily host non-safety-critical tasks. However, these sub-
systems include certain critical functions that have to interact
with safety-critical data. For example, the IC display sub-
system is responsible for displaying real-time vehicle infor-
mation such as speed, fuel consumption, warning indicators,
and other vehicle status data while the vehicle is in opera-
tion. These pieces of information are particularly crucial for
the driver during the driving process. As a result, AutoVP
needs to implement mechanisms for real-time monitoring of
such functions. These mechanisms are designed to determine
whether these critical functions are operating according to
the prescribed procedures. In the event of any irregularities
or malfunctions detected in these critical functions, the sys-
tem must promptly alert the driver and employ redundancy
mechanisms to rectify the abnormal functions.
kCollectD Kernel Module AutoVP establishes a monitoring
module within the system kernel. As shown in Figure 6, this
module, called kCollectD, periodically collects behavioral
data from critical entities within the system, analyzing and
assessing whether these entities are operating in accordance
with predefined procedures. The critical entities under scrutiny
include processes and kernel modules. The behavioral data
encompass various aspects such as which system interfaces
were invoked, which files were manipulated, the utilization
of heap and stack memory, the CPU time slices consumed,
and the number of frames rendered, among others. Given that
collecting behavioral data from these entities can incur per-
formance overhead, it is imperative to target the acquisition
of key data specific to the relevant business processes and
analyze essential behavioral characteristics. For example, in

212 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the case of the instrument cluster display subsystem where
the displayed content is crucial for the driver, it is essential to
monitor the number of frames of graphics rendered by the IC
display subsystem per second. If, during the periodic analysis
phase, it is determined that a critical entity has deviated from
the prescribed actions, an audit alarm is triggered immediately.
This leads to the termination of the relevant entity’s opera-
tions, followed by the initiation of redundancy mechanisms to
rectify the error. For instance, if it is observed over a period of
time that the number of frames rendered per second by the IC
display subsystem is lower than expected, indicating a freeze
in the display program, the system will sound an alarm to
alert the driver and activate an emergency instrument cluster
program to take over the display screen.
Monitoring Hardware Data Simultaneously, AutoVP’s
monitoring module, kCollectD, also collects hardware infor-
mation from the SoC chip in real-time, such as power, clock,
reset, and temperature. Both collected kernel resources (e.g.,
APIs, files, and networks.) and hardware characteristics (e.g.,
voltage, frequency and temperature) are then stored in an
external flash memory. The Safety Monitor module, which
runs on the MCU chip, analyzes the data stored in the flash
memory and assesses whether the critical functions running
on the SoC are operating normally. For example, if the Safety
Monitor module detects an excessively high CPU voltage,
changes in clock frequency, or excessive temperature on the
SoC chip, it indicates that the software running on the SoC
may not be functioning correctly or could potentially result in
abnormal behavior. In such cases, the Safety Monitor triggers
an alarm sound, notifying the driver of the system’s abnormal
operation and the need for manual intervention.

5 Evaluation

Our experiments focus on measuring performance metrics
from seven aspects: startup time, memory usage, battery con-
sumption, CPU, GPU, network performance, and real-world
workloads. We compare AutoVP with a microhypervisor-
based in-vehicle virtualization product. Although they are de-
signed to run on different hardware bases, we deploy them on
the same automotive-grade SoC chip to preserve the same test
conditions. The commercial product used in our experiments
has terms of use that disallow publication of tool performance
and tool output. Therefore, we anonymize the product name in
this paper. Furthermore, as MPAM is a new feature introduced
in ARM v8 [43], we also want to evaluate the effect of MPAM
on dynamically isolating cache and memory bandwidth.

5.1 Experiment Setup
We conduct performance experiments on top of an automotive-
grade SoC chip (configuration: 8-core ARM Cortex-A710 at
2.15 GHz, ARM Mali G78 GPU, 8GB DDR, 128GB UFS) to

(a) Microkernel + Hypervisor(a) Microkernel + Hypervisor (b) AutoVP Container(b) AutoVP Container

Automotive-grade SoC

Instrument Cluster Display
In-Vehicle Infotainment

Instrument Cluster Display

In-Vehicle Infotainment

AvutoVP Containter

Figure 7: Two in-vehicle virtualization solutions are running.

Table 4: The subsystems of two in-vehicle virtualization solu-
tions. The numbers in Row 2∼4 represent the boot sequence
of each subsystem. “IC” is short for instrument cluster.

Boot Microhypervisor AutoVPSequence

(1) Application Domain Root Namespace(Instrument Cluster)

(2) System Domain VM Namespace 1
(IC Display)

(3) Android VM VM Namespace 2
(In-Vehicle Infotainment) (In-Vehicle Infotainment)

run the microhypervisor-based in-vehicle virtualization sys-
tem (commercially licensed) and AutoVP. Please note that
here we also run AutoVP on an automotive-grade SoC in-
stead of a consumer-grade SoC. The primary reason is that
Microhypervisor solutions can only run on top of automotive-
grade SoCs; otherwise, we cannot perform the comparative
evaluation. Due to safety considerations, we are unable to
conduct road testing on an actual vehicle; instead, we use
the simulated data provided by the automotive manufacture
as vehicle-related data. Figure 7 shows the effect of running
both in-vehicle virtualization solutions with simulated vehicle-
related data. The specific subsystems and their boot sequence
for both solutions are listed in Table 4. Next, we present de-
tailed software & hardware configurations for each solution.
Please note that with regards to the static allocation of specific
hardware resources for each subsystem, we adhere to the ref-
erence configuration information provided by the automotive
manufacturer.
Microhypervisor Configurations The instrument cluster
(IC) subsystem, deployed within the microkernel’s applica-
tion domain, consists of a set of graphical display programs.
Hardware resources, including CPU physical core 1 and 2,
500MB of memory, Display 1, and 50% of GPU partition
resources are allocated to the IC subsystem. This group of
programs also includes driver modules that can directly uti-
lize the corresponding hardware devices. The microkernel’s
system domain comprises system components, hardware mod-
ules, and some device drivers, such as network device driver.
The system domain is allocated with CPU physical core 3
and 4, 2GB of memory, storage, and network devices. The in-
vehicle infotainment (IVI) subsystem is deployed in the form

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 213

Startup Time (S)

Microhypervisor AutoVP Container

(a)

Memory Usage (MB)

Microhypervisor AutoVP Container

(b)

Battery Consumption (mA)

Microhypervisor AutoVP Container

(c)

Linpack CPU Test (Score)

Microhypervisor AutoVP Container

(d)

3DMark GPU Test (Score)

Microhypervisor AutoVP Container

(e)

Network Wget Test (Score)

Microhypervisor AutoVP Container

(f)

Figure 8: Standard benchmark evaluation results. “SYS” represents the system domain for the microhypervisor product and the
root namespace for AutoVP, respectively. “IC” is short for instrument cluster, and “IVI” means in-vehicle infotainment.

of an Android virtual machine, which runs the Android ver-
sion of 12.0. We allocate all remaining hardware resources to
the virtual machine, such as CPU physical cores 5∼8, 5.5GB
of memory, 50% of GPU partition resources, and Display 2.
AutoVP Configurations The Linux kernel version used by
AutoVP is 5.10.221. The root namespace require low com-
puting resources to run management panel software, and thus
AutoVP employs cgroup technology to allocate CPU phys-
ical core 1 and 300MB of memory to the root namespace.
The instrument cluster display subsystem runs the Qt graph-
ical display framework (version 5.12.); CPU physical core
2 and 3, 500MB of memory, Display 1, and 50% of GPU
partition resources are allocated to this subsystem. The con-
tainer running Android 12.0 hosts the in-vehicle infotainment
subsystem, which occupies all remaining hardware resources
of the chip, including CPU physical cores 4∼8, 7.2GB of
memory, 50% of GPU partition resources, and Display 2.

5.2 Methodology
According to the boot sequence of each subsystem (see Ta-
ble 4), the method for collecting startup time data involved
sequentially starting the application domain, system domain,
and Android virtual machine for the microhypervisor solution
and recording the startup time. This process was repeated
20 times, and the average startup time was calculated in sec-

onds. Measuring AutoVP’s startup time followed a similar
procedure, but with a boot sequence of the root namespace, IC
display, and Android container. We collect real-time memory
usage data for each subsystem after it has been running stably
for a period of two hours. Similarly, battery consumption data
are recorded within the same two-hour time window.

To collect CPU performance data, we installed the Linpack
benchmark in the application domain, system domain, and
Android virtual machine for the microhypervisor solution,
respectively. We ran the Linpack benchmark for 1 hour and
recorded normalized resource utilization data—we repeated
this process 10 times and calculated the average value. The
CPU measurement of AutoVP followed a similar procedure,
but with performance data collected in the root namespace,
IC display, and Android container. A higher Linpack score
indicates more efficient CPU utilization, resulting in lower
performance overhead. It should be noted that the Linpack
benchmark evaluates the single-core CPU performance.

The method for collecting GPU performance data was sim-
ilar to that for CPU performance testing, but we used the
3DMark benchmark. A higher 3DMark score indicates supe-
rior GPU utilization, leading to reduced performance over-
head. In a similar vein, the method for collecting network
performance data leverages the wget application. A high wget
score is indicative of an efficient utilization of network band-
width, thus resulting in lower bandwidth consumption.

214 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.3 Performance Measurements
Startup Time Figure 8(a) shows the results of startup time.
The microhypervisor solution, due to its microkernel structure,
can minimize the startup time of the instrument cluster (IC)
subsystem. The IC operates as a microkernel application run-
ning on top of the microkernel OS, enabling a swift initiation
of the IC display. In contrast, AutoVP employs a monolithic
kernel approach, with many drivers deployed in the kernel
mode. During the system startup phase, it is necessary to ini-
tialize all driver modules as a priority, even if certain driver
modules will not be immediately used. This results in a longer
initialization time for the Linux kernel itself in AutoVP. Addi-
tionally, AutoVP requires the container management program
to be started before the IC display can be initiated. Experi-
mental data indicates that the startup time for the IC display in
AutoVP is slower compared to the microhypervisor solution.

However, the microhypervisor needs to first run the sys-
tem domain and then initiate complex software virtualiza-
tion frameworks, such as the virtual machine manager, before
launching the virtualized Linux kernel and subsequently the
Android VM that hosts in-vehicle infotainment functions. Au-
toVP, by contrast, requires initializing the Linux kernel only
once and then running the container management program to
start the Android container. As a result, AutoVP starts the IVI
subsystem faster than the microhypervisor solution.
Memory Usage Figure 8(b) shows the comparison of mem-
ory usage. Both of these two solutions are allocated 500MB
of memory for the IC subsystem. However, in the microhyper-
visor, the IC subsystem also includes display driver and GPU
driver, whereas in AutoVP, the required display and GPU
drivers for the IC run within the Linux kernel. Therefore, the
memory usage of the IC subsystem in the microhypervisor
is slightly higher. Furthermore, the microhypervisor requires
the prior execution of complex software virtualization frame-
work, such as the virtual machine manager, before running the
virtualized Linux kernel and subsequently the Android VM.
In contrast, AutoVP can directly run the Android container
on the Linux kernel. Experimental data demonstrates that the
memory usage of the container in AutoVP is lower than the
that of Android VM in the microhypervisor solution.
Battery Consumption Figure 8(c) shows the measurement
of battery consumption. The IC subsystem in the microhy-
pervisor requires running display driver and GPU driver, as
well as directly managing hardware resources for IC display
peripherals and GPU components. In contrast, the required
display and GPU drivers in AutoVP run within the Linux
kernel. This can explain why the IC subsystem in the mi-
crohypervisor consumes more power. The microhypervisor
solution necessitates the prior execution of complex software
virtualization framework. Additionally, some hardware de-
vices are directly allocated to and managed by the virtualized
Android system. Conversely, AutoVP can directly run the
Android container on the kernel, with the kernel managing

all peripheral hardware. Therefore, experimental data demon-
strates that the power consumption of the Android container in
AutoVP is lower than that of the virtualized Android system
in the microhypervisor solution.
CPU Performance Figure 8(d) shows the scores of Linpack
benchmark, which is the most popular benchmark for ranking
of high performance systems. Since both the microhypervisor
and AutoVP allocate two CPU physical cores and 500MB of
memory to the IC subsystem, the CPU performance data for
the IC subsystem are comparable between the two solutions.
However, the virtualization framework and virtualized Linux
kernel running in the microhypervisor solution consume a
significant amount of CPU and memory resources. As a result,
experimental results indicate that the CPU performance data
for AutoVP’s container is superior to that of the virtualized
Android system in the microhypervisor.
GPU Performance Figure 8(e) shows the scores of 3DMark
benchmark that tests the system’s GPU performance. Both
the microhypervisor and AutoVP employ GPU partitioning
technology, a hardware resource slicing technique that effec-
tively addresses the isolation of GPU resources between the
IC subsystem and the Android VM. Neither the system do-
main of the microhypervisor nor AutoVP’s root namespace
utilizes GPU resources. Therefore, the GPU performance data
obtained from tests conducted on the IC subsystems and the
Android VMs are comparable between these two solutions.
Network Performance The network performance data mea-
sured by wget is depicted in Figure 8(f). While the microhy-
pervisor’s WiFi module is deployed in the system domain,
enabling it to benefit from superior network performance,
AutoVP’s root namespace does not utilize the network in its
normal functioning. Furthermore, neither of the IC subsys-
tems in these two solutions use the network. However, the
Android VM in the microhypervisor necessitates software vir-
tualization techniques to time-share the WiFi functionality in
the system domain. On the other hand, the Android container
in AutoVP requires only Linux kernel features to access exter-
nal networks through the WiFi module. Experimental results
show that the network performance of AutoVP’s container is
significantly better than that of the virtual Android system in
the microhypervisor solution.
Real-world Workloads We run common in-vehicle applica-
tions such as the dashboard, navigation, music, movie, climate
control, vehicle settings, infotainment, Bluetooth connectivity,
voice navigation, and reverse camera in both solutions. We use
Android gfxinfo tool to measure the frame rate (frames drawn
per second) of each application. The frame rate metric reflects
the performance of the application interface and can assess
whether user interactions with the application are smooth.
The evaluation results are depicted in Figure 9, wherein a
higher frame rate correlates with a better quality of the video
or animation. If an application is relatively smooth with a
high frame rate, it indicates good performance in the current

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 215

Microhypervisor AutoVP Container
7 3
2 4

12 9

Microhypervisor AutoVP Container
90 95

100 94
70 90

Microhypervisor AutoVP Container
1 1

100 95
90 90

Microhypervisor AutoVP Container
100 1

1 1
65 95

Microhypervisor AutoVP Container
800 200
400 300

1400 1000

Microhypervisor AutoVP Container
450 210

1200 1100
1500 1300

Microhypervisor AutoVP Container
40 47
31 37
10 11
19 27
12 11
23 23
22 26
26 25
25 27

8 15

IC sys IVI

0

2

4

6

8

10

12

14

Startup time (S)

Microhypervisor AutoVP Container

0

20

40

60

80

100

120

Linpack CPU test (Score)

Microhypervisor AutoVP Container

SYS

0

20

40

60

80

100

120

3DMark GPU test (Score)

Microhypervisor AutoVP Container

0

20

40

60

80

100

120

Network test (Score)

Microhypervisor AutoVP Container

0
200
400
600
800

1000
1200
1400
1600

Memory usage (MB)

Microhypervisor AutoVP Container

0
200
400
600
800

1000
1200
1400
1600

Battery usage (mA)

Microhypervisor AutoVP Container

IC IVI

SYS IC IVI
SYS IC IVI SYS IC IVI

SYS IC IVI SYS IC IVI

0
5

10
15
20
25
30
35
40
45
50

Frame Rate (N/s)

Microhypervisor AutoVP Container

Home Navigation Music Movie Climate Vehicle Settings Entertainment Bluetooth Voice
Recognition

Reverse Camera

Figure 9: Comparative performance evaluation results with common in-vehicle applications. The higher the frame rate, the better
the quality of the video or animation will be.

system environment, including CPU, GPU, and file I/O. Ex-
perimental results indicate that the frame rates per second for
common in-vehicle applications are higher when running in
AutoVP compared to the Hypervisor solution.
Summary The microhypervisor solution, owing to its micro-
kernel structure, enables a quick launch of its IC subsystem.
In contrast, AutoVP runs the IC display on the Linux mono-
lithic kernel, which fails to ensure a rapid startup of the IC
display. The distinct advantage of AutoVP lies in its ability to
ensure efficient utilization of system resources by the Android
container. In this configuration, the Android container does
not need to run complex virtualization frameworks, and thus
can make better use of CPU, network, memory, and battery,
resulting in a smoother user experience when running com-
mon in-vehicle applications. Due to the same GPU resource
allocation, the microhypervisor’s VM achieves GPU resource
utilization efficiency that is on par with AutoVP’s container.

5.4 MPAM Measurements
Due to the noticeable isolation effect of MPAM on mixed-
criticality systems [40, 43], we conduced a separate experi-
ment for MPAM resource isolation scenarios in AutoVP. The
experiment involved disabling/enabling the MPAM mecha-
nism for IC display and IVI subsystems. For the initial 14
minutes, IC display and IVI shared CPU cache and mem-
ory bandwidth resources. At the 15th minute, MPAM was
activated. We follow the specific cache and memory band-
width allocation strategies for various business subsystems,
as outlined in Table 3.

As show in Appendix Figure A1(a), it is evident that with-
out enabling MPAM, there is intense competition between
IC and IVI services for cache resources, leading to signifi-
cant mutual interference. However, upon enabling MPAM,
the usage of cache resources by IC and IVI services stabilized.
Notably, IVI’s usage of cache resources was significantly sup-
pressed, with IC’s cache usage percentage increasing to about
70%. This drastic improvement notably enhanced cache hit
rates and consequently improved IC’s performance. However,
Appendix Figure A1(b) reveals that the impact of MPAM

mechanism on memory bandwidth control was minimal. One
contributing factor is that MPAM is a new mechanism in-
troduced by ARM v8, and the current testbed does not offer
comprehensive support for the new MPAM mechanism.

6 Discussion & Conclusion

The development of smart automobile cockpits for civilian
vehicles needs to balance multiple factors such as safety, reli-
ability, and production costs. The advantages of AutoVP are
evident: cost-effectiveness and an almost entirely open-source
system. Thanks to the lightweight virtualization features of
containers, it allows non-safety-critical tasks to efficiently uti-
lize hardware resources. AutoVP is poised to have enduring
significance, persisting beyond the resolution of the automo-
tive chip crisis [23–25]. At present, our approach involves
a static resource allocation strategy, as outlined in Table 3.
Future endeavors will delve into enabling dynamic resource
allocation. Furthermore, we will also explore how to pro-
vide real-time capabilities for safety-critical tasks on a Linux
system without the need for an external MCU chip.
Conclusion In this paper, we present a new intelligent cockpit
virtualization architecture. We segregate safety-critical func-
tions from other non-critical functions into two low-cost chips,
respectively. We also run an Android container on the main
SoC chip to host non-safety-critical tasks. Our Android con-
tainer solution features a rich software ecosystem, excellent
performance, and inherent cost-effectiveness. By incorporat-
ing automotive-grade MCUs to handle safety-critical tasks,
the entire system complies with automotive standards. Our
comparative evaluation results with a commercial in-vehicle
microhypervisor product are exciting.

Acknowledgments

We sincerely thank NSDI anonymous reviewers and our shep-
herd Amit Levy for their insightful comments. Jiang Ming
was supported by the National Science Foundation under
grant CNS-2312185 and Carol Lavin Bernick Faculty Grant.

216 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Victor Bandur, Gehan Selim, Vera Pantelic, and Mark
Lawford. Making the Case for Centralized Automotive
E/E Architectures. IEEE Transactions on Vehicular
Technology, 70(2), 2021.

[2] Sekar Kulandaivel, Shalabh Jain, Jorge Guajardo, and
Vyas Sekar. Cannon: Reliable and Stealthy Remote
Shutdown Attacks via Unaltered Automotive Microcon-
trollers. In Proceedings of the 42nd IEEE Symposium
on Security and Privacy (S&P ’21), 2021.

[3] S. Kanajan, C. Pinello, Haibo Zeng, and A. Sangiovanni-
Vincentelli. Exploring Trade-off’s Between Centralized
versus Decentralized Automotive Architectures Using a
Virtual Integration Environment. In Proceedings of the
2006 Design Automation & Test in Europe Conference
(DATE ’06), 2006.

[4] Jan Pelzl, Marko Wolf, and Thomas Wollinger. Virtu-
alization Technologies for Cars: Solutions to Increase
Safety and Security of Vehicular ECUs. In Proceedings
of the 2009 Embedded World Conference, 2009.

[5] Marius Strobl, Markus Kucera, Andrei Foeldi, Thomas
Waas, Norbert Balbierer, and Carolin Hilbert. Towards
Automotive Virtualization. In Proceedings of the 2013
International Conference on Applied Electronics, 2013.

[6] Thomas Gaska, Brian Werner, and David Flagg. Ap-
plying Virtualization to Avionics Systems — The Inte-
gration Challenges. In Proceedings of the 29th Digital
Avionics Systems Conference, 2010.

[7] Victor Bandur, Vera Pantelic, Matthew Dawson, Alexan-
der Schaap, Bryon Wasacz, and Mark Lawford. A
Domain-Centralized Automotive Powertrain E/E Archi-
tecture. Technical report, SAE Technical Paper 2021-
01-0786, 2021.

[8] Ashraf Gaffar and Shokoufe Monjezi. Using Artificial
Intelligence to Automatically Customize Modern Car
Infotainment Systems . In Proceedings of the Interna-
tional Conference on Artificial Intelligence (ICAI ’16),
2016.

[9] Arm. The Evolution of Car Cockpit and IVI Systems.
https://www.arm.com/markets/automotive/
digital-cockpit, 2023.

[10] Michele Paolino, Walt Miner, Daniel Bernal, Artem My-
gaiev, Tiejun Chen, and Rich Persaud et al. The Auto-
motive Grade Linux Software Defined Connected Car
Architecture. Technical report, The Linux Foundation,
June 2018.

[11] Srdjan Usorac, Dejan Bogdanovic, Dario Peric, and
Zeljko Lukac. Adding Android Capabilities in Au-
tomotive Linux Infotainment: Available Virtualization
Technologies. In Proceedings of the 29th Telecommuni-
cations Forum, 2021.

[12] BlackBerry QNX. QNX Hypervisor Virtual-
ization Software. https://blackberry.qnx.
com/en/products/foundation-software/
qnx-hypervisor, 2023.

[13] Green Hills Software. INTEGRITY Multivi-
sor. https://www.ghs.com/products/rtos/
integrity_virtualization.html, 2023.

[14] SYSGO GMBH. PikeOS: Certifiable RTOS & Hypervi-
sor. https://www.sysgo.com/pikeos, 2023.

[15] Asif Iqbal, Nayeema Sadeque, and Rafika Ida Mutia.
An overview of microkernel, hypervisor and microvisor
virtualization approaches for embedded systems. Report,
Department of Electrical and Information Technology,
Lund University, Sweden, 2009.

[16] Everton de Matos and Markku Ahvenjärvi. seL4 Micro-
kernel for Virtualization Use-Cases: Potential Directions
towards a Standard VMM. Electronics, 11(24), 2022.

[17] Hermann Härtig, Michael Roitzsch, Adam Lackorzyn-
ski, Björn Döbel, and Alexander Böttcher. L4 – Vir-
tualization and Beyond. Korean Information Science
Society Review, 2, 2008.

[18] Dong-Guen Kim, Sang-Min Lee, and Dong-Ryeol Shin.
Design of the Operating System Virtualization on L4
Microkernel. In Proceedings of the 4th International
Conference on Networked Computing and Advanced
Information Management, 2008.

[19] Jörn Schneider and Tillmann Nett. Safety Issues of Inte-
grating IVI and ADAS functionality via Running Linux
and AUTOSAR in Parallel on a Dual-Core-System. Au-
tomotive - Safety & Security, 2015.

[20] Jason Belt, John Hatcliff, Robby, John Shackleton, Jim
Carciofini, Todd Carpenter, Eric Mercer, Isaac Amund-
son, Junaid Babar, Darren Cofer, David Hardin, Karl
Hoech, Konrad Slind, Ihor Kuz, and Kent Mcleod.
Model-Driven Development for the SeL4 Microkernel
Using the HAMR Framework. Journal of Systems Ar-
chitecture, 134, 2023.

[21] Aswin Sampath Kumar and Tuğrul Daim. Study on
Consumer Requirements for Automotive Infotainment
Systems. R&D Management in the Knowledge Era:
Challenges of Emerging Technologies, 2019.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 217

https://www.arm.com/markets/automotive/digital-cockpit
https://www.arm.com/markets/automotive/digital-cockpit
https://blackberry.qnx.com/en/products/foundation-software/qnx-hypervisor
https://blackberry.qnx.com/en/products/foundation-software/qnx-hypervisor
https://blackberry.qnx.com/en/products/foundation-software/qnx-hypervisor
https://www.ghs.com/products/rtos/integrity_virtualization.html
https://www.ghs.com/products/rtos/integrity_virtualization.html
https://www.sysgo.com/pikeos

[22] Alessandra Nardi and Uyen Tran. Key Requirements for
Automotive SoC Design. Technical report, Synopsys,
April 2023.

[23] Keith Naughton. Automotive Chip-Shortage Cost Esti-
mate Surges to $110 Billion. Bloomberg Technology,
May 2021.

[24] Xiling Wu, Caihua Zhang, and Wei Du. An analysis
on the crisis of “chips shortage” in automobile industry-
Based on the double influence of COVID-19 and trade
friction. In Journal of Physics: Conference Series, vol-
ume 1971. IOP Publishing, 2021.

[25] Kristin Dziczek et al. Why the Automotive Chip Crisis
Isn’t Over (Yet). Chicago Fed Letter, 2022.

[26] Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof,
Oren Laadan, and Jason Nieh. Cells: A Virtual Mo-
bile Smartphone Architecture. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles
(SOSP ’11), 2011.

[27] Christoffer Dall, Jeremy Andrus, Alexander Van’t Hof,
Oren Laadan, and Jason Nieh. The Design, Implemen-
tation, and Evaluation of Cells: A Virtual Smartphone
Architecture. ACM Transactions on Computer Systems,
30(3), August 2012.

[28] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski,
Andy Bavier, and Larry Peterson. Container-Based
Operating System Virtualization: A Scalable, High-
Performance Alternative to Hypervisors. In Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems (EuroSys ’07), 2007.

[29] Wes Felter, Alexandre Ferreira, Ram Rajamony, and
Juan Rubio. An Updated Performance Comparison of
Virtual Machines and Linux Containers. In Proceedings
of the 2015 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, 2015.

[30] Michael Eder. Hypervisor- vs. Container-based Virtual-
ization. In Proceedings of the Seminars Future Internet
(FI) and Innovative Internet Technologies and Mobile
Communications, 2016.

[31] International Organization for Standardization.
ISO 26262: Road Vehicles — Functional Safety.
https://www.iso.org/obp/ui/#iso:std:iso:
26262:-1:ed-2:v1:en, 2018.

[32] J Langheim, Bruno Guegan, Laurent Maillet-Contoz,
Kamel Maaziz, Gilles Zeppa, S Boutin, H Aboutaleb,
F Philippot, and Pierre David. System architec-
ture, tools and modelling for safety critical automotive

applications–the R&D project SASHA. In Proceedings
of the 2010 Embedded Real Time Software and Systems
Conference, 2010.

[33] Pierre Lucas, Kevin Chappuis, Michele Paolino, Nico-
las Dagieu, and Daniel Raho. VOSYSmonitor, a Low
Latency Monitor Layer for Mixed-Criticality Systems
on ARMv8-A. In Proceedings of the 29th Euromicro
Conference on Real-Time Systems (ECRTS ’17), 2017.

[34] Google. Automotive OS. https://developers.
google.com/cars/design/automotive-os, 2023.

[35] Udo Steinberg and Bernhard Kauer. NOVA: A
Microhypervisor-Based Secure Virtualization Architec-
ture. In Proceedings of the 5th European Conference on
Computer Systems (EuroSys ’10), 2010.

[36] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and
Haibo Chen. SkyBridge: Fast and Secure Inter-Process
Communication for Microkernels. In Proceedings of
the 14th European Conference on Computer Systems
(EuroSys ’19), 2019.

[37] Business Wire. Automotive Cockpit Multi
& Dual Display Trends Report. https:
//www.researchandmarkets.com/r/61epwn, 2020.

[38] Qt Group. Tools for Each Stage of Software Develop-
ment Lifecycle. https://www.qt.io/, 2023.

[39] Android Open Source Project. Using Binder
IPC. https://source.android.com/devices/
architecture/hidl/binder-ipc, [2022].

[40] Arm. Memory System Resource Partitioning and Moni-
toring (MPAM), for A-profile architecture. Arm Archi-
tecture Reference Manual Supplement, 2022.

[41] Chris Down. 5 Years of Cgroup v2: The Future of Linux
Resource Control. In Proceedings of the 34th Large
Installation System Administration Conference (LISA
’21), 2021.

[42] Rami Rosen. Resource management: Linux kernel
namespaces and cgroups. Haifux, May, 186:70, 2013.

[43] Matteo Zini, Daniel Casini, and Alessandro Biondi. An-
alyzing Arm’s MPAM From the Perspective of Time
Predictability. IEEE Transactions on Computers, 72(1),
2023.

Appendix

218 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en
https://developers.google.com/cars/design/automotive-os
https://developers.google.com/cars/design/automotive-os
https://www.researchandmarkets.com/r/61epwn
https://www.researchandmarkets.com/r/61epwn
https://www.qt.io/
https://source.android.com/devices/architecture/hidl/binder-ipc
https://source.android.com/devices/architecture/hidl/binder-ipc

IVI IC DisplayIVI IC Display

111 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3111 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
000

20

40

60

80

100

00

20

40

60

80

100

11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
00

20

40

60

80

100

51

40

31

70

50

41

80

60

41

55
50

64
70

64

49

29
33

30 31 32 30
35

32 34
29 31 33

20

34

27

35

51

40

31

70

50

41

80

60

41

55
50

64
70

64

49

29
33

30 31 32 30
35

32 34
29 31 33

20

34

27

35

50

61

68

29

47

57

19

37

60

50 49

40

31
36

52

70 71
68 69 67

71 70
73

68
72 72

66

81

66
71

65

50

61

68

29

47

57

19

37

60

50 49

40

31
36

52

70 71
68 69 67

71 70
73

68
72 72

66

81

66
71

65

51

40

31

70

50

41

80

60

41

55
50

64
70

64

49

29
33

30 31 32 30
35

32 34
29 31 33

20

34

27

35

50

61

68

29

47

57

19

37

60

50 49

40

31
36

52

70 71
68 69 67

71 70
73

68
72 72

66

81

66
71

65

IVI IC Display

11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
00

20

40

60

80

100

51

40

31

70

50

41

80

60

41

55
50

64
70

64

49

29
33

30 31 32 30
35

32 34
29 31 33

20

34

27

35

50

61

68

29

47

57

19

37

60

50 49

40

31
36

52

70 71
68 69 67

71 70
73

68
72 72

66

81

66
71

65

C
ac

he
 U

sa
ge

 (%
)

Time Axis (min)

(a) Real-time Cache Usage

IVI ICIVI IC

111 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3111 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
404040

50

60

70

80

90

100

4040

50

60

70

80

90

100

11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
4040

50

60

70

80

90

100

85 86

91

79

89
91 90 91

87

52

83
85

96
92

82

91

80

90
86

84

96 95

87

81
84

87

79

85

91

96

8685 86

91

79

89
91 90 91

87

52

83
85

96
92

82

91

80

90
86

84

96 95

87

81
84

87

79

85

91

96

86

81
79

90

80

87

77

95

89

69

79
81 80 80

87
90 90

61

89

83
79

82
79

60

65

79
81

67

80

85

79
8181

79

90

80

87

77

95

89

69

79
81 80 80

87
90 90

61

89

83
79

82
79

60

65

79
81

67

80

85

79
81

85 86

91

79

89
91 90 91

87

52

83
85

96
92

82

91

80

90
86

84

96 95

87

81
84

87

79

85

91

96

86

81
79

90

80

87

77

95

89

69

79
81 80 80

87
90 90

61

89

83
79

82
79

60

65

79
81

67

80

85

79
81

IVI IC

11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
4040

50

60

70

80

90

100

85 86

91

79

89
91 90 91

87

52

83
85

96
92

82

91

80

90
86

84

96 95

87

81
84

87

79

85

91

96

86

81
79

90

80

87

77

95

89

69

79
81 80 80

87
90 90

61

89

83
79

82
79

60

65

79
81

67

80

85

79
81

Time Axis (min)

IC Display

(b) Real-time Memory Bandwidth

Figure A1: The measurement of MPAM effects on dynamically isolating cache and memory bandwidth.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 219

MuCache: A General Framework for Caching in Microservice Graphs

Haoran Zhang*, Konstantinos Kallas*, Spyros Pavlatos, Rajeev Alur, Sebastian Angel, Vincent Liu
University of Pennsylvania

Abstract
This paper introduces MuCache, a framework for extend-
ing arbitrary microservice applications with inter-service
caches. MuCache significantly improves the performance
of microservice graphs (commonly found in large applica-
tions like Uber or Twitter) by eliminating the need for one
microservice to call another when the relevant state has not
changed. MuCache is enabled by a novel non-blocking cache
coherence and invalidation protocol for graph topologies that
minimizes critical-path overhead. For this protocol, we prove
a strong correctness result: any execution observed by the
cache-enabled microservice application could have been ob-
served by the original application without caches. Our eval-
uation on well-known microservice benchmarks shows that
MuCache reduces the median request latency by up to 2.5×,
and increases throughput by up to 60%.

1 Introduction
Many of today’s largest web services, such as Uber, Lyft,
Twitter (now X), and Meta structure their applications as mi-
croservices to enjoy the benefits of developer agility, resource
provisioning, maintainability, fault tolerance, and other im-
portant metrics. Fortunately, these benefits can be reaped by
smaller companies and individual developers too; recent run-
times and service mesh frameworks like Dapr [3], Envoy [4],
and Istio [6] have been created to help design, deploy, and
manage microservices. In a microservice architecture, ap-
plications are decomposed into a call graph of services that
interact with each other and with end-users through API calls.
The ‘root’ of the microservice call graph is typically a client-
facing frontend service, while the ‘leaves’ are databases that
store service state. This call graph is dynamic in the sense
that it may be different for each request.

The call graphs of today’s services are complex. Services
like Airbnb and Uber consist of thousands of unique microser-
vices that support their functionality [5, 40]. Each user request
will flow through a substantial subset of these microservices.
A typical Twitter request, for instance, can traverse a call
graph that is 6 levels deep with significant fan-out at each
level [36], and requests to popular Facebook pages often in-
volve hundreds of servers [30]. Given the depth and breadth
of modern microservice call graphs and that each edge corre-
sponds to a network request, it is important to avoid making

*Equal contribution.

such calls whenever possible. One way to do so is by having
each microservice reuse the responses of the services it con-
tacts if it knows that a request will produce the same answer.
Caching the responses in this fashion improves both the la-
tency of the target request (if the branch would have been on
the request’s critical path) and the system’s throughput as a
whole (by freeing resources for other requests).

Response caching is, of course, a common technique in
system design that many services are already employing to
great effect. For example, a recent Alibaba analysis of its
storefront microservice architecture found that around 40%
of its call graphs have a depth of 3 because they hit a cache;
while requests that do not hit caches reach call graph sizes of
more than 40 [28]. Similarly, half of Twitter’s cache clusters
are used to cache intermediate computation results [38], and
a study of the cache clusters at Facebook [37] reported that
the cache-hit ratio for a specific cluster was more than 80%.

Unfortunately, adding caching to a microservice graph is
difficult, and is something that only well-resourced companies
can afford to do correctly. Indeed, no existing service mesh
provides support for inter-service caching, leaving mid-size
and small companies to deal with caching on their own.

The complexity of caching in microservices stems from the
fact that—unlike traditional cache coherence protocols where
one can reason about individual read and write operations to
a target object—microservice responses are a function of the
input request, the service’s state, and an unbounded number
of downstream services that are recursively called during the
processing of a request. The resulting web of dependencies
means that developers must carefully study the interactions
between all services in the system.

Consider, for example, a user’s home timeline in a social
network (e.g., [14, 36]). A cached timeline response can be
invalidated by changes to the user’s followees, the content of
contained posts, the security policies of users included in the
timeline, and tweaks to the ranking algorithm; these changes
can stem from requests that never touch the home timeline
mixer, modifications to objects from services several hops
downstream, and revisions to the control flow of dependent
services. Note that, depending on the nature of the change,
subtrees of the call graph may be cacheable even if the fi-
nal response is not, and effective caching approaches should
consider that distinction.

Given the benefits of caching and the absence of automated
tools that developers can use to help them with this task, what

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 221

can developers do today? Broadly speaking, developers today
add caching by either (a) creating manual or application-
specific coherence protocols, which are error-prone and fail
to generalize; (b) focusing on the backend-storage layer [24,
30], which ignores the significant advantages of terminating
request call graphs early; or (c) giving up on consistency and
implementing simple TTL-based eviction mechanisms [1, 27,
33] that can produce stale responses.

In this paper, we propose MuCache, a framework that ex-
tends existing service meshes like Dapr to automatically pro-
vide microservice applications with inter-service caches that
improve performance. Users declare the read-only methods
of each service’s API, and then MuCache caches the results
of calls to these methods to avoid re-executing them if the
data has not changed. To keep caches coherent, MuCache im-
plements a novel lazy-invalidation cache coherence protocol
for dynamic graphs of services. This new protocol has two
important features. First, all cache accesses are non-blocking,
so requests never need to wait for other requests to finish.
This greatly reduces latency during cache hits and ensures
that in the event of a cache miss, the overhead of having had to
access the cache is both constant and small. Second, the proto-
col is provably correct and provides a very strong consistency
guarantee: all executions of a cache-enabled application are
equivalent to an execution of the original application without
caches. Note that optimal tuning of these caches (e.g., select-
ing the optimal cache size or eviction policy) is out of the
scope of this paper; instead, MuCache allows the developer to
use other tools to tune each cache separately without having
to worry about coherence.

Our experimental evaluation shows that MuCache achieves
a median request latency reduction of up to 2.5× and a 95th-
percentile tail latency reduction of up to 1.8× for well-known
microservice benchmarks and applications. Additionally, Mu-
Cache increases throughput by up to 60% and allows appli-
cations with MuCache to scale as well as the original im-
plementation. We also perform worst-case tests, artificially
reducing the cache hit rate to 0%, and the results indicate that
MuCache’s overheads are minimal.

MuCache is open-source at https://github.com/
eniac/mucache.

2 Background

In this section, we briefly review microservice architectures
and the graphs that are formed by their interconnections.
Microservices. Applications today often comprise various
services, each of which handles an incoming request, per-
forms some task, and returns a response. This microservice
paradigm has many benefits over prior (monolithic) architec-
tures in which all functionality exists within a single compo-
nent. For example, microservices are modular, so they can
be implemented in any language and with any features so
long as they expose an appropriate API (e.g., REST). This

Service1 Service2Clients W

D

W

CM
D

W

CM

…W

/endpoint1 (RO)
/endpoint2
/…

/endpoint

C C

Node 1 Node 2

FIGURE 1—MuCache’s Architecture. (C) denote caches, (CM)
cache managers, (W) wrappers, and (D) the datastores. Wrappers
are interceptor functions in the sidecar of each service. Solid arrows
denote baseline communication while dashed arrows and blue com-
ponents denote additions by our system. RO means read-only.

also allows teams to design, develop, deploy, scale, and op-
timize each microservice independently. Furthermore, each
microservice can manage its own datastore, ensuring data
sovereignty, which is important for fault tolerance and when
regulations place strict access control requirements on data.
Microservice graphs. Today’s microservice applications col-
late information from multiple backend sources and distill it
into a single user interface with the help of intermediate pro-
cessing functions. Such a design naturally leads to a directed
graph of microservices that collectively implement the appli-
cation’s behavior. In this graph, the vertices are microservices,
and the edges represent calls between them.

A drawback of this approach is that it incurs higher commu-
nication costs and response latency compared to monolithic
systems. Whereas in a monolithic system, all invocations
would typically be local function calls that leverage a ma-
chine’s fast memory and native data structures, in a microser-
vice graph, the caller needs to create the request (e.g., an
HTTP request with a serialized JSON payload) and send it
over the network to the callee (which may include compres-
sion and encryption), who must then deserialize it and execute
it—potentially having to call further microservices. The re-
sponse will incur similar overheads. For long chains of calls,
the additional latency can be in the order of 100ms.

3 Goals and Overview

Given the prevalence of microservice architectures and the
high costs associated with inter-service communication, we
wish to design a general caching layer that avoids having one
microservice call another whenever such a call is unnecessary,
e.g. when the request is similar to a prior request and the state
of the callee has not changed. While there is a vast design
space that one could consider for achieving this high-level
goal, we are grounded by a set of pragmatic requirements:
• Correctness: The cache should not introduce behaviors

that are not part of the original application.
• Non-blocking and low overhead: The cache should not

require blocking on the critical path, and any overhead
should be minimal.

• Dynamic graphs: It should support microservices where

222 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/eniac/mucache
https://github.com/eniac/mucache

FIGURE 2—(Left) Moview Review application fragment. (Right) An example execution of this application. Each line corresponds to a different
component, and arrows denote communication. (C) components are caches and (CM) cache managers.

the call-graph varies per-request and is not known a priori.
• Sharding: It should support microservices that are de-

ployed with multiple shards to enable scaleout.
• Application and datastore agnostic: It should not require

any modifications to application logic or backend datas-
tores for easier adoption.

• Incremental deployment: It should provide benefits even
when only deployed on a subset of the microservice graph,
e.g., if subgraphs are managed by different organizations.

3.1 Overview of MuCache

To meet the above requirements, we design and implement
MuCache, a new caching framework for microservice graphs;
we depict its architecture in Figure 1. In this figure, MuCache
extends an application that consists of two microservices,
Service1 and Service2, each of which has its own datastore
and exposes a set of available methods that clients or other
services can call. We refer to these methods as endpoints,
borrowing from REST terminology. Throughout the paper,
when a Service1 calls a Service2, we refer to Service1 as the
upstream and Service2 as the downstream.

MuCache extends each service with wrappers (W), a cache
manager (CM), and a cache (C). The wrappers are a shim
layer that intercepts all communication among services and
their datastores. MuCache’s wrappers are implemented on top
of Dapr [3], a distributed application runtime that orchestrates
service invocations and datastore accesses through its API.
Dapr supports many datastores through the same API, so
our wrappers inherit this compatibility without additional
effort. The cache manager saves and deletes entries from
the cache to maintain coherence by tracking all inter-service
communication and datastore accesses through the wrappers.
It is deployed as a separate executable on the same node with
the service. Microservices are often sharded across multiple
instances to support larger workloads; in such cases, each
shard has its own cache manager and cache. MuCache does
not impose any configuration restrictions on the cache which
can be configured to have any eviction policy, cache size,
etc. MuCache acquires knowledge of the graph topology in a
decentralized way: each cache manager only knows about its
immediate predecessor cache managers.
Workflow. To deploy MuCache, developers must first declare
the read-only (RO) endpoints that do not mutate the datastore.
If developers use REST APIs, MuCache can automatically

Page

Page.C

Page.CM

MR.CM

Rev.Stor.

(2)

(1) (5)

(7)

(8)

RS.CM

(3)

…

(4)

(6)

(1) Write(id, v)
(2) Cache.get(get_revs(id))
 -> revs
(3) Cache.get(get_revs(id))
 -> revs
(4) Inv(id)
(5) Inv(call)
(6) Inv(get_revs(id))
(7) Cache.delete(get_revs(id))
(8) Cache.get(get_revs(id))
 -> None

FIGURE 3—An example execution of the movie review application
that includes an invalidation.

infer this by treating ‘GET’ endpoints as RO. The cache will
then store the responses of successful requests to the RO end-
points of other services. For example, the cache of Service1
would store the return values of requests to /endpoint1 of
Service2. The cache manager of Service2 would then track all
of the keys that were read during each RO call, and whenever
one of these keys is modified by a write, it sends messages
to all of its caller’s cache managers (in this case, the CM of
Service1) to invalidate the relevant cache entries.

As a concrete example, consider Figure 2 (left), which
shows a fragment of a movie review application (Cf.
IMDB) [24]; clients request the page of a specific movie
from the Page service, which in turn calls the MovieReview
and Plot service to compute its results. The right side of Fig-
ure 2 shows one example execution. The first time Page tries
to get the plot for movie id, it does not find it in the cache
(1) and then invokes Plot. After the call returns, the cache
manager of the Plot service informs the cache manager of
Page to save the return value of this call (5). For a subsequent
call with the same arguments (7), the return value is found in
the cache, and the Plot service is never contacted. Figure 3
shows an execution where some other user adds a new review
to the movie id (1). While the write happens, different users
successfully access the page of that movie from the cache (2),
(3). The invalidation is propagated in the background between
cache managers, until it invalidates all affected saved cache
entries, including the one in the cache of Page.

We note that most of the processing to update and inval-
idate caches in MuCache is done off the critical path. With
reference to Figure 2, the only operations in the critical path
are steps (1), (2b), and (4b), all of which are local accesses.
In particular, (1) is an access to a local cache, and (2b) and
(4b) involve communication with a co-located cache manager.
Furthermore, MuCache supports sharding without any com-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 223

S2(1) (2)

(3) (4)

(1) call(“write”, k, v)
(2) call(“write”, k, v)
(3) call(“read”, k)
(4) call(“read”, k)

S1

S3

S4

FIGURE 4—An application exhibiting a “diamond” pattern.

munication between shards on the request processing critical
path—cache managers of different shards only communi-
cate invalidation in the background. At the same time, the
invalidation delays in MuCache are very small (ms)—orders
of magnitude smaller than standard values of TTL used in
practice to evict cache items (seconds to hours) (§7).
Correctness. The correctness condition for MuCache is based
on classical refinement modulo reordering, i.e. that all behav-
iors exposed by a cache-enabled application are equivalent to
a behavior of a cache-free version after potentially reordering
independent observable events. The execution in Figure 3 is
correct because it could have been observed from the original
application if the write (1) had happened right after (2) and
(3) since they are independent requests from different clients.

Guaranteeing correctness is challenging for call graphs
with more than one path between the same two services, i.e.,
when a request accesses the same backend service twice in
its lifetime. Figure 4 shows such an example of a ‘diamond’
pattern. In this example, a service S1 first calls S2, which in
turn calls S4 that writes to its store. Then S1 calls S3, which
calls S4 trying to read from the same value that was written
by S2. It is possible that S1 could find the result of a previous
call to S3 in its cache, reading a stale value, leading to an
execution that would not be observable without caches. Since
microservice call graphs are dynamic, this pattern cannot be
identified and prevented statically (before execution). Mu-
Cache addresses this at runtime by keeping track of visited
services during request processing, not checking a cached
entry if it depends on a service that has already been visited.
Summary. We conclude this section by describing how Mu-
Cache satisfies the previously stated requirements:
• Correctness: We prove that MuCache does not introduce

behaviors that are not part of the original application (§5).
• Non-blocking and low overhead: Cache managers do all

processing in the background and the wrappers only send
messages to them, never blocking for a response.

• Dynamic graphs: MuCache tracks dependencies to guar-
antee correctness in the presence of dynamic call graphs.

• Sharding: MuCache supports sharding without any addi-
tional communication on the critical path.

• Application and datastore agnostic: MuCache does not
require any modification to the application or datastore
code because wrappers intercept all communication.

• Incremental deployment: Developers can gradually declare
read-only endpoints to get incremental benefits.

4 MuCache Protocol

Figure 5 shows the complete MuCache protocol for the wrap-
pers of a single service shard and its cache manager in Python-
like pseudocode. The wrapper of each service communicates
with its associated cache manager through an ordered mes-
sage queue (using SendToCM). Downstream cache managers
also issue Save/Inv events to upstream ones through the same
queue. Cache managers in different shards of the same ser-
vice also communicate with each other when broadcasting
invalidations using SendToShardCM.

The code on the left depicts wrapper logic run before
a request starts processing (preReqStart), when a request
has finished processing (preReturn), when a request reads
from a key (preRead), before a request performs a call to
another service (preCall), and after a request writes to a key
(postWrite). The code on the right depicts cache manager
logic, which processes events in the message queue sent by
the wrappers and cache managers of other services.
Wrapper. The wrappers keep two types of state. The first
is a global (per service shard) readsets map from request
identifiers to sets of keys and call arguments, which keeps
the dependencies of each pending read-only (RO) request.
The second is the per-request context ctx, which is carried
around while a request is processed. ctx contains (1) the
id of the request (ctx.call_id); (2) the hash value of the
request’s arguments (ctx.ca); (3) the caller of the request
(ctx.caller); (4) the visited services of the request and
its subrequests (ctx.visited); and (5) whether the current
request is read-only and, therefore, cacheable by its caller
(ctx.isRO). Wrappers send a Start(ca) message to their as-
sociated cache manager before a request starts processing and
then maintain the request readset when a read or a subrequest
is performed. Once the request is complete, the entire readset,
along with the call arguments, the caller, the return value,
and the visited services are sent to the cache manager as
an End(ca, rs, caller, ret, vs) message. Wrappers also
send Inv(k)messages to cache managers after a datastore key
k is modified. preCall checks the cache before invocation
and returns directly upon cache hits.
Cache manager. The cache manager controls the contents of
the cache. The cache manager contains two global (per service
shard) state components: saved and history. The saved map
acts as an inverted index of wrappers’ readsets by mapping
keys (or call arguments) to the corresponding service that
has read (or called) them. When a key or a set of calls is
invalidated, the cache manager looks up saved to locate all
the affected upstream services and asks them to invalidate the
set of relevant calls that they have cached by sending them
Inv messages. The second state component, history, is a
sequence of calls and invalidations used to determine whether
a call can be safely cached upstream. When a request with
readset rs is complete, the cache manager scans the history
in reverse chronological order for invalidations that intersect

224 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 global readsets : map(Key, set(Key | CallArgs))
2

3 def preReqStart(ctx):
4 if ctx.isRO:
5 cid, ca = ctx.call_id, ctx.ca
6 readsets[cid] = set()
7 SendToCM(Start(ca))
8

9 def preReturn(ctx, ret):
10 if ctx.isRO:
11 cid, ca = ctx.call_id, ctx.ca
12 rs = readsets.pop(cid)
13 caller = ctx.caller
14 vs = ctx.visited
15 SendToCM(End(ca, rs, caller, ret, vs))
16

17 def postWrite(ctx, k, _v):
18 SendToCM(Inv(k))
19

20 def preRead(ctx, k):
21 if ctx.isRO:
22 cid = ctx.call_id
23 readsets[cid].insert(k)
24

25 def preCall(ctx, ca):
26 if ctx.isRO:
27 cid = ctx.call_id
28 readsets[cid].insert(ca)
29 # Check if ca refers to a read-only endpoint and if
30 # the visited services are disjoint with the cache
31 # item subtree
32 if ca.isRO and visited_disjoint(ctx, ca):
33 return cache.get(ca)
34 return None

1 # Tracks which keys and calls will invalidate
2 # which cache entries upstream
3 global saved : map(Key | CallArgs, map(Service, CallArgs))
4 # Sequence of calls and invalidations
5 global history : list(Call(CallArgs) | Inv(Key | CallArgs))
6

7 def startHandler(ca):
8 history.append(Call(ca))
9

10 def endHandler(ca, rs, caller, ret, vs):
11 # Checks if there are any invalidations
12 # to the readset since the call start
13 if empty([for Inv(k) in history.invs_after(Call(ca))
14 if k in rs]):
15 SendToCM(caller, Save(ca, ret, vs))
16 saved.store(rs, ca, caller)
17

18 def invHandler(k):
19 match type(k):
20 case Key:
21 history.append(Inv(k))
22 case CallArgs:
23 history.extend([Inv(ca) for ca in k])
24 # Inform CMs of same-service shards
25 SendToShardCMs(Inv(k)) # (see Sec. 4.1)
26 # Ask all affected callers to invalidate
27 affected = saved.pop(k)
28 for caller, cas in affected:
29 SendToCM(caller, Inv(cas))
30

31 def saveHandler(ca, ret, vs):
32 save_visited(ca, vs)
33 cache.set(ca, ret)

FIGURE 5—(Left) The wrapper code of the protocol that intercepts the start of request processing, returns, writes, reads, and calls. (Right) The
cache manager code that processes work queue items sent by the wrappers and other cache managers.

S1

S1.C

S1.CM

S2

S2.CM

(1)

(4)

(5)

(6)(2) (1) Call(ca)

(2) Return v

(3) End(ca, …)

(4) Inv(ca)

(5) Cache.delete(ca)

(6) Cache.save(ca) -> v(3)

FIGURE 6—A bug that would occur if invalidate messages were
allowed to overtake saves.

with rs since the call started. If there is no such invalidation,
it asks the upstream cache manager to save the result. The
cost of this scan is proportional to the product of request
rate and average request duration, which is typically a small
number. For example, a service handling 10,000 requests
per second, each lasting 100 milliseconds, requires scanning
several thousand items.
Saving a new cache entry. A naive method of saving a new
entry involves the caller immediately saving it to the cache
upon the result’s arrival, rather than awaiting an explicit Save
message from the callee’s cache manager. This is not correct,
as it allows the bug shown in Figure 6 where the invalidation
message by the S2 cache manager “overtakes” the save done
by S1, leading to the cache entry never being invalidated.
Thus, it is necessary for Invs and Saves to not be reordered.
MuCache achieves that by issuing them sequentially through
the cache manager.
Invalidating an entry. Invalidations are triggered when a key
used in a cached result is modified. Naively, the cache man-

S.T1

S.T2

S.CM

(s) (e)
(w)

(i)

S.T1

S.T2

S.CM

(s) (e)

(w) (i)

(r) Read(k)

(w) Write(k, v)

(s) Start(ca)

(e) End(ca, …)

(i) Inv(k)

(r)

(r)

FIGURE 7—Possible imprecisions in invalidation. The three lines
represent two service threads processing requests and the cache
manager.

ager could track the exact order of all reads and writes to pre-
cisely track invalidations. Since requests are being processed
concurrently, this would require coordination across different
service threads, which would significantly slow down request
processing along the critical path. MuCache relaxes the track-
ing of reads and writes in two ways that do not jeopardize cor-
rectness, but reduce the synchronization overhead. First, all
reads of a request are gathered by the wrappers (preRead) and
are only sent to the cache manager at the end of the request
(the rs argument in the End message). To ensure correctness,
the cache manager then assumes that all reads happened at
the start of the call, considering the call invalid if a write
happened in its duration even if it happened before the reads
(Fig. 7, Left). Second, writes are intercepted in a non-atomic
fashion after they have been completed (postWrite). This
could allow for a call to start and complete in between the
actual write and postWrite, leading to its cached response
being unnecessarily invalidated (Fig. 7, Right).
Evicting an entry. There are two types of evictions in Mu-
Cache. First, a cache could fill up with entries and needs to

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 225

evict an entry to make space for new ones; in this case, the
eviction is safe without any additional work since the proto-
col is robust to re-invalidations (i.e., it is safe to invalidate a
cache entry that was previously evicted). Second, the cache
manager might need to reclaim space if it is keeping track of
the dependencies of many calls. It reclaims space by evicting
a key or call from its saved dependencies and consequently
sends invalidation messages to all affected calls upstream as
if the key were invalidated (see inv(k) in Figure 5).
Garbage collection. The cache manager has two state com-
ponents that grow during execution: (1) the history and (2)
the dependencies. It keeps the history bounded by remov-
ing completed calls when processing an End request, adding
minimal overhead. The protocol preserves correctness in the
presence of multiple pending calls with the same arguments
by removing the latest occurrence of a call start (potentially
overapproximating the duration of the other calls). When the
cache manager reaches a memory limit, it deletes some of its
saved dependencies as long as it informs the upstream caches
to evict relevant entries (similarly to a normal invalidation).
The current implementation evicts dependencies following an
LRU policy, though other choices could be used.
Sharding. MuCache supports sharded service deployments
by attaching a cache manager to each shard; the only require-
ment being that read-only calls with the same arguments are
always processed by the same shard (e.g., by load balancing
these calls based on a hash of the call arguments). This guar-
antees that a single cache manager is the sole authority for
the invalidations of each read-only call, ensuring that they
will be the only ones to send cache-save and cache-invalidate
messages for that call. The only change in the protocol is that
a cache manager processing an invalidate due to a write needs
to broadcast it to all cache managers of the other shards of the
same service, so that they can invalidate their relevant calls
(see L.25 in Figure 5). It is important to note that broadcasts
only happen upon users’ writes; transitive invalidations propa-
gated upstream do not trigger broadcasts. Broadcasting out of
the critical path is safe because, similarly to the single-shard
protocol, overapproximating the write duration might lead to
additional invalidations but not fewer. MuCache, therefore,
does not add any latency overhead on the request processing
critical path to support sharded services.
Handling Dynamic Call-graphs. Microservice applications
can exhibit a diamond pattern (Figure 4) where a request
performs multiple subrequests to the same service through
its lifetime. In such applications naive caching could lead
to executions that cannot be observed without caches. Mu-
Cache addresses this by keeping track of the visited services
in two locations. First, each request keeps visited services in
its context (ctx.visited); whenever a subrequest ca returns,
the parent request adds all the visited services of the subre-
quest (ca.visited) to its own visited services (ctx.visited).
Second, when saving a cache entry for call ca, the cache

manager also stores the services, S’, that were visited during
the processing of ca. Before checking the cache, the wrap-
per checks if the downstream service has ever visited a ser-
vice in S’ that has also been visited by the current request
visited_disjoint(ctx, ca); if so, it does not retrieve the
return value from the cache to preserve correctness. MuCache
tracks visited services using a binary encoding that keeps its
size small—less than 1 KB for 1000 services.

5 Protocol Correctness
To demonstrate the correctness of MuCache, we show that
clients cannot differentiate a MuCache-enabled application
from the original without caches. We give semantics to mi-
croservice applications (with and without caches) using ob-
servable execution events and traces. Events are indivisible
actions (steps) that can be performed by a microservice ap-
plication; examples of events include reading from a key in
the datastore and receiving a response from a completed sub-
request. An application can be uniquely described by the set
of traces (event sequences) that can be observed in it. Two
traces are said to be equivalent modulo reordering when all
events in one trace exist in the other trace but potentially in a
different order. Reorderings are necessary for our correctness
theorem to allow reads and writes to proceed concurrently (as
in Figure 3). In this section, we informally describe three as-
sumptions that are central to our formal development, the first
two hold for all microservice applications, and the last one is
a requirement of MuCache. We then state our main theorem
and give the high-level intuition for the proof. The complete
formal development and proof can be found in Appendix A,
which is available in the supplementary material.
(A1) Always enabled requests. Requests in a microservice
application only block when waiting for subrequests that they
have invoked to finish executing and there is no blocking
communication across independent requests. In other words,
if a trace can be observed in an application, then we can pick
and execute any pending request, or any of its subrequests,
until it produces an execution event, and the new trace will
also be part of the application’s set of traces.
(A2) Reordering independent events. Two events are depen-
dent when the first event affects the execution of the second:
some examples include two events that are part of the same
request, or a write and a read event to the same key in a ser-
vice datastore. The complete definition of dependent events
is given in Appendix A. We assume that due to multithread-
ing, independent events commute; that is, reordering any two
consecutive independent events in an application trace results
in a trace that can also be observed by the application.
(A3) Linearizable datastores. We assume that the datastore
of each service is linearizable [26]: operations on an object
take place atomically, in an order consistent with the oper-
ations’ real-time order. For instance, if a write completes
before a read begins, then the read must observe the effects

226 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of the write and complete after it. This is necessary due to
the requirement that MuCache does not modify the under-
lying datastore and can only observe writes to the datastore
before or after they are completed. If we were to use a non-
linearizable datastore a write could take effect after it returns,
making it impossible to track which calls it invalidates.

Theorem 1 (Protocol Correctness). For all traces in a cache-
enabled application, there exists a trace in the original appli-
cation without caches, such that all the client events in the
two traces are equivalent modulo reordering.

Proof intuition. To show the theorem, we prove a stronger
lemma, namely that for all cache-enabled traces, we can con-
struct an original trace where (1) all request subtraces are the
same (modulo the missing requests due to cache hits), and (2)
that the application state is the same at the end of both traces.
The proof proceeds by induction on the length of traces and
has three phases: (1) given a trace in the cache-enabled ap-
plication that ends with a cache-hit, it uses assumption (A2)
to move writes that happened before the cache-hit but would
later invalidate its entry to the end of the trace (together with
their dependencies); (2) it then uses the inductive hypothesis
to construct a trace in the original application for the prefix
up to the cache-hit; and (3) it uses assumption (A1) to fill in
all subrequest events that are missing due to the cache-hit,
and then it fills in the writes and all their dependencies (A3),
ending up with a trace that satisfies the requirement.

6 Implementation
The MuCache implementation comprises roughly 2k LoC of
Go [12], including the wrappers that intercept invocations and
state accesses, and the cache manager that makes invalidation
and saving decisions. Communication between wrappers and
the cache manager happens with ZeroMQ [16] and between
cache managers with HTTP. Our current implementation uses
Redis [9] as the cache, but any in-memory store could be used
in its place. We use 32-bit FNV-1a [11] algorithm to compute
the hash values of call arguments.
Batching. Cache managers instruct their upstream counter-
parts to save or invalidate cache entries by sending HTTP
requests that might become a bottleneck when the load is
high. To increase throughput at high loads without affecting
correctness, MuCache allows batching requests that are sent
upstream. At low loads, batching increases the time it takes
for an invalidation to propagate through the system based on
the batching timeout, which is currently set to 1ms. Batching
also enables the simplification of upstream requests by can-
celing out operations at the sender, i.e., invalidates and saves
override previous invalidates and saves on the same key. This
reduces the size of requests and the number of operations
upstream cache managers have to process, while incurring
minimal cost since it requires a single pass over the batch.
General support. MuCache is designed to not be limited

to a single communication protocol, cache, or datastore. Our
wrappers are built on top of Dapr [3], a service mesh extended
to also support state accesses through its API. Dapr supports
custom middlewares that can be used to intercept invocations
and state accesses. It also provides a common abstraction for
many service communication protocols and different storage
backends, allowing us to implement our wrappers once and
inherit support for all the alternatives.
Dependencies between client requests. MuCache’s caching
protocol treats client requests as independent and allows them
to be reordered, processing reads and writes from different
clients without synchronization. However, this might not al-
ways be desirable, e.g., when a client request expects to see
the effects of a previous request. To support this, we extend
MuCache’s dependencies (Sec. 4) to client requests. Specifi-
cally, when a client request is complete, visited services are
included in the result, and passed to the subsequent request
of the same client (if one is performed), allowing MuCache
to avoid violating dependencies across client requests.
Supporting third-party services. Microservice applications
often perform requests to third-party services that might not
be extensible with MuCache, e.g., if they are owned by a dif-
ferent organization. To support such applications, MuCache
allows declaring requests to third-party services as read-only
using a TTL, saving their values to the cache on return, but
invalidating them when the TTL has passed instead of wait-
ing for a downstream cache manager. This setup provides
caching benefits with at least as strong guarantees as if all
the caches in the application were configured with a TTL,
however for the complete subtrees of the microservice graph
that are MuCache-enabled the guarantees are stronger.

7 Evaluation
Our evaluation aims to answer these high-level questions:
• (Q1) Throughput and latency benefits: Does MuCache

provide throughput and latency benefits compared to other
caching alternatives? Does it scale with sharding? How do
cache sizes affect its performance? How are its benefits
affected by the application call-graph? (§7.3)

• (Q2) Costs: What are the costs of deploying MuCache?
What is its CPU and memory usage, total network costs,
and its latency overhead on the critical path? Does the
cache manager throughput become a bottleneck? (§7.4)

• (Q3) Invalidation: How fast can MuCache invalidate
cache entries? (§7.5)

Before we answer these questions, we describe the experimen-
tal setup (§7.1) and our methodology and baselines (§7.2).

7.1 Experimental Setup

We deploy a Kubernetes [7] cluster on CloudLab [2] m510 ma-
chines that have 8-core 2.0 GHz CPUs, 64GB RAM, 256GB
NVMe SSDs, and 10GB NICs. Machines run Ubuntu 20.04.
The average round-trip time between servers is 0.15ms. Ex-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 227

cept for sharding experiments, we utilize a single Kubernetes
cluster where the number of worker nodes is equal to the
number of services, plus one node acting as a control plane.
Each service is deployed via Dapr [3] and is affinitized to a
single node. We use Redis [9] configured with an LRU evic-
tion policy as the cache. Unless otherwise noted, MuCache is
configured with a sending batch size of 20 and a 1 ms timeout.
Cache manager dependencies are stored in a LRU cache, with
the maximum number of entries being proportional to the
user cache size. In our experiments, the cache manager stores
100 dependencies per 1 MB of user cache (e.g., a user cache
of 20 MB allows the storage of 2,000 dependencies).

7.2 Applications, Method, and Baselines

Throughout our evaluation we perform experiments on four
open-source microservice applications, as detailed in Figure 8,
along with four synthetic ones. Workloads are adapted from
the original testbeds, including the dataset and request distri-
bution. Cache sizes are set relative to the application working
data set; small enough that they do not fit the entire work-
ing data set but big enough so that there is a non-negligible
amount of cache-hits.
SocialMedia. A social network application (Cf. Twitter or
Facebook) that provides three main endpoints, viewing a
user’s homepage timeline (RO), viewing a user’s personal
timeline (RO), and composing a post. The workload ratio is
60% homepage, 30% user timeline, and 10% compose post.
The cache size for each service is set to 20 MB. When there
are no new posts and each timeline contains 10 posts, the total
cacheable posts are around 20 MB.
MovieReview. A movie review application (Cf. IMDB or
Rotten Tomatoes) that offers two main endpoints: viewing the
page of a movie (RO) and creating a review. The workload
ratio is 90% viewing a page and 10% creating reviews. The
cache size for each service is set to 70 MB.
HotelRes. A hotel reservation application (Cf. Booking or
Airbnb) that offers two main endpoints: searching for hotels
in a specific area (RO) and making a reservation. The work-
load ratio is 80% searching for hotels and 20% making a
reservation. The cache size for each service is set to 20 MB.
OnlineBoutique. An online store application (Cf. Amazon
or Walmart) that offers multiple endpoints, retrieving the
store homepage (RO), updating the currency rate, viewing a
product (RO), adding a product to the cart, and checking out.
The workload ratio is 75% read-only (homepage, viewing
products, and carts) and 25% non-read-only (updating the
currency, updating the cart, checking out). The cache size for
each service is set to 80 MB.
Synthetic Benchmarks. Figure 9 shows four synthetic ap-
plications: ProxyApp, a two-service app where a stateless
frontend forwards requests to the backend, which in turn
reads/writes to a key-value store; and three applications that
extend ProxyApp with archetype call-graph patterns—chain,

Benchmark Services LoC RO/NonRO Sources

1 SocialMedia 6 532 90/10 [10, 24, 32]
2 MovieReview 12 913 90/10 [13, 24]
3 HotelRes 6 608 80/20 [24]
4 OnlineBoutique 9 1,088 75/25 [8]

FIGURE 8— Real-world applications used in our evaluation.

FIGURE 9—Shapes of synthetic benchmark call-graphs.

fan-out, and fan-in. ChainApp has four stateless services and
a stateful backend. FanoutApp has a single frontend forward-
ing requests to four backends. FaninApp has four separate
frontends, each forwarding requests to one backend.
Method. We measure throughput and latency (median and
95th percentile) using the wrk2 [15] HTTP benchmarking
tool. Experiments include a 30-second cache pre-warming
period, followed by a 60-second testing period. Each experi-
ment is run three times, and the average is reported. We run
MuCache and the baselines with the same CPU resources;
that is, MuCache’s cache managers are not given extra cores
but share resources with the application.
Baselines. We compare MuCache to the following baselines.

BC (Backend Cache): A baseline that lacks inter-service
caching and only caches data from the backend datastore.

TTL: A baseline that reflects the current best practices for
automated inter-service caching [1, 27, 33]. Caching occurs at
both the backend and intermediate services. Upon invocation,
the caller saves the result in the cache asynchronously without
communicating with any cache manager. The caches can then
evict an entry when they become full or, in the case of an inter-
service cache, when a configured time-to-live (TTL) timer
has expired. Cached data can be inconsistent and arbitrarily
stale (depending on the TTL and access pattern).

TTL-∞: A special case of TTL that serves as an upper bound
on the performance achievable by TTL implementations;
cache entries never expire and are only evicted when the
cache reaches maximum capacity.

7.3 (Q1) Throughput and Latency Benefits

We first measure the throughput and latency of a set of real-
world applications with and without MuCache (§7.3.1). We
then compare it against different TTL baselines (§7.3.2), we
evaluate whether it limits throughput scalability in the pres-
ence of sharding (§7.3.3), and we evaluate whether configur-
ing caches with different sizes and whether different applica-
tion call-graphs affect MuCache’s benefits (§7.3.4–7.3.5).

228 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1,000 2,000 3,000 4,000

5
10
20

50
100
200

Request Rate (rps)

L
at

en
cy

(m
s)

HotelRes

1,000 2,000 3,000 4,000

Request Rate (rps)

MovieReview

500 1,000 1,500 2,000

Request Rate (rps)

SocialMedia

2,000 3,500 5,000 6,500

Request Rate (rps)

OnlineBoutique

BC 50/95th MuCache 50/95th TTL-∞ 50/95th

FIGURE 10—Latency and throughput of real-world applications (described in Figure 8).

7.3.1 Real-world applications

We evaluate MuCache’s benefits on throughput and latency on
the four open-source microservice applications. We compare
MuCache against (1) BC to evaluate performance benefits
over not having inter-service caches, and (2) TTL-∞ to eval-
uate how close MuCache is to an implementation that caches
results but provides no consistency guarantees.
Results. Figure 10 shows the results, where the X-axis is
request rate, and the Y-axis shows latency in ms. MuCache
reduces median latency by up to 1.8× in HotelRes, 2.5× in
MovieReview, 1.5× in SocialMedia, and 2.1× in OnlineBou-
tique. The tail latency between MuCache and BC is similar,
except for OnlineBoutique, where MuCache reduces tail la-
tency by up to 1.8× by avoiding many invocations from the
Checkout service, such as retrieving product information, get-
ting shipping quotes, etc. Furthermore, MuCache improves
throughput by 1.6× in HotelRes, 1.5× in MovieReview, and
1.4× in SocialMedia, while achieving similar throughput in
OnlineBoutique. Compared to TTL-∞, MuCache’s median
latencies are up to 1.2× higher before saturation, and Mu-
Cache’s throughput is around 0.95×.
Take away. MuCache outperforms BC in terms of median and
tail latency, and throughput across all workloads. MuCache
also performs close to the upper bound TTL-∞. Improve-
ments in median latency can be attributed to cache hits, while
improvements in throughput are due to lower utilization of
backend services.

7.3.2 Comparison with TTL baselines

Tuning TTL values for caches in real systems is complex and
depends on the application requirements; suggested values
could range from seconds to hours [18, 23]. To simulate that
in a shorter experiment, we vary TTL from 100 ms to 10 s—
values under 100 ms lead to negligible cache hits, and a TTL
of 10 s is already a large fraction of the total experiment (60 s).
Results. Figure 11 shows the results. As the TTL increases
from 0.1 to 10 s, median latency drops from 18.2 ms to
10.9 ms, tail latency drops from 29.3 ms to 10.9 ms, and
throughput increases from 2,489 to 3,470 rps. MuCache out-

1,000 1,500 2,000 2,500 3,000 3,500 4,000

10

20

50

100

Request Rate (rps)
L

at
en

cy
(m

s)
TTL-0.1s 50/95th TTL-1s 50/95th
TTL-10s 50/95th MuCache 50/95th

FIGURE 11—HotelRes: Latency and throughput of MuCache com-
pared with various TTL.

performs TTL-1s (1.3× lower median latency), but is outper-
formed by TTL-10s (which performs similarly to TTL-∞).
Take away. Getting comparable performance to MuCache
with a TTL-based caching approach requires setting the TTL
to a high value (>1 s)—orders of magnitudes higher than
the MuCache invalidation times (on the order of ms per call-
graph depth as shown in Section 7.4.3). Furthermore, finding
an appropriate TTL value is challenging for developers, as this
value has implications for the correctness of the application.
In contrast, MuCache requires no tuning of expiration times,
and invalidations happen automatically and correctly.

7.3.3 Sharding Scalability

We evaluate the scalability of MuCache by deploying So-
cialMedia to multiple shards. We provision a fixed pool of
machines and restrict each shard to a fixed CPU usage of
2 cores (1 running the service, 1 running the Dapr sidecar)
to have multiple shards on a single machine. Each shard is
deployed with its own cache manager. We compare against
BC to determine whether MuCache limits scalability.
Results. Figure 12 shows the maximum throughput of the
SocialMedia when deployed using 1, 2, and 4 shards, with and
without MuCache. MuCache scales as well as BC (achieving
1.44×, 1.38×, and 1.37× the throughput of BC).
Take away. MuCache does not limit scalability for sharded
applications as the only cost occurs in the background; when
the cache manager of a shard broadcasts received writes to all
cache managers that belong to the same service shards.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 229

1 shard 2 shards 4 shards

500

1,000

1,500

1.44x

1.38x

1.37x

T-
pu

t(
r/

s) Baseline

MuCache

FIGURE 12—Throughput of MuCache and BC when sharding the
services in SocialMedia.

16 32 64 128 256 512 1024
0
5

10
15
20
25

Cache size (MB)

L
at

en
cy

(m
s)

0

0.2

0.4

0.6

0.8

1

H
it

ra
te

MuCache 50/95th MuCache hit rate
TTL-∞ 50/95th TTL-∞ hit rate

FIGURE 13—HotelRes: Impact of different cache sizes on latency
(left Y-axis) and combined cache hit rate (right Y-axis).

7.3.4 Cache size effect

To evaluate how MuCache responds to the cache size of each
service, we measure latency and cache hits on HotelRes with
a fixed load of 1K req/s while varying the cache size from
16 MB to 1024 MB. TTL-∞ acts as an upper-bound baseline.
Results. Figure 13 shows the results. Increasing the cache
size lowers the median latency of MuCache from 9.9 ms to
8.2 ms and tail latency from 22 ms to 13.6 ms; it also increases
the cache hit rate from 5% to 91%. Similarly, in TTL-∞, the
median latency decreases from 9.9 ms to 7.3 ms, tail latency
from 21.6 ms to 10.6 ms, and cache hit rate from 5% to 100%.
Take away. Caching with MuCache reduces mean and tail
latency. Furthermore, the reductions achieved by MuCache
are close to those achieved by TTL-∞ across all cache sizes.

7.3.5 Application call-graph effect on performance

To evaluate how the application call-graph pattern affects the
benefits of MuCache, we use the three synthetic applications
in Figure 9. We use a synthetic workload with 50% cache hit
rates and compare against BC.
Results. Figure 14 shows the results. For ChainApp, Mu-
Cache’s median latency is 2.6–3.1× lower than that of BC,
while its tail is comparable before reaching saturation. Its
maximum throughput is 1.5× higher. For FanoutApp, the
median latency and maximum throughput of MuCache are
similar to that of the BC, but its tail latency is up to 1.6×
lower. In FaninApp, MuCache improves median latency by
1.1–1.3× and 95th percentile latency by up to 1.9×; maxi-
mum throughput is 1.75× higher than BC.
Take away. MuCache provides different benefits depending
on the call-graph shape. For long call-chains MuCache re-
duces latency by avoiding network hops; for fan-out it slightly

1 3 5 7

5
10
20
50

100
200

L
at

en
cy

(m
s)

Chain

1 1.5 2 2.5 3

Request Rate (krps)

Fanout

2 6 10 14

Fanin

BC 50/95th MuCache 50/95th

FIGURE 14—Latency and throughput of the graph shape mi-
crobenchmarks (Fig. 9).

Benchmark Average (MB) Max (MB) Cache Size (MB)

1 HotelRes 0.08 0.27 20
2 MovieReview 0.07 0.31 70
3 SocialMedia 0.02 0.09 20
4 OnlineBoutique 0.1 0.45 80

FIGURE 15—Cache manager state and cache size for each service.

improves tail-latency but not median latency since the fron-
tend has to wait for the slowest path to respond; and when the
backend is the bottleneck it improves throughput by reducing
the number of requests that reach the backend.

7.4 (Q2) MuCache costs and overheads

In order to evaluate the costs of MuCache, we measure its
CPU, memory, and network usage (§7.4.1), its latency over-
head on the critical path (§7.4.2), and the cache manager’s
throughput and whether it can be a bottleneck (§7.4.3).

7.4.1 Memory / CPU / Network costs

We evaluate MuCache’s memory cost on all four applications
and its CPU and network usage on HotelRes. We evaluate
MuCache’s network usage by measuring data transfer be-
tween nodes using iftop. We measure the memory cost of
each cache manager instance as the average size of its state
(history and dependencies) and CPU cost as the average CPU
usage of each service during the experiment. We use standard
cache sizes and load (2K req/s for HotelRes, 2.5K req/s for
MovieReview, 1K req/s for SocialMedia, and 3.5K req/s for
OnlineBoutique) for 300 seconds.
Results. Figure 15 shows the cache manager state size and the
cache size across services. The average size of the CM state
across services ranges from 0.1–0.4% of the cache size per
service. Garbage collection plays an important role in keeping
the memory usage low: without GC, the CM state in HotelRes
goes up to 5 MB in 1 minute. Figure 16 shows the average
CPU usage of each service during the experiment. Usage is
broken down between the service logic, the Dapr sidecar, and
the cache manager. The average CPU usage across services
with and without MuCache is 4.2 and 5.1 cores respectively.
The average CM CPU usage across services is 0.5 cores. The

230 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Fron
t.

Profi
le
Rate

Rese
rv.

Sea
rchUser

2

4

6

C
PU

(c
or

es
)

Baseline

Fron
t.

Profi
le
Rate

Rese
rv.

Sea
rchUser

MuCache

Service
Dapr
CM

FIGURE 16—CPU usage per service for HotelRes.

0.2 0.5 0.7
0

1

2

3

4

5

Percentile

L
at

en
cy

(m
s)

0.8 0.9 0.95 0.975 0.99

4

5

6

7

8

Percentile
BC MuCache (0%/60%) TTL-∞ (0%/60%)

FIGURE 17—Latency distribution w.r.t. hit-rate for ProxyApp. Solid
and dashed lines show the latencies when the hit rate is 0% and 60%
respectively. Split in 70th percentile for clarity.

average network usage per service without MuCache is 9.0
MB/s, while the average with MuCache is 6.6 MB/s, of which
cache managers use 2.9 MB/s.
Take away. Memory costs are low compared to the cache
size (<0.4% on average). The CPU usage of MuCache is
13% of the total service CPU on average while at the same
time reducing the total CPU usage of the whole application
due to some backend services being less utilized because of
cache hits in the frontend. Though cache managers use some
bandwidth to save/invalidate caches, MuCache reduces the
total network usage by 27% due to local cache hits.

7.4.2 MuCache latency overhead

We evaluate MuCache’s latency overhead by focusing on
ProxyApp, which performs minimal work, to measure the
worst-case overhead. We create a synthetic workload with
0% and 60% cache hit rates and compare against (1) BC to
evaluate the overhead over no caches when there are no hits,
and (2) TTL-∞ to evaluate the wrapper overhead.
Results. Figure 17 shows the complete request latency distri-
bution. We report overheads as absolute values because they
are constant and independent of the work that the services
do. For a hit rate of 0%, MuCache’s median latency (4 ms) is
0.5 ms higher than BC and 0.3 ms higher than TTL-∞, while
the 95th-percentile (5.7 ms) is 0.9 ms and 0.5 ms higher re-
spectively. When the hit rate is 60%, MuCache’s median and
95-th percentile latencies are 0.15 ms and 0.5 ms higher than
TTL-∞. When the hit rate is 60%, MuCache median latency
is 1.4 ms better than BC (3.5 ms to 2.1 ms).
Take away. Even in a worst-case scenario (an application that

Batch Size 1 2 5 10 20 50

Throughput (krps) 19.2 26.5 44.5 74.7 75.2 74.6

FIGURE 18—Batching effects on cache manager throughput.

Chain Size 2 3 4 5

Mean invalidation time (ms) 3.94 6.13 8.41 10.66

FIGURE 19—Invalidation time for different chain sizes.

performs minimal work), MuCache imposes a low (∼10%)
latency penalty on cache misses.

7.4.3 MuCache’s throughput

To determine whether MuCache’s cache manager can be a
bottleneck, we measure the its maximum throughput on the
ProxyApp and load the backend’s cache manager directly be-
cause the backend service becomes the bottleneck otherwise.
The load is 80% read-only requests and we vary the batch
size of the HTTP sending buffer between cache managers.
Results. Figure 18 shows the throughput in terms of the
number of events the cache manager processes per second.
Without batching, the cache manager has a throughput of
∼19K events per second, while gradually increasing the batch
size up to 20 improves it to ∼75K events per second.
Take away. The cache manager has a reasonably high
throughput and is not the bottleneck even for an application
with minimal computation. To further increase throughput,
developers may deploy multiple shards for each service.

7.5 (Q3) Invalidation time

We evaluate the time needed for invalidations to reach the root
of the call-graph, namely the frontend service, by measuring
the observed inconsistency window [19], the elapsed time
between the write happening in the backend and the inval-
idation becoming visible in the frontend. The invalidation
time in our experiment is determined solely by the depth of
the call graph. To measure the increase in invalidation time
per hop, we conducted experiments on a microservice chain
consisting of 2 to 5 services, which represents the typical
depths of call-graphs in the applications that we studied.
Results. Figure 19 shows the results. For a two-service ap-
plication, the invalidation time is ∼4 ms; for a five-service
application it is ∼10 ms. Each additional service in the chain
increases invalidation time by ∼2.2 ms.
Take away. MuCache’s invalidation time is ∼2.2 ms per
call-graph hop—orders of magnitude smaller than the typical
invalidation times observed in TTL-based approaches (which
range from seconds to hours [18, 23]).

8 Related Work
Caching in microservice applications. Several works study
cache usage in real-world microservices, including work from
Alibaba [28], Twitter [38], and Facebook [37]. These papers

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 231

confirm that caches are heavily used in microservice applica-
tions and provide significant performance benefits, but only
mention manual, ad-hoc, or inconsistent coherence schemes
and do not propose an automatic way to manage these caches.
Caching frameworks for web services. There is a lot of
work on caching frameworks for web services for both static
and dynamic data. These frameworks focus on three key as-
pects: (1) content admission, (2) cache size management, and
(3) invalidation and data freshness (for a more detailed clas-
sification see a recent survey [29]). The first two aspects are
orthogonal to our work since we do not focus on optimizing
the performance of a cache given a specific workload, but
rather propose a general system for keeping caches coherent
in a microservice setting. To the best of our knowledge, all
frameworks that focus on invalidation (e.g., [21, 22, 31]) are
designed as a single cache layer on top of a database without
taking into account the inter-service caching.
Cache coherence protocols. There is extensive literature on
cache coherence protocols (see survey [34]), none of which
considers inter-service caching. Lazy caching [17] exploits
the fact that writes do not always require exclusivity (M or
E in MOESI [35]), allowing cores to perform concurrent
buffered writes, albeit blocking reads to ensure that depen-
dencies are not violated. Our work extends this insight by
avoiding all blocking communication on the request’s criti-
cal path—allowing writes downstream without immediately
informing the upstream caches and without blocking on reads.
Incremental computation. Caches are also used to enable in-
cremental and reactive computation: some examples include
Reactive Caching [20], Noria [25], and Diamond [39]. Reac-
tive Caching proposes caches for graphs of single-threaded
services to support reactive computation, i.e., writes down-
stream are propagated upstream to refresh the results. Noria is
an incremental stream processing engine that uses caches for
fast propagation of updates in a dataflow. Both differ from our
work in two ways: (1) they only provide eventual consistency
that violates dependencies when there are multiple paths be-
tween two services (see Fig. 4); and (2) they do not support
true multi-threading, as Noria limits writes to a single thread
and Reactive Caching only supports single-threaded services.
Diamond is a system that automates data management for
distributed reactive applications by providing reactive trans-
actions to clients. Similarly to MuCache, Diamond reactively
informs clients about data invalidations in the backend store,
but in contrast to MuCache it does not support service graphs.

9 Discussion and Limitations
Supporting transactions and non-KV stores. Our imple-
mentation does not currently support transactions or non-KV
stores. Supporting single-service transactions would require
that the wrappers perform the postWrite after the transaction
has completed to overapproximate the time that the write
operation completed. Supporting multi-service transactions

would be more challenging since caches should not violate
transactional guarantees, which would require additional syn-
chronization in the protocol. Supporting non-KV stores, such
as relational databases, would require monitoring the depen-
dencies of read-only calls and determining when to invalidate
cache entries, which could be done by leveraging the expres-
sive semantics of SQL (as in the case of Noria [25]).
Supporting weaker consistency datastores. The correctness
of MuCache depends on the datastores being linearizable;
MuCache needs to be sure that after a write has completed,
it has taken effect in the database. Being able to determine
the order of reads and writes by intercepting the datastore ac-
cesses is necessary so that MuCache is database-agnostic (see
requirements in Section 3). Supporting weaker consistency
datastores would likely require a more intrusive design with
modifications to a datastore—tightly integrating wrappers in
the store to provide additional metadata to the cache managers
about the precise order of reads and writes—forfeiting the
generality of being database-agnostic.
Application debuggability. Extending an application with
MuCache provides performance benefits and does not affect
the application behavior but adds complexity to the end-to-
end deployment and therefore increases the effort required
to maintain and debug it. This is an inherent software en-
gineering challenge—the bigger a codebase is, the harder
it is to maintain it. A direction for future work that could
help address this is to integrate MuCache with existing dis-
tributed tracing and debugging tools for microservices, so that
engineers have visibility on MuCache’s state and actions.
Write-intensive workloads. Even though a service might
offer a read-only endpoint, its workload might be write-
intensive, leading to overheads without the accompanied ben-
efits if extended with MuCache. Developers can currently
manually detect such cases and avoid declaring those end-
points as read-only, but it would be interesting to explore
whether MuCache can be extended with an adaptive moni-
toring mechanism that only enables caching if the read-write
ratio of a service is above some threshold.
Sharding. MuCache requires hard affinity sharding of read
requests to ensure correctness, i.e., all read-only calls with
the same arguments need to be processed by the same shard.
Write requests have no such limitation and can be dispatched
to any shard. An interesting avenue for future research would
be to lift the requirement for hard affinity, allowing for more
flexible load balancing and autoscaling.

Acknowledgments

We thank the NSDI 24 and SOSP 23 reviewers, our shep-
herd, Gábor Rétvári, as well as Achilles Benetopoulos, Akis
Giannoukos, Jiali Xing, Nathaniel Hoaglund, and Nikos Vasi-
lakis, for discussions and feedback on the paper. This work
was partially supported by NSF awards CCF 2124184, CNS
2107147, and CNS 2321726.

232 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Caching Guidance - Azure Architecture
Center. https://learn.microsoft.com/en-
us/azure/architecture/best-practices/caching.

[2] CloudLab - A testbed for cloud computing research.
https://www.cloudlab.us/.

[3] Dapr - Distributed Application Runtime. https://
dapr.io/.

[4] Envoy Proxy. https://www.envoyproxy.io/.
[5] From Monolith to Microservices: How to Scale Your Ar-

chitecture. https://www.youtube.com/watch?v=
N1BWMW9NEQc.

[6] Istio Service Mesh. https://istio.io/latest/
about/service-mesh/.

[7] Kubernetes - An open-source container orchestration
system. https://kubernetes.io/.

[8] Online Boutique – Microservices Demo.
https://github.com/GoogleCloudPlatform/
microservices-demo.

[9] Redis - An open-source in-memory data store. https:
//redis.io/.

[10] Rutgers Social Network Graph. https://
networkrepository.com/socfb-Rutgers89.php.

[11] The FNV Non-Cryptographic Hash Algorithm.
https://datatracker.ietf.org/doc/html/
draft-eastlake-fnv-17.html.

[12] The Go programming language. https://go.dev/.
[13] The Movie Database. https://www.themoviedb.

org/.
[14] Twitter’s recommendation algorithm. https://

github.com/twitter/the-algorithm.
[15] wrk2: A constant throughput, correct latency record-

ing variant of wrk. https://github.com/giltene/
wrk2.

[16] ZeroMQ - An open-source universal messaging library.
https://zeromq.org/.

[17] Yehuda Afek, Geoffrey Brown, and Michael Merritt.
Lazy caching. In ACM Transactions on Programming
Languages and Systems (TOPLAS), 1993.

[18] AWS. Caching Best Practices. https://aws.amazon.
com/caching/best-practices/, 2023.

[19] David Bermbach and Stefan Tai. Eventual consistency:
How soon is eventual? An evaluation of Amazon S3’s
consistency behavior. In Workshop on Middleware for
Service Oriented Computing (MW4SOC), 2011.

[20] Sebastian Burckhardt and Tim Coppieters. Reactive
caching for composed services: polling at the speed of
push. In Proceedings of the ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA), 2018.

[21] K Selçuk Candan, Wen-Syan Li, Qiong Luo, Wang-Pin
Hsiung, and Divyakant Agrawal. Enabling dynamic
content caching for database-driven web sites. In Pro-

ceedings of the ACM SIGMOD Conference (SIGMOD),
2001.

[22] Jim Challenger, Arun Iyengar, and Paul Dantzig. A scal-
able system for consistently caching dynamic web data.
In Proceedings of the IEEE International Conference
on Computer Communications (INFOCOM), 1999.

[23] Cloudflare. Edge and Browser Cache TTL. https:
//developers.cloudflare.com/cache/how-
to/edge-browser-cache-ttl/, 2023.

[24] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. An open-source benchmark
suite for microservices and their hardware-software im-
plications for cloud & edge systems. In Proceedings of
the International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), 2019.

[25] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens,
Lara Timbó Araújo, Martin Ek, Eddie Kohler, M Frans
Kaashoek, and Robert Tappan Morris. Noria: dynamic,
partially-stateful data-flow for high-performance web
applications. In Proceedings of the USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2018.

[26] Maurice P. Herlihy and Jeannette M. Wing. Linearizabil-
ity: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(3), July 1990.

[27] Joydip Kanjilal. Scaling microservices architecture us-
ing caching. https://www.developer.com/design/scaling-
microservices-using-cache/, 2021.

[28] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye,
Guoyao Xu, Liping Zhang, Yu Ding, Jian He, and
Chengzhong Xu. Characterizing microservice depen-
dency and performance: Alibaba trace analysis. In Pro-
ceedings of the ACM Symposium on Cloud Computing
(SOCC), 2021.

[29] Jhonny Mertz and Ingrid Nunes. Understanding
application-level caching in web applications: a com-
prehensive introduction and survey of state-of-the-art
approaches. In ACM Computing Surveys (CSUR), 2017.

[30] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In Proceedings of the USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2013.

[31] Dan RK Ports, Austin T Clements, Irene Zhang, Samuel
Madden, and Barbara Liskov. Transactional consistency
and automatic management in an application data cache.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 233

https://www.cloudlab.us/
https://dapr.io/
https://dapr.io/
https://www.envoyproxy.io/
https://www.youtube.com/watch?v=N1BWMW9NEQc
https://www.youtube.com/watch?v=N1BWMW9NEQc
https://istio.io/latest/about/service-mesh/
https://istio.io/latest/about/service-mesh/
https://kubernetes.io/
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://redis.io/
https://redis.io/
https://networkrepository.com/socfb-Rutgers89.php
https://networkrepository.com/socfb-Rutgers89.php
https://datatracker.ietf.org/doc/html/draft-eastlake-fnv-17.html
https://datatracker.ietf.org/doc/html/draft-eastlake-fnv-17.html
https://go.dev/
https://www.themoviedb.org/
https://www.themoviedb.org/
https://github.com/twitter/the-algorithm
https://github.com/twitter/the-algorithm
https://github.com/giltene/wrk2
https://github.com/giltene/wrk2
https://zeromq.org/
https://aws.amazon.com/caching/best-practices/
https://aws.amazon.com/caching/best-practices/
https://developers.cloudflare.com/cache/how-to/edge-browser-cache-ttl/
https://developers.cloudflare.com/cache/how-to/edge-browser-cache-ttl/
https://developers.cloudflare.com/cache/how-to/edge-browser-cache-ttl/

In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2010.

[32] Ryan A. Rossi and Nesreen K. Ahmed. The network
data repository with interactive graph analytics and vi-
sualization. In Proceedings of the AAAI conference on
artificial intelligence (AAAI), 2015.

[33] Irfan Saleem, Pallavi Nargund, and Peter Buonora. Data
caching across microservices in a serverless architecture.
https://aws.amazon.com/blogs/architecture/data-
caching-across-microservices-in-a-serverless-
architecture/, 2008.

[34] Per Stenstrom. A survey of cache coherence schemes
for multiprocessors. In IEEE Computer, 1990.

[35] Paul Sweazey and Alan Jay Smith. A class of com-
patible cache consistency protocols and their support
by the ieee futurebus. In ACM SIGARCH Computer
Architecture News (SIGARCH), 1986.

[36] Alex Xu. Twitter architecture 2022 vs. 2012. what’s
changed over the past 10 years?, Nov 2022.

[37] Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. Characterizing Facebook’s Memched Work-
load. In IEEE Internet Computing, 2013.

[38] Juncheng Yang, Yao Yue, and KV Rashmi. A large
scale analysis of hundreds of in-memory cache clusters
at Twitter. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2020.

[39] Irene Zhang, Niel Lebeck, Pedro Fonseca, Brandon Holt,
Raymond Cheng, Ariadna Norberg, Arvind Krishna-
murthy, and Henry M Levy. Diamond: Automating data
management and storage for wide-area, reactive appli-
cations. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2016.

[40] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi
Raj, Abhishek Parwal, Timothy Sherwood, and Milind
Chabbi. CRISP: Critical path analysis of Large-Scale
microservice architectures. In Proceedings of the
USENIX Annual Technical Conference (ATC), 2022.

234 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Detailed Protocol Correctness

Preliminaries. We start with some basic notation:

• nS denotes a service name

• ca denotes the arguments of a service call, including
the name of the service (which can be extracted using
name(ca)) and the endpoint.

• i ∈ R denotes request identifiers (each request has a
unique i). The service name and the arguments to the
request can be extracted using name(i) and ca(i). We
will define a binary relation sr ⊆ R×R that determines
when a request is spawned by another request. We can
also define sr∗ as the reflexive transitive closure of sr.
There is also a client(i) predicate, which returns true for
requests that are initiated by a client.

• v denotes a return value

• k denotes a key that indexes values in the state of a
service

• rs(i, t) is a function that returns all of the keys that a
particular request (and all of its subrequests) have read
in trace t. We will often ignore t when it is obvious
which trace we refer to.

Events and traces. We will describe microservice applica-
tions and their executions using traces, i.e., sequences of
events that describe application actions. We are only inter-
ested in events that describe interactions between services
and other services and actions on their states. We call the set
of all events Σ, and we now define all events in it.

• Reqi(ca) denotes the start of processing of a single re-
quest with id i and arguments ca.

• Reti(v) denotes that a request with id i has finished
processing and is returning value v.

• Readi(k, v) denotes that request with id i performed a
read of key k from its state and returned v.

• Writei(k, v) denotes that request with id i performed a
write with value v to key k of its state.

• Calli(ca, i′) denotes that request with id i performed a
call to another service with arguments ca and the request
id of that internal request is i’.

• Respi(v, i
′) denotes that request with id i received a

response with value v from a finished call with id i’.

We represent the set of all events for a request with identi-
fier i as Σi and the set of all read (or write) events as ΣR (or
ΣW). We also define a set of output events ΣO = {Reti(v) :
∀i, v}∪{Readi(k, v) : ∀i, k, v}∪{Writei(k, v) : ∀i, k, v}∪

{Calli(ca, i′) : ∀i, ca, i′} that are events that are determined
by the program when processing a single request, and input
events ΣI = {Reqi(ca) : ∀i, ca} ∪ {Respi(v, i

′) : ∀i, v, i′}
that are events that are given as inputs to the processing of a
single request. Finally, we can define the set of client events
ΣC = {Reqi(v) : ∀i, client(i)} ∪ {Reti(v) : ∀i, client(i)}
We can now describe complete executions of microservice
applications using traces t, i.e., sequences of the above events.
We can project all events of a trace t from a particular set Σ
using t[Σ], e.g., t[ΣW] are all the write events in a trace. Note
that this projection creates an ordered sequence of events by
maintaining the trace order.
Applications and Assumptions. We can now define the be-
havior of a microservice application P ∈ P using its execu-
tion traces, JP K ⊆ Σ∗, and state some assumptions on these
traces. First of all, an application determines the processing
of each request using the step : P×R × Σ∗ × (ΣO ∪ {⊥})
relation, that determines the next step of the processing of a
request, or ⊥ if the request is waiting for a response or hasn’t
started yet. Now we define what it means for a trace to be
well formed.

Property 2 (Well-formed traces). All traces t ∈ JP K are well-
formed, i.e., for each trace t the following properties hold:
(1) Reqi(ca) are the first events for any request i and Reti(v)
are the last; (2) for each i ∈ t there exists a unique Reqi(ca)
and at most one Reti(v); (3) a Reqi(ca) always comes after
a Calli(ca, i′) except in the case of client requests; (4) a
Respi(v, i

′) always comes after a Calli(ca, i′) and Reti′(v);
(5) for all Calli(ca, i′), sr(i, i′); and for all prefixes t′ =
t0.e with e ∈ ΣI , either step(P, i, t0, e) or step(P, i, t0,⊥);
(6) for all e ∈ ΣC for any i ∈ t, s.t. client(i) holds, then
∄Calli′(ca′, i) ∈ ΣC .

The last requirement relates the step relation with the traces,
i.e., each event in the trace is the result of stepping a request
or a request start or response. We also know that the events in
a trace are equivalent up to an injective renaming of request
identifiers.

Property 3. For any microservice application P , for all
traces t ∈ JP K and for all i ∈ t, then for any i′ /∈ t we can
construct a new trace t′ = t [i 7→ i′], s.t. t′ ∈ JP K.

In addition to the above, we also know that requests are
always enabled in microservice applications, i.e., a pending
request can always take a step.

Definition 1 (Pending Requests). We say that a request
Reqi(ca) is pending in a trace t iff Reti(v) does not exist
in t.

Property 4 (Request Step Always Enabled). For any mi-
croservice application P , for all traces t ∈ JP K, and for all
pending requests Reqi(ca) for some i, there exists a trace
t′ ∈ JP K such that t′ = t.ei, where ei ∈ Σi′ and sr∗(i, i′).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 235

Property 4 means that requests are always enabled to take
a step, sometimes through their subrequests. This is a valid
assumption for microservice applications since they are mul-
tithreaded, and therefore a single request can not block other
requests from proceeding, and a request can only block while
waiting for a response from its subrequests. Note that this
assumption requires that the network does not drop requests,
i.e., calls eventually lead to request starts and that returns
eventually lead to response events.

We also know that the values of read events depend on the
latest write to the same key or the original value.

Property 5 (Read return value). For all applications P , re-
quest identifiers i and traces t s.t. step(P, i, t,Readi(k, v))
holds, then either ∃i′,Writei′(k, v) = last(t[ΣW (k)]) or
v = ⊥.

Intuitively, this means that writes are immediately visible to
reads, thus that the underlying stores are linearizable, which
is a valid assumption for most key value stores.

We can now define read-only calls, that is calls that never
perform writes (even in their subrequests).

Definition 2 (Read-only requests). Given an application P
a request with request identifier i and call arguments ca,
i.e. ca(i) = ca, is read-only for this application iff for all
traces t ∈ JP K, and for all i′ such that sr∗(i, i′), it holds that
t[ΣW ∩Σi′] = ∅. We define a predicate RO(i) that holds for
read-only requests.

State. We represent the state of an application as σ ∈ D.
Concretely, a state σ is a tuple of maps from keys to values,
one for each service. We define the function S : Σ∗ → D
that returns the state of an application after the trace t. Due to
Property 5 the state at each point in the execution depends on
the prefix of write events and the starting state. We assume
that all executions start from the same starting state σ0.
Caching. Up to this point we have established all important
properties of microservice applications without mentioning
caches. A cache-enabled application P̃ can be similarly de-
fined by its execution traces, JP̃ K ⊆ Σ̃∗, where Σ̃∗ is a su-
perset of the set of events of applications without caches, i.e.
Σ ⊆ Σ̃. The additional cache related events are defined as
followed:

• CacheHiti(ca, v) denotes a cache-hit that replaces a
Respi′(v, i) for some i′ (also conforming to its well-
formedness conditions Property 2).

• Save(nS , i, v) denotes that the cache of service nS has
saved the value v for request i with call arguments ca(i).

• Inv(nS , i, i
′) denotes an invalidation of the cache of ser-

vice nS with ca(i′) from a write with identifier i.

Essentially, a cache-enabled application P̃ is a transformation
of a regular microservice application P . We know that our

protocol does not affect the stepping of requests other than
allowing some calls to return immediately with call hits. We
can also lift the step relation to account for cache-enabled
applications. The lifted step relation describes the logic of our
cache coherence protocol.

Property 6 (Cache Stepping). For any application P the
transformed P̃ can step, i.e. step(P̃ , i, t, e) holds, if

• step(P, i, t, e) when e ∈ Σ or

• e = Save(nS , i
′, v) and ∃Reti′(v) ∈ t or

• e = Inv(nS , i
′, i′′) and ∃Writei′(k, v) ∈ t with k ∈

rs(i′′).

• e = Inv(nS , i
′, i′′) and ∃Inv(nS , i

′, i′′′) ∈ t with
ca(i′′′) ∈ rs(i′′).

• e = CacheHiti(ca, v) and ∃Save(name(i), i′, v) ∈ t
and ∄Inv(name(i), i′′, i′′′) ∈ t and ca = ca(i′) =
ca(i′′′) between the save and the cache-hit.

Intuitively, Property 6 means that the cache-enabled appli-
cation does not affect the next steps of any specific request
other than sometimes finding a result in the cache.

Definition 3 (Dependency). We say that event e′ ∈ Σi′ is a
dependency of e ∈ Σi in a trace t if e′ is after e and if either:

• i = i′, i.e. the two events are part of the same request

• e = Calli(ca, i′) and e′ = Reqi′(ca) i ̸= i′ and
sr∗(i, i′), i.e., the second event is a part of a subrequest
of the first event

• e = Reti(v) and e′ = Respi′(v, i), i.e., the events are a
pair of return and handle response.

• e = Writei(k, v) and e′ = Readi′(k, v′) or e =
Writei(k, v) and e′ = Writei′(k, v′) or e = Readi(k, v)
and e′ = Writei′(k, v′), i.e., read and write events to
a key k are dependencies of a prior write to the k and
write events are dependencies of a prior read.

• e = Reti(v) and e′ = Save(nS , i, v) for some nS

• e = Writei(k, v) and e′ = Inv(nS , i, i
′) for some nS

• e = Inv(nS , i
′, i′′′) and e′ = Inv(nS , i

′, i′′) with
ca(i′′′) ∈ rs(i′′).

• e = Save(name(i), i′, v) and e′ = CacheHiti(ca, v)
where ca(i′) = ca

• e = Save(nS , i
′, v) and e′ = Inv(nS , i, i

′′) for some i
and ca(i′) = ca(i′′)

We will use deps(e) to refer to all the transitive depen-
dencies of an event e. We now state a final assumption on
application traces, namely that two independent events can
be commuted.

236 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Property 7 (Commute independent events). For any trace t ∈
JP K with t = t0.e.e

′.t1 and e′ ̸∈ deps(e), then t′ = t0.e
′.e.t1

can also be observed by the application, i.e. t′ ∈ JP K.

This holds because in microservice applications indepen-
dent requests do not affect each other except through reads
and writes to the same key in the same service datastore.

We are now ready to state the main theorem that describes
the correctness of our protocol.

Theorem 8 (Protocol Correctness (corresponds to Theo-
rem 1)). For all traces t in a cache-enabled application JP̃ K,
there exists a trace t’ in the original application without
caches JP K, such that their respective client events are equiv-
alent (but potentially reordered), i.e., ∀i t[ΣC(i)] = t′[ΣC(i)].

This makes sense because correctness is only relevant from
the perspective of the clients and not all of the internal events
that an application performs. Actually, the cache implemen-
tation does not contain the same traces because some calls
return immediately on cache-hits without triggering all the
internal events. In order to prove this theorem, we show that
something stronger holds, a lemma that is stated below. Be-
fore stating it, we need to define what it means for an event
in the cache-enabled event set to be equivalent to the original
one.

Definition 4 (Equivalent events). Equivalence between a
cache-enabled event ec and an original event e (denoted with
ec ≃ e) is defined as followed:

• if e ∈ Σ and ec ∈ Σ are the same event or

• ec = CacheHiti(ca(i′), v) and e = Respi(v, i
′)

We can lift the equivalence relation of events to account
for sequence of events in a straightforward way.

Lemma 1. Given an arbitrary trace t ∈ JP̃ K we can construct
a trace t′ ∈ JP K such that (i) the states at the end of the traces
are the same for both traces, i.e. S(t) = S(t′), and (ii) for
all i, t[Σi] ≃ t′[Σi] modulo the missing events due to the
cache-hits.

At a high-level the proof proceeds by constructing a t’ from
t in the missing events and also by moving some write events
later in the trace. Theorem 8 follows directly from Lemma 1
since client events will be the same in both traces.
Proof sketch. We will proceed by induction on the size of
traces and for the inductive case we will focus on the only
interesting scenario where the trace t ends with a cache-hit
event CacheHiti(ca, v), because these are the only events for
which the effects of our cache-subsystem are observed by the
rest of the application. For illustrative purposes we extend
traces with the state of all services σn between each event.

t = t0|σn
.CacheHiti(ca, v)

For this cache-hit to have happened, the step relations implies
that there must exist some Save(nS , i

′, v) before it, such that
name(i′) = nS . Similarly, for the cache save to have happened,
there must have been a completed request with call arguments
ca = ca(i′).

t = · · · .Reqi′(ca)|σ1
. · · · .Reti′(v)|σ2

. · · · .
· · · .Save(nS , i

′, v)|σ3
. · · · |σn

.CacheHiti(ca, v)

Given Property 2 (extended in a straightforward way to sup-
port cache events), we know that t[Σi′] can be produced by
the step relation. The inductive hypothesis and the fact that t
is finite ensure the equivalence of the traces even in the pres-
ence of cache-hits for subrequests of the original request. We
will now do a case analysis on the existence of a Write(k, v1)
where k ∈ rs(i′) between Reqi′(ca) and CacheHiti(ca, v).
No such write exists. If no such write exists, then σ1|rs(i′) =
σ2|rs(i′) = . . . = σn|rs(i′). Then, we can construct a trace
t1 ∈ JP K using the inductive hypothesis and by replacing
CacheHiti(ca, v) with Calli(ca, i′′) for some fresh i′′ (due to
Property 6).

t1 = . . . |σn.Calli(ca, i′′)

Then, given that σ1|rs(i′) = σn|rs(i′) and that Properties 5 and
3 hold, we can construct the same request steps tc as in the
original trace (t[Σi′] [i

′ 7→ i′′]) using the step relation, ending
up with a trace t2 ∈ P such that:

t2 = t1.tc.Respi(v, i
′′)

Since CacheHiti(ca, v) ≃ Respi(v, i
′′) and read-only re-

quests do not modify the state, we are done with this case.
Write exists. We now need to focus on the case where a
write Write(k, v1) with k ∈ rs(i′) exists between Reqi′(ca)
and CacheHiti(ca, v). We can first show that the write is be-
tween Save(nS , i

′, v) and CacheHiti(ca, v), because if it was
earlier, it would have been processed by the cache manager,
prohibiting Save(nS , i

′, v) to have happened. However, there
could be an invalidate between the cache save and the cache-
hit that has originated from a previous write in another service
between Reqi′(ca) and Save(nS , i

′, v). We can now use Prop-
erty 7 to move all writes together with their dependencies to
the end of the trace to get a trace tw.

tw = · · · .Save(nS , i
′, v)|σ3 · · · |σn.CacheHiti(ca, v). · · · .twd

where twd contains all the writes and their dependencies. This
is possible because CacheHiti(ca, v) is not a dependency of
the writes between the save and the cache-hit; if it was, there
must have been a subcall to the service where the write hap-
pened, which would have been caught by our dependency
tracking (see Section 4). Second, all i′ events are not depen-
dencies of the writes between Reqi′(ca) and Save(nS , i

′, v)
because (1) i′ is read-only (so it cannot have performed those
writes or subcalls that performed those writes), and (2) the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 237

FIGURE 20—A bug that would occur if preReqStart does not
wait until the Start event is added in the CM workqueue.

write happened after the call to start i′.
We can now follow the same reasoning as in the no-write-

exists case. We first use the inductive hypothesis on the prefix
until the cache-hit and Property 6 to get the following trace:

t1 = · · · |σn.Calli(ca, i′)

We then construct the original trace that caused the save using
the step relation (like in the no-write-exists case) to get

t2 = · · · |σn.Calli(ca, i′). · · · .Respi(v, i
′)

Finally, given that both prefixes and states are the same for tw
and t2, we can use Property 4 to step all the writes and their
dependencies to acquire the same exactly events as the suffix
of tw, proving that the states are the same and the traces for
each request in the end are equivalent.

B MuCache protocol design details
B.1 Waiting for events to be added in the queue

It is crucial that the caller waits until the event is added to
the queue when sending a Start message, otherwise the bug
shown in Figure 20 could occur. In this scenario, thread T1
of a service S starts processing a RO request ca before wait-
ing for the Start(ca) event to be added to the workqueue.
In the meantime, another thread T2 of S performs a write
which invalidates the results of the call ca. However, since the
Start(ca) event was added in the cache manager workqueue
after the Inv(k), the cache manager does not detect the inval-
idation.

238 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A large-scale deployment of DCTCP
Operational Systems Track

Abhishek Dhamija1, Balasubramanian Madhavan1, Hechao Li2, Jie Meng1, Shrikrishna Khare1, Madhavi
Rao1, Lawrence Brakmo, Neil Spring1, Prashanth Kannan1, Srikanth Sundaresan1, and Soudeh Ghorbani1,3

1Meta, 2Netflix, 3Johns Hopkins University

Abstract

This paper describes the process and operational experiences
of deploying the Data Center TCP (DCTCP) protocol in a
large-scale data center network. In contrast to legacy conges-
tion control protocols that rely on loss as the primary signal
of congestion, DCTCP signals in-network congestion (based
on queue occupancy) to senders and adjusts the sending rate
proportional to the level of congestion. At the time of our
deployment, this protocol was well-studied and fairly estab-
lished with proven efficiency gains in other networks. As
expected, we also observed improved performance, and no-
tably decreased packet losses, compared to legacy protocols
in our data centers. Perhaps unexpectedly, however, we faced
numerous hurdles in rolling out DCTCP; we chronicle these
unexpected challenges, ranging from its unfairness (to other
classes of traffic) to implementation bugs. We close by dis-
cussing some of the open research questions and challenges.

1 Introduction

Congestion control algorithms (CCAs) modulate traffic
entry into the network, seeking high utilization, low latency,
and relative fairness by making frequent decisions about how
much data to send and when. These decisions are based on
congestion signals, and the base signal in many CCAs is the
dropped packet. CCAs tend to increase the amount of data
in flight until the point to induce packet loss. Subsequently,
they create queue buildup and increase delay. This impacts
latency requirements for our datacenter applications. These
workloads generate a large number of small request and re-
sponse flows across the datacenter that, combined, complete
a user-requested computation. For a fast response time, each
of these short flows should be completed fast.

A class of CCAs [4, 5, 12, 14, 17, 20, 24] tailored specifi-
cally to the requirements of datacenters workloads, leverage

Lawrence Brakmo and Hechao Li contributed to this work during their
time at Meta.

a diverse set of congestion signals (notifications from the net-
work, measured delay at endpoints, etc.) to detect and react to
imminent congestion faster. As one of the earliest and most
mature protocols in this class, Data Center Congestion Control
(DCTCP) [4] uses Explicit Congestion Notifications (ECNs)
from the switches to adjust the sending rate proportional to
the level of congestion. ECN remedies large queue buildups
and drops by providing a congestion signal before queues
overflow, and DCTCP interprets the fraction of ECN-marked
packets to scale its response, avoiding persistent queueing
and overflows that lead to loss.

A few features of our network made DCTCP’s potential
worth considering. First, our top of rack switches had “shal-
low buffers,” providing limited space for queueing. Second,
buffer sharing and contention over buffers led to variable and
unpredictable queue capacities [13]. Finally, our approach
to distributing jobs across datacenters created a set of racks
with a mixture of large throughput-heavy flows and small
latency-sensitive flows that had to compete for the limited and
variable buffer space in the network. DCTCP could moderate
large flows’ use of switch buffers, providing more isolation
between jobs sharing shallow-buffered switches.

Using DCTCP required resolving a challenge: designed
specifically for short-RTT datacenter traffic, DCTCP had to
be applied exclusively to in-region1 traffic and not cross-
backbone traffic. This translates to a few problems: (a) we
had to identify in-region traffic, separate it from cross-region
traffic, and negotiate DCTCP only for the former. Doing so
in a network with the scale and complexity of ours, without
risking a broken network, required a large engineering effort,
and (b) the in-region DCTCP and cross-region Cubic traffic
had to co-exist and share the network. This required careful
parameter tuning and network configuration to strike a bal-
ance between various classes of traffic. Although challenging,
these were surmountable issues that our engineers could over-
come to apply DCTCP only to the in-region traffic alongside
the Cubic cross-region traffic.

1A region is a collection of datacenters in roughly the same location.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 239

In addition to fitting our workloads’ needs, one specific
feature of DCTCP made it an operationally appealing choice:
it was a relatively simple, mature, and well-established pro-
tocol. When we initiated an effort to change our datacenter
congestion control algorithm from Cubic in 2018, DCTCP’s
design had been published eight years prior (2010), its design
was well-understood, it had been added to the Linux kernel
for four years (since 2014), and had widespread hardware
support for ECN marking. We anticipated a smooth transition
to DCTCP. Contrary to our anticipation, however, nearly ev-
ery point in the end-to-end stack presented a riddle to solve
to rollout DCTCP: the kernel had bugs; optimizations such
as receive offloading could not always inter-operate with it
as DCTCP’s smaller congestion windows were not always
enough to trigger prompt delivery; some switches dropped
ECN-capable packets despite having space to buffer them,
resulting in poor application performance; not all switches
could consistently and reliably support ECN; we could not
change the congestion control of long-running connections in
the middle of their data transfer, etc.

In this paper, we share our experience of deploying DCTCP
in Meta Datacenters. This project started in earnest in 2018,
balancing successful tests with head-scratching problems. We
share the stumbling blocks we discovered in the hope of
helping researchers consider the deployability of new data
center congestion control algorithms. In particular, switch and
NIC implementations are diverse, vendor specific, not always
known to datacenter operators, and evolve frequently as the
scale and demand of our networks change. Protocols that
are dependent on parameter tuning for optimal performance
are hard to deploy and maintain. In a large-scale and diverse
network, each congestion control algorithm will coexist with a
large and diverse set of protocols. Finally, bugs are inevitable
in any large-scale, complex network. Ideally, the congestion
control protocols should be equipped with mechanisms to
detect and gracefully handle bugs and corner cases. We found
every problem in the text that follows to be rich and deep,
with quite a few surprises. In the moment, we questioned
why is this so hard: switches can mark ECN and the kernel
implements DCTCP. What more does there have to be? But
reflecting on the experience, by expecting unforeseen trouble,
careful deployment and monitoring paid off.

Ours is not the first report on production DCTCP deploy-
ment; Judd [15] shared experiences that influenced our design.
They showed that DCTCP could be unfair to an established
Cubic flow, motivating our study of mark and drop thresholds
to keep them fair. He also noted that SYN and SYN/ACK
packets should be ECN-capable, despite standards; we were
surprised to find the same even after our switch thresholds
prevented DCTCP from starving out Cubic. His deployment
supported ECN marking only on top-of-rack switches; this
became the starting point we focus on in this paper.

We organize the paper by characterizing problems by
where they occurred. In the next section, we briefly overview

DCTCP. Feel free to skip this section or read Alizadeh et
al. [4] instead. Section 3 describes how we chose to enable
DCTCP for in-region TCP connections but not cross region
ones; focusing on deployment safety. Section 4 describes how
to configure switches to mark DCTCP traffic and encourage
balance with competing Cubic flows; for some devices in our
network, this was unexpectedly elaborate. Section 5 describes
what we built to monitor the deployment, looking to confirm
that congestion-experienced bits were set, DCTCP was nego-
tiated and not falling back to Reno, switch buffers were less
occupied, etc. Section 6 describes the often subtle kernel and
driver bugs that ECN marking packets and smaller congestion
windows surfaced. Section 7 describes a few extensions we
applied to the initial DCTCP deployment, extending where
congestion can be instrumented with ECN. We conclude in
section 8, discussing lingering problems in congestion and
reflecting on how the design of nearly every component in
the network influenced this deployment.

2 Background

Data Center TCP (DCTCP). DCTCP uses Explicit Con-
gestion Notification (ECNs) signals from switches. It uses 2
bits in the IP header for ECN information. If neither of the two
bits are set, the flow does not support ECN and switches will
not mark the packets. When only one bit is set, the flow sup-
ports ECN signals and no congestion has been encountered.
Finally, when both bits are set, the flow supports ECN and
the packet has encountered congestion. Congestion, in this
context, is usually defined as the queue sizes of the switches
on the packet’s path passing a pre-defined threshold. That is,
when a switch receives an ECN-enabled packet, if the queue
used to enqueue the packet is larger than some threshold, the
switch marks the packet as having experienced congestion.
This signal then arrives at the receiver. The receiver notifies
the sender by echoing back the congestion signals on the TCP
header of the ACK packet.

Pre-DCTCP, senders treat ECN-marked ACKs as packet
loss. TCP Reno, for instance, reduces its congestion window
(CWND) by 50%. This aggressive throttling can lead to link
under-utilization. Another issue is that legacy protocols do
not differentiate between short bursts and standing congestion.
For example, sub-RTT queue buildups due to microbursts still
result in reducing CWND, a suboptimal outcome.

In contrast, DCTCP reduces CWND proportional to the
level of congestion by tracking the percentage of bytes per
RTT. For example, if 100% of bytes encounter congestion,
DCTCP reduces its CWND by 50% but if only 50% of bytes
do so, it reduces CWND by 25%. DCTCP also leverages a
moving average to avoid overreacting to transient bursts. For
example, if 100% of the bytes in an RTT encounter conges-
tion, but there was no congestion in previous RTTs, then the
CWND would only be reduced by 1/32 instead of 1/2 [9].

Given the characteristics of our workloads, notably their

240 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: Retransmission rates drop following DCTCP rollout.

burstiness [13, 27], we expected DCTCP’s faster reaction to
bursts to improve the performance of our applications.

DCTCP helped our network. Encouraged by positive test
results, we gradually rolled out DCTCP to each region in the
fleet. Overall, we observed improvements in network metrics
such as reduced top-of-rack switch congestion discards and
queue lengths, resulting in the reduction in the number of
retransmitted packets that hosts received. We compared the
overall volume of retransmissions for each region after de-
ploying DCTCP and compared it against one week before the
transition and observed a reduction of around 75%. Figure 1
shows the change in normalized retransmission rates2 for four
regions a few days before and after the rollout of DCTCP in
each region. Note that the reduction in retransmissions after
deploying DCTCP is not immediate. In §3.2, we discuss a
potential reason (the delay in changing the congestion control
algorithm for long-running connections).

Along with retransmissions, we tracked base host metrics
like throughput, and the congestion window size, as well as
general system state metrics such as CPU and memory utiliza-
tion. We did not observe any regressions in these metrics. For
four regions, we measured the changes in retransmission rates,
throughput, the average CWND, and the average smooth RTT
(srtt) after transitioning to DCTCP. Table 1 reports the re-
sults. Note the variance across different metrics and regions,
e.g., while srtt did not change in Region 4, it did improve
in Region 5 albeit not as dramatically as the retransmission
rate (7% vs. 50%). Moreover, for one of our data-intensive
services, we measured the changes in read latency in a region
before and after transitioning to DCTCP and observed 38%
reduction in the 90th and 99th percentiles of latency (from
65ms to 40ms and from 130ms to 80ms, respectively).

Rollout timeline. It should be noted that we did not upgrade
all selected regions to DCTCP at the same time; we proceeded
gradually over a four-month period while carefully monitor-
ing the impact of the change on our networks (§5). Figure 2
shows the timeline of the per-region rollout, overlapped with

2Normalized retransmission rates are retransmission rate of each region
divided by the maximum retransmission rate across all regions.

Figure 2: DCTCP’s rollout accelerated over time.
Metric Region 3 Region 4 Region 5 Region 6
Retrans. 33% ↓ 79.5% ↓ 50% ↓ 73.4% ↓
Throughput 10.3% ↑ 4.8% ↑ 2% ↑ 5.8% ↓
Avg. srtt No change No change 7% ↓ 7% ↓
Avg. cwnd 30% ↑ 22.3% ↑ 20% ↑ 18.1% ↑

Table 1: Changes in performance metrics.

the aggregate rate of ECN-enabled packets during this pe-
riod. The rate of ECN-enabled packets in our networks is a
proxy of DCTCP’s adoption, as DCTCP traffic is by default
ECN-enabled. During this interval, the DCTCP was the only
class of ECN-enabled traffic in our networks. To compute
the normalized rates in Figure 2, we divided the number of
ECN-enabled packets received by all datacenter hosts by the
maximum number of ECN-enabled packets received by all
hosts once the rollout process was completed. The figure de-
picts progressively smaller and smaller time gaps between
successive rollouts; our deployment process gradually acceler-
ated as our initial deployments helped us identify and resolve
the issues that we will discuss in the rest of the paper.

To gauge the impact and effectiveness of DCTCP after
the rollout, we temporarily disabled it for a few hours in one
region. This resulted in around a 10% drop in throughput and
4.5× increase in retransmissions in that region.

3 Enablement

We wanted to enable DCTCP only for in-region connections,
which have small enough RTTs that DCTCP is effective. This
presented several immediate challenges for us as our available
options could not achieve this, e.g., the selective enablement
requirement meant that sysctl is not viable, while complex-
ity ruled out options such as setsockopt and routes.

As we explored and experimented with enablement options,
we also encountered several other challenges related to kernel
features, and obscure DCTCP fallback behavior. We discuss
these challenges below.

3.1 Enabling DCTCP for only in-region flows
We discuss the drawbacks of available knobs in greater detail
before presenting our approach for resolving this challenge.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 241

3.1.1 Potential knobs for changing congestion control

Our goal was to identify knobs to target short-RTT connec-
tions and change their congestion control algorithm (CCA).
For DCTCP, this should be done before the 3-way handshake
since ECN is negotiated during connection establishment. We
targeted sub millisecond latency which is typical for traffic
within a region. In our data center network, we can use IP ad-
dresses as a proxy for RTT, and classify connections created
within the region by looking at the source and destination IP
addresses. CCAs can be changed in many ways, notably via
sysctl, setsockopt, and routes as we discuss next.
sysctl sysctl is the most common and easiest approach

to change CCA. This takes effect for all new sockets. This was
not ideal for two reasons: (a) we could not easily distinguish
between inter- and intra-region traffic and limit the adaptation
of DCTCP only to the latter, and (b) the transition process
would be slow. Since changes through sysctl take effect
only on new sockets, listening sockets had to be reset for the
passive side of the connection to pick-up this change. At a
region-scale, resetting listening sockets requires restarting
services which takes days or weeks.
setsockopt The most granular approach is to call

setsockopt() per socket. This also provides the most flex-
ibility since it enables running arbitrary logic for each in-
dividual connection. On a datacenter scale, setsockopt in-
volves building a library that is used by every service and
fitting into the continuous integration and delivery schedule
of thousands of services which run across the fleet. Although
this was conceptually feasible, this tight coupling was opera-
tionally not ideal as it would complicate debugging and fault
isolation. Plus, it offered little benefit since DCTCP did not
require any service-specific information that would justify
inter-dependency with services.
routes Linux supports customizing TCP parameters per

IP destination route. By changing the granularity of routes,
we could target different scopes, ranging from an entire region
to a single host. For enablement, we needed to enumerate all
the intra-region route prefixes and create multiple route table
rules. This approach was attractive since it had the lowest de-
pendencies across all options. However, it was not extensible:
it did not support matching based on other criteria such as
the port number, the kernel version, and the NIC model that
we envisioned using in future designs. Another risk of this
approach was modifying the host routing table and depend-
ing on aggregatable IP prefixes. Given how routes control
reachability in our fleet, these created substantial risks.

In summary, none of the approaches discussed above was
adequate for our use case. We had to develop a new approach
based on eBPF which we discuss next.

3.1.2 TCP socket hook eBPF

We developed a method based on eBPF to address the chal-
lenges discussed above. By providing hookpoints across the

kernel stack, eBPF allows us to customize the network stack.
Since its introduction in Linux 4.11, sockops has provided
a way to run eBPF programs during TCP socket events. A
major advantage of sockops is its flexibility and programma-
bility. It enables running an eBPF program at the start of
every connection which can use user-space configuration to
select a CCA for every connection. We use the same IP-based
classifier to identify connections to enable DCTCP.

By design, sockops is restricted to a specific version of
cgroup (cgroup-v2).3 Alas, in our fleet, we deployed hetero-
geneous kernel versions with two versions of cgroup. Kernel
and cgroup limitation meant this cannot be used standalone.

To work around the dependence of sockops on cgroup
version, we used two BPF programs to enable DCTCP for
new in-region TCP connections: (1) On cgroup-v2 hosts,
we attached a per-connection sockops BPF program to set
DCTCP as the CCA for in-region connections while leaving
inter-region connections unchanged, and (2) on cgroup-v1
hosts, we used sysctl to set DCTCP as the default CCA
and attached a per-packet Traffic Control (TC) program to
clear ECN-related bits on inter-region SYN packets, forcing
those connections to fallback to Cubic. This program not
only disables DCTCP for inter-region traffic, but also enables
DCTCP for connections on pre-existing listening sockets.

3.1.3 Enablement plan

Our intended scope for deploying DCTCP was an instanta-
neous region-wide enablement, so that we could minimize
disruption in the network caused by in-region DCTCP and
Cubic flows interacting in the same switch buffer. This was a
substantial change that had never been done before in our
network and had to be performed safely without causing
disruption to services. This was a challenge given the het-
erogeneity of our fleet (e.g., in terms of cgroup and kernel
versions). Ensuring safety despite the diversity of the fleet
required having visibility and monitoring into enablement
knobs to detect problems, and the ability to revert fast if there
was a problem. Safety, flexibility, and fail-open characteristics
made eBPF a good choice for this problem. Given we had
90% of the fleet already on cgroup-v2 when we started with
this effort, we took on more complexity in the short-term to
handle cgroup-v1, but over time, we retired the cgroup-v1
solution and evolved eBPF to be able to customize both the
algorithm and deployment capabilities that we had originally
envisioned. We explain the two separate eBPF knobs for the
two cgroup versions next.

3.1.4 cgroup-v2 and 4.11+ kernels

We attach a per-connection sockops BPF program [8] to the
root-cgroup. A sockops program is invoked for different state

3Control groups or cgroups is a Linux kernel feature that limits, monitors,
and isolates the resource usage of a collection of processes.

242 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

int sockops_program(skops) {
switch (skops->op) {
// Before sending SYN on client or SYN-ACK on server
// if peer in-region request ECN
case BPF_SOCK_OPS_NEEDS_ECN:
if(in_region(skops)) {

skops->reply = 1;
}
break;

// Once connection is established
// If we see ECN then enable DCTCP, else Cubic
case BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB:
case BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB:
if(ecn_enabled(skops)) {
bpf_setsockopt(skops, TCP_CONGESTION, "dctcp");

} else {
bpf_setsockopt(skops, TCP_CONGESTION, "cubic");

}
}

}

Figure 3: Summary of ECN enablement in cgroup-v2 sockops

transitions in the lifetime of a TCP connection. During spe-
cific TCP events, sockops eBPF programs can change some
TCP parameters using setsockopt() calls or influence ker-
nel actions. For example, when client or server have to decide
ECN negotiation, eBPF programs registered on this callback
can opt-in for ECN negotiation after analyzing the TCP and
IP headers in the packet or any user-space map state. Our
cgroup-v2 program uses the source and destination IP ad-
dress and calculates the scope (rack/cluster/dc/region) of the
connection. It uses an IP prefix eBPF map populated with all
intra-region IP prefixes. It takes the following actions also
summarized in Figure 3.

#1: NEED_ECN: When kernel asks whether a socket
needs ECN or not, choose “YES” for in-region traffic and
“NO” for inter-region traffic.

#2: CONN_ESTABLISHED: When a connection is estab-
lished, if it is in-region and ECN enablement succeeded, then
call bpf_setsockopt to set the socket’s CCA algorithm to
DCTCP. Inter-region CCA remains unchanged and uses the
default specified via sysctl.

3.1.5 cgroup-v1 and older kernels

On hosts with cgroup-v1 or older kernels where sockops
eBPF hookpoint was not available (less than 10% hosts), we
still needed a solution to selectively change CCA. We chose a
combination of sysctl and TC eBPF to solve this. We used
sysctl to set DCTCP as the default CCA and used a Traffic
Control (TC) eBPF program to terminate ECN negotiation
for inter-region connections, thereby forcing them to fall back
to Cubic as we explain below. Table 2 shows the sequence of
events that happen during a 3-way handshake (the blue parts
are specific to ECN/DCTCP).

To selectively disable DCTCP for inter-region scope, we
use a per-packet TC eBPF program on the server in the ingress
direction. TC eBPF programs can access socket buffer (skb)
and through this modify packet contents. This program can
thus selectively clear all ECN state set by the client (step

Step Direction IP flags TCP Flags

1 Client→Server ECT(0) SYN + ECE + CWR
2 Server→Client ECT(0) SYN + ACK + ECE
3 Client→Server ECT(0) ACK

Table 2: ECN + DCTCP Handshake

1 from Table 2). This is possible because in the ingress di-
rection TC programs are executed before the TCP stack can
negotiate ECN. This program uses a similar scope resolver as
explained in the sockops section above to detect inter-region
clients and match TCP SYN packets with ECN negotiation
bits (ECE/CWR bits [6]). If there is a pattern match, this pro-
gram clears the ECN-related bits in the TCP and IP header
of the SYN packets thus causing the ECN negotiation to fail.
Without ECN, DCTCP is configured to fallback [7] and this
eBPF program exploits this configuration.

Although the Linux DCTCP implementation was config-
ured to fall back to TCP Reno as the CCA when ECN ne-
gotiation failed, we did not want this extra algorithm to be
added to the set of algorithms in our networks. Recall that
the co-existence of Cubic and DCTCP traffic was a major
challenge in deploying DCTCP. Adding a new protocol to
the set of CCAs would exacerbate the situation and require
re-running the entire process of parameter tuning and switch
configuration with a new combination of protocols. To avoid
this problem, our kernel team altered the DCTCP code [7]
to fallback to Cubic instead, a change we did not publish
upstream.4 This was our only custom kernel change for the
effort, and we removed this patch by replacing the logic with
BPF code that could itself handle the fallback.

3.2 Long-lived connections
ECN is negotiated at the onset of the connection: this created a
challenge for changing the CCA of ongoing connections from
Cubic to DCTCP as we could not enable ECN for a flow in the
middle of the connection. Unfortunately, many connections in
our networks are long, running for days or longer. This slowed
down the process of migrating to DCTCP. The naive solutions
such as terminating the existing connections and collaborating
with service owners to force all services to be restarted were
suboptimal due to their complexity and perceived impact on
service performance.

We realized that one of our internal disaster recovery tools,
Maelstrom, can be repurposed to aid with the CCA upgrade
process. Maelstrom [26] is a large-scale disaster recovery sys-
tem. It provides a traffic management framework with modu-
lar primitives that can be composed to safely and efficiently
drain the traffic of interdependent services from one or more
failing datacenters to the healthy ones. Maelstrom encoded
inter-service dependencies and had a safe way to temporarily

4There are some drawbacks to including this fallback policy in the main-
line kernel, e.g., Cubic is an optional module in Linux, while Reno is not.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 243

drain traffic from a region. We leveraged Maelstrom to run
multiple drain exercises to gradually upgrade the connections
to DCTCP. Each drain exercise resulted in approximately 50%
of the connections to flip to DCTCP resulting in significant
coverage for the CCA change.5

To enable future upgrades and maintenance, eventually,
we enhanced our eBPF framework with a connection iterator
which can iterate over all existing connections, upgrade con-
gestion control, and make other transport changes. The ability
to trigger this program on-demand and share similar code as
sockops simplified CCA’s evolvability and maintenance.

4 Switches and buffers

DCTCP relies on network support—switches mark packets
with ECN when buffer occupancy exceeds a certain thresh-
old. Most modern switches support ECN, but it quickly be-
came clear that our specific network characteristics made
widespread deployment of ECN unfeasible. We list the spe-
cific challenges we faced in deploying ECN in our network.

4.1 Switch queues are a scarce resource
DCTCP, as the name suggests, is designed for data center
flows with low RTT (∼ 1ms). It is not expected to work well
with long-distance flows (10s to 100s of ms). This is because
the ECN signal, based on queue occupancy, is ephemeral;
current queue occupancy is meaningless several milliseconds
in the future. So, for our cross-region flows, we continue using
Cubic, which relies on packet loss as its signal.

It is common that DCTCP and Cubic flows terminate at
the same host, a service can talk to other hosts both in-region
and cross-region. In such cases, ideally, we would isolate the
feedback signal of the two CCAs in the network. For Cubic
and DCTCP, isolation is even more important because they
rely on two very different signals. ECN-based CCAs aim
to keep bottleneck buffer utilization low, while loss-based
CCAs drives the buffer to capacity and loss. In switch terms,
conceptually, isolation is easy enough to achieve – we just
need to put each CCA in its own queue where it gets access
to its own allocation of the dynamically shared buffer.

However, switch queues are primarily used for traffic clas-
sification in our network; we support several classes of traf-
fic [3], and each class is allocated to a queue. To isolate CCAs
from each other, we would need two queues per traffic class.
While later generations of switches supported this, initially,
our switches did not have enough queues to support this con-
figuration. This meant that we had to put both DCTCP and
Cubic in the same queue, and depending on the switch vendor,
the switch supported ECN and Drop Tail (or WRED) in the
same queue, or only either ECN or Drop Tail (or WRED).

5Another benefit of Maelstrom was that it could keep the region in the
drained state if we observe any CCA-related outage. This enabled us to
manually connect to hosts and remediate the issue.

Luckily for us, the bottleneck layer in our data center network
had the switches that supported both.

4.2 ToR switches were sufficient for ECN
We analyzed our production network, and found that bottle-
necks largely occurred in the ToR switch downlinks [13]–to
hosts–or in our backbone WAN network. The latter is out of
scope for this work, as DCTCP does not traverse regions, so
we focused only on the ToR downlinks.

A natural question is why we saw congestion largely in
the ToR downlink. The answer is a combination of factors.
First, due to the nature of our hardware, there was very high
disparity in link speeds in the ToR downlink compared to the
rest of the fabric, making this layer more susceptible to bursty
incasts. Secondly, provisioning and topology ensured high
cross-section bandwidth between racks. Finally, rack-agnostic
job scheduling ensured a high level of heterogeneity in traffic,
largely preventing potential hotspots caused by concentrated
placement of network-heavy services.

As we mentioned previously, not all layers in our fabric had
switches that supported dual mode thresholding to support
DCTCP and Cubic. However, since congestion was rarely an
issue elsewhere in the network (and therefore buffer utilization
not a big enough issue to cause discards), we could effectively
ignore them, and focus our attention of getting the thresholds
right for the ToR downlink.

4.3 How to set a mark and drop threshold
Our switches had the ability to mark ECN or do Drop-
Tail/WRED on a flow depending on ECN-Capable Transport
(ECT) marking, so both DCTCP and Cubic would receive
the correct signal, but the buffer itself was shared across both
classes of flows, resulting in no isolation.

ECN signaling tries to keep DCTCP queues low, but offers
no guarantees – it is entirely possible that a burst of DCTCP
traffic can occupy a buffer well beyond the ECN threshold.
Cubic flows, on the other hand will try to maintain high buffer
utilization. This is a challenging scenario: high buffer occu-
pancy with bursty Cubic flows will result in very high ECN
marks for a competing DCTCP flow, while high buffer oc-
cupancy with bursty DCTCP flows will result in very low
available buffer for competing Cubic flows. Complicating the
issue further, not all DCTCP flows are bursty (unless within
an incast), while even a few long-RTT Cubic flows could be
bursty due to the high BDP.

Our hypothesis was that we need to prevent either CCA
from entirely taking over the buffer – but we were more con-
cerned about Cubic’s ability to do so, so we narrowed down
to a solution where we set relatively high ECN thresholds for
DCTCP and low droptail thresholds for Cubic. This was a
sub-optimal solution for both CCAs, because it diluted ECN
for DCTCP and made loss likelier for Cubic, but it solved for

244 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

what we thought was the dominant problem in our network –
Cubic bursts undermining DCTCP.

Post-deployment experience proved our hypothesis to be
not entirely correct: while Cubic indeed could capture a shal-
low buffer, incast scenarios were far more serious in our net-
work than we originally anticipated, and had to implement
further features to control DCTCP burstiness and buffer uti-
lization, particularly for services that had both sets of flows.

4.4 The multi-host NIC
Multi-host NICs use a single connection to a ToR switch
to provide connections to the PCI busses of (typically two
or four) different hosts. The multi-host (MH) NIC design
is efficient in space, power, and hardware, but is a network
component not typically modeled in congestion control work.

The MH NIC connects multiple machines to the network
and has a buffer (on the order of 0.5 to 1 MB in size), but it
does not act as a conventional switch. The MH NIC does not
mark ECN mark by default; earlier versions do not even have
this feature. The buffer is not partitioned explicitly across
hosts or queues, so it does not provide isolation, nor is able
to preferentially deliver high priority traffic. It does not have
predictable downlink rates; PCI bus rates are split across the
hosts, resulting in per-host rates being significantly less than
the MH NIC rate. Furthermore, when a host kernel is unable
to keep up with interrupts, or is unable to supply free buffers,
the delivery speed to an individual host can drop further.

As the MH NIC buffer fills, the NIC can send ethernet
pause frames back to the top-of-rack switch, leading to queu-
ing at the switch. This can happen when a single host is the
target of incast: the complete bitrate of the NIC can be applied
to deliver the burst of traffic from switch to NIC, reaching a
bottleneck at delivering the data to the memory of the desti-
nation host. This delivery can also be slowed enough to send
pause frames when a host is processing difficult-to-accept
data such as small frames from many different connections
not amenable to offloaded reassembly.

Unmodified, the ECN marking threshold at the ToR means
that the effective queue backlog to the host is the ToR ECN
threshold plus the size of the NIC buffer. This creates an
effectively far-too-high ECN threshold, resulting in persistent
unfairness, poor performance, and even packet loss of DCTCP
traffic as the congestion window overshoots the target.

The effectively larger buffer for a host is not as severe a
problem for Cubic alone: it appears as a single large buffer
shared across the hosts. However, a single host’s traffic can
still dominate the buffer, and since only the switch has the
ability to prioritize traffic, unfairness between buffer-hungry
services and services that need highly-reliable delivery led to
shifting the buffer to the switch via per-host queuing.

On racks with this type of MH NIC, the ToR switch creates
a separate, rate-limited queue for each downstream host. This
rate limit is based on the host’s “share” of the NIC bandwidth,

i.e., 1/2 or 1/4. This queue is then configured with ECN mark
and drop thresholds from Section 4.3. This queue-per-host
design does not remedy all interactions between different jobs
sharing the same NIC: for example, a slow kernel processing
small packets can still fill the NIC buffer, leading to some
pause frames to the ToR, but while the link is unpaused, the
ToR can round-robin among the other hosts to limit perfor-
mance degradation. Important for DCTCP however is that
in the expected case, packets are marked when the effective
queue, entirely on the ToR, reaches the intended threshold.

This queue-per-host feature played an important role in
getting performance and fairness out of DCTCP on MH NIC
systems. Testing focused on fairness and performance of flows
to individual hosts; the performance of concurrent, production-
like traffic to different hosts on the MH NIC was not easily
observed. We were fortunate that the queue-per-host feature
in our ToRs was rolled out in time for DCTCP deployment.

4.4.1 Database clients in particular

Here is a specific example of how queue-per-host became
necessary to deploy DCTCP. During our first region rollout,
it turned out that many in-region connections establishments
were timing out. After one second, the Database client code
making this connection would time out and report an error.
Packet loss and retransmissions overall were down, utilization
up; the typical signals of network performance looked good.

We have a set of tools that instrument retransmissions gen-
erated by the Linux kernel using eBPF “tracepoints” and
“kprobes.” While the kernel’s built-in counters can track how
often retransmissions happen, with eBPF we can classify what
generated the retransmission (timeout? duplicate ACK?) what
was retransmitted (a SYN? SYN/ACK? a tail loss probe?),
and which services were the endpoints of these retransmis-
sions. We observed both SYN retransmissions toward the
Database server and SYN/ACKs in return.

The issue was that while SYNs and data packets were
marked as being ECN-capable, potentially being marked, the
listening socket did not mark the SYN/ACK as being ECN-
capable, directing it into the Cubic connection packet drop
profile. With DCTCP acting aggressively due to the too-high
effective threshold, DCTCP traffic from—potentially from
other hosts in the MH NIC—would fill the space between
its mark threshold and the Cubic drop threshold, causing the
“Cubic” seeming SYN/ACK to be discarded.

We were fortunate that this problem affected this Database
client, which had a hard-coded application level timeout just
long enough that SYNs and SYN/ACKs would be retransmit-
ted. With that information, it was easy to find endpoints that
saw SYN/ACK loss. Many other services abandon connec-
tions after a short timeout, and thus do not retransmit SYN
packets; such services also reuse connections, making them
less sensitive to problems in the three way handshake.

Enabling the queue-per-host feature immediately solved

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 245

this problem, though we also prepared BPF filters that
would look at each packet to ensure that DCTCP-negotiating
SYN/ACK packets would be ECT marked, just in case.

4.5 Experience with different switch ASICs
We discussed in §4.3 how we tuned our ECN and Droptail
thresholds for the ToR layer. At the time of initial deploy-
ment, the vast majority of ToR switches had the same ASIC,
which we refer to as Asic-A1. However, our production net-
work continued to evolve, with newer ASICs from the same
manufacturer (Asic-A2), and a new ASIC from a new vendor
(Asic-B). There are two major issues to consider about switch
ASICs when we rely on them for congestion marking: buffer
sizing and ECN implementation.

In our case, initially, the newer ASICs, Asic-A2 and Asic-
B inherited the thresholds that we developed for Asic-A1.
Asic-A2 had the same architecture as Asic-A1, though it had
4x the buffers. With host NIC speeds also evolving, the newer
switches also served faster NICs (2-4x). Put together, although
the original thresholds were not always optimal, they still
resulted in reasonably good performance.

However, Asic-B had a fundamentally different approach to
buffer design and management making our thresholds behave
differently from Asic-A family. For service operators, ToR
placement is considered to be transparent: however, with Asic-
B, performance was potentially now dependent on the ToR
hardware; we explain the differences in ASIC architecture
that proved consequential for threshold tuning next.

Queue management. Asic-B used separate Virtual Output
Queues (VOQs) for ECN-Capable Transport (ECT) traffic
and non-ECT traffic, which facilitated isolating these two
classes of traffic, even when they are destined to the same
host. For Asic-B, we could separate out DCTCP and Cubic
buffer threshold tuning as two independent problems. How-
ever, this raised unexpected, somewhat intractable issues due
to how the shared buffer was allocated in Asic-B.

Buffer allocation. Asic-B’s shared buffer space is divided
into separate “slices”, and buffer thresholds are applied in-
dependently in each slice. This is in contrast to Asic-A fam-
ily where the shared buffer pool is broken down into ingress
traffic managers (ITMs), but the buffer threshold for a spe-
cific VOQ is applied as the sum of buffer to that VOQ across
all the ITMs. This distinction was particularly important for
any traffic pattern more than a single flow: any such traf-
fic could end up consuming effectively more buffer space
on Asic-B–across all slices–compared to Asic-A family for
the same buffer thresholds. Needless to say, naively reducing
thresholds by a factor of number of slices was not an option
because that would affect individual flows that get mapped
to a single slice when we did not have incast.

Quantized thresholds. Further complicating threshold de-
ployment, the Asic-B architecture used “quantized” regions,

resulting in a small number of actual threshold values, which
meant that it did not support arbitrary thresholds, and any
configured threshold between two quantized values would
be applied on the lower value. For example, if the quantized
regions are at 100KB and 200KB, the configuration would
accept 120KB, but it would actually apply the threshold at
100KB. This quantized buffer management reduced the ef-
fective parameter space; although this had the potential to
simplify search, it also reduced tuning flexibility.

Quantized drop probabilities. Similar to thresholds, Asic-
B also has quantized drop probabilities (important for
schemes such as Drop Tail and WRED. This made it hard to
model WRED’s performance in our fleet as it was unclear
if WRED would perform consistently for different sets of
flows with the same thresholds and drop probabilities.

Drop decisions. Although all our ASICs have a notion of
dynamically shared buffers, Asic-A family and Asic-B use
very different logic to share available buffer. The Asic-A
family use the α parameter to share available buffer, while
Asic-B uses a function based on the total buffer use, the
VOQ size, and the delay experienced by the last packet sent
from the VOQ. These values were quantized and used to
index into a lookup table. Compared to the Asic-A family’s
single-parameter shared-buffer model, this mechanism is
substantially more complicated, with many knobs to tune.
This was further compounded by the fact that the value of
these knobs were not always known to us.

These differences are irreconcileable—it is impossible to
guarantee that a specific traffic pattern will see the same buffer
and marking or drop probabilities across all platforms, or even
just across Asic-A2 and Asic-B, which we consider to be gen-
erationally equivalent. Even with only a single parameter to
tune—ECN—the above challenges underscore the difficulty
and complexity of parameter tuning, particularly for more
complex parameter-sensitive protocols, in an increasingly het-
erogeneous network similar to ours.

5 Visibility for Operations

We approached visibility from two perspectives. First, we
looked at metrics from each of the layers in the network—
from switches and their counters through to services and
their query times. Second, we looked at covering different
time scales—fine-grained debugging at RTT scale, looking at
packet traces, out to long term trends in network metrics such
as retransmissions. Visibility and monitoring are important
components to any deployment effort. We needed to ensure
that our regular monitoring systems were enhanced to account
for CCA where possible, and DCTCP-specific counters, such
as packet counts with ECT/CE bits set.

246 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.1 eBPF for monitoring

We used eBPF-based instrumentation extensively to monitor
the DCTCP deployment. Similar to our enablement efforts, we
found that kernel-maintained counters are not always enough:
they do not separate bytes sent with DCTCP and with Cubic,
or in-region and cross-region traffic. Similarly, counters of
retransmissions have major limitations, as we describe later.

Each TCP connection has a field that stores the CCA for
that connection. This allows us to track, using our fbflow [25]
packet sampling implementation, the specific CCA that gov-
erned that transmission. With this, we can quickly confirm
that in-region flows are using DCTCP when we expect them
to, and that the overall bit rate of in-region traffic is about the
same before and after enablement.

We also instrument and log retransmissions with an eBPF-
based system that traps calls to the tcp_retransmit_skb
function, and annotates the retransmission event with the type
(timeout, fast, syn, and synack), CCA, information about the
endpoints and the services involved. The CCA field doesn’t
always have a well defined answer, since a SYN packet can
be retransmitted before ECN capability has been negotiated.

5.2 The puzzle of more retransmissions

We observed unexpected increases in retransmissions, both in
kernel netstat counters (RetransSegs), and in our eBPF-based
pipeline. Packet discard counters at switches were down; so
why would the kernel need to retransmit more often?

This increase in retransmissions turned out to be a result
of tail loss probes (TLP) [11]. TLP is a means of guarding
a TCP connection from a packet loss that otherwise needs
a complete RTO to recover. The sender eagerly retransmits
as soon as an ACK is overdue, in order to repair the missing
packet, to receive an ACK that identifies the missing packet,
or to confirm that the original was delivered.

The algorithm for deciding when to send a TLP imple-
mented in Linux is to set a timer after each transmission,
set to expire after two times the RTT plus two “jiffies” (i.e.,
milliseconds when the constant HZ is 1000). We observed
that DCTCP reduced queueing and RTTs; on hosts that were
somewhat busy and needed a couple milliseconds to answer a
query, this reduction was enough to shift the connection from
not seeing a TLP (a 3ms RTT would lead to an 8ms TLP timer,
and 8ms was plenty to generate the response) to seeing TLPs
frequently (a 0ms RTT leads to a 2ms TLP timer). Although
there is a counter of transmitted TLPs, it includes both new
data and retransmissions, since both can be used in a TLP; the
count of necessary retransmissions is not easily recovered.

We adjusted our instrumentation to identify this class of
retransmission, allowing us to largely ignore them to focus in-
stead on other retransmissions when debugging performance.
TLPs may be wasteful in the common case of a DCTCP con-
nection, where losses are infrequent and RTTs short, but we

have not yet experimented with disabling it; the overhead of
sending the TLP is low and it may help in certain situations.

5.3 Metrics we monitored for sanity checks
We also monitored existing network metrics that tell us the
network state of the fleet. These included metrics from the
hosts (e.g., throughput, socket counts, RTOs, TCP memory,
CPU utilization), from switches (link utilizations, buffer uti-
lization, congestion discards, queue lengths). To this existing
set of metrics, we also added ECT and CE marked packets.
These data provided us with baseline assurances that DCTCP
was not unnecessarily throttling links, and that it was indeed
reducing buffer utilization and packet discards in switches,
and that the ECN signaling was working as expected.

We also focused on service monitoring identifying top
services in the region of rollout and proactively alerting their
oncalls to the rollout. In addition we worked on aggregating
metrics to allow both problem identification and the ability
to dig into them. The aggregations allowed users to go from
a single host to a service to the entire region to see what the
scope of an anomaly was and vice-versa from a region level
anomaly to a host facing the issue.

Another effort we undertook was to identify if the network
improvements were attributable only to DCTCP rollout or
some other parallel network change caused by say a higher
surge or users in the region. To perform this we created a
background signal using all the non-rollout regions and com-
pared it with the signal from the rollout one. We were able
to ascertain a statistically significant correlation between the
rollout of DCTCP and the improvements in the metrics.

5.4 Metrics that helped us troubleshoot issues
Troubleshooting performance is important—whenever a
change of this magnitude is made to the network, any per-
formance degradation seen by services are attributed to the
network, whether deserving or not. In such scenarios, the abil-
ity to confirm that the network is at fault, or not, can make
the difference between a successful versus an unsuccessful
deployment. There were several metrics that helped us trou-
bleshoot issues, and blame our rollout as appropriate. We list
two in this section.

Connection set up failures: For the Database issue we
discussed in 4.4.1, we noticed that connection set up failures
spiked at the time of the rollout. This metric was a fleet-wide
existing counter; it eventually led us to the root cause, when
we saw with the retransmissions data (5.1) that SYNs were
affected. Ultimately, we needed tcpdump to identify that the
ECT bits were missing in the SYNACK.

Hardware tagging: During the initial wave of rollouts, we
started noticing that a particular service in a few regions were
seeing increased fast retransmissions and timeouts. This led

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 247

us to initially wonder if the service was bursty, and whether
DCTCP was unable to handle the bursty traffic. However,
NIC vendor tagging in our retransmissions data isolated the
issue to only one particular vendor, and service tagging in
the same dataset told us that other services were affected as
well, just not to the same extent. We also built tools for burst
visibility that helped us root cause the issue to a driver bug.

The general takeaway is that in a vast and heterogeneous
network such as ours, we need extensive monitoring of a
variety of network metrics. Even if most of them are not used
day-to-day, or point to symptoms rather than the cause, they
help isolate the issue and focus the effort to root cause, saving
hours or more of engineer time.

6 Kernel and driver trouble

DCTCP exposes a set of interactions with features in the
kernel and NIC driver that can lead to undesirably poor or
uneven performance. At a high level, the smaller congestion
windows of DCTCP mean that CPU-efficiency techniques
for segmentation offload (“TSO”) and reassembly offload
(“GRO”) behave a little differently, perhaps adding delay
waiting for more data to work with, or simply requiring more
operations to send the same number of packets.

Others have noticed performance issues that result from
interactions between the kernel’s typical use of Cubic, with
large windows and large backoff, and DCTCP. For example,
Misund [23] notes an interaction between DCTCP, propor-
tional rate reduction [10] and segmentation offload.

6.1 Delayed ACKs
DCTCP appeared in the Linux kernel in 2014 [7], with sub-
stantial fixes to delayed ACK handling in 2018. The central
bug was that when the sender has a congestion window of
1, the receiver did (but should not) delay its ACK [9]. The
delayed ack timeout was 40ms by default, resulting in con-
nection having a CWND of 1 stalling that long. We had to
backport this change to a significant set of hosts running an
older kernel. Although we try to upgrade to the newest kernels
whenever possible, sometimes there are specific regressions
or driver issues that give older kernels extended life.

6.2 GRO creates unfairness
In addition to issues with delayed acks, a certain vendor NIC
delayed delivering packets that it expected to be able to re-
assemble, and this delay led to wild imbalance in throughput
in small scale testing. In particular, an established test flow
would reach 91% of link rate, while a second flow would only
get 2%. Of course, the fraction of packets being ECN marked
was comparable, so one would expect the two flows to con-
verge as they would on a different NIC. With much testing,

sending small RPCs that were not delayed, and tcpdump at
both ends, we found that the NIC was applying the following
rule for its GRO. The NIC would deliver if it could reassemble
ten packets, if it saw a push bit, or after 1 millisecond.

In practice, this rule meant that flows with a CWND below
ten packets would see an extra millisecond added to their
delay, and flows having larger windows would not. This GRO
rule probably didn’t affect long RTT flows, where the 1ms
timer was relatively small. But inside the same datacenter, this
is much larger than the base RTT. This difference in effective
RTT reinforced the unfair distribution of bandwidth between
them. To fix, we had to disable hardware GRO for this NIC.
There were other alternatives (e.g., to force setting push bits
on segments that would not otherwise merit them), but the
complexity did not seem worth it.

6.3 New eBPF

In Section 3, we described how BPF provided our best means
to express policy about which connections should use DCTCP.
However, this left us some additional problems.

First, we had to fix issues with getting ECT marked on
SYN/ACKs based on the decision to use DCTCP. This was
possible (the decision is made by the BPF code before the
SYN/ACK is sent) but was not the default behavior.

Second, to give more flexibility in how DCTCP adapts to
different signals, we reimplemented DCTCP in BPF. New
features in Linux allow BPF-based congestion control, and
we can use the same logic as before to attach a BPF con-
gestion control algorithm to a new socket. However, we also
want to be able to upgrade the BPF-based congestion control
algorithm “on the fly,” replacing the algorithm used by an
existing connection. Although it isn’t practical to “upgrade”
Cubic to DCTCP (if ECN wasn’t negotiated, the signal won’t
be there), replacing one “version” of DCTCP with another
allows us to keep fewer versions in use. The key feature here
is “bpf-iter,” which allows running a loop over all sockets
in the system. With this loop, we can replace the congestion
control algorithm on every active socket. This is far better
than alternatives (drain a datacenter, terminate connections,
or wait until all the old connections disappear).

Implementing eBPF CCA. We leverage struct-ops [19],
an eBPF interface to implement DCTCP through specific ker-
nel function pointers, to create an eBPF program that provides
a tcp-congestion-ops structure [1] implementation to the
TCP subsystem. This capability allows us to manage CCAs
similar to all the other eBPF programs we already manage in
the fleet. Our DCTCP eBPF implementation closely matches
the kernel eBPF example [18].

Managing eBPF CCAs. We built NetEdit [16], an agent
that orchestrates the composition, deployment and life-cycle
management of network eBPF programs across our fleet of
servers. NetEdit supports implementation, experimentation,
testing and rollout of custom CCAs. This allows us to select

248 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

fleetwide defaults for different RTT and also run active ex-
periments at desired scales (specific services or data center).
We push a new version of NetEdit almost every week. This
allows fast iteration on CCA changes.

7 Ongoing Work, Limitations, Enhancements

This paper up to this point has been primarily about enabling
DCTCP and making it work for in-region traffic, and enabling
ECN on ToR-switch downlinks. This was a large first step.
In this section, we describe some of the follow-on steps: en-
hancements we made to signaling, and CCA development
based on our experience with the deployment. We also list
the limitations of DCTCP, in particular for our traffic, and
ongoing and future work to mitigate the limitations.

7.1 ECN marking on other hotspots

Our focus on marking from the ToR down ignored all the
other links in the network maximizing benefit by targeting
where most congestion occurs: most services overload their
inbound network connection. However, there were a few cases
where the ToR downlink was not the major bottleneck.

The first instance was when the ToR saturated its uplinks;
we saw this situation in cases where there were several write-
heavy services concentrated on racks, or when the rack did
not have its entire capacity available due to maintenance. For
such cases, we enabled ECN on the ToR link uplinks

The second instance was when ToR downlink congestion
bled over up into the fabric: this happened when there were
several read-heavy services concentrated on a rack, with their
incoming traffic bursts synchronized at millisecond timescales.
This resulted in high contention in both the ToR buffer, as
well as the fabric switch immediately uplink of the ToR. To
mitigate these cases, we deployed ECN on the fabric switch
down links. For both this case as well as the ToR uplinks, we
reused the original ECN/DropTail thresholds, which worked
well enough. We saw a reduction in uplink queue length
and buffer watermark on the switches as well as incoming
retransmissions on the hosts.

The third—and surprising—instance was when we saw
significant packet discards on the host NIC. This happened on
the newer generation faster NICs; our hypothesis is that the
host CPU is unable to keep up with faster bursts, resulting in
the local NIC buffer overflowing. ECN on the NIC buffer is
available to us on a subset of our vendor NICs, however, only
one vendor implementation allows us to turn on this feature
without rebooting the NIC. None of the vendors provided the
means to tune the threshold—in fact, even the marking thresh-
olds are not public information. These limitations meant that
we could not deploy NIC ECN marking; however, limited
testing showed promise in reducing NIC drops when we en-
abled it on one vendor NIC with just the default threshold.

Figure 4: ECN marking on NICs reduces retransmissions.

We tested this feature on one host that was experiencing sub-
stantial NIC buffer drops. Turning on this feature reduced
incoming retransmissions by about 30% (Figure 4). As host
NICs become faster, challenging the CPU’s ability to keep
up with the incoming traffic, we expect that host-network
congestion will become a larger problem for us to resolve.

7.2 Limitations of DCTCP

DCTCP does not solve all congestion issues. Figure 1
showed that DCTCP significantly reduced retransmission
rates; it also shows that the gains are uneven across re-
gions, and there is a significant amount of retransmissions
that DCTCP is unable to solve. Some of it was due to other
hotspots in the network and NIC that we observed and in some
cases fixed (Section 7.1). A significant amount, however, is
caused by traffic and network characteristics, which DCTCP,
in its current form, is unable to solve. Our traffic is charac-
terized by short and heavy incast bursts [13]. Short bursts
do not allow the incast senders to converge, resulting in high
buffer usage even with ECN. Heavy of the incast means that
a CWND of 1, the lowest DCTCP can maintain, is too high.
Other work has tackled high-degree incast [2,14,17,21]; they
require enhanced hardware support and a new networking
stack. Our bursts can also synchronize across hosts in a ToR:
with our ToR buffers being shallow and dynamically shared,
synchronized bursts result in contention and high buffer pres-
sure on the ToR, meaning that bursts can receive variable
buffer allocation depending on the degree of synchronization.

Although DCTCP by itself is unable to solve the above
challenges, we are working on complementary systems and
better CCAs that can. One area of ongoing work is receiver-
based flow control to help senders converge faster and more
reliably [22]; this has resulted in significant wins. Buffer
tuning to manage contention is a promising area of research
as well. Ultimately though, ECN is a coarse signal which has
its limitations; we are working on using delay-based signals
that offer more responsive congestion control.

Jumbo frames. Jumbo frames are more efficient on the net-
work; however, enabling Jumbo faced challenges to enabling
DCTCP—different kernels and NICs support larger packets

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 249

differently; there are bugs in the handling of, say, large TCP
fast open SYN packets or in handling a mixed configuration
of MTU sizes on MH NICs. We note that open questions exist
on how jumbo and non-jumbo frames interact, and whether
our empirically derived thresholds need revisiting as frames
are larger. We leave that for future work.

7.3 DCTCP implemented in BPF
We reimplemented DCTCP using the recent “bpf-cc” system,
a task made a bit easier by the software that used BPF to
enable DCTCP. This alternate implementation of the same
CCA allows us to make modifications both minor—such as
experimenting with different parameters—and major—using
the established framework of DCTCP’s response to ECN
as a foundation, but building-in a response to delay or loss
that differs slightly for our environment. Finally, our BPF
implementation of DCTCP allows us to log internal CCA
state (e.g., to log cwnd every RTT) rather than infer it from
packet capture analysis.

We ran extensive tests comparing in-BPF to in-kernel im-
plementations of DCTCP, using long flows as well as small
and large RPCs. CPU use at sender and receiver was about the
same (perhaps dominated by other parts of packet processing).
Both implementations were fair to each other, getting roughly
the same throughput alone and in contention.

8 Takeaways and Conclusion

We leave the community with a few observations about de-
ploying CCAs in a large scale production network, which we
hope will influence CCA research.

Deploying a CCA in production is not a flip of a switch.
Safely and incrementally deploying changes leads to a transi-
tion period where there is a mixture of CCAs in use. This is
not just due to hosts and network devices that have not picked
up the changes, but also due to existing connections that have
not (and might not be able to) flip over. The resultant transi-
tion period could vary depending on the complexity of the
switch as well as the nature of the connections / traffic. This
means that we have to consider performance during transition
as well—if the stable states has excellent performance, but
the (long) transition period could have significantly degraded
performance, the switch will be more complex. Much of CCA
research focuses on the stable state after the transition; in-
sights into how the transition period could affect performance
would be immensely useful to plan the deployment.

Data centers are complex and heterogeneous. CCAs
must be simple, and forgiving. The mixture of hardware
(NIC vendors, NIC speeds, switch vendors, switch ASICs,
queues), software (OS kernels, driver versions), and applica-
tions (bursty, variable RTT, latency/throughput/tail sensitive),
and the combinations thereof can be daunting—making any
planned deployment a logistical challenge. While it may be

impossible to account for every eventuality prior to deploy-
ment (indeed, we discovered a good number of issues only
in retrospect), simpler CCAs can be easier to reason about
and plan for. This means that new requirements either in the
network (ECN, network telemetry) or in the host (hardware
timestamps) need to be as minimal and simple as possible.
The tuning of the new features must also be as forgiving as
possible. Much work has gone into identifying ideal ECN
thresholds—however, those assume ideal cases where there is
no sharing with other CCAs, and the threshold search space
is continuous, and not quantized. We were unable to deploy
those ideal thresholds, instead having to do extensive testing
to find “good-enough” thresholds that resulted in reasonable,
though not ideal performance. A CCA that relies heavily on
tuned parameters without graceful degradation is harder to
deploy successfully in a large scale data center.

Expecting the unexpected. Sometimes long-deployed
(and forgotten) configurations or optimizations can be ex-
posed with new CCAs. An ideal CWND size that is only
large enough to make full theoretical use of the network link,
for example, might not be large enough to trigger the NIC
to deliver a reassembled collection of packets, resulting in
increased latency, or worse, breaking fairness. Simplicity of
CCAs can also reduce probability of bad interactions with
other components such as host and NIC optimizations, but it
may not be possible to account for every eventuality.

Hotspots may occur in unexpected places. CCAs must
have good fallbacks. CCAs moderate how concurrent flows
share a known bottlenecked resource, but the location of the
bottleneck (in-network, host-side, multi-host NICs) is not
necessarily clear. A bottleneck in an unexpected location,
which is not amenable to deploying the signal that the CCA
relies on can be problematic. For example, when we found
NIC bottlenecks, we realized that we could not deploy ECN
there; therefore packet loss in NICs continued to occur, with
DCTCP reacting suboptimally to such losses, being designed
to respond optimally to ECN and not loss.

Ultimately, a CCA that might work well analytically and
in simulation might not work well in practice—we hope that
our experience guides researchers avoid common pitfalls, and
design CCAs with an eye towards real-world deployability.
Our experience with DCTCP has also guided our own evalua-
tion of the potential of more advanced CCAs with reliance on
wider set of signals: in-network telemetry, fine grained hard-
ware timestamps, or early congestion signaling from switches.

Acknowledgments. This paper presents the work of several
teams at Meta involved in successfully testing and deploying
DCTCP. We thank Andrey Ignatov, Igor Pozgaj, James Zeng,
Kiran Palan, Luwei Cheng, Mario Sanchez, Martin Lau, Nivin
Lawrence, Omar Baldonado, Petr Lapukhov, Rajiv Krishna-
murthy, Rob Sherwood, Rohit Puri, Russell Cloran, Sankar-
alingam Panneerselvam, Srikrishna Gopu, Takshak Chahande
and the NSDI reviewers for their insightful feedback.

250 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] tcp-congestion-ops. https://elixir.bootlin.com/
linux/v5.5/source/include/net/tcp.h#L1043.
[Online; accessed 25-February-2024].

[2] ABDOUS, S., SHARAFZADEH, E., AND GHORBANI,
S. Burst-tolerant datacenter networks with Vertigo. In
CoNEXT (2021).

[3] AHUJA, S. S., DANGUI, V., PATIL, K., SOMASUN-
DARAM, M., GUPTA, V., SANCHEZ, M., YAN, G.,
NOORMOHAMMADPOUR, M., RAZMJOO, A., SMITH,
G., ET AL. Network entitlement: contract-based net-
work sharing with agility and SLO guarantees. In SIG-
COMM (2022).

[4] ALIZADEH, M., GREENBERG, A., MALTZ, D. A.,
PADHYE, J., PATEL, P., PRABHAKAR, B., SENGUPTA,
S., AND SRIDHARAN, M. Data center TCP (DCTCP).
In SIGCOMM (2010).

[5] ARSLAN, S., LI, Y., KUMAR, G., AND DUKKIPATI, N.
Bolt:sub-rtt congestion control for ultra-low latency. In
NSDI (2023).

[6] BIRO, R., VAN KEMPEN, F. N., EVANS, M.,
MINYARD, C., LA ROCHE, F., HENDRICK, C.,
TORVALDS, L., COX, A., DILLON, M., GUL-
BRANDSEN, A., AND CWIK, J. tcp_output.c.
https://elixir.bootlin.com/linux/latest/
source/net/ipv4/tcp_output.c#L339. [Online;
accessed 3-September-2023].

[7] BORKMANN, D., WESTPHAL, F., AND JUDD, G.
tcp_dctcp.c. https://elixir.bootlin.com/linux/
latest/source/net/ipv4/tcp_dctcp.c#L100.
[Online; accessed 3-September-2023].

[8] BRAKMO, L. bpf: BPF support for socket ops. https:
//lwn.net/Articles/725722/, 2017. [Online; ac-
cessed 3-September-2023].

[9] BRAKMO, L., BURKOV, B., LECLERCQ, G., AND MU-
GAN, M. Experiences evaluating DCTCP. In Linux
Plumbers Conference (2018).

[10] DUKKIPATI, N., MATHIS, M., CHENG, Y., AND
GHOBADI, M. Proportional rate reduction for TCP.
In SIGCOMM (2011).

[11] FLACH, T., DUKKIPATI, N., TERZIS, A., RAGHAVAN,
B., CARDWELL, N., CHENG, Y., JAIN, A., HAO, S.,
KATZ-BASSETT, E., AND GOVINDAN, R. Reducing
web latency: the virtue of gentle aggression. In SIG-
COMM (2013).

[12] GAO, P. X., NARAYAN, A., KUMAR, G., AGARWAL,
R., RATNASAMY, S., AND SHENKER, S. phost: Dis-
tributed near-optimal datacenter transport over commod-
ity network fabric. In CoNEXT (2015).

[13] GHABASHNEH, E., ZHAO, Y., LUMEZANU, C.,
SPRING, N., SUNDARESAN, S., AND RAO, S. A
microscopic view of bursts, buffer contention, and loss
in data centers. In IMC (2022).

[14] HANDLEY, M., RAICIU, C., AGACHE, A., VOINESCU,
A., MOORE, A. W., ANTICHI, G., AND WÓJCIK, M.
Re-architecting datacenter networks and stacks for low
latency and high performance. In SIGCOMM (2017).

[15] JUDD, G. Attaining the promise and avoiding the pitfalls
of TCP in the datacenter. In NSDI (2015).

[16] KANNAN, P., AND GUPTA, P. Nete-
dit: Fine-grained network tuning at scale.
https://atscaleconference.com/videos/
netedit-fine-grained-network-tuning-at-scale-prashanth-kannan-and-prankur-gupta/,
2022. [Online; accessed 25-February-2024].

[17] KUMAR, G., DUKKIPATI, N., JANG, K., WASSEL,
H. M., WU, X., MONTAZERI, B., WANG, Y., SPRING-
BORN, K., ALFELD, C., RYAN, M., ET AL. Swift:
Delay is simple and effective for congestion control in
the datacenter. In SIGCOMM (2020).

[18] LAU, M. K. bpf: Add bpf-dctcp example.
https://lore.kernel.org/all/20191221062620.
1184118-1-kafai@fb.com/, 2019. [Online; accessed
25-February-2024].

[19] LAU, M. K. Introduce BPF STRUCT-OPS.
https://lore.kernel.org/bpf/20200109003453.
3854769-1-kafai@fb.com/, 2020. [Online; accessed
25-February-2024].

[20] LI, Y., MIAO, R., LIU, H. H., ZHUANG, Y., FENG,
F., TANG, L., CAO, Z., ZHANG, M., KELLY, F., AL-
IZADEH, M., ET AL. HPCC: High precision congestion
control. In SIGCOMM (2019).

[21] LIU, K., TIAN, C., WANG, Q., ZHENG, H., YU, P.,
SUN, W., XU, Y., MENG, K., HAN, L., FU, J., ET AL.
Floodgate: Taming incast in datacenter networks. In
CoNEXT (2021).

[22] MADHAVAN, B., AND DHAMIJA, A. Tack-
ling dc congestion and bursts. https:
//atscaleconference.com/videos/
netedit-fine-grained-network-tuning-at-scale-prashanth-kannan-and-prankur-gupta/,
2022. [Online; accessed 25-February-2024].

[23] MISUND, J., AND BRISCOE, B. Disentangling flaws in
linux DCTCP. arXiv preprint arXiv:2211.07581 (2022).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 251

https://elixir.bootlin.com/linux/v5.5/source/include/net/tcp.h#L1043
https://elixir.bootlin.com/linux/v5.5/source/include/net/tcp.h#L1043
https://elixir.bootlin.com/linux/latest/source/net/ipv4/tcp_output.c#L339
https://elixir.bootlin.com/linux/latest/source/net/ipv4/tcp_output.c#L339
https://elixir.bootlin.com/linux/latest/source/net/ipv4/tcp_dctcp.c#L100
https://elixir.bootlin.com/linux/latest/source/net/ipv4/tcp_dctcp.c#L100
https://lwn.net/Articles/725722/
https://lwn.net/Articles/725722/
https://atscaleconference.com/videos/netedit-fine-grained-network-tuning-at-scale-prashanth-kannan-and-prankur-gupta/
https://atscaleconference.com/videos/netedit-fine-grained-network-tuning-at-scale-prashanth-kannan-and-prankur-gupta/
https://lore.kernel.org/all/20191221062620.1184118-1-kafai@fb.com/
https://lore.kernel.org/all/20191221062620.1184118-1-kafai@fb.com/
https://lore.kernel.org/bpf/20200109003453.3854769-1-kafai@fb.com/
https://lore.kernel.org/bpf/20200109003453.3854769-1-kafai@fb.com/
https://atscaleconference.com/videos/netedit-fine-grained-network-tuning-at-scale-prashanth-kannan-and-prankur-gupta/
https://atscaleconference.com/videos/netedit-fine-grained-network-tuning-at-scale-prashanth-kannan-and-prankur-gupta/
https://atscaleconference.com/videos/netedit-fine-grained-network-tuning-at-scale-prashanth-kannan-and-prankur-gupta/

[24] MONTAZERI, B., LI, Y., ALIZADEH, M., AND
OUSTERHOUT, J. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
SIGCOMM (2018).

[25] ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND
SNOEREN, A. C. Inside the social network’s (datacen-
ter) network. In SIGCOMM (2015).

[26] VEERARAGHAVAN, K., MEZA, J., MICHELSON, S.,
PANNEERSELVAM, S., GYORI, A., CHOU, D., MAR-
GULIS, S., OBENSHAIN, D., PADMANABHA, S., SHAH,
A., ET AL. Maelstrom: Mitigating datacenter-level dis-
asters by draining interdependent traffic safely and effi-
ciently. In OSDI (2018).

[27] ZHANG, Q., LIU, V., ZENG, H., AND KRISHNA-
MURTHY, A. High-resolution measurement of data
center microbursts. In IMC (2017).

252 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

TECC: Towards Efficient QUIC Tunneling via Collaborative Transmission Control

Jiaxing Zhang1,2*, Furong Yang1*, Ting Liu1,2*, Qinghua Wu2,3B, Wu Zhao1, Yuanbo Zhang1

Wentao Chen1, Yanmei Liu1B, Hongyu Guo1, Yunfei Ma1, Zhenyu Li2,3

1Alibaba Group, 2University of Chinese Academy of Sciences, 3Purple Mountain Laboratories, China

Abstract
In this paper, we present TECC, a system based on collab-

orative transmission control that mitigates the mismatch of
sending behavior between the inner and outer connections
to achieve efficient QUIC tunneling. In TECC, a feedback
framework is implemented to enable end hosts to collect more
precise network information that is sensed on the tunnel server,
which assists the inner end-to-end connection to achieve better
congestion control and loss recovery.

Extensive experiments in emulated networks and real-
world large-scale A/B tests demonstrate the efficiency of
TECC. Specifically, compared with the state-of-the-art QUIC
tunneling solution, TECC significantly reduces flow com-
pletion time. In emulated networks, TECC decreases flow
completion time by 30% on average and 53% at the 99th
percentile. TECC also gains a reduction in RPC (Remote
Procedure Call) request completion time of 3.9% on average
and 13.3% at the 99th percentile in large-scale A/B tests.

1 Introduction

Internet privacy has become a more and more serious concern
for all Internet residents today. Although policymakers have
been making regulations (e.g., GDPR [1]) on Internet privacy
stricter than ever to protect users from the abuse of their per-
sonal information, these regulations may only be respected
by legitimate organizations (e.g., large service providers such
as Google), not by malicious hackers on the Internet. There-
fore, many knowledgeable people resort to privacy-preserving
technologies to further secure their surfing on the Internet.

iCloud Private Relay [2] (PR) is a new privacy protec-
tion service announced by Apple at its developer conference
(WWDC) in June 2021, which aims to protect customers’ In-
ternet activities initiated via the Safari web browser. It uses
an architecture with two layers of proxies to guarantee that no
one in the middle can directly correlate the user and the target
service accessed by the user. In PR’s architecture, users’ traf-
fic is first routed to an Apple-controlled ingress proxy and the
ingress proxy then forwards the received traffic to an egress
proxy hosted by third parties (e.g., Cloudflare, Akamai, etc)
that finally initiates connections to the target hosts. As Apple
has a considerable amount of share on the global smartphone

* Co-first authors
Corresponding authors: Qinghua Wu (wuqinghua.mail@gmail.com),

Yanmei Liu (miaoji.lym@alibaba-inc.com)

market and PR has a much lower entry barrier compared with
traditional privacy-preserving technologies such as Virtual
Private Networks (VPNs), Proxies, and The Onion Router
(Tor), a significant usage increase of PR is envisioned [3, 4].

To steer user traffic to an egress proxy via an ingress proxy,
a tunneling protocol called MASQUE (Multiplexed Appli-
cation Substrate over QUIC Encryption) is used in PR. In
this MASQUE use-case, a client first initiates a QUIC-based
HTTP/3 connection to a tunnel server (an ingress proxy) and
uses an extended HTTP CONNECT method [5] to open a
UDP tunnel towards a target server (an egress proxy). Af-
terward, the client can communicate with the target server
using QUIC (UDP-based) through the opened tunnel. This
ultimately leads to a QUIC-in-QUIC communication pattern,
as shown in Figure 1.

However, as disclosed by recent studies [4,6], such a QUIC-
in-QUIC communication pattern enabled by MASQUE faces
several performance challenges. MASQUE only provides a
tunneling mechanism and leaves the impact of tunneling on
the performance of end-to-end (E2E) connections unexplored.
There are also a few recent studies [7–11] that discussed using
MASQUE or similar QUIC tunneling schemes to enhance the
performance of E2E connections, e.g., accelerating the recov-
ery of packets lost at the last-mile wireless link. Nonetheless,
there remains a lack of systematic measurement of MASQUE,
which is of great importance for designing efficient QUIC
tunneling. To fill the gap, we first conducted a thorough mea-
surement study to dissect the performance of MASQUE in
depth. We then identify two fundamental problems that lead
to sub-optimal performance:

• Retransmission in the tunnel: While retransmission in the
tunnel is crucial for accelerated loss recovery, it may cause
duplicated retransmissions by both the tunnel server and
the server, leading to bandwidth waste and exacerbated
network congestion.

• Congestion control (CC) in the tunnel: CC in the tunnel
is necessary as it can reduce the tunnel’s retransmission
rate and alleviate network congestion. However, it causes
a sending rate mismatch between the inner and outer con-
nection, which can severely degrade E2E throughput.

To tackle these issues, we propose TECC which makes
the end hosts and the tunnel server collaboratively control
their transmission. In a nutshell, TECC works as follows:
network information collected on the tunnel server is fed back
to the server through the “Tunnel Server->Client->Server”

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 253

Figure 1: The QUIC-in-QUIC communication pattern enabled
by QUIC tunneling

path, which aligns the server’s retransmission and sending
behavior with the tunnel server. At the same time, TECC
offloads the server’s CC to the tunnel server, reducing the
control loop from the original E2E path to the path between
the tunnel client and tunnel server.

We implement TECC and integrate it with the Taobao An-
droid app. Extensive experiments in emulated network envi-
ronments and real-world large-scale A/B tests demonstrate its
efficiency. To sum up, our contributions are:

• We conducted a set of experiments to systematically eval-
uate MASQUE. An in-depth analysis based on the results
reveals the impact of transmission modes (using QUIC
streams or datagrams for tunneling E2E packets), retrans-
mission, and CC on the performance of MASQUE.

• Motivated by our key observations on the fundamental
limitations of MASQUE, we propose a collaborative trans-
mission control system, TECC, which coordinates the re-
transmission and CC of the inner and outer connections
to achieve enhanced performance.

• We carried out extensive experiments in networks emu-
lated by Mahimahi [12] and large-scale A/B tests in which
over 10 million users were involved. Compared with the
vanilla MASQUE, TECC decreases the flow completion
time (FCT) by 30% on average and by 53% at the 99th
percentile in emulated networks. In production networks,
TECC reduces the FCT of RPC requests by 3.9% on aver-
age and 13.3% at the 99th percentile.

2 Background

2.1 MASQUE overview

MASQUE is a set of specifications developed at the IETF
MASQUE working group, which defines new tunneling mech-
anisms that can leverage QUIC to tunnel E2E UDP and IP
packets. Compared with previous tunneling mechanisms (e.g.,
TCP-based or IP-based tunneling), it benefits from the supe-
rior features of QUIC, e.g., 0-RTT connection establishment,
more accurate RTT estimation and loss detection, and elimi-
nation of head-of-line (HoL) blocking between independent
data streams.

Currently, there are two released RFCs in MASQUE: RFC
9297 of “HTTP Datagrams and the Capsule Protocol” [13]

and RFC 9298 of “Proxying UDP in HTTP” [5]. The former
defines HTTP Datagrams that are the carriers of E2E packets
in the tunnel. HTTP Datagrams can be used for conveying
multiplexed and potentially unreliable datagrams (e.g., UDP
or IP packets) inside an HTTP connection (a tunnel connec-
tion). Note, if the tunnel connection is based on HTTP/3 over
QUIC, HTTP Datagrams can be transmitted in two different
modes: stream mode and datagram mode. In the stream
mode, QUIC streams are utilized to reliably transmit HTTP
Datagrams, whereas QUIC datagrams [14] are leveraged to
unreliably convey HTTP Datagrams in the datagram mode.
The latter specification defines the signaling protocol to set
up UDP tunnels inside an HTTP connection. Specifically, de-
pending on the HTTP version of the tunnel connection, a tun-
nel client can request the tunnel server to open a UDP tunnel
via sending an extended HTTP CONNECT request [15,16] or
an HTTP Upgrade request [17] with the IP and port of the tar-
get server encoded in the request. If the tunnel server accepts
such a request, the tunnel is established and the packets of the
E2E connection can be transmitted over the opened tunnel. As
the tunnel server knows about the addresses of both the client
and server, it can forward E2E packets to the correct targets.
At the time of writing, there are also a few other specifications
under development, e.g., the signaling protocol to establish IP
tunnels [18] and the QUIC forwarding mode [19] to reduce
the wire and encryption overhead.

In this paper, we mainly focus on the QUIC-in-QUIC use-
case enabled by MASQUE UDP tunnels, which means both
the tunnel connection and the E2E connection are based on
QUIC. We refer to the stream mode and the datagram mode
as MST (MASQUE stream tunnel) and MDT (MASQUE
datagram tunnel) in the following paragraphs respectively.

2.2 The potential issues of MASQUE

Although the MASQUE specifications provide functional
mechanisms for QUIC-in-QUIC tunneling, the impact of such
tunneling mechanisms on the performance of the E2E QUIC
connection remains unclear.

First, the two tunnel modes, MST and MDT, could have
different impacts on the E2E performance. In MST, each UDP
tunnel uses one QUIC stream for the underlying transmission.
As the QUIC stream is reliable, if the tunneled E2E packets
are lost in the tunnel segment, they can be recovered by the
tunnel connection, which is faster than the E2E retransmis-
sion. This benefit is not provided by MDT as QUIC does
not retransmit QUIC datagrams in which E2E packets are
encapsulated. But, MST also has a disadvantage compared
with MDT. Due to the QUIC stream only delivering in-order
data to its upper layer, MST has a significant HoL blocking
problem where a lost packet leads to all subsequent packets
being blocked in the tunnel. In MDT, as the QUIC datagrams
are independently delivered to the upper layer, the HoL prob-
lem does not manifest. Consequently, there are some attempts

254 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(e.g., [7]) trying to combine the advantages of MST and MDT
by enabling retransmission for MDT (RMDT). Neverthe-
less, a quantitative comparison between these tunnel modes
is essential to understand how they perform in practice.

Second, in MST and RMDT, there may be excessive re-
transmissions as both the tunnel connection and the E2E con-
nection can retransmit packets lost in the tunnel segment.
Excessive retransmissions may exacerbate the congestion in
the tunnel and waste bandwidth. Applying CC on the tunnel
connection may alleviate this problem, but, it also introduces
two layers of nested CC, as the E2E connection also performs
CC. The nested CC may lead to unwanted sending behav-
ior mismatches between the tunnel connection and the E2E
connection.

3 A deep dive into MASQUE

In this section, we first evaluate the performance of differ-
ent tunnel modes. Then, the necessity of CC in the tunnel
is assessed. Finally, as both the tunnel connection and the
E2E connection have their own CC, the impact of nested CC
is studied. All experiments in this section are conducted in
networks emulated by Mahimahi [12].

3.1 The performance of MASQUE
Observation 1: HoL blocking in MST degrades through-
put and bloats packet delay. Retransmission in the tunnel
is crucial for reducing the complete time of short flows.

To evaluate the performance of different tunnel modes, we
transferred files of different sizes through MST, MDT, and
RMDT tunnels and calculated the average FCT of the E2E
transfers. In the experiments, the E2E RTT and the RTT of the
tunnel segment are 200 ms and 100 ms respectively. The loss
rate of the tunnel segment is 10%, which emulates a congested
link. As the E2E QUIC connection is certainly congestion-
controlled (using BBR [20]), the CC of the tunnel connection
is disabled in the experiments.

The results are shown in Figure 2a. As observed, MST
achieves better performance for short flows compared with
MDT, as MST can recover packets lost between the tunnel
client and the tunnel server faster than MDT via local retrans-
mission of the tunnel connection. However, as the file size
increases, the performance gain of MST is gradually dimin-
ished. The diminished return is a result of the HoL blocking
in MST as we will explain in the next paragraph. RMDT
does the same as MST regarding faster loss recovery, but it
performs better than MST as it does not suffer from HoL
blocking. We also measured the E2E packet delay of the three
tunnel modes, and the results are shown in Figure 2b. Com-
pared with that of MDT and RMDT, the packet delay of MST
is higher, which comes from the impact of HoL blocking.
Because RMDT also retransmits lost packets, the delay of
some packets appears longer from the server’s view, as these

10K 100K 1M 10M 30M
File Size

8
16
32
64

FC
T(

s)

MST
MDT
RMDT

(a) FCTs of E2E transfers

500 1000 1500 2000 2500 3000
Packet Delay(ms)

0.0

0.2

0.4

0.6

0.8

1.0

MST
MDT
RMDT
MSGT

(b) CDF of E2E packet delay

Figure 2: The performance of different tunnel modes

packets have been retransmitted in the tunnel connection. This
explains that the packet delay of RMDT is higher than MDT.

Analysis of HoL blocking in MST: When an E2E packet
is lost in an MST tunnel, all subsequent E2E packets that have
been sent via the tunnel are blocked in the QUIC stream and
thus cannot be decapsulated until the lost packet is retrans-
mitted by the tunnel connection. Consequently, the sender of
the E2E connection may consider all packets sent after the
lost packet as lost, which appears as a huge burst of packet
losses. The burst of losses misleads the sender to reckon that
it is in a persistent congestion event and it should significantly
cut off its sending rate. As there are more packets in large
transfers (thus more losses) and large transfers are more sen-
sitive to throughput, the impact of MST’s HoL blocking is
more evident. Note that the failure of timely decapsulation of
packets blocked in the QUIC stream also leads to increased
E2E packet delay. Using multiple QUIC streams for the un-
derlying transmission of an MST tunnel can alleviate the
impact of HoL blocking, but, our experience indicates that it
is still worse than RMDT. Specifically, we extend MST to use
a group of QUIC streams (MASQUE stream group tunnel,
MSGT). The packet delay of MSGT is between that of RMDT
and MST, as shown in Figure 2b.

In conclusion, the earlier retransmission in the tunnel pro-
vided by MST and RMDT is indeed useful, especially for
short flows. As MST suffers from the HoL blocking problem,
RMDT seems the more desirable tunnel mode in practice.

3.2 The necessity of CC in the tunnel
Observation 2: Applying CC on the RMDT tunnel signifi-
cantly reduces retransmissions and bandwidth waste. But,
the E2E throughput does not benefit from the reduction
in retransmissions.

In RMDT, packets lost in the tunnel could be retransmitted
by both the tunnel connection and the E2E connection. Thus,
there is a risk that the tunnel connection sends excessive
packets to exacerbate the congestion in the tunnel segment
as well as waste bandwidth resources. Ideally, enabling CC
on the tunnel connection can reduce such a risk and boost
performance.

We conducted experiments to compare the performance of
RMDT with BBR and RMDT without CC. In the experiments,
the E2E RTT and the RTT of the tunnel are 140 ms and 40 ms.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 255

C1 C2 C3 C4 W1
Trace

0
2
4
6
8

10
12
14
16
18

FC
T(

s)
 RMDT RMDT(bbr)

(a) FCT

C1 C2 C3 C4 W1
Trace

0.0
0.1
0.2
0.3
0.4
0.5

R
et

ra
ns

 R
at

e

 RMDT RMDT(bbr)

(b) Retransmission rate

Figure 3: The comparison between RMDT with and without
CC

The loss rate of the tunnel is 10% and the bandwidth bottle-
neck is put on the tunnel segment. The bottleneck bandwidth
is emulated by Mahimahi which replays traces collected from
real-world networks. More details about the traces can be
found in §5.1. The flow size in the experiments is 30 MB.

The average FCT and the overall retransmission rate (in-
cluding retransmissions of the tunnel and E2E connection)
are reported in Figure 3b. Indeed, RMDT with BBR signifi-
cantly reduces retransmissions compared to RMDT without
CC. When CC is disabled on the tunnel connection, all lost
packets are retransmitted immediately into the network that
may already be congested, which in turn triggers more re-
transmissions and aggravates network congestion. Despite
the reduced retransmissions, no significant gain in FCT is ob-
served in Figure 3a. We will see later that this is an outcome
of the side effects of nested CC.

3.3 The impact of nested CC
Observation 3: Nested CC causes mismatched sending
rates between the tunnel connection and the E2E con-
nection, leading to an increase in the queue length at the
tunnel server and bloated E2E smoothed RTTs (SRTTs).

Using the same emulated network environments as in §3.2,
we launched long-lived transfers to investigate the impact of
nested CC. Note that both the tunnel connection and the E2E
connection employed BBR as their CC algorithm. During the
transfers, the pacing rate and the SRTT of both the tunnel and
E2E connection were recorded. In addition, the sending queue
length of the tunnel connection (QLen) was also logged. We
present the result of one of the transfers in Figure 4, as the
conclusion drawn from the results is generic across different
runs.

In Figure 4, we can clearly observe that there is a sending
rate mismatch between the tunnel server and the server, lead-
ing to persistent queuing at the tunnel server and bloated E2E
SRTTs. When packets are sent from the server to the client,
the CC of the tunnel server controls the sending rate of the
tunnel connection. However, if the sending rate of the tunnel
server is lower than that of the server, the tunnel server will in-
evitably queue packets. The queuing time will increase as the
rate difference grows. At the 24th second, the tunnel segment
experiences a sudden drop in bandwidth without significant

20 22 24 26 28 30
Time (s)

0

5

10

15

20

P
ac

in
g

R
at

e
(M

bp
s)

RMDT(bbr): Server
RMDT(bbr): Tunnel

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Q
Le

n
(M

B
)

RMDT(bbr): Server
RMDT(bbr): Tunnel
QLen

(a) Pacing rate

20 22 24 26 28 30
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
R

TT
 (s

)

RMDT(bbr): Server
RMDT(bbr): Tunnel

(b) SRTT

Figure 4: The impact of nested CC: the pacing rate and SRTT
of the tunnel and E2E connection are depicted.

changes in SRTT. The tunnel server can quickly detect this
drop in bandwidth and decrease the pacing rate accordingly,
whereas the server cannot. This is mainly because the increase
in SRTT prolongs the bandwidth updating cycle of BBR in
the E2E connection.

3.4 Summary and implication

Our experiment results indicate that RMDT with CC is the
more desirable tunnel mode in practice. First, it provides
better loss recovery via retransmission in the tunnel while
not suffering from the HoL blocking problem of MST. In
addition, it limits the risk of sending excessive retransmissions
to exacerbate network congestion in the tunnel segment by
applying CC on the tunnel connection. However, the two
layers of nested CC introduce sending behavior mismatches
between the tunnel connection and the E2E connection, which
ultimately leads to sub-optimal performance. This calls for
coordinating the sending behavior of the two connections to
eliminate such mismatches.

In fact, the tunnel server provides opportunities for the co-
ordination of the tunnel and E2E connection. As the tunnel
server is closer to the client than the server, it is able to sense
the network conditions of the tunnel segment, which is usu-
ally the bottleneck (the last-mile access link resides here),
in a more accurate and timely manner. The sensed network
conditions can be fed back to the server, which assists the
server in aligning its sending behaviors with the tunnel server.

4 TECC design and implementation

In this section, we present TECC, a collaborative transmission
control system, where the server updates its sending rate based
on the feedback from the tunnel server, enabling the efficient
coordination of the sending behaviors of the server and the
tunnel server.

256 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Tunnel Server Server

Retransmission

Data
Forward

Network
Sampler

RMDT
Tunnel send queue

recv queue

Track
Ack Info

Track ACK Info

Network
Info Frame

E2E
QUIC

Connection

Pacing Rate
Updater

E2E
Packet

Network
Feedback Parser

Tunnel RTT
Sending Rate

Retransmission Rate

Tunnel
QLen

Client

Lost Packets

QLen
Feedback

Tunnel Client

QUIC

UDP

HTTP

QUIC

Network
Info

Frame HTTP

QUIC

UDP

Pacer

Smoothed
Rate

Network
Info Frame

app data tunnel packet lost tunnel packet e2e packet network info frame in tunnel packet network info frame in e2e packet

App

Tunnel

App Server

Downstream

Upstream

Figure 5: The overview of TECC

4.1 Overview

First, we present an overview of TECC as shown in Figure 5.
TECC is based primarily on the RMDT mode and includes
three components: the client, the tunnel server, and the server:

Client: Client application modules are mainly responsible
for sending and receiving E2E connection data packets. This
application uses the QUIC protocol, and the generated QUIC
packets will be sent to the tunnel module for encapsulation
preparation for entering the tunnel connection. Conversely,
QUIC packets received from the tunnel connection will also
be sent to the application module. The tunnel module will pass
the collected tunnel network info frames to the application
module, which will then encapsulate the frame into a QUIC
network info frame and pass it to the E2E server application
module.

Tunnel Server: The tunnel server mainly employs RMDT.
There are three main modules in the tunnel server as shown in
Figure 5. The data forward module is responsible for forward-
ing E2E packets to the client and the server. The retransmis-
sion module detects whether the tunnel packets are lost and
retransmits those lost packets. The network sampler module
is placed in the tunnel server in order to collect important
information about tunnel networks and transmission status.
The module subsequently generates and transmits network
info frames containing the collected information to the client.

Server: The server is mainly responsible for maintaining
E2E application modules, and its sending behavior is con-
trolled by the feedback information of the tunnel network.
When receiving network feedback information from the client,
it parses different network information and uses it for sending
rate updates.

4.2 Collaborative transmission control

TECC is based on the RMDT framework. The tunnel server
uses the tunnel connection to provide feedback on detected
tunnel network information, as well as its own sending and

queuing status to the client. After receiving the feedback,
the client inserts it into the E2E QUIC frame. Finally, the
server updates its sending rate through network feedback of
the QUIC frame. TECC achieves two major goals: 1) By
quickly collecting bottleneck bandwidth in the tunnel server,
the server can respond promptly to dynamic network changes.
2) Through feedback on the retransmission and queue status in
the tunnel server, the server can decrease its rate for draining
queues, thus reducing queuing delay.

4.2.1 Inaccurate CC in the server

1234

𝑡!"#$
server

tunnel
server

client 2 3 4

1

𝑡%&'(

ack 2-4

1

𝑇)"*+%#!

1’ 1’

ack 1
ack 1

𝑡%&'

𝑇)"*+%#!(

Figure 6: Illustration of retransmission with Tunnel

ACK packets play a vital role in providing network state
measurements for server congestion control algorithms. How-
ever, due to the impact of RMDT, these packets can in-
evitably suffer from delays. As shown in Figure 6, assum-
ing the RTT from the client to the server is Ts, and the tun-
nel is Tt . The retransmission detection time in the server
and tunnel is TRetrans and T ′Retrans, respectively. At the time
tsend = 0, the server transmitted packets with sequence num-
bers 1-4, but the packet with sequence number 1 was lost
in the tunnel link. If the tunnel server does not retransmit,
the server receives the ACK packet with sequence number 1
at tack = TRetrans +Ts. However, if the tunnel server retrans-
mits the packet, the server receives the retransmitted ACK
packet at t ′ack = 1/2(Ts−Tt)+T ′Retrans +Tt +1/2(Ts−Tt) =
T ′Retrans + Ts. However, since the server does not have the
knowledge of whether the tunnel server has retransmitted the
lost packets, the delays calculated for the packet(s) at the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 257

time t ′ack is Delay(t ′ack) = t ′ack− tsend = T ′Retrans +Ts. And for
packets retransmitted by the server, the delay is Delay(tack) =
tack−TRetrans = Ts. In addition, the delay in the tunnel server
also increases extra response time. Therefore, these can result
in an incorrect evaluation of delay by the server, which affects
the accuracy of the server-side congestion control.

4.2.2 Tunnel feedback

To solve the problem of inaccurate CC, we propose a collab-
orative feedback control framework that offloads the server-
side CC to the tunnel server. This framework proactively
perceives network information in the tunnel link close to the
client and provides feedback to the server for sending rate
estimation.

There are two main factors that affect the server’s network
assessment in the Tunnel Server: retransmission and conges-
tion control. Retransmission causes the lost packets in the
tunnel server to be delayed at least Tt after the client responds
with an ACK packet, and the signal of packet loss is trans-
formed into a signal of delayed packet delay. Therefore, we
need to collect the proportion of retransmitted packets in Tun-
nel Server r(t) at time t and the min RTT Tt of the tunnel
server. Meanwhile, the delay in ACK perception will lead to a
slower response of the server to the changes in the tunnel net-
work. Therefore, transmitting the tunnel server’s sending rate
Tr(t) can more quickly perceive the probe of the tunnel net-
work. The congestion control of the tunnel server makes the
queuing situation more severe. Therefore, recording the length
of the queue within the connection in the Tunnel Server q(t)
can explicitly reduce the server’s rate and empty the queue.

Feedback cycle: To determine the optimal tunnel feedback
cycle τ, we may need to conduct experiments and evaluate the
trade-offs between the accuracy of feedback and the overhead
of sending feedback messages. The RTT between the client
and the tunnel server is Tt . In our extensive experiments, set-
ting τ to Tt yields high accuracy at a low cost, therefore we
use Tt as the cycle τ for tunnel feedback.

4.2.3 Server’s pacing rate updating rule

The server in the cooperative scheme employs a pacing-based
CC algorithm to regulate its sending rate. It makes sense to
use the pacing mechanism in the tunneling scenario to prevent
the accumulation of tunnel server queues caused by burst traf-
fic. Therefore, we use the server’s sending rate Sr(t) at time t
as an indicator to control the sending of packets. In addition
to the sending rate, window-based congestion control can also
be supported, with the send control window, W (t) = Sr(t) ·Ts,
limiting the total number of packets sent in an RTT. In order
to better understand, the relevant parameters are presented in
Table 1.

The congestion control mechanism on the server is trig-
gered when it receives a feedback packet containing tunnel

Parameter Explanation

Sr(t) server’s sending rate
Tr(t) tunnel server’s sending rate
U(t) proportional parameter, U(t) ∈ [0,1]
rai additive increase part

q(t) queue length of the tunnel server
θ the time needed for the server to empty its queue
δ proportional parameter, approximately 1

r(t) retransmission rate of the tunnel server
max_p f maximum penalty factor on the queue

Table 1: Explanation of parameters

information frame from the tunnel server. After parsing the
tunnel information frame, server obtains the latest sending
rate Tr(t) of the tunnel server. To ensure that the tunnel server
and the server send packets at the same rate, we assign the
sending rate Sr(t) of the server to Tr(t).

If Sr(t) > Tr(t) and the bottleneck link is the link be-
tween the client and the tunnel server, the queue at the tunnel
server will be built up rapidly and grow gradually. However,
if Sr(t) < Tr(t), the tunnel server is limited by the number
of packets sent by the server and may not have enough pack-
ets to utilize the available bandwidth. Therefore, to avoid
queue creation while maximizing the utilization of bottleneck
bandwidth, it is important to ensure that Sr(t) = Tr(t).

Additionally, in traditional congestion control algorithms,
the sending rate rapidly increases at the beginning of con-
nection establishment to occupy the bandwidth. However,
by congestion control in tunnel, servers pacing as Tr(t) can
avoid the data limitation at the early stage of connection es-
tablishment to probe the bandwidth at the tunnel server. The
server pacing rate is:

Sr(t) =U(t) ·Tr(t)+ rai (1)

Due to bandwidth changes or response delays, the tunnel will
inevitably build up a queue. To ensure a consistent rate, it
will be impossible to empty the queue completely. Therefore,
we use U(t) ∈ [0,1], which changes in real-time according to
the tunnel link, as shown in Equation 1. Additionally, we use
the multiplicative-increase/multiplicative-decrease (MIMD)
strategy to enable the server to quickly respond to tunnel
link changes, and add an additive increase (AI) part to en-
sure fairness, which decouples link control and fairness. This
approach is inspired by HPCC [21].

4.2.4 Penalty for building up queue

In a tunneling scenario, a tunnel server hosts multiple E2E
connections simultaneously, which makes it more prone to
queuing than traditional E2E connections. This is due to a
reduced bandwidth of the tunnel link. Therefore, a penalty
mechanism for queue establishment is needed in the tunneling
scenario to reduce the sending rate and empty the queue in

258 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

time. This ensures that the queue at the tunnel server remains
almost empty.

There are many traditional congestion control algorithms
that guarantee low queue length. For example, DCTCP uses
ECN markers to feedback on the queueing of the switch and
reduces the sending window by ECN feedback [22]. However,
these algorithms have limited transmission information and
their performance is limited by ECN thresholds, which makes
them inflexible. Additionally, HPCC algorithms can transmit
detailed intermediate link load information, which can detect
the network queueing situation promptly and accurately for
more precise regulation [21]. However, they have complex
software and hardware implementations, which makes them
difficult to deploy. In the tunneling scenario, the feedback
framework can easily feed back the network status and queu-
ing situation to the server for congestion control.

Server Tunnel Server Client

QLen
Feedback

e2e Packet

tunnel
hdrUnsent queue

Forward

Retransmission lost pkt

Figure 7: Queueing in the tunnel server

Estimate server pacing rate based on QLen:The tunnel
server is responsible for transmitting E2E packets from the
server to the client in the downlink, which can result in the
buildup of the queue when the server’s transmission rate Sr(t)
surpasses the rate of transmission Tr(t). As shown in Figure 7,
the minimum observed queue length (QLen) within a feed-
back cycle τ is denoted as q(t), representing the QLen at time
t.

The server calculates the pacing rate to drain the queue as:

Sr(t) = Tr(t)− q(t)
θ

(2)

The parameter θ represents the time needed for the server to
empty its queue and is useful in preventing abrupt changes to
the sender rate. Usually, θ is set as a fraction of Ts. However,
setting a small θ value can lead to inadequate bandwidth for
packet probing in the tunnel server, while a large θ value may
cause a delay in clearing the queue. To find an appropriate
value of θ, we conducted lots of experiments with various
values of θ. Eventually, we discovered that it achieves better
performance when θ is around 2/3Ts. Therefore, our research
set θ = 2/3Ts.

Alleviate congestion caused by retransmissions: Al-
though retransmission from the tunnel server might decrease
the time required for loss recovery, it can increase congestion
on the tunnel link. This occurs because retransmitted packets
are inserted into the queue of the tunnel server. Therefore,
when determining the appropriate queue length, it is important
to consider the retransmission of lost packets.

Sr(t) = Tr(t)− q(t)+δr(t)Tr(t)
θ

(3)

The retransmission rate of the tunnel server is represented
by r(t). We assume that r(t) remains constant throughout
the feedback delay Ts +dq, resulting in r(t +Ts +dq) = δr(t),
where δ is approximately 1 (e.g., δ= 0.95). At time t+Ts+dq,
the queue length is the sum of retransmitted packets δr(t) ·
Tr(t) and the queue length q(t) at time t.

From Equation 1 and Equation 3, we get

U(t) = 1− q(t)+δr(t)Tr(t)
θTr(t)

(4)

When there is a sudden drop in the bandwidth of the tunnel
link, the queue will experience significant growth. Therefore
U(t) may decrease to near 0. In order to prevent a rapid de-
crease in the server rate, We place constraints on the variable
U(t) to remain within a specific range:

U(t) = max{1− q(t)+δr(t)Tr(t)
θTr(t)

,1−max_p f} (5)

The symbol max_p f represents the maximum penalty factor
on the queue to prevent the server rate from dropping too fast.
In later experiments, we set max_p f to 1/2.

Queue length noise filtering: To mitigate real-time queue
length fluctuations caused by measurement errors, network
delays, and other transient factors, we implement a queue
length noise filtering procedure. Such fluctuations may cause
the server to overreact and lead to substantial changes in
transmission rates, subsequently impacting client application
performance. We employ two primary methods. Firstly, we
perform multiple detections at the tunnel server to obtain an
accurate measurement of the queue length, allowing us to
filter out invalid information. Secondly, we use Exponentially
Weighted Moving Average (EWMA) to filter the queue ra-
tio U(t) before updating the server’s transmission rate. This
strategy ensures a smoother, more gradual adjustment of the
server’s send rate while minimizing the impact on client ap-
plications.

4.2.5 Retransmission trigger on the server

There are primarily two ways to trigger packet retransmission
on the server: timeout retransmission and fast retransmission.
The fast retransmission includes time-based fast retransmis-
sion and packet-based fast retransmission. The first type is
triggered based on a time threshold, which we set as 9/8 SRTT.
The second type is triggered based on receiving subsequent
packet ACKs, with an initial threshold value of 3. Due to the
retransmissions of the tunnel server, the SRTT of the server
should increase. Thus, to suppress duplicated retransmissions,
we increase the time-based fast retransmission threshold of
the server by Tt . Regarding packet-based fast retransmission,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 259

since retransmission by the tunnel server exacerbates the out-
of-order client ACK packets, the threshold for reordering in-
creases gradually as spurious retransmission by the server is
triggered, leading to a decrease in the probability of server
retransmission. Therefore, the server’s rate of duplicated re-
transmission is relatively small and does not exceed 1% in
our experiments.

4.2.6 Fairness

In tunnel scenarios, multiple flow connections go through the
same tunnel server to different servers on the same bottleneck
link. Unlike traditional E2E congestion control algorithms,
the bottleneck link detection for tunnel connections relies
on the sending rate of the tunnel server, which is dependent
on the information of the tunnel connections. However, be-
cause the pacing rate update rule uses MIMD strategy, fair-
ness cannot be provided among multiple competing tunnel
flows. To achieve fairness among multiple flows, we add an
additive-increase (AI) term to the update of pacing rate, mak-
ing it a multiplicative-and-additive-increase/multiplicative-
decrease (MAIMD) scheme. This approach theoretically pro-
vides better fairness among multiple competing flows [23–26].
The additive-increase (AI) is set as follows:

rai =
MSS

Ts
(6)

Sr(t) = U(t) ·Tr(t)+ rai = U(t) ·Tr(t)+
MSS

Ts
(7)

The server increases the pacing rate every time it updates
by one Maximum Segment Size (MSS) in one server round-
trip time, which is a small increase designed to control rate
convergence while preventing network congestion. Achieving
equilibrium requires that multiple competing tunnel flows
pass through the same bottleneck link, resulting in the bottle-
neck bandwidth being constant between flows. Consequently,
the server’s sending rate is then modified based on the bottle-
neck bandwidth such that the sending rates of multiple flows
can achieve equilibrium. By reaching equilibrium, fairness is
maintained among competing flows.

The server’s sending rate depends on the detected band-
width of the tunnel server. Therefore, TECC’s RTT fairness
depends on the tunnel server’s original congestion control
algorithm (wherein we have used BBR [20]). Consequently,
the collaboration approach and BBR have varying throughput
rates under different tunnel RTT flows [27]. In tunnel sce-
narios, the original congestion control algorithm’s unfairness
can be mitigated even further. In §5.4, we demonstrate this
through experiments including multiple tunnel flows with
various RTTs.

Algorithm 1 Sender algorithm
Data: Tunnel Server Feedback: Tr(t), q(t), Tt
Result: Server: Sr(t)

1 function UpdateSenderRate():
2 e(t)← q(t)+δr(t)Tr(t)

θTr(t)

3 U(t)←max{1− e(t),1−max_p f}
4 U ← (1− ewma_weight) ·U + ewma_weight ·U(t)

5 Sr(t) =U ·Tr(t)+ MSS
Ts

6 return Sr(t)

The sender’s sending rate must consider not only the tunnel
server’s sending rate but also the current queue length of the
tunnel server and fairness. Ultimately, the complete logic of
the sender’s sending rate is illustrated in Algorithm 1.

4.3 Implementation
This section mainly discusses the methods we deployed
TECC as well as the optimizations we made for large-scale
deployment.

Parser
Packet

Forward Mapping
server-ip

server-port
tunnel

channel ID
client-ip

client-portIn

E2E Packet

Tunnel Packet

Add/Update
Mapping

UDP Forwarding

Lookup Mapping Add UDP Header

Lookup Mapping Encapsulate Packet

Tunnel Setup Signal tnl-ip/port payloadUDP

cli-ip/portUDP tnl hdr e2e pkt

Packet
Out

svr-ip/port

tnl-ip/port

Upstream

Downstream

tunnel channel ID server-ip/port

server-ip/port tunnel channel ID

Figure 8: Data forwarding logic in the tunnel server: forward-
ing downstream/upstream E2E packets

Forwarding in the tunnel server: The packet forward-
ing mechanism in the tunnel server both encapsulates and
decapsulates the E2E packets and directs them to their re-
spective destination addresses, as shown in Figure 8. When
a client establishes a tunnel connection to the tunnel server,
the server’s IP and port are forwarded to the tunnel server as
well. After receiving the tunnel setup signal, the tunnel server
generates a mapping of the tunnel channel ID that associates
the client’s IP and port and the server’s IP and port. As a re-
sult, the E2E packets from the corresponding tunnel channel
ID are decapsulated and transmitted to the UDP socket that is
bound to the same server IP and port. Correspondingly, the
E2E packets from the equivalent socket are encapsulated into
the corresponding datagram. Furthermore, the tunnel server
facilitates updating forwarded information. If clients require
rebinding the forwarding mapping, they can retransmit the

260 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tunnel setup signal on the relevant tunnel server.
Retransmission: Retransmission plays a crucial role in

enhancing client performance in tunnels. In the downstream
link, retransmission can significantly decrease packet loss re-
covery time in the tunnel connection. Furthermore, the tunnel
server can preemptively detect packet loss from the client
in the upstream link, enabling packet loss recovery ahead of
time on the client side. We follow the retransmission mech-
anism in RMDT to eliminate blocking and ensure improved
performance. Datagram retransmission requires the tunnel to
track the lower-layer QUIC datagram’s delivery status closely.
Selective retransmission of data packets is adopted with indi-
cations of packet loss. The experiment in this paper mainly
focused on download scenarios that necessitate retransmit-
ting all data packets in the tunnel connection. Nevertheless,
some time-sensitive video scenarios permit partial packet
loss. Therefore, leveraging the client’s application informa-
tion allows us to retransmit crucial or time-constrained frames
selectively, thereby enhancing bandwidth utilization.

Feedback implementation in the tunnel: The feedback
in TECC relies on the support of both the QUIC protocol
stack and the tunnel protocol stack. To accomplish this, we
have developed the TUNNEL_INFO frame and QUIC_INFO
frame in the tunnel protocol and the QUIC protocol. These
frames are used to transmit feedback information from the
tunnel server to the tunnel client and from the app client
to the app server. Because both the tunnel client and app
client are deployed on our APP, the tunnel client can directly
transfer feedback information to the app client when receiving
feedback information.

Tunnel server selection: It’s important to select the appro-
priate edge tunnel server since users can experience better
performance by selecting the edge tunnel server closest to
them. In our app, the client obtains real-time information
about the tunnel server from our own DNS. The tunnel client
needs to obtain tunnel information, including the protocol ver-
sion and the tunnel server information from our DNS first. It
then establishes a tunnel connection to complete the transmis-
sion of the E2E connection through the tunnel packets. Our
DNS owns the information of all tunnel servers and selects
the tunnel servers that are close to the user and have sufficient
resources.

Load balancing: Load balancing (LB) in the tunnel server
is essential because the tunnel server has to handle a large
number of tunnel requests and forward massive E2E connec-
tion packets. In practical deployments, a bidirectional LB
strategy is required, which includes packets from the tunnel
client and the server. To achieve this, we use multiple work-
ers with NGINX. Due to the address migration in QUIC,
the QUIC CID is considered instead of traditional network
five-tuples [28]. Since "tunnel connection CID" and "E2E con-
nection CID" don’t follow the same generation rules, it can be
challenging to balance the packets to the same worker. There-
fore, during actual deployment, the CIDs in tunnel QUIC

connections and E2E QUIC connections follow the same con-
sistency encoding rules. This allows the same client’s tunnel
connection and E2E QUIC connection packets to be routed
to the same worker.

5 Evaluation

In this section, we present the evaluation of the TECC, which
consists of two parts: online evaluation and simulated envi-
ronment evaluation.

Online evaluation: In this part, we collected anonymous
data from mobile users who upgraded our app with "QUIC
Tunnel". To validate the improvement of TECC compared to
the MST, MDT, and RMDT, we conducted a series of large-
scale A/B experiments. The user scale of the experiment
exceeds ten million. The experimental results show that the
TECC significantly reduces completion time.

Evaluation in emulated networks: The Mahimahi-based
emulation environment was established to evaluate the perfor-
mance of the QUIC Tunnel. The test environment comprises
three principal containers: a client running HTTP/3 and the
tunnel stack, a tunnel server running the tunnel stack, and a
server running HTTP/3. Mahimahi emulates the links from
the client to the tunnel and from the tunnel to the server. We
presume that the link from the client to the tunnel is the bottle-
neck link, so all test cases mainly involve client requests for a
specific file. This download scenario is widely used in several
applications, such as web browsing and video downloading.

5.1 Experiment setup

0 10 20 30
Time/s

0

20

40

60

Ba
nd

wi
dt
h/
M
bp

s

(a) Cellular Home

0 10 20 30
Time/s

0

20

40

60

Ba
nd

wi
dt
h/
M
bp

s

(b) Wi-Fi Home

Figure 9: Bandwidth variation of different traces

Baseline: In the non-tunnel solution, the tunnel server acts
as an intermediate forwarding node based on iptables, for-
warding packets between the client and the server. MDT and
RMDT come from vanilla MASQUE and are detailed in Sec
2. We also compared the forwarding mode (MFT) suggested
by Apple to proxy QUIC in MASQUE similar to non-tunnel
methods [29]. Since the performance of the non-tunnel solu-
tion is similar to MFT, we will refer to both as MFT later. In
addition, the RTT between the tunnel server and the server is
set to 100ms.

Traces: We used five real-world mobile network traces,
four from cellular and one from Wi-Fi, namely: cellu-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 261

10K 100K 1M 10M 30M
File Size

8
16
32
64

FC
T(

s)
Average

MFT
MDT

RMDT
TECC

10K 100K 1M 10M 30M
File Size

8
16
32
64

FC
T(

s)

99th percentile
MFT
MDT

RMDT
TECC

Figure 10: FCT of different solutions under various flow sizes

0 10 20 30 40 50 60
Delay

29

30

31

32

33

FC
T(
s)

Average
MFT
MDT

RMDT
TECC

0 10 20 30 40 50 60
Delay

30
33
36
39
42
45
48
51
54

FC
T(

s)

99th percentile
MFT
MDT

RMDT
TECC

Figure 11: FCT of different solutions under various delays

2 4 6 8 10 15
Loss Rate (%)

29
30
31
32
33
34
35
36

FC
T(

s)

Average
MFT
MDT

RMDT
TECC

2 4 6 8 10 15
Loss Rate (%)

30
36
42
48
54
60
66
72

FC
T(

s)

99th percentile
MFT
MDT

RMDT
TECC

Figure 12: FCT of different solutions under various loss rates

C1 C2 C3 C4 W1
Trace

0
3
6
9
12
15
18
21
24

FC
T(
s)

Average
MFT
MDT

RMDT
TECC

C1 C2 C3 C4 W1
Trace

0
6

12
18
24
30
36
42
48

FC
T(

s)

99th percentile
MFT
MDT

RMDT
TECC

Figure 13: FCT of different solutions in mobile networks

lar_driving (C1), cellular_outdoor (C2), cellular_home (C3),
cellular_subway (C4), wifi_office (W1). Among them, the
detailed bandwidth information for C3 and W1 is shown in
Figure 9. We also measured the performance at stable band-
width, the bandwidth was set to 10Mbps.

5.2 End-to-end performance

Flow size: Tunnel is an effective way to reduce the flow com-
pletion time, particularly for short flows. We run the request
for different size files from the server on 10Mbps bandwidth,
the result shown in Figure 10. The tunnel solutions, including
RMDT, and TECC, outperform non-tunneling MFT methods
in the case of short flows (flow length less than 10M). The
performance of MDT is similar to that of MFT. For short
flows, packet loss delays can seriously reduce the overall
flow completion time, while the tunnel’s early retransmission
mechanism can effectively reduce the packet loss recovery
time and improve overall performance. As the flow length
increases, the delay of a small number of lost packets has less
impact on the overall flow completion time, so the benefit of
the tunneling mechanism is relatively reduced. In TECC, the
end-tunnel cooperative scheme outperforms RMDT. RMDT
solves the HoL blocking problem by reducing the latency
of blocking but leads to low bandwidth utilization due to a
mismatch of the sending rate and bandwidth.

Client-Tunnel delay: The benefits of the tunnel vary with
the change of Client-Tunnel delay and lower delay results in
higher benefits. In our experiment, we transmitted thousands
of 30M files with various delays on a 10Mbps network, and
the results are presented in Figure 11. As the delay increases,
the benefits provided by the tunnel gradually decrease. Com-
pared to MDT, RMDT performs better and still has over 2%
optimizations even at 50ms. However, due to rate mismatch,
its performance declines when compared to MFT at higher de-
lays. TECC is significantly optimized when compared to the
others, and it still maintains good optimization effects even
at 60ms. These findings indicate that the TECC continues

to deliver certain optimization effects even in mobile edge
networks with high RTT.

Loss rate in Client-Tunnel link: The benefits provided
by the tunnel increase as the loss rate increases, especially
in tail optimization. We conducted experiments involving the
transmission of thousands of 30M files with varying loss rates
on a 10Mbps network, and the results are depicted in Figure
12. When the packet loss rate is low, the additional overhead
of the tunnel results in lower performance compared to MFT.
However, as the packet loss rate increases to over 5%, the
FCT of MDT and MFT are similar. Simultaneously, RMDT
and TECC display superior performance compared to MFT.
At the 99th percentile, when the packet loss rate exceeds 10%,
TECC can reduce FCT by over 21.7%. These findings suggest
that in mobile edge networks with a high loss rate, TECC can
provide significant throughput enhancements.

Mobile networks: TECC exhibits strong optimization
effects in mobile networks, achieving an average reduction of
over 15% at the 99th percentile. To evaluate the performance
of the tunnel in mobile networks with dynamic bandwidth
fluctuations, we conducted tests on a large number of 30MB
files under various mobile network traces. A comprehensive
introduction to the trace can be found in the appendix. The
result is shown in Figure 13. In terms of both average FCT
and 99th percentile FCT, TECC outperforms MFT and other
tunnel solutions across different network traces. In some cases,
the average FCT of TECC was reduced by over 30%, and the
99th percentile saw a reduction of more than 53%. Although
RMDT has limitations, they generally perform better than
MFT in mobile network environments. This evidence suggests
that TECC can perform well in different mobile network
scenarios.

5.3 Tunnel overhead

Compared to not using the tunnel, the tunnel incurs additional
overhead, primarily involving the setup delay in connection
establishment and the extra packet overhead of packet encap-

262 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 10 20 30 40 50 60
Delay

0
25
50
75
100
125
150
175
200
225

FC
T(
m
s)

Average
MFT TECC

(a) Setup Delay

100K 1M 10M
File Size

3

4

5

E
xt

ra
 b

yt
es

 th
an

 M
FT

 (%
)

TECC

(b) Extra Tunnel Header

Figure 14: Tunnel overhead in networks without random
losses

0 50 100 150 200 250
Time (s)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (M

bp
s) flow 0

flow 1
flow 2

flow 3
flow 4

(a) TECC w/o AI

0 50 100 150 200 250
Time (s)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (M

bp
s) flow 0

flow 1
flow 2

flow 3
flow 4

(b) TECC with AI

Figure 15: Fairness among competing tunnel flows

sulation. Consequently, we respectively tested the overhead
of the tunnel under different client-tunnel delays and different
file request sizes, the result shown in Figure 14.

Setup delay: The setup delay of the tunnel is higher, but
overall it does not exceed 2%. Owing to the processing over-
head of the tunnel protocol stack and the delay in establishing
the tunnel connection, the setup delay is slightly elevated. As
the delay fluctuates, the increase in setup delay time remains
relatively constant, suggesting that the setup delay does not
exhibit significant changes with increasing delay.

Extra packet overhead: The tunnel incurs additional
packet overhead, which overall does not exceed 4% in long
flow. Due to the tunnel packet encapsulation in the QUIC data-
gram, TECC adds a datagram header, QUIC header, and other
QUIC frame overhead compared to UDP. With the increase
of data flow, the relative proportion of data packet overhead
gradually decreases, from only 5% in the 100K to 3% when
it reaches 10M.

5.4 Fairness

MFT (BBR) TECC (BBR)

Different Server Delay 0.8039 0.9916
Different Client Delay 0.6759 0.8620

Table 2: Jain’s Fairness Index among different RTT flows

Flows with the same RTT: First, we demonstrate that the
TECC can converge to fair bandwidth allocation for flows
with the same RTT upon arrival and departure. We first start
a client-to-server flow through a tunnel server, with a fixed

mean p95 p99 p999

MST 2.7% 1.9% 6.0% 17.5%
TECC 3.9% 4.5% 13.3% 36.0%

Table 3: Improvements of MST and TECC

10Mbps bandwidth in the tunnel link. Then, we incrementally
add a flow from a different client accessing a different server
through the same tunnel server. Finally, we start tearing down
flows one by one. As shown in Figure 15, without additive in-
crease, the MIMD strategy may exhibit throughput jitter upon
flow arrival, as flows in the startup phase of BBR [20] initially
preempt the bandwidth, leading to a rapid increase in through-
put for newly arrived flows. By adding an additive increase,
the competition flow can converge more smoothly, making it
less likely for existing flows in the link to be preempted by
new flows, resulting in better fairness. By calculating Jain’s
fairness index, the value is greater than 0.99, ensuring fairness
for TECC when tunnel flows with the same RTT enter the
same tunnel link.

RTT unfairness: In tunnel scenarios, including the two
delays of client-to-tunnel server and tunnel server-to-server
links, we conducted fairness experiments on flows with dif-
ferent delays in each link. For different server delays, we
launched 8 different flows with server delays of 10-80 ms on
the same 10Mbps bandwidth tunnel link, with a fixed client-to-
tunnel delay of 10ms. Based on the average throughput of the
8 flows after convergence, we calculated the corresponding
Jain’s fairness index values. We conducted the same experi-
ment for different client delay, with 8 different client delays
of 10-80, and the results are shown in Table 2. We compared
the cooperative solution’s CC with MFT. Each experiment
was run for 10 rounds, and the average index value was taken
in the table. As the results show, compared to MFT, the CC of
the cooperative solution can achieve RTT fairness on differ-
ent server delay, because the tunnel detection by the server is
mainly completed through the tunnel node, and the bandwidth
allocation and detection frequency are related to the tunnel’s
RTT, thus achieving fairness in flows with different server de-
lays. Different client delays are related to the original tunnel
detection congestion control algorithm (BBR [20, 27]), but
because the original end-to-end control loop is shortened to
the client-to-tunnel, the impact of different RTTs on through-
put is reduced, thus mitigating the RTT unfairness problem
of the original congestion control algorithm.

5.5 Real-world A/B tests
We compared the completion times for RPC requests from
over 10 million users who use vanilla MASQUE and TECC.
To investigate the reduction of FCT with TECC, we deployed
three different types of tunnels (MST, MDT, and TECC) to
users in the same region. At the same time, the tunnel server

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 263

is deployed at the edge nodes closer to the selected users.
In order to measure the effectiveness of TECC, we used the
completion time of user requests with MDT as the baseline.
The recorded relative improvements of the MST and TECC
in reducing completion time are presented in Table 3.

MDT does not optimize the mobile edge network and is
equivalent to direct forwarding similar to MFT. Our results
demonstrate that, regardless of average or tail completion
times, both MST and TECC outperform MDT. Furthermore,
due to the HoL blocking problem and mismatch in CC actions
in MST, TECC achieved a 7.3% improvement in the 99th
percentile and an 18.5% improvement in the 999th percentile
compared to MST.

6 Discussion

Multiple E2E connections in tunnel: In real-world network,
it is common for a bottleneck link to transmit multiple net-
work connections simultaneously. These different connections
compete for bandwidth through their respective bandwidth
probing techniques. While using a tunnel to transport multi-
ple E2E connections, in addition to priority rules, the TECC
tunnel can dynamically control the bandwidth probing of each
E2E connection based on the type of each connection. This
can achieve better traffic fairness on mobile edge networks.

Congestion control in tunnel: The congestion control at
the tunnel server can prevent traffic congestion by restricting
the sending rate of packets. However, this may result in longer
delay of packets that have arrived at the tunnel server. In our
work, we only compared the results when using CC or not. It
is beneficial to design a CC framework which also considers
the sojourn time of packets at the tunnel server, to balance the
tradeoff between efficient congestion control and short delay.
This is left as our future work.

Potential enhancements for MASQUE: Presently, the
research efforts in the MASQUE working group primarily
concentrate on providing generic solutions to proxy differ-
ent protocols. However, employing these techniques maybe
degrade user performance. TECC is dedicated to address-
ing the performance issues of MASQUE’s generic solutions,
but achieving an effective universal standard necessitates the
support of MASQUE.

7 Related work

Last-mile performance optimization: For most applications
where remote servers are involved, optimizing the wireless
network close to the client is crucial for last-mile perfor-
mance. CDNs cache user-requested resources in edge servers
closer to user networks; however, the efficiency of CDNs
decreases for processing dynamic data [30–32]. An alterna-
tive method is Performance Enhancing Proxy (PEP), which
optimizes different feature links by breaking the E2E connec-

tion [33]. PEP mostly relies on TCP protocols to achieve per-
formance gains in mobile and satellite networks [34–36]; how-
ever, it is not applicable to the header encryption and ver-
ification mechanism of QUIC packets. Sidecar [37] pro-
posed an ACK-based protocol that enables the proxy to per-
ceive E2E encrypted data, but servers need to explicitly per-
ceive and communicate with the intermediate proxy, mak-
ing deployment more difficult and increasing communi-
cation overhead. TECC leverages QUIC tunnel’s own de-
tection and feedback mechanisms to mitigate PEP’s dam-
age to E2E connection semantics and ensure data pri-
vacy by sending feedback information to the sender in the di-
rection of the receiver.

Middlebox feedback for rate control: Feedback-based
middleware has gained widespread application in optimiz-
ing server congestion control algorithms [21, 26, 38–40].
Zhuge [38] shortened the control loop by increasing the delay
of ACK packets in wireless Access Points. ABC [26] con-
trols server window size by explicitly marking "accelerate"
or "brake" signals based on router’s perception of network
conditions. HPCC [21] obtains accurate load information and
rate control via in-network telemetry (INT). However, these
congestion control protocols are mostly based on router or
switch information package condition detection of a network.
In a tunnel, the middle server can actively detect network con-
ditions and control packet transmission rate, thus providing
servers with more rate information.

8 Conclusion

In this paper, we present TECC to optimize the E2E perfor-
mance of the QUIC tunnel. Deployed at the tunnel server
which is closer to the client, TECC provides faster and more
precise network feedback to assist servers with a more ac-
curate estimation of the available bandwidth. In emulated
networks, TECC decreases flow completion time by 30% on
average and 53% at the 99th percentile. TECC also gains a re-
duction in RPC (Remote Procedure Call) request completion
time of 3.9% on average and 13.3% at the 99th percentile in
large-scale A/B tests.

Acknowledgements

We thank our shepherd Vaibhav Bajpai and the anonymous
reviewers for their constructive feedback. This work was sup-
ported in part by the National Key R&D Program of China
(2022YFB2901800), Natural Science Foundation of China
(U20A20180, 62072437), and Beijing Natural Science Foun-
dation (JQ20024).

264 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] General Data Protection Regulation (GDPR) – Official
Legal Text. https://gdpr-info.eu/.

[2] Apple Inc. iCloud Private Relay Overview.
https://www.apple.com/kr/icloud/docs/
iCloud_Private_Relay_Overview_Dec2021.pdf,
2021.

[3] Patrick Sattler, Juliane Aulbach, Johannes Zirngibl, and
Georg Carle. Towards a tectonic traffic shift? investi-
gating Apple’s new relay network. In Proceedings of
the 22nd ACM Internet Measurement Conference, IMC
’22, pages 449–457, New York, NY, USA, October 2022.
Association for Computing Machinery.

[4] Martino Trevisan, Idilio Drago, Paul Schmitt, and
Francesco Bronzino. Measuring the Performance
of iCloud Private Relay. In Anna Brunstrom, Marcel Flo-
res, and Marco Fiore, editors, Passive and Active Mea-
surement, Lecture Notes in Computer Science, pages
3–17, Cham, 2023. Springer Nature Switzerland.

[5] David Schinazi. Proxying UDP in HTTP. RFC 9298,
August 2022.

[6] Mirja Kühlewind, Matias Carlander-Reuterfelt, Marcus
Ihlar, and Magnus Westerlund. Evaluation of quic-based
masque proxying. In Proceedings of the 2021 Work-
shop on Evolution, Performance and Interoperability of
QUIC, pages 29–34, 2021.

[7] Furong Yang, Yanmei Liu, and Yunfei Ma. A Con-
figurable Retransmission Extension for HTTP/3 Data-
grams. Internet-Draft draft-yang-masque-dgram-retrans-
01, Internet Engineering Task Force, March 2023. Work
in Progress.

[8] Zsolt Krämer, Mirja Kühlewind, Marcus Ihlar, and Attila
Mihály. Cooperative performance enhancement using
quic tunneling in 5g cellular networks. In Proceedings
of the Applied Networking Research Workshop, pages
49–51, 2021.

[9] Michele Luglio, Mattia Quadrini, Cesare Roseti,
Francesco Zampognaro, and Simon Pietro Romano. A
quic-based proxy architecture for an efficient hybrid
backhaul transport. In 2020 23rd Conference on Inno-
vation in Clouds, Internet and Networks and Workshops
(ICIN), pages 144–146. IEEE, 2020.

[10] A Abdelsalam, Michele Luglio, Mattia Quadrini, Cesare
Roseti, and Francesco Zampognaro. Quic-proxy based
architecture for satellite communication to enhance a 5g
scenario. In 2019 International Symposium on Networks,
Computers and Communications (ISNCC), pages 1–6.
IEEE, 2019.

[11] Mike Kosek, Hendrik L. Cech, Vaibhav Bajpai, and Jörg
Ott. Exploring proxying quic and http/3 for satellite
communication. 2022 IFIP Networking Conference
(IFIP Networking), pages 1–9, 2022.

[12] Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens, and
Hari Balakrishnan. Mahimahi: accurate {Record-and-
Replay} for {HTTP}. In 2015 USENIX Annual Tech-
nical Conference (USENIX ATC 15), pages 417–429,
2015.

[13] David Schinazi and Lucas Pardue. HTTP Datagrams
and the Capsule Protocol. RFC 9297, August 2022.

[14] Tommy Pauly, Eric Kinnear, and David Schinazi. An
Unreliable Datagram Extension to QUIC. RFC 9221,
March 2022.

[15] Patrick McManus. Bootstrapping WebSockets with
HTTP/2. RFC 8441, September 2018.

[16] Ryan Hamilton. Bootstrapping WebSockets with
HTTP/3. RFC 9220, June 2022.

[17] Roy T. Fielding, Mark Nottingham, and Julian Reschke.
HTTP Semantics. RFC 9110, June 2022.

[18] Tommy Pauly, David Schinazi, Alex Chernyakhovsky,
Mirja Kühlewind, and Magnus Westerlund. Proxying IP
in HTTP. Internet-Draft draft-ietf-masque-connect-ip-
13, Internet Engineering Task Force, April 2023. Work
in Progress.

[19] Tommy Pauly, Eric Rosenberg, and David Schinazi.
QUIC-Aware Proxying Using HTTP. Internet-Draft
draft-ietf-masque-quic-proxy-00, Internet Engineering
Task Force, August 2023. Work in Progress.

[20] Neal Cardwell, Yuchung Cheng, C Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. Bbr:
Congestion-based congestion control: Measuring bottle-
neck bandwidth and round-trip propagation time. Queue,
14(5):20–53, 2016.

[21] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, et al. Hpcc:
High precision congestion control. In Proceedings of the
ACM Special Interest Group on Data Communication,
pages 44–58. 2019.

[22] Mohammad Alizadeh, Albert Greenberg, Dave Maltz,
Jitu Padhye, Parveen Patel, Balaji Prabhakar, Sudipta
Sengupta, and Murari Sridharan. Dctcp: Efficient packet
transport for the commoditized data center. 2010.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 265

https://www.apple.com/kr/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/kr/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf

[23] Dah-Ming Chiu and Raj Jain. Analysis of the in-
crease and decrease algorithms for congestion avoid-
ance in computer networks. Comput. Netw. ISDN Syst.,
17(1):1–14, jun 1989.

[24] Aditya Akella, Srinivasan Seshan, Scott Shenker, and
Ion Stoica. Exploring congestion control. Technical
report, CARNEGIE-MELLON UNIV PITTSBURGH
PA SCHOOL OF COMPUTER SCIENCE, 2002.

[25] Gautam Kumar, Nandita Dukkipati, Keon Jang, Has-
san MG Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, et al. Swift: Delay is simple and effective for
congestion control in the datacenter. In Proceedings
of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications,
technologies, architectures, and protocols for computer
communication, pages 514–528, 2020.

[26] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Moham-
mad Alizadeh, and Hari Balakrishnan. Abc: A sim-
ple explicit congestion controller for wireless networks.
2020.

[27] Mario Hock, Roland Bless, and Martina Zitterbart. Ex-
perimental evaluation of bbr congestion control. In 2017
IEEE 25th international conference on network proto-
cols (ICNP), pages 1–10. IEEE, 2017.

[28] Martin Duke, Nick Banks, and Christian Huitema.
QUIC-LB: Generating Routable QUIC Connection IDs.
Internet-Draft draft-ietf-quic-load-balancers-16, Internet
Engineering Task Force, April 2023. Work in Progress.

[29] Tommy Pauly, Eric Rosenberg, and David Schinazi.
QUIC-Aware Proxying Using HTTP. Internet-Draft
draft-pauly-masque-quic-proxy-06, Internet Engineer-
ing Task Force, March 2023. Work in Progress.

[30] Volker Stocker, Georgios Smaragdakis, William Lehr,
and Steven Bauer. The growing complexity of con-
tent delivery networks: Challenges and implications
for the internet ecosystem. Telecommunications Pol-
icy, 41(10):1003–1016, 2017.

[31] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun.
The akamai network: a platform for high-performance
internet applications. ACM SIGOPS Operating Systems
Review, 44(3):2–19, 2010.

[32] Vytautas Valancius, Nikolaos Laoutaris, Laurent Mas-
soulié, Christophe Diot, and Pablo Rodriguez. Greening
the internet with nano data centers. In Proceedings of the
5th international conference on Emerging networking
experiments and technologies, pages 37–48, 2009.

[33] Jim Griner, John Border, Markku Kojo, Zach D. Shelby,
and Gabriel Montenegro. Performance Enhancing Prox-
ies Intended to Mitigate Link-Related Degradations.
RFC 3135, June 2001.

[34] Carlo Caini, Rosario Firrincieli, and Daniele Lacamera.
Pepsal: a performance enhancing proxy for tcp satellite
connections. IEEE Aerospace and Electronic Systems
Magazine, 22(8):7–16, 2007.

[35] Ye Li, Liang Chen, Li Su, Kanglian Zhao, Jue Wang,
Yongjie Yang, and Ning Ge. Pepesc: A tcp performance
enhancing proxy for non-terrestrial networks. IEEE
Transactions on Mobile Computing, 2023.

[36] Xing Xu, Yurong Jiang, Tobias Flach, Ethan Katz-
Bassett, David Choffnes, and Ramesh Govindan. In-
vestigating transparent web proxies in cellular networks.
In Passive and Active Measurement: 16th International
Conference, PAM 2015, New York, NY, USA, March 19-
20, 2015, Proceedings 16, pages 262–276. Springer,
2015.

[37] Gina Yuan, David K Zhang, Matthew Sotoudeh, Michael
Welzl, and Keith Winstein. Sidecar: in-network perfor-
mance enhancements in the age of paranoid transport
protocols. In Proceedings of the 21st ACM Workshop
on Hot Topics in Networks, pages 221–227, 2022.

[38] Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Justine
Sherry, Hongqiang Harry Liu, and Mingwei Xu. Achiev-
ing consistent low latency for wireless real-time commu-
nications with the shortest control loop. In Proceedings
of the ACM SIGCOMM 2022 Conference, pages 193–
206, 2022.

[39] Dina Katabi, Mark Handley, and Charlie Rohrs. Conges-
tion control for high bandwidth-delay product networks.
In Proceedings of the 2002 conference on Applications,
technologies, architectures, and protocols for computer
communications, pages 89–102, 2002.

[40] C-H Tai, Jiang Zhu, and Nandita Dukkipati. Making
large scale deployment of rcp practical for real networks.
In IEEE INFOCOM 2008-The 27th Conference on Com-
puter Communications, pages 2180–2188. IEEE, 2008.

266 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

iStack: A General and Stateful Name-based Protocol Stack for Named Data
Networking

Tianlong Li† Tian Song‡, ∗ Yating Yang‡

†School of Computer Science and Technology
‡School of Cyberspace Science and Technology

Beijing Institute of Technology

Abstract
Named Data Networking (NDN) shifts the network from

host-centric to data-centric with a clean-slate design, in which

packet forwarding is based on names, and the data plane main-

tains per-packet state. Different forwarders have been imple-

mented to provide NDN capabilities for various scenarios,

however, there is a lack of a network stack that is integrated

with operating systems (OS) for general purpose. Designing a

stateful and entirely name-based protocol stack in OS kernel

remains a challenge due to three factors: (i) an in-kernel name

resolution architecture for packet demultiplexing is necessary,

(ii) an entirely name-based stack requires to be compatible

with the current address (MAC/IP/port)-based architecture in

OS kernel, and (iii) maintaining per-packet state introduces a

trade-off between performance and resource consumption.

In this paper, for the first time, we take NDN into OS ker-

nel by proposing iStack, an Information-Centric Networking

(ICN) protocol stack. The main innovations of iStack are

threefold. First, we propose a name resolution architecture

to support both network-layer forwarding and local packet

demultiplexing. Second, a two-layer face system is proposed

to provide abstraction of address-based network interfaces.

Third, we design socket-compatible interfaces to keep the

uniformity of current network stack in OS. Besides, we de-

sign compact forwarding data structures for fast packet pro-

cessing with low memory footprint. We have implemented

prototypes on multiple platforms. The evaluation results show

that iStack achieves 6.50 Gbps throughput, outperforming the

NDN-testbed forwarder by a factor of 16.25x, and reduces

46.08% forwarding latency for cached packets with its in-

kernel packet caching. iStack is not just another forwarder for

NDN, but a step forward for practical development of ICN.

1 Introduction

Named Data Networking (NDN) [1] has been regarded as a

leading Information-Centric Networking (ICN) design, which

∗Corresponding author: Tian Song (songtian@bit.edu.cn)

addresses data directly with hierarchical names rather than

hosts. Its novel architecture enables a number of valuable

features, including in-network caching [2, 3], securing data

directly [4, 5], mobility support [6, 7], and native multicast

support [8, 9]. Furthermore, a gateway for integrating NDN

into the Internet has been designed [10]. Many studies have

explored NDN’s advantages in diverse scenarios [11–14].

NDN Forwarding Daemon (NFD) has been implemented

and intended to be used as a general-purpose forwarder since

2014 [15, 16]. It is effective in supporting architectural re-

search and being used on the public NDN project testbed [17].

However, it is a user-space forwarder rather than an operating-

system resident. In comparison, in the following three ways,

an in-kernel network stack like TCP/IP gains additional bene-

fits for practical deployment with operating systems support.

First, a stack integrated into the operating system is de-

signed to work with the socket mechanism. It can provide

system-level network functionality and be shared by multiple

applications with varying purposes and requirements. Second,

an in-kernel stack runs as kernel threads, which gain system-

level security from the OS kernel protection. Typically, the

x86 architecture has 4 rings of protection, with the kernel run-

ning in ring 0 with the greatest privileges and user programs

running in ring 3. Because user-space programs cannot access

kernel-space memory, the in-kernel networking architecture

is naturally isolated and protected from applications. Third,

an integrated stack can evolve with operating systems for the

long term, providing a stable foundation for network commu-

nication. As operating systems are updated or new hardware

is introduced, an in-kernel network stack can adapt to these

changes seamlessly. Hence, it is worthwhile to take NDN, a

clean-slate networking architecture, into operating systems.

However, there are three challenges for designing an in-

kernel stack for NDN. First, name-based packet demultiplex-

ing requires a well-thought-out design. A general stack needs

to distinguish and deliver packets among local applications,

which is done by transport-layer ports in TCP/IP stack. Specif-

ically, an application creates a socket and binds it to a port.

The port number is carried in packets and identifies the appli-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 267

cation to the receiving end, whereas NDN is entirely based

on names. An in-kernel stack for NDN requires a name reso-

lution architecture for packet demultiplexing.

Second, an in-kernel NDN stack should be compatible with

the existing TCP/IP stack in OS for dual-stack usage. The

traditional network stack relies on address (MAC/IP/port)

based communication. In contrast, NDN has no endpoints or

host addresses. Therefore, an abstraction of network interfaces

to support network processing is necessary. NFD incorporates

a face mechanism intending to achieve this [16]. However, an

in-kernel stack needs to interact with both application sockets

and link-layer physical/virtual devices, presenting significant

differences from a user-level forwarder.

Third, a general-purpose network stack for NDN should bal-

ance its performance and resource consumption. Unlike IP’s

stateless data plane, NDN adopts a stateful forwarding model.

For the first time, a network stack requires large memory

for in-network caching and involves multiple table lookups,

which remains a challenge for an efficient stack design.

In order to address these challenges, we propose iStack, a

general and stateful name-based protocol stack in OS kernel

for NDN. The stack itself is native to OS kernel and compati-

ble with other in-kernel network protocol suites. Meanwhile,

iStack is an information-centric stack that is entirely based

on names and enables kernel-level NDN functionality. Our

major contributions are listed as follows:

First, we propose iStack, which for the first time, takes

NDN into OS kernel to support application hosts. iStack has

a fully name-based architecture. It adopts NDN forwarding

model and introduces a name resolution architecture for de-

multiplexing. Its architecture can support applications with

the native socket mechanism in OS.

Second, we design a two-layer face system as the network

interface abstraction, which maps both of high-layer socket

interfaces and low-layer network devices into logical FaceIDs.

Hence, iStack uses logical FaceIDs for network processing.

Third, we design high-speed forwarding data structures,

which efficiently maintain per-packet state and cache packets

directly in the kernel. Furthermore, we also implement a fast

two-level lock mechanism to ensure multi-threading safety

while leveraging parallel processing for higher performance.

Besides, we implemented iStack prototypes in two differ-

ent Linux kernel versions, four different Linux distributions

(Ubuntu, CentOS, Raspberry Pi OS Lite, and OpenWrt), and

four different platforms (x86 server, personal computer, Rasp-

berry Pi and edge router (MT7621AT)). Our evaluation results

show that iStack achieves 6.50 Gbps throughput, measured

with the standard size (1500 bytes) of Ethernet frames. Its

throughput outperforms the general NDN forwarder, NFD,

by a factor of 16.25x. Moreover, iStack takes in-network

caching into kernel space, reducing 46.08% forwarding la-

tency for cached packets. Unlike the previous forwarders,

iStack focuses on providing NDN functionality on end hosts

for applications rather than mainly supporting high-speed

routing/forwarding. Our prototypes demonstrate that iStack

is promising to advance ICN deployment.

The rest of this paper is organized as follows. Sec. 2 in-

troduces the background as well as the related work. Sec. 3

details the design and architecture of iStack. Sec. 4 describes

a suite of efficient extensions and miscellaneous considera-

tions for iStack. Sec. 5 presents the evaluation results of our

implemented prototypes and includes lessons learned. Sec.

6 finally concludes this paper and discusses our future work.

This work does not raise any ethical issues.

2 Background

2.1 Named Data Networking
NDN is one of the most important instances of ICN [1]. It

uses hierarchically structured names to address the content.

NDN uses ‘/’ to indicate the boundaries of name components.

For example, segment 2 of version 1 of a video provided

by Alice may have the name: /Alice/videos/DemoA.flv/1/2,

which contains three parts: where to forward it (/Alice), which

application to deliver it (/videos), and application-specific

information (/DemoA.flv/1/2). As NDN matters the content

rather than where it is from and caches Data in the network,

security is built into content itself [4]. It adopts a stateful

forwarding model that primarily consists of three structures:

Pending Interest Table (PIT), Forwarding Information Base

(FIB) and Content Store (CS).

In NDN, a consumer (client) requests content by sending a

packet with the content name, namely Interest, to the network.

Any node receiving it tries to find the corresponding Data
identified by that name in its CS. If it is found, the Data will

be returned. Otherwise, the node inserts this Interest into PIT

and then forwards it based on both the matching result from

FIB and the forwarding strategy. When the Interest finally

meets the corresponding Data at the producer (server) or a CS

on the Interest forwarding path(s), the Data is sent back in the

reversed path of the Interest and meanwhile removes those

records in PITs. In particular, different Interests with the same

name can be merged into a single PIT entry without redundant

forwarding. In this case, the merged PIT entry records all

Interests incoming interfaces. When the Data is back, it is

forwarded via multicast based on that PIT record. With this

design, NDN gains a number of benefits such as network-layer

request aggregating and native multicast support.

2.2 Related Work
In the last decade, NFD, the most important NDN forwarder,

has been designed and implemented for architectural research

[15]. Besides, several dedicated forwarders are proposed to

meet the requirements of different scenarios.

NFD is designed modularly and extensively to support

diverse NDN technology experimentation [15]. It is written

268 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: Comparison among TCP/IP stack, NDN user-space forwarders, and iStack from a high-level perspective

in C++ language and has a well-modular design. Although

it intends to be used for general purposes, NFD is a user-

space forwarder rather than an in-kernel stack. A user-space

forwarder must use an inter-process communication (IPC)

mechanism (specifically in NFD, Unix domain socket [16])

to communicate with local applications. It does not provide

system-level support for applications.

NDN-RIOT is proposed as a lightweight implementation

for RIOT-OS [18]. RIOT is a micro-kernel operating system

for resource-limited IoT devices. It does not support virtual

memory and separate of user and kernel space, which is com-

mon in modern general OS. Hence, although NDN-RIOT

integrates the core NDN forwarding logic into the RIOT-OS

kernel and demonstrates the feasibility of bringing NDN’s

data-centric communication and security model to constrained

IoT platforms, it is a dedicated solution for particular scenar-

ios rather than a general forwarder.

For further supporting embedded/constrained environ-

ments, a low-overhead forwarder, NDN-Lite is carried out

[19]. Unlike NFD, NDN-Lite simplifies the forwarder design

and is written in C language. However, NDN-Lite has to in-

tegrate with the thread of a NDN application and can only

support a single application simultaneously. This is suitable

for low-end platforms but meanwhile limits its generality.

In order to achieve high-speed NDN forwarding, NDN-

DPDK is proposed [20] and reaches a peak forwarding rate of

1.84 MPPS1 by leveraging the fast user-space packet process-

ing framework Data Plane Development Kit (DPDK) [21]. For

paralleling, NDN-DPDK dispatches the incoming Interests to

the private sharded data structures of threads by hashing their

name prefixes. For dispatching retrieved Data to the correct

1In form of throughput, it achieves 22 Gbps with 1500 Bytes standard

Ethernet frame and 108 Gbps with 8000 Bytes jumbo frames.

thread, this work proposes PIT token, a small hop-by-hop

header field added to each packet. Due to its high perfor-

mance, NDN-DPDK may be suitable for throughput-sensitive

cases such as backbone routers and data centers. However,

the DPDK-based solution limits the generality of it.

MW-NFD is proposed to provide a high-performance for-

warder without DPDK support [22]. It splits the forwarding

pipeline into multiple threads and follows the packet dispatch-

ing method of NDN-DPDK. Its polling-based design has a

100% CPU use rate, which is not suitable for general purposes.

The forwarders discussed above either achieve high perfor-

mance but are unsuitable for general purpose or vice versa.

Given the opportunity that it lacks a more efficient NDN for-

warder for edge, YaNFD is proposed [23]. YaNFD is a multi-

threaded alternative to existing software packet forwarders for

the NDN architecture. The performance of it is higher than

that of NFD and lower than that of MW-NFD, while it keeps

a reasonable resource usage for generality. Nevertheless, it

is written in Go language as a user-space forwarder, which

suffers from the garbage collection overhead.

From the practical usage perspective, the genuine requests

and content are finally from and to applications running in OS.

Hence, a forwarder enabling NDN packet forwarding may

be suitable for supporting architectural research purposes,

whereas a network stack integrated with OS kernel is still

required to provide system-level supporting for real applica-

tions. This is also our motivation for proposing iStack. Fig. 1

illustrates the comparison among TCP/IP stack, NDN user-

space forwarders, and iStack from a high-level perspective.

2.3 Network Stack in OS Kernel
Modern operating systems implement network protocols from

the link layer to the transport layer. They also implement

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 269

a version of Berkeley socket as application programming

interfaces (API). Different layers in a network stack have their

own abstractions. Taking the Linux kernel network stack for

example, in its link layer, NICs and their drivers are abstracted

as net_device(s), bound with their hardware MAC addresses.

In the network layer, address_family is used to specify the

network stack suites, such as AF_INET and AF_INET6 for

IPv4 and IPv6, respectively. As the transport layer provides

end-to-end services for endpoints of network communication,

it is integrated with the network socket. A socket created by

an application has two parts: socket as an abstraction in user

space for the application and sock as the in-kernel network

representation. The transport-layer functionalities are inte-

grated with the sock and specified by sock_type. For example

in IP stack, SOCK_STREAM and SOCK_DGRAM represent

for TCP and UDP, respectively. Hence, the network layer is

shared in a host, whereas the transport layer is isolated by

different applications with their created sockets separately.

Notably, a non-port-based raw type socket allows applica-

tions to directly access network/link-layer packets. It catches

all packets and shifts the responsibility of (de)multiplexing

from the kernel-space network stack to the user-space for-

warders/applications. Yet a general-purpose in-kernel network

stack requires suitable (de)multiplexing models.

As presented in Fig. 1, the current network stack is address-

based: packets go through a process of filtering by network-

layer addresses, which are then distinguished by transport-

layer ports before finally being delivered to their intended

sockets of applications. In contrast, NDN takes all function-

alities into name prefixes and there is no port. Therefore, an

in-kernel network stack for NDN requires a name resolution

architecture for network-layer forwarding and local packet

demultiplexing. The current NDN forwarder-based solutions

use IPC mechanisms for applications, leaving system-level

support for applications as an open issue. iStack is designed

to address this and takes NDN into OS kernel.

3 iStack Design and Architecture

3.1 Design Overview
As an in-kernel network stack, iStack operates between the

applications sockets and the link-layer devices. As illustrated

in Fig. 2(a), iStack primarily consists of three parts: a name

resolution architecture, a two-layer face system, and socket-

compatible interfaces for applications and configuration.

The name resolution architecture enables packet demulti-

plexing for local applications with two packet paths as shown

in Fig 2(b). For supporting name-based Interests demultiplex-

ing, it introduces a Binding Prefix Table (BPT) which records

the relationship between application sockets and their prefixes.

iStack separates application binding prefixes from registering

routable prefixes to the network.

In order to integrate the name resolution architecture with

(a) iStack architecture

(b) Two paths of name resolution

Figure 2: iStack architecture and name resolution

OS kernel compatibly, iStack involves a two-layer face sys-

tem, which abstracts upper layer handles and lower layer com-

munication channels as general interfaces. It separates the

upper and lower layer due to the fact that different layers treat

semantics of names differently.

iStack provides interfaces based on socket mechanism. Ap-

plications can use network sockets to communicate with iS-

tack, following a practice similar to TCP/IP. The only differ-

ence is that in TCP/IP, a socket needs to bind an <address,
port> pair, whereas in entirely name-based iStack, there are

no addresses or ports. Instead, an iStack socket binds a local

faceID to represent where packets are from. A provider-side

application socket also needs to bind a prefix to notify iStack

270 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

where Interests should be delivered to. iStack configuration

is isolated from the common network socket communication

for system security consideration. Specifically in the Linux

kernel, it is through Netlink socket with superuser privilege.

3.2 Name Resolution Architecture
In iStack, name resolution utilizes NDN-semantic names,

which carry the information of forwarding and demultiplexing.

In this paper, we use the term routable prefix to represent a

prefix that can be forwarded to, and the term application-
specific prefix to represent an extension of the routable prefix

used for distinguishing applications. For example with the

name: /Alice/videos/DemoA.flv/1/2, its routable prefix and

application-specific prefix could be /Alice and /Alice/videos,

respectively. According to the two types of prefixes, the packet

processing path is divided into network-layer forwarding path
and local delivering path as shown in Fig. 2(b).

For the network-layer packet forwarding, iStack follows

the basic design of NDN. Interests are pending in PIT and for-

warded based on FIB and forwarding strategies. Data packets

are forwarded along the reverse path of the pending Interests.

The main difference is the serving scope of FIB. In previ-

ous design of NDN forwarders like NFD, a local application

registers the content prefixes with its identification into FIB,

hence the forwarder can deliver the corresponding Interests to

it. In contrast, FIB in iStack serves for the network layer only,

which means it only records routable prefixes rather than a

vast number of application-specific prefixes.

FIB in iStack can only be updated by (i) routing protocols

running in kernel threads and (ii) user-space configuration

tools. The former one updates FIB with routing information

learned from the network and the later one is used by supe-

rusers to register routable prefixes of providers on this host.

The network layer only determines whether Interests should

be delivered to this host based on routable prefixes in FIB

and hands over these Interests to BPT. FIB is agnostic to

application-specific prefixes and local packet distinguishing.

The local part of name resolution is situated above the

network layer and provides local packet distinguishing func-

tionality. It maintains BPT, which records the mapping be-

tween application sockets and application-specific prefixes.

Indicated by its name, an application registers its application-

specific prefix through socket API bind.

There are two rules for applications to bind their prefixes.

First, in BPT, any prefix must not be identical to or be a proper

prefix2 of another prefix. Otherwise one application may hi-

jack the Interests intended for other applications. Second, an

application-specific prefix should be an extending string of a

routable prefix that has been pre-registered in FIB. Otherwise,

the application may never receive any Interests as the network

layer does not pass Interests with that prefix to local host.

2In this paper, we use proper prefix to indicate a component-level prefix

of a name, such as /A/B or /A for /A/B/file

The local name resolution provides flexibility for applications

by using finer-grained and more complex prefixes without

messing up FIB. As needed, an application can create mul-

tiple sockets and bind them to different application-specific

prefixes which share a common routable prefix.

3.3 Two-Layer Face System

The face system is designed to (i) hide details of various

interfaces and (ii) ensure thread safety against the system

events such as interface adding/removing. It provides Faces,

the generalization of different network interfaces.

From the layered networking perspective, different layers

have different targets and communicating scopes. In iStack,

for packets travelling down to the lower layer, i.e. the link

layer, the semantics of name/prefix is not concerned. Whereas

for packets travelling up to the upper layer like applications,

the name/prefix semantics may still be concerned. Due to this

difference, iStack contains a two-layer face system to provide

the generalization of interfaces from different layers.

3.3.1 Face Upper Layer

The face upper layer targets to abstract the local handles upon

the network layer, which commonly are application sockets.

An upper face consists of a unique FaceID, a handler, and a

prefix. The handler is composed of an entity pointer, which

points to the upper entity represented by the face, and a func-

tion entry pointer which points to the handler function of

that upper layer entity. If an entity wants to receive Interests,

then the prefix field of its face has to be specified. Otherwise

this field is null. In the network layer, PIT and FIB only use

FaceIDs to represent network interfaces. Face upper layer

maintains a face upper table to map local handles to faces.

In the network part of iStack name resolution, incoming

Interests are filtered by FIB, and those intended for local ap-

plications are passed to BPT. In iStack network layer, there

are only FaceIDs for interfaces and entrances of BPT is also

encapsulated as faces. Face upper layer provides a perma-

nent face, Facelocal , as the local entrance. Routable prefixes

that can be served by the host are registered to FIB with

FaceIDlocal . When provider-side applications bind their sock-

ets with application-specific prefixes, the prefixes are mapped

to their faces and then the faces are put into BPT. When an

Interest comes, it is firstly passed to Facelocal based on FIB.

Then the handler of Facelocal queries BPT and returns the

corresponding face. Finally the handler of the returned face

delivers the Interest to the application socket.

3.3.2 Face Lower Layer

The face lower layer targets to abstract the link layer commu-

nication channels. It uses a face lower table to map link-layer

interfaces to faces. A lower face consists of a unique FaceID,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 271

a device, and a field for transmitting information. The device

can indicate either physical hardware devices like ethernet

adapters or virtual devices such as loopback device. Specif-

ically in implementation, all link-layer devices for network

accessing in the Linux kernel are abstracted as net_device and

hence, the device of a lower face is a pointer of that.

A single device is not enough to transmit link-layer frames.

A link-layer device may be connected with different remote

devices at different time or even with multiple remote devices

at the same time, like the wireless NIC of a WLAN access

point. Besides, the link-layer transmission includes unicast,

multicast and broadcast. Only broadcast needs no remote

information for transmitting while the other two needs the

destination address(es) of the remote host(s) or group(s). Thus,

the field for transmitting information is used for recoding

remote host information which typically is a destination MAC

address. Obviously, a lower face represents for the channel

between a local device and a remote host/group.

3.3.3 Thread-Safe Face Operations

The principle of face system is that the control path should not

expose details to the data path and the data path processing

should not block the control path operations. To achieve these,

the face structure has a field of user count and thread-safe

function pairs are provided: face_register and face_release
for the control path; face_hold and face_put for the data path.

In the control path, face_register is used to create a new

face and bind a network interface to it. Meanwhile, the user

count of it is set to 1. For interface removing operations, such

as closing a socket or taking a network adapter offline, the

control path uses non-blocking function face_release. The

function decreases the user count value of the face and its

further behaviour depends on the result. If the decreased user

count is 0, which means the face is not in use, then face_free is

called to free the face and recycle its FaceID. In the other case,

a positive user count means that the face is still referenced by

at least one thread, then face_orphan is called. The function

face_orphan releases everything in the face except the shell

of it and meanwhile, it set the FaceID to 0 and the handler to

face_output_blackhole, which drops any packets passed to it.

The release of the face shell is delayed to the last data path

calling face_put. Hence, the data path threads do not block

the control path operations such as closing a socket.

In the data path, when a FaceID is transformed to the face,

face_hold is called to increase the user count of it. When

the packet processing is finished, face_put is called to de-

crease its user count. Specially, if the decreased user count is

0, which means the real interface of the face has been dead,

then face_free is called to free the shell of this face. The

function pair face_hold and face_put only involves an integer

increasing/decreasing operation in common cases and a mem-

ory free operation in the case of interfaces removing. Thus the

performance influence from control path events is minimized.

3.4 Socket-Compatible Interfaces
3.4.1 Forwarding Configuration

As shown in Fig. 2(a), configuration of iStack is isolated from

common network socket communication. iStack utilizes a

specific communication mechanism between kernel and user

space supported by operating systems to provide control func-

tionalities such as configuring FIB and exporting information.

Specifically in the Linux kernel, iStack exploits two mech-

anisms: the procfs and the Netlink socket. Procfs is a virtual

filesystem which allows the Linux kernel to export internal

information to user space. Netlink socket is more powerful

than procfs. Procfs is able to read/write kernel exported data

as operating files, while the Netlink socket communicates

with kernel using socket programming model and moreover,

the later one can initiate a transmission rather than only wait-

ing for responses to user-space requests. Hence, iStack uses

procfs to export its running status and statistical information in

form of files as convenient interfaces. Meanwhile, we develop

some utility tools with the Netlink socket for configuration

requirements such as FIB configuration and CS management.

3.4.2 Application View

The common communication between applications and iS-

tack is entirely based on the network socket mechanism. An

application uses iStack via creating a socket with the address

family AF_NNET. Then, the application can send/receive

NDN packets with the socket. We provide three socket types

to support different application requirements (detailed in Sec.

4.3.3). Note that a socket of iStack can support both consumer-

side and provider-side applications at the same time. Just for

ease of understanding, we introduce them separately.

For a consumer-side application, it can send out Interest
and receive the corresponding Data once the socket is cre-

ated. When send is called for the first time, the face system

allocates a FaceID and automatically bind the socket to it.

Then the Interest goes to the network layer through that face

and is inserted into PIT and then forwarded based on FIB and

forwarding strategies. When the corresponding Data is re-

trieved, it matches the record in PIT and then is passed to the

socket via the FaceID. The Data is put in the socket receiving

queue and waits until the application fetches it with recv, or

in other cases, the application is blocked with recv until the

Data queues in the socket and triggers a software interrupt

request to retrieve it. Note that an application can send out a

batch of Interests and receive the Data packets one by one.

The order can be implied by the segment numbers contained

in names. The socket owns the face until it is closed.

For a provider-side application, it needs one more step to

receive Interests. That is, using bind to bind a prefix. The face

system allocates a FaceID and maps the binding prefix to it in

BPT. When an intended Interest arrives, it is inserted into PIT

and then finds out that the outgoing interface recorded in FIB

272 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

is FaceIDlocal . After matching the application-specific prefix

in BPT, the FaceID of that application’s socket is returned and

the Interest is delivered to that socket. Finally the application

receives the Interest and sends out the corresponding Data
which will go along the reverse path of that Interest.

iStack adopts the sockets API rather than the established

NDN API. Consequently, it is presently incompatible with

existing NDN applications. However, rectifying this disparity

through API code modification is a straightforward process.

Our forthcoming endeavor involves streamlining the transi-

tion of existing NDN applications to iStack. To achieve this,

we will provide a user-space library that seamlessly translates

the current NDN API into iStack socket API. Furthermore, we

are proactively engaged in the development of an information-

centric programming model, complemented by a dedicated

set of primitives and a socket-based API tailored for the ad-

vancement of future NDN applications.

4 Efficient Design and Extension for iStack

4.1 Compact Forwarding Data Structures
4.1.1 Design Rationale

In NDN design, each Interest/Data carries a variable-length

hierarchical name. As PIT maintains per-packet state and

CS caches content in the network, it takes much more mem-

ory than traditional stateless network stacks. An in-kernel

general-purpose network stack should take the trade-off be-

tween performance and resource consumption. In order to

reduce the kernel-space memory consumption while keeping

fast packet processing, we design compact forwarding data

structures for PIT and CS in iStack.

The compact design ingeniously utilizes the fact that the

life time of a PIT/CS entry is the same as that of an Inter-
est/Data packet. In iStack, each PIT entry keeps at least one

Interest packet pending for the potential retransmission in

its lifetime and obviously, the entry name is carried by that

Interest. For CS, it caches Data packets in kernel directly and

each of its entry name is carried by the corresponding Data.

4.1.2 Compact Hash-Based Data Structures

PIT needs to support both exact name matching (ENM) and

longest prefix matching (LPM). Hash table is naturally fit

for ENM. LPM in PIT is for the situation where an Interest
is marked with CanBePrefix flag. Such an Interest can be

satisfied by the Data with the same name prefix. As PIT only

records Interest, LPM needs no modification of the hash table,

but requires a particular lookup procedure for incoming Data.

The compact PIT structure is shown in Fig. 3(a), which

is a separated chaining hash table and takes Interest names

as keys. For an incoming Interest whose name has not been

recorded before, PIT creates an entry and pends the packet

directly. The entry uses a pointer to reference the name string

(a) Compact hash-based data structure for PIT

(b) Compact hash-based data structure for CS

Figure 3: Compact forwarding data structures

in the payload of that Interest and an unsigned integer to

record the name length. Note that an iStack PIT entry keeps

one and only one Interest. In case that more Interests with the

same name arrive before the corresponding Data is retrieved,

PIT records the incoming FaceIDs of them in the existing

PIT entry and updates the entry life time. Then the duplicate

Interests are dropped.

When a Data packet arrives, PIT performs LPM in two

steps. First, it queries the full Data name to find the matched

entry and forwards it to the incoming faces. Then, each proper

prefix of the Data name are queried for thoseCanBePrefix-flag

marked entries. Note that forwarding Data to multiple faces
is done by the kernel network function skb_clone which in-

creases the packet reference count and only copies the sk_buff
structure for management. Hence, iStack multicast has no

additional overhead for duplicate Data packets.

CS needs to support both of ENM and all sub-name match-

ing (ASNM) [24], which means all the proper prefixes of a

Data name need to be indexable. CS caches Data packets in

kernel directly and the compact structure of CS is shown in

Fig. 3(b). In order to extend supporting from ENM to ASNM,

CS creates a series of entries for a cached Data packet. Each

of the entries uses a pointer to reference the name string in

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 273

Figure 4: Fast two-level locks structure

the payload of that Data and an unsigned integer to record

the length of the whole name or one of its proper prefixes.

With this design, CS in iStack supports NDN name dis-

covery: an Interest with CanBePrefix flag can be satisfied by

cached Data with an extended name. Moreover, entries in CS

may be evicted based on the replacement policies. In order to

evict the series of entries of a cached Data packet efficiently,

the entry of CS is designed with another dual pointer field

which forms a doubly linked list associating the series of

entries for a Data packet. With this, evicting a cached Data
packet from CS is simple: find the entries with the specific

name and then remove all the entries in its doubly linked list

and finally release the referenced packet.

The compact hash-based data structures in iStack take zero

memory copy for names and prefixes and have no packet du-

plication, which reduce the memory consumption. Moreover,

as both of the data structures and packets are in kernel space,

there is also no memory copy and context switch overhead

between kernel and user space.

4.2 Fast Locks for Multi-Threading Safety
There are forwarders which choose sharded data structures to

improve multi-thread performance, whereas keeping private

instance of PIT/CS per thread may break down NDN name

discovery. The proposed solution is introducing PIT token
which is the hash value of the entire name or a fixed-length pre-

fix of Interest name and is carried hop-by-hop (NDN-DPDK,

YaNFD [20, 23]). As a general-purpose network stack, iS-

tack avoids involving dependency on under-layer protocols.

Hence, the three key NDN data structures in iStack are shared

by parallel kernel threads. In order to ensure multi-threading

safety while achieving high performance, we carry out fast

two-level locks structure which reduces locking overhead.

As illustrated in Fig. 4, there are two-level locks for iS-

tack compact hash-based data structures, the table locks and

the entry locks. Instead of competing for a single lock, each

bucket of the separate chaining hash table is equipped with an

individual table lock. Since parallel operations are naturally

distributed to different chains by hashing, the blocking over-

head is limited to the concurrent operations on entries with a

same name and with hash collisions.

As name lookup without table modification takes a signifi-

cant proportion of name-based forwarding processing, iStack

adopts readers-writers locks as the table locks [25]. The criti-

cal area of reader locks is a traversal of a hash table chain and

writer locks protects for entry insertion and removal. To mini-

mize the impact on performance, the critical area only covers

direct operations on the corresponding hash table chain while

other processing including entry initialization and memory

free are done before and after the critical area, respectively.

The entry lock is used for safely updating the state of an

entry such as adding incoming faces to an existing PIT entry.

Due to most of the entry related operations are mutually ex-

clusive and likely to be finished in very short period, iStack

takes spinlocks as the entry locks.

The fast two-level locks structure reduces performance

degradation of parallel processing while ensures multi-

threading safety with little cost of memory consumption. iS-

tack only equips per-bucket table locks for three tables: PIT,

CS, and FIB. Given the assumption that setting those table

heads length to 65536, the extra memory for table locks is 1.5

MB in total. The entry locks are equipped on all table entries.

Nevertheless, PIT entries are temporarily pending in the table.

For CS and FIB, the size of entry lock is negligible compared

with that of cached Data and stored routable prefix strings.

4.3 Miscellaneous Design
4.3.1 In-Network Caching

As iStack is an in-kernel stack, it naturally takes CS into

the kernel. For generality, two issues should be considered,

namely the kernel-space memory consumption for storage

and the capacity of CS. For the former one, iStack provides

two parameters for management. They are maximum number

of entries and maximum size. The two limitations take effect

simultaneously. The maximum size is to limit the kernel-

space memory consumption. As CS in iStack creates entries

for each proper prefix of a Data packet, the maximum number

of entries is used to prevent from a large amount of entries

for Data with an extremely long name overwhelming CS and

decreasing its performance. For the latter, we design hierar-

chical structure for CS. The in-kernel part is used for Data
with the most popular prefixes. The out-kernel part utilizes

hard disk space to provide vast size of storage. We implement

in-kernel CS with configurable parameters in our prototypes

and leave the hierarchical CS implementation as future work.

4.3.2 Loadable Kernel Module

There are two ways to implement iStack in the Linux kernel:

i) add iStack codes to the kernel source tree and recompile

the kernel or ii) add iStack as kernel loadable module to the

running kernel. As an in-developing novel network stack,

the main part of iStack is implemented as a loadable kernel

module (LKM). But some socket-like APIs remain to be

274 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

completed. With the current socket APIs, the parameter of

bind is limited to 128 bytes long, which limits the maximum

binding prefix length. Besides, with Berkeley socket API, the

programming model of iStack includes merely send and recv.

We also design information-centric programming model and

implement new socket-like APIs for iStack to be published.

Practically, there is a static size array for the system call table

and adding new system calls needs to modify the architecture-

specific table and recompile the kernel.

In principle, NICs provide receive side scaling (RSS) on

hardware for dispatching incoming packets to different CPU

cores. Nevertheless, the typical filter used in RSS is a 4-tuple

hash over IP addresses and TCP ports of a packet. Based on

our observations from implementing, most of the commer-

cial off-the-shelf NICs do not perform RSS for packets with

unknown ether types and they just send all packets with un-

known type to a single RX queue. Hence, we implement a

software-based dispatcher to enable multi-threading packet

processing in iStack with two dispatching strategies: dispatch-

ing based on hashing entire names and dispatching randomly.

4.3.3 Reliability and Security

Although the raw type of socket provides maximum flexibil-

ity for applications, a general-purpose network stack should

provide interfaces with different levels of granularity in

terms of reliability. Hence, besides the basic socket type

SOCK_RAW and SOCK_DGRAM, we also implement the

type SOCK_SEQPACKET in iStack. SOCK_RAW only pro-

vides a basic interface for applications to send and receive

packets. SOCK_DGRAM provides packet encapsulating and

decapsulating functions with which applications can focus on

names and content rather than manually deal with packet for-

mat. SOCK_SEQPACKET provides more reliability. In the

sock part of this type of socket, we implement slice-window

flow control, retransmission, and name-based reordering. To

save space, more details are not elaborated here.

It is worth noting that iStack represents an in-kernel design

and prototype for NDN. Its primary value lies in its robust

framework. It is designed to offer fundamental NDN func-

tionalities and facilitate integration of additional features and

strategies, rather than presenting a finalized production-ready

solution. Given that ICN/NDN fundamentally transforms the

network communication paradigm from host-dependent to

host-independent, and introduces state into the network, the

required transport abstractions may differ significantly from

the established end-to-end protocols in IP realm. Ongoing

research has been dedicated to transport-layer services [26],

congestion control [27–29], and etc. Furthermore, in NDN,

each Data carries a unique name, resulting in distinct transport

service requirements compared to traditional models. Con-

sequently, iStack currently incorporates essential transport

functionalities for application development, rather than fully

piggy-back established end-to-end transport abstractions like

TCP/QUIC. We will keep the evolution of iStack.

NDN secures data directly by requiring data producers to

cryptographically sign every Data packet [1]. There are also

literatures investigating security mechanisms for different

scenarios [30–32]. Based on the basic Interest/Data commu-

nication, users can retrieve both content and the corresponding

keys and perform verifications. We leave the security opera-

tions to user space and plan to carry out function libraries for

the convenience of applications in the future.

5 Evaluation and Discussion

5.1 Implementation and Experimentation

We have implemented iStack in the Linux kernel 4.14 and

4.19 and tested on PCs, servers, Raspberry Pies (4B+), and

edge routers. We also implemented several applications over

iStack, including file transfer, streaming video player, and

etc. Our prior test shows that iStack can achieve 1 Gbps line

speed on laptops and low-end devices like Raspberry Pies.

We built a pure NDN local area network (LAN) with iStack

and applications including file transfer and video player ran

in the LAN successfully. In this paper, our evaluation focus

on two aspects: (i) network performance benchmark and (ii)

application-level performance for real edge.

For the network performance measurement, we ran a

provider-side file transfer application on a server equipped

with dual 6 cores CPUs (hyper to 24 threads in total) and con-

nected it to a packet (Interest) generator. As the hyper thread

of a core is abstracted as a processor in the Linux kernel, we

interchangeably use the terms core and thread in the follow-

ing paper. We evaluated the maximum network throughput

with different working threads and compared the delay of

cached Data response between in-kernel and out-kernel CS.

To evaluate application-level performance for real edge, we

deployed multiple consumer-side file transfer applications to

request different files from the server. All applications use the

same format of content names and an example is /Net-A/prdc-
01/0/PubFiles/ABCD/1 which consists of three distinct parts:

1) A prefix of the provider (/Net-A/prdc-01).

2) A provider application defined prefix part (/0/PubFiles).

3) A part of application-specific information including a

segment number (/ABCD/1, /ABCD/2).

As the consumer applications run with socket APIs in user

space, this scenario can obtain "goodput", application-layer

throughput, and monitor CPU usage and memory consump-

tion as the applications are running. For fair comparison with

existing forwarders, the throughput and the forwarding rate in

the evaluation only accounts for Data packets. Hence the total

packet forwarding rate (including both Interest and Data) is

at least twice3 of the results in this paper.

3There is potential of Interest packet loss and retransmission which makes

the total packet forwarding rate may higher than twice of the reported results.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 275

1 2 4 8 12 16 20 24
0

1

2

3

4

5

6

7
Th
ro
ug
hp
ut
(G
bp
s)

Working cores

Separated-bps
Shared-bps
Separated-pps
Shared-pps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pa
ck
et
Fo
rw
ar
di
ng
R
at
e
(M
pp
s)

Figure 5: Throughput with different processor affinity settings

Table 1: Delay comparison between in/out-kernel CS

CS size
Avg Delay for Cache Hit (us)

Reduction RatioIn-Kernel Out-Kernel

10 MB 3.85 7.14 46.08%

100 MB 4.17 7.69 45.77%

1 GB 4.55 8.33 45.38%

5.2 Throughput and Delay

As described in Sec. 4.3, the commercial off-the-shelf NICs

do not perform RSS for the packets with unknown ether types.

All these packets are passed to a single RX queue and handled

by one thread. Hence, in our current implementation, there is

only one thread running the dispatcher which distributes all

incoming packets to different CPU cores. In the experiments,

we used a random dispatching strategy, in which packets are

dispatched to different kernel threads randomly and evenly.

Fig. 5 shows that both of the throughput and the Data
forwarding rate grow almost linearly up to 8 or 12 forwarding

cores. After that, the growing slows down and finally achieves

6.50 and 6.13 Gbps with 24 cores. We also evaluated the

performance influence of whether using a separated core for

the dispatcher. Note in Fig. 5 that the separated-* represents

that the dispatcher never dispatches packets to the core it is

running on. The core (separated or shared) for dispatcher is

also counted in the number of working cores, hence the result

of separated-* starts from two.

In Fig. 5, we observe that the performance of shared core is

higher than that of the separated core with up to 4 cores. This

is because the software based dispatcher has not achieved its

performance bottleneck yet and separating a core for it means

decreasing the number of cores for packet forwarding and

finally leads to performance decreasing. However, when there

are more than 8 cores, the forwarding throughput is relatively

sufficient and the single core dispatcher becomes the bottle-

neck. In this case, sharing a core decreases the throughput of

the dispatcher and finally limits the maximum throughput of

iStack. Hence, with a separated core for the dispatcher, the

200 400 600 800 1000 1200 1453
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

G
oo
dp
ut
(G
bp
s)

Content size

Goodput (exclude names)
Goodput (include names)
Data forwarding rate

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55

Pa
ck
et
Fo
rw
ar
di
ng
R
at
e
(M
pp
s)

Figure 6: Goodput with different content-payload sizes

input bottleneck comes later (12 instead of 4 cores as shown

in Fig. 5) and the maximum throughput of iStack achieves

6.50 Gbps. Given that the number of cores for packet ingress

depends on how many NICs are installed on the system and

the hardware RSS of the NICs, we plan to eliminate the dis-

patching bottleneck in the future work.

In order to evaluate the overhead reduction of taking CS

into kernel space, we also implemented an out-kernel version

which communicates with iStack through Netlink sockets. CS

in user space needs to copy packet buffer from/to kernel space

via system calls for Data insertion/retrieval. It has signifi-

cant overhead comparing with the in-kernel version. Table.

1 presents the forwarding delay with capacity varying from

10 K to 1M. The forwarding delay increases slightly with

capacity as larger capacity means higher workload. Table. 1

also shows that the in-kernel CS of iStack reduces over 45%

forwarding delay for the case of cache hit.

5.3 Application Performance

Fig. 6 shows that varying content size, the goodput grows

up linearly from 762.4 Mbps to 5.07 Gbps. Meanwhile the

Data forwarding rate keeps at about 0.45 Mpps, which proves

that the payload length has limited impact on iStack forward-

ing rate but is important for application goodput. Due to the

applications imports additional overhead, the measured maxi-

mum Data forwarding rate (0.48 Mpps) is slightly lower than

that measured with the Interest generator, which achieves

0.53 Mpps. Another observation is that comparing with an

iStack router, an edge host running applications with iStack

can achieve 90.5% of the maximum performance.

In Fig. 6, the differences between the results of excluding

and including names are similar with different content size,

whereas it is worth noting that with the content size growing,

the proportion of the difference decreases. Hence, if the name

does not carry application information, using larger content

size and shorter name is more efficient.

276 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.4 CPU Usage and Memory Consumption

As iStack targets to deploy on edge hosts and routers for

general purpose, we evaluated CPU usage and memory con-

sumption of it. The result is measured from the entire system

instead of some specific applications. Hence it can better indi-

cate the resource overhead of an end host. In this measurement

CS was disabled on end hosts to avoid its influence on mem-

ory consumption. All consumer applications continuously ran

for 30 times after a warm-up running.

The result is illustrated in Fig. 7. Note that the two hosts

were equipped with different cores of CPU and hence the

celling of CPU usage in Fig. 7(a) and Fig. 7(b) are 800% and

2400%, respectively. The CPU usage of consumer applica-

tions is relatively high, because the consumer-side applica-

tions used sockets with the type SOCK_SEQPACKET, each

of which ran a TCP-like sliding window algorithm and took

care of retransmission based on timeout. The average goodput

in this measurement is about 4.97 Gbps. Fig. 7(b) shows that

such scenario is an easy task for providers as most of the time

the CPU usage is under 200% (maximum 343.3%).

We measured initial system memory consumption before

running consumer/provider applications and the result in

Fig. 7 is the real-time measurement minus the initial value.

Fig. 7(a) shows that the total memory consumption with 15

consumer applications concurrently running is less than 50

MBytes. The memory consumption of both the server and the

host vary slightly, which indicates that excepting CS, iStack

has little memory consumption and is suitable for edge usage.

5.5 Discussion

Our evaluations show that iStack is a promising in-kernel

network stack for general purpose. iStack achieves up to

6.50 Gbps throughput and meanwhile keeps low CPU usage

and memory consumption. A comparison among iStack and

other NDN forwarders is shown in Table 2. NDN-DPDK has

the highest throughput. Nevertheless, DPDK-based solutions

have limitation of hardware depending and polling-based I/O

is not suitable for edge usages, especially for low-end devices.

Among all event-driven forwarders, iStack outperforms in

terms of the throughput/goodput with a factor of 6.26x-16.25x.

Besides, our in-kernel CS eliminates the overhead of memory

copy between kernel space and user space for caching and

retrieving Data, respectively. The evaluation result shows that

in-kernel caching reduces upto 46.08% forwarding latency in

case of cache hit. It is worth noting that currently iStack has

not been fully optimized and the single-thread dispatcher also

limits its multi-threading performance.

iStack is not another NDN forwarder but an ICN protocol

stack. The other implementations in Table 2 are all user-space

forwarders. In contrast, iStack is designed and implemented

integrated with OS kernel and our prototypes can be compiled

with the source code of Linux kernel. iStack provides system-

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

C
PU

U
sa
ge
(M
ax
.8
00
%
)

Time (s)

CPU usage
Memory consumption

0

10

20

30

40

50

60

M
em
or
y
C
on
su
m
pt
io
n
(M
B)

(a) Consumers (on PC equipped with 8 cores i7-7700)

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

450

C
PU

U
sa
ge
(M
ax
.2
40
0%
)

Time (s)

CPU usage
Memory consumption

0

500

1000

1500

2000

2500

3000

M
em
or
y
C
on
su
m
pt
io
n
(M
B)

(b) Provider (on server equipped with 24 cores Xeon E5-2620)

Figure 7: CPU usage and memory consumption

level NDN functionality supporting. Applications can access

the named network through OS network sockets directly.

5.6 Lessons Learned
Our experiences constructing iStack have revealed important

insights into putting NDN into OS kernel. First, we have dis-

covered that from a system perspective, the namespace of

NDN should be carefully organized. Allowing applications to

register arbitrary prefixes into FIB results in unnecessary over-

head of the in-kernel network stack. Hence, iStack classifies

prefixes into routable ones and application-specific ones. In

the network layer of iStack, FIB only deals with routable pre-

fixes. Applications can binding more specific prefixes which

are handled by BPT. Hence, iStack decouples local demul-

tiplexing from network-layer routing and forwarding, while

keeping NDN name-based communication model.

Second, in contrast to IP’s stateless forwarding design,

NDN maintains per-packet state at the network layer. Crafting

a robust stateful network stack introduces additional complex-

ity. One challenge arises from the potential for network state

to create blockages with certain OS interfaces. Events such

as socket closed or network cable unplugged can occur while

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 277

Table 2: Comparison with other forwarders

Forwarder/Stack Type I/O Driven Programming Model Net. Throughput App. Goodput Language

NFD [33] App-level Event Specific API 0.4 Gbps N/A C++

NFD-Opt. [33] ditto ditto ditto 0.9 Gbps N/A ditto

YaNFD [23] App-level Event Specific API N/A 0.81 Gbps Go

MW-NFD [22] App-level Polling Specific API 4.26 Gbps N/A C++

NDN-DPDK [20] Bypass kernel Polling Specific API N/A 22 Gbps* C & Go

iStack In kernel Event Network socket 6.50 Gbps 5.07 Gbps C
* NDN-DPDK achieves 108 Gbps throughput with Jumbo frames (8000 B). For fairness, we list results that are based on standard Ethernet frames (1500 B).

corresponding Interests are still pending in PIT. iStack mit-

igates such potential blockages through its thread-safe face

system, elaborated in Section 3.3.3. Another consideration

is the need for judicious management of overhead. iStack

employs streamlined forwarding data structures and avoids

packet duplication to minimize the overhead with stateful net-

work processing. Additionally, iStack adopts an interruption-

based packet reception approach rather than a polling-based

one. Note that in cases of extremely high throughput demands,

such as those in data-center server environments, a polling

approach like DPDK might be a viable alternative. However,

such solutions often lead to elevated CPU usage even during

idle periods, potentially monopolizing resources required for

non-networking processes. Consequently, iStack ultimately

embraces an interruption-based approach.

Third, as NDN enables in-network caching, an in-kernel

network stack for it involves storage into the OS kernel. As

mentioned in Sec. 4.3.1, taking storage into kernel should

consider two issues: memory consumption and capacity. As a

packet certainly exists in the network stack before it is cached,

an in-kernel stack can directly cache Data packets in kernel-

space memory for fast response. However, consuming too

much memory for fast in-network caching hinders other tasks

running on the host. Hence, iStack carefully limits the in-

kernel memory usage for CS and utilizes external storage to

extend CS capacity. The Linux kernel disapproves operating

files directly and from our developing experience, there are

two promising methods to achieve this. One is building a user-

space CS and exchange packets with in-kernel stack through

socket interfaces. Another one is designing a new storage

mode for the rising in-network caching involved by NDN.

Network stacks in current OS is built to support the exist-

ing node-centric networking model, with the intrinsic notion

of socket-connection-interface mapping. An in-kernel stack

communicates with user-space applications through system

calls. Specifically for networking, there are socket-based sys-

tem calls. Although presently the socket API of iStack is able

to support essential NDN communication functionalities, it

is a send/receive programming model and lacks the aware of

symmetrical flow, the unique naming of each packet, and other

features included by NDN. Hence, designing an information-

centric programming model and the corresponding API for

NDN applications is an attractive research topic.

6 Conclusion and Future Work

This paper describes iStack, a general-purpose information-

centric network stack, taking NDN into OS kernel, for practi-

cal deployment and usage. Our work contains both intellectual

and practical contributions. On the intellectual side, iStack

shows how to integrate a stateful, entirely name-based proto-

col stack into OS kernel and be compatible with the socket

mechanism. On the practical side, iStack demonstrates itself

as a practical kernel-level protocol stack for NDN.

We implement iStack prototypes on different four kinds of

platforms from high performance servers to low-end devices.

Evaluation shows that iStack achieves 6.50 Gbps throughput

and meanwhile keeps reasonable CPU usage and memory

consumption, which indicates that iStack is sufficient for the

requirements of general usage and practical deployment.

To the best of our knowledge, iStack is the first in-kernel

stack for NDN and achieves both generality and high per-

formance. In terms of generality, iStack supports multiple

applications that have different purposes and requirements

with network socket mechanism implemented by operating

systems directly. In terms of performance, iStack outperforms

the NDN-testbed forwarder by a factor of 16.25x and even

faster than the polling-based MW-NFD by a factor of 1.52x.

Our future work includes the following aspects. First, we

also design a series of information-centric socket primitives

and the corresponding programming models for iStack to

be published. Second, we are working on porting iStack to

other platforms including Andriod and Windows. Third, with

further developing and extensive testing in more cases, we

will provide a well-polished version for community as well

as long term support and evolution in the near future4. We

believe that iStack is not just another forwarder for NDN, but

a step forward for the development of ICN.

Acknowledgments

This work was supported by the National Natural Science

Foundation of China under grant No. 92067203. We would

like to thank anonymous reviewers and our shepherd James

Mickens for thoughtful feedback.

4We provide long term support through the website: name-ip.cn

278 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van

Jacobson, KC Claffy, Patrick Crowley, Christos Pa-

padopoulos, Lan Wang, and Beichuan Zhang. Named

Data Networking. ACM SIGCOMM Computer Commu-
nication Review, 44(3):66–73, 2014.

[2] Yating Yang, Tian Song, and Beichuan Zhang. Open-

Cache: A lightweight regional cache collaboration ap-

proach in hierarchical-named ICN. Computer Commu-
nications, 144:89–99, 2019.

[3] Tian Pan, Xingchen Lin, Enge Song, Cheng Xu, Jiao

Zhang, Hao Li, Jianhui Lv, Tao Huang, Bin Liu,

and Beichuan Zhang. NB-Cache: Non-Blocking

In-Network Caching for High-Performance Content

Routers. IEEE/ACM Transactions on Networking,

29(5):1976–1989, 2021.

[4] Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry,

Spyridon Mastorakis, Yanbiao Li, Alexander Afanasyev,

and Lixia Zhang. An Overview of Security Support

in Named Data Networking. IEEE Communications
Magazine, 56(11):62–68, 2018.

[5] Tian Song, Yating Yang, and Tianlong Li. Rethinking

Caching Security of Information-Centric Networking:

A System Recovery Perspective. IEEE Communications
Magazine, 57(10):104–110, 2019.

[6] Yu Zhang, Hongli Zhang, and Lixia Zhang. Kite: A

Mobility Support Scheme for NDN. In Proceedings
of the 1st ACM Conference on Information-centric Net-
working, pages 179–180, 2014.

[7] Xavier Mwangi and Karen Sollins. MNDN: Scalable

Mobility Support in Named Data Networking. In Pro-
ceedings of the 5th ACM Conference on Information-
Centric Networking, pages 117–124, 2018.

[8] Peter Kietzmann, Cenk Gündoğan, Thomas C Schmidt,

Oliver Hahm, and Matthias Wählisch. The Need for

a Name to MAC Address Mapping in NDN: Towards

Quantifying the Resource Gain. In Proceedings of the
4th ACM Conference on Information-Centric Network-
ing, pages 36–42, 2017.

[9] Tianlong Li, Tian Song, Yating Yang, and Jike Yang.

iCast: Dynamic Information-Centric Cross-Layer Multi-

cast for Wireless Edge Network. In Proceedings of the
9th ACM Conference on Information-Centric Network-
ing, pages 137–147, 2022.

[10] Ran Zhu, Tianlong Li, and Tian Song. iGate: NDN

Gateway for Tunneling over IP World. In 2021 Interna-
tional Conference on Computer Communications and
Networks (ICCCN), pages 1–9. IEEE, 2021.

[11] Safdar Hussain Bouk, Syed Hassan Ahmed, Dongkyun

Kim, and Houbing Song. Named-Data-Networking-

Based ITS for Smart Cities. IEEE Communications
Magazine, 55(1):105–111, 2017.

[12] Yating Yang and Tian Song. Local Name Translation

for Succinct Communication Towards Named Data Net-

working of Things. IEEE Communications Letters,

22(12):2551–2554, 2018.

[13] Yating Yang, Tian Song, Weijia Yuan, and Jianping An.

Towards reliable and efficient data retrieving in ICN-

based satellite networks. Journal of Network and Com-
puter Applications, 179:102982, 2021.

[14] Chavoosh Ghasemi, Hamed Yousefi, and Beichuan

Zhang. Internet-Scale Video Streaming over NDN.

IEEE Network, 35(5):174–180, 2021.

[15] NFD: Named Data Networking Forwarding Dae-

mon, 2014. https://named-data.net/doc/NFD/
current.

[16] Alexander Afanasyev, Junxiao Shi, Beichuan Zhang,

Lixia Zhang, Ilya Moiseenko, Yingdi Yu, Wentao Shang,

Yi Huang, Jerald Paul Abraham, Steve DiBenedetto, et al.

NFD Developer’s Guide. Technical Report NDN-0021,
NDN, 2014.

[17] NDN Project. NDN Testbed, 2017. http://ndndemo.
arl.wustl.edu/.

[18] Wentao Shang, Alex Afanasyev, and Lixia Zhang. The

Design and Implementation of the NDN Protocol Stack

for RIOT-OS. In 2016 IEEE Globecom Workshops,

pages 1–6. IEEE, 2016.

[19] Zhiyi Zhang, Edward Lu, Yanbiao Li, Lixia Zhang,

Tianyuan Yu, Davide Pesavento, Junxiao Shi, and Lotfi

Benmohamed. NDNoT: A Framework for Named Data

Network of Things. In Proceedings of the 5th ACM
Conference on Information-Centric Networking, pages

200–201, 2018.

[20] Junxiao Shi, Davide Pesavento, and Lotfi Benmohamed.

NDN-DPDK: NDN Forwarding at 100 Gbps on Com-

modity Hardware. In Proceedings of the 7th ACM Con-
ference on Information-Centric Networking, pages 30–

40, 2020.

[21] DPDK Project. Data Plane Development Kit (DPDK),

2015. http://www.dpdk.org.

[22] Sung Hyuk Byun, Jongseok Lee, Dong Myung Sul, and

Namseok Ko. Multi-Worker NFD: an NFD-compatible

High-speed NDN Forwarder. In Proceedings of the 7th
ACM Conference on Information-Centric Networking,

pages 166–168, 2020.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 279

[23] Eric Newberry, Xinyu Ma, and Lixia Zhang. YaNFD:

Yet another Named Data Networking Forwarding Dae-

mon. In Proceedings of the 8th ACM Conference on
Information-Centric Networking, pages 30–41, 2021.

[24] Zhuo Li, Yaping Xu, Beichuan Zhang, Liu Yan, and

Kaihua Liu. Packet Forwarding in Named Data Net-

working Requirements and Survey of Solutions. IEEE
Communications Surveys & Tutorials, 21(2):1950–1987,

2018.

[25] Pierre-Jacques Courtois, Frans Heymans, and

David Lorge Parnas. Concurrent Control with "Read-

ers" and "Writers". Communications of the ACM,

14(10):667–668, 1971.

[26] Mauro Sardara, Luca Muscariello, and Alberto Com-

pagno. A Transport Layer and Socket API for (h)ICN:

Design, Implementation and Performance Analysis. In

Proceedings of the 5th ACM Conference on Information-
centric Networking, pages 137–147, 2018.

[27] Giovanna Carofiglio, Massimo Gallo, and Luca Mus-

cariello. Joint Hop-by-hop and Receiver-Driven In-

terest Control Protocol for Content-Centric Networks.

ACM SIGCOMM Computer Communication Review,

42(4):491–496, 2012.

[28] Milad Mahdian, Somaya Arianfar, Jim Gibson, and Dave

Oran. MIRCC: Multipath-aware ICN Rate-based Con-

gestion Control. In Proceedings of the 3rd ACM Confer-
ence on Information-Centric Networking, pages 1–10,

2016.

[29] Sichen Song and Lixia Zhang. Effective NDN Con-

gestion Control Based on Queue Size Feedback. In

Proceedings of the 9th ACM Conference on Information-
Centric Networking, pages 11–21, 2022.

[30] Yanbiao Li, Zhiyi Zhang, Xin Wang, Edward Lu, Dafang

Zhang, and Lixia Zhang. A Secure Sign-On Protocol

for Smart Homes over Named Data Networking. IEEE
Communications Magazine, 57(7):62–68, 2019.

[31] Tianyuan Yu, Hongcheng Xie, Siqi Liu, Xinyu Ma, Xi-

aohua Jia, and Lixia Zhang. CertRevoke: A Certificate

Revocation Framework for Named Data Networking. In

Proceedings of the 9th ACM Conference on Information-
Centric Networking, pages 80–90, 2022.

[32] Davide Pesavento, Junxiao Shi, Kerry McKay, and Lotfi

Benmohamed. PION: Password-based IoT Onboarding

Over Named Data Networking. In ICC 2022-IEEE
International Conference on Communications, pages

1070–1075. IEEE, 2022.

[33] Yaoqing Liu, Anthony Dowling, and Lauren Huie.

Benchmarking Network Performance in Named Data

Networking (NDN). In 2020 29th Wireless and Optical
Communications Conference, pages 1–6. IEEE, 2020.

280 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Cloudcast: High-Throughput, Cost-Aware Overlay Multicast in the Cloud

Sarah Wooders
UC Berkeley

Shu Liu
UC Berkeley

Paras Jain
Genmo AI

Xiangxi Mo
UC Berkeley

Joseph E. Gonzalez
UC Berkeley

Vincent Liu
University of Pennsylvania

Ion Stoica
UC Berkeley

Abstract
Bulk data replication across multiple cloud regions and
providers is essential for large organizations to support data
analytics, disaster recovery, and geo-distributed model serving.
However, data multicast in the cloud can be expensive due
to network egress costs and slow due to cloud network con-
straints. In this paper, we study the design of high-throughput,
cost-optimized overlay multicast for bulk cloud data replica-
tion that exploits trends in modern provider pricing models
along with techniques like ephemeral waypoints to minimize
cloud networking costs.

To that end, we design an optimization algorithm that uses
information about cloud network throughput and pricing to
identify cost-minimizing multicast replication trees under
user-given runtime budgets. Our open-source implementation,
Cloudcast, is used for cloud overlay multicast that supports
pluggable algorithms for determining the multicast tree struc-
ture. Our evaluations show that Cloudcast achieves 61.5%
cost reduction and 2.3× replication speedup compared to
both academic and commercial baselines (e.g., AWS multi-
region bucket) for multi-region replication.

1 Introduction

Increasingly, data in the cloud must be replicated to multiple
cloud providers and different regions within each provider.
For example, geo-distributed applications like model serving
require model weights or features computed in a single region
to be replicated to multiple geographic regions to reduce serv-
ing latency for users accros the globe [22,44,51]. Data sharing
between collaborating organizations using different providers
similarly requires replicating data to multiple locations. Fi-
nally, the growth of multi-cloud applications that leverage
resources from multiple providers is dependent on application
data being available across provider boundaries [13, 51, 52].

Of course, data replication and multicast are not new. Both
topics have been extensively studied to optimize throughput
and scalability in the context of IP networks, peer-to-peer over-
lays [12,14,19,22,33], and inter-DC networks [20,36,47,54].

Figure 1: Direct replication from a source region (purple)
to destination regions (blue) may traverse expensive or slow
links, which can be avoided via waypoint regions (yellow).

However, replication between cloud regions and providers
introduces first-order concerns beyond just throughput and
scalability. In particular, the monetary cost of the transfer
is a critical factor and one that (as we show later in this pa-
per) is poorly handled by existing techniques for optimizing
throughput [33, 36, 54]. While some existing works consider
the monetary cost for multicast, they either ignore the through-
out [24] or assume a capacity-based pricing model [35] which
is inconsistent with today’s cloud. In contrast to capacity-
based pricing, cloud providers charge per-GB network egress
fees for data transferred out of a given region to another re-
gion or cloud provider. Per-GB egress fees introduce a multi-
plicative term into the transfer cost—(egress price)×(amount
transferred)—making it significantly more difficult to opti-
mize throughput and cost.

Egress costs can vary by orders of magnitude depending
on the source and destination [42], as well as the capacity
of cross-region links. As a result, the structure of the multi-
cast replication tree (i.e., what data is replicated along which
paths) can dramatically affect the end-to-end throughput and
monetary cost of replication. As a concrete example, consider
replication from a GCP source region to six AWS regions
(Figure 1). Direct replication of the data between the source
and each destination region (shown in red arrows) would cost
$720 per TB. Instead, replicating to an AWS region with
the lowest cross-region egress fees once and multicasting

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 281

data from that AWS region to other regions (shown in dotted
green arrows) would reduce the price to $240 per TB. Further
modifying the multicast tree to utilize high-throughput links
and offload egress bandwidth from the source node can also
improve throughput.

In this work, we solve the problem of high-throughput,
cost-optimized cloud multicast in which we minimize the cost
of data replication while achieving a target replication time
(across all destinations) for bulk multicast replication. Cloud
multicast incurs costs from network egress fees and compute
resources needed to mediate the transfer. In addition, cloud
multicast must meet application Service Level Objectives
(SLO) for the replication time, such as providing freshness
guarantees on replicated data.

We design an optimizer to determine a multicast tree
structure given a user-specified source region, destination
regions, and target replication time. By providing varying
target replication times, our optimizer can generate a Pareto-
curve (shown in Figure 8) that improves replication cost and
throughput compared to prior approaches for cloud multi-
cast [23, 24]. We achieve this by leveraging techniques such
as striping, VM parallelism, and overlay networking, while
also accounting for the cloud providers’ network characteris-
tics, resource constraints, and per-GB network pricing model.

Designing this optimization is challenging for two main
reasons. First, the optimizer must account for path-specific
pricing models, resource constraints, and varying performance
across cloud providers. Existing techniques that formulate
the optimization problem in terms of bandwidth allocation
cannot be adapted to account for per-GB network pricing
without making the problem non-linear (described further in
Section 3). Second, the optimization search space is combi-
natorially large, as the optimizer must determine both the set
of overlay waypoint regions (regions which are neither the
source nor destination) as well as how data will be routed
along the overlay network. Unlike the traditional overlay set-
tings, the cloud offers significantly more flexibility in the num-
ber and the location of overlay nodes, as cloud VMs can dy-
namically be instantiated in specified cloud provider regions.
Furthermore, replicating subsets of data (i.e., stripes) via dif-
ferent paths is critical for achieving high-throughput [12]. We
introduce several approximations (e.g., pre-selecting the re-
gions and limiting path lengths) to reduce this search space
and enable the optimizer to run within seconds.

To run overlay multicast across clouds, we develop Cloud-
cast, a system for bulk data overlay multicast across GCP,
AWS, and Azure. Cloudcast has a centralized control plane
that supports pluggable algorithms for determining the num-
ber and location of overlay nodes and replication trees for
multiple segments of data. We implement our optimizer as
well as several baseline algorithms as part of Cloudcast’s con-
trol plane. We run system experiments to multicast data across
clouds and show that Cloudcast is able to achieve up to 62.4%
cost savings and 2.84× replication speedup depending on the

Figure 2: Egress fees between regions (in cents per GB).

control plane algorithm (Figure 10).
We run an end-to-end system evaluation comparing Cloud-

cast with BitTorrent [19] and AWS’s commercial offering for
multi-region bucket replication [50], which, like most cloud
data replication offerings, only supports replication into or
within that cloud. We find that Cloudcast achieves 7.7× repli-
cation speedups and 28.4% cost savings compared to BitTor-
rent (Figure 12). Compared to multi-region bucket replication,
we find that Cloudcast achieves up to 61.5% cost reduction
and 2.3× replication speedup (Figure 11).

To summarize, we make the following contributions:
1. We design an optimizer for minimizing replication cost

under replication time constraints.
2. We introduce several approximations to reduce the

search space for the optimizer, reducing the solver run-
time from hours to seconds.

3. We build Cloudcast, an open-source system for cloud
overlay multicast with pluggable data transfer policy.

2 Problem Setup

We frame the problem of cloud multicast in terms of construct-
ing an overlay network for replicating data, which involves
defining: (1) the set of overlay nodes (i.e., cloud VMs) and
(2) the paths between those nodes that will be included in a
multicast replication tree. Cloudcast eventually divides the
target data into multiple stripes (i.e., partitions), so concur-
rent replication trees may be used in a single transfer. Our
optimization objective is to minimize the monetary cost of
replication while also meeting a replication time constraint.

2.1 Egress Costs
A unique aspect of multicast in the cloud is the effect of
egress costs incurred for data transferred across cloud regions.
Cloud providers charge for wide-area data transfer per-GB
of data transferred. Egress prices—as a method of keeping
data within the provider’s regions without disincentivizing

282 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 3: Bandwidth distribution (in Gbps) between regions.
Per-VM egress limits are marked in red dotted lines.

migration into the provider—dominate data movement costs
in the cloud and fundamentally change the multicast problem.
Figure 2 visualizes the pricing for 11 regions across AWS,
Azure, and GCP. Prices vary depending on the source and
destination cloud or region, with differences of up to 23×
across region pairs. Along those lines, one particularly impor-
tant axis is whether the transfer stays within a given cloud
provider or crosses provider boundaries, as inter-cloud egress
costs are generally higher than intra-cloud egress.

Intra-cloud egress (data movement between geographically
separated datacenters in the same cloud provider) is priced
between $0.01−$0.19 per GB transferred. Prices typically
increase with longer-distance transfers. For example, GCP
charges $0.08 for transfers between continents but only $0.02
for transfers within the US. Some smaller providers (e.g.,
IBM, Cloudflare) offer free cross-region egress.

Inter-cloud egress (data movement between different cloud
providers) is typically priced at a much higher rate per GB
($0.08− $0.23). As such, it is essential to minimize cross-
cloud transfers in a multicast replication tree.

2.2 Bandwidth Variability Across Endpoints

Meeting replication time constraints can be challenging due to
network bandwidth variability in the cloud. One type of vari-
ability arises from cloud providers, who impose constraints on
per-VM egress and ingress bandwidth. These constraints dif-
fer significantly across providers: for instance, AWS throttles
intra-cloud and inter-cloud egress to 5 Gbps per VM, while
Azure imposes no VM-level limits. The impact of these egress
limits can be observed in Figure 3, where bandwidth is capped
at the VM egress limit for AWS and GCP. Limited node egress
poses a particular challenge for cloud multicast, as the source
node’s egress bandwidth is often the bottleneck.

Even when source-node bandwidth is not the bottleneck,
observed network capacity can also vary considerably across
cloud region pairs (up to 202×). Note that these networks
are relatively stable across time; prior work [28] has found
that network throughputs are stable over periods of at least

24 hours. Instead, variations are primarily observed across
different source and destination regions. Figure 3 depicts the
distribution of profiled bandwidth between VMs running in
AWS, Azure, and GCP. Intra-cloud bandwidth is typically
(but not always) higher than inter-cloud bandwidth.

2.3 Elasticity of Resources

A major advantage of the cloud is resource elasticity and the
ability to flexibly provision VMs across many regions. In the
face of the source bottlenecks described above, VM elasticity
translates to a corresponding elasticity of bandwidth. Allocat-
ing multiple parallel VMs enables users to scale throughput
beyond per-VM network bandwidth limits.

Unfortunately, adding elastic VM capacity at the source re-
gion has limitations. Additional VMs add additional costs
due to per-second billing on VMs, which can impact the
cost/throughput tradeoff. We note that because the marginal
cost of additional VMs is often relatively small compared
to egress fees, the tradeoff is often worth making. However
even in these situations, bandwidth elasticity has limits: for in-
stance, if a network-based bottleneck is unavoidable or when
cloud providers limit the number of vCPUs per region.

Crucially, elastic VM capacity can also be deployed at way-
point regions that are neither the source nor the destination.
These waypoint regions can help mitigate source VM bot-
tlenecks by distributing load from multicast fan-out across
multiple separate regions. Waypoint regions also mitigate
points of congestion by routing data around slow paths.

2.4 Illustrated Example

Selecting overlay nodes and replication trees to optimize cost
and throughput is challenging. Consider the toy example in
Figure 4 for a 2 GB replication with two 1 GB stripes. Assum-
ing a 4 Gbps bandwidth limit for all nodes and one VM per
region, the source (“S”) and destination (“D”) nodes have fast
but expensive outgoing paths, capable of sending at 2 Gbps but
costing 10¢ per GB transferred. Other regions have cheaper
but slower outgoing paths, capable of sending at 1 Gbps but
costing 2¢ per GB transferred. In a simple direct replication
scenario, the replication will be bottlenecked by the source
node’s egress limit (4 Gbps). With two copies of data to send,
the total transfer time will be 8 seconds.

Like many bandwidth-optimized techniques [12, 23, 33],
we offload egress bandwidth by sending a single data copy
from the source and leveraging multiple replication trees.
Replication cost is reduced by replicating to a waypoint, and
then multicasting to destinations. This doubles replication
time to 16 seconds due to stripes being replicated via the
slower path (dotted arrows). An 8-second replication SLO is
met by transferring just one stripe via the cheaper waypoint.

This simple example presents a large search space for pos-
sible replication trees, and real-world cloud networks present

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 283

Figure 4: Overlay node set and distribution trees for a toy example. The source and destination nodes are marked ‘S’ and ‘D’
respectively, while waypoint nodes in yellow are marked ‘W’. Expensive, fast paths ($0.1 per GB, 2 Gbps) are shown in solid
red, while slow, cheap paths ($0.02 per GB, 1 Gbps) are shown in dashed green.

additional parameters such as choosing the number of VMs
per region and many possible waypoint regions.

3 Cost Optimization in Cloudcast

We design an optimizer to minimize replication cost while
meeting a replication time SLO (i.e., a constraint on the max-
imum replication time to a destination). Our optimizer has
two main contributions. The first is a Mixed-Integer Lin-
ear Program (MILP) formulation of the cost-aware multicast
problem, jointly selecting overlay nodes and replication trees.
While others [23, 54] have used MILP formulations for multi-
cast overlay design, they formulate the optimization problem
in terms of bandwidth. Extending these formulations to ac-
commodate per-GB costs would violate linearity as data trans-
fer volume (cost) is proportional to the product of the key de-
cision variables: allocated bandwidth and replication time. As
a consequence, we propose a new formulation that reframes
the optimization in terms of data volume. Our new formula-
tion assigns discrete subsets of data (i.e. stripes) to replication
paths in the network while ensuring that a complete copy of
the data arrives at all destinations. Unfortunately, solving this
MILP formulation can be intractable for larger numbers of
destinations. Our second contribution is an approximation of
the MILP formulation that significantly reduces solve time
without significantly degrading the solution quality.

3.1 Egress Cost Minimization Algorithms
The challenge with our optimization problem stems from hav-
ing to consider both throughput and cost. Without replication
time constraints, we observe that the Steiner Tree [27] mini-
mizes egress cost. A Steiner Tree is a set of cost-minimizing
edges that form a tree that connects a subset of nodes within
a graph. If we do not allow the use of waypoint regions, the
cost-minimizing tree is a Minimum Spanning Tree (MST).
While solving for the MST can be done in linear time, the
Steiner Tree problem is NP-hard, though many approxima-
tions exist [43]. We cannot use the Steiner Tree to account

Inputs
TRANSFER-SIZE ∈ R Transfer size in GB
TIME ∈ R Replication time constraint
STRIPES ∈ Z+ Number of data stripes

Decision Variables
P ∈ {0,1}|STRIPES|×|V |×|V | Path indicator variable
N ∈ Z|V |

+ Number of VMs per region
F ∈ R|STRIPES+1|×|V |×|V |

+ Flow feasibility variable
Constants: Cross-Region Paths (edges)

BANDWIDTHpath ∈ R|V |×|V |
+ Bandwidth profile matrix (Gbps)

COSTpath ∈ R|V |
+ Network cost ($/Gbit)

Constants: VM Instances (nodes)
EGRESSVM ∈ R|V |

+ Per region per VM egress limit (Gbps)
INGRESSVM ∈ R|V |

+ Per region per VM ingress limit (Gbps)
COSTVM ∈ R|V |

+ Per region per VM cost ($/s)
LIMITVM ∈ Z|V |

+ Max number of VMs per region

Table 1: Symbol table for Cloudcast’s ILP formulation.

for replication throughput or instance costs, since it only opti-
mizes total edge cost, but we expect our optimizer’s solution
to be similar to a Steiner Tree in cases where the replication
time constraint is loose.

3.2 Profiling Cross-region Bandwidth

The bandwidth of paths between cloud regions (both intra-
cloud and inter-cloud) is determined by the number of VMs
in each region, each VM’s egress and ingress limits, and the
profiled bandwidth. As discussed in Section 2.2, cross-region
bandwidth per VM can be estimated by profiling the band-
width between region pairs using iperf3. Egress and ingress
limits vary across cloud providers but are static and can be
determined by cloud providers’ documentation [8, 10, 16].
We utilize these profiles as an estimate of expected network
bandwidth for the duration of a transfer. Profiling results are
included as part of our open-source repository and shared
across all users of Cloudcast.

284 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5: Stripes transferred from the source (purple) to desti-
nations (blue) are placed by the solver along edges depending
on edge capacity (yellow) and node capacity (green).

3.3 Optimizing Cost with Time Constraints

In order to minimize replication price while meeting run-
time requirements and cloud resource constraints, we frame
a MILP on a directed graph representing the entire cloud
topology. The input to the optimizer is the transfer size:
TRANSFER-SIZE, the runtime budget: TIME, and the number
of stripes: STRIPES to divide the data into.

To formulate the optimization problem as a MILP, for-
mulate the problem in terms of allocating data volume
to edges rather than bandwidth, with allocation units per
stripe. We translate cross-region bandwidth and per-region
egress/ingress limits into volume capacities, as shown in Fig-
ure 5, this determines how many stripes can fit along each
edge. This makes the MILP similar to a bin packing problem,
where we aim to pack stripes into edges such that all desti-
nations receive all stripes. The volume-based representation
allows cost to be computed as a function of the number of
stripes placed on each edge.

Next, we formally describe the MILP decision variables, ob-
jectives, and constraints. The cloud regions and cross-region
paths are represented as G = (V,E), where V denotes the set
of cloud regions and E denotes paths between regions. We
provide a reference table for the notation in Table 1.

3.3.1 Decision variables

The MILP formulation consists of three decision variables.
The path indicator variable Ps,(v,u) indicates whether a stripe
s is sent between regions (u,v) ∈ V . The paths selected by
P make up the multicast replication tree for each stripe. The
decision variable Nv represents the total number of overlay
routers in the region v. An additional flow variable Fs,(u,v)
ensures valid paths when constructing the multicast tree. It
ensures that the paths selected by P do not contain cycles and
are connected, by allowing flow to be pushed from the source
to all destinations for each stripe (see Section 3.3.3).

3.3.2 Objective: minimizing price under a deadline

To minimize the price of a multicast transfer while meeting
replication time constraints, we use a two-part objective func-
tion. The first part optimizes the number of virtual machines
(VMs) per region, represented by N, and the second part opti-
mizes the distribution trees per stripe, represented by P. The

objective is formulated as follows:

argminP,N TIME×⟨COSTVM,N⟩︸ ︷︷ ︸
Instance Cost

(1)

+
TRANSFER-SIZE

STRIPES
× ∑

s∈STRIPES

⟨COSTpath,Ps⟩︸ ︷︷ ︸
Egress Cost

(2)

The price of a data transfer is the sum of the instance fee and
the egress fee. The instance fee depends on the number of
VMs running per region, the job completion time, and the per-
region VM fee. The egress fees are determined by the data
distribution path and the amount of data traversed through the
path, as defined by P. We note that the instance cost is also
an upper bound as it can be potentially overestimated if the
data transfer is completed in less than the user-defined time
budget. However, this is necessary to ensure linearity.

3.3.3 Constraints
We represent cross-region bandwidth, node egress/ingress
bandwidth, per-region VM limits, and replication tree struc-
ture requirements as constraints within the MILP.

Representing Inter-Region & Inter-Cloud Bandwidth.
Cross-region bandwidth is represented as the per-GB capacity
given the run-time budget, i.e., how many stripes can fit along
an edge. Increasing the number of VMs in the source regions
linearly increases the rate at which we can send data. We thus
model the bandwidth between two regions as the per-VM
bandwidth profiled between those two regions multiplied by
the number of VMs in the source region:

CAPACITYpath = ⟨N,BANDWIDTHpath⟩ ∗ TIME, (3)

and constrain P in terms of the path capacity:

∀(u,v) ∈ E SIZESTRIPE ∗∑
s

Ps,(u,v) ≤ CAPACITYpath
(u,v). (4)

to ensure allocated stripes fit within the capacity.

Representing VM Bandwidth Constraints. Cloud providers
impose per-VM bandwidth constraints on network egress, as
described in Section 2.2. As such, a major bottleneck of mul-
ticast transfer is the source region’s limited egress bandwidth.
We constrain P in terms of the ingress and egress limits:

∀v ∈V SIZESTRIPE ∗∑
s

∑
u∈V

Ps,(v,u) (5)

≤ EGRESSVM
v ∗Nv ∗ TIME (6)

∀u ∈V SIZESTRIPE ∗∑
s

∑
v∈V

Ps,(v,u) (7)

≤ INGRESSVM
u ∗Nu ∗ TIME (8)

Representing VM Capacity Constraints. We account for
per region VM limits by adding the constraint N ≤ LIMITVM.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 285

Figure 6: Visualized solver output for inter-cloud replication
described in Section 5.1, consisting of source (purple), way-
point (yellow), and destination (blue) regions. The data is
divided into 5 stripes (marked on edges).

Ensuring Valid Multicast Trees. We use an additional vari-
able F to ensure that the paths selected by P are valid distribu-
tion trees, i.e., they are connected and acyclic, and they deliver
all data to each destination. At a high level, we ensure that
Fs,(u,v) ≥ 1, if Ps,(u,v) = 1, and impose conservation of flow
constraints on F but not P, since P is an indicator variable not
a flow variable. We then ensure that flow can be pushed from
the source node to destination nodes on F for each stripe,
which also ensures that flow can be pushed from the source
to destination for the paths selected by P (without having to
impose flow conservation on P). We leave details on this part
of the formulation for Appendix B due to space.

3.3.4 Solver feasibility
Our formulation so far has a search space of size
O(2|V |2×|STRIPES|). With 71 possible regions across GCP, AWS,
and Azure and 10 stripes, the search space is, therefore,
O(250410), which is infeasible even for advanced solvers to
solve within a few minutes, necessitating approximations.

3.4 Reducing Optimizer Runtime
In this section, we describe several mechanisms that we com-
bine to reduce the optimization runtime or an order of seconds,
while still maintaining solution quality.

Node Clustering. We observe that many regions across cloud
providers share similar characteristics in terms of bandwidth
and the costs of their outgoing and incoming paths. A moti-
vating observation was that sub-sampling regions randomly
could produce similar solutions with much lower solve time,
as shown in Figure 17. At a high level, AWS regions in Europe
regions all have similar egress/ingress costs and bandwidth, so
only one of those regions needs to be considered as a potential
waypoint. Therefore, to reduce the optimizer search space, we
cluster regions using their incoming and outgoing path costs
and bandwidth as features and select a representative node
from each cluster. We empirically find that, with about 20
clusters (i.e. 20 subsampled regions), the optimizer can gen-

Figure 7: Cloudcast system architecture.

erate solutions that are reliably similar to the original MILP
without approximation (more discussion in Section 5.3.2).

Hop Constraining. To further reduce the optimization space,
we only consider a maximum of 2-hop overlay waypoints.
Previous research has shown that limited numbers of overlay
hops are often sufficient [7, 41, 46]. Our analysis also found
solutions using multiple overlay hops to be rare, suggesting
that they need not be considered. We implement the hop
constraints as an additional constraint on the MILP.

Stripe-iterative Approximation. To make the optimizer run-
time linear with respect to the number of stripes (rather than
exponential), we design a greedy, stripe-iterative approxima-
tion algorithm that solves for one stripe per iteration. We solve
for each stripe independently, then update the input graph for
the next stripe by reducing the path capacity (CAPACITYpath),
instance limits, and egress/ingress limits per region (LIMITVM,
EGRESSVM, and INGRESSVM).

3.5 Example Topology
We show an example of the optimizer’s output replication
tree topology visualized in Figure 6. Due to variability in
cloud provider egress pricing and cross-region throughput,
our optimizer often finds unexpected solutions, such as routing
one stripe (marked [3]) from GCP to AWS, AWS to Azure,
then back to GCP. Although questionable at first glance, we
evaluate this same replication in Figure 10 and demonstrate
both cost and replication time improvements over baselines.

4 Architecture of Cloudcast

A key contribution of this work is the design and implemen-
tation of the Cloudcast artifact, which provides a practical,
performant, and extensible system for studying overlay multi-
cast algorithms in cloud environments. The Cloudcast system
simplifies the design and deployment of multicast overlays
spanning cloud object stores, and is used to implement the
optimizer described in Section 3.

We provide an overview of Cloudcast in Figure 7. Cloud-
cast is designed with a centralized control plane and a dis-

286 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tributed data plane. The control plane determines the set of
overlay nodes and routing paths, and it dispatches and moni-
tors multicast jobs. The data plane consists of overlay routers,
which we implement as modular software routers running on
overlay nodes deployed on cloud VMs. The control plane
configures overlay routers using a router program, which
specifies a graph of modular operators for processing data.
Each overlay router gets a unique router program, which, in
cooperation with other routers in the system, implements the
desired flow of data over the overlay network.

Cloudcast is implemented as part of the Skyplane [28] open
source project and consisted of 5K additional lines of Python
to implement a design based on overlay routers.

4.1 Control Plane
The control plane contains the planner, which supports plug-
gable algorithms for determining the placement of overlay
routers across cloud providers and paths along which data is
replicated (shown in Figure 7). The output of the planner is
used to provision VMs to act as overlay routers across cloud
regions and to compile a router program for each overlay
router that configures its behavior. Finally, the control plane
initiates the transfer and monitors its progress.

Planner. The planner is responsible for creating a multicast
plan based on a target replication time, source and destina-
tion object store paths provided by the user, and profiling
data described in Section 3.2. The planner takes as input the
algorithm to use for generating a multicast plan, which can
be the default Cloudcast optimizer described in Section 3.3
or a custom plan (e.g., a Steiner Tree over the cost graph).
The planning algorithm determines how many overlay nodes
to create in each region and how each data stripe should be
routed through the overlay network. The planner uses the al-
gorithm output to generate a router program for each overlay
router, which specifies how the overlay router should pro-
cess a chunk header when received. The Cloudcast default
optimizer is implemented using Python’s CVXPY library [3]
(version 1.3.2) with a Gurobi solver [26].

Provisioner. Once a multicast plan is determined, the provi-
sioner instantiates the overlay routers. The provisioner creates
a VPC in each cloud provider and provisions VMs to act as
overlay routers within these VPCs. The provisioner also sets
firewall rules to allow network traffic between overlay routers,
which send and receive data from each other, as specified by
the planner-generated router programs. Once a VM has been
instantiated, the provisioner installs and launches the router
programs as containers on the VMs.

Chunk Dispatching and Status Tracker. The control plane
subdivides replication target data into chunks, which are at
most 64MB in size, to allow for transfer pipelining and par-
allelism. Each chunk has a chunk header, which specifies a
key (e.g., object store object, filename), byte range, and an
optional multipart ID (required for multipart uploads). The

chunk header also contains a stripe ID, which specifies which
path along the overlay the chunk will take.

The control plane informs each source overlay router
(i.e., overlay routers responsible for reading source data) the
chunks for which they are responsible by sending the cor-
responding chunk headers. We refer to this as registering a
chunk to an overlay router. The control plane’s status tracker
monitors the status of each chunk by querying the status of
chunks on each overlay router.

4.2 Data Plane
The data plane is composed of overlay routers, each running
on a single VM. The overlay routers are created and config-
ured by the control plane to execute the transfer according
to the multicast plan. Cloudcast supports configurable over-
lays by defining processing on overlay routers using modular
operators, inspired by the design of configurable routers [32].

The router program provided by the control plane specifies
a directed acyclic graph (DAG) of operators (analogous to
elements) and connections, all of which run on each overlay
router and are used to process incoming chunk headers reg-
istered to the overlay router. The DAGs are created at the
overlay router’s startup time based on the router program,
and they allow overlay routers to process chunks without
additional coordination with the control plane.

Operators are implemented as a pool of worker processes
running processing steps for a chunk, such as reading the
chunk from the source object store, relaying the chunk to an-
other overlay router, writing the chunk to a destination object
store, or transforming the chunk data (e.g., compression or
encryption). Connections pass chunk headers between opera-
tors via thread-safe queues, and can be configured to send a
chunk header to one or all of multiple downstream operators.

For example, on a source overlay router, chunk registrations
from the control plane will provide chunk headers to the first
operator in the DAG, which downloads chunk data from an
object store. All chunk data is stored in a shared memory
filesystem to allow for fast access across operators. Once
chunk data is downloaded, the chunk header is passed to the
next operator via a connection, which runs LZ4 compression
[4]) and secret key encryption [5, 18] on the chunk data. The
leaf operators are ‘sender’ operators, which relay the chunk
header and data to other overlay routers.

Chunk data is relayed between overlay routers by a ‘sender’
operator on the sending router and a ‘receiver’ operator on the
receiving overlay router. When the sender operator is created,
it creates parallel TCP connections which are kept open for the
duration of the transfer. Before sending chunk data, the sender
will attempt to register the corresponding chunk headers with
the receiving overlay router to ensure it has space in its shared
memory file system to write the chunk data. Once chunks are
registered, the sender will send the chunk data over the TCP
sockets, and the receiver will wait for the written chunk data
size to match the size specified by the chunk header, before

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 287

System Description

Direct Data is transferred directly from the source to the destination regions.
MDST Data is transferred along edges selected by a Minimum Directed Spanning Tree (including source and destination regions)

computed from network costs.
Steiner Tree Data is transferred along edges selected by a Steiner tree (including optional waypoint regions) computed from network costs.
SPIDER [23] Data is transferred according to the plan generated by SPIDER, a system designed for fast bulk replication to multiple destinations.
Skyplane Skyplane’s optimizer is used to select paths for each source-destination pair, which are combined to build the distribution tree.
CloudMPCast [24] Data is transferred over a set of cost-minimizing edges that meet a minimum bandwidth threshold.
Deadline-aware
Inter-DC Multicast [30]

Data is transferred to meet deadlines in the inter-DC context according to [30]. Note that due to scalability issues, we needed to
modify the candidate tree generation step to only consider a subset of waypoint regions to achieve tractable runtimes.

AWS S3 Multi-
Region Bucket [9]

Vendor product that supports intra-cloud between AWS regions only. We enable Replication Time Control [38].

Bullet [33] Data is transferred according to the plan generated by Bullet, a high-bandwidth dissemination technique using an overlay mesh.
BitTorrent [49] Peer-to-peer protocol where peers download data from each other in a decentralized manner.

Cloudcast-Opt (HT) Data is transferred along the highest throughput (HT) multicast tree generated by our optimizer (tightest time constraint).
Cloudcast-Opt (LC) Data is transferred along a low cost (LC) multicast tree generated by our optimizer (relatively loose time constraint).

Table 2: All of the systems and variants we evaluate, covering a mix of academic baselines and commercial solutions.

sending chunk headers to the next operator. Successfully sent
chunk data is deleted from the shared memory filesystem.

Backpressure. Connections are configured with a maximum
size for the underlying queues. If the queue reaches its max-
imum size, the upstream operator will wait until the queue
size decreases sending chunk headers to the connection.

Striping. Registered chunk headers with different stripe IDs
are placed in different queues and processed by separate
DAGs, so that different stripes can be routed differently.

5 Evaluation

In this section, we evaluate Cloudcast across three metrics:
replication cost, replication time, and the optimizer solve time
(or simply, runtime). In particular, we show that for intra-
cloud and inter-cloud bulk data transfer, Cloudcast is able to
achieve up to 61.5% cost improvements under a tight runtime
budget when compared to academic, commercial, and open-
source baselines. We also show that our approximations to
reduce the optimizer solve time (as discussed in Section 3.4)
are highly effective by reducing the runtime by, on average,
30.68× for 5-destination replications. To simplify evaluation,
we disable compression and encryption in experiments.

The full list of evaluated baselines is shown in Table 2. We
note that many algorithms do not determine the number of
VMs to use in each region. To present them in the best light
possible, we maximize the number of VMs in each region
traversed by data, subject to per-region quota limits.

5.1 Comparison to Multicast Algorithms
We compare the replication time and cost of existing multicast
algorithms with Cloudcast’s optimizer to send 100 GB of data
from one source to six destination regions.

Simulation results. Given the above replication scenario, we
start by exploring a wide range of algorithmic baselines and

Figure 8: Simulated results for Multicast Algorithms.

Cloudcast parameter settings through simulation. While we
tested many configurations through the development of Cloud-
cast, due to limited space, we present results for a representa-
tive configuration1. Evaluated systems include Cloudcast-Opt,
direct transmission to the destinations, sending along cost-
minimizing trees (MDST and Steiner Tree), SPIDER [23],
CloudMPCast [24], Skyplane [28], and a deadline-aware inter-
DC optimizer [30]. Although Skyplane’s optimizer is de-
signed for unicast, not multicast, we adapt the optimizer’s
solution to multicast by running the optimization for each
source-destination pair, and then combining all the graphs to
build the distribution tree.

For Skyplane, CloudMPCast, and Cloudcast-Opt, we vary
the throughput parameter to evaluate the performance range.
For CloudMPCast [24], the optimizer allows for the level of
throughput degradation to be controlled by an α ≤ 1 term,
which determines how aggressively edges are filtered out. Our
parameter sweep includes α ∈ [1,0.5,0.1], where α = 1 maxi-
mizes CloudMPCast’s throughput. For Skyplane, we vary the
target throughput to maximize throughput and minimize cost,
and plot both of these points. For Cloudcast-Opt, we show

1Simulated Inter-Cloud: from gcp:asia-southeast1-a to azure:
eastasia, aws:af-south-1, azure:brazilsouth, aws:sa-east-1

288 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) AWS Intra-Cloud (b) Azure Intra-Cloud (c) GCP Intra-Cloud

Figure 9: Intra-cloud multicast results for algorithms implemented on Cloudcast.

Figure 10: Inter-cloud multicast results for different algo-
rithms implemented on Cloudcast. The Cloudcast replication
tree is visualized in Figure 6.

results for several replication time constraints.
In Figure 8, we see that all baselines improve signifi-

cantly upon direct transmission, and while some can match
Cloudcast-Opt’s capacity for fast replication time or low cost,
no existing baseline can optimize both metrics simultaneously.
Rather, Cloudcast-Opt’s Pareto-curve can match or beat all
baselines on at least one of cost or performance. CloudMP-
Cast, whose α parameter does provide some flexibility, still of-
fers a worse tradeoff than Cloudcast-Opt. Skyplane also has a
significantly worse tradeoff curve, as it is not designed for mul-
ticast, so does not perform optimizations to alleviate source
bottlenecks which are crucial for achieving high throughput.
Despite this, even Skyplane’s can improve throughput (for
the throughput-maximizing solution) and reduce cost (for the
cost-minimizing solution) as compared to direct transfers.

Cloud deployments. The remainder of our evaluations
present empirical results from real cloud data transfers. Due to
the high cost of running data multicast in the cloud ($20–$110
per transfer), we limit our evaluation to four representative
configurations and four representative baselines identified by
our simulation results. Among the configurations, three are
intra-cloud replications corresponding to AWS2, Azure3 and

2AWS Intra-Cloud: from ap-east-1 to us-west-1, ap-northeast-3,
eu-north-1, ap-south-1, ca-central-1, ap-northeast-1

3Azure Intra-Cloud: from brazilsouth to westeurope, westus,

GCP4, and one is an inter-cloud replication workload that
covers all three major providers5. These configurations are
chosen to contain a source region with high egress costs to
demonstrate potential cost savings. Among the baselines, we
sub-selected the best-performing baselines from our simula-
tion results in terms of throughput (SPIDER) and cost (Steiner
Tree), with direct transmission providing a naive baseline.

Figures 9a to 9c show results for AWS, GCP, and Azure
intra-cloud replication, and Figure 10 shows inter-cloud re-
sults. Across all configurations, given a very tight replica-
tion time constraint, Cloudcast-Opt (HT) solution leads to
46− 62.4% cost reductions and 2− 2.84× replication time
speedup compared to sending directly to each destination.

Of the baselines tested, SPIDER [23] consistently demon-
strates the lowest replication time, as it did in simulation.
However, as SPIDER is not cost-aware, Cloudcast-Opt (HT)
can achieve 28.4− 44.0% cost savings. Surprisingly, while
saving significant cost, Cloudcast-Opt (HT) simultaneously
speeds up replication by 1.11−1.35×, beating SPIDER on
both axes. If, on the other hand, Cloudcast is given a loose
replication time budget, i.e., Cloudcast-Opt (LC), it can find
the cost-optimal solution in all setups, matching Steiner Tree
solutions.

5.2 Cloud Provider and P2P Systems
We run end-to-end evaluation comparing Cloudcast with a
commercial baseline (AWS S3 multi-region bucket replica-
tion) and P2P systems (BitTorrent and Bullet).

5.2.1 AWS S3 Multi-Region bucket replication
We run an end-to-end comparison between Cloudcast and
AWS’s S3 multi-region bucket replication [9] for single-
provider multicast. AWS supports adding multiple replication
rules to a source bucket to specify automatic replication to

koreacentral, australiaeast, uaenorth, centralindia
4GCP Intra-Cloud: from asia-southeast2-a to australia-

southeast1-a, southamerica-east1-a, europe-west4-a,
europe-west6-a, asia-east1-a, europe-west2-a

5Inter-Cloud: from gcp:asia-southeast1-a to azure:
australiaeast, azure:eastasia, aws:ap-southeast-2, azure:
brazilsouth, aws:sa-east-1, gcp:australia-southeast1-a

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 289

Figure 11: Cloudcast outperforms AWS S3 Replication Time
Control while reducing total transfer costs.

one or more replication buckets. In the aspect of time control,
AWS supports a replication time control with a minimum
15-minute SLO. However, we found that in our experiments,
replications typically completed much faster than 15 minutes.
Therefore, we use the actual replication time as a point of
comparison.

We compare AWS’s replication time and cost to Cloudcast
with the planner implemented with both direct transfer and
the optimizer. We transfer an OPT model [53] with 66 billion
parameters (122 GB in total across 9 files) between regions
in a single continent6. To evaluate AWS replication time and
cost, we create buckets with replication rules from a bucket
in the source region to buckets in destination regions. Once
the replication rules are created, we copy data from a bucket
in the same region into the source bucket with 16 VMs. After
the write completes, we measure the time until the comple-
tion of replication into all destination buckets. We calculate
the transfer cost according to AWS’s pricing page [39]. We
compare AWS multi-region bucket replication to Cloudcast
implemented with both the direct and optimizer planner and
running. As shown in Figure 11, the direct transfer has the
same egress costs as AWS bucket replication, but the VM
costs are much less than the service fee charged by AWS for
the replication. Overall, Cloudcast with the optimizer is able
to achieve 2.3× replication speedup and 61.5% cost savings.
This is a result of being able to leverage VM parallelism as
well as an overlay network that minimizes total egress costs.

5.2.2 P2P BitTorrent and Bullet
We also compare Cloudcast against P2P systems like Bit-
Torrent and Bullet. We run the same transfer benchmark in
Azure in Figure 9b, sending 100GB within Azure to 6 desti-
nation regions. We host our own BitTorrent tracker and use
aria2 [48] as a BitTorrent client. Since Bullet’s implemen-
tation is not available, we evaluate Bullet by implementing
Bullet’s algorithm inside Cloudcast’s planner. The result is
shown in Figure 12: both BitTorrent and Bullet have lower
egress costs than direct but higher than Cloudcast. BitTor-
rent is the slowest because most clients cannot utilize the full
bandwidth. The clients are built for scenarios like background
seeding and transfer off the critical path, rather than for bulk

6from aws:ap-east-1 to aws:ap-southeast-2, aws:ap-south-1,
aws:ap-northeast-3, aws:ap-northeast-2, aws:ap-northeast-1

Figure 12: Comparison with BitTorrent protocol on the intra-
cloud Azure workload in Figure 9b.

(a) Cost Reduction (b) Replication Time Speedup

Figure 13: Cloudcast optimizer’s cost and time improvement
over direct replication with varying destination numbers.

data transfer. Interestingly, without a centralized planner, Bit-
Torrent is able to find a low-cost multicast replication tree by
inferring the bandwidth among peers and preferring the data
from peers who have the highest throughput. However, it is
still significantly more expensive than Cloudcast.

5.3 Ablations of Cloudcast’s Optimizer
To understand how our optimizer behaves for different selec-
tions of source and destination regions and different target
replication times, we run simulated ablations.

5.3.1 Varying region selection
We test the generality of our improvements by randomly se-
lecting source and destination regions for varying numbers of
destinations. We show aggregated results over 100 samples
for different numbers of destinations in Figure 13. Cloud-
cast is able to improve the runtime and cost of replication
consistently across varying numbers of destinations. Cost
and throughput improvement increase with more destinations,
since more destinations provide a larger optimization space.

5.3.2 Impact of approximations on solutions
We evaluate how the optimizer with and without approxima-
tions scales to larger numbers of destinations in Figure 14, by
randomly selecting source and destination regions for varying
numbers of destination regions. We find that combining all
three approximation mechanisms is necessary to scale the op-
timizer: using no approximations, or only one approximation,
takes several minutes for just 10 destinations while using all
approximations together reduces solve time to seconds.

We also evaluate how approximations affect the quality of
the solution using the monetary cost of the solver-generated

290 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 14: Approximations reduce solver runtime from the
cutoff of 30 minutes to seconds for up to 20 destinations.

Method Mean error Solver speedup
(geomean)

Node Clustering 0.3% 9.04×
Hop Constraining 1.1% 5.72×
Stripe Iterative 0.0% 7.02×
All Approximations 1.1% 30.68×

Table 3: Solve time and solution quality with approximations.

solution. We randomly sample 100 source/destination com-
binations for 5 destinations and compute the difference in
the solution’s monetary cost and replication runtime com-
pared to MILP without approximation in Table 3. We find
that the difference in cost averages around 1%, and estimate
the worst-case approximation ratio to be 1.4. We find that for
even just 5 destinations, the approximated solver runs with a
geometric-mean speedup of 30.68×.

5.3.3 Accuracy of replication time model
We compare optimizer-modeled throughput and real through-
put in Table 4. As transfer size increases, the approxima-
tion becomes more accurate. This is because Cloudcast’s
optimizer, designed for bulk data replication, makes several
simplifying assumptions, such as perfectly pipelined stripes.
Thus, transient inefficiencies during startup and teardown
mean smaller transfers may experience lower throughput than
the optimizer expects, but for larger, more expensive transfers,
modeled throughput closely matches empirical results.

5.4 When to Use Cloudcast for Multicast?
Cloudcast is designed for bulk multicast replication in the
cloud, so should only be used with data sizes are sufficiently
large. Since Cloudcast relies on creating VMs in the cloud
at transfer initiation time, there is a constant overhead from
VM startup time. We calculate the transfer size break-even
point (i.e. the minimum data size for using Cloudcast) for
varying providers and VM capacity limits (constraining the
throughput for the Cloudcast overlay), shown in Figure 15.
We approximate the per-destination replication throughput
without Cloudcast as equal to the per-VM egress bandwidth
limit, ignoring congestion between source and destination
VMs. Azure has a higher break-even point than AWS and
GCP due to two effects. First, the VM startup time is the

Transfer Size (GB) Prediction error

16 16.6%
32 8.51%
64 3.31%
128 1.69%

Table 4: Accuracy of the optimizer’s predicted throughput.

Figure 15: Estimated break-even point for a 6-destination
replication based on VM startup times (35, 56, and 34 seconds
for AWS, Azure, and GCP, respectively) and VM egress limits.

highest of all providers (56 seconds). Second, VMs in Azure
are not subjected to egress constraints (5 Gbps and 7 Gbps for
AWS and GCP, respectively). As a result, the benefits of using
Cloudcast’s techniques are only realized for larger transfer
sizes or larger numbers of destinations.

6 Related Work

Overlay Unicast. A significant body of prior work uses over-
lay networks to improve the performance and resilience of
one-to-one data transfers in the Internet and peer-to-peer net-
works [7, 12, 33]. In clouds, previous work has also leveraged
cloud elasticity to further improve performance [28,37]. How-
ever, they do not consider multicast, and except Skyplane [28],
none consider the monetary cost of replication in the cloud.
Handling multicast is challenging. For example, while [28]
can leverage elastic resources, cloud pricing models, and over-
lay networking for bulk unicast replication in the cloud, its
techniques are not directly applicable to the multicast setting.
More specifically, Skyplane’s flow-based throughput model
results in ambiguous multicast distribution tree solutions as it
ignores the identity of data sent along multiple paths. Further-
more, since Skyplane’s optimizer is not designed for multicast,
it cannot take advantage of techniques such as leveraging mul-
tiple distribution trees to alleviate source bottlenecks.

Overlay Multicast. End-system multicast [15] and over-
lay multicast have been proposed to efficiently disseminate
data from a single source to multiple destinations. Many
application-level multicast algorithms have been proposed.
Algorithms like SPIDER [23], SplitStream [12], Bullet [33],
and Overcast [29] are designed for high-bandwidth, cross-
internet file distribution with application-level multicast over-
lays. However, these algorithms ignore monetary costs and
focus on techniques to maximize bandwidth.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 291

Inter-DC Replication. Extensive prior work addresses inter-
DC replication [21, 22, 34, 44, 54], including bulk multi-
cast [36]. Recent research includes deadline [36] and cost-
awareness [20, 21]. However, the cost model in the Inter-DC
setting cannot be easily adapted to cloud users, for which
network pricing is based on total data volume rather than
bandwidth (which introduces a non-linearity for a standard
bandwidth-based MILP formulation). Furthermore, existing
formulations are not designed for multicast [20, 21] or do not
consider more than a few geo-distributed regions [36]. Our
work focuses on public clouds, considering unique per-GB
network pricing, elastic resources, and cloud-specific resource
constraints. Our approximation algorithm is also designed to
scale to all regions across multiple cloud vendors.

Traffic Engineering. The classic problem of traffic engineer-
ing has also formulated optimization problems for minimizing
cost under performance constraints. These techniques have
recently been applied to cloud providers and their monetary
costs. For example, Entact [55] studied how to optimize costs
for online service providers while still minimizing user la-
tency. Similarly, Cascara [45] leveraged latency-equivalent
paths to identify cost-minimizing paths for cloud providers.
Like Inter-DC Replication, these approaches have been de-
veloped from the perspective of the cloud or service provider
and, thus, present a materially different optimization problem.

Steiner Trees. The Steiner Tree algorithm has been applied
in the multicast setting both to minimize costs in terms of de-
lay [31] and cloud egress costs [24]). CloudMPCast [24] mini-
mizes egress costs in cloud bulk data multicast by constructing
a Steiner Tree overlay network that avoids low-throughput
cross-region paths. However, CloudMPCast overlooks VM
capacity and per-VM egress/ingress limits in its MILP for-
mulation. Also, CloudMPCast aims to achieve comparable
performance to direct transfers while minimizing cost, unlike
Cloudcast, which optimizes throughput.

Geo-Distributed Storage. Geo-distributed storage via data
replication is supported by a variety of cloud services, such as
AWS Cross-Region Replication [9], AWS Multi-Region Ac-
cess Points [11], and GCP Multi-region buckets [25]. Cross-
region replicated buckets (e.g., S3 replication rules) automat-
ically replicate written data from a bucket in one region to
one or more buckets in other regions. However, these services
have limited support for cross-cloud data movement and do
not minimize egress costs even for intra-cloud data movement.
SPANStore [51] designs a system for geo-distributed storage
across multiple cloud providers, and also optimizes egress
costs of relaying data on PUT requests. However, its relay
strategy is optimized for latency, not bandwidth.

Peer-to-peer Multicast. Peer-to-peer systems (P2P) support
file sharing among a set of end-user clients. The BitTorrent
protocol [17] reduces the network load on the source by al-
lowing clients to upload and download data to each other.
BitTorrent is widely used for data multicast in data center

METHOD MULTICAST
CLOUD

PRICING
STRIPING

RESOURCE
ELASTICITY

Unicast overlay networks
RON [7] × × ✓ ×
Skyplane [28] × ✓ ✓ ✓
COMS [20] × × × ∼

Peer-to-peer
BitTorrent [17] ✓ × ✓ ×
SplitStream [12] ✓ × ✓ ×
Bullet [33] ✓ × ✓ ×

Inter-DC overlay multicast
SPIDER [23] ✓ × ✓ ×
CodedBulk [47] ✓ × ✓ ×
BDS [54] ✓ × ✓ ×
Deadline-aware Inter-DC [30] ✓ × × ✓

Cost optimized overlay networks
SPANStore [51] ✓ ✓ × ×
CloudMPCast [24] ✓ ✓ × ×
Jetway [21] × ✓ ✓ ×

Cloudcast (ours) ✓ ✓ ✓ ✓

Table 5: Cloudcast builds on prior work by enabling multi-
cast, optimizing cloud costs, and leveraging cloud resource
elasticity and multiple distribution trees.

environments by Facebook [19] and Twitter [49]. Special-
ized systems for data multicast that use BitTorrent include
Uber’s Kraken [40] and Ant Group’s Dragonfly [6]. These
P2P systems have significant overhead as they are designed
for adversarial settings where peers may be unreliable or fail.
Moreover, P2P systems must scale to millions of destinations
and therefore lack centralized control which prevents custom
routing topologies. P2P systems may redundantly send data
over expensive links due to a lack of cost awareness.

7 Conclusion

In this paper, we explored the problem of cost-optimized
cloud multicast by introducing overlay networks of ephemeral
VM waypoints that exploit path-specific cloud pricing to sig-
nificantly reduce cost and improve throughput. We developed
a MILP formulation of this problem and introduced approxi-
mations that make the solving time feasible for practical ap-
plications. Our evaluation against academic and commercial
baselines demonstrated up to a 61.5% reduction in cost and a
2.3× improvement in runtime. Cloudcast has been released
as part of the Skyplane open source project with pluggable
planning algorithms to enable future research in this space.

Acknowledgments

This work was supported by gifts from Accenture, AMD,
Anyscale, Google, IBM, Intel, Microsoft, Mohamed Bin Za-
yed University of Artificial Intelligence, Samsung SDS, SAP,
Uber, and VMware. We also thank Asim Biswal for his con-
tributions to the open source artifact, and Daniel Rothchild
for providing feedback on writing.

292 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Blackblaze. https://www.backblaze.com/b2/
cloud-storage-pricing.html. Accessed: 2022-12-
08.

[2] Wasabi. https://wasabi.com/. Accessed: 2022-12-
08.

[3] Cvxpy: A python library for convex optimization, 2021.

[4] Lz4 - extremely fast compression, 2023.

[5] Pynacl: Python binding to the libsodium library, 2023.

[6] Alibaba. Dragonfly. https://github.com/
dragonflyoss/Dragonfly, 2018. Accessed on
12/15/2022.

[7] David Andersen, Hari Balakrishnan, Frans Kaashoek,
and Robert Morris. Resilient overlay networks. In
Proceedings of the eighteenth ACM symposium on Op-
erating systems principles, pages 131–145, 2001.

[8] Amazon AWS. Ec2 on-demand instance pricing. https:
//aws.amazon.com/ec2/pricing/on-demand, 2023.

[9] Aws cross-region replication. https:
//docs.aws.amazon.com/AmazonS3/latest/
userguide/replication.html.

[10] Microsoft Azure. Pricing - bandwidth.
https://azure.microsoft.com/en-us/pricing/
details/bandwidth/, 2023.

[11] Alex Casalboni. Amazon s3 multi-region access
points. https://aws.amazon.com/s3/features/
multi-region-access-points/.

[12] Miguel Castro, Peter Druschel, Anne-Marie Kermar-
rec, Animesh Nandi, Antony Rowstron, and Atul Singh.
Splitstream: High-bandwidth multicast in cooperative
environments. ACM SIGOPS operating systems review,
37(5):298–313, 2003.

[13] Sarah Chasins, Alvin Cheung, Natacha Crooks, Ali Gh-
odsi, Ken Goldberg, Joseph E Gonzalez, Joseph M
Hellerstein, Michael I Jordan, Anthony D Joseph,
Michael W Mahoney, et al. The sky above the clouds.
arXiv preprint arXiv:2205.07147, 2022.

[14] Yang Chu, Sanjay Rao, Srinivasan Seshan, and Hui
Zhang. Enabling conferencing applications on the inter-
net using an overlay muilticast architecture. In Proceed-
ings of the 2001 conference on Applications, technolo-
gies, architectures, and protocols for computer commu-
nications, pages 55–67, 2001.

[15] Yang-hua Chu, Sanjay G Rao, Srinivasan Seshan, and
Hui Zhang. A case for end system multicast. IEEE Jour-
nal on selected areas in communications, 20(8):1456–
1471, 2002.

[16] Google Cloud. All networking pricing. https://
cloud.google.com/vpc/network-pricing, 2023.

[17] Bram Cohen. Incentives build robustness in bittorrent.
In Workshop on Economics of Peer-to-Peer systems, vol-
ume 6, pages 68–72. Berkeley, CA, USA, 2003.

[18] Frank Denis. The sodium cryptography library, Jun
2013.

[19] Facebook uses bittorrent, and they love it.
https://torrentfreak.com/facebook-uses-
bittorrent-and-they-love-it-100625/. Ac-
cessed on 12/15/2022.

[20] Bita Fatemipour, Wei Shi, and Marc St-Hilaire. A cost-
effective and multi-source-aware replica migration ap-
proach for geo-distributed data centers. In 2022 IEEE
Cloud Summit, pages 17–22. IEEE, 2022.

[21] Yuan Feng, Baochun Li, and Bo Li. Jetway: Minimizing
costs on inter-datacenter video traffic. In Proceedings of
the 20th ACM international conference on Multimedia,
pages 259–268, 2012.

[22] Jason Flinn, Xianzheng Dou, Arushi Aggarwal, Alex
Boyko, Francois Richard, Eric Sun, Wendy Tobagus,
Nick Wolchko, and Fang Zhou. Owl: Scale and flexi-
bility in distribution of hot content. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 1–15, 2022.

[23] Samrat Ganguly, Akhilesh Saxena, Sudeept Bhatnagar,
Rauf Izmailov, and Suman Banerjee. Fast replication
in content distribution overlays. In Proceedings IEEE
24th Annual Joint Conference of the IEEE Computer
and Communications Societies., volume 4, pages 2246–
2256. IEEE, 2005.

[24] José Luis García-Dorado and Sanjay G Rao. Cost-aware
multi data-center bulk transfers in the cloud from a
customer-side perspective. IEEE Transactions on Cloud
Computing, 7(1):34–47, 2015.

[25] Gcp multi-region bucket. https:
//cloud.google.com/storage/docs/
locations#location-mr. Accessed on 12/15/2022.

[26] Gurobi Optimization, LLC. Gurobi Optimizer Refer-
ence Manual, 2023.

[27] Frank K Hwang and Dana S Richards. Steiner tree
problems. Networks, 22(1):55–89, 1992.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 293

https://www.backblaze.com/b2/cloud-storage-pricing.html
https://www.backblaze.com/b2/cloud-storage-pricing.html
https://wasabi.com/
https://github.com/dragonflyoss/Dragonfly
https://github.com/dragonflyoss/Dragonfly
https://aws.amazon.com/ec2/pricing/on-demand
https://aws.amazon.com/ec2/pricing/on-demand
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://aws.amazon.com/s3/features/multi-region-access-points/
https://aws.amazon.com/s3/features/multi-region-access-points/
https://cloud.google.com/vpc/network-pricing
https://cloud.google.com/vpc/network-pricing
https://torrentfreak.com/facebook-uses-bittorrent-and-they-love-it-100625/
https://torrentfreak.com/facebook-uses-bittorrent-and-they-love-it-100625/
https://cloud.google.com/storage/docs/locations#location-mr
https://cloud.google.com/storage/docs/locations#location-mr
https://cloud.google.com/storage/docs/locations#location-mr

[28] Paras Jain, Sam Kumar, Sarah Wooders, Shishir G Patil,
Joseph E Gonzalez, and Ion Stoica. Skyplane: Opti-
mizing transfer cost and throughput using cloud-aware
overlays. arXiv preprint arXiv:2210.07259, 2022.

[29] John Jannotti, David K Gifford, Kirk L Johnson,
M Frans Kaashoek, and James W O’Toole Jr. Over-
cast: Reliable multicasting with an overlay network. In
Fourth Symposium on Operating Systems Design and
Implementation (OSDI 2000), 2000.

[30] Siqi Ji, Shuhao Liu, and Baochun Li. Deadline-aware
scheduling and routing for inter-datacenter multicast
transfers. In 2018 IEEE International Conference on
Cloud Engineering (IC2E), pages 124–133, 2018.

[31] Jehn-Ruey Jiang and Szu-Yuan Chen. Constructing
multiple steiner trees for software-defined networking
multicast. In Proceedings of the 11th International
Conference on Future Internet Technologies, pages 1–6,
2016.

[32] Eddie Kohler, Robert Morris, Benjie Chen, John Jan-
notti, and M Frans Kaashoek. The click modular
router. ACM Transactions on Computer Systems
(TOCS), 18(3):263–297, 2000.

[33] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, and
Amin Vahdat. Bullet: High bandwidth data dissemi-
nation using an overlay mesh. In Proceedings of the
nineteenth ACM symposium on Operating systems prin-
ciples, pages 282–297, 2003.

[34] Nikolaos Laoutaris, Michael Sirivianos, Xiaoyuan Yang,
and Pablo Rodriguez. Inter-datacenter bulk transfers
with netstitcher. In Proceedings of the ACM SIGCOMM
2011 Conference, pages 74–85, 2011.

[35] Long Luo, Qixuan Jin, Jingzhao Xie, Gang Sun, and
Hongfang Yu. Cost-efficient scheduling of multicast
transfers with deadline guarantees across edge datacen-
ters. IEEE Transactions on Services Computing, 2021.

[36] Long Luo, Yijing Kong, Mohammad Noormohammad-
pour, Zilong Ye, Gang Sun, Hongfang Yu, and Bo Li.
Deadline-aware fast one-to-many bulk transfers over
inter-datacenter networks. IEEE Transactions on Cloud
Computing, 10(1):304–321, 2019.

[37] Miguel Matos, António Sousa, José Pereira, and Rui
Oliveira. Clon: Overlay network for clouds. In Proceed-
ings of the Third Workshop on Dependable Distributed
Data Management, pages 14–17, 2009.

[38] Meeting compliance requirements using s3 replica-
tion time control. https://docs.aws.amazon.com/
AmazonS3/latest/userguide/replication-time-
control.html. Accessed on 12/15/2022.

[39] Overview of data transfer costs for common ar-
chitectures. https://aws.amazon.com/blogs/
architecture/overview-of-data-transfer-
costs-for-common-architectures/. Accessed on
12/15/2022.

[40] P2p docker registry capable of distributing tbs of data
in seconds. https://github.com/uber/kraken. Ac-
cessed on 12/15/2022.

[41] Simon Peter, Umar Javed, Qiao Zhang, Doug Woos,
Thomas Anderson, and Arvind Krishnamurthy. One
tunnel is (often) enough. ACM SIGCOMM Computer
Communication Review, 44(4):99–110, 2014.

[42] Matthew Prince and Nitin Rao. Aws’s egre-
gious egress. https://blog.cloudflare.com/aws-
egregious-egress/, 2021.

[43] Daniel Rehfeldt and Thorsten Koch. Implications, con-
flicts, and reductions for steiner trees. In Mohit Singh
and David P. Williamson, editors, Integer Programming
and Combinatorial Optimization - 22nd International
Conference, IPCO 2021, Atlanta, GA, USA, May 19-21,
2021, Proceedings, volume 12707 of Lecture Notes in
Computer Science, pages 473–487. Springer, 2021.

[44] Chijun Sima, Yao Fu, Man-Kit Sit, Liyi Guo, Xuri
Gong, Feng Lin, Junyu Wu, Yongsheng Li, Haidong
Rong, Pierre-Louis Aublin, et al. Ekko: A {Large-
Scale} deep learning recommender system with {Low-
Latency} model update. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
22), pages 821–839, 2022.

[45] Rachee Singh, Sharad Agarwal, Matt Calder, and
Paramvir Bahl. Cost-effective cloud edge traffic en-
gineering with cascara. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 201–216, 2021.

[46] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott
Shenker, and Sonesh Surana. Internet indirection in-
frastructure. In Proceedings of the 2002 Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communications, pages 73–86, 2002.

[47] Shih-Hao Tseng, Saksham Agarwal, Rachit Agarwal,
Hitesh Ballani, and Ao Tang. Codedbulk: Inter-
datacenter bulk transfers using network coding. In NSDI,
pages 15–28, 2021.

[48] Tatsuhiro Tsujikawa and Nils Maier. aria2 - the ultra
fast download utility. https://github.com/aria2/
aria2, 2008.

294 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication-time-control.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication-time-control.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication-time-control.html
https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/
https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/
https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/
https://github.com/uber/kraken
https://blog.cloudflare.com/aws-egregious-egress/
https://blog.cloudflare.com/aws-egregious-egress/
https://github.com/aria2/aria2
https://github.com/aria2/aria2

[49] Twitter uses bittorrent for server deployment.
https://torrentfreak.com/twitter-uses-
bittorrent-for-server-deployment-100210/.
Accessed on 12/15/2022.

[50] Marcia Villalba. Amazon s3 replication
adds support for multiple destination buckets.
https://aws.amazon.com/blogs/aws/new-amazon-
s3-replication-adds-support-for-multiple-
destination-buckets/, 2020.

[51] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan
Katz-Bassett, and Harsha V Madhyastha. Spanstore:
Cost-effective geo-replicated storage spanning bmul-
tiple cloud services. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Prin-
ciples, pages 292–308, 2013.

[52] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-
Lin Chiang, Romil Bhardwaj, Woosuk Kwon, Siyuan
Zhuang, Sifei Luan, Gautam Mittal, Scott Shenker, and
Ion Stoica. SkyPilot: An Intercloud Broker for Sky
Computing. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’23), April
2023.

[53] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang,
and Luke Zettlemoyer. Opt: Open pre-trained trans-
former language models, 2022.

[54] Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Mar-
tin J Reed, Haiyang Wang, Guang Yao, Miao Zhang,
and Kai Chen. Bds: A centralized near-optimal overlay
network for inter-datacenter data replication. In Pro-
ceedings of the Thirteenth EuroSys Conference, pages
1–14, 2018.

[55] Zheng Zhang, Ming Zhang, Albert G Greenberg, Y Char-
lie Hu, Ratul Mahajan, and Blaine Christian. Optimiz-
ing cost and performance in online service provider
networks. In NSDI, pages 33–48, 2010.

A Optimizer Parameters

A.1 Stripe Granularity
The number of stripes is a parameter in the optimizer that
determines the unit of data size that the optimizer determines
routes. Choosing too small a number of stripes (e.g., 1-4) can
result in solution infeasibility, since an individual stripe may
be too large to fit along any given link under a replication
time constraint. We show the tradeoff in 16 between solution

quality (dollar cost) and the number of stripes set of solving
a 3-destination topology. Adding more stripes can increase
the solver runtime unnecessarily. We use 8− 16 stripes for
experiments.

Figure 16: Solution quality v.s the number of stripes. Given
a 6-destination intra-AWS transfer job and the same runtime
SLO, our optimizer generates different solutions for different
numbers of stripes. Small numbers of stripes can result in no
feasible solution or solution with worse quality (i.e., higher
cost). However, increasing the number of stripes to larger than
10 has diminishing returns.

A.2 Node Sub-Selection
In Figure 3.4, we describe how we cluster nodes to select
a subset of nodes for consideration by the optimizer. We
motivate this by running an experiment to randomly select a
subset of nodes in Figure 17. Generally, there are diminishing
returns (beyond 20 nodes) to consider additional nodes. To
avoid variability from randomness, we use the techniques
described in Figure 17 to select a represented subset of nodes.

Figure 17: Solution quality versus the number of considered
nodes. Considering a larger set of regions has diminishing re-
turns of solution quality but exponentially increases optimizer
runtime.

B Formulation Details

B.1 Ensuring Valid Paths
We cannot ensure connectivity of prevent cycles in paths
defined by P without adding an exponential number of con-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 295

https://torrentfreak.com/twitter-uses-bittorrent-for-server-deployment-100210/
https://torrentfreak.com/twitter-uses-bittorrent-for-server-deployment-100210/
https://aws.amazon.com/blogs/aws/new-amazon-s3-replication-adds-support-for-multiple-destination-buckets/
https://aws.amazon.com/blogs/aws/new-amazon-s3-replication-adds-support-for-multiple-destination-buckets/
https://aws.amazon.com/blogs/aws/new-amazon-s3-replication-adds-support-for-multiple-destination-buckets/

straints. We define a special flow variable F to add constraints
that ensure that flow can be pushed along paths from P from
the source to all destinations. The source node is denoted as
the source region index in the transfer, the destination nodes
are denoted as the destination region indices, and the sink
node is denoted as a special node that is only connected to
destination nodes. We constrain F to have flow if and only if
the corresponding stripe and edge for P is set to 1.

Fs,(u,v) ≥ 1, if Ps,(u,v) = 1 (9)

We ensure zero or negative flow for Ps,u,v = 0 via capacity
constraints. We set special capacity constraints between des-
tination nodes and the sink, to ensure that the sink can only
receive sufficient flow if it receives flow from all destinations.

Fs,(u,v) ≤

1, if u ∈ DEST,v = sink

0, if Ps,(u,v) = 0
|DEST|, otherwise

(10)

We impose conservation of flow ∀s:

∑
u∈V

Fs,(u,v) =

|DEST|, if v is the source
−|DEST|, if v is the sink
0, otherwise

(11)

If the above constraints are met, this ensures that the stripe
paths assigned by P are able to push flow from the source to
all destinations.

B.1.1 Full Formulation

We can write a full formulation of an integer linear program
as the following:

argmin
P,N,F

TIME ∗ ⟨COSTVM,N⟩+∑
s
⟨COSTpath,P⟩ (12)

N ≤ LIMITVM (13)

SIZESTRIPE ∗∑
s

Ps,(u,v) ≤ CAPACITYpath
u,v (14)

SIZESTRIPE ∗∑
s

∑
u∈V

Ps,(v,u) ≤ EGRESSVM (15)

SIZESTRIPE ∗∑
s

∑
v∈V

Ps,(v,u) ≤ INGRESSVM (16)

Fs,(u,v) ≥ 1, if Ps,(u,v) = 1 (17)

∑
u∈V

Fs,(u,v) =

|DEST|, if v is the source
−|DEST|, if v is the sink
0, otherwise

(18)

Fs,(u,v) ≤

1, if u ∈ DEST,v = sink

0, if Ps,(u,v) = 0
|DEST|, otherwise

(19)

C How does Cheaper Egress Affect Cloud-
cast’s Optimizations?

Some existing cloud providers (e.g., Cloudflare [42], Wasabi
[2], and Blackblaze [1]) offer discounted or even free network
egress. Interestingly, incorporating free-egress clouds into
Cloudcast offers further opportunities to reduce costs. Figure
18a illustrates this effect. This highlights the importance of
using a system like Cloudcast, which can adapt replication
plans in response to cheaper network offerings.

It is possible that major cloud providers will also adapt free-
egress models or, in a less extreme case, make intra-cloud
network fees more uniform as they build up additional capac-
ity for inter-region networks with limited bandwidth. In this
case, the techniques used by Cloudcast (overlay networking,
VM parallelism, and striping) would achieve only substantial
throughput improvements but no cost improvement.

(a) Example of routing via no egress fee clouds.

Direct Cloudcast w/o
Cloudflare

Cloudcast w/
Cloudflare

Cost ($/GB) 0.24 0.2075 0.12

(b) Egress cost is 2× cheaper including Cloudflare in Cloudcast.
Figure 18: Routing data through clouds with no egress fees
(e.g., Cloudflare) can reduce inter-cloud replication costs as
egress fees need to be paid only once rather than a minimum
of twice to replicate data across AWS, GCP, and Azure.

296 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Understanding Routable PCIe Performance for Composable Infrastructures

Wentao Hou1, Jie Zhang2, Zeke Wang2, and Ming Liu1

1University of Wisconsin-Madison 2Zhejiang University

Abstract
Routable PCIe has become the predominant cluster inter-

connect to build emerging composable infrastructures. Em-
powered by PCIe non-transparent bridge devices, PCIe trans-
actions can traverse multiple switching domains, enabling a
server to elastically integrate a number of remote PCIe de-
vices as local ones. However, it is unclear how to move data
or perform communication efficiently over the routable PCIe
fabric without understanding its capabilities and limitations.

This paper presents the design and implementation of rP-
CIeBench1, a software-hardware co-designed benchmarking
framework to systematically characterize the routable PCIe
fabric. rPCIeBench provides flexible data communication
primitives, exposes end-to-end PCIe transaction observability,
and enables reconfigurable experiment deployment. Using
rPCIeBench, we first analyze the communication characteris-
tics of a routable PCIe path, quantify its performance tax, and
compare it with the local PCIe link. We then use it to dissect
in-fabric traffic orchestration behaviors and draw three inter-
esting findings: approximate max-min bandwidth partition,
fast end-to-end bandwidth synchronization, and interference-
free among orthogonal data paths. Finally, we encode gath-
ered characterization insights as traffic orchestration rules and
develop an edge constraints relaxing algorithm to estimate
PCIe flow transmission performance over a shared fabric. We
validate its accuracy and demonstrate its potential to provide
an optimization guide to design efficient flow schedulers.

1 Introduction
Composable infrastructures–organizing computing, memory,
and storage as elastic resource pools–have gained a rising
attraction recently. Empowering by emerging cluster inter-
connects [7, 8, 16], applications running over such a platform
can access disaggregated hardware resources natively as lo-
cal ones, adaptively scale based on workload demands, and
achieve fine-grained sharing with co-located tenants, yield-
ing independent scaling capability, high device utilization,

1rPCIeBench is available at https://github.com/netlab-wiscons
in/rPCIeBench.

and cost-efficiency improvement. We have seen a number of
early engineering samples and commodity prototypes, such
as GigaIO’s FabreX [10], Liqid’s SmartStack [13], H3’s Fal-
con [12], Groq’s GroqRack [11], and Enfabria’s ACF [9].

PCIe (Peripheral Component Interconnect Express) is the
defacto interconnect for high-performance intra-host com-
munications. With the introduction of a specialized non-
transparent bridge (NTB) device, one can extend the PCIe
bus tree and facilitate communications between PCIe devices
from different switching domains, enabling inter-host PCIe
transactions or routable PCIe. Based on this capability, we
can interconnect tens to hundreds of PCIe devices using NTB-
enabled PCIe switches and adapters, which lays the founda-
tion for many of today’s composable infrastructures. More
importantly, routable PCIe also serves as the basis for emerg-
ing memory fabrics, like CXL [8].

However, our community lacks a systematic understanding
of the capabilities and limitations of routable PCIe. Specif-
ically, first, as a routable PCIe fabric introduces extra exter-
nal hops to PCIe transitions, what are the latency and band-
width overheads? Second, since the fabric concatenates an-
other PCIe switching domain at the endpoint of the local
PCIe bus tree, compared with the intra-host PCIe link, how
does the inter-host link behave? How well does it orches-
trate co-located flows? Third, the routable PCIe fabric allows
concurrent host-device and device-device communications.
Since the existing PCIe layered protocol still applies with no
changes, when different communication paths interleave, how
do they interact with each other? In sum, there is a strong
need to characterize the routable PCIe fabric, firmly answer
these questions, and derive some design guidelines to assist
in building communication sublayers and runtime systems
atop routable PCIe-enabled composable infrastructures.

Toward this end, we design and implement a software-
hardware co-designed benchmarking framework (called rP-
CIeBench) to help us conduct the characterization study. It
consists of three major components: (1) programming APIs
that provide various data movement primitives and allow de-
velopers to configure arbitrary testing scenarios; (2) host run-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 297

https://github.com/netlab-wisconsin/rPCIeBench
https://github.com/netlab-wisconsin/rPCIeBench

time and driver, responsible for both data-plane PCIe trans-
action delivery as well as control-plane platform manage-
ment and profiling; (3) FPGA bitstream, realizing the device-
side logic and manifesting itself as a reconfigurable target
accelerator. Overall, rPCIeBench is generic and device/fabric-
independent, enables end-to-end PCIe transaction observabil-
ity, and allows flexible HW/SW/traffic configurations.

We apply rPCIeBench to GigaIO’s FabreX testbed [10] and
first examine the performance characteristics of one routable
PCIe path. We find routable PCIe indeed incurs performance
tax. Its one-way PCIe latency between two endpoints is 868.6
ns, while a local one takes 379.0 ns. The forwarding rate of an
external PCIe switch is slower than a server internal one, yield-
ing 30.4% and 6.9% bandwidth degradation for host→device
and device→host scenarios. Further, as routable PCIe hinges
on the credit-based flow control, the more intermediate hops
along a routable PCIe path, the more time it takes to replenish
credits, resulting in higher latencies, especially when band-
width is oversubscribed. Our findings also indicate that an
external PCIe link preserves most proprieties of a local one
due to the inherent same layered protocol architecture. For ex-
ample, the bandwidth partition among concurrent PCIe flows
over a link depends on the ratio of their outstanding bytes.
PCIe is bidirectional, imposing little interference between
concurrent reversed flows, regardless of local or external.

We then use rPCIeBench to dissect in-fabric traffic orches-
tration characteristics and draw three findings. First, in a
routable PCIe fabric, each communication port realizes a
credit-by-credit round-robin scheduling discipline across ac-
tive lanes, yielding an approximate max-min bandwidth parti-
tion. Second, the fabric preserves little buffering at adapters
and switches, where the bandwidth availability can be pig-
gybacked via credits and quickly back-propagated from the
congestion point to other parts along the path. Third, orthogo-
nal data communication paths over the routable PCIe fabric
can be viewed as physically isolated communication domains,
imposing little performance interference.

Finally, we formalize the data movement problem over a
routable PCIe fabric, encode our empirical findings as traf-
fic orchestration rules, and derive a solution to estimate flow
transmission performance. Our edge constraints relaxing al-
gorithm takes the underlying fabric topology and PCIe flow
properties as inputs, applies iterative reduction by gradually
constraining flow bandwidth based on the capacity of oversub-
scribed links, and outputs the per-flow achieved bandwidth.
Our characterization insights make the routable PCIe fab-
ric well-structured and predictable, holding great potential to
assist flow scheduling design. We validate the algorithm in
three different experimental settings and show that the average
performance prediction error rate is 2.9–11.3%.

2 Background
This section provides the necessary background about
routable PCIe and the resulting composable infrastructures.

2.1 PCIe Non-Transparent Bridge and Routable PCIe

PCIe [16], introduced in 2003, is an interconnect for com-
munication among processors and peripheral devices. It is
a packet-based data communication network and provides
point-to-point connections through high-speed serial buses.
PCIe is organized into three layers: (a) physical layer, which
transmits/accepts packets over a link and performs packet
encoding/decoding; (b) data link layer, maintaining data in-
tegrity, sequencing packets from the transaction layer, and
ensuring reliable delivery via the credit-based flow control
protocol [38–40]; (c) transaction layer that realizes different
request and completion transaction semantics. Today, PCIe
Gen3/4 devices and ecosystems are predominant, Gen5/6 is
gaining adoption, and industry standardization of Gen7 is
underway and expected to be finalized in 2025.

Generally, a PCIe interconnect network consists of end-
points, switches, bridges, and root complexes, running under
one memory domain within a host and supporting the cor-
responding layer functionalities. A bridge, switch, and root
complex forwards and routes packets using memory-mapped
I/O (MMIO) addresses or requester IDs. To enable cross-host
PCIe communication, a special type of PCIe bridge device–
PCIe Non-Transparent Bridge (NTB)–is introduced. A PCIe
NTB allows a local host to interact with a remote device via
native PCIe transactions by building two memory address
mappings: (1) between a remote host and a local NTB: and
(2) between an NTB and a local host. As such, one can en-
able routable PCIe traversing through multiple hosts without
sharing the same memory domain. To realize scalable deploy-
ment, one can integrate a PCIe NTB into an external PCIe
switch that interconnects tens of remote PCIe devices. Con-
sequently, these remote PCIe devices will appear in the host
PCIe subsystem as a PCIe subtree, laying out the foundation
for composable infrastructures. More importantly, routable
PCIe has become the basis of emerging memory fabrics (such
as CXL [8] and CCIX [7]).

2.2 Composable Infrastructures

Infrastructure composability has gained significant attraction
recently because of its independent scaling capability, high
device utilization, and improved cost efficiency. By exposing
remote accelerators and I/O devices as local, applications can
access a large pool of computation/storage resources using
native PCIe or other interconnect transactions (without proto-
col conversion), adaptively scale based on workload demands,
and achieve fine-grained sharing with co-located tenants. We
have seen a rising number of infrastructure startups delivering
a variety of solutions, such as GigaIO’s FabreX [10], Liqid’s
SmartStack [13], H3’s Falcon [12], Groq’s GroqRack [11],
and more. We use the FabreX system as the developing target,
and our benchmarking system generally applies to others. Fig-
ure 1-a and -b depict our prototyped composable testbed and
the architecture of a typical routable PCIe fabric. It encloses
(1) a couple of external PCIe switches that realize scalable

298 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Endpoint
Adapters
Endpoint
Adapters

Host
Adapters

Host
Adapters

PCIe Switch

Host
Adapters

Host Servers (1…n)
System APIs

Runtime&Driver

Bitstream
Accel. (1…

n)

Routable PCIe Fabric

Endpoint
Adapters

Perf. Profiler

CMD FIFO C
M

D
Fabricator

CMD
Parser
CMD
Exe.

Completion
Notifier

(c). System architecture of the runtime and bitstream

(b). rPCIeBench overview

M
em

or
y

M
an

ag
er Response Hdl.

Sub.
Sched

(a). Prototyped testbed

PCIe switch

Host Adapter

Endpoint
Adapter

FPGA

Figure 1: The software architecture of rPCIeBench and its tar-
geted composable hardware testbed.

topologies; (2) host PCIe adapters, offering server-side con-
nectivity; (3) endpoint PCIe adapters, which hold accelerators
and I/O devices in standalone chassis. All connections use
PCIe copper SFF-8644 cables [18]. There is a fabric manager
deployed at one dedicated server, responsible for system man-
agement, such as device enumeration, topology configuration,
and liveness monitoring.

As discussed above, routable PCIe is the technology en-
abler to build composable infrastructure. However, our com-
munity lacks a systematic understanding and detailed per-
formance characterization of routable PCIe, especially when
communicating with composable devices. There are no canon-
ical software utilities, test suites, or referenced hardware plat-
forms. Thus, we fill this gap by developing a benchmarking
framework (called rPCIeBench). Based on it, we design vari-
ous experimental composable scenarios, dissect how routable
PCIe interacts with remote devices, and analyze its in-fabric
traffic characteristics.

3 rPCIeBench Framework

This section first describes the design principles of rP-
CIeBench, and presents its system design and implementation.

3.1 Design Principles

Our goal is to systematically characterize the performance of
routable PCIe and analyze its execution behavior under dif-
ferent composable scenarios. We build rPCIeBench adhering
to the following principles:

• Generality. rPCIeBench supports any PCIe-based hosts
and routable PCIe fabric testbeds, not relying on device-
dependent functionalities. We divide the benchmarking
functionalities between host servers and target devices;

• End-to-end operation. rPCIeBench should capture the
communication performance of an entire data movement
between the data generator and data consumer. We enable
end-to-end tracing and equip a reconfigurable accelerator
at the target side to interact with hosts flexibly;

• Reconfigurability. rPCIeBench should be able to generate
stipulated benchmarking requests based on a traffic profile.
We expose a set of programmable APIs, open-source the
reference hardware architecture and software implementa-
tion, and define pluggable interfaces for module updates.

3.2 Overview

rPCIeBench consists of three components (Figure 1-b),
spreading across host servers and remote devices. The first
one is programming APIs that allow developers to implement
and deploy arbitrary testing scenarios. Users prescribe bench-
marking servers and target devices, initialize the system envi-
ronment, and configure data movement patterns and attributes.
The second part is the host runtime and driver, responsible for
fabricating and submitting PCIe requests, interacting with the
underlying PCIe subsystem and host adapter, handling trans-
action completions, and conducting performance analyses.
The last piece is the bitstream within the FPGA accelerator.
An FPGA generally encloses programmable LUTs (lookup
tables), DSPs (digital signal processors), domain-specific en-
gines, and heterogeneous memory domains (like block RAMs
and HBMs), enabling us to emulate different types of data
communications. Specifically, our bitstream sets up the FPGA
execution environment, receives data transfer requests, instan-
tiates a series of data transfers via DMA engines over routable
PCIe fabric, reads/writes data to memory destinations, and
issues completion signals back.

3.3 System APIs

rPCIeBench provides three types of APIs. The first one is
used to initialize the execution environment of remote FP-
GAs, configure the device memory, and set up the host-device
address mapping. The second category allows device-side
memory management such that one can specify the source
and destination of memory locations for a data transfer. The
last one offers generic communication primitives, enabling
host-device and device-device data movement via the MMIO
(memory-mapped I/O) or DMA engine. We equip each primi-
tive with several attributes, such as performing batched com-
munications via a scatter-gather list, enabling flexible load
balancing among multiple queues, and more.

3.4 Software Components

rPCIeBench benchmarks and characterizes the routable PCIe
fabric using three software subsystems (Figure 1-b).

Performance Profiler. We trace a PCIe transaction’s en-
tire lifetime, from when the benchmarking application sub-
mits the requests until receiving the completion signals. Our
utility timestamps the transaction queueing time at the host
server (phase 1), data traversing time over the fabric (phase
2), and command execution at the remote accelerator (phase
3). All timestamps are marked at the nanosecond precision.
We use polling to improve the system profiling accuracy.
After all stipulated requests are finished, we report (a) the
overall bandwidth, queueing, and average/tail latency; (b) the
CDF/histogram of each transaction and its individual phases.
We follow design strategies (e.g., bitwise recording format,
compact data structure, and memory logger) of contemporary
perf tools [15, 17] when building the profiler.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 299

Category API Description

Device Conf.
dev_init (pci_bus_addr, bar_addr, size) Initialize the FPGA device and map the corresponding BAR address

dev_mem_init(pci_bus_addr, region) Instantiate the memory manager for the given FPGA memory region
dev_setup_mapping(pci_bus_addr, region, hmem_addr) Map the FPGA’s region to the host and set up the device mapping

Memory Mgt.
dev_mem_alloc (pci_bus_addr, region, size) Allocate the device memory from a given region of an FPGA

dev_mem_free (pci_bus_addr, dmem_addr) Free the allocated address from an FPGA and clear up the mapping
dev_mem_getaddr (pci_bus_addr, hmem|dmem_addr) Obtain the memory-mapped host(device) address

Communication
mmio_rd|wr(pci_bus_addr, hmem_addr, dmem_addr, size) Perform an MMIO read/write from the host to a device

h2d|d2h(pci_bus_addr, hmem_addr, size, dmem_addr, qnum) Move data between the host and the device via a given DMA queue
dev2dev_rd|wr(pci_bus_addr, dmem1_addr, size, dmem2_addr, qnum) Move data between two FPGA devices via a given DMA queue

Table 1: The rPCIeBench API list. hmem/dmem = Host(Device) memory address. All communication APIs support a batched version.

Runtime & Driver. Our system runtime has three parts: (a)
a memory manager that allocates and reclaims host-side mem-
ory for data movements; (b) a request submission scheduler,
determining the next issuing transaction based on the specified
policy; (c) a response handler, which polls the completion vec-
tor and wakes up the corresponding submission path. We use
the Linux hugepage and implement a segment-based memory
allocator [23, 24] atop. As shown in Figure 1-c, the sched-
uler is a multi-queueing system, exposing a programmable
interface for users to limit the number of outstanding requests
and define the scheduling policy. One can further control
the scheduling behavior at a fine granularity for each queue.
Besides, our driver layer realizes a slim PCIe subsystem that
implements the basic functionalities (such as bus enumeration,
device registration, and buffer/engine management) to interact
with the device on the control plane (using memory-mapped
registers) and data plane (through DMA).

Bitstream. Figure 1-c depicts the circuit diagram of the
remote accelerator. It has three 64-bit base address register
(BAR) spaces for different roles. BAR0 is used for configuring
the DMA engine, and BAR2 enables passing benchmarking
parameters. BAR4 is connected with the FPGA’s HBM and
mapped to the host memory for data movement. One can
also use BlockRAM in this case and we present the latency
comparison in Appendix B. There are five modules along
the command execution pipeline: (a) command FIFO queues,
taking user requests via MMIO write, where the host runtime
specifies the queue ID; (b) command parser, analyzing the
request format, extracting the parameters, and checking the
request’s validity; (c) command fabricator, which encapsu-
lates PCIe transactions and submits them to the DMA engine;
(d) command executor, reading from device-side memory,
buffering data temporarily, and issuing PCIe writes to the host
memory under host→device communications (device→host
works vice versa); (e) completion notifier, writing the com-
pletion signal to a predefined memory region. Note that (1)
host→device and device→host, albeit exhibiting similar pro-
cessing paths, use different hardware components; (2) we real-
ize device↔device communications by mapping one FPGA’s
HBM to the host memory and accessing it via another FPGA’s
DMA engine, causing data copied from one FPGA to another.

3.5 Command Data Path

rPCIeBench supports three types of communication primi-
tives (Table 1). An MMIO read/write, issued from the host

processor, is the first category, generating only one PCIe
read/write transaction to access the device memory. The sec-
ond one is a host-device data movement. As depicted in Fig-
ure 2-a/b, it encompasses four steps: (a) passing command
arguments via an MMIO write, (b) moving data between host
and device, (c) reading/writing to the HBM, and (d) issuing
completion signals via another PCIe write, yielding 1 MMIO
write and 2 PCIe transfers (which will translate to multiple
PCIe transactions based on the command size) in total. The
last type is device-device communication (Figure 2-c/d), oper-
ating similarly to the host-device case. The difference is that
two device memory accesses are triggered at both source and
destination. We use a server host to submit requests and catch
completion signals. In our implementation, command FIFO
queues and data buffer (of the command execution engine) are
located in the block RAMs (BRAMs). Under batch execution,
the command fabricator within each device (Figure 1-c) for-
malizes a list of transactions and schedules them concurrently.
We trace each primitive between submitting the command
and receiving the completion acknowledgment.

3.6 Workflow

Using the rPCIeBench framework requires three basic steps,
and we follow them when performing the characterization
throughout this paper. First, one should configure the com-
posable testbed based on the experimental data movement
flows, considering how host adapters, PCIe switches, and end-
point adapters are connected. The second step is to write
profiling applications using our system APIs. This includes
determining traffic profiles and benchmarking parameters. Fi-
nally, one will deploy the host execution environment, load
the bitstream into FPGAs, run the profiling application, and
collect performance results.

4 Basic Performance of Routable PCIe
This section examines the performance characteristics of
routable PCIe and compares them with the local PCIe case.

4.1 Experimental Methodology

Hardware testbed. Our host servers are 2U Dell R740
boxes, enclosing two 20-core Intel Xeon Gold 6248 pro-
cessors (running at 2.5GHz), 192GB DRAM, and 1.92TB
HDD. We disable both Hyper-Threading and Turbo Boost
features. All PCIe lanes of the server are Gen3. We use Xilinx
Alveo U55C cards (×16) as the major fabric-attached devices.
As discussed above, we choose the GigaIO’s Fabrex as the

300 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CPU

Host FPGA

HBM

1 CMD FIFO

CMD Exe.2

Cpl. Notifier

3
HBM
writes

DRAM

(a). Host-2-Device (1 MMIO write + 1 PCIe read + 1 PCIe write)

4

Pass CMD arguments via MMIO writes

Issue completion signals via PCIe writes

Copy data from host DRAM to device
buffer via PCIe reads

CPU

Host FPGA

HBM

1 CMD FIFO

3

Cpl. Notifier

2
HBM
reads

DRAM

(b). Device-2-Host (1 MMIO write + 1 PCIe write + 1 PCIe write)

4

Pass CMD arguments via MMIO writes

Issue completion signals via PCIe writes

Copy data from device buffer to host
DRAM via PCIe writes CMD Exe.

FPGA1

HBM

CMD FIFO CMD Exe.

Cpl. Notifier

4
HBM
writes

Host

DRAM

(c). Device-2-Device Read (1 MMIO write + 1 PCIe read + 1 PCIe write)

1 Pass CMD arguments via
MMIO writesCPU

FPGA2

HBM

CMD FIFO

Cpl. Notifier

2
HBM
reads

Copy data from device
buffer to device buffer
via PCIe reads

3

5 Issue completion signals
via PCIe writes

FPGA1

HBM

CMD FIFO

Cpl. Notifier

2
HBM
read

Host

DRAM

1 Pass CMD arguments via
MMIO writesCPU

FPGA2

HBM

CMD FIFO

Cpl. Notifier

4
HBM
writes

Copy data from device
buffer to device buffer
via PCIe writes

3

5 Issue completion signals
via MMIO writes

(d). Device-2-Device Write (1 MMIO write + 1 PCIe write + 1 PCIe write)

CMD Exe.

CMD Exe.

CMD Exe.

Figure 2: Data path of four communication primitives. We consider the data movement between host DRAM and device HBM.

 0
 2
 4
 6
 8

 10
 12
 14

8 16 32 64 128 256 512

L
a

te
n

c
y
 (

u
s
)

MMIO Read Size (B)

Local
Remote

Local w/ NUMA
Remote w/ NUMA

(a) MMIO.

 0

 2

 4

 6

 8

 10

64 128 256 512 1K 2K 4K 8K 16K 32K 64K

L
a

te
n

c
y
 (

u
s
)

Data Movement Size (B)

Local
Remote

Local w/ NUMA
Remote w/ NUMA

(b) Device→Host.

 0

 2

 4

 6

 8

 10

 12

64 128 256 512 1K 2K 4K 8K 16K 32K 64K

L
a

te
n

c
y
 (

u
s
)

Data Movement Size (B)

Local
Remote

Local w/ NUMA
Remote w/ NUMA

(c) Host→Device.

Figure 3: Latency of MMIO, Device→Host, and Host→Device communication when varying the data sizes.

routable PCIe-based composable testbed. Its RS4024 switch
has 24 ports, where each connects to a PCIe Gen3×4 link.

Terminology. We use a PCIe flow to describe one data
transfer from a source entity to a destination entity. Multiple
flows can interleave over the same communication path for
different data movements. A PCIe transaction layer packet (or
packet for short) and a PCIe transaction are used interchange-
ably, referring to the smallest transmission granularity of a
PCIe flow. Our work mainly considers three types of PCIe
transactions [16]: memory read, completion with data, and
memory write. The first two are non-posted, requiring data
responses, while the last one is a simple posted transaction.
MPS (maximum payload size) and MRRS (maximum read
request size) limit the size of corresponding packets, which
are 1024B and 512B in our case.

Experiment configuration. This section focuses on the
single communication path. There are three types of commu-
nication paths in a composable testbed: host→device (H2D),
device→host (D2H), and device→device (D2D). We set up
each of them and use the rPCIeBench’s communication prim-
itives for traffic generation. We change our traffic profile by
varying the number of outstanding PCIe flows, the packet size
per flow, and its burstness. rPCIeBench reports average/tail
latency and throughput as the major performance metrics.

4.2 Latency

One-way PCIe. We first dissect the one-way PCIe latency
between two entities using the rPCIeBench’ tracing function-
ality. When communicating within a server, we find out that
the local PCIe one-way latency is 379.0 ns, which matches
the number reported in recent literature [1, 2, 56]. However,
when traversing across the routable PCIe fabric, the one-way
PCIe latency rises to 868.6 ns, adding 489.6 ns (129.2%)

overheads! This is non-trivial for small-sized PCIe transfers.
We further worked with the device vendor and performed a
latency breakdown. We find that (1) the host adapter, switch,
and target adapter consume ∼105ns each due to the NTB
switching, respectively; (2) the propagation delay of the cop-
per wire is around 5ns; (3) the RS4024 has a 10ns processing
delay; (4) the host-side software takes ∼150ns.

DMA-induced PCIe. When PCIe transfers are triggered
via DMA, we should include the DMA engine execution
cost, including preparing the command, submitting it to the
command queue, and catching the completion signal. We
examine the hardware module within the accelerator and find
out this overhead is around 418.0 ns regardless of local or
remote. For example, a 64B PCIe write issued via the DMA
engine would take 946.0 ns and 1421.4 ns to complete in the
local and remote cases, respectively.

MMIO & H2D & D2H. The latency of an MMIO read
depends on the number of generated cache lines. As shown
in Figure 3-a, a local 64B PCIe read takes 766.0 ns, while
the remote one consumes 1751.0 ns, because one PCIe round
trip (two-way) is required. When crossing the CPU socket,
we observe there is an additional 67.0 ns and 52.0 ns for the
local and remote scenario, contributing 833.0 ns and 1803.0
ns, respectively. When the MMIO read size is 1KB, yielding
16 cache lines, a local PCIe latency rises to 11.9 us, while the
remote one increases to 27.8 us.

Both device→host and host→device trigger the same
amount of PCIe transactions (Figures 2-a/b). However, in
the D2H case, as we overlap the data write and completion
acknowledgment, it takes less time to finish. Figures 3-b/c
report our results. For example, a 64B D2H data movement
consumes 1.3 us, while the H2D takes 2.0 us. When the data
size is less than 4KB, routable PCIe adds 69.3% and 91.5%

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 301

 0

 5

 10

 15

 20

 25

 30

64 128 256 512 1K 2K 4K 8K 16K 32K 64K

L
a

te
n

c
y
 (

u
s
)

Data Movement Size (B)

Cross-Read
Within-Read

Cross-Write
Within-Write

Figure 4: D2D latency when communica-
tion within or across a PCIe switch.

 0

 2

 4

 6

 8

 10

 12

1 2 4 8 16 32 64 128 256 512 10242048

B
a

n
d

w
id

th
 (

G
B

/s
)

Data Transfer Size (KB)

Local-H2D
Remote-H2D

Local-D2H
Remote-D2H

Figure 5: H2D&D2H bandwidth varying
the data transfer size.

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512 10242048

B
a

n
d

w
id

th
 (

G
B

/s
)

Data Transfer Size (KB)

Cross-Read
Within-Read

Cross-Write
Within-Write

Figure 6: D2D bandwidth when communi-
cating within or across a PCIe switch.

latency penalties to the D2H and H2D cases due to 3 one-way
PCIe. With larger data movement sizes, such overheads di-
minish considerably. For instance, when performing a 64KB
data transfer over the routable PCIe fabric, the D2H/H2D
path takes 8.0/11.1 us, adding 17.9%/48.7% (6.8/7.5 us) com-
pared to the local scenario. This emphasizes the importance
of batching when building systems over the routable PCIe
fabric. Further, NUMA still hurts latency a little bit. On av-
erage across all cases, it brings in 10.7%/7.0% overheads for
the local H2D/D2H data transfers and adds 7.5%/11.2% more
latencies for the remote ones.

D2D. We focus on two types of device-device communi-
cation: one is crossing the external PCIe switch; the other is
within the PCIe subtree, not across the switch. Clearly, travers-
ing the switch is not free. When the data transfer size is less
than 1KB, as shown in Figure 4, crossing the switch incurs
2.2% and 11.0% more latencies for the read and write scenar-
ios, respectively. As the data movement size increases beyond
1KB, we find that the overhead increases significantly. For
example, a 64KB data transfer over D2D read/write within the
subtree consumes 10.0/10.8 us, but takes 29.6/18.6 us when
passing the switch, resulting in 194.4%/72.6% overheads.

Takeaways. Communicating over the routable PCIe fabric
(via the switch and adapters) is not as performant as the local
case. A one-way PCIe transfer takes 868.6 ns (compared with
379.0 ns in the local case). When using DMA engines for
data movements, one should also consider the engine execu-
tion cost (which is 418.0 ns in our case). Large data transfer
(beyond 4KB) can amortize the routable PCIe-induced la-
tency overheads for H2D and D2H scenarios, suggesting the
effectiveness of batching. However, for D2D communication,
traversing the external PCIe switch is costly, especially for
4+KB data sizes. This indicates that when building D2D com-
munication subsystems, one should consider not only their
positions over the fabric, but also the data transfer granularity.

4.3 Bandwidth

H2D&D2H. We gradually increase the data transfer size
and measure the communication bandwidth (Figure 5). Within
a server host, H2D and D2H max out their bandwidth with
at least 1MB data granularity, achieving 12.2 GB/s and 12.3
GB/s. However, when communicating across the routable
PCIe fabric, H2D and D2H drops to 8.4 GB/s and 11.3 GB/s,
contributing to 30.4% and 6.9% degradation. We carefully
examine each communication entity across the path and find

out that the maximum payload size (MPS) and the number
of concurrent PCIe transactions are the same in both local
and remote cases. This indicates the bandwidth drop mainly
comes from the fact the PCIe transaction rate of the external
switch is slightly lower than an internal PCIe switch on the
server board. The H2D and D2H have different performance
degradation because the adapters and switch of our compos-
able testbed use different DMA engines for upstream and
downstream links, respectively.

D2D. Next, we present the device→device communication
bandwidth. As shown in Figure 6, within a PCIe subtree
(not across the remote switch), a read/write D2D transfer
achieves 9.8/8.0 GB/s. However, surprisingly, when travers-
ing the switch, the maximum achieved bandwidth is only
2.3/4.3 GB/s! The 4.2/1.8× bandwidth degradation cannot be
simply attributed to the additional switching hop across the
path (§4.2). By dissecting the data path (Figure 2), we find
out that another limitation–root complex contention, happen-
ing because all the PCIe transactions (including launching,
preparing, and running the command) pass the root of a PCIe
bus tree–throttles the number of concurrent cross-switch D2D
transfers. However, in the within case, step 3 (Figure 2-c) and
steps 3/5 (Figure 2-d) are executed locally within the subtree.

Takeaways. The forwarding rate of an external PCIe switch
operates slower than a server internal PCIe switch, yielding
30.4% and 6.9% bandwidth degradation for H2D and D2H
scenarios. Device-to-device communications not only traverse
the external PCIe switch but might also cause root complex
contention (when devices are located in a local-remote hybrid
scenario), jeopardizing the maximum achieved bandwidth.

4.4 Latency v.s. Throughput

We examine the latency-throughput relation for each data
movement direction. We gradually inject more background
traffic (generated via large PCIe transactions) and measure the
average latency of 64B PCIe requests. As shown in Figures 7
and 8, the latency starts to rise when approaching the maxi-
mum bandwidth because credit starvation happens, causing
request stalls. However, we find that it takes more time for a
routable PCIe fabric to replenish credits. For example, when
achieving 80–90% of the maximum bandwidth, the local H2D
and D2H experience 20.2% and 28.7% higher latencies, while
the remote ones see 55.3% and 28.1%, respectively. Similarly,
within a PCIe subtree, there is an 18.3%/3.9% higher laten-
cies for the D2D read/write case, while the cross fabric case

302 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12

L
a

te
n

c
y
 (

u
s
)

Bandwidth (GB/s)

Local-H2D
Remote-H2D

Local-D2H
Remote-D2H

Figure 7: Latency v.s. throughput for lo-
cal/remote H2D and D2H cases.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 2 4 6 8 10

L
a

te
n

c
y
 (

u
s
)

Bandwidth (GB/s)

Cross-Read
Within-Read

Cross-Write
Within-Write

Figure 8: Latency v.s. throughput for
within/cross D2D read/write cases.

 0

 20

 40

 60

 80

 100

 120

LH2D RH2D LD2H RD2H

In
c
re

a
s
e

d
 L

a
t.

 (
%

)

Request Granularity (B)

64B
256B

1KB
4KB

32KB
64KB

Figure 9: Tail-over-Avg latency increases
for local/remote H2D and D2H cases.

 0

 2

 4

 6

 8

 10

 12

64 128 256 512 1K 2K 4K 8K 16K 32K

B
a

n
d

w
id

th
 (

G
B

/s
)

PCIe Request Size of Flow2 (B)

Local-Flow1
Local-Flow2

Remote-Flow1
Remote-Flow2

(a) Host→Device.

 0

 2

 4

 6

 8

 10

 12

64 128 256 512 1K 2K 4K 8K 16K 32K
B

a
n

d
w

id
th

 (
G

B
/s

)

PCIe Request Size of Flow2 (B)

Local-Flow1
Local-Flow2

Remote-Flow1
Remote-Flow2

(b) Device→Host.

 0

 2

 4

 6

 8

 10

64 128 256 512 1K 2K 4K 8K 16K 32K

B
a

n
d

w
id

th
 (

G
B

/s
)

PCIe Request Size of Flow2 (B)

Cross-Flow1
Cross-Flow2

Within-Flow1
Within-Flow2

(c) Device→Device Read.

Figure 10: Bandwidth partition between two concurrent flows of Host→Device, Device→Host, and Host→Device communications.

experiences 41.1%/6.7% more. Since the (routable) PCIe
fabric applies a hop-by-hop credit-based flow control, the
more intermediate entities along the path, the more credit
interactions one would observe. When bandwidth is (close
to) oversubscribed, a longer communication path needs more
credit coordination to deliver a transaction.

Tail latency. Next, we interleave 16 concurrent
homogeneous-sized PCIe flows and sweep the request
size of each flow from 64B to 64KB. For each data movement
direction, when the number of available credits runs out
at the link layer, a PCIe transaction would be queued up,
increasing the service latency. Hence, we measure the
average/P99 latency and use the Taillat

Avglat
metric to estimate the

credit capacity. As shown in the Figure 9, we find that the
credit capacity is not consistent for different directions. For
example, the H2D experiences the largest ratio under 16 4KB
requests, generating up to 512 concurrent transactions, while
the D2H direction can sustain 4096 ones (i.e., 16 32KB).
This is the same for both local and remote cases, indicating
that the routable PCIe fabric has provisioned enough credits
(or communication resources) than endpoints. Similarly, D2D
reads/writes support 128 and 512 concurrency when staying
within and across the fabric, respectively.

Takeaways. Similar to most communication fabrics, one
would experience latency rises under high bandwidth utiliza-
tion. However, the issue stems from the credit-based flow
control in the data link layer. It generally takes more time
for a routable PCIe fabric to replenish credits because there
are more intermediate identities along the path, requiring
more credit coordination. The fabric is provisioned with more
credits than endpoints, leaving itself from becoming a com-
munication bottleneck from the data link layer perspective.

4.5 Bandwidth Partition

We explore how bandwidth is partitioned across concurrent
PCIe flows. Our experiments are configured as follows. For
each data movement direction, we consolidate two PCIe flows

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12L
a

te
n

c
y
 o

f
F

lo
w

2
 (

u
s
)

Bandwidth of Flow1 (GB/s)

Local
Remote

(a) Device→Host.

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12L
a

te
n

c
y
 o

f
F

lo
w

2
 (

u
s
)

Bandwidth of Flow1 (GB/s)

Within
Cross

(b) Device→Device.
Figure 11: Path asymmetry demonstration of Device→Host and
Device→Device communications.

that continuously issue one outstanding PCIe request: Flow1
sends a 4KB request; Flow2 increases its transaction size from
64B to 32KB. We find that when concurrent PCIe flows share
the same communication path, bandwidth partition among
these flows is roughly proportional to the ratio of their out-
standing bytes. Take the H2D case as an example (Figure 10-
a). When a 4KB flow contends with a 128B one, Flow1 and
Flow2 achieve 9.5 GB/s and 0.39 GB/s, respectively, resulting
in a 32.8 partition ratio. When two 4KB flows interleave, both
sustain at 5.5 GB/s. The remote H2D scenario shows simi-
lar results. This observation also holds for the device→host
data movement. For example, a 4KB flow achieves 4.3/3.9
GB/s in the local/remote D2H case (Figure 10-b), one-third
of the total bandwidth, when intermixing with the 8KB flow.
When moving data between two devices, such a bandwidth
partition rule still holds. As shown in Figure 10-c, Flow1 only
consumes 0.5 GB/s and 1.9 GB/s in the D2D read case when
across or within the external PCIe switch, ∼22.0% of the total
bandwidth, where Flow2 issues a 16KB request.

Takeaways. Between two endpoints, the bandwidth parti-
tion among concurrent PCIe flows mainly depends on the
ratio of their outstanding bytes. The defacto transaction layer
imposes no fair bandwidth enforcement. The routable PCIe
fabric extends the basic scheme of a local PCIe network.

4.6 Asymmetric Communication Path

PCIe is a full-duplex bidirectional network. This section ex-
plores whether flows with opposite directions interfere with

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 303

CPU RC

Host Adapter 1

Server 1

(a). Interleaved paths over the routable PCIe fabric (c). A generic port architecture

Endpoint
Adapter 1

Remote Chassis 1
FPGA 1
FPGA 2

Endpoint
Adapter 2

Remote Chassis 2
FPGA 3
FPGA 4

PCIe Sw
itchCPU RC

Host Adapter 2

Server 2

F1

F2

SerDes (Retim
er)

Lane1

Downstream

Lanen

RR
Aribter

Upstream

Credit Engine

RR
Aribter

Lane1

Lanen

F3

F4

CPU RC

Host Adapter 1

Server 1

Endpoint
Adapter 1

Remote Chassis 1
FPGA 1
FPGA 2

Endpoint
Adapter 2

Remote Chassis 2
FPGA 3
FPGA 4

PC
Ie Sw

itchCPU RC

Host Adapter 2

Server 2

F1
F2

F3
(b). Orthogonal paths over the routable PCIe fabric

F4

Figure 12: We consider a small deployment with two host servers and two remote chassis, connected via an external PCIe switch. (a)
and (b) present in-fabric traffic sharing scenarios. (c) shows the generic architecture of a communication port. RC=Root Complex.

each other. We place a latency-sensitive flow (Flow2) from A
to B and a throughput-oriented flow (Flow1) in the reverse di-
rection B→A over one physical communication path, and then
analyze how latency varies with the throughput. Figure 11 re-
ports our results. Take the device→host as an example. When
maxing out the bandwidth, Flow2’s latency only increases
from 1.6 us to 1.8 us in the local case, while the remote one
stays around 2.2–2.3 us. Similarly, in terms of device-device
communications, within a PCIe subtree, Flow2’s latency sus-
tains at 3.1 us regardless of how much traffic is injected on the
reversed side; across the PCIe switch, Flow2’s latency varies
between 3.0 us and 3.1 us. Hence, there exists little interfer-
ence among concurrent flows under opposite directions.

Takeaways. Akin to the local PCIe network, routable
PCIe incurs no communication interference among concur-
rent reverse PCIe flows over one physical path, no matter
whether transmitting data is in any of the following directions:
host→device, device→host, and device→device.

5 In-Fabric Traffic Orchestration
§4 focuses on understanding different aspects of a single
communication path. This section analyzes how multiple
paths interact over the routable PCIe fabric, especially at the
host adapter, external PCIe switch, and endpoint adapter.

5.1 Max-Min Fair Bandwidth Allocation

Across the fabric, PCIe flows from different communication
paths contend for the bandwidth resource of any intermediate
transmit points. As shown in Figure 12-a, we configure three
path interleaving scenarios that share the host adapter (F1 v.s.
F2), switch (F1 v.s. F3), and endpoint adapter (F2 v.s. F4),
respectively. In each experiment, we fix the packet size of one
flow, gradually increase the packet size of another flow, and
explore how bandwidth is partitioned.

Our results show that each communication entity (e.g., an
adapter or a switch) realizes an approximate max-min band-
width allocation scheme. Specifically, when N flows from
different paths/lanes share an upstream/downstream port with
the following demands BWF1 ,BWF2 , ...,BWFn , if the aggre-
gated bandwidth is less than the link capacity, each flow can
achieve its desired rate; if the bandwidth is oversubscribed,
each flow Fi will receive its max-min share.

For example, as shown in Figure 13-a, when a 256B flow
is interleaved with a 4KB one at the downstream path of a

host adapter, both max out their bandwidth, resulting in 10.7
GB/s, less than the link capacity. However, in terms of the
1KB and 4KB mixed case, they achieve 7.5 GB/s and 8.5
GB/s when running in a standalone mode, but receive an
equal bandwidth share (i.e., 5.6 GB/s). The upstream one
presents similar results (Figure 13-d). Regarding the PCIe
switch (Figures 13-b/e), when a 64B flow (Flow1) shares
with the other one, it can always achieve 0.5/1.3 GB/s along
the downstream/upstream path. When Flow1’s packet size
rises to 1KB, Flow1 sustains at 7.5 GB/s if the packet size of
Flow 2 is less than 512B, and drops to 5.6 GB/s, which is the
same as Flow2 if the packet size exceeds 1KB. The endpoint
adapter behaves similarly. Take the 4KB+X upstream con-
tention as an example (Figures 13-f). Since two flows traverse
different communications (one is host→device and the other
is device→device), Flow1 and Flow2 achieve 12.6 GB/s and
8.2 GB/s at most if deployed exclusively. When interleaving,
Flow2 is able to max out, but Flow1 is limited to 11.3 GB/s
due to the link capacity. We also notice that the bandwidth
partition at the upstream and downstream points is not always
symmetric (Figure 13-c). We believe this is mainly due to
the implementation differences across our communication
primitives (e.g., the completion delivery step in Figure 2).

We then drill down to the underlying mechanism to explore
how such cross-lane (link) max-min fairness is realized. By
walking through the hardware details of the adapter/switch,
we find that they all employ a generic port architecture (Fig-
ure 12-c), which includes: (a) a SerDes module for data con-
version, (b) a upstream and downstream pipeline for packet
transmission, and (c) a credit engine to realize the link layer
protocol. Some might also include a PCIe retimer to retrans-
mit signals. The reason why max-min fairness across lanes is
guaranteed is due to the compounding effect between the
credit engine and round-robin arbiter within the pipeline.
Specifically, the credit-based flow control enforces an even
credit distribution scheme across active lanes, whereas the ar-
biter inside the pipeline schedules each fixed-size PCIe flit in
a round-robin fashion. Note that a flit is the basic transmission
unit over the PCIe, which is 64B in our case. Therefore, each
communication port realizes a credit-by-credit (or flit-by-flit)
round-robin scheduling across all active lanes, resulting in an
approximate max-min bandwidth allocation. Even though this
is in contrast to the classic bit-by-bit round-robin (BR) [25]
or deficit round-robin (DRR) [53] algorithm, given most PCIe

304 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500 4000

B
a

n
d

w
id

th
 (

G
B

/s
)

PCIe Packet Size of Flow2 (B)

Flow1(256B+X)
Flow2(256B+X)

Flow1(1KB+X)
Flow2(1KB+X)

(a) Host adapter downstream.

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000 2500 3000 3500 4000

B
a

n
d

w
id

th
 (

G
B

/s
)

PCIe Packet Size of Flow2 (B)

Flow1(64B+X)
Flow2(64B+X)

Flow1(1KB+X)
Flow2(1KB+X)

(b) PCIe Switch downstream.

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500 4000

B
a

n
d

w
id

th
 (

G
B

/s
)

PCIe Packet Size of Flow2 (B)

Flow1(64B+X)
Flow2(64B+X)

Flow1(4KB+X)
Flow2(4KB+X)

(c) Endpoint adapter downstream.

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500 4000

B
a

n
d

w
id

th
 (

G
B

/s
)

PCIe Packet Size of Flow2 (B)

Flow1(256B+X)
Flow2(256B+X)

Flow1(256KB+X)
Flow2(256KB+X)

(d) Host adapter upstream.

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000 2500 3000 3500 4000

B
a

n
d

w
id

th
 (

G
B

/s
)

PCIe Packet Size of Flow2 (B)

Flow1(64B+X)
Flow2(64B+X)

Flow1(1KB+X)
Flow2(1KB+X)

(e) PCIe Switch upstream.

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000 2500 3000 3500 4000

B
a

n
d

w
id

th
 (

G
B

/s
)

PCIe Packet Size of Flow2 (B)

Flow1(64B+X)
Flow2(64B+X)

Flow1(4KB+X)
Flow2(4KB+X)

(f) Endpoint adapter upstream.

Figure 13: We report the bandwidth of two PCIe flows contending the upstream/downstream point of the host adapter, PCIe switch,
and endpoint adapter, where Flow1 is fixed-size and Flow2 varies from 64B to 4KB. The number of outstanding PCIe transitions is 1.

 0

 1

 2

 3

 4

 5

10 30 50 70 90 100

L
a

te
n

c
y
 (

u
s
)

BW Utilization of Flow2 (%)

Upstream-P50
Upstream-P90
Upstream-P99

Downstream-P50
Downstream-P90
Downstream-P99

(a) Host adapter.

 0

 1

 2

 3

 4

 5

10 30 50 70 90 100

L
a

te
n

c
y
 (

u
s
)

Bandwidth Utilization of Flow2 (%)

Upstream-P50
Upstream-P90
Upstream-P99

Downstream-P50
Downstream-P90
Downstream-P99

(b) PCIe Switch.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

10 30 50 70 90 100

L
a

te
n

c
y
 (

u
s
)

Bandwidth Utilization of Flow2 (%)

Upstream-P50
Upstream-P90
Upstream-P99

Downstream-P50
Downstream-P90
Downstream-P99

(c) Endpoint adapter.

Figure 14: We report the P50, P90, and P99 latency of Flow1 when varying the bandwidth of Flow2, where two PCIe flows contend the
host adapter, PCIe switch, and endpoint adapter, respectively. We consider the upstream and downstream of each scenario.

flows in our context contain a sequence of flits, max-min
bandwidth partition is achieved.

Takeaways. In a routable PCIe fabric, any communication
port (within a switch or adapter) realizes a credit-by-credit
round-robin scheduling across different active lanes, resulting
in a max-min bandwidth partition. This not only helps us to
simplify the performance reasoning under traffic congestion
but also assists us in deriving a predictable flow scheduler.

5.2 Fast End-to-End BW Synchronization

In a shared networking fabric, the link available bandwidth
fluctuates considerably with the application behaviors and the
underlying topological changes. Such vagaries would cause
either traffic congestion (e.g., in-network queue build-up and
transmission delay increase) or bandwidth underutilization.
In an Ethernet fabric, the congestion control mechanism at the
end host will adjust the traffic sending rate accordingly based
on stipulated congestion signals. Since the routable PCIe has
no such layer, in this section, we’d like to explore how PCIe
flow bandwidth is adjusted based on the traffic condition.

We configure three experimental scenarios, where each has
two PCIe flows sharing an intermediate communication point
from different paths. The first flow is fixed and consumes more
than half of the link bandwidth capacity. We then gradually
increase the bandwidth utilization of the second flow and mea-
sure the P50, P90, and P99 latency of each PCIe transaction of
Flow1. We find that the routable PCIe fabric has little queue-
ing effect and the bandwidth demand can quickly propagate

from the bottleneck point to upstream entities along the path.
Ash shown in Figure 14-a/b, when contending the host adapter
or PCIe switch, we observe up to 3.5%/2.3% or 2.6%/2.1%
P99 latency increase at the upstream/downstream port. This is
mainly because the flow at a congested upstream/downstream
port would receive fewer credits than it requires, where such
information will be back-propagated to the upstreamed ports
until the source host. Since the adapter and switch within
the fabric preserve little buffering, the end host could then
adjust the flow rate based on how fast the PCIe transactions
are delivered to the destination. However, the end host adapter
(Figure 14-c) behaves differently, where contention at the up-
stream/downstream path can use drastic P99 latency increase,
more than 10us. This is because our device engine (Figure 1)
doesn’t implement an auto-pacing module as the host and uses
a large command queue inside, yielding significant queueing.

Takeaways. The routable PCIe fabric provides ultra-low
latency communication between two endpoints and preserves
little buffering at both adapters and switches. The bandwidth
availability will be piggybacked over credits, which can be
quickly back-propagated from the congestion point to up-
stream entities until the source node. One can use this as a
congestion signal when coordinating concurrent flows.

5.3 Interference-free Orthogonal Paths

Last, we explore how orthogonal communication paths inter-
act with each other over the PCIe fabric since they stay under
the same PCIe root complex. As shown in Figure 12-b, we

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 305

 0

 5

 10

 15

 20

 0 2 4 6 8 10F
lo

w
2

 P
9

9
 L

a
t.

 (
u

s
)

Bandwidth of Flow1 (GB/s)

F1+F3
F2+F4

F1+F4

(a) Downstream.

 0

 5

 10

 15

 20

 0 2 4 6 8 10F
lo

w
2

 P
9

9
 L

a
t.

 (
u

s
)

Bandwidth of Flow1 (GB/s)

F1+F3
F2+F4

F1+F4

(b) Upstream.

Figure 15: Performance interference among orthogonal paths.

enable concurrent data movements across these orthogonal
paths (e.g., F1 v.s. F3, F2 v.s. F4, F1 v.s. F4) and explore how
latency and bandwidth are affected. Specifically, we increase
the bandwidth of PCIe flow1 by increasing the number of out-
standing requests and measure the transaction latency of flow2
(which is a 64B flow). As shown in Figures 15, unsurprisingly,
orthogonal paths across both upstream and downstream links
are completely independent and interference-free.

Takeaways. Orthogonal data paths over the routable PCIe
fabric can be viewed as physically isolated communication do-
mains, imposing little performance interference. When reason-
ing about the fabric performance or designing flow schedulers,
one can apply a divide-and-conquer strategy and categorize
flows into different isolated domains.

6 Performance Model of the Routable PCIe
Fabric: An Optimization Guide

Based on gathered characterization insights, we formalize the
data movement problem over a routable PCIe fabric, develop
an algorithm to predict the PCIe flow transmission perfor-
mance, and validate its accuracy in real settings.

6.1 Problem Formalization

We describe a routable PCIe fabric as a directed tree G =
{N,E}, where the host root complex is the root, PCIe end-
points are leaves, and internal/external PCIe switches are
branches. Each edge represents a PCIe upstream or down-
stream link with capacity. The fabric holds a set of active
flows F = { fi}, where each is described by fi = (Bin

i ,src,dst).
Bin

i is the bandwidth of a flow when running exclusively over
the fabric (i.e., standalone BW). src and dst are the source
and destination nodes of a PCIe transfer, which can be a host
or PCIe endpoint. We assume there is a unique path between
two nodes, which is widely applicable to the PCIe subsystem.

We aim to estimate how much bandwidth a flow is allocated
when deploying all the flows concurrently over the routable
PCIe fabric. To achieve this, we encode the above characteri-
zation insights as the following traffic orchestration rules:

• Rule 1: Maximum bandwidth bound. The aggre-
gated bandwidth of co-located flows over an up-
stream/downstream link should be no larger than the link
bandwidth capacity (§4.3);

• Rule 2: Bandwidth partition of a single link. Over one
PCIe link, the bandwidth partition among concurrent PCIe
flows depends on the ratio of their outstanding bytes (§4.5).

Algorithm 1 Bandwidth Constraints on an Edge
Input: Edge Capacity C, flows F = { fi} and their unconstrained bandwidths {Bu

i }
Output: The bandwidth constraints of flows {Bc

i }
1: if ∑Bu

i ≤C then
2: Bc

i = Bu
i , for each fi; ▷ not oversubscribed

3: else
4: n = F.size(); C′ =C;
5: while True do
6: m = 0;
7: for each fi in F do
8: if Bu

i ≤C′/n then ▷ less than equal share
9: Bc

i = Bu
i ; C =C−Bu

i ; ▷ not constrained
10: F.remove(fi); m = m+1;
11: n = n−m; C′ =C;
12: if m == 0 then ▷ all flows exceed equal share
13: break; ▷ must break if oversubscribed
14: for each fi in F do
15: Bc

i =C′/n; ▷ equal share on remaining capacity

Besides, there exists no interference between the upstream
and downstream direction (§4.6);

• Rule 3: Approximate max-min fair bandwidth alloca-
tion. Each communication entity guarantees the max-min
fairness across active lanes/links due to the credit-by-credit
round-robin scheduling discipline (§5.1). A PCIe flow can
max out its bandwidth when the link is under-utilized and
drops to a fair share when oversubscription happens;

• Rule 4: Isolated communication domains. There exists
no interference among orthogonal paths (§5.3). One can ap-
ply it to categorize flows in the first place and then conduct
performance analysis hierarchically.

6.2 Edge Constraints Relaxing Algorithm

We propose a new algorithm (called Edge Constraints Relax-
ing) to solve the problem. The key idea is to apply iterative
reduction by gradually constraining flow bandwidth based on
the capacity of oversubscribed links. Given the fabric topol-
ogy and deployed flows as inputs, based on the encoded rules,
our algorithm first finds all the oversubscribed edges and their
bandwidth constraints, and then updates each flow with its
most conservative constraints. Such iterative relaxing allows
all flows to converge to one allocation in finite steps where no
oversubscribed edge exists. The algorithm requires us to main-
tain two tables: oversubscribed edges and flow constraints.

Next, we’ll describe the algorithm in detail. To begin with,
we first initialize all flows with their standalone bandwidths
(ALG2 L1). For the oversubscribed edges table, each link is
associated with its housed flows (ALG2 L2–L6). Next, for
each round, the algorithm traverses each edge and determines
if it is under oversubscription or not by comparing the link
bandwidth capacity and the aggregated target bandwidth of
its housed flows. For all oversubscribed ones, we use the
Algorithm 1 based on Rule 3 to compute the constrained
bandwidth of each flow, which is then stored in the flow con-
straints table (ALG2 L10–L12). After all edges are traversed
in this round, flows that have constraints are updated accord-
ingly. The largest constraint of a flow is chosen as its next
bandwidth (ALG2 L17). Flows not being captured means
they are able to achieve their bandwidth in the current round,

306 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 16: The workflow of the proposed algorithm (§6.3). (a) shows algorithm inputs, including the topology graph and flows. (b) and
(c) depict the flow constraints table and oversubscribed edges table for each execution round. The units of all numbers are GB/s.

Algorithm 2 Edge Constraints Relaxing
Input: Edges E = {ei} and their capacities {Bei}, flows F = { fi} and their standalone

bandwidths {Bin
i }.

Output: Bandwidth allocation of flows {Bout
i }

1: Bi = Bin
i , for each fi in F; ▷ initialize

2: for each ei in E do
3: if ei has flows then
4: EdgeTable.add(ei); ▷ initialize Edge Table
5: for each fi in ei do
6: ei.flow_list.add(fi);
7: while EdgeTable.empty() == False do
8: for each ei in E do
9: if ∑ f j∈ei

f j >Cei then ▷ an oversubscribed edge
10: {Bc

j}= Algorithm1(Cei ,{B j}), f j ∈ ei;
11: for each f j ∈ ei do
12: f j .constraints.add(Bc

j);

13: else ▷ not oversubscribed, delete;
14: EdgeTable.delete(ei)
15: for each fi in F do
16: if fi.constraints.empty() == False then
17: Bi = fi.constraints.max(); ▷ flow update
18: Bout

i = Bi ▷ loop finishes, output bandwidth

which are the final outputs and will not be updated in later
phases. The insight of choosing the most conservative band-
width constraint is that it can guarantee the flow bandwidth
will always be at least its fair share. At the end of the current
round, we remove all edges that are no longer oversubscribed
from the edge table and use the new bandwidth (ALG2 L14)
for the next round to continue the iteration. When there are
no more oversubscribed edges, the bandwidths of each flow
are the final allocated results (ALG2-L18).

The algorithm is guaranteed to converge because there are
only finite edges generating fixed constraints in the system. At
any round, every constrained flow will be reduced, indicating
that at least one constraint will be eradicated from the list.
Thus, the algorithm must converge in finite rounds. Since the
number of edges a flow traverses is the maximum number
of constraints, the number of steps to converge is bounded
by twice the height of the tree. Our algorithm has a O(N)
complexity where N is the number of input flows.

6.3 A Walkthrough Example

We now use an example to show how the proposed algorithm
works. Figure 16-a shows a PCIe tree topology based on
our testbed. Specifically, node H represents the host adapter,
node S refers to the external PCIe switch, and nodes M/N are
endpoint adapters. Nodes A/B are two FPGAs in chassis 1

and C/D are the other two in chassis 2. The flows and their
standalone bandwidths are listed in the right table.

At the beginning, we initialize the flows with standalone
bandwidth and fill the flow list in the edge table. Then, we
calculate the aggregated bandwidth of each edge and compare
it with the link capacity to determine oversubscribed ones.
For example, edge HS is an oversubscribed one because its
capacity is 12, while the two housed flows f1 and f3 require
8 and 9 transmission bandwidths (8+9 > 12), respectively.
Applying the Algorithm 1 to HS, we will obtain a constraint
{6,6}, which is inserted into f1 and f3’s constraints in the table
(Figure 16-b). In the first round, the algorithm decides that
edges HS, SN, and ND are oversubscribed ones. As shown in
Figure 16-b, HS and SN put 6,6 to the f1’s constraints entry,
SN and ND insert 6,5 to the f2’s constraints, and HS writes 6
to f3’s constraints. After finding all constraints, we now use
these constrained bandwidths to reduce flows. We update the
f1’s bandwidth to 6 as its largest constraint is 6. The same
logic is applied to f2 and f3. Since f4 has no constraints,
as discussed above, it means that f4 can take the original
bandwidth as the final one with no bandwidth reduction.

In the second round, only those oversubscribed edges are
left in the edge table (Figure 16-c). After the first round, HS
and SN are no longer oversubscribed links, except ND. We
will then repeat the same procedure to update the flow. The
entire process is completed at the end of the second round as
all links are not oversubscribed (i.e., the edge table becomes
empty). So our final estimated results are: f1, f2, f3, and f4
will achieve 6, 5, 6, 4, respectively.

6.4 Validation and Discussion

We designed three experiments to validate the accuracy of
our proposed algorithms. Each experiment targets different
oversubscribed links. We use rPCIeBench to figure out the
standalone bandwidth of each flow and the link capacity (Ta-
ble 2-a). Tables 2-b/c/d present the comparison of each exper-
imental scenario (i.e., measured v.s. estimated).

The oversubscribed edge of the first validation experiment
is HS, where two downstream PCIe flows from the host fully
utilize the bandwidth between the host and switch. The two
flows should receive an equal bandwidth share. As shown
in Table 2-b, H→C and H→A achieve 5.77 GB/s and 5.43

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 307

Edge Capacity
HS / SH 11.55 / 12.25
SM, SN 15.56
MS, NS 15.46

MA,MB,NC,ND 8.74
AM,BM,CN,DN 11.70

(a) Measured edge capacities.

Flow Sta. Est. Mea.
H->C 8.51 5.78 5.77
H->A 7.21 5.78 5.43
C->B 1.76 1.76 1.70
B->D 7.19 7.19 6.93
A->H 2.54 2.54 2.52

(b) HS is oversubscribed.

Flow Sta. Est. Mea.
H->C 8.56 8.37 7.82
H->A 0.53 0.53 0.47
C->B 1.76 1.76 1.63
B->D 7.19 7.19 7.00
A->H 2.54 2.54 2.53

(c) SN is oversubscribed.

Flow Sta. Est. Mea.
H->C 0.55 0.55 0.49
H->D 8.58 4.37 3.58
C->B 1.76 1.76 1.75
B->D 7.19 4.37 3.59
A->H 2.54 2.54 2.54

(d) ND is oversubscribed.

Table 2: Measured bandwidth v.s. estimated bandwidth for three validation experiments. Sta. refers to the standalone bandwidth
measured via rPCIeBench. Est. means the estimated bandwidth using our Algorithm 2. Mea. shows the actual measured bandwidth
when all flows are deployed. The unit of all numbers is GB/s.

GB/s, respectively, close to our estimation. SN link is not over-
subscribed after H→C is constrained. The average error of
our estimation is 2.94%. In the second validation experiment,
the oversubscribed edge is SN. Our algorithm suggests that
H→C should be reduced for fairness, same as the measured
result (Table 2-c). Yet all other flows are affected a little bit.
Our modeling indicates that most PCIe flows in this setting
have no interactions with each other. But still, the algorithm
identifies the most constrained flow (H→C) and delivers a
5.15% estimation error. In the last validation experiment, the
oversubscribed point is at edge ND. The computed allocation
suggests an equal bandwidth share should happen on the end-
point link while other flows are left unchanged. The actual
bandwidth (Table 2-d) is almost the same except the overall
link capacity on ND decreases. We suspect this is mainly
due to the MMIO contention impact, which bounds the maxi-
mum PCIe bandwidth [50]. Because of this, our algorithm is
able to predict the right trends, but the estimation error rate is
increased to 11.32% due to decreased link capacity.

7 Related Work
PCIe Characterization. People have studied extensively
on understanding PCIe for different contexts. Kalia et al. [35]
explored the interaction between PCIe and RDMA primitives,
providing a low-level evaluation and system design guide-
lines to optimize RDMA-based systems. Researchers [50]
proposed a theoretical model of PCIe and developed the
pcie-bench to systematically measure the host PCIe sub-
strate. NetTLP [37] enhances the observability of PCIe trans-
actions by separating the PCIe transaction layer into a soft-
ware layer and connecting it to the hardware root complex.
Wei et al. [56] characterized an off-path SmartNIC when run-
ning distributed applications and unearthed the peculiarities
of the SmartNIC PCIe subsystem. Unlike these studies that
predominantly consider intra-host PCIe, we focus on under-
standing the performance implications of routable PCIe when
holding composable infrastructures.

System Benchmarking. Our study benefits from prior pio-
neering efforts in developing benchmarking systems for dif-
ferent computing domains, such as single-/multi-core proces-
sors [21, 33], domain-specific accelerators [32, 41, 52], cloud
applications [26, 36], microservices/serverless functions [28,
54], interconnects [35,50], storage systems [22,31,43,48,49],
and programmable networking devices [27, 30, 44, 46, 51, 56,

58, 59]. We follow similar design principles when building
the rPCIeBench framework: hardware/software open-source
across the system stack, end-to-end visibility, elastic modu-
larity for upgrading/replacing sub-components, and parame-
terized deployments with reconfigurability.

Memory Fabrics. The past few years have seen rising in-
terest from industry [3–8, 14, 19, 20] and academia [29, 34,
42, 45, 47, 55, 57] in developing this new cluster interconnect.
Memory fabrics (such as CXL [8] and CCIX [7]), provid-
ing the load/store interface, allow tight integration of cross-
server computational resources, yielding next-generation sys-
tem composability. However, under the hood, the memory
load/store instructions are carried over a PCIe-like substrate.
Therefore, our experimental methodology, performance anal-
yses, and findings would be generally applicable.

Discussion. Compared with an intra-server PCIe switch,
the external PCIe one offers higher scalability, allows elas-
tic resource management, and can assign remote endpoint
PCIe devices to different server hosts. However, its routing
table is still constructed during the bus enumeration phase
when booting the server host. Our characterization results
and findings (such as max-min bandwidth fairness and fast
bandwidth synchronization) are applicable to other routable
PCIe testbeds, not only GigaIO Fabrex. Future PCIe Gen5/6
devices would see a latency and throughput improvement.

8 Conclusion
This paper presents rPCIeBench, a software-hardware co-
designed benchmarking framework to characterize the perfor-
mance of routable PCIe, the underlying cluster interconnect
for building emerging composable infrastructures. Using rP-
CIeBench, we first examine the performance of one routable
PCIe path and then dissect the in-fabric traffic orchestration
behaviors. Based on the gathered insights, we develop an
edge-constrained relaxing algorithm to accurately predict the
communication performance of each PCIe flow over a shared
routable PCIe fabric.

Acknowledgement
We would like to thank the anonymous reviewers and our
shepherd, Anuj Kalia, for their comments and feedback. This
work is supported in part by NSF grants CNS-2106199 and
CNS-2212192 and Intel CAD SRS award.

308 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] A new twist on PCI-Express switching for the datacen-

ter. https://www.nextplatform.com/2019/10/
02/a-new-twist-on-pci-express-switching-f
or-the-datacenter/, 2019.

[2] Pushing PCI-Express fabrics up to the next level.
https://www.nextplatform.com/2020/03/27/pu
shing-pci-express-fabrics-up-to-the-next-l
evel/, 2020.

[3] Micron Compute Express Link™ (CXL™) memory
expansion for the next-generation data center. https:
//www.micron.com/solutions/server/cxl, 2022.

[4] Samsung Electronics Introduces Industry’s First 512GB
CXL Memory Module. https://news.samsung
.com/global/samsung-electronics-introduce
s-industrys-first-512gb-cxl-memory-module,
2022.

[5] SK hynix Develops DDR5 DRAM CXLTM Mem-
ory to Expand the CXL Memory Ecosystem.
https://news.skhynix.com/sk-hynix-develop
s-ddr5-dram-cxltm-memory-to-expand-the-cxl
-memory-ecosystem/, 2022.

[6] The XMM CXL E3.S from SMART Modular Tech-
nologies. https://www.smartm.com/product/xmm
-cxl-e3s, 2022.

[7] CCIX Specifications. https://www.ccixconsorti
um.com/library/specification/, 2023.

[8] CXL Specifications. https://www.computeexpre
sslink.org/download-the-specification, 2023.

[9] Enfabrica’s Accelerated Compute Fabric.
https://blog.enfabrica.net/press-relea
se-enfabrica-raises-125-million-series-b-t
o-fuel-ramp-of-ai-infrastructure-networkin
g-a8a0b21653d2, 2023.

[10] GigaIO’s FabreX System. https://gigaio.com/p
roducts/fabrex-system-overview/, 2023.

[11] GroqRack Compute Cluster. https://groq.com/w
p-content/uploads/2022/10/GroqRackâĎć-Com
pute-Cluster-Product-Brief-v1.0.pdf, 2023.

[12] H3’s Falcon System. https://www.h3platform.co
m/solution/composable-ai, 2023.

[13] Liqid’s SmartStack System. https://www.liqid.co
m/products/gpu-on-demand, 2023.

[14] Omega Fabric from IntelliProp. https://www.inte
lliprop.com/products-page, 2023.

[15] OProfile: a Statistical Profiler for Linux Systems.
https://man7.org/linux/man-pages/man1/opro
file.1.html, 2023.

[16] PCIe Specifications. https://pcisig.com/speci
fications/pciexpress/, 2023.

[17] perf: Linux profiling with performance counters.
https://perf.wiki.kernel.org/index.php/Mai
n_Page, 2023.

[18] Small Form Factor (SFF) Specifications.
https://www.snia.org/technology-communi
ties/sff/specifications, 2023.

[19] The Intel® Agilex™ 7 FPGA I-Series Development Kit.
https://www.intel.com/content/www/us/en/pr

oducts/details/fpga/development-kits/agil
ex/i-series/dev-agi027.html, 2023.

[20] The Leo Memory Accelerator Platform from Astera
Labs. https://www.asteralabs.com/products/
cxl-memory-platform/, 2023.

[21] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,
and Kai Li. The PARSEC benchmark suite: Characteri-
zation and architectural implications. In Proceedings of
the 17th international conference on Parallel architec-
tures and compilation techniques, pages 72–81, 2008.

[22] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing (SoCC’10), pages
143–154, 2010.

[23] F. J. Corbató and V. A. Vyssotsky. Introduction and
Overview of the Multics System. In Proceedings of the
November 30–December 1, 1965, Fall Joint Computer
Conference, Part I, page 185–196, 1965.

[24] Robert C Daley and Jack B Dennis. Virtual memory,
processes, and sharing in Multics. Communications of
the ACM, 11(5):306–312, 1968.

[25] A. Demers, S. Keshav, and S. Shenker. Analysis and
Simulation of a Fair Queueing Algorithm. In Sympo-
sium Proceedings on Communications Architectures &
Protocols, page 1–12, 1989.

[26] Michael Ferdman, Almutaz Adileh, Onur Kocberber,
Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic,
Cansu Kaynak, Adrian Daniel Popescu, Anastasia Aila-
maki, and Babak Falsafi. Clearing the Clouds: A Study
of Emerging Scale-out Workloads on Modern Hard-
ware. In Proceedings of the Seventeenth International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’12), page
37–48, 2012.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 309

https://www.nextplatform.com/2019/10/02/a-new-twist-on-pci-express-switching-for-the-datacenter/
https://www.nextplatform.com/2019/10/02/a-new-twist-on-pci-express-switching-for-the-datacenter/
https://www.nextplatform.com/2019/10/02/a-new-twist-on-pci-express-switching-for-the-datacenter/
https://www.nextplatform.com/2020/03/27/pushing-pci-express-fabrics-up-to-the-next-level/
https://www.nextplatform.com/2020/03/27/pushing-pci-express-fabrics-up-to-the-next-level/
https://www.nextplatform.com/2020/03/27/pushing-pci-express-fabrics-up-to-the-next-level/
https://www.nextplatform.com/2020/03/27/pushing-pci-express-fabrics-up-to-the-next-level/
https://www.micron.com/solutions/server/cxl
https://www.micron.com/solutions/server/cxl
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://news.skhynix.com/sk-hynix-develops-ddr5-dram-cxltm-memory-to-expand-the-cxl-memory-ecosystem/
https://news.skhynix.com/sk-hynix-develops-ddr5-dram-cxltm-memory-to-expand-the-cxl-memory-ecosystem/
https://news.skhynix.com/sk-hynix-develops-ddr5-dram-cxltm-memory-to-expand-the-cxl-memory-ecosystem/
https://news.skhynix.com/sk-hynix-develops-ddr5-dram-cxltm-memory-to-expand-the-cxl-memory-ecosystem/
https://www.smartm.com/product/xmm-cxl-e3s
https://www.smartm.com/product/xmm-cxl-e3s
https://www.ccixconsortium.com/library/specification/
https://www.ccixconsortium.com/library/specification/
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://blog.enfabrica.net/press-release-enfabrica-raises-125-million-series-b-to-fuel-ramp-of-ai-infrastructure-networking-a8a0b21653d2
https://blog.enfabrica.net/press-release-enfabrica-raises-125-million-series-b-to-fuel-ramp-of-ai-infrastructure-networking-a8a0b21653d2
https://blog.enfabrica.net/press-release-enfabrica-raises-125-million-series-b-to-fuel-ramp-of-ai-infrastructure-networking-a8a0b21653d2
https://blog.enfabrica.net/press-release-enfabrica-raises-125-million-series-b-to-fuel-ramp-of-ai-infrastructure-networking-a8a0b21653d2
https://blog.enfabrica.net/press-release-enfabrica-raises-125-million-series-b-to-fuel-ramp-of-ai-infrastructure-networking-a8a0b21653d2
https://gigaio.com/products/fabrex-system-overview/
https://gigaio.com/products/fabrex-system-overview/
https://groq.com/wp-content/uploads/2022/10/GroqRack™-Compute-Cluster-Product-Brief-v1.0.pdf
https://groq.com/wp-content/uploads/2022/10/GroqRack™-Compute-Cluster-Product-Brief-v1.0.pdf
https://groq.com/wp-content/uploads/2022/10/GroqRack™-Compute-Cluster-Product-Brief-v1.0.pdf
https://www.h3platform.com/solution/composable-ai
https://www.h3platform.com/solution/composable-ai
https://www.liqid.com/products/gpu-on-demand
https://www.liqid.com/products/gpu-on-demand
https://www.intelliprop.com/products-page
https://www.intelliprop.com/products-page
https://man7.org/linux/man-pages/man1/oprofile.1.html
https://man7.org/linux/man-pages/man1/oprofile.1.html
https://man7.org/linux/man-pages/man1/oprofile.1.html
https://pcisig.com/specifications/pciexpress/
https://pcisig.com/specifications/pciexpress/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.snia.org/technology-communities/sff/specifications
https://www.snia.org/technology-communities/sff/specifications
https://www.snia.org/technology-communities/sff/specifications
https://www.intel.com/content/www/us/en/products/details/fpga/development-kits/agilex/i-series/dev-agi027.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-kits/agilex/i-series/dev-agi027.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-kits/agilex/i-series/dev-agi027.html
https://www.asteralabs.com/products/cxl-memory-platform/
https://www.asteralabs.com/products/cxl-memory-platform/

[27] Alex Forencich, Alex C Snoeren, George Porter, and
George Papen. Corundum: An open-source 100-gbps
nic. In 2020 IEEE 28th Annual International Symposium
on Field-Programmable Custom Computing Machines
(FCCM), pages 38–46, 2020.

[28] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. An Open-Source Benchmark
Suite for Microservices and Their Hardware-Software
Implications for Cloud & Edge Systems. In Proceed-
ings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS’19), page 3–18, 2019.

[29] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and
Myoungsoo Jung. Direct Access, High-Performance
Memory Disaggregation with DirectCXL. In 2022
USENIX Annual Technical Conference (USENIX ATC
22), pages 287–294, 2022.

[30] Zerui Guo, Jiaxin Lin, Yuebin Bai, Daehyeok Kim,
Michael Swift, Aditya Akella, and Ming Liu. Log-
NIC: A High-Level Performance Model for SmartNICs.
In Proceedings of the 56th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO’23),
pages 916–929, 2023.

[31] Zerui Guo, Hua Zhang, Chenxingyu Zhao, Yuebin Bai,
Michael Swift, and Ming Liu. LEED: A Low-Power,
Fast Persistent Key-Value Store on SmartNIC JBOFs. In
Proceedings of the ACM SIGCOMM 2023 Conference
(SIGCOMM’23), pages 1012–1027, 2023.

[32] Johann Hauswald, Michael A Laurenzano, Yunqi Zhang,
Cheng Li, Austin Rovinski, Arjun Khurana, Ronald G
Dreslinski, Trevor Mudge, Vinicius Petrucci, Lingjia
Tang, et al. Sirius: An open end-to-end voice and vision
personal assistant and its implications for future ware-
house scale computers. In Proceedings of the Twentieth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
223–238, 2015.

[33] J.L. Henning. SPEC CPU2000: measuring CPU perfor-
mance in the New Millennium. Computer, 33(7):28–35,
2000.

[34] Junhyeok Jang, Hanjin Choi, Hanyeoreum Bae, Se-
ungjun Lee, Miryeong Kwon, and Myoungsoo Jung.
CXL-ANNS: Software-Hardware Collaborative Mem-
ory Disaggregation and Computation for Billion-
Scale Approximate Nearest Neighbor Search. In

2023 USENIX Annual Technical Conference (USENIX
ATC’23), pages 585–600, 2023.

[35] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Design Guidelines for High Performance RDMA Sys-
tems. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 437–450, 2016.

[36] Harshad Kasture and Daniel Sanchez. Tailbench:
a benchmark suite and evaluation methodology for
latency-critical applications. In 2016 IEEE International
Symposium on Workload Characterization (IISWC),
pages 1–10, 2016.

[37] Yohei Kuga, Ryo Nakamura, Takeshi Matsuya, and Yuji
Sekiya. NetTLP: A Development Platform for PCIe
devices in Software Interacting with Hardware . In 17th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI’20), pages 141–155, 2020.

[38] HT Kung, Trevor Blackwell, and Alan Chapman. Credit-
based flow control for ATM networks: Credit update
protocol, adaptive credit allocation and statistical mul-
tiplexing. In Proceedings of the conference on Com-
munications architectures, protocols and applications
(SIGCOMM’94), pages 101–114, 1994.

[39] HT Kung and Koling Chang. Receiver-oriented adaptive
buffer allocation in credit-based flow control for ATM
networks. In Proceedings of INFOCOM’95, volume 1,
pages 239–252, 1995.

[40] HT Kung and Robert Morris. Credit-based flow control
for ATM networks. IEEE Network, 9(2):40–48, 1995.

[41] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Xu Liu,
Nathan Tallent, and Kevin Barker. Tartan: Evaluating
modern gpu interconnect via a multi-gpu benchmark
suite. In 2018 IEEE International Symposium on Work-
load Characterization (IISWC), pages 191–202, 2018.

[42] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst,
Pantea Zardoshti, Stanko Novakovic, Monish Shah,
Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. Pond:
CXL-Based Memory Pooling Systems for Cloud Plat-
forms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, pages 574–
587, 2023.

[43] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swami-
nathan Sundararaman, Matias Bjørling, and Haryadi S.
Gunawi. The CASE of FEMU: Cheap, Accurate, Scal-
able and Extensible Flash Emulator. In 16th USENIX
Conference on File and Storage Technologies (FAST’18),
pages 83–90, 2018.

310 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[44] Ming Liu. Building Distributed Systems Using Pro-
grammable Networks. University of Washington, 2020.

[45] Ming Liu. Fabric-Centric Computing. In Proceedings of
the 19th Workshop on Hot Topics in Operating Systems
(HotOS’23), page 118–126, 2023.

[46] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishna-
murthy, Simon Peter, and Karan Gupta. Offloading dis-
tributed applications onto smartnics using ipipe. In
Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM’19), pages 318–333. 2019.

[47] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Jo-
hannes Weiner, Niket Agarwal, Pallab Bhattacharya,
Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,
and Prakash Chauhan. TPP: Transparent Page Place-
ment for CXL-Enabled Tiered-Memory. In Proceedings
of the 28th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, Volume 3, pages 742–755, 2023.

[48] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu
Zhao, Andrew Wei, In Hwan Doh, and Arvind Krishna-
murthy. Gimbal: enabling multi-tenant storage disaggre-
gation on SmartNIC JBOFs. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference (SIGCOMM’21),
pages 106–122, 2021.

[49] Jaehong Min, Chenxingyu Zhao, Ming Liu, and Arvind
Krishnamurthy. {eZNS}: An elastic zoned namespace
for commodity {ZNS}{SSDs}. In 17th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI’23), pages 461–477, 2023.

[50] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W
Moore. Understanding PCIe performance for end host
networking. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communica-
tion, pages 327–341, 2018.

[51] Yiming Qiu, Qiao Kang, Ming Liu, and Ang Chen.
Clara: Performance clarity for SmartNIC offloading. In
Proceedings of the 19th ACM Workshop on Hot Topics
in Networks (HotNets’20), pages 16–22, 2020.

[52] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-
Yeon Wei, and David Brooks. MachSuite: Benchmarks
for accelerator design and customized architectures. In
2014 IEEE International Symposium on Workload Char-
acterization (IISWC), pages 110–119, 2014.

[53] M. Shreedhar and George Varghese. Efficient Fair
Queueing Using Deficit Round Robin. In Proceedings
of the Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication,
page 231–242, 1995.

[54] Akshitha Sriraman and Thomas F Wenisch. µ suite:
a benchmark suite for microservices. In 2018 IEEE
International Symposium on Workload Characterization
(IISWC), pages 1–12, 2018.

[55] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Ipoom
Jeong, Ren Wang, and Nam Sung Kim. Demystifying
cxl memory with genuine cxl-ready systems and devices,
2023.

[56] Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen,
and Haibo Chen. Characterizing Off-path SmartNIC
for Accelerating Distributed Systems. In 17th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 23), pages 987–1004, 2023.

[57] Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung
Park, Jin yong Choi, Eyee Hyun Nam, Eunji Lee,
Sungjin Lee, and Bryan S. Kim. Overcoming the Mem-
ory Wall with CXL-Enabled SSDs. In 2023 USENIX
Annual Technical Conference (USENIX ATC’23), pages
601–617, 2023.

[58] Noa Zilberman, Yury Audzevich, G. Adam Covington,
and Andrew W. Moore. NetFPGA SUME: Toward 100
Gbps as Research Commodity. IEEE Micro, 34(5):32–
41, 2014.

[59] Noa Zilberman, Yury Audzevich, Georgina Kalogeridou,
Neelakandan Manihatty-Bojan, Jingyun Zhang, and An-
drew Moore. NetFPGA: Rapid prototyping of network-
ing devices in open source. ACM SIGCOMM Computer
Communication Review, 45(4):363–364, 2015.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 311

Words/Burst Channel (#) Throughput (GB/s) Latency (ns)
1 (32B) 1 6.8 326.3
2 (64B) 1 13.4 330.3
4 (128) 1 13.7 649.5

8 (256B) 1 13.7 1301.9
16 (512B) 1 13.0 1677.9
1 (32B) 32 216.2 326.4
2 (64B) 32 427.4 330.5
4 (128) 32 438.2 648.7

1 (256B) 32 439.5 1297.6
1 (512B) 32 416.1 1671.5

Table 3: Throughput and latency of HBM data read when vary-
ing the number of channels.

Granularity BRAM Latency (ns) HBM Latency (ns)
8B 627 762
16B 632 763
32B 640 768
64B 644 766

128B 1264 1551
256B 2511 3091
512B 4993 6055
1KB 9992 11961

Table 4: MMIO read latency comparing between BRAM and
HBM when varying the request size.

A HBM Performance Characterization
We characterized the latency and throughput of the enclosed
HBM of U55C. Table 3 presents our results.

B BlockRAM MMIO Performance
We compared the MMIO latency between BlockRAM
(BRAM) and HBM. In this experiment, we configure the
BlockRAM as the target device. Table 4 presents our results.

312 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Alea-BFT: Practical Asynchronous Byzantine Fault Tolerance

Diogo S. Antunes, Afonso N. Oliveira, André Breda,
Matheus Guilherme Franco, Henrique Moniz, Rodrigo Rodrigues∗

Instituto Superior Técnico (ULisboa) and INESC-ID

Abstract
Traditional Byzantine Fault Tolerance (BFT) state machine

replication protocols assume a partial synchrony model, lead-
ing to a design where a leader replica drives the protocol and
is replaced after a timeout. Recently, we witnessed a surge of
asynchronous BFT protocols, which use randomization to re-
move the need for bounds on message delivery times, making
them more resilient to adverse network conditions. However,
existing research proposals still fall short of gaining practi-
cal adoption, plausibly because they are not able to combine
good performance with a simple design that can be readily
understood and adopted. In this paper, we present Alea-BFT,
a simple and highly efficient asynchronous BFT protocol,
which is gaining practical adoption, namely in Ethereum dis-
tributed validators. Alea-BFT brings the key design insight
from classical protocols of concentrating part of the work on
a single designated replica and incorporates this principle in
a simple two-stage pipelined design, with an efficient broad-
cast led by the designated replica, followed by an inexpensive
binary agreement. The evaluation of our research prototype
implementation and two real-world integrations in cryptocur-
rency ecosystems shows excellent performance, improving
on the fastest protocol (Dumbo-NG) in terms of latency and
displaying good performance under faults.

1 Introduction
The history of Byzantine fault tolerant (BFT) replication

has gone through different stages throughout the years, from
the initial exploration of the topic in the 1980s [34] to the
start of a series of practical protocols that achieve good perfor-
mance in the late 1990s [16], and more recently the real-world
adoption of this class of protocols in the context of cryptocur-
rencies and blockchains [55].

BFT protocols must carefully navigate the constraints of
the FLP impossibility result [23]. This result states that no
deterministic algorithm can guarantee consensus (or, equiva-
lently, agreement on the outcome of a client request within

∗A. Oliveira is now with Three Sigma. M. Franco is now with ssv.network.

a replicated state machine) in a fully asynchronous system
where even a single process might experience a crash failure.
For many decades, the almost universally accepted way to
circumvent this hurdle was by assuming a partial synchrony
model, where the network is assumed to be initially asyn-
chronous but, after an unknown point in time, delivers and
processes messages within a certain time bound [21]. This
model leads to a class of protocol designs where a leader
can drive the execution of the protocol. In this case, after a
timeout indicating that the protocol is not making progress,
all replicas must cooperate in picking a new leader.

Recently, researchers picked up a different line of research
that had been somewhat dormant for many years: asyn-
chronous BFT protocols [9]. These protocols are safe and live
irrespectively of any timing assumptions being met, but at the
cost of probabilistic guarantees, i.e., they are provided with
very high probability. Removing these timing assumptions im-
proves protocol resilience against replica and network delays,
which may be due to reasons ranging from network problems
to malicious activity [17, 50]. The recent surge of interest in
asynchronous BFT came after the publication of a protocol
called HoneyBadgerBFT (HBBFT) [40]. Since its publica-
tion, several other protocols appeared [20,25–27,29,35,36,54],
making tremendous progress in the properties of these proto-
cols, namely their performance and asymptotic complexity.

However, while these proposals succeeded in showing that
asynchronous BFT algorithms can perform well, they have
yet to gain practical adoption in production systems. In our
view, this can largely be due to the fact that existing protocols
fall short of striking a virtuous combination of good perfor-
mance and simple protocol design. The academic research
community often overlooks the latter, but it can be a decisive
factor in practical adoption. An illustrative example of this
point, from the partially synchronous arena, is the work of
Istanbul BFT [41] (also known as QBFT [7]). This protocol is
widely adopted by the blockchain community [6], to a large
extent due to it being simple to understand and implement,
and despite it being published more than two decades after
PBFT [16] and its many successors.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 313

In this paper, we present Alea-BFT, the first protocol for
asynchronous BFT state machine replication that brings to-
gether top-notch performance – in terms of throughput, la-
tency, and asymptotic complexity – with a simple and elegant
design and practical adoption in real-world systems.

The main insight in Alea-BFT is that it selectively brings a
key design feature from classical partially synchronous proto-
cols, namely having a per-request designated leader replica
that drives the protocol execution for that request. To avoid
resorting to timeouts for leader replacement, the choice of
leader can constantly rotate among all replicas, as previously
done in the crash [39] and Byzantine [53] models. Then, by
splitting the request execution into two phases and placing on
this replica the responsibility of initiating the broadcast phase
to disseminate client requests, Alea-BFT avoids redundant
instances of expensive building blocks present in existing
asynchronous protocols and also avoids the use of threshold
cryptography to encrypt proposals replicated across processes.
However, this also introduces challenges, namely that there is
no guarantee that the broadcast by the leader will reach a suffi-
cient number of replicas in time for the subsequent agreement
phase. We address this challenge by including an agreement
phase, pipelined with the broadcast phase, whose goal is to
allow replicas to agree on whether it is safe to execute the
client request. The execution can proceed if sufficient replicas
received the request to reconstruct it. Otherwise, the request is
locally stored in one of the queues of pending requests. This
leads to a design featuring a novel combination of existing
building blocks, namely using VCBC as a broadcast primitive
and ABA as the driver for agreement, which are judiciously
joined together to provide a simple and performant protocol.

We report on three implementations of Alea-BFT: a re-
search prototype and two real-world implementations, one
of them in the context of the SSV Ethereum distributed val-
idator (the key technology behind staking pools), which is
currently being considered to replace QBFT as its main con-
sensus protocol in the near future [51], and another in the
context of an experimental consensus layer for the subnets of
Filecoin [45]. More recently, a second Ethereum distributed
validator incorporated Alea-BFT in its protocol roadmap [32].

Our experimental evaluation of these three prototypes
shows that Alea-BFT has excellent performance, namely with
comparable throughput and better latency than the fastest
available asynchronous BFT from the recent literature [24].
This combination of excellent performance, protocol elegance,
and real-world adoption makes Alea-BFT a practical solution
for asynchronous BFT.

The remainder of the paper is organized as follows. Sec-
tion 2 surveys related work. Section 3 describes the system
model and building blocks. Section 4 presents the design of
Alea-BFT, and we optimize it in Section 5. Section 6 analyses
its asymptotic complexity. Section 7 sketches a correctness
proof. Section 8 describes our various implementations, which
are evaluated in Section 9. We conclude in Section 10.

2 Related Work
The Byzantine consensus problem was formulated by Lam-

port et al. [34], and, over time, accumulated a large body of
research in the area [4,16,30,31,38,48]. BFT recently gained
adoption in cryptocurrencies and blockchains, with several
new protocols for those deployments [41, 55].

From these, the protocols that implement a form of con-
sensus – namely state machine replication protocols [49] –
face the FLP impossibility of consensus in asynchronous
systems [23]. To circumvent this result, most BFT systems
rely on timing assumptions such as partial synchrony [21]
for liveness. This is the case, for instance, of systems such
as PBFT [16] and also more recent proposals such as Hot-
Stuff [55], Kauri [44] or ISS [52]. Partially synchronous pro-
tocols can, however, be sensitive to conditions like a primary
that deliberately slows down the system [17] or situations
where replicas are correct but the network is unreliable [50].

As an alternative to assuming partial synchrony, random-
ized protocols circumvent FLP by guaranteeing the liveness
property with high probability. The design for this class of
protocols runs the main algorithm through multiple rounds
until its nondeterministic nature allows the probability of not
having liveness to be irrelevant. These protocols can then op-
erate over a fully asynchronous model, eliminating the need
for timing assumptions.

Existing asynchronous BFT protocols do not simultane-
ously achieve the goals of simplicity and performance, which
are key for practicality. In particular, the initial asynchronous
BFT protocols [10, 11, 14, 42, 47] are very elegant (some-
times described in less than 10 lines of pseudocode [11])
but have high communication costs and expected termina-
tion time. More recently, several new randomized protocols
appeared. At the core of this new line of proposals is an
asynchronous binary agreement (ABA) primitive, in which
processes decide on the value of a single bit. These ABA pro-
tocols are then used as building blocks for atomic broadcast
and state machine replication solutions. After a small set of
initial proposals, namely HoneyBadgerBFT (HBBFT) [40],
BEAT [20], EPIC [35], and Dumbo [27], a large number of
proposals emerged over the last few years [25, 26, 29, 36, 54].
Given the relatively large literature, we only describe in de-
tail two of these proposals, namely the pioneering work of
HBBFT [40] and a recent proposal with excellent performance
named Dumbo-NG [24].

HBBFT [40] is based on the observation that atomic broad-
cast can be built on top of an asynchronous common subset
(ACS) framework by combining it with a threshold encryp-
tion scheme. In ACS, every party proposes an input value
and outputs a common vector containing the inputs of at
least N − f distinct parties. HBBFT constructs ACS from
the composition of two phases: reliable broadcast (RBC) and
asynchronous binary agreement (ABA). During the broadcast
phase, every replica starts an RBC instance to disseminate its
proposal to all other replicas. Then, in the agreement phase,

314 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

N parallel ABA instances are invoked to decide on an N-bit
vector, where the i-th value indicates whether or not to include
the proposal from replica Pi in the final ACS output. Here,
threshold encryption prevents an adversary from selectively
censoring requests by selecting which proposals to include in
the ACS output vector.

To our knowledge, the best performing and state-of-the-
art proposal in this area (outperforming its competitors by
several-fold) is Dumbo-NG [24]. This protocol decouples a
continuously running broadcast phase from a sequence of
multi-valued Byzantine agreement (MVBA) instances. The
broadcast phase uses a custom protocol that resembles VCBC
(see Section 3), whereas the MVBA phase reuses an exist-
ing protocol, whose validity predicate is fine-tuned to check
for valid threshold signatures and other protocol-specific con-
ditions. The presence of an MVBA protocol introduces an
O(n3) message complexity, which contrasts with Alea-BFT’s
use of a round-robin ABA, with only O(n2) complexity.

Generally, we can categorize previous proposals as either
suffering from high communication costs (pre-HBBFT proto-
cols) or having a more complex design that hinders practical
adoption (new generation, starting from HBBFT). In contrast,
Alea-BFT brings together a simple and elegant design with
excellent performance and is now being adopted in real-world
systems, namely Ethereum distributed validators. This might
be in part due to the simplicity of the protocol and its compo-
nents – for instance, while Dumbo-NG uses an MVBA, which
is complex in both the provided guarantees and its implemen-
tation, Alea-BFT leverages a much simpler ABA primitive,
resulting in an overall protocol that is easier to understand and
implement. Furthermore, Alea-BFT improves on most prior
asynchronous protocols through its near quadratic message
complexity. Note that while quadratic protocols have been
theoretically proposed [5], we do not know of any protocol
with such characteristics that was implemented.

3 Basics
In this section, we present the system model and precisely

define the basic blocks upon which Alea-BFT is built.

3.1 System model
We consider a distributed system composed of N pro-

cesses, also called replicas, uniquely identified from the set
S = {P0, ...,PN−1} and an arbitrary number of clients.

We assume a Byzantine failure model where up to f =
⌊N−1

3 ⌋ replica processes can fail arbitrarily during the exe-
cution of the protocol. The remaining processes follow the
protocol specification and are termed correct. Alea-BFT is
adaptively secure against an adversary that dynamically de-
termines the replicas to compromise. That said, it reuses two
classes of protocols described later in this section, which
can have either statically secure or adaptively secure instantia-
tions. As such, choosing a statically secure subprotocol would
downgrade the solution to be statically secure.

The system is asynchronous, with the message delivery
schedule under adversarial control, and without bounds on
communication delays or processing times. Processes are
fully connected by channels, providing guarantees that mes-
sages are not modified in transit and are eventually delivered.
In practice, this requires message retransmission and point-to-
point authentication, but by considering this network model,
we can omit these from the protocol description.

Lastly, the adversary is assumed to be computationally
bound and thus unable to subvert cryptographic primitives.

3.2 Specification
We specify Alea-BFT as an atomic broadcast protocol,

which is a common abstraction for implementing state ma-
chine replication. Intuitively, this allows a process (e.g., a
proxy replica) to broadcast a message (e.g., a client request1

to be executed on the state machine) to all processes, ensur-
ing that all processes deliver all messages in the same order
(executing all client requests in the same order and therefore
transitioning through the same sequence of states). Formally,
atomic broadcast is defined as follows (with the standard as-
sumption that messages include a per-sender id and sequence
number to make them unique) [28]:
• Validity. If a correct process broadcasts a message m, then

some correct process eventually delivers m.
• Agreement. If any correct process delivers a message m,

then every correct process delivers m.
• Integrity. A message m appears at most once in the delivery

sequence of any correct process.
• Total order. If two correct processes deliver messages m

and m′, then both deliver m and m′ in the same order.

3.3 Building blocks
Alea-BFT is designed in a modular way by reusing several

subprotocols to carry out certain tasks. In this modular archi-
tecture, upper-level protocols provide inputs and receive out-
puts from subprotocols at the lower layers. Next, we present
the precise specification of these underlying primitives.
3.3.1 Verifiable Consistent Broadcast Protocol

Verifiable consistent broadcast (VCBC) is a broadcast vari-
ant that was first proposed by Cachin et al. [14]. It can only
guarantee that all correct replica processes deliver the broad-
cast value if the sender is correct; however, it always ensures
that no two correct processes deliver conflicting messages.
Additionally, it allows any party Pi that has delivered mes-
sage m to inform another party Pj about the outcome of the
broadcast execution, allowing it to deliver m immediately and
terminate the corresponding VCBC instance. More formally,
a VCBC protocol ensures the following properties [14]:
• Validity: If a correct sender broadcasts m, then all correct

parties eventually deliver m.
• Consistency: If a correct party delivers m and another cor-

rect party delivers m′, then m = m′.
1Client requests are also referred to in the literature as state machine

commands. Throughout the paper, we will use only the term request.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 315

• Integrity: Every correct party delivers at most one mes-
sage. Additionally, if the sender is correct, then it previously
broadcast the message.

• Verifiability: If a correct party delivers a message m, then
it can produce a single protocol message M that it may send
to other parties such that any correct party that receives M
can safely deliver m.

• Succinctness: The size of the proof σ carried by M is inde-
pendent of the length of m.

In Alea-BFT, we use a VCBC implementation consisting
of extending an echo broadcast protocol [14] with thresh-
old signatures to generate the proof σ. In short, the protocol
consists of the distinguished sender process sending m to
all processes and collecting a Byzantine quorum of ⌈ n+ f+1

2 ⌉
signature shares in the replies, allowing the sender to com-
bine these shares and convey the signature to all processes in
the final message step. Using threshold signatures keeps the
message size constant, ensuring succinctness. The message
complexity of the VCBC protocol we use is O(N) and its
communication complexity is O(N(|m|+λ)), assuming the
size of a threshold signature and share is at most λ bits.
3.3.2 Asynchronous Binary Agreement

An asynchronous binary agreement (ABA) protocol allows
correct processes to agree on the value of a single bit. Each
process Pi proposes a binary value bi ∈ {0,1} and decides
a common value b from the set of proposals by correct pro-
cesses. Formally, a binary agreement protocol can be defined
by the following properties:
• Agreement: If any correct process decides b and another

correct process decides b′, then b = b′.
• Termination: Every correct process eventually decides.
• Validity: If all correct processes propose b, then any correct

process that decides must decide b.
Given the FLP theorem [23], no deterministic algorithm can
satisfy all the previous properties in the asynchronous model
of Alea-BFT. As such, we use a randomized solution with the
following termination property:
• Termination: The probability that a correct process is un-

decided after r rounds approaches 0 as r approaches ∞.
This way, even though the number of rounds required to reach
agreement is unbounded, the probability that the protocol
does not terminate converges to zero.

We instantiate this primitive via the Cobalt ABA [37] pro-
tocol, a modified version of the proposal by Mostéfaoui et
al. [43]. The protocol relies on a common source of ran-
domness, i.e., a “common coin”, realized from a threshold
signature scheme by signing a unique bit string corresponding
to the name of the coin and combining the signature shares to
generate a random seed [15]. The protocol proceeds in rounds,
each consisting of the following all-to-all message communi-
cation steps: INIT, conveying the most recent proposal (0 or 1)
of each process, followed by AUX and CONF, trying to confirm
the existence of strong support (i.e., a Byzantine quorum) in
the previous step for a value. At the end of these exchanges,

processes either decide a value (if that support was gathered)
and convey it through a FINISH message or otherwise move
to the next round, changing their proposal to the value of the
common coin whenever both final outcomes are considered
possible. This protocol provides optimal resilience, O(N2)
expected message complexity, O(λN2) expected communica-
tion complexity and terminates in O(1) expected time.

4 Alea-BFT
This section presents Alea-BFT, starting with a broad

overview, followed by a detailed description and pseudocode.

4.1 Overview
One of the central insights of Alea-BFT is to have a single

replica propose a value per consensus instance, similar to what
happens in leader-based protocols in the partially synchronous
model, and all others agree on whether to deliver it or not.
Departing from a design where all replicas try to insert each
client request in the total order enables us to remove an all-
to-all communication phase and only have a single ABA
execution per client request (or batch of requests). This insight
then leads to the following initial design.
Strawman Proposal. The first design consists of adapting
the ACS construction of HBBFT but, instead of having all
replicas simultaneously propose values, a single replica is
selected as the proposer for each consensus round. The role of
the proposer is to choose a value (or batch of values) from its
buffer of pending requests to serve as a proposal and broad-
cast it to all replicas, using a broadcast primitive that ensures
that all replicas receive the same value – if they output a value
at all – a property ensured by consistent broadcast [13]. Cor-
rect replicas would then proceed to execute a single ABA
to determine whether to deliver the proposed value for that
round (if enough replicas have received it to ensure it persists
despite faults or asynchrony) or not deliver anything. Addi-
tionally, the proposer is deterministically rotated upon every
ABA execution to address the scenario where the proposer is
faulty without introducing a fail-over sub-protocol, similar to
what happens in other protocols for the partially synchronous
model (both with crash [39] and Byzantine [53] faults) that
incorporate leader rotation into the normal operation, such
that it is constantly changing.

This strawman protocol, however, raises an immediate prob-
lem. In previous protocols based on an ACS framework, repli-
cas are guaranteed to receive proposals from at least N− f
correct replicas. Therefore, they can wait until this threshold is
met before deciding which values to input for the subsequent
agreement stage. In contrast, in our strawman protocol, only
a single replica takes the role of the proposer at any given
time, so there is no way to determine whether the current
proposer is faulty or not, thus making it difficult to decide
which value to input into the ABA without resorting to some
timeout, which contradicts the asynchronous model.
Final design. The impossibility of waiting for some threshold
to be met before deciding the value to input to the ABA stage

316 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: Overview of Alea-BFT. Requests go through a
single broadcast primitive (VCBC), are inserted in a priority
queue at each replica, determining the final ABA input.

leads us to the insight of not waiting at all and instead allowing
undelivered proposals to exist, which are then carried over
across rounds. In other words, every time a particular replica
is reelected as the proposer, the corresponding ABA execution
will decide over its queue of pending proposals instead of a
single newly proposed value (or batch of values). This way,
replicas can submit their input to start the ABA for a new
round as soon as they conclude the previous round, since even
if the decision is 0 (i.e., not deliver any proposal in the round),
the same proposal will be eventually revisited when the same
replica becomes the leader and a larger threshold of replicas
become aware of the proposal, guaranteeing convergence to
an ABA decision of 1 over time. The ABA execution also
serves as a synchronization mechanism between replicas since
no replica can progress to a round until it concludes all ABA
instances for previous rounds.

In Alea-BFT, we leverage this idea to decompose the mono-
lithic architecture of previous ACS-based protocols, in which
a binary agreement instance actively waits for the correspond-
ing broadcast to terminate, into a two-stage pipeline, where
the results of the first phase (broadcast component) are queued
to be eventually processed, either by the current or by a subse-
quent execution of the second phase (agreement component).
Very importantly for performance, these two phases are exe-
cuted in parallel, allowing for efficient pipelining.

Figure 1 depicts the resulting overall protocol flow. It
starts with the broadcast component of the Alea-BFT pipeline,
where replicas receive client requests, (optionally) batch them
by storing these in a pending buffer of size B, and, when the
buffer is full, disseminate its contents via a VCBC primitive
tagged with an incremental sequence number s. The output of
VCBC at each replica is stored in a buffer and only removed
upon a decision of 1 in the subsequent phase. The broadcast
stage produces an instance of an ordered queue of undelivered
proposals at each replica. These instances are then used as
input to the next component of the pipeline. Note that every
replica maintains N queues of undelivered proposals, one for
each replica in the system, and these grow and shrink over
time depending on how efficiently the agreement component
can process them.

The next stage is the agreement component, which itera-
tively selects one of the queues and decides whether to deliver
the oldest proposal. To this end, replicas participate in a single
ABA execution, voting 1 if their queue contains this proposal
or 0 otherwise. If the decision is 1, then a sufficient threshold
of correct replicas are aware of the proposal and may safely
deliver it, as explained next. Otherwise, if a decision is 0, the
agreement component simply moves on to the next queue,
repeating the same process.

As mentioned, since the broadcast’s VCBC primitive may
terminate at different times in different processes, we need
to address the scenario where a correct process outputs an
ABA decision of 1, but does not yet know the corresponding
proposal. In this scenario, such a correct process requests the
missing proposal from the other processes that voted 1. This
recovery mechanism is guaranteed to work for the following
reasons. Since ABA decided 1, at least one correct process
voted for 1. Therefore, this process has the required VCBC
proof (as guaranteed by VCBC’s verifiability property) and
can forward it to the requesting process.

4.2 Detailed description
Processes in Alea-BFT maintain two state variables shared

between the two components of the pipeline: variable Si, con-
sisting of the set of all messages delivered by the protocol,
which is initialized as empty upon a call to the START pro-
cedure, and updated during the execution of the agreement
component; and variable queuesi, comprising an array of
N priority queues, each corresponding to a distinct replica
Px,∀x ∈ {0, ...,N−1}. Algorithm 1 is responsible for initial-
izing the shared state variables and starting the pipeline com-
ponents upon a call to the START procedure. In the remainder
of this section, we begin by specifying the data structure of
the priority queues and then describe the two components of
the pipeline in turn.

Algorithm 1 Alea-BFT - Initialization (at Pi)

1: constants:
2: N
3: f

4: state variables:
5: Si← /0

6: queuesi← /0

7: procedure START
8: queuesi[x]← new pQueue() ,∀x ∈ {0, ...,N−1}
9: async BC-START()

10: async AC-START()

4.2.1 Priority queues
A priority queue is a custom data structure for storing el-

ements sorted according to their priority values. We refer to
each position in a priority queue as a slot, uniquely identi-
fied by a priority value associated with it, where the lower-
numbered priority values represent the elements that must be

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 317

processed first. Only a single element can be inserted in a
given slot, even after being removed, as the slot is permanently
labelled as used and cannot store another element. A special
slot called the head slot always points to the slot with the
lowest-numbered priority whose value has not been removed
yet. The pointer to the head slot progresses incrementally,
conditioned by the removal of elements from the queue. A
priority queue exposes the following attributes:
• id: The unique identifier of the queue (static).
• head: The priority value associated with the head slot of

the queue (dynamic).
Additionally, a priority queue provides an interface for access-
ing and modifying its contents as described below:
• Enqueue (v,s): Add an element v with a given priority

value s to the queue (ignored if the corresponding slot is
not empty).

• Dequeue (v): Removes all instances of the specified ele-
ment v from the queue if it is present.

• Peek ()→{v,⊥}: Retrieve, without removing, the element
v in the head slot of the queue or ⊥ if the slot is still empty
(because no Enqueue for that slot has been invoked yet).

As we will see, Alea-BFT leverages the properties of this
structure to mediate the communication between the broad-
cast and agreement components of the protocol pipeline. In
particular, each of the N priority queues that each replica
maintains keeps track of the undelivered proposals originating
from the other replicas, ordered by the priority value assigned
to those proposals.
4.2.2 Broadcast Component

The broadcast component is responsible for establishing
an initial local order over the client updates received and
propagating that order to other replicas. Every replica process
maintains two local state variables, a buffer of pending client
requests bu fi, and an integer value priorityi, indicating the
next sequence number it should assign to a proposal. The
main logic of this component, illustrated in Algorithm 2, is
split between two upon rules:
Upon rule 1 (lines 9 to 15): The first rule is triggered at
process Pi upon receiving a client message m to be broadcast
in total order. It is responsible for waiting until a batch of B
requests has been accumulated, assigning it a local sequence
number, and VCBC-broadcasting it to all replicas. In more
detail, process Pi proceeds as follows:
• If the set of delivered messages Si does not contain the

client message m, append it to the buffer bu fi, or ignore it
otherwise (lines 10 to 11).

• If the size of bu fi reached a threshold B, input bu fi to a
VCBC instance tagged with ID (i, priorityi), indicating that
Pi assigned the local priority value priorityi to a proposal
consisting of the current buffer contents (lines 12 to 13).

• Increment priorityi, so that it can be assigned to the next
proposal from Pi, and clear the buffer (lines 14 to 15).

Upon rule 2 (lines 16 to 20): The second rule is triggered
at process Pi upon the delivery of a proposal m for a given

VCBC instance tagged with ID (j, priority j), where j corre-
sponds to the identifier of the replica Pj that proposed m, and
priority j to the sequence number assigned to it by Pj. Process
Pi proceeds as follows:
• Insert the delivered proposal m into the slot priority j of

the priority queue Q j, mapping to Pj (lines 17 to 18). This
corresponds to Pi updating its view on the state of Pj’s
pending requests.

• If the set Si contains m, indicating that it had already been
delivered, then process Pi immediately removes it from
Q j to prevent a duplicate delivery that would violate the
integrity property (lines 19 to 20).

Algorithm 2 Alea-BFT - Broadcast Component (at Pi)

1: constants:
2: B

3: state variables:
4: bu fi
5: priorityi

6: procedure BC-START
7: bu fi← /0

8: priorityi← 0

9: upon receiving a message m, from a client do
10: if m /∈ Si then
11: bu fi← bu fi∪{m}
12: if |bu fi|= B then
13: input bu fi to VCBC (i, priorityi)
14: bu fi← /0

15: priorityi← priorityi +1

16: upon outputting m for VCBC (j, priority j) do
17: Q j← queuesi[j]
18: Q j.Enqueue(priority j,m)
19: if m ∈ Si then
20: Q j.Dequeue(m)

4.2.3 Agreement Component
The agreement component presented in Algorithm 3 es-

tablishes a total order among client requests. Requests are
ordered through a succession of agreement rounds that iterate
through the various priority queues and decide whether to
insert the head of that queue in the total order or skip it. Pro-
cesses maintain a single state variable ri, serving as a unique
identifier for the current agreement round. The execution of
the agreement component starts with a call to the AC-START
procedure (line 3), which initializes the local variable ri to 0
and begins executing the agreement loop.
Agreement loop (lines 5 to 16): For each iteration ri of the
agreement loop, the queue of proposals pertaining to a certain
replica is selected. This replica is a designated round leader,
chosen through a deterministic function of the round number
F (e.g., by rotating through all replicas). Let Pa denote the
current round leader, and Qa the corresponding priority queue
at each replica ri. Process Pi proceeds as follows:

318 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

• Run an ABA instance with id (ri) to determine whether
the value in the head slot of Qa should be delivered in this
round. Process Pi, inputs 1 to ABA if its local Qa contained
value in the head slot, or 0 otherwise (lines 6 to 9).

• If the ABA execution decided for 0, indicating that no pro-
posal should be delivered for the current round ri, simply
proceed to the next loop iteration, otherwise:

– If process Pi input 0 to ABA, send a FILL-GAP mes-
sage to all processes that voted for 1. This step is
required because, at this point in time, Pi is unaware
of the value to deliver for ri and, therefore, must re-
quest it from another process. (lines 12 to 13).

– Block execution until the head slot of Qa contains a
value to be delivered via a call to the AC-DELIVER
procedure (line 14). The value of the head slot can be
updated by the delivery of a pending VCBC instance,
either through “normal” execution or as a result of the
reception of a FILLER message.

In addition to the main agreement loop, the agreement compo-
nent also defines two upon rules associated with the recovery
sub-protocol to handle the reception of valid FILL-GAP and
FILLER messages:
Upon rule 1 (lines 17 to 21): The first rule is triggered
by any correct process Pi upon the reception of a valid
⟨FILL-GAP,q,s⟩ message from Pj, where q identifies a prior-
ity queue Qq, and s specifies the current head slot of Qq in Pj.
Process Pi then proceeds as follows:
• Check if its local queue pertaining to Pq is more advanced

than the one of Pj, by comparing the head pointer of its
Qq against s (line 19). If it is lower, Pi cannot satisfy the
FILL-GAP request and thus ignores it. Otherwise:
– Compute and store in entries a verifiable message M for all
VCBC instances originating from Pq tagged with a priority
comprised between the value s, requested by Pj, and the
current head slot of Qq in Pi (line 20).
– Send a FILLER message to Pj containing all the VCBC ver-
ifiable messages M, computed in the previous step (line 21).

Upon rule 2 (lines 22 to 24): The second rule is trig-
gered by any correct process Pi upon receiving a valid
⟨FILLER,entries⟩ message. This message is received as a
response to a FILL-GAP request. It contains the required in-
formation necessary for Pi to progress in the execution of
the protocol by completing pending VCBC instances after
blocking in line 14. Process Pi proceeds as follows:
• Deliver all M messages in entries to the corresponding

VCBC instances. Note that the verifiability property of
VCBC ensures that it immediately terminates upon the
reception of M, therefore triggering the second upon rule
of the broadcast component.

Finally, the AC-DELIVER procedure (line 25), called dur-
ing the execution of the agreement loop, is responsible for
delivering the contents of value, a batch of totally ordered
messages m, to the application layer (line 31). Additionally,

this procedure also removes value from all priority queues
and appends its contents to the set of delivered requests S.
Note that if batching is naively used, this scheme would likely
lead to some redundant work being done by the replicas, as
large batches differing only in a few requests could not be
removed from the priority queues (in line 27), and therefore
redundant operations would go through agreement and only
be removed before attempting to execute them (line 29). To
avoid this, we steer the protocol towards all replicas having
the same batches by having the client optimistically submit
requests to a single replica. If, after a timeout, the client does
not receive a response, then it resubmits to all replicas. Fur-
thermore, a real-world implementation would place an upper
bound on the number of broadcast but not delivered requests,
which implies that requests are not batched as soon as they
are received but instead stay in a pool until the protocol pro-
gresses. Because of this, deduplication can be made before
the batch is created, avoiding the redundant work problem.

Algorithm 3 Alea-BFT - Agreement Component (at Pi)

1: state variables:
2: ri

3: procedure AC-START
4: ri← 0
5: while true do
6: Q← queuesi[F(ri)]
7: value← Q.Peek()
8: proposal← value ̸=⊥ ? 1 : 0
9: input proposal to ABA (ri)

10: wait until ABA (ri) delivers b then
11: if b = 1 then
12: if Q.Peek() =⊥ then
13: broadcast ⟨FILL-GAP,Q.id,Q.head⟩
14: wait until (value← Q.Peek()) ̸=⊥ then
15: AC-DELIVER(value)
16: ri← ri +1

17: upon receiving a valid ⟨FILL-GAP,q,s⟩ message from Pj do
18: Q← queuesi[q]
19: if Q.head ≥ s then
20: entries←VCBC(queue,s′).M ∀s′ ∈ [s,Q.head]
21: send ⟨FILLER,entries⟩ to Pj

22: upon delivering a valid ⟨FILLER,entries⟩ message do
23: for each message M ∈ entries do
24: deliver M to the corresponding VCBC

25: procedure AC-DELIVER(value)
26: for each Q ∈ queuesi do
27: Q.Dequeue(value)
28: for each m ∈ value do
29: if m /∈ Si then
30: Si← Si∪{m}
31: output m

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 319

5 Optimizations
As we implemented and tested Alea-BFT, we developed

the following optimizations to improve its performance.
Input unanimity. When a replica observes all N replicas pro-
viding as input the same value v to an ABA instance, then
it is guaranteed that the ABA will decide v. To leverage this
observation, we added an early termination path to the ABA
protocol. This is achieved by modifying the INIT message
(which is only sent once at the start of the protocol) to convey
the input of each replica. Then, when a replica receives N
modified INIT messages with the same value v, it immedi-
ately delivers v and broadcasts FINISH (if not broadcast yet).
Crucially, it continues executing the ABA protocol normally
until it receives 2 f + 1 FINISH messages, as only then it is
guaranteed that all correct replicas can eventually terminate.
Pipelining prediction. To maximize the chances of a success-
ful outcome of the ABA stage, replicas keep statistics about
the time to complete previous VCBC and ABA executions
and use that information to fine-tune the pipeline and adapt it
to the network conditions. In particular, replicas delay nega-
tive votes for an ABA when a VCBC for the slot being voted
is still in progress but is expected to end soon (according to
the current estimate), with the expectation that the time to
complete the broadcast is smaller than the cost of a negative
ABA result. Additionally, replicas anticipate batch formation
(and consequently the start of VCBC) when deemed useful
to minimize the chance of a negative ABA result. This is
achieved by attempting to time the start of the broadcast, such
that it ends right before the corresponding ABA.
Leader prediction. Latency can be improved if the client
sends the request to a replica that is about to become a leader:
if that happens, that replica will quickly include it in the next
batch to be processed and delivered. In situations with low
load and where a single client issues a sequence of requests,
we found that using a round-robin approach is very effective
because the rate of requests followed the leader rotation. Al-
ternatively, clients can receive periodic hints from the replicas
about the rotation schedule or rely on the replica they contact
to redirect the request to a faster replica.

6 Analysis
This section analyzes the asymptotic efficiency of the Alea-

BFT protocol according to time, message, and communication
complexity metrics. The results of this analysis are summa-
rized in Table 1.

To analyze Alea-BFT we observe that message exchanges
occur in three places for each proposal payload to be deliv-
ered. First, during the execution of the broadcast component,
a replica initiates a VCBC instance to disseminate the locally
ordered proposal. Second, all replicas participate in succes-
sive ABA executions to decide whether or not to deliver the
proposal in a particular slot. Here, we denote by σ the average
number of ABA instances executed over a given slot to reach
a positive decision. Finally, a fetch request is triggered by

replicas that did not VCBC-deliver the proposal before the
corresponding ABA decided 1.

6.1 Time Complexity
Time complexity is defined as the expected number of

communication steps from a client request to its output. In
the case of Alea-BFT, the first and third steps terminate in
constant time O(1). In contrast, the total number of rounds
required for the agreement component to decide depends on
the value of σ, therefore giving an expected time complexity
of Alea-BFT of O(σ).

6.2 Message Complexity
We measure message complexity as the expected number

of messages generated by correct replicas to execute a sin-
gle client request. In Alea-BFT, the VCBC instance from
the broadcast phase generates O(N) messages; then, every
ABA instance exchanges O(N2) messages in expectation;
and finally, the third recovery phase incurs an overhead of
O(N) messages per replica that triggers this fallback proto-
col. Hence, the expected message complexity of Alea-BFT is
O(σN2), due to the σ ABA instances that are executed per pri-
ority queue slot before delivery, which is close to the quadratic
lower bound on message complexity shown by Dolev and
Reischuk [19].

6.3 Communication Complexity
Communication complexity consists of the expected total

bit-length of messages generated by correct replicas during
the protocol execution. Let |m| correspond to the average
proposal size and λ the size of a threshold signature share.
The execution of VCBC incurs a communication complexity
of O(N(|m|+λ)). Each ABA instance requires correct repli-
cas to exchange O(λN2) bits in expectation, and finally, each
replica that triggers the recovery phase adds communication
cost of O(N(|m|+ λ)) bits. This results in an expected to-
tal communication complexity of O(N2(|m|+σλ)) due to σ

ABA executions and up to N recovery rounds being triggered.

Table 1: Complexity of Alea-BFT decomposed by stages.

Stage Message Communication Time
Broadcast O(N) O(N(|m|+λ)) O(1)
Agreement O(σN2) O(σλN2) O(σ)

Recovery O(N2) O(N2(|m|+λ)) O(1)
Total O(σN2) O(N2(|m|+σλ)) O(σ)

6.4 Estimating σ

As previously mentioned, Alea-BFT does not guarantee
a constant-time execution, which could negatively affect the
protocol latency. In particular, this is because multiple zero-
deciding ABA instances could be executed over the same
priority queue slot until its contents are considered totally
ordered. However, we argue that, despite being theoretically

320 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

unbounded, the value of σ (the number of ABA instances re-
quired for a decision) is, in practice, close to the optimal value
of 1. This is justified by the observation that, in a round-robin
leader assignment, each queue is revisited every N rounds,
meaning that N−1 other ABA instances were executed by the
time a given queue is revisited. Considering ABA’s validity
property, which states that the decided value must have been
proposed by a correct process, the termination of a VCBC
instance by N− f correct replicas guarantees that the next
ABA execution pertaining to it will decide for 1. Therefore,
for the value of σ to increase by a single unit, correct replicas
would, on average, have to complete N sequential ABA execu-
tions for every single VCBC instance. In our experiments, we
validated that the value of σ was very close to 1 in practice.

7 Correctness
Next, we sketch the correctness of the protocol, and we

provide a complete proof in a separate arXiv e-print [8]. The
complete proof follows the structured proof format by Lam-
port [33] for increased preciseness.
Safety. The two safety properties that need to be proven are
integrity (each message m appears at most once in the deliv-
ery sequence of correct process i) and total order (any two
messages m and m′ are delivered in the same order by any
pair of correct processes i and j). Integrity is derived from
the fact that once a message is delivered, it is added to the set
of delivered messages, dequeued from all queues and never
enqueued again. The total order property follows from the
fact that delivering two different messages at different replicas
in the same slot would lead to a violation of the consistency
property of VCBC.
Liveness. The liveness properties build mostly on the liveness
guarantees of the protocols used as building blocks. Given
these guarantees, it suffices to follow the protocol steps to
prove that we eventually satisfy the preconditions for the
building block protocols to produce the necessary outputs to
decide a value, namely that the messages that were broadcast
reach a sufficient number of correct processes.
Censorship resilience. Prior asynchronous BFT protocols
include mechanisms to enforce that Byzantine replicas cannot
significantly delay the delivery of any particular message
(i.e., a fairness property). This is required, in particular, for
protocols that use an asynchronous common subset (ACS)
to agree on a subset of the various proposals from different
replicas to deliver, since a Byzantine replica can bias the
choice of proposals to be included in the output of ACS. In
Alea-BFT, however, censorship resilience is easily achieved
by construction, given that any replica can initiate a VCBC for
a client request. Thus, clients can broadcast their requests to
f +1 or more replicas (possibly after a wait, to optimistically
check if sending to a single replica suffices). This guarantees
that at least one of these replicas is non-faulty and will drive
the request execution.

8 Implementations
We implemented Alea-BFT in three open-source proto-

types: an initial research implementation, and then two real-
world integrations, namely with the SSV Ethereum distributed
validator (where it is being considered to replace QBFT as its
main protocol in the near future [51]) and with an experimen-
tal consensus layer for subnets in the Filecoin network [1].
Research prototype. Our first prototype implementation
of Alea-BFT, which is available as open source [2], com-
prises 20,000 lines of Java code. The source code is orga-
nized in a modular manner, with the main logic of Alea-BFT
leveraging different subprotocols (namely broadcast and bi-
nary agreement) as building blocks. Reliable point-to-point
links were implemented using TCP streams, similar to prior
work [24, 27, 40]. Additionally, we implemented HBBFT us-
ing the same codebase as a starting point to use it as one of
the comparison baselines.
Ethereum distributed validator. Decentralized Validator
Technology (DVT) is a technology to improve the security,
robustness, and openness of the Ethereum network [12, 22].
Using distributed validators, several non-trusted parties coop-
erate to logically act as a single validator, and this way each
participant is able to overcome the need to commit 32 ETH
(over USD 3,700 as of this writing) to enter the network. To
act as a single logical entity, once a distributed validator is
called to conduct a validation task (called a duty in Ethereum),
the various parties that form the validator run a BFT consen-
sus protocol to decide on the input to the duty (which can
be, for instance, a block or a pointer to the head of the chain,
depending on the type of duty) and the respective outcome.

We have been collaborating with ssv.network for over one
year [51] to implement Alea-BFT in the SSV codebase, with
the goal of offering stronger resilience in the presence of ad-
verse network conditions or Byzantine behavior. Their current
plan is to incorporate Alea-BFT in their production codebase
in the near future. The repository for this implementation is
available as open source [3].

The main integration challenge came from the fact that
consensus is used as a standalone instance, instead of a repli-
cated state machine that executes a command sequence, which
would be more aligned with the abstraction offered by Alea-
BFT. Therefore, we adapted Alea-BFT with the following
design features and optimizations to fit this specific context.
Adapting Alea-BFT to one-shot consensus. In a distributed
validator, even though the duty is the same across the pro-
cesses that comprise the validator, because it is known a few
epochs in advance, the input to that duty needs to be agreed
upon because each process may retrieve it from a different
source (called a beacon client in Ethereum, with several possi-
ble providers). To reach consensus on that input, each process
will attempt to send its input using Alea-BFT’s atomic broad-
cast protocol, and the first to be delivered by the protocol is the
output of consensus. Note that only one instance of VCBC per
process is needed to implement this one-shot consensus, thus

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 321

simplifying the implementation. A possible concern is that the
validity condition for this consensus implementation allows
for a single divergent opinion to be the final output. However,
this is safe because the inputs are coming from sources that
are outside of the distributed validator system. Therefore their
correctness is beyond the scope of the distributed validator.
(In addition, some basic validation checks can also be con-
ducted.) Additionally, for fairness, the round-robin rotation of
protocol leaders in different consensus instances is based on
a pseudorandom sequence, allowing the advantageous roles
to even out over time.
Early consensus termination. As an optimization, if a replica
receives a VCBC proof for the same value for every partici-
pant, it knows in advance that the corresponding value is the
only possible output of consensus and can return it immedi-
ately. However, it continues to run the consensus protocol
in case other replicas do not receive the same view. This is
particularly useful in distributed validators because replicas
have a high chance of proposing the same value. This is be-
cause, for most validations, different inputs only occur when
different replicas have a divergent view of the current state of
the blockchain, which is rare. Note that this optimization dif-
fers from the first optimization described in Section 5, which
refers to ABA instead of VCBC instances.

The current implementation consists of 5,000 lines of Go
code, integrated as a subset of the large codebase of SSV.
Consensus layer for Filecoin subnets. We also imple-
mented Alea-BFT as part of Mir/Trantor [45, 46], an experi-
mental framework for distributed protocols, which is meant
to become a new consensus layer for the subnets of File-
coin [18, 45]. This framework already supports the ISS-
PBFT [52] protocol, and an upcoming implementation of
a new protocol, apart from Alea-BFT. We implemented Alea-
BFT in 4,000 lines of Go code and are currently merging it
into the main repository [45]. It is nonetheless already freely
available as open source [1]. The subprotocols used by Alea-
BFT – ABA and VCBC – are implemented as independent
modules, allowing their reuse by other protocols to be imple-
mented within the same framework. In addition, we added
support for threshold cryptography and BLS signatures within
the framework, to be available to other protocols.

We improved the performance of this implementation
through the parallel execution of agreement rounds. In
Alea-BFT, the system can only order one batch of requests
per agreement round, capping the system throughput to
BatchSize×ABARate. To overcome this limit, we allow mul-
tiple agreement rounds to make progress in parallel, but they
buffer the delivery until it is guaranteed that the instances are
delivered in order. However, we have to be careful so that
this parallelization does not overload the network, while also
remaining effective. To this end, we limit parallelization to the
next N agreement rounds and restrict ABA execution as fol-
lows. Before all the preceding agreement rounds deliver, ABA
instances are only allowed to make progress using the una-

nimity optimization and otherwise need to wait for their turn.
Under this restriction, the eager execution of ABA instances
only broadcasts up to two messages (INIT and FINISH), thus
limiting its network impact.

9 Evaluation

We evaluated the three implementations of Alea-BFT under
several scenarios. The following questions guide our evalua-
tion. (1) How does the performance of Alea-BFT compare to
other asynchronous BFT protocols across different configu-
rations? (2) How robust is Alea-BFT to faults? (3) How do
the real-world implementations of Alea-BFT compare to the
previous protocols that they employed?

9.1 Experimental environment

Baselines. The research prototype of Alea-BFT was evalu-
ated against two baselines. First, we compared it to our own
implementation of HBBFT [40], the first protocol in the new
generation of asynchronous BFT, and where, to obtain an
apples-to-apples comparison, we started from the same code-
base as Alea-BFT and tried to optimize the implementation
of HBBFT to the fullest extent. Second, we compared to
Dumbo-NG [24], which is the state-of-the-art asynchronous
BFT protocol with outstanding performance (several-fold bet-
ter than the direct competitors, according to their results [24]),
and, in this case, we deploy their unmodified codebase. For
the two real-world implementations, we used the protocols
that those systems originally supported as baselines.

Setup. We deployed Alea-BFT in a cluster where the replica
and client instances ran on machines equipped with AMD
EPYC 7272 12-Core Processors. In addition, Docker was
used to limit each replica’s CPU usage to 4 cores and the Java
VM was capped at 10GB of memory. These machines were
connected to the same local network with 1Gb connections.
To evaluate the effects of deploying Alea-BFT in a wide-area
network, we emulate varying additional inter-replica latency
using netem. Some deployment characteristics for the real-
world prototypes differed whenever noted.

Clients submit requests in an open loop, and we vary the
inter-request interval and the number of clients to increase
the load. The payload size of the requests and responses is
256 bytes, aligned with the size of Bitcoin transactions (as
noted and employed in previous work [40]). Each experiment
runs for 2 minutes, and we repeat experiments 5 times and
report the average. When measuring latency for Dumbo-NG,
its implementation always loads the system, and therefore we
would have to modify their codebase to measure the latency
of an isolated request. As such, the latency measurements
for Dumbo-NG represent the performance at an intermediate
load generated by the implementation, where the system is
not quiescent but also not as overloaded as during throughput
measurements for the other protocols.

322 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

9.2 Performance under different parameters
We start by using our research prototype to measure the

latency and throughput of Alea-BFT and the two baselines
under different configurations and deployments, namely vary-
ing the batch size, the replication factor, and the inter-replica
latency. When the sensitivity to one of these parameters is
being evaluated, the remaining ones are fixed to a batch size
of 1024, n =4 replicas (i.e., f = 1), and LAN (minimal inter-
node latency), respectively.

Figures 2a and 2b show the peak throughput and latency
while varying the batch size. In this particular setting, the
latency at the peak throughput is reported instead of the base
latency (measuring an isolated request without any system
load). This is because the latter would require issuing only
one or a few requests, much less than the batch size. Thus, the
measured latency would correspond to either slowly filling
up the batch or triggering a batch timeout. The results show
that Alea-BFT is competitive with the state of the art (Dumbo-
NG) and that both are a significant improvement over their
predecessor (HBBFT). While Alea-BFT cannot match the
peak throughput of Dumbo-NG, they are both in the same
order of magnitude (hundreds of thousands of txs/s), versus
≈15k txs/s for HBBFT. When considering latency, Alea-BFT
outperforms Dumbo-NG across all tested batch sizes. We
attribute these differences in throughput and latency to the
choice of agreement primitive. In particular, Dumbo-NG uses
MVBA, which allows for better throughput by accepting sev-
eral batches at once, but the simpler ABA primitive of Alea-
BFT enables a better latency under a comparable load. Note
that the fact that Alea-BFT’s throughput peaks earlier than
Dumbo-NG’s in this setting is mainly an implementation ar-
tifact – our codebase has an external open loop client that
further saturates the network, unlike Dumbo-NG’s.

Next, we use netem to evaluate the performance under
different network conditions (LAN vs. WAN). Figures 2c
and 2d show the peak throughput and latency when varying
inter-replica latency. The results show that Alea-BFT has
the lowest latency of all protocols while achieving a peak
throughput in the tens of thousands of requests per second
when the inter-node latency is under 25ms. HBBFT witnesses
a similar degradation in latency to Alea-BFT because the
critical path for a normal-case request execution is the same
for both protocols, except for a single protocol step, which
explains the slightly higher latency of HBBFT.

Finally, we scale out the experiments by increasing the
number of replicas participating in the consensus. For these
experiments, we use 13, 25, 37 and 49 replicas, and, in this
case, we use netem to simulate a WAN environment, with a
75ms inter-replica latency, corresponding to an RTT of 150ms
(approximating a cloud deployment). Furthermore, since the
available setup forced some replicas to be co-located on the
same machine, to ensure a realistic and uniform bandwidth
availability, each instance’s bandwidth was capped at 50Mb/s
using a token bucket filter.

(a) Peak throughput vs batch size (b) Latency at peak throughput
vs batch size

(c) Peak Throughput vs inter-
replica latency

(d) Base latency vs inter-replica
latency

(e) Peak throughput vs system
size

(f) Base latency vs system size

(g) Throughput during crash fault

Figure 2: Prototype implementation evaluation
In this case, we were not able to configure the Dumbo-

NG code to use the same replica group sizes as the ones
we employed for the other two systems, which explains why
there are only two curves. Our results show that Alea-BFT
not only has superior throughput but also achieves very good
latency in unloaded scenarios, due to the clients being able
to predict the current leader and send requests to the replica
that will drive the decision the fastest. On the other hand, in
unloaded scenarios, HoneyBadger’s clients need to contact
2 f +1 replicas to ensure progress, meaning that, for a single
request to go through, 2 f +1 ABAs need to be executed.

9.3 Performance under faults
We compared the performance of Alea-BFT and the base-

lines in a scenario where one of the replicas crashes 50
seconds into the trace. We inject a crash fault instead of a
protocol-specific Byzantine fault, for a direct comparison be-
tween protocols. The results in Figure 2g show that Alea-
BFT and HBBFT suffer more with the crash of f replicas
because they share the unanimity optimization described in

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 323

Section 5 (which cannot be used when a replica is unrespon-
sive), but Dumbo-NG also takes a significant hit (around 30%
of throughput) due to bandwidth wasted on the faulty replica.

We also evaluate the performance under faults for the other
implementations and present the results in the next section.

9.4 Real-world implementations
Ethereum distributed validator. We start this part of the
evaluation with the implementation of Alea-BFT in the SSV
distributed validator of Ethereum. In this case, the experimen-
tal methodology is constrained by the way that SSV operates,
namely that the system progresses in a sequence of slots of
fixed duration (12 seconds in Ethereum), and during each slot,
each validator is assigned a set of duties (tasks such as block
proposal and attestation). Thus, to measure the base latency,
we set the number of duties per slot to 1 and measure the time
to complete it, whereas throughput is measured by increasing
the number of duties per slot until this metric peaks. Since
the performance is not network-bound and the number of
nodes is low, we did not use the bandwidth cap. We used a
group of 4 replicas, with no added inter-replica latency, and
batching is not applicable in this setting. We tested variants of
Alea-BFT that use different message authentication methods
and compared these to the existing QBFT-based codebase. In
particular, we start with a direct comparison to QBFT (which,
in the SSV codebase, uses BLS digital signatures without ag-
gregation), and then add BLS aggregation to Alea-BFT. (This
change could also be applied to QBFT, but this was avoided to
keep the baseline as the existing codebase.) Then, we replace
signatures with HMACs, which is possible in Alea-BFT but
would not be directly applicable to QBFT, because of mes-
sages conveyed to all processes during round changes. In the
case of HMACs, BLS is only used to verify the final VCBC
signature and compute ABA’s shared coin.

Figure 3 shows the performance of the SSV validator using
different protocols. In these plots, the latency and throughput
in the most basic setting can be determined by the leftmost
point of Figures 3a and 3b. These results show that Alea-BFT
with BLS aggregation and with HMACs has similar peak
throughput and better latency than the previous codebase that
uses QBFT. This highlights how designing Alea-BFT to have
a small number of protocol steps, combined with the possi-
bility of using HMACs that comes from not having the view
change mechanism from partially synchronous protocols can
lead to competitive performance in this setting. We attribute
the slightly better throughput of QBFT to the leader-driven
protocol allowing for exchanging a smaller number of mes-
sages. However, we see the overhead of Alea-BFT as a modest
price to pay for not making partial synchrony assumptions.

The effects of varying the inter-replica latency is shown in
the remainder of Figures 3a and 3b. The key takeaway is that,
for all tested conditions, Alea-BFT closely follows QBFT in
terms of base latency and peak throughput and, with the best
choice of cryptographic primitives in place, Alea-BFT can

(a) Peak throughput vs inter-
replica latency

(b) Base latency vs inter-replica
latency

(c) Peak throughput vs system
size

(d) Base latency vs system
size

(e) Throughput during crash fault

Figure 3: Distributed validator deployment evaluation

even achieve lower latency values. Figure 3b also depicts the
change of relative importance of cryptographic primitives as
inter-replica latency varies – in a LAN environment, as the
network delay is small relative to the cost of cryptography,
the several variants have a very noticeable relative difference
among them. However, as the inter-replica delay increases,
this difference decreases in proportion.

Next, we measured performance as the group size increases
(Figures 3c and 3d). Currently, in SSV, a validator can only
employ 4, 7, 10, or 13 operators, as defined in its smart con-
tract. In this experiment, as in the previous one, Alea-BFT’s
latency and throughput follow QBFT’s, achieving lower la-
tency and higher throughput values when using HMAC for
point-to-point authentication and BLS digital signatures.

Finally, Figure 3e shows the results of an experiment where
we crash one of the processes, chosen at random, at the be-
ginning of the 11th slot in the run, then restart it in the 21st
slot, and we plot the number of duties that are executed per
slot throughout the trace. The results show that Alea-BFT is
more resilient to this fault because of the principles behind
its design: the fault will affect 1/4 of the VCBC instances,
but these rounds will quickly be skipped and replaced with
productive work led by the other replicas. In contrast, QBFT
waits for a timeout and a leader change protocol to complete,
which slows down the entire system for that duration.

324 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Consensus layer for Filecoin subnets. In the last part of
this section, we evaluate Alea-BFT’s integration into an ex-
perimental consensus layer [45, 46] for Filecoin subnets [18]
against the existing implementation of ISS-PBFT [52] in the
same codebase. ISS-PBFT uses the same parameters as in its
original evaluation [52].

Base latency experiments use two co-located closed-loop
clients per replica, ensuring incoming request queues are
never empty. This was required because the implementation
of ISS-PBFT stalls when there are no requests to propose.
However, it has the downside of generating some load that
may negatively affect latency. We only present results for
replica 0 in the ISS-PBFT latency measurements due to an
implementation issue that inflates latencies in other replicas,
which would unfairly harm the baseline’s performance. Peak
throughput is measured in a configuration of 8∗B closed-loop
clients co-located with each replica, where B is the batch size,
which we empirically determined to maximize the throughput.

We begin by evaluating Alea-BFT’s performance against
ISS-PBFT when varying the inter-node latency. Figures 4a
and 4b show that Alea-BFT closely follows the performance
ISS-PBFT in wide-area settings, in terms of peak throughput
and base latency. Furthermore, while Alea-BFT is initially
limited to ≈40k requests/s and ≈50ms base latency, it be-
comes on par with ISS-PBFT when the limiting factor shifts
from threshold cryptography to network latency.

Additionally, we evaluated Alea-BFT’s ability to scale
against ISS-PBFT, which is relevant given that scalability is a
key design goal in ISS. Figures 4c and 4d show peak through-
put and base latency measurements for Alea-BFT and ISS-
PBFT for a variety of system sizes. Regarding peak through-
put (Figure 4c), Alea-BFT’s throughput degrades gracefully
as the system size increases, fully saturating the (bandwidth-
capped) network. In contrast, ISS-PBFT degrades abruptly
and stops processing requests altogether after a few seconds
for N = 49. However, we believe this is an artifact of this im-
plementation of ISS-PBFT, which reacts poorly under strained
network conditions and is not intrinsic to the ISS-PBFT pro-
tocol. Regarding latency (Figure 4d), both protocols maintain
near-constant base latency under system sizes up to N = 22,
after which it begins to increase. In this case, ISS-PBFT has a
lower latency than Alea-BFT because its multi-leader design
allows requests to be processed as soon as they reach the
PBFT primary replica, whereas in Alea-BFT we have to wait
for the designated replica’s turn to run its agreement round.

Finally, we studied the impact of crash faults on both Alea-
BFT and ISS-PBFT. Figure 4e shows an execution trace of
one Alea-BFT and one ISS-PBFT execution with the default
settings, where a single replica crashes after 150s (and stays
crashed). To aid evaluation, a dotted line was added to both
curves, showing a moving average of the system’s through-
put across all repetitions. In this trace, we first observe a
15-second stall of ISS-PBFT after the crash, waiting for a
timeout for the detection of the crashed replica, whereas Alea-

(a) Peak throughput vs inter-
replica latency

(b) Base latency vs inter-replica
latency

(c) Peak throughput vs system
size

(d) Base latency vs system size

(e) Throughput during crash fault

Figure 4: Mir/Trantor deployment evaluation
BFT can continue uninterrupted (albeit at reduced through-
put) thanks to its leaderless design. After this timeout expires,
ISS excludes the crashed replica from the set of leaders and
continues with a relatively small (≈20%) performance hit.
However, Alea-BFT is penalized on two fronts – it both loses
a replica proposing requests (like ISS) and the ABA unanim-
ity optimization – leading to a reduction in throughput when
compared to the system with all replicas functional.

10 Conclusion
In this paper, we presented Alea-BFT, a practical asyn-

chronous BFT protocol with a design that combines simplic-
ity with performance. Our experimental evaluation shows that
Alea-BFT performs better than the top-performing Dumbo-
NG in latency, offers comparable throughput, and is resilient
to faults. Importantly, Alea-BFT is being adopted in the real
world, namely by Ethereum distributed validators.

Acknowledgments
We thank the anonymous reviewers and our shepherd,

Zhaoguo Wang, for their helpful feedback. This work was sup-
ported by Fundação para a Ciência e a Tecnologia, projects
UIDB/50021/2020 and PTDC/CCI-INF/6762/2020, and by
the European Union’s Horizon 2020 research and innovation
programme, under grant agreement No 952226, project BIG.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 325

References
[1] Mir codebase with Alea-BFT. https://github.c

om/abread/mir/tree/43a82f13b3f5353a80bdfe2f
e2613daed0fbf710.

[2] Prototype implemenation of Alea-BFT. https://gith
ub.com/diogoantunes25/Alea-BFT.

[3] ssv codebase with Alea-BFT. https://github.com
/MatheusFranco99/ssv.

[4] Michael Abd-El-Malek, Gregory R Ganger, Garth R
Goodson, Michael K Reiter, and Jay J Wylie. Fault-
scalable byzantine fault-tolerant services. ACM SIGOPS
Operating Systems Review, 39(5):59–74, 2005.

[5] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegel-
man. Asymptotically optimal validated asynchronous
byzantine agreement. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing,
PODC ’19, page 337–346, 2019.

[6] Enterprise Ethereum Alliance. EEA publishes QBFT
blockchain consensus protocol. https://entethalli
ance.org/23-01-qbft-spec-version-1-releas
ed/.

[7] Ethereum Enterprise Alliance. QBFT blockchain con-
sensus protocol specification v1. https://entethal
liance.org/specs/qbft/v1/.

[8] Diogo S. Antunes, Afonso Oliveira, André Breda,
Matheus Guilherme Franco, Henrique Moniz, and Ro-
drigo Rodrigues. Alea-bft: Practical asynchronous
byzantine fault tolerance. arXiv:2202.02071 [cs.DC] ht
tps://arxiv.org/abs/2202.02071, 2022.

[9] James Aspnes. Randomized protocols for asynchronous
consensus. Distributed Computing, 16(2):165–175,
2003.

[10] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asyn-
chronous secure computations with optimal resilience.
In Proceedings of the thirteenth annual ACM sympo-
sium on Principles of distributed computing, PODC ’94,
pages 183–192, 1994.

[11] Gabriel Bracha. Asynchronous byzantine agreement
protocols. Inf. Comput., 75(2):130–143, nov 1987.

[12] Vitalik Buterin. Post by @VitalikButerin on
X. https://twitter.com/VitalikButerin/statu
s/1588669782471368704.

[13] Christian Cachin, Rachid Guerraoui, and Luís E. T. Ro-
drigues. Introduction to Reliable and Secure Distributed
Programming (2nd ed.). Springer, 2011.

[14] Christian Cachin, Klaus Kursawe, Frank Petzold, and
Victor Shoup. Secure and efficient asynchronous broad-
cast protocols. In Advances in Cryptology — CRYPTO
2001, pages 524–541. Springer, 2001.

[15] Christian Cachin, Klaus Kursawe, and Victor Shoup.
Random oracles in constantinople: Practical asyn-
chronous byzantine agreement using cryptography. Jour-
nal of Cryptology, 18(3):219–246, 2005.

[16] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance. In Proceedings of the Third USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 1999, pages 173–186, 1999.

[17] Allen Clement, Edmund L. Wong, Lorenzo Alvisi,
Michael Dahlin, and Mirco Marchetti. Making byzan-
tine fault tolerant systems tolerate byzantine faults. In
Proceedings of the 6th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI
2009, pages 153–168, 2009.

[18] Alfonso De la Rocha, Lefteris Kokoris-Kogias, Jorge M
Soares, and Marko Vukolić. Hierarchical consensus: A
horizontal scaling framework for blockchains. In 2022
IEEE 42nd International Conference on Distributed
Computing Systems Workshops (ICDCSW), pages 45–
52, 2022.

[19] Danny Dolev and Rüdiger Reischuk. Bounds on infor-
mation exchange for byzantine agreement. Journal of
the ACM (JACM), 32(1):191–204, 1985.

[20] Sisi Duan, Michael K Reiter, and Haibin Zhang. Beat:
Asynchronous bft made practical. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 2028–2041, 2018.

[21] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Consensus in the presence of partial synchrony. J. ACM,
35(2):288–323, apr 1988.

[22] ethereum.org. Distributed validator technology. https:
//ethereum.org/en/staking/dvt/.

[23] Michael J Fischer, Nancy A Lynch, and Michael S Pa-
terson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM (JACM), 32(2):374–
382, 1985.

[24] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing
Xu, and Zhenfeng Zhang. Dumbo-NG: Fast asyn-
chronous bft consensus with throughput-oblivious la-
tency. In Proceedings of the 2022 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS
’22, page 1187–1201, 2022.

326 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/abread/mir/tree/43a82f13b3f5353a80bdfe2fe2613daed0fbf710
https://github.com/abread/mir/tree/43a82f13b3f5353a80bdfe2fe2613daed0fbf710
https://github.com/abread/mir/tree/43a82f13b3f5353a80bdfe2fe2613daed0fbf710
https://github.com/diogoantunes25/Alea-BFT
https://github.com/diogoantunes25/Alea-BFT
https://github.com/MatheusFranco99/ssv
https://github.com/MatheusFranco99/ssv
https://entethalliance.org/23-01-qbft-spec-version-1-released/
https://entethalliance.org/23-01-qbft-spec-version-1-released/
https://entethalliance.org/23-01-qbft-spec-version-1-released/
https://entethalliance.org/specs/qbft/v1/
https://entethalliance.org/specs/qbft/v1/
https://arxiv.org/abs/2202.02071
https://arxiv.org/abs/2202.02071
https://twitter.com/VitalikButerin/status/1588669782471368704
https://twitter.com/VitalikButerin/status/1588669782471368704
https://ethereum.org/en/staking/dvt/
https://ethereum.org/en/staking/dvt/

[25] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Son-
nino, Alexander Spiegelman, and Zhuolun Xiang.
Jolteon and ditto: Network-adaptive efficient consensus
with asynchronous fallback. In Financial Cryptogra-
phy and Data Security - 26th International Conference,
FC 2022, volume 13411 of Lecture Notes in Computer
Science, pages 296–315. Springer, 2022.

[26] Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang,
Jing Xu, and Zhenfeng Zhang. Speeding dumbo: Push-
ing asynchronous BFT closer to practice. In 29th Annual
Network and Distributed System Security Symposium,
NDSS 2022, 2022.

[27] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu,
and Zhenfeng Zhang. Dumbo: Faster asynchronous bft
protocols. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security,
pages 803–818, 2020.

[28] Vassos Hadzilacos and Sam Toueg. A modular approach
to fault-tolerant broadcasts and related problems. Tech-
nical report, Cornell University, 1994.

[29] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and
Alexander Spiegelman. All you need is DAG. In Pro-
ceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, PODC’21, page 165–175, 2021.

[30] K.P. Kihlstrom, L.E. Moser, and P.M. Melliar-Smith.
The securering protocols for securing group commu-
nication. In Proceedings of the Thirty-First Hawaii
International Conference on System Sciences, volume 3,
pages 317–326 vol.3, 1998.

[31] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: speculative
byzantine fault tolerance. In Proceedings of twenty-
first ACM SIGOPS symposium on Operating systems
principles, SOSP 2007, pages 45–58, 2007.

[32] Oisín Kyne. The distributed validator protocol roadmap.
Obol Network Blog. https://blog.obol.tech/r
oadmap-the-distributed-validator-protocol/,
2024.

[33] Leslie Lamport. How to write a 21st century proof.
Journal of Fixed Point Theory and Applications, 11:43–
63, 2012.

[34] Leslie Lamport, Robert Shostak, and Marshall Pease.
The byzantine generals problem. ACM Trans. Program.
Lang. Syst., 4(3):382–401, July 1982.

[35] Chao Liu, Sisi Duan, and Haibin Zhang. Epic: Efficient
asynchronous bft with adaptive security. In 2020 50th
Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN 2020), pages 437–451.
IEEE, 2020.

[36] Yuan Lu, Zhenliang Lu, and Qiang Tang. Bolt-dumbo
transformer: Asynchronous consensus as fast as the
pipelined BFT. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications
Security, CCS 2022, pages 2159–2173, 2022.

[37] Ethan MacBrough. Cobalt: Bft governance in open
networks. arXiv preprint arXiv:1802.07240, 2018.

[38] Dahlia Malkhi and Michael Reiter. Byzantine quorum
systems. Distrib. Comput., 11(4):203–213, oct 1998.

[39] Yanhua Mao, Flavio Paiva Junqueira, and Keith
Marzullo. Mencius: Building efficient replicated state
machine for wans. In Proc. 8th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2008, pages 369–384, 2008.

[40] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and
Dawn Song. The honey badger of bft protocols. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, page
31–42, 2016.

[41] Henrique Moniz. The istanbul bft consensus algorithm.
arXiv preprint arXiv:2002.03613, 2020.

[42] Henrique Moniz, Nuno Ferreria Neves, Miguel Correia,
and Paulo Verissimo. Ritas: Services for randomized
intrusion tolerance. IEEE transactions on dependable
and secure computing, 8(1):122–136, 2008.

[43] Achour Mostefaoui, Hamouma Moumen, and Michel
Raynal. Signature-free asynchronous byzantine consen-
sus with t< n/3 and o (n2) messages. In Proceedings of
the 2014 ACM symposium on Principles of distributed
computing, PODC ’14, pages 2–9, 2014.

[44] Ray Neiheiser, Miguel Matos, and Luís Rodrigues.
Kauri: Scalable bft consensus with pipelined tree-based
dissemination and aggregation. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 35–48, 2021.

[45] Matej Pavlovic. Mir – the distributed protocol imple-
mentation framework. https://github.com/conse
nsus-shipyard/mir/blob/e100175138a4fd8947b
6757452334698ee518967/README.md.

[46] Matej Pavlovic. Trantor: Modular state machine
replication. https://github.com/consensus-ship
yard/trantor-doc/blob/47dfc316a6d81604e1c
567b823358f53fdfde4b4/main.pdf, 2023.

[47] Michael O Rabin. Randomized byzantine generals. In
24th Annual Symposium on Foundations of Computer
Science (sfcs 1983), pages 403–409. IEEE, 1983.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 327

https://blog.obol.tech/roadmap-the-distributed-validator-protocol/
https://blog.obol.tech/roadmap-the-distributed-validator-protocol/
https://github.com/consensus-shipyard/mir/blob/e100175138a4fd8947b6757452334698ee518967/README.md
https://github.com/consensus-shipyard/mir/blob/e100175138a4fd8947b6757452334698ee518967/README.md
https://github.com/consensus-shipyard/mir/blob/e100175138a4fd8947b6757452334698ee518967/README.md
https://github.com/consensus-shipyard/trantor-doc/blob/47dfc316a6d81604e1c567b823358f53fdfde4b4/main.pdf
https://github.com/consensus-shipyard/trantor-doc/blob/47dfc316a6d81604e1c567b823358f53fdfde4b4/main.pdf
https://github.com/consensus-shipyard/trantor-doc/blob/47dfc316a6d81604e1c567b823358f53fdfde4b4/main.pdf

[48] Michael K Reiter. The rampart toolkit for building high-
integrity services. In Theory and practice in distributed
systems, pages 99–110. Springer, 1995.

[49] Fred B Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys (CSUR), 22(4):299–319, 1990.

[50] Atul Singh, Tathagata Das, Petros Maniatis, Peter Dr-
uschel, and Timothy Roscoe. Bft protocols under fire.
In Proceedings of the 5th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI’08,
pages 189–204, 2008.

[51] ssv.network. SSV into the future: Asyncrounous BFT
protocols. https://ssv.network/blog/technolog
y/ssv-into-the-future-asyncrounous-bft-pr
otocols/.

[52] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko
Vukolić. State machine replication scalability made
simple. In Proceedings of the Seventeenth European
Conference on Computer Systems, EuroSys ’22, pages
17–33. ACM, 2022.

[53] Giuliana Santos Veronese, Miguel Correia,
Alysson Neves Bessani, and Lau Cheuk Lung.
Spin one’s wheels? byzantine fault tolerance with a
spinning primary. In 2009 28th IEEE International
Symposium on Reliable Distributed Systems, pages
135–144, 2009.

[54] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram
Kannan, and David Tse. DispersedLedger: High-
throughput byzantine consensus on variable bandwidth
networks. In 19th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2022, pages
493–512, 2022.

[55] Maofan Yin, Dahlia Malkhi, Michael K Reiter,
Guy Golan Gueta, and Ittai Abraham. Hotstuff: BFT
consensus with linearity and responsiveness. In Pro-
ceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, PODC’19, pages 347–356,
2019.

328 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://ssv.network/blog/technology/ssv-into-the-future-asyncrounous-bft-protocols/
https://ssv.network/blog/technology/ssv-into-the-future-asyncrounous-bft-protocols/
https://ssv.network/blog/technology/ssv-into-the-future-asyncrounous-bft-protocols/

Harmony: A Congestion-free Datacenter Architecture

Saksham Agarwal
Cornell University

Qizhe Cai
Cornell University

Rachit Agarwal
Cornell University

David Shmoys
Cornell University

Amin Vahdat
Google

Abstract
Datacenter networks today provide best-effort delivery—
messages may experience unpredictable queueing, delays, and
drops due to switch buffer overflows within the network. Such
weak guarantees reduce the set of assumptions that system
designers can rely upon from the network, thus introducing
inefficiency and complexity in host hardware and software.

We present Harmony, a datacenter network architecture
that provides “congestion-free” message delivery guarantees—
each message, once transmitted by the sender, experiences
bounded queueing at each switch in the network. Thus, by
design, Harmony ensures that network delays are bounded in
failure-free scenarios, and that congestion-related drops are
eliminated. We establish, both theoretically and empirically,
that Harmony provides these powerful properties with near-
zero overheads compared to best-effort delivery networks: it
incurs a tiny additive latency overhead that diminishes with
message sizes, and achieves near-optimal network utilization.

1 Introduction

Datacenter networks today provide best-effort delivery—it
is hard, or even impossible, to bound queueing and delays
experienced by messages at switches; even worse, messages
may be dropped due to switch buffer overflows, and may need
to be retransmitted multiple times before they are delivered
to their destination. As a result, messages experience unpre-
dictable and variable network delays and congestion-related
drops. Such unpredictability and variability reduces the set
of assumptions that system designers can rely upon from the
network. Thus, to operate correctly on such best-effort de-
livery networks, host hardware and software must embrace
inefficiency and complexity.

We present Harmony, a distributed packet-switched
datacenter network architecture that provides powerful
“congestion-free” message delivery guarantees: each message,
once transmitted by the sender, is guaranteed to experience a
small bounded amount of queueing at each switch along the
path(s) it traverses. Thus, by design, Harmony ensures that

network delays are bounded in failure-free scenarios, and that
congestion-related drops are eliminated. The bounded net-
work delay and zero switch buffer overflow guarantees also
allow Harmony to handle inevitable failures efficiently: since
delayed and/or undelivered messages are limited to hardware
failures, Harmony enables extremely fast failure reaction.

Harmony enables these powerful properties by placing its
intellectual roots in the classical Resource ReSerVation proto-
col (RSVP) [71]. We demonstrate that naïvely using RSVP
on datacenter networks enables bounded queueing at each
switch; however, throughput can be significantly lower than
the optimal. Intuitively, the core reason for the suboptimal
throughput is that the RSVP-based design maintains the in-
variant that each switch observes zero queueing at all times;
enforcing zero queueing leads to non-trivial throughput over-
heads in distributed designs. Harmony combines the idea of
virtual channels [23, 60] with RSVP to orchestrate network
resources among competing messages while maintaining the
invariant that each switch observes bounded, albeit potentially
non-zero, queueing. We establish theoretically that allowing
a small amount of queueing at the switches enables Harmony
to provide bounded queueing and network delay guarantees
while achieving near-optimal throughput.

We evaluate an end-to-end implementation of Harmony
over a testbed, and over simulations across a variety of set-
tings that mix-and-match multiple workloads, traffic pat-
terns, network topologies, network oversubscription, and net-
work loads with and without background (best-effort) traf-
fic. Our evaluation reveals several interesting phenomenon.
First, we find that Harmony achieves network delay and
throughput very close to centralized zero-queue network
designs [55], while providing the benefits of a completely
distributed architecture. Second, rather surprisingly, we find
that Harmony’s tail latency and throughput is comparable or
even better than state-of-the-art distributed datacenter proto-
cols [19, 27, 32, 33, 44, 51] that provide best-effort delivery.
Finally, we find that Harmony performance near-perfectly
matches our theoretical bounds.

Harmony demonstrates that it is possible to rearchitect dat-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 329

102

103

104

Transmission Delay
Propagation Delay
Switching Delay
Max Per-hop Queueing Delay

10 100 400 800 1600
Link Bandwidth (Gbps)

0

10

20

M
icr
os
ec
on

ds

101 103 105 107

Message Size (Bytes)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

10G

100G

400G

800G

1600G

IMC10
Websearch
Facebook KV Store
Facebook Hadoop
Google Search
Google Aggregate

0.5 1 2 4 8 16 32
Switch Capacity (Tbps)

0

50

100

150

200

250

Bu
ffe

r S
ize

 /
 S
wi

tc
h
Ca

pa
cit

y
 (M

icr
os

ec
on

ds
)

Maverick

Trident2 Tomahawk

Tomahawk2

Tomakawk3

Tomahawk4

Figure 1: Motivation for congestion-free datacenter architectures. (left) modern high-bandwidth datacenter networks have tiny unloaded
RTTs, and worst-case per-hop queueing delays can be orders-of-magnitude higher than unloaded RTTs; (center) a large fraction of messages
are smaller than a single BDP for high-bandwidth networks, rendering modern best-effort delivery protocols inefficient; (right) switch buffer
sizes are growing slower than switch capacities, resulting in increasingly more packet drops for best-effort delivery protocols. Discussion in §2.

acenter networks to provide much stronger guarantees than
today’s best-effort delivery networks, while maintaining near-
optimal performance. There are two important caveats, how-
ever. First, our point is not that every application will ben-
efit from Harmony—achieving these guarantees requires a
tiny additive latency overhead (that diminishes with message
sizes) at low and moderate loads; since not all applications
may want to tradeoff such an overhead for strong guarantees
from the network, datacenter networks should simultaneously
support both Harmony and best-effort delivery, allowing ap-
plications to choose between the two depending on desir-
able goals. Second, the current implementation of Harmony
requires support from the network: the two highest priority
levels, a small amount of per-port soft state, support for embed-
ding path identifiers in packet headers, routing based on path
identifiers in packet headers, and support for packet modifica-
tions. While modern (programmable) switch hardware readily
support these functionalities, it remains an interesting ques-
tion whether Harmony guarantees can be achieved without
network support. Finally, Harmony provides network-layer
guarantees: bounded queueing, delays, and zero switch buffer
overflows within the network; additional work is needed at
each layer of systems stack to reap Harmony benefits in terms
of improved host software and hardware. While it may take
longer than the lifetime of a single project to realize systems
that efficiently exploit all the benefits of Harmony, we believe
the potential benefits make it a worthwhile exploration.

2 Congestion-free Datacenters: Motivation

Our exploration of congestion-free datacenter network archi-
tectures is motivated by three datacenter hardware trends1.

Modern datacenter networks have tiny unloaded2 round

1We use Maverick (48-port 10G with 12MB buffers), Trident-2 (32-port
40G with 16MB buffers), Tomahawk (32-port 100G with 22MB buffers),
Tomahawk-2 (64-port 100G with 42MB buffers), Tomahawk-3 (32-port
400G with 64MB buffers) and Tomahawk-4 (64-port 400G with 113MB
buffers) switches [4].

2Defined as the maximum, across all sender-receiver pairs, time taken
for a single MTU-sized packet to go from the sender to the receiver, and a
40-byte control packet to go from the receiver to the sender in the absence of
any other packet in the network. This is a property of the network hardware.

trip times (RTTs); queueing delays and buffer overflow
are the root cause of unpredictability. Network hardware
has improved over the past few years: multi-hundred gigabit
links are already being deployed and Terabit Ethernet de-
ployments are anticipated soon. Thus, datacenter networks
will soon, if not already, support single-digit microsecond
unloaded RTTs between hosts—as shown in Figure 1(left),
transmission delays are reduced to a bare minimum, and un-
loaded RTTs are now sum of tiny propagation delays and
switching delays. Furthermore, emergence and deployment of
high-performance host network stacks [21, 38, 46], hardware-
offloaded network stacks [2, 26, 58], host congestion control
mechanisms [7, 31], and µs-scale host schedulers [21, 37, 53]
have reduced host processing variability to a bare minimum.
On the other hand, as shown in Figure 1(left), the worst-case
queueing delay experienced by a packet is, and will continue
to remain, much larger than unloaded RTTs. Put together,
these trends result in queueing delays and buffer overflows as
the root cause of network unpredictability.

Large bandwidth-delay products (BDPs) in modern dat-
acenter networks make congestion control ineffective.
Network RTTs limited by propagation and switching de-
lays means that network BDP now increases linearly with
link bandwidth. Such rapid increase in BDP means that
most messages in the network now fit within a few BDPs.
Figure 1(center) demonstrates this for several production
workloads [8, 13, 18, 61, 65]: for 100 and 400Gbps links,
more than 54% and 64% of the messages in the websearch
workload are less than 1BDP; for the IMC10 workload, the
corresponding numbers are 82% and 89%; a recent study
from Google presents similar numbers for RPCs within
Google [11]. Modern best-effort delivery datacenter trans-
port protocols [19, 27, 32, 41, 44, 51, 72] advocate to blast
the first BDP worth of packets into the network during the
first RTT; blasting the first BDP worth of data fundamentally
means that even optimal congestion response, one that de-
tects congestion and responds perfectly in one network round
trip, will not have time to converge to the “right” rates for an
overwhelmingly large fraction of the messages resulting in
larger amounts of data in flight, and larger unpredictability in
queueing and network delays.

330 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Larger BDPs and relatively stagnant switch buffer sizes
make packet drops more likely for best-effort delivery net-
works. Rapid increase in BDP and switch capacities coupled
with relatively stagnant switch buffer sizes (Figure 1(right))
also suggest that increasing link bandwidths will make it eas-
ier to overwhelm switch buffers. As a result, best-effort deliv-
ery networks will experience an increasingly larger fraction of
packets dropped within the network, resulting in even higher
network unpredictability and reduced network throughput.

3 Harmony
This section presents Harmony, a distributed packet-switched
datacenter architecture that guarantees bounded queueing at
each switch in the network, while achieving near-optimal
network throughput. We describe the Harmony protocol in
§3.1, provide low-level details on Harmony design in §3.2,
and establish theoretical properties of Harmony in §3.3.

3.1 Harmony Protocol
Harmony ensures bounded queueing at each switch by plac-
ing its intellectual roots in the classical Resource ReSerVation
protocol (RSVP) [70,71], and integrating it with another clas-
sical idea: virtual channels [23, 60].

We outline the Harmony protocol below, followed by an
intuitive description of how it guarantees bounded queueing
while achieving near-optimal throughput. Harmony protocol
uses the following two constructs: host slots and virtual links.

Host slots. Each sender and receiver maintains K slots, each
allowing a message to be sent and received using bandwidth
B/K, where B is the access link bandwidth. Importantly, each
slot can be allocated to at most one message; however, a
message may be allocated more than one slot (that is, a sender-
receiver pair may simultaneously use as many as K slots to
send and receive a message).

Virtual links. Each physical link in the network is logically
decomposed into virtual links, each of bandwidth B/K. Each
virtual link can be allocated to at most one message, allowing
the message to be transmitted using bandwidth B/K; however,
a message may be allocated more than one virtual link.

Harmony protocol. The Harmony protocol is extremely
simple, and works as follows:

• Each sender, immediately upon a message arrival, sends a
request control packet to the receiver.

• Each receiver keeps track of its free slots. Upon receiving
a request, if the receiver has one or more free slots, it
assigns one of the slots to the message, updates the number
of free slots, and sends a rsvp to the corresponding sender.
If the receiver has no free slots, it adds the request to a list
of pending_requests and starts a timer (using its local
clock) for the request. Whenever a slot becomes free, the
receiver picks the request with the largest timer value,

assigns the slot to the message, updates its number of free
slots, and sends a rsvp to the sender for this request.

• Whenever the timer for a request reaches δadmission
time, the receiver removes the request from the
pending_requests list and sends a reject to the sender
indicating that the receiver is unable to admit the message
due to high load at the receiver.

• Each switch maintains, for each of its links, the number
of free virtual links. Upon receiving a rsvp, the switch
uniform randomly chooses a free outgoing virtual link along
one of the shortest paths to the sender, embeds its identifier
into the rsvp header, updates the number of free virtual
links for the port, and forwards the rsvp on to that link. If
no free virtual link is available, the switch transforms the
rsvp into a reject packet, and sends it towards both the
sender and the receiver using information in rsvp headers.
reject traverses the same set of switches that forwarded
rsvp so that corresponding links can be freed. Importantly,
only shortest paths are used to ensure deadlock freedom.

• Each sender also keeps track of its free slots. Upon receiving
a rsvp, if the sender has one or more free slots, it assigns
one of the slots to the message, updates the number of free
slots, and starts transmitting the message at a slot bandwidth.
Once the message is finished, the sender sends a complete
and marks the corresponding slot as free. Upon receiving
a rsvp, if no free slots are available, the sender sends a
reject to the receiver. All data and control packets are
source routed using switch identifiers in the rsvp header.

• Each switch, upon receiving the reject or complete,
marks the corresponding virtual link as free (using identi-
fiers in the header), and forwards it to the next hop;

• Each receiver, upon receiving reject or complete, marks
one of its slots as free; for complete, the receiver also
sends a complete to the sender indicating completion of
message transmission.

• Each sender, upon receiving a reject or complete, marks
such for the message.

We describe additional design details for Harmony, including
fast failure reaction, handling background (best-effort) deliv-
ery traffic, prioritization mechanisms for isolating messages
from control packets and best-effort delivery traffic, optimiza-
tions like multi-slot allocation to individual messages, etc.,
in the next subsection. Below, we provide an intuitive de-
scription on how Harmony guarantees bounded queue at each
switch and how it uses multiple virtual links and host slots to
achieve near-optimal throughput. Figure 2 shows an example.

Intuitively understanding the invariants maintained by Har-
mony. Harmony maintains two invariants. First, for each out-
going link at each switch, the sum of arrival rates of all mes-
sages to be transmitted on the outgoing link is no more than
the link bandwidth; and second, at all times, a small bounded

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 331

1 2 3 4 5 6
: 1-> 4 : 2-> 5

Left Core Right Core

: 3-> 6

1 2 3 4 5 6
: 1-> 4 : 1-> 6

: 3-> 6

Left Core Right Core

2 3 4 5 61
: 1-> 4 : 1-> 6: 2-> 5

: 3-> 6

Left Core Right Core

Figure 2: Understanding benefits of virtual links and host slots. (left) without multiple virtual links, network may be underutilized due
to switches making uncoordinated decisions; and (center) without multiple host slots, network may be underutilized due to hosts making
uncoordinated decisions; (right) using multiple virtual links and host slots, Harmony alleviates network underutilization. Discussion in §3.1.

number of messages use any link in the network. The first
invariant ensures zero persistent queueing since the rate at
which messages (destined to a particular outgoing link) arrive
is at most the link bandwidth. However, while each message
uses a different virtual link, multiple messages may now share
a physical link; thus, data from multiple messages may arrive
at the switch (via different virtual links) at the same time
resulting in transient queueing. The second invariant ensures
that transient queueing is bounded since a physical link is
shared by at most as many messages as the number of virtual
links (in §3.3, we will bound worst-case queueing in terms of
link bandwidth, number of virtual links and maximum number
of switches along any network path). Put together, these two
invariants are sufficient for Harmony to guarantee bounded
queueing at each switch in the network.

Intuitively understanding the necessity of virtual links. Virtual
links in Harmony design are not merely a heuristic—they
are key to Harmony achieving near-optimal throughput. In-
tuitively, in the above design, switches make decisions on
forwarding rsvp based on purely local information, with-
out any view of the state of links at neighboring switches.
Switches making such uncoordinated decisions could lead
to requests being rejected even if there is a path available
in the network. For instance, consider the example shown
in Figure 2(left): here, green message is using a reserved
path 1 → 4; when receiver 5 sends a rsvp toward 2, its leaf
switch uniform randomly chooses the left spine switch and
forwards the rsvp. Since there is no unreserved outgoing link
from the left spine switch to 2, the rsvp will be rejected. Had
the leaf chosen the right spine switch, it would have success-
fully reached sender 2, improving network throughput. As
shown in Figure 2(right), virtual links help alleviate unnec-
essary rsvp rejections by enabling fine-grained sharing of
network resources. Intuitively, since an rsvp message can be
forwarded along any of the virtual links, and there are more
virtual links than physical links, the probability of an rsvp
being unnecessarily rejected reduces significantly.

Intuitively understanding the necessity of host slots. Host slots,
on the other hand, help alleviate network underutilization due
to hosts making uncoordinated decisions. Specifically, since
receivers do not have information about the network and/or

sender state, an incorrect choice on messages to send rsvp
for can lead to suboptimality: for the last rsvp sent by the
receiver, it may receive a reject if there is no available
path to the sender. This, in turn, will result in suboptimal
throughput. An example is shown in Figure 2(center): here,
receiver 6 has two outstanding requests, one from sender 1
(red) and one from sender 3 (violet). The receiver, however,
can choose only one message to send rsvp to; if the receiver
sends a request for 1, it will receive a reject since there
is no unreserved path between 1 and 6. However, ideally the
receiver should have selected 3 for request since there is an
unreserved path between 3 and 6. As shown in Figure 2(right),
with multiple host slots, receivers can now send rsvp for
multiple messages again increasing the network throughput.

Intuitively understanding the benefits of δadmission. Harmony
design allows requests to wait for time δadmission at the receiver
before they can be rejected. This parameter enables Harmony
to handle bursty traffic and/or incasts—with higher δadmission
values, Harmony will be able to admit larger amounts of bursty
traffic and/or larger incasts. Network operator can choose
the right δadmission to accommodate the desired bursty traffic
and/or incast within Harmony.

3.2 Harmony Design Details
We now provide additional details on Harmony design.

Handling control packets. Harmony design uses a number
of control packets—{request, rsvp, reject, complete}.
These control packets utilize non-zero bandwidth, and could
potentially interfere with message transmission at switches.
To minimize impact of control packets on message transmis-
sions, Harmony uses priorities, a standard technique for traffic
isolation in modern datacenters [19, 27, 64]. Specifically, all
messages are transmitted using the highest priority, all rsvp
and complete messages are also transmitted using the high-
est priority, and all other control packets are transmitted using
the second highest priority. In [5], we provide details on how
this prioritization mechanism maintains Harmony queueing
and delay bounds; intuitively, rsvp and complete packets
transmitted using the highest priority does not impact mes-
sage queueing much: these are tiny packets, and each link
forwards a small number of rsvp and complete packets

332 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(in the worst-case, as many as the number of virtual links).
Furthermore, since Harmony bounds the switch buffer oc-
cupancy due to data packets at all times, and since control
packets are small, Harmony can absorb large number of low-
priority control packets within switch buffers—for instance,
16− 32MB buffer space in switches today can hold up to
∼400,000−800,000 concurrent 40-byte control packets per
switch; even with Harmony’s worst-case queueing bound for
data packets, we can still sustain ∼300,000−700,000 con-
current control packets per switch. To ensure that low-priority
control packets are not starved by data packets, Harmony also
reserves a small amount of bandwidth at each host and switch
for control packet transmission.

Exploiting bounded network delays in failure-free scenarios
for fast reaction to failures and rejects. Harmony eliminates
congestion-related drops in failure-free scenarios. However,
inevitable hardware failures can still lead to data and control
packet drops. Harmony uses the key insight that all data pack-
ets in Harmony traversing a bounded-queue path means that
receivers know exactly when to expect data packets corre-
sponding to a rsvp message in a failure-free scenario; sim-
ilarly, senders know exactly when to expect complete or
rsvp message in a failure-free scenario. Indeed, absence of
any of these events must imply a hardware failure or a reject.
Harmony exploits such a predictability in failure-free scenar-
ios to trigger fast retransmission mechanism—as soon as a
sender or a receiver infers a failure or a reject has happened,
they trigger fast retransmission (receiver sending a failure
control packet to the sender, and/or sender retransmitting data
using a new request or using best-effort delivery interface,
as described below).

Exploiting bounded network delays in failure-free scenarios
for efficient multi-slot allocation to individual messages. To
ensure high utilization in practice, Harmony assigns multi-
ple host slots and virtual links to a single message when a
receiver has less than K active messages. A message that
has been allocated at least one slot is marked as an active
message. Whenever receiver has a free slot and no pending
requests, an active message is allocated additional slots; to
ensure that additional slot allocation does not block future
requests, additional slots are allocated for one BDP worth
of data only. Harmony receivers always send one rsvp per
slot, independent of which message the rsvp is for. When
a new rsvp message is received by the sender for an active
message, an additional virtual path of bandwidth B/K has
been reserved and the sender can now send the message us-
ing an additional slot (increasing the transmission rate for
this message by B/K). This ensures correctness, while also
maximizing network throughput in practice [5].

Exploiting bounded network delays in failure-free scenarios
for efficiently handling best-effort delivery traffic. Harmony
can be integrated with any existing datacenter transport mech-
anism to handle best-effort traffic. The only constraint is that

bounded-queue traffic and control packets must be isolated
from best-effort traffic; Harmony thus uses the third priority
level for best-effort traffic. Thus, the only impact best-effort
traffic has on Harmony’s timely delivery or bounded queueing
properties is that latency can increase by as many packet trans-
mission times as the number of switches in the path—each
switch can incur one extra packet transmission time due to
non-preemptive nature of today’s switches (Harmony packet
will be transmitted immediately after ongoing transmission
of best-effort traffic packet).

We present additional details on Harmony design such
as handling drops of control packets under failures, utilizing
predictable network delays to optimize Harmony performance
via pipelining rsvp packets, handling packet reordering, etc.,
in the technical report [5].

3.3 Harmony Theoretical Properties
We now establish theoretical properties of Harmony under a
model similar to previous studies [19, 22, 45, 47, 55, 62].

Network model. For our theoretical analysis, we assume full-
bisection bandwidth datacenter networks; this assumption is
purely for ease of theoretical analysis—Harmony guarantees
bounded queueing even for oversubscribed networks [5]. We
model the network as a N ×N crossbar switch, with N inputs
(sender hosts) and N outputs (receiver hosts). Each input has
a buffer of infinite capacity, and is partitioned into N virtual
output queues (VOQ); each output also has a buffer of infinite
size. The virtual output queue VOQi j holds packets arriving
at input i and are destined for output j. It is well-known that,
under the above assumptions, datacenter network transfers
can be modeled as a bipartite matching problem [9,19,27,55].

We assume that time is slotted. Packets are transferred from
input buffers to output buffers in scheduling cycles. Each
scheduling cycle consists of a matching phase and a data
transfer phase. In the matching phase, an algorithm computes
a matching between inputs and outputs in a manner that no
input may be matched to more than one output, and no output
is matched to more than one input. For each input i and output
j matched to each other, one MTU-sized packet is removed
from VOQi j and one MTU-sized packet is put into the output
buffer of j during the data transfer phase (assuming VOQi j
is non-empty). The network is said to have a speedup of s if,
during each time slot, there are s scheduling cycles.

Let the average rate of packet arrival at VOQi j be λi j. The
input traffic is said to be admissible if ∑i λi j < 1 and ∑ j λi j <
1, that is, the load at each input and output is less than 1.

Fundamental limits. It is known that full-bisection band-
width networks can achieve 100% throughput for any admis-
sible input traffic as long as the underlying protocol computes
a so-called maximum matching [22]. However, computing
a maximum matching typically requires complex implemen-
tations; thus, existing switch fabrics and network protocols
typically compute a so-called maximal matching [19, 27, 55].

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 333

A classical result establishes that any maximal matching based
protocol requires a network with a speed up of 2 to achieve
100% throughput [22, 45] for all admissible input traffic.

Theoretical analysis for Harmony. We now provide bounds
on queueing, network delays and throughput for Harmony.

Theorem 3.1 Let #H be the number of switches along the
longest path (across all sender-receiver pairs), K be the num-
ber of virtual links per physical link, B be the minimum band-
width across physical links, and p be the maximum packet
size. Then, maximum queueing observed by any packet at any
switch in Harmony is bounded by

QHarmony ≤ #H · (K −1) · p

Moreover, the total queueing delay (across all switches) in-
curred by any packet in Harmony is bounded by:

δqueueing ≤
#H · (#H+1) · (K−1)

2
· p

B
(1)

We provide the full proof in [5]. Intuitively, given that we have
K virtual links sharing the physical link, we would expect a
queue bound of (K −1) · p; however, our proof demonstrates
that, in the worst-case, packet transmissions across multiple
switches can (mis)align in a manner that the worst-case queue-
ing bound worsens with more switches along the path. The
bound on queueing delay follows by aggregating the precise
amount of queueing delay at each switch along the path. These
bounds hold independent of the underlying network topology
(since they are parameterized by number of switches along
the path and K).

Let S⋆ be the minimum buffer size across all switches, let
#ℓ be the number of ports at the switch, and let K⋆ = S⋆/(#H ·
p ·#ℓ). Then, the first part of the theorem shows that for K ≤
K⋆, Harmony will ensure that queueing at each switch never
grows beyond the switch buffer size, and that congestion-
related drops are eliminated. For modern datacenter hardware,
K⋆ turns out to be large enough for all practical purposes.
For instance, for a datacenter organized around a FatTree
topology using 100Gbps Tomahawk switches (32 ports and
22MB switch buffer size) and with 1.5KB packet sizes, we get
K⋆ ≈ 91. For a FatTree topology with 400Gbps Tomahawk-4
switches (64 ports and 113MB buffers), we get K⋆ = 235.

Theorem 3.1 not only guarantees that congestion-related
drops are eliminated for K ≤ K⋆, but also bounds the queue-
ing delay seen by any packet: for the above two topologies
and for K = 8, we get that δqueueing = 12.6µs and δqueueing =
3.15µs, respectively. Thus, Harmony guarantees tiny worst-
case queueing delays. The bound on queueing delays can be
trivially used to bound the delay between the sender starting
to transmit a message m (upon receiving an rsvp) until it re-
ceives the complete for the message [5]. Extending Harmony
design to guarantee end-to-end delays (that is, including pro-
cessing delays at the sender and at the receiver, and queueing
delays at the sender) is an intriguing open question (§6).

Harmony uses a distributed protocol for allocating host
slots and virtual links to senders and receivers, with hosts and
switches making decisions based on purely local information.
It, thus, becomes an interesting question to characterize the
quality of successful allocations—requests for which the re-
ceiver sends a rsvp that is not rejected within the network.
The following theorem characterizes the slot and virtual link
allocation efficiency of Harmony for a full-bisection band-
width leaf-spine topology with respect to an ideal centralized
algorithm that performs K maximal matching for allocating
host slots, and perfectly allocates virtual links to matched
slots (see [5] for a basic extension of [55] that realizes such
an ideal centralized algorithm). Let Θ⋆ denote the number of
successful slot allocations by such an ideal algorithm.

Theorem 3.2 Let K be the number of virtual links per physi-
cal link and C be the number of core switches in the topology.
Then, the expected number of successful slot allocations by
Harmony, randomized over choice of rsvp forwarding deci-
sions, is:

E[ΘHarmony] = f (K,C) ·Θ⋆, where, (2)

f (K,C) =
∑

KC
i=0 min(i,K)

(KC
i

)(1
C

)i (
1− 1

C

)(KC−i)

K
We provide a full proof in Harmony technical report [5]. At a
high-level, our proof for Theorem 3.2 uses an argument sim-
ilar to the classical balls-and-bins problem [59] to establish
the slot allocation efficiency in Harmony. This result, simi-
lar to most prior analytical results [19, 55], assumes two-tier
full-bisection bandwidth leaf-spine network topology; it is an
intriguing open question to generalize our bounds to FatTree,
expander-based and oversubscribed network topologies. Nev-
ertheless, this result provides us several insights on the behav-
ior of Harmony. First, for the special case of K = 1 (which is
roughly equivalent to RSVP adapted to datacenter networks),
the above expression leads to E[ΘHarmony|K=1] = (1−1/e)Θ⋆,
where e ≈ 2.72 is base of the natural logarithm. That is, for
K = 1, the slot allocation efficiency is merely ∼63% of the
optimal. Second, Figure 4 confirms the intuition discussed
earlier: increasing the number of virtual links and host slots
(increasing K) results in significantly improved efficiency of
Harmony, converging to the optimal Θ⋆. Harmony evalua-
tion in §5.1 demonstrates that, in practice, Harmony achieves
significantly better performance even for small values of K.

4 Harmony Implementation
We have done prototype implementation of Harmony using
readily available programmable switches and DPDK-based
hosts. This section provides some of the most interesting
implementation details. We provide more details in [5].

The Harmony interface. Harmony currently implements
a RPC interface [38, 66]: messages are submitted to a sub-
mission queue and the message delivery status is updated in

334 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Ingress Ports Parser Ingress Pipeline Traffic Manager

DlinkCounter[]

UplinkQ[]

Egress Pipeline Egress Ports

Stage I Stage II

Classify Packets
Into

request/
rsvp/ reject/

complete/ data

Find Direction:

Find whether to
forward rsvp on an

uplink or a
downlink

Find Egress Port:

 Pop an entry from
UplinkQ

Or
Decrement

DlinkCounter[]

Stage III

Append Switch
ID

Append switch ID
if the switch is

Agg/Core

Convert to reject

1. Exchange src and
dst addresses

2. Set Egress port to
Ingress Port

3. Set pkt type to
reject

Stage IV

Found a free
egress port?

Yes

No

Figure 3: Harmony can be realized using programmable switches supporting PSA architecture. More description on §4.

1 2 4 8 16 32 64 128
K

0.5

0.6

0.7

0.8

0.9

1.0

[ΘHarmony]
Θ *

Figure 4: Harmony’s performance in terms of successful host slot
allocations—E[ΘHarmony]—converges to that of an ideal centralized
maximal matching based algorithm with increasing values of K. We
use a 64-port leaf-spine full-bisection bandwidth topology with 32
core switches in this figure.

the completion queue (using a complete or failure flag).
The only difference between Harmony and standard RPC in-
terfaces is that the completion queue in Harmony has one
additional flag: reject, which indicates that Harmony is un-
able to guarantee bounded queueing for that message (e.g.,
due to failures, high receiver load, high network load, etc.). If
the flag is either reject or failure, the message can be re-
submitted using the Harmony interface, or using the standard
best-effort delivery interface.

Harmony host implementation. Harmony maintains the in-
variant of bounded queueing at switches thus alleviating the
need for congestion control on the fast path at hosts; as a
result, Harmony can be easily integrated with existing high-
performance userspace or in-kernel network stacks [21,38,46],
as well as existing accelerator based network stacks [2,26,58].
To implement Harmony-specific functionality, much of our
host implementation uses modules from existing network
stacks. For example, generating and responding to rsvp mes-
sages is similar to the grant mechanism in receiver-driven
transport protocols [19, 27, 32, 33, 51]. As another example,
Harmony design requires senders to transmit messages at a
rate that is dependent on the number of slots allocated to that
message; such a rate limit functionality at the sender is al-
ready implemented in almost all network stacks. Overall, our
Harmony host implementation uses ∼3107 lines of code.

Harmony switch implementation. Harmony switch imple-
mentation uses programmable switches [3]. The data plane

of these switches employs Portable Switch Architecture [3],
and is composed of a parser, an ingress and an egress pipeline
and a traffic manager (Figure 3). Upon a packet arrival on an
ingress port, Harmony parser extracts the header, identifies
the packet type (rsvp, reject, complete, or data packet),
and forwards the packet to the ingress pipeline. The ingress
pipeline decides the egress port to forward the packet to,
embeds switch identifiers within the packet header (using
techniques from path tracing mechanisms on programmable
switches [67, 68]), and then passes the packet to the traffic
manager (which then forwards the packet to the desired egress
port). Harmony’s implementation of the ingress pipeline
uses two data structures: A FIFO UplinkQ, and a counter
DlinkCounter. UplinkQ maintains the available virtual
links which can be reserved by rsvp packets while traversing
uplink (toward the spine, or the core switch). DlinkCounter
maintains the number of reserved virtual links at the downlink
path (away from the core switches). In addition, Harmony
switches maintain a small constant amount of state to avoid
blocking of virtual links during control packet drops [5].

5 Harmony Evaluation

We now evaluate Harmony performance over a small-scale
testbed (§5.1), and over large-scale packet-level simulations
(§5.2). We start by describing our evaluation setup.

Network Topologies. We use a testbed with 8 servers orga-
nized along a two-tier topology with 10Gbps links (as shown
in Figure 5a). For our simulations, we use the same default
setup as in [9, 19, 27, 44]: the standard 144-node leaf-spine
topology with 9 top-of-rack (ToR) switches, each connected
to 16 hosts with 100Gbps access link bandwidth. The propa-
gation and switching delay are 200ns and 450ns, respectively.
We use switch buffer capacity of 32MB. The unloaded RTTs
and bandwidth-delay product values for this topology are
4.6µs and 56KB, respectively. We also use oversubscribed
and FatTree topologies. For the former, we vary the oversub-
scription (1:1 to 2:1 and to 4:1) in our leaf-spine topology by
correspondingly reducing the leaf-spine link bandwidths; we
reduce the load based on oversubscription factor to ensure that
the traffic remains admissible. Our three-tier FatTree topol-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 335

1
10Gbps

10Gbps

2 3 4 5 6 7 8

(a) Testbed Topology

1 2 4 8 16 32 64 128
Slowdown

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

 S
us

ta
in
ab

le
 L
oa

d

(b) Feasible region

0.4 0.5 0.6
Input Load

5

10

15

Sl
ow

do
wn

 S
pr
ea

d Implementation Simulation

(c) Slowdown Spreads

8KB 32KB 128KB 512KB
RPC Sizes

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

 S
us

ta
in
ab

le
 L
oa

d

Max Slowdown = 10
Max Slowdown = 20
Max Slowdown = 30
Max Slowdown = 40

(d) Varying RPC Sizes

Figure 5: Evaluation of Harmony implementation on a small-scale testbed. (a) The testbed used in this evaluation; (b) Harmony’s feasibility
region in terms of achievable delays and maximum sustainable loads (the green dotted line represents Harmony’s delay bound for this topology);
(c) Harmony evaluation over the testbed almost perfectly matches the theoretical bounds, as well as simulation results in Harmony’s packet-level
simulator; (d) for a fixed delay bound, Harmony sustains larger loads with larger RPC sizes (as expected). Discussion in §5.1.

ogy contains 1024 hosts, 64 core switches, 128 aggregation
switches, 128 ToRs and 100Gbps access link bandwidth. We
use the same propagation delay, switching delay and switch
buffer size as above. The unloaded RTT and bandwidth-delay
product for this topology are 7.6µs and 93KB, respectively.

Evaluated schemes. Existing distributed datacenter trans-
port protocols are not designed to achieve congestion-free
communication; thus, comparison with Harmony would be
unfair to any choice of protocols. Nevertheless, we eval-
uate Harmony performance against state-of-the-art sender-
driven (HPCC [44]) and receiver-driven (dcPIM [19]) dat-
acenter transport protocols. We use the default parameters
from HPCC and dcPIM papers. We also extend the central-
ized Fastpass scheduling algorithm to support message-level
scheduling3 to provide an ideal baseline for Harmony. Unless
specified otherwise, we use the following values for Harmony
parameters: K = 8 and δadmission =∼63µs (a factor 5 of Har-
mony worst-case queueing delay bound); we also perform
sensitivity analysis against these two Harmony parameters.

Workloads and traffic patterns. We used 128KB RPCs (as
in [49, 72]) as our default workload since it allows us to pro-
vide in-depth insights due to each message having the same
latency bound, but also present results for RPC sizes varying
from 0.5KB to 512KB. For evaluation of Harmony with back-
ground (best-effort) traffic, we use a mix of RPCs (for traffic
desiring congestion-free guarantees), and the standard web-
search datacenter workload [9, 19, 27, 44] (for the best-effort
traffic). We use the standard methodology of generating mes-
sage arrival times using Poisson arrival process [8,9,19,27,44]
and use an all-to-all traffic pattern by default. To avoid degen-
erate scenarios, we ensure that the generated load for each
sender and each receiver is less than 1 for every δadmission
duration of time.

Evaluation metrics. Harmony guarantees bounded queueing

3The original Fastpass algorithm performs per-packet scheduling; this
provides delay guarantees for each individual packet, but not for each mes-
sage as in Harmony. We make two extensions: (a) to enable message-level
delay guarantees, we ensure that all packets for a message are scheduled
in consecutive timeslots; and (b) to enable a fair comparison in terms of
maximum sustainable load, we allow a message request to wait for δadmission
time before it is rejected.

at each switch in the network, thus ensuring bounded queue-
ing delays for each message. However, Harmony does not
bound processing delays at the sender and at the receiver, and
queueing delays at the sender. Nevertheless, in our evaluation,
we use Harmony queueing delay bound as the overall end-to-
end bound. We use two metrics—maximum sustainable load
(defined as the input load for which no message is rejected)
and latency. For latency, we use the standard slowdown met-
ric, defined as the ratio of the message completion time under
loaded and unloaded scenarios; we present slowdown spread—
{minimum, mean, 99%-ile, 99.9%-ile, and maximum}—using
lower whisker, lower box edge, mid-line in the box, upper box
edge, and upper whisker, respectively.

5.1 Harmony Testbed Evaluation
We start with evaluation of Harmony implementation over
a small-scale testbed. Our testbed results are primarily to
demonstrate the feasibility of Harmony—it is an extremely
simplified setup with no contending applications, dedicated
cores to ensure minimal host processing delays, no host con-
gestion, etc.; more work is needed to evaluate end-to-end
performance of Harmony over large-scale deployments.

Our first result, shown as the shaded region in Figure 5b,
shows that Harmony enables a unique trade-off space between
the delay bound and maximum sustainable load. Specifically,
the two parameters in Harmony—K and δadmission—allow it
to tradeoff the delay bound for higher maximum sustainable
loads. Here, we vary K and δadmission, and plot the pareto curve
on the observed worst-case delay and sustainable loads. This
tradeoff essentially follows the intuition discussed earlier—
with a larger bound on target message delay (via increasing
K and δadmission), Harmony sustains higher loads. Figure 5d
shows this tradeoff for varying RPC sizes: we observe that
Harmony can sustain as high as 0.9 load for 128KB RPCs,
and 0.65 load for 8KB RPCs.

We also use our testbed to verify the simulator fidelity; in
particular, we incorporate the measured testbed parameters
(link propagation, switching and average PCIe delays) into
our simulator and show the corresponding results alongside
the testbed results in Figure 5c. The testbed latency results
near-perfectly match our simulator (which, in turn, matches
the analytical bounds in Theorem 3.1 and Theorem 3.2).

336 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 4 8 16 32 64 128
Slowdown

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ax

 S
us

ta
in

ab
le

 L
oa

d

Fastpass Harmony

25 50 100 200 400 800 1600
Message Completion Time (μs)

(a) Feasible region

0.4 0.5 0.6
Input Load

2

4

8

16

32

Sl
ow

do
wn

 S
pr
ea

d

Fastpass
Harmony

Harmony Latency Bound

(b) Slowdown spreads

0.4 0.5 0.6
Input Load

0.25
0.5

1
2
4
8

16

Sl
ow

do
wn

 S
pr

ea
d

Fastpass Network Delay
Fastpass Host Delay

Harmony Network Delay
Harmony Host Delay

(c) Harmony latency breakdown

Figure 6: Evaluation of Harmony and Fastpass using large-scale simulations. Harmony achieves feasibility region surprisingly similar to
Fastpass—for any given latency bound, it can sustain loads as high as Fastpass (and vice versa). Discussion in §5.2.

5.2 Harmony Large-Scale Simulation

We now evaluate Harmony over simulations, both in absence
(Figure 6) and in presence (Figure 7) of best-effort delivery
traffic. For the former, we compare Harmony with Fastpass;
for the latter, we compare Harmony with HPCC and dcPIM.

[Figure 6, no best-effort delivery traffic]. Figure 6a shows
maximum sustainable loads for varying target delay bound (or,
slowdown) for both Harmony and Fastpass; each point in the
feasibility region of Figure 6a is achieved using a combination
of K and δadmission.

We observe that, despite using a purely distributed design,
Harmony’s feasibility region closely matches that of Fastpass.
This result may be surprising. Digging deeper, we found that
this result is due to Fastpass and Harmony making signifi-
cantly different tradeoffs. Fastpass enforces zero queueing
at each switch by transmitting each message on a dedicated
pre-reserved path—the arrival rate for each message thus per-
fectly matches the outgoing bandwidth available for that mes-
sage at each switch. However, this invariant—enforcing zero
queueing at each network switch—incurs high overheads for a
distributed protocol like Harmony. Instead, the key insight in
Harmony design is that it is feasible to achieve bounded (but
not necessarily zero) queueing at each switch using a com-
pletely distributed design, while maintaining high throughput.
Figure 6c provides more insights on how Harmony achieves
performance so close to an ideal centralized architecture even
with non-zero queueing at switches. Essentially, by enabling
bounded queueing (rather than zero queueing) within the net-
work, Harmony significantly reduces the amount of time a
message spends waiting at the sender before it can be sched-
uled and can start transmitting packets; this reduced host-side
delay easily compensates for the increased queueing delay in
the network when compared to Fastpass. Overall, this turns
out to be a good tradeoff—Harmony, despite its distributed
nature, achieves delays and maximum sustainable loads com-
parable to an ideal centralized datacenter architecture.

Harmony does make a different tradeoff compared to Fast-
pass: as shown in Figure 6b, it achieves ∼2× higher mean
and ∼1.3× higher P99 latencies, while enjoying the benefits
of a distributed datacenter architecture.

[Figure 7, Harmony performance with best-effort traffic].
We now discuss Harmony performance for scenarios where

congestion-free traffic (using 128KB RPCs) coexists with
best-effort delivery traffic (generated using websearch work-
load). We vary the load of congestion-free traffic from 0.3 to
0.5, and respectively vary the load of co-existing best-effort
delivery traffic from 0.3 to 0.1, such that the total offered load
is 0.6 and hence remains sustainable for all protocols.

Figure 7 shows a surprising result: when compared to ex-
isting state-of-the-art sender-based and receiver-based best-
effort delivery protocols, Harmony sustains similar or higher
loads for best-effort traffic (with varying congestion-free traf-
fic load, as shown in top row), achieves significantly better tail
latencies for congestion-free traffic, and significantly better
mean and tail latencies for best-effort traffic! Upon digging
deeper into this surprising result, we found the following two
interesting phenomena.

First, as discussed earlier, Harmony ensures that the rate at
which congestion-free traffic arrives at any switch perfectly
matches the bandwidth available to forward this traffic; as a
result, congestion-free traffic incurs a small amount of queue-
ing at each switch. The result is that, despite lower priority,
best-effort delivery traffic experiences minimal contention
with congestion-free traffic in Harmony. For other protocols,
however, these two traffic create queueing for each other re-
sulting in lower sustainable loads and higher latencies. The
problem exacerbates at higher loads.

Second, for HPCC, we observed that RPC traffic creates
congestion in the network core despite a full-bisection band-
width topology. This is because the transmission time for a
128KB RPC on a 100Gbps link is ∼10.2µs, which is ∼2.2×
the unloaded network RTT. Thus, even a small amount of
queueing can result in congestion control being ineffective—
by the time congestion signal arrives, the network condition
has changed. For dcPIM, we found that 128KB RPCs were
larger than a single BDP and thus required matching before
they can start transmitting; this leads to larger mean and tail
latencies. Harmony avoids both of these problems—it ensures
congestion-free network for the RPC traffic, and minimizes
queueing experienced by best-effort delivery traffic.

[Figure 8, Sensitivity analysis for Harmony]. Figure 8
demonstrates that Harmony performance is robust across all
evaluated scenarios—as long as the load is sustainable, Har-
mony achieves low tail slowdown and bounded worst-case
message delays. We discuss three important observations.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 337

0.1 0.2 0.3 0.4 0.5 0.6
Congestion-free Traffic Load

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l S
us

ta
in

ab
le

 L
oa

d
HPCC

Best-Effort Traffic Throughput
Congestion-free Traffic Throughput

(a) Sustainable loads using HPCC

0.1 0.2 0.3 0.4 0.5 0.6
Congestion-free Traffic Load

0.0

0.2

0.4

0.6

0.8

1.0

To
ta
l S
us
ta
in
ab
le
 L
oa
d

dcPIM

Best-Effort Traffic Throughput
Congestion-free Traffic Throughput

(b) Sustainable loads using dcPIM

0.1 0.2 0.3 0.4 0.5 0.6
Congestion-free Traffic Load

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l S
us

ta
in

ab
le

 L
oa

d

Harmony

Best-Effort Traffic Throughput
Congestion-free Traffic Throughput

(c) Sustainable loads using Harmony

0.3 0.4 0.5
Congestion-free Traffic Load

1
2
4
8

16
32
64

128

Sl
ow

do
wn

 S
pr

ea
d

HPCC
dcPIM

Harmony
Harmony Latency Bound

(d) Slowdown spread
(Congestion-free traffic)

0.3 0.4 0.5
Congestion-free Traffic Load

2

4

6

8

M
ea

n
Sl
ow

do
wn

(e) Mean slowdowns
(Best-effort delivery traffic)

0.3 0.4 0.5
Congestion-free Traffic Load

0

10

20

30

p9
9
Sl
ow

do
wn

HPCC
dcPIM
Harmony

(f) 99p slowdowns
(Best-effort delivery traffic)

Figure 7: Evaluation of Harmony with background (best-effort delivery) traffic. Figures in the top row show maximum sustainable loads
for traffic desiring best-effort delivery (lighter color) and traffic desiring congestion-free guarantees (darker color) for HPCC, dcPIM and
Harmony. Bottom row shows the slowdown spread for congestion-free traffic (left), mean latency for best-effort traffic (center) and tail latency
for best-effort traffic (right).

First, as expected, Harmony sustains low load for small-
sized RPCs; for instance, Figure 8a shows that when RPC
size is 4KB (that is, each RPC is ∼14× smaller than the
network BDP), Harmony requires a target delay that is 20×
larger than the unloaded RTT to sustain 0.5 load. For such
small RPCs, modern best-effort delivery datacenter transport
protocols will simply send all the packets within the first
RTT, rendering congestion control essentially irrelevant. As
a result, depending on the network load, network topology,
oversubscription ratios, load balancing mechanisms and/or
traffic patterns, queueing delays may or may not dominate
network delays; thus, Harmony may or may not be the best
choice for such small transfers. Recent studies from datacen-
ter networks suggest that RPCs are much larger in practice
(e.g., a recent study from production datacenters demonstrates
that median RPC size is greater than 40KB [11]; similar ob-
servations have been made in prior studies [49, 72]); for such
real-world scenarios, Harmony guarantees small worst-case
delays while sustaining high loads.

Second, Harmony maintains its performance for oversub-
scribed topologies. This is not surprising—as discussed in
§3.3, for all sustainable loads, Harmony delay bounds hold
even for oversubscribed topologies. This is because each
message is still transmitted over a dedicated set of virtual
links. Moreover, the worst-case queueing delay bounds re-
main near-identical with increasing oversubscription because
(i) the maximum possible per-hop queueing decreases; and,
(ii) the per-packet transmission delay increases, by roughly
the same amount (the delay bound now uses the minimum
link bandwidth in the topology). These two factors essentially
balance out resulting in near-identical delay bound. Finally,
since load is now defined with respect to the minimum link
bandwidth in the topology, Harmony is also able to sustain

similar loads as in full-bisection bandwidth topologies.
We present results for sensitivity analysis of Harmony

performance over the two Harmony parameters—K and
δadmission—in [5]. To briefly summarize, the results confirm
the intuition from our theoretical analysis: with increase in
K, Harmony delay bounds are higher but maximum sustain-
able load is also higher. Increase in δadmission has the same
effect; however, δadmission has lower impact than K in terms
of the magnitude of change in delay bounds and maximum
sustainable load. Moreover, since these parameters can be set
independently, any operating point in the feasibility region
for Harmony (shown in Figure 6) can be achieved.

6 Harmony benefits

Harmony enables bounded queueing and network delays, and
eliminates congestion-related drops for each message. This
leads to some immediate benefits. For instance, Harmony
has the potential to enable efficient RDMA over converged
Ethernet deployments. Specifically, most current RDMA de-
ployments use Priority Flow Control (PFC), a mechanism
to enable lossless network fabrics (no buffer overflows and
packet drops within the network fabric) [1, 44, 49, 72]. While
PFC enables lossless network fabrics, it suffers from sev-
eral undesirable problems: head-of-line blocking, inevitable
deadlocks, congestion spreading, reduced network utilization
and increased tail latencies [34–36, 44, 50, 72]. Harmony, by
design, eliminates congestion-related drops thus enabling loss-
less networks without the need for PFC.

However, to truly realize Harmony benefits, Harmony must
be extended to provide end-to-end delay guarantees. Specif-
ically, we need extensions in Harmony to bound host-side
processing delays (e.g., due to slow software [20]), and to

338 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

512B 1KB 4KB 8KB 32KB 128KB 512KB
RPC Sizes

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

 S
us

ta
in
ab

le
 L
oa

d

Max Slowdown = 10
Max Slowdown = 20
Max Slowdown = 30
Max Slowdown = 40

(a) Varying RPC sizes

0.4 0.5 0.6
Input Load

4

8

12

16

20

Sl
ow

do
wn

 S
pr
ea

d

Full Bisection 2:1 Oversub 4:1 Oversub

(b) Varying Oversubscription

0.4 0.5 0.6
Input Load

4

8

12

16

20

Sl
ow

do
wn

 S
pr
ea

d

2-Tier (Leaf Spine) 3-Tier (Fat-tree)

(c) Varying Topology Types

Figure 8: Sensitivity of Harmony performance with (a) varying RPC sizes (b) varying oversubscription ratio in network topologies; and
(c) varying scale of topologies (two-tier versus three-tier). Discussion in §5.2.

eliminate packet queueing and delays at the host (e.g., due to
host congestion [7,31]). To bound host-side processing delays,
we observe that Harmony maintains the invariant of bounded
queueing at switches thus allowing to move congestion con-
trol out of the fast path; as a result, Harmony can be easily
integrated with existing high-performance userspace network
stacks [38, 46], in-kernel network stacks [21], and accelerator
based network stacks [2, 26, 58]. These stacks often use dedi-
cated cores and/or specialized hardware for packet processing,
reducing host processing overheads to a tiny fraction of the
network RTT. To eliminate queueing and packet drops at the
host due to host congestion, Harmony can be easily integrated
with recent mechanisms for host congestion control [7]. Fi-
nally, to extend Harmony’s bounded delay guarantees all the
way to the application layer, Harmony can be integrated with
µs-scale network, CPU and storage schedulers [21,37,53]. We
leave these extensions to the future; however, we demonstrate
several applications that may benefit from such extensions.

To demonstrate potential application-layer benefits of Har-
mony, we use the DPDK-based prototype implementation
of Harmony from §4, and use three dedicated cores—one
for pacing data, one for control packet processing, and one
for implementing the remainder of the logic—to minimize
host processing delays. We integrate this implementation with
several applications, while ensuring that network layer pro-
cessing is isolated and host does not observe congestion. In
extremely rare scenarios where Harmony incurs worst-case
network-layer delays as well as host processing delays, appli-
cations may get a reject message—this does not violate any
correctness guarantees, and simply requires applications to
retry; nevertheless, to account for these delays, we simply add
1µs to Harmony’s end-to-end delay bound. This prototype
implementation thus offers bounded message delays between
sender-side and receiver-side Harmony interfaces. We inte-
grate it with three applications, that we discuss next.

CPU-efficient storage stacks. Disaggregated storage has be-
come common in today’s datacenters. As a result, modern
storage stacks have been integrated with network transports
(e.g., NVMe-over-Fabrics) in order to facilitate access to re-
mote storage devices. Today’s storage stacks rely on one of
the two designs: polling-based or interrupt-based mechanisms.
Polling-based designs provide extremely good latency when

applications are run in isolation, but suffer when applications
share CPU resources. Interrupt-based designs work better in
the shared scenario, however have suboptimal CPU-efficiency
due to frequent context-switches. Harmony’s predictable de-
lay guarantees enable a new point in the design space of
CPU-efficient storage stacks: improved CPU efficiency with-
out sacrificing tail latency. Specifically, storage stack running
atop Harmony can use predictable network delays in Har-
mony to avoid both interrupts or polling—applications can be
scheduled more precisely using the delay bound. In [5], we
demonstrate the feasibility using the Harmony prototype: we
find that Harmony enables new operating points in terms of
tail latency and system throughput.

Efficient host packet processing pipelines. Recent work [20,
28] has demonstrated that CPU-efficiency of host packet pro-
cessing pipelines can degrade significantly when multiple ap-
plications/connections running on a single CPU core contend
for cache capacity, leading to higher cache misses. Recent
work on Reframer [28] tries to reduce these misses by de-
liberately buffering packets, and waiting for a fixed amount
of time for a batch worth of packets to arrive per applica-
tion, before allowing them to be processed by the CPU. The
choice of timeout value presents an inherent tradeoff: a larger
timeout value results in better CPU-efficiency due to more
packets getting batched at the cost of higher latency, while a
smaller timeout value results in lower latency but worse CPU-
efficiency. Determining the ideal timeout value is difficult
in best-effort networks due to unpredictable network delays.
Harmony’s predictable network delay guarantees enable over-
coming the above tradeoff: in absence of failures, receivers
receive data at a fixed bandwidth, allowing to set a timeout
to reap the maximum benefits of Reframer. Evaluation of
our prototype, integrated with Reframer, achieves 2× higher
throughput than the original Reframer [5].

Efficient failure detectors. Detecting host failures is a funda-
mental problem in distributed systems. Designing a failure
detector that is reliable (i.e. provides small false positive prob-
ability) and fast (provides failure notification within a small
delay) is a hard problem, especially in best-effort networks
where network delays are unpredictable [43]. Harmony, us-
ing its bounded delay guarantees, has the potential to allow

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 339

achieving both these goals simultaneously. In [5], we present
a prototype failure detection built on top of Harmony. The fail-
ure detector probes the target host by issuing a request and
waiting for an rsvp. Given Harmony’s predictable delay guar-
antees, the failure detector knows exactly when to expect the
corresponding rsvp message. The absence of such a message
implies there was a failure, either at the host or in network
hardware. We show analytically that, for modern datacenter
networks, the probability of the probe encountering a network
failure is relatively small (and decreases with the number of
tries) due to large path diversity; based on this, we are able
to demonstrate the feasibility of designing low-latency host
failure detectors that also have low false positive rates.

7 Related Work

Our exploration of congestion-free datacenter architecture is
related to three key areas of research.

Pre-datacenter network designs (RSVP, virtual circuit
switching, ATM networks, etc.). There have been sev-
eral attempts to designing Internet architectures with pre-
dictable performance, e.g., using Resource ReSerVation pro-
tocol (RSVP) [70, 71], virtual circuit switching [12, 40, 56],
and hop-by-hop flow control in ATM networks [17, 54], to
name a few. Realizing predictable performance on the In-
ternet faced several challenges: large RTTs, the lack of a
single administrative entity precluding support from hosts
and routers, and potential deadlocks due to policy-driven rout-
ing [17, 54]. These challenges proved to be insurmountable
in the Internet context; however, the equation is quite dif-
ferent for modern datacenter networks: they support small
RTTs, operate within a single administrative domain allowing
us to leverage both host and switch support, and are already
exploring programmable switches and custom-designed net-
work interface cards (NICs) with more powerful interfaces
than commodity hardware. Our work builds upon decades
of work on predictable Internet architectures, but advances
them significantly: combining the idea of virtual channels
with RSVP to avoid throughput loss in datacenter networks
and presenting analytical bounds on bounded queueing in the
datacenter context.

Circuit-switched networks. Circuit-switched datacenter net-
work architectures [10, 25, 42, 48, 57, 63], by establishing an
end-to-end dedicated path prior to data transmission, enable
bounded queueing at each switch in the network. Our goals
are aligned with those in circuit-switched networks; unsur-
prisingly, some of our ideas resemble the techniques used in
circuit-switched networks, e.g., wavelength-switching [14,16,
52] and packet-based optical switching [24, 30]. However,
there are two—fundamental—differences. First, our work
demonstrates that it is possible to achieve powerful guaran-
tees using distributed packet-switched networks, the primary
deployment scenario in today’s datacenter networks; recent

results [10] demonstrate that it is impossible to simultane-
ously achieve low latency and high network utilization for all
workloads using distributed circuit-switched networks. Sec-
ond, unlike circuit-switched networks that assume host and
network hardware clocks to be perfectly synchronized (that
is known to be hard at the datacenter scale [69]), our design
does not make any assumptions on clock synchronization.

Predictable and low-latency datacenter network designs.
Most of the existing datacenter network designs focus on
best-effort delivery [6, 8, 9, 19, 27, 29, 32, 33, 44, 51]. There
are two exceptions. The first exception is the recent work on
lossless network designs [1, 44, 72]; while these techniques
ensure that packets are never dropped due to buffer overflow,
by design, they can suffer from packet stalls—packets can be
queued in switch buffers for an unpredictable amount of time
due to PFC pause frames [1, 44]. Thus, they do not guarantee
bounded network delays. Harmony enables lossless networks
by design (in failure-free scenarios), thus offering a way to
realize RDMA over converged Ethernet without PFC.

Another closely related line of work [15, 39, 55, 69] is on
predictable network performance using centralized schedulers.
These designs suffer from the usual centralized design limita-
tions, namely scalability and availability, especially for high-
bandwidth links. Harmony focuses on achieving predictable
network performance over distributed packet-switched net-
works. Indeed, our evaluation results suggest that Harmony
achieves performance similar to centralized designs while
enjoying the benefits of a distributed datacenter architecture.

8 Conclusion
Existing datacenter networks provide best-effort delivery, that
is, messages may experience unpredictable queueing, delays,
and congestion-related drops due to switch buffer overflows
within the network. System designers are thus forced to rely
on minimal assumptions from the network, resulting in ineffi-
ciency and complexity in host hardware and software. This
paper argues for datacenter architectures that provide stronger
guarantees by design. We have presented Harmony, a datacen-
ter architecture that provides congestion-free message deliv-
ery guarantees—each message experiences bounded queueing
at each switch in the network. Harmony thus ensures that net-
work delays are bounded in failure-free scenarios, and that
congestion-related drops are eliminated. We establish that
Harmony provides these properties with near-zero overheads
compared to best-effort delivery networks.

Acknowledgements

We would like to thank our shepherd, Ravi Soundararajan,
and NSDI reviewers for insightful feedback. We would also
like to thank Midhul Vuppalapati for many useful discussions
during this project. This research was in part supported by
NSF grants CNS-2047283 and a Sloan fellowship.

340 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] 802.1Qbb – Priority-based Flow Control . https://
1.ieee802.org/dcb/802-1qbb/.

[2] Annapurna Labs. http://www.annapurnalabs.com.

[3] Portable Switch Architecture (PSA) . https://p4.org/
p4-spec/docs/PSA.html.

[4] Switch Buffer Size. https://people.ucsc.edu/

~warner/buffer.html.

[5] Harmony Technical Report. https://github.com/

communication-harmony/tech-report.

[6] V. Addanki, O. Michel, and S. Schmid. PowerTCP:
Pushing the performance limits of datacenter networks.
In USENIX NSDI, 2022.

[7] S. Agarwal, A. Krishnamurthy, and R. Agarwal. Host
congestion control. In ACM SIGCOMM, 2023.

[8] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data Center TCP (DCTCP). In ACM SIGCOMM, 2011.

[9] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker. pFabric: Minimal Near-
optimal Datacenter Transport. In ACM SIGCOMM,
2013.

[10] D. Amir, T. Wilson, V. Shrivastav, H. Weatherspoon,
R. Kleinberg, and R. Agarwal. Optimal oblivious recon-
figurable networks. In ACM STOC, 2022.

[11] S. Arslan, Y. Li, G. Kumar, and N. Dukkipati. Bolt: Sub-
rtt congestion control for ultra-low latency. In USENIX
NSDI, 2023.

[12] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts.
On-line Routing of Virtual Circuits with Applications
to Load Balancing and Machine Scheduling. In JACM,
1997.

[13] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-
value store. In ACM SIGMETRICS, 2012.

[14] I. Baldine, G. N. Rouskas, H. G. Perros, and D. Steven-
son. JumpStart: A Just-in-time Signaling Architecture
for WDM Burst-switched Networks. In IEEE communi-
cations magazine, 2002.

[15] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.
Towards Predictable Datacenter Networks. In ACM
SIGCOMM, 2011.

[16] D. Banerjee and B. Mukherjee. Wavelength-routed Opti-
cal Networks: Linear Formulation, Resource Budgeting
Tradeoffs, and a Reconfiguration Study. In IEEE/ACM
ToN, 2000.

[17] C. Basso, J. Calvignac, D. Orsatti, and F. Verplanken.
Hop-by-hop Flow Control in an ATM Network, 1998.
US Patent.

[18] T. Benson, A. Akella, and D. A. Maltz. Network traffic
characteristics of data centers in the wild. In ACM IMC,
2010.

[19] Q. Cai, M. T. Arashloo, and R. Agarwal. dcPIM: Near-
optimal Proactive Datacenter Transport. In ACM SIG-
COMM, 2022.

[20] Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang, and
R. Agarwal. Understanding Host Network Stack Over-
heads. In ACM SIGCOMM, 2021.

[21] Q. Cai, M. Vuppalapati, J. Hwang, C. Kozyrakis, and
R. Agarwal. Towards µs Tail Latency and Terabit Ether-
net: Disaggregating the Host Network Stack. In ACM
SIGCOMM, 2022.

[22] J. G. Dai and B. Prabhakar. The throughput of data
switches with and without speedup. In IEEE INFOCOM,
2000.

[23] W. J. Dally, P. P. Carvey, L. R. Dennison, and P. A.
King. Router with Virtual Channel Allocation, 2003.
US Patent.

[24] T. S. El-Bawab and J.-D. Shin. Optical Packet Switching
in Core Networks: between Vision and Reality. In IEEE
Communications Magazine, 2002.

[25] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Baz-
zaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vah-
dat. Helios: a Hybrid Electrical/optical Switch Archi-
tecture for Modular Data Centers. In ACM SIGCOMM,
2010.

[26] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu,
A. Caulfield, E. Chung, et al. Azure Accelerated Net-
working: SmartNICs in the Public Cloud. In USENIX
NSDI, 2018.

[27] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Rat-
nasamy, and S. Shenker. pHost: Distributed Near-
optimal Datacenter Transport Over Commodity Network
Fabric. In ACM CoNEXT, 2015.

[28] H. Ghasemirahni, T. Barbette, G. Katsikas, A. Farshin,
A. Girondi, Massimoand Roozbeh, M. Chiesa,
G. Maguire, and D. Kostic. Packet Order Matters!
Improving Application Performance by Deliberately
Delaying Packets. In USENIX NSDI, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 341

https://1.ieee802.org/dcb/802-1qbb/.
https://1.ieee802.org/dcb/802-1qbb/.
http://www.annapurnalabs.com
https://p4.org/p4-spec/docs/PSA.html
https://p4.org/p4-spec/docs/PSA.html
https://people.ucsc.edu/~warner/buffer.html
https://people.ucsc.edu/~warner/buffer.html
https://github.com/communication-harmony/tech-report
https://github.com/communication-harmony/tech-report

[29] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson,
A. W. Moore, S. Hand, and J. Crowcroft. Queues Don’t
Matter When You Can Jump Them! In USENIX NSDI,
2015.

[30] C. Guillemot, M. Renaud, P. Gambini, C. Janz, I. An-
donovic, R. Bauknecht, B. Bostica, M. Burzio, F. Cal-
legati, M. Casoni, et al. Transparent Optical Packet
Switching: The European ACTS KEOPS Project Ap-
proach. In Journal of lightwave technology, 1998.

[31] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and
S. Shenker. Network support for resource disaggregation
in next-generation datacenters. In ACM Workshop on
Hot Topics in Networks (HotNets), 2013.

[32] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W.
Moore, G. Antichi, and M. Wójcik. Re-architecting
Datacenter Networks and Stacks for Low Latency and
High Performance. In ACM SIGCOMM, 2017.

[33] S. Hu, W. Bai, G. Zeng, Z. Wang, B. Qiao, K. Chen,
K. Tan, and Y. Wang. Aeolus: a Building Block for
Proactive Transport in Datacenters. In ACM SIGCOMM,
2020.

[34] S. Hu, Y. Zhu, P. Cheng, C. Guo, K. Tan, J. Padhye, and
K. Chen. Deadlocks in datacenter networks: Why do
they form, and how to avoid them. In ACM HotNets,
2016.

[35] S. Hu, Y. Zhu, P. Cheng, C. Guo, K. Tan, J. Padhye, and
K. Chen. Deadlocks in datacenter networks: Why do
they form, and how to avoid them. In ACM HotNets,
2016.

[36] S. Hu, Y. Zhu, P. Cheng, C. Guo, K. Tan, J. Padhye, and
K. Chen. Tagger: Practical pfc deadlock prevention in
data center networks. In ACM CoNext, 2017.

[37] J. Hwang, M. Vuppalapati, S. Peter, and R. Agarwal.
Rearchitecting Linux Storage Stack for µs Latency and
High Throughput. In USENIX OSDI, 2021.

[38] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter
RPCs can be General and Fast. In USENIX NSDI, 2019.

[39] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and
A. Vahdat. Chronos: Predictable Low Latency for Data
Center Applications. In ACM SoCC, 2012.

[40] S. Keshav and S. Kesahv. An Engineering Approach
to Computer Networking: ATM networks, the Internet,
and the Telephone Network. Addison-Wesley Reading,
1997.

[41] G. Kumar, N. Dukkipati, K. Jang, H. M. Wassel, X. Wu,
B. Montazeri, Y. Wang, K. Springborn, C. Alfeld,
M. Ryan, et al. Swift: Delay is Simple and Effective

for Congestion Control in the Datacenter. In ACM SIG-
COMM, 2020.

[42] S. Legtchenko, N. Chen, D. Cletheroe, A. Rowstron,
H. Williams, and X. Zhao. XFabric: a Reconfigurable
In-rack Network for Rack-scale Computers. In USENIX
NSDI, 2016.

[43] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and
M. Walfish. Detecting Failures in Distributed Systems
with the Falcon Spy Network. In ACM SOSP, 2011.

[44] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang,
Z. Cao, M. Zhang, F. Kelly, M. Alizadeh, et al. HPCC:
High Precision Congestion Control. In SIGCOMM.
2019.

[45] M. A. Marsan, E. Leonardi, M. Mellia, and F. Neri. On
the stability of input-buffer cell switches with speed-up.
In IEEE INFOCOM, 2000.

[46] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer,
C. Contavalli, M. Dalton, N. Dukkipati, W. C. Evans,
S. Gribble, et al. Snap: a Microkernel Approach to Host
Networking. In ACM SOSP, 2019.

[47] N. McKeown, A. Mekkittikul, V. Anantharam, and
J. Walrand. Achieving 100% throughput in an input-
queued switch. IEEE Transactions on Communications,
1999.

[48] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich,
G. Papen, A. C. Snoeren, and G. Porter. Rotornet: A
Scalable, Low-complexity, Optical Datacenter Network.
In ACM SIGCOMM, 2017.

[49] R. Mittal, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall,
D. Zats, et al. TIMELY: RTT-based Congestion Control
for the Datacenter. In ACM SIGCOMM, 2015.

[50] R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krishna-
murthy, S. Ratnasamy, and S. Shenker. Revisiting Net-
work Support for RDMA. In ACM SIGCOMM, 2018.

[51] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout.
Homa: A Receiver-Driven Low-Latency Transport Pro-
tocol Using Network Priorities. In ACM SIGCOMM,
2018.

[52] C. S. R. Murthy and M. Gurusamy. WDM Optical
Networks: Concepts, Design, and Algorithms. Prentice
Hall, 2002.

[53] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Bal-
akrishnan. Shenango: Achieving High {CPU} Effi-
ciency for Latency-sensitive Datacenter Workloads. In
USENIX NSDI, 2019.

342 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[54] C. Özveren, R. Simcoe, and G. Varghese. Reliable
and Efficient Hop-by-hop Flow Control. In ACM SIG-
COMM, 1994.

[55] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and
H. Fugal. Fastpass: A Centralized “Zero-Queue” Data-
center Network. In ACM SIGCOMM, 2014.

[56] S. Plotkin. Competitive Routing of Virtual Circuits in
ATM Networks. In IEEE JSAC, 1995.

[57] G. Porter, R. Strong, N. Farrington, A. Forencich,
P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and
A. Vahdat. Integrating Microsecond Circuit Switch-
ing into the Data Center. In ACM SIGCOMM CCR,
2013.

[58] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fow-
ers, G. P. Gopal, J. Gray, et al. A Reconfigurable Fabric
for Accelerating Large-scale Datacenter Services. In
IEEE/ACM ISCA, 2014.

[59] M. Raab and A. Steger. “Balls into Bins”—A Simple
and Tight Analysis. In RANDOM, 1998.

[60] J. Rexford. Tailoring Router Architectures to Perfor-
mance Requirements in Cut-through Networks. 1999.

[61] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren.
Inside the social network’s (datacenter) network. In
SIGCOMM, 2015.

[62] D. Shah. Maximal matching scheduling is good enough.
In IEEE GLOBECOM, 2003.

[63] V. Shrivastav, A. Valadarsky, H. Ballani, P. Costa, K. S.
Lee, H. Wang, R. Agarwal, and H. Weatherspoon. Shoal:
A Network Architecture for Disaggregated Racks. In
USENIX NSDI, 2019.

[64] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armis-
tead, R. Bannon, S. Boving, G. Desai, B. Felderman,
P. Germano, and et al. Jupiter Rising: A Decade of
Clos Topologies and Centralized Control in Google’s
Datacenter Network. In ACM SIGCOMM, 2015.

[65] R. Sivaram. Some measured google flow sizes. Techni-
cal report, 2008.

[66] P. Stuedi, A. Trivedi, B. Metzler, and J. Pfefferle.
DaRPC: Data Center RPC. In ACM SoCC, 2014.

[67] P. Tammana, R. Agarwal, and M. Lee. Cherrypick: Trac-
ing Packet Trajectory in Software-defined Datacenter
Networks. In ACM SOSR, 2015.

[68] P. Tammana, R. Agarwal, and M. Lee. Simplifying
Network Debugging with PathDump. In USENIX OSDI,
2016.

[69] B. C. Vattikonda, G. Porter, A. Vahdat, and A. C. Sno-
eren. Practical TDMA for Datacenter Ethernet. In ACM
EuroSys, 2012.

[70] L. Zhang, S. Berson, S. Herzog, S. Jamin, and R. Braden.
RFC2205: Resource ReSerVation Protocol (RSVP) –
Version 1 Functional Specification, 1997.

[71] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zap-
pala. RSVP: A New Resource Reservation Protocol.
1993.

[72] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,
Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and
M. Zhang. Congestion Control for Large-scale RDMA
Deployments. In ACM SIGCOMM, 2015.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 343

SwiftPaxos: Fast Geo-Replicated State Machines

Fedor Ryabinin
IMDEA Software Institute

Universidad Politécnica de Madrid

Alexey Gotsman
IMDEA Software Institute

Pierre Sutra
Télécom SudParis

INRIA

Abstract
Cloud services improve their availability by replicating data
across sites in different geographical regions. A variety of
state-machine replication protocols have been proposed for
this setting that reduce the latency under workloads with low
contention. However, when contention increases, these proto-
cols may deliver lower performance than Paxos. This paper
introduces SwiftPaxos—a protocol that lowers the best-case
latency in comparison to Paxos without hurting the worst-case
one. SwiftPaxos executes a command in 2 message delays
if there is no contention, and in 3 message delays otherwise.
To achieve this, the protocol allows replicas to vote on the
order in which they receive state-machine commands. Differ-
ently from previous protocols, SwiftPaxos permits a replica
to vote twice: first for its own ordering proposal, and then
to follow the leader. This mechanism avoids restarting the
voting process when a disagreement occurs among replicas,
saving computation time and message delays. Our evaluation
shows that the throughput of SwiftPaxos is up to 2.9x better
than state-of-the-art alternatives.

1 Introduction

Context. Today’s cloud services run in data centers scattered
around the world. The critical part of these services is repli-
cated at different geographical sites and maintained strongly
consistent [9, 14, 40, 48]. To achieve this, cloud providers
rely on state-machine replication (SMR) [45], where a ser-
vice is defined by a deterministic state machine and each site
maintains its own replica of the machine. An SMR protocol
coordinates the execution of commands at the sites, ensur-
ing that they stay in sync. The resulting system is lineariz-
able [21], providing an illusion that each command applied
to the service executes instantaneously at all sites.

Unfortunately, common SMR protocols, such as Paxos [29]
and Raft [39], have a high latency in geo-replicated deploy-
ments. These protocols funnel all commands through a leader
site, which orders commands and persists them at replicas.
If the leader fails, a new one is elected; the period when a
given site acts as a leader is called a ballot. In such protocols
the client finds out the result of a command execution after 4
message delays: a round trip from the client to the leader plus
a round trip from the leader to the replicas. This high latency
is made worse by the fact that geo-replicated transaction pro-

cessing systems (such as Spanner [14]) use Paxos multiple
times when executing a single transaction, e.g., to implement
a fault-tolerant version of two-phase commit.

Problem. There have been several proposals of SMR proto-
cols aiming to lower latency. One approach, pioneered by Fast
Paxos [31], is for clients to contact replicas directly, bypassing
the leader, and let each replica order the command indepen-
dently. If enough replicas (usually > 3/4 of the total) agree on
the ordering of the command, it takes the fast path. Otherwise,
it is processed via a slow path, which requires extra message
exchanges to resolve the disagreement. We can increase the
chances of spontaneous agreement on command ordering
by observing that, to satisfy linearizability, it is enough that
replicas only agree on the order of non-commuting (aka con-
flicting) commands [30, 42]. This allows taking the fast path
when there is no contention, i.e., when replicas receive con-
flicting commands in the same order, as is often the case in
application workloads [26, 38, 41]. Unfortunately, protocols
using this approach, such as Generalized Paxos [30], become
very expensive once even a single pair of commands contend:
in this case the protocol changes the ballot, similarly to how
it would handle a leader failure. This requires transferring a
large amount of state between replicas and disrupts the pro-
cessing of all commands, even those that do not conflict. For
this reason, Generalized Paxos has not been used in practice.

An alternative approach eliminates the leader altogether,
allowing the replicas to order commands in a peer-to-peer
manner (EPaxos [38] and follow-ups [3, 6, 17]). To perform
optimally, such leaderless protocols require clients to be co-
located with a data replica. However, as replication is expen-
sive, geo-distributed systems often do not maintain a data
replica at each client site [9, 40]. In addition, the execution of
commands in this class of SMR protocols is often delayed by
a form of a convoy effect. As a consequence, these protocols
have a high tail latency even at low conflict rates; once the
conflict rate increases, the latency skyrockets [6, 19, 50].

Contributions. To address these limitations, in this paper
we present SwiftPaxos—a new SMR protocol providing fast
linearizable operations over geo-replicated data. It processes
a command in 2 message delays when this command com-
mutes with concurrently submitted ones (fast path). Other-
wise, SwiftPaxos takes just one extra delay for the leader to
resolve the conflict, requiring 3 message delays overall (slow

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 345

path). Unlike in Generalized Paxos [30], the slow path does
not disrupt the system and does not require transferring sig-
nificant amounts of state. Since in SwiftPaxos conflicts are
resolved by the leader, it also exhibits low tail latency, unlike
EPaxos [38]. Thus, SwiftPaxos lowers the best-case latency
in comparison to Paxos without hurting the worst-case one.

To achieve such benefits, in SwiftPaxos a client sends its
command c directly to the replicas, which compute the set of
c’s dependencies—commands conflicting with c that should
be executed before it. At each replica, dependencies form
a partial order on commands, dictating how they should be
applied to the local copy of the state machine. To compute the
dependencies of a command, replicas make proposals based
on the order in which they receive commands, and then agree
on one of these. If enough replicas make the same proposal,
the command is processed in a single round-trip (fast path).
Otherwise, the replicas adopt the leader’s proposal, requiring
one extra message delay (slow path).

The key novelty of this scheme is that on the slow path a
replica votes for two different proposals: first for its own and
then for the leader’s, with latter superseding the former. Such
double voting would usually be unsafe in Paxos-like SMR
protocols: this is why Generalized Paxos [30] can only resolve
a disagreement by changing the ballot. It is safe in SwiftPaxos
because we include the leader into all fast quorums. Hence,
if a fast quorum replica disagreed with the leader, the replica
knows that the command could not have been committed on
the fast path. The replica can then quickly correct its vote
without compromising safety by sending a new message over-
ruling the previous one. This enables processing a command
on the slow path in just 3 message delays.

We have experimentally evaluated SwiftPaxos across 13
regions on Amazon EC2. Depending on contention, the pro-
tocol delivers 16–29% lower average latency than Paxos, and
in mixed YCSB workloads [13] its throughput is up to 2.9x
higher than EPaxos.

2 System Model

We consider a geo-distributed message-passing system where
processes may fail by crashing, but do not behave maliciously.
The processes are split into replicas, running a distributed
service, and clients using it. We denote the set of replicas by
R and assume that there are N = 2 f + 1 of these, at most
f of which may fail. Each process in R models a server
located in a separate data center; clients can be co-located
with servers or located elsewhere. The set of replicas can be
changed using standard reconfiguration techniques [29, 46],
and we omit details related to this.

State-machine replication (SMR) is a common approach to
designing highly available distributed services in the above
system [14, 45]. The service is defined by a deterministic
state machine, which has a set of states S and accepts a set
of commands C . Given a command c and a state s, a func-

tion exec(c,s) returns a pair (r,s′) of the return value r and
the new state s′ obtained by executing c in s. Each replica
maintains its own copy of the state machine, accessible via
a variable state. An SMR protocol coordinates the execution
of commands at the replicas, ensuring that their copies of the
state machine stay in sync.

Clients are stateless, but they know how to contact the repli-
cas. The SMR protocol allows a client to submit a command
c for execution using an API call submit(c). Each submit-
ted command c is tagged with a unique identifier id(c). A
function client associates each identifier with the client that
submitted the command. When the SMR protocol obtains the
response value r of a command c, it upcalls into the client
with a notification response(id(c),r).

The protocol we propose in this paper satisfies lineariz-
ability [21]. Informally, this means that commands appear
to clients as if executed sequentially on a single copy of the
state machine in an order consistent with the real-time order,
i.e., the order of non-overlapping command invocations. To
satisfy linearizability, it is enough that replicas agree on the
execution order of non-commuting commands [30, 42]. More
precisely, two commands c and d commute if for every state
s of the state machine: (i) executing c followed by d or d
followed by c in s leads to the same state; and (ii) c returns
the same response in s as in the state obtained by executing
d from s, and vice versa. When the two commands do not
commute, we say that they conflict, written c ▷◁ d. Conflicts
can be over-approximated using the service API: e.g., in a
key-value store operations on different keys commute. In
transactional systems with deferred update replication, such
as Spanner [14], conflicts can be detected at commit time.

To give a specification of an SMR protocol, we first define
a relation≺ over C so that c≺ d if: (i) c ▷◁ d and some replica
p executes c before d; or (ii) c was executed by some replica
before any client submitted d. An SMR protocol needs to
satisfy the following properties:

Validity. If a replica executes a command c, then some client
has submitted c before.
Integrity. A replica executes each command at most once.
Ordering. The relation ≺ is acyclic.
Nontriviality. The return value r obtained by the client for a
command c is the result of c’s execution at some replica.
Liveness. If a command c is submitted by a non-faulty client
or executed by some replica, then c is eventually executed by
all non-faulty replicas.

Implementing this specification is sufficient to ensure the
linearizability and responsiveness of the service [30, 42]. In
particular, Ordering guarantees that different replicas can-
not execute conflicting commands in different orders. As is
standard, to ensure liveness we assume that the system is
eventually synchronous [16], so that message delays between
non-failed processes are eventually bounded.

346 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 Core Concepts and Protocol Overview

We first provide an overview of SwiftPaxos, and then cover
it in detail. We have rigorously proved SwiftPaxos correct,
but due to space constraints we defer this proof to §A. In-
stead, in our explanations we state key protocol invariants and
informally explain why they hold.

3.1 Ballots
As usual for Paxos-like protocols, SwiftPaxos’s execution
is divided into a sequence of ballots. A replica can be in a
single ballot at a time, tracked in a variable bal. Each ballot
b has a fixed leader replica leader(b) = p(b mod N); all other
participants of b are followers. If leader(b) is suspected of fail-
ure, a follower initiates a recovery procedure, which switches
to a higher ballot with a new leader. A variable status at a
replica records whether it is operating normally (NORMAL)
or is recovering (RECOVERING).

We call a majority of replicas a quorum. Each ballot b is
associated with a set of fast quorums FQ (b) and a set of slow
quorums SQ (b); these are respectively used on the fast and
slow paths of SwiftPaxos. For a replica p, we write fast(p,b)
and slow(p,b) if p belongs to a fast and a slow quorum of b,
respectively. We require that the leader of b belong to every
fast and slow quorum of b. Apart from this constraint, slow
quorums can be any majorities of replicas. Fast quorums must
satisfy a stricter condition (as in Fast Paxos [31]), requiring
that any two fast quorums intersect in a majority:

∀Q1,Q2 ∈ FQ (b). |Q1∩Q2|> N/2. (FQI)

This condition can be satisfied in different ways. In the rest
of the paper we consider the following two:

(C1) A fast quorum is any set containing > 3/4 of all replicas,
including the leader.

(C2) There is a unique fast quorum consisting of a fixed
majority of replicas, including the leader.

These two quorum systems offer different optima in the trade-
off defined by (FQI). On the one hand, (C1) supports up to
(N/4− 1) follower failures without blocking the fast path.
On the other, (C2) has a better complexity, only requiring a
majority of replicas to order commands [32, 33, 36, 38], but
may block the fast path when any of these replicas fails.

3.2 Dependencies and Key Invariants
As we noted earlier, to ensure linearizability it is enough for
replicas to only agree on the order of non-commuting com-
mands. SwiftPaxos represents such an order by associating
with each command c the set of its dependencies—commands
conflicting with c that must be executed before it. To compute
this set, the replicas make their proposals and then agree on
one of them. We say that the command c is committed when
the replicas agree on all its transitive dependencies, i.e., the

dependencies of c, the dependencies of these dependencies,
and so on. The protocol ensures:

INVARIANT 1. Any two replicas commit a command with
the same set of dependencies.

A command moves through different phases as it is pro-
cessed, from the initial phase (START) to the final one, where
the command is committed (COMMIT). Each replica tracks
the progress of commands in an array phase, indexed by com-
mand identifiers. The name of the phase written in italics
denotes the set of all commands in this phase, e.g., Commit
stands for {id | phase[id] = COMMIT}. An array dep maps
a command identifier to its direct dependencies: if the com-
mand’s entry in the phase array is COMMIT, then the depen-
dencies are committed; otherwise, they record the replica’s
proposal. The dep array defines the edges of a dependency
graph at a replica. Initially, all the entries are null (⊥).

A replica executes a command once it is committed and all
its dependencies are executed. Since dependencies relate only
conflicting commands, replicas are thus free to execute inde-
pendent commands in any order. Then to satisfy the Ordering
property of SMR (§2), the protocol needs to ensure:

INVARIANT 2. For any two conflicting commands c and c′

committed at a replica, either c belongs to the dependencies
of c′, or the converse holds.

To illustrate, consider commands x, y and z such that x ▷◁ y
and y ▷◁ z and their committed dependencies are dep[id(x)] =
dep[id(z)] = /0 and dep[id(y)] = {x,z}. Then a replica can
execute x and z in any order, provided they execute before y.

Finally, as the protocol delays executing a committed com-
mand until its dependencies are executed, for the protocol to
be live, committed dependencies should not form a cycle:

INVARIANT 3. The committed part of the dependency graph
at each replica is acyclic.

3.3 Agreeing on Dependencies
Before describing SwiftPaxos in detail, we give its overview
using the example in Figure 1. Here the system consists of
5 replicas, thus tolerating 2 faults. Replicas p4 and p5 host
one client each. A third client is not co-located with any of
the replicas. The fast quorum intersection requirement (FQI)
is satisfied with configuration (C2), so that there is a single
fast quorum {p1, p2, p3}. To avoid clutter we omit most of
the interactions with the two replicas outside this quorum.

Propagation. A client sends a submitted command c to the
replicas in a Propagate(c) message. When a replica receives
c, it computes its proposal for c’s dependencies as the set of
the previously received commands that conflict with c—to
satisfy Invariant 2. In Figure 1, proposals are depicted using
→, so that {x,y}→ z means that z depends on x and y.

Fast path. Each replica in a fast quorum broadcasts its pro-
posal in a FastAck message. Replicas wait until they receive

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 347

Propagation (1 δ) Fast path (1 δ) Slow path (0-1 δ)
Q
∈

FQ

p4/client1

p5/client2

client3

p1

p2

leader

p3

submit(x)

submit(y)

submit(z)

exec(y)

exec(x)

response(z)

exec(y) exec(x) exec(z)

Reply(z) FastAck(x) FastAck(y) FastAck(z)

FastAck(x) FastAck(y) FastAck(z)

FastAck(z)FastAck(x) FastAck(y)

SlowAck(x)

SlowAck(x)

SlowAck(x) SlowAck(z)

/0→ x /0→ y {x,y}→ z

/0→ y /0→ x {x,y}→ z

/0→ y {y}→ z {z}→ x

Figure 1: An execution of the protocol processing commands x, y and z such that x ▷◁ z and y ▷◁ z.

proposals from all members of some fast quorum. If all such
proposals are the same, then there is a spontaneous agree-
ment [31]. In this case, a replica commits the command once
its dependencies are also committed. This represents the fast
path of the protocol, which under favorable conditions allows
a replica to execute a command within 2 message delays from
the time it was submitted. For example, in Figure 1 replica
p1 commits and executes y immediately after receiving the
same proposal /0→ y from all fast quorum members. Since
each replica computes its proposal from the conflicting com-
mands it has seen before, a command takes the fast path when
there is no contention—something that occurs frequently in
application workloads [26, 38, 41].

Slow path via double voting in a fast quorum. Fast quo-
rum replicas compute their proposals based on the order in
which they receive conflicting commands. As this depends on
the ordering generated by the network, the replicas may dis-
agree, in which case the command takes the slow path. To this
end, each fast quorum replica that disagreed with the leader
adopts its proposal and acknowledges this by broadcasting a
SlowAck message. A replica can commit the command once
it receives a set of matching FastAck and SlowAck messages
from all the members of some fast quorum and it has commit-
ted the command’s dependencies. This may require an extra
message delay in comparison to the fast path. For example,
in Figure 1 replicas p1 and p2 receive x before z, while p3
receives z before x, which results in different proposals. Since
p3 disagrees with the leader p2 on the dependencies of x and
z, it adopts the leader’s proposals /0→ x and {x,y}→ z and
broadcasts SlowAcks for the two commands. Consequently,
replica p1 commits and executes x and z in 3 message delays.

Note that on the slow path a fast quorum replica votes for
two different proposals in the same ballot—once for its own
(FastAck) and once for the leader’s (SlowAck). Such double
voting would usually be unsafe in Paxos-like protocols. In
SwiftPaxos this is safe because the leader belongs to all fast
quorums: if a fast quorum replica disagreed with the leader,
the replica knows that the command could not have been
committed on the fast path, and may safely correct its vote.

Slow path via a slow quorum. SwiftPaxos can also com-

mit commands using a slow quorum, just like Paxos. A slow
quorum replica acts similarly to a fast quorum replica, except
that it does not make proposals of its own. Namely, when it
receives a FastAck from the leader, a slow quorum replica
adopts the leader’s proposal and broadcasts a SlowAck mes-
sage. Any replica can commit the command after receiving
FastAck from the leader and SlowAcks from the followers
of a slow quorum. In a wide-area network, where latencies
between different pairs of replicas vary, the slow path may
be faster than the double-voting mechanism in the fast path.
Going back to Figure 1, assume that the latency between p4
and p3 is higher than between p4 and p5. Instead of waiting
for a SlowAck message for x from p3, replica p4 can use the
earlier SlowAck message from p5 and the FastAck from the
leader p2 to commit x via the slow quorum {p4, p5, p2}. Since
a slow quorum can be any majority, this additional mecha-
nism for committing commands ensures that SwiftPaxos is
at least as fast as Paxos. In fact, on the slow path SwiftPaxos
corresponds to a well-known faster variation of Paxos where
followers broadcast 2B messages to all replicas.

Message complexity. SwiftPaxos has a quadratic message
complexity, as opposed to linear complexity of classical Paxos.
However, for typical geo-replicated SMR deployments (N = 3
or N = 5) [9, 14] the difference between these complexities
is fairly small. Besides, the additional messages issued by
SwiftPaxos are light, as they only carry metadata. We compare
the bandwidth usage of SwiftPaxos and Paxos in §5.1.

3.4 Ensuring Low Tail Latency
Dependencies are also used to order commands in
EPaxos [38] and its follow-ups [3, 17]. However, in EPaxos
dependencies may form cycles, and thus command execution
cannot simply follow their order. Instead, EPaxos waits until
it forms strongly connected components of the dependency
graph and then executes these components one at a time. Since
such components can be arbitrary large, the protocol may de-
lay command execution for an unbounded amount of time.
This phenomenon is known as convoy effect and in practice it
leads to a high tail latency [6, 19, 50].

In contrast, dependencies in SwiftPaxos remain acyclic (In-
variant 3, §3.2), and command execution can simply follow

348 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Dependency graph Dependencies of c3 Paths to c3
leader c1→ c2→ c3 {c2} {[c3,c2,c1]}

p1 c2→ c3 {c2} {[c3,c2]}
p2 c2→ c3 {c2} {[c3,c2]}

Figure 2: To accept the result of optimistic execution, clients wait
for matching dependency paths.

them. The only delay between committing a command and ex-
ecuting it is similar to one present in Multi-Paxos, where each
consensus instance depends on the prior ones. This makes
the tail latencies of SwiftPaxos and Paxos comparable, as we
empirically show in §5.2. We compute the theoretical latency
of SwiftPaxos and compare it against other protocols in §A.6.

3.5 Faster Responses at Non-Collocated Clients

Clients located in the same data center as a replica receive the
result of a command directly from that replica. For instance,
client2 in Figure 1 is co-located with p5 and receives the
response to y immediately after p5 executes y. Clients that are
not co-located with a replica need to wait for an extra message
delay to hear the response. To speed up delivering responses
at such clients, SwiftPaxos optimistically executes commands
at the leader (similarly to Zookeeper [23] and CURP [41]).

In more detail, when the leader receives a command c from
a client that is not co-located with a replica, it computes the
result of executing c and replies to the client with a Reply
message. In Figure 1, client3 gets this message for command
z. Followers send their FastAck and SlowAck messages for
c not only to other replicas—as described before—but also
to the client that submitted c. The client accepts the response
in Reply once it receives matching FastAck or SlowAck
messages from a fast or slow quorum. This ensures that a
client always gets a response within 2 or 3 message delays,
regardless of whether it is co-located with a replica.

There is a subtlety, though: on the fast path a client can-
not accept the result of optimistic execution using only the
dependency sets, because these sets contain direct dependen-
cies of the command but say nothing about their predecessors.
Figure 2 illustrates this. It depicts the dependency graphs at
some point in time where (FQI) from §3.1 is satisfied with a
single quorum {p0, p1, p2}, with p0 as the leader. In Figure 2,
clients submit 3 commands c1, c2 and c3, with c2 conflicting
with both c1 and c3. The replica p0 is the only one to receive
c1, yet all three replicas agree on the ordering of c2 and c3.
Assume that p0 now optimistically executes c1, c2 and c3 in
this order before it gets any messages from other replicas,
and thus before this ordering is durable. It will then send the
result of executing c3 to the client. The leader’s proposal for
the dependency set of c3 matches the proposals of p1 and p2,
but the three replicas disagree on c3’s transitive dependencies.
Hence, the client cannot accept the reply from the leader: if
the leader crashes, its ordering of c1 will be lost, invalidating
the optimistic execution. Notice that this problem does not

occur at replicas, as they execute each command only after it
gets committed, implying that all its transitive dependencies
are also committed, and thus durable.

To ensure that clients accept only valid results from op-
timistic execution, FastAck messages contain not only the
direct dependencies of the command but also the set of all
the paths leading to it in the dependency graph. If these sets
match, the ordering of the command is durable and the client
may accept the result via the fast path. For a command c, we
represent the set of c’s dependency paths as a set of ordered
lists, where each list starts with c and continues with its tran-
sitive dependencies arranged according to the dependency
graph (see Figure 2). In §4.1 we explain how dependency
paths can be efficiently implemented in practice.

In Figure 1 when the fast quorum replicas receive z, their
FastAck replies carry not just dependency sets, but also de-
pendency paths: replicas p1 and p2 send {[z,x]; [z,y]}, while
p3 sends {[z,y]}. Since these sets do not match, the result of
z cannot be accepted by client3 on the fast path.

4 SwiftPaxos in Detail

We define the protocol logic in Figures 3–5 using a set of
handlers, each of which executes atomically once its precon-
ditions are true (keyword pre).

4.1 Normal Operation

Propagation. Upon receiving a Propagate(c) message
from a client (lines 2 and 6), a replica p saves c in an array
cmd and moves c to the PREACCEPT phase, to record that it
is now waiting for the leader’s proposal. If the replica belongs
to some fast quorum, it also computes its proposal dep[id(c)]
for c’s dependencies and broadcasts it in a FastAck message
together with c’s dependency paths paths[id] (line 21).

If p is the leader, upon receiving a command p also exe-
cutes it and sends its result in a Reply message (lines 16-19).
The command is not committed at this point. The execution is
optimistic and p does not modify its local copy of the state ma-
chine. Instead, p maintains a list pending_log of commands
that are received but not committed yet. The command is
added to the list and p determines its result using a function
opt_exec (further discussed in §4.4).

Fast path. A replica p commits a command c via the fast
path when it receives matching dependency sets from a fast
quorum. In this case, p first processes the FastAck message
from the leader (line 22), which advances c to the ACCEPT
phase (line 24). Then p processes FastAcks from the other
quorum members (line 30). Once the dependencies of c are
committed (line 31), p commits c as well. A client receives a
response on the fast path once it gets a Reply message from
the leader and matching dependency paths from the followers
of a fast quorum (line 3).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 349

1 function submit(c):
2 send Propagate(c) to R

3 when received Reply(b, id,P,r) from leader(b) and
FastAck(b, id,_,P) or SlowAck(b, id)
from all followers in Q ∈ FQ (b), or

4 when received Reply(b, id,_,r) from leader(b) and
SlowAck(b, id) from all followers in
Q ∈ SQ (b)

5 response(id,r)

Figure 3: Client code.

Slow path. Upon the receipt of FastAck(b, id,D,P) from
the leader, a fast quorum replica checks whether its local
value of dep[id] is equal to D (line 25). If this is not the
case, the command takes the slow path: the replica overwrites
dep[id] with D, advances the command’s phase to ACCEPT
and notifies the other replicas and the client with a SlowAck
message. A slow quorum replica also sends the SlowAck to
speed up agreement on dependencies, as described in §3.3.
To commit the command, the replica then waits until the
other fast (or slow) quorum members send either a FastAck
matching the leader’s proposal or a SlowAck (line 30).

The client acts similarly to compute the response to its
command, except that it waits for matching dependency paths
instead of dependency sets (line 3). This justifies line 29:
when a fast quorum replica receives the leader’s proposal
that matches its own vote but does not match the dependency
paths, it sends a SlowAck message to the client. In this way
the client learns that the replica is now in sync with the leader
and can thus accept the result of the optimistic execution.

To ensure that the replica is indeed in sync with the leader,
we need the last conjunct of the precondition at line 23. This
requires the replica to handle a FastAck(_,_,D,_) message
from the leader only if it has already handled such messages
from all the commands in D. This condition is automatically
satisfied when communication channels are FIFO. To illus-
trate its role, imagine that in Figure 1 replica p3 updated the
dependencies of z before those of x, violating the precondition
in line 23. Then right after p3 changed dep[z] to {x,y}, the
three replicas of the fast quorum disagree on the set of depen-
dency paths of z: at replicas p1 and p2 the set is {[z,x]; [z,y]}
but according to p3 there is a path [z,x,z]. As seen in §3.5
accepting the result of the execution of z would be unsafe.

Command execution. A replica keeps track of commands
executed on its copy of the state machine using a variable
Exec. A replica executes a command once it is committed and
all its dependencies are executed (line 33). If the replica is the
leader, it then removes the command from pending_log.

Representing dependency paths. Sending full dependency
paths is not an option in practice due to their fast-growing
size. This issue is solved by trimming the paths of a command
c up to the last committed or accepted transitive dependency.
For example, if c’s set of dependency paths is {[c,d,e]} and

6 when received Propagate(c) from client q
7 pre: status= NORMAL∧id(c) ∈ Start
8 phase[id(c)]← PREACCEPT
9 cmd[id(c)]← c

10 if fast(p,bal) then
11 let D = {id | cmd[id] ▷◁ c}
12 let P = pset(id(c))
13 dep[id(c)]← D
14 paths[id(c)]← P
15 if p = leader(bal) then
16 pending_log← pending_log · c
17 let r = opt_exec(pending_log,state)
18 send Reply(bal,id(c),P,r) to q
19 send FastAck(bal,id(c),D,P) to R
20 else
21 send FastAck(bal,id(c),D,P) to R ∪{q}

22 when received FastAck(b, id,D,P) from leader(b)
23 pre: status= NORMAL∧ id ∈ Preaccept∧bal= b

∧D⊆ Accept∪Commit
24 phase[id]← ACCEPT
25 if (fast(p,b)∧dep[id] ̸= D)∨ slow(p,b) then
26 dep[id]← D
27 send SlowAck(bal, id) to R ∪{client(id)}
28 else if fast(p,b)∧paths[id] ̸= P then
29 send SlowAck(bal, id) to client(id)

30 when received FastAck(b, id,D,_) or SlowAck(b, id)
from all followers in Q f ∈ FQ (b), or
SlowAck(b, id) from all followers in Qs ∈ SQ (b)

31 pre: status= NORMAL∧ id ∈ Accept∧bal= b
∧D = dep[id]⊆ Commit

32 phase[id]← COMMIT

33 when there exists id ∈ Commit\Exec with dep[id]⊆ Exec
34 (_,state)← exec(cmd[id],state)
35 Exec←{id}∪Exec
36 if p = leader(bal) then remove(pending_log, id)

37 function pset(id):
38 if dep[id] = /0 then return {[id]}
39 else return {id :: l | ∃id′ ∈ dep[id]. l ∈ pset(id′)}

Figure 4: Normal operation at a replica p.

d is in the COMMIT or ACCEPT phase, the set is reduced to
{[c,d]}. Thanks to the preconditions at lines 23 and 31, this
is safe: if a command is committed or accepted then so is
any of its transitive dependencies. When the reduced sets
match, the omitted parts match as well, as they correspond to
the ordering at the leader. Additionally, instead of the paths
themselves one may send hashes of the (reduced) paths [44].
This optimization is also applied in our implementation.

Garbage collection. Standard periodic checkpoints can be
used to bound memory usage of the protocol [7,23]. In our im-
plementation, we simply trim a command from the protocol’s
state once it is executed at all replicas. In §5.1 we discuss the
memory consumption in more detail.

350 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

40 function recover():
41 let b > bal such that leader(b) = p
42 send NewLeader(b) to all

43 when received NewLeader(b) from q
44 pre: b > bal
45 status← RECOVERING
46 bal← b
47 send NewLeaderAck(b,cbal,phase,cmd,dep) to q

48 when received NewLeaderAck(b,cbalq,phaseq,cmdq,depq)

from all q ∈ Q
49 pre: status= RECOVERING∧bal= b∧|Q|> n/2
50 reset phase, cmd and dep
51 let bmax = max{cbalq | q ∈ Q}
52 let U = {q ∈ Q | cbalq = bmax}
53 forall id such that

∃q ∈U.phaseq[id] ∈ {ACCEPT,COMMIT} do
54 phase[id]← phaseq[id]
55 cmd[id]← cmdq[id]
56 dep[id]← depq[id]
57 forall id /∈ Accept∪Commit do
58 if ∃D ̸=⊥.∃Q f ∈ FQ (bmax).Q∩Q f ⊆U

∧∀q ∈ Q∩Q f .depq[id] = D then
59 phase[id]← ACCEPT
60 cmd[id]← cmdq[id]
61 dep[id]←

D∪{id′ | cmd[id′] ▷◁ cmd[id]∧ id /∈ dep[id′]}
62 forall (id, id′) such that id′ ∈ Start∩dep[id] do
63 dep[id]← dep[id]\{id′}
64 arbitrarily break cycles in dep
65 send Sync(b,phase,cmd,dep) to R

66 when received Sync(b,phase,cmd,dep)
67 pre: b≥ bal
68 status← NORMAL; bal← b; cbal← b
69 phase← phase; cmd← cmd; dep← dep
70 clear(pending_log)
71 if slow(p,b) then
72 forall id in an order consistent with dep do
73 if p = leader(b)∧ id /∈ Exec then
74 pending_log← pending_log · cmd[id]
75 else if id ∈ Accept then
76 send SlowAck(b, id) to R

Figure 5: Recovery at a replica p.

4.2 Recovery from Leader Failures
Replicas continuously monitor the progress of the protocol.
When the current leader is suspected of hindering progress,
the protocol nominates a new one to take over. This nomi-
nation can be done in a standard way, e.g., using a failure
detector [8], and we defer the details to §A.4. We now explain
the algorithm followed by the potential leader.

Leadership change. The recovery procedure begins similarly
to Paxos [29]. When a replica p is nominated to become the
new leader, it calls recover (line 40). This function picks
a new ballot b led by p and higher than any ballot p has
previously joined. Replica p then sends b in a NewLeader
message to all replicas, asking them to support its leadership.
A replica acknowledges p as the new leader only if b is higher

than any ballot it has previously joined (line 44). In this case
the replica changes its status to RECOVERING, which stops
normal message handling, and replies with a NewLeaderAck
message carrying the commands it knows about.

Once the leadership of p is approved by a quorum Q
(line 48), p’s next goal is to bring the replicas into the same
state from which they will resume processing commands.

Recovering commands. To maintain consensus on depen-
dencies (Invariant 1), the new leader’s state must include all
commands committed in lower ballots. To ensure this, the
leader computes the initial state of b based on the states and
the values of a cbal variable reported by the replicas in their
NewLeaderAck messages. This variable maintains the last
ballot at which each replica successfully completed recovery.

Similarly to Paxos [29], p focuses on the set U of replicas
that reported the maximal ballot bmax: the state of these repli-
cas supersedes that of replicas from lower ballots. The leader
p then incorporates into its state all the commands that could
have been committed up to bmax. In lines 53–56 the leader
does this for commands that could have been committed on
the slow path. Any such command would have to be accepted
by a slow quorum Qs, which must intersect with the recovery
quorum Q in at least one process. Hence, for each command
c in the ACCEPT or COMMIT phase at a replica q ∈ U , the
leader incorporates c and its dependencies as reported by q
into its state. In lines 58–61 the leader collects all commands
that could have been committed up to bmax on the fast path.
Any such command would have to be preaccepted with the
same dependencies by a fast quorum Q f . Hence, p adds to its
state all commands c such that Q∩Q f ⊆U and all replicas in
Q∩Q f report the same dependency set D for c. This condition
is similar to Fast Paxos [31]; we later explain the rationale for
the second term of the union at line 61 and how we ensure that
we don’t create cycles in the dependency graph. Note that the
condition at line 58 defines D uniquely: there may not be two
different fast quorums Q f and Q′f whose members in Q re-
port different dependency sets. This is because (FQI) implies
(Q∩Q f)∩ (Q∩Q′f) = Q∩Q f ∩Q′f ̸= /0. But then the depen-
dencies reported for the command c by Q∩Q f and Q∩Q′f
cannot be distinct, since they were reported by some replica
belonging to both sets.

Thanks to the conditions at lines 53 and 58, all commands
committed at earlier ballots are included into the new state.
Next, the leader removes from the dependency graph all com-
mands that do not satisfy those conditions (lines 62-63). To
see that the loop at line 62 does not violate safety properties,
note that for a pair of commands c and c′ whose identifiers
id and id′ satisfy the condition at line 62, neither command
can be committed at a previous ballot: c′ is not committed
because it does not satisfy any of the two conditions at line 53
and line 58; c is not committed because it depends on an un-
committed command c′. Thus, it is safe to completely remove
c′ from the state and update the dependencies of c.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 351

Q f 0 = {p0, p1, p3, p4}
Q f 1 = {p1, p2, p3, p4}
Q f 2 = {p0, p2, p3, p4}

p0 : c0→c1→ c2→c3→ c4
p1 : c2→c3→ c4→c5→ c0
p2 : c4→c5→ c0→c1→ c2

Qr = {p0, p1, p2} F = {p3, p4}

(a)

p0 p1

p2

Qr∩Q f 0
Q r
∩

Q
f1

Q
r ∩

Q
f2

(b)

c0
c1

c2
c3

c5

c4

/

(c)

Figure 6: Avoiding dependency cycles during recovery.

After the above computation, the leader breaks cycles in
the dependency graph; we explain this step shortly. The
leader then broadcasts a Sync message, defining the state
from which the new ballot starts. When another replica re-
ceives this message (line 66), it overwrites its state with the
one provided, changes its status to NORMAL, and clears the
log of pending commands. If the replica belongs to a slow
quorum, it broadcasts a SlowAck message for each uncom-
mitted command (line 76), to ensure that such commands are
committed in the new ballot. Finally, if the replica is the new
leader, it adds all unexecuted commands to pending_log in
an order consistent with the dependencies (line 72).

Recovery can be easily optimized so that Sync messages
only transfer the parts each replica is missing (although our
prototype implementation omits this optimization).

Preserving the invariants. During the normal protocol oper-
ation, both on the fast and slow paths replicas commit com-
mands with the dependencies proposed by the leader. Then,
due to the way the leader computes its proposals, commit-
ted conflicting commands cannot be independent, and the
dependencies of committed commands cannot form a cycle,
as respectively required by Invariants 2 and 3. However, pre-
serving these invariants during recovery requires care.

First, during recovery the new leader can introduce a cycle
when it merges replica states. To see how this can happen,
consider the example illustrated in Figure 6. The system con-
sists of five replicas and recovers from Qr = {p0, p1, p2} after
the failure of the remaining replicas F = {p3, p4}. Assume
that on recovery all replicas in Qr report the same cbal = b
and the orderings shown in Figure 6a. Assume also that the
leader of b is p4, and that this ballot is associated with three
fast quorums Q f 0, Q f 1 and Q f 3, defined in the figure. On re-
covery the replicas in Qr ∩Q f 0, Qr ∩Q f 1 and Qr ∩Q f 2 agree
on the orders c2→ c3→ c4, c4→ c5→ c0 and c0→ c1→ c2,
respectively (Figure 6b). According to line 58, the new leader
has to incorporate all of them into its state. But when these
orderings are combined, they yield a cycle over commands
c0, . . . ,c5. To preserve Invariant 3 in such cases, the leader
arbitrarily breaks cycles by inverting relations between any
two commands in them (line 64). For example, the cycle in

Figure 6 can be broken by removing c5 from dep[id(c0)] and
adding c0 to dep[id(c5)] (Figure 6c). Note that this compu-
tation does not violate Invariant 1 because it changes only
those dependencies that could not have been committed in
previous ballots. Namely, if some command on the cycle is
committed, then so are all its predecessors, i.e., all commands
on the cycle (by line 31); but this is impossible by Invariant 3.
We refer to §A for a detailed proof.

When computing the new state during recovery, the new
leader can also end up with two conflicting commands none
of which is a dependency of the other. To see how this can
happen, imagine that in Figure 1 recovery occurs right after
the moment p3 received FastAck(b,x, /0,_) from the leader.
At this moment the replica has x in the ACCEPT phase with an
empty set of dependencies, and z in the PREACCEPT phase,
with y as its only dependency. Incorporating both commands
into the new state with the dependencies reported by p3 would
violate Invariant 2, because neither of the conflicting com-
mands x and z is a dependency of the other. To avoid such
situations, the new leader updates dependency sets of the com-
mands that are not in the ACCEPT or COMMIT phase at some
replica of the recovery quorum (line 61). The leader adds to
the dependencies of c all conflicting commands, excluding
those that already depend on c. In the above example, the
leader includes x in the dependency set of z (line 61), which
is safe because z is not committed at previous ballots. In §A
we prove that this computation is also safe in general.

4.3 Recovery from Client and Follower Failures
Before voting on a command, a replica must know its payload
(lines 6 and 23), which may not be available locally if the
client has failed. To deal with this, if the replica receives an
acknowledgment from the leader regarding this command,
after some time it tries to fetch the payload from the leader.
Additionally, followers re-propose commands if they are not
committed after some timeout. This helps when the payload
is available at followers but missing at the leader.

Follower failures do not impact the availability of
SwiftPaxos. But the failure of a follower within the fast quo-
rum can disable the fast path of the protocol and degrade its
performance. SwiftPaxos can deal with this using the same
procedure as for leader failures, changing the ballot to one
with a different fast quorum.

4.4 Optimistic Execution
The execution performed by the leader to compute the result
of a command (line 17 in Figure 4) is optimistic: at the time
the leader invokes opt_exec, the command has not yet been
accepted by the followers. However, the followers will always
accept the command unless one of them suspects the leader
of failure, which happens rarely. Hence, the work done during
the optimistic execution is rarely lost.

The optimistic execution in SwiftPaxos can be imple-
mented using existing mechanisms [25, 28, 41, 49]. For ex-

352 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ample, the command’s response can be computed by reading
the local copy while taking into account prior uncommit-
ted commands in pending_log, and its side effects can be
buffered until commit. Such a mechanism is already at work
in industrial-grade systems, such as Zookeeper [23].

SwiftPaxos can also be optimized by speculatively exe-
cuting read-only commands not at the leader, but at any fast
quorum replica. A client receives a reply from this replica and,
as before, accepts it on the fast path when other fast quorum
members report matching dependency paths. This optimiza-
tion distributes the load across replicas, preventing the leader
from saturating. We assess its benefits in §5.6.

5 Evaluation

Our evaluation compares SwiftPaxos against several other
protocols, as detailed next. All protocols are written in Go,
building on the codebase of EPaxos [38]. The source code is
publicly available [1].

Paxos [29]. Commands get ordered and disseminated by the
leader replica, which is also in charge of replying to clients.
N2Paxos. A variation of Paxos that broadcasts 2B messages
(corresponding to our SlowAcks) to all replicas. A client
receives the response from the site closest to it. This cuts one
message delay for clients close to a replica, allowing them to
learn a response in 3 message delays instead of 4.
FastPaxos+ [31]. Clients send their requests directly to all
replicas, and a command is committed if enough replicas
agree on its ordering. When replicas disagree, the protocol
starts a new ballot of N2Paxos. We implement uncoordinated
collision recovery [31] (hence the +), which reduces commit
latency in exchange for a fixed collision-recovery quorum. In
this version replicas locally compute a proposal for the next
ballot, bypassing the coordinator and saving one round trip.
GPaxos [30]. Generalized Paxos improves Fast Paxos by
increasing fast path rate using the commutativity of com-
mands. However, it needs heavy metadata that requires fre-
quent checkpointing [20, 47].
CURP+. CURP [41] boosts leader-based SMR protocols by
separating ordering from durability. Each command is opti-
mistically executed at the leader while being stored at > 3/4
of replicas (“witnesses”). If there is no conflict, the result of
the optimistic execution at the leader is usable right away,
without waiting for the command to commit. CURP is a
primary-backup replication protocol, i.e., it uses only f +1
replicas but requires accurate failure detection. We use its vari-
ant for 2 f +1 replicas [41, Appendix B.2] based on N2Paxos,
to reduce latency (hence the +). See §B for the details.
EPaxos [38]. A leaderless protocol where clients connect to
the closest replica, which coordinates access to the replicated
service. In the conflict-free case, clients co-located with a
replica know the response after 2 message delays. Far-away

clients need an extra round trip to receive it. We deploy
EPaxos in thrifty mode, which reduces the overall number of
sent messages and the size of fast quorums.
Mencius [37]. Mencius rotates the role of the consensus
leader among the replicas. This spreads the load, but makes
the system run at the speed of the slowest replica.

We use two benchmarks: a no-op service and a key-value
store with an API following the one of YCSB [13]. The data
model is a set of records that are accessed using the com-
mands insert, get, and update. Each record is stored un-
der some key. Two commands conflict when they access the
same record and one of them is a write. The no-op service
executes commands accessing a random key and carrying a
default payload of 1 KB (the standard YCSB payload size).
Two commands conflict when they are on the same key. Fol-
lowing standard practice [38], to measure performance under
a conflict rate ρ a client chooses key 0 with a probability ρ,
and some unique key otherwise.

We deploy the services on Amazon EC2 over 5 replicas
in different geographical regions, so that the system tolerates
both a failure and a planned outage due to maintenance—a
common deployment configuration [14]. Clients are spread
over 10 regions all around the world, 2 of which also host
replicas. Hence, our experiments use 13 EC2 regions in total
(see §C for more details). Both clients and replicas execute
in virtual machines running Amazon Linux 2 with 16 vCPUs
and 32 GB of main memory. Unless stated otherwise, clients
execute commands in a closed loop, waiting for the previous
command to return before submitting a new one. Leader-
based protocols execute with the leader placed at the site that
minimizes the average (mean) latency across all clients. By de-
fault, our experiments use configuration (C2) to satisfy (FQI)
for both SwiftPaxos and FastPaxos+, as it is slightly more
favorable than (C1). We investigate the trade-offs between
the two configurations in §5.5.

5.1 Impact of the Conflict Rate

Our first experiment varies the conflict rate from 0 to 100% in
10% increments. Each site hosts 100 clients (1000 clients in
total). Figure 7(a) presents the speedup relative to Paxos. The
latency experienced by clients under each protocol depends
on where they are relative to the replicas. The top row of
Figure 7(a) reports the average (mean) latency across all sites.
The middle row reports the speedup observed at the best site
for SwiftPaxos, and the bottom row reports the worst.

The latencies of Paxos, N2Paxos, and FastPaxos+ are in-
dependent of the conflict rate. On average the improvement
of N2Paxos over Paxos is slightly below 1.05x: from 239 ms
to 229 ms. This is due to clients co-located with replicas,
which benefit from the broadcast of 2B messages. FastPaxos+
has an almost null fast path ratio because it is rare that the
replicas receive two concurrent commands (conflicting or
not) in the same order. Its slow path follows the message

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 353

1.0×

1.5×

2.0×
Average

0.0

0.2

0.4

0.6

0.8

1.0
Average

1.0×

1.5×

2.0×
Best

0.0

0.2

0.4

0.6

0.8

1.0
Best

1.0×

1.5×

2.0×

0 20 40 60 80 100

Worst

100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0
Worst

sp
ee

du
p

C
D

F

SwiftPaxos
CURP+

EPaxos
GPaxos

FastPaxos+
N2Paxos

Paxos
Mencius

sp
ee

du
p

C
D

F

sp
ee

du
p

conflict rate (%)
(a)

C
D

F

latency (ms)
(b)

Figure 7: (a) Speedup over Paxos when varying the conflict rate
and (b) latency distribution under 2% conflicts. From top to bottom,
we report the average (mean), best, and worst sites for SwiftPaxos.

flow of N2Paxos with one difference: to take the slow path, a
replica must first detect a collision (with a majority of 2B mes-
sages). This explains why FastPaxos+ is slower than N2Paxos:
300 ms against 229 ms. For this reason, the average latency
of FastPaxos+ is omitted from Figure 7(a). The same happens
with Mencius, which displays a latency of 360 ms on average.

The average latency of SwiftPaxos is between 170 ms and
201 ms. With a 0% conflict rate this is 1.4x faster than Paxos.
Each 10% increase in the conflict rate yields a 1–3% increase
in latency. With 100% of conflicts, the speedup is 1.19x. At 7
out of 10 client sites SwiftPaxos is more than 20% faster than
Paxos, achieving more than 40% improvement at 3 of them.

At a low conflict rate, EPaxos and GPaxos are faster than
Paxos, yet both see their performance decrease abruptly as
conflicts increase. This is mainly explained by the drop in the
fast path ratio. Another reason is that at 8 out of 10 client sites
there is no service replica. These clients need an extra round-
trip to get a reply. In EPaxos, performance also deteriorates
due to the convoy effect in command execution (§3.4). Thanks
to its optimistic execution mechanism, CURP+ is the second
best protocol, with a 1.18x speedup on average. Similarly to
other protocols, its performance decreases with conflicts.

SwiftPaxos is faster than other protocols at all sites except
one (last row in Figure 7(a)): this site is too far away from
the fast quorum to leverage it. The improvement over CURP+

0
100
200
300
400
500
600

0 5 10 15 20

la
te

nc
y

(m
s)

throughput (Kcmd/sec)

SwiftPaxos (2%)
CURP+ (2%)

Paxos
EPaxos (2%)

Mencius
N2Paxos

Figure 8: Saturation points for 5 replicas when the total number of
clients increases from 100 up to 5000.

comes from a better fast path condition and smaller fast path
quorums.

5.2 Tail Latency
Figure 7(b) reports the cumulative distribution function (CDF)
of the latency at clients with 2% of conflicts. As before, we
run 100 clients per site. EPaxos has a suboptimal tail latency
distribution due to a convoy effect in its execution mechanism
(§3.4). GPaxos has similar issues because it requires complex
data structures and needs to regularly start new ballots to
minimize metadata. Other leader-based protocols do not suffer
from tail latency issues.

5.3 Metadata Usage
The leader in Paxos sends the payload of each command to the
quorum of replicas. This is not the case with SwiftPaxos, be-
cause the protocol uses command identifiers for ordering. As
a consequence, SwiftPaxos can be cheaper than Paxos when
contention is rare. With 0% conflicts, metadata in SwiftPaxos
consumes 2.83 GB in the experiment of Figure 7(a). This
is 1.16x better than Paxos (3.27 GB). The protocol message
complexity increases with more conflicts. In Figure 7(a) with
100% conflicts data consumption is 3.36 GB, around 3% more
than Paxos. At a replica, the dependency graph grows over
time, but shrinks due to garbage collection (see §4.1). In Fig-
ure 7(a), the average size of a command’s dependency set is
only 24 B. On average, the dependency graph at a replica is
about 8% of the protocol’s memory usage.

5.4 Scalability
To evaluate the scalability of SwiftPaxos, we run an experi-
ment that progressively brings it to saturation. The results are
reported in Figure 8. The total number of clients increases
from 100 to 5000, and the payload of each command is set to
3 KB (this payload size is chosen so as to saturate the system
with a reasonable number of client machines).

During this experiment, Paxos and N2Paxos display sim-
ilar behavior. The two protocols saturate when 2500 clients
are deployed across the 10 sites. This is due to the fact that
the leader is in charge of broadcasting the commands to the

354 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0K

2K

4K

6K

0 20 40 60 80

(a)

(b)

0 20 40 60 80

(a)

(b)

th
ro

ug
hp

ut
(c

m
d/

se
c)

time (sec)
(C1)

time (sec)
(C2)

SwiftPaxos EPaxos Paxos

Figure 9: An execution for configurations (C1) and (C2) where (a)
a replica slows down and (b) the leader fails.

replicas. In the absence of conflicts, the throughput of EPaxos
is around 24% higher than that of Paxos (7.8K ops/s against
6.3K ops/s) at almost the same average latency (≈260 ms).
When we further increase the system load, responsiveness is
affected. Saturation occurs at 400 clients per site, where the
system delivers 12K ops/s at an average latency of 424 ms.

In contrast to Paxos, leader-based algorithms with fast paths
(CURP+ and SwiftPaxos) do not funnel commands through
the leader. Instead, each client is responsible for sending its
commands to the replicas. This increases the throughput of
the protocol by (at least) 30% on average.

5.5 Performance under Asynchrony
Figure 9 compares how SwiftPaxos, EPaxos, and Paxos be-
have under asynchrony. We run this experiment for both con-
figurations (C1) and (C2) with 100 clients per site. For (C2)
the fast quorum of SwiftPaxos and the lowest-latency quorum
of Paxos are the same. For both configurations after 20 s, the
latency at one site increases by 200 ms, and it drops back to
normal after another 20 s (interval (a)). Then the leader fails
(event (b)).

Before and after the first slowdown, SwiftPaxos performs
slightly better in configuration (C2), confirming that a single
majority fast quorum is beneficial in our configuration. How-
ever, during the slowdown the throughput of (C2) decreases
by 27%, whereas it decreases only by 12% for (C1). The
degradation is smoother in the latter case because (C1) allows
multiple fast quorums, and thus makes the fast path more
robust. In Figure 9, SwiftPaxos always outperforms Paxos.
This is because, in the worst case, the protocol can commit
a command using a slow quorum (see §3.3). Upon event (b),
the two algorithms recover at similar speeds. The gap is the
largest with configuration (C2) where SwiftPaxos and Paxos
take respectively 7 s and 6 s. EPaxos is the most stable proto-
col because it is leaderless: during the two experiments, its
throughput never drops by more than 20%.

5.6 Applications
We now evaluate the protocols under two representative appli-
cation scenarios. In a first scenario, we consider applications
that are pipelining state-machine commands. Such a pattern

1
10
100
500
1000
10000

10 20 30 400

SwiftPaxos EPaxos CURP+
61
52
50

609
560
468

throughput (Kcmd/sec)

w
in

do
w

Figure 10: Throughput under a pipelined workload with different
window sizes.

A

B

C

D

5 10 15 200

SwiftPaxos SwiftPaxosreads CURP+ EPaxos

A

B

C

D

5 10 15 20

throughput (Kcmd/sec)

w
or

kl
oa

d

throughput (Kcmd/sec)

w
or

kl
oa

d

Figure 11: Throughput under different YCSB workloads.

occurs in log replication as well as in pub/sub architectures.
In the second scenario, we run the Yahoo! Cloud Serving
Benchmark (YCSB) [13].

Pipelining (Figure 10). In this synthetic benchmark clients
pipeline commands to the protocol. This pattern is common in
distributed applications, for instance in pub/sub systems such
as Apache Kafka [27]: in this case all the messages published
by the producer are appended to a log before being read by the
consumers. A similar pattern is used when updating an object
o accessible through a reference r [23]. The client creates
a new version o′ of o via asynchronous changes, and then
atomically updates r to store the address of o′.

In this experiment, we deploy a client at every datacenter.
Each client pipelines commands accessing the same key. Each
command carries a payload of 4 KB. The window parameter
determines the maximum number of in-flight commands.

Even though commands are received in the same order at
the replicas, CURP+ never takes the fast path. This is because
witnesses in CURP+ cannot process more than one conflicting
command at a time. Conversely, because the run is contention-
free, replicas in EPaxos and SwiftPaxos compute the same
dependencies, enabling the fast path. On average, both proto-
cols improve over CURP+ by 24% and 49%, respectively.

YCSB (Figure 11). This benchmark consists of workloads
with zipfian-like access patterns: workload A is update-heavy
(20% update, 80% get), B is read-heavy (95% get, 5%
update) and C is read-only. Workload D contains repeated

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 355

reads (95% of the calls) mixed with insertions of new records.
The key-value store service holds 106 records. A record has
10 fields of 800 B each (8 KB in total). We run 4000 YCSB
clients scattered around the world, 400 per site.

In Figure 11, SwiftPaxosreads indicates that read requests
are optimistically executed at the closest fast quorum replica,
and thus not necessarily at the leader (§4.4). Paxos is not eval-
uated because, as shown in Figures 7 and 8, EPaxos performs
better than Paxos under low conflict rates. This is the case in
YCSB, as the benchmark is read-dominated.

EPaxos is most efficient with the read-only workload (C).
In this case, all commands execute after a single round trip
to the closest quorum, and only the replica that submitted
a command executes it. In Workload C, the performance of
CURP+ and SwiftPaxos without optimized reads is limited, as
only the leader responds to clients. When reads are optimisti-
cally executed at any fast quorum replica, SwiftPaxosreads im-
proves over the base version of the protocol, from 17K ops/s
to 19K ops/s. In Workload D, the protocols behave similarly
to Workload C, as there are also no conflicts.

Workloads A and B contain respectively 20% and 5% of
writes. The access distribution is zipfian, with 20% of chance
to access the 12 most popular records. In Workload B, CURP+
and SwiftPaxos are around 1.8x faster than EPaxos. This
difference is due to the high ratio of slow paths and the convoy
effect: 5% of the slowest commands take 470 ms to execute.
This performance gap further increases with workload A,
where CURP+ and SwiftPaxos provide respectively 2.2x and
2.9x improvement over EPaxos.

6 Related Work

Standard SMR protocols [22, 29, 39] are leader-driven, re-
quiring 4 message delays for a client to receive a response:
a round-trip from the client to the leader plus a round-trip
from the leader to the replicas. Replicas can compute the re-
sponse earlier if they exchange Paxos 2B messages. This cuts
one message delay for clients close to a replica, but faraway
clients still need one more message delay to get notified. We
evaluate this variation of Paxos in §5. SDPaxos [52] separates
durability from ordering. As the leader still orchestrates order-
ing, clients not co-located with a replica wait for 4 message
delays for a response.

Detecting conflicts to boost parallelism has a long history
in distributed systems [10,34,49,51]. Fast Paxos [31] was the
first SMR protocol that used fast paths to minimize latency,
allowing clients to contact replicas directly. Later work lever-
aged commutativity to increase the chances of taking the fast
path [30, 42, 47]. As explained in §1, leader-based protocols
following this approach can only resolve a conflict via a ballot
change, which may require extensive state transfer between
replicas and disrupts the system.

EPaxos, a leaderless SMR protocol, reduces the average
latency under low conflict rates. But as we noted in §3.4 and

§5.2, its tail latency is high due to a convoy effect in command
execution [6, 19, 50]. It also requires clients to route requests
via a data replica, increasing latency. As shown in [18], follow-
ups to EPaxos, such as Caesar [3] and Atlas [17], suffer from
the same problems. Tempo [18] uses a decentralized time-
stamping mechanism to reduce the convoy effect in leaderless
SMR, but does not fully eliminate it. Gryff [6] mixes EPaxos
with ABD [4]. The protocol speeds up blind writes, but like
in ABD, has expensive reads [15]. Mencius [37] distributes
leader responsibilities round-robin. When conflicts are rare,
this protocol is slower than EPaxos [17, 38].

Several protocols rely on optimistic execution to boost per-
formance. Speculative Paxos [44] enforces spontaneous or-
dering in the network to obtain identical optimistic execution
at all replicas. Eve [25] executes state-machine commands
optimistically in parallel, failing back to sequential execution
if the results do not match. In practice, clients might not be lo-
cated near a service replica [2,5]. For such clients, CURP [41]
speeds up the response by executing optimistically commands
at the leader. CURP does not use dependencies but instead
computes a total order. In particular, a client accepts the result
of optimistic execution only if it is conflict-free. SwiftPaxos
is more permissive, allowing the result to be used as long as
the dependency paths match.

Some protocols leverage access locality to boost SMR
performance [11,12,43]. These protocols use Paxos as a black
box, invoking it one or more times per command. Spanner [14]
and CockroachDB [48] also use it to implement the more
complex abstraction of strongly consistent transactions. All
these systems may benefit from the performance improvement
brought by SwiftPaxos.

Some recent works [24, 35] use dedicated network compo-
nents to implement fast SMR protocols. But this approach
has not yet been applied to geo-distributed systems.

7 Conclusion

Over the past decade a plethora of protocols was pro-
posed to improve SMR in geo-distributed systems. Unfortu-
nately, these protocols may deliver a lower performance than
Paxos when contention on the replicated service increases.
SwiftPaxos does not have this drawback. It executes a com-
mand in 2 message delays if there is no contention, and in
3 message delays otherwise. Our experimental evaluation
demonstrates the benefits of this design. SwiftPaxos delivers
16–29% lower average latency than Paxos, and its throughput
is up to 2.9x that of EPaxos.

Acknowledgements. This work was partially supported by
the RACCOON project funded by the European Research
Council, the PRODIGY and DECO projects funded by
MCIN/AEI, and the BLOQUES project funded by the Madrid
regional government. The authors thank the anonymous re-
viewers and their shepherd, Jay Lorch.

356 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] SwiftPaxos codebase. https://github.com/
imdea-software/swiftpaxos.

[2] M. S. Ardekani and D. B. Terry. A Self-Configurable
Geo-Replicated Cloud Storage System. In Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2014.

[3] B. Arun, S. Peluso, R. Palmieri, G. Losa, and B. Ravin-
dran. Speeding up Consensus by Chasing Fast Decisions.
In Conference on Dependable Systems and Networks
(DSN), 2017.

[4] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing Memory
Robustly in Message-Passing Systems. Journal of the
ACM, 42(1), 1995.

[5] J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khor-
lin, J. Larson, J. Leon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing Scalable, Highly Available Stor-
age for Interactive Services. In Conference on Innova-
tive Data Systems Research (CIDR), 2011.

[6] M. Burke, A. Cheng, and W. Lloyd. Gryff: Unifying
Consensus and Shared Registers. In Symposium on
Networked Systems Design and Implementation (NSDI),
2020.

[7] M. Burrows. The Chubby Lock Service for Loosely-
Coupled Distributed Systems. In Symposium on Op-
erating Systems Design and Implementation (OSDI),
2006.

[8] T. D. Chandra and S. Toueg. Unreliable Failure Detec-
tors for Reliable Distributed Systems. Journal of the
ACM, 43(2), 1996.

[9] Y. L. Chen, S. Mu, J. Li, C. Huang, J. Li, A. Ogus, and
D. Phillips. Giza: Erasure Coding Objects across Global
Data Centers. In USENIX Annual Technical Conference
(USENIX ATC), 2017.

[10] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T.
Morris, and E. Kohler. The Scalable Commutativity
Rule: Designing Scalable Software for Multicore Pro-
cessors. ACM Transactions on Computer Systems, 32(4),
2015.

[11] P. R. Coelho and F. Pedone. Geographic State Machine
Replication. In Symposium on Reliable Distributed
Systems (SRDS), 2018.

[12] P. R. Coelho and F. Pedone. GeoPaxos+: Practical Geo-
graphical State Machine Replication. In Symposium on
Reliable Distributed Systems (SRDS), 2021.

[13] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrish-
nan, and R. Sears. Benchmarking Cloud Serving Sys-
tems with YCSB. In Symposium on Cloud Computing
(SoCC), 2010.

[14] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. C. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Tay-
lor, R. Wang, and D. Woodford. Spanner: Google’s
Globally-Distributed Database. In Symposium on Op-
erating Systems Design and Implementation (OSDI),
2012.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly
Available Key-Value Store. In Symposium on Operating
Systems Principles (SOSP), 2007.

[16] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the Presence of Partial Synchrony. Journal of the ACM,
35(2), 1988.

[17] V. Enes, C. Baquero, T. França Rezende, A. Gotsman,
M. Perrin, and P. Sutra. State-Machine Replication for
Planet-Scale Systems. In European Conference on Com-
puter Systems (EuroSys), 2020.

[18] V. Enes, C. Baquero, A. Gotsman, and P. Sutra. Effi-
cient Replication via Timestamp Stability. In European
Conference on Computer Systems (EuroSys), 2021.

[19] T. França Rezende and P. Sutra. Leaderless State-
Machine Replication: Specification, Properties, Limits.
In International Symposium on Distributed Computing
(DISC), 2020.

[20] T. França Rezende, P. Sutra, R. Q. Saramago, and L. J.
Camargos. On Making Generalized Paxos Practical.
In International Conference on Advanced Information
Networking and Applications (AINA), 2017.

[21] M. P. Herlihy and J. M. Wing. Linearizability: a Cor-
rectness Condition for Concurrent Objects. ACM Trans-
actions on Programming Languages and Systems, 12(3),
1990.

[22] H. Howard, D. Malkhi, and A. Spiegelman. Flexible
Paxos: Quorum Intersection Revisited. In Interna-
tional Conference on Principles of Distributed Systems
(OPODIS), 2016.

[23] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free Coordination for Internet-scale
Systems. In USENIX Annual Technical Conference
(USENIX ATC), 2010.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 357

https://github.com/imdea-software/swiftpaxos
https://github.com/imdea-software/swiftpaxos

[24] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé,
C. Kim, and I. Stoica. Netchain: Scale-Free Sub-RTT
Coordination. In Symposium on Operating Systems
Design and Implementation (OSDI), 2018.

[25] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi,
and M. Dahlin. All about Eve: Execute-Verify Replica-
tion for Multi-Core Servers. In Symposium on Operating
Systems Design and Implementation (OSDI), 2012.

[26] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and
A. Fekete. MDCC: Multi-Data Center Consistency. In
European Conference on Computer Systems (EuroSys),
2013.

[27] J. Kreps, N. Narkhede, and J. Rao. Kafka: a Distributed
Messaging System for Log Processing. Workshop on
Networking Meets Databases (NetDB), 2011.

[28] R. Ladin, B. Liskov, and L. Shrira. Lazy Replication:
Exploiting the Semantics of Distributed Services. In
Symposium on Principles of Distributed Computing
(PODC), 1990.

[29] L. Lamport. The Part-Time Parliament. ACM Transac-
tions on Computer Systems, 16(2), 1998.

[30] L. Lamport. Generalized Consensus and Paxos. Techni-
cal report, Microsoft Research, 2005.

[31] L. Lamport. Fast Paxos. Distributed Computing, 19,
2006.

[32] L. Lamport, D. Malkhi, and L. Zhou. Vertical Paxos
and Primary-Backup Replication. In Symposium on
Principles of Distributed Computing (PODC), 2009.

[33] L. Lamport and M. Massa. Cheap Paxos. In Conference
on Dependable Systems and Networks (DSN), 2004.

[34] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and
R. Rodrigues. Making Geo-Replicated Systems Fast as
Possible, Consistent When Necessary. In Symposium on
Operating Systems Design and Implementation (OSDI),
2012.

[35] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and
D. R. K. Ports. Just Say No to Paxos Overhead: Re-
placing Consensus with Network Ordering. In Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2016.

[36] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson,
L. Shrira, and M. Williams. Replication in the Harp
File System. In Symposium on Operating Systems Prin-
ciples (SOSP), 1991.

[37] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius:
Building Efficient Replicated State Machine for WANs.
In Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2008.

[38] I. Moraru, D. G. Andersen, and M. Kaminsky. There Is
More Consensus in Egalitarian Parliaments. In Sympo-
sium on Operating Systems Principles (SOSP), 2013.

[39] D. Ongaro and J. Ousterhout. In Search of an Under-
standable Consensus Algorithm. In USENIX Annual
Technical Conference (USENIX ATC), 2014.

[40] R. Pang, R. Cáceres, M. Burrows, Z. Chen, P. Dave,
N. Germer, A. Golynski, K. Graney, N. Kang, L. Kiss-
ner, J. L. Korn, A. Parmar, C. D. Richards, and M. Wang.
Zanzibar: Google’s Consistent, Global Authorization
System. In USENIX Annual Technical Conference
(USENIX ATC), 2019.

[41] S. J. Park and J. Ousterhout. Exploiting Commutativ-
ity For Practical Fast Replication. In Symposium on
Networked Systems Design and Implementation (NSDI),
2019.

[42] F. Pedone and A. Schiper. Generic Broadcast. In Inter-
national Symposium on Distributed Computing (DISC),
1999.

[43] S. Peluso, A. Turcu, R. Palmieri, G. Losa, and B. Ravin-
dran. Making Fast Consensus Generally Faster. In Con-
ference on Dependable Systems and Networks (DSN),
2016.

[44] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Kr-
ishnamurthy. Designing Distributed Systems Using
Approximate Synchrony in Data Center Networks. In
Conference on Networked Systems Design and Imple-
mentation (NSDI), 2015.

[45] F. B. Schneider. Implementing Fault-Tolerant Services
Using the State Machine Approach: A Tutorial. ACM
Computing Surveys, 22, 1990.

[46] A. Shraer, B. Reed, D. Malkhi, and F. P. Junqueira. Dy-
namic reconfiguration of primary/backup clusters. In
USENIX Annual Technical Conference (USENIX ATC),
2012.

[47] P. Sutra and M. Shapiro. Fast Genuine Generalized Con-
sensus. In Symposium on Reliable Distributed Systems
(SRDS), 2011.

[48] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis,
T. Grieger, K. Niemi, A. Woods, A. Birzin, R. Poss,
P. Bardea, A. Ranade, B. Darnell, B. Gruneir, J. Jaffray,
L. Zhang, and P. Mattis. CockroachDB: The Resilient
Geo-Distributed SQL Database. In International Con-
ference on Management of Data (SIGMOD), 2020.

358 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[49] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers,
M. J. Spreitzer, and C. H. Hauser. Managing Update
Conflicts in Bayou, a Weakly Connected Replicated
Storage System. In Symposium on Operating Systems
Principles (SOSP), 1995.

[50] S. Tollman, S. J. Park, and J. K. Ousterhout. EPaxos
Revisited. In Symposium on Networked Systems Design
and Implementation (NSDI), 2021.

[51] W. E. Weihl. Commutativity-Based Concurrency Con-
trol for Abstract Data Types. IEEE Transactions on
Computers, 37(12), 1988.

[52] H. Zhao, Q. Zhang, Z. Yang, M. Wu, and Y. Dai.
SDPaxos: Building Efficient Semi-Decentralized Geo-
replicated State Machines. In Symposium on Cloud
Computing (SoCC), 2018.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 359

A Correctness

4. If at a replica cmd[id] = c ̸=⊥ then id(c) = id and Propagate(c) is a sent message.

5. At a replica, whenever a command c is in the START phase, it does not belong to the dependencies of any command.

6. When a replica p sends an Ack message, cbal= bal at p.

7. At a ballot b

• if leader(b) sends Ack(b, id,D,_) and Ack(b, id,D′,_) then D = D′;

• if leader(b) sends Ack(b, id,D,_) and Sync(b,_,_,dep) then dep[id] = D;

• if leader(b) sends Sync(b,phase,cmd,dep) and Sync(b,phase′,cmd′,dep′) then phase = phase′, cmd = cmd′ and
dep = dep′.

8. If a replica sends an Ack message at a ballot b and a NewLeaderAck(b′,_,_,_,_) message with b′ > b then it sends Ack
before sending NewLeaderAck.

9. If the leader of a ballot b sends Ack(b,_,_,P) after sending Ack(b, id,D,_) for id ∈ Ids(P) then D = Dep(id,P).

10. If a replica has cbal= b, dep[id] = D and id ∈ Accept∪Commit then there is a moment when leader(b) has cbal= b and
status= NORMAL, and after which whenever it has cbal= b and status= NORMAL it also has dep[id] = D.

11. If 3acc(b, id,c,P) and 3acc(b, id,c′,P′) hold then c = c′ and Dep(id,P) = Dep(id,P′).

12. If 3acc(b,_,_,P) then for all id ∈ Ids(P), whenever a replicas has cbal= b and id ∈ Accept∪Commit, it also has dep[id] =
Dep(id,P).

13. Whenever at a replica a command c is in the ACCEPT or the COMMIT phase, any transitive dependency of c is in the ACCEPT
or the COMMIT phase as well.

14. If 3acc(b,_,_,P) holds then for all id ∈ Ids(P) whenever at a replica we have cbal> b, we also have dep[id] = Dep(id,P)
and id ∈ Accept∪Commit.

Figure 12: Additional invariants of SwiftPaxos.

In this section we prove Invariants 1–3 (defined in §3.2) together with additional low-level invariants listed in Figure 12. We
then show how these invariants imply that SwiftPaxos satisfies the SMR protocol specification (§2).

Definition 1 (acc). We say that a command c with an identifier id is accepted with dependency paths P at a ballot b—and
we write acc(b, id,c,P)—if at b there is a fast or slow quorum such that each replica of this quorum acknowledges P as the
dependency paths of c with FastAck or SlowAck messages.

In the following we say that a replica sends Ack(b, id,D,P) if it sends FastAck(b, id,D,P) or SlowAck(b, id) and by that time
it has dep[id] = D and pset(id) = P.

We write 3acc(b, id,c,P) to denote that at some point of protocol execution acc(b, id,c,P) holds.

Definition 2 (Ids). We say that id appears in a set of dependency paths P (or simply id in P) if there exists at least one path in P
that contains id. We define Ids(P) as the set of all id in P.

Definition 3 (Dep). For a set of dependency paths P and id ∈ Ids(P), we define Dep(id,P) as the dependency set of id inferred
from P.

Note that by definitions of acc and dependency paths, if 3acc(b, id0,c,P) holds for some quorum Q then at the moment when
a replica q ∈ Q sends Ack(b, id0,_,P) message it has dep[id] = Dep(id,P) for all id ∈ Ids(P).

Invariants 4–10 easily follow from the structure of the protocol. We now prove the rest of the invariants.

360 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Proof of Invariant 11. Each time a command c is accepted at a ballot the leader of this ballot must acknowledge c’s dependencies
either with an Ack or a Sync message. By Invariant 7 the leader cannot acknowledge two distinct dependency sets for the same
command at a single ballot.

Proof of Invariant 12. Assume 3acc(b, id0,_,P) and let id be any identifier in Ids(P). Take a replica p with cbal = b and
id ∈ Accept∪Commit. Two cases are possible: either p receives Ack(b, id,D,_) from leader(b), or it receives Sync carrying id
in the ACCEPT or COMMIT phase.

First assume that p receives Ack(b, id,D,_) from the leader of b. Since 3acc(b, id0,_,P) holds, the leader also sends
Ack(b, id0,_,P). Then by Invariant 9, we have D = Dep(id,P). Hence, when p receives Ack(b, id,D,_) from leader(b) it
sets dep[id] to D = Dep(id,P) and after that—according to Invariant 7—dep[id] remains unchanged at b, as required.

Suppose now, that p receives Sync carrying id in the ACCEPT or COMMIT phase with the dependency set D. Then any
replica with cbal= b receives that message, sets dep[id] to D and by Invariant 7 never changes it at b. When leader(b) sends
Ack(b, id0,_,P) message it has dep[id] = Dep(id,P) = D, as required.

Proof of Invariant 13. We prove the invariant by induction on the length of the protocol execution. Initially at any replica each
command is in the START phase and hence, the invariant is satisfied. We now consider transitions at lines 22, 30, and 48, as they
are the only transitions affecting the validity of the invariant in a nontrivial way.
• Transition at line 22. According to line 23 after the execution of the handler at line 22 for a command c, any dependency of c

is in the ACCEPT or COMMIT phase and hence, by induction hypothesis any transitive dependency of c satisfies the invariant.
• Transition at line 30. The handler simply moves an ACCEPTed command to the COMMIT phase, which allows us to conclude

with the induction hypothesis.
• Transition at line 48. By the structure of the protocol after a replica p executes this handler all the commands are in the

START, ACCEPT or COMMIT phase at p. From Invariant 5 the commands that are in the START phase do not belong to the
dependency set of any command, hence our property.

Proof of Invariant 3. By the induction on the length of the protocol execution: at the beginning of the execution dep is empty
at each replica, which makes the dependency graphs acyclic; for the induction step we consider transitions at lines 6, 22, and
48—the only transitions affecting the validity of the invariant in a nontrivial way.
• Transition at line 6. In order to introduce a cycle upon receipt of a Propagate(c) message at a replica p, id(c) must belong

to the dependencies of some other command before the transition is triggered. However, according to the precondition at line
7 at this moment c is in the START phase and, thus, from Invariant 5 no command depends on it, as required.
• Transition at line 22. We prove this case by contradiction. Assume that right after a replica p executed the handler at line 22

for a command c, some command transitively depends on itself at p. According to Invariants 10 and 13, and the precondition
at line 23, all commands of this cycle are in sync with the leader at the time when the leader sends Ack for c. However, by
induction hypothesis, by that time the dependency graph at the leader is acyclic, which yields a contradiction.

• Transition at line 48. According to line 64, after a replica executes the handler at line 48 its dependency graph is acyclic, as
required.

The proof of Invariant 2 relies on the following proposition:

Proposition 1. Whenever at a replica p we have id /∈ p.dep[id′] and id′ /∈ p.dep[id] for two identifiers id and id′ of two conflicting
commands:

1. p is not the leader of its ballot (i.e., p ̸= leader(p.cbal));

2. at p one of two identifiers is in the PREACCEPT phase while the other is in the ACCEPT or the COMMIT phase.

Proof. We prove the proposition by induction on the length of the protocol execution. The property holds at the beginning of the
execution because no commands are recorded at any of replicas. For the induction step we consider transitions at lines 6, 22, and
48, as they are the only transitions affecting the validity of the proposition in a nontrivial way.
• Transition at line 6. Consider a moment when a replica p receives a Propagate(c′) message and take any command c that

conflicts with c′ and which is already recorded in p.cmd. According to line 11, after the execution of handler at line 6 we
have id(c) ∈ p.dep[id(c′)].

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 361

• Transition at line 22. Assume that p receives a FastAck(b, id,D,_) message for a command c from the leader. Take any
command conflicting with c with an identifier id′ that is already recorded at p at the moment of the execution of transition.
Let D′ be p.dep[id′] at this moment.
If p is the leader of b then it receives its own proposal, and thus the handler is not affecting dep at p. By induction hypothesis,
before executing this transition process p has id ∈ p.dep[id′] or id′ ∈ p.dep[id], as required.
Suppose that p ̸= leader(b). If by the moment p executes line 22 it has phase[id′] = PREACCEPT then the transition
does not affect the validity of the proposition because in this case p moves id to the ACCEPT phase without changing
phase[id′]. Thus, p has phase[id] = ACCEPT and phase[id′] = PREACCEPT after executing the transition, as required. If
phase[id′] ∈ {ACCEPT,COMMIT} then after the execution of the transition both identifiers are in the ACCEPT or the COMMIT
phase. Therefore, from Invariant 10 there is a moment when leader(b) has dep[id] = D and dep[id′] = D′. By induction
hypothesis at this moment leader(b) has id ∈ dep[id′] or id′ ∈ dep[id], as required.

• Transition at line 48. Let id and id′ be two identifiers of conflicting commands such that process p has dep[id] = D ̸= ⊥
and dep[id′] = D′ ̸= ⊥ after executing transition at line 48. By the structure of the algorithm id ∈ Accept∪Commit and
id′ ∈ Accept∪Commit (lines 54 and 59). We prove that either id ∈ dep[id′] or id′ ∈ dep[id]. We know that both identifiers
satisfy condition at line 53 or condition at line 58. If both identifiers satisfy condition at line 53 then at some point leader(bmax)
has dep[id] = D and dep[id′] = D′ (Invariant 10). By induction hypothesis by this moment either id ∈ D′ or id′ ∈ D, as
required. Assume now that at least one command satisfies condition at line 58. According to line 61 either id ∈ dep[id′] or
id′ ∈ dep[id].

Proof of Invariant 2. Whenever two conflicting commands are committed at a replica p both of them are in the COMMIT phase,
which by Proposition 1 means that one of the two is a dependency of the other.

Proposition 2. If 3acc(b,_,_,P) then whenever there is a quorum Q such that each replica q ∈ Q sends the
NewLeaderAck(b′,cbalq,phaseq,_,depq) message with b′ > b and cbalq ≤ b, the following property holds for any id ∈ Ids(P):

There is a quorum Q′ ∈ FQ (b)∪SQ (b) such that for any replica q ∈ Q∩Q′ we have depq[id] = Dep(id,P), cbalq = b and
if Q′ ∈ SQ (b) then ∀q ∈ Q∩Q′.phaseq[id] ∈ {ACCEPT,COMMIT}.

Proof. Assume 3acc(b, id0,_,P) and let Q be a quorum such that each replica q ∈ Q sends a
NewLeaderAck(b′,cbalq,phaseq,_,depq) message with b′ > b and cbalq ≤ b. Let id ∈ Ids(P). Since 3acc(b, id0,_,P),
there exists a quorum Q′ ∈ FQ (b)∪SQ (b) such that each replica in Q′ sends Ack(b, id0,_,P) message, and by that time it has
dep[id] = Dep(id,P). After sending Acks, replicas in Q′ can change dep[id] at b only if they receive an Ack message from
leader(b) with a proposal different from D. However, according to Invariant 7, once leader(b) has voted for D it never sends a
new proposal at b. Thus, after sending Ack, replicas in Q′ never change dep[id] at b. Moreover, from Invariant 8 we know that at
the moment a replica in Q′ sends a NewLeaderAck message it has cbal ≥ b and since we assume that for all q ∈ Q we have
cbalq ≤ b we also have ∀q ∈ Q∩Q′, cbalq = b. Hence, when a replica q ∈ Q∩Q′ sends the NewLeaderAck message, it has
depq[id] = Dep(id,P), as required. If now we assume that Q′ ∈ SQ (b) then all replicas in Q′ send SlowAck(b, id) messages,
implying that for all q ∈ Q∩Q′, phaseq[id] ∈ {ACCEPT,COMMIT} (lines 24 and 75).

Proof Invariant 14. We prove the invariant by induction on the value of cbal. Assume 3acc(b, id0,_,P) and consider a ballot
b′ > b such that

For all id ∈ Ids(P), whenever a replica has b < cbal< b′, it also has dep[id] = Dep(id,P) and id ∈
Accept∪Commit.

(H)

We prove by induction on the length of the protocol execution that

For all id ∈ Ids(P), whenever a replica has cbal= b′, it also has dep[id] = Dep(id,P) and id ∈ Accept∪
Commit.

(1)

At the beginning of the execution at each replica we have cbal = 0 ≤ b < b′, hence (1) trivially holds. For the induc-
tion step, only handler at line 48 affects validity of the invariant in a nontrivial way. Let p be a replica that receives a
NewLeaderAck(b′,cbalq,phaseq,_,depq) message from each q ∈ Q. Let bmax = max{cbalq | q ∈ Q} and U = {q ∈ Q | cbalq =
bmax}. We prove that after executing transition at line 48, p has dep[id] =Dep(id,P) and id ∈ Accept∪Commit for all id ∈ Ids(P).

We first note that bmax ≥ b. Indeed, from Invariant 8 replicas in Q that have voted for Dep(id,P) at b send an Ack message
before NewLeaderAck, hence bmax ≥ b.

362 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

As the first step, we prove that after executing transition at line 48 up to line 61, p has dep[id] = Dep(id,P) and id ∈
Accept∪Commit for any id ∈ Ids(P). We then prove that after executing lines 62–64 the dependency sets of all identifiers in
Ids(P) remain unchanged.
Step 1. Take any id ∈ Ids(P) and c such that id(c) = id.

• Suppose that bmax > b. By (H), id satisfies condition at line 53. Process p sets dep[id] to Dep(id,P) and phase[id] to ACCEPT
or COMMIT, as required.

• Suppose now that bmax = b (i.e., ∀q ∈ Q.cbalq ≤ b). From Proposition 2, either the condition at line 53 or the one at
line 58 is satisfied for id. Assume that the condition at line 53 holds: there exists a replica q ∈ Q such that cbalq = b
and phaseq[id] ∈ {ACCEPT,COMMIT}. Then at line 56 process p sets dep[id] to depq[id] = Dep(id,P) (Invariant 12) and
phase[id] to phaseq[id], as required. Assume now, that the condition at line 58 holds. Then for all q ∈U we have phaseq[id] /∈
{ACCEPT,COMMIT} and there exists a quorum Q′ ∈ FQ (bmax) such that Q∩Q′ ⊆U and all replicas in Q∩Q′ report the
same dependency set D for id. From Proposition 2, there exists a quorum Q0 such that Q∩Q0 ⊆U and that for any replica
in q ∈ Q∩Q0, depq[id] = Dep(id,P). Since Q∩Q′∩Q0 ̸= /0, we have D = Dep(id,P). We now prove by contradiction that
dep[id] computed at line 61 equals D. Assume the converse. Then there exists a command conflicting with c with an identifier
id′ such that id′ /∈ D and by the time p executes line 61 for id it has id /∈ dep[id′] and id′ /∈ Start. Let D′ be dep[id′] at that
moment. Since id′ /∈ Start either condition at line 53 or the one at line 58 is satisfied for id′ with D′.

(a) Assume that condition at line 53 is satisfied. There exists a replica q ∈U such that phaseq[id
′] ∈ {ACCEPT,COMMIT}

and depq[id
′] = D′, with id /∈ D′. From Invariant 10 there is a moment t after which whenever leader(b) has cbal= b it

also has dep[id′] = D′. Moreover, there is also a moment t ′ when leader(b) sends the Ack(b, id0,_,P) message, and by
this moment it has dep[id] = Dep(id,P) = D. Therefore, at max(t, t ′), the leader of b has dep[id] = D and dep[id′] = D′,
with id /∈ D′ and id′ /∈ D, contradicting Proposition 1.

(b) Suppose that the condition at line 58 is satisfied for id′: there exists a fast quorum Q′′ such that Q∩Q′′ ⊆U and all
replicas in Q∩Q′′ report D′ as the dependency set of id′. Since Q∩Q′′ ∩Q0 ̸= /0, there is a replica in q ∈ Q∩Q′′

with depq[id] = Dep(id,P) and depq[id
′] = D′. Recall that we are under the assumption that both identifiers, id

and id′, satisfy condition at line 58. Therefore, they also satisfy loop condition at line 57. As a result we have
∀q′ ∈U.phaseq′ [id] /∈ {ACCEPT,COMMIT}∧phaseq′ [id

′] /∈ {ACCEPT,COMMIT}. Thus, phaseq[id] = PREACCEPT and
phaseq[id

′] = PREACCEPT, contradicting Proposition 1.

We thus have proved that dep[id] computed at line 61 equals D = Dep(id,P), as required.

Step 2. Now that we have proved that after executing transition at line 48 up to line 61, p has dep[id] = Dep(id,P) for all
id ∈ Ids(P), we prove that the loop at line 62 does not affect these dependencies. Let id ∈ Ids(P) and let id′ be any identifier
in dep[id] at p at the moment when p executes lines 62–63. Since at this moment dep[id] = Dep(id,P), we have id′ ∈ Ids(P)
(by definition of Ids). As we saw earlier, either bmax = b or bmax > b and according to Proposition 2 and (H), id′ either satisfies
condition at line 53 or condition at line 58. Thus, at the moment p executes lines 62–63 it has id′ /∈ Start and hence condition at
line 62 does not hold for (id, id′), as required.
Step 3. Finally we prove by contradiction that after executing line 64, p has dep[id] = Dep(id,P) for all id ∈ Ids(P). Assume
that at p, just before the execution of line 64 there is a cycle id1 → ··· → idn → id1 in the dependency graph. We prove by
contradiction that none of the identifiers of this cycle belongs to Ids(P). Assume the converse, i.e., there exists m ∈ [1;n] such
that idm ∈ Ids(P). We have already proved that prior to executing line 64 process p has dep[id] = Dep(id,P) for all id ∈ Ids(P).
Thus idm−1 ∈ Dep(idm,P) also belongs to Ids(P). Moreover, all identifiers of the cycle are in Ids(P) because each of them is a
transitive dependency of each other. Hence, when leader(b) sends an Ack(b, id0,_,P) message it has this cycle in its dependency
graph, contradicting Invariant 3.

Proof of Invariant 1. Take two replicas that commit a command c with an identifier id. We have 3acc(b, id,c,P) and
3acc(b′, id,c,P′) for some b and b′. Let D and D′ be Dep(id,P) and Dep(id,P′), respectively. We prove that D = D′. As-
suming that b equals b′ we conclude with Invariant 11. Suppose now that b ̸= b′ and (without loss of generality) that b < b′.
Consider the moment when a replica p sends Ack(b′, id,D′,P′). From Invariant 6 at this moment cbal= b′ > b at p. Hence, from
Invariant 14 we have D = D′, as required.

A.1 Validity
Proof of Validity. Consider a replica that executes a command c. By Invariant 4, Propagate(c) is a sent message, hence, some
client submitted c.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 363

A.2 Integrity
Proof of Integrity. At a replica, each executed command is tracked with the set Exec: a command can be executed only if its
identifier is not included in the set, and once it is executed, the set is updated to include the identifier. Furthermore, during the
protocol execution no elements are removed from Exec and only one identifier can be associated with a single command. Hence,
at each replica line 34 is executed at most once per command.

A.3 Ordering
To prove Ordering we first introduce the following notations: for two commands c and d we write (i) c ◁p d if c ▷◁ d and some
replica p executes c before d, and (ii) c ◀ d if c was executed by some replica before any process submitted d. Using these
notations the relation ≺ from §2 can be expressed as ≺= (

⋃
p◁p)∪◀.

Proposition 3. If for two conflicting commands c and d we have c ◁p d for some replica p then at the moment when p executes
c, we have id(d) /∈ dep[id(c)].

Proof. Consider the moment when p executes c. The Integrity property and c ◁p d imply that p has not executed d at this
moment, and thus id(d) ̸∈ Exec at p. From the precondition at line 33, dep[id(c)]⊆ Exec, so that id(d) /∈ dep[id(c)].

Proposition 4. The relation
⋃

p◁p is asymmetric.

Proof. Assume the contrary: c ◁p d and d ◁q c for two conflicting commands c and d. From Proposition 3, when p executes c it
has id(d) /∈ dep[id(c)], and when q executes d it has id(c) /∈ dep[id(d)]. But this contradicts Invariant 2.

Proposition 5. Assume c1 ≺ c2. Whenever a replica p executes c2, some replica has already executed c1.

Proof. Assume c1 ≺ c2 and that replica p executes c2. Then we have either c1 ◀ c2 or c1 ◁q c2 for some replica q. Consider
first the case when c1 ◀ c2. Then c1 is executed at some replica before c2 is submitted and, hence, before c2 is executed at p, as
required. Consider now the case when c1 ◁q c2 for some replica q. We must have either c1 ◁p c2 or c2 ◁p c1. The latter case
would contradict Proposition 4, so that c1 ◁p c2, as required.

Proposition 6. Assume c1 ≺ ·· · ≺ cn for n≥ 2. Whenever a replica p executes cn, some replica has already executed c1.

Proof. Follows from Proposition 5 by induction on n.

Proof of Ordering. By contradiction, assume that c1 ≺ ·· · ≺ cn = c1 for n≥ 2. Consider the first time when some replica executes
c1. By Proposition 6, at this time c1 has already executed at some replica, which yields a contradiction.

A.4 Liveness

77 Alive← R ⊆ R
78 trusted← leader(0) ∈ R
79 when 3P ̸= Alive
80 Alive←3P
81 trusted← select(Alive)

82 when leader(bal) ̸= trusted
83 if p = trusted then recover()
84 else send Recover(bal) to trusted

85 when received Recover(b)
86 if p = trusted then recover()

Figure 13: Recovery policy at a replica p.

For simplicity, in this section we assume that the set of slow quorums con-
sists of all majorities, i.e., ∀b.SQ (b) = {Q ∈ P (R) | |Q| ≥ ⌈N/2⌉}. Since
we assume that the system is eventually synchronous (§2), it is possible to
implement an eventually perfect failure detector, denoted 3P [8]. At each
replica p, the failure detector 3P outputs the set of replicas that p believes
are correct. 3P guarantees that eventually all crashed replicas are detected
by p and no correct replica remains indefinitely suspected.

In Figure 13 we present an algorithm according to which a replica p invokes
the recovery mechanism. 3P constantly outputs a set of correct replicas into
a variable Alive (line 80), which is then used to select the trusted replica (line
81), i.e., the replica that (according to p) should be the leader. To this end,
p passes Alive to a function select that deterministically picks one replica
among the set of replicas. A possible implementation of select returns the
replica with the lowest identifier. A replica constantly checks if its leader is
the trusted one (line 82). If this is not the case p checks whether it trusts itself—in which case p initiates recovery (line 83)—or
some other replica—which causes p to send a Recover message to trusted (line 84). With this message p asks trusted to impose
its leadership: upon the receipt of Recover(b), a replica verifies whether it should be a leader and then starts the recovery (line
86). The Recover message carries the value of bal, which helps trusted to choose at line 41 a ballot high enough to convince p
to follow it: when p receives Recover(b) it selects a ballot b′ owned by p such that b′ > b. Additionally, if possible, trusted tries
to choose b′ such that all replicas of at least one fast quorum associated with b′ belong to Alive, i.e., ∃Q ∈ FQ (b′).Q⊆ Alive.

364 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We now describe the measures to be taken on the client-side of the protocol. First of all, a submitted command may be lost
during the recovery if it has not been accepted before. For example, suppose that at some ballot b a replica p receives a command
c submitted by a correct client. Then p starts a new ballot b′ and becomes its leader. If c is not accepted at b before the recovery
is started, p might not include c in the new state (conditions at lines 53 and 58 do not hold for c). Since p already received c, it
will never make a new proposal for c at b′ or any subsequent ballots. To avoid such scenarios, we allow clients to resubmit their
requests. Note that this does not affect the proof of Integrity. In the example above, the leader receives c at b′ or any higher ballot
and eventually makes its proposal.

Finally, as discussed in §4.3 an additional mechanism is needed to deal with client failures. A client may crash at any time
and thus may fail to send a command to a subset of the correct replicas. If for each fast and slow quorum only some replicas
receive request c then further progress is impossible not only for c but also for any command c′ that depends on c at the leader.
To circumvent such situations, a replica tracks the command identifiers that belong to the dependency sets received in leader’s
FastAck messages. If the replica detects that the payload of one of such commands is missing, it asks its leader to retransmit it.
It is enough to contact the leader because no command is committed if it is not received by the leader. It is also possible that
some followers receive a command c while the leader does not. These followers will take a dependency on c for any conflicting
command, disabling a fast path for each of them. To deal with this, followers re-propose c if it is not committed after some
timeout.

To prove that the above mechanisms ensure Liveness we rely on the following propositions.

Proposition 7. Either no correct replica ever receives a NewLeader message, or there exist a correct replica p and a ballot b
owned by p such that

1. each correct replica eventually trusts only p;

2. b is the maximal ballot received by any correct replica in NewLeader messages.

Proof. If no correct replica ever receives a NewLeader message then the proposition trivially holds. Assume that at least one
correct replica receives a NewLeader message. From the properties of 3P, there exist a replica p and a time t0 such that after
this time failures stop occurring and at each correct replica trusted= p and Alive is the set of all correct replicas.

We first prove by contradiction that p sends a finite number of NewLeader messages. Assume the converse. After t0, p is
the only correct replica that can start the recovery. Therefore, there is only a finite number of the NewLeader messages sent
by the correct replicas other than p, because all such messages are sent before t0. Moreover, the number of messages sent by
a faulty replica is finite by definition. Thus, each correct replica joins only a finite number of ballots that are not owned by p.
Since p increases its ballot with each issued NewLeader message and because the number of such messages is infinite, there is
a time t1 ≥ t0 after which each correct replica always follows p (i.e., leader(p.bal) = p). Therefore, at t1, there are no replica
at which the condition at line 82 is satisfied. Hence, no replica sends a Recover message after t1 and thus the total number of
such messages is finite. Let t2 ≥ t1 be the time after which p no longer receives Recover messages. After t2, p never executes
handler at line 85. Therefore, after t2, p never executes lines 83 or 86, and hence, it stops sending the NewLeader messages,
which contradicts our assumption.

Now, that we have proved that there is only a finite number of NewLeader messages sent by p, let b be the maximal ballot
for which p sends a NewLeader message. We prove by contradiction that for each NewLeader(b′) message received by a
correct replica, b′ ≤ b. Assume the contrary. Let q be a correct replica receiving at time t ′ the NewLeader(b′) message from
a replica p′ ̸= p with b′ > b. After t ′, q has bal ≥ b′. Since p never chooses a ballot greater than b < b′, after t ′ we also have
leader(q.bal) ̸= p. Eventually q trusts p and thus at some point it forces p to recover (line 82) with the ballot at least as high
as b′ (lines 83 and 84). As a result, p sends the NewLeader(b′′) message with b′′ > b′ > b, contradicting the fact that b is the
maximal ballot chosen by p during the whole execution.

Proposition 8. There exist a ballot b and a point in time after which every correct replica has status = NORMAL and bal =
cbal= b.

Proof. If during the whole execution no correct replica ever receives a NewLeader message then all correct replicas always
follow the same correct replica at the same ballot, as required. If at least one correct replica receives a NewLeader message
then according to Proposition 7, there exists a correct replica p eventually trusted by all correct replicas and a ballot b such
that b is the maximal ballot received by a correct replica in NewLeader messages. Eventually a correct replica q receives the
NewLeader(b) message and joins b. After that, q never changes its ballot, as it ignores any other NewLeader messages (line 44).
All correct replicas eventually answer to p with a NewLeaderAck message. Thus, eventually p sends Sync to all correct replicas,
as required.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 365

Proposition 9. If a replica p commits c with a dependency set D then any correct replica eventually commits c with D.

Proof. Suppose that a replica p commits c with D at a ballot b. From Proposition 8 we know that there exists a ballot b′ after
which the system stabilizes with the one correct leader.

We first prove by contradiction that b≤ b′. Suppose that b > b′. Since c is committed at b, there is at least one correct replica
q that sends an Ack message for c at b. To this end, q has to join b (i.e., at some point we have q.cbal= b), however, b′ < b is the
maximal ballot joined by q (Proposition 8), hence the contradiction.

We thus have b≤ b′. Suppose that b = b′. This means that there is a quorum of correct replicas sending Ack messages that
lead to acceptance of c. Eventually each correct replica receives all these messages and commits c with D.

Suppose now that b < b′. Eventually each correct replica joins b′ (i.e., cbal = b′). In order to join b′, each correct replica
receives the Sync(b′,_,_,_) message, sent by leader(b′). Moreover, according to Invariant 14 this message carries a state that
contains c with the dependencies D.

Proof of Liveness. We first prove that if a command c is executed by a replica p then c is eventually executed by all correct
replicas. Before executing c, p commits c together with c’s transitive dependencies D. According to Proposition 9, the correct
replicas eventually commit c as well as any command in D, which enables the condition at line 33 for c.

We now prove that if a command c is submitted by a non-faulty client then c is eventually executed by all correct replicas. Let
b be the last stable ballot (Proposition 8). Note that the client submitting c is correct and that it resubmits c if it does not receive a
response after some time. Hence, eventually c is accepted at some ballot. Let D be the set of all transitive dependencies of c.
Similarly to c, those commands in D that are submitted by non-faulty clients are eventually accepted. Moreover, from Invariant 13
and Invariant 14, when c is accepted and the leader of b has cbal= b, it also has payload of any command in D. Therefore, by
contacting the leader and thus obtaining the missing payloads according to the mechanics described at the beginning of the
section, the replicas eventually accept the commands in D submitted by the faulty clients. Regardless of the ballots at which the
different commands in D are accepted, from Invariant 14, each correct replica eventually receives and commits c together with
any command in D. We conclude with Invariant 3 according to which, once committed, c is never blocked in the execution.

A.5 Nontriviality
The proof of Nontriviality relies on the following proposition:

Proposition 10. If 3acc(b,_,_,P) then for all id ∈ Ids(P) all correct replicas eventually commit id with Dep(id,P).

Proof. From Proposition 8 we know that there exist a ballot b′ ≥ b and a time t after which recovery stops occurring and at
least a majority of replicas are correct. If b′ = b then by the structure of the protocol all correct replicas eventually commit
id ∈ Ids(P) with Dep(id,P)—this is because communication between replicas cannot be disturbed by recovery or failures and
because replicas communicate through reliable channels.

Assume that b′ > b. Eventually each correct replica receives a Sync(b′,_,_,_) message carrying id with Dep(id,P) and
phase[id] = COMMIT or phase[id] = ACCEPT (Invariant 14). If phase[id] = COMMIT, a correct replica commits id immedi-
ately after receiving Sync, as required. If phase[id] = ACCEPT, correct replicas of some slow quorum eventually broadcast a
SlowAck(b′, id) message (line 76). Eventually replicas at b′ receive SlowAcks from each replica of this quorum and commit id
with Dep(id,P), as required.

Proof of Nontriviality. A client accepts the result of execution of a command c only if there is a ballot b at which leader(b)
optimistically executes c and replicas of some quorum of b agree on c’s dependency paths P. Thus, if the client gets the result of c
then we have 3acc(b,_,c,P). Note that leader(b) executes client requests in the order inferred form P, i.e., for each id ∈ Ids(P),
cmd[id] is executed with respect to dependency set Dep(id,P). Moreover, according to Proposition 10, each correct replica
eventually commits id ∈ Ids(P) with Dep(id,P), and hence, it eventually executes c following the same order. Thus, the result of
execution of c at any correct replica equals to the result of optimistic execution at leader(b), as required.

A.6 Latency
Asynchrony and failures may arbitrarily delay the execution of a command. For that reason, we measure latency only after the
system stabilizes. We denote by δ the upper bound on the message delay after stabilization (see §2). As usual, we ignore the cost
of local computation (in our setting, it is orders of magnitude lower than latency). The latency of a protocol is the maximum
amount of time a client must wait before delivering a response once the system is stable.

Table 1 summarizes the latency of various state-machine replication protocols. We consider the following classes of runs
commonly found in practice: (sequential) commands are never concurrent, i.e., upon the submission of a command, prior submitted
commands are already committed everywhere; (conflict-free) concurrent commands are all commuting; and (contention-free) all

366 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

sequential conflict-free contention-free general
Paxos [29] 4δ

N2Paxos [29] 3δ+1
Mencius [37] 2δ+1 4δ+1
FastPaxos+ [31] 2δ+1 3δ+1
Generalized Paxos [30] 2δ+1 6δ+1
Egalitarian Paxos [38] 2δ+1 O(nδ)

CURP+N2Paxos [41] 2δ 3δ+1
SwiftPaxos 2δ 3δ

Table 1: Latency of state-machine replication protocols. We denote by δ the upper bound on message delay when the system is stable. For
non-colocated clients +1 denotes the additional message delay.

concurrent conflicting commands are received in the same order at the replicas. The last class (general) is the worst-case latency
when the system is stable. For protocols that have a fast path this corresponds to the slow path. Worst-case latency matters for hot
items and when the fast path is no longer available (e.g., if a machine gets disconnected). Notice that these classes are ordered as
follows: sequential ⊊ conflict-free ⊊ contention-free ⊊ general. In Table 1, the notation +1 refers to the additional message delay
to reach non-colocated clients.

Below, we prove that the latency of SwiftPaxos matches the results in Table 1. Namely, we establish that SwiftPaxos executes
state-machine commands in two message delays in the absence of contention, and three otherwise.

Lemma 1. Assume a contention-free run ρ of SwiftPaxos. At any time t in ρ, if p and q in some FQ (b) have both received c at
t, then (i) dep[c] is the same at the two processes, and (ii) the evaluation of pset(id(c)) on the two processes is identical.

Proof. We prove this result inductively. The property holds obviously at t = 0. Assume that it is true at t− 1. At time t, if
no command is newly received by either p or q, we are done. Otherwise, let c be such a command and wlog. consider that q
receives c at time t. Process q executes line 11 for command c at that time. Consider a command d in depp[c] at t. As the run is
contention-free, d is received before time t at q. Thus, it is added to depq[c] at t. This shows that depp[c]⊆ depq[c] at t. Using a
symmetrical argument, we have depq[c]⊆ depp[c], as required. Now consider that q evaluates pset(id(c)) to the set of paths P at
t. By a short induction, because for any received command d, depp[d] = depq[c] at t, the evaluation on p must also return P.

Proposition 11. The latency of SwiftPaxos is 2δ when the run is contention-free, and 3δ otherwise.

Proof. Consider a run ρ of SwiftPaxos. Let t0 be the point in time after which the system is stable in ρ. By Proposition 8, for some
ballot b0 at every correct replica, bal= cbal= b0 and status= NORMAL hold forever after time t0. Let p be the leader of ballot
b0. Pick a command c submitted after time t0. According to SwiftPaxos (line 2), client(c) broadcasts a message Propagate(c)
to all replicas. Any replica receives such a message after δ units When receiving it, p sends a message Reply(bal,id(c),P,r) to
client(c), with r the result of the optimistic execution of c (line 17). There are two cases to consider:
• (ρ is contention-free) Assume a command d non-commuting with c was received at replica p before c. Because c is

uncontended, it must be the case that d was also received before c at any other replica q ∈ FQ (b0). By Lemma 1, p and q
execute the exact same computation at lines 11 and 12. From which, we deduce that all the fast quorum replicas broadcast the
same message FastAck(b0,id(c),D,P) to client(c) (lines 19 and 21). The precondition at line 3 on client(c) triggers
after (at most) δ units of time, delivering the response of c. It follows that the message delay of c is 2δ in this case.

• (Otherwise) Leader p sends a message FastAck(b0,id(c),D,P) to all replicas. Choose some replica q ̸= p in SQ (b0).
Consider the point in time when q has already received c as well as the above message from p. This takes at most 2δ units of
time. Because the system is stable, recovery never takes place after time t0; hence id(c) ∈ Preaccept. Furthermore, we know
that bal= cbal= b0 and status= NORMAL at q. Pick some command d ∈D. From the fact that the system is stable, replica q
has already received a message FastAck regarding command d from the leader. Hence, by a short induction, the precondition
D ⊆ Accept∪Commit is eventually true at q. It follows that replica q eventually sends a message SlowAck(b0, id(c)) to
client(c) (either at line 27, or at line 29). From what precedes, client(c) eventually receives a message SlowAck(b0, id(c))
from all such replicas. Consider the point in time at which this holds for some slow quorum of the ballot b0. Eventually, the
client also receives a Reply message from the leader. When these two happen, the precondition at line 4 is true. In this case,
the response of command c is known at the client after 3δ units of time.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 367

B CURP for Geo-Replication

1 func submit(c):
2 send Record(c) to P

3 when received Reply(b, id,r) from leader(b)
and RecordAck(b, id) from all q ∈ Q

4 pre: |Q|> 3N/4
5 response(id,r)

6 when received SyncReply(id,r)
7 response(id,r)

Figure 14: CURP+N2Paxos: client.

Although CURP is a primary-backup protocol, its authors also describe
a variation for eventually synchronous systems [41, Appendix B.2]. This
variation reuses a black-box leader-driven SMR protocol to enforce the
agreement on the state-machine transitions at the replicas. In Figures 14
and 15 we use N2Paxos for this purpose. For the sake of brevity, we
omit recovery from the protocol’s description. CURP+N2Paxos slightly
differs from the logic described in the CURP paper [41], as highlighted
in blue in the figures.

CURP+N2Paxos is a leader-based protocol. The non-leader replicas
(aka followers) acknowledge each transition proposed by the leader.
The protocol uses a set of witnesses, which are co-located with the
followers and durably store each state-machine command (variable
Unsynced in Figure 15). If a command is conflict-free (line 21), its
client receives the result via the fast path after a single round-trip to the replicas (line 5). Otherwise, the command takes the slow
path (line 7).

CURP+N2Paxos cuts one message delay in comparison to a combination of CURP with Paxos or Raft. This is because a
replica sends an AcceptAck message to all the replicas and not simply to the leader (line 27). Each replica can now rapidly find
out when a command is committed, and the replica closest to the client returns the response (lines 36-37). This change is helpful
in geo-distributed systems, where reducing the latency is key for performance. Another difference with CURP [41, Appendix
B.2] is the client’s logic. To address the problem of zombie leaders, the authors of CURP propose to rely on a cached value of the
term number (or ballot) at each client. Instead, we piggyback this value on the messages addressed to the client, which simplifies
the protocol (see line 3 in Figure 14).

8 when received Record(c) from client q
9 pre: p = leader(b)∧ cmd[id(c)] =⊥

10 cmd[id(c)]← c
11 next← next+1
12 log[next]← id
13 pending_log← pending_log · c
14 if ∀n < next.cmd[log[n]] ▷◁ c =⇒

log[n] ∈ Commit then
15 let r = opt_exec(pending_log,state)
16 send Reply(bal,id(c),r) to q
17 send Accept(bal,id(c),next) to all

18 when received Record(c) from client q
19 pre: p ̸= leader(b)∧ cmd[id(c)] =⊥
20 cmd[id(c)]← c
21 if ∀id ∈ Unsynced.¬(cmd[id] ▷◁ c) then
22 Unsynced← Unsynced∪{id(c)}
23 send RecordAck(bal,id(c)) to q

24 when received Accept(b, id,n) from q
25 pre: bal= b∧ cmd[id] ̸=⊥
26 log[n]← id
27 send AcceptAck(b, id,n) to all

28 when received AcceptAck(b, id,n) from all q ∈ Q
29 pre: bal= b∧|Q|> N/2∧ cmd[id] ̸=⊥ ∧

log[n] = id∧∀n′ < n. log[n′] ∈ Commit
30 Commit← Commit∪{id}
31 if p ̸= leader(b) then Unsynced← Unsynced\{id}

32 when there exists (n, id) such that id /∈ Exec ∧
log[n] = id∧ id ∈ Commit∧∀n′ < n. log[n′] ∈ Exec

33 Exec← Exec∪{id}
34 let (r,state) = exec(cmd[id],state)
35 if p = leader(bal) then remove(pending_log, id)
36 if IsClosest(p,client(id)) then
37 send SyncReply(id,r)

Figure 15: CURP+N2Paxos: replica p.

368 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

C Configuration of the Experiments from §5

ap-south-1 ap-northeast-1 eu-west-3 us-west-1 af-south-1 ap-east-1 ap-southeast-2 ca-central-1 eu-west-1 sa-east-1 us-east-1 us-east-2
ap-northeast-1 128 ms

eu-west-3 108 ms 217 ms
us-west-1 231 ms 110 ms 143 ms
af-south-1 164 ms 359 ms 152 ms 292 ms
ap-east-1 91 ms 54 ms 201 ms 156 ms 254 ms

ap-southeast-2 152 ms 111 ms 281 ms 140 ms 414 ms 130 ms
ca-central-1 191 ms 146 ms 86 ms 81 ms 228 ms 192 ms 200 ms
eu-west-1 125 ms 203 ms 20 ms 130 ms 163 ms 216 ms 258 ms 72 ms
sa-east-1 301 ms 259 ms 197 ms 175 ms 344 ms 304 ms 314 ms 127 ms 180 ms
us-east-1 190 ms 147 ms 84 ms 64 ms 232 ms 193 ms 201 ms 17 ms 71 ms 116 ms
us-east-2 201 ms 136 ms 93 ms 55 ms 242 ms 180 ms 191 ms 27 ms 81 ms 125 ms 18 ms
us-west-2 221 ms 99 ms 135 ms 24 ms 277 ms 146 ms 142 ms 61 ms 121 ms 176 ms 65 ms 54 ms

Figure 16: Latency table of AWS regions.

Replicas
ap-south-1

ap-northeast-1
eu-west-3
us-west-1
af-south-1

Clients
ap-east-1

ap-northeast-1
ap-southeast-2

eu-west-1
ca-central-1

sa-east-1
us-east-1
us-east-2
us-west-1
us-west-2

Figure 17: Regions used for replicas and clients.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 369

The Bedrock of Byzantine Fault Tolerance: A Unified Platform for BFT Protocols
Analysis, Implementation, and Experimentation

Mohammad Javad Amiri
Stony Brook University

Chenyuan Wu
University of Pennsylvania

Divyakant Agrawal
UC Santa Barbara

Amr El Abbadi
UC Santa Barbara

Boon Thau Loo
University of Pennsylvania

Mohammad Sadoghi
UC Davis

Abstract
Byzantine Fault-Tolerant (BFT) protocols cover a broad spec-
trum of design dimensions from infrastructure settings, such
as the communication topology, to more technical features,
such as commitment strategy and even fundamental social
choice properties like order-fairness. The proliferation of dif-
ferent protocols has made it difficult to navigate the BFT
landscape, let alone determine the protocol that best meets
application needs. This paper presents Bedrock, a unified
platform for BFT protocols analysis, implementation, and ex-
perimentation. Bedrock proposes a design space consisting
of a set of dimensions and explores several design choices
that capture the trade-offs between different design space di-
mensions. Within Bedrock, a wide range of BFT protocols
can be implemented and uniformly evaluated under a unified
deployment environment.

1 Introduction
Distributed systems rely on fault-tolerant protocols to pro-

vide robustness and high availability [43, 57, 63, 87, 102,
145, 197]. While cloud systems, e.g., Google’s Spanner [87],
Amazon’s Dynamo [102], and Facebook’s Tao [63], rely
on crash fault-tolerant protocols, e.g., Paxos [164], to es-
tablish consensus, a Byzantine fault-tolerant (BFT) proto-
col is a key ingredient in distributed systems with non-
trustworthy infrastructures, e.g., permissioned blockchains
[1–3,26,29,30,32,45,67,82,127–129,137,162,213,220,223],
permissionless blockchains [64, 154, 156, 183, 253], dis-
tributed file systems [14, 75, 85], locking service [86], fire-
walls [55, 122, 123, 219, 230, 251], certificate authority sys-
tems [257], SCADA systems [41, 153, 205, 256], key-value
datastores [53,106,126,140,219], and key management [187].

BFT protocols use the State Machine Replication (SMR)
technique [163,221] to ensure that non-faulty replicas execute
client requests in the same order despite the concurrent fail-
ure of at most f Byzantine replicas. BFT SMR protocols are
different along several dimensions, including the number of
replicas, processing strategy (i.e., optimistic, pessimistic, or
robust), supporting load balancing, etc. While dependencies

and trade-offs among these dimensions lead to several design
choices, there is currently no unifying tool that provides the
foundations for studying and analyzing BFT protocols’ de-
sign dimensions and their trade-offs. We envision that such
a unifying foundation will provide an in-depth understand-
ing of existing BFT protocols, highlight the trade-offs among
dimensions, and will enable protocol designers to find the
protocol that best fits their needs.

This paper presents Bedrock, a unified platform that en-
ables us to analyze, implement, and experimentally evaluate
partially asynchronous SMR BFT protocols within the design
space of possible variants. Bedrock presents a design space
to characterize BFT protocols based on different dimensions
that capture the environmental settings, protocol structure,
QoS features, and performance optimizations. Each protocol
is a plausible point in the design space. Within the design
space, Bedrock defines a set of design choices demonstrating
trade-offs between different dimensions. For example, the
communication complexity can be reduced by increasing the
number of commitment phases or the number of phases can
be reduced by adding more replicas. Each design choice ex-
presses a one-to-one function to map plausible input points
(i.e., a BFT protocol) to plausible output points (i.e., another
BFT protocol) in the design space.

The Bedrock platform has three main practical uses:
• BFT protocols analysis. Bedrock can be used to ana-

lyze and navigate the evergrowing BFT landscape to
principally compare and differentiate among BFT proto-
cols. The Bedrock design space and its design choices
organize protocols in an ordered fashion and provide new
insights into the properties of existing BFT protocols.

• BFT protocols implementation. Within Bedrock, a
wide range of BFT protocols, e.g., PBFT [73], SBFT
[131], HotStuff [252], Kauri [202], Themis [149], Ten-
dermint [66], Prime [24], PoE [135], CheapBFT [146],
Q/U [5], FaB [190], and Zyzzyva [157], are implemented.
The Bedrock implementation supports different stages
of protocols, e.g., ordering, execution, view-change, and
checkpointing. A domain-specific language (DSL) is

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 371

provided to rapidly prototype BFT protocols by spec-
ifying the protocol config, including the chosen value
for each dimension in the design space, the list of roles,
phases, states, and exchange messages of the protocol.
Bedrock also includes a plugin manager to first, imple-
ment protocol-specific behaviors that can not be speci-
fied by the protocol config and second, enable users to
add their own methods, dimensions, or values to support
more protocols or to modify existing dimensions, e.g.,
add a new signature algorithm.

• BFT protocols experimentation. In addition to rapid
prototyping, the unified deployment environment of
Bedrock enables users to experimentally evaluate and
compare different BFT protocols proposed in diverse
settings and contexts under one unified platform. To our
best knowledge, our paper presents the largest (and most
varied) number of BFT protocols compared and experi-
mented with within a single unified platform.

The paper makes the following contributions.
• A design space for BFT protocols, a set of design choices

and possible design trade-offs are presented to help users
analyze BFT protocols and understand how different
protocols are related to each other.

• We present Bedrock, a platform that aims to unify BFT
protocols. Bedrock derives valid protocols by combining
different design choices in the design space.

• A wide range of BFT protocols can be implemented
in Bedrock. The DSL specifications result in orders of
magnitude reduction in code size compared to equivalent
open-source implementations, greatly improving code
readability and the ability to rapidly prototype protocols.

• The unified experimentation environment of Bedrock
provides for the first time new opportunities to evaluate
and compare different existing BFT protocols fairly and
efficiently (e.g., identical programming language, used
libraries, cryptographic tools, etc.).

2 Bedrock Overview
System model. A BFT protocol runs on a network consist-
ing of a set of nodes that may exhibit arbitrary, potentially
malicious, behavior. BFT protocols use the State Machine
Replication (SMR) algorithm [163, 221] where the system
provides a replicated service whose state is mirrored across
different deterministic replicas. At a high level, the goal of
a BFT SMR protocol is to assign each client request an or-
der in the global service history and execute it in that or-
der [226]. In a BFT SMR protocol, all non-faulty replicas
execute the same requests in the same order (safety) and all
correct requests are eventually executed (liveness). In an asyn-
chronous system, where replicas can fail, no consensus solu-
tions guarantee both safety and liveness (FLP result) [117].
As a result, asynchronous consensus protocols rely on tech-
niques such as randomization [48, 70, 121, 214], failure detec-
tors [80, 185], hybridization/wormholes [88, 204] and partial
synchrony [108, 111] to circumvent the FLP impossibility.

Figure 1: A simplified design space with two dimensions: number of
replicas and number of commitment phases. Green dots () specify
valid points (i.e., BFT protocols) while red dots () show invalid
points (i.e., impossible protocols). A design choice, i.e., phase re-
duction, is a one-to-one transformation function that maps a protocol
in its domain to another protocol in its range.

Bedrock assumes the partial synchrony model as it is used
in most practical BFT protocols [73, 131, 157, 252]. In the
partial synchrony model, there exists an unknown global stabi-
lization time (GST), after which all messages between correct
replicas are received within some known bound ∆. Bedrock
further inherits the standard assumptions of existing BFT pro-
tocols. First, while there is no upper bound on the number
of faulty clients, the maximum number of concurrent mali-
cious replicas is assumed to be f . Second, replicas are con-
nected via an unreliable network that might drop, corrupt,
or delay messages. Third, the network uses point-to-point
bi-directional communication channels to connect replicas.
Fourth, the failure of replicas is independent of each other,
where a single fault does not lead to the failure of multiple
replicas. This can be achieved by either diversifying replica
implementation (e.g., n-version programming) [40, 118] or
placing replicas at different geographic locations (e.g., data-
centers) [51, 112, 229, 241]. Finally, a strong adversary can
coordinate malicious replicas and delay communication. How-
ever, the adversary cannot subvert cryptographic assumptions.

Usage model. Bedrock aims to help users analyze, imple-
ment, and evaluate BFT protocols within one unified platform
and find the protocol that fits their needs. To achieve this goal,
the Bedrock platform makes available the design dimensions
of BFT protocols and different design choices, i.e., trade-offs
between dimensions, to users to tune. Figure 1 illustrates an
example highlighting the relation between design space, di-
mensions, design choices, and protocols in Bedrock. For the
sake of simplicity, we present only two dimensions of the
design space (among more than 10 dimensions, as described
in Section 3), i.e., number of replicas and number of commitment
phases. Each dimension, e.g., number of replicas, can take dif-
ferent values, e.g., 3 f +1, 5 f +1, or 7 f +1. A BFT protocol
is then a point in this design space, e.g., ("3", "3 f +1"). Note
that each dimension not presented in this figure also takes a
value, e.g., communication strategy is assumed to be pessimistic.

Moreover, only a subset of points is valid and represents
BFT protocols. In Figure 1, green dots () specify valid points
(i.e., BFT protocols) while red dots () show invalid points
(i.e., impossible protocols). For example, there is no (pes-
simistic) BFT protocol with 3 f + 1 nodes that commit re-

372 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: Different stages of replicas in a BFT protocol

quests in a single commitment phase. A design choice is then
a one-to-one function that maps each BFT protocol in its
domain to another protocol in its range. For example, phase
reduction (through redundancy) maps each protocol with 3 f+1
nodes and 3 communication phases, e.g., PBFT [73], to a pro-
tocol with 5 f+1 nodes and 2 communication phases, e.g.,
FaB [190] (assuming both protocols are pessimistic with
clique topology). The domain and range of each design choice
are a subset of protocols in the design space.

BFT protocols structure. In a BFT protocol, as presented
in Figure 2, clients communicate with a set of replicas that
maintain a copy of the application state. A replica’s lifecycle
consists of ordering, execution, view-change, checkpointing,
and recovery stages. The goal of the ordering stage is to estab-
lish agreement on a unique order among requests executing
on the application state. In leader-based consensus protocols,
a designated leader node proposes the order and, to ensure
fault tolerance, needs to get agreement from a subset of the
nodes, referred to as a quorum. In the execution stage, requests
are applied to the replicated state machine. The view-change
stage replaces the current leader. Checkpointing is used to
garbage-collect data and enable trailing replicas to catch up,
and finally, the recovery stage recovers replicas from faults
by applying software rejuvenation techniques.

PBFT Protocol. To better illustrate the Bedrock design space,
we give an overview of the PBFT protocol [73, 75] as a driv-
ing example. PBFT, as shown in Figure 3, is a leader-based
protocol that operates in a succession of configurations called
views [114, 115]. Each view is coordinated by a stable leader
(primary) and the protocol pessimistically processes requests.
In PBFT, the number of replicas, n, is assumed to be 3 f +1
and the ordering stage consists of pre-prepare, prepare, and
commit phases. The pre-prepare phase assigns an order to the
request, the prepare phase guarantees the uniqueness of the
assigned order and the commit phase guarantees that the next
leader can safely assign the order.

During a normal case execution of PBFT, clients send their
signed request messages to the leader. In the pre-prepare phase,
the leader assigns a sequence number to the request to de-
termine the execution order of the request and multicasts a
pre-prepare message to all backups. Upon receiving a valid
pre-prepare message from the leader, each backup replica mul-
ticasts a prepare message to all replicas and waits for prepare
messages from 2 f different replicas (including the replica
itself) that match the pre-prepare message. The goal of the
prepare phase is to guarantee safety within the view, i.e., 2 f
replicas received matching pre-prepare messages from the

Figure 3: Different stages of PBFT protocol

leader replica and agree with the order of the request.
Each replica then multicasts a commit message to all repli-

cas. Once a replica receives 2 f + 1 valid commit messages
from different replicas, including itself, that match the pre-
prepare message, it commits the request. The goal of the com-
mit phase is to ensure safety across views, i.e., the request has
been replicated on a majority of non-faulty replicas and can be
recovered after (leader) failures. The second and third phases
of PBFT follow the clique topology, i.e., have O(n2) message
complexity. If the replica has executed all requests with lower
sequence numbers, it executes the request and sends a reply
to the client. The client waits for f+1 matching results from
different replicas.

In the view change stage, upon detecting the failure of
the leader of view v using timeouts, backups exchange view-
change messages including requests that have been received
by the replicas. After receiving 2 f +1 view-change messages,
the designated stable leader of view v+1 (the replica with ID
= v+1 mod n) proposes a new view message, including the list
of requests that should be processed in the new view.

In PBFT, replicas periodically generate checkpoint messages
and send them to all replicas. If a replica receives 2 f + 1
matching checkpoint messages, the checkpoint is stable. PBFT
includes a proactive recovery mechanism that periodically
rejuvenates replicas one by one. PBFT uses either signa-
tures [73] or MACs [75] for authentication. Using MACs,
replicas need to send view-change-ack messages to the leader
after receiving view-change messages. Since new view messages
are not signed, these view-change-ack messages enable replicas
to verify the authenticity of new view messages.

3 Design Space
In Bedrock, each BFT protocol can be analyzed along sev-

eral dimensions. These dimensions (and values associated
with each dimension) collectively help to define the overall
design space of BFT protocols supported by Bedrock. The
dimensions are categorized into four main families: proto-
col structure and environmental settings that present the core
dimensions of BFT protocols, two optional QoS features in-
cluding order-fairness and load balancing that a BFT protocol
might support, and a set of performance optimizations, such
as request pipelining, parallel execution, and trusted hardware,
for tuning BFT protocols. Due to space limitations, the perfor-
mance optimizations are discussed in Appendix A. In the rest
of this section, we describe these families of dimensions in
greater detail. As we describe each dimension, we prefix label

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 373

them with "E" for environmental settings, "P" for protocol
structure, etc. Hence, "E 1" refers to the first dimension in the
environmental settings dimensions family.

This section is not meant to provide a fully exhaustive set of
dimensions but rather to demonstrate the overall methodology
used to define dimensions usable in Bedrock.

3.1 Protocol Structure
Our first family of dimensions concerns customization of

the protocol structure by Bedrock, which will further define
the class of protocols permitted.

P 1. Commitment strategy. Bedrock supports BFT proto-
cols that process transactions in either an optimistic, pes-
simistic, or robust manner. Optimistic BFT protocols make
optimistic assumptions on failures, synchrony, or data con-
tention and might execute requests without necessarily estab-
lishing consensus. An optimistic BFT protocol might make a
subset of the following assumptions:
a1. The leader is non-faulty, assigns a correct order to re-

quests and sends it to all backups, e.g., Zyzzyva [157],
a2. The backups are non-faulty and actively and honestly

participate in the protocol, e.g., CheapBFT [146],
a3. All non-leaf replicas in a tree topology are non-faulty,

e.g., Kauri [202],
a4. The workload is conflict-free and concurrent requests

update disjoint sets of data objects, e.g., Q/U [5],
a5. The clients are honest, e.g., Quorum [37], and
a6. The network is synchronous (in a time window), and

messages are not lost or delayed, e.g., Tendermint [65].
Optimistic protocols are classified into speculative and

non-speculative protocols. In non-speculative protocols, e.g.,
SBFT [131] and CheapBFT [146], replicas execute a trans-
action only if the optimistic assumption holds. Speculative
protocols, e.g., Zyzzyva [157] and PoE [135], on the other
hand, optimistically execute transactions. If the assumption
is not fulfilled, replicas might have to rollback the executed
transactions. Optimistic BFT protocols improve performance
in fault-free situations. If the assumption does not hold, the
replicas, e.g., SBFT [131], or clients, e.g., Zyzzyva [157], de-
tect the failure and use the fallback protocol.

Pessimistic BFT protocols, on the other hand, do not make
any optimistic assumptions about failures, synchrony, or data
contention. In pessimistic BFT protocols, replicas communi-
cate to agree on the order of requests. Finally, robust protocols,
e.g., Prime [24], Aardvark [86], R-Aliph [37], Spinning [240]
and RBFT [38], go one step further and consider scenarios
where the system is under attack by a very strong adversary.

In summary, BFT protocols demonstrate different perfor-
mances in failure-free, low-failure, and under-attack situa-
tions. Optimistic protocols deliver superior performance in
failure-free situations. However, in the presence of failure,
their performance is significantly reduced, especially when
the system is under attack. On the other hand, pessimistic
protocols provide high performance in failure-free situations

and are able to handle low failures with acceptable overhead.
However, they show poor performance when the system is
under attack. Finally, robust protocols are designed for under-
attack situations and demonstrate moderate performance in
all three situations.

P 2. Number of commitment phases. The number of com-
mitment (ordering) phases or good-case latency [12] of a
BFT SMR protocol is the number of phases needed for all
non-faulty replicas to commit when the leader is non-faulty,
and the network is synchronous. We consider the number of
commitment phases from the first time a replica (typically the
leader) receives a request to the first time any participant (i.e.,
leader, backups, client) learns the commitment of the request,
e.g., PBFT executes in 3 phases.

P 3. View-change. BFT protocols follow either the stable
leader or the rotating leader mechanism to replace the cur-
rent leader. The stable leader mechanism [73, 131, 157, 190]
replaces the leader when the leader is suspected to be
faulty by other replicas. In the rotating leader mechanism
[20,67,76–78,86,125,139,155,162,240,241,252], the leader
is replaced periodically, e.g., after a single attempt, insufficient
performance, or an epoch (multiple requests).

Using the stable leader mechanism, the view-change stage
becomes more complex. However, the routine is only exe-
cuted when the leader is suspected to be faulty. On the other
hand, the rotating leader mechanism requires ensuring view
synchronization frequently (whenever the leader is rotated).
Rotating the leader has several benefits, such as balancing
load across replicas [46,47,240], improving resilience against
slow replicas [86], and minimizing communication delays
between clients and the leader [112, 189, 241].

P 4. Checkpointing. The checkpointing mechanism is used
to first, garbage-collect data of completed consensus instances
to save space and second, restore in-dark replicas (due to net-
work unreliability or leader maliciousness) to ensure all non-
faulty replicas are up-to-date [73, 103, 135]. Checkpointing
is typically initiated after a fixed window in a decentralized
manner without relying on a leader [73].

P 5. Recovery. When there are more than f failures, BFT pro-
tocols, apart from some exceptions [84, 178], completely fail
and do not give any guarantees on their behavior [103]. BFT
protocols perform recovery using reactive or proactive mech-
anisms (or a combination [230]). Reactive recovery mech-
anisms detect faulty replica behavior [138] and recover the
replica by applying software rejuvenation techniques [95,142]
where the replica reboots, reestablishes its connection with
other replicas and clients, and updates its state. On the other
hand, proactive recovery mechanisms recover replicas in pe-
riodic time intervals. Proactive mechanisms do not require
any fault detection techniques; however, they might unneces-
sarily recover non-faulty replicas [103]. During recovery, a
replica is unavailable. A BFT protocol can rely on 3 f +2k+1
replicas to improve resilience and availability during recovery

374 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

where k is the maximum number of servers that rejuvenate
concurrently [230]. To prevent attackers from disrupting the
recovery process, each replica requires a trusted component,
e.g., secure coprocessor [75], a synchronous wormhole [239]
or a virtualization layer [105, 216], that remains operational
even if the attacker controls the replica and a read-only mem-
ory that an attacker cannot manipulate. The memory content
remains persistent (e.g., on disk) across machine reboots and
includes all information needed for bootstrapping a correct
replica after restart [103].

P 6. Types of clients. Bedrock supports three types of clients:
requester, proposer, and repairer. Requester clients perform a
basic functionality and communicate with replicas by sending
requests and receiving replies. A requester client may need to
verify the results by waiting for a number of matching replies,
e.g., f+1 in PBFT [73], 2 f+1 in PoE [135] and PBFT (for
read-only requests) [75], or 3 f+1 is Zyzzyva [157]. Using
trusted components, e.g., Troxy [175], or threshold signatures,
e.g., SBFT [131], the client does not even need to wait for and
verify multiple results from replicas. Clients might also play
the proposer role by proposing a sequence number (acting as
the leader) for its request [5, 130, 186, 188]. Repairer clients,
on the other hand, detect the failure of replicas, e.g., Zyzzyva
[157], or even change the protocol configuration, e.g., Scrooge
[222], Abstract [37], and Q/U [5].

3.2 Environmental Settings
Environmental settings, broadly speaking, encompass the

deployment environment for a BFT protocol. These input
parameters help scope the class of BFT protocols that can be
supported to fit each deployment environment best.

E 1. Number of replicas. The first dimension concerns se-
lecting BFT protocols based on the number of replicas (i.e.,
network and quorum size) used in a deployment. In the pres-
ence of f malicious failures, BFT protocols require at least
3 f+1 replicas to guarantee safety [59, 60, 91, 111, 170]. Us-
ing trusted hardware, the malicious behavior of replicas is
restricted and safety can be guaranteed using 2 f + 1 repli-
cas [84, 90, 92, 216, 241, 241, 242]. Similarly, leveraging new
hardware capabilities or using message-and-memory mod-
els the required number of replicas can be reduced to 2 f +1
[15–17]. On the other hand, the number of communication
phases can be reduced by increasing the number of replicas
to 5 f + 1 [190] (its proven lower bound, 5 f − 1 [12, 161])
or 7 f + 1 [228]. A BFT protocol might also optimistically
assume the existence of a quorum of 2 f + 1 active non-
faulty replicas (put f replicas as passive) to establish consen-
sus [104,146]. Using both trusted hardware and active/passive
replication, the quorum size is further reduced to f +1 during
failure-free situations [104, 105, 146].

E 2. Communication topology. Bedrock allows users to an-
alyze BFT protocols based on communication topologies,
including: (1) the star topology where communication is
strictly from a designated replica, e.g., the leader, to all other

replicas and vice-versa, resulting in linear message complex-
ity [157, 252], (2) the clique topology where all (or a subset
of) replicas communicate directly with each other resulting
in quadratic message complexity [73], (3) the tree topology
where the replicas are organized in a tree with the leader
placed at the root, and at each phase, a replica communicates
with either its child replicas or its parent replica, causing log-
arithmic message complexity [154, 155, 202], or (4) the chain
topology where replicas construct a pipeline and each replica
communicates with its neighbor replicas [37].

E 3. Authentication. Participants authenticate their mes-
sages to enable other replicas to verify a message’s origin.
Bedrock support both signatures, e.g., RSA [218], and au-
thenticators [73], i.e., MACs [237]. Constant-sized threshold
signatures [70, 224] have also been used to reduce the size of
a set (quorum) of signatures. A protocol might even use dif-
ferent techniques (i.e., signatures, MACs) in different stages
to authenticate messages sent by clients, sent by replicas in
the ordering stage, and sent by replicas during view-change.

E 4. Responsiveness, synchronization, and timers. A BFT
protocol is responsive if its normal case commit latency de-
pends only on the actual network delay needed for replicas to
process and exchange messages rather than any (usually much
larger) predefined upper bound on message transmission de-
lay [36, 208, 209, 225]. Responsiveness might be sacrificed
in different ways. First, rotating the leader, the new leader
might need to wait for a predefined time before initiating
the next request to ensure that it receives the decided value
from all non-faulty but slow replicas, e.g., Tendermint [162]
and Casper [68]. Second, optimistically assuming all replicas
are non-faulty, replicas (or clients) need to wait for a prede-
fined upper bound to receive messages from all replicas, e.g.,
SBFT [131] and Zyzzyva [157].

BFT protocols need to guarantee that all non-faulty repli-
cas will eventually be synchronized to the same view with a
non-faulty leader enabling the leader to collect the decided
values in previous views and making progress in the new
view [62, 198, 199]. This is needed because a quorum of
2 f + 1 replicas might include f Byzantine replicas and the
remaining f "slow" non-faulty replicas might stay behind
(i.e., in-dark) and not even advance views at all. View syn-
chronization can be achieved by integrating the functionality
with the core consensus protocol, e.g., PBFT [73], or assign-
ing a distinct synchronizer component, e.g., Pacemaker in
HotStuff [252], and hardware clocks [6].

Depending on the environment, network characteristics,
and processing strategy, BFT protocols use different timers to
ensure responsiveness and synchronization. Protocols can be
configured with the following timers by Bedrock.
τ1. Waiting for reply messages, e.g., Zyzzyva [157],
τ2. Triggering (consecutive) view-change, e.g., PBFT [73],
τ3. Detecting backup failures, e.g., SBFT [131],
τ4. Quorum construction in an ordering phase, e.g., prevote

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 375

and precommit timeouts in Tendermint [65],
τ5. View synchronization, e.g., Tendermint [65],
τ6. Finishing a (preordering) round, e.g., Themis [149],
τ7. Performance check (heartbeat), e.g., Aardvark [86], and
τ8. Atomic recovery (watchdog timer) to periodically hand

control to a recovery monitor [74], e.g., PBFT [75].
3.3 Quality of Service

There are some optional QoS features that Bedrock can
support. We list two example dimensions.

Q 1. Order-fairness. Order-fairness deals with preventing
adversarial manipulation of request ordering [42, 71, 149, 150,
159, 160, 255]. Order-fairness is defined as: "if a large num-
ber of replicas receives a request t1 before another request
t2, then t1 should be ordered before t2" [150]. Order-fairness
has been partially addressed using different techniques: (1)
monitoring the leader to ensure it does not initiate two new
requests from the same client before initiating an old request
of another client, e.g., Aardvark [86], (2) adding a preorder-
ing phase, e.g., Prime [24], where replicas order the received
requests locally and share their orderings with each other,
(3) encrypting requests and revealing the contents only once
their ordering is fixed [35, 69, 193, 232], (4) reputation-based
systems [35, 99, 156, 173] to detect unfair censorship of spe-
cific client requests, and (5) providing opportunities for every
replica to propose and commit its requests using fair elec-
tion [9, 35, 125, 151, 173, 208, 248].

Q 2. Load balancing. The performance of fault-tolerant pro-
tocols is usually limited by the computing and bandwidth
capacity of the leader [18, 21, 56, 81, 195, 196, 202, 245]. The
leader coordinates the consensus protocol and multicasts/-
collects messages to all other replicas in different protocol
phases. Load balancing is defined as distributing the load
among the replicas of the system to balance the number of
messages any single replica has to process.

Load balancing can be partially achieved using the ro-
tating leader mechanism, multi-layer, or multi-leader proto-
cols. Using leader rotation, one replica (leader) is still highly
loaded in each consensus instance. In multi-layer protocols
[25, 137, 179, 201, 203], the load is distributed between the
leaders of different clusters. However, the system still suffers
from load imbalance between the leader and backups in each
cluster. In multi-leader protocols [22,33,39,136,233,243], all
replicas can initiate consensus to partially order requests in
parallel. However, slow replicas still affect the global ordering
of requests. To resolve the bandwidth limit of small replicas
decomposing consensus into data availability agreement and
block retrieval is proposed [250].

4 Design Choices Landscape
Given a set of specified dimension values in Section 3, each

protocol represents a point in the Bedrock design space. In
this section, using PBFT as a driving example, as illustrated in
Section 2, we demonstrate how different points in the design
space lead to different trade-offs.

4.1 Expanding the Design Choices of PBFT
Using PBFT and our design dimensions as a baseline, we

illustrate a series of design choices that expose different trade-
offs BFT protocols need to make. Each design choice acts as
a one-to-one function that maps each valid input point (i.e., a
protocol) to another valid output point in the design space.

Design Choice 1. (Linearization). This function explores a
trade-off between communication topology and communica-
tion phases. The function takes a quadratic phase, e.g., prepare
or commit in PBFT, and splits it into two linear phases: one
phase from all replicas to a collector (typically the leader) and
one phase from the collector to all replicas, e.g., SBFT [131],
HotStuff [252] and HotStuff-2 [184]. The output protocol re-
quires (threshold) signatures for authentication. The collector
collects a quorum of (typically n− f) signatures from repli-
cas and broadcasts its message including the signatures, as a
certificate of having received the required signatures. Using
threshold signatures [69, 70, 215, 224] the collector message
size becomes constant. Some BFT protocols [124, 143, 235]
use linear communication during the ordering phase but fol-
low the quadratic view-change routine of PBFT.

Design Choice 2. (Phase reduction through redundancy).
This function explores a trade-off between the number of
ordering phases and the number of replicas. The function
transforms a protocol with 3 f + 1 replicas and 3 ordering
phases (i.e., one linear, two quadratic), e.g., PBFT, to a fast
protocol with 5 f + 1 replicas and 2 ordering phases (one
linear, one quadratic), e.g., FaB [190]. In the second phase
of the protocol, matching messages from a quorum of 4 f +1
replicas are required. Recently, 5 f − 1 has been proven as
the lower bound for two-step Byzantine consensus [12, 161].
The intuition behind the 5 f − 1 lower bound is that in an
authenticated model, when replicas detect leader equivocation
and initiate view-change, they do not include view-change
messages coming from the malicious leader, reducing the
maximum number of faulty messages to f −1 [12, 161].

Design Choice 3. (Leader rotation). This function replaces
the stable leader with the rotating leader mechanism, e.g.,
HotStuff [252], where the rotation happens after each request
or epoch or due to low performance (as discussed in P 3).
This function eliminates the view-change stage and adds a
quadratic phase or two linear phases (using the linearization
function) to the ordering stage to ensure that the new leader
is aware of the correct state of the system.

Design Choice 4. (Non-responsive leader rotation). This
function replaces the stable leader mechanism with the rotat-
ing leader mechanism without adding a new ordering phase
(in contrast to design choice 3) while sacrificing responsive-
ness. The new leader assumes that the network is synchronous
(after GST) and waits for a predefined known upper bound ∆

(Timer τ5) before initiating the next request. This is needed to
ensure that the new leader is aware of the highest assigned or-
der to the requests, e.g., Tendermint [66,162] and Casper [68].

376 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

As an optimization, if the new leader is aware of the highest
assigned order (the leader was part of the quorum), it can initi-
ate the next request right after receiving 2 f +1 votes (without
necessarily waiting for ∆ [184]).

Design Choice 5. (Optimistic replica reduction). This func-
tion reduces the number of involved replicas in consensus
from 3 f+1 to 2 f+1 while optimistically assuming all 2 f +1
replicas are non-faulty (assumption P 1, a2). In each phase of
a BFT protocol, matching messages from a quorum of 2 f +1
replicas is needed. If a quorum of 2 f +1 non-faulty replicas
is identified, they can order (and execute) requests without
the participation of the remaining f replicas. Those f replicas
remain passive and are needed if any of the active replicas
become faulty [104, 146]. Note that n is still 3 f +1.

Design Choice 6. (Optimistic phase reduction). Given a lin-
ear BFT protocol, this function optimistically eliminates two
linear phases (i.e., the equivalence of a single quadratic prepare
pahse) assuming all replicas are non-faulty, e.g., SBFT [131].
The leader (collector) waits for signed messages from all
3 f + 1 replicas in the second phase of ordering, combines
signatures and sends a signed message to all replicas. Upon
receiving the signed message from the leader, each replica
ensures that all non-faulty replicas have received the request
and agreed with the order. As a result, the third phase of com-
munication can be omitted and replicas can directly commit
the request. If the leader has not received 3 f + 1 messages
after a predefined time (timer τ3), the protocol fallbacks to its
slow path and runs the third phase of ordering.

Design Choice 7. (Speculative phase reduction). This func-
tion, similar to the previous one, optimistically eliminates two
linear phases of the ordering stage assuming that non-faulty
replicas construct the quorum of responses, e.g., PoE [135].
The main difference is that the leader waits for signed mes-
sages from only 2 f +1 replicas in the second phase of order-
ing and sends a signed message to all replicas. Upon receiving
a message signed by 2 f + 1 replicas from the leader, each
replica speculatively executes the transaction, optimistically
assuming that either (1) all 2 f +1 signatures are from non-
faulty replicas or (2) at least f +1 non-faulty replicas received
the signed message from the leader. If (1) does not hold, other
replicas receive and execute transactions during the view-
change. However, if (2) does not hold, the replica might have
to rollback the executed transaction.

Design Choice 8. (Speculative execution). This function
eliminates the prepare and commit phases while optimistically
assuming that all replicas are non-faulty (assumptions P 1, a1
and a2), e.g., Zyzzyva [157]. Replicas speculatively execute
transactions upon receiving them from the leader. If the client
does not receive 3 f +1 matching replies after a predefined
time (timer τ1) or it receives conflicting messages, the (re-
pairer) client detects failure and communicates with replicas
to receive 2 f +1 commit messages.

Design Choice 9. (Optimistic conflict-free). If requests of
different clients are conflict-free (assumption P 1, a4), there is
no need for a total order among all transactions. This function
eliminates all ordering phases while optimistically assuming
that requests are conflict-free and all replicas are non-faulty.
The client becomes the proposer and sends its request to all
(or a quorum of) replicas where replicas execute the requests
without any communication [5, 97].

Design Choice 10. (Resilience). This function increases the
number of replicas by 2 f enabling the protocol to tolerate
f more failure with the same safety guarantees. In particu-
lar, optimistic BFT protocols that assume all 3 f +1 replicas
are non-faulty (quorum size is also 3 f +1) tolerate zero fail-
ures. By increasing the number of replicas to 5 f +1 replicas,
such BFT protocols can provide the same safety guarantees
with quorums of size 4 f +1 while tolerating f failures, e.g.,
Zyzzyva5 [157], Q/U [5]. Similarly, a protocol with the net-
work size of 5 f + 1 can tolerate f more faulty replicas by
increasing the network size to 7 f +1 [228].

This function can also provide high availability during
the (proactive) recovery stage by increasing the number of
replicas by 2k (the quorum size by k) where k is the maximum
number of servers that recover concurrently [230].

Design Choice 11. (Authentication). This function replaces
MACs with signatures for a given stage. Signatures are typi-
cally more costly than MACs. However, in contrast to MACs,
signatures provide non-repudiation and are not vulnerable
to MAC-based attacks from malicious clients. If a protocol
follows the star communication topology where a replica
needs to include a quorum of signatures as a proof of its mes-
sages, e.g., HotStuff [252], k signatures can be replaced with
a threshold signature. In such protocols MACs cannot be used
since MACs do not provide non-repudiation.

Design Choice 12. (Robust). This function makes a pes-
simistic protocol robust by adding a preordering stage to the
protocol, e.g., Prime [24]. In the preordering stage and, upon
receiving a request, each replica locally orders and broadcasts
the request to all other replicas. All replicas then acknowledge
the receipt of the request in an all-to-all communication phase
and add the request to their local request vector. Replicas pe-
riodically share their vectors with each other. The robust func-
tion provides (partial) fairness as well. Robustness has also
been addressed in other ways, e.g., using the leader rotation
and a blacklisting mechanism in Spinning [240] or isolating
the incoming traffic of different replicas, and checking the
performance of the leader in Aardvark [86].

Design Choice 13. (Fair). This function transforms an unfair
protocol, e.g., PBFT, into a fair protocol by adding a preorder-
ing phase to the protocol. In the preordering phase, clients
send requests to all replicas, and once a round ends (timer τ6),
each replica sends a batch of requests in the received order
to the leader. The leader then initiates consensus on the re-
quests following the order of requests in the received batches.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 377

Table 1: Comparing selected BFT protocols based on different dimensions of Bedrock design space

Protocol E1.
Nodes

E2.
Topo.

E3.
Auth.

E4.
Timers

P1.
Strategy

P2.
Phases

P3.
V-change

P5.
Rec.

P6.
Client

Q1.
Fair.

Q2.
Load.

Design
Choices

PBFT [73] 3 f+1 clique MAC || Sign τ1, τ2, τ8 pessimistic 3 stable pro. Req. � � (11)

Zyzzyva [157] 3 f+1 star MAC || Sign τ1, τ2 optimistic (spec): a1, a2 1 (3) stable - Rep. � � 8, (11)

Zyzzyva5 [157] 5 f+1 star MAC || Sign τ1, τ2 optimistic (spec): a1 1 (3) stable - Rep. � � 8, 10, (11)

PoE [135] 3 f+1 star MAC || T-Sign τ1, τ2 optimistic (spec): a2 3 stable - Req. � � 1, 7, 11

SBFT [131] 3 f+1 star T-Sign τ1, τ2, τ3 optimistic: a2 3 (5) stable - Req. � � 1, 6, 11

HotStuff [252] 3 f+1 star T-Sign τ1, τ2 pessimistic 7 rotating - Req. � � 1, 3, 11

Tendermint [66] 3 f+1 clique Sign τ1, τ2, τ5, τ6 optimistic: a6 3 rotating - Req. � � 4, 11

Themis [149] 4 f+1 star T-Sign τ1, τ2, τ6 pessimistic 1+7 rotating - Req. � � 1, 3, 13, 11

Kauri [202] 3 f+1 tree T-Sign τ1, τ2 optimistic: a3 7h stable* - Req. � � (3), 14, 11

CheapBFT [146] 2 f+1 clique MAC τ1, τ2 optimistic: a2 3 stable - Req. � � 5

FaB [190] 5 f+1 clique (Sign) τ1, τ2 pessimistic 2 stable - Req. � � 2

Prime [24] 3 f+1 clique Sign τ1, τ2, τ6, τ7 robust 6 stable - Req. � 11, 12

Q/U [5] 5 f+1 star MAC τ1, τ2 optimistic: a4, a5 1 (3) stable - Rep. � � 9, 10

FLB 5 f−1 clique Sign τ1, τ2 pessimistic 2 stable - Req. � � 1, 2, 11

FTB 5 f−1 tree T-Sign τ1, τ2 optimistic: a3 3h stable - Req. � � 1, 2, 14, 11

Hint: "T-Sign": threshold signatures, "Req": requester client, "Rep": repairer client, "Pro": proactive recovery. The number of phases in the slow path of
protocols is shown in parentheses. While Kauri is implemented on top of HotStuff, it does not use rotating leaders. Prime provides partial fairness.

PBFT [75]

FaB [190]Bosco [228]

Zyzzyva [157]

Quorum [37]

Tendermint [66]

CheapBFT [146]

Linear PBFT

Zyzzyva5 [157]

Q/U [5] HotStuff [252]

SBFT [131]PoE [135] Kauri [202]

Themis [149]FLB FTBPrime [24]
10

1

2

9

5

48

10

67

3

14

14

13

10

1

212

Figure 4: Derivation of protocols from PBFT using design choices

Depending on the order-fairness parameter γ (0.5<γ≤1) that
defines the fraction of replicas receiving the requests in that
specific order, at least 4 f +1 replicas (n> 4 f

2γ−1) replicas are
needed to provide order-fairness [149, 150] 1.

Design Choice 14. (Tree-based LoadBalancer). This func-
tion explores a trade-off between the communication topology
and load balancing where load balancing is supported by or-
ganizing replicas in a tree topology, with the leader at the root,
e.g., Kauri [202]. This function splits a linear communication
phase into h phases where h is the tree’s height and each
replica uniformly communicates with its child/parent replicas
in the tree. The protocol optimistically assumes all non-leaf
replicas are non-faulty (assumption P 1, a3). Otherwise, the
tree is reconfigured (i.e., view change).

4.2 Deriving and Evolving Protocols
Figure 4 demonstrates the derivation of a wide spectrum

of BFT protocols from PBFT using design choices. Table 1
provides insights into how each BFT protocol maps into the
Bedrock design space. The table also presents the design

1With 3 f+1 replicas, as shown in [149], order-fairness requires a syn-
chronized clock [255] or does not provide censorship resistance [159].

Figure 5: Overview of BFT protocols

choices used by each BFT protocol. A detailed explanation
of protocols is presented in Appendix B.

Figure 5 focuses on different stages of replicas and demon-
strates the communication complexity of each stage. The
figure presents: (1) the preordering phases used in Themis
and Prime, (2) the three ordering phases, e.g., pre-prepare, pre-
pare or commit in PBFT (labeled by o1, o2, and o3), (3) the
execution stage, (4) the view-change stages consisting of view-
change and new-view phases (labeled by v1 and v2), and (5)
the checkpointing stage. As can be seen, some protocols do
not have all three ordering phases, i.e., using different de-
sign choices, the number of ordering phases is reduced. The
dashed boxes present the slow-path of protocols, e.g., the third
ordering phase of SBFT is used only in its slow-path. Finally,
the order of stages might be changed. For example, HotStuff
runs view-change (leader rotation) for every single message
and this phase takes place at the beginning of a consensus

378 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

instance to synchronize nodes within a view.
These case studies demonstrate the value of Bedrock in

providing a unified platform for analyzing a range of exist-
ing BFT protocols. Note that the Bedrock platform enables
users to implement new dimensions or design choices. For
example, recently directed acyclic graph (DAG)-based BFT
protocols [42,100,101,119,148,231,247] have emerged as an
efficient way of establishing consensus. In DAG-based proto-
cols and in each round, replicas independently send their own
block of transactions as well as references to 2 f +1 received
blocks (in the previous round) to other replicas in parallel.
The references that blocks carry then become the backbone
of a causally ordered DAG structure. DAG-based protocols
provide higher throughput by separating transaction dissemi-
nation (by all replicas) from ordering. One can evolve PBFT
to a DAG-based protocol in three steps (using three design
choices); linearization, pipelining, and parallelization, with
some minor modifications. Linearization makes PBFT linear
(design choice 1), pipelining enables a node to piggyback the
messages of a new consensus instance on the second round
messages of the previous instance (as it is used in Chained-
HotStuff [4]), and parallelization enables multiple replicas to
propose messages in parallel (as used in multi-leader proto-
cols [136, 233], discussed in Appendix A, 3).

Bedrock’s utility can go beyond an analysis platform to-
wards a discovery tool as well. Appendix C demonstrates two
BFT protocols (FLB and FTB) uncovered using Bedrock.
5 Bedrock Implementation

Bedrock enables users, e.g., application developers, to im-
plement and evaluate different BFT protocols. Bedrock is
implemented in Java. The modular design of Bedrock enables
a fair and efficient evaluation of BFT protocols using identical
libraries, cryptographic functions, etc. The Bedrock platform
consists of four main components: the core unit, the state
manager, the plugin manager, and the coordination unit.
The core unit defines entities, e.g., clients and nodes, and
maintains the application logic and application data. Client
transactions are executed using the application logic resulting
in updating the data. Entities track the execution of requests
through various state variables, e.g., view and sequence num-
ber. Within the core unit, different workloads and benchmarks
can be defined. Client requests can be initiated using a con-
stant interval or a dynamic interval updated based on a moving
average of response times. Different utility classes, such as
Timekeeper to handle timers, and BenchmarkManager to mea-
sure and report results are also defined within the core unit.
The state manager enables the core unit to track the states
and transitions of each entity according to the utilized BFT
protocol, e.g., different stages of a replica or different phases
of consensus. Bedrock defines a domain-specific language
(DSL) to rapidly prototype BFT protocols. The DSL code
written in the protocol config defines different dimensions and
the chosen value for each dimension, the list of roles, phases,
states, exchange messages, quorum conditions of the protocol,

PBFT Zyzzyva SBFT Tendermint FaB HotStuff Kauri Themis
0

10,000

20,000

30,000

16,200
14,300

29,100

23,400

14,900

4,800
6,900 6,100

158 112 198 109 135 187 207 213

Protocol

L
in

es
of

co
de

Original Bedrock

Figure 6: Lines of code in Bedrock and the original implementation

and also, the list of protocol-specific plugins required to run
the protocol. The EO-YAML and Apache Commons Lang libraries
are used for parsing, loading, and holding the protocol config
data. Appendix E demonstrates the PBFT code using the DSL.
The protocol config greatly reduces the effort needed to write
a BFT protocol. Figure 6 compares the lines of code in the
original open-source implementation of several known proto-
cols and their implementation in Bedrock., e.g., the original
Zyzzyva source code includes more than 14000 lines while its
config in Bedrock is only 112 lines2. Overall, using Bedrock,
the code size is reduced by orders of magnitude. Each proto-
col, in addition to the config file, uses a set of plugins defined
in Bedrock, as explained in the next part. Chained-HotStuff,
as a protocol that uses the most plugins (five), requires only
412 more lines of code to implement its five plugins, several
of them are shared with multiple protocols.
The plugin manager serves two purposes. First, it enables
the implementation of protocol-specific behaviors that cannot
be handled by the protocol config defined in the state man-
ager. For example, the speculative execution in Zyzzyva [157]
or handling view-change without using a different process
or states in Tendermint [162]. Second, it enables Bedrock
users to define their own dimensions/values to support more
protocols or to update existing dimensions without requiring
changes to the platform code or rebuilding the platform bina-
ries. For example, if a developer wants to use a new digest
or signature algorithm for an existing or a new protocol, the
algorithm can be implemented within a plugin.

Four types of plugins have been defined in the current ver-
sion of Bedrock. Role plugins that define specific behavior
for a certain role in a specific sequence number, view number,
state, etc., e.g., message dissemination by the primary node in
CheapBFT [146] where nodes are divided into active and pas-
sive nodes. Message plugins that define specific methods to
process incoming or outgoing messages, e.g., perform digest
validation. Transition plugins that specify an action to be per-
formed during or after a state transition, e.g., how to process
checkpoint messages. Pipeline plugins that enable manipu-
lating the flow of messages, e.g., Chained-HotStuff [252] (as
discussed in Appendix A, O 2).
The coordination unit manages the run-time execution of
Bedrock. The coordination unit consists of a coordinator and a
set of executors. The coordinator manages the benchmark pro-

2 We count only the lines of source code related to the core consensus
protocol and not the applications or the utilized libraries.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 379

4 16 32 64 100

50

100

150

200

250

Number of replicas

T
hr

ou
gh

pu
t[

kt
ra

ns
/s

ec
]

PBFT Zyzzyva SBFT PoE FaB HotStuff Kauri Themis FLB FTB

4 16 32 64 100
0

30

60

90

120

Number of replicas

L
at

en
cy

[m
s]

Figure 7: Performance with different number of replicas

cess and setups all entities by initializing replicas and clients,
sending config parameters to executors, enabling plugins to
run additional initialization steps, starting and stopping exe-
cution threads, and reporting results. The executors, on the
other hand, run the utilized BFT protocol.

The data (e.g., messages, requests, blocks) for the events
and messages transmitted between nodes and clients is de-
fined using the Google Protocol Buffers syntax and then
compiled using the protoc tool.
6 Experimental Evaluation

Our evaluation studies the practical impact of the design
dimensions and the exposed trade-offs presented as design
choices on the performance of BFT protocols under one uni-
fied platform. We use typical experimental scenarios used for
existing BFT protocols and permissioned blockchains, includ-
ing (1) varying the number of replicas, (2) under a backup fail-
ure, (3) multiple request batch sizes, and (4) a geo-distributed
setup (presented in Appendix D).

All protocols listed in Table 1 are implemented in Bedrock.
Note that the original implementations of such BFT protocols
utilize different (often old, inefficient) libraries, crypto algo-
rithms, etc. Hence, it was unfair to experimentally compare
such original implementations with their implementations
in bedrock. Using the platform, we also experimented with
many new protocols resulting from the combination of design
choices. Due to space limitations, we present the performance
evaluation of a subset of protocols. In particular, we evaluate
PBFT, Zyzzyva, SBFT, FaB, PoE, (Chained-) HotStuff, Kauri,
Themis, and two of the more interesting new variants (FLB
and FTB). This set of protocols enables us to see the impact of
design choices 1, 2, 3, 6, 7, 8, 10, 11, 13, and 14 (discussed in
Section 4). We also use the out-of-order processing technique
for protocols with a stable leader and the request pipelining
technique for protocols with a rotating leader. In our experi-
ments, Kauri and FTB are deployed on trees of height 2 and
the order-fairness parameter γ of Themis is considered to be
1 (i.e., n = 4 f + 1). We use 4 as the base pipelining stretch
for both Kauri and FTB and change it depending on the batch
size and deployment setting (local vs. geo-distributed).

The experiments were conducted on the Amazon EC2 plat-
form. Each VM is a c4.2xlarge instance with 8 vCPUs and
15GB RAM, Intel Xeon E5-2666 v3 processor clocked at
3.50 GHz. When reporting throughput, we use an increasing
number of client requests until the end-to-end throughput is

1 5 10 20

50

100

150

200

250

f value

T
hr

ou
gh

pu
t[

kt
ra

ns
/s

ec
]

PBFT Zyzzyva SBFT PoE FaB HotStuff Kauri Themis FLB FTB

1 5 10 20
0

20

40

60

80

f value

L
at

en
cy

[m
s]

Figure 8: Performance with different f value

saturated and state the throughput and latency just below sat-
uration. The results reflect end-to-end measurements from
the clients. Clients execute in a closed loop. We use micro-
benchmarks commonly used to evaluate BFT systems, e.g.,
BFT-SMART. The results are the average of five runs.
6.1 Fault Tolerance and Scalability

In the first set of experiments, we evaluate the performance
of the protocols by increasing the number of replicas n (each
runs on a separate VM) from 4 to 100 in a failure-free situ-
ation. For some protocols, the smallest network size might
differ, e.g., FaB requires 5 f +1 = 6 replicas. We use a batch
size of 400 (we discuss this choice later) and a workload with
client request/reply payload sizes of 128/128 byte. Figure 7
reports the results.

Zyzzyva shows the highest throughput among all protocols
in small networks due to its optimistic ordering stage (design
choice 8). However, as n increases, its throughput significantly
reduces as clients need to wait for reply from all replicas.
Increasing the number of replicas also has a large impact on
PBFT and FaB (65% and 63% reduction, respectively) due to
their quadratic message complexity.

On the other hand, the throughput of Kauri and FTB is
less affected (31% and 32% reduction, respectively) by in-
creasing n because of their tree topology (design choice 14)
that reduced the bandwidth utilization of each replica. Simi-
larly, PoE, SBFT and HotStuff incur less throughput reduction
(39%, 55% and 45% respectively) compared to PBFT and
FaB due to their linear message complexity (design choice 1).
In Bedrock, Chained-HotStuff has been implemented using
the pipelining technique, resulting in lower average latency.
In comparison to HotStuff, SBFT has slightly lower through-
put in large networks (e.g., 8% lower when n = 100) because
the leader waits for messages from all replicas. SBFT, on the
other hand, shows higher throughput compared to HotStuff
in smaller networks (e.g., 12% higher when n = 4) due to
its fast ordering stage (design choice 6). PoE demonstrates
higher throughput compared to both SBFT and HotStuff, es-
pecially in larger networks (e.g., 39% higher than SBFT and
26% higher than HotStuff when n = 100). This is expected
because, in PoE, the leader does not need to wait for messages
from all replicas and optimistically combines signatures from
2 f +1 replicas (design choice 7). Compared to PBFT, while
HotStuff shows better throughput (e.g., 48% higher when
n = 64), the latency of PBFT is lower (e.g., 32% lower when

380 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4 16 32 64 100
0

40

80

120

160

Number of replicas

T
hr

ou
gh

pu
t[

kt
ra

ns
/s

ec
]

PBFT Zyzzyva SBFT PoE FaB HotStuff Kauri Themis FLB FTB

4 16 32 64 100
0

30

60

90

120

Number of replicas

L
at

en
cy

[m
s]

Figure 9: Performance with faulty backups

n = 64). One reason behind the high latency of HotStuff is its
extra communication round (design choice 3).

Supporting order-fairness (design choice 13) leads to de-
ficient performance of Themis compared to HotStuff (83%
lower throughput when n=5). In Themis, replicas order trans-
actions and send batches of transactions to the leader, and
the leader needs to generate a fair order. As the number of
replicas increases, Themis incurs higher latency (the latency
increases from 9 to 137 ms as n increases to 101), mainly
due to the overhead of generating the dependency graph and
reaching a fair order by the leader. Using design choice 2 and
reducing the number of communication phases results in 41%
higher throughput and 46% lower latency of FTB compared
to Kauri in a setting with 99 replicas (100 for Kauri).

Finally, using design choices 1 and 2, FLB demonstrates
better performance for large n (2.25x throughput and 0.55x
latency compared to PBFT). This is because FLB reduces
both message complexity and communication phases, and
replicas do not need to wait for responses from all replicas.

Figure 7 depicts the results with different numbers of repli-
cas. However, with the same number of replicas, different
protocols tolerate different numbers of failures. For instance,
PBFT requires 3 f + 1 and when n = 100 tolerates 33 fail-
ures while FaB requires 5 f +1 and tolerates 19 failures with
n = 100. To compare protocols based on the maximum num-
ber of tolerated failures, we represent the results of the first
experiments in Figure 8. With f = 20, Themis incurs the high-
est latency because it requires 81 (4 f +1) replicas and deals
with the high cost of achieving order-fairness.

6.2 Performance with Faulty Backups
In this set of experiments, we force a backup replica to fail

and repeat the first set of experiments. Figure 9 reports the
results. Zyzzyva is mostly affected by failures (82% lower
throughput) as clients need to collect responses from all repli-
cas. A client waits for ∆ = 5ms to receive reply from all repli-
cas and then the protocol switches to its normal path.

We also run this experiment on Zyzzyva5 to validate design
choice 10, i.e., tolerating f faulty replicas by increasing the
number of replicas. With a single faulty backup, Zyzzyva5
incurs only 8% lower throughput when n = 6.

Backup failure reduces the throughput of SBFT by 42%.
In the fast path of SBFT, all replicas need to participate, and
even when a single replica is faulty, the protocol falls back to
its slow path, which requires two more phases. Interestingly,

200 400 800
0

50

100

150

200

batch size

T
hr

ou
gh

pu
t[

kt
ra

ns
/s

ec
]

PBFT Zyzzyva SBFT PoE FaB HotStuff Kauri Themis FLB FTB

200 400 800
0

20

40

60

batch size

L
at

en
cy

[m
s]

Figure 10: Impact of request batching

while the throughput of PoE is reduced by 26% in a small net-
work (4 replicas), its throughput is not significantly affected
in large networks. This is because the faulty replica (which
participates in the quorum construction but does not send reply
messages to the clients) has a higher chance of becoming a
quorum member in small networks.

Faulty backups also affect the performance of HotStuff,
especially in small networks. This is expected because Hot-
Stuff uses the rotating leader mechanism. When n is small,
the faulty replica is the leader of more views during the exper-
iments, resulting in reduced performance. HotStuff demon-
strates its best performance when n = 31 (still, 36% lower
throughput and 2.7x latency compared to the failure-free sce-
nario). While Themis uses HotStuff as its ordering stage,
a single faulty backup has less impact on its performance
compared to HotStuff (25% reduction vs. 66% reduction in
throughput). This is because Themis has a larger network size
(4 f +1 vs. 3 f +1) that reduces the impact of the faulty replica.
In Kauri and FTB, we force a leaf replica to fail in order to
avoid triggering a reconfiguration. As a result, the failure of a
backup does not significantly affect their performance (e.g.,
3% lower throughput with 31 replicas in Kauri). Finally, in
small networks, FLB demonstrates the best performance as it
incurs only 8% throughput reduction.

6.3 Impact of Request Batching
In the next set of experiments, we measure the impact of

request batching. We consider three scenarios with batch sizes
of 200, 400 and 800. The network includes 16 non-faulty repli-
cas (17 replicas for Themis, 14 replicas for FLB and FTB).
Figure 10 depicts the results. Increasing the batch size from
200 to 400 requests improves the performance of all protocols.
This is because, with larger batch sizes, more transactions can
be committed while the number of communication phases and
exchanged messages is the same and the bandwidth and com-
puting resources are not fully utilized yet. Different protocols
behave differently when the batch size increases from 400 to
800. First, Kauri and FTB still process a higher number of
transactions (42% and 34% higher throughput) as both proto-
cols balance the load and utilize the bandwidth of all replicas.
Second, SBFT and FaB demonstrate similar performance as
before; a trade-off between smaller consensus quorums and
a higher cost of signature verification and bandwidth utiliza-
tion. Third, the performance of Themis decreases (24% lower

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 381

throughput and 3.16x latency) compared to a batch size of
400 due to two main reasons. First, the higher cost of signa-
ture verification and bandwidth utilization, and second, the
higher complexity of generating fair order for a block of 800
transactions (CPU utilization).

6.4 Evaluation Summary
We summarize some of the evaluation results as follows.

First, optimistic protocols that require all nodes to participate,
e.g., Zyzzyva and SBFT, do not perform well in large net-
works, especially when nodes are far apart. In small networks
also, a single faulty node significantly reduces the perfor-
mance of optimistic protocols. Second, the performance of
pessimistic protocols highly depends on the communication
topology. While the performance of protocols with quadratic
communication complexity, e.g., PBFT and FaB, is signif-
icantly reduced by increasing the network size, the perfor-
mance of protocols with linear complexity, e.g., HotStuff, and
especially logarithmic complexity, e.g., Kauri and FTB, is
less affected. Interestingly in small networks, protocols that
use the leader rotation mechanism show poor performance.
This is because the chance of the faulty node becoming the
leader is relatively high. Third, the load-balancing techniques,
e.g., tree topology, enable a protocol to process larger batches.
Finally, in a wide-area network, out-of-order processing of
transactions significantly improves performance.

7 Related Work
SMR regulates the deterministic execution of requests on

multiple replicas, such that every non-faulty replica executes
every request in the same order [163,221]. Several approaches
[164,207,221] generalize SMR to support crash failures. CFT
protocols [19, 61, 79, 81, 107, 141, 141, 144, 165, 166, 168, 169,
171, 177, 181, 200, 206, 207, 210, 238] utilize the design trade-
offs between design dimensions, e.g., Fast Paxos [166] adds
f replicas to reduce a communication phase.

Byzantine fault tolerance refers to nodes that behave arbi-
trarily after the seminal work by Lamport, et al. [170]. BFT
protocols have been analyzed in several surveys and empirical
studies [7, 8, 23, 28, 44, 50, 52, 54, 72, 93, 103, 120, 133, 134,
211, 226, 244, 254]. We discuss some of the relevant studies.

Berger and Reiser [50] present a survey on BFT proto-
cols used in blockchains where the focus is on scalability
techniques. Similarly, a survey on BFT protocols consisting
of classical protocols, e.g., PBFT, blockchain protocols, e.g.,
PoW, and hybrid protocols, e.g., OmniLedger [156], and their
applications in permissionless blockchains, is conducted by
Bano et al. [44]. Platania et al. [211] classify BFT protocols
into client-side and server-side protocols depending on the
client’s role. The paper compares these two classes of proto-
cols and analyzes their performance and correctness attacks.
Three families of leader-based, leaderless, and robust BFT
protocols with a focus on message and time complexities have
been analyzed by Zhang et al. [254]. Finally, Distler [103] ana-
lyzes BFT protocols along several main dimensions: architec-

ture, clients, agreement, execution, checkpoint, and recovery.
The paper shares several dimensions with Bedrock.

A recent line of work [10–13] also study good-case latency
of BFT protocols. Bedrock, in contrast to all these survey
and analysis papers, provides a design space, systematically
discusses design choices (trade-offs), and, more importantly,
provides a tool to analyze BFT protocols experimentally.

BFTSim [226] is a simulation environment for BFT pro-
tocols that leverages a declarative networking system and
compares a set of representative protocols using the simula-
tor. Abstract [37] develops each protocol as a sequence of
BFT instances, e.g., AZyzzyva, Aliph, and R-Aliph as three
protocols where Each protocol itself is a composition of Ab-
stract instances presented to handle different situations (e.g.,
fault-free, under attack). In contrast to such studies, Bedrock
develops a design space for BFT protocols, enabling end-users
to analyze, implement, and evaluate different protocols.

In addition to CFT and BFT protocols, consensus with
multiple failure modes has also been studied for both syn-
chronous [152, 192, 227, 236], and partial synchronous [31,
85, 131, 182, 212, 222] models. Finally, leaderless protocols
[58, 98, 109, 132, 167, 193, 234] have been proposed to avoid
the implications of relying on a leader.
8 Conclusion

Bedrock is a unified platform for BFT protocols analysis,
implementation, and experimentation. Bedrock demonstrates
how different BFT protocols relate to one another within a
design space and along different design dimensions. Using a
domain-specific language, the Bedrock facilitates rapid proto-
typing of BFT protocols. Finally, different BFT protocols pro-
posed in diverse settings and contexts can be experimentally
evaluated under one unified platform fairly and efficiently.

As future work, we plan to enable users to check the cor-
rectness of their written protocols by transforming the DSL
code written in Bedrock to the specification language used by
tools such as DistAlgo [180] or TLAPS [83,96]. Moreover, to
ensure the independent failure of replicas, we plan to diversify
replica implementation using n-version programming, where
Bedrock provides different implementations of the same pro-
tocol config. We will further design a constraint checker to
automatically find all plausible points (valid combinations
of design choices) in the design space based on user queries.
Incorporating automatic selection strategies in Bedrock based
on the deployment environment and application requirements
could be the next step. Machine learning techniques may be
useful here in aiding the user in selecting the appropriate BFT
protocol, or switch one protocol to another at runtime as sys-
tem parameters are updated. Finally, we plan to extend the
supported protocols to include synchronous and fully asyn-
chronous protocols and expand the design space accordingly.
Acknowledgements

We thank the anonymous reviewers for their insightful feed-
back and suggestions. This work is funded by NSF grants
CNS-2104882, CNS-2107147, and CNS-2245373.

382 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Chain. http://chain.com.

[2] Corda. https://github.com/corda/corda.

[3] Hyperledger iroha. https://github.com/hyperledger/iroha.

[4] libhotstuff: A general-purpose bft state machine
replication library with modularity and simplicity.
https://github.com/hot-stuff/libhotstuff, 2018.

[5] Michael Abd-El-Malek, Gregory R Ganger, Garth R
Goodson, Michael K Reiter, and Jay J Wylie. Fault-
scalable byzantine fault-tolerant services. Operating
Systems Review (OSR), 39(5):59–74, 2005.

[6] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik
Nayak, and Ling Ren. Synchronous byzantine agree-
ment with expected o(1) rounds, expected o(n2) com-
munication, and optimal resilience. In Int. Conf. on
Financial Cryptography and Data Security, pages 320–
334. Springer, 2019.

[7] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo
Alvisi, Rama Kotla, and Jean-Philippe Martin. Revis-
iting fast practical byzantine fault tolerance. arXiv
preprint arXiv:1712.01367, 2017.

[8] Ittai Abraham, Dahlia Malkhi, et al. The blockchain
consensus layer and bft. Bulletin of EATCS, 3(123),
2017.

[9] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren,
and Alexander Spiegelman. Solida: A blockchain
protocol based on reconfigurable byzantine consen-
sus. In Int. Conf. on Principles of Distributed Systems
(OPODIS). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

[10] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren,
and Maofan Yin. Sync hotstuff: Simple and practical
synchronous state machine replication. In Symposium
on Security and Privacy (SP), pages 106–118. IEEE,
2020.

[11] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun
Xiang. Brief announcement: Byzantine agreement,
broadcast and state machine replication with opti-
mal good-case latency. In Int. Symposium on Dis-
tributed Computing (DISC). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2020.

[12] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun
Xiang. Good-case latency of byzantine broadcast: a
complete categorization. In Symposium on Principles
of Distributed Computing (PODC), pages 331–341.
ACM, 2021.

[13] Ittai Abraham, Ling Ren, and Zhuolun Xiang. Good-
case and bad-case latency of unauthenticated byzantine
broadcast: A complete categorization. In Int. Conf. on
Principles of Distributed Systems (OPODIS), 2022.

[14] Atul Adya, William J Bolosky, Miguel Castro, Gerald
Cermak, Ronnie Chaiken, John R Douceur, Jon Howell,
Jacob R Lorch, Marvin Theimer, and Roger P Watten-
hofer. FARSIT E: Federated, available, and reliable
storage for an incompletely trusted environment. In
Symposium on Operating Systems Design and Imple-
mentation (OSDI). USENIX Association, 2002.

[15] Marcos K Aguilera, Naama Ben-David, Irina Calciu,
Rachid Guerraoui, Erez Petrank, and Sam Toueg. Pass-
ing messages while sharing memory. In Symposium on
Principles of Distributed Computing (PODC), pages
51–60. ACM, 2018.

[16] Marcos K Aguilera, Naama Ben-David, Rachid Guer-
raoui, Virendra Marathe, and Igor Zablotchi. The im-
pact of rdma on agreement. In Symposium on Prin-
ciples of Distributed Computing (PODC), pages 409–
418, 2019.

[17] Marcos K Aguilera, Naama Ben-David, Rachid Guer-
raoui, Dalia Papuc, Athanasios Xygkis, and Igor
Zablotchi. Frugal byzantine computing. In Int. Sympo-
sium on Distributed Computing, 2021.

[18] Ailidani Ailijiang, Aleksey Charapko, and Murat
Demirbas. Dissecting the performance of strongly-
consistent replication protocols. In SIGMOD Int. Conf.
on Management of Data, pages 1696–1710. ACM,
2019.

[19] Ailidani Ailijiang, Aleksey Charapko, Murat Demir-
bas, and Tevfik Kosar. Wpaxos: Wide area network
flexible consensus. IEEE Transactions on Parallel and
Distributed Systems, 31(1):211–223, 2019.

[20] Amitanand S Aiyer, Lorenzo Alvisi, Allen Clement,
Mike Dahlin, Jean-Philippe Martin, and Carl Porth. Bar
fault tolerance for cooperative services. In Symposium
on Operating systems principles (SOSP), pages 45–58.
ACM, 2005.

[21] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren,
Mayank Varia, Zhuolun Xiang, and Haibin Zhang. Bal-
anced byzantine reliable broadcast with near-optimal
communication and improved computation. In Sympo-
sium on Principles of Distributed Computing (PODC),
pages 399–417. ACM, 2022.

[22] Salem Alqahtani and Murat Demirbas. Bigbft: A
multileader byzantine fault tolerance protocol for high
throughput. In Int. Performance Computing and Com-
munications Conf. (IPCCC), pages 1–10. IEEE, 2021.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 383

[23] Salem Alqahtani and Murat Demirbas. Bottlenecks
in blockchain consensus protocols. In Int. Conf. on
Omni-Layer Intelligent Systems (COINS), pages 1–8.
IEEE, 2021.

[24] Yair Amir, Brian Coan, Jonathan Kirsch, and John
Lane. Prime: Byzantine replication under attack.
Transactions on Dependable and Secure Computing,
8(4):564–577, 2011.

[25] Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan
Kirsch, John Lane, Cristina Nita-Rotaru, Josh Olsen,
and David Zage. Steward: Scaling byzantine fault-
tolerant replication to wide area networks. IEEE Trans-
actions on Dependable and Secure Computing, 7(1):80–
93, 2008.

[26] Mohammad Javad Amiri, Divyakant Agrawal, and
Amr El Abbadi. CAPER: a cross-application permis-
sioned blockchain. Proc. of the VLDB Endowment,
12(11):1385–1398, 2019.

[27] Mohammad Javad Amiri, Divyakant Agrawal, and Amr
El Abbadi. ParBlockchain: Leveraging transaction
parallelism in permissioned blockchain systems. In
Int. Conf. on Distributed Computing Systems (ICDCS),
pages 1337–1347. IEEE, 2019.

[28] Mohammad Javad Amiri, Divyakant Agrawal, and Amr
El Abbadi. Modern large-scale data management sys-
tems after 40 years of consensus. In Int. Conf. on Data
Engineering (ICDE), pages 1794–1797. IEEE, 2020.

[29] Mohammad Javad Amiri, Divyakant Agrawal, and
Amr El Abbadi. SharPer: Sharding permissioned
blockchains over network clusters. In SIGMOD Int.
Conf. on Management of Data, pages 76–88. ACM,
2021.

[30] Mohammad Javad Amiri, Boon Thau Loo, Divyakant
Agrawal, and Amr El Abbadi. Qanaat: A scalable
multi-enterprise permissioned blockchain system with
confidentiality guarantees. Proc. of the VLDB Endow-
ment, 15(11):2839–2852, 2022.

[31] Mohammad Javad Amiri, Sujaya Maiyya, Divyakant
Agrawal, and Amr El Abbadi. SeeMoRe: A fault-
tolerant protocol for hybrid cloud environments. In Int.
Conf. on Data Engineering (ICDE), pages 1345–1356.
IEEE, 2020.

[32] Elli Androulaki, Artem Barger, Vita Bortnikov, Chris-
tian Cachin, Konstantinos Christidis, Angelo De Caro,
David Enyeart, Christopher Ferris, Gennady Lavent-
man, and Yacov Manevich. Hyperledger fabric:
a distributed operating system for permissioned
blockchains. In European Conf. on Computer Systems
(EuroSys), pages 30:1–30:15. ACM, 2018.

[33] Balaji Arun, Sebastiano Peluso, and Binoy Ravindran.
ezbft: Decentralizing byzantine fault-tolerant state ma-
chine replication. In Int. Conf. on Distributed Comput-
ing Systems (ICDCS), pages 565–577. IEEE, 2019.

[34] Balaji Arun and Binoy Ravindran. Scalable byzantine
fault tolerance via partial decentralization. Proc. of the
VLDB Endowment, 15(9):1739–1752, 2022.

[35] Avi Asayag, Gad Cohen, Ido Grayevsky, Maya
Leshkowitz, Ori Rottenstreich, Ronen Tamari, and
David Yakira. A fair consensus protocol for trans-
action ordering. In Int. Conf. on Network Protocols
(ICNP), pages 55–65. IEEE, 2018.

[36] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry
Stockmeyer. Bounds on the time to reach agreement
in the presence of timing uncertainty. Journal of the
ACM (JACM), 41(1):122–152, 1994.

[37] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Kneže-
vić, Vivien Quéma, and Marko Vukolić. The next
700 bft protocols. Transactions on Computer Systems
(TOCS), 32(4):12, 2015.

[38] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien
Quéma. Rbft: Redundant byzantine fault tolerance. In
Int. Conf. on Distributed Computing Systems (ICDCS),
pages 297–306. IEEE, 2013.

[39] Zeta Avarikioti, Lioba Heimbach, Roland Schmid, Lau-
rent Vanbever, Roger Wattenhofer, and Patrick Win-
termeyer. Fnf-bft: A bft protocol with provable per-
formance under attack. In Int. Colloquium on Struc-
tural Information and Communication Complexity
(SIROCCO), pages 165–198. Springer, 2023.

[40] Algirdas Avizienis. The n-version approach to fault-
tolerant software. IEEE Transactions on Software En-
gineering, (12):1491–1501, 1985.

[41] Amy Babay, John Schultz, Thomas Tantillo, Samuel
Beckley, Eamon Jordan, Kevin Ruddell, Kevin Jordan,
and Yair Amir. Deploying intrusion-tolerant scada for
the power grid. In Int. Conf. on Dependable Systems
and Networks (DSN), pages 328–335. IEEE, 2019.

[42] Leemon Baird. The swirlds hashgraph consensus al-
gorithm: Fair, fast, byzantine fault tolerance. Swirlds
Tech Reports SWIRLDS-TR-2016-01, Tech. Rep, 2016.

[43] Jason Baker, Chris Bond, James C Corbett, JJ Furman,
Andrey Khorlin, James Larson, Jean-Michel Leon,
Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
Megastore: Providing scalable, highly available stor-
age for interactive services. In Conf. on Innovative
Data Systems Research (CIDR), 2011.

384 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[44] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam,
Sarah Azouvi, Patrick McCorry, Sarah Meiklejohn,
and George Danezis. Sok: Consensus in the age of
blockchains. In Conf. on Advances in Financial Tech-
nologies (AFT), pages 183–198. ACM, 2019.

[45] Mathieu Baudet, Avery Ching, Andrey Chursin,
George Danezis, François Garillot, Zekun Li, Dahlia
Malkhi, Oded Naor, Dmitri Perelman, and Alberto Son-
nino. State machine replication in the libra blockchain.
The Libra Assn., Tech. Rep, 2019.

[46] Johannes Behl, Tobias Distler, and Rüdiger Kapitza.
Consensus-oriented parallelization: How to earn your
first million. In Annual Middleware Conf. (Middle-
ware), pages 173–184, 2015.

[47] Johannes Behl, Tobias Distler, and Rüdiger Kapitza.
Hybrids on steroids: Sgx-based high performance bft.
In European Conf. on Computer Systems (EuroSys),
pages 222–237, 2017.

[48] Michael Ben-Or. Another advantage of free choice:
Completely asynchronous agreement protocols (ex-
tended abstract). In Symposium on Principles of
Distributed Computing (PODC), pages 27–30. ACM,
1983.

[49] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and
Michael Riabzev. Scalable zero knowledge with no
trusted setup. In Annual international cryptology con-
ference, pages 701–732. Springer, 2019.

[50] Christian Berger and Hans P Reiser. Scaling byzantine
consensus: A broad analysis. In Workshop on Scalable
and Resilient Infrastructures for Distributed Ledgers,
pages 13–18, 2018.

[51] Christian Berger, Hans P Reiser, João Sousa, and
Alysson Bessani. Resilient wide-area byzantine con-
sensus using adaptive weighted replication. In Sympo-
sium on Reliable Distributed Systems (SRDS), pages
183–18309. IEEE, 2019.

[52] Christian Berger, Sadok Ben Toumia, and Hans P
Reiser. Does my bft protocol implementation scale?
In Int. Workshop on Distributed Infrastructure for the
Common Good, pages 19–24, 2022.

[53] Alysson Bessani, Miguel Correia, Bruno Quaresma,
Fernando André, and Paulo Sousa. Depsky: depend-
able and secure storage in a cloud-of-clouds. Transac-
tions on Storage (TOS), 9(4):12, 2013.

[54] Alysson Bessani, Joao Sousa, and Eduardo EP Alchieri.
State machine replication for the masses with bft-smart.
In Int. Conf. on Dependable Systems and Networks
(DSN), pages 355–362. IEEE, 2014.

[55] Alysson Neves Bessani, Paulo Sousa, Miguel Correia,
Nuno Ferreira Neves, and Paulo Verissimo. The crutial
way of critical infrastructure protection. IEEE Security
& Privacy, 6(6):44–51, 2008.

[56] Martin Biely, Zarko Milosevic, Nuno Santos, and An-
dre Schiper. S-paxos: Offloading the leader for high
throughput state machine replication. In Symposium on
Reliable Distributed Systems (SRDS), pages 111–120.
IEEE, 2012.

[57] Kenneth P Birman, Thomas A Joseph, Thomas
Raeuchle, and Amr El Abbadi. Implementing fault-
tolerant distributed objects. Trans. on Software Engi-
neering, (6):502–508, 1985.

[58] Fatemeh Borran and André Schiper. A leader-free
byzantine consensus algorithm. In Int. Conf. on Dis-
tributed Computing and Networking (ICDCN), pages
67–78. Springer, 2010.

[59] Gabriel Bracha. An asynchronous [(n-1)/3]-resilient
consensus protocol. In Symposium on Principles
of Distributed Computing (PODC), pages 154–162.
ACM, 1984.

[60] Gabriel Bracha and Sam Toueg. Asynchronous con-
sensus and broadcast protocols. Journal of the ACM
(JACM), 32(4):824–840, 1985.

[61] F. Brasileiro, F. Greve, A. Mostéfaoui, and M. Raynal.
Consensus in one communication step. In Int. Conf. on
Parallel Computing Technologies (PaCT), pages 42–50.
Springer, 2001.

[62] Manuel Bravo, Gregory Chockler, and Alexey Gots-
man. Making byzantine consensus live. In Int. Sym-
posium on Distributed Computing (DISC). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[63] Nathan Bronson, Zach Amsden, George Cabrera,
Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris,
Anthony Giardullo, Sachin Kulkarni, and Harry Li.
Tao: Facebook’s distributed data store for the social
graph. In Annual Technical Conf. (ATC), pages 49–60.
USENIX Association, 2013.

[64] Richard Gendal Brown, James Carlyle, Ian Grigg, and
Mike Hearn. Corda: an introduction. R3 CEV, August,
1(15):14, 2016.

[65] Ethan Buchman. Tendermint: Byzantine fault tolerance
in the age of blockchains. PhD thesis, 2016.

[66] Ethan Buchman, Jae Kwon, and Zarko Milosevic.
The latest gossip on bft consensus. arXiv preprint
arXiv:1807.04938, 2018.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 385

[67] Yehonatan Buchnik and Roy Friedman. Fireledger: a
high throughput blockchain consensus protocol. Pro-
ceedings of the VLDB Endowment, 13(9):1525–1539,
2020.

[68] Vitalik Buterin and Virgil Griffith. Casper the friendly
finality gadget. arXiv preprint arXiv:1710.09437,
2017.

[69] Christian Cachin, Klaus Kursawe, Frank Petzold, and
Victor Shoup. Secure and efficient asynchronous broad-
cast protocols. In Annual Int. Cryptology Conf., pages
524–541. Springer, 2001.

[70] Christian Cachin, Klaus Kursawe, and Victor Shoup.
Random oracles in constantinople: Practical asyn-
chronous byzantine agreement using cryptography.
Journal of Cryptology, 18(3):219–246, 2005.

[71] Christian Cachin, Jovana Mićić, and Nathalie Stein-
hauer. Quick order fairness. In Int. Conf. on Financial
Cryptography and Data Security (FC), pages 1–18.
Springer, 2022.

[72] Christian Cachin and Marko Vukolić. Blockchain con-
sensus protocols in the wild. In Int. Symposium on
Distributed Computing (DISC), pages 1–16, 2017.

[73] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance. In Symposium on Operating Systems
Design and Implementation (OSDI), pages 173–186.
USENIX Association, 1999.

[74] Miguel Castro and Barbara Liskov. Proactive recovery
in a byzantine-fault-tolerant system. In Symposium on
Operating Systems Design and Implementation (OSDI).
USENIX Association, 2000.

[75] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance and proactive recovery. Transactions
on Computer Systems (TOCS), 20(4):398–461, 2002.

[76] Benjamin Y Chan and Elaine Shi. Streamlet: Text-
book streamlined blockchains. In Conf. on Advances
in Financial Technologies (AFT), pages 1–11. ACM,
2020.

[77] TH Hubert Chan, Rafael Pass, and Elaine Shi. Pala: A
simple partially synchronous blockchain. Cryptology
ePrint Archive, 2018.

[78] TH Hubert Chan, Rafael Pass, and Elaine Shi. Pili: An
extremely simple synchronous blockchain. Cryptology
ePrint Archive, 2018.

[79] Tushar D Chandra, Robert Griesemer, and Joshua Red-
stone. Paxos made live: an engineering perspective.
In symposium on Principles of Distributed Computing
(PODC), pages 398–407. ACM, 2007.

[80] Tushar Deepak Chandra and Sam Toueg. Unreliable
failure detectors for reliable distributed systems. Jour-
nal of the ACM (JACM), 43(2):225–267, 1996.

[81] Aleksey Charapko, Ailidani Ailijiang, and Murat
Demirbas. Pigpaxos: Devouring the communication
bottlenecks in distributed consensus. In SIGMOD Int.
Conf. on Management of Data, pages 235–247. ACM,
2021.

[82] JP Morgan Chase. Quorum white paper, 2016.

[83] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport,
and Stephan Merz. Verifying safety properties with
the tla+ proof system. In Int. Conf., on Automated
Reasoning (IJCAR), pages 142–148. Springer, 2010.

[84] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and
John Kubiatowicz. Attested append-only memory:
Making adversaries stick to their word. In Operating
Systems Review (OSR), volume 41-6, pages 189–204.
ACM SIGOPS, 2007.

[85] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang
Wang, Lorenzo Alvisi, Mike Dahlin, and Taylor Riche.
Upright cluster services. In Symposium on Operat-
ing Systems Principles (SOSP), pages 277–290. ACM,
2009.

[86] Allen Clement, Edmund L Wong, Lorenzo Alvisi,
Michael Dahlin, and Mirco Marchetti. Making byzan-
tine fault tolerant systems tolerate byzantine faults. In
Symposium on Networked Systems Design and Imple-
mentation (NSDI), volume 9, pages 153–168. USENIX
Association, 2009.

[87] James C Corbett, Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, Jeffrey John Fur-
man, Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, and Peter Hochschild. Spanner: Google’s glob-
ally distributed database. Transactions on Computer
Systems (TOCS), 31(3):8, 2013.

[88] Miguel Correia, Nuno Ferreira Neves, Lau Cheuk
Lung, and Paulo Veríssimo. Low complexity byzantine-
resilient consensus. Distributed Computing, 17(3):237–
249, 2005.

[89] Miguel Correia, Nuno Ferreira Neves, Lau Cheuk
Lung, and Paulo Veríssimo. Worm-it–a wormhole-
based intrusion-tolerant group communication system.
Journal of Systems and Software, 80(2):178–197, 2007.

[90] Miguel Correia, Nuno Ferreira Neves, and Paulo Veris-
simo. How to tolerate half less one byzantine nodes
in practical distributed systems. In Int. Symposium on
Reliable Distributed Systems (SRDS), pages 174–183.
IEEE, 2004.

386 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[91] Miguel Correia, Nuno Ferreira Neves, and Paulo Verís-
simo. From consensus to atomic broadcast: Time-free
byzantine-resistant protocols without signatures. The
Computer Journal, 49(1):82–96, 2006.

[92] Miguel Correia, Nuno Ferreira Neves, and Paulo Veris-
simo. Bft-to: Intrusion tolerance with less replicas.
The Computer Journal, 56(6):693–715, 2013.

[93] Miguel Correia, Giuliana Santos Veronese, Nuno Fer-
reira Neves, and Paulo Verissimo. Byzantine consen-
sus in asynchronous message-passing systems: a sur-
vey. Int. Journal of Critical Computer-Based Systems,
2(2):141–161, 2011.

[94] Victor Costan, Ilia Lebedev, and Srinivas Devadas.
Sanctum: Minimal hardware extensions for strong soft-
ware isolation. In Security Symposium, pages 857–874.
USENIX Association, 2016.

[95] Domenico Cotroneo, Roberto Natella, Roberto Pietran-
tuono, and Stefano Russo. A survey of software aging
and rejuvenation studies. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 10(1):1–
34, 2014.

[96] Denis Cousineau, Damien Doligez, Leslie Lamport,
Stephan Merz, Daniel Ricketts, and Hernán Vanzetto.
Tla+ proofs. In Int. Symposium on Formal Methods
(FM), pages 147–154. Springer, 2012.

[97] James Cowling, Daniel Myers, Barbara Liskov, Ro-
drigo Rodrigues, and Liuba Shrira. Hq replication:
A hybrid quorum protocol for byzantine fault toler-
ance. In Symposium on Operating Systems Design
and Implementation (OSDI), pages 177–190. USENIX
Association, 2006.

[98] Tyler Crain, Vincent Gramoli, Mikel Larrea, and
Michel Raynal. Dbft: Efficient leaderless byzantine
consensus and its application to blockchains. In Int.
Symposium on Network Computing and Applications
(NCA), pages 1–8. IEEE, 2018.

[99] Tyler Crain, Christopher Natoli, and Vincent Gramoli.
Red belly: a secure, fair and scalable open blockchain.
In Symposium on Security and Privacy (SP). IEEE,
2021.

[100] George Danezis and David Hrycyszyn. Blockma-
nia: from block dags to consensus. arXiv preprint
arXiv:1809.01620, 2018.

[101] George Danezis, Lefteris Kokoris-Kogias, Alberto Son-
nino, and Alexander Spiegelman. Narwhal and tusk: a
dag-based mempool and efficient bft consensus. In Eu-
ropean Conf. on Computer Systems (EuroSys), pages
34–50, 2022.

[102] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: amazon’s highly avail-
able key-value store. In Operating Systems Review
(OSR), volume 41, pages 205–220. ACM, 2007.

[103] Tobias Distler. Byzantine fault-tolerant state-machine
replication from a systems perspective. ACM Comput-
ing Surveys (CSUR), 54(1):1–38, 2021.

[104] Tobias Distler, Christian Cachin, and Rüdiger Kapitza.
Resource-efficient byzantine fault tolerance. Transac-
tions on Computers, 65(9):2807–2819, 2016.

[105] Tobias Distler, Ivan Popov, Wolfgang Schröder-
Preikschat, Hans P Reiser, and Rüdiger Kapitza. Spare:
Replicas on hold. In Network and Distributed System
Security Symposium (NDSS), 2011.

[106] Dan Dobre, Ghassan Karame, Wenting Li, Matthias
Majuntke, Neeraj Suri, and Marko Vukolić. Power-
store: Proofs of writing for efficient and robust storage.
In Conf. on Computer and communications security
(CCS), pages 285–298. ACM, 2013.

[107] Dan Dobre, Matthias Majuntke, Marco Serafini, and
Neeraj Suri. Hp: Hybrid paxos for wans. In European
Dependable Computing Conf. (EDCC), pages 117–126.
IEEE, 2010.

[108] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer.
On the minimal synchronism needed for distributed
consensus. Journal of the ACM (JACM), 34(1):77–97,
1987.

[109] Sisi Duan, Michael K Reiter, and Haibin Zhang. Beat:
Asynchronous bft made practical. In Conf. on Com-
puter and Communications Security (CCS), pages
2028–2041. ACM, 2018.

[110] Sisi Duan and Haibin Zhang. Practical state machine
replication with confidentiality. In Symposium on Re-
liable Distributed Systems (SRDS), pages 187–196.
IEEE, 2016.

[111] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Consensus in the presence of partial synchrony. Jour-
nal of the ACM (JACM), 35(2):288–323, 1988.

[112] Michael Eischer and Tobias Distler. Latency-aware
leader selection for geo-replicated byzantine fault-
tolerant systems. In Int. Conf. on Dependable Systems
and Networks Workshops (DSN-W), pages 140–145.
IEEE, 2018.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 387

[113] Michael Eischer and Tobias Distler. Scalable byzan-
tine fault-tolerant state-machine replication on hetero-
geneous servers. Computing, 101(2):97–118, 2019.

[114] Amr El Abbadi, Dale Skeen, and Flaviu Cristian. An
efficient, fault-tolerant protocol for replicated data man-
agement. In SIGACT-SIGMOD symposium on Princi-
ples of database systems, pages 215–229. ACM, 1985.

[115] Amr El Abbadi and Sam Toueg. Availability in par-
titioned replicated databases. In SIGACT-SIGMOD
symposium on Principles of database systems, pages
240–251. ACM, 1986.

[116] Ian Aragon Escobar, Eduardo Alchieri, Fernando Luís
Dotti, and Fernando Pedone. Boosting concurrency in
parallel state machine replication. In Int. Middleware
Conf., pages 228–240, 2019.

[117] Michael J Fischer, Nancy A Lynch, and Michael S Pa-
terson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM (JACM), 32(2):374–
382, 1985.

[118] Stephanie Forrest, Anil Somayaji, and David H Ackley.
Building diverse computer systems. In Workshop on
Hot Topics in Operating Systems, pages 67–72. IEEE,
1997.

[119] Adam Gągol, Damian Leśniak, Damian Straszak, and
Michał Świętek. Aleph: Efficient atomic broadcast
in asynchronous networks with byzantine nodes. In
Conf. on Advances in Financial Technologies, pages
214–228. ACM, 2019.

[120] Fangyu Gai, Ali Farahbakhsh, Jianyu Niu, Chen Feng,
Ivan Beschastnikh, and Hao Duan. Dissecting the per-
formance of chained-bft. In Int. Conf. on Distributed
Computing Systems (ICDCS), pages 595–606. IEEE,
2021.

[121] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing
Xu, and Zhenfeng Zhang. Efficient asynchronous
byzantine agreement without private setups. In Int.
Conf. on Distributed Computing Systems (ICDCS),
pages 246–257. IEEE, 2022.

[122] Miguel Garcia, Nuno Neves, and Alysson Bessani. An
intrusion-tolerant firewall design for protecting siem
systems. In Conf. on Dependable Systems and Net-
works Workshop (DSN-W), pages 1–7. IEEE, 2013.

[123] Miguel Garcia, Nuno Neves, and Alysson Bessani.
Sieveq: A layered bft protection system for critical
services. IEEE Transactions on Dependable and Se-
cure Computing, 15(3):511–525, 2016.

[124] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Son-
nino, Alexander Spiegelman, and Zhuolun Xiang.

Jolteon and ditto: Network-adaptive efficient consensus
with asynchronous fallback. In Int. Conf. on Finan-
cial Cryptography and Data Security, pages 296–315.
Springer, 2022.

[125] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios
Vlachos, and Nickolai Zeldovich. Algorand: Scaling
byzantine agreements for cryptocurrencies. In Sympo-
sium on Operating Systems Principles (SOSP), pages
51–68. ACM, 2017.

[126] Garth R Goodson, Jay J Wylie, Gregory R Ganger, and
Michael K Reiter. Efficient byzantine-tolerant erasure-
coded storage. In Int. Conf. on Dependable Systems
and Networks (DSN), pages 135–144. IEEE, 2004.

[127] Christian Gorenflo, Lukasz Golab, and Srinivasan Ke-
shav. Xox fabric: A hybrid approach to transaction
execution. In Int. Conf. on Blockchain and Cryptocur-
rency (ICBC), pages 1–9. IEEE, 2020.

[128] Christian Gorenflo, Stephen Lee, Lukasz Golab, and
Srinivasan Keshav. Fastfabric: Scaling hyperledger
fabric to 20,000 transactions per second. In Int. Conf.
on Blockchain and Cryptocurrency (ICBC), pages 455–
463. IEEE, 2019.

[129] Gideon Greenspan. Multichain private blockchain-
white paper. URl: http://www. multichain.
com/download/MultiChain-White-Paper. pdf, 2015.

[130] Rachid Guerraoui, Nikola Knežević, Vivien Quéma,
and Marko Vukolić. The next 700 bft protocols. In
European conf. on Computer systems (EuroSys), pages
363–376. ACM, 2010.

[131] Guy Golan Gueta, Ittai Abraham, Shelly Gross-
man, Dahlia Malkhi, Benny Pinkas, Michael K Re-
iter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin
Tomescu. Sbft: a scalable decentralized trust infras-
tructure for blockchains. In Int. Conf. on Dependable
Systems and Networks (DSN), pages 568–580. IEEE/I-
FIP, 2019.

[132] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu,
and Zhenfeng Zhang. Dumbo: Faster asynchronous bft
protocols. In Conf. on Computer and Communications
Security (CCS), pages 803–818. ACM, 2020.

[133] Divya Gupta, Lucas Perronne, and Sara Bouchenak.
Bft-bench: Towards a practical evaluation of robustness
and effectiveness of bft protocols. In Int. Conf. on
Distributed Applications and Interoperable Systems,
pages 115–128. Springer, 2016.

[134] Suyash Gupta, Mohammad Javad Amiri, and Moham-
mad Sadoghi. Chemistry behind agreement. In Conf.
on Innovative Data Systems Research (CIDR), 2023.

388 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[135] Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and Mo-
hammad Sadoghi. Proof-of-execution: Reaching con-
sensus through fault-tolerant speculation. In Int. Conf.
on Extending Database Technology (EDBT), pages
301–312, 2021.

[136] Suyash Gupta, Jelle Hellings, and Mohammad
Sadoghi. Rcc: Resilient concurrent consensus for
high-throughput secure transaction processing. In Int.
Conf. on Data Engineering (ICDE), pages 1392–1403.
IEEE, 2021.

[137] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and
Mohammad Sadoghi. Resilientdb: Global scale re-
silient blockchain fabric. Proceedings of the VLDB
Endowment, 13(6):868–883, 2020.

[138] Andreas Haeberlen, Petr Kouznetsov, and Peter Dr-
uschel. The case for byzantine fault detection. In
HotDep, 2006.

[139] Timo Hanke, Mahnush Movahedi, and Dominic
Williams. Dfinity technology overview series, consen-
sus system. arXiv preprint arXiv:1805.04548, 2018.

[140] James Hendricks, Gregory R Ganger, and Michael K
Reiter. Low-overhead byzantine fault-tolerant storage.
ACM SIGOPS Operating Systems Review, 41(6):73–86,
2007.

[141] Heidi Howard, Dahlia Malkhi, and Alexander Spiegel-
man. Flexible paxos: Quorum intersection revisited.
In Int. Conf. on Principles of Distributed Systems
(OPODIS), 2017.

[142] Yennun Huang, Chandra Kintala, Nick Kolettis, and
N Dudley Fulton. Software rejuvenation: Analysis,
module and applications. In Int. symposium on fault-
tolerant computing. Digest of papers, pages 381–390.
IEEE, 1995.

[143] Mohammad M Jalalzai, Jianyu Niu, Chen Feng, and
Fangyu Gai. Fast-hotstuff: A fast and resilient hotstuff
protocol. arXiv preprint arXiv:2010.11454, 2020.

[144] Flavio P Junqueira, Benjamin C Reed, and Marco Ser-
afini. Zab: High-performance broadcast for primary-
backup systems. In Int. Conf. on Dependable Systems
and Networks (DSN), pages 245–256. IEEE, 2011.

[145] Robert Kallman, Hideaki Kimura, Jonathan Natkins,
Andrew Pavlo, Alexander Rasin, Stanley Zdonik,
Evan PC Jones, Samuel Madden, Michael Stonebraker,
and Yang Zhang. H-store: a high-performance, dis-
tributed main memory transaction processing system.
Proc. of the VLDB Endowment, 1(2):1496–1499, 2008.

[146] Rüdiger Kapitza, Johannes Behl, Christian Cachin,
Tobias Distler, Simon Kuhnle, Seyed Vahid Moham-
madi, Wolfgang Schröder-Preikschat, and Klaus Sten-
gel. Cheapbft: resource-efficient byzantine fault toler-
ance. In European Conf. on Computer Systems (Eu-
roSys), pages 295–308. ACM, 2012.

[147] Manos Kapritsos, Yang Wang, Vivien Quema, Allen
Clement, Lorenzo Alvisi, Mike Dahlin, et al. All
about eve: Execute-verify replication for multi-core
servers. In Symposium on Operating Systems Design
and Implementation (OSDI), volume 12, pages 237–
250. USENIX Association, 2012.

[148] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor,
and Alexander Spiegelman. All you need is dag. In
Symposium on Principles of Distributed Computing
(PODC), pages 165–175. ACM, 2021.

[149] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels,
and Sreeram Kannan. Themis: Fast, strong order-
fairness in byzantine consensus. The Science of
Blockchain Conf. (SBC), 2022.

[150] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and
Ari Juels. Order-fairness for byzantine consensus. In
Annual Int. Cryptology Conf., pages 451–480. Springer,
2020.

[151] Aggelos Kiayias, Alexander Russell, Bernardo David,
and Roman Oliynykov. Ouroboros: A provably se-
cure proof-of-stake blockchain protocol. In Annual Int.
Cryptology Conf., pages 357–388. Springer, 2017.

[152] Roger M. Kieckhafer and Mohammad H. Azadmanesh.
Reaching approximate agreement with mixed-mode
faults. Transactions on Parallel and Distributed Sys-
tems, 5(1):53–63, 1994.

[153] Jonathan Kirsch, Stuart Goose, Yair Amir, Dong Wei,
and Paul Skare. Survivable scada via intrusion-tolerant
replication. IEEE Transactions on Smart Grid, 5(1):60–
70, 2013.

[154] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nico-
las Gailly, Ismail Khoffi, Linus Gasser, and Bryan
Ford. Enhancing bitcoin security and performance
with strong consistency via collective signing. In Secu-
rity Symposium, pages 279–296. USENIX Association,
2016.

[155] Eleftherios Kokoris-Kogias. Robust and scalable con-
sensus for sharded distributed ledgers.

[156] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. Om-
niledger: A secure, scale-out, decentralized ledger via
sharding. In Symposium on Security and Privacy (SP),
pages 583–598. IEEE, 2018.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 389

[157] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin,
Allen Clement, and Edmund Wong. Zyzzyva: spec-
ulative byzantine fault tolerance. Operating Systems
Review (OSR), 41(6):45–58, 2007.

[158] Ramakrishna Kotla and Michael Dahlin. High through-
put byzantine fault tolerance. In Int. Conf. on Depend-
able Systems and Networks (DSN), pages 575–584.
IEEE, 2004.

[159] Klaus Kursawe. Wendy, the good little fairness widget:
Achieving order fairness for blockchains. In Conf. on
Advances in Financial Technologies (AFT), pages 25–
36. ACM, 2020.

[160] Klaus Kursawe. Wendy grows up: More order fairness.
In Int. Conf. on Financial Cryptography and Data
Security (FC), pages 191–196. Springer, 2021.

[161] Petr Kuznetsov, Andrei Tonkikh, and Yan X Zhang. Re-
visiting optimal resilience of fast byzantine consensus.
In Symposium on Principles of Distributed Computing
(PODC), pages 343–353. ACM, 2021.

[162] Jae Kwon. Tendermint: Consensus without mining.
2014.

[163] Leslie Lamport. Time, clocks, and the ordering of
events in a distributed system. Communications of the
ACM, 21(7):558–565, 1978.

[164] Leslie Lamport. Paxos made simple. ACM Sigact
News, 32(4):18–25, 2001.

[165] Leslie Lamport. Generalized consensus and paxos.
2005.

[166] Leslie Lamport. Fast paxos. Distributed Computing,
19(2):79–103, 2006.

[167] Leslie Lamport. Brief announcement: Leaderless
byzantine paxos. In Int. Symposium on Distributed
Computing (DISC), pages 141–142, 2011.

[168] Leslie Lamport. The part-time parliament. In Concur-
rency: the Works of Leslie Lamport, pages 277–317.
2019.

[169] Leslie Lamport and Mike Massa. Cheap paxos. In Int.
Conf. on Dependable Systems and Networks (DSN),
pages 307–314. IEEE, 2004.

[170] Leslie Lamport, Robert Shostak, and Marshall Pease.
The byzantine generals problem. Transactions on
Programming Languages and Systems (TOPLAS),
4(3):382–401, 1982.

[171] Butler Lampson. The abcd’s of paxos. In Sympo-
sium on Principles of Distributed Computing (PODC),
volume 1, page 13, 2001.

[172] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanović, and Dawn Song. Keystone: An open frame-
work for architecting trusted execution environments.
In European Conf. on Computer Systems (EuroSys),
pages 1–16, 2020.

[173] Kfir Lev-Ari, Alexander Spiegelman, Idit Keidar, and
Dahlia Malkhi. Fairledger: A fair blockchain protocol
for financial institutions. In Int. Conf. on Principles
of Distributed Systems (OPODIS). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2019.

[174] Dave Levin, John R Douceur, Jacob R Lorch, and
Thomas Moscibroda. Trinc: Small trusted hardware for
large distributed systems. In Symposium on Networked
Systems Design and Implementation (NSDI), volume 9,
pages 1–14. USENIX Association, 2009.

[175] Bijun Li, Nico Weichbrodt, Johannes Behl, Pierre-
Louis Aublin, Tobias Distler, and Rüdiger Kapitza.
Troxy: Transparent access to byzantine fault-tolerant
systems. In Int. Conf. on Dependable Systems and
Networks (DSN), pages 59–70. IEEE, 2018.

[176] Bijun Li, Wenbo Xu, Muhammad Zeeshan Abid, To-
bias Distler, and Rüdiger Kapitza. Sarek: Optimistic
parallel ordering in byzantine fault tolerance. In Eu-
ropean Dependable Computing Conf. (EDCC), pages
77–88. IEEE, 2016.

[177] Harry C Li, Allen Clement, Amitanand S Aiyer, and
Lorenzo Alvisi. The paxos register. In IEEE Int. Sym-
posium on Reliable Distributed Systems (SRDS), pages
114–126. IEEE, 2007.

[178] Jinyuan Li and David Maziéres. Beyond one-third
faulty replicas in byzantine fault tolerant systems. In
Symposium on Networked Systems Design and Imple-
mentation (NSDI). USENIX Association, 2007.

[179] Wenyu Li, Chenglin Feng, Lei Zhang, Hao Xu, Bin
Cao, and Muhammad Ali Imran. A scalable multi-
layer pbft consensus for blockchain. Transactions on
Parallel and Distributed Systems, 32(5):1146–1160,
2020.

[180] Bo Lin and Yanhong A Liu. Distalgo: A language for
distributed algorithms, 2017.

[181] Barbara Liskov and James Cowling. Viewstamped
replication revisited. 2012.

[182] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien
Quéma, and Marko Vukolic. Xft: Practical fault tol-
erance beyond crashes. In Symposium on Operating
Systems Design and Implementation (OSDI), pages
485–500. USENIX Association, 2016.

390 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[183] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Ku-
nal Baweja, Seth Gilbert, and Prateek Saxena. A
secure sharding protocol for open blockchains. In
SIGSAC Conf. on Computer and Communications Se-
curity (CCS), pages 17–30. ACM, 2016.

[184] Dahlia Malkhi and Kartik Nayak. Hotstuff-2: Optimal
two-phase responsive bft. Cryptology ePrint Archive,
2023.

[185] Dahlia Malkhi and Michael Reiter. Unreliable intru-
sion detection in distributed computations. In Com-
puter Security Foundations Workshop, pages 116–124.
IEEE, 1997.

[186] Dahlia Malkhi and Michael Reiter. Byzantine quorum
systems. Distributed computing, 11(4):203–213, 1998.

[187] Dahlia Malkhi and Michael K Reiter. Secure and scal-
able replication in phalanx. In Symposium on Reliable
Distributed Systems (SRDS), pages 51–58. IEEE, 1998.

[188] Dahlia Malkhi and Michael K Reiter. Survivable con-
sensus objects. In IEEE Symposium on Reliable Dis-
tributed Systems (SRDS), pages 271–279. IEEE, 1998.

[189] Yanhua Mao, Flavio P Junqueira, and Keith Marzullo.
Towards low latency state machine replication for un-
civil wide-area networks. In Workshop on Hot Topics
in System Dependability. Citeseer, 2009.

[190] J-P Martin and Lorenzo Alvisi. Fast byzantine consen-
sus. Transactions on Dependable and Secure Comput-
ing, 3(3):202–215, 2006.

[191] Frank McKeen, Ilya Alexandrovich, Alex Berenzon,
Carlos V Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday R Savagaonkar. Innovative instructions and
software model for isolated execution. Hasp@ isca,
10(1), 2013.

[192] Fred J. Meyer and Dhiraj K. Pradhan. Consensus
with dual failure modes. Transactions on Parallel and
Distributed Systems, (2):214–222, 1991.

[193] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi,
and Dawn Song. The honey badger of bft protocols.
In Conf. on Computer and Communications Security
(CCS), pages 31–42. ACM, 2016.

[194] Zarko Milosevic, Martin Biely, and André Schiper.
Bounded delay in byzantine-tolerant state machine
replication. In Int. Symposium on Reliable Distributed
Systems (SRDS), pages 61–70. IEEE, 2013.

[195] Iulian Moraru, David G Andersen, and Michael Kamin-
sky. Egalitarian paxos. In Symposium on Operating
Systems Principles (SOSP). ACM, 2012.

[196] Iulian Moraru, David G Andersen, and Michael Kamin-
sky. There is more consensus in egalitarian parlia-
ments. In Symposium on Operating Systems Principles
(SOSP), pages 358–372. ACM, 2013.

[197] Louise E Moser, Peter M Melliar-Smith, Priya
Narasimhan, Lauren A Tewksbury, and Vana Kaloger-
aki. The eternal system: An architecture for enter-
prise applications. In Int. Enterprise Distributed Ob-
ject Computing Conf. (EDOC), pages 214–222. IEEE,
1999.

[198] Oded Naor, Mathieu Baudet, Dahlia Malkhi, and
Alexander Spiegelman. Cogsworth: Byzantine view
synchronization. arXiv preprint arXiv:1909.05204,
2019.

[199] Oded Naor and Idit Keidar. Expected linear round
synchronization: The missing link for linear byzantine
smr. In Int. Symposium on Distributed Computing
(DISC). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2020.

[200] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi.
Dpaxos: Managing data closer to users for low-latency
and mobile applications. In SIGMOD Int. Conf. on
Management of Data, pages 1221–1236. ACM, 2018.

[201] Faisal Nawab and Mohammad Sadoghi. Blockplane:
A global-scale byzantizing middleware. In Int. Conf.
on Data Engineering (ICDE), pages 124–135. IEEE,
2019.

[202] Ray Neiheiser, Miguel Matos, and Luís Rodrigues.
Kauri: Scalable bft consensus with pipelined tree-based
dissemination and aggregation. In Symposium on Oper-
ating Systems Principles (SOSP), pages 35–48. ACM,
2021.

[203] Ray Neiheiser, Daniel Presser, Luciana Rech, Manuel
Bravo, Luís Rodrigues, and Miguel Correia. Fireplug:
Flexible and robust n-version geo-replication of graph
databases. In Int. Conf. on Information Networking
(ICOIN), pages 110–115. IEEE, 2018.

[204] Nuno Ferreira Neves, Miguel Correia, and Paulo Veris-
simo. Solving vector consensus with a wormhole.
IEEE Transactions on Parallel and Distributed Sys-
tems, 16(12):1120–1131, 2005.

[205] André Nogueira, Miguel Garcia, Alysson Bessani, and
Nuno Neves. On the challenges of building a bft scada.
In Int. Conf. on Dependable Systems and Networks
(DSN), pages 163–170. IEEE, 2018.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 391

[206] Brian M Oki and Barbara H Liskov. Viewstamped
replication: A new primary copy method to support
highly-available distributed systems. In Symposium on
Principles of Distributed Computing (PODC), pages
8–17. ACM, 1988.

[207] Diego Ongaro and John K Ousterhout. In search of an
understandable consensus algorithm. In Annual Techni-
cal Conf. (ATC), pages 305–319. USENIX Association,
2014.

[208] Rafael Pass and Elaine Shi. Hybrid consensus: Ef-
ficient consensus in the permissionless model. In
Int.Symposium on Distributed Computing (DISC),
page 6, 2017.

[209] Rafael Pass and Elaine Shi. Thunderella: Blockchains
with optimistic instant confirmation. In Annual Int.
Conf. on the Theory and Applications of Cryptographic
Techniques, pages 3–33. Springer, 2018.

[210] Fernando Pedone. Boosting system performance with
optimistic distributed protocols. Computer, 34(12):80–
86, 2001.

[211] Marco Platania, Daniel Obenshain, Thomas Tantillo,
Yair Amir, and Neeraj Suri. On choosing server-or
client-side solutions for bft. ACM Computing Surveys
(CSUR), 48(4):1–30, 2016.

[212] Daniel Porto, João Leitão, Cheng Li, Allen Clement,
Aniket Kate, Flavio Junqueira, and Rodrigo Rodrigues.
Visigoth fault tolerance. In European Conf. on Com-
puter Systems (EuroSys), page 8. ACM, 2015.

[213] Ji Qi, Xusheng Chen, Yunpeng Jiang, Jianyu Jiang,
Tianxiang Shen, Shixiong Zhao, Sen Wang, Gong
Zhang, Li Chen, Man Ho Au, et al. Bidl: A
high-throughput, low-latency permissioned blockchain
framework for datacenter networks. In Symposium on
Operating Systems Principles (SOSP), pages 18–34.
ACM, 2021.

[214] Michael O Rabin. Randomized byzantine generals.
In Symposium on Foundations of Computer Science
(SFCS), pages 403–409. IEEE, 1983.

[215] HariGovind V Ramasamy and Christian Cachin. Parsi-
monious asynchronous byzantine-fault-tolerant atomic
broadcast. In Int. Conf. On Principles Of Distributed
Systems (OPODIS), pages 88–102. Springer, 2005.

[216] Hans P Reiser and Rudiger Kapitza. Hypervisor-based
efficient proactive recovery. In Int. Symposium on Reli-
able Distributed Systems (SRDS), pages 83–92. IEEE,
2007.

[217] Robbert van Renesse, Chi Ho, and Nicolas Schiper.
Byzantine chain replication. In Int. Conf. On Princi-
ples Of Distributed Systems (OPODIS), pages 345–359.
Springer, 2012.

[218] Ronald L Rivest, Adi Shamir, and Leonard M Adleman.
A method for obtaining digital signatures and public
key cryptosystems. Routledge, 2019.

[219] Tom Roeder and Fred B Schneider. Proactive obfusca-
tion. ACM Transactions on Computer Systems (TOCS),
28(2):1–54, 2010.

[220] Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta,
Meihui Zhang, Gang Chen, and Beng Chin Ooi. A
transactional perspective on execute-order-validate
blockchains. In SIGMOD Int. Conf. on Management
of Data, pages 543–557. ACM, 2020.

[221] Fred B Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. Comput-
ing Surveys (CSUR), 22(4):299–319, 1990.

[222] Marco Serafini, Péter Bokor, Dan Dobre, Matthias Ma-
juntke, and Neeraj Suri. Scrooge: Reducing the costs
of fast byzantine replication in presence of unrespon-
sive replicas. In Int. Conf. on Dependable Systems and
Networks (DSN), pages 353–362. IEEE, 2010.

[223] Ankur Sharma, Felix Martin Schuhknecht, Divya
Agrawal, and Jens Dittrich. Blurring the lines between
blockchains and database systems: the case of hyper-
ledger fabric. In SIGMOD Int. Conf. on Management
of Data, pages 105–122. ACM, 2019.

[224] Victor Shoup. Practical threshold signatures. In Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques, pages 207–220. Springer,
2000.

[225] Nibesh Shrestha, Ittai Abraham, Ling Ren, and Kartik
Nayak. On the optimality of optimistic responsiveness.
In Conf. on Computer and Communications Security
(CCS), pages 839–857. ACM, 2020.

[226] Atul Singh, Tathagata Das, Petros Maniatis, Peter Dr-
uschel, and Timothy Roscoe. Bft protocols under
fire. In Symposium on Networked Systems Design
and Implementation (NSDI), volume 8, pages 189–204.
USENIX Association, 2008.

[227] Hin-Sing Siu, Yeh-Hao Chin, and Wei-Pang Yang. A
note on consensus on dual failure modes. Transac-
tions on Parallel and Distributed Systems, 7(3):225–
230, 1996.

[228] Yee Jiun Song and Robbert van Renesse. Bosco: One-
step byzantine asynchronous consensus. In Int. Sym-
posium on Distributed Computing (DISC), pages 438–
450. Springer, 2008.

392 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[229] João Sousa and Alysson Bessani. Separating the wheat
from the chaff: An empirical design for geo-replicated
state machines. In Symposium on Reliable Distributed
Systems (SRDS), pages 146–155. IEEE, 2015.

[230] Paulo Sousa, Alysson Neves Bessani, Miguel Correia,
Nuno Ferreira Neves, and Paulo Verissimo. Highly
available intrusion-tolerant services with proactive-
reactive recovery. IEEE Transactions on Parallel and
Distributed Systems, 21(4):452–465, 2009.

[231] Alexander Spiegelman, Neil Giridharan, Alberto Son-
nino, and Lefteris Kokoris-Kogias. Bullshark: Dag bft
protocols made practical. In ACM SIGSAC Conf. on
Computer and Communications Security (CCS), pages
2705–2718, 2022.

[232] Chrysoula Stathakopoulou, Signe Rüsch, Marcus Bran-
denburger, and Marko Vukolić. Adding fairness to
order: Preventing front-running attacks in bft proto-
cols using tees. In Int. Symp on Reliable Distributed
Systems (SRDS), pages 34–45. IEEE, 2021.

[233] Chrysoula Stathakopoulou, David Tudor, Matej
Pavlovic, and Marko Vukolić. [solution] mir-bft:
Scalable and robust bft for decentralized networks.
Journal of Systems Research, 2(1), 2022.

[234] Florian Suri-Payer, Matthew Burke, Zheng Wang, Yun-
hao Zhang, Lorenzo Alvisi, and Natacha Crooks. Basil:
Breaking up bft with acid (transactions). In ACM
SIGOPS Symposium on Operating Systems Principles
(SOSP), pages 1–17. ACM, 2021.

[235] Diem Team. Diembft v4: State machine replication in
the diem blockchain. Technical report, Technical Re-
port. Diem. https://developers. diem. com/papers/diem-
consensus . . . , 2021.

[236] Philip Thambidurai, You-Keun Park, et al. Interactive
consistency with multiple failure modes. In Symposium
on Reliable Distributed Systems (SRDS), pages 93–100.
IEEE, 1988.

[237] Gene Tsudik. Message authentication with one-way
hash functions. ACM SIGCOMM Computer Communi-
cation Review, 22(5):29–38, 1992.

[238] Robbert Van Renesse, Nicolas Schiper, and Fred B
Schneider. Vive la différence: Paxos vs. viewstamped
replication vs. zab. IEEE Transactions on Dependable
and Secure Computing, 12(4):472–484, 2014.

[239] Paulo E Veríssimo. Travelling through wormholes: a
new look at distributed systems models. ACM SIGACT
News, 37(1):66–81, 2006.

[240] Giuliana Santos Veronese, Miguel Correia,
Alysson Neves Bessani, and Lau Cheuk Lung.
Spin one’s wheels? byzantine fault tolerance with
a spinning primary. In Int. Symposium on Reliable
Distributed Systems (SRDS), pages 135–144. IEEE,
2009.

[241] Giuliana Santos Veronese, Miguel Correia,
Alysson Neves Bessani, and Lau Cheuk Lung.
Ebawa: Efficient byzantine agreement for wide-area
networks. In Int. Symposium on High Assurance
Systems Engineering (HASE), pages 10–19. IEEE,
2010.

[242] Giuliana Santos Veronese, Miguel Correia,
Alysson Neves Bessani, Lau Cheuk Lung, and
Paulo Verissimo. Efficient byzantine fault-tolerance.
Transactions on Computers, 62(1):16–30, 2013.

[243] Gauthier Voron and Vincent Gramoli. Dispel: Byzan-
tine smr with distributed pipelining. arXiv preprint
arXiv:1912.10367, 2019.

[244] Xin Wang, Sisi Duan, James Clavin, and Haibin Zhang.
Bft in blockchains: From protocols to use cases. ACM
Computing Surveys (CSUR), 54(10s):1–37, 2022.

[245] Michael Whittaker, Ailidani Ailijiang, Aleksey Chara-
pko, Murat Demirbas, Neil Giridharan, Joseph M
Hellerstein, Heidi Howard, Ion Stoica, and Adriana
Szekeres. Scaling replicated state machines with com-
partmentalization. Proceedings of the VLDB Endow-
ment, 14(11):2203–2215, 2021.

[246] Timothy Wood, Rahul Singh, Arun Venkataramani,
Prashant Shenoy, and Emmanuel Cecchet. Zz and the
art of practical bft execution. In European Conf. on
Computer Systems (EuroSys), pages 123–138. ACM,
2011.

[247] Jiang Xiao, Shijie Zhang, Zhiwei Zhang, Bo Li, Xiao-
hai Dai, and Hai Jin. Nezha: Exploiting concurrency
for transaction processing in dag-based blockchains. In
Int.Conf. on Distributed Computing Systems (ICDCS),
pages 269–279. IEEE, 2022.

[248] David Yakira, Avi Asayag, Gad Cohen, Ido Grayevsky,
Maya Leshkowitz, Ori Rottenstreich, and Ronen
Tamari. Helix: A fair blockchain consensus protocol re-
sistant to ordering manipulation. IEEE Transactions on
Network and Service Management, 18(2):1584–1597,
2021.

[249] Sravya Yandamuri, Ittai Abraham, Kartik Nayak, and
Michael K Reiter. Communication-efficient bft us-
ing small trusted hardware to tolerate minority corrup-
tion. In Int. Conf. on Principles of Distributed Systems
(OPODIS), 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 393

[250] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram
Kannan, and David Tse. DispersedLedger:high-
throughput byzantine consensus on variable bandwidth
networks. In Symposium on Networked Systems Design
and Implementation (NSDI), pages 493–512. USENIX
Association, 2022.

[251] Jian Yin, Jean-Philippe Martin, Arun Venkataramani,
Lorenzo Alvisi, and Mike Dahlin. Separating agree-
ment from execution for byzantine fault tolerant ser-
vices. Operating Systems Review (OSR), 37(5):253–
267, 2003.

[252] Maofan Yin, Dahlia Malkhi, Michael K Reiter,
Guy Golan Gueta, and Ittai Abraham. Hotstuff: Bft
consensus with linearity and responsiveness. In Sympo-
sium on Principles of Distributed Computing (PODC),
pages 347–356. ACM, 2019.

[253] Mahdi Zamani, Mahnush Movahedi, and Mariana
Raykova. Rapidchain: Scaling blockchain via full
sharding. In SIGSAC Conf. on Computer and Commu-
nications Security, pages 931–948. ACM, 2018.

[254] Gengrui Zhang, Fei Pan, Michael Dang’ana, Yunhao
Mao, Shashank Motepalli, Shiquan Zhang, and Hans-
Arno Jacobsen. Reaching consensus in the byzantine
empire: A comprehensive review of bft consensus al-
gorithms. arXiv preprint arXiv:2204.03181, 2022.

[255] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou,
and Lorenzo Alvisi. Byzantine ordered consensus with-
out byzantine oligarchy. In Symposium on Operating
Systems Design and Implementation (OSDI), pages
633–649. USENIX Association, 2020.

[256] Lidong Zhou, Fred Schneider, Robbert VanRenesse,
and Zygmunt Haas. Secure distributed on-line certi-
fication authority, August 22 2002. US Patent App.
10/001,588.

[257] Lidong Zhou, Fred B Schneider, and Robbert Van Re-
nesse. Coca: A secure distributed online certification
authority. ACM Transactions on Computer Systems
(TOCS), 20(4):329–368, 2002.

394 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Performance Optimization Dimensions
We present a set of optimization dimensions that target the

performance of a BFT protocol.
O 1. Out-of-order processing. The out-of-order processing
mechanism enables the leader to continuously propose new
requests even when previous requests are still being processed
by the backups [135]. Out-of-order processing of requests is
possible if the leader does not need to include any certificate
or hash of the previous request (block) in its next request.
O 2. Request pipelining. Using request pipelining, the mes-
sages of a new consensus instance are piggybacked on the
second round messages of the previous instance [202, 252].
This technique is especially efficient when a protocol rotates
the leader after every consensus instance.
O 3. Parallel ordering. Client requests can be ordered in
parallel by relying on a set of independent ordering groups [46,
47, 176] where each group orders a subset of client requests
and then all results are deterministically merged into the final
order. Similarly, in multi-leader protocols [22, 33, 34, 39, 113,
136, 176, 194, 233, 243], different replicas are designated as
the leader for different consensus instances in parallel and
then a global order is determined.
O 4. Parallel execution. Transactions can be executed in
parallel to improve the system’s overall performance. One
approach is to detect non-conflicting transactions and exe-
cute them in parallel [27, 116, 158]. This approach requires
a priori knowledge of a transaction’s read-set and write-set.
Switching the order of agreement and execution stages and
optimistically executing transactions in parallel is another ap-
proach [32,147]. If the execution results are inconsistent (due
to faulty replicas, conflicting transactions, or nondeterministic
execution), replicas need to rollback their states and sequen-
tially and deterministically re-execute the requests. switching
the order of agreement and execution stages also enables
replicas to detect any nondeterministic execution [32, 147].
O 5. Read-only requests processing. In pessimistic proto-
cols, replicas can directly execute read-only requests without
establishing consensus. However, since replicas may execute
the read requests on different states, even non-faulty repli-
cas might not return identical results. To resolve this, the
number of required matching replies for both normal and
read-only requests needs to be increased from f +1 to 2 f +1
in order to ensure consistency (i.e., quorum intersection re-
quirement) [75]. This, however, results in a liveness challenge
because f non-faulty replicas might be slow (or in-dark) and
not receive the request. As a result, the client might not be
able to collect 2 f +1 matching responses (since Byzantine
replicas may not send a correct reply to the client).
O 6. Separating ordering and execution. The ordering
and execution stages can be separated and implemented in
different processes. This separation leads to several advan-
tages [103] such as preventing malicious execution repli-

cas from leaking confidential application state to clients
[110, 251], enabling large requests to bypass the ordering
stage [85], moving application logic to execution virtual ma-
chine [105, 216, 246] or simplifying the parallel ordering of
requests [46, 49]. Moreover, while 3 f+1 replicas are needed
for ordering, 2 f +1 replicas are sufficient to execute transac-
tions [251].

O 7. Trusted hardware. Using trusted execution environ-
ments (TEEs) that prevent equivocation, e.g., Intel’s SGX
[191], Sanctum [94], and Keystone [172], the number of re-
quired replicas can be lowered to 2 f +1 because the trusted
component prevents a faulty replica from sending conflict-
ing messages to different replicas without being detected.
A trusted component may include an entire virtualization
layer [105,216,241], a multicast ordering service executed on
a hardened Linux kernel [89, 90], a centralized configuration
service [217], a trusted log [84], an append-only log [249],
a trusted platform module, e.g., counter [241, 242], a smart
card TrInc [174], or an FPGA [104, 146]. The current version
of Bedrock does not support trusted hardware.

O 8. Request/reply dissemination. A client can either mul-
ticast its request to all replicas [54,97,240] where each replica
relays the request to the leader or optimistically send its re-
quest to a contact replica, typically the leader. The contact
replica is known to the client through a reply to an earlier re-
quest [73, 157]. If the client timer for the request (τ1) expires,
the client multicasts its request to all replicas. This optimistic
mechanism requires fewer messages to be sent from clients
to the replicas. However, this comes at the cost of increased
network traffic between replicas, because the leader needs to
disseminate the full request to other replicas to enable them
to eventually execute it.

On the other hand, all replicas can send the results to clients
in their reply messages. This, however, leads to significant net-
work overhead for large results. A protocol can optimistically
rely on a designated responder replica (chosen by the client or
servers) to send the full results. Other replicas then either send
the hash of the results to the client or send a signed message
to the responder enabling the responder to generate a proof
for the results, e.g., SBFT [131]. While this technique reduces
network overhead, the client might not receive the results if
the responder replica is faulty, the network is unreliable, or
the responder replica was in-dark and skipped the execution
and applied a checkpoint to catch up [103].

B Case Studies on Protocol Evolution
In this section, we provide insights into how each BFT

protocol, mentioned in Figure 4 and Figure 5, maps into the
Bedrock design space and relates to one another through using
design choices. For illustrative purposes, we describe each
protocol relative to PBFT, along with one or more design
choices.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 395

Figure 11: Zyzzyva Figure 12: Zyzzyva (slow) Figure 13: Zyzzyva5 Figure 14: Zyzzyva5 (slow)

Figure 15: HotStuff Figure 16: Kauri

Zyzzyva [157]. Zyzzyva3 (Figure 11) can be derived from
PBFT using the speculative execution function (design choice
8) of Bedrock where assuming the leader and all backups
are non-faulty, replicas speculatively execute requests with-
out running any agreement and send reply messages to the
client. The client waits for 3 f +1 matching replies to accept
the results. If the timer τ1 is expired and the client received
matching replies from between 2 f + 1 and 3 f replicas, as
presented in Figure 12, two more linear rounds of communi-
cation are needed to ensure that at least 2 f +1 replicas have
committed the request. Finally, Zyzzyva5 is derived from
Zyzzyva by using the resilience function (design choice 10)
where the number of replicas is increased to 5 f +1 and the
protocol is able to tolerate f and 2 f failures during its fast
and slow path respectively (presented in (Figures 13 and 14)
AZyzzyva [37, 130] also uses the fast path of Zyzzyva (called
ZLight) in its fault-free situations.
PoE [135]. PoE Figure 17 uses the linearization and specula-
tive phase reduction functions (design choices 1 and 7). PoE
does not assume that all replicas are non-faulty and constructs
a quorum of 2 f + 1 replicas possibly including Byzantine
replicas. However, since a client waits for 2 f +1 matching
reply messages, all 2 f +1 replicas constructing the quorum
need to be well-behaving to guarantee client liveness in the
fast path.
SBFT [131]. Bedrock derives SBFT4 from PBFT using the

3The view-change stage of the Zyzzyva protocol has a safety violation as
described in [7]

4SBFT tolerates both crash and Byzantine failure (n = 3 f +2c+1 where
c is the number of crashed replicas). Since the focus of this paper is on
linearization and optimistic phase reduction functions (de-

sign choices 1 and 6). SBFT presents an optimistic fast path
(Figure 18), assuming all replicas are non-faulty. If the leader
does not receive messages from all backups (in the prepare
phase) and its timer is expired (i.e., non-responsiveness timer
τ3), SBFT switches to its slow path (Figure 19) and requires
two more linear rounds of communication (commit phase).
The Twin-path nature of SBFT requires replicas to sign each
message with two schemes (i.e., 2 f +1 and 3 f +1). To send
replies to the client, a single (collector) replica receives replies
from all replicas and sends a single (threshold) signed reply
message.
HotStuff [252]. HotStuff (Figure 15) can be derived from
PBFT using the linearization and leader rotation functions
(design choices 1 and 3) of Bedrock. Chained-HotStuff (per-
formance optimization 2) benefits from pipelining to reduce
the latency of request processing.
Tendermint [65, 66, 162]. Tendermint5 leverages the non-
responsive leader rotation function (design choice 4) to ro-
tate leaders without adding any new phases. The new leader,
however, needs to wait for a predefined time (timer τ4), i.e.,
the worst-case time it takes to propagate messages over a
wide-area peer-to-peer gossip network, before proposing a
new block. Tendermint also uses timers in all phases where
a replica discards the request if it does not receive 2 f + 1
messages before the timeout (timer τ6). Note that the origi-
nal Tendermint uses a gossip all-to-all mechanism and has
O(n logn) message complexity.

Byzantine failures, we consider a variation of SBFT where c = 0.
5Tendermint uses a Proof-of-Stake variation of PBFT where each replica

has a voting power equal to its stake (i.e., locked coins).

396 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 17: PoE Figure 18: SBFT Figure 19: SBFT slow path (Linear PBFT)

Figure 20: CheapBFT Figure 21: FaB Figure 22: Q/U Figure 23: Q/U slow path

Themis [149]. Themis is derived from HotStuff using the
fair function (design choice 13). Themis add a new all-to-all
preordering phase where replicas send a batch of requests in
the order they received to the leader replica and the leader
proposes requests in the order received (depending on the
order-fairness parameter γ) [150]. Themis requires at least
4 f +1 replicas (if γ = 1) to provide order fairness.
Kauri [202]. Kauri (Figure 16) can be derived from HotStuff
using the loadbalancer function (design choice 14) that maps
the star topology to the tree topology. The height of the tree
is h = logd n where d is the fanout of each replica.
CheapBFT [146]. CheapBFT (Figure 20) and its revised
version, REBFT [104] is derived from PBFT using the op-
timistic replica reduction function (design choice 5). Using
trusted hardware (performance optimization O7), a variation
of REBFT, called RWMINBFT, processes requests with f +1
active and f passive replicas in its normal case (optimistic)
execution.
FaB [190]. FaB6 (Figure 21) uses the phase reduction func-
tion (design choice 2) to reduce one phase of communication
while requiring 5 f +1 replicas. Fab does not use authentica-
tion in its ordering stage, however, requires signatures for the
view-change stage (design choice 11). Note that using authen-
tication, 5 f −1 replicas is sufficient to reduce one phase of
communication [12, 161].
Prime [24]. Prime is derived from PBFT using the robust
functions (design choice 12). In prime, a preordering stage is
added where replicas exchange the requests they receive from
clients and periodically share a vector of all received requests,

6FaB, similar to the family of Paxos-like protocols, separates proposers
from acceptors. In our implementation of FaB, however, replicas act as both
proposers and acceptors.

which they expect the leader to order requests following those
vectors. In this way, replicas can also monitor the leader to
order requests in a fair manner.
Q/U [5]. Q/U (Figure 22) utilizes optimistic conflict-free and
resilience functions (design choices 9 and 10). Clients play
the proposer role and replicas immediately execute an update
request if the object has not been modified since the client’s
last query. Since Q/U is able to tolerate f faulty replicas, a
client can optionally communicate with a subset (4 f +1) of
replicas (preferred quorum). The client communicates with
additional replicas only if it does not receive reply from all
replicas of the preferred quorum (Figure 23). Both signatures
(for large n) and MACs (for small n) can be used for authen-
tication in Q/U. Quorum [37] uses a similar technique with
3 f + 1 replicas, i.e., only the conflict-free function (design
choices 9) has been used.

C Discovering New Protocol Using Bedrock
Bedrock provides a systematic way to explore new valid

points in the design space and help BFT researchers uncover
novel BFT protocols. We uncover several such new protocols,
although not all are necessarily practical or interesting. For
example, simply making a protocol fair by adding the pre-
ordering phase of fairness results in a new protocol. While this
is an interesting insight, the resulting protocol may have lim-
ited practical impact. We select as highlights two new BFT
protocols (FLB and FTB) that are new and have practical
value that we have uncovered using Bedrock.
Fast Linear BFT (FLB). FLB (Figure 24) is a fast linear
BFT protocol that commits transactions in two phases of
communication with linear message complexity. To achieve
this, FLB uses the linearization and phase reduction through
redundancy functions (design choices 1 and 2). FLB requires

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 397

Figure 24: FLB Figure 25: FTB

4 16 32 64 100

30

60

90

120

Number of replicas

T
hr

ou
gh

pu
t[

kt
ra

ns
/s

ec
]

PBFT Zyzzyva SBFT PoE FaB HotStuff Kauri Themis FLB FTB

4 16 32 64 100
0

1

2

3

Number of replicas

L
at

en
cy

[s
]

Figure 26: Performance with a geo-distributed setup

5 f − 1 replicas (following the lower bound results on fast
Byzantine agreement [12, 161]). The ordering stage of FLB
is similar to the fast path of SBFT in terms of the linearity
of communication and the number of phases. However, FLB
expands the network size to tolerate f failures (in contrast
to SBFT, which optimistically assumes all replicas are non-
faulty).
Fast Tree-based balanced BFT (FTB). A performance bot-
tleneck of consensus protocols is the computing and band-
width capacity of the leader. While Kauri [202] leverages a
tree communication topology (design choice 14) to distribute
the load among all replicas, Kauri requires 7h phases of com-
munication to commit each request, where h is the height of
the communication tree.

FTB (Figure 25) reduces the latency of Kauri based on
two observations. First, we noticed that while Kauri is imple-
mented on top of HotStuff, it does not use the leader rotation
mechanism. As a result, it does not need the two linear phases
of HotStuff (2h phases in Kauri) that are added for the purpose
of leader rotation (design choice 3). Second, similar to FLB,
we can use the phase reduction through redundancy function
(design choice 2) to further reduce 2h more phases of com-
munication. FTB establishes agreement with 5 f −1 replicas
in 3h phases. FTB also uses the pipelining stretch mechanism
of Kauri, where the leader continuously initiates consensus
instances before receiving a response from its child nodes for
the first instance (similar to the out-of-order processing used
by many BFT protocols).

D Impact of a Geo-distributed Setup
In this part, we measure the performance of protocols in

a wide-area network. Replicas are deployed in 4 different
AWS regions, i.e., Tokyo (TY), Seoul (SU), Virginia (VA),

and California (CA) with an average Round-Trip Time (RTT)
of TY
 SU: 33 ms, TY
 VA: 148 ms, TY
 CA: 107
ms, SU
 VA: 175 ms, SU
 CA: 135 ms, and VA
 CA:
62 ms. The clients are also placed in Oregon (OR) with an
average RTT of 97, 126, 68 and 22 ms from TY, SU, VA and
CA respectively. We use a batch size of 400 and perform
experiments in a failure-free situation. In this experiment,
the pipelining stretch of Kauri and FTB is increased to 6.
Figure 26 depicts the results.

Zyzzyva demonstrates the best performance when n is
small. However, when n increases, its performance is signifi-
cantly reduced (87% throughput reduction and 115x latency
when n increases from 4 to 100). This is because, in Zyzzyva,
clients need to receive reply messages from all replicas. Simi-
larly, SBFT incurs a significant reduction in its performance
due to its optimistic assumption that all replicas participate in
a timely manner. In both protocols, replicas (client or leader)
wait for ∆ = 500 ms to receive responses from all replicas be-
fore switching to the normal path. This reduction can be seen
in PBFT as well (84% throughput reduction when n increases
to 100) due to its quadratic communication complexity. PoE
incurs a smaller throughput reduction (51%) in comparison
to Zyzzyva, SBFT, and PBFT because it does not need to wait
for all replicas and it has a linear communication complex-
ity. Increasing the number of replicas does not significantly
affect the throughput of FTB compared to other protocols
(36% throughput reduction when n increases to 99) due to its
logarithmic message complexity and pipelining.

Interestingly, HotStuff shows very low throughput. In Hot-
Stuff, the leader of the following view must wait for the pre-
vious view’s decision before initiating its value. Even though
Chained-HotStuff is implemented in Bedrock, the leader still
needs to wait for one communication round (an RTT). As a
result, in contrast to the single datacenter setting where each
round takes ∼1 ms, request batches are proposed on average
every ∼190 ms. Similarly, in Themis and FLB, the leader
must wait for certificates from n− f replicas before initiating
consensus on the next request batch. In Themis, network la-
tency also affects achieving order-fairness as replicas might
propose different orders for client requests. This result demon-
strates the significant impact of the out-of-order processing
of requests on the performance of the protocol, especially in
a wide area network.

398 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

E PBFT DSL Specification in Bedrock
1 plugins:
2 role: primary
3 message:
4 - digest
5 - mac
6 - checkpoint
7 transition:
8 - checkpoint
9 pipeline: direct

10
11 protocol:
12 general:
13 leader: stable
14 requestTarget: primary
15
16 roles:
17 - primary
18 - nodes
19 - client
20
21 phases:
22 - name: normal
23 states:
24 - idle
25 - wait_prepare
26 - wait_commit
27 - executed
28 messages:
29 - name: request
30 requestBlock: true
31 - name: reply
32 requestBlock: true
33 - name: preprepare
34 requestBlock: true
35 - prepare
36 - commit
37 - name: view_change
38 states:
39 - wait_view_change
40 - wait_new_view
41 messages:
42 - view_change
43 - new_view
44 - name: checkpoint
45 messages:
46 - checkpoint
47
48 transitions:
49 from:
50 - role: client
51 state: idle
52 to:
53 - state: executed
54 update: sequence
55 condition:
56 type: msg
57 message: reply
58 quorum: 2f + 1
59
60 - role: primary
61 state: idle
62 to:
63 - state: wait_prepare
64 condition:
65 type: msg
66 message: request
67 quorum: 1
68 response:
69 - target: nodes
70 message: preprepare
71 extra_tally:
72 - role: primary
73 message: prepare
74
75 - role: nodes
76 state: idle
77 to:
78 - state: wait_prepare
79 condition:
80 type: msg

81 message: preprepare
82 quorum: 1
83 response:
84 - target: nodes
85 message: prepare
86 extraTally:
87 - role: primary
88 message: prepare
89
90 - role: nodes
91 state: wait_prepare
92 to:
93 - state: wait_commit
94 condition:
95 type: msg
96 message: prepare
97 quorum: 2f + 1
98 response:
99 - target: nodes

100 message: commit
101 - state: wait_view_change
102 update: view
103 condition:
104 type: timeout
105 mode: sequence
106 response:
107 - target: nodes
108 message: view_change
109
110 - role: nodes
111 state: wait_commit
112 to:
113 - state: executed
114 update: sequence
115 condition:
116 type: msg
117 message: commit
118 quorum: 2f + 1
119 response:
120 - target: client
121 message: reply
122
123 // view -change
124 - role: nodes
125 state: wait_view_change
126 to:
127 - state: wait_new_view
128 condition:
129 type: msg
130 message: view_change
131 quorum: 2f + 1
132 - role: primary
133 state: wait_new_view
134 to:
135 - state: executed
136 update: sequence
137 response:
138 - target: nodes
139 message: new_view
140 - target: client
141 message: reply
142 - role: nodes
143 state: wait_new_view
144 to:
145 - state: executed
146 update: sequence
147 condition:
148 type: msg
149 message: new_view
150 quorum: 1
151 response:
152 - target: client
153 message: reply
154 - state: wait_new_view
155 update: view
156 condition:
157 type: timeout
158 mode: stat

Listing 1: The DSL specification of PBFT Protcol

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 399

This section shows the implementation of PBFT using the
DSL defined by Bedrock. Listing 1 demonstrates the code.
The specification has two main parts: the protocol and the
plugins used by the protocol. The plugins, as discussed earlier,
are categorized into four groups: role, message, transition, and
pipeline. For each category, several plugins have been imple-
mented in Bedrock that can be used by different protocols.

Users can also define their plugins or update existing ones.
For example, the pipeline of messages could be direct, as it
is used in most protocols including PBFT, or chained as it is
used in Chained-HotStuff [4] or Kauri [202] where messages
of consecutive requests are pipelined. The implementation of
Digests, MACs, and checkpointing is presented as plugins to
enable developers to update them quickly and reuse them in

multiple protocols.
The protocol code defines roles, phases, transitions, and

the view-change routine. Each phase itself consists of
different states, e.g., idle, wait-prepare, wait-commit,
and executed, and messages, e.g., request, reply,
preprepare, prepare, and commit. The transitions between
different states and the condition for each transition are
specified in transitions. For example, node goes from idle
state to wait-prepare by receiving a single preprepare
message and in response to this event, node sends a prepare
message to all other nodes (as shown in listing 1, lines
75-85). The state manager enables the core unit to track the
states and possible transitions of each entity according to the
protocol.

400 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

DINT: Fast In-Kernel Distributed Transactions with eBPF

Yang Zhou∗ Xingyu Xiang†∗ Matthew Kiley Sowmya Dharanipragada‡ Minlan Yu
Harvard University †Peking University ‡Cornell University

Abstract
Serializable distributed in-memory transactions are important
building blocks for data center applications. To achieve high
throughput and low latency, existing distributed transaction
systems eschew the kernel networking stack and rely heavily
on kernel-bypass networking techniques such as RDMA and
DPDK. However, kernel-bypass networking techniques gener-
ally suffer from security, isolation, protection, maintainability,
and debuggability issues, while the kernel networking stack
supports these properties well, but performs poorly.

We present DINT, a kernel networking stack-based dis-
tributed transaction system that achieves kernel-bypass-like
throughput and latency. To gain the performance back under
the kernel stack, DINT offloads frequent-path transaction op-
erations directly into the kernel via eBPF techniques without
kernel modifications or customized kernel modules, avoiding
most of the kernel stack overheads. DINT does not lose the
good properties of the kernel stack, as eBPF is a kernel-native
technique on modern OSes. On typical transaction workloads,
DINT even achieves up to 2.6× higher throughput than us-
ing a DPDK-based kernel-bypass stack, while only adding at
most 10%/16% average/99th-tail unloaded latency.

1 Introduction
Serializable distributed transactions are important program-
ming abstractions and building blocks for distributed data
center applications, such as object store and online transac-
tion processing (OLTP) systems. With the advance of battery-
backed DRAM [14] and fast NVRAM [10], the bottleneck
of distributed in-memory transactions shifts from the stor-
age to the networking. This has spurred extensive research
on how to implement fast distributed in-memory transac-
tions using kernel-bypass networking techniques, such as
RDMA [14, 29, 82] and DPDK [6, 28]. One of the key as-
sumptions for these works is that kernel-bypass is the key to
realizing fast distributed in-memory transactions that match
the underlying hardware speed.

However, kernel-bypass is not a panacea—it essentially
trades security [69], isolation [38,39], protection [3,63], main-
tainability [53,79], and debuggability [70,79] for performance.
In addition to these issues, kernel-bypass techniques such as

∗Equal contribution

DPDK usually burn one or more CPU cores for busy-polling
even at low loads; this is usually non-acceptable in public
cloud deployments due to per-core pricing [80]. These issues
collectively have led to the well-known Open vSwitch giving
up DPDK-based dataplane designs recently [79].

Instead, we choose to embrace the kernel networking
stack with interrupt-driven packet processing. The kernel
networking stack provides nice properties of good security,
isolation, protection, maintainability, debuggability, and load-
aware CPU scaling—but not performance. Its poor perfor-
mance mainly comes from three sources: heavy-weight net-
working stack traversing [19, 89], user-kernel context switch-
ing [89], and interrupt handling.

This paper therefore asks: can we remove such kernel stack
overheads while keeping all of its nice properties for dis-
tributed in-memory transactions? To this end, we follow a
decade-old methodology called extensible kernels [4], and
realize it in modern OS kernels without any kernel code modi-
fications or customized kernel modules. The key enabler is the
eBPF technique that allows users to run customized functions
easily, safely, and efficiently inside the kernel networking
stack at run time. With eBPF, we can run transaction process-
ing logic at the early stage of the kernel networking datapath
without going to the user space, avoiding most of the kernel
networking stack functions and user-kernel context switching.
For the overhead of interrupt handling, it could be amortized
by adaptive batching [3] that the kernel networking stack
NAPI [34] already did. Besides the potential performance
benefit, eBPF is a kernel-native technique shipped with and
well-maintained by each release of modern Linux kernels.
Due to its safety and kernel-native nature, it has been rapidly
adopted by applications and cloud vendors [2, 16, 55]. For
example, Meta runs over 40 eBPF programs on every server
with ∼100 loaded on demand [75].

We introduce DINT1, which accelerates distributed transac-
tion systems using eBPF. DINT handles as many transactions
as possible in the kernel to improve their critical path per-
formance. In distributed transaction systems, a transaction
usually involves three components in its critical path: it first
acquires various locks from a lock manager, then reads rele-
vant key-values from a key-value store and does local updates,
next logs key-value updates to a log manager, and finally com-

1DINT as a noun is an archaic word, meaning force and power.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 401

mits key-value updates to the key-value store. Offloading the
three components to eBPF is challenging because eBPF has
a constrained programming model (for kernel safety).

To address this challenge, our key idea is to redesign
transaction-related data structures following the principle of
kernel-offloading for frequent critical paths to guarantee high
performance, and use user space programs as backups for
rare paths to support full functionalities.

First, the lock manager normally maintains many locks with
efficient indexing and complex locking operations. However,
it is hard for eBPF to handle hash collision during indexing,
because eBPF only allows statically-bounded loops. Further, it
is also hard to maintain shared lock states because eBPF does
not support common synchronization primitives like Mutex.
To address these issues, the DINT lock manager embraces
lock sharing to avoid the slow and complex hash collision
handling, and directly leverages low-level eBPF atomics to
implement transaction locking.

Second, the key-value store normally stores a large num-
ber of key-values with different sizes, and requires frequent
lookups and updates. However, eBPF does not support dy-
namic memory allocations, causing low memory efficiency
for the key-values. To address these issues, the DINT key-
value store directly stores small key-values, which dominate
in transaction workloads [12, 47, 77], in kernel memory us-
ing a set-associative cache, while leaving large key-values
to the user space, avoiding dynamic memory allocations in
eBPF. DINT further designs a write-back mechanism with
Bloom filters [5] to efficiently handle most key-value lookups
and updates in the kernel, while guaranteeing the key-value
consistency across the user and kernel.

Third, for the log manager, DINT designs efficient per-CPU
log buffers to record logs directly in eBPF, while supporting
log replaying from the user space during failure recovery.

We evaluate DINT on two OLTP workloads: a read-
intensive TATP workload [47] and a write-intensive Small-
Bank workload [77]. DINT achieves up to 2.6× higher
throughput than using a recent well-engineered kernel-bypass
stack based on DPDK (i.e., Caladan [17]), while only adding
at most 10% and 16% unloaded latency for the average and
99th-tail respectively. We achieve even higher throughput
mainly because the kernel-bypass baseline builds a high-level
abstraction for packets that incurs packet copy overhead be-
tween network buffers and application buffers, while DINT di-
rectly modifies incoming packets and forwards back. DINT’s
designs are also generic to transaction protocols to some
extent—it easily supports an OCC (opportunistic concurrency
control) protocol for the read-intensive workload and a 2PL
(two-phase locking) protocol for the write-intensive workload.

In summary, this paper makes three contributions:
• We design and implement a high-performance distributed

transaction system under the widely-deployed kernel net-
working stack and the widely-available common commod-
ity NICs, with the key idea of kernel offloading via eBPF.

Coordinator

P1
B1a
B1b

P2
B2a
B2b

1. Read + lock 2. Validate 3. Log 4. Commit
backup

[Replicated]
Log manager

Shard 2

Shard 1

5. Commit
primary

Figure 1: The FaSST [29] transaction protocol with two data shards
and three-way replication. P = primary and B = backup. This exam-
ple transaction reads from the shard 1 and writes to the shard 2.

• We design a state synchronization mechanism for the key-
value cache across the kernel and user space that efficiently
handles consistency and write-backs.

• We are the first to experimentally show that a distributed
transaction system under the kernel networking stack can
achieve kernel-bypass-like performance and latency.
DINT has some limitation: it currently targets UDP un-

reliable transport protocol to simplify packet processing in
eBPF. Some research work [76] on designing offload-friendly
reliable transports might help address our limitation.

2 Background

2.1 Distributed Transactions
We focus on serializable distributed transactions over a repli-
cated sharded in-memory key-value store with replicated log-
ging to handle failures. Along with recent works [14, 29, 72,
82] in this space, we assume logging into fast persistent stor-
age like battery-backed DRAM or NVRAM (instead of disks)
to match in-memory transaction speed, and having a sepa-
rate fault-tolerance configuration manager to handle machine
failures off the critical path of transaction processing. These
works usually employ transaction protocols consisting of opti-
mistic concurrency control (OCC) and two-phase commit for
distributed atomic commit, and primary-backup replication
to support high availability. Below, we briefly go through the
critical path of one of such protocols from FaSST [29].

In the FaSST transaction protocol, each transaction has
a set of keys to read (i.e., read-set) and a set of key-values
to write (i.e., write-set), and a transaction coordinator issues
transaction requests to finish each transaction. As shown in
Figure 1, the primary in each shard runs a lock manager; both
the primary and backups run a replicated key-value store; a set
of servers run a replicated log manager (could just be on the
primary and backups). To finish a transaction, the transaction
coordinator executes the following phases:
1) Read+lock: the coordinator reads all values + locks +

versions for the read-set and locks all key-values for the
write-set. If any key-value in the two sets is already locked,
the transaction aborts. The coordinator buffers key-value
writes/updates locally.

2) Validate: the coordinator reads again all locks + versions

402 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

in the read-set, and checks if any read-set value has been
changed or locked since the first phase. If so, the transac-
tion aborts.

3) Log: the coordinator writes a transaction record contain-
ing the write-set’s key-values and their versions into the
replicated log manager.

4) Commit backup: the coordinator updates the write-set
values to corresponding backup replicas.

5) Commit primary: the coordinator updates the write-set
values to corresponding primary replicas, increments key-
value versions, and unlocks key-values.

Besides the OCC, there are many more concurrency control
protocols for serializable distributed transactions. Another
well-known one is two-phase locking (2PL) used in Span-
ner [9]; it locks before each read and write, and is suitable for
write-intensive workloads. More advanced protocols include
MDCC [40], Tapir [87], Janus [58], ROCOCO [57], which
reduces the number of transaction phases by co-designing
concurrency control and replication, and allows more concur-
rency by tracking fine-grained transaction dependencies.

Distributed transactions inside a data center typically have
bottlenecks on the networking stack. For example, when we
run the above transaction protocol using a typical OLTP work-
load under the kernel UDP stack (see §5.2 for a detailed
setup), we observe 64% of CPU time is spent on traversing
the kernel networking stack, 16% is on the user-kernel context
switching, and 12% is on the interrupt handling. This further
motivates the huge performance benefits of kernel offloading
by avoiding kernel stack overheads.

2.2 eBPF in Kernel Networking Stack
eBPF basics: eBPF (extended Berkeley Packet Filter) is a
kernel-native mechanism to let users write safe, customized
programs that run inside the OS kernel without kernel code
modifications or customized kernel modules. Users typically
write a high-level C-like eBPF program that gets compiled
into low-level eBPF bytecode by Clang/LLVM. Users can
then load the eBPF bytecode to predefined attachment points
or the so-called eBPF hooks in the kernel. Upon loading, the
kernel will first verify if the eBPF bytecode meets the safety
(e.g., no out-of-bounds memory accesses) and liveness (i.e.,
it will always terminate in finite steps) requirements. If so,
the kernel will compile the eBPF bytecode to native machine
code, and run it in a kernel-embedded virtual machine in an
event-driven manner; otherwise, the kernel will reject it.

The Linux kernel networking stack has two main eBPF
hooks: XDP (eXpress Data Path) [21, 67] and TC (Traffic
Control) [50]. The XDP hook only works for ingress pack-
ets, and triggers the eBPF program immediately after the
NIC driver receives the packet upon NIC interrupts, before
sk_buff [35] creation. The TC hook works for both ingress
and egress packets, and triggers the eBPF program between
the NIC driver layer and UDP/TCP layers. For ethernet packet
forwarding, TC has lower performance than XDP, as it has

Lock mgr

KV store

Log mgr

Request
parser

Transaction
server

Bookkeeping

Transaction
Client

Maintaining
spilled KVs

Kernel space User space

Frequent path

Rare path

Req
ue

st

Response

XDP

TC

UDP
sockets

Figure 2: DINT’s high-level architecture.

run more kernel networking stack functions.
eBPF maps: eBPF programs are event-driven, therefore
program states that cross different invocations must be stored
in a global heap-like memory region—eBPF maps are exactly
for this purpose. eBPF maps are a variety of built-in data
structures in the kernel to maintain eBPF program states with
various eBPF helper functions. An eBPF map could contain
up to 232−1 elements each with maximum 232−1 bytes, with
total size bounded by the server memory; it must be declared
and created statically with a fixed size. Typical eBPF maps
include arrays, per-CPU arrays, stacks, and queues [49], with
lookup and update functions [32]. The power of eBPF maps
is that they can be shared among different eBPF programs
and user-space processes. For example, the eBPF program
attached to XDP can share an eBPF map with another program
on TC and even with a user-space process.
eBPF programming constraints: Due to the safety and
liveness verification by the kernel, eBPF programming has
some constraints. Perhaps the most important one is not sup-
porting dynamic memory allocations, as correctly handling
memory allocation failure and verifying no memory leaks are
challenging for eBPF. The second constraint is that eBPF only
supports statically-determined bounded loops to ensure live-
ness. Finally, eBPF lacks high-level thread synchronization
primitives such as Mutex. This is because eBPF code runs
inside the kernel, and arbitrary/unexpected kernel sleeping
by Mutex is dangerous. Instead, eBPF only supports spinlock
(i.e., bpf_spin_lock [48]) with deep constraints that make
it less useful: one cannot call any functions (including built-
in eBPF helper functions) while holding the lock, and must
release the lock before forwarding/dropping the packet.

3 DINT Design
Figure 2 shows the high-level architecture of DINT. DINT
assumes an asymmetric transaction model or the so-called
client-side transaction model, similar to [42, 56, 60, 87]. In
this model, each transaction client, as the transaction coor-
dinator, sends transaction requests to transaction servers to
finish locking, key-value, and logging operations, and then re-
ceives responses. As described in Section 6, DINT could also
support the symmetric model used in [14, 29, 82]. Like prior
works, DINT shards transactions states (i.e., locks, key-values,
and logs) among servers, and uses three-way replication and
logging for high availability. DINT is generic to a variety

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 403

of transaction protocols, and currently supports two differ-
ent ones: a 2PL-based protocol and an OCC-based protocol
similar to FaSST [29].
Offloading request frequent path to kernel: To achieve
high-performance transaction processing, DINT offloads
frequent-path states and operations into the kernel, avoiding
kernel stack overheads. Each DINT transaction server main-
tains most of its transaction states in the kernel memory via
eBPF maps, and serves most of its transaction requests di-
rectly in the kernel via an eBPF program attached to the XDP
hook. Since eBPF programs cannot generate new packets by
themselves, DINT reuses the request packet by modifying its
payload to carry the response message, and forwards it back
to clients as the response.
Userspace as backups: To support the full functionalities of
transaction processing, DINT handles rare-path states and op-
erations in the user space. Each DINT transaction server runs
a user-space process listening on UDP sockets to receive and
handle a small portion of transaction requests that cannot be
served directly in the kernel. Transaction responses returned
from the user-space process will go through a bookkeeping
eBPF program attached to the TC hook, which helps maintain
transaction states in eBPF maps, e.g., releasing some internal
locks (not transaction locks).

DINT uses UDP protocol between transaction clients and
servers to allow easy parsing of transaction requests and re-
sponses in eBPF programs. While UDP protocol is lossy,
packet losses happen rarely in modern data centers as shown
by prior works [28, 29, 65]. When packet losses happen dur-
ing severe network hardware failures, DINT would detect
such losses using coarse-grained client-side timeouts and han-
dle them by the transaction protocols, similar to FaSST [29].
DINT targets accelerating the handling of transaction request-
s/responses that can fit into one ethernet packet, i.e., up to
9KB for jumbo frames. This works well for transactions with
mostly small key-values, which are quite common in many
transaction processing workloads [12,29,47,77,82]. For large
key-values, DINT could just pass them to the user-space pro-
cess to handle, at the cost of lower throughput.

3.1 DINT Lock Manager
The DINT lock manager is responsible for the transaction con-
currency control, i.e., controlling how multiple transaction
clients concurrently access individual key-values. Such con-
currency control mainly involves quickly indexing lock states
by lock IDs and maintaining the shared lock states. These two
operations are challenging for the constrained programming
model in eBPF that lacks dynamic memory allocations, only
supports bounded loops, and has nearly no high-level thread
synchronization primitives like Mutex (§2.2). For example,
lock state indexing usually requires implementing a hash table
in eBPF; however, handling hash collisions is nearly impos-
sible or very inefficient in eBPF for either open hashing that
requires dynamically allocating a new hash table entry or

closed hashing that may require unbounded loops.
To support efficient lock state indexing and shared lock

state maintenance in eBPF, DINT leverages two techniques:
• lock sharing to avoid handling hash collisions. Lock sharing

means two lock IDs may get mapped to and use the same
lock state. DINT further designs a mechanism to avoid
possible deadlocks during lock sharing.

• leveraging low-level eBPF atomics [23] to carefully syn-
chronize shared states operations.

Lock sharing: DINT leverages eBPF array maps (i.e.,
BPF_MAP_TYPE_ARRAY [32]) to implement static tables of
lock states in the kernel space. Typical lock states include
lock status bits, sharer counters (for read-write locks), etc.
Each lock ID gets mapped to one shared lock state in the
table via a hash function, and later lock acquiring/releasing
operations just work on this lock state. Lock sharing avoids
handling tricky hash collisions, at the cost of slightly increas-
ing the failure probability when acquiring locks.

However, deadlocks could happen if a transaction client
tries to acquire two locks that get mapped to the same lock
state (assuming exclusive locking). This is because: the first
acquiring operation succeeds, while the second acquiring fail-
s/blocks; however, the first acquiring will not release the lock
until the transaction finishes, while the second acquiring al-
ways blocks the transaction progress. To resolve such possible
deadlocks, DINT lets the lock manager check if any two ex-
clusive lock acquiring operations on the same lock state come
from the same transaction client, by maintaining a holder
client ID (e.g., IP and port pair) for each exclusive lock; if so,
the lock manager directly returns a locking success message.

By leveraging low-level eBPF atomics, DINT supports
a variety of locking mechanisms for concurrency control
protocols, including the basic read-write locking for 2PL
and version-based locking for OCC, in a fail-and-retry man-
ner [8,18,83]. Supporting more advanced concurrency control
protocols [40, 57, 58, 87] is also possible in DINT, as they are
essentially underpinned by the two basic locking mechanisms;
we discuss further in Section 6.
Read-write locking: This locking mechanism includes two
types of locks: exclusive locks and shared locks. Transaction
clients send lock acquiring/releasing requests with lock IDs
to the lock manager, and the manager responds with either
success or failure. Lock acquiring requests may receive fail-
ure responses, while lock releasing requests always receive
success responses. If a client receives a failure response, it
will re-send the lock acquiring request again after an optional
period of time, until receiving the success response (i.e., fail-
and-retry).

To implement the read-write locking, the DINT log man-
ager maintains a per-lock spinlock bit, a per-lock counter that
counts how many sharers hold the lock, and a per-lock status
bit indicating if this lock is held exclusively. Upon receiv-
ing an exclusive lock acquiring request, the lock manager
looks up the corresponding spinlock bit and executes eBPF

404 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Bucket
lock

Bloom
filter Keys Versions Valid

bits
Dirty
bitsValues

Bucket

Overflow buckets
in user space

Kernel buckets
(an eBPF map)

…

Figure 3: The layout of the key-value store in DINT (assume using
the version-based locking).

atomics to check if it can acquire the spinlock. It runs the
__sync_val_compare_and_swap() function inside eBPF
to atomically test-and-set the spinlock bit. This function gets
compiled into corresponding ISA-specific operations and is
equally efficient as in the user space. If the lock test-and-set
succeeds, which means the lock state is not being modified
by other transaction clients, the load manager will check the
exclusiveness status bit—if the bit is clear, it will set the bit
and return a success response; in any other cases, a failure
response is returned to let the client retry. Handling the ex-
clusive lock releasing and shared lock operations involves
similar atomic operations.
Version-based locking: Version-based locking is widely
used in recent high-performance distributed transactions sys-
tems [14, 29, 82], together with the OCC protocol to avoid
locking operations for key-value reads. It involves version
checking to make sure the read key-values used in a transac-
tion are not stale (see §2.1).

To implement version-based locking, DINT maintains a
table for the lock status bit indexed by the lock ID, and main-
tains a per-key-value version counter in a key-value store that
we discuss in the next Section. Every read operation directly
reads the key-value and corresponding version from the key-
value store. Every write operation tries to test-and-set the lock
status bit (i.e., exclusive lock); if test-and-set fails, the transac-
tion aborts. After acquiring all write locks and then finishing
all transaction writes locally, the transaction coordinator reads
the key-value versions again and compares them with the old
versions. If the two version vectors do not change, the coor-
dinator can successfully log and commit the transaction, and
increment the versions; otherwise, the transaction aborts.

3.2 DINT Key-Value Store
The DINT key-value store maintains the mapping between
keys and values, and supports various operations like GET,
INSERT, UPDATE, and DELETE. Conventional user-space
key-value store [54, 71] would normally maintain a hash in-
dex that maps keys to dynamically-allocated values. Unfortu-
nately, this design does not work for eBPF that lacks dynamic
memory allocations.

Figure 3 illustrates how DINT addresses this challenge
by storing key-values into an in-kernel set-associative cache
backed by a fixed-size eBPF map, while spilling overflowed
key-values (includes corresponding versions) into the user
space. The eBPF map contains many kernel buckets indexed

by the key via a hash function, and each bucket stores multiple
key-values and valid bits (denoting whether a key-value field
stores object data)2. By default, DINT stores 4 key-values per
kernel bucket. Inside each kernel bucket, DINT stores keys
contiguously for better cache locality during lookups; DINT
provisions each value field with a fixed size that can cover
most of the transaction objects (e.g., dozens of bytes in TPC-C
and SmallBank workloads [82, Table 3]). Any kernel bucket
that gets too many key-values will spill some key-values into
the user space (putting into the overflow buckets); any key-
value that cannot fit into the fixed value field in the kernel
bucket will also spill into the user space.

A kernel bucket contains a bucket-level lock implemented
using eBPF atomics to synchronize concurrent key-value op-
erations on the same bucket. We note that this lock is different
from the transaction locks in Section 3.1. Each key-value
operation will first try acquiring the bucket lock before touch-
ing the bucket data, in a fail-and-retry manner. Most of the
time, the key-value operation finishes directly in eBPF and
returns the response to clients, before which it releases the
bucket lock. In rare cases where its interested key-value is
in the user space, the operation needs to pass the operation
request/packet to the user-space process via the UDP sockets.
Under such cases, the operation still holds the bucket lock
when going to the user space, and only releases the lock when
it returns to eBPF. By “returns to eBPF”, we mean that the
response packet sent back by the user-space process will trig-
ger an eBPF program attached to the TC egress hook, which
releases the bucket lock.

However, to support high-performance key-value opera-
tions in this kernel-user-hybrid key-value store, we must ad-
dress two additional challenges:
• How to efficiently perform INSERT and UPDATE opera-

tions while maintaining read-all-write consistency? Prior
eBPF-offloaded key-value store BMC [19] adopts a simple
write-through cache design and performs well when all op-
erations are GETs. However, in workloads like TATP [47]
where 20% of transactions involve INSERTs/UPDATEs,
BMC would perform poorly because every such operation
will go to the user space.

• How to minimize the chance of going to the user space,
especially when clients issue many GET requests for non-
existing keys? Non-existing key lookups would require
enumerating all keys mapped to the kernel bucket includ-
ing those spilled into the user space, incurring high kernel
stack overheads. Such lookups are common in transaction
workloads; e.g., 68.75% of GETs for TATP’s largest table
target non-existing keys.

To this end, DINT designs a write-back mechanism that lazily
and efficiently maintains the read-after-write consistency, and
leverages a per-kernel-bucket Bloom filter to avoid frequently
going to the user space for non-existing key lookups.

2Maintaining the valid bit for each key-value should be straightforward;
for conciseness, we do not explicitly describe it unless necessary.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 405

3.2.1 Write-Back Key-Value Store in eBPF

As shown in Figure 3, a kernel bucket contains a dirty bit for
each stored key-value, indicating whether the value is different
from the user space; a key-value that only exists in eBPF will
always have the dirty bit set. Below, we go through how DINT
efficiently realizes each of the key-value operations across
eBPF and the user space. A recurring theme in the design of
each operation is that: DINT tries to support the majority of
key-value operations directly in eBPF by leveraging the dirty
bit, while maintaining consistency.
GET (Figure 4a): For simplicity, we assume the looked-up
key exists in the key-value store; we describe the non-existing
case in the next Section. In the frequent path (a) where the
GET operation finds the key in the kernel bucket, DINT di-
rectly returns the requested value to the client. In the rare
path (b) where the GET operation does not find the key: if the
kernel bucket is full, DINT chooses one existing key-value to
evict following a certain policy (described later) to make a
space for the looked-up key-value; otherwise, DINT chooses
one dirty key-value (if any) for lazily writing back to the user
space. DINT then optionally piggybacks the chosen key-value
on the packet and forwards it to the user-space process; DINT
uses the bpf_xdp_adjust_tail() function [48] to increase
the packet size for piggybacking. Once the process receives
the request packet, it will look up the key-value in the over-
flow buckets, and send back the response packet to the client
via the UDP sockets. For the piggybacked key-value, the user-
space process will update it into the overflow buckets. Finally,
the response packet goes through the TC egress eBPF pro-
gram, which clears the dirty bit of the piggybacked key-value
(if any), and fills the requested key-value into an empty or
non-dirty key-value field in the kernel bucket.
INSERT (Figure 4b): For simplicity, we assume the to-be-
inserted or the incoming key-value does not exist in the key-
value store; if it already exists, we could just return a insertion
failure message to the client. In the frequent path (a) where
the INSERT operation finds an empty slot in the kernel bucket,
DINT directly writes the incoming key-value there, sets an
initial version and the dirty bit, and returns to the client. In
the rare path (b) where there is no empty slot in the kernel
bucket, DINT chooses a key-value to evict. Then there will be
two cases:
• If the to-be-evicted key-value is not dirty, DINT will directly

replace it by the incoming key-value with a set dirty bit and
an initial version, and return to the client. DINT can directly
return as the to-be-evicted key-value has the same copy in
the user space, so there is no need to write it back. Since
the incoming key-value is marked dirty, a later eviction will
lazily write it back to the user space.

• If the to-be-evicted key-value is dirty, DINT will piggyback
it on the request packet, replace the bucket’s to-be-evicted
key-value by the incoming key-value with a clear dirty bit
and an initial version, then pass the request packet to the
user space. The user-space process will then update both

the evicted key-value and the incoming key-value into the
overflow buckets, and send back a response packet to the
client via the UDP sockets.

UPDATE (Figure 4c): For simplicity, we assume the to-be-
updated or the incoming key-value exists in the key-value
store; if it does not exist, we could just return an update failure
message to the client. In the frequent path (a) where the key-
value is found in the kernel bucket, DINT directly updates the
key-value there with a set dirty bit, increments the version
counter, and returns to the client3. In the rare path (b) where
the key-value is not found, DINT chooses a key-value to evict.
No matter whether the to-be-evicted key-value is dirty or
not, DINT always needs to go to the user space, in order to
fetch (and increment) the version counter corresponding to
the incoming key-value. Therefore, DINT will piggyback the
to-be-evicted key-value on the request packet, replace the
bucket’s to-be-evicted key-value by the incoming key-value
with a clear dirty bit and an undefined version, then pass the
request packet to the user space. The user-space process will
then update both the evicted key-value and the incoming key-
value into the overflow buckets, increment the version counter
of the incoming key-value, and send back a response packet
to the client via the UDP sockets. More importantly, this
response packet will piggyback the updated version of the
incoming key-value, so that the TC egress eBPF program can
update the bucket’s undefined version to the updated one.
Eviction policy: DINT currently uses a simple eviction pol-
icy: it tries to evict the first non-dirty key-value when enu-
merating the bucket; if all the key-values are dirty, it then
evicts a random key-value. Prioritizing evicting non-dirty
key-value avoids going to the user space as much as possible
(especially under INSERT operations). Randomly choosing a
key-value if all is dirty minimizes the compute for selecting
a victim key-value. Implementing a more complex eviction
policy, e.g., based on key-value accessing frequency, might
help further reduce the chance of going to the space. But such
policy should be compute-light; otherwise, it may incur per-
formance drops [19]. Recent fast cache eviction algorithms
such as QD-LP-FIFO [84] may shed light on this space, and
we leave such exploration as future work.
Remark: So far, DINT carefully leverages the dirty bits to
run the majority of key-value operations directly in eBPF,
while maintaining read-all-write consistency and correct key-
value versions. For the DELETE operation, we deliberately
leave it for the next Section to describe, as it is highly related
to how we efficiently handle non-existing key lookups.

3.2.2 Handling GETs for Non-Existing Keys
So far, in the DINT key-value store, GET requests for non-
existing keys would enumerate all keys mapped to the indexed
kernel bucket including those spilled into the user space, in-
curring high kernel stack overheads. Conventional key-value

3If the new value is too large for the kernel bucket, we will evict the
key-value to the user space.

406 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Kernel
bucket

User
bucket

(a) Hit: return
KV

(b) Miss: carry
an evicted/dirty
KV [optional]

(b) Fill KV in
kernel

UDP

(a) GET.

Kernel
bucket

User
bucket

(a) Free slot:
set KV and

dirty bit

(b) Full: evict
a dirty KV

or

non-dirty KV
UDP

(b) INSERT.

Kernel
bucket

User
bucket

(a) Hit: update
KV; set dirty

bit

(b) Miss: evict
a dirty KV

or non-dirty
(b) update
version in

kernel

UDP

(c) UPDATE.

Kernel
bucket

User
bucket

(a) Hit: clear
valid bit

(b) Miss: clear
valid bit;

reconstruct BF

(b) Fill KV and
BF in kernel

(b) Carry a KV
[optional] and

BF
UDP

(d) DELETE.

Figure 4: DINT key-value store operations. Solid thick lines indicate frequent paths, while dotted thin lines mean rare paths. BF = Bloom Filter.

stores implemented in the user space do not have such a prob-
lem because the enumeration overhead for them is only a few
more memory accesses; however, for the key-value store in
eBPF, the overhead escalates into expensive kernel network-
ing stack traversing and user-kernel context switching [19,89].

To handle non-existing key GETs efficiently, DINT main-
tains a small Bloom filter [5] in each kernel bucket, represent-
ing the membership of key-values spilled into the user space
(Figure 3). The Bloom filter is updated whenever a key-value
gets spilled into the user space. When a GET operation does
not find the looked-up key in its kernel bucket, it looks up
the Bloom filter to check if the key possibly exists in the user
space. If the Bloom filter answers no, then the GET operation
can guarantee that the key does not exist in the key-value
store, and directly return none to the client; otherwise, the
operation must go to the user space to check the overflow
buckets (see §3.2.1). Since the Bloom filter never reports an
existing key as non-existing (i.e., no false negative errors),
the above “early returning” in the GET operation is always
correct. DINT currently provisions 64 bits for the Bloom filter
in each kernel bucket, sufficient to handle dozens of spilled
key-values. To reduce the hash calculation overhead for the
Bloom filter, DINT reuses the highest six bits of the raw hash
value from the key-value store. We choose to implement our
custom Bloom filter instead of using the built-in Bloom filter
eBPF map [33], in order to avoid extra eBPF map lookup
overhead.

However, the Bloom filter design creates a challenge for
the key-value DELETE operation. This is because: when the
to-be-deleted key-value is in the user space, the DELETE
operation will need to remove the key-value from the Bloom
filter; however, the Bloom filter does not support member-
ship removal in order to guarantee no false negative errors.
To address this challenge, DINT lets the user-space process
reconstruct a new Bloom filter for the remaining key-values
whenever it deletes one, and then updates the new Bloom filter
to the kernel. Reconstructing the Bloom filter is doable, as the
user space records all the spilled key-values in its overflow
buckets. Formally, the DELETE operation works as follows.
DELETE (Figure 4d): For simplicity, we assume the to-be-
deleted key-value exists in the key-value store. In the frequent
path (a) where the INSERT operation finds the key-value in
the kernel bucket, it clears the valid bit and directly returns to
the client. In the rare path (b) where the key-value is not found
in the kernel bucket and the Bloom filter reports its existence
in the user space, the DELETE operation must forward the

request packet to the user space. The user-space process will
look up the key-value in the overflow buckets, clear its valid
bit, reconstruct a new Bloom filter based on the remaining
spilled key-values, and send back a response packet to the
client. The response packet will piggyback the new Bloom
filter and an optional spilled key-value (if existing, and this
key-value should not be covered in the new Bloom filter), and
trigger the TC egress eBPF program, which fills the Bloom
filter and key-value into the kernel bucket.

3.3 DINT Log Manager
High-performance distributed transaction systems store trans-
action logs in memory for failure recovery (assuming battery-
backed DRAM or fast NVRAM [14, 29]). The transactions
logs grow up as the transaction systems run: if they exceed the
log space (e.g., memory capacity of the machine), the trans-
action systems usually truncate the oldest logs [14] or dump
them into disks [78]; DINT follows the truncating manner.
Since the logging operation is on the transaction critical path,
DINT aims to provide a fast logging mechanism entirely in-
side the eBPF in failure-free cases, while supporting complex
offline recovery in failure cases.

To this end, DINT leverages the eBPF maps to implement
a circular log buffer abstraction entirely in the kernel. A cir-
cular log buffer allows pushing log entries to the tail to sup-
port logging operations in transaction systems; it also allows
popping log entries from the head (from the user space) to
support log replaying during failure recovery. DINT imple-
ments such a circular log buffer using a large-size eBPF ar-
ray map to store log entries, and another eBPF array map
to maintain the head and tail, both inside the kernel. These
two eBPF maps are also accessible to the user space for log
replaying. To avoid thread contentions during logging oper-
ations, DINT provisions a circular log buffer on each CPU
core. This is achieved by using the eBPF per-CPU array map
(BPF_MAP_TYPE_PERCPU_ARRAY [32]). When the log man-
ager looks up a per-CPU array map, it will automatically get
the map entry corresponding to its local CPU core.

4 DINT Implementation
Our DINT prototype consists of 2.1K lines of eBPF (for kernel
code) and 4.3K lines of C++ (for user-space code). DINT uses
Clang/LLVM-16 to compile the eBPF program into eBPF
bytecode. The eBPF bytecode gets attached to and runs inside
the XDP and TC hooks of the standard kernel networking
stack, atop unmodified Linux OSes. The user-space process

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 407

uses the standard POSIX kernel-visible threads (i.e., pthreads)
and the Linux UDP socket to receive rare-path request packets
and send response packets. Our prototype currently supports
two different transaction protocols, i.e., a 2PL-based proto-
col and an OCC-based protocol, demonstrating the genericity
of DINT’s designs to some extent. Our DINT prototype cur-
rently does not implement failure recovery to handle machine
failures; as described in Section 2.1, we assume a separate
configuration manager would handle them off the critical path,
thus not impacting the critical-path performance we focus on.

To reduce the performance impact of user-kernel context
switching when passing request packets to the user space,
DINT runs the user-space process (that handles rare-path re-
quests) on CPU cores that do not receive NIC interrupts or run
eBPF programs, similar to prior work [89]. This is achieved
by configuring the IRQ affinity of the NIC device to exclude
the rare-path handling core. Note that the rare-path handling
core does not do any busy polling and can be shared with
other applications.

To better reason about the performance of DINT, we build
two baseline transaction processing systems that run in the
user space. One baseline uses the standard kernel UDP
socket with SO_REUSEPORT enabled to reduce thread con-
tentions [19], and pthreads. Another baseline uses the UDP
stack from the kernel-bypass runtime Caladan [17] that sup-
ports DPDK-style packet busy-polling and user-space thread-
ing for fast context switching. Both baselines leverage DINT’s
performance optimizations (e.g., lock sharing) if helpful, but
without eBPF programming constraints—so that they can
handle hash collisions efficiently using state-of-the-art solu-
tions [44]. The two baselines consist of 6.1K lines of C++.

5 Evaluation
This section aims to answer the following questions:
1. What is the throughput and latency of DINT compared to

kernel-bypass approaches (§5.1 and §5.2)?
2. Can DINT support different transaction protocols on trans-

action workloads efficiently (§5.1 and §5.2)?
3. Can DINT provide load-aware CPU scaling (§5.3)?
4. What are the effects of the write-back mechanism, Bloom

filter, and rare paths on DINT’s performance (§5.6)?
Testbed: We use 13 r650 physical machines from Cloud-
Lab [15]. Each machine has two 36-core (72 logic-core) Intel
Xeon Platinum 8360Y CPUs at 2.4GHz, 256GB memory,
and a dual-port Mellanox ConnectX-6 100Gb NIC via PCIe
4.0×16. All machines are connected via a Dell Z9432F switch
under the same rack. For all experiments, we use a single CPU
in the same NUMA domain as the NIC to enforce NUMA
locality; we also use a single 100Gb NIC port, as CloudLab
currently only wires one such port of r650 to the switch.

For all experiments, each machine runs an unmodified
Ubuntu 20.04 OS. For eBPF and UDP-related experiments,
we use kernel v6.1.0 which has full support for eBPF atomics.
We use the built-in Mellanox NIC driver on Linux kernel

v6.1.0 that has a default NAPI poll budget/batch size of 64
upon each interrupt. We disable Mellanox NIC’s interrupt
coalescing feature [11], as we find it hurts latency while not
increasing throughput, similar to prior work [89]. For Caladan-
related experiments, we are not able to run the Caladan run-
time on kernel v6.1.0, as it requires a customized kernel mod-
ule that relies on specific kernels; instead, we manage to run
it on kernel v5.8.0. Since Caladan uses the kernel-bypass net-
working stack and threading, different OS kernels should not
have a significant impact on its performance.
Measurement methodology: For transaction benchmark-
ing, we use 3 machines to run transaction servers with three-
way replication and sharding; that is, each machine is the
primary for one shard and a replica for the other two. For
microbenchmarks that benchmark individual lock manager,
key-value store, and log manager, we use 1 machine to run
the microbenchmark server without replication or sharding
to understand their standalone performance. We use the rest
machines to run multiple transaction/microbenchmark clients
that issue requests in a closed-loop manner. To avoid the
client machines becoming the bottleneck, we provision 8
cores on each transaction/microbenchmark server; the client
machines further use Caladan’s kernel-bypass UDP stack and
user-space threading to generate requests. We then vary the
number of clients, and measure the achieved throughput and
client-perceived median/average and 99th-tail latency, similar
to prior transaction works [6, 42, 56, 87].
Comparison baselines: As mentioned in Section 4, we com-
pare DINT to two baseline transaction processing systems:
one is based on the Linux kernel UDP socket, another is
based on the UDP stack from the kernel-bypass runtime Cal-
adan [17]. For simplicity, we just use kernel UDP and Caladan
to refer to these two baselines respectively. The Caladan base-
line is a challenging baseline that features DPDK-style packet
busy-polling, NIC RSS to evenly spread packets among avail-
able cores, and well-implemented and efficient user-space
UDP stack and threading.

We provision the memory sizes of the user-space key-value
store (for the two baselines), eBPF key-value store (for DINT),
and lock table (for all three) to be 1.5× of the key-values/locks
in corresponding workloads, similar to FaSST [29]. By de-
fault, kernel UDP and Caladan use all provisioned cores to
handle requests, while Caladan uses one extra core to run its
scheduler. DINT devotes one core out of the provisioned cores
to handle rare-path requests (§4), while the rest cores handle
frequent-path requests.

5.1 Microbenchmarks
To understand how each DINT component compares to base-
lines, we implement a series of microbenchmarks, including
a 2PL-based and an OCC-based lock manager with skewed
locking requests (80% shared locking requests or version
reads), a key-value store with 40B skewed reads, and a log
manager with 56B writes. These microbenchmark parameters

408 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Kernel UDP Caladan Dint

0

25

50

75

100

M
ed

ia
n

la
te

nc
y

(μ
s)

0

25

50

75

100

M
ed

ia
n

la
te

nc
y

(μ
s)

0

50

100

150

200

M
ed

ia
n

la
te

nc
y

(μ
s)

0

25

50

75

100

M
ed

ia
n

la
te

nc
y

(μ
s)

0 20 40
Throughput (Mops)

0

25

50

75

100

99
th

-ta
il

la
te

nc
y

(μ
s)

(a) 2PL lock manager.

0 20 40
Throughput (Mops)

0

25

50

75

100

99
th

-ta
il

la
te

nc
y

(μ
s)

(b) OCC lock manager.

0 10 20
Throughput (Mops)

0

50

100

150

200

99
th

-ta
il

la
te

nc
y

(μ
s)

(c) Key-value store.

0 20 40 60
Throughput (Mops)

0

25

50

75

100

99
th

-ta
il

la
te

nc
y

(μ
s)

(d) Log manager.

Figure 5: Microbenchmark load-latency curves (both median and 99th-tail).

(e.g., skewness, value size) are derived from the TATP work-
load [47]. The two lock managers and the key-value store
are provisioned with 36 million lock/key slots, while their
requests target 24 million locks/keys.
Lock manager: Figure 5a and 5b show how the latencies
(both median and 99th-tail) of the 2PL and OCC lock manager
vary with different achieved throughput for different systems,
respectively. Each system performs similarly across the two
lock managers with the OCC lock manager being slightly
faster, as version reads in OCC do not run atomic operations.
Overall, DINT achieves 3.1×-3.2× higher throughput than
Caladan, with 0%-8%/5%-55% higher unloaded median/99th-
tail latency, while kernel UDP performs much worse than
others. We notice that DINT has throughput fluctuations at
high loads; we think this is because the achieved batch size
during interrupt handling gets changed unstably.

It might be supersizing that DINT achieves even higher
throughput than the kernel-bypass Caladan system. How-
ever, this is achievable, as Caladan wraps raw UDP pack-
ets into a high-level connection-oriented abstraction (i.e.,
rt::UdpConn) for applications, which incurs packet copy
overhead between network buffers and application buffers,
thus losing some performance, while DINT directly works on
low-level UDP/ethernet packets. Additionally, each Caladan
transaction server creates a rt::UdpConn for each transac-
tion client and spawns a user-space thread to handle corre-
sponding transaction requests. Although rt::UdpConn only
maintains simple connection states with small packet copy
and user-space threading is efficient (e.g., 50ns per context
switch [61]), they still consume extra CPU time, compared
to DINT that directly modifies incoming ethernet packets and
forwards back.

In terms of latency, kernel-bypass Caladan achieves lower
minimum latency than kernel-stack DINT, e.g., 13µs vs. 14µs
of the median and 20µs vs. 23µs of the 99th-tail for the
2PL lock server. The latency gap, especially for the 99th-
tail, is mainly caused by the interrupt-driven nature of DINT,

which includes the overheads of NIC interrupt delivery and
running interrupt handler. We note that such overheads can
be effectively amortized under high loads, thus not impacting
throughput. We think the small increased latency is acceptable,
as the current data center network usually has one or a few
tens of microseconds RTT [20, 51].
Key-value store: Figure 5c shows the load-latency curves
for the key-value store. Both Caladan and DINT’s perfor-
mance gets dropped compared to the lock managers, due to
more compute in key-value operations. DINT achieves 2.17×
higher throughput than Caladan, while having 0%-7%/27%-
57% higher unloaded median/99th-tail latency. The minimum
latency for Caladan and DINT is 14µs vs. 15µs for the me-
dian, and 21µs vs. 25µs for the 99th-tail, demonstrating DINT
only incurs small interrupt handling overheads.
Log manager: Figure 5d shows the load-latency curves for
the log manager. Similarly, DINT outperforms Caladan on
throughput (by 3.6×) but sacrifices latency (by 0%-7% for
unloaded median and 5%-40% for unloaded 99th-tail). Re-
garding the absolute performance number, DINT achieves up
to 7.4 Mops per core. This translates into as low as 0.14µs per
operation/packet, demonstrating the efficiency of offloading
frequent-path operations into the kernel. Both DINT and Cal-
adan achieve higher throughput on the log manager than the
lock managers, as the serial log appending operations have
better cache locality.

5.2 Transaction Benchmarks
We now evaluate DINT and other baselines on typical OLTP
workloads, including TATP [47] and SmallBank [77]. TATP
is a read-intensive OLTP benchmark modeling database be-
haviors of telecommunication providers. It features small
key-values (8B keys and 40B values), 80% read-only transac-
tions that read one or more keys, and 20% transactions that
modify key-values. We provision 7 million TATP subscribers
sharded across the three transaction servers. Similar to prior
works [14, 29], we use the OCC-based transaction protocol

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 409

Kernel UDP Caladan Dint

0 5 10 15
Throughput (Mtps)

0

25

50

75

100

A
ve

ra
ge

 la
te

nc
y

(μ
s)

(a) Average latency vs. tput.

0 5 10 15
Throughput (Mtps)

0

250

500

750

1000

99
th

-ta
il

la
te

nc
y

(μ
s)

(b) 99th-tail latency vs. tput.

Figure 6: OCC on TATP workload. Mtps = Million transactions per
second.

(see §2.1) for the read-intensive TATP workload.
SmallBank is a write-intensive OLTP benchmark model-

ing bank account transactions, with 8B keys and values, and
85% write transactions. We provision 24 million bank ac-
counts sharded across the three transaction servers. We use
a 2PL-based transaction protocol suitable for write-intensive
workloads. Compared to OCC, the 2PL-based protocol uses
read-write locks in the read+lock phase without the validate
phase; it has similar log and commit phases (§2.1).

DINT can easily support both transaction protocols by lever-
aging different lock managers and slightly changing client
behaviors, demonstrating the genericity of its designs.
TATP: Figure 6a and 6b show how the average4 and 99th-tail
transaction latencies of different systems change when vary-
ing the throughput, respectively. DINT achieves 1.9× higher
transaction throughput than Caladan with 6%-10%/12%-16%
higher unloaded average/99th-tail latency. As described in
Section 5.1, the higher throughput of DINT benefits from
directly manipulating and forwarding raw ethernet/UDP pack-
ets immediately after the NIC driver receives the packets, in
contrast to Caladan that works on a high-level connection-
oriented abstraction. Meanwhile, batching effectively amor-
tizes interrupt handling overheads in DINT, leading to a high
sustained load on transaction servers. On the other hand, such
batching inevitably causes higher latency for DINT when
compared to the kernel-bypass polling-based Caladan, i.e.,
3µs/14µs higher minimum average/99th-tail latency.

Although not an apple-to-apple comparison, we cite pub-
lished performance numbers of RDMA-based transaction sys-
tems to demonstrate the throughput achieved by DINT is
within the same order of magnitude as RDMA-based ones.
For example, FaSST reports 8.7 Mtps/machine with 14 cores
and 1 million TATP subscribers per machine [29, §6.2], while
DINT achieves 5.62 Mtps/machine with 8 cores and 2.3 mil-
lion subscribers per machine.
SmallBank: Figure 7a and 7b show the average and 99th-
tail transaction latencies of different systems when varying
transaction throughput under the SmallBank workload. DINT
achieves 2.6× higher throughput than Caladan, while only
adding 1%-5%/3%-9% unloaded average/99th-tail latency;

4We show the average rather than the median, as transaction workloads
contain many small transactions that dominate the median latency.

Kernel UDP Caladan Dint

0.0 2.5 5.0 7.5
Throughput (Mtps)

0

50

100

150

200

A
ve

ra
ge

 la
te

nc
y

(μ
s)

(a) Average latency vs. tput.

0.0 2.5 5.0 7.5
Throughput (Mtps)

0

250

500

750

1000

99
th

-ta
il

la
te

nc
y

(μ
s)

(b) 99th-tail latency vs. tput.

Figure 7: 2PL on SmallBank workload.

0 5 10 15
Throughput (Mtps)

0

10

20

C
or

e
us

ag
e Kernel UDP

Caladan
Dint

Figure 8: Core usage vs. throughput (on TATP).

the added minimum average/99th-tail latency is 2µs/5µs.
Each SmallBank transaction consists of ∼10 transaction re-
quests on average, including locking and key-value opera-
tions; therefore, DINT could sustain ∼82 million/sec request
rate on 24 cores across three machines. Therefore, DINT’s
per-core request rate, i.e., ∼3.4 mops, is also within the same
order of magnitude as RDMA two-sided operations, i.e., 3.6
mops reported by [81, Figure 3] on a ConnectX-6 NIC.

5.3 CPU Utilization
We now examine whether DINT can scale CPU usage as load
changes, avoiding burning CPU cores. We use the same TATP
workload as in Section 5.2, but provision enough number of
clients, specify different transaction rates (by adjusting the
sleeping time interval between two consecutive transaction
requests in each client), and measure the CPU core usage of
transaction servers. For kernel UDP and DINT, they rely on
NIC interrupt to wake up any sleeping kernel-visible thread
(i.e., pthread) when packets arrive. For Caladan, it supports a
CPU-efficient non-spinning mode where the dedicated sched-
uler busy polls the NIC, and wakes up sleeping user-space
threads when needed via IPIs (Inter-Process Interrupt); the
Caladan scheduler also reallocates CPU cores every 5µs for
the application process based on various load signals (e.g.,
packet and thread queueing delay [17]), to provision just-
enough CPU cores for the current load.

Figure 8 shows how the CPU core usage varies with dif-
ferent throughput for different systems. Until 5 Mtps load,
Caladan achieves the lowest core usage and can additively
allocate more cores as the throughput increases, due to its fast
core reallocation. After 5 Mtps load, DINT achieves lower
CPU usage than Caladan and can additively scale its CPU
usage to 17 Mtps, because of packet batching during inter-
rupt handling. Kernel UDP has the worst CPU scaling curve,
caused by the high overheads of frequent kernel networking
stack traversing and user-kernel context switching. Neverthe-

410 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Dint DPDK

0 10 20
Throughput (Mtps)

0

25

50

75

100

A
ve

ra
ge

 la
te

nc
y

(μ
s)

(a) Average latency vs. tput.

0 10 20
Throughput (Mtps)

0

250

500

750

1000

99
th

-ta
il

la
te

nc
y

(μ
s)

(b) 99th-tail latency vs. tput.

Figure 9: Comparing raw DPDK with DINT (on TATP).

less, to enable more efficient CPU scaling for DINT under low
loads, one way could be consolidating multiple NIC interrupts
onto fewer cores to leverage batching to reduce per-packet
processing overheads. We discuss more in Section 6.

5.4 Comparison to Raw DPDK
Figure 9 compares raw DPDK performance with DINT on
the TATP workload. Here, “raw DPDK” means busy polling
a batch of transaction packets (up to 64, similar to kernel
NAPI) from the NIC, processing transaction requests, and
then directly modifying and forwarding packets back in a
batch as responses. Therefore, it is more efficient than the
Caladan baseline, but requires busy polling all cores. Overall,
DINT achieves 71% of the raw DPDK performance with
21%-25%/24%-28% higher unloaded average/99th-tail la-
tency. The lower performance of DINT is mainly caused
by two factors: 1) DINT devotes one core (out of eight) to
the user-space process, and 2) DINT is interrupt-driven, trad-
ing some performance for better CPU efficiency by not busy
polling any core (see §5.3). We note that the curves of the
raw DPDK experience latency spikes in the middle due to
insufficient packet batching.

5.5 Comparison to More Baselines
We now compare the performance of DINT with more base-
lines that leverage other networking stacks. In particular, we
compare to eRPC [28] and AF_XDP socket [31]. eRPC is a
kernel-bypass event-driven RPC library that builds on top of
raw ethernet packets with its own efficient reliable transport
protocol. It supports both DPDK and RDMA in busy-polling
manners; our testing uses DPDK. AF_XDP is a new ker-
nel socket family that leverages eBPF/XDP to directly DMA
packet payload to a pre-registered user-space memory region,
so that user-space applications can efficiently receive and
send packets in a zero-copy manner. AF_XDP appears to ap-
plications as a set of socket APIs, so the application’s packet
processing logic can be written in a normal programming lan-
guage (e.g., C/C++, Go) without the strict kernel verification
as in eBPF. We run AF_XDP with two modes: floating where
all provisioned cores handle NIC interrupts and run transac-
tion servers, and dedicating where half of the cores handle
NIC interrupts and another half run transaction servers.

Figure 10a and 10b shows the load-latency curves of eRPC,

eRPC AF_XDP (floating) AF_XDP (dedicating) Dint

0 20 40
Throughput (Mops)

0

25

50

75

100

M
ed

ia
n

la
te

nc
y

(μ
s)

(a) OCC lock manager.

0 10 20
Throughput (Mops)

0

25

50

75

100

M
ed

ia
n

la
te

nc
y

(μ
s)

(b) Key-value store.

Figure 10: Comparing eRPC and AF_XDP with DINT.

KV workload
[Throughput (Mops)]

Write-through
(BMC [19])

Write-back Write-back+BF
(DINT)

All GETs, all exists 21.6 21.7 21.7
80% GETs, all exists 1.0 21.1 20.9

80% GETs, 31% exists 0.4 0.5 25.0

Table 1: Impact of write-back and Bloom filter. “80% GETs” and
“31% exists” are based on the TATP workload and its largest table.

AF_XDP, and DINT for the OCC lock manager and key-value
store respectively. For both applications, eRPC achieves the
lowest minimum latency—8µs lower than DINT on both ap-
plications. For the lock manager, DINT achieves the highest
throughput, and outperforms AF_XDP by 1.6× and eRPC by
2.3×. eRPC suffers from latency spikes at low loads because
of insufficient RPC batching. For the key-value store that has
more compute per operation, DINT has similar throughput as
AF_XDP while achieving 29% lower minimum latency, be-
cause of directly handling requests in the kernel without going
into the user space; DINT achieves 1.4× higher throughput
than eRPC. The throughput results for eRPC must be taken
with a grain of salt: eRPC builds a generic loss-tolerant RPC
abstraction with session management, while DINT relies on
transaction semantics to handle packet losses and works on
raw ethernet/UDP packets.

One interesting observation is that AF_XDP in the floating
model performs much worse than the dedicating mode; simi-
lar results occur for DINT on the CPU placement of rare-path
request handling process as described in Section 4. This is
caused by the high user-kernel context switching overheads
when co-locating interrupt handling and the application pro-
cess on the same cores. We discuss further in Section 6.

5.6 Design Drill-Down
5.6.1 Impact of Write-Back and Bloom Filter
Table 1 shows how the write-back and Bloom filter designs
impact DINT performance on different key-value store work-
loads. With all GETs and all keys existing, the write-through,
write-back, and write-back + Bloom filter achieve similar
throughput. Once with 20% PUTs, the write-through through-
put drops to 1.0 Mops because of handling PUTs in the user
space, while the other two keep similarly high throughput.
Furthermore, adding 68.75% key-value operations for non-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 411

0.10
0.25

0.50
0.75

1.00
1.25

1.50
2.00

2.50

Ratio of eBPF mem

0.00

0.08

0.16

R
at

io
 o

f r
ar

e
-p

at
h

pk
ts

(a) Rare-path ratio.

0.10
0.25

0.50
0.75

1.00
1.25

1.50
2.00

2.50

Ratio of eBPF mem

0

8

16

Th
ro

ug
hp

ut
 (M

tp
s)

(b) Throughput.

0.10
0.25

0.50
0.75

1.00
1.25

1.50
2.00

2.50

Ratio of eBPF mem

0.000

0.015

0.030

Fa
ilu

re
 ra

te
in

 lo
ck

sh
ar

in
g

(%
)

(c) Failure rate in lock sharing.

Figure 11: Impact of varying the eBPF memory size under the TATP workload. “Ratio of eBPF memory” is against the workload dataset size
including both locks and key-values.

Interrupt collocation
Lowest unloaded

average/99p latency
Maximum
throughput

Collocating with app 35/139 µs 7.0 Mtps
Not collocating (DINT) 34/122 µs 16.9 Mtps

Table 2: Impact of collocating interrupt processing and the applica-
tion on the same cores (on TATP).

existing keys, only the write-back + Bloom filter can achieve
high throughput, as it handles most key-value operations in
the kernel, for both existing and non-existing keys.

5.6.2 Impact of Rare-Path Ratio

Figure 11a and 11b shows how different rare-path ratios (by
changing the eBPF memory size) impact DINT’s transaction
throughput. The rare-path ratio significantly impacts DINT
performance. For example, with 10% of the workload dataset
size in the eBPF memory, which gives 18% of rare-path packet
ratio, DINT only achieves 740 Kops. Once we provision the
eBPF memory to be 1.5× of the workload dataset size, similar
to how FaSST [29] provisions its hash table, there will be
only 1.7% of rare-path packet ratio, and DINT reaches 16.7
Mops. This supports the DINT’s design principle of offloading
frequent-path operations as much as possible into the kernel.

5.6.3 Impact of Lock Sharing

Figure 11c shows how the failure rate caused by lock sharing
varies with different sizes of the eBPF memory (i.e., differ-
ent sizes of the lock table). Overall, the failure rate is under
0.03%; when we provision the eBPF memory to be 1.5×
of the workload dataset size, the failure rate is only around
0.002%. This confirms that lock sharing works well on typical
OLTP workloads.

5.6.4 Impact of Interrupt Collocation with Applications

Table 2 shows how collocating interrupt processing with the
application impacts transaction latency and throughput. In-
terrupt collocation slightly increases the lowest unloaded
average/99th-tail latency by 3%/14% compared to no col-
location, because interrupt processing contends CPU cores
with application threads; it significantly reduces the maximum
throughput by 59%, as high interrupting rate easily starves the
application threads, bottlenecking the system performance.

6 Discussion and Future Work

Symmetric vs. asymmetric models: DINT adopts an asym-
metric client-side transaction model [42, 56, 60, 87], where
each transaction server “passively” handles incoming trans-
action requests. DINT then leverages eBPF/XDP to offload
transaction server operations into the kernel. In contrast, a
symmetric model [14, 29, 82] requires the transaction server
to also act as a client to issue transaction requests. This cre-
ates challenges to DINT, as eBPF/XDP itself cannot generate
new packets. Fortunately, by leveraging the AF_XDP tech-
nique (see §5.5) that provides fast packet sending function-
ality, DINT could support symmetric models efficiently. We
leave the integration of DINT with AF_XDP as future work.
Implications to networking stack research: DINT shows
that the kernel networking stack can achieve kernel-bypass-
like throughput and latency, but has worse CPU efficiency
under low loads than well-engineered kernel-bypass stacks
(§5.3). Therefore, we call for more research on optimizing the
CPU efficiency of the kernel networking stack that offloads
application operations. One idea may be smartly consolidat-
ing NIC interrupts to just-enough CPU cores by manipulating
the NIC IRQ affinity, which leverages batching during inter-
rupt handling to reduce per-packet processing overheads. This
shares the same goal as Shenango [61] and Caladan [17], but
targets the interrupt-driven kernel networking stack.

Another research problem is how to isolate the kernel stack-
offloaded operations and user-space operations, as naively
co-locating both on the same cores would cause severe per-
formance drop due to frequent user-kernel context switching
(see §4 and §5.5). DINT currently uses a simple static par-
titioning policy, but a more advanced dynamic partitioning
policy could possibly provide better performance.
Implications to transaction protocol research: Co-
designing transaction protocols with eBPF allows for both
high performance and good CPU efficiency. In this work, we
co-design an OCC/2PL-based transaction protocol in DINT.
DINT should also be able to support more advanced trans-
action protocols like MDCC [40] and Tapir [87] that essen-
tially rely on read-write and version-based locking. To sup-
port advanced protocols like ROCOCO [57] and Janus [58]
that maintain transaction dependency DAGs in the lock man-
ager, DINT would need to maintain complex graph data struc-
tures in eBPF, which calls for more co-designs to address the
challenge of eBPF programming constraints. In an attempt

412 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

to reduce CPU utilization, many transaction systems have
pushed to incorporate network offload devices like RDMA
and smartNICs [14, 73]. However, these devices are much
more expensive than commodity NICs, and come with cus-
tomized network stacks that have high maintenance overheads
in terms of engineering. DINT provides the opportunity for
accomplishing similar goals without the need for expensive
customized hardware, and provides a new point in the design
space for transaction protocol developers to explore.
Wish list for eBPF: DINT suffers from the fixed-size eBPF
maps, and no dynamic memory allocations for handling large
key-values. Therefore, the most helpful eBPF feature would
be supporting dynamic memory allocations so that offloaded
states could be more memory-efficient. Another helpful fea-
ture would be the egress XDP hook. When developing DINT,
we were thinking of using the AF_XDP socket to process
rare-path request packets (instead of the slower UDP socket);
however, AF_XDP faces troubles with the egress bookkeep-
ing of in-kernel states (§3.2), as it relies on the ingress-only
XDP while bypassing the egress TC hook. Currently, the only
way for AF_XDP to work is by calling eBPF functions in the
user space, but this suffers from high syscall overheads. If
the kernel supports the egress XDP hook, DINT could instead
leverage the faster AF_XDP socket to handle rare paths.

7 Related Work
Distributed in-memory transactions: By leveraging battery-
backed DRAM or NVRAM, distributed transactions are
no longer bottlenecked by disk IOs, but the networking
IOs. This has spurred a series of research that leverages
RDMA to implement distributed in-memory transactions, e.g.,
FaRM [14], FaSST [29], DrTM [83], DrTM+R [8], DrTM+H [82],
and Prism [6]. Rather than using RDMA that bypasses ker-
nels, DINT sticks to the most common commodity NICs with
the kernel networking stack for better security, isolation, pro-
tection, maintainability, and debuggability, without losing per-
formance.
High-performance networking stacks: The inefficiency of
traditional kernel networking stack has motivated the designs
of many kernel-bypass networking stacks, e.g., mTCP [24],
eRPC [28], Snap [51], Demikernel [86] and more [17, 30, 37,
61, 63, 74]. These stacks generally require DPDK-style busy
polling, and trades security, protection, maintainability, and
more for high performance. Instead, DINT provides compa-
rable high performance without busy polling for distributed
transaction applications, while guaranteeing kernel-based se-
curity, protection, maintainability, etc.

Perhaps the most relevant work to DINT in this space is
IX [3] which implements a protected kernel networking stack
and achieves kernel-bypass performance. To achieve high
networking performance, IX leverages adaptive batching to
amortize user-kernel transition overheads, while DINT relies
on the built-in batching of the existing kernel networking stack
to amortize interrupt handling overheads. One advantage of

DINT over IX is that DINT directly works for existing widely-
deployed Linux kernels without any kernel modifications or
customized kernel modules.
Hardware offloading for applications: Offloading network-
intensive operations to specialized hardware such as FPGA [1,
22, 41, 45], SmartNICs [36, 43, 46, 64, 72, 81], and pro-
grammable switches [13, 25, 26, 85] significantly improves
application performance. However, they are generally hard
to deploy in today’s cloud environments [28, 89], as these ad-
vanced hardware are not widely available in the public cloud.
In contrast, DINT aims to be generic and readily-deployable
without relying on any specialized hardware by leveraging the
kernel-native eBPF techniques on widely-deployed modern
Linux kernels and CPU platforms.
eBPF applications: eBPF is mostly used for packet filter-
ing [52], infrastructure monitoring [2,66], and L4 load balanc-
ing [16] in industry. Recent research has proposed more appli-
cations including: accelerating key-value stores [19], sidecar
proxies [68], Paxos [89], DBMS proxies [7], gathering con-
gestion control signals [59], guiding request scheduling [27],
offloading storage functions [88], and optimizing locks [62].
DINT is a new eBPF application targeting distributed transac-
tions.

8 Conclusion
DINT is a distributed in-memory transaction system under
the kernel networking stack, yet achieving kernel-bypass-like
throughput and latency. DINT achieves this by offloading
transaction data structures and operations into the kernel via
eBPF techniques, significantly reducing kernel stack over-
heads. Compared to a transaction system implemented using
Caladan, a well-engineered kernel-bypass networking stack,
DINT even achieves 2.6× higher throughput and only adds
10%/16% unloaded average/99th-tail latency.

More importantly, DINT challenges the conventional belief
that the kernel networking stack is not suitable for distributed
in-memory transactions, or generally, µs-scale networked ap-
plications; DINT shows that, with proper application-kernel
co-design enabled by eBPF, one important class of such ap-
plications under the kernel networking stack can achieve
kernel-bypass-like performance. DINT code is available at
https://github.com/DINT-NSDI24/DINT.

Acknowledgments
We thank our shepherd Tom Barbette and the anonymous
reviewers for their insightful comments. We thank Cloud-
lab [15] for providing us with the development and evaluation
infrastructure. We also thank Zhiying Xu and Junzhi Gong
for their helpful feedback. This work was supported in part by
ACE, one of the seven centers in JUMP 2.0, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA.
Yang Zhou is also supported by the Google PhD Fellowship.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 413

https://github.com/DINT-NSDI24/DINT

References

[1] Mohammadreza Alimadadi, Hieu Mai, Shenghsun Cho,
Michael Ferdman, Peter Milder, and Shuai Mu. Wa-
verunner: An Elegant Approach to Hardware Acceler-
ation of State Machine Replication. In Proceedings of
USENIX NSDI, pages 357–374, 2023.

[2] The Cilium Authors. Cilium: eBPF-Based Networking,
Observability, Security. https://cilium.io/.

[3] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In Proceedings of
USENIX OSDI, pages 49–65, 2014.

[4] Brian N Bershad, Stefan Savage, Przemyslaw Pardyak,
Emin Gün Sirer, Marc E Fiuczynski, David Becker,
Craig Chambers, and Susan Eggers. Extensibility Safety
and Performance in the SPIN Operating System. In Pro-
ceedings of ACM SOSP, pages 267–283, 1995.

[5] Burton H Bloom. Space/Time Trade-offs in Hash Cod-
ing with Allowable Errors. Communications of the ACM,
13(7):422–426, 1970.

[6] Matthew Burke, Sowmya Dharanipragada, Shannon
Joyner, Adriana Szekeres, Jacob Nelson, Irene Zhang,
and Dan RK Ports. PRISM: Rethinking the RDMA
Interface for Distributed Systems. In Proceedings of
ACM SOSP, pages 228–242, 2021.

[7] Matthew Butrovich, Karthik Ramanathan, John
Rollinson, Wan Shen Lim, William Zhang, Justine
Sherry, and Andrew Pavlo. Tigger: A Database Proxy
That Bounces with User-Bypass. Proceedings of the
VLDB Endowment, 16(11):3335–3348, 2023.

[8] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and
Haibo Chen. Fast and General Distributed Transactions
Using RDMA and HTM. In Proceedings of ACM Eu-
roSys, pages 1–17, 2016.

[9] James C Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, Jeffrey John Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. Spanner: Google’s Globally
Distributed Database. ACM Transactions on Computer
Systems (TOCS), 31(3):1–22, 2013.

[10] Intel Corporation. Intel Optane Persistent Memory. ht
tps://www.intel.com/content/www/us/en/pr
oducts/docs/memory-storage/optane-persist
ent-memory/overview.html.

[11] NVIDIA Corporation. Understanding interrupt moder-
ation. https://enterprise-support.nvidia.co

m/s/article/understanding-interrupt-moder
ation.

[12] The Transaction Processing Council. TPC-C: On-Line
Transaction Processing Benchmark. https://www.tp
c.org/tpcc/.

[13] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fer-
nando Pedone, and Robert Soulé. Netpaxos: Consensus
at Network Speed. In Proceedings of ACM SIGCOMM
Symposium on Software Defined Networking Research
(SOSR), pages 1–7, 2015.

[14] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No Com-
promises: Distributed Transactions with Consistency,
Availability, and Performance. In Proceedings of ACM
SOSP, pages 54–70, 2015.

[15] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, et al. The
Design and Operation of CloudLab. In Proceedings of
USENIX ATC, pages 1–14, 2019.

[16] Facebook. Katran: A High-Performance Layer 4 Load
Balancer. https://github.com/facebookincubat
or/katran.

[17] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating Interference at Mi-
crosecond Timescales. In Proceedings of USENIX OSDI,
pages 281–297, 2020.

[18] Jian Gao, Youyou Lu, Minhui Xie, Qing Wang, and Jiwu
Shu. Citron: Distributed Range Lock Management with
One-sided RDMA. In Proceedings of USENIX FAST,
pages 297–314, 2023.

[19] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine
Blin, and Gilles Muller. BMC: Accelerating Mem-
cached using Safe In-kernel Caching and Pre-stack Pro-
cessing. In Proceedings of USENIX NSDI, pages 487–
501, 2021.

[20] Dan Gibson, Hema Hariharan, Eric Lance, Moray
McLaren, Behnam Montazeri, Arjun Singh, Stephen
Wang, Hassan MG Wassel, Zhehua Wu, Sunghwan Yoo,
et al. Aquila: A unified, low-latency fabric for datacen-
ter networks. In Proceedings of USENIX NSDI, pages
1249–1266, 2022.

[21] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller. The eXpress Data Path: Fast
Programmable Packet Processing in the Operating Sys-
tem Kernel. In Proceedings of ACM CoNEXT, pages
54–66, 2018.

414 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://cilium.io/
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://enterprise-support.nvidia.com/s/article/understanding-interrupt-moderation
https://enterprise-support.nvidia.com/s/article/understanding-interrupt-moderation
https://enterprise-support.nvidia.com/s/article/understanding-interrupt-moderation
https://www.tpc.org/tpcc/
https://www.tpc.org/tpcc/
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran

[22] Zsolt István, David Sidler, Gustavo Alonso, and Marko
Vukolic. Consensus in a Box: Inexpensive Coordination
in Hardware. In Proceedings of USENIX NSDI, pages
425–438, 2016.

[23] Brendan Jackman. Atomics for eBPF. https://lwn.
net/Articles/840224/.

[24] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In Proceedings of
USENIX NSDI, pages 489–502, 2014.

[25] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. NetChain: Scale-Free Sub-RTT Coordination.
In Proceedings of USENIX NSDI, pages 35–49, 2018.

[26] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing Key-Value Stores with Fast
In-Network Caching. In Proceedings of ACM SOSP,
pages 121–136, 2017.

[27] Kostis Kaffes, Jack Tigar Humphries, David Mazières,
and Christos Kozyrakis. Syrup: User-Defined Schedul-
ing Across the Stack. In Proceedings of ACM SOSP,
pages 605–620, 2021.

[28] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In Proceed-
ings of USENIX NSDI, pages 1–16, 2019.

[29] Anuj Kalia, Michael Kaminsky, and David G Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In
Proceedings of USENIX OSDI, pages 185–201, 2016.

[30] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP Acceleration as an OS
Service. In Proceedings of EuroSys, pages 1–16, 2019.

[31] The Linux kernel development community. AF_XDP.
https://docs.kernel.org/networking/af_xdp.
html.

[32] The Linux kernel development commu-
nity. BPF_MAP_TYPE_ARRAY and
BPF_MAP_TYPE_PERCPU_ARRAY. h t t p s :
//docs.kernel.org/bpf/map_array.html.

[33] The Linux kernel development community.
BPF_MAP_TYPE_BLOOM_FILTER . https://do
cs.kernel.org/bpf/map_bloom_filter.html.

[34] The Linux kernel development community. NAPI. http
s://docs.kernel.org/networking/napi.html.

[35] The Linux kernel development community. struct
sk_buff. https://docs.kernel.org/networki
ng/skbuff.html.

[36] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im,
Marco Canini, Dejan Kostić, Youngjin Kwon, Simon
Peter, and Emmett Witchel. LineFS: Efficient SmartNIC
Offload of a Distributed File System with Pipeline Par-
allelism. In Proceedings of ACM SOSP, pages 756–771,
2021.

[37] Marios Kogias, George Prekas, Adrien Ghosn, Jonas
Fietz, and Edouard Bugnion. R2P2: Making RPCs First-
Class Datacenter Citizens. In Proceedings of USENIX
ATC, pages 863–880, 2019.

[38] Xinhao Kong, Jingrong Chen, Wei Bai, Yechen Xu,
Mahmoud Elhaddad, Shachar Raindel, Jitendra Padhye,
Alvin R Lebeck, and Danyang Zhuo. Understanding
RDMA Microarchitecture Resources for Performance
Isolation. In Proceedings of USENIX NSDI, pages 31–
48, 2023.

[39] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding Performance Anomalies in RDMA Subsystems.
In Proceedings of USENIX NSDI, pages 287–305, 2022.

[40] Tim Kraska, Gene Pang, Michael J Franklin, Samuel
Madden, and Alan Fekete. MDCC: Multi-Data Center
Consistency. In Proceedings of EuroSys, pages 113–126,
2013.

[41] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei
Lu, Yongqiang Xiong, Andrew Putnam, Enhong Chen,
and Lintao Zhang. KV-Direct: High-Performance In-
Memory Key-Value Store with Programmable NIC. In
Proceedings of ACM SOSP, pages 137–152, 2017.

[42] Jialin Li, Ellis Michael, and Dan RK Ports. Eris:
Coordination-Free Consistent Transactions Using In-
Network Concurrency Control. In Proceedings of ACM
SOSP, pages 104–120, 2017.

[43] Junru Li, Youyou Lu, Qing Wang, Jiazhen Lin, Zhe
Yang, and Jiwu Shu. AlNiCo: SmartNIC-accelerated
Contention-aware Request Scheduling for Transaction
Processing. In Proceedings of USENIX ATC, pages
951–966, 2022.

[44] Hyeontaek Lim, Dongsu Han, David G Andersen, and
Michael Kaminsky. MICA: A Holistic Approach to
Fast In-Memory Key-Value Storage. In Proceedings of
USENIX NSDI, pages 429–444, 2014.

[45] Jiaxin Lin, Adney Cardoza, Tarannum Khan, Yeonju Ro,
Brent E Stephens, Hassan Wassel, and Aditya Akella.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 415

https://lwn.net/Articles/840224/
https://lwn.net/Articles/840224/
https://docs.kernel.org/networking/af_xdp.html
https://docs.kernel.org/networking/af_xdp.html
https://docs.kernel.org/bpf/map_array.html
https://docs.kernel.org/bpf/map_array.html
https://docs.kernel.org/bpf/map_bloom_filter.html
https://docs.kernel.org/bpf/map_bloom_filter.html
https://docs.kernel.org/networking/napi.html
https://docs.kernel.org/networking/napi.html
https://docs.kernel.org/networking/skbuff.html
https://docs.kernel.org/networking/skbuff.html

RingLeader: Efficiently Offloading Intra-Server Orches-
tration to NICs. In Proceedings of USENIX NSDI, pages
1293–1308, 2023.

[46] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishna-
murthy, Simon Peter, and Karan Gupta. Offloading Dis-
tributed Applications onto SmartNICs Using iPipe. In
Proceedings of ACM SIGCOMM, pages 318–333. 2019.

[47] IBM Software Group Information Management. Tele-
com Application Transaction Processing Benchmark.
https://tatpbenchmark.sourceforge.net/.

[48] Linux Programmer’s Manual. bpf-helpers(7). https:
//man7.org/linux/man-pages/man7/bpf-helpe
rs.7.html.

[49] Linux Programmer’s Manual. bpf(2). https://man7
.org/linux/man-pages/man2/bpf.2.html.

[50] Linux Programmer’s Manual. tc-bpf(8). https://ma
n7.org/linux/man-pages/man8/tc-bpf.8.html.

[51] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C Evans, Steve Gribble,
et al. Snap: A Microkernel Approach to Host Network-
ing. In Proceedings of ACM SOSP, pages 399–413,
2019.

[52] Steven McCanne and Van Jacobson. The BSD Packet
Filter: A New Architecture for User-level Packet Cap-
ture. In USENIX winter, volume 46, 1993.

[53] John McNamara. API/ABI Stability and LTS: Current
state and Future. https://www.dpdk.org/wp-con
tent/uploads/sites/35/2017/09/DPDK-Users
pace2017-Day2-2-ABI-Stability-and-LTS-Cur
rent-state-and-Future.pdf.

[54] The memcached contributors. Memcached - a Dis-
tributed Memory Object Caching System. https:
//memcached.org/.

[55] Microsoft. eBPF implementation that runs on top of
Windows. https://github.com/microsoft/ebp
f-for-windows.

[56] Sumit Kumar Monga, Sanidhya Kashyap, and Chang-
woo Min. Birds of a feather flock together: Scaling
RDMA RPCs with Flock. In Proceedings of ACM SOSP,
pages 212–227, 2021.

[57] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and
Jinyang Li. Extracting More Concurrency from Dis-
tributed Transactions. In Proceedings of USENIX OSDI,
pages 479–494, 2014.

[58] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li.
Consolidating Concurrency Control and Consensus for
Commits under Conflicts. In Proceedings of USENIX
OSDI, pages 517–532, 2016.

[59] Akshay Narayan, Frank Cangialosi, Deepti Raghavan,
Prateesh Goyal, Srinivas Narayana, Radhika Mittal, Mo-
hammad Alizadeh, and Hari Balakrishnan. Restructur-
ing Endpoint Congestion Control. In Proceedings of
ACM SIGCOMM, pages 30–43, 2018.

[60] The University of Texas at Austin. Natacha Crooks. A
client-centric approach to transactional datastores. ht
tps://repositories.lib.utexas.edu/handle
/2152/81352.

[61] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
High CPU Efficiency for Latency-Sensitive Datacenter
Workloads. In Proceedings of USENIX NSDI, pages
361–378, 2019.

[62] Sujin Park, Diyu Zhou, Yuchen Qian, Irina Calciu, Tae-
soo Kim, and Sanidhya Kashyap. Application-Informed
Kernel Synchronization Primitives. In Proceedings of
USENIX OSDI, pages 667–682, 2022.

[63] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug
Woos, Arvind Krishnamurthy, Thomas Anderson, and
Timothy Roscoe. Arrakis: The Operating System is the
Control Plane. ACM Transactions on Computer Systems
(TOCS), 33(4):1–30, 2015.

[64] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine
Kaufmann, Simon Peter, Rastislav Bodik, and Thomas
Anderson. Floem: A Programming System for NIC-
Accelerated Network Applications. In Proceedings of
USENIX OSDI, pages 663–679, 2018.

[65] Dan RK Ports, Jialin Li, Vincent Liu, Naveen Kr Sharma,
and Arvind Krishnamurthy. Designing Distributed Sys-
tems Using Approximate Synchrony in Data Center Net-
works. In Proceedings of USENIX NSDI, pages 43–57,
2015.

[66] The IO Visor Project. BPF Compiler Collection (BCC).
https://github.com/iovisor/bcc.

[67] The IO Visor Project. eXpress Data Path (XDP). https:
//www.iovisor.org/technology/xdp.

[68] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang,
and KK Ramakrishnan. SPRIGHT: Extracting the
Server From Serverless Computing! High-Performance
eBPF-Based Event-Driven, Shared-Memory Processing.
In Proceedings of ACM SIGCOMM, pages 780–794,
2022.

416 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://tatpbenchmark.sourceforge.net/
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man2/bpf.2.html
https://man7.org/linux/man-pages/man2/bpf.2.html
https://man7.org/linux/man-pages/man8/tc-bpf.8.html
https://man7.org/linux/man-pages/man8/tc-bpf.8.html
https://www.dpdk.org/wp-content/uploads/sites/35/2017/09/DPDK-Userspace2017-Day2-2-ABI-Stability-and-LTS-Current-state-and-Future.pdf
https://www.dpdk.org/wp-content/uploads/sites/35/2017/09/DPDK-Userspace2017-Day2-2-ABI-Stability-and-LTS-Current-state-and-Future.pdf
https://www.dpdk.org/wp-content/uploads/sites/35/2017/09/DPDK-Userspace2017-Day2-2-ABI-Stability-and-LTS-Current-state-and-Future.pdf
https://www.dpdk.org/wp-content/uploads/sites/35/2017/09/DPDK-Userspace2017-Day2-2-ABI-Stability-and-LTS-Current-state-and-Future.pdf
https://memcached.org/
https://memcached.org/
https://github.com/microsoft/ebpf-for-windows
https://github.com/microsoft/ebpf-for-windows
https://repositories.lib.utexas.edu/handle/2152/81352
https://repositories.lib.utexas.edu/handle/2152/81352
https://repositories.lib.utexas.edu/handle/2152/81352
https://github.com/iovisor/bcc
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/xdp

[69] Benjamin Rothenberger, Konstantin Taranov, Adrian
Perrig, and Torsten Hoefler. ReDMArk: Bypassing
RDMA Security Mechanisms. In Proceedings of
USENIX Security, pages 4277–4292, 2021.

[70] Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav Atre,
Daniel S Berger, James C Hoe, Aurojit Panda, and Jus-
tine Sherry. We Need Kernel Interposition over the
Network Dataplane. In Proceedings of ACM HotOS,
pages 152–158, 2021.

[71] Salvatore Sanfilippo. Redis: An In-Memory Database
That Persists on Disk. https://github.com/redis
/redis.

[72] Henry N Schuh, Weihao Liang, Ming Liu, Jacob Nel-
son, and Arvind Krishnamurthy. Xenic: SmartNIC-
Accelerated Distributed Transactions. In Proceedings
of ACM SOSP, pages 740–755, 2021.

[73] Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nel-
son, and Arvind Krishnamurthy. Xenic: Smartnic-
accelerated distributed transactions. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, SOSP ’21, page 740–755, New York,
NY, USA, 2021. Association for Computing Machinery.

[74] ScyllaDB. SeaStar High Performance Server-Side Ap-
plication Framework. https://github.com/scyll
adb/seastar.

[75] Alexei Starovoitov. BPF at Facebook. https://kern
el-recipes.org/en/2019/talks/bpf-at-faceb
ook/.

[76] Brent E Stephens, Darius Grassi, Hamidreza Almasi,
Tao Ji, Balajee Vamanan, and Aditya Akella. TCP is
Harmful to In-Network Computing: Designing a Mes-
sage Transport Protocol (MTP). In Proceedings of ACM
HotNets, pages 61–68, 2021.

[77] The H-Store Team. SmallBank Benchmark. https:
//hstore.cs.brown.edu/documentation/depl
oyment/benchmarks/smallbank/.

[78] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy Transactions in
Multicore In-Memory Databases. In Proceedings of
ACM SOSP, pages 18–32, 2013.

[79] William Tu, Yi-Hung Wei, Gianni Antichi, and Ben
Pfaff. Revisiting the Open vSwitch Dataplane Ten Years
Later. In Proceedings of ACM SIGCOMM, pages 245–
257, 2021.

[80] VMware. Update to VMware’s per-CPU Pricing Model
| VMware. http://web.archive.org/web/202110
23072913/https://news.vmware.com/company/
cpu-pricing-model-update-feb-2020.

[81] Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen,
and Haibo Chen. Characterizing Off-Path SmartNIC
for Accelerating Distributed Systems. In Proceedings
of USENIX OSDI, pages 987–1004, 2023.

[82] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing RDMA-Enabled Distributed
Transactions: Hybrid is Better! In Proceedings of
USENIX OSDI, pages 233–251, 2018.

[83] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast In-Memory Transaction Processing
Using RDMA and HTM. In Proceedings of ACM SOSP,
pages 87–104, 2015.

[84] Juncheng Yang, Ziyue Qiu, Yazhuo Zhang, Yao Yue, and
KV Rashmi. FIFO can be Better than LRU: the Power of
Lazy Promotion and Quick Demotion. In Proceedings
of ACM HotOS, pages 70–79, 2023.

[85] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman,
Mosharaf Chowdhury, and Xin Jin. NetLock: Fast,
Centralized Lock Management Using Programmable
Switches. In Proceedings of ACM SIGCOMM, pages
126–138, 2020.

[86] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk
Olynyk, Jacob Nelson, Omar S Navarro Leija, Ash-
lie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay
Jayakar, et al. The Demikernel Datapath OS Archi-
tecture for Microsecond-Scale Datacenter Systems. In
Proceedings of ACM SOSP, pages 195–211, 2021.

[87] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan RK Ports. Build-
ing Consistent Transactions with Inconsistent Replica-
tion. ACM Transactions on Computer Systems (TOCS),
35(4):1–37, 2018.

[88] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas,
Jeffrey Tao, Evan Mesterhazy, Michael Makris, Jun-
feng Yang, Amy Tai, Ryan Stutsman, et al. XRP: In-
Kernel Storage Functions with eBPF. In Proceedings of
USENIX OSDI, pages 375–393, 2022.

[89] Yang Zhou, Zezhou Wang, Sowmya Dharanipragada,
and Minlan Yu. Electrode: Accelerating Distributed
Protocols with eBPF. In Proceedings of USENIX NSDI,
pages 1391–1407, 2023.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 417

https://github.com/redis/redis
https://github.com/redis/redis
https://github.com/scylladb/seastar
https://github.com/scylladb/seastar
https://kernel-recipes.org/en/2019/talks/bpf-at-facebook/
https://kernel-recipes.org/en/2019/talks/bpf-at-facebook/
https://kernel-recipes.org/en/2019/talks/bpf-at-facebook/
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
http://web.archive.org/web/20211023072913/https://news.vmware.com/company/cpu-pricing-model-update-feb-2020
http://web.archive.org/web/20211023072913/https://news.vmware.com/company/cpu-pricing-model-update-feb-2020
http://web.archive.org/web/20211023072913/https://news.vmware.com/company/cpu-pricing-model-update-feb-2020

Brain-on-Switch: Towards Advanced Intelligent Network Data Plane via
NN-Driven Traffic Analysis at Line-Speed

Jinzhu Yan1,∗ Haotian Xu1,∗ Zhuotao Liu1,2, # Qi Li1,2 Ke Xu1,2

Mingwei Xu1,2 Jianping Wu1,2

1 Tsinghua University 2 Zhongguancun Laboratory

Abstract
The emerging programmable networks sparked significant

research on Intelligent Network Data Plane (INDP), which
achieves learning-based traffic analysis at line-speed. Prior
art in INDP focus on deploying tree/forest models on the data
plane. We observe a fundamental limitation in tree-based
INDP approaches: although it is possible to represent even
larger tree/forest tables on the data plane, the flow features
that are computable on the data plane are fundamentally lim-
ited by hardware constraints. In this paper, we present BoS
to push the boundaries of INDP by enabling Neural Network
(NN) driven traffic analysis at line-speed. Many types of
NNs (such as Recurrent Neural Network (RNN), and trans-
formers) that are designed to work with sequential data have
advantages over tree-based models, because they can take
raw network data as input without complex feature compu-
tations on the fly. However, the challenge is significant: the
recurrent computation scheme used in RNN inference is fun-
damentally different from the match-action paradigm used
on the network data plane. BoS addresses this challenge by
(i) designing a novel data plane friendly RNN architecture
that can execute unlimited RNN time steps with limited data
plane stages, effectively achieving line-speed RNN inference;
and (ii) complementing the on-switch RNN model with an
off-switch transformer-based traffic analysis module to fur-
ther boost the overall performance. We implement a prototype
of BoS using a P4 programmable switch as our data plane,
and extensively evaluate it over multiple traffic analysis tasks.
The results show that BoS outperforms state-of-the-art in both
analysis accuracy and scalability.

1 Introduction

The emerging programmable network hardware (e.g., P4
switch [5], NetFPGA [36] and SmartNIC [13,37,54]) sparked
significant research on Intelligent Network Data Plane (INDP).
Compared with other AI-assisted networking designs which

*Equal contribution. # Corresponding author.

deploy learning models on either end-hosts (e.g., congestion
control [1, 63]) or network control plane (including auxiliary
servers) (e.g., routing control [29, 72]), INDP is forwarding-
native since it deploys learning models directly on network
data plane. Thus, the key merit of INDP, as first summarized
in [71], is that it enables intelligent network traffic analysis at
line-speed based on data-driven learning models rather than
empirical rules/protocols.

The initial exploration of INDP begins with extracting fine-
grained flow information from the programmable data plane
to support a variety of overarching applications, such as covert
channel detection [61], RTT measurement [45], traffic clas-
sification [4], and DDoS mitigation [30]. Yet, the subtle dis-
tinction between these early approaches and the native INDP
paradigm is that they fail to directly deploy learning models
on the data plane due to various hardware constraints. For
example, the lack of support for floating-point arithmetic on
P4 switches makes it significantly more difficult to execute
model inference on the data plane than on general-purpose
processors like CPUs and GPUs.

The community since then make substantial progress on re-
alizing tree-based INDP [7,24,57,58,68,69,71], based on the
insight that the decision making process in tree-models can be
implemented using match-action tables on the programmable
data plane. State-of-the-art (SOTA) in this regard is NetBea-
con [71] which designs a novel ternary table encoding mech-
anism to efficiently deploy fairly large tree/forest models on
programmable switches. Further, the recent art [43, 50–52]
embrace neural networks by deploying binarized Multi-Layer
Perceptron (MLP) on SmartNIC. Yet, the capacity of Smart-
NIC (e.g., 2×40 GbE for Netronome Agilio CX [37]), which
co-locates with an end-host, is several orders of magnitude
smaller than the in-network programmable switches (e.g.,
6.4 Tbps for Barefoot Tofino 1 switch).

In this paper, we propose Brain-on-Switch (BoS) to ad-
vance state-of-the-art of INDP in two fundamental ways. First,
BoS enables the use of Neural Network (NN) in INDP. NNs
have several advantages over tree-based models for traffic
analysis. For instance, Recurrent Neural Network (RNN), a

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 419

type of NN designed to work with sequential data, outper-
forms tree-models in both efficiency (e.g., not requiring com-
plicated feature computations on the fly, consuming fewer
hardware resources to maintain per-flow state, etc.) and ac-
curacy (especially when handling more complex tasks, such
as multi-class traffic classification). Second, BoS is architec-
turally complete in the sense that it can accommodate full-
precision and advanced models in INDP. Hardware limitations
(e.g., lack of floating-point number support) on switches force
model binarization [2, 51, 58], which, unfortunately, reduces
performance. Although prior art (e.g., IIsy [68], [49]) men-
tioned the hybrid analysis concept of forwarding certain flows
to large tree-based models deployed at the endpoint for reeval-
uation, they lack the fundamental design to precisely control
the amount of such escalated flows processed off-switch. In
contrast, BoS proposes a novel approach to accommodating
advanced off-switch models (e.g., transformer-based models)
into INDP to improve the overall analysis performance, while
ensuring that the vast majority of traffic (e.g., over 95% of
flows) is still analyzed at line-speed on the data plane.

Concretely, BoS has the following innovative designs:
(i) A novel binary RNN architecture that retains full-

precision model weights during on-switch inference (i.e., only
activation functions are binarized), realized by encoding the
complex layer forward propagation functions as match-action
tables. Compared to the fully-binarized MLP model [51], our
binary RNN exhibits substantial performance advantages.

(ii) A sliding-window based computation scheme to execute
unlimited RNN time steps using limited forwarding stages on
switches. BoS overcomes various switch hardware limitations
in realizing the critical operations essential to this compu-
tation scheme, such as the read/write of a ring buffer like
data structure, and an argmax like operation to make compre-
hensive inference decisions by aggregating the intermediate
analysis results as a flow proceeds.

(iii) An analysis-escalation module to accommodate full-
precision transformer-based models in BoS. The key design
is two-fold: accurately identifying the flows for which on-
switch analysis confidence is insufficient, and designing an
Integrated Model Inference System (IMIS) to enable fast off-
switch inference for escalated flows.
Contributions. The major contribution of this paper is the
design, implementation and evaluation of BoS, the first INDP
design that enables NN-driven traffic analysis at line-speed.
We implement a prototype of BoS and evaluate it extensively
using several use cases. The experimental results show that
BoS outperforms SOTA in analysis accuracies by non-trivial
margins, achieving up to ∼19% higher F1-scores than tree-
based NetBeacon [71] and up to ∼40% higher than binary
MLP based N3IC [51]. We further perform thorough system-
level evaluations, demonstrating that BoS is scalable to handle
high network loads (flow concurrency), attributing to the co-
design of the on-switch binary RNN and off-switch IMIS.
Finally, we evaluate hardware resource utilization by BoS.

2 Background and Motivation

Programmable Network Data Plane. The emerging of
Protocol-Independent Switch Architecture (PISA) enables
flexible data plane programmability, empowering fast innova-
tions of networking designs. In PISA, the switching pipeline
can be programmed via P4 [5], a domain-specific program-
ming language. A PISA pipeline consists of a parser for
header parsing, multiple match-action stages for header fields
and metadata manipulating, and a deparser for header reassem-
bling. In general, the actual packet processing logic is imple-
mented using these match-action stages. PISA also supports
components for stateful storage, such as registers.

Despite the programmability mentioned above, PISA has
the following limitations. First, only simple operations like
add, subtract, shift and bit-wise operations are supported, ex-
cluding floating numbers, multiplication, division and com-
plex comparisons. Second, the resources (such as the number
of stages, SRAM, TCAM) are limited. For instance, on Bare-
foot Tofino 1, each pipeline has 12 stages, 120 Mbit SRAM
and 6.2 Mbit TCAM [71]. Finally, each register can only be
accessed once through an atomic operation for each packet.
RNNs and Transformers. RNN [31] is designed to process
sequence data of varying lengths by maintaining an inter-
nal state (i.e., the hidden state). Specifically, given the input
xt ∈ Rm at time step t, the hidden state ht ∈ Rn is calculated
as ht = tanh(W [xt ,ht−1] + b), where W and b are trainable
parameters. As ht encodes the current input xt and the histori-
cal information ht−1 at the same time, RNN can capture the
relationships between the data points in a sequence. The algo-
rithm used to calculate the hidden states is called a recurrent
unit, and the two most popular recurrent units are LSTM [17]
and Gated Recurrent Unit (GRU) [8].

Transformers [56] excel at modeling sequential data. Re-
cently, several traffic analysis approaches [11, 26, 28, 59, 66]
treat the bytes of packets as words or images, and introduce
a variety of transformer-based models to achieve impres-
sive traffic classification performance. In addition, the self-
supervised pre-training paradigm used in transformer-based
traffic analysis requires a small amount of labeled data.
Motivation. Our community make substantial progress [7,
24, 57, 58, 68, 69, 71] on realizing Intelligent Network Data
Plane (INDP) by embedding decision tree models in the for-
warding pipeline of programmable switches. Their key insight
is that the decision making process in tree/forest models (i.e.,
comparing a value to a threshold and then moving on to the
next tree node until a leaf node is reached) is very similar
to the match-action table paradigm used on the data plane.
For instance, state-of-the-art NetBeacon [71] designs a novel
coding algorithm to effectively represent multiple tree models
using ternary matching tables.

We forecast a performance ceiling in further innovating
tree-based INDP designs. Specifically, tree models often rely
on advanced feature engineering (i.e., extracting various types

420 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

f

Select

Maximum
final class

confidence

thresholds

④ Aggregation

>?

Output

probability

vector

③Output Layer

TS – last TS
IPD

Ebd

FC

pkt length

ev

① Feature Embedding

Ebd

Window Counter

Probability Counter

… …

idx CPR1~N

… …

update
② RNN Cell

EV storage

… …

idx ev1~evS-1

… …

evSev1 evS-1

GRUGRUGRU
update

CPR1~N

Origin

Packets
Origin

Packets
Origin

Packets

Sliding Windows & Expanded RNN Time Steps

ev1 ev2 evS

packet length

ev intermediate

result

Embed

STE

IPD
Embed

STE

STE
GRU

STE
GRU

GRU
STE

Output

Layer

STE

STE

Full-precision Layer

Straight-through Estimator

Flow A

Flow B

Flow C

STEFC

Traffic

Analysis

Logic

Data

Plane

Reali-

zation

H

H’

FlowInfo

… … …

idx TS ID

… … …

5-tuple

timestamp

flow

index
Flow

Management

ID

=?

timeout?
collision?

n

cumulative
probability,

class

⑤ Escalation Mechanism

ambiguous?

Ambiguous

Counter

escalation

threshold

>?
escalation?

Fast Packet Parsing

Per-flow State Organizing
Full-Precision

Transformer

inference result

DPDK

GPU

IMIS

packet-level metadata

Pool
batched flow-level data

Analyzer

Lock-free Ring Buffer

Parser

Buffer
result lookup

Aggregation

final result

confidence

Escalation

Mechanism

𝕋conf

𝛵esc

Figure 1: The BoS architecture enables NN-driven traffic analysis in INDP.

of statistics/properties/attributes from raw data) to boost ac-
curacy. However, the features that are computable on the data
plane at line-speed are fundamentally limited due to hardware
constraints. For instance, flow features such as the s.t.d., fre-
quency, and percentile of packet lengths are critical to tree
models [40, 71]. Yet, computing these features is either im-
possible or difficult, often requiring ad-hoc tricks to estimate
these statistics. For instance, prior art [71] estimates s.t.d. of
packet lengths upon receiving certain packets (i.e., the 2k-th
packet in each flow), indicating it can only execute inference
at these locations. The limitation is obvious: an inference
error obtained on the 2k-th packet cannot be corrected until
the arrival of the 2k+1-th packet.
Design Goals. Therefore, philosophically, it is worth ask-
ing: can we expand the boundaries of INDP to a new type
of learning models that is not limited by the availability of
flow features on the data plane. In this paper, we address this
research question concretely by enabling NN-driven traffic
analysis in INDP. Unlike tree/forest models, many types of
NNs (such as RNNs and transformers) that are designed to
process sequential data can directly take raw network traf-
fic data as input, eliminating the requirements of computing
complex features on the data plane on the fly. However, the in-
corporation of NNs into INDP presents significant challenges.
For instance, the recurrent computation scheme in RNN is
fundamentally different from the match-action paradigm on
the data plane, making it more difficult to realize on-switch
RNN inference. Additionally, existing transformer-based traf-
fic analysis approaches [11,26,28,59,66] simply treat network
traffic as another form of sequential data, without construct-
ing appropriate systems to analyze the network flows online
while they are traversing the data plane.

To address these challenges, we architect BoS, the first
NN-driven INDP system. A recent art N3IC [51] explores to
deploy binary MLP models on SmartNIC, which is more com-
putationally flexible, yet with much lower throughput than
programmable switches. We focus on programmable switch
based INDP in this paper (although we also compare the traf-
fic analysis accuracy of BoS with N3IC in our evaluations).
Concurrent with BoS, Broadcom unveils the early-stage de-
velopment of their novel NN inference switching chip [6],
underlining the significance of INDP.

3 Design Overview

We plot the architecture of BoS in Figure 1. The overarching
traffic analysis logic in BoS centers around (i) a data plane
friendly RNN inference architecture and (ii) a co-design with
an Integrated Model Inference System (IMIS) to accommo-
date full-precision transformer-based traffic analysis models.
The key designs toward hardware friendliness are two-fold:
(i) realizing the online forward propagation of RNN layers via
offline-trained input-output-mapping tables, and (ii) executing
unlimited recurrence of RNN time steps via a sliding window
mechanism that recurrently processes fixed-length packets
segments. The key to co-design with IMIS is accurately identi-
fying the flows that do not receive sufficient confidence from
the on-switch analysis, and to only escalate these flows to the
off-switch IMIS, so that BoS still processes the vast majority
of traffic on-switch (e.g., over 95% flows). Nevertheless, we
optimize the system design of IMIS so that a single instance of
IMIS can process ten million packets per second while main-
taining low inference latencies (see § 7.3). This ensures the
off-switch IMIS is unlikely to be the bottleneck of BoS.

4 Data Plane Friendly RNN Architecture

4.1 Raw Packet Sequences as Input Features

The on-switch RNN uses raw flow sequences as the input
features, i.e., the packet length sequence and the inter-packet
delay (IPD) sequence. When a packet in the flow arrives at
the switch, we extract its length and get IPD based on the
subtraction of timestamps. Through feature embedding, these
metadata are mapped into an embedding vector, which is
stored in a sequence for subsequent model inference.

Using raw sequences as input features has several key ad-
vantages over using statistical flow features (such as the mean
and s.t.d. of packet lengths). First, the availability of criti-
cal flow features is greatly limited on switch (explained in
§ 2). Second, storing per-flow statistical features on switch
is expensive: NetBeacon [71] consumes 2.5x storage to store
features as evaluated in § 7.2. Finally, feature engineering,
without careful designs, could result in overfitting problem.
For instance, we notice that some features (e.g., the num-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 421

flow
packets

Binary RNN

length seq

STE

IPD seq

Embedding
STE

Embedding

STE
FC

STE
GRU Memory

FC + Softmax

sliding
window

...

intermediate
results

...

Aggregation

final result
with

confidence

Figure 2: Data-plane-friendly binary RNN architecture.

ber of packets with packet size in [48,64)) are heavily task-
specific [3, 71], and features like port number can lead to
overfitting on host configurations.

4.2 Binary RNN Architecture

As shown in Figure 2, architecturally, the binary RNN model
in BoS consists of three building blocks: feature embedding,
RNN cell and output layer. In the feature embedding, the
length and IPD of each packet are passed through two dif-
ferent embedding layers, respectively, and then fed into a
fully-connected layer to obtain an embedding vector. Taking
the embedding vector sequence of per-flow packets as input,
the RNN cell performs sequence analysis based on GRU [8].
In each time step of GRU calculation, the current embedding
vector and the previous hidden state (i.e., output activations
of GRU) are used as input, and the output is used to update
the hidden state. Finally, the hidden state of the last step is
passed through the output layer (i.e., a fully-connected layer
with softmax) to obtain the analysis result.

Each GRU calculation contains 3 Hadamard product oper-
ations and 3 multiplications with nonlinear functions, which
cannot be natively implemented on programmable switches
due to hardware constraints. To cope with this challenge, we
perform binarization on neural network activation functions
to enable hardware-friendly model deployment. Specifically,
we set all activation functions in the feature embedding and
the RNN cell to Straight-Through Estimator (STE) [64]. STE
performs a sign function in forward propagation, which makes
all neural network activations +1 or -1. And in backward prop-
agation, STE estimates the incoming gradient to be equal to
the clipped outgoing gradient.

Prior art N3IC [51] performs binarization on both weights
and activations of an MLP model, and then implements fully-
connected layer forward propagation on the SmartNIC using
XOR and customized population count (popcnt) operations.
The popcnt operation, unfortunately, is not friendly to the
switch pipeline: realizing a single popcnt operation for a 128-
bit string takes 14 switch stages. Yet, one 128bit-to-64bit
fully-connected layer in an MLP model requires 64 popcnt

Table 1: Binary RNN v.s. Binary MLP

Prior Work
Binary

Activations
Full Precision

Weights
Stage

Consumption⋆
Model

Accuracy†

Binary MLP (N3IC [51]) " % High Low
Binary RNN " " Low High

⋆ Estimated if we were to implement the binary MLP on a programmable switch.
† See § 7.2 for quantitative results.

ht

evt

GRU

(a) RNN cell

ev1 ev2 evt

GRU

GRU
GRU

ht

(c) solution 2(b) solution 1

GRU

GRU

evt+1evt

GRUht-1

ht

evt-1

switch
storage

Figure 3: The design choices for RNN time steps.

operations. More crucially, as evaluated in § 7.2, full model
binarization results in significant performance degradation.
In Table 1, we summarize the key differences between our
binary RNN and the binary MLP in N3IC [51].

4.3 Data Plane Native Model Inference

We now present the data plane native RNN inference.
Forward Propagation. The key to retain full precision model
weights in our RNN models is to avoid direct computations
of the layer forward propagation on the data plane. To this
end, BoS realizes forward propagation based on match-action
table lookup. Specifically, since all activations are binarized
to +1 or -1, the input and output vectors of any neural network
layer (e.g., the embedding layer, FC layer and GRU layer in
Figure 2) are essentially bit strings. Therefore, regardless of
what computations are executed in a neural network layer, we
can realize equivalent input-output-relationship by recording
an enumerative mapping from input bit strings to output bit
strings as a match-action table. Thus, in the online forward
propagation through any layer, BoS uses input bit string as the
key to match the output bit string stored in the corresponding
table on switch. The caveat of this design is that the number
of required entries N in each table is determined by the num-
ber of input bits, i.e., N = 2input bit-length. We recognize this
constraint and demonstrate, via experiments (§ 7.2), that BoS
can deploy efficient RNN models under this constraint.
RNN Time Steps. As shown in Figure 3(a), a straightforward
way to implement RNN time steps is to store the RNN hidden
state for each flow sequence. Upon packet arrival, we read the
previous RNN hidden state, perform layer forward propaga-
tion, and then update the hidden state. Unfortunately, due to
hardware constraint, each register can only be accessed once
when a packet traverses the switching pipeline. Therefore, we
need to expand RNN time steps in serial stages, as shown
in Figure 3(b), where the read/write of hidden states spread
across multiple stages. Alternatively, we can store a sequence

422 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of embedding vectors corresponding to packet sequence of a
flow, as shown in Figure 3(c). In online forward propagation,
BoS calculates the embedding vector for each packet, updates
the sequence in storage and executes all RNN time steps for
this flow sequence in serial stages. We adopt this solution in
the final prototype as it consumes fewer hardware resources.
Sliding Window Mechanism. Since the number of switch
stages is limited, expanding the RNN time steps into serial
stages would also limit the total number of time steps exe-
cutable in our model. To address this problem, BoS designs a
novel sliding window mechanism that can recurrently apply
RNN inference on fixed-length flow segments. Therefore, the
number of RNN time steps executable on a flow is no longer
limited by switch stages. Specifically, in online traffic analy-
sis, BoS uses a window with fixed-size S to extract a segment
of S packets from the flow, executes S RNN time steps on
this segment to obtain an intermediate inference result ri, and
swifts the window by one packet to obtain a new segment, and
repeats the process. Therefore, BoS can continuously execute
RNN time steps as the flow proceeds.

The key to fulfill the sliding window design is to properly
aggregate these intermediate results. Specifically, upon receiv-
ing the jth packet, suppose that the binary RNN has processed
g full segments. Then the inference result for the jth packet
shall consider all the g intermediate inference results. In the
case of multi-class traffic classification, one simple strategy
is to select the majority class from these intermediate results.
More crucially, we can co-design the aggregation algorithm
with an off-switch module to improve the overall traffic anal-
ysis accuracy, as described below.

4.4 Analysis Escalation

Although BoS primarily relies on binary RNN to ensure line-
speed traffic analysis, we still want to embrace full-precision
and more advanced models (e.g., transformers) to handle
corner cases. For instance, in multi-class traffic classification,
it is possible that none of the classes dominates (e.g., the
numbers of flow segments for different classes are close to
each other). In this case, adopting the majority voting policy
may reduce classification confidence.

To this end, BoS adopts an off-switch traffic analysis mod-
ule co-located with the programmable data plane. We recog-
nize two challenges in accommodating this analysis module.
First, the aggregation algorithm must be carefully designed to
ensure that it can accurately capture ambiguity, while avoid-
ing consistently escalating flows (i.e., only a small fraction of
flows should be escalated to the co-located analysis module
in order to preserve line-speed analysis for the vast majority
of traffic). Second, the analysis module adopts a transformer-
based model to improve accuracy. However, due to the com-
plex computations required for inference, it is non-trivial to
scale the online analysis throughput to maintain the high
speed of network forwarding.

The Escalation Mechanism. To address the first challenge,
we measure the classification confidence in the aggregation
algorithm. Specifically, for each extracted packet segment in a
flow, the binary RNN predicts an intermediate inference result,
which is a vector of probabilities, one for each class. Suppose
that upon receiving the jth packet of the flow, the binary RNN
has processed g packet segments for the flow (i.e., the arrival
of the jth packet will form the {g+1}th segment). Then, our
algorithm aggregates all g+1 intermediate inference results
by accumulating the per-class prediction probabilities. The
class with the largest cumulative probability is selected as the
inference result for the jth packet.

Whether a flow should be escalated is determined by the
number of ambiguous packets in the flow. Upon receiving the
jth packet, suppose the largest cumulative probability among
all classes is CPRm and the total number of intermediate re-
sults is wincnt, then the classification confidence for the jth

packet is quantified as CPRm/wincnt. The packet is consid-
ered ambiguous if its confidence is below a predefined confi-
dence threshold. We use Tconf to represent the vector of con-
fidence thresholds, one for each class. The flow is escalated
when the number of ambiguous packets in the flow exceeds a
predefined escalation threshold Tesc.

Tconf and Tesc are learned based on the distributions of
the classification confidences of the training samples. Con-
sider the example in Figure 4. For the VoIP class in the IS-
CXVPN2016 dataset (see detailed descriptions in § 7.1), we
plot the CDF of the confidence scores for both correctly classi-
fied packets and misclassified packets. The confidence scores
are quantized because they are eventually computed on the
data plane (see § 5.2). An appropriate Tconf should escalate as
many misclassified packets as possible without affecting cor-
rectly classified packets. To this end, we design the following
loss function to train our binary RNN.

Suppose pi is the RNN’s prediction probability for class i
and y is the ground-truth class. The classic cross entropy (CE)
loss is CE =− log(py). The CE loss solely considers to im-
prove the model’s ability to predict the correct class. Our loss
is defined as L1 =−(1− py)

γ log(py)−λ∑i̸=y pγ

i log(1− pi),
which adds another item to explicitly negate the model’s pre-
diction on the non-ground-truth classes. The factor λ balances
the two items, while the modulating factors (1− py)

γ and pγ

i
down-weight easy samples and focus on hard samples, as pro-
posed in the Focal Loss [27]. Intuitively, this loss enhances the
confidence differences between misclassified and correctly
classified packets by reducing pi(i ̸= y) while retaining high
py. Since our aggregation algorithm chooses the class with
the largest accumulative probability, a simplified version of
the above loss function is to only reduce the maximum pre-
diction probability among all the non-ground-truth classes,
i.e., L2 = −(1− py)

γ log(py)−λpγ

false log(1− pfalse), where
pfalse is the largest pi among all the non-ground-truth classes.
We thoroughly evaluate these loss functions in § 7.3.

Once Tconf is determined, we set Tesc to control the amount

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 423

5 6 7 8 9 10 11 12 13 14 15
Quantized Confidence

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of

 P
ac

ke
ts

C
la

ss
ifi

ed
 a

s
V

oI
P

Tconf

Correctly classified
Misclassified

91

92

93

M
ac

ro
-

-F
1

(%
)

12 14 16 18 20 22
Escalation Threshold

2
4
6
8

Es
ca

la
te

d
Fl

ow
 (

%
)

Tesc

Figure 4: The selection of Tconf and Tesc.

of escalated flows. As shown in Figure 4, we select a Tesc

to ensure that no more than 5% flows are escalated to the
co-located analysis module for further analysis.
Integrated Model Inference System. To address the second
challenge, we design an IMIS that enables fast online inference
for a full-precision transformer-based model. As illustrated by
Figure 1, IMIS orchestrates four types of stateful and single-
threaded tasks (called engines) to realize a non-blocking traf-
fic processing pipeline. We describe the transformer model
training and the architecture of IMIS in § 6.

4.5 Integrated Analysis Logic

Algorithm 1 summarizes the complete logic of our online traf-
fic analysis in BoS. Because our binary RNN model leverages
flow-level data for inference, BoS designs a dedicated flow
manager to store per-flow state. When a packet P is received,
the flow manager first checks if per-flow state for P has al-
ready been allocated. If not, the flow manager allocates new
per-flow storage for the packet. The packet then enters the
normal flow-aware inference pipeline based on the retrieved
flow state. Due to the limited capacity of the switch, when
the flow manager cannot allocate storage for a new flow, BoS
falls back to analyzing the packets of that flow using a tree
model trained only using per-packet features (e.g., packet
length, TTL, Type of Service, TCP offset). This tree model is
deployed on the data plane alongside our binary RNN model.
The detailed design of the flow manager is deferred to § A.1.4.

We elaborate on one key design that has not been thor-
oughly discussed yet. In line 24, we periodically reset the
window counter and per-class results every K packets. This
effectively clears the contributions of very ancient flow seg-
ments (i.e., more than K +1 packets apart) when aggregating
the intermediate inference results. This design rationale is
that if we obtain a sub-flow fsub by extracting a continuous
and sufficiently long sequences of packets (starting from any
position) from a flow f , it is very likely that fsub and f are
classified as the same class. Thus, clearing the results of very
remote segments will not affect traffic analysis results. On
the contrary, without periodical reset, the per-class results
CPR would be consistently accumulated. To prevent buffer
overflow, we need to allocate more bits to store CPR, which,
unfortunately, results in significant hardware resource con-
sumption (see § 5.2). Note that the periodical reset does not
clear the embedding vectors for the previous S−1 packets.

Algorithm 1: Integrated Traffic Analysis Logic
Define :WIN[0 . . .S−1] sliding window; N No. of classes;

CPR[0 . . .N−1] per-class results; Tconf[0 . . .N−1]
the per-class confidence threshold; Tesc the
escalation threshold

1 if FlowManager(packet P) fails then
2 Fall back to use the per-packet model, and exit

3 Retrieve the flow state for P
4 if P is matched by the EscTable then
5 Forward P to IMIS, and exit ▷ Escalated flows

6 pktcnt← pktcnt+1 ▷ Count packets
7 ev← FeatureEmbedding(P .length,P .IPD)
8 WIN[pktcnt % S]← ev ▷ Slide the window
9 if pktcnt < S then ▷ The first S−1 packets

10 Pre-analysis packet handling ▷ See § A.1.6
11 else
12 h← 0⃗
13 for i← 1 to S do ▷ RNN time steps
14 evi←WIN[(pktcnt+ i) % S]
15 h← RNNCell(evi,h)

16 PR← OutputLayer(h) ▷ Intermediate result: a
probability vector

17 CPR← CPR+PR
18 Class← argmax(CPR) ▷ Measure confidence
19 wincnt← wincnt+1 ▷ No. of windows
20 if CPR[Class]< Tconf[Class]∗wincnt then
21 esccnt← esccnt+1 ▷ Ambiguous packets

22 if esccnt ≥ Tesc then
23 Initiate escalated analysis for subsequent packets

24 if pktcnt % K = 0 then Reset(wincnt,CPR)

5 Model Realization on the Data Plane

5.1 Embedding Vector Storage and Retrieval

As shown in Figure 3(c), the RNN cell takes the embedding
vectors of the packets in each sliding window (with length
S) as input. Consider the flow segment starting with the kth

packet and ending with the {k+S−1}th packet. Upon arrival
of the {k+S−1}th packet, the current flow segment is full and
is ready to execute all S RNN steps simultaneously, i.e., using
the embedding vector of each packet as the key to obtain
the matched output in each GRU table (S tables in total).
Thus, before a segment is full, we need to temporally hold
the embedding vectors for prior S−1 packets. We design
a ring buffer with S−1 bins (registers) to store embedding
vectors. In particular, the kth packet in the segment is stored in
the {k % (S−1)+1}th bin (indexed from 1) of the ring. The
embedding vector of the {k+S−1}th packet eventually takes
the bin occupied by the kth packet, which will be out-of-scope
upon the arrival of the {k+S}th packet. The second benefit of
the ring buffer design is that all bins are mutually independent,
so that they can be accessed in parallel.

The efficient storage of embedding vectors leads to a chal-

424 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

bin1 bin2 bin3 … binS-1 Ring Buffer

ev1 ev2 ev3 … evS-1 evS Metadata

Dynamic Mapping

GRUS-1 GRUSGRU3GRU2GRU1 ℎ0

Figure 5: Storage and retrieval of embedding vectors.

lenge in reading these vectors. Specifically, given a flow seg-
ment, the embedding vector of the first packet in this seg-
ment is not always stored in the first bin of the ring buffer.
Therefore, it is incorrect to statically align the ring buffer
with GRU tables, i.e., using the value stored in the kth bin
as the input key of the kth GRU table. Instead, the input
of the ith GRU (for i ∈ [1,S− 1]) should be read from the
{(k−S+ i)%(S−1)+1}th bin. However, when declaring a
lookup table for GRU on switch, the storage locations of its
keys must be static and predetermined. Thus, to realize the
above dynamic mapping, we need to first read values from the
ring buffer to several intermediate variables (called metadata),
and then dispatch the metadata to the proper GRU tables, as
shown in Figure 5.

5.2 Intermediate Results Aggregation
As described in § 4.4, the key operation in our RNN inference
is to select the largest cumulative probability from all interme-
diate inference results, i.e., executing an argmax operation.
Ternary-Matching Based Design. Argmax is not a primi-
tive available on the switch. We realize argmax based on an
efficient data plane design of number comparison. Intuitively,
number comparison can be accomplished by either condi-
tional statements or exact-matching table matching. Neither
of them, however, is scalable (see § A.1.1).

In BoS, we propose a scalable ternary-matching based de-
sign. Suppose argmax compares n numbers each with m bits.
The key of a table entry consists n segments, each with m
ternary bits (i.e., 0, 1, or ∗). The value represents the winner
(i.e., the largest number). Starting from the most significant
bit (MSB), to generate the lth bit for each key segment, there
are 2n possible cases. Consider a case C(l,k) where the lth bits
of the first k (k∈[1,n-1]) segments are 1 and the lth bits of the
remaining segments are 0. Clearly, the segments whose lth

bits are 0 will not be the winner, so that we can stop further
enumerating the lower bits (i.e., the {l+1}th,{l+2}th, ...,mth

bits) for these segments. Thus, among all 2(m−l)·n sub-cases
of the case C(l,k), we do not need further enumerations for
2(m−l)·k of them, achieving a 2(m−l)·(n−k) reduction ratio. Take
C(1,1) as an example: it represents the case where the first (i.e.,
the most significant bit, MSB) of the first segment is 1 and the
MSBs for other remaining segments are 0. Thus, all 2(m−1)n

sub-cases for C(1,1) have clear winners and are collapsed into

Inputs:

n: number of keys; m: bit width of each key

Procedure Generate(n, m):

T = {1...n} ▷ initial input, all the numbers can be the winner

▷ For explanation purpose, entry is represented as a 2-D array

entry = array[1..n][1..m] ▷ array of ternary bits (0, 1, *)

Work(T, 1)

Procedure Work(S, L): ▷ S: possible winners in this iteration

for num ∈ 𝑇\S⇒ entry[num][L] = ‘*’ ▷ cases cannot win

if L = m ⇒ Output(S), return ▷ base case: last bit

for 𝜙 ⊂ 𝑆′ ⊂ 𝑆: ▷ cases similar to 𝐶(𝐿,|𝑆′|)
for num ∈ S\S′⇒ entry[num][L] = ‘0’

for num ∈ S′⇒ entry[num][L] = ‘1’

Work(S’, L+1) ▷ Recursive resolve

for num ∈ S⇒ entry[num][L] = ‘*’ ▷ case 𝐶(𝐿,0) & 𝐶(𝐿,|𝑆|)
Work(S, L+1) ▷ Recursive resolve

Procedure Output(S): ▷ S: possible winners in this iteration

a = list(S) in INCREASING order ▷ indexed from 1

for i = len(a) downto 2: ▷ winning case for a[i≥2]

for k ∈ [1..i-1] ⇒ entry[a[k]][m] = ‘0’

entry[a[i]][m] = ‘1’

for k ∈ [i+1..len(a)] ⇒ entry[a[k]][m] = ‘*’

install(entry, winner=a[i])

for num ∈ S ⇒ entry[num][m] = ‘*’ ▷ winning case for a[1]

install(entry, winner=a[1])

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

Figure 6: The procedure to generate a ternary-matching table
to realize argmax on the data plane.

one key (e.g., 1∗∗∗,0∗∗∗,0∗∗∗ if n=3,m=4).
Based on the above protocol, we derive the number of

required table entries F(n,m) as (see details in § A.1.2).

F(n,m) = 2∗F(n,m−1)

+
n−1

∑
i=1

(
n
i

)
F(i,m−1) for n,m≥ 2

F(n,1) = 2n for n≥ 2; F(1,m) = 1 for m≥ 1.

(1)

Further Optimizations. We make two subsequent optimiza-
tions to further reduce F(n,m). First, the two special cases
C(l,n) (i.e., the lth bits in all n segments are 1) and C(l,0) (i.e.,
the lth bits in all n segments are 0) can be further merged.
Specifically, for all 2m−l sub-cases of C(l,n), their winners re-
main the same if we modify the lth bits of all n segments to
0; and similarly for 2m−l sub-cases of C(l,0), their winners
remain the same if we modify the lth bits of all the n segments
to 1. Thus, C(l,0) and C(l,n) can be merged by modifying the
lth bit as an wildcard asterisk in each segment. We handle this
merged case lastly in the current enumeration of the lth bit
(see lines 13 and 14 in Figure 6), so that these wildcard aster-
isks will not interfere with previous cases with higher priority
(see lines 9 to 12 in Figure 6). With this optimization, F(n,m)
is reduced as F(n,m) = F(n,m−1)+∑

n−1
i=1

(n
i

)
F(i,m−1).

The second optimization is reducing the base case F(n,1).
By reversely encoding the one-bit number comparison (see
Figure 7), F(n,1) is reduced to n from 2n. Combining both
optimizations, we obtain F(n,m) = nmn−1.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 425

segment1 segment2
… segmentn-1 segmentn Winner

x0 x0 … x0 x1 nth number

x0 x0 … x1 x∗ {n-1}th number
… … … … … …

x0 x1 … x∗ x∗ 2nd number

x∗ x∗ … x∗ x∗ 1st number

Figure 7: The reverse encoding for F(n,1).

6 Implementation

Our BoS prototype1 includes: 1500 lines of Python code for
model training, 1900 lines of P4 code for on-switch RNN, and
3300 lines of C++ code for IMIS. To evaluate the prototype,
an additional 1600 lines of code are developed.
Model Training. We train a binary RNN to analyze flow
segments extracted by the sliding window. Given the window
size S and a flow sample (P1,P2, . . .) in the training dataset,
we slice this flow into all possible packets segments (e.g., con-
secutive S packets like (P1, . . . ,PS) and (P2, . . . ,PS+1)) where
the label of each segment is the flow label. For each segment,
we use its packet length sequence and IPD sequence as inputs,
and train the binary RNN to predict its label correctly. Recall
that our binary RNN outputs vector of probabilities, one for
each class. The training process is to maximize the prediction
probability on the ground-truth class.

We use YaTC [66], a recent masked autoencoder
(MAE) [16] based traffic transformer with multi-level flow
representation, in IMIS to analyze escalated flows. YaTC only
uses the first 5 packets of a flow for analysis. For each packet,
it extracts the first 80 header bytes and 240 payload bytes as
inputs. We first determine the two thresholds in § 4.4 to col-
lect the escalated flows in the training set, and then fine-tune
the pre-trained YaTC model [66] to obtain our final model.
On-Switch RNN Implementation. We implement a proto-
type on our Tofino 1 programmable switch. The top part of
Figure 8 shows the workflow of all the components in our
prototype. The left-bottom table in Figure 8 lists the hyper-
parameters of our prototype, and the right-bottom table lists
the detailed per-stage arrangement of our components. Due
to space constraints, we defer the detailed description of our
prototype to § A.2.1. Although the hardware resources on the
Tofino 1 are very limited (e.g., only 12 stages), we manage to
implement a prototype that supports all four traffic analysis
tasks evaluated in § 7.1. The on-switch RNN is programmable
in runtime via the control plane (see § A.3).
IMIS Implementation. The core design of IMIS is a non-
blocking traffic processing pipeline. As illustrated in Fig-
ure 1, architecturally, IMIS is designed around stateful, single-
threaded tasks, which we call engines. The parser engine uses
DPDK [18] (version 20.11) APIs to consistently collect the
packet bytes from the escalated traffic; the pool engine takes
the stream data as input and organizes it into per-flow state;
the analyzer engine calls the pool engine to collect a batch
of fresh per-flow data, and uses CUDA (version 11.7) [38] to

1Available at https://github.com/InspiringGroup-Lab/Brain-on-Switch

interact with an auxiliary GPU to accelerate model inference;
and the buffer engine stops packets without inference results
to wait in memory, and sends those who have inference results
to NIC. The pool engine is the key to dynamically coordi-
nate the speeds of the parser engine and analyzer engine, thus
achieving a non-blocking packet processing pipeline. The
detailed architecture of the IMIS system is deferred to § A.2.2.

7 Evaluation
7.1 Experiment Setup

Testbed Setup. We deploy our binary RNN model using one
pipe of a Barefoot Tofino 1 programmable switch. One server
generates network traffic to an inbound port of the switch
based on the pcap files we created for various traffic analysis
tasks and traffic loads. Each flow is either analyzed by the on-
switch RNN or redirected from one specific switch port to an
off-switch server that deploys IMIS. For the flows analyzed on-
switch, we develop a dedicated on-switch module to collect
their analysis statistics online. Scaling the on-switch analysis
of BoS beyond a single pipe of the switch is feasible given
proper flow management. We discuss this in § A.3.
Tasks. We evaluate BoS using the following four tasks.
(i) Encrypted traffic classification on VPN: this task clas-
sifies network traffic encrypted by VPNs. We use the IS-
CXVPN2016 [12] dataset, a six-class classification task
(Email, Chat, Streaming, FTP, VoIP, P2P). (ii) Botnet traffic
classification: this task classifies botnet traffic collected from
the IoT systems. We use the BOTIOT [22] dataset, a four-
class classification task (Data Exfiltration, Key Logging, OS
Scan, Service Scan). (iii) Behavioral analysis of IoT devices:
this task classifies traffic generated by IoT devices in differ-
ent working states. We use the CICIOT2022 [10] dataset,
a three-class classification task (Power, Idle, Interact). (iv)
P2P application fingerprinting: this task classifies network
traffic generated by P2P applications. We use the PeerRush
dataset [40], a three-class classification task (eMule, uTorrent,
and Vuze). We supplement additional details regarding the
processing of these datasets in § A.4.
Network Load. We would like to evaluate BoS under dif-
ferent network loads. Similar to prior art [51, 61, 71], we use
the number of new flows arrived in each second to represent
the network load. Specifically, for each testing flow in a task,
we extract its raw packets from the pcap file while preserving
the inter-packet delays. Given the total number of flows in
this task, and a desired network load, we calculate the total
time period required to replay these flows, and then uniformly
release these flows within this period. If the period is too
short, we replay these flows multiple times in a loop to create
consistent loads throughout our test.

The actual network load varies in different deployment.
We make load estimations based on prior measurements. In
2015, Meta [42] reported that its external-facing web server
generates 500 new flows per second (median). Meanwhile,

426 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Data dependency

Flow

Management

Embed

IPD

Embed LEN

PKT CTR-2

PKT CTR-1

FC
EV

Storage

Dispatch

EV
GRU-1

Output

Layer
CPR ArgmaxGRU-S

Check

Confidence

Escalation

Flag

Window CTR Confidence Threshold (T conf)

hyper-parameter value hyper-parameter value

Window Size (S) 8 Reset Period of Window Counter (K) 128

No. of Classes (N) 6 Bit Width of Intermediate Probability 4

Bit Width of Embedded LEN 10 Bit Width of Cumulative Probability 11

Bit Width of Embedded IPD 8 Bit Width of ID 32

Bit Width of Embedding Vector 6 Bit Width of TS 32

Bit Width of Hidden State 9 Flow Capacity 65536

stage ingress egress stage ingress egress

0 calculate 𝐼𝐷, 𝑖𝑑𝑥
embed pkt length

GRU-5

window_counter

5 FC

escalation_flag

CPR-4,5,6

u ← argmax(CPR-1,2,3)

1 FlowInfo GRU-6 6 bin-4,5,6,7 v ← argmax(CPR-4,5,6)

2 last_TS

pkt_counter-1,2

GRU-7

calculate threshold

7 bin-1,2,3 argmax(u,v)

8 dispatch ev ambiguous_counter

3 calculate IPD Output ◦ GRU-8 9 GRU-2 ◦ GRU-1 set mirror

4 embed IPD CPR-1,2,3 10~11 GRU-3, GRU-4

Ambiguous

Counter

Control dependency

Escalation Threshold (T esc)

Check

Escalation

Figure 8: The breakdown of our on-switch RNN implementation on a Tofino programmable switch.

Table 2: Experimental settings.

Datasets
(Tasks)

ISCXVPN
2016

BOT
IOT

CICIOT
2022

Peer
Rush

Training Flows 7801 7835 5332 30770
Testing Flows 1951 1961 1335 7694

Classes 6 4 3 3
Class Ratio⋆ 2:6:1:5:9:3 1:1:4:19 1:4:1 2:1:1

Best Loss L1 L1 L2 L1
λ,γ 0.8, 0 0.5, 0.5 3, 1 1, 0

Optimizer AdamW AdamW AdamW AdamW
Learning Rate 0.01 0.005 0.005 0.005

RNN Hidden States† 9 bits 8 bits 6 bits 5 bits
Per-packet Model Acc. 0.596 0.327 0.759 0.684

Network Load Low Normal High Scaling

No. of flows / s 1000 2000 4000 up to 7.8M
⋆ See § A.4 for the accurate numbers of flows in each class.
† We evaluate BoS under different binary RNN model sizes in § A.6.

CISCO [9] measures that Internet traffic grows 3-fold from
2016 to 2021. Combining these measurements, we estimate
that 2000 new flows per second are a reasonable network load
that BoS may face in practice. In our scaling test (see § 7.3),
we stress test BoS with up to 450,000 new flows per second
on our testbed (a 225x increase from the normal load, and
30-300x over NetBeacon [71]).
Metrics. We use packet-level macro-F1 (the average of F1-
score for different classes) as the accuracy metric, and further
report the breakdown of the Precision / Recall of each class.

7.2 End-to-end Performance
In this section, we report the end-to-end performance of BoS
for different tasks. The main experimental settings are sum-
marized in Table 2. In § 7.3, we evaluate BoS under a variety
of settings. We also compare BoS with two recent art NetBea-
con [71] and N3IC [51]. N3IC deploys the binary MLP on a
SmartNIC. For fair comparison, we simulate the switch-side
traffic management logic and the binary MLP inference in
software to obtain the traffic analysis results for N3IC. The
detailed descriptions about the reproduced versions of the two
art are given in § A.5.
Accuracy. We summarize the analysis accuracy results in
Table 3. Across all evaluated tasks, BoS achieves significantly

better performance than NetBeacon and N3IC, with an aver-
age F1-score improvement of 0.13 and 0.31, respectively. On
more challenging tasks with more classification classes, the
improvement is even greater, up to 0.19 and 0.42, respectively.
We observe the binary MLP performs the worst because the
accuracy loss caused by binarizing all model weights is sig-
nificant. In fact, on the ISCXVPN2016 and CICIOT2022
datasets, the F1-scores of N3IC are even lower than these of
our fallback tree-based model (0.596/0.759). Constrained by
the availability of flow features, NetBeacon can only execute
model inference at discrete locations. Thus, an inference error
affects all its subsequent packets until it is corrected by the
next inference point. This fundamentally limits its F1-scores,
especially for more difficult tasks. In contrast, BoS retains
full-precision model weights in the on-switch RNN model and
continuously produces fresh inference results as a flow pro-
ceeds. Together with the co-located IMIS, BoS produces more
accurate analysis results than existing arts, achieving over
0.920 F1-score in all tasks. We observe very minor declines
of F1-scores in BoS as the network load increases, demonstrat-
ing the effectiveness of our flow management (note that we
use the same flow management module for other two systems
as well). The minor accuracy loss is because a small frac-
tion of flows (e.g., 2.77%/1.43%/2.05%/5.22% in the normal
network load case) fall back to using the per-packet model.

Hardware Resource Utilization. We report the stateful
SRAM and stateless SRAM/TCAM usage by BoS on the pro-
grammable switch in Table 4. The stateful SRAMs are con-
sumed to maintain per-flow states, which mainly consist of the
flow management information (e.g., TrueID and timestamp,
see § A.1.4), the embedding vectors (EV) for binary RNN
inference, and the cumulative probability counter (CPR) for
each class. In our prototype, the hardware consumption for
the first two parts is task-irrelevant, and one task uses roughly
8.85% of SRAM. The consumption for the last part depends
on the number of classification classes in a task, and the four
tasks use roughly 5.63%/3.75%/2.81%/2.81% of SRAM, re-
spectively. The embedding vectors stored for each flow take
8× (S−1)+8 bits (64 bits in our prototype). Compared with
existing approaches [51, 71] that require online feature com-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 427

Table 3: Analysis accuracy for BoS and other two closely related art.

Methods BoS NetBeacon [71] (Tree-based Models) N3IC [51] (Binary MLP)

Network Load Low Normal High Low Normal High Low Normal High

Encrypted Traffic Classification on VPN (ISCXVPN2016)

Email 0.935 / 0.933 0.936 / 0.925 0.933 / 0.923 0.309 / 0.514 0.315 / 0.524 0.320 / 0.525 0.347 / 0.326 0.354 / 0.339 0.367 / 0.350
Chat 0.903 / 0.818 0.902 / 0.818 0.901 / 0.814 0.739 / 0.935 0.739 / 0.933 0.742 / 0.925 0.336 / 0.655 0.336 / 0.654 0.342 / 0.656

Streaming 0.926 / 0.941 0.926 / 0.939 0.926 / 0.910 0.963 / 0.919 0.962 / 0.904 0.962 / 0.874 0.741 / 0.608 0.742 / 0.603 0.743 / 0.581
FTP 0.973 / 0.928 0.973 / 0.926 0.973 / 0.922 0.946 / 0.659 0.946 / 0.655 0.947 / 0.654 0.563 / 0.396 0.567 / 0.396 0.575 / 0.397
VoIP 0.968 / 0.958 0.968 / 0.958 0.968 / 0.957 0.938 / 0.882 0.939 / 0.881 0.939 / 0.882 0.883 / 0.783 0.884 / 0.782 0.886 / 0.787
P2P 0.905 / 0.927 0.903 / 0.928 0.876 / 0.930 0.810 / 0.959 0.798 / 0.959 0.778 / 0.960 0.578 / 0.739 0.577 / 0.742 0.565 / 0.748

Macro-F1 0.926 0.925 0.919 0.786 0.784 0.780 0.565 0.567 0.568

Botnet Traffic Classification on IoT (BOTIOT)

Data Exfiltration 0.964 / 0.974 0.951 / 0.973 0.899 / 0.971 0.691 / 0.845 0.684 / 0.847 0.658 / 0.848 0.514 / 0.879 0.508 / 0.881 0.506 / 0.879
Key Logging 0.960 / 0.946 0.961 / 0.962 0.959 / 0.902 0.921 / 0.425 0.921 / 0.419 0.918 / 0.399 0.055 / 0.033 0.058 / 0.033 0.052 / 0.031

OS Scan 0.996 / 0.996 0.995 / 0.989 0.995 / 0.966 0.838 / 0.963 0.841 / 0.963 0.844 / 0.945 0.831 / 0.693 0.830 / 0.677 0.831 / 0.672
Service Scan 0.993 / 0.992 0.986 / 0.973 0.979 / 0.978 0.928 / 0.876 0.927 / 0.870 0.917 / 0.858 0.845 / 0.663 0.830 / 0.664 0.840 / 0.663

Macro-F1 0.978 0.974 0.955 0.785 0.782 0.769 0.547 0.542 0.541

Behavioral Analysis of IoT Devices (CICIOT2022)

Power 0.926 / 0.887 0.924 / 0.882 0.921 / 0.882 0.819 / 0.726 0.820 / 0.724 0.817 / 0.724 0.639 / 0.750 0.640 / 0.750 0.640 / 0.748
Idle 0.922 / 0.943 0.921 / 0.942 0.918 / 0.941 0.810 / 0.938 0.808 / 0.938 0.806 / 0.936 0.618 / 0.640 0.620 / 0.642 0.622 / 0.646

Interact 0.934 / 0.946 0.934 / 0.948 0.934 / 0.943 0.871 / 0.786 0.873 / 0.786 0.872 / 0.784 0.651 / 0.504 0.655 / 0.506 0.661 / 0.510
Macro-F1 0.926 0.925 0.923 0.822 0.821 0.820 0.629 0.631 0.633

P2P Application Fingerprinting (PeerRush)

eMule 0.943 / 0.949 0.918 / 0.949 0.898 / 0.950 0.846 / 0.954 0.821 / 0.955 0.805 / 0.954 0.734 / 0.866 0.730 / 0.867 0.723 / 0.875
uTorrent 0.949 / 0.924 0.950 / 0.912 0.941 / 0.894 0.882 / 0.870 0.885 / 0.858 0.885 / 0.831 0.734 / 0.789 0.735 / 0.790 0.738 / 0.783

Vuze 0.946 / 0.962 0.945 / 0.947 0.941 / 0.930 0.910 / 0.810 0.907 / 0.790 0.904 / 0.793 0.821 / 0.626 0.826 / 0.622 0.826 / 0.616
Macro-F1 0.945 0.937 0.925 0.877 0.866 0.858 0.755 0.755 0.752

Table 4: Hardware resource utilization.
Datasets
(Tasks)

ISCXVPN
2016

BOT
IOT

CICIOT
2022

Peer
Rush

SRAM

Flow Info. (stateful) 5.21% 5.21% 5.21% 5.21%
EV (stateful) 3.65% 3.65% 3.65% 3.65%

CPR (stateful) 5.63% 3.75% 2.81% 2.81%
FE (stateless) 2.19% 2.19% 2.19% 2.19%

GRU (stateless) 3.02% 1.56% 0.73% 0.73%
Total⋆ 23.44% 20.10% 18.33% 18.33%

TCAM Argmax (Total) 1.74% 1.04% 0.69% 0.69%
⋆ Including other components not listed, e.g., packet counters for each flow.

putation, their per-flow storage consumption depends on the
used flow features. For instance, NetBeacon [71] engineers 7
important features for the P2P application fingerprinting task,
which consumes roughly 150 bits.

The stateless SRAM is used to implement the lookup ta-
bles for feature embedding (FE) and GRU layers in our binary
RNN. Specifically, the SRAM consumption of GRU layers
depends on the number of bits used for storing RNN hidden
states. Using the default bitwidth in Table 2, the four tasks
use roughly 3.02%/1.56%/0.73%/0.73% of SRAM, respec-
tively, for GRU layers. Additionally, each task uses 2.19%
of SRAM for feature embedding. In total, the four tasks use
23.44%/20.10%/18.33%/18.33% of SRAM, respectively.

BoS uses TCAM to implement the argmax operation. Com-
pared with NetBeacon [71], BoS consumes SRAM of similar
size and 20x less TCAM (note that the ternary matching in
TCAM is 6x more expensive than exact matching with SRAM,
in terms of required silicon resources [51]).

7.3 BoS Deep Dive

Analysis Escalation. In this segment, we study the trade-off
between the amount of escalated flows and the overall macro-
F1, demonstrating that our loss functions defined in § 4.4
achieve a better trade-off than the classic cross entropy loss.
As described in § 4.4, the escalation threshold Tesc controls
the amount of escalated flows. Using the setting in Table 2, we
train the binary RNN with our losses and cross entropy loss,
respectively, and measure the overall macro-F1 with different
amount of escalated flows under the normal network load
(2000 flows/s). The results are plotted in Figure 9, and the
best parameters (λ,γ) of our losses in each task are presented.
We make the following key observations. (i) Regardless of
the used loss functions, the overall macro-F1 scores for all
tasks improve as the percentage of escalated flows increases
from 0% to 5%. This demonstrates the necessity for accom-
modating the off-switch analysis model to compensate for
on-switch analysis. (ii) For the same amount of escalated flows,
our losses outperform the cross entropy loss by significant
margins across all tasks. This shows that our loss designs
can more effectively identify the ambiguous packets that re-
quire additional reevaluation. This is crucial to improve the
overall system performance without consistently escalating
flows. (iii) The performance of our two losses L1 and L2 is
task-dependent. In general, L1 outperforms L2 in three tasks,
yet L2 requires less training epochs to converge.
System Performance of IMIS. In this segment, we stress test
the performance of off-switch IMIS upon a burst of concurrent

428 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1 2 3 4 5
Escalated Flows (%)

86

88

90

92

M
ac

ro
-F

1
(%

)

(a) ISCXVPN2016

1(0.8, 0)
2(0.8, 0)

CE

0 1 2 3 4 5
Escalated Flows (%)

85

90

95

M
ac

ro
-F

1
(%

)

(b) BOTIOT

1(0.5, 0.5)
2(0.5, 0)

CE

0 1 2 3 4 5
Escalated Flows (%)

86

88

90

92

M
ac

ro
-F

1
(%

)

(c) CICIOT2022

1(5, 0.5)
2(3, 1)

CE

0 1 2 3 4 5
Escalated Flows (%)

89

91

93

M
ac

ro
-F

1
(%

)

(d) PeerRush

1(1, 0)
2(0.5, 0)

CE

Figure 9: [Testbed] The trade-off between percentage of escalated flows and the overall accuracy.

0 2 4 6 8
IMIS Inference Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(a) 5.0 Mpps

2048 flows
4096 flows
8192 flows
16384 flows

0 2 4 6 8
IMIS Inference Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) 7.5 Mpps

2048 flows
4096 flows
8192 flows
16384 flows

0 2 4 6 8
IMIS Inference Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(c) 10.0 Mpps

2048 flows
4096 flows
8192 flows
16384 flows

t0 t1 t2 t3 t4

0

1

2

3

4

T
im

e
(s

)

(d) Breakdown of IMIS
Inference Latency

Figure 10: [Testbed] The inference throughput and latency of the off-switch IMIS.

flows. We run the IMIS with 8 parallel analysis modules. We
evaluate four different levels of flow concurrency (2048, 4096,
8192, and 16384 flows) with three different aggregate inbound
rates (5.0, 7.5 and 10.0 million packets per second). The
complete inference pipeline for a packet P in IMIS has six
phases: (1) P is fetched from the NIC by the parser engine; (2)
its metadata is organized by the pool engine; (3) its metadata is
sent to the analyzer engine; (4) the analyzer engine generates
the inference result; (5) the result is collected by the buffer
engine; (6) P is dispatched to NIC by the buffer engine.

The transformer model in IMIS performs inference on the
first five packets of each flow. Given that the average length
of the escalated flows in each tasks is 801, 255, 167, and 138
packets, respectively, the vast majority of packets in these
escalated flows are directly forwarded to the buffer engine
after being collected from the NIC, experiencing very minor
latency (less than 1ms). In the following, we only consider
the latency for the packets that traverse the entire inference
pipeline. The CDFs of the end-to-end latencies are plotted in
Figures 10(a) to (c). When the number of concurrent flows
is below 4096, the maximum end-to-end latency imposed
by IMIS is less than 2 seconds even for 10.0 Mpps inbound
rate (equivalently 41 Gbps as the packet sizes we send are
512 B). Considering that BoS typically escalates less than 5%
of flows, the flow concurrency levels experienced by the IMIS
are expected to be low in most deployments. In Figure 10(d),
we further report the breakdown of the end-to-end latency
(i.e., the time intervals between two consecutive phases in
the inference pipeline) under 8192 concurrent flows and an
inbound rate of 5.0 Mpps. We observe that the major latency
occurs between the second and third phase, when the packets
are waiting to be collected by the analyzer engine. The net
inference time spent in the analyzer engine is about 0.6 s.

Scaling Test. We stress test BoS in high-throughput scenarios
with high flow concurrency and high flow throughput. Specif-
ically, because all the original network traces are collected
in low bandwidth networks (e.g., tens of Mbps), we create
high-throughput network traces by concurrently packaging a
large number of flows (while ensuring each flow has a unique
identifier) and accelerating the packet replay speeds (by re-
ducing the inter-packet delays). Then we replay these pcap
files to generate traffic on our testbed. Figure 11 presents the
scaling test results, where we progressively increase the flow
concurrency to saturate the physical capacity of the NIC on
our traffic generator. The results demonstrate that BoS can
comfortably handle this level of scale, as the macro-F1 scores
remain nearly identical compared to the results in Table 3.

To evaluate BoS at even larger scales, we build a simula-
tor to emulate the entire workflow of BoS. The accuracy of
the simulator is validated by replicating the experimental set-
tings of Table 3 and Figure 11. The accuracy results obtained
through the simulation are almost the same as those collected
from our testbed. We subsequently employ the simulator to ex-
plore significantly larger scales, progressively increasing flow
concurrency to up to 7.8 million flows per second, and the
aggregate throughput to over 1.6 Tbps. The results depicted in
Figure 12 reveal a sublinear decline in the macro-F1 scores of
BoS, culminating in a ∼11.6% reduction at the largest scale.

Fallback Alternative. The default handling of the flows with-
out dedicated per-flow storage is to analyze their packets using
a tree-model trained trained only on per-packet features (see
§ A.1.5). Alternatively, a subset of the flows without dedicated
per-flow storage can be forwarded to a new instance of off-
switch IMIS dedicated to handling these flows. In Figure 11
and 12, we report the macro-F1 when forwarding a certain
percentage of flows without per-flow storage to a dedicated

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 429

80 100 120 140 160
New Flows Per Second (1e3)

75

80

85

90

95

M
ac

ro
-F

1
(%

)

0

20

40

60

80

100

(a) ISCXVPN2016

120 160 200 240 280
New Flows Per Second (1e3)

80

85

90

95

100

0

20

40

60

80

100

(b) BOTIOT

250 300 350 400 450
New Flows Per Second (1e3)

75

80

85

90

95

0

20

40

60

80

100

(c) CICIOT2022

100 150 200 250 300
New Flows Per Second (1e3)

75

80

85

90

95

0

20

40

60

80

100

T
hr

ou
gh

pu
t

(G
bp

s)

(d) PeerRush

Fall back to Per-Packet Model Fall back to IMIS (3%) Fall back to IMIS (5%) Throughput

Figure 11: [Testbed] Scaling test of BoS when we progressively increase the aggregate throughput to 100 Gbps.

0.4 1.0 1.6 2.2 2.8
New Flows Per Second (1e6)

65

70

75

80

85

90

M
ac

ro
-F

1
(%

)

0.0

0.4

0.8

1.2

1.6

(a) ISCXVPN2016

0.4 1.6 2.8 4.0 5.2
New Flows Per Second (1e6)

75

80

85

90

95

100

0.0

0.4

0.8

1.2

1.6

(b) BOTIOT

0.6 2.4 4.2 6.0 7.8
New Flows Per Second (1e6)

70

75

80

85

90

95

0.0

0.4

0.8

1.2

1.6

(c) CICIOT2022

0.8 1.8 2.8 3.8 4.8
New Flows Per Second (1e6)

70

75

80

85

90

95

0.0

0.4

0.8

1.2

1.6

T
hr

ou
gh

pu
t

(T
bp

s)

(d) PeerRush

Fall back to Per-Packet Model Fall back to IMIS (3%) Fall back to IMIS (5%) Throughput

Figure 12: [Simulation] Scaling test of BoS when we progressively increase the aggregate throughput to 1.6 Tbps.

IMIS. When the flow concurrency is high (i.e., Figure 12), this
method exhibits reasonable accuracy advantages over falling
back to use the per-packet model.

8 Discussion and Related Work
Hardware Dependency. BoS is generic in the sense that
all its core designs (e.g., retaining full-precision RNN model
weights, using sliding windows to compute unlimited RNN
step times) are all realizable using match tables. Since table
matching is the universal primitive for any data plane, we
expect our designs, with lightweight adaptation, are also de-
ployable on other types of programmable data plane devices.
ML-driven Traffic Analysis. Our community has proposed
various ML-powered traffic analysis designs, such as intrusion
detection [15, 19, 33], website fingerprinting [11, 41, 46, 65],
and encrypted traffic classification [39, 47, 48, 55]. However,
it is difficult to directly apply their models in INDP due to the
hardware constraints on the data plane.
Advances in the Programmable Data Plane. The flex-
ibility of programmable switches encourages a number of
customized applications on the data plane, including net-
work telemetry and monitoring [34, 35, 45], network secu-
rity [60, 62, 67, 71], and network functions [20]. Addition-
ally, [23, 44] use programmable switches to accelerate ML
training, and [25, 53, 70] design auxiliary modules within a
switch or leverage off-switch FPGA. Our work focuses on
enabling NN-driven INDP using only commodity hardware.
Deployment. BoS is an application-specific system de-
signed for high-throughput and low-latency NN-driven traf-
fic analysis. Therefore, we have not discussed co-deploying

other networking functions with BoS on the same pro-
grammable switch. Although BoS consumes multiple stages,
the SRAM/TCAM consumption per stage is small (see Ta-
ble 4). Thus, networking functions orthogonal to BoS (e.g.,
the ECMP in [14]) can be co-deployed with BoS in parallel.
Additionally, the latest Tofino chips have almost doubled the
number of stages and TCAM/SRAM resources compared to
the Tofino 1 chip we use. Thus, we envision that networking
functions that may depend on BoS’s analysis results (e.g., the
traffic policing in [14]) may also be co-deployed with BoS.

9 Conclusion
In this paper, we present BoS, the first INDP design that en-
ables NN-driven traffic analysis at line-speed. The key novelty
of BoS is to realize complex RNN computations using a set
of novel data plane native operations, and meanwhile to ac-
commodate a transformer-based traffic analysis module via a
carefully designed flow escalation mechanism. We implement
a prototype of BoS and evaluate it thoroughly on four traffic
analysis tasks. The results demonstrate that BoS advances
SOTA in both traffic analysis accuracy and scalability.

Acknowledgement
We thank our shepherd Costin Raiciu and the anonymous
NSDI reviewers for their insightful feedback. The research is
supported in part by the National Key R&D Program of China
under Grant 2022YFB2403900, NSFC under Grant 62132011
and Grant 61825204, and Beijing Outstanding Young Scien-
tist Program under Grant BJJWZYJH01201910003011. The
corresponding author of this paper is Zhuotao Liu.

430 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Soheil Abbasloo, Chen-Yu Yen, and H. Jonathan Chao.
Classic Meets Modern: A Pragmatic Learning-Based
Congestion Control for the Internet. In Proceedings
of the Annual Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM), 2020.

[2] Milad Alizadeh, Javier Fernández-Marqués, Nicholas D.
Lane, and Yarin Gal. An Empirical Study of Binary
Neural Networks’ Optimisation. In International Con-
ference on Learning Representations (ICLR), 2019.

[3] Diogo Barradas, Nuno Santos, and Luís Rodrigues. Ef-
fective Detection of Multimedia Protocol Tunneling us-
ing Machine Learning. In USENIX Security Symposium
(USENIX Security), 2018.

[4] Diogo Barradas, Nuno Santos, Luís Rodrigues, Sal-
vatore Signorello, Fernando MV Ramos, and André
Madeira. FlowLens: Enabling Efficient Flow Classi-
fication for ML-based Network Security Applications.
In Network and Distributed System Security Symposium
(NDSS), 2021.

[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: Programming Protocol-Independent Packet
Processors. ACM SIGCOMM Computer Communica-
tion Review, 2014.

[6] Broadcom. Trident 5 Programmable Ethernet Switch
Series. https://www.broadcom.com/products/
ethernet-connectivity/switching/strataxgs/
bcm78800, accessed on Feb. 2024.

[7] Coralie Busse-Grawitz, Roland Meier, Alexander Di-
etmüller, Tobias Bühler, and Laurent Vanbever. pFor-
est: In-Network Inference with Random Forests. arXiv
preprint arXiv:1909.05680, 2019.

[8] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning Phrase Repre-
sentations using RNN Encoder-decoder for Statistical
Machine Translation. arXiv preprint arXiv:1406.1078,
2014.

[9] CISCO. Global - 2021 Forecast Highlights. https:
//www.cisco.com/c/dam/m/en_us/solutions/
service-provider/vni-forecast-highlights/
pdf/Global_2021_Forecast_Highlights.pdf,
accessed on Sep. 2023.

[10] Sajjad Dadkhah, Hassan Mahdikhani, Priscilla Kyei
Danso, Alireza Zohourian, Kevin Anh Truong, and
Ali A. Ghorbani. Towards the Development of a Realis-
tic Multidimensional IoT Profiling Dataset. In the 19th
Annual International Conference on Privacy, Security
& Trust (PST), 2022.

[11] Xinhao Deng, Qilei Yin, Zhuotao Liu, Xiyuan Zhao,
Qi Li, Mingwei Xu, Ke Xu, and Jianping Wu. Robust
Multi-tab Website Fingerprinting Attacks in the Wild.
In IEEE Symposium on Security and Privacy (S&P),
2023.

[12] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad
Saiful Islam Mamun, and Ali A. Ghorbani. Characteri-
zation of Encrypted and VPN Traffic using Time-related
Features. In Proceedings of the 2nd International Con-
ference on Information Systems Security and Privacy
(ICISSP), 2016.

[13] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg.
Azure Accelerated Networking: SmartNICs in the Pub-
lic Cloud. In USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), 2018.

[14] Open Networking Foundation. Consolidated switch
repo (API, SAI and Nettlink). https://github.
com/p4lang/switch/tree/master, accessed on Sep.
2023.

[15] Chuanpu Fu, Qi Li, Meng Shen, and Ke Xu. Realtime
Robust Malicious Traffic Detection via Frequency Do-
main Analysis. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security
(CCS), 2021.

[16] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li,
Piotr Dollár, and Ross Girshick. Masked Autoencoders
are Scalable Vision Learners. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-
Term Memory. Neural Computation, 1997.

[18] Intel. Data Plane Development Kit. http://www.dpdk.
org, accessed on Sep. 2023.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 431

https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm78800
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm78800
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm78800
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://github.com/p4lang/switch/tree/master
https://github.com/p4lang/switch/tree/master
http://www.dpdk.org
http://www.dpdk.org

[19] Steve TK Jan, Qingying Hao, Tianrui Hu, Jiameng Pu,
Sonal Oswal, Gang Wang, and Bimal Viswanath. Throw-
ing Darts in the Dark? Detecting Bots with Limited Data
using Neural Data Augmentation. In IEEE Symposium
on Security and Privacy (S&P), 2020.

[20] Changhun Jung, Sian Kim, Rhongho Jang, David Mo-
haisen, and DaeHun Nyang. A Scalable and Dynamic
ACL System for In-Network Defense. In Proceedings
of the ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), 2022.

[21] Piotr Jurkiewicz, Grzegorz Rzym, and Piotr Boryło.
Flow Length and Size Distributions in Campus Internet
Traffic. arXiv preprint arXiv:1809.03486, 2018.

[22] Nickolaos Koroniotis, Nour Moustafa, Elena Sitnikova,
and Benjamin Turnbull. Towards the development of
realistic botnet dataset in the Internet of Things for net-
work forensic analytics: Bot-IoT dataset. Future Gener-
ation Computer Systems, 2019.

[23] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi
Chen, Wenfei Wu, Aditya Akella, and Michael Swift.
ATP: In-network Aggregation for Multi-tenant Learning.
In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2021.

[24] Jong-Hyouk Lee and Kamal Singh. SwitchTree: In-
Network Computing and Traffic Analyses with Random
Forests. Neural Computing and Applications, 2020.

[25] Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen,
Alexander Schwing, and Jian Huang. Accelerating Dis-
tributed Reinforcement Learning with In-Switch Com-
puting. In Proceedings of the 46th International Sympo-
sium on Computer Architecture, 2019.

[26] Peng Lin, Kejiang Ye, Yishen Hu, Yanying Lin, and
Cheng-Zhong Xu. A Novel Multimodal Deep Learn-
ing Framework for Encrypted Traffic Classification.
IEEE/ACM Transactions on Networking (TON), 2023.

[27] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollar. Focal Loss for Dense Object Detection.
In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2017.

[28] Xinjie Lin, Gang Xiong, Gaopeng Gou, Zhen Li, Jun-
zheng Shi, and Jing Yu. ET-BERT: A Contextualized
Datagram Representation with Pre-training Transform-
ers for Encrypted Traffic Classification. In Proceedings
of the ACM Web Conference (WWW), 2022.

[29] Chenyi Liu, Mingwei Xu, Yuan Yang, and Nan Geng.
DRL-OR: Deep Reinforcement Learning-based Online
Routing for Multi-type Service Requirements. In IEEE
International Conference on Computer Communications
(INFOCOM), 2021.

[30] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis,
Jeongkeun Lee, Changhoon Kim, Xin Jin, Vladimir
Braverman, Minlan Yu, and Vyas Sekar. Jaqen: A
High-Performance Switch-Native Approach for Detect-
ing and Mitigating Volumetric DDoS Attacks with Pro-
grammable Switches. In USENIX Security Symposium
(USENIX Security), 2021.

[31] Danilo Mandic and Jonathon Chambers. Recurrent Neu-
ral Networks for Prediction: Learning Algorithms, Ar-
chitectures and Stability. John Wiley & Sons, Inc., 2001.

[32] Microsoft. Introduction to Receive Side
Scaling. https://learn.microsoft.com/
en-us/windows-hardware/drivers/network/
introduction-to-receive-side-scaling, ac-
cessed on Sep. 2023.

[33] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and
Asaf Shabtai. Kitsune: An Ensemble of Autoencoders
for Online Network Intrusion Detection. In Network and
Distributed System Security Symposium (NDSS), 2018.

[34] Edgar Costa Molero, Stefano Vissicchio, and Laurent
Vanbever. FAst In-Network GraY Failure Detection for
ISPs. In Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication
(SIGCOMM), 2022.

[35] Hun Namkung, Zaoxing Liu, Daehyeok Kim, Vyas
Sekar, and Peter Steenkiste. Sketchlib: Enabling
Efficient Sketch-based Monitoring on Programmable
Switches. In USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), 2022.

[36] NetFPGA. NetFPGA. https://netfpga.org/, ac-
cessed on Sep. 2023.

[37] Netronome. Netronome AgilioTM CX
2x40GbE intelligent server adapter. https:
//www.netronome.com/media/redactor_files/
PB_Agilio_CX_2x40GbE.pdf, accessed on Sep. 2023.

[38] Nvidia. CUDA Toolkit. https://developer.nvidia.
com/cuda-toolkit, accessed on Sep. 2023.

[39] Yuqi Qing, Qilei Yin, Xinhao Deng, Yihao Chen, Zhuo-
tao Liu, Kun Sun, Ke Xu, Jia Zhang, and Qi Li. Low-
Quality Training Data Only? A Robust Framework for
Detecting Encrypted Malicious Network Traffic. In
Network and Distributed System Security Symposium
(NDSS), 2024.

[40] Babak Rahbarinia, Roberto Perdisci, Andrea Lanzi, and
Kang Li. Peerrush: Mining for Unwanted P2P Traffic. In
Detection of Intrusions and Malware, and Vulnerability
Assessment, 2013.

432 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://netfpga.org/
https://www.netronome.com/media/redactor_files/PB_Agilio_CX_2x40GbE.pdf
https://www.netronome.com/media/redactor_files/PB_Agilio_CX_2x40GbE.pdf
https://www.netronome.com/media/redactor_files/PB_Agilio_CX_2x40GbE.pdf
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

[41] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van
Goethem, and Wouter Joosen. Automated Website Fin-
gerprinting through Deep Learning. In Network and
Distributed System Security Symposium (NDSS), 2018.

[42] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C. Snoeren. Inside the Social Network’s (Dat-
acenter) Network. In Proceedings of the Annual Con-
ference of the ACM Special Interest Group on Data
Communication (SIGCOMM), 2015.

[43] Davide Sanvito, Giuseppe Siracusano, and Roberto Bi-
fulco. Can the Network be the AI Accelerator? In Pro-
ceedings of the 2018 Morning Workshop on In-Network
Computing, 2018.

[44] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling Distributed Machine Learning with
In-Network Aggregation. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2021.

[45] Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford.
Continuous In-Network Round-Trip Time Monitoring.
In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication (SIG-
COMM), 2022.

[46] Meng Shen, Yiting Liu, Liehuang Zhu, Xiaojiang Du,
and Jiankun Hu. Fine-grained Webpage Fingerprinting
using Only Packet Length Information of Encrypted
Traffic. IEEE Transactions on Information Forensics
and Security (TIFS), 2020.

[47] Meng Shen, Jinpeng Zhang, Liehuang Zhu, Ke Xu, and
Xiaojiang Du. Accurate Decentralized Application Iden-
tification via Encrypted Traffic Analysis using Graph
Neural Networks. IEEE Transactions on Information
Forensics and Security (TIFS), 2021.

[48] Sandra Siby, Marc Juarez, Claudia Diaz, Narseo Vallina-
Rodriguez, and Carmela Troncoso. Encrypted DNS–>
Privacy? A Traffic Analysis Perspective. In Network
and Distributed System Security Symposium (NDSS),
2020.

[49] Carlos N. Silla and Alex A. Freitas. A Survey of Hier-
archical Classification across Different Application Do-
mains. Data Mining and Knowledge Discovery, 2011.

[50] Giuseppe Siracusano and Roberto Bifulco. In-network
Neural Networks. arXiv preprint arXiv:1801.05731,
2018.

[51] Giuseppe Siracusano, Salvator Galea, Davide Sanvito,
Mohammad Malekzadeh, Gianni Antichi, Paolo Costa,

Hamed Haddadi, and Roberto Bifulco. Re-architecting
Traffic Analysis with Neural Network Interface Cards.
In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2022.

[52] Giuseppe Siracusano, Salvator Galea, Davide Sanvito,
Mohammad Malekzadeh, Hamed Haddadi, Gianni An-
tichi, and Roberto Bifulco. Running Neural Networks
on the NIC. arXiv preprint arXiv:2009.02353, 2020.

[53] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz,
Ishan Gaur, and Kunle Olukotun. Taurus: A Data Plane
Architecture for Per-Packet ML. In Proceedings of the
27th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2022.

[54] Mellanox Technologies. BlueField SmartNIC.
http://www.mellanox.com/related-docs/prod_
adapter_cards/PB_BlueField_Smart_NIC.pdf,
accessed on Sep. 2023.

[55] Thijs Van Ede, Riccardo Bortolameotti, Andrea Con-
tinella, Jingjing Ren, Daniel J. Dubois, Martina Lindor-
fer, David Choffnes, Maarten van Steen, and Andreas
Peter. Flowprint: Semi-supervised Mobile-app Finger-
printing on Encrypted Network Traffic. In Network and
Distributed System Security Symposium (NDSS), 2020.

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is All you Need.
Advances in Neural Information Processing Systems
(NeurIPS), 2017.

[57] Bruno Missi Xavier, Rafael Silva Guimarães, Giovanni
Comarela, and Magnos Martinello. Programmable
Switches for In-networking Classification. In IEEE In-
ternational Conference on Computer Communications
(INFOCOM), 2021.

[58] Guorui Xie, Qing Li, Yutao Dong, Guanglin Duan, Yong
Jiang, and Jingpu Duan. Mousika: Enable General
In-network Intelligence in Programmable Switches by
Knowledge Distillation. In IEEE International Confer-
ence on Computer Communications (INFOCOM), 2022.

[59] Renjie Xie, Yixiao Wang, Jiahao Cao, Enhuan Dong,
Mingwei Xu, Kun Sun, Qi Li, Licheng Shen, and Meng-
hao Zhang. Rosetta: Enabling Robust TLS Encrypted
Traffic Classification in Diverse Network Environments
with TCP-Aware Traffic Augmentation. In USENIX
Security Symposium (USENIX Security), 2023.

[60] Jiarong Xing, Kuo-Feng Hsu, Yiming Qiu, Ziyang Yang,
Hongyi Liu, and Ang Chen. Bedrock: Programmable
Network Support for Secure RDMA Systems. In
USENIX Security Symposium (USENIX Security), 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 433

http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf

[61] Jiarong Xing, Qiao Kang, and Ang Chen. NetWarden:
Mitigating Network Covert Channels while Preserving
Performance. In USENIX Security Symposium (USENIX
Security), 2020.

[62] Jiarong Xing, Wenqing Wu, and Ang Chen. Ripple: A
Programmable, Decentralized Link-Flooding Defense
Against Adaptive Adversaries. In USENIX Security
Symposium (USENIX Security), 2021.

[63] Siyu Yan, Xiaoliang Wang, Xiaolong Zheng, Yinben
Xia, Derui Liu, and Weishan Deng. ACC: Automatic
ECN Tuning for High-Speed Datacenter Networks. In
Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication (SIG-
COMM), 2021.

[64] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley J.
Osher, Yingyong Qi, and Jack Xin. Understanding
Straight-through Estimator in Training Activation Quan-
tized Neural Nets. In International Conference on Learn-
ing Representations (ICLR), 2019.

[65] Qilei Yin, Zhuotao Liu, Qi Li, Tao Wang, Qian Wang,
Chao Shen, and Yixiao Xu. An Automated Multi-Tab
Website Fingerprinting Attack. IEEE Transactions on
Dependable and Secure Computing (TDSC), 2021.

[66] Ruijie Zhao, Mingwei Zhan, Xianwen Deng, Yanhao
Wang, Yijun Wang, Guan Gui, and Zhi Xue. Yet another
Traffic Classifier: A Masked Autoencoder based Traf-
fic Transformer with Multi-Level Flow Representation.
In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2023.

[67] Ziming Zhao, Zhuotao Liu, Huan Chen, Fan Zhang,
Zhuoxue Song, and Zhaoxuan Li. Effective DDoS Miti-
gation via ML-Driven In-network Traffic Shaping. IEEE
Transactions on Dependable and Secure Computing
(TDSC), 2024.

[68] Changgang Zheng, Zhaoqi Xiong, Thanh T. Bui, Siim
Kaupmees, Riyad Bensoussane, Antoine Bernabeu,
Shay Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman.
IIsy: Practical In-Network Classification. arXiv preprint
arXiv:2205.08243, 2022.

[69] Changgang Zheng and Noa Zilberman. Planter: Seed-
ing Trees within Switches. In Proceedings of the SIG-
COMM’21 Poster and Demo Sessions, 2021.

[70] Zhizhen Zhong, Weiyang Wang, Manya Ghobadi,
Alexander Sludds, Ryan Hamerly, Liane Bernstein, and
Dirk Englund. IOI: In-network Optical Inference. In
Proceedings of the ACM SIGCOMM 2021 Workshop on
Optical Systems, 2021.

[71] Guangmeng Zhou, Zhuotao Liu, Chuanpu Fu, Qi Li,
and Ke Xu. An Efficient Design of Intelligent Network
Data Plane. In USENIX Security Symposium (USENIX
Security), 2023.

[72] Guihua Zhou, Guo Chen, Fusheng Lin, Tingting Xu, De-
hui Wei, Jianbing Wu, Li Chen, Yuanwei Lu, Andrew
Qu, Hua Shao, and Hongbo Jiang. Primus: Fast and
Robust Centralized Routing for Large-scale Data Cen-
ter Networks. In IEEE International Conference on
Computer Communications (INFOCOM), 2021.

434 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Appendix

A.1 Model Realization on the Data Plane
In this segment, we supplement additional design details re-
garding deploying our binary RNN on the programmable data
plane.

A.1.1 Intuitive Number Comparison

The foundation to realize argmax is number comparison.
There are two types of approaches to compare numbers on the
programmable data plane. The first is based on conditional
statements. Specifically, a simple statement to compare numA
and numB is

if (num_A > num_B) act_A; else act_B;

which, unfortunately, is not compiled because the condition
is too complex. We could avoid complex condition by the
following statement

tmp = num_A - num_B;
if (tmp > 0) act_A; else act_B;

which takes at least two switch stages. More crucially, it is
difficult to scale statement-based approaches to compare n
numbers since it would take n× (n−1)/2 differences.

The alternative approach is designing a match-action table
which takes the numA and numB as keys (e.g., the concate-
nation of their bits) and performs actA or actB according to
the lookup result. Meanwhile, we can easily extend width of
keys to realize the comparison of multiple numbers, which
is exactly the argmax operation. Yet, the drawback is the
explosion of required table entries: to obtain the maximum
number among n values, each with m-bits, it takes 2nm entries
to enumerate all possible key-value combinations.

A.1.2 Ternary-Matching Based Design

In § 5.2, we discuss the implementation of argmax operation
with ternary matching. We define the problem as following
conditions and restrictions.

1. There are n numbers of m bit(s) each, where n,m≥ 1.

2. There is a predefined order to determine which number
to select when there is a tie for maximum value.

3. Only one ternary matching is allowed, i.e., the calcula-
tion before matching is prohibited.

We denote the number of table entries as F(n,m). Based
on the basic optimization in § 5.2, we get the following recur-
rence relationship of F(n,m).

F(n,m)= 2×F(n,m−1)+
n−1

∑
i=1

(
n
i

)
F(i,m−1),n≥ 2,m≥ 2

(2)

We explain the meaning of the above equation as follows.
The entries should cover all possible combinations of the
n numbers. We consider all the combinations in different
categories classified according to the combination of most
significant bits (MSBs). Among all 2n categories, there are(n

i

)
categories where i numbers are with MSB = 1 and n− i

numbers are with MSB = 0 (i∈ [1,n−1]). In these categories,
we do not further consider those n− i numbers with MSB = 0,
and only focus on the possible combinations of the i numbers
with MSB= 1, which are sub-problems with n′= i,m′=m−1
and require

(n
i

)
F(i,m− 1) entries in total. In the other two

categories (all MSB= 0 or all MSB= 1), we continue to focus
on the possible combinations of all the n numbers, which
are both sub-problems with n′ = n,m′ = m− 1 and require
2×F(n,m−1) entries in total.

After the two optimizations described in § 5.2, the recur-
rence relation of F(n,m) is given as follows.

F(n,m) = F(n,m−1)+
n−1

∑
i=1

(
n
i

)
F(i,m−1),n≥ 2,m≥ 2

(3)

F(n,1) = n,n≥ 1 (4)

F(1,m) = 1,m≥ 1 (5)

By solving this iterative formula, we obtain F(n,m) =
nmn−1. We provide the derivation process from Equation (3)
as follows. First, let F(0,m) = 0,m≥ 1, which is consistent
with the Equation (4). Then the Equation (3) can be written
as:

F(n,m) =
n

∑
i=0

(
n
i

)
F(i,m−1),n≥ 0,m≥ 2 (6)

Then, we transform the formula and get:

F(n,m) =
n

∑
i=0

n!
i!(n− i)!

F(i,m−1),n≥ 0,m≥ 2 (7)

F(n,m)

n!
=

n

∑
i=0

F(i,m−1)
i!

1
(n− i)!

,n≥ 0,m≥ 2 (8)

We denote F(n,m)
n! as mgn, and 1

n! as hn. Then we construct
the generating function of mg and h.

mG(x) = ∑
n=0

mgnxn = ∑
n=0

F(n,m)

n!
xn,m≥ 1 (9)

H(x) = ∑
n=0

hnxn = ∑
n=0

xn

n!
= ex (10)

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 435

Table 5: The no. of entries required for different m,n.

No. of Entries Opt 1 & 2 Opt 2 only Opt 1 only Base Design 2mn

n=3,m=16 768 2949123 863 4587523 2.81e14
n=4,m=8 2048 44028 2788 76028 4.29e9
n=5,m=5 3125 10245 5472 21077 3.36e7
n=6,m=4 6144 10890 13438 26978 1.68e7

We can obtain the recursive relations between mG and
m−1G from Equation (8).

mG =m−1 G×H,m≥ 2 (11)

And for m = 1, we have

1G(x) = ∑
n=0

1gnxn = ∑
n=0

F(n,1)
n!

xn

= ∑
n=0

n
n!

xn = ∑
n=1

1
(n−1)!

xn

= x ∑
n=0

1
n!

xn = xex

(12)

With the mathematical induction, we can get

mG(x) = xemx,m≥ 1 (13)

Compared with the Equation (9) and we can get

F(n,m) =m G(n)(0) = (xemx)(n)
∣∣∣∣
x=0

= (nmn−1 +mnx)emx
∣∣∣∣
x=0

= nmn−1,n≥ 1,m≥ 1

(14)

We can verify the result using mathematical induction.

F(n,m−1)+
n−1

∑
i=1

(
n
i

)
F(i,m−1)

=
n

∑
i=1

(
n
i

)
i(m−1)i−1

= n
n

∑
i=1

(
n−1
i−1

)
(m−1)i−1

= n
n−1

∑
i=0

(
n−1

i

)
(m−1)i

= nmn−1 = F(n,m)

(15)

In Table 5, we list the number of entries required for differ-
ent combinations of m and n. The results demonstrate that our
design, augmented by two optimizations, significantly reduces
table consumption for achieving the argmax operation.

A.1.3 Packet Counters

Because the number of packets in a flow is unknown in ad-
vance, statically allocating a fixed width of bits for packet

counters may result in buffer overflow. Meanwhile, as de-
scribed in § 5.1, we need to perform modulo operations on
packet count (i.e., pktcnt % (S−1)) when storing embedding
vectors. Thus, packet counting in BoS is designed based on
two parallel counters: the first counter increases from 1, and
stops at S (the sliding window size). For the ith packet, it re-
turns i if i < S, otherwise it returns S. The second counter
increases from 0 and cycles back to 0 after S− 2, simulat-
ing the modulo operation. Thus, when the number of arrived
packets in the flow exceeds S, the first counter essentially be-
comes a flag indicating that index for the ring buffer (storing
embedding vectors) can be read from the second counter.

A.1.4 Flow Management

BoS relies on stateful storage to maintain per-flow state.
Prior art [4, 61] relies on the control plane to allocate non-
conflicting storage indices for different flows. To achieve line-
speed traffic analysis, BoS relies on the readily available hard-
ware hashing to allocate flow storage indices. In particular, the
storage index for flow f is computed as H (f (5-tuple) % N),
where H is the hash function, and N represents the total num-
ber of continuous per-flow storage blocks allocated for main-
taining per-flow state.

Both hash and modulo operations may result in flow index
collisions, i.e., two different flows (with different 5-tuples)
may receive the same storage index. To avoid confusions,
BoS stores a tuple {TrueID, timestamp} alongside the storage
index, where TrueID represents the actual flow identifier2 and
timestamp represents the latest packet arrival time for the flow.
When storage indices collide, BoS allows the new flow to take
the occupied storage only if the existing flow is timed out (i.e.,
the stored timestamp is earlier than a predefined threshold).
Otherwise, the new arrived flow falls back to use the per-
packet tree model trained using only per-packet features, or
falls back to IMIS; see discussions in § 7.3.

When developing the prototype of BoS, we observe a possi-
ble corner case for flow management. Specifically, the switch
has multiple forwarding pipes, each of which has several
processing stages. To support more complex RNN models,
we can simultaneously use the stages in both the ingress
and egress pipes. However, if multiple ingress pipes could
be mapped to the same egress pipe (e.g., traffic entered from
both pipe A and pipe B may exit from pipe A), we would need
to deploy a flow management module in both the ingress and
egress pipe, because flows that do not collide in their ingress
pipes may collide in the egress pipe. We have not encountered
this corner case even in our scaling experiments (see § 7.3),
and therefore we only deploy the flow management module
in the ingress pipe.

2To avoid resubmitting or recirculating packets, the read and write of the
tuple need to be finished in an atomic operation. This restricts the length of
TrueID so that we cannot directly use 5 tuple as the TrueID. Thus, we leverage
a different hash function H ′ to calculate the TrueID as H ′(f (5-tuple)).

436 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A.1.5 Per-packet Fallback Model

When the flow manager cannot allocate storage for a new
flow, BoS falls back to analyzing the packets of that flow
using a tree model trained only using per-packet features.
Specifically, we use a 2×9 Random Forest model (2 trees with
max depth 9), and use the same per-packet features as in [71]
(e.g., packet length, TTL, Type of Service, TCP offset). We
apply the coding mechanism from NetBeacon [71] to deploy
this tree model on the data plane alongside our binary RNN
model.

A.1.6 The Pre-analysis Issue

As discussed in § 4.3, we employ a sliding window mech-
anism in our binary RNN inference where the model con-
tinuously processes packet segments. The length of the seg-
ment is a hyper-parameter S (set to 8 in our prototype). As
a result, the very first S−1 packets of a flow cannot form a
complete segment. This results in the pre-analysis issue: the
inference results on these packets may be inaccurate because
the model simply has not observed enough information. Any
model-driven (or data-driven) traffic analysis approach has
this limitation.

To avoid premature inference results caused by the pre-
analysis problem, BoS regards the first S−1 packets of a flow
as pre-analysis packets, and only starts to produce inference
results for the Sth and subsequent packets (i.e., any inference
result output by BoS is based on at least one full segment).
The protocol for forwarding these pre-analysis packets should
be application-specific. For instance, in security-oriented task,
BoS can forward pre-analysis packets via a dedicated low pri-
ority queue so that a strategic adversary cannot overwhelm the
network by sending very short flows (less than S packets). In
other tasks (e.g., an inbound gateway on a campus/enterprise
that loads balance different types of traffic received from
the Internet), simply forwarding these pre-analysis packets
may be sufficient, considering the average length of campus
Internet flows (∼120) [21] is much larger than S (8 in our
prototype). Finally, it is possible to employ another learning
model trained only on per-packet features (such as [58]) to
process these pre-analysis packets.

A.2 Prototype Implementation
In this segment, we supplement additional details about our
implementation.

A.2.1 On-Switch RNN Inference

Component Overview. We plot the hardware implementa-
tion of the binary RNN in BoS in Figure 8. The top part shows
the simplified dependency graph of all components. We plots
two types of dependency: if a has data dependency on b, then
the input data of a is (partially) provided by b; if a has control

dependency on b, then the execution of a is determined by
b. For instance, the GRU tables have data dependency on
embedding vector storage; the window CTR (counting the
number of windows/segments) has control dependency on
the PKT CTR-1 (indicating whether the number of received
packet is no less than S).
Per-Stage Breakdown. The bottom-right part shows the
breakdown of stage usage for deploying a BoS model with
the hyper-parameters shown in the bottom-left part. We use
the stages in both ingress and egress pipeline. The kth ingress
stage and kth egress stage share the same underlying hardware
resource.

We first introduce the stage usage in ingress. In the stage 0,
besides calculating the flow index and TrueID for flow man-
agement, it also executes embedding of packet length, since
it has no other dependency. Then, the FlowInfo tuple (i.e.,
{TrueID, timestamp}) is stored in stage 1 for flow collision
avoidance. Flow management is only necessary in the ingress
pipeline (see § A.1.4). The inter-packet delay (IPD) embed-
ding is implemented using the following three stages: stage
2 stores the last packet timestamp, stage 3 obtains IPD by
subtracting the current packet arrival time with the last times-
tamp, and stage 4 computes the embedding of IPD. In stage
5, an FC layer takes in the packet length embedding and IPD
embedding to output an embedding vector, which is stored
using 7 bins and dispatched to corresponding GRU tables in
stages 6 to 8. All seven bins cannot be allocated into one stage
because only 4 registers (register arrays) are allowed in one
stage. In the last three stages of ingress, the first four GRU
tables (i.e., GRU1,2,3,4) are placed sequentially. The first two
GRU tables (i.e., GRU1,2) are implemented with one match-
action table, i.e., h=GRU2(GRU1(0,ev1),ev2) is merged as
h=(GRU2 ◦GRU1)(0,ev1,ev2).

In the egress pipeline, the remaining four GRU tables (i.e.,
GRU5,6,7,8) are placed from stage 0 to stage 3. The output
layer is merged with GRU8, i.e., C=Output(GRU8(h,ev8)) is
merged as C=(Output◦GRU8)(h,ev8). The counters to accu-
mulate per-class probabilities (CPR1..6) are spread in stage 4
and 5. To accumulate the probability vectors (i.e., the interme-
diate results) on the data plane, we quantize the probability
for a class to an integer from 0 to 15. Considering the reset
period of 128 packets, the width of cumulative probability is
⌈log2(16×128)⌉=11. To implement argmax for n=6,m=11,
we split it into three sequential argmax operations, two for
n=3,m=11 and one for n=2,m=11, i.e., comparing the first
three numbers in stage 5, then comparing the rest three num-
bers in stage 6, then comparing the two winners in stage 7.
Finally, the escalation logic is implemented in stage 8 to 9.
To obtain the classification confidence for a packet, we do
not actually divide the largest accumulative probability with
wincnt (the total number of intermediate results for the flow),
as division is not supported on the data plane. Instead, we
compare the probability with Tconf×wincnt, which is divided
into a subtraction and a comparison with 0. The subtraction

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 437

Queue in

memory

Flow Identifier

e.g. 5-tuple

Lock-free

Ring BufferParser

Packet

Bytes

Batched

Data

Pool

Traffic Analysis

Model

Analyzer
Call

Classification Result

…… ……

Flow x Class A

…… ……

Flow 1 Bytes 1

…… ……

Flow n Bytes n

Buffer

Lock-free

Ring Buffer

Lock-free

Ring Buffer

Lookup
Miss

Hit

Update
Flush

TX

NICNIC

RX

One

RSS

Queue

→

One

Thread

Group

GPU

Engine

Module

DPDK
Thread

Management

Fast Packet

Processing

Figure 13: The architecture of IMIS.

is performed in the action of the winning case of argmax
match-action table. And the comparison with 0 is executed
while reading/updating the counter that stores the number of
ambiguous packets in stage 8. If the counter exceeds Tesc, the
packet is escalated to IMIS.
Escalation Flag. Due to the limited number of stages in the
ingress pipeline of the Tofino 1 switch, we must use both the
ingress and egress pipelines in our prototype. However, this
poses a challenge because the egress port of a packet must be
determined in the ingress pipeline, but we cannot determine
whether a packet should be escalated to IMIS until all opera-
tions in the egress pipeline have completed. To address this
challenge, we store an escalation flag in the ingress pipeline
so that the egress port for a packet can be properly deter-
mined. We update the escalation flag through egress-to-egress
mirroring and recirculating.

A.2.2 Implementation of IMIS

The architecture of IMIS is plotted in Figure 13. We use
Intel Data Plane Development Kit (DPDK version 20.11.9
LTS) [18] to enable multiple NIC RX/TX queues, each of
which is bound to one analysis module. The Receive Side
Scaling (RSS) [32] is enabled to efficiently distribute traffic
to each analysis module.
Analysis Module. The parser engine uses DPDK APIs to
parse flow identifier (e.g., 5-tuple) and the raw bytes from
the input traffic. It stores the parsing results into a lock-free
ring buffer consumed by the pool engine to maintain per-
flow state and perform batch arrangement. After obtaining the
parsing result of a packet, the packet is sent to another lock-
free ring buffer consumed by the buffer engine to perform
egress queuing according to model inference results. As our
transformer-based model only uses the first 5 packets in a
flow for inference, the subsequent packets sent by the flow
will be forwarded to the buffer engine directly without raw
bytes extraction.

The pool engine translates the streamed parsing results into
batched data to facilitate model inference. Specifically, it con-
tinuously fetches the raw byte features of packets from the
lock-free ring buffer linked to the parser engine, and organizes

them as per-flow state. When it receives a call from the ana-
lyzer engine, the pool engine selects flows according to their
timestamps to form a batch of inputs, and sends the batch
to the analyzer engine for inference. If a selected flow has
fewer than 5 packets, the pool engine pads its data with zeros.
The inference result obtained for this flow is considered to
intermediate, and the pool engine may select this flow again
in the next round.

To accelerate model inference, the analyzer engine uses
CUDA (version 11.7) [38] to interact with the auxiliary GPU
card. Specifically, it continuously requests input batches from
the pool engine. Upon receiving a batch, the analyzer engine
executes inference on the GPU and sends the results to a
lock-free ring buffer consumed by the buffer engine.

The buffer engine continuously fetches the latest inference
results from the analyzer engine and uses the results to release
packets. Upon receiving a packet from the parser engine, the
buffer engine checks if the inference result for the packet’s
flow has been determined. If so, the packet is released imme-
diately. Otherwise, the packet is placed in the egress queue for
its flow to wait for the inference result. When the buffer en-
gine receives a flow inference result from the analyzer engine,
it releases all packets in the egress queue for that flow.

The buffer engine keeps fetching the latest inference results
from the analyzer engine, and uses the results to release pack-
ets. Upon receiving a packet from the parser engine, the buffer
engine checks if the inference result for the packet’s flow has
been determined. If so, the packet is released immediately.
Otherwise, the packet is placed in the egress queue for its
flow to wait for the inference result. When the buffer engine
receives a flow inference result from the analyzer engine, it
releases all packets in the egress queue for that flow.

A.3 Additional Details about Testbed
We use a Wedge 100BF-32X programmable switch with 2
pipes and 32×100 Gbps ports to deploy the on-switch RNN
in BoS. The version of SDE is 9.7.0. The off-switch IMIS is
hosted on server with two Intel(R) Xeon(R) Gold 6348 CPUs
(2×28 cores), Ubuntu 20.04.1, 512 GB memory, and one Mel-
lanox 100 Gbps NIC with two ports that support DPDK (ver-
sion 20.11). We reserve 160 GB memory as huge pages for
DPDK (80 GB/NUMA Node), and an NVIDIA A100 GPU
is attached to IMIS. All physical cores for parser engines, pool
engines and buffer engines are on the same Node with NIC,
and all the physical cores for analyzer engines are on the same
Node with an auxiliary GPU.
Scaling the On-switch Analysis Beyond One Pipe. The
on-switch analysis of our current prototype is implemented
using one switch pipe. The complexity of scaling the analysis
beyond one pipe depends on whether cross-pipe traffic for-
warding is allowed. Specifically, if the traffic forwarding for
each pipe is self-contained (i.e., the traffic ingressing from
one pipe will only exit from this pipe), we can easily operate

438 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

multiple pipes independently, where each pipe hosts an in-
stance of our on-switch RNN and processes traffic in parallel.
However, when the flows entering from different pipes can
eventually exit via the same pipe, we have to deploy our flow
management modules in both the ingress and egress pipes (as
we have discussed in § A.1.4). In this case, the flows allocated
dedicated per-flow storage within their ingress pipes may still
end up using the per-packet model if their storage indices col-
lide when exiting from the same egress pipe. This would lead
to the underutilization of storage resources initially reserved
for these flows within their ingress pipes.
Runtime Programmability. The on-switch analysis model
of BoS can be programmed in runtime. Specifically, the
weights of RNN layers, the escalation thresholds, the number
of classification classes, and widths of the inputs and outputs
of each layer (i.e., the number of binary neurons) are all pro-
grammable via the control plane. For instance, the weights
can be reconfigured by updating the table entries from the
control plane.
On-switch Statistics Collection. To collect the evaluation
results from our testbed, we use the second pipe on our switch
to implement a result collection module. Specifically, we
allocate registers to count the numbers of escalated packets,
packets analyzed by per-packet model, packets analyzed by
binary RNN, and pre-analysis packets. Further, we allocate a
register array for reporting the on-switch analysis precision
and recall for each class, using the combination of ground-
truth label and predict label as index. We read these registers
from the control plane to obtain the raw data for calculating
the macro-F1 scores.
Flow Replayer. To generate traffic according to our pcap files,
we investigate both tcprelay and DPDK pktgen. We choose
to use pktgen because it can generate high-throughput traffic
that saturates the physical 100 Gbps NIC on our testbed. Yet,
the key problem of pktgen is that it fails to honor the packet
timestamps when sending traffic. However, the on-switch
RNN relies on inter-packet delays for inference. To work
around this issue, we embed the desired timestamp of each
packet within the MAC address field of its Ethernet frame.
The on-switch analysis pipeline reads this field for flow man-
agement and inference. We create 32 pcap files throughout
the evaluation. When the flow replayer sends an excessively
large pcap file that cannot be loaded into the memory at once,
it breaks the file into smaller slices and replays these slices
sequentially.
Stress Test of Standalone IMIS. To stress test the system
performance of IMIS (§ 7.3), we generate flows on a server
with DPDK packet generator (pktgen version 23.06). These
flows are sent directly to the server where we deploy IMIS,
bypassing the on-switch analysis. To generate a burst of con-
current flows, the packet generator repeatedly sends packets
within a group of selected 5-tuples and the packet size is fixed
as 512 bytes.

A.4 Additional Details about Datasets
Data Pre-processing. For every dataset used in our evalu-
ations, we collect flow records from the original pcap files
using the following procedure. (i) We collect the original pcap
files for each class in the dataset separately, and all the flow
records extracted from a pcap file are labelled as the class
of this file. (ii) For each pcap file, we collect the TCP and
UDP packets of IPv4, and remove other irrelevant packets,
e.g., packets of Domain Name System (DNS), Address Reso-
lution Protocol (ARP), Dynamic Host Configuration Protocol
(DHCP) and so on. (iii) We split a clean pcap file by five tu-
ple, and further split packets of the same five tuple into flow
records by inter-packet delays. Specifically, if the inter-packet
delay between two packets is greater than 256 ms, we con-
sider the latter packet as the first packet of a new flow record.
This is consistent with our online inference where we con-
sider a flow is completed if we do not receive new packets for
the flow for 256 ms. (iv) 80% of flow records in a dataset are
used as the training set and the remaining records are used as
testing set.

Traffic Analysis Tasks. We evaluate BoS using the follow-
ing tasks.

• Encrypted traffic classification on VPN. This task classi-
fies traffic encrypted by Virtual Private Networks (VPNs).
We use the ISCXVPN2016 [12] dataset, which contains 7
categories of communication applications captured through
the Canadian Institute for Cybersecurity in both VPN and
non-VPN. We process the original pcap files for 6 classes
of VPN flows, including Email, Chat, Streaming, FTP, VoIP,
and P2P. We exclude the Browsing class in our evaluation
because some of the applications used for generating Email,
Streaming, VoIP packets are web-based, resulting in signifi-
cant noises, as explained in [12]. The number of flows in
each of the six classes is 613, 2350, 375, 1789, 3495, and
1130, respectively.

• Botnet traffic classification on IoT. This task classifies dif-
ferent botnet traffic collected from the Internet of Things
(IoT) systems. We process the original pcap files for 4
classes of flows (Data Exfiltration, Key Logging, OS Scan,
Service Scan) from the BOTIOT [22] dataset, collected in a
realistic network environment deployed in the Cyber Range
Lab of UNSW Canberra. The number of flows in each class
is 353, 427, 1593, and 7423, respectively.

• Behavioral analysis of IoT Devices. This task classifies
traffic generated by IoT devices in different working states.
We collect the original pcap files for 3 classes (Power, Idle,
Interact) from the CICIOT2022 [10] dataset, which contains
40 devices of audio, camera, home automation and so on.
We process the original pcap files for the Power and Interact
classes, and select one day from the 30 days of Idle pcap

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 439

8 9 10
Bits of RNN Hidden States

88

90

92

94

M
ac

ro
-F

1
(%

)

1.56%
SRAM

3.02%
SRAM

5.94%
SRAM

(a) ISCXVPN2016

7 8 9
Bits of RNN Hidden States

94

96

98

M
ac

ro
-F

1
(%

)

0.83%
SRAM

1.56%
SRAM

3.02%
SRAM

(b) BOTIOT

5 6 7
Bits of RNN Hidden States

88

90

92

94

M
ac

ro
-F

1
(%

)

0.73%
SRAM

0.73%
SRAM

0.83%
SRAM

(c) CICIOT2022

4 5 6
Bits of RNN Hidden States

92

93

94

M
ac

ro
-F

1
(%

)

0.73%
SRAM

0.73%
SRAM

0.73%
SRAM

(d) PeerRush

Figure 14: [Testbed] The traffic analysis accuracy given different binary RNN model sizes.

files. The number of flows in each class is 1131, 4382, and
1154, respectively.

• P2P application fingerprinting. This task classifies P2P ap-
plication traffic. We process the original pcap files for 3
classes (eMule, uTorrent, and Vuze) from the PeerRush
dataset [40]. Each class captures one hour of traffic. The
number of flows in each class is 20919, 9499, and 7846,
respectively.

A.5 Reproducing [71] and [51]
We reproduce two recent art NetBeacon [71] and N3IC [51]
for evaluation.

• NetBeacon [71]: a reproduced version of NetBeacon, which
deploys multi-phase tree-based models on switch using
both flow-level features and per-packet features. We use
the same per-packet features as in [71], and use the max,
min, mean, and variance of the packet size and IPD as
flow-level features. The inference points are located at the
{8th,32nd,256th,512nd,2048th} packet. For each phase we
train a 3×7 (3 trees with max depth 7) Random Forest
model (their largest model).

• N3IC [51]: a reproduced version of N3IC, which deploys

binary MLP on SmartNIC using both statistical flow-level
features and per-packet features. We use the same features
and phases as NetBeacon for fair comparison, and for each
phase the number of neurons in the hidden layers is [128,
64, 10] (their largest model). Note that N3IC deploys binary
MLP on SmartNIC but the model cannot be deployed on
P4 switches due to hardware resource constraints. Thus, we
simulate the switch-side traffic management logic and the
binary MLP inference in software to to obtain the traffic
analysis results for N3IC.

A.6 Binary RNN Model Complexity
The number of bits allocated to store the RNN hidden states
determines both the performance of our RNN model and the
size of match-action table for a GRU layer. In Figure 14, we
present the performance of BoS under different bit lengths.
The default bit lengths used in four tasks are 9, 8, 6, and 5,
respectively. This is because further increasing the bit lengths
does not significantly improve F1 scores, while it does in-
crease the SRAM consumption (especially for the first two
tasks). When the bit length is smaller than 6, the size of one
GRU table is smaller than the minimum allocation unit of
SRAM. Thus, further reducing bit lengths will not reduce
SRAM consumption.

440 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The Eternal Tussle: Exploring the Role of Centralization in IPFS

Yiluo Wei1 Dennis Trautwein2 Yiannis Psaras2 Ignacio Castro3

Will Scott2 Aravindh Raman4 Gareth Tyson1

1Hong Kong University of Science and Technology (GZ) 2Protocol Labs
3Queen Mary University of London 4Brave Software

Abstract

Web centralization and consolidation has created potential
single points of failure, e.g., in areas such as content host-
ing, name resolution, and certification. The "Decentralized
Web", led by open-source software implementations, attempts
to build decentralized alternatives. The InterPlanetary File
System (IPFS) is part of this effort and attempts to provide
a decentralized layer for object storage and retrieval. This
comes with challenges, though: Decentralization can increase
complexity, overhead, as well as compromise performance
and scalability. As the core maintainers of IPFS, we have
therefore begun to explore more hybrid approaches. This pa-
per reports on our experiences building three centralized com-
ponents within IPFS: (i) InterPlanetary Network Indexers,
which provides an alternative centralized method for content
indexing; (ii) Hydra Boosters, which are strategic DHT nodes
that assist IPFS in content routing; and (iii) HTTP Gateways,
which are a public access point for users to retrieve IPFS-
hosted content. Through this approach, we trade-off the level
of decentralization within IPFS in an attempt to gain certain
benefits of centralization. We evaluate the performance of
these components and demonstrate their ability to success-
fully address the challenges that IPFS faces.

1 Introduction

Driven by powerful economies of scale, the centralization
and consolidation of the web seems unstoppable [11, 19]. For
example, website administrators will often choose to rely on
large cloud platforms such as Amazon EC2, third-party DNS
providers like GoDaddy, content delivery networks such as
Akamai, and certificates issued by Let’s Encrypt. These are
well-engineered, performant services. Yet, they are also a
potential single point of failure. Disruptions and outages in
these centralized entities (e.g., a cloud platform) can result in
enormous financial losses, such as the reported loss of over
$60,000 per minute by Amazon’s eCommerce platform due
to an outage [13, 15, 29, 33].

The “Decentralized Web” is a response to this growing
concentration. The Decentralized Web refers to a group of
technologies that aim to decentralize control away from major
players. These technologies rely on open-source, community-
led software implementations that decentralize traditional web
functions, such as name lookup, object storage, and certifica-

tion. As anyone can use and contribute to the software, the
effort strives to reduce barriers to participation and reduce
current trends towards web consolidation [19]. Note, we draw
a clear distinction between decentralized, and distributed. Al-
though many web system implementations are distributed,
their control and operation remain centralized.

The InterPlanetary File System (IPFS) is part of this decen-
tralization effort. IPFS is a storage layer for the Decentralized
Web. It is a decentralized content-addressable object storage
and retrieval platform. IPFS is a community-driven, open-
source project, which covers 200 git repositories with 67809
stars and 12407 forks. In total, there are 83.5 K commits by
1352 code contributors, covering 400+ organizations includ-
ing universities, start-ups and large corporations.

IPFS has seen widespread uptake with more than 1 B web
client accesses and more than 250 k unique nodes participat-
ing in its peer-to-peer (P2P) network every week. Critically,
IPFS underpins various other Decentralized Web applications,
including social networking and discussion platforms (Dis-
cussify, Matters News), data storage solutions (Space, Peer-
gos, Temporal), content search (Almonit, Deece), messaging
(Berty), content streaming (Audius, Watchit), and e-commerce
(Ethlance, dClimate) [2].

Although these figures point to the success of IPFS, our
experience has shown that decentralization comes at a cost
(§2.2). Decentralization can increase complexity and over-
head due to the need to coordinate a large number of decen-
tralized entities. Consequently, performance can be compro-
mised, scalability can be challenging, and this can lead to a
less practical system. Measuring, managing and debugging
such systems is also more challenging. As part of the group
of core maintainers, our operational experience has identified
three key challenges faced by IPFS and similar systems:

1. Massive content publication: IPFS uses a distributed
hash table (DHT) for content indexing and publication.
However, our measurements show that publications can
take over 1 minute, hindering the publication of large
amounts of content. This is caused by the (i) decentral-
ized routing process of node discovery in the DHT; and
(ii) the need to replicate content indexing data across
many nodes to mitigate the impact of churn.

2. Content retrieval performance: IPFS’s overall retrieval
delay is approximately 3x slower than HTTPS. By de-
ploying a range of applications, we have found that
IPFS’s fully decentralized model is well suited to serving

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 441

delay-tolerant objects like file hosting, yet struggles with
real-time applications such as live video streaming.

3. Adoption: The content-addressed IPFS protocols differ
from traditional location-based protocols. This makes
adoption difficult for both web developers and browser
manufacturers, who mostly do not support IPFS retrieval.
As IPFS retrievals tend to be slower than HTTPS, it also
makes it difficult to integrate HTTP and IPFS objects
within a single webpage. Further, full decentralization
means that all clients should ideally install the IPFS
node software. Yet, this requires technical skills, and
IPFS software is currently too heavyweight for mobile
devices. This presents barriers to adoption.

Our initial strategy was to tackle all these challenges in an
entirely decentralized manner. However, practical constraints
make this difficult, primarily driven by the inherent perfor-
mance issues associated with DHTs, and the limited resources
of (some) peers operating in the system. Thus, we have since
been experimenting with the introduction of centralized com-
ponents to complement the IPFS decentralized architecture.
We argue that this can be an effective middle-ground, while
decentralized technologies continue to be developed. The
idea is to tradeoff the degree of decentralization of IPFS in
order to attain potential benefits. Although this may result in
a more efficient system, this also means that IPFS is partially
centralized, raising certain issues which require exploration.
For example, users may interact exclusively with centralized
components during object retrieval, placing significant ad-
ditional power in the hands of operators. This brings risks
related to security, robustness, privacy, alongside raising philo-
sophical questions related to the role of centralization in the
Internet. Thus, we strive to design centralized components
that are optional, allowing the system to continue operation
even in the failure of centralized aspects (albeit with degraded
system properties). With this tussle in mind, we report on our
operational experiences at Protocol Labs in deploying a set
of three complementary centralized components within the
wider IPFS network.

First, we present the InterPlanetary Network Indexers.
These provide an alternative centralized method for content
indexing and lookup. Each Indexer acts as a server-based key
store, complementing the role of the fully decentralized DHT.
This avoids the overheads associated with peer-to-peer rout-
ing. Importantly, any entity can operate an Indexer with the
ability (and expectation) to synchronize indexing data, thereby
reducing the risks of consolidation. Second, we present the
Hydra Boosters, a small set of high-performance DHT nodes
that assist IPFS in content routing, content provision, and
peer routing. The Hydra Boosters are strategically spread
across the DHT key space and try to provide one-hop access
to data records. Third, we present the HTTP Gateways, a
set of proxy servers that offer an HTTP bridge into the IPFS
network. These help reduce barriers to adoption by allowing
clients to access IPFS content without installing the fully de-

centralized IPFS node software. Additionally, the centralized
gateways benefit from aggregation in demand, allowing us
to deploy caching of content in a way that was not possible
when operating in a fully decentralized fashion. No privileges
are required to establish these components, and anybody can
contribute to the effort.

The contributions are as follows:
1. We present the design and implementation of three new

centralized components deployed within the IPFS infras-
tructure. For each component, we explore the challenges
it addresses and how we have tackled those challenges.

2. Based on real-world operational data, we present an
evaluation of the three complementary components. We
demonstrate that these centralized components do bring
large benefits to IPFS, addressing the challenges dis-
cussed above.

3. We explore security, privacy, and other risks that could
arise from the centralized nature of these components.
We discuss the associated trade-offs that must be consid-
ered when designing hybrid solutions such as IPFS.

2 Background and Motivation

2.1 IPFS Fundamentals

We start by providing a brief overview of IPFS. We redirect
interested readers to [41] for full details.
Content Addressing. IPFS is a decentralized object store.
Much like prior information-centric networks, it uses self-
certifying hash-based Content Identifiers (CIDs) to decouple
content names from their storage location. When content
is added to IPFS, it is split into chunks and each chunk is
assigned its own CID, which is the result of hashing its content
and adding metadata. These CIDs are then used to construct
a Merkle Directed Acyclic Graph (DAG) of the file. The
root node of the DAG combines all the CIDs of its descendant
nodes and forms the final content CID, which allows for chunk
de-duplication and eliminates the need to store or transmit the
same content twice. Merkle DAGs are agnostic to where the
content is stored, so they do not need to be updated when a
file is replicated on or deleted from nodes in the network.
Peer Addressing. Each peer has a unique ID, generated as
a hash of its public key, and represented as a Multihash [7].
A multiaddress is then associated with each PeerID. Mul-
tiaddresses are a simple data structure that allows multiple
protocols and address types to be included for each peer.
Content Indexing. IPFS relies on a fully decentralized
Kademlia DHT for content indexing. The DHT does not store
content itself but, instead, hosts (i) peer records that map
PeerIDs to the multiaddresses that can be used to contact the
peer; and (ii) provider records that map the CIDs of content
to the PeerIDs of the peers who provide the content. This
indexing allows clients to map their desired content to a peer

442 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

that can provide it and to discover the multiaddresses that can
be used to contact the peer.
Content Publication. To publish content, the host first gener-
ates a provider record that maps the CID to its own Peer ID. It
then pushes it to the DHT. To ensure availability, this record
is stored on the 20 closest peers in terms of their PeerIDs’
XOR distance from the SHA256 hash of the CID. Note, peers
retrieving the content can volunteer to become temporary or
permanent content providers by publishing a provider record
pointing to their own node on the DHT. By doing this, it
avoids the original source becoming a single point of failure.
Content Retrieval. Content retrieval involves four steps: con-
tent discovery, peer discovery, peer routing, and content ex-
change. Content discovery is the process of looking up the
provider record using the CID of the content. Before entering
the DHT lookup, the requesting peer asks all peers it is already
connected to for the desired content in an opportunistic fash-
ion, using a protocol called BitSwap [3]. If this initial attempt
is not successful, content discovery falls back to the DHT.
After getting the PeerID of the provider from the provider
record, peer discovery then involves querying the DHT and
retrieving the PeerID’s peer record. Recall, the peer record
contains the peer’s multiaddresses, listing the protocols and
physical addresses that can be used to reach the node. To
streamline this process, each IPFS node maintains a local ad-
dress book of up to 900 recently seen peers. Once the PeerID
is resolved to a peer record, the requesting node uses the list
of Multiaddresses to connect to the desired peer, a process
called peer routing. Finally, content exchange is carried out
using the Bitswap protocol. Importantly, all the above steps
take place across a fully decentralized infrastructure.

2.2 Challenges of Decentralization in IPFS

Our experience in operating the above decentralized setup has
highlighted three key challenges that we discuss in this paper.
Massive Content Publication. IPFS utilizes a Kademlia dis-
tributed hash table (DHT) for publishing and locating content.
Although Kademlia enables seamless distribution, this brings
additional overhead and high delay when compared against
simple centralized key stores (e.g., SplinterDB). To highlight
this, Figure 1 shows the content publication time as measured
in our experiments (detailed in §4.2). The overall publication
process across all regions takes 11.81s, 40.81s, and 66.73s
at the 50th, 90th, and 95th percentiles, respectively. This is
a clear cost of decentralization, which is not experienced by
well-resourced centralized database lookups The delay is dom-
inated by the DHT walk to find the nodes to publish provider
records to (covering 83.37% of the overall delay), due to the
need to distribute records to 20 different peers. Furthermore,
the IPFS DHT requires re-publication of records every 24
hours. In practice, this takes an excessive amount of time,
generates large traffic volumes, and consumes a substantial
amount of storage space for peers to store provider records.

Figure 1: CDF for content publication for each AWS region:
a) The overall publication duration, and b) the DHT walk.

Figure 2: CDF for content retrieval for each AWS region: a)
The overall retrieval duration, and b) the DHT walk.

Content Retrieval Performance. The decentralized nature
of IPFS results in slower content retrieval speeds compared
to well-resourced centralized systems. This is because all
content must first be mapped to an appropriate source, via
(several) routing hops in the DHT. Figure 2 shows the content
retrieval time measured in our experiments (detailed in §4.2).
The overall retrieval process across all regions takes 2.72
seconds, 4.03 seconds, and 4.42 seconds in the 50th, 90th, and
95th percentiles, respectively. This is slower than HTTP and
is not suitable for certain delay-sensitive applications, such as
live video streams. Moreover, the decentralization of storage
across many independent nodes hinders the aggregation of
demand, making it difficult to use techniques such as caching
to improve the retrieval of frequently accessed content.
Adoption. To access IPFS-hosted content, users must run the
IPFS node software, thereby participating in the storage and
distribution of files. This is vital for the self-scaling properties
of our decentralized setup, ensuring that no single node be-
comes overly powerful. However, setting up an IPFS node re-
quires specific skills, which is a barrier for some users. Due to
its footprint, the IPFS node software cannot yet run on mobile
devices. This is problematic because 58% of website traffic
comes from mobile devices, and approximately 92% of Inter-
net users access the web using their smartphone [4]. There are
also adoption challenges for web developers wishing to em-
bed IPFS-host content within traditional HTML/HTTP web-
sites. This is because IPFS retrievals tend to be slower than
HTTP, creating usability issues with mixing HTTP and IPFS-
hosted objects. Unfortunately, few browser implementations
can retrieve IPFS content, further disincentivizing integration.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 443

(1)
(3)

(2)

(4)

Content Provider Retrieval ClientIndexer

Figure 3: The publication and retrieval steps for Indexers. (1)
Content provider publishes announce message. (2) Indexer
synchronizes advertisements with the content provider. (3)
Retrieval client queries Indexer using CID or multihashes and
gets the provider record. (4) Retrieval client gets data from
content providers according to the provider record.

3 Design and Implementation

To tackle the above challenges, we have experimented with
deploying three new centralized elements to IPFS. These
are all open-source, allowing anybody to set them up and
contribute to IPFS. Through this, we strive to address the
above challenges. These centralized components are:

1. InterPlanetary Network Indexers provide an alternative
centralized approach to content indexing, complement-
ing the DHT. It primarily targets the massive content
publication challenge by making it faster to push new
provider records. It also enhances content retrieval per-
formance by making lookups faster.

2. Hydra Boosters introduce strategically placed reliable
routing nodes in the DHT, to improve performance in a
coordinated manner. This offloads work from the remain-
ing nodes. Thus, the primary goal of Hydra Boosters is
to enhance publication routing performance, as well as
retrieval performance. It does this in two ways: (i) by
hosting a large number of provider records in a stable
fashion; and (ii) by providing stable routing nodes with
the DHT.

3. HTTP Gateways provide an HTTP bridge into the IPFS
network. Its primary focus is on improving adoption,
by allowing access to IPFS without a full stack IPFS
installation. Further, gateways also serve as a centralized
point of request aggregation, enabling us to improve
content retrieval performance via caching.

Although Protocol Labs has built and deployed these com-
ponents, we emphasize that any stakeholder could adopt their
usage. As such, whereas each individual component is central-
ized, there can be many instantiations by different operators.
The rest of this section describes the components in detail.

3.1 InterPlanetary Network Indexers

Recall that the first challenge of decentralization in IPFS is
massive content publication. We define this as the ability for
providers to publish large numbers (i.e., millions) of objects
in an efficient fashion. This is currently difficult because
IPFS’s decentralized routing requires protocol exchange with

at least 20 nodes to publish each object. Thus, in contrast to
a centralized index, the overhead is dominated by the DHT
hops that must be undertaken to publish provider records.

Overview of Indexers. To address this issue, we have built
the InterPlanetary Network Indexers (aka “the Indexers”)
to complement the DHT. Put simply, an Indexer is a high-
performance keystore server that indexes provider records.
The provider records in the Indexers differ from those in the
DHT. They comprise the identity of the content provider, its
physical address, and the protocols required for retrieving the
data. As a result, there is no need to resolve the PeerID to a
physical address. Providers can push their provider records
directly to the Indexer, and clients can directly retrieve the
records from the Indexer using the appropriate CID. As this
can be done within a single protocol exchange, it substan-
tially reduces the overhead of storing provider records with
the decentralized DHT. Importantly, the Indexer is optimized
for bulk publication with certain requirements that publishers
must adhere to. Hence, it is recommended for large content
providers (and not for ordinary users) to publish via an In-
dexer. We emphasize that the Indexers do not replace the DHT
but, instead, complement it by offering an additional content
indexing approach. Figure 3 illustrates an overview of the
publication and retrieval process, as detailed below.

Preparation of Advertisements. Each provider is required to
record their own available content using a chain of immutable
advertisements. An advertisement is a data structure asserting
the publication or deletion of content by a given provider. An
advertisement may contain multiple provider records. Impor-
tantly, by constructing an immutable chain of advertisements,
it becomes possible for any Indexer to audit what content has
been provided over time by each provider. Note, to achieve
incremental verifiability, all advertisements are signed by the
provider. To publish content, the provider adds a new adver-
tisement to its chain and notifies the Indexers.

Sending Announcement Message. To notify the Indexers
of newly published content, the provider sends an announce-
ment message (Figure 3 (1)). An announcement message
contains the CID of the advertisement, and the publisher’s ad-
dress (where to retrieve the advertisement from). By default,
the announcement messages are sent via Gossipsub [42] (a
P2P protocol to broadcast messages to nodes in a network).
Through this, the providers gossip announcement messages
among all Indexers. The Indexers can also receive such mes-
sages via an HTTP RESTful API call. The announcement
messages can be shared among Indexers when configured
to do so: they can re-publish HTTP announcements to other
Indexers, and relay Gossipsub announcements.

Synchronize Advertisements. Once an Indexer receives an
announcement message from a provider, it connects to the
provider and traverses the advertisement chain to construct the
up-to-date provider records (i.e., advertisement synchroniza-
tion, Figure 3 (2)). Since the advertisements are immutable,

444 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the Indexers can recognize which portions of the chain are
new and only traverse those sections. Once the provider
records have been constructed, we use Pebble [8], a high-
performance key-value store, to index all records.

Note, unlike the IPFS DHT, which only allows one file to
be published at a time, the Indexers allow multiple provider
records to be packed into a single advertisement. Addition-
ally, content does not need to be repeatedly republished by
providers, because there is no time-to-live for records in In-
dexers. Instead, only changes (additions or removals) are pub-
lished, and the Indexers can reconstruct all provider records
based on the advertisement chain. This makes the Indexer
unsuitable for ephemeral publishers. Indexers must, therefore,
configure their own policies for the removal of stale content.
This design is based on our prior experiences with scalability
and is optimized for bulk publication, directly addressing the
previous massive publication challenge. Specifically, batching
large amounts of provider records within a single advertise-
ment makes it highly efficient to publish multiple objects at
once and avoids republishing unless changes occur.
Retrieval of Content. Clients that wish to retrieve provider
records interact with the Indexers via a RESTful HTTP query
API. The identities of Indexers are currently public, with a
default set distributed with client binaries. Clients can issue
queries containing a single CID or several CIDs. In both cases,
the Indexers return a list of provider records that match the
query (Figure 3(3)). Retrieval clients can then retrieve the con-
tent directly from the providers based on the provider records
(Figure 3(4)). To exploit the aggregation of queries at the
Indexers, they utilize a frontend server to perform caching on
the HTTP API calls. This caching stores frequently accessed
provider records, allowing these requests to be directly served
without querying the Indexer’s Pebble database. This further
reduces response latency and enhances overall performance.

3.2 Hydra Boosters

The second challenge of decentralization in IPFS pertains
to content retrieval performance. This is because the DHT
walk often needs to pass through multiple intermediate nodes,
which can take a considerable amount of time.
Overview of Hydra Boosters. To address this issue, we have
developed a set of Hydra Boosters. These are highly con-
nected DHT nodes, which offer “shortcuts” through the rout-
ing space to provider records. They also help address the
challenge of massive content publication, as they accelerate
routing for publishing records.

The Hydra Boosters consist of: (i) Hydra Head DHT nodes,
comprising thousands of virtual nodes in the DHT, such that
every other peer has at least one Hydra Head in its rout-
ing table; and (ii) A shared Hydra Database that stores all
provider records in the DHT and can be accessed by all Hy-
dra Heads. This allows Hydra Boosters to serve other peers
with the provider records immediately through the directly

connected Hydra Heads, thereby improving content retrieval
performance. Our key idea is that it does not require IPFS
itself to adopt any infrastructure that is hard-coded into the
protocol, or controlled by a few parties. Instead, Hydra Head
nodes operate at the same level as any other node in the net-
work, without any privileged status, making it a complement
to the regular content routing operation.

Hydra Heads. The Hydra Boosters introduce the concept
of Hydra Heads. Each head is perceived by other network
participants as a conventional, distinct peer without special
privileges. Each head has its own unique PeerID, routing
table, and peer store. However, these heads are strategically
positioned within the Kademlia XOR keyspace. The strategic
positioning strives to make sure every peer has at least one
Hydra Head within its 20-peer XOR proximity. If this goal is
achieved, every provider record should be stored on at least
one Hydra Head. Thus, giving the Hydra Boosters full vantage
on all provider records. To further accelerate performance,
records are stored in a distributed database shared across all
Hydra Heads. As a result, any DHT walk to find a provider
record will have a high chance of immediately getting the
result from the Hydra database through the nearest Hydra
Head in the routing table.

Peer ID Assignment. The main design challenge is to achieve
this optimal placement. To address this, it is necessary to de-
termine the total number of participating network peers and
generate an appropriate set of peer identities to cover the en-
tire keyspace. Initially, we considered relying on randomly
generated peer identities, but in practice, this resulted in an
uneven distribution. To mitigate this issue, we rely on the
"power of two choices" [31]. This relies on a biased random
algorithm and has been demonstrated to be effective at bal-
ancing loads when each load balancer has an incomplete or
delayed view. First, all Hydra Head PeerIDs are tracked in
an XOR trie. For each new head’s PeerID, two choices are
generated. The one that decreases the trie’s depth the least
is selected. This approach ensures an average depth of logN,
with a maximum depth of logN + log logN. Importantly, the
trie’s depth correlates with proximity to existing nodes. If a
new Hydra head node were inserted at depth D, then its closest
node is at a distance 2−D. Having all nodes at similar depths
means they are implicitly equidistant in the XOR metric.

Hydra Database. The Hydra Booster system stores recent
records in a shared Amazon DynamoDB key-value store. All
heads can access this database, allowing every individual
head to have full vantage on all provider records known by
any head. Importantly, recall our earlier distinction between
decentralized and distributed. Although DynamoDB is dis-
tributed, it sits under the control of Protocol Labs. Note, the
Hydra database is not related to the peer routing functionality
of Hydra heads. Thus, even if DynamoDB fails, the heads
can continue to assist with peer routing similarly to any other
node (although they cannot directly serve provider records).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 445

3.3 HTTP Gateways

The third challenge of decentralization in IPFS pertains to
adoption, particularly when compared to the simplicity of
browser-based access using HTTP. Accessing IPFS content
necessitates running an IPFS node, which requires technical
expertise. Further, due to the computational cost, the imple-
mentation is currently not compatible with mobile systems.
Additionally, due to the use of incompatible protocols, inte-
grating IPFS with conventional (HTML/HTTP) websites is
challenging. In part, this is also because IPFS experiences
longer retrieval delays than traditional client-server HTTP,
creating usability challenges for composing a webpage from
both HTTP and IPFS-hosted objects.
Overview of Gateways. To address this issue, we have de-
ployed a small set of gateway servers. A gateway works as a
simple HTTP bridge into the IPFS network. We implement
this as a Nginx web server front end, co-located with a full
IPFS node installation. Clients interact with a gateway by
issuing a GET request using the CID as a URL parameter. The
gateway then retrieves the requested object from the IPFS net-
work on behalf of the client before returning it via the HTTP
connection. Note, as our software is open-source, any entity
can deploy their own gateway. Indeed, other organizations
such as Cloudflare have done precisely that.
Caching. To exploit the centralized aggregation of demand,
and improve retrieval performance, we also enable caching on
the gateways. Specifically, we use Nginx’s default web cache
with a Least Recently Used replacement strategy. Thus, any
requested objects are cached within the default HTTP cache
of the gateways. The gateways also allow authorized third par-
ties to actively push content objects into its local object stores
(i.e., its node cache). To date, this is used by NFT.storage and
Web3.storage. Web3.storage stores over 40M objects, while
NFT.storage stores over 91M objects. This serves as a signif-
icant benefit of centralization: By aggregating user requests
within the gateways, we can serve popular objects from the
cache, avoiding repeatedly retrieving the same content from
the IPFS network (as the gateway only forwards a request
when it is not stored or cached locally). Alongside improv-
ing performance for the client, it also offloads unnecessary
requests from the remainder of the network.

4 Evaluation Methodology & Data

To explore the efficacy of the above centralized components
and their impact on IPFS’s decentralization efforts, we rely
on operational data collected from the components managed
by Protocol Labs. See Appendix A for ethics discussion.

4.1 InterPlanetary Network Indexer Data

The below IPNI datasets are obtained from the Indexer man-
aged by Protocol Labs (https://cid.contact).

Providers and Provider Records. Our first dataset covers
the indexed records in the Indexer’s data storage. As of
2023-04-24 UTC , the dataset consists of 173,998,039,712
(approximately 0.17 trillion) provider records.
Index Ingestion Performance Data. Our second dataset cov-
ers the performance of our Indexer. We collect data from the
operational logs of the Indexer. Because the Indexer processes
approximately 5.3 billion provider records per day, we take a
sample of advertisement synchronization operations covering
16,757,817 provider records on 2023-04-24.
Index Query Performance Data. Our third dataset covers the
Indexer query performance. The Indexer employs Amazon
CloudFront. Our dataset comprises HTTP requests made to
Amazon CloudFront, along with cache hit information and
the request complete time. The dataset covers a period of one
day, from 2023-04-18 09:05 UTC to 2023-04-19 09:05
UTC. During this time, 62,611,156 successful requests were
made, and 246.77 GB of traffic was served.

4.2 Hydra Boosters Data

Protocol Labs has deployed 135 Hydra Booster nodes on
Amazon ECS in the us-east-1 region. Each of these Hydras
has between 10 and 15 heads, resulting in a total of 2,015
Hydra heads.
Active Retrievals with Hydra Boosters. To evaluate the per-
formance benefit of the Hydra Boosters, we perform a set of
active measurements with the Hydra Boosters enabled. We
utilize six machines that are located in different regions on
Amazon AWS (see Table 1). On each machine, we run an
IPFS DHT server node (Kubo implementation v0.16.0).

In each iteration, we randomly select a single node to pub-
lish a new 0.5 MB object (CID) to the network. Subsequently,
all other nodes retrieve that object. Once all the nodes com-
plete this process, they disconnect to prevent the next retrieval
operation from being resolved through Bitswap. It is impor-
tant to note that this is the closest one can get to a controlled
test in the public IPFS network.
Active Retrievals without Hydra Boosters. To evaluate the
benefit of Hydra Boosters, it is also necessary to perform the
above measurements without the Hydra Boosters (as a base-
line). Therefore, we repeat the above active measurements,
whilst performing a controlled deactivation of Hydra Boost-
ers. Specifically, we unplug the common database from the
Hydra Boosters for a period of 7 days. We leave Hydra Heads
in the network but configure them to behave differently:

• ADD-PROVIDER queries are ignored. Since Hydra
Heads make about 10-15% of the network, this means
we are artificially decreasing the k-replication to 19 [30].

• GET-PROVIDER queries are answered with only closer
peers (i.e., no provider records) because the common
database is not there anymore.

The active retrieval experiment starts on 2022-11-25 15:27

446 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://cid.contact

UTC to 2022-12-01 17:30 UTC. We have deployed the
change of unplugging the database from the Hydra Boost-
ers on 2022-12-01 17:30 UTC, thus the active retrieval ex-
periment without Hydra starts on 2022-12-01 17:30 UTC
to 2022-12-08 20:00 UTC. This gives us approximately 6
days of data with the Hydra Booster database, and 7 days
without it. Table 1 summarizes the number of retrievals from
each region before and after unplugging the database.

Retrieval Publication
with without with without

af_south_1 9590 12084 2579 3284
ap_southeast_2 10375 13143 2579 3282
eu_central_1 10180 13233 2578 3289
me_south_1 10183 12814 2579 3280
sa_east_1 10192 12904 2578 3291
us_west_1 10162 12821 2579 3286

Table 1: The number of retrievals and publications from each
region with and without the Hydra Boosters database.

4.3 HTTP Gateway Data

Finally, we gather a dataset from the public IPFS gateway
(https://ipfs.io) managed by Protocol Labs. The dataset
comprises of all HTTP GET requests made on 2023-03-15
UTC+0. Each record in the dataset represents the request and
response details, covering remote IP address, request times-
tamp, user agent, HTTP referrer, request complete time, re-
sponse size, response latency, and cache hit/miss information.
In total, the dataset covers 69,339,954 successful requests
from 1,645,611 IP addresses, with response sizes equalling
91,869 GB.

5 Evaluation

We now assess the effectiveness of our centralized compo-
nents in addressing the challenges outlined in Section 2.2.
We focus on (i) The effectiveness of the Indexers in support-
ing massive content publication; (ii) The effectiveness of
the Indexers, the Hydra Boosters, and gateways in improving
content retrieval performance; (iii) The effectiveness of the
gateways in increasing the adoption of IPFS.

5.1 Challenge 1: Massive Content Publication

The first challenge of IPFS’s decentralization pertains to the
massive publication of objects. This is caused by the need
to traverse many decentralized routing hops and replicate
provider records to mitigate churn. To overcome this, we have
introduced the Indexer, a centralized key store. Therefore, we
start by evaluating the efficacy of our centralized components
in improving the publication process.
Indexer Adoption. We first investigate the adoption of In-
dexers by content providers, by checking the number of

provider records that have been uploaded to our Indexer
server. Figure 4a illustrates the total number of provider
records in the Indexer and IPFS DHT, alongside the number
of provider records offered by the top 100 content providers
in both sub-systems. We get the DHT data from our Hydra
Booster database, as discussed in §3.2. The Indexer stores
173,998,039,71 provider records, over 100x more than the
number stored in DHT. Additionally, we observe that the
top providers in the Indexer offer 100-1000x more provider
records than the top providers in the DHT, with most of them
hosting around 109 provider records. Initially, one might as-
sume that the Indexers have therefore eclipsed the DHT, and
created a fully centralized environment. Closer inspection
reveals a more nuanced situation though. Although the Index-
ers host many records, these are uploaded by just 604 major
providers, with most of them running NFT or storage services.
In contrast, 56k providers use the DHT, confirming the ma-
jority still choose to use the DHT. This confirms that large
content providers do see benefit in using the Indexer system,
while outside of these large providers, the remaining IPFS
users continue to publish via the DHT.

We further examine the adoption of Indexers by retrieval
clients. Our data shows that the Indexer receives 2.5k lookup
requests per second, while the IPFS DHT receives around 5k
(estimated using the number of GET-PROVIDER requests
received by Hydra Boosters). These statistics confirm that, al-
though the DHT plays a larger role, the Indexers successfully
support massive content publication activities by this small
number of major publishers. Overall, the results indicate that
the Indexer is fulfilling its intended purpose of supporting
massive content publications from large content providers
and that clients do have interest in such content.

Publication Performance. The above confirms the adoption.
We next assess if the Indexer indeed improves content publica-
tion performance. Figure 4b plots the CDF of advertisement
synchronization time for the Indexer and compares it with
the DHT publication time. We see that the advertisement syn-
chronization time is faster than the DHT publication time at
all percentiles. It is approximately twice as fast at the 50th
percentile. Unsurprisingly, this confirms that the performance
of the centralized Indexer is faster than the DHT publication.

However, an advertisement can contain multiple provider
records (see §3.1). This implies that the time taken by the
Indexer to index each provider record may be significantly
shorter than what is depicted in Figure 4b. To explore this, Fig-
ure 4c presents the relationship between the synchronization
time of advertisements and the number of provider records
in the advertisement. Indeed, we find that the majority of ad-
vertisements contain 16K to 20K provider records (compared
to 1 record for the DHT publications). Additionally, the syn-
chronization time of advertisements is almost agnostic to the
number of provider records, confirming that the Indexer is
well suited for bulk publication.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 447

https://ipfs.io

Figure 4: (a) The number of provider records offered by the top 100 content providers in the Indexer and IPFS DHT, alongside
the total number of provider records in the Indexer and IPFS DHT; (b) CDF of the advertisement synchronization time for the
Indexer, and the DHT publication time of an IPFS node for comparison; (c) Advertisement synchronization time vs. the number
of provider records in the advertisement; (d) CDF of the content lookup time of the Indexer, and of the DHT for comparison.

Discussion & Takeaways. The above shows that Indexers ef-
fectively support massive content publication, with 604 large
content providers hosting provider records 100x more than
those in the DHT. Moreover, it offers a significantly faster
indexing speed of approximately 500µs per provider record.

However, the Indexers also introduce centralization that
brings certain trade-offs. Most noteworthy is the significant
monetary cost of operating Indexers. In our experience, an
Indexer server costs $5–10K in capital expenditure, with ap-
proximately $1K per month in operating expenditure. In con-
trast, IPFS’s original publication mechanism (via the DHT)
is designed such that the load is spread evenly (thereby re-
moving the need for individuals to host expensive hardware).
Moreover, the Indexer introduces a single point of failure as
centralized failures in the Indexer can make significant vol-
umes of provider records inaccessible. This is because some
provider records are only stored within Indexers and is not
replicated in IPFS DHT. We further discuss this in §6.

5.2 Challenge 2: Content Retrieval Performance

The second challenge of IPFS’s decentralization pertains to
content retrieval performance. This is driven by the need for
clients to perform distributed lookups across (many) nodes.
The Indexer, Hydra Boosters, and gateways are all geared
towards addressing this, by complementing the distributed
lookups and retrievals with centralized acceleration. We use
the content lookup time as a metric to evaluate content re-
trieval performance. It refers to the duration between the point
when the retrieval client launches a query and the point when
the content is found. Across the three components, this metric
corresponds to the time to get the first provider record in the
DHT walk; the request completion time in an Indexer query;
and the response latency in a gateway query.
Indexer Content Lookup Time. Figure 4d plots the CDF
of the content lookup time of the Indexer. We also plot the
content lookup time in a vanilla DHT lookup for comparison,
as measured in our Hydra Booster experiments (§4.2). As
expected, the Indexer’s overall content lookup time is signifi-
cantly shorter than the decentralized DHT lookup time. Our
Indexer servers achieve approximately 10x better performance

than the DHT lookup time at the 50th percentile.
One reason for the improvement is that the centralization

allows us to exploit caching in the Indexer server (§3.1). On
average, the cache hit rate is 65.22%. This means that the
majority of queries hit the Indexer’s cache, which is approx-
imately 100x faster than the DHT lookup time in the 50th
percentile. This is a significant benefit of centralization, as
it allows us to aggregate demand into a small set of central
points. Doing the same across our DHT is much less effective.
We also note that, even for the 34.78% of requests that result
in a cache miss, the content lookup times still outperform
the DHT, as shown by the black line in Figure 4d. The per-
formance around the 65th percentile is due to an optional
cascading lookup which makes the Indexer query the IPFS
DHT. Thus, even without the cache mechanism, the central-
ized Indexer still offers better content retrieval performance
than the DHT.
Hydra Booster Lookup Time. The Hydra Boosters also im-
prove content retrieval performance by shortening the DHT’s
provider record lookup. To evaluate this, recall that we per-
formed a controlled experiment running IPFS both with and
without the Hydra Booster active (see §4.2).

Figure 5a displays the content lookup time across all
probed AWS regions, with and without the Hydra Booster
database. We observe a clear performance improvement
in us-west-1, af-south-1, ap-southeast-2, sa-east-1,
and me-south-1, with the median improved by 36.5%,
25.1%, 16.4%, 11.7%, and 3.8% respectively. Although this
is not as impactful as the Indexer speedups, it still constitutes
a notable improvement. However, there is one outlier: the
Hydra Booster database provides no performance improve-
ments in eu-central-1. Our investigation suggests that this
is because the retrieval performance in Europe is already opti-
mized. As shown in Figure 5a, it is significantly better than in
other regions, leaving limited room for further improvement.
This suggests that the decentralization vs. centralization trade-
off may differ based on region, and raises questions about
whether such speed-ups warrant the high monetary cost.

We further investigate how these speedups are achieved.
Recall, the Hydra Boosters improve performance by: (i) the
strategic placement of stable Hydra Heads across the DHT

448 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5: (a) The content lookup time across all probed AWS regions with and without the Hydra database, the values at the top
refer to the medians; (b) Breakdown of the hop count per provider record lookup across all probed AWS regions with (left bar)
and without the Hydra database (right bar); (c) CDF of the content lookup time of the Gateway and of the DHT for comparison;
(d) Cache hit rate of the Gateway throughout the day, aggregated in 1-hour intervals.

hash space so that every peer has a Hydra Head in its 20-
proximity; and (ii) the storage of provider records in the
shared database, allowing many records to be retrieved within
one hop. To confirm this, we examine the closest neigh-
bors of each peer by taking a DHT routing table snapshot
[40]. Confirming our expectation, we find a total of 16,208
peers in the network, with 96.6% having at least one Hy-
dra Head in their 20-proximity. To quantify how this im-
pacts path length, Figure 5b shows the hop count of DHT
walks with and without the Hydra database. We separate the
data into each AWS region. With the hydras, many DHT
walks reach provider records within one hop. This is the case
for 41.45% in af-south-1, 27.81% in ap-southeast-2,
26.68% in eu-central-1, 29.79% in me-south-1, 17.04%
in sa-east-1, and 46.64% in us-west-1. In contrast, with-
out the Hydra database, under 5% in af-south-1 and 2% in
other regions of queries achieve single hop routing, and about
20% of DHT walks require three or more hops to access the
provider record in all regions.

Gateway Content Lookup Time. We finally inspect the gate-
way, which also improves retrieval performance by introduc-
ing centralized caching, circumventing the need to traverse
the DHT or Indexers. Figure 5c displays a comparison be-
tween the gateway content lookup time for IPFS node-stored
content and non-cached content. As a baseline, it also shows
the DHT content lookup time when retrieving from an IPFS
node, as obtained from our Hydra Booster data (§4.2). Note
that Nginx cached content is not plotted separately because
the latency is too short (near 0) to be plotted for comparison.

We see that introducing this centralized caching brings sig-
nificant retrieval performance benefits. At the 50th percentile,
the gateway achieves approximately 100x better performance
than the DHT. This is because most requests hit either the
Nginx cache or the node cache, as plotted in Figure 5d. On
average, the Nginx cache hit rate is 50.3% and the average
IPFS node storage hit rate is 27.6%. The gateway lookup time
for cached objects is just 24 ms at the 95th percentile.

That said, there is little improvement for the remaining
objects that are not cached. The non-cached content shows a
similar trend to DHT lookup in Figure 5c. This is not surpris-

ing since, for non-cached objects, the gateway’s co-located
IPFS node also needs to perform a DHT lookup. On top of
this, the co-located IPFS node needs to retrieve the content
and then forward it to the retrieval client, thus introducing
extra overhead (which causes the disparity between the non-
cached line and the DHT line). This highlights the complexity
of inter-linking these centralized components with the larger
(slower) decentralized system.
Discussion & Takeaways. The centralized Indexer, Hydra
Boosters, and gateways improve content retrieval performance
from different perspectives. The Indexer offers better content
lookup time in 90% of cases, while the gateway aggregates
user demand to provide better content retrieval via caching,
in 95% of cases compared to DHT lookup time. The Hydra
Boosters reduce the number of hops during DHT lookups to
achieve faster lookup times. Overall, deploying these com-
ponents successfully improves content retrieval performance
compared to our earlier fully decentralized design. That said,
the introduction of these components leads to clear trade-
offs, most notably between performance and privacy. As
centralized instances, they allow operators to monitor and
even censor usage. However, our experience and previous
research [10, 37] has shown that these attacks are still possi-
ble in DHTs, regardless of whether Indexers or gateways are
present. We further discuss this in §6.

5.3 Challenge 3: Adoption

Client Adoption. The gateways are our main mechanism to
improve adoption, by providing direct integration with HTTP.
Thus, we first inspect its success by measuring the number of
gateway users as a metric of adoption. For this, we categorize
all user-agents into three categories: desktop browsers, mobile
browsers, and other net tools [9] or libraries such as wget.
Access from both desktop browsers and mobile clients is
a crucial metric for evaluating improvements in adoption
because IPFS node is not yet implemented on mobile devices,
and setting up an IPFS on a desktop can be complicated.

Figure 6a depicts the number of requests, number of users
(we treat each IP address as an individual user), and total traf-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 449

fic served for different user-agents. Figure 6b also presents
a breakdown of the file types requested. Confirming up-
take, 771,977 users access the gateway from mobile clients,
776,286 from desktop user-agents, and 195,854 using net
tools. 31.8% of the total traffic and 18.8% of the total requests
come from mobile devices, whereas 32.9% of the total traf-
fic and 29.8% of the total requests originate from desktop
browsers. This suggests that our gateway has successfully
expanded access to IPFS.

For completeness, Figure 6b presents a breakdown of the
file types requested. Note, stream refers to media streaming.
We observe a wide range of object types. Excluding the un-
known objects, for desktop agents, the most popular type of
content is stream (20.47%) and json (12.99%). For mobile
agents, the most accessed is other content (26.42%) followed
by web content (14.57%). This confirms that the gateway has
been adopted for various applications and content types.

Web Developer Adoption. To assess the adoption of the gate-
way by traditional websites, we look into the HTTP referer.
This tells us from which website a request has been gener-
ated. We measure the number of requests with and without
a referral, as well as the number of users and the total traf-
fic served. The results show that 51.6% of the total traffic
and 29.8% of the total requests come from a referral website,
suggesting significant integration by web developers. This is
similar to the percentage of traffic (48.3%) without a referral
and lower than the requests (70.1%) without a referral. The
requests with a referer come from 1,312,066 users, while the
requests without a referer come from 405,087 users, which is
more than 3x fewer, confirming that the majority of users use
gateways due to integration with websites. This suggests that
the gateway has supported web developer adoption, with the
placement of IPFS-hosted objects in their pages.

We finally check the top 100 referral sites (based on the
number of requests received) and manually label them with
their website category. Figure 6c displays the request volumes
among different referral types, the number of referral sites,
total traffic served, and user count. Note, the IPFS type con-
sists of IPFS official sites and tool sites such as the Gateway
Checker [6]. We see that NFT and online video are the most
common types of referral for the gateway, while other referral
types only account for a small fraction. The former is likely
because a large amount of NFT content is stored on IPFS,
whereas the latter may simply be an effort to offload traffic
from a developer’s own server. Figure 6d also displays the top
100 referral sites, ranked by the number of requests and the
number of users respectively. We observe a long-tail distri-
bution, with 70.23% of the requests originating from just 23
websites. The findings arguably point to a level of additional
centralization, with the majority of referred requests coming
from a small number of top websites.

Discussion & Takeaways. The gateways enhance the adop-
tion of IPFS for both clients and web developers, with a sig-

nificant number of users accessing IPFS through our gateway
on their mobile devices (which would not be possible with-
out it). Additionally, over half of the traffic to our gateway is
generated by referrals from existing HTML-based sites. The
introduction of this centralization, therefore, has clear benefits.
However, the use of such HTTP gateways does sacrifice the
end-to-end cryptographic validation of IPFS content, which
may enable man-in-the-middle attacks. Moreover, as central-
ized instances, gateways enable their operators to monitor
usage, raising privacy concerns. We further discuss these con-
cerns in §6. We also note that gateways may create other risks.
For example, ideally, nodes who retrieve content also volun-
teer to serve it for others. This enables self-scaling, naturally
creating more replicas of popular content. However, the use
of the gateways prevents this and may risk an over-reliance
on centralized elements. Thus, even though one can always
circumvent any gateway, a lack of decentralized participants
could hamper this in the longer term.

6 Discussion

The above solutions were introduced to mitigate challenges
related to content publication, retrieval, and system adoption.
This creates a trade-off, potentially undermining certain bene-
fits of decentralization. We explore this below.

6.1 Security

Hydra Booster Security. One concern regarding the Hydra
Boosters is that a centralized entity controlling multiple heads
might theoretically gain excessive influence over IPFS rout-
ing, leading to issues such as result poisoning and Eclipse
attacks [36]. However, we posit that these security concerns
are unlikely to manifest. First, it is difficult for false content
to be returned, as IPFS relies on self-validating CIDs. Addi-
tionally, while Hydra Boosters can supply the provider record,
they do not serve the content itself. Thus, the most severe
action Hydra Boosters could engage in is presenting a false
provider record, forcing another query. This means that such
an attack would only slow retrieval, rather than prevent it.

Second, as outlined in §3.2, the primary objective of the
Hydra Boosters is to achieve a uniform distribution of Hy-
dra heads. Our measurement (See Appendix B for details)
shows that the mean number of hydra heads within a peer’s
20-proximity is 2.36, and 99.5% peers have no more than five
peers in the 20-proximity. Given the presence of just a few
Hydra heads within 20-proximity, the ability to manipulate
routing or execute eclipse attacks is constrained. This is be-
cause peers connect to not just the Hydra heads, but also and
primarily to other peers. Thus, as long as the ordinary nodes
in the IPFS network continue to function as intended, the
routing of IPFS should remain resilient against potential dis-
ruption from Hydra Boosters. That said, the disruption would
inevitably lead to a performance decline. The performance

450 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 6: (a) Number of requests, number of unique users, and total traffic served for different user-agents; (b) Breakdown of
requested file types for different user-agents; (c) Breakdown of referers for number of referral sites, the number of requests, total
traffic served, and user count of the different referral types across the top 100 sites ranked by requests count; (d) The requests
count and user count of the top 100 referer sites, ranked by request count and by user count, respectively.

impact, in this case, is similar to the situation where all Hydra
Boosters are inactive, a topic we discuss further in §6.2.
Gateway Security. The HTTP gateway sacrifices the end-to-
end cryptographic validation of content, which raises potential
man-the-middle attacks that IPFS strives to prevent. To over-
come this, retrieval client browsers could compute the hash
of the retrieved file to verify whether they have received the
correct content. However, this process entails the use of addi-
tional functionality in the browser, which may undermine the
goal of improving adoption.

6.2 Robustness

Hydra Booster Robustness. The robustness of the Hydra
Boosters could impact IPFS in two ways: (i) failing to return
provider records (e.g., due to the failure of the DynamoDB
instance); or (ii) failing to correctly participate in IPFS rout-
ing (e.g., due to failures on AWS EC2). Despite this, we
emphasize that the failure of either component will result in
IPFS peers falling back to the traditional decentralized model.
Thus, although performance will suffer, availability will not.
Confirming this, §5.2 demonstrated the scenario where Hydra
Boosters stop returning provider records. This situation mir-
rors the conditions that arise when DynamoDB experiences a
shutdown. Here, we observe a performance decrease by up to
36.5%, yet the content availability is not affected.

An additional risk is that the failure of the Hyrda Boosters
will negatively impact routing. To test this, we repeat the
methodology in §4.2, but prevent peers from utilizing any
Hydra Boosters for routing (detailed in Appendix B). We do
not observe any failed retrieval, indicating that the availability
of provider records remains unaffected even when the peers
do not interact with Hydra Boosters.
Indexer Robustness. When using the Indexers, the availabil-
ity of provider records is entirely dependent on the availability
of the Indexers. Unlike the DHT, which replicates provider
records across 20 peers, centralized failures in the Indexer
can make significant volumes of provider records inaccessible.
This is mitigated by the ability of Indexers to gossip announce-

ment messages among themselves. However, gossipsub (see
§3.1) offers no hard guarantees on real-time synchronization.
There are already 7 Indexers available for public use, and Pro-
tocol Labs is working on a protocol for automatic discovery of
alternative Indexers. As more stakeholders operate Indexers,
we hope the risk of Indexer unavailability decreases.

Briefly, it should be noted that the failure of an indexer does
not necessarily result in a permanent loss of provider records.
As explained in §3.1, Indexers obtain provider records from
the advertisement chain of content providers. Therefore,
provider records are inherently replicated by providers’ adver-
tisement chains. If an Indexer loses any provider records,
it can restore them by re-synchronizing with the original
providers, assuming such providers still wish to make their
content available.

6.3 Privacy

Another concern is that, as centralized instances, these com-
ponents may enable their operators to monitor usage. For
instance, the Indexers and gateways can monitor the queried
CIDs from the clients. Similarly, the Hydra Boosters can ob-
serve almost every DHT query in IPFS because most peers
are directly connected to a Hydra Head. This asymmetry of
power is a key concern and makes it necessary for clients to
trust the operators with their data. We conjecture that this is
one of the reasons why most IPFS clients use an instance of
these components operated by Protocol Labs. Despite this,
we acknowledge this is not a sustainable solution, with the
risk of Protocol Labs becoming an overly central dependency.
Although not discussed here, we also briefly note that the
Indexers use a double-hashing technique to make this moni-
toring more difficult [5].

Our experiences within IPFS have also flagged that many
of these attacks are possible in the decentralized DHT routing
subsystem, agnostic to the presence of Indexers or gateways.
For instance, a well-placed node in the DHT can learn which
files are requested by a client during the routing process. By
performing a Sybil attack, a well-resourced adversary could
even gain global vantage on the routing process. Recent works

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 451

also show that privacy attacks [10] and censorship [37] are
possible in the purely decentralized IPFS DHT. Despite that,
it is clear that greater decentralization reduces the vantage of
individual nodes, raising the barrier to such attacks.

6.4 Incentives

In previous subsections, we mention that issues with robust-
ness can be mitigated by multiple stakeholders running these
centralized components. This, however, requires a clear incen-
tive model to encourage third-party operators to contribute
their resources. To date, there are 7 Indexers and over 80 Gate-
ways, and the stakeholders running them typically have three
types of incentives: (i) Stakeholders that provide storage ser-
vices utilizing IPFS can benefit from running Indexers and/or
Gateways. These ease the discovery of their stored content,
broaden adoption, and improve their service’s performance.
Such stakeholders include NFT.storage, Web3.storage, DSS,
SXX, FilSwan, PikNik, Ken Labs, etc. (ii) Stakeholders that
provide other applications built on top of IPFS benefit from
running an Indexer and/or a Gateway to improve the stability
and performance of their service. Such stakeholders include
LeewayHertz, 4everland, Aragon, Pinata, etc. (iii) Stakehold-
ers that have a broader interest in decentralized web appli-
cations have a motivation to contribute to the environment
as it aligns with their long-term interests. Such stakeholders
include CloudFlare and Infura.

We acknowledge that none of the aforementioned reasons
provide formal incentives by design. It is yet to be determined
how wide uptake is among third-party stakeholders without
a formal incentive model in place. Our future plans involve
implementing incentive mechanisms, and there are several
potential options available [24].

7 Related Work

Decentralized Web. The IPFS network has grown alongside
other Decentralized Web technologies, particularly the "fedi-
verse". This is composed of server-based federated services,
such as Mastodon [32], Pleroma [23], and Diaspora [22]. The
service closest to IPFS is Nextcloud, which offers a federated
file storage platform that integrates IPFS with server-local
storage [1]. This functions similarly to IPFS gateways. How-
ever, IPFS can operate without gateways, while fediverse apps
rely entirely on the uptime of federated servers [32].
P2P Networks. There have been numerous P2P overlay ar-
chitectures, with dozens of DHT structures proposed, includ-
ing Chord [38], Tapestry [44], Koorde [26], Pastry [34], and
others [25]. Various applications have been built atop, such
as large-scale content delivery platforms [14] and decentral-
ized social networks [21], among others. Rather than creating
an entirely new system, IPFS uses the Kademlia DHT for
content indexing [30]. IPFS is built upon these technologies

and is currently one of the largest “Decentralized Web” tech-
nologies deployed in the world. BitTorrent, which also uses
Kademlia [14], is another example of a large-scale deploy-
ment. Note, as part of our decentralization efforts, IPFS aims
to be resistant to censorship, much like other platforms such
as Freenet [12] and Wuala [28]. These platforms achieve their
goal by storing encrypted content across a random subset of
peers. In contrast, IPFS follows a BitTorrent-like approach
where nodes store only the content they are interested in.
DHT Optimization. Various attempts have been made to en-
hance the performance and usability of DHTs by employing
caching [35], network-aware peer selection [27], and paral-
lelizing lookups [39]. We also take inspiration from prior
Information-Centric Networking designs that use DHTs for
content indexing [17, 18]. We build on these prior works with
our deployment of hydra boosters. These improve perfor-
mance while offloading traffic from the DHT.
P2P System Evaluations. Closest to our evaluation are stud-
ies that measure operational IPFS [41]. Moreover, in [20],
the authors measure DHT lookup latencies in the range of
tens of seconds, but it was not a controlled experiment. There
have been various performance evaluations of P2P systems.
For example, [16] and [43] evaluate BitTorrent’s implementa-
tion of Kademlia, to find a significant number of failed nodes
that adversely affected the lookup times. Further, Stutzbach
and Rejaie [39] model Kademlia’s performance and propose
several improvements. We borrow from these measurement
studies to inform our methodologies in §4.

8 Conclusion
This paper has presented our experiences of deploying three
centralized components within IPFS, namely Indexers, Hy-
dra Boosters, and Gateways. Using real-world operational
data, we have demonstrated their effectiveness in addressing
the challenges faced by IPFS: massive content publication,
content retrieval performance, and adoption. We have also
discussed trade-offs, related to security, privacy, and other
risks caused by the compromises of prior decentralization.
Overall, our findings highlight the persistent challenges that
exist in deploying operational decentralized systems with
tight performance constraints. Equally, we have highlighted
the challenges of overcoming traditional issues with central-
ized deployments (e.g., single points of failure and privacy).
Thus, we emphasize that developers must make judgment
calls about how to balance such trade-offs. In the future, we
plan to explore the remaining challenges discussed in §6. We
will continue working on the research and development of
decentralized protocols, and we hope that IPFS can eventually
perform similarly even without these centralized parts.

References

[1] IPFS for Nextcloud. https://apps.nextcloud.com/, 2020.

452 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[2] Ipfs ecosystem directory. https://ecosystem.ipfs.io/, 2022.

[3] Bitswap. https://docs.ipfs.tech/concepts/bitswap/, 2023.

[4] Internet traffic from mobile devices (apr 2023).
https://explodingtopics.com/blog/mobile-internet-traffic, 2023.

[5] The ipfs dht reader privacy upgrade. https://discuss.ipfs.tech/
t/the-ipfs-dht-reader-privacy-upgrade/16279, 2023.

[6] Ipfs gateway checker. https://ipfs.github.io/public-gateway-checker/,
2023.

[7] Multihash. https://github.com/multiformats/multihash, 2023.

[8] Pebble database. https://github.com/cockroachdb/pebble, 2023.

[9] User-agent net tool ua strings. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers, 2023.

[10] BALDUF, L., HENNINGSEN, S. A., FLORIAN, M., RUST, S., AND
SCHEUERMANN, B. Monitoring data requests in decentralized data
storage systems: A case study of IPFS. CoRR abs/2104.09202 (2021).

[11] BOMMELAER DE LEUSSE, C., AND GAHNBERG, C. The global
internet report: Consolidation in the internet economy. Internet Society
(2019).

[12] CLARKE, I., SANDBERG, O., WILEY, B., AND HONG, T. W. Freenet:
A distributed anonymous information storage and retrieval system. In
Designing privacy enhancing technologies (2001), Springer.

[13] CLAY, K. Amazon.com Goes Down, Loses $66,240 Per Minute, 2013.

[14] COHEN, B. Incentives build robustness in bittorrent. In Workshop on
Economics of Peer-to-Peer systems (2003), vol. 6, Berkeley, CA, USA,
pp. 68–72.

[15] COLDEWEY, D. Cloudflare dns goes down, taking a large piece of the
internet with it, 7 2020.

[16] CROSBY, S. A., AND WALLACH, D. S. An analysis of bittorrent’s
two kademlia-based dhts. Tech. rep., Rice Technical Report, 2007.

[17] DANNEWITZ, C., D’AMBROSIO, M., AND VERCELLONE, V. Hier-
archical dht-based name resolution for information-centric networks.
Computer Communications 36, 7 (2013), 736–749.

[18] DANNEWITZ, C., KUTSCHER, D., OHLMAN, B., FARRELL, S.,
AHLGREN, B., AND KARL, H. Network of information (netinf)–an
information-centric networking architecture. Computer Communica-
tions 36, 7 (2013), 721–735.

[19] DOAN, T. V., VAN RIJSWIJK-DEIJ, R., HOHLFELD, O., AND BAJPAI,
V. An empirical view on consolidation of the web. ACM Transactions
on Internet Technology (TOIT) 22, 3 (2022), 1–30.

[20] FALKNER, J., PIATEK, M., JOHN, J. P., KRISHNAMURTHY, A., AND
ANDERSON, T. Profiling a million user dht. In Proceedings of the
7th ACM SIGCOMM Conference on Internet Measurement (New York,
NY, USA, 2007), IMC ’07, Association for Computing Machinery,
p. 129–134.

[21] GRAFFI, K., GROSS, C., STINGL, D., HARTUNG, D., KOVACEVIC,
A., AND STEINMETZ, R. LifeSocial. KOM: A secure and P2P-based
solution for online social networks. In CCNC (2011).

[22] GUIDI, B., CONTI, M., PASSARELLA, A., AND RICCI, L. Managing
social contents in Decentralized Online Social Networks: A survey.
Online Social Networks and Media 7 (2018).

[23] HASSAN, A. I., RAMAN, A., CASTRO, I., ZIA, H. B., DE CRISTO-
FARO, E., SASTRY, N., AND TYSON, G. Exploring content moderation
in the decentralised web: The pleroma case. In Proceedings of the 17th
International Conference on emerging Networking EXperiments and
Technologies (2021), pp. 328–335.

[24] IHLE, C., TRAUTWEIN, D., SCHUBOTZ, M., MEUSCHKE, N., AND
GIPP, B. Incentive mechanisms in peer-to-peer networks – a systematic
literature review. ACM Computing Surveys (Jan. 2023).

[25] ISDAL, T., PIATEK, M., KRISHNAMURTHY, A., AND ANDERSON, T.
Privacy-preserving p2p data sharing with oneswarm. In Proceedings of
the ACM SIGCOMM 2010 Conference (New York, NY, USA, 2010),
SIGCOMM ’10, Association for Computing Machinery, p. 111–122.

[26] KAASHOEK, M. F., AND KARGER, D. R. Koorde: A simple degree-
optimal distributed hash table. In International Workshop on Peer-to-
Peer Systems (2003), Springer, pp. 98–107.

[27] KAUNE, S., PUSSEP, K., LENG, C., KOVACEVIC, A., TYSON, G.,
AND STEINMETZ, R. Modelling the internet delay space based on geo-
graphical locations. In 2009 17th Euromicro International Conference
on Parallel, Distributed and Network-based Processing (2009), IEEE,
pp. 301–310.

[28] MAGER, T., BIERSACK, E., AND MICHIARDI, P. A measurement
study of the wuala on-line storage service. In 2012 IEEE 12th Interna-
tional Conference on Peer-to-Peer Computing (P2P) (2012), IEEE.

[29] MATHEWS, E. Amazon cloud outage hits major websites, streaming
apps, 12 2021.

[30] MAYMOUNKOV, P., AND MAZIERES, D. Kademlia: A peer-to-peer
information system based on the xor metric. In Peer-to-Peer Systems:
First InternationalWorkshop, IPTPS 2002 Cambridge, MA, USA, March
7–8, 2002 Revised Papers. Springer, 2002, pp. 53–65.

[31] MITZENMACHER, M. The power of two choices in randomized load
balancing. IEEE Trans. Parallel Distrib. Syst. 12, 10 (oct 2001),
1094–1104.

[32] RAMAN, A., JOGLEKAR, S., CRISTOFARO, E. D., SASTRY, N., AND
TYSON, G. Challenges in the decentralised web: The mastodon case. In
Proceedings of the Internet Measurement Conference (2019), pp. 217–
229.

[33] ROSEMAIN, M., AND SATTER, R. Millions of websites offline after
fire at french cloud services firm, 3 2021.

[34] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In
IFIP/ACM International Conference on Distributed Systems Platforms
and Open Distributed Processing (2001), Springer, pp. 329–350.

[35] SALEH, O., AND HEFEEDA, M. Modeling and caching of peer-to-peer
traffic. In Proceedings of the 2006 IEEE International Conference on
Network Protocols (Nov. 2006), IEEE.

[36] SINGH, A., CASTRO, M., DRUSCHEL, P., AND ROWSTRON, A. De-
fending against eclipse attacks on overlay networks. p. 21.

[37] SRIDHAR, S., ASCIGIL, O., KEIZER, N., GENON, F., PIERRE, S.,
PSARAS, Y., RIVIÈRE, E., AND KRÓL, M. Content censorship in the
interplanetary file system. arXiv preprint arXiv:2307.12212 (2023).

[38] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND
BALAKRISHNAN, H. Chord: A scalable peer-to-peer lookup service
for internet applications. ACM SIGCOMM Computer Communication
Review 31, 4 (2001), 149–160.

[39] STUTZBACH, D., AND REJAIE, R. Improving lookup performance
over a widely-deployed dht. In Proceedings IEEE INFOCOM 2006.
25TH IEEE International Conference on Computer Communications
(2006), IEEE, pp. 1–12.

[40] TRAUTWEIN, D. Nebula – A crawler for networks based on the libp2p
DHT implementation, 7 2021.

[41] TRAUTWEIN, D., RAMAN, A., TYSON, G., CASTRO, I., SCOTT, W.,
SCHUBOTZ, M., GIPP, B., AND PSARAS, Y. Design and evaluation
of ipfs: A storage layer for the decentralized web. SIGCOMM ’22,
Association for Computing Machinery, p. 739–752.

[42] VYZOVITIS, D., NAPORA, Y., MCCORMICK, D., DIAS, D., AND
PSARAS, Y. Gossipsub: Attack-resilient message propagation in the
filecoin and eth2.0 networks, 2020.

[43] WOLCHOK, S., AND HALDERMAN, J. A. Crawling BitTorrent DHTs
for fun and profit. In 4th USENIX Workshop on Offensive Technologies
(WOOT 10) (Washington, DC, Aug. 2010), USENIX Association.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 453

https://discuss.ipfs.tech/t/the-ipfs-dht-reader-privacy-upgrade/16279
https://discuss.ipfs.tech/t/the-ipfs-dht-reader-privacy-upgrade/16279

[44] ZHAO, B. Y., HUANG, L., STRIBLING, J., RHEA, S. C., JOSEPH,
A. D., AND KUBIATOWICZ, J. D. Tapestry: A resilient global-scale
overlay for service deployment. IEEE Journal on Selected Areas in
Communications 22, 1 (2004), 41–53.

A Ethics

All data used within this paper is collected as part of Pro-
tocol Lab’s operational activities. Although we observe IP
addresses, we do not attempt to map these back to personal
identities, as such analysis is not within the scope of this study.
The IPFS gateway data also contains user information, as it
covers requests from web clients. In all cases, we anonymize
IP addresses, and do not perform lookups on the CIDs to
infer the nature of the content exchanged. We perform no
per-user analysis, and focus only on overall system analysis.
All information is collected as part of our routine operations,
and in line with IPFS policies. This paper has not triggered
additional data collection.

B Additional Experiments

B.1 Hydra Heads in 20-Proximity

We examine the closest neighbors of each peer by taking a
DHT routing table snapshot [40]. Figure 7 shows the CDF of
the number of hydra heads in a peer’s 20-proximity.

Figure 7: CDF of the number of hydra heads in a peer’s 20-
proximity.

B.2 Active Retrieval Ignoring Hydra Boosters

We conduct another experiment using the same methodology
as described in §4.2. However, in this experiment, we utilize
modified IPFS nodes that disregards all Hydra heads. This
modification incurs minimal overhead since we possess a list
of the PeerIDs of all Hydra heads. This simulation mirrors
the conditions where a peer choose not to interact with any
Hydra head. The experiment starts on 2022-11-28 16:17
UTC to 2022-12-09 20:00 UTC. Table 2 list the number of
retrievals and publications from each region with modified

Retrieval Publication
af_south_1 7533 1674

ap_southeast_2 7800 1674
eu_central_1 8003 1677

me_south_1 7578 1674
sa_east_1 7529 1675
us_west_1 7886 1571

Table 2: The number of retrievals and publications from each
region with modified IPFS nodes that ignore Hydra Boosters.

Figure 8: The content lookup time across all probed AWS
regions with and ignoring the Hydra database, the values at
the top refer to the medians.

IPFS nodes that ignore Hydra Boosters. Figure 8 shows the
performance comparison by plotting the content lookup time
across all probed AWS regions with and ignoring the Hydra
database.

454 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

BBQ: A Fast and Scalable Integer Priority
Queue for Hardware Packet Scheduling

Nirav Atre, Hugo Sadok, Justine Sherry
Carnegie Mellon University

Abstract
The need for fairness, strong isolation, and fine-grained con-
trol over network traffic in multi-tenant cloud settings has
engendered a rich literature on packet scheduling in switches
and programmable hardware. Recent proposals for hardware
scheduling primitives (e.g., PIFO, PIEO, BMW-Tree) have
enabled run-time programmable packet schedulers, consid-
erably expanding the suite of scheduling policies that can
be applied to network traffic. However, no existing solution
can be practically deployed on modern switches and NICs
because they either do not scale to the number of elements
required by these devices or fail to deliver good throughput,
thus requiring an impractical number of replicas.

In this work, we ask: is it possible to achieve priority packet
scheduling at line-rate while supporting a large number of
flows? Our key insight is to leverage a scheduling primitive
used previously in software – called Hierarchical Find First
Set – and port this to a highly pipeline-parallel hardware de-
sign. We present the architecture and implementation of the
Bitmapped Bucket Queue (BBQ), a hardware-based integer
priority queue that supports a wide range of scheduling poli-
cies (via a PIFO-like abstraction). BBQ, for the first time,
supports hundreds of thousands of concurrent flows while
guaranteeing 100 Gbps line rate (148.8 Mpps) on FPGAs and
1 Tbps (1,488 Mpps) line rate on ASICs. We demonstrate
this by implementing BBQ on a commodity FPGA where it
is capable of supporting over 100K flows and 32K priorities
at 300 MHz, 3× the packet rate of similar hardware priority
queue designs. On ASIC, we can synthesize 100K elements
at 3.1 GHz using a 7nm process.

1 Introduction
Packet scheduling, the problem of deciding what order

and/or time network packets ought to be served or transmitted,
has long occupied a prominent position in networking litera-
ture. Prior work in this space has resulted in a rich repertoire
of packet scheduling algorithms with a variety of different
properties: fairness and starvation avoidance [9], attack re-
silience [7], burst reduction [34], optimal flow completion
time [4], etc. At the heart of many of these algorithms is a pri-
ority queue data-structure, which allows the scheduler to map
packets’ relative order (or scheduling time) to unique priori-
ties, sort them, and subsequently extract the highest-priority
item (i.e., the next packet to schedule) from the queue.

Despite these strong theoretical foundations, network
switches and NICs have historically failed to provide anything
beyond a small suite of simple scheduling algorithms [41].

The key problem is the complexity associated with implement-
ing a fast, scalable, and generic priority queue in hardware.
PIFO [41] was a foundational paper in articulating the im-
portance of priority queueing and providing a practical im-
plementation of a hardware priority queue. Yet, as we will
discuss further in §2, PIFO falls short of achieving suitable
performance for deployment either on an ASIC (as in a tra-
ditional switch) or on an FPGA (as in modern SmartNICs).
Today, line rates run at 100+ Gbps, and comprise tens or even
hundreds of thousands of concurrent flows, but PIFO can
support at most 2048 concurrent flows while guaranteeing
line-rate processing.

This performance bottleneck arises because implementing
an exact priority queue involves comparison-based sorting
a sequence of n arbitrary elements, which imposes a theo-
retical lower bound of Ω(n logn) on the required number of
comparator operations. While PIFO reduces this complexity
to O(n) by observing that priority can be determined at en-
queue time, and the spatial nature of switch or NIC hardware
allows this computation to be parallelized (i.e., by unrolling
the operations in space instead of time), spatial parallelism
only scales so far: as the number of comparator operations
increases, so does the complexity of the resulting datapath cir-
cuit, causing the maximum operating frequency of the switch
or NIC to drop dramatically. Although prior work has since
improved upon PIFO using more sophisticated parallelization
techniques [40, 47]), they are nonetheless limited in terms of
performance, scalability, or both. Moreover, many of these so-
lutions give up logical partitioning, a key feature of PIFO that
is essential for practical switch deployment. For instance, the
state-of-the-art priority queue design, BMW-Tree [47], would
require 1,056 replicas in order to support a 32× 400 Gbps
output-queued switch (§2.1.1)!

In this paper, we ask: is it possible to achieve priority
packet scheduling on NICs and switches at state-of-the-art
line rates with 100K+ flows without sacrificing accuracy or
the expressiveness that PIFO offers?

As we look to build a highly performant and scalable pri-
ority queue for hardware packet scheduling, we are inspired
by data structures with constant worst-case time complexity.
In particular, we find that integer priority queues (IPQs) are
well suited to the task: they subvert the complexity barrier
imposed by comparison-based sorting, so performance and
scalability are no longer at odds. Further, there should be no
loss in precision so long as the relative ordering of packets
can be encoded in the priority span of the IPQ.

In this work, we present the design and implementation

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 455

of the Bitmapped Bucket Queue (BBQ),1 a scalable, high-
performance IPQ for hardware packet scheduling. The data
structure underlying BBQ is a Hierarchical Find-First Set
(HFFS) queue [38, 45], which guarantees constant worst-case
time complexity for standard heap operations. While HFFS
is a well-known data structure that has found applications
in several software systems,2 our key insight is that HFFS
queueing is amenable to a highly efficient, fully-pipelined
hardware implementation. As a consequence, BBQ enables,
for the first time, packet scheduling at 100 Gbps line rate
using minimum-sized packets on a commodity FPGA-based
SmartNIC, and can be incorporated into state-of-the-art 32×
400 Gbps switches [33] with as little as 12 replicas.

Although efficient pipeline parallelism is key to BBQ’s
high performance and scalability, incorporating this paral-
lelism introduced new challenges in avoiding data hazards
(parallel reads and writes to the same data) and correctness.
As we will discuss in §4.2, hazards manifested in our design
in three ways and required careful design to disentangle par-
allel access to shared data without sacrificing performance.
Nonetheless, BBQ ultimately makes one sacrifice to correct-
ness in that it cannot support back-to-back dequeues of pack-
ets from the same flow; in §5 we show that by combining
BBQ with a tiny PIFO instance we can guarantee the perfor-
mance of BBQ with the correctness of PIFO.

The rest of this paper is organized as follows. In §2 we
provide background and discuss the challenges of incorpo-
rating a programmable scheduler into modern switches and
NICs. In §3, we provide an overview of the BBQ design,
followed by a more detailed description of the architecture in
§4, focusing on the challenges due to parallelism and hazards.
In §5, we explore an augmentation to the BBQ design that
counteracts the latency artifacts introduced by pipelining. In
§6 we evaluate BBQ, followed by a discussion on how to
incorporate the design into modern switches and NICs in §7.
We then describe the related work in §8, discuss limitations
and future work in §9, and conclude in §10.

2 Background and Motivation
More than ever, there is a need for programmable packet

scheduling in hardware. Switches have long offered a limited
set of packet scheduling algorithms and NICs are increasingly
taking over dataplane tasks traditionally performed in soft-
ware [37], including end-host packet scheduling [26, 34, 42].
In the case of switches, having a programmable packet sched-
uler could not only vastly expand the catalog of scheduling
algorithms available to network operators, but also pave the
way for faster innovation and customization [11, 41]. With
NICs, system administrators already expect to be able to cus-
tomize the packet scheduler that runs on the end host [37].

1Available at https://github.com/cmu-snap/BBQ.
2The Linux kernel uses FFS-based priority queueing for process schedul-

ing. Eiffel [38] demonstrates how HFFS queueing can be used to realize
high-performance software packet scheduling, and [45] even gives a sketch
for a hardware design.

2.1 Lack of Support for Emerging Use-Cases
PIFO [41] is a seminal work in this regard. It makes the

observation that, when considering a single node [28], all
scheduling algorithms can be expressed in how they make
two decisions: which packet to schedule next and when to
schedule it. The authors observe that for many scheduling
algorithms this behavior can be captured simply with a hard-
ware priority queue. This priority queue can be used in one
of two ways: it can implement work conserving algorithms
by sorting flows by rank, or it can implement non-working
conserving algorithms by sorting flows by scheduling time.
While PIFO was initially conceived to run on switches, it has
also been shown to be a useful primitive to schedule packets
on NICs [26, 42].

Unfortunately, existing solutions for programmable packet
scheduling in hardware fail to meet the requirements for both
state-of-the-art NICs and switches. In what follows, we elab-
orate on these two use cases, highlighting how their stringent
performance requirements are at odds with existing proposals
for programmable hardware packet schedulers.

2.1.1 Line-Rate Switches
In order to support packet scheduling without impeding

the rest of the switch’s dataplane functionality, any realis-
tic proposal for a packet scheduler ought to satisfy two key
requirements:
(A1) Match the switch’s aggregated packet rate: For
scheduling in output-queued switches, the worst-case through-
put demand corresponds to the scenario where ingress traffic
from all ports is incident on a single egress port (i.e., incast
behavior). In order to avoid backpressuring the switch fabric,
the packet scheduler must be able to process packets at the
same rate as the switch backplane (i.e., its aggregated packet
rate) at any given port. For instance, in NVIDIA’s Spectrum
SN4700 (a state-of-the-art 400 GbE switch with 32 ports), the
packet scheduler for a single port must be able to handle an
aggregated packet rate of 8.4 billion pps [33].
(A2) Allow every port to address all buffered packets: In
order to efficiently utilize on-chip memory, switches use a
shared packet buffer that is dynamically partitioned between
its output ports [41]. In the worst case, every packet in the
shared buffer might be destined for the same output port, and
each packet might map to a different flow to be scheduled.
If the packet scheduler at a given port could only address
a subset of buffered elements, it would impose additional
constraints on the switch’s ability to handle such bursts. Thus,
a second key requirement for schedulers is the ability to allow
any output port to address every buffered packet. In modern
switches, shared packet buffers are provisioned for hundreds
of thousands of packets [33].

In 2016, a single physical PIFO instance could handle
the full aggregated packet rate for a 64-port 10 GbE switch
(1 Bpps) [41]. Today, state-of-the-art switches, e.g. the
SN4700, offer 400 GbE line rates with 32 ports (20× higher

456 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/cmu-snap/BBQ

SchedulerScheduler

o1

o2

o3

o4

i1

i2

i3

i4

o1

o2

o3

o4

i1

i2

i3

i4

Priority QueueSwitch Port

(a) Without logical partitioning (b) With logical partitioning

Logically-Partitioned Priority Queue

Figure 1: Scheduler architecture using priority queues without
(left), and with (right) support for logical partitioning. In a k-port
switch using priority queues without logical partitioning, we need
k2 + k priority queues in order to both implement output queueing
and absorb incast traffic from all the ports. Support for logical
partitioning reduces the number to 2k.

aggregated throughput). Given the large (and ever-widening)
gap between network and processing speeds, a single priority
queue instance can no longer sustain aggregated packet rates.
Consequently, to satisfy (A1), packet schedulers for modern
switches must “scale out” using a mesh of priority queues.

Unfortunately, priority queue designs that do not support
logical partitioning, i.e., the ability to multiplex several in-
dependent queues atop a single physical queue, require pro-
hibitively large meshes. To the best of our knowledge, PIFO
and PIEO are the only existing design that support logical par-
titioning, while more recent proposals (e.g., BMW-Tree [47])
do not. Generously assuming that a single priority queue
instance could handle 400 Gbps line-rate input in a k-port
switch, these designs would require, at minimum, a (k2 + k)
mesh of instances to realize per-output-port scheduling while
supporting the full aggregated throughput due to incasts; an
example mesh for k = 4 is depicted in Figure 1(a). Further,
every instance would have to be provisioned with hundreds
of thousands of queue elements to satisfy (A2). Overall, a
32-port switch operating at 400 Gbps line-rate would require
at least 322+32 BMW-RPU instances, each provisioned with
100K+ entries, to implement priority queueing alone. Based
on synthesis numbers reported by the authors and considering
that a switch chip area ranges from 200 mm2 to 800 mm2 [41]
this corresponds to 1.5−6× the total area.

The ability to logically partition a physical priority queue
enables a significantly simpler mesh architecture. Assuming,
again, that each priority queue instance can sustain 400 Gbps
input, we would only need 2k instances, as depicted in Fig-
ure 1(b). Each physical instance in the first layer ingests
packets from a single ingress port, but enqueues into one of
k logically independent queues corresponding to the k pos-
sible destination ports. The second layer then periodically
schedules packets among their k inputs, feeding traffic to their
respective egress ports. Despite the fact that PIFO benefits

from this architecture, its inability to scale beyond 2,048 ele-
ments means that it does not satisfy (A2). Conversely, while
PIEO scales marginally better, it does not provide the requi-
site performance, violating (A1).

Consequently, we find that no existing hardware priority
queue design is suitable for modern switches due to a funda-
mental limitation on either scaling (e.g., PIFO), performance
(e.g., PIEO), or their ability to provide logical partitioning
(e.g., BMW-Tree).

2.1.2 SmartNICs in the Public Cloud
Another key driver for programmable packet schedulers in

hardware are SmartNICs in the public cloud, either ASIC [26,
34, 37, 42] or FPGA-based [6, 15, 16, 20, 27, 35, 37]. Packet
schedulers for such NICs ought to satisfy three requirements:
(B1) Scale to tens of thousands of flows: The packet sched-
uler on the SmartNIC may need to implement scheduling
policies for a large number of active (concurrent) flows. This
might seem surprising because NIC packet buffers are typi-
cally orders of magnitude smaller than those used in switches;
however, unlike switches, modern SmartNICs may be re-
quired to make scheduling decisions for flows not just in their
local TX or RX queues, but also those residing in host memory.
This is a popular theme in the cloud setting where, in order
to save valuable CPU cycles, the hypervisor dataplane (in-
cluding scheduling functionality) is offloaded to the NIC [15].
The packet scheduler aboard the NIC is then responsible for
deciding which backlogged flow queues in host memory to
serve at any point, with the number of scheduling candidates
scaling as (tenants × flows per tenant). For instance, across
1M+ VMs in Azure, VFP [14] reports 4.8K active connec-
tions per VM at the 99th percentile, and as high as 12K at
P99.9. We expect the scalability problem to become all the
more apparent given trends of increasing core counts [5] (and
therefore potential for multitenancy), and as more services
that traditionally used multiple physical NIC queues (e.g.,
RDMA) become amenable to virtualization [19].
(B2) Sustain 100GbE+ line-rates: While state-of-the-art
NICs have lower throughput requirements compared to
switches, they still need to support line rates of 100 Gbps
and beyond [32]. This is particularly relevant in the context of
public clouds because network bandwidth is a commoditized
resource and an important driver for many high-performance
cloud-based applications [35].
(B3) Implement scheduling both across and within ten-
ants: Finally, in the context of multi-tenant clouds, the NIC
scheduler should be able to provide, at minimum, the ability
to schedule traffic across tenants (to enforce cloud providers’
policy requirements, e.g., fairness or bandwidth quotas) and
within tenants (to provide application-level priority queueing),
without imposing significant resource overhead.

Recent priority queue designs (e.g., PIEO [40], BMW-Tree
[47]) symbolize a concerted effort towards addressing the
scalability requirement outlined in (B1). For instance, we

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 457

can synthesize a PIEO instance with up to 64K entries, and a
BMW-RPU instance with 350K entries on a state-of-the-art
FPGA (§6.2). Unfortunately, these designs do not meet both
the performance (B2) and provider policy (B3) requirements.

In the context of (B2), the problem with existing de-
signs is that performance degrades rapidly as the number
of elements increases, a fundamental tradeoff associated
with comparison-based sorting. Moreover, scaling out us-
ing a mesh is not feasible because NICs are considerably
smaller and more resource-poor than switches; as such,
single-instance performance is the key factor in determining
feasibility. For example, [47] reports that a single BMW-RPU
instance can sustain 200 Mpps with 85K elements using a
28nm ASIC process; this is sufficient to drive line rate at
100 GbE (148.8 Mpps), but not at 200 GbE. The picture
is even more dire for packet scheduling on FPGA-based
SmartNICs [15, 20]. For instance, as we will show in §6.2,
BMW-Tree achieves a packet rate of 55 Mpps for 85K ele-
ments on a state-of-the-art, Intel Stratix 10 MX FPGA, 37%
of line rate even at 100 Gbps.

A second, more fundamental problem with these designs is
that it is impossible to disentangle their function (implement-
ing priority queueing) from their form (a fixed tree [10,25,47]
of queue elements). As a result, implementing n distinct
priority queues (e.g., for n tenants) requires duplicating the
underlying data structure, imposing significant resource over-
head, fragmentation of queue memory, or both. As before,
the key enabler for (B3) is logical partitioning.

Once again, we find that existing hardware priority
queues are not viable alternatives for packet scheduling
in modern SmartNICs because they do not provide the nec-
essary performance or logical queueing functionality.

2.2 Exploring a Different Tradeoff

In this work, we seek to explore a different tradeoff that
allows us to circumvent the performance-scalability barrier:
sacrificing a small amount of precision to achieve the best of
both worlds. In this regard, we are motivated by prior work’s
observation that a large fraction of networked applications do
not require particularly high precision [2, 39]. For instance,
both VLAN and DSCP support up to 8 traffic classes (3-bit
priority tags), priority-qdisc (tc-prio) in the Linux kernel
provides at most 16 priority bands, and state-of-the-art com-
mercial switches support up to 32 strict-priority queues [2].
These, in turn, provide sufficiently fine-grained priority queue-
ing to support a variety of higher-level abstractions: trans-
port protocols and frameworks (e.g., Homa [30], PASE [31],
PIAS [8]), congestion and interference controllers (RC3 [29],
QJUMP [18]), and high-performance overlay networks (e.g.,
GRIN [1], SLIM [49]). In what follows, we describe the
design of a highly scalable and performant priority queue
exploring this tradeoff.

3 BBQ Overview
BBQ is a new hardware-based priority queue architecture

for packet scheduling that is designed with three goals in mind:
(1) scalability, the maximum number of concurrent flows
that the queue can support, (2) performance, the maximum
steady-state packet rate that the queue can sustain, and (3)
logical partitioning, the ability to multiplex several logical
queues atop a single physical queue. In this section, we
give an overview of BBQ’s design before diving into the
architectural details in §4. We start with a brief introduction
to the data structure underlying BBQ in §3.1, followed by a
high-level description of the BBQ primitive in §3.2. Finally,
in §3.3, we describe the challenges the hardware architecture
must address in order to meet our system goals.

3.1 Data Structure
Integer Priority Queueing: BBQ leverages an Integer Pri-
ority Queue (IPQ) scheme to alleviate the tension between
scalability and performance (§2). Unlike traditional priority
queues where elements can have arbitrary priorities, an IPQ
requires elements to map to a finite set of integer priorities,
called its priority span; for an IPQ that supports P integer
priorities, the span is represented by the set {0, ..., P− 1}.
Quantizing the priority range allows IPQs to implement a
simple counting sort-like algorithm: the IPQ maintains an
array of P priority buckets, each representing a unique priority
in its span; when a new element is enqueued, it is inserted
into the bucket indexed by the element’s priority.

The only remaining challenge is to find the right prior-
ity bucket to dequeue from. Since only a subset of buckets
may be occupied at any time, dequeueing entails finding the
highest-priority bucket containing at least one element. A
naive approach is to sequentially check buckets in decreasing
order of priority, stopping at the first non-empty bucket; how-
ever, this may turn out to be expensive, necessitating O(P)
sub-operations in the worst case.
Building efficient IPQs using Find-First Set: One approach
to improve the run-time efficiency of dequeue operations is to
encode the occupancy of the IPQ’s priority buckets as a P-bit
wide bitmap, with ‘0’s representing empty buckets, and ‘1’s
representing buckets containing at least one element. Then,
the most-significant set bit (MSSb) in the bitmap yields the
required bucket to dequeue from. Finding the MSSb, an oper-
ation known as Find First Set (FFS), can be performed with
Θ(logP) simple bit operations (bit-shifts and additions) using
a binary search algorithm. Unfortunately, scaling to large
values of P (e.g., 32K) using FFS Queues quickly becomes
impractical due to constraints on the maximum word size
that the hardware can efficiently operate upon. For example,
general-purpose processors provide FFS intrinsics for at most
64-bit words; similarly, implementing FFS on bitmaps larger
than 64 bits would result in low operating frequency even in
more specialized circuits (e.g. ASICs or FPGAs).
Scaling to larger priority spans using Hierarchical FFS:

458 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[45] novelly observed a recursive structure to the problem:
given an array of bitmaps ordered by priority, the highest-
priority non-zero bitmap can also be identified via a single
FFS operation using a schema similar to the one described
above. This observation naturally leads to the notion of a
Hierarchical FFS (HFFS) Queue.

The idea is to construct a tree of bitmaps, with leaf nodes
representing regular FFS Queues. The bitmaps are encoded
such that, at any level in the tree, a ‘1’ in any bit position
indicates a non-empty priority bucket in the subtree rooted at
that node. Now, to dequeue the highest-priority element, we
recursively perform FFS at each level of the tree starting with
the root, following the MSSb until we arrive at the required
priority bucket. BBQ uses a variant of the HFFS Queue as its
underlying data-structure.

3.2 The BBQ Primitive
At the heart of BBQ is a priority index structure inspired

by HFFS Queues: a perfect w-ary tree of w-bit bitmaps rep-
resenting the queue occupancy. The bitmap tree in a BBQ
can be composed of an arbitrary number of levels, which in
turn dictates the queue’s priority span. In general, for a BBQ
with w-bit bitmaps and D≥ 1 levels, the number of supported
priorities is P = wD. Figure 2 depicts a BBQ with w = 3 and
D = 2, representing P = 32 = 9 unique priorities.

The bitmap tree has a recursive structure: at the leaf level
of the tree (e.g., the L2 bitmaps in Figure 2), each bit maps
to a unique priority bucket; at non-leaf levels (e.g., L1), each
bit maps to a unique subtree of bitmaps. In either case, we
maintain the invariant that a bit in any bitmap is 1 if and only
if there is a priority bucket containing at least one element
in the corresponding subtree. In BBQ, we additionally as-
sociate with every bit a subtree occupancy counter (StOC)
that indicates the total number of elements in that subtree; a
StOC is non-zero if the corresponding bit is 1, and vice versa.
As we will see in §4, the design choice of storing additional
counters enables us to achieve stall-free execution of the BBQ
pipeline, yielding high performance (i.e., full pipelining) with
a relatively small memory overhead.

IPQs group queue elements (QEs) with identical priority in
the same priority bucket (PB). In BBQ, PBs are implemented
as doubly-linked lists of QEs. In particular, each PB stores
a pair of pointers: HEAD and TAIL, pointing to the first and
last QE in the linked list, respectively. QEs themselves are
composed of two attributes: (1) a DATA field to store arbitrary,
user-supplied identifiers3, and (2) a pair of pointers (PREV and
NEXT) to other QEs, allowing them to interface with the PBs’
doubly-linked lists.

The final component of the BBQ is the Free List (FL): a
FIFO queue containing pointers to QEs that are currently

3BBQ, like most priority queues, is agnostic of the data contained in the
QEs. The DATA attribute has a configurable bit-width and could be used to
store a pointer to a packet, flow ID, or even a reference to another BBQ.
Unless specified otherwise, we will assume that QEs represent flows [41].

Bitmap

StOCs

Priority
Bucket (PB)

7 6

Queue Element (QE)

L1

L2

PB

Free List (FL)

8

1 0 1

2 0 3

FFS

4 35 1 02

MSSb

...

1

0 1 0

0 2 0

1 0 0 0

0 0 0

1 0 1

2 0 1

FFS

Figure 2: 2-level BBQ with w = 3 bit bitmaps. To dequeue the
highest-priority element, we recursively perform FFS at each level
of the tree starting with the root, following the most-significant set
bit (MSSb) until we arrive at the required priority bucket.

unallocated (i.e., not enqueued in the BBQ). Table 1 depicts
the operations supported by BBQ.

3.3 Goals and Challenges
Recall that we sought out to build BBQ with three key goals

in mind: scalability, performance, and logical partitioning. In
this section, we describe how BBQ meets these goals, and the
challenges the underlying hardware architecture must address
to achieve them.

3.3.1 Scalability
Using an IPQ-based design breaks the dependence between

run-time complexity of operations and queue size, allowing
BBQ to support a large number of QEs without necessitating a
fundamental performance trade-off. In many ways, scalability
“falls out” of this high-level design choice, allowing us to
explicitly optimize for the other goals.

3.3.2 Performance
While the data structure underlying BBQ is conceptually

simple, realizing this functionality in hardware in a manner
that achieves high performance is a challenging proposition.

The overall performance of the hardware queue (measured
in packets per second) is the product of two independent
metrics: (C1) fmax or the maximum frequency that the queue
operates at, which is dictated by its critical path (i.e., the
worst-case combinational delay in the hardware circuit), and
(C2) the number of operations that can be issued every cycle.
Given the logical complexity of the queue operations (i.e.,
ENQUEUE or DEQUEUE), it is impractical to perform them in
a single hardware clock cycle because it would significantly

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 459

Operation Description

ENQUEUE(X, p) Inserts the given data, X, into the
BBQ with priority p.

DEQUEUE(t)
−→ (Y, p) or ∅

t ∈ {MAX,MIN}

Extracts the data, Y, corresponding to
either the highest-priority QE (when
t is MAX) or the lowest-priority QE
(when t is MIN) currently enqueued
in the BBQ. Returns ∅ if empty.

Table 1: Priority Queue operations supported by BBQ.

throttle fmax, hurting (C1). Instead, operations must be divided
into a sequence of n stages, where each stage involves a
smaller quantum of work. While this improves fmax of the
resulting circuit by reducing combinational delay, doing so
naively (e.g., trying to avoid concurrency problems by issuing
one operation every n cycles) would slash (C2) by a factor of
n, once again degrading performance.

The key to high performance – and simultaneously the
most challenging aspect of BBQ’s architectural design – is
pipelined parallelism. In this context, pipelining refers to
designing the hardware architecture such that multiple stages
may simultaneously be active at the same time, thereby allow-
ing operations to be issued fewer than n cycles apart. Unfor-
tunately, there are several sources of complexity that make it
non-trivial to achieve a high degree of pipelined parallelism:
practical limitations on the number of R/W ports on physical
memory blocks, data hazards (i.e., ephemeral memory depen-
dencies between active pipeline stages), and control hazards
(i.e., logical and algorithmic dependencies between stages).

Our key finding in this context is that by carefully archi-
tecting BBQ’s hardware pipeline, we can, in fact, achieve
fully-pipelined execution (i.e., guaranteed throughput of 1
operation per cycle) without compromising on the maximum
clock frequency. This is realized by: (a) employing deep
pipelining to preserve fmax, and (b) using a variety of archi-
tectural techniques (speculation, write-forwarding, and in-
struction coloring) to handle pipeline hazards without stalling
or discarding operations. We describe the BBQ pipeline in
detail in §4.

3.3.3 Logical Partitioning
Full decoupling between BBQ’s queue memory (i.e., its

QEs) and its priority index structure (i.e., the bitmap tree)
gives BBQ a unique opportunity to provide logical partition-
ing with no resource overhead. The idea is to treat the bitmap
tree as a collection of n disjoint subtrees, each of which maps
to an independent BBQ. This effectively partitions the origi-
nal BBQ’s priority span into n disjoint regions; then, in order
to DEQUEUE an element from a logical BBQ, we simply “mask”
the appropriate bits in the bitmap tree while performing FFS
such that we only traverse down the corresponding subtree.

This technique allows us to fully reuse all of the physical
BBQ’s resources without any performance degradation or

fragmentation of queue memory. There is, however, a cost
in terms of precision, because each logical BBQ can only
address 1

n ’th of the priority span of the underlying instance.
For use-cases where the number of logical partitions is not
too large (e.g., 32-64 port switches [33], or cloud servers host-
ing 16-128 tenants), this is simply a matter of appropriately
provisioning the priority span of the underlying BBQ.

Since logical partitioning is, (a) a key enabler for building
efficient priority queue meshes for line-rate switches and re-
alizing hierarchical scheduling in multi-tenant cloud NICs
(§7), and (b) adds negligible overhead in the BBQ datapath,
we natively support this feature in the BBQ primitive. We
describe logical partitioning (both for prior work, as well as
BBQ) in more detail in Appendix A. Logical partitioning also
enables us to extend the BBQ primitive to operate over dy-
namic priority ranges with zero overhead, an idea we describe
in Appendix D.

4 BBQ Architecture
In this section, we describe the architectural details that

enable us to map BBQ’s design to hardware in a manner that
achieves our performance goals. We begin by describing the
hardware pipeline in §4.1, followed by a description of the
hurdles that arise while trying to fully pipeline the design.

4.1 Hardware Pipeline
In principle, enqueueing and dequeueing follow a similar

blueprint, yielding an intuitive algorithm for mapping them to
a unified datapath: for each level of the tree starting with the
root (i.e., L1), compute the bitmap index (for DEQUEUE(t),
the index is computed by performing FFS on the bitmap,
while for ENQUEUE(X, p), it is computed using simple bit
manipulations on p), increment/decrement the corresponding
StOC, then update the bitmap; finally, enqueue into or de-
queue from the doubly-linked list corresponding to the target
priority bucket. To maximize performance, we take a careful
two-pronged approach.
(1) Maximizing fmax: Our first objective is to maximize
fmax, or the maximum clock frequency at which the BBQ
circuit can operate. To do this, we use a deep pipeline where
individual stages are designed to do both little and roughly
equal amounts of work. Table 2 depicts the events that occur
at cycle-level in a 11-stage pipeline for a 2-level BBQ.4 By
load balancing expensive operations across stages, we min-
imize the number and severity of same-stage dependencies
(depicted by

↰

and⇝). For instance, chaining FFS and StOC
updates (multi-bit addition or subtraction) would result in a
large combinational delay, so we split this work across stages

4Since the L1 level has a small memory footprint, we choose to store the
associated metadata (bitmaps and StOCs) in registers with single-cycle access
latency. The larger arrays (e.g., L2 bitmaps and StOCs, priority buckets, and
queue elements) use substantially more memory and involve more complex
address decoding logic; as such, we store these in SRAM with a 2-cycle
access latency in order to optimize fmax.

460 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Cycle Description PHR

0 Register inputs

If ENQUEUE:
F ←− FreeList.POP() // Pop free list

1 Compute L1 bitmap index↰

Read the corresponding L1 StOC L1

2 Compute, Write: L1 StOC⇝ L1 bitmap

Read L2 bitmap

L2

3 // Read delay for L2 bitmap

4 Compute L2 bitmap index↰

Read the corresponding L2 StOC

5 // Read delay for L2 StOC

6 Compute, Write: L2 StOC⇝ L2 bitmap

Read the corresponding PB

PB

7 // Read delay for PB

8 If DEQUEUE:
(a) Read X←− QEDATA[PB.TAILnew]
(b) Read Y ←− QEPREV[PB.TAILnew]

9 // Read delay for QEDATA and QEPREV

10 If ENQUEUE: // Enqueue at the HEAD
(a) QEDATA[F]←− Data to enqueue
(b) Write QENEXT[F]←− PB.HEAD
(c) Write QEPREV[PB.HEAD]←− F
(d) Write PB.HEAD new ←− F

If DEQUEUE: // Dequeue from TAIL
(a) FreeList.PUSH(PB.TAIL)
(b) Write PB.TAILnew ←− Y
(c) Output X

Table 2: 11-stage hardware pipeline for a 2-level BBQ (without
operation coloring) highlighting independent pipeline hazard regions
(PHRs).

↰

and⇝ indicate same-stage dependencies, which result in
more complex combinational logic. In general, a BBQ with D > 1
levels entails a pipeline depth of p = 7+4× (D−1) stages.

(e.g., cycles 1 and 2).

(2) Maximizing operations per cycle: As described in
§3.3.2, high fmax is only useful if we are not rate-limited
by the pipeline latency or even a portion of it. Our second
objective is to fully pipeline the BBQ design so it can concur-
rently process as many operations as there are pipeline stages,
thereby achieving its maximum rate of 1 op/cycle. There are
several challenges we encounter in this process, which we
address in detail next.

4.2 A Fully-Pipelined Architecture
Pipeline Hazard Regions: The first key enabler for BBQ’s
stall-free architecture is the design choice of associating every

bit in the bitmap tree with a subtree occupancy counter. Re-
call that for a given bit, the associated StOC indicates the total
number of elements contained in the corresponding subtree.

To understand how this enables pipelining, consider a straw-
man design with n pipeline stages where we only store the
bitmaps for each level of the HFFS tree, but not the associated
StOCs. Here, the earliest time we know whether a DEQUEUE
operation causes a priority bucket to become empty is when
the operation is committed (i.e., the final pipeline stage). Now,
consider what happens if this causes a bit in any bitmap along
the path to that priority bucket to flip (i.e., become ‘0’). Any
subsequent DEQUEUE operations in the pipeline may have been
routed along the tree based on stale state, creating an incor-
rigible control hazard. As a result, we would have to either:
(a) discard and re-issue the subsequent DEQUEUE operation(s),
hurting worst-case performance, or (b) only issue DEQUEUEs
every n cycles, defeating the purpose of pipelining altogether.

Instead, StOCs allow us to divide the BBQ pipeline into
independent pipeline hazard regions (PHRs) mapping to dif-
ferent levels of the bitmap tree, as shown in Table 2. When
exiting a PHR, the outcome of every operation (either an
ENQUEUE or a DEQUEUE) is committed to the StOC. This has
two implications: (1) two operations can only be conflicted
(i.e., have data or control dependencies between them) if they
are in a PHR at the same time, and (2) conflicts are lim-
ited to intra-PHR state (e.g., the bitmap or StOC data at that
tree level). As a result, we only have to address intra-PHR
hazards (i.e., dependencies between active operations in the
same PHR), which are far more localized – and therefore
more tractable – than hazards spanning the entire pipeline.
We characterize our implementation of StOCs in detail in
Appendix B.

While StOCs enable us to achieve stall-free operation, they
are not sufficient to guarantee a fully-pipelined design on their
own. In what follows, we describe three types of intra-PHR
hazards we encountered in our endeavor to fully-pipeline
BBQ, and the architectural techniques used to address them.
(H1) Data Hazards: The simplest form of hazards we en-
counter are data hazards, where one stage of the pipeline
either: (a) issues a memory read, or (b) waits on completion
of a memory read at an address that is concurrently updated
by a different pipeline stage.

For instance, consider the BBQ pipeline depicted in Table 2.
If Stage 2 issues a read for an L2 bitmap that is simultaneously
being modified by Stage 6, it will receive either a stale or
invalid value 2 cycles later.5 Similarly, if Stage 3 has a read
in progress for the same memory address, it will receive a
stale value on the next cycle. This is a common problem
in processor design, where the standard solution – and the
one we use here – is to perform write forwarding from a
later pipeline stage to its predecessors when a read-after-write
conflict occurs.

5Certain hardware platforms may guarantee a consistent memory view,
but this is not true in general (e.g., FPGA SRAM).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 461

In order to resolve data hazards, we need to first compute
whether and which pairs of operations in a PHR access the
same state (e.g., bitmaps, StOCs, PBs). BBQ exploits the
hierarchical nature of the queue to make this computation
efficient: since bitmap and StOC addresses also have a hier-
archical structure to them (e.g., the address of an L3 bitmap
is generated by splicing together the address of its L2 parent
and its own index in the parent bitmap), we can both reduce
address comparator logic and improve fmax by memoizing
address conflicts at higher levels and propagating them down
the pipeline; then, when we need to compute address conflicts
for lower levels, we reuse the memoized results, necessitating
comparison of only the lower address bits.
(H2) Non-atomic bitmap accesses: A second type of intra-
PHR hazard arises due to the non-atomic nature of bitmap
accesses, causing back-to-back DEQUEUE operations to be
routed down incorrect paths in the bitmap tree.

To illustrate this problem, consider the example depicted
in Figure 3. Initially, at 1 , both the MSb and LSb of an
L2 bitmap are set, and the corresponding StOC values are
1 and 2, respectively. Now, consider two DEQUEUE-MAX op-
erations, OPA and OPB, issued one cycle apart. Since the
highest-priority (left-hand) subtree has just one element and
becomes empty after the first DEQUEUE operation (i.e., OPA),
we would expect to see OPB to be routed down the right-hand
subtree (corresponding to the LSb). Instead, we find that both
operations are incorrectly routed down the left-hand subtree.
The problem arises at 3 , the moment OPB and OPA reach Cy-
cles 4 and 5 of the pipeline, respectively. At this point, OPA is
waiting on the read for the MSb’s StOC (issued one cycle ear-
lier, at 2) to complete, while OPB computes the same MSSb
as OPA and issues a read for the same StOC. It is only on
the following cycle – at 4 , when OPA decrements the MSb’s
StOC down to 0 – that we discover that the left-hand subtree
becomes empty, and that OPB should have been steered to
the right-hand subtree instead; unfortunately, it is far too late
by this point. Note that this is not simply a rare performance
issue that can be addressed by, e.g., discarding trailing op-
erations in case of conflicts; rather, it is a correctness bug.
In this case, since OPB may have already been “committed”
to StOCs earlier in the pipeline, the operation cannot simply
be discarded. Once again, we would have to either: (a) stall
the pipeline, hurting worst-case performance, or (b) enforce
that DEQUEUE operations are issued at least 2 cycles apart,
throttling the queue’s DEQUEUE throughput.

To address this problem, we adopt another technique from
the architecture literature: speculation. The idea is as fol-
lows: within the Li PHRs, if we have two back-to-back
DEQUEUE-MAX operations (say, OPA and OPB, issued in that
order, respectively) that access the same bitmap, we compute
the bitmap index for OPB speculating that OPA causes the
MSSb to become ‘0’. Consequently, OPB will issue a read for
the next-MSSb. On the following cycle, if we find that OPA
indeed caused the MSSb to flip (i.e., the corresponding StOC

Bitmap

StOCs

1 0 1
Cycle Description

4
5
6

Compute FFS, read StOC
Read delay for StOC
Update StOC and bitmap

4

5

6

Cycle

OPA

1 0 2

4
5
6

Cycle

OPB
4

5
6

Cycle

OPA

OPB

MSb LSb

Left-hand
subtree

Right-hand
subtree

1 0 1

OPA

?
1 0 1

1 0 1 0 0 1

0
0 0 1

0

2
1 1

1

0

0

1

3 4

Figure 3: Non-atomic read-modify-write accesses to bitmaps cause
OPB (the second of two consecutive DEQUEUE-MAX operations) to be
incorrectly routed to the left-hand subtree.

4

5

Cycle

OPA

OPB

4

5

Cycle

OPA

OPB

OPA might flip the MSSb, so I will
perform FFS pretending that it does

Speculation was correct, do nothing

Adopt OPA's
state instead

Is 0?
No

Yes

1 0 11

3

61 0 10
0

4

61 0 1
?

1

Figure 4: If there are conflicting operations in the Li PHRs, op-
erations issued later compute bit indices speculating that earlier
operations will change the bitmap.

becomes 0), our speculation was correct, and OPB proceeds
as usual. Otherwise, OPB simply discards its own state, and
adopts both the MSSb index and StOC values computed by
OPA for the remainder of the pipeline. The speculation logic
is illustrated in Figure 4.

The key observation here is that instead of squandering
OPB’s one available read on data that are going to be available
anyway (via inter-stage forwarding), we can “hedge” our bet
on multiple bits simultaneously, ensuring that at least one of
them yields the desired outcome. We also note that, while the
description presented here involves only DEQUEUE-MAX opera-
tions for the sake of simplicity, the same technique generalizes
to any combination and order of operations (i.e., ENQUEUE,
DEQUEUE-MIN, and DEQUEUE-MAX).
(H3) Non-atomic PB accesses: Conceptually similar to (H2),
the third and final type of hazard arises due to the non-atomic
nature of priority bucket accesses, causing back-to-back
DEQUEUE operations to potentially corrupt state within the
PB PHR. To see why, consider stages 6− 10 of the BBQ
pipeline. In Stage 10, DEQUEUE operations cause the PB’s
TAIL pointer to be updated (now denoted by PB.TAILnew). In
stage 8, DEQUEUE operations perform a read that is supposed
to be addressed by the most up-to-date TAIL pointer for the

462 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

corresponding PB. However, consider what happens when
two back-to-back DEQUEUE operations (say, OPA and OPB,
issued in that order, respectively) land at the same priority
bucket. At Stage 9, OPB is waiting on completion of the
read addressed by PB.TAIL available on the previous cycle.
However, OPA, now at Stage 10, modifies the TAIL pointer,
causing the read issued by OPB (for QEDATA and QEPREV) to
become stale. Unfortunately, write-forwarding does not help
here because the stale variable (PB.TAIL) is being used to
address other state, creating a control hazard.

To address this problem, we introduce the notion of opera-
tion coloring (inspired by graph coloring, problems where
vertices in a graph must be assigned colors such that no two
adjacent vertices have the same color), which works as fol-
lows. First, we tag each operation with a Color attribute,
which assumes one of two values: Purple () or Orange
(). An operation’s color determines which end of the PB’s
doubly-ended linked-list it interacts with: operations colored
purple operate on the HEAD of the PB, while those colored or-
ange operate on the TAIL. All ENQUEUE operations are always
colored purple, while DEQUEUE operations are, by default, col-
ored orange. Finally, we add a single constraint on color:
a DEQUEUE operation must not have the same color as a
conflicting operation issued immediately before it (i.e., one
cycle earlier). In the first cycle of the PB PHR (Cycle 7), if
the active operation is a DEQUEUE that conflicts with another
operation in the subsequent pipeline stage, it is recolored.
Table 3 depicts the relevant portion of the BBQ pipeline post
operation coloring (extraneous details are omitted for the sake
of brevity).

C Description

7 // Color operation

8 If DEQUEUE :
Rd QEDATA[PB.HEADnew]
Rd QENEXT[PB.HEADnew]

If DEQUEUE :
Rd QEDATA[PB.TAILnew]
Rd QEPREV[PB.TAILnew]

9 // Read delay

10 If ENQUEUE :
Update PB.HEAD new

If DEQUEUE :
Update PB.HEAD new

If DEQUEUE :
Update PB.TAIL new

Table 3: Updated stages 7−10 showing operation coloring.

Observe that, so long as the DEQUEUE operations are col-
ored differently from any operation immediately preceding
them in the pipeline, they will not incur stale reads. The key
idea here is that each operation (whether an ENQUEUE or a
DEQUEUE) only affects one pointer in the PB’s (HEAD, TAIL)
pair.6 As a result, picking a mutually exclusive color also

6The only situations in which both pointers are affected is when the
priority bucket becomes empty (i.e., due to a DEQUEUE), or a priority bucket
that was previously empty becomes non-empty (i.e., due to an ENQUEUE).
Speculation precludes the first possibility (attempting to DEQUEUE an empty
PB), so we are left with the second corner case, which we handle explicitly.

guarantees exclusivity on the data structure itself. Operations
spaced more than one cycle apart can be safely handled via
write forwarding. An artifact of this design choice is that
back-to-back DEQUEUEs landing at the same priority bucket
will not dequeue elements in FIFO order; however, since
DEQUEUEs are bound to be interleaved with ENQUEUEs during
typical operation, we do not expect this case to arise often.

Together, these optimizations realize a fully-pipelined pri-
ority queue architecture with both high fmax, and a guaranteed
operation throughput of 1 op/cycle independent of workload.

5 BBQ : A Latency-Free BBQ
While deep pipelining is key to BBQ’s high performance,

the resulting pipeline latency (i.e., the number of clock cycles
that elapse between when an operation is issued and when it
completes) introduces a new source of error in the relative
ordering of elements compared to an “ideal” priority queue.

The problem manifests due to a confluence of two factors:
(a) since it takes several cycles for an operation to traverse the
pipeline, in order to use BBQ at full throughput (1 op/cycle),
multiple operations need to be issued concurrently; and (b) for
a pipeline of depth p, the minimum delay for a high-priority
element to be dequeued, served, and re-enqueued into the
queue is also p. Consequently, any DEQUEUE operations
that are issued in the p cycle interval that the highest-priority
element is not present in the queue might ultimately dequeue
lower-priority elements. A concrete example of the prob-
lem is described in §C.1. The aforementioned problem is
inextricably tied to our decision of using a pipelined architec-
ture, implying that the BBQ primitive alone cannot guarantee
absolute accuracy at full throughput.

However, we find that a simple augmentation to the BBQ
primitive allows us to hide this latency and avoid the accuracy
issues that come with it: use a tiny PIFO as a “cache” in front
of the BBQ to hold the highest-priority elements. Whenever
this tiny PIFO overflows, it “leaks” the lowest priority element
to the BBQ. This PIFO only needs to be able to hold as
many elements as the BBQ’s pipeline depth (order of tens
of elements). Because of its small size, this instance does
not face the scalability limitations associated with the PIFO
architecture and only adds a small footprint to the design.

The augmented design, BBQ , provably guarantees zero
loss in accuracy (i.e., any dequeued element is always the
highest-priority one in the system at that time) while providing
full throughput (1 op/cycle). We can show this by proving the
sufficient condition in Theorem 1: with a PIFO whose size
exceeds the pipeline latency of the BBQ, the highest-priority
element is always served from the PIFO, such that we never
experience the accuracy or latency artifacts introduced by the
accompanying BBQ. We describe BBQ in detail in §C.2.

Theorem 1 (Priority Set Invariant for BBQ). In a BBQ
instance composed of a BBQ with pipeline latency p cycles
and a PIFO of size k > p, the top (k− p) highest-priority
elements are always in the PIFO.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 463

The proof can be found in §C.3.

6 Evaluation
We now evaluate BBQ. Our main goal is to understand

BBQ’s performance and viability for both ASICs and FPGA
designs. We also compare BBQ with PIFO [41], PIEO [40],
and BMW-Tree [47]. PIFO is the state-of-the-art hardware
priority queue in terms of throughput while BMW-Tree is
the state of the art in terms of scalability. Throughout this
evaluation, we show that BBQ can surpass PIFO’s throughput
while achieving similar scalability to BMW-Tree.

6.1 Setup and Methodology
We implement BBQ in SystemVerilog. Given the recur-

ring and composable structure of the design, we implement a
Python script to automatically generate different configura-
tions of BBQs by stitching together modular blocks of hand-
written SystemVerilog code. Users can specify the number
of levels in the tree (D), the bitwidth of every node (W), and
the maximum number of elements (N). We synthesize BBQ
targeting both an FPGA (Intel Stratix 10 MX FPGA [24])
as well as an ASIC. The Stratix 10 MX contains 702,720
Adaptive Logic Modules (ALMs), 140 Mb of SRAM, and two
100 Gb Ethernet ports. For comparison, we also synthesize
PIFO, PIEO, and BMW-Tree targeting the same board. For
each design and configuration, we conduct a bisection search
to find the maximum clock frequency achievable with 3 MHz
precision, picking the best synthesis across 10 seeds. To syn-
thesize the FPGA we use Intel Quartus [21]. To synthesize the
ASIC, we use Synopsys Design Compiler [43] using a 7 nm
Standard Cell Library [44] based on the ASAP7 PDK [13].

All the designs we evaluate have deterministic performance
that is independent of the workload. As such, our analysis
focuses on the packet rate that each design is able to sus-
tain, as well as the cost [36] (in terms of die area and FPGA
resources).

6.2 FPGA
As mentioned in §2.1.2, FPGA-based NICs are increas-

ingly used as a way to achieve programmable offloads on
the NIC [15, 16, 23, 35, 37]. Having a programmable packet
scheduler on the NIC would allow administrators to change
the packet scheduling algorithms at run time. In this section,
we evaluate how BBQ and the baseline designs perform, in
terms of throughput (§6.2.1) and FPGA resources (§6.2.2).
We also explore how the different BBQ design parameters
affect its performance when running on an FPGA (§6.2.3).

6.2.1 Throughput Scalability
Queue capacity can influence throughput by increasing the

hardware critical path, which in turn reduces the maximum
clock frequency that we can achieve with the design (fmax).
To understand this effect, we synthesize BBQ (with 8-bit
bitmaps) and the baselines while changing both the queue

27 29 211 213 215 217
0

100

200

300

400

500

Precision: 9 bits

27 29 211 213 215 217

Precision: 15 bits

Capacity (number of elements)

F
re

q
u

en
cy

(M
H

z)

BBQ PIEO BMW-Tree PIFO

Figure 5: Clock frequency as we scale the queue capacity.

27 29 211 213 215 217
0

50
100
150
200
250
300

Precision: 9 bits

27 29 211 213 215 217

Precision: 15 bits

Capacity (number of elements)

T
h

ro
u

g
h

p
u

t
(M

p
p

s)

BBQ PIEO BMW-Tree PIFO

Figure 6: Throughput as we scale the queue capacity.

capacity and the number of bits used to express the priorities
(precision). We report both the clock frequency as well as the
overall throughput achievable by each design.

Figure 5 shows the clock achievable by each design when
we increase the queue capacity. BBQ achieves a clock as
high as 500 MHz with 9-bit precision and 400 MHz with 15-
bit precision, significantly higher than the baseline designs.
Moreover, BBQ is able to scale to up to 217 elements while
still sustaining a 300 MHz clock. In comparison, PIFO can
only scale to up to 211 elements.

In addition to achieving a higher clock frequency, BBQ’s
fully pipelined design allows it to execute an operation (en-
queue or dequeue) every clock cycle. As a result, the through-
put difference is even higher compared to BMW-Tree (that
consumes 1 cycle to enqueue and 2 cycle to dequeue) and
PIEO (that consumes 4 cycles to enqueue and 4 cycles to
dequeue). However, different from the other designs, PIFO
is able to execute both an enqueue and a dequeue operation
in the same cycle, allowing its packet rate to match its clock
frequency. Figure 6 shows the throughput of the different
designs for different queue capacities. BBQ is able to drive
100 Gbps line rate (148.8 Mpps) with as many as 217 elements.
Also note that PIFO is able to achieve similar throughput to
BBQ, but only for small queues (128 elements or less).

6.2.2 Resource Scalability
We also evaluate how the different designs scale in terms

of FPGA resources. We report both ALM utilization and
SRAM blocks, both as a fraction of the overall number of
resources available in the target FPGA. Figure 7 shows how
the ALM utilization scales as we increase the number of ele-
ments that the queue can support. In BBQ, scaling the queue
capacity has little effect on the logic utilization. This is a
direct consequence of BBQ’s use of an integer priority queue,
which lets it avoid comparison-based sorting. BMW-Tree’s

464 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

27 29 211 213 215 217
0

5

10

15

20 Precision: 9 bits

27 29 211 213 215 217

Precision: 15 bits

Capacity (number of elements)

A
L

M
s

(%
)

BBQ PIEO BMW-Tree PIFO

Figure 7: ALM utilization as we scale the queue capacity.

27 29 211 213 215 217
0

5

10

15 Precision: 9 bits

27 29 211 213 215 217

Precision: 15 bits

Capacity (number of elements)

S
R

A
M

b
lo

ck
s

(%
) BBQ PIEO BMW-Tree

Figure 8: SRAM block utilization as we scale the queue capacity.
PIFO is not included in the plot as it does not use SRAM.

hierarchical design also gives it much better scalability, using
only slightly more ALM resources than BBQ. In contrast,
both PIFO and PIEO use significantly more resources as we
scale the capacity.

While BBQ’s ALM utilization remains low even for
131,072 elements (217), BBQ, like PIEO and BMW-Tree,
relies on SRAM to store its elements. As a result, we expect
SRAM utilization to increase with the queue capacity for all
these designs. Figure 8 shows this effect. Note that BBQ’s
SRAM utilization is in between PIEO’s and BMW-Tree’s.
However, PIEO and BMW-Tree require multiple copies in
order to match BBQ throughput, which causes them to use
vastly more SRAM if provisioned to meet the same perfor-
mance target.

6.2.3 BBQ Sensitivity Analysis
To understand the impact of BBQ’s configuration on per-

formance, we perform a sensitivity analysis of the bitmap
tree parameters: the number of levels (D), and the bitmap
width (W) (recall that the number of priorities is computed as
P =W D), while keeping the number of elements fixed.

Figure 9 depicts how BBQ’s throughput behaves as a func-
tion of the bitmap width. We sweep the number of levels
in the bitmap tree from D = 3 to 15 (or until we reach 215

priorities) for different bitmap widths. Then we plot the at-
tained throughput for the corresponding priority count. We
find that bitmap widths between 2 and 8 yield similar per-
formance (with 4 being optimal), but this deteriorates as the
bitmap width increases. In particular, starting with W = 16,
FFS computation becomes the primary fmax bottleneck. We
can similarly infer from the same graph that level count has
little impact on performance; for instance, we observe that
a (D = 4,W = 2) BBQ achieves the same throughput as a
(D = 8,W = 2) BBQ despite the latter containing 16× as

23 25 27 29 211 213 215

Number of priorities

0
50

100
150
200
250
300

T
h

ro
u

g
h

p
u

t
(M

p
p

s)

W=2

W=4

W=8

W=16

W=32

Figure 9: BBQ throughput as
we increase the number of priori-
ties when using different bitmap
widths (W).

23 25 27 29 211 213 215

Number of priorities

0

50

100

150

200

250

300

T
h

ro
u

g
h

p
u

t
(M

p
p

s)

D=3

D=4

D=5

D=6

Figure 10: BBQ throughput as
we increase the number of priori-
ties when using different number
of levels (D).

many priorities. Figure 10 shows the complementary view
of the data, depicting change in throughput as a function of
priorities for different numbers of tree levels.

6.3 ASIC
We now evaluate BBQ in the context of designs targeting

ASICs. Here we compare BBQ with PIFO for two reasons:
(1) it is one of the two baseline designs that supports logical
partitioning, which, as we discussed in §2, is essential to
allow them to be efficiently incorporated into state-of-the-art
switches, and (2) it offers the best throughput among all the
baseline designs.

We synthesize both BBQ and PIFO using a 7 nm process.
PIFO only meets timing at 1 GHz with up to 211 elements,
which is consistent with [41]. BBQ meets timing at 3.1 GHz
with 217 elements, but we did not try scaling beyond this
point. The difference in the clock frequency achieved by
BBQ and PIFO means that BBQ is able to run at 55% higher
throughput. To evaluate the cost of the design, we compare
the chip area when synthesizing a single queue. We use the
synthesis results to calculate the area used by the logic gates
and estimate the SRAM area using the cost of 0.027mm2/Mb
reported by TSMC for their 7 nm process [12, 46].

Table 4 shows the chip area breakdown, divided in logic
and SRAM for both BBQ and PIFO, using 9b and 15b priori-
ties. BBQ uses very little area with logic; most of its area is
taken up by SRAM. BBQ is not only able to scale to many
more elements than PIFO, but also consumes less area when
both are provisioned for the same capacity.

Area (mm2)

Design Elements Priorities Clock Logic SRAM Total

PIFO 211 29 1 GHz 0.043 0.043
211 215 1 GHz 0.058 0.058

BBQ

211 29 3.1 GHz 0.00071 0.0029 0.0037
211 215 3.1 GHz 0.0011 0.035 0.036
217 29 3.1 GHz 0.00095 0.24 0.24
217 215 3.1 GHz 0.0014 0.29 0.29

Table 4: Chip area for the different designs. BBQ uses little logic,
causing its area to be primarily determined by SRAM.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 465

Inter-Tenant
Scheduling BBQ

Intra-Tenant
Scheduling BBQ

T3 T1T2 T1 T2 T3

Figure 11: A two-level hierarchical NIC scheduler using BBQ. The
first BBQ schedules traffic across tenants. The second BBQ (which
is logically partitioned) is used to schedule traffic within each tenant.

7 Applications
In Section 2, we motivated the need for a hardware priority

queue capable of supporting packet scheduling for two rapidly
emerging use-cases: terabit-scale switches, and NICs in multi-
tenant cloud datacenters. Having evaluated its scalability,
throughput, and resource usage, in this section we describe
how BBQ can fill these application-level gaps.

7.1 Packet Scheduling on Switches
As described in §2.1.1, a key enabler for priority queue

deployment in modern switches is the ability to realize log-
ical partitioning, allowing the packet scheduler to leverage
the simpler priority queue mesh architecture depicted in Fig-
ure 1(b). BBQ achieves this by treating disjoint subtrees in
its priority index structure as independent queues (§3.3.3),
enabling multiplexing of the underlying instance; as noted
earlier, this comes at a cost in terms of precision (each logi-
cal queue gets 1

k ’th the original priority range), but with no
resource overhead, performance penalty, or fragmentation of
queue memory.

In terms of performance and scalability, we can synthe-
size BBQ instances with 100K+ entries and 32K priorities
at 3.1GHz using a 7nm ASIC process; at two operations
per packet, each BBQ instance can sustain a packet rate of
1.55Bpps. Our target switch (NVIDIA SN4700, 400GbE x32)
supports an aggregated packet rate of 8.4Bpps, implying that
a total of

⌈ 8.4
1.5

⌉
×2 = 12 BBQs that are logically partitioned

among the 32 output ports in a shared scheduler pipeline
are sufficient to match the switch fabric’s processing speed.
Based on our ASIC synthesis results for a single BBQ (§6.3),
we estimate that provisioning each of these 12 instances with
131K queue entries and 32K priorities (1K priorities per port)
would require a total area of 3.48mm2. Considering that a
switch chip area ranges from 200mm2 to 800mm2 [41] this
corresponds to 0.4–1.74% of the total chip area.

Thus, BBQ’s scalability, performance, and ability to be
logically partitioned make it, for the first time, a plausible
candidate to realize priority queueing in modern switches.

7.2 Packet Scheduling on Cloud SmartNICs
A key requirement for NIC-based packet schedulers in pub-

lic clouds is the ability to independently perform scheduling
both across tenants and within each tenant (§2.1.2). By al-
lowing several logical BBQs (each representing one tenant)

to share a single BBQ instance, we can efficiently use the
available resources (e.g., queue memory) without having to
provision one priority queue per tenant. In order to enforce
cross-tenant traffic policies, we instantiate another, smaller
BBQ that stores references to the tenant BBQs. Conceptually,
this corresponds to the two-level hierarchical scheduler de-
picted in Figure 11, with the lower and upper levels handling
intra- and inter-tenant scheduling decisions, respectively.

Previously, we evaluated the feasibility of operating BBQ
on an ASIC in the context of switches (§7.1). We now frame
our discussion about scalability and performance for Smart-
NICs in the context of the more resource-constrained device
family: FPGAs. On an Intel Stratix 10MX we can synthesize
a BBQ instance with 100K+ entries and 32K priorities that
meets timing at 302MHz, and uses 0.45% of the available
ALMs and and 9% of the total FPGA SRAM, respectively.
Consequently, a single instance can sustain 151Mpps, sur-
passing 100GbE line rate with minimum-sized packets (148.8
Mpps).

On FPGAs, scaling to higher line rates (e.g., 400GbE [22])
is beyond the capability of any single priority queue instance,
and would require augmenting the scheduler pipeline with
multiple BBQs. However, given the resource cost of each
instance relative to total FPGA resources, this is currently
impractical; any priority queue design would have to signifi-
cantly reduce its SRAM footprint (e.g., offloading elements
to DRAM) in order to make scaling out on FPGAs practical.

8 Related Work
Counting priority index: The data structure used in BBQ
is similar to the counting priority index (CPI) proposed by
Wang and Lin [45]. They were the first to hypothesize that
an integer priority queue could be used to speed up packet
scheduling in both software and hardware. Unfortunately,
CPI is not implementable in hardware in its original form as it
fails to account for the many practical issues that arise when
building a pipelined hardware design, e.g., memory access
latency, hazards, and limited memory. As we discussed in
§3 and §4, the challenging aspects of BBQ’s design stem
from these very issues. BBQ is also orthogonal to Eiffel [38],
which deals with the practical issues of using a priority index
to schedule packets in software.
Hardware priority queueing: PIFO [41] is the current
state-of-the-art priority queue implementation in terms of
throughput, and BMW-RPU [47] is the current state-of-the-art
in terms of scalability. As confirmed in our evaluation, BBQ
is able to match PIFO’s throughput while scaling beyond
BMW-RPU’s maximum capacity. Another notable hardware
priority queue design is pHeap [10], unfortunately pHeap
can only process an operation every two clock cycles, which
makes it unsuitable for line-rate switches. Further, besides
PIFO and PIEO, none of the designs that close the gap in
terms of scalability (including BMW-Tree and pHeap) support
logical partitioning efficiently, making them impractical for

466 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

deployment in both switches and SmartNICs in the cloud
setting. We characterize the efficiency that existing designs
achieve in implementing logical partitioning in §A.1.
Approximate priority queueing: There is also a line of work
that proposes approximating different scheduling algorithms
to make them amenable to hardware implementation [2, 3,
17, 39, 48]. BBQ borrows from these works the observation
that a small priority set (at the hardware level) is sufficient for
most use cases. These works provide interesting theoretical
insights and a path to implement some scheduling policies
on existing programmable switches. However, BBQ’s design
shows that it is unnecessary to sacrifice accuracy in order to
achieve scalability and speed.

9 Discussion
Limitations: A key limitation of IPQ-based designs such
as BBQ is that they operate over priority ranges that are
both finite7 and static. While we can, in fact, augment the
vanilla BBQ primitive to support dynamic priority ranges
(Appendix D), boundedness of the priority span remains an
immutable constraint. The fundamental reason is that we
must map every priority in BBQ to a bucket in physical mem-
ory, so SRAM usage scales linearly with the priority span.
Notably, this scheme becomes altogether impractical when
the required precision grows beyond a certain threshold (e.g.,
supporting 232 priorities would require over 500MB of SRAM
just to store bitmaps). In §6, we demonstrated the feasibil-
ity of synthesizing a BBQ instance with 15-bit priority tags
(32K priorities), but we don’t expect this number to scale
much further. Thus, the ideal operating point for BBQ corre-
sponds to a setting where we need to support a large number
of queue entries falling in a small (possibly dynamic) pri-
ority range. Some priority queue architectures also enable
richer abstractions (e.g., PIEO’s predicate-based filtering al-
lows scheduling based on eligibility criteria such as virtual or
wall-clock time [40]), which BBQ does not support.
Future Work: Today, we are at an inflection point with
regard to the scalability of hardware priority queue designs.
On the one hand, support for 100K+ queue entries is the cul-
mination of a decade-long concerted effort towards jointly
optimizing scalability and performance. On the other hand,
this appears to be the end of the scalability roadmap: since
every queue element must be stored somewhere, we are ul-
timately bottlenecked by available memory. For the sake of
performance, today’s designs exclusively use SRAM, which

7Technically, priority ranges are always finite (regardless of the underly-
ing priority queue design) because they are ultimately upper-bounded by the
maximum precision afforded by the priority tag (i.e., number of priority bits).
However, the point here is that comparison-based priority queue designs
(e.g., PIFO) can, in principle, create the illusion of an infinite priority range
using large priority tags; for instance, a time-based PIFO scheduler that uses
nanosecond-granularity timestamps as priorities would require well over 500
years to exhaust a 64-bit priority range (264 = 1.8× 1019 priorities). Con-
versely, IPQs hit their priority scaling limits far earlier than any reasonable
interpretation of infinity.

offers deterministic, single-cycle memory access. However,
SRAM is a scarce resource, and even highly scalable designs
such as BBQ and BMW-Tree [47] would require over 10%
of the available FPGA SRAM (§6.2) to support 200K queue
entries – a highly impractical proposition. However, given the
trend of increasing multi-tenancy in datacenters, it is not far
fetched to believe that schedulers will some day need priority
queueing for 1M+ flows. A natural question then is: how do
we get there? We believe the key to this lies in offloading
queue entries to DRAM, which provides much slower (and
non-deterministic) access latencies compared to SRAM, but is
a far more abundant memory resource. The clean decoupling
between BBQ’s priority index structure and its queue memory
(i.e., BBQ’s ability to locate the highest-priority entry without
needing access to the entry itself) makes it feasible to offload
queue memory to DRAM, but there are several challenges
that need to be addressed along the way. We leave it to future
work to realize this lofty goal.

10 Conclusion
PIFO’s vision—a programmable packet scheduler that op-

erates at line rate even on high-throughput switches—has
been hampered by throughput and scalability issues of ex-
isting priority queue designs. In this paper, we presented
BBQ, a new priority queue design that is both scalable and
fast. At the heart of its design is an integer priority queue
that allows BBQ to avoid the complexity barrier imposed
by comparison-based sorting. While this paper shows the
usefulness of BBQ for performing packet scheduling in both
FPGA SmartNICs and line rate switch ASICs, we expect such
a high-performance priority queue to find use in many other
contexts. We look forward to future work that creatively use
BBQ for other purposes.

Acknowledgements
We thank our shepherd, Mina Arashloo, and the anonymous

reviewers for their insightful feedback. We are also indebted
to Anup Agarwal for inspiring us to write this paper, Andrew
Boutros for his guidance on ASIC design, Weina Wang for
her help with the theory, Vyas Sekar for shaping the story, and
the Azure Host Networking and Scheduler teams (particularly
Mahmoud Elhaddad, Idan Regev, and Dongwook Lee) for
valuable discussions on design and use-cases. This work
was funded by Intel and VMware through the Intel/VMware
Crossroads 3D-FPGA Academic Research Center, a VMWare
Systems Research Award, NSF Award 2007733, ONR Award
#N00014-24-1-2059, a Cylab Presidential Fellowship, and a
Google Research Gift.

References
[1] Alexandru Agache, Razvan Deaconescu, and Costin

Raiciu. Increasing datacenter network utilisation with
GRIN. In 12th USENIX Symposium on Networked

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 467

Systems Design and Implementation (NSDI 15), pages
29–42, 2015.

[2] Albert Gran Alcoz, Alexander Dietmüller, and Laurent
Vanbever. SP-PIFO: Approximating Push-In First-
Out behaviors using Strict-Priority queues. In 17th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI ’20, pages 59–76, Santa Clara,
CA, February 2020. USENIX Association.

[3] Albert Gran Alcoz, Balázs Vass, Gábor Rétvári, and
Laurent Vanbever. Everything matters in programmable
packet scheduling. arXiv preprint arXiv:2308.00797,
2023.

[4] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pFabric: Minimal near-optimal datacen-
ter transport. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, pages
435–446, New York, NY, USA, 2013. Association for
Computing Machinery.

[5] AMD. AMD EPYC 4th gen 9004 & 8004 series
server processors – details, 2023. https://www.amd.
com/en/products/processors/server/epyc/4th-
generation-9004-and-8004-series.html#specs.

[6] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya
Ghobadi, Jennifer Rexford, David Walker, and David
Wentzlaff. Enabling programmable transport protocols
in high-speed NICs. In 17th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
’20, pages 93–109, Santa Clara, CA, February 2020.
USENIX Association.

[7] Nirav Atre, Hugo Sadok, Erica Chiang, Weina Wang,
and Justine Sherry. SurgeProtector: Mitigating tem-
poral algorithmic complexity attacks using adversarial
scheduling. In Proceedings of the ACM SIGCOMM
2022 Conference, SIGCOMM ’22, pages 723–738, New
York, NY, USA, August 2022. Association for Comput-
ing Machinery.

[8] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Weicheng Sun. Pias: Practical information-agnostic
flow scheduling for data center networks. In Proceed-
ings of the 13th ACM Workshop on Hot Topics in Net-
works, HotNets-XIII, page 1–7, New York, NY, USA,
2014. Association for Computing Machinery.

[9] J. C. R. Bennett and Hui Zhang. WF2Q: Worst-case
fair weighted fair queueing. In Proceedings of IEEE
INFOCOM ’96. Conference on Computer Communica-
tions, volume 1 of INFOCOM ’96, pages 120–128 vol.1,
1996.

[10] R. Bhagwan and B. Lin. Fast and scalable priority queue
architecture for high-speed network switches. In Pro-
ceedings IEEE INFOCOM 2000 Conference on Com-
puter Communications. Nineteenth Annual Joint Con-
ference of the IEEE Computer and Communications
Society, volume 2 of INFOCOM 2000, pages 538–547
vol.2, 2000.

[11] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
SDN. In Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM, SIGCOMM ’13, pages 99–110,
New York, NY, USA, 2013. Association for Computing
Machinery.

[12] Jonathan Chang, Yen-Huei Chen, Wei-Min Chan,
Sahil Preet Singh, Hank Cheng, Hidehiro Fujiwara,
Jih-Yu Lin, Kao-Cheng Lin, John Hung, Robin Lee,
Hung-Jen Liao, Jhon-Jhy Liaw, Quincy Li, Chih-Yung
Lin, Mu-Chi Chiang, and Shien-Yang Wu. A 7nm
256Mb SRAM in high-k metal-gate FinFET technology
with write-assist circuitry for low-VMIN applications.
In 2017 IEEE International Solid-State Circuits Confer-
ence (ISSCC), pages 206–207, 2017.

[13] Lawrence T. Clark, Vinay Vashishtha, Lucian Shifren,
Aditya Gujja, Saurabh Sinha, Brian Cline, Chan-
darasekaran Ramamurthy, and Greg Yeric. ASAP7:
A 7-nm finFET predictive process design kit. Micro-
electronics Journal, 53:105–115, 2016.

[14] Daniel Firestone. VFP: A virtual switch platform for
host SDN in the public cloud. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI ’17, pages 315–328, Boston, MA, March 2017.
USENIX Association.

[15] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chatur-
mohta, Matt Humphrey, Jack Lavier, Norman Lam,
Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham
Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw,
Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava,
Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert
Greenberg. Azure accelerated networking: SmartNICs
in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
’18, pages 51–66, Renton, WA, April 2018. USENIX
Association.

[16] Alex Forencich, Alex C. Snoeren, George Porter, and
George Papen. Corundum: An open-source 100-Gbps

468 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 https://www.amd.com/en/products/processors/server/epyc/4th-generation-9004-and-8004-series.html#specs
 https://www.amd.com/en/products/processors/server/epyc/4th-generation-9004-and-8004-series.html#specs
 https://www.amd.com/en/products/processors/server/epyc/4th-generation-9004-and-8004-series.html#specs

NIC. In 2020 IEEE 28th Annual International Sympo-
sium on Field-Programmable Custom Computing Ma-
chines, FCCM ’20, pages 38–46. IEEE, 2020.

[17] Peixuan Gao, Anthony Dalleggio, Yang Xu, and
H. Jonathan Chao. Gearbox: A hierarchical packet
scheduler for approximate weighted fair queuing. In
19th USENIX Symposium on Networked Systems Design
and Implementation, NSDI ’22, pages 551–565, Renton,
WA, April 2022. USENIX Association.

[18] Matthew P Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert NM Watson, Andrew W Moore, Steven Hand,
and Jon Crowcroft. Queues don’t matter when you can
JUMP them! In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages
1–14, 2015.

[19] Zhiqiang He, Dongyang Wang, Binzhang Fu, Kun Tan,
Bei Hua, Zhi-Li Zhang, and Kai Zheng. MasQ: RDMA
for virtual private cloud. In Proceedings of the An-
nual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communica-
tion, SIGCOMM ’20, pages 1–14, New York, NY, USA,
2020. Association for Computing Machinery.

[20] Intel. Intel, Baidu drive intelligent in-
frastructure transformation, 2020. https:
//www.intel.com/content/www/us/en/newsroom/
news/baidu-intelligent-infrastructure-
transformation.html#gs.5vl4ru.

[21] Intel. FPGA Design Software – Intel Quartus Prime,
2023. https://www.intel.com/content/www/
us/en/products/details/fpga/development-
tools/quartus-prime.html.

[22] Intel. Intel Agilex 7 FPGAs and SoCs product brief,
2023. https://www.intel.com/content/www/us/
en/content-details/762901/intel-agilex-7-
fpgas-and-socs-product-brief.html.

[23] Intel. Intel infrastructure processing unit (Intel
IPU) platform (codename: Oak Springs Canyon),
2023. https://www.intel.com/content/www/us/
en/products/platforms/details/oak-springs-
canyon.html.

[24] Intel. Intel Stratix 10 MX 2100 FPGA, 2023.
https://ark.intel.com/content/www/us/en/
ark/products/210297/intel-stratix-10-mx-
2100-fpga.html.

[25] Aggelos Ioannou and Manolis G. H. Katevenis.
Pipelined heap (priority queue) management for ad-
vanced scheduling in high-speed networks. IEEE/ACM

Transactions on Networking, 15(2):450–461, April
2007.

[26] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh
Sivaraman, and Aditya Akella. PANIC: A high-
performance programmable NIC for multi-tenant net-
works. In 14th USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’20, pages
243–259. USENIX Association, November 2020.

[27] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shu-
jun Zhuang, Bo Li, Shuguang Cheng, Jiaqi Gao,
Yan Zhuang, Pengcheng Zhang, Rong Liu, Chao Shi,
Binzhang Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai, and
Hongqiang Harry Liu. From luna to solar: The evo-
lutions of the compute-to-storage networks in Alibaba
Cloud. In Proceedings of the ACM SIGCOMM 2022
Conference, SIGCOMM ’22, pages 753–766, New York,
NY, USA, 2022. Association for Computing Machinery.

[28] Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, and
Scott Shenker. Universal packet scheduling. In 13th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI ’16, pages 501–521, 2016.

[29] Radhika Mittal, Justine Sherry, Sylvia Ratnasamy, and
Scott Shenker. Recursively cautious congestion control.
In 11th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 14), pages 373–385,
Seattle, WA, April 2014. USENIX Association.

[30] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, pages 221–235,
2018.

[31] Ali Munir, Ghufran Baig, Syed Mohammad Irteza,
Ihsan Ayyub Qazi, Alex X Liu, and Fahad Rafique
Dogar. Pase: synthesizing existing transport strate-
gies for near-optimal data center transport. IEEE/ACM
Transactions on Networking, 25(1):320–334, 2016.

[32] Nvidia. ConnectX-7 400G Adapters: Smart, acceler-
ated networking for modern data center infrastructures,
2023. https://nvdam.widen.net/s/csf8rmnqwl/
infiniband-ethernet-datasheet-connectx-7-
ds-nv-us-2544471.

[33] Nvidia. Nvidia spectrum sn4000 series switches, 2023.
https://www.nvidia.com/content/dam/en-zz/
Solutions/networking/br-sn4000-series.pdf.

[34] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar
Jeyakumar, Abdul Kabbani, George Porter, and Amin
Vahdat. SENIC: Scalable NIC for end-host rate limit-
ing. In 11th USENIX Symposium on Networked Systems

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 469

https://www.intel.com/content/www/us/en/newsroom/news/baidu-intelligent-infrastructure-transformation.html#gs.5vl4ru
https://www.intel.com/content/www/us/en/newsroom/news/baidu-intelligent-infrastructure-transformation.html#gs.5vl4ru
https://www.intel.com/content/www/us/en/newsroom/news/baidu-intelligent-infrastructure-transformation.html#gs.5vl4ru
https://www.intel.com/content/www/us/en/newsroom/news/baidu-intelligent-infrastructure-transformation.html#gs.5vl4ru
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime.html
https://www.intel.com/content/www/us/en/content-details/762901/intel-agilex-7-fpgas-and-socs-product-brief.html
https://www.intel.com/content/www/us/en/content-details/762901/intel-agilex-7-fpgas-and-socs-product-brief.html
https://www.intel.com/content/www/us/en/content-details/762901/intel-agilex-7-fpgas-and-socs-product-brief.html
https://www.intel.com/content/www/us/en/products/platforms/details/oak-springs-canyon.html
https://www.intel.com/content/www/us/en/products/platforms/details/oak-springs-canyon.html
https://www.intel.com/content/www/us/en/products/platforms/details/oak-springs-canyon.html
https://ark.intel.com/content/www/us/en/ark/products/210297/intel-stratix-10-mx-2100-fpga.html
https://ark.intel.com/content/www/us/en/ark/products/210297/intel-stratix-10-mx-2100-fpga.html
https://ark.intel.com/content/www/us/en/ark/products/210297/intel-stratix-10-mx-2100-fpga.html
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/br-sn4000-series.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/br-sn4000-series.pdf

Design and Implementation, NSDI ’14, pages 475–488,
Seattle, WA, April 2014. USENIX Association.

[35] Hugo Sadok, Nirav Atre, Zhipeng Zhao, Daniel S.
Berger, James C. Hoe, Aurojit Panda, Justine Sherry,
and Ren Wang. Ensō: A streaming interface for
NIC-application communication. In 17th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion, OSDI ’23, pages 1005–1025, Boston, MA, July
2023. USENIX Association.

[36] Hugo Sadok, Aurojit Panda, and Justine Sherry. Of ap-
ples and oranges: Fair comparisons in heterogenous sys-
tems evaluation. In Proceedings of the 22nd ACM Work-
shop on Hot Topics in Networks, HotNets ’23, pages 1–8,
New York, NY, USA, 2023. Association for Computing
Machinery.

[37] Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav
Atre, Daniel S. Berger, James C. Hoe, Aurojit Panda,
and Justine Sherry. We need kernel interposition over
the network dataplane. In Proceedings of the Workshop
on Hot Topics in Operating Systems, HotOS ’21, pages
152–158, New York, NY, USA, 2021. Association for
Computing Machinery.

[38] Ahmed Saeed, Yimeng Zhao, Nandita Dukkipati, Ellen
Zegura, Mostafa Ammar, Khaled Harras, and Amin
Vahdat. Eiffel: Efficient and flexible software packet
scheduling. In 16th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’19, pages
17–32, Boston, MA, February 2019. USENIX Associa-
tion.

[39] Naveen Kr. Sharma, Chenxingyu Zhao, Ming Liu,
Pravein G Kannan, Changhoon Kim, Arvind Krishna-
murthy, and Anirudh Sivaraman. Programmable calen-
dar queues for high-speed packet scheduling. In 17th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI ’20, pages 685–699, Santa Clara,
CA, February 2020. USENIX Association.

[40] Vishal Shrivastav. Fast, scalable, and programmable
packet scheduler in hardware. In Proceedings of the
2019 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’19, pages 367–379,
New York, NY, USA, 2019. Association for Computing
Machinery.

[41] Anirudh Sivaraman, Suvinay Subramanian, Mohammad
Alizadeh, Sharad Chole, Shang-Tse Chuang, Anurag
Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
and Nick McKeown. Programmable packet scheduling
at line rate. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, pages 44–57, New York,
NY, USA, 2016. Association for Computing Machinery.

[42] Brent Stephens, Aditya Akella, and Michael M. Swift.
Loom: Flexible and efficient NIC packet scheduling. In
16th USENIX Symposium on Networked Systems Design
and Implementation, NSDI ’19, pages 33–46, Boston,
MA, February 2019. USENIX Association.

[43] Synopsys. Design Compiler, 2023. https:
//www.synopsys.com/implementation-and-
signoff/rtl-synthesis-test/dc-ultra.html.

[44] Vinay Vashishtha, Manoj Vangala, and Lawrence T.
Clark. ASAP7 predictive design kit development
and cell design technology co-optimization: Invited pa-
per. In 2017 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD, pages 992–998, 2017.

[45] Hao Wang and Bill Lin. Per-flow queue management
with succinct priority indexing structures for high speed
packet scheduling. IEEE Transactions on Parallel and
Distributed Systems, 24(7):1380–1389, 2013.

[46] Shien-Yang Wu, C.Y. Lin, M.C. Chiang, J.J. Liaw, J.Y.
Cheng, S.H. Yang, C.H. Tsai, P.N. Chen, T. Miyashita,
C.H. Chang, V.S. Chang, K.H. Pan, J.H. Chen, Y.S.
Mor, K.T. Lai, C.S. Liang, H.F. Chen, S.Y. Chang,
C.J. Lin, C.H. Hsieh, R.F. Tsui, C.H. Yao, C.C. Chen,
R. Chen, C.H. Lee, H.J. Lin, C.W. Chang, K.W. Chen,
M.H. Tsai, K.S. Chen, Y. Ku, and S. M. Jang. A 7nm
CMOS platform technology featuring 4th generation
FinFET transistors with a 0.027um2 high density 6-T
SRAM cell for mobile SoC applications. In 2016 IEEE
International Electron Devices Meeting (IEDM), pages
2.6.1–2.6.4, 2016.

[47] Ruyi Yao, Zhiyu Zhang, Gaojian Fang, Peixuan Gao,
Sen Liu, Yibo Fan, Yang Xu, and H. Jonathan Chao.
BMW tree: Large-scale, high-throughput and modular
PIFO implementation using balanced multi-way sorting
tree. In Proceedings of the ACM SIGCOMM 2023
Conference, SIGCOMM ’23, pages 208–219, New York,
NY, USA, 2023. Association for Computing Machinery.

[48] Zhuolong Yu, Chuheng Hu, Jingfeng Wu, Xiao Sun,
Vladimir Braverman, Mosharaf Chowdhury, Zhenhua
Liu, and Xin Jin. Programmable packet scheduling
with a single queue. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, SIGCOMM ’21, pages
179–193, New York, NY, USA, August 2021. Associa-
tion for Computing Machinery.

[49] Danyang Zhuo, Kaiyuan Zhang, Yibo Zhu,
Hongqiang Harry Liu, Matthew Rockett, Arvind
Krishnamurthy, and Thomas Anderson. Slim: OS
kernel support for a low-overhead container overlay
network. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
331–344, 2019.

470 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html

Appendix A Logical Partitioning in Practice
In §2, we motivated logical partitioning (i.e., the ability to

multiplex several logical priority queues atop a single physi-
cal queue) as a key requirement for deployability in modern
switches and SmartNICs. In this section, we first character-
ize the extent to which existing priority queue designs can
realize logical partitioning (§A.1), followed by a detailed de-
scription of the mechanisms that enable BBQ to achieve this
functionality (§A.2).

A.1 Existing Designs
The goal of logical partitioning is to allow a single,

physical priority queue to emulate a collection of multiple,
logically-independent priority queues. Simply realizing this
abstraction is not particularly challenging, but doing so effi-
ciently turns out to be a major impediment for most priority
queue designs. We can evaluate efficiency along three axes:
(1) queue fragmentation, or the worst-case fraction of queue
elements (QEs) lost to external fragmentation when an in-
stance is partitioned q ways; (2) performance overhead, or
the throughput degradation resulting from logical partitioning;
and, (3) resource overhead, or the resource cost (e.g., logic,
memory) required to support q logical partitions relative to
an unpartitioned priority queue.

PIFO supports logical partitioning with zero queue frag-
mentation, a small performance overhead, and a resource
overhead that scales linearly with queue size: Consider
the example depicted in Figure 12, where a physical PIFO
(provisioned with N = 8 QEs) is partitioned into q = 2 logical
PIFOs. Per usual, PIFO maintains a sorted list of QEs ordered
by priority [41]. To realize logical partitioning, PIFO anno-
tates every QE with a Logical PIFO ID (in this case, q0 or
q1) at enqueue time. Then, in order to dequeue from the i’th
logical PIFO, it first “selects” the subset of elements with the
corresponding ID (q1 in our example), then performs priority
decoding to extract the highest-priority element from that
subset. Since every QE in the physical instance can always be
independently addressed by every logical PIFO, queue mem-
ory is fully multiplexed, yielding zero fragmentation. Every
element must be annotated with a log2 q bit wide ID, resulting
in a resource overhead that scales with queue size. Finally,
selecting the appropriate subset of elements involves an extra
comparator per element, incurring a small performance cost.

With modest changes, PIEO can support logical par-
titioning with zero queue fragmentation, and perfor-
mance/resource overheads that scale with queue size: Ar-
chitecturally, PIEO is organized as a matrix: an array of
2
√

N sublists, each consisting of
√

N QEs sorted by prior-
ity. Besides standard priority queue operations, PIEO allows
specifying eligibility predicates: a programmable function
that “selects” a subset of elements to dequeue from. In princi-
ple, this is similar to the mechanism PIFO uses to implement
logical partitioning (Figure 12), and an appropriate predicate

A, 2
q1

D, 4
q0

G, 7
q1

B, 9
q1

C, 12
q0

E, 16
q0

Priority Decoder

B

PIFO

F, 1
q0

Figure 12: A single physical PIFO partitioned into 2 logical PIFOs:
q0 consisting of 4 elements, and q1 consisting of 3 elements. Avail-
able queue memory is fully multiplexed among the logical PIFOs,
resulting in zero fragmentation.

function can be used in PIEO to the same effect. Unfortu-
nately, the vanilla PIEO design does not allow QEs belonging
to different logical PIEOs to coexist in the same sublist. The
reason is that, as a first step, PIEO must perform predicate
filtering at sublist level, which only supports range-based
queries (e.g., a≤ f ≤ b) but not set queries (e.g., f ∈ X) that
are required for logical partitioning. Consequently, it would
incur external fragmentation at the granularity of sublists.
However, we note that this is not a fundamental limitation,
and with minor changes to the design (e.g., by annotating ev-
ery sublist with a q-bit bitmap representing the logical PIEO
QEs contained therein), PIEO can, in theory, achieve logical
partitioning with no external fragmentation while incurring a
resource/performance cost similar to PIFO.

B, 16

3

D, 9

1

C, 12

1

A, 4

1

flow, priority

counter

BMW-Tree

q0 q1

E, 7
Flow is dropped
despite available
QEs in physical

instance

Figure 13: A 2-level 2-way BMW-Tree instance partitioned into 2
logical queues. Each logical queue must be mapped to a physical
subtree, resulting in external fragmentation. Once a subtree becomes
full, enqueues into the corresponding logical queue are impossible
even if there are available QEs in other subtrees.

Other comparison-based priority queue designs cannot
efficiently implement logical partitioning: PIFO and PIEO
both satisfy a property that is key to achieving zero fragmen-
tation in fixed-layout priority queues: maintaining a total
ordering over elements at all times. In their effort to lever-
age spatial and pipelined parallelism, other designs violate
this property, inducing significant queue fragmentation. We
illustrate this point using the 2-way BMW-Tree depicted in
Figure 13. To implement partitioning between q = 2 logical
BMW-Trees, each logical queue must be statically mapped
to a physical subtree as shown in the figure;8 any other ar-
rangement might result in inadvertently dequeueing from the
wrong logical queue. The result is that, for a BMW-Tree
instance of size N, each logical queue can address only N

q

8Heap property is intentionally violated at root level to enable partitioning.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 471

QEs, incurring a fragmentation cost that scales with q. For
instance, with q = 8 partitions, we would risk losing up to
87% of the queue memory to external fragmentation (and still
not be able to support N flows). Instead, over-provisioning the
physical instance to account for the worst case (all N elements
being enqueued in a single logical queue, while the other 7
queues remain empty) would incur a 700% memory overhead.
Other tree-like priority queue designs, such as pHeap [10]
and Pipelined Heap [25], encounter precisely the same issue.

Overall, we find that besides the designs that maintain a to-
tal ordering over elements (PIFO and PIEO), realizing logical
partitioning in comparison-based designs incurs prohibitively
high resource overhead, queue fragmentation cost, or both.

A.2 Logical Partitioning in BBQ
Given a BBQ instance with w-bit bitmaps, we illustrate how

to partition it into q logical BBQs by means of two exemplar
configurations: one where q≤ w, and another where q > w.
(1) Fewer logical partitions than the bitmap width (q≤ w):
Consider a 2-level BBQ with 4-bit bitmaps (i.e., w= 4, D= 2)
that we would like to partition into q = 2 logical BBQs. The
physical BBQ has a priority span of P = 42 = 16 priorities.
As a first step, we partition this range equally between the
two logical instances, allocating priorities [0,7] to queue q0,
and [8,15] to q1. Observe that, in order to facilitate this
split, the L1 bitmap also needs to be partitioned as shown
in Figure 14, with the lower two bits corresponding to q0,
and the upper two bits corresponding to q1. Enqueueing an
entry, X , into logical queue i ∈ [0,1] with relative priority
j ∈ [0,7] is simple: first, we compute the absolute priority
corresponding to the physical BBQ as p = (i×8)+ j,9 then
perform ENQUEUE(X, p) as usual. In order to dequeue the
highest (or lowest) priority entry from the i’th logical queue,
we first mask the bits in the root bitmap not corresponding
to qi (e.g., for i = 1, we would apply the mask 0xC), perform
FFS on them, then proceed down the bitmap tree as in a
typical DEQUEUE operation.

1 0 1 1

1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1
7 6 5 4

Queue q1 (Mask: 0xC) Queue q0 (Mask: 0x3)

15 14 13 12 3 2 1 011 10 9 8

Figure 14: Bitmap tree for a 2-level BBQ with 4-bit bitmaps parti-
tioned into 2 logical BBQs, q0 and q1. Each logical BBQ is allocated
disjoint ranges of 8 priorities. To DEQUEUE from a logical BBQ, we
first apply the corresponding mask to the L1 bitmap before perform-
ing FFS on it.

(2) More logical partitions than the bitmap width (q >
w): Consider again a (w = 4, D = 2) BBQ that we would
now like to partition into q = 8 logical BBQs. Observe that

9Logically, this corresponds to simply concatenating together i and j.

each bit in the root bitmap now corresponds to two different
logical BBQs, and therefore does not offer any discriminatory
power.10 Consequently, we eliminate this level of the bitmap
tree; in its place, we insert a single pipeline stage that steers
operations to their respective subtrees based on the logical
queue index (e.g., ENQUEUE and DEQUEUE operations on i ∈
{2,3} are steered to the second-from-right subtree). The
updated bitmap tree structure is depicted in Figure 15. Each
L2 bitmap now maps to q′ = 2 different logical BBQs, and
we apply the idea described in (1) (since q′ ≤ w) to achieve
this partitioning.

1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1
11 10 9 815 14 13 12

Steering Logic

7 6 5 4 3 2 1 0

q7 q6 q5 q4 q3 q2 q1 q0

L2 bitmap

Figure 15: Bitmap tree for a 2-level BBQ with 4-bit bitmaps par-
titioned into 8 logical BBQs. The root (L1) bitmap no longer adds
any value, so we replace it with a steering stage that simply routes
operations on logical BBQs to the corresponding subtree.

Thus, with nominal changes to the BBQ pipeline, we can
support a broad range of partitioning configurations without
any performance overhead. In contrast to PIFO and PIEO,
the resource cost (corresponding to over-provisioning the
priority range) scales with the degree of logical partitioning
rather than queue size. Finally, full decoupling between its
priority index structure (i.e., the bitmap tree) and QEs enables
BBQ to achieve zero queue fragmentation. Overall, these
techniques make it possible for BBQ to efficiently realize
logical partitioning.

Appendix B Using StOCs in Practice
In §4.2, we described how every bit in BBQ’s bitmap tree

is associated with a StOC, which represents the total number
of elements contained in the corresponding subtree. StOCs
are an important component in BBQ because they are a key
enabler for its fully-pipelined architecture. In this section, we
characterize two practical details regarding our implementa-
tion of StOCs: how they are sized (§B.1), and a general opti-
mization technique that improves their performance (§B.2).

B.1 Sizing
In order to handle the worst case (i.e., all elements in the

BBQ being contained in a single priority bucket), every StOC
must be provisioned to represent the range [0, N], where N is
the number of supported queue elements. Conventionally, N
is configured to be a power of two (i.e., 2k) to avoid wasting
resources such as pointer address bits. However, in the case

10Since either of the logical BBQs contained therein may be empty, a ‘1’
in any bit position of the L1 bitmap provides no guarantee that a DEQUEUE
operation on that subtree will succeed.

472 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of BBQ, naively provisioning the queue with N = 2k elements
would entail (k+1)-bit StOCs, with the most-significant bit
(MSb) only ever being used to encode the maximum occu-
pancy of 2k. Instead, in BBQ, we snap N to a value of the form
(2k−1), allowing us to use k-bit StOCs. Thus, carefully siz-
ing the queue (and deliberately wasting one element’s worth
of address space) saves 1 bit per StOC, yielding a sizeable
reduction in memory footprint.

B.2 Waterlevel Bit Optimization
Since StOC bit-widths scale with the queue size (§B.1),

performing arithmetic or logical operations on these counters
can be expensive for large BBQ instances. As we will see,
these operations sometimes need to be chained together with
other combinational logic in a single pipeline stage, which
in turn inflates the critical path and significantly degrades
fmax. In this section, we describe a general optimization tech-
nique that alleviates counter-related performance bottlenecks,
yielding up to 17% higher fmax for some BBQ configurations.

(a) 15-bit Reduce-OR
Logically: (x15 ∨ ... ∨ x1)

Predicate

(b) Complex logic
(Bitmap update or

speculation)

Long critical path

16-bit StOC
(X−1) ≠ 0 if (Y) ...

X−1

X'

Updated StOC

X = {x15 ... x0}

Re
gi

st
er

Y

Figure 16: Dependency chain involving 16-bit counter logic for
a DEQUEUE operation. The critical path comprises of (a) a 15-bit
Reduce-OR (to determine whether the StOC becomes 0), chained
with (b) more combinational logic (which uses (a) as a predicate).

To illustrate the problem, consider a DEQUEUE operation in
stage 6 of the BBQ pipeline depicted in Table 2. This stage
comprises of several sub-operations, two of which we will
focus on here: (a) decrementing an L2 StOC and checking
if the resulting value becomes zero, and (b) updating the L2
bitmap predicated on the result of (a). Note that (a) oper-
ates on a log2(N +1)-bit counter and (b) operates on a w-bit
bitmap, and chaining these sub-operations together inevitably
puts them on the critical path. The problem is further exacer-
bated if (b) entails more complex combinational logic (e.g.,
resolving speculation outcomes, which, as shown in step 4
of Figure 4, follows the same blueprint). The critical path for
this sequence of sub-operations is depicted in Figure 16.

To address this performance bottleneck, we augment every
StOC in BBQ with an additional bit called the waterlevel
bit (WLb). We maintain the invariant that the WLb is set
to ‘1’ if the current StOC value is greater than or equal to
2, otherwise it is set to ‘0’. The key idea is that the WLb
opportunistically memoizes the future result of (a),11 allowing

11Observe that, for positive values of X , the expression evaluated by (a),
(X−1) ̸= 0, is logically equivalent to X ≥ 2, the value encoded in the WLb.

if (Y) ...

X'

WLb
X = {x15 ... x0}

(b) Complex logic
(Bitmap update or

speculation)

Y'

Updated StOC

Y

(X−2) ≠ 0

(x15 ∨ ... ∨ x2
 ∨ (x1 ∧ x0))

Logically:

17-bit StOC

X−1

Shorter critical path

Waterlevel bit
replaces (a)

Re
gi

st
er

Figure 17: The waterlevel bit (WLb) replaces (a), improving fmax
by removing the counter operations from the critical path.

it to directly serve as the predicate for (b) instead of having to
compute it from scratch (Figure 17). This avoids chaining the
expensive Reduce-OR computation with other complex com-
binational logic, thereby shrinking the critical path. Moreover,
the updated value of the WLb (corresponding to the current
StOC value minus 2) can be efficiently computed using an-
other 16-bit operation; however, since this is not chained with
additional logic, it does not appear on the critical path.

In the context of BBQ, this optimization yields between
5−17% higher fmax on the Stratix 10 MX FPGA for configu-
rations with (217−1) queue entries (i.e., 17-bit StOCs). This
does come at a resource cost, since every StOC must now be
one bit wider to accommodate the WLb (corresponding to
approximately 4.75kB higher SRAM usage for a BBQ that
supports 32K priorities with 8-bit bitmaps). However, we
find that the resulting performance improvements justify this
resource overhead, and we enable this optimization by default
in the BBQ artifact.

Finally, we note that the underlying technique – memoiz-
ing useful counter arithmetic results in the counter structure
itself – is a general one that may benefit any design which
employs occupancy counters that might ultimately appear on
the critical path (e.g., BMW-Tree [47]).

Appendix C BBQ : A Latency-Free BBQ
In §5, we briefly described the latency artifacts that arise

due to pipelining, and how they might cause the packet sched-
ule produced by BBQ to deviate from that of an “ideal” pri-
ority queue. In this section, we describe BBQ , an augmen-
tation of BBQ that counteracts the latency issue. We start
with a concrete example motivating the problem (§C.1), then
dive into BBQ ’s design (§C.2), followed by a proof of its
correctness (§C.3).

C.1 Motivating Example
Consider the scenario depicted in Figure 18, where we use

a BBQ instance with a pipeline latency of p = 4 cycles to
implement strict priority scheduling at a bottleneck switch.
There is a single high-priority flow, A, competing with 3
lower-priority flows (B, C, and D); if none of the flows are
application-limited, we expect A to receive the full share of

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 473

bandwidth, while the other flows should starve (i.e., never be
served). Assume now that a single packet can be transmitted
every other cycle (i.e., line rate corresponds to one packet
every two cycles). Since it takes 4 cycles for the BBQ instance
to complete a DEQUEUE request and yield the appropriate flow
to schedule, we are faced with two alternatives for managing
priority queue state.

First, when a flow is scheduled, we might re-enqueue the
flow in the BBQ and immediately issue another DEQUEUE
request, wait 4 cycles for the BBQ to respond with the next
flow to schedule, and so on. This guarantees accuracy (i.e., the
scheduled flow is always the highest-priority one), but implies
that flows can only be scheduled every 4 cycles, wasting half
the link bandwidth.12

A
C D

B
C D

B
Deq

A

C D
Deq

A

Deq

B
C D

Deq

B

Enq

A gets scheduled,
then re-enqueued

into the BBQ

C D
DeqDeq

BA

Enq

The subsequent op
dequeues A again

C D
DeqDeq

BA

Enq

Lower-priority flow
B gets scheduled

A

t = 0 t = 1
t = 3 t = 4

t = 5 t = 6

A is not in the BBQ
at dequeue time, so
B gets dequeued

BBQ
Pipeline (p = 4)

Deq

Figure 18: Issuing concurrent DEQUEUE requests, in combination
with BBQ’s pipeline latency, incorrectly causes a lower-priority flow,
B, to be extracted (at t = 3) and scheduled (at t = 6).

The second option is to preemptively maintain multiple con-
current DEQUEUE requests in flight such that a flow is always
available to be scheduled. In our example, this corresponds
to issuing DEQUEUE operations 2 cycles apart such that a flow
gets dequeued every other cycle (e.g., at t = 5 in Figure 18).
While this saturates the link bandwidth, it also implies that
not all active flows are enqueued in the BBQ at dequeue time.
For instance, at t = 1, the first issued DEQUEUE operation ex-
tracts flow A from the BBQ. Consequently, at t = 3, the next
DEQUEUE operation results in the extraction of a lower-priority
flow, B. Flow A eventually returns to the BBQ at t = 4, but
it is far too late by this point: at t = 6, the second DEQUEUE
operation completes, yielding B. In effect, this violates the
strict priority scheduling requirement we sought to enforce.

12Alternatively, we might schedule bursts of packets at a time so as to
hide the pipeline latency, but this effectively imposes a leaky bucket atop the
underlying scheduling policy, which may not always be desirable.

C.2 BBQ Design
BBQ is composed of two components: a BBQ and a

PIFO instance, which are connected as shown in Figure 19.
To simplify the theoretical analysis of this system (§C.3), we
assume that both components run at the same clock frequency
(say 250MHz), and the system clock, denoted by CLOCKsys
runs at half the frequency. On each CLOCKsys cycle, we can
insert one element into the BBQ , extract the highest-priority
element, or both.

BBQ

PIFO

1 ENQUEUEPIFO

3 DEQ-MAXPIFO2 DEQ-MINPIFO

4
R
eq
ue
st

5 DEQ-MAXBBQ

BBQ

Figure 19: BBQ design.

At a high level, our goal is to keep the PIFO full, only in-
serting into the BBQ when low-priority elements “spill over”
from the PIFO. When a new element arrives at the system, it
is first ENQUEUE’d into the PIFO 1 ; if this causes the PIFO
to overflow its capacity (k), we perform a DEQUEUE-MIN PIFO

operation 2 , inserting the resulting element into the BBQ.
Extracting the highest-priority element from the system in-
volves two steps: (a) we perform a DEQUEUE-MAX PIFO opera-
tion to get the highest-priority element in the PIFO 3 , which
completes immediately, and (b) we issue a DEQUEUE-MAX BBQ

request to fetch the highest-priority element from the BBQ 4 ,
which takes p timesteps to complete (where p is the pipeline
latency of the BBQ in units of CLOCKsys cycles). Finally,
when a DEQUEUE-MAX BBQ operation completes 5 , we insert
the resulting element into the PIFO; as before, if this causes
the PIFO to overflow, we move the lowest-priority element
in the PIFO to the BBQ. Observe that on every CLOCKsys
cycle (corresponding to 2 clock cycles for each component),
we issue at most 2 BBQ operations and 4 PIFO operations (2
ENQUEUEs and 2 DEQUEUEs), which matches their respective
operation throughputs.

C.3 Proof of Theorem 1
In this section, we prove a sufficient condition for BBQ

to guarantee zero accuracy loss when using an appropriately-
sized PIFO. We start by proving a lower bound on PIFO
occupancy when the associated BBQ is not empty, followed
by an invariant regarding the subset of priorities contained
in the PIFO at any time. In the remainder of the section, we
use P (t) to denote the set of elements contained in the PIFO
at time t, and |P (t)| to denote the cardinality of this set (and
transitively the PIFO occupancy).

Lemma 1 (Lower-Bound on PIFO Occupancy). In a
BBQ instance composed of a BBQ with pipeline latency

474 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

p cycles and a PIFO of size k > p, if |P (t)| < (k− p), the
BBQ is empty at time t.

Proof. The intuition behind the Lemma is that, so long as the
BBQ is not empty, it will prevent the PIFO occupancy from
dropping below a certain threshold (corresponding to k− p).
We prove this claim via contradiction, showing that if |P (t)|<
(k− p) starting with a full PIFO (a necessary condition for
the BBQ to be non-empty), at least one DEQUEUE-MAXBBQ
request resulted in ∅ after p timesteps, implying that the
BBQ is empty at time t.

Let t1 denote the latest time that the PIFO was full, and let
t2 denote the earliest time such that |P (t2)|< (k− p). Note
that no elements are inserted in the BBQ in the period [t1, t2];
otherwise ∃ t ′1 > t1 where the PIFO is still full, implying that
t1 was not the latest time. Assume towards a contradiction
that a total of n1 DEQUEUE-MAXPIFO operations and n2 ≥ 0
ENQUEUEPIFO operations were performed in [t1, t2], and n3
DEQUEUE-MAXBBQ operations completed in the same period,
all of which returned non-∅ values.

n1− (n2 +n3)> p, (1)
n3 ≥max(0,n1− p) (2)

where (1) is true because the difference between the number
of departures from the PIFO (n1) and the number of arrivals
to the PIFO (n2 +n3) in [t1, t2] must correspond to an occu-
pancy drop from k to |P (t2)|< k− p, i.e., exceeding p. (2) is
true because a DEQUEUE-MAXBBQ request is issued for every
DEQUEUE-MAXPIFO operation, and the maximum number of
requests still outstanding is at most p. Substituting (1) into
(2), we get: n3 ≥ (n1− p)> n2 +n3, a contradiction.

We are now ready to prove Theorem 1 (restated below for
reference).

Theorem 1 (Priority Set Invariant for BBQ). In a BBQ
instance composed of a BBQ with pipeline latency p cycles
and a PIFO of size k > p, the top (k− p) highest-priority
elements are always in the PIFO.

Proof. Given Lemma 1, we only need to consider the scenario
where (k− p) ≤ |P (t)| ≤ k. Assume that the BBQ is not
empty, otherwise all |P (t)| ≥ (k− p) elements in the PIFO
are trivially the highest-priority ones. Now, assume towards
a contradiction that only the m < (k− p) highest-priority
elements in the system are in the PIFO at a certain time t2. It
follows that the highest-priority element in the BBQ, x, has
a higher priority than the remaining |P (t2)|−m elements in
the PIFO at t2. Observe that x may only have been inserted in
the BBQ if, at the time of insertion, t1: (1) the PIFO was full,
and (2) all k elements in the PIFO had higher priority than x.

Now, for x to be the (m+1)’th highest-priority element in
the system at time t2, we must have performed n = (k−m)>
(k− (k− p)) = p number of DEQUEUE-MAXPIFO operations

since t1, implying that n (> p) DEQUEUE-MAXBBQ opera-
tions were issued in the interval [t1, t2]. Since at most one
DEQUEUE-MAXBBQ operation can be issued every timestep and
each such operation takes exactly p timesteps to complete,
it follows that at least one DEQUEUE-MAXBBQ operation com-
pleted and returned x. Thus, x is in the PIFO at time t2, a
contradiction.

Appendix D Dynamic Priority Ranges
As described in §3.1, the standard BBQ primitive operates

over a priority range that is both finite and static. While this
is sufficient in some contexts (e.g., strict priority scheduling),
many policies implicitly assume an infinite priority set (e.g.,
fair queueing). IPQs are fundamentally incapable of uphold-
ing this assumption (§9). Fortunately, prior work has shown
that in most cases, a dynamic – albeit finite – priority range is
sufficient to realize these policies [38, 39]. In this section, we
describe how BBQ can be extended to provide the abstraction
of a rolling priority window.

To handle dynamic priority ranges, we directly adapt Eif-
fel’s [38] idea of using a Circular Hierarchical FFS-based
Queue (cFFS). The idea is to have two independent HFFS
queues, each with priority span P, working in tandem: a pri-
mary HFFS queue, q0, that stores elements with priorities
[0, P), and a secondary HFFS queue, q1, mapping to elements
with priorities in [P, 2P) (i.e., just outside q1’s range). To-
gether, these queues represent a logical priority window of
[0,2P). Once the primary queue becomes completely empty,
the logical priority window advances by P, and the queue
designations are swapped, with q0 – now the secondary queue
– buffering elements with priorities in [2P, 3P), and so on and
so forth.

We follow precisely the same blueprint for BBQ, with logi-
cal partitioning enabling us to multiplex both q0 and q1 atop
a single physical BBQ instance with no resource overhead
(or modification to the primitive, for that matter). The only
additional component required is a simple controller to or-
chestrate the two logical queues. We do not implement this
feature as part of our research artifact (yet), but we expect it
to have little to no impact on BBQ’s performance.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 475

Sirius: Composing Network Function Chains into P4-Capable Edge Gateways

Jiaqi Gao†, Jiamin Cao†, Yifan Li, Mengqi Liu, Ming Tang, Dennis Cai, Ennan Zhai
Alibaba Cloud

Abstract
Alibaba Cloud designs and deploys P4-capable gateway to

accelerate the processing of the diverse business traffics in
the edge cloud. Since the programmable ASIC in the gateway
only accepts a monolithic, pipelined P4 program, the dozens
network function chains for different business traffics have
to be composed into one. This is non-trivial due to the con-
tention between the complexity of network function chains
and the limited resource in the programmable ASIC. In this
paper, we present Sirius, a system that automates network
function chain composition process. Sirius synthesizes tables
to identify which business traffic the input packet belongs to,
pipelines loops in the merged network function graph via re-
circulations, and partitions the graph between programmable
ASIC and CPU when the required memory consumption ex-
ceeds the ASIC’s capability. So far, Sirius has automated
network function arrangement in hundreds of gateways, and
has effectively decreased our programmers’ workload by three
orders of magnitude, from weeks to minutes.

1 Introduction

As a cloud provider, Alibaba operates hundreds of edge clouds
to deliver fast services (e.g., game and video) to global end
users. To maintain reasonable costs, each of these small-scale
edge clouds contains a pair of gateways, a few switches, and
tens of light-weight servers with tight space constraints and
CPU compute limitations. Our typical edge cloud topology
is shown in Figure 1(a). Depending on the services deployed,
the edge cloud can serve more than 10 types of business
traffics (load balancer, proxy, Virtual Private Cloud (VPC),
etc.) Illustrated in Figure 1(b), each business traffic requires its
own network function processing chain, different directions
of the same business traffic may traverse network functions
in different orders. As services today constantly evolve, it has
become increasingly difficult for these resource-limited edge
clouds to handle the ever-growing traffic and CPU overhead.

Recent advances in programmable switch ASICs have en-
abled us to offload network functions from edge cloud servers
to the programmable switch ASICs. We designed and built
our own P4-capable edge gateway. Shown in Figure 1(c),
the gateway is equipped with a programmable switch ASIC
and server-grade CPU with dozens of cores, connected via
a pair of non-programmable NICs with hundreds of gigabits
throughput. The gateway sits on the border of the edge cloud

†
Both authors contributed equally to this paper

between the ISP and edge cloud switches. Deploying network
function chains onto the P4-capable gateway significantly
reduces the usage of constrained server CPU resources and
improves the performance of our edge clouds.

Despite the P4-capable gateway’s performance and flexi-
bility, we face a tough programming challenge. Recent com-
piler works such as Lyra [5], Cetus [13] allow programmers
to develop one network function chain fast and resource-
optimized. However, programmers struggle with compos-
ing all network function chains into the gateway while
satisfying the throughput requirement. More specifically,
since the programmable ASIC is performant but limited in re-
sources, the programmers have to merge all network function
chains into a graph by reusing overlapping network func-
tions, and maximize the network functions assigned to the
programmable ASIC to process hundreds of gigabits of traffic
flowing through the gateway. Network function chain compo-
sition involves three major challenges:

Identification. When a packet arrives, the first step is to iden-
tify which business traffic it belongs to and which network
functions to execute. While there are many potential ways of
identifying a packet, the solution should be generic and can
be implemented with reasonable resource overhead.

Pipelining. In real-world applications, it is inevitable that dif-
ferent business traffics execute network functions in different
orders. Given the ASIC’s pipeline architecture, it is infeasible
to compose these different processing chains directly. Such
ordering conflicts can be resolved by inserting recirculations
but with substantial human efforts.

Partitioning. Even after resolving ordering conflicts, the com-
posed program containing all required network functions may
not fit on the programmable ASIC due to its resource con-
straints. Thus, some components in the composed program
have to be moved to the gateway’s CPU, at the expense of
lower performance and degraded traffic throughput. Such
partitioning between programmable ASIC and the CPU is
non-trivial because it requires careful balancing between the
deployment capability and the overall throughput.

State of the art. To the best of our knowledge, no prior com-
piler work [3, 5–7, 9, 10, 12, 13, 19, 20, 23–25, 27] targeted
the above-mentioned network function chain composition
problem. µP4 [21] and P4 Weaver [4] enables modular P4
programming and composes multiple P4 modules into a di-
rected acyclic graph (DAG) without reusing any common
code block across modules. P4Visor [28], HyperV [26], De-
javu [25], and HyPer4 [8] merge multiple P4 programs into

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 477

checker.p4 VxLAN.p4 switch.p4

checker.p4 VxLAN.p4 session.p4 acl.p4 switch.p4

Network Function Chain 1: VPC-VPC

Network Function Chain 2: SNAT-OUT

Network Function Chain 3: SNAT-IN

Traffic Direction

Pipeline 0

Pipeline 1

Pipeline 2

Pipeline 3

(b) Three business traffics & network function chains (c) The architecture of the gateway in our edge cloud

Ingress egress

checker.p4 VxLAN.p4session.p4acl.p4 switch.p4
Programmable Switching ASIC

Non-Programmable
NIC

PCIe

N x 100G Ethernet

Non-Programmable
NIC......

Gateway

Commercial
Switches

Servers

Backbone
Network

Edge
Cloud

Edge
Cloud

Traffic

sw
itc

h

D
D

oS

LB

...

...

Gateway

(a) Our edge cloud deployment topology

Traffic
Manager

Figure 1: Our edge cloud’s topology, business traffic examples, and architecture of our P4-capable gateway.

one but do not handle ordering conflicts, or partition the pro-
gram across ASIC and CPU. These approaches incur high
memory overhead and cannot handle production-scale com-
plexity with tens of business traffics and hundreds of match
action tables.

Our system: Sirius. In this paper, we present Sirius, a sys-
tem that automates network function chain composition in
Alibaba’s edge clouds. Sirius takes the following inputs: (1)
P4 programs that define the network function chains for each
business traffic, (2) a traffic identification database that de-
scribes flow characteristics for sets of business traffics, and
(3) edge cloud topology and the throughput requirement for
each traffic. Sirius then returns a composed P4 program that
can handle all the above traffics and can deploy on the pro-
grammable ASIC. It also outputs the list of modules that
must be moved to the CPU, so that our developers can later
implement them as C++ programs.

Overall, this paper makes the following contributions:

• A synthesis algorithm that generates a memory-efficient P4
traffic identification table, along with corresponding guard
conditions to identify each business traffic (§4).
• A pipelining algorithm that finds all possible candidates for

resolving ordering conflicts in composing business traffic
processing chains (§5).
• A new resource encoding paradigm and iterative searching

approach to find the best pipelining and partitioning plan
to minimize CPU load. (§6)

We have been using Sirius in production for one year, and
it has automated the arrangement of network functions for
hundreds of gateways in our global edge clouds. Sirius has
effectively decreased our network function arrangement work-
load by three orders of magnitude (from weeks to minutes).
In §7, we share our experience in using Sirius, representa-
tive cases solved by Sirius, and lessons we learned. We also
evaluate Sirius’s performance in §8.

2 Background

Edge clouds are deployed closer to end users and deliver
dozens of services (e.g., IoT, cloud gaming, CDN, and storage)
with lower latency. Gateways on the edge cloud host network
functions to process all services’ business traffic at hundreds

1 2 3 4 5 6 7 8 9 10
Network function chain id

0

20

40

Le
ng

th

Length

0

6

12

M
em

or
y

(M
B

)SRAM TACM

Figure 2: The length and resource consumption of overlapping
tables of each network function chain.

of gigabits per second, such as balancing e-payment load,
translating network address for VPC, collecting statistics for
QoS and billing, etc. Traditionally, the network functions are
implemented as software programs running on the CPU. As
the scale of the edge cloud and the complexity of deployed
services grow, the CPU-based solution struggles to keep up.
We spent hundreds of CPU cores on an edge cloud site only
processing the traffic traversing through, resulting in huge
overhead both in cost and space. Therefore, we built our own
P4-capable gateway and accelerated our network functions via
the programmable ASIC. Depending on the services deployed,
the gateway serves traffic at hundreds of gigabits to multi-
terabits per second.

Developing atop the P4-capable gateway is challenging
due to the scale and complexity of our network functions. To
quantify the complexity, we examined four P4 programs for
different edge cloud sites and summarized the line of codes
and resource consumption in Table 1. We can see that all four
programs occupy all 12 stages of the programmable ASIC,
and all have high Packet Header Vector (PHV) usage. The
largest program has 248 tables and consumes all four pipelines
in the gateway’s ASIC.

We experience such complexity and scale because each
P4 program is composed of tens of network function chains
processing different business traffic. We further dive into
the ‘Medium 1’ program, which is composed of 10 network
function chains. We examined the length of each network
function chain and the result is recorded in Figure 2. The
length varies from 9 to 26, which means some chain occupies
at least 26 stages in the programmable ASIC. We also observe
a huge amount of table overlapping between the chains. We
recorded the SRAM and TCAM memory size of the tables
shared with other chains and the result is shown in Figure 2.
Each chain at least reuses 1MB of SRAM memory and 180KB

478 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Scale LoC # of Table # of Pipe. PHV (%) SRAM (%) TCAM (%) Stage
Small 4155 81 2 81.1%/68.8% 78.0%/98.8% 28.1%/10.1% 12/12

Medium 1 11870 197 2 88.9%/87.0% 51.7%/49.3% 64.6%/25.3% 12/12
Medium 2 9996 156 2 69.1%/85.4% 34.9%/47.2% 27.8%/29.2% 12/12

Large 16190 248 4 85.9%/97.3%/59.4%/87.4% 39.5%/67.2%/86.8%/66.9% 26.4%/33.0%/17.0%/35.4% 12/12/12/12
Table 1: The resource usages of four P4 programs at different scales.

of TCAM memory. If we choose not to reuse the tables and
duplicate them, the overall memory consumption explodes by
3.56X in SRAM and 4.93X in TCAM, which way exceeds
the ASIC’s capability. Thus, it is necessary for us to compose
network function processing chains that overlap with each
other.

To the best of our knowledge, no prior work can handle
the complex challenges we face. We believe the fundamental
reason is that current abstractions either assume there exists
only one huge network function chain (P4) or multiple chains
are independent of each other (Lyra [5]). Such assumptions
do not hold in our edge cloud scenario, as explained above.

Now we use the example network function chain shown in
Figure 1(b) to illustrate the network function chain composi-
tion process and the challenges. The three network function
chains create a simple edge cloud instance that allows bidirec-
tional communication between private and public networks.
SNAT-IN and SNAT-OUT chains process traffic going in and
out of the edge cloud respectively, and VPC-VPC chain pro-
cess traffic flowing between private networks. The expected
throughput is 300 Gbps for all business traffics.

It is impossible to compose the three chains by directly
merging their network functions into a single P4 program.
As illustrated in Figure 3(a), each chain defines a mandatory
ordering among its network functions. The orderings imposed
by different chains conflict with each other, resulting in the
two loops (highlighted in red) in the graph. In particular,
SNAT-IN and SNAT-OUT traffic flow in reverse directions,
thus, the two network function chains execute modules in
reversed orders as well. Such conflicts are inconsistent with
the pipelined architecture of the programmable ASIC. To
successfully compose the three chains onto our P4-capable
gateway, the following three challenges must be addressed.
Challenge 1: Pipelining network functions. Ordering con-
flicts commonly exist when composing diverse network func-
tion chains. We employ the recirculation feature to resolve
these conflicts. Recirculation allows a packet to go through
the programmable ASIC one more time, at the cost of re-
ducing the overall processing throughput. For example, Fig-
ure 3(b) shows a pipelining plan that follows the order of
the SNAT-OUT chain. This allows SNAT-OUT traffic to be
processed in one pass, while introducing two recirculations
for SNAT-IN traffic (i.e., a packet visits checker and acl in
round 0, session in recirculation round 1, and VxLAN and
switch in recirculation round 2). As a result, SNAT-IN traffic’s
maximum throughput is reduced to 1/2 of the recirculation
channel’s bandwidth since every packet goes through the re-
circulation channel twice. Assuming that the recirculation
channel has 400 Gbps bandwidth, this pipelining plan vio-

lates the throughput requirement (i.e., 300 Gbps). Instead, a
feasible pipelining plan is shown in Figure 3(c), where both
SNAT-IN and SNAT-OUT traffics recirculate only once and
guarantees 400 Gbps maximum bandwidth. Note that this
is not the only feasible pipelining plan, swapping VxLAN.p4
and session.p4 in Figure 3(b) also satisfies the throughput
requirement.
Challenge 2: Identifying business traffics. Despite the fact
that all network functions are present in the composed pro-
grammable ASIC, different business traffics visit different
network functions defined by their processing chains. This
requires us to identify which business traffic an input packet
belongs to and only execute relevant P4 modules. Figure 3(d)
shows a naive solution that inserts different identification ta-
bles before each module. For example, the two identification
tables marked in red ignore VPC-VPC traffic according to the
network function chain. The rest of the identification tables
marked in blue allow all traffic to go through but also ensure
that the table only executes at the correct recirculation round.
However, this solution incurs high memory overhead and may
lead to a longer execution chain of P4 tables. According to
findings in Cetus [13], this approach does not scale.
Challenge 3: Partitioning network functions. In many
cases, the composed P4 program simply requires too much
memory resource and does not fit on the programmable ASIC.
We have to partition the program and move some tables to
the CPU. This requires careful balancing between resource
consumption on the programmable ASIC and the throughput
degradation caused by moving to the CPU. Furthermore, since
the CPU sits on the recirculation path, a careless partitioning
plan can introduce additional recirculations. For example, if
we assign switch.p4 to the CPU based on the pipelining plan
in Figure 3(c), all three business traffics have to recirculate
once more time to be forwarded out of the gateway. A better
plan is to assign session.p4 to the CPU since it already sits
on the recirculation path, which we will detail in §6.1.

The network function composition problem causes signifi-
cant overhead during gateway development. It often takes
weeks for our programmers to find an arrangement plan,
which is subject to change when the network function imple-
mentation or the gateway configuration (e.g., set of supported
business traffics) changes. Thus, it is necessary to build a sys-
tem to automate the network function composition process.

3 Sirius Overview

Figure 4 presents Sirius’s architecture. Sirius offers our pro-
grammers a set of high-level interfaces to automatically ad-
dress the network function composition problem. The inter-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 479

checker.p4 switch.p4session.p4 acl.p4VxLAN.p4

(a) Merging VPC-VPC, SNAT-OUT and SNAT-IN into a graph

checker.p4 switch.p4session.p4 acl.p4VxLAN.p4

(b) A pipelining plan violating the throughput requirement

VPC-VPC

SNAT-OUT

SNAT-IN

checker.p4 switch.p4session.p4acl.p4VxLAN.p4

(c) A pipelining plan satisfying the throughput requirement

VPC-VPC

SNAT-OUT

SNAT-IN

checker.p4 switch.p4session.p4acl.p4VxLAN.p4

(d) Inserting gateway table before each module to identify traffic

Figure 3: An example of a merged graph and two pipelining
plans for this graph.

faces require the following input: (1) P4 programs that specify
all the individual network functions and how these network
functions are chained for diverse business traffics, (2) a traffic
identification database, which contains flow characteristics
rules (flow predicates) that distinguish sets of business traffics,
(3) edge cloud topology and throughput requirements, which
specify the throughput needs of different business traffics.

As shown in Figure 5, given a set of original P4 code for
each network function chain (Figure 5(a)), Sirius follows three
phases to produce the final composed P4 program that can
compile and deploy to a programmable ASIC.

In the first phase, Sirius leverages the input traffic identifica-
tion database to generate a traffic identification table that tags
each packet according to a selected set of flow predicates. In
addition, it generates guard conditions that utilize these tags
to distinguish each business traffic (Figure 5(b)), such that a
network function is only visited by traffic chains it belongs to.
To accommodate memory constraints on the programmable
ASIC, we describe in §4 our algorithm for synthesizing a
memory-efficient traffic identification table.

In the second phase, Sirius generates solutions for resolving
network function ordering conflicts among different process-
ing chains. This is a unique challenge for composing network
function chains onto a programmable ASIC, which follows
a pipelined architecture. Sirius resolves such conflicts by in-
serting recirculations after certain network functions. To find

NF Chain 1

NF Chain 2

NF Chain 3

(2) Traffic Identification DB
(3) Topology and
Throughput Requirement

(1) P4 Programs

Sirius

Partitioning Plan

… ..
.

Partitioning (§6)
CPU

ASIC

Pipelining Plan
Candidates

Program
Synthesizer

P4 Program

C++ Program

Traffic
Identification (§4)

Finding Pipelining
Candidates (§5)

Figure 4: Sirius’s system architecture overview.

pipelining plan candidates (i.e., candidate recirculation points)
with a satisfied number of recirculations efficiently, Sirius
models this pipelining process as a feedback arc set problem
and introduces an algorithm as explained in §5. Figure 5(c)
illustrates the deployment of a candidate solution, where the
guard condition before network functions are extended with
predicates on the recirculation count.

In the third phase, if no pipelining candidate can fit within
the switch resource, Sirius searches for P4 tables to assign to
the CPU. We propose a novel logical stage encoding paradigm
to transform this search into a satisfiability problem, and em-
ploy an iterative strategy to generate the optimal partitioning
between the programmable ASIC and the CPU (§6). As il-
lustrated in Figure 5(d), a solution may involve moving the
session module to the CPU and adjusting recirculation desti-
nations accordingly.

In this way, Sirius generates a composed P4 program
that accommodates all original network function processing
chains and can compile to the programmable ASIC.

4 Traffic Identification

The composition of multiple traffic processing chains requires
the integrated program to distinguish business traffics from
each other and add corresponding guard conditions at the entry
of each module. This ensures a packet only visits modules that
belong to its processing chain. Because the programmable
switch has limited resources, it is necessary to reduce the
memory usage overhead of traffic identification and to fit as
much business traffic processing logic as possible.

In this section, we first show the input to Sirius, i.e., the
traffic identification database that records how header fields
and metadata identify different business traffics (§4.1). Then,
we introduce the insight that Sirius uses to synthesize the
traffic identification table and add guard conditions on the
programmable switch (§4.2).

4.1 Traffic Identification Database

Each business traffic has its unique flow characteristics. For
example, VPC-VPC traffic travels within the internal network,
and thus its source and destination IP are both in the internal
IP range, while for SNAT-IN traffic, its source IP belongs to

480 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

control chain1{
 …...
 checker.apply();
 vxlan.apply();
 switch.apply();
 …...
}

control chain2{
 …...
}

control chain3{
 …...
}

control chain1{
 …...
 if (guard1){
 checker.apply();
 }

 if (guard1){
 vxlan.apply();
 }

 if (guard1){
 switch.apply();
 }
 …...
}

…...

control merged{
 id_table.apply();
 …...
 if (guard1 ||
 (guard2 && recirc == 0) ||
 (guard3 && recirc == 0)){
 checker.apply();
 }

 if (guard1 ||
 (guard2 && recirc == 0) ||
 (guard3 && recirc == 1)){
 vxlan.apply();
 }

 /* acl, session, switch */
 …...

 update_recirc.apply();
}

(a) (b) (c) (d)

control partitioned{
 /* checker */
 …...

 if (guard1 ||
 (guard2 && recirc == 0) ||
 (guard3 && recirc == 1)){
 vxlan.apply();
 if (guard2){
 output_port = to_cpu;
 }
 }

 /* acl, switch */
 …...

 update_recirc.apply();
}

Figure 5: Changes on the P4 implementation after each phase. (a) depicts the original P4 code for each network function
processing chain. (b) depicts chain 1 (VPC-VPC) after going through the traffic identification phase, where guard1 denotes the
synthesized guard condition for it. (c) depicts the merged P4 code after going through the pipelining phase, assuming the pipeling
solution shown in Figure 2(d). Here, recirc is a variable recording the number of recirculations experienced by a packet. (d)
depicts the P4 code after going through the partitioning phase. Here, traffics belonging to chain 2 will be directed to the CPU
after the vxlan module, which implements the solution in Figure 7(b).

Rule ID Flow Predicate Business Traffics Entries
Rule 1 src_ip ∈ Public IP SNAT-IN 100
Rule 2 src_ip ∈ VPC IP VPC-VPC ∪ SNAT-OUT 10
Rule 3 dst_ip ∈ Public IP SNAT-OUT 100
Rule 4 dst_ip ∈ VPC IP VPC-VPC ∪ SNAT-IN 10
Rule 5 phy_port ∈ Internal Port VPC-VPC ∪ SNAT-OUT 48

Rule 6
(src_ip, dst_ip) ∈

VPC IP PAIR VPC-VPC 50

Table 2: Our example’s traffic identification DB.

the public IP range. Sirius relies on the traffic identification
database to maintain this information.

Sirius’s traffic identification database adopts a flow-
predicate-centric approach, i.e., the primary key of the
database is the membership relation of header fields (such
as the source IP field) or metadata (such as the physical port
ID on the switch) that distinguishes a subset of the business
traffics (being a necessary and sufficient condition). An exam-
ple traffic identification database is shown in Table 2. Rule
2 means if a traffic’s source IP belongs to the VPC IP set,
then it is either VPC-VPC or SNAT-OUT traffic, and vice
versa. Besides the basic flow predicate and the corresponding
business traffic set, the database also provides the number of
entries in each rule. Three factors together decide the memory
consumption of each rule. For example, Rule 6 occupies 10×
more memory than Rule 2 in Table 2 because Rule 6 checks
both source and destination IP and has 5× more entries1.

We rely on the composition of flow predicates to distinguish
each business traffic. For example, (Rule 2 AND Rule 4)

1Rule 6’s size is smaller than 90 (i.e., 10 × (10 - 1)) because some source
and destination IP pairs are not possible in reality.

separates VPC-VPC traffic from the rest, and (Rule 4 AND
(NOT Rule 1)) also achieves the same goal. The reason for
such a design is twofold. On the one hand, it is not always
feasible in practice to find a single predicate to identify each
business traffic. On the other hand, although Rule 6 uniquely
defines VPC-VPC traffic, it requires more memory resources
than composing Rules 2 and 4.

Implementation: parallel matching on all predicates We
use parallel matching to implement the above flow predi-
cate composition in a generic way. As illustrated in Figure 6,
when a packet arrives at the programmable switch, we match
it against all flow predicates in parallel and store the results
in corresponding flags. Upon subsequent network functions,
guard conditions are generated by composing these predi-
cates, e.g., hdr.p2 && hdr.p4 denotes (Rule 2 AND Rule
4), which uniquely identifies VPC-VPC traffic.

4.2 Synthesis of Traffic Identification Tables
As discussed above, we draw flow predicates from a
developer-provided traffic identification database (e.g., Ta-
ble 2) and use their logical compositions to identify each
business traffic. This section describes how we choose the set
of flow predicates (i.e., rules) that is both complete (able to
distinguish each business traffic) and memory efficient when
implemented on the programmable switch2.

2We ignore other types of resources (especially PHV) because (1) ac-
cording to our experience, memory is the major bottleneck, and (2) it is
challenging to quantify other resources’ overhead and hard to choose one
solution over another.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 481

rule4.p4

rule2.p4
VxLAN.p4 acl.p4 session.p4

Programmable ASIC

Two flags are
updated in parallel:

bit<1 > hdr.p2;
bit<2> hdr.p4;

VPC-VPC traffic visits
VxLan:

If (hdr.p2 && hdr.p4){
 vxlan.apply();
}

VPC-VPC traffic skips other
modules:

If (!(hdr.p2 && hdr.p4)){
 …...
}

Figure 6: Implementation of flow predicates: rule 2 and rule 4

Our synthesis algorithm takes the traffic identification
database as input and returns a set of rules as output that
is complete and incurs minimum resource usage. The pseudo-
code is listed in Algorithm 1. First, the algorithm iterates
through each rule and builds a search tree from all the rules
behind, where each node in the tree represents a subset of the
rules in the database, and each branch adds one more rule to
the subset (Line 3-4). There are |R | trees in total. Next, we
iterate through all nodes in the search tree and find a node
that represents the minimum valid set of rules (Line 5-15).

Because the resource consumption increases monotonically
as rules are added, we apply three more optimizations to
prune the search tree. Before searching, we sort the rules in
the database by memory size and traverse them in ascending
order (Line 2). Within a tree, we sort the nodes in the tree by
their resource consumption in ascending order (Line 4) and
stop searching when we find the first valid set (Line 19-22).
Between trees, we stop searching the current tree when the
current set has higher resource consumption than the global
best solution (Line 16-18).

Example. Assume the business traffics shown in Figure 1
and the traffic identification database shown in Table 2. When
searching directly without the optimizations, we need to check
the search tree of each rule. For example, in the first round,
we check the search tree of {Rule 1} and obtain three traffic
identification tables: {Rule 1,Rule 3}with (100×32+100×
32) bits, i.e., 800 bytes of memory usage, {Rule 1,Rule 4}
with (100× 32+ 10× 32) bits, i.e., 440 bytes of memory
usage, and {Rule 1,Rule 6} with (100× 32+ 50× 64) bits,
i.e., 800 bytes of memory usage. After we check all search
trees in all rounds, we choose {Rule 2,Rule 4} with 80 bytes
of memory usage generated in the second round. With the
optimizations, we directly check the search tree of {Rule 2}
and obtain {Rule 2,Rule 4}, since {Rule 2} has the smallest
memory usage and {Rule 2,Rule 4} has the smallest resource
consumption in the tree.

5 Finding Pipelining Candidates

A unique challenge in composing multiple network func-
tion processing chains is the inevitable ordering conflicts

Algorithm 1: Traffic identification table synthesis
Input: T : Business traffic.
Input: R : Rules in traffic separation DB.
Output: F : Rules to synthesize traffic identification tables.

1 F ← R
2 R ← SizeSortAscending(R)
3 foreach ri ∈ R do
4 C ← SizeSortAscending(Combinations({ri,ri+1, · · · ,r|R |}))
5 foreach R ′ ∈ C do
6 X ←{{t, t ∈ T }}
7 S ← /0

8 terminate← False
9 foreach rk ∈ R ′ do

10 foreach x j ∈ X do
11 tmp1← x j ∩ rk.action
12 tmp2← x j− tmp1
13 if ((tmp1 ∪ tmp2)−X) ̸= /0 then
14 X ← tmp1 ∪ tmp2
15 S .append(rk)

16 if RuleSize(S)≥ RuleSize(F) then
17 terminate← True
18 break

19 if AllElementSizeOne(X) then
20 F ← S
21 terminate← True
22 break

23 if terminate then break

24 return F

A

// All existing processing loops
L = { [B, C, B], [B, C, D, B] }

// Key-Value Table V
Execution Sequence Loops

B → C { [B,C,B] ,
[B,C,D,B] }

C → B { [B,C,B] }

D → B { [B,C,D,B] }

A → C { }

… ... … ...(a) An example merged network
function graph (b) Vector and Key-Value Table

B

C D

Figure 7: An example for our insight and modeling.

between individual network functions. Manifested as loops
in the merged network function graph, these ordering con-
flicts commonly exist because business traffic going in and
out of the gateway usually visits network functions in oppo-
site directions. A network function graph with loops cannot
be deployed on the programmable ASIC directly due to the
ASIC’s pipelined architecture. Sirius solves this problem by
inserting recirculations in the merged network function graph.
In this section, we first explain that the problem resembles
a feedback arc set problem (§5.1), and next, we show how
Sirius solves the problem and finds all pipelining candidates
(§5.2).

5.1 Modeling Pipelining Process

It is impossible to deploy a set of network functions contain-
ing ordering conflicts (i.e., loops in the merged graph) on

482 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the programmable ASIC directly. We address this issue by
inserting recirculations at the end of certain network func-
tions, which effectively breaks the immediate ordering (i.e.,
removes the edges) after these network functions. Until there
is no longer ordering conflict (i.e., the merged graph becomes
acyclic), this set of network functions becomes deployable on
the programmable ASIC. Figure 5(c) illustrates that multiple
processing chains can be merged into a single P4 program
after resolving all ordering conflicts.

We use Figure 7(a) to explain this process. In Figure 7(a),
there are four network functions A-D, and each directed edge
represents an immediate ordering between two network func-
tions, such as B→C, required by the network function pro-
cessing chain it belongs to. There are two processing loops,
B ⇄ C and B→ C → D→ B. If we remove the ordering
B→C, the two processing loops disappear. Removing D→ B
only removes one processing loop B→C→ D→ B.

This tells us that we can leverage the recirculation feature (a
commonly used feature in P4 for processing a packet multiple
times) to “remove” a network function ordering, which even-
tually removes processing loops. At the same time, we should
use recirculations as little as possible to avoid throughput
drop. Therefore, our goal is to remove all processing loops
with minimal recirculations, making the network function
graph a directed acyclic graph.

This resembles the feedback arc set problem [2], which
removes edges from a directed graph until it becomes acyclic.
However, the main difference is that the original problem for-
mulation focuses on minimizing the number of edges removed
or by minimizing a certain weight. As a comparison, we ulti-
mately focus on the traffic throughput, which is determined
by a lot more factors, including the number of edges removed
on each processing chain (i.e., the number of recirculations).

5.2 Generating Pipelining Candidates

There are multiple pipelining candidates (i.e., set of edges
to remove) for the same merged graph. For example, both
{B→ C} and {C→ B, D→ B} are valid solutions for Fig-
ure 7(a). However, it is hard to tell which one is better without
going through the partitioning phase. In order to reduce the
number of candidates entering the partition phase, Sirius em-
ploys the following two pruning strategies during the search.
(1) The search backtracks if the current solution violates the
throughput requirement, since inserting more recirculations
would only result in lower throughput. (2) The search back-
tracks when a valid solution is found, such that unnecessary
recirculations are prevented.

To generate the above sets of candidates, Sirius first com-
putes a set L, which contains all processing loops, and a key-
value table V . Figure 7(b) illustrates an example for L and V .
In V , each key (say ki) represents an execution sequence, and
the corresponding value records all the processing loops that
disappear once ki is removed. It then searches for all sets of

edges that collectively remove all loops in the graph, i.e., for
any set of edges K ,

⋃
k∈K V [k] must equals L.

Sirius introduces a dynamic programming approach to ex-
plore the search space and applies heuristics based on the
throughput specifications. The algorithm works as follows:

• (1) Remove the keys with an empty value from the key-
value table V , and sort the keys based on the number of
elements in the mapped values in descending order. For
example, execution sequence {B→C} has two elements.
• (2) In the ranked V , traverse each key ki and add it to K ,

which denotes that the edge ki is removed.

• (2.1) Then (still for ki), iterate each network function
chain and compute the expected throughput given the cur-
rent K . When a chain contains n keys in K , the chain’s
throughput is reduced to T/n, where T is the recircula-
tion channel’s throughput. If the expected throughput is
violated, remove key ki from K , and jump to (3).

• (3) Select key ki+1 from the remaining elements in the
ranked V , continue step (2) until the values of K covers L,
then K is a solution (i.e., a pipelining candidate). Continue
the iteration until all solutions are found.

6 Partitioning

Given a set of pipelining plan candidates that have resolved
all ordering conflicts and also satisfied the throughput re-
quirements considering all inserted recirculations (generated
from §5), we now need to compile and fit them into the pro-
grammable ASIC. Based on our one-year experience, none of
the merged P4 code (e.g., Figure 5(c)) can directly compile to
the programmable ASIC due to its limited resources. Sirius
thus proposes a partitioning approach that tries to move some
tables or an entire network function to the CPU so that the
resulting P4 code can be successfully compiled.

Similar to Lyra [5] and Cetus [13], our partitioning ap-
proach leverages the SMT solver to search for a satisfied
result (i.e., tables or network functions to move to the CPU);
however, our scenario needs to take into account many dif-
ferent factors such as the recirculation feature and the CPU.
Existing SMT solver-based approaches do not address these
unique challenges.

In this section, we present a novel logical stage encoding
approach (§6.1) that transforms partitioning problems into
SMT problems. Then, we explain how we use iterative search-
ing to find the best partitioning plan that minimizes the load
on the CPU (§6.2).

6.1 Partitioning Encoding

Moving some tables or the entire network function to the CPU
may add additional recirculation to the input network function
chain, because a packet needs to first leave the programmable
ASIC, then enter the CPU, and finally enter the programmable

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 483

checker.p4 VxLAN.p4 session.p4acl.p4

switch.p4 CPU

Programmable ASIC

checker.p4 VxLAN.p4

session.p4

acl.p4 switch.p4

CPU

VPC-VPC:
checker → VxLAN → (Recirculation) → switch

SNAT-OUT:
checker → VxLAN → session → (Recirculation) → acl → (Recirculation) → switch

SNAT-IN:
checker → acl → session → (Recirculation) → VxLAN → (Recirculation) → switch

VPC-VPC:
checker → VxLAN → switch

SNAT-OUT:
checker → VxLAN → (Recirculation) → session → acl → switch

SNAT-IN:
checker → acl → (Recirculation) → session → VxLAN → switch

Programmable ASIC

(a)

(b)

SNAT-OUT

SNAT-OUT

Figure 8: Recirculation situations resulting from two different
partitioning plans.

ASIC again in a recirculation. If a partitioning plan is not
well-chosen, the entire network function chain may include
additional recirculations (introduced by the CPU), violating
the throughput requirement. Figure 8 shows an example.

Suppose a programmable ASIC can only hold four net-
work functions in Figure 3(a), and we have a pipelining result
shown in Figure 3(c). Because the entire network function
chain shown in Figure 3(c) cannot be put in the programmable
ASIC, we need to move a network function to the CPU. Fig-
ure 8(a) shows a partitioning result that moves the switch.p4
to the CPU. In such a partitioning plan, unfortunately, VPC-
VPC, SNAT-OUT, and SNAT-IN have one, two, and two recir-
culations, respectively. Namely, this partitioning additionally
adds a recirculation to each of these three chains. As a result,
the throughput is significantly decreased. Figure 8(b) shows a
better partitioning plan that moves session.p4 to the CPU.
In this case, all three network function chains achieve the de-
sired throughput without any additional recirculation caused
by the CPU.

Encoding. It is common to address resource allocation prob-
lems by encoding relevant constraints as math formulas and
invoking SMT solvers to find a satisfying solution. However,
encoding the effect of moving P4 tables to the CPU is not
straightforward due to its intertwining with existing recircula-
tions generated in §5.

We propose a concept called logical stage to address this
challenge. While a physical stage describes where a P4 table
is actually deployed, the logical stage depicts its execution
sequence, i.e., physical stage + N × recirculation rounds,
where N denotes the number of physical stages in the switch.

12 stages

Ingress

CPU

Egress

Physical Stages:

Logical Stages
(with 1 recirculation)

Logical Stages
(with m recirculations) … ...

m - 1

12 stages

Ingress Egress Ingress Egress

12 stages12 stages CPU12 stages 12 stages 12 stages

Ingress Egress Ingress Egress

12 stages CPU12 stages 12 stages 12 stages

Ingress Egress

CPU 12 stages 12 stages

Figure 9: Physical stages and their logical stages.

As illustrated in Figure 9, Sirius duplicates m ingress and
egress pipelines to model the logical execution sequence that
spans m recirculation rounds. Further, Sirius inserts a new
CPU stage between each egress and ingress pipeline to model
the execution on the CPU.

The partitioning phase takes the merged P4 code (e.g.,
Figure 5(c)) as input and calculates the set of tables to move
to the CPU that enables the successful deployment of the
remaining P4 tables. We encode this phase as a satisfiability
problem as below.

Input: We use k to denote the total number of stages on
the target ASIC. For the particular pipelining candidate, we
use rc to denote the number of recirculations for chain c.

Output: For each table t, spt and sct represents its physical
and logical stage index, respectively.

Constraints:
• ASIC stage constraint: a table can either deploy at a phys-

ical stage or be moved to the CPU (the (k + 1)th stage).
Thus, 0≤ spt ≤ k must hold.
• A physical stage must correspond to a logical stage at a

particular recirculation round: (sct < k+1 =⇒ spt = sct)∧
(k+1≤ sct < 2k+2 =⇒ spt = sct−k−1)∧·· · must hold.
• Moving tables to the CPU does not result in more recir-

culations: for each table t belonging to chain c, 0≤ sct ≤
(rc +1)× (k+1) must hold.
• Ordering constraint: if a chain orders table t after t ′, sct >

sct ′ must hold.

In addition to the above partitioning constraints, we also
apply resource constraints defined in Lyra [5] and Cetus [13]
to determine whether the remaining tables can indeed deploy
to the programmable ASIC.

6.2 Finding the Partitioning Result
Given the above encoding, we invoke an SMT solver to search
for a partitioning result with the optimization goal of minimiz-
ing the CPU usage. The performance of a program running
on the CPU is affected by many factors and is hard to pre-
dict. Recent works such as Bolt [11] require packet traces to
predict performance at reasonable accuracy. Instead, Sirius
uses two heuristic metrics to achieve the goal: (1) minimizing
the number of tables assigned to the CPU3, and (2) when two

3We choose not to assign TCAM tables to the CPU since ternary match-
ing’s complexity is O(nlog3 2) [1] while LPM and exact match’s complexity
is only O(1) [18]

484 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

plans assign the same number of tables, choose the one with
lower traffic volume.

In particular, Sirius adopts iterative searching and increases
the allowed number of tables to move to the CPU gradually
until a feasible plan is found by the SMT solver.

Iterative searching. The iterative searching reduces an op-
timization problem into a series of satisfiability problems,
which the SMT solver is good at. Atop the existing encoding,
for each table t, Sirius introduces one 0-1 variable it that de-
notes whether the table should be deployed on the CPU, which
must satisfy: (spt = k+1 =⇒ it = 1)∧(spt < k+1 =⇒ it =
0). Then the summation of all such variables I = ∑t it means
the total number of tables assigned to the CPU. Then, Sir-
ius limits the summation I == m starting from m == 0, and
checks whether there exists a partitioning plan Partm. If not,
this means no solution can be found when assigning m ta-
bles to the CPU, and then Sirius increases m by one and calls
the solver again. If Partm exists, Sirius records it as a candi-
date. In case multiple solutions exist, we remove Partm from
the solution set by negating it atop the encoded formula E,
and check whether E & ¬Partm is solvable. We continue the
above process until all candidates under m are found. Among
all the pipelining candidates that assign m tables to the CPU,
Sirius selects the result with minimal CPU usage.

7 Experience

This section shares the deployment experience of Sirius (§7.1),
real cases with Sirius (§7.2), and our lessons (§7.3).

7.1 Deployment Experience
We started to deploy the edge clouds in 2017. As the number
of business traffics and offloaded functions grew, it became
increasingly difficult to arrange network functions in our edge
clouds manually. We, therefore, started building Sirius in
2020. So far, Sirius has been used for one year. The network
functions arranged by Sirius have been used to carry O(10)
types of business traffics, including streaming, games, IoT
devices, and e-payments. With Sirius’s assistance, we have
built O(100) gateways for edge-cloud services, O(100) CDN
nodes, and nearly 100 nodes for security in the past year. The
peak throughput was higher than 10 Tbps across all edge-
cloud instances.

Performance of gateways arranged by Sirius. An important
metric for evaluating the effectiveness of Sirius is throughput,
namely, whether the throughput of network functions arranged
by Sirius meets our expectations. Figure 10 randomly selected
two gateways where we used Sirius to arrange network func-
tions automatically. These two gateways have been deployed
in two edge clouds, respectively, and are mainly used to carry
the streaming service. The throughput requirements for all
the traffics on these two gateways are 500 Gbps. Figure 10
shows the performance of the gateways within one week. We

(a) The performance of gateway in the edge cloud A.

(b) The performance of gateway in the edge cloud B.

Figure 10: One-week performance of two edge clouds (for
streaming service) where the network functions are arranged
by Sirius. In - Traffic going into the edge cloud. Out - Traffic
going out of the edge cloud.
can observe that the peak traffic within one week was 300-
400 Gbps, and the network functions arranged by Sirius can
handle the traffic with very stable performance.
Development workload saved by Sirius. In terms of de-
velopment efficiency, we combined Sirius with Lyra [5] to
directly generate the compilable P4 programs that meet our
specified throughput requirement. For the CPU-side code, our
programmers have internal scripts to automatically generate
C++ code. Before using Sirius, our gateway engineering team
(more than twenty persons) spent more than two weeks ana-
lyzing and discussing a network function arrangement plan.
After the initial network function arrangement version, it fur-
ther took more than two weeks for adaptation and resource
optimization. On the contrary, using Sirius, our programmers
only need to write simple, high-level P4 programs and specify
the throughput requirement. Sirius generates the expected re-
sults in an efficient and automatic way (within a few minutes).
In the past year, Sirius decreased our programmers’ workload
by three orders of magnitude (from weeks to minutes).

7.2 Real Cases Addressed by Sirius
We now describe three representative cases to show the prac-
ticality of Sirius in real world.
Merging and arranging network function chains for O(10)
business traffics. We now present a real network function
arrangement process produced by Sirius in Figure 11. In one
of our edge clouds, there are O(10) network function chains
(each for one sub-business traffic) needed to be offloaded onto
the single programmable gateway in this edge cloud. These
business traffics contain our mainstream services, including
games and streaming. These O(10) network function chains
are merged into a network function graph shown in Figure 11a.
This graph contained 127 processing loops. Figure 11a only
colors three of these loops.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 485

(a) Merging O(10) network function chains results in a network
function graph containing 127 processing loops. We only color
three of the processing loops in this figure.

(b) A pipelining plan output by Sirius. There are only two recircu-
lations in this result.

(c) The pipeline after the partitioning (this figure shows the part
offloaded onto the programmable ASIC).

Figure 11: A real network function arrangement in our pro-
duction. Over 10 network function chains types of traffics are
arranged into a single gateway. Each back node in the above
figures represents a snippet of P4 code containing around ten
tables. Each→ denotes the execution sequence.

Figure 11b shows a pipelining result output by Sirius. This
pipelining result only contains two recirculations in three sub-
chains. Our specified throughput for all business traffics is
0.5 Tbps, so this candidate meets the specifications. More im-
portantly, our programmers spent one week creating a traffic
identification table for forwarding different business traffics to
the corresponding network functions. This manually-written
table occupied 15.7% of SRAM memory and 38.1% of TCAM
memory of the entire data plane program. With Sirius, we got
this traffic identification table within a few minutes, and the
table only used 11.5% of SRAM memory and 42% of TCAM
memory of the manually-written one.

Figure 11c shows a partitioning result generated by Sirius.
Some of the programs in Figure 11b have been moved to the
CPU. Each node in the graph shown in Figure 11 represents a
snippet of code—containing around 10 match-action tables
if it is implemented in P4, and each arrow denotes the execu-
tion sequence. The entire network function arrangement
process, with Sirius, was finished within 10 minutes.

Safely and easily network function updating. Another ben-
efit Sirius offers is to ease our network function updating
across edge clouds. Different edge clouds serve different busi-
nesses; thus, the data plane programs running on different
edge clouds are diverse. However, before Sirius was deployed,
our programmers used to update network functions across

table snat_session {
key = {
#ifdef IPv4

hdr.ipv4.src_ip: lpm;
#endif
#ifdef IPv6

hdr.ipv6.src_ip: lpm;
#endif
...
}
size = SNAT_SESSION_NUM;

actions = {
#ifdef IPv4

snat_ipv4_rewrite;
#endif
#ifdef IPv6

snat_ipv6_rewrite;
#ifdef VXLAN

snat_vxlan_rewrite;
#endif
#endif

}}

Figure 12: Example code snippet using macro extensively.

edge clouds via macros in P4. On different gateways, our
programmers turned on different macros, and the compiler
can remove the rest code. The macro solution is, nevertheless,
hard to maintain and error-prone, because the P4 programs
end up with O(10) different macros and O(100) copies of
them spread across different files. Figure 12 shows a real ta-
ble definition in our edge cloud, which adds many macros to
change its key and actions based on the actual needs. We can
observe that multiple macros are chained and nested together.
A failure event that occurred two years ago in one of our
edge clouds was caused by incorrectly updating macros, since
our programmers made a mistake when they updated nested
macros. Sirius solves this problem. For different gateways, the
programmers only need to specify network function chains
in P4 and provide the correct traffic separation DB, freeing
them from the “tangled” macros.

Real partitioning case. Without Sirius, even though our
programmers generate a pipelining plan with the satisfied
number of recirculations, it is very hard to squeeze this sin-
gle pipeline into the programmable ASIC due to the limited
hardware resources. Thus, our programmers used to reduce
the size of some tables in some network functions that they
thought would experience low volume for a while to ensure
the tailored pipeline complies with the hardware constraints.
After a while, when the traffic volume went back up, they
moved them back and shrank some tables in another net-
work function. The above situations occurred on almost ev-
ery gateway before Sirius was built. In a recent case, our
programmers spent two weeks squeezing a merged graph
(with Source NAT, destination NAT, and load balancer net-
work functions) into the programmable ASIC. They tried to
reduce the size of the routing tables but still failed to com-
pile the entire graph. Sirius helped them to automatically
generate a partitioning result that guided them to move the
source_NAT_session_table to the CPU, efficiently solv-
ing this problem. Moving source_NAT_session_table to
the CPU does not affect our throughput, since for that edge in-
stance, the source NAT traffic volume is low while the session
table sits in a critical position in the network function pipeline.
Assigning it to the CPU not only frees up a lot of memory
resources but also significantly shortens the length of the table
dependency chain [13], which creates more headroom and
makes the program easier to compile.

486 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 13: Various metrics under different numbers of business traffics. (a) Number of tables in the merged network function
graph. (b) Memory cost and execution time of constructed traffic identification tables. (c) Number of traffic identification tables.
(d) Number of loops in the merged graph. (e) Time to encode and solve the SMT formula.

7.3 Lessons and Discussions

We now share our lessons in using Sirius in our edge clouds,
and also discuss the limitations of Sirius and open questions.

Can any of the pipelining candidates directly comply
with the hardware constraints? Our one-year experience
shows that none of the pipelining plan candidates can directly
comply with the programmable ASIC’s constraints. In other
words, the partitioning between the programmable ASIC and
the CPU is a must for the network function arrangement
in our edge clouds. This situation results from (1) the lim-
ited hardware resources in programmable ASICs, and (2) our
large-scale production programs.

Can a pipelining plan with more processing loops produce
a better partitioning result? This may happen. We selected
pipelining plan candidates that meet the specified throughput,
and then partitioned these candidates. In other words, the
pipelining plans that violate the specification are ineligible to
join the partitioning phase, because they cannot be better than
the pipelining candidates meeting the specification, no matter
how to partition them. However, for the pipelining candidates,
a candidate with more processing loops might be partitioned
to a result with less CPU usage than another candidate with
fewer processing loops.

Duplicating the overlapping network functions to remove
processing loops is impractical. We now use the recircula-
tion to remove processing loops. Another option is to dupli-
cate the overlapping network functions to remove the loops.
While such a solution, in principle, works and does not sacri-
fice the throughput, it is impractical due to the limited hard-
ware resources. Since a network function needs about 5-10
stages, additional 5-10 stages for one processing loop is too
expensive to the precious hardware resources.

Optimization target. Sirius currently minimizes the total
number of tables assigned to the CPU, which is not always
the best optimization target. For example, in some cases, our
programmers want to pin some tables or network function
chains onto the programmable ASIC to achieve consistency or
low processing latency. Sirius can support such cases by only
searching through candidates that satisfy the requirement.

Gateways in edge clouds v.s. Gateways in data center
networks. We have equipped gateways with programmable

ASICs in both edge clouds and data center networks. Com-
pared with the data center case, deploying programmable data
planes in the edge clouds is much more challenging.

First, each gateway in a data center network needs to hold
only one network function, unlike the edge cloud, where a
gateway needs to hold a large number of network functions.
This is because there are O(100) gateways in a data center
network in our global network, and multiple network func-
tions can be horizontally distributed across these gateways
without squeezing all of them into a single gateway [16]. On
the contrary, each edge cloud only contains two gateways
(for redundancy) since edge clouds are typically deployed
in the rented cheap, small-size machine rooms close to end
users. Each gateway in our edge clouds needs to hold O(100)
network functions, and squeezing so many network functions
into a programmable ASIC is very hard due to limited hard-
ware resources. For the same reason, it is impossible to deploy
multiple groups of gateways in the edge clouds.

Second, network functions in the edge clouds are logically
more complex. In the edge clouds, the gateways process pack-
ets from over 10 types of business traffics. On the contrary,
gateways in the data center just forward packets to the corre-
sponding switches. We typically developed the P4 program
for data center network gateways by just tailoring switch.p4.

Partitioning across switching ASIC, smartNIC, and CPU.
Offloading network functions to smartNIC, in principle, can
alleviate programmable ASIC hardware resources issue while
maintaining the throughput, It can replace CPU and reduce
the overall cost of the gateway. We are developing the next-
generation gateway that replaces CPU with SmartNIC. We are
also working on building a partitioning approach to distribute
the code across ASIC, smartNIC, and CPU in order to balance
the trade-off between performance and cost. While Flight-
Plan [23] has presented a good effort toward this direction,
deploying such a system in production remains challenging.

8 Evaluation

Our evaluation mainly focuses on presenting the scalability
of each component in Sirius. We chose 9 different business
traffics, added them one by one, and recorded the time of
execution and other metrics we were interested in. All experi-
ments were performed on a server with a 2.5GHz CPU and

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 487

768GiB RAM.
Figure 13(a) shows the program scale. There are two obser-

vations. Firstly, different business traffics had many tables in
common. Because the number of tables only doubled when
we added 8 more business traffics. Secondly, the difference
between different business traffics is similar, as the number
of tables grows gradually as the traffic number increases.

Traffic identification table construction. We recorded the
SRAM and TCAM usage under different numbers of network
functions, and the time Sirius took to solve the problem. Fig-
ure 13(b) shows the result. Both types of memory increased
as the number of traffics increased, which showed the over-
head of distributing flows to different network functions. Also,
the time it took to compute the minimal traffic identification
table increased dramatically as the number increased. This
is because Sirius had to try more combinations to find the
optimal result. When there were 9 business traffics, Sirius
took 371 seconds to construct the distribution tables. We also
recorded the number of tables constructed in Figure 13(c). We
observed that even though the memory increased, the number
of tables did not always increase. This is because Sirius chose
multiple rules that shared the same match field so that they
could share the same table.

Pipelining. In the pipelining process, the algorithm Sirius
used to solve the set covering problem is efficient enough to
finish all experiments within a second. So we mainly present
the number of processing loops in the network function graph
as more business traffics are added. Figure 13(d) shows the
result. The number of processing loops increases quickly as
the business traffics become more complicated, which also
demonstrates the programmers’ workload before Sirius is
deployed. Programmers had to plan carefully to make sure
each business traffic visit functions in its desired order.

We also noticed that when adding the 6th and 7th business
traffic, the number of loops stayed the same. This is because
those business traffics are similar, and they shared the same
code snippet that was in the loop.

Partitioning. In the partitioning phase, we mainly evaluated
the time for Sirius to encode the SMT formula and for the
SMT solver to solve it. The result is shown in Figure 13(e).
Both the encoding and solving time increase as the number
of business traffics increases. We can see that the encoding
time grows faster than linear because the encoding is built
atop the network function pipeline, whose complexity grows
faster than linear as the business traffic is added. Solving
the formula is faster than encoding it. This is because Sirius
leverages the constraint encoding optimizations proposed by
Cetus [13]. Overall, the partitioning finishes within minutes.

9 Related Work

Partitioning hardware code to CPU. Closed to Sirius’s par-
titioning goal, Gallium [27] automatically translates a part

of software-version middlebox programs into a P4 program
running on a programmable ASIC. Gallium does not support
recirculation modeling and mainly targets a specific switch-
CPU architecture. In addition, Sirius’s partitioning goal is
also different from Gallium’s. FlightPlan [23] deployed P4
programs across the switch, FPGA, and CPU to benefit band-
width and heterogeneity. FlightPlan relies on programmers to
explicitly split the program and profile each code block’s per-
formance on each platform. We cannot apply FlightPlan, since
the above requirements do not hold in our scenario. Some of
the prior work targeted partitioning between the SmartNIC
and the CPU, such as iPipe [14], Clara [15], and Floem [17].
These efforts are quite different from Sirius’s focused goal
and assumptions. Dejavu [25] leverages recirculation to com-
pose multiple network function chains to a single ASIC but it
cannot handle the three challenges Sirius solves.

Compiler for programmable data planes. The state-of-the-
art compiler systems for P4 [3,5,9,10,19,22] aim to optimize
resource usage in programmable ASICs or simplify program-
mers’ tasks on expressing their coding intent. For example,
P4All [9,10] optimizes resource usage by leveraging reusable
data structures. P4visor [29, 30] optimizes resources by merg-
ing redundant code fragments (e.g., header parser and tables).
µP4 [22] and P4 Weaver [3] propose P4 modular program-
ming to write P4 code from scratch or in an incremental way.

Extend switch memory with host memory. TEA [12] ad-
dresses the memory constraint issue on the programmable
ASIC by extending ASIC memory with the DRAM on server
machines. Even though memory occupation is one of our
major concerns, as shown in Figure 2 and Cetus [13], our
long network function chain is another major concern. TEA
reduces memory footprint by introducing more computation
logic in the programmable ASIC. This worsen our network
function chain dependency issue and does not solve our prob-
lem.

10 Conclusion

This paper has shared our design of Sirius, and our experience
with Sirius in our edge clouds after one year of use. Sirius is
the first system capable of automating the network function
arrangement problem. Compared with manual solutions to
the network function arrangement problem, Sirius effectively
decreased our workload for deploying and updating our edge
clouds by three orders of magnitude from weeks to minutes.

This work does not raise any ethical issues.

Acknowledgement

We thank our shepherd, Ming Liu, and NSDI’24 reviewers
for their insightful comments. Jiamin Cao was supported by
Alibaba Group through Alibaba Research Intern Program.
Ennan Zhai is the corresponding author.

488 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] ASAI, H. Palmtrie: A ternary key matching algorithm
for ip packet filtering rules. In Proceedings of the
16th International Conference on Emerging Networking
EXperiments and Technologies (New York, NY, USA,
2020), CoNEXT ’20, Association for Computing Ma-
chinery, p. 323–335.

[2] EADES, P., LIN, X., AND SMYTH, W. F. A fast and
effective heuristic for the feedback arc set problem. In-
formation Processing Letters 47, 6 (1993), 319–323.

[3] FATTAHOLMANAN, A., BALDI, M., CARZANIGA, A.,
AND SOULÉ, R. P4 weaver: Supporting modular and
incremental programming in P4. In Symposium on SDN
Research (SOSR) (2021).

[4] FATTAHOLMANAN, A., BALDI, M., CARZANIGA, A.,
AND SOULÉ, R. P4 weaver: Supporting modular and
incremental programming in p4. In Proceedings of the
ACM SIGCOMM Symposium on SDN Research (SOSR)
(2021), pp. 54–65.

[5] GAO, J., ZHAI, E., LIU, H. H., MIAO, R., ZHOU, Y.,
TIAN, B., SUN, C., CAI, D., ZHANG, M., AND YU,
M. Lyra: A cross-platform language and compiler for
data plane programming on heterogeneous ASICs. In
ACM SIGCOMM (SIGCOMM) (2020).

[6] GAO, X., KIM, T., VARMA, A. K., SIVARAMAN, A.,
AND NARAYANA, S. Autogenerating fast packet-
processing code using program synthesis. In 18th ACM
Workshop on Hot Topics in Networks (HotNets) (2019).

[7] GAO, X., KIM, T., WONG, M. D., RAGHUNATHAN,
D., VARMA, A. K., KANNAN, P. G., SIVARAMAN, A.,
NARAYANA, S., AND GUPTA, A. Switch code gen-
eration using program synthesis. In ACM SIGCOMM
(SIGCOMM) (2020).

[8] HANCOCK, D., AND VAN DER MERWE, J. HyPer4:
Using P4 to Virtualize the Programmable Data Plane .
In International Conference on emerging Networking
EXperiments and Technologies (CoNEXT) (2016).

[9] HOGAN, M., FEIBISH, S. L., ARASHLOO, M. T., REX-
FORD, J., AND WALKER, D. Modular switch program-
ming under resource constraints. In 19th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI) (2022).

[10] HOGAN, M., FEIBISH, S. L., ARASHLOO, M. T., REX-
FORD, J., WALKER, D., AND HARRISON, R. Elastic
switch programming with P4All. In 19th ACM Work-
shop on Hot Topics in Networks (HotNets) (2020).

[11] IYER, R., PEDROSA, L., ZAOSTROVNYKH, A.,
PIRELLI, S., ARGYRAKI, K., AND CANDEA, G.
Performance contracts for software network functions.
In Proceedings of the 16th USENIX Conference on
Networked Systems Design and Implementation (USA,
2019), NSDI’19, USENIX Association, p. 517–530.

[12] KIM, D., LIU, Z., ZHU, Y., KIM, C., LEE, J., SEKAR,
V., AND SESHAN, S. TEA: enabling state-intensive
network functions on programmable switches. In ACM
SIGCOMM (SIGCOMM) (2020).

[13] LI, Y., GAO, J., ZHAI, E., LIU, M., LIU, K., AND LIU,
H. H. Cetus: Releasing P4 programmers from the chore
of trial and error compiling. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI) (2022).

[14] LIU, M., CUI, T., SCHUH, H., KRISHNAMURTHY, A.,
PETER, S., AND GUPTA, K. Offloading distributed
applications onto smartNICs using iPipe. In ACM SIG-
COMM (SIGCOMM). 2019.

[15] NARAIN, S., LEVIN, G., MALIK, S., AND KAUL, V.
Declarative infrastructure configuration synthesis and
debugging. J. Network Syst. Manage. 16, 3 (2008),
235–258.

[16] PAN, T., YU, N., JIA, C., PI, J., XU, L., QIAO, Y.,
LI, Z., LIU, K., LU, J., LU, J., ET AL. Sailfish: Ac-
celerating cloud-scale multi-tenant multi-service gate-
ways with programmable switches. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference (2021),
pp. 194–206.

[17] PHOTHILIMTHANA, P. M., LIU, M., KAUFMANN, A.,
PETER, S., BODIK, R., AND ANDERSON, T. Floem:
A programming system for NIC-Accelerated network
applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (2018).

[18] SCHOLZ, D., STUBBE, H., GALLENMÜLLER, S., AND
CARLE, G. Key properties of programmable data plane
targets. In 2020 32nd International Teletraffic Congress
(ITC 32) (2020), pp. 114–122.

[19] SIVARAMAN, A., CHEUNG, A., BUDIU, M., KIM, C.,
ALIZADEH, M., BALAKRISHNAN, H., VARGHESE, G.,
MCKEOWN, N., AND LICKING, S. Packet transac-
tions: High-level programming for line-rate switches. In
Proceedings of the 2016 ACM SIGCOMM Conference
(2016), pp. 15–28.

[20] SONCHACK, J., LOEHR, D., REXFORD, J., AND
WALKER, D. Lucid: A language for control in the
data plane. In ACM SIGCOMM (SIGCOMM) (2021).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 489

[21] SONI, H., RIFAI, M., KUMAR, P., DOENGES, R., AND
FOSTER, N. Composing dataplane programs with µp4.
In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols
for computer communication (2020), pp. 329–343.

[22] SONI, H., RIFAI, M., KUMAR, P., DOENGES, R., AND
FOSTER, N. Composing dataplane programs with µp4.
In ACM SIGCOMM (SIGCOMM) (2020).

[23] SULTANA, N., SONCHACK, J., GIESEN, H., PEDISICH,
I., HAN, Z., SHYAMKUMAR, N., BURAD, S., DEHON,
A., AND LOO, B. T. Flightplan: Dataplane disaggrega-
tion and placement for P4 programs. In 18th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI) (2021).

[24] WINTERMEYER, P., APOSTOLAKI, M., DIETMÜLLER,
A., AND VANBEVER, L. P2GO: P4 profile-guided opti-
mizations. In The 19th ACM Workshop on Hot Topics
in Networks (HotNets) (2020).

[25] WU, D., CHEN, A., NG, T. S. E., WANG, G., AND
WANG, H. Accelerated service chaining on a single
switch ASIC. In 18th ACM Workshop on Hot Topics in
Networks (HotNets) (2019).

[26] ZHANG, C., BI, J., ZHOU, Y., DOGAR, A. B., AND
WU, J. Hyperv: A high performance hypervisor for
virtualization of the programmable data plane. In 2017
26th International Conference on Computer Communi-
cation and Networks (ICCCN) (2017), pp. 1–9.

[27] ZHANG, K., ZHUO, D., AND KRISHNAMURTHY, A.
Gallium: Automated software middlebox offloading to
programmable switches. In ACM SIGCOMM (SIG-
COMM) (2020).

[28] ZHENG, P., BENSON, T., AND HU, C. P4visor:
Lightweight virtualization and composition primitives
for building and testing modular programs. In Proceed-
ings of the 14th International Conference on Emerg-
ing Networking EXperiments and Technologies (2018),
pp. 98–111.

[29] ZHENG, P., BENSON, T., AND HU, C. P4visor:
Lightweight virtualization and composition primitives
for building and testing modular programs. In 14th
International Conference on emerging Networking EX-
periments and Technologies (CoNEXT) (2018).

[30] ZHENG, P., BENSON, T. A., AND HU, C. Building and
testing modular programs for programmable data planes.
IEEE J. Sel. Areas Commun. 38, 7 (2020), 1432–1447.

490 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Empower Programmable Pipeline for Advanced Stateful Packet Processing

Yong Feng1†, Zhikang Chen1†, Haoyu Song2, Yinchao Zhang1, Hanyi Zhou1,
Ruoyu Sun1, Wenkuo Dong1, Peng Lu1, Shuxin Liu1, Chuwen Zhang1, Yang Xu3 and Bin Liu1

1Tsinghua University, 2Futurewei Technologies, 3Fudan University

Abstract
Programmable pipeline offers flexible and high-throughput
packet processing capability, but only to some extent. When
more advanced dataplane functions beyond basic packet pro-
cessing and forwarding are desired, the pipeline becomes
handicapped. The fundamental reason is that most stateful
operations require backward cross-stage data passing and
pipeline stalling for state update and consistency, which are
anomalous to a standard pipeline. To solve the problem, we
augment the pipeline with a low-cost, yet fast side ring to
facilitate the backward data passing. We further apply the
speculative execution technique to avoid pipeline stalling. The
resulting architecture, RAPID, supports native and generic
stateful function programming using the enhanced P4 lan-
guage. We build an FPGA-based prototype to evaluate the
system, and a software emulator to assess the cost and perfor-
mance of an ASIC implementation. We realize several stateful
applications enabled by RAPID to show how it extends a pro-
grammable dataplane’s potential to a new level.

1 Introduction

Dataplane devices equipped with high-performance, pro-
grammable switch chips are changing the landscape of net-
works in a profound way. More and more potentials, from re-
alizing customized forwarding and middlebox functions to en-
abling in-network computing applications, are unleashed. The
high-throughput demand makes the hardware Match-Action
Table (MAT) pipeline [23] the chief choice of the switch chip
architecture. For example, Intel Tofino [7] and Broadcom
Trident [2] are both pipeline-based. Pipeline is also used in
high-performance NIC (e.g., PANIC [38], nanoPU [33], and
RingLeader [37]) for packet processing. Although a pipeline
has unmatched throughput, it assumes a forward processing
flow, impeding the efficient support for stateful functions es-
sential to many valuable applications.

†Co-first authors.

A stateful dataplane function can be generalized as an Ex-
tended Finite State Machine (EFSM) [42]. The state of a
packet is read from a flow state table; the corresponding ac-
tions are executed based on the current state and input; the
action may result in a state update, which is written back to
the state table. We discuss several real use cases in Sec. 2.1.

Trivial stateful functions (e.g., counter) can be realized as
atomic operations using registers in a single pipeline stage.
However, Most stateful functions need state writeback beyond
the capability of a pipeline. For such functions, determining
the next state often requires multiple actions and table ac-
cesses, causing delayed cross-stage state writeback. For cer-
tain applications [35,40], the size of state tables size surpasses
the memory capacity of a single stage, compelling cross-stage
table writebacks even with straightforward logic. To preserve
state consistency, potentially impacted packets are blocked
until writeback completion. The only recourse for data write-
back is recirculation (i.e., looping the data back to the head of
the pipeline). Both these inefficiencies can reduce the pipeline
throughput to an unacceptable level.

Pure pipelines therefore falter in supporting stateful packet
processing. There is a clear call for a new chip architecture
that prevents pipeline stalls while facilitating fast, unobtrusive
packet and data backtracking. One tentative method decou-
ples the stage processors by placing all tables in a separate
memory pool, allowing stages to interface with the same table,
obviating writeback paths. However, pipeline stalling persists,
accompanied by notable interconnection expenses and table
access scheduling intricacies [26].

In this paper, we target a cost-effective, high-performance
solution for arbitrary stateful functions via the MAT pipeline.
We augment the pipeline with a simple side ring and make
each pipeline stage interface with it. On the ring, data flows in
the reverse direction of the pipeline, providing a fast backward
communication path. The new architecture, Ring-Augmented
PIpeline Dataplane (RAPID), is illustrated in Fig. 1. RAPID
introduces a new “dataplane writable table” abstraction to en-
hance the programming language such as P4 [22] for flexible
and easy stateful function composition and implementation.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 491

Match Action

Read Write

Table

Proc 1 Match Action

Read Write

Table

Proc 2

Match Action

Read Write

Table

Proc n

«

«

local read remote write ring path normal pipeline

Figure 1: RAPID high-level architecture.

The ring serves two main purposes. First, it provides a fast
path for new state writebacks to an earlier pipeline stage. Sec-
ond, it is used to handle the failures of speculative execution.
The speculative execution allows packets of the same flow to
enter the pipeline without being blocked. But once the state is
changed, the packets that read the stale state are resubmitted
to the first stage of the stateful function through the ring for
reprocessing, avoiding expensive packet recirculation.

This paper presents the design, implementation and evalua-
tion of RAPID. Our key contributions are as follows:
• Cross-stage table writeback: The architecture support and
language abstraction enable programming stateful functions
on a pipeline-based dataplane;
• Speculative execution: RAPID uses it and ring-based failure
resubmission to ensure state consistency and good pipeline
throughput.
• Multi-level consistency support: RAPID supports different
consistency levels based on application needs.

We prototype RAPID on FPGA and evaluate its cost and
performance. Estimations for area and power are made for
a 45nm ASIC setup [10]. We enhance the P4 language for
stateful functions, developing its compiler. A software ASIC
emulator is used to emulate RAPID’s behavior for parameter
tuning and performance insights. Several use cases demon-
strate the capability of RAPID.

The remaining of the paper is organized as follows. Sec.2
outlines stateful processing needs and our architectural ratio-
nale. Sec.3 reviews prior work. The architecture of RAPID is
elaborated in Sec.4. Sec.5 presents the enhanced P4 language
and compiler issues. Implementation and evaluations appear
in Sec.6 and Sec.7. We discuss design choices in Sec.8 and
conclude in Sec.9.

2 Background

2.1 Motivating Stateful Functions
Stateful functions are ubiquitous in network applications.
The generic support for stateful functions enriches the pro-
grammable network dataplane devices, as embodied in the
following motivating use cases.

• Stateful Load Balancer. Load balancers (LBs) are piv-
otal in cloud networks, where stateful LBs preponderate over
stateless ones due to their flexibility [19,34,40,62]. LBs need
to ensure connection affinity. If a packet matches an existing
flow in the state table, it adopts the old connection; otherwise,
it triggers a strategy to set up the connection with a new server,
and subsequently updates the state table. The strategy may en-
tail intricate logic. Typically, the state table is updated through
a controller, inducing queue buildup and lower throughput.
Recent efforts [19, 40] champion dataplane-centric solutions,
but when applied on a pipeline architecture, these necessitate
cross-stage data writebacks.
• DDoS Detection and Mitigation. DDoS attacks (e.g.,
TCP SYN floods) persist as major security concerns. Con-
ventional server or middlebox solutions are costly and con-
strained in throughput [63]. Thus, in-network dataplane so-
lutions start to gain traction [31, 36, 39, 59, 63]. However,
prevalent switch-driven DDoS defenses [1, 12, 27, 63] often
lean on controllers or middleboxes for detection. We advo-
cate a pure dataplane solution for better performance and
efficiency. Packets undergo initial categorization using list
tables (denylist, allowlist, graylist) and subsequent analysis
by a detection module. This module, possibly a sketch or
header-check series, re-categorizes suspicious packets from
the allowlist to graylist. Such a method necessitates cross-
stage writebacks in a pipeline to update tables.
• Traffic Shaping and Policing. Traffic shaping and polic-
ing are essential in enforcing Quality of Service (QoS) poli-
cies and ensuring optimal bandwidth allocation. During the
process, packets are first classified by user-defined header
fields, and then evaluated by rate control or scheduling al-
gorithms based on the current queue or link status. Next,
packets are queued or dropped, and the queue status is up-
dated (i.e., a writeback to the evaluation module). In this
case, the writeback would be from the egress pipeline to
the ingress pipeline. Since the seminal work of PIFO [51],
many efforts have been made to make packet scheduling pro-
grammable [18, 45–47, 61]. However, most of them cannot
avoid data writebacks. On today’s pipeline-based chips, these
schemes have to use packet recirculation or approximation
which influences the scheduling performance or accuracy.
• Stateful Firewall with Connection Tracking. A stateful
firewall tracks active connections, discerning malicious traf-
fic via flow context and a finite state machine. It consults a
table to determine if a packet belongs to a current connection,
updating connection details as necessary. For new packets,
predefined rules dictate connection permission. Approved
connections prompt state table updates with details like flow
ID. Given complex state transitions and inter-module mes-
saging, a direct dataplane pipeline cannot be realized without
cross-stage data writebacks.
• Heavy Hitter Detection. Top-K heavy hitters aid in traffic
routing, engineering, and real-time monitoring [20,32,52,56].
For in-dataplane detection, the sizable hash table is spread

492 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

across multiple pipeline stages. Packets traverse each stage
to find an appropriate location, and then the flow data is writ-
ten back to a chosen stage. Present pipeline devices lean
on controllers or packet recirculation for these tasks. A data
writeback channel would be both practical and efficient.

2.2 Architecture Considerations
We can dissect a stateful function as state lookup, state cal-
culation, and state update processes as shown in Fig. 2. State
consistency issues may arise when a packet is updating a state
from s0 to s while another packet of the same flow reads the
stale state s0. Two major chip architectures (pipeline-based
and RTC-based) use different strategies to ensure consistency
but so far none are ideal.

state lookup state calculation state update

cross-stage table writeback

Figure 2: Stateful function abstraction.

• Pipeline-based Architecture. For a pipeline, there is no
direct dataplane path for state updates if the function occupies
more than one stage. Single-stage stateful functions [42] or
atomic stateful functions [51] limit the scope of applications.
Due to the unpredictable complexity of stateful functions, it is
implausible to try to design a single stage processor to support
an arbitrary stateful function which could make the resource
intractable.

The existing architectures (e.g., FlowBlaze [42]) assume
that all packets entering a stateful function may change the
state, and to guarantee state consistency (i.e., avoid reading
stale states), they block all the subsequent packets during the
stateful processing of a packet, which creates a performance
bottleneck. However, stateful functions often target a flow
subset; distinct flows may access separate states, and packets
within the same flow might not modify the state [41, 42, 63].
Therefore, it is rare for back-to-back packets to concurrently
read and update the same state. Speculative execution tech-
niques can prevent pipeline stalls. Once a speculative failure
happens, reprocessing affected packets is essential for state
consistency, manifesting another backward data passing re-
quirement. Packet recirculation, retracing the whole pipeline,
or controller detours involving a slower path are suboptimal.
A dataplane path for fast and direct data writeback is desired.
• RTC Architecture. The Run-to-Completion (RTC) mode
on multi-core, multi-thread processors (e.g., Trio [60] and
dRMT [26]) supports stateful functions, but requires complex
access scheduling and table locking to ensure state consis-
tency if shared memory is used. To prevent state inconsistency
during state calculation, the conflict-avoidance algorithm in
dRMT needs to schedule halts for the cores with data de-
pendency. Trio uses read-modify-write engines to do stateful
operations. However, a long latency in state access (from read

to write) results in extended suspension for other threads. Al-
ternatively, each thread can maintain its own copy of the state
table, but this demands table synchronization and consumes
much more memory.
• Consistency Levels. Depending on applications, state con-
sistency can be either strict or loose. For instance, a stateful
firewall may tolerate a transitory state inconsistency whereby
some packets employ outdated states [30]; on the contrary,
NAT and MAC learning demand strict consistency to guaran-
tee accurate packet processing and forwarding [62]. Enforcing
strict consistency requires more resource and may affect the
throughput. A good design should be able to adapt to the
application requirements with a sound tradeoff.
• Ring Topology. When unidirectional data passing is the
predominant communication pattern, a ring is the simplest
and most efficient interconnection topology. On a unidirec-
tional ring, there exists a unique path for a node to send mes-
sages to another node. Although a crossbar or other intercon-
nection networks can provide more flexible communication
paths [26, 28], they are an overkill to our problem and incur
high implementation cost.

2.3 Traffic Trace Analysis
Before delving into the new architecture details, under var-
ious traffic traces and the assumption of different stateful
processing latency cycles, we test the pipeline’s throughput
and latency using the conventional blocking scheme to expose
the problem and motivate our work.

We collect 10 traffic traces (Table 8 in Appendix A) from
campus, data center, and IoT networks and analyze the flows
based on different specifications (i.e., five-tuple and sIP-dIP
pair). Ignoring the timestamp, we feed the packets from the
traces back-to-back into a 1GHz⇥64Byte pipeline. We define
the Conflict Ratio (CR) as the ratio of the packets from the
same flow which are spaced less than n clock cycles by pack-
ets of other flows, suggesting a potential consistency violation
provided the state update latency of a stateful function is n. Ta-
ble 8 in Appendix A shows the CR results for n = 16. As the
value of n increases, maintaining state consistency through
packet blocking and pipeline stalling reduces the pipeline
throughput progressively.

Flow queues in front of a stateful function can mitigate the
Head-of-line blocking (HOL) issue, enabling more flows to
process packets in the stateful function pipeline, but may
cause inter-flow packet reordering. Consider four queues,
each holding 32 packets. The packets are scheduled in a
round-robin manner as long as there is no packets of the
same queue in the stateful function. We evaluate packet pro-
cessing throughput and latency multiplication ratio over the
stateless processing with five packet traces from Table 8 under
varied state update latency cycles, shown in Fig. 3. With fewer
cycles (e.g., 20-30 cycles), the queues buffer incoming pack-
ets effectively. As cycles rise, queues become overwhelmed,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 493

leading to increased packet drops, reduced throughput, and
heightened latency that plateaus.

(a) Throughput. (b) Latency ratio.

Figure 3: Packet throughput and latency under different state-
ful processing cycles (i.e., state update latency).

Our analysis, as well as the results from others [24], con-
firms that the state consistency does require pipeline to stall
for real traffic. A coarser flow specification makes the prob-
lem even more severe. While more flow queues can reduce
the HOL blocking probability, the system cost increases. All
these point to the conclusion that the speculative execution is
not only beneficial, but also imperative.

3 Related Work

There have been a long track of works concerning the state-
ful function support in programmable dataplane. The works
range from new abstractions, new chip architectures, and so-
lutions based on existing chips.
• Abstraction. OpenState [21] proposes a dataplane abstrac-
tion that uses eXtensible Finite State Machine (XFSM) to do
stateful flow processing in switches. It relies on the Open-
Flow protocol and has no real hardware support. Fast [41]
uses multiple tables to simplify the flow-level state transition.
The state transitions need data writeback to previous tables
which can only be implemented in software.
• Architecture. Banzai [51] is the first hardware architec-
ture for stateful functions. However, the stateful functions
supported are limited to those that can be compiled as an
atomic operation in a single pipeline stage. FlowBlaze [42]
extends the OpenState abstraction to EFSM and modifies the
stage processor of the conventional Reconfigurable Match
Tables (RMT) pipeline to support stateful functions that can
be implemented in a single stage. Due to the state process-
ing latency, it needs to stall the pipeline for state consistency.
SDPA [54] and SDP-CDP [29] use a co-processor to handle
packets that need stateful processing and keep the pipeline
for stateless processing only. Since a packet can only take
one path, the scheme degrades into a software-based solution
if most packets require stateful processing. dRMT [26] and
Trio [60] are both multi-core-based architectures working in
RTC mode. When supporting stateful functions, due to the
state writeback and synchronization, their performance deteri-

orates. Banzai-based MP5 [49] further allows communication
between multiple pipelines via crossbars, but it does not solve
the cross-stage state writeback problem. Thanos [48] supports
multidimensional packet filtering using a series of condition
assertions in the pipeline, but it does not involve flow tables
and thus cannot support functions that need state tables.
• Solution. The flexible match-action tables for the DPDK-
based t4p4s target [50] are dataplane writable, so software-
based stateful functions can be supported. Lucid [53] is a
high-level programming language supporting event-driven
dataplane packet processing. It relies on packet recirculation
for stateful functions. Deterministic Finite Automaton (DFA)
can be used to reduce certain complex stateful functions to
basic atomic operations supported by the Banzai architec-
ture [25]. However, its limited capability cannot support most
of the use cases we discussed. RIBOSOME [44] leverages ex-
ternal CPUs or FPGAs to perform stateful packet processing.
The programmable chip sends the packet headers and pay-
loads to different external devices for processing, and then the
processed packets are sent back to the pipeline for packet re-
assembly and forwarding. The processing latency and system
cost are both high.

4 RAPID Architecture

4.1 Overview
While the concept of a side ring is simple and convenient,
many details need to be considered to make it work. A stateful
function involves a sequence of stage processors in a pipeline.
The first processor (PR) maintains the flow state table. It re-
trieves the states of incoming packets, and updates the states
of flows as instructed by the last processor (PW) after the inter-
mediate processors finish the stateful processing and calculate
the new states. PW communicates with PR through the ring.
The “packet” processed in a pipeline is actually just a Packet
Header Vector (PHV) which contains the parsed headers and
other metadata pertaining to the packet. As shown in Fig. 4,
a scheduler module can be configured as a ¨ Read Sched-
uler (rd_sched) in PR or a ≠ Write Scheduler (wr_sched) in
PW . Each stage processor is attached with a Æ Ring Node
Scheduler, which is responsible for resolving access conflicts
between different types of data on the ring. Traversing a ring
node requires only one cycle in most cases, much faster than
the data flow on the pipeline.

We elaborate RAPID by answering the following critical
questions:
• How to prevent packets who read stale states from being

wrongly processed and forwarded? (Sec. 4.2)
• How to write back the updated states? (Sec. 4.3)
• How to ensure state consistency and in-order processing

under speculative execution? (Sec. 4.4)
• How to support different levels of consistency? (Sec. 4.5)

494 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Match
Action

newly arriving
packets

Resubmitted
Packets

Built-in
Hash

Module
Resubmitted
packet Buffer

(RB)

Control Signal
& Updated States

Match
Action

ś Write Scheduler

Ring Node Scheduler Ring Node SchedulerĊ

Control Signal
& Updated States

& Backward Packets

Ŝ

Proc m Proc n

dTable

Three Queues

PHV buffer

Ċ

Newly Arriving Packets

Resubmitted Packets

Flow Identification

Packet Header
Vector (PHV)

Control Signal &
Updated States

dTable

Block
Queue

Suspend
Queue

Schedule
Queue

PHV Buffer (PB)

Ś Read Scheduler

Figure 4: RAPID’s architecture.

4.2 Stale State Safeguard
Before a new state is potentially calculated and written back,
the state may be in a stale condition. Reading a stale state
unattended could break the application. To prevent this, a
small Content Addressable Memory (CAM) table, dTable, in
both rd_sched and wr_sched is used to register the “dirty”
flows which have packets currently under stateful processing.
The search key of dTable is the flow’s state table index (e.g., a
flow ID’s hash value). While dTable in wr_sched is a key-only
table, dTable in rd_sched also contains associated data to keep
the information for dirty flow handling (Sec. 4.4).

Once wr_sched realizes that a packet causes a change of
its flow state, the flow is registered in its dTable. Meanwhile,
wr_sched sends the updated state to rd_sched, as well as
notifying rd_sched to register the flow in its own dTable. For
any following packet under speculative execution, if it hits
dTable at PW , it means that the packet reads a stale state and
it will be resubmitted to PR through the ring.

A flow registered in dTable in rd_sched serves as the safe-
guard to prevent newly arriving packets of the flow from
entering the stateful processing. During its residency, any
already admitted packets of the flow would undergo a specu-
lation failure and are resubmitted to PR. When all the packets
of the flow under speculation failure have been resubmitted,
rd_sched sends a cancel_dirty signal to notify wr_sched to
remove the flow from its dTable. The flow is removed from
local dTable after all its backlogged packets are cleared.

For fairness, the packets of the flows which are not in
dTable are processed without blocking. The resubmitted and
blocked packets of a “dirty” flow are opportunistically sched-
uled at free pipeline cycles only. Therefore, a buffer is needed
for the resubmitted and blocked packets. Under normal traffic
conditions, the switch pipeline is only lightly loaded, leaving
enough free cycles to handle the buffered packets.

4.3 Fast State Writeback
At PR, the state of a packet is retrieved from a flow state table
and stored as metadata which can be used as key for further
table matching or as parameter for action execution. If the
state is updated to a new value, the metadata is marked. If

wr_sched finds the state is updated, the update is uploaded
onto the ring for a writeback to PR. Meanwhile, the flow is
registered in dTable to detect speculation failures.

On the ring, the data can usually pass one node per clock
cycle. However, it is possible that some other cross-stage
table write operations exist, so there can be race condition
(e.g., a function’s resubmitted PHV may conflict with another
function’s cancel_dirty signal) delaying the data. A small
buffer for the attached stage processor and another for the
upstream ring node are allocated for a ring node. The ring
node scheduler prioritizes control signals (including write-
backs and cancel_dirty signals) over resubmitted PHVs, and
merges the signals if possible.

At the destination ring node, the writeback data is offloaded
to PR. The flow is registered in dTable and the updated state
is written into the flow state table, which is either a TCAM
table or an SRAM-based hash table. Updating existing en-
tries is straightforward, while some stateful functions (e.g.,
MAC learning) require generating and inserting new entries.
While it is easy for an SRAM-based table (e.g., using a small
stash [42]), it is complicated for a TCAM table. To resolve the
priority order, significant calculation and entry relocation may
be needed [57,58], incurring an intolerable delay. Fortunately,
most use cases do not need TCAM table entry insertion. We
leave the solution to this issue as future work.

4.4 Speculative Execution
The blocking scheme that blocks every packet before its pre-
decessor completes the stateful processing is too conservative.
The improvement that only blocks packets of the same flow
for which a packet is under stateful processing is still not good
enough: a stateful function using only one stage processor
can still result in more than 20% throughput reduction [24].

Instead, we use speculative execution. If a packet is under
the stateful processing, the following packets of the same flow
can still enter the stateful processing pipeline until the flow
is registered in dTable in rd_sched. The packets under spec-
ulation failure must be resubmitted and reprocessed. These
measures have some performance impact. The worst case,
which is unlikely in reality, happens when a long sequence
of back-to-back packets come from the same flow and each

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 495

packet causes a state transition. Our evaluation shows that in
normal cases RAPID maintains a high throughput thanks to
the speculative execution.

A speculation failure is handled by three procedures: packet
backhauling, packet buffering, and packet releasing, as illus-
trated in Fig. 6.

Packet Backhauling. Packet backhauling uses the ring to
send packets back to PR for reprocessing. As shown in Fig. 5,
a 4096-bit data bus on the ring is sufficient for transmitting
either a PHV or a state data which contains a stateful function
ID, a flow state table index (addr), and an updated state value
(e.g., our use cases only use 128 bits for the state value).
The signal type is indicated by ctrl_tag: 0b00 for invalid
signal, 0b01 for state writeback and cancel_dirty, and 0b10
for resubmitted PHVs. The destination stage processor’s ID
is encoded in the one-hot bitmap dst2.

dst1

ctrl_tag

dst2

payload

control

data

of processors

2

of processors

PHV width

Width (bits)Ring Bus Usage

Heartbeat destination

Signal type

Signal destination

State index & state value
or PHV

Figure 5: Ring bus composition.

Packet Buffering. The resubmitted packets need to be
buffered in a FIFO queue at PR and wait for free cycles to en-
ter the pipeline. Since the match-action unit requires a PHV to
calculate the table search keys in a stage using the hash mod-
ule, the buffer for resubmitted packets - Resubmitted packet
Buffer (RB), is located before the hash module (Fig. 4).

Newly arriving packets from the pipeline that hit dTable
in rd_sched are kept in PHV Buffer (PB) in rd_sched. The
packets for each flow are linked in a list, and the link pointers
are maintained by the corresponding flow entries in dTable.

Once the first packet in RB gets a chance to enter the
pipeline, it is moved from RB to PB. In PB, the resubmitted
packets for each flow are also linked in a list, and their link
pointers are maintained in dTable as well.

rd_sched can schedule a packet of a flow suffering specu-
lative failure in PB only if (1) all resubmitted packets of the
flow have arrived at PR, and (2) all the resubmitted packets
of the flow in RB have been moved to PB. Condition (2) can
only be satisfied after condition (1) has been met. The former
is guaranteed by the flow timers (described in the next subsec-
tion), and the latter is guaranteed by the resubmitted packet
counters, both maintained in dTable. Each time PR receives a
resubmitted packet, the corresponding counter is incremented,
and each time a resubmitted packet is moved from RB to PB,
the corresponding counter is decremented. A counter value 0
means the condition (2) is met.

Fig. 6 illustrates an example of packet scheduling in

rd_sched. A shows the dTable which has three flows f1, f2,
and f3, where “Timer Offset" means the elapsed time since
the flow is last blocked or resubmitted (at most T). B shows
the current status of RB and PB in which p(i, j) means the jth
packet of fi. In this example, all the packets of f1 have been
in PB, but f2 and f3 each have one packet left in RB (i.e., p2,2
and p3,1). At this moment, f1 and f2’s timers are both expired.
In summary, only f1 is legitimate to be scheduled.

p(1,1)
p(2,1)

p(3,2)
p(2,3)
p(2,4)
p(3,3)

PHV Buffer (PB)
(resubmmitted & new)

f1

f2
-1

pb[1]
-1

pb[1]
pb[0]
pb[4]

pb[2]
pb[5]

head tail head tailTimer
Offset

T(expired)
3(expired)

Resubmitted
Packet count

0
1

p(1,2)

p(2,2)

...

...

p(3,1)

...

Resubmitted
packet Buffer

(RB)

...

f3 -1 -1 pb[3] pb[6]6 1

dTable

...

0
1
2
3
4
5
6

f3 f2 f1

 Block Queue

f2 f1...

Suspend Queue

Schedule
 Queue

PB (Resubmmited) PB (New)

f1

A

B C

Figure 6: Scheduling dirty flows at rd_sched. (f3 in Block
Queue; f2 in Suspend Queue; f1 in Schedule Queue.)

Once a flow can be scheduled by rd_sched , the flow record
should be removed from dTable in wr_sched. To achieve
this, rd_sched sends a cancel_dirty signal to PW by setting
ctrl_tag to 0b01, the same as state writeback signal. Because
the cancel_dirty signal carries only a 64-bit index while PHV
has 4096 bits, multiple cancel_dirty signals can be merged
with their indices placed in different locations in the pay-
load in Fig. 5. Furthermore, cancel_dirty signals can also be
merged into writeback data, so they share the same ctrl_tag.
This mechanism resolved the potential conflict. Because the
control signals have priority in the ring node scheduler, they
are never delayed. Assume the pipeline has l stages and the
stateful function occupies m stages, the cancel_dirty signal
would traverse l �m+ 1 ring nodes to reach PW . A reason-
able design can guarantee the signal reach PW earlier than
any packet of the addressed flow1, to avoid the case that a
newly released packet hits the dTable in wr_sched again and
is wrongly resubmitted.

Packet Releasing. From the moment rd_sched learns a
flow changes its state, it needs at least T = c(m) + m + 2
clock cycles to ensure that the speculative packets of the
flow that read the stale state, if any, have all been received and
buffered in RB at PR, where m is the number of pipeline stages
1The cancel_dirty signal needs at most processor_num cycles to reach the
destination processor, where processor_num < 16 in general designs. The
number of cycles of a processor is greater than 20, and then the cancel_dirty
signal can arrive earlier than the released packets.

496 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

between PR and PW (each ring node takes one clock cycle to
pass), c(m) is the pipeline processing latency on these stages,
and 2 accounts for the cycles for uploading and downloading
the PHV to and from the ring. This waiting time, T , must be
observed by each flow in dTable.

Instead of maintaining a timer for each flow in dTable,
we use a First-In-First-Out (FIFO) queue and two clocks to
achieve the same goal: the DECREASE clock (D.clk) keeps
the remaining waiting time for the first flow to be scheduled,
and the INCREASE clock (I.clk) keeps the elapsed time since
the arrival of the last packet from one of the flows in dTable.
The reason we need only two clocks is that the flows are
scheduled in the same order as they are registered in dTable.

Timer
Offset=T

Timer
Offset=T

Timer
Offset=T

Timer
Offset=�

Timer
Offset=�

Timer
Offset=T

flow 1

flow 2

Initial

Enqueue flow 1

After � cycles

Enqueue flow 2

After T-� cycles
Dequeue flow 1

I.clk
T

D.clk
0

I.clk
0

D.clk
T

D.clk
T-�

D.clk
T-�

D.clk
0

I.clk
ǻ

I.clk
0

I.clk
T-�

Ś

ś

Ŝ

ŝ

Ş

Timer
Offset=�

D.clk
�

I.clk
T-�

Set D.clk to the
offset of top flowş

Figure 7: Achieve per-flow timer with two timers.

We use an example in Fig. 7 to show how this works. When
the first packet of the first flow f1 arrives, the initial value of
I.clk, T , is copied to D.clk and f1’s timer offset field in dTable,
and then I.clk is reset to 0 (¨!≠); both clocks start to work.
When the first packet of flow f2 arrives at the D-th cycle, the
value of I.clk, D, is copied to f2’s timer offset (which means f2
can be scheduled D cycles after f1 is scheduled), and then I.clk
is reset to 0 (Æ!Ø). After T-D cycles, D.clk decrements to 0,
so f1 meets its scheduling condition (1). Now f2 becomes the
next flow to be considered (∞). Its timer offset, D, is copied
to D.clk (±). As a result, f2 will meet its scheduling condition
(1) after D cycles and its total waiting time is also T cycles.

During a race condition on the ring, a resubmitted packet
may be delayed by the ring node scheduler. Thus, a constant
value of T is no longer accurate. To address this problem, we
introduce a heartbeat signal, dst1, on the ring bus as shown
in Fig. 5. dst1 is a one-hot bitmap. Each PW sets the corre-
sponding bit for PR to one. At each cycle, if PW generates
another type of data, the heartbeat is piggybacked on it. If PW
has no other data to send to the ring and the ring is free, a
heartbeat-only data is generated by setting ctrl_tag to 0b11;
if the ring is not free (i.e., a data from an upstream node on
the ring is scheduled), the heartbeat signal is overloaded to
that data by setting the corresponding bit for PR in dst1 of
the data. Thus, for each cycle of delay a resubmitted packet

experiences, rd_sched will not receive the heartbeat for the
flow for one cycle, which causes both I.clk and D.clk to halt for
a cycle, so the scheduling time for the flow is compensated. A
ring node can combine non-conflicting signals (e.g., different
heartbeats or heartbeat with updated states) to use the ring
bus bandwidth more efficiently.

A and B of Fig. 6 show that in PB, the resubmitted pack-
ets and the newly arriving packets of a flow in dTable are
maintained in two linked lists (e.g., the resubmitted packet
p2,1 is in a linked list and the newly arriving packets p2,3 and
p2,4 are in another linked list. When the timer of a flow expires
and all the resubmitted packet of the flow are moved to PB,
the resubmitted packet list is prepended to the newly arriving
packet list, and the flow can be scheduled to release its packet
from the newly arriving packet list. C in Fig. 6 illustrates the
flow scheduling process. The Block FIFO queue stores the
flows in dTable which have not met the scheduling condition
(1) . The Suspend FIFO queue stores the flows which have
met condition (1) but not condition (2). A flow removed from
the Block queue may not enter the Suspend queue if its resub-
mitted packets are all moved to PB before its timer expires.
Such a flow or a flow removed from the Suspend queue has
met both conditions, so it is transferred to a circular Sched-
ule queue. Flows in the Schedule queue are scheduled in a
round-robin manner. When all the packets of a flow are sched-
uled, the flow is removed from the Schedule queue, and its
record is removed from dTable as well. Thus, the process of a
flow suffering speculation failure ("Block Queue - Suspend
Queue - Schedule Queue" in the read scheduler of Fig. 4) is
illustrated.

If a scheduled packet is resubmitted to PR again before all
the backlogged packets of the same flow are cleared, the flow
is removed from the Schedule queue and inserted to the back
of the Block queue. Its timer is restarted. The corresponding
flow entry in dTable is updated accordingly. Appendix B
illustrates that the probability of hash collisions in dTable is
so negligible that it can effectively be disregarded.

4.5 Multi-level Consistency
SwiSh [62] categorizes stateful functions by their consistency
needs: strict, weak, and bounded staleness. Applying strict
consistency universally may sacrifice performance unneces-
sarily. In RAPID, an FSM guides wr_sched to accommodate
these varied consistency levels.

For strict consistency, every packet hitting dTable in
wr_sched should be resubmitted. With weak consistency, state
changes trigger writebacks without dTable registration, avoid-
ing future resubmissions. This model works for scenarios
where the state can eventually converges even some packets
read stale states (e.g., a flow rate limiter).

Bounded staleness consistency tolerates stale state reads for
up to K packets. Once this limit is met, state synchronization
is mandatory before continuing. Fig. 8 presents the FSM. In

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 497

the Run state, no flow exists in dTable of wr_sched. On a
state change, the FSM shifts to Expiring with a counter set
to K. Here, K packets can proceed without resubmission. At
counter zero, the FSM enters Expired, registering the flow in
dTable for strict synchronization. Only a cancel_dirty from
rd_sched can deregister the flow and return to the Run state.

Run

Expiring
(state) Expired

Write State/
Start counter (K) cancel_dirty

counter=0

Figure 8: Multi-consistency support.
Key applications for this model are packet scheduling and

sketch-based DDoS detection. Sketch-based DDoS detection
risks measurement inaccuracies. Using weak consistency can
delay state convergence, while strict consistency can burden
the pipeline. Bounded staleness offers a balance between
accuracy and efficiency with a configurable K threshold.

4.6 Handling High State Update Rate
Consider a flow with n back-to-back packets and a state update
latency of T cycles between PR and PW . RAPID struggles with
elevated state update rates, leading to more writebacks and
speculation failures. When the state update rate exceeds a =
2T�3
2T+n , RAPID starts to exhibit even worse performance than
the blocking scheme (Appendix C). Although this scenario is
highly unlikely, it can be handled by introducing an additional
field resubmit_cycle in dTable to downgrade the RAPID
scheme to the blocking scheme once a high state update rate
is observed on the per-flow basis.

Run Wait

Timeout

Write dTable

Timeout

PB not empty

Schedule Suspend

PB empty

PB not empty

Figure 9: FSM for the blocking mode in RAPID.

When the packets of a flow have not been fully sched-
uled to be reprocessed, a new state for this flow may be writ-
ten back, followed by some resubmitted packets again. In
this case, the flow resets its timer to T (re-enqueued into the
Block queue), and its resubmit_cycle increments by one.
When the resubmit_cycle exceeds a threshold, the blocking

scheme is applied to the flow. At the same time a cancel_dirty
signal is transmitted. The blocking scheme lasts until PB
of the flow is cleared. Consequently, the resubmit_cycle

serves as an indicator of the state writeback rate. PB drives
an FSM in the blocking mode. As depicted in the FSM in
Fig. 9, if packets of the flow are present in PB, the flow enters
a Suspend state, requiring the timer (no need for heartbeat)
to expire before a packet can be scheduled. Once the packet
is scheduled, if remaining packets of the flow still reside in
PB (PB non-empty), the flow re-enters the Suspend state; oth-
erwise, the flow transitions to the Wait state and is removed
from dTable when the timer expires.

5 Programming Language and Compiler

5.1 P4 Language Enhancement
P4 [22] only supports atomic stateful operations using regis-
ters in a single stage (i.e., the Banzai architecture). NPL [11]
does not support stateful functions at all. XL [55] requires
intricate design to extract usable state transitions [25]. After
evaluating the existing dataplane programming languages, we
take P416 as the baseline and enhance it to support general
stateful function programming on the RAPID architecture.

/* can be written by the data plane or the control plane;
 can be compiled as registers or flow state tables */
muTable packet_filter {

keys = {
hdr.ipv4.src_addr;
hdr.ipv4.dst_addr;
hdr.ipv4.protocol;

}

 values = {
bit<2> state;

}

type = exact; // ternary, lpm, direct
consistency = STRICT; // WEAK, BS(K)
size = 4096;

}

/* read out the current state */
cur_state = packet_filter.read(hdr);
/* get new state with calculations */
new_state = cal_state(...);
/* write back the new state */
packet_filter.write(hdr, new_state);

Figure 10: P4 language enhancement.

We introduce muTable, akin to table of P4, but modifiable
by the dataplane, suitable for flow state tables. Unlike ta-
ble, muTable leverages various memory types (e.g., SRAM,
TCAM) for multi-stage functions or registers for single-stage
atomic stateful functions. As depicted in Fig.10, keys index
states, values store state data, type defines the match method
(i.e., exact, ternary, LPM, or direct), and consistency sets
consistency levels. muTable supports both read and write

498 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

primitives, enabling customized stateful processing logic. The
compiler determines if a stateful function spans single or mul-
tiple stages based on complexity. A port_knocking example
using muTable is presented in Fig. 25 of Appendix H.

5.2 Data Renaming
If the stateful processing involves modifying some data (e.g.,
decrementing ipv4.ttl), packet resubmission may cause the
data to be modified more than once, leading to incorrect re-
sult. The compiler uses the “field renaming” technique to
solve the problem, which is similar to the “register renaming”
used for instruction-level parallelism in computer processor
architecture [43].

1st round
processing
2nd round
processing

stage1: A = C + D
stage2: D = G + H

stage1: A = C + D
stage2: D = G + H

stage1: A = C + D
stage2: D1 = G + H

A = C + D
D1 = G + H

result A = C + G + H A = C + D

Before Field Renaming After Field Renaming

stage1:
stage2:

Figure 11: Field Renaming.

Fig. 11 shows an example. In the first packet processing
round, D is used as an rvalue for calculating A before it is
updated. Without field renaming, if this packet is resubmitted
and reprocessed, D will use its new value to calculate A again.
Instead, for a “Write-after-Read” (RAW) data, the compiler
renames it to avoid such errors, and the new field D1 remains
to be used for processing beyond the stateful function.

6 Implementation

6.1 Hardware Prototypes
We build hardware prototypes on a Xilinx UltraScale+
XCVU13P-based programmable switch. XCVU13P has up
to 1.7M LUTs, 3.5M FFs, and 2.7K BRAMs. We implement
PISA [23], Banzai [51], FlowBlaze [42], and RAPID with
2,584, 2,292, 3,627, and 4,676 lines of Scala code, respec-
tively. For RAPID, 1,822 lines of code are dedicated to the
ring. The prototypes of PISA, Banzai, and RAPID contain
4 physical pipeline stages; the prototype of FlowBlaze has
only 3 stages due to its high resource consumption. All the
prototypes use a 512-byte PHV. Each prototype has 4 hash
modules, 4 parallel matching tables (FlowBlaze has one addi-
tional TCAM-based EFSM table), and a number of SRAMs
and ALUs. We set 4 queues for FlowBlaze with each having a
depth of 64. The RAPID ring bus is 4,114-bit wide (8-bit dst1,
8-bit dst2, 2-bit ctrl, and 4,096-bit payload for PHV or state
data). The configuration of the RAPID schedulers is shown
in Table 1. All prototypes run at 100 MHz clock frequency.
A stage processor of PISA, Banzai, FlowBlaze, and RAPID
takes 16, 16, 21, and 18 clock cycles, respectively.

Type Size
Resubmitted Packet Buffer (RB) 16

dTable 64
PHV Buffer (PB) 32

Block Queue 64
Suspend Queue 64
Schedule Queue 64

Ring Buffer from pipeline 8
Ring Buffer from ring bus 8

Table 1: Configuration of RAPID schedulers.

6.2 Software ASIC Emulator
We develop software emulators for RAPID [14] (2,557 lines)
and FlowBlaze (1,440 lines) using C++ on the Ubuntu 20.04
LTS server which can emulate the ASIC behavior. Users
can write stateful packet processing programs using the the
enhanced P4 language to test it on the emulator. The virtual
clock of the emulators is set to 1 GHz. Since FlowBlaze only
supports single-stage SRAM-based state updates, we test it
with a simple case, the elephant flow detector. The emulators
are configured to support 16x 100Gbps ports per pipeline.

6.3 Compiler and Controller
We develop a compiler (5,606 lines) in C++ to compile pro-
grams in the enhanced P4 language. The compiler generates a
JSON file that describes configurations of every stage proces-
sor which can be directly used by the software target. For the
hardware target, we further use Python to convert the JSON
file into a binary file which can be downloaded to the FPGA.
We also implement a controller (1,967 lines) in Python to
communicate with the pipeline at runtime.

6.4 Implemented Use Cases
We implement and verify the following three use cases in
both hardware and software. These use cases use 2, 3, and 4
stage processors, respectively.
• Port knocking stateful firewall. Port knocking [21] enables
a firewall to accept connection attempts on a sequence of
closed ports, and upon receiving the correct sequence, mod-
ifies rules to grant access. Using muTable in Proc1, packets
retrieve the current state. Proc2, integrating this state and the
port of the packet, updates the knocking state table in Proc1.
Packets matching the “pass” state are forwarded; others are
dropped.
• DDoS detection and mitigation. We implement a cookie-
based SYN flood detection and mitigation approach. Proc1
keeps an Access Control List (ACL) table for admission con-
trol, and Proc2 maintains a bloom filter to identify the first
packet of a new flow. In Proc3, for a new flow, the hash value
of the packet’s five-tuple is sent back to the sender as a cookie;
otherwise, the packet is dropped, and the five-tuple is written
back to Proc1’s ACL for blocking. For a packet of monitored

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 499

TCP flow, if the bloom filter reports positive match and the
packet carries the correct cookie with the right ACK, its flow
will be added to Proc1’s ACL as an admitted flow.
• NAT with load balancing. We adopt the method from
SilkRoad [40]: at the load balancer, a packet looks up a Con-
nTable using the carried VIP. If found, the associated DIP is
retrieved and used for forwarding; otherwise, the VIP is used
to look up a VIPTable, selecting a DIP with the lowest load
from a list. The load is then updated, and the new {VIP: DIP}
mapping is added to the ConnTable. The ConnTable resides
in Proc1, with writebacks issued from Proc4.

7 Evaluation

• Methodology. We use Vivado Design Suite [17] to syn-
thesize the four prototypes (PISA, Banzai, FlowBlaze, and
RAPID), obtaining the FPGA resources usage. To evaluate the
throughput and latency performance, we feed three real traffic
traces (ISP DC, Equinix, and MAWI22) to the FPGA proto-
types. We feed three synthetic traces to the ASIC emulator to
test RAPID’s sensitivity to different factors.
• Testbed. The testbed comprises the switch prototype with
four 100Gbps ports, a server as the controller, and two servers
for traffic sending and receiving through two 100Gbps NICs.

7.1 FPGA Resource Consumption
Table 2 compares the FPGA resource consumption for a pro-
cessor of different architectures. RAPID consumes more re-
sources than PISA and Banzai, but less than FlowBlaze. Con-
sider RAPID’s capability, the overhead is well-justified.

Architecture LUT FF BRAM
PISA 13.91% 1.71% 14.08%

Banzai 15.77% 1.73% 14.08%
FlowBlaze 27.32% 2.48% 25.99%

RAPID 20.22% 2.35% 19.55%

Table 2: Resources for different architectures.

Table 3 breaks down the resource of the scheduler compo-
nents in a RAPID processor. As the three queues only use
pointers, they consume a few LUTs and FFs. The BRAMs
are mainly used for storing PHVs in RB and PB.

Component LUT FF BRAM
RB 9.273% 5.255% 9.324%

dTable 6.869% 4.476% 0
PB 3.104% 0.543% 18.649%

Block Queue 0.050% 0.063% 0
Suspend Queue 0.101% 0.034% 0
Schedule Queue 0.055% 0.034% 0

Ring Node 9.003% 10.667% 0
Sum 28.455% 21.073% 27.973%

Table 3: Resource breakdown of scheduler components.

We can feed the traces at 100Gbps rate to the RAPID
prototype running different use cases and find no packet drop.

7.2 ASIC Implementation Cost
We run Design Compiler [15] to synthesize the prototypes on
an open-source 45nm ASIC technology library [10], and show
the chip area and power consumption of single stage processor
in Table 4. The clock frequency of the RAPID prototype
reaches 1GHz. While FlowBlaze’s cost is significantly higher
than PISA, RAPID’s cost is only slightly higher.

Area (mm2) Power (mW)
PISA 94.33 65000

Banzai 95.17 66100
FlowBlaze 176.08 86900

RAPID 99.45 67500

Table 4: Area and power of different architectures.

Table 5 summarizes the cost breakdown of the scheduler
components in a RAPID processor. The area and power over-
head of the scheduler accounts for only 4.18% and 1.2% of
the entire processor, exhibiting a low implementation cost.

Area (mm2) cost Power (mW) cost
RB 0.5263 0.5292% 108 0.1600%

dTable 0.0740 0.0744% 7.724 0.0114%
PB 2.4874 2.5009% 516 0.7644%

Block Queue 0.0074 0.0074% 1.56 0.0023%
Suspend Queue 0.0036 0.0036% 0.728 0.0011%
Schedule Queue 0.0036 0.0036% 0.729 0.0011%

Ring Node 1.0515 1.0573% 178 0.2637%
Total 4.1537 4.1764% 812.7 1.2041%

Table 5: Area and power overhead of scheduler components.

In both FPGA and ASIC, the hardware overhead (i.e.,
LUTs, FFs, ASIC area and power) to support stateful opera-
tions is moderate and constant. When there is no speculation
failure, the pipeline latency and throughput remain unaffected.
RAPID’s dTables and the three extra queues are functioning
in parallel with the main processing engine (MAUs), so the
scheduling cycles do not incur extra clock cycles.

7.3 Parameter Setting
It is important to set the right size for the key performance
and cost influencers (i.e., RB, PB, dTable, and Ring Node
Buffer). We study this with the ASIC emulator. Assuming
90% pipeline throughput (i.e., 10% free pipeline cycles), we
vary the number of stateful function stages and state update
rates (i.e., the proportion of packets that trigger state updates
to the total packets). We use three traces, ISP DC, Equinix,
and MAWI22, for the test, and replicate each trace multiple
times to get 1-minute worth of traffic. The results on Equinix
are shown in Fig. 12, and the other results can be found in Ap-
pendix D. In general, the required component sizes increase

500 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) RB. (b) PB.

(c) dTable. (d) Ring Node Buffer.

Figure 12: Scheduler parameters under CAIDA Equinix trace.

as the state update rate and stateful function stage count grow.
However, the sizes remain in an acceptable range. In real net-
work scenarios, the pipeline throughput, the state update rate,
and the stateful function stage are mostly at their low end of
the scope, implying our configuration in Table 1 is sufficient.

7.4 Influence of Stateful Function Stages
The length of a stateful function pipeline determines the state
update latency. We test RAPID and the blocking scheme with
different number of stateful function stages (2, 3 and 4) which
take 36, 54 and 72 clock cycles, respectively. The blocking
scheme uses 4 queues of size 32. We synthesize three traces
with packet lengths of 256 bytes, 384 bytes, and 512 bytes,
respectively. The characteristics of three traces are shown in
Table 6. We orchestrate the packet headers for each trace to
achieve a consistent state update rate of 30%.

Trace packet size spacing probability of two packets in a flow
< 36 cycles < 54 cycles < 72 cycles

Trace 1 256 B 31.42% 35.59% 39.33%
Trace 2 384 B 26.83% 31.42% 34.67%
Trace 3 512 B 21.65% 26.83% 31.42%

Table 6: Features of three synthetic traces.

We get the packet throughput and latency performance in
terms of the number of function stages under Trace 2 as shown
in Fig. 13 (other results are in Appendix E). As the number

of stages increases, both the blocking scheme and RAPID
exhibit a declining performance, but RAPID outperforms the
blocking scheme and maintains a stable low latency.

(a) Throughput. (b) Latency.

Figure 13: Performance with < 0.1% and 0 packet drop rate
on Trace 2.

7.5 Influence of State Update Rate
A high state update rate predictably leads to a poorer pipeline
throughput. To test how RAPID performs under different state
update rate, we run Trace 2 on three hypothetical stateful func-
tions with 2, 3, and 4 stages, and adjust the state update rate
to examine its impact on the system. The throughput with
no packet loss is derived. Fig. 14(a) shows that, as the state
update rate increases, RAPID’s throughput gradually declines,
but its performance remains better than the blocking scheme.
From Fig. 14(b) shows that RAPID’s packet processing la-
tency gradually rises with the increase of state update rate,
and approaches the latency of the blocking scheme. The rea-
son is that, when state update rate increases, packets may be
resubmitted more than one time, leading to longer latency.
Same conclusion can be drawn from results on Trace 1 and
Trace 3 in Appendix F.

(a) Throughput. (b) Latency.

Figure 14: Performance on different state update rates of
Trace 2.

7.6 Influence of Intra-flow Packet Gap
A larger intra-flow packet gap means that, for RAPID, it is less
likely for the packets to be resubmitted or blocked, and for the
blocking scheme, it is less likely for a packet to experience

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 501

HOL blocking. A gap larger than the state update latency can
make both problems disappear. We devise experiments to val-
idate this. Based on the Trace 2, we generate three additional
traces (Table 7) with different intra-flow packet gap distribu-
tion. We set the state update rate to 30%. The result is shown

Trace packet size spacing probability of two packets in a flow
< 36 cycles < 54 cycles < 72 cycles

Trace 4 384 B 24.57% 26.83% 31.42%
Trace 5 384 B 21.65% 24.57% 28.62%
Trace 6 384 B 17.74% 21.65% 26.83%

Table 7: Features of three additional synthetic traces.
in Fig. 15. Fig. 15(a) demonstrates that as the packet gap
within a flow increases, the throughput of both RAPID and
the blocking scheme rises, which aligns with our hypothesis.
RAPID approaches full throughput progressively. Fig. 15(b)
confirms that the processing latency of the two approaches re-
mains stable, and RAPID’s performance gradually converges
to that of stateless processing.

(a) Throughput. (b) Latency.

Figure 15: Performance on different intra-flow packet gaps.

7.7 Influence of Consistency Level

(a) Throughput. (b) Latency.

Figure 16: Performance on different consistency levels.

Different consistency levels affect packet resubmission
rates and packet blocking. To compare RAPID’s performance
under different consistency levels, we test RAPID on a two-
stage stateful function (i.e., 36-cycle state update latency).
We run three traces with six different consistency level con-
figurations: STRICT, BS(1), BS(2), BS(3), BS(4), and WEAK.
The state update rate is fixed to 30%. As shown in Fig. 16, as

the consistency requirement becomes looser, the throughput
of RAPID keeps increasing until it reaches the full through-
put, and the latency keeps decreasing. Results on 54-cycle
(3-stage) and 72-cycle (4-stage) functions are shown in Ap-
pendix G, which lead to a similar conclusion.

8 Discussion

• Potential Scalability of the Ring: We investigate the appli-
cation of the ring within a single pipeline. A ring can also be
concurrently leveraged by multiple pipelines. For instance, if
one pipeline utilizes only 10% of the Ring’s bandwidth for
data transfer, it would be feasible for two or more pipelines to
share the ring. Similar with MP5 [49], this approach provides
a viable design for collaborative task execution across mul-
tiple pipelines. Moreover, if the necessity for "cancel_dirty"
communication between the Read and Write schedulers can
be eliminated, allowing for independent scheduling on both
sides, then the unidirectional ring could be evolved into a
unidirectional backward path.
• Priority of Resubmitted Packets: When handling spec-
ulation failures, we currently give priority to new packets.
We can also prioritize flows suffering speculation failures to
speed up their processing to align with user-specific needs.
This is reserved for future exploration.
• Potential Optimization of RTC: Compared to pipelines,
RTC offers enhanced flexibility in function support. Moreover,
RTC’s multi-threading can leverage speculative execution
too. Instead of stalling threads during state access conflicts,
packets are reprocessed if errors are detected.

9 Conclusion

RAPID makes it possible to support advanced stateful packet
processing functions on a pipeline-based programmable data-
plane. A side ring is used to support cross-stage state write-
back and speculative execution. The non-blocking speculative
execution reduces the packet buffer requirements necessary
for traditional stateful support, leading to diminished back-
pressure and fewer congestion in the network. The applica-
tion programming is enabled by a simple extension to the P4
language. When it comes to hardware, RAPID is not only
efficient but also excels in performance across real-world use
cases. As a result, tasks that traditionally require ASIC-CPU
collaboration can now be executed by RAPID solely, saving
the system cost and improving the system performance.

Acknowledgement. We thank the anonymous reviewers and
our shepherd Nofel Yaseen for their insightful comments
and suggestions which help improve this paper. The authors
from Tsinghua University are supported by NSFC (62032013,
62272258) and NSFC-RGC (62061160489). Corresponding
author: Bin Liu (lmyujie@gmail.com).

502 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] ARBOR NETWORKS APS Data Sheet.
https://www.netscout.com/sites/default/

files/2018-04/DS_APS_EN.pdf.

[2] Broadcom Trident. https://www.broadcom.com/

products/ethernet-connectivity/switching/

strataxgs/bcm56880-series.

[3] CAIDA Equinix Trace. https://catalog.caida.

org/dataset/passive_2019_pcap.

[4] CIC-IOT Trace. http://205.174.165.80/

IOTDataset/CIC_IOT_Dataset2022/CICIOT/

5-Active.

[5] CTU2 Trace. https://mcfp.felk.cvut.cz/

publicDatasets/CTU-Mixed-Capture-2.

[6] CTU4 Trace. https://mcfp.

felk.cvut.cz/publicDatasets/

CTU-Malware-Capture-Botnet-4.

[7] Intel Tofino. https://www.intel.com/

content/www/us/en/products/network-io/

programmable-ethernet-switch/tofino-series.

html.

[8] MAC Trace. https://download.netresec.com/

pcap/maccdc-2012.

[9] MAWI22 Trace. http://mawi.wide.ad.jp/mawi/

samplepoint-F/2022.

[10] NCSU FreePDK45. https://eda.ncsu.edu/

freepdk/freepdk45/.

[11] NPL Specification. https://nplang.org/

specifications.

[12] NSFOCUS Anti-DDoS System Datasheet.
https://nsfocusglobal.com/wp-content/

uploads/2018/05/Anti-DDoS-Solution.pdf.

[13] Simple Web Trace. https://www.simpleweb.org/

wiki/index.php/Traces.

[14] Software ASIC Emulator. https://github.com/

jijinfanhua/RPISA-sw.

[15] Synopsys Design Compiler. https://www.

synopsys.com/implementation-and-signoff/

rtl-synthesis-test/dc-ultra.html.

[16] UNIV Trace. https://pages.cs.wisc.edu/

~tbenson/IMC_DATA.

[17] Xilinx Vivado Design Suite. https://www.xilinx.

com/products/design-tools/vivado.html.

[18] Albert Gran Alcoz, Alexander Dietmüller, and Laurent
Vanbever. SP-PIFO: Approximating Push-In First-Out
Behaviors using Strict-Priority Queues. In NSDI, pages
59–76, 2020.

[19] Tom Barbette, Chen Tang, Haoran Yao, Dejan Kostic,
Gerald Q Maguire Jr, Panagiotis Papadimitratos, and
Marco Chiesa. A High-Speed Load-Balancer Design
with Guaranteed Per-Connection-Consistency. In NSDI,
pages 667–683, 2020.

[20] Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and Ori Rot-
tenstreich. Efficient measurement on programmable
switches using probabilistic recirculation. In 2018 IEEE
26th International Conference on Network Protocols
(ICNP), pages 313–323. IEEE, 2018.

[21] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and
Carmelo Cascone. Openstate: Programming platform-
independent stateful openflow applications inside the
switch. ACM SIGCOMM Computer Communication
Review, 44(2):44–51, 2014.

[22] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review,
44(3):87–95, 2014.

[23] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
SDN. ACM SIGCOMM Computer Communication Re-
view, 43(4):99–110, 2013.

[24] Carmelo Cascone, Roberto Bifulco, Salvatore Pontarelli,
and Antonio Capone. Relaxing state-access constraints
in stateful programmable data planes. ACM SIGCOMM
Computer Communication Review, 48(1):3–9, 2018.

[25] Xiaoqi Chen, Andrew Johnson, Mengying Pan, and
David Walker. Synthesizing state machines for data
planes. In Proceedings of the Symposium on SDN Re-
search, pages 81–88, 2022.

[26] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivara-
man, Shay Vargaftik, Alon Berger, Gal Mendelson, Mo-
hammad Alizadeh, Shang-Tse Chuang, Isaac Keslassy,
et al. dRMT: Disaggregated programmable switching.
In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 1–14,
2017.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 503

https://www.netscout.com/sites/default/files/2018-04/DS_APS_EN.pdf
https://www.netscout.com/sites/default/files/2018-04/DS_APS_EN.pdf
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://catalog.caida.org/dataset/passive_2019_pcap
https://catalog.caida.org/dataset/passive_2019_pcap
http://205.174.165.80/IOTDataset/CIC_IOT_Dataset2022/CICIOT/5-Active
http://205.174.165.80/IOTDataset/CIC_IOT_Dataset2022/CICIOT/5-Active
http://205.174.165.80/IOTDataset/CIC_IOT_Dataset2022/CICIOT/5-Active
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Mixed-Capture-2
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Mixed-Capture-2
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-4
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-4
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-4
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://download.netresec.com/pcap/maccdc-2012
https://download.netresec.com/pcap/maccdc-2012
http://mawi.wide.ad.jp/mawi/samplepoint-F/2022
http://mawi.wide.ad.jp/mawi/samplepoint-F/2022
https://eda.ncsu.edu/freepdk/freepdk45/
https://eda.ncsu.edu/freepdk/freepdk45/
https://nplang.org/specifications
https://nplang.org/specifications
https://nsfocusglobal.com/wp-content/uploads/2018/05/Anti-DDoS-Solution.pdf
https://nsfocusglobal.com/wp-content/uploads/2018/05/Anti-DDoS-Solution.pdf
https://www.simpleweb.org/wiki/index.php/Traces
https://www.simpleweb.org/wiki/index.php/Traces
https://github.com/jijinfanhua/RPISA-sw
https://github.com/jijinfanhua/RPISA-sw
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://pages.cs.wisc.edu/~tbenson/IMC_DATA
https://pages.cs.wisc.edu/~tbenson/IMC_DATA
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

[27] Seyed K Fayaz, Yoshiaki Tobioka, Vyas Sekar, and
Michael Bailey. Bohatei: Flexible and elastic ddos de-
fense. In 24th USENIX Security Symposium (USENIX
Security 15), pages 817–832, 2015.

[28] Yong Feng, Zhikang Chen, Haoyu Song, Wenquan Xu,
Jiahao Li, Zijian Zhang, Tong Yun, Ying Wan, and Bin
Liu. Enabling In-situ Programmability in Network Data
Plane: From Architecture to Language. In 19th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 22), 2022.

[29] Nadeen Gebara, Alberto Lerner, Mingran Yang, Minlan
Yu, Paolo Costa, and Manya Ghobadi. Challenging the
stateless quo of programmable switches. In Proceedings
of the 19th ACM Workshop on Hot Topics in Networks,
pages 153–159, 2020.

[30] Mohamed G Gouda and Alex X Liu. A model of stateful
firewalls and its properties. In 2005 International Con-
ference on Dependable Systems and Networks (DSN’05),
pages 128–137. IEEE, 2005.

[31] Garegin Grigoryan and Yaoqing Liu. Lamp: Prompt
layer 7 attack mitigation with programmable data planes.
In Proceedings of the 2018 Symposium on Architectures
for Networking and Communications Systems, pages
158–159, 2018.

[32] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rex-
ford. Network-wide heavy hitter detection with com-
modity switches. In Proceedings of the Symposium on
SDN Research, pages 1–7, 2018.

[33] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo
Jepsen, Muhammad Shahbaz, Changhoon Kim, and
Nick McKeown. The nanoPU: A Nanosecond Network
Stack for Datacenters. In OSDI, pages 239–256, 2021.

[34] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh
Sivaraman, and Jennifer Rexford. Hula: Scalable load
balancing using programmable data planes. In Proceed-
ings of the Symposium on SDN Research, pages 1–12,
2016.

[35] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon
Kim, Jeongkeun Lee, Vyas Sekar, and Srinivasan Se-
shan. Tea: Enabling state-intensive network functions
on programmable switches. In Proceedings of the An-
nual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,
architectures, and protocols for computer communica-
tion, pages 90–106, 2020.

[36] Guanyu Li, Menghao Zhang, Cheng Guo, Han Bao,
Mingwei Xu, Hongxin Hu, and Fenghua Li. Imap: Fast
and scalable in-network scanning with programmable

switches. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
667–681, 2022.

[37] Jiaxin Lin, Adney Cardoza, Tarannum Khan, Yeonju Ro,
Brent E Stephens, Hassan Wassel, and Aditya Akella.
Ringleader: Efficiently offloading intra-server orchestra-
tion to nics. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
1293–1308, 2023.

[38] Jiaxin Lin, Kiran Patel, Brent E Stephens, Anirudh
Sivaraman, and Aditya Akella. PANIC: A high-
performance programmable NIC for multi-tenant net-
works. In Proceedings of the 14th USENIX Confer-
ence on Operating Systems Design and Implementation,
pages 243–259, 2020.

[39] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis,
Jeongkeun Lee, Changhoon Kim, Xin Jin, Vladimir
Braverman, Minlan Yu, and Vyas Sekar. Jaqen: A
High-Performance Switch-Native Approach for Detect-
ing and Mitigating Volumetric DDoS Attacks with Pro-
grammable Switches. In USENIX Security Symposium,
pages 3829–3846, 2021.

[40] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making stateful layer-
4 load balancing fast and cheap using switching asics.
In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 15–28,
2017.

[41] Masoud Moshref, Apoorv Bhargava, Adhip Gupta, Min-
lan Yu, and Ramesh Govindan. Flow-level state transi-
tion as a new switch primitive for SDN. In Proceedings
of the third workshop on Hot topics in software defined
networking, pages 61–66, 2014.

[42] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola,
Carmelo Cascone, Marco Spaziani, Valerio Bruschi, Da-
vide Sanvito, Giuseppe Siracusano, Antonio Capone, Mi-
chio Honda, et al. Flowblaze: Stateful packet processing
in hardware. In Proceedings of the 16th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI 2019, pages 531–547. USENIX ASSOC, 2019.

[43] Elham Safi, Andreas Moshovos, and Andreas Veneris.
Two-stage, pipelined register renaming. IEEE transac-
tions on very large scale integration (VLSI) systems,
19(10):1926–1931, 2010.

[44] Mariano Scazzariello, Tommaso Caiazzi, Hamid
Ghasemirahni, Tom Barbette, Dejan Kostic, and Marco
Chiesa. A High-Speed Stateful Packet Processing
Approach for Tbps Programmable Switches. In
Proceedings of the 20th USENIX Symposium on

504 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Networked Systems Design and Implementation (NSDI
23), 2023.

[45] Naveen Kr Sharma, Ming Liu, Kishore Atreya, and
Arvind Krishnamurthy. Approximating fair queueing
on reconfigurable switches. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 18), pages 1–16, 2018.

[46] Naveen Kr Sharma, Chenxingyu Zhao, Ming Liu,
Pravein G Kannan, Changhoon Kim, Arvind Krishna-
murthy, and Anirudh Sivaraman. Programmable Calen-
dar Queues for High-speed Packet Scheduling. In NSDI,
pages 685–699, 2020.

[47] Vishal Shrivastav. Fast, scalable, and programmable
packet scheduler in hardware. In Proceedings of the
ACM Special Interest Group on Data Communication,
pages 367–379. 2019.

[48] Vishal Shrivastav. Programmable multi-dimensional
table filters for line rate network functions. In Proceed-
ings of the ACM SIGCOMM 2022 Conference, pages
649–662, 2022.

[49] Vishal Shrivastav. Stateful multi-pipelined pro-
grammable switches. In Proceedings of the ACM SIG-
COMM 2022 Conference, pages 663–676, 2022.

[50] Manuel Simon, Henning Stubbe, Dominik Scholz,
Sebastian Gallenmüller, and Georg Carle. High-
Performance Match-Action Table Updates from within
Programmable Software Data Planes. In Proceedings
of the Symposium on Architectures for Networking and
Communications Systems, pages 102–108, 2021.

[51] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu,
Changhoon Kim, Mohammad Alizadeh, Hari Balakr-
ishnan, George Varghese, Nick McKeown, and Steve
Licking. Packet transactions: High-level programming
for line-rate switches. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 15–28, 2016.

[52] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rot-
tenstreich, Shan Muthukrishnan, and Jennifer Rexford.
Heavy-hitter detection entirely in the data plane. In
Proceedings of the Symposium on SDN Research, pages
164–176, 2017.

[53] John Sonchack, Devon Loehr, Jennifer Rexford, and
David Walker. Lucid: A language for control in the data
plane. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, pages 731–747, 2021.

[54] Chen Sun, Jun Bi, Haoxian Chen, Hongxin Hu, Zhilong
Zheng, Shuyong Zhu, and Chenghui Wu. SDPA: Toward
a stateful data plane in software-defined networking.
IEEE/ACM Transactions on Networking, 25(6):3294–
3308, 2017.

[55] Angelo Tulumello, Giacomo Belocchi, Marco Bonola,
Salvatore Pontarelli, and Giuseppe Bianchi. Pushing
services to the edge using a stateful programmable dat-
aplane. In 2019 European Conference on Networks
and Communications (EuCNC), pages 389–393. IEEE,
2019.

[56] Belma Turkovic, Jorik Oostenbrink, and Fernando
Kuipers. Detecting heavy hitters in the data-plane. arXiv
preprint arXiv:1902.06993, 2019.

[57] Ying Wan, Haoyu Song, Hao Che, Yang Xu, Yi Wang,
Chuwen Zhang, Zhijun Wang, Tian Pan, Hao Li, Hong
Jiang, et al. FastUp: Fast TCAM Update for SDN
Switches in Datacenter Networks. In 2021 IEEE 41st
International Conference on Distributed Computing Sys-
tems (ICDCS), pages 887–897. IEEE, 2021.

[58] Zhijun Wang, Hao Che, Mohan Kumar, and Sajal K Das.
CoPTUA: Consistent policy table update algorithm for
TCAM without locking. IEEE Transactions on Comput-
ers, 53(12):1602–1614, 2004.

[59] Jiarong Xing, Wenqing Wu, and Ang Chen. Ripple:
A programmable, decentralized link-flooding defense
against adaptive adversaries. In USENIX Security, 2021.

[60] Mingran Yang, Alex Baban, Valery Kugel, Jeff Libby,
Scott Mackie, Swamy Sadashivaiah Renu Kananda,
Chang-Hong Wu, and Manya Ghobadi. Using trio:
juniper networks’ programmable chipset-for emerging
in-network applications. In Proceedings of the ACM
SIGCOMM 2022 Conference, pages 633–648, 2022.

[61] Zhuolong Yu, Chuheng Hu, Jingfeng Wu, Xiao Sun,
Vladimir Braverman, Mosharaf Chowdhury, Zhenhua
Liu, and Xin Jin. Programmable packet scheduling
with a single queue. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, pages 179–193, 2021.

[62] Lior Zeno, Dan RK Ports, Jacob Nelson, Daehyeok
Kim, Shir Landau-Feibish, Idit Keidar, Arik Rinberg,
Alon Rashelbach, Igor De-Paula, and Mark Silberstein.
SwiSh: Distributed Shared State Abstractions for Pro-
grammable Switches. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), pages 171–191, 2022.

[63] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang
Liu, Ang Chen, Hongxin Hu, Guofei Gu, Qianqian Li,
Mingwei Xu, and Jianping Wu. Poseidon: Mitigating
volumetric ddos attacks with programmable switches.
In the 27th Network and Distributed System Security
Symposium (NDSS 2020), 2020.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 505

of flows, average # of pkts per flow, and conflict ratioTraces # of pkts (K) average pkt size (B) five-tuple avg. CR sIP-dIP avg. CR
CTU4 [6] 24392 93 1422109 17.2 68.81% 8655 2818.3 84.27%

MACCDC [8] 6598 142 73071 90.3 8.76% 9594 687.8 43.38%
Equinix [3] 31540 482 1085931 29 1.47% 870685 36.2 1.49%

CIC-IOT [4] 1836 484 78799 23.3 46.46% 3774 486.6 56.81%
MAWI22 [9] 121308 606 13607494 8.9 9.53% 9627481 12.6 11.18%

ISP DC 33514 642 1199269 27.9 11.16% 873011 38.4 20.79%
UNIV1 [16] 912 673 10945 83.4 16.66% 2719 335.8 17.98%
CTU2 [5] 685 750 24274 28.2 27.21% 2312 296.6 29.51%

UNIV2 [16] 11772 780 33987 346.4 23.27% 19006 619.4 23.30%
Simple Web [13] 2636 836 51194 51.5 26.08% 4917 536.2 27.34%

Table 8: Statistics of the packet traces.

A Trace Statistics

Table 8 lists the statistics of the 10 traffic traces. Specifically,
the ISP DC trace is collected from the data center of an ISP.

B Hash collision in dTable

dTable records the hash values of flows. In the case of hash
collision, a flow might be mistakenly blocked and its packets
resubmitted, but this will not cause catastrophic consequences.
The victim flow only experiences an increased latency.

Given that a flow is hashed to a M-bit hash value, the proba-
bility of hash collision among this flow and another incoming
flow is P = 1

2M . Assuming M=64, the collision probability is
5.42⇥10�20, which is low enough to make its impact negli-
gible to the overall performance.

C Writeback Rate Calculation

Assuming that within T clock cycles, a flow has n back-to-
back packets arriving, and the writeback rate is a. We investi-
gate the performance similarity point between the blocking
scheme and RAPID by considering the maximum scheduling
latency experienced by the last packet in both approaches. Set
the latency of the blocking scheme is tb(T,n,a) and RAPID
is tR(T,n,a).

Based on the properties of the Blocking scheme, it is evi-
dent that its performance remains stable across varying write-
back rates, i.e.,

tb(T,n,a) = (n�1)T (1)

Suppose a = 1
n , i.e., only one out of n packets updates states,

the latency of the last packet being scheduled is: the cycles it
will pass through (T) and the cycles it waits to be scheduled
(n). So the time is

tR(T,n,
1
n
) = n+T (2)

When a > 1
n , we assume that the first packet updates states

and the later packets update state evenly. We can get the
latency in terms of a:

tR(T,n,a) =
i=1

Â
na
(

i
na

n+T) = naT +
na+1

2
n (3)

Combining Eq. 1 and Eq. 3, we can get the a in which two
schemes perform similarly:

a =
2T �3
2T +n

(4)

When n = 60 and T = 60, packets will experience similar
latency for both RAPID and the blocking scheme if the write-
back rate is 65%.

D Parameter Setting

Fig. 17 and Fig. 18 show the scheduler parameters under ISP
DC trace and MAWI22 trace, respectively. Based on these
two traces, we can draw similar conclusions as in Sec. 7.3.

506 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) RB. (b) PB.

(c) dTable. (d) Ring Node Buffer.

Figure 17: Scheduler Parameters under ISP DC trace.

(a) RB. (b) PB.

(c) dTable. (d) Ring Node Buffer.

Figure 18: Scheduler Parameters under MAWI22 trace.

E Different used stages on Trace 1 and 3

The system throughput and latency performance in terms of
the number of function stages under Trace 1 and Trace 3 can
be seen in Fig. 19 and Fig. 20 respectively.

(a) Throughput. (b) Latency.

Figure 19: Throughput and latency with different consistency
levels under Trace 1.

(a) Throughput. (b) Latency.

Figure 20: Throughput and latency with different consistency
levels under Trace 3.

F Different State Update Rates on Trace 1 and
Trace 3

The system throughput and latency performance in terms of
different state update rates under Trace 1 and Trace 3 can be
seen in Fig. 21 and Fig. 22 respectively.

(a) Throughput. (b) Latency.

Figure 21: Performance on different state update rates of
Trace 1.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 507

(a) Throughput. (b) Latency.

Figure 22: Performance on different state update rates of
Trace 3.

G Influence of Consistency Level under 54-
cycle and 72-cycle

The system throughput and latency performance in terms
of different consistency levels under 54-cycle and 72-cycle
functions can be seen in Fig. 23 and Fig. 24.

(a) Throughput. (b) Latency.

Figure 23: Performance on different consistency level under
54-cycle functions.

(a) Throughput. (b) Latency.

Figure 24: Performance on different consistency level under
72-cycle functions.

H Simple Example with muTable

Fig. 25 shows a simple code example (port knocking [21])
written in the enhanced P4 language. The flow state table
port_knocking stores the current state. The state can be read
out with the stateful primitive read. Then with another state-
less flow table, the packet can get the next state of the flow
and write it back to the port_knocking state table.

/* define stateful table */
muTable port_knocking {

keys = {
hdr.ipv4.src_addr;
hdr.ipv4.dst_addr;

}

 values = {
bit<8> state;

}

type = exact;
consistency = STRICT;
size = 4096;

}

table port_FSM {
keys = {

meta.cur_state;
hdr.ipv4.dst_port;

};

actions = {
get_new_state; // modify meta.new_state

};
}

/* read out the cur_state */
meta.cur_state = port_knocking.read(hdr);
/* get new_state to look up table */
portFSM.apply();
/* write back the new_state */
port_knocking.write(hdr, meta.new_state);

Figure 25: A simple port knocking example with muTable.

508 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

GRACE: Loss-Resilient Real-Time Video through Neural Codecs

Yihua Cheng1, Ziyi Zhang1, Hanchen Li1, Anton Arapin1, Yue Zhang1, Qizheng Zhang2, Yuhan Liu1,
Kuntai Du1, Xu Zhang1, Francis Y. Yan3, Amrita Mazumdar4, Nick Feamster1, Junchen Jiang1

1The University of Chicago, 2Stanford University, 3Microsoft, 4NVIDIA

Abstract
In real-time video communication, retransmitting lost packets
over high-latency networks is not viable due to strict latency
requirements. To counter packet losses without retransmis-
sion, two primary strategies are employed—encoder-based
forward error correction (FEC) and decoder-based error con-
cealment. The former encodes data with redundancy before
transmission, yet determining the optimal redundancy level
in advance proves challenging. The latter reconstructs video
from partially received frames, but dividing a frame into inde-
pendently coded partitions inherently compromises compres-
sion efficiency, and the lost information cannot be effectively
recovered by the decoder without adapting the encoder.

We present a loss-resilient real-time video system called
GRACE, which preserves the user’s quality of experience
(QoE) across a wide range of packet losses through a new
neural video codec. Central to GRACE’s enhanced loss re-
silience is its joint training of the neural encoder and decoder
under a spectrum of simulated packet losses. In lossless sce-
narios, GRACE achieves video quality on par with conven-
tional codecs (e.g., H.265). As the loss rate escalates, GRACE
exhibits a more graceful, less pronounced decline in qual-
ity, consistently outperforming other loss-resilient schemes.
Through extensive evaluation on various videos and real net-
work traces, we demonstrate that GRACE reduces undecod-
able frames by 95% and stall duration by 90% compared with
FEC, while markedly boosting video quality over error con-
cealment methods. In a user study with 240 crowdsourced
participants and 960 subjective ratings, GRACE registers a
38% higher mean opinion score (MOS) than other baselines.
We make the source codes and models of GRACE public at
https://uchi-jcl.github.io/grace.html.

1 Introduction
Real-time video communication has become an integral part
of our daily lives [29], spanning online conferences [3, 20],
cloud gaming [11, 17], interactive virtual reality [6, 18], and
IoT applications [16, 19]. To ensure a high quality of ex-
perience (QoE) for users, real-time video applications must
protect against packet losses1. However, retransmitting lost
packets across high-latency networks is not feasible due to
stringent real-time latency requirements [57].

1In this study, we use the term “packet loss” to refer to both packets
dropped in transit and those not received by the decoding deadline. Under
this definition, a video frame could experience a high packet loss rate (e.g.,
50%) even if the actual network loss rate is low [86].

Grace

Forward Error
Correction (FEC)

Error Concealment

Packet loss rate

V
id

eo
 q

ua
lit

y

Figure 1: Illustration of the video quality achieved by different
loss-resilient schemes, operating under the same bandwidth
budget, across varying packet loss rates. Actual experimental
results are shown in Figure 8.

Loss-resilient techniques generally fall into two categories.
First is encoder-side forward error correction (FEC), such as
Reed-Solomon codes [100], fountain codes [76,77], and more
recently, streaming codes [28, 86]. FEC incorporates redun-
dancy into data prior to transmission. With a redundancy rate
of R%—the percentage of redundant data relative to the total
data size—up to R% of lost data can be recovered. Beyond
that, the video becomes undecodable, rendering a sharp col-
lapse in video quality (Figure 1). Increasing R protects against
higher losses but also entails a higher bandwidth overhead,
which in turn reduces video quality. Thus, determining the
optimal R in advance poses a practical challenge.

The second category is decoder-side error concealment,
which reconstructs portions of a video frame affected by
packet losses, through handcrafted heuristics [63, 97, 115] or
neural networks [59,67,79,87,102]. Nevertheless, implement-
ing error concealment requires partitioning a video frame into
independently decodable units (e.g., slices [99] or tiles [64])
first, thus reducing compression efficiency. Moreover, since
the encoder is not optimized for loss resilience, the lost infor-
mation cannot be effectively recovered by the decoder alone.
As a result, the video quality tends to deteriorate rapidly with
increasing packet loss, as illustrated in Figure 1.

In this paper, we present GRACE, a loss-resilient real-time
video system designed to maintain the user’s quality of ex-
perience (QoE) across a wide range of packet losses. Our
key insight is that jointly optimizing the encoder and de-
coder under a spectrum of simulated packet losses consider-
ably strengthens loss resilience. To facilitate this joint opti-
mization, GRACE strategically employs a neural video codec
(NVC) [73], integrating neural networks into the core compo-
nents of a conventional video encoder and decoder. In contrast
to FEC, GRACE’s NVC is trained to handle diverse packet
losses, eliminating the need to predict a loss rate beforehand
and preventing the undecodable video under exceedingly high

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 509

https://uchi-jcl.github.io/grace.html

losses. Unlike decoder-side error concealment, GRACE jointly
trains the encoder and decoder, so that the encoder learns
to properly distribute each pixel’s information across mul-
tiple output elements in anticipation of losses, facilitating
the decoder’s frame reconstruction when packets are actually
lost. Consequently, GRACE displays a more graceful quality
degradation amid varying losses, while consistently delivering
higher video quality than previous solutions (Figure 1).

To materialize the above benefits of GRACE’s codec, our
design of GRACE addresses three system challenges.

First, to ensure loss tolerance, each packet must be inde-
pendently decodable. Existing solutions achieve this by di-
viding the frame into independently decodable units. How-
ever, this introduces a size overhead because the data in each
unit follows different distributions and thus cannot be com-
pressed efficiently. In response to this challenge, we train
GRACE’s neural encoder to regularize the values in its out-
put to conform to the same distribution, thereby reducing the
partitioning overhead. We also utilize reversible random map-
ping [8] during such partitioning, making it more amenable to
NVCs. While training GRACE under packet losses, simulating
random partitioning and packet losses is inefficient and pre-
cludes differentiability. Hence, we apply random zeroing to
the encoder’s output directly, simulating packet losses without
actually dropping packets (§3).

Second, packet losses can lead to discrepancies between the
reference frames at the encoder and decoder side, resulting in
sustained quality degradation in the decoded video stream if
synchronization is not maintained. Traditional remedies, such
as retransmission or sending a new keyframe, fall short of
seamlessly rectifying this inconsistency. GRACE introduces
an innovative protocol to adeptly realign the encoder and
decoder states without hindering video decoding. In the event
of packet loss, the decoder leverages the loss resilience of
GRACE to decode partially received packets. Simultaneously,
the decoder communicates the loss details to the encoder. This
feedback mechanism enables the encoder to swiftly adjust its
recent reference frames to match those at the decoder end,
eliminating the need for additional data transmission (§4.2).

Third, GRACE must be efficient to encode and decode video
in real-time across various devices, from laptops to mobile
phones. Existing NVCs, however, often employ expensive
neural networks, particularly for motion estimation and post-
processing. We show that by downscaling the image input for
motion estimation and simplifying post-processing, GRACE
accelerates the encoding and decoding by 4× without a no-
ticeable impact on loss resilience. Moreover, with hardware-
specific runtimes such as OpenVINO and CoreML, GRACE
attains over 25 fps on CPUs and iPhones (§4.3).

Comprehensive experiments (§5) on a diverse set of videos
and real network traces show that with the same congestion
control logic, GRACE reduces undecodable frames by 95%
and stall duration by 90% compared with state-of-the-art FEC
baselines. It also boosts the visual quality metric of SSIM by

3 dB over a recent neural error concealment scheme (§5.1).
Our IRB-approved user study with 240 crowdsourced partici-
pants and a total of 96 subjective ratings demonstrates a 38%
higher mean opinion score (MOS) for GRACE, further attest-
ing to its effectiveness. Regarding computational efficiency,
GRACE achieves more than 25 fps on popular mobile devices
(e.g., iPhone 14 Pro), meeting the real-time requirement.

Our contributions are summarized as follows. (i) We
present GRACE, which, to the best of our knowledge, rep-
resents the first effort to jointly train a neural video en-
coder and decoder under a spectrum of packet losses,
aiming to improve loss resilience in real-time video (§3).
Different from other recent ML-based real-time video sys-
tems [107, 108, 114] that use ML-based rate adaptation to
minimize packet loss, GRACE uses ML to make the video
codec itself resilient to packet loss. (ii) We build the end-to-
end video system to address the practical challenges associ-
ated with integrating a new NVC, developing optimization
techniques related to packetization, encoder/decoder state syn-
chronization, and runtime efficiency (§4).

2 Background
2.1 Real-time video coding

To help explain GRACE’s design, we first introduce some key
concepts in real-time video coding and streaming.

The sender encodes video at a specific frame rate and bi-
trate, e.g., with 25 fps (frames per second) and 3 Mbps, the
encoder generates a 15 KB frame on average every 40 ms. An
encoded video is composed of groups of consecutive frames,
called a group of pictures (GoP). Each GoP starts with an
I-frame (or key-frame), followed by multiple P-frames (or
inter-frames)2. I-frames are independently encoded without
referencing other frames, while P-frames encode only the dif-
ferences relative to previous reference frames. In real-time
video, the majority of frames are P-frames to minimize frame
sizes, so our discussion here focuses on P-frames. Figure 2
shows the workflow of P-frame encoding and decoding. Given
a new frame and a reference frame, the encoder (1) calculates
motion vectors (MVs) and residuals for each macroblock
(MB), e.g., 16×16-pixel samples, (2) transforms and quan-
tizes the MVs and residuals, (3) performs entropy encoding
on the transformed data, (4) divides the entropy-encoded data
into packets, and (5) transmits these packets with congestion
control, such as GCC [31]. Correspondingly, the receiver de-
packetizes and decodes the received data to reconstruct each
frame from the received packets.

To reduce frame delay, which denotes the time from frame
encoding to rendering, real-time video clients (e.g., WebRTC)
commonly make two choices that differentiate them from
video streaming (e.g., Netflix, ESPN Live):

2On-demand video also uses B-frames (bidirectional predicted frames),
which refer to both past and future P-frames. However, real-time video rarely
uses B-frames in order to render frames as soon as possible.

510 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Motion
estimation
& residual
calculation

Video Encoder

Transformation
& quantization

Entropy
coding Packetization Rate

adaptation

Network
Current

frame

Packets

Congestion control

Reference
frame

Target bitrate

Figure 2: A typical workflow of video frame encoding.
• Real-time video employs notably shorter (tens of ms)

buffers, as opposed to video streaming that utilizes several
seconds of playback buffer for on-demand or live content.
Thus, retransmission delay is difficult to conceal with such
short buffers, especially in high-latency networks.

• To maintain a short buffer, real-time video sends each
frame in a burst and decodes it as soon as its packets are re-
ceived. As a result, any lost packets, whether due to drops
or queuing, can affect frame decoding. In contrast, stream-
ing video is transmitted in chunks (each with hundreds of
frames) over the HTTP/TCP protocol.
Ideally, congestion control and bitrate adaptation (e.g.,

GCC [31], Salsify [45], and NADA [116]) are designed to
handle bandwidth fluctuations, thereby avoiding congestion-
induced packet losses. However, predicting bandwidth fluctua-
tions in advance is challenging, making loss-resilient methods
necessary when decoding frames under packet loss.

We define packet loss per frame as any packets not received
before the receiver is expected to decode the frame. In other
words, even if a packet is not dropped, it can still be counted
as packet loss if it arrives too late. It is important to note
that our notion of packet loss differs from network-level loss.
Even with low network loss (which typically remains below
1%), real-time video may still encounter a high packet loss
rate (e.g., over 50%) in certain frames, as corroborated by
recent research in this space [35, 36, 86].

2.2 Related work
Various loss-resilient schemes have been studied.
Forward error coding (FEC) adds redundancy at the en-
coder before the data is sent to the network. This is also
known as error-resilient channel coding. Examples include
Reed-Solomon codes, LDPC [77], fountain and rateless
codes [33,76], streaming codes [28,86], and recent ones based
on DNNs [32, 50]. There are also hierarchical and multilevel
FEC [94, 95], which organizes FEC into multiple layers and
protects each layer with different redundancies. FEC is also
used to protect frame metadata or the base layer in SVC (also
known as UEP [25,113]). However, in order to pick a suitable
rate of redundancy, they need to estimate how many packets
will be lost in advance. If the loss rate is underestimated, the
redundancy will be insufficient to recover missing packets.
On the other hand, adding excessive redundancy results in a
higher bandwidth overhead and, in turn, a lower video quality.
Postprocessing error concealment reconstructs missing data
in lost packets at the decoder. These methods generally con-

sist of two components. First, the encoded packets should
be decodable when only a subset of the packets is received.
This is accomplished through INTRA-mode macroblock en-
coding [38], slice interleaving [56], or flexible macroblock
ordering [66]. However, these approaches often compromise
the encoder’s ability to exploit redundancies across neigh-
boring MBs, as adjacent MBs are either encoded in INTRA
mode or split into different packets (in a checkerboard man-
ner [64, 66] or based on ROI detection [93]). Therefore, these
methods impair compression efficiency, causing the encoded
frame size to inflate by 10%–50% [42, 64, 74, 99].

Then, the decoder reconstructs lost data based on the re-
ceived packets, using classic heuristics (e.g., motion vectors
interpolation [63, 97, 115] and intra-block refreshing [64] in
H.264) or neural-network-based inpainting [59,67,79,87,102].
Recent work [67] use vision transformers [27, 43] to directly
predict the missing bits in the lost packets before frame de-
coding. However, due to the encoder’s lack of awareness of
the decoder’s postprocessing, each encoded packet contains
limited redundancy and information that could aid in recon-
structing missing motion vectors or residuals. As a result, the
reconstruction process is forced to guess the missing data
when a packet is lost. Even recent techniques still see a no-
table drop in video quality (e.g., PSNR drops from 38 dB to
25 dB at a 20% packet loss [81]).

GRACE takes a different approach than FEC and error
concealment. Unlike error concealment that relies only on
decoder-side postprocessing, GRACE jointly optimizes (via
training) both the (neural) encoder and decoder. Unlike FEC
that requires a pre-determined redundancy rate, GRACE’s
codec is optimized across a range of packet loss rates.

Other schemes: While there exist other techniques that might
help mitigate the impact of packet loss, their primary goals are
not loss resilience. Nevertheless, for the sake of completeness,
we discuss some notable schemes here and also quantitatively
compare GRACE against several of them in §5.

Scalable video coding (SVC) [40, 88, 89] and fine-
granularity scalability (FGS) [68, 75] aim to optimize rate-
distortion (RD) tradeoff—video quality achieved by a single
encoded bitstream under different received bitrates. SVC en-
codes a video in multiple quality layers and sends data layer
by layer. This is feasible for on-demand video [40, 72] but
in real-time video, all packets of a frame are sent together to
reduce frame delay (§2.1). When a packet loss occurs to a
base layer, it will block the decoding of any higher layers. For
this reason, SVC is rarely used to improve unicast real-time
video (though it is used in multicast video to serve users with
heterogeneous network capacities [88]).

There are a few alternatives to postprocessing error conceal-
ment. For instance, when loss occurs, Salsify [45] reverts to an
older but reliably received frame—instead of the last frame—
as the reference frame, so the decoder can safely skip a loss-
affected frame without hurting subsequent frames. However,
it needs more bits to encode the same quality than using the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 511

last frame as the reference frame, e.g., the P-frames between
every other frame are 40% greater in size than between two
consecutive frames. Similar limitations apply to long-term
reference frame (LTR) [112], which makes each P-frame in-
dividually decodable if the long-term reference is received,
regardless of packet loss in between or not. Voxel [83] skips
a loss-affected frame if the encoder indicates that skipping
the frame does not affect video quality. It works well for on-
demand video where B-frames can be safely skipped, and the
impact of a skipped frame will stop at the next chunk within a
few seconds. Unfortunately, neither applies to real-time video.

Recently, deep learning has been used in super resolu-
tion [61, 92, 106], SVC [40, 75], and postprocessing error
concealment based on CNNs [59, 79, 87, 102] or transform-
ers [44, 67]. Super-resolution can reduce packet losses by
sending the video in a lower bitrate and enhancing the video
quality on the receiver side. However, it still requires retrans-
missions to rectify frames impaired by packet loss. For SVC
and postprocessing error concealment techniques, the afore-
mentioned limitations inherent to these approaches remain,
despite the use of deep learning.

Loss resilience has also been studied under specific as-
sumptions, such as availability of multi-path [41, 80], early
retransmission driven by router feedback [117], low-latency
networks [85], and availability of video gaming states [52, 53,
101]. We do not make special assumptions in this work.

2.3 Neural video codec background
Our work is based on neural video codecs (NVCs), which use
learned neural networks (NNs), instead of handcrafted logic,
to encode and decode video frames [40,55,73]. Recent NVCs
have demonstrated comparable or even better compression
efficiency than traditional video codecs for two reasons:
• They leverage logical components commonly found in

traditional video codecs, such as motion estimation, warp-
ing, and transformative compression (§2.1), replacing their
handcrafted heuristics with NNs, which can learn more
sophisticated algorithms from data.

• These NVCs exhibit remarkable generalization across a
variety of video content because of training on a large
corpus of videos (e.g., Vimeo-90K [103]). This capability
to generalize is also observed in our evaluation (§5).
Despite their exceptional compression efficiency, NVCs

have received little attention so far in the context of loss
resilience. However, we believe NVCs have the potential to
achieve greater loss resilience for the following reasons.
• First, unlike traditional codecs that map each pixel (or

macroblock) to a distinct motion vector/residual, the highly
parameterized NN of NVC’s encoder can be trained to map
the information of each pixel to multiple elements in output
tensor, potentially making lost information recoverable.

• Second, the NVC’s decoder, comprising convolutional
NNs, can be trained to decode not only a direct encoder out-

put but also tensors that resemble those with perturbations
such as random noise or zeroing. In contrast, traditional
codecs might fail to decode under similar circumstances.
Nevertheless, NVCs as is still lack tolerance to packet loss.

Their standard training implicitly assumes that the encoder’s
output is identical to the decoder’s input, so it does not prepare
the NVC to handle data loss between the encoder and decoder.
Meanwhile, entropy encoding used in conventional NVCs
compresses the entire encoder output as a single bitstream,
and thus any packet loss will render it undecodeable.

GRACE is an attempt at transforming NVCs to be re-
silient to different packet loss rates. Our work is related to
an emerging line of work on deep joint source-channel cod-
ing [30, 37, 65], which trains an NVC to encode images in
a representation robust to signal noises. GRACE differs with
them on two key fronts. First, GRACE handles video frames,
which cannot be treated separately as individual images be-
cause any error in one frame can propagate to future frames.
Second, GRACE handles packet losses rather than physical-
layer signal noises, which can be naturally modeled by differ-
entiable linear transformations [30, 51].

In short, traditional error-resilient methods struggle to main-
tain video quality across a range of packet losses. Encoder-
based forward error coding (FEC) optimizes quality only for
a pre-determined maximum loss rate, whereas decoder-based
postprocessing error concealment suffers from suboptimal
quality especially at high loss rates. On the other hand, exist-
ing NVCs have the potential to tolerate data perturbations but
are not explicitly designed to handle packet losses.

3 Training GRACE’s neural video codec
This section outlines the training process of GRACE’s neural
video codec (NVC). At a high level, GRACE jointly trains the
neural encoder and decoder under a range of packet losses
to achieve enhanced loss resilience.

Basic NVC framework: Figure 3 depicts the workflow of
GRACE’s encoder and decoder (excluding entropy coding and
packetization). The encoder follows a similar logical process
as a traditional video encoder (Figure 2). It first employs a
neural network (NN) to estimate motion vectors (MVs) and
encodes them into a quantized tensor using an NN-based
MV encoder. Subsequently, the tensor is decoded back into
MVs to match those received by the decoder. Next, the en-
coder applies these MVs to the reference frame to generate
a motion-compensated frame, and uses a frame smoothing
NN to increase its similarity with the current frame before
calculating the residual differences between them. Finally,
an NN-based residual encoder encodes the residuals into an-
other quantized tensor. When the encoded MV tensor and the
encoded residual tensors are received by the decoder, they
go through the NN-based MV decoder and residual decoder
jointly trained with their respective encoders. Appendix A.1
provides more details of the tensors and NNs.

Although both the encoder and decoder of GRACE contain

512 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Motion
estimator

MV
encoder

MV
decoder

Motion
compensation

Residual
encoder

Current
frame

Motion vector
(MV)

_ Residual
decoder

MV
decoder

Motion
compensation

Decoded
frameResidual

Reference
frame

Coded
residual

Coded MV

Coded
tensor

Grace DecoderGrace Encoder

Frame
smoothing

Frame
smoothing

Reference
frameNN modules

non-NN modules

__

Figure 3: Workflow of GRACE’s neural video codec.

𝐲~𝑷 𝐲 𝒇𝝓 𝐱

Random masking 𝐱& = 𝒈𝜽(𝐲)

𝒈𝜽

Reconstructed
𝐱

𝒇𝝓

Original

301
604
980

321
654
987

𝐲: Decoder input𝒇𝝓(𝐱): Encoder output

Figure 4: Unlike traditional NVC training that assumes no
data loss between the encoder and decoder, GRACE applies

“random masking”—setting a fraction of randomly selected
elements to zeros—to the encoder’s output.

multiple steps, they can be viewed as two differentiable mod-
els. We denote the encoder by fφ (with its NN weights φ) and
the decoder by gθ (with its NN weights θ). The encoder en-
codes a frame x into a coded tensor y= fφ(x), and the decoder
decodes y into a reconstructed frame x̂ = gθ(y). Traditionally,
NVC seeks to minimize the following loss function:

Ex[D(gθ(y),x)︸ ︷︷ ︸
Pixel error

+α· S(fφ(x))︸ ︷︷ ︸
Encoded size

], where y = fφ(x)︸ ︷︷ ︸
No data loss

(1)

Here, D(x̂,x) is the pixel-level reconstruction error of the
decoded frame x̂ (by default, L2-norm3 of x̂− x), and S(y)
is the entropy-coded data size of y in bit-per-pixel (BPP).
The parameter α governs the size-quality tradeoff: a higher
α leads to a smaller frame size, S(x), but higher distortion
(i.e., poorer quality) of the reconstructed frame x̂. As all the
functions— fφ, gθ, D, and S (approximated by a pre-trained
NN [73])—are differentiable, the NN weights φ and θ can be
trained jointly via gradient descent to minimize Eq. 1.
Simulating packet loss during training: We begin by pre-
training an NVC using Eq. 1, which we refer to as GRACE-P,
and then fine-tune it by introducing simulated packet losses in
the following manner. GRACE simulates the impact of packet
losses by randomly “masking”—zeroing selected elements—
in the encoder’s output, fφ(x), as shown in Figure 4. The
fraction of zeroed elements is dictated by a distribution,
P(y| fφ(x)), which represents the probability distribution of
the resulting tensor y after random masking fφ(x). For in-
stance, with a 33% loss rate, P(y| fφ(x)) is the probability
of y arising from the random masking of 33% of elements
in fφ(x), as illustrated in Figure 4. Formally, GRACE jointly

3Note that the L2-norm (or mean squared error) of x̂ and x is closely
related to the PSNR of x̂. To avoid this bias, our evaluation in §5 measures
the quality improvement in SSIM and subjective user studies.

321
654
987

301
604
980

3
4
8

2
5
7

1
6
9

3
4
8

1
6
9

321
654
987

301
604
980

3
4
8

2
5
7

1
6
9

3
4
8

1
6
9

321
654
987

301
604
980

Random
partitioning Sub-tensors Merging

Packets

NN
Encoder

Coded tensor

3
4
8

2
5
7

1
6
9

Lost a packet

3
4
8

1
6
9

NN
Decoder

Original
frame

Decoded
frame

3
4
8

3
4
8

0
0
0

Figure 5: GRACE’s reversible randomized packetization. The
tensor elements mapped to a lost packet will be set to zeros.

trains the encoder and decoder NNs to minimize:

Ex[D(gθ(y),x)+α·S(fφ(x))], where y ∼ P(y| fφ(x))︸ ︷︷ ︸
Simulate packet loss

(2)

The key difference from the traditional objective in Eq. 1
is the distribution function P (highlighted in blue), which
captures the distribution of decoder input under packet loss.

To train the weights of φ and θ under the random perturba-
tions of P, we employ the REINFORCE trick [62] (commonly
used in reinforcement learning [84, 109]) to approximate the
gradient through Monte Carlo sampling. A more detailed
mathematical formulation is included in Appendix A.2.
Choosing simulated packet loss rates: To prepare GRACE’s
NVC to handle a wide range of loss rates, it is essential to
simulate such losses in training. One approach is to select
loss rates uniformly at random from [0, 100%) and apply
them to the encoder output fφ(x). However, the resulting
NVC turns out to perform poorly, especially when dealing
with low loss rates. Notably, even when high loss rates (e.g.,
over 80%) are introduced only in a small fraction of training
samples, we empirically observe a significant drop in video
quality under low loss rates while the quality improvement
under high loss rates is only marginal. This phenomenon
could be attributed to the encoder’s tendency to incorporate
more redundant information to prepare for high loss rates,
adversely affecting video quality at low loss rates. Therefore,
a practically effective distribution should cover both low and
high loss rates, with a slight emphasis on low losses. Our final
choice of loss rate distribution is described in §4.4.
Packetization during inferencing: Recall that during train-
ing, we simulate packet loss by applying random masking

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 513

rather than replicating the actual packetization and packet
dropping process. Therefore, it is important to ensure that
the impact of actual packet loss during runtime mirrors the
effects of random masking. To achieve this, GRACE employs
reversible randomized packetization as shown in Figure 5.
GRACE’s sender first splits the encoded tensor of a frame
(both the encoded MVs and encoded residual) into multiple
subtensors using a uniform random mapping. We use a re-
versible pseudo-random function to generate the mapping so
that the receiver can correctly recover the original tensor with
the same random seed. Specifically, we map the ith element to
the j = (i · p mod n)th packet at the [(i · p− j)/n]th position,
where n is the number of packets and p is a prime number.
If a packet is lost, the decoder assigns zero to each element
whose position is mapped to the lost packet. Consequently, an
x% packet loss rate has the effect of randomly zeroing x% of
the values in the encoder’s output tensor. 4 §4.1 explains how
each subtensor is losslessly compressed via entropy encoding
into the bitstream of a packet, but this lossless compression is
bypassed during training for efficiency purposes.
Why is GRACE more loss-resilient? Unlike decoder-side
error concealment, the joint training ensures that the encoder
is also aware of packet losses. Empirically, we observe that
GRACE’s encoder tends to produce more non-zero values
in its output than an NVC pre-trained on the same dataset
but without simulated packet loss. This increase in non-zero
values can be viewed as more “redundancy,” as the encoder
embeds each pixel’s information into multiple elements in
its output tensor, assisting the decoder in discerning loss-
affected elements (from intended zeros) and reconstructing
video better under packet losses. §5.4 empirically shows that
training only the decoder with simulated loss cannot reach
the same level of loss resilience (Figures 20 and 29).

4 Real-time video framework
With the training techniques detailed in §3, GRACE’s NVC
acquires the ability to withstand simulated packet losses. This
section describes the integration of this NVC into a real-time
video delivery framework: GRACE entropy-encodes the neu-
ral encoder’s output into packets (§4.1), streams frames under
packet loss (§4.2), and accelerates encoding and decoding
across various devices (§4.3).

4.1 Entropy encoding the encoder’s output
As mentioned in §3, GRACE splits the encoder’s output into
subtensors using a reversible-random function, with each sub-
tensor corresponding to an individual packet. Similar to clas-
sic codecs such as H.265 and VP9, each subtensor undergoes
lossless compression into a bitstream through arithmetic (en-
tropy) coding. An arithmetic encoder uses an underlying sym-

4That said, such reversible random packetization requires a frame con-
taining multiple packets. Therefore, GRACE’s encoder controls the packet
size such that each frame has at least 2 packets, since real-time video packets
don’t need to be as large as 1.5 KB [90] in practice.

bol distribution to compress the values in the tensor. Instead of
relying on hand-tuned heuristics (e.g., CABAC [4] in H.265),
we adopt the method described in [73], training a distribution
estimator in conjunction with the neural encoder and decoder
to better estimate the symbol distribution of each encoder out-
put. Since GRACE decodes individual packets independently,
the symbol distribution of a packet must be sent as part of the
packet to the decoder, which implies that the size overhead of
symbol distributions increases with more packets.

GRACE reduces this overhead by employing a simpler sym-
bol distribution that requires fewer bits to store within each
packet. Specifically, GRACE trains the neural encoder to reg-
ularize the distribution of values in each encoder’s output
channel (224 channels in total) to conform to a zero-mean
Laplace distribution. In doing so, the symbol distribution
only needs to store the variance for each channel while still
effectively compressing the encoder’s output tensor. As a re-
sult, the symbol distribution now requires only ∼50 bytes per
packet to store, a reduction from 40% of the packet size to
5%, without notably affecting the compression efficiency.

4.2 Streaming protocol
Basic protocol of GRACE: The encoder of GRACE encodes
new frames at a fixed frame rate. When any packet for the next
frame arrives, the decoder immediately attempts to decode
the current frame. Unless all packets of the current frame
are lost (which triggers a request for resending the frame),
the decoder will decode the current frame using whatever
packets have been received. We refer to a frame decoded using
partially received packets as an incomplete frame. However,
while GRACE can decode incomplete frames with decent
quality, using these incomplete frames as reference images
for decoding future frames causes the encoder’s and decoder’s
states to be “out of sync,” i.e., the next frame will be decoded
based on a different reference image than the one used during
encoding. This inconsistency causes error to propagate [96]
to future frames even if all their packets arrive without loss.

One strawman solution to resolve error propagation is to
synchronize the encoder and decoder on each frame. How-
ever, the encoding of each frame would be blocked until it
knows which packets are used to decode the previous frame.
This synchronization delay would render pipeline encoding,
transmission, and real-time decoding infeasible.

Optimistic encoding with dynamic state resync: GRACE
employs two strategies to prevent out-of-sync states from
blocking the encoder or the decoder.

First, the encoder optimistically assumes all packets will be
received and encodes frames accordingly, taking advantage
of GRACE decoder’s tolerance to packet losses for a small
number of frames. For instance, §5.2 shows that GRACE is
resilient against packet loss across 10 consecutive frames.

Second, when receiving an incomplete frame, the decoder,
without stopping decoding new frames, requests the encoder
to dynamically resynchronize the state in the following man-

514 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 6

5’ 6’

7 8

7’

9

9’6’’7’’8’’

5’ 6’’ 7’’ 8’’ 9’

Frames affected by out-of-sync coding state
Re-

sy
nc

Re-synced
frame

Packet loss

Encoder
(sender)

Decoder
(receiver)

Original frame

Encoded data

Decoded frame

Figure 6: Packet loss introduces discrepancies between the
encoder’s and the decoder’s reference frames. GRACE’s state
resync efficiently rectifies these discrepancies without causing
interruptions for either the encoder or the decoder.

ner. Upon receiving a resync request, the encoder re-decodes
the recent frames starting from the incomplete frame, using
only the subset of packets received by the decoder (as indi-
cated in the resync request), to compute the latest reference
frame used by the decoder. As illustrated in Figure 6, if the
encoder is about to encode the 9th frame and learns that the
6th frame has been decoded using partially received packets,
it then quickly re-decodes frames from the 6th to the 8th. The
8th frame now aligns with the receiver’s observation and thus
is used as the reference frame for encoding the 9th frame.

A potential speed bottleneck is the re-decoding of frames
during state resynchronization (e.g., the 6th to 8th frames
in Figure 6). Fortunately, the encoder can re-decode these
frames much faster than the regular decoding process by run-
ning only the motion decoder and the residual decoder. The
insight is two-fold. First, motion estimation, motion encoding,
and residual encoding can be skipped because these frames
have already been decoded once at the encoder side, so the
re-decoding only needs to estimate the incremental changes
caused by the lost packets. Second, while skipping the frame
smoothing NN may impact the compression efficiency of the
last frame (e.g., the 9th frame in Figure 6), it only affects a
single frame since the next frame will still be optimistically
encoded. Appendix B.1 provides more details on the dynam-
ics re-decoding, and §5.4 analyzes its runtime overhead.

GRACE’s approach of optimistic encoding and dynamic
state resynchronization capitalizes on a key advantage of
GRACE’s NVC—it does not need to skip or block the de-
coding processing for loss-affected frames; instead, it can
decode them with decent quality while the encoder’s and de-
coder’s states are out-of-sync for a few frames, thus reducing
frame delay. This approach differs from NACK (negative ac-
knowledgement) in WebRTC [54], which requires blocking
the decoding of loss-affected frames, and from Salsify’s state
synchronization [45], which skips all loss-affected frames.

4.3 Fast coding and bitrate control
Fast encoding and decoding: Using a standard GPU runtime
with PyTorch JIT compiling [14], GRACE meets the latency
requirement for real-time video communication on GPUs.
As shown in §5.4, GRACE encodes and decodes 720p video
at 31.2 and 51.2 fps respectively, on an NVIDIA A40 GPU

(a) Grace-Lite’s workflow: use downscaled image for motion
prediction and skip the frame smoothing NN.

(b) Accurate bitrate control: When the frame size is too large or
small, only the residual requires re-encoding.

Motion estimator, MV
encoder/decoder, Motion

compensation, Frame smoothing

Residual
encoder

Encoded size is larger
or much smaller than
the target frame size?

Residual
encoder
Residual
encoder

Yes
Re-encode residual

No

Motion estimator
(4x faster)

MV
encoder

MV
decoder

Motion
compensation

Residual
encoder

Downscale

Frame
smoothing
(skipped)

Figure 7: GRACE adapts the NVC for efficient execution on
CPUs and accurate bitrate control.

(5× cheaper and 3× slower than A100). However, GRACE’s
NVC remains too heavy to run on laptops with CPUs and
mobile phones. To address this, we develop GRACE-Lite, a
lightweight version of GRACE that incorporates three opti-
mizations (Figure 7a): (i) motion estimation NN operates on
2× downsampled frames, speeding up the motion estimation
by 4×; (ii) frame smoothing NN is skipped; (iii) the floating
point precision in NNs is reduced from 32 bits to 16 bits,
making the inference 2× faster. These optimizations allow
GRACE to encode and decode frames on an iPhone 14 Pro at
26.3 and 69.4 fps when compiled with the CoreML [5] library,
while maintaining similar loss resiliency as GRACE (§5.4).

Accurate bitrate control: Video encoders are expected to
encode frames to match the target frame sizes. Similar to Sal-
sify [45], GRACE encodes a frame multiple times at different
quality levels but in a faster way than encoding the frame from
scratch each time (illustrated in Figure 7b). To achieve this,
GRACE trains multiple neural encoders, each with a different
α (in Eq. 2) to enable different quality-size tradeoffs. During
the training phase, adjustments are confined to the residual
encoders and decoders, leaving other NN weights fixed. Thus,
once a frame is encoded, both the motion vector and residual
are reusable, with the residual undergoing further encoding
through different encoders, each producing a different frame
size. This procedure, taking under 3 ms, can encode a frame
multiple times using residual encoders with distinct α values.
In practice, residual sizes can vary from 0.1× to 10× the MV
size, allowing GRACE to cover a wide range of bitrates (§5.2).

4.4 Implementation of GRACE

GRACE is implemented in ∼2000 lines of Python code, in-
cluding its NVC, packetization, bitrate adaptation, and state
synchronization protocol.

Training: GRACE’s NVC model architecture is based on
a recent work called DVC [73]. We fine-tune GRACE from
the pre-trained DVC model on the Vimeo-90K [103] dataset,
under the following distribution of simulated per frame packet
loss (§2.1): with an 80% probability, the loss rate is set to
0%; with a 20% probability, the loss rate is randomly selected

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 515

from {10%, 20%, 30%, 40%, 50%, 60%} 5. By using this loss
distribution, GRACE can be resilient to a wide range of loss
rates without assuming the underlying network loss pattern.
To achieve accurate bitrate control (§4.3), we first fine-tune
an NVC with a default α (2−7) using Eq. 2. Subsequently, we
perform fine-tuning with 11 α values spanning from 2−8 to
2−15, specifically to refine the residual encoder and decoder
for bitrate adaptation. With a learning rate of 10−4, each fine-
tuning step takes about 1–2 hours on an Nvidia A40 GPU.
Delivery: We use torchac [13] for entropy encoding and de-
coding. GRACE utilizes PyTorch JIT compilation [14] when
running on GPUs, while GRACE-Lite leverages CoreML [5]
for inferencing on mobile devices. Both GRACE and GRACE-
Lite operate using 16-bit floats at runtime. GRACE uses
BPG [21] to encode and decode I-frames every 1000 frames,
and can be integrated with any congestion control (CC) al-
gorithms. Due to space limitations, we provide more details
about I-frames and CCs in Appendix B.2 and B.3.

5 Evaluation
Our key findings are as follows:
• Loss resilience: GRACE’s quality under no packet loss

is on par with H.264/H.265 and gracefully declines with
higher loss rates. Under 20–80% packet loss, GRACE im-
proves the SSIM by 0.5–4 dB compared with other loss-
resilient baselines across diverse videos.

• Better video smoothness: Under bandwidth fluctuations
in real network traces, GRACE reduces the number of video
freezes over 200 ms by up to 90%, tail frame delay by up
to 2–5×, and non-rendered frames by up to 95%. Our user
study also confirms a 38% rated score for GRACE.

• Speed: Our implementation of GRACE encodes/decodes
480p video at 65.8 fps/104.1 fps and 720p video at
33.6 fps/44.1 fps using Nvidia A40 GPU, 1.5–5× faster
than recent neural video codecs [40, 73, 91, 105]. With the
optimization detailed in §4.3, GRACE can encode/decode
720p video at 26.2 fps/69.4 fps on an iPhone 14 Pro with
marginal quality degradation.

5.1 Setup
Testbed implementation: Our testbed 2 Nvidia A40 GPUs
to run the video encoding and decoding with GRACE’s NVC
(each using one GPU). We use a packet-level network simula-
tor to compare GRACE with baselines under various network
conditions. The simulator uses a configurable drop tail queue
to mimic congestion-induced packet losses and uses a token
bucket scheme to simulate bandwidth variation every 0.1 sec-
onds. Google Congestion Control (GCC) [31], a standard
WebRTC algorithm widely used in real-time video applica-
tions, is used to determine the target bitrate of video codecs

5The packet loss rate should follow a uniform distribution covering a
continuous range of losses (e.g., [0, 60%]). However, we empirically observe
that using a discrete loss rate distribution makes the model converge faster
without sacrificing the loss resilience.

Dataset
of

videos Length (s) Size Description

Kinetics 45 450
720p
360p

Human actions and
interaction with objects

Gaming 5 100 720p PC game recordings

UVG 4 80 1080p
HD videos (human,
nature, sports, etc.)

FVC 7 140 1080p In/outdoor video calls

Total 61 770

Table 1: Dataset description.

at each frame. It is worth noting that GCC is responsive to
bandwidth drops and packet losses, as it tends to send data
conservatively to avoid video delays and stalls caused by
packet losses. The simulator includes encoding, packetization,
rate adaptation, and decoding. We set the default frame rate
at 25 fps (on par with typical RTC frame rates [78]), though
GRACE can encode at a higher frame rate (§5.4). Instead of re-
playing stationary traffic/loss traces, the testbed can simulate
dynamic packet loss rates under real-world bandwidth fluctu-
ations. It records each decoded frame and its delay, including
encoding, transmission, and decoding. We have confirmed our
simulator’s accuracy regarding frame delay via a real-world
validation experiment in the appendix (§C.3).

Test videos: Our evaluation uses 61 videos randomly sam-
pled from four public datasets, summarized in Table 1. The
total content length is 770 seconds where each video is 10–30
seconds long, matching the setup of similar works [39,45,86].
Importantly, these videos are obtained from entirely differ-
ent sources than the training set, and they span a range of
spatial complexity and temporal complexity (detailed in Ap-
pendix C.4), as well as multiple resolutions. This diversity
allows us to assess GRACE’s average performance across dif-
ferent contents and study how content affects its performance.

Network traces: We test GRACE and the baselines on 16
real bandwidth traces, eight of which are LTE traces from
the Mahimahi network-emulation tool [9,82], and the rest are
broadband traces from FCC (July 2021) [10]. The traces are in
the format of bandwidth timeseries. The bandwidth fluctuates
between 0.2 Mbps to 8 Mbps in the traces. By default, we set
the one-way propagation delay to 100 ms and the queue size
to 25 packets. We also vary these values in §5.3.

Baselines: We employ H.265 (through FFmpeg v4.2.7) as
the underlying video codec for all baselines (except for NVC-
based ones) since H.265 is recognized with comparable or bet-
ter compression efficiency than VP8/9 and H.264 [15, 49] (as
confirmed in Appendix C.1). We compare GRACE against a
range of loss-resilient baselines that cover various approaches
outlined in §2.2 (more details in Appendix C.2).

• Forward error correction: We use Tambur [86], a state-
of-the-art FEC scheme based on streaming codes [28]. Its
redundancy rate dynamically adapts based on the mea-

516 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

12

15

18

0 0.2 0.4 0.6 0.8

S
S
IM
(d
B
)

Loss ratio

8
10
12
14

0 0.2 0.4 0.6 0.8

S
S
IM
(d
B
)

Loss ratio

12

14

16

0 0.2 0.4 0.6 0.8

S
S
IM
(d
B
)

Loss ratio

14
16
18

0 0.2 0.4 0.6 0.8

S
S
IM
(d
B
)

Loss ratio

(a) Kinetics dataset (b) Gaming dataset (c) UVG dataset (d) FVC dataset
Packet loss ratePacket loss rate Packet loss ratePacket loss rate

Figure 8: Video quality achieved by different schemes under varying packet loss rates at the same encoded bitrate (6 Mbps).

sured packet loss in the preceding 2 seconds. Compared
with regular FEC, streaming codes reduce the number of
non-decodable frames when transmitting an equivalent
amount of parity packets. We have also validated that Tam-
bur outperforms WebRTC’s default FEC scheme.

• Decoder-side neural error concealment: We use
ECFVI [59], an NN-based error concealment method
shown to outperform previous techniques relying on mo-
tion estimation recovery [87] or inpainting [34].6 To ensure
each packet is independently decodable, we apply flexible
macroblock ordering (FMO) [42] to split the frame into
64×64-pixel7 blocks and map them randomly to packets.
This results in a 10% increase in the encoded frame size,
in line with previous findings [64, 74, 99]. After decoding
an incomplete frame, ECFVI uses NNs to estimate miss-
ing motion vectors and enhance the reconstructed frame
through inpainting.

• Scalable video coding (SVC): We implement an idealized
SVC, designed so that when the first k layers arrive, it
achieves the same quality as that of H.265 with the same
number of received bytes. This idealized implementation
surpasses the state-of-the-art NN-based SVC [40]. We also
add 50% FEC to protect the base layer for SVC, following
a common practice in real-time video applications [60].

• Selective frame skipping: Salsify [45] skips frames af-
fected by loss at the decoder side after the encoder receives
the packet loss indication and resends a new P-frame using
the last fully received frame as a reference. Voxel [83]
employs selective frame skipping to mitigate video re-
buffering and improve the user’s QoE.
We make another idealized assumption in favor of SVC,

Salsify, and Voxel. We assume that their codec’s output bitrate
on every frame perfectly matches the target bitrate determined
by the congestion control algorithm, i.e., no overshoots or
undershoots. This idealization makes these baselines perform
slightly better than they would under real-world conditions.

Variants of GRACE: To highlight the impact of different
design choices, we evaluate GRACE-P and GRACE-D. They

6A parallel effort, Reparo [67], demonstrates effective error concealment
for a particular video type (talking head), but it lacks comparisons with any
NN-based baselines and does not provide a public codebase for testing.

7A smaller block size such as 16×16 can greatly inflate the frame
size [64, 74, 99], while a larger block size such as 256×256 hinders informa-
tion recovery upon packet loss. We empirically choose the 64×64 block size
to balance between frame size and quality.

are trained the same way as GRACE, except that GRACE-
P does not use simulated loss while GRACE-D freezes the
encoder NN weights (i.e., fine-tuning only the decoder NN
with simulated loss). They represent alternative ways to simu-
late packet losses during training. We also test GRACE-Lite,
which incorporates the optimizations described in §4.3.

Furthermore, we present the quality improvement achieved
by the state-of-the-art super-resolution (SR) model [70] when
applied to GRACE and other baselines. It is important to note
that SR can be applied to any decoded frames, making it or-
thogonal to GRACE’s design space. Details of this experiment
are provided in Appendix C.8.

Metrics: Following prior work on real-time video communi-
cation [26, 45, 47, 48, 86], we measure the performance of a
video session across three aspects.
• Visual quality of a frame is measured by SSIM. Following

recent work [45, 104], we express SSIM in dB, calculated
as −10log(1−SSIM) across all rendered frames.

• Realtimeness is measured by the 98th percentile (P98)
of frame delay (time elapsed between the frame’s encod-
ing and decoding), and non-rendered frames (either unde-
codable due to insufficient FEC protection or exceeding
400 ms after the frame is encoded).

• Smoothness of the video is measured by video stall, defined
as an inter-frame gap exceeding 200 ms, following the
industry convention [78]. We report the average number
of video stalls per second and the ratio of video stall time
over the entire video length.

5.2 Compression efficiency and loss resilience

Loss resilience: In real world, packet loss per frame (defined
in §2.1) can span a wide range from 0 to over 80% [86].
Figure 8 compares GRACE’s video quality with the baselines
under varying packet loss rates across different test video
sets. For a fair comparison, we fix the encoded bitrate of all
baselines at 6 Mbps (with actual differences under 5%) while
ensuring that GRACE’s encoded bitrate never exceeds that
of the baselines. On average, the quality of GRACE drops by
0.5 dB to 2 dB in SSIM as the packet loss rate rises from
20% to 50%, and by up to 3.5 dB when the packet loss rate
reaches 80%. These quality drops of GRACE are notably
lower than the baselines, including FEC-based and neural
error concealment schemes, at the same packet loss rates.

Figure 9 shows the average quality across all test videos

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 517

9

12

15

0 0.2 0.4 0.6 0.8

S
S
IM
(d
B
)

Loss ratio

12

15

18

0 0.2 0.4 0.6 0.8

S
S
IM
(d
B
)

Loss ratio

12
15
18

0 0.2 0.4 0.6 0.8

S
S
IM
(d
B
)

Loss ratio

12

15

18

0 0.2 0.4 0.6 0.8

S
S
IM
(d
B
)

Loss ratio

(a) Bitrate = 1.5 Mbps (b) Bitrate = 3 Mbps

(c) Bitrate = 6 Mbps (d) Bitrate = 12 Mbps

Packet loss ratePacket loss rate

Packet loss ratePacket loss rate

Figure 9: Video quality of each scheme under different packet
loss rates when videos are encoded at different bitrates.

8
11
14
17

0 2 4 6 8 10

S
S
IM
(d
B
)

of consecutive frames
impacted by packet loss

8
11
14
17

0 2 4 6 8 10

S
S
IM
(d
B
)

of consecutive frames
impacted by packet loss

(a) Loss rate = 30% (b) Loss rate = 50%

10.85

10.9

10.95

11

11.05

11.1

11.15

-10 -5 0 5 10

Tambur, (H.265, 20% FEC)
Tambur, (H.265, 50% FEC)
SVC w/ FEC
Grace
Error concealment

10.85

10.9

10.95

11

11.05

11.1

11.15

-10 -5 0 5 10

Tambur, (H.265, 20% FEC)
Tambur, (H.265, 50% FEC)
SVC w/ FEC
Grace
Error concealment

Figure 10: Stress test of applying persistent packet loss on
consecutive frames.

when the encoded bitrates of all schemes are set to 1.5, 3, 6,
and 12 Mbps. Compared with the baselines, GRACE achieves
a more graceful and less pronounced quality decline as packet
loss increases. Figure 10 further stress tests the loss resilience
of GRACE against neural error concealment (the most com-
petitive baseline), when a 30% or 50% packet loss is applied
to 1 to 10 consecutive frames without the encoder and de-
coder synchronizing their states. Although the figure shows
that both methods experience quality degradation, GRACE
markedly surpasses the neural error concealment baseline in
these extreme conditions. Figure 11 visualizes their decoded
images after a 50% packet loss is applied to three consecutive
frames, confirming that the image decoded by GRACE has
less visual distortion.

Compression efficiency: We verify whether GRACE’s com-
pression efficiency under no packet loss is on par with H.264
and H.265, which are advanced video codecs designed for
high compression efficiency rather than loss resilience. Fig-
ure 12 groups the test videos by resolution. On low bitrates,
GRACE demonstrates similar compression efficiency as H.264
and marginally underperforms H.265 on both 720p and 1080p
videos. On high bitrates (over 3 Mbps for 720p and 6 Mbps
for 1080p), GRACE’s compression efficiency matches or even
surpasses H.265. Compared against Tambur with a persis-
tent 50% FEC redundancy, GRACE achieves a better quality-
bitrate tradeoff across the entire bitrate range.

Impact of video content on compression efficiency: To

Grace
SSIM: 12.0 dB

Error concealment
SSIM: 10.9 dB

Original frame

Figure 11: Sample images decoded by GRACE and error
concealment under a 50% packet loss on three consecutive
frames. GRACE achieves less image distortion.

(a) Resolution = 720p (b) Resolution = 1080p

10.85

10.9

10.95

11

11.05

11.1

11.15

-10 -5 0 5 10

H.265
H.264
Tambur, 50% FEC
Grace

12

15

18

0 2 4 6 8 10 12

SS
IM

(d
B)

Bitrate (Mbps)

12

15

18

0 1 2 3 4 5 6

SS
IM

(d
B)

Bitrate (Mbps)

10.85

10.9

10.95

11

11.05

11.1

11.15

-10 -5 0 5 10

H.265
H.264
Tambur, 50% FEC
Grace

10.85

10.9

10.95

11

11.05

11.1

11.15

-10 -5 0 5 10

H.265
H.264
Tambur, 50% FEC
Grace

10.85

10.9

10.95

11

11.05

11.1

11.15

-10 -5 0 5 10

H.265
H.264
Tambur, 50% FEC
Grace
Tambur, (H.265, 50% FEC)

Figure 12: Quality-size tradeoff of GRACE on videos with
different resolution. Overall, GRACE is better than H.264 and
slightly worse than H.265 in terms of compression efficiency.

Spatial Index (SI)
10 16 22 28 340

2

6

10

14

Te
m

po
ra

l I
nd

ex
 (T

I) Grace better

H.264 better

Figure 13: Mean difference in SSIM (dB) between GRACE
and H.264 on videos grouped by SI and TI. At the same bitrate
(5 Mbps), GRACE achieves better video quality than H.264
on low-SI videos but lags behind H.264 on high-SI videos.

understand the impact of video content on GRACE’s com-
pression efficiency, we group the video content based on
spatial index (SI) and temporal index (TI), which are estab-
lished metrics for assessing the spatiotemporal complexity of
videos [58]. Figure 13 presents the average gain of GRACE
over H.264 in terms of SSIM for videos in each SI-TI combi-
nation, encoded at a bitrate of 5 Mbps. The results indicate
that GRACE’s compression efficiency has a higher advantage
over H.264 for videos with low spatial complexity, but this ad-
vantage diminishes as the spatial index increases. For a more
thorough understanding of GRACE’s behavior, Appendix C.5
also shows an example where GRACE performs poorly.

5.3 Video quality vs. realtimeness/smoothness
Figures 14a evaluates GRACE against baselines in terms of
average quality (SSIM) and video stall ratio (a smoothness
metric) using the network traces from the LTE dataset, under a
one-way network delay of 100 ms and a drop-tail queue of 25
packets. Although the SSIM of GRACE is slightly lower than
that of the baselines with the highest average SSIM, GRACE

518 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

12

14

16

0 0.04 0.08 0.12

BetterSS
IM

(d
B)

Video stall ratio

12

14

16

0 0.02 0.04 0.06

BetterSS
IM

(d
B)

Video stall ratio

12

14

16

0 0.04 0.08 0.12

BetterSS
IM

(d
B)

Video stall ratio

12

14

16

0 0.04 0.08 0.12

BetterSS
IM

(d
B)

Video stall ratio

(a) LTE trace, one-way-delay =
100 ms, queue = 25 packets

(b) FCC trace, one-way-delay =
100 ms, queue = 25 packets

(c) LTE trace, one-way-delay =
50 ms, queue = 25 packets

(d) LTE trace, one-way-delay =
100 ms, queue = 45 packets

Figure 14: End-to-end simulation results over different net-
work traces, one-way delays and network queue lengths.

0

1s

(a) P98 tail frame
latency (sec)

0

10%

(b) % of non-
rendered frames

0.0

0.1

(c) Average stalls
 per second

Grace
Tambur

H.265
Salsify

SVC w/ FEC

Figure 15: GRACE outperforms other baselines on different
metrics of realtimeness and smoothness. Updated this figure:
added error bar and y-axis

significantly reduces the video stall ratio.
We repeat the test on a different dataset (FCC) under the

same network setup (Figures 14b), with a lower one-way net-
work delay of 50 ms (Figure 14c), and with a longer queue
length of 45 packets (Figure 14d). In all settings, GRACE
maintains a video stall ratio below 0.5%, whereas the base-
lines have 4–32× more video stalls, except for the error con-
cealment baseline, which yields a 3dB lower SSIM compared
with GRACE. This is because when packet loss happens,
GRACE can still decode the frame, while the baselines other
than error concealment may experience video stalls due to
either skipping frames (e.g., Salsify or Voxel) or waiting for
retransmission packets (FEC and SVC).

Figure 15 compares GRACE with the baselines using other
realtimeness and smoothness metrics, with the one-way delay
set to 100 ms and the queue length set to 25 packets over
the LTE traces. For clarity, we only include baselines with
comparable average SSIMs in this figure (excluding Voxel
and error concealment). While achieving similar video quality,
GRACE reduces the 98th percentile frame delay by a factor
of 2–5× and non-rendered frames by up to 95%. In §C.7,
we also evaluate GRACE with a different congestion control
algorithm—Salsify’s CC [45].

Figure 16 provides a concrete example of GRACE’s behav-
ior. The bandwidth drops from 8 Mbps to 2 Mbps at 1.5 s,

6
12
18

0 1 2 3 4 5 6SS
IM

(d
B)

0
300
600

0 1 2 3 4 5 6

Fr
am

e
de
la
y
(m
s)

0
0.3
0.6
0.9

0 1 2 3 4 5 6Lo
ss

ra
te

Time (sec)

Pa
ck

et

lo
ss

 ra
te

Figure 16: GRACE achieves lower delay and maintains decent
visual quality during sudden bandwidth drops: its delay is
lower than both baselines while rendering more frames than
Salsify without frame skipping or packet retransmission.

lasting for 800 ms, before returning to 8 Mbps (another band-
width drop occurs at 3.5 s and lasts for the same duration).
During each drop, GRACE’s delay does not experience a sharp
increase as the baselines. Salsify is the second best owing to
its frame skipping while H.265 must wait for retransmissions.
In this experiment, both GRACE and Salsify use the same CC,
leading to similar qualities on frames not skipped by Salsify.
However, during congestion, GRACE’s quality degrades only
marginally without skipping any frames, limiting the drop of
SSIM to less than 4 dB even when more than 10 consecutive
frames encounter a packet loss of over 50%. With the assis-
tance of state resync (§4.2), GRACE’s quality resumes quickly
(within 1 RTT) after packet losses.
User study: To validate GRACE’s effectiveness, we con-
ducted an IRB-approved user study, collecting 960 user rat-
ings from 240 Amazon MTurk workers [1]. We first choose a
few genres based on the real-time video streaming use cases,
including cloud gaming, real-time sports events, daily human
activities, and video conferencing. Then, we randomly se-
lected 8 video clips from the UGC dataset [98]. These video
clips were streamed using GRACE, Salsify codec, WebRTC
with default FEC, and H.265 with Tambur. (A screenshot of
each video clip is shown in Figure 26 in Appendix.) The sam-
pled videos have a similar distribution of quality, realtimeness,
and smoothness as seen in Figure 14. Following [22], when
an MTurk user signs up for the user study, they are randomly
assigned to rate their user experience on a scale of 1–5 for
the videos delivered through different methods. Figure 17
displays the mean opinion score (MOS) for each video, con-
firming that the videos rendered by GRACE are consistently
favored by real users.

5.4 Microbenchmarking
Encoding/decoding latency breakdown: Figure 18 shows a
breakdown of the encoding and decoding delays of GRACE on
an Nvidia A40 GPU (5× cheaper and 3× slower than Nvidia
A100). GRACE encodes and decodes a 720p frame within
29.7 ms (33 fps) and 19.5 ms (51.2 fps), respectively. It can

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 519

1

3

5

M
ea

n
op

in
io

n
sc

or
e

(M
O

S
)

Grace Tambur WebRTC Salsify

Figure 17: User study experiment shows that videos streamed
by GRACE are consistently favored by real users. The error
bar shows the standard deviation of the mean.

0 5 10 15 20 25 30
Latency (ms)

Decoding

Encoding

Motion estimation
MV encoder

MV decoder
Frame smoothing

Residual encoding
Residual decoding

Figure 18: Latency breakdown of GPU-based encoding and
decoding of GRACE on a 720p frame.

11

14

17

0 0.2 0.4 0.6 0.8

S
S
IM
(d
B
)

Loss ratioPacket loss rate

Figure 19: GRACE-Lite realizes similar loss resilience to
GRACE and outperforms other baselines.

also encode/decode 480p video at 65.8 fps/104.1 fps.
This breakdown also carries several implications. First, the

fast resync logic (§4.2) requires the encoder to run the MV
decoder and residual decoder, which together only consume
6 ms on a 720p frame, allowing resync to complete with a
minimal increase in encoding delay. Moreover, GRACE may
need to encode a frame multiple times as explained in §4.3,
but the extra overhead only involves residual encoding, which
takes only 1.5 ms on a 720p frame.

Speed optimization in GRACE-Lite: With the optimizations
described in §4.3, GRACE-Lite reduces the encoding delay of
a 720 frame on iPhone 14 Pro from 314 ms to 38.1 ms, and
the decoding delay from 239 ms to 14.4 ms. We also report
GRACE-Lite’s speed on CPUs with OpenVINO compilation
in Appendix C.9. Figure 19 compares the loss resilience of
GRACE-Lite and GRACE with the two most competitive base-
lines in §5.2—neural error concealment and Tambur. At the
same packet loss, GRACE-Lite achieves slightly lower quality
than GRACE, yet it still outperforms other baselines.

Impact of joint training: Figure 20 compares GRACE with
its two variants: GRACE-P and GRACE-D, showing that both
variants have lower levels of loss resilience than GRACE due
to not jointly training the encoder and decoder. Appendix C.10
shows an example of frames decoded by the variants.

11

14

17

0 0.2 0.4 0.6 0.8

S
S
IM
(d
B
)

Loss ratioPacket loss rate

Figure 20: Although GRACE-D and GRACE-P attain slightly
better quality than GRACE in the absence of packet loss, they
are much less resilient to loss than GRACE.

6 Limitation
The current implementation of GRACE still has several limi-
tations. First, it is not optimized enough to run at 30 fps on
very resource-constrained devices that barely sustain a classic
video codec. For instance, achieving real-time encoding and
decoding on regular CPUs (e.g., Intel Xeon Silver 4216) still
requires 32 cores (§C.9). Secondly, due to its use of NVC,
GRACE may have lower compression efficiency than tradi-
tional handcrafted codecs on some video content that deviates
a lot from the training data of NVC. For instance, its com-
pression efficiency is worse than H.26x on videos with high
spatial complexity (§5.2). In rare instances, GRACE is ob-
served to fail to accurately reconstruct original frames under
high packet losses. Third, our focus with GRACE is on unicast
video communication rather than multiparty conferencing.
We hope GRACE can inspire future work to address these
limitations. Potential avenues include democratizing GRACE
on more devices by embracing the recent advancements in
hardware [23, 24], distilling more lightweight models suit-
able for less powerful devices. We acknowledge there is not a
good solution to address GRACE’s generalization issue, which
is a problem not unique to GRACE but inherent in general
NVCs. We hope that future measurement studies may shed
light on the generalization of NVCs and contribute to their
improvement.

7 Conclusion
This paper presents GRACE, a real-time video system de-
signed for loss resilience, preserving quality of experience
(QoE) for users across diverse packet losses. GRACE enhances
loss resilience by jointly training a neural encoder and decoder
under a spectrum of packet losses. It attains video quality on
par with conventional codecs in the absence of packet loss,
and exhibits a less pronounced quality degradation as packet
loss escalates, outperforming existing loss-resilient methods.

8 Acknowledgement
We thank the anonymous reviewers and our shepherd Dongsu
Han. This project is supported by NSF CNS 2146496,
2131826, 2313190, 1901466, and UChicago CERES Center.

520 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Amazon Mechanical Turk. https://www.mturk.com/.

[2] Aurora5 HEVC Test Results. https://www.visionular.c
om/en/putting-the-aurora5-hevc-encoder-to-the-tes
t/.

[3] Bringing Zoom’s end-to-end optimizations to We-
bRTC. https://blog.livekit.io/livekit-one-dot-zero/.

[4] Context-adaptive binary arithmetic coding. https://en
.wikipedia.org/wiki/Context-adaptive_binary_arith
metic_coding.

[5] Core ML Documentation. https://developer.apple.co
m/documentation/coreml.

[6] Features of WebRTC VR Streaming. https://flashphon
er.com/features-of-webrtc-vr-streaming/.

[7] FFmpeg streaming guide. http://trac.ffmpeg.org/wiki
/StreamingGuide.

[8] Linear Congruential Generator. https://en.wikipedia.o
rg/wiki/Linear_congruential_generator.

[9] Mamahi Cellular traces. https://github.com/ravinet/m
ahimahi/tree/master/traces.

[10] Measuring Broadband Raw Data Releases. https://ww
w.fcc.gov/oet/mba/raw-data-releases.

[11] Open Source Cloud Gaming with WebRTC. https:
//webrtchacks.com/open-source-cloud-gaming-wit
h-webrtc/.

[12] SI/TI calculation tools. https://github.com/VQEG/siti
-tools.

[13] torchac: Fast Arithmetic Coding for PyTorch. https:
//github.com/fab-jul/torchac.

[14] Torch.compile tutorial . https://pytorch.org/tutorials/in
termediate/torch_compile_tutorial.html.

[15] VP9 encoding/decoding performance vs.
HEVC/H.264. https://blogs.gnome.org/rbultj
e/2015/09/28/vp9-encodingdecoding-performance-v
s-hevch-264/.

[16] WebRTC and IoT Applications. https://rtcweb.in/webr
tc-and-iot-applications/.

[17] WebRTC Cloud Gaming: Unboxing Stadia. https:
//webrtc.ventures/2021/02/webrtc-cloud-gaming-unb
oxing-stadia/.

[18] WebRTC: Enabling Collaboration Augmented Reality
App. https://arvrjourney.com/webrtc-enabling-collabo
ration-cebdd4c9ce06?gi=e19b1c0f65c0.

[19] WebRTC in IoT: What is the Intersection Point? https:
//mobidev.biz/blog/webrtc-real-time-communication
-for-the-internet-of-things.

[20] What powers Google Meet and Microsoft Teams? We-
bRTC Demystified. https://levelup.gitconnected.com
/what-powers-google-meet-and-microsoft-teams-w
ebrtc-demystified-step-by-step-tutorial-e0cb422010f
7.

[21] Better Portable Graphics. https://bellard.org/bpg/,
2014.

[22] SENSEI: Aligning Video Streaming Quality with Dy-
namic User Sensitivity, author=Zhang, Xu and Ou,
Yiyang and Sen, Siddhartha and Jiang, Junchen. In
18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), pages 303–320,
2021.

[23] Deploying Transformers on the Apple Neural Engine.
https://machinelearning.apple.com/research/neural-e
ngine-transformers, 2022.

[24] Harnessing the NVIDIA Ada Architecture for Frame-
Rate Up-Conversion in the NVIDIA Optical Flow
SDK. https://developer.nvidia.com/blog/harnessi
ng-the-nvidia-ada-architecture-for-frame-rate-up-c
onversion-in-the-nvidia-optical-flow-sdk/, 2023.

[25] Asma Ben Abdallah, Amin Zribi, Ali Dziri, Fethi Tlili,
and Michel Terré. H.264/AVC video transmission over
UWB AV PHY IEEE 802.15. 3c using UEP and adap-
tive modulation techniques. In 2019 International
Conference on Advanced Communication Technolo-
gies and Networking (CommNet), pages 1–6. IEEE,
2019.

[26] Doreid Ammar, Katrien De Moor, Min Xie, Markus
Fiedler, and Poul Heegaard. Video QoE killer and per-
formance statistics in WebRTC-based video communi-
cation. In 2016 IEEE Sixth International Conference
on Communications and Electronics (ICCE), pages
429–436. IEEE, 2016.

[27] Anurag Arnab, Mostafa Dehghani, Georg Heigold,
Chen Sun, Mario Lučić, and Cordelia Schmid. Vivit:
A video vision transformer. In Proceedings of the
IEEE/CVF international conference on computer vi-
sion, pages 6836–6846, 2021.

[28] Ahmed Badr, Ashish Khisti, Wai-tian Tan, Xiaoqing
Zhu, and John Apostolopoulos. FEC for VoIP us-
ing dual-delay streaming codes. In IEEE INFOCOM
2017-IEEE Conference on Computer Communications,
pages 1–9. IEEE, 2017.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 521

https://www.mturk.com/
https://www.visionular.com/en/putting-the-aurora5-hevc-encoder-to-the-test/
https://www.visionular.com/en/putting-the-aurora5-hevc-encoder-to-the-test/
https://www.visionular.com/en/putting-the-aurora5-hevc-encoder-to-the-test/
https://blog.livekit.io/livekit-one-dot-zero/
https://en.wikipedia.org/wiki/Context-adaptive_binary_arithmetic_coding
https://en.wikipedia.org/wiki/Context-adaptive_binary_arithmetic_coding
https://en.wikipedia.org/wiki/Context-adaptive_binary_arithmetic_coding
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://flashphoner.com/features-of-webrtc-vr-streaming/
https://flashphoner.com/features-of-webrtc-vr-streaming/
http://trac.ffmpeg.org/wiki/StreamingGuide
http://trac.ffmpeg.org/wiki/StreamingGuide
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://github.com/ravinet/mahimahi/tree/master/traces
https://github.com/ravinet/mahimahi/tree/master/traces
https://www.fcc.gov/oet/mba/raw-data-releases
https://www.fcc.gov/oet/mba/raw-data-releases
https://webrtchacks.com/open-source-cloud-gaming-with-webrtc/
https://webrtchacks.com/open-source-cloud-gaming-with-webrtc/
https://webrtchacks.com/open-source-cloud-gaming-with-webrtc/
https://github.com/VQEG/siti-tools
https://github.com/VQEG/siti-tools
https://github.com/fab-jul/torchac
https://github.com/fab-jul/torchac
https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html
https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html
https://blogs.gnome.org/rbultje/2015/09/28/vp9-encodingdecoding-performance-vs-hevch-264/
https://blogs.gnome.org/rbultje/2015/09/28/vp9-encodingdecoding-performance-vs-hevch-264/
https://blogs.gnome.org/rbultje/2015/09/28/vp9-encodingdecoding-performance-vs-hevch-264/
https://rtcweb.in/webrtc-and-iot-applications/
https://rtcweb.in/webrtc-and-iot-applications/
https://webrtc.ventures/2021/02/webrtc-cloud-gaming-unboxing-stadia/
https://webrtc.ventures/2021/02/webrtc-cloud-gaming-unboxing-stadia/
https://webrtc.ventures/2021/02/webrtc-cloud-gaming-unboxing-stadia/
https://arvrjourney.com/webrtc-enabling-collaboration-cebdd4c9ce06?gi=e19b1c0f65c0
https://arvrjourney.com/webrtc-enabling-collaboration-cebdd4c9ce06?gi=e19b1c0f65c0
https://mobidev.biz/blog/webrtc-real-time-communication-for-the-internet-of-things
https://mobidev.biz/blog/webrtc-real-time-communication-for-the-internet-of-things
https://mobidev.biz/blog/webrtc-real-time-communication-for-the-internet-of-things
https://levelup.gitconnected.com/what-powers-google-meet-and-microsoft-teams-webrtc-demystified-step-by-step-tutorial-e0cb422010f7
https://levelup.gitconnected.com/what-powers-google-meet-and-microsoft-teams-webrtc-demystified-step-by-step-tutorial-e0cb422010f7
https://levelup.gitconnected.com/what-powers-google-meet-and-microsoft-teams-webrtc-demystified-step-by-step-tutorial-e0cb422010f7
https://levelup.gitconnected.com/what-powers-google-meet-and-microsoft-teams-webrtc-demystified-step-by-step-tutorial-e0cb422010f7
https://bellard.org/bpg/
https://machinelearning.apple.com/research/neural-engine-transformers
https://machinelearning.apple.com/research/neural-engine-transformers
https://developer.nvidia.com/blog/harnessing-the-nvidia-ada-architecture-for-frame-rate-up-conversion-in-the-nvidia-optical-flow-sdk/
https://developer.nvidia.com/blog/harnessing-the-nvidia-ada-architecture-for-frame-rate-up-conversion-in-the-nvidia-optical-flow-sdk/
https://developer.nvidia.com/blog/harnessing-the-nvidia-ada-architecture-for-frame-rate-up-conversion-in-the-nvidia-optical-flow-sdk/

[29] Niklas Blum, Serge Lachapelle, and Harald Alvestrand.
WebRTC-Realtime Communication for the Open Web
Platform: What was once a way to bring audio and
video to the web has expanded into more use cases we
could ever imagine. Queue, 19(1):77–93, 2021.

[30] Eirina Bourtsoulatze, David Burth Kurka, and Deniz
Gündüz. Deep joint source-channel coding for wireless
image transmission. IEEE Transactions on Cognitive
Communications and Networking, 5(3):567–579, 2019.

[31] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and
Saverio Mascolo. Analysis and design of the google
congestion control for web real-time communication
(WebRTC). In Proceedings of the 7th International
Conference on Multimedia Systems, pages 1–12, 2016.

[32] Fabrizio Carpi, Christian Häger, Marco Martalò, Ric-
cardo Raheli, and Henry D. Pfister. Reinforcement
Learning for Channel Coding: Learned Bit-Flipping
Decoding. In 2019 57th Annual Allerton Conference
on Communication, Control, and Computing (Aller-
ton), pages 922–929, 2019.

[33] Jeff Castura and Yongyi Mao. Rateless coding over fad-
ing channels. IEEE communications letters, 10(1):46–
48, 2006.

[34] Ya-Liang Chang, Zhe Yu Liu, Kuan-Ying Lee, and
Winston Hsu. Free-form video inpainting with 3d gated
convolution and temporal patchgan. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 9066–9075, 2019.

[35] Sheng Cheng, Han Hu, and Xinggong Zhang. ABRF:
Adaptive BitRate-FEC Joint Control for Real-Time
Video Streaming. IEEE Transactions on Circuits and
Systems for Video Technology, 2023.

[36] Sheng Cheng, Han Hu, Xinggong Zhang, and Zong-
ming Guo. DeepRS: Deep-learning based network-
adaptive FEC for real-time video communications. In
2020 IEEE International Symposium on Circuits and
Systems (ISCAS), pages 1–5. IEEE, 2020.

[37] Kristy Choi, Kedar Tatwawadi, Aditya Grover, Tsachy
Weissman, and Stefano Ermon. Neural joint source-
channel coding. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th Inter-
national Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages
1182–1192. PMLR, 09–15 Jun 2019.

[38] Wen-Jeng Chu and Jin-Jang Leou. Detection and con-
cealment of transmission errors in H.261 images. IEEE
Transactions on Circuits and Systems for Video Tech-
nology, 8(1):74–84, 1998.

[39] Mauro Conti, Simone Milani, Ehsan Nowroozi, and
Gabriele Orazi. Do Not Deceive Your Employer
with a Virtual Background: A Video Conferenc-
ing Manipulation-Detection System. arXiv preprint
arXiv:2106.15130, 2021.

[40] Mallesham Dasari, Kumara Kahatapitiya, Samir R.
Das, Aruna Balasubramanian, and Dimitris Samaras.
Swift: Adaptive video streaming with layered neural
codecs. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
103–118, Renton, WA, April 2022. USENIX Associa-
tion.

[41] Sandesh Dhawaskar Sathyanarayana, Kyunghan Lee,
Dirk Grunwald, and Sangtae Ha. Converge: QoE-
driven Multipath Video Conferencing over WebRTC.
In Proceedings of the ACM SIGCOMM 2023 Confer-
ence, pages 637–653, 2023.

[42] Yves Dhondt and Peter Lambert. Flexible Macroblock
Ordering: an error resilience tool in H. 264/AVC. In
5th FTW PhD Symposium. Ghent University. Faculty
of Engineering, 2004.

[43] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

[44] Patrick Esser, Robin Rombach, and Bjorn Ommer.
Taming transformers for high-resolution image syn-
thesis. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 12873–
12883, 2021.

[45] Sadjad Fouladi, John Emmons, Emre Orbay, Cather-
ine Wu, Riad S. Wahby, and Keith Winstein. Salsify:
Low-Latency network video through tighter integra-
tion between a video codec and a transport protocol. In
15th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 18), pages 267–282,
Renton, WA, April 2018. USENIX Association.

[46] Chen Gao, Ayush Saraf, Jia-Bin Huang, and Johannes
Kopf. Flow-edge guided video completion. In Com-
puter Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part
XII 16, pages 713–729. Springer, 2020.

[47] Boni García, Micael Gallego, Francisco Gortázar, and
Antonia Bertolino. Understanding and estimating qual-
ity of experience in WebRTC applications. Computing,
101:1585–1607, 2019.

522 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[48] Boni García, Francisco Gortázar, Micael Gallego, and
Andrew Hines. Assessment of qoe for video and au-
dio in webrtc applications using full-reference models.
Electronics, 9(3):462, 2020.

[49] Dan Grois, Detlev Marpe, Amit Mulayoff, Benaya
Itzhaky, and Ofer Hadar. Performance comparison
of h. 265/mpeg-hevc, vp9, and h. 264/mpeg-avc en-
coders. In 2013 Picture Coding Symposium (PCS),
pages 394–397. IEEE, 2013.

[50] Tobias Gruber, Sebastian Cammerer, Jakob Hoydis,
and Stephan ten Brink. On deep learning-based chan-
nel decoding. In 2017 51st Annual Conference on
Information Sciences and Systems (CISS), pages 1–6,
2017.

[51] Deniz Gündüz, Paul de Kerret, Nicholas D Sidiropou-
los, David Gesbert, Chandra R Murthy, and Mihaela
van der Schaar. Machine learning in the air.
IEEE Journal on Selected Areas in Communications,
37(10):2184–2199, 2019.

[52] Zhaoyuan He, Yifan Yang, Shuozhe Li, Diyuan Dai,
and Lili Qiu. Neural Video Recovery for Cloud Gam-
ing. arXiv preprint arXiv:2307.07847, 2023.

[53] Zhaoyuan He, Yifan Yang, Lili Qiu, and Kyoungjun
Park. Real-Time Neural Video Recovery and En-
hancement on Mobile Devices. arXiv preprint
arXiv:2307.12152, 2023.

[54] Stefan Holmer, Mikhal Shemer, and Marco Paniconi.
Handling packet loss in WebRTC. In 2013 IEEE In-
ternational Conference on Image Processing, pages
1860–1864. IEEE, 2013.

[55] Zhihao Hu, Guo Lu, and Dong Xu. FVC: A new
framework towards deep video compression in feature
space. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
1502–1511, 2021.

[56] Ismaeil Ismaeil, Shahram Shirani, Faouzi Kossentini,
and Rabab Ward. An efficient, similarity-based error
concealment method for block-based coded images. In
Proceedings 2000 International Conference on Image
Processing (Cat. No. 00CH37101), volume 3, pages
388–391. IEEE, 2000.

[57] ITU-T. Recommendation G.114, one-way transmis-
sion time. Series G: Transmission Systems and Me-
dia, Digital Systems and Networks, Telecommunication
Standardization Sector of ITU, 2003.

[58] P ITU-T RECOMMENDATION. Subjective video
quality assessment methods for multimedia applica-
tions. 1999.

[59] Jaeyeon Kang, Seoung Wug Oh, and Seon Joo Kim.
Error compensation framework for flow-guided video
inpainting. In Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part XV, pages 375–390. Springer,
2022.

[60] Amin Abdel Khalek, Constantine Caramanis, and
Robert W Heath. A cross-layer design for percep-
tual optimization of H. 264/SVC with unequal error
protection. IEEE Journal on selected areas in Commu-
nications, 30(7):1157–1171, 2012.

[61] Jaehong Kim, Youngmok Jung, Hyunho Yeo, Juncheol
Ye, and Dongsu Han. Neural-enhanced live streaming:
Improving live video ingest via online learning. In Pro-
ceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the appli-
cations, technologies, architectures, and protocols for
computer communication, pages 107–125, 2020.

[62] Diederik P. Kingma and Max Welling. Auto-Encoding
Variational Bayes. In 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceed-
ings, 2014.

[63] Vineeth Shetty Kolkeri. Error concealment techniques
in H. 264/AVC, for video transmission over wireless
networks. PhD thesis, The University of Texas at Ar-
lington, 2009.

[64] Sunil Kumar, Liyang Xu, Mrinal K Mandal, and Sethu-
raman Panchanathan. Error resiliency schemes in H.
264/AVC standard. Journal of Visual Communication
and Image Representation, 17(2):425–450, 2006.

[65] David Burth Kurka and Deniz Gündüz. Deepjscc-f:
Deep joint source-channel coding of images with feed-
back. IEEE Journal on Selected Areas in Information
Theory, 1(1):178–193, 2020.

[66] Peter Lambert, Wesley De Neve, Yves Dhondt, and
Rik Van de Walle. Flexible macroblock ordering in
H. 264/AVC. Journal of Visual Communication and
Image Representation, 17(2):358–375, 2006.

[67] Tianhong Li, Vibhaalakshmi Sivaraman, Lijie Fan, Mo-
hammad Alizadeh, and Dina Katabi. Reparo: Loss-
Resilient Generative Codec for Video Conferencing.
arXiv preprint arXiv:2305.14135, 2023.

[68] Weiping Li. Overview of fine granularity scalability
in MPEG-4 video standard. IEEE Transactions on
circuits and systems for video technology, 11(3):301–
317, 2001.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 523

[69] Zhen Li, Cheng-Ze Lu, Jianhua Qin, Chun-Le Guo, and
Ming-Ming Cheng. Towards an end-to-end framework
for flow-guided video inpainting. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 17562–17571, 2022.

[70] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang,
Luc Van Gool, and Radu Timofte. Swinir: Image
restoration using swin transformer. In Proceedings of
the IEEE/CVF international conference on computer
vision, pages 1833–1844, 2021.

[71] Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi,
Lewei Lu, Wenxiu Sun, Xiaogang Wang, Jifeng Dai,
and Hongsheng Li. FuseFormer: Fusing Fine-Grained
Information in Transformers for Video Inpainting. In
ICCV, 2021.

[72] Yunzhuo Liu, Bo Jiang, Tian Guo, Ramesh K. Sitara-
man, Don Towsley, and Xinbing Wang. Grad: Learning
for overhead-aware adaptive video streaming with scal-
able video coding. In Proceedings of the 28th ACM In-
ternational Conference on Multimedia, MM ’20, page
349–357, New York, NY, USA, 2020. Association for
Computing Machinery.

[73] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang,
Chunlei Cai, and Zhiyong Gao. DVC: An end-to-
end deep video compression framework. In 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 10998–11007, 2019.

[74] Rong Luo and Bin Chen. A Hierarchical Scheme
of Flexible Macroblock Ordering for ROI based
H.264/AVC Video Coding. In 2008 10th International
Conference on Advanced Communication Technology,
volume 3, pages 1579–1582, 2008.

[75] Yi Ma, Yongqi Zhai, and Ronggang Wang. DeepFGS:
Fine-Grained Scalable Coding for Learned Image Com-
pression. arXiv preprint arXiv:2201.01173, 2022.

[76] David JC MacKay. Fountain codes. IEE Proceedings-
Communications, 152(6):1062–1068, 2005.

[77] David JC MacKay and Radford M Neal. Near Shannon
limit performance of low density parity check codes.
Electronics letters, 33(6):457–458, 1997.

[78] Kyle MacMillan, Tarun Mangla, James Saxon, and
Nick Feamster. Measuring the performance and net-
work utilization of popular video conferencing appli-
cations. In Proceedings of the 21st ACM Internet Mea-
surement Conference, pages 229–244, 2021.

[79] Michael Mathieu, Camille Couprie, and Yann LeCun.
Deep multi-scale video prediction beyond mean square
error. arXiv preprint arXiv:1511.05440, 2015.

[80] Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Jus-
tine Sherry, Hongqiang Harry Liu, and Mingwei Xu.
Achieving consistent low latency for wireless real-time
communications with the shortest control loop. In Pro-
ceedings of the ACM SIGCOMM 2022 Conference,
pages 193–206, 2022.

[81] Cholman Nam, Changgon Chu, Taeguk Kim, and Sok-
min Han. A novel motion recovery using temporal
and spatial correlation for a fast temporal error con-
cealment over H. 264 video sequences. Multimedia
Tools and Applications, 79:1221–1240, 2020.

[82] Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens, and
Hari Balakrishnan. Mahimahi: Accurate Record-and-
Replay for HTTP. In 2015 USENIX Annual Technical
Conference (USENIX ATC 15), pages 417–429, 2015.

[83] Mirko Palmer, Malte Appel, Kevin Spiteri, Balakrish-
nan Chandrasekaran, Anja Feldmann, and Ramesh K.
Sitaraman. Voxel: Cross-layer optimization for video
streaming with imperfect transmission. In Proceedings
of the 17th International Conference on Emerging Net-
working EXperiments and Technologies, CoNEXT ’21,
page 359–374, New York, NY, USA, 2021. Association
for Computing Machinery.

[84] Jan Peters and Stefan Schaal. Reinforcement learning
of motor skills with policy gradients. Neural networks,
21(4):682–697, 2008.

[85] Devdeep Ray, Connor Smith, Teng Wei, David Chu,
and Srinivasan Seshan. SQP: Congestion Control
for Low-Latency Interactive Video Streaming. arXiv
preprint arXiv:2207.11857, 2022.

[86] Michael Rudow, Francis Y. Yan, Abhishek Ku-
mar, Ganesh Ananthanarayanan, Martin Ellis, and
KV Rashmi. Tambur: Efficient loss recovery for video-
conferencing via streaming codes. In 20th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 23), pages 953–971, 2023.

[87] Arun Sankisa, Arjun Punjabi, and Aggelos K Katsagge-
los. Video error concealment using deep neural net-
works. In 2018 25th IEEE International Conference
on Image Processing (ICIP), pages 380–384. IEEE,
2018.

[88] Thomas Schierl, Thomas Stockhammer, and Thomas
Wiegand. Mobile video transmission using scalable
video coding. IEEE transactions on circuits and sys-
tems for video technology, 17(9):1204–1217, 2007.

[89] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand.
Overview of the scalable video coding extension of the

524 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

H. 264/AVC standard. IEEE Transactions on circuits
and systems for video technology, 17(9):1103–1120,
2007.

[90] Taveesh Sharma, Tarun Mangla, Arpit Gupta, Junchen
Jiang, and Nick Feamster. Estimating WebRTC Video
QoE Metrics Without Using Application Headers.
arXiv preprint arXiv:2306.01194, 2023.

[91] Yibo Shi, Yunying Ge, Jing Wang, and Jue Mao.
AlphaVC: High-Performance and Efficient Learned
Video Compression. In Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XIX, pages 616–631.
Springer, 2022.

[92] Vibhaalakshmi Sivaraman, Pantea Karimi, Vedantha
Venkatapathy, Mehrdad Khani, Sadjad Fouladi, Mo-
hammad Alizadeh, Frédo Durand, and Vivienne Sze.
Gemino: Practical and Robust Neural Compression for
Video Conferencing. arXiv preprint arXiv:2209.10507,
2022.

[93] Keyu Tan and Alan Pearmain. A new error resilience
scheme based on FMO and error concealment in H.
264/AVC. In 2011 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
pages 1057–1060. IEEE, 2011.

[94] Wai-tian Tan and Avideh Zakhor. Multicast transmis-
sion of scalable video using receiver-driven hierarchi-
cal FEC. In Packet Video Workshop, volume 99, 1999.

[95] Wai-Tian Tan and Avideh Zakhor. Video multicast
using layered fec and scalable compression. IEEE
Transactions on circuits and systems for video technol-
ogy, 11(3):373–386, 2001.

[96] Yao Wang and Qin-Fan Zhu. Error control and conceal-
ment for video communication: A review. Proceedings
of the IEEE, 86(5):974–997, 1998.

[97] Yi Wang, Xiaoqiang Guo, Feng Ye, Aidong Men, and
Bo Yang. A novel temporal error concealment frame-
work in H. 264/AVC. In 2013 IEEE International
Conference on Multimedia and Expo (ICME), pages
1–6. IEEE, 2013.

[98] Yilin Wang, Sasi Inguva, and Balu Adsumilli. YouTube
UGC dataset for video compression research. In 2019
IEEE 21st International Workshop on Multimedia Sig-
nal Processing (MMSP), pages 1–5. IEEE, 2019.

[99] Stephan Wenger and Michael Horowitz. Scattered
slices: a new error resilience tool for H. 26L. JVT-
B027, 2, 2002.

[100] Stephen B. Wicker and Vijay K. Bhargava. Reed-
Solomon codes and their applications. John Wiley
& Sons, 1999.

[101] Jiangkai Wu, Yu Guan, Qi Mao, Yong Cui, Zongming
Guo, and Xinggong Zhang. ZGaming: Zero-Latency
3D Cloud Gaming by Image Prediction. In Proceed-
ings of the ACM SIGCOMM 2023 Conference, pages
710–723, 2023.

[102] Chongyang Xiang, Jiajun Xu, Chuan Yan, Qiang Peng,
and Xiao Wu. Generative adversarial networks based
error concealment for low resolution video. In ICASSP
2019-2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
1827–1831. IEEE, 2019.

[103] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei,
and William T Freeman. Video enhancement with
task-oriented flow. International Journal of Computer
Vision, 127(8):1106–1125, 2019.

[104] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad
Fouladi, James Hong, Keyi Zhang, Philip Levis, and
Keith Winstein. Learning in situ: a randomized ex-
periment in video streaming. In 17th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 20), pages 495–511, Santa Clara, CA,
February 2020. USENIX Association.

[105] Ren Yang, Fabian Mentzer, Luc Van Gool, and Radu
Timofte. Learning for video compression with re-
current auto-encoder and recurrent probability model.
IEEE Journal of Selected Topics in Signal Processing,
15(2):388–401, 2020.

[106] Hyunho Yeo, Hwijoon Lim, Jaehong Kim, Youngmok
Jung, Juncheol Ye, and Dongsu Han. NeuroScaler:
neural video enhancement at scale. In Proceedings of
the ACM SIGCOMM 2022 Conference, pages 795–811,
2022.

[107] Huanhuan Zhang, Anfu Zhou, Yuhan Hu, Chaoyue Li,
Guangping Wang, Xinyu Zhang, Huadong Ma, Leilei
Wu, Aiyun Chen, and Changhui Wu. Loki: improv-
ing long tail performance of learning-based real-time
video adaptation by fusing rule-based models. In Pro-
ceedings of the 27th Annual International Conference
on Mobile Computing and Networking, MobiCom ’21,
page 775–788, New York, NY, USA, 2021. Association
for Computing Machinery.

[108] Huanhuan Zhang, Anfu Zhou, Jiamin Lu, Ruoxuan
Ma, Yuhan Hu, Cong Li, Xinyu Zhang, Huadong Ma,
and Xiaojiang Chen. OnRL: improving mobile video
telephony via online reinforcement learning. In Pro-
ceedings of the 26th Annual International Conference

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 525

on Mobile Computing and Networking, MobiCom ’20,
New York, NY, USA, 2020. Association for Computing
Machinery.

[109] Junzi Zhang, Jongho Kim, Brendan O’Donoghue, and
Stephen Boyd. Sample efficient reinforcement learn-
ing with REINFORCE. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages
10887–10895, 2021.

[110] Kaidong Zhang, Jingjing Fu, and Dong Liu. Flow-
guided transformer for video inpainting. In Euro-
pean Conference on Computer Vision, pages 74–90.
Springer, 2022.

[111] Kaidong Zhang, Jingjing Fu, and Dong Liu. Inertia-
guided flow completion and style fusion for video in-
painting. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages
5982–5991, 2022.

[112] Qing Zhang and Guizhong Liu. Error resilient cod-
ing of H. 264 using intact long-term reference frames.
2008.

[113] Zenghua Zhao and Shubing Long. RD-Based Adap-
tive UEP for H. 264 Video Transmission in Wireless
Networks. In 2010 International Conference on Mul-
timedia Information Networking and Security, pages
72–76. IEEE, 2010.

[114] Anfu Zhou, Huanhuan Zhang, Guangyuan Su, Leilei
Wu, Ruoxuan Ma, Zhen Meng, Xinyu Zhang, Xiufeng
Xie, Huadong Ma, and Xiaojiang Chen. Learning to
coordinate video codec with transport protocol for mo-
bile video telephony. In The 25th Annual International
Conference on Mobile Computing and Networking,
pages 1–16, 2019.

[115] Jie Zhou, Bo Yan, and Hamid Gharavi. Efficient
motion vector interpolation for error concealment of
H. 264/AVC. IEEE Transactions on Broadcasting,
57(1):75–80, 2010.

[116] X Zhu, P Pan, M Ramalho, S Mena, P Jones, J Fu,
S D’Aronco, and C Ganzhorn. Nada: A unified con-
gestion control scheme for real-time media, draft-ietf-
rmcat-nada-02. Internet Engineering Task Force, IETF,
2016.

[117] Xutong Zuo, Yong Cui, Xin Wang, and Jiayu Yang.
Deadline-aware Multipath Transmission for Stream-
ing Blocks. In IEEE INFOCOM 2022-IEEE Confer-
ence on Computer Communications, pages 2178–2187.
IEEE, 2022.

A Details of NVC architecture and training

A.1 More details on GRACE’s NVC model
Grace uses the exact same model architecture as the orig-
inal DVC model [73]. With an RGB input image of size
C×H ×W , where H,W are the height and width of the im-
age, and C = 3 is number of channels in RGB images, the
encoder neural network will encode the image into a com-
pressed motion vector of size 128× (H/16)× (W/16) and
a compressed residual of size 96× (H/16)× (W/16). Then
those two compressed features will be quantized and con-
verted into bytesteam using entropy encoding.

When we finetune the DVC model to get our GRACE’s
loss resilient model, we train on the 90k Vimeo Dataset, with
batch size of 4, learning rate of 10−4 and learning rate decay
of 0.1, and an Adam optimizer.

A.2 Making GRACE trainable
Since P is a non-differentiable random function, the gradient
of the expectation of D in Eq. 2 cannot be directly calculated.
To address this issue, we use the REINFORCE trick [62] for
reparameterization. First, given the packet loss distribution
P(y), we can apply the differentiation property of logarithms
to get

∇φP(y) = P(y)∇φ logP(y)

Therefore, our gradient of the expectation of D(gθ(y),x)
becomes

∇φEy∼P(y)([D(gθ(y),x)])

= Ey∼P(y)([D(gθ(y),x)∇φ logP(y)]) (3)

which can be estimated using Monte-Carlo sampling ≈
1
N ∑

N
i=1 D(gθ(yi),x)∇φ logP(yi). Since in our application, the

loss is an independent and identically distributed random
variable, the gradient evaluates to either 0 or 1, hence we
propagate the gradients for the encoder only for D(gθ(yi),x)
where P(yi) = 1.

B Realtime video framework for GRACE

B.1 Fast re-encoding and re-decoding under
loss

In GRACE’s NVC, the most time-consuming components are
motion estimation NN and frame smoothing NN, taking 28%
and 42% of the total encoding time respectively. Fortunately,
we do not need to use them during resync (§4.2). When the
packet loss feedback arrives at the encoder, it takes the follow-
ing steps to generate a new reference frame to re-sync with
the decoder (Assuming the loss feedback is for 6th frame and
the encoder is about to encode 10th frame)

526 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 21: Encoding each P-frame with a small I-patch leads
to smoother frame sizes than naively inserting I-frames.

• First, GRACE re-decodes the motion vector and residuals
based on the packet loss feedback for 6th frame. This step
needs to run the motion decoder NN and residual decoder
NN, which only takes around 18% of the encoding time.

• Second, GRACE apply the cached motion vector and resid-
uals of 7th frame on the “reconstructed” 6th frame to gener-
ate the “reconstructed” 7th frame. It applies the same logic
on 8th and 9th frame and finally gets the “reconstructed”
9th frame. We do not run frame smoothing NN since the
quality of the reference frame does not have a significant
impact on compression efficiency. Therefore, this step does
not involve any NN inference. It only needs to apply the
motion and add the residuals, which takes 1% of the en-
coding time.

• Finally, GRACE uses the “reconstructed” 9th frame as the
reference frame to encode the 10th frame. It is the same as
encoding a frame when there are no packet losses. It will
add an extra tag to the frame so that the receiver knows
which reference frame to use.

To summarize, the encoder side’s computational overhead
is usually less than 10%. The logic requires the encoder to
cache the motion vectors and residuals, but the cached value
of frame x can be dropped after receiving the packet loss
feedback of that frame.

At the receiver side, when receiving the frame with the
extra tag, it will follow the same process as the second step
above to generate the same “reconstructed” reference frame
as the encoder. Again, the overhead is negligible since it does
not require NN inference.

B.2 How GRACE handles I-frames

GRACE uses BPG [21] (also used in H.265) to encode and
decode I-frames every 1000 frames. That said, in many NVCs
(including DVC), the quality of P-frames will gradually de-
grade after an I-frame. By simply adding frequent I-frames
(e.g., every 10 frames), we can achieve similar average com-
pression efficiency with H.264 and H.265 when they use an
optimal I-frame interval. However, since I-frames are larger
than P-frames, adding too many I-frames causes frequent
spikes in frame size. Instead, GRACE uses an extra small
square-sized patch as a tiny I-frame, called I-patch, on every
P frame. We split each frame into k patches, and for a window
of k frames, each frame is sent with an extra I-patch at a differ-
ent location, so I-patch “scan through” the whole frame every

k frame. By default, k = 30 though we empirically found any
value between 10 and 30 works well. With I-patch, GRACE
does not need to send any I-frames (except the first frame).
We use BPG [21] to encode/decode the I-patch. Figure 21
shows that when k = 10, I-patch mitigates the sudden size
increase caused by I-frames.

It is worth noting that though I-patch encoding can also use
a loss-resilient NVC, we do not protect their packet loss to
simplify the system design. This is because if each patch will
see an I-patch every k frames, so even if one patch is lost, its
impact is confined to the next k frames, and empirically, even
this impact is marginal since P-frames are still delivered.

B.3 Working with congestion control
GRACE can be integrated with any existing congestion con-
trol (CC) algorithms. When combined with GRACE, CC does
not need to retransmit packets, unless no packets of a frame
are received. CC determines the sending rate of packets and
the target size of the next frame, while GRACE decides the
content in each packet. Therefore, GRACE would not change
the properties of the CC, such as fast convergence, oscillation
avoidance, and TCP friendliness. In real-time video commu-
nication, traditional CC algorithms like GCC [31] typically
mitigate packet losses by reducing bandwidth use, due to
the non-loss-tolerant nature of conventional video codecs.
These codecs necessitate retransmissions when packet loss
happens, causing frame delays and video stalls. Conversely,
GRACE is designed to handle packet losses by decoding the
partially received frames with graceful quality. This capabil-
ity allows GRACE to employ a more aggressive congestion
control strategy, which, while resulting in occasional packet
losses, enhances bandwidth utilization. An illustration of this
approach can be found in Appendix C.7, where GRACE works
with Salsify’s congestion control (Sal-CC) [45] that yields a
higher average sending rate albeit with increased packet loss.

B.4 Integration in WebRTC
GRACE is implemented with 3K lines of code, in both Python
(mostly for NVC NNs) and C++ (for frame delivery and We-
bRTC integration). The code and trained model of GRACE
will be made public upon the publication of this paper. The
integration with WebRTC is logically straightforward since
GRACE (including I-frame and P-frame encodings) exposes
similar interface as the default codec in WebRTC.

We substitute the libvpx VP8 Encoder/Decoder in WebRTC
with our GRACE implementation. When the sender encodes
a frame, it parses the image data from the VideoFrame data
structure (YUV format) into torch.Tensor (RGB format)
and feed it into our GRACE encoder, which will return the en-
coded result as a byte array. Then the encoded bytes are stored
into an EncodedImage (class in WebRTC) and sent through
the network to the receiver as RTP packets. We modify the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 527

Figure 22: H265 vs VP9 Encoding Efficiency on Kinetics

built-in RtpVideoStreamReceiver (class in WebRTC) so
that the receiver could flexibly decode the received packets
even when not all the packets are received. When the receiver
decides to decode the frame, it depacketizes the received pack-
ets into encoded data. Then it will use the GRACE decoder to
decode the image into RGB format and then convert it back
to YUV for displaying on the receiver side.

C Supportive details for GRACE’s evaluation
experiments

C.1 VP9 and H265 Comparison
In our paper we mainly compared with codecs in the H26x
family. Since many prior work used VPx codec, we ran a
simple experiment to show they have similar efficiency. We
randomly chose 12 videos with resolution 1280x720 from
the Kinetics dataset we used and compared encoding effi-
ciency between VP9 and H265. We configured VP9 to use
speed/quality tradeoff level 8 and set H265 to very-fast, zero-
latency, and no B-frame. We confirm that they have similar
performance as shown in Fig 22.

C.2 Baseline and testbed implementation de-
tails

We provide the extra implementation details of our baselines
here:
• Tambur: To match the implementation in Tambur’s

paper [86], we force the codec to not encode any I-frames.
Following recent work in real-time video coding [2, 7], we
use the zerolatency option (no B-frames) and the fast
preset of H.265. The command line we used to encode
a video is ffmpeg -y -i Video.y4m -c:v libx265
-preset fast -tune zerolatency -x265-params
"crf=Q:keyint=3000" output.mp4 where Q controls
the quality of the frame.

• Error concealment: We employ ECFVI [59], an NN-
based error concealment pipeline, to mitigate errors from
packet losses with H.265 encoding/decoding. When an
incomplete frame is received, it starts a 3-step process to
compensate for the errors. First, it uses a neural network

to estimate the motion vector of the missing part from the
previous N frames. Next, the missing pixel values are prop-
agated from the reference frame using the estimated motion
vector. Finally, an inpainting neural network is applied to
enhance frame quality and minimize error propagation. We
set N = 5 during our evaluation.

ECFVI operates under the assumption that packet loss
only corrupts portions of a frame, leaving the rest part
(corresponding to the arrived packets) decodable. How-
ever, as discussed in §4.1, a single packet loss typically
renders an entire frame undecodable in H.264/H.265. To
reconcile this, we use flexible macroblock ordering (FMO)
technique within the underlying H.265 video codec. This
allows different parts of a frame to be encoded and packe-
tized independently into distinct packets. In our baseline
implementation, the frame is partitioned into 64×64-pixel
blocks and randomly mapped to various packets during
packetization. This method introduces a size overhead, as
the codec cannot eliminate redundancy among packets.
Based on prior works [64, 74, 99], we account for an ad-
ditional 10% size overhead to ensure that each packet is
individually decodable.

ECFVI is chosen as the baseline for error concealment
for two main reasons: (i) Its 3-step method is recognized
as state-of-the-art within the computer vision research area.
It surpasses the prior works that only do motion estima-
tion [87] or inpainting [34]. (ii) Similar methods have
been adopted by various recent works such as [46], [69],
and [111], while ECFVI ranking as the most proficient
among them. (iii) ECFVI’s performance is also on par with
or better than other recent error concealment techniques,
including those utilizing transformers [71, 110].

• Voxel (selective frame skipping): We sort the video frames
by the SSIM drop caused by skipping the frame (in real-
time video communication, we usually cannot get the qual-
ity drop caused by skipping frames in advance. Thus, we
are making an idealized assumption that improves the base-
line). For 25% frames with the lowest SSIM drop, we use
the default error concealment method in H.264/AVC [115]
without any packet retransmission, and for the remaining
frames (which cause more SSIM drops when skipped), we
retransmit all the lost packets. We use a GoP (chunk length)
of 4 seconds, which is also used by Voxel.

• Salsify (functional codec): We implement the Salsify codec
based H.265 with the following two key features: firstly,
the encoded frame size never surpasses the target bitrate
determined by the underlying congestion control algorithm;
secondly, upon packet loss, the encoder can dynamically
select a reference frame, enabling subsequent frames to be
decoded without resending any packets.

528 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 23: The simulated frame delay of GRACE is close to
the real world measured frame delay

C.3 Simulator validation
Our simulator runs on an Ubuntu 18.04 server with 2 Intel
Xeon 4210R CPU, and 256GB memory, with 2 Nvidia A40
GPUS. To validate that the frame delay measured in simu-
lation matches the real-world numbers, we run a real-world
emulation using GRACE. Being the same as simulation, we
use 2 Nvidia A40 GPUs, one for encoding and one for decod-
ing. The encoder process encodes the video using GRACE’s
encoder and send the encoded packets through an emulated
network. The decoder process decodes the frame using the
same logic as mentioned in §4. We compute the real-world
frame delay by calculating the difference between the en-
coding time and the decoding time of a frame. Figure 23
compares the simulated frame delay and real-world measured
frame. We use the bandwidth trace same as Figure 16. The
result validates that our simulated frame delay is accurate. It is
worth noting that we are running real encoding and decoding
process in the simulation, hence the calculated frame quality
should also be the same as using GRACE in the real world.

C.4 Distribution of video content complexity

Figure 24: Spatial information (SI) and temporal information
(TI) of test videos

To validate the test videos that we use cover different con-
tent complexities and movements, we calculate the spatiotem-
poral complexity of the video. We use Spatial Information (SI)
and Temporal Information (TI) [58], which are frequently-
used metrics to measure the spatiotemporal complexity and a
larger SI/TI means that the video has a higher spatial/temporal

complexity. The metrics are calculated by the tool [12] pro-
vided by Video Quality Experts Group (VQEG) and the result
is shown in Figure 24.

The result validates that (i) the spatiotemporal complexity
of the videos we used covers a wide range: SI is ranging
from 15 to 85 and TI is ranging from 3 to 25. (ii) Our test
videos covers all the following types: high spatial complexity
and high temporal complexity, high spatial complexity but
low temporal complexity, low spatial complexity but high
temporal complexity, and low spatial complexity and low
temporal complexity.

C.5 Illustration example where GRACE per-
forms poorly

In some rare cases, GRACE may suffer from poor quality.
Figure 25 visualizes an example of four consecutive frames
when GRACE performs poorly. As shown in the yellow box,
the frame decoded by GRACE has some notable artifacts
around the moving object, which degrades the SSIM.

C.6 Screenshot of videos we used for user study
Figure 26 shows the screenshot of the videos we used for the
user study (in §5.3)

C.7 Working with other congestion control
GRACE can also work with the congestion control algorithm
proposed in Salsify (Sal-CC) [45], which is more aggressive
than GCC. Sal-CC has a higher average sending rate, while
paying the cost of potentially having more packet losses. Fig-
ure 27 show that changing from GCC to Sal-CC increases the
average SSIM of 0.7-1.1dB for GRACE with a negligible in-
crease in video stall ratio. In contrast, the video stall ratio for
Salsify codec will increase a lot when using Sal-CC, because
Salsify codec needs to keep skipping frames for more than
one RTT when packet loss happens, which leads to frequent
video stalls.

C.8 Working with super resolution
In line with the discussion in §2.2, Super-Resolution (SR)
can supplement the receiver-side video quality. We employed
SwinIR [70], a leading SR model, in our simulation to confirm
that GRACE, like baselines, can also leverage SR benefits. Our
experiments demonstrated that SR boosts receiver-side quality
for all codecs, irrespective of the specific codec employed.
For more details, refer to Appendix C.8.

Figure 28 shows the tradeoff between quality and video
stall ratio when using SR to enhance the quality at the receiver
side. We run the simulation using LTE traces with a 100ms
one-way delay and a 25-packet queue and then use a state-
of-the-art SR model, SwinIR [70], to improve the quality of
the decoded videos. When using SR, GRACE can still have
on-par SSIM with Salsify codec and H.265 w/ Tambur: the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 529

Figure 25: An example where GRACE performs poorly. It shows four consecutive decoded frames where the pink brush moves
down quickly. Some artifacts in The yellow box degrade the frame quality and impact the SSIM.

(a) Sports: Football (b) Sports: Soccer (c) Gaming: Fortnite (d) Gaming: Genshin Impact

(e) Daily movement: Taekwondo (f) Daily movement: Baby in crib (g) Talking heads: indoor (h) Talking heads: outdoor

Figure 26: Summary of videos used in our user study. They span four categories: sports (a, b), gaming (c, d), daily movement (e,
f), and talking heads (g, h).

(a) One-way delay = 50ms (b) One-way delay = 75ms (c) One-way delay = 100ms (d) One-way delay = 150ms
Figure 27: End-to-end simulation result under different one-way delay. Network queue length = 25 packets

Figure 28: The quality of GRACE and baselines after super-
resolution

SSIMs are 15.8 dB, 16.4 dB, and 16.0 dB respectively. The
SSIM of SVC (15.4 dB) is still lower than GRACE even with
super-resolution. This is because packet loss can make higher
layers of SVC undecodable, resulting in lower quality. This
shows SR technique is complementary to our work, as it can
improve the quality for any codecs at the receiver side.

Encoding (ms) Decoding (ms)
720p 480p 720p 480p

GRACE-Lite 35.1 17.2 40.9 21.6

Table 2: Encoding/decoding time per frame for GRACE-Lite
on Intel CPU

C.9 Encoding/decoding time on CPU

We use OpenVINO library to run GRACE on a 32-core In-
tel(R) Xeon(R) Silver 4210R CPU. Table 2 shows the en-
coding/decoding time of a 720p/480p frame respectively. It
can encode/decode a 720p frame at 28.5 fps and 24.4 fps
respectively.

530 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SSIM
(dB)

% of non
rendered frames

Video stall
ratio

GRACE 15.53 0.21 0.0011
GRACE-Lite 15.01 0.22 0.0012
GRACE-D 13.91 0.24 0.0014
GRACE-P 12.53 0.33 0.0023

Table 3: End-to-end simulation shows GRACE-Lite has the
same benefits in video realtimeness/smoothness compared
to GRACE with marginal quality drop. Although GRACE-D
and GRACE-P have similar video realtimeness/smoothness
as GRACE, they suffer from low video quality.

Grace-D
SSIM: 10.7 dB

Grace-P
SSIM: 8.8 dB

Grace
SSIM: 12.0 dB

Figure 29: Comparing reconstructed image when the same
packet loss is applied to the pre-trained NVC (GRACE-P), a
variant with only decoder fine-tuned with loss (GRACE-D),
and GRACE (both encoder and decoder jointly fine-tuned).

C.10 Simulation results and visualization ex-
amples for GRACE-Lite, GRACE-P and
GRACE-D

Table 3 shows the end-to-end simulation results comparing
GRACE, GRACE-Lite, GRACE-D, and GRACE-P. We use the
LTE traces, and set the one-way-delay to 100 ms and the net-
work queue length to 25 packets. GRACE-Lite has both simi-
lar quality and realtimeness/smoothness as GRACE. Without
jointly training the encoder and decoder with loss, GRACE-P
and GRACE-D fail to achieve similar quality as GRACE.

Figure 29 visualizes the reconstructed frame of GRACE,
GRACE-P, and GRACE-D when the same 50% packet loss is
applied to the encoded tensor of the same image, demonstrat-
ing that by jointly training both the encoder and decoder under
various packet losses, GRACE delivers the best reconstruction
quality without any prominent artifacts, and achieves a high
SSIM.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 531

LiFteR: Unleash Learned Codecs in Video Streaming
with Loose Frame Referencing

Bo Chen1, Zhisheng Yan2, Yinjie Zhang1, Zhe Yang1, Klara Nahrstedt1
1University of Illinois at Urbana-Champaign, 2George Mason University

Abstract
Video codecs are essential for video streaming. While tradi-
tional codecs like AVC and HEVC are successful, learned
codecs built on deep neural networks (DNNs) are gaining pop-
ularity due to their superior coding efficiency and quality of
experience (QoE) in video streaming. However, using learned
codecs built with sophisticated DNNs in video streaming
leads to slow decoding and low frame rate, thereby degrad-
ing the QoE. The fundamental problem is the tight frame
referencing design adopted by most codecs, which delays the
processing of the current frame until its immediate predeces-
sor frame is reconstructed. To overcome this limitation, we
propose LiFteR, a novel video streaming system that operates
a learned video codec with loose frame referencing (LFR).
LFR is a unique frame referencing paradigm that redefines
the reference relation between frames and allows parallelism
in the learned video codec to boost the frame rate. LiFteR has
three key designs: (i) the LFR video dispatcher that routes
video data to the codec based on LFR, (ii) LFR learned codec
that enhances coding efficiency in LFR with minimal impact
on decoding speed, and (iii) streaming supports that enables
adaptive bitrate streaming with learned codecs in existing
infrastructures. In our evaluation, LiFteR consistently out-
performs existing video streaming systems. Compared to
the existing best-performing learned and traditional systems,
LiFteR demonstrates up to 23.8% and 19.7% QoE gain, re-
spectively. Furthermore, LiFteR achieves up to a 3.2× frame
rate improvement through frame rate configuration.

1 Introduction

The video streaming industry has grown rapidly in recent
years, with revenues of $72.2 billion in 2021 and expected
to reach $115 billion by 2026 [20]. To achieve high-quality
video streaming with minimal bandwidth usage, an essential
component is the video codec, which compresses the video
data while maintaining its visual fidelity.

Traditional codecs, such as AVC (x264) [57], HEVC
(x265) [52], and MPEG-2 [33], are widely used and built

on handcrafted modules such as block-based motion estima-
tion, discrete cosine transform, and entropy coding. Recently,
learned codecs, built entirely on deep neural network-based
modules and end-to-end optimized, have been introduced and
have demonstrated superior coding efficiency, i.e., the ability
to encode videos with low bitrates while maintaining video
quality [2, 25, 38, 39, 62, 63]. As a result, learned codecs have
the potential to offer a better quality of experience (QoE) in
video streaming.

Despite the potential, the use of existing learned codecs
in video streaming faces major limitations. The complicated
neural processing incurs a slow decode speed at the video
player, causing a low frame rate and QoE during video play-
back. Our results (§2) show that, on a GPU, the frame rate
of systems using learned codecs is still one magnitude lower
than that of systems using traditional codecs on a CPU. On
many hardware configurations, learned codecs cannot reach a
real-time frame rate for smooth streaming. While the QoE in
systems using traditional codecs is mainly affected by slow
video downloads, we discover that those using learned codecs
can suffer additionally from slow decode speed.

The root cause of this limitation is the tight frame refer-
encing (TFR) principle that has been in use for decades in
traditional video codecs. This principle encodes and decodes
each frame by referencing the immediate predecessor frame.
For example, frame#1 is referenced by frame#2, and frame#2
is referenced by frame#3. It minimizes the difference be-
tween the current frame and the reference frame and makes
coding efficient. However, the processing of the current frame
must be delayed until the processing of its reference frame is
completed. As traditional codecs are highly optimized in com-
putation complexity [52, 57], they can work with TFR with a
reasonable frame rate. In contrast, TFR incurs an unaccept-
able frame rate in learned codecs with computation-intensive
deep neural networks (DNNs). The frame dependency un-
derlying TFR also impedes the possibility of parallel frame
processing.

Aiming at improving the frame rate and achieving high
QoE in video streaming, we propose to operate the learned

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 533

0.0 0.5 1.0 1.5
Bit Per Pixel

32

34

36

38

40
PS

N
R

 (d
B

)
Better

Learned codecs:
High coding efficiency

DVC
RLVC
x264f
x264m

x264s
x265f
x265m
x265s

(a) Learned codecs has better coding efficiency.

DVC
RLV

C
x2

64
f

x2
64

m
x2

64
s
x2

65
f

x2
65

m
x2

65
s

0
30
60
90

120
150
180
210

D
ec

od
e

Fr
am

e
R

at
e

(f
ps

)

L
ea

rn
ed

 c
od

ec
s:

L
ow

 fr
am

e
ra

te
s

(b) Learned codecs are slow in decoding.

Rebuffer Stall
0.0

0.2

0.4

0.6

0.8

1.0

R
eb

uf
fe

r/S
ta

ll
R

at
e

L
ea

rn
ed

 c
od

ec
s:

H
ig

h
re

bu
ff

er
an

d
st

al
l r

at
es

DVC
RLVC
x264f
x264m
x264s
x265f
x265m
x265s

(c) Learned codecs rebuffer and stall.

Figure 1: The potential and limitation of applying learned codecs in video streaming systems.

codec with loose frame referencing (LFR). In contrast to
TFR, the reference of a frame in LFR only needs to be a
temporally close frame, instead of the immediate predecessor.
The rationale is that similarity exists between temporally close
video frames, which are not necessarily adjacent. As such,
frames with the same reference can be processed in parallel,
which improves the frame rate of learned video codecs. More
importantly, the similarity between a frame and its reference
with LFR still preserves the coding efficiency.

As TFR has been the de facto design for both traditional
and learned codecs that maximizes coding efficiency, imple-
menting LFR in video streaming presents three challenges.
First, optimally balancing the coding efficiency and decod-
ing speed with LFR is non-trivial. Additionally, the reference
frames in LFR could lead to significant memory consump-
tion. Second, the existing architecture of the learned codec
cannot handle the degradation in coding efficiency caused by
LFR. Third, the existing streaming infrastructure is compati-
ble with the learned codec regarding bitrate adaptation, frame
rate configuration, and buffer level.

We design LiFteR, a novel on-demand video streaming
system that leverages a learned codec with LFR, to address
the above challenges. First, we introduce the LFR video
dispatcher that routes frames to the learned codec iteratively.
It strikes a balance between coding efficiency and decoding
speed by defining frame dependency based on a binary tree
and pre-order traversal. The memory consumption of it is
constrained by processing frames in a GOP on a per-tree
basis. Second, we design a unique LFR learned codec. It
improves coding efficiency by exploiting the inter-frame
correlation presented by LFR with self-attention. More
importantly, it imposes minimal impact on the frame rate due
to highly parallelized motion estimation. Finally, we adopt
bitrate-adaptive training, frame rate configuration, and an
enhanced adaptive bitrate (ABR) algorithm to bridge the gap
between learned codecs and modern streaming infrastructure.

We compare LiFteR to video streaming systems built on dif-
ferent traditional codecs (x264 and x265) and learned codecs
(DVC [39] and RLVC [63]). Results show that LiFteR consis-
tently outperforms other streaming systems on different GPU
capabilities and network conditions. Compared to the best-
performing baselines using learned and traditional codecs,

LiFteR achieves up to 23.8% and 19.7% QoE gain, respec-
tively. We also demonstrate the capability of LiFteR to boost
system frame rate by up to 3.2× via LFR on everyday GPUs.
In summary, the contributions of this work are as follows.

• We identify the limitations of applying learned codecs
in video streaming and propose the LFR paradigm.

• We build LiFteR to showcase a practical system through
the design of the LFR video dispatcher, the LFR learned
codec, and streaming supports for the learned codec.

• We evaluate LiFteR to demonstrate its multi-fold benefits
in frame rate, video quality, and rebuffer rate.

2 Background and Motivation

Adaptive video streaming has been predominantly used. At
the server, a video is segmented and encoded into different
bitrates in advance. A client-side ABR algorithm [51, 61]
adaptively downloads video segments of the appropriate bi-
trate level based on network conditions. The received seg-
ments are then decoded for playback. Studies have shown that
the QoE of video streaming [51] is primarily determined by
video quality Q, measured by PSNR, and playback smooth-
ness, measured by the rebuffer rate R (the rebuffer duration
divided by the video session duration). Therefore, the QoE
metric can be formally defined as in Equation 1.

QoE = Q− γR, (1)

where γ is a parameter balancing Q and R. The value of γ in
this paper is chosen according to BOLA [51].

2.1 Advantages of Learned Codecs
Video codecs play a crucial role in ensuring QoE in video
streaming by improving the trade-off between video qual-
ity and bitrate. Though, traditional codecs like x264, x265,
and MPEG [33, 52, 57] have been widely utilized in video
streaming, the advancement in deep learning allows learned
codecs [2,38,39,63] to challenge the dominance of them. Un-
like traditional codecs, learned codecs implement the codec

534 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

pipeline with DNN modules instead of handcrafted modules.
These DNN modules are trained end-to-end to optimize video
quality and bitrate.

In Figure 1(a), the coding efficiency of two learned codecs
(DVC [39] and RLVC [63]) is compared to three presets,
i.e., veryslow (s), medium (m), and veryfast (f), of traditional
codecs, i.e., x264 and x265. For instance, x264f represents
the codec x264 using the veryfast preset. The comparison
is performed on the UVG dataset [42] with the same group
of pictures (GOP) size as specified in §4. Each point on the
figure represents a rate-distortion trade-off for a codec, where
bits per pixel (bpp) is the rate metric and PSNR is the distor-
tion metric. A rate-distortion curve closer to the top-left side
of the figure indicates higher coding efficiency, thus demon-
strating the superiority of learned codecs. For example, DVC
achieves a similar PSNR (38.73 dB) as x265s (38.68 dB), the
best-performing traditional codec, while reducing the bpp by
almost half (0.55 vs. 1.05 bpp). Similarly, RLVC improves
the PSNR by 1 dB compared to x265s (39.22 dB vs. 38.20
dB) with a similar bpp (0.57 vs. 0.59 bpp).

2.2 Learned Codecs Are Slow In Decoding

Despite the benefits of learned codecs, they exhibit a rela-
tively low decode frame rate due to the computation over-
head of DNNs, which may lead to rebuffering or stall and
affect QoE in video streaming. For simplicity, we will use the
term “frame rate” whenever referring to the decode frame rate
throughout the remainder of this paper. To assess such im-
pacts, we developed a video streaming prototype with various
traditional and learned codecs (see §5 for a detailed setup).
Our rate adaptation algorithm was BOLA [51], a widely used
industrial-level ABR algorithm. We used the UVG [42] and
MCL-JCV [56] video datasets, along with 1,000 traces from
the FCC broadband network data [23] to emulate the stream-
ing environment. The video client utilizing traditional codecs
and learned codecs was run on an Intel Core i9-8950HK CPU
and an NVIDIA GTX 1080 Ti GPU, respectively.

Figure 1(b) shows that, despite the advantage of the
hardware, the frame rates of systems using learned codecs
remain one order of magnitude lower than traditional codecs.
It is worth noting that the “veryfast” preset in x265 typically
yields a faster frame rate compared to the “medium” and
“veryslow” presets. However, the impact of presets may vary
based on distinct video contents and configurations, such as
quantization parameters and resolution. Consequently, scenar-
ios may arise where x265f does not achieve a faster frame rate
than x265m and x265s, as depicted in Figure 1(b). Figure 1(c)
compares the QoE of systems via rebuffer rate and stall rate
(the number of segments that cannot be played immediately
after its previous segment, divided by the total number of
segments). The rebuffer rates of DVC (0.15) and RLVC
(0.75) are drastically higher than those of traditional codecs,
indicating the videos are freezing 15% and 75% of the time.

I P1 P2 P3 P4 P5 P6

Past FutureRefer to

Figure 2: The frame processing dependency in today’s codecs.

M
ot
Es
t

M
ot
En
c

M
ot
C
m
p

-

R
es
D
ec

+
Raw

Frame
Raw

Motion
Rec.

Motion
Raw

Residual
Rec.

Residual
Pred.
Frame

Rec.
Frame

M
ot
D
ec

R
es
En
c

M
ot
C
m
p

R
es
D
ec

+

M
ot
D
ec

Encoder

Decoder

Motion Bitstream

Rec. Frame

To
 b

e
w

at
ch

ed
R

ef
er

en
ce

 fo
r

ne
xt

 e
nc

od
in

g

DNN Processing at DNN Processing at

Residual Bitstream

Rec. Frame

Depends on Depends on

Figure 3: The canonical pipeline of learned codecs. This
iterative pipeline means DNN processing at timestamp t is
dependent on that at timestamp t −1.

The stall rate of 1.0 for both learned codecs implies that video
playback freezes for every segment, as the decoding frame
rate is lower than the target frame rate of the source of 30 fps.

2.3 Preliminary Analysis of Learned Codecs

Background. Similar to traditional codecs, a video is divided
into GOPs in learned codecs for encoding/decoding. Typically,
the processing of a GOP starts from an I frame (intra-coded)
that can be processed by an image codec. As depicted in Fig-
ure 2, all other frames in the GOP are P frames (predicted) and
undergo predictive coding with the immediate predecessor
frame as the reference frame, i.e., TFR. An alternate imple-
mentation inserts additional B frames (bi-directional) between
I frame and P frames, referencing past and future frames [62].
Still, the fundamental frame referencing of I and P frames of
such an implementation follows TFR.

The canonical pipeline for encoding a P frame at timestamp
t, t = 1,2, ..., with learned codecs, is illustrated in Figure 3
(top), involving four DNN-based modules: motion estimation
(MotEst), motion encoder/decoder (MotEnc/MotDec), mo-
tion compensation (MotCmp), and residual encoder/decoder
(ResEnc/ResDec). Initially, MotEst estimates the motion, a
vector representing the displacement of each pixel, based on
the current frame (Raw Frame t) and the reference frame
(Reconstructed Frame (t −1)), the reconstructed immediate
predecessor frame. MotEnc compresses the raw motion data
into bitstreams and MotDec decompresses bitstreams into the
reconstructed motion, representing the motion received by the
video decoder. MotCmp then generates the predicted frame
based on the reconstructed motion and the reference frame.
The raw residual data between the predicted and raw current
frame is then calculated via subtraction and processed by Res-
Enc and ResDec into the reconstructed residual. Finally, the
reconstructed residual and the predicted frame are added to

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 535

produce the reconstructed current frame (Rec. Frame t). The
decoding process partially follows the encoder pipeline in
Figure 3 (top) that produces the current reconstructed frame
(Rec. Frame t) from the bitstreams of the motion and residual.

5 10 15
Batch Size

0

2

4

6

Pr
oc

. T
im

e
(m

s)

↓74%

MotCmp
MotDec
ResDec

(a) NVIDIA GTX 1080 Ti

5 10 15
Batch Size

0

2

4

Pr
oc

. T
im

e
(m

s)
↓71%

MotCmp
MotDec
ResDec

(b) NVIDIA RTX 2080 Ti

Figure 4: DNNs for decoding save time via parallelism.

The need and potential of parallelism. Unlike heavily-
engineered modules in traditional codecs that can run fast
enough to support real-time encoding/decoding, the sophis-
ticated DNN modules in learned codecs are inherently slow.
As a result, even a single iteration in Figure 3 pipeline can be
time-consuming, resulting in a low frame rate.

Parallelism, which accelerates DNN by processing multiple
instances of data simultaneously in a batch, is a potential
solution for improving the frame rate of learned codecs, by
processing frames in parallel. To demonstrate the potential
of parallelism, we isolate DNN modules for decoding, i.e.,
MotCmp, MotDec, and ResDec, from learned codecs. Then,
we separately measure the mean processing time per frame
of these DNN modules for different batch sizes, ranging from
1 to 16 frames, on NVIDIA GTX 1080 Ti and RTX 2080
Ti. Figure 4 demonstrates the average processing time per
frame when the batch size is one, the case with TFR, can be
significantly improved by adopting a larger batch size. When
the batch size increases from one to four, the speed of the
motion compensation modules can be boosted by 74% and
71% on NVIDIA GTX 1080 Ti and RTX 2080Ti, respectively.
Parallelism is infeasible with TFR. Parallelism requires
that the processing of different frames t = 1,2, . . . is inde-
pendent. For existing learned codecs with TFR, DNN pro-
cessing of modules like MotDec, MotCmp, and ResDec at
timestamp t happens after the reconstructed frame t −1. The
reconstructed frame t −1, produced by DNN modules Mot-
Dec, MotCmp, and ResDec, happens after DNN processing
of MotDec, MotCmp, and ResDec at timestamp t −1. As a
result, the processing of MotDec, MotCmp, and ResDec at
timestamp t depends on the processing at timestamp t −1, as
illustrated in Figure 3 (bottom). Such a dependency contra-
dicts parallelism.

2.4 Intuition and Challenges

Intuition. Our intuition is that frame similarity exists not
only between adjacent frames but also between non-adjacent,
temporally close frames. By leveraging the temporally close

frames for reference in video coding, i.e., loose frame refer-
encing (LFR), multiple frames can share the same reference
frame. Therefore, these frames with the same reference can be
processed in parallel, improving the frame rate. Meanwhile,
the similarity between a frame and its reference, a temporally
close frame preserves coding efficiency.
Challenges. Designing a learned video streaming system with
LFR presents three main challenges:

1. Processing pipeline: It remains a question of how to con-
figure LFR that 1) optimally balances the coding efficiency
and decoding speed and 2) minimizes the memory usage
due to buffering multiple reference frames.

2. Learned codec: LFR, by its design, introduces a larger
difference between the raw and reference frames than TFR.
The existing learned codec design cannot handle such
discrepancies.

3. Streaming infrastructure: The existing video streaming
infrastructure is incompatible with learned codecs, which
exhibit different behaviors from traditional ones.

3 LiFteR Overview

The overview of LiFteR is illustrated in Figure 5, which com-
prises offline and online stages. In the offline stage, we con-
struct the LFR learned codec (§3.2), a unique codec design
that mitigates the impact of LFR by using an elastic compres-
sion component (§3.2.2) and maintains the decoding speed
through highly-parallelized motion estimation (§3.2.1). Then,
the codec is trained and configured before being deployed on
the media server and the client.

After deployment, the server utilizes the LFR video dis-
patcher (§3.1) to route the raw video to the video encoder iter-
atively based on LFR. The LFR video dispatcher balances cod-
ing efficiency and decoding speed with a dependency graph
(§3.1.1) and constrains memory usage via a frame iterator
(§3.1.2). The video encoder compresses the raw video dis-
patched by the LFR video dispatcher into video segments
of different bitrates, ready for Dynamic Adaptive Streaming
over HTTP (DASH).

During the online stage, the client employs an ABR algo-
rithm to download video segments with appropriate bitrates
from the media server. These downloaded segments are routed
to the decoder by the LFR video dispatcher and reconstructed
into video frames. To integrate LiFteR into existing ABR
streaming infrastructures, we build streaming supports that
enable adaptive bitrate in training (§3.3.1), frame rate config-
uration (§3.3.2), and the enhanced ABR algorithm (§3.3.3).

3.1 LFR Video Dispatcher
LFR video dispatcher models frame processing dependency
with the dependency graph (§3.1.1). Driven by the depen-

536 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Le
ar

ne
d

En
co

de
r

Le
ar

ne
d

D
ec

od
er

§3
.3

.1
 B

itr
at

e-
ad

ap
tiv

eT
ra

in
in

g

§3
.3

.3
En

ha
nc

ed
A

B
R

§3
.3

.2
 F

ra
m

e
R

at
e

C
on

fig
ur

at
io

n
Offline Online

480p

720p

1080p

D
A

SH

Media Server

Rec.

Raw

Client

§3
.1

 V
id

eo
D

is
pa

tc
he

r

§3
.2

 L
FR

Le
ar

ne
d

C
od

ec

§3
.1

 V
id

eo
D

is
pa

tc
he

r

Figure 5: Overview of the video streaming pipeline in LiFteR.

I P1 P2 P3 P4 P5 P6

I P1 P2 P3 P4 P5 P6

1 1 1 11 1

1 2 3 54 6

I P1 P2 P3 P4 P5 P61 1 2 14 2
Binary
Tree

One-hop
Tree

Chain

Figure 6: Frame reference structures.
A binary tree balances reference cost
and depth.

dency graph, it iteratively feeds frames to codec (§3.1.2).

3.1.1 Dependency Graph

In the dependency graph, each vertex with a unique positive
integer label corresponds to a video frame processed at a
particular timestamp, and the directed edge represents the
dependency, pointing from a reference frame to the to-be-
processed frame. Traversing the dependency graph is equiva-
lent to processing video frames, which starts from a visited
vertex representing the I frame. Then, graph traversal proceeds
in iterations until all vertices are visited. In each iteration, we
can visit vertices pointed by directed edges starting from vis-
ited vertices in previous iterations. The visited vertices in
the same iteration represent frames that can be processed in
parallel. As this paper focuses on the dependency of I and P
frames (Figure 2) where a frame with a smaller timestamp
is typically processed earlier, we constrain this dependency
graph such that the end of a directed edge has a larger index
than the start. We aim to minimize two metrics when deciding
the shape and labeling of indices in the dependency graph.

1) Reference cost: The sum of the difference in indices be-
tween the end and start of directed edges, which indicates
the difference between the frames and their reference in
video coding and relates to coding efficiency.

2) Reference depth: The maximum depth of a vertex, which
indicates the number of iterations needed to process all
frames and relates to parallelism.

Shape: binary tree. It is challenging to balance the reference
cost and depth. The dependency graph representing TFR has
the shape of a chain. In Figure 6 (top), we provide a visual rep-
resentation of the chain while also labeling index differences
between frames and their references. Iterations are colored
differently for clarity. The chain displays a low reference cost
of 6 and a high reference depth of 6. Alternatively, we con-
struct the dependency graph as a one-hop tree in Figure 6
(middle), which represents a fully parallelized way where all
P frames reference the same I frame. This tree boasts a small
reference depth (1) but has a high reference cost (21).

Our insight is that the binary tree as the dependency graph
effectively balances the reference cost and depth. First, unlike
the chain, the reference depth in a binary tree increases slowly
with the number of vertices in the tree in a logarithmic manner.
Second, in contrast to the one-hop tree, the reference cost is

more constrained as one frame is used at most twice for frame
referencing. While N-ary trees (N = 2,3, . . .), e.g., the 3-ary
tree, may have similar properties as the binary tree, as the first
effort to explore frame dependency with a tree, we focus on
the binary tree for simplicity.
Labeling: pre-order traversal. The derivation of the depen-
dency graph is essentially finding the Minimum Spanning
Tree (MST) in the particular shape of the binary tree, termed
Minimum Spanning Binary Tree (MSBT), within a dense
graph. Assuming there are N frames, the dense graph consists
of N vertices indexed by 0,1, . . . ,N −1. In this dense graph,
there exists an edge between every pair of vertices, whose ab-
solute difference in indices is the edge weight. It is important
to minimize the reference cost in labeling.

Naively, we can construct the MST by leveraging the well-
known Prim’s algorithm to add vertices and edges in the
dense graph into a tree starting with the vertex 0. However,
the derived MST would have the shape of the chain like Fig-
ure 6 (top) instead of the binary tree. To tackle this problem,
we modify the Prim’s algorithm by skipping the addition of
vertices and edges that 1) cause the MST to have a depth
that is higher than a complete binary tree of N vertices, i.e.,
⌈log2(N +1)⌉ and 2) cause one vertex to have more than two
children. The resulting algorithm is equivalent to assigning
frame indices (from small to large) to vertices of a binary
tree via pre-order traversal. Intuitively, this algorithm greedily
minimizes the reference costs of both children of any vertex.
Theoretical analysis. Figure 6 (bottom) illustrates the de-
pendency graph with a binary tree and pre-order traversal.
Such a tree results in a reference depth (2) that is consider-
ably smaller than that of the chain while using only half the
reference cost of the one-hop tree, i.e., 6. In Figure 7, we
delve further into how the reference cost and depth change
as the number of frames in a GOP increases. The number
of frames is expressed as a function of the full binary tree
depth D. Our analysis reveals that the binary tree strikes a
better balance between the frame rate (reference depth) and
the coding efficiency (reference cost) and displays a more
pronounced advantage when processing more frames.

3.1.2 Frame Iterator

With the dependency graph, a straightforward way is to in-
clude all frames of a GOP in it. However, a GOP can have
a large number of frames, which requires processing more
frames in parallel than a system can afford. To scale to arbi-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 537

0 25 50
#Frame=2D−1

0

25

50

R
ef

er
en

ce
 D

ep
th

2D
−2

D−1

1

Chain
One-hop
Binary

0 25 50
#Frame=2D−1

0

1

2

R
ef

er
en

ce
 C

os
t (

K
)

2D−2
(D−1)2D−1 +

D−2
∑
d=0

2d(2
D−

1 −
1)(
2D
−1
)Chain

One-hop
Binary

Figure 7: The binary tree achieves a better trade-off between
reference cost and depth.

trary GOP sizes, we process frames in a GOP on a per-tree
basis, as illustrated in Figure 8, where each tree is processed
with three steps: slice, map, and iterate.

P2 P3 P4 P5P1 P6 P7I P8 P9 P10 P11

I

P1 P4

P2 P3 P5 P6

P6

P7 P10

P8 P9 P11

2. Map

1. Slice subGOP subGOP

3. Iterate(#1,#2)

Figure 8: Video processing on a per-tree basis.

Slice: Frames within a GOP (excluding the I frame) are sliced
into non-overlapping, consecutive subGOPs, each contain-
ing N sequential frames. Here, N is the subGOP size, which
equals the number of non-root vertices in a full binary tree.
For instance, full binary trees of depth D = 2,3,4 correspond
to subGOP sizes N = 2D −2 = 2,6,14.
Map: Frames in each subGOP are mapped to the binary
tree via pre-order traversal as shown in Figure 8. The root
of a tree is the latest I or P frame preceding a subGOP. The
reference of each frame is determined as the frame at its parent
vertex. It is worth noting that the last subGOP might not have
enough frames to fill all vertices in the full binary tree, which
marginally affects the functionality of our approach.
Iterate: To achieve parallelism in the video encoding/decod-
ing, the frames are processed level by level iteratively in the
tree. The processing of frames at the same level of the tree
is parallelized. For example, the codec first processes frames
that reference the tree root (I frame), such as P1 and P4 in
Figure 8. Then, it processes frames (P2, P3, P5, and P6) that
reference the previously processed frames (P1 and P4).

3.2 LFR Learned Codec

- +

R
es

En
c

M
ot

En
c

M
ot

C
m

p

§3
.2

.1
H

ig
hl

y-
pa

ra
lle

liz
ed

M
ot

io
n

Es
tim

at
io

n P1

P4

P2

P3

P5

P6

Iter.#1

Iter.#2
P1

P2

P3

P4

P5

P6

Si
ng

le
 It

er
.

No dependency
on rec. frames

§3.2.2 Elastic Compression Component

M
ot

D
ec

R
es

D
ec

P1

P2

P3

P4

P5

P6

Si
ng

le
 It

er
.

P1

P4

P2

P3

P5

P6

Iter.#1

Iter.#2

Encoder Decoder+

Rec.
frame

Raw
frame

R
aw

M
ot

io
n

M
ot

io
n

Bi
ts

tre
am

Decoded
Motion

Raw
Residual

R
es

id
ua

l
Bi

ts
tre

am

D
ec

od
ed

R
es

id
ua

l

Figure 9: Design of LFR Learned Codec.

LFR learned codec (Figure 9) replaces motion estimation
in canonical learned codec (Figure 3) with highly-parallelized
motion estimation (§3.2.1) and encodes/decodes motion/resid-
ual of one or multiple frames via elastic compression compo-
nent (§3.2.2).

3.2.1 Highly-parallelized Motion Estimation

In Figure 8, the processing of frames at the lower level (e.g.,
two frames at level 1 of the tree) are less parallelized than
those at the higher level (e.g., four frames at level 2), which
hinders the decoding speed. The fundamental problem is that
DNN modules in the learned codec, i.e., motion estimation
and compensation, rely on the reconstructed version of the
reference frame(s).
Frame approximation. The key intuitions are that 1) the raw
and reconstructed frames are similar and 2) motion estimation
is performed only on the encoder. Therefore, it is possible
to approximate (replace) the reconstructed reference frames
with the raw reference frames with the same index in motion
estimation. As such, the processing of all frames (e.g., frames
P1, P2, ..., and P6 in Figure 8), relying on only raw frames,
are parallelized. Such approximation allows us to speed up
motion estimation, motion encoder, and motion decoder. More
importantly, the coding efficiency is negligibly affected due
to the frame similarity.

3.2.2 Elastic Compression Component

ECC Decoder

su
bI

FL

su
bI

FL

In
pu

t

su
bI

FL

R
es

ha
pe

A
tt

n

R
es

ha
pe

A
tt

n

R
es

ha
pe

M
L

P

O
ut

pu
t

R
aw

M
ot

./R
es

.

C
N

N

Q

E
nt

ro
py

E
nc

od
er

E
nt

ro
py

D
ec

od
er

IF
L

R
ec

.
M

ot
./R

es
.

ECC Encoder

IF
L

C
N

N

Inter-frame Intra-frame Feedforward

Inter-frame Layer (IFL) Sub-inter-frame Layer (subIFL)

Bitstream

Figure 10: Elastic compression component design

As shown in Figure 10, the elastic compression component
(ECC) comprises an encoder and a decoder. Following ex-
isting efforts on learned codecs [39, 63], the encoder utilizes
a convolutional neural network (CNN) to transform the raw
motions or residuals, into high-level features. Then, quanti-
zation and entropy encoding [58] are performed to compress
quantized features into more compact bitstreams. In reverse,
the decoder adopts entropy decoding to convert the bitstreams
to quantized features, and a CNN to transform the features to
the same shape as the raw motions or residuals. However, as
the difference between a frame and its reference is increased
by LFR, the coding efficiency could be compromised.
Inter-frame layer. We make two key observations. First,
LFR expands the frame dimension of the input to DNN mod-
ules from one to multiple. The expanded dimension presents

538 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

inter-frame dependency in video coding that does not ex-
ist in existing learned codecs [38, 39, 63]. Such dependency
presents an opportunity to enhance coding efficiency. Second,
the self-attention module [55] is a generic learner of depen-
dency adopted in numerous video-related tasks [9, 26, 44, 46]
for spatial and temporal dependency.

Based on these observations, we design the inter-frame
layer (IFL) that leverages inter-frame dependency in LFR
with self-attention. The IFL involves sequentially connected
sub-inter-frame layers (subIFL). Each subIFL is constructed
with inter-frame, intra-frame, and feedforward blocks. Given
common practice, the IFL is placed after CNN in the encoder
and before CNN in the decoder.

The input dimension of the subIFL is F×C×H×W , where
F , C, H, and W represent the number of input frames, the
number of channels, and the height and width of the feature,
respectively. The output of the subIFL has the same dimen-
sion as its input. The inter-frame and intra-frame blocks ex-
ploit inter-frame and intra-frame dependency with a reshape
function and the multi-head Attention (Attn) [55]. The input
of Attn has three dimensions (batch× sequence× f eature),
which correlates data in the sequence dimension, with no
correlation along the batch dimension. We reshape the in-
put to shapes HW ×F ×C and F ×HW ×C for inter-frame
(F) and intra-frame (HW) dependency, respectively. The last
block converts the input shape to BHW ×C and applies a
multi-layer perceptron (MLP) consisting of two linear neural
network layers to refine features.

3.3 Streaming Supports

We integrate our system into existing streaming infrastruc-
ture through bitrate-adaptive training (§3.3.1), frame rate
configuration (§3.3.2), and enhanced ABR algorithm (§3.3.3).

3.3.1 Bitrate-adaptative Training

To leverage ABR algorithms that require multiple bitrates of
the same segment, a learned codec must be configurable to
encode and decode videos at different compression levels,
which correspond to different trade-offs of bitrates and dis-
tortion. However, a typical learned codec cannot adjust the
trade-offs of bitrates and distortion as easily as traditional
codecs with the quantization parameter (QP) [52,57]. A naive
approach that prepares different versions of the codec of dif-
ferent compression levels is memory-consuming.
Compression-level embedding. To attain similar rate adapt-
ability with learned codecs, we adopt a compression-level
embedding approach [48]. In this approach, the compression
level is treated as an input, in addition to video frames, to the
learned codec. Specifically, multiple compression levels l = 1,
2, ..., are converted into one-hot vectors, spatially tiled, and
concatenated to the input of DNN modules. This approach al-
lows the trade-off of bitrates and distortion to be conveniently

adjusted by changing the input, without storing multiple ver-
sions of the codec. Meanwhile, this approach minimally de-
grades the coding efficiency compared to a canonically trained
learned codec.

3.3.2 Frame Rate Configuration

When working with a specific hardware platform, it is critical
to attain a targeted frame rate. For canonical learned codecs,
adjusting the frame rate may require compressing and retrain-
ing DNNs in the learned codec, which is time-consuming.
SubGOP probing. In LiFteR, this can be easily achieved by
configuring the subGOP size. Specifically, we probe the target
hardware with the LiFteR decoder using different subGOP
sizes. Based on the frame rates achieved at various subGOP
sizes, we select the smallest one that surpasses the targeted
frame rate, e.g., 30 fps. Choosing a subGOP size than what
is needed is not recommended, as it would consume more
GPU resources while offering only marginal enhancements
to coding efficiency (Figure 18).

3.3.3 Enhanced ABR Algorithm

The buffer level is a critical factor in the decision-making pro-
cess of adaptive bitrate (ABR) algorithms, such as BOLA [51],
which adjusts video quality according to network conditions.
In video streaming systems, the buffer level represents the
duration of video frames in the playback buffer. A low buffer
level indicates low network bandwidth, causing the ABR al-
gorithm to download segments of lower bitrates to avoid re-
buffering. Conversely, a higher buffer level triggers the ABR
algorithm to download segments of higher bitrates. However,
for learned codecs, the buffer level does not accurately re-
flect network conditions and may mislead ABR algorithms
for learned codecs. For instance, when the decoding rate of
frames equals the consumption rate, the playback buffer re-
mains almost empty, as each decoded frame is immediately
consumed. This is likely to happen with learned codecs whose
decoding rate is more comparable to the consumption rate
than traditional codecs. As the buffer level is low, the ABR al-
gorithm may download segments of low bitrates, even though
the network bandwidth is abundant, leading to wastage.
Virtual buffer. To tackle this issue, we introduce the virtual
buffer. It captures the length of received but unwatched seg-
ments, irrespective of whether they are stored in the replay
buffer. By utilizing the level of the virtual buffer instead of the
actual buffer level in the ABR algorithm, we avoid potential
conservative decision-making by the ABR algorithm.

4 Implementation

Model choices and streaming configuration. We implement
motion estimation using convolutional neural networks [47]
and motion compensation using a warping function and an

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 539

interpolation network [39]. As per [9], we configure the atten-
tion mechanism’s number of heads and each head’s channel
number to 8 and 64, respectively, and the number of sub-
inter-frame dependencies (subIFL) to 12. During training,
we set the subGOP size to six, which we empirically find to
be sufficient for the high coding efficiency and frame rate of
LiFteR. We utilize BOLA [51], an industrial-level ABR algo-
rithm [19], as the ABR algorithm in LiFteR, which decides
the bitrate every time the system tries to download a segment.
The segment and GOP size are set to 5s following [21].
Training. We jointly optimize our model using the Vimeo-
90k dataset [60]. In this dataset, every training sample consists
of seven images, with the first image being the I frame (k = 0)
and the remaining images being P frames (k = 1, ...K). K
corresponds to the number of P frames in a GOP during
training. The I frame is encoded and decoded using an image
codec, Better Portable Graphics (BPG) [7], while the learned
codec compresses the P frames on a per-tree basis. We scale
the training images’ resolution to 256 × 256. We use the
Adam optimizer [31] with a learning rate of 10−4, which is
reduced by a factor of 10 after convergence until 10−6. Our
loss function L is defined as follows.

L =
K

∑
k=1

E
l
[λlD(xk, x̂k

l)+ v̂k
l + r̂k

l]. (2)

We set λl = 256,512,1024,2048,4096,8192,16384 at differ-
ent compression levels l = 0,1, ...,6, which cover bitrates
from 1 Mbps to 16 Mbps. The estimated bits per pixel (bpp)
of the motion or residual for the compression level l is de-
noted by v̂k

l or r̂k
l . The distortion, measured by mean square

error (MSE), between the raw frame xk and the reconstructed
frame at compression level l, x̂k

l , is denoted by D(xk, x̂k
l). In

training, the compression level l in each sample is randomly
and iteratively generated, following ELFVC [48].

5 Evaluation

We evaluate LiFteR regarding streaming performance, coding
efficiency, and adaptability. Our highlights are

1. LiFteR achieves superior QoE compared with systems
using learned and traditional codecs across different
GPUs and network conditions (Figures 11-14).

2. LiFteR improves the rate-distortion trade-off of learned
and traditional codecs (Figure 16).

3. LiFteR maintains a real-time frame rate across differ-
ent GPUs (Figure 15) and improves the frame rate by
adapting the subGOP size (Figure 17).

4. The component designs of LiFteR show effectiveness in
contributing to the overall gain (Figures 18-22).

5.1 Methodology

Hardware setup. We conducted our experiments on Linux
desktops featuring various NVIDIA GeForce GPUs and
CPUs, which are listed in Table 1. The learned codecs are
executed on all three Linux desktops, “1080”, “2080”, and
“3090”. Although the traditional codecs always run on “2080”,
the choice of the three hardware platforms has a minimal
impact on the QoE for them.

Table 1: Hardware setup.

Name GPU CPU
1080 GTX 1080 Ti Intel Core i9 @ 2.90GHz
2080 RTX 2080 Ti Intel Core i7 @ 3.60GHz
3090 RTX 3090 Ti AMD Ryzen 9 @ 4.95GHz

Network traces. We use network traces from FCC [23], ran-
domly selecting 1,000 traces from two tests conducted for
“video streaming” and “http get”. These traces represent a
range of diverse network scenarios. The “video streaming”
and “http get” traces have an average bandwidth of 3.9 Mbps
and 15.8 Mbps, respectively, indicating limited and adequate
bandwidth.
Video datasets. We merged two video datasets, UVG [42]
and MCL-JCV [56]. This unified dataset consists of 37 videos
with a resolution of 2K, operating at 30 frames per second
with a total runtime of around 5 minutes.
Baselines. In our evaluation, we compare LiFteR with video
streaming systems that use state-of-the-art learned codecs
(DVC [39] and RLVC [63]) and traditional codecs (x264 [57]
and x265 [52]), all employing BOLA for rate adaptation with
the same GOP and segment size as LiFteR. To test the tradi-
tional codecs, we use the FFmpeg [54] implementation and
configure each codec into three modes: veryfast, medium,
and veryslow. These modes are denoted by x264-veryfast
(x264f), x264-medium (x264m), x264-veryslow (x264s),
x265-veryfast (x265f), x265-medium (x265m), and x265-
veryslow (x265s). Commands for the different modes can
be found in Appendix A. To optimize PSNR, DVC and RLVC
are configured in the same way as LiFteR. To ensure a fair
evaluation, we encode videos for all baseline systems into
seven bitrates, covering a range that is comparable to LiFteR’s
videos. Note that there are learned codecs [2, 48] that adopt
alternate designs of motion estimation and compensation in-
stead of that of DVC, RLVC, and ours, which are not included
in the evaluation for fairness. However, as they still rely on
TFR, we claim the performance gain achieved with LFR is
applicable to them.

5.2 End-to-end performance

End-to-end QoE. Figures 11 and 12 illustrate that the over-
all QoE of LiFteR outperforms other baselines on network
traces with limited (“video stream”) and adequate (“http
get”) bandwidth, respectively. The QoE metric is calculated

540 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.0 0.2 0.4 0.6 0.8 1.0
Normalized QoE

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Ours
DVC
RLVC
x264f
x264m
x264s
x265f
x265m
x265s

(a) NVIDIA GTX 1080 Ti

0.0 0.2 0.4 0.6 0.8 1.0
Normalized QoE

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) NVIDIA RTX 2080 Ti

0.0 0.2 0.4 0.6 0.8 1.0
Normalized QoE

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(c) NVIDIA RTX 3090 Ti

Figure 11: LiFteR shows consistent advantages in QoE across different hardware on the “video stream” traces.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized QoE

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Ours
DVC
RLVC
x264f
x264m
x264s
x265f
x265m
x265s

(a) NVIDIA GTX 1080 Ti

0.0 0.2 0.4 0.6 0.8 1.0
Normalized QoE

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) NVIDIA RTX 2080 Ti

0.0 0.2 0.4 0.6 0.8 1.0
Normalized QoE

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(c) NVIDIA RTX 3090 Ti

Figure 12: LiFteR demonstrates consistent advantages in QoE across different hardware on the “http get” traces.

1080 2080 3090
Hardware

0.00

0.25

0.50

Q
oE

Ours
DVC
RLVC
x264f
x264m
x264s
x265f
x265m
x265s

(a) Norm. QoE

1080 2080 3090
Hardware

0.00

0.25

0.50

0.75

Q
ua
lit
y

(b) Norm. Video Quality

1080 2080 3090
Hardware

0.0

0.5

R
eb

uf
fe

r R
at

e

(c) Norm. Rebuffer Rate

Figure 13: LiFteR’s normalized QoE is 1.5%-23.8% and 5%-10.3% higher than the best-performing learned and traditional
approaches, respectively, with limited bandwidth (“video stream” traces).

1080 2080 3090
Hardware

0.0

0.5

1.0

Q
oE

Ours
DVC
RLVC
x264f
x264m
x264s
x265f
x265m
x265s

(a) Norm. QoE

1080 2080 3090
Hardware

0.0

0.5

1.0

Q
ua
lit
y

(b) Norm. Video Quality

1080 2080 3090
Hardware

0.0

0.5

1.0

R
eb

uf
fe

r R
at

e

(c) Norm. Rebuffer Rate

Figure 14: LiFteR demonstrates 4.5%-23.2% and 9.6%-19.7% improvements in normalized QoE than the best-performing
learned and traditional approaches, respectively, with adequate bandwidth (on “http get” traces).

based on Equation 1, normalized per hardware and trace, with
the lowest and highest values mapped to 0 and 1. On the
“video stream” traces with limited bandwidth, LiFteR’s nor-
malized QoE is 1.5%-23.8% and 5%-10.3% higher than the
best-performing learned and traditional streaming systems,
respectively (Figure 13(a)). On the “http get” traces with ade-
quate bandwidth, the advantages in normalized QoE become
4.5%-23.2% and 9.6%-19.7%, respectively (Figure 14(a)),
indicating that LiFteR better utilizes adequate bandwidth than
other approaches. The performance of DVC and RLVC is

significantly impacted by the hardware platform. DVC has
the second-best performance on “2080” but one of the worst
performances on “1080”, whereas RLVC has the second-best
performance on “3090” but the worst performance on “1080”
and “2080”. In contrast, LiFteR performs well on different
hardware consistently.

QoE breakdown. To improve visualization, the metrics of
video quality and rebuffer rate were normalized per hardware
and trace, with the lowest and highest values being mapped
to 0 and 1, respectively. In Figure 13(b) and Figure 14(b), the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 541

1080 2080 3090 CPU
Hardware

0
30
60
90

120
150
180
210

Fr
am

e
R

at
e

(f
ps

)

Ours
DVC
RLVC
x264f
x264m

x264s
x265f
x265m
x265s

Figure 15: LiFteR decodes faster
than other learned codecs.

0.0 0.5 1.0 1.5
Bit Per Pixel

32

34

36

38

40

PS
N

R
 (d

B
)

Better

Ours
DVC
RLVC
x264f
x264m

x264s
x265f
x265m
x265s

Figure 16: LiFteR exhibits the
best coding efficiency.

0 5 10 15 20 25 30 35 40
SubGOP Size (#Frame)

0
30
60
90

120
150

Fr
am

e
R

at
e

(f
ps

)

3.
2x

2.
1x

2.
0x

Ours (3090)
DVC (3090)
RLVC (3090)
Ours (2080)
DVC (2080)
RLVC (2080)
Ours (1080)
DVC (1080)
RLVC (1080)

Figure 17: LiFteR can boost the frame rate by
3.2× via adaptation.

video quality of DVC and RLVC is mostly better than others
because their virtual buffers are consumed slower or increas-
ing, resulting in the ABR algorithm downloading segments
with higher bitrates. Regarding the rebuffer rate (Figure 13(c)
and Figure 14(c)), LiFteR significantly outperforms DVC and
RLVC due to its real-time frame rate (Figure 15). For high-
end hardware like NVIDIA RTX 3090 Ti, the rebuffer rate of
LiFteR is lightly above others because it tends to wait for bit-
streams of several frames before parallel processing. It causes
rebuffering more easily than learned codecs with TFR (DVC
and RLVC), which plays frames immediately after receiving
them. Although this downside is outweighed by the bene-
fits of LiFteR’s superior frame rates on low-end hardware,
it becomes noticeable for high-end hardware. Nevertheless,
LiFteR’s overall QoE is better than others due to its superior
quality. We also notice a gap in rebuffer rate between our
system and traditional systems, particularly on less power-
ful hardware. The reason is primarily the longer decoding
latency of LiFteR than traditional codecs. It causes LiFteR
to take more time on average to display the first frame after
rebuffering. Nevertheless, the subsequent frames in LiFteR
do not experience any additional delays. As a result, the QoE
of LiFteR is not significantly affected by this fact.

Frame rate. In Figure 15, we compare the frame rates of
systems using learned codecs on different GPUs and systems
using traditional codecs on a CPU. LiFteR achieves consis-
tent real-time frame rates across different hardware platforms.
However, DVC and RLVC demonstrate worse frame rates
than LiFteR on low-end hardware, such as “1080” and “2080”.
Despite optimizations in LiFteR, it does not outperform tradi-
tional video codecs, which are heavily engineered in speed.

Compression performance. In Figure 16, it is evident that
LiFteR outperforms other baselines in terms of coding effi-
ciency. Among the traditional systems, x265-veryslow per-
forms the best, achieving a PSNR of 38.20 dB at 0.59 bpp.
However, LiFteR achieves the same PSNR with less than half
the bandwidth usage, requiring only 0.28 bpp. In comparison,
the best-performing learned approach, RLVC, needs 0.39 bpp
to achieve a PSNR of 38.50 dB, while LiFteR achieves a su-
perior PSNR of 39.12 dB at the same bpp. LiFteR’s superior
coding efficiency stems from (i) the inter-frame dependency
presented by LFR at the cost of increased GPU utilization,
and (ii) ECC (§3.2.2), which effectively captures such de-

pendency via the self-attention mechanism. These factors
mitigate and outweigh the negative impact of the LFR video
dispatcher (§3.1) and highly-parallelized motion estimation
(§3.2.1), which potentially widen the gap between a frame
and its reference.
Adaptability of LiFteR. LiFteR has the unique feature of
adapting the subGOP size to achieve varying speeds. We eval-
uated LiFteR’s performance across different subGOP sizes,
including 2, 6, 14, and 30, corresponding to the full binary
tree depths of 2, 3, 4, and 5, respectively. We also included a
special case, “subGOP=1”, representing LiFteR processing
with TFR, similar to DVC and RLVC. In Figure 17, we can
observe the frame rate of LiFteR as a function of the subGOP
size and compare it with other learned approaches processing
the same number of frames. The results indicate that LiFteR
improves its speed by 2-3.2× as the subGOP size increases,
while the other learned approaches’ speed remains almost
unchanged. It is worth noting that there is a slight increase in
frame rates of other learned approaches. The reason is that the
GPU is relatively slower when performing the first forward
propagation. Then, it improves and gradually stabilizes for
subsequent forward propagations. As a result, even if these
approaches process frames one by one with TFR, their speed
is slightly increased when the number of frames increases.

Figure 18 compares LiFteR’s coding efficiency at different
subGOP sizes. Initially, LiFteR is suboptimal when the sub-
GOP size is 1 or 2. We speculate the time dimension of the
input is not large enough to benefit from ECC for these small
subGOP sizes. As the subGOP size increases, the coding ef-
ficiency improves and stabilizes. This result also indicates
LiFteR’s ability to adapt to larger subGOP sizes (14 and 30)
than what it is trained with (6) with noticeable degradation.

5.3 Design Analysis

Impact of dependency graph and ECC. The dependency
graph and ECC are the two key designs in LiFteR. To demon-
strate their significance via comparison, we introduced three
alternative designs, in addition to our original design (“De-
fault”): 1) “w/o IFL”: eliminating inter-frame dependency
from the learned codec, i.e., removing IFL, 2) “Chain”: sub-
stituting the binary tree in the dependency graph with a chain,
and 3) “One-hop”: substituting the binary tree in the depen-

542 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Bit Per Pixel

30
31
32
33
34

PS
N

R
 (d

B
)

Better
subGOP=1
subGOP=2
subGOP=6
subGOP=14
subGOP=30

Figure 18: Coding efficiency of
LiFteR initially improves with a
larger subGOP size.

GTX 1080 Ti RTX 2080 Ti RTX 3090 Ti
Hardware

0

50

100

M
ill

is
ec

on
d

Enc
Dec

Ours
DVC
RLVC

Figure 19: Time resource in learned
codecs is generally allocated more to
decoding than encoding.

256 512 1024 2048
λ

0.0

0.1

0.2

B
it

pe
r p

ix
el

Motion
Residual

Ours
DVC
RLVC

Figure 20: Bit resource in learned
codecs is distributed more to resid-
ual than motion.

0.1 0.2 0.3 0.4
Bit Per Pixel

30
31
32
33
34

PS
N

R
 (d

B
) Better Default

w/o IFL
Chain
One-hop

(a) Coding efficiency

Default w/o IFL Chain One-hop
Methods

0
10
20
30
40

Fr
am

e
R

at
e

(f
ps

)

32.21 32.63

16.17

32.98

(b) Frame rate

Figure 21: Binary tree and inter-frame dependency optimally
balance coding efficiency and frame rate.

I P1 P2 P3 P4 P5 P6
Frame Location

29

30

31

PS
N

R
 (d

B
)

Ours
DVC
RLVC

(a) λ = 256

I P1 P2 P3 P4 P5 P6
Frame Location

33

34

35

PS
N

R
 (d

B
)

Ours
DVC
RLVC

(b) λ = 2048

Figure 22: LiFteR’s quality is more stable than others.
dency graph with a one-hop tree. We examine the impact of
each design on coding efficiency and frame rate. For coding
efficiency, Figure 21(a) shows both “Chain” and “One-hop”
modes cause a PSNR drop of approximately 0.5 dB at the
same bpp, compared to “Default”. Additionally, the “w/o IFL”
mode experiences a more significant loss of coding efficiency
than the “Default” mode, as its PSNR drops by around one
dB at the same bpp. These results highlight the importance
of the combination of binary tree and inter-frame dependency
in achieving satisfactory coding efficiency. Regarding frame
rate, the “Default” mode has roughly twice the frame rate of
the “Chain” mode, demonstrating a significant advantage of
the binary tree. The “One-hop” mode exhibits a similar frame
rate as the “Default” mode, indicating that is it not necessary
to parallelize the processing of all frames to achieve substan-
tial decode speed improvement. It is also found that the “w/o
IFL” and “Default” modes have similar frame rates, which
suggests that the inclusion of the inter-frame dependency has
negligible impact on the frame rate. Overall, the binary tree
and the leverage of inter-frame dependency strike the optimal
balance of coding efficiency and frame rate for LiFteR.
Impact of the virtual buffer. To illustrate the significance
of the virtual buffer, we remove it from LiFteR and perform
streaming experiments with the “1080” hardware on two net-
work traces. Figure 23 reports the average normalized QoE,
video quality, and rebuffer rate. We observe a decline in both
the learned approaches’ QoE and video quality. Even when
the bandwidth condition changes from limited to adequate,
the quality and QoE of the learned approaches do not im-
prove as significantly as the traditional approaches. This is
because, without the virtual buffer, the real buffer in learned
approaches remains consistently low, causing the ABR algo-
rithm to download low-quality segments, irrespective of the
bandwidth condition. Additionally, the downloaded segments
have low bitrates, so the contrast in rebuffer rates between

traditional and learned approaches is less pronounced than in
Figure 13(c) and Figure 14(c).

5.4 Micro Benchmark
Resource allocation. Time (computation time) and space
(bitstream size) are two critical resources for learned codecs.
We analyze the allocation of these resources in our approach,
DVC, and RLVC using the UVG dataset. Figure 19 displays
the time spent on encoding and decoding across various hard-
ware. All approaches require more time for encoding than
decoding, as the decoder modules are a subset of the encoder
modules. Figure 20 illustrates the allocation of bits for mo-
tions and residuals over λ values of 256, 512, 1024, and 2048.
We observe that our approach allocates a higher percentage
of bits to the residual bitstream than the other approaches.
We speculate that this is because LFR increases errors in ME
and MC, thereby necessitating more bits in the residual to
compensate for those errors.
Error propagation. In Figure 22, we visualize the quality of
frames reconstructed by our codec, DVC, and RLVC, based
on their position in a seven-frame GOP using the UVG dataset
(λ = 256 and 2048). For our codec, we set the subGOP size to
6. As the temporal distance between P and I frames increases,
the PSNR of the P frame monotonically decreases for DVC
and RLVC, which could lead to degradation of QoE when
viewing frames distant from the I frame, particularly with
large GOP sizes. In contrast, our approach with LFR can
increase the PSNR of P frames even when their temporal
distance to the I frame increases, potentially allowing for a
smoother viewing experience.

6 Related Work

Video codecs. Video codec standards, such as MPEG-2 [33],

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 543

Limited BW Adequate BW
0.0

0.5Q
oE

Ours
DVC
RLVC
x264f
x264m
x264s
x265f
x265m
x265s

(a) Norm. QoE

Limited BW Adequate BW0.0

0.5

1.0

Q
ua

lit
y

(b) Norm. Video Quality

Limited BW Adequate BW0.0

0.5

1.0

R
eb

uf
fe

r R
at

e

(c) Norm. Rebuffer Rate

Figure 23: Learned codecs do not outperform traditional codecs without the virtual buffer.

H.264 [57], and H.265 [52], rely on traditional handcrafted
methods. Due to recent advancements in deep learning, re-
searchers have started to replace operations in traditional
video codecs with DNNs [1, 6, 12, 16, 18, 37, 40, 47, 59].
DNNs can also serve as hints to assist codecs in video analyt-
ics [13,14,22,36]. Besides, researchers have proposed learned
codecs built purely from DNNs [2, 25, 38, 39, 48, 62, 63]. An-
other category of learned approaches integrates DNN and
progressive coding [21]. However, all existing learned codecs
employ a TFR principle, suffering from slow decoding and
low QoE problems. LiFteR addresses the low frame rate prob-
lem in video streaming systems with learned codecs with
LFR. Further, LiFteR can be easily integrated into these TFR-
based learned codecs for improved decoding speed. Although
learned codecs with speed optimization like ELFVC [48] may
achieve near real-time performance, e.g., 30 fps, on certain
hardware, they cannot meet the real-time requirements when
the hardware degrades or the frame rate requirements increase
to 60 fps or 120 fps. In contrast, LiFteR flexibly handles these
variations by adapting the subGOP size.

Video streaming. Enhancing the quality of video streaming
has been the focus of numerous techniques, typically falling
into one of three categories: push-based, pull-based, and video
super-resolution (VSR). Push-based strategies analyze play-
back statistics from clients and push the appropriate bitrate
of videos to each client from a central server. Several stud-
ies [8, 24, 28, 35] have investigated the effectiveness of these
approaches. In contrast, pull-based strategies guide clients to
download videos of appropriate bitrates from the server based
on the predicted bandwidth or buffer level. Several studies,
such as [41, 51, 61, 65, 67, 68], have explored the efficacy of
these strategies. VSR techniques can also be applied to im-
prove video streaming quality, where super-resolution models
are used to increase the video resolution of downloaded seg-
ments, enhancing QoE [30, 64, 66]. Our approach innovates
the video codecs of video streaming systems and can be in-
tegrated into these orthogonal designs without requiring any
changes to the network protocol or application details.

Parallelism in video codec. Parallel processing techniques
have been widely exploited in video compression to circum-
vent the speed limit of processors. There have been sophis-
ticated hardware designs that parallelize vector quantization
[43,45], discrete cosine transform [17,29,53], variable length
coding [11], and motion estimation [15, 27, 49]. Software-

based techniques are categorized into spatial and temporal
parallelism. Spatial parallelism [4, 5, 32] processes different
regions in a frame concurrently. Temporal parallelism [3, 50]
allocates several video frames to each processor. In contrast
to these works focusing on parallelism at the GOP level, we
allow parallelism at the frame level.

7 Discussion

Hardware requirements. As LiFteR trades the GPU uti-
lization for its frame rate via LFR, the GPU memory might
limit its decode speed. However, our experiments have demon-
strated that everyday GPUs are sufficient for LiFteR to achieve
a frame rate over 30 fps (Figure 15). It is also feasible to fur-
ther reduce the hardware requirements via neural network
compression [10, 34], which is orthogonal to our approach.
Applicable scenarios. As shown in Figure 19, the encoding
time of LiFteR, like other learned codecs, is higher than that
of decoding. However, in video-on-demand (VoD) streaming,
the encoding speed is not critical since video segments are en-
coded before streaming. Therefore, LiFteR is highly suitable
in the VoD streaming scenario.

8 Conclusion

Tight frame referencing has a long history of being adopted
in video codecs. However, it is proven ineffective in video
streaming with learned codecs, causing a low frame rate. To
overcome its limitation, we design LiFteR, a video stream-
ing system that employs a learned codec with loose frame
referencing. Our experiments show that LiFteR delivers supe-
rior QoE compared to systems using existing traditional and
learned codecs consistently.

Acknowledgments

We thank our shepherd Francis Yan and the anonymous re-
viewers for their valuable feedback, which greatly improves
this paper. This work was supported by NSF under the award
number NSF CNS 1900875, NSF CNS 2106592, NSF IIS
2140620, NSF IIS 2140645, NSF OAC 1835834, and NSF
OAC 2144764 and Army Research Lab under the award num-
ber ARMY W911NF-17-2-0196.

544 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen,
Lukas Cavigelli, Radu Timofte, Luca Benini, and Luc
Van Gool. Soft-to-hard vector quantization for end-
to-end learning compressible representations. arXiv
preprint arXiv:1704.00648, 2017.

[2] Eirikur Agustsson, David Minnen, Nick Johnston, Jo-
hannes Balle, Sung Jin Hwang, and George Toderici.
Scale-space flow for end-to-end optimized video com-
pression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
8503–8512, 2020.

[3] I Ahmad, SM Akramullah, ML Liou, and M Kafeel. A
scalable off-line mpeg-2 encoder using a multiprocessor
machine. Parallel Computing, 2001.

[4] Shahriar M Akramullah, Ishfaq Ahmad, and Ming L
Liou. A data-parallel approach for real-time mpeg-2
video encoding. Journal of parallel and distributed
computing, 30(2):129–146, 1995.

[5] Shahriar M Akramullah, Ishfaq Ahmad, and Ming L
Liou. Performance of software-based mpeg-2 video en-
coder on parallel and distributed systems. IEEE Trans-
actions on Circuits and Systems for Video Technology,
7(4):687–695, 1997.

[6] Johannes Ballé, Valero Laparra, and Eero P Simon-
celli. End-to-end optimized image compression. arXiv
preprint arXiv:1611.01704, 2016.

[7] Fabrice Bellard. Bpg image format, 2018.

[8] Abdelhak Bentaleb, Ali C Begen, and Roger Zimmer-
mann. Sdndash: Improving qoe of http adaptive stream-
ing using software defined networking. In Proceedings
of the 24th ACM international conference on Multime-
dia, pages 1296–1305, 2016.

[9] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is
space-time attention all you need for video understand-
ing? arXiv preprint arXiv:2102.05095, 2021.

[10] Han Cai et al. Once-for-all: Train one network and
specialize it for efficient deployment. arXiv preprint
arXiv:1908.09791, 2019.

[11] Hao-Chieh Chang, Liang-Gee Chen, Yung-Chi Chang,
and Sheng-Chieh Huang. A vlsi architecture design of
vlc encoder for high data rate video/image coding. In
1999 IEEE International Symposium on Circuits and
Systems (ISCAS), volume 4, pages 398–401. IEEE, 1999.

[12] Bo Chen, Zhisheng Yan, Hongpeng Guo, Zhe Yang,
Ahmed Ali-Eldin, Prashant Shenoy, and Klara Nahrst-
edt. Deep contextualized compressive offloading for
images. In Proceedings of the 19th ACM Conference on
Embedded Networked Sensor Systems (SenSys), pages
467–473, 2021.

[13] Bo Chen, Zhisheng Yan, and Klara Nahrstedt. Context-
aware image compression optimization for visual an-
alytics offloading. In Proceedings of the 13th ACM
Multimedia Systems Conference (MMSys), pages 27–38,
2022.

[14] Bo Chen, Zhisheng Yan, and Klara Nahrstedt. Context-
aware optimization for bandwidth-efficient image an-
alytics offloading. ACM Transactions on Multimedia
Computing, Communications and Applications, 2023.

[15] Jie Chen and KJ Ray Liu. A complete pipelined parallel
cordic architecture for motion estimation. IEEE Trans-
actions on Circuits and Systems II: Analog and Digital
Signal Processing, 45(5):653–660, 1998.

[16] Tong Chen, Haojie Liu, Qiu Shen, Tao Yue, Xun Cao,
and Zhan Ma. Deepcoder: A deep neural network based
video compression. In 2017 IEEE Visual Communica-
tions and Image Processing (VCIP), pages 1–4. IEEE,
2017.

[17] Ching-Te Chiu and KJ Liu. Real-time parallel and fully-
pinelined two-dimensional dct lattice structures with
application to hdtv systems. Technical report, 1991.

[18] Hyomin Choi and Ivan V Bajić. Deep frame prediction
for video coding. IEEE Transactions on Circuits and
Systems for Video Technology, 30(7):1843–1855, 2019.

[19] DASH Reference Client. Dash reference client, 2023.

[20] David Curry. Video streaming app revenue and usage
statistics (2023), 2023.

[21] Mallesham Dasari, Kumara Kahatapitiya, Samir R Das,
Aruna Balasubramanian, and Dimitris Samaras. Swift:
Adaptive video streaming with layered neural codecs. In
19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 103–118, 2022.

[22] Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha
Chowdhery, Qizheng Zhang, Henry Hoffmann, and
Junchen Jiang. Server-driven video streaming for deep
learning inference. In Proceedings of the Annual con-
ference of the ACM Special Interest Group on Data
Communication on the applications, technologies, ar-
chitectures, and protocols for computer communication,
pages 557–570, 2020.

[23] FCC. Measuring broadband america - july 2012, 2012.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 545

[24] Aditya Ganjam, Faisal Siddiqui, Jibin Zhan, Xi Liu, Ion
Stoica, Junchen Jiang, Vyas Sekar, and Hui Zhang. C3:
Internet-scale control plane for video quality optimiza-
tion. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), pages 131–144,
2015.

[25] Amirhossein Habibian, Ties van Rozendaal, Jakub M
Tomczak, and Taco S Cohen. Video compression with
rate-distortion autoencoders. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 7033–7042, 2019.

[26] Yanbin Hao, Shuo Wang, Pei Cao, Xinjian Gao, Tong
Xu, Jinmeng Wu, and Xiangnan He. Attention in atten-
tion: Modeling context correlation for efficient video
classification. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 32(10):7120–7132, 2022.

[27] Zhong-Li He, Chi-Ying Tsui, Kai-Keung Chan, and
Ming L Liou. Low-power vlsi design for motion es-
timation using adaptive pixel truncation. IEEE Trans-
actions on circuits and systems for video technology,
10(5):669–678, 2000.

[28] Junchen Jiang, Shijie Sun, Vyas Sekar, and Hui Zhang.
Pytheas: Enabling data-driven quality of experience op-
timization using group-based exploration-exploitation.
In 14th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 17), pages 393–406,
2017.

[29] Ig-kyun Kim, Jin-jong Cha, and Han-jin Cho. A de-
sign of 2-d dct/idct for real-time video applications. In
ICVC’99. 6th International Conference on VLSI and
CAD (Cat. No. 99EX361), pages 557–559. IEEE, 1999.

[30] Jaehong Kim, Youngmok Jung, Hyunho Yeo, Juncheol
Ye, and Dongsu Han. Neural-enhanced live streaming:
Improving live video ingest via online learning. In Pro-
ceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the appli-
cations, technologies, architectures, and protocols for
computer communication, pages 107–125, 2020.

[31] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[32] Pasi Kolinummi, Juha Sarkijarvi, T Hamalainen, and
Jukka Saarinen. Scalable implementation of h. 263
video encoder on a parallel dsp system. In 2000 IEEE
International Symposium on Circuits and Systems (IS-
CAS), volume 1, pages 551–554. IEEE, 2000.

[33] Didier J Le Gall. The mpeg video compression al-
gorithm. Signal Processing: Image Communication,
4(2):129–140, 1992.

[34] Yann LeCun, John Denker, and Sara Solla. Optimal
brain damage. Advances in neural information process-
ing systems, 2, 1989.

[35] Xianshang Lin, Yunfei Ma, Junshao Zhang, Yao
Cui, Jing Li, Shi Bai, Ziyue Zhang, Dennis Cai,
Hongqiang Harry Liu, and Ming Zhang. Gso-simulcast:
global stream orchestration in simulcast video confer-
encing systems. In Proceedings of the ACM SIGCOMM
2022 Conference, pages 826–839, 2022.

[36] Luyang Liu, Hongyu Li, and Marco Gruteser. Edge
assisted real-time object detection for mobile augmented
reality. In The 25th Annual International Conference on
Mobile Computing and Networking, pages 1–16, 2019.

[37] Zhenyu Liu, Xianyu Yu, Yuan Gao, Shaolin Chen, Xi-
angyang Ji, and Dongsheng Wang. Cu partition mode
decision for hevc hardwired intra encoder using convo-
lution neural network. IEEE Transactions on Image
Processing, 25(11):5088–5103, 2016.

[38] Guo Lu, Chunlei Cai, Xiaoyun Zhang, Li Chen, Wanli
Ouyang, Dong Xu, and Zhiyong Gao. Content adaptive
and error propagation aware deep video compression.
In European Conference on Computer Vision, pages
456–472. Springer, 2020.

[39] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang,
Chunlei Cai, and Zhiyong Gao. Dvc: An end-to-end
deep video compression framework. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11006–11015, 2019.

[40] Wei Luo and Bo Chen. Neural image compression with
quantization rectifier. In ICML 2023 Workshop Neural
Compression: From Information Theory to Applications,
2023.

[41] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural adaptive video streaming with pensieve. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 197–210. ACM,
2017.

[42] Alexandre Mercat, Marko Viitanen, and Jarno Vanne.
Uvg dataset: 50/120fps 4k sequences for video codec
analysis and development. In Proceedings of the 11th
ACM Multimedia Systems Conference, pages 297–302,
2020.

[43] Toshiyuki Nozawa, Masahiro Konda, Masanori Fu-
jibayashi, Makoto Imai, Koji Kotani, Shigetoshi Sugawa,
and Tadahiro Ohmi. A parallel vector-quantization pro-
cessor eliminating redundant calculations for real-time
motion picture compression. IEEE Journal of Solid-
State Circuits, 35(11):1744–1750, 2000.

546 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[44] Hughes Perreault, Guillaume-Alexandre Bilodeau, Nico-
las Saunier, and Maguelonne Héritier. Spotnet: Self-
attention multi-task network for object detection. In
2020 17th Conference on Computer and Robot Vision
(CRV), pages 230–237. IEEE, 2020.

[45] KS Prashant and V John Mathews. A massively parallel
algorithm for vector quantization. In Proceedings of
the 1995 NASA Space and Earth Sciences Workshop.
Citeseer, 1995.

[46] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Ir-
wan Bello, Anselm Levskaya, and Jon Shlens. Stand-
alone self-attention in vision models. Advances in neu-
ral information processing systems, 32, 2019.

[47] Anurag Ranjan and Michael J Black. Optical flow esti-
mation using a spatial pyramid network. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 4161–4170, 2017.

[48] Oren Rippel, Alexander G Anderson, Kedar Tatwawadi,
Sanjay Nair, Craig Lytle, and Lubomir Bourdev. Elf-vc:
Efficient learned flexible-rate video coding. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pages 14479–14488, 2021.

[49] Alexander Roach and Alireza Moini. Vlsi architecture
for motion estimation on a single-chip video camera.
In Visual Communications and Image Processing 2000,
volume 4067, pages 1441–1450. SPIE, 2000.

[50] Ke Shen and Edward J Delp. A spatial-temporal parallel
approach for real-time mpeg video compression. In
Proceedings of the 1996 ICPP Workshop on Challenges
for Parallel Processing, volume 2, pages 100–107. IEEE,
1996.

[51] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitara-
man. Bola: Near-optimal bitrate adaptation for on-
line videos. IEEE/ACM Transactions on Networking,
28(4):1698–1711, 2020.

[52] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and
Thomas Wiegand. Overview of the high efficiency video
coding (hevc) standard. IEEE Transactions on circuits
and systems for video technology, 22(12):1649–1668,
2012.

[53] M-T Sun, T-C Chen, and Albert M Gottlieb. Vlsi imple-
mentation of a 16* 16 discrete cosine transform. IEEE
transactions on circuits and systems, 36(4):610–617,
1989.

[54] Suramya Tomar. Converting video formats with ffmpeg.
Linux Journal, 2006(146):10, 2006.

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Ad-
vances in neural information processing systems, pages
5998–6008, 2017.

[56] Haiqiang Wang, Weihao Gan, Sudeng Hu, Joe Yuchieh
Lin, Lina Jin, Longguang Song, Ping Wang, Ioannis Kat-
savounidis, Anne Aaron, and C-C Jay Kuo. Mcl-jcv: a
jnd-based h. 264/avc video quality assessment dataset.
In 2016 IEEE International Conference on Image Pro-
cessing (ICIP), pages 1509–1513. IEEE, 2016.

[57] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard,
and Ajay Luthra. Overview of the h. 264/avc video
coding standard. IEEE Transactions on circuits and
systems for video technology, 13(7):560–576, 2003.

[58] Ian H Witten, Radford M Neal, and John G Cleary. Arith-
metic coding for data compression. Communications of
the ACM, 30(6):520–540, 1987.

[59] Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl.
Video compression through image interpolation. In
Proceedings of the European Conference on Computer
Vision (ECCV), pages 416–431, 2018.

[60] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-
oriented flow. International Journal of Computer Vision,
127(8):1106–1125, 2019.

[61] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad
Fouladi, James Hong, Keyi Zhang, Philip Alexander
Levis, and Keith Winstein. Learning in situ: a random-
ized experiment in video streaming. In NSDI, volume 20,
pages 495–511, 2020.

[62] Ren Yang, Fabian Mentzer, Luc Van Gool, and Radu
Timofte. Learning for video compression with hierarchi-
cal quality and recurrent enhancement. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6628–6637, 2020.

[63] Ren Yang, Fabian Mentzer, Luc Van Gool, and Radu
Timofte. Learning for video compression with re-
current auto-encoder and recurrent probability model.
IEEE Journal of Selected Topics in Signal Processing,
15(2):388–401, 2020.

[64] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo
Shin, and Dongsu Han. Neural adaptive content-aware
internet video delivery. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), pages 645–661, 2018.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 547

[65] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno
Sinopoli. A control-theoretic approach for dynamic
adaptive video streaming over http. In Proceedings of
the 2015 ACM Conference on Special Interest Group on
Data Communication, pages 325–338, 2015.

[66] Anlan Zhang, Chendong Wang, Bo Han, and Feng Qian.
Yuzu:neural-enhanced volumetric video streaming. In
19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 137–154, 2022.

[67] Rui-Xiao Zhang, Tianchi Huang, Ming Ma, Haitian
Pang, Xin Yao, Chenglei Wu, and Lifeng Sun. Enhanc-
ing the crowdsourced live streaming: a deep reinforce-
ment learning approach. In Proceedings of the 29th
ACM Workshop on Network and Operating Systems Sup-
port for Digital Audio and Video, pages 55–60, 2019.

[68] Yuanxing Zhang, Pengyu Zhao, Kaigui Bian, Yunxin
Liu, Lingyang Song, and Xiaoming Li. Drl360: 360-
degree video streaming with deep reinforcement learn-
ing. In IEEE INFOCOM 2019-IEEE Conference on
Computer Communications, pages 1252–1260. IEEE,
2019.

A H.264 and H.265 Commands

We denote the frame width, the frame height, the frame rate,
the GOP size, the compression quality, and the output file-
name as w, h, f ps, GOP, Q, and out put. The command for
compressing a video from Pipe using ‘veryfast’, ‘medium’
and ‘veryslow’ modes of x264 are listed as follows, respec-
tively.

ffmpeg -y -s wxh -pixel_format bgr24 -f rawvideo -r fps -i
pipe: -vcodec libx264 -pix_fmt yuv420p -preset veryfast -tune
zerolatency -crf Q -g GOP -bf 2 -b_strategy 0 -sc_threshold 0
-loglevel debug output

ffmpeg -y -s wxh -pixel_format bgr24 -f rawvideo -r fps -i
pipe: -vcodec libx264 -pix_fmt yuv420p -preset medium -crf
Q -g GOP -bf 2 -b_strategy 0 -sc_threshold 0 -loglevel debug
output

ffmpeg -y -s wxh -pixel_format bgr24 -f rawvideo -r fps -i
pipe: -vcodec libx264 -pix_fmt yuv420p -preset veryslow -crf
Q -g GOP -bf 2 -b_strategy 0 -sc_threshold 0 -loglevel debug
output

The command for compressing a video from Pipe using
‘veryfast’, ‘medium’ and ‘veryslow’ modes of x265 are listed
as follows, respectively.

ffmpeg -y -s wxh -pixel_format bgr24 -f rawvideo -r fps -i
pipe: -vcodec libx265 -pix_fmt yuv420p -preset veryfast -tune
zerolatency -x265-params "crf=Q:keyint=GOP:verbose=1"
output

ffmpeg -y -s wxh -pixel_format bgr24 -f rawvideo -r fps
-i pipe: -vcodec libx265 -pix_fmt yuv420p -preset medium
-x265-params "crf=Q:keyint=GOP:verbose=1" output

ffmpeg -y -s wxh -pixel_format bgr24 -f rawvideo -r fps
-i pipe: -vcodec libx265 -pix_fmt yuv420p -preset veryslow
-x265-params "crf=Q:keyint=GOP:verbose=1" output

548 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

MadEye: Boosting Live Video Analytics Accuracy with Adaptive Camera
Configurations

Mike Wong♠ Murali Ramanujam♠ Guha Balakrishnan♢ Ravi Netravali♠

♠Princeton University ♢Rice University

Abstract

Camera orientations (i.e., rotation and zoom) govern the
content that a camera captures in a given scene, which in
turn heavily influences the accuracy of live video analytics
pipelines. However, existing analytics approaches leave this
crucial adaptation knob untouched, instead opting to only
alter the way that captured images from fixed orientations
are encoded, streamed, and analyzed. We present MadEye,
a camera-server system that automatically and continually
adapts orientations to maximize accuracy for the workload
and resource constraints at hand. To realize this using com-
modity pan-tilt-zoom (PTZ) cameras, MadEye embeds (1) a
search algorithm that rapidly explores the massive space of
orientations to identify a fruitful subset at each time, and (2) a
novel knowledge distillation strategy to efficiently (with only
camera resources) select the ones that maximize workload ac-
curacy. Experiments on diverse workloads show that MadEye
boosts accuracy by 2.9-25.7% for the same resource usage, or
achieves the same accuracy with 2-3.7× lower resource costs.

1 Introduction
Building on the steady growth in camera deployments and
advances in deep neural networks (DNNs) for vision tasks
(e.g., classification or detection) [8, 21, 46, 66, 70], live video
analytics pipelines have become prevalent. These pipelines
operate by continually streaming live video feeds from cam-
eras to processing servers (either edge [9, 11, 76, 82, 109] or
cloud [33, 56, 67, 119]), where DNNs are run on incoming
frames to produce low latency and highly accurate results for
different application queries, i.e., combinations of task, DNN,
and object(s) of interest. Key use cases include autonomous
driving, footfall tracking, traffic coordination, business ana-
lytics, among others [6, 10, 12, 25, 27, 31, 41, 42, 90, 91].

Given their practical importance, much research has been
devoted to improving both the resource efficiency and ac-
curacy of live video analytics pipelines. Existing solutions
include accuracy-aware tuning of inference configuration, en-
coding, or appearance knobs [34, 40, 57, 85, 119], filtering
out redundant content [26, 33, 53, 67], using cheaper model
variants [9, 92], improving job scheduling [82, 96, 119], and
so on. However, all of these works assume that the content
observable by cameras is unchangeable, and instead can only

be encoded, streamed, or analyzed differently. In essence, they
focus on optimizing fixed, preset camera deployments.

Unfortunately, the deployment of cameras for analytics is
itself a daunting task for operators. Subject to practical con-
straints (e.g., mounts, power sources), for a scene of interest,
operators must determine the number of cameras to deploy
and the orientation (i.e., combination of rotation and zoom
factor) to use for each. There exist many possible orientations,
and altering these decisions requires manual intervention. Yet
we find that doing so can be highly fruitful: across differ-
ent workloads and scenes, dynamically adapting orientations
over time can yield accuracy improvements of 21.3-35.3%
(without inflating resource usage) compared to even the best
fixed-orientation scheme. These wins cannot be reaped by
simply deploying more fixed cameras to simultaneously cover
more orientations: most orientations are ‘best’ for short total
times (median of 6 sec per 10-min video), drastically hinder-
ing the efficiency of such an approach, especially in resource-
constrained settings where video analytics run [9, 68, 76, 97].

An alternative strategy is to leverage PTZ (pan-tilt-zoom)
cameras that offer software libraries for tuning orientations,
thereby providing a logical approach to capturing the above
wins. Indeed, despite existing for nearly two decades, PTZ
camera popularity has surged in recent years (global market
value of $1.5 billion in 2021 that is expected to reach $3.6
billion by 2028 [20]) largely due to declining price points that
can rival fixed-camera costs [1–4,94,102]. However, multiple
challenges complicate their use for live analytics (§2.3). First,
queries are highly sensitive, in different ways, to orientation
knobs due to their diverse goals (e.g., tasks), inherent model
biases (how models perceive scenes and objects), and scene
dynamism (where objects are located) – optimizing orienta-
tion tuning for one workload can forego up to 25.1% of the
potential median accuracy wins for another. Second, the ‘grid’
of orientations is large, but the selection space is sparse, with
steep accuracy drops from the best orientation(s) to others
at any time. Third, the best orientation changes rapidly, e.g.,
85% of changes occur in ≤1 sec since the last change.

To overcome these issues, we present MadEye, a camera-
server system that automatically and continually adapts PTZ
camera orientations to maximize analytics accuracy for the
scene and workload at hand. The key insight behind Mad-
Eye is that the speed at which commodity PTZ cameras can

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 549

change orientations (i.e., upwards of 600° per sec with con-
current zoom) far outpaces the rate at which applications
require analytics results (typically 1-30 frames per second
(fps), i.e., every 33-1000 ms). This, in turn, allows MadEye
to eschew typical non-stationary multi-armed bandit strate-
gies [64, 81, 107] that rely purely on previous explorations to
determine orientation importance, in favor of a more informed
strategy based on current scene content. Concretely, in each
timestep (33 ms for 30 fps) and subject to network/compute
resource availability, MadEye cameras explore multiple orien-
tations and quickly determine which will maximize workload
accuracy and warrant transmission to backend servers for full
inference. Though intuitive, realizing this strategy in practice
involves addressing several core challenges.

First, to enable fast camera-side evaluation of the impor-
tance of different orientations, MadEye adopts a custom
knowledge distillation [49] strategy with edge-grade, ultra-
compressed NN models. To cope with their potentially limited
predictive power, we task them with modeling query sensi-
tivities only to the point of accurately ranking orientations in
terms of impact on workload accuracy – precise results are
left to backend servers. Even with this relaxed framing, Mad-
Eye must employ several optimizations to achieve sufficient
rank accuracy. Most notably, MadEye trains edge models us-
ing a common abstraction – detection for objects of interest
– that reflects the minimum information needed to capture
sensitivities and biases for popular tasks. Task-specific seman-
tics need not be baked into edge models, and instead can be
incorporated by post processing the generated detections.

Edge models are continually trained on MadEye’s backend
using both the latest and historical workload results to mitigate
data skew towards recently-selected orientations. Importantly,
to balance resource costs and accuracy, each edge model cov-
ers only a single query but all orientations. The intuition is
that, while results from different query models can substan-
tially divergen [14, 35, 63, 77], feature-level variance between
orientations for the same scene is considerably narrower, often
smaller than that in typical pre-training datasets [69]. Accord-
ingly, MadEye freezes pre-trained feature extraction layers
across queries, caching those weights on cameras to lower
retraining and (downlink) model update overheads.

Second, we devise a novel, on-camera search strategy to
explore orientations with the goal of capturing the best one
(accuracy-wise) at each timestep. Three key empirical obser-
vations guide our search: (1) despite rapid temporal shifts,
transitions between best orientations move slowly in the spa-
tial dimension, (2) the best orientations at any time are usu-
ally clustered spatially, and (3) neighboring orientations (with
overlapping views) have highly correlated trends in efficacy.

Building on these observations, MadEye explores a flexible
shape of contiguous orientations at each timestep, and con-
siders shifting only towards neighboring orientations whose
efficacy can be robustly predicted. Decisions to keep/remove
orientations are governed by both response rates (and the cor-

responding time budgets) and relative comparisons of recent
edge model results. For the former, MadEye uses an efficient
heuristic to determine path feasibility in the time budget (a
variant of the NP-Hard Traveling Salesman Problem [48]).
For the latter, MadEye gracefully trades off exploration (i.e.,
shape size) for network usage (i.e., sending more orientations
for backend inference) to bound the effects of edge model
errors and maximize accuracy for the required response rate.

To evaluate MadEye, we developed the first (to our knowl-
edge) dataset that supports tuning rotation and zoom at each
time instant by splicing out scenes of interest from publicly
available 360° videos. Using this dataset, we evaluated Mad-
Eye on a variety of network conditions, commodity PTZ cam-
era hardware, and workloads that incorporate multiple vision
DNNs and query tasks: classification, counting (per-frame
and aggregate), and detection. Across these settings, MadEye
boosts accuracy by 2.9-25.7% compared to an oracle fixed-
orientation strategy without inflating resource usage; these
wins are within 1.8-13.9% of the oracle dynamic strategy.
Framed differently, MadEye achieves those accuracy boosts
with 2-3.7× lower resource footprints than the best strategy of
using (multiple) fixed-orientation cameras. Moreover, Mad-
Eye outperforms recent PTZ tracking algorithms [93, 98] (by
2.0-3.8×) and multi-armed bandit solutions [106] (by 5.8×).
The source code and datasets for MadEye are available at
https://github.com/michaeldwong/madeye.

2 Background and Motivation
We start with an overview of live video analytics deploy-
ments (§2.1). We then show measurements highlighting the
importance of dynamically adapting camera orientations to
workloads and scenes (§2.2), and the challenges associated
with realizing those benefits in practice (§2.3).
2.1 Overview of Live Video Analytics
In a live video analytics deployment, one or more cameras
continually stream their video frames to servers for process-
ing. Servers can range from distant (but powerful) cloud ma-
chines [96,119] to nearby (but weaker) edge boxes [9,76,82],
and are tasked with running queries on the incoming frames
to support different applications. Queries most often involve
running deep neural network (DNN) inference on individual
frames, with the goals of locating and characterizing vari-
ous objects in the scene, e.g., an intersection. Moreover, the
queries for different applications can vary in terms of the
tasks they perform, the objects they consider, the DNNs they
use (different architectures and weights), and the response
rates they require. For instance, footfall tracking for business
analytics will count people passing through an area, with re-
sponse rates at 1 fps or less [12]. In contrast, smart driving or
sports analytics applications will detect the specific locations
of cars or people, with response rates upwards of 30 fps [91].

In this paper, we focus on the following four query tasks
(and their corresponding accuracy metrics) that have been
prevalent in recent literature [23,33,58,59,67] and real-world

550 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/michaeldwong/madeye

deployments [74, 82]; §3.4 details our target queries. We note
that these tasks also serve as the building blocks for more
complex queries, e.g., tracking relies on detections.

• Binary classification: asks if any objects of interest are
present in a frame. Accuracy across the video is measured
as the fraction of frames with the correct binary decision.

• Counting: counts the number of objects of interest in each
frame. Accuracy for each frame is measured as the percent
difference between the returned and ground truth counts.

• Detection: finds the precise bounding box coordinates for
objects of interest in a frame. Accuracy per frame is mea-
sured using mAP [38], which evaluates the overlap between
each returned box and its ground truth counterpart.

• Aggregate counting: counts the unique objects of interest
that appear in a scene. Accuracy per video is the percent
difference between the returned and ground truth counts.

Over time, an analytics deployment will face diverse work-
loads to run on the feeds it manages, each varying in query
composition and size [77, 82]. Yet, the overarching goals per-
sist: subject to resource constraints, deliver low-latency results
(at the desired response rate) with maximal accuracy.

2.2 Opportunities with Tuning Camera Orientations

Existing video analytics systems (§6) assume that a stationary
camera’s orientation (rotation and zoom), and thus what it
ingests from the target scene, is fixed and incapable of being
adapted. To quantify the significance of this restriction, we
run experiments on our 50-video dataset and workloads that
incorporate 4 model architectures, the tasks from §2.1, and
people/cars; §5.1 details our setup. Each video supports tun-
ing of rotations (150° horizontally by 30°, 75° vertically by
15°) and zoom (1-3×); we use other granularities in §5.4.

For each video, we obtained per-frame (15 fps here) results
for each workload by running its queries on all 75 orientations.
We then define accuracy relative to the best orientation for
each frame, i.e., the orientation that maximized per-frame ac-
curacy for the workload. In other words, best orientations rep-
resent an upper bound on the accuracy that could be achieved
by using a single orientation at a given timestep. For instance,
for counting, an orientation’s accuracy at any time is its object
of interest count divided by the max count across all orienta-
tions at that time. Using this methodology, we compare three
schemes: (1) one time fixed which selects the best orientation
at time=0 and keeps it throughout the video, (2) best fixed
which uses oracle knowledge to pick the best single orienta-
tion that maximizes average workload accuracy for the video,
and (3) best dynamic which selects the best orientation per
frame in the video.

As shown in Figure 1, adapting camera orientations brings
substantial accuracy improvements without inflating resource
usage, i.e., the same number of frames are transmitted and pro-
cessed: median boosts with best dynamic are 30.4-46.3% over
one time fixed and 21.3-35.3% over the best fixed scheme that

W1 W3 W4 W8 W100

25

50

75

100

Ac
cu

ra
cy

 (%
) one time fixed best fixed best dynamic

Figure 1: Accuracy for 5 representative workloads when using
varying degrees of orientation adaptation. Bars list results for
the median video, with error bars spanning 25-75th percentiles.

TinyYOLOv4
(people)

SSD
(cars)

YOLOv4
(cars)

FRCNN
(people)

0
25
50
75

100

Ac
cu

ra
cy

 w
in

s (
%

)

Binary classification
Counting

Detection
Agg. counting

Figure 2: Accuracy wins from adapting orientations (compared
to best fixed) grow as query specificity grows. Bars list median
videos, with error bars for 25-75th percentiles. We exclude agg.
counting+cars due to limits of multi-object trackers (§5.1).

is an upper bound for any fixed-orientation approach. Figure 2
breaks down these results by query task. Notably, the impor-
tance of adapting orientations grows as query types become
more specific. For instance, for YOLOv4 and cars, median
accuracy improvements over best fixed are 1.2%, 13.4%, and
16.4% for binary classification, counting, and detection. The
reason is that coarser queries mask certain differences across
orientations, e.g., if many objects of interest are present in the
scene, any orientation that catches a single object will deliver
max accuracy for binary classification; counting, on the other
hand, will favor the orientation with the most objects.

Primer on PTZ cameras. Pan-tilt-zoom (PTZ) cameras
present an intuitive mechanism to realize such adaptation.
PTZ cameras come in two forms, traditional [36, 86] and
electronic (ePTZ) [51, 87], both of which support software
tuning of pan (horizontal rotation), tilt (vertical rotation), and
zoom. The key difference between the two variants is in their
tuning mechanisms. Traditional PTZ cameras embed physical
motors to rotate at up to 600°-per-second and concurrently op-
tically zoom (i.e., without reducing resolutions). In contrast,
ePTZ cameras capture wide field-of-views and employ near-
instantaneous digital rotation and zoom to focus on specific
parts of the scene. ePTZ cameras change orientations faster
and are cheaper, but also cover smaller rotation areas (150° vs.
360°) and degrade image quality by using digital zoom. PTZ
cameras rival traditional ones in on-board compute resources,
with recent offerings housing edge-grade GPUs [79].

2.3 Challenges

Despite the potential benefits of adapting camera orientations
using PTZ cameras, three fundamental challenges complicate
this approach in practice. We describe them in turn.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 551

(0,1] (1,2] (2,3] (4,)
Seconds

0.00
0.25
0.50
0.75
1.00

PD
F

Figure 3: Shifts in the best orientation are frequent. Results
list a PDF (binned by 1 sec) of time between switches in best
orientation across all videos and workloads.

W1 W3 W4 W8 W10
0

10
20
30
40
50

Ac
cu

ra
cy

 w
in

s
fo

re
go

ne
 (%

) W1 best dynamic
W3 best dynamic
W4 best dynamic

W8 best dynamic
W10 best dynamic

Figure 4: Workloads exhibit different sensitivity to orientations.
Results apply the best orientations for workload X (legend) to
workload Y (x axis), and plot the accuracy wins (over best fixed
for Y) that are lost from not using the best orientations for work-
load Y . Bars list medians; error bars for 25-75th percentiles.

C1: rapid changes in best orientation over time. As shown
in Figure 3, switches in best orientation are frequent: 85%
of switches occur in ≤1 sec since the last switch. The reason
for this high flux is threefold: (1) the typical motion for cer-
tain objects (e.g., moving car or walking person) is sufficient
to frequently cross orientation boundaries, especially since
orientations exhibit a degree of content overlap, e.g., an ob-
ject may be visible in two orientations and quickly move to
change the one it is most prominent in, (2) models can pro-
vide inconsistent results across even back-to-back frames that
are seemingly unchanged [60, 61], so best orientation swaps
can occur even with static objects, and (3) aggregate queries
seek previously unseen objects and thus intentionally move to
new orientations, e.g., the percentage of sub-second switches
mildly drops to 70% when aggregate queries are excluded.

C2: diverse workload sensitivities to zoom and rotation.
At any point in time, the best orientation can vary across
individual queries and workloads. Figure 4 illustrates this,
showing that adapting orientations to maximize accuracy for
one workload can result in foregoing 3.2-25.1% of the poten-
tial (median) accuracy wins for other workloads.

Figure 5 highlights this at a query level, showing that differ-
ent models, objects, and tasks can all influence orientation se-
lections. Model discrepancies influence what can be discerned
in the scene during inference and under what orientations. For
instance, with people counting, selecting best orientations for
a YOLOv4 query will miss out on 26.3% median accuracy
wins for the same task using SSD (even when trained on the
same dataset). In contrast, tasks dictate the specificity needed
in the collected results, e.g., optimizing for counting people

Model Query Object0

15

30

45

Ac
cu

ra
cy

 w
in

s
fo

re
go

ne
 (%

)

FRCNN
SSD

detection
agg. count

cars
cars+people

Figure 5: Applying the best orientations for a base query of
{YOLOv4, counting, people} to a query Y that modifies a single
element in the base query; we compare the accuracy wins (over
best fixed) to those when using the best orientations for Y . Bars
list medians; error bars for 25-75th percentiles.

rather than aggregate people counting with the same model
foregoes 10.2% of potential wins. Lastly, object type governs
the importance of regions based on object densities, as well
as the features used for and difficulty in detecting relevant
objects (smaller objects are tougher to discern [88]). Thus, op-
timizing for a YOLOv4 people counting query would forego
13.3% of wins if the query considered cars instead.

Figure 6 provides example screenshots to illustrate the ben-
efits and harm of changing orientations. Importantly, tuning
orientations does not simply bring new objects into field of
view, and instead plays a large role in a model’s ability to
detect objects that were already visible. Indeed, simply using
the lowest zoom factor will capture the largest portion of the
scene, but can result in models missing in-view objects due
to degradations in object size or resolution.

C3: massive (but sparse) search space. The orientation
space exhibits substantial sparsity in the spatial and temporal
dimensions. For the former, among the 75 orientations at
any time, only 1 (or several, with ties) is best, with steady
dropoff in accuracy to the others, e.g., median dips of 4.8%
and 20.7% from the best to 2nd and 5th best. For the latter,
most orientations are best for short total times in each video,
with median durations of 5-6 sec across workloads (Figure 7).

3 Design
Figure 8 shows the end-to-end operation of MadEye. The
main insight behind MadEye is to leverage fast PTZ rotation
speeds to explore many orientations in each timestep (i.e.,
between when results are needed for an fps), and then select,
based on their current content, the one(s) that maximize work-
load accuracy under resource constraints. The idea is to limit
the “guess work” compared to prior search algorithms that
rely only on past orientation efficacy (§5.3).

As in other video analytics systems [33, 57, 67, 82], users
register queries with a backend agent (on an edge or cloud
server), specifying a target scene, as well as a model to use,
object(s) of interest, and a task. To operate under camera com-
pute constraints, MadEye then trains edge-compatible (i.e.,
highly compressed) models (§3.1), not to replace the original
(more accurate) query models (as in typical knowledge distil-
lation [49]), but instead to approximately extract information
of importance in a frame for each query. In other words, ap-

552 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

PEOPLE: 9

PEOPLE: 8

PEOPLE: 1

PEOPLE: 3

CARS: 2
PEOPLE: 0

CARS: 3
PEOPLE: 1

Cars + people (SSD) People (FRCNN)People (SSD)

Figure 6: Screenshots showing the (diverse) impact of rotation and zoom for different queries. Each column shows two images from the
same time instant that use either different rotation or zoom. On the bottom row, green arrows show newly captured objects, while red
arrows show objects that are newly missed after the orientation change. Left: rotation brings a new object into the scene, helps detect 2
previously-visible objects, but loses a previously-detected object. Middle: zooming in helps detect new people. Right: after switching
models, the same zoom from the middle column actually reduces the number of detected people.

0 10 20 30 40 50
Total time of best orientations (s)

0.00
0.25
0.50
0.75
1.00

CD
F

W1 W3 W4 W8 W10

Figure 7: Most orientations are best for short total times in each
video. Results consider all orientation-video pairs per workload.

proximation models are explicitly designed to estimate the
inherent sensitivities of each query (C2 from §2.3).

To cope with the large space of orientations and rapid shifts
in best ones (C1 and C3 from §2.3), MadEye employs an effi-
cient on-camera search strategy (§3.3) that explores as many
potentially fruitful orientations as possible while avoiding fps
violations for results. The camera then runs approximation
models on all captured orientations in each timestep and uses
the results to (1) rank the orientations in terms of their like-
lihood to maximize workload accuracy, and (2) determine
the orientations to consider in the next timestep. The highest
ranked orientations that the network can support are sent to
the backend for full workload inference, with results used to
continually adapt approximation models to the scene (§3.2).

3.1 Designing Approximation Models

The primary objective of MadEye’s approximation models
is to quantify the relative importance of orientations for the
queries in a workload. However, this requires capturing the
sensitivity of each query to different orientation and scene dy-
namics, subject to camera compute constraints. Given the po-
tential complexity of workload queries, we eschew noisy (and
limited) vision features based on local gradients [30, 73] in
favor of knowledge distillation with compressed models [49].
However, we alter this approach in several ways to favorably
balance ranking accuracy and resource efficiency.

We design approximation models using a common abstrac-
tion that reflects the minimum amount of information needed
to sufficiently rank orientations. The key idea is that the core
elements of query sensitivity pertain to how models find and
characterize objects, rather than how tasks post-process those
results. Thus, MadEye’s approximation models are structured
purely as ultra-lightweight detectors for objects of interest;
this strategy also avoids tricky development of compressed
models per task. Concretely, we use the smallest variant of
the edge EfficientDet family [103], EfficientDet-D0 (3.9M
parameters, >150 fps on a Jetson edge GPU), which enables
MadEye to scale to multi-query workloads. More complex
detectors could be used, but cameras possess limited GPU
memory [67, 82], and inference delays negatively influence
the degree to which MadEye can explore orientations (§3.3).

Why a detector? Two alternatives we considered for the
approximation models are to directly estimate object counts
in an image, and to directly output rank orderings across
multiple images. However, we empirically observed high error
rates with both. This is largely because such approaches can
only relate the presence of features to objects via a global
regression over an entire image (or multiple images), failing
to leverage local regressions via bounding box predictions
to boost precision. While image-level DNN object counters
do exist [99, 113, 118, 122], they focus on large crowds of
people. In contrast, there are often few objects of interest
in an orientation at any time (§2.3), making rank orderings
extremely sensitive to small errors in count prediction.

MadEye uses one approximation model per query, rather
than per workload or object. Though more efficient, we avoid
per-workload and per-object approximation models as we
(like others [77]) find that different DNNs can exhibit wildly
varying response profiles to even the same object classes due
to object-independent factors like scale and resolution [50].

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 553

Ranked
orientations

Backend
server

PTZ
camera

Best
orientationsSearch

algorithm
Workload
execution

Query
registration

Query results

Explored
orientations

3 145 2

Approximation
model trainer

Updated
weights

Scene
exploration

Approximation
models

User/App

Training samples

Figure 8: Overview of MadEye’s end-to-end workflow.

Moreover, DNNs trained on very different datasets are known
to inherit different algorithmic biases [14,35,63,80,100,111].

However, each approximation model is configured to sup-
port all orientations for two reasons. First, the number of
orientations is large (§2.3), making per-orientation approxi-
mation models impractical with on-camera GPUs. Second,
neighboring orientations exhibit substantial overlap, and since
we only consider orientations for a given scene, divergence
in background content, lighting, shadows, etc. are minimal.
Indeed, we measured the perceptual distance [89] of images
(LPIPS) from different orientations in the same scene to be
0.30. For context, the same value for the popular MS-COCO
and Pascal VOC datasets used to successfully pre-train many
vision models (including EfficientDet) are 0.46 and 0.41.

Estimating workload accuracies. MadEye post-processes
the generated bounding boxes from all approximation mod-
els to compute predicted workload accuracies for orientation
ranking. To do this, MadEye follows the per-task accuracy
metrics from §2.1, but computes per-orientation predicted ac-
curacy in a relative manner compared to the other orientations
under test. For instance, counting computes the ratio of object
counts between each orientation and the max among the set
of explored orientations at that timestep, while detection ex-
pands this to incorporate object area sizes (as per mAP score).
Lastly, aggregate counting modulates count scores to favor
less explored orientations (that may have unseen objects).

3.2 Continually Training Approximation Models

MadEye servers train a new approximation model for each
new query, with the goals of being fast and accurate (in rank-
ing orientations). Initial training uses a small set of 1000
historical images from the target scene that is then labeled (on-
line) using the DNN in the registered query; label generation
takes 7-90 sec depending on the DNN. However, to accelerate
this process, MadEye begins with a version of EfficientDet
that is pre-trained on Pascal VOC, and freezes both the back-
bone and BiFPN layers responsible for feature extraction and
fusion. Only weights for the final 3 bounding box and class
prediction layers are fine-tuned to mimic the target query’s
behavior. The rationale is that model features progressively
move from general (e.g., textures, gradients) to task-specific
(e.g., object labels) from model start to end [16, 116, 117].
Initial fine-tuning lasts 40 epochs (≈25 mins).

Even after initial fine-tuning, approximation models may
fail to generalize to changing scene dynamics [101], leading
to degrading accuracy. To cope with such data drift, Mad-
Eye employs continual learning (every 120 sec) to update the
model’s weights using the latest query results on orientations
sent to the server for full workload inference. While contin-
ual learning has been applied to edge video analytics [9, 75],
MadEye requires several alterations from prior efforts. The
main challenge is that within each retraining window, sam-
ples are only available for the orientations that MadEye’s
camera-side component recently visited and deemed worthy
of backend inference. Since orientations are typically best for
short total times (§2.3), there is often severe imbalance in the
orientations covered by new training samples. For instance,
with perfect rankings, the average 2-minute window sees only
9.3% of orientations get sent to the backend. This can result
in overfitting to certain orientations, and catastrophic forget-
ting [62] for others that may soon be ranked highly.

To deal with this, MadEye retrieves the most recent histor-
ical training samples from each orientation and uses this to
balance the dataset. As we will discuss in §3.3, we find that
orientation shifts are often spatially localized, with changes to
distant orientations happening over longer timescales. Thus,
MadEye pads the data samples for neighboring orientations
(up to 3 away from the latest one) to match the count for
the most popular orientation in the retraining window. The
remaining orientations use an exponentially declining number
of samples based on their distance from the latest orientation.

Each continual learning round considers the last 120 best
orientations selected by MadEye (1 sample per second since
the last retraining round), as well as 200 historical images (on
average) to account for neighboring orientations; a random
30% of this is reserved for validation. Retraining runs for
5 epochs and takes an average of 32 seconds. Note that all
continual learning runs asynchronously on backend servers;
§5.4 profiles network usage for shipping model updates which
are small due to the use of ultra-lightweight (compressed)
detectors and the aforementioned backbone freezing.

3.3 Exploring and Ranking Orientations

The primary goal of MadEye’s on-camera component is to
efficiently explore (a subset of) the large orientation space
to capture the best orientation for each timestep. Realizing

554 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 10 20 30 40 50 60 70 80 90
Spatial distance (degrees)

0.00
0.25
0.50
0.75
1.00

CD
F

Figure 9: Spatial distance between successive best orientations
is small, with most transitions between neighboring orientations.
Results aggregate across all videos and workloads for 15 fps.

this is challenging for three reasons. First, MadEye only has
visibility into the orientations that it has recently explored, but
other orientations can change in content and importance at
any time. Second, even among recently explored orientations,
MadEye only has access to coarse results from approximation
models (i.e., that accurately capture only relative importance)
for most. Third, each timestep is not only dedicated to explo-
ration, but also (1) running approximation models on explored
orientations, (2) encoding and shipping select orientations to
the server, and (3) running the workload on shipped images.

Rather than relying on previous (and potentially stale) ob-
servations at each orientation (§5.3), MadEye opts for a more
informed strategy guided by 3 empirical observations.

• Although best orientations change rapidly over time (§2.3),
those changes are far slower in the spatial dimension. Fig-
ure 9 illustrates this, showing that the median and 90th
percentile spatial distance between successive best orienta-
tions are 30° and 63.5°, which pertains to shifts spanning
only 1 or 2 orientations in our default grid (§5.1).

• The best performing orientations (accuracy-wise) at any
time are often spatially clustered (Figure 10). Concretely,
across our dataset, the 75th percentile distance separating
orientations in the top k at each timestep is 1 and 2 orienta-
tions for k values of 2 and 6.

• Accuracy for neighboring orientations often shift in tandem.
Indeed, as shown in Figure 11, the correlation coefficient
for accuracy changes in direct neighbors is 0.83; intuitively,
this value shrinks to 0.75 when considering neighbors 2-
hops away (that exhibit less content overlap).

Taken together, these findings motivate a search strategy that
considers a flexible shape of contiguous orientations at each
timestep, and swaps out underperforming orientations in the
previous shape only for neighboring ones whose trends we
can robustly predict for the next timestep. We start with a
description of the algorithm that does not account for zoom
or resource constraints and later incorporate those elements.
Common themes are: only relative comparisons of approxima-
tion model results are used, we leverage all outputs from those
models (including bounding boxes), and search decisions are
entirely local (i.e., on cameras) to remain rapid.

MadEye begins with a rectangular seed shape that reflects
the largest coverable area in the time budget, thereby maximiz-
ing early exploration; we reset to this shape any time 0 objects
of interest are found in a shape. The corresponding orienta-

0 1 2 3 4
Number of hops

0.00
0.25
0.50
0.75
1.00

CD
F

k=2 k=4 k=6 k=8

Figure 10: Top ranked orientations are often spatially clustered.
Results use 15 fps, are aggregated across all workloads and
videos, and show the max distance between orientations in the
top k ranked orientations at each timestep.

30 20 10 0 10 20 30
Accuracy across consecutive timesteps

30
20
10

0
10
20
30

Ac
cu

ra
cy

 a

cr
os

s
co

ns
ec

ut
iv

e
tim

es
te

ps N=1 (=0.83) N=2 (=0.75) N=3 (=0.63)

Figure 11: Correlation in accuracy changes across orientations
separated by N hops. Results list Pearson Correlation Coeffi-
cients and cover 3 representative videos and workloads (15 fps).

tions are captured and analyzed with approximation models
to compute a predicted workload accuracy for each (§3.1).
After sending the top k orientations to the server for workload
inference, MadEye must use these prior results to determine
the set of orientations to explore in the next timestep.

To do this, MadEye labels each orientation from the last
timestep with a value that indicates the likelihood of being
fruitful in the next timestep. Concretely, we combine the
exponentially weighted moving averages from recent (10)
timesteps for (1) any computed predicted accuracy values,
and (2) the deltas between those values. Weighted averages
are used to remain robust to inconsistencies in DNN results
across consecutive frames [77, 84], which is especially pro-
nounced with MadEye’s compressed approximation models.

Using those labels, MadEye must now determine which
orientations to remove and add for the upcoming timestep.
For this, MadEye sorts orientations into an ordered list based
on their label values. Using pointers at the head H (largest
label) and tail T (smallest label) of the list, MadEye iteratively
compares orientations by asking: should we remove the ori-
entation at T in favor of adding a neighbor to H? Concretely,
MadEye computes the ratio of label values for H/T . If (1) that
ratio exceeds a threshold (indicating a substantial disparity
in the potential of H and T), (2) H has neighbors not already
in the shape, and (3) removing T would not break contiguity,
we remove the orientation at T and increment the pointer.
The process repeats by considering the addition of another
neighbor for H, this time using a larger threshold to account
for the additional uncertainty of adding more neighbors. H
is decremented when a neighbor cannot be added, and the
process ends when even one neighbor for H cannot be added.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 555

For each iteration that results in a neighbor addition for
H, MadEye selects among H’s neighbors by analyzing the
bounding boxes that its approximation models generated in
the last timestep. For each candidate neighbor, we compute
the ratio of two values: normal distances to the center of H and
to the centroid of all bounding boxes in H. Values <1 indicate
lower chances of H’s objects moving to the candidate in the
next timestep. We repeat this process for all other orientations
in the last shape that the candidate exhibits any non-zero
overlap with. Candidate neighbor scores are computed as the
weighted sum of these ratios (weights according to degree of
overlap), and the candidate with the max score is selected.

Reachability and path selection. The search algorithm thus
far ignores whether a PTZ camera can sufficiently cover the
selected shape in a given time budget. Formally, the shape
of orientations can be represented as a fully-connected undi-
rected graph with edge weights pertaining to the time taken
to move between two adjacent orientations (given a rotation
speed). Our goal is to determine whether the shape is cover-
able in a given time budget, and if so, what is the shortest path.
The paths between orientations satisfy the triangle inequality
property [104], so this can be modeled as a variant of the
NP-Hard Traveling Salesman Problem (TSP) [18]. Given our
tight time budgets, MadEye employs the Minimum Spanning
Tree (MST) heuristic [48], but optimizes it to minimize online
delays. In particular, since our orientation grid is static, we
precompute pairwise distances and the entire MST ahead of
time. Online, for a given shape, we quickly extract and per-
form a preorder walk on the corresponding subgraph to get the
shortest path. This reduces the heuristic to linear complexity
(in orientations); each path computation takes 14 µs, and the
resultant paths are within 92% of optimal. Upon failure, Mad-
Eye greedily removes the orientation with the lowest potential
(that does not break contiguity) and rechecks reachability.

Balancing search size and network/compute delays. Mad-
Eye pipelines its exploration through orientations with the
running of approximation models on each one. However, net-
work transmission to and workload inference on the backend
do not overlap with orientation exploration. The reason is
that transmissions are governed by global ranks across all ori-
entations explored in each timestep. Thus, in each timestep,
we face a tradeoff between exploring more orientations and
sending more orientations to the backend.

MadEye resolves this tension based on the expected dif-
ficulty for its approximation models to accurately rank the
considered orientations, which in turn governs the risk asso-
ciated with exploring more orientations (and sending fewer
to get ground truth results). Intuitively, scenarios where the
considered orientations are projected to contribute similar ac-
curacies pose the biggest difficulty for approximation models
(as the gaps between ranks shrinks). MadEye determines the
right balance by first selecting a target number of frames to
send according to the training accuracy for approximation

models (provided by the backend) and the variance in pre-
dicted accuracy values in the last timestep, e.g., with 85%
training accuracy, any frames within 15% accuracy of the top
ranked frame are sent. MadEye then computes a target shape
size for exploration, accounting for network delays (harmonic
mean of past 5 transfers [115]), backend compute delays,
rotation speeds, and approximation model inference delays.

Handling zoom. After selecting the set of orientations to
visit, the search algorithm must determine the zoom factor
to use for each one. The challenge is that past accuracies are
insufficient for determining zoom fidelity as MadEye cannot
know what objects are being missed by not zooming in/out.
Instead, we rely on bounding boxes from approximation mod-
els to determine the risk of zooming in. When an orientation
is added to the shape, we start at the lowest zoom factor to
gain visibility into its whole content. At each timestep, we
compute the average distance between each bounding box
and the centroid of all boxes; smaller distances indicate more
clustering and less risk of zooming in. These values are com-
pared with the area covered by each zoom factor to select
one, and MadEye automatically zooms out after 3 seconds to
avoid missing newly entering objects in the orientation.

Transmitting images. At the end of each timestep, MadEye
must transmit select images to the server for workload in-
ference. Unlike standard streaming, MadEye sends disjoint
sets of images from each orientation’s video stream. To keep
bandwidth costs low, MadEye maintains a list of the last im-
age shared for each orientation, and employs a functional
encoder [39] that computes deltas relative to that image.

3.4 Query Support and Deployment Discussion

As noted in §2.1, MadEye targets the large class of object-
centric queries (i.e., those that find and label people or cars)
which have dominated reported industrial workloads [74, 82]
and prior work [23,33,58,59,67,75,77]. Further, we consider
tasks that return per-frame (e.g., counting, detection) and per-
video (e.g., aggregate counting) results.

Supporting other object-centric queries with new objects
of interest or tasks involves two main steps: training a new
approximation model, and (potentially) developing new logic
to rank orientations using approximation model results. The
former is automated; MadEye does not make any assumptions
about object type or task, and instead trains its approximation
models as detectors for the objects of interest identified by
results of provided query models. The latter is only required
for new tasks and can be arbitrarily complex, e.g., a ranker can
consider keypoints of detected objects for activity recognition
queries. §A.1 presents results for other object types and tasks.

MadEye currently operates on videos from cameras that
are statically mounted. For changing mounting locations (e.g.,
dashcams), MadEye will face similar challenges to any multi-
armed bandit strategy: past content becomes a weaker indica-
tor of orientation efficacy since orientations continually point

556 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

to new scenes. MadEye may still outperform prior approaches
by comparing explored orientations in terms of current con-
tent, but we leave a detailed exploration to future work.

4 Implementation
MadEye’s core components are written in 9.1k lines of Python
code, with all training and inference tasks across the backend
and camera run in PyTorch. We use TensorRT [7] to accel-
erate inference on the backend, and a variant of Nexus [96]
as a round-robin scheduler for approximation model infer-
ence. Orientations are first represented as rotational values,
projected onto a 360° space, and then converted using an in-
house equirectangular-to-rectilinear image converter (in C++)
to match the APIs offered by PTZ cameras [17]. For ground
truth accuracy computations (§5.1) that need a global perspec-
tive on object locations and uniqueness, atop the ByteTrack
multi-object tracker [114] that links objects across an orienta-
tion’s video, we use cv2 and scikit-image to extract image
features (e.g., SIFT) that link objects across orientations.

5 Evaluation
We evaluated MadEye across diverse workloads, network
settings, and videos. Our key findings are:

• MadEye increases median workload accuracies by 2.9-
25.7% compared to an oracle fixed-orientation strategy
(while using the same amount of resources); wins are
within 1.8-13.9% of the oracle dynamic strategy.

• Achieving MadEye’s accuracy wins with 1 PTZ camera
would require the best 4-6 fixed-orientation cameras, which
comes with a 2-3.7× inflation in resource costs.

• MadEye outperforms prior PTZ algorithms by 2.0-5.8×,
providing 31.1-52.7% higher accuracy than Panoptes [98],
tracking [93], and multi-armed bandits [106].

• MadEye gracefully balances on-camera exploration and
transmission of orientations to maximize accuracy even as
resources shrink and response rates rise.

5.1 Methodology

Video dataset for PTZ analysis. To the best of our knowl-
edge, there does not exist a public video dataset for PTZ cam-
eras that enables users to tune rotation and zoom knobs; in-
stead, existing PTZ datasets reflect pre-determined knob deci-
sions. Thus, to evaluate MadEye, we generate our own dataset.
To construct our dataset, we begin with the abundance of
360° datasets. Concretely, we use 50 360-degree videos (5-10
mins each) from YouTube that incorporate scenes of interest
resembling those from prior video analytics work [9, 33, 67],
e.g., searching for people and/or cars in traffic intersections,
walkways, shopping centers. From each video, we carve out
the scenes of interest as regions that each span 150° hori-
zontally and 75° vertically. We then subdivide each scene
into grids of orientations to mimic recent PTZ offerings [51]
(30° and 15° granularities for pan and tilt; we explore other

grids in §5.4), and extract a full video per orientation. For
zoom, since we operate on pre-captured videos, we employ
digital zoom (1-3×) by cropping images and scaling back the
dimensions to match the original image.

Models and workloads. We consider 4 popular architec-
tures for vision tasks: SSD [71] and Faster RCNN [95] with
ResNet-50 backbones, YOLOv4 and Tiny-YOLOv4 [108]
with CSPDarknet53 backbones. We consider two versions of
each model trained on Pascal VOC and MS-COCO, but show
results for the latter as the trends were similar. To construct
queries, we follow the same methodology from production
analyses [82]. Each model can perform any of the 4 tasks from
§2.1 with a focus on people or cars. We enumerate all possible
workloads sized between 2-20 queries and pick 10 randomly.
§A.2 details each workload. As in prior work [23,82], we run
each workload on all videos in our corpus that contain the
objects of interest for the workload’s queries. Since MadEye
does not make any assumptions about frame arrival rates, we
consider response rates between 1-30 fps.

Hardware and networks. On-camera computations run on
an edge-grade Jetson Nano [79] equipped with a 128-core
Maxwell GPU, quad-core ARM CPU with 1.43 GHz clock
speed, and 4 GB of memory. We consider default camera
rotation speeds of 400° per second and study this parameter
in §5.4. Workload inference and training of approximation
models run on a server with an NVIDIA RTX 2080 Ti GPU
(8 GB RAM) and 18-core Intel Xeon 5220 CPU (2.2 GHz;
125 GB RAM). Camera and server components are connected
with emulated Mahimahi networks [78] using fixed-capacity
(24-60 Mbps; 5-20 ms) and real-world mobile traces.
Note. Although we run on real edge hardware and emulated
networks, we do not use a deployed PTZ camera for our main
evaluations as it would preclude practical consideration of
diverse scenes and camera parameters, e.g., different rotation
speeds. We present results with a real PTZ camera in §5.5.

Metrics. Our primary evaluation metric is average workload
accuracy per video. For each frame, following the accuracy
definitions from §2.1, we compute per-orientation accuracy
for each query relative to the orientation that delivers the max
accuracy at that time. Per-query accuracies at each time are
averaged to compute per-frame workload accuracies, which in
turn are averaged to compute workload accuracy for a video.

While computing these values for binary classification and
counting are straightforward, detections and aggregate count-
ing need slight alterations. For detections, mAP scores depend
on bounding box coordinates for specific objects and thus
cannot be measured by comparing results across orientations.
Thus, we consolidate the bounding boxes across orientations
into a global view, and employ de-duplication [83] to elimi-
nate redundant objects in overlapping regions. We then com-
pute each orientation’s mAP score relative to the global scene,
and assign per-orientation accuracies as the ratio of its mAP

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 557

W1 W2 W3 W4 W5 W6 W7 W8 W9 W100
20
40
60
80

100

Ac
cu

ra
cy

 (%
) Best fixed MadEye Best dynamic

(a) 1 fps
W1 W2 W3 W4 W5 W6 W7 W8 W9 W100

20
40
60
80

100

Ac
cu

ra
cy

 (%
) Best fixed MadEye Best dynamic

(b) 15 fps
W1 W2 W3 W4 W5 W6 W7 W8 W9 W100

20
40
60
80

100

Ac
cu

ra
cy

 (%
) Best fixed MadEye Best dynamic

(c) 30 fps
Figure 12: Comparing MadEye with the best possible fixed- and adaptive-orientation schemes across all videos and workloads with a
{24 Mbps, 20 ms} network and varying fps. Bars list medians with errors bars spanning 25-75th percentiles.

W1 W2 W3 W4 W5 W6 W7 W8 W9 W100
20
40
60
80

100

Ac
cu

ra
cy

 (%
) Best fixed MadEye Best dynamic

(a) Verizon LTE
W1 W2 W3 W4 W5 W6 W7 W8 W9 W100

20
40
60
80

100

Ac
cu

ra
cy

 (%
) Best fixed MadEye Best dynamic

(b) 24 Mbps; 20 ms
W1 W2 W3 W4 W5 W6 W7 W8 W9 W100

20
40
60
80

100

Ac
cu

ra
cy

 (%
) Best fixed MadEye Best dynamic

(c) 60 Mbps; 5 ms
Figure 13: Comparing MadEye with the best possible fixed- and adaptive-orientation schemes across all videos and workloads with
fixed fps (15) and varying networks (improving from left to right). Bars list medians with errors bars spanning 25-75th percentiles.

score to the max one across orientations. For aggregate count-
ing which is evaluated across an entire video, we compute the
ratio of unique objects across the orientations that a system
selects with the total number of unique objects in the video.
Note that ByteTrack (§4) was unable to robustly support car
tracking, so we exclude aggregate counting for cars.

5.2 Overall Results

We first compare MadEye with the two baselines from §2.2,
best fixed and best dynamic, on different network and fps set-
tings. Both baselines impractically rely on oracle knowledge
of video content and workload accuracy, i.e., to pick the best
orientation per video or per timestep, respectively, that maxi-
mizes accuracy for the target workload-video. Nonetheless,
they serve as useful context for MadEye’s performance. Note
that MadEye automatically adapts the number of frames it
explores and transmits based on network delays and response
rates (§3.3). For best fixed, we leverage increasing network
speeds by adding more fixed cameras (i.e., best, 2nd best,
etc.), rather than simply capturing more (redundant) frames
from 1 camera. Best dynamic does not change for any query
other than aggregate counting, for which we send the largest
number of fruitful orientations that the network can support.

Our results are captured in Figures 12-13. Across these set-
tings, MadEye delivers median and 75th percentile accuracies
that are 2.9-25.7% and 1.6-20.7% higher than best fixed, and
within 1.8-13.9% and 1.3-12.5% of best dynamic. Digging
deeper, our results show two key trends. First, as frame rates
decrease (for a fixed network), MadEye’s accuracies and wins
over best fixed grow, e.g., for a {24 Mbps, 20 ms} network,
median wins improve from 5.8-13.3% to 12.4-25.7% as fps
drops from 15 to 1. The reason is that lower fps yields larger
timesteps (e.g., 1 sec for 1 fps, 66.7 ms for 15 fps), enabling

0 10 20 30 40
Accuracy wins (%)

0.00
0.25
0.50
0.75
1.00

CD
F

Binary
classification
Count
Detection
Aggregate count

0 10 20 30
Accuracy wins (%)

0.00
0.25
0.50
0.75
1.00

CD
F

Binary
classification
Count
Detection

Figure 14: MadEye’s accuracy wins (over best fixed) for different
tasks and objects (left: people, right: cars). Results consider all
videos and models, and use 15 fps and {24 Mbps; 20 ms}.

MadEye Variant Median Accuracy (%) # Fixed Cameras
MadEye-1 63.1 3.7
MadEye-2 66.3 5.5
MadEye-3 66.8 6.1

Table 1: Number of optimally-configured fixed cameras needed
to match the accuracy of MadEye. MadEye-k refers to a version
of MadEye that is restricted to sending the top k frames to the
server for workload inference. Results consider a {24 Mbps; 20
ms} network, 15 fps response rate, and all video-workload pairs.

more exploration and/or transmission. Second, as network
speeds grow (for fixed fps), the same trends persist (since
each network transfer is faster) but to a lesser extent, e.g.,
median 15 fps wins grow to 8.6-18.4% for {60 Mbps, 5 ms}.

Figure 14 breaks down MadEye’s wins over best fixed by
task and object. Following the rationale from §2.2, accuracy
boosts with MadEye grow as task specificity grows: median
wins grow from 8.6% to 13.3% to 22.1% as we move from
counting to detections to aggregate counting for people. We
also observe consistently larger accuracy wins for people
queries (rather than cars) due to their less structured motion
patterns (more frequent and scattered orientation switches),
e.g., for detections, wins for cars shrink to 6.7%.

558 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 20 40 60 80 100
Accuracy (%)

0.00
0.25
0.50
0.75
1.00

CD
F

MAB Panoptes-all Tracking Madeye

Figure 15: MadEye vs. 3 camera tuning strategies. Results are
for all workloads and videos, 15 fps, and {24 Mbps; 20 ms}.

Results thus far focus on accuracy improvements. However,
a key goal with MadEye is to maximize accuracy for a given
resource cost, i.e., network and backend inference overheads.
Table 1 lists the smallest number of optimally configured fixed
cameras that would be required to match the accuracies that
different versions of MadEye deliver, each of which sends a
different number of frames per timestep. As shown, it would
take 3.7 fixed cameras to realize the 63.1% accuracy that
MadEye-1 achieves, implying a 3.7× reduction in network
and backend compute usage. MadEye-2 is matched by 5.5
fixed cameras; here, however, the resource reduction factor is
2.8× since MadEye also sends 2 frames per timestep.

5.3 Comparisons with State-of-the-Art

We compare MadEye with 3 alternate approaches for adaptive
camera orientations. Figure 15 shows results for a {24 Mbps;
20 ms} network and 15 fps; trends hold for all other scenarios.

First, we consider Panoptes [98], a recent PTZ system that
configures orientations for workloads of applications, each
explicitly concerned with specific orientation(s). For orien-
tations of relevance, Panoptes generates a static round-robin
schedule that is weighted according to how many queries
an orientation is of interest to and how much motion has
been detected historically in that orientation; higher weights
indicate staying in an orientation for longer. Panoptes then
switches between orientations according to this schedule with
one exception: if motion gradients in the direction of any over-
lapping orientation of interest exceed a threshold, Panoptes
switches there for several sec before resuming the round robin.
Panoptes does not specify a zoom strategy, so we consider the
best zoom (accuracy-wise) for any orientation it visits.

We consider two versions of Panoptes, Panoptes-all and
Panoptes-few, in which each workload query is interested
in all orientations or only its best fixed orientation, respec-
tively. Max accuracy in both cases is defined relative to the
best orientation among only the set of considered ones. As
shown in Figure 15, MadEye outperforms Panoptes-all by
3.8×, with 46.8% higher accuracy at the median. The rea-
son is that Panoptes cycles through orientations based on
a pre-determined schedule and motion gradients in the cur-
rent orientation, neither of which are sufficient indicators of
importance of other orientations at the current time, e.g., ori-
entations are suboptimal most of the time (§2.3). In contrast,
MadEye considers many orientations per timestep, ranking
them based on current content. The wins persist compared to

System Resource reduction Median accuracy
Chameleon [57] 2.4× 46.3%
Chameleon + MadEye 2.4× 56.1%

Table 2: MadEye preserves resource savings of recent systems,
while improving accuracy. Results use 15 fps, {24 Mbps; 20 ms}.

Panoptes-few (not shown due to the different accuracy met-
ric), but are less pronounced (median of 40.5%) as there are
fewer unfruitful orientations for Panoptes to consider.

Next, we consider tracking algorithms that most PTZ cam-
eras come equipped with today [93]. This algorithm starts
in a home region (best fixed in our experiment), selects the
largest object it finds, and tracks that object continually across
orientations aiming to keep it as centered as possible. The
algorithm resets to the home region upon losing the tracked
object. We consider a favorable variant in which all orien-
tations explored in a timestep are shared with the backend,
which uses the one with the highest accuracy. As shown, Mad-
Eye delivers 2.0× higher workload accuracies (31.1% more
at the median) compared to this tracking scheme. The main
reason again is that the presence of a large object is a poor
indicator of accuracy importance as it fails to capture more
general scene properties and specific query sensitivies.

Finally, we consider the common UCB1 multi-armed ban-
dit (MAB) algorithm [106]. Each orientation is considered
a lever with a weight set to the average observed accuracy
across all past visits (we seed this with historical data). The
algorithm continually selects an orientation to visit as the
one with the highest sum of weighted average and upper con-
fidence bound (which favors less-visited orientations). As
with tracking, we send all visited orientations to the backend,
which selects the best one per timestep. MadEye delivers
52.7% higher median accuracies than this scheme, i.e., a 5.8×
win. Unlike the schemes above, MAB does factor in workload
accuracies in selecting orientations. However, its adaptation
considers only historical efficacy (not current content), and
scene dynamics have shifted by the time it updates its patterns.

Compatibility with other optimizations. By focusing on
previously un-tuned knobs (rotation and zoom) to boost ac-
curacy, MadEye is largely compatible with prior efforts that
optimize resource overheads. To illustrate this, we consider
a variant of Chameleon [57] that dynamically tunes pipeline
knobs (resolution and frame rate) to lower network and back-
end inference resource costs without harming accuracy; we
brute force selections per frame focused on the best fixed
orientation. We then run MadEye atop the fps and resolution
selections that Chameleon makes, sending the same amount
of network data. As shown in Table 2, Chameleon lowers
resource costs by 2.4× compared to the naive scheme that
sends all frames at the highest resolution; MadEye preserves
these efficiency wins, while increasing accuracy by 9.8%.

5.4 Deep Dive Results

Rotation speeds. We evaluated the impact of camera rotation
speed on MadEye’s performance by considering values of

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 559

{200, 400, 500, infinite}° per second, a fixed network ({24
Mbps; 20 ms}), and 15 fps. Intuitively, accuracy grows as
rotation speeds increase, e.g., jumping from 54.2% to 64.9%
as rotation speed grows from 200 to 500° per second. The rea-
son is that faster rotations enable the exploration of additional
orientations or, in rarer instances, additional transmissions.
Importantly, benefits plateau since most queries (other than
aggregate counting) are fully satisfied accuracy-wise as long
as MadEye finds the best orientation at each timestep.

Grid granularity. To understand the effect of grid granularity
(with other settings fixed), we focus on the pan dimension
(since it is wider) and consider steps of {15, 30, 45, 60}°.
Overall, MadEye’s accuracy benefits shrink as grids become
more fine-grained (with more orientations), e.g., median ac-
curacies drop from 67.5% to 51.8% when pan steps drop
from 45 to 15. This is because, although exploration in a time
budget is governed by rotation speeds rather than grid gran-
ularity, the same distance (in °) of exploration will warrant
more approximation model inference on more orientations,
thereby shrinking each timestep’s exploration budget.

Overheads. On MadEye’s backend, the primary overheads
are in initializing approximation models and continually shar-
ing model updates with the camera. Across our workloads, we
find median bootstrapping delays to be 27 mins (including la-
beling and initial fine-tuning). Downlink streaming consumes
3.2 Mbps for the median experiment. Recall that both over-
heads are mitigated by MadEye’s fine-tuning strategy (§3.2).
On cameras, the main overheads are in selecting orientations
to explore and running approximation models; for the median
workload-video pair, per-timestep delays for each task were
17 µs and 6.7 ms for 15 fps and {24 Mbps; 20 ms}. The former
benefits from pre-computed reachability analysis (§3.3).

Microbenchmarks. MadEye’s performance is governed by
two main tasks: (1) ranking orientations with approxima-
tion models, and (2) selecting orientations to explore to find
the best one(s) per timestep. For the former, Figure 16 (in
§A) show that MadEye’s approximation models assign me-
dian ranks of 1.1-1.3 to the best explored orientation at each
timestep, significantly outperforming the variant that relies
on counting directly on images. For the latter, for the median
workload-video pair on {24 Mbps; 20 ms} and 15 fps, Mad-
Eye explores best orientation 89.3% of the time, with 6.8%
of errors coming from our conservative zoom strategy (§3.3).

Downlink network speeds. MadEye servers periodically ship
updated weights for approximation models to cameras for ori-
entation ranking. To understand the impact that downlink
network speeds have on MadEye, we augmented the set of
networks used in our main experiments with two network
scenarios that deliver far slower transmissions: Narrowband-
IoT ({10 Mbps; 50 ms} on average) and AT&T 3G network
({2 Mbps; 100 ms} on average). Across five representative
videos and workloads (at 15 fps) from our corpus, we ob-
served increases in weight transmission times from {11, 5, 2}

seconds for Verizon LTE, {24 Mbps; 20 ms}, and {60 Mbps;
5 ms} networks to {13, 66} seconds for the two new networks.
These delays, in turn, resulted in mild accuracy degradations
of up to 0.9% and 2.1% relative to MadEye running on the
{24 Mbps; 20 ms} network. The reason is that on such short
timescales, previous approximation models deliver only mod-
erate errors in orientation ranking as they were trained just
several minutes in the past. Those errors are further bound
by the fact that MadEye’s search strategy moves slowly spa-
tially to ensure that the several top-ranked orientations are all
considered for ranking at each timestep (§3.3).

5.5 On-Camera Evaluation

To demonstrate that commodity PTZ offerings (and their cor-
responding tuning APIs and rotational motors) can support
the computational and exploratory requirements that MadEye
imposes, we ran experiments using the PTZOptics PT12X-
USB [5]. We selected a random set of 6 videos and 4 work-
loads from our main corpus, and considered response rates
of 1-30 fps and the networks from §5.1. For each scenario,
we fed the video into the PTZ camera at 30 fps. MadEye’s
camera-side processing ran on a Jetson Nano and interacted
directly with the camera through its native HTTP interface
for tuning orientations; the server was the same as in §5.1.

Overall, the camera was able to support the required explo-
ration and computation load. However, we observed several
rare artifacts that deviate from our main setup: (1) seemingly
random, though minor, delays in API responsiveness for tun-
ing orientations, and (2) small delays to reach max rotation
speed, which our setup failed to capture by not modeling the
physical mechanics of camera motors. These discrepancies
mildly reduced the number of orientations that MadEye could
explore in especially high-exploration windows with scattered
orientations, but the effect on accuracy was minimal: across
the experiments, wins over best fixed dropped by <1%.

Note that these results do not evaluate the long-term wear-
ing effect of high exploration on PTZ camera components,
which falls outside the scope of this paper and our setup.
However, the results in §5.4 show that MadEye can still pro-
vide substantial accuracy benefits even with highly restricted
rotation speeds (and thus, exploration rates).

6 Related Work

Adapting video analytics knobs. VideoStorm [120] selects
an input knob configuration (e.g., frame rate, resolution) per
workload to lower resource costs and facilitate job scheduling
on servers. Chameleon [57] extends such tuning to adapt to
dynamic scenes, while Llama [40] further tunes knobs across
heterogeneous hardware to meet latency targets. By focusing
on tuning camera orientations, MadEye provides comple-
mentary benefits to these efforts, boosting accuracies while
preserving their resource efficiency wins (§5.3). Other efforts
focus on camera-side knobs as MadEye does. For example,
CamTuner [85] learns to boost accuracy by automatically

560 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tuning capture knobs that cameras do not usually auto-adjust,
e.g., brightness and contrast. AccMPEG [34] predicts the ef-
fects of macroblock encoding settings on DNNs, and tunes
encoding to maximize accuracy. MadEye shares the goal of
these efforts – tune camera knobs to boost workload accuracy
– but focuses on complementary knobs, i.e., orientations.

Frame filtering and result reuse. Many prior efforts exploit
temporal redundancies in video data by filtering out frames
for network transfer and processing, and reusing results ac-
cordingly [13, 22, 26, 29, 32, 43, 44, 65, 67, 84, 112, 121, 124].
Spatula [53] extends this to multi-camera settings, selecting
among cameras in a network. These optimizations are logi-
cally similar to MadEye, which also aims to maximize accu-
racy per network usage. However, the techniques are largely
complementary: filtering decisions could be made among
explored orientations to maximize new content in transfers.

Computation and network optimizations. Several efforts
lower compute footprints either by identifying lightweight
model variants [19, 28, 45, 49, 52, 72, 92, 123], sharing model
layers during inference [55, 82], or using smarter job schedul-
ing [96,120]. Other systems lower network overheads by com-
pressing transmitted frames in a manner that is recoverable on
the server or does not negatively impact accuracy [33,37,110].
MadEye is entirely complementary to both directions in that
it solely focuses on judiciously selecting images (i.e., orien-
tations) to process at any time for an application-provided
model (which can be compressed).

Drone coordination. Many efforts adapt drone flight plans
(and thus what on-board cameras see) to maximize analytics
accuracy or scene coverage [15, 47, 54, 105]. However, these
systems focus on identifying events of interest (e.g., wildfires)
in a geographically dispersed area for a preset application. In
contrast, MadEye tunes camera orientations for a single scene
to cope with workload nuances and maximize accuracy.

7 Conclusion
MadEye continually tunes PTZ camera orientations to max-
imize accuracy for a given analytics workload and resource
setting. Key to MadEye are a rapid algorithm that searches
through the large space of orientations at each time, and a new,
approximate knowledge distillation strategy that efficiently
selects the most fruitful (accuracy-wise) orientations from
those explored. Across diverse workloads and settings, Mad-
Eye improves accuracy by 2.9-25.7% or resource costs by
2.0-3.7× without affecting the other.

Acknowledgements. We thank Wyatt Lloyd, Huacheng Yu,
Kevin Hsieh, Olga Russakovsky, the NSDI reviewers, and our
shepherd, Danyang Zhuo, for their helpful and constructive
comments. This work was supported by a Sloan Research
Fellowship and NSF CNS grants 2147909, 2151630, 2140552,
2153449, and 2152313.

References
[1] C289 2MP WiFi PTZ Security Camera + Person/Ve-

hicle Detection + 128GB Local Storage. https://
www.zositech.com/products/wifi-security-camera-
pan-tilt-zoom-works-with-alexa-c289?variant=
44502418063602.

[2] Logitech PTZ PRO 2 . https://
www.logitech.com/en-us/products/video-
conferencing/conference-cameras/ptz-pro2-
conferencecam.960-001184.html?utm_source=
google&srsltid=AfmBOorJvnI86m27PDAg-
lycP4cFBE732NYvfwAHdZ4bGdnxovP1y6VAN5s.

[3] OTTICA NDI®|HX PTZ Video Camera 20x Optical Zoom
POE 1080/60p (White) . https://ikancorp.com/shop/
cameras/ptz-cameras/ottica-ndihx-ptz-video-
camera-20x-optical-zoom-poe-1080-60p-white/.

[4] ReoLink 5MP Smart PTZ WiFi Indoor Camera. https://
reolink.com/us/product/e1-zoom/.

[5] USB PTZ Cameras. https://ptzoptics.com/usb/.

[6] Video analytics traffic study creates baseline for
change. https://www.govtech.com/analytics/Video-
Analytics-Traffic-Study-Creates-Baseline-for-
Change.html, 2020.

[7] NVIDIA TensorRT. https://developer.nvidia.com/
tensorrt, April 2021.

[8] Pytorch-yolov3. https://github.com/
eriklindernoren/PyTorch-YOLOv3, 2021.

[9] Ekya: Continuous learning of video analytics models on edge
compute servers. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages 119–
135, Renton, WA, April 2022. USENIX Association.

[10] Video analytics market. https://
www.fortunebusinessinsights.com/industry-
reports/video-analytics-market-101114, 2022.

[11] Ganesh Ananthanarayanan, Victor Bahl, Landon Cox, Alex
Crown, Shadi Nogbahi, and Yuanchao Shu. Video analytics
- killer app for edge computing. In Proceedings of the 17th
Annual International Conference on Mobile Systems, Applica-
tions, and Services, MobiSys ’19, pages 695–696, New York,
NY, USA, 2019. Association for Computing Machinery.

[12] Larry Anderson. Video analytics applications in retail -
beyond security. https://www.securityinformed.com/
insights/co-2603-ga-co-2214-ga-co-1880-
ga.16620.html/.

[13] Kittipat Apicharttrisorn, Xukan Ran, Jiasi Chen, Srikanth V.
Krishnamurthy, and Amit K. Roy-Chowdhury. Frugal follow-
ing: Power thrifty object detection and tracking for mobile
augmented reality. In Proceedings of the 17th Conference
on Embedded Networked Sensor Systems, SenSys ’19, page
96–109, New York, NY, USA, 2019. Association for Comput-
ing Machinery.

[14] Guha Balakrishnan, Yuanjun Xiong, Wei Xia, and Pietro Per-
ona. Towards causal benchmarking of biasin face analysis
algorithms. In Deep Learning-Based Face Analytics, pages
327–359. Springer, 2021.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 561

https://www.zositech.com/products/wifi-security-camera-pan-tilt-zoom-works-with-alexa-c289?variant=44502418063602
https://www.zositech.com/products/wifi-security-camera-pan-tilt-zoom-works-with-alexa-c289?variant=44502418063602
https://www.zositech.com/products/wifi-security-camera-pan-tilt-zoom-works-with-alexa-c289?variant=44502418063602
https://www.zositech.com/products/wifi-security-camera-pan-tilt-zoom-works-with-alexa-c289?variant=44502418063602
https://www.logitech.com/en-us/products/video-conferencing/conference-cameras/ptz-pro2-conferencecam.960-001184.html?utm_source=google&srsltid=AfmBOorJvnI86m27PDAg-lycP4cFBE732NYvfwAHdZ4bGdnxovP1y6VAN5s
https://www.logitech.com/en-us/products/video-conferencing/conference-cameras/ptz-pro2-conferencecam.960-001184.html?utm_source=google&srsltid=AfmBOorJvnI86m27PDAg-lycP4cFBE732NYvfwAHdZ4bGdnxovP1y6VAN5s
https://www.logitech.com/en-us/products/video-conferencing/conference-cameras/ptz-pro2-conferencecam.960-001184.html?utm_source=google&srsltid=AfmBOorJvnI86m27PDAg-lycP4cFBE732NYvfwAHdZ4bGdnxovP1y6VAN5s
https://www.logitech.com/en-us/products/video-conferencing/conference-cameras/ptz-pro2-conferencecam.960-001184.html?utm_source=google&srsltid=AfmBOorJvnI86m27PDAg-lycP4cFBE732NYvfwAHdZ4bGdnxovP1y6VAN5s
https://www.logitech.com/en-us/products/video-conferencing/conference-cameras/ptz-pro2-conferencecam.960-001184.html?utm_source=google&srsltid=AfmBOorJvnI86m27PDAg-lycP4cFBE732NYvfwAHdZ4bGdnxovP1y6VAN5s
https://www.logitech.com/en-us/products/video-conferencing/conference-cameras/ptz-pro2-conferencecam.960-001184.html?utm_source=google&srsltid=AfmBOorJvnI86m27PDAg-lycP4cFBE732NYvfwAHdZ4bGdnxovP1y6VAN5s
https://ikancorp.com/shop/cameras/ptz-cameras/ottica-ndihx-ptz-video-camera-20x-optical-zoom-poe-1080-60p-white/
https://ikancorp.com/shop/cameras/ptz-cameras/ottica-ndihx-ptz-video-camera-20x-optical-zoom-poe-1080-60p-white/
https://ikancorp.com/shop/cameras/ptz-cameras/ottica-ndihx-ptz-video-camera-20x-optical-zoom-poe-1080-60p-white/
https://reolink.com/us/product/e1-zoom/
https://reolink.com/us/product/e1-zoom/
https://ptzoptics.com/usb/
https://www.govtech.com/analytics/Video-Analytics-Traffic-Study-Creates-Baseline-for-Change.html
https://www.govtech.com/analytics/Video-Analytics-Traffic-Study-Creates-Baseline-for-Change.html
https://www.govtech.com/analytics/Video-Analytics-Traffic-Study-Creates-Baseline-for-Change.html
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://github.com/eriklindernoren/PyTorch-YOLOv3
https://github.com/eriklindernoren/PyTorch-YOLOv3
https://www.fortunebusinessinsights.com/industry-reports/video-analytics-market-101114
https://www.fortunebusinessinsights.com/industry-reports/video-analytics-market-101114
https://www.fortunebusinessinsights.com/industry-reports/video-analytics-market-101114
https://www.securityinformed.com/insights/co-2603-ga-co-2214-ga-co-1880-ga.16620.html/
https://www.securityinformed.com/insights/co-2603-ga-co-2214-ga-co-1880-ga.16620.html/
https://www.securityinformed.com/insights/co-2603-ga-co-2214-ga-co-1880-ga.16620.html/

[15] Favyen Bastani, Songtao He, Ziwen Jiang, Osbert Bastani,
and Sam Madden. Skyquery: An aerial drone video sens-
ing platform. In Proceedings of the 2021 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2021,
page 56–67, New York, NY, USA, 2021. Association for Com-
puting Machinery.

[16] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Anto-
nio Torralba. Network dissection: Quantifying interpretability
of deep visual representations. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
6541–6549, 2017.

[17] Francois Beaufort. Control camera pan, tilt, and zoom – Pan,
tilt, and zoom features on cameras are finally controllable on
the web. https://web.dev/camera-pan-tilt-zoom/.

[18] Michael A Bender and Chandra Chekuri. Performance guar-
antees for the tsp with a parameterized triangle inequality. In
Algorithms and Data Structures: 6th International Workshop,
WADS’99 Vancouver, Canada, August 11–14, 1999 Proceed-
ings 6, pages 80–85. Springer, 1999.

[19] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle,
and John Guttag. What is the state of neural network pruning?
arXiv preprint arXiv:2003.03033, 2020.

[20] Business Research Insights. Global ptz cam-
era market research report 2020. https://
www.businessresearchinsights.com/market-reports/
ptz-cameras-market-100130.

[21] Zhaowei Cai, Mohammad Saberian, and Nuno Vasconcelos.
Learning complexity-aware cascades for deep pedestrian de-
tection. In Proceedings of the 2015 IEEE International Con-
ference on Computer Vision (ICCV), ICCV ’15, pages 3361–
3369, Washington, DC, USA, 2015. IEEE Computer Society.

[22] Christopher Canel, Thomas Kim, Giulio Zhou, Conglong Li,
Hyeontaek Lim, David G. Andersen, Michael Kaminsky, and
Subramanya R. Dulloor. Scaling video analytics on con-
strained edge nodes. In 2nd SysML Conference, 2019.

[23] Frank Cangialosi, Neil Agarwal, Venkat Arun, Junchen Jiang,
Srinivas Narayana, Anand Sarwate, and Ravi Netravali.
Privid: Practical, privacy-preserving video analytics queries.
In Proceedings of the 19th USENIX Conference on Networked
Systems Design and Implementation, NSDI’22, Berkeley, CA,
USA, 2022. USENIX Association.

[24] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Re-
altime multi-person 2d pose estimation using part affinity
fields. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7291–7299, 2017.

[25] David Cassel. Are we ready for ai-powered security cam-
eras? https://thenewstack.io/are-we-ready-for-ai-
powered-security-cameras/.

[26] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng,
Paramvir Bahl, and Hari Balakrishnan. Glimpse: Continuous,
real-time object recognition on mobile devices. In Proceed-
ings of the 13th ACM Conference on Embedded Networked
Sensor Systems, pages 155–168, 2015.

[27] Mary Collins. The Hudl Algorithm: Turning Video into
Player Tracking Data. https://www.maryecollins.com/
hudl-tracking.

[28] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. Binarized neural networks: Train-
ing deep neural networks with weights and activations con-
strained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[29] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J.
Franklin, Joseph E. Gonzalez, and Ion Stoica. Clipper: A Low-
Latency online prediction serving system. In 14th USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI 17), pages 613–627, Boston, MA, March 2017.
USENIX Association.

[30] Navneet Dalal and Bill Triggs. Histograms of oriented gra-
dients for human detection. In 2005 IEEE computer soci-
ety conference on computer vision and pattern recognition
(CVPR’05), volume 1, pages 886–893. Ieee, 2005.

[31] Sokemi Rene Emmanuel Datondji, Yohan Dupuis, Peggy
Subirats, and Pascal Vasseur. A survey of vision-based traffic
monitoring of road intersections. Trans. Intell. Transport.
Sys., 17(10):2681–2698, October 2016.

[32] Utsav Drolia, Katherine Guo, Jiaqi Tan, Rajeev Gandhi, and
Priya Narasimhan. Cachier: Edge-caching for recognition
applications. In 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), pages 276–286,
2017.

[33] Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha Chowdh-
ery, Qizheng Zhang, Henry Hoffmann, and Junchen Jiang.
Server-driven video streaming for deep learning inference.
In Proceedings of the Annual Conference of the ACM Spe-
cial Interest Group on Data Communication on the Appli-
cations, Technologies, Architectures, and Protocols for Com-
puter Communication, SIGCOMM ’20, page 557–570, New
York, NY, USA, 2020. Association for Computing Machinery.

[34] Kuntai Du, Qizheng Zhang, Anton Arapin, Haodong Wang,
Zhengxu Xia, and Junchen Jiang. Accmpeg: Optimizing
video encoding for accurate video analytics. In D. Mar-
culescu, Y. Chi, and C. Wu, editors, Proceedings of Machine
Learning and Systems, volume 4, pages 450–466, 2022.

[35] Mengnan Du, Fan Yang, Na Zou, and Xia Hu. Fairness in
deep learning: A computational perspective. IEEE Intelligent
Systems, 36(4):25–34, 2020.

[36] Jinlong E, Lin He, Zhenhua Li, and Yunhao Liu. Wisecam:
Wisely tuning wireless pan-tilt cameras for cost-effective
moving object tracking. In IEEE INFOCOM 2023-IEEE
Conference on Computer Communications. IEEE, 2023.

[37] John Emmons, Sadjad Fouladi, Ganesh Ananthanarayanan,
Shivaram Venkataraman, Silvio Savarese, and Keith Winstein.
Cracking open the dnn black-box: Video analytics with dnns
across the camera-cloud boundary. In Proceedings of the 2019
Workshop on Hot Topics in Video Analytics and Intelligent
Edges, HotEdgeVideo’19, page 27–32, New York, NY, USA,
2019. Association for Computing Machinery.

[38] Mark Everingham, Luc Gool, Christopher K. Williams, John
Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. Int. J. Comput. Vision, 88(2):303–
338, June 2010.

562 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://web.dev/camera-pan-tilt-zoom/
https://www.businessresearchinsights.com/market-reports/ptz-cameras-market-100130
https://www.businessresearchinsights.com/market-reports/ptz-cameras-market-100130
https://www.businessresearchinsights.com/market-reports/ptz-cameras-market-100130
https://thenewstack.io/are-we-ready-for-ai-powered-security-cameras/
https://thenewstack.io/are-we-ready-for-ai-powered-security-cameras/
https://www.maryecollins.com/hudl-tracking
https://www.maryecollins.com/hudl-tracking

[39] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu,
Riad S. Wahby, and Keith Winstein. Salsify: Low-latency
network video through tighter integration between a video
codec and a transport protocol. In Proceedings of the 15th
USENIX Conference on Networked Systems Design and Im-
plementation, NSDI’18, page 267–282, USA, 2018. USENIX
Association.

[40] Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar, Chris-
tos Kozyrakis. Llama: A Heterogeneous & Serverless Frame-
work for Auto-Tuning Video Analytics Pipelines. SoCC ’21.
ACM, 2021.

[41] Isha Ghodgaonkar, Subhankar Chakraborty, Vishnu Banna,
Shane Allcroft, Mohammed Metwaly, Fischer Bordwell,
Kohsuke Kimura, Xinxin Zhao, Abhinav Goel, Caleb Tung,
et al. Analyzing worldwide social distancing through large-
scale computer vision. arXiv preprint arXiv:2008.12363,
2020.

[42] Grand View Research. Global Sports Analyt-
ics Market Size Report, 2021-2028. https:
//www.grandviewresearch.com/industry-analysis/
sports-analytics-market.

[43] Peizhen Guo, Bo Hu, Rui Li, and Wenjun Hu. Foggycache:
Cross-device approximate computation reuse. In Proceed-
ings of the 24th Annual International Conference on Mobile
Computing and Networking, MobiCom ’18, page 19–34, New
York, NY, USA, 2018. Association for Computing Machinery.

[44] Peizhen Guo and Wenjun Hu. Potluck: Cross-application
approximate deduplication for computation-intensive mobile
applications. SIGPLAN Not., 53(2):271–284, mar 2018.

[45] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad
Agarwal, Alec Wolman, and Arvind Krishnamurthy. Mcdnn:
An approximation-based execution framework for deep
stream processing under resource constraints. In Proceedings
of the 14th Annual International Conference on Mobile Sys-
tems, Applications, and Services, MobiSys ’16, page 123–136,
New York, NY, USA, 2016. Association for Computing Ma-
chinery.

[46] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.
Girshick. Mask R-CNN. CoRR, abs/1703.06870, 2017.

[47] Songtao He, Favyen Bastani, Arjun Balasingam, Karthik
Gopalakrishna, Ziwen Jiang, Mohammad Alizadeh, Hari Bal-
akrishnan, Michael Cafarella, Tim Kraska, and Sam Madden.
Beecluster: Drone orchestration via predictive optimization.
In Proceedings of the 18th International Conference on Mo-
bile Systems, Applications, and Services, MobiSys ’20, page
299–311, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[48] Michael Held and Richard M Karp. The traveling-salesman
problem and minimum spanning trees. Operations Research,
18(6):1138–1162, 1970.

[49] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[50] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu,
Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wo-
jna, Yang Song, Sergio Guadarrama, et al. Speed/accuracy

trade-offs for modern convolutional object detectors. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 7310–7311, 2017.

[51] HuddleCamHD. Understanding the difference between EPTZ
and PTZ . https://huddlecamhd.com/eptz-and-ptz/.

[52] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2704–2713, 2018.

[53] Samvit Jain, Xun Zhang, Yuhao Zhou, Ganesh Anantha-
narayanan, Junchen Jiang, Yuanchao Shu, Victor Bahl, and
Joseph Gonzalez. Spatula: Efficient cross-camera video ana-
lytics on large camera networks. In ACM/IEEE Symposium
on Edge Computing (SEC 2020), November 2020.

[54] Sagar Jha, Youjie Li, Shadi Noghabi, Vaishnavi Ranganathan,
Peeyush Kumar, Andrew Nelson, Michael Toelle, Sudipta
Sinha, Ranveer Chandra, and Anirudh Badam. Visage: En-
abling timely analytics for drone imagery. In Proceedings of
the 27th Annual International Conference on Mobile Com-
puting and Networking, MobiCom ’21, page 789–803, New
York, NY, USA, 2021. Association for Computing Machinery.

[55] Angela H. Jiang, Daniel L.-K. Wong, Christopher Canel, Lilia
Tang, Ishan Misra, Michael Kaminsky, Michael A. Kozuch,
Padmanabhan Pillai, David G. Andersen, and Gregory R.
Ganger. Mainstream: Dynamic stem-sharing for multi-tenant
video processing. In 2018 USENIX Annual Technical Con-
ference (USENIX ATC 18), pages 29–42, Boston, MA, July
2018. USENIX Association.

[56] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Sid-
dhartha Sen, and Ion Stoica. Chameleon: Scalable adaptation
of video analytics. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication,
SIGCOMM ’18, pages 253–266, New York, NY, USA, 2018.
ACM.

[57] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Sid-
dhartha Sen, and Ion Stoica. Chameleon: Scalable adaptation
of video analytics. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication,
SIGCOMM ’18, page 253–266, New York, NY, USA, 2018.
Association for Computing Machinery.

[58] Daniel Kang, Peter Bailis, and Matei Zaharia. Blazeit: Op-
timizing declarative aggregation and limit queries for neu-
ral network-based video analytics. Proc. VLDB Endow.,
13(4):533–546, December 2019.

[59] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and
Matei Zaharia. Noscope: Optimizing neural network queries
over video at scale. Proc. VLDB Endow., 10(11):1586–1597,
August 2017.

[60] Kai Kang, Hongsheng Li, Junjie Yan, Xingyu Zeng, Bin
Yang, Tong Xiao, Cong Zhang, Zhe Wang, Ruohui Wang,
Xiaogang Wang, and Wanli Ouyang. T-CNN: Tubelets
With Convolutional Neural Networks for Object Detection
From Videos. IEEE Trans. Cir. and Sys. for Video Technol.,
28(10):2896–2907, October 2018.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 563

https://www.grandviewresearch.com/industry-analysis/sports-analytics-market
https://www.grandviewresearch.com/industry-analysis/sports-analytics-market
https://www.grandviewresearch.com/industry-analysis/sports-analytics-market
https://huddlecamhd.com/eptz-and-ptz/

[61] Kai Kang, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang.
Object detection from video tubelets with convolutional neu-
ral networks. In CVPR, 2016.

[62] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler
Hayes, and Christopher Kanan. Measuring catastrophic for-
getting in neural networks. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 32(1), Apr. 2018.

[63] Aditya Khosla, Tinghui Zhou, Tomasz Malisiewicz, Alexei A
Efros, and Antonio Torralba. Undoing the damage of dataset
bias. In Computer Vision–ECCV 2012: 12th European Con-
ference on Computer Vision, Florence, Italy, October 7-13,
2012, Proceedings, Part I 12, pages 158–171. Springer, 2012.

[64] Judy Goldsmith Kshitija Taywade, Brent Harrison. Using non-
stationary bandits for learning in repeated cournot games with
non-stationary demand. arXiv preprint arXiv:2201.00486,
2022.

[65] Adarsh Kumar, Arjun Balasubramanian, Shivaram Venkatara-
man, and Aditya Akella. Accelerating deep learning inference
via freezing. In 11th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 19), Renton, WA, July 2019.
USENIX Association.

[66] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolutional
neural network cascade for face detection. In 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pages 5325–5334, June 2015.

[67] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang,
Guoqing Harry Xu, and Ravi Netravali. Reducto: On-camera
filtering for resource-efficient real-time video analytics. In
Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Applica-
tions, Technologies, Architectures, and Protocols for Com-
puter Communication, SIGCOMM ’20, page 359–376, New
York, NY, USA, 2020. Association for Computing Machinery.

[68] Zhuqi Li, Yuanchao Shu, Ganesh Ananthanarayanan, Longfei
Shangguan, Kyle Jamieson, and Victor Bahl. Spider: A multi-
hop millimeter-wave network for live video analytics. In
ACM/IEEE Symposium on Edge Computing. ACM/IEEE, De-
cember 2021.

[69] Michael Lin, Tsung-Yiand Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: Common objects in
context. In Computer Vision – ECCV 2014, pages 740–755,
2014.

[70] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Be-
longie. Feature pyramid networks for object detection. In
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 936–944, July 2017.

[71] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C. Berg.
Ssd: Single shot multibox detector. In Computer Vision –
ECCV 2016, pages 21–37. Springer International Publishing,
2016.

[72] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 2736–2744, 2017.

[73] David G Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vision,
60, 2004.

[74] Yao Lu, Aakanksha Chowdhery, and Srikanth Kandula. Op-
tasia: A relational platform for efficient large-scale video
analytics. In Proceedings of the Seventh ACM Symposium on
Cloud Computing, SoCC ’16, pages 57–70, New York, NY,
USA, 2016. ACM.

[75] Mehrdad Khani, Ganesh Ananthanarayanan, Kevin Hsieh,
Junchen Jiang, Ravi Netravali , Yuanchao Shu, Mohammad
Alizadeh , Victor Bahl. Recl: Responsive resource-efficient
continuous learning for video analytics. In 20th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI 23), Boston, MA, April 2023. USENIX Association.

[76] Microsoft Azure. Azure stack edge, May 2021.

[77] Neil Agarwal, Ravi Netravali. Boggart: Towards General-
Purpose Acceleration of Retrospective Video Analytics.
NSDI ’23. USENIX, 2023.

[78] R. Netravali, A. Sivaraman, K. Winstein, S. Das, A. Goyal,
J. Mickens, and H. Balakrishnan. Mahimahi: Accurate
Record-and-Replay for HTTP. Proceedings of ATC ’15.
USENIX, 2015.

[79] NVIDIA. Nvidia jetsonnano, April 2021.

[80] Kemal Oksuz, Baris Can Cam, Sinan Kalkan, and Emre Ak-
bas. Imbalance problems in object detection: A review. IEEE
transactions on pattern analysis and machine intelligence,
43(10), 2020.

[81] Omar Besbes, Yonatan Gur, Assaf Zeevi. Stochastic Multi-
Armed-Bandit Problem with Non-stationary Rewards . In
NeurIPS, 2014.

[82] Arthi Padmanabhan, Neil Agarwal, Anand Iyer, Ganesh Anan-
thanarayanan, Yuanchao Shu, Nikolaos Karianakis, Guo-
qing Harry Xu, and Ravi Netravali. Gemel: Model merging
for memory-efficient, real-time video analytics at the edge,
2022.

[83] Xunyu Pan and Siwei Lyu. Detecting image region dupli-
cation using sift features. In 2010 IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pages
1706–1709. IEEE, 2010.

[84] Sibendu Paul, Utsav Drolia, Y. Charlie Hu, and Srimat T.
Chakradhar. Aqua: Analytical quality assessment for optimiz-
ing video analytics systems, 2021.

[85] Sibendu Paul, Kunal Rao, Giuseppe Coviello, Murugan
Sankaradas, Oliver Po, Y. Charlie Hu, and Srimat Chakradhar.
Enhancing video analytics accuracy via real-time automated
camera parameter tuning. In Proceedings of the 20th ACM
Conference on Embedded Networked Sensor Systems, SenSys
’22, page 291–304, New York, NY, USA, 2023. Association
for Computing Machinery.

[86] PTZ Optics. PTZ Optics PTZ cameras. https://
ptzoptics.com/products/.

[87] PTZ Optics. What is ePTZ and how does it compare with
true PTZ? https://ptzoptics.com/what-is-eptz/.

564 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://ptzoptics.com/products/
https://ptzoptics.com/products/
https://ptzoptics.com/what-is-eptz/

[88] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018.

[89] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, Oliver Wang. The Unreasonable Effectiveness of Deep
Features as a Perceptual Metric. In CVPR, 2018.

[90] Mohammed Rijas. Powering the edge with ai in an iot world.
https://www.forbes.com/sites/forbestechcouncil/
2020/04/06/powering-the-edge-with-ai-in-an-
iot-world/.

[91] Alberto Rizzoli. 7 Game-Changing AI Applications in the
Sports Industry. https://www.v7labs.com/blog/ai-in-
sports, 2022.

[92] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Chris-
tos Kozyrakis. INFaaS: Automated model-less inference serv-
ing. In 2021 USENIX Annual Technical Conference (USENIX
ATC 21), pages 397–411. USENIX Association, July 2021.

[93] SCW. PTZ Auto-Tracking Explained. https:
//www.getscw.com/knowledge-base/auto-tracking-
explained.

[94] SecurityBros. Which Cheap Outdoor WiFi PTZ IP
Camera is Best? Boavision vs Inqmega. https:
//securitybros.com/which-cheap-outdoor-wifi-
ptz-ip-camera-is-best-boavision-vs-inqmega/.

[95] Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. Faster
R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. In NeurIPS, 2015.

[96] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy, and
Ravi Sundaram. Nexus: A gpu cluster engine for acceler-
ating dnn-based video analysis. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, SOSP ’19,
pages 322–337, New York, NY, USA, 2019. Association for
Computing Machinery.

[97] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu
Xu. Edge computing: Vision and challenges. IEEE internet
of things journal, 3(5):637–646, 2016.

[98] Shubham Jain, Viet Nguyen, Marco Gruteser, Paramvir Bahl.
Panoptes: Servicing Multiple Applications Simultaneously
using Steerable Cameras. In IPSN, 2017.

[99] Vishwanath A Sindagi and Vishal M Patel. Generating high-
quality crowd density maps using contextual pyramid cnns.
In Proceedings of the IEEE international conference on com-
puter vision, pages 1861–1870, 2017.

[100] Ryan Steed and Aylin Caliskan. Image representations
learned with unsupervised pre-training contain human-like bi-
ases. In Proceedings of the 2021 ACM conference on fairness,
accountability, and transparency, pages 701–713, 2021.

[101] Abhijit Suprem, Joy Arulraj, Calton Pu, and Joao Ferreira.
Odin: Automated drift detection and recovery in video ana-
lytics. Proc. VLDB Endow., 13(12):2453–2465, July 2020.

[102] SV3C. SV3C Security Camera Outdoor . https://
www.sv3c.com/.

[103] Mingxing Tan, Ruoming Pang, and Quoc V. Le. Effi-
cientdet: Scalable and efficient object detection. CoRR,
abs/1911.09070, 2019.

[104] Amos Tversky and Itamar Gati. Similarity, separability, and
the triangle inequality. Psychological review, 89(2):123, 1982.

[105] Deepak Vasisht, Zerina Kapetanovic, Jong-ho Won, Xinxin
Jin, Ranveer Chandra, Ashish Kapoor, Sudipta N. Sinha, Mad-
husudhan Sudarshan, and Sean Stratman. Farmbeats: An
iot platform for data-driven agriculture. In Proceedings of
the 14th USENIX Conference on Networked Systems Design
and Implementation, NSDI’17, page 515–528, USA, 2017.
USENIX Association.

[106] Lluís Martínez; Margarita Cabrera-Bean; Josep Vidal. A
Multi-Armed Bandit Model for Non-Stationary Wireless Net-
work Selection. In 2021 IEEE Globecom Workshops. Ieee,
2021.

[107] Vidit Saxena, Joakim Jaldén, Joseph E. Gonzalez, Mats
Bengtsson, Hugo Tullberg, Ion Stoica. Contextual Multi-
Armed Bandits for Link Adaptation in Cellular Networks. In
NetAI, 2019.

[108] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark
Liao. Scaled-yolov4: Scaling cross stage partial network,
2021.

[109] Junjue Wang, Ziqiang Feng, Shilpa George, Roger Iyengar,
Padmanabhan Pillai, and Mahadev Satyanarayanan. Towards
scalable edge-native applications. In Proceedings of the 4th
ACM/IEEE Symposium on Edge Computing, SEC ’19, page
152–165, New York, NY, USA, 2019. Association for Com-
puting Machinery.

[110] Yiding Wang, Weiyan Wang, Junxue Zhang, Junchen Jiang,
and Kai Chen. Bridging the edge-cloud barrier for real-time
advanced vision analytics. In 11th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 19), Renton, WA, July
2019. USENIX Association.

[111] Zeyu Wang, Klint Qinami, Ioannis Christos Karakozis, Kyle
Genova, Prem Nair, Kenji Hata, and Olga Russakovsky. To-
wards fairness in visual recognition: Effective strategies for
bias mitigation. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages 8919–
8928, 2020.

[112] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin,
and Xuanzhe Liu. Deepcache: Principled cache for mobile
deep vision. In Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking, MobiCom
’18, page 129–144, New York, NY, USA, 2018. Association
for Computing Machinery.

[113] Yifan Yang, Guorong Li, Dawei Du, Qingming Huang, and
Nicu Sebe. Embedding perspective analysis into multi-
column convolutional neural network for crowd counting.
IEEE Transactions on Image Processing, 30:1395–1407,
2020.

[114] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Zehuan Yuan,
Ping Luo, Wenyu Liu, Xinggang Wang. Bytetrack: Multi-
object tracking by associating every detection box, 2021.

[115] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinop-
oli. A control-theoretic approach for dynamic adaptive video
streaming over http. SIGCOMM Comput. Commun. Rev.,
45(4):325–338, aug 2015.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 565

https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.v7labs.com/blog/ai-in-sports
https://www.v7labs.com/blog/ai-in-sports
https://www.getscw.com/knowledge-base/auto-tracking-explained
https://www.getscw.com/knowledge-base/auto-tracking-explained
https://www.getscw.com/knowledge-base/auto-tracking-explained
https://securitybros.com/which-cheap-outdoor-wifi-ptz-ip-camera-is-best-boavision-vs-inqmega/
https://securitybros.com/which-cheap-outdoor-wifi-ptz-ip-camera-is-best-boavision-vs-inqmega/
https://securitybros.com/which-cheap-outdoor-wifi-ptz-ip-camera-is-best-boavision-vs-inqmega/
https://www.sv3c.com/
https://www.sv3c.com/

[116] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.
How transferable are features in deep neural networks? In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q.
Weinberger, editors, Advances in Neural Information Process-
ing Systems, volume 27. Curran Associates, Inc., 2014.

[117] Matthew D Zeiler and Rob Fergus. Visualizing and un-
derstanding convolutional networks. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part I 13, pages 818–833.
Springer, 2014.

[118] Anran Zhang, Lei Yue, Jiayi Shen, Fan Zhu, Xiantong Zhen,
Xianbin Cao, and Ling Shao. Attentional neural fields for
crowd counting. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 5714–5723,
2019.

[119] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, and Michael J. Freedman.
Live video analytics at scale with approximation and delay-
tolerance. In Proceedings of the 14th USENIX Conference
on Networked Systems Design and Implementation, NSDI’17,
pages 377–392, Berkeley, CA, USA, 2017. USENIX Associ-
ation.

[120] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, and Michael J. Freedman.
Live video analytics at scale with approximation and delay-
tolerance. In 14th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 17), pages 377–392,
Boston, MA, March 2017. USENIX Association.

[121] Tan Zhang, Aakanksha Chowdhery, Paramvir Bahl, Kyle
Jamieson, and Suman Banerjee. The design and implementa-
tion of a wireless video surveillance system. pages 426–438,
09 2015.

[122] Kun Zhao, Bin Liu, Luchuan Song, Weihai Li, and Nenghai
Yu. Cascaded residual density network for crowd counting.
In 2019 IEEE International Conference on Image Processing
(ICIP), pages 2199–2203. IEEE, 2019.

[123] Chenzhuo Zhu, Song Han, Huizi Mao, and William J
Dally. Trained ternary quantization. arXiv preprint
arXiv:1612.01064, 2016.

[124] Yuhao Zhu, Anand Samajdar, Matthew Mattina, and Paul
Whatmough. Euphrates: Algorithm-soc co-design for low-
power mobile continuous vision. In Proceedings of the 45th
Annual International Symposium on Computer Architecture,
ISCA ’18, page 547–560. IEEE Press, 2018.

566 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Appendix
A.1 Additional objects and tasks

To evaluate MadEye’s generality, we ran experiments that
target different object types (counting lions and elephants in
safari videos using FasterRCNN and SSD) or tasks (find sit-
ting people using the OpenPose [24] pose estimation model).
Importantly, MadEye did not require any special tuning, and
instead learned the (new) objects and tasks of interest via
training on the original models’ results. In line with our main
evaluation results, MadEye improved accuracies over best
fixed by 4.6 - 14.5% and 2.8 - 10.9% for lions and elephants
respectively and by 9.5 - 17.1% for pose estimation when
using 400° per second rotation speeds and a {24 Mbps, 20
ms} network. The differences in improvements can be ex-
plained by the dynamics of the videos – elephants in the
videos were largely static so best fixed performed well; in
contrast, the videos used for identifying lions and sitting peo-
ple had many moving objects which necessitated frequent
orientation switches.

A.2 Workloads

Model Object Type
SSD people aggregate count
Faster RCNN cars binary classification
SSD people count
YOLOv4 people detection
Faster RCNN people detection

Table 3: Workload 1 (W1)

Model Object Type
YOLOv4 people aggregate count
Tiny YOLOv4 people aggregate count
Tiny YOLOv4 people detection
YOLOv4 people binary classification
Tiny YOLOv4 people aggregate count
Faster RCNN people count
Faster RCNN people detection
Faster RCNN car count
YOLOv4 people aggregate count
YOLOv4 people detection
YOLOv4 people count
Tiny YOLOv4 people aggregate count
YOLOv4 car count
YOLOv4 car detection
Tiny YOLOv4 car count
SSD person binary classification
Faster RCNN car count
SSD car count

Table 4: Workload 2 (W2)

Model Object Type
SSD car binary classification
Faster RCNN people aggregate count
Faster RCNN people count
Tiny YOLOv4 people binary classification
Tiny YOLOv4 people binary classification
Tiny YOLOv4 people aggregate count
YOLOv4 people count
Faster RCNN people aggregate count
SSD people binary classification
Faster RCNN car count
SSD car count

Table 5: Workload 3 (W3)

Model Object Type
Tiny YOLOv4 car count
Faster RCNN car detection
Faster RCNN people aggregate count

Table 6: Workload 4 (W4)

Model Object Type
Tiny YOLOv4 car count
SSD car count
Faster RCNN people aggregate count

Table 7: Workload 5 (W5)

Model Object Type
Tiny YOLOv4 people aggregate count
Tiny YOLOv4 people binary classification
SSD car count
YOLOv4 people aggregate count
Tiny YOLOv4 people count
Faster RCNN car binary classification
SSD people detection
Faster RCNN car detection
Faster RCNN people aggregate count
YOLOv4 car count
Tiny YOLOv4 people aggregate count
Faster RCNN people detection
SSD people aggregate count
YOLOv4 car detection

Table 8: Workload 6 (W6)

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 567

FRCNN
(cars)

YOLO
(people)

Tiny YOLO
(cars)

SSD
(people)

1.0

1.5

2.0
Ra

nk
 o

f b
es

t o
rie

nt
at

io
n

Count CNN
MadEye

Figure 16: Comparing different approximation model designs:
MadEye’s lightweight detection models and compressed count-
ing models (Count CNN). Results use all videos, {24 Mbps; 20
ms}, 15 fps, and list median rank assigned to the best explored
orientation at each timestep (error bars for 25-75th percentiles).

Model Object Type
YOLOv4 people binary classification
SSD people detection
Tiny YOLOv4 car binary classification
Tiny YOLOv4 people detection
SSD people binary classification
SSD people aggregate count
Tiny YOLOv4 people detection
SSD car count
SSD people count
Faster RCNN people count
YOLOv4 people count
Faster RCNN people binary classification
Tiny YOLOv4 people aggregate count
Faster RCNN people aggregate count
Faster RCNN car count
YOLOv4 car binary classification

Table 9: Workload 7 (W7)

Model Object Type
Faster RCNN car count
Tiny YOLOv4 people binary classification
YOLOv4 people aggregate count
YOLOv4 car count
Tiny YOLOv4 people aggregate count
Faster RCNN people aggregate count
YOLOv4 people aggregate count
Faster RCNN car count
SSD car count
Faster RCNN car count
SSD car binary classification
YOLOv4 car binary classification
SSD car binary classification
SSD people count
YOLOv4 people count
YOLOv4 car binary classification
Faster RCNN person aggregate count
SSD car detection

Table 10: Workload 8 (W8)

Model Object Type
Tiny YOLOv4 people aggregate count
Faster RCNN people count
Faster RCNN people count
Tiny YOLOv4 car detection
Tiny YOLOv4 people binary clasification
YOLOv4 people detection
Faster RCNN people count
YOLOv4 people aggregate count
SSD people aggregate count

Table 11: Workload 9 (W9)

Model Object Type
Faster RCNN people aggregate count
Faster RCNN car count
Faster RCNN people count

Table 12: Workload 10 (W10)

568 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Gemino: Practical and Robust Neural Compression for Video Conferencing

Vibhaalakshmi Sivaraman Pantea Karimi Vedantha Venkatapathy Mehrdad Khani

Sadjad Fouladi ⊞ Mohammad Alizadeh Frédo Durand Vivienne Sze

Massachusetts Institute of Technology, ⊞ Microsoft Research

Abstract

Video conferencing systems suffer from poor user expe-

rience when network conditions deteriorate because current

video codecs simply cannot operate at extremely low bitrates.

Recently, several neural alternatives have been proposed

that reconstruct talking head videos at very low bitrates

using sparse representations of each frame such as facial

landmark information. However, these approaches produce

poor reconstructions in scenarios with major movement or

occlusions over the course of a call, and do not scale to higher

resolutions. We design Gemino, a new neural compression

system for video conferencing based on a novel high-frequency-

conditional super-resolution pipeline. Gemino upsamples

a very low-resolution version of each target frame while

enhancing high-frequency details (e.g., skin texture, hair, etc.)

based on information extracted from a single high-resolution

reference image. We use a multi-scale architecture that runs

different components of the model at different resolutions,

allowing it to scale to resolutions comparable to 720p, and we

personalize the model to learn specific details of each person,

achieving much better fidelity at low bitrates. We implement

Gemino atop aiortc, an open-source Python implementation

of WebRTC, and show that it operates on 1024×1024 videos in

real-time on a Titan X GPU, and achieves 2.2–5× lower bitrate

than traditional video codecs for the same perceptual quality.

1 Introduction

Video conferencing applications have become a crucial part

of modern life. However, today’s systems continue to suffer

from poor user experience: in particular, poor video quality

and unwelcome disruptions are all too common. Many of these

problems are rooted in the inability of today’s applications to

operate in low-bandwidth scenarios. For instance, Zoom rec-

ommends a minimum bandwidth of 1.2Mbps for one-on-one

meetings and 2-3 Mbps for group meetings [1]. In certain parts

of the world, Internet broadband speeds remain insufficient for

reliable video conferencing. For example, large swaths of the

population in Africa and Asia had average Internet broadband

speeds less than 10 Mbps in 2022 [2], with the five slowest

countries having speeds under 1 Mbps. Mobile bandwidth is

even more restricted: SpeedTest’s Global Index [3] suggest that

global mobile bandwidth average is 50% of broadband speeds.

Even in regions of North America and Europe with high

broadband speeds [2], over 30% of users surveyed about their

video conferencing experience claimed that “video quality”

issues were their biggest pain point [4]. This is because the user

experience is not just determined by the average bandwidth,

but rather by tail events of low bandwidth (a few seconds every

5–10 minutes) that cause glitches and disrupt the video call.

When the network deteriorates, even briefly, existing video

conferencing solutions cope to an extent by lowering quality,

but below a certain bandwidth (e.g., 100s of Kbps for HD

video), they must either suspend the transmission altogether

or risk packet loss and frame corruption.

Recently, several neural approaches for face image synthesis

have been proposed that deliver extreme compression by

generating each video frame from a sparse representation

(e.g., keypoints) [5–9]. These techniques have the potential to

enable video conferencing with one to two orders of magnitude

reduction in bandwidth (as low as ∼10Kbps [6, 8]), but their

lack of robustness and high computational complexity hampers

their practicality. Specifically, synthesis approaches work by

“warping” a reference image into different target poses and

orientations captured by such sparse keypoints. These methods

produce good reconstructions when the difference between the

reference and the target image is small, but they fail (possibly

catastrophically) in the presence of large movements or

occlusions. In such cases, they produce poor reconstructions,

for both low-frequency content (e.g., missing the presence

of a hand in a frame altogether) and high-frequency content

(e.g., details of clothing and facial hair). As a result, while

synthesis approaches show promising average-case behavior,

their performance at the tail is riddled with inconsistencies in

practice. Furthermore, real-time reconstruction is only feasible

at low resolution for such models [5,8], even on high-end GPUs,

while typical video conference applications are designed for

HD, Full HD, and even 4K videos [10, 11]. Naïvely reusing

these models on larger input frames can quickly become

prohibitively expensive as the resolution is increased.

We present Gemino, a neural compression system for

low-bitrate video conferencing, designed to overcome the

above robustness and compute complexity challenges. Gemino

targets extreme compression scenarios, such as delivering

video in ∼100 Kbps or less. At such bitrates, the bandwidth

required for video becomes comparable to a typical audio

call [12], greatly expanding the range of networks that can

support video conferencing.

Gemino’s design begins with the observation that current

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 569

570 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 Related Work

Traditional Codecs. Most video applications rely on

standard video compression modules (codecs) such as

H.264/H.265 [22,23], VP8/VP9 [24,25], and AV1 [13]. These

codecs separate video frames into keyframes (I-frames) that

exploit spatial redundancies within a frame, and predicted

frames (P-/B-frames) that exploit temporal—as well as

spatial—redundancies across frames. Over the years, these

standards have been improved through ideas like variable block

sizes [23] and low-resolution encoding for lower bitrates [13].

These codecs are particularly efficient in their slow modes

when they have generous time and compute budget to compress

a video at high quality. However, these codecs still require

a few hundred Kbps for real-time applications such as video

conferencing, even at moderate resolutions like 720p. In low-

bandwidth scenarios, these codecs cannot do much other than

transmit at the worst quality, and suffer packet loss and frame

corruption [26]. To circumvent this, some applications [27]

switch to lower resolutions when the network degrades. How-

ever, as new video conferencing solutions such as Google’s

Starline [11] with a large bandwidth footprint are introduced,

these concerns with current codecs become more acute.

Super-resolution. Linear single-image super-resolution (SR)

methods [28, 29] provide robust quality enhancements in

various contexts. Neural SR methods have further enhanced

the upsampling quality by learning better interpolation or in-

painting methods [21,30–32]. Video SR methods [33,34] build

on image SR but further improve the reconstruction by exploit-

ing redundant information in adjacent low-res video frames.

Certain approaches like FAST [35] and Nemo [36] further opti-

mize SR forvideo generation byperforming SR onlyon “anchor

frames” and generating the rest by upsampling motion vectors

and residuals. For video conferencing, domain-specific SR has

also shown promising outcomes utilizing facial characteristics

and training losses in their models [37,38]. However, to the best

of our knowledge, none of these prior methods study upsam-

pling conditioned on a high-resolution image from the same

context. Unlike pure SR methods, Gemino provides access to

high-resolution reference frames and learns models that jointly

in-paint and propagate high-frequency details from the ref-

erence frame. In recent work, SRVC [39] uses content-specific

super-resolution to upsample a low-resolution video stream.

Our approach is similar to SRVC in that it designs a model

adapted to a specific person. However, to enable real-time

encoding, Gemino only customizes the model once per person

rather than continuously adapting it throughout the video.

Neural Codecs. The inability of traditional codecs to operate

at extremely low bitrates for high-resolution videos has led re-

searchers to consider neural approaches that reconstruct video

from very compact representations. Neural codecs have been

designed for video-streaming [39–41], live-video [42], and

video video conferencing [6, 8]. Swift [41] learns to compress

and decompress based on the residuals in a layered-encoding

stack. Both NAS [40] and LiveNAS [42] enhance video quality

using one or more DNN models at either the client for video

streaming, or the ingest server for live video. The models

have knobs to control the compute overheads by using a

smaller Deep Neural Network (DNN) [40], or by adjusting the

number of epochs over which they are fine-tuned online [42].

All of these approaches have shown improvements in the

bits-per-pixel consumption across a wide range of videos.

However, video conferencing differs from other video

applications in a few ways. First, the video is unavailable ahead

of time to optimize for the best compression-quality tradeoff.

Moreover, the interactivity of the application demands that the

video be both compressed and decompressed with low-latency.

Second, the videos belong to a specific distribution consisting

primarily of facial data. This allows for a more targeted model

for generating videos of faces. A number of such models have

been proposed [5–9, 43, 44] over the years. These models use

keypoints or facial landmarks as a compact intermediary repre-

sentation of a specific pose, to compute the movement between

two poses before generating the reconstruction. The models

may use 3D keypoints [6], off-the-shelf keypoint detectors [7],

or multiple reference frames [9] to enhance prediction.

Challenges forneural face imagesynthesis.Neuralsynthesis

approaches and specifically, keypoint-based models fall short

in a number of ways that make them impractical in a video con-

ferencing setting. These models operate similarly to the model

described in Fig. 1 but do not transmit or use the downsampled

target frame. They extract keypoints from the downsampled tar-

get frame, and transmit those instead. This choice causes major

reconstruction failures when the reference and target frames are

not close. Fig. 2 shows the reconstruction produced by the First-

Order-Motion Model (FOMM) [5], a keypoint-based model, on

1024×1024 frames. We focus on the FOMM as a representative

keypoint-based model, but these limitations extend to other

such models. The FOMM only produces blurry outlines of the

faces in rows 1 and 3 where the reference and target differ in

orientation and zoom level respectively. In row 2, the FOMM

misses the arm altogether because it was not present in the

reference frame and warping alone cannot convey the arm’s

presence. Such failures occur because keypoints are limited

in their representation of differences across frames, and most

warping fields cannot be modeled as small deformations around

eachkeypoint. Poorprediction quality in the eventof suchmove-

ments in video calls seriously disrupts the user experience.

Secondly, even in regions without much movement between

the reference and the target frames, current approaches do not

have good fidelity to high-frequency details. In row 2 of Fig. 2,

the microphone does not move much between the reference

and the target, but possesses a lot of high-frequency detail in

its grille and stand. Yet, the FOMM has a poor reconstruction

of that area. In row 1 of Fig. 2, it misses even those details in

the hair that are similar between the reference and the target.

This issue becomes more pronounced at higher resolutions

where more high-frequency content is present in each frame,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 571

572 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 573

574 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

apply NetAdapt on the generic Gemino model with short-term

finetuning on the generic dataset. This is because neural

architecture search is expensive to run, and we observe that

the pruned architecture at the end of NetAdapt is the same for

generic and personalized models. We finally long-term finetune

the shrunk model in a personalized manner to better recover its

accuracy (§5.4). These optimizations allow us to run inference

on the Titan X GPU in 27ms with barely any loss in visual

quality (last column of Tab. 1) when upsampling 128×128

frames at 15Kbps to 1024×1024. Given that video conferenc-

ing applications tolerate latencies of up to 200 ms (5–6 frames)

in their jitter buffers [50], we believe that the additional delay

from generating the received frame will be negligible.

3.5 Operational Flow

Training Procedure. To train Gemino, we first obtain

weights from a trained FOMM model on the entire VoxCeleb

dataset [45] at 256×256 resolution. We choose the appropriate

training data for the specific person we want to train a Gemino

model for, and train from scratch the additional downsampling

and upsampling layers in the HR pipeline as well as all layers in

the LR pipeline, while fine-tuning the rest of the model for 30

epochs. We repeat this procedure for different LR frame resolu-

tions and target bitrate regimes mention in Tab. 2, and different

people. In parallel, using the same procedure, we also train a

generic version of the model on a larger corpus of people. Both

models are replaced with depthwise-separable convolutions

and optimized using NetAdapt [18] to produce the final model.

Inference Routine. Once versions of the model have been

trained and optimized for different LR resolutions and target

bitrates, we simply use the appropriate model for the current

target bitrate regime and the person on the video call. The

sender and the receiver pre-negotiate the reference frame at

the beginning of the video call. This model performs inference

on a frame-by-frame basis in real-time to synthesize the video

stream at the receiver. We detail our prototype implementation

and WebRTC pipeline further in §4.

4 Implementation

Basic WebRTC Pipeline. Our neural video conferencing

solution uses WebRTC [51], an open-source framework that

enables video and audio conferencing atop the real-time

transport protocol (RTP) [52]. Since we perform neural frame

synthesis, we use a Python implementation of WebRTC called

aiortc [19] that allows easy interfacing with PyTorch. Aiortc

handles the initial signaling and the peer-to-peer connection

setup. A typical video call has two streams (video and audio)

that are multiplexed onto a single connection. The sender

extracts raw frames from the display, and compresses the

video and audio components separately using standard codecs

like VPX [24, 25], H.264/5 [22, 23], Opus [53], etc.. The

receiver decompresses the received data in both streams before

synchronizing them and displaying each frame to the client.

New Streams. We extend the standard WebRTC stack to use

Raw Frames

Reference

Compression

(sporadic)

Per-Frame

Compression

Downsampling

128
!

128

256
!

256

512
!

512

1024
!

1024

1024
!

1024

1024
!

1024

Per-Frame

Decompression

Reference

Decompression

(sporadic)

Neural Model

Sender Receiver

Reference Stream

or or or

128
!

128

256
!

256

512
!

512

1024
!

1024
or or or

Per-Frame Stream

Figure 5: Neural video compression pipeline atop WebRTC [51].

We use two RTP streams: A sparse reference stream that sporad-

ically sends high-resolution reference frames, and a per-frame

(PF) stream that is used on every frame. The PF stream sends

downsampled frames of the highest resolution that the current

bandwidth can support, and thus has separate VP8 compression

modules for each resolution. The receiver decompresses the

downsampled frames, and supplies them, along with the latest

reference frame, to the neural network that reconstructs the

target video. If bandwidth is high enough, the PF stream is used

for full-resolution VP8 frames without synthesis.

two distinct streams for video: a per-frame stream (PF stream)

that transmits downsampledvideo (e.g. 64×64 frames) on every

frame, and a reference stream that transmits occasional but high-

resolution reference frames that improve the synthesis fidelity.

We anticipate using the reference stream extremely sparsely.

For instance, in our implementation, we use the first frame of

the video as the only reference frame. However, more reference

frames may help recover high-frequency fidelity as it worsens

when the reference and target frames drift apart. But, most low-

frequency changes between the reference and the target can be

communicated simply through the downsampled target in the

PF stream3. The receiver uses the per-frame information in the

PF stream, with the reference information, to synthesize each

high-resolution frame. Fig. 5 illustrates the expanded WebRTC

architecture to accommodate the Gemino design.

The PF stream is implemented as a new RTP-enabled stream

on thesamepeerconnection between thesenderandthe receiver.

We downsample each input frame to the desiredresolution at the

sender and compress it using the appropriate VPX codec. The

frame is decompressed at the receiver. The bitrate achieved is

controlled by supplying a target bitrate to VPX. Our PF stream

can support full-resolution video that is typical in most video

conferencing applications, while also supporting a range of

lower resolutions for the model to upsample from. To enable

this flexibility, we design the PF stream to have multiple VPX

3We observe that sending reference frames with any fixed frequency adds

significant bandwidth overheads. So, we only use a single reference frame

in our evaluations. We leave an investigation of mechanisms to detect the

need for a new reference frame (speaker moves significantly, high-frequency

content or background changes) to future work.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 575

encoder-decoder pairs, one for each resolution that it operates

at. When the sender transmits a frame, it chooses an appropriate

resolution and codec based on the target bitrate,and compresses

the video at that resolution and target bitrate. The resolution

information is embedded in the payloadof the RTP packetcarry-

ing the frame data. When the receiver receives each RTP packet,

it infers the resolution and sends it to the VPX decoder for that

resolution. Once decompressed, the low-resolution frame is up-

sampled by Gemino to the appropriate full-resolution frame. If

the PF stream consists of 1024×1024 frames,Gemino falls back

onto the regular codec and stops using the reference stream. The

reference stream is repurposed from the existing video stream.

Model Wrapper. To enable neural frame synthesis, we define

a wrapper that allows the aiortc pipeline to interface with

the model. We reuse most of the pipeline from frame read at

the sender to display at the receiver, except for introducing a

downsampling module right after frame read, and a prediction

function right before frame display. The wrapper is structured

to perform format conversions and data movement from the

AudioVisual [54] frames on the CPU that aiortc needs, to

the PyTorch [55] tensors on the GPU required by the model.

We initialize models separately for the sending and receiving

clients. The wrapper also allows us to save (and periodically

update) state at the sender and receiver which is useful for

reducing the overheads from modules where we can reuse

old computation (e.g., run the encoder for high-resolution

reference features only when the reference changes).

Further Optimizations. We optimize a number of other

aspects of the aiortc pipeline. For instance, we move data

between the CPU and GPU multiple times in each step of

the pipeline. Batching these operations is difficult when

maintaining low latency on each frame. However, to minimize

PCIe overheads from repetitive data movement, we use uint8

variables instead of float. We also keep reference frames and

their encoded features stored as model state on the GPU. We

pipeline as many operations as possible by running keypoint

extraction, model reconstruction, and conversions between

data formats in separate threads.

5 Evaluation

We evaluate Gemino in a simulation environment and atop

a WebRTC-based implementation. We describe our setup

in §5.1 and use it to compare existing baselines in §5.2. §5.3

motivates our model design, §5.4 discusses the impact of

having the codec in our training process, and §5.5 shows that

Gemino closely matches a time-varying target bitrate.

5.1 Setup

Dataset. Since most widely used datasets are of low-resolution

videos [6, 45, 56] and lack diversity in the extent of the torso

or face-zoom level, we collected our own dataset comprising

of videos of five Youtubers with publicly available HD

(1920×1080) videos. For each Youtuber, we curate a set of

20 distinct videos or URLs that differ in clothing, hairstyle,

accessories, or background. The 20 videos of each Youtuber

are separated into 15 training videos and 5 test videos. For each

video, we manually record and trim the segments that consist of

talking individuals; we ignore parts that pan to news segments

or different clips. The segments are further split into 10s

chunks to generate easily loadable videos for training, while the

segments of the test video are combined to form a longer video.

We also spatially crop each frame into our desired dimensions

(typically 1024× 1024). based on the average location of the

person across all frames of the video. Note that 720p and

1024×1024 frames have similar numbers of pixels. We strip the

audio since our focus is on video synthesis. Tab. 8 in App. A.3

describes the details of the dataset. We do not own any of these

videos, and we only use images of frames produced by our eval-

uation pipeline in this paper. We use the 512×512 dataset from

NVIDIA [6] to train a generic model to illustrate the benefits

of personalization. Our evaluation focuses on reconstructing

a single front-facing person in a video call; Gemino can be

extended to multiple speakers if there are application-level

techniques to separate speakers into individual streams [57,58].

Model Details. The main model we evaluate is our high-

frequency conditional super-resolution model that consists

of an upsampling module that takes in features from a low-

resolution (LR) frame, and upsamples it to 1024×1024. To pro-

vide the high-frequency details, it uses two pathways consisting

of warped and unwarped features from the high-resolution (HR)

reference image (Fig. 3). We use the first frame of the video as

the sole reference image fortheentire testduration. Thewarping

field is produced by a motion estimation network that uses the

first-orderapproximation near10keypoints [5]. Ourmulti-scale

architecture runs motion estimation always at 64×64 irrespec-

tive of the input video resolution. The neural encoder (for the

HR features) and decoder (for both LR and HR features) consist

of four down and upsample blocks. The discriminator operates

atmultiple scales anduses spectralnormalization [59] for stabil-

ity. Layers of our model that are identical in dimensions to those

from the FOMM are initialized from a public FOMM check-

point trained on the VoxCeleb dataset [45], and fine-tuned on a

per-person basis. The remaining layers are randomly initialized

and trained on a per-person basis over 30 epochs. We fine-tune

the FOMM baseline also in the same personalized manner. We

use Adam optimizer [60] to update the model weights with a

learning rate of 0.0002, and first and second momentum decay

rates of 0.5 and 0.999. We use equally weighted multi-scale

VGG perceptual loss [61], a feature-matching loss [62], and

a pixel-wise loss. We also use an adversarial loss [17] with

one-tenth the weight of remaining losses. The keypoints use

an equivariance loss similar to the FOMM [5]. We train our

models to reconstruct from decompressed VPX frames corre-

sponding to the low-resolution target frame so that the model

learns to correct any artifacts produced by VPX.

Evaluation Infrastructure. We evaluate our neural compres-

sion system in a simulation environment where frames are read

from a video, downsampled (if needed) for the low-resolution

576 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

PF stream, compressed using VPX’s chromium codec [63],

and passed to the model (or other baselines) to synthesize

the target frame. Note that the FOMM [5] uses keypoints and

four “Jacobian” values around each keypoint for producing

its warping, and transmits them over the network. We design

a new codec for the keypoint data that achieves nearly lossless

compression and a bitrate of about 30Kbps. For VPX, we

compress and decompress the full-resolution frame at different

target bitrates, and measure the difference in visual quality

between the output and the original frame.

To obtain end-to-end latency measurements and to demon-

strate Gemino’s adaptability to different target bitrates, (§5.5),

we use ouraiortc [19] implementation. A sending process reads

video from a file frame-by-frame and transmits it to a receiving

process that records each received frame. The two processes,

running on the same server, use the ICE signaling [64]

mechanism to establish a peer-to-peer connection over a UNIX

socket, which then supports video frame transmission using

the Real-Transport Protocol (RTP). We timestamp each frame

as it is sent and received, and save the sent and received frames

in their uncompressed forms to compute latency and visual

metrics. We also log RTP packet sizes to compute the bitrate.

Metrics. To quantify the aesthetics of the generated video, we

use standard visual metrics such as PSNR (peak signal-to-noise

ratio), SSIM (structural similarity index) in decibels [65], and

LPIPS (learned perceptual image patch similarity) [20]. For

PSNR and SSIM, higher is better; while for LPIPS, lower is

better. We observe that differences in LPIPS are more reflective

of how natural the synthesized frame feels and use that as

our main comparison metric (§B.2); we also show visual

strips where appropriate. We report the bitrate consumed to

achieve a particular visual quality by measuring the total data

transferred (size of compressed frames or RTP packet sizes)

over the duration of the video, and dividing it by the duration

itself. To measure the end-to-end latency, we record the time

at which the frame is read from the disk at the sender as well

as the time at which prediction completes at the receiver. We

report the difference between these two timestamps as our

per-frame latency metric. We also report the inference time per

frame when running the trained model in simulation; this does

not capture the overheads of data conversion or movement in

an end-to-end pipeline. This inference time needs to be<33ms

to maintain a 30fps video call. We run all our experiments for

the entire duration of each test video in our dataset (Tab. 8),

and report the average over all frames for each metric.

Baselines. We obtain the bitrate for VP8, the default codec in

its Chromium settings [63] that comes with the aiortc codebase.

We also implement and evaluate VP9 in the same setup. To

evaluate the benefits of using a neural approach to video con-

ferencing, particularly at lower bitrates, we compare a few dif-

ferent models: (1) FOMM [5], a keypoint-based model for face

animation, (2) our approach, Gemino, (3) state-of-the-art super-

resolution model based on SwinIR [21], and (4) bicubic upsam-

pling [28] applied to the low-resolution VPX target frame. All

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

(a) Overall rate-distortion curve for all schemes

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

(b) Rate-distortion curve in low-bitrate regimes.

Figure 6: Rate-distortion curve for Gemino compared with

existing baselines. VP8 and VP9 require ∼5× and ∼3× the

bitrate consumed by Gemino to achieve comparable LPIPS.

At lower bitrates, Gemino outperforms other approaches

that upsample low-resolution video frames. Gemino’s benefits

become prominent as the bitrate regime is lowered.

Figure 7: CDF of reconstruction quality across all video frames

as that shows that, as we move from higher bitrates to lower, the

improvement from Gemino relative to Bicubic, particularly over

VP9, becomes more pronounced.

of the compared models generate 1024× 1024 frames except

for the generic model that uses NVIDIA’s 512×512 corpus [6].

5.2 Overall Bitrate vs. Quality Tradeoff

To quantify the improvements of our neural compression

system, we first compare Gemino with VP8 and VP9 in their

chromium configuration [63]. Fig. 6 shows the rate-distortion

curve for all schemes. For VPX, we alter the target bitrate

alone for full-resolution (1024×1024) frames in the PF stream.

For Gemino, bicubic, and SwinIR, we vary the resolution

and target bitrate of the low-resolution (LR) frame in the

per-frame (PF) stream. For each point on the rate-distortion

curve for Gemino, we train a personalized model to reconstruct

full-resolution frames from LR frames encoded at the highest

resolution supported by that target bitrate. We motivate using

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 577

578 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 579

frame. The accuracy is reported in the form of the average

LPIPS [20] across all frames of our corpus. We observe that

DSC reduces the decoder to 11% of its original MACs. While

this gives limited improvements on large GPU systems, it

improves the inference time on Jetson TX2, an embedded

AI device, by 1.84×. Running NetAdapt further reduces the

inference time to 87ms at 1.5% of the model MACs on the TX2.

The NVIDIA compiler on the Titan X GPU and the Jetson

TX2 is not optimized for DSC [49]; this can be improved with

a TVM compiler stack [66] and optimized engines such as Ten-

sorRT [67]. However, running NetAdapt produces a real-time

model for Titan X even at 10% of the original model MACs.

As expected though, there is a loss of accuracy as the models

become smaller. This loss is negligible in moving from the

full model MACs to 10%, particularly when personalizing, but

is more significant at 1.5%. The trend with personalization is

expected since smaller models do not generalize well with their

limited capacity, however it does not help if the optimizations

are extreme. This illustrates that there is a sweet spot (such as

decreasing MACs to 10%) wherein the gains from decreased

compute outweigh the loss (or lack thereof) in accuracy.

Choosing PF Stream Resolution. Gemino is designed

flexibly to work with LR frames of any size (64×64, 128×128,

256×256, 512×512) to resolve them to 1024×1024 frames, and

to fall back to VPX at full resolution if it can be supported. VP8

and VP9 achieve different bitrate ranges at every resolution by

varying how the video is quantized. For instance, on our corpus,

we observe that 256×256 frames can be compressed with

VP8 in the 45Kbps–180Kbps range, but VP9 can compress

even 512×512 frames from 75Kbps onwards. These bitrate

ranges often overlap partially across resolutions. This begs

the question: given a target bitrate, what resolution and codec

should the model use to achieve the best quality? To answer

this, we compare the synthesis quality with Gemino atop VP8

from three PF resolutions, all at 45Kbps in Tab. 6. Upsampling

256×256 frames, even though they have been compressed more

to achieve the same bitrate, gives a nearly 4 dB improvement

in PSNR, more than 2 dB improvement in SSIM, and a 0.03

improvement in LPIPS, over upsampling lower resolution

frames. This is because the extent of super-resolution that

the model performs decreases dramatically at higher starting

resolutions. This suggests that for any given bitrate budget,

we should start with the highest resolution frames that the

PF stream supports at that bitrate, even at the cost of more

quantization. This also means that if VP9 can compress higher

resolution frames than VP8 at the same target bitrate, we

should pick VP9. Tab. 2 shows the resolution and codec we

choose for different target bitrate ranges in our implementation.

Encoding Video During Training. A key insight in the design

of Gemino is that we need to design the neural compression

pipeline to leverage the latest developments in codec design.

One way to do so is to allow the model to see decompressed

frames at the chosen bitrate and PF resolution during the train-

ing process so that it learns the artifacts produced by the codec.

PF Stream Resolution PSNR (dB) SSIM (dB) LPIPS

64×64 23.80 6.77 0.27

128×128 25.72 7.86 0.27

256×256 27.12 9.01 0.24

Table 6: Reconstruction quality from different resolution

PF stream frames at the same bitrate of 45 Kbps. Gemino

reconstructs better from higher resolution frames.

Training Regime PF @ 15 Kbps PF @45 Kbps PF @75 Kbps

No Codec 0.32 0.30 0.28

VP8 @ 15 Kbps 0.26 0.25 0.23

VP8 @ 45 Kbps 0.28 0.27 0.25

VP8 @ 75 Kbps 0.30 0.28 0.26

VP8 @ [15, 75] Kbps 0.28 0.26 0.25

Table 7: LPIPS for different regimes wherein we include the VP8

codec in the training pipeline. The model trained with the lowest

bitrate videos at a given resolution performs best regardless of

what the bitrate of the video is at inference time.

This allows us to get extremely low bitrates for LR frames

(which often causes color shifts or other artifacts) while main-

taining good visual quality. To evaluate the benefit of this ap-

proach, we compare five training regimes for Gemino when up-

sampling 128×128 video to 1024×1024: (1) no codec, (2) VP8

frames at 15Kbps, (3) VP8 frames at 45Kbps, (4) VP8 frames

at 75Kbps, (5) VP8 frames at a bitrate uniformly sampled from

15Kbps to 75Kbps. We evaluate all five models at upsampling

decompressed frames at 15Kbps, 45Kbps, and 75Kbps.

Tab. 7 shows the LPIPS achieved by all the models in each

reconstruction regime. All models trained on decompressed

frames perform better than the model trained without the codec.

Further, the model trained at the lowest bitrate (15Kbps)

performs the best even when provided decompressed frames

at a higher bitrate at test time because it has learned the

most challenging Super-Resolution task from the worst LR

frames, and performs well even with easier instances or higher

bitrate frames. This suggests that we only need to train one

personalized model per PF resolution at the lowest bitrate

supported by a resolution, and then we can reuse it across the

entire bitrate range that the PF resolution can support.

5.5 Adaptation to Network Conditions

To understand the adaptability of Gemino, we explore

how it responds to changes in the target bitrate over the

course of a video. We remove any conflating effects from

bandwidth prediction by directly supplying the target bitrate

as a decreasing function of time to both Gemino and the VP8

codec. Gemino uses only VP8 through all bitrates for a fair

comparison. Fig. 11 shows (in black) the target bitrate, along

with the achieved bitrates of both schemes, and the associated

perceptual quality [20] for a single video over the course of

220s of video-time5. We observe that initially (first 120s), at

5The timeseries are aligned to ensure that VP8 and Gemino receive the

same video frames to remove confounding effects of differing latencies.

580 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 11: Gemino’s ability to adapt to a time-varying target

bitrate. As the target bitrate reduces, Gemino gradually lowers

its PF stream resolution trading off more upsampling and less

quality (increased LPIPS) for a reduction in achieved bitrate.

VP8, in contrast, lowers the bitrate initially, but once at its

minimum quality, it stops responding to the target bitrate.

high target bitrates, Gemino and VP8 perform very similarly

because they are both transmitting just VP8 compressed frames

at full (1024×1024) resolution. Once VP8 has hit its minimum

achievable bitrate of ∼550 Kbps (after 120s), there is nothing

more it can do, and it stops responding to the input target

bitrate. However, Gemino continues to lower its PF stream

resolution and/or bitrate in small steps all the way to the lowest

target bitrate of 20Kbps. Since Gemino is only using VP8 here,

it switches to 512×512 at 550Kbps, 256×256 at 180Kbps,

and 128×128 at 30Kbps. This design choice might cause

abrupt shifts in quality around the transition points between

resolutions. However, Gemino prioritizes responsiveness to

the target bitrate over the hysteresis that classical encoders

experience which, in turn, leads to packet losses due to

overshooting and glitches. As the resolution of the PF stream

decreases, as expected, the perceptual quality of Gemino

worsens but is still better than VP8’s visual quality. This shows

that Gemino can adapt well to bandwidth variations, though

we leave the design of a transport and adaptation layer that

provides fast and accurate feedback to Gemino for future work.

6 Limitations and Future Work

While Gemino greatly expands the operating regime for

video conferencing to very low bitrates, it incurs significant

overheads in the form of training costs for codec-in-the-loop

training and personalization. It compresses better than VPX,

but the encoding and decoding processes are quite a bit slower

than VPX, and not as widely supported on devices without

access to some graphical processing engine. However, we

believe that device improvements year on year are trending

in a favorable direction, particularly with the emergence of

optimized runtimes and hardware for running machine learning

workloads on both Apple and Android devices [68,69]. Further,

NetAdapt [18] and layer-by-layer pruning is only one technique

amongst a large suite of model optimization approaches. We

believe that with more targeted optimizations for particular

devices, we can do better. Such optimizations become more

salient when operating on higher-resolution video (e.g., 4K,

UltraHD) and in higher bandwidth regimes (∼ 5Mbps). We

leave an exploration of such optimizations to future work.

Gemino, though trained on random pairs of reference and

target frames, always uses the first frame of the test video

as its reference frame. The reconstruction fidelity can be

improved by using reference frames close to each target frame.

However, sending more frequent reference frames incurs very

high bitrate costs due to their high resolution. We leave to

future work a more thorough investigation of reference frame

selection mechanisms that weigh these tradeoffs to squeeze

the maximum accuracy for a given compression level.

7 Conclusion

This paper proposes Gemino, a neural video compression

scheme for video conferencing using a new high-frequency-

conditional super-resolution model. Our model combines

the benefits of low-frequency reconstruction from a low-

resolution target, and high-frequency reconstruction from a

high-resolution reference. Our novel multi-scale architecture

and personalized training synthesize good quality videos at

high resolution across many scenarios. The adaptability of the

compression scheme to different points on a rate-distortion

curve opens up new avenues to co-design the application and

transport layers for better quality video calls. However, while

neural compression shows promise in enabling very low bitrate

video calls, it also raises important ethical considerations about

the bias that training data can introduce on the usefulness of

such a technique to different segments of the human population.

We believe that our personalized approach alleviates some of

these concerns, but does not eliminate them entirely.

Acknowledgments

We thank our shepherd, Arpit Gupta, and our anonymous

NSDI reviewers for their feedback. This work was supported

by GIST, seed grants from the MIT Nano NCSOFT program

and Zoom Video Communications, and NSF awards 2105819,

1751009 and 1910676.

References

[1] Zoom System Requirements. https://support.zoom

.us/hc/en-us/articles/201362023-Zoom-syste

m-requirements-Windows-macOS-Linux.

[2] Worldwide broadband speed league 2022. https://ww

w.cable.co.uk/broadband/speed/worldwide-sp

eed-league/}speed.

[3] Median Country Speeds March 2023. https://www.sp

eedtest.net/global-index.

[4] The state of video conferencing 2022. https://www.di

alpad.com/blog/video-conferencing-report/.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 581

[5] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey

Tulyakov, Elisa Ricci, and Nicu Sebe. First order motion

model for image animation. In Conference on Neural

Information Processing Systems (NeurIPS), December

2019.

[6] Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu.

One-shot free-view neural talking-head synthesis for

video conferencing. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 10039–10049, 2021.

[7] Egor Zakharov, Aleksei Ivakhnenko, Aliaksandra

Shysheya, and Victor Lempitsky. Fast bi-layer neural

synthesis of one-shot realistic head avatars. In European

Conference of Computer vision (ECCV), August 2020.

[8] Maxime Oquab, Pierre Stock, Daniel Haziza, Tao Xu,

Peizhao Zhang, Onur Celebi, Yana Hasson, Patrick

Labatut, Bobo Bose-Kolanu, Thibault Peyronel, et al.

Low bandwidth video-chat compression using deep

generative models. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 2388–2397, 2021.

[9] Anna Volokitin, Stefan Brugger, Ali Benlalah, Sebastian

Martin, Brian Amberg, and Michael Tschannen. Neural

face video compression using multiple views, 2022.

[10] Unlimited HD Video Calls. https://trueconf.com

/features/modes/videocall.html, 2021.

[11] Project Starline: Feel like you’re there, together.

https://blog.google/technology/research/pr

oject-starline/, 2021.

[12] What is the Best Audio Codec for Online Video

Streaming? https://www.dacast.com/blog/best

-audio-codec/.

[13] Yue Chen, Debargha Murherjee, Jingning Han, Adrian

Grange, Yaowu Xu, Zoe Liu, Sarah Parker, Cheng Chen,

Hui Su, Urvang Joshi, et al. An overview of core coding

tools in the AV1 video codec. In 2018 Picture Coding

Symposium (PCS), pages 41–45. IEEE, 2018.

[14] Debargha Mukherjee, Jingning Han, Jim Bankoski,

Ronald Bultje, Adrian Grange, John Koleszar, Paul

Wilkins, and Yaowu Xu. A technical overview of VP9,

the latest open-source video codec. SMPTE Motion

Imaging Journal, 124(1):44–54, 2015.

[15] Jim Bankoski, Paul Wilkins, and Yaowu Xu. Technical

overview of VP8, an open source video codec for the web.

In 2011 IEEE International Conference on Multimedia

and Expo, pages 1–6. IEEE, 2011.

[16] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand.

Overview of the scalable video coding extension of the

H.264/AVC standard. IEEE Transactions on circuits and

systems for video technology, 17(9):1103–1120, 2007.

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,

and Yoshua Bengio. Generative adversarial nets. In

Advances in neural information processing systems,

pages 2672–2680, 2014.

[18] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang,

Alec Go,Mark Sandler,Vivienne Sze,and Hartwig Adam.

NetAdapt: Platform-Aware Neural Network Adaptation

for Mobile Applications. In Proceedings of the European

Conference on Computer Vision (ECCV), 2018.

[19] aiortc. https://github.com/aiortc/aiortc.

[20] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-

man, and Oliver Wang. The unreasonable effectiveness

of deep features as a perceptual metric. In Proceedings

of the IEEE conference on computer vision and pattern

recognition, pages 586–595, 2018.

[21] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang,

Luc Van Gool, and Radu Timofte. Swinir: Image

restoration using swin transformer. In Proceedings of

the IEEE/CVF International Conference on Computer

Vision, pages 1833–1844, 2021.

[22] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand.

Overview of the scalable video coding extension of the

h. 264/avc standard. IEEE Transactions on circuits and

systems for video technology, 17(9):1103–1120, 2007.

[23] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and

Thomas Wiegand. Overview of the high efficiency video

coding (HEVC) standard. IEEE Transactions on circuits

and systems for video technology, 22(12):1649–1668,

2012.

[24] Jim Bankoski, Paul Wilkins, and Yaowu Xu. Technical

overview of VP8, an open source video codec for the web.

In 2011 IEEE International Conference on Multimedia

and Expo, pages 1–6. IEEE, 2011.

[25] Debargha Mukherjee, Jingning Han, Jim Bankoski,

Ronald Bultje, Adrian Grange, John Koleszar, Paul

Wilkins, and Yaowu Xu. A technical overview of VP9,

the latest open-source video codec. SMPTE Motion

Imaging Journal, 124(1):44–54, 2015.

[26] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine

Wu, Riad S Wahby, and Keith Winstein. Salsify:

Low-latency network video through tighter integration

between a video codec and a transport protocol. In 15th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI 18), pages 267–282, 2018.

582 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[27] Change the quality of your video. https://support.

google.com/youtube/answer/91449?hl=en.

[28] Robert Keys. Cubic convolution interpolation for digital

image processing. IEEE transactions on acoustics,

speech, and signal processing, 29(6):1153–1160, 1981.

[29] Pascal Getreuer. Linear Methods for Image Interpo-

lation. Image Processing On Line, 1:238–259, 2011.

https://doi.org/10.5201/ipol.2011.g_lmii.

[30] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Learning a deep convolutional network for image

super-resolution. In IEEE European Conference on

Computer Vision (ECCV), 2014.

[31] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,

Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan:

Enhanced super-resolution generative adversarial

networks. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 0–0, 2018.

[32] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah,

and Kyoung Mu Lee. Enhanced deep residual networks

for single image super-resolution. In Proceedings of

the IEEE conference on computer vision and pattern

recognition workshops, pages 136–144, 2017.

[33] Jose Caballero, Christian Ledig, Andrew Aitken,

Alejandro Acosta, Johannes Totz, Zehan Wang, and

Wenzhe Shi. Real-time video super-resolution with

spatio-temporal networks and motion compensation. In

Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 4778–4787, 2017.

[34] Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang,

Rakesh Ranjan, Yawei Li, Radu Timofte, and Luc

Van Gool. Vrt: A video restoration transformer. arXiv

preprint arXiv:2201.12288, 2022.

[35] Zhengdong Zhang and Vivienne Sze. FAST: A

framework to accelerate super-resolution processing

on compressed videos. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

Workshops, pages 19–28, 2017.

[36] Hyunho Yeo, Chan Ju Chong, Youngmok Jung, Juncheol

Ye, and Dongsu Han. Nemo: Enabling neural-enhanced

video streaming on commodity mobile devices. In

Proceedings of the 26th Annual International Conference

on Mobile Computing and Networking, MobiCom ’20,

New York, NY, USA, 2020. Association for Computing

Machinery.

[37] Yu Chen, Ying Tai, Xiaoming Liu, Chunhua Shen,

and Jian Yang. Fsrnet: End-to-end learning face

super-resolution with facial priors. In Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2492–2501, 2018.

[38] Cheng Ma, Zhenyu Jiang, Yongming Rao, Jiwen Lu,

and Jie Zhou. Deep face super-resolution with iterative

collaboration between attentive recovery and landmark

estimation. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pages

5569–5578, 2020.

[39] Mehrdad Khani, Vibhaalakshmi Sivaraman, and

Mohammad Alizadeh. Efficient video compression via

content-adaptive super-resolution. In Proceedings of

the IEEE/CVF International Conference on Computer

Vision, pages 4521–4530, 2021.

[40] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo

Shin, and Dongsu Han. Neural adaptive content-aware

internet video delivery. In 13th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

18), pages 645–661, 2018.

[41] Mallesham Dasari, Kumara Kahatapitiya, Samir R. Das,

Aruna Balasubramanian, and Dimitris Samaras. Swift:

Adaptive video streaming with layered neural codecs. In

19th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 22), pages 103–118, Renton,

WA, April 2022. USENIX Association.

[42] Jaehong Kim, Youngmok Jung, Hyunho Yeo, Juncheol

Ye, and Dongsu Han. Neural-enhanced live streaming:

Improving live video ingest via online learning. In

Proceedings of the Annual conference of the ACM

Special Interest Group on Data Communication on the

applications, technologies, architectures, and protocols

for computer communication, pages 107–125, 2020.

[43] Pan Hu, Rakesh Misra, and Sachin Katti. Dejavu: En-

hancing videoconferencing with prior knowledge. In Pro-

ceedings of the 20th International Workshop on Mobile

Computing Systems and Applications, pages 63–68, 2019.

[44] Arun Mallya, Ting-Chun Wang, and Ming-Yu Liu.

Implicit warping for animation with image sets, 2022.

[45] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman.

Voxceleb: a large-scale speaker identification dataset.

arXiv preprint arXiv:1706.08612, 2017.

[46] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.

U-net: Convolutional networks for biomedical image

segmentation. In International Conference on Medical

image computing and computer-assisted intervention,

pages 234–241. Springer, 2015.

[47] AV1 bitstream & decoding process specification.

http://aomedia.org/av1/specification/.

[48] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco

Andreetto, and Hartwig Adam. Mobilenets: Efficient

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 583

convolutional neural networks for mobile vision

applications. arXiv preprint arXiv:1704.04861, 2017.

[49] Diana Wofk, Fangchang Ma, Tien-Ju Yang, Sertac

Karaman, and Vivienne Sze. FastDepth: Fast Monocular

Depth Estimation on Embedded Systems. 2019

International Conference on Robotics and Automation

(ICRA), pages 6101–6108, 2019.

[50] International Telecommunication Union. ITU-T G.1010:

End-user multimedia QoS categories. In Series G:

Transmission Systems and Media, Digital Systems and

Networks, 2001.

[51] WebRTC. https://webrtc.org/.

[52] Henning Schulzrinne, Stephen Casner, Ron Frederick,

and Van Jacobson. Rtp: A transport protocol for real-time

applications, 1996.

[53] Opus interactive audio codec. https://opus-codec

.org/.

[54] Pyav documentation. https://pyav.org/docs/stab

le/.

[55] Adam Paszke, Sam Gross, Francisco Massa, Adam

Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,

Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Kopf, Edward Yang, Zachary

DeVito, Martin Raison, Alykhan Tejani, Sasank

Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,

and Soumith Chintala. Pytorch: An imperative style,

high-performance deep learning library. In Advances

in Neural Information Processing Systems 32, pages

8024–8035. Curran Associates, Inc., 2019.

[56] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman.

Voxceleb2: Deep speaker recognition. arXiv preprint

arXiv:1806.05622, 2018.

[57] Google Meet Hardware. "https://workspace.goog

le.com/products/meet-hardware/".

[58] Explore hardware options to enable Zoom.

https://explore.zoom.us/en/workspaces/

conference-room/.

[59] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and

Yuichi Yoshida. Spectral normalization for generative

adversarial networks. arXiv preprint arXiv:1802.05957,

2018.

[60] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[61] Justin Johnson, Alexandre Alahi, and Li Fei-Fei.

Perceptual losses for real-time style transfer and super-

resolution. In European conference on computer vision,

pages 694–711. Springer, 2016.

[62] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,

Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-

video synthesis. arXiv preprint arXiv:1808.06601, 2018.

[63] VP8 Chromium Implementation. h t t p s :

//chromium.googlesource.com/external/w

ebrtc/+/143cec1cc68b9ba44f3ef4467f1422704f

2395f0/webrtc/modules/video_coding/codecs/v

p8/vp8_impl.cc.

[64] WebRTC connectivity. https://developer.mozill

a.org/en-US/docs/Web/API/WebRTC_API/Conne

ctivity.

[65] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P

Simoncelli. Image quality assessment: from error

visibility to structural similarity. IEEE transactions on

image processing, 13(4):600–612, 2004.

[66] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin

Zheng, Eddie Yan, Meghan Cowan, Haichen Shen,

Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An

automated end-to-end optimizing compiler for deep

learning. arXiv preprint arXiv:1802.04799, 2018.

[67] NVIDIA TensorRT. https://developer.nvidia.c

om/tensorrt.

[68] What Is Apple’s Neural Engine and How Does It Work?

https://www.makeuseof.com/what-is-a-neural

-engine-how-does-it-work/.

[69] Android Neural Networks API. h t t p s :

//source.android.com/docs/core/ota/mod

ular-system/nnapi.

[70] Kunihiko Fukushima and Sei Miyake. Neocognitron:

A self-organizing neural network model for a mechanism

of visual pattern recognition. In Competition and coop-

eration in neural nets, pages 267–285. Springer, 1982.

[71] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal

covariate shift. In Francis Bach and David Blei, editors,

Proceedings of the 32nd International Conference

on Machine Learning, volume 37 of Proceedings of

Machine Learning Research, pages 448–456, Lille,

France, 07–09 Jul 2015. PMLR.

[72] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural

networks. Communications of the ACM, 60(6):84–90,

2017.

584 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[73] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 585

D
O
W
N

D
O
W
N

D
O
W
N

D
O
W
N

D
O
W
N U

P

U
P

U
P

U
P

U
P

D
O
W
N

!
C

O

N

V

N

O

R

M

R

E

L

U

P

O

O

L

U
P!U

P

C

O

N

V

N

O

R

M

R

E

L

U

C

O

N

V

C

O

N

V

Keypoints

Jacobians

S
O
F
T
M
A
X

Low-Res

Input

UNet

Figure 12: Keypoint Detector used as a precursor for computing

the warping field between the reference and target images.

Low-resolution versions of both frames are supplied to a UNet

architecture [46], and then put through convolutional layers to

generate keypoint locations and four “Jacobian” values in the

neighborhood of each keypoint.

A Model Details

In the following subsections, we detail the structure of the mo-

tion estimator that produces the warping field for Gemino and

the neural encoder-decoderpair that produce the prediction. We

also describe additional details about the training procedure.

A.1 Motion Estimator

UNet Structure. The keypoint detector and the motion esti-

mator use identical UNet structures (Fig. 12 and Fig. 13) to

extract features from their respective inputs before they are post-

processed. In both cases, the UNet consists of five up and down-

sampling blocks each. Each downsampling block consists of

a 2D convolutional layer [70], a batch normalization layer [71],

a Rectified Linear Unit Non-linearity (ReLU) layer [72], and a

pooling layer that downsamples by 2× in each dimension. The

batch normalization helps normalize inputs and outputs across

layers, while the ReLU layer helps speed up training. Each up-

sampling block first performs a 2× interpolation, followed by

a convolutional layer, a batch normalization layer, and a ReLU

layer. Thus, every downsampling layer reduces the spatial di-

mensions of the input but instead extracts features in a third

“channel” or “depth” dimension by doubling the third dimen-

sion. On the other hand, every upsampling layer doubles in each

spatial dimension, while halving the number of features in the

depth dimension. In our implementation, the UNet structure al-

ways produces 64 features after its first encoder downsampling

layer, and doubles from there on. The reverse happens with the

decoder ending with 64 features after its last layer. Since the

UNet structure operates on low-resolution input (as part of the

keypoint detector and motion estimator), its kernel size is set

to 3×3 to capture reasonably sized fields of interest.

Keypoint Detector. To obtain the warping field between the

reference frame and the target, Gemino first uses a keypoint

detector to locate key facial landmarks. It then uses a first-order

approximation in the neighborhood of these keypoints similar

to the FOMM [5]. To extractkeypoints,we firstdownsample the

input image to 64×64, and then feed it into the UNet structure

described above in its RGB space itself. The UNet structure pro-

duces a set of output features from its decoder, which are then

put through two separate pipelines to extract the keypoint loca-

tions and the “Jacobians.” The keypoint locations are extracted

via a single 7×7 convolutional layer, which is then put through

a softmax to extract probabilities for keypoint presence at each

spatial location. This is then converted to actual keypoint loca-

tions by performing a weighted average of these probabilities

across the entire spatial grid. Note that this process is replicated

10 times by having 10 separate channels to extract 10 keypoints.

The Jacobians are simply four floating point numbers that are

used to approximate the movement (derivatives) in the neigh-

borhood of each keypoint. This is used for the first-order ap-

proximation when computing the motion around each keypoint.

To generate these Jacobians, the output from the UNet is simply

put through a single 7x7 convolutional layer. Fig. 12 describes

this architecture. Note that both the reference and the target

images are fed to this pipeline independently to generate two

separate sets of reference and target keypoints and Jacobians.

Motion Estimation Fig. 13 describes the working of the mo-

tion estimator in Gemino’s design in detail. First, the motion

estimator creates Gaussian heatmaps corresponding to the key-

point locations from both the reference and the target frames.

It subtracts the two on a per-keypoint basis to generate the dif-

ference between the two frames’ keypoints. It adds a separate

heatmap consisting of zeros to denote the fact that the back-

ground is identical in the two frames. The motion estimator then

generates sparse motion vectors or motion vectors in the neigh-

borhood of each keypoint using the first-order Taylor series

approximation [5] and the Jacobian values from the keypoint

detector. These motion vectors (along with an identity for the

background) are applied to the low-resolution reference frame

to obtain a setofdeformedreferences. This effectivelygenerates

11 heatmaps (10 keypoints + 1 forbackground),and11 different

RGB (3 channels) deformed references. The 44 resulting chan-

nels are provided as input along with 3 RGB features from the

low-resolution target image to another replica of the UNet struc-

ture described above. This UNet’s decoder also outputs a set of

predicted features based on all the provided 47 input features.

The predicted features are put through three separate 7×7

convolutional layer followed by Sigmoid layers and a Softmax

layer to produce three occlusion masks. Each occlusion mask

is later used in the decoding pipeline to convey how to combine

information from three pathways: the warped high-resolution

features, the non-warped high-resolution features, and the

low-resolution features to generate the prediction. We use a

Softmax layer to enforce that the sum of these three occlusion

masks is 1 at every spatial location so that they do not compete

in later parts of the decoding pipeline. Intuitively, this forces

each pixel to be generated from one out of the three pathways.

If a feature represents a part of the frame that has moved

between the reference and the target frames, reconstruction

relies on the HR warped pathway, while if it represents a part

of the frame that has not moved, it relies on the non-warped

586 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 587

588 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 589

590 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ARTEMIS: Adaptive Bitrate Ladder Optimization for Live Video Streaming
Farzad Tashtarian† Abdelhak Bentaleb§ Hadi Amirpour† Sergey Gorinsky∗

Junchen Jiang$ Hermann Hellwagner† Christian Timmerer†

†Christian Doppler Laboratory ATHENA, Alpen-Adria Universität Klagenfurt
§Concordia University ∗IMDEA Networks Institute $University of Chicago

Abstract
Live streaming of segmented videos over the Hypertext

Transfer Protocol (HTTP) is increasingly popular and serves
heterogeneous clients by offering each segment in multiple
representations. A bitrate ladder expresses this choice as a
list of bitrate-resolution pairs. Whereas existing solutions
for HTTP-based live streaming use a static bitrate ladder,
the fixed ladders struggle to appropriately accommodate
the dynamics in the video content and network-conditioned
client capabilities. This paper proposes ARTEMIS as a
practical scalable alternative that dynamically configures the
bitrate ladder depending on the content complexity, network
conditions, and clients’ statistics. ARTEMIS seamlessly
integrates with the end-to-end streaming pipeline and
operates transparently to video encoders and clients. We
develop a cloud-based implementation of ARTEMIS and
conduct extensive real-world and trace-driven experiments.
The experimental comparison vs. existing prominent
bitrate ladders demonstrates that live streaming with
ARTEMIS outperforms all baseline solutions, reduces
encoding computation by 25%, end-to-end latency by 18%,
and increases the quality of experience by 11%.

1 Introduction

Live streaming is an increasingly prominent variant of video
streaming. Video applications keep gaining popularity in
general, with the Internet experiencing a 24% increase in
video traffic during 2022 [55]. Live streaming constitutes a
major contributor to this growth and feeds on support by social
media platforms and streaming services such as Facebook
Live, Twitch, and YouTube Live. The skyrocketing rise of
live streaming in all Internet traffic from less than 1% to
nearly 18% during the 2015-2022 period substantiates the
importance of this streaming mode.

HTTP Adaptive Streaming (HAS) comprises an attractive
option for not only Video On Demand (VOD) but also live
streaming. The two leading representatives of the HAS
paradigm are Apple’s HTTP Live Streaming (HLS) [52]
and standardized Dynamic Adaptive Streaming over HTTP
(DASH) [36]. Both formats have low-latency extensions [20,
26] that accept the same Common Media Application Format
(CMAF) [35] for video packaging. While WebRTC [38]
enables streaming with subsecond latency and creates

a promising alternative to HAS formats for interactive
applications, the HAS paradigm maintains its dominance in
live streaming distribution [63] due to its easy deployment,
great scalability, and good performance.

In HAS, an origin server partitions a video into segments
and encodes each segment into multiple representations
characterized typically by a bitrate and resolution. A
bitrate ladder, aka an encoding ladder or simply a ladder,
comprises a list of the bitrate-resolution pairs. Each client,
aka player, downloads from the server a manifest file
that describes the bitrate ladder and other metadata. The
video delivery is segment by segment, with the client
requesting the next segment in a representation chosen by
an adaptive bitrate (ABR) algorithm [24]. The choice strives
to accommodate dynamic network conditions and balance
conflicting performance objectives. For example, a higher
bitrate might increase both video quality and stall duration
because the client does not receive the segment in time for its
playback.

A key metric of HAS performance is Quality of Experience
(QoE) which captures the overall satisfaction of the user
with the streaming service [56]. In this paper, we evaluate
QoE using the model introduced by Comyco [33]. This
QoE model measures video quality by means of Video
Multimethod Assessment Fusion (VMAF) [45] and expresses
QoE as a weighted sum of VMAF, stall duration, and VMAF
instability over a sequence of segments. VMAF relies on
machine learning to account for human perception, spatial
and temporal video characteristics, and many other factors.
Appendix A describes the QoE model in more detail.

HAS scales up to millions of clients due to two features.
First, because the number of representations, rather than
the number of clients, controls the encoding, storage, and
bandwidth overhead, bitrate ladders contain relatively few
representations, e.g., Twitch and Apple use ladders with six
and nine representations, respectively [21, 22]. When the
network bandwidth available for a client aligns with a bitrate
imperfectly, the discrepancy does not disrupt QoE as long
as it lies within the Just-Noticeable Difference (JND) [18].
Second, HAS employs Content Delivery Networks (CDNs)
which deploy edge caches around the world to serve end users
with low latency [31].

In comparison to VOD, live streaming faces new challenges.
The fundamental difference lies in the real-time operation of
the end-to-end pipeline from the video ingestion at the camera

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 591

to the playback at the client. Specifically, VOD encoding
is offline and free from stringent latency constraints. The
state of the art in ladder construction goes beyond one-
size-fits-all ladders [32, 42] and leverages video content and
viewing context to build more effective ladders [28, 32, 37,
40, 47, 53, 54, 64, 65]. The construction of content-aware
and context-aware ladders commonly relies on exhaustive
search or other time-consuming methods. In contrast, live
streaming is subject to tight constraints on end-to-end latency
and calls for new designs. For example, live streams encode on
a subsegment level, e.g., all the way down to individual frames.
Also, a live encoder is unable to assess video quality via
VMAF because the computation of VMAF would introduce
substantial latency which might even exceed the encoding
latency. On the ABR side, L2A [39] and LoL+ [22] represent
prominent low-latency ABR algorithms that leverage the
subsegment encoding structure and incorporate additional
mechanisms. For example, LoL+ includes a learning-based
technique that proactively controls the playback speed by
considering both current latency and buffer occupancy level
so as to jointly handle stalls and achieve the latency target.

The live mode also creates opportunities for more effective
streaming. In VOD, the origin server stores the video in all
representations of the bitrate ladder for future streaming to
a priori unknown clients. In live streaming, the server does
not necessarily need to store the streams for future playback.
Apart from making video storage less of a concern, this
aspect of live streaming opens the possibility of dynamically
configuring the bitrate ladder of the session to improve the
encoding efficiency and QoE of current clients.

In this paper, we design ARTEMIS1, a system that
dynamically constructs effective ladders for the live encoder
during the live video session without any pre-encoding step.
The system objectives are to: (1) support end-to-end streaming
latency of a few seconds, (2) provide heterogeneous clients
with high QoE, (3) utilize network bandwidth efficiently
with low storage and processing overhead, and (4) operate
transparently with existing video codecs, players, and ABR
algorithms.

ARTEMIS achieves its key innovation by collecting client-
state information via CDN log files and leveraging this
information to dynamically configure the bitrate ladder. The
added mechanisms preserve the scalability of CDN-assisted
HAS. In particular, whereas the number of representations
encoded in real time constitutes the most critical resource in a
live streaming system, the encoding of the live video into the
representations that fully accommodate the capabilities of all
individual clients in the session does not constitute a practical
option, and ARTEMIS instead constructs bitrate ladders
with a relatively small number of representations. Another
important innovation of ARTEMIS is a mega-manifest file
that advertises a large number of representations. ARTEMIS

1ARTEMIS is an abbreviation of the following full name of the design:
Adaptive bitRaTE ladder optiMIzation for live video Streaming.

Origin Server CDN

ARTEMIS Analytics
 (AA) Server

Encoded
Segments

ARTEMIS Origin
(AO) Agent

Media Players

CDN Log

Live Camera

HTTP Res.

ARTEMIS
Messages

Mega-Manifest

HTTP Req. + CMCD

Figure 1: Conceptual architecture of live video streaming with
ARTEMIS enhancements (in blue).

utilizes the mega-manifest to collect information about the
bitrate preferences of the clients with a higher fidelity.

Figure 1 depicts the ARTEMIS architecture and its role in
live streaming. ARTEMIS consists of an ARTEMIS analytics
(AA) server and ARTEMIS origin (AO) agent with limited
communications between these two components. Operating
in real time to dynamically compose the bitrate ladder from
the representations advertised in the mega-manifest, the AA
server utilizes CDN logs in the Common Media Client Data
(CMCD) format [7] to scalably collect client-side information
about stall duration and numbers of requests for each bitrate
in the mega-manifest. ARTEMIS uses the Peak Signal-
to-Noise Ratio (PSNR) [34] as a metric of video quality
because the latency of computing a PSNR value is negligible,
within a millisecond. Specifically, based on the PSNR values
computed by the live encoder for past segments, the AO
agent trains a function predicting the video quality of future
segments and communicates this quality indicator function
to the AA server. Because the AO agent runs on the machine
of the live encoder, ARTEMIS trains the quality indicator
function at the AO agent, rather than at the AA server, in
order to reduce traffic from the live encoder to the AA server.
Utilizing the quality indicator function received from the AO
agent, the AA server solves a Mixed Integer Linear Program
(MILP) to update the bitrate ladder. Upon receiving the
updated ladder from the AA server, the AO agent instructs the
origin server to encode the subsequent segments of the video
according to this new ladder. In the most likely economic
realization, the streaming service provider administers both
components of ARTEMIS.

We implement the ARTEMIS system in the Amazon cloud
infrastructure and report an extensive real-world evaluation
of ARTEMIS-enhanced live streaming. Specifically, our
Python implementations of the AA server and the AO agent
run in the Amazon Elastic Compute Cloud (EC2) [2]. To
complete the end-to-end streaming pipeline, we utilize the
Bitmovin Live Encoder [5] for the origin-server encoding
of videos, Amazon CloudFront as the CDN, and multiple
instances of the DASH JavaScript Player (dash.js) [27] as
video clients on the CAdViSE platform [57]. The Bitmovin
Live Encoder and CAdViSE also run in EC2. The live
streaming experiments confirm that ARTEMIS achieves
its design objectives and significantly outperforms existing

592 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

techniques for ladder construction in terms of provided QoE
and network utilization while imposing low computation and
communication overhead.

Our paper makes the following main contributions:

1. We design ARTEMIS, a practical system that enhances
live video streaming by dynamically constructing the
bitrate ladder accounting for the content complexity
and network conditions. The construction leverages
the clients’ fine-grained bitrate preferences and stall
information collected scalably through the CDN.

2. The paper reports a cloud-based implementation of
ARTEMIS and an extensive real-world evaluation of
its utility for end-to-end live streaming.

3. The experimental comparison vs. existing prominent
bitrate ladders demonstrates that ARTEMIS delivers
multi-objective improvements over the static ladders
to reduce encoding computation by 25%, end-to-end
latency by 18%, and increase QoE by 11%.

2 Related Work

The traditional HAS approach relies on the same bitrate ladder
throughout the streaming session. The fixed ladder might
be agnostic of the video content, e.g., Apple’s ladder [51],
or depend on the content type, e.g., per-title encoding by
Netflix [28, 47]. One can classify recent advanced solutions
into content-aware and context-aware categories.

Content-aware ladder construction accounts for the
content complexity. Whereas the initial proposal of per-title
encoding [28] seeks to improve the resolution for each bitrate
in the ladder, [19] aims at content-aware improvements in
both resolution and frame rate. [46] considers the content
complexity to partition the video offline for streaming with
segments of variable duration and then augments the bitrate
ladder with additional representations to improve QoE via
fine-grained adaptation. [40] extracts content features and
applies machine learning to configure each quantization
parameter (QP) based on the rate-distortion curves of different
resolutions. [25] uses metrics of video quality to select a
resolution for each bitrate in a perception-aware manner.
[49, 50] extract low-complexity video features to set the
resolutions and QPs in bitrate ladders for live streaming.
While all the above solutions successfully leverage content
awareness to improve bitrate ladders, [19, 28, 46] rely on
brute force to construct the ladders, which is computationally
untenable in live streaming. On the other hand, [25,40,49,50]
do not consider network conditions. In contrast, ARTEMIS
accounts for both content complexity and dynamic network-
conditioned client capabilities to efficiently construct dynamic
ladders for live streaming.

Context-aware ladder construction addresses the impor-
tance of the context such as the network bandwidth available

for the segment download by the clients. [54] models the avail-
able network bandwidth as a continuous random variable and
uses its probability density function to build ladders. [43] con-
structs bitrate ladders by analyzing the content complexity and
historical data on the available network bandwidth in order to
reduce the likelihood that the user quits watching the streamed
video. [60] accounts for the user population, network dynam-
ics, video content, and other factors in its ladder construction
with the objective to improve user satisfaction. [32] applies
deep reinforcement learning to build ladders with features
that describe the content, available network bandwidth, and
storage overhead. [41] uses a Markov model to predict the
bitrate of the next requested segment so as to support transcod-
ing and ladder construction in VOD settings. [58] modifies
ABR algorithms with a plug-in to obtain feedback from the
clients, characterizes video quality via VMAF estimates, and
evaluates the utility of the constructed bitrate ladders via trace-
driven emulations. Although sharing some aspirations and
techniques with ARTEMIS, the above context-aware propos-
als tend to make problematic design choices that jeopardize
their chances for wide deployment in practice, e.g., deep learn-
ing or other computationally expensive techniques unsuitable
for live streaming. The key innovation of ARTEMIS as a
practical scalable system for live streaming lies in collect-
ing client-side information via CDN logs and leveraging this
information to construct dynamic context-aware bitrate lad-
ders. ARTEMIS operates transparently to ABR algorithms
and uses a mega-manifest file to accurately detect the bitrate
preferences of the clients.

3 Problem Description and Motivation

This paper deals with the problem of constructing improved
bitrate ladders for live streaming. As shown in Figure 1, the
end-to-end streaming pipeline passes through a CDN and
has two ends on the origin and client sides. On the origin
side, the encoder creates a bitrate ladder from the live video
captured by a camera. On the client side, the ABR algorithm
continuously requests segments of the video at a dynamically
chosen representation, with the client subsequently buffering
and playing back the received segments. In this section, we
discuss the utility and challenges of using information from
both origin and client sides to improve the ladder construction.

Client-side motivation. While ARTEMIS constructs the
bitrate ladder based on the bitrates requested by the clients,
an alternative foundation might be the network bandwidth
available for the segment download. ABR algorithms
typically predict the future network bandwidth through
various techniques, e.g., based on historical measurements of
throughput and occupancy level of the playback buffer [24].
However, ABR algorithms differ greatly in their logic of
selecting the bitrate for the next requested segment: whereas
the greedy approach requests the highest bitrate that does
not exceed the predicted available bandwidth, many ABR

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 593

0 10 20 30 40 50 60
Time (s)

 (a) L2A ABR | segment duration 1 s

0

1

2

3

4

Bi
tra

te
 (M

bp
s)

Predicted bandwidth
Served bitrate

Requested bitrate
Available bitrate in the mega-manifest

0 10 20 30 40 50 60
Time (s)

 (b) LoL+ ABR | segment duration 2 s

0

1

2

3

4

5

6

7

Figure 2: The bitrate ladder advertised in the mega-manifest,
predicted bandwidth and requested bitrates by two ABR
algorithms, and actually served bitrates at the origin side.

algorithms choose to keep the requested bitrate stable over
consecutive segments because QoE might benefit from the
bitrate stability even when the bitrate is significantly below
or above the available network bandwidth.

To support live streaming with low latency and utilize
efficiently the limited computation, bandwidth, and storage
resources, ARTEMIS constrains the number of encodings
to yield fewer representations than advertised in the mega-
manifest, and a client might receive a segment in a
representation with a lower bitrate than requested. Although
serving the segment at a lower bitrate might degrade QoE
for the client, prior work adopting this technique for similar
overhead reasons shows that the technique works well in
conjunction with client-side ABR algorithms and supports an
effective trade-off between the complexity and QoE [44, 59].

We explore the loose coupling between the client-side
and origin-side logics in experiments where the mega-
manifest advertises 19 representations2. Out of the 19
representations, the origin server actually maintains only the
five representations with the bitrates of 0.145, 0.365, 1.1,
2, and 4.5 Mbps. When the client requests a representation
with a different bitrate, the server delivers the maintained
representation with the highest bitrate that does not exceed
the requested one. The experiments evaluate the L2A ABR
algorithm [39] with the segment duration of 1 s and the LTE
network trace [61] as well as the LoL+ ABR algorithm [22]
with the segment duration of 2 s and the Cascade network
trace [23]. In both experiments, the content type is animation.
Figures 2a and 2b plot the results for L2A and LoL+,
respectively, and depict the 19 representations in the mega-
manifest as horizontal gray lines, bandwidth predictions by
the ABR algorithm as blue dashed lines, its requested bitrates
as green dots, and actually served bitrates as orange dash-
dotted lines.

2(0.09 Mbps, 270p), (0.145 Mbps, 270p), (0.24 Mbps, 270p), (0.365 Mbps,
360p), (0.5 Mbps, 360p), (0.6 Mbps, 360p), (0.75 Mbps, 360p), (0.9 Mbps,
360p), (1.1 Mbps, 480p), (1.4 Mbps, 480p), (1.6 Mbps, 720p), (1.8 Mbps,
720p), (2 Mbps, 720p), (2.25 Mbps, 720p), (2.8 Mbps, 720p), (3.4 Mbps,
720p), (4.5 Mbps, 1080p), (5 Mbps, 1080p), and (7 Mbps, 1080p).

0.5 1 2 3 4 6 7
Bitrate (Mbps)

 (a) Resolution 1920x1080

0

20

40

60

80

VM
AF

 33.5

 12.3

 14.2

 16.3

Sport
Documentary

0.5 1 2 3 4 6 7
Bitrate (Mbps)

 (b) Resolution 1280x720

0

20

40

60

80

VM
AF 17.3

 9.5

 27.3

 12.1

Sport
Documentary

Figure 3: Dependence of video quality on the bitrate for two
different content types.

Figure 2 provides two relevant observations. First, the
predicted available bandwidth is a poor proxy of the bitrate
requested by the ABR algorithm. It is common for the
discrepancy between these two values to span multiple
representations. Therefore, compared to the available network
bandwidth, the bitrates requested by the clients constitute a
better foundation for constructing a dynamic bitrate ladder.
Second, the L2A and LoL+ algorithms adapt the bitrate
effectively even though the origin server encodes segments
into a smaller number of representations than advertised in the
mega-manifest. Thus, the mega-manifest empowers the origin
server to detect the bitrate preference of the client with a
higher accuracy and yet preserves the effectiveness of diverse
ABR algorithms. The above two observations substantiate a
promise of our approach where the origin server leverages the
mega-manifest technique and relies on the bitrates requested
by the clients, rather than the available network bandwidth,
to construct the dynamic bitrate ladder.

Origin-side motivation. Even if the origin server collects
real-time fine-grained feedback about the bitrate preferences
of the clients, the dynamic construction of an effective bitrate
ladder requires additional information from the origin side.
In particular, video quality is relevant because it strongly
correlates with QoE. Figure 3 plots VMAF as a function of
the bitrate for two different resolutions in the experiments that
consider two content types of sport and documentary. The
graphs depict the average VMAF over 100 segments, where
each segment has the duration of 2 s, and show that VMAF
grows sublinearly with the bitrate and greatly depends on the
content type. Hence, in addition to the bitrate preferences of
the clients, the construction of effective bitrate ladders should
also consider the sublinear impact of the chosen bitrate on
video quality as well as the specific content type. Thus, origin-
side awareness of video quality and content complexity is
critical for constructing an effective bitrate ladder.

Exploitation of content awareness in live streaming has
additional challenges compared to VOD. Content-aware
VOD solutions typically rely on offline search in the bitrate
and resolution spaces to find a bitrate ladder where the

594 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

chosen list of bitrate-resolution pairs provides a good
coverage of the VMAF space for the given content. However,
the exhaustive search requires extensive computations and
imposes extra latency unacceptable for real-time operation.
Similarly, the computation of VMAF is untenably slow for
live streaming. Therefore, construction of a dynamic bitrate
ladder for live streaming requires efficient techniques to
quickly measure content complexity and select a content-
aware ladder configuration.

4 System Design

4.1 Design Principles
Based on the motivation in Section 3, we now present
our ARTEMIS system and start by establishing its design
principles. ARTEMIS aspires to build a dynamic bitrate
ladder for a live streaming session by leveraging real-time
information from both origin and client sides of the streaming
pipeline. However, the provided improvements in the bitrate
ladder should not undermine the traditional ability of HAS
to scale up well with respect to the number of clients in the
session, computation and storage overhead, and bandwidth
consumption. This constraint forms a basis for our first design
principle:

Design Principle 1 Enhancements of the ladder construc-
tion should preserve scalability of live streaming and, in par-
ticular, require only affordable amounts of extra feedback
from both client and origin sides.

The existing ecosystem of live streaming is diverse in
regard to deployed clients and their ABR algorithms. At the
same time, ABR streaming also has standard features, e.g., the
client learns about available representations by receiving from
the origin server a manifest file and reacts by requesting one
of the advertised representations. For ease of deployment, the
proposed design should exploit common elements of end-to-
end streaming and avoid modifications in the components that
exist in heterogeneous instances. The above considerations
lead us to the following design principle:

Design Principle 2 ARTEMIS should seamlessly integrate
with today’s streaming ecosystem by leveraging its standard
features and, in particular, operate transparently to heteroge-
neous clients and their ABR algorithms.

Constructing an effective bitrate ladder with inexpensive
overhead constitutes an important but not the only goal in
live streaming. A major objective of end-to-end streaming
is to support high QoE. Furthermore, because live streaming
imposes tight constraints on end-to-end latency, the ladder
construction should be sufficiently fast so that the streaming
session fulfills the end-to-end latency constraints. Thus, we
establish the final design principle for ARTEMIS:

Design Principle 3 The ladder construction should simul-
taneously achieve multiple interdependent objectives that
include the ladder effectiveness, reasonable overhead, high
QoE, and satisfaction of end-to-end latency constraints.

4.2 ARTEMIS Overview

We derive the ARTEMIS design from the principles
established in Section 4.1. Figure 1 shows the conceptual
architecture of our proposal with the AA server and AO agent
as its two primary components. We envision that the provider
of the streaming service administers both components and
instantiates them in a cloud, e.g., in EC2.

To fulfill Design Principle 1 on the client side, the AA
server in ARTEMIS utilizes a CDN service to scalably collect
client-state information. Akamai [1] and other major CDNs
offer such services that transmit log files to third parties, e.g.,
Conviva [6] and Datazoom [8] analytics platforms. When a
streaming session uses multiple CDNs, the analytics platform
obtains the client-state information separately from each
individual CDN. Without loss of generality, the rest of our
paper assumes that each streaming session utilizes a single
CDN. In ARTEMIS, each player appends its stall information
and unique player identifier (pid) in the CMCD format to
the Uniform Resource Locator (URL) of the HTTP request
message sent to the CDN edge server [3, 7]. The URL also
includes the ID of the segment representation requested by
the player. The CDN compiles both kinds of information
provided by the players to the CDN edge servers and
periodically provides the AA server with log files that contain
information about stall duration and requested representations
for all players in the session during the covered period. By
processing the CDN log files with negligible computation
overhead, the AA server extracts aggregate statistics in the
form of average stall duration and request counts for each
bitrate in the mega-manifest. The AA server leverages these
two kinds of statistics in its computation of a new bitrate
ladder.

To satisfy Design Principle 1 on the origin side, the AO
agent acts as an intermediary between the origin server and the
AA server in order to reduce traffic from the live encoder to
the AA server. The AO agent runs on the machine of the live
encoder, trains a quality indicator function on the segments
produced by the encoder, and sends the quality indicator
function to the AA server. The reliance of ARTEMIS on
PSNR as the quality metric enables low end-to-end latency
of a few seconds while accomplishing the QoE, overhead,
and other objectives in compliance with Design Principle 3.
Because the computation of VMAF is unacceptably slow
for live streaming, Figure 14 in Appendix B shows a strong
correlation between PSNR and VMAF across different
segment durations and content types.

The AA server utilizes the collected origin-side and client-
side information to solve an optimization program that

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 595

 CI

CDN Logs

AA Server OTL

time

determining OTL (OT) interval
collecting inputs (CI) interval

….…. O
T

Quality Indicator Function

AO
Agent

CDN

Figure 4: Time-slotted operation by ARTEMIS.

produces an optimized temporary ladder (OTL). Because the
number of representations encoded in real time constitutes
the critical resource in a live streaming system, the AA
server dynamically composes the OTL from only some of
the representations listed in the mega-manifest and instructs
the origin server through the AO agent to use the OTL as the
current ladder for segment encoding. The origin server does
not encode any mega-manifest representations that do not
appear in the OTL. When a client requests a representation
absent from the OTL, ARTEMIS instructs the origin server to
stream the segment in the closest lower representation in the
OTL. Hence, ARTEMIS operates transparently to the clients
and origin server in accordance with Design Principle 2.

ARTEMIS relies on time slots in its internal and external
communications. As shown in Figure 4, each time slot is
θ seconds long and consists of two distinct intervals: the
collecting inputs (CI) interval and determining OTL (OT)
interval. During the CI interval, the AA server collects inputs
from the CDN and AO agent. In the OT interval, the AA server
uses the collected data to update the OTL. Below, we detail
the methodology and explain our algorithm for determining
the OTL based on the data collected during the CI interval.

4.3 OTL Selection

During each OT interval, the AA server decides whether to
update the OTL. In the following, we formulate a Mixed
Integer Linear Program (MILP) that computes a new OTL.
Table 2 in Appendix C summarizes our notation. Without
loss of generality, we assume only one fixed resolution for
each bitrate in the mega-manifest. The optimal resolution for
a bitrate is determinable in an online manner [50]. Set B =
{1,2, . . . ,m} indexes the m mega-manifest representations in
increasing order of their bitrates, and bi refers to the bitrate
of representation i. List R = {r1,r2, . . . ,rm} consists of m
nonnegative integers, where ri denotes the number of requests
for bitate bi.

The OTL contains at most ℓ of the m representations.
For each representation i, we define binary variable xi that
indicates whether bitrate bi appears in the OTL (xi = 1) or
not (xi = 0). When the OTL does not include bitrate bi, and
the AA server observes requests for this bitrate (i.e., ri > 0),
ARTEMIS selects a lower bitrate in the OTL to serve the
requests. To model such situations, our MILP incorporates a
list of i−1 binary variables Yi = {y1,i,y2,i, . . . ,yi−1,i} and the
following two constraints:

10 200 400 600 800 1000
Number of segments

(a)

0

10

20

30

40

50

Ex
ec

ut
io

n
tim

e
(m

s)

5 10 20 30 40 50
m
(b)

50

100

150

200

Ex
ec

ut
io

n
tim

e
(m

s)

Figure 5: Execution time to: (a) train quality indicator
function F for different numbers of segments and (b) solve
the MILP as a function of m, the number of representations
in the mega-manifest.

∑
j∈B & j<i

y j,i + xi = 1 ∀i ∈ B, (1)

∑
i∈B & j<i

y j,i ≤ x j×m ∀ j ∈ B (2)

where y j,i = 1 indicates that ARTEMIS instructs the origin
server to transmit the segment at bitrate b j which is lower
(i.e., j < i) than requested bitrate bi. Constraint 1 guarantees
that ARTEMIS accommodates the requests for bitrate bi
by either including this bitrate into the OTL (xi = 1) or
serving them at a lower bitrate in the OTL (∑ j∈B & j<i y j,i = 1).
Constraint 2 enforces x j = 1 when the OTL includes bitrate
b j to accommodate requests for higher bitrates than b j.

The following constraint ensures that the OTL comprises
at most ℓ representations:

∑
i∈B

xi ≤ ℓ. (3)

If all bitrates in the OTL would change every OT interval,
excessive bitrate switching might degrade the QoE. To prevent
frequent bitrate changes, the MILP imposes an upper limit on
the number of changes in the OTL over two consecutive OT
intervals:

∑
i∈B
|xi− x̄i| ≤ β, (4)

where β > 0 and x̄i ∈ {0,1} indicates whether bitrate bi
appears in the OTL of the previous OT interval.

The live encoder calculates the PSNR value of a segment on
the fly during the encoding process, e.g., by appending -psnr
to the FFmpeg command line [10]. Based on the PSNR values
collected from the encoder for previous segments, the AO
agent computes a function estimating the quality of upcoming
segments. Specifically, the AO agent uses linear regression to
train quality indicator function F that maps a bitrate to PSNR.
Figure 5a plots the execution time to train function F . The
AA server leverages quality indicator function F to estimate
the PSNR values for all bitrates in the mega-manifest for
subsequent segments. When the OTL relies on bitrate b j
to accommodate the requests for higher bitrate bi, the AA
server utilizes function F to measure the respective change in
PSNR. The following inequality introduces the nonpositive
real variable q to express the quality improvement that the
requested bitrates would provide compared to the bitrates
chosen in the OTL:

596 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

q×∑
i∈B

ri ≤∑
i∈B

∑
j∈B & j<i

ri× y j,i×
(
F(b j)−F(bi)

)
. (5)

The final constraint of our MILP brings in the nonnegative
real variable s to represent the traffic reduction that happens
because clients receive segments in lower representations than
the requested ones:

s×∑
i∈B

ri ≤∑
i∈B

∑
j∈B & j<i

ri× y j,i× (bi−b j). (6)

For the sake of normalization, we introduce Q and S as
bounds on the possible values of quality improvement q
and traffic reduction s, respectively, and define the following
Multi-Objective Optimization (MOO) function:

MOO = α× q
Q
+(1−α)× s

S
. (7)

Our MILP strives to maximize the MOO function where
weight α controls the relative priorities of the quality
improvement vs. traffic reduction. The two individual
objectives are in conflict: increasing q decreases s and vice
versa. Note that α = 1 emphasizes increasing the video
quality, which conforms to the OTL selecting its bitrates as
close as possible to the requested bitrates. On the other hand,
α = 0 places the only focus on minimizing the traffic, which
corresponds to serving all requests with the lowest bitrate.
We detail our algorithm for determining the value of α in
Section 4.4. To summarize, ARTEMIS relies on the following
MILP:

Maximize: MOO in Equation 7 (8)
subject to: Constraints 1 through 6 (9)
variables: xi, y j,i ∈ {0,1}, q≤ 0, and s≥ 0. (10)
The computational complexity of the formulated MILP

depends on the number of representations in the mega-
manifest, and not on the number of clients in the session. The
total number of variables equals m+ m(m−1)

2 +2 because each
bitrate bi contributes i−1 binary variables y j,i and one binary
variable xi, with two real variables q and s completing the total.
The number of individual constraints behind Constraints 1
through 6 amounts to 2m+4. Despite being an NP-complete
problem [30], the MILP is applicable for optimizing the
OTL in live streaming due to the relatively low numbers
of variables and constraints. We solve the MILP by using the
PuLP library [14]. Figure 5b reports the respective execution
time as a function of m, the number of representations in the
mega-manifest.

4.4 Algorithm Details

Input processing. Algorithm 1 constitutes the core algorithm
of ARTEMIS. Lines 3-6 of the pseudocode describe the
operation during the CI interval when the AA server retrieves
the latest version of quality indicator function F and client-
state log files from the AO agent and CDN, respectively.
After extracting the request counts and stall information from
the CDN logs, the AA server stores the data as list R =

0 1 2 3 4 5 6 7
Bitrate (Mbps)

(a)

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

qu
al

ity
 (P

SN
R)

v1
v2

0.0 0.2 0.4 0.6 0.8 1.0
Weight α

(b)

−10

−8

−6

−4

−2

0

q,
 q

ua
lit

y
im

pr
ov

m
en

t (
PS

NR
)

q (v1)
s (v1)
q (v2)
s (v2)

0.5

1.0

1.5

2.0

2.5

s,
tra

ffi
c

re
du

ct
io

n
(M

bp
s)

Figure 6: (a) Rate-distortion curves v1 and v2 with 30 bitrates
between 0.09 Mbps and 7 Mbps and (b) impact of the α value
on quality improvement and traffic reduction.

{r1,r2, . . . ,rm} and set T that consists of tuples (pid, ts, te),
where pid denotes the unique player identifier included
in the URLs of HTTP requests according to the CMCD
specification, and ts and te represent the start and end times of
a stall event. A player that experiences a stall event sends the
respective (pid, ts, te) tuple to the CDN and requests to buffer
all encoded segments that reach the CDN edge server. The
time-slot duration divided by the segment duration imposes
the upper limit on the number of requests that the player
contributes to the R list during the time slot. For each of the
players that request segments and do not report any stalls, set
T includes tuple (pid,0,0).

Algorithm for determining α. Before answering the
question how to determine the best α value, we use Figure 6 to
illustrate the impact of α on quality improvement q and traffic
reduction s, i.e., the two individual objectives of our MILP.
Figure 6a depicts rate-distortion curves v1 and v2 associated
with two different content types and m = 30 bitrates. For each
bitrate bi, we randomly pick a value between 50 and 100
for request count ri and configure x̄i to 0. The example also
assumes ℓ = β = 8. Figure 6b reveals the opposite impact
of changes in α on q and s. When α equals 0, the MILP
produces OTLs that offer the worst video quality, with q
being about -4.2 and -10.2 for curves v1 and v2, respectively.
However, the traffic reduction in this α setting is the largest,
with s reaching around 2.4 Mbps for both curves. Increasing
the α value improves quality and increases traffic. When α

becomes 1, the MILP-produced OTLs support video quality
within 0.2% and 3% of the PSNR values with the requested
bitrates, and traffic reduction s drops to 0.35 Mbps for both
curves v1 and v2.

Because Figure 6b shows that α significantly affects both
video quality and traffic volume, ARTEMIS adjusts the α

value based on the origin-side and client-side information.
For instance, larger traffic with a greater α value might
cause not only improved video quality but also increased
stall duration, which the AA server detects by observing the
increased average stall duration in the client-side feedback
provided via the CDN. In adjusting the α value based on the
stall information, ARTEMIS avoids dramatic changes over
consecutive OT intervals so that the resulting updates in the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 597

Algorithm 1 ARTEMIS Algorithm
1: for each time slot do
2: R←[], T ←[], F ←∅, O∗←∅
3: while in CI do ▷ CI interval starts
4: T,R← ProcessCDNlogs()
5: F ← QualityFunction()
6: end while ▷ OT interval starts
7: α, f1←StallAnalysis(T) ▷ Algorithm 2
8: O,q← Optimization(α,O∗,R,F)
9: if f1 then

10: SendOTLtoAOagent(O)
11: O∗← O
12: else
13: f2←QualityAnalysis(q,F) ▷ Alg. 3
14: if f2 then
15: SendOTLtoAOagent(O)
16: O∗← O
17: end if
18: end if
19: end for

Algorithm 2 StallAnalysis Function
1: Inputs: LastStall, StallAlpha
2: function STALLANALYSIS(T)
3: l∗← mean(T)
4: α←SelectAlpha(StallAlpha,l∗)
5: l←LastStall
6: if l == 0 then
7: t← min(1, l∗)
8: else
9: t← min(1, l∗−l

l)
10: end if
11: LastStall← l∗

12: p←GenerateRandom(uniform[0,1))
13: if p≤ t then
14: f ← True
15: else
16: f ← False
17: end if
18: return α, f
19: end function

Algorithm 3 QualityAnalysis Function

1: Inputs: O∗

2: function QUALITYANALYSIS(q,F)
3: d←[]
4: for i ∈ B do
5: d.append(DiffQuality(bi,ri,ai,F ,i))
6: end for
7: q∗← mean(d)
8: if q == 0 then
9: t← min(1,q∗)

10: else
11: t← min(1, q∗−q

q)

12: end if
13: p←GenerateRandom(uniform[0,1))
14: if p≤ t then
15: return True
16: else
17: return False
18: end if
19: end function

OTL do not degrade QoE for the clients, e.g., due to frequent
bitrate switching.

Algorithm 2 presents pseudocode of the StallAnalysis()
function that determines the α value. The function seeks
an appropriate balance between high video quality and
low stall duration. In addition to set T , the function takes
LastStall and StallAl pha as two other local inputs. LastStall
refers to the average stall duration calculated during the
previous time slot. StallAl pha is a dictionary that specifies
the α value for each range of stall duration. For example,
StallAlpha={(0,2):1.0,(2,’inf’):0.8} means α = 1.0
for the average stall duration between 0 and 2 s and α = 0.8
for the average stall duration exceeding 2 s. Supplied by
the streaming service provider, the StallAl pha dictionary is
updatable during the streaming session.

Line 3 of Algorithm 2 computes l∗ as the average stall
duration in set T . Line 4 configures α according to the
StallAl pha dictionary. With variable l initialized to LastStall,
Lines 6-10 adjust threshold t according to the difference
between l∗ and l. Line 12 draws random number p uniformly
between 0 and 1. If p is at most threshold t, i.e., the stalling is
significantly higher than in the previous time slot, Line 14 sets
flag f to True, indicating the need for a new OTL to decrease
the stalling. Otherwise, Line 16 sets flag f to False. Line 18
returns the α and f values. The core algorithm of ARTEMIS
obtains these values as α and f1, respectively, by calling the
StallAnalysis() function in Line 7 of Algorithm 1.

OTL computation. Based on the determined α value,
previous OTL O∗, list R of request counts, and quality
indicator function F , Line 8 of Algorithm 1 computes new
OTL O as described in Section 4.3. Solving the MILP also
returns quality improvement q that satisfies Constraint 5.

Communication of the OTL to the AO agent. If flag f1
is set to True, Line 10 of Algorithm 1 sends the new OTL
from the AA server to the AO agent. Otherwise, with flag f1

set to False and indicating insignificant stalling, Line 13
calls a QualityAnalysis() function to explore whether quality
improvement justifies adopting the new OTL.

Algorithm 3 shows the pseudocode of the
QualityAnalysis() function, with previous OTL O∗ as
an extra input. Lines 4-6 of Algorithm 3 measure how much
the requested bitrates would improve video quality compared
to the bitrates in the previous OTL. While ri refers to the
number of requests for bitrate bi, input ai in Line 5 indicates
how many requests the previous OTL accommodates with
bitrate bi. Lines 7-12 introduce threshold t that captures
the difference between q∗ and q, which refer to the quality
improvement for the previous and new OTL, respectively.
Line 14 compares the threshold with random number p drawn
uniformly between 0 and 1. The QualityAnalysis() function
returns a True flag if p is at most t. Otherwise, Algorithm 3
returns a False flag.

When Line 13 of Algorithm 1 receives a True flag from
the QualityAnalysis() function, Line 15 of the core algorithm
sends the new OTL to the AO agent. With this flag f2 set to
False, ARTEMIS continues operation with the previous OTL.
Hence, in deciding whether to update the OTL, ARTEMIS
considers not only the StallAl pha dictionary but also video
quality and stalling information across two consecutive time
slots.

5 Performance Evaluation

This section describes our practical implementation of
ARTEMIS as well as the evaluation methodology and results
of our real-world experiments. The evaluation intends to
answer the following questions: (i) What is the impact of
ARTEMIS on QoE? How do the constructed dynamic bitrate
ladders fare against existing fixed-length and content-based
ladders? (ii) What is the influence of ARTEMIS on resource

598 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 Media Players AA Server

Quality
Indicator
Function

Requests’
URLs

Emulated
CDN Frontend

HTTP
Requests &
Responses

OTL
and
SID

OTL

Client Side

BITMOVIN Live Encoder

AO Agent

Encoded Segments

SID Bitrate PSNR

Origin Side

Mega-Manifest

Origin Server CDN
Encoder SettingsPSNR Values

Amazon EC2

Amazon
CloudFront

OTL Bitrate Resolution

Figure 7: Cloud-based implementation of ARTEMIS.

consumption? (iii) How do different real-world network traces
affect the ARTEMIS performance? (iv) How sensitive is the
ARTEMIS performance to changes in the number of players,
segment duration, content type, end-to-end latency, and α

value?

5.1 ARTEMIS Implementation

Our real-world experimentation combines existing infras-
tructure with our own cloud-based implementations of the
ARTEMIS functionalities. The existing infrastructure in-
cludes Amazon CloudFront as the CDN, Bitmovin Live En-
coder [5] as the origin server, and CAdViSE [57] for hosting
media players. Both Bitmovin Live Encoder and CAdViSE op-
erate as EC2 implementations. We implement the ARTEMIS
functionalities in EC2 as well. Figure 7 depicts our implemen-
tations and their interactions with the existing infrastructure.

Media players. CAdViSE is a cloud-based platform for
automated testing of media players. We use CAdViSE to run
multiple players on different kinds of EC2 machines. Each
EC2 instance fetches from Docker Hub [9] a Docker container
holding the DASH JavaScript Player [27]. We modify the
player to send the pid and stall information in the CMCD
format as a query argument in the URL of every HTTP request
for a segment.

Emulated CDN frontend. To support the mega-manifest
feature of ARTEMIS, we emulate a CDN frontend by
implementing it in Python and running the frontend on an EC2
machine. The emulated CDN frontend faces the players and
receives their HTTP requests. Also, the AA server provides
the CDN frontend with an OTL and Segment ID (SID) to
indicate the validity of the given OTL for segments with
numerical IDs that are equal or greater than this SID. Before
forwarding each HTTP request for a segment to the CDN, the
CDN frontend checks whether the requested representation
appears in the OTL associated with this segment. If the
representation ID is not in the OTL, the CDN frontend
changes the representation ID in the HTTP request to the ID
of the representation with the closest lower bitrate in the OTL.
The emulated CDN frontend also provides the AA server with
CDN logs in the form of requests’ URLs.

AA server. We implement the AA server in Python and,
specifically, employ the Pulp library [14] to solve the MILP.
Apart from determining the OTL and communicating it
to the CDN frontend and AO agent, the AA server also
coordinates the time-slotted operation of ARTEMIS. The two
main threads of the AA server utilize Transmission Control
Protocol (TCP) sockets to receive the requests’ URLs and
quality indicator function F from the CDN frontend and AO
agent, respectively.

AO agent. Our Python implementation of the AO agent
runs in EC2 on the same machine with the Bitmovin Live
Encoder. The encoder uses DASH packaging, computes
PSNR values during the encoding process, and records
a (SID, bitrate, PSNR) tuple for each encoded segment.
The computational burden of extracting the PSNR values
during the encoding process is negligible [62]. The main
computational task of the AO agent is to train quality indicator
function F by means of linear regression. Figure 5a shows that
the execution time to train function F is low, below 20 ms,
and largely independent from the number of segments. In
addition, based on the OTL received from the AA server, the
AO agent updates the encoder settings of the Bitmovin Live
Encoder. The AO agent also stores the bitrates of the previous
OTL along with their resolutions. Our experiments employ
predetermined resolutions for all bitrates.

5.2 Evaluation Methodology

Bitrate ladders. We consider two groups of baselines
for evaluating the dynamic bitrate ladders constructed by
ARTEMIS. The first group consists of common fixed-length
ladders used by conventional HAS solutions for live streaming
that do not account for the content type or network conditions.
Table 1 presents the Theo [16], Bitmovin [4], Mux [11],
Pensieve [48], and Twitch [17] ladders that comprise this
first group. The second group consists of three bitrate ladders
designed for particular content types and/or specific average
available bandwidth. Table 3 in Appendix D describes
these three ladders. Designed offline for VOD scenarios, the
ILP ladder [60] targets animation videos with the average
available bandwidth of the clients being around 3 Mbps. The
other two baselines in the second group are the Netflix ladders
for animation [12] and movie [13] as the content type and do
not account for the available network bandwidth.

Network traces. Our experiments use the LTE [61], Ama-
zonFCC [15], Cascade-5, and Cascade-20 traces. Figure 15
in Appendix D depicts the four traces for 500 s, i.e., the total
duration of each streaming session. Cascade-5 and Cascade-
20 are synthetic network traces generated using five distinct
bandwidth values of 0.5, 1, 2, 4, and 7 Mbps, where labels 5
and 20 indicate the the available bandwidth remains constant
for 5 and 20 s, respectively. To allocate a network trace to each
player, we convert a longer network trace into circular arrays.
Then, we generate a random number uniformly distributed

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 599

Table 1: Representations advertised by the mega-manifest of ARTEMIS vs. the five static bitrate ladders.

BL R
es

.@
M

bp
s

24
0p

@
0.

14
5

24
0p

@
0.

24
0

36
0p

@
0.

36
5

36
0p

@
0.

5

36
0p

@
0.

6

36
0p

@
.7

5

36
0p

@
0.

9

54
0p

@
1.

0

48
0p

@
1.

1

48
0p

@
1.

2

48
0p

@
1.

4

72
0p

@
1.

6

72
0p

@
1.

8

72
0p

@
2.

0

72
0p

@
2.

25

72
0p

@
2.

5

10
80

p@
2.

8

72
0p

@
3.

0

72
0p

@
3.

2

72
0p

@
3.

4

72
0p

@
3.

75

10
80

p@
4.

0

10
80

p@
4.

3

10
80

p@
4.

5

10
80

p@
5.

0

10
80

p@
5.

5

10
80

p@
6.

0

10
80

p@
6.

5

10
80

p@
7.

0

Theo ✓ ✓ ✓ ✓

Bitmovin ✓ ✓ ✓ ✓ ✓

Mux ✓ ✓ ✓ ✓

Pensieve ✓ ✓ ✓ ✓ ✓ ✓

Twitch ✓ ✓ ✓ ✓ ✓ ✓

ARTEMIS ✓

LTE AmazonFCC Cas-5 Cas-20
(a) Avg. QoE improvement

0

5

10

15

20

25

30

35

%

Theo Bitmovin MUX Pensieve Twitch

LTE AmazonFCC Cas-5 Cas-20
(c) Avg. stall improvement

0

20

40

60

80

100

120

%

LTE AmazonFCC Cas-5 Cas-20
(b) Avg. end-to-end latency improvement

0

10

20

30

40

% LTE AmazonFCC Cas-5 Cas-20
(d) Avg. bitrate instability improvement

0

20

40

%

LTE AmazonFCC Cas-5 Cas-20
(e) Avg. VMAF instability improvement

−10
0

10
20

%

LTE AmazonFCC Cas-5 Cas-20
(f) Avg. bitrate degradation

0.00

0.25

0.50

M
bp

s

LTE AmazonFCC Cas-5 Cas-20
(g) Avg. VMAF degradation

-5
0
5

10

Figure 8: QoE, latency, stall, bitrate, and VMAF performance of ARTEMIS’ dynamic ladders vs. the five static ladders.

between 0 and 500. This random number determines the time
at which the allocated network trace starts for the specific
player. Thereby, we have a distinct network trace for each
player.

Content types and encoding parameters. Animation,
sport, movie, and documentary are four distinct content types
in our experiments. The Bitmovin Live Encoder encodes
segments at a constant bitrate with segment duration of 1, 2,
and 4 s and extracts the PSNR values of the segments during
the encoding process.

Default ARTEMIS parameters. By default, we set
maximum OTL length ℓ to 5 representations, dictionary
StallAl pha to {1 : [0,1],0.9 : [1,2],0.8 : [2,3],0.7 : [3,4],0.6 :
[4,5],0.5 : [5,100]}, time-slot duration θ to 10 s, segment
duration to 2 s, and target end-to-end latency to 4 s. The
default number of players, ABR algorithm, and content type
are 50 players, L2A, and animation, respectively.

Experimental scenarios. We experiment in two scenarios.
Using the default parameter settings, Scenarios I and II
evaluate ARTEMIS’ dynamic ladders against the bitrate
ladders from the first and second baseline groups, respectively.
We also analyze performance sensitivity to changes in the
experimental settings, including the ABR algorithm, content
type, ARTEMIS parameters α, ℓ, and θ, and the number of
players. While individual experiments in our preliminary
investigation substantiate the potential of ARTEMIS in
sessions with as many as 15,000 players, the evaluation in
this paper accomplishes its multifaceted agenda in the settings
where each session serves 10, 20, 50, or 100 players. For each
experiment, we average the results over five runs.

Evaluation metrics. We evaluate QoE via the QoE model
of Appendix A and also zoom in on instability of the

0.1
45

0.3
65 0.5 0.6 0.7

5 0.9 1.0 1.1 1.2 1.4 1.6 1.8 2.0 2.2
5 2.5 2.8 3.2 3.7

5 4.0 4.3 4.5 7.0

Percentage of the encoded segments at different bitrates (Mbps)

Theo

Bitmovin

Mux

Pensieve

Twitch

LTE

AmazonFCC

Cas-5

Cas-20

AR
TE

M
IS

 b
itr

at
e

la
dd

er

 O
th

er
 B

itr
at

e
La

dd
er

s

0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0

100.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0

0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0

0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0

0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 100.0

100.0 28.4 0.0 44.6 0.0 91.9 0.0 100.0 0.0 4.1 20.3 0.0 75.7 0.0 0.0 27.0 0.0 0.0 0.0 0.0 8.1 0.0

100.0 100.0 40.8 0.0 0.0 0.0 92.1 7.9 19.7 0.0 0.0 0.0 73.7 6.6 0.0 0.0 0.0 0.0 0.0 0.0 59.2 0.0

100.0 93.2 59.5 0.0 17.6 0.0 0.0 100.0 0.0 0.0 0.0 0.0 82.4 0.0 0.0 0.0 18.9 0.0 0.0 0.0 28.4 0.0

100.0 100.0 0.0 0.0 85.1 0.0 0.0 59.5 0.0 0.0 10.8 0.0 82.4 0.0 0.0 13.5 0.0 0.0 0.0 0.0 48.6 0.0

Figure 9: Bitrates used by the five static ladders and
ARTEMIS’ dynamic ladders on different network traces.

bitrate and VMAF. For each of these two underlying metrics,
we calculate its instability as the average of the absolute
differences between their consecutive values throughout a
sequence of segments. Besides, we calculate ladder efficiency
and resource cost. To compute ladder efficiency, we divide
the average served bitrate of the clients by the average
encoded bitrate of the ladder. Instead of directly measuring
computation and bandwidth costs, we report encoding time
and volume of traffic from the live encoder to the CDN and
from the CDN to the player. We choose these metrics because
the computation and bandwidth costs are proportional to the
processing time and traffic volume.

5.3 Results and Analysis
Scenario I. Our evaluation of ARTEMIS starts by comparing
its dynamic bitrate ladders with the five fixed-length ladders.
Figures 8a-8e and, in more detail, Table 4 in Appendix E show
the average relative improvement in QoE, end-to-end latency,

600 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.0 0.2 0.4 0.6 0.8 1.0
(a) Norm. encoded data volume and relative

computation cost of different BLs

Twitch

Pensieve

Mux

Bitmovin

Theo computation cost
encoded data volume

0.0 0.2 0.4 0.6 0.8 1.0
(b) Norm. encoded data volume and relative

computation cost of ARTEMIS over different network traces

Cas-20

Cas-5

AmazonFCC

LTE encoded data volume
computation cost

LTE AmazonFCC Cas-5 Cas-20
(c) Normalized Avg. QoE

0

0.25

0.5

0.75

1

Theo Bitmovin Mux Pensieve Twitch ARTEMIS

LTE AmazonFCC Cas-5 Cas-20
(d) Bitrate ladder efficiency

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 10: Computation cost, traffic volume, and ladder efficiency with ARTEMIS vs. the five static ladders.

stall duration, bitrate and VMAF instability for ARTEMIS
vs. the baselines. The results demonstrate that ARTEMIS
consistently improves QoE compared to the baselines, with
the average QoE improvement ranging from 4% to 16.5%
with respect to the Bitmovin and Mux ladders, respectively.
Figure 8a shows that ARTEMIS yields the largest average
QoE improvement in comparison to the Mux ladder because
ARTEMIS mitigates stalls for the players by selecting lower
bitrates than 0.75 Mbps, which is the lowest bitrate in the Mux
ladder. Although the Bitmovin ladder includes the lowest
bitrate of 0.145 Mbps, ARTEMIS outperforms this ladder
as well, e.g., by reducing the stall duration by 17.3% and
improving QoE by 10.9% on the Cascade-5 network trace.
Similarly, Figure 8b reveals that ARTEMIS outperforms the
baselines by reducing the end-to-end latency. The latency
reduction occurs due to shorter encoding time arising from
the more effective ladder selection in ARTEMIS.

Figures 8d and 8e demonstrate that ARTEMIS decreases
the bitrate instability compared to the baseline ladders,
particularly on the LTE, AmazonFCC, and Cascade-5 network
traces. While the VMAF instability gets worse with
ARTEMIS on the AmazonFCC and Cascade-20 traces,
ARTEMIS still improves the overall QoE on these traces.
Furthermore, the observed increase in the VMAF instability
lies within the JND, meaning that humans do not perceive the
quality decrease.

Figures 8f and 8g offer further insights into the impact of
ARTEMIS on the decrease in the average bitrate and VMAF
compared to the baseline ladders. Although ARTEMIS serves
the players with lower bitrates, the decrease in VMAF is
negligible for some combinations of ladders and network
traces, and ARTEMIS improves the VMAF value in other
cases. ARTEMIS attains this performance by using PSNR
as a proxy of VMAF in predicting the video quality of
the subsequent segments. Figure 8g shows that ARTEMIS
provides higher VMAF compared to the Theo ladder on
the LTE and Cascade-20 network traces. The Theo ladder
yields the lower VMAF values due to employing only
four representations with the largest bitrate of 4 Mbps only,
whereas ARTEMIS includes higher bitrates into its dynamic
ladders and thereby improves the video quality.

Figure 9 reports on the bitrates used by ARTEMIS’
dynamic ladders vs. the static baselines. While the static

.09 .6 1 2 3 4 5 6 7
Bitrates (Mbps)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
co

m
pu

ta
tio

n
tim

e

Figure 11: Normalized average computation time for
encoding each bitrate in ARTEMIS.

ladders always employ the same bitrates regardless of the
network trace, ARTEMIS adapts its ladders to network
conditions. Only the lowest mega-manifest bitrate of
0.145 Mbps always appears in ARTEMIS’ OTL. The second
lowest bitrate of 0.365 Mbps is always present in the OTL for
the AmazonFCC and Cascade-20 network traces only. The
bitrate of 1.1 Mbps is consistently in demand on the LTE and
Cascade-5 traces. For all four traces, ARTEMIS includes the
bitrate of 2 Mbps in the OTL most of the time but not always.
Finally, ARTEMIS never puts into the OTL the largest mega-
manifest bitrate of 7 Mbps on all four traces and occasionally
employs the second largest bitrate of 4.5 Mbps in the OTL.
Overall, Figure 9 corroborates that ARTEMIS effectively
adjusts its ladders for the current network conditions.

Figure 10 evaluates ARTEMIS vs. the baselines in regard
to computation cost, traffic volume, and ladder efficiency.
While Figures 10a and 10b focus on the computation cost,
we also investigate the relationship between the computation
cost and processing time by measuring the time to encode
each bitrate to the ultrafast preset on an EC2 machine
and by calculating the average processing time to encode
each segment according to the selected OTL. Figure 11
shows the normalized average computation time for encoding
each bitrate. The findings corroborate earlier research
conclusions that the computation cost is proportional to
the processing time [29]. Figures 10a and 10b demonstrate
that, by accounting for the network conditions, ARTEMIS’
dynamic ladders provide lower computation cost than the
baseline ladders, except for the Theo ladder that comprises

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 601

0 85
 Time (s)

150

(b) ARTEMIS

0.145
0.365

1.1

2

4
4.5

5
5.5

6.5
7

Bi
tra

te
s (

M
bp

s)

0 85
 Time (s)

150

(a) Twitch

0.5
1.1
1.6

3.2
3.75

7

Bi
tra

te
s (

M
bp

s)

Twitch ARTEMIS
(c) Avg. Stall

0

2

4

6

Ti
m

e
(s

)

4.7 3.7

Twitch ARTEMIS
(d) Avg. VMAF

50
60
70
80
90

100

81.2 83.5

Twitch ARTEMIS
(e) Norm. Avg. QoE

0.8

0.9

1.0

1.1

0.96 1.0

E.Time E.Data
Twitch

S.Data E.Time E.Data
ARTEMIS

S.Data

(f) Encoded/served bitrate

0.8

0.9

1.0

1.1

No
rm

. e
nc

od
in

g
tim

e

1.0
0.93

0

5

10

15

20

M
bp

s

17.1 5.52 12.5 5.64

Figure 12: Requested and served bitrates, stall duration, VMAF, QoE, and encoding time with ARTEMIS’ dynamic ladder vs.
the static Twitch ladder when both approaches advertise the mega-manifest bitrates to the players.

only four representations. Despite limiting the maximum
ladder length to five representations, ARTEMIS requires less
computation than the Bitmovin ladder due to selecting a lower
bitrate to cope with fluctuations in the available bandwidth.
Additionally, ARTEMIS selects a smaller ladder when the
bitrate preferences of the clients indicate a need in less than
the maximum ℓ representations.

Figure 10c demonstrates that ARTEMIS’ dynamic ladders
increase the normalized average QoE compared to almost
all baselines across the four network traces. This finding
highlights the effectiveness of ARTEMIS even under
challenging network conditions. While the Pensieve ladder
on the LTE network trace delivers nearly the same QoE as
ARTEMIS’ dynamic ladders, the computation cost incurred
by the Pensieve ladder is 44% higher than with ARTEMIS.
Figure 10d shows that ARTEMIS substantially outperforms
the static baselines with respect to ladder efficiency across all
four network traces within a time slot of at most θ.

The network traces in our study exhibit high bandwidth
fluctuations resulting in frequent stalls for the players.
Whereas Figure 9 unveils that ARTEMIS reacts to the highly
variable bandwidth by limiting the highest bitrate in the
OTL to 4.5 Mbps, we conduct an additional experiment
on a network trace with minimal bandwidth fluctuations.
Specifically, the available bandwidth for each player is
10 Mbps initially, decreases to 6.5 Mbps after 85 s, and
remains at this level for the subsequent 65 s. The experiment
evaluates ARTEMIS’ dynamic ladder against the static Twitch
ladder, which is the only baseline that includes the largest
considered bitrate of 7 Mbps. Additionally, we expose the
mega-manifest bitrate preferences of the players not only to
ARTEMIS but also to the Twitch alternative. In this setup,
we anticipate ARTEMIS to serve the players with the highest
available bitrate until 85 s into the experiment.

For this additional experiment, Figures 12a and 12b depict
the bitrates requested by the players as black dots and
the bitrates available for serving the requests as horizontal
purple lines. The Twitch alternative supports the bitrate
of 7 Mbps and affirmatively responds to all requests for
this highest bitrate in the mega-manifest until 85 s into the

experiment. After 85 s however, the players request bitrates
that are below 7 Mbps and above 3.75 Mbps, which is the
second highest bitrate in the Twitch ladder. Hence, the
Twitch alternative serves the requests with the bitrate of
3.75 Mbps, which degrades the video quality by underutilizing
the available bandwidth. On the other hand, Figure 12b
shows that ARTEMIS efficiently selects the OTL to serve the
requests with higher bitrates. The gray vertical lines indicate
the times when ARTEMIS changes its OTL. During the first
10 s that comprise the first slot of the time-slotted operation,
ARTEMIS uses the OTL predefined by the streaming service
provider and depicted as gray rectangles in Figure 12b. Upon
receiving requests for the bitrates of 6.5 and 7 Mbps during
the first time slot, ARTEMIS updates the OTL and, due to
low stalling and frequent requests for the bitrate of 7 Mbps,
converges by the third time slot to serving the players with the
bitrate of 7 Mbps until time 85 s. During the five consequent
time slots, ARTEMIS instructs the live encoder to use the
OTL with only three bitrates of 0.145, 1.1, and 7 Mbps, which
efficiently reduces the computation and bandwidth costs.
However, when the clients request lower bitrates at time
85 s, ARTEMIS reacts quickly, and Figure 12b shows that
ARTEMIS determines the four bitrates that closely match all
bitrates requested by the players.

Figures 12c-12f compare ARTEMIS with the Twitch
alternative in regard to the average stall duration, VMAF, and
normalized QoE as well as encoding time (labeled as E. Time),
encoded bitrate (E. Data) and served bitrate (S. Data). The
results show that ARTEMIS’ dynamic ladders perform better
than the static Twitch ladder in all metrics while reducing the
traffic volume by 0.3%.

We further extend our exploration of Scenario I by
evaluating QoE in Figure 16 of Appendix E, LoL+ as
an alternative low-latency ABR algorithm in Figure 17
of Appendix F, and influence of the content type in
Figures 18 and 19 of Appendix G. We also study how the
ARTEMIS performance depends on weight α in Figure 20 of
Appendix H, maximum OTL length ℓ in Figures 21 and 22 of
Appendix I, and time-slot duration θ in Figures 23 and 24 of
Appendix J.

602 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

LTE AmazonFCC Cas-5 Cas-20
(a) Normalized average QoE

0

0.5

1
ILP ARTEMIS-BL1 Netflix-Animation ARTEMIS-BL2 Netflix-Movie ARTEMIS-BL3

LTE AmazonFCC Cas-5 Cas-20
(b) Average end-to-end latency (s)

0

15

30

LTE AmazonFCC Cas-5 Cas-20
(c) Average of VMAF

0

50

100

LTE AmazonFCC Cas-5 Cas-20
(d) Average served bitrate (Mbps)

0

1

2

LTE AmazonFCC Cas-5 Cas-20
(e) Average outgoing traffic from live encoder (Mbps)

0

10

20

LTE AmazonFCC Cas-5 Cas-20
(f) Normalized average of relative encoding cost

0

0.5

1

Figure 13: QoE, end-to-end latency, VMAF, served bitrates, traffic volume, and encoding cost for ARTEMIS’ customized BL1,
BL2, and BL3 ladders vs. the ILP, Netflix-Animation, and Netflix-Movie ladders.

Scenario II. We also assess ARTEMIS’ dynamic ladders
in comparison to the three fixed-length ladders described in
Table 3 of Appendix D. These baselines aim at particular
content types and/or available network bandwidth. Because
the average bandwidth in the LTE network trace is nearly
3 Mbps, i.e., as targeted by the ILP ladder, we evaluate
ARTEMIS against the ILP ladder specifically on the LTE
trace. However, we consider all available network traces
for the two Netflix ladders. To cover the representations in
the considered baselines, we customize ARTEMIS’ mega-
manifest by introducing additional representations into it.
For example, the comparison with the ILP ladder customizes
ARTEMIS’ mega-manifest by including all representations
of the ILP ladder and the additional seven representations
described in Table 3.

Figure 13, along with Table 5 in Appendix K, shows that
ARTEMIS consistently outperforms the baselines across all
network traces in terms of QoE and end-to-end latency by
selecting the maximum five representations. ARTEMIS also
exhibits better performance in terms of stall duration, bitrate
instability, and VMAF instability. While Figure 13c reveals a
negligible decrease in VMAF, Figure 13d demonstrates that
ARTEMIS effectively serves the players with lower bitrates,
thereby reducing the traffic from the CDN to the players.
Figure 13e illustrates that ARTEMIS decreases the volume
of encoded data, reducing the consumption of computational
resources in the live encoder and also lowering the traffic
from the encoder to the CDN.

6 Conclusion

This paper presents ARTEMIS, a practical scalable system
for efficient dynamic construction of effective bitrate ladders
during a live session of video streaming. ARTEMIS
seamlessly enhances the end-to-end HAS pipeline and
innovatively leverages its standard features, such as the
advertisement of representations via the mega-manifest to
collect fine-grained client-side information transparently to
heterogeneous ABR algorithms. The context-aware system

is also efficient in its capture of the content complexity
via PSNR. We provide a cloud-based implementation of
ARTEMIS and extensively evaluate it in real-world and trace-
driven experiments.

Whereas ARTEMIS pursues multifaceted goals that
include low end-to-end latency, high QoE, and low encoding
computation, the evaluation against prominent static bitrate
ladders shows that ARTEMIS successfully delivers multi-
objective improvements to reduce end-to-end latency by 18%,
increase QoE by 11%, and decrease encoding computation
by 25%. The deeper analysis of ARTEMIS’ success reveals
that its accounting for dynamic network conditions is crucial.
When the available network bandwidth fluctuates significantly
to increase the likelihood of stall events, ARTEMIS prioritizes
lower bitrates in the ladder construction while maintaining
QoE close to the maximum achievable under the poor
network conditions. By scaling down the bitrate ladder,
ARTEMIS also reduces encoding computation, decreases
storage and bandwidth costs (especially at the network edge),
and thereby enables the streaming service to support more
clients. Under stable network conditions, ARTEMIS also
lowers the resource consumption by composing a ladder
with a smaller number of representations and improves QoE
through a better alignment of the representations with the
bitrate preferences of the clients.

Acknowledgments

We thank the anonymous NSDI 2024 reviewers and our
shepherd Dave Oran for their invaluable feedback and guid-
ance. The research is supported in part by the Austrian Fed-
eral Ministry for Digital and Economic Affairs, National
Foundation for Research, Technology and Development, and
Christian Doppler Research Association with project Chris-
tian Doppler Laboratory ATHENA (https://athena.itec.aau.at/)
and the Spanish Ministry of Science and Innovation with
grants TED2021-131264B-I00 (SocialProbing) and PID2021-
128223OA-I00 (GreenEdge).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 603

References

[1] Akamai, Content Delivery Network (CDN). [Online]
Available: https://www.akamai.com/solutions/c
ontent-delivery-network.

[2] Amazon Elastic Compute Cloud (Amazon EC2).
[Online] Available: https://aws.amazon.com/ec2/.

[3] Bitmovin and Akamai to Debut Joint CMCD Solution
at NAB Show 2023. [Online] Available: https:
//bitmovin.com/press-room/akamai-bitmovi
n-create-joint-cmcd-solution/.

[4] Bitmovin Dashboard, Live Encoder. [Online] Available:
https://bitmovin.com/dashboard/live.

[5] Bitmovin Live Encoder. [Online] Available: https://
bitmovin.com/live-encoding-live-streaming/.

[6] Conviva. [Online] Available: https://www.conviva.
com/technology/.

[7] CTA-5004: Web Application Video Ecosystem –
Common Media Client Data. [Online] Available:
https://cdn.cta.tech/cta/media/media/res
ources/standards/pdfs/cta-5004-final.pdf.

[8] Datazoom, Streaming Video Monitoring. [Online]
Available: https://www.datazoom.io/streamin
g-video-monitoring/.

[9] Docker Hub. [Online] Available: https://hub.dock
er.com/.

[10] FFmpeg. [Online] Available: https://https://ffmp
eg.org/.

[11] Mux Video. [Online] Available: https://docs.mux
.com/guides/video/configure-broadcast-sof
tware#good---720p-30fps.

[12] Netflix Animation Bitrate Ladder. [Online] Available:
https://ottverse.com/creating-the-perfect
-encoding-ladder/,.

[13] Netflix Movie Bitrate Ladder. [Online] Available:
https://ottverse.com/creating-the-perfe
ct-encoding-ladder/,.

[14] Optimization with PuLP. [Online] Available: https:
//coin-or.github.io/pulp/.

[15] Raw Data — Measuring Broadband America. [Online]
Available: https://www.fcc.gov/reportsresearc
h/reports.

[16] Theo Player. [Online] Available: https://www.theo
player.com/blog/encoding-cost-efficient-s
treaming.

[17] Twitch. [Online] Available: https://stream.twitch.
tv/encoding/.

[18] Hadi Amirpour, Raimund Schatz, and Christian Tim-
merer. Between Two and Six? Towards Correct Es-
timation of JND Step Sizes for VMAF-Based Bitrate
Laddering. In QoMEX, pages 1–4, September 2022.

[19] Hadi Amirpour, Christian Timmerer, and Mohammad
Ghanbari. PSTR: Per-Title Encoding Using Spatio-
Temporal Resolutions. In IEEE ICME, pages 1–6, July
2021.

[20] Apple. Enabling Low-Latency HTTP Live Streaming
(HLS). [Online] Available: https://developer.appl
e.com/documentation/http_live_streaming/en
abling_low-latency_http_live_streaming_hls,
2021. Accessed on Jan. 26, 2023.

[21] Apple Inc. HTTP Live Streaming (HLS) Authoring
Specification for Apple Devices. [Online] Available:
http://bit.ly/hls_spec_2017, 2015. Online;
accessed on Jan. 05, 2022.

[22] Abdelhak Bentaleb, Mehmet N. Akcay, May Lim, Ali C.
Begen, and Roger Zimmermann. Catching the Moment
with LoL+ in Twitch-like Low-Latency Live Streaming
Platforms. IEEE Transactions on Multimedia, 24:2300–
2314, 2021.

[23] Abdelhak Bentaleb, May Lim, Mehmet N. Akcay, Ali C.
Begen, and Roger Zimmermann. Common Media Client
Data (CMCD): Initial Findings. In NOSSDAV, pages
25–33, July 2021.

[24] Abdelhak Bentaleb, Bayan Taani, Ali C. Begen,
Christian Timmerer, and Roger Zimmermann. A
Survey on Bitrate Adaptation Schemes for Streaming
Media Over HTTP. IEEE Communications Surveys &
Tutorials, 21(1):562–585, 2019.

[25] Madhukar Bhat, Jean-Marc Thiesse, and Patrick Le
Callet. Combining Video Quality Metrics To Select
Perceptually Accurate Resolution In A Wide Quality
Range: A Case Study. In IEEE ICIP, pages 2164–2168,
September 2021.

[26] DASH-IF. Low-Latency Modes for DASH. [Online]
Available: https://dashif.org/docs/CR-Low-Lat
ency-Live-r8.pdf, 2020. Accessed on Jan. 26, 2023.

[27] DASH-IF. DASH Reference Player (dash.js). [Online]
Available: https://reference.dashif.org/dash.
js/, 2021. Online; accessed on Jan. 22, 2022.

[28] Jan De Cock, Zhi Li, Megha Manohara, and Anne Aaron.
Complexity-Based Consistent-Quality Encoding in the
Cloud. In IEEE ICIP, pages 1484–1488, September
2016.

604 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.akamai.com/solutions/content-delivery-network
https://www.akamai.com/solutions/content-delivery-network
https://aws.amazon.com/ec2/
https://bitmovin.com/press-room/akamai-bitmovin-create-joint-cmcd-solution/
https://bitmovin.com/press-room/akamai-bitmovin-create-joint-cmcd-solution/
https://bitmovin.com/press-room/akamai-bitmovin-create-joint-cmcd-solution/
https://bitmovin.com/dashboard/live
https://bitmovin.com/live-encoding-live-streaming/
https://bitmovin.com/live-encoding-live-streaming/
https://www.conviva.com/technology/
https://www.conviva.com/technology/
https://cdn.cta.tech/cta/media/media/resources/standards/pdfs/cta-5004-final.pdf
https://cdn.cta.tech/cta/media/media/resources/standards/pdfs/cta-5004-final.pdf
https://www.datazoom.io/streaming-video-monitoring/
https://www.datazoom.io/streaming-video-monitoring/
https://hub.docker.com/
https://hub.docker.com/
https://https://ffmpeg.org/
https://https://ffmpeg.org/
https://docs.mux.com/guides/video/configure-broadcast-software#good---720p-30fps
https://docs.mux.com/guides/video/configure-broadcast-software#good---720p-30fps
https://docs.mux.com/guides/video/configure-broadcast-software#good---720p-30fps
https://ottverse.com/creating-the-perfect-encoding-ladder/
https://ottverse.com/creating-the-perfect-encoding-ladder/
https://ottverse.com/creating-the-perfect-encoding-ladder/
https://ottverse.com/creating-the-perfect-encoding-ladder/
https://coin-or.github.io/pulp/
https://coin-or.github.io/pulp/
https://www.fcc.gov/reportsresearch/reports
https://www.fcc.gov/reportsresearch/reports
https://www.theoplayer.com/blog/encoding-cost-efficient-streaming
https://www.theoplayer.com/blog/encoding-cost-efficient-streaming
https://www.theoplayer.com/blog/encoding-cost-efficient-streaming
https://stream.twitch.tv/encoding/
https://stream.twitch.tv/encoding/
https://developer.apple.com/documentation/http_live_streaming/enabling_low-latency_http_live_streaming_hls
https://developer.apple.com/documentation/http_live_streaming/enabling_low-latency_http_live_streaming_hls
https://developer.apple.com/documentation/http_live_streaming/enabling_low-latency_http_live_streaming_hls
http://bit.ly/hls_spec_2017
https://dashif.org/docs/CR-Low-Latency-Live-r8.pdf
https://dashif.org/docs/CR-Low-Latency-Live-r8.pdf
https://reference.dashif.org/dash.js/
https://reference.dashif.org/dash.js/

[29] Alireza Erfanian, Hadi Amirpour, Farzad Tashtarian,
Christian Timmerer, and Hermann Hellwagner. LwTE:
Light-Weight Transcoding at the Edge. IEEE Access,
9:112276–112289, 2021.

[30] Michael R. Garey and David S. Johnson. Computers
and Intractability; A Guide to the Theory of NP-
Completeness. 1990.

[31] Syed Hasan, Sergey Gorinsky, Constantine Dovrolis,
and Ramesh K. Sitaraman. Trade-Offs in Optimizing
the Cache Deployments of CDNs. In IEEE INFOCOM,
pages 460–468. IEEE, 2014.

[32] Tianchi Huang, Rui-Xiao Zhang, and Lifeng Sun.
Deep Reinforced Bitrate Ladders for Adaptive Video
Streaming. In NOSSDAV, pages 66–73, 2021.

[33] Tianchi Huang, Chao Zhou, Rui-Xiao Zhang, Chenglei
Wu, Xin Yao, and Lifeng Sun. Comyco: Quality-Aware
Adaptive Video Streaming via Imitation Learning. In
ACM MM, pages 429–437, 2019.

[34] Quan Huynh-Thu and Mohammad Ghanbari. Scope of
Validity of PSNR in Image/Video Quality Assessment.
Electronics Letters, 44:800–801(1), June 2008.

[35] ISO/IEC. ISO/IEC 23000-19:2020 Information
Technology – Multimedia Application Format (MPEG-
A) – Part 19: Common Media Application Format
(CMAF) for Segmented Media. [Online] Available:
https://www.iso.org/standard/79106.html,
2020. Accessed on Jan. 26, 2023.

[36] ISO/IEC. 2019. Information Technology — Dynamic
Adaptive Streaming over HTTP (DASH) — Part 1: Me-
dia Presentation Description and Segment Formats. In-
ternational standard 23009-1:2019, International Orga-
nization for Standardization, December 2019.

[37] Jan Ozer. Saving on H.264 Encoding and Streaming:
Deploy Capped CRF. [Online] Available: https:
//tinyurl.com/CappedCRF, 2018. Online; accessed
on Feb. 12, 2022.

[38] Alan B. Johnston and Daniel C. Burnett. WebRTC: APIs
and RTCWEB Protocols of the HTML5 Real-Time Web.
Digital Codex LLC, 2012.

[39] Theo Karagkioules, Rufael Mekuria, Dirk Griffioen, and
Arjen Wagenaar. Online Learning for Low-Latency
Adaptive Streaming. In ACM MMSys, pages 315–320,
2020.

[40] Angeliki V. Katsenou, Fan Zhang, Kyle Swanson,
Mariana Afonso, Joel Sole, and David R. Bull.
VMAF-Based Bitrate Ladder Estimation for Adaptive
Streaming. In PCS, pages 1–5, June 2021.

[41] Dilip Kumar Krishnappa, Michael Zink, and Ramesh K.
Sitaraman. Optimizing the Video Transcoding Workflow
in Content Delivery Networks. In ACM MMSys, pages
37–48, 2015.

[42] Pierre Lebreton and Kazuhisa Yamagishi. Predicting
User Quitting Ratio in Adaptive Bitrate Video Stream-
ing. IEEE Transactions on Multimedia, 23:4526–4540,
2021.

[43] Pierre Lebreton and Kazuhisa Yamagishi. Quitting
Ratio-Based Bitrate Ladder Selection Mechanism for
Adaptive Bitrate Video Streaming. IEEE Transactions
on Multimedia, pages 1–14, 2023.

[44] Dayoung Lee, Jungwoo Lee, and Minseok Song. Video
Quality Adaptation for Limiting Transcoding Energy
Consumption in Video Servers. IEEE Access, 7:126253–
126264, 2019.

[45] Zhi Li, Christos Bampis, Julie Novak, Anne Aaron, Kyle
Swanson, Anush Moorthy, and Jan De Cock. VMAF:
The Journey Continues. Netflix Technology Blog, 25(1),
2018.

[46] Melissa Licciardello, Lukas Humbel, Fabian Rohr,
Maximilian Grüner, and Ankit Singla. [Solution]
Prepare Your Video for Streaming with Segue. Journal
of Systems Research, 2(1), 2022.

[47] Megha Manohara, Anush Moorthy, Jan De Cock,
Ioannis Katsavounidis, and Anne Aaron. Optimized
Shot-Based Encodes: Now Streaming. The Netflix Tech
Blog, 2018.

[48] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural Adaptive Video Streaming with Pensieve. In
ACM SIGCOMM, pages 197–210, 2017.

[49] Vignesh V. Menon, Hadi Amirpour, Mohammad
Ghanbari, and Christian Timmerer. ETPS: Efficient Two-
Pass Encoding Scheme for Adaptive Live Streaming. In
IEEE ICIP, pages 1516–1520, October 2022.

[50] Vignesh V. Menon, Hadi Amirpour, Mohammad
Ghanbari, and Christian Timmerer. OPTE: Online Per-
Title Encoding for Live Video Streaming. In IEEE
ICASSP, pages 1865–1869, May 2022.

[51] Jan Ozer. Encoding Ladders: What You Need to Know.
https://www.wowza.com/blog/encoding-lad
ders-what-you-need-to-know, 2022. [Online;
accessed 27-April-2023].

[52] Roger Pantos and William May. HTTP Live Streaming.
RFC 8216, August 2017.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 605

https://www.iso.org/standard/79106.html
https://tinyurl.com/CappedCRF
https://tinyurl.com/CappedCRF
https://www.wowza.com/blog/encoding-ladders-what-you-need-to-know
https://www.wowza.com/blog/encoding-ladders-what-you-need-to-know

[53] Yuriy A. Reznik, Xiangbo Li, Karl O. Lillevold, Abhijith
Jagannath, and Justin Greer. Optimal Multi-Codec
Adaptive Bitrate Streaming. In IEEE ICMEW, pages
348–353, 2019.

[54] Yuriy A. Reznik, Karl O. Lillevold, Abhijith Jagannath,
Justin Greer, and Jon Corley. Optimal Design of
Encoding Profiles for ABR Streaming. In PV Workshop,
pages 43–47, June 2018.

[55] Sandvine Inc. The Global Internet Phenomena Report.
[Online] Available: https://www.sandvine.com/p
henomena, 2022. Online; accessed on March. 15, 2022.

[56] Babak Taraghi, Minh Nguyen, Hadi Amirpour, and
Christian Timmerer. Intense: In-Depth Studies on Stall
Events and Quality Switches and Their Impact on the
Quality of Experience in HTTP Adaptive Streaming.
IEEE Access, 9:118087–118098, 2021.

[57] Babak Taraghi, Anatoliy Zabrovskiy, Christian Tim-
merer, and Hermann Hellwagner. CAdViSE: Cloud-
Based Adaptive Video Streaming evaluation Framework
for the Automated Testing of Media Players. In ACM
MMSys, pages 349–352, 2020.

[58] Farzad Tashtarian, Abdelhak Bentaleb, Hadi Amirpour,
Babak Taraghi, Christian Timmerer, Hermann Hellwag-
ner, and Roger Zimmermann. LALISA: Adaptive Bi-
trate Ladder Optimization in HTTP-Based Adaptive
Live Streaming. In IEEE/IFIP NOMS, 2023.

[59] Farzad Tashtarian, Abdelhak Bentaleb, Alireza Erfanian,
Hermann Hellwagner, Christian Timmerer, and Roger
Zimmermann. HxL3: Optimized Delivery Architecture
for HTTP Low-Latency Live Streaming. IEEE
Transactions on Multimedia, 25:2585–2600, 2022.

[60] Laura Toni, Ramon Aparicio-Pardo, Karine Pires, Gwen-
dal Simon, Alberto Blanc, and Pascal Frossard. Optimal
Selection of Adaptive Streaming Representations. ACM
Transactions on Multimedia Computing, Communica-
tions, and Applications, 11(2s):1–26, February 2015.

[61] Jeroen Van der Hooft, Stefano Petrangeli, Tim Wauters,
Rafael Huysegems, Patrice Rondao Alface, Tom
Bostoen, and Filip De Turck. HTTP/2-Based Adap-
tive Streaming of HEVC Video Over 4G/LTE Net-
works. IEEE Communications Letters, 20(11):2177–
2180, 2016.

[62] Abhinau K. Venkataramanan, Cosmin Stejerean, and
Alan C. Bovik. FUNQUE: Fusion of Unified Quality
Evaluators. In IEEE ICIP, pages 2147–2151, October
2022.

[63] Wowza Media Systems. Video Streaming Latency
Report. September 2019, Report, https://www.wo
wza.com/wp-content/uploads/Streaming-Video
-Latency-Report-Interactive-2019.pdf.

[64] Xu Zhang, Yiyang Ou, Siddhartha Sen, and Junchen
Jiang. SENSEI: Aligning Video Streaming Quality with
Dynamic User Sensitivity. In NSDI, pages 303–320,
2021.

[65] Hongcheng Zhong, Jun Xu, Chen Zhu, Donghui Feng,
and Li Song. Complexity-Oriented Per-Shot Video
Coding Optimization. In IEEE ICME, pages 1–6, 2022.

A QoE Model

Our work and, specifically, the evaluation metrics in
Section 5.2 adopt the following QoE model to express QoE
as a weighted sum of four terms [33]:

QoE = ω1

N

∑
n=1

q(Rn)+ω2

N

∑
n=1

Tn+ (11)

ω3

N−1

∑
n=1

[q(Rn+1)−q(Rn)]++ω4

N−1

∑
n=1

[q(Rn+1)−q(Rn)]−

where bitrate Rn and stall time Tn characterize each segment n,
function q(Rn) computes VMAF of the segment, and the
last two terms express VMAF instability over N consecutive
segments, with different weights for VMAF increases and
decreases. The QoE model uses weights ω1 = 0.8469, ω2 =
−28.7959, ω3 = 0.2979, and ω4 =−1.0610.

B Correlation between PSNR and VMAF

To measure video quality quickly enough for live streaming,
the ARTEMIS design in Section 4.2 relies on PSNR rather
than VMAF. For different segment durations and content
types, Figure 14 demonstrates that PSNR strongly correlates
with VMAF.

C Notation in the OTL Selection

Table 2 sums up the notation in Section 4.3 that formulates
and solves the MILP to determine a new bitrate ladder.

D Experimental Settings

To elaborate on the setup presented in Section 5.2,
Table 3 describes the three static content-aware ILP, Netflix-
Animation, and Netflix-Movie bitrate ladders in contrast with
three customized ARTEMIS ladders. Figure 15 illustrates
bandwidth fluctuations in the LTE, AmazonFCC, Cascade-5,
and Cascade-20 network traces used in our experiments.

606 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.sandvine.com/phenomena
https://www.sandvine.com/phenomena
https://www.wowza.com/wp-content/uploads/Streaming-Video-Latency-Report-Interactive-2019.pdf
https://www.wowza.com/wp-content/uploads/Streaming-Video-Latency-Report-Interactive-2019.pdf
https://www.wowza.com/wp-content/uploads/Streaming-Video-Latency-Report-Interactive-2019.pdf

0.0 0.2 0.4 0.6 0.8 1.0
PSNR

Animation(1s)

0.0

0.2

0.4

0.6

0.8

1.0

VM
AF

0.0 0.2 0.4 0.6 0.8 1.0
PSNR

Animation(2s)

0.0

0.2

0.4

0.6

0.8

1.0

VM
AF

0.0 0.2 0.4 0.6 0.8 1.0
PSNR

Animation(4s)

0.0

0.2

0.4

0.6

0.8

1.0

VM
AF

0.0 0.2 0.4 0.6 0.8 1.0
PSNR

Documentary(1s)

0.0

0.2

0.4

0.6

0.8

1.0

VM
AF

0.0 0.2 0.4 0.6 0.8 1.0
PSNR

Documentary(2s)

0.0

0.2

0.4

0.6

0.8

1.0

VM
AF

0.0 0.2 0.4 0.6 0.8 1.0
PSNR

Documentary(4s)

0.0

0.2

0.4

0.6

0.8

1.0

VM
AF

0.0 0.2 0.4 0.6 0.8 1.0
PSNR

Movie(1s)

0.0

0.2

0.4

0.6

0.8

1.0

VM
AF

0.0 0.2 0.4 0.6 0.8 1.0
PSNR

Movie(2s)

0.0

0.2

0.4

0.6

0.8

1.0

VM
AF

0.0 0.2 0.4 0.6 0.8 1.0
PSNR

Movie(4s)

0.0

0.2

0.4

0.6

0.8

1.0

VM
AF

0.0 0.2 0.4 0.6 0.8 1.0
PSNR

Sport(1s)

0.0

0.2

0.4

0.6

0.8

1.0

VM
AF

0.0 0.2 0.4 0.6 0.8 1.0
PSNR

Sport(2s)

0.0

0.2

0.4

0.6

0.8

1.0

VM
AF

0.0 0.2 0.4 0.6 0.8 1.0
PSNR

Sport(4s)

0.0

0.2

0.4

0.6

0.8

1.0

VM
AF

Figure 14: Correlation between PSNR and VMAF.

Table 2: Notation summary.
Symbol Description

Input parameters
B Set with indexes of the m representations in the mega-manifest
bi Bitrate of representation i
ri Number of requests for bitrate bi

F(bi) Quality indicator function that predicts the PSNR value
of the segment with bitrate bi

ℓ Maximum number of representations in the OTL
β Maximum changes between two successive OTLs
α Weight in the objective function
x̄i Indicator whether bitrate bi appears in the previous OTL

Variables
xi Indicator whether bitrate bi appears in the the new OTL

y j,i Indicator whether the OTL uses bitrate b j to accommodate
the requests for higher bitrate bi

q Quality improvement that the requested bitrates would
provide compared to the OTL bitrates

s Traffic reduction due to using the OTL bitrates instead of
the requested bitrates

E Additional Results for Scenario I

To complement the experimental results presented for
Scenario I in Figures 8a-8e of Section 5.3, Table 4 depicts the
mean and standard deviation for the stall duration, bitrate,
and VMAF. The results on the stall duration show that
ARTEMIS outperforms the baselines by efficiently updating
the OTL. Due to leveraging the client-side information,
ARTEMIS succeeds in detecting the stalls and adjusts the
OTL by selecting lower bitrates to mitigate the stalls while
maintaining an acceptable average VMAF value. Table 4
reveals that ARTEMIS serves the players with lower average
bitrates for almost all network traces and numbers of players.
However, because ARTEMIS considers the estimated PSNR
values of the subsequent segments, the lower served bitrates
decrease VMAF insignificantly. The comparison with the
Theo ladder on the LTE network trace shows that ARTEMIS
even improves the average VMAF in some situations despite
decreasing the average served bitrates. Figure 16 evaluates the

0 100 200 300 400 500
Time (s)
(a) LTE

2
4
6

Bi
ta

rte
 (M

bp
s)

0 100 200 300 400 500
Time (s)

(b) AmazonFCC

2
4
6
8

Bi
ta

rte
 (M

bp
s)

0 100 200 300 400 500
Time (s)

(c) Cascade-5

1
2
4

7

Bi
ta

rte
 (M

bp
s)

0 100 200 300 400 500
Time (s)

(d) Cascade-20

1
2
4

7

Bi
ta

rte
 (M

bp
s)

Figure 15: Bandwidth fluctuations in the network traces.

Theo Bitmovin Mux Pensive TwitchARTEMIS
(a) LTE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Av

g.
 Q

oE

Theo Bitmovin Mux Pensive TwitchARTEMIS
(b) Cascade-5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Av

g.
 Q

oE

Figure 16: Normalized average QoE with ARTEMIS’
dynamic ladders vs. the five static baselines.

normalized average QoE with ARTEMIS’ dynamic ladders
vs. the five static baselines.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 607

Table 3: Representations in the three static content-aware ILP, Netflix-Animation, and Netflix-Movie ladders vs. three customized
ARTEMIS ladders.

BL R
es

.@
M

bp
s

22
4p

@
0.

05
2

36
0p

@
0.

08
2

36
0p

@
0.

28
3

72
0p

@
0.

45
1

72
0p

@
1.

0

72
0p

@
1.

4

72
0p

@
1.

62
5

72
0p

@
1.

8

72
0p

@
2.

25

72
0p

@
3.

00
2

72
0p

@
3.

4

72
0p

@
3.

75

72
0p

@
4.

3

72
pp

@
5.

32

10
80

p@
8.

34

ILP [60] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ARTEMIS-BL1 [60] ✓ ✓ ✓ ✓ + + ✓ + + ✓ + + + ✓ ✓

36
0p

@
0.

2

44
0p

@
0.

33
3

64
0p

@
0.

53
3

63
0p

@
0.

72
5

63
0p

@
1.

0

81
0p

@
1.

27
5

81
0p

@
1.

4

81
0p

@
1.

6

10
80

p@
1.

8

10
80

p@
2.

1

10
80

p@
2.

25

10
80

p@
2.

8

10
80

p@
3.

2

10
80

p@
3.

5

Netflix-Animation [12] ✓ ✓ ✓ ✓ ✓ ✓ ✓

ARTEMIS-BL2 ✓ ✓ ✓ ✓ + ✓ + + + ✓ + + + ✓

31
5p

@
0.

2

50
3p

@
0.

4

74
3p

@
0.

63
8

74
3p

@
0.

75

74
3p

@
1.

08
8

90
0p

@
1.

77
5

90
0p

@
2.

0

90
0p

@
2.

25

90
0p

@
2.

5

10
13

p@
2.

95

10
13

p@
3.

4

10
13

p@
3.

75

10
13

p@
4.

3

10
80

p@
4.

87
5

Netflix-Movie [13] ✓ ✓ ✓ ✓ ✓ ✓ ✓

ARTEMIS-BL3 ✓ ✓ ✓ + ✓ ✓ + + + ✓ + + + ✓

Table 4: Impact by the Theo (T), ARTEMIS (A), Bitmovin (B), Mux (M), Pensieve (P), and Twitch (W) bitrate ladders (BLs) on
the stall duration, bitrate, and VMAF of served segments on four network traces (NTs).

NT BL
Stall duration (s) Bitrate (Mbps) VMAF

#10 #20 #50 #100 #10 #20 #50 #100 #10 #20 #50 #100

LT
E

T 37.1±13.9 41.3±17.4 37.5±14.8 36.7±13.1 2.2±0.5 2.3±0.5 2.1±0.5 2.2±0.6 57.0±21.0 58.5±20.5 57.5±20.9 57.9±20.8
A 36.4±11.6 29.9±10.6 30.6±9.9 33.5±10.4 2.0±0.4 1.7±0.3 1.7±0.2 2.1±0.4 60.0±18.5 60.4±18.5 60.6±18.4 62.5±18.9
B 36.1±15.9 38.6±14.1 37.1±11.3 34.3±13.4 2.2±0.6 2.1±0.5 2.1±0.5 2.1±0.5 62.6±19.4 61.7±18.7 62.2±18.9 62.3±19.2
M 44.0±15.4 42.2±14.1 47.3±11.3 43.7±13.4 2.4±0.6 2.3±0.5 2.5±0.6 2.5±0.6 62.5±19.1 62.2±18.3 64.2±17.9 63.4±18.4
P 45.0±16.6 42.4±14.8 40.5±14.2 39.4±13.0 2.6±0.7 2.5±0.6 2.5±0.6 2.5±0.6 64.8±17.6 64.0±17.7 65.0±17.8 64.8±17.4
W 41.9±14.6 43.8±17.7 42.1±12.2 43.7±15.7 2.3±0.6 2.4±0.8 2.4±0.8 2.5±0.8 62.1±18.4 63.1±17.5 62.5±17.6 63.2±17.8

A
m

az
on

FC
C T 40.7±14.8 44.0±16.1 40.2±15.2 40.8±17.5 2.0±0.7 2.1±0.7 2.0±0.7 2.0±0.8 53.9±22.6 55.1±22.2 55.8±23.2 55.4±22.3

A 39.0±16.4 35.9±14.4 35.1±15.2 35.0±14.3 1.5±0.6 1.5±0.5 1.7±0.5 1.7±0.6 51.3±22.1 50.9±22.8 53.2±22.0 53.5±22.2
B 44.1±20.0 39.6±21.8 35.7±19.1 36.1±20.2 1.9±0.8 1.8±0.7 1.8±0.7 1.8±0.7 56.2±22.1 55.1±23.1 54.0±23.5 55.2±22.7
M 62.0±13.9 63.1±17.9 53.3±18.5 55.2±19.7 2.5±0.7 2.5±0.6 2.3±0.6 2.3±0.7 61.4±20.8 62.4±19.3 54.3±21.4 55.4±20.9
P 51.3±19.0 46.7±18.2 53.5±17.2 42.2±18.6 2.2±0.7 2.2±0.8 2.2±0.8 2.2±0.7 58.3±21.9 57.7±21.2 57.2±22.1 58.0±21.7
W 52.1±20.9 50.2±21.4 48.5±19.2 48.9±20.7 2.4±1.2 2.5±1.2 2.3±1.2 2.3±1.1 58.5±20.9 59.1±20.8 57.3±21.0 58.1±21.3

C
as

ca
de

-5

T 37.1±10.9 36.6±10.8 32.6±8.8 32.0±11 1.8±0.3 1.7±0.4 1.8±0.3 1.7±0.3 52.7±22.5 51.0±22.5 52.1±23.4 51.8±22.4
A 29.6±8.9 30.7±10.3 32.6±11.2 27.7±10.3 1.5±0.2 1.6±0.2 1.6±0.3 1.5±0.3 56.5±20.2 55.3±20.6 56.7±20.8 54.5±21.7
B 36.0±10.1 36.3±9.5 35.7±10.5 33.6±12.5 1.8±0.3 1.7±0.3 1.8±0.4 1.7±0.3 57.4±21.9 56.0±22.3 56.4±22.0 56.3±21.6
M 45.1±10.6 48.1±10.3 46.8±10.6 44.7±10.3 2.1±0.3 2.0±0.3 2.0±0.3 2.0±0.3 48.4±21.3 57.7±21.2 57.4±20.9 57.2±21.1
P 43.5±11.2 46.0±12.0 44.2±9.6 42.5±12.6 2.1±0.4 2.1±0.4 2.1±0.3 2.0±0.4 58.6±21.2 58.8±19.9 59.1±20.4 57.9±20.6
W 37.3±10.7 43.3±12.0 38.5±11.3 38.4±12.9 1.9±0.3 2.0±0.4 1.8±0.3 1.9±0.4 57.2±20.5 57.4±20.5 56.4±21.0 57.1±20.4

C
as

ca
de

-2
0

T 26.4±15.7 21.8±12.4 19.3±13.7 20.5±14.5 1.8±0.2 1.6±0.3 1.6±0.2 1.6±0.3 54.1±22.4 51.3±23.6 51.2±23.8 49.0±23.0
A 11.4±8.2 13.3±11.9 16.7±10.5 15.1±11.2 1.7±0.4 1.5±0.2 1.4±0.3 1.4±0.3 55.2±22.7 52.5±25.3 51.1±23.3 50.3±21.8
B 15.4±10.9 18.8±13.3 17.3±14.2 17.4±13.9 1.6±0.1 1.6±0.3 1.6±0.3 1.6±0.3 53.1±23.9 52.5±25.2 52.2±24.9 51.9±25.0
M 30.0±15.1 34.5±13.7 32.3±14.9 32.0±15.0 2.0±0.2 2.0±0.2 2.0±0.3 2.0±0.3 55.2±21.9 55.3±22.3 56.9±23.3 54.0±23.0
P 20.4±13.4 22.5±14.6 20.8±14.5 21.0±14.1 1.8±0.2 1.8±0.3 1.7±0.2 1.7±0.3 55.0±22.6 54.7±23.7 54.7±23.5 52.0±24.0
W 23.9±15.0 26.5±14.5 24.8±15.2 25.2±15.5 1.8±0.2 1.8±0.3 1.8±0.3 1.8±0.2 54.7±22.8 54.2±23.4 54.6±23.8 51.9±23.0

F Sensitivity to the ABR Algorithm

While the default ABR algorithm in our experiments is L2A,
we also examine how the choice of the ABR algorithm affects
the ARTEMIS performance. Specifically, we consider LoL+

as an alternative to L2A. Figure 17 evaluates ARTEMIS’
dynamic ladders against the five static baselines on the

four network traces. The results demonstrate that ARTEMIS
consistently outperforms the baselines in terms of the
stall duration, bitrate switching, VMAF switching, bitrate
instability, and VMAF instability regardless of the chosen
ABR algorithm. Although Figure 17b shows that ARTEMIS
serves the players with lower bitrates, Figures 17g and 17h
reveal that the decreases in VMAF and PSNR are negligible.

608 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(a) Stall duration

0

50

100

Ti
m

e
(s

)

37
.5

37
.1

47
.3

40
.6

42
.1

30
.7

35
.6

34
.7

42
.8

40
.6

41
.7

28
.4

32
.6

35
.7 46

.9

44
.3

38
.5

32
.733
.4

36
.5 47

.5

43
.1

41
.6

27
.8

LTE|L2A LTE|LoL+ Cascade-5|L2A Cascade-5|LoL+

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(b) Bitrate

0

2

4

M
bp

s

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(c) Bitrate switching

0

20

40

12
.1

11
.8

12
.9

13
.1

14
.2

11
.9

11
.6

11
.9

12
.9

15
.3

14
.8

11
.7

17
.3

15
.6

17
.3

19
.3

19
.6

16
.0

16
.8

16
.0

16
.8 20

.8

19
.1

17
.5

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(d) JND switching

0

10

20

30

10
.4

11
.3

10
.1

9.
9

11
.0

8.
8

9.
9

11
.1

10
.0

12
.0

11
.9

9.
3

14
.0

14
.8

13
.4

15
.0 15
.1

13
.8

14
.5 14
.8

13
.0 16

.1

14
.6

13
.8

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(e) Bitrate instability

200k

400k

600k

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(f) VMAF instability

0

2

4

6

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(g) VMAF

0

25

50

75

100

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(h) PSNR

20

30

40

Figure 17: Impact of choosing L2A vs. LoL+ as the ABR
algorithm on the performance with the five static ladders and
ARTEMIS’ dynamic ladders.

G Influence of the Content Type

We assess ARTEMIS’ dynamic ladders against the five
static baselines on the LTE and Cascade-5 network traces.
Figure 18 reports on the stall duration, bitrates, VMAF, and
PSNR. ARTEMIS reduces the stall reduction compared to
the static fixed-length baselines for two different content
types. We attribute the reduction to the substantial bandwidth
fluctuations in both considered network traces, which leads to
frequent stalls. Figures 18c and 18d illustrate that ARTEMIS
mitigates the stalls by adding representations with lower
bitrates to the OTL. Despite the reduction in the served
bitrates, ARTEMIS maintains an acceptable VMAF value
for the two content types. ARTEMIS surpasses the baseline
performance because its ladder construction accounts for
video quality measured via PSNR which, unlike VMAF, is
quickly computable. The comparison of Figures 18c and 18d
with Figures 18g and 18h suggests a strong correlation
between PSNR and VMAF. Figure 14 in Appendix B
corroborates this correlation.

Figure 19 extends the evaluation by reporting on the bitrate
switching, bitrate instability, JND switching, and VMAF
instability. We set JND to 6 [18]. While the bitrate switching
is similar with ARTEMIS’ dynamic ladders and baselines,
ARTEMIS reduces the bitrate instability compared to the
baseline ladders. We attribute this reduction to composing
the mega-manifest from the large number of representations.
Overall, the evaluation shows that ARTEMIS outperforms the
baselines with different content types.

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(a) Stall duration | Content: Sport

20

40

60

Ti
m

e
(s

)

LTE Cascade-5

Theo Bitmovin Mux Pensive Twitch ARTEMIS
 (b) Stall duration | Content: Documentary

20

40

60

80

Ti
m

e
(s

)

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(c) Bitrate | Content: Sport

1

2

3

4

M
bp

s

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(d) Bitrate | Content: Documentary

2

4

6

M
bp

s

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(e) VMAF | Content: Sport

30

40

50

60

70

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(f) VMAF | Content: Documentary

60

70

80

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(g) PSNR | Content: Sport

28

30

32

dB

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(h) PSNR | Content: Documentary

38

40

42

44

dB

Figure 18: Stall duration, served bitrates, VMAF, and PSNR
under the five static ladders and ARTEMIS’ dynamic ladders
for sport vs. documentary as the content type.

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(a) Bitrate switching | Content: Sport

0

10

20

30
LTE Cascade-5

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(b) Bitrate switching | Content: Documentary
0

10

20

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(c) Bitrate instability | Content: Sport

0

0.2

0.4

0.6

0.8

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(d) Bitrate instability | Content: Documentary

0
0.2
0.4
0.6
0.8

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(e) JND switching | Content: Sport

0

10

20

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(f) JND switching | Content: Documentary

0

10

20

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(g) VMAF instability | Content: Sport

0.0
2.5
5.0
7.5

10.0

dB

Theo Bitmovin Mux Pensive Twitch ARTEMIS
(h) VMAF instability | Content: Documentary

0
2
4
6
8

Figure 19: Bitrate switching, bitrate instability, JND switch-
ing, and VMAF instability under the five static ladders and
ARTEMIS’ dynamic ladders for sport vs. documentary as the
content type.

H Impact of Weight α

We evaluate the impact of weight α on the LTE trace and a
constant-bandwidth trace where the network bandwidth avail-
able for each player remains fixed at 7 Mbps throughout the
streaming session. We assess how ARTEMIS performs when
provided with the following three StallAl pha dictionaries:

• D-I = {1:[0,1], 0.9:[1,2], 0.8:[2,3], 0.7:[3,4], 0.6:[4,5],
0.5:[5,100]},

• D-II = {1:[0,2], 0.9:[2,4], 0.8:[4,6], 0.7:[6,8], 0.6:[8,10],
0.5:[10,100]}, and

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 609

D-I D-II D-III α=1α=0.5 D-I α=0.5
(a) Stall duration

0

25

50

75

Ti
m

e
(s

)

LTE network trace Constant bandwidth (BW.)

D-I D-II D-III α=1α=0.5 D-I α=0.5
(b) Bitrate

2

4

6

M
bp

s

D-I D-II D-III α=1α=0.5 D-I α=0.5
(c) VMAF

50

65

80

D-I D-II D-III α=1α=0.5 D-I α=0.5
(d) Bitrate switching

5
10
15
20
25

D-I D-II D-III α=1α=0.5 D-I α=0.5
(e) JND switching

0

10

20

D-I D-II D-III α=1α=0.5 D-I α=0.5
(f) Bitrate instability

0
1e5
2e5
3e5
4e5
5e5

D-I D-II D-III α=1α=0.5 D-I α=0.5
(g) VMAF instability

0

5

10

D-I D-II D-III
 LTE network trace

α=1α=0.5 D-I α=0.5
 Constant BW.

(h)

0.0

0.5

1.0

1.5

Av
g.

 o
f α

0

5

10

15

20

No
. o

f u
pd

at
ed

 O
TL

Updated OTL#

Figure 20: Impact of using the D-I, D-II, and D-III dictionaries
to dynamically determine the α value vs. employing the static
α values of 0.5 and 1.

• D-III = {1:[0,5], 0.9:[5,10], 0.8:[10,15], 0.7:[15,100]}.

The D-I, D-II, and D-III StallAl pha dictionaries exhibit
different sensitivity levels to stall events. Dictionary D-I
prioritizes stall duration over video quality and decreases
α in response to short stalls. For example, ARTEMIS with
dictionary D-I sets α to 1 when the average stall duration
in the current time slot, which lasts 10 s, is less than 1 s.
On the other hand, dictionary D-III sets α to 1 when the
average stall duration is below 5 s. Figure 20 shows that
reduction of this sensitivity causes more stalls and increases
the bitrate instability, JND switching, bitrate instability, and
VMAF instability.

We also consider an ARTEMIS variant that uses a static
α value instead of relying on the StallAnalysis() function
to determine α dynamically. Figure 20 indicates that the
ARTEMIS instances with dictionary D-I and constant α of
0.5 behave similarly on the LTE trace. The similar behavior
occurs because the bandwidth in the LTE trace fluctuates
significantly and forces ARTEMIS with dictionary D-I
to update the OTL eight times in order to handle stalls.
Figure 20h demonstrates that the average of dynamic α values
for ARTEMIS with dictionary D-I is 0.69, which is close
to 0.5 in the static α setting. However, a static α value
makes ARTEMIS perform suboptimally on the constant-
bandwidth network trace by considerably reducing the video
quality. Based on the experiments, we select D-I as the default

ℓ=4 ℓ=5 ℓ=6
(a) Normalized QoE

0.0

0.5

1.0

0.
9

1.
0

1.
0

0.
8

0.
8

0.
8

LTE AmazonFCC

ℓ=4 ℓ=5 ℓ=6
(b) Stall duration

0

20

40

Ti
m

e
(s

)

ℓ=4 ℓ=5 ℓ=6
(c) Bitrate

0

0.5

1

1.5

2

2.5

M
bp

s

ℓ=4 ℓ=5 ℓ=6
(d) VMAF

40

50

60

70

ℓ=4 ℓ=5 ℓ=6
(e) Normalized encoding cost

0.00

0.25

0.50

0.75

1.00

Figure 21: Impact of maximum OTL length ℓ on the
ARTEMIS performance.

0.1 0.2 0.4 0.5 0.6 0.8 0.9 1.0 1.1 1.2 1.4 1.6 1.8 2.0 2.2 2.5 2.8 3.0 3.2 3.4 4.0 4.3 4.5
Bitrate (Mbps)

ℓ=4
ℓ=5
ℓ=6
ℓ=4
ℓ=5
ℓ=6Am

az
on

FC
C

 L

TE

 100 0 28 0 22 0 9 63 28 0 5 43 9 16 3 66 0 0 0 3 0 3 8

100 0 28 0 45 0 92 0 100 0 4 20 0 76 0 0 27 0 0 0 0 0 8

100 0 22 65 0 23 92 0 100 0 0 3 0 100 0 0 13 0 0 0 0 0 74

100 0 91 9 7 0 32 59 8 0 0 3 0 41 5 20 0 3 3 0 17 0 8

100 0 100 20 43 0 0 46 11 10 0 0 0 88 2 0 0 0 0 0 0 0 80

100 26 100 22 15 46 45 0 42 0 5 0 0 95 0 5 0 0 9 0 0 0 80

Figure 22: Bitrates selected by ARTEMIS with different
values of maximum OTL length ℓ.

StallAl pha dictionary of ARTEMIS because dictionary D-I
supports the best response to different network conditions
while maintaining high video quality.

I Impact of Maximum OTL Length ℓ

We run ARTEMIS on the LTE and AmazonFCC network
traces with different values of maximum OTL length ℓ.
Figure 21 presents an exciting result that an increase in
ℓ improves the served bitrates, VMAF, and encoding cost.
However, these improvements do not guarantee higher QoE,
i.e., longer OTLs increase the resource cost without achieving
a remarkable improvement in QoE. With relatively short
OTLs, the difference between two adjacent bitrates in the OTL
is typically large. Thus, the ABR algorithm keeps requesting
the same bitrate when the available network bandwidth
fluctuates mildly. On the other hand, when the bitrate
switching does occur, the amplitude of the bitrate change
is high. With a longer OTL, the bitrate switching becomes
more frequent, and the bitrate-change amplitude diminishes.
Figure 22 depicts the bitrates selected by ARTEMIS for its
OTL with different values of the maximum OTL length.

J Impact of Time-Slot Duration θ

We investigate the impact of the time-slot duration on the
ARTEMIS performance. It is essential for the time-slot
duration to be neither too long nor too short. When the

610 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

LTE Cascade-5
(a) Norm. QoE

0.0

0.2

0.4

0.6

0.8

1.0

1.2
6 s 10 s 14 s

LTE Cascade-5
(b) Stall duration

0

10

20

30

40

50

Ti
m

e
(s

)
LTE Cascade-5

(c) Bitrate
0

0.5

1

1.5

2

M
bp

s
LTE Cascade-5

(d) Norm. bitrate instability
0.0

0.1

0.2

0.3

0.4

0.5

LTE Cascade-5
(e) Norm. VMAF instability

0.0

0.1

0.2

0.3

0.4

0.5

LTE Cascade-5
(e) No. updated OSB

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Figure 23: Impact of the time-slot duration on the ARTEMIS
performance with the segment duration of 2 s.

LTE Cascade-5
(a) Norm. QoE

0.6

0.8

1.0

1.2

1.4
6 s 10 s 14 s

LTE Cascade-5
(b) Stall duration

0

10

20

30

Ti
m

e
(s

)

LTE Cascade-5
(c) Bitrate

0

0.5

1

1.5

2

M
bp

s

LTE Cascade-5
(d) Norm. bitrate instability

0.0

0.2

0.4

0.6

LTE Cascade-5
(e) Norm. VMAF instability

0.0

0.1

0.2

0.3

0.4

0.5

0.6

LTE Cascade-5
(e) No. updated OSB

0

5

10

15

20

25

Figure 24: Impact of the time-slot duration on the ARTEMIS
performance with the segment duration of 1 s.

time-slot duration is too long, ARTEMIS might be unable
to promptly react to condition changes because ARTEMIS
checks for a need to update the OTL only at the end of each
time slot. The slow response degrades QoE. On the other
hand, if the time-slot duration is too short, ARTEMIS incurs
larger overhead, e.g., due to solving the MILP more frequently.
Other potential concerns include unnecessary updates of the
OTL, higher bitrate instability for the clients, drifts in the live
encoder, and emergence of video compression artifacts due
to frequent changes in the OTL.

Figures 23 and 24 evaluate the impact of the time-slot
duration on the ARTEMIS performance when the segment
duration is set to 2 s or 1 s, respectively. The experiments
rely on the LTE and Cascade-5 network traces and consider
6, 10, and 14 s as three values of the time-slot duration. For
both values of the segment duration, our results show that the
time-slot duration of 10 s provides the best performance. An
algorithm for dynamic configuration of the time-slot duration
is an exciting direction for future research on ARTEMIS.

Table 5: Stall duration, bitrate instability, and VMAF
instability under ARTEMIS’ dynamic ladders compared to
the ILP and Netflix ladders in Scenario II.

NT Bitrate ladder Stall (s) Bitrate instability VMAF instability
(×1e6)

LT
E

ILP BL [60] 32.3±14.6 0.5±0.2 6.3±2.8
ARTEMIS-BL1 [60] 31.1±12.7 0.2±0.08 3.2±1.4
Netflix-Animation 35.5±11.8 0.27±0.1 3.9±1.8
ARTEMIS-BL2 33.2±11.1 0.19±0.07 3.6±2.1
Netflix-Movie 40.6±13.5 0.37±0.13 4.0±2.1
ARTEMIS-BL3 36.1±16.6 0.22±0.077 3.0±1.6

A
m

az
on

FC
C Netflix-Animation 36.5±12.7 0.21±0.032 3.29±1.4

ARTEMIS-BL2 34.5±14.4 0.18±0.069 3.22±1.6
Netflix-Movie 40.8±13.8 0.35±0.12 4.8±2.2
ARTEMIS-BL3 35.1±10.11 0.20±0.069 4.5±2.3

C
as

ca
de

-5

Netflix-Animation 37.2±9.0 0.296±0.065 4.5±1.41
ARTEMIS-BL2 29.5±9.1 0.185±0.041 3.4±1.07
Netflix-Movie 45.5±0.2 0.42±0.087 4.5±1.5
ARTEMIS-BL3 31.5±12.3 0.22±0.081 3.5±1.4

C
as

ca
de

-2
0 Netflix-Animation 20.7±11.2 0.1±0.026 2.4±0.5

ARTEMIS-BL2 17.1±13.2 0.1±0.038 2.1±0.7
Netflix-Movie 24.5±11.6 0.16±0.035 3.2±1.09
ARTEMIS-BL3 17.9±13.8 0.13±0.032 2.9±0.92

K Extra Results for Scenario II

Table 5 characterizes the performance of the ILP, Netflix-
Animation, and Netflix-Movie bitrate ladders compared to
ARTEMIS’ three customized ladders in Scenario II.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 611

Credence: Augmenting Datacenter Switch Buffer Sharing with ML Predictions

Vamsi Addanki
TU Berlin

Maciej Pacut
TU Berlin

Stefan Schmid
TU Berlin

Abstract
Packet buffers in datacenter switches are shared across all the
switch ports in order to improve the overall throughput. The
trend of shrinking buffer sizes in datacenter switches makes
buffer sharing extremely challenging and a critical perfor-
mance issue. Literature suggests that push-out buffer sharing
algorithms have significantly better performance guarantees
compared to drop-tail algorithms. Unfortunately, switches are
unable to benefit from these algorithms due to lack of support
for push-out operations in hardware. Our key observation is
that drop-tail buffers can emulate push-out buffers if the future
packet arrivals are known ahead of time. This suggests that aug-
menting drop-tail algorithms with predictions about the future
arrivals has the potential to significantly improve performance.

This paper is the first research attempt in this direction. We
propose CREDENCE, a drop-tail buffer sharing algorithm aug-
mented with machine-learned predictions. CREDENCE can
unlock the performance only attainable by push-out algorithms
so far. Its performance hinges on the accuracy of predictions.
Specifically, CREDENCE achieves near-optimal performance
of the best known push-out algorithm LQD (Longest Queue
Drop) with perfect predictions, but gracefully degrades to the
performance of the simplest drop-tail algorithm Complete
Sharing when the prediction error gets arbitrarily worse. Our
evaluations show that CREDENCE improves throughput by
1.5x compared to traditional approaches. In terms of flow com-
pletion times, we show that CREDENCE improves upon the
state-of-the-art approaches by up to 95% using off-the-shelf
machine learning techniques that are also practical in today’s
hardware. We believe this work opens several interesting fu-
ture work opportunities both in systems and theory that we
discuss at the end of this paper.

1 Introduction
Datacenter switches come equipped with an on-chip packet
buffer that is shared across all the device ports in order to
improve the overall throughput and to reduce packet drops.
Unfortunately, buffers have become increasingly expensive
and chip-manufacturers are unable to scale up buffer sizes

 Optimal
Throughput

 Lower
Throughput

Harmonic
 Dynamic
Thresholds

without predictions

Push-out

 Perfect
Predictions

Drop-tail

Competitive Ratio1 N

LQD

 Arbitrarily
Large Error

Complete
 Sharing

Credence
Drop-tail Buffer Sharing with ML Predictions

with predictions

Figure 1: Augmenting drop-tail buffer sharing with ML
predictions has the potential to significantly improve
throughput compared to the best possible drop-tail algorithm
(without predictions), and unlock the performance that was
only attainable by push-out so far.

proportional to capacity increase [13]. As a result, the buffer
available per port per unit capacity of datacenter switches
has been gradually reducing over time. Worse yet, datacenter
traffic is bursty even at microsecond timescales [22, 57]. This
makes it challenging for a buffer sharing algorithm to max-
imize throughput. Recent measurement studies in large scale
datacenters point-out the need for improved buffer sharing
algorithms in order to reduce packet drops during congestion
events [22]. To this end, buffer sharing under shallow buffers
is an emerging critical problem in datacenters [1, 12].

The buffer sharing problem has been widely studied in the
literature from an online perspective [15] with the objective
to maximize throughput [9, 24, 26, 33, 34]. Traditional online
algorithms for buffer sharing can be classified into two types:
drop-tail e.g., Dynamic Thresholds (DT) [20], Harmonic [33],
ABM [1] and push-out e.g., Longest Queue Drop (LQD). The
performance gap of these algorithms compared to an offline
optimal (clairvoyant) algorithm can be expressed in terms of
the competitive ratio [15]. For instance, we say that an online
algorithm is 2-competitive if it performs at most 2x worse
compared to an offline optimal algorithm. Figure 1 illustrates

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 613

Algorithm Competitive Ratio
Complete Sharing [26] N+1

Dynamic Thresholds [20, 26] O(N)
Harmonic [33] ln(N)+2

LQD (push-out) [9, 26] 1.707
LateQD (clairvoyant) [14] 1

CREDENCE min(1.707 η, N)

Table 1: CREDENCE’s performance smoothly depends on
the prediction error (η). CREDENCE outperforms traditional
drop-tail buffer sharing algorithms and performs as good as
push-out when the predictions are perfect (η=1) but is also
never worse than Complete Sharing even when the predictions
are bad (η→∞). N denotes the number of ports.

the performance spectrum of drop-tail and push out buffer
sharing algorithms. In terms of throughput-competitiveness, it
is well-known that push-out algorithms perform significantly
better than drop-tail algorithms. In fact, no deterministic
drop-tail algorithm can perform better than a certain through-
put (a lower bound for competitive ratio), beyond which
only push-out algorithms exist (Figure 1). Table 1 presents
the competitive ratios of known algorithms. Interestingly,
LQD pushes out packets when the buffer is full, and it is
≈ 2-competitive whereas Complete Sharing drops packets
when the buffer is full, but it is N+1-competitive.

Intuitively, the poor throughput-competitiveness of
drop-tail buffers owes it to the fundamental challenge that
utilizing the buffer for some queues comes at the cost of
deprivation of buffer for others [1]. To this end, drop-tail
algorithms proactively drop packets i.e., packets are dropped
even when the buffer has remaining space [11, 20, 26, 28, 33].
On one hand, maintaining remaining buffer space is necessary
to serve future packet arrivals. On the other hand, maintaining
remaining buffer space could lead to under-utilization,
throughput loss and excessive packet drops. In contrast, the
superior throughput-competitiveness of push-out algorithms
owes it to their fundamental advantage to push out packets
instead of dropping them1. Hence, push-out algorithms can
utilize the entire buffer as needed and only push out packets
when multiple ports contend for buffer space. Although
push-out algorithms offer far superior performance guarantees
compared to drop-tail, hardly any datacenter switch supports
push-out operations for the on-chip shared buffer. This begs
the question: Are drop-tail buffer sharing algorithms ready
for the trend of shrinking buffer sizes?

Our key observation is that every push-out algorithm
can be converted to a drop-tail algorithm. However, such a
conversion requires certain (limited) visibility into the future
packet arrivals. Specifically, pushing out a packet is equivalent
to dropping the packet when it arrives. Recent advancements

1Push-out operation, similar to a drop operation, does not incur any
transmission delays, unlike extract-out [51].

in dataplane programmability and traffic predictions play a
pivotal role in providing such visibility into the future packet
arrivals [4, 17, 31, 37]: paving a way for better drop-tail buffer
sharing algorithms.

In this paper, we take the first step in this direction.
Figure 1 illustrates our perspective. We propose CREDENCE,
a drop-tail buffer sharing algorithm augmented with machine-
learned predictions. CREDENCE’s performance is tied to
the accuracy of these predictions. As the prediction error
decreases, CREDENCE unlocks the performance of push-out
algorithms and reaches the performance of the best-known
algorithm. Even when the prediction error grows arbitrarily
large, CREDENCE offers at least the performance of the
simplest drop-tail algorithm Complete Sharing. Table 1 gives
the competitive ratio of CREDENCE as a function of the
prediction error η. Importantly, CREDENCE’s performance
smoothly varies with the prediction error, generalizing the
performance space between the known push-out and drop-tail
algorithms. Hence, CREDENCE achieves the three goals of
prediction-augmented algorithms, in the literature referred
to as consistency, robustness and smoothness [42, 46].

In addition to the theoretical guarantees for CREDENCE’s
performance, our goal is also its practicality. Specifically,
without predictions, CREDENCE’s core logic only uses
additions, subtractions, and does not add additional complex-
ity compared to existing approaches. For predictions, we
currently use random forests, which have been recently shown
to be feasible on programmable switches at line rate [4, 17]. A
full implementation of CREDENCE in hardware unfortunately
requires switch vendor involvement since buffer sharing is
merely a blackbox even in programmable switches. With
this paper, we wish to gain attention from switch vendors
on the fundamental blocks required for such algorithms
to be deployed in the dataplane. We currently implement
CREDENCE in NS3 to evaluate its performance using realistic
datacenter workloads. We present a detailed discussion on the
practicality of CREDENCE later in this paper.

Our evaluations show that CREDENCE performs 1.5x better
in terms of throughput and up to 95% better in terms of flow
completion times, compared to alternative approaches.

We believe CREDENCE is a stepping stone towards further
improving buffer sharing algorithms. Especially, achieving
better performance than CREDENCE under large prediction
error remains an interesting open question. Our approach
of augmenting buffer sharing with predictions is not limited
to drop-tail algorithms, but push-out algorithms can also
benefit from predictions. We discuss exciting future research
directions both in systems and theory at the end of this paper.
In summary, our key contributions in this paper are:
■ CREDENCE, the first buffer sharing algorithm augmented

with predictions, achieving near-optimal performance with
perfect predictions while also guaranteeing performance
under arbitrarily large prediction error, and gradually
degrading the performance as the prediction error increases.

614 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

■ Extensive evaluations using realistic datacenter workloads,
showing that CREDENCE outperforms existing approaches
in terms of flow completion times.

■ All our artifacts have been made publicly available at
https://github.com/inet-tub/ns3-datacenter.

2 Motivation
In this section, we provide a brief background and motivate
our approach by highlighting the drawbacks of traditional ap-
proaches. We show the potential for reaching close-to-optimal
performance when buffer sharing algorithms are augmented
with machine-learned predictions. To this end, we first
describe our model and throughput competitiveness (§2.1).
We then discuss the drawbacks of existing approaches (§2.2).
We show that a renewed hope for improved buffer sharing is
enabled by the recent rise in algorithms with predictions (§2.3).

2.1 Buffer Sharing from Online Perspective
A network switch receives packets one after the other at each
of its ports. The switch does not know the packet arrivals
ahead of time. This makes buffer sharing inherently an online
problem i.e., algorithms must take instantaneous decisions
upon packet arrivals without the knowledge of the future. In
order to systematically understand the performance of such
algorithms, we take an online approach following the classical
model in the literature [9, 24, 26, 33, 34]. In this section, we
describe our model intuitively, and we refer to Appendix A
for formal definitions. Figure 2 illustrates the model.

Buffer model: We consider an output-queued switch with
N ports and a buffer size of B. Buffer is shared across all the
ports. A buffer sharing algorithm takes buffering decisions
that we describe next. We assume that time is discrete. At most
N packets can arrive in a single timeslot (since there are N
ports), and each port removes at most one packet in a timeslot.

Online algorithm: When a packet arrives, a buffer sharing
algorithm determines whether it should be accepted into the
available buffer space. Drop-tail algorithms can only accept
or discard incoming packets, while push-out algorithms can
also remove packets from the buffer.

Objective: The network throughput is of utmost importance
for datacenter operators since throughput often relates to the
cost in typical business models (e.g., $ per bandwidth usage).
We hence consider throughput as an objective function,
following the literature. Specifically, for any packet arrival
sequence, our objective is to maximize the total number of
transmitted packets. The throughput maximization objective
is closely related to packet drops minimization objective. In
this sense, our objective captures two important performance
metrics i.e., throughput and packet drops.

Competitive Ratio: We use competitive ratio as a measure to
compare the performance of an online algorithm to the optimal

Input
Ports

Output
Ports

Shared Buffer

B
uf

fe
r

S
ha

rin
g

A
lg

or
ith

m

RX TXObjective: Maximize Throughput

Figure 2: The switch has a buffer size of B shared across N
output ports. Each color indicates the packets residing in the
shared buffer corresponding to each port. A buffer sharing al-
gorithm takes decisions (accept or drop) for each input packet.

offline algorithm. Specifically, let ALG and OPT be an online
and optimal offline algorithm correspondingly. Let ALG(σ)
be the throughput of ALG for the packet arrival sequence σ.
We say an algorithm ALG is c-competitive if the following
relation holds for any packet arrival sequence.

OPT (σ)≤c·ALG(σ)

Competitive ratio is a particularly interesting metric for
buffer sharing since it offers performance guarantees without
any assumptions on specific traffic patterns. For example, the
buffer may face excessive packet drops or may temporarily ex-
perience throughput loss due to bursty traffic. One could argue
that the buffer sharing algorithm is the culprit and should have
allocated more buffer to the bursty traffic. While this may have
solved the problem for a particular bursty arrival, the same so-
lution could result in unexpected drops and throughput loss if
there were excessive bursty arrivals i.e., large bursts could mo-
nopolize the buffer. Instead, from an online perspective, better
competitive ratio indicates that the buffer sharing algorithm
performs close to optimal under any traffic conditions.

■ Takeaway. A buffer sharing algorithm with lower compet-
itive ratio improves the throughput of the switch and reduces
packet drops under worst-case packet arrival patterns.

2.2 Drawbacks of Traditional Approaches
We observe two main drawbacks of traditional buffer
sharing algorithms, both affecting the competitive ratio. First,
algorithms proactively and unnecessarily drop packets in view
of accommodating future packet arrivals. Second, algorithms
reactively drop packets when the buffer is full and incur
throughput loss, which could have been avoided. We argue that
these drawbacks are rather fundamental to drop-tail algorithms
and cannot be addressed by traditional online approaches.

Proactive unnecessary packet drops→ throughput loss: A
drop-tail buffer sharing algorithm typically drops packets even

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 615

https://github.com/inet-tub/ns3-datacenter

Output
Ports

Shared Buffer

RX TX

(a) ALG

Output
Ports

Shared Buffer

RX TX

(b) OPT

Figure 3: Upon a large burst arrival, a typical drop-tail algorithm
(ALG) proactively drops the incoming packets in anticipation
of future bursts and significantly under-utilizes the buffer. In
this case, an optimal offline algorithm accepts the entire burst
without any packet drops.

Output
Ports

Shared Buffer

RX TX

(a) ALG

Output
Ports

Shared Buffer

RX TX

(b) OPT

Figure 4: In pursuit of high burst absorption, a drop-tail
algorithm ALG may absorb bursts but this results in excessive
reactive drops for the future packet arrivals. In this case, an
optimal offline algorithm OPT drops few packets such that the
overall throughput is maximized.

if there is remaining buffer space available [1,11,20]. We refer
to such drops as proactive drops. Being proactive is indeed
necessary in order to accommodate transient bursts. However,
proactive packet drops and the corresponding remaining
buffer space ends up being wasteful if the future packet
arrivals do not need additional buffer space (if the anticipated
burst does not arrive). Figure 3a and Figure 3b illustrate an
example. Consider a traffic pattern where there is little to no
congestion on all the ports but once in a while, a large burst
appears. Specifically, the buffer is empty initially and a large
burst of size B appears. A deterministic drop-tail algorithm has
two choices: (i) accept a portion of the burst and proactively
drop the rest of the burst or (ii) accept the entire burst. Typical
algorithms in the literature choose the former in view of accom-
modating future packet arrivals. An optimal offline algorithm
that knows the arrivals ahead of time would accept the entire
burst of size B in this case. This makes an online algorithm at
least c-competitive for this particular arrival pattern, where 1

c
is the fraction of the burst accepted: since the optimal solution
accepts and transmits B packets over time, whereas an online
algorithm only accepts and transmits only B

c packets over time.
We observe that recent works focus on minimizing proactive
unnecessary packet drops by prioritizing bursty traffic to the
extent that they allow burst on a single port to monopolize the
buffer [1, 11, 28]. However, note that competitive ratio is not
defined for a particular arrival sequence, but over all scenarios.
To this end, accepting a larger burst size may be helpful in the
above example but if there were indeed future packet arrivals
on other ports that need buffer, the algorithm incurs excessive
reactive drops (described next) and throughput loss.

Reactive avoidable packet drops→ throughput loss: Any
drop-tail algorithm is forced to drop the incoming packets
once the shared buffer is full. We call such drops reactive
drops. Reactive drops result in throughput loss if the algorithm
fills up significant portion of the buffer on a small set of ports
but reactively drops incoming packets to other ports. Figure 4a
and Figure 4b illustrate an example. Consider that the buffer
is initially empty and four simultaneous bursts each of size

B arrive to four ports. If an algorithm proactively drops a
significant portion of the bursts, it would suffer under arrival
sequences such as in the previous example (Figure 3a). Alter-
natively, the algorithm may choose to accept a larger portion of
the bursts and ends up filling up the entire buffer in aggregate.
At this point, several short bursts arrive to multiple other ports.
An optimal offline algorithm accepts only a fraction of the
large bursts such that it is able to accommodate upcoming
short bursts. In doing so, the optimal algorithm benefits in
throughput since the switch transmits packets from more
number of ports. However, since the online algorithm fills up
the entire buffer due to the initial large bursts, it is forced to
reactively drop the upcoming short bursts, losing throughput.
In fact, a similar arrival pattern for Dynamic Thresholds yields
at least Ω

(√
N

log(N)

)
-competitiveness [26]. The known upper

bound for Dynamic Thresholds is O(N) [26]. Further, it has
been shown in the literature that no deterministic drop-tail
algorithm can be better than Ω

(
log(N)

log(log(N))

)
-competitive [33].

Interestingly, push-out algorithms are not prone to the
problems discussed above, since they can take revocable
decisions i.e., to accept a packet and drop it later. Hence,
push-out algorithms do not have to maintain free space in the
buffer in order to accommodate transient bursts. Instead, such
algorithms can defer the dropping decision until the moment
the drop turns out to be necessary.

■ Takeaway. Traditional drop-tail algorithms are fundamen-
tally limited in throughput-competitiveness as they are unable
to effectively navigate proactive and reactive drops due to the
online nature of the problem i.e., future packet arrivals are
unknown to the algorithm.

2.3 Predictions: A Hope for Competitiveness
Given that the fundamental barrier in improving drop-tail
buffer sharing algorithms is the lack of visibility into the
future arrivals, we turn towards predictions. The recent rise
of algorithms with predictions offers a renewed hope for
competitive buffer sharing. Algorithms with predictions

616 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

successfully enabled close to optimal performance for various
classic problems [46]. The core idea is to guide the underlying
online algorithm with certain knowledge about the future
obtained via predictions. The machine-learned oracle that
produces predictions is considered a blackbox with a certain
error. The main challenge is to offer performance guarantees
at the extremes i.e., close to optimal performance under perfect
predictions and a minimum performance guarantee when the
prediction error gets arbitrarily large. Further, it is desirable
that the competitiveness of the algorithm smoothly degrades
as the prediction error grows.

2.3.1 Prediction Model
In the context of the buffer sharing problem, there are several
prediction models that can be considered e.g., drops or packet
arrivals. In this paper, we assume that a blackbox machine-
learned oracle predicts packet drops. Our choice is due to the
fact that packet drops are the basic decisions made by an algo-
rithm. Concretely, we consider an oracle that predicts whether
an incoming packet would eventually be dropped (or pushed
out) by the Longest Queue Drop (LQD) algorithm serving
the same packet arrival sequence. We classify the predictions
into four types: (i) true positive i.e., a correct prediction that
a packet is eventually dropped by LQD, (ii) false negative i.e.,
an incorrect prediction that a packet is eventually transmitted
by LQD, (iii) false positive i.e., an incorrect prediction that
a packet is eventually dropped by LQD and (iv) true negative
i.e., a correct prediction that a packet is eventually transmitted
by LQD. Figure 5 summarizes this classification. Following
the literature [42, 46], our goals for prediction-augmented
buffer sharing are consistency, robustness and smoothness.

α-Consistent buffer sharing algorithm has a competitive
ratio α when the predictions are all true i.e., perfect predictions.

β-Robust buffer sharing algorithm has a competitive ratio β

when the predictions are all false i.e., large prediction error.

Smoothness is a desirable property such that the competitive
ratio degrades smoothly as the prediction error grows i.e.,
a small change in error does not drastically influence the
competitive ratio.

Our goal is to design a prediction-augmented buffer sharing
algorithm that is close to 1-consistent (with perfect predictions)
i.e., near-optimal, at most N-robust (with arbitrarily large
error) i.e., not worse than Complete Sharing algorithm, and
has the desirable property of smoothness.

2.3.2 Common Pitfalls
It is intuitive that predictions can potentially improve the per-
formance of a drop-tail algorithm. For instance, in the examples
from Figure 3 and Figure 4, our prediction-augmented online
algorithm could take nearly the same decisions as a push-out al-
gorithm. However, the main challenge is to ensure robustness
and smoothness. If an algorithm blindly trusts the predictions,
we observe that false positive and false negative predictions

Ground truth: Drop
 Prediction: Drop

Ground truth: Accept
 Prediction: Accept

Ground truth: Accept
 Prediction: Drop

Ground truth: Drop
 Prediction: Accept

True Positive

True Negative

False Negative

False Positive

Figure 5: Confusion matrix for our prediction model.

have a significantly different impact on the performance.
Excessive false positives can lead to starvation: The worst
case for a naive algorithm that blindly trusts predictions is
when all the predictions are false positives. In this case, the
algorithm ends up dropping every incoming packet. Blindly
trusting false predictions could lead to a competitive ratio
worse than the simplest drop-tail algorithm Complete Sharing
i.e., the competitive ratio becomes unbounded (∞-robust) if
the predictions are mostly false positives.

A single false negative can hurt throughput forever: A
naive algorithm that blindly relies on false negative predictions
is susceptible to adverse effects that propagate over time. Con-
sider a packet arrival sequence that hits only one queue initially
and consider that the predictions are all true negatives until the
queue length reaches B−1, where B is the total buffer size. At
this point, one more packet arrives and our prediction is a false
negative. As a result, our naive algorithm has a queue of size
B and the optimal algorithm has a queue of size B−1. Note
that all non-empty queues drain one packet after each timeslot.
From here on, in every timeslot, one packet (first) arrives to the
large queue and one packet (second) arrives to any other queue.
Also consider that all the predictions are true from now on.
The optimal algorithm accepts both first and second packet in
every timeslot. However, in every timeslot our naive approach
can only accept the first packet to the large queue and cannot
accept the second packet since the buffer is full. Notice that
relying on just one false negative resulted in cumulative drops
in this case even though all other predictions were true. In fact,
a tiny error such as just N number of false negatives even with
all other predictions being true could result in a competitive
ratio for a naive approach as worse as Complete Sharing.

■ Takeaway. Augmenting drop-tail algorithms with predic-
tions has the potential to unlock the optimal performance.
Ensuring performance guarantees with inaccurate predictions
remains a challenge.

3 Prediction-Augmented Buffer Sharing
Reflecting on our observations in §2, our goal is to design
a drop-tail buffer sharing algorithm that performs close
to optimal with perfect predictions but also provides a
minimum performance guarantee when the prediction error is

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 617

arbitrarily large. In essence, our aim is to enable performance
improvement in terms of throughput and packet drops in
datacenter switches. To this end, we first present an overview
of our algorithm (§3.1). We then present the workings of
CREDENCE (§3.2) and discuss its properties (§3.3). Finally,
we discuss the practicality of CREDENCE (§3.4).

3.1 Overview
In a nutshell, CREDENCE relies on predictions and follows
a push-out algorithm, reaching close to optimal performance
under perfect predictions. CREDENCE cleverly takes certain
decisions independent of the predictions in order to guarantee
a minimum performance. Further, CREDENCE’s competitive-
ness gradually degrades as prediction error grows (a property
known as smoothness [42]), hence the algorithm still performs
near-optimally when predictions are slightly inaccurate.
CREDENCE follows Longest Queue Drop algorithm: Our
design of CREDENCE consists of two key ingredients. First,
CREDENCE uses thresholds as a drop condition irrespective
of the predictions. CREDENCE treats thresholds as queue
lengths of LQD and updates the thresholds based on the
LQD algorithm (simply arithmetic) upon every packet arrival.
Second, CREDENCE relies on predictions as long as the queue
lengths satisfy the corresponding thresholds. The combination
of thresholds and predictions allows CREDENCE to closely
follow the Longest Queue Drop algorithm (LQD) without
requiring push-out operations2.
CREDENCE guarantees performance under extremities:
When all the predictions are perfectly accurate, CREDENCE
achieves a competitive ratio of 1.707 (consistency) due to the
straight-forward argument that the drops by CREDENCE and
LQD are equivalent for true predictions. In order to guarantee
a minimum performance even with arbitrarily large prediction
error (robustness), CREDENCE bypasses the threshold and
predictions as long as the longest queue is within B

N size.
Here, B is the buffer size and N is the number of ports. This
allows CREDENCE to be most N-competitive even under large
prediction error, similar to the Complete Sharing algorithm.
We prove our claim formally in Appendix C.
CREDENCE smoothly degrades with prediction error:
We design our error function in terms of the performance of
LQD and the predicted drops. We analyze the types of drops
incurred by CREDENCE due to false positive and false negative
predictions. This allows us to show that CREDENCE satisfies
the smoothness property i.e., the competitive ratio smoothly
degrades from 1.707 to N as the prediction error grows.

3.2 CREDENCE

We now present CREDENCE and explain how it operates.
Algorithm 1 presents the pseudocode of CREDENCE. Our
pseudocode is simplified to discrete time for ease of presenta-
tion and for simplicity of analysis. It can be trivially extended

2Recall that LQD is close to optimal with a competitive ratio of 1.707.

to continuous time, and our implementation incorporates it3.
Arrival: Upon a packet arrival, CREDENCE has three
important steps that are highlighted in Algorithm 1. First,
CREDENCE updates the threshold for the current queue
(highlighted in blue). Second, CREDENCE takes a decision
based on the thresholds and predictions whether or not to
accept the incoming packet (highlighted in yellow). Finally,
the packet is either accepted or dropped. We next describe each
of these steps in detail. Third, depending on the state of the
buffer, CREDENCE bypasses the thresholds and predictions
with a safeguard condition in order to accept or drop the
incoming packet (highlighted in green).
Thresholds: CREDENCE updates its thresholds based on the
longest queue drop algorithm. Specifically, upon a packet
arrival at time t to a queue i, CREDENCE increments the thresh-
old Ti(t) for queue i by the packet size. If upon arrival the sum
of thresholds Γ(t) is equal to the buffer size B, then CREDENCE
first decrements the longest queue threshold by packet size and
then increments the threshold for queue i by the packet size.
Note that upon a packet arrival to a queue, the corresponding
threshold is updated before accepting or dropping the packet.
Drop criterion: Similar to existing threshold-based algo-
rithms, CREDENCE also uses thresholds as a drop criterion.
CREDENCE compares the queue length qi(t) of a queue i
against its threshold Ti(t) and drops an incoming packet if
the queue length is larger than or equal to the corresponding
threshold. If and only if an incoming packet satisfies the thresh-
olds, then CREDENCE takes input from a machine-learned
oracle that predicts whether to accept or drop according to our
prediction model discussed in §2.3.1. Finally, based on the
thresholds and predictions, CREDENCE either accepts or drop
the incoming packet.
Safeguard: In order to bound CREDENCE’s competitiveness
under arbitrarily large prediction error, we bypass the above
drop criterion under certain cases. Specifically, when the
longest queue length is less than B

N , CREDENCE always accepts
a packet irrespective of the thresholds and predictions. This en-
sures that CREDENCE is at least N-competitive even with large
prediction error. Our safeguard is based on the observation that
even the push-out longest queue drop algorithm cannot push
out a packet from a queue less than B

N size since the longest
queue must be at least B

N size when the buffer is full. In essence,
CREDENCE circumvents the impact of large prediction error by
accepting packets until a certain amount of buffer is filled up.
Predictions: CREDENCE can be used with any ML oracle
that predicts whether to accept or drop a packet, according
to our prediction model (see §2.3.1). We do not rely on the
internal details of the oracle. However, certain choices of ML
oracles are better suited to operate within the limited resources
available in a switch hardware. We discuss further on our
choice of oracle later in §3.4.

3Our source code is available is at https://github.com/inet-tub/
ns3-datacenter.

618 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/inet-tub/ns3-datacenter
https://github.com/inet-tub/ns3-datacenter

Algorithm 1: CREDENCE

Input : Packet arrivals σ,
Drop predictions φ′(σ)

1 procedure ARRIVAL(σ(t)):
2 for each packet p∈σ(t) do
3 Let i be the destination queue for the packet p
4 UPDATETHRESHOLD(i,arrival)

5

▷ Guarantees N-competitiveness
Let j be the longest queue
if q j(t)< B

N then
qi(t)←qi(t)+1 ▷ Accept
Continue to next packet

6

▷ Enables 1.707 η-competitiveness
if qi(t)<Ti(t) then

if Q(t)<B then
drop = GETPREDICTION()
if drop then

▷ Drop
else

qi(t)←qi(t)+1 ▷ Accept
else

▷ Drop
7 procedure DEPARTURE(i):
8 if qi(t)>0 then
9 qi(t)←qi(t)−1 ▷ Drain one packet

10 UPDATETHRESHOLD(i,departure)
11 procedure UPDATETHRESHOLD(i, event):
12 if event = arrival then

13

▷ Thresholds are treated as LQD queue lengths
if Γ(t)=B then ▷ Sum of thresholds

Let Tj(t) be the highest threshold
Tj(t)←Tj(t)−1 ▷ Decrease
Ti(t)←Ti(t)+1 ▷ Increase

else
Ti(t)←Ti(t)+1 ▷ Increase
Γ(t)←Γ(t)+1

14 if event = departure then
15 if Ti(t)>0 then
16 Ti(t)←Ti(t)−1 ▷ Decrease
17 Γ(t)←Γ(t)−1

3.3 Properties of CREDENCE

CREDENCE offers attractive theoretical guarantees in terms
of competitive ratio. In this section, for simplicity, we refer
an offline optimal algorithm as OPT .

Although we have so far discussed the prediction error
more intuitively, it requires a quantitative measure in order
to analyze the performance of an algorithm relying on predic-
tions. There are two important considerations in defining a
suitable error function. First, following the literature, an error
function must be independent of the state and actions of our
algorithm, so that we can train a predictor without considering
all possible states of the algorithm [29]. Second, it is desirable

that the performance of our algorithm can be related to the
error function in an uncomplicated manner. Taking these into
consideration, we define our error function in Definition 1.
Our definition captures the prediction error in terms of the
performance of LQD (push-out) and the performance of an
algorithm FollowLQD. Here, FollowLQD (Algorithm 2 in
Appendix B) is a deterministic drop-tail algorithm (without
predictions) with thresholds similar to CREDENCE.

Definition 1 (Error function). Let LQD(σ) and FollowLQD(σ)
denote the total number of packets transmitted by the online
push-out algorithm LQD and the online drop-tail algorithm
FollowLQD over the arrival sequence σ. Let φ denote the
sequence indicating drop by LQD for each packet in the
arrival sequence σ. Let φ′ denote the sequence of drops
predicted by the machine-learned oracle. Let φ′T P, φ′FP, φ′T N ,
and φ′FN denote the sequence of true positive, false positive,
true negative and false negative predictions for the arrival
sequence σ. We define the error function η(φ,φ′) as follows:

η(φ,φ′)=
LQD(σ)

FollowLQD
(
σ−φ

′
T P−φ

′
FP

) (1)

Using Definition 1, we analyze the throughput of CRE-
DENCE over an entire packet arrival sequence σ based on the
predictions φ′. In fact, our error function is upper bounded by an
intuitive closed form expression, in terms of the number of true
and false predictions, as follows, that can be easily computed:4

η(φ,φ′)≤ φ′T N+φ′FP

φ
′
T N−min

(
(N−1)·φ′FN ,φ

′
T N

)
The upper bound of our error function indicates intuitively
that (i) the error decreases as the total number of true negative
predictions dominate the total false predictions, (ii) the error
increases with each false positive prediction and (iii) the
error increases with each false negative with a larger weight.
Lemma 1 states the relation between the throughput of
CREDENCE, throughput of LQD and the prediction error.

Lemma 1. The total number of packets transmitted by
CREDENCE for an arrival sequence σ, a drop sequence φ by
LQD and the predicted drop sequence φ′ is given by

CREDENCE(σ)≥ LQD(σ)

η(φ,φ′)︸ ︷︷ ︸
error

(2)

Equation 2 shows that the throughput of CREDENCE
reaches closer to (moves away from) LQD as the prediction
error becomes smaller (larger). We present a sketch of our
proof here. Our full proof appears in Appendix C. We begin
by analyzing the drops incurred by CREDENCE based on the
drop criterion described in §3.2. We argue that for every true
positive and false positive predictions, there is at most one

4We prove our upper bound in Theorem 2 (Appendix C).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 619

drop by CREDENCE. All other drops incurred by CREDENCE
are due to the thresholds. Using these observations, we
show that CREDENCE transmits at least the number of
packets transmitted by FollowLQD over the arrival sequence
σ−φ′T P−φ′FP. This leads us to Equation 2.

Recall that CREDENCE bypasses the drop criterion and
accepts packets through a safeguard condition under certain
cases (see §3.2). Based on this, we obtain another bound
for the throughput of CREDENCE in Lemma 2, which is
independent of the prediction error.

Lemma 2. CREDENCE transmits at least 1
N times the number

of packets transmitted by an offline optimal algorithm OPT
i.e., CREDENCE(σ)≥ 1

N ·OPT (σ).
Lemma 2 shows that irrespective of the prediction error

(even under large error), CREDENCE can always transmit
at least 1

N fraction of the packets transmitted by an optimal
solution. Our proof of Lemma 2 is based on the fact that upon
a drop by CREDENCE, there is at least one queue with length
B
N (the safeguard condition). As a result, for every B packets
transmitted by OPT , there are at least B

N number of packets
transmitted by CREDENCE over the arrival sequence σ. This
leads us to the bound expressed in Lemma 2.

Finally, using the above two results, we prove the compet-
itive ratio of CREDENCE as a function of the prediction error.
CREDENCE’s competitive ratio satisfies the three desirable
properties: 2-consistent, N-robust and exhibits smoothness.

Theorem 1. The competitive ratio of CREDENCE grows
linearly from 1.707 to N based on the prediction error η(φ,φ′),
where N is the number of ports, φ is the drop sequence of LQD
and φ′ is the predicted sequence of drops i.e., the competitive
ratio is at most min(1.707 η(φ,φ′),N).

Our proof follows from Lemmas 1 and 2 (see Appendix C).
Theorem 1 essentially shows how CREDENCE’s competitive
ratio in terms of throughput improves from N to 1.707 as
the prediction error (Definition 1) decreases. Interestingly,
CREDENCE’s competitive ratio is independent of the buffer
size B i.e., CREDENCE is compatible for shallow buffers as
well as deep buffers. We note that our analysis compares
an algorithm against an optimal offline algorithm over a
fixed packet arrival sequence. This allows us to analyze
the competitive ratio via an error function defined over
the corresponding arrival sequence. However, real-world
traffic is responsive in nature due to congestion control and
packet retransmissions. Although we have used η as our error
function to express the competitiveness of CREDENCE, in our
evaluation (§4), we compare CREDENCE with state-of-the-art
approaches under realistic datacenter workloads and we also
present the quality of our predictions using more natural error
functions that are widely used for machine learning models.

3.4 Practicality of CREDENCE

CREDENCE’s algorithm itself is simple and close to com-
plexity of the longest queue drop (push-out). However,

the machine-learned oracle producing the predictions adds
additional complexity in order to deploy CREDENCE on
switches. Overall, there are three main parts of CREDENCE that
contribute to additional complexity in terms of memory and
computation: (i) finding the longest queue (and its threshold),
(ii) remembering thresholds and (iii) obtaining predictions.

Finding the longest queue (and its threshold): For every
packet arrival, CREDENCE requires finding the longest queue
for the safeguard condition described in §3.2. Additionally,
CREDENCE requires finding the largest threshold during the
threshold updates upon every packet arrival. The maximum
value search operation has a run-time complexity of O(N),
where N is the number of ports. Note that typical datacenter
switches have a relatively small number of ports e.g., 64 ports
in Broadcom Tomahawk4 [16]. Prior work in the context of
LQD proposes an approximation to further reduce the com-
plexity of finding the longest queue [52] to O(1). The average
case complexity can further be reduced by only maintaining
the list of queue lengths (and their thresholds) that are larger
than B

N . This is sufficient since the safeguard condition checks
whether the longest queue is less than B

N , which is the same as
checking that no queue is longer than B

N . Similarly, the largest
threshold search during the threshold updates is only triggered
when the buffer is full. In this case, the longest queue must be
at least B

N . Given that switches are becoming more and more
computationally capable, we believe that a basic function
such as finding the maximum value in a small list is feasible
to implement within the available resources.
Thresholds memory: In contrast to existing threshold-based
algorithms, CREDENCE’s thresholds depend on their previous
value i.e., thresholds must be remembered. As a result,
CREDENCE adds a small memory overhead of O(N) for
the thresholds. The threshold calculations are in fact much
simpler than existing schemes and do not add any further
computational complexity since CREDENCE only requires
adding and subtracting the threshold values by the packet size.
Predictions: Our prediction model (drop or accept) essentially
boils down to binary classification problem. To this end, nu-
merous ML techniques exist ranging from linear classifiers
to more advanced neural networks. In view of practicality,
we consider random forests as they are implementable in pro-
grammable hardware [4, 17, 31]. In order to reduce the predic-
tion latency,we also limit the number of trees and the maximum
depth of our trained random forest model. We find that, even a
model trained with a maximum depth of four, and as low as four
to eight trees achieves reasonable prediction error (precision≈
0.65). Further, to reduce the complexity of the model, we also
limit the number of features to four: queue length, total shared
buffer occupancy and their corresponding moving averages
(exponentially weighted) over one round-trip time (baseRTT).

The fundamental blocks required for CREDENCE are all
individually practical in today’s hardware. Unfortunately,
modifying the buffer sharing algorithm and integrating it

620 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

DT LQD ABM Credence

20 40 60 80
Load (%)

1

10

100

400

95
-p

ct
 F

CT
 sl

ow
do

wn

(a) Incast flows

20 40 60 80
Load (%)

1
2

4

6

8

10

95
-p

ct
 F

CT
 sl

ow
do

wn
(b) Short flows

20 40 60 80
Load (%)

10

20

30

40

95
-p

ct
 F

CT
 sl

ow
do

wn

(c) Long flows

20 40 60 80
Load (%)

20

40

60

80

100

Bu
ffe

r o
cc

up
an

cy
 (%

)

(d) Shared buffer occupancy

Figure 6: Performance of CREDENCE across various loads of websearch workload and incast workload at a burst size 50% of
the buffer size, with DCTCP as the transport protocol. As the load increases, ABM penalizes long flows. DT and ABM are unable
to absorb bursts of size 50% of the buffer size. CREDENCE achieves superior burst absorption and does not penalize long flows.

25 50 75 100
Burst size (% of buffer size)

10

100
400

95
-p

ct
 F

CT
 sl

ow
do

wn

(a) Incast flows

25 50 75 100
Burst size (% of buffer size)

1
2
4
6
8

10

95
-p

ct
 F

CT
 sl

ow
do

wn

(b) Short flows

25 50 75 100
Burst size (% of buffer size)

2
4
6
8

10
12
14

95
-p

ct
 F

CT
 sl

ow
do

wn

(c) Long flows

25 50 75 100
Burst size (% of buffer size)

20
40
60
80

100

Bu
ffe

r o
cc

up
an

cy
 (%

)

(d) Shared buffer occupancy

Figure 7: Performance of CREDENCE across various burst sizes of incast workload and websearch workload at 40% load, with
DCTCP as the transport protocol. At small burst sizes, DT and ABM achieve similar performance compared to CREDENCE but
as the burst size increases, CREDENCE outperforms DT and ABM in terms of FCTs for incast flows (burst absorption).

with predictions requires switch vendor support. Even in pro-
grammable switches, the traffic manager is merely a blackbox
that implements Dynamic Thresholds with a single parameter
exposed to the user [8, 10]. Given the superior performance of
CREDENCE (§4), we wish to gain attention from switch ven-
dors to discuss further on the implementation of CREDENCE.

4 Evaluation
We evaluate the performance of CREDENCE and compare it
against state-of-the-art buffer sharing algorithms in the context
of datacenter networks. Our evaluation aims at answering
three main questions:
(Q1) Does CREDENCE improve the burst absorption?
Our evaluation shows that CREDENCE significantly improves
the burst absorption capabilities of switches. We find that
CREDENCE improves the 95-percentile flow completion
times for incast flows by up to 95.4% compared to Dynamic
Thresholds (DT) and by up to 96.9% compared to ABM.
(Q2) Can CREDENCE improve the flow completion times for
short flows as well as long flows?
We find that CREDENCE performs similar to existing
approaches in terms of 95-percentile flow completion times
for short flows and improves upon ABM by up to 22%
correspondingly for long flows.
Q3 How does prediction error impact the performance of

CREDENCE in terms of flow completion times?
We increase the error of our prediction by artificially
flipping the predictions with a probability. As the probability
increases (error increases), we find that CREDENCE sustains
performance up to 0.01 probability and smoothly degrades
in performance beyond 0.01.

4.1 Setup
Our evaluation is based on packet-level simulations in
NS3 [44]. We embed a Python interpreter within NS3 using
pybind11 [47] in order to obtain predictions from a random
forest model trained with scikit-learn [49].
Topology: We consider a leaf-spine topology with 256 servers
organized into 4 spines and 16 leaves. Each link has a propa-
gation delay of 3µs leading to a round-trip-time of 25.2µs. The
capacity is set to 10Gbps for all the links leading to 4:1 over-
subscription similar to prior works [1, 3, 48]. All the switches
in our topology have 5.12KB buffer-per-port-per-Gbps similar
to Broadcom Tomahawk [16].
Workloads: We generate traffic using websearch [6] flow size
distribution that is based on measurements from real-world
datacenter workloads. We vary the load on the network in
the range 20-80%. We additionally generate traffic using
a synthetic incast workload similar to prior work [1]. Our
incast workload mimics the query-response behavior of a

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 621

DT ABM Credence

25 50 75 100
Burst size (% of buffer size)

10

100
400

95
-p

ct
 F

CT
 sl

ow
do

wn

(a) Incast flows

25 50 75 100
Burst size (% of buffer size)
1
2
4
6
8

10

95
-p

ct
 F

CT
 sl

ow
do

wn
(b) Short flows

25 50 75 100
Burst size (% of buffer size)
2
4
6
8

10
12
14

95
-p

ct
 F

CT
 sl

ow
do

wn

(c) Long flows

25 50 75 100
Burst size (% of buffer size)

20
40
60
80

100

Bu
ffe

r o
cc

up
an

cy
 (%

)

(d) Shared buffer occupancy

Figure 8: Performance of CREDENCE across various burst sizes of incast workload and websearch workload at 40% load, with
PowerTCP as the transport protocol. Even with advanced congestion control, DT and ABM only benefit in terms of FCTs for
long flows, but CREDENCE outperforms in terms of FCTs for incast flows (burst absorption) as well as FCTs for long flows.

distributed file storage system where each query results in
a bursty response from multiple servers. We set the query
request rate to 2 per second from each server, and we vary the
burst size in the range 10-100%5 of the switch buffer size. We
use DCTCP [6] and PowerTCP [3] as transport protocols.
Comparisons & metrics: We compare CREDENCE with
Dynamic Thresholds [20] (the default algorithm in datacenter
switches), ABM [1] and LQD (push-out). Hereafter, we refer
to Dynamic Thresholds as DT. We report four performance
metrics: 95-percentile flow completion times for short flows
(≤ 100KB), incast flows (incast workload), long flows
(≥1MB), and the 99-percentile shared buffer occupancy. We
present the CDFs of flow completion times in Appendix D.
Predictions: We collect packet-level traces from each
switch in our topology when using LQD (push-out) as the
buffer sharing algorithm. Each trace consists of five values
corresponding to each packet arrival: (i) queue length, (ii)
average queue length, (iii) shared buffer occupancy, (iv)
average shared buffer occupancy and (v) accept (or drop). We
train a random forest classifier using queue length and shared
buffer occupancy as features and the model predicts packet
drops. We set the maximum depth for each tree to 4 in view
of practicality. At a train-test split 0.6 of our LQD trace, based
on our parameter sweep across the number of trees used for
our classifier (Figure 15 in Appendix D), we set the number of
trees to 4. We observe that the quality of our predictions does
not improve significantly beyond four trees in our datasets.
This gives us an accuracy of 0.99, error score 1

η
0.996 (inverse

of our error function based on Definition 1), precision of 0.65,
recall of 0.35 and F1 score of 0.45. We defer the definitions
of these prediction scores to Appendix C as they are standard
in the literature. We train our model with an LQD trace

5We note that if the burst size exceeds the buffer size (> 100%), then
no buffer sharing algorithm can prevent excessive packet drops. As such,
controlling and mitigating the extent of incast scenarios can be better
addressed by congestion control and scheduling techniques.

6The high values of accuracy and our error score 1
η

are attributed to the
dataset being skewed i.e., congestion is not persistent.

corresponding to websearch workload at 80% load, and a burst
size of 75% buffer size for the incast workload, using DCTCP
as the transport protocol. We use the same trained model in all
our evaluations. We ensure that our test scenarios are different
from the training dataset by using different random seeds in
addition to different traffic conditions (different loads and
different burst sizes) in each experiment in our evaluation.
Configuration: CREDENCE is parameter-less, and it takes
input from an oracle (described above) that predicts packet
drops. We set α = 0.5 for DT and ABM similar to prior
work [1]. ABM uses α= 64 for all the packets which arrive
during the first round-trip-time [1]. We configure DCTCP
according to [6] and PowerTCP according to [3].

4.2 Results
CREDENCE significantly improves burst absorption: In
Figure 6a, using DCTCP as the transport protocol, we generate
websearch traffic across various loads in the range 20-80%
and generate incast traffic with a burst size of 50% buffer size.
We observe that CREDENCE performs close to the optimal
performance of LQD. CREDENCE improves the 95-percentile
flow complete times for incast flows by 95.50% compared
to DT, and by 95.53% compared to ABM. In Figure 7a, we
set the load of websearch traffic at 40% and vary the burst
size for incast workload in the range 10-100% buffer size.
CREDENCE performs similar to DT and ABM for small burst
sizes. As the burst size increases, CREDENCE improves the
95-percentile flow completion times for incast workload by
95% on average compared to DT, and by 96.92% on average
compared to ABM. In Figure 8a, even when using PowerTCP
as the transport protocol, we see that CREDENCE improves
the 95-percentile flow completion times for incast flow
by 93.27% on average compared to DT and by 93.36% on
average compared to ABM. In terms of burst absorption, both
DT and ABM are drop-tail algorithms, hence they face the
drawbacks discussed in §2.2. CREDENCE relies on predictions
and unlocks the performance of LQD (push-out) as shown by
our results in Figure 6a and Figure 7a.

622 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ABM Credence

64 32 24 16 8
RTT (μs)

1

10

102

103

95
-p

ct
 F

CT
 sl

ow
do

wn

(a) Incast flows

64 32 24 16 8
RTT (μs)

2
4
6
8

10

95
-p

ct
 F

CT
 sl

ow
do

wn
(b) Short flows

64 32 24 16 8
RTT (μs)

2
4
6
8

10

95
-p

ct
 F

CT
 sl

ow
do

wn

(c) Long flows

64 32 24 16 8
RTT (μs)

20
40
60
80

100

Bu
ffe

r o
cc

up
an

cy
 (%

)

(d) Shared buffer occupancy

Figure 9: ABM is sensitive to RTT and performs significantly worse compared to CREDENCE at low RTTs. At high RTTs, ABM
performs similar to CREDENCE.

LQD Credence

10−3 10−2 10−1

Probability of flipping prediction
1

10

100

1000

95
-p

ct
 F

CT
 sl

ow
do

wn

(a) Incast flows

10−3 10−2 10−1

Probability of flipping prediction
1

10

100

1000

95
-p

ct
 F

CT
 sl

ow
do

wn

(b) Short flows

10−3 10−2 10−1

Probability of flipping prediction
1

50

100

95
-p

ct
 F

CT
 sl

ow
do

wn

(c) Long flows

10−3 10−2 10−1

Probability of flipping prediction
0

20
40
60
80

100

Bu
ffe

r o
cc

up
an

cy
 (%

)

(d) Shared buffer occupancy

Figure 10: Even though the predictions from our random forest classifier are intentionally flipped (to increase error), CREDENCE
performs close to LQD up to 0.005 flipping probability but smoothly diverges from LQD at 0.01 flipping probability.

CREDENCE improves long flows FCTs: CREDENCE not
only improves the burst absorption but also improves the flow
completion times for long flows. In Figure 6c, at 50% burst
size for incast workload and across various loads of websearch
workload, we observe that CREDENCE performs similar to DT
in terms of 95-percentile flow completion times for long flows
and improves upon ABM on average by 28.49%. At 80% load,
CREDENCE improves upon ABM by 49.34%. Across various
burst sizes, and at 40% load of websearch workload, we
observe from Figure 7c that CREDENCE improves upon ABM
by up to 22.02% and by 12.02% on average. With PowerTCP
as the transport protocol (Figure 8c), CREDENCE improves
the 95-percentile flow completion times for long flows by
3.31% on average compared to DT and by 17.35% compared
to ABM. At a burst size of 100% buffer size, CREDENCE
improves the flow completion times by 5.49% compared
to DT and by 24.09% compared to ABM. As described
in §2.2, drop-tail algorithms such as DT and ABM cannot
effectively navigate proactive and reactive drops, resulting
in throughput loss i.e., high flow completion times for long
flows. In contrast, predictions guide CREDENCE to effectively
navigate proactive and reactive drops. This allows CREDENCE
to achieve better flow completion times even for long flows.

CREDENCE does not waste buffer resources: In anticipation
of future burst arrivals, both DT and ABM buffer resources. We

show the 99.99-percentile buffer occupancies7 in Figure 6d for
various loads of websearch workload and at a burst size of 50%
buffer size for incast workload. We observe that, DT (ABM)
utilizes 3.77% (18.68%) lower buffer space on average com-
pared to CREDENCE, at the cost of increased flow completion
times even for long flows. Even as the burst size increases (Fig-
ure 7d), DT and ABM are unable to efficiently utilize the buffer
space. In contrast, CREDENCE efficiently utilizes the available
buffer space as the burst size increases, improving burst absorp-
tion without sacrificing flow completion times for long flows.

ABM is sensitive to RTT: Although ABM is expected to
outperform DT, our evaluation results especially in terms
of flow completion times for incast flows contradict the
results presented in [1]. We ran several simulations varying
all the parameters in our setup in order to better understand
the performance of ABM. We found that ABM is in fact
sensitive to round-trip-time (RTT). We vary the base RTT
of our topology in Figure 9 and compare CREDENCE with
ABM. At high RTTs, we observe that ABM performs close to
CREDENCE, but degrades in performance as RTT decreases.
Specifically, at 8µs RTT, ABM performs 97.73% worse
compared to CREDENCE in terms of flow completion times for
incast flows. Although ABM achieves on-par flow completion

7DT, ABM and CREDENCE have similar tail occupancies (100-percentile)
that occurs at rare congestion events in our simulations.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 623

times for short flows, we observe that ABM degrades in flow
completion times for long times as well as under-utilizes the
buffer as RTT decreases. The poor performance of ABM at
low RTTs is due to the fact that ABM prioritizes the first RTT
packets and considers the rest of the traffic as steady-state
traffic. However, it is not uncommon that datacenter switches
experience bursts for several RTTs [22]. Further, congestion
control algorithms require multiples RTTs to converge to
steady-state. In contrast, CREDENCE is parameter-less and
does not make such assumptions. CREDENCE performs
significantly better than existing approaches even with an
off-the-shelf machine-learned predictor with a simple model.

CREDENCE gradually degrades with prediction error:
Our random forest classifier that we used in our evaluations
so far, has a precision close to 0.65. In order to evaluate the
performance of CREDENCE with even worse prediction error,
we artificially introduce error by flipping every prediction
obtained from our random forest classifier with a certain
probability. We consider LQD (push-out) as a baseline since
CREDENCE is expected to perform close to LQD and degrade
as the prediction error grows large. Figure 10 presents our
evaluation results, under websearch workload at 40% and
burst size 50% of the buffer size for incast workload. At
0.001 flipping probability, CREDENCE performs close to
LQD. However, at 0.01 flipping probability CREDENCE starts
to diverge8 from LQD and gets significantly worse at 0.1
flipping probability. Figure 10 gives practical insights into
smoothness of CREDENCE in addition to our analysis.

5 Related Work
The buffer sharing problem has been widely studied for
many decades. Research works in the literature range from
push-out as well as drop-tail algorithms tailored for ATM
networks [19,20,35,52,54] to more recent drop-tail algorithms
tailored for datacenter networks [1, 2, 8, 11, 28, 50]. While
we focus on the buffer sharing problem in this paper, several
related but orthogonal approaches also tackle buffer problems
in datacenter networks e.g., end-to-end congestion con-
trol [3, 6, 18, 25, 36, 38], AQM [21, 43, 45], scheduling [7, 27],
packet deflection [56] and load-balancing [5, 23, 32]. These
approaches aim at reducing congestion events and the
overall buffer requirements, but they cannot fundamentally
address buffer contention across multiple switch ports sharing
the same buffer. Research on algorithms with predictions
for various problems has recently been an active field of
research [30, 39--42, 46] but ours is the first approach tackling
the buffer sharing problem with predictions. Ongoing research
efforts show the feasibility of deploying machine-learned
predictions in the network data plane [4, 17, 31, 55].

8The extent of divergence in FCT slowdown relates to minRTO (set to 10
ms) due to packet drops that result in timeouts, and is not explicitly bounded
by O(N) similar to throughput. Yet, incast and short flows can be protected
by incorporating packet priorities (discussed in §6).

6 Future Research Directions
CREDENCE is the first approach showing the performance ben-
efits and guarantees by augmenting buffer sharing algorithms
with predictions. This work barely scratches the surface and
leaves intriguing open questions: (i) practically training the
prediction oracle in the real-world, (ii) accounting for packet
priorities in taking buffering decisions, (iii) integrating pre-
dictions with buffer sharing in hardware. We believe that this
paper opens several interesting avenues for future work both
in systems and theory. In this section, we discuss some of the
future work directions to push approaches such as CREDENCE
to be deployed in the real-world (§6.1), as well as to improve
the performance guarantees offered by such approaches (§6.2).

6.1 Systems for In-Network Predictions
In this paper, we show how predictions can improve the
performance of drop-tail buffer sharing. Many interesting
systems research questions remain in order to integrate buffer
sharing and predictions in the network data plane.
Training the model: Training a prediction oracle based
on the model described in §2.3.1 involves collecting the
buffering decisions (ground truth) of Longest Queue Drop
algorithm (LQD), i.e., push-out, along with a set of features
e.g., queue lengths, overall buffer occupancy. We envision two
approaches to collect the training data in practice. First, similar
to our approach in §4, the training data can be obtained from
packet-level simulations that implement LQD on the switches.
While this approach is simple, it has the limitation that the
training data does not necessarily reflect real-world traffic
arrivals and the corresponding buffering decisions of LQD.
However, simulation-based training data could still be suitable
for traffic patterns of a datacenter that can be explicitly mod-
eled e.g., collective communications in GPU clusters [53, 58].
Second, the buffering decisions of the LQD algorithm can be
exported by each switch in a real-world datacenter. This can
be achieved by implementing LQD virtually without taking
any buffering decisions on packets, along side any underlying
buffer sharing algorithm i.e., maintaining per-queue counters
that are incremented and decremented upon packet arrival,
departure and drop (virtually based on LQD) events, similar
to CREDENCE’s thresholds. Any feature values exported must
also correspond to these counter values. Exporting LQD’s
events even in a coarse-grained manner would suffice if the
trace is sufficiently large. We believe that future work on
implementing a virtual LQD (CREDENCE’s thresholds) in
hardware would not only strengthen CREDENCE’s practicality
but also improves the accuracy of the trained model, thereby
also improving the performance. For simplicity, our random
forest model in § 4 uses only four features, yet exploring the
tradeoff between prediction error and model complexity in
terms of space and time would be valuable. Further, the trained
model must be simple enough that fits within the resources
available in the data plane. Developing such trained models
is an important step forward.

624 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Deploying the model: Recent works propose practical
implementations for in-network machine-learning models e.g.,
in the context of traffic classification [17]. P4 implementation
of a model that predicts drops would enhance not only the prac-
ticality but also stimulate further research to design algorithms
with performance guarantees better than CREDENCE.
Alternative predictions: As mentioned in §2.3, there are
several different prediction models that can be considered for
the buffer sharing problem. For instance, instead of predicting
the drops, an oracle could predict packet arrivals just for a
tiny window of the near future. Alternatively, techniques
such as online reinforcement learning can be adopted,
where rewards are based on how closely the queue lengths
track their thresholds9. Systems research on studying the
practicality and deployability of different prediction models is
a valuable future direction that would better guide the design
of algorithms with predictions for the buffer sharing problem.
Understanding push-out complexity: While push-out
algorithms raised much interest initially, over the last years,
research on this approach has been less active. We believe
this is partly due to the lack of support from switch vendors.
It is an open question how the complexity of obtaining drop
predictions and the complexity of push-out fare against each
other. Although we focused on augmenting drop-tail algo-
rithms with predictions, we believe that our approach of using
predictions has much potential also in other types of buffer
algorithms. While switch vendors may be better informed
about the complexity of push-out buffers, an understanding
of this complexity in the scientific community is much needed
in order to navigate the complexity vs performance spectrum.

6.2 Theory for Performance Guarantees
We believe the performance guarantees offered by CREDENCE
can be improved in the future. Further, considering packet
priorities and traffic classes in the competitive analysis is an
open question.
Improving consistency and robustness: An open question
is whether an algorithm could be designed to improve the
competitive ratio under perfect predictions (consistency) better
than 1.707, while also improving the ratio under large error
(robustness) better than N. Further research in this direction
would enable a better understanding whether a consistency-
robustness tradeoff exists for the buffer sharing problem.
Competitive analysis with packet priorities: Literature in
theory considers that all packets are of the same priority in the
context of competitive analysis. One of the current limitations
of CREDENCE is its obliviousness to packet priorities. It is
well-known that preferential treatment of packets has various
performance benefits, especially in terms of flow completion
times when short flow packets are prioritized. The perfor-
mance degradation of CREDENCE for short flows and incast

9CREDENCE’s thresholds are equivalent to LQD’s (push-out) queue
lengths for the same packet arrivals (see §3.2).

flows (Figure 10a, 10b) can potentially be shielded from pre-
diction errors by employing packet priorities. We believe that
defining throughput (objective function) as the weighted sum
of the number of transmitted packets of different priorities
would enable the design of online algorithms that prioritize
higher-priority packets, e.g., bursts or short flows, in order
to be competitive. For instance, throughput can be defined as
∑αp ·np, where αp is the relative importance of a priority p and
np is the number of transmitted packets of priority p by a buffer
sharing algorithm. To this end, developing analysis techniques
for such a setup is an interesting future research direction.

7 Conclusion
We presented CREDENCE, the first buffer sharing algorithm
augmented with predictions that not only reaches close to
optimal performance given low prediction error but also
guarantees performance with arbitrarily large prediction error,
while maintaining smoothness. We analytically proved our
claims and our evaluations show the superior performance
of CREDENCE even with an off-the-shelf machine-learned
predictor, compared to the state-of-the-art buffer sharing
algorithms. The building blocks required for CREDENCE are
all individually practical in today’s hardware. In future, we
plan to pursue switch vendors to further discuss the integration
of predictions with buffer sharing algorithm in hardware.

Acknowledgements
We would like to thank our shepherd, Marco Chiesa, as
well as the anonymous reviewers for their useful feedback.
This work is part of a project that has received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme,
consolidator project Self-Adjusting Networks (AdjustNet),
grant agreement No. 864228, Horizon 2020, 2020-2025.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 625

References
[1] Vamsi Addanki, Maria Apostolaki, Manya Ghobadi, Ste-

fan Schmid, and Laurent Vanbever. Abm: Active buffer
management in datacenters. In Proceedings of the ACM
SIGCOMM 2022 Conference, SIGCOMM ’22, page
36–52, New York, NY, USA, 2022. Association for Com-
puting Machinery. doi:10.1145/3544216.3544252.

[2] Vamsi Addanki, Wei Bai, Stefan Schmid, and Maria
Apostolaki. Reverie: Low pass filter-based switch
buffer sharing for datacenters with rdma and tcp
traffic. In 21th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24),
Santa Clara, CA, 2024. USENIX Association. URL:
https://www.usenix.org/conference/nsdi24/
presentation/addanki-reverie.

[3] Vamsi Addanki, Oliver Michel, and Stefan Schmid.
PowerTCP: Pushing the performance limits of datacenter
networks. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
51--70, Renton, WA, April 2022. USENIX Association.
URL: https://www.usenix.org/conference/
nsdi22/presentation/addanki.

[4] Aristide Tanyi-Jong Akem, Michele Gucciardo,
and Marco Fiore. Flowrest: Practical flow-level
inference in programmable switches with random
forests. In IEEE INFOCOM 2023 - IEEE Conference
on Computer Communications, pages 1--10, 2023.
doi:10.1109/INFOCOM53939.2023.10229100.

[5] Mohammad Alizadeh, Tom Edsall, Sarang Dharma-
purikar, Ramanan Vaidyanathan, Kevin Chu, Andy
Fingerhut, Vinh The Lam, Francis Matus, Rong Pan,
Navindra Yadav, and George Varghese. Conga: Dis-
tributed congestion-aware load balancing for datacenters.
In Proceedings of the 2014 ACM Conference on
SIGCOMM, SIGCOMM ’14, page 503–514, New York,
NY, USA, 2014. Association for Computing Machinery.
doi:10.1145/2619239.2626316.

[6] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center tcp
(dctcp). In Proceedings of the ACM SIGCOMM 2010
Conference, SIGCOMM ’10, page 63–74, New York,
NY, USA, 2010. Association for Computing Machinery.
doi:10.1145/1851182.1851192.

[7] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar,
and Scott Shenker. Pfabric: Minimal near-optimal
datacenter transport. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM,
SIGCOMM ’13, page 435–446, New York, NY,

USA, 2013. Association for Computing Machinery.
doi:10.1145/2486001.2486031.

[8] Hamidreza Almasi, Rohan Vardekar, and Bala-
jee Vamanan. Protean: Adaptive management
of shared-memory in datacenter switches. In
IEEE INFOCOM 2023 - IEEE Conference on
Computer Communications, pages 1--10, 2023.
doi:10.1109/INFOCOM53939.2023.10229046.

[9] Antonios Antoniadis, Matthias Englert, Nicolaos Mat-
sakis, and Pavel Veselý. Breaking the Barrier Of 2 for
the Competitiveness of Longest Queue Drop. In Nikhil
Bansal, Emanuela Merelli, and James Worrell, editors,
48th International Colloquium on Automata, Languages,
and Programming (ICALP 2021), volume 198 of Leibniz
International Proceedings in Informatics (LIPIcs), pages
17:1--17:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl
-- Leibniz-Zentrum für Informatik. URL: https:
//drops.dagstuhl.de/opus/volltexte/2021/
14086, doi:10.4230/LIPIcs.ICALP.2021.17.

[10] Maria Apostolaki, Vamsi Addanki, Manya Ghobadi, and
Laurent Vanbever. Fb: A flexible buffer management
scheme for data center switches. arXiv preprint
arXiv:2105.10553, 2021.

[11] Maria Apostolaki, Laurent Vanbever, and Manya
Ghobadi. Fab: Toward flow-aware buffer sharing on
programmable switches. In Proceedings of the 2019
Workshop on Buffer Sizing, BS ’19, New York, NY,
USA, 2020. Association for Computing Machinery.
doi:10.1145/3375235.3375237.

[12] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Kris-
han Kumar Attre, Paramvir Bahl, Ameya Bhagat, Gowri
Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,
Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad, Vivek
Ette, Igal Figlin, Daniel Firestone, Mathew George, Ilya
German, Lakhmeet Ghai, Eric Green, Albert Greenberg,
Manish Gupta, Randy Haagens, Matthew Hendel,
Ridwan Howlader, Neetha John, Julia Johnstone, Tom
Jolly, Greg Kramer, David Kruse, Ankit Kumar, Erica
Lan, Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu,
Chen Liu, Guohan Lu, Yuemin Lu, Xiakun Lu, Vadim
Makhervaks, Ulad Malashanka, David A. Maltz, Ilias
Marinos, Rohan Mehta, Sharda Murthi, Anup Namdhari,
Aaron Ogus, Jitendra Padhye, Madhav Pandya, Douglas
Phillips, Adrian Power, Suraj Puri, Shachar Raindel,
Jordan Rhee, Anthony Russo, Maneesh Sah, Ali Sheriff,
Chris Sparacino, Ashutosh Srivastava, Weixiang Sun,
Nick Swanson, Fuhou Tian, Lukasz Tomczyk, Vamsi
Vadlamuri, Alec Wolman, Ying Xie, Joyce Yom, Lihua
Yuan, Yanzhao Zhang, and Brian Zill. Empowering
azure storage with RDMA. In 20th USENIX Symposium
on Networked Systems Design and Implementation

626 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://doi.org/10.1145/3544216.3544252
https://www.usenix.org/conference/nsdi24/presentation/addanki-reverie
https://www.usenix.org/conference/nsdi24/presentation/addanki-reverie
https://www.usenix.org/conference/nsdi22/presentation/addanki
https://www.usenix.org/conference/nsdi22/presentation/addanki
https://doi.org/10.1109/INFOCOM53939.2023.10229100
https://doi.org/10.1145/2619239.2626316
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/2486001.2486031
https://doi.org/10.1109/INFOCOM53939.2023.10229046
https://drops.dagstuhl.de/opus/volltexte/2021/14086
https://drops.dagstuhl.de/opus/volltexte/2021/14086
https://drops.dagstuhl.de/opus/volltexte/2021/14086
https://doi.org/10.4230/LIPIcs.ICALP.2021.17
https://doi.org/10.1145/3375235.3375237

(NSDI 23), pages 49--67, Boston, MA, April 2023.
USENIX Association. URL: https://www.usenix.
org/conference/nsdi23/presentation/bai.

[13] Wei Bai, Shuihai Hu, Kai Chen, Kun Tan, and Yongqiang
Xiong. One more config is enough: Saving (dc)tcp
for high-speed extremely shallow-buffered datacenters.
IEEE/ACM Transactions on Networking, 29(2):489--
502, 2021. doi:10.1109/TNET.2020.3032999.

[14] Ivan A. Bochkov, Alex Davydow, Nikita Gaevoy, and
Sergey I. Nikolenko. New competitiveness bounds for
the shared memory switch. CoRR, abs/1907.04399,
2019. URL: http://arxiv.org/abs/1907.04399.

[15] Allan Borodin and Ran El-Yaniv. Online Computation
and Competitive Analysis. 1998.

[16] Broadcom. StrataXGS® Switch Solutions.
https://www.broadcom.com/products/
ethernet-connectivity/switching/strataxgs.

[17] Coralie Busse-Grawitz, Roland Meier, Alexander
Dietmüller, Tobias Bühler, and Laurent Vanbever.
pforest: In-network inference with random forests.
arXiv preprint arXiv:1909.05680, 2019. URL:
http://arxiv.org/abs/1909.05680.

[18] Qizhe Cai, Mina Tahmasbi Arashloo, and Rachit
Agarwal. Dcpim: Near-optimal proactive datacenter
transport. In Proceedings of the ACM SIGCOMM 2022
Conference, SIGCOMM ’22, page 53–65, New York,
NY, USA, 2022. Association for Computing Machinery.
doi:10.1145/3544216.3544235.

[19] J.W. Causey and H.S. Kim. Comparison of buffer alloca-
tion schemes in atm switches: complete sharing, partial
sharing, and dedicated allocation. In Proceedings of
ICC/SUPERCOMM’94 - 1994 International Conference
on Communications, pages 1164--1168 vol.2, 1994.
doi:10.1109/ICC.1994.368919.

[20] A.K. Choudhury and E.L. Hahne. Dynamic queue
length thresholds for shared-memory packet switches.
IEEE/ACM Transactions on Networking, 6(2):130--140,
1998. doi:10.1109/90.664262.

[21] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM
Transactions on Networking, 1(4):397--413, Aug 1993.
doi:10.1109/90.251892.

[22] Ehab Ghabashneh, Yimeng Zhao, Cristian Lumezanu,
Neil Spring, Srikanth Sundaresan, and Sanjay Rao. A
microscopic view of bursts, buffer contention, and loss
in data centers. In Proceedings of the 22nd ACM Internet
Measurement Conference, IMC ’22, page 567–580,
New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3517745.3561430.

[23] Soudeh Ghorbani, Zibin Yang, P. Brighten Godfrey,
Yashar Ganjali, and Amin Firoozshahian. Drill:
Micro load balancing for low-latency data center
networks. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’17, page 225–238, New York, NY,
USA, 2017. Association for Computing Machinery.
doi:10.1145/3098822.3098839.

[24] Michael H. Goldwasser. A survey of buffer
management policies for packet switches.
SIGACT News, 41(1):100–128, mar 2010.
doi:10.1145/1753171.1753195.

[25] Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Niko-
laidis, Mohammad Alizadeh, and Thomas E. Anderson.
Backpressure flow control. In 19th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 22), pages 779--805, Renton, WA, April 2022.
USENIX Association. URL: https://www.usenix.
org/conference/nsdi22/presentation/goyal.

[26] Ellen L. Hahne, Alexander Kesselman, and Yishay
Mansour. Competitve buffer management for shared-
memory switches. In Proceedings of the Thirteenth
Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA ’01, page 53–58, New York, NY,
USA, 2001. Association for Computing Machinery.
doi:10.1145/378580.378589.

[27] Chi-Yao Hong, Matthew Caesar, and P. Brighten God-
frey. Finishing flows quickly with preemptive schedul-
ing. SIGCOMM Comput. Commun. Rev., 42(4):127–138,
aug 2012. doi:10.1145/2377677.2377710.

[28] Sijiang Huang, Mowei Wang, and Yong Cui. Traffic-
aware buffer management in shared memory switches.
IEEE/ACM Transactions on Networking, 30(6):2559-
-2573, 2022. doi:10.1109/TNET.2022.3173930.

[29] Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem,
and Manish Purohit. Non-clairvoyant scheduling
with predictions. In Proceedings of the 33rd ACM
Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA ’21, page 285–294, New York, NY,
USA, 2021. Association for Computing Machinery.
doi:10.1145/3409964.3461790.

[30] Sungjin Im, Benjamin Moseley, Chenyang Xu, and
Ruilong Zhang. Online dynamic acknowledgement with
learned predictions. arXiv preprint arXiv:2305.18227,
2023. URL: https://arxiv.org/abs/2305.18227.

[31] Syed Usman Jafri, Sanjay Rao, Vishal Shrivastav, and
Mohit Tawarmalani. Leo: Online traffic classification at
Multi-Terabit line rate. In 21th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
24), Santa Clara, CA, 2024. USENIX Association.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 627

https://www.usenix.org/conference/nsdi23/presentation/bai
https://www.usenix.org/conference/nsdi23/presentation/bai
https://doi.org/10.1109/TNET.2020.3032999
http://arxiv.org/abs/1907.04399
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs
http://arxiv.org/abs/1909.05680
https://doi.org/10.1145/3544216.3544235
https://doi.org/10.1109/ICC.1994.368919
https://doi.org/10.1109/90.664262
https://doi.org/10.1109/90.251892
https://doi.org/10.1145/3517745.3561430
https://doi.org/10.1145/3098822.3098839
https://doi.org/10.1145/1753171.1753195
https://www.usenix.org/conference/nsdi22/presentation/goyal
https://www.usenix.org/conference/nsdi22/presentation/goyal
https://doi.org/10.1145/378580.378589
https://doi.org/10.1145/2377677.2377710
https://doi.org/10.1109/TNET.2022.3173930
https://doi.org/10.1145/3409964.3461790
https://arxiv.org/abs/2305.18227

[32] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh
Sivaraman, and Jennifer Rexford. Hula: Scalable load
balancing using programmable data planes. In Proceed-
ings of the Symposium on SDN Research, SOSR ’16,
New York, NY, USA, 2016. Association for Computing
Machinery. doi:10.1145/2890955.2890968.

[33] Alexander Kesselman and Yishay Mansour. Harmonic
buffer management policy for shared memory switches.
Theoretical Computer Science, 324(2):161--182, 2004.
Online Algorithms: In Memoriam, Steve Seiden.
URL: https://www.sciencedirect.com/science/
article/pii/S0304397504003779, doi:https:
//doi.org/10.1016/j.tcs.2004.05.014.

[34] Koji Kobayashi, Shuichi Miyazaki, and Yasuo Okabe.
A tight bound on online buffer management for two-port
shared-memory switches. In Proceedings of the Nine-
teenth Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA ’07, page 358–364, New York,
NY, USA, 2007. Association for Computing Machinery.
doi:10.1145/1248377.1248437.

[35] S. Krishnan, A.K. Choudhury, and F.M. Chiussi.
Dynamic partitioning: a mechanism for shared memory
management. In IEEE INFOCOM ’99. Conference on
Computer Communications. Proceedings. Eighteenth
Annual Joint Conference of the IEEE Computer and
Communications Societies. The Future is Now (Cat.
No.99CH36320), volume 1, pages 144--152 vol.1, 1999.
doi:10.1109/INFCOM.1999.749262.

[36] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift:
Delay is simple and effective for congestion control
in the datacenter. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Commu-
nication, SIGCOMM ’20, page 514–528, New York,
NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3387514.3406591.

[37] Jason Lei and Vishal Shrivastav. Seer: Future-Aware
caching system for network processors. In 21th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24), Santa Clara, CA, 2024.
USENIX Association.

[38] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan
Yu. Hpcc: High precision congestion control. In
Proceedings of the ACM Special Interest Group on

Data Communication, SIGCOMM ’19, page 44–58,
New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3341302.3342085.

[39] Michael Mitzenmacher. A model for learned bloom
filters and optimizing by sandwiching. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL: https://proceedings.
neurips.cc/paper_files/paper/2018/file/
0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf.

[40] Michael Mitzenmacher. Scheduling with pre-
dictions and the price of misprediction. arXiv
preprint arXiv:1902.00732, 2019. URL:
http://arxiv.org/abs/1902.00732.

[41] Michael Mitzenmacher. Queues with small ad-
vice. In Proceedings of the 2021 SIAM Con-
ference on Applied and Computational Discrete
Algorithms (ACDA21), pages 1--12. SIAM, 2021.
doi:10.1137/1.9781611976830.1.

[42] Michael Mitzenmacher and Sergei Vassilvitskii. Algo-
rithms with predictions. Commun. ACM, 65(7):33–35,
jun 2022. doi:10.1145/3528087.

[43] Kathleen Nichols and Van Jacobson. Controlling
queue delay: A modern aqm is just one piece of the
solution to bufferbloat. Queue, 10(5):20–34, may 2012.
doi:10.1145/2208917.2209336.

[44] ns-3. Network Simulator. https://www.nsnam.org/.

[45] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Sub-
ramanian, F. Baker, and B. VerSteeg. Pie: A lightweight
control scheme to address the bufferbloat problem. In
2013 IEEE 14th International Conference on High
Performance Switching and Routing (HPSR), pages 148-
-155, July 2013. doi:10.1109/HPSR.2013.6602305.

[46] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improv-
ing online algorithms via ml predictions. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL: https://proceedings.
neurips.cc/paper_files/paper/2018/file/
73a427badebe0e32caa2e1fc7530b7f3-Paper.pdf.

[47] Pybind11. Seamless operability between C++11 and
Python. https://pybind11.readthedocs.io/en/
stable/.

[48] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad
Sharif, Rong Pan, Mostafa Ammar, Ellen Zegura,
Keon Jang, Mohammad Alizadeh, Abdul Kabbani,

628 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://doi.org/10.1145/2890955.2890968
https://www.sciencedirect.com/science/article/pii/S0304397504003779
https://www.sciencedirect.com/science/article/pii/S0304397504003779
https://doi.org/https://doi.org/10.1016/j.tcs.2004.05.014
https://doi.org/https://doi.org/10.1016/j.tcs.2004.05.014
https://doi.org/10.1145/1248377.1248437
https://doi.org/10.1109/INFCOM.1999.749262
https://doi.org/10.1145/3387514.3406591
https://doi.org/10.1145/3341302.3342085
https://proceedings.neurips.cc/paper_files/paper/2018/file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf
http://arxiv.org/abs/1902.00732
https://doi.org/10.1137/1.9781611976830.1
https://doi.org/10.1145/3528087
https://doi.org/10.1145/2208917.2209336
https://www.nsnam.org/
https://doi.org/10.1109/HPSR.2013.6602305
https://proceedings.neurips.cc/paper_files/paper/2018/file/73a427badebe0e32caa2e1fc7530b7f3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/73a427badebe0e32caa2e1fc7530b7f3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/73a427badebe0e32caa2e1fc7530b7f3-Paper.pdf
https://pybind11.readthedocs.io/en/stable/
https://pybind11.readthedocs.io/en/stable/

and Amin Vahdat. Annulus: A dual congestion
control loop for datacenter and wan traffic aggregates.
SIGCOMM ’20, page 735–749, New York, NY,
USA, 2020. Association for Computing Machinery.
doi:10.1145/3387514.3405899.

[49] scikit-learn. Machine Learning in Python.
https://scikit-learn.org/stable/.

[50] Danfeng Shan, Wanchun Jiang, and Fengyuan Ren.
Analyzing and enhancing dynamic threshold policy of
data center switches. IEEE Transactions on Parallel
and Distributed Systems, 28(9):2454--2470, 2017.
doi:10.1109/TPDS.2017.2671429.

[51] Vishal Shrivastav. Fast, scalable, and programmable
packet scheduler in hardware. In Proceedings of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’19, page 367–379, New York, NY,
USA, 2019. Association for Computing Machinery.
doi:10.1145/3341302.3342090.

[52] B. Suter, T.V. Lakshman, D. Stiliadis, and A.K. Choud-
hury. Buffer management schemes for supporting tcp in
gigabit routers with per-flow queueing. IEEE Journal on
Selected Areas in Communications, 17(6):1159--1169,
1999. doi:10.1109/49.772451.

[53] Weiyang Wang, Moein Khazraee, Zhizhen Zhong,
Manya Ghobadi, Zhihao Jia, Dheevatsa Mudigere,
Ying Zhang, and Anthony Kewitsch. TopoOpt:
Co-optimizing network topology and paralleliza-
tion strategy for distributed training jobs. In 20th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 739--767,
Boston, MA, April 2023. USENIX Association. URL:
https://www.usenix.org/conference/nsdi23/
presentation/wang-weiyang.

[54] Guo-Liang Wu and J.W. Mark. A buffer allocation
scheme for atm networks: complete sharing based on vir-
tual partition. IEEE/ACM Transactions on Networking,
3(6):660--670, 1995. doi:10.1109/90.477712.

[55] Zhaoqi Xiong and Noa Zilberman. Do switches dream of
machine learning? toward in-network classification. In
Proceedings of the 18th ACM Workshop on Hot Topics
in Networks, HotNets ’19, page 25–33, New York, NY,
USA, 2019. Association for Computing Machinery.
doi:10.1145/3365609.3365864.

[56] Kyriakos Zarifis, Rui Miao, Matt Calder, Ethan
Katz-Bassett, Minlan Yu, and Jitendra Padhye. Dibs:
Just-in-time congestion mitigation for data centers.
In Proceedings of the Ninth European Conference
on Computer Systems, EuroSys ’14, New York, NY,
USA, 2014. Association for Computing Machinery.
doi:10.1145/2592798.2592806.

[57] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind
Krishnamurthy. High-resolution measurement of data
center microbursts. In Proceedings of the 2017 Internet
Measurement Conference, IMC ’17, page 78–85, New
York, NY, USA, 2017. Association for Computing
Machinery. doi:10.1145/3131365.3131375.

[58] Liangyu Zhao, Siddharth Pal, Tapan Chugh, Weiyang
Wang, Prithwish Basu, Joud Khoury, and Arvind
Krishnamurthy. Optimal direct-connect topologies for
collective communications. CoRR, abs/2202.03356,
2022. URL: https://arxiv.org/abs/2202.03356,
arXiv:2202.03356.

A Model and Definitions
We consider a network switch equipped with an on-chip buffer
size of B units shared by N ports. We mainly follow the widely
used model in the literature [9, 26, 33]. Time is discrete, and
we refer to each step as timeslot. Packets (each of size unit 1)
arrive in an online manner as time progresses. Each timeslot
is divided into two phases, arrival phase and departure phase.
During each arrival phase, at most N number of packets (in
aggregate) arrive destined to N ports. During each departure
phase, every queue drains out one packet unless the queue is
empty. A buffer sharing algorithm manages the shared buffer
allocation across the N ports. We next define preemptive
(push-out) and non-preemptive (drop-tail) buffer sharing.

Definition 2 (Preemptive buffer sharing). During every
arrival phase, the buffer sharing algorithm is allowed to
preempt i.e., drop any number of existing packets in the buffer.

Definition 3 (Non-preemptive buffer sharing). During every
arrival phase, the buffer sharing algorithm is only allowed
to accept or drop the incoming packet. Every accepted packet
must eventually be drained out from the corresponding queue.

We denote by σ(t) = (σi(t),σi(t), ...,σN(t)), an N-tuple,
where σi(t) denotes the number of packets arriving at time
t to queue i. We study the performance of a buffer sharing
algorithm in terms of throughput i.e., our objective is to
maximize the total number of packets transmitted over the
entire arrival sequence. We compare the performance of
our online algorithms against an offline optimal algorithm,
which has access to the entire arrival sequence at t=0 and has
infinite computational capacity.

Definition 4 (Competitive ratio). Let ALG be an online
algorithm and OPT be an offline optimal algorithm for the
buffer sharing problem. Let ALG(σ) and OPT(σ) be the total
number of packets transmitted by ALG and OPT for the arrival
sequence σ. We say ALG is c-competitive if it satisfies the
following condition for any arrival sequence σ.

OPT (σ)≤c·ALG(σ) (3)

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 629

https://doi.org/10.1145/3387514.3405899
https://scikit-learn.org/stable/
https://doi.org/10.1109/TPDS.2017.2671429
https://doi.org/10.1145/3341302.3342090
https://doi.org/10.1109/49.772451
https://www.usenix.org/conference/nsdi23/presentation/wang-weiyang
https://www.usenix.org/conference/nsdi23/presentation/wang-weiyang
https://doi.org/10.1109/90.477712
https://doi.org/10.1145/3365609.3365864
https://doi.org/10.1145/2592798.2592806
https://doi.org/10.1145/3131365.3131375
https://arxiv.org/abs/2202.03356
http://arxiv.org/abs/2202.03356

Algorithm 2: FollowLQD
Input : σ(t)

1 procedure ARRIVAL(σ(t)):
2 for each packet p∈σ(t) do
3 Let i be the destination queue for the packet p
4 UPDATETHRESHOLD(i, arrival)
5 if qi(t)<Ti(t) then
6 if Q(t)<B then
7 qi(t)←qi(t)+1 ▷ accept
8 else
9 ▷ Drop

10 procedure DEPARTURE(i):
11 if qi(t)>0 then
12 qi(t)←qi(t)−1 ▷ Drain one packet
13 UPDATETHRESHOLD(i, departure)
14 function UPDATETHRESHOLD(i,event):
15 if event = arrival then
16 if Γ(t)=B then ▷ Sum of thresholds
17 Let Tj(t) be the largest threshold
18 Tj(t)←Tj(t)−1 ▷ Decrease
19 Ti(t)←Ti(t)+1 ▷ Increase
20 else
21 Ti(t)←Ti(t)+1 ▷ Increase
22 Γ(t)←Γ(t)+1
23 if event = departure then
24 if Ti(t)>0 then
25 Ti(t)←Ti(t)−1 ▷ Decrease
26 Γ(t)←Γ(t)−1

B FollowLQD: A Deterministic Algorithm
In this section we propose a new online deterministic
algorithm FollowLQD in the non-preemptive case which is
a non-predictive building block of CREDENCE. Intuitively,
FollowLQD simply follows the Longest Queue Drop (LQD)
queues in the preemptive model. In particular, FollowLQD
maintains a threshold Ti(t) for each queue at time t. The
thresholds are updated for every packet arrival and departure
according to LQD in the preemptive model. We present
the pseudocode for FollowLQD in Algorithm 2. While
FollowLQD tries to follow LQD queue lengths by accepting
packets as long as the queue lengths are smaller than the
thresholds, it may happen that FollowLQD queues are larger
than their thresholds. This is since FollowLQD cannot preempt
(remove) existing packets in the buffer whereas LQD can pre-
empt and correspondingly the thresholds may drop below the
queue lengths. FollowLQD simply drops an incoming packet
if it finds that the corresponding queue exceeds its threshold.

Although LQD is known to be 1.707-competitive, we show
that FollowLQD is still at least N+1

2 -competitive. We present
our lower bound based on a simple arrival sequence.

Observation 1. FollowLQD is at least N+1
2 -competitive.

Proof. We construct an arrival sequence such that for every

two packets transmitted by FollowLQD, the offline optimal
algorithm OPT transmits N+1 packets. Consider that all the
queues are empty at time t = 0. We then burst packets to a
single queue say i until its queue length reaches B. Note that
this is possible since the threshold for queue i that follows the
corresponding LQD queue also grows up to B. At the end of
the departure phase, FollowLQD transmits one packet and the
queue length becomes B−1. At this point, we send N packets,
one packet to each of the N queues. The thresholds are updated
based on LQD, which has the following actions: (i) preempt
N − 1 packets from queue i and (ii) accept all N packets to
N queues. Correspondingly, the threshold for queue i of Fol-
lowLQD drops to B−N + 1 but it still has B− 1 packets in
queue i. As a result, it can only accept one packet out of the
N incoming packets. At the end of the departure phase during
this timeslot, FollowLQD has B−1 packets in queue i and has
transmitted 1 packet in total. In the next timeslot, we send N
packets to the queue i so that LQD’s queue i now gets back to
size B again. As the threshold is larger than the queue length
(B−1), FollowLQD accepts 1 packet. At the end of the depar-
ture phase, FollowLQD transmits 1 packet from the queue i.
Overall, FollowLQD transmitted 2 packets but OPT transmit-
ted N+1 packets. We then repeat the sequence such that for
every N+1 packets transmitted by OPT, FollowLQD transmits
2 packets. The competitive ratio is then at least N+1

2 .

C Buffer Sharing Algorithms with Predictions

In this section, we introduce our model for buffer sharing
where there exists an oracle that predicts packet drop (or
accept) for each packet in the arrival sequence σ, according
to the prediction model introduced in §2.3.1. We denote the
drop sequence of LQD for the arrival sequence σ by φ(σ), and
the predicted drop sequence by φ′(σ). We classify prediction
for each packet in to four types: true positive, false positive,
true negative and false negative (see Figure 5. We denote the
sequence of true positive predictions by φ′T P(σ), false positive
predictions by φ′FP(σ), true negative predictions by φ′T N(σ)
and false negative predictions by φ′T P(σ). We drop σ in our
notations when the context is clear.

Hereafter, we mainly compare our online non-preemptive
algorithm with predictions against online LQD (preemptive).
We define the error made by the oracle by the following error
function.

Definition 1 (Error function). Let LQD(σ) and FollowLQD(σ)
denote the total number of packets transmitted by the online
push-out algorithm LQD and the online drop-tail algorithm
FollowLQD over the arrival sequence σ. Let φ denote the
sequence indicating drop by LQD for each packet in the
arrival sequence σ. Let φ′ denote the sequence of drops
predicted by the machine-learned oracle. Let φ′T P, φ′FP, φ′T N ,
and φ′FN denote the sequence of true positive, false positive,
true negative and false negative predictions for the arrival

630 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Burst size = 12.5% (b) Burst size = 25% (c) Burst size = 50% (d) Burst size = 75%

Figure 11: CDF of flow completion times (slowdown) for CREDENCE, DT, ABM and LQD across various burst sizes of incast
workload and websearch workload at 40% load, with DCTCP as the transport protocol. Burst size is expressed as a percentage
of the buffer size.

sequence σ. We define the error function η(φ,φ′) as follows:

η(φ,φ′)=
LQD(σ)

FollowLQD
(
σ−φ

′
T P−φ

′
FP

) (1)

We now analyze CREDENCE that relies on drop predictions
φ′ and takes decisions in pursuit of following LQD more accu-
rately. Algorithm 1 presents the pseudocode for our algorithm.

In essence, perfect predictions allows us to perfectly follow
LQD queues, essentially transmitting as many packets as
LQD. However, we are also concerned about the performance
of the algorithm when the oracle makes mispredictions. In the
following, we study the competitive ratio of CREDENCE as the
error grows. We obtain the competitive ratio as a function of
the error η: we show that CREDENCE is 1-competitive against
LQD with perfect predictions but at most N-competitive when
the error is arbitrarily large.

Theorem 1. The competitive ratio of CREDENCE grows
linearly from 1.707 to N based on the prediction error η(φ,φ′),
where N is the number of ports, φ is the drop sequence of LQD
and φ′ is the predicted sequence of drops i.e., the competitive
ratio is at most min(1.707 η(φ,φ′),N).

Lemma 1. The total number of packets transmitted by
CREDENCE for an arrival sequence σ, a drop sequence φ by
LQD and the predicted drop sequence φ′ is given by

CREDENCE(σ)≥ LQD(σ)

η(φ,φ′)︸ ︷︷ ︸
error

(2)

Proof. For simplicity, we refer to CREDENCE as ALG in the
following. We prove our claim by analyzing the drops of ALG
and relating the transmitted packets by ALG(σ) to LQD(σ′).
Every drop of ALG arises from three types of situations. First,
ALG can drop a packet due to the thresholds. Note that the
thresholds used by ALG correspond to the queue lengths of
preemptive LQD over the same arrival sequence σ. As a
result, both ALG and FollowLQD algorithm have the same
thresholds at any time instance. Second, ALG drops a packet if
the prediction is either true positive or false positive if and only
if the queue length satisfies the corresponding thresholds. This
type of drops are at most the total number of true positive and
false positive predictions. Third, ALG drops a packet when
the buffer is full which is the same condition for FollowLQD.
In essence, ALG drops at most all the positive predictions and
drops at most the number of packets dropped by FollowLQD
serving the arrival sequence σ− φ′T P − φ′FP i.e., the arrival
sequence in which all the packets predicted as positive are
removed from σ. In order to prove our main claim, it remains
to argue that the extra packets accepted by ALG due to the
safeguard condition do not result in additional drops compared
to FollowLQD with the arrival sequence σ−φ′T P−φ′FP. For
every packet that fails to satisfy the threshold but gets accepted
due to the safeguard condition by ALG, could cause at most
one extra drop due to the thresholds before the buffer full
again compared to FollowLQD. This is since, if FollowLQD
accepts a packet, then its queue length is certainly less that
the corresponding threshold (that is same for ALG). However,
the queue length of ALG may have some extra packets that are
accepted due to the safeguard condition. As a result, each such

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 631

(a) Load = 20% (b) Load = 40% (c) Load = 60% (d) Load = 80%

Figure 12: CDF of flow completion times (slowdown) for CREDENCE, DT, ABM and LQD across various loads of websearch
workload and incast workload at a burst size 50% of the buffer size, with DCTCP as the transport protocol.

extra packet (dropped by FollowLQD) contributes to at most
one drop compared compared to FollowLQD and the trans-
mitted packets remains equivalent. Further, by the time the
buffer is full in ALG, all the extra packets accepted due to the
safeguard condition would have been drained out of the buffer.
This is due to the fact that any such extra packet is at a queue
length of at most B

N (the safeguard condition) that drains out be-
fore the buffer fills up i.e., it takes at least B

N timeslots to fill the
buffer (only N packets can arrive in each timeslot). As a result,
ALG transmits at least the total number of packets transmitted
by FollowLQD over the arrival sequence σ−φ′T P−φ′FP i.e.,

ALG(σ)≥FollowLQD(σ−φ
′
T P−φ

′
FP)

Using Definition 1, we express FollowLQD in terms of LQD
and the error function η(φ,φ′), and obtain Equation 2.

Lemma 2. CREDENCE transmits at least 1
N times the number

of packets transmitted by an offline optimal algorithm OPT
i.e., CREDENCE(σ)≥ 1

N ·OPT (σ).

Proof. Irrespective of the predictions, CREDENCE always
accepts an incoming packet if the longest queue is less than
or equal to B

N . When CREDENCE drops a packet, there is at
least one queue that has at least B

N number of packets. Hence,
every packet in OPT can be matched to at least B

N number of
packets. Consequently, the competitive ratio is at most N.

We are now ready to prove our main claim (Theorem 1)
using the above results.

Proof of Theorem 1. From Definition 4, in order to prove
the competitive ratio of our CREDENCE, we are mainly

concerned with the upper bound of OPT (σ)
CREDENCE(σ) for any

arrival sequence σ. Since OPT (σ)
LQD(σ) ≤ 1.707 is known from

literature [9, 26], we use this result to compare CREDENCE
and LQD in order to argue about the competitive ratio i.e,

OPT (σ)
CREDENCE(σ) ≤ 1.707 · LQD(σ)

CREDENCE(σ) for any request sequence
σ. From Lemma 1, we have the following:

LQD(σ)

CREDENCE(σ)
≤η(φ,φ′)

From Lemma 2, irrespective of the predicted sequence,we have
that OPT (σ)

CREDENCE(σ) ≤ N. Finally, since OPT (σ)
CREDENCE(σ) ≤ 1.707 ·

LQD(σ)
CREDENCE(σ) , the competitive ratio of CREDENCE is given by:

OPT (σ)
CREDENCE(σ)

≤min
(
1.707 η(φ,φ′), N

)
The proof follows by Definition 4.

Theorem 2. Let φ′ denote the sequence of drops predicted
by the machine-learned oracle. Let φ′T P, φ′FP, φ′T N , and
φ′FN denote the sequence of true positive, false positive,
true negative and false negative predictions for the arrival
sequence σ. The error function η(φ,φ′) (Definition 1) is upper
upper bounded as follows:

η(φ,φ′)≤ φ′T N+φ′FP

φ
′
T N−min

(
(N−1)·φ′FN ,φ

′
T N

)
Proof. Our proof is based on two arguments: (i)
LQD(σ)=φ′T N +φ′FP and (ii) FollowLQD(σ−φ′T P−φ′FP)≥
φ′T N−min

(
(N−1)·φ′FN ,φ

′
T N

)
.

632 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Burst size = 12.5% (b) Burst size = 25% (c) Burst size = 50% (d) Burst size = 75%

Figure 13: CDF of flow completion times (slowdown) for CREDENCE, DT, ABM and LQD across various burst sizes of incast
workload and websearch workload at 40% load, with PowerTCP as the transport protocol. Burst size is expressed as a percentage
of the buffer size.

First, LQD(σ) is the total number of transmitted packets by
LQD. Recall that the ground-truth (transmitted by LQD) for
a prediction is an accept if and only if the prediction is either
true negative or a false positive. Hence, the total number of
packets transmitted by LQD i.e., LQD(σ) is the sum of true
negative predictions and the false positive predictions.

Second, FollowLQD(σ − φ′T P − φ′FP) transmits at
least φ′T N + φ′FN − Y , where Y is the total number of
drops caused by false negative predictions. Note that
σ = φ′T N +φ′FN +φ′FP +φ′T P. The proof follows by showing
that each false negative results in at most N extra drops due
to the buffer limit. Further, these extra drops must be true
negative predictions since we have already removed positive
predictions from our arrival sequences (i.e., we assume at most
all the positive predictions have be dropped). Additionally,
since the extra drops are true negative predictions, it implies
that LQD transmits those packets but although our prediction
is true, we incur additional drop due to the buffer limit. For
each false negative, there can be at most one drop in a single
timeslot for up to N−1 distinct timeslots such drops that LQD
accepts and transmits those packets but FollowLQD drops
them. Beyond N−1 drops, there can only be at most 1 other
drop upon which the existence of an additional packet (false
negative) in FollowLQD’s buffer would be nullified. This is
since, during the initial N− 1 drops, FollowLQD could not
accept the incoming packet but after the transmission phase,
the queues having false negative predictions decrement their
size by 1. This leaves at least N − 1 packets free space in
FollowLQD after N − 1 drops and LQD also has the same
remaining space after those extra N−1 accepted by LQD are
also transmitted. At this time, both LQD and FollowLQD have
the same remaining space and they also transmit the same
number of packets in each timeslot. One additional drop by
FollowLQD corresponding to a false negative is still possible
due the thresholds i.e., if there exists a packet arrival to the

queue having false negative, the incoming packet is dropped
since the existence of false negatives implies that the queue
length is large than the threshold. As a result, there are at most
N drops by FollowLQD for each false negative prediction.

The proof follows by the above two arguments.

For completeness, although well-known in the literature,
we define accuracy, precision, recall and f1 score below (used
in Figure 15 in §4).

Accuracy=
φ′T P+φ′T N

φ′T P+φ′T N+φ′FP+φ′FN

Precision=
φ′T P

φ′T P+φ′FP

Recall=
φ′T P

φ′T P+φ′FN

F1 score=
2·φ′T P

2·φ′T P+φ′FP+φ′FN

D Additional Results
In this section, we present additional results from our
evaluations. Figures 11, 12, 13 present the CDF of flow
completion times for each experiment in our evaluations (§4),
showing the complete performance profile of each algorithm.

Figure 14 presents our numerical results based on a custom
simulator in discrete time. Note that Figure 14 shows the
throughput ratio of an algorithm vs LQD. We perform this
experiment using custom simulator in order to fully control
the prediction error (artificially).

We generate large bursts of the size of the total buffer,
where each such burst arrives according to a poisson process
(which is fixed in subsequent runs). We then collect a trace
of per-packet drop (or accept) trace using LQD as the buffer
sharing algorithm. This trace serves as the ground-truth as well

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 633

0.0 0.2 0.4 0.6 0.8 1.0
Probability of a false prediction

1.0

1.5

2.0

2.5
Th

ro
ug

hp
ut

 ra
tio

 LQ
D

AL
G Credence

DT
LQD

Figure 14: As the probability of false predictions increases,
CREDENCE’s throughput compared to LQD (push-out) i.e.,
the ratio LQD

ALG increases from 1 to 2.9 (lower values are better).
CREDENCE performs significantly better than DT even when
the probability of false predictions is as high as 0.7.

as the case for perfect predictions for CREDENCE. We then
run CREDENCE over the same packet arrival sequence from
above, and use the drop trace of LQD as predictions. With full
access to this trace i.e., perfect predictions case, CREDENCE
performs exactly as LQD as expected. However, in order to
study the performance of CREDENCE with increasing error, in
a controlled manner, we flip each packet drop (or accept) from
our LQD’s drop trace i.e., each flip becomes a false prediction.
We control the error via the flipping probability i.e., the false
prediction rate. We observe from Figure 14 that CREDENCE
degrade in throughput as the probability of false predictions
increases i.e., as the prediction error increases. However, even
at as high as 0.7 probability of false predictions, CREDENCE
still out-performs DT.

In Figure 15, we present our results obtained from a
parameter sweep across the number of trees used for random
forest model vs prediction scores.

1 2 4 8 16 32 64 128
Number of trees

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Accuracy
Precision
Recall

F1 score
Error score 1η

Figure 15: The quality of our predictions does not improve
significantly beyond 4 trees in our random forest classifier.

634 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Seer: Enabling Future-Aware Online Caching in Networked Systems

Jason Lei
Purdue University

Vishal Shrivastav
Purdue University

Abstract
State-intensive network and distributed applications rely heav-
ily on online caching heuristics for high performance. How-
ever, there remains a fundamental performance gap between
online caching heuristics and the optimal offline caching al-
gorithm due to the lack of visibility into future state access
requests in an online setting. Driven by the observation that
state access requests in network and distributed applications
are often carried in incoming network packets, we present
Seer, an online caching solution for networked systems, that
exploits the delays experienced by a packet inside a network –
most prominently, transmission and queuing delays – to no-
tify in advance of future packet arrivals to the target network
nodes (switches/routers/middleboxes/end-hosts) implement-
ing caching. Using this as a building block, Seer presents
the design of an online cache manager that leverages visibil-
ity into (partial) set of future state access requests to make
smarter prefetching and cache eviction decisions. Our evalu-
ations show that Seer achieves up to 65% lower cache miss
ratio and up to 78% lower flow completion time compared to
LRU for key network applications over realistic workloads.

1 Introduction
Online caching is a key component of every class of computer
systems, ranging from microprocessors [19] to file and storage
systems [35] to networked and distributed systems [8, 15, 37].
It is well-known that the optimal (offline) caching algorithm
for minimizing cache misses, namely Belady [7], requires
visibility into all future access requests, thus making it im-
practical in an online setting. Hence, there have been several
works [6, 13, 30, 56, 59, 60] over the past several decades de-
signing online caching heuristics that closely emulate Belady.
However, there remains a fundamental gap between the per-
formance of online caching heuristics and the optimal offline
algorithm due to the lack of effective mechanisms to provide
visibility into future access requests in an online setting.

In this paper, we present Seer, that aims to bridge the per-
formance gap between online and optimal offline caching in a
networked system, by providing a perfectly accurate visibility
into (partial) set of future access requests to the target network
nodes (switches/routers/middleboxes/end-hosts) implement-
ing caching. We assume that the target nodes have a small
cache with a larger backing store, and run network/distributed
applications that operate over large amounts of state that may
not fit entirely in the cache. Examples of such applications
include virtual switching [15,37], stateful load balancing [31],

NATs and firewalls [25], receive-side host network stack pro-
cessing [10], CDN caching [8], distributed key-value [34],
network monitoring [33], content-based networking [9], and
network intrusion detection [21]. Further, we note that the
state access requests in such applications are often carried
in incoming network packets, e.g., NAT accesses the address
translation table based on the address carried in incoming
packets, virtual switch and stateful load balancer access the
flow table based on the flow id carried in received packets, and
CDN server accesses the content based on content id carried
in incoming client packets. Thus there lies an opportunity to
provide visibility into future access requests to target nodes
implementing caching for such applications, if only one could
notify them of the state access metadata carried in future
incoming packets well in advance before those packets arrive.

To achieve this, Seer leverages the fact that packets expe-
rience various forms of delays in the network – most promi-
nently, transmission and queuing delays – and while the pack-
ets are waiting at a network node to be transmitted, one could
put that delay to good use by notifying in advance the tar-
get nodes implementing caching about the future incoming
packets. More specifically, in Seer, the directly connected
neighbors of each target node continuously forward the rele-
vant state access metadata carried in the packets (e.g., the flow
id or the object id) for all the packets in their egress queues
to the respective target nodes. Thus, while the packets are
still waiting in the neighbor queues for transmission, the for-
warded metadata about the future state access requests allow
the target nodes to make closer to optimal caching decisions
in terms of what to prefetch to the cache and what to evict
from the cache.

However, implementing the above idea in practice requires
solving several key challenges.

Challenge # 1. Notifying of future state access requests in a
timely manner with low bandwidth overhead.

A neighbor node must forward the relevant state access meta-
data in every queued packet destined to the target node as
soon as possible, to provide the target node maximum visibil-
ity into future access requests. However, doing this naively
would require generating a control packet corresponding to
every packet destined to the target node, thus resulting in high
bandwidth overhead.

In §3.1, we describe Seer’s solution to reduce the band-
width overhead of control packets. The key idea is to leverage
the inter-packet gap (IPG) to exchange control information at
zero bandwidth overhead.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 635

Challenge # 2. Caching with partial future visibility.
In an online system, it is impractical to provide full visibility
into all future access requests. Hence fundamentally, Seer
could only provide a partial visibility into future requests, and
in practice, at any given time, Seer only provides visibility into
the future requests currently queued at the directly connected
neighbors of a target node. This presents the challenge of de-
signing a cache manager for a new caching design point, that
sits somewhere in between the two previously explored design
points of optimal offline caching (that assumes full visibility
into future access requests) and online caching heuristics (that
assume no visibility into future access requests).

In §3.2, we describe the design of Seer’s cache manager.
The cache manager implements cache prefetching and cache
eviction algorithms in Seer. For prefetching, the cache man-
ager uses the knowledge of future access requests to prefetch
corresponding state to the cache in the order of future re-
quest arrival. This reduces cache misses for future arrivals.
For cache eviction, Seer dynamically combines a default on-
line caching heuristic1 with Belady’s optimal offline cache
eviction policy, based on the current degree of visibility into
future requests. In the best case, Seer emulates Belady, while
in the worst case, Seer simply reduces to the default online
caching heuristic.

Challenge # 3. Limited time budget for caching decisions.
Seer’s cache manager has a limited time budget to make the
prefetching and cache eviction decisions, as determined by
the access time of the backing store. In particular, Seer must
be able to make caching decisions in lesser time than the
backing store access time in order to ensure that fetching
data from the backing store remains the bottleneck for cache
replacement throughput. To make matters worse, the time
budget for caching decisions can be as small as 10s to 100s
of nanoseconds for a backing store such as DRAM, which is
a common backing store for several state-intensive network
applications [15, 31, 38].

In §4, we describe the hardware implementation of Seer’s
cache manager, that exploits massive hardware parallelism to
implement both the prefetching and cache eviction algorithms
in a total of log(P)+2k+1 clock cycles, where k is the cache
set size (in a set associative cache) and P is the number of
ingress ports in the target network node implementing caching.
In practice, this translates to ∼100 ns latency on FPGA/NIC
target and ∼25 ns latency on ASIC switch/router target.

We implement and prototype Seer’s design on an FPGA
(§5). Our evaluations on a small hardware testbed show that
Seer achieves up to 80% fewer cache misses compared to
LRU while remaining within 20% of Belady. Based on larger-
scale network simulations (§6), we show that Seer achieves up
to 65% lower cache miss ratio and up to 78% lower flow com-
pletion time compared to LRU for key network applications
over realistic workloads.

1Any existing online caching heuristic can be used for this purpose.

2 Seer: Overview and Insights
Seer is an online caching system for state-intensive network
and distributed applications. Seer is designed for networked
systems, where a subset of network nodes implement online
caching (called "target nodes"). A network node in Seer could
be any networking device, including switches, routers, mid-
dleboxes, or end-host NICs and processors.
Network node model. Seer assumes an abstract model of a
network node, where a node has N ingress and egress ports.
To support differential service, each egress port has k priority
classes implemented using k strict priority FIFO queues, i.e.,
packets from a lower priority FIFO are scheduled if and only
if all the higher priority FIFOs are empty. Strict priority FIFOs
are widely implemented in modern networking devices due
to their scalability, e.g., datacenter switches typically have
8 strict priority FIFO classes [18]. Further, recent works [2]
have shown that strict priority FIFOs are also expressive and
can implement wide range of packet scheduling algorithms.
Finally, each target node in Seer is assumed to have a small
local cache (e.g., SRAM) and a larger backing store (e.g.,
DRAM). The backing store could either be local or remote.

Seer’s protocol runs between a target node and its directly
connected neighbor node(s), with the goal to provide the target
node a visibility into future state access requests. The objec-
tive in Seer is to minimize cache misses using the future
visibility. Seer’s design is based on following key insights.

Insight # 1. For network/distributed applications, state access
requests are often carried in incoming network packets.

State accesses in several key network and distributed appli-
cations are triggered by incoming network packets. The state
in these applications are typically indexed by some metadata
carried in the incoming packets, e.g., address translation table
in NAT is indexed by the address field of incoming packets,
flow table in a virtual switch or a stateful load balancer is
indexed by the flow id (such as hash of 5-tuple) of incoming
packets, and the content store in a CDN is indexed by the
content id carried in client packets. Thus, by notifying the
target nodes in advance of the state access metadata carried in
future incoming packets, one could provide the target nodes a
visibility into future state access requests.

Insight # 2. Network delays can be leveraged to provide visi-
bility into future state access requests.

In a networked system, a packet typically hops through multi-
ple network nodes before arriving at the destination. At each
hop, the packet can experience various delays in the form of
transmission, propagation, processing, and queuing delays.
The key insight in Seer is that these delays can be leveraged
to notify the target nodes of future state access requests. Sup-
pose a packet p arrives at a node Y at time 0, and is destined
to target node X after a further network delay of T time units.
Thus, if Y notifies X of the state access metadata in p by time
t < T , X will get visibility into a future state access request.

636 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

state[p1.id]
state[p4.id]

state[p2.id]
state[p1.id]
state[p4.id]

state[p2.id]
state[p1.id]
state[p3.id]

state[p2.id]
state[p4.id]
state[p3.id]

state[p1.id]
state[p4.id]

state[p2.id]
state[p1.id]
state[p4.id]

state[p2.id]
state[p3.id]
state[p4.id]

state[p2.id]
state[p3.id]
state[p4.id]

state[p2.id]
state[p3.id]
state[p4.id]

p1.id
t = 120

p2.id
t = 240

p3.id
t = 360

p4.id
t = 480

t = 120

p1 arrives
HIT

p2 arrives
MISS

LRU
state[p4.id] evicted

following LRU

state[p2.id] fetched
to cache

t = 240 t = 360 t = 480

t = 120 t = 240 t = 360 t = 480

p3 arrives
MISS

state[p3.id] fetched
to cache

state[p1.id] evicted
following LRU

p4 arrives
MISS

state[p4.id] fetched
to cache

p1 arrives
HIT

state[p2.id]
prefetched
to cache

p2 arrives
HIT

state[p1.id] evicted
as it will be accessed

farthest in the future (Belady)

state[p3.id] prefetched
to cache

p3 arrives
HIT

p4 arrives
HIT

SeerReceived notifications about
future state accesses in Seer

Cache state
at node B

Timeline of cache accesses at node B (LRU vs. Seer)

Egress queue at node A

t = 0

t = 0

p1p2p3p4

t = 0

Neighbor node A Target node B

Packet metadata storing
state access index

(e.g., flow id)

Advance
notifications

at t = 0

Figure 1: A toy example illustrating the potential of Seer in terms of minimizing cache misses over Least Recently Used (LRU) [56]
policy. Example assumes two directly connected nodes A and B. Node A has four packets p1, p2, p3, p4 in its egress queue.
Transmission delay of each packet is 120 ns and propagation delay is 0. The time to fetch a state from the backing store is 100 ns
(e.g., DRAM). In Seer, node B has already received notifications from node A at time t = 0 about the future state accesses along
with the expected time of arrival of corresponding packets. Seer is able to use this information to minimize cache misses by (i)
prefetching states into the cache well before the packets that will access those states arrive (done at t=120 and t =240), and (ii)
evicting cache entries that will be accessed farthest in the future (done at t=240) following Belady’s optimal offline algorithm.

Insight # 3. Even small network delays can provide enough
visibility into future requests to result in significant gains.

We illustrate this insight using an example. Consider an
extreme case of zero queuing delay, where an MTU-sized
packet p arrives at t = 0 in an empty egress queue of node
X . Over a 100 Gbps link, it would take 120 ns to transmit this
packet. Thus the packet will reach the next hop node Y at
t = 120+ ε ns, where ε is the propagation delay. Hence, if
Seer could notify Y of the arrival of p at t = 0, Y could poten-
tially prefetch the state p would access into the cache before
p arrives at Y , assuming a backing store such as DRAM with
access time of 50–100 ns. Thus one can avoid a cache miss
even in this extreme case scenario of zero queuing delay. In
practice, due to many-to-one (incast) traffic pattern, bursty
traffic, routing inefficiencies, and bandwidth oversubscription,
the queuing delay experienced by a packet is much higher.

Insight # 4. An accurate estimation of the time of arrival of
future packets is necessary for optimal caching.

Notifying the target nodes of future state access requests is
not sufficient for optimal caching. Target nodes also need an

accurate estimation of when in the future those states will
be accessed, i.e., an accurate estimate of the arrival times
of packets corresponding to each future state access request.
This knowledge would allow the target nodes to create a
global arrival order of future packets (potentially coming from
different sources over different paths), which can then be
leveraged to prefetch states in the order of their (future) access
time, and implement optimal cache eviction policy that evicts
state that will be accessed farthest in the future [7].

Insight # 5. A directly connected neighbor can provide a
perfectly accurate estimation of future packet arrival times.

If two network nodes X and Y are separated by multiple
hops, it becomes extremely challenging to provide an accurate
estimate of when a packet p currently queued at node X would
eventually arrive at Y , due to non-deterministic queuing along
the path from X to Y . In fact, in the worst case, p could be
dropped along the path from X to Y and may never arrive
at Y . However, if X and Y are directly connected, X could
accurately calculate when a packet queued at X would arrive
at Y . Consider an egress queue Q at X directly connected

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 637

to Y with B bytes of queued data. If a packet p of size P
bytes arrives at queue Q at time t, then p will arrive at Y
at time T = t +(B+P)/L+ ε time units (assuming a FIFO
queue), where L is the link speed and ε is the link propagation
delay. Based on this insight, Seer’s protocol only runs between
directly connected nodes in a network.

Putting it all together, Figure 1 shows the potential of Seer
in terms of minimizing cache misses over the most popular
online caching heuristic, LRU [56], that assumes no visibility
into future state access requests.

3 Design
In this section, we describe the two key design components in
Seer—(i) a low overhead notification protocol (§3.1) running
between directly connected nodes in a network, that notifies
target nodes of future state access requests and correspond-
ing packet arrival times in a timely manner, and (ii) a cache
manager (§3.2) that leverages the future visibility into state
access requests and packet arrivals to make smarter caching
decisions in terms of prefetching and cache eviction. Finally,
in §3.3, we discuss the limits of Seer’s design.

3.1 Future Packet Notification Protocol
As mentioned in §2, an N-port network node in Seer has k
FIFO queues (priority classes) per egress port, thus totaling
N ∗ k egress queues per node. Each neighbor node of a target
node in Seer maintains a Future Packet Metadata (FPM)
queue per egress queue, thus totaling N ∗ k FPM queues per
node, as shown in Figure 2. Each FPM queue is a FIFO queue.
Every time a packet is added to an egress queue, Seer en-
queues a corresponding FPM of the form <request id, pkt size,
expected delay> to the tail of the corresponding FPM queue.
A FPM encodes the state access request corresponding to a
given packet. Seer assumes that the state at the target node
is indexed by request id. For most network applications, the
request id is the hash of a subset of packet header fields, e.g.,
the flow table (state) in a virtual switch or a stateful load bal-
ancer is indexed by the hash of 5-tuple (request id), whereas
the address translation table (state) in a NAT is indexed by
the hash of <IP address, port> (request id). Seer assumes that
a target node and its neighbors share the same hash function.

The expected delay field in a FPM is written once a FPM
is dequeued and ready to be transmitted on the link. This field
represents the expected delay since the FPM transmission
until the corresponding packet arrives at the target node. The
expected delay for a packet is calculated as follows:

Assume at egress port P, the currently dequeued FPM cor-
responds to a packet p in priority class i. Assume priority
classes at port P are indexed from 1 to k, such that for any two
priority classes i and j, if i< j, then i has higher priority. Next,
let t j = total transmission delay2 of all packets queued in prior-
ity class j (j ̸= i). Let ti = total transmission delay of packet p
plus all packets queued ahead of p in priority class i. And let

2transmission delay = packet size / link bandwidth.

p3.id, p3.sizep4.id, p4.size

p5.id, p5.sizep6.id, p6.sizep7.id, p7.size

p8.id, p8.sizep9.id, p9.size

p3p4

p5p6p7

p10p11

p14p13p8p9

p1p2

p3.id, p3.size

p3.td = TD (FPM) + TD (p1)
 + TD (p2) + TD (p3)

<p3.id, p3.size, p3.td>

p8.td = TD (FPM) + TD (p10)
 + TD (p11) + TD (p14)
 + TD (p13) + TD (p8)

FPM

TD (p) = transmission delay
for packet p

FPM
Queue

Packet
QueuePr

io
rit

y C
las

s 1
Pr

io
rit

y C
las

s 2
Pr

io
rit

y C
las

s 1
Pr

io
rit

y C
las

s 2

<p8.id, p8.size, p8.td>
FPM

Egress Port 1

Egress Port 2

Figure 2: Illustrates the functioning of FPM queues in Seer.
It assumes the network node has two egress ports and each
port has two priority classes (Priority Class 1 has higher
priority). It also assumes that the FPMs corresponding to
packets p1 and p2 have already been transmitted via egress
port 1, as well as FPMs corresponding to packets p10, p11,
p13 and p14 have already been transmitted via egress port
2. The figure shows the next FPMs being transmitted via the
two egress ports, and the calculation of expected delay for the
packets corresponding to those FPMs.

tFPM = transmission delay of packet carrying FPM. Then the
expected delay for packet p is td = ∑

i−1
j=1 t j + ti + tFPM . This

calculation is illustrated in Figure 2 for packets p3 and p8.
Once a FPM reaches the directly connected target node, the
target node can easily estimate the expected time of arrival
for packet p by simply adding td to its current time.

Finally, each egress port continuously dequeues the FPM
from the head of one of its k FPM queues, and sends it out
to the target node directly connected to that egress port. The
scheduling of FPM queues follow the same (strict) priority
order as the packet queues, i.e., a FPM queue at an egress port
is selected for dequeue only when all the FPM queues with
higher priority at that port are empty (as illustrated for egress
port 2 in Figure 2). This ensures that FPMs are transmitted in
the same order as respective packets.

Balancing timely notification and bandwidth overhead.
Seer needs to send a FPM corresponding to each packet in the
egress queue. Unfortunately, if done naively, this could result
in high bandwidth overhead. The naive approach would gener-
ate one control packet (of size equal to the minimum allowed
packet size) for each FPM. This could result in high band-
width overhead for applications with small sized packets—in
the worst case where all packets are minimum sized, the con-
trol packets would end up consuming half the total bandwidth.
One could potentially reduce the number of control packets
by batching multiple FPMs into a single control packet. How-

638 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

p0Packet Queue p1p2

p0p1p2

p1p2p3p4p5p6p7p8

p1p2p3p4p5p6p7p8p9

p2p3p4p5p6p7p8p9

p9

p0p1, p0
IPG

p7,……, p2

Control
packet

t = T1

t = T2

t = T3

p9, p8
IPG

FPM Queue

m = 6

p1all 0s
IPG

Figure 3: Illustrates how Seer efficiently navigates the trade-
off between timely delivery of FPMs and bandwidth overhead
incurred. It assumes Seer only generates a control packet
when FPM queue size reaches 6 or beyond, i.e., m = 6. Also
assumes that a control packet can batch up to 6 FPMs and
IPG can batch up to 2 FPMs. At t = T 1, since FPM queue size
is less than 6, Seer uses IPG to send FPM. Now suppose at
t = T 2, egress port receives a burst of 7 packets p3− p9 due
to incast. Now the FPM queue size exceeds 6, and hence Seer
generates a control packet that can batch 6 FPMs, p2− p7,
while the remaining two FPMs, p8− p9, can be carried in
IPG. Thus, within just two packet transmission times, the
neighbor knows about all the incoming packets. And this
comes at the bandwidth overhead of just 1 control packet.
Instead, if we had only used IPG, it would have resulted in
zero bandwidth overhead, but it would have taken five packet
transmission times to notify the neighbor of all incoming
packets. Finally, if we had used the classic approach of control
packets only with, say, a batch size of 6, to send FPMs, then it
would have waited till t = T 2 before transmitting FPMs p0−
p5 in 1 control packet, and again would have kept waiting
starting at t = T 2 for two more packets to arrive so it could
batch them with FPMs p6− p9 to form a batch size of 6. Thus,
this approach would not only have required 1 extra control
packet compared to Seer, but would have also added high
non-deterministic latency in the delivery of the FPMs.

ever, batching could result in delayed notifications, as Seer
would need to wait for as many packets as the batch size to
arrive before sending out the control packet. Ideally, Seer
would like to send FPMs as soon as possible, so that at any
given time, the target node has maximum possible visibility
into the future state access requests.

IPG for exchanging FPMs. To overcome the aforemen-
tioned challenge, Seer uses the insight of using inter-packet
gap (IPG) to exchange FPMs. A given communication proto-
col typically enforces a minimum IPG between consecutive
packet transmissions, e.g., IEEE 802.3ae standard for Ether-
net enforces a minimum IPG of 96 bits (called "idle" bits).
The physical layer at the sender adds the idle bits (set to 0 by

default) at the end of each transmitted packet, and the physical
layer at the directly connected receiver removes the idle bits
before sending the packet to higher layers. Thus, idle bits are
only accessible at the physical layer.

Seer re-purposes the idle bits in IPG by overwriting the
default 0s with FPMs on the transmit side, and extracting the
FPMs and overwriting them with default 0s on the receive side
(implementation details can be found in §5). Thus Seer effec-
tively creates a side channel for exchanging control messages
(FPMs) between directly connected nodes, with zero band-
width overhead for normal data communication. This is in the
same spirit as prior works that have leveraged idle bits in IPG
to build systems such as a covert channel [28], a bandwidth
estimator [55], and a time synchronization protocol [27, 43].

Opportunistic batching using control packets. While
using IPG to exchange FPMs results in zero bandwidth over-
head, it also limits the maximum rate at which Seer can ex-
change FPMs. Assuming one could encode X FPMs in each
IPG, the rate of exchange reduces to X FPMs per packet trans-
mission time. This is not ideal for scenarios where a burst of
packets arrive at a queue in a short duration of time (e.g., in-
cast). Assuming a burst of k packets arrive at an empty queue
at time 0, it would take Seer k/X packet transmission times to
transmit the FPMs for all k packets. Ideally, one would want
to transmit the FPMs for all k packets at time 0 itself, so as
to provide maximum future visibility to the target node. Seer
achieves this by using the insight that in scenarios where the
FPM queue size grows large, one can batch all the FPMs in
a single control packet without incurring the batching delay.
Of course this would result in bandwidth overhead, but the
amount of overhead can be controlled by tuning how often
Seer generates these control packets. In particular, Seer uses
two tuning parameters, m and t, where Seer only generates
a control packet when the total FPM queue size at an egress
port exceeds m entries and at least t time units have elapsed
since the last control packet was generated on that egress port.
Otherwise, Seer exchanges FPMs using IPG. This way, Seer
is able to balance the trade-off between timely notification
and bandwidth overhead, as illustrated in Figure 3. We tune
m and t for realistic experiments in §6.

3.2 Cache Manager
The cache manager in Seer is implemented on the target nodes
implementing caching. The cache manager leverages the re-
ceived FPMs to minimize cache misses using a novel prefetch-
ing and cache eviction algorithm as described below.
Assumptions. Seer assumes that the state stored in the back-
ing store is indexed by request id carried in FPMs. Fur-
ther, Seer assumes that the cache is a k-way set-associative
cache [50] storing the <key (request id), value (state)> pairs
for a subset of state from the backing store. If we set k=1,
the cache becomes a direct-mapped cache, and if we set k=N,
where N is the maximum number of cache lines, the cache
becomes a fully-associative cache.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 639

Data structures. The key data structure in Seer’s cache man-
ager is a set of queues, one per ingress port, storing the re-
ceived FPMs from the neighbors directly connected to those
ingress ports. The queue corresponding to ingress port i is
shown as Fi in Algorithm 1. On receiving a FPM of the
form <m.id, m.size, m.td> on ingress port i, Seer first cal-
culates the expected time of arrival for the corresponding
packet, tarrival = tcurr +m.td , where tcurr is the current time at
the receiver. Seer then adds the updated FPM <m.id, m.size,
m.tarrival> to the queue Fi. Finally, Seer also maintains a
global queue, shown as X in Algorithm 1, that stores any
FPM whose corresponding state has been (pre)fetched to the
cache but the state has not yet been accessed by the packet
corresponding to the FPM.
Prefetching algorithm. The visibility into future state ac-
cess requests provides Seer the opportunity to prefetch the
corresponding states to the cache before the packets that will
access those states arrive at the target node, thus minimizing
cache misses. To achieve this, Seer prefetches the states in the
order of increasing expected time of arrival of packets that
will access those states.

Algorithm 1 describes Seer’s prefetching algorithm in its
entirety. It is an endless iterative algorithm that iterates over
each queue Fi in parallel (lines 7–8 in Algorithm 1). In each
iteration, the algorithm finds the FPM e with the minimum
tarrival across all the queues Fi (lines 9–18 in Algorithm 1) and
whose corresponding state is not in the cache (lines 11–15 in
Algorithm 1). It then fetches the corresponding state (indexed
by e.id) from the backing store to the cache, provided the
cache is not full (lines 25–27 in Algorithm 1). In case the
cache is full, Seer first calls its cache eviction algorithm (lines
19-20 in Algorithm 1) to evict an entry from the cache. If the
cache eviction algorithm succeeds, Seer replaces the evicted
entry with the fetched state from the backing store (lines
21–24 in Algorithm 1).

One key thing to note in Algorithm 1 is that it does not
destroy a FPM after the corresponding state has been fetched
to the cache. Instead, it stores all such FPMs in a separate
queue, X (lines 12, 22 in Algorithm 1). This is done to make
sure that we don’t loose the tarrival information for the states
already fetched to the cache, as that information will be later
used by Seer’s cache eviction algorithm to make optimal
eviction decisions.

A FPM is finally removed from all queues and destroyed
once either the corresponding state has been accessed in the
cache by the corresponding packet or the packet correspond-
ing to the FPM is dropped at the target node, perhaps due to
excessive queuing at the ingress (lines 29–32 in Algorithm 1).
Cache eviction algorithm. The cache eviction algorithm is
triggered when Seer tries to add a state to the cache, but the
cache is full. The eviction algorithm applies to a "cache set" in
a set-associative cache (shown as S in Algorithm 2) to which
the index of the state being added is mapped to. In a k-way
set-associative cache, a cache set size is k cache lines.

Algorithm 1 Seer’s Prefetching Algorithm

1: P: number of ingress ports
2: m: a FPM with attributes m.id, m.size, m.tarrival
3: Sm: a cache set in a k-way set associative cache mapped

to state index m.id (where state[m.id] may be cached)
4: Fi: queue storing received FPMs on ingress port i
5: X : queue storing FPMs whose corresponding states have

been fetched to the cache but not yet accessed
6: X = {}
7: while True do
8: for i = 1 to P do in parallel:
9: Yi← NULL

10: m← entry in Fi with minimum tarrival
11: if m.id ∈ Sm then
12: Remove m from Fi and add it to X
13: else
14: Yi ← m
15: end if
16: end for
17: idx← index in Y with minimum tarrival
18: e← Yidx
19: if Se is full then
20: Evict an entry from Se using Algorithm 2
21: if Algorithm 2 succeeds then
22: Remove e from Fidx and add it to X
23: Fetch state at index e.id from backing store
24: end if
25: else
26: Fetch state at index e.id from backing store
27: end if
28: end while
29: Asynchronously do:
30: if state indexed by m.id is accessed in the cache or packet

corresponding to m is dropped at the target node then
31: Remove m from X and F
32: end if

Algorithm 2 Seer’s Cache Eviction Algorithm

1: S: cache set under consideration for eviction
2: e.id: index of the state being considered for fetch
3: A← {x.id ∈ S: ∃ m s.t. x.id = m.id and m ∈

⋃P
i=1 Qi∪X}

4: B← {x.id ∈ S: x.id /∈ A}
5: if B not empty then
6: Evict an entry from B using any caching heuristic
7: return Success
8: else
9: m.id← entry in A with maximum tarrival

10: if e.tarrival < m.tarrival then
11: Evict m.id from A
12: return Success
13: end if
14: end if
15: return Failure

640 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Intuitively, Seer’s cache eviction algorithm tries to emulate
the optimal (offline) algorithm for minimizing cache misses,
namely Belady’s algorithm [7]. Belady evicts the cache entry
that will be accessed farthest in the future. However, unlike
Belady, which assumes full visibility into the future requests,
Seer only has a partial view of the future, i.e., at any given
time, Seer only knows about a partial set of future state ac-
cess requests (namely, the requests corresponding to packets
currently queued at a neighbor node). Thus, it may be possi-
ble that there are entries in the cache for which Seer has no
knowledge of when those entries will be accessed in the future
(i.e., there is no received FPM corresponding to the packet
that will access that cache entry). Thus, Seer’s cache eviction
algorithm first separates all the entries in the cache set into
two sets — set A (line 3 in Algorithm 2) which includes all
the entries in the cache set for which tarrival is known, and
set B (line 4 in Algorithm 2) which includes all the remain-
ing entries in the cache set. Thus, set A stores all the states
that will be accessed in the near future, while the states in
set B are expected to be accessed farther in the future, if at
all. Hence, in the spirit of Belady, Seer prioritizes set B over
set A for eviction (line 5 in Algorithm 2). To evict an entry
from set B, Seer relies on some default caching heuristic, such
as LRU [56] (line 6 in Algorithm 2). Note that any caching
heuristic can be used for this purpose. On the other hand, to
evict an entry from set A, Seer uses Belady’s algorithm (lines
8–14 in Algorithm 2). Overall, in the best case, when set B is
empty, Seer emulates Belady, while in the worst case, when
set A is empty, Seer reduces to the default caching heuristic.

An interesting consequence of Seer’s design is that it may
result in scenarios where the cache eviction algorithm fails
to evict an entry from the cache set, thus aborting the current
state fetch from the backing store. This is because in Seer,
states are prefetched to the cache and that too in the order of
their tarrival . Thus, if currently every entry in the cache set has
tarrival value less than the tarrival value for the entry currently
being considered for prefetching from the backing store (and
replace an existing entry in the cache), Seer does not evict any
existing entry in the cache and the fetch is aborted, otherwise
eviction succeeds (lines 9–13 in Algorithm 2). This is in the
spirit of Belady, where the state that will be accessed farthest
in the future (in this case, the state that is currently being
considered for prefetching) is evicted from the cache.

3.3 Limits of Seer
In this section, we discuss some of the limits of Seer’s design.

The gains of Seer’s cache eviction algorithm over existing
online caching heuristics is dependent on the degree of future
visibility, which in turn, is dependent on the degree of queuing
at the neighbor nodes — the more the queuing, the higher the
gains. In the worst case, when queuing is extremely small,
Seer’s cache eviction algorithm would reduce to the default
caching heuristic. On the other hand, the effectiveness of
Seer’s prefetching algorithm is dependent on both the degree

of queuing at the neighbors and the access time of the backing
store. In particular, for prefetching to be effective, the amount
of queuing delay for a packet must be greater than the access
time of the backing store, in order to ensure that the state has
been fetched to the cache before that packet arrives. Hence
prefetching will be most effective for high-speed network and
distributed applications that use a faster backing store such
as DRAM (with SRAM as cache). However, note that even
for applications that use a slower backing store compared
to the typical network queuing delays, Seer’s cache eviction
algorithm will continue to provide gains, e.g., by ensuring one
does not evict an entry that will be accessed in the near future.
Finally, Seer’s design is also somewhat susceptible to FPM
drops. If a FPM is dropped (e.g., queue tail drop at either the
neighbor or the target node) but the corresponding packet is
not dropped, Seer might end up with a non-continuous view
of future state access requests. This may result in priority
inversion, e.g., replacing a cache entry with another entry that
will be accessed farther in the future. Fortunately, it is fairly
easy to avoid FPM drops in Seer, by provisioning sufficient
memory for FPM queues at both the neighbors and the target
nodes. Given the size of a FPM is very small, the amount of
memory needed to avoid drops in practice is nominal (§6).

4 Implementation
In this section, we describe the implementation Seer’s cache
manager. We start by first discussing the performance goals
for the cache manager, followed by an implementation that
achieves those goals.
Performance goals. Seer’s cache manager operates itera-
tively, and in each iteration it can have three potential perfor-
mance bottlenecks – (i) time taken to decide what state to
prefetch (tpre f etch), (ii) time taken to evict a cache entry (tevict),
and (iii) time taken to fetch the state from backing store into
the cache (tbkStore). Prefetching decision and eviction needs
to happen sequentially in each iteration, but they both can
be parallelized with the state fetch from the backing store
from the previous iteration. Thus the goal of Seer’s implemen-
tation is to ensure that tpre f etch + tevict ≤ tbkStore, so that the
backing store access time remains the bottleneck for cache
replacement throughput. Further, we also want to ensure that
the received FPMs are added to the respective queues in the
cache manager in ideally O(1) time, so that the prefetching
and eviction algorithms get access to the FPMs as soon as
they arrive at the target node.
Primitives. Next, we present the key primitives needed to
implement Seer’s prefetching and cache eviction algorithms.

1. insert(m,Q): Adds an element m to queue Q (lines 12, 22
in Algorithm 1).

2. delete(m,Q): Removes an element m from queue Q (lines
12, 22, 31 in Algorithm 1).

3. max-min(Q): Returns the max (line 9 in Algorithm 2) or
the min (line 10 in Algorithm 1) value in a queue Q.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 641

4. min(Y1,Y2,,YP): Returns the min value (line 18 in Al-
gorithm 2) in an un-ordered set of entries Yi, i=1 to P.

5. intersect(S1, S2): Returns the set of elements present in
both sets S1 and S2 (line 3 in Algorithm 2).

6. difference(S1, S2): Returns the set of elements present in
set S1 but not in set S2 (line 4 in Algorithm 2).

We bundle primitives 1–4 into order primitives and primi-
tives 5, 6 into set primitives. Next, we describe the implemen-
tation of both sets of primitives.
Implementing order primitives. To find the minimum ele-
ment in an un-ordered set of P elements, one fundamentally
requires at least O(log(P)) time. Thus, Seer implements prim-
itive 4, min(Y1,Y2,,YP), in log(P) clock cycles.

Next, we focus on primitives 1–3 that operate over a queue.
The natural data structure for implementing max/min (primi-
tive 3) would be a priority queue. A priority queue can return
the max/min value in O(1) time. However, insertions and
deletions may take O(log(N)) time, where N is the queue
size. To make matters worse, in Seer, adding an element to
a queue may require updating the value of the attribute over
which max/min is calculated for n (n ≤ N) other elements
in the queue, thus resulting in an added O(n(log(N)) time to
re-insert each updated element to the queue. This is because
of the presence of multiple priority classes. A packet p1 in
a higher priority class will be transmitted before a packet p2
queued in a lower priority class at the same egress port, even
if p2 arrived before p1. As a result, the tarrival field in the
received FPM corresponding to p2 will need to be updated
once the FPM for p1 arrives at a later time. This update can be
done by adding the transmission delay for packet p1 to p2’s
current expected time of arrival, i.e., p2.tarrival += p1.size /
link bandwidth. This is illustrated in Figure 4.

Seer solves the above challenge by replacing the priority
queues with fully ordered lists. A fully ordered list maintains
the invariant that the list is always sorted (by tarrival in Seer)
even under insertions, deletions, and updates. This automati-
cally reduces the time complexity for max/min operations to
1 clock cycle. Seer implements a fully ordered list of size N
using N flip-flops, which allows parallel access to each of the
N elements in the list. To add an element m to the list, Seer
first determines the right index in the list to add m that would
still keep the list sorted. This can be done in 1 clock cycle by
comparing the tarrival value for m against the tarrival values of
each element in the list in parallel. Once the right location
has been determined, Seer adds m to that location and shifts
the rest of the elements in the list in parallel, again requiring
only 1 clock cycle. Further, parallel access also allows Seer to
update the tarrival values of multiple elements in the list in just
1 clock cycle. Note that in Seer, the tarrival values of the exist-
ing elements are all updated by the same amount (namely, the
transmission delay of m), and hence their relative positions in
a fully ordered list will not change. So, Seer does not need to
re-insert the updated elements. This entire design is an adapta-

p3p4

p2p5

p3p4

p1

FPM
Queue

Pr
io

rit
y C

las
s 1

Pr
io

rit
y C

las
s 2

Pr
io

rit
y C

las
s 1

Pr
io

rit
y C

las
s 2

p1.id,
p1.size

p1.t = 10

Neighbor Node

Ne
w

 S
ta

te

Egress Ingress

Egress Ingress

Update Update

current time = 0

p2.id,
p2.size

p2.t = 20

p3.id,
p3.size

p3.t = 30

p2.id,
p2.size

p2.t = 20

p3.id,
p3.size

p3.t = 40

p4.id,
p4.size

p4.t = 50

p5.id,
p5.size

p5.t = 30

current time = 10
{p5.id, p5.size,

p5.td = 20}

p2

p1

p4.id,
p4.size

p4.t = 40

curr time +
p5.td

Target Node

In
iti

al
 S

ta
te Received FPMs

Received FPMs

Figure 4: Illustrates that with multiple priority classes, adding
a FPM to a queue at the target node may require updating
existing elements in the queue. Assumes the transmission
delay for each packet is 10 time units and propagation delay
0. Initially, the FPMs for packets p1− p4 were all received
at the target node at time 0. Then at some later time, packet
p5 arrived at the neighbor node, and its corresponding FPM
was received at the target node at time 10. Since p5 arrived
in a higher priority class, it will be transmitted right after
p2, preempting p3 and p4. Thus, the expected delay for p5 is
only 20 time units (sum of transmission delays of p5 and p2).
But it also pushes the transmission of p3, p4 back by 10 time
units (equal to p5’s transmission delay). Hence, the current
expected time of arrival for p3, p4 need to be updated at the
target node, by adding to them the transmission delay for p5.

tion of the classic parallel compare-and-shift architecture [32]
that has also been used recently in other contexts, such as
packet scheduling [40, 45] and filtering [41]. Overall, with
an ordered list, Seer can implement max-min(Q) in 1 clock
cycle, delete(m, Q) in 2 clock cycles, and insert(m, Q) in 3
clock cycles (including the updates triggered by an insert).

Implementing set primitives. Implementing the queues
in Seer’s cache manager using flip-flops also helps with
fast implementations of the two set primitives, namely
intersect(S1,S2) and difference(S1,S2). In Seer, S1 is a cache
set of size k in a k-way set-associative cache. Implementa-
tion of the cache itself is outside the purview of Seer, but
we assume that it takes O(k) time to locate an element in a
cache set of size k. On the other hand, set S2 in Seer refers
to queues Fi and X in Algorithm 1, which we implement as
fully ordered lists using flip-flops, as discussed above. Fur-
ther, in Seer, the intersect and difference operations execute
synchronously over the same input sets (lines 3–4 in Algo-
rithm 2). Hence, Seer implements the two primitives jointly
(in parallel) as described below.

642 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Seer iteratively compares the id of each state s in the cache
set (set S1) with all the elements in

⋃
Fi and X (set S2) in

parallel. Since flip-flops allow parallel access, this can be
done in k clock cycles, where k is the cache set size. If the id
of s matches the id of an element m in Fi or X , Seer adds it to
set A (output of intersect(S1,S2)), else it adds it to set B (output
of difference(S1,S2)). Thus, it takes a total of k clock cycles
to implement both the intersect and difference primitives.
Additionally, Seer also calculates the max tarrival within set
A (line 9 in Algorithm 2) in parallel while building set A.
Essentially, while adding an element m to set A, Seer updates
the current max tarrival value, tmax, to max(tmax, m.tarrival), and
accordingly updates the state id with the current max tarrival ,
idmax, to m.id if m.tarrival > tmax. Thus, after k iterations, idmax
stores the state id in set A with max tarrival . Hence, Seer could
execute the entire cache eviction algorithm in k clock cycles.
Overall performance. Overall, Seer takes k clock cycles
for the cache membership check (line 11 in Algorithm 1),
1+ log(P) clock cycles to find the FPM with minimum tarrival
(lines 10 + 17 in Algorithm 1), and k clock cycles in the best
case or k clock cycles plus the latency of the default caching
heuristic (for LRU the best known implementation has O(1)
time) in the worst case, to evict an element from the cache.
Thus, tpre f etch + tevict = log(P) + 2k + 1 clock cycles. The
value of k, the cache set size, is typically 4–8 for modern
caches [52]. The value of P, number of ports, varies from 2–4
for NICs and FPGAs to few 100s for switches and routers.
Assuming clock rates of around 100–200 MHz as typically ob-
served for NICs and FPGAs, and clock rates of around 1 GHz
as typically observed for ASIC switches and routers [42], the
total tpre f etch + tevict time would be 100–200 ns for NICs and
FPGAs and under 25 ns for ASIC switches and routers.

5 Prototype
We prototype Seer in System Verilog (∼1200 LOCs) on an
Altera Stratix V [49] FPGA comprising 234 K Adaptive Logic
Modules, 52 Mbits SRAM, and four 10 Gbps network ports.
The architecture of the prototype is shown in Figure 5.

To implement Seer’s future packet notification protocol
using IPG, as described in §3.1, we modify Ethernet’s phys-
ical layer (PHY) as shown in Figure 5. Once the Physical
Coding Sublayer (PCS) in PHY receives a packet from higher
layers to transmit, the Encoder module in PCS reformats the
packet into a sequence of one /S/ block (Start of an Ethernet
frame), multiple /D/ data blocks, and one /T/ block (End
of an Ethernet frame). PCS inserts at least twelve 8-bit idle
characters (/I/) between two Ethernet frames (IPG). The /I/
characters are set to 0 by default. The /T/ block can have
0–7 /I/ characters, and PCS inserts one or more special /E/
block with eight /I/ characters to make up the minimum
requirement of twelve /I/ characters. Note that if there are
no Ethernet frames to transmit, PCS continuously keeps trans-
mitting /E/ blocks. The /T/ and /E/ blocks (and hence the
/I/ characters) are accessible as part of the output from the

Physical Medium Dependent (PMD)

Physical Medium Attachment (PMA)

Encoder

Seer TX

Scrambler

Gearbox

Decoder

Seer RX

Descrambler

Blocksync

Physical Coding Sublayer (PCS)

XSBI 644.53125 MHz

Physical Layer (PHY)

Reconciliation Sublayer (RS)
Media Access Control (MAC)

XGMII 156.25 MHz

O
rd

er
ed

 li
st

(fl
ip

-fl
op

s)

Recvd
FPM

logic

Cache Manager

id2, val2id1, val1

id6, val6id3, val3

id1, val1
id2,val2

id100, val100

id98, val98
id99,val99

2-way set associative
SRAM cache

DRAM Fetch

Evict

2 Priority Classes (FIFOs)

FP
MPK

T

Egress Ingress

Figure 5: Seer’s FPGA prototype. Seer’s modules are shown
in gray boxes.

Encoder on the TX path and input to the Decoder on RX path.
Hence, we implement Seer’s logic after the Encoder/Decoder
modules. On the TX path, Seer creates a separate data path
(shown using red lines in Figure 5) that bypasses the nor-
mal data path for Ethernet frames, and connects Seer’s PHY
module directly to the FPM FIFO queues. If any of the FPM
queues are non-empty, Seer immediately dequeues an FPM
from the queue and overwrites the outgoing /I/ characters
with the FPM. On the RX path, when Seer receives a /T/ or
an /E/ block, it extracts the FPM from the /I/ characters in
those blocks, and overwrites those bits with all 0s before send-
ing to Decoder, following the Ethernet standard. Seer adds
the extracted FPM to the fully ordered list of FPMs through
another separate data path (shown using a red line in Figure 5)
bypassing the normal Ethernet frame’s data path. Finally, we
also implement Seer’s cache manager as described in §4.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 643

Queue size
FPGA ASIC

Clock Logic Clock Area
N = 128 170 MHz 8% 4.2 GHz 0.012 mm2

N = 256 150 MHz 15% 4.1 GHz 0.022 mm2

N = 512 120 MHz 30% 3.7 GHz 0.042 mm2

N = 1024 100 MHz 60% 3.5 GHz 0.085 mm2

N = 2048 – >100% 3.4 GHz 0.167 mm2

N = 4096 – >100% 3.2 GHz 0.324 mm2

Table 1: Clock speed and resource usage for Seer’s prototype
with varying size of the fully ordered list data structure.

5.1 Resource Usage
The most resource consuming component of Seer’s design
(and also the bottleneck for clock speed) is the fully ordered
list used to store the received FPMs. This is the price we way
for parallelism via flip-flops. Table 1 shows Seer’s overall
clock speed and resource consumption for varying sizes of
the fully ordered list. We also synthesize Seer’s RTL design
on Synopsys Design Compiler tool [53] using an open-source
15 nm process technology [29], and report the results in Ta-
ble 1. On the FPGA, we are unable to synthesize a design
beyond queue size of 1024, as we run out of FPGA logic re-
sources. On the ASIC however, Seer is able to support much
larger queue sizes with clock rates in excess of 3 GHz. To
put this in perspective, modern switching chips typically run
at around 1 GHz clock rate [42, 45]. Chip area increases lin-
early with queue size. Note that the numbers reported are
for a single queue. If the processor has multiple ports, the
area usage will be multiplied by the number of ports, as Seer
maintains one queue per ingress port. Thus, for N = 4096,
and 100 ports, the total area consumed will be 32 mm2. This
is between 5%–10% overhead for switching chips whose chip
areas vary from 300–700 mm2 [12].

5.2 Prototype Experiments
We directly connect two FPGA prototypes from Figure 5
using an optical cable of length 2 m (propagation delay of
around 10 ns). One FPGA emulates the neighbor node while
the other emulates the target node. On the neighbor FPGA,
we implement two priority classes at the egress. We also im-
plement a packet generator on the FPGA to feed the packets
into the priority classes. Packet generator randomly decides
which priority class to put a packet into. Packets arrive ac-
cording to a Poisson process. We assign a random flow id to
each packet, chosen uniformly at randomly from 0 to 100 K,
thus emulating 100 K flows. On the target FPGA, we populate
the DRAM with 100 K flow state entries. Each flow state is
512 bits. We implement a 2-way set associative cache of size
2 MB in SRAM (can cache around 30 K flow states).
Parameters. The default packet size to 256 B. The default
average rate of packet generation is 6 Gbps. The FPM queue
size at both the egress and ingress is 256 entries. The size of
each FPM is 44 bits – 17 bits for flow id, 11 bits for packet

(a) Incast workload. (b) Permutation workload.

Figure 6: Cache miss ratio for Seer vs. LRU and Belady for
different packet sizes and packet generation rates. For each
data point, all the cache miss ratios are normalized w.r.t. the
corresponding cache miss ratio for Seer.

size, and 16 bits for td . Thus we can send two FPMs in the
minimum sized Ethernet IPG. The control packet size is 64 B,
and we send a control packet only when the FPM queue size at
egress exceeds 8 entries (m = 8) and at least 5 us have elapsed
since the last control packet was sent (t=5 us). This limits the
bandwidth overhead of control packets to ∼ 1%. The default
caching heuristic used in Seer is LRU [56] (Algorithm 2).
Evaluation metric. We use cache miss ratio, i.e., number of
cache misses divided by total cache access requests.
Baselines. We use LRU [56] and Belady [7] as the baselines.
Experiment results. Figure 6a shows the cache miss ratio
against packet size. Seer outperforms LRU for all packet sizes,
but the gains decrease for larger packet sizes (80% gain for
64 B vs. 20% for 1500 B). This is because with smaller packet
sizes, the number of packets in a queue of given size (in bytes)
would be higher. This works to Seer’s advantage, as Seer re-
ceives higher number of FPMs within a given time window,
thus allowing it to make more informed prefetching and evic-
tion decisions. Finally, we also note that Seer performs very
close to Belady (within 20%) for all packet sizes.

Next, Figure 6b shows the cache miss ratio against differ-
ent packet generation rates. As the packet generation rates
increase, Seer outperforms LRU by a bigger margin (by 8% at
2 Gbps vs. 94% at 9 Gbps). Similarly, Seer performs closer to
Belady at higher packet generation rates (within 5% at 9 Gbps
vs. 20% at 2 Gbps). This is because higher packet generation
rate leads to more queuing at the egress, thus providing Seer
with more visibility into the future state access requests.

6 Simulations
In this section, we do large scale network simulations to eval-
uate the performance of Seer over state-intensive network
applications. Our simulator is written in C built on top of [44].
Setup. We simulate a two-tier Fattree [1] topology with 16
spine switches, 9 ToR switches, and 16 hosts per ToR switch,
for a total of 144 hosts. All links in the network are 100 Gbps.
Per-hop propagation delay is 100 ns. Each host in the network
is running DCTCP [3] congestion control and each switch
supports ECN. Switches do ECMP [51] load balancing.

644 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Incast workload. (b) Permutation workload. (c) Websearch workload. (d) Datamining workload.

Figure 7: Cache miss ratio for Seer vs. LRU and Belady for different packet sizes. For each packet size, all the cache miss ratios
are normalized w.r.t. the corresponding cache miss ratio for Seer.

Applications. Each spine switch in the network runs a stateful
layer 4 load balancing application, similar to SilkRoad [31].
Each ToR switch in the network runs an intrusion detection ap-
plication [57] that stores several per-flow states in the switch,
e.g., packet counts, packet inter-arrival times, etc. By default,
we assume the cache in each switch can store up to 20% of
the total flow states. We assume DRAM as the backing store.

Workloads. We evaluate Seer against a variety of workloads
– (i) a permutation workload, where each host sends and re-
ceives exactly one flow; (ii) an incast workload, where we
select a rack as the incast destination and all other hosts in the
network send to the hosts in that incast rack; (iii) websearch
workload [3]; and (iv) datamining workload [17]. Websearch
and datamining are representative datacenter workloads, with
heavy-tailed flow size distribution. Flows arrive according to
a Poisson process for a target network load of 0.6.

Baselines. We evaluate Seer against a variety of state-of-
the-art online caching algorithms – LRU [56], LFU [13],
ARC [30], S3-FIFO [59], and SIEVE [60]. We also evalu-
ate Seer against the optimal offline algorithm, Belady [7].

Evaluation metrics. We use two evaluation metrics – (i)
cache miss ratio aggregated across all the switches running
the above applications, and (ii) flow completion time (FCT).

Parameters. The FPM queue size at each egress and ingress
port is 1024 entries. The size of each FPM is 44 bits – 17 bits
for flow id, 11 bits for packet size, and 16 bits for td . Thus we
can send two FPMs in the minimum sized Ethernet IPG. The
control packet size is 64 B, and we send a control packet only
when the FPM queue size at egress exceeds 8 entries (m = 8)
and at least 500 ns have elapsed since the last control packet
was sent (t=500 ns). This limits the bandwidth overhead of
control packets to ∼ 1%. The default caching heuristic used
in Seer is LRU [56] (Algorithm 2).

Experiment results. Figure 7 shows that for incast work-
load, Seer significantly outperforms LRU for all packet sizes.
This is due to the fact that incast workload results in signifi-
cant queuing in the network, which allows Seer to get better
visibility into future state access requests. In contrast, for
the permutation workload, Seer performs very close to LRU,
since this workload observes least queuing in the network.

This is also the reason why for this workload, the gap be-
tween the performance of Seer and Belady is largest. Next,
even for realistic datacenter workloads, namely websearch
and datamining, Seer significantly outperforms LRU (by up
to 65%) while remaining between 15–35% of Belady for all
packet sizes. Finally, across all the four workloads, as the
packet sizes increase, the gains of Seer over LRU decrease
and the performance gap between LRU and Belady increase.
The reason for this trend is explained in §5.2.

Next, Figure 8 shows the performance of Seer with varying
cache capacity. As expected, as the cache capacity increases,
the number of cache misses decrease for both Seer and the
baselines. However, Seer performs consistently better than
LRU for all cache sizes. While the gains are more for smaller
cache sizes, but even for larger cache sizes, the gains are
significant. This is because even with a large cache size, LRU
is unable to avoid cold cache misses, where a state is fetched to
the cache for the first time. However, Seer can avoid such cold
misses due to its prefetching algorithm leveraging visibility
into future state access requests.

Next, Figure 9 shows the performance of Seer against
state-of-the-art online caching heuristics. LFU performs the
worst, which is an indication that frequency is perhaps not the
right metric for caching in these experiments. ARC is based
upon LRU while S3-FIFO and SIEVE are recent FIFO-based
caching heuristics designed to be more scalable than LRU.
But ultimately, all these heuristics are limited by the lack of
visibility into future state access requests, which both Seer
and Belady exploit to gain much better performance.

Finally, in Figure 10, we show the performance of Seer in
terms of flow completion time. The trend here is similar to
the trend observed with cache miss ratio, since higher cache
misses at the switches result in higher latency (and lower
throughput) for in-network packet processing, ultimately re-
sulting in higher flow completion time.

7 Related Work
Belady’s algorithm [7] exemplifies an optimal caching algo-
rithm. While a true implementation of Belady’s algorithm
would be ideal, it is impractical due to its fully offline nature.
Seer attempts a practical, best-effort emulation of Belady.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 645

(a) Incast workload. (b) Websearch workload.

Figure 8: Number of cache misses for different cache capaci-
ties. A cache capacity of X% means the cache can hold X%
of total state. The packet size used is 64B.

(a) Incast workload. (b) Websearch workload.

Figure 9: Cache miss ratio for Seer vs. state-of-the-art online
caching heuristics and Belady. The cache miss ratios are
normalized w.r.t. the cache miss ratio for Seer. The packet
size used is 64B.

(a) Websearch workload. (b) Datamining workload.

Figure 10: Flow completion time (FCT) for Seer vs. LRU.
FCTs are normalized w.r.t. to the FCT for Seer.

Recency and frequency metrics form the backbone of tra-
ditional caching heuristics, such as LRU [56], LFU [13],
LRU-K [36], 2Q [23], ARC [30], SLRU [24], GDSF [11],
EELRU [46], LRFU [26], CAR [5], CLOCK-Pro [22],
TinyLFU [14], S3-FIFO [59], and SIEVE [60]. The LRU
algorithm maintains an ordered queue based on access re-
cency, evicting the oldest entry whenever necessary. LRU-K,
2Q, ARC, SLRU, and EELRU use multiple LRU queues in
tandem to improve performance or cover weaknesses of LRU,
such as thrashing. Frequency also serves an important role in
caching, most notably with LFU. For example, LRFU com-

bines recency and frequency into a single metric for consider-
ation. Tiny-LFU augments any arbitrary caching algorithm
with an LFU-like admission policy. Real world factors are
also often taken into consideration with caching. For exam-
ple, GDSF optimizes around the time cost disparity between
different memory accesses. Practical-minded cache designers
may instead use CLOCK-based algorithms such as CAR and
CLOCK-Pro, or FIFO-based algorithms, such as S3-FIFO
and SIEVE, due to their speed and ease of implementation
in real-world settings. These algorithms all attempt to ap-
proximate Belady’s algorithm to varying degrees of success.
However, they are ultimately limited by their online design,
as being oblivious to future state access requests leaves much
performance on the table.

Machine learning has also been used to aid caching, espe-
cially in web caching or content delivery settings. LHD [6],
Raven [20], LeCaR [54], CACHEUS [39], LRB [47], GL-
Cache [58] and HALP [48] are examples, each of which
integrate ML into their designs in different ways. Some al-
gorithms like LHD and Raven are probability-based, while
others such as LeCaR and CACHEUS learn weights between
well-studied algorithms. Others, such as LRB and HALP
use network statistics to learn an approximation of Belady’s
algorithm. Still others take wholly unique angles, such as GL-
Cache, which classifies objects together for grouped cache
management. ML-based algorithms have their time and place.
However, their reliance on the historical or statistical patterns
to make future predictions is their achilles heel. In contrast,
Seer provides a perfectly accurate mechanism for visibility
into future state access requests in a networked setting.

Some solutions do not neatly fit into the above categories,
such as Belatedly and its practical approximation MAD [4],
which minimize cache delay instead of cache misses as tradi-
tional algorithms do. And finally, Reframer [16] intentionally
delays and reorders packets belonging to different flows to re-
duce end-host cache misses, however is challenging to imple-
ment at line rate, and introduces delay to reordered packets.

8 Conclusion
We presented Seer which is an online caching system for
state-intensive network and distributed applications. Seer min-
imizes cache misses by providing visibility into future state
access requests. Seer leverages the delays experienced by
packets in a network to notify network nodes implementing
caching of future state access requests carried in incoming
network packets that are currently queued at a neighbor node.
Using this as a building block, we presented the design of an
online cache manager that leverages visibility into (partial)
set of future state access requests to make smarter prefetching
and cache eviction decisions. Seer’s design has been proto-
typed and implemented on an FPGA. Our evaluations showed
that Seer achieves up to 65% lower cache miss ratio and up
to 78% lower flow completion time compared to LRU for key
network applications over realistic workloads.

646 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgments
We thank the anonymous NSDI reviewers and our shepherd,
Anuj Kalia, for their valuable feedback. This work was sup-
ported in part by an NSF CAREER Award 2239829 and a
Ross Ph.D. fellowship.

References
[1] Mohammad Al-Fares, Alexander Loukissas, and Amin

Vahdat. A Scalable, Commodity Data Center Network
Architecture. SIGCOMM, 2008.

[2] Albert Gran Alcoz, Alexander Dietmüller, and Laurent
Vanbever. SP-PIFO: Approximating Push-In First-Out
Behaviors using Strict-Priority Queues. NSDI, 2020.

[3] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data Center
TCP (DCTCP). SIGCOMM, 2010.

[4] Nirav Atre, Justine Sherry, Weina Wang, and Daniel S.
Berger. Caching with Delayed Hits. SIGCOMM, 2020.

[5] Sorav Bansal and Dharmendra S. Modha. CAR: Clock
with Adaptive Replacement. FAST, 2004.

[6] Nathan Beckmann, Haoxian Chen, and Asaf Cidon.
LHD: Improving hit rate by maximizing hit density.
NSDI, 2018.

[7] Laszlo A. Belady. A study of replacement algorithms
for a virtual-storage computer. IBM Systems Journal,
1966.

[8] Daniel S. Berger, Ramesh K. Sitaraman, and Mor
Harchol-Balter. AdaptSize: Orchestrating the Hot Ob-
ject Memory Cache in a Content Delivery Network.
NSDI, 2017.

[9] Daniel Bittman, Robert Soulé, Ethan L. Miller, Vishal
Shrivastav, Pankaj Mehra, Matthew Boisvert, Avi Sil-
berschatz, and Peter Alvaro. Don’t Let RPCs Constrain
Your API. HotNets, 2021.

[10] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati,
Jaehyun Hwang, and Rachit Agarwal. Understanding
host network stack overheads. SIGCOMM, 2021.

[11] Pei Cao and Sandy Irani. Cost-Aware WWW Proxy
Caching Algorithms. USITS, 1997.

[12] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivara-
man, Shay Vargaftik, Alon Berger, Gal Mendelson, Mo-
hammad Alizadeh, Shang-Tse Chuang, Isaac Keslassy,
Ariel Orda, and Tom Edsall. dRMT: Disaggregated
Programmable Switching. SIGCOMM, 2017.

[13] John Dilley and Martin Arlitt. Improving proxy cache
performance: Analysis of three replacement policies.
IEEE Internet Computing, 1999.

[14] Gil Einziger, Roy Friedman, and Ben Manes. TinyLFU:
A Highly Efficient Cache Admission Policy. ACM Trans-
actions on Storage, 2017.

[15] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg.
Azure Accelerated Networking: SmartNICs in the Public
Cloud. NSDI, 2018.

[16] Hamid Ghasemirahni, Tom Barbette, Georgios P. Kat-
sikas, Alireza Farshin, Amir Roozbeh, Massimo Girondi,
Marco Chiesa, Gerald Q. Maguire Jr., and Dejan Kostić.
Packet Order Matters! Improving Application Perfor-
mance by Deliberately Delaying Packets. NSDI, 2022.

[17] Albert Greenberg, James R. Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A. Maltz, Parveen Patel, and Sudipta Sengupta.
VL2: A Scalable and Flexible Data Center Network.
SIGCOMM, 2009.

[18] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert N. M. Watson, Andrew W. Moore, Steven Hand,
and Jon Crowcroft. Queues Don’t Matter When You
Can JUMP Them! NSDI, 2015.

[19] John Hennessy and David Patterson. Computer Archi-
tecture: A Quantitative Approach Sixth Edition. Morgan
Kaufmann, 2019.

[20] Xinyue Hu, Eman Ramadan, Wei Ye, Feng Tian, and
Zhi-Li Zhang. Raven: Belady-Guided, Predictive
(Deep) Learning for in-Memory and Content Caching.
CoNEXT, 2022.

[21] Syed Usman Jafri, Sanjay Rao, Vishal Shrivastav, and
Mohit Tawarmalani. Leo: Online ML-based Traffic Clas-
sification at Multi-Terabit Line Rate. NSDI, 2024.

[22] Song Jiang, Feng Chen, and Xiaodong Zhang. CLOCK-
Pro: an effective improvement of the CLOCK replace-
ment. ATC, 2005.

[23] Theodore Johnson and Dennis Shasha. 2Q: A Low
Overhead High Performance Buffer Management Re-
placement Algorithm. VLDB, 1994.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 647

[24] R. Karedla, J.S. Love, and B.G. Wherry. Caching strate-
gies to improve disk system performance. Computer,
1994.

[25] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon
Kim, Jeongkeun Lee, Vyas Sekar, and Srinivasan Seshan.
TEA: Enabling State-Intensive Network Functions on
Programmable Switches. SIGCOMM, 2020.

[26] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, S.H. Noh,
Sang Lyul Min, Yookun Cho, and Chong Sang. LRFU:
a spectrum of policies that subsumes the least recently
used and least frequently used policies. IEEE Transac-
tions on Computers, 2001.

[27] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim
Weatherspoon. Globally Synchronized Time via Data-
center Networks. SIGCOMM, 2016.

[28] Ki Suh Lee, Han Wang, and Hakim Weatherspoon. PHY
Covert Channels: Can you see the Idles? NSDI, 2014.

[29] Mayler Martins, Jody Maick Matos, Renato P. Ribas,
André Reis, Guilherme Schlinker, Lucio Rech, and Jens
Michelsen. Open Cell Library in 15nm FreePDK Tech-
nology. ISPD, 2015.

[30] Nimrod Megiddo and Dharmendra S Modha. Arc: A
self-tuning, low overhead replacement cache. FAST,
2003.

[31] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. SilkRoad: Making Stateful Layer-4
Load Balancing Fast and Cheap Using Switching ASICs.
SIGCOMM, 2017.

[32] Sung-Whan Moon, Jennifer Rexford, and Kang G. Shin.
Scalable hardware priority queue architectures for high-
speed packet switches. Transactions on Computers,
2000.

[33] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,
Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-
malkumar Jeyakumar, and Changhoon Kim. Language-
Directed Hardware Design for Network Performance
Monitoring. SIGCOMM, 2018.

[34] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing memcache at facebook. NSDI, 2013.

[35] Yongseok Oh, Jongmoo Choi, Donghee Lee, and Sam H
Noh. Caching less for better performance: balancing
cache size and update cost of flash memory cache in
hybrid storage systems. FAST, 2012.

[36] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard
Weikum. The LRU-K Page Replacement Algorithm For
Database Disk Buffering. SIGMOD, 1993.

[37] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jack-
son, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex
Wang, Jonathan Stringer, Pravin Shelar, Keith Amidon,
and Martín Casado. The design and implementation of
open vSwitch. NSDI, 2015.

[38] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola,
Carmelo Cascone, Marco Spaziani, Valerio Bruschi, Da-
vide Sanvito, Giuseppe Siracusano, Antonio Capone,
Michio Honda, Felipe Huici, and Giuseppe Siracusano.
FlowBlaze: Stateful Packet Processing in Hardware.
NSDI, 2019.

[39] Liana V. Rodrigues, Farzana Yusuf, Steven Lyons,
Eysler Paz, Raju Rangaswami, Jason Liu, Ming Zhao,
and Giri Narasimhan. Learning Cache Replacement
with CACHEUS. FAST, 2021.

[40] Vishal Shrivastav. Fast, Scalable, and Programmable
Packet Scheduler in Hardware. SIGCOMM, 2019.

[41] Vishal Shrivastav. Programmable Multi-Dimensional
Table Filters for Line Rate Network Functions. SIG-
COMM, 2022.

[42] Vishal Shrivastav. Stateful Multi-Pipelined Pro-
grammable Switches. SIGCOMM, 2022.

[43] Vishal Shrivastav, Ki Suh Lee, Han Wang, and Hakim
Weatherspoon. Globally Synchronized Time via Data-
center Networks. IEEE/ACM Transactions on Network-
ing, 2019.

[44] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani,
Paolo Costa, Ki Suh Lee, Han Wang, Rachit Agarwal,
and Hakim Weatherspoon. Shoal: A Network Architec-
ture for Disaggregated Racks. NSDI, 2019.

[45] Anirudh Sivaraman, Suvinay Subramanian, Mohammad
Alizadeh, Sharad Chole, Shang-Tse Chuang, Anurag
Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
and Nick McKeown. Programmable Packet Scheduling
at Line Rate. SIGCOMM, 2016.

[46] Yannis Smaragdakis, Scott Kaplan, and Paul Wilson.
EELRU: simple and effective adaptive page replacement.
SIGMETRICS, 1999.

[47] Zhenyu Song, Daniel S. Berger, Kai Li, Anees Shaikh,
Wyatt Lloyd, Soudeh Ghorbani, Changhoon Kim,
Aditya Akella, Arvind Krishnamurthy, Emmett Witchel,
et al. Learning relaxed belady for content distribution
network caching. NSDI, 2020.

648 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[48] Zhenyu Song, Kevin Chen, Nikhil Sarda, Deniz Altin-
buken, Eugene Brevdo, Jimmy Coleman, Xiao Ji, Pawel
Jurczyk, Richard Schooler, and Ramki Gummadi. Halp:
Heuristic aided learned preference eviction policy for
youtube content delivery network. NSDI, 2023.

[49] http://de5-net.terasic.com.tw. DE5-Net FPGA
Development Kit. Terasic, 2021.

[50] https://en.wikipedia.org/wiki/Cache_
placement_policies.
Cache Placement Policies. Wikipedia, 2023.

[51] https://en.wikipedia.org/wiki/Equal-cost_
multi-path_routing. Equal-cost multi-path routing.
Wikipedia, 2023.

[52] https://www.intel.com/content/dam/develop/
external/us/en/documents/architecture-
instruction-set-extensions-programming-
reference.pdf. Intel Architecture. Intel, 2023.

[53] https://www.synopsys.com/implementation-
and-signoff/rtl-synthesis-test/dc-
ultra.html.
DC Ultra RTL Synthesis. Synopsys, 2021.

[54] Giuseppe Vietri, Liana V. Rodrigues, Wendy A. Mar-
tinez, Steven Lyons, Jason Liu, Raju Rangaswami, Ming

Zhao, and Giri Narasimhan. Driving cache replacement
with ML-based LeCaR. hotStorage, 2018.

[55] Han Wang, Ki Suh Lee, Erluo Li, Chiun Lin Lim,
Ao Tang, and Hakim Weatherspoon. Timing is Every-
thing: Accurate, Minimum Overhead, Available Band-
width Estimation in High-Speed Wired Networks. IMC,
2014.

[56] Maurice V Wilkes. Slave memories and dynamic stor-
age allocation. IEEE Transactions Electronic Comput-
ers, 1965.

[57] Bruno Missi Xavier, Rafael Silva Guimarães, Giovanni
Comarela, and Magnos Martinello. Programmable
Switches for in-Networking Classification. INFOCOM,
2021.

[58] Juncheng Yang, Ziming Mao, Yao Yue, and K. V.
Rashmi. GL-Cache: Group-level learning for efficient
and high-performance caching. FAST, 2023.

[59] Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue,
and K. V. Rashmi. FIFO Queues are ALL You Need for
Cache Eviction. SOSP, 2023.

[60] Yazhuo Zhang, Juncheng Yang, Yao Yue, and Ymir Vig-
fusson. SIEVE is Simpler than LRU: an Efficient Turn-
Key Eviction Algorithm for Web Caches. NSDI, 2024.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 649

http://de5-net.terasic.com.tw
https://en.wikipedia.org/wiki/Cache_placement_policies
https://en.wikipedia.org/wiki/Cache_placement_policies
https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html

Reverie: Low Pass Filter-Based Switch Buffer Sharing for
Datacenters with RDMA and TCP Traffic

Vamsi Addanki
TU Berlin

Wei Bai
Microsoft Research

Stefan Schmid
TU Berlin

Maria Apostolaki
Princeton University

Abstract

The switch buffers in datacenters today are dynamically shared
by traffic classes with different loss tolerance and reaction to
congestion signals. In particular, while legacy applications
use loss-tolerant transport, e.g., DCTCP, newer applications
require lossless datacenter transport, e.g., RDMA over
Converged Ethernet. Unfortunately, as we analytically show in
this paper, the buffer-sharing practices of today’s datacenters
pose a fundamental limitation to effectively isolate RDMA
and TCP while also maximizing burst absorption. We identify
two root causes: (i) the buffer-sharing for RDMA and TCP
relies on two independent and often conflicting views of the
buffer, namely ingress and egress; and (ii) the buffer-sharing
scheme micromanages the buffer and overreacts to the changes
in its occupancy during transient congestion.

In this paper, we present REVERIE, a buffer-sharing scheme,
which, unlike prior works, is suitable for both lossless and loss-
tolerant traffic, providing isolation and better burst absorption
than state-of-the-art buffer-sharing schemes. At the core of
REVERIE lies a unified (consolidated ingress and egress)
admission control that jointly optimizes the buffers for both
RDMA and TCP. REVERIE allocates buffer based on a low-
pass filter that naturally absorbs bursty queue lengths during
transient congestion within the buffer limits. Our evaluation
shows that REVERIE can improve the performance of RDMA
as well as TCP in terms of flow completion times by up to 33%.

1 Introduction
Network devices contain a buffer that can temporarily store
excessive packets during congestion events. As the link
speeds increase, maintaining a constant buffer-bandwidth
ratio would require buffer memory to evolve faster than
Moore’s law and is hence impractical [33]. As a result,
we observe buffer-per-Gbps to constantly shrink [12, 26]
making performance problems rooted in buffer sharing more
evident. Indeed, our expert survey, which included experts
from six companies, revealed that buffer sharing is causing
performance problems in most large-scale datacenters.

At a high level, the goal of a buffer-sharing scheme is to
provide isolation between traffic classes, while maximizing
the benefit of the buffer e.g., by absorbing bursts and achieving
high throughput. Existing buffer management schemes
(even recent ones) [1, 8, 15, 25] were designed considering
exclusively loss-tolerant traffic (e.g., TCP variants). However,
modern datacenters host traffic classes with different loss toler-
ance. Concretely, along with traditional loss-tolerant transport
protocols, many clouds, e.g., Azure [11], Alibaba [22] and
OCI [38], deploy RDMA over Converged Ethernet which
requires lossless transport. In order to guarantee zero packet
loss for RDMA, production datacenters enable Priority Flow
Control (PFC) at the switches [11].

The co-existence of TCP and RDMA traffic in the switch
buffer makes sharing the buffer particularly challenging. While,
in principle, TCP and RDMA traffic have the same perfor-
mance objectives (e.g., high throughput, low latency), their
reaction to network events such as congestion is vastly differ-
ent in terms of speed and granularity. A PFC pause proactively
throttles RDMA traffic at per-hop granularity before the buffer
fills up in order to prevent packet loss due to congestion. On the
contrary, a packet drop throttles TCP at per-flow granularity
once the buffer is filled up due to congestion. Moreover, the ef-
fect of PFC pause (in RDMA) on the buffer is not immediately
evident as all incoming packets after the PFC has been triggered
must be admitted in the buffer further increasing its occupancy.
On the contrary, the effect of a packet drop (in TCP) on the
buffer is immediately evident in the buffer as current packets do
not further increase the buffer occupancy which can decrease
proportionately to the aggregate port bandwidth. Since RDMA
and TCP share the same switch buffer, congestion caused by
TCP can result in excessive PFC pauses for RDMA and sim-
ilarly the buffer occupied by RDMA (especially when it is
paused) can result in excessive packet drops for TCP; leading
to throughput degradation and poor burst absorption.

A naive approach for isolating RDMA and TCP in the shared
buffer is to statically partition it e.g., dedicate 50% of the buffer
to each class. However, such an approach will result in subop-
timal burst absorption; and (in the worst case) poor throughput

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 651

TCP RDMA

EgressIngress

TC
P

R
D

M
A

R
D

M
A

+
TC

P
P

FC
H

ea
dr

oo
m

PFC Headroom

Reverie
(This work)

Conflicting views of the same buffer
Static Pool sizes

No Isolation

Bird’s eye view
Dynamic Pool sizes

Isolation

1 2

Figure 1: 1 Current buffer-sharing practices maintain two
independent and at times conflicting views of the buffer i.e.,
ingress and egress, which are subdivided into various pools;
posing a challenge to achieve isolation across RDMA and TCP
traffic. 2 REVERIE maintains a bird’s eye view of the buffer;
effectively unifying ingress and egress admission control with-
out statically partitioning the buffer to achieve isolation.

when one of the two classes is not using its dedicated portion of
the buffer. On the one hand, production-grade buffer-sharing
schemes do not significantly depart from static partitioning
among TCP and RDMA. The root cause of this pitfall is the
unnecessary complex buffer model together with the use of pre-
configured buffer pools i.e., pieces of buffer dedicated to certain
queues only. On the other hand, research-grade buffer-sharing
schemes such as ABM [1] can –at best– achieve steady-state
isolation across traffic priorities only for loss-tolerant traffic,
but would fail to isolate lossless and lossy traffic, even if we
extend them to work in such settings, as we show in §2.3. Our
goal in this paper is to formally navigate the trade-off between
isolation and burst absorption in a setting where lossless and
lossy traffic co-exist. Two key insights allow us to do so.

Our first key insight –after thoroughly studying the current
buffer-sharing practices– is that although lossless and lossy
traffic are, in practice, independently managed, the available
buffer for both depends on each other’s occupancy. Concretely,
today’s switches maintain two views of the buffer (i.e., ingress
and egress); each of these views is virtually further split into
pools i.e., buffer pieces configured to serve a subset of the
queues. Figure 1 summarizes these views. The complexity
of the buffer design stems from its evolution over the years
from serving lossy traffic to serving both lossy and lossless.
Unfortunately, as we show in this paper, this complex buffer
design of today’s datacenter switches leads to unexpected
buffer issues e.g., lossy traffic gets more buffer allocation
than lossless traffic when they compete, against the high-level
objective of the configuration. Our analysis shows that buffer
pools and the independent views of the buffer at the ingress
and egress are the root causes of such issues. To tackle this
problem, we propose a simple buffer-sharing scheme in which
both RDMA and TCP are managed jointly with a bird’s eye

Time

By
te

s

High Drop/Pause Rate (Overreaction to Bursts)

Low Drop/Pause Rate (Absorb Bursts)

3

5

Threshold

ThresholdInstantaneous
Queue Length

Prior Works
 Overreaction
Poor Burst Absorption

1

2

4

Low Pass Filtered
 Queue Length

Threshold

Reverie (This Work)
 Smooth Reaction
High Burst Absorption

Figure 2: Prior works calculate 1 thresholds and compare
against 2 instantaneous queue lengths, which leads to 3
overreaction to bursts and a high loss rate. REVERIE takes a
different approach and compares the thresholds against 4
low pass filtered queue lengths. This allows REVERIE to 5
smoothly react to congestion while absorbing transient bursts.

view of the buffer. Such an allocation scheme facilitates novel
admission control schemes that can efficiently isolate RDMA
and TCP without statically partitioning the buffer.

Our second key insight is that absorbing RDMA bursts
is extremely challenging because the decisions of a buffer-
sharing scheme are on a per-packet basis but PFC pause
(required for RDMA) is a per-hop signal affecting not just the
incoming packet but all the future arrivals from the previous
hop. Moreover, sudden and concurrent fluctuations in multiple
queue lengths can rapidly change the buffer occupancy. Worse
yet, the incoming rate at today’s link speeds can very rapidly
fill in a buffer. Existing schemes [1, 8, 25] that were designed
specifically for loss-tolerant traffic apply large thresholds to
those packets that are classified as short flows or incast flows.
Unfortunately, as we later show in this paper, these techniques
cannot fundamentally achieve better burst absorption for
lossless traffic since PFC works at per-hop or per-queue
granularity and not per-packet i.e., burst absorption for RDMA
requires prioritizing a queue experiencing burst (not just spe-
cific packets). To address this problem, we show that instead
of increasing thresholds at per-packet granularity under bursty
scenarios, it is sufficient to dampen the queue statistic (e.g.,
by a low-pass filter) against which thresholds are compared,
when taking buffer decisions. Figure 2 illustrates our main
idea. This essentially prioritizes queues experiencing bursts
and improves the burst absorption capabilities of the buffer.

We present REVERIE, a buffer-sharing scheme suitable
for modern datacenters hosting traffic with different loss
tolerance. REVERIE jointly optimizes the buffer allocation
for lossless and lossy traffic with a bird’s eye view over the
buffer; essentially unifying ingress and egress admission
control as shown in Figure 1. Further, REVERIE significantly
improves the burst absorption capabilities of the buffer by

652 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

comparing low-pass-filtered queue lengths against thresholds
as illustrated in Figure 2.

Our extensive evaluation of REVERIE based on large-scale
simulations in NS3 shows that REVERIE effectively isolates
RDMA and TCP, reduces the overall number of PFC pauses
by 60% on average and improves the flow completion
times for bursty workloads by up to 33% compared to the
state-of-the-art approaches.

In summary, our key contributions in this work are:
• The first analysis of a production-grade buffer model

(exemplified by the open source SONiC [44]) that
includes both ingress and egress admission control.
This analysis generates multiple insights including the
conflicting buffer views of ingress and egress that prevent
effective isolation between lossless and lossy traffic.

• REVERIE, the first buffer-sharing scheme that can
isolate lossless and lossy traffic while improving burst
absorption for both.

• As a contribution to the research commu-
nity and to facilitate future work, all our ar-
tifacts have been made publicly available at
https://github.com/inet-tub/ns3-datacenter.

2 Motivation
We first present unintuitive outcomes (issues) that arise under
typical configurations (§2.1). To explain the root cause of
those issues (§2.3), we first describe in detail a representative
buffer-sharing architecture of an open-source and widely-used
switch OS, i.e., SONiC [44] (§2.2). Our buffer model has been
endorsed by major Ethernet switch ASIC vendors, including
Broadcom, Cisco and NVIDIA.

2.1 Buffer Issues in Datacenters
In this section, we walk through three issues that operators
of large-scale RDMA deployments [11] can face while
debugging buffer problems. We have verified that these issues
are (i) possible by showing them analytically (§2.3); and
(ii) realistic by direct communications with operators of
large-scale RDMA deployments. Consider an operator who
wants lossless traffic to get as much buffer as it needs, i.e.,
lossless is prioritized over lossy traffic under buffer contention.
This is a typical use case in datacenters with large RDMA
deployments. Although the operator closely follows the "best
practices" (i.e., a set of heuristics) to configure the buffer,
which we explain in §2.2.2, they observe the following issues.

Issue 1. Lossy traffic gets more buffer allocation than lossless
traffic when they both compete for buffer space.

Issue 2. Lossless traffic yields to the increase in buffer
occupancy of lossy traffic, while the opposite is not true, i.e.,
the allocation for lossy traffic is not affected by the buffer
occupancy of lossless traffic.

Issue 3. The buffer is more efficient in absorbing bursts of
lossy traffic than bursts of lossless traffic.

2.2 Buffer Sharing Practices
To understand the root cause of the issues (§2.3), we need to
understand the buffer model used in today’s datacenters and the
"best practices" for configuring it. To the best of our knowledge,
we are the first to present a detailed and up-to-date description
of a buffer model of a datacenter switch that serves both lossless
(e.g., RDMA) and lossy (e.g., TCP) traffic. We use SONiC [44],
an open-source network operating system that is the closest we
can get to the modus operandi for buffer management. SONiC
runs on switch ASICs from multiple vendors, e.g., Broadcom,
NVIDIA, Cisco and Intel, and has been widely deployed in Mi-
crosoft [11], Alibaba [48], LinkedIn [51] and Tencent. Impor-
tantly, our buffer model aligns with that of NVIDIA Onyx [47].
Hence, we believe our buffer model is representative of a broad
range of scenarios and settings. We next describe the terminol-
ogy and the configurable parts according to the buffer model of
SONiC. We tabulate the important notations we use in Table 1.

Hereafter, we denote lossless by • and lossy by ◦. The
switch uses a memory management unit (MMU) to manage
the packet buffer.

Ingress and Egress Counters (Queues): The MMU main-
tains two types of counters1, ingress denoted by← and egress
denoted by → that serve admission control purposes. We
henceforth refer to these counters as queues. Let Q be the set
of all queues maintained by the MMU. Once a packet arrives at
the switch, the packet is mapped to an ingress queue (s,p)∈

←
Q

based on the source port s and the packet’s priority p2; and
an egress queue (d, p) ∈

→
Q based on the destination port d.

Ingress (egress) admission control acts over ingress (egress)
queues. Each packet is admitted to the buffer if and only if the
corresponding ingress and egress queues pass the ingress and
egress admission controls. An arriving and admitted packet
increases both the corresponding ingress and egress queues,
while a departure packet decreases the queues. A packet is
only buffered once regardless of the number of counters it is
accounted by. Note that once a packet is admitted, it cannot be
pushed out by new packet arrivals. A queue carrying lossless
(lossy) traffic is known as a lossless (lossy) queue. Overall,
the MMU maintains four sets of queues i.e., ingress lossless←•
Q , ingress lossy

←◦
Q , egress lossless

•→
Q and egress lossy

◦→
Q .

Buffer Size and Pools: The packet buffer has a total size of
b. Current datacenter practices define pools that can intuitively
be viewed as the buffer available for certain types of queues.
In other words, the pool is a group of queues. The user can
configure the buffer allocation policy, including the allocation
algorithm, per-queue limit, and total size, for this group of
queues. SONiC defines the following four pools:

• Ingress pool of size
←
b shared by both ingress lossless and

lossy queues, with an occupancy of
←q (t) at time t.

1Not to be confused with ingress and egress pipelines. Throughout this
paper, ingress and egress are merely counters (referred to as queues).

2Most of the switch ASICs support 8 priorities. Operators typically map a
packet to a priority based on its DSCP value.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 653

https://github.com/inet-tub/ns3-datacenter

Ingress Queues Egress Queues

q1

q2

q3

q4

qa

qb

qc

qd

Ingress Pool= 6

Same
Packet

Egress Lossy Pool= 4
Egress Lossless Pool= 2

Figure 3: Buffer bookkeeping: packets are stored once but
accounted twice; once in the ingress and once at the egress for
admission control purposes.

• PFC headroom pool of size bh used only by ingress
lossless queues upon PFC pause (described next).

• Egress lossless pool of size
•→
b used by egress lossless

queues, with an occupancy of •→q (t) at time t.
• Egress lossy pool of size

◦→
b used by egress lossy queues,

with an occupancy of ◦→q (t) at time t.
Note that pool sizes and occupancy are also counters. A

packet can be counted in multiple pools while being buffered
once (pools may overlap), thus the sum of all pools may
exceed the actual buffer occupancy.

Figure 3 illustrates an example of the buffer bookkeeping.
Packets are physically stored only once, but are accounted
twice. For example, packet 5 is accounted in the ingress queue
(counter) q4 and in the egress queue (counter) qa. In essence,
all packets are accounted in the ingress pool, but packets of
lossless queues are also accounted in the egress lossless pool,
while packets of lossy queues are also accounted in the egress
lossy pool.

Admission Control: Each queue i.e., counter (i,p)∈Q at an
input or output port denoted by i, corresponding to priority p is
associated with a threshold Γ

p
i (t) at time t. The admission con-

trol scheme compares the instantaneous length qi
p(t) of a queue

against its threshold to make buffering decisions. Thresholds
can be intuitively viewed as the maximum size of a queue. Once
the queue hits the threshold, the switch will drop the incoming
packet or send PFC pause frames to throttle the queue build-up.
We emphasize that the switch cannot push out existing packets
in the buffer to make room for the incoming packet.

2.2.1 Journey of a Packet in the Switch MMU

We walk through the various counters that are incremented and
decremented during a packet’s journey in the MMU. Recall
that a packet can travel through the switch if and only if it
satisfies both ingress and egress admission control.

Ingress Admission Control: The admission control in the
ingress is different for lossy and lossless queues since as
TCP (lossy) tolerates packet loss whereas RDMA (lossless)
requires PFC and does not tolerate packet loss. The admission
for ingress lossy queues is straightforward. If the ingress lossy

queue hits the threshold (meaning if the length of the queue
equals or exceeds the corresponding threshold devised by
the buffer-sharing logic), the packet is dropped. Otherwise,
both the ingress lossy queue and ingress pool counters are
incremented upon admission and decremented as the packet
departs to its destination.

In contrast, the admission control for ingress lossless queues
is more complex and designed to achieve zero packet loss.
If the ingress queue hits the threshold, the switch moves the
queue to “paused” state and keeps sending PFC pause frames
to the peer device. Then the arriving packet is admitted, but
it increments the PFC headroom pool occupancy rather than
the ingress pool occupancy. In other words, once an ingress
lossless queue uses up its limit in the ingress pool, it starts to
consume (or be accounted in) the PFC headroom pool. As the
buffer drains, an ingress lossless queue under “paused” state
first decrements its headroom pool occupancy, and then its
ingress pool occupancy. When the headroom buffer occupancy
is zero and the ingress pool occupancy is below the threshold,
the switch moves the “paused” ingress lossless queue back
to “resumed” state and sends PFC resume frames.

Egress Admission Control: Egress counters are straight-
forward. Egress queue length and pool occupancy based on
the class of packet (lossy or lossless) are incremented upon
admission and decremented as the buffer drains. The switch
drops packets if egress queues hit thresholds.

2.2.2 Buffer Management

The MMU of the switch uses a buffer management algorithm
that assigns thresholds to all ingress and egress queues. Dy-
namic Thresholds [15] (DT) is the state-of-the-art buffer man-
agement algorithm widely adopted by ASIC vendors [37, 45].

In a nutshell, DT calculates dynamic thresholds for each
queue (i,p) ∈ Q as the product of a configurable parameter
αi

p and the remaining buffer space in the corresponding pool.
We refer the reader to Table 1 for the list of notations we use.
In the following, we summarize DT’s buffer management for
lossless and lossy traffic, at ingress and egress queues.

Γ
i
p(t)=α

i
p×

←
b−
←q (t) Ingress Lossless: (i,p)∈

←•
Q

←
b−
←q (t) Ingress Lossy: (i,p)∈

←◦
Q

•→
b −

•→q (t) Egress Lossless: (i,p)∈
•→
Q

◦→
b −

◦→q (t) Egress Lossy: (i,p)∈
◦→
Q

(1)
In addition to the above threshold checks, the switch also

uses the physical packet buffer limit as the last defense.
Having a better understanding of how the buffer works, we

can go back to the operator’s goal to prioritize lossless over
lossy and explain how they would in practice configure the
buffer. To avoid lossless packet drops, they would want to
control lossless traffic only at the ingress with PFC thresholds.
To make the problem easier to debug and more intuitive, they
would want to control lossy traffic only at the egress with drop

654 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Notation Description
← Ingress
→ Egress
• Lossless
◦ Lossy
∗ Shared
b Total buffer size
bh Headroom pool size
Q Set of all queues
←•
Q Set of ingress lossless queues

(i,p) Queue at input or output port i, priority p
qp

i (t) Length of queue (i,p) at time t
Γ

p
i (t) Threshold of queue (i,p) at time t
◦→q (t) Occupancy of egress lossy pool

α
p
i Parameter for queue (i,p)
←•
α α for ingress lossless queues (for simplicity)
◦→
α α for egress lossy queues (for simplicity)
←•n # ingress lossless queues using buffer
◦→n # egress lossy queues using buffer

Table 1: Important notations used in this paper.

thresholds. To this end, they would use the following buffer
configuration heuristics. For simplicity, in this section, we set
αi

p to←•α ,←◦α , •→α and ◦→α for all ingress lossless, ingress lossy,
egress lossless and egress lossy queues respectively.

Heuristic 1. To avoid packet drops for lossless traffic at
ingress, the sum of the ingress pool size

←
b and headroom pool

size bh should be equal to (or smaller than) the total size of
the switch buffer b i.e.,

←
b+bh≤b.

Heuristic 2. To bypass egress admission control for lossless
traffic and to allow fully utilizing the buffer space i.e., to avoid
lossless packet drops at egress, we should set egress lossless
pool size

•→
b to total switch buffer size b and use an infinitely

large egress lossless threshold i.e., •→α ≫1.

Heuristic 3. To avoid packet drops for lossy traffic at ingress,
we should set ingress lossy threshold←◦α to an infinitely large
value, and ensure that egress lossy pool size

◦→
b is not larger

than ingress pool size
←
b i.e.,

◦→
b ≤

←
b .

2.3 Root Causes of the Buffer Issues
To systematically analyze the problems, we consider a fluid
flow model with deterministic packet arrivals and analyze the
steady state3 of the buffer, similar to prior works [1, 15]. In the
following, we explain our key findings intuitively. Our model
and complete analysis can be found in Appendix A.

First, based on Heuristic 1, lossless traffic is allowed to
use the entire buffer at the ingress i.e.,

←
b +bh ≤ b. Further,

lossless traffic is allowed to use the entire buffer at the egress
i.e.,

•→
b =b based on Heuristic 2. Still, we end up with Issue 1.

3A steady state is achieved when the queue lengths stabilize i.e., packet
arrival rate equals departure rate.

Root cause of Issue 1: To shed light on this issue, we ana-
lytically derive the aggregate buffer allocation←•q to lossless
queues and the aggregate buffer allocation ◦→q to lossy queues.
Let ←•n and ◦→n denote the number of ingress lossless queues
and egress lossy queues using the buffer respectively. We have:

←•q =
←
b ·
(←•n ·←•α

1+←•n ·←•α

)
−◦→b ·

(←•n ·←•α

1+←•n ·←•α
·
◦→n ·◦→α

1+◦→n ·◦→α

)
(2)

◦→q =
◦→n ·◦→α ·◦→b
1+◦→n ·◦→α

(3)

Figure 4 illustrates the ratio of buffer allocated to lossy
and lossless. Notice that for a sufficiently large number of
lossless queues←•n and lossy queues ◦→n , the buffer allocation
to lossless queues tends to

←
b −

◦→
b (based on Equation 2)

and the allocation for lossy queues tends to
◦→
b (based on

Equation 3). Unless
←
b ≥ 2 × ◦→b , we end up with Issue 1,

caused by the buffer pools. Specifically, although lossless
queues are allowed to fully utilize the buffer, the egress lossy
pool effectively overlaps with both ingress pool and egress
lossless pools as shown in Figure 1, leading to Issue 1.

■ Takeaway. The buffer is pre-fragmented in a way that makes
enforcing high-level objectives through low-level configu-
ration impossible. Current buffer sharing practices cannot
prevent Issue 1 unless the ingress pool is at least twice as large
as the egress lossy pool i.e., the buffer is statically partitioned.

Second, according to Heuristic 2 and Heuristic 3, since
lossless (lossy) bypasses egress (ingress) admission control,
we would expect that lossless and lossy traffic are isolated
in the buffer. While Issue 1 already suggests that lossy traffic
may effectively get more buffer allocation than lossless traffic,
we find yet another issue that lossy and lossless traffic interact
in a surprisingly unfair manner: lossy traffic is effectively
prioritized over lossless traffic (Issue 2) although our expert
heuristics are intended otherwise.
Root cause of Issue 2: Notice that the buffer occupancy of
lossy traffic at the egress equals its occupancy at the ingress
i.e., ◦→q =

←◦q , since every packet is accounted both in the
ingress and egress as shown in Figure 3. As a result, the overall
ingress pool occupancy is the sum of egress lossy occupancy
and the ingress lossless occupancy i.e.,

←q =
◦→q +

←•q . Using
Equations 2 and 3, as well as the above relation, we derive the
steady-state thresholds for ingress lossless (PFC thresholds)
and egress lossy (drop thresholds) based on Equation 1.

Figure 5a shows how PFC thresholds for lossless queues
vary depending on the number of ingress lossless queues using
the buffer and the number of egress lossy queues. Interestingly,
we find that the drop thresholds vary only according to the
number of egress lossy queues (affected by the own buffer
occupancy), but remain unchanged as the number of ingress
lossless queues increases, see Figure 5b. We observe that cur-
rent buffer sharing practices allow buffering lossy packets
mostly independently of lossless traffic, but lossless traffic is

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 655

1 4 8 12 16 20
Egress lossy queues

1
4

8

12

16

20#
In

gr
es

s l
os

sle
ss

 q
ue

ue
s Lossy/Lossless Buffer allocation ratio

0

1

2

3

4

Ingress pool: 18MB, Egress lossy: 14MB

◦→
b =13MB

◦→
b =12MB

◦→
b =9MB

Figure 4: Isolation cannot be achieved with
SONiC unless the ingress pool size

←
b =

18MB is at least twice as large as egress
lossy pool size

◦→
b i.e., statically partition-

ing the buffer.

ingress
lossless queues

0
2

4
6

8 #
 e

gr
ee

s

lo
ss

y
qu

eu
es

0
2

4
6

8

p
fc

 t
h
re

sh
o
ld

(M

B
)

0

2

4

6

8

(a) PFC thresholds (for ingress lossless
queues) are affected by both the number of
ingress lossless and egress lossy queues.

ingress
lossless queues

0
2

4
6

8 #
 e

gr
ee

s

lo
ss

y
qu

eu
es

0
2

4
6

8

d
ro

p
 t

h
re

sh
o
ld

(M

B
)

0

2

4

6

8

(b) Drop thresholds (for egress lossy queues)
are affected only by lossy queues.

Figure 5: Contrary to the expectation that lossless and lossy traffic are admitted
independently in the buffer, lossless traffic is throttled due to the buffer occupancy
of lossy, whereas lossy is admitted independent of the presence of lossless i.e.,
seemingly prioritizing lossy over lossless.

suppressed due to lossy traffic i.e., effectively prioritizing lossy
over lossless. Our analysis reveals two root causes of Issue 2: (i)
the egress lossy pool occupancy ◦→q which is used to calculate
egress lossy drop thresholds (see Equation 1) does not account
for lossless traffic whereas (ii) the ingress pool occupancy

←q
which is used to calculate ingress lossless PFC thresholds (see
Equation 1) accounts for both lossless and lossy traffic.

■ Takeaway. Although lossless and lossy traffic are admitted
seemingly independently by ingress and egress, the admission
control for lossless traffic depends on both lossy and lossless
occupancy, whereas the admission control for lossy traffic
depends only on its own occupancy.

It is natural to ask here whether these issues are due to the
underlying buffer management scheme DT [15], and hence
whether recent proposals such as ABM [1] should be able
to avoid them. Although ABM can address isolation across
various traffic priorities, it only works for a buffer-sharing
architecture that supports lossy traffic but not lossless traffic.
While, in theory, one could extend ABM to calculate the
thresholds accordingly (by replacing Equations 1 within
the same buffer architecture with the corresponding pools
described in §2.2), both Issue 1 and Issue 2 would still hold. In-
deed, if ABM operates in the default buffer architecture, it will
(similar to DT) control lossless and lossy independently since
lossless (lossy) bypasses egress (ingress) admission control.
As a result, ABM cannot jointly impose fairness and isolate
lossless and lossy traffic. Importantly, the technique used for
burst absorption in ABM and other recent proposals [8, 25],
i.e., prioritizing burst packets by using a high α parameter for
thresholds, also results in Issue 3.

Root cause of Issue 3: Indeed, several recent works [1, 8, 25]
rely on selectively taking action on burst and non-burst packets

i.e., if the queue length exceeds its threshold, the buffer
management scheme still accepts burst packets selectively by
increasing the thresholds using a higher α parameter value only
for those packets identified as burst. Figure 13 in Appendix A
intuitively summarizes our key points. For example, if a
non-burst (e.g., long flow) packet interleaves burst packets,
the non-burst packet would be dropped since the queue length
exceeds its threshold. However, a key property of PFC is that
once PFC is triggered due to a non-burst packet, it affects all
arriving traffic (including bursts) to the queue due to PAUSE
frames. Selectively accepting packets does not apply for PFC.

■ Takeaway. Optimally prioritizing bursts involves prefer-
entially treating packets belonging to the burst only; this is
possible for lossy but not for lossless traffic where congestion
is signaled at a per-queue granularity.

3 REVERIE

Based on the lessons learned from our analysis in §2, we design
a buffer-sharing scheme REVERIE which prevents harmful
interactions between lossless and lossy traffic (isolation) while
absorbing bursts of both. We first describe the two pillars on
which REVERIE relies: (i) consolidated admission control;
and (ii) a low pass filter. Next, we explain how they fit together
to form REVERIE. Finally, we discuss REVERIE’s properties
and its practicality.

3.1 Single Buffer Pool for Isolation
We argue that the first step towards achieving isolation is to
have full visibility and control over the state of the buffer.
Yet, current buffer-sharing practices maintain independent
views and admissions at the ingress and egress, prohibiting
global visibility and control. To address this, REVERIE
uses a single shared buffer pool as shown in Figure 1, in

656 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

addition to a headroom pool dedicated to lossless queues.
Further, REVERIE uses a single admission control that jointly
optimizes the buffer allocation for lossless and lossy queues.
The single shared buffer pool and a single admission control
offer REVERIE a bird’s eye view over the buffer.

Specifically, upon a packet arrival, REVERIE first deter-
mines the packet’s class (lossless or lossy). If the packet
belongs to lossless • class, REVERIE maps the packet to an
ingress lossless queue (s,p)∈

←•
Q , where s is the source port

that received the packet and p is the packet priority. Similarly,
if the packet belongs to the lossy class, REVERIE maps the
packet to an egress lossy queue (d,p)∈

◦→
Q , where d is the port

to which the packet is destined and p is the packet priority.
As illustrated in Figure 6, REVERIE maintains only two

types of queues (counters) i.e., ingress lossless and egress
lossy, as opposed to the four types of queues in SONiC (see
Figure 3). Further, REVERIE accounts for each packet only
once as opposed to twice (once at ingress and once at egress)
in the current buffer-sharing practices. In essence, all the
lossless and lossy queues are mapped to the same (single)
shared buffer pool as shown in Figure 1.

Using a single shared buffer pool and a single admission
control leaves REVERIE solely responsible for fairly allocating
the buffer across all queues to ensure isolation. In §3.3, we
show how REVERIE’s allocation achieves isolation across
lossless and lossy.

3.2 Low-Pass Filter for Burst Absorption
A vast majority of prior works, including DT [15], FAB [8],
ABM [1], TDT [25], calculate a threshold and compare it
against instantaneous queue lengths in order to take buffer
decisions. To improve burst absorption, prior works [1,8,25] se-
lectively prioritize certain packets (e.g., short flows) by assign-
ing them a larger threshold compared to the default threshold
for other packets (e.g., long flows). However, as we explained
in §2.3, selective packet prioritization cannot improve burst
absorption for lossless traffic leading to Issue 3. It is essential
to identify a queue experiencing a burst and prioritize all in-
coming traffic to the queue under bursty scenarios. A natural
indicator for a queue that is experiencing a burst is its queue gra-
dient, i.e., the rate of change of queue length. Thus, one could
increase thresholds proportionally to the queue gradient. While
intuitive, queue gradient is hard to monitor/calculate in practice
in hardware, especially at microsecond granularity. To address
this, we show an equivalence between an admission control
based on queue gradient and an admission control based on
first-order low-pass filtered queue lengths (Property 1). Our full
proof can be found in Appendix B. Leveraging this equivalence,
REVERIE uses an exponential weighted moving average which
is an easy-to-implement first-order low-pass filter. In essence,
REVERIE compares average queue lengths against a threshold,
unlike prior works that use instantaneous queue lengths.

Property 1 (Relationship of low pass filter and gradient). Let
Ψ be an admission control scheme that compares first order

Lossless Queues
(Only at ingress)

Lossy Queues
(Only at egress)

q1

q2

q3

q4

qa

qb

qc

qd

Shared Pool= 6

Figure 6: REVERIE’s buffer bookkeeping: packets are stored
once and accounted for once; lossless and lossy packets are
accounted in the ingress and egress queues, respectively. All
the queues are managed by a single admission control scheme.

low pass filtered queue length q̂(t − δt) against a threshold
Γ(t) i.e., q̂(t−δt)≤ Γ(t), where t−δt denotes the previous
time instance. Let Φ be an admission control that compares
instantaneous queue length q(t) against Ψ’s threshold Γ(t)
incremented proportionally based on the average queue
gradient dq̂(t)

dt i.e., q(t)≤Γ(t)+K · dq̂(t)
dt ; where K is a constant

and dq̂
dt is the gradient. Then, there exists a constant K such

that Ψ and Φ are equivalent.

3.3 The Workings of REVERIE

In this subsection, we put all the pieces together, to describe
REVERIE’s buffer-sharing architecture, admission control,
and the underlying buffer management scheme.
Buffer sharing architecture: Let b be the total buffer space.
REVERIE dedicates a headroom pool of size bh for lossless
traffic similar to the existing architecture. The rest of the
shared buffer space denoted by

∗
b = b−bh is shared by both

lossless and lossy traffic dynamically. A lossless packet is
mapped to a lossless queue (s,p) ∈

←•
Q and a lossy packet is

mapped to a lossy queue (d,p)∈
◦→
Q based on the source port s,

destination port d and the packet priority p. In total, REVERIE

maintains a set
∗

Q of queues, where
∗

Q =
←•
Q ∪

◦→
Q consists of

only two types of queues i.e., lossless and lossy instead of the
four types maintained by SONiC.
Admission control: REVERIE calculates a threshold Γi

p(t) for
each queue (i,p) and compares it against the moving averaged
queue length q̂i

p(t) of the corresponding queue at time t i.e.,

q̂i
p(t)≤Γ

i
p(t) (4)

where q̂i
p(t) is given by,

q̂i
p(t)=

Capture steady congestion︷ ︸︸ ︷
γ·q̂i

p(t−δt) +

Capture transient bursts︷ ︸︸ ︷
(1−γ)·qi

p(t) (5)

Here γ is a constant and a parameter for REVERIE, qi
p(t) is the

instantaneous queue length, and t−δt denotes the previous
time instance. γ can be intuitively viewed as the degree of burst
absorption. Since REVERIE’s admission control (Equation 4)
compares the threshold of a queue against its average queue

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 657

length (Equation 5), a higher γ masks the impact of transient
bursts on the average queue lengths and, as a result, allows the
admission control to absorb more transient bursts as illustrated
in Figure 2. However, setting γ arbitrarily close to 1 makes
admission control more oblivious to persistent or steady-state
congestion. We leave it for future work to study the optimal
parameter setting.

Any arriving packet that satisfies Equation 4 is buffered in
the shared pool. If a lossy packet does not satisfy the above
condition, the packet is simply dropped. However, if a lossless
packet does not satisfy the above condition, the queue enters
pause state (sends a PFC pause frame to its peer) and all the
subsequent packets to the queue are buffered in the dedicated
headroom irrespective of Equation 4. The queue sends out
a PFC resume frame once the queue’s headroom drains out
completely and when Equation 4 is satisfied again.
Buffer management: The threshold Γi

p(t) for each queue
(i,p)∈

∗
Q calculated by REVERIE at time t, depends on (i) a con-

figurable parameter αp for each priority, (ii) the number of con-
gested queues np of priority p and the remaining shared buffer
space

∗
b−∗q(t) where

∗
b is the size of shared buffer pool and ∗q(t)

is the pool occupancy at time t. The threshold Γi
p(t) is given by,

Γ
i
p(t)=αp ·

1
np
·(∗b−∗q(t)) ∀(i,p)∈

∗
Q (6)

The thresholds used by REVERIE are similar to ABM [1]
but we drop the dequeue rate factor due to the complexity
of measuring it, especially when queues pause in the case of
lossless traffic. However, our design does not prevent using the
dequeue rate factor as well if it can be systematically measured.

3.4 The Properties of REVERIE

REVERIE inherits the steady-state isolation properties of
ABM’s thresholds for lossy as well as lossless traffic. Unlike
ABM, though, which can only achieve isolation across
priorities within lossy traffic, REVERIE can also achieve
isolation across lossless and lossy priorities. In the following,
for simplicity, we consider that all lossless and lossy queues
are configured with the parameter value •α and ◦α respectively.
Our full proofs can be found in Appendix B. Next, we discuss
our results intuitively.

In Theorem 1, we state the ratio in which buffer is allocated
in the steady-state across lossless and lossy traffic in aggregate
when both traffic classes compete for buffer. The ratio turns
out to be the ratio of the configured α parameter. This makes
it very intuitive and flexible to configure the buffer required
for each traffic class, rather than the complicated pool sizes
in the current practices.

Theorem 1 (Isolation). Under contention, REVERIE allocates
buffer across lossless and lossy in the ratio of the corresponding
α parameters i.e.,

•q
◦q
=
•
α
◦
α

where •q and ◦q denote the steady-state shared buffer occupancy
of lossless and lossy traffic respectively; •α and ◦α denote the
parameter values for lossless and lossy queues respectively.

Based on Theorem 1, it is sufficient that the α parameter for
lossless is greater than lossy in order to prevent issue 1. Further,
since the thresholds are calculated with a bird’s eye view of
the buffer, the thresholds for both lossless and lossy depend on
the overall buffer occupancy (see Equation 6). Hence, given
that the α parameter for lossless is greater than lossy, REVERIE
assigns a larger threshold for lossless compared to lossy i.e., pri-
oritizing lossless over lossy. Essentially, REVERIE solves both
issue 1 and issue 2 without statically partitioning the buffer.

When a single traffic class utilizes the buffer, REVERIE al-
locates α

1+α
fraction of the shared buffer, where α corresponds

to the parameter value of the traffic class using the buffer.
Notice that REVERIE allocates more buffer to a traffic class
when it is not competing with the other class e.g., REVERIE

allocates
•
α·∗b
1+•α amount of buffer when only lossless traffic

is using the buffer compared to
•
α·∗b

1+•α+◦α amount of buffer
allocation for lossless when both traffic classes are competing
for buffer space. Intuitively, REVERIE dynamically adapts
the buffer allocation to lossless and lossy according to their
load as opposed to the static pool sizes in the current practices.
However, REVERIE keeps some buffer idle.

Theorem 2 (Buffer waste). REVERIE keeps idle a certain
amount of buffer in the steady-state denoted by bw given by,

∗
b

1+ •α+ ◦α
≤bw≤

∗
b

1+min(•α, ◦α)

where
∗
b is the shared buffer pool size; •α and ◦α are the parameter

values for lossless and lossy queues correspondingly.

Although REVERIE keeps a tiny buffer portion idle in the
steady state, this helps in absorbing transient bursts. REVERIE
effectively absorbs transient bursts even for lossless traffic
since it compares average queue lengths against the threshold.
Indeed, upon burst arrival, the average queue length hits
the threshold slower than the instantaneous queue length,
essentially absorbing transient bursts even for lossless queues.
As a result, REVERIE finally solves issue 3.

3.5 Implementation Feasibility
A prototype implementation of REVERIE is beyond the scope
of this paper and is part of our future work. Our discussions
with NVIDIA already confirm that an approximation of the
shared buffer pool model of REVERIE is feasible in hardware.
In fact, we are currently discussing with a major Ethernet
switch vendor on implementing REVERIE using their latest
ASIC with programmable admission control features.

REVERIE is within reach of today’s hardware because
it does not significantly depart from commodity ASICs’
buffer-sharing architecture and admission control mechanisms.

658 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ABM ReverieDT

20 40 60 80
TCP load (%)

0

5

10

15

20

25

PF

C
pa

us
es

 (x
10

00
)

(a) PFC Pauses

20 40 60 80
TCP load (%)

10

15

20

25

Av
g.

 F
CT

 sl
ow

do
wn

(b) RDMA incast flows

20 40 60 80
TCP load (%)

10

20

30

40

50

99
-p

ct
 F

CT
 sl

ow
do

wn

(c) TCP short flows

20 40 60 80
TCP load (%)

0

10

20

30

40

50

99
-p

ct
 b

uf
fe

r %
 (L

os
sle

ss
)

(d) RDMA buffer

20 40 60 80
TCP load (%)

0

10

20

30

40

50

99
-p

ct
 b

uf
fe

r %
 (L

os
sy

)

(e) TCP buffer
Figure 7: Buffer sharing under incast RDMA (DCQCN) workload and across various loads of websearch TCP (Cubic) workload.
ABM achieves better performance for TCP but heavily penalizes RDMA, while REVERIE balances the two.

REVERIE introduces two primary changes. First, REVERIE
uses a simpler buffer-sharing architecture with a single shared
pool (excluding PFC headroom) and two types of queues.
We have confirmed with NVIDIA that this architecture is
supported by existing NVIDIA Ethernet switch ASICs4.
Second, REVERIE uses a first-order low pass filter to obtain the
moving averaged queue lengths. We believe this is practical
as moving averages are used by common AQM like RED [20].
As previous works (e.g., ABM [1], [42]) have noted, various
queue-length statistics are available and already used by the na-
tive buffer management of the MMU (although switch vendors
do not open up the API for operators to do so on their own).

4 Evaluation
We evaluate the performance of REVERIE and compare it
against the state-of-the-art approaches in the datacenter. Our
evaluation aims to answer four main questions:
(Q1) Can REVERIE protect RDMA from TCP?
We find that REVERIE shields the performance of RDMA
from TCP under various loads. At increased loads, REVERIE
reduces the number of PFC pauses by 60% on average
compared to DT and by 71.2% compared to ABM, with
DCQCN as the transport protocol. When using advanced
congestion control for RDMA, REVERIE reduces the number
of PFC pauses by up to 100% compared to ABM.
(Q2) Can REVERIE improve burst absorption of any class?
We show that REVERIE significantly improves the burst
absorption for RDMA and for TCP. With background TCP
traffic (websearch), REVERIE improves the incast perfor-
mance of RDMA by up to 33.3% compared to DT and by
50.4% compared to ABM. Under background RDMA traffic
REVERIE improves the incast performance of TCP by up to
46.8% compared to DT and by up to 2.1% compared to ABM.
(Q3) Does REVERIE penalize TCP?
REVERIE does not penalize TCP. We find that REVERIE also
improves the 99-percentile flow completion times (FCT) for

4To implement this buffer-sharing architecture, we just need to map both
egress lossy queues and egress lossless queues to a single egress buffer pool,
and use an infinitely large egress lossless threshold.

short flows of TCP by 42.7% on average across various loads
compared to DT. On this front, REVERIE is on par with ABM.
(Q4) How sensitive is REVERIE to its parameters?
We find an interesting characteristic of the parameter γ in
REVERIE: increasing γ arbitrarily close to 1 dramatically
reduces the number of PFC pauses, and improves the FCT
for incast flows. However, beyond a certain value of γ, the
infrequent PFC pauses negatively affect FCT. Finding the
optimal γ value for a given switch remains an open question.

4.1 Setup
Our evaluation is based on network simulator NS3 [36].
Topology: We consider a leaf-spine datacenter topology
with 256 hosts organized into 4 spines and 16 leaves with
25Gbps links; link delay to 2µs (thus 17.28µs base RTT and
54KB bandwidth-delay product) and an oversubscription
of 4, similarly to previous work [1, 2, 41]. All switches have
5.12KB buffer-per-port-per-Gbps similar to Broadcom Tom-
ahawk [14]5. All server NICs and switches are PFC enabled.
Traffic mix: We launch two types of workloads in our
evaluation: (i) background and (ii) incast workloads. First,
we generate background traffic across 20%-80% loads using
websearch [5] flow size distribution, which is based on
real-world datacenter measurements. Second, similar to prior
works [1,2,4], we generate incast traffic using a synthetic work-
load that simulates the query-response behavior of a distributed
file system. Specifically, each server in our topology sends out
requests (queries) to all servers connected to a different leaf
switch, chosen uniformly at random. These servers respond
by sending a fraction of the file. We generate requests from
each server based on a poisson process and we set the average
request rate to 2 per second. We vary the file size (referred
to as burst size). We use DCQCN [53] and PowerTCP [2] for
RDMA congestion control; and Cubic [23] for TCP.
Baselines & metrics: We compare REVERIE with the
SONiC [44] buffer model which is the state-of-the-art buffer
sharing architecture widely deployed in today’s datacenters.

5While Tomahawk splits the buffer across 4 MMUs, for simplicity, we
assume a single MMU manages the entire buffer.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 659

ABM ReverieDT

0.5 1 1.5 2
RDMA Burst Size (MB)

0

5

10

15

20

25

PF

C
pa

us
es

 (x
10

00
)

(a) PFC Pauses

0.5 1 1.5 2
RDMA Burst Size (MB)

5

10

15

20

Av
g.

 F
CT

 sl
ow

do
wn

(b) RDMA incast flows

0.5 1 1.5 2
RDMA Burst Size (MB)

10

20

30

40

50

60

99
-p

ct
 F

CT
 sl

ow
do

wn

(c) TCP short flows

0.5 1 1.5 2
RDMA Burst Size (MB)

0

10

20

30

40

50

99
-p

ct
 b

uf
fe

r %
 (L

os
sle

ss
)

(d) RDMA buffer

0.5 1 1.5 2
RDMA Burst Size (MB)

0

10

20

30

40

50

99
-p

ct
 b

uf
fe

r %
 (L

os
sy

)

(e) TCP buffer
Figure 8: Buffer sharing under websearch TCP (Cubic) 80% load and across various burst sizes of incast RDMA (DCQCN)
workload. As the burst size increases, the inability of DT and ABM to absorb RDMA bursts becomes more.

SONiC uses Dynamic Thresholds (DT) [15] as the buffer
management scheme. The vast majority of the schemes in
the literature are tailored for loss-tolerant traffic; thus it is
unclear how those schemes can be evaluated in a fair manner
for lossless traffic. To address this, we extend ABM [1] to
support lossless traffic within the SONiC buffer model (after
discussing with the authors) by accounting for the drain rate as
well as the number of saturated queues in the ingress, and use
it as a baseline. We report the following metrics: (i) number
of PFC pauses triggered, (ii) average FCT slowdown for incast
traffic, (iii) 99-percentile FCT slowdown for short flows of
background traffic (iv) 99-percentile buffer occupancy of
RDMA and (v) 99-percentile buffer occupancy of TCP, as a
percentage of the total shared buffer.

Switch buffer configuration: We set the headroom pool
size based on the NIC bandwidth and link delay, according
to [49]. The remaining buffer is configured as ingress pool
size. We set the egress lossless pool to the total switch buffer
size and the egress lossy pool to 80% of the ingress pool size.
For REVERIE, the headroom pool configuration is the same as
stated earlier and the remaining buffer is configured as shared
pool size. We set α= 1 for all the schemes and set γ= 0.999
for REVERIE. We configure DCQCN according to [31], which
is based on industry experience, and PowerTCP according
to [2]. We set TCP minRTO to 1ms.

4.2 Results
REVERIE significantly reduces PFC pause rate: We
generate TCP traffic using websearch workload and RDMA
traffic using the incast workload in Figure 7 and Figure 8.
RDMA uses DCQCN for congestion control. Across various
loads of TCP and a burst size of 2MB for RDMA traffic, we
observe from Figure 7a that REVERIE reduces the number of
PFC pauses by 60% on average compared to DT and by 71.2%
on average compared to ABM. Specifically, even at 20% TCP
load, REVERIE reduces the number of PFC pauses by 58.9%
compared to DT and by 87.9% compared to ABM. Further,
across various burst sizes of RDMA with 80% TCP load,
REVERIE reduces the number of PFC pauses by 61.8% on

average compared to DT and by 57.4% on average compared
to ABM, as shown in Figure 8a. In Figure 11 and Figure 12,
we generate RDMA traffic using websearch workload and
TCP traffic using the incast workload. We use PowerTCP as
the congestion control for RDMA. From Figure 11a showing
various RDMA loads at 1.5MB TCP burst size, and Figure 12a
showing various TCP bursts at 80% RDMA load, we observe
that REVERIE significantly reduces the PFC pauses by 100%
compared to ABM, while REVERIE and DT perform similarly
in this case. This confirms our observations in §2 on SONiC
that lossy severely interacts with lossless traffic even though
they are controlled independently by ingress and egress.
REVERIE drastically reduces TCP’s interference with RDMA.

REVERIE improves burst absorption for RDMA & TCP:
Figure 7b, shows that across various TCP loads, REVERIE
significantly reduces the average FCT for incast flows by
18.5% on average compared to DT and by 18.2% on average
compared to ABM. At 80% TCP load, across various RDMA
burst sizes, Figure 8b shows that REVERIE improves the
average FCT for incast flows by 10% on average compared to
DT and by 17% compared to ABM. This shows that REVERIE
improves the overall burst absorption for RDMA. Although
REVERIE’s thresholds are similar to ABM’s, REVERIE
achieves better performance for lossless traffic due to its
LPF-based admission control which favors transient bursts.

Across various loads of RDMA and 1.5MB TCP burst size,
in Figure 11b, we see that REVERIE significantly reduces the
average FCT for incast flows by 33.7% on average compared
to DT and by 1.08% compared to ABM. From Figure 12b,
across various TCP burst sizes, we observe that REVERIE
reduces the average FCT for incast flows of TCP by up to 30%
for large bursts compared to DT while REVERIE performs
similarly to ABM. Overall, REVERIE’s LPF-based admission
control scheme improves burst absorption for RDMA as well
as for TCP.

REVERIE protects RDMA from TCP in the buffer: Given
the better burst absorption of REVERIE and significantly fewer
PFC pauses even in the presence of TCP as seen in Figures 7-

660 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ABM ReverieDT

20 40 60 80
Egress lossy pool (%)

0

5

10

15

20

25

PF

C
pa

us
es

 (x
10

00
)

(a) PFC pauses

20 40 60 80
Egress lossy pool (%)

10

15

20

25

Av
g.

 F
CT

 sl
ow

do
wn

(b) RDMA incast flows

20 40 60 80
Egress lossy pool (%)

8

10

12

14

16

Av
g.

 F
CT

 sl
ow

do
wn

(c) TCP long flows

20 40 60 80
Egress lossy pool (%)

0

10

20

30

40

50

99
-p

ct
 b

uf
fe

r %
 (L

os
sle

ss
)

(d) RDMA buffer

20 40 60 80
Egress lossy pool (%)

0

10

20

30

40

50

99
-p

ct
 b

uf
fe

r %
 (L

os
sy

)

(e) TCP buffer
Figure 9: Buffer sharing under websearch TCP (Cubic) 80% load and incast RDMA (DCQCN) workload across various egress
lossy pool sizes (% of ingress pool size) available for lossy TCP traffic. By changing the size of lossy pool, ABM and DT can only
decide which traffic class will be prioritized against the other.

0.8 0.9 0.99 0.999
Parameter γ value

0

1000

PF

C
pa

us
es

(x
10

00
)

0.8 0.9 0.99 0.999
Parameter γ value

15
16
17

Av
g.

 F
CT

slo
wd

ow
n

Figure 10: As the parameter γ value approaches 1, REVERIE
becomes oblivious to the changes in the buffer and drastically
reduces the number of PFC pauses. However, beyond a certain
value, the lack of PFC pauses negatively impacts FCTs.

12, already shows that REVERIE successfully prevents TCP’s
interactions with RDMA. Moreover, from Figure 7d, we see
that DT reduces its buffer allocation significantly for lossless
traffic as the load of TCP increases, while increasing buffer
allocation for TCP (Figure 7e). However, REVERIE gives
lossless traffic its fair share in the buffer even at high TCP loads.
Further, as the burst size of RDMA increases, from Figure 8d,
we see that REVERIE opportunistically allocates increasingly
buffer to RDMA whereas DT and ABM fail to allocate more
buffers to RDMA, thus significantly increasing PFC pauses
(Figure 8a). REVERIE’s isolation properties allow RDMA to
get its fair share of buffer even at high TCP loads. Reducing
TCP’s buffer share (egress lossy pool size) for DT and ABM
improves the number of PFC pauses (Figure 9a) and flow
completion times for RDMA incast flows, but TCP long flows
suffer (Figure 9c) due to the reduced overall buffer available for
TCP (Figure 9e). In contrast, REVERIE dynamically utilizes
the entire shared buffer space in a fair manner and protects
RDMA from TCP in the buffer as seen in Figures 7, 8, 9.

With advanced congestion control for RDMA (PowerTCP)
under websearch workload, across various RDMA loads and
TCP incasts (Figures 11d, 12d), REVERIE and DT as well as
ABM occupy a significantly small portion of buffer and achieve
similar FCTs for short flows of RDMA (Figures 11c, 12c).
However, REVERIE triggers much lower PFC pauses than
ABM as we observe in Figures 11a, 12a even with PowerTCP.

REVERIE also protects TCP in the buffer: Under websearch
workload for TCP and RDMA incasts, from Figures 7c and 8c,

we see that REVERIE and ABM achieve similar FCTs for
short flows of TCP whereas DT severely penalizes TCP. DT
penalizes TCP short flows even though it allocates more buffer
to TCP compared to REVERIE as seen in Figures 7c, 8e. This
excessive buffering results in increased queueing delays for
DT. Further, under incast workload for TCP and websearch
workload for RDMA, while REVERIE and ABM achieve
similar FCTs for incast TCP flows, DT suffers from poor FCTs
for TCP incasts (Figures 11b, 12b). Unlike DT, REVERIE and
ABM protect TCP in the buffer.

Impact of LPF filtering: As discussed in §3.3, the parameter
γ balances the capturing of steady-state (long-term) congestion
against transient-state (short-term) congestion is captured by
the admission control scheme. To better understand the impact
of γ, we generate RDMA traffic using websearch workload
at 80% load along with incast workload at 2MB burst size. In
Figure 10, we show the number of PFC pauses and the average
FCT for incast flows as a function of γ value. We observe that
PFC pauses dramatically reduce as γ increases. Average FCT
for incast flows decreases as γ increases until γ= 0.999. Yet,
for γ = 0.999999 (close to 1), the average FCT increases by
9%. Naturally, a small γ value makes the admission control
scheme highly sensitive to instantaneous queue lengths, which
triggers PFC more frequently upon transient bursts. Similarly,
a high γ value makes the admission control scheme insensitive
to queue length and PFC is not triggered even when the queues
steadily grow. In such cases, the excessive buffer occupied by
steady-state traffic leaves less buffer to absorb transient bursts.
Finding an optimal γ value is not required for reaping the
benefits of REVERIE, as long as we avoid the extreme values
that are easy to distinguish.

5 Related Work

Our work relates to (i) buffer management; and (ii) RDMA.
Multiple works focus on sharing the on-chip buffer across

queues of the same switch [1, 7–10, 13, 15, 18, 19, 29] and
on sharing bandwidth across queues of the same port e.g.,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 661

ABM ReverieDT

20 40 60 80
RDMA load (%)

0

1

2

3

4

5

6

PF

C
pa

us
es

 (x
10

00
)

(a) PFC pauses

20 40 60 80
RDMA load (%)

5

10

15

20

Av
g.

 F
CT

 sl
ow

do
wn

(b) TCP incast flows

20 40 60 80
RDMA load (%)

1

2

3

4

99
-p

ct
 F

CT
 sl

ow
do

wn

(c) RDMA short flows

20 40 60 80
RDMA load (%)

0

10

20

30

99
-p

ct
 b

uf
fe

r %
 (L

os
sle

ss
)

(d) RDMA buffer

20 40 60 80
RDMA load (%)

0

10

20

30

99
-p

ct
 b

uf
fe

r %
 (L

os
sy

)

(e) TCP buffer

Figure 11: Buffer sharing under incast TCP (with Cubic) and across various loads of websearch RDMA (with PowerTCP). ABM
can only deal with low loads of RDMA traffic as it cannot distinguish or priortize it.

0.25 0.5 1 1.5
TCP Burst Size (MB)

0

1

2

3

4

5

6

PF

C
pa

us
es

 (x
10

00
)

(a) PFC pauses

0.25 0.5 1 1.5
TCP Burst Size (MB)

1

5

10

15

Av
g.

 F
CT

 sl
ow

do
wn

(b) TCP incast flows

0.25 0.5 1 1.5
TCP Burst Size (MB)

1

2

3

4
99

-p
ct

 F
CT

 sl
ow

do
wn

(c) RDMA short flows

0.25 0.5 1 1.5
TCP Burst Size (MB)

0

10

20

30

99
-p

ct
 b

uf
fe

r %
 (L

os
sle

ss
)

(d) RDMA buffer

0.25 0.5 1 1.5
TCP Burst Size (MB)

0

10

20

30

99
-p

ct
 b

uf
fe

r %
 (L

os
sy

)

(e) TCP buffer

Figure 12: Buffer sharing under websearch RDMA (with PowerTCP) at 80% load varying burst sizes of incast TCP (with Cubic).
As TCP traffic increases, ABM further penalizes RDMA to protect TCP traffic.

AQM and scheduling [6, 20, 21, 35, 39]. In fact, there are also
proposals to combine the two [16]. Further, augementing
buffer sharing algorithms with machine-learned predictions
has been shown to improve performance [3]. While useful,
such works are designed exclusively for lossy traffic (i.e., TCP
variants) and often with loss-based congestion control in mind.
As a result, they are orthogonal to this work.

Many cloud providers have deployed RDMA over Ethernet
to accelerate storage [11, 22], HPC, and ML [38]. To the best
of our knowledge, all of these deployments [11, 22, 38] rely
on PFC. Other research efforts related to RDMA include
congestion control [2, 31, 53], efficient loss recovery [34],
deadlock prevention [24], high performance RDMA appli-
cations [17, 26, 27, 30], testing [28], security [40, 46, 50] and
performance isolation [52]. Among them, the most related
topic is congestion control, but also in those works the buffer
is only used by RDMA traffic [31, 53] (i.e., no TCP).

Coexistence of RDMA and TCP is an emerging new
problem. Several recent parallel works proposed alternative
solutions e.g., dynamically sharing the headroom buffer
space under extremely shallow buffers [43]; using average
occupancy time of packets to allocate buffers for each
queue [32]. Yet, unlike REVERIE, these works do not address
the fundamental issues that arise due to the static buffer pool
configurations in today’s switches. We leave it for future work

to evaluate how the emerging alternative approaches fare
against REVERIE’s allocation.

6 Conclusion
This paper addresses the tension in buffer sharing between
lossy traffic (e.g., TCP variants) and lossless traffic (e.g.,
RDMA) on datacenter switches. To this end, we first uncover,
and explain analytically three particular unexpected buffer
behaviors (issues) that today’s buffer-sharing scheme can
cause. Next, we find the root cause of these inefficiencies,
and design a new buffer sharing scheme, REVERIE that can
provide both isolation and high burst absorption to lossy and
lossless traffic. In future work, we will try to closely work with
a switch ASIC vendor to incorporate REVERIE into an ASIC’s
programmable admission control features.

Acknowledgements
We would like to thank our shepherd, Amy Ousterhout, as
well as the anonymous reviewers for their useful feedback. We
would like to thank Alex Shpiner, Eddy Kvetny, Matty Kadosh
and Liron Mula from NVIDIA for many helpful discussions
on the implementation feasibility of REVERIE. This work is
part of a project that has received funding from the Austrian
Science Fund (FWF), grant I 5025-N (DELTA), with Gabor
Retvari, 2020-2024.

662 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Vamsi Addanki, Maria Apostolaki, Manya Ghobadi, Ste-

fan Schmid, and Laurent Vanbever. Abm: Active buffer
management in datacenters. In Proceedings of the ACM
SIGCOMM 2022 Conference, SIGCOMM ’22, page
36–52, New York, NY, USA, 2022. Association for Com-
puting Machinery. doi:10.1145/3544216.3544252.

[2] Vamsi Addanki, Oliver Michel, and Stefan Schmid.
PowerTCP: Pushing the performance limits of datacenter
networks. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
51–70, Renton, WA, April 2022. USENIX Associa-
tion. URL: https://www.usenix.org/conference/
nsdi22/presentation/addanki.

[3] Vamsi Addanki, Maciej Pacut, and Stefan Schmid.
Credence: Augmenting datacenter switch buffer sharing
with ml predictions. In 21th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
24), Santa Clara, CA, April 2024. USENIX Associa-
tion. URL: https://www.usenix.org/conference/
nsdi24/presentation/addanki-credence.

[4] Mohammad Alizadeh and Tom Edsall. On the
data path performance of leaf-spine datacenter fab-
rics. In 2013 IEEE 21st Annual Symposium on
High-Performance Interconnects, pages 71–74, 2013.
doi:10.1109/HOTI.2013.23.

[5] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center tcp
(dctcp). In Proceedings of the ACM SIGCOMM 2010
Conference, SIGCOMM ’10, page 63–74, New York,
NY, USA, 2010. Association for Computing Machinery.
doi:10.1145/1851182.1851192.

[6] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti,Nick McKeown,Balaji Prabhakar,and Scott
Shenker. Pfabric: Minimal near-optimal datacenter trans-
port. In Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM, SIGCOMM ’13, page 435–446,
New York, NY, USA, 2013. Association for Computing
Machinery. doi:10.1145/2486001.2486031.

[7] Maria Apostolaki, Vamsi Addanki, Manya Ghobadi,
and Laurent Vanbever. Fb: A flexible buffer
management scheme for data center switches.
arXiv preprint arXiv:2105.10553, 2021. URL:
https://arxiv.org/abs/2105.10553.

[8] Maria Apostolaki, Laurent Vanbever, and Manya
Ghobadi. Fab: Toward flow-aware buffer sharing
on programmable switches. BS ’19, New York, NY,
USA, 2020. Association for Computing Machinery.
doi:10.1145/3375235.3375237.

[9] Mutlu Arpaci and John A. Copeland. Buffer man-
agement for shared-memory atm switches. IEEE
Communications Surveys & Tutorials, 3(1):2–10, 2000.
doi:10.1109/COMST.2000.5340716.

[10] James Aweya, Michel Ouellette, and Delfin Y
Montuno. Buffer management scheme em-
ploying dynamic thresholds, September 7
2004. US Patent 6,788,697. URL: https:
//patents.google.com/patent/US6788697B1/en.

[11] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Kris-
han Kumar Attre, Paramvir Bahl, Ameya Bhagat, Gowri
Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,
Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad, Vivek
Ette, Igal Figlin, Daniel Firestone, Mathew George, Ilya
German, Lakhmeet Ghai, Eric Green, Albert Greenberg,
Manish Gupta, Randy Haagens, Matthew Hendel,
Ridwan Howlader, Neetha John, Julia Johnstone, Tom
Jolly, Greg Kramer, David Kruse, Ankit Kumar, Erica
Lan, Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu,
Chen Liu, Guohan Lu, Yuemin Lu, Xiakun Lu, Vadim
Makhervaks, Ulad Malashanka, David A. Maltz, Ilias
Marinos, Rohan Mehta, Sharda Murthi, Anup Namdhari,
Aaron Ogus, Jitendra Padhye, Madhav Pandya, Douglas
Phillips, Adrian Power, Suraj Puri, Shachar Raindel,
Jordan Rhee, Anthony Russo, Maneesh Sah, Ali Sheriff,
Chris Sparacino, Ashutosh Srivastava, Weixiang Sun,
Nick Swanson, Fuhou Tian, Lukasz Tomczyk, Vamsi
Vadlamuri, Alec Wolman, Ying Xie, Joyce Yom, Lihua
Yuan, Yanzhao Zhang, and Brian Zill. Empowering azure
storage with RDMA. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
23), pages 49–67, Boston, MA, April 2023. USENIX
Association. URL: https://www.usenix.org/
conference/nsdi23/presentation/bai.

[12] Wei Bai, Shuihai Hu, Kai Chen, Kun Tan, and Yongqiang
Xiong. One more config is enough: Saving (dc)tcp
for high-speed extremely shallow-buffered datacenters.
IEEE/ACM Transactions on Networking, 29(2):489–502,
2021. doi:10.1109/TNET.2020.3032999.

[13] Andreas V Bechtolsheim and David R Cheriton.
Per-flow dynamic buffer management, Febru-
ary 4 2003. US Patent 6,515,963. URL: https:
//patents.google.com/patent/US6515963B1/en.

[14] Broadcom Tomahawk. https://people.ucsc.edu/
~warner/Bufs/tomahawk.

[15] A.K. Choudhury and E.L. Hahne. Dynamic queue
length thresholds for shared-memory packet switches.
IEEE/ACM Transactions on Networking, 6(2):130–140,
1998. doi:10.1109/90.664262.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 663

https://doi.org/10.1145/3544216.3544252
https://www.usenix.org/conference/nsdi22/presentation/addanki
https://www.usenix.org/conference/nsdi22/presentation/addanki
https://www.usenix.org/conference/nsdi24/presentation/addanki-credence
https://www.usenix.org/conference/nsdi24/presentation/addanki-credence
https://doi.org/10.1109/HOTI.2013.23
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/2486001.2486031
https://arxiv.org/abs/2105.10553
https://doi.org/10.1145/3375235.3375237
https://doi.org/10.1109/COMST.2000.5340716
https://patents.google.com/patent/US6788697B1/en
https://patents.google.com/patent/US6788697B1/en
https://www.usenix.org/conference/nsdi23/presentation/bai
https://www.usenix.org/conference/nsdi23/presentation/bai
https://doi.org/10.1109/TNET.2020.3032999
https://patents.google.com/patent/US6515963B1/en
https://patents.google.com/patent/US6515963B1/en
https://people.ucsc.edu/~warner/Bufs/tomahawk
https://people.ucsc.edu/~warner/Bufs/tomahawk
https://doi.org/10.1109/90.664262

[16] Cisco. Intelligent buffer management on
cisco nexus 9000 series switches. URL:
https://www.cisco.com/c/en/us/products/
collateral/switches/nexus-9000-series-
switches/white-paper-c11-738488.pdf.

[17] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast remote memory.
In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414,
Seattle, WA, April 2014. USENIX Association. URL:
https://www.usenix.org/conference/nsdi14/
technical-sessions/dragojevi%C4%87.

[18] F. Ertemalp, D.R. Cheriton, and A. Bechtolsheim.
Using dynamic buffer limiting to protect against
belligerent flows in high-speed networks. In
Proceedings Ninth International Conference on
Network Protocols. ICNP 2001, pages 230–240, 2001.
doi:10.1109/ICNP.2001.992903.

[19] Ruixue Fan, A. Ishii, B. Mark, G. Ramamurthy,
and Qiang Ren. An optimal buffer management
scheme with dynamic thresholds. In Seamless
Interconnection for Universal Services. Global Telecom-
munications Conference. GLOBECOM’99. (Cat.
No.99CH37042), volume 1B, pages 631–637 vol. 1b,
1999. doi:10.1109/GLOCOM.1999.830130.

[20] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM
Transactions on Networking, 1(4):397–413, 1993.
doi:10.1109/90.251892.

[21] Sally Floyd, Ramakrishna Gummadi, Scott Shenker,
et al. Adaptive red: An algorithm for increasing the
robustness of red’s active queue management, 2001.

[22] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan
Liu, Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu,
Zheng Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong
Wang, Dennis Cai, and Jiesheng Wu. When cloud
storage meets RDMA. In 18th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 21), pages 519–533. USENIX Association, April
2021. URL: https://www.usenix.org/conference/
nsdi21/presentation/gao.

[23] Sangtae Ha, Injong Rhee, and Lisong Xu. Cu-
bic: A new tcp-friendly high-speed tcp variant.
SIGOPS Oper. Syst. Rev., 42(5):64–74, jul 2008.
doi:10.1145/1400097.1400105.

[24] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Tagger:

Practical pfc deadlock prevention in data center
networks. CoNEXT ’17, page 451–463, New York,
NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3143361.3143382.

[25] Sijiang Huang, Mowei Wang, and Yong Cui. Traffic-
aware buffer management in shared memory switches.
IEEE/ACM Transactions on Networking, 30(6):2559–
2573, 2022. doi:10.1109/TNET.2022.3173930.

[26] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be general and fast. In 16th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 1–16, Boston,
MA, February 2019. USENIX Association. URL:
https://www.usenix.org/conference/nsdi19/
presentation/kalia.

[27] Anuj Kalia, Michael Kaminsky, and David G. An-
dersen. Design guidelines for high performance
RDMA systems. In 2016 USENIX Annual Techni-
cal Conference (USENIX ATC 16), pages 437–450,
Denver, CO, June 2016. USENIX Association. URL:
https://www.usenix.org/conference/atc16/
technical-sessions/presentation/kalia.

[28] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding performance anomalies in RDMA subsystems.
In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 287–305,
Renton, WA, April 2022. USENIX Association. URL:
https://www.usenix.org/conference/nsdi22/
presentation/kong.

[29] S. Krishnan, A.K. Choudhury, and F.M. Chiussi.
Dynamic partitioning: a mechanism for shared memory
management. In IEEE INFOCOM ’99. Conference on
Computer Communications. Proceedings. Eighteenth
Annual Joint Conference of the IEEE Computer and
Communications Societies. The Future is Now (Cat.
No.99CH36320), volume 1, pages 144–152 vol.1, 1999.
doi:10.1109/INFCOM.1999.749262.

[30] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and
Lintao Zhang. Socksdirect: Datacenter sockets
can be fast and compatible. In Proceedings of the
ACM Special Interest Group on Data Communica-
tion, SIGCOMM ’19, page 90–103, New York, NY,
USA, 2019. Association for Computing Machinery.
doi:10.1145/3341302.3342071.

[31] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan
Yu. Hpcc: High precision congestion control. In
Proceedings of the ACM Special Interest Group on

664 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-738488.pdf
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-738488.pdf
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-738488.pdf
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%C4%87
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%C4%87
https://doi.org/10.1109/ICNP.2001.992903
https://doi.org/10.1109/GLOCOM.1999.830130
https://doi.org/10.1109/90.251892
https://www.usenix.org/conference/nsdi21/presentation/gao
https://www.usenix.org/conference/nsdi21/presentation/gao
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1145/3143361.3143382
https://doi.org/10.1109/TNET.2022.3173930
https://www.usenix.org/conference/nsdi19/presentation/kalia
https://www.usenix.org/conference/nsdi19/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/nsdi22/presentation/kong
https://www.usenix.org/conference/nsdi22/presentation/kong
https://doi.org/10.1109/INFCOM.1999.749262
https://doi.org/10.1145/3341302.3342071

Data Communication, SIGCOMM ’19, page 44–58,
New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3341302.3342085.

[32] Yi Liu, Jiangping Han, Kaiping Xue, Ruidong Li,
and Jian Li. L2bm: Switch buffer management
for hybrid traffic in data center networks. In 2023
IEEE 43rd International Conference on Distributed
Computing Systems (ICDCS), pages 1–11, 2023.
doi:10.1109/ICDCS57875.2023.00076.

[33] Matt Mathis and Andrew McGregor. Buffer siz-
ing: a position paper. URL: https://buffer-
workshop.stanford.edu/papers/paper16.pdf.

[34] Radhika Mittal, Alexander Shpiner, Aurojit Panda,
Eitan Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy,
and Scott Shenker. Revisiting network support for
rdma. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communica-
tion, SIGCOMM ’18, page 313–326, New York, NY,
USA, 2018. Association for Computing Machinery.
doi:10.1145/3230543.3230557.

[35] Kathleen Nichols and Van Jacobson. Controlling
queue delay: A modern aqm is just one piece of the
solution to bufferbloat. Queue, 10(5):20–34, may 2012.
doi:10.1145/2208917.2209336.

[36] ns-3. Network simulator. URL: https:
//www.nsnam.org/.

[37] Eugene Opsasnick. Buffer management and flow
control mechanism including packet-based dynamic
thresholding. US patent US7953002B2. URL: https:
//patents.google.com/patent/US7953002B2/en.

[38] Oracle Cloud Infrastructure Blog: First principles:
Building a high-performance network in the pub-
lic cloud. URL: https://blogs.oracle.com/
cloud-infrastructure/post/building-high-
performance-network-in-the-cloud.

[39] Rong Pan, Preethi Natarajan, Chiara Piglione,
Mythili Suryanarayana Prabhu, Vijay Subramanian,
Fred Baker, and Bill VerSteeg. Pie: A lightweight
control scheme to address the bufferbloat problem. In
2013 IEEE 14th International Conference on High
Performance Switching and Routing (HPSR), pages
148–155, 2013. doi:10.1109/HPSR.2013.6602305.

[40] Benjamin Rothenberger, Konstantin Taranov, Adrian
Perrig, and Torsten Hoefler. ReDMArk: Bypassing
RDMA security mechanisms. In 30th USENIX
Security Symposium (USENIX Security 21), pages
4277–4292. USENIX Association, August 2021.
URL: https://www.usenix.org/conference/
usenixsecurity21/presentation/rothenberger.

[41] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad
Sharif, Rong Pan, Mostafa Ammar, Ellen Zegura, Keon
Jang, Mohammad Alizadeh, Abdul Kabbani, and Amin
Vahdat. Annulus: A dual congestion control loop for
datacenter and wan traffic aggregates. In Proceedings
of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’20, page 735–749, New
York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3387514.3405899.

[42] Danfeng Shan, Wanchun Jiang, and Fengyuan
Ren. Absorbing micro-burst traffic by enhancing
dynamic threshold policy of data center switches.
In 2015 IEEE Conference on Computer Com-
munications (INFOCOM), pages 118–126, 2015.
doi:10.1109/INFOCOM.2015.7218374.

[43] Danfeng Shan, Yuqi Liu, Tong Zhang, Yifan Liu,
Yazhe Tang, Hao Li, and Peng Zhang. Less is
more: Dynamic and shared headroom allocation in
pfc-enabled datacenter networks. In 2023 IEEE
43rd International Conference on Distributed Com-
puting Systems (ICDCS), pages 591–602, 2023.
doi:10.1109/ICDCS57875.2023.00019.

[44] SONiC. Software for Open Networking in the Cloud.
URL: https://sonic-net.github.io/SONiC/.

[45] Tim Stevenson. Nexus 9000 architecture, 2020. URL:
https://www.ciscolive.com/c/dam/r/ciscolive/
emea/docs/2020/pdf/BRKDCN-3222.pdf.

[46] Konstantin Taranov, Benjamin Rothenberger, Adrian Per-
rig, and Torsten Hoefler. sRDMA – efficient NIC-based
authentication and encryption for remote direct memory
access. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 691–704. USENIX Associ-
ation, July 2020. URL: https://www.usenix.org/
conference/atc20/presentation/taranov.

[47] NVIDIA Onyx User Manual v3.10.4302 (LTS).
Shared Buffers. URL: https://docs.nvidia.com/
networking/display/Onyxv3104302/Shared+
Buffers.

[48] Haiyong Wang. OCPUS18 – SONiC Develop-
ment and Deployment at Alibaba, 2018. URL:
https://www.youtube.com/watch?v=aSd3R3gnQtw.

[49] CISCO white paper. Priority flow control: build reliable
layer-2 infrastructure. 2009.

[50] Jiarong Xing, Kuo-Feng Hsu, Yiming Qiu, Ziyang Yang,
Hongyi Liu, and Ang Chen. Bedrock: Programmable net-
work support for secure RDMA systems. In 31st USENIX

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 665

https://doi.org/10.1145/3341302.3342085
https://doi.org/10.1109/ICDCS57875.2023.00076
https://buffer-workshop.stanford.edu/papers/paper16.pdf
https://buffer-workshop.stanford.edu/papers/paper16.pdf
https://doi.org/10.1145/3230543.3230557
https://doi.org/10.1145/2208917.2209336
https://www.nsnam.org/
https://www.nsnam.org/
https://patents.google.com/patent/US7953002B2/en
https://patents.google.com/patent/US7953002B2/en
https://blogs.oracle.com/cloud-infrastructure/post/building-high-performance-network-in-the-cloud
https://blogs.oracle.com/cloud-infrastructure/post/building-high-performance-network-in-the-cloud
https://blogs.oracle.com/cloud-infrastructure/post/building-high-performance-network-in-the-cloud
https://doi.org/10.1109/HPSR.2013.6602305
https://www.usenix.org/conference/usenixsecurity21/presentation/rothenberger
https://www.usenix.org/conference/usenixsecurity21/presentation/rothenberger
https://doi.org/10.1145/3387514.3405899
https://doi.org/10.1109/INFOCOM.2015.7218374
https://doi.org/10.1109/ICDCS57875.2023.00019
https://sonic-net.github.io/SONiC/
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKDCN-3222.pdf
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKDCN-3222.pdf
https://www.usenix.org/conference/atc20/presentation/taranov
https://www.usenix.org/conference/atc20/presentation/taranov
https://docs.nvidia.com/networking/display/Onyxv3104302/Shared+Buffers
https://docs.nvidia.com/networking/display/Onyxv3104302/Shared+Buffers
https://docs.nvidia.com/networking/display/Onyxv3104302/Shared+Buffers
https://www.youtube.com/watch?v=aSd3R3gnQtw

Security Symposium (USENIX Security 22), pages 2585–
2600, Boston, MA, August 2022. USENIX Association.
URL: https://www.usenix.org/conference/
usenixsecurity22/presentation/xing.

[51] Zhenggen Xu. OCPSummit19 - EW: SONiC -
LinkedIn Adoption of OCP SONiC, 2019. URL:
https://www.youtube.com/watch?v=skUnjqPOvXs.

[52] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf
Chowdhury. Justitia: Software Multi-Tenancy in
hardware Kernel-Bypass networks. In 19th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 1307–1326, Ren-
ton, WA, April 2022. USENIX Association. URL:
https://www.usenix.org/conference/nsdi22/
presentation/zhang-yiwen.

[53] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra
Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. Congestion control for large-scale
rdma deployments. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Commu-
nication, SIGCOMM ’15, page 523–536, New York,
NY, USA, 2015. Association for Computing Machinery.
doi:10.1145/2785956.2787484.

A Analysis of SONiC
In this section, we formally model the buffer sharing scheme
of SONiC [44] as well as REVERIE and analyze their buffer
allocation properties. Our analysis aims to understand the
steady-state behavior of the buffer. We build upon the model
and the notation introduced in §2. Specifically, we analyze a
shared buffer switch architecture whose buffer sharing scheme
supports both lossless traffic and lossy traffic. Our analysis
is based on a fluid flow model with deterministic packet arrival
rates, extending [1, 15].

We begin by analyzing the drop thresholds for lossy traffic.
As we study the steady-state of the buffer, we drop the time
variables in our notation for ease of presentation. Since every
packet is accounted both in the ingress and egress, the follow-
ing relations hold at all times: (i) lossy traffic buffer occupancy
◦→q at egress equals its occupancy ←◦q at ingress; (ii) lossless
traffic buffer occupancy at egress •→q equals its occupancy at the
ingress pool←•q plus headroom occupancy qh; (iii) ingress pool
occupancy

←q equals the sum of occupancy of lossless←•q (with-
out PFC headroom) and lossy←◦q traffic occupancy at ingress.

◦→q =
←◦q (7)

•→q =
←•q +qh (8)

←q =
←◦q +

←•q (9)

Based on the egress admission control for lossy traffic i.e.,
Dynamic Thresholds (see Equation 1 in §2), if ◦→n egress lossy

queues are in the steady state, then the total buffer occupancy
is ◦→q =◦→n ·(◦→b −

◦→q). By rearranging the terms, we obtain the
egress lossy pool occupancy:

◦→q =
◦→n ·◦→α ·◦→b
1+◦→n ·◦→α

(10)

Similarly, based on the ingress admission control for lossless
traffic, if ←•n lossless queues are in the steady state, then the
total buffer occupancy is←•q =←•n ·←•α ·(←•b −

←•q). Substituting
in Equation 9 and using Equation 10 for ◦→q , we obtain the
following:

←q =
←
b ·
(←•n ·←•α

1+←•n ·←•α

)
+
◦→
b ·

(
1

1+←•n ·←•α
·
◦→n ·◦→α

1+◦→n ·◦→α

)
Finally, substituting

←q from above in←•q =←•n ·←•α ·(←b−
←q), we

obtain←•q , the buffer occupied by lossless traffic at the ingress
pool.

←•q =
←
b ·
(←•n ·←•α

1+←•n ·←•α

)
−◦→b ·

(←•n ·←•α

1+←•n ·←•α
·
◦→n ·◦→α

1+◦→n ·◦→α

)
(11)

Overall, our steady-state analysis gives the amount of buffer
occupied by lossless traffic (Equation 11) and lossy traffic
(Equation 10) based on the buffer configuration and the state
of the buffer i.e., the number of active queues of each class.
Following the admission control of Dynamic Thresholds from
Equation 1, we could compute the drop thresholds for egress
lossy and PFC thresholds for ingress lossless by using each
pool occupancy from above.

✔✔✘

Default packets Burst or high priority packets

Accept
Accept

Drop

Threshold for priority packets

Threshold for default packets

PFC Pause
(Headroom)

✔ Accept

✔Headroom
✔Headroom

✘Paused

✔

Lossy Queue Lossless Queue

Figure 13: Per-packet prioritization cannot increase burst ab-
sorption for lossless traffic since PFC works at per-queue gran-
ularity.

B Analysis of REVERIE

In this section, we formally prove the properties of REVERIE
stated in this paper. Before analyzing the steady-state behavior
of REVERIE, we first show the relation between low-pass
filters and gradient which builds the intuition for our low-pass
filter-based approach.

666 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.usenix.org/conference/usenixsecurity22/presentation/xing
https://www.usenix.org/conference/usenixsecurity22/presentation/xing
https://www.youtube.com/watch?v=skUnjqPOvXs
https://www.usenix.org/conference/nsdi22/presentation/zhang-yiwen
https://www.usenix.org/conference/nsdi22/presentation/zhang-yiwen
https://doi.org/10.1145/2785956.2787484

Property 1 (Relationship of low pass filter and gradient). Let
Ψ be an admission control scheme that compares first order
low pass filtered queue length q̂(t − δt) against a threshold
Γ(t) i.e., q̂(t−δt)≤ Γ(t), where t−δt denotes the previous
time instance. Let Φ be an admission control that compares
instantaneous queue length q(t) against Ψ’s threshold Γ(t)
incremented proportionally based on the average queue
gradient dq̂(t)

dt i.e., q(t)≤Γ(t)+K · dq̂(t)
dt ; where K is a constant

and dq̂
dt is the gradient. Then, there exists a constant K such

that Ψ and Φ are equivalent.

Proof. We consider exponentially weighted moving average
for the first order low pass filter in this context. Let q(t) denote
the instantaneous queue length and let q̂(t) denote the average
queue length. We denote the moving average parameter by
ν. The moving average of the instantaneous queue lengths is
then as follows:

q̂(t)=ν·q(t)+(1−ν)·q̂(t−δt)

where δt denotes the previous time when the average was
updated. By rearranging the terms and dividing by δt,

q̂(t)−q̂(t−δt)
δt

=
ν

δt
·(q(t)−q̂(t−δt))

Let K = δ

ν
. Using Euler’s approximation method, we obtain

the following:

K · dq̂(t)
dt

=q(t)−q̂(t−δt) (12)

Using this relation, we now prove that Ψ and Φ admission con-
trol schemes are equivalent. We begin with Ψ which compares
average queue lengths against a threshold Γ(t) at time t.

q̂(t−δt)≤Γ(t)

Using Equation 12, we convert the above inequality as follows:

q(t)−K · dq̂(t)
dt
≤Γ(t)

By rearranging the terms, we obtain the the admission control
scheme Φ. Hence Ψ and Φ are equivalent.

q(t)≤Γ(t)+K · dq̂(t)
dt

Property 1 underlies the design of REVERIE’s admission
control based on LPF. We next prove the steady-state proper-
ties of REVERIE. Notice that by definition, the average queue
length equals instantaneous queue length in steady-state. Due
to this, REVERIE’s steady-state properties are largely inherited
from ABM. REVERIE differs from ABM in that, REVERIE’s
admission control is based on a single shared pool, where as

ABM in the SONiC model would assign thresholds based on
the pool size and occupancies for each priority (within a class).
ABM cannot dynamically allocate buffer across RDMA and
TCP since the pool sizes are fixed in the SONiC buffer model.

We next analyze the buffer allocation ratio for lossless and
lossy.

Theorem 1 (Isolation). Under contention, REVERIE allocates
buffer across lossless and lossy in the ratio of the corresponding
α parameters i.e.,

•q
◦q
=
•
α
◦
α

where •q and ◦q denote the steady-state shared buffer occupancy
of lossless and lossy traffic respectively; •α and ◦α denote the
parameter values for lossless and lossy queues respectively.

Proof. Since under steady-state, average and instanta-
neous converge, we simply use instantaneous values to
prove our claim. Let •n and ◦n be the number of congested
queues of lossless and lossy. REVERIE allocates a total of
•q = •n · •α · 1•n · (

∗
b− ∗q) = •

α ·(∗b− ∗q) to •n lossless and a total of
◦q = ◦n· ◦α· 1◦n · (

∗
b− ∗q) = ◦

α·(∗b− ∗q) to ◦n lossy queues. Since both
lossy and lossless are mapped to the shared pool, we have that
•q+
◦q= ∗q. But substituting the previous relations, we obtain:

∗q=
(
•
α+

◦
α)· ∗b

1+(
•
α+

◦
α)

(13)

•q=
•
α·∗b

1+(
•
α+

◦
α)

(14)

◦q=
◦
α·∗b

1+(
•
α+

◦
α)

(15)

From the above relations, it is easy to see that the ratio
•q◦q =

•
α◦
α

.

Theorem 2 (Buffer waste). REVERIE keeps idle a certain
amount of buffer in the steady-state denoted by bw given by,

∗
b

1+ •α+ ◦α
≤bw≤

∗
b

1+min(•α, ◦α)

where
∗
b is the shared buffer pool size; •α and ◦α are the parameter

values for lossless and lossy queues correspondingly.

Proof. Our proof follows from the proof of Theorem 2. Specif-
ically, for •n lossless queues and ◦n lossy queues, REVERIE
allocates ∗q in aggregate given by Equation 13. The remaining
buffer

∗
b−∗q which is wasted in the steady state is then given by,

bw≥
∗
b−∗q=

∗
b

1+(
•
α+

◦
α)

However, if a traffic class eg., lossless does not use the buffer,
we can derive the remaining shared pool buffer similar to
above. Depending on the smallest α value across all traffic

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 667

classes, when such a class uses the buffer alone, then in this
case the buffer waste is given by,

bw≤
∗
b−∗q=

∗
b

1+(min(•α, ◦α))

We believe that REVERIE not only has interesting steady-
state properties but its low pass filter based admission control
find its best benefit under transient state analysis. We plan to
analyze more such properties in the future.

668 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Precise Data Center Traffic Engineering with Constrained Hardware Resources

Shawn Shuoshuo Chen ♠ Keqiang He ♦ Rui Wang ♣ Srinivasan Seshan ♠ Peter Steenkiste ♠

♠ Carnegie Mellon University ♦ Airbnb ♣ Google

Abstract
Data center traffic engineering (TE) routes flows over a set
of available paths following custom weight distributions to
achieve optimal load balancing or flow throughput. However,
as a result of hardware constraints, it is challenging, and often
impossible for larger data center networks, to precisely imple-
ment the TE weight distributions on the data plane switches.
The resulting precision loss in the TE implementation causes
load imbalances that can result in congestion and traffic loss.

Instead of treating all flows equally, we adapt the hardware
resource allocation to a flow’s traffic volume and its contribu-
tion to the overall precision loss. We intelligently prune select
ports in weight distributions and merge identical distributions
to free up hardware resources. Evaluation using realistic traffic
loads shows that our techniques approximate ideal TE solutions
under various scenarios within 7% error, compared to a 67% er-
ror for today’s state-of-the-art approach. In addition, our design
avoids traffic loss triggered by switch rule overflow. Finally,
the execution time is 10× faster than the current approach.

1 Introduction
Data center networks (DCNs) have resorted to using links with
abundant bandwidth, topologies with rich connectivity, and
operation at enormous scale to meet growing application needs.
However, these additional resources come at a significant
cost and DCN operation must ensure efficient utilization of
the network infrastructure. Traffic engineering (TE) plays a
critical role in addressing this efficiency need by routing traffic
over carefully chosen paths. Existing TE designs consist of
two parts: (1) calculating the optimal plan for mapping of flows
to links, which is called the TE solution; (2) implementing
the TE solution on data plane switches, which we call TE
implementation. Past TE research [3–5, 9, 22, 31, 38] has
mostly focused on the TE solution, but the TE implementation
impacts operational efficiency greatly and, despite this, has
received much less attention.

Equal-Cost Multi-Path (ECMP) [30] is the most widely
adopted method to implement TE solutions because of its

♦ This work was done when Keqiang He was at Google.

universal hardware support. Weighted-Cost Multi-Path
(WCMP) [73] is an extension of ECMP that supports a
weighted split of traffic among paths by using forwarding table
entry replication. This enables finer-grained traffic control but
can consume much more space in the switch hardware table. As
a result, two problems occur. First, some groups (the data struc-
ture that implements weight distributions in the switch) used by
the TE solution cannot be installed in the switch after the switch
group table becomes full, leading to traffic loss. Second, if the
weights are adjusted to use less space in the group table, the
resulting TE implementation may have poor TE performance.
We refer to the difference between link utilization of the TE
solution and of the TE implementation as the precision loss.

Recently, spine-free DCN designs [7, 45, 46] propose to
replace the traditional Clos topology with clusters connected
as a full mesh. Spine-free design reduces the total cost of
ownership and accelerates DCN evolution, but we found that
they also increase usage on the group table, exacerbating
WCMP’s performance issues.

We seek to answer this question: how to implement TE solu-
tions with high precision given constrained hardware space?
Adjusting weight distributions of groups proves effective in
lowering table space requirement. However, when we com-
pared the groups retrieved from production switches with the
TE solution, we found that the precision loss is often high. We
analyzed the differences, which led to several insights on how
to reduce the group table usage with lower precision loss: (1)
Groups that serve significant traffic contribute disproportion-
ally to the precision loss. They should be given more group
table space. (2) Some groups have very skewed weight distribu-
tions and consume many table entries. Normal weight adjust-
ment that preserves all paths struggles to avoid high precision
loss. However, certain paths can be pruned from the distribu-
tion to significantly lower the table space requirement, often
with little impact on precision loss. (3) After adjusting weights,
some groups can become identical. Deduplicating such groups
frees up group table space without incurring precision loss.

We develop three heuristics based on the insights: (1) traffic-
aware resource allocation, (2) prune paths, and (3) deduplica-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 669

tion. We then implement two algorithms that map TE solutions
to switch hardware, applying the above heuristics. They
both aim to minimize precision loss while adjusting group
weights to meet the hardware resource constraint. Heuristic
2 is invoked conditionally when the resource constraint is
otherwise impossible to satisfy. The two algorithms make
different tradeoffs: one has very low precision loss, while the
other runs faster but with higher precision loss in some cases.

Since evaluation in production DCNs could impact user
traffic, we built a data center TE evaluation framework named
FabricEval that allows us to run controlled experiments
using production-like DCN topologies and traffic loads.
Our implementations of the algorithms are compared to the
state-of-the-art approach [73] under both common and extreme
DCN configurations. Results show that our design implements
TE solutions with no more than 7% precision loss, while using
the state-of-the-art approach can have up to 67% precision
loss. Furthermore, our design achieves a 10× execution speed
improvement over the existing approach and successfully
avoids traffic loss triggered by exhausted hardware resources.

In summary, this paper makes the following contributions:
• We quantify the TE precision loss problem for a variety

of DCN topologies, scale, and traffic patterns. Our study
identifies five root causes of precision loss (§3).

• We present two algorithms with different speed and
optimality tradeoffs that can generate high precision
TE implementations, at the same time complying with
hardware resource constraints (§4).

• We develop a TE evaluation framework that mirrors
Google’s production DCNs and TE system and use it to
evaluate our design (§5).

• We release the source code of our algorithm implemen-
tation and the evaluation framework FabricEval [1].

2 Background
We provide an overview of how data center traffic engineering
systems are designed, as well as the hardware resource con-
straint these systems face. We then describe how the emerging
spine-free DCN architecture differs from the traditional
Clos-based design from a traffic engineering perspective.

2.1 Traffic engineering in data center networks
End hosts in DCNs are densely connected by many paths
traversing different switches. The TE system acts as a
centralized controller that manages all links/switches and
routes traffic end-to-end via available paths. It looks for an
optimal plan to fulfill a list of goals, including serving all
traffic demands (bytes to send between each src-dst pair),
maximizing flow throughput, balancing link loads etc. The
TE problem is typically formulated as a multi-commodity
flow (MCF) optimization problem. Though it is theoretically
possible to obtain a TE solution by solving an MCF with
comprehensive constraints, e.g., switch group table size limits,
the scale of today’s DCNs makes this approach prohibitively

Egress
port

p1
p2…
p2

LPM/Flow
10.1.0.0/24

10.0.2.9/30
10.0.3.0/24

Group
ID

G1

G3

p1…
p1
p2…
p2

x85

x68

G2

p1…
p1
p2…
p2

x50

x40

x15

G’1,2

p1…
p1
p2…
p2

x5

x4

p1
p2…
p2

G3 x15

G’’1,2
p1
p2

p2G’3

Pre-reduction Reduction w/o
precision loss

Reduction w/
precision loss

Figure 1: Hardware representation of flows/groups, and a
demonstration of group reduction.

expensive. Common TE systems break the task into two steps:
first generate a TE solution to the MCF problem without
hardware constraints, and then map the TE solution to a data
plane TE implementation. Some TE systems generate solutions
hierarchically [18] for better scalability, but this does not
impact the TE implementation step—the focus of this paper.

The TE solution specifies for each demand which paths to
use and how much traffic to place on each path. When paths
diverge at a switch, the demand is split by a ratio (weight
distribution) according to the routing decision. The TE system
updates each switch along the paths to reflect the routing
decision. To map the TE solution to a TE implementation,
the end-to-end TE solution first needs to be broken down into
switch-local routing decisions. Next, switch-local decisions
are translated to switch rules, namely longest prefix match
(LPM) entries and groups, and installed on switches using
switch control plane APIs (e.g., OpenFlow/SDN [44]).

An LPM/flow entry points to a group that is used for packet
forwarding (see the pre-reduction phase in Figure 1). A group
consists of a set of ports, each with an integer weight reflecting
the rounded fractional traffic volumes assigned to each path.
Weight distributions are achieved via port/entry replication
since all entries in a group are selected by uniform hashing
with equal probability at runtime. When ECMP is used, each
port in a group uses exactly one entry in the group table,
which is very efficient. With WCMP, the entries a port uses
is proportional to its weight in the group. It is easy to see that
the number of entries needed depends strongly on the weight
ratios, e.g., G1={p1:85;p2:68} will require a lot of entries.

The group table space is a scarce resource. Table 1 lists
the group table capacity of a few types of switches found in
production DCNs (also called fabric). Given the large number
of flows, and the use of WCMP in today’s DCNs, it is hard to
avoid exhausting the group table. A group reduction algorithm
is needed to reduce group sizes—the sum of entries used by
each group—so the TE solution fits in the group tables. The
group reduction algorithm should generate a new weight distri-
bution that closely approximates the original one. For example
in Figure 1, groups G1-G3 can be reduced to G′

1,2 and G′
3 with

670 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: Switch hardware profile of an example deployment.
Switch generation Port speed Group table size
Gen. 1 40 Gbps 4096 entries
Gen. 2 100 Gbps 16384 entries
Gen. 3 200 Gbps 32768 entries

ToR switch

Path segment
Physical link

Aggregation
Block

...

Aggregation
switch

Cluster 1 Cluster N

...

S3

S2
S1

Hosts

To spine or peers

Hosts

Aggregation
Block

Cluster 2

Aggregation
Block

Aggregation
Block

...Cluster 1 Cluster N

Aggregation
Block

Cluster 2

Aggregation
Block

Spine layer

Tr
ad

iti
on

al
 C

lo
s

Sp
in

e-
fr

ee

Cluster Internals

1 2

34 5

Figure 2: Traditional Clos and spine-free DCN topology. A
path segment is an abstraction of parallel physical links.

minimal precision loss, while lowering table usage from 259 to
10 entries (more details given in §3 and §4). The state-of-the-art
group reduction algorithm is called WCMP TableFitting [73].

2.2 Spine-free data center networks
Until recently, DCNs have used a traditional Clos topology
that connects clusters to a spine layer, as illustrated in Figure 2
(top left). Inside each cluster, a non-blocking tree topology
connects a large number of hosts. In this paper, we consider
a 3-stage cluster layout, as illustrated in Figure 2 (right). Stage
1 (S1) switches are also called ToR switches. Stage 2 (S2) and
stage 3 (S3) switches are aggregation switches. The S2 and
S3 switches in each cluster also form an aggregation block.

Clos DCNs can use all links leaving a cluster to reach
another cluster (assuming no failure) because they belong
to the same shortest path. For example, for cluster 1 to reach
cluster N in the traditional Clos DCN in Figure 2, there is only
one shortest path: 1⃝→ 2⃝ through the spine. The spine is often
the link speed bottleneck of all paths because of infrequent
upgrades. TE in Clos DCNs is thus straightforward, with all
links running at the same speed after speed auto-negotiation,
flows are spread across links in the shortest path in the form
of either ECMP or very simple weight distributions (e.g., due
to asymmetric link striping or some out-of-service links). In
a cluster with egress demands, each switch has one flow entry
matching the aggregated IP prefix of each destination cluster.
Every flow references an individual group that contains ports
used for reaching the next-stage switches, e.g., S1→S2 and
so on1. Groups on S3 switches contain ports to the spine.

The spine layer is expensive and requires frequent upgrades
to keep up with the growing traffic demand. To overcome this

1A small, constant number of static flows/groups are installed on each
switch to handle intra-cluster and ingress (destination) traffic. They are not
an important factor in the discussion of this paper, hence ignored.

cost disadvantage, DCNs are moving to a spine-free topology
enabled by optical circuit switching [64] that directly connects
the clusters using a full mesh, as illustrated in Figure 2 (bottom
left). Note that the intra-cluster topology and number of links
coming out of a cluster remain the same.

TE in spine-free DCNs is different and more challenging
to implement than in Clos DCNs in two ways. First, link
speed differences hidden by the slow spine layer are now
exposed. This translates to more skewed weight distributions
in groups, which consume more hardware resources. Second,
spine-free DCNs have far fewer direct-connect links in the
shortest path between clusters. In order to support high traffic
volumes, non-shortest-path forwarding must be adopted to
utilize all links. In the spine-free DCN of Figure 2, cluster 1
can reach cluster N via the direct path 3⃝, as well as multiple
indirect paths such as 4⃝→ 5⃝ through cluster 2. However,
graph theory shows that longer paths lead to higher bandwidth
overhead and lower flow throughput [61]. Therefore, the
length of non-shortest paths is limited to two hops, i.e., a flow
can transit through at most one intermediate cluster to reach
the destination. We term these two types of paths direct and
indirect paths. In practice, TE avoids using all indirect paths
simultaneously since this leads to a Valiant Load Balancing
(VLB) scheme [72] with higher link loads, although VLB does
reduce the group table footprint. The benefits of combining
VLB with WCMP are left for future work.

For both direct and indirect paths, switches of the source
cluster need to install flows and groups the same way as in Clos
DCNs. We call these src-typed flows/groups. In addition,
the intermediate cluster in an indirect path uses separate
transit-typed flows/groups to forward traffic from source
clusters to the final destination. Indirect-path traffic only
traverses the aggregation block. transit flows are installed
on all S2/S3 (but S1) switches to match on the source and
destination prefixes. Corresponding transit groups reflect
indirect-path traffic in the direction of S3→S2→S3.

3 TE precision loss challenges
To illustrate the pressure on group tables, Figure 3a shows
the group table utilization on Google’s production spine-free
fabrics. We see that group table usage can be as high as 90-
100%. However, high table usage does not directly represent
the negative impact on traffic. The key network-level metrics
are the traffic load and loss on each link. We observed that
high table usage strongly correlates with high link utilization.
For example, Figure 3b shows the actual link utilization
in a spine-free fabric in which the TE implementation
produces a max table utilization of 90%. We see that the
TE implementation results in a much more imbalanced link
utilization distribution compared to the (ideal) TE solution.
Moreover, 15% of the links exceed the max link utilization.
The worst few links see an actual utilization 5 times higher than
that of the TE solution, resulting in congestion loss. Figure 3c
shows that a Clos fabric of similar scale also experiences

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 671

week 1 week 2 week 3 week 4 week 50.7

0.8

0.9

1.0

sw
itc

h
ta

bl
e

us
ag

e

Fabric 1
Fabric 2
Fabric 3

(a)

0x 0.2x 0.4x 0.6x 0.8x 1x
link util. / max actual link util.

0.0
0.2
0.4
0.6
0.8
1.0

CD
F 15% links exceed

max ideal link util.
TE soln. (ideal)
TE impl. (actual)

(b)

0x 0.2x 0.4x 0.6x 0.8x 1x
link util. / max actual link util.

0.2
0.4
0.6
0.8
1.0

CD
F 2% links exceed

max ideal link util.

TE soln. (ideal)
TE impl. (actual)

(c)
Figure 3: (a) 30-day time series of maximum group table usage in 3 arbitrary production fabrics. Usage is normalized to the
table size of each switch. (b) Normalized link utilization CDF plotted from the TE solution and TE implementation in one of
the spine-free fabrics. (c) Normalized link utilization CDF in a traditional Clos fabric of scale similar to the fabric in (b).

A B

C D

100G links x4

1G
60G

300G

400G
(a)

F

E
p1

p1 p2
G

p1 p2

p2
50G

50G0G
100G

0G

0G

25G

25G

25G

25G0G

100G

(b)

Figure 4: (a) Abstract view of a small spine-free network.
(b) Cascading precision loss in a 2-stage aggregation block.
Desired traffic is in dashed blue, actual traffic is in solid red.

precision loss due to group table constraints, although the
problem is less severe. We focus our discussion on a spine-free
TE setting, though our findings also apply to Clos DCNs.

We compared a large number of TE solutions and their result
and identified five key challenges that exacerbate precision
loss: (1) Large network scale leads to more groups sharing
hardware resources; (2) TE solutions are generated without
considering hardware constraints and often contain skewed
weights that are difficult to reduce; (3) Heterogeneous DCN
hardware subjects parts of the network to higher precision loss;
(4) Diverse paths in spine-free TE result in larger group sizes;
and (5) The cascading impact of errors in one stage to the next
in multi-stage DCNs increases precision loss multiplicatively.
We now explain these challenges in detail.

1⃝ Scalability challenge. The total number of flows/groups
to install on a switch increases with the number of clusters
because each cluster has demands for virtually all clusters. As
the number of groups in a table increases, each group has to
use fewer entries, resulting in higher precision loss overall.

Considering the Clos and spine-free DCNs in Figure 2,
hosts in each cluster are usually assigned continuous IP
addresses that aggregate into a single prefix. The number
of distinct prefixes equals the number of clusters N. In Clos
DCNs, each switch needs to support N-1 src flows/groups,
one for each destination cluster. In spine-free DCNs, each
switch not only has N-1 src groups, but also one transit

group for each indirect path traversing it. In the worst case,
a cluster can be used by all (N-2) source clusters to reach (N-1)
destination clusters indirectly. This sums up to (N-1)(N-2)
transit groups on each aggregation switch.

2⃝ Skewed weights challenge. Since the TE system is not

aware of any hardware resource constraint, the TE solution
it generates may include highly skewed traffic distributions.
Consider the example in Figure 4a, demand C→B has a total
volume of 61G. The TE solution assigns 1G to path C→D→B
and 60G to path C→B—a rather skewed split because path
C→A→B has no slack capacity left and at least two paths
must be used for diversity. Aggregation blocks A, B, C, and
D each has four physical S3 switches. The four switches in
each block are connected pair-wise (via four links) to the
four switches in each of the other blocks. As a result, the src
group for demand C→B on the S3 switches in C has a weight
distribution of 0.25:15, which is rounded to 1:15.

Demand C→B experiences precision loss for two reasons.
First, rounding weights to integer as required by the hardware
triggers precision loss. We could also use 1 : 60, but this
increases the group size. Second, if we cannot afford 16
entries, we can reduce the larger weight while retaining
all member ports in the group, which is a common group
reduction behavior. However, this further increases precision
loss and leads to oversub(scription) on link C→D. In the worst
case, 1 :15 is reduced to 1:1 (ECMP), resulting in an oversub
of actual volume

desired volume = 1/2·(0.25+15)
0.25 =30.5 times more traffic on link

C→D. Alternatively, precision loss can be lowered if certain
ports are removed from the group. We discuss this option as
a heuristic in §4.

3⃝ Heterogeneity challenge. Cloud data centers are
expanded incrementally to deal with growing traffic demand.
Newly installed clusters are always equipped with the
latest generation switch hardware, which means different
generations of hardware co-exist in the DCN. Switches differ
in link speeds and group table sizes, as demonstrated in Table 1.
This heterogeneity aggravates precision loss in two ways: (1)
The smaller table size of older switches forces groups to be
reduced more heavily; (2) Mixed link speeds make group sizes
larger on newer generation switches.

Gen. 3 switches have bandwidth 5× higher than Gen. 1
switches, but group table size is 8× larger. This means newer
switches can support more groups with less group reduction
if flow/group counts scale with bandwidth; however, older
switches may will struggle to store the necessary state.

In spine-free DCNs, a switch can see multiple speeds
across its ports since they may peer with switches of different

672 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

generations. The TE system seeks to balance link loads by
placing more traffic on links with higher speed. A switch with
mixed link speeds (e.g. Gen 3 switches with connections to
slower hardware) increases the skew of group weights. This is
defined as the max-to-min weight ratio of a group. The larger
the ratio, the more skewed a group is. Our experiments (§5.4)
show that in a baseline spine-free topology, the average skew
ratio on Gen. 1 switches, which don’t suffer from this issue, is
484 and the max ratio is 1176. In contrast, for Gen. 3 switches,
the average ratio is 1187 and the max ratio is 2676.

4⃝ Path diversity challenge. Group pruning can result in a
significant reduction of path diversity which may result in high
link utilization when there are traffic shifts or link failures. [52]
proposes a technique that accounts for potential demand shifts
by imposing a minimum level of path diversity for each flow.
We incorporate this technique as a path diversity constraint into
our MCF formulation2 that generates TE solutions. With this
constraint, TE solutions must use at least a certain percentage
of the available paths to serve each demand. This percentage
is referred to as the spread. While this constraint makes the
TE solution more resilient, it degrades the solution optimality.

We compared the TE solutions generated by the MCF
without and with a path diversity constraint for the same
traffic load. Findings suggest that the standard formulation
tends to use as few paths as possible. Many groups in the
standard solution contain only one member port because the
demand is small enough to fit onto one path. These groups
use only one entry in the group table. Solution to the modified
formulation uses several paths as the diversity constraint
mandates. With a spread=50%, flows use more paths, which
increases the pressure on the group table. As mentioned in the
Heterogeneity challenge, larger groups will be reduced more
heavily to fit into the same table space, hence causing high
precision loss. We present a quantitative study in §5.3.

5⃝ Cascading precision loss challenge. The multi-stage
DCN topology has a cascading effect that amplifies precision
loss multiplicatively as traffic flows from upstream switches
to downstream switches.

To understand the cascading effect, consider the example in
Figure 4b. Switches E, F and G form a 2-stage topology inside
an aggregation block. A demand of 100G needs to be sent out
from switch F and G. The TE solution (illustrated in dashed
blue) divides the demand uniformly on upstream (S2) switch
E, i.e., it sends 50G to both F and G. Next, downstream (S3)
switches F and G each uniformly split the traffic between their
two ports. However, to conserve group table entries, the TE
implementation places all 100G on link E→G (shown in solid
red) while switch F receives zero traffic. The oversub of link
E→G is 2, while the undersub of link E→F is 0. This oversub-
/undersub is inherited by the downstream links on switches F
and G. The two ports on switch F are undersubscribed with
zero traffic, regardless of the groups installed on F. On the other

2§A.1 details the formulation. Equation 2f is the path diversity constraint.

hand, even if switch G implements a perfect ECMP group, port
G-p1 and G-p2 will each carry 50G, which yields an oversub of
2. This is the baseline precision loss inherited from switch E.

This example only shows the cascading precision loss inside
one aggregation block. For indirect paths, the aggregation
block of intermediate clusters inherits the baseline precision
loss from the upstream aggregation block in source clusters.

4 Design
We now present two algorithms that lower the TE precision
loss compared to current group reduction solutions. Our
algorithms, called Direct Mixed-Integer Reduction (DMIR)
and Iterative Greedy Reduction (IGR), aim to convert a set
of original input groups to weight-reduced output groups
so that the sum of the group sizes does not exceed hardware
limit. DMIR builds on top of mixed-integer programming
(MIP) to approximate groups to the TE solution. Specifically,
it uses an MIP solver (e.g., Gurobi [24]) to directly find the
optimal weight assignment for each group. Since MIP-based
solutions have exponential time complexity, we also develop
IGR which greedily searches for the smallest-sized groups that
best approximate the TE solution in polynomial time. IGR is
similar to WCMP TableFitting but uses additional heuristics.

Both algorithms achieve group reduction by decreasing
group weights relatively. They also use three heuristics to
deal with challenging scenarios (§3) in the reduction process.
We first describe the heuristics in §4.1 and then introduce the
algorithms in §4.2 and §4.3.

4.1 Shared heuristics
The heuristics described next are used in both algorithms.
The first two, Group Sharing and Group Pruning, directly
reduce the number of entries used in the group table. The third
heuristic, Table Carving, ensures that high-volume flows have
sufficient group entries to accurately distribute traffic.

Group Sharing. Group table usage depends on both the
number of groups and the number of entries per group. As the
network size increases, the number of groups to install on a
switch increases, requiring more hardware resources (see §3
Scalability challenge). This heuristic reduces the number of
groups by eliminating duplicates. Two groups are identical
if they use the same ports and weights for each port. While
src and transit flows/groups must be kept isolated by a
design requirement, flows of the same type can share the
same group entries to distribute their traffic. This optimization
does not incur any penalty, since it does not change the traffic
distribution. For example, G1 and G2 in Figure 1 can be
reduced to the same G′

1,2, which is shared by the two flows.
We find that while src groups generally differ, transit

groups often become identical after group reduction. For
instance, the TE solution in Figure 4a leverages both direct
and indirect paths to fulfill demands A→B and C→B. Two
transit groups are installed on switches of aggregation block
D, one for path C→D→B and one for path A→D→B. Since

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 673

D→B is a common segment, the same ports are used in both
transit groups. The two groups only differ in pre-reduction
port weights. Considering any S3 switch in D, it only has
one port connected to B, as explained in the Skewed Weights
challenge. The transit group for C→D→B places 0.25G
on this port while the transit group for A→D→B puts 75G
on it. Both groups can be reduced to single-port ECMP groups
with weight 1, so they become identical. Generally speaking,
transit groups for indirect paths with a common segment
are identical post-reduction.

In production DCNs, groups are reduced batch by batch
as the TE system generates new groups in response to the
ever-changing network conditions. Since Group Sharing itself
does not incur TE precision loss, it should always be invoked
to conclude a round of reduction. The saved table space can
subsequently benefit the next batch.

Group Pruning. Sometimes not all groups in the TE so-
lution fit in the table, even if they are reduced to ECMP. In this
case, some groups are not installed, and their corresponding
traffic is dropped by the switch. Barring this heuristic, group
reduction algorithms do not proactively reduce groups beyond
ECMP because they aim to preserve the path diversity. But
as a last resort to avoid dropping traffic, our algorithms invoke
this Group Pruning heuristic that prunes ports from groups.

The key question is which port to prune. There exist
multiple victim selection policies, e.g., prune the first port
or a random port. The strategies are easy to implement, but
they are not necessarily good choices. For example, a port
carrying 90% of the group traffic might be pruned, impacting
precision loss significantly. Our pruning policy considers
both group size reduction (which impacts the path diversity
of the group) and the increase in precision loss. Similar to
WCMP TableFitting, our goal is to limit the max port oversub
in a group. For IGR, we prune the port that results in the least
increase in max oversub across all member ports, i.e., the port
with the smallest weight (traffic volume). For example, p1 in
G3 of Figure 1 can be pruned—the size of pruned G′

3 becomes
one, while the remaining p2 is merely oversubscribed by
1.016×. As discussed later in §4.2, the best port to prune in
DMIR is not always the one with the smallest weight, but
rather the port that yields the optimal objective.

We expect Group Pruning to be especially useful in
addressing the Skewed Weights and Heterogeneity challenges.
The reason is that both challenges lead to small weights
on some ports, which can be pruned with minimal impact
on precision loss. Our evaluation in §5.8 shows that Group
Pruning has very little impact on path diversity.

Table Carving. This heuristic addresses the Path Diversity
and Cascading Precision Loss challenges. Groups are forced
to use more egress ports to satisfy the path diversity constraint.
This means groups used by flows with a low traffic volume
may have a lot of non-zero weights and large sizes, even
though their contribution to the overall precision loss is more
limited than high-volume groups. We develop Table Carving

Algorithm 1 DMIR({Gi}, T), 1≤ i≤ n. {Gi} is a set of src
or transit groups. T is the available table space.

1: // Step 1: Table Carving.
2: for i=1 to n by 1 do
3: Ti=MAX(len(Gi),

⌊
SUM(Gi)

∑iSUM(Gi)
·(T−∑ilen(Gi))

⌋
)

4: // Step 2: single-group optimization.
5: {G′

i}={Gi}
6: for i=1 to n by 1 do
7: G′

i=SINGLEGROUPMIP(Gi,Ti) // Equation 1.
8: // Step 3: reclaim and redistribution.
9: for G′

i=G′
1,...,G

′
n∈SORT({G′

i}) do
10: unused=RECLAIMUNUSED({G′

i})
11: if unused>0 then
12: G′

i=SINGLEGROUPMIP(Gi,Ti+unused)
13: // Step 4: Group Sharing.
14: return DEDUP({G′

i})

to ensure high-volume groups are prioritized over others and
can receive sufficient resources during group reduction.

Table Carving allocates table entries exclusively to each
group. A minimum number of entries are allocated per-group
to avoid that low-volume groups end up with too few entries
and little path diversity. Remaining entries are allocated to
groups in proportion to their traffic volume. Note, a group will
receive an allocation at least equal to the number of entries
required by its ECMP form. Some low-volume groups are
likely to be reduced to ECMP (or even get pruned) if they are
only allocated ECMP-sized entries. Nevertheless, the mini-
mum allocation is a tradeoff between protecting high-volume
groups and avoiding starving low-volume groups.

While G′
1,2 in Figure 1 can be pruned to G′′

1,2 to further
reduce table usage without hurting path diversity, reducing G3
to G′

3 is preferred because it carries less traffic. In addition to
the Path Diversity challenge, this heuristic also helps address
Cascading Precision Loss. Protecting the high-volume groups
in the upstream switches through Table Carving effectively
limits the baseline precision loss on the downstream switches.

4.2 Direct mixed-integer reduction
DMIR is a parallel group reduction algorithm. For a given set
of input groups, DMIR performs a reduction on each group
individually while ensuring the overall resource constraint
is not violated. Algorithm 1 presents the structure of DMIR.
Reduction happens in four steps: (1) The Table Carving
heuristic allocates table space T to each group (line 2-3). (2)
DMIR instantiates a number of single-group MIP optimization
problems (described below) and solves them in parallel to get
final reduced groups (line 5-7). (3) Table entries unused by
reduced groups are reclaimed (line 10) and redistributed to
other groups, potentially allowing precision improvements
over that of the original allocation (line 12). (4) Final groups
are deduplicated using the Group Sharing heuristic (line 14).

674 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 2 IGR({Gi}, T), 1≤ i≤n.

1: // Step 1: Table Carving, see Algorithm 1
2: // Step 2: single-group reduction.
3: θ=1.00 // oversub limit.
4: {G′

i}=SORT({Gi}) // sort by descending group size.
5: while SUM({G′

i})>T or SUM(G′
i)>Ti,∃i do

6: for i=1 to n by 1 do
7: G′

i=REDUCESINGLEGROUP(SORT(Gi),Ti,θ)
8: if SUM({G′

i})≤T and SUM(G′
i)≤Ti,∀i then

9: return DEDUP({G′
i})

10: θ += 0.05
11: PRUNEGROUPIFSTUCK(Gi_not_ f it)
12: // Step 3: Group Sharing.
13: return DEDUP({G′

i})
14: function REDUCESINGLEGROUP(G={wi}, Ti, θ)
15: G′∗=G′={w′

i}=(1...1) // G′∗: optimal G′.
16: oversubmin=∞

17: for w′
1=1 to wmax=

⌈
w1·Ti

SUM(G)

⌉
by

⌈wmax
IT ER

⌉
do

18: for i=2 to p by 1 do
19: w′

i=
⌈

w′
1

w1
·wi

⌉
20: oversub = MAXPORTOVERSUB(G, G′)
21: if oversub<oversubmin then
22: UPDATE(oversubmin=oversub,G′∗=G′)
23: if SUM(G′)>Ti or oversubmin≤θ then
24: break
25: return G′∗

The objective of single-group MIP optimization is to
minimize the difference between an original group G and the
reduced group G′ such that G′ uses no more than its allocated
resources. Equation 1 is the single-group MIP formulation. wi
and w′

i are port weights of groups G and G′. p is the number of
ports on the switch. TG is the allocated table entries for group
G′. The formulation treats G and G′ as two p-dimensional
vectors such that G=(w1,w2,···,wp) and G′=(w′

1,w
′
2,···,w′

p).
This brings G and G′ into the same vector space Rp for
convenient comparison. Note that this formulation also
organically integrates Group Pruning with the common path-
diversity-preserving reduction behavior by allowing w′

i to be 0.

minimize
p

∑
i=1

∣∣∣∣ wi

∑
p
i=1wi

− w′
i

∑
p
i=1w′

i

∣∣∣∣
s.t.

p

∑
i=1

w′
i≤TG

w′
i∈Z+,∀i∈{1,...,p}

(1)

The difference between G and G′ can be measured by
various metrics, such as cosine similarity, L1-norm, Kullback-
Leibler divergence etc. We choose L1-norm ||G−G′||1 since
finding the best G′ is a combinatorial optimization problem
and L1-norm’s linearity makes it computationally tractable.
This metric is different from that used by WCMP TableFitting

and IGR: restricting the max port oversub of a group. While
restricting max port oversub is an intuitive objective—as long
as none of the ports exceeds the oversub limit, the overall
precision loss is bounded—subjecting all ports to the same
oversub limit does not always produce the optimal group
reduction outcome (as seen in the Skewed Weights challenge).

An alternative to single-group MIP is directly solving all
groups in a monolithic formulation3. This is nevertheless
infeasible because with so many decision variables and
constraints, it takes the solver more than days to find a solution.

In the third step, DMIR collects the unused entries from
each group after reduction. This is in order to make further
improvements on some groups by rerunning reduction with
extra hardware resources. Some groups have unused entries
because these entries do not significantly improve the solution
quality, so we reclaim them for other groups as follows. After
the initial reduction, we sort groups by their objective metric
(line 9). The group with the largest difference from its original
group is ranked on top. All the unused entries are allocated
to the top group, and group reduction is rerun with the larger
space limit. It is possible that the top group only consumes
a few or none of the unused entries. If so, unused entries are
reclaimed again and redistributed to the next group in line.
This process repeats until either all groups are reduced again
or all previously unused entries have been used.

4.3 Iterative greedy reduction
IGR has two objectives: a primary one to keep reduced
group sizes under resource limit, and a secondary one to
restrict the max port oversub in each group to an upper bound.
Algorithm 2 describes the three-step structure of IGR. Step 1 is
the same Table Carving heuristic of Algorithm 1. In step 2, IGR
iteratively reduces all groups (line 5-11) until both conditions
are met: (1) sum of all group sizes meets the table limit T ,
and (2) each group size meets its allocated space limit Ti. Each
group is reduced individually by the REDUCESINGLEGROUP
function. IGR is greedy because reduction could terminate
in the middle of an iteration once the two conditions are met
(line 8-9), leaving some groups reduced more than the rest.
Some groups may fail to meet the upper bound θ on port
oversub, especially when θ is very tight in the initial iterations.
IGR relaxes θ in each iteration (line 10) by a constant step size.
A more relaxed θ enables REDUCESINGLEGROUP to reduce
the group size more. If the reduced group size stops decreasing
after θ has been relaxed for thresh=3 consecutive times, we
consider the reduction “stuck”. thresh is a tunable parameter
that allows us to balance between aggressive reduction and
more port oversub tolerance. When the reduction is stuck, the
Group Pruning heuristic is invoked (line 11).

REDUCESINGLEGROUP starts the search for a final group
from the original group’s ECMP form (line 15). It locks
the relative weight ratio between ports in the group under
reduction G′. In each iteration, ports in G′ are sorted by their

3See §A.2 for a comprehensive monolithic formulation.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 675

weights in descending order (line 7). Once the assigned weight
of the first port w′

1 is determined, all the remaining port weights
are determined based on the relative weight ratio (line 18-19).
The number of iterations performed on each group is limited
to a small constant IT ER. REDUCESINGLEGROUP conducts
the search in increments of

⌈wmax
IT ER

⌉
instead of the smallest

increment of one (line 17), to ensure the search process
finishes within IT ER iterations. This effectively mitigates the
long convergence time (see §5.6) that iterative-reduction-style
algorithms suffer from—there are many groups (Scalability
challenge) and many ports per group (Path Diversity challenge)
to iterate through. REDUCESINGLEGROUP makes the best
effort to meet the oversub limit and returns the smallest group
it has found when it hits the group size limit (line 21- 24).

5 Evaluation
In §5.1, we describe FabricEval, a data center TE evaluation
framework that we created. The DMIR and IGR algorithms
are compared to WCMP TableFitting under a wide range
of network conditions in §5.3-§5.5. We also present group
reduction speed as another metric in §5.6. §5.7 investigates the
application layer impact. §5.8 inspects the side effect of Group
Pruning. §5.9 discusses the contribution of each heuristic.

5.1 FabricEval evaluation framework
FabricEval is a network-level data center TE evaluation
framework. It models the entire data center TE pipeline
end-to-end: from taking snapshots on network states and traffic
demands to generating TE solutions, group reduction and
finally implementing the solution on data plane. FabricEval
employs a modular design that allows us to plug in different
TE solving algorithms, group reduction algorithms, and switch
hardware models with different configurations. This enables
us to compute both the ideal link utilization expected by the
TE solution and the actual link utilization from different group
reduction algorithms, on all links. It also tracks table usage and
traffic loss due to missing forwarding entries from switches.

In FabricEval, topology inputs are represented as Proto-
buf [49]. Traffic demands are represented as plain matrices.
Inputs are passed to a TE solver module, which by default
runs the same TE algorithm used in our production fabrics.
The generated TE solution is organized by cluster and
forwarded to a group reduction module of each cluster. Finally,
reduced groups are installed on the corresponding switches.
FabricEval is implemented in 15,820 lines of Python code.
Since FabricEval is not a packet-level simulator, we use
ns-3 [51] to study application layer metrics.

Open source releases. The source code of FabricEval,
DMIR, IGR and our implementation of WCMP TableFitting
is released online [1].

5.2 Experimental setup
All configurations used in the evaluation are developed from
a baseline production-like configuration that includes (1) a

p50 p90 p991.0
1.2
1.4
1.6
1.8
2.0

lin
k

ut
il.

 /
op

t 0%
25%
50%

75%
100%

(a)

2 3 4
LU / no spike LU

0
20
40
60
80

100

CD
F

(%
)

0% 50% 100%

(b)
Figure 5: (a) 50% spread achieves best link utilization using
production traffic trace and routing settings. (b) larger spreads
are more robust against traffic spikes.

65-cluster heterogeneous spine-free fabric, (2) a path diversity
spread of 50%, and (3) a traffic matrix (TM) representing the
total egress/ingress demands between ToR pairs. Due to secu-
rity and privacy reasons, we cannot publish most results from
production fabrics and traffic traces. However, we carefully
tuned FabricEval to match production results. Using FabricE-
val also avoids the difficulty of running controlled experiments
on live fabrics. All experiments in this paper are conducted on
a Dell PowerEdge R720 server, with two 20-core Intel Xeon
E5-2680 CPUs, 128 GB of memory and 1.2 TB of disk.

Network topology. The baseline fabric features 2.6K
switches and 83.2K links. Each cluster in the fabric has 32
S1 switches. Each S1 has 32 ports—8 facing the S2 switches
and 24 facing the host machines. The aggregation block in each
cluster has 4 S2 and 4 S3 switches interconnected as a nonblock-
ing FatTree; each has 128 ports—64 facing up and 64 facing
down. The 64 up-facing ports on S3 are evenly spread to 64 peer
S3 switches. The S2 switches connect to each S1 with 2 links.

Traffic matrix. The baseline TM captures properties
found in production traffic traces. Clusters have unequal
egress and ingress demands—storage clusters, for example,
typically have a small ingress but a large egress because
applications often read more data than they write. The
demands follow an exponential distribution. The traffic
volume between a cluster pair is characterized by the Gravity
model [52, 55, 63, 70]. A cluster’s total egress/ingress volume
is distributed proportionally among peer clusters, weighed by
each peer’s total volume. Incremental data center expansion
could leave a few clusters deployed but having zero demand.
They can still be used by other clusters for transit.

5.3 Spread and path diversity
The Path Diversity challenge in §3 focuses on balancing
resilience to traffic changes and optimal efficiency. This
tradeoff depends on the spread. To determine an appropriate
spread for our evaluation, we run production trace using
realistic routing settings (i.e., TM fed into TE comprises peak
demands of the past 24 hours and TE is recomputed every hour)
on a large spine-free production fabric4. Figure 5a shows the
link utilization for this realistic scenario, normalized relative
to the optimal TE solution computed against the instantaneous

4§D.3 includes link utilization data for more production fabrics.

676 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

p50 p99 max0.0
0.2
0.4
0.6
0.8

Lin
k

Ut
iliz

at
io

n

Spread=0%
TE solution
WCMP TableFitting
IGR
DMIR

p50 p99 max

Spread=25%

p50 p99 max

Spread=50% (common)

p50 p99 max

TableFitting only admits
48% demands

Spread=75%

p50 p99 max

Spread=100%

Figure 6: Median and tail link utilization with different path diversity.

Table 2: Summary of various fabrics used in FabricEval.
name topology #

Gen1
#
Gen2

#
Gen3

link
failure

Fabric 1 spine-free 22 22 21 none
Fabric 2 spine-free 11 11 11 none
Fabric 3 spine-free 65 0 0 none
Fabric 4 spine-free 22 22 21 1%
Fabric 5 Clos 21 21 22 1%
Fabric 6 random graph 22 22 21 none

demand (i.e., assuming traffic measurement and TE solution
programming have zero delay). We find that 50% spread
achieves link utilization closest to OPT (1.14× OPT) because
higher spreads rely on costly indirect paths and lower spreads
are fragile to TM changes. To understand how spread values
affect TE solution’s robustness, we further study more extreme
cases, such as when 25% of the original demands spike by 4×.
We define robustness as the link utilization post-spike divided
by the pre-spike link utilization for the same spread. Figure 5b
shows this ratio for each link in the same production fabric
for 0% (no) spread, 50% and 100% (full) spread. As expected,
100% spread is most robust since spikes are spread throughout
the network. 50% spread is significantly more robust than
0%. Overall, 50% spread proves to be a reasonable tradeoff
between TE optimality and robustness.

Figure 6 compares the link utilization of IGR and DMIR
with that of the TE solution (assuming no table size constraint)
and WCMP TableFitting (TF) for five spread values. The re-
sults are collected on the baseline fabric and TM. In each graph,
the y-axis shows the link utilization of the 50th (p50) and 99th
(p99) percentile, and the maximum (max) link in the network.
We see that with 0% spread, all algorithms come close to the
link utilization of the TE solution, which is not surprising since
most flows have a group size of one. As the spread increases,
the link utilization difference between the TE solution and
the group reduction algorithms increases. With a 50% spread,
WCMP TF’s link utilization is 25.4% higher at p99 and 67.1%
higher at max. DMIR sees link utilization 1.6% higher at p99
and 9.1% higher at max. IGR increases over the TE solution
by 4% and 7.4%, respectively. The result at 75% spread largely
resembles that at 50% spread, except for a seemingly counter-
intuitive link utilization improvement from WCMP TF 5.

5WCMP TF’s result at 75% spread does not reflect a true improvement.
The reason is that the groups generated by WCMP TF do not fit in the switch

As the spread further increases, link utilization continues
to deteriorate due to increased pressure on the group tables. At
100% spread, all algorithms achieve a link utilization equal to
the TE solution. Since 100% spread forces demands to spread
across all paths, groups become identical and after dedupli-
cation, they easily fit in the table with minimum precision loss.

5.4 Heterogeneous fabrics
In order to understand how different fabric configurations
affect TE precision, we construct a list of fabrics that differ
in scale, hardware and/or topology, as described by Table 2.
Fabric 1 is the baseline fabric. Fabric 6 is a Jellyfish-like fabric
with random graph topology [61] using the same hardware
as fabric 1.

Figure 7 shows how results differ across these fabrics.
Compared to fabric 1, all three algorithms in fabric 2 and 3
operate close to the TE solution in terms of both median and
tail utilization. This confirms our analysis in §3 that Scalability
and Heterogeneity both have an impact on precision loss.
The tail link utilization in fabric 3 is noticeably higher than
other fabrics of same scale because the same TM is applied
to a fabric with lower capacity. Note that DMIR’s max link
utilization in fabric 3 is 10% higher than the TE solution, while
WCMP TF and IGR are 12.4% and 3% higher, respectively.
This is caused by a 120-second timeout on DMIR. Due to the
nature of MIP problems, we use a timeout to ensure DMIR
terminates within a duration comparable to the other two
algorithms, which can lead to a suboptimal solution. Without
this timeout, DMIR can still find an optimal solution within
10 minutes in all the experiments we run.

Looking at fabric 1 and 4, we find that the impact of failure
is mostly on tail link utilization. The max link utilization
under failure has increased by up to 63% over that without
failure. Among the three algorithms, DMIR and IGR are more
affected than WCMP TF. Compared to fabric 1, precision
loss in fabric 5 is moderate—WCMP TF is 9% higher than
the TE solution, yet IGR and DMIR are still effective in
bringing this down to 1.3%. This aligns with our production
observation that precision loss in Clos fabrics is not as grave
as spine-free fabrics. Precision loss in fabric 6 is high. This is
due to the asymmetry and imbalance introduced from random
link assignment. WCMP TF has a max link utilization 55.1%
higher than the TE solution, while IGR and DMIR lower this

table. The overflow groups cause the associated traffic being dropped. This
benefits the groups that do fit.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 677

p50 p99 max0.0
0.2
0.4
0.6
0.8
1.0
1.2

Lin
k

Ut
iliz

at
io

n

Fabric 1 (baseline)

p50 p99 max

Fabric 2
TE solution
WCMP TF
IGR
DMIR

p50 p99 max

Fabric 3

p50 p99 max

Fabric 4

p50 p99 max

Fabric 5

p50 p99 max

Fabric 6

Figure 7: Link utilization distribution in various network fabrics.

p50 p99 max0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Lin
k

Ut
iliz

at
io

n

baseline TM

TE solution
WCMP TableFitting
IGR
DMIR

p50 p99 max

TableFitting only admits
93% demands

high load TM

p50 p99 max

TableFitting only admits
88% demands

flat TM

Figure 8: Link utilization distribution with different traffic patterns.

small
fabric

spread
0%

baseline
TM/fabric

spread
75%

highload
TM

.01
.1
1

10
100

re
du

ct
io

n
tim

e
(s

ec
)

IGR
DMIR

WCMP TableFitting

Figure 9: Comparison of group reduction speed.

gap to 8.4% and 7.5%. Generally speaking, IGR and DMIR
are more effective when the topology is irregular.

5.5 Traffic pattern
The baseline TM has an average cluster ingress/egress volume
that is about 40% of the cluster’s bisection bandwidth. 15% of
the latest generation clusters are configured to be in expansion
mode with empty demands. For comparison, we created two
more TMs: a high load TM and a flat TM. The high load TM
is generated in the same way as the baseline TM, except that
its average cluster volume is raised to 70% of the bisection
bandwidth and all clusters have non-empty demands. The flat
TM does not follow the Gravity model. Instead, each cluster
has an equal ingress and egress demand of 7.68 Tbps (240
Gbps per ToR) that is uniformly spread across all peer clusters.
There are no empty clusters in the flat TM. We run all three
TMs on the baseline fabric with 50% spread.

With the high load and flat TMs, WCMP TF results in
traffic loss due to group table overflow, as shown in Figure 8.
As much as 7% and 12% of the total demands are dropped,
respectively. In the high load TM scenario, even with a fraction
of groups rejected, WCMP TF increases the actual link
utilization over the TE solution by up to 62.1%. On the other
hand, DMIR increases actual link utilization by only 9.4%
over the TE solution at max, and IGR increases by 19%. This
result is consistent with the increase found in the baseline TM
scenario. The flat TM results are slightly better: WCMP TF
has a max link utilization 28.4% higher than the TE solution,
while it is 11.1% for DMIR and 20.2% for IGR.

All three algorithms will result in congestion loss due to
oversub on some links. For example, in the high load TM
scenario, WCMP TF’s actual max link utilization is 1.49,
almost 50% over the physical link capacity, while that of
DMIR and IGR are 1.007, and 1.096. This is however expected
given that the max link utilization of the TE solution is over 0.9.
Any error in group reduction could lead to traffic exceeding the

link capacity. While the average cluster volume is configured
to 70% of the bisection bandwidth, link utilization of the TE
solution ends up much higher. We attribute this to the blocking
property of the spine-free topology.

5.6 Execution speed

The execution speed of the IGR and DMIR algorithms is
important since they are used online. Each switch runs group
reduction twice, first on the transit groups and then on
the src groups. We measure the total time to complete
both reductions on each switch. A number of representative
configurations are selected to cover the common and corner
cases. They include: (1) fabric 2 (small-scale) in §5.4, (2) 0%
spread in §5.3, (3) the baseline fabric/TM in §5.5, (4) 75%
spread in §5.3, and (5) the high load TM in §5.5.

Figure 9 plots the distribution of per-switch group reduction
time as standard boxplots with max/min, first/third quartile
and median. As can be seen, the reduction time on each switch
spans a wide range: there is about two orders of magnitude
difference. The reduction time differs significantly across
switches as well as between different group types. On switches
with smaller tables it take longer to fit the groups since there is
a tighter table size constraint. The transit groups are easier
to reduce than src groups because they are mainly ECMP-like
groups. If a cluster has a zero demand, there is no src group
to be installed on the switches in this cluster. The execution
time is then solely up to transit reduction.

DMIR and WCMP TF have overlapping ranges. In some
scenarios, such as 0% and 75% spread, DMIR is slower than
WCMP TF, while in other cases, they are on par. IGR is the
fastest among all three. It generally completes group reduction
in under a second. Overall, IGR is 17-42× faster than DMIR
and 10× faster than WCMP TF by comparing the median
reduction time.

678 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

p50 p90 p99 max0.0
0.5
1.0
1.5

FC
T

(s
ec

) LetFlow Inf.
IGR
DMIR
LetFlow 16K
WCMP TF
PLB

Figure 10: ns-3 flow completion time.

0.5 0.6 0.7 0.8 0.9 1
.01

.1

1

no
rm

al
ize

d
FC

T Spine-free
64KB p50 64KB p99 2MB p50 2MB p99

0.5 0.6 0.7 0.8 0.9 1

Clos

normalized avg link util.
Figure 11: Production flow completion time vs. link load.

5.7 Impact on flow completion time
Thus far, we have shown our approach is effective at meeting
TE’s link utilization objectives. We now explore the impact
our approach has on flow completion times. We extend our
FCT comparison to include flowlet-based and host-based
schemes. The traffic trace is constructed by sampling the flow
sizes and start times from published production measurement
studies [8, 35, 41, 56, 69] while ensuring that the total flow size
of each cluster adds up to its demand in the TM.

In contrast to ECMP/WCMP, TE approaches such
as [5, 37, 38, 65] balance load at the flowlet level [34].
While this finer grain load balancing could improve FCT,
most large-scale DCN operators adopt some form of ECM-
P/WCMP [2,22,47,58,60] instead of a flowlet-based approach.
We attribute this to the universal vendor support for ECM-
P/WCMP and the simplicity of deployment, e.g., no parameter
tuning is required. We focus on LetFlow [65], a recent flowlet
proposal that provides significant FCT performance gains.

We implemented IGR, DMIR, WCMP TF and LetFlow
in ns-3, and use the baseline fabric/TM. As per [65], each
switch uses a flowlet table that maps a 5-tuple hash to an
egress port id. ECMP groups are still required to track ports
that can reach the destination for each flow aggregate. When
the inactive interval in a flow exceeds the pre-configured
timeout, the flowlet entry expires and a new egress is randomly
selected from the corresponding group. The best timeout
value is picked by sweeping through a range of timeout values.
We assume the flowlet table is subject to hardware resource
constraints similar to WCMP. A 32K-entry memory is split
in half—16K for groups and 16K for flowlets6.

Figure 10 shows that IGR and DMIR reduce the p99 FCT of
WCMP TF by 28.1% and 27.8%, respectively. LetFlow with an
unlimited table size outperforms all other candidates, shorten-
ing the p99 FCT of WCMP TF by 37.8%. With a 16K table size

6Cisco ACI fabric with Nexus 9300 switches supports flowlets under the
feature named Dynamic Load Balancing [13]. A total of 4096×8-way ECMP
entries (see Table 7 in [14]) are available on chip.

constraint,LetFlow underperforms IGR and DMIR but remains
better than WCMP TF by 8.7% in p99 FCT. To put this improve-
ment into perspective, we run flows of two sizes in two produc-
tion fabrics, then we steadily increase average link utilization
of the fabric, the p50/p99 FCTs at every link load are collected.
Figure 11 illustrates how FCT normalized to each flow’s min
RTT correlates with link utilization (more data in §D.4). On
the more loaded side of the spectrum, a 10% reduction in link
utilization can translate to a 20-40% reduction in p99 FCT.

Another class of designs that has reported significant FCT
gains is host-based TE (e.g., PLB [53]). [53] shows that PLB
can fully correct load imbalance caused by ECMP between two
links with 1:2 capacity difference. However, with capacity dif-
ference of 1:100, PLB can only correct it to 1:3.5, and p99 FCT
is 2.3× higher than that of a load balanced scenario. Figure 10
indicates that PLB alone achieves FCT on par with WCMP TF
and we hold the same view as [53] that in-network WCMP and
host-based PLB are complementary in performance benefits.

5.8 Group Pruning’s impact on path diversity
A potential side effect of Group Pruning is that heavily pruned
groups might lose a lot of paths. This reduced path diversity
could impact the network’s resilience to link failures. To un-
derstand the impact of pruning, we record the paths/ports used
by all groups in the baseline fabric/TM experiment. Figure 12
shows that IGR prunes less than 0.01% of the total groups,
while DMIR prunes 0.07% of them. DMIR’s pruning decision
is more aggressive than IGR: 48 groups (out of 1350624) are
pruned down to a single port. In contrast, groups pruned by
IGR only lose 1-3 ports. More results can be found in §D.5.

Figure 12 also shows the fraction of traffic impacted by
Group Pruning. Impacted means that the traffic is steered
away from pruned paths, but is not dropped. Despite DMIR’s
more aggressive pruning, the total traffic impacted (area under
curve) is lower than IGR. We attribute this to DMIR’s tradeoff
between path diversity and lower traffic impact.

Overall, the small number of aggressively pruned groups
and tiny fraction of traffic impacted suggests that the negative
impact of Group Pruning is minor.

5.9 Ablation study
Now, we evaluate how much each of the heuristics in §4 con-
tributes to the overall precision improvements. We use the
baseline fabric/TM and 50% spread. First, the contribution of
Group Sharing is evaluated by disabling this heuristic in both
DMIR and IGR. Figure 13 illustrates the significant impact
of Group Sharing on IGR: 5× decrease in max link utiliza-
tion. DMIR is improved by 1.7×. Additionally, Group Sharing
reduces the O(N2) transit group entries (e.g., 162K) to no
more than 64 (see §D.2 for details). Next, the contribution of
Table Carving is demonstrated in Figure 14. Instead of standard
Table Carving, the algorithms are modified to carve the table in
constant sizes: each group receives an equal share of the table
space. IGR and DMIR with standard Table Carving perform

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 679

0 1 2 3 4 5 6e–6
Fraction of network traffic
impacted in each group

.9993

.9995

.9997

.9999
1.0

CD
F

DMIR
IGR

Figure 12: Impact of reduced path
diversity on network traffic.

p50 p99 max0.0
0.5
1.0
1.5
2.0

Lin
k

Ut
iliz

at
io

n TE soln.
IGR
DMIR

IGR, no group sharing
DMIR, no group sharing

Figure 13: Group Sharing’s
contribution to TE precision.

p50 p99 max0.0
0.1
0.2
0.3
0.4
0.5

Lin
k

Ut
iliz

at
io

n TE soln.
DMIR

IGR

IGR, no table carving
DMIR, no table carving

Figure 14: Table Carving’s
contribution to TE precision.

p50 p99 max0.0

0.5

1.0

1.5

Lin
k

Ut
iliz

at
io

n WCMP TF admits
only 48%
demands

TE soln.WCMP TF
WCMP TF w/ pruning

Figure 15:
Impact of Group Pruning.

1.2× and 1.24× better than the constant version. Finally, we
look at the contribution of Group Pruning in Figure 15. 75%
spread is used to reflect how Group Pruning avoids traffic loss.
The pruning logic is hard to completely disable in both algo-
rithms, so instead, we add Group Pruning to WCMP TF. With
Group Pruning, WCMP TF can avoid group installation fail-
ures and the consequent traffic loss entirely, at the cost of a 2.4×
increase in link utilization. However, this increase is specific
to certain scenarios and can be offset by other improvements.

5.10 Recommendation
While both our algorithms perform well, DMIR generally has
lower precision loss than IGR. Though its advantage is usually
small, some extreme scenarios can benefit from DMIR. For
example, in the high load TM scenario (§5.5), DMIR is the
only option that avoids link utilization above 1.0, except for
a slight violation on the worst link. In contrast, IGR is always
faster than DMIR, so it responds better to traffic load changes.
Because of that, we recommend generally using IGR, except
for difficult scenarios where low precision loss matters.

6 Related work
Data center TE. Many data center network designs [2–4, 22]
leverage flow-level ECMP [30] to achieve failure resilience
and efficient bandwidth utilization. However, ECMP is
known to perform poorly with asymmetry and heterogeneity.
WCMP [73] improves over ECMP. Niagara [36] distributes
traffic using flow rules instead of group rules. DASH [32] splits
traffic via comparison-based hash space partition. It avoids
WCMP-style entry replication but requires arithmetic oper-
ation and P4 [11] support. Our work assumes fixed-function
switches but also applies to programmable switches.

Flare [34], CONGA [5], HULA [38], Clove [37], Let-
Flow [65], and Contra [31] leverage the elasticity of flowlets
to balance traffic load across paths. In networks with different
path latencies [12,17,42,45,50,66,67], one has to carefully se-
lect the flowlet detection timeout to avoid reordering. Flowlets
are also susceptible to traffic characteristics, e.g., [43, 62]
find that RDMA traffic [6, 19, 23, 27, 39, 47, 74] exhibits
weak flowlet pattern. As described in LetFlow [65], flowlet
switching requires switch support [13], which is not as widely
available as ECMP. There are also works like DRILL [20] and
RPS [16] that operate at packet-level.

Host-based TE approaches like Presto [26], Hermes [68],
MPTCP [54], FlowBender [33], RePaC [71] and PLB [53]
assume either no in-network support or merely ECMP.
PLB [53] shows that our work complements host-based TE.

Spine-free data center. Dragonfly [40], Dragonfly+ [59],
Slim Fly [10], Slingshot [15], Aquila [21] have studied
direct-connect topology networks. However, they primar-
ily focus on HPC networks. Meanwhile, most deployed
DCNs [2, 22] employ a Clos topology with a spine. Harsh et
al. [25] discusses ECMP-based TE in spine-free data centers.
Sirius [7] and RotorNet [46] are spine-free but spread traffic
using extended VLB [72]. Jupiter [52] explores advanced TE
in spine-free DCNs. We believe our work is among the first
to improve TE precision loss in spine-free DCNs.

Wide area network TE. Wide area network TE faces sim-
ilar switch hardware constraints. SWAN [28] allocates traffic
demands to a set of tunnels, which are limited by the number
of supported switch rules. B4 TE [29] generates groups that
consume 14× the switch table space. It has to decouple traffic
splitting rules across two stages in its Clos fabric to reduce
per-switch table consumption. Meta’s Express Backbone [48]
and Edge Fabric [57] run centralized TE on BGP and ECMP.
We found no available data on their TE precision loss.

7 Conclusion
Precision loss is an inherent problem when implementing
traffic engineering with limited switch hardware resources
and the shift towards spine-free topologies exacerbates the
problem. We introduce two group reduction algorithms that
offer different tradeoffs in terms of precision and execution
time. Both algorithms use heuristics to address challenges,
such as the hardware-agnostic nature of TE algorithms, switch
heterogeneity, and path diversity. Our evaluation shows they
achieve significant improvements in various network scenarios
compared to the current solution.

Acknowledgments. We thank Adithya Abraham Philip, Zico
Kolter, Akshitha Sriraman, Miguel Ferreira, Wei Bai, Brian
Chang, Weiyang Wang, Min Yee Teh, Nandita Dukkipati and
the anonymous NSDI reviewers for their feedback. We also
thank engineers from the Google NetInfra team for their sup-
port. This research is sponsored by the U.S. Army Contracting
Command under award number W911QX20D0008.

680 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] FabricEval TE Evaluation Framework, 2024. https:

//github.com/shuoshuc/FabricEval.

[2] Anubhavnidhi Abhashkumar, Kausik Subramanian,
Alexey Andreyev, Hyojeong Kim, Nanda Kishore Salem,
Jingyi Yang, Petr Lapukhov, Aditya Akella, and Hongyi
Zeng. Running bgp in data centers at scale. In NSDI,
pages 65–81, 2021.

[3] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network
architecture. ACM SIGCOMM computer communication
review, 38(4):63–74, 2008.

[4] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath
Raghavan, Nelson Huang, and Amin Vahdat. Hedera:
Dynamic flow scheduling for data center networks.
Proceedings of NSDI 2010: 7th USENIX Symposium on
Networked Systems Design and Implementation, pages
281–295, 2010.

[5] Mohammad Alizadeh, Tom Edsall, Sarang Dharma-
purikar, Ramanan Vaidyanathan, Kevin Chu, Andy
Fingerhut, Vinh The Lam, Francis Matus, Rong Pan,
Navindra Yadav, et al. Conga: Distributed congestion-
aware load balancing for datacenters. In Proceedings
of the 2014 ACM conference on SIGCOMM, pages
503–514, 2014.

[6] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Kris-
han Kumar Attre, Paramvir Bahl, Ameya Bhagat, Gowri
Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,
Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad, Vivek
Ette, Igal Figlin, Daniel Firestone, Mathew George, Ilya
German, Lakhmeet Ghai, Eric Green, Albert Greenberg,
Manish Gupta, Randy Haagens, Matthew Hendel, Rid-
wan Howlader, Neetha John, Julia Johnstone, Tom Jolly,
Greg Kramer, David Kruse, Ankit Kumar, Erica Lan,
Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu, Chen Liu,
Guohan Lu, Yuemin Lu, Xiakun Lu, Vadim Makhervaks,
Ulad Malashanka, David A. Maltz, Ilias Marinos, Rohan
Mehta, Sharda Murthi, Anup Namdhari, Aaron Ogus,
Jitendra Padhye, Madhav Pandya, Douglas Phillips,
Adrian Power, Suraj Puri, Shachar Raindel, Jordan Rhee,
Anthony Russo, Maneesh Sah, Ali Sheriff, Chris Spara-
cino, Ashutosh Srivastava, Weixiang Sun, Nick Swanson,
Fuhou Tian, Lukasz Tomczyk, Vamsi Vadlamuri, Alec
Wolman, Ying Xie, Joyce Yom, Lihua Yuan, Yanzhao
Zhang, and Brian Zill. Empowering azure storage with
RDMA. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
49–67, Boston, MA, April 2023. USENIX Association.

[7] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel
Cletheroe, Istvan Haller, Krzysztof Jozwik, Fotini

Karinou, Sophie Lange, Kai Shi, Benn Thomsen, and
Hugh Williams. Sirius: A flat datacenter network
with nanosecond optical switching. Proceedings of
the Annual conference of the ACM Special Interest
Group on Data Communication on the applications,
technologies, architectures, and protocols for computer
communication, pages 782–797, 2020.

[8] Theophilus Benson, Aditya Akella, and David A. Maltz.
Network traffic characteristics of data centers in the wild.
In Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement, IMC ’10, page 267–280,
New York, NY, USA, 2010. Association for Computing
Machinery.

[9] Theophilus Benson, Ashok Anand, Aditya Akella, and
Ming Zhang. Microte: Fine grained traffic engineering
for data centers. In Proceedings of the seventh conference
on emerging networking experiments and technologies,
pages 1–12, 2011.

[10] Maciej Besta and Torsten Hoefler. Slim fly: A cost
effective low-diameter network topology. In SC ’14:
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, pages 348–359, 2014.

[11] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard,
Nick McKeown, Jennifer Rexford, Cole Schlesinger,
Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: Programming protocol-independent
packet processors. SIGCOMM Comput. Commun. Rev.,
44(3):87–95, jul 2014.

[12] Shawn Shuoshuo Chen, Weiyang Wang, Christopher
Canel, Srinivasan Seshan, Alex C. Snoeren, and Peter
Steenkiste. Time-division tcp for reconfigurable data
center networks. In Proceedings of the ACM SIGCOMM
2022 Conference, SIGCOMM ’22, page 19–35, New
York, NY, USA, 2022. Association for Computing
Machinery.

[13] Cisco. Cisco application centric infrastructure
fundamentals, 2015. https://www.cisco.com/
c/en/us/td/docs/switches/datacenter/
aci/apic/sw/1-x/aci-fundamentals/b_ACI-
Fundamentals/m_fundamentals.html#concept_
F280C079790A451ABA76BC5C6427D746.

[14] Cisco. Cisco nexus 9000 series nx-os verified
scalability guide, release 9.3(12), 2023. https:
//www.cisco.com/c/en/us/td/docs/switches/
datacenter/nexus9000/sw/93x/scalability/
guide-9312/cisco-nexus-9000-series-nx-os-
verified-scalability-guide-9312.html.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 681

https://github.com/shuoshuc/FabricEval
https://github.com/shuoshuc/FabricEval
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/aci-fundamentals/b_ACI-Fundamentals/m_fundamentals.html#concept_F280C079790A451ABA76BC5C6427D746
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/aci-fundamentals/b_ACI-Fundamentals/m_fundamentals.html#concept_F280C079790A451ABA76BC5C6427D746
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/aci-fundamentals/b_ACI-Fundamentals/m_fundamentals.html#concept_F280C079790A451ABA76BC5C6427D746
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/aci-fundamentals/b_ACI-Fundamentals/m_fundamentals.html#concept_F280C079790A451ABA76BC5C6427D746
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/aci-fundamentals/b_ACI-Fundamentals/m_fundamentals.html#concept_F280C079790A451ABA76BC5C6427D746
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/scalability/guide-9312/cisco-nexus-9000-series-nx-os-verified-scalability-guide-9312.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/scalability/guide-9312/cisco-nexus-9000-series-nx-os-verified-scalability-guide-9312.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/scalability/guide-9312/cisco-nexus-9000-series-nx-os-verified-scalability-guide-9312.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/scalability/guide-9312/cisco-nexus-9000-series-nx-os-verified-scalability-guide-9312.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/scalability/guide-9312/cisco-nexus-9000-series-nx-os-verified-scalability-guide-9312.html

[15] Daniele De Sensi, Salvatore Di Girolamo, Kim H.
McMahon, Duncan Roweth, and Torsten Hoefler. An
in-depth analysis of the slingshot interconnect. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’20. IEEE Press, 2020.

[16] Advait Dixit, Pawan Prakash, Y. Charlie Hu, and
Ramana Rao Kompella. On the impact of packet
spraying in data center networks. In 2013 Proceedings
IEEE INFOCOM, pages 2130–2138, 2013.

[17] Nathan Farrington, George Porter, Sivasankar Radhakr-
ishnan, Hamid Hajabdolali Bazzaz, Vikram Subramanya,
Yeshaiahu Fainman, George Papen, and Amin Vahdat.
Helios: A hybrid electrical/optical switch architecture
for modular data centers. In Proceedings of the ACM
SIGCOMM 2010 Conference, SIGCOMM ’10, page
339–350, New York, NY, USA, 2010. Association for
Computing Machinery.

[18] Andrew D. Ferguson, Steve Gribble, Chi-Yao Hong,
Charles Killian, Waqar Mohsin, Henrik Muehe, Joon
Ong, Leon Poutievski, Arjun Singh, Lorenzo Vicisano,
Richard Alimi, Shawn Shuoshuo Chen, Mike Conley,
Subhasree Mandal, Karthik Nagaraj, Kondapa Naidu
Bollineni, Amr Sabaa, Shidong Zhang, Min Zhu, and
Amin Vahdat. Orion: Google’s software-defined
networking control plane. In 18th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, April 2021.

[19] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan Liu,
Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng
Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang,
Dennis Cai, and Jiesheng Wu. When cloud storage meets
RDMA. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21), pages
519–533. USENIX Association, April 2021.

[20] Soudeh Ghorbani, Zibin Yang, P. Brighten Godfrey,
Yashar Ganjali, and Amin Firoozshahian. Drill: Micro
load balancing for low-latency data center networks.
In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’17,
page 225–238, New York, NY, USA, 2017. Association
for Computing Machinery.

[21] Dan Gibson, Hema Hariharan, Eric Lance, Moray
McLaren, Behnam Montazeri, Arjun Singh, Stephen
Wang, Hassan M G Wassel, Zhehua Wu, Sunghwan
Yoo, Raghuraman Balasubramanian, Prashant Chandra,
Michael Cutforth, Peter Cuy, David Decotigny, Rakesh
Gautam, Alex Iriza, Milo M K Martin, Rick Roy,

Zuowei Shen, Ming Tan, Ye Tang, Monica Wong-Chan,
Joe Zbiciak, and Amin Vahdat. Aquila: A unified,
low-latency fabric for datacenter networks. pages
1249–1266. USENIX Association, 4 2022.

[22] Albert Greenberg, James R Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A Maltz, Parveen Patel, and Sudipta Sengupta.
Vl2: A scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM 2009 conference
on Data communication, pages 51–62, 2009.

[23] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. Rdma
over commodity ethernet at scale. In Proceedings of
the 2016 ACM SIGCOMM Conference, SIGCOMM ’16,
page 202–215, New York, NY, USA, 2016. Association
for Computing Machinery.

[24] Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2023.

[25] Vipul Harsh, Sangeetha Abdu Jyothi, and P. Brighten
Godfrey. Spineless data centers. In Proceedings of
the 19th ACM Workshop on Hot Topics in Networks,
HotNets ’20, page 67–73, New York, NY, USA, 2020.
Association for Computing Machinery.

[26] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter,
John Carter, and Aditya Akella. Presto: Edge-based load
balancing for fast datacenter networks. In Proceedings of
the 2015 ACM Conference on Special Interest Group on
Data Communication, SIGCOMM ’15, page 465–478,
New York, NY, USA, 2015. Association for Computing
Machinery.

[27] Zhiqiang He, Dongyang Wang, Binzhang Fu, Kun
Tan, Bei Hua, Zhi-Li Zhang, and Kai Zheng. Masq:
Rdma for virtual private cloud. In Proceedings of
the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’20, page 1–14, New York,
NY, USA, 2020. Association for Computing Machinery.

[28] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
wan. SIGCOMM Comput. Commun. Rev., 43(4):15–26,
aug 2013.

[29] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-
Fares, Min Zhu, Richard Alimi, Kondapa Naidu B.,
Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu
Liang, Kirill Mendelev, Steve Padgett, Faro Rabe, Saikat
Ray, Malveeka Tewari, Matt Tierney, Monika Zahn,
Jonathan Zolla, Joon Ong, and Amin Vahdat. B4 and

682 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

after: Managing hierarchy, partitioning, and asymmetry
for availability and scale in google’s software-defined
wan. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’18, page 74–87, New York, NY, USA, 2018.
Association for Computing Machinery.

[30] C. Hopps. Rfc2992: Analysis of an equal-cost multi-path
algorithm, 2000.

[31] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer
Rexford, and David Walker. Contra: A programmable
system for performance-aware routing. In 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), pages 701–721, Santa Clara, CA,
February 2020. USENIX Association.

[32] Kuo-Feng Hsu, Praveen Tammana, Ryan Beckett, Ang
Chen, Jennifer Rexford, and David Walker. Adaptive
weighted traffic splitting in programmable data planes.
In Proceedings of the Symposium on SDN Research,
pages 103–109, 2020.

[33] Abdul Kabbani, Balajee Vamanan, Jahangir Hasan, and
Fabien Duchene. Flowbender: Flow-level adaptive rout-
ing for improved latency and throughput in datacenter net-
works. In Proceedings of the 10th ACM International on
Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’14, page 149–160, New York,
NY, USA, 2014. Association for Computing Machinery.

[34] Srikanth Kandula, Dina Katabi, Shantanu Sinha, and
Arthur Berger. Dynamic load balancing without packet
reordering. SIGCOMM Comput. Commun. Rev.,
37(2):51–62, mar 2007.

[35] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg,
Parveen Patel, and Ronnie Chaiken. The nature of data
center traffic: Measurements & analysis. In Proceedings
of the 9th ACM SIGCOMM Conference on Internet
Measurement, IMC ’09, page 202–208, New York, NY,
USA, 2009. Association for Computing Machinery.

[36] Nanxi Kang, Monia Ghobadi, John Reumann, Alexander
Shraer, and Jennifer Rexford. Efficient traffic splitting
on commodity switches. In Proceedings of the 11th
ACM Conference on Emerging Networking Experiments
and Technologies, pages 1–13, 2015.

[37] Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy,
Aran Bergman, Changhoon Kim, and Jennifer Rexford.
Clove: Congestion-aware load balancing at the virtual
edge. In Proceedings of the 13th International Con-
ference on Emerging Networking EXperiments and
Technologies, CoNEXT ’17, page 323–335, New York,
NY, USA, 2017. Association for Computing Machinery.

[38] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh
Sivaraman,and Jennifer Rexford. Hula: Scalable load bal-
ancing using programmable data planes. In Proceedings
of the Symposium on SDN Research, pages 1–12, 2016.

[39] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu, Yibo
Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong Guo,
Vyas Sekar, and Srinivasan Seshan. FreeFlow: Software-
based virtual RDMA networking for containerized
clouds. In 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 19), pages 113–
126, Boston, MA, February 2019. USENIX Association.

[40] John Kim, William J. Dally, Steve Scott, and Dennis
Abts. Technology-driven, highly-scalable dragonfly
topology. Proceedings - International Symposium on
Computer Architecture, pages 77–88, 2008.

[41] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang,
Fei Feng, Lingbo Tang, Zheng Cao, Ming Zhang, Frank
Kelly, Mohammad Alizadeh, and Minlan Yu. Hpcc:
High precision congestion control. In Proceedings of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’19, page 44–58, New York, NY, USA, 2019.
Association for Computing Machinery.

[42] He Liu, Matthew K. Mukerjee, Conglong Li, Nicolas
Feltman, George Papen, Stefan Savage, Srinivasan
Seshan, Geoffrey M. Voelker, David G. Andersen,
Michael Kaminsky, George Porter, and Alex C. Sno-
eren. Scheduling techniques for hybrid circuit/packet
networks. In Proceedings of the 11th ACM Conference
on Emerging Networking Experiments and Technologies,
CoNEXT ’15, New York, NY, USA, 2015. Association
for Computing Machinery.

[43] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang
Xiong, Peng Cheng, Jiansong Zhang, Enhong Chen,
and Thomas Moscibroda. Multi-Path transport for
RDMA in datacenters. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
18), pages 357–371, Renton, WA, April 2018. USENIX
Association.

[44] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. Openflow: Enabling
innovation in campus networks. SIGCOMM Comput.
Commun. Rev., 38(2):69–74, mar 2008.

[45] William M. Mellette, Rajdeep Das, Yibo Guo, Rob
McGuinness, Alex C. Snoeren, and George Porter.
Expanding across time to deliver bandwidth efficiency
and low latency. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 1–18, Santa Clara, CA, February 2020.
USENIX Association.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 683

[46] William M. Mellette, Rob McGuinness, Arjun Roy, Alex
Forencich, George Papen, Alex C. Snoeren, and George
Porter. Rotornet: A scalable, low-complexity, optical
datacenter network. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communi-
cation, SIGCOMM ’17, page 267–280, New York, NY,
USA, 2017. Association for Computing Machinery.

[47] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shujun
Zhuang, Bo Li, Shuguang Cheng, Jiaqi Gao, Yan
Zhuang, Pengcheng Zhang, Rong Liu, Chao Shi,
Binzhang Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai,
and Hongqiang Harry Liu. From luna to solar: The
evolutions of the compute-to-storage networks in alibaba
cloud. In Proceedings of the ACM SIGCOMM 2022
Conference, SIGCOMM ’22, page 753–766, New York,
NY, USA, 2022. Association for Computing Machinery.

[48] Henry Kwok Mikel Jimenez Fernandez. Building express
backbone: Facebook’s new long-haul network, 2017.

[49] Jeffrey C. Mogul, Drago Goricanec, Martin Pool, Anees
Shaikh, Douglas Turk, Bikash Koley, and Xiaoxue
Zhao. Experiences with modeling network topologies at
multiple levels of abstraction. In Proceedings of the 17th
Usenix Conference on Networked Systems Design and
Implementation, NSDI’20, page 403–418, USA, 2020.
USENIX Association.

[50] Matthew K. Mukerjee, Christopher Canel, Weiyang
Wang, Daehyeok Kim, Srinivasan Seshan, and Alex C.
Snoeren. Adapting TCP for reconfigurable datacenter
networks. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
651–666, Santa Clara, CA, February 2020. USENIX
Association.

[51] NS-3 Consortium. ns-3 network simulator, 2023.
https://www.nsnam.org/.

[52] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun
Singh, Mukarram Tariq, Rui Wang, Jianan Zhang,
Virginia Beauregard, Patrick Conner, Steve Gribble,
Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong
Liu, Karthik Nagaraj, Jason Ornstein, Samir Sawhney,
Ryohei Urata, Lorenzo Vicisano, Kevin Yasumura,
Shidong Zhang, Junlan Zhou, and Amin Vahdat. Jupiter
evolving: Transforming google’s datacenter network via
optical circuit switches and software-defined networking.
In Proceedings of the ACM SIGCOMM 2022 Conference,
SIGCOMM ’22, page 66–85, New York, NY, USA, 2022.
Association for Computing Machinery.

[53] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen
Yin, Qiaobin Fu, Gautam Kumar, Masoud Moshref,

Junhua Yan, Van Jacobson, David Wetherall, and Abdul
Kabbani. Plb: Congestion signals are simple and
effective for network load balancing. In Proceedings of
the ACM SIGCOMM 2022 Conference, SIGCOMM ’22,
page 207–218, New York, NY, USA, 2022. Association
for Computing Machinery.

[54] Costin Raiciu, Sebastien Barre, Christopher Pluntke,
Adam Greenhalgh, Damon Wischik, and Mark Handley.
Improving datacenter performance and robustness with
multipath tcp. SIGCOMM Comput. Commun. Rev.,
41(4):266–277, aug 2011.

[55] Matthew Roughan. Simplifying the synthesis of internet
traffic matrices. SIGCOMM Comput. Commun. Rev.,
35:93–96, 10 2005.

[56] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C. Snoeren. Inside the social network’s
(datacenter) network. SIGCOMM Comput. Commun.
Rev., 45(4):123–137, aug 2015.

[57] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan
Katz-Bassett, Harsha V. Madhyastha, Italo Cunha, James
Quinn, Saif Hasan, Petr Lapukhov, and Hongyi Zeng.
Engineering egress with edge fabric: Steering oceans of
content to the world. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communi-
cation, SIGCOMM ’17, page 418–431, New York, NY,
USA, 2017. Association for Computing Machinery.

[58] Hua Shao, Xiaoliang Wang, Yuanwei Lu, Yanbo Yu,
Shengli Zheng, and Youjian Zhao. Accessing cloud
with disaggregated Software-Defined router. In 18th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21), pages 1–14. USENIX
Association, April 2021.

[59] Alexander Shpiner, Zachy Haramaty, Saar Eliad,
Vladimir Zdornov, Barak Gafni, and Eitan Zahavi.
Dragonfly+: Low cost topology for scaling datacenters.
In 2017 IEEE 3rd International Workshop on High-
Performance Interconnection Networks in the Exascale
and Big-Data Era (HiPINEB), pages 1–8, 2017.

[60] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav De-
sai, Bob Felderman, Paulie Germano, Anand Kanagala,
Jeff Provost, Jason Simmons,Eiichi Tanda, Jim Wanderer,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. Jupiter ris-
ing: A decade of clos topologies and centralized control in
google’s datacenter network. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Com-
munication, SIGCOMM ’15, page 183–197, New York,
NY, USA, 2015. Association for Computing Machinery.

684 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.nsnam.org/

[61] Ankit Singla, Chi Yao Hong, Lucian Popa, and
P. Brighten Godfrey. Jellyfish: Networking data
centers randomly. Proceedings of NSDI 2012: 9th
USENIX Symposium on Networked Systems Design and
Implementation, pages 225–238, 2012.

[62] Cha Hwan Song, Xin Zhe Khooi, Raj Joshi, Inho
Choi, Jialin Li, and Mun Choon Chan. Network load
balancing with in-network reordering support for rdma.
In Proceedings of the ACM SIGCOMM 2023 Conference,
ACM SIGCOMM ’23, page 816–831, New York, NY,
USA, 2023. Association for Computing Machinery.

[63] Paul Tune and Matthew Roughan. Spatiotemporal traffic
matrix synthesis. SIGCOMM Comput. Commun. Rev.,
45:579–592, 8 2015.

[64] Ryohei Urata, Hong Liu, Kevin Yasumura, Erji Mao, Jill
Berger, Xiang Zhou, Cedric Lam, Roy Bannon, Darren
Hutchinson, Daniel Nelson, Leon Poutievski, Arjun
Singh, Joon Ong, and Amin Vahdat. Mission apollo:
Landing optical circuit switching at datacenter scale,
2022.

[65] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin
Taheri, and Tom Edsall. Let it flow: Resilient asym-
metric load balancing with flowlet switching. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 407–420, Boston, MA,
March 2017. USENIX Association.

[66] Guohui Wang, David G. Andersen, Michael Kaminsky,
Konstantina Papagiannaki, T.S. Eugene Ng, Michael
Kozuch, and Michael Ryan. C-through: Part-time optics
in data centers. In Proceedings of the ACM SIGCOMM
2010 Conference, SIGCOMM ’10, page 327–338, New
York, NY, USA, 2010. Association for Computing
Machinery.

[67] Weiyang Wang, Moein Khazraee, Zhizhen Zhong,
Manya Ghobadi, Zhihao Jia, Dheevatsa Mudigere, Ying
Zhang, and Anthony Kewitsch. TopoOpt: Co-optimizing
network topology and parallelization strategy for
distributed training jobs. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
23), pages 739–767, Boston, MA, April 2023. USENIX
Association.

[68] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and
Mosharaf Chowdhury. Resilient datacenter load
balancing in the wild. In Proceedings of the 2017
SIGCOMM, Los Angeles, CA, USA, August 2017.

[69] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Kr-
ishnamurthy. High-resolution measurement of data cen-
ter microbursts. In Proceedings of the 2017 Internet Mea-
surement Conference, IMC ’17, page 78–85, New York,
NY, USA, 2017. Association for Computing Machinery.

[70] Yin Zhang, Matthew Roughan, Nick Duffield, and Albert
Greenberg. Fast accurate computation of large-scale ip
traffic matrices from link loads. SIGMETRICS Perform.
Eval. Rev., 31:206–217, 6 2003.

[71] Zhehui Zhang, Haiyang Zheng, Jiayao Hu, Xiangning Yu,
Chenchen Qi, Xuemei Shi, and Guohui Wang. Hashing
linearity enables relative path control in data centers. In
2021 USENIX Annual Technical Conference (USENIX
ATC 21), pages 855–862. USENIX Association, July
2021.

[72] Rui Zhang-Shen and Nick McKeown. Designing a pre-
dictable internet backbone with valiant load-balancing.
In Proceedings of the 13th International Conference on
Quality of Service, IWQoS’05, page 178–192, Berlin,
Heidelberg, 2005. Springer-Verlag.

[73] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul
Kabbani, Leon Poutievski, Arjun Singh, and Amin
Vahdat. Wcmp: Weighted cost multipathing for
improved fairness in data centers. Proceedings of the
Ninth European Conference on Computer Systems, 2014.

[74] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra
Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. Congestion control for large-scale rdma
deployments. In Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication,
SIGCOMM ’15, page 523–536, New York, NY, USA,
2015. Association for Computing Machinery.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 685

Appendix
A Formulations
A.1 Data center TE formulation
The TE system solves a multi-commodity flow (MCF) problem
on a network G=(V,E) with a set of vertices/switches V and
edges/links E. Assume that there are k commodities between
sources and destinations, denoted as (si,ti,di),0≤ i≤k. Each
commodity has demand di between source si and destination
ti. The objective of the TE system is to balance load (i.e., link
utilization) across all links. This objective can be linearized
as minimizing the maximum link utilization. Below is the
path-based MCF formulation.

minimize umax (2a)
s.t. u(x,y)≤umax,∀(x,y)∈E (2b)

u(x,y)=
∑

k
i=1∑p∈P(x,y)i

fip

c(x,y)
, ∀(x,y)∈E (2c)

k

∑
i=1

∑
p∈P(x,y)i

fip≤c(x,y), ∀(x,y)∈E (2d)

∑
p∈Pi

fip=di, ∀i∈{1,...,k} (2e)

fip≤di ·
cp

S·∑p∈Picp
, ∀p∈Pi (2f)

fip>=0, ∀p,i (2g)

umax is the maximum link utilization of the network, u(x,y)
is the link utilization of link (x,y)∈ E. c(x,y) represents the
capacity of link (x,y). fip is a portion of commodity i (i.e., flow)
assigned on path p, where p includes multiple links between
the source and destination. Pi is the set of all paths between si

and ti of commodity i. P(x,y)
i is the subset of Pi where all paths

contain link (x,y). cp represents the capacity of path p, which
is the bottleneck capacity across all links in this path.

Equation 2d is the (optional) link capacity constraint. If a
commodity has a high demand such that no valid assignment
exists to meet this constraint, the problem is considered
infeasible. However, if we are willing to overload a link, this
constraint can be removed. Equation 2e is the flow conser-
vation constraint. It indicates that all demands must be fully
served, the network cannot hold or drop any demand. Equation
2f is the path diversity constraint mentioned in §3. It enforces
that no more than a certain fraction of demand di is assigned
to flow fip. The fraction is proportional to the total capacity of
the paths used to serve di, which is controlled by a spread pa-
rameter S∈(0,1]. When S is close to 0, fip becomes essentially
unbounded. When S approaches 1, flows for commodity i are
forced to use all available paths. Note that S cannot be set to
0, but a small enough value is sufficient to completely remove
this constraint, as fip is upper bounded by Equation 2e instead.

A.2 Multi-group monolithic reduction
To extend the discussion in §4.2, we now consider another
group reduction formulation. Unlike Equation 1, this for-
mulation attempts to combine all the single-group reduction
problems into one monolithic formulation that can be directly
solved by calling the MIP solver. Since this monolithic for-
mulation needs a single optimization objective, we construct
a weighted sum of L1-norm based on each group’s individual
L1-norm, where the weights are the total traffic volume carried
by each group. The intuition is that groups with more traffic
contribute more to the overall precision loss metric. Therefore,
the MIP solver should spend more effort in optimizing those
groups. Equation 3 shows the comprehensive formulation.

minimize
n

∑
i=1

(
p

∑
j=1

wi j)·
p

∑
j=1

∣∣∣∣ wi j

∑
p
j=1wi j

−
w′

i j

∑
p
j=1w′

i j

∣∣∣∣
s.t.

n

∑
i=1

p

∑
j=1

w′
i j ≤T

w′
i j ∈Z+,∀i∈{1,...,n}, j∈{1,...,p}

(3)

Gi=(wi1,wi2,...,wip) is the original group i, wi j is the original
weight on port j of group i. Similarly, w′

i j is the reduced weight
on port j of group i. T is the total available table space on
the target switch. This formulation only enforces the sum of
group sizes across all reduced groups to meet the table space
limit, there is no per-group space limit and the Table Carving
heuristic is not invoked.

Multi-group monolithic formulation scales poorly as men-
tioned in §4.2. For a large-scale production DCN, we fail to find
a solution to the monolithic formulation after running the latest
version of Gurobi solver for days. On the other hand, with a
one-hour timeout set on Gurobi, the resulting solution is consid-
erably worse compared to that obtained from single-group MIP.

B Example snippet of TEIntent
The TE system in large-scale DCNs usually divides the TE
solution into batches, where each batch contains instructions
of traffic split for all demands in a cluster. In FabricEval,
such a batch is referred to as a TEIntent. The instruction
of traffic split for one demand in a cluster is referred to
as a PrefixIntent. A TEIntent can contain multiple
PrefixIntents. Each PrefixIntent needs to specify its
type (src or transit). This information is required to later
translate the PrefixIntent to groups. The PrefixIntent
also specifies the name of the destination aggregation block it
wants to reach. Here the name of the destination cluster is not
used instead because the PrefixIntent indicates the ports
to use in the aggregation block. It should be consistent to use
names of aggregation blocks for source, transit, and destination.
Finally, the PrefixIntent lists all the northbound ports on
S3 used to forward the demand, and the amount of traffic
to be placed on each port in Mbps. The Protobuf format of
TEIntent and PrefixIntent is as follows.

686 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 message PrefixIntent {
2 enum PrefixType {
3 UNKNOWN = 0;
4 SRC = 1;
5 TRANSIT = 2;
6 }
7

8 message NexthopEntry {
9 // Name of next-hop port.

10 string nexthop_port = 1;
11 // Traffic volume in Mbps.
12 double weight = 2;
13 }
14

15 string dst_prefix = 1;
16 uint32 mask = 2;
17 string dst_name = 3;
18 PrefixType type = 4;
19 repeated NexthopEntry nexthop_entries =5;
20 }
21

22 message TEIntent {
23 // Name of cluster.
24 string target_cluster = 1;
25 // A list of PrefixIntents.
26 repeated PrefixIntent prefix_intents = 2;
27 }

We also capture an actual TEIntent forwarded to one of
the clusters in an experiment in §5.4. Due to the large Protobuf
size, only a small snippet is demonstrated below.

1 te_intents {
2 target_cluster: "toy3-c1"
3 prefix_intents {
4 dst_name: "toy3-c2-ab1"
5 type: SRC
6 nexthop_entries {
7 nexthop_port: "toy3-c1-ab1-s3i1-p1"
8 weight: 25.5
9 }

10 nexthop_entries {
11 nexthop_port: "toy3-c1-ab1-s3i2-p1"
12 weight: 25.5
13 }
14 nexthop_entries {
15 nexthop_port: "toy3-c1-ab1-s3i3-p1"
16 weight: 25.5
17 }
18 nexthop_entries {
19 nexthop_port: "toy3-c1-ab1-s3i4-p1"
20 weight: 25.5
21 }
22 nexthop_entries {
23 nexthop_port: "toy3-c1-ab1-s3i1-p3"

24 weight: 0.765625
25 }
26 nexthop_entries {
27 nexthop_port: "toy3-c1-ab1-s3i2-p3"
28 weight: 0.765625
29 }
30 nexthop_entries {
31 nexthop_port: "toy3-c1-ab1-s3i3-p3"
32 weight: 0.765625
33 }
34 nexthop_entries {
35 nexthop_port: "toy3-c1-ab1-s3i4-p3"
36 weight: 0.765625
37 }
38 }
39 prefix_intents {
40 dst_name: "toy3-c3-ab1"
41 type: SRC
42 ...
43 }
44 prefix_intents {
45 dst_name: "toy3-c2-ab1"
46 type: TRANSIT
47 nexthop_entries {
48 nexthop_port: "toy3-c1-ab1-s3i1-p9"
49 weight: 3095.288
50 }
51 ...
52 }
53 }

The network entities follow a naming scheme of [network
name]-[cluster name]-[aggregation block name]-[switch
stage][switch name]-[port name]. Each entity is indexed in
the topology, hence its name is always the entity type + index.
For example, in next-hop port “toy3-c1-ab1-s3i1-p1”, “toy3”
is the network name, “c1” identifies cluster 1, “ab1” is the only
aggregation block in cluster 1, “s3i1” refers to the first switch
in stage 3, and “p1” is the first port on this switch.

C Time complexity of IGR
Step 1 of IGR (Table Carving, line 2-3 of Algorithm 1)
computes len(Gi), SUM(Gi) and ∑i SUM(Gi). This requires
iterating over all p port weights in all n groups, so it takes
O(pn). Function REDUCESINGLEGROUP runs at most IT ER
iterations in the outer loop. The inner loop iterates over each
port. So REDUCESINGLEGROUP takes O(p·IT ER). Each
iteration of oversub relaxation (line 5-11) takes O(pn·IT ER).
In the worst case, oversub relaxation stops when all groups are
pruned until one port is left (zero port left means traffic loss).
Here we make a reasonable assumption that a set of singleton
groups must fit. This means the while loop (line 5) runs at
most O(pn) times, hence making step 2 O(p2n2 ·IT ER). Step
3 Group Sharing requires scanning all groups and their ports

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 687

Table 3: Group table space usage on sampled S1/S2/S3
switches by different group types.

stage group type original usage post-reduction
S1 src 8 entries 8 entries
S2 src 1746624 entries 64 entries
S3 src 2241913 entries 18285 entries
S1 transit 0 entry 0 entry
S2 transit 162112 entries 64 entries
S3 transit 792738 entries 60 entries

p50 p99 max0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Lin
k

Ut
iliz

at
io

n

TE solution
WCMP TF unlimited
WCMP TF

(a)

−40 0 40 80
Link util. delta (%)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

WCMP TF unlimited
WCMP TF

(b)

p50 p99 max0.0
0.1
0.2
0.3
0.4
0.5

Lin
k

Ut
iliz

at
io

n

TE solution
DMIR unlimited
DMIR

(c)

−8 −4 0 4 8
Link util. delta (%)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

DMIR unlimited
DMIR

(d)

p50 p99 max0.0
0.1
0.2
0.3
0.4
0.5

Lin
k

Ut
iliz

at
io

n

TE solution
IGR unlimited
IGR

(e)

−4−2 0 2 4 6 8
Link util. delta (%)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

IGR unlimited
IGR

(f)
Figure 16: (a, c, e) Median and tail link utilization if running
original group reduction algorithm vs. running it with infinite
group table size, so that there is only precision loss caused by
rounding weights. (b, d, f) Per-link utilization delta over the
TE solution.

to mark duplicates, so it is O(pn). Overall, the time complexity
of IGR is O(pn+p2n2 ·IT ER+pn), which is polynomial.

D Extra evaluation
D.1 Quantization error
Rounding fractional weights in groups to integers introduces a
minor yet acceptable quantization error. We choose to express
weights in Mbps so that the quantization error of rounding is
at most ±1Mbps. Weights in Kbps or bps can further reduce
quantization error, but it comes at a cost where the Protobuf

is bloated with larger integers. Figure 16 shows that the
quantization error of Mbps granularity is sufficiently small.

We repeat the baseline fabric/TM experiment using three
group reduction algorithms, WCMP TableFitting, DMIR and
IGR, with unlimited group table space on each switch. In other
words, the original fractional weights in each group only need
to be rounded to integers, but will not be reduced in size—as
there is infinite group table space to store any arbitrary number
of entries. The precision loss over the TE solution from each
group reduction algorithm with unlimited table space reflects
the pure impact of rounding.

For instance, WCMP TableFitting is significantly improved
with unlimited table space. The TE implementation is almost
identical to the TE solution. Per-link utilization delta over the
TE solution is also reduced to close to zero, which means there
is very minimum oversub and the implementation overall is
accurate. Similarly, for DMIR and IGR, the implementation
is also improved, although the improvement is not as large as
WCMP TableFitting. The TE precision loss (i.e., quantization
error) achieved by all three group reduction algorithms is
generally under 0.01%.

D.2 Table usage
Table 3 lists the group table usage statistics from sampled
S1/S2/S3 switches in the baseline fabric from §5.4. The
original usage column indicates the number of entries required
if the table space is unlimited (pre-group-reduction). The
post-reduction column indicates the actual number of entries
consumed found on the switch (after running group reduction).
We can see that table usage on S1 switches is low and group
reduction is irrelevant here. This is because the groups are
always ECMP on S1 switches and a shared group is used for
serving all demands. As mentioned in §4, the Group Sharing
heuristic significantly reduces the number of entries required
by transit groups to no more than 64, on both S2 and S3
switches. The src groups on S3 switches see a table usage
reduction from 2241913 to 18285—a 122× reduction!

D.3 Spread in TE solution
Figure 17 demonstrates the link utilization relative to optimal
link utilization under shifting traffic demands for 7 different
production spine-free fabrics. As can be seen, 50% spread
generally yields the best link utilization comparing to other
spreads. In some fabrics, e.g., Fabric A and Fabric D, 25%
or 75% spread can achieve a link utilization similar to 50%
spread due to the traffic demands on these fabrics are either
more stable or more uncertain.

Figure 18 plots the CDF of per-link utilization delta under
different spreads. Some links are severely under-utilized
and some are severely over-utilized by up to 65%. However,
the relative percentage change in link utilization does not
always translate into high absolute link utilization because the
traffic volume carried on such links can be low. We are more
interested in the absolute link utilization than per-link delta.

688 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

p50 p90 p991.0
1.2
1.4
1.6
1.8
2.0
2.2

lin
k

ut
il.

 /
op

t

Fabric A

p50 p90 p99

Fabric B
0%
25%
50%

75%
100%

p50 p90 p99

Fabric C

p50 p90 p99

Fabric D

p50 p90 p99

Fabric E

p50 p90 p99

Fabric F

p50 p90 p99

Fabric G

Figure 17: Production link util. of various TE spreads for 7 different fabrics.

−20 −10 0 10
0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Spread=0%
WCMP TF
IGR
DMIR

−20 −10 0 10 20

Spread=25%

−40−20 0 20 40 60
Link utilization delta over TE solution. (%)

Spread=50% (common)

−60−40−20 0 20 40 60

Spread=75%

−30 −20 −10 0 10

Spread=100%

Figure 18: CDF of each link’s delta over TE solution

0.5 0.6 0.7 0.8 0.9 1
.01

.1

1

no
rm

al
ize

d
FC

T Fabric U (spine-free)

0.5 0.6 0.7 0.8 0.9 1

Fabric V (spine-free)

0.5 0.6 0.7 0.8 0.9 1

Fabric X (spine-free)

0.5 0.6 0.7 0.8 0.9 1

Fabric Y (spine-free)

0.5 0.6 0.7 0.8 0.9 1

Fabric Z (Clos)
64KB p50
64KB p99
2MB p50
2MB p99

normalized avg link util.
Figure 19: Production flow completion time vs link util. for 5 fabrics.

Figure 20: Original path diversity (x-axis) vs. reduced path
diversity (y-axis) for each group of 64 ports.

D.4 Flow completion time
Figure 19 extends Figure 11 in §5.7 and shows a total of 5
production fabrics. The first 4 fabrics are spine-free fabrics of
different sizes and the last one is a large traditional Clos fabric.
As we can see, these fabrics share the same general trend—tail
flow completion time of large flows could increase drastically
as the average link load increases. In terms of network topol-
ogy, spine-free fabrics see no difference than the Clos fabric,
which confirms that the tail FCT increase is a universal trend.

D.5 Reduced path diversity
Group Pruning is a mechanism to further reduce group sizes
while sacrificing path diversity. With the pruning policy
introduced in §4.1, we try to minimize the impact on path
diversity by pruning the small weights in the groups. Figure 12
and Figure 20 confirm that the chosen pruning policy indeed
has very minor impact on path diversity. We obtain all the
groups in the baseline fabric and plot a scatter plot of their
used paths in the TE solution vs. TE implementation. As
Figure 20 shows, groups (markers) on the y = x line are not
pruned and see no reduction in path diversity. Those not on
the line have reduced path diversity. The closer a group is to
the x-axis, the more reduction in path diversity it has. DMIR
is more aggressive in pruning, some groups could have only
a few paths left. However, such groups only constitute less
than 0.003% of the total groups (48 out of 1350624) and their
traffic impact is insignificant as discussed in §5.8.

One might argue that even 48 groups (of one single port left)
would be a blast radius too large. If link failure does happen,
traffic on these groups will be dropped. However, these 48
groups are distributed across different switches, they do not
share the same port/link. The probability for all of them to fail
simultaneously is extremely low. On the other hand, we have
implemented a protective lower bound in the Group Pruning

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 689

heuristic. If users prefer not to have single-port groups, they
can set this lower bound to a number greater than 1 (e.g., 2). In
which case, Group Pruning will stop when there are only two
ports left in the group. The larger this lower bound, the less

likely the group is going to drop its traffic (unless all ports in
the group fail). But this also comes with a disadvantage: groups
may no longer fit in the table if the lower bound is set too large.

690 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Multitenant In-Network Acceleration with SwitchVM

Sajy Khashab
Technion

Alon Rashelbach
Technion

Mark Silberstein
Technion

Abstract
We propose a practical approach to implementing multite-

nancy on programmable network switches to make in-network
acceleration accessible to cloud users. We introduce a Switch
Virtual Machine (SwitchVM), that is deployed on the switches
and offers an expressive instruction set and program state ab-
stractions. Tenant programs, called Data-Plane Filters (DPFs),
are executed on top of SwitchVM in a sandbox with memory,
network and state isolation policies controlled by network
operators. The packets that trigger DPF execution include the
code to execute or a reference to the DPFs deployed in the
switch. DPFs are Turing-complete, may maintain state in the
packet and in switch virtual memory, may form a dynamic
chain, and may steer packets to desired destinations, all while
enforcing the operator’s policies.

We demonstrate that this idea is practical by prototyping
SwitchVM in P4 on Intel Tofino switches. We describe a
variety of use cases that SwitchVM supports, and implement
three complex applications from prior works – key-value store
cache, load balancer and Paxos accelerator. We also show
that SwitchVM provides strong performance isolation, zero-
overhead runtime programmability, may hold two orders of
magnitude more in-switch programs than existing techniques,
and may support thousands of concurrent tenants each with
its private state.

1 Introduction

Data-plane programmable PISA switches1 transformed the
field of in-network computing from dream into reality. By
enabling stateful custom packet processing at a switch line-
rate, they offer dramatic performance boost in infrastructure
services such as telemetry [26, 33, 35] and congestion con-
trol [18, 34], and accelerate networking applications such as
load balancers [24, 37, 59], distributed protocols [10, 11, 31],
concurrency control [30, 54], aggregation [42, 43], storage
[22, 23, 32], and more [25].

Unfortunately, the benefits of in-network application ac-
celeration have only been accessible to data center opera-
tors. The vision of in-network programs being deployed in
switches by tenants [28,50] has so far remained quite far from
materialization. The main obstacle is well-known: existing
switches, such as Intel Tofino [19], lack the essential support

1We only discuss programmable switches, so we omit programmable in
the rest for brevity.

for multitenancy as they do not guarantee fault, resource, and
performance isolation of individual programs. Furthermore,
they cannot enforce the program compliance with operator
security policies, and require expensive reconfiguration each
time a new program is installed, causing traffic disruption for
all tenants. These limitations are further aggravated by the
severe scarcity of on-switch hardware resources partitioned
among co-resident data-plane applications.

Motivated by the need for in-network acceleration of ten-
ants’ applications, recent proposals tackle the challenge of
switch virtualization. These solutions, however, still have
some practical limitations. Novel switch hardware [15, 28, 44,
46,49] offers isolation, but the perspectives of its adoption are
unclear. Others propose to run P4-based hypervisors [17, 56]
to guard the execution of application code, but high resource
demands limit their application to FPGAs and software targets
rather than ASIC switches such as Tofino. Another approach is
to merge multiple P4 programs into a single one while enforc-
ing isolation among them in software [41, 50, 58]. However,
neither does this approach guarantee fault isolation nor does
it scale beyond a handful of co-resident programs because the
switch resources must be provisioned at compile-time for the
aggregate of their hardware demands. Further, deploying a
new program requires recompilation and reconfiguration that
disrupts the traffic through the switch. Runtime programmabil-
ity for partial reconfiguration alleviates the traffic disruption
problem [53] but still requires an isolation-aware source code
merging mechanism to allow multitenancy.

In summary, multitenancy poses two fundamental chal-
lenges: (1) how to execute code on physical network switches
while constraining it to a stringent security sandbox guarded
by network operators; (2) how to enable a concurrent deploy-
ment, execution and update of thousands of switch programs
while assuring strong isolation among tenants.

We advocate for a Language-Level Virtualization approach
to overcome these challenges. The switch runs a Switch Vir-
tual Machine, SwitchVM, which executes Data-Plane Fil-
ters, (DPFs), written using a specialized, Turing-complete
Instruction Set. SwitchVM dynamically loads a DPF spec-
ified by the tenant on a per-packet basis, either from pre-
deployed in-switch libraries or from code located in the pack-
ets themselves. SwitchVM allows every packet to be pro-
cessed by a different DPF, allocating switch hardware re-
sources on demand per DPF while reusing the VM runtime.
Thus, SwitchVM introduces a runtime interpreter for DPF

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 691

code that translates it into switch operations using a shared
dataplane runtime. This approach enables time-sharing of
switch hardware across multiple DPFs, as opposed to static
resource partitioning in alternative solutions, and is key to
achieving superior multi-tenant scalability.

SwitchVM is inspired by software sandboxing techniques
such as Berkeley Packet Filters (BPFs) [36]. DPFs are Turing-
complete, yet they are less flexible than P4. Notably, DPFs
cannot parse new protocol headers or define match-action
tables with arbitrary keys and actions. Nevertheless, DPFs
are powerful enough to implement a variety of sophisticated
in-network applications. A DPF may perform arithmetic oper-
ations or hashes on packet header fields, update the in-switch
program state, and modify the packet forwarding depending
on the execution output, e.g., by choosing from a pre-defined
set of possible destinations or by performing a multicast. We
discuss many applications (§4), and fully implement a Key-
Value cache [23], count-min sketch [9], Paxos accelerator [10],
and several load balancers [40, 59]. Furthermore, SwitchVM
architecture is modular and can be easily extended to imple-
ment additional functionality, e.g., as new instructions.

DPFs of the same tenant may share a state in a switch. At
the same time, SwitchVM ensures strict resource isolation
between DPFs across tenants. A DPF uses virtual registers
with load/store instructions to access the state in the packet,
in-switch meta-data, or access virtual per-tenant space in the
switch memory. In RMT switches, DPFs invoked by different
packets will only observe consistent updates to the shared
state thanks to the per-packet atomicity guarantees of the
pipelined architecture. Proper placement of DPFs in multi-
pipeline switches is crucial for achieving this consistency
(§3.1). Furthermore, cross-tenant performance isolation is
achieved thanks to the RMT line-rate throughput guarantees.

Crucially, SwitchVM restricts DPFs to a sandbox, giving
fine-grain control over the data-plane functionality to opera-
tors on a per-tenant basis. SwitchVM enforces the sandbox
policy at runtime because DPFs originate from untrusted ten-
ants. Deployment of DPFs is performed via a control plane.
Runtime reconfiguration by a tenant, i.e., code deployment
and resource allocation, has no impact on the traffic of other
tenants, as it is equivalent to adding/removing entries of
match-action tables. Operators may deploy a per-tenant se-
curity policy, such as disallowing access to switch state, use
of packet steering, or disabling DPF execution. The switches
that are not authorized or unable to execute DPFs forward
the packets as usual as they are compatible with network
encapsulation protocols.

DPFs may reside in packets, similar to capsule-based active
networks [13, 21, 45, 47, 48], and also pre-stored in a switch
and invoked on-demand. In-switch deployment option is im-
portant because it eliminates the non-negligible bandwidth
overheads of the DPF code header in a packet, and enables
code sharing among tenants thus saving in-switch resources,
yet without compromising inter-tenant state isolation.

Under the hood, SwitchVM implements a pipeline of
generic Execution Units (EUs) that enable Multiple Instruc-
tion Multiple Data instruction execution, with several virtual
registers and an extensive instruction set. Each DPF is spa-
tially mapped onto the EUs. DPF chaining is supported by
allowing a DPF to choose and invoke another DPF in the same
or different switch to implement more complex logic.

We prototype SwitchVM on Intel Tofino-1. Implement-
ing such a complex mechanism in P4 under tight hardware
constraints is a formidable challenge. The key goal has been
to fit as much logic as possible in a single hardware stage
to increase the maximum instruction count of a single DPF.
Higher instruction count allows DPF execution in a single pass
through the switch, thereby eliminating bandwidth overheads
associated with recirculation, and guaranteeing atomicity of
accesses to a shared switch state, as well as strict performance
isolation among DPFs.

We evaluate SwitchVM on a range of microbenchmarks
and real-world applications of in-network acceleration which
were originally developed in P4 in prior works. We demon-
strate that performance overheads of SwitchVM compared
to the P4 analogous code are negligible or none, whereas it
allows concurrent execution of thousands of DPFs from dif-
ferent tenants, each with its own private state. We also show
zero-overhead reconfiguration without packet loss, and strong
performance isolation among different DPFs.

2 Motivation

The demand for in-network data-plane acceleration of net-
work applications is steadily growing, and there is an abun-
dance of proposals to use data-plane programmable switches
for that purpose [10, 22, 23, 25, 40, 59]. Such switches have
become a commodity, with offerings from multiple vendors,
most notably Intel [19], Broadcomm [5], Juniper [38], and
NVIDIA [39].

In practice, this acceleration has been accessible only to
the data center’s operators, not its tenants. Predeploying in-
network applications as services by the data center is possi-
ble, but these applications might require fine-tuning for the
needs of the specific tenant, i.e., custom-specific policies for
the RPC scheduler [27], or non-standard key-value sizes and
cache admission policies for KVS [23]. Such fine-tuning is
impractical on a per-tenant basis.

Building general in-switch acceleration services that can
suit multiple use cases of different tenants is notoriously dif-
ficult due to the switch’s hardware constraints. Satisfying
these constraints is fundamental to achieving high perfor-
mance on any architecture, as both Reconfigurable Match
Table switches (RMT), e.g., Intel Tofino, and disaggregated
RMT (dRMT) switches, e.g., NVIDIA Spectrum, cannot guar-
antee line-rate throughput if attempted to execute a program
that does not fit their hardware constraints.

692 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Multitenancy in the switch would enable tenants to acceler-
ate their own virtual networking infrastructure with custom
network stacks and functions. Similarly, tenants might need
to deploy custom in-network telemetry to debug their network
performance. These services are difficult to offer as a gen-
eral service since the internals of tenant virtual networks are
usually not visible to the data center operators.

In summary, switch multitenancy is not supported today, but
could have significantly extended the range of applications
accelerated on switches in data centers and clouds.

2.1 Challenges

Present ASIC-based programmable switches lack the neces-
sary mechanisms for multitenancy. Their programs expect to
run assuming unmediated access to all hardware resources,
and existing platforms do not provide any kind of privilege
separation necessary to isolate tenant applications from the
infrastructure packet processing logic. Any bug in a program
may disrupt the stability of all the network traffic. Therefore,
network operators might be reluctant to use the solutions that
merge P4 programs of multiple clients into a single one to be
executed on the switch [7, 41, 50, 58].

Another challenge stems from the need to support thou-
sands of tenants with their own in-switch programs. Existing
compile-based solutions that merge multiple P4 programs, or
allow runtime reconfigurability in hardware [15,49,53], allow
co-residency of about a dozen of programs, which is a few
orders of magnitude less than needed.

Last, allowing a program to be dynamically updated with-
out disrupting the rest of the network traffic is difficult. Recent
works have introduced runtime reconfigurability by extending
the dRMT [53] and RMT [49] architectures. The dRMT ex-
tensions are indeed feasible on existing CPU-based switches,
but the RMT modifications are more invasive as they require
hardware changes. Our goal is to achieve runtime reconfig-
urability without architectural changes.

2.2 Packet Filters for Switches

The primary tenet of multi-tenancy is per-tenant isolation of
state, faults, and performance. Language Virtual Machines
(LVM), such as the Java Virtual Machine, can achieve the
first two. Such virtual machines enable full sandboxing of the
untrusted tenant code, with fine-grain control over the acces-
sible hardware resources. Furthermore, it may help solve the
current scalability issue by enabling switch compute resource
sharing among the programs, by loading and unloading the
relevant bytecode at runtime, without provisioning the actual
hardware resources at compile time for all co-resident pro-
grams as has been done till now. Last, if such an LVM could
run at line-rate on an RMT switch, then it would be possible
to provide perfect performance isolation among the tenants.

Implementing a general-purpose high-performance VM
in RMT systems is clearly unrealistic. Fortunately, however,
many data-plane programs do not require such a VM, and
involve relatively simple, more restricted logic. This obser-
vation is not new, as it served the designers of the popular
Packet Filters [36] (BPF) virtual machine to allow the execu-
tion of untrusted code in the OS kernel. Drawing inspiration
from BPFs, we seek to build an LVM to be executed on a
switch, while potentially restricting the scope of programs
that it can run efficiently and deviating from the standard P4
programming model.

Last, by implementing our design in P4, we intend it to
be modular and flexible, serving as the framework for im-
plementing a broader set of in-switch functions tailored to a
particular network environment.

2.3 Target Switch Architectures
Switch architectures with data-plane programmability range
from ASIC pipelines (i.e., Intel Tofino, RMT) and FPGAs to
manycore CPU processors (i.e., NVIDIA Spectrum-3, dRMT),
as well as a variety of hybrid designs. Among these, Tofino
switches have been prominent in in-network computing re-
search for the past few years. This success can be attributed to
the ability to execute stateful packet processing logic, defined
using the P4 language, while maintaining line-rate perfor-
mance on a multi-Tbps switch. These capabilities lead us
to focus on the Tofino RMT architecture as the target for
SwitchVM design.

We believe, however, that the concept of running in-
network programs in a Language Virtual Machine sandbox to
offer scalable multi-tenancy in resource-constrained switches
is not limited to RMT architecture. Yet, using other archi-
tectures may involve different design considerations. For in-
stance, CPU-based switches may benefit from Just-in-Time
compilation to reduce virtualization overhead. We leave the
exploration of other architectures for future research.

3 Design

SwitchVM enables secure and isolated per-tenant execution
of short programs, called Data Plane Filters (DPFs). DPFs are
invoked for each packet arriving at the switch. The packets
include the input and the reference/code of the DPF to invoke.
DPFs are executed inside a sandboxed environment controlled
by the operator. We first discuss the DPF programming model,
and then explain the SwitchVM design.

3.1 Programming Model
A DPF comprises three sections. A prolog specifies the loca-
tion of the input parameters and initializes the DPF execution
registers. A body specifies the actual data-plane logic using
the SwitchVM instruction set. An epilog determines what to

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 693

Instructions Description Instructions Description
Data Movement ALU Operations

MOV R1=R2 ADD SUB A = A op B
LOAD_IMM B=imm AND OR XOR
LOAD_CONST B=const_tbl[imm] LSH RSH NEG A = op(A)
HASH A=hash(A) MIN MAX A = op(A, B)

Memory Operations Control Flow
LOAD B = mem[A] HALT Goto END
STORE mem[A] = B JMP Goto pc

FAADD FAOR
FAAND FAMAX

t=Mem[A]
Mem[A]=op(t, B)
B=t

BEQ BSET BLT
BGT BLTS
BGTS

Goto A==B ?
pc_taken :
pc_not_taken

Prolog Epilog
POP R=stack.pop() PUSH stack.push(R)
PEEK R=stack.peek() FWD fwd according to R
LOAD_MD R=MD[md_idx] NEXT_PC pkt.next_pc = R
RAND R=rng.get() HDR_MOD drop DPF from pkt

Table 1: SwitchVM Instruction Set with representative in-
structions of each type. A/B are the register types, R can be
either, other values are immediates.

do with the packet after the DPF completes, e.g., send it to a
new destination based on the DPF output. It may also store
the DPF outputs in the packet.
In-packet state. The data inside the packet is handled as a
stack, similar to Tiny Packet Programs [21]. It can be read
in the prolog and written in the epilog. This is convenient:
when a packet traverses multiple switches, each pops the
inputs and pushes the output back to the stack, simplifying the
implementation of multi-switch applications. A variable-size
stack allows each application to allocate precisely the required
packet space, potentially growing or shrinking a packet during
processing, using a single unified SwitchVM parser.
Body. The code is organized into a sequence of Execution
Stages (ES), each comprising several instructions arranged in
lanes. The instructions in an ES are executed in parallel, effec-
tively implementing a Multiple-Instructions-Multiple-Data
(MIMD) program. Intra-lane parallelism is also available:
each lane may concurrently execute instructions of different
types. There are three types of instructions: ALU operations,
in-switch memory access and control flow branches.

Instructions use virtual registers shared across the execu-
tion stages. Thus, DPF computation can be seen as the process-
ing of information in the registers while it is flowing through
the pipeline of DPF ESes. There are two sets of registers,
A and B, and certain restrictions apply to their usage, e.g.,
only A registers may be used as addresses for memory access
instructions. Memory is virtualized to provide inter-tenant
isolation.

DPFs inherit the constraints of the RMT pipeline. Therefore,
a memory buffer is accessible only to a specific ES and lane,
since a packet may access each memory location only once.
Instruction set. The SwitchVM instruction set is summarized
in Table 1. Some instructions have restrictions. First, they
might support specific register types (either A, B, or both).
Second, some instructions are limited to the prolog/epilog
DPF sections only: register initialization is restricted to the
prolog, while packet steering, program-counter modification,

and stack enlargement must be performed at the epilog. Other
instructions are not limited to specific DPF sections.
Turing completeness. Turing completeness of a computa-
tional system implies that it is universal, i.e., it can perform
arbitrary computations. A system is Turing-complete if it can
access arbitrary memory locations and read/write any amount
of data, and perform conditional jumps [16]. SwitchVM in-
struction set satisfies these requirements.
DPF size. The number of instructions in a DPF is constrained
by the availability of hardware resources. If the application
code does not fit in a single DPF, dynamic chaining can be
used whereby one DPF may choose to invoke any other DPF,
enabling them to be automatically invoked one after the other.
The sequence of DPFs may run either on the same switch (via
recirculation) or on another one. We note that recirculation
might affect the performance isolation, so we strive to enable
the execution of complex DPFs in a single switch pass. For
non-RMT switches, DPFs can be sized for line-rate processing
to achieve performance isolation in the common case.
Atomicity execution semantics. DPFs naturally inherit the
per-packet atomicity execution semantics offered by the RMT
architecture. Specifically, the intermediate state updates done
by a packet are not visible to other packets that invoke the
same DPF on the same switch pipeline. Moreover, the state
shared among multiple DPFs of the same tenant is also up-
dated atomically, significantly simplifying the program de-
velopment. Multi-pipe switches, such as Tofino, comprise
multiple packet processing pipelines, each designated to serve
a subset of ports. Switch allocation to run DPFs in a data cen-
ter (§3.8) must consider the switch configuration to guarantee
atomicity for a particular DPF.
Example: in-switch counter. Assume that several clients
mark their outgoing packets with a unique application ID
∈ {1, . . . ,N}, and wish to count the total number of packets
per ID. One possible implementation of this logic in a DPF is
as follows. The DPF maintains one counter per ID allocated
to lane 0 of EU 0. The ID is used as a memory address of
the counter. The prolog POP-s the ID from the stack head in
the packet into register A[0]. Then, EU 0 loads constant 1
(LOAD_IMM) into register B[0], and invokes a fetch-and-add
(FAADD) operation in that lane to update the counter. The
epilog then can PUSH back the ID back onto the stack along
with the counter value. DPF placement and memory allocation
for the counters are executed by the control plane in the setup
stage, as explained in §3.8.

3.2 SwitchVM Design

Figure 1 shows the high-level design of the SwitchVM pro-
cessing pipeline. It comprises several fixed function modules:
Filtering and Permissions, Prolog, and Epilog, as well as a
variable number of Execution Units, (EUs). Each EU has L
lanes which is analogous to an execution unit of a Very Large
Instruction Word (VLIW) processor. Each Execution Stage

694 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Filtering
and

Permissions
Prolog

EU 1 EU K...
CodeCode ...

...
Epilog

Forward
pkt

pkt
pass
drop
...
mirror

Data

DPF

Body
In-Switch Memory

Figure 1: SwitchVM data-plane processing pipeline.

of a DPF is mapped onto its own EU. The instruction schedul-
ing is static, i.e., a DPF specifies which instructions must be
scheduled on which EU and each lane. The maximum number
of EUs determines the maximum number of instructions in
the DPF, and depends on the number of available hardware
stages in the switch. The maximum number of lanes is deter-
mined by the number of match-action tables that can applied
in parallel at a single hardware stage. For example, we can
place 4 and 8 EUs in Tofino-1 and Tofino-2 respectively.
Packet processing flow. The packet is first passed to the
Permissions module which determines whether a tenant may
invoke a DPF. The Prolog then prepares the inputs of the
first EU. The EUs then execute the DPF body. Finally, the
Epilog prepares the output packet, and the Steering executes
the forwarding logic.

3.3 Filtering and Permissions
The permission module is not visible to an executing DPF. It
is managed by a privileged operator.

When a packet first enters the pipeline, its trusted
tenant_id is matched against the permissions table. This ta-
ble is programmed by the operator for each tenant that wishes
to run a DPF. The table contains the action to perform on a
packet that attempts to invoke a DPF without authorization
(i.e., drop or pass), and also may specify the default DPF to
invoke on any packet from that tenant. The table also stores
a bit vector that controls tenant’s access to certain functions
such as access to the switch metadata.

In addition, a user may want to invoke only a subset of DPFs
on a subset of switches. She specifies a special app_id token
when asking for the DPF authorization. This token is stored in
the Permission table as well. It must match the app_id token
in the packet to execute a DPF. We use this functionality in
our KVS cache application (See §4).

3.4 Program Loading and Initialization
The prolog module is responsible for initializing the virtual
registers (2L, where L denotes the number of lanes) used
as inputs for the first EU. The initial values can come from
three sources: the in-packet stack (POP,PEEK), switch meta-
data (LOAD_MD), or from a random number generator (RAND).
These instructions are the only ones available in Prolog.

Initializing registers from the packet stack cannot lead to
underflow since the data stack size is known. The switch

metadata may include ingress/egress ports, timestamps, or
a switch identifier. Execution of LOAD_MD can be restricted
to specific tenants to keep the network topology hidden for
the rest. Access to predefined protocol fields, e.g., TCP/IP
headers of inner packet, could also be supported in the same
manner, assuming it aligns with the operator’s sandboxing
policy.

The code for each segment (prolog, execution units, or epi-
log) may reside in a packet, or in the SwitchVM code memory
in the switch. A pointer to the prolog is taken from the packet
header, or is passed from the Permission module, effectively
enforcing invocation of a default DPF for the current tenant
on all the packets even without the SwitchVM header. The
prolog transfers the execution to the first EU, by specifying
the pointer to the first EU’s instruction.

3.5 Epilog and Steering
The epilog pushes the results of the computations into the
in-packet stack (up to 2L entries). It works similarly to Prolog.
Specifically, the only operation that can be executed is PUSH,
using any register as its input.

The epilog code additionally defines how to steer the
packet. This is determined by a dedicated immediate
value in the epilog, or from any of the 2L registers. This
value is then used to fetch a matching entry from a for-
warding table defined for the specific tenant_id. We
currently support the following actions (but more can
be added): pass, drop, return-to-sender, forward,
multicast, set_port, recirculate.

The default action is pass. The set_port and
recirculate actions are reserved only for privileged ten-
ants. Since the network uses encapsulation, some of these
actions can also affect the headers of the encapsulated packet.
Updates to the steering table require the use of privileged
control-plane requests to allow secure handling of virtual net-
work address translations without disclosing the physical IPs
to the tenant as we explain below.

A DPF may drop the code header after execution, saving
bandwidth if there is no need to keep it.

3.6 Execution Unit
The architecture of a single EU is shown in Figure 2. An EU
comprises L lanes. For each lane, each EU holds several fixed-
function modules: Selectors that determine how to move data
among registers, an ALU (one per lane), an in-switch memory
access (one per lane), and a branching unit (one per EU) that
determines the instruction pointer for the next EU. These
modules are divided between two switch pipeline stages, and
all modules in the same stage are executed in parallel.
Registers. An EU operates on 2L 32-bit registers, two for each
lane. These are divided into 2 groups: A[1..L] and B[1..L]. Due
to resource constraints, the registers from different groups

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 695

B[1]
...
B[L]

A[1]
...
A[L]

B[1]
...
B[L]

A[1]
...

B[L]

A[L]

CompareCurrent
Code

Next
Code

A[1]
...
A[L]

B[1]
...

Selection

Control
MEM

Address
Translation

Memory
Access

addr

ALU
oprnd2

oprnd1
Selection

data

Figure 2: Execution Unit (EU) architecture.

have minor usage restrictions. Specifically, only A registers
are allowed to compute a hash of their previous value, and
only B registers may store an immediate or a constant. These
constraints are insignificant in practice but allow reducing
required switch resources per EU, specifically the action in-
struction memory and hashing logic, as shown in §5.1.

The Selector module allows transferring data among ar-
bitrary registers via MOV instruction. This is crucial because
ALUs are constrained to execute operations only on the regis-
ters belonging to the same lane, as explained next.
ALU. Each ALU only performs 32-bit operations on regis-
ters from its lane, i.e., ALU i operates on A[i] and B[i]. The
supported set of operations can be easily extended (§3.7).

3.6.1 Memory Access

A DPF invokes LOAD, STORE and a few atomic operations to
access in-switch memory buffers. These buffers are separately
allocated for each EU, and each lane in the EU, without the
ability to share them among EU instructions. As mentioned
earlier, this limitation is due to Tofino RMT implementation
(see §3.1).

DPFs may only access virtual memory to isolate memory be-
tween tenants. The memory is allocated by the control-plane
API. Memory accesses involve virtual-to-physical address
translation as we explain next. Once translated, the respective
memory instruction is executed. The address operand in lane
i is provided in A[i], and B[i] is used for the stored or loaded
data.
Virtual address translation. SwitchVM supports two types
of translation mechanisms. A segment-based memory transla-
tion allows allocating power-of-two-sized contiguous buffers.
The allocation request specifies the requested virtual address
and the buffer size. The control plane then allocates a con-
tiguous range in physical memory, and uses TCAM to store
the virtual address range as a key, and the numerical offset
between the virtual and physical addresses as a value. The
virtual address needs to be aligned to the segment’s size.

When attempting to translate any address in this buffer, that
address will match the allocated range and TCAM will re-
trieve the offset, allowing one to compute the physical address
by adding that offset to the virtual address. For example, given
the virtual address 0x4 and the request to allocate 4 bytes,

the control plane may allocate a physical buffer of that size
at physical 0x2. The TCAM will store the range 0x4-0x7
as the key (using the mask 0xC), and the offset -2 as the
value. When accessing virtual 0x6, the respective physical
is computed as 0x6-2. Note that if a virtual address is not
mapped, it will not be found in the translation table, so no
buffer overflows are possible.

However, for the cases where we need to store sparse data
structures such as hash tables, the segmented allocation is
wasteful. Using many small segments depletes the TCAM
storage (about 1500 ranges per lane), whereas large ranges
waste too much memory due to internal fragmentation.

In applications where the data to store is known in advance,
one can create one-to-one virtual addresses mappings we
call direct. These mappings are stored in a table with up-to
45K entries per lane. One notable example of using direct
mappings is a KVS cache (see §4).
Memory Isolation. The entries in the translation tables are all
amended with tenant_id as another key. Thus, each tenant
may access only its own translation table.

3.6.2 Control Flow

Branching is essential to support realistic DPFs. Each EU
contains a single Control Flow Unit (CFU) that implements
different types of branches. Thus, DPFs specify the addresses
of the instructions in code memory, or from the packet.

Each stage in a DPF, including prolog, EUs and epilog, may
alter the control flow and choose the instructions invoked in
the next stage. The CFU may use any register to compute
the predicate and determine whether a branch is taken or not.
The code specifies the instruction pointers for both taken and
not-taken branches. SwitchVM supports multiple types of
conditional and unconditional branches.
Code memory. To allow code sharing among DPFs, code
memory is not virtualized and provides no memory protection.
The security is not compromised, because the DPF memory
isolation, permissions, and steering are enforced at runtime.
Thus, even though a DPF code is shared, each DPF instance
operates on a separate, per-tenant state.

The code addresses used in each stage point to code in the
following stage. For example, the addresses in the Prolog are
interpreted as addresses for the first EU, addresses in first EU
point to instructions in the second EU, and so on.

The use of instruction pointers per stage is useful for other
purposes too. First, it allows reusing code in switch mem-
ory by storing an init_pc that points to the prolog code
that needs to be executed. This pointer is stored either in the
packet (to invoke a specific DPF), or in the Permission table
of a switch to serve as a default DPF. This enables atomic
reconfiguration when replacing an in-switch DPF in-place, by
replacing the prolog only after all other stages of a DPF have
been stored in the switch. We demonstrate in-place replace-
ment in §6.2. Second, in the epilog, the code has the ability

696 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

to change the init_pc field in the SwitchVM header, which
allows service chaining whereby one DPF invokes the next
one in the next supporting switch. We show several examples
of such applications in §4.

3.7 P4 Extensions
We envision SwitchVM to serve as an extensible framework
that can be tailored to the needs of the specific environment
by minor modifications to its P4 implementation. Thanks to
its modular design, the modifications are localized. These
additions will extend SwitchVM’s capabilities and can be
invoked from DPFs.

SwitchVM parser can be easily modified to expose new
packet fields to a DPF and use them in the prolog to initialize
DPF registers. Similarly, it is possible to expose additional
switch metadata, such as port queue length. The steering unit
can also be updated with new steering policies. Further, new
instructions can be easily added to ALUs and memory units if
the hardware support is available. For example, one may add
support for bit slicing, or new Read-Modify-Write operations.
More elaborate changes may involve new fixed-function mod-
ules added to an EU. The code for these modules can be
integrated into an EU, and contain the control signals needed
to invoke them. For example, one may add a match-action
table that can match on multiple registers and access memory
from different lanes. Last, one may replace individual EUs
with fix-function units, e.g., complex data-plane sketch.

3.8 Control Plane
Control plane is used for managing authorization, deployment,
configuration, and memory allocation in switches. Our current
design assumes that this functionality is implemented in a
centralized controller managed by data center operators.
Authorization and Scheduling. DPF placement for in-
network computing must be taken into account by the data
center’s resource management and scheduling system [2–4].
A tenant may ask to invoke specific DPFs (or a DPF chain) on
certain switches along the data path of its virtual machines. To
prevent exposing the physical network topology to tenants, au-
thorization requests are expressed relative to a tenant’s virtual
network structure. Resource allocation should consider both
resource utilization and the network topology in order to en-
sure consistent processing of tenant’s DPFs across all packets,
in accordance with the packet routing policies. While these
aspects are beyond the scope of this paper, SwitchVM offers
flexible mechanisms to control the DPF execution (§3.3).
In-switch memory management. The mechanisms are sim-
ilar to the OS memory allocation. We implement a simple
first-fit allocation policy. Unlike the traditional allocators,
however, the tenant chooses the virtual addresses.
In-switch code deployment. Deploying a DPF involves sev-
eral steps. When a DPF does not invoke the code from other

DPFs (simplest case), the branch addresses it uses internally
can be automatically inferred during the deployment. The
physical address of the prolog is then reported to the user to
be specified in the packets. However, reusing in-switch code
requires knowledge of the addresses of the deployed code,
requiring a process analogous to linking, which currently is
performed manually.
Steering rules. The tenants use virtual networks with their
private IP addresses, thus they are unaware of the physical
addresses used to forward packets in a physical network. Thus,
updates to DPF steering rules require translation from the
virtual to physical IP addresses. The physical addresses are
not visible to the DPF. DPF chaining is already considered at
the authorization time, thus its effect on routing is acceptable
to the operator.
Switch state migration and replication. In-switch state be-
comes an integral part of the tenant’s application logic. Thus,
migration of a VM to a different location in the network
topology might require one to also migrate the state in the
respective switches. Multi-path forwarding in modern net-
works might require maintaining consistent program state
across multiple switches. Data-plane inter-switch replication
solutions [55] can be deployed by data center operators to
automatically synchronize the tenant’s state across switches.

3.9 Security
Tenant identifier. Ensuring isolation among tenants relies on
a trusted tenant_id, as it is used to distinguish tenants in all
the security-critical units in SwitchVM, such as steering and
virtual memory mappings. We use virtual network identifier
fields, e.g., VID or VXLAN ID, common to encapsulation
protocols, similar to prior research [28, 46, 49, 50].
DPF injection. Adding the DPF code or data to the packets re-
quires privileged access to the encapsulation protocol headers
via a hypervisor, which is expensive. One option is to add the
DPF invocation requests in the control path (e.g., by attaching
a function to an OS socket [14]), while adding the respective
headers during encapsulation. Another option that we leave
for future work is to modify the hypervisor networking in-
terface to specify DPF invocation requests per packet. The
in-packet data stack size needs to be validated at this point to
prevent under-/overflow during packet parsing and deparsing.
Steering, chaining and routing. By default, DPFs cannot
change packet steering nor routing, unless specifically autho-
rized via dedicated steering rules installed by the control plane.
These rules are tenant-specific, and they ensure that the tenant
packets cannot escape the virtual network. The same mecha-
nism applies to DPF chaining. In summary, neither steering
nor chaining can affect the packet’s original network path
without control plane authorization, which only installs rules
compliant with the network routing policies.
Unauthorized operations. Unauthorized access to memory
and the attempt to invoke non-installed steering rules is iden-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 697

Application DPF Logic Memory Mapping Packet State Steering Chaining

KVS Cache [23] Cache-put/get/update Math Direct,Segment In/Out Return-to-sender ✓
Count-min sketch [9] Hash,Math Segment In/Out Optional

Load Balancer
LB1 (Beamer [40]) Hash Segment Out Dest. array

LB2 (Batch) Math Direct Dest. array
LB3 (RackSched [59]) Rand Segment Dest. array

Paxos [10] Leader Math Direct Out Mulitcast ✓
Acceptor Math Segment In/Out Mulitcast,Drop ✓

Table 2: Applications implemented using DPFs and the features they use.

tified by SwitchVM and can be reported to a control plane for
further handling.
Denial-of-service with recirculation. Packet recirculation is
not allowed by default, and can be limited to specific appli-
cations. Further, per-tenant rate limiting can be employed to
guarantee performance isolation between recirculated packets
of different tenants. In theory, packets can be recirculated
indefinitely, as expected from a Turing-complete system. This
can be prevented using per-packet recirculation counters, akin
to the concept of gas in blockchain smart contracts [6, 52], or
by re-purposing in-packet TTL counters.

4 Applications

We explain several complex applications we implement using
DPFs (Table 2). More use-cases supported by SwitchVM are
described in Appendix C.

4.1 Key-Value Store Cache
We implement an in-switch KVS cache, similar to Net-
Cache [23] with keys and values of 4B and 12B, respectively.

Frequently accessed keys are cached and returned upon
GET requests, while PUT requests invalidate the respective
cached entries. The installation and eviction of the entries
are performed by the control plane and orchestrated by the
auxiliary mapping data stored in the server using UPDATE
operations. The cache evictions are guided by hit-counters
and a count-min sketch [9] for frequently accessed keys.

Figure 3 summarizes the GET, PUT, and UPDATE opera-
tions. There are four DPFs (in boxes) in the application.

We implement a chain of two DPFs on the miss path. Specif-
ically, cache-get invokes count-min in case of a miss. The
DPFs are invoked in two pipes of the same switch, as our
prototype only runs on the ingress pipe. These DPFs make use
of most SwitchVM functions as explained next.
Data structures. Denote the cache size as k. We use direct
mapping for k memory elements in EU0 for mapping keys to
<valid-bit, index> tuples. The valid bit is reset when an entry
is invalidated. The index represents the virtual address where
the value for that key is stored. Additionally, a null segment
mapping maps all misses to a single invalid tuple. Values are

Client Sketch

count
min

Cache

get1

2

Client SketchCache

put

update
ServersServers

Figure 3: In-swtich key-value store cache implemented using
SwitchVM. 1 and 2 show the flow of cache hit and miss
respectively. Cache-get/put/update and count-min represent
DPFs and the pipeline they are executed on.

stored in 3 k-large segment-mapped arrays in EU2 using 4B
per entry, and a k-large array in EU3 for the hit counters.
Cache-get. The prolog POPs the requested key from the stack
and EU0 fetches the corresponding <valid-bit, index> tuple. A
BSET (branch-if-set) in EU1 computes AND between an MSB
one-hot mask (MSB set) and the tuple’s valid-bit and accesses
the tuple’s index upon a hit. On a hit, EU2 LOADs the 12B
value, and EU3 atomically increments the hit counter using
a FA-ADD instruction. The epilog PUSHs the key and value
onto the stack, executes a return-to-sender steering policy,
and drops the code section. On a miss, the epilog PUSHs the
key onto the stack and changes the DPF pointer in the packet
code header to point to the Count-Min DPF, and the packet
continues to the next switch pipe.
Cache-put. The prolog POPs the requested key from the stack
and EU0 performs a FA-AND operation with an MSB one-cold
(all but LSB set) mask to mark the entry as invalid. Invalidat-
ing a non-cached key is okay, since it is mapped to an invalid
entry anyway. The epilog PUSHs the key onto the packet stack,
and changes the code pointer to a default empty program entry.
The packet then continues to the next pipe which passes it as
is.
Cache-update. The server maintains the mappings of valid
keys and their corresponding tuple indices in the switch cache.
Upon the installation of a new key, the server sends the index
of a free tuple to the switch, alongside the key and the 12B
value. The prolog POPs these values from the stack, EU0 maps
the key to the new tuple, and marks the tuple as valid using
an FA-OR operation with an MSB one-hot mask. EU2 STOREs
the 12B value and the epilog executes a return-to-sender
operation and returns the packet as an ACK to the server.
Count-min sketch. The prolog extracts the key into first
three lanes using two PEEKs and a single POP operations. EU0
HASHes these lanes using three different hashing polynomials,

698 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and ANDs the results to acquire only the logk least significant
bits. EU1 use the results as indices for atomically increment-
ing three counters using FA-ADD instructions. EU2 and EU3
extract the MIN value from all three counters. The epilog
PUSHes the key and the frequency back into the packet.
Selective execution. This application demonstrates the use
of app_id token for selective DPF execution. The server uses
the cache-update DPF, which executes at the cache switch.
The DPF needs to pass through the sketch switch, but it should
not be executed there. However, the tenant_id is already con-
figured there for allowing the count-min DPF to execute. Thus,
we use a separate app_id token for the cache-update DPF and
configure it only in the caching switch. We use a different
app_id for all other DPFs.
Comparison to NetCache. The key/value bitwidth is limited
in SwitchVM, due to the small number of lanes. Therefore,
the amount of data that can be read from the packet is lim-
ited too. The number of entries in the cache is also limited
because we divide the memory between VLIW lanes equally.
Consequently, while NetCache supports up to 64K entries,
16B keys, and 128B values, SwitchVM can only support up
to 45K entries, 4B keys, and 12B values.

4.2 Load Balancer
We implement three switch-accelerated load balancers.
Load-agnostic LBs. We consider two policies. LB1 splits
the traffic by hashing a user-defined value, as previously sug-
gested by Beamer [40]. LB2 schedules batches of 1024 pack-
ets to each server using round-robin.
Load-aware LB (LB3). Traffic is split according to load on
the servers. Similar to RackSched [59], requests are forwarded
to the least loaded server using an in-switch scheduler that
implements a power-of-two-choices selection. Servers send
their loads by piggybacking on existing traffic (Figure 4).

For lack of space, we only explain the details of LB3 DPFs.
LB3 setup. Denote the number of servers as 2m. We store
two copies of the server loads in two segment-mapped arrays
of size 2m, each assigned to a different lane of EU1. Updates
are assured to be consistent between the two arrays due to the
RMT per-packet atomicity guarantees.
Client requests. The prolog RAND-omizes two registers. EU0
AND-s each register with a mask to achieve the m least signifi-
cant bits per register. The results indicate the indices of two
servers. Next, EU1 LOAD-s the values of the server-reported
loads, and performs a conditional branch using BGT. The se-
lected packet steering policy is based on the branch result.
Server responses. The prolog extracts the server index and
updates two registers using two PEEKs and two POPs. EU1
uses these indices to STORE the new load into the correspond-
ing array entries. The packets are not modified.
Comparison to RackSched/Beamer. LB1 and LB3 func-
tionalities are identical to those of Beamer [40] and
RackSched [59]. RackSched uses a different memory for each

Client Servers

Steer

Update
Client Servers

Lead
Accept

1 2

Figure 4: 1 Load-aware load balancing. 2 In-network Paxos
acceleration with one leader switch and three acceptors.

IMM
FWD

Prolog SEL[0:7] SEL
OP2

POP
NUM FIRST_PC

Execute

IMM[0:1]

IMM[2:3] IMM_OP1 EXEC_OP[0:3]

MEM_OP[0:3] CTRL

Epilog
SEL
FWD

SEL
IG

SEL
EG

IMM
EG

SEL[0:7]

SEL[0:7]

HDR
MOD

IMM
IG

PC_TAKEN PC_NTAKEN

SEL
OP1

SEL
OP2

IMM_OP2

PUSH
NUM

Figure 5: Program encoding for prologs, EUs, and epilogs.

server load, allowing it to use a single copy. This, however,
limits the number of supported servers to a few dozens.

4.3 Paxos
Paxos [29] is a consensus protocol in which clients agree on
one proposed value. Figure 4 shows how we use DPFs for an
in-network acceleration of Paxos, similar to P4xos [10]. The
leader is similar to NoPaxos [31]. Due to space limitations,
we provide the DPF descriptions in Appendix A.

5 Implementation

Our prototype targets Intel Tofino [19] and has four EUs,
each with four lanes. Each lane has up to 45K 32-bit memory
entries and 1.5K segment mappings. The first lane of each
EU has additional direct mappings, possibly to all registers.
Overall, each DPF can execute up-to 16 ALU and 16 Memory
operations. Permissions and forwarding tables have up to
32K entries each. It is possible to store up-to 4K in-switch
instructions of each type. Assuming each DPF uses at most a
single two-way branch, as is the case with our applications,
the switch can store up-to 2K entirely distinct DPFs. These
can be shared among tenants thanks to virtual memory and
instruction pointers. We highlight only the most interesting
aspects of the implementation for the lack of space.
Packet structure. DPFs are stored in an option field of the
Geneve encapsulation protocol [20]. It includes parser hints,
data used by SwitchVM, optional ingress and/or egress DPFs
and a data stack. If the stack is small (up to 16 entries) it can
be fully parsed with the encapsulated packet (up to layer 4).
Code header. The code header encodes the DPF program
(Figure 5). All fields have a default nop operation to be ig-
nored by the relevant unit. The SEL field determines where
to read register values from. The EXEC_OP and MEM_OP
fields dictate which operation should be executed by the ALU

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 699

or Memory access. The CTRL field determines the DPF con-
trol flow. All SwitchVM components are implemented using
match-action tables. These tables effectively map the opcodes
to the actual execution logic.

We use the prolog unit as an example to show how code in
the header is translated into the actual execution. A unit with
four lanes is built with 8 match-action tables we call selectors,
and each initializes the value of a respective virtual regis-
ter. The value SEL[i] in the prolog code section determines
the source for initialization of the i-th register, i.e., the stack
(POP,PEEK) the metadata (LOAD_MD) or RAND. These opcodes
are used by the selector match-action table to initialize the re-
spective register. Semantically, the A registers are initialized
first, and the registers with lower indices are initialized before
those with higher ones.
Execution Unit. Each EU occupies two hardware pipeline
stages (Figure 2). In the first it executes register selection,
memory translation, and comparisons. The second runs ALU
operations, memory access and branching. Selection is im-
plemented similarly to the Prolog selection above, and it is
used to shuffle the registers between different lanes, use them
for hashing, and for loading immediate values. The ALUs are
per-lane match-action tables with the key being the operation
opcode, and the action simply performs the operation on the
respective register pair.
Memory Access. Direct and segmented mappings are done in
first stage of the EU, for each lane. We match on both tables,
but only at most one action is executed, giving priority to
the direct mapping. In addition to the address at the lane’s A
registers, each table accepts the tenant_id as an additional
matching key for isolation. The resulting physical address is
used to access the per-lane Tofino register in the next stage,
using the RegisterAction specified by the opcode.
Control Unit. In each EU, we can perform a single branch
operation based on evaluating a predicate on two registers. In
the first stage, we use comparison to compare two registers. In
the second stage we use the result to select code for execution
in the next EU. More details about the implementation of all
branching operations are found in Appendix D.

5.1 Resource Usage

The key optimization goal is to reduce the number of hardware
stages, hence our decision to use VLIW EUs. Permissions,
prolog, epilog and steering each requires one hardware stage,
whereas each execution unit takes up two. Since we have four
execution units, SwitchVM uses all 12 stages of Tofino-1.

Appendix B reports total resource consumption of our
SwitchVM prototype, which we summarize here. Our pro-
totype utilizes 57% of available SRAM, due to having the
memory access only at the second stage of the two-stage EU.
We use the 41% of the TCAM for virtual memory mappings
and the control flow units. We utilize 64% of the PHV con-
tainers, used to mainly to carry the in-packet parsed DPF code

through the pipeline.
The primary constraint on expanding the EU size is the

number of logical tables (73%) and available action instruc-
tion memory (85%) within each stage. Tofino’s design is
geared towards a small number of large tables capable of exe-
cuting wide actions, i.e., ones that can modify many header
fields simultaneously. In contrast, SwitchVM would bene-
fit from a large number of small tables with narrow actions.
Tofino-2 has 20 stages, which can be utilized for doubling the
number of EUs from 4 to 8, implementing P4 extensions, or
for handling standard data-center networking operations. We
note that we were able to compile eight 2-way VLIW EUs for
Tofino-2, but increasing the number of ways failed to compile
due to a compiler bug.

As mentioned earlier, the switch can store a maximum of
2K distinct DPFs. These can be safely shared among tenants
because they use virtual memory. However, certain resources
that cannot be shared may limit the number of co-located
tenants. These include the number of direct and segmented
mappings in each EU, total memory per EU, and the overall
number of forwarding rules.

Appendix B offers more details on the resource usage by
the concrete DPFs we implemented in our prototype. The
number of distinct co-resident DPFs of the same type depends
on the resource usage of each DPF. For example, a single
key-value cache can accommodate up to 45K keys, but the
number of isolated key-value cache instances is capped at
2K, regardless of the cache size, because of the limit on the
number segmented mappings. Similarly, the total memory
capacity directly impacts the number of co-resident DPFs. On
the other hand, some of the scalability limits can be increased
via a more sophisticated implementation of SwitchVM, e.g.,
by implementing direct mappings on additional lanes.

This factor should be carefully considered, as highlighted
in previous research [60].
Deployment. It is often desirable to combine the execution
of SwitchVM with traditional networking functions, such as
a regular switch. Indeed, we implement a simple L3 switch
on the same pipeline. However, relatively high resource us-
age of SwitchVM may complicate colocation with resource-
intensive P4 programs. To this end, we propose three practical
deployment options: (1) Leveraging additional pipeline stages
of Tofino-2, where 12 stages can be used for SwitchVM and
the rest 8 stages for other data-plane functions. (2) In a multi-
pipe switch, dedicating a separate pipe for SwitchVM at the
cost of reduced bandwidth. (3) Employing SwitchVM as a
discrete in-network computing appliance, in line with the
existing proposals for stateful network function disaggrega-
tion [1].

5.2 Limitations
Design limitations. First, by choosing the language-level vir-
tualization approach, SwitchVM introduces non-negligible

700 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

resource overheads which increase the resource consump-
tion and constrain the generality of the functions that can
be implemented on top. We believe that this is a viable de-
sign point, however, as many in-network computing functions,
e.g., eBPFs, require a fairly limited functionality. Second,
SwitchVM is tailored for in-network computing and not for
general data-plane programmability. This specialization facil-
itates implementing the security sandbox, which restricts the
packet headers exposed to DPFs and constrains the effect of
the DPFs on the packet network behavior. The downside of
this design choice is that DPFs cannot be used to implement
new network protocols, for example.
RMT-related constraints. First, to guarantee performance
isolation, RMT-based switches require a DPF to fit within a
single pipeline pass. This requirement places a hard upper
limit on the DPF size. In contrast, CPU-based dRMT archi-
tectures could allow longer DPFs at the expense of gradual
performance degradation. Second, RMT switches parse the
entire packet prior to processing, necessitating the use of a
uniform packet structure for all tenants. Since in SwitchVM
the access to packet headers is virtualized, DPFs cannot access
the headers, unless dedicated P4 extensions are incorporated
during compile time, as discussed in §3.7.
Prototype. We do not yet have a compiler for DPFs, so they are
implemented in assembly, using a Python framework for code
construction. Further, SwitchVM cannot run on both egress
and ingress pipelines due to the limitations of the egress parser
in Tofino-1. Last, our control-plane APIs and the client API
for using DPFs in applications are rather immature, and the
Recirculation rate-limiting logic is not implemented.

6 Evaluation

We aim to highlight the following SwitchVM characteristics:

1. Strong performance isolation among tenants;
2. Runtime programmability behavior without interference

when adding/removing tenants;
3. Low latency and bandwidth overheads;
4. End-to-end performance in applications equivalent to P4

baselines.

We emphasize that SwitchVM was compiled once and never
modified throughout all the experiments.

6.1 Methodology
Setup. We use a dual-socket machine with Intel Xeon Silver
4216@2.1 GHz CPU with 188 GB of RAM and connect it
to a 3.2Tbps Intel Tofino switch (EdgeCore Wedge 100BF-
32X) via two two-port 100G NICS (Intel E810-C). Unless
stated otherwise, the packet generator and the receiver server
use different NIC ports and run on different sockets. Hyper-
threading and power saving are disabled for consistent results.

100 120 140 160 180
0

50
75

100
125
150

Rate [Kpps]

L
at

en
cy

[µ
s] Median

Client RackSched SwitchVM

100 120 140 160 180
0

100
200
300
400
500
600

Rate [Kpps]

99th Percentile

(a)

0 2 4 6 8 10 12 14 16
0

200
400
600
800

1,000

Time [s]

L
at

en
cy

[µ
s] Median

99th percentile

(b)

Figure 6: A load-aware load balancer using SwitchVM. (a)
SwitchVM demonstrates negligible end-to-end latency over-
heads compared to RackSched in P4 [59]. (b) SwitchVM
changes the load-balancer scheduling policy at times t = 6,12
without any request delays or packet drops.

Packet generator and receiver. Microbenchmarks were per-
formed using Cisco TRex traffic generator [8] (DPDK-based).
End-to-end applications are implemented using DPDK. Un-
less stated otherwise, packets are encapsulated using the Gen-
eve protocol [20] for simulating data center environments.

6.2 End-to-End Applications
We show SwitchVM performance using the Load Balancer
and KV store cache applications from §4.

6.2.1 Load-Aware Load Balancer

Our environment consists of two servers that execute the
requests of a single client. We compare our implementation
to the RackSched [59], a load-aware load balancer written
in P4. We use the original RackSched implementation for
clients, servers and the P4 scheduler. To run with DPFs we
slightly modify the client and servers. Additionally, we add
a dummy payload to RachSched original packets to mimic
the bandwidth overheads of Geneve encapsulation protocol
in SwitchVM, but without performing encapsulation itself to
avoid intrusive P4 code changes.

As in RackSched, we run a synthetic workload with a bi-
modal request processing distribution (5µs and 50µs, for 90%
and 10% of the requests respectively). We measure the me-
dian and the 99-percentile latency as a function of the load for
three systems: the original RackSched, SwitchVM using in-
switch DPF, and a client-based implementation that randomly
selects a server for each request.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 701

Figure 6a shows no latency difference compared to the
P4-only baseline for up to 180K requests/s for the median
latency, and up to 15% overheads in the 99% latency for
higher rates. We believe, however, that the overhead is not
related to the in-switch processing (which shows no sensitivity
to load as we see in microbenchmarks), but is an artifact of the
increased server load due to the Geneve encapsulation used
in SwitchVM. Regardless of these artifacts, the use of DPFs
improves the client-only implementation latency by 1.4× and
2.4× at maximum throughput.
In-place policy replacement. Unlike RackSched, SwitchVM
can easily replace its scheduling policy without suffering
from packet loss due to switch reconfiguration. We show this
by dynamically modifying the scheduling policy from batch-
round robin to the load-aware power-of-two-choices policy
and back (§4). Figure 6b demonstrates the end-to-end median
and the 99-th percentile latency as observed by the client.
At t = 6 and t = 12 the policy is altered without the client
having to stop. These results clearly demonstrate the power
of SwitchVM to react to different network conditions with
full application transparency.

6.2.2 In-Switch Cache for Key-Value Stores

We connect one client to a server and use two switch pipes,
i.e., each pipe acts as an independent switch. SwitchVM runs
a chain of two DPFs that act similarly to NetCache [23].

We demonstrate SwitchVM end-to-end latency for GET
operations under abrupt changes in the key distribution (hot-in
in [23]) and a constant TX throughput. The client sends 10K
requests per-second (10 Kpps) while targeting a set of 128
keys that repeatedly changed every 10 seconds. The server
periodically collects the most frequently accessed keys from
a count-min sketch [9] implemented in DPF, then caches the
128 most frequent keys in the in-switch cache. Cache hits and
sketch counters are cleared every 5 seconds.

Figure 7 reports the median and the 99th percentile of
the requests’ end-to-end latency. The periodic key changes
induces cache misses that redirect the requests to the server,
as evident from the momentary latency spikes.

This experiment shows the power of DPFs to implement
complex in-network accelerated applications.

6.3 Microbenchmarks
Similar to previous works [23], we simulate a fully loaded
switch using a snake configuration, where two ports are con-
nected to the traffic generator and to the receiver server while
all remaining ports are connected to each other in pairs. Un-
less states otherwise, we use MTU-size packets (1500B).
Throughput vs. latency. We compare SwitchVM perfor-
mance to a standard L3 forwarding application implemented
in P4. SwitchVM invokes a private counter DPF that incre-
ments a counter stored in switch memory, similar to the leader

0 10 20 30 40
0

10
20
30
40

Time [s]

L
at

en
cy

[µ
s] Median 99th percentile

Figure 7: NetCache-like cache for key-value store imple-
mented with DPFs. Latency spikes reflect cache misses due to
an abrupt change in the hot-key working set. As the cache is
re-populated with new hot keys the latency drops.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

Throughput [Gbps]

A
ve

ra
ge

M
ed

ia
n

L
at

en
cy

[µ
s]

L3 fwd. Default app In-packet In-switch

Figure 8: Throughput vs. per-port median latency using
1.5KB MTU-size packets. L3 fwd shows the smallest latency
of a functional switch.

DPF used in Paxos (§4).
We compare the performance of three ways to invoke a

DPF: in-switch, in-packet, and in-switch default DPF that has
no bandwidth overheads.

Direct measurements of per-port latency were too noisy
due to sub-µs values. Instead, we calculate the average per-
port latency as follows. First, we measure the median latency
from the generator to the receiver after passing through the
switch in the snake configuration. Next, we obtain the median
latency from the generator to the receiver using a single pass,
and subtract the two to cancel the latency of the server and
client machines. We then divide the result by 31, which is the
number of additional times the packet traverses the switch in
the snake configuration.

Figure 8 shows that the switch approaches its maximum
throughput (3.14Tbps) at about the same latency for all in-
vocation techniques. As expected, L3 forwarding has lower
latency, all three ways to invoke DPFs perform the same.
Performance isolation. We demonstrate the performance
isolation among tenants by running five network flows which
together achieve the maximum aggregate switch bandwidth.
Among these, there are four flows, each with its own DPF,
and a base flow that does not invoke any. We measure the
throughput per DPF at the receiver. We start with a single flow
and gradually add more to see if there is any interference
between them. No measurable interference was observed;
neither among the DPFs nor with the other traffic (Figure 9a).
Scalability. We measure SwitchVM tenant reconfiguration
performance by scaling the number of served tenants. We use
the private counter DPF again, with in-packet code. Note that
for a given amount of required resources, the DPF code has

702 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 5 10 15
0

0.8

1.6

2.4

3.2

Time [sec]

T
hr

.[
T

bp
s]

Base App1 App2

App3 App4

(a)

0 50 100 150
0

0.6
1.2
1.8
2.4
3.0

Time [sec]

R
X

T
hr

.[
T

bp
s]

Base Tenant apps

#Tenants

0
0.6
1.2
1.8
2.4
3

#T
en

at
s

[×
10

4]

(b)

Figure 9: (a) SwitchVM demonstrates strong performance
isolation between different DPFs and a base flow without DPF
invocation. (b) Aggregate receive throughput vs. the number
of tenants, each having its own DPF and a private switch state.
Packets of unauthorized tenants are dropped. Base represents
the background traffic not using DPFs.

no effect on scalability, therefore this experiment is represen-
tative for the case when each tenant executes her own DPF
(Figure 9a).

We start by dynamically adding tenants in batches of 350
tenants per second until reaching 30K tenants, then removing
them at the same rate. The process invokes the control plane
API to authorize execution of DPFs for the respective tenants,
and allocates the private state in the switch (or deauthorizes
and deallocates state upon tenant removal). For the purpose
of this experiment, SwitchVM is configured to drop packets
that attempt to run a DPF that has not been authorized.

The packet generator constantly sends packets for all the
tenants at 80% line rate. The remaining bandwidth is occupied
by packets that do not invoke any DPF. We measure the total
bandwidth at the receiver. Initially, tenants are not authorized
to run any DPF, so all the packets but those not invoking DPFs
are dropped, as expected (Figure 9b). Once the tenants are
authorized to run, the aggregate bandwidth grows until all the
30K tenants are authorized. Symmetrically, the tenants are
gradually removed in the second part.

This experiment shows that SwitchVM scales to up to 30K
tenants with strong performance isolation and without measur-
able interference. A similar experiment with in-switch code,
instead of in-packet, shows the same results. Note however
that in this case the amount of different DPFs (shared across
tenants) is limited to 2K, assuming each DPF has at most a
single branch instruction. For comparison, compiler-based
approaches for merging P4 programs [41,50,58], and runtime
reconfigurable switches [53] can only scale to a handful of
co-resident in-switch applications.
DPF bandwidth overheads. Figure 10a reports the additional
header size required for a representative DPF application. This
overhead translates to a reduction in the effective bandwidth
of the system (goodput) as a function of the packet size.

Figure 10b shows the maximal achievable throughput per
packet size for different DPF invocation mechanisms. Natu-

App Header
Size [B]

Default 0
In-switch 12
In-packet 192

(a)

128 512 1,024 1,500
0

70
80
90

100

Packet size [B]

R
X

T
hr

.[
G

bp
s]

Default

In-switch

In-packet

(b)

Figure 10: (a) Packet overheads for DPFs. (b) Receive side
throughput as a function of the packet size.

rally, the throughput is lower for smaller packets but eventu-
ally converges to 99% of the line-rate for all types, at MTU-
size packets. Small in-packet DPFs impose packet parsing
overheads that reduce the receive-side throughput.

7 Related Work

P4 virtualization. Several prior works focus on virtualization
of the data-plane at the P4-level. HyPer4 [17] and HyperVDP
[56] use a hypervisor P4 program that emulates other P4
programs, thus incurring significant overheads that limit these
approaches to software and FPGA targets. SwitchVM offers a
more efficient virtualized ISA that is optimized for in-network
computing.
In-switch programming abstractions. Several works im-
plement application-specific in-switch primitives that can be
composed at runtime to implement certain in-switch applica-
tions. DIP [51] proposes in-switch primitives combined using
in-packet recipes for implementing network layer protocols.
NetRPC [57] offers primitives that can be composed via an
in-switch recipe to implement a few popular in-network ap-
plications. Their primitives, however, are tailored to specific
tasks. Moreover, their multitenancy is limited to a few dozens
of concurrent applications of a few types. SwitchVM is more
general and flexible, and scales to thousands of tenants exe-
cuting arbitrary DPFs.
Compile-time merge. P4Visor [58], PRIME [41], SPEED [7]
and [50] propose merging p4 programs before compilation.
This has the potential of providing multitenancy, but is limited
to only a few applications due to logic partitioning. In addi-
tion, changing the set of applications requires recompilation
and switch reconfiguration and disrupts the switch traffic.
New architectures. Menshen [49] proposes an extension
of the RMT architecture for data-plane multitenancy at the
P4 level. Their solution adds a hardware indirection layer
to allow running per-tenant packet processing logic on each
packet, ensuring cross-tenant isolation using a specialized
trusted compiler. SwitchVM also adds an indirection layer
with its virtual ISA, with the key difference that it allows se-
cure execution of untrusted DPFs thanks to runtime checks.
P4VBox [44], MTPSA [46] and [28] propose new hardware
architectures for data-plane virtualization. These architectures
allow spatial partitioning of the resources between different

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 703

hot-pluggable applications. However, they are currently lim-
ited to FPGA targets as they require hardware modifications,
and they cannot scale beyond tens of programs. In contrast,
SwitchVM runs on commodity switches and can scale to
thousands of DPFs.
Runtime programmability. FlexCore [53] and IPSA [15],
propose a runtime programmable dRMT architecture that
allows changing functionality without causing traffic dis-
ruptions. These works do not discuss inter-tenant isolation.
SwitchVM naturally offers runtime programmability since
changing programs is equivalent to installing match-action
entries. HW modification proposals [44, 46, 49] naturally in-
tegrate runtime programmability, a necessity for ensuring
performance isolation across tenants.
In-network computing as a service. Several works discuss
the isolation requirements [28, 46, 49, 50] for allowing multi-
tenancy of programmable switches in data centers. Runtime
memory allocation was proposed in [50, 60] to allow chang-
ing memory allocation between tenants. SwitchVM allows
implementing such allocation policies due to virtual memory.
Multi-core switches. Multicore switches, e.g., Juniper’s Trio
[38] and NVIDIA’s Spectrum [39], follow a more conven-
tional Von Neumann hardware architecture, rather than the
dataflow type architecture of RMT switches. SwitchVM can
be seen as a compatibility layer that allows architecture-
independent network function development, but we leave
adaptation of SwitchVM for such targets for future work.
These architectures differ substantially from RMT, and there-
fore might require different design considerations.

RMT switches feature a simple programming abstraction,
where packets execute a sequence of match-action tables,
such that each packet appears to execute to completion before
the next packet processing starts. CPU-based switches on the
other hand are more versatile, which potentially makes them
better suited for complex in-network applications. In partic-
ular, they offer gradual performance degradation for longer
programs, as opposed to the RMT pipelines that either fail
to run or require coarse-grained packet recirculation. Addi-
tionally, CPU-based switches can potentially achieve higher
scalability by utilizing a memory hierarchy, in contrast to
the use of stage-local memory in RMT pipelines. However,
achieving line-rate processing and performance isolation be-
tween co-resident programs on CPU-based switches is much
more challenging, and cannot be generally guaranteed.
Deployment. Harmony [2] and HIRE [3] discuss the manage-
ment implications and scheduling requirements of multitenant
in-network computing. SwitchVM’s scalability reduces the
complexity of these management tasks as it makes migrating
programs between switches more efficient.
Active Networks. The idea of embedding code into pack-
ets for in-network execution dates back to Active Net-
works [45,47,48]. Active networks allow users of a shared in-
frastructure to inject customized packet processing programs
into network nodes, primarily driven by the desire to intro-

duce new networking services on a per-user basis. SwitchVM
can be viewed as a version of active networks for multi-tenant
in-network computing within a data center. A key difference,
however, is that SwitchVM establishes clear privilege separa-
tion between the network’s operator and its users, sidestepping
the security and management issues associated with active
networks. The in-packet state management we implement in
SwitchVM is inspired by tiny packet programs [21]. TPPs
do not consider multitenancy and isolation and are focused
primarily on telemtery applications.

In a concurrent work, ActiveRMT [12, 13] proposes a
capsule-based active networking approach with a shared
runtime for interpreting small in-packet programs. Simi-
larly to SwitchVM, ActiveRMT also enables per-packet re-
programmability, with the primary goal of improving in-
switch memory utilization for multiple programs. Despite
this similarity, ActiveRMT pursues different goals which fur-
ther dictate different design choices, and make it less suitable
for our purposes. First, the in-switch memory in ActiveRMT
is segmented, rather than virtualized as in SwitchVM. As a
result, in-switch program deployment and sharing available in
SwitchVM cannot be easily supported, incurring bandwidth
overheads due to in-packet code header and preventing ser-
vice chaining natively supported in DPFs. Another implication
is that, unlike in SwitchVM, in-switch memory reallocation
requires updating all the tenants affected by it, impeding scal-
ability in a multi-tenant system. Further, ActiveRMT design
relies heavily on packet recirculations, which SwitchVM ex-
plicitly strives to minimize in order to enjoy atomic in-switch
state update, reduce bandwidth overheads, and achieve strict
performance isolation. Last, ActiveRMT does not support
variable-size in-packet state, so it complicates its use in multi-
switch applications such as in-network telemetry.

8 Conclusion

SwitchVM enables data center tenants to build in-network
accelerated applications by securely deploying and executing
Data Plane Filters on programmable switches. SwitchVM
supports concurrent execution of thousands of DPFs while
offering strong performance, state and fault isolation. We
show SwitchVM’s ability to build complex applications and
experimentally demonstrate its performance and scalability.
We envision that SwitchVM will open new opportunities for
in-network accelerated applications in data centers.

Acknowledgments

We thank our shepherd Mina Tahmasbi Arashloo and the
reviewers for their helpful comments and feedback. We also
thank Ron Marcus and Assaf Klein for their help with shaping
this paper. We gratefully acknowledge generous support from
Israel Science Foundation (Grant 1998/22).

704 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Deepak Bansal, Gerald DeGrace, Rishabh Tewari,
Michal Zygmunt, James Grantham, Silvano Gai, Mario
Baldi, Krishna Doddapaneni, Arun Selvarajan, Arunk-
umar Arumugam, Balakrishnan Raman, Avijit Gupta,
Sachin Jain, Deven Jagasia, Evan Langlais, Pranjal Sri-
vastava, Rishiraj Hazarika, Neeraj Motwani, Soumya
Tiwari, Stewart Grant, Ranveer Chandra, and Srikanth
Kandula. Disaggregating stateful network functions. In
USENIX NSDI, 2023.

[2] Theophilus A. Benson. In-network compute: Consid-
ered armed and dangerous. In ACM HotOS, 2019.

[3] Marcel Blöcher, Lin Wang, Patrick Eugster, and Max
Schmidt. Switches for hire: Resource scheduling for
data center in-network computing. In ASPLOS, 2021.

[4] Marcel Blöcher, Lin Wang, Patrick Eugster, and Max
Schmidt. Holistic resource scheduling for data center
in-network computing. IEEE/ACM TON, 2022.

[5] Broadcom. Trident4 / BCM56880 series.
https://www.broadcom.com/products/
ethernet-connectivity/switching/strataxgs/
bcm56880-series, 2023.

[6] Vitalik Buterin et al. A next-generation smart contract
and decentralized application platform. white paper,
2014.

[7] Xiang Chen, Hongyan Liu, Qun Huang, Peiqiao Wang,
Dong Zhang, Haifeng Zhou, and Chunming Wu.
SPEED: Resource-efficient and high-performance de-
ployment for data plane programs. In IEEE ICNP, 2020.

[8] Cisco. TREX: Realistic traffic generator. https://
trex-tgn.cisco.com/, 2023.

[9] Graham Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its ap-
plications. J. Algorithms, 2005.

[10] Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh
Lee, Noa Zilberman, Hakim Weatherspoon, Marco
Canini, Fernando Pedone, and Robert Soulé. P4xos:
Consensus as a network service. IEEE/ACM TON, 2020.

[11] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fer-
nando Pedone, and Robert Soulé. NetPaxos: Consensus
at network speed. In ACM SOSR, 2015.

[12] Rajdeep Das and Alex C. Snoeren. Enabling active
networking on RMT hardware. In ACM HotNets, 2020.

[13] Rajdeep Das and Alex C Snoeren. Memory management
in activermt: Towards runtime-programmable switches.
In ACM SIGCOMM, 2023.

[14] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and
Mark Silberstein. NICA: An infrastructure for inline
acceleration of network applications. In USENIX ATC,
2019.

[15] Yong Feng, Zhikang Chen, Haoyu Song, Wenquan Xu,
Jiahao Li, Zijian Zhang, Tong Yun, Ying Wan, and Bin
Liu. Enabling in-situ programmability in network data
plane: From architecture to language. In USENIX NSDI,
2022.

[16] Maurizio Gabbrielli and Simone Martini. Programming
Languages: Principles and Paradigms. Undergraduate
Topics in Computer Science. Springer, 2010.

[17] David Hancock and Jacobus van der Merwe. HyPer4:
Using P4 to virtualize the programmable data plane. In
ACM CoNEXT, 2016.

[18] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In
ACM SIGCOMM, 2017.

[19] Intel. Intel® tofino™ programmable ether-
net switch asic. https://www.intel.com/
content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-series.
html, 2023.

[20] T. Sridhar J. Gross, I. Ganga. Geneve: Generic
network virtualization encapsulation. https://www.
rfc-editor.org/rfc/rfc8926.pdf, 2020.

[21] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong
Geng, Changhoon Kim, and David Mazières. Millions
of little minions: Using packets for low latency network
programming and visibility. In ACM SIGCOMM, 2014.

[22] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and
Ion Stoica. Netchain: Scale-free sub-RTT coordination.
USENIX NSDI, 2018.

[23] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing key-value stores with fast
in-network caching. ACM SOSP, 2017.

[24] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh
Sivaraman, and Jennifer Rexford. HULA: Scalable load
balancing using programmable data planes. In ACM
SOSR, 2016.

[25] Elie F. Kfoury, Jorge Crichigno, and Elias Bou-Harb.
An exhaustive survey on P4 programmable data plane
switches: Taxonomy, applications, challenges, and fu-
ture trends. IEEE Access, 2021.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 705

https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://trex-tgn.cisco.com/
https://trex-tgn.cisco.com/
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.rfc-editor.org/rfc/rfc8926.pdf
https://www.rfc-editor.org/rfc/rfc8926.pdf

[26] Changhoon Kim, Anirudh Sivaraman, Naga Katta, An-
tonin Bas, Advait Dixit, and Lawrence J Wobker. In-
band network telemetry via programmable dataplanes.
In ACM SIGCOMM, 2015.

[27] Marios Kogias, George Prekas, Adrien Ghosn, Jonas
Fietz, and Edouard Bugnion. R2P2: making RPCs first-
class datacenter citizens. In USENIX ATC, 2019.

[28] Johannes Krude, Jaco Hofmann, Matthias Eichholz,
Klaus Wehrle, Andreas Koch, and Mira Mezini. On-
line reprogrammable multi tenant switches. In ACM
ENCP, 2019.

[29] Leslie Lamport. Paxos made simple, fast, and byzantine.
In OPODIS, 2002.

[30] Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris:
Coordination-free consistent transactions using network
multi-sequencing. In ACM SOSP, 2017.

[31] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana
Szekeres, and Dan R. K. Ports. Just say no to Paxos
overhead: Replacing consensus with network ordering.
In USENIX OSDI, 2016.

[32] Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and Dan
R. K. Ports. Pegasus: Tolerating skewed workloads in
distributed storage with in-network coherence directo-
ries. USENIX OSDI, 2020.

[33] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
FlowRadar: A better netflow for data centers. In ACM
NSDI, 2016.

[34] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan
Yu. HPCC: High precision congestion control. In ACM
SIGCOMM, 2019.

[35] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring with
UnivMon. In ACM SIGCOMM, 2016.

[36] Steven McCanne and Van Jacobson. The BSD packet
filter: A new architecture for user-level packet capture.
In USENIX Winter, 1993.

[37] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. SilkRoad: Making stateful layer-4
load balancing fast and cheap using switching asics. In
ACM SIGCOMM, 2017.

[38] Juniper Networks. MX series universal rout-
ing platforms. https://www.juniper.net/us/en/
products/routers/mx-series.html, 2023.

[39] NVIDIA. NVIDIA spectrum-4. https://www.nvidia.
com/en-us/networking/ethernet-switching,
2023.

[40] Vladimir Andrei Olteanu, Alexandru Agache, Andrei
Voinescu, and Costin Raiciu. Stateless datacenter load-
balancing with beamer. In USENIX NSDI, 2018.

[41] Ricardo Parizotto, Lucas Castanheira, Fernanda Bonetti,
Anderson Santos, and Alberto Schaeffer-Filho. PRIME:
Programming in-network modular extensions. In IEEE
NOMS, 2020.

[42] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan,
Marco Canini, and Panos Kalnis. In-network compu-
tation is a dumb idea whose time has come. ACM
HotNets, 2017.

[43] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with
In-Network aggregation. In USENIX NSDI, 2021.

[44] Mateus Saquetti, Guilherme Bueno, Weverton Cordeiro,
and Jose Rodrigo Azambuja. P4VBox: Enabling P4-
based switch virtualization. IEEE Communications Let-
ters, 2020.

[45] B. Schwartz, A.W. Jackson, W.T. Strayer, Wenyi Zhou,
R.D. Rockwell, and C. Partridge. Smart packets for
active networks. In OPENARCH, 1999.

[46] Radostin Stoyanov and Noa Zilberman. MTPSA: Multi-
tenant programmable switches. In ACM EuroP4, 2020.

[47] David L. Tennenhouse and David J. Wetherall. Towards
an active network architecture. SIGCOMM CCR, 2007.

[48] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J.
Wetherall, and G.J. Minden. A survey of active network
research. IEEE Communications Magazine, 1997.

[49] Tao Wang, Xiangrui Yang, Gianni Antichi, Anirudh
Sivaraman, and Aurojit Panda. Isolation mechanisms
for high-speed packet-processing pipelines. In USENIX
NSDI, 2022.

[50] Tao Wang, Hang Zhu, Fabian Ruffy, Xin Jin, Anirudh
Sivaraman, Dan RK Ports, and Aurojit Panda. Multite-
nancy for fast and programmable networks in the cloud.
In USENIX HotCloud, 2020.

[51] Ziqiang Wang, Zhuotao Liu, Xiaoliang Wang, Songtao
Fu, and Ke Xu. DIP: Unifying network layer innovations
using shared L3 core functions. In ACM HotNets, 2022.

706 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.juniper.net/us/en/products/routers/mx-series.html
https://www.juniper.net/us/en/products/routers/mx-series.html
https://www.nvidia.com/en-us/networking/ethernet-switching
https://www.nvidia.com/en-us/networking/ethernet-switching

[52] Gavin Wood et al. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project yellow
paper, 2014.

[53] Jiarong Xing, Kuo-Feng Hsu, Matty Kadosh, Alan Lo,
Yonatan Piasetzky, Arvind Krishnamurthy, and Ang
Chen. Runtime programmable switches. In USENIX
NSDI, 2022.

[54] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman,
Mosharaf Chowdhury, and Xin Jin. NetLock: Fast, cen-
tralized lock management using programmable switches.
ACM SIGCOMM, 2020.

[55] Lior Zeno, Dan RK Ports, Jacob Nelson, Daehyeok
Kim, Shir Landau-Feibish, Idit Keidar, Arik Rinberg,
Alon Rashelbach, Igor De-Paula, and Mark Silberstein.
SwiSh: Distributed shared state abstractions for pro-
grammable switches. In USENIX NSDI, 2022.

[56] Cheng Zhang, Jun Bi, Yu Zhou, and Jianping Wu. Hy-
perVDP: High-performance virtualization of the pro-
grammable data plane. IEEE JSAC, 2019.

[57] Bohan Zhao, Wenfei Wu, and Wei Xu. NetRPC: En-
abling in-network computation in remote procedure
calls. In USENIX NSDI, 2023.

[58] Peng Zheng, Theophilus Benson, and Chengchen Hu.
P4Visor: Lightweight virtualization and composition
primitives for building and testing modular programs.
In ACM CoNEXT, 2018.

[59] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu,
Christos Kozyrakis, Ion Stoica, and Xin Jin. RackSched:
A microsecond-scale scheduler for rack-scale computers.
In USENIX OSDI, 2020.

[60] Hang Zhu, Tao Wang, Yi Hong, Dan R. K. Ports,
Anirudh Sivaraman, and Xin Jin. NetVRM: Virtual reg-
ister memory for programmable networks. In USENIX
NSDI, 2022.

A The Paxos DPFs
We focus on two DPFs that correspond to Paxos’s second
phase messages.
Leader. This DPF requires a single directly mapped counter
that can be placed in either lane of any EU. Upon packet
arrival, the EU increments the counter using a FA-ADD in-
struction. Next, the epilog PUSHes the register value onto the
packet stack alongside the Paxos round number, which is a
constant zero for the fast-path phase of Paxos. The epilog
also changes the program counter to the acceptor DPF and
performs multicast steering action to send the packet to all
acceptors.

Resource Utilization

Exact match Xbar 24%
Ternary match Xbar 20%

TCAM 41%
SRAM 57%

Hash bit units 49%
Hash distribution units 72%

Gateways 17%
Action instruction memory 85%

Logical tables 73%
Normal PHV containers 64%

Table 3: SwitchVM resource utilization on Tofino-1 with 4
EUs and 4 lanes per EU.

Acceptor. Three n-sized arrays are allocated; one in EU0,
two in EU2. The first array holds a list of Paxos round values
per proposition. Similarly, the second and third arrays hold
the most recent value and the Paxos vround value for each
proposition, respectively.

The prolog POP-s the value proposition, its index i (i < n),
and the round number from the packet stack. EU0 performs
an atomic fetch and max (FA-MAX) between the locally saved
ith instance’s round number and the one extracted from the
packet. Next, EU1 compares these two values. If the local
round number is larger than that of the packet, the packet
is dropped. Otherwise, EU2 updates the ith vround entry to
hold the new round value and alters the ith value to the one
suggested by the packet. Then, the epilog multicast-s the
packet to all learners.
Comparison to P4xos and NoPaxos. The leader is func-
tionally identical to NoPaxos. Constraints similar to the ones
presented for the KVS application (§4.1) limit the values to
4B, compared to 32B in P4xos.

B Resource Usage

Table 3 reports total resource consumption of the SwitchVM
prototype. Table 4 shows the resource consumption of various
DPFs in terms of SwitchVM resources.

C Additional Applications

Tiny Packet Programs. SwitchVM extends Tiny Packet Pro-
grams (TPP) [21] with the ability to do complex computations
instead of a handful of simple instructions. This allows, for
example, aggregation of the maximal hop latency along the
path instead of collecting the samples into the packet.
Distributed coordination. A small amount of stateful mem-
ory can be used for implementing several distributed latency-
sensitive coordination tasks, including leader election, aggre-
gation, and distributed barriers.
NetChain. NetChain [22] performs in-network coordination
between switches. It requires similar functionalities as in

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 707

App EU0 EU1 EU2 EU3 FWDDir Seg Mem Dir Seg Mem Dir Seg Mem Dir Seg Mem
Cache k k 3 3k 1 k 1
Sketch 3 3k
LB1 3 3k 1 1 k
LB3 2 2k k

Leader 1 1 1
Acceptor 1 k 1 2 2k+1 1

Available total 45K 6K 180K 45K 6K 180K 45K 6K 180K 45K 6K 180K 32K

Table 4: SwitchVM resource consumption for various DPFs. k stands for the size of each DPF (top to bottom): number of cached
keys, number of counters in sketch, number of servers, number of servers, N/A, number of value propositions.

Paxos and NetCache, both already implemented. Source rout-
ing can be performed using the in-packet data stack.
Complex functions. Turing-completeness allows building
arbitrary functions using packet recirculation and the code-
pointer changing mechanism. For example, one can imple-
ment bubble sort in a few DPFs, i.e., element swapping DPF,
comparison DPF, and an iterator DPF.
Fast-path/slow-path. By adding mirroring capabilities to the
steering module, complex data-plane operations can split the
traffic to fast-/slow-paths. For example, all packets execute
a DPF that selects which packets to mirror at egress while
changing their code pointer to a slow-path DPF, which may
be a complex Turing-complete program.

D Control Unit Implementation

We now describe how the control logic parses the DPF fields
and changes the execution flow. The DPF fields that are
taken into account in the control unit are CTRL_OP, PC_TAKEN,
PC_NTAKEN, SEL_OP1, SEL_OP2, IMM_OP1 and IMM_OP2. We
refer the reader to Figure 5 for a complete list of the DPF fields.
PC_TAKEN and PC_NTAKEN contain pointers to the next execu-
tion unit’s instruction, or for the epilog code in the last EU.
It can point to either an in-packet instruction, or an in-switch
one.

Figure 11 provides an overview of the control logic. At first,
the operands are acquired based on the SEL_OP1 and SEL_OP2
fields. Each of these fields may either represent a register in-
dex or denote that an immediate value should be loaded from
one of the IMM_OP fields. After obtaining the operands they
get compared using five operators (CMP component in Fig-
ure 11): bitwise-AND, bitwise-XOR, saturated-subtraction,
sign-operand1, and sign-operand2. The outcome is a vector
that holds the results of all operations.

Next, a branch resolution unit takes the CTRL_OP data-field
for determining the next program-counter value. This is per-
formed using a TCAM selection that finds the first matching
result and acts according to the output action, effectively
implementing a long if-else-if operation. Depending on the
result, the code for the next stage is loaded from either the
packet or the stage local instruction memory. The table is
configured as follows (underscores represent don’t-cares):

table branch_tbl {
key = {

ctrl_op : ternary;
bitwise_and : ternary;
bitwise_xor : ternary;
sat_sub: ternary;
oprnd1_sign : ternary;
oprnd2_sign : ternary;

}
entries = {

(HALT, _, _, _, _, _) : halt();
(JMP, _, _, _, _, _) : taken();
(BSET, 0, _, _, _, _) : not_taken();
(BSET, _, _, _, _, _) : taken();
(BEQ, _, 0, _, _, _) : taken();
(BEQ, _, _, _, _, _) : not_taken();
(_, _, 0, _, _, _) : not_taken();
(BLT, _, _, 0, _, _) : taken();
(BGT, _, _, 0, _, _) : not_taken();
(BGT, _, _, _, _, _) : taken();
(BSLT, _, _, 0, 0, 0) : taken();
(BSLT, _, _, 0, 1, 1) : taken();
(BSLT, _, _, _, 1, 0) : taken();
(BSGT, _, _, _, 0, 1) : taken();
(BSGT, _, _, 0, 0, 0) : not_taken();
(BSGT, _, _, _, 0, 0) : taken();
(BSGT, _, _, 0, 1, 1) : not_taken();
(BSGT, _, _, _, 1, 1) : taken();
(_, _, _, _, _, _) : not_taken();

}
}

HALT stops the execution, JMP unconditionally choose the
instruction at PC_TAKEN for the next stage, all others op-
codes implement conditional branches by choosing between
PC_TAKEN and PC_NTAKEN based on the comparison result.
BEQ checks for equality, BLT and BGT check of less-than and
great-than inequalities of unsigned integers, BSLT and BSGT
are their signed counterparts, BSET performs a bitwise-and
between the operands and compares it to zero. Due to the
use of two-way branches, we can achieve more functionality
by swapping PC_TAKEN and PC_NTAKEN. For example, to im-
plement a less-than-equal branch we can use a greater-than
branch with swapped PC targets.

2L

oprand2
Selection

oprand1
Selection

compare

Branch
Resolution

CTRL_OP
taken

IMEM

A[L:1]
B[L:1]

C[2]
CMP

A[L:1]
B[L:1]

C[2]

PKT_OPT1

PKT_OPT2

A[L:1]
B[L:1]

C[2]
CMP

Next
Code

PC_TAKEN
PC_NOT_TAKEN

CTRL_OP

Figure 11: Overview of SwitchVM control unit.

708 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Characterization of Large Language Model Development in the Datacenter

Qinghao Hu*✩1, Zhisheng Ye*✩3, Zerui Wang*✩4, Guoteng Wang✩, Meng Zhang✩1, Qiaoling Chen✩1

Peng Sun✩5, Dahua Lin✩6, Xiaolin Wang3, Yingwei Luo3, Yonggang Wen2, Tianwei Zhang2

✩Shanghai AI Laboratory 1S-Lab, Nanyang Technological University 2NTU
3Peking University 4Shanghai Jiao Tong University 5SenseTime Research 6CUHK

Abstract
Large Language Models (LLMs) have presented impressive
performance across several transformative tasks. However, it
is non-trivial to efficiently utilize large-scale cluster resources
to develop LLMs, often riddled with numerous challenges
such as frequent hardware failures, intricate parallelization
strategies, and imbalanced resource utilization. In this paper,
we present an in-depth characterization study of a six-month
LLM development workload trace collected from our GPU
datacenter Acme. Specifically, we investigate discrepancies
between LLMs and prior task-specific Deep Learning (DL)
workloads, explore resource utilization patterns, and identify
the impact of various job failures. Our analysis summarizes
hurdles we encountered and uncovers potential opportuni-
ties to optimize systems tailored for LLMs. Furthermore, we
introduce our system efforts: (1) fault-tolerant pretraining,
which enhances fault tolerance through LLM-involved failure
diagnosis and automatic recovery. (2) decoupled scheduling
for evaluation, which achieves timely performance feedback
via trial decomposition and scheduling optimization.

1 Introduction
Over the years, advances in LLMs have attracted significant
attention from both academia and industry owing to their
impressive performance and capabilities, such as ChatGPT
[2] and GitHub Copilot [3]. However, due to their immense
model sizes and extensive data demands, training such models
necessitates a substantial computational infrastructure with
thousands of accelerators [27, 68]. Hence, it is a common
practice for tech companies and cloud providers to build large-
scale GPU clusters to facilitate LLM development, especially
after the popularity of ChatGPT. Nevertheless, it is non-trivial
to perform efficient LLM development on such high-cost
infrastructure. Developers often confront numerous issues
and challenges, including frequent hardware failures [64, 96],
intricate parallelization strategies [68, 113], unstable training
progress [1, 110], long queuing delay [104], etc.

Developing LLMs is closely intertwined with the support
of GPU clusters in various aspects. A thorough analysis of
cluster workloads is essential for comprehending challenges
and uncovering opportunities in designing systems tailored

*Equal Contribution.

for LLMs. However, many conclusions and implications from
existing DL workloads analysis works [38, 45, 97], conducted
before the rise of LLMs, are not applicable to LLM develop-
ment. This is primarily due to the divergent characteristics
and requirements of LLMs:
(1) Paradigm Transition. DL workloads generally follow
a task-specific paradigm that trains the model on domain-
specific data to tackle a particular task (e.g., translation [18]).
In contrast, LLMs follow an emerging paradigm that performs
self-supervised training on broad data to generate a foundation
model [19] and further adapts to a wide range of downstream
tasks. This shift signifies a substantial divergence in the model
development pipeline (e.g., pretraining [85], alignment [37])
and workload characteristics from prior DL workloads (§2.1).
(2) Tailored Software Stack. To accommodate the enormous
model size of LLMs, a series of systems implement advanced
techniques to optimize the execution of LLMs. For instance,
Deepspeed [79], Megatron [68] and Alpa [113] accelerate
the training via hybrid parallelism or state-sharding optimizer.
As for model serving, Orca [104] and vLLM [51] improve
throughput via iteration scheduling or memory management.
(3) Unified Architecture. Prior DL workloads usually employ
various model architectures (e.g., CNN [54], RNN [18]) to ad-
dress diverse tasks. In contrast, LLMs commonly embrace the
Transformer [93] architecture, like BERT [31], GPT-3 [20],
LLaMA [91] and PaLM [27]. The architectural homogeneity
suggests a high level of uniformity in the LLM development
pipeline and similarity across different datacenters.

To bridge this gap, we present an in-depth study of our
operational experiences in the datacenter Acme of Shanghai
AI Laboratory. It houses two distinct clusters, Seren and
Kalos, dedicated to LLM development and equipped with
4,704 A100 GPUs in total. Our analysis draws upon traces
collected over a six-month period from March to August 2023,
encompassing scheduler logs, infrastructure monitoring data,
failure logs, and fine-grained profiling data. Our key findings
and identified challenges can be summarized as follows:
• Shorter Job Duration and Unfair Queuing Delay. In
contrast to the common stereotype that LLM workloads are
usually long-term, the workloads in our datacenter exhibit
2.7∼12.8× shorter average job duration compared to the
DL workloads in previous traces [38, 45, 97]. This can be

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 709

attributed to the presence of numerous short-term tasks such
as evaluation. In terms of job queuing delay, our findings
also diverge from previous DL traces that larger-scale jobs
experience longer wait times. We observe that evaluation jobs,
despite being short-term and small-scale, have the longest
queuing delay. This discrepancy stems from reserving the
majority of resources for pretraining jobs to minimize their
queuing delays. Evaluation jobs are scheduled with a lower
priority, utilizing the limited spare resources.
• Imbalanced Resource Usage. The imbalance is manifested
in two aspects. Firstly, in terms of workload distribution, pre-
training jobs only account for 3.2% of the total job count but
consume 94.0% of the whole compute resource (i.e., GPU
time) in Kalos. Conversely, evaluation jobs, despite constitut-
ing 92.9% of all jobs, only utilize a meager 0.8% of resources.
Secondly, when looking at infrastructure utilization, we find
that associated resources including CPU, host memory, and
network, are frequently underutilized. In contrast, the GPU, as
the primary resource, shows high utilization rates. Both GPU
memory and GPU utilization exhibit substantially higher me-
dian values at 75% (60GB) and 99% respectively in Kalos,
as opposed to the 10% and 4% observed in PAI [97]. These
observations corroborate that LLMs are computationally and
memory intensive. It also implies that GPU-sharing-based
techniques [40, 98, 99, 106] may not be suitable for LLMs.
• Long GPU Idle Time in Evaluation Workload. Our
profiling of evaluation workloads reveals substantial under-
utilization of GPU resources at various stages. For example,
the evaluation job on HumanEval consumes 29.5% of its time
for model loading and data preprocessing, and an additional
19.0% is spent conducting synthesized program correctness
tests. As a result, only half of the time is dedicated to GPU
inference, leading to long queuing delays in evaluation trials.
• Frequent Job Failures. We find various errors primarily
occur at the beginning of LLM workloads, leading to fast
job termination. However, infrastructure failures, which are
common in long-term pretraining jobs, significantly impede
training efficiency. Therefore, prompt diagnosis and recovery
from these failures are crucial to enhance training efficiency.

Based on our characterization study, we identify several
challenges encountered during the LLM development, such
as unstable training progress, remote storage bottleneck and
delayed feedback on model performance. To tackle these is-
sues, we consolidate the insights gained from our operational
experience and build two systems that are integrated into our
LLM framework to improve development robustness and effi-
ciency. Firstly, to mitigate the frequent failure problem, we
establish a system to achieve fault-tolerant pretraining. It
incorporates three key designs: (1) achieving frequent model
saving through asynchronous checkpointing, (2) identifying
the root causes of various failures through a combination of
heuristic rules and LLM, (3) employing a holistic detection
toolkit to pinpoint fault nodes and automatically restart train-
ing from properly saved checkpoint. It accelerates checkpoint-

1 Data Preparation Deployment

Pretraining

Alignment

Evaluation
Tokenization

Collection

Curation

Process Pipeline Data Stores

Pretraining
Datasets

2

Alignment
Datasets

Placement Strategy

Data, Pipeline, Tensor
Parallelisms

Training Recipe

Model Selection

Data Sampling

Hyperparameter
Configuration

3

Quantization

4

5

Conversion

RLHF

Fine-tuning

Distributed Eval.

Multi-task

Multi-metric

Prompt Engineering

Figure 1: Overview of the LLM development pipeline.

ing by 3.6∼58.7× and significantly reduces manual interven-
tion. Secondly, we develop a system that performs decoupled
scheduling for evaluation to provide developers with timely
feedback on model quality. It not only resolves the remote
model loading contention issue via decoupled model retrieval
but also minimizes GPU idle time via decoupling the metric
computation process. It further leverages the prior knowl-
edge and flexibility of datasets to balance workload across all
GPUs. Our experiment shows that it can reduce the evaluation
makespan by up to 1.8×.

We believe the observations and insights derived from our
datacenter do not stand in isolation. Our traces are publicly
available at https://github.com/InternLM/AcmeTrace.
We also release our system code and models (Appendix C).
We hope these resources and lessons can benefit researchers in
optimizing LLM systems as well as GPU cluster management.

2 Background
2.1 LLM Development Pipeline
Distinguished from task-specific DL models, LLMs follow an
emerging paradigm that performs self-supervised training on
broad data and further adapts to a wide range of downstream
tasks [19]. The development of LLMs necessitates the use of
extensive computational infrastructure due to their substantial
model size (comprising billions of parameters) and the vast
amount of training data involved. Figure 1 depicts the com-
prehensive LLM development pipeline, encompassing five
distinct stages (blue blocks) that span from scratch to service
(follow blue arrows). The grey circular arrow indicates that
the pretraining stage enables periodical alignment and evalua-
tion to assess intermediate models and adjust configuration
on the fly. We explain each stage as follows:
Data Preparation. The initial stage involves gathering and
preprocessing the training data, which can be categorized
into two parts: (1) pretraining data, consisting of extensive
unlabeled corpora obtained from public or private sources
and curated through processes like detoxification and dedu-

710 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/InternLM/AcmeTrace

Cluster #CPUs #GPUs Mem(GB) Network #Nodes

Seren
128 8

1,024 1×200Gb/s 286
Kalos 2,048 5×200Gb/s 302

Table 1: Summary of per-node specification and cluster scale
for two independent LLM clusters in Acme.

plication; (2) alignment data, comprising a smaller set of
high-quality labeled corpora used to align the model with spe-
cific tasks. This data is typically acquired through expensive
human annotation or labeling [71]. Besides, all the data must
be tokenized to ensure compatibility with the model’s input.
Pretraining. It involves self-supervised training on large-
scale curated data, demanding a majority of resources within
the overall development workflow. Training LLMs efficiently
at scale necessitates various system innovations, such as state-
sharding optimizers [79], meticulous model placement using
data, pipeline, and tensor parallelisms [67, 68, 113].
Alignment. This stage aims to adapt LLMs with user intent
on a wide range of downstream tasks. Two primary align-
ing paradigms are commonly used: (1) prompt engineering,
specifying prompts (i.e., inputs) without modifying model
parameters. For example, in text summarization, appending a
prompt TL; DR to the input article can improve model per-
formance [78]; (2) fine-tuning, updating model parameters on
a task-specific dataset to improve performance in a particular
domain. Additionally, reinforcement learning from human
feedback (RLHF) [71] further enhances the alignment effect,
and parameter-efficient techniques like LoRA [37] have been
proposed to reduce the cost of fine-tuning.
Evaluation. Given the vast application scenarios of LLM,
it may be inaccurate to assess model quality solely based
on a single metric like training loss. There are numerous
factors to consider, such as accuracy, fairness, and toxicity
[58]. Consequently, it is crucial to account for a diverse set
of criteria and measure performance across multiple tasks
[22]. Furthermore, regular evaluation is essential during the
pretraining stage to provide timely feedback on model quality.
Deployment. To meet the strict cost and latency constraints of
LLM applications, several advanced techniques have been de-
veloped to achieve efficient model serving, including quantiza-
tion [30], distillation [83], CUDA kernel optimization [29,43],
model parallelism [57, 104] and memory management [51].

2.2 Acme Overview
Acme is our private GPU datacenter that empowers researchers
and engineers to develop DL models across diverse domains.
In this work, we focus on analyzing workloads within two
clusters dedicated to developing LLMs: Seren and Kalos. We
collect and analyze all jobs in these two clusters. Note that
there are additional clusters within Acme that are designated
for different fields, such as autonomous driving, and AI for
scientific research. However, these clusters are excluded in
this work as they are unrelated.

Cluster Architecture. Table 1 summarizes configurations of
these two homogeneous LLM clusters. Seren and Kalos have
2,288 and 2,416 GPUs respectively. Each node is equipped
with 8× NVIDIA A100-SXM 80GB GPUs [6] and 2× Intel
Xeon Platinum 8358P CPUs (128 threads in total). GPUs are
interconnected to each other by NVLink and NVSwitch [9],
and inter-node communication is achieved via NVIDIA Mel-
lanox 200Gbps HDR InfiniBand [4]. Compared to Seren,
Kalos is a relatively newer cluster with an improved net-
work configuration. Each node in the Kalos has a larger host
memory (2TB) and is equipped with four InfiniBand HCAs
specifically for application communication, along with an
extra HCA dedicated to storage.

Besides, the distributed storage system is also critical for
workload performance. Acme adopts an all-NVMe shared par-
allel file system for fast data access and storage. Moreover,
as time has advanced, our resource scheduling system has
evolved to support diverse cluster environments. Specifically,
our scheduler on Seren and Kalos is built atop Slurm [102]
and Kubernetes [21] respectively. In order to provide resource
guarantees for large-scale pretraining jobs, our scheduler en-
ables resource isolation and quota reservation. It further in-
corporates a best-effort job mechanism for higher utilization.
LLM Workloads. We develop a collection of LLMs1 rang-
ing from 7B to over 123B parameters. All of these models
follow the transformer-based decoder-only architecture, simi-
lar to the GPT [20, 77, 78] and LLaMA [91, 92] series. Acme
encompasses tasks in the aforementioned general LLM devel-
opment pipeline (§2.1). Note that Acme does not involve any
serving jobs, as our LLMs are deployed on a separate cluster
specifically for serving purposes.
Software Stack. To support the training of billion-scale mod-
els across thousands of GPUs, we built a system InternEvo2,
which integrates various system optimization techniques, such
as FlashAttention [28, 29], 3D parallelism [68], zero redun-
dancy optimization [79], mixed precision training [10], selec-
tive activation recomputation [50] and fine-grained communi-
cation overlap. Moreover, it accommodates additional tasks
such as model fine-tuning and evaluation.

2.3 Traces from Acme
The optimization of LLM-tailored systems and datacenter
management can significantly boost development efficiency
and yield substantial financial benefits. Achieving this goal
requires a profound understanding of the intrinsic charac-
teristics of LLM workloads. Many insights in existing DL
workloads analysis works [38, 45, 97] are not applicable to
LLM workloads due to the unique attributes of LLMs. To
fill this gap, we collected and analyzed workload traces from
our datacenter Acme. Table 2 compares the specifications and
trace information of Acme with prior trace analysis works
conducted by Microsoft, SenseTime, and Alibaba. Unlike

1Model: https://huggingface.co/internlm
2System: https://github.com/InternLM/InternEvo

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 711

https://huggingface.co/internlm
https://github.com/InternLM/InternEvo

For Task-Specific DL Models For LLMs

Datacenter Philly [45] Helios [38] PAI [97] Acme

Year 2017 2020 2020 2023
Duration 3 months 6 months 2 months 6 months
#Jobs 113K 3.36M 1.26M 1.09M
Avg. #GPUs 1.9 3.7 0.7 6.3
GPU Model 12GB/24GB 1080Ti/V100 T4/P100/V100 A100
Total #GPUs 2,490 6,416 6,742 4,704

Table 2: Comparison between our datacenter Acme and GPU
datacenters in prior trace analysis works: Microsoft Philly
[45], SenseTime Helios [38], Alibaba PAI [97]. Philly only
provides GPU memory sizes without clarifying GPU models.
The average number of requested GPUs in PAI can be less
than 1 (0.7), as it supports fractional (<1) GPU requests.

Acme, which is solely dedicated to LLM development, these
datacenters encompass a mixture of general DL workloads
from various domains. For instance, Helios [38] consists of
4 clusters dedicated to training models in computer vision
and reinforcement learning, while PAI [97] includes a diverse
range of servers for training and serving jobs.

Trace Source. Our characterization study is based on traces
collected from two LLM clusters in Acme. The traces span 6
months from March to August 2023. Seren contains 368K
CPU jobs and 664K GPU jobs, while Kalos job trace con-
sists of 42K CPU jobs and 20K GPU jobs. Additionally, we
provide a summary of the data sources for the traces used
in our study: (1) Job Log. We collect the job logs from our
scheduler database, which contains detailed information for
each job. This includes the job’s execution time (submission,
start, and end), final status (completed, canceled, failed), re-
quested resources (CPU, GPU, memory), work directory, and
other relevant data. (2) Hardware Monitor Data. This en-
compasses long-term, multi-dimensional data obtained from
various sources. We collect CPU, memory, and network us-
age data from Prometheus [75] database, GPU-related met-
rics from NVIDIA DCGM [7], and power-related data from
IPMI [12]. The sampling interval for this data is set at 15
seconds. (3) Runtime Log. To conduct a precise job failure
analysis, we capture stdout and stderr logs from LLM frame-
works during job execution. (4) Profiling Data. For a subset
of representative jobs, we delve deeper by performing fine-
grained profiling using tools like DCGM. The synergy of
these trace dimensions allows us to gain a holistic understand-
ing of LLM job characteristics in datacenters.

3 Datacenter Characterization

In this section, we perform a thorough analysis of Acme, in-
cluding comparing workload distribution between LLMs and
previous DL workloads (§3.1), investigating different LLM
workload types (§3.2), exploring resource utilization patterns
(§3.3) and assessing environmental impacts (§3.4).

100 101 102 103 104 105 106

(a) GPU Job Duration (s)

0

25

50

75

100

CD
F

(%
)

0 25 50 75 100
(b) GPU Utilization (%)

0

25

50

75

100

CD
F

(%
)

Seren Kalos Philly Helios PAI

Figure 2: Overview of different datacenter characteristics. (a)
Workload: CDF of the GPU job duration. (b) Infrastructure:
CDF of GPU utilization, where Helios’ data is not available.

1 4 16 64 256 1024+
(a) Number of GPU

0

25

50

75

100

CD
F

of
 J

ob
s

(%
)

1 4 16 64 256 1024+
(b) Number of GPU

0

25

50

75

100

CD
F

of
 G

PU
 T

im
e

(%
)

Seren Kalos Philly Helios PAI

Figure 3: Comparison of workload distribution based on the
number of requested GPUs. (a) CDF of job count. (b) CDF
of GPU time (i.e., requested GPU number × duration).

3.1 LLMs versus Prior DL Workloads
Shorter Job Duration. As shown in Figure 2 (a), contrary
to the prevailing stereotype that LLM-related jobs are typ-
ically long-running, we find the workloads in our clusters
(blue and orange lines) exhibit shorter GPU job durations
(i.e., job runtime, excluding queuing delay) compared to the
DL workloads observed in previous job traces (dotted lines).
Specifically, both the Seren and Kalos have a median job
duration of 2 minutes, which is 1.7∼7.2× shorter than the
median job durations of other clusters. Furthermore, it is ev-
ident that the more recent trace demonstrates a shorter job
duration distribution. In particular, when considering the av-
erage job duration in the Philly cluster (collected in 2017), it
is 2.7∼3.8× longer than Helios (2020) and PAI (2020), and
12.8× longer than Acme (2023). To provide an explanation
for this observation, we outline three potential factors: (1)
Hardware upgrade. The iteration of GPU and networking
delivers substantial efficiency improvement. (2) Abundant
resources. Users usually request more resources (as shown
in Table 2), averaging 5.7 GPUs in the Seren and 26.8 GPUs
in the Kalos. This can significantly accelerate the training
process. (3) Extensive associated workloads: LLM develop-
ment pipeline involves numerous small-scale associated jobs,
such as evaluation. We will delve into this in §3.2. (4) High
incompletion rate: Approximately 40% of jobs fail, with com-
pleted jobs consuming only 20∼30% of GPU resources. This
highlights the urgent need for a fault-tolerant system. Further
details can be found in Figure 17 and Appendix A.1.

712 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Job Count

Evaluation
64.9%

SFT
14.9%

Other
14.6%

2.9% 1.9%
0.9%

Seren
(b) GPU Time

Pretrain
69.5%

8.6%

7.6%

6.4%

6.2% 1.7
%

Seren

(c) Job Count

Evaluation
92.9%

3.2
%

2.7
%

1.2%

Kalos
(d) GPU Time

Pretrain
94.0%

3.2
%

2.0
%

0.8%

Kalos

Evaluation Pretrain SFT MLLM Debug Other

Figure 4: Distribution of different workload types in Seren
(a, b) and Kalos (c, d). Note that CPU jobs are excluded.
SFT: Supervised Fine-Tuning for model alignment. MLLM:
Multimodal Large Language Model. Other: Unclassified jobs.

Eval Pretrain SFT MLLM Debug Other
(a) Seren

100

101

102

103

N
um

be
r o

f G
PU

s

Eval PretrainDebug Other
(b) Kalos

100

101

102

103

Figure 5: The boxplot of the distribution of GPU demand
across different workload types in Seren (a) and Kalos (b).

Polarized GPU Utilization Figure 2 (b) shows cluster-wide
GPU utilization distributions across various clusters. It is ev-
ident that the GPU utilization in our two clusters exhibits a
polarized pattern, primarily concentrated in two distinct states:
0% and 100%. This polarization mainly stems from the fact
that the workloads in our clusters share similar model archi-
tectures, i.e., transformer-based LLMs. In contrast, Philly and
PAI encompass a broader range of utilization. Besides, when
comparing the median GPU utilization, Seren and Kalos
exhibit significantly higher values at 97% and 99%, respec-
tively, in contrast to 48% and 4% observed in Philly and PAI.
This observation aligns with the common understanding that
LLMs are computationally intensive. It also implies that GPU-
sharing-based scheduling techniques [40,98,99,106] may not
be suitable for LLM development. Note that ‘GPU utilization’
may sometimes be a weak utilization indicator [8, 94]. We
provide a more precise utilization analysis in §3.3.
High-skewed Workload Distribution. We further investigate
the CDF of GPU demands in relation to the number of jobs
(Figure 3 (a)) and GPU time (Figure 3 (b)). For the number of
jobs, all the clusters share a similar pattern in that the majority
of jobs are single-GPU jobs and less than 7% of jobs request
over 8 GPUs. However, when examining GPU time, single-
GPU jobs only account for less than 2% resources in our
two clusters, while taking over 68% GPU time in PAI. In
stark contrast, large-scale jobs (≥ 256 GPUs) dominated the
GPU time in Kalos, occupying more than 96% of resources.
The much steeper distribution poses substantial challenges
for the design of cluster schedulers. A majority of resources

100 101 102 103 104 105 106

(a) Job Duration (s)

0

25

50

75

100

CD
F

(%
)

Seren
100 101 102 103 104

(b) Job Queuing Delay (s)

0

25

50

75

100

CD
F

(%
)

Seren

100 101 102 103 104 105 106

(c) Job Duration (s)

0

25

50

75

100

CD
F

(%
)

Kalos
100 101 102 103 104

(d) Job Queuing Delay (s)

0

25

50

75

100

CD
F

(%
)

Kalos

Evaluation Pretrain SFT MLLM Debug Other

Figure 6: CDF of GPU job duration and queuing delay for
different workload types in Seren (a, b) and Kalos (c, d).

are allocated to a few pretraining jobs, potentially causing
head-of-line blocking issue and resulting in severe queuing
delay. Existing DL cluster schedulers [35, 61, 74, 98, 101]
typically depend on preemption mechanism, however, the
considerable recovery overhead makes them not applicable
to LLM workloads. This highlights the critical need for a
scheduling system tailored for LLM clusters, considering the
workload features of the entire pipeline.

3.2 Workload Categories
To strive for a deeper understanding of the characteristics of
different workloads in the LLM development pipeline (§2.1),
we further categorize jobs into specific types according to
their production division and metadata (e.g., job names).
Irrelevance of Job Count and Resource Usage. Figure 4
presents the distribution of job counts and GPU time across
various workload types, where only Seren contains SFT
and MLLM workloads. Besides, MLLM jobs incorporate
their own development pipeline (e.g., pretraining) and adopt
smaller model scales for exploration purposes. Our analysis
primarily focuses on LLM jobs. It is obvious that evaluation
jobs constitute the majority of the total job count in both clus-
ters, yet they consume a relatively small portion of resources
(0.8% in Kalos). In contrast, pretraining jobs only account for
0.9% and 3.2% of the total job count but consume 69.5% and
94.0% of the total GPU time in Seren and Kalos respectively.
Job Type Correlates with GPU Demand. We further depict
GPU demand distribution across various workload types in
Figure 5. Each box is framed by the first and third quartiles,
while the median value is indicated by the black line within
the box. Both whiskers are defined at 1.5× the InterQuartile
Range (IQR). Compared to evaluation jobs, which typically
require less than 4 GPUs, pretraining jobs often require over
100 GPUs. This observation partially explains why evaluation
jobs in Kalos consume only minimal resources in Figure 4(d).
Additionally, we notice that debugging jobs have a wide range

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 713

0 25 50 75 100
(a) GPU DCGM Metric (%)

0

25

50

75

100
CD

F
(%

)

Seren
Kalos

SM Activity
TC Activity

0 25 50 75 100
(b) Memory Footprint (%)

0

25

50

75

100

CD
F

(%
)

CPU Memory
GPU Memory

0 25 50 75 100
(c) CPU Utilization (%)

0

25

50

75

100

CD
F

(%
)

Seren
Kalos

0 25 50 75 100
(d) Network (%)

0

25

50

75

100

CD
F

(%
)

IB Send
IB Receive

Figure 7: Infrastructure utilization. CDF of various metrics:
(a) active fractions of Streaming Multiprocessor (SM) and
Tensor Core (TC), (b) memory footprints of host and GPU, (c)
CPU utilization, (d) normalized InfiniBand (IB) HCA send
and receive bandwidths (Seren only). Seren and Kalos are
represented by blue and orange lines respectively.

of GPU requests, which aligns with the fact that testing jobs
are typically needed for various types of tasks.
Similar Temporal Distribution. Figure 6 shows the distri-
bution of job duration and queuing delay across different
workloads. In terms of job duration, although pretraining jobs
have the longest duration, they surpass other workloads within
an order of magnitude in the median, and less than 5% jobs
last for over 1 day in both clusters. This can be attributed
to frequent failures during pretraining, which will be further
explored in §5. Regarding job queuing delay, contrary to pre-
vious reports [38, 45, 97] suggesting that larger-scale jobs
experience longer wait times, we observe that evaluation jobs
have the longest queuing delay despite having the lowest GPU
demands and shortest job duration. This discrepancy is due to
the majority of resources being reserved for pretraining jobs
to minimize their queuing delays. Evaluation jobs are typi-
cally submitted as a batch simultaneously with lower priority,
utilizing the limited spare resources.

3.3 Infrastructure
Beyond the workload characterization, we further conduct a
comprehensive analysis of our infrastructure utilization.
Higher GPU Utilization. Given the critical role of GPUs
in LLM development, as shown in Figure 7 (a, b), we col-
lect fine-grained performance counter metrics from DCGM
[7], including SM Activity (PROF_SM_ACTIVE), TC Activity
(PROF_PIPE_TENSOR_ACTIVE), and GPU memory footprint
(DEV_FB_USED). In contrast to PAI [97], where a significant
portion of GPU memory is underutilized (less than 25% mem-
ory), our observations in Kalos indicate that 50% of GPUs
consume over 75% of GPU memory (60 GB). Furthermore,
we observe that the median SM activity in both clusters is
approximately 40%, which is twice the reported 20% in PAI.

0 200 400 60060

(a) GPU Power (W)

0

25

50

75

100

CD
F

(%
)

A100 TDP

Max=600Seren
Kalos

0 2000 4000 6000520

(b) Server Power in Seren (W)

0

25

50

75

100

CD
F

(%
)

Max=960

Max=6550

GPU Node
CPU Node

Figure 8: Power consumption. CDF of (a) A100 GPU power.
(b) server power in Seren. TDP: Thermal Design Power.

GPU (65.7%)

CPU (11.2%)

Other (13.5%)

PSU Overhead (9.6%)

Figure 9: Average power distribution of hardware modules
in Seren GPU servers, gathered from IPMI and DCGM.

These findings align with the memory-intensive and compute-
intensive natures of LLMs.
Underutilized Associated Resources. We also delve into the
aspects of CPU, host memory, and network that are closely
associated with LLM development. In Figure 7 (b), we com-
pare the memory footprint on the host side and GPU side. It
is evident that CPU memory utilization remains below 50%.
Note that Kalos boasts twice the memory capacity (2TB)
compared to Seren (Table 1). This demonstrates the signifi-
cant underutilization of CPU memory. More detailed analysis
is provided in Appendix A.2. Although the GPU memory of-
floading technique [80,81] improves CPU memory utilization
and alleviates GPU memory limitations, it also impedes train-
ing throughput due to limited PCIe bandwidth. Therefore, we
do not employ the offloading mechanism. Additionally, due
to a high CPU-to-GPU ratio (16 CPUs per GPU), CPUs are
typically underutilized, as depicted in Figure 7 (c). Moreover,
in Figure 7 (d), we measure the network send and receive
bandwidths of IB in Seren. Two lines are well overlapped,
as IB serves for symmetrical communication during LLM
execution. We observe that NICs remain idle for over 60% of
the time, and the active bandwidth rarely surpasses 25% of
the maximum bandwidth provided by IB.

3.4 Environmental Impact
LLM development leads to substantial energy consumption
and carbon emissions [72, 103]. We report our analysis of
infrastructure power consumption patterns to inspire future
datacenter designs that minimize environmental impact.
GPUs Dominate Power Consumption. Figure 8 (a) depicts
the distribution of GPU power consumption. We observe that
around 30% of GPUs are in an idle state and still need to con-
sume 60W. Besides, due to intensive computation demand,
we find that 22.1% and 12.5% of GPUs consume over 400W
(TDP) in Seren and Kalos respectively, with some even reach-
ing 600W. This may cause the risk of some metastable is-
sues [41]. Figure 8 (b) presents the power consumption distri-
bution of all GPU servers, along with an additional 6 CPU-

714 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
(a) InternEvo V1: 3D Parallelism [Time (s)]

0

50

100
SM

 A
ct

iv
ity

 (%
)

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
(b) InternEvo V2: Hierarchical ZeRO [Time (s)]

0

50

100

SM
 A

ct
iv

ity
 (%

)

Figure 10: GPU SM utilization of pretraining a 123B LLM
using different strategies of InternEvo [25] over 2048 GPUs.

only servers, in Seren. We find GPU servers consume 5×
power than CPU servers on average. Additionally, Figure 9
demonstrates that GPUs account for approximately 2/3 of the
total power consumption in GPU servers, while CPUs only
contribute 11.2% and power supply units (PSUs) consume
9.6% of the energy during voltage conversion. These observa-
tions align with the understanding that GPUs are the primary
power consumers in LLM development. We also provide the
estimation of datacenter carbon emission in Appendix A.3.

4 Workload Profiling
In this section, we conduct fine-grained analyses of resource
utilization for representative tasks. Specifically, we focus on
pretraining and evaluation jobs, as they are the most resource-
intensive or quantity-intensive workloads.

4.1 Pretraining Workload
As aforementioned, pretraining LLMs requires substantial
computational resources. To enhance training efficiency, our
pretraining framework, InternEvo [25], undergoes continuous
refinement and iteration in its system design. As presented
in Figure 10, the initial version of InternEvo (adopted by
our early jobs) is denoted as (a) primarily utilizes 3D paral-
lelism akin to that of MegatronLM [68], and (b) employs a
hierarchical ZeRO mechanism [25] that implements selective
redundant sharding of model states. To provide a detailed ex-
ample, we profile an LLM with 123 billion parameters across
2048 GPUs. We also provide the profiling results of 1024
GPUs in Appendix A.4. For (a) 3D parallelism approach,
we adopt a configuration with pipeline parallelism= 4,
tensor parallelism= 8. We sample the first GPU of the
first pipeline rank for profiling. For (b) hierarchical ZeRO ap-
proach, we limit parameter sharding to subgroups of 64 GPUs
each and enable recomputation. We collect GPU performance
counters like DCGM metrics at 1 ms intervals.
GPU SM Utilization. Figure 10 illustrates the GPU SM uti-
lization for the same LLM under various training strategies.
Both versions maintain the same global batch size and are
optimized according to their respective configurations. It is
evident that InternEvo V2 presents superior peak SM utiliza-

(a) 3D Parallelism (b) Hierarchical ZeRO

10G

0G

20G

30G

40G

50G

65G
60G

10G

0G

20G

30G

40G

50G

70G

60G

Figure 11: Memory snapshot under different pretraining
strategies. Note that the extensive blue segment at the top
of (a) is simplified and can be further broken down into mas-
sive fragments (memory allocations), similar to the lower part.

0 1 2 3
Pipeline Rank

0

20

40

60

80

G
PU

 M
em

or
y

(G
B)

Params + Grads + OptimStates
Activation

Figure 12: GPU memory consumption of different pipeline
ranks employing the 1F1B [67] strategy in InternEvo V1.

tion and exhibits reduced idle periods compared to InternEvo
V1, achieving around 16% acceleration. The relatively low
utilization of 3D parallelism is mainly due to the impact of
communication introduced by hybrid parallelism on the crit-
ical path, such as bubbles in pipeline parallelism. Note that
the different inter- and intra-node communication hardware
settings may lead to different optimal configurations.
GPU Memory Footprint. For a model comprising Ψ pa-
rameters, in the mainstream mixed precision training using
Adam [48] optimizer, the memory footprint of the parame-
ters, gradients, and optimizer states are 2Ψ, 2Ψ, and 12Ψ,
respectively. To reduce memory cost, ZeRO [79] effectively
shards redundant memory of these elements across global
GPU workers. Figure 11 illustrates the actual GPU memory
usage over time captured by the Pytorch memory snapshot
tool [11]. The upper dynamic part represents activations and
gradients, while the lower static part represents the mem-
ory occupied by parameters and optimizer states. Note that
only allocated memory is depicted, while reserved memory
is not presented. Our analysis reveals that, in comparison to
hierarchical ZeRO, the memory requirement for activations
in 3D parallelism is substantially higher. This observation
underscores the importance of efficient activation memory
management as a key factor for enhancing batch size and
throughput in 3D parallelism.
Imbalance in Activation Sizes. When employing pipeline
parallelism, each rank needs to hold a different quantity of
activations since the diverse number of micro-batches pending
backward computation across various pipeline ranks. Figure
12 illustrates this imbalance issue on different pipeline ranks.
It suggests that we should employ a specialized partitioning
mechanism to address the unbalanced memory usage among

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 715

0 25 50 75 100 125 150 175 200
Time (s)

0

25

50

75

100
SM

 A
ct

iv
ity

 (%
)

Code Test
(CPU Only)

Model Load
 &
Data Process

Figure 13: GPU SM utilization for the entire evaluation work-
load on HumanEval [24] dataset using a 7B LLM.

different ranks in pipeline parallelism, in order to achieve
higher efficiency, such as recomputing activations.

4.2 Evaluation Workload
It is necessary to regularly evaluate the checkpoints produced
during pretraining to guide the evolution of LLM pretrain-
ing. Therefore, the LLM evaluation jobs take the majority of
jobs, each performing metric computation on different LLM
benchmark datasets. We analyze the workflow of the entire
evaluation and combine it with fine-grained resource usage
information collection quantitatively, demonstrating two up-
coming resource utilization issues. We will also discuss the
corresponding solutions in §6.2.
High Model Loading and Data Preprocessing Overhead.
During the initiation phase of evaluation jobs, it is imperative
to load model checkpoints for each task. Additionally, the data
preprocessing stage, particularly for tokenization, constitutes
a significant time expenditure. These factors contribute to the
underutilization of allocated GPU resources for a relatively
long period. As illustrated in Figure 13, the evaluation task
consumes over 1 minute prior to the actual GPU inference, ac-
counting for 29.5% of the evaluation duration. This overhead
is likely to increase with larger models or datasets. To address
the preprocessing overhead, one effective strategy is to cache
the tokenized data. Moreover, evaluation jobs are flexible,
allowing for the consolidation of multiple evaluation tasks
(datasets) into a single job. This consolidation can effectively
reduce the relative time overhead of the model loading phase
within the evaluation process.
High Metric Computation Overhead. The evaluation pro-
cess can often involve complex and time-consuming met-
ric computation. For example, synthesized program correct-
ness tests need to be performed on coding datasets like Hu-
manEval [24] and MBPP [17]. Moreover, the OpenAI GPT-4
API is invoked to assess the performance of model conver-
sations (e.g., Chatbot Arena [112]). These procedures can
take up to 30 minutes, during which the GPU remains idle.
Therefore, we can observe distinct stages of GPU usage, in-
cluding stages that require GPU for inference and generation,
and stages that do not require GPU for metric computation
and verification. Taking the HumanEval benchmark as an ex-
ample, as shown in Figure 13, the GPU is idle for the last 42
seconds, wasting about 19.0% of the total GPU time.

1 3 5 7 9 11 13 15 17 19 21 23
Time from Start (day)

0

20

40

60

80

100

N
or

m
al

iz
ed

Tr
ai

ni
ng

 P
ro

gr
es

s
(%

)

day1 03:48

day4 23:39

day10 03:19

day10 05:14

day5 02:02

day15 01:24

123B (April)
104B (March)

Figure 14: The training progress of two LLMs, with special
emphasis on the manual recovery at night.

5 Failure Analysis
In this section, we conduct a comprehensive analysis of job
failures, primarily relying on runtime logs and hardware mon-
itor data from our two clusters. In Kalos, we gather logs from
32,500 tasks, which include 31,293 (96.3%) inference tasks,
647 (2.0%) pretraining tasks, and debugging tasks (1.7%).
In Seren, we only collected logs from 675 pretraining tasks.
Additionally, for pretraining tasks, we extract all pertinent
information and metadata recorded in the logs, including ac-
tual training steps, cold-start overhead, recovery timestamp,
etc. We hope our analysis can provide insights for future
fault-tolerance research in the development of LLMs.

5.1 Failure Category
We employ a failure diagnosis system, leveraging a combi-
nation of rule-based and LLM techniques, to extract error
information from the runtime logs. We provide detailed expla-
nations of this system in §6.1. Besides, to ensure the accurate
identification of the types and root causes of failures, manual
checks and corrections are conducted. Table 3 provides a sum-
mary of common failures in Acme, including their occurrence
frequency and restart time. Basically, they can be classified
into three categories as follows. Note that these classifica-
tions may overlap, and the primary criterion for classifying a
specific type of error is its most frequent occurrence.
• Infrastructure. Infrastructure-related failures arise from is-
sues within the underlying computational platform or remote
storage. These failures mainly occur midway through the
job execution process, especially in pretraining tasks. They
severely impact the training progress due to laborious and
time-consuming recovery process.
• Framework. Several types of runtime errors, such as Run-
timeError, ValueError, and AttributeError, can be associated
with tensor operations, shapes, data types, or unexpected be-
haviors. They are often observed in the initial phases of jobs
and are typically resolved by fixing the configurations.
• Script. Script errors typically stem from programming er-
rors or user oversights. They constitute the majority of failures
and are often addressed by revising codes.

5.2 Failure Characterization
We highlight several key observations from our analysis:
Infrastructure Failures Cause Most Severe Impact. As
shown in Table 3, jobs that fail because of infrastructure is-

716 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Category Reason Num GPU Demand Time to Failure (mins) GPU Time (mins) Time to Restart (mins) Cluster
Average Median Average Median Average Total% Average Median TR/TF%

Infrastructure

NVLink Error 54 800 896 868.1 155.3 585683 30.25% 95.6 0.2 11.02% S, K
CUDA Error 21 847 1024 923.2 586.0 785099 15.77% 78.3 2.0 8.48% S, K
Node Failure 16 712 768 1288.8 535.8 934394 14.30% 102.8 21.5 7.98% S
ECC Error 12 680 512 1303.4 1192.3 958404 11.00% 2.8 1.8 0.21% S, K
Network Error 12 758 768 549.6 310.1 394821 4.53% 592.1 7.4 107.74% S, K
Connection Error 147 29 1 51.9 0.5 24492 3.44% 0.8 0.0 1.51% S, K
S3 Storage Error 10 422 256 2317.8 202.2 222151 2.12% 6.2 0.2 0.27% S
NCCL Timeout Error 6 596 512 159.7 48.1 86856 0.50% 66.7 43.6 41.78% K
NCCL Remote Error 3 1152 1024 50.5 22.6 52419 0.15% 0.0 0.7 0.09% K

Framework

Dataloader Killed 6 445 508 1580.6 961.4 764170 4.38% 115.1 0.9 7.28% K
Attribute Error 67 228 8 67.8 1.2 60914 3.90% 2.4 0.0 3.58% S, K
Out of Memory Error 14 572 640 323.8 14.5 245278 3.28% 122.7 1.2 37.89% S, K
Runtime Error 65 441 352 66.4 3.9 27667 1.72% 10.9 1.5 16.41% S, K
Assertion Error 105 413 256 41.7 3.0 12315 1.24% 185.9 1.6 445.87% S, K
Value Error 33 387 256 9.9 3.7 5049 0.16% 27.4 0.6 276.74% S, K
Zero Division Error 5 499 256 14.5 15.6 5363 0.03% 2.5 1.1 17.31% S, K
Model Loading Error 104 8 8 2.6 2.6 20 0.00% 0.0 0.0 0.00% K
Dataset Loading Error 5 1 1 1.6 1.6 1 0.00% 0.0 0.0 0.00% K

Script

File Not Found Error 568 21 1 14.2 0.4 5210 2.83% 0.4 0.0 2.58% S, K
OS Error 266 8 1 9.6 0.8 1098 0.28% 0.3 0.0 3.17% S, K
Type Error 620 18 4 0.9 0.3 97 0.06% 0.2 0.0 28.27% S, K
Name Error 18 247 24 3.2 0.5 947 0.02% 2.9 2.4 90.92% S, K
Permission Error 7 438 512 4.3 0.8 2131 0.01% 2.4 2.2 56.38% S
Import Error 111 93 8 1.1 0.4 74 0.01% 0.7 0.0 63.68% S, K
Key Error 260 7 0 3.0 1.6 55 0.01% 0.1 0.0 2.10% S, K
Syntax Error 10 391 384 0.7 0.6 348 0.00% 1.7 1.7 261.73% S, K
Argument Error 3 344 512 0.7 0.7 288 0.00% 2.7 0.7 408.47% S
Called Process Error 4 256 256 0.2 0.2 52 0.00% 11.7 10.9 5714.29% S
Index Error 23 6 1 1.6 0.9 21 0.00% 0.8 0.0 49.73% S, K

Table 3: Job failure statistics. It is sorted based on Total% (i.e., the percentage of GPU time summation in different categories).
Num: Number of Occurrence. TF: Time to Failure. TR: Time to Restart (i.e., Restart Timestamp − Failure Timestamp). GPU
Time: TF×GPU Demand. S/K: Occurrence of errors in Seren/Kalos respectively.

sues often use a substantial number of GPUs (GPU Demand)
and require considerable effort to restart (Time to Restart).
They take over 82% GPU resources (GPU Time) with only
11% failed job quantity (Num). Most of these jobs are long-
term pretraining tasks that can experience hardware failures
multiple times, such as issues with GPU (e.g., CUDAError,
ECCError), NVLink (NVLinkError), and network system
(NCCLRemoteError, S3StorageError). Note that NodeFail-
ure indicates uncategorized errors caused by unclear hardware
issues. Addressing these infrastructure failures requires metic-
ulous diagnostic efforts to pinpoint the source of the problems,
often leading to the maintenance or replacement of defective
hardware, which results in significant restart costs.

Failures Caused by High Temperature. Another notewor-
thy observation is that training 7B models in Kalos tend to
result in GPU overheating, which can cause NVLinkError
or ECCError. This phenomenon is largely due to the highly
optimized communication cost, resulting in an exceptionally
low GPU idle rate. We observe that the overall temperature
in the cluster server room increased by approximately 5◦C
when training these models. Besides, we find most of these
jobs occurred in July 2023, which is the hottest month on
record [63]. This anomalous climate may be a potential cause
of these failures, which is aligned with the finding recently re-

ported by Microsoft [100]. We provide more detailed data on
GPU temperature in Appendix A.5. Subsequently, our team
enhanced the cooling capabilities of the cluster, leading to a
significant reduction in the frequency of such failures.
Many Failures Induced by Auxiliary Services. In our pre-
training framework, we connect to external components or
services for metric reporting, logging, monitoring and alerting.
These auxiliary services are vulnerable to network instabili-
ties, potentially resulting in timeouts or failures that can de-
celerate or disrupt the training process. A significant number
of ConnectionError and NetworkError incidents stem from
these auxiliary services.
Evaluation Jobs Rarely Encounter Errors. In Kalos, only
6.7% of evaluation tasks encounter errors, and notably, there
are no recorded instances of GPU or NVLink failures. The
low error rate may be attributed to their short duration and the
resultant decreased stress on GPUs and NVLink connections.
Consequently, this diminishes the chance of hardware and
operational failures that are more frequent in pretraining jobs.

5.3 Failure Recovery
There are three scenarios where we should restart a job: (1)
when an error occurs within the job, (2) when there are anoma-
lies in training metrics such as a loss spike, and (3) when the
training process is stuck. A ‘loss spike’ refers to a sudden

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 717

increase in the loss that was previously decreasing normally,
and does not recover over a certain period. Upon restarting,
jobs revert to the last checkpoint, resulting in loss of train-
ing progress. Since existing LLM frameworks lack automatic
recovery support, developers usually manually restart inter-
rupted training jobs. Developers often need to be on call in
turn to ensure timely completion of the pretraining model.

As shown in Figure 14, we select two pretraining jobs in
the early stage (March to April) when we handle all fail-
ures manually. We extract information from the logs of two
clusters’ large-scale model training processes, including the
runtime duration of each submission, start and end times, and
the initial and final iteration numbers of training. The 104B
model is an early attempt when the framework is still under
development. Consequently, the process of loading previous
model checkpoints led to a substantial loss in the overall train-
ing process. Conversely, in the training of the 123B model a
month later, we improved the framework and adopted smaller
checkpoint save intervals. Moreover, we added a feature to
gracefully terminate jobs, allowing for the preservation of
current training results before ending the job. It is evident that
the training process of the 123B model is more stable, with
fewer losses incurred due to rollbacks. However, this progress
came at a cost, as jobs that were interrupted at various times
had to be rapidly restarted.

6 Deployed LLM Systems
As highlighted earlier, the development process of LLMs
presents significant obstacles yet unveils viable strategies for
overcoming these issues. This section will introduce our ef-
forts in two stages: (1) Pretraining: enhancing fault tolerance
through LLM-involved failure diagnosis and automatic recov-
ery. (2) Evaluation: achieving prompt performance response
via task decomposition.

6.1 Fault-tolerant Pretraining
Motivation. During LLM pretraining, failures are inevitable
and frequently occur due to the substantial number of GPUs
involved and the extensive duration of the training process
[15, 44, 88, 96]. These failures can dramatically impede the
training progress and lead to severe resource inefficiency (§5).
Consequently, to minimize infrastructure downtime, it is com-
mon practice to assign on-call duties to address failures man-
ually. This places a significant burden on engineers and re-
searchers, as expressed in the complaints raised by the Meta
OPT [110] and BigScience BLOOM [1] teams. Our team
also faces this problem. To alleviate this burden and enhance
hardware efficiency, we develop a system that automatically
detects the root causes of faults and facilitates recovery.
System Design. Our fault tolerance system is seamlessly
integrated into our LLM pretraining framework. It com-
prises three essential modules: (1) Checkpointing, achieving
more frequent model saving to minimize the loss of training
progress; (2) Diagnosis, using a combination of heuristic rules
and LLM to identify the root cause of different failures accu-

Rule-based
Diagnosis

Recovery Process

Fault Detection
(GPU, IB, I/O...)

Manual
Recovery

Spike Avoidance

Mismatch

Hint

Failure Agent
Query Engine

Retrieval

Log
Filter

Real-time
Log

Vote&Eval

Vector
Store

New
Rule

Job Start
Failure
Occurs

Compressed
Log

Automatic
Recovery

Recover-
able?

No

Yes

Filtered
Log

Log Agent
Rule Writer

New
Rule

Multiple
Answer

Continuous Log Compression Time

Match

Figure 15: Workflow of failure diagnosis and model recovery.

rately; (3) Recovery, employing a holistic detection toolkit to
pinpoint fault nodes and automatically restart training from
the properly saved checkpoint. We delve into them in detail.
1. Asynchronous Checkpointing . Frequent checkpointing
efficiently mitigates the wasted time caused by unexpected
faults [32]. However, as LLMs can produce TB-scale model
states (referring to total model states across all GPUs), the
process of saving checkpoints itself can introduce substantial
overhead, resulting in training time slowdown up to 43% [60].
To tackle this problem, we adopt the asynchronous check-
pointing strategy [64, 69], which effectively separates the
checkpointing process from the training process. Our obser-
vations indicate that the CPU memory (refer to Figure 7 (b))
is capable of accommodating several checkpoints. By taking
advantage of this, we can store the model state in memory
and utilize a separate thread to regularly save these states to
remote persistent storage. This simple strategy significantly
reduces checkpointing overhead.
2. Failure Diagnosis . As we discussed in §5, failures can arise
from numerous intricate factors, including errors from user
script or framework, as well as issues with hardware subjected
to high-stress conditions. It is crucial to determine whether a
failure is recoverable for the purpose of automatic recovery.
A common approach is to use a combination of heuristic rules
to filter and conduct regular expression matching on the logs
of faulty jobs [23, 45, 52, 53, 66]. However, this approach
often proves inaccurate due to the wide-ranging diversity and
complexity of error logs. There might not be a specific error
statement in many cases, but multiple errors could coexist
simultaneously. For example, a job might fail with messages
that include NCCLTimeoutError, CUDAError, and multiple
kinds of RuntimeError, whereas the root cause is CUDAError.
Trying to match every error scenario with a specific rule set
can become impractical.

To address this challenge, we utilize the exceptional text un-
derstanding ability and extensive knowledge base of LLMs to
identify the root causes of different failures automatically. As
depicted in Figure 15, we incorporate an LLM with rule-based
diagnosis to achieve efficient and accurate failure diagnosis.
It mainly contains the following two steps:

➤Real-time Log Compression. The extensive log files
generated by pretraining jobs, primarily consisting of training

718 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

metric records, can reach sizes of hundreds of MBs. To accel-
erate diagnosing and meet the context length limit of LLMs,
log compression is conducted first. The system continuously
updates a collection of regular expressions, termed as Filter
Rules. These rules efficiently remove regular log outputs, such
as initialization information, training metric records, frame-
work outputs, and debug information. A vital component of
the system, the LLM-based Log Agent, is responsible for ana-
lyzing real-time generated log segments and identifying lines
that follow fixed patterns. By doing so, the LLM-based Log
Agent dynamically writes regular expressions to update the
Filter Rules, effectively minimizing the size of the log files.
Additionally, the Log Agent forwards identified error mes-
sages to subsequent modules for diagnosis.

Furthermore, we employ the self-consistency [95] approach
to ensure the robustness of the Log Agent’s results and to guar-
antee the formatting of these results. This involves processing
each log segment multiple times and having another LLM
vote on multiple results from the Log Agent, ensuring the ac-
curacy of matches through regular expressions. Over time, the
Filter Rules become more comprehensive for the current task,
making the log filtering process more efficient. Furthermore,
the system can utilize metadata from tasks to identify repeti-
tive or similar tasks, directly applying existing Filter Rules for
log filtering, thereby avoiding redundant work. This feature
is particularly beneficial in large model cluster environments,
where fewer tenants and task resubmissions are common.

➤LLM-assisted Automated Diagnosis. The Log Agent
efficiently compresses runtime logs, isolating critical error
logs like CUDAErrors or runtime exceptions. Though logs
are already compressed upon arrival at this module, error logs
may still be lengthy. We apply a two-step approach to tackle
this issue. First, the error logs are compared against a rule
set that has been defined over time through the diagnosis of
errors from past failed jobs. If the pre-defined rules fail to
diagnose the issue, the compressed log is vectorized through
an embedding model and stored in a vector store, serving as
a retrieval repository. Then, the Failure Agent intervenes. It
utilizes a Query Engine [55] to search through the vector store.
Through this search, the Failure Agent can identify log lines
that reflect the root cause of job interruption, extract the type
of error, and indicate whether the error originated from user
mistakes or infrastructure failures, providing a hint for the
recovery process. In addition, it also generates a mitigation
suggestion for users or the operation team.

The Failure Agent also contributes to the continuous learn-
ing of the failure diagnosis system. For each new failure,
once diagnosed and resolved, the Failure Agent writes a cor-
responding regular expression and adds it to the Rule-based
Diagnosis module. This process is iterative and ensures that
the Failure Diagnosis system evolves, becoming more adept
at diagnosing and suggesting mitigation methods for failures.
To achieve more robust performance, we currently utilize the
GPT-4 [2] for diagnosis, with plans to transition to our LLMs.

Store

1 Trial 1 1

2 Trial 2 2

3 Trial 3 3

4 Trial 4 4

5 Trial 5 5

6 Trial 6 6

Trial 1 Trial 4

Trial 2 Trial 5

Trial 3 Trial 6

◁ CPU

Time(a) Baseline

(b) Our System

◁ GPU1Store
◁ GPU2

◁ GPU3

I/O GPU Infer CPU Only PCIe

Figure 16: Left: Stress testing of model loading from re-
mote storage in Seren. Each trial involves one GPU. Right:
Scheduling evaluation trials. (a) Baseline: each dataset is
treated as a trial. (b) Our system: decoupled scheduling.

3. Fast Fault Detection and Recovery . Based on the failure
diagnosis result, if it belongs to one kind of infrastructure
failure, we conduct a corresponding detection test to identify
the problematic nodes. For instance, to promptly resolve the
frequent NVLinkError, we employ a two-round NCCL test
[5] approach. First, we divide all nodes into multiple two-
node worlds and execute allgather task in each pair. If the
total number of servers is odd, we leave one world size as
three. If allgather task fails in a world, the nodes in that
world are potentially faulty nodes. Then, in the second round,
we pair potential faulty nodes with normal nodes to form
new worlds. The nodes in each world continue to execute
the allgather task, thus identifying the faulty nodes and
then cordoning them off. On the other hand, if the failure
is attributed to a sudden increase in loss (i.e., ‘loss spike’
[27,110]), which is automatically triggered by our pretraining
framework, we opt to an earlier healthy restart checkpoint and
bypass subsequent data batches. This approach effectively
maintains model quality.
System Performance. Our asynchronous checkpointing strat-
egy offers a substantial reduction in checkpointing overheads,
as the checkpointing process does not block the training pro-
cess. The checkpoint time and overhead percentage of 7B and
123B size models are reduced by 3.6∼58.7× (interval=30
mins), respectively. Note that the time taken for persisting to
storage is not included in asynchronous checkpointing mea-
surement. Moreover, our failure diagnosis system significantly
reduces manual intervention by around 90% and thus reduces
developers’ burden. Note this is not a rigorous assessment
since components of our system are still under improvement.

6.2 Decoupled Scheduling for Evaluation
Motivation. Evaluating the quality of LLMs based solely on
a single metric, such as training loss, may not provide an ac-
curate assessment [58]. Therefore, it is vital to incorporate a
variety of criteria and evaluate performance across an array of
tasks [22]. Our LLM framework conducts regular evaluations
for every checkpoint during the pretraining phase in our data-
center. This allows developers to track the progress of model
training and identify the optimal model checkpoint. We aim

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 719

for swift feedback to facilitate timely adjustment. However,
as shown in Figure 6, evaluation jobs experience the longest
queuing delay due to limited resources and concurrent submis-
sion of numerous trials. Despite these challenges, we identify
several opportunities to expedite the evaluation process.
System Design. We develop a trial coordinator to harmonize
the operations of the cluster scheduler and LLM framework.
This design incorporates the following three key techniques
aimed at enhancing the efficiency of the evaluation process.
1. Decoupling Remote Model Loading . Given the substan-
tial size of LLMs, retrieving and loading them from remote
storage can be a lengthy process. Furthermore, the concurrent
execution of numerous evaluation tasks (around 60 datasets)
can exacerbate this loading process due to increased con-
tention. Figure 16 (Left) shows the average model loading
speed on a range of concurrent evaluation trials within Seren.
It reveals a huge decline in loading speed when increasing the
number of single-GPU trials from 1 to 8 on a single node, due
to the bandwidth limitation (25Gb/s) of our storage NIC. On
the other hand, the loading speed stabilizes when the number
of trials ranges from 8 to 256 GPUs. This observation inspires
us to take a strategic approach. Rather than submitting each
evaluation dataset as a separate trial, we separated the model
loading process from the evaluation process, as depicted in
Figure 16 (Right). Specifically, the trial coordinator initially
retrieves the available node list from the cluster scheduler
and then generates a series of precursor jobs for each node.
These jobs load the model from remote storage to local shared
memory. Following this, the coordinator submits the evalu-
ation jobs to the scheduler, which loads the model via the
high-bandwidth PCIe. This method effectively utilizes spare
host memory. After the evaluation finishes, the coordinator
clears the files.
2. Decoupling Metric Computation . As shown in Figure
13, the evaluation process can often involve complex and
time-consuming metric computation. For example, synthe-
sized program correctness tests must be performed on coding
datasets like HumanEval [24] and MBPP [17]. To address
this issue, we decouple the metric computation process from
the evaluation trial. After the model inference is performed
on the GPU, its output is quickly saved into files, terminating
the inference workload. Given that the outputs are typically
text-based and thus small in size, this file-dumping process
is swift. We then generate CPU jobs to carry out the metric
computations. This approach effectively minimizes GPU idle
time and accelerates the evaluation.
3. Prior-based Elastic Scheduling . In addition to the decou-
pling approach, we notice that our prior knowledge regarding
the approximate trial runtime for each evaluation dataset is
quite robust. Furthermore, these datasets are flexible, allowing
us to batch multiple sets into one trial to circumvent model
loading. We can also break down large datasets and decou-
ple metric computation. As a result, the trial coordinator can
maximize GPU occupancy through decomposition, balance

each GPU’s workload using prior information, and employ a
round-robin allocation strategy on sorted job queues. More-
over, we prioritize evaluation trials with lengthy CPU metric
computations in the job queue to better overlap its computa-
tion. This approach not only enhances workload balance but
also minimizes trial switch overhead.
System Performance. We conducted a representative test of
the trial coordinator using a typical evaluation job on a 7B
size LLM, which involved evaluating the workload across 63
datasets. We measured the makespan necessary to complete
all evaluation trials under two different conditions: a single
node (representing limited resources) and four nodes (repre-
senting relatively ample resources). The trial coordinator can
reduce the makespan by 1.3× and 1.8× respectively.

7 Discussion
Related Work. Due to the page limit, we provide a detailed
discussion of our related work in Appendix B.
Scope Limitations. Despite our best efforts to analyze the
workloads in Acme, it is an inescapable reality that we can-
not cover all types of workloads. Limitations include: (1)
Our analysis focuses on the developmental process preceding
model serving and Acme does not encompass any serving jobs
(i.e., workload in the deployment stage). (2) We concentrate
our analysis predominantly on GPU jobs, providing limited
room for CPU jobs. (3) We mainly characterize transformer-
based, decoder-only architecture models (GPT-3 [20] and
LLaMA 2 [92]). For newer model architecture, we provide
a simple characterization of the Mixture of Experts (MoE)
model [84] in Appendix A.6. Other model architectures like
the Multimodal LLM [76] fall outside our scope of analysis.
Continuous System Enhancement. With the rapid advance-
ment of large models, the systems described in this work
may not suffice for the demands of future workloads. In re-
sponse, we are actively refining our system to accommodate
advanced training workloads, including long sequence pre-
training, MoE pretraining, and efficient RLHF. Additionally,
we are upgrading our infrastructure, with a particular focus on
NIC, and expanding our computing cluster to facilitate larger-
scale pretraining. Furthermore, we are exploring promising
directions, such as improving the quality of LLMs through
hyperparameter optimization using Hydro [39], and providing
efficient system support for emerging model architectures like
Diffusion [82] and Mamba [34].

8 Conclusion
In summary, we analyze LLM workloads and resource uti-
lization in our datacenter Acme, revealing unique features and
challenges of LLM development, such as resource inefficien-
cies and failure impacts. We also uncover potential opportuni-
ties to optimize systems tailored for LLMs and introduce our
efforts for pretraining and evaluation workloads. We believe
that our lessons and insights have broad applicability and can
well benefit subsequent research.

720 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgments
We sincerely thank our shepherd, Guyue Liu, and anonymous
NSDI reviewers for their valuable comments on this paper.
We thank Penglong Jiao, Wenwei Zhang, Xingpu Li, and
the broader InternLM team for their support throughout this
project. The research is supported under the National Key
R&D Program of China (2022ZD0160201) and the RIE2020
Industry Alignment Fund - Industry Collaboration Projects
(IAF-ICP) Funding Initiative, as well as cash and in-kind
contributions from the industry partner(s).

References
[1] Bloom. https://bigscience.huggingface.co/bl

og/bloom, 2024.

[2] Chatgpt. https://openai.com/blog/chatgpt,
2024.

[3] Github copilot. https://github.com/features/co
pilot/, 2024.

[4] Infiniband networking. https://www.nvidia.com/e
n-us/networking/products/infiniband/, 2024.

[5] Nccl tests. https://github.com/NVIDIA/nccl-tes
ts, 2024.

[6] Nvidia a100 tensor core gpu. https://www.nvidia
.com/en-us/data-center/a100/, 2024.

[7] Nvidia data center gpu manager. https://develope
r.nvidia.com/dcgm, 2024.

[8] Nvidia-smi. https://developer.nvidia.com/nvi
dia-system-management-interface, 2024.

[9] Nvlink and nvswitch. https://www.nvidia.com/e
n-us/data-center/nvlink/, 2024.

[10] Pytorch automatic mixed precision training. https:
//pytorch.org/docs/stable/amp, 2024.

[11] Pytorch memory snapshottool. https://pytorch.or
g/blog/understanding-gpu-memory-1, 2024.

[12] Supermicro ipmi. https://www.supermicro.com/e
n/solutions/management-software/ipmi-utili
ties, 2024.

[13] Tensorboard. https://www.tensorflow.org/ten
sorboard, 2024.

[14] Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Ki-
wan Maeng, Udit Gupta, Manoj Chakkaravarthy, David
Brooks, and Carole-Jean Wu. Carbon explorer: A holis-
tic framework for designing carbon aware datacenters.
In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’23, 2023.

[15] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ra-
machandran Ramjee, and Nipun Kwatra. Varuna: scal-
able, low-cost training of massive deep learning mod-
els. In Proceedings of the Seventeenth European Con-
ference on Computer Systems, EuroSys ’22, 2022.

[16] Andrew Audibert, Yang Chen, Dan Graur, Ana
Klimovic, Jiří Šimša, and Chandramohan A. Thekkath.
tf.data service: A case for disaggregating ml input data
processing. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC ’23, 2023.

[17] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles
Sutton. Program synthesis with large language models.
CoRR, 2021.

[18] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. Neural machine translation by jointly learning to
align and translate. In 3rd International Conference on
Learning Representations, ICLR ’15, 2015.

[19] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas
Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen,
Kathleen Creel, Jared Quincy Davis, Dora Demszky,
Chris Donahue, Moussa Doumbouya, Esin Durmus,
Stefano Ermon, John Etchemendy, Kawin Ethayarajh,
Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie,
Karan Goel, Noah Goodman, Shelby Grossman, Neel
Guha, Tatsunori Hashimoto, Peter Henderson, John He-
witt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang,
Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha
Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte
Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ran-
jay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal
Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle
Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali
Malik, Christopher D. Manning, Suvir Mirchandani,
Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika
Narayan, Deepak Narayanan, Ben Newman, Allen
Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian
Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou,
Joon Sung Park, Chris Piech, Eva Portelance, Christo-
pher Potts, Aditi Raghunathan, Rob Reich, Hongyu
Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack
Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa,
Keshav Santhanam, Andy Shih, Krishnan Srinivasan,
Alex Tamkin, Rohan Taori, Armin W. Thomas, Flo-
rian Tramèr, Rose E. Wang, William Wang, Bohan
Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michi-
hiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 721

https://bigscience.huggingface.co/blog/bloom
https://bigscience.huggingface.co/blog/bloom
https://openai.com/blog/chatgpt
https://github.com/features/copilot/
https://github.com/features/copilot/
https://www.nvidia.com/en-us/networking/products/infiniband/
https://www.nvidia.com/en-us/networking/products/infiniband/
https://github.com/NVIDIA/nccl-tests
https://github.com/NVIDIA/nccl-tests
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://developer.nvidia.com/dcgm
https://developer.nvidia.com/dcgm
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://pytorch.org/docs/stable/amp
https://pytorch.org/docs/stable/amp
https://pytorch.org/blog/understanding-gpu-memory-1
https://pytorch.org/blog/understanding-gpu-memory-1
https://www.supermicro.com/en/solutions/management-software/ipmi-utilities
https://www.supermicro.com/en/solutions/management-software/ipmi-utilities
https://www.supermicro.com/en/solutions/management-software/ipmi-utilities
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard

Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lu-
cia Zheng, Kaitlyn Zhou, and Percy Liang. On the
opportunities and risks of foundation models. CoRR,
2021.

[20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems, NeurIPS ’20, 2020.

[21] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, omega, and kubernetes:
Lessons learned from three container-management sys-
tems over a decade. Queue, 2016.

[22] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang,
Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie. A
survey on evaluation of large language models. CoRR,
2023.

[23] An Ran Chen. An empirical study on leveraging logs
for debugging production failures. In Proceedings of
the 41st International Conference on Software Engi-
neering: Companion Proceedings, ICSE ’19, 2019.

[24] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brock-
man, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such,
Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Heb-
gen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr,
Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira
Murati, Katie Mayer, Peter Welinder, Bob McGrew,
Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. Evaluating large language models
trained on code. CoRR, 2021.

[25] Qiaoling Chen, Diandian Gu, Guoteng Wang, Xun
Chen, YingTong Xiong, Ting Huang, Qinghao Hu, Xin

Jin, Yonggang Wen, Tianwei Zhang, and Peng Sun. In-
ternevo: Efficient long-sequence large language model
training via hybrid parallelism and redundant sharding.
CoRR, abs/2401.09149, 2024.

[26] Sangjin Choi, Inhoe Koo, Jeongseob Ahn, Myeongjae
Jeon, and Youngjin Kwon. Envpipe: Performance-
preserving dnn training framework for saving en-
ergy. In 2023 USENIX Annual Technical Conference,
USENIX ATC ’23, 2023.

[27] Aakanksha Chowdhery, Sharan Narang, Jacob De-
vlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prab-
hakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner
Pope, James Bradbury, Jacob Austin, Michael Isard,
Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm
Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk
Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito,
David Luan, Hyeontaek Lim, Barret Zoph, Alexan-
der Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanu-
malayan Sankaranarayana Pillai, Marie Pellat, Aitor
Lewkowycz, Erica Moreira, Rewon Child, Oleksandr
Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele
Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm:
Scaling language modeling with pathways. CoRR,
2022.

[28] Tri Dao. Flashattention-2: Faster attention with better
parallelism and work partitioning. CoRR, 2023.

[29] Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and
Christopher Re. Flashattention: Fast and memory-
efficient exact attention with io-awareness. In Ad-
vances in Neural Information Processing Systems,
NeurIPS ’22, 2022.

[30] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. Llm.int8(): 8-bit matrix multiplication
for transformers at scale. In Advances in Neural Infor-
mation Processing Systems, NeurIPS ’22, 2022.

[31] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics, NAACL ’19, 2019.

722 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[32] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram,
Dheevatsa Mudigere, Raghuraman Krishnamoorthi, Kr-
ishnakumar Nair, Misha Smelyanskiy, and Murali An-
navaram. Check-N-Run: a checkpointing system for
training deep learning recommendation models. In
19th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI ’22, 2022.

[33] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan.
Understanding network failures in data centers: mea-
surement, analysis, and implications. In Proceedings
of the Annual Conference of the ACM Special Inter-
est Group on Data Communication, SIGCOMM ’11,
2011.

[34] Albert Gu and Tri Dao. Mamba: Linear-time se-
quence modeling with selective state spaces. CoRR,
abs/2312.00752, 2023.

[35] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin,
Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang
Liu, and Chuanxiong Guo. Tiresias: A GPU cluster
manager for distributed deep learning. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI ’19, 2019.

[36] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A large-scale system for data center net-
work latency measurement and analysis. In Proceed-
ings of the Annual Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
’15, 2015.

[37] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations, ICLR ’22, 2022.

[38] Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen,
and Tianwei Zhang. Characterization and prediction of
deep learning workloads in large-scale gpu datacenters.
In Proceedings of the International Conference for
High Performance Computing, Networking, Storage
and Analysis, SC ’21, 2021.

[39] Qinghao Hu, Zhisheng Ye, Meng Zhang, Qiaoling
Chen, Peng Sun, Yonggang Wen, and Tianwei Zhang.
Hydro: Surrogate-Based hyperparameter tuning ser-
vice in datacenters. In 17th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
’23, 2023.

[40] Qinghao Hu, Meng Zhang, Peng Sun, Yonggang Wen,
and Tianwei Zhang. Lucid: A non-intrusive, scalable

and interpretable scheduler for deep learning training
jobs. In Proceedings of the 28th International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’23, 2023.

[41] Lexiang Huang, Matthew Magnusson, Abishek Ban-
galore Muralikrishna, Salman Estyak, Rebecca Isaacs,
Abutalib Aghayev, Timothy Zhu, and Aleksey Chara-
pko. Metastable failures in the wild. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI ’22, 2022.

[42] Changho Hwang, Taehyun Kim, Sunghyun Kim, Jin-
woo Shin, and KyoungSoo Park. Elastic resource shar-
ing for distributed deep learning. In 18th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI ’21, 2021.

[43] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang
Li, and Torsten Hoefler. Data movement is all you
need: A case study on optimizing transformers. In
Proceedings of Machine Learning and Systems, MLSys
’21, 2021.

[44] Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and
Mosharaf Chowdhury. Oobleck: Resilient distributed
training of large models using pipeline templates. In
Proceedings of the ACM SIGOPS 29th Symposium on
Operating Systems Principles, SOSP ’23, 2023.

[45] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of large-scale multi-tenant GPU clusters for
DNN training workloads. In 2019 USENIX Annual
Technical Conference, USENIX ATC ’19, 2019.

[46] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b. CoRR, abs/2310.06825,
2023.

[47] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang,
Yangrui Chen, Zhi Zhang, Yanghua Peng, Xiang Li,
Cong Xie, Shibiao Nong, Yulu Jia, Sun He, Hongmin
Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou,
Yiyao Sheng, Zhuo Jiang, Haohan Xu, Haoran Wei,
Zhang Zhang, Pengfei Nie, Leqi Zou, Sida Zhao, Liang
Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, Jianxi Ye,
Xin Jin, and Xin Liu. Megascale: Scaling large lan-
guage model training to more than 10,000 gpus. CoRR,
abs/2402.15627, 2024.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 723

[48] Diederik P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Confer-
ence on Learning Representations, ICLR ’15, 2015.

[49] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding performance anomalies in RDMA subsystems.
In 19th USENIX Symposium on Networked Systems
Design and Implementation, NSDI ’22, 2022.

[50] Vijay Korthikanti, Jared Casper, Sangkug Lym,
Lawrence McAfee, Michael Andersch, Mohammad
Shoeybi, and Bryan Catanzaro. Reducing activation
recomputation in large transformer models. CoRR,
2022.

[51] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-
lez, Hao Zhang, and Ion Stoica. Efficient memory man-
agement for large language model serving with page-
dattention. In Proceedings of the ACM SIGOPS 29th
Symposium on Operating Systems Principles, SOSP
’23, 2023.

[52] Van-Hoang Le and Hongyu Zhang. Log parsing: How
far can chatgpt go? In Proceedings of IEEE/ACM
International Conference on Automated Software En-
gineering, ASE ’23, 2023.

[53] Van-Hoang Le and Hongyu Zhang. Log parsing with
prompt-based few-shot learning. In Proceedings of the
45th International Conference on Software Engineer-
ing, ICSE ’23, 2023.

[54] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 1998.

[55] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. Retrieval-
augmented generation for knowledge-intensive nlp
tasks. In Advances in Neural Information Process-
ing Systems, NeurIPS ’20, 2020.

[56] Jiamin Li, Hong Xu, Yibo Zhu, Zherui Liu, Chuanx-
iong Guo, and Cong Wang. Lyra: Elastic scheduling
for deep learning clusters. In Proceedings of the Eigh-
teenth European Conference on Computer Systems,
EuroSys ’23, 2023.

[57] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent
Liu, Ying Sheng, Xin Jin, Yanping Huang, Zhifeng
Chen, Hao Zhang, Joseph E. Gonzalez, and Ion Sto-
ica. AlpaServe: Statistical multiplexing with model
parallelism for deep learning serving. In 17th USENIX

Symposium on Operating Systems Design and Imple-
mentation, OSDI ’23, 2023.

[58] Percy Liang, Rishi Bommasani, Tony Lee, Dim-
itris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Man-
ning, Christopher Ré, Diana Acosta-Navas, Drew A.
Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak,
Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang, Ke-
shav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuk-
sekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Ni-
ladri Chatterji, Omar Khattab, Peter Henderson, Qian
Huang, Ryan Chi, Sang Michael Xie, Shibani San-
turkar, Surya Ganguli, Tatsunori Hashimoto, Thomas
Icard, Tianyi Zhang, Vishrav Chaudhary, William
Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta
Koreeda. Holistic evaluation of language models.
CoRR, 2022.

[59] Kefei Liu, Zhuo Jiang, Jiao Zhang, Haoran Wei, Xiao-
long Zhong, Lizhuang Tan, Tian Pan, and Tao Huang.
Hostping: Diagnosing intra-host network bottlenecks
in RDMA servers. In 20th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
’23, 2023.

[60] Kiwan Maeng, Shivam Bharuka, Isabel Gao, Mark Jef-
frey, Vikram Saraph, Bor-Yiing Su, Caroline Trippel,
Jiyan Yang, Mike Rabbat, Brandon Lucia, and Carole-
Jean Wu. Understanding and improving failure tolerant
training for deep learning recommendation with partial
recovery. In Proceedings of Machine Learning and
Systems, MLSys ’21, 2021.

[61] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella,
Amar Phanishayee, and Shuchi Chawla. Themis: Fair
and efficient GPU cluster scheduling. In 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI ’20, 2020.

[62] Maxime Martinasso, Grzegorz Kwasniewski, Sadaf R.
Alam, Thomas C. Schulthess, and Torsten Hoefler. A
pcie congestion-aware performance model for densely
populated accelerator servers. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, 2016.

[63] Jackie McGuinness and Katherine Rohloff. Nasa
clocks july 2023 as hottest month on record ever
since 1880. https://www.nasa.gov/news-release/nasa-
clocks-july-2023-as-hottest-month-on-record-ever-
since-1880/, 2024.

724 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[64] Jayashree Mohan, Amar Phanishayee, and Vijay Chi-
dambaram. CheckFreq: Frequent, Fine-Grained DNN
checkpointing. In 19th USENIX Conference on File
and Storage Technologies, FAST ’21, 2021.

[65] Derek Gordon Murray, Jiri Simsa, Ana Klimovic, and
Ihor Indyk. tf.data: A machine learning data processing
framework. Proceedings of the VLDB Endowment,
2021.

[66] Karthik Nagaraj, Charles Killian, and Jennifer Neville.
Structured comparative analysis of systems logs to
diagnose performance problems. In 9th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation, NSDI ’12, 2012.

[67] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. Pipedream:
generalized pipeline parallelism for dnn training. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, 2019.

[68] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, Amar Phanishayee, and Matei Za-
haria. Efficient large-scale language model training
on gpu clusters using megatron-lm. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’21,
2021.

[69] Bogdan Nicolae, Jiali Li, Justin M Wozniak, George
Bosilca, Matthieu Dorier, and Franck Cappello. Deep-
freeze: Towards scalable asynchronous checkpointing
of deep learning models. In 2020 20th IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Internet
Computing, CCGRID ’20, 2020.

[70] George Ostrouchov, Don Maxwell, Rizwan A. Ashraf,
Christian Engelmann, Mallikarjun Shankar, and
James H. Rogers. Gpu lifetimes on titan supercom-
puter: Survival analysis and reliability. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’20,
2020.

[71] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Gray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul
Christiano, Jan Leike, and Ryan Lowe. Training lan-
guage models to follow instructions with human feed-
back. In Advances in Neural Information Processing
Systems, NeurIPS ’22, 2022.

[72] David Patterson, Joseph Gonzalez, Quoc Le, Chen
Liang, Lluis-Miquel Munguia, Daniel Rothchild, David
So, Maud Texier, and Jeff Dean. Carbon emissions and
large neural network training. CoRR, 2021.

[73] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu,
and Chuanxiong Guo. Optimus: An efficient dynamic
resource scheduler for deep learning clusters. In Pro-
ceedings of the Thirteenth EuroSys Conference, Eu-
roSys ’18, 2018.

[74] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Sub-
ramanya, Willie Neiswanger, Qirong Ho, Hao Zhang,
Gregory R. Ganger, and Eric P. Xing. Pollux: Co-
adaptive cluster scheduling for goodput-optimized
deep learning. In 15th USENIX Symposium on Op-
erating Systems Design and Implementation, OSDI
’21, 2021.

[75] Björn Rabenstein and Julius Volz. Prometheus: A Next-
Generation monitoring system (talk). Dublin, 2015.
USENIX Association.

[76] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision. In
Proceedings of the 38th International Conference on
Machine Learning, ICML ’21, 2021.

[77] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by
generative pre-training. 2018.

[78] Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language mod-
els are unsupervised multitask learners. 2019.

[79] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. Zero: Memory optimizations toward
training trillion parameter models. In Proceedings of
the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’20,
2020.

[80] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. Zero-infinity: break-
ing the gpu memory wall for extreme scale deep learn-
ing. In Proceedings of the International Conference
for High Performance Computing, Networking, Stor-
age and Analysis, SC ’21. Association for Computing
Machinery, 2021.

[81] Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. Zero-offload: De-
mocratizing billion-scale model training. In 2021

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 725

USENIX Annual Technical Conference, USENIX ATC
’21, 2021.

[82] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution im-
age synthesis with latent diffusion models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR ’22, 2022.

[83] Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. CoRR, 2019.

[84] Noam Shazeer, *Azalia Mirhoseini, *Krzysztof
Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. In Interna-
tional Conference on Learning Representations, ICLR
’17, 2017.

[85] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter lan-
guage models using model parallelism. CoRR, 2020.

[86] Amir Taherin, Tirthak Patel, Giorgis Georgakoudis, Ig-
nacio Laguna, and Devesh Tiwari. Examining failures
and repairs on supercomputers with multi-gpu com-
pute nodes. In IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN ’21, 2021.

[87] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang,
Haitao Wu, Karl Deng, Dongming Bi, and Dong Xiang.
NetBouncer: Active device and link failure localization
in data center networks. In 16th USENIX Symposium
on Networked Systems Design and Implementation,
NSDI ’19, 2019.

[88] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yi-
fan Qiao, Zhihao Jia, Minjia Zhang, Ravi Netravali,
and Guoqing Harry Xu. Bamboo: Making preemptible
instances resilient for affordable training of large dnns.
In 20th USENIX Symposium on Networked Systems
Design and Implementation, NSDI ’23, 2023.

[89] Devesh Tiwari, Saurabh Gupta, George Gallarno, Jim
Rogers, and Don Maxwell. Reliability lessons learned
from gpu experience with the titan supercomputer at
oak ridge leadership computing facility. In Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
SC ’15, 2015.

[90] Devesh Tiwari, Saurabh Gupta, James Rogers, Don
Maxwell, Paolo Rech, Sudharshan Vazhkudai, Daniel
Oliveira, Dave Londo, Nathan DeBardeleben, Philippe
Navaux, Luigi Carro, and Arthur Bland. Understanding

gpu errors on large-scale hpc systems and the implica-
tions for system design and operation. In International
Symposium on High Performance Computer Architec-
ture, HPCA ’15, 2015.

[91] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and effi-
cient foundation language models. CoRR, 2023.

[92] Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer,
Moya Chen, Guillem Cucurull, David Esiobu, Jude
Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cyn-
thia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan,
Marcin Kardas, Viktor Kerkez, Madian Khabsa, Is-
abel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. Llama 2: Open foundation and fine-tuned
chat models. CoRR, 2023.

[93] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in Neural Information Processing Systems,
NeurIPS ’17, 2017.

[94] Shang Wang, Peiming Yang, Yuxuan Zheng, Xin Li,
and Gennady Pekhimenko. Horizontally fused training
array: An effective hardware utilization squeezer for
training novel deep learning models. In Proceedings
of Machine Learning and Systems, MLSys ’21, 2021.

[95] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. Self-consistency improves chain of
thought reasoning in language models. In International
Conference on Learning Representations, ICLR ’23,
2023.

[96] Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang,
Xinwei Fu, T. S. Eugene Ng, and Yida Wang. Gem-

726 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ini: Fast failure recovery in distributed training with
in-memory checkpoints. In Proceedings of the ACM
SIGOPS 29th Symposium on Operating Systems Prin-
ciples, SOSP ’23, 2023.

[97] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin,
and Yu Ding. MLaaS in the wild: Workload analysis
and scheduling in Large-Scale heterogeneous GPU
clusters. In 19th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’22, 2022.

[98] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, Fan Yang, and Lidong Zhou. Gandiva: Intro-
spective cluster scheduling for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’18, 2018.

[99] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and
Yangqing Jia. Antman: Dynamic scaling on GPU clus-
ters for deep learning. In 14th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
’20, 2020.

[100] Yifan Xiong, Yuting Jiang, Ziyue Yang, Lei Qu, Gu-
oshuai Zhao, Shuguang Liu, Dong Zhong, Boris Pinzur,
Jie Zhang, Yang Wang, Jithin Jose, Hossein Pourreza,
Jeff Baxter, Kushal Datta, Prabhat Ram, Luke Melton,
Joe Chau, Peng Cheng, Yongqiang Xiong, and Lidong
Zhou. Anubis: Towards reliable cloud ai infrastructure
via proactive validation. CoRR, abs/2402.06194, 2024.

[101] Zhisheng Ye, Peng Sun, Wei Gao, Tianwei Zhang, Xi-
aolin Wang, Shengen Yan, and Yingwei Luo. Astraea:
A fair deep learning scheduler for multi-tenant gpu clus-
ters. IEEE Transactions on Parallel and Distributed
Systems, 2021.

[102] Andy B. Yoo, Morris A. Jette, and Mark Grondona.
Slurm: Simple linux utility for resource management.
In Job Scheduling Strategies for Parallel Processing,
2003.

[103] Jie You, Jae-Won Chung, and Mosharaf Chowdhury.
Zeus: Understanding and optimizing GPU energy con-
sumption of DNN training. In 20th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion, NSDI ’23, 2023.

[104] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for Transformer-Based generative mod-
els. In 16th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’22, 2022.

[105] Minlan Yu, Albert Greenberg, Dave Maltz, Jen-
nifer Rexford, Lihua Yuan, Srikanth Kandula, and
Changhoon Kim. Profiling network performance for
multi-tier data center applications. In 8th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI ’11, 2011.

[106] Peifeng Yu and Mosharaf Chowdhury. Fine-grained
gpu sharing primitives for deep learning applications.
In Proceedings of Machine Learning and Systems, ML-
Sys ’20, 2020.

[107] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and
Ion Stoica. SHEPHERD: Serving DNNs in the wild.
In 20th USENIX Symposium on Networked Systems
Design and Implementation, NSDI ’23, 2023.

[108] Qiao Zhang, Guo Yu, Chuanxiong Guo, Yingnong
Dang, Nick Swanson, Xinsheng Yang, Randolph
Yao, Murali Chintalapati, Arvind Krishnamurthy, and
Thomas Anderson. Deepview: Virtual disk failure diag-
nosis and pattern detection for azure. In 15th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI ’18, 2018.

[109] Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu,
Haoxiang Lin, and Mao Yang. An empirical study on
program failures of deep learning jobs. In Proceedings
of the ACM/IEEE 42nd International Conference on
Software Engineering, ICSE ’20, 2020.

[110] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang,
and Luke Zettlemoyer. Opt: Open pre-trained trans-
former language models. CoRR, 2022.

[111] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf
Chowdhury. Justitia: Software Multi-Tenancy in hard-
ware Kernel-Bypass networks. In 19th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation, NSDI ’22, 2022.

[112] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuo-
han Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E.
Gonzalez, and Ion Stoica. Judging llm-as-a-judge with
mt-bench and chatbot arena. CoRR, 2023.

[113] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.
Gonzalez, and Ion Stoica. Alpa: Automating inter- and
Intra-Operator parallelism for distributed deep learning.
In 16th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’22, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 727

Seren Kalos
(a) Job Count

0

20

40

60

80

100

Fr
ac

tio
n

(%
)

49.7 54.1

7.5 6.2

42.9 39.7

Seren Kalos
(b) GPU Time

0

20

40

60

80

100

Fr
ac

tio
n

(%
)

21.2
31.3

66.4
60.7

12.4 8.0

Completed Canceled Failed

Figure 17: Final statuses of jobs in terms of (a) quantity and
(b) utilized GPU resources.

CheckPoint
37.1%, 45.6 GB

FileSystem
36.8%, 45.3 GB

DataLoader
20.3%, 25.0 GB

TensorBoard
5.3%, 6.5 GB

Other
0.5%

Figure 18: Distribution of host memory on a server in Seren
during executing a pretraining job. Idle memory is not shown.

A Supplementary Characterization
In this section, we provide additional analysis to further char-
acterize the workload features during our LLM development.

A.1 Job Final Statuses
High Incompletion Rate. Figure 17 summarizes the distribu-
tion of three key final statuses across our two clusters, reveal-
ing a similar pattern. It is obvious that only approximately
20∼30% of resources are consumed by jobs that finally com-
plete. Besides, about 40% of jobs fail, utilizing 10% of GPU
resources. This suggests that failures predominantly occur
in the early stages of execution, aligning with the statistics
presented in Table 3. Canceled jobs, while constituting only
around 7% of the total job count, command over 60% of GPU
resources. This pattern suggests a prevalence of large-scale
pretraining jobs being canceled by users. Beyond the com-
mon cancellation motives cited in prior studies (e.g., achieving
desired model performance sooner than expected, early recog-
nition of poor hyperparameter configuration) [38, 73, 98], our
experience with LLM pretraining has identified two additional
frequent causes: (1) Users pausing jobs to adjust parameters
in response to performance anomalies, such as loss spikes.
(2) Jobs stalling due to infrastructure issues without throwing
error messages, only to be addressed upon manual inspection
by users, leading to significant resource wastage. These obser-
vations underscore the necessity for a failure-handling system
that can autonomously detect and rectify faulty jobs, which is
further elaborated in §5.3 and §6.1.

A.2 Host Memory
Memory Footprint Breakdown. As depicted in Figure 18,
we illustrate the distribution of active physical host memory
within a compute node, which utilizes 123GB of the total 1TB
available. This showcases a typical pattern of CPU memory

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54
(a) InternEvo V1: 3D Parallelism [Time (s)]

0

50

100

SM
 A

ct
iv

ity
 (%

)

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54
(b) InternEvo V2: Hierarchical ZeRO [Time (s)]

0

50

100

SM
 A

ct
iv

ity
 (%

)

Figure 19: GPU SM utilization of pretraining a 123B LLM
using different strategies of InternEvo [25] over 1024 GPUs.

Version 1

10G

0G

20G

30G

40G

50G

60G

10G

0G

20G

30G

40G

50G

70G

60G

(a) 3D Parallelism (b) Hierarchical ZeRO

Figure 20: Memory snapshot under different pretraining
strategies. Note that the extensive blue segment at the top
of (a) is simplified and can be further broken down into mas-
sive fragments (memory allocations), similar to the lower part.

consumption for pretraining jobs. However, it is important to
note that memory usage can significantly vary across different
tasks. Specifically, the memory footprint of the dataloader can
be considerably larger when employing Megatron-LM [68],
which requires loading the metadata of the entire dataset.
In contrast, our approach of loading data on-the-fly proves
to be more memory-efficient without obviously impacting
throughput. Furthermore, the memory requirements for asyn-
chronous checkpointing (§6.1) largely depend on the model
size and training configurations. The memory footprint de-
picted in this figure corresponds to the configuration outlined
in Figure 10(a). In addition to the training processes, memory-
intensive operations include TensorBoard [13] (6.5GB), the
client daemon along the critical components (e.g., data and
metadata caching) of the distributed file system (45.3GB).
The remainder (0.6GB) encompasses Prometheus monitoring
components, NVIDIA drivers, the Slurm scheduler daemon,
and other system processes primarily related to sensor mon-
itoring and system management. In general, there is a sub-
stantial amount of memory available, which can be leveraged
for various purposes. Previous efforts [16, 65] have shown
the potential for disaggregating CPU and memory usage from
GPU allocations, suggesting that there may be additional op-
timization opportunities for LLMs, such as enhancing fault
tolerance [96].

728 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

20 40 60 80
Temperature (°C)

0

25

50

75

100

CD
F

(%
)

Seren
Kalos

GPU Temp.
GMem Temp.

Figure 21: CDF of GPU core and GPU memory temperature.

0 2 4 6 8 10
Time (s)

0

25

50

75

100

SM
 A

ct
iv

ity
 (%

)

Figure 22: GPU SM utilization of pretraining a MoE model
Mistral 7B [46] with 1024 GPUs in Seren.

A.3 Carbon Emission
Our datacenter Acme has a PUE (Power Usage Effectiveness)
of 1.25. Moreover, it operates on approximately 30.61% of
carbon-free energy (statistics for the year 2022), which in-
cludes renewable sources like solar and wind power and
achieves a carbon emissions footprint (CO2e) rate of 0.478
tCO2e/MWh. Based on our node-level power consumption
data, we calculate that Seren consumed approximately 673
MWh electricity in May 2023, which leads to total effective
emissions of 321.7 tCO2e. We believe that implementing ad-
vanced approaches like [14, 26, 103] can effectively reduce
carbon emissions.

A.4 Pretraining under Different Scale
Figures 19 and 20 provide supplementary pretraining profiling
results for a 123B LLM across 1024 GPUs. These figures
complement the profiling observations depicted in Figures 10
and 11. It is evident that they present very similar patterns
to the 2048 GPUs, demonstrating the generalizability of our
characterization.

A.5 GPU Temperature
Figure 21 depicts the temperature distributions of GPU core
and GPU memory. The GPU memory temperature is gener-
ally higher than the GPU core temperature. As corresponding
to power consumption distribution shown in Figure 8, temper-
ature presents a similar pattern in that some GPUs are under
heavy load and have higher temperature (over 65◦C). These
suggest a need for enhancements in our cluster’s cooling sys-
tem to address the issue of elevated temperatures.

A.6 MoE Model
As shown in Figure 22, the MoE model presents much lower
GPU utilization compared with the dense model shown in
Figure 10. This is mainly due to the fact that the MoE model
requires frequent all-to-all communication and necessitates
high-quality internode communication, however, our single
IB NIC server cannot efficiently handle such job. Here we
directly use the official training configuration released by Mis-
tral. On the other hand, InternEvo is still under development
and we are working on performing tailored optimizations for
MoE models.

B Related Work
DL Workload Characterization. Prior works conduct DL
workloads analysis from different companies. Philly [45] pro-
vides insights on the impact of job locality on queuing delay
and resource utilization from Microsoft, in addition to identi-
fying different failure reasons. Helios [38] from SenseTime
illustrates the nature of cluster resource utilization and user
disparity, evaluated from the perspectives of the cluster, job,
and user. Alibaba’s PAI [97] contributes to this discourse by
analyzing the challenges encountered within their clusters
from both temporal and spatial viewpoints. Different from
them, we focus on the characteristics of LLM workloads. Con-
currently, MegaScale [47] presents ByteDance’s experience
in training LLMs using a formidable array of over 10,000
GPUs, complementing our focus with their practical insights.
Fault Tolerance Systems. Fault tolerance is a crucial con-
sideration across various disciplines. In the context of LLM
systems, Varuna [15], Bamboo [88], and Oobleck [44] fo-
cus on the fast recovery from failures in cloud spot in-
stance scenarios. Gemini [96] facilitates swift recovery
through CPU memory checkpointing. In addition, a body
of research works dedicated to GPU-related failure analy-
sis [33, 45, 60, 70, 86, 89, 90, 109], while several deep learn-
ing schedulers [42, 56, 107] consider fault tolerance. Further-
more, a series of studies have profiled [49, 62, 111] or diag-
nosed [36, 47, 59, 87, 105, 108] potential performance bottle-
necks within RDMA or intra-host network communication.
We provide a thorough analysis of the failure events in LLM
workloads and propose a LLM-involved diagnosis system.

C Resource Links
InternLM is a project focusing on LLM research in Shanghai
AI Laboratory. InternLM team keeps open-sourcing high-
quality LLMs as well as a full-stack toolchain for LLM de-
velopment. More resources can be accessed via the following
links:

InternLM Links
Project: https://github.com/InternLM
Trace: https://github.com/InternLM/AcmeTrace
System: https://github.com/InternLM/InternEvo
Model: https://huggingface.co/internlm

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 729

https://github.com/InternLM
https://github.com/InternLM/AcmeTrace
https://github.com/InternLM/InternEvo
https://huggingface.co/internlm

QuickUpdate: a Real-Time Personalization System for Large-Scale
Recommendation Models

Kiran Kumar Matam, Hani Ramezani, Fan Wang, Zeliang Chen, Yue Dong,
Maomao Ding, Zhiwei Zhao, Zhengyu Zhang, Ellie Wen, and Assaf Eisenman

Meta, Inc.

Abstract
Deep learning recommendation models play an important

role in online companies and consume a major part of the AI
infrastructure dedicated to training and inference. The accu-
racy of these models highly depends on how quickly they are
published on the serving side. One of the main challenges
in improving the model update latency and frequency is the
model size, which has reached the order of Terabytes and is
expected to further increase in the future. The large model
size causes large latency (and write bandwidth) to update
the model in geo-distributed servers. We present QuickUp-
date, a system for real-time personalization of large-scale
recommendation models, that publishes the model in high fre-
quency as part of online training, providing serving accuracy
that is comparable to that of a fully fresh model. The sys-
tem employs novel techniques to minimize the required write
bandwidth, including prioritized parameter updates, intermit-
tent full model updates, model transformations, and relaxed
consistency. We evaluate QuickUpdate using real-world data,
on one of the largest production models in Meta. The results
show that QuickUpdate provides a serving accuracy that is
comparable to a fully fresh model, while reducing the average
published update size and the required bandwidth by over 13x.
It provides a scalable solution for serving production models
in real-time fashion, which is otherwise not feasible at scale
due to the limited network and storage bandwidth.

1 Introduction

Deep Learning Recommendation Models (DLRM) are widely
used in many online companies. These models are trained
using data at scale to learn user and product characteristics,
providing personalized recommendations in a variety of con-
texts. For instance, Netflix [7] and YouTube [4] provide lists
of movies for customers; Amazon [19] and Alibaba [20] rec-
ommend relevant products based on user search queries, and
Google [3] and Meta [23] display ads and contents accord-
ing to user interests. DLRMs consume a major part of the

AI infrastructure in these companies. In Meta, for example,
DLRMs consume more than 80% of the machine learning
inference cycles [8] and more than 50% of the training cycles.

Recommendation models help the business grow. For in-
stance, they contribute to 35% of the entire purchase in Ama-
zon [8, 14]. As a result of such extensive business impact,
accuracy becomes an important performance metrics for rec-
ommendation models at scale. In particular, Meta business
required accuracy loss to be less than 0.01% in designing
checkpoint and quantization algorithms [5]. This is a very
narrow margin, indicating the importance of recommendation
models and their accuracy.

Model freshness is a key contributor to the accuracy of
personalized recommendation models [4, 6, 9, 22, 25]. The
accuracy can deteriorate rapidly because the models run in-
ferences in very highly dynamic environments. For instance,
every day new users and items are registered in the system and
user interests may be impacted by recent events. If the model
is not updated frequently, it would not incorporate the changes
in users and products, leading to a gradual deterioration in
accuracy. To further highlight the impact of freshness, Figure
3 displays the significant accuracy loss when the model is not
refreshed for hours. Thus, in order to keep accuracy at an ac-
ceptable level, recommendation models need to be retrained
using the most recent data, and the updated models should be
used to serve real time inferences.

A common technique to keep inference models fresh is
online training. Instead of re-training the model from scratch
each time, it is continuously trained and refined using real-
time streaming data. Periodically, a snapshot of the model is
created and published to hundreds of servers, located across
different geographical regions. These servers then utilize the
model to perform real-time predictions for online queries.
However, updating the serving model incurs latency between
the training cluster and the distributed serving hosts, resulting
in a delay in refreshing the model, primarily due to the large
size of modern models.

Over the years, model sizes have grown rapidly, reach-
ing the scale of terabytes and containing trillions of param-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 731

eters [5, 10, 15] to capture millions of sparse features and
improve the model accuracy. The limited write bandwidth
poses a challenge when transferring such large models to
distributed servers and storage. As a consequence, the up-
date latency can extend to the order of hours. This prolonged
latency can adversely affect accuracy, as discussed in more
detail in section 3.

To address the above challenges posed by the large model
sizes and their consequent update latency, we present Quick-
Update. QuickUpdate employs the following design elements
to provide real-time personalization of large-scale DLRM:

1. Prioritized parameter update: Performing a complete up-
date of all parameters in each of the serving models across
hundreds of geo-distributed nodes, would require substan-
tial network and storage bandwidths, which constitute a
bottleneck.
QuickUpdate minimizes the update size by performing pri-
oritized parameter selection. It ranks and selects specific
parameters to be updated in the serving model while prun-
ing the remaining ones from the update. This approach
significantly reduces the overall update size and mitigates
the bandwidth demands.
The parameter ranking algorithm is important to avoid
accuracy degradation when minimizing the update size.

2. Intermittent full model update: Intermittent full model
updates occur when a series of consecutive partial updates
are followed by a complete model update. The primary
purpose of these full updates is to maintain long-term ac-
curacy in the serving model. After each partial update, the
serving model deviates from the training model, since the
former still utilizes outdated parameter values. This devi-
ation grows larger with more partial updates, leading to
potential accuracy implications over time. To improve ac-
curacy, a full model update is published intermittently to
limit the gap between the serving model and the training
model.

3. Model transformations for real-time update: QuickUp-
date employs several model transformations to reduce the
published model size, including inference pruning and
quantization.
Quantization has been successfully implemented in some
studies [11, 24, 27] to reduce floating-point precision with-
out sacrificing accuracy. It helps to reduce the required size
of storage in the inference cluster and the required commu-
nication cost. Inference pruning is implemented on very
large look-up tables. Entities, such as users or videos, and
their corresponding vectors are stored as look-up embed-
ding tables in DLRMs. The entity indices (or IDs) that are
practically inactive are pruned from the serving platform
to significantly reduce the size of the served model.

4. Simplified serving design and relaxed consistency re-
quirements: In traditional serving designs, the model is
fully loaded in the serving platform before starting to serve
queries, to maintain strong consistency. In such designs,

each inference request is executed based on a specific ver-
sion of the model weights, ensuring consistent and reliable
results. However, this approach incurs considerable infras-
tructure overhead due to the use of extra buffer nodes.
In QuickUpdate, we introduce a more efficient serving
design by relaxing the consistency requirements. Instead
of using buffer nodes, the weights are directly updated
in the serving nodes. This eliminates the need for extra
infrastructure and reduces overhead. However, this relaxed
design may result in some inconsistency in the embedding
tables, as they may contain a mixture of fresh and stale
weights.
Despite the potential inconsistency in the embedding tables,
our evaluation demonstrates that the accuracy of the serving
model is not compromised, but rather it leads to accuracy
gains.
We evaluate QuickUpdate using real-world data and one

of the largest models that is deployed in production at Meta.
Overall, our results demonstrate that QuickUpdate is able to
provide a serving accuracy that is comparable to a fully fresh
model, while minimizing the required write bandwidth by
over 13x. It provides a scalable solution for serving produc-
tion DLRM in real-time fashion, which is otherwise not feasi-
ble at scale due to the limited network and storage bandwidth.
QuickUpdate achieves this by leveraging novel techniques,
including selectively publishing the most important parts of
each update, while still incorporating low-frequent intermit-
tent full model updates that ensure long term accuracy.

2 Background

2.1 Deep Learning Recommendation Models
(DLRM)

Typically, deep learning recommendation models are com-
posed of sparse and dense layers, as displayed in Figure
1 [5, 10, 26]. Sparse layers are practically the embedding
tables, where each embedding table represents a categorical
feature and each row of this table represents a specific ID (e.g.,
user ID or video ID). The embedding table transforms each
ID into a fixed size vector with float values that are trainable.
The remaining trainable parts of the model are called dense
layers.

Figure 1 displays how data flows in a DLRM. Sparse fea-
tures are transformed by embedding tables; and dense features
are transformed by the bottom dense layer. The transformed
features are then concatenated and further transformed in the
top dense layer to compute a likelihood for the input data.

2.1.1 Training DLRM

Parallelization is the main approach to train recommendation
models at scale [5, 8]. Different parallelization logic can be
implemented for the sparse and dense layers. Sparse layers

732 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: A DLRM architecture

contribute to > 99% of the entire model size and can be in
the order of several terabytes. Because storing all the sparse
layers in a single node is not feasible, a model parallelism
approach is used to shard the tables on several nodes. The
dense layer size, on the other hand, is small enough to be
accommodated by each node, thus they are replicated across
the nodes to leverage data parallelism.

At Meta, a typical training cluster includes 16 nodes, where
each node contains a multi-socket CPU and 8 GPUs. Sparse
layers are sharded across all the GPUs, with “all-to-all” com-
munication during both forward and backward computations.
Dense layers are replicated across all the GPUs, with “all-
reduce” communication to aggregate gradients computed in
multiple GPUs during the backward propagation [16]. During
training, the new weights are computed and updated for sparse
and dense layers synchronously to avoid accuracy degrada-
tion.

2.1.2 Serving DLRM

To efficiently serve batches of requests in a high-throughput
manner, GPUs are typically used for model serving. In Meta,
serving nodes are located in dedicated serving clusters. A
serving node consists of a host CPU and GPUs attached to it.
The serving model is replicated across the serving nodes, and
data parallelization is used for model serving at scale. Ads
embedding tables are stored in a single GPU because they re-
quire higher read throughput. The other embedding tables are
stored in the CPU, which typically has much larger memory
capacity (e.g., 1.5 TB DRAM). For storing the embedding
tables, a compact data structure is used to minimize the size
and store it in a GPU access friendly manner. In particular,
the embedding tables are stored consecutively, and each em-
bedding table is stored with row-major order in an array data
structure.

To refresh the serving model, additional buffer nodes are
utilized to avoid pausing the currently serving nodes. After the
newly published model is loaded into a buffer node, request
traffic is switched to the buffer node.

2.2 Online versus Offline Training

Online training is implemented when the serving model needs
to be continually trained and updated using a real-time stream
of data. In online training, the serving model provides pre-
dictions while being updated in regular time intervals (in the
order of minutes to hours). The training continues to operate
in the background (typically in a separate cluster) to fine tune
the model. The rate at which the trained model is published
to the serving platform can have a significant impact on the
accuracy of the predictions it generates.

In contrast, offline training does not use a real-time stream
of data for training and does not have a tight time constraint
to train and publish the model to the serving platform. Instead,
it usually uses a bulk of data that is already stored in a data
storage. The model is trained using the entire available data,
and the training stops when certain optimality conditions are
satisfied, after which it is published to the serving platform.

Deciding between online and offline training depends on
the use case. Online training systems are implemented when
the model needs to be updated in a timely fashion. A typ-
ical use case could be DLRMs for ads, search and videos
(e.g., [13, 18, 21]) when the environment is highly dynamic
and requires the model to be updated almost in real time (in
the order of minutes). The online training helps these mod-
els to incorporate the most recent data and to avoid accuracy
degradation. When the business requirements do not justify
real time model update, one can use an offline training ap-
proach to update models.

2.3 Optimizer State as Feature Importance
Measure

In general, large DLRMs can use hundreds of thousands of
features for training; however, some of these features and
corresponding weights do not impact the accuracy. These
features may belong to inactive users or content IDs, or some
other features may not provide training signals. Maintaining
all these parameters would consume some extra bandwidth
when the model is published, or some extra computation and
GPU storage when the inference is run in the serving platform.
To mitigate these adverse impacts, we can compute feature
importance and accordingly prune the features and weights
that practically do not impact the accuracy.

QuickUpdate uses optimizer state (or gradient momentum)
to compute feature importance. It belongs to the family of
gradient-based feature importance metrics (e.g., [2, 12, 18]).
The optimizer state is the historical average of gradient values
and is more stable than gradient values, which sometimes
oscillate between positive and negative values. The optimizer
state can give us the following indications:

1) Impact on accuracy: it practically shows how often and
how much a specific parameter has been updated during the
course of training. A high value of gradient value shows a

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 733

high impact on improving accuracy; and if this impact per-
sists historically, we can more confidently deduce that the
parameter is important for accuracy; thus the optimizer state
would be a stable indication of feature impacts on accuracy.

2) Access rate: The optimizer state of zero (or near zero)
indicates that the parameter has not been practically updated
during the course of training. This has twofold implications.
First, it can imply that the parameter has not been accessed.
This can happen for some inactive user IDs or outdated videos.
Second, if the entity is active, near-zero values can imply that
there may not be important signals to learn from the relevant
data. For instance, it can happen for a specific user ID that is
not using the platform to click on ads.

Based on the information above, QuickUpdate uses opti-
mizer state for two different tasks: 1- to perform inference
pruning when a complete model is published to reduce the
size of the complete model update. In this stage, QuickUpdate
focuses on low tail of optimizer state values and prunes the
parameters that do not have impact on accuracy 2- to perform
prioritized parameter selection when a partial update is pub-
lished. In this stage, the QuickUpdate focuses on the high
tail of the optimizer state values to update more important
parameters.

2.4 Inference Pruning

Inference pruning is performed to reduce the size of the model
when a complete snapshot is published to the serving platform.
Pruning is particularly implemented on the look-up embed-
ding tables and reduces their size by a significant amount (e.g.
50%). Since look-up tables compose more than 99% of the
size of DLRMs, the pruning considerably reduces the size
of the model without compromising the accuracy. Reducing
the size of the model helps to consume smaller bandwidth
to publish the model updates; and as a result, they can be
published to hundreds of geo-distributed clusters with shorter
latency. Additionally, it helps to perform inference faster be-
cause fewer number of rows are involved in the computations.

Figure 2 displays an example of a look-up table which
includes indices and the corresponding row. Each index repre-
sents a unique ID which is assigned to users, videos, etc. Each
row can be considered as a vector of trainable float values
used by the model to generate personalized recommendations
for users.

Intuitively, the inference pruning algorithm identifies the
rows that represent entities that are inactive or do not provide
training signals to improve accuracy. Mathematically, this is
accomplished using the optimizer state vector. In particular,
the trainer can provide a vector of optimizer state for each row.
Each element in the optimizer state vector demonstrates the
gradient momentum of the corresponding element in the row.
The average of the elements in the optimizer state vector is
used to quantify the row importance value. If the row impor-
tance value is close to zero, it implies that the row elements

Figure 2: Inference pruning of embedding tables

have not been practically updated during the training; and as
a result that row can be pruned.

Figure 2 also shows how the lookup table changes before
and after pruning. Using the row importance values, the infer-
ence pruning algorithm determines the least important indices,
and prunes them before publishing the complete update to
servers. For operational purposes, the original index values
are remapped to new indices. The new indices are simply
incremented as they appear in the original table.

It should be noted that in this paper, a complete model
update refers to the model snapshot after performing inference
pruning.

3 Motivation

In this section, we present real-world data that highlights the
motivation behind the development of QuickUpdate. First,
we demonstrate how accuracy considerably drops when the
model is not updated for an hour or longer. Then, we discuss
the implications of scaling up the model size. Without modi-
fying the model publishing approach, we have to either accept
prolonged update latency and diminishing accuracy, or invest
heavily in infrastructure to keep the update latency consistent.
Finally, we highlight the limitation of lossless model updates,
emphasizing the need for prioritized updates.

Accuracy gain: Updating a full serving model is a time-
intensive process that may span several hours. As a result,
recent updates like user actions and interests (e.g., posting
new stories or engaging with specific content) would not be
reflected in the serving model for several hours, potentially
reducing the model accuracy.

Figure 3 demonstrates how accuracy drops as we postpone
the model update for one of the large scale models at Meta.
It compares the accuracy loss of a stale serving model with
different model update latencies (1 to 7 hours), to a fully fresh
model. It shows that accuracy loss significantly increases
when model updates are delayed, reaching a loss of more than
0.6% after 7 hours.

Reducing the update size can help accelerate the model
updates and improve the accuracy of the serving model.

Model size: DLRM sizes have seen a marked increase
over the past years. These models utilize a large amount of
data and parameters to better understand user interests and

734 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5 6 7
Model update latency (hr)

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

A
cc

ur
ac

y
lo

ss

Figure 3: Accuracy loss in the case of different update laten-
cies, when compared to a fully fresh model

0 250 500 750 1000 1250 1500
Training time (seconds)

40

45

50

55

60

P
er

ce
nt

 o
f

m
od

el
 u

pd
at

ed

Figure 4: The percentage of the model updated over time

product characteristics, leading to improved accuracy. This
progress has resulted in the development of complex models
with trillions of parameters [15] and several terabyte model
size [5]. Moreover, this trend is expected to continue in the
future.

With the growth in model size comes the challenge of ex-
tended model update latency due to the increased bandwidth
required for transfers. If left unaddressed, this is expected
to lead to model freshness degradation in the future. Simply
augmenting the infrastructure is not a viable long-term solu-
tion, given the relentless expansion of model sizes. Therefore,
performing partial updates for large DLRM appears to be a
promising strategy, aiming to reduce update latency without
the demand for more infrastructure.

Lossless model updates: To better understand the propor-
tion of the model that is modified over time, we monitored
the updated embedding rows and accordingly computed the
average fraction of the model touched. Figure 4 shows the
percentage of the model updated over time. It is evident that a
large part of the model is updated in a short span of time. For
example, in just a 10-minute interval, 58% of the model gets
updated. Updating 58% of the model is resource-intensive,
requiring considerably more infrastructure than a full model
update every hour. This leads us to explore an approach of pri-
oritized updates to significantly reduce the update footprint.

4 System Overview

Figure 5 provides an overview of QuickUpdate architecture.
The DLRM system consists of training nodes, serving nodes,
and remote storage to save the model snapshots. The publish-
ing logic of QuickUpdate has been mainly implemented in the
UpdateSelector and UpdatePatcher agents, which are respec-
tively implemented in the trainer node and serving node. The
UpdateSelector is responsible to decide which portion of the
model should be updated and quantize it before saving in the
remote storage. UpdatePatcher implements different patching
strategies depending on the type of update being performed.
Additional information is provided in the following sections.

4.1 What to Update

QuickUpdate focuses on performing partial updates specif-
ically for the embedding tables, which typically constitute
the big majority of deep learning recommendation models
(more than 99% in our workload). In such models, each table
represents a categorical feature (e.g., users, videos), and each
row within a table corresponds to a specific ID associated
with that feature.

During our exploration, we considered two options for up-
dating the embedding tables: 1. Updating all rows for selected
tables. 2. Updating selected rows for all tables (the selected
row indices may vary from one table to another).

We found that updating at the row level granularity resulted
in improved accuracy while minimizing the overall update
size. Consequently, QuickUpdate determines which specific
rows within the tables need to be updated on the serving side.
This approach enables QuickUpdate to prioritize the updates
of certain content or user IDs that are more likely to contribute
to accuracy gains, ensuring an efficient and effective update
strategy. For dense layers in the model, QuickUpdate performs
a full update. This is because the size of the update for these
layers is relatively small, and any optimization specific to
these layers would not have a significant impact on the overall
update process.

4.2 UpdateSelector

The UpdateSelector component of QuickUpdate is imple-
mented within the training cluster. This is because it requires
certain model information, such as parameter values, from
the trainer in order to prepare the model update.

During online training, the trainer operates in batch inter-
vals. At the end of each training interval, the trainer shares
both the model state and the optimizer state with the Update-
Selector. The model state includes sharded embedding tables
and dense parameter values, while the optimizer state includes
gradient values and their momentum. These states are copied
from GPU memory to the host CPU memory.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 735

Figure 5: System architecture

UpdateSelector uses optimizer state to perform the follow-
ing two tasks on the copied model in CPU:

1. Prioritized parameter selection: The primary objective of
this task is to update only a small percentage of the model
parameters, while minimizing any degradation in accuracy
(compared to a full update). In this stage, QuickUpdate
selects the embedding rows based on their optimizer state
values, prioritizing those that are likely to result in a larger
improvement in accuracy.

2. Inference pruning: This task is implemented when a full
model is published. Inference pruning focuses on the sparse
embedding tables and aims to reduce the size of the full
model update. During this stage, QuickUpdate identifies the
low-tail optimizer state values and prunes the embedding
rows with values close to zero. These rows have negligible
impact on the accuracy of the model.
Once the updates (whether full or partial) are prepared, they

undergo quantization to reduce their size. The quantization is
used as a compression method and has negligible impact on
the model accuracy. The quantized updates are then stored in
remote storage, ready to be utilized for the update process.

4.3 UpdatePatcher
UpdatePatcher is responsible for loading the published snap-
shots and updating the serving model. It utilizes an efficient
non-atomic update approach for both partial and full model
updates. In the non-atomic update process, multiple threads
have access to the model parameters and gradually patch the
parameters to the servers. This allows for concurrent parame-
ter patching without the need to lock the servers or models.
As a result, the servers can continue to run inference on in-
coming traffic simultaneously while the updates are being
applied. This approach ensures efficient and uninterrupted
serving of real-time traffic during the update process.

4.4 Workflow
Figure 6 demonstrates QuickUpdate workflow. For simplicity,
we only show the timescale in the trainer, UpdateSelector, and
a serving node. The evolution of the model is a repeatable

pattern, thus we focus on one cycle, which is further divided
into intervals. At the beginning of each interval i in the cycle
c, UpdateSelector has access to a full model Fc,i to determine
which portion of the model should be updated. In particular,
first, a full snapshot (i.e., Fc,1) will be published and loaded in
the server, and then consecutive partial updates (Pc,i for i > 1)
will be published and patched to the full snapshot to create
the serving snapshot Sc,i.

Merging more partial updates with the serving model may
cause more deviation between the serving model Sc,i and
the current trainer state Fc,i. This deviation may result in
accuracy degradation. As a result, another full fresh snapshot
(i.e., Fc+1,1) will be published to the serving cluster, marking
the end of the current cycle. This model evolution in the
serving side can be represented as follows:

Sc,1 = Fc,1

Sc,i = M(Sc,i−1,Pc,i) for 1 < i ≤ I
where I is the number of intervals in a cycle, and M is

the merge operator. The merge operator simply copies the
parameter values of Pc,i and updates them in Sc,i−1.

5 Design

In this section, we discuss the design options and their im-
pact on accuracy metrics. We begin by defining the specific
accuracy metrics that guide our design and evaluation. By pri-
oritizing accuracy throughout the design process, we aimed to
create an effective system that provides high serving accuracy
while addressing the network and storage bandwidth bottle-
neck. Note that QuickUpdate is configurable and monitored
in production for the unlikely event of accuracy degradation.

5.1 Accuracy Metrics

Binary Cross Entropy or Entropy [17] is a well known aggre-
gate metric to evaluate accuracy of ads models. In this study,
we use Normalized Entropy (NE) which is defined as the
Binary Cross Entropy divided by a constant. The variations
of NE are computed as follows to understand how the partial
update would perform with respect to the fully fresh snapshot
and stale model. For simplicity, we drop cycle subscript c
from the notation.

1- NE loss: It determines the accuracy reduction when
model Si is used instead of the corresponding fully fresh
model Fi to run inferences.

NEloss(Si) =
NESi −NEFi

NEFi

∗100 (1)

where NESi and NEFi respectively denote Normalized En-
tropy for models Si and Fi.

2- NE gain: It represents how much accuracy improvement
to expect if Si is used for inference instead of the stale model:

736 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 6: QuickUpdate workflow

NEgain(Si) =
NESi −NEstale

NEstale
∗100 (2)

The stale model is considered to be the latest published full
model F1.

3- NE recovery: It demonstrates the percentage of maxi-
mum NE gain that has been attained by model Si. We assume
that the maximum NE gain is achieved if the fully trained
model, Fi, could have been used for inference. Thus, the NE
recovery is defined as:

NErecovery(Si) =
NEgain(Si)

NEgain(Fi)
∗100 (3)

5.2 Selection Criteria
To prioritize updating rows that yield larger accuracy gains,
we need a reliable indicator that remains stable throughout
the training process. While the gradient vector could serve
as a criterion, its oscillation between positive and negative
values introduces numerical instability. Instead, we can utilize
the optimizer state vector, also known as momentum, which
provides a more stable measure. The optimizer state vector
represents the averaged squared sum of historical gradients
for a specific row. By denoting OSr

c,i as the optimizer state
vector for a row r in the model at interval i, and OSr

c,i as the
average of its elements, we can leverage this measure as an
indication of row importance.

Intuitively, the rows with larger values of OSr
c,i would be

more likely to improve accuracy. For example, these rows
can represent a specific user who frequently uses the platform
to click on ads, or it can represent a specific video with a
high access rate. Other than the magnitude of OSr

c,i for a
given interval, it might be important to track how it changes
over time. This can be potentially informative for situations
when we prefer to prioritize parameters that have changed

Table 1: NE recovery for different selection criteria

Selection criteria NE recovery

Absolute optimizer state 70%
Delta optimizer state 100%

with respect to older versions. Based on these intuitions, we
evaluate the following selection criteria:

1- Absolute optimizer state:

abs(OSr
c,i) f or i > 1 (4)

2- Delta optimizer state:

abs(OSr
c,i −OSr

c,i−1) f or i > 1 (5)

The choice between using absolute optimizer state or delta
optimizer state as selection criteria depends on their respec-
tive advantages and trade-offs. While absolute optimizer state
provides a stable and aggregate measure of how a row impacts
accuracy, delta optimizer state captures the change in impact
compared to the previous interval. However, using delta opti-
mizer state requires additional memory to store the optimizer
state from the previous interval. To evaluate the impact of
these criteria, we conducted experiments with a 30-minute
interval length and a 10% update size. After publishing a full
snapshot and training for another hour, we published a partial
snapshot with a 10% update size based on the two criteria. We
then evaluated the serving accuracy compared to a fully fresh
model. The results in Table 1 (which were consistent across
multiple such experiments) indicate that delta optimizer state
achieves 100% NE recovery, while absolute optimizer state
achieves 70% NE recovery. This implies that selecting rows
based on delta optimizer state reduces the discrepancy be-
tween the serving model and the corresponding full snapshot.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 737

Table 2: NE recovery and NE gain for different baselines

Baseline NE recovery

Previous full update 95.94%
Previous update 99.05%

5.3 Baseline for Delta Selection
Delta optimizer state is computed with respect to a baseline.
We considered two options for choosing a baseline when
computing the delta optimizer state:

1- Model state at the previous update: This option considers
the model state at the time of the previous update as the
baseline. It is the same as the delta optimizer definition in the
previous section.

2- Model state at the previous full update: As elaborated
in section 5.6, QuickUpdate also leverages intermittent full
updates. In this baseline option, the model state at the time
of the last intermittent full update is used as delta. The delta
optimizer is defined in this case as the following:

abs(OSr
c,i −OSr

c,1) f or i > 1 (6)

For the first option, the baseline needs to be saved at the end
of every training interval, while for the second option, only
one baseline is saved in the first interval of the cycle. Thus, the
first option provides a more recent and fresh baseline at the
cost of extra compute resources for saving it in the memory.

We examine the impact of the different baselines on the
serving accuracy by conducting an experiment where each in-
termittent full update is followed by four partial updates. We
evaluate the serving accuracy (NE recovery) compared to a
fully fresh model. The results in Table 2 show that previous in-
terval baseline would deliver 3.11% (95.94% versus 99.05%)
more NE recovery. This suggests that using the model state
of the previous update as a baseline can better reflect recent
user interests, as it is refreshed in every update interval. In
addition, the use of full updates as baseline may prioritize
parameters that were important in previous intervals but are
no longer contributing to accuracy. Over time, the optimizer
states of these parameters may reach a plateau, yet the full
update baseline may still consider them due to their large
delta optimizer state values. Refreshing the baseline more fre-
quently helps eliminate the prioritization of such parameters
and instead prioritize recently changed parameters that are
more likely to contribute to accuracy improvements.

5.4 Real-time Inference Pruning
Inference pruning, described in subsection 2.4, helps reduce
the size of the serving model and the number of required
GPUs. It practically prunes rows (or IDs) that are not active
anymore or have a negligible impact on accuracy to reduce the
size of embedding tables. Then, the pruned tables are stored

compactly in a GPU access-friendly manner to further reduce
their size in the serving cluster.

The pruning is only implemented when a full model is pub-
lished to the serving cluster. For the subsequent intervals, we
like partial updates to be compatible with pruned tables in full
model updates. Ideally, the row IDs in partial updates should
be present in the pruned table. This helps us to simply update
the values of existing rows without re-structuring the tables in
GPUs. However, this is not always the case. Since the training
data for partial updates is different from the full model update,
it is possible that some row IDs become important in partial
updates while those IDs are not present in the serving-side
pruned table. When such cases occur, a naive implementa-
tion would involve the insertion of the missing rows into the
serving-side pruned table, which can be resource-intensive
and may require reshuffling of all the embedding tables across
all GPUs to ensure accessibility and efficiency (e.g., avoid
memory fragmentation).

To avoid intensive reshuffling of embedding tables, we
explored two alternative inference pruning strategies that are
compatible with the partial updates:

1. Fixed indices pruning (see figure 7a): In this strategy,
QuickUpdate performs prioritized parameter selection to
choose candidate row indices for updating. However, only
the rows that are already present in the embedding table
are updated, while the pruned rows remain unchanged.

2. Fixed pruning ratio (see figure 7b): In this strategy, a fixed
ratio of rows is pruned from the embedding table at each
full update. When QuickUpdate performs prioritized pa-
rameter selection, it selects a maximum of X indices to
update, where X is the total number of rows in the given
table on the serving platform. This ensures that the number
of rows in a table is consistent.

The first strategy avoids reshuffling, as there would be only
row update operations and no row insert operations into the
embedding tables. The second strategy avoids reshuffling by
using both row update and remapping index operations. As
the sizes of the embedding tables don’t change in the second
strategy, it would also avoid the need to reshard the embedding
tables across the GPUs.

To evaluate the two pruning strategies, we consider three
training scenarios: 1-No pruning, 2-fixed pruned indexes and
3-fixed pruned ratio per table.

Our experiments showed that NE loss due to pruning is
practically negligible (<0.001%), with no accuracy difference
between the pruning strategies. Considering implementation
requirements, we opted for the fixed pruned indexes strategy
due to its simpler implementation. Unlike the fixed pruned
ratio strategy, it does not necessitate updating the index map
with each new update.

738 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Fixed indexes pruning

(b) Fixed ratio pruning

Figure 7: Inference pruning strategies

5.5 Granularity
The granularity in QuickUpdate refers to the percentage of
rows to include in a partial update. This parameter determines
the amount of bandwidth required to transfer the update to the
serving nodes. While a smaller granularity allows for faster
and more efficient transfer, it may also limit the inclusion of
important rows, potentially leading to a reduction in accuracy.

The granularity setting is configurable and can be adjusted
based on various factors such as available infrastructure re-
sources, desired accuracy, and the overall size of the model. In
section 6 we evaluate the trade-off between update granularity
and accuracy on our production workload.

5.6 Intermittent Full Model Update
After each partial update, the serving model deviates from
the most recent trained model. It is because only a small
percentage of parameters in the serving model are based on
the most recent trained model, and the rest of the parameters
are based on the older versions. As we perform more partial
updates, the deviation becomes larger, leading to accuracy
degradation. Thus, intermittent full model update is required
to maintain the accuracy of the serving model and keep its
long term accuracy at a desired level.

The main design parameter for the intermittent full model
update is its frequency. Determining the desired frequency
of full model updates depends on different factors such as
granularity and the required accuracy. As we show in section
6, there exists a trade-off between the granularity of partial
updates and the required frequency of full model updates. A
system that applies larger granularity in partial updates can
delay the need for a full model update, at the cost of higher
average write bandwidth.

5.7 Relaxed Model Update Consistency
Traditionally, in order to ensure consistency during a full
model update, the updated model is first loaded into buffer

nodes. Only when loading is completed, the user request
traffic is re-routed to the buffer nodes, which then serve as the
new inference nodes. In QuickUpdate, we relaxed this design
because it uses considerable infrastructure resources. Instead,
whenever updates are available, they are directly patched to
the serving model, which continues to serve real-time traffic
concurrently without the need for a separate buffer node. This
relaxation of the design allows for more efficient utilization
of infrastructure resources.

The relaxed consistency in QuickUpdate is specifically re-
lated to the loading duration of parameters in the serving node.
During this loading process, incoming inference requests may
encounter inconsistent views of the embedding tables, leading
to three possible cases for a particular query:

1. None of the parameters have been updated yet, and the
inference is performed using the stale parameters.

2. Some parameters have been updated, and inference is per-
formed using a mixture of stale and fresh parameters.

3. All parameters have been updated and inference is based
on the fully fresh model.
Our experiments have shown that this relaxed consistency

approach does not result in a negative impact on the serving
accuracy when compared to a fully consistent policy, while
also eliminating the need for additional buffer nodes. In sec-
tion 6, we further evaluate the effect of these inconsistent
embedding tables on the serving accuracy and demonstrate
that they actually lead to positive accuracy gains, providing
an additional benefit of the relaxed consistency approach.

6 Evaluation

We evaluate QuickUpdate on one of the largest recommen-
dation models deployed in Meta, using real-world data, and
trained on our production training cluster in a setup similar
to [15]. The model is an extension of the DLRM model pro-
posed in [16], but it is substantially larger, in the order of
Terabytes. We used the same pre-recorded data stream for all
the experiments, making the experiments reproducible and
comparable, and eliminating potential result skew due to tem-
poral data variations. The model was initially trained using
several weeks of real-world data as the warm-up period, in
order to reach a steady state. For accuracy evaluations, we
evaluate the serving predictions on data stream that comes
after the training data in time (i.e., the data evaluated during
inference was not used in previous training).

6.1 Accuracy
In this section, we compare the accuracy implications of differ-
ent update granularities, and derive the minimal full snapshot
frequency such that the NE loss does not fall below 0.01%. In
these experiments, we publish a full snapshot in the beginning
and continue to publish partial updates with different granu-
larities. These partial updates are applied on top of the full

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 739

1 2 3 4 6 8 10
Training interval (hr)

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

N
E

 g
ai

n
ov

er

 s
ta

le
 m

od
el

10%_update
5%_update
1%_update

Figure 8: NE gain for partial updates with varying training
periods

served snapshot and evaluated for accuracy using the same
recorded dataset.

6.1.1 NE gain compared to a stale model

We begin by comparing the accuracy of QuickUpdate with
the accuracy of a stale model, to quantify the accuracy gains
and to validate that applying partial updates on top of a full
snapshot does not negatively affect accuracy. Here, the stale
model refers to the initially published full snapshot. Figure
8 shows the NE gain with respect to the stale model, for
different update granularities (and without intermittent full
model updates). All the update sizes result in higher NE gain
than the stale model, and the NE gain increases over time. The
5% and 10% updates provide very similar NE gains, but the
1% update returns less NE gain, indicating some important
rows are not included in the 1% updates. Overall, these trends
indicate that even after applying partial updates for over 10
hours, there is no adverse impact and accuracy improves by
0.7% compared with the stale model.

6.1.2 NE loss compared to a fully fresh model

In this section, we investigate the NE loss of a model pub-
lished by QuickUpdate using partial updates, compared to
an ideal fully fresh serving mode. The results presented in
figure 9 show that with 10% update, the NE loss is below
0.005% during the entire 10 hours. With 5% update, the NE
loss is consistently higher than 10% update, but is still less
than 0.01% during over six hours. The NE loss increases as
training period increases, since the discrepancy between the
serving model and the corresponding trained model increases.

The results also demonstrate the impact of employing dif-
ferent update granularities on the delay of full model publica-
tion, while ensuring the NE loss remains below the acceptable
threshold of 0.01%. By adopting a 10% granularity, we can
effectively delay the need for full model publication by over
10 hours. Similarly, when utilizing a 5% granularity, we can
postpone the full model publication by 6 hours while still
keeping the NE loss within the acceptable range. This high-

1 2 3 4 6 8 10
Training interval (hr)

0.000%

0.010%

0.020%

0.030%

0.040%

0.050%

N
E

 lo
ss

 w
ith

 re
sp

ec
t

 to
 fu

ll
m

od
el

Max acceptable NE loss

10%_update
5%_update
1%_update

Figure 9: NE loss for partial updates with varying training
periods

1 2 3 4 avg
Interval number

0.000%

0.005%

0.010%

0.015%

0.020%

0.025%

0.030%

N
E

lo
ss

 w
ith

 re

sp
ec

t t
o

fu
ll

m
od

el

Max acceptable NE loss
1%_update
2%_update
5%_update

Figure 10: NE loss of partial updates with different granulari-
ties, in 4 consecutive 10 minute intervals

lights the efficacy of partial updates at the 5% granularity
in capturing important updates and maintaining the model’s
accuracy and freshness over a considerable period.

6.1.3 NE loss over short time periods

In order to analyze the NE loss over short time periods, we
conducted an evaluation involving four consecutive 10-minute
updates. The update granularities examined were 5%, 3% and
1%. The NE loss was measured after each update in compari-
son to a fully fresh model using unseen data. Figure 10 shows
the variance across different 10 minute intervals, emphasizing
the fluctuating nature of the streaming data. However, the NE
loss stabilizes when averaged over multiple short time inter-
vals. As expected, the results show that the NE loss reduces as
we increase the granularity. The average NE loss presented at
the last column confirms that the 5% granularity would return
an acceptable NE loss (on average) in our workload.

6.1.4 Conclusion

The accuracy results demonstrate the effectiveness of Quick-
Update in employing a 5% update granularity for up to 6
hours, while maintaining accuracy levels comparable to a
fully fresh model and ensuring NE loss below the threshold
of 0.01%.

740 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Additionally, the use of QuickUpdate with 5% update gran-
ularity allows for a delay of 6 hours before the necessity of
publishing a full model arises. This delay is possible due to
the successful incorporation of partial updates, which capture
and integrate important changes, resulting in accurate and
up-to-date models.

Based on these findings, QuickUpdate triggers intermittent
full model publishing every 6 hours by default, optimizing
the balance between accuracy and update frequency.

6.2 Analyzing Long Term Row Convergence
In the previous analysis, our focus was on minimizing partial
update granularity and determining the appropriate frequency
for intermittent full updates, based on the accuracy metrics.
The results indicated that utilizing partial updates with granu-
larity of 5% for 6 hours achieved satisfactory accuracy.

In this experiment, our objective is to explore what percent-
age of the important rows in the model is updated by partial
updates.

In order to determine a proxy of the important rows, we
train the model for a duration of 6 hours (i.e., the same du-
ration with satisfactory accuracy). We determine important
rows to be the top percentage of rows in the trained model
such that publishing them once at the end of the 6 hours du-
ration, instead of the entire model, would have returned the
satisfactory accuracy (i.e., below 0.01% difference compared
to a fully fresh model).

Figure 11 shows the NE loss (compared with a fully fresh
model) with different sizes of a single update after 6 hours
of training. As can be seen, a single 5% partial update is
not sufficient to achieve an NE loss below the acceptable
threshold of 0.01%. However, a 10% partial update proves to
be adequate in reducing the NE loss to an acceptable level.
This indicates that the top 10% of the ranked embedding rows
are a good proxy of the important rows in this time window.

To understand the percentage of those important rows that
is covered by multiple smaller 5% updates, we ran QuickUp-
date for 6 hours with multiple partial updates of 5% granu-
larity. Upon combining all these updates into a union set, we
observe that this set encompasses 70% of the important rows
mentioned above, and overall covers 7.3% of all the rows in
the model. Thus, a large portion of the important rows are
covered by consecutive, smaller partial updates.

6.3 Bandwidth Usage
In QuickUpdate, the update size is a proxy for the bandwidth
usage. The amount of bandwidth usage depends on the granu-
larity, update interval, and frequency of the intermittent full
model update. In general, these parameters are configurable
and may change according to the type of DLRM and the de-
sired accuracy. In this section, we evaluate bandwidth usage
for different policies based on the percentage of the model

5% 10% 15% 20% 25% 30% 35%
Update size

0.000%

0.005%

0.010%

0.015%

N
E

 lo
ss

Figure 11: NE loss versus update size for a 6-hour training
period

that is published. The details of them are elaborated below
and in Figure 12:

1. Baseline 1: Full model is published every hour
2. Baseline 2: Full model is published every 10 minutes (not

shown in the figure)
3. 5% update (default policy): A partial update is published

every 10 minutes with a granularity of 5%, with intermittent
full update every 6 hours (as discussed in 6.1).

4. 10% update: Similar to the previous policy, a partial update
is published every 10 minutes, but with a granularity of
10%. An intermittent full update is published every 6 hours.
In order to compare these policies, we average the con-

sumed bandwidth. The results show that the default policy
of 5% update granularity with 6-hour intermittent full update
interval writes on average 43.6% of the model size per hour,
compared with 68.2% in policy 3 (10% update), and 100% in
the baseline 1 case. Baseline 2, which provides a comparable
accuracy to policies 2 and 3, would require publishing 600%
of the model size per hour.

Overall, with default policy, QuickUpdate is able to reduce
the consumed bandwidth by 2.3x compared to baseline 1,
while providing a better accuracy that is comparable to a fully
fresh model. Compared to baseline 2 (which is not feasible at
scale due to the network and storage bandwidth limitation),
QuickUpdate is able to reduce the required bandwidth by over
13x, while still providing comparable accuracy.

6.4 Relaxed Consistency
Traditionally, serving models are updated atomically to main-
tain consistent inference. This involves loading all model
weights into buffer nodes, which later become the serving
nodes for computing inferences. However, this approach is
resource intensive due to the use of buffer nodes. To address
this, QuickUpdate relaxes the consistency requirement and
parameters are directly updated in the serving nodes while
simultaneously performing inference queries.

We evaluate the NE recovery (compared to a fully fresh
model) during an intermittent full model update in QuickUp-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 741

0 1 2 3 4 5 6 7 8 9 10 11
Hour

0%

25%

50%

75%

100%

125%

150%

%
 o

f t
he

 m

od
el

 s
iz

e
Baseline
5% update per 10min
10% update per 10min

Figure 12: Bandwidth measure: update size per hour for dif-
ferent update scenarios

stale
 mdoel

10% 30% 50% 70% 90%100%

Percent weight update

0

20

40

60

80

100

%
N

E
 re

co
ve

ry

Figure 13: NE recovery during model update (relaxed consis-
tency)

date, as a function of the percentage of the weights that have
been updated. As shown in figure 13, relaxing the consistency
can improve the accuracy in production during loading. The
NE recovery increases as more parameters are loaded. Our
data shows that we can capture about 54% of the NE recovery
by patching 30% of the parameters. The NE recovery reaches
around 94% after patching just 70% of the parameters.

Relaxed consistency allows for the early serving of fresh
rows (rather than waiting for the entire model to update),
leading to overall higher accuracy. Although there is an incon-
sistent view of tables during loading (implying that different
rows may belong to different states), serving a subset of fresh
rows already leads to in increase in accuracy. The NE recov-
ery continues to grow over time until the entire model have
been updated.

7 Related Work

Asynchronous or partial update strategy has been imple-
mented for few real-time DLRMs [13,18,21]. In Kraken [21],
dense parameters are updated every few seconds in a batch,
while the sparse parameters are updated whenever their values
change in the trainer. This is a lossless parameter update that
can produce a significant amount of traffic for large models
with 100-1000 billion parameters [15] and geo-distributed

servers. Monolith [13] mainly focused on developing a sys-
tem with collision-less embedding tables for sparse features.
A sparse parameter can be updated in minute-level granularity
when it is trained and its value changes from the last synchro-
nization. Similar to Kraken, this is a lossless update which
can create huge traffic. Overall, the lossless model update
can be very resource intensive, as discussed in section 3. To
overcome this issue, QuickUpdate can perform prioritized
parameter selection that results in about 78%− 92% band-
width reduction and a negligible accuracy loss (< 0.01%). In
another study, Ekko [18] is designed as an efficient system to
broadcast the updates from the trainer model to all the serv-
ing inference nodes. To quickly update the larger embedding
tables in the serving models, they used the sparsity and tempo-
ral locality in the embedding table updates. The Ekko system
is orthogonal to QuickUpdate, and both can be implemented
together. In the QuickUpdate, we optimized the design el-
ements such as publishing interval, update granularity and
parameter selection criteria to achieve the desired accuracy
and minimize publishing the full model. Prioritized parameter
selection is one of the techniques we used in this paper. In
past studies (e.g., [1,2,12] Gradient based parameter selection
has been explored for distributed training systems. Ekko [18]
further expanded this criterion and additionally considered
request frequency for each parameter and parameter freshness
to the selection criteria. In QuickUpdate we decided to choose
delta of gradient momentum which is a more stable measure
than gradient itself, and additionally it publishes parameters
such that it returns the highest accuracy compared with the
baseline snapshot.

8 Conclusion

QuickUpdate is a system that enables online training to per-
form low-latency partial updates while providing a serving
accuracy that is comparable to a fully fresh model. It offers
a scalable solution for serving production-scale DLRM in
real-time. This is particularly valuable because serving such
models in real-time is challenging at scale due to limitations
in network and storage bandwidth.

QuickUpdate achieves its scalability and accuracy goals by
utilizing innovative techniques. One of these techniques in-
volves selectively publishing the most important parts of each
update, reducing the overall update size while maintaining ac-
curacy. Additionally, QuickUpdate incorporates intermittent
full model updates at a low frequency to ensure long-term
accuracy. This combination of selective partial updates and
intermittent full updates enables QuickUpdate to balance be-
tween low-latency serving and preserving accuracy over time.

We evaluated QuickUpdate using real world data for a large
personalized ads model and showed that QuickUpdate is able
to provide a serving accuracy that is comparable to a fully
fresh model, while minimizing the required write bandwidth
by over 13x.

742 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola
Konstantinov, Sarit Khirirat, and Cédric Renggli. The
convergence of sparsified gradient methods. Advances
in Neural Information Processing Systems, 31, 2018.

[2] Youhui Bai, Cheng Li, Quan Zhou, Jun Yi, Ping Gong,
Feng Yan, Ruichuan Chen, and Yinlong Xu. Gradient
compression supercharged high-performance data par-
allel dnn training. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, pages
359–375, 2021.

[3] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen Ander-
son, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide
& deep learning for recommender systems. In Proceed-
ings of the 1st workshop on deep learning for recom-
mender systems, pages 7–10, 2016.

[4] Paul Covington, Jay Adams, and Emre Sargin. Deep
neural networks for youtube recommendations. In Pro-
ceedings of the 10th ACM conference on recommender
systems, pages 191–198, 2016.

[5] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram,
Dheevatsa Mudigere, Raghuraman Krishnamoorthi, Kr-
ishnakumar Nair, Misha Smelyanskiy, and Murali An-
navaram. Check-n-run: a checkpointing system for train-
ing deep learning recommendation models. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 929–943, 2022.

[6] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pech-
enizkiy, and Abdelhamid Bouchachia. A survey on con-
cept drift adaptation. ACM computing surveys (CSUR),
46(4):1–37, 2014.

[7] Carlos A Gomez-Uribe and Neil Hunt. The netflix rec-
ommender system: Algorithms, business value, and inno-
vation. ACM Transactions on Management Information
Systems (TMIS), 6(4):1–19, 2015.

[8] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim
Naumov, Brandon Reagen, David Brooks, Bradford Cot-
tel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al.
The architectural implications of facebook’s dnn-based
personalized recommendation. In 2020 IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA), pages 488–501. IEEE, 2020.

[9] Bowei He, Xu He, Yingxue Zhang, Ruiming Tang, and
Chen Ma. Dynamically expandable graph convolu-
tion for streaming recommendation. arXiv preprint
arXiv:2303.11700, 2023.

[10] Xiangru Lian, Binhang Yuan, Xuefeng Zhu, Yulong
Wang, Yongjun He, Honghuan Wu, Lei Sun, Haodong
Lyu, Chengjun Liu, Xing Dong, et al. Persia: An
open, hybrid system scaling deep learning-based recom-
menders up to 100 trillion parameters. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 3288–3298, 2022.

[11] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy.
Fixed point quantization of deep convolutional networks.
In International conference on machine learning, pages
2849–2858. PMLR, 2016.

[12] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and
William J. Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training.
In International Conference on Learning Representa-
tions, 2018.

[13] Zhuoran Liu, Leqi Zou, Xuan Zou, Caihua Wang,
Biao Zhang, Da Tang, Bolin Zhu, Yijie Zhu, Peng Wu,
Ke Wang, and Youlong Cheng. Monolith: Real time
recommendation system with collisionless embedding
table. In Proceedings of 5th Workshop on Online Recom-
mender Systems and User Modeling, in conjunction with
the 16th ACM Conference on Recommender Systems,
Seattle, WA, 2022.

[14] Ian MacKenzie, Chris Meyer, and Steve Noble. How
retailers can keep up with consumers. McKinsey &
Company, 18(1), 2013.

[15] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-
hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,
Mustafa Ozdal, Jade Nie, Jongsoo Park, et al. Software-
hardware co-design for fast and scalable training of deep
learning recommendation models. In Proceedings of
the 49th Annual International Symposium on Computer
Architecture, pages 993–1011, 2022.

[16] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo
Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,
Alisson G Azzolini, et al. Deep learning recommen-
dation model for personalization and recommendation
systems. arXiv preprint arXiv:1906.00091, 2019.

[17] Pytorch. Crossentropy loss. In
https://pytorch.org/docs/stable/generated/torch.nn.
CrossEntropyLoss.html.

[18] Chijun Sima, Yao Fu, Man-Kit Sit Liyi Guo, Xuri Gong,
Feng Lin, Junyu Wu, Yongsheng Li, Haidong Rong,
Pierre-Louis Aublin, and Luo Mai. Ekko: A large-scale
deep learning recommender system with low-latency
model update. In 16th USENIX Symposium on Oper-
ating Systems Design and Implementation., pages 821–
839, Carlsbad, CA, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 743

[19] Brent Smith and Greg Linden. Two decades of recom-
mender systems at amazon. com. Ieee internet comput-
ing, 21(3):12–18, 2017.

[20] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang,
Binqiang Zhao, and Dik Lun Lee. Billion-scale com-
modity embedding for e-commerce recommendation in
alibaba. In Proceedings of the 24th ACM SIGKDD in-
ternational conference on knowledge discovery & data
mining, pages 839–848, 2018.

[21] Minhui Xie, Kai Ren, Youyou Lu, Guangxu Yang,
Qingxing Xu, Bihai Wu, Jiazhen Lin, Hongbo Ao, Wan-
hong Xu, and Jiwu Shu. Kraken: Memory-efficient
continual learning for large-scale real-time recommen-
dations. 2020.

[22] Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo,
Ruiming Tang, and Mark Coates. Graphsail: Graph
structure aware incremental learning for recommender
systems. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management,
pages 2861–2868, 2020.

[23] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombat-
chai, William L Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recom-
mender systems. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge dis-
covery & data mining, pages 974–983, 2018.

[24] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and
Gang Hua. Lq-nets: Learned quantization for highly
accurate and compact deep neural networks. In Proceed-
ings of the European conference on computer vision
(ECCV), pages 365–382, 2018.

[25] Peiyan Zhang and Sunghun Kim. A survey on incre-
mental update for neural recommender systems. arXiv
preprint arXiv:2303.02851, 2023.

[26] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian,
Ronglai Jia, and Ping Li. Aibox: Ctr prediction model
training on a single node. In Proceedings of the 28th
ACM International Conference on Information and
Knowledge Management, pages 319–328, 2019.

[27] Chenzhuo Zhu, Song Han, Huizi Mao, and William J
Dally. Trained ternary quantization. arXiv preprint
arXiv:1612.01064, 2016.

744 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

MegaScale: Scaling Large Language Model Training to More Than 10,000 GPUs

Ziheng Jiang1,∗ Haibin Lin1,∗ Yinmin Zhong2,∗ Qi Huang1 Yangrui Chen1 Zhi Zhang1

Yanghua Peng1 Xiang Li1 Cong Xie1 Shibiao Nong1 Yulu Jia1 Sun He1 Hongmin Chen1

Zhihao Bai1 Qi Hou1 Shipeng Yan1 Ding Zhou1 Yiyao Sheng1 Zhuo Jiang1

Haohan Xu1 Haoran Wei1 Zhang Zhang1 Pengfei Nie1 Leqi Zou1 Sida Zhao1

Liang Xiang1 Zherui Liu1 Zhe Li1 Xiaoying Jia1 Jianxi Ye1 Xin Jin2,† Xin Liu1,†

1ByteDance 2Peking University

Abstract
We present the design, implementation and engineering ex-

perience in building and deploying MegaScale, a production
system for training large language models (LLMs) at the scale
of more than 10,000 GPUs. Training LLMs at this scale brings
unprecedented challenges to training efficiency and stability.
We take a full-stack approach that co-designs the algorithmic
and system components across model block and optimizer
design, computation and communication overlapping, oper-
ator optimization, data pipeline, and network performance
tuning. Maintaining high efficiency throughout the training
process (i.e., stability) is an important consideration in pro-
duction given the long extent of LLM training jobs. Many
hard stability issues only emerge at large scale, and in-depth
observability is the key to address them. We develop a set
of diagnosis tools to monitor system components and events
deep in the stack, identify root causes, and derive effective
techniques to achieve fault tolerance and mitigate stragglers.
MegaScale achieves 55.2% Model FLOPs Utilization (MFU)
when training a 175B LLM model on 12,288 GPUs, improv-
ing the MFU by 1.34× compared to Megatron-LM. We share
our operational experience in identifying and fixing failures
and stragglers. We hope by articulating the problems and
sharing our experience from a systems perspective, this work
can inspire future LLM systems research.

1 Introduction

Large language models (LLMs) [1] have emerged as a trans-
formative technology in artificial intelligence (AI). Recent
advancements in LLMs have significantly improved their ca-
pability. LLMs have demonstrated tremendous potential in
a wide range of domains, such as machine translation, text
summarization, and conversational agents [2]. As a company

∗Equal contribution.
†Correspondence to: Xin Liu <liuxin.ai@bytedance.com>, Xin Jin

<xinjinpku@pku.edu.cn>.

serving billions of users, we have been aggressively integrat-
ing AI into our products, and we are putting LLMs as a high
priority to shape the future of our products.

Training LLMs is a daunting task that requires enormous
computation resources. The scaling law [3] dictates that the
model size and the training data size are critical factors that
determine the model capability. To achieve state-of-the-art
model capability, many efforts have been devoted to train
large models with hundreds of billions or even trillions of
parameters on hundreds of billions or even trillions of to-
kens. For example, GPT-3 [4] has 175 billion parameters and
PaLM [5] has 540 billion parameters. Major players in this
field build large-scale AI clusters with tens of thousands of
GPUs to train LLMs.

Scaling LLM training to tens of thousands of GPUs brings
unprecedented challenges. As AI has been at the core of many
of our products, we have extensive experience in training
deep neural networks (DNNs). Yet, training a model like
ResNet [6] only takes tens or hundreds of GPUs. Compared
to these models, the scale of training LLMs is unparallel.
While we are not new to building and operating large-scale
GPU clusters, these clusters are normally shared by many
training jobs. Now, in the context of LLM training, a single
job is occupying tens of thousands of GPUs and taking all the
resources. The sheer scale of LLM training introduces two
specific challenges from a systems perspective.

The first challenge is to achieve high training efficiency
at scale. Model FLOPs utilization (MFU) is the ratio of the
observed throughput to the theoretical maximum throughput
assuming 100% of peak FLOPs [7]. It is a standard metric
to evaluate training efficiency that directly translates to end-
to-end training speed. LLM training is not embarrassingly
parallel. To train an LLM, the model is split across GPUs
and the GPUs heavily communicate with each other to make
progress. Besides communication, other factors such as op-
erator optimization, data preprocessing and GPU memory
consumption also contribute significantly to MFU.

The second challenge is to achieve high training stability
at scale, i.e., maintaining high training efficiency throughout

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 745

the training process. Stability is particularly important from
a production perspective, as LLMs take a long time to train.
Training an LLM with one trillion tokens can take weeks.
The scale and time are orders of magnitude larger than those
of regular DNN training jobs. Failures and stragglers are the
norm rather than the exception for LLM training. At such a
scale, the consequences of failures and stragglers are devas-
tating. Failures are very expensive, and it is critical to reduce
the recovery time, given the large scale. A straggler not only
affects its own work, but slows down the entire job involving
tens of thousands of GPUs.

In this paper, we present the design, implementation and
engineering experience of MegaScale, a production system
for training LLMs at scale. MegaScale enables us to scale
LLM training to more than 10,000 GPUs. We are able to
harness the power of the massive number of GPUs to train
LLMs with high training efficiency and stability. In building
and operating MegaScale, we apply two systems principles:
algorithm-system co-design and in-depth observability.

MegaScale is a specialized system tailored for LLM train-
ing. Algorithm-system co-design is a key principle to max-
imize performance for specialized systems, which has been
applied widely in computer systems. We apply this principle
to MegaScale in the context of LLM training with a full-
stack approach that spans all important system components.
We make several modifications and incorporate effective op-
timization techniques to the model architecture, including
parallel transformer block [5], sliding window attention [8]
and LAMB optimizer [9]. We leverage mixed parallelism
strategies that combine data parallelism, pipeline parallelism,
tensor parallelism, and sequence parallelism. Importantly, we
design custom techniques based on the pattern of each par-
allelism strategy to maximize the overlapping between com-
munication and computation. We apply prefetching and tree-
based loading to optimize the data pipeline. We leverage
non-blocking asynchronous operations and eliminate global
barriers for large-scale collective communication group ini-
tialization. We design a custom network topology, reduce
ECMP hash conflicts, customize congestion control, and tune
retransmit timeout parameters for high network performance.

Stability problems including failures and stragglers in large-
scale systems are notoriously hard to diagnose and fix. Many
hard stability issues only emerge at large scale, which can
stem from a wide range of software and hardware faults deep
in the stack. Manually identifying and resolving every sin-
gle issue is infeasible given the scale and complexity of the
system. We apply the principle of in-depth observability to
build a set of diagnosis tools. By ‘in-depth observability’, we
mean a comprehensive monitoring and visualization strategy
that penetrates beyond surface-level metrics to gather detailed,
granular data across every component of the system stack, aim-
ing to create a multidimensional view of system performance.
The set of tools allows us to diagnose the system and iden-
tify root causes, by uncovering the intricate interactions and

Model
Replica Forward

sync grads gather params
Data 0

Backward Reduce-
Scatter

Update
Params All-Gather

Data 1

Model
Replica Forward Backward Reduce-

Scatter
Update
Params All-Gather

Figure 1: Data parallel training with Zero Redundancy Optimizer.

dependencies that contribute to stability issues. We develop
a robust training framework to automate fault localization
and recovery. We design heartbeat messages encapsulating
various forms of information to facilitate real-time anomaly
detection and provide early warnings. We implement a suite
of diagnostic tests to identify nodes causing disruptions. We
optimize the checkpointing and recovery procedure to reduce
interruptions. To troubleshoot nuanced cases caused by strag-
glers, we develop a performance analysis tool to record fine-
grained CUDA events and generate system-wide heat-map
and timeline trace from a distributed view, and develop a 3D
parallel training visualization tool to show data dependencies
between ranks for diagnosis.

MegaScale is deployed in our datacenters to train LLMs
for our products. Over the years, we have built several AI
clusters with different size and hardware configurations. Our
largest AI cluster has over 10,000 GPUs. In terms of training
efficiency, MegaScale achieves 55.2% MFU when training a
standard 175B transformer model on 12,288 GPUs, providing
an improvement of 1.34× compared to the state-of-the-art
open-source training framework Megatron-LM [10]. In terms
of model converge and stability, we show a real production run
of MegaScale that trains a proprietary model with hundreds
of billions of parameters on multi-trillion tokens for several
weeks. Over the weeks, the loss continues to converge, and
MegaScale repairs and recovers the training process for over
100 times in presence of failures. We also share our experience
in diagnosing and fixing some intriguing problems. We are
working on open-sourcing components that can benefit the
community on GitHub3.

2 Background

The training of LLMs, characterized by their vast model ar-
chitectures and massive datasets, is computationally intensive.
Parallelism strategies distribute the training process across
multiple devices.

Data parallelism. It replicates the model and optimizer states
across multiple devices and the data is evenly divided among
all devices. Each model replica executes the forward and
backward propagation computation in parallel. Upon com-
pletion of each iteration, all model replicas synchronize to

3https://github.com/volcengine/veScale

746 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 0 0 1

0 1 2

0 1 2

1 2 2

0

0

1

1

2

2

0

0

0

1

1

32

2

2

3

3

4 53 4 5

3

3

4

4

5

54

4

5

3 4 5

3

3

4

4

5

5

5

1

0 2

0 1 2

0 1 2

3 4 5

3

3 4

4 5

5
stage
0

stage
1

stage
2

Figure 2: Interleaved 1F1B pipeline.

update the model. Instead of duplicating model states (like
the optimizer states, gradients, and parameters), Zero Redun-
dancy Optimizer (ZeRO) [11] shards these states across every
data-parallel process. As a result, the traditional all-reduce
operations that aggregate gradients are decomposed into sep-
arate reduce-scatter and all-gather operations. This is because
every data-parallel process retains only a fraction of the total
state. ZeRO is structured into three incremental stages of op-
timizations. Notably, the second stage is commonly adopted
to shard both the optimizer states and gradients, while en-
suring no additional communication overhead is introduced
(Figure 1).

Pipeline parallelism. It distributes model layers among mul-
tiple devices and each device owns a portion of the model.
Meanwhile, each training batch is subdivided into a number of
micro-batches for pipelined execution. To reduce pipeline bub-
bles, various pipeline scheduling strategies are proposed, e.g.,
GPipe [12], PipeDream 1F1B [13], etc. Megatron-LM [7] em-
ploys the interleaved 1F1B scheduling. Each pipeline stage
on every worker is subdivided into multiple virtual stages,
which represents a subset of layers, referred to as a model
chunk. Initially, workers enter a warm-up phase, executing the
forward pass for a limited number of in-flight micro-batches.
Following the warm-up, each worker progresses to the steady
phase where workers perform one forward pass followed by
one backward pass, often abbreviated as 1F1B. Upon con-
cluding a batch, workers finalize the backward passes for
any remaining in-flight micro-batches during this cool-down
phase. Figure 2 shows an three-stage pipeline where each
stage is further divided into two virtual stages.

Tensor parallelism. It distributes individual operators over
multiple devices, with each device executing a portion of the
computation in parallel. Depending on the specific partition-
ing strategy and its relationship to prior and subsequent oper-
ators in the model, partitioning can require communication
among participating GPUs to split the input and then merge
the output. For example, we can split GEMMs in the MLP and
self-attention blocks among multiple GPUs to utilize more
computational units. Some other operations like LayerNorm
and Dropout are less computationally intensive but demand
a considerable amount of activation memory. Another form
of tensor parallelism called sequence parallelism is proposed
to distribute these operators along the sequence dimension to
effectively reduce the activation memory footprint.

Combination of parallelism strategies. These parallelism
strategies can be combined into 3D parallelism to scale the
training of LLMs across many GPUs [10]. Given the high
communication overhead associated with tensor parallelism,
it is preferable to confine such communication within a sin-
gle cluster node. Conversely, data parallelism and pipeline
parallelism are more amenable to inter-node communication.
In this case, we choose to prioritize building the data paral-
lelism groups over pipeline parallelism, which can mitigate
cross-minipod communication for data parallelism.

3 Efficient Training at Scale

In the realm of LLMs, efficient training at scale becomes
paramount. As we venture into deeper and more expansive
models, the computational demands surge explosively. Han-
dling such computation requirements without compromising
on model accuracy necessitates the adoption of state-of-the-
art algorithmic optimizations, communication strategies, data
pipeline management, and network performance tuning tech-
niques. This section delves deep into the methods employed
to optimize the training of large models in order to achieve
high training efficiency at scale.

3.1 Algorithmic Optimizations
We make a few modifications and incorporate recent optimiza-
tions at the algorithmic level to improve training efficiency,
without compromising accuracy. We validate the impact of
these techniques on model convergence in §6.2.

Parallel transformer block [14]. We adopt a parallel version
of the transformer block in lieu of the standard serialized for-
mulation. Specifically, the standard formula of the transformer
block can be reformatted from

y = x+MLP(LN(x+Attention(LN(x)))) (1)

into
y = x+MLP(LN(x))+Attention(LN(x)) (2)

With this approach, the computation of the attention block
and the MLP block can be executed in parallel, thereby re-
ducing the computation time. Prior work [5] shows that this
modification does not degrade the quality of models with
parameters in the hundreds of billions.

Sliding window attention (SWA). Sliding window atten-
tion [8] is a sparse attention mechanism that employs a fixed-
size window surrounding each token in the input sequence.
The computation complexity is O(s×w), where s is the in-
put sequence length and w is the fixed window size. Sliding
window attention is more efficient than the full self-attention,
whose computation complexity is O(s× s), given that w ≪ s.
Past work [8] and our micro-benchmark (§6.2) have shown
that the information across the entire input can be retained

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 747

LayerNorm

All-Gather

QKV
ColParaLinear

Self Attention

RowParaLinear

ColParaLinear

RowParaLinear

Reduce-
Scatter

+

+

SP

LayerNorm

TP

SP

LayerNorm

ColParaLinear
with AG

Self Attention

RowParaLinear

+

SP

LayerNorm

TP

SP

QKV
ColParaLinear

all-gather
result

RowParaLinear
with RS

linear
result

A0 × W A1 × W AN × WS0

S1
Copy
A0

Copy
A1

Copy
AN

all-gather
result

linear
result

S0

S1
RS
C0

RS
C1

B x W1B × W0

RS
CN

B x WN

CUDA
stream kernel comm

×

A0
A1

AN
W

B0
B1

BN

=

B × W0W1 WN = C0 C1 CN

(a) PTB with SP and TP (b) Fuse communication into Linears (c) Overlap communication with GEMM

Figure 3: Overlapping communication in tensor parallelism (TP) and sequence parallelism (SP) with parallel transformer block (PTB).

with a large receptive field created by stacking layers of such
windowed attention. This enables faster training without com-
promising the accuracy.

LAMB optimizer. Efficient training at a large scale is often
hindered by batch size constraints. Particularly, increasing
the batch size may adversely affect model convergence. The
LAMB optimizer [9] has been demonstrated to enable the
scaling of BERT’s training batch size to 64K without com-
promising accuracy. In the LLM setting, our experiments find
that LAMB can scale the batch size to 4× without accuracy
loss. With interleaved pipeline parallelism, the original sched-
ule contains 4

v
p−1
m pipeline bubbles when training four steps

with 1× batch size [7], while the pipeline bubbles of training
one step with 4× batch size are 1

v
p−1
4m . Hence, MegaScale

reduces 87.5% of the pipeline bubbles via LAMB optimizer.

3.2 Communication Overlapping in 3D Paral-
lelism

To reduce the iteration time, we systematically analyze the
dependencies between computation and communication for
all the operators in 3D parallelism, and design techniques to
hide the overhead of all the off-the-critical-path operations.

Overlapping in data parallelism. As shown in Figure 1, for
data parallelism, two main communication operations stand
out. One is the all-gather operation, which fetches the most
recent model parameters from workers in other data parallel
ranks during the forward pass. The other is the reduce-scatter
operation, which collect the gradients in the backward pass.

In 3D parallelism, a single device may host multiple model
chunks. Overlapping is implemented on a model chunk basis
to maximize bandwidth utilization. The all-gather operation
is triggered prior to the forward pass of a model chunk, and
the reduce-scatter operation commences after its backward
pass. This results in a challenge where the first all-gather op-
eration and the last reduce-scatter operation cannot be hidden.
Inspired by PyTorch FSDP [15], the initial all-gather opera-
tion is pre-fetched at the beginning of each iteration, allowing
it to overlap with data loading operations, effectively reducing
the communication time by a factor of 1/(2∗ vpp_size). We
also launch the high priority communication first to maximize
overlapping. The priorities of communication operators are
determined by the order of the corresponding computation
operators that depend on the communication result.

Overlapping in pipeline parallelism. Pipeline parallelism
features point-to-point send/receive communication. MegaS-
cale uses the interleaved 1F1B scheduling method mentioned
in 2. We note that in the warm-up phase, the forward pass only
depends on its previous receive. We thus decouple the send
and receive, which are often implemented together and can
be blocked by the slower one. By breaking this dependency,
we enable the send operation to overlap with the computation
as shown in the left part of Figure 4. The cool-down phase
can be viewed as the inverse of the warm-up phase, allowing
for the inverse application of the same technique. As for the
steady phase, both the forward and backward computation are
independent of adjacent communication operations. Taking
the backward as an example, as shown in the right part of
Figure 4, its previous receive is for the next forward compu-

748 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

stage i

stage i + 1 FWD FWD

stage i

stage i + 1

S

FWD

S

FWD

S/R

FWD

S/R

R R

FWD

FWDS/R

FWDRR

S/R

SS

Warm-up Phase

FWD BWDS/R S/R FWD

FWD BWDS/R S/R FWD

BWDS/R

BWDS/R

FWD BWD BWDFWD

FWD BWD BWDFWD

Steady Phase

FWD Forward

S Send

R Receive

BWD Backward

Stream

Dependency

S

R

R

S

R

R

S

R

S

R

S

S

Communication Overlap

Figure 4: Overlapping communication in pipeline parallelism.

tation while the send is for the backward computation in the
previous stage. So the send and receive operations can be
launched asynchronously to overlap with the computation.

Overlapping in tensor/sequence parallelism. Tensor
parallelism is commonly used to partition weights in
computational-intensive operations, while operations like Lay-
erNorm and Dropout are partitioned along the sequence di-
mension to save GPU memory. This necessitates all-gather
and reduce-scatter operations for input collection and output
redistribution across GPUs. Figure 3a shows this communi-
cation pattern in the parallel transformer block architecture.
Here the two communication operators are in the critical
path. To eliminate this overhead, we choose to fuse all-gather
and reduce-scatter with the parallel Linears on the FFN path
(Figure 3b). Since the GEMM kernels on the FFN path is
larger, the communication can be hidden better. We break the
GEMM kernel into small chunks, and pipeline the execution
with the communication (Figure 3c). This strategy can be
applied in the backward pass similarly.

3.3 Efficient Operators
Despite the optimization for GEMM operators in Megatron-
LM, we identify opportunities for further enhancement
in other operators. For the attention part, we adopt
FlashAttention-2 [16], which improves work partitioning be-
tween different thread blocks and warps. For LayerNorm and
GeLU, we observe that they are composed of fine-grained
kernels in previous implementations. By fusing these kernels
together, we reduce the overhead associated with launching
multiple kernels and aid in optimizing memory access pat-
terns, thereby achieving better performance.

3.4 Data Pipeline
Data preprocessing and loading are often overlooked. How-
ever, these operations create non-negligible GPU idle time at
the beginning of each training step. Optimizing these opera-
tions are essential for efficiency of the training process.

Asynchronous data preprocessing. Data preprocessing is
not on the critical path. As a result, while the GPU workers
are synchronizing gradients at the end of each training step,
the data preprocessing for the subsequent step can start, which
hides the preprocessing overhead.

Redundant dataloader elimination. In a typical data loading
phase of distributed training, each GPU worker is equipped
with its own data loader, responsible for reading training data
into the CPU memory before forwarding it to the GPU. This
leads to competition among workers for disk read bandwidth,
thereby creating a bottleneck. Notably, we observe that in the
LLM training setting, GPU workers within the same machine
are in the same tensor parallel group. Consequently, their
inputs for each iteration are inherently identical. Based on
this observation, we adopt a two-layer tree-based approach.
We use a single, dedicated data loader on each machine to read
the training data into a piece of shared memory. Subsequently,
each GPU worker is responsible for copying the necessary
data to its own GPU memory. This eliminates redundant reads
and significantly enhances the efficiency of data transfer.

3.5 Collective Communication Group Initial-
ization

In distributed training, the initialization phase involves the
establishment of NVIDIA Collective Communications Li-
brary (NCCL) communication groups among GPU workers.
Since this overhead is relatively negligible in small-scale
scenarios, torch.distributed is used by default. As the
number of GPUs scales to over ten thousand, the overhead
introduced by naive implementations becomes intolerable.
We conduct experiments on the same AI cluster in §6 and our
empirical measurement indicates that the initialization time
for Megatron-LM on 2,048 NVIDIA Ampere GPUs is approx-
imately 1047 seconds. While this may appear relatively small
compared to the training duration, it imposes a significant hur-
dle to routine testing and iterative development (e.g., minor
code adjustments in hyperparameter tuning and debugging). It
also hampers the implementation of fast restart-and-recovery
mechanisms.

To address this issue, we perform a detailed profiling of
torch.distributed [17] and identify two primary causes of
excessive initialization time. The first issue resides in the syn-
chronization step, where each process is involved in a barrier
operation at the end of initialization a specific communication
group. This barrier uses TCPStore, an inner distributed Key-
Value Store implementation in Pytorch which operates in a
single-threaded, blocking read-write manner. We replace TCP-
Store with Redis, which is non-blocking and asynchronous.
This reduces the initialization time to 361 seconds on 2,048
GPUs. The second issue is related to the incautious usage of
global barriers. Each process executes a global barrier after
initializing its corresponding communication group. We care-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 749

fully design the order in which communication groups are
initialized to minimize the need for global barriers. This ap-
proach lowers the time complexity of the global barrier from
O(n2) to O(n). The initialization time is reduced to under 5
seconds on 2048 GPUs, and to under 30 seconds on more
than 10,000 GPUs with those optimizations.

3.6 Network Performance Tuning
We analyze the traffic across machines in 3D parallelism and
design techniques to improve network performance.

Network topology. Our datacenter network is built with high-
performance switches based on Broadcom Tomahawk 4 chips.
The total bandwidth of each Tomahawk chip is 25.6Tbps with
64×400Gbps ports. Three layers of switches are connected
in a CLOS-like topology to connect more than 10,000 GPUs.
For switches at each layer, the bandwidth percentage between
downlink and uplink is 1:1. That is, 32 ports are used as down-
link and 32 ports are used as uplink. The network provides
high bandwidth with a small diameter. Every node can com-
municate with other nodes within a limited number of hops.

Reducing ECMP hashing conflicts. We carefully design
the network topology and schedule network traffic to reduce
ECMP hashing conflicts. First, at the top-of-rack (ToR) switch
level, one 400G downlink port is split into two 200G down-
link ports with specific AOC cables. The conflict probability
is reduced as the bandwidth of each uplink is double of that
of a downlink. Second, eight 200G NICs on the server is
connected to eight different switches in a multi-rail way. The
number of GPU servers connected by the same sets of ToR
switches can reach 64. And we strategically schedule the data-
intensive nodes from our training tasks to operate under the
same Top of Rack (ToR) switch. This approach significantly
reduces the number of switch hops required for communica-
tion and further reduce ECMP hashing conflicts probability.

Congestion control. In distributed training, all-to-all commu-
nication may lead to congestion and elevated levels of Priority
Flow Control (PFC) [18] when employing the default DC-
QCN [19] protocol at scale. Excessive use of PFC can result
in head-of-line (HoL) blocking [19], thereby diminishing net-
work throughput. To mitigate these issues, we have developed
an algorithm incorporating principles from both Swift [20]
and DCQCN, which integrates the precise measurement of
Round-Trip Time (RTT) with the rapid congestion response
capabilities of Explicit Congestion Notification (ECN). This
approach significantly enhances throughput and minimizes
congestion related to PFC.

Retransmit timeout setting. Parameters in NCCL can be
set to control retransmit timer and retry count. We tune these
parameters for fast recovery under link flapping. To further
reduce the recover time, we enable the adap_retrans feature
on the NIC. This feature enables retransmission in a shorter

stop && check

Executor 0
Executor 1

Executor 2

Executor N

Executors

Kubenetes

Driver

manage
resources

heartbeatLog Analysisor

check resultsCheckerUser API

Blocked IPs

Evicted PodsTraining
Job Info

generatesubmit

trigger

Figure 5: Robust training workflow.

interval and help recover the transmission more quickly when
the link flapping period is short.

4 Fault Tolerance

As the training cluster scales to over tens of thousands of
GPUs, software and hardware faults become virtually in-
evitable. We introduce a robust training framework for LLM
training that achieves automatic fault identification and fast
recovery, enabling fault tolerance with minimal human inter-
vention and negligible impact on ongoing training tasks.

4.1 Robust Training Workflow
As Figure 5 shows, upon receiving a submitted training task,
the driver process interfaces with a custom Kubernetes to
allocate computing resources and initiate the corresponding
Pod for each executor. One executor manage one node. Once
the executor has completed a series of initialization tasks, it
creates the training process on each GPU and a robust train-
ing daemon which sends heartbeat to the driver periodically.
These heartbeats encapsulate various forms of information to
enable real-time anomaly detection and issue early warnings
(§4.2). When the driver process detects an abnormal status
in a particular training process, or fails to receive a heartbeat
from an executor within a predefined time window, it trig-
gers the fault recovery procedure. The driver will suspend
the ongoing training task across all executors and command
them to run a series of self-check diagnostics (§4.3). These
diagnostic tests are carefully designed to be lightweight yet
comprehensive, covering the majority of common hardware
and software faults. Once the problematic nodes are identified,
the driver submits the IP addresses of the nodes to be blocked,
along with the information of the Pods running on them, to
Kubernetes, which evicts the faulty nodes and replenishes the
cluster with an equivalent amount of healthy ones which pass
our diagnostic tests. Additionally, we provide a user interface
that allows for manual eviction of nodes, particularly for those
identified through manual analysis as in §5. After the recov-
ery process is complete, the driver resumes training from the
latest checkpoint. We optimize the checkpoint and resume
process to minimize the loss of training progress (§4.4).

750 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.2 Data Collection and Analysis
The heartbeat messages includes the basic information of
the executor, such as the IP address, the Pod name, and hard-
ware information, etc. Additionally, the current status of the
training processes is reported, enabling the driver to promptly
detect any explicit anomalies. The stdout/stderr logs of train-
ing processes are also included. They will be aggregated,
filtered and analyzed on the fly. If specific warning or error
keywords are detected, the driver will report real-time diag-
nostic information. Moreover, RDMA traffic metrics are also
included, serving as an indicator for network utilization and
efficiency. Some anomalies in the training process may not
manifest as explicit errors, giving the appearance that training
is proceeding as expected. In such cases, RDMA traffic met-
rics serve as a critical indicator. Given the periodic nature of
the training tasks, the network traffic characteristics for each
step should exhibit similar patterns. Therefore, any significant
decline or abnormal fluctuation in RDMA traffic is a signal
of potential anomalies. Upon detecting such irregularities, the
driver will issue alerts for manual investigation. If the traffic
ceases entirely, the driver will automatically initiate the fault
recovery procedure.

In order to enhance the monitoring of training stability and
performance, we have developed a monitoring system with
precision reaching the millisecond level. Different levels of
monitoring are employed to track various indicators. Second-
level monitoring is typically used to assess the overall health
status and to rule out common configuration impacts on train-
ing. For instance, ECN/PFC/QoS configurations, link flapping,
or any other issues of NICs. Millisecond-level monitoring,
on the other hand, is used to determine if the network is con-
gested and whether the data transfer speed of data parallelism
and pipe parallelism has reached its physical limit.

4.3 Diagnostic Tests
There exists a trade-off between execution time and accuracy
in self-check diagnostics. Extended diagnostic duration can
adversely affect the effective training time, while high false
positive rates can lead to unnecessary exclusion of machines
that are actually functional. Through iterative experimentation
and optimization, we have deployed a suite of lightweight di-
agnostic tests that effectively cover a broad spectrum of hard-
ware and software faults encountered during actual training
processes.

Intra-host network tests. To diagnose potential bottlenecks
in intra-host network, we use our internally developed tool
to test two things. The Loopback test measures the loop-
back bandwidth from all RDMA NICs (RNICs) to various
intra-host endpoints, including memory nodes and GPUs. It
conducts a full-mesh test within the host, covering all possible
link combinations. This allows us to infer link-specific band-
width degradation and irregularities in PCIe configurations

based on end-to-end bandwidth results. The second RNIC-
to-RNIC test examines the connectivity and bandwidth per-
formance between different RNICs on the same host. These
tests provide insights into whether the RNICs meet the hard-
ware speed specifications and whether the underlying routing
configurations are correctly configured.

NCCL tests. To identify potential faults in GPU communica-
tion, we run an all-to-all test among the GPUs within a single
node to observe whether the bandwidth aligns with expected
benchmarks. Once intra-host communication test is passed,
each node also conducts an all-reduce test with neighboring
machines under the same ToR switch to assess inter-node
GPU communication.

4.4 Fast Checkpointing and Recovery
After identifying and evicting faulty machines, the driver
needs to resume the training by loading model weights and
optimizer states from the most recent checkpoint. It is critical
to ensure that the latest checkpoint is as close as possible
to the state of training progress when the faults happened,
to minimize loss in computation and time. This require us
to increase the frequency of checkpointing during training.
However, we also want to reduce the latency introduced by
the checkpointing process, especially the time on the critical
path which blocks the training progress, thus impeding the
overall system throughput.

To achieve fast checkpointing, we introduce an optimized,
two-stage approach. In the first stage, each GPU worker writes
its on-chip states to the host memory, and then continues the
training process. After the optimization of Pytorch’s serializa-
tion mechanism and the use of pinned memory, this process
can be reduced to several seconds thanks to the high PCIe
bandwidth, thereby minimally interrupting the ongoing train-
ing process. In the second stage, a background process takes
over, asynchronously transferring the state from the host mem-
ory to a distributed file system (HDFS in our deployment)
for centralized maintenance. This decoupling of operations
into two stages allows the GPU workers to resume training
almost immediately after dumping their state, while the more
time-consuming process of writing to HDFS is offloaded to a
separate, non-blocking process.

In the context of recovery from a checkpoint, it is on the
critical path since training can not be started without the last
checkpoint. The bottleneck is the bandwidth of HDFS, espe-
cially when each GPU worker needs to read its corresponding
state partition. To alleviate this bottleneck, we propose an
optimized data retrieval strategy. We recognize that multiple
GPU workers often share the same state partition, e.g., the
workers in the same data parallel group. Accordingly, we des-
ignate a single worker in the group to read the shared state
partition from HDFS, thereby reducing the load linearly. This
worker then broadcasts the state partition to all other GPU
workers that share the same data. This approach effectively

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 751

0 5000 10000 15000 20000 25000 30000
step

0.0

0.2

0.4

0.6

M
FU

Figure 6: Inconsistent MFU observed in large-scale training. Differ-
ent colors denote distinct executions of the same training job.

mitigates the bandwidth constraints of HDFS, leading to a
substantial reduction in the recovery time.

5 Training Troubleshooting

Although our robust training framework automatically discov-
ers, pinpoints, and resolves the majority of common faults,
there remain certain hardware anomalies that manifest proba-
bilistically and cannot be found by machine self-checks. Some
anomalies may make the system appear to operate normally,
yet significantly degrades the training efficiency. To address
these nuanced cases, we have implemented several custom
monitoring and analysis tools designed to support case-by-
case anomaly detection.

5.1 Performance Diagnosis with CUDA Event
Monitor

At the scale of tens of thousands of GPUs, we observe that,
unlike in smaller-scale experiments, different runs exhibit
varying computational efficiencies. Even with identical con-
figurations , this inconsistency persist, as shown in Figure 6.
We also observed that the performance of training tasks is not
consistent at this scale. The MFU for various training tasks
gradually declines over time. While this leads us to suspect
variations between individual machines, no evident variations
are detected under single GPU GEMM micro-benchmarks.
To diagnose those performance issues, we develop a perfor-
mance analysis tool that records the execution time of critical
code segments on each machine rank during a run. In contrast
to previous tools such as the torch profiler or the Megatron-
LM timer, our tool times events based on the CUDA events
method. This approach minimizes the need for CUDA syn-
chronization, thus preventing performance degradation, allow-
ing us to consistently run it in our production training jobs.
This tool offers two visualization modes and can analyze the
collected data from different perspectives.

The first mode uses a heat map to show time consumption
differences between machines from various dimensions, de-
picted in Figure 7. We gather latency data of the computation
phase (forward and backward) across devices and average
the latency across steps. The aggregated data is visualized

host 0

0
1
2
3

host 3

12
13
14
15

host 6

24
25
26
27

host 9

36
37
38
39

host 4

16
17
18
19

host 7

28
29
30
31

host 10

40
41
42
43

host 5

20
21
22
23

host 8

32
33
34
35

host 11

44
45
46
47

host 1

4
5
6
7

host 2

8
9

10
11

DP CommTP Comm PP Comm

2.5s

2.0s

computational
stragglers

time

Figure 7: Performance heat-map. The color denotes the running
time of the code segments on a rank. The figure also shows the
3D visualization feature, where rank 20 has been selected and the
dependency across different parallelism dimensions become visible.

using a heat-map. The heat-map reveals that a minor frac-
tion of machines (approximately 0.5%) exhibit substantially
slower performance during training, thereby hindering overall
training progress. The training efficiency is predominantly
determined by the slowest machine’s performance (i.e., strag-
glers), leading to inconsistencies in training efficiency across
diverse runs, since machine scheduling within the cluster is
stochastic. After excluding these outlier machines, the peak
MFU across runs becomes consistent.

The other mode displays the event timeline on machines
in a trace format from different distributed views (data paral-
lelism, pipeline parallelism, tensor parallelism). Traditional
profiler, such as PyTorch Profiler, is primarily designed for
single-node activity analysis. This approach offers limited
insight in distributed training scenarios where execution de-
pendencies frequently span across multiple nodes. By ag-
gregating the trace spans of various ranks onto a singular
timeline, we gain a comprehensive perspective, revealing the
overall execution order, pipeline bubbles, and synchronization
characteristics among data parallel ranks. Figure 8 displays
how our distributed tracer visualizes the actual execution of
pipeline parallelism, detailing the data dependencies between
different pipeline stages through the consolidation of event
data across a pipeline parallelism group.

Every piece of data from the CUDA event timer is stored
in a remote analytical database, allowing for easy retrieval of
details from any step event. While the timer data is wrote to a
local file in a line-by-line format, a separate streamer process
then synchronizes this log file with a Kafka queue in real-time.
The analytical database remains updated by consuming data
from this Kafka queue, enabling on-the-fly analysis without
interrupting the training job. All the monitoring features are
turned on during real production training and the overhead is
negligible compared to the training time.

752 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 8: The trace shows events collected in a pipeline group on a unified timeline. Dependencies become visible when an event is selected.

5.2 3D Parallel Training Visualization

With 3D parallelism and our optimization techniques (§3),
the landscape of data flow and task sequencing is exceedingly
intricate. Each GPU worker may be engaged in several syn-
chronous or asynchronous operations at the given moment,
leading to complex dependencies among them. This intricacy
amplifies the challenges of fault diagnosis: when a single
GPU worker experiences a fault, the entire cluster of nodes
can stall in the NCCL communication operations, ultimately
leading to a system-wide timeout. Externally, this situation
manifests as a generic blockage, but the root cause of which is
often buried under a deluge of timeout messages. To rapidly
pinpoint the problematic nodes, we let each GPU worker log
its own ongoing event upon communication timeout. These
logs are then used to construct a visual representation of data
dependencies based on the logical topology in the 3D parallel
setting.

As Figure 7 shows, the cluster in 3D parallel training can
logically be split into three dimensions: tensor parallelism,
pipeline parallelism, and data parallelism. When we select a
specific GPU worker, it displays its position within the logical
topology, the direction of data flow and the different commu-
nication operations it involves. Importantly, in the event of
an error, the tool provides direct access to the worker’s error
messages if any. This serves as a powerful tool for diagnos-
ing training anomalies, enabling quicker identification and
resolution of faults.

Consider the aforementioned case when defective GPUs
probabilistically cause blocking when executing NCCL com-
munication operations. Such blocking can hang the entire
machine, leading to cascading timeouts across other depen-
dent nodes and ultimately resulting in the paralysis of the
entire training process. To swiftly identify these faulty nodes,
we utilize the 3D parallel training visualization tool. Nodes
that timeout due to waiting for the faulty ones will log their
ongoing operations upon exiting. In contrast, the nodes with
the faulty GPUs are hung and do not log any such infor-
mation. Therefore, by examining the logs and the data flow
within the visualization, these problematic nodes can be easily
pinpointed. Once identified, these nodes can be manually iso-
lated and flagged for maintenance through the robust training
framework, as described in 4.1.

Model
Size Heads

Hidden
Size Layers TP PP

175B 128 12288 96 8 8
530B 160 20480 105 8 35

Table 1: Model configurations.

6 Experience

In this section, we describe our deployment and operational
experience of MegaScale. We build dedicated AI clusters for
LLM training. Over the years, we have iterated several ver-
sions of our specialized AI cluster architecture, and we are
currently operating several AI clusters with varying size and
hardware configurations. We use these AI clusters to train a
wide range of models, from computer vision and recommen-
dation models to LLMs. With the increasing importance of
LLMs, we are building AI clusters with larger size to cater the
need of LLM training. As of September 2023, the largest AI
cluster in our production for LLM training contains more than
10,000 NVIDIA Ampere GPUs. We are also in the process of
building large clusters based on the newest NVIDIA Hopper
GPUs, as NVIDIA is ramping up production.

6.1 Training Performance
MegaScale is built on top of Megatron-LM [7], which is a
state-of-the-art open-source LLM training framework that
integrates 3D parallelism techniques and takes advantage
of hardware resources. Our experiments use the Megatron-
LM (commit hash: 285068c8) on Github [21], committed on
January 11, 2023, chosen for its stability and feature set at the
commencement of our experiments. We use the same batch
size for Megatron-LM and MegaScale for fair comparison. We
use two model sizes: 175B parameters and 530B parameters.
We use interleaved pipeline-parallel schedule [22] with six
and three interleaving stages for the 175B and 530B models,
respectively. Sequence length is 2,048 and vocabulary size
is 64,000 for all the cases. Table 1 shows the details of the
model configuration.

Scalability. Figure 9 compares Megatron-LM and MegaScale
when training the 530B model, where we set the batch size as
the number of GPUs with adjusted learning rate to show the
MFU results. We see that the MFU of MegaScale is higher
than Megatron-LM by up to 6.1%. With increasing scales, the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 753

https://github.com/NVIDIA/Megatron-LM/commit/285068c8108e0e8e6538f54fe27c3ee86c5217a2

Batch Size Method GPUs Iteration Time (s)
Throughput
(tokens/s)

Training Time
(days) MFU

Aggregate
PFlops/s

768

Megatron-LM

256 40.0 39.3k 88.35 53.0% 43.3
512 21.2 74.1k 46.86 49.9% 77.6
768 15.2 103.8k 33.45 46.7% 111.9

1024 11.9 132.7k 26.17 44.7% 131.9

MegaScale

256 32.0 49.0k 70.86 65.3%(1.23×) 52.2
512 16.5 95.1k 36.51 63.5%(1.27×) 101.4
768 11.5 136.7k 25.40 61.3%(1.31×) 146.9

1024 8.9 176.9k 19.62 59.0%(1.32×) 188.5

6144

Megatron-LM

3072 29.02 433.6k 8.01 48.7% 466.8
6144 14.78 851.6k 4.08 47.8% 916.3
8192 12.24 1027.9k 3.38 43.3% 1106.7

12288 8.57 1466.8k 2.37 41.2% 1579.5

MegaScale

3072 23.66 531.9k 6.53 59.1%(1.21×) 566.5
6144 12.21 1030.9k 3.37 57.3%(1.19×) 1098.4
8192 9.56 1315.6k 2.64 54.9%(1.26×) 1400.6

12288 6.34 1984.0k 1.75 55.2%(1.34×) 2166.3

Table 2: Strong-scaling training performance for the 175B model. We set the batch size to 6144 when training with 3072 to 12288 GPUs. For
256 to 1024 GPUs, we decrease the batch size to 768 due to GPU memory limit. We report the training time required for training 300B tokens
here. The number in parentheses in the MFU column represents the speedup of MegaScale compared to Megatron-LM.

2240 4480 11200
#GPUs

40

50

60

70

M
FU

 (%
)

49.20 48.80 48.20

54.30 54.10 54.30

Megatron-LM MegaScale

Figure 9: Weak-scaling training performance of Megatron-LM and
MegaScale on the 530B model, where the batch size is scaled pro-
portionally with the number of GPUs.

MFU of Megatron-LM decreases by 1.6% with more strag-
glers and communication, while MegaScale has near-linear
scalability due to 3D-parallel communication overlapping.

In Table 2, we evaluate the strong-scaling training perfor-
mance of Megatron-LM and MegaScale on the 175B model by
increasing number of GPUs and maintaining a constant batch
size. This experimental setting is more realistic, given that
batch size is constrained by convergence effects and cannot
be indefinitely scaled with the number of GPUs. MegaScale
achieves up to 1.34× speedups over Megatron-LM across
all settings. With increasing GPUs, we observe the MFU
of MegaScale decreases from 59.1% to 55.2%. This is ex-
pected since the batch size is fixed and the computation-to-
communication ratio decreases with more GPUs. Even in the
largest scale with 12,288 GPUs, MegaScale still outperforms
Megatron-LM by 14% MFU. For the smaller scale training,
the speedup of MegaScale over the baseline ranges from
1.23× to 1.32×. Note that the difference in the maximum

number of GPUs between this and the previous experiments
(e.g., 12,288 vs. 11,200) is due to distinct 3D parallelism
configurations for 175B and 530B models.

Ablation study. We evaluate the effectiveness of our opti-
mization techniques of MegaScale. Table 3 shows the MFU
improvement breakdown with different optimizations when
training the 175B model on 256 GPUs. The baseline is the
original Megatron-LM and has 47.7% MFU. It is worth not-
ing that the networking optimizations are turned on for both
Megatron-LM and MegaScale in this evaluation. We first ap-
ply two algorithmic techniques, parallel transformer block
and sliding window attention, to Megatron-LM, achieving
5.6% MFU improvement. Communication is the major bot-
tleneck of large-scale LLM training, and the 3D parallel com-
munication overlapping of MegaScale hides the overhead and
accelerates training by 6.2% MFU. We further adopt efficient
operators and obtain 1.7% acceleration. Other optimizations
such as data pipeline optimizations and the problematic code
elimination mentioned in 6.3 further achieves 1.1% perfor-
mance gain. Finally, we scale the batch size from 256 to 768
with LAMB optimizer, which significantly extends the steady
phase in interleaved pipeline parallelism and achieves 3.0%
MFU improvement. To sum up, MegaScale outperforms the
baseline by 17.6% in the MFU number with all these opti-
mizations.

6.2 Model Convergence and Stability

Model convergence microbenchmarks. We first conduct
microbenchmark experiments to validate the algorithm tech-

754 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 20 40 60 80 100
consumed tokens (B)

2

4

6

8

10

lo
ss

Megatron-LM
MegaScale

(a) The training loss curve of MegaScale, which includes algorithm opti-
mizations, in comparison with Megatron-LM.

0 50 100 150 200 250
consumed tokens (B)

2

4

6

8

lo
ss

1x batch_size ADAM
4x batch_size LAMB

(b) The training loss curve of ADAM optimizer and LAMB optimizer with
four times of the batch size.

Figure 10: The training loss curves in microbenchmark experiments.

0.0 0.2 0.4 0.6 0.8 1.0
consumed tokens rate

0.2

0.4

0.6

0.8

lo
ss

Figure 11: The normalized training loss curve of a real production run on more than 10,000 GPUs for several weeks. This run trains a model
with hundreds of billions of parameters on multi-trillion tokens. Different colors indicate training restarts. MegaScale repairs and recovers the
training process for over 100 times in presence of failures.

Idx Method MFU (∆ MFU)
1 baseline 47.7%
2 (1) with PTB 52.3% (4.6%)
3 (2) with SWA 53.3% (5.6%)
4 (3) with TP overlap 55.5% (7.8%)
5 (4) with PP overlap 58.0% (10.3%)
6 (5) with DP overlap 59.5% (11.8%)
7 (6) with efficient operators 61.2% (13.5%)
8 (7) with misc optimizations 62.3% (14.6%)
9 (8) with LAMB (BS×3) 65.3% (17.6%)

Table 3: MFU improvement breakdown when training the 175B
model with 256 GPUs and batch size 256.

niques do not affect the model convergence. Due to the re-
source limit, the microbenchmarks are done on the 13B model.
As shown in Figure 10a, while MegaScale adopts algorithm
techniques, including parallel transformer block and sliding
window attention, it achieves comparable loss results with the
baseline when training with more than 100B tokens. We also
evaluate the effect of LAMB optimizer as depicted in Fig-
ure 10b, which shows that LAMB optimizer with four times
of batch size achieves the same loss as ADAM optimizer after

around 250B tokens. Based on these observations, we turn on
all the algorithmic optimizations in production training.

Model convergence and stability in real production LLM
training. We show the model convergence and stability from
a real production run. This run trains a proprietary model with
hundreds of billions of parameters on multi-trillion tokens.
This run uses more than 10,000 GPUs and lasts for several
weeks. Figure 11 shows the loss continues to converge, with
distinct colors indicating the training is restarted. Over the
several weeks of this run, we experience training restarts over
100 times. With the robust training framework, over 90%
of software and hardware faults are automatically identified
and fixed by the techniques detailed in §4. The rest of the
problems are handled with the help of the troubleshooting
tools described in §5.

6.3 Problems Discovered and Fixed
We conduct an analysis of the fault records for the afore-
mentioned production training job over several weeks. Our
findings indicate that over 90% of the exceptions among them
are automatically detected, located, and recovered using our
robust training framework, such as CUDA error and segmenta-
tion fault. The average time required for detecting failure and

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 755

0 5000 10000 15000 20000 25000 30000
step

0.0

0.2

0.4

0.6

M
FU

Figure 12: The MFU becomes stable after addressing the stragglers
and problematic code segments. Different colors represent different
training trials with the same setup.

executing diagnostic tests is less than 10 minutes. Moreover,
the system can catch up to the training progress prior to the
crash within 15 minutes from the latest checkpoints, maintain-
ing over 90% effective training time rate, which is calculated
as the number of iterations multiplied by the iteration training
time, divided by the total training time. Below we show our
experience in diagnosing and fixing some intriguing prob-
lems, which need to be analyzed using the troubleshooting
tools in §5.

Computational stragglers. Building upon our utilization of
CUDA event timers, we made another pertinent observation
across multiple experimental setups. We noted that specific
hosts took approximately 10% more time to execute the same
forward computations compared to other ranks. This consis-
tency across different experiments led us to conclude that the
issue was not with the software but rather inherent to certain
machines in the cluster. After isolating and removing these
problematic hosts from the cluster, we observed an approxi-
mate 0.7% improvement in MFU.

MFU decreasing. In such large-scale training experiments,
another phenomenon we observed is that training efficiency
did not remain consistent over time. Instead, as the training
progressed, the MFU of our training job gradually decreased.
Through a step-by-step analysis based on CUDA event timer
metrics, we noted several key findings. While the time con-
sumed per training step was increasing, the time spent on
forward, backward, and optimizer computations remained sta-
ble, irrespective of the increasing number of steps. This led us
to infer that the time increase must be attributed to the collec-
tive communication overhead. Upon a reverse chronological
examination, we identified the last collective communication
step as the gradient reduce-scatter in data parallelism. If this
step is delayed, the overall time per step elongates. Since we
observed network bandwidth to be largely stable, we ruled out
slowed communication speed as a factor for the increased time.
According to the synchronization characteristics of collective
communication, this leaves us with one conclusion: some
ranks initiate the reduce-scatter operation later than others,
forcing a wait for the slowest rank to catch up. In a scaled-
down experiment involving only two ranks per data parallel
group, we measured the launch times for reduce-scatter calls

and found them to not be consistently staggered but rather fluc-
tuating reciprocally. Furthermore, the size of this time stagger
increased as more steps were executed. Specifically, Rank A
may initially lag behind Rank B but might eventually surpass
Rank B in speed and by a growing margin. Ultimately, all
ranks waited for the slowest rank. To trace back the root cause
of this time skew, we located the variance to occur during
the forward computation stage. Digging deeper into the code,
we attributed this irregularity to fluctuations caused by some
code segments. For instance, irregular garbage collection can
introduce disturbances into the training procedure, and cer-
tain PyTorch operations can lead to performance fluctuations.
These operations are on the critical path but can be affected
along the training procedure. After modifying or removing
those problematic code segments, we no longer observed a
significant decline in MFU, as shown in Figure 12.

Frequent network interface flapping problem. We occa-
sionally encounter training stall or training speed drop prob-
lem due to frequent network interface flapping. When the
network interface flapping phenomena happens, the network
interface goes down at first then goes up again. The interval
between down and up time usually lasts for several seconds.
During the down process, all the packets in transmission will
be dropped. The first lesson we learn is the timeout threshold
should be set explicitly to a larger value , otherwise the default
value will make NCCL timeout very quickly and return a com-
pletion error before the network card up again. The second
lesson we learn is that the root cause of this problem is the
bad link quality between network card, AOC cable and switch.
The flapping frequency can be reduced to a satisfactory level
by doing lower level quality control over network card signal
strength, AOC cable quality and switch side signal strength.

7 Related Work

LLM training. A lot of efforts have been put to the train-
ing of pre-trained LLMs, including proprietary ones such as
GPT-3 [1], GPT-4 [23], GShard [24], PaLM [5], and many oth-
ers [25–29], as well as open-source alternatives like OPT [30],
BLOOM [31], Llama [32], Llama-2 [33]. Existing technical
reports in the field predominantly focus on model perfor-
mance comparisons, leaving out the specific details of the
system infrastructure that makes such training possible. This
paper fills this gap by sharing our experience of end-to-end
LLM pre-training at the scale of over 10,000 GPUs from a
systems perspective.

After pre-training, pre-trained base models can be further
fine-tuned to adapt to downstream tasks better. This has led to
the emergence of a range of dialogue models [34–37] exempli-
fied by ChatGPT. However, it is worth noting that the compu-
tational power and data requirements for fine-tuning are sub-
stantially lower than those for pre-training. With the applica-
tion of optimization techniques such as quantization [38–41]

756 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and low-rank adaptation [42], fine-tuning can be efficiently
accomplished with limited resources.

LLM optimizations. In addition to the techniques mentioned
previously in the paper, there exists a lot of other works tar-
geted at improving the efficiency of LLMs. Sparse or linear
attentions [43–45] are proposed to make the memory con-
sumption scales approximately linearly. Several studies aim
to design new architectures rather than conventional trans-
former architectures to address the efficiency issue, such
as RWKV [46] and RetNet [47]. Many recent studies have
been devoted to developing communication acceleration tech-
niques for LLMs. Some works reduce communication traffic
using gradient compression [48] or mixed-precision train-
ing [49], while others schedule communication to overlap it
with computation. Many popular ML frameworks, such as
TensorFlow [50] and PyTorch [51], enable overlapping com-
munication with backward propagation by default. Recent
works [52–55] further overlap gradient synchronization with
forward computation via tensor partitioning, at the cost of
extra overhead. Some works [56,57] introduce fixed staleness
to the training pipeline for full overlapping communication
and communication. However, the staleness may degrade the
model performance.

Diagnosis tools in datacenters. Many diagnosis tools have
been developed to identify and pinpoint hardware and soft-
ware problems in datacenters. Pingmesh [58] is an active
probing system based on end hosts. Network wide RTT and
packet loss and measured by sending probing ping packets
and doing data analysis. Network-wide SLAs are provided
and network problems including packet-blackhole and packet
silent drop are detected. EverFlow [59], LossRadar [60], Net-
Bouncer [61] exploits the capability of switches to diagnose
detailed network problems like network path failures or spe-
cific network port failures. NetBouncer leverages IP-in-IP
tunnel techniques to do path probing. EverFlow requires mir-
roring network packets to a centralized server to do debugging.
Hostping [62] is a diagnosis system based on end hosts that
focuses on intra-host bottlenecks. It actively senses complex
GPU server PCIe/NVLINK interconnects and does loopback
bandwidth and latency tests.

Fault tolerance in large-scale distributed systems. Fault
tolerance has been a major concern in large-scale distributed
systems, where a wide range of hardware and software fail-
ures can occur. Many fault tolerance techniques have been
proposed in the past that cater the needs of different systems
and deployment scenarios. Reactive fault tolerance techniques
are used to reduce the impact of failures on a system when
the failures occur. There are many techniques in this category
such as Retry [63], Replication [63], Checkpointing [64] and
Message Logging [65]. These techniques incur some system
overhead to recover from failures. Proactive fault tolerance
techniques keep healthy components in place as backups of
the faulty components, obviating the need of recovery from

faults and errors, e.g., preemptive migration [66–68] and load
balancing [69]. However, these approaches often assume that
failures are predictable, while it is challenging for real large-
scale distributed systems to predict the failures due to the
complexity of the systems.

8 Conclusion

In this paper, we offer an in-depth look at the design, imple-
mentation and deployment of MegaScale, a production-grade
system built to train LLMs at the scale of over 10,000 GPUs.
MegaScale exploits algorithm-system co-design to optimize
training efficiency. MegaScale achieves 55.2% MFU when
training a 175B LLM model on 12,288 GPUs, a 1.34× im-
provement over Megatron-LM. We emphasize the need for
fault tolerance throughout the training process and imple-
ment a tailored robust training framework to locate and fix
faults automatically. We provide a comprehensive set of mon-
itoring tools for deep observability into system components
and events, facilitating root cause identification for intricate
anomalies. We believe that our work not only offers practical
insights for those working on LLM training, but also paves
the way for future research in this rapidly evolving field.

Acknowledgments

We thank our shepherd Deepak Narayanan and the anony-
mous NSDI reviewers for their insightful and constructive
feedback. We thank Zhenyuan Yang and Wenjia Zhu for their
thorough feedback on earlier drafts of this manuscript. We
thank Zuquan Song, Gaohong Liu and the broader ByteDance
Applied Machine Learning team for their support throughout
this project.

References

[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, et al., “Language models are few-shot learn-
ers,” Advances in neural information processing systems,
vol. 33, pp. 1877–1901, 2020.

[2] “Introducing chatgpt.” https://openai.com/blog/
chatgpt, 2022.

[3] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown,
B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and
D. Amodei, “Scaling laws for neural language models,”
2020.

[4] L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope,
limits, and consequences,” Minds and Machines, vol. 30,
pp. 681–694, 2020.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 757

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

[5] A. Chowdhery, S. Narang, J. Devlin, M. Bosma,
G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sut-
ton, S. Gehrmann, et al., “Palm: Scaling language mod-
eling with pathways,” arXiv preprint arXiv:2204.02311,
2022.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[7] D. Narayanan, M. Shoeybi, J. Casper, P. LeGres-
ley, M. Patwary, V. A. Korthikanti, D. Vainbrand,
P. Kashinkunti, J. Bernauer, B. Catanzaro, A. Phan-
ishayee, and M. Zaharia, “Efficient large-scale language
model training on gpu clusters using megatron-lm,”
2021.

[8] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer:
The long-document transformer,” 2020.

[9] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojana-
palli, X. Song, J. Demmel, K. Keutzer, and C.-J. Hsieh,
“Large batch optimization for deep learning: Training
bert in 76 minutes,” in International Conference on
Learning Representations, 2020.

[10] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper,
and B. Catanzaro, “Megatron-lm: Training multi-billion
parameter language models using model parallelism,”
2020.

[11] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero:
Memory optimizations toward training trillion parame-
ter models.” ArXiv, May 2020.

[12] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen,
M. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu, et al.,
“GPipe: Efficient Training of Giant Neural Networks
using Pipeline Parallelism ,” in NeurIPS, 2019.

[13] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri,
N. R. Devanur, G. R. Ganger, P. B. Gibbons, and M. Za-
haria, “Pipedream: Generalized pipeline parallelism for
dnn training,” in ACM SOSP, 2019.

[14] B. Wang and A. Komatsuzaki, “GPT-J-6B: A 6 Billion
Parameter Autoregressive Language Model.” https://
github.com/kingoflolz/mesh-transformer-jax,
May 2021.

[15] Y. Zhao, A. Gu, R. Varma, L. Luo, C.-C. Huang,
M. Xu, L. Wright, H. Shojanazeri, M. Ott, S. Shleifer,
A. Desmaison, C. Balioglu, P. Damania, B. Nguyen,
G. Chauhan, Y. Hao, A. Mathews, and S. Li, “Pytorch
fsdp: Experiences on scaling fully sharded data parallel,”
2023.

[16] T. Dao, “Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning,” arXiv preprint
arXiv:2307.08691, 2023.

[17] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis,
T. Li, A. Paszke, J. Smith, B. Vaughan, P. Damania, and
S. Chintala, “Pytorch distributed: Experiences on accel-
erating data parallel training,” 2020.

[18] I. Group, “Ieee 802.1 qbb - priority-based flow control.”
https://1.ieee802.org/dcb/802-1qbb/, 2009.

[19] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,
Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and
M. Zhang, “Congestion Control for Large-scale RDMA
Deployments,” ACM SIGCOMM Computer Communi-
cation Review, vol. 45, no. 4, pp. 523–536, 2015.

[20] G. Kumar, N. Dukkipati, K. Jang, H. M. Wassel, X. Wu,
B. Montazeri, Y. Wang, K. Springborn, C. Alfeld,
M. Ryan, et al., “Swift: Delay is Simple and Effective for
Congestion Control in the Datacenter,” in SIGCOMM,
pp. 514–528, 2020.

[21] “Megatron-LM.” https://github.com/NVIDIA/
Megatron-LM/tree/main, 2021.

[22] V. A. Korthikanti, J. Casper, S. Lym, L. McAfee, M. An-
dersch, M. Shoeybi, and B. Catanzaro, “Reducing acti-
vation recomputation in large transformer models,” Pro-
ceedings of Machine Learning and Systems, vol. 5, 2023.

[23] OpenAI, “Gpt-4 technical report,” 2023.

[24] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang,
M. Krikun, N. Shazeer, and Z. Chen, “Gshard: Scaling
giant models with conditional computation and auto-
matic sharding,” 2020.

[25] A. Askell, Y. Bai, A. Chen, D. Drain, D. Ganguli,
T. Henighan, A. Jones, N. Joseph, B. Mann, N. Das-
Sarma, N. Elhage, Z. Hatfield-Dodds, D. Hernan-
dez, J. Kernion, K. Ndousse, C. Olsson, D. Amodei,
T. Brown, J. Clark, S. McCandlish, C. Olah, and J. Ka-
plan, “A general language assistant as a laboratory for
alignment,” 2021.

[26] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu,
B. Lester, N. Du, A. M. Dai, and Q. V. Le, “Finetuned
language models are zero-shot learners,” 2022.

[27] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajb-
handari, J. Casper, Z. Liu, S. Prabhumoye, G. Zerveas,
V. Korthikanti, E. Zhang, R. Child, R. Y. Aminabadi,
J. Bernauer, X. Song, M. Shoeybi, Y. He, M. Houston,
S. Tiwary, and B. Catanzaro, “Using deepspeed and
megatron to train megatron-turing nlg 530b, a large-
scale generative language model,” 2022.

758 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://1.ieee802.org/dcb/802-1qbb/
https://github.com/NVIDIA/Megatron-LM/tree/main
https://github.com/NVIDIA/Megatron-LM/tree/main

[28] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya,
T. Cai, E. Rutherford, D. de Las Casas, L. A. Hendricks,
J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Milli-
can, G. van den Driessche, B. Damoc, A. Guy, S. Osin-
dero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals,
and L. Sifre, “Training compute-optimal large language
models,” 2022.

[29] H. Su, X. Zhou, H. Yu, X. Shen, Y. Chen, Z. Zhu, Y. Yu,
and J. Zhou, “Welm: A well-read pre-trained language
model for chinese,” 2023.

[30] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen,
S. ChenG, C. Dewan, M. Diab, X. Li, X. V. Lin, T. Mi-
haylov, M. Ott, S. Shleifer, K. Shuster, D. Simig, P. S.
Koura, A. Sridhar, T. Wang, and L. Zettlemoyer, “Opt:
Open pre-trained transformer language models,” 2022.

[31] T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilić, D. Hess-
low, R. Castagné, A. S. Luccioni, F. Yvon, M. Gallé,
et al., “Bloom: A 176b-parameter open-access multilin-
gual language model,” arXiv preprint arXiv:2211.05100,
2022.

[32] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A.
Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro,
F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lam-
ple, “Llama: Open and efficient foundation language
models,” 2023.

[33] H. Touvron, L. Martin, K. Stone, P. Albert, A. Alma-
hairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava,
S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen,
G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu,
B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn,
S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez,
M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-
A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu,
Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog,
Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi,
A. Schelten, R. Silva, E. M. Smith, R. Subramanian,
X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan,
P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur,
S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and
T. Scialom, “Llama 2: Open foundation and fine-tuned
chat models,” 2023.

[34] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li,
C. Guestrin, P. Liang, and T. B. Hashimoto, “Stanford al-
paca: An instruction-following llama model.” https://
github.com/tatsu-lab/stanford_alpaca, 2023.

[35] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang,
L. Zheng, S. Zhuang, Y. Zhuang, J. E. Gonzalez, I. Sto-
ica, and E. P. Xing, “Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality,” 2023.

[36] X. Geng, A. Gudibande, H. Liu, E. Wallace, P. Abbeel,
S. Levine, and D. Song, “Koala: A dialogue model for
academic research.” Blog post, April 2023.

[37] Y. Ji, Y. Deng, Y. Gong, Y. Peng, Q. Niu, B. Ma, and
X. Li, “Belle: Be everyone’s large language model
engine.” https://github.com/LianjiaTech/BELLE,
2023.

[38] Z. Li, E. Wallace, S. Shen, K. Lin, K. Keutzer, D. Klein,
and J. Gonzalez, “Train big, then compress: Rethink-
ing model size for efficient training and inference of
transformers,” in International Conference on Machine
Learning (ICML), 2020.

[39] G. Xiao, J. Lin, M. Seznec, J. Demouth, and S. Han,
“Smoothquant: Accurate and efficient post-training quan-
tization for large language models,” arXiv, 2022.

[40] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh,
“Gptq: Accurate post-training quantization for generative
pre-trained transformers,” arXiv, 2022.

[41] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer,
“Llm. int8 (): 8-bit matrix multiplication for transformers
at scale,” arXiv, 2022.

[42] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang,
L. Wang, and W. Chen, “Lora: Low-rank adaptation of
large language models,” 2021.

[43] R. Child, S. Gray, A. Radford, and I. Sutskever, “Gener-
ating long sequences with sparse transformers,” 2019.

[44] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret,
“Transformers are rnns: Fast autoregressive transformers
with linear attention,” 2020.

[45] C. Zhu, W. Ping, C. Xiao, M. Shoeybi, T. Goldstein,
A. Anandkumar, and B. Catanzaro, “Long-short trans-
former: Efficient transformers for language and vision,”
2021.

[46] B. Peng, E. Alcaide, Q. Anthony, A. Albalak, S. Arcad-
inho, H. Cao, X. Cheng, M. Chung, M. Grella, K. K. GV,
X. He, H. Hou, P. Kazienko, J. Kocon, J. Kong, B. Kop-
tyra, H. Lau, K. S. I. Mantri, F. Mom, A. Saito, X. Tang,
B. Wang, J. S. Wind, S. Wozniak, R. Zhang, Z. Zhang,
Q. Zhao, P. Zhou, J. Zhu, and R.-J. Zhu, “Rwkv: Rein-
venting rnns for the transformer era,” 2023.

[47] Y. Sun, L. Dong, S. Huang, S. Ma, Y. Xia, J. Xue,
J. Wang, and F. Wei, “Retentive network: A successor
to transformer for large language models,” 2023.

[48] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vo-
jnovic, “QSGD: Communication-Efficient SGD via Gra-
dient Quantization and Encoding,” in NeurIPS, 2017.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 759

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/LianjiaTech/BELLE

[49] P. Micikevicius, S. Narang, J. Alben, G. F. Di-
amos, E. Elsen, D. García, B. Ginsburg, M. Houston,
O. Kuchaiev, G. Venkatesh, and H. Wu, “Mixed Preci-
sion Training,” in ICLR, 2018.

[50] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
et al., “Tensorflow: A system for large-scale machine
learning,” in OSDI, 2016.

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al., “PyTorch: An Imperative Style, High-
Performance Deep Learning Library ,” in NeurIPS,
2019.

[52] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and
G. Pekhimenko, “Priority-based Parameter Propagation
for Distributed DNN Training ,” in MLSys, 2019.

[53] S. H. Hashemi, S. Abdu Jyothi, and R. Campbell, “Tic-
Tac: Accelerating Distributed Deep Learning with Com-
munication Scheduling,” in MLSys, 2019.

[54] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu,
and C. Guo, “A generic communication scheduler for
distributed DNN training acceleration,” in SOSP, 2019.

[55] Y. Bao, Y. Peng, Y. Chen, and C. Wu, “Preemptive
All-reduce Scheduling for Expediting Distributed DNN
Training,” in INFOCOM, 2020.

[56] Y. Li, M. Yu, S. Li, S. Avestimehr, N. S. Kim, and
A. Schwing, “Pipe-SGD: A Decentralized Pipelined
SGD Framework for Distributed Deep Net Training,”
in NeurIPS, 2018.

[57] Y. Chen, C. Xie, M. Ma, J. Gu, Y. Peng, H. Lin, C. Wu,
and Y. Zhu, “Sapipe: Staleness-aware pipeline for data
parallel dnn training,” Advances in Neural Information
Processing Systems, vol. 35, pp. 17981–17993, 2022.

[58] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz,
Z. Liu, V. Wang, B. Pang, H. Chen, Z.-W. Lin, and
V. Kurien, “Pingmesh: A large-scale system for data
center network latency measurement and analysis,” SIG-
COMM Comput. Commun. Rev., vol. 45, p. 139–152,
aug 2015.

[59] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Ma-
hajan, D. Maltz, L. Yuan, M. Zhang, B. Y. Zhao, and
H. Zheng, “Packet-level telemetry in large datacenter
networks,” SIGCOMM Comput. Commun. Rev., vol. 45,
p. 479–491, aug 2015.

[60] Y. Li, R. Miao, C. Kim, and M. Yu, “Lossradar: Fast
detection of lost packets in data center networks,” in
Proceedings of the 12th International on Conference

on Emerging Networking EXperiments and Technolo-
gies, CoNEXT ’16, (New York, NY, USA), p. 481–495,
Association for Computing Machinery, 2016.

[61] C. Tan, Z. Jin, C. Guo, T. Zhang, H. Wu, K. Deng, D. Bi,
and D. Xiang, “Netbouncer: Active device and link fail-
ure localization in data center networks,” in Proceed-
ings of the 16th USENIX Conference on Networked
Systems Design and Implementation, NSDI’19, (USA),
p. 599–613, USENIX Association, 2019.

[62] K. Liu, Z. Jiang, J. Zhang, H. Wei, X. Zhong, L. Tan,
T. Pan, and T. Huang, “Hostping: Diagnosing intra-
host network bottlenecks in RDMA servers,” in 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), (Boston, MA), pp. 15–29,
USENIX Association, April 2023.

[63] S. Haider, N. R. Ansari, M. Akbar, and M. R. Perwez,
“Fault tolerance in distributed paradigms,” 2011.

[64] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus:
an efficient dynamic resource scheduler for deep learn-
ing clusters,” in Proceedings of the Thirteenth EuroSys
Conference, pp. 1–14, 2018.

[65] A. S. Tanenbaum, Distributed systems principles and
paradigms. 2007.

[66] S. Chakravorty, C. L. Mendes, and L. V. Kalé, “Proactive
fault tolerance in mpi applications via task migration,”
in International Conference on High-Performance Com-
puting, pp. 485–496, Springer, 2006.

[67] S. Chakravorty, C. Mendes, and L. V. Kale, “Proactive
fault tolerance in large systems,” in HPCRI Workshop
in conjunction with HPCA, vol. 2005, pp. 1–7, Citeseer,
2005.

[68] Y. Chen, Y. Peng, Y. Bao, C. Wu, Y. Zhu, and C. Guo,
“Elastic parameter server load distribution in deep learn-
ing clusters,” in Proceedings of the 11th ACM Sympo-
sium on Cloud Computing, pp. 507–521, 2020.

[69] I. Behera and C. R. Tripathy, “Performance modelling
and analysis of mobile grid computing systems,” Inter-
national Journal of Grid and Utility Computing, vol. 5,
no. 1, pp. 11–20, 2014.

760 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Resiliency at Scale: Managing Google’s TPUv4 Machine Learning Supercomputer

Yazhou Zu, Alireza Ghaffarkhah, Hoang-Vu Dang, Brian Towles, Steven Hand, Safeen Huda,
Adekunle Bello, Alexander Kolbasov, Arash Rezaei, Dayou Du, Steve Lacy, Hang Wang,

Aaron Wisner, Chris Lewis, Henri Bahini
Google

tpuv4-nsdi-paper@google.com

Abstract
TPUv4 (Tensor Processing Unit) is Google’s 3rd genera-

tion accelerator for machine learning training, deployed as
a 4096-node supercomputer with a custom 3D torus inter-
connect. In this paper, we describe our experience designing
and operating the software infrastructure that allows TPUv4
supercomputers to operate at scale, including features for
automatic fault resiliency and hardware recovery. We adopt
a software-defined networking (SDN) approach to manage
TPUv4’s high-bandwidth inter-chip interconnect (ICI) fab-
ric, using optical circuit switching to dynamically configure
routes to work around machine, chip and link failures. Our
infrastructure detects failures and automatically triggers re-
configuration to minimize disruption to running workloads,
as well as initiating remediation and repair workflows for
the affected components. Similar techniques interface with
maintenance and upgrade workflows for both hardware and
software. Our dynamic reconfiguration approach allows our
TPUv4 supercomputers to achieve 99.98% system availability,
gracefully handling hardware outages experienced by ~1% of
the training jobs.

1 Introduction

Machine Learning (ML) models continue to grow in size and
complexity [9, 24], enabled by the massive compute capabil-
ity of heterogeneous supercomputers, where CPUs handle
runtime task coordination and I/O, and accelerators such as
TPUs [18–20] and GPUs deliver the computational perfor-
mance needed for model training. Scaling up a supercom-
puter’s node count enables more capable models because
the training process can be effectively parallelized along the
batch, tensor, and pipeline dimensions [17, 33].

The hardware/software ecosystem of ML supercomputers
faces two challenges at scale: first, effectively parallelizing
model training workloads, and secondly – and the focus of this
paper – maintaining high availability of compute resources
and consequently high goodput for ML training jobs. The lat-
ter has become increasingly difficult in recent years because:

• unlike loosely-coupled distributed applications such as
Map-Reduce [12] that can effectively tolerate dynam-
ically varying resource allocation, ML training jobs
more often use static (compile-time) sharding strategies
and gang scheduled execution, requiring all compute
resources to be healthy simultaneously;

• modern ML models such as Large Language Models
(LLMs) need an unprecedented amount of hardware
(conventional compute, accelerators, networking and
storage) [2], dropping the expected MTBF to hours or
even minutes [15];

• in a cloud or shared cluster environment, many users
contend for different subsets of supercomputer resources,
making it essential to be able to reconfigure or rebalance
resource allocations over time.

Google’s TPUv4 machine learning supercomputing infras-
tructure is designed to meet these challenges. It comprises the
following hardware and software components:

• A number of cubes: a cube is a hardware unit with 64
TPU chips arranged in a 4x4x4 3D mesh; each super-
computer or pod has 64 cubes, for a total of 4096 TPUs.

• A proprietary inter-chip interconnect (ICI): this is a
high-speed network fabric that directly interconnects
TPUs to allow direct device-to-device communication
(i.e. RDMA) without involving the CPUs.

• Optical circuit switches (OCSes) [25]: these are used
to dynamically cross-connect (xconnect) the ICI from
different cubes to form the user-requested torus topology.

• Borg [31]: a cluster management service that admits,
schedules and manages TPUv4 jobs (and others).

• Pod Manager: a cluster-level software service that man-
ages multi-cube connectivity by actuating OCS xconnect
setup in response to Borg scheduling decisions.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 761

Figure 1: Availability of jobs size improves at scale with
TPUv’4 cube configurability and fault-tolerant ICI routing.

• libtpunet: a software library that sets up the requested
ICI network topology for each TPUv4 user job.

• healthd: a software daemon running on each host in a
pod that continuously monitors machine hardware health
and reports back to cluster-level software systems.

In TPUv4 pods, hardware and software are co-designed.
Hardware provides a configurable compute substrate (the
4x4x4 cubes) with a programmable ICI protocol stack im-
plemented by the OCS switches and on-chip ICI switches.
Software dynamically manages the hardware by configur-
ing the OCSes to combine multiple cubes into larger slices
of the pod, and by programming the ICI routing policy via
libtpunet. Connectivity is reconfigured according to the
user-requested torus topology as Borg schedules jobs onto the
various cubes. The Pod Manager mediates reconfiguration,
and monitors ICI- and OCS-related health, excluding cubes
from the resource pool as soon as faults are discovered.

In this paper, we describe how we make our TPUv4 su-
percomputers automatically resilient to faults at scale. More
specifically, we:

– explain the TPUv4 supercomputer’s configurable system
architecture based on a programmable ICI protocol with
OCS and ICI switches, optimizing for system availability
and resiliency at scale;

– describe the software infrastructure that schedules, con-
figures, and optimizes TPUv4 resources, focusing on our
design principles of configurability and modularity;

– outline our optimized strategy for accelerator-side multi-
hop RDMA routing for resilient collective operations
over regular and twisted torus topologies; and

– report on our experiences to date in operating TPUv4
supercomputers in production.

Figure 2: Static pods face resource fragmentation problems.

2 The Reconfigurable ML Supercomputer
System Architecture

The TPUv4 reconfigurable supercomputer is designed for
scalability, availability, resiliency, and cost [18]. At its core
is a reconfigurable ICI fabric topology that connects differ-
ent TPUv4 chips, backed by a set of programmable OCSes
for each pod. Without TPUv4’s OCS-based reconfigurability,
job availability quickly drops as compute resource scales up.
Figure 1 shows this effect with measured data from deployed
TPUv3 static pods and TPUv4 reconfigurable pods.

For a conventional supercomputer like TPUv3 [19] where
compute resources are statically interconnected, the overall
availability of a job drops precipitously as the required amount
of compute resources increases to 1024 chips. This is be-
cause in a static pod, all resources in a contiguous set of
nodes must be simultaneously healthy to be assigned to a
user, which becomes combinatorially less likely as the system
scales. With TPUv4’s cube-level configurability, availability
stays high through about 94%, corresponding to ~50 cubes or
3200 TPUv4 chips.

The decreasing availability beyond this point is because of
occasional machine and ICI link faults that can occur between
different cubes. As we will show in Section 4, tolerating occa-
sional OCS failures or maintenance events with fault-tolerant
routing further increases availability to 99.98% because cubes
are still accessible to users even in these rare events.

2.1 Lessons from Static Pod Architectures
Before the TPUv4 ML supercomputer, the state of the art
was the TPUv2 and TPUv3 static pods [19] – ‘static’ because
they feature a non-reconfigurable fixed ICI mesh. A TPUv2
pod has 256 TPUs connected in a 16x16 ICI torus, while
TPVv3 had 1024 TPUs connected with a 32x32 torus. There
is also a scale-up variant of TPUv3 that combines 4 pods
into a 128x32 mesh with limited ICI routing capability. This
so-called multipod version was co-designed with application
collective patterns and used to explore scaling strategies for
large models [21].

Figures 1 and 2 illustrate the availability challenges as
the model size scales in a static pod. To train a model, all
TPU processes must be simultaneously up to synchronously
update their weights via ICI collectives. A single failed, or
interrupted process will interrupt the whole training process.

762 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Finding the appropriate compute resources for a user’s job
faces the following challenges:

1. Hardware outages: regular scheduled maintenance of
hardware, firmware, and software at the ICI link, TPU
chip and CPU host level can remove resources from
the schedulable pool [22]. For a supercomputer with
thousands of TPUs, an event affecting any one compo-
nent occurs relatively frequently, making it difficult to
find usable sets of resources. Furthermore, unexpected
faults occur more frequently as systems and applications
increase in both size and complexity. Without recon-
figurability, obtaining decent availability for a job that
requires 1024 hosts means that each individual host must
sustain 99.9% availability; introducing reconfigurable
OCS drops the host availability requirement to 99%.

2. Workload defragmentation: it is common for many jobs
to contend for different subsets of a pod’s schedulable
resources. Since these jobs come and go at unpredictable
times, sometimes Borg must move (preempt) smaller
jobs to free up contiguous TPUs for pending larger train-
ing jobs. The scheduling complexity worsens with a
mixture of user priorities. With OCS-based reconfigura-
bility, Borg does not need to worry as much about the
physical contiguity of TPU resources. Instead, any set
of vacant cubes can be cross connected via the OCS for
use by a user’s job.

3. Deployment lead time: a static pod is not usable until all
hardware is installed due to the tightly coupled nature
of compute and network resources. With reconfigurable
pods, once the OCS footprint is installed, cubes can be
deployed and used as soon as they land.

The above challenges challenges motivated us to rethink
things for the TPUv4 pod architecture.

2.2 TPUv4: OCS-based Reconfigurability
TPUv4 adopts a reconfigurable architecture which makes
use of the Palomar Optical Circuit Switch (OCS) [25] to
address the problems with static systems. By adopting this
architecture, we have been able to effectively scale to 4096
TPU nodes, and to support a per-job choice of either 3D torus
or 3D twisted-torus [7] topology.

The OCS is a dynamically configurable N×N switch based
on an array of micro-electromechanical systems (MEMS)
mirrors that can switch in milliseconds. Each OCS allows
programmable cross-connect creation (xconnect) between
any pair of ports on the (logical) north side of the switch to
the (logical) south side. Once a connection between an Ni to
S j port is made, a dedicated ICI link connection is established
such that optical signal from Ni can only be routed to S j and
vice versa, until these ports are reconfigured in some different
permutation.

Figure 3: A 4x4x4 cube consists of 16 TPUv4 machines, each
of which organizes 4 TPUs in a 2x2x1 mesh. The TPUs in a
cube are interconnected over ICIs along X /Y /Z dimensions,
with 16 optical links per cube face for OCS xconnect.

TPUv4 compute resources are organized at the granularity
of multi-machine cubes. Each individual TPU machine has a
CPU tray and a TPU tray, linked over PCIe. Each TPU tray
has 4 TPUv4 chips arranged in a 2x2x1 ICI mesh; 16 TPU
machines are grouped together as one datacenter rack; and
the ICI links within the rack are interconnected over ICI to
form a 4x4x4 mesh. This ensemble is a cube.

The optical switches interconnect multiple cubes to form
larger ICI topology shapes with one or more cubes in each
of the three dimensions. Each 3D cube exposes 16 ICIs on
each face of the X /Y /Z dimension to the optical switches,
totaling 96 ICIs per cube. A TPUv4 supercomputer consists
of 64 cubes, with a total of 6144 optical ICI links connected
to 48 distinct optical circuit switches. The lower-bandwidth
CPU-side datacenter network is managed separately [25, 29].

TPUv4’s OCS configurability greatly improves availability.
Training jobs can use any cubes even if they are not phys-
ically contiguous, which mitigates resource fragmentation
from competing jobs. Hardware failures remove the affected
cube(s) from the resource pool but allow continued operation
using healthy cubes. The 16-machine granularity for fault-
tolerance was chosen to balance convenience (per rack de-
ployment, power and networking) while retaining a relatively
small blast radius in case of failure.

Reconfigurability is managed by the accompanying soft-
ware infrastructure. Each job launch induces the software to
establish a unique OCS xconnect depending on the required
topology and cube selection. The large number of chips, links,
and switches also requires automatic fault diagnosis, recovery,
job rescheduling, and fault-tolerant ICI routing.

Using OCS scales TPUv4 pod with low cost: the OCS and
optical fiber costs are < 5% of a TPUv4 pod’s total capital
cost, and their operating power is < 3% of a pod’s total power.
The capital and operating cost of TPUv4 OCS supercomputer
is considerably lower than the alternative of scaling with
packet switches such as Infiniband [18].

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 763

Figure 4: TPUv4’s ICI switch implements layered, pro-
grammable ICI protocol.

2.3 Programmable ICI Protocol
TPUv4’s ICI protocol is designed to be programmable so that
software can tackle the operational complexity of reconfigura-
bility and resilience. A TPUv4 pod is one ICI domain, where
any pair of TPUs can RDMA to each other. Each ICI link
can carry 50GBps uni-directional bandwidth. TPUv4 adopts a
3D ICI network topology for high bisection throughput, large
system scale and low latency while maintaining low cost and
supporting workload parallelization via collectives.

As shown in Figure 4, each TPUv4 chip has some compute,
some high-bandwidth memory and an ICI switch that imple-
ments various ICI protocol layers. The ICI protocol facilitates
per-job network partitioning, where connectivity, addressing,
routing, and flow control are set up for each job, and where
user sessions do not cross job boundaries. In this way, each
job has exclusive ownership of all the links it uses, increas-
ing security and removing additional system complexity for
network sharing and congestion control. Table 1 shows the
protocol layers and their corresponding software agents. From
the bottom up, these are:

• Physical Layer: the SERDES, PCS, and link auto-
establishment modules build a high-speed link, despite
the inevitable presence of transmission errors. The Pod
Manager controls xconnect of a physical channel by ro-
tating OCS MEMS mirrors, and an on-chip manager au-
tomatically initializes and configures the physical links.
The healthd daemon running in every TPU machine’s

Layer Functionality S/W Agent ISA
Visible?

Transaction RDMA XLA yes
Routing packet forwarding libtpunet hint

Data
link enable, flow control,

retry, ordered delivery
libtpunet
healthd

no

Physical
link xconnect
port training

pod mgr,
chip mgr,
healthd

no

Table 1: ICI protocol layers.

Linux system container continuously reads link quality
and connectivity signals to track hardware health.

• Reliable Data Layer: Packets are delivered in-order
with automatic retransmit when data is lost at the physi-
cal layer, thus hiding the unreliable characteristics of the
physical layer. Link-level, credit-based flow control is
enforced. An enabled data layer signifies a ready-to-use
ICI user session; prior to becoming ready, the system
clears all data buffers to ensure we eliminate any archi-
tectural state pollution from prior ICI sessions. If one
end of an enabled data layer is down, we automatically
bring down the other end of the link to ensure a func-
tional session. The libtpunet issues session start/stop
commands, and adjusts optimal flow control buffer sizes.
The privileged healthd machine daemon can explicitly
disable a data layer link, forbidding its usage by any user
session, in the case of an online link recovery (§3.6.3).

• Routing Layer: Packet forwarding tables are pro-
grammed by libtpunet with global load balancing.
Each packet in a RDMA instruction goes from a source
to destination TPU, indexing into the forwarding tables
in each chip by the destination chip ID. The detailed
routing policies are hidden from the ISA abstraction,
although the libtpunet library can provide hints to the
compiler to help guide program optimization.

• Transaction Layer: Compiler-generated RDMA in-
structions initiate hardware-mediated transfers which
read data from memory and feed it to the ICI switch.
A transaction spanning a group of individual RDMAs
forms a collective communication operation.

Using a software-programmable ICI protocol stack allows
us to flexibly cope with the complexity of a resilient 4096-
node supercomputer, while allowing hardware to deal with
real-time control of the links and offer high-bandwidth low-
latency data transmission.

3 Automating Supercomputer Management

In the following we provide an overview of the end-to-end
software infrastructure that we use to launch TPUv4 ML

764 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5: A TPUv4 job’s life-cycle: the Pod Manager cooperates with the Borg scheduler to ask OCS to xconnect cubes, after
which healthd preflight runs and libtpunet sets up the ICI network. XLA compiles programs with a distributed shared-memory
system abstraction. In case a failure is detected, running jobs can be automatically interrupted and rescheduled.

training jobs, and to subsequently monitor and manage their
life-cycle (see also Figure 5 for a summary).

3.1 Overview

When a user wishes to launch a large job1 on a TPUv4 super-
computer, they specify their desired 3D slice topology in the
form (4x,4y,4z), along with other metadata. The Borg cluster
scheduler [31] receives all such requests and queues them
pending resource assignment. Once a job becomes eligible
for scheduling, Borg will select a prospective set of cubes and
then publish a xconnect request.

The Pod Manager periodically polls Borg to learn about
any pending xconnect requests. For each one, it instructs the
pertinent OCS switches to rotate their MEMS mirrors to es-
tablish the optical ICI physical channels. Assuming all OCS
xconnects complete correctly, the Pod Manager sends a con-
firmation to Borg.

With Pod Manager’s approval, Borg then dispatches the
job binaries to the selected set of TPU machines. A preflight
health check is first run to guarantee full hardware health for
each TPU machine (any failures lead to Borg rescheduling
onto different cubes). Following this, the ICI network is set
up by libtpunet (i.e. validating the physical and link layers,
and programming forwarding tables).

The XLA TPU compiler [3] takes the slice topology ab-
straction built by libtpunet and generates auto-parallelized
TPU programs for distributed training. On each machine, the
compiled TPU binary will be sent over PCIe to the TPU after
which it can be executed. The above workflow is common to

1We also support smaller (sub-cube) jobs. In these cases no OCS configu-
ration is required, but the rest of the workflow is similar.

all ML frameworks, including TensorFlow [4], Jax [1] and
Pathways [5].

During training, fleet maintenance services continuously
monitor the hardware and software health of all the TPU
machines. Any detected abnormality triggers a notification
to Borg, which in turns notifies any affected running jobs so
they can write an up-to-date model checkpoint (if possible).
Once a job is rescheduled, it resumes from the latest model
checkpoint. The faulty hardware is identified and sent to a
repair workflow for diagnosis and repair.

The following sections describe this software infrastructure
in some more detail.

3.2 Supercomputer Modeling

The foundation of the supercomputer software stack is a dat-
acenter model [23] that reflects the TPUv4 machines and
all related components. The model is stored in a dedicated
database whose schema allows us to represent a graph of
entities including racks, switches, RPC endpoints, and oth-
ers. To support TPUv4 supercomputers some key entities are
the TPUv4 cubes (i.e. the 16 machines with their trays and
chips and static ICI inter-connection topology) as well as the
ICI cabling from cubes to OCS along with additonal optics
metadata. Once constructed, the model sets up the intent for
cube deployment, job scheduling, OCS xconnect, network
setup, and health checks. The model is consumed by both
Borg and Pod Manager to serve as the source of truth for a
each particular supercomputer configuration.

TPUv4 topologies are statically modelled up to cube size,
as larger shapes require dynamic cube xconnect. For example,
a single machine is a 2x2x1, two adjacent machines can be
combined to form a 2x2x2, and so on up to 4x4x4.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 765

3.3 Cluster Scheduling

The Borg cluster scheduler [31] is responsible for assigning
appropriate machines to each TPUv4 job. There are many
Borg cells in Google’s worldwide datacenters, and each cell
may include several TPUv4 supercomputers. Each cell is
managed by N replicated Borg service instances which, in
combination, provide one logical Borg instance we call Borg
Prime which includes a cluster scheduler.

The cluster scheduler combines the intended configuration
(from the datacenter model) with its current view of the world
to organize all of the TPUv4 resources it is responsible for
into schedulable machine groups. Users generally select a cell
in which launch their jobs, and indicate which 3D topology
to use to train their model. Borg matches each user request
to a set of feasible (usable) machines and creates a proposed
assignment. In the case of multi-cube jobs, Borg publishes
the proposed set of cubes to the Pod Manager and waits for it
to signal xconnect success before proceeding.

Each TPU machine runs a borglet daemon that cooperates
with Borg Prime to handle job life-cycle management. After
Pod Manager approval, Borg Prime instructs each borglet
in the assigned cubes to create a task container with the ma-
chine’s TPUv4 devices2 exposed in the task’s container. The
borglet then launches a sequence of binaries in the container,
starting with the pre-flight check and finishing with the user
binary.

Borg Prime and borglet combine to manage the response
to events such as planned maintenance (e.g. firmware or soft-
ware upgrades) or unexpected hardware faults. These events
are aggregated from different sources, e.g. borglet is notified
about critical local machine faults by the healthd daemon,
and passes the details up to Borg Prime; the Pod Manager
similarly forwards details about any critical OCS problems.
Borg Prime also receives notification about less critical events
from the Repair Automation System and the software Pack-
age Manager. In all cases, affected TPU machines are marked
as unavailable, evicting any running jobs with notice, and ex-
cluding pending jobs from landing on them until things have
been resolved.

Borg Prime implements priority scheduling (for higher
and lower priority jobs). To help with fragmentation, Borg
Prime can also choose to preempt a running workload (e.g. to
relocate multiple sub-cube jobs to fit into a smaller number
of cubes, or to move multi-cube workloads to a different pod
so as to accommodate very large jobs). This happens in a
controlled fashion, ensuring that jobs are minimally and fairly
impacted.

2Very small jobs may use just a single TPU. In such cases, borglet will
restrict container access to one device, and disable on-host ICI links.

Figure 6: Each of the 64 cubes contributes two optical ICI
links from two opposite sides of a ring to each of the 48
OCSes. 16 OCSes are needed for each dimension.

3.4 Pod Manager

Pod Manager is a highly available service critical to a TPUv4
system. It runs on dedicated network control servers that are
independent of Borg, and interacts with clients such as Borg
and OCS switches over the Google control plane network.
The Pod Manager has two main functions: creating OCS
xconnects to configure the user-requested TPU topology, and
real-time monitoring of pod health .

The Pod Manager relies exclusively on model data (§3.2) to
configure its services. It periodically polls the network model
service for the latest information about the specific TPUv4s
that it is serving, such as OCS endpoints and machines that
are planned to be deployed. The OCS xconnect plan and
continuous health check for every job is derived from the
model. Using a model-driven Pod Manager design allows
gradual deployment of a full TPUv4 supercomputer while
having a subset of cubes available to customers early on.

The Pod Manager is replicated for high availability: a pri-
mary instance serves outside requests, while the remaining
instances operate in hot stand-by mode so that one can quickly
be elected primary if necessary. Our stand-by scheme relies
on each follower continuously receiving copies of the check-
points (also persisted externally), meaning fail-over is gen-
erally very fast. We rely on this for non-disruptive software
upgrades and to tolerate hardware and software crashes.

The Pod Manager also serves as a central hub for a TPUv4
supercomputer’s health monitoring. The service periodically
checks the hardware health of all the optical switches by
querying the OCS hardware over RPC. This telemetry is
exported to Google’s fleet-wide health management system
(§3.6) and also used in real-time to guide fault-tolerant ICI
routing optimizations (§4.2).

766 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7: xconnect of an 8-cube 8x8x8 torus. Each OCS needs
to pair 16 north/south OCS ports. Cube faces with the same
color are interconnected to form multi-cube torus topologies.

3.4.1 Torus xconnect

Each 3D cube exposes 16 optical ICIs on each of the 6
faces of the X , Y , Z dimensions for a total of 96 ICI links.
Pod Manager assigns each of these links a unique identifier
{cube_id,dim, index, polarity}, where cube_id is a Google-
wide cube UID, index ranges from 0–15 indicating the po-
sition within a cube face, and polarity can be in or out. 48
OCSes are use to xconnect these ICIs, 16 for each of the di-
mensions. Pod Manager gives each OCS a unique identifier
{dim, index} matching the ICI optical cables.

Fig 6 illustrates this cable connection scheme. Each OCS
provides 128 ports for optical ICI connection from the cubes,
allowing full connection of a single port for all 64 cubes.
This scheme allows any (4x,4y,4z) TPU topology shape to
be formed, including a 4x4x4 single-cube full torus. Note that
since the connected ICI and OCS have the same {dim, index}
parameters, if an OCS becomes unavailable, every cube ob-
serves one broken ICI link with the same {dim, index} param-
eter.

To perform a job’s cube xconnect, Pod Manager leverages
its internal representation of the optical ICIs and OCSes. Fig 7
illustrates the process for a 8x8x8 torus:

• Step 1: Borg publishes the set of UIDs and the desired
topology. Pod Manager assigns a 3D coordinate to each
cube based on the topology; any cube can be chosen for
any coordinate since the Pod Manager can instruct the
switches to apply arbitrary port-port xconnect. For each
(4x, 4y, 4z) shape, there are x · y · z cube coordinates.

• Step 2: Pod Manager computes the inter-cube neigh-
bor information based on the assigned coordinates; e.g.
(0,0,0) is adjacent to (1,0,0) along Xout and Xin.

• Step 3: Pod Manager tells OCS to xconnect the ICIs
{cubeA,dim, index, in} and {cubeB,dim, index,out} be-
tween every pair of adjacent cubes. For any topology,
all 48 OCSes need to execute commands to xconnect

Figure 8: xconnect of (a) 2-cube 4x4x8 twisted-torus, and (b)
4-cube 4x8x8 twisted-torus. Cube faces with the same color
are interconnected by OCS to form twisted-torus wrap-around
ICIs. The twisted dimensions always have shorter ring sizes.

ICI links, as all 16 ICI ports along all 3 dimensions
and polarity must be connected to their remote neighbor.
Each OCS can execute a variable number of commands,
depending on the topology, although the OCSes for a
single dimension always execute the same number. For
8x8x8 there are 8 cubes, and each OCS along the x,y,z
dimensions must connect 8 pairs of ports to form the
torus (one per cube).

• Step 4: The required connections are compared against
the current configuration, cached inside Pod Manager,
and we filter out any connections that will remain the
same. RPCs are sent to xconnect the new connections.

During any of the steps above, if Pod Manager determines that
any port connections are infeasible, e.g., due to a hardware
problem, Pod Manager will indicate this to Borg and reject
the proposed set of cubes. Borg can then propose a new set of
cubes set for the user’s job.

3.4.2 Twisted-torus xconnect

In additional to a regular torus topology, we support the use of
a twisted torus topology [7] if requested by the user. In TPUv4
twisted-torus [18], the wrap-around links are shifted with a
vector offset, depending on the overall job shape. TPUv4
supports two families of twisted-torus topology: (4k,4k,8k)
and (4k,8k,8k). Figure 8 illustrates how they are built.

For (4k,4k,8k) shapes, the asymmetry grows along the
Z dimension, with the X and Y dimensions being identical
with the same size (i.e. half the Z dimension). The X and Y
wrap-around links are shifted by a (0,0,4k) vector offset.

For (4k,4k,8k) shapes, the asymmetry grows along both
the Y and Z dimensions, and the X dimension has the smaller
size (i.e. half of the Y and Z dimensions). The X wrap-around
links are shifted by a (0,4k,4k) vector offset.

Cube coordinates are identical in both the regular and
twisted torus case, but the latter changes which cube faces are
deemed to be adjacent, and ultimately leads the Pod Manager
to instruct each OCS to xconnect different north/south ports.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 767

3.5 libtpunet

Once the ICI physical channels have stabilized after xconnect
completion, Borg dispatches the job binaries to the host ma-
chines. The libtpunet library runs within a user’s job to set
up the ICI network (data and routing layer).

The first step is topology discovery. Discovery is a bottom-
up process that scans each TPU’s local neighbor ICI connec-
tivity information, and runs breadth-first-search to ensure that
the configured global topology matches the user request. In
this process, each TPU in a job is assigned a unique chip
id; this id is exposed as part of the ISA interface for RDMA
instructions. The discovery process also identifies any faults
that may need to be routed around, or exposed to users in
the system abstraction. Topology discovery complements the
intent-driven modeling of the network.

libtpunet then computes and programs the forwarding
tables of each TPU based on the information curated during
topology discovery. The forwarding tables are part of a job’s
globally optimized routing solution (more details in §4).

Along with ICI routing programming, libtpunet sets up
the link-level flow-control buffer size, in proportion to the
the link RTT. libtpunet also programs the configuration
of consistent clocking on a job’s distributed TPU set. The
clock configuration is generated using a minimum spanning
tree, factoring in the longest RTT of any ICI path. Using a
consistent clock enables precise timestamps for performance
tracing and debugging.

Finally, libtpunet starts an ICI session, allowing the use
of various compiler-generated collective ops with RDMA.
This is done by synchronously enabling the data layer of each
ICI link across its two ends. An ICI handshake is performed
in hardware to confirm the reliable data link enable request is
initiated from both ends of the link.

libtpunet stays active through the job’s lifetime to mon-
itor the health of the ICI session. If any TPU observes an
error, the link layer comes down, or the driver panics, a PCIe
MSI-X interrupt is raised to libtpunet, which notifies Borg
to initiate rescheduling.

3.6 Hardware Maintenance and Recovery

At global fleet scale, disruptive maintenance events (e.g. hard-
ware repair or replacement, or critical software/firmware up-
grades) occur relatively frequently. To maximize overall main-
tenance efficiency, Google operates a fleet automation system.
Its remit covers hardware failure diagnosis, a hardware recov-
ery workflow, and system software package installation (e.g.
host kernel or device firmware).

Events generated by the fleet maintenance automation sys-
tem send notifications to Borg to evict running jobs on im-
pacted machines; any evicted jobs are queued for rescheduling.
In case of suspected failures, the impacted hardware is sent
to a repair workflow that marries automatic diagnosis with

technician input if needed. Once the hardware is recovered it
flows through an automated QA process before rejoining the
resource pool. For our TPUv4 supercomputer we extended
this system with continuous TPU hardware health telemetry,
explicit preflight checks before job launch and a scheme for
on-line ICI link repair.

3.6.1 healthd

We added a healthd daemon on every TPUv4 machine to
perform real-time monitoring of hardware parts including the
24 unidirectional ICI links, the PCIe channels between the
TPUs and CPUs, and the 4 TPU ASICs themselves. A set of
hardware symptoms are defined for each of these components
based on the telemetry data gathered by healthd. healthd
consumes the same model as Pod Manager which provides
the necessary details about monitoring endpoint, firmware,
and ICI cable metadata.

For each ICI link, the cable connection and associated link
quality are continuously checked against the modeled values
and a set of predefined thresholds. Any detected symptoms
are ranked by their criticality, with severe symptoms leading
healthd to notify Borg to evict and reschedule affected jobs.

3.6.2 Preflight Check

A preflight check runs before every user job to ensure hard-
ware is healthy. We currently include two different checkers:
an end-to-end check validates the TPU hardware by running
a mini sample workload, while an intent-driven checker vali-
dates physical-level hardware metrics against a set of golden
“within spec” thresholds. The former provides broad coverage
of both the hardware and software components including the
TPU driver, firmware and libtpunet which all interact with
the underlying chip and ICI; the latter allows detection of less
obvious issues such as substandard link quality metrics. If
the preflight checks fail, borglet will indicate to Borg Prime
that the job should be rescheduled.

3.6.3 Online ICI Link Repair

For TPUv4, ICI link repair can be carried out online, auto-
matically coordinated across the two ends of a link so that
recovery can be reliably verified. The two endpoints can span
two different machines, or a machine and an OCS switch.
The Pod Manager coordinates all ICI network maintenance
through ICI link drains. A drained ICI link is automatically
excluded from user applications, although the TPU compute
resources are not impacted (i.e. jobs can still land on the TPU
machines providing they do not use the broken ICIs).

768 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 9: Shortest-path routes from the origin (S) in a 2D 3x6
twisted torus are confined to a diamond-shaped region [7].
Destinations along the boundary are labeled with their coordi-
nates, with each destination appearing at least twice, meaning
we need tiebreaking to pick among the shortest paths. For
example, there are two possible paths to (x = 2,y = 1), shown
as dashed lines, and there are four possible paths to (0,3).

4 ICI Routing

We use multi-hop packet routing over high-bandwidth ICI
links to provide fast TPU RDMA and collectives. ICI routing
allows RDMA packets to be sent between arbitrary pairs of
TPUs in the pod, and can work around certain ICI faults. The
ICI forwarding tables are programmed once by libtpunet
at job start-up, and remain fixed over the job’s lifetime. Each
source-destination pair sends packets along a single predeter-
mined path through the ICI topology.

While simple, this approach is sufficient to achieve high
performance on the typical collective communication patterns
(e.g. all-gather, reduce-scatter, all-reduce, all-to-all) that arise
during parallel decomposition of ML models [33].

There are two cases described in this section where
libtpunet must carefully select a single path among multi-
ple candidates to satisfy the ICI forwarding table constraints:
tiebreaking and fault-tolerant wild-first routing. We perform
path selection off-line using an integer linear programming
approach and the results of this optimization are cached. This
allows libtpunet to quickly load the precomputed solution
during ICI network setup.

4.1 Fault-free Routing
When configured for regular torus topology, ICI uses
dimension-order routing (DOR) [11]: all packets route one
dimension at a time in a fixed order (e.g. X then Y then Z)
following a shortest-path from source to destination in the
torus. The dimension order is chosen so that longer dimen-

Figure 10: Example of ICI links impacted by an OCS being
unavailable along the X dimension of a 4x4x8 torus. The
unavailable OCS results in two unavailable X links along
one XZ plane of the torus; the other XZ planes are unaf-
fected. Unavailable links are emphasized with dashed red
lines. The connectivity of the OCSs creates a periodic fault
pattern, where unavailable links repeat every 4 hops along Z.
This pattern is due to the OCS connectivity (Figure 6).

sions of the torus are routed first as described in [8]. DOR
is sufficient to balance load for the common traffic patterns
of ML jobs. It can also be made deadlock-free with just two
virtual channels [10], making it inexpensive to implement.

One complication occurs when a packet needs to travel
exactly halfway around a dimension since tn this case, there
are two shortest paths to choose from. For example, in an
8x8x8 torus, routing a packet from source (x= 1,y= 0,z= 0)
to destination (x = 5,y = 0,z = 0) can travel 4 hops in either
the X+ or X− direction.

We handle this tiebreak case algorithmically: a packet takes
the positive direction when the relevant source node coordi-
nate along that dimension is even, otherwise uses the negative
direction. In our example, the source (x = 1,y = 0,z = 0) has
an odd X coordinate, so tiebreaking chooses X−. This scheme
balances load for common all-to-all traffic patterns.

Routing in the twisted torus also uses DOR and is deadlock
free with two virtual channels. However tiebreaking in the
twisted torus is more complicated because the dimensions
are not separable as in the regular torus: Figure 9 illustrates
this using two dimensions for simplicity. We decided to fold
handling tiebreaking in the twisted torus case into a more
general integer-linear programming framework that also han-
dles fault-tolerant routing (§4.3). This obviates the need to
develop an explicit tiebreaking algorithm in this case.

4.2 Fault-tolerant Routing

The reconfigurable ICI architecture is inherently resilient to
machine outages due to the ability for dynamic cube selection.
In libtpunet, further resilience against OCS unavailability
events is added by supporting fault-tolerant routing. If an
OCS is unavailable, a sparse set of links becomes unavailable.
As shown in Figure 10, the patterns of unavailable links are

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 769

Figure 11: Example routes (dashed paths) between a source S
and destination D. The XY dimension order route (A) crosses
the unavailable link (red dashed line) so cannot be used. The
two possible yXY wild-first routes (B and C) take a single
hop in Y before continuing with XY DOR, avoiding the fault.

highly symmetric with respect to the cube granularity as a
consequence of cube-OCS connectivity. With a small amount
of routing flexibility, packets can avoid the broken links. We
optimize routing algorithms for these scenarios off-line.

The path between a source-destination pair selected by
dimension-order routing (DOR) becomes unusable if it
crosses an unavailable link. In this case, alternative paths
are created using wild-first routing (WFR). In WFR, a packet
is allowed to take at most one wild hop along each dimension
before reverting to use DOR to its destination.

Fig 11 shows an example of WFR routing in a two-
dimensional torus. In this example, the dimension order is
X then Y and only wild hops along Y (either Y+ or Y−) can
help avoid unavailable links. We use the shorthand yXY to
denote a wild-first routing algorithm that takes a wild hop
along Y before continuing with XY dimension-order route.
The yXY algorithm can avoid any single unavailable link in
the X dimension.

There is a sandwich rule that captures the fault tolerance
of WFR: to avoid a fault in one dimension, hops in another
dimension must occur before and after it in the routing algo-
rithm. For the yXY , X is “sandwiched” by hops in Y , so it
avoids faults in X . Similarly, the xY X algorithm can avoid
faults in Y. Extending to three dimensions, the xyZY X algo-
rithm can avoid a single fault in both the Y and Z dimensions.

The development of WFR was influenced by the microar-
chitecture of the ICI switches. While beyond the scope of
this paper, WFR can be made deadlock-free with two virtual
channels with one restriction: the wild hop order must be
the reverse of the dimension order. For example, xyZY X is
deadlock-free with two virtual channels, but yxZY X is not.

4.3 Offline Route Optimization
The previous sections described situations where multiple can-
didate paths can be produced, either due to tiebreaking or due
to the wild-first routing algorithm. The ICI switch implemen-

Slice No faults
(GB/s)

1 fault
(GB/s)

1 fault
(% of no faults)

4x4x4 75.9 70.0 92.2%
4x4x8 twisted 62.1 63.2 101.7%
4x8x8 twisted 54.3 53.7 98.8%

Table 2: Measured all-to-all throughput with (a) all OCSs
healthly and (b) one OCS unavailable. The last column shows
the throughput of the single-fault case versus the healthy case.

tation, however, makes use of static forwarding tables, which
are programmed with a single path for each source-destination
pair. As mentioned previously, we formulate path-selection as
an integer-linear program (ILP), calculating solutions offline
and caching them for use at runtime.

The goal of the ILP is to maximize the throughput of a pre-
defined traffic pattern by solving a maximum concurrent flow
problem [27]. All-to-all is typically chosen as the traffic pat-
tern and supplemental constraints ensure other collectives (e.g.
all-reduce) perform well. Per-path variables are constrained
to Boolean values to adhere to the static routing constraints,
with exactly one path per source-destination pair.

In both the fault-free and fault-tolerant cases, the ILP is
designed to exploit translational symmetry to reduce the num-
ber of variables [30]. This makes finding optimal solutions
for practical network sizes tractable. The torus and twisted
torus are both vertex symmetric, so a single set of path vari-
ables can be used for a canonical source and then translated
to all other sources. When an OCS is unavailable, the fault
pattern is periodic with cube granularity, as was shown in Fig-
ure 10. While the resulting topology is less symmetric than
the fault-free cases, the ILP can be still restricted to a set of
canonical sources. This also enables a single canonical case
to be solved offline and cached. The canonical fault pattern,
trivially translated from the actual fault pattern, is initialized
during network setup.

Table 2 compares measured all-to-all throughput in fault-
free and single OCS failure scenarios when the forwarding
tables are optimized using this methodology. For the regular
torus networks, a single unavailable OCS reduces the ideal
all-to-all performance to 15/16≈ 93.4% of the fault-free net-
work. This corresponds to losing one of the 16 links along
one face of the 4x4x4 cubes that connect to the OCSs. In-
terestingly the twisted torus shows better resilience, with the
4x4x8 performance improving slightly in the presence of an
unavailable OCS . This is because of the flexibility offered by
tiebreaking: by balancing different tiebreaking paths, traffic
can be shifted from one dimension to another. This balancing
is not possible in the regular torus. The slight improvement in
the 4x4x8 case is a good illustration that the ILP formulation
is only a proxy for real world performance.

770 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Machine daily failure rate. (b) ICI link daily failure rate. (c) OCS daily failure rate.

Figure 12: Weekly statistics of a supercomputer’s hardware failure and recovery, including TPU machines, ICI cables, and OCS.

5 Fleet Statistics

In this section, we describe Google’s fleet experience of op-
erating TPUv4 supercomputers over the past two years. We
focus on the software stack’s automatic management of OCS
xconnect, faults, and overall system availability.

5.1 Cube Reconfigurations

Thousands of training jobs are submitted to Google’s TPUv4
supercomputers every day. Figure 13 shows a sample super-
computer’s OCS xconnect actions over two months, correlated
with the pod’s number of admitted jobs. A higher number of
jobs normally incurs more OCS xconnect changes because
the Pod Manager updates ICI port xconnect for each job on
arrival. We also see OCS xconnect changes when there are
very large and/or long running training jobs which will experi-
ence reschedules to handle maintenance and failures. Overall,
TPUv4 supercomputers function reliably with many tens of
thousands of OCS xconnect changes per pod per day.

Training jobs can vary drastically in size and system topol-
ogy, ranging from sub-cube mesh jobs for small scale experi-
ments to large jobs that use almost the entire pod for LLM pre-
training. We anecdotally observe that many embedding-heavy
recommendation models adopt the twisted-torus topology,
and some transformer-based models use model parallelism
across more irregular torus topologies.

Figure 13: The OCS xconnect actions and jobs admitted by a
TPUv4 supercomputer over two sample months.

5.2 Hardware Maintenance Automation
TPUv4’s reconfigurability and fault-tolerant routing allow for
resiliency against machine and OCS outages. Figure 12 shows
the average failure rate of different hardware components in
each supercomputer.

Faults are diagnosed at the TPU machine, ICI link, and
OCS levels. The Pod Manager and healthd automate the
repair and recovery process. In an average supercompuer,
each day, 0.08% of the TPU machines, 0.005% of the ICI
cables, and 0.04% of the OCS experience a failure. While
these values are small, the number of jobs that are impacted by
hardware outages is non-trivial because each supercomputer
has a large number of machines, ICIs, and OCS. Machine
and ICI outages are automatically tolerated by reconfiguring
jobs to use spare healthy cubes. An OCS outage has larger
blast radius as it can impact all cubes in a supercomputer.
Fault-tolerant ICI routing lets us tolerate OCS outages with
some performance impact; and we priority recovery time for
OCS components compared with others to minimize this.

5.3 Fault-tolerant Jobs
In our experience to date, 95% of all TPUv4 training jobs opt
in to fault-tolerant ICI routing so they can be resilient to OCS
outages; the remaining jobs opt-out to rule out performance
non-determinism caused by different routing strategies. Fig-
ure 14 shows the ratio of all fleet-wide jobs actively running
with fault-tolerant routing across a 8-month sample period.
In general at any time, fewer than 2% of the jobs are running
with fault-tolerant routing. This quantity is highly correlated
with OCS maintenance events and the per event recovery
time. The spike around day 60 is due to a planned fleet-wide
upgrade of OCS parts to improve reliability.

Fault-tolerant ICI routing comes with a performance
penalty due to more congested traffic around faulty links.
The load imbalance affects collective operations including all-
to-all and all-reduce. We measured the performance impact
across a range of key Google workloads spanning Recommen-
dation Models (RM), Large Language Models (LLM), and
BERT-based [13] models. Table 3 summarizes our results.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 771

Figure 14: Percentage of jobs using fault-tolerant routing
(OCS outage resiliency) over an 8-month window.

For all-to-all heavy workloads, the step time degradation
is not significant because the offline routing optimizer has
minimized, if not improved, all-to-all performance. This is par-
ticularly true for embedding-heavy twisted-torus shapes. The
all-reduce workloads experience higher performance impact
because the nearest-neighbor communication pattern receives
50% throughput hit. The impact on all-reduce operation can
be improved by smarter overlapping between compute and
communication. Overall, all workloads experience a small
slowdown in step time.

6 Related Work

The architecture decision to use OCS for TPUv4 is discussed
in [18], while [20] and [19] evaluate the design of prior gen-
eration static TPU pods. This paper describes the software
ecosystem for TPUv4 and how it achieves resilience at scale.
The usage of OCS in production-scale data center networks
was described in [25], discussing considerations for scala-
bility, cost, and topology engineering. This paper focuses on
OCS use TPUv4 supercomputers.

Previous work has covered circuit switching for supercom-
puters [28] and proposed topology engineering for ML train-
ing [32]. Nvidia uses a 2-tier NVswitch-based fat tree network
over NVlink for inter-GPU collectives. These represent a dif-
ferent design point compared with ours: OCS simplifies the
ICI network design compared to introducing packet switches
because it establishes dedicated physical channels without
the need to control shared traffic, while the lower purchasing
price and stand-by power also reduces operating cost [20].

Twisted tori are due to [6, 26]; the specific (4k,4k,8k) and
(4k,8k,8k) twisted torus shapes supported TPUv4 conform
to those of [7]. Finally software-defined datacenter networks
have been described extensively in the literature (e.g. [14, 16,
25, 29]). To our knowledge, we are the first to describe this
approach for an exascale supercomputer.

Workload Topology Step Time Slowdown
RM-1 4x4x8 twisted 0.5%
RM-2 4x4x8 twisted 3%
RM-3 4x4x8 twisted 3.9%
RM-4 4x4x8 twisted 8.6%
RM-5 4x4x8 twisted 8.3%
RM-6 4x4x8 twisted 4.7%

LLM-1 4x4x8 2.6%
BERT-1 4x4x4 1.2%
BERT-2 4x8x8 3.2%

Table 3: Performance impact from fault-tolerant ICI routing.

7 Future Work

Our main short term priorities are improving the performance
and recovery overhead of TPU pods: ML supercomputing
hardware is in high demand, and every little helps. In future,
as well as supporting increased line rate for ICI links, we plan
to introduce a randomized routing capability to ICI switches
to enables better load balancing for both torus and twisted
torus topologies in the presence of faults, particularly for
nearest-neighbor communication patterns.

We also plan tighter integration between OCS-based con-
figurability and workload reconfiguration by allowing jobs
to continue mostly unaffected by failures. Our approach here
is to provision a hot-standby cube in response to an outage
event, and directly migrate accelerator state to the new TPUs
without ever writing a persistent checkpoint. This work in-
volves changes to the Borg scheduler (to provision on de-
mand), libtpunet (to dynamically adjust a built ICI session)
and the Pathways ML runtime [5] (to manage state transfer).

8 Conclusion

The TPUv4 supercomputer is an exascale 4096-chip com-
puting system that addresses the availability and scalability
challenges of fast-paced ML model evolution. TPUv4 of-
fers approximately 2.1× performance compared to the previ-
ous generation, but also features cube-level reconfigurability
based on optical circuit switching and uses fault-tolerant ICI
routing to allow operation if switches fail.

This paper has described the end-to-end software infras-
tructure for TPUv4 that provides flexibility for topology,
routing, scheduling, interrupting, monitoring, and hardware
health management. TPUv4’s software-defined ICI network-
ing approach enables strong fault resiliency to machine and
switch outages at scale. The software has been operating in
production since 2020, running TPUv4 supercomputers for
both Google Cloud clusters and internal users, and sustaining
99.98% system availability,

772 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

9 Acknowledgements

We wish to thank our collaborators: Xiangyu Dong, Sabas-
tian Mugazambi, Sameer Kumar, Andy Koch, Jianqiao Liu
for the project inception, and Wenbo Zhao, Hongji Li, Ra-
jendra Gottipati, Yuechao Pan, Justin Duan, Peter Gavin for
their work on continuous measurement and monitoring. We
also thank Kais Belgaied and Varinder Singh for their support
during the design and development of our software infrastruc-
ture. Finally, special thanks go to Robert Hundt, Norm Jouppi,
Aamer Mahmood, and the anonymous NSDI reviewers for
their feedback and suggestions on the paper.

References

[1] JAX: Autograd and XLA. https://github.com/
google/jax [Accessed: 2023-04-26].

[2] The TPUv4 Exaflop ML Supercomputer.
https://cloud.google.com/blog/topics/systems/tpu-
v4-enables-performance-energy-and-co2e-efficiency-
gains [Accessed: 2023-04-26].

[3] The XLA TPU Compiler. https://github.com/
openxla/xla [Accessed: 2023-04-26].

[4] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), pages 265–283, 2016.

[5] Paul Barham, Aakanksha Chowdhery, Jeff Dean, San-
jay Ghemawat, Steven Hand, Dan Hurt, Michael Is-
ard, Hyeontaek Lim, Ruoming Pang, Sudip Roy, Bren-
nan Saeta, Parker Schuh, Ryan Sepassi, Laurent El
Shafey, Chandramohan A. Thekkath, and Yonghui Wu.
Pathways: Asynchronous Distributed Dataflow for ML,
2022.

[6] Wendell J Bouknight, Stewart A Denenberg, David E
McIntyre, JM Randall, Amed H Sameh, and Daniel L
Slotnick. The Illiac IV system. Proceedings of the IEEE,
60(4):369–388, 1972.

[7] Jose M Camara, Miquel Moreto, Enrique Vallejo, Ra-
mon Beivide, Jose Miguel-Alonso, Carmen Martínez,
and Javier Navaridas. Twisted torus topologies for en-
hanced interconnection networks. IEEE Transactions
on Parallel and Distributed Systems, 21(12):1765–1778,
2010.

[8] Dong Chen, Noel A. Eisley, Philip Heidelberger,
Robert M. Senger, Yutaka Sugawara, Sameer Kumar,
Valentina Salapura, David L. Satterfield, Burkhard
Steinmacher-Burow, and Jeffrey J. Parker. The IBM
Blue Gene/Q interconnection network and message unit.
In SC ’11: Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking,
Storage and Analysis, pages 1–10, 2011.

[9] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, et al. Palm: Scaling language modeling with
pathways. arXiv preprint arXiv:2204.02311, 2022.

[10] W. J. Dally and C. L. Seitz. Deadlock-Free Message
Routing in Multiprocessor Interconnection Networks.
IEEE Trans. Comput., 36(5):547–553, may 1987.

[11] William James Dally and Brian Patrick Towles. Princi-
ples and Practices of Interconnection Networks. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA,
2004.

[12] Jeffrey Dean and Sanjay Ghemawat. MapReduce: sim-
plified data processing on large clusters. Communica-
tions of the ACM, 51(1):107–113, 2008.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding,
2019.

[14] Andrew D Ferguson, Steve D Gribble, Chi-Yao Hong,
Charles Edwin Killian, Waqar Mohsin, Henrik Muehe,
Joon Ong, Leon Poutievski, Arjun Singh, Lorenzo Vi-
cisano, et al. Orion: Google’s Software-Defined Net-
working Control Plane. In NSDI, pages 83–98, 2021.

[15] Saurabh Gupta, Tirthak Patel, Christian Engelmann, and
Devesh Tiwari. Failures in large scale systems: long-
term measurement, analysis, and implications. In Pro-
ceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
pages 1–12, 2017.

[16] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-
Fares, Min Zhu, Richard Alimi, Chandan Bhagat,
Sourabh Jain, Jay Kaimal, Shiyu Liang, Kirill Mendelev,
et al. B4 and after: managing hierarchy, partitioning,
and asymmetry for availability and scale in google’s
software-defined WAN. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data
Communication, pages 74–87, 2018.

[17] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 773

https://github.com/google/jax
https://github.com/google/jax
https://github.com/openxla/xla
https://github.com/openxla/xla

Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Effi-
cient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32, 2019.

[18] Norman P. Jouppi, George Kurian, Sheng Li, Peter Ma,
Rahul Nagarajan, Lifeng Nai, Nishant Patil, Suvinay
Subramanian, Andy Swing, Brian Towles, Cliff Young,
Xiang Zhou, Zongwei Zhou, and David Patterson. TPU
v4: An Optically Reconfigurable Supercomputer for Ma-
chine Learning with Hardware Support for Embeddings.
In Proceedings of the 50th annual international sympo-
sium on computer architecture, 2023.

[19] Norman P Jouppi, Doe Hyun Yoon, George Kurian,
Sheng Li, Nishant Patil, James Laudon, Cliff Young,
and David Patterson. A domain-specific supercomputer
for training deep neural networks. Communications of
the ACM, 63(7):67–78, 2020.

[20] Norman P Jouppi, Cliff Young, Nishant Patil, David Pat-
terson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates,
Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
datacenter performance analysis of a tensor processing
unit. In Proceedings of the 44th annual international
symposium on computer architecture, 2017.

[21] Sameer Kumar, James Bradbury, Cliff Young, Yu Emma
Wang, Anselm Levskaya, Blake Hechtman, Dehao Chen,
HyoukJoong Lee, Mehmet Deveci, Naveen Kumar,
Pankaj Kanwar, Shibo Wang, Skye Wanderman-Milne,
Steve Lacy, Tao Wang, Tayo Oguntebi, Yazhou Zu,
Yuanzhong Xu, and Andy Swing. Exploring the limits
of Concurrency in ML Training on Google TPUs, 2021.

[22] Sameer Kumar and Norm Jouppi. Highly Available Data
Parallel ML training on Mesh Networks, 2020.

[23] Jeffrey C. Mogul, Drago Goricanec, Martin Pool, Anees
Shaikh, Douglas Turk, Bikash Koley, and Xiaoxue Zhao.
Experiences with Modeling Network Topologies at Mul-
tiple Levels of Abstraction. In 17th Symposium on Net-
worked Systems Design and Implementation (NSDI),
2020.

[24] OpenAI. GPT-4 Technical Report, 2023.

[25] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun
Singh, Mukarram Tariq, Rui Wang, Jianan Zhang, Vir-
ginia Beauregard, Patrick Conner, Steve Gribble, Rishi
Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu, Karthik
Nagaraj, Jason Ornstein, Samir Sawhney, Ryohei Urata,
Lorenzo Vicisano, Kevin Yasumura, Shidong Zhang,
Junlan Zhou, and Amin Vahdat. Jupiter evolving: Trans-
forming google’s datacenter network via optical circuit
switches and software-defined networking. In Proceed-
ings of ACM SIGCOMM 2022, 2022.

[26] Carlo H Sequin. Doubly twisted torus networks for
VLSI processor arrays. In Proceedings of the 8th annual
symposium on Computer Architecture, pages 471–480,
1981.

[27] Farhad Shahrokhi and D. W. Matula. The Maximum
Concurrent Flow Problem. J. ACM, 37(2):318–334, apr
1990.

[28] John Shalf, Shoaib Kamil, Leonid Oliker, and David
Skinner. Analyzing ultra-scale application communica-
tion requirements for a reconfigurable hybrid intercon-
nect. In SC’05: Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing, pages 17–17. IEEE,
2005.

[29] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, et al. Jupiter
rising: A decade of clos topologies and centralized con-
trol in Google’s datacenter network. ACM SIGCOMM
computer communication review, 45(4):183–197, 2015.

[30] Brian Towles, William J. Dally, and Stephen Boyd.
Throughput-Centric Routing Algorithm Design. In Pro-
ceedings of the Fifteenth Annual ACM Symposium on
Parallel Algorithms and Architectures, SPAA ’03, page
200–209, New York, NY, USA, 2003. Association for
Computing Machinery.

[31] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In Pro-
ceedings of the Tenth European Conference on Com-
puter Systems, pages 1–17, 2015.

[32] Weiyang Wang, Moein Khazraee, Zhizhen Zhong,
Manya Ghobadi, Zhihao Jia, Dheevatsa Mudigere, Ying
Zhang, and Anthony Kewitsch. TopoOpt: Co-optimizing
Network Topology and Parallelization Strategy for Dis-
tributed Training Jobs, 2022.

[33] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake
Hechtman, Yanping Huang, Rahul Joshi, Maxim Krikun,
Dmitry Lepikhin, Andy Ly, Marcello Maggioni, et al.
GSPMD: general and scalable parallelization for ML
computation graphs. arXiv preprint arXiv:2105.04663,
2021.

774 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NN-Defined Modulator: Reconfigurable and Portable Software Modulator on IoT
Gateways

Jiazhao Wang1, Wenchao Jiang1, Ruofeng Liu2, Bin Hu3, Demin Gao4, and Shuai Wang5

1Singapore University of Technology and Design, 2University of Minnesota, 3University of Southern
California, 4Nanjing Forestry University, 5Southeast University

Abstract
A physical-layer modulator is a vital component for an IoT

gateway to map the symbols to signals. However, due to the
soldered hardware chipsets on the gateway’s motherboards or
the diverse toolkits on different platforms for the software ra-
dio, the existing solutions either have limited extensibility or
are platform-specific. Such limitation is hard to ignore when
modulation schemes and hardware platforms have become
extremely diverse. This paper presents a new paradigm of
using neural networks as an abstraction layer for physical
layer modulators in IoT gateway devices, referred to as NN-
defined modulators. Our approach addresses the challenges of
extensibility and portability for multiple technologies on vari-
ous hardware platforms. The proposed NN-defined modulator
uses a model-driven methodology rooted in solid mathemat-
ical foundations while having native support for hardware
acceleration and portability to heterogeneous platforms. We
conduct the evaluation of NN-defined modulators on differ-
ent platforms, including Nvidia Jetson Nano and Raspberry
Pi. Evaluations demonstrate that our NN-defined modulator
effectively operates as conventional modulators and provides
significant efficiency gains (up to 4.7× on Nvidia Jetson Nano
and 1.1× on Raspberry Pi), indicating high portability. Fur-
thermore, we show the real-world applications using our NN-
defined modulators to generate ZigBee and WiFi packets,
which are compliant with commodity TI CC2650 (ZigBee)
and Intel AX201 (WiFi NIC), respectively.

1 Introduction
In recent years, we have observed the swift progression of the
Internet of Things (IoT), transitioning from theoretical con-
cepts to tangible reality. IoT’s objective is to connect many
devices, such as sensors and actuators, globally via various
Physical (PHY) layer technologies. These technologies are
tailored to suit IoT connections based on factors like through-
put, power consumption, and coverage area. For instance,
IEEE 802.15.4 [19] is specifically designed for short-range,
low-rate IoT connections, while NB-IoT [7] is intended for
broader, low-power IoT connections. The IoT gateway func-

Data Link Layer

Physical Layer

Encoder

Modulator

Application Layer

Hardware

Modulator on Heterogeneous Platforms

NN-compliant Platforms

Symbols from encoder

SDR Hardware

NN compiler

Modulator
in

Modulator
in

Modulator implemented
with neural networks

(a) (b)

Network Layer

Figure 1: (a) Simplified layered model for IoT protocol stack.
Our design is focused on the Physical layer. (b) Left: de-
ployment of the modulator based on Neural Network. Right:
deployment of the modulator based on SDR toolkits.

tions as a central hub, establishing wireless communication
links with IoT devices and bridging them to the rest of the
Internet. Within PHY of IoT communication (Figure 1a), the
modulator plays a vital role in generating signals for data
transfer to transmit over the air.

Therefore, it is essential for the gateway to be flexible, al-
lowing it to support a variety of wireless technologies used
by IoT devices and even accommodate emerging technolo-
gies for future readiness. However, numerous existing gate-
way designs [5, 21, 27, 43] employ hardware-based solutions,
where wireless technologies are integrated into dedicated
chipsets, which are either soldered onto the gateway’s mother-
board or connected through extension ports. Such hardware-
based solutions offer limited adaptability, as their functions
are fixed upon manufacturing. Software Defined Radio (SDR)
is introduced as a flexible alternative for IoT gateways to ad-
dress these limitations. Users can implement both current and
emerging wireless transceivers as software, surpassing the
extensibility of hardware-based solutions.

Despite the advantage of flexibility, SDR-based gateway
design comes with several drawbacks. SDR-based designs
consist of the radio frequency (RF) front-end and the comput-
ing device serving as the host device for the software radio
application. The software radio application requires using
signal processing toolkits or libraries, like GNURadio [4]

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 775

and SciPy [15]. Owing to the variety of development tools
and host platforms, transferring the same functionality to a
new platform demands a considerable learning curve and
extensive effort in software development. Meanwhile, soft-
ware radio comes at the cost of efficiency loss as we shift
the signal processing from specialized hardware to general
software systems. Many researchers and developers intend to
optimize the software radio with the capability of hardware
acceleration [26,37,38]. However, these works are targeted at
specific platforms and require a considerable learning curve
and extensive effort during development. Given the diversity
of platforms and toolkits, deploying a highly efficient software
modulator on multiple platforms becomes challenging.

To address these issues, we propose to develop a novel
framework that facilitates the design of software transmitters
on a variety of IoT gateways using neural networks. This ap-
proach would maintain the flexibility needed to accommodate
a wide range of transmitters while enhancing portability and
efficiency on different platforms. Our work is motivated by
several interesting observations: i) the neural network module
is widely supported across diverse hardware platforms due to
the flourishing AI technologies, and ii) our research demon-
strates that signal processing blocks within a modulator can
be equivalently implemented using neural network models.
These insights have led to the development of our innovative
neural network-defined modulator 1, which offers a flexible
and portable design for IoT gateways. The complete archi-
tecture of the design is depicted in Figure 1b. The proposed
neural network-defined modulator functions are implemented
by a unified neural network framework that can take advan-
tage of accelerators across various platforms. In essence, the
unified neural network framework operates as an abstraction
layer for modulation tasks across heterogeneous platforms.

In summary, the original contributions of this paper are
listed as follows:

• Conceptually, we propose an NN-defined physical layer
modulator, which achieves high flexibility and exten-
sibility to support multiple modulation schemes, and
portability and efficiency on heterogeneous platforms.

• Technically, we adopt a model-driven approach to build
the NN-defined modulators. The structure and parame-
ters in the NN-defined modulators are rooted in a solid
mathematics foundation from the modulation model.

• Experimentally, we deploy the NN-defined modulators
on multiple hardware platforms (e.g., Nvidia Jetson
Nano, Raspberry Pi) with extensive evaluations. We also
employ our NN-defined modulators into the workflow of
the IoT gateway to generate protocol-compliant signals,
including ZigBee and WiFi.

1The code for reproduction is available at the anonymous repository:
https://github.com/Repo4Sub/NSDI2024

2 Motivation
2.1 Problem Statement
Modern IoT gateways strive to offer adaptable transmitters
to address the ever-evolving landscape of IoT connectivity
technologies. Present IoT gateway solutions can be classified
into hardware-based gateways and those based on software-
defined radio (SDR). Hardware-based solutions, as the term
implies, combine numerous chips/modules tailored for vari-
ous connectivity technologies on a single board [5, 21, 27, 43].
While these hardware chips/modules exhibit merits such as
cost-effectiveness and efficiency, they are limited by their lack
of adaptability. This limitation stems from the fixed nature
of technologies within the chips/modules and the restricted
capacity for users to alter connectivity technologies. Gate-
way platforms can take the form of diverse devices, including
personal computers, edge servers, and, increasingly, embed-
ded computers, which can function as host devices for SDR.
Consequently, it is possible to develop software radio for dis-
tinct IoT technologies, surpassing hardware-based solutions
in terms of flexibility. Nevertheless, the multitude of devel-
opment tools and deployment platforms for software radio
can impede portability. For instance, GNU Radio establishes
the signal processing blocks required for software radio con-
struction, yet porting GNU Radio to embedded computers for
IoT gateways is challenging, necessitating recompilation for
target devices [28]. Moreover, platform/toolkit-specific im-
plementations often depend on optimized designs that exploit
acceleration capabilities, potentially resulting in efficiency
loss when transferring SDR-based solutions to new platforms.
For example, cuSignal [20] is a GPU-accelerated signal pro-
cessing library, exclusively designed for devices equipped
with NVIDIA GPUs, thus not providing a universal solution.

2.2 Opportunities
Our design is inspired by the extensive integration of AI
frameworks and hardware across diverse computing plat-
forms, which can serve as IoT gateways. Hardware manu-
facturers continuously enhance their devices to facilitate neu-
ral network deployments, incorporating specialized instruc-
tion sets [18] and distinct hardware accelerators [9], along
with programming libraries that capitalize on these features.
Concurrently, nearly all mainstream machine learning frame-
works, such as Tensorflow [16] and PyTorch [13], endeavor
to function across various operating systems and hardware ar-
chitectures. Additionally, these frameworks encapsulate low-
level acceleration libraries, promoting developers to speed up
the execution of neural network models.

By constructing transmitters as neural network modules
with widespread support, we can attain not only extensibility
for an array of technologies but also portability and efficiency
on platforms compatible with neural networks. For one thing,
a gateway device can always update its supported modula-
tion schemes by retrieving the corresponding neural network
implementation from the repository server (Figure 2a). Si-

776 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Repository

IoT Gateway

(a)

Neural Network

Software

Speed

Speed

(b)
Figure 2: (a) Different devices can retrieve various neural
network models to update modulation schemes. (b) Neural
network modulators can be accelerated to achieve better effi-
ciency compared with software modulators.

multaneously, the neural-network-defined modulators are ex-
pected to achieve superior efficiency compared to traditional
software modulators (Figure 2b), which are blessed by the
advantages of the hardware accelerators.

2.3 Challenges

The primary technical challenge involves integrating signal
processing blocks into neural network models. One direct
method is to utilize general-purpose neural network models,
such as fully-connected (FC) layers, as in the literature [46,
58]. Nevertheless, we contend that this approach has two
principal disadvantages compared to the traditional digital
modulation model. The operational mechanism of a general-
purpose machine learning model is often perceived as a black-
box approach [31], which raises concerns about its reliability.

To illustrate this, we present a straightforward example of
modulators based on general-purpose neural networks. We de-
velop an FC-based neural network model to modulate OFDM
symbols and train it using the dataset gathered from the stan-
dard 64-S.C. (subcarrier) OFDM modulator. The FC-based
OFDM modulator converges to a Mean Squared Error (MSE)
loss of 1.5×10−6 for the training set, signifying that the gen-
erated signals from training symbols closely resemble the
corresponding training signals. However, it fails to modulate
new OFDM symbols from the test set. The produced sig-
nal samples are depicted in Figure 3. The output from the
FC-based modulator substantially deviates from the standard
signals. Although this is a simple case study, we can deduce
from these results that the neural network ought to be meticu-
lously designed and executed to achieve modulation tasks.

10 20 30 40 50 60

 Sample

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 A
m

p
li

tu
d

e
 (

re
a
l)

FC-based modulator

Standard

Figure 3: Waveform (real part) comparison of FC-based mod-
ulator and standard 64-S.C. OFDM modulator.

NN-defined
Modulator

NN-defined Modulator
Template

Unified NN framework

Manual configuration
with knowledge

Configuration through
learning

or

NN Compiler for heterogeneous platforms

Figure 4: Architecture of NN-defined modulator.

Our research advocates for a model-driven strategy that
integrates domain-specific knowledge of modulation tech-
niques into the neural network design process. Instead of
employing general-purpose neural network models or creat-
ing tailored neural network layers, our objective is to interpret
fundamental neural network layers using domain-specific ex-
pertise regarding modulation schemes. By assembling the
modulator with these neural network layers, which are com-
prehensively supported and efficiently implemented across
diverse frameworks and platforms, we accomplish an inter-
pretable, lightweight, and efficient neural network-based im-
plementation for software modulators.

The architecture of the proposed Neural-Network-Defined
(NN-defined) modulator is depicted in Figure 4. As in the
figure, a modulator template (Section 3) rooted in solid math-
ematical foundations can be configured to implement specific
modulation schemes either manually as in Section 4, or in a
learning manner as in Section 5. Next, the NN-defined modu-
lator will be transformed into a unified NN framework capable
of executing across heterogeneous platforms (Section 6). The
unified NN framework can be deployed onto various plat-
forms and incorporated into the transmission pipeline (Sec-
tion 7).

3 Template of NN-defined Modulator
In this section, we discuss how to use a model-driven method-
ology to construct neural networks for modulation tasks based
on the underlying digital modulation models.

3.1 Mathematical Foundation of Digital Modulation

In wireless communication, a transmitter uses a modulator to
convert symbols to signals before transmitting them to the air.
The modulation process is usually analyzed through the Sig-
nal Space Analysis [29, 48], which is widely adopted in mod-
eling amplitude/phase modulation techniques or named as
linear modulation [29], including pulse amplitude modulation
(PAM), phase-shift keying (PSK), and quadrature amplitude
modulation (QAM). And the concepts are also applicable in
modeling multicarrier modulation schemes, like OFDM.

Based on this method, a signal Si(t) modulated from a
symbol si is considered a linear combination of the set of

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 777

basis functions. The synthesis process is given as

Si(t) =
N

∑
j=1

si jφ j(t) (1)

where φ j(t)∈ {φ(t)}N is the j-th function in the set of N basis
functions and si j is the j-th elements of the N-dimensional
vector representation of the input symbol si. The basis func-
tions and format of the symbol can be diverse and determine
the different modulation schemes.

3.2 Modulator Template via Neural Network
After modeling the modulation process, we start to fit such a
mathematical model into the neural network design to con-
struct the proposed NN-defined modulator template.

3.2.1 Discrete-time Modulation Model
To accommodate the model into the neural networks, we first
derive the discrete-time representation of the general model.
The N-dimensional symbol vector si will be modulated to a
series of signal samples as:

Si[n] =
N

∑
j=1

si jφ j[n] (2)

where φ j[n] is the discrete-time form of the basis functions.
The symbols are processed sequentially, and the signal sam-
ples are concatenated into the final modulated signals for the
whole symbol sequence, given as:

S[n] = ∑
i

Si[n− iL] (3)

where L is the number of samples per symbol, meaning that L
samples represent one symbol in the final modulated signals.

To extend Equation (2) to a complex I/Q signal, we have:

SI [n]+ jSQ[n] = Re{Si[n]}+ jIm{Si[n]}

=
N

∑
j=1

[Re{si j}+ jIm{si j}][Re{φ j[n]}+ jIm{φ j[n]}]

=
N

∑
j=1

Re{si j}Re{φ j[n]}−
N

∑
j=1

Im{si j}Im{φ j[n]}

+ j(
N

∑
j=1

Re{si j}Im{φ j[n]}+
N

∑
j=1

Im{si j}Re{φ j[n]})

(4)

where SI is the In-Phase signal and SQ is the Quadra-
ture. We can observe Equation (4) is composed of multiple
∑

N
j=1 si jφ j[n] patterns.

3.2.2 Basics of Transposed Convolutional Layer

Then we convert the ∑
N
j=1 si jφ j[n] pattern to a neural network.

We find the transposed convolutional layer is a mathemati-
cally equivalent implementation. We first introduce the basic
computation of a transposed convolutional layer in Figure 5.

stride=4

input:

kernel:

Figure 5: Diagram of the basic operation of the transposed
convolutional layer.

Input Kernels Output

+

Figure 6: Diagram of the operation of multi-channel trans-
posed convolutional layer.

The 1-D transposed convolutional layer has only 1 input chan-
nel and 1 output channel. The elements in input sequence
[+1,−1] are multiplied by a kernel. The multiplication results
are mapped to the output. The step between each multiplica-
tion result is determined by the stride parameter.

The transposed convolutional layer supports multiple input
channels and multiple output channels [13, 16]. In Figure 6,
we visualize the operation of the transposed convolutional
layer with multiple input and output channels (both are 2
in this figure). As illustrated here, each input channel will
convolve with a set of 2 kernels, and the results are com-
bined to generate one output channel. The calculation process
of the transposed convolutional layer is the same as in one
channel of Equation 4, if the kernel is set to the same as the
real/imaginary parts of the basis functions, i.e., Re{φ j[n]}
and Im{φ j[n]}, and the stride is set to the samples per symbol,
i.e., L as in Equation 3.

3.2.3 NN-defined Modulator Template
With the transposed convolutional layer, we can express the
whole modulation process in Equation (4) as an NN-defined
template modulator in Figure 7. The input channel comprises
real and imaginary parts of the symbol vectors, which form
two groups of the transposed convolutional layer. The kernels
of the transposed convolutional layer are determined by the
basis functions. After that, a linear (fully-connected) layer
is added to merge the four-channel outputs to generate the
real and imaginary parts of the modulated signals. Its weight
are set as [+1,0,0,−1] and [0,+1,+1,0] according to the
coefficients in Equation (4) as shown in Figure 7.

Thus, we begin with the mathematical foundation of the
modulation process and derive a generalized modulation
model. Subsequently, we show how to adapt the general model
within our template for the NN-defined modulator. The uni-
versal template comprises a transposed convolutional layer
followed by a fully-connected layer. By meticulously con-

778 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Transposed Convolutional Layer Fully-Connected Layer

+1

+1

+1

-1

Figure 7: Diagram of the template of NN-defined modulator.
0-weight connections are omitted in the fully-connected layer.

figuring the template for the NN-defined modulator, we can
accomplish a range of modulation schemes.

4 Instances of NN-defined Modulator Tem-
plate

With the NN-defined modulator template, we further study
how to generate specific modulation schemes.
4.1 Common NN-defined Modulators
4.1.1 Single Carrier Amplitude/Phase Modulation
For amplitude/phase modulation on the single carrier, the
information is carried by the modulated signal’s amplitude
and/or phase. The most general case is quadrature amplitude
modulation (QAM). For example, ZigBee [24] adopts Offset-
Phase-Shift Keying (O-QPSK) as its modulation scheme,
which is a variant of QPSK or 4-QAM scheme.

The QAM symbols are represented in a complex scalar as
sk =Re{sk}+ jIm{sk}. The symbols pass a real-valued pulse-
shaping filter to generate signals. Similar to equation (4), we
represent the I/Q signals as in

SI [n] = Re{S[n]}= ∑
k

Re{sk}p[n− kL]

SQ[n] = Im{S[n]}= ∑
k

Im{sk}p[n− kL]
(5)

where p[n] represents the pulse-shaping filter, and L is the
number of samples per symbol.

Based on Equation (4) and (5), when applying the NN-
defined modulator template, we can configure the kernels of
the transposed convolutional layer to be the values of shap-
ing filter p[n]. This also implies the potential simplification
of the template. If the shaping filter is real-valued, we can
omit two channels of the transposed convolutional layer that
correspond to the imaginary parts. We can also discard the
fully-connected layer in the template because the output from
the remaining 2 output channels from the transposed convo-
lutional layer directly forms the desired modulated signals.
For better illustration, an NN-defined QPSK modulator with
a half-sine wave shaping filter is depicted in Figure 8. The
output from the transposed convolutional layer is I/Q signals.
4.1.2 Multicarrier Modulation
We also extend our design for multicarrier modulation
schemes, more specifically, the widely used OFDM scheme.

Trans Conv Layer
I

Q

Kernels

Figure 8: Diagram of a simplified NN-defined QPSK modula-
tor with half-sine wave shaping filter.

We consider a N-S.C. OFDM modulator as an example,
of which the input symbol vector consists of N elements,
s0,s1, · · · ,sN−1, that correspond to the components in the fre-
quency domain. Thus, to get the signal samples S[n], they
are transformed to the time domain by performing an inverse
Discrete Fourier Transform (IDFT) on the input N elements,
given as

S[n] =
N−1

∑
i=0

sie j2πni/N , 0 ≤ n ≤ N −1. (6)

The transformation can be interpreted as mapping the com-
plex symbol vector s = [s0,s1, · · · ,sN−1] of N dimensions to
signal S[0], · · · ,S[N − 1] with the basis functions set φi[n],
which consists of N functions in total, like φi[n] = e j(2πni/N).

The OFDM scheme is consistent with the general case as in
Equation (4). As discussed in Section 3, the input to the NN-
defined modulator consists of real and imaginary elements
from the complex symbol vectors. They are divided into 2
groups at the transposed convolutional layer. For each group,
the kernels are set based on the real and imaginary parts of
e j2πni/N . Then, the four-channel output from the transposed
convolutional layer is fed into the fully-connected layer to
generate the final In-phase and Quadrature signals.
4.2 Protocol-specified NN-defined Modulators
IoT protocol modulators may incorporate additional oper-
ations to enhance system reliability. For instance, ZigBee
adopts an offset operation to the QPSK modulator by shifting
the quadrature signals by half a symbol duration. OFDM sys-
tems used in WiFi adopt cyclic-prefix to improve robustness
against multipath effects. Concurrently, some IoT protocols
introduce intricate frame structures containing various fields
for signaling. For example, WiFi frames typically encompass
different signal fields. Although all these fields utilize the
OFDM modulator, they may require different operations.

To address these additional operations, we draw inspiration
from the inheritance feature in computer programming. The
NN-defined modulators serve as the foundational component,
and we attach operations to the temporal output from the
base NN-defined modulator to generate the ultimate output
signals. The attached processes are also achieved through
operators supported by neural networks, allowing us to derive
specialized NN-defined modulators for diverse protocols. We
will discuss the protocol-specific NN-defined modulator in
greater detail in Section 7.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 779

SDR
Modulators

NN-Defined
Modulators

Basis Functions

Kernels

Functional
Analysis

(a)

Training Symbols Training Signals
Learning

Algorithm

SDR
Modulators

NN-Defined
Modulators

Kernels

(b)

NN-Defined
Modulators

Fine-tuning
Algorithm

NN-Defined
Modulators

Performance
Demands

(c)

Figure 9: Different approaches to configure kernels. (a) Manual setting with expert knowledge, (b) Learning from existing
datasets, (c) Fine-tuning with other ML modules.

5 Modulator Kernel Configuration
From the previous sections, we designed a template for the
general modulation model, where the kernels of the template
can be derived for a specific modulation scheme. In this sec-
tion, we will discuss how to use the NN-defined modulator
template to learn from signals whose analytical expression is
unknown or fine-tune the NN-defined modulator to compen-
sate for hardware distortion in practical systems.

5.1 Manual Setting with Expert Knowledge
As shown in Figure 9a, for a modulation scheme with a known
analytical expression, communication experts can take a direct
way to derive the kernels of the transposed convolutional layer
as discussed in Section 4. It is an efficient and accurate way to
construct signals in the NN-defined modulator, similar to the
conventional Software modulator in the SDR development.

5.2 Learning from Dataset
As shown in Figure 9b, for a signal with an unknown analyti-
cal expression or a non-expert developer, the kernels of the
template can be derived by training the NN-defined modula-
tor. For example, a non-expert developer who intends to shift
an existing software radio to another platform can utilize the
learning ability of the NN-defined modulator from the existing
system to reconstruct the modulator, which will significantly
ease the development complexity. One can treat it as a stan-
dard machine learning task to minimize the mean squared
error. Thanks to the model-driven approach, the trained ker-
nels imply a potential signal processing pipeline to mimic the
target signal.

More specifically, the training input has the dimension
of [Batch_size,2 × Symbol_dimension, Sequence_length],
where 2 × Symbol_dimension indicates the input is repre-
sented using the real and imaginary parts. And the training out-
put has the size of [Batch_size,Signal_length,2], where the
2 on the last dimension also indicates the real and imaginary
parts of complex signals. There are 2× Symbol_dimension
kernels to train in total.

For demonstration, we apply the NN-defined modulator
template to learn the 64-S.C. OFDM scheme. The NN-defined
OFDM modulator is trained with the same training settings
as the example FC-based modulator in Section 2 with the

same dataset and training epochs. The training set contains
256 different OFDM symbol sequences, each of which repre-
sents 128 input complex symbols. The FC-based modulator
is implemented with two fully-connected layers, with almost
∼ 60000 trainable parameters in total. We calculate the mean
squared error between the modulated signals from two kinds
of modulators and the standard signals on the training and test
sets, respectively. Both the FC-based modulator and our NN-
defined modulator have tiny errors on the training set. Our
NN-defined modulator outperforms the FC-based modulator
significantly on the test set. We plot signals generated from
our NN-defined and the FC-based modulator in Figure 10.
As in the figure, our NN-defined modulator can modulate the
symbols correctly, while the FC-based modulator fails. The
NN-defined modulator has much fewer parameters to train
compared with the FC-based modulator, and the parameters
are physically meaningful, which ensures that our NN-defined
modulator is more reliable.

10 20 30 40 50 60

 Sample

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 A
m

p
li
tu

d
e
 (

re
a
l)

FC-based modulator

NN-defined modulator

Standard

Figure 10: Waveform (In-phase) comparison of FC-based
modulator, NN-defined modulator, and standard modulator
for 64-S.C. OFDM scheme.

5.3 Fine-tuning for Better Performance
As shown in Figure 9c, the NN-defined modulator can be com-
bined with extra AI/ML models to fine-tune to meet specific
performance demands. During the fine-tuning procedure, the
kernels of the NN-defined modulators and parameters within
the appended AI/ML module are adjusted to fulfill the goals.
The fine-tuning process is an open design because the per-
formance demands and the AI/ML extra modules are diverse.
For better illustration, we discuss combining the proposed
NN-defined modulator with additional AI/ML modules to
handle the hardware distortion in the transmitter systems.

780 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The modulated signals are processed at the RF front-end
in the transmitter systems to send over the air. Due to the
characteristics of the circuits, there is some non-linearity in
the RF front-end hardware, which will introduce distortion
to the output signal compared with the ideal output. One
efficient approach to reduce the distortion effect is to apply the
predistortion process to the modulated signals before feeding
into the RF front-end [52]. Here, we propose to use a neural
network-based predistortion (NN-PD) module. Without loss
of generality, we focus on the non-linearity introduced by the
power amplifier.

Standard signal
FE Model

Distorted signal

NN-PD FE Model
(Fixed)

Modeling Distortion at Front-End

Fine-tuning of NN-defined Modulator with NN-PD module

NN-defined
Modulator

Fine-tuning
Algorithm

Pre-distorted signal

Compensated signal

Figure 11: Diagram of Front-End model and NN-defined
modulator with NN-PD module.

As illustrated in Figure 11, we first use a neural network,
the front-end (FE) Model, to model the nonlinear behavior of
the RF front-end. The FE model serves as the simulator of the
RF front-end for the fine-tuning procedure. Next, we construct
the NN-PD and insert it between the NN-defined modulator
and the FE model. The predistorted signals from the NN-PD
will pass the FE model, and the compensated signal is gen-
erated. The compensated signal is supposed to be as similar
as possible to the ideal output signal. So, we set the training
goal of our fine-tuning algorithm and tune the kernels in the
NN-defined modulator and the parameters in NN-PD module
while the parameters in the FE model are fixed. Once the
fine-tuning procedure is finished, the NN-defined modulator
and NN-PD module can generate predistorted signals, which
can compensate for the non-linearity of the RF front-end.

As for verification, we compare the Bit Error Rate (BER)
performance of QAM-modulated signals with predistortion
and those without predistortion. The simulation is conducted
in additive white Gaussian noise (AWGN) channel. We plot-
ted the BER curves in Figure 12. The BER curve of the ideal
signals is also visualized as the baseline. Furthermore, we
conduct Error Vector Magnitude (EVM) test on the modu-
lated signals. EVM can be evaluated by a percentage scale
that reflects the deviation of the modulated and standard con-
stellations. We measure the root mean squared EVM of the
signals at different SNR levels. The results are illustrated in
Table 1. When the SNR is low (SNR< 0dB), the noise is dom-
inant in such conditions, so all three signals suffer from noisy
environments, resulting in high error rates and high EVM.
However, when SNR is relatively high (SNR> 0dB), the dis-

tortion effect of the RF front-end is more significant than the
noise. Hence, the signals with predistortion perform much
better than those without predistortion because the hardware
distortion is reduced. However, the compensation is imper-
fect, so the error rates and EVMs of the predistorted signals
are still slightly larger than the ideal signals. The above re-
sults indicate the great potential that the proposed NN-defined
modulator can be integrated with other AI/ML modules and
deliver better performance.

SNR=-10dB 0dB 10dB
EVM of ideal signals 65.9% 31.2% 15.4%

w/ predistortion 66.6% 32.1% 15.7%
w/o predistortion 79.5% 33.4% 21.7%

Table 1: Root mean squared EVM of ideal modulated signals,
signals with predistortion, and signals without predistortion.

-10 -5 0 5 10

SNR (dB)

10
-3

10
-2

10
-1

10
0

B
E

R
 f

o
r

Q
A

M
-4

 s
ig

n
a

l

Ideal

Without Predistortion

With Predistortion

Figure 12: BER of NN-defined Modulator with NN-PD.

6 Modulator with Portability
We first highlight better portability of NN-defined modu-
lators compared with conventional software radio systems
by demonstrating the pipeline of the software modulator to
generate signal samples. The software radio relies on some
libraries which contain signal processing operations. We
choose SciPy [15], a scientific computing library in Python,
and GNURadio [4], the recognized software radio library, as
case studies. Moreover, without loss of generality, we con-
sider the QAM with Root Raised Cosine (RRC) pulse shaping
filter as an example. It requires two major steps for modu-
lation: upsampling and pulse-shaping filtering. We list the
corresponding implementation for the GNURadio-based and
the SciPy-based modulators in Table 2. As shown in the
table, although the two kinds of implementations share the
same pipeline, the functions used are quite different, which
requires the developer to master new development tools for
smooth conversion. Besides, we also notice that GNURadio
provides several predefined shaping filter blocks, like Root
Raised Cosine Filter(rrc_fir) for quick usage. In con-
trast, SciPy does not provide such predefined functions, so
we need to configure the filter manually, which also increases
the difficulty of porting.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 781

Operations GNURadio SciPy
Upsampling interp_fir scipy.interpolate

Filtering rrc_fir scipy.convovle

Table 2: Operations for QAM modulator in different toolkits.

6.1 Framework-Independent NN-defined Modulators
Framework-dependent design implies that the NN-based
modulators depend on unique functions or models provided
by specific machine learning frameworks. Although ma-
chine learning frameworks offer some mathematical func-
tions that can be employed to develop customized neural
network layers for modulation tasks, as seen in NVIDIA
Sionna [33] based on TensorFlow, the customized neural net-
work modulator remains reliant on the development frame-
work. To exemplify, we demonstrate the implementation
details of the Sionna-based QAM modulator. Sionna em-
ploys the built-in operations and encapsulates them into the
customized neural network layers, Upsampling and Filter,
to emulate the functions as in the conventional pipeline.
Upsampling layer applies tf.pad and some dimensional op-
erations like tf.expand_dims to insert zeros between sym-
bols, and Filter layer applies tf.math.convolve which
takes the upsampled symbol sequences and filter taps as input
to generate the modulated signals. We compare the availabil-
ity of mathematical functions used in the Sionna modulator
across other mainstream ML frameworks. The results are
presented in Table 3. Although there are similar functions
such as pad and convolve, the direct transition among dif-
ferent frameworks is still hard. Consequently, the framework-
dependent modulator can be ported to platforms running the
same framework, but it is challenging to deploy it on plat-
forms operating with different frameworks.

Tensorflow PyTorch

NN-defined Conv1DTranspose ConvTranspose1d
Linear Linear

Sionna
pad pad+concatenate

expand_dims unsqueeze
convolve convolve

Table 3: Original operations and converted ONNX operators
in our NN-defined and Sionna QAM modulator.

Framework-independent design means our NN-based
modulators are implemented by the share functions or models
by various machine learning frameworks. Unlike NVIDIA
Sionna, which constructs customized layers fro modulators,
our NN-defined modulators utilize the fundamental neural
network layers that are considered basic components of ex-
isting machine learning frameworks. More specifically, the
transposed convolutional layer and the fully connected layer
are generally supported by various frameworks [13, 16, 23].
Although the layer names vary (Table 3), they share the same
functionalities, which ensures that the proposed NN-defined
modulator can be a framework-independent design.

inputsymbol

ConvTranspose

W〈2×2×33〉

Transpose

MatMul

B〈4×2〉

outputwaveform

(a)

Modulator
Implementation

Portable
Format

Interpreter

(b)

Figure 13: (a) Example converted ONNX format of a QAM
NN-defined modulator, (b) Diagram of development and de-
ployment of NN-defined modulators.

We utilize the ONNX [10] as an intermediate framework
to ensure the interoperability. ONNX is an open ecosystem
for technology companies and research organizations to store
and import neural network models onto different frameworks.
ONNX defines a common set of operators that contains the
fundamental layers of neural network models, including the
transposed convolutional layer and the fully-connected layer
used in our design. As a validation, we visualize the graph
of the ONNX model of our NN-defined modulator template
in Figure 13a. As depicted in the figure, the transposed con-
volutional layer operator is ConvTranspose, and the fully-
connected layer is represented by the MatMul operator. Al-
most all mainstream machine learning frameworks support
conversions between their native models and ONNX ones. It
is also worth noting that porting customized neural network
layers to ONNX models demands significant effort. Conse-
quently, the custom layers in NVIDIA Sionna are challenging
to convert to ONNX models, while our NN-defined modulator
built upon fundamental layers exhibits better interoperability
across different frameworks.

6.2 Seamless Acceleration
As previously illustrated, IoT gateway hardware platforms
provide acceleration capabilities to expedite the execution of
neural network models. The proposed NN-defined modulator
is constructed based on fundamental neural network layers
that are generally supported and well-optimized for execution
on various hardware platforms. Therefore, the NN-based mod-
ulator can leverage these capabilities to enhance efficiency,
speeding up the modulation process.

A typical development and deployment workflow for the
proposed NN-defined modulators is depicted in Figure 13b.
The prototype of the NN-defined modulators can be devel-
oped in mainstream machine learning frameworks, such as
PyTorch. Then, NN-defined modulators are converted to a
portable ONNX format for improved interoperability across
different platforms. Deploying ONNX models requires a com-
piler, such as ONNX runtime [11] or Apache TVM [2]. Using

782 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 14: Prototype of NN-defined modulator. Left box:
Nvidia Jetson Nano as the host device for the NN-defined
modulator. Right box: ADI Pluto SDR as SDR hardware.

ONNX runtime as an example, it can utilize different accel-
erator backends. Numerous accelerator backends have been
developed by the community. For instance, it can employ
Nvidia GPU [8] on GPU-equipped systems, Arm ACL [3]
for Arm SoC platforms, and OpenVINO [12] for Intel x86
platforms. Therefore, the NN-defined modulator can be seam-
lessly accelerated on various platforms.

7 Evaluation
7.1 Implementation
7.1.1 Framework and hardware
We design the NN-defined modulator in PyTorch [13] with
ConvTranspose1d and Linear layers. Once the NN-defined
modulators are ready for port, we convert the modulators into
ONNX format. We port the ONNX NN-defined modulator to
Nvidia Jetson Nano [9] and Raspberry Pi [14] for verification.
Both devices support the ONNX runtime, and Jetson Nano
is equipped with a GPU, which can be used to accelerate the
execution of the ONNX NN-defined modulators.

Besides, we also implement an NN-defined modulator pro-
totype. We connect the host (Nvidia Jetson Nano) running the
NN-defined modulator with the SDR hardware (ADI Pluto
SDR [1]) as shown in Figure 14. We use this prototype to
transmit the modulated signals over the air.

7.1.2 Modulation schemes
Without loss of generality, we choose several typical schemes
for 1) PAM-2 with the rectangular filter, 2) QPSK with the
half-sine wave filter, 3) 16-QAM with RRC filter for ampli-
tude/phase modulation, and 4) 64-S.C. OFDM scheme for
multicarrier modulation. We use MATLAB Signal Processing
Toolbox [6] to generate the symbols and the signals as for
training sets. When evaluating the efficiency and portability,
we select 16-QAM modulator with RRC filter as the example.
The conventional SDR modulators for 16-QAM with RRC
filter are implemented with signal processing libraries, GNU-
Radio [4] on x86 laptop, and SciPy [15] on Nvidia Jetson
Nano, as the baselines. For comparison, we also implement a

16-QAM modulator with RRC filter using Nvidia Sionna [33]
on the x86 laptop for comparison.

7.2 Signal Quality of NN-defined Modulator

7.2.1 Trained kernels in NN-defined modulators

As discussed in Section 5, the kernels within the NN-defined
modulator can be trained with training sets. Here, we use
16-QAM with RRC filter and 64-S.C. OFDM scheme as ex-
amples to analyse the trained kernels.

For the 16-QAM scheme with RRC shaping filter, the in-
put symbol is 1-dimensional, so there are 2 kernels trained.
According to the analysis in Section 4, the trained kernels
are supposed to be the real and imaginary parts of the shap-
ing filter. We visualize trained kernels and the original RRC
shaping filter in Figure 15a. One of the trained kernels is
nearly identical to the original shaping filter. The other one is
almost zero-valued, which is consistent with the zero-valued
imaginary parts of the shaping filter.

For the 64-S.C. OFDM scheme, there are 2× 64 kernels
trained. According to the analysis in Section 4, the kernels
are supposed to be the real and imaginary parts of the sub-
carrier functions, i.e., e j 2πin

64 . We also visualized a pair of the
trained kernels in Figure 15b. And these two kernels are the
same as real and imaginary parts of the standard subcarrier
e j 2π×32n

64 . The NN-defined OFDM modulators share the same
conclusion that the trained kernels perfectly match the signal
processing pipeline in conventional modulators.

0 5 10 15 20 25 30

Sample

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

A
m

p
li

tu
d

e

Shaping Filter

Trained Kernel 1

Trained Kernel 2

(a)

0 10 20 30 40 50 60

Sample

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

A
m

p
li

tu
d

e
Subcarrier 32(real)

Trained Kernel (32,1)

Subcarrier 32(imag)

Trained Kernel (32,2)

(b)

Figure 15: Trained kernels from NN-defined modulators for
(a) QAM with RRC filter, (b) 64-S.C. OFDM.

7.2.2 Transmission performance in AWGN channel

We apply the trained NN-defined modulators to generate sig-
nals and pass the signals in the additive white Gaussian noise
(AWGN) channel to verify the transmission performance.
And we plot the Bit Error Rate (BER) curves in Figure 16.
Meanwhile, The BER curves of the signals from standard
modulators in MATLAB are also plotted as the baseline. As
illustrated in the figure, the NN-defined modulators for the
selected modulation schemes can modulate the symbols cor-
rectly so that the modulated signals can achieve the same error
performance as standard modulators in AWGN channels.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 783

-10 -5 0 5 10

SNR (dB)

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

NN-defined PAM-2

NN-defined QPSK

NN-defined QAM-16

NN-defined OFDM

Standard PAM-2

Standard QPSK

Standard QAM-16

Standard OFDM

Figure 16: The BER performance of NN-defined modulator
compared with standard modulators.

7.3 Efficiency and Portability
7.3.1 Efficiency improvement
To verify the efficiency improvement of the NN-defined mod-
ulator, we measure the running time of the conventional SDR
QAM modulator, the NN-defined QAM modulator, and the
Nvidia Sionna QAM modulator on an x86 laptop and compare
these time recordings in Figure 17. All the QAM modulators
modulate a batch consisting of 32 symbol sequences with 256
symbols.

without acceleration with acceleration

Settings

0

0.5

1

1.5

2

R
u

n
n

in
g
 t

im
e

(m
s)

Conventional modulator

Sionna modulator

NN-defined modulator

Figure 17: Running time of different implementations.

When all three modulators run without acceleration, it takes
0.58ms for our design to finish, which is much faster than the
conventional (1.7ms) and Sionna modulator (1.9ms). Our NN-
defined modulator applies the fundamental neural network
layers that are well-optimized so that it performs better than
the customized neural network layers implemented in Nvidia
Sionna as well as the conventional SDR modulator.

The NN-defined and Sionna modulators support hardware
acceleration thanks to the neural network implementation.
We measure their running time with acceleration enabled. We
also implement an accelerated QAM modulator with cuSig-
nal [20]. The NN-defined modulator and Sionna modulator
execute much faster than without acceleration. The running
time of the NN-defined modulator is reduced to 0.059ms from
0.58ms, which is 28 times faster than the conventional SDR
modulators without acceleration, even 10 times faster than the
implementation using cuSignal. For the Sionna modulator, the
running time is also reduced to 0.25ms. Both our NN-defined
modulator and Sionna modulator run faster than the conven-

tional modulator. These results prove that the NN-defined
modulator can significantly improve efficiency compared with
conventional SDR modulators.
7.3.2 Portability
Porting among platforms. As aforementioned in Section 6,
porting the conventional SDR implementations and Sionna-
based one from one platform to another requires consider-
able effort. Here, we focus on the portability of our NN-
defined modulator. Following the development diagram of
the NN-defined modulators, we first implement the NN-
defined QAM modulator in PyTorch and convert it into
the ONNX model. We list the converted operations in
the ONNX framework in Table 4. The transposed con-
volutional layer (torch.ConvTranspose1d) and the linear
layer (torch.Linear) are widely supported so that they can
be converted to the portable format.

Implementations PyTorch layer ONNX operator

NN-defined ConvTranspose1d ConvTranspose
Linear MatMul

Table 4: Original operations and converted ONNX operators
in the NN-defined modulator.

Performance on different platforms. We now deploy the
ONNX NN-defined QAM modulator on embedded computers
such as Nvidia Jetson Nano and Raspberry Pi. Figure 18a
illustrates the running time on different platforms. Sionna
modulator fails to be ported because the customized layers
are hard to be transformed into ONNX models. Although
the running time of the NN-defined modulator on embedded
systems is longer than that on the x86 laptop, we successfully
port our NN-defined modulators to different platforms.

X86 PC Jetson Nano Raspberry Pi

Platforms

0

5

10

15

20

25

R
u

n
n

in
g

 t
im

e
(m

s)

Conventional modulator

Sionna modulator

NN-defined modulator

(a)

8 16 32

Number of input sequences

0

2

4

6

8

10

12

R
u

n
n

in
g

 t
im

e
(m

s)

Conventional modulator

NN-defined modulator (CPU)

NN-defined modulator (GPU)

(b)

Figure 18: (a) Running time on different platforms of x86 PC,
Nvidia Jetson Nano, Raspberry Pi. (b) Acceleration evaluation
on the target platform of Nvidia Jetson Nano.

The following evaluation demonstrates the acceleration
capability of the target platform. We configure the ONNX
NN-defined QAM modulator on Nvidia Jetson Nano to run
with GPU acceleration as discussed in Section 6. We compare
the running time of the conventional modulator and our NN-
defined modulator modulate symbol batches of different sizes.
The evaluation results are visualized in Figure 18. We can
observe a considerable efficiency improvement compared
with the conventional modulator as well as the CPU-only

784 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NN-defined modulator. Moreover, the efficiency of our NN-
defined modulator is still much better than the conventional
modulator implemented with an accelerated signal processing
library. More specifically, when the number of input symbol
sequences is 32, the accelerated NN-defined modulator is 4.7
times faster than the conventional modulator and even 2.5
times faster than the accelerated modulator. These results
showcase that we can easily run the NN-defined modulators
on target platforms with acceleration capability.

7.4 Application in IoT Technologies
The proposed NN-defined modulators are employed to gen-
erate protocol-compliant signals, showcasing representative
use cases in IoT gateways.

7.4.1 ZigBee-compliant Signals
ZigBee [24], developed based on IEEE 802.15.4 [19], utilizes
Offset-QPSK, a variant of amplitude/phase modulation, as its
modulation scheme. The diagram of the O-QPSK modulator
is illustrated in Figure 19. The modulator input comes from a
4-QAM constellation, where the symbols are {±1±1 j}. The
real and imaginary parts of the input symbols are processed
separately to generate I/Q signals. The quadrature branch of
signal samples is shifted by a delay to introduce the offset.
As evident in the output waveform, the quadrature branch
exhibits a slight lag.

NN-defined O-QPSK Mod

NN-defined
QPSK Mod

Conventional O-QPSK Mod

Upsampling
Pulse

Shaping

Upsampling
Pulse

Shaping
Shift

Shift

I

Q

I

Q

Figure 19: Diagram of conventional O-QPSK modulator (top)
and the NN-defined O-QPSK modulator (bottom).

To construct an O-QPSK modulator for ZigBee protocol,
we combine the NN-defined QPSK modulator with a shift-
ing process to form the NN-defined O-QPSK modulator, as
depicted in Figure 19. We generate symbols from messages
following the specification and feed them into our NN-defined
O-QPSK modulator. The modulated signals are sent over the
air utilizing the prototype in Figure 14. We employ the TI
CC2650 Kit [17] as the ZigBee receiver, which can parse the
captured signals into messages.

We generate ZigBee packets with varying message lengths
and transmit 100 packets. At the receiver side, the received
ZigBee packets without errors are recorded, and we calculate
the packet reception ratio (PRR) in different settings, repeat-
ing the evaluation 5 times. We compare the performance with
the SDR implementation using signal processing libraries.
And we conduct the same experiments on commercial off-
the-shelf (COTS) TI devices as a baseline. The evaluation
is conducted indoors and outdoors. The settings of indoor
environments are demonstrated in Figure 20a. As depicted in

Figure 20b, the ZigBee signals generated by the NN-defined
modulator can be successfully received by the commercial
device, achieving performance comparable to the existing
SDR implementation and commercial devices.

Tx

Rx

7m

(a)

16 32 64 128

Length of Messages (bytes)

75

80

85

90

95

100

P
R

R
 (

 1
0

0
%

)

NN-defined Modulator (Indoor)

NN-defined Modulator (Corridor)

SDR Modulator (Indoor)

SDR Modulator (Corridor)

COTS Modulator (Indoor)

COTS Modulator (Corridor)

(b)

Figure 20: (a) Evaluation settings in indoor environment. (b)
Packet Reception Ratio of ZigBee packets modulated by NN-
defined modulator and SDR modulator.

7.4.2 WiFi-compliant Signals
WiFi, which is also extensively utilized for IoT communica-
tion, typically employs the OFDM scheme. When implement-
ing the NN-defined modulator for WiFi communication, the
process becomes slightly more complex, as WiFi utilizes the
CP-OFDM [48] modulator, and WiFi frames generally consist
of signals generated from various fields.

Taking IEEE 802.11a/g as an example in Figure 21, WiFi
frames comprise four fields: Short Training Field (STF), Long
Training Field (LTF), Signaling Field (SIG), and Data Field
(DATA). The STF and LTF primarily serve detection, synchro-
nization, and channel estimation purposes at the receiver. The
SIG contains information about the current frame, such as
frame length and modulation and coding scheme information,
while the DATA field carries the data.

STF LTF SIG DATA

8us

8us

4us

Variable

Figure 21: Fields in IEEE 802.11a/g frame.
Different fields need specific operations. The STF and LTF

involve repeating the signals from the OFDM modulator,
while the SIG and DATA require adding a cyclic prefix to the
modulated signals by copying the ending parts of the OFDM
signals to the front. Following the discussion in Section 4, we
combine an NN-defined OFDM modulator with additional
operations to add the cyclic prefix.

Four NN-defined modulators corresponding to the four
fields in IEEE 802.11a/g WiFi frames are implemented. These
modulators are then combined to create a single NN-defined
WiFi modulator. The overall structure is illustrated in Fig-
ure 22. The NN-defined modulators for STF, LTF, SIG, and
DATA fields collectively form the NN-defined WiFi modula-
tor, allowing for a comprehensive modulation process that
addresses the unique requirements of each field.

We generate beacon packet signals using the NN-defined
WiFi modulator and transmit them over the air. A laptop is

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 785

NN-defined
STF Mod

NN-defined
LTF Mod

NN-defined
SIG Mod

NN-defined
DATA Mod

ConcatenateNN-defined Wi-Fi Mod

Input Wi-Fi symbols:[STF,LTF,SIG,DATA]

Output Waveform

Figure 22: NN-defined Wi-Fi modulator.

used to sniff the beacon packets. We test beacon reception in
an indoor environment at the 5GHz band, transmitting 100
beacon packets for 5 times. Figure 23 demonstrates that the
laptop can successfully receive the beacon with an SSID of
"NN-definedModulator", achieving a PRR at 96%.

Figure 23: Reception of beacon signals generated by NN-
defined Wi-Fi modulator.

Next, we extend our design to transmit data by generat-
ing data packets and passing the signals through simulated
AWGN channels. We follow the standard process to detect
and synchronize WiFi frames using STF signals, conduct
channel estimation and equalization using LTF signals, and
then demodulate and decode the SIG and DATA signals. In
our evaluation, the symbols for a grayscale image data are
generated using 16-QAM and 64-QAM. The results are listed
in Figure 24. As shown in the figure, we can successfully
reconstruct the transmitted images under different settings,
further demonstrating the effectiveness and versatility of our
NN-defined modulator design in practical applications.

(a) (b) (c)

Figure 24: (a) Original image of 256×256 pixels; Received
images using (b) 16-QAM at SNR=10dB and (c) using 64-
QAM at SNR=20dB.

8 Related Works
SDR solutions for IoT gateway: SDRs are proposed as
universal gateways operating across technologies. Past work
[22, 51, 59] has developed smart home gateways using the
USRP radio with GNUradio support. [45] revisited the SDR-

based IoT gateway for decoding collapsed packets. Other so-
lutions employed the cross-technology communication tech-
nique as an alternate for IoT gateways [34–36, 39–42, 53–56].

Machine learning for communication system: Neural
networks or machine learning has been extensively used in
physical layer designs [25, 31, 44, 47, 49, 57, 61]. [46] intro-
duced a method to learn an end-to-end communication sys-
tem by interpreting it as an autoencoder [30]. In [60], a DNN
model replaces all blocks in the conventional OFDM receiver.
In [50], the researchers propose to replace processing blocks
in the OFDM receiver with neural network models and deploy
them on IoT devices.

Our work has innovations in two tiers, distinctive objectives,
and different methodologies. Objective-wise, most literature
views the neural network as an optimizer and seeks perfor-
mance gains under complex conditions [61]. In contrast, we
use the neural network as an abstraction layer for the porta-
bility of IoT gateway functionalities. Methodology-wise, the
literature commonly adopts data-driven approaches that em-
ploy general-purpose neural networks [25,49,57]. We adopt a
model-driven approach that designs the neural network-based
modulators with reference to the mathematical models.

9 Discussion
It’s worth pointing out that we only discuss the linear ampli-
tude/phase modulation schemes in this paper. Other modula-
tion schemes require further study, such as frequency modula-
tion, also known as non-linear modulation. Following the sim-
ilar idea, We can model the frequency modulation based on
the phase changes and construct another NN-defined modula-
tor template that can be used for the Gaussian frequency shift
keying (GFSK) modulators used in Bluetooth [32]. Moreover,
we intend to extend the application of the learning ability.We
can further apply the neural network to learn to reduce the ad-
jacent channel leakage ratio (ACLR) for single carrier scheme
or to reduce the peak-average power ratio (PAPR) for OFDM
scheme. We can also apply the NN-defined modulator to learn
from noisy signal samples to reconstruct noiseless modulators.
The model-driven approach can also be applied to the receiver
design, including demodulation and decoding, which is an
emerging topic in wireless communication.

10 Conclusion
In this paper, we present an NN-defined modulator template
for various modulation schemes that can be converted to a
unified NN framework for portable deployment for IoT gate-
way design. The proposed NN-defined modulator has the
extensibility to achieve various modulation schemes for IoT
connections, and the evaluation results show that they can
perform well. The NN-defined modulator outperforms the
existing SDR solutions in terms of portability and efficiency
thanks to the wide support of the NN on heterogeneous com-
puting platforms. Meanwhile, the NN-based implementation
also enables our design with the learning ability, featuring the
potential for intelligent communication systems.

786 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgments
We extend our heartfelt thanks to the reviewers for their rigor-
ous and constructive feedback and the shepherding committee
for their invaluable guidance. Special appreciation goes to
our collaborator, Shuai Wang from George Mason University,
whose diverse skills also significantly enriched this work. This
research is supported by the Ministry of Education, Singapore,
under its Academic Research Fund Tier 2 (MOE-T2EP20221-
0017), National Natural Science Foundation of China under
Grant No.62272098 and The Future Network Scientific Re-
search Fund Project (Grant No. FNSRFP-2021-YB-17). This
research is also supported by the National Research Founda-
tion, Singapore, and Infocomm Media Development Authority
under its Future Communications Research & Development
Programme.

References
[1] Adi adalm-pluto. https://www.

analog.com/en/design-center/
evaluation-hardware-and-software/
evaluation-boards-kits/adalm-pluto.html.

[2] Apache tvm. https://tvm.apache.org/.

[3] Arm compute library. https://www.arm.com/
technologies/compute-library.

[4] Gnu radio. https://www.gnuradio.org/.

[5] Hardwario iot platforms. https://www.hardwario.
com/.

[6] Matlab signal processing toolbox. https://www.
mathworks.com/products/signal.html.

[7] Narrowband–internet of things (nb-
iot). https://www.gsma.com/iot/
narrow-band-internet-of-things-nb-iot/.

[8] Nvidia cuda toolkit.

[9] Nvidia jetson nano developer kit. https:
//developer.nvidia.com/embedded/
jetson-nano-developer-kit.

[10] Onnx: Open neural network exchange. https://onnx.
ai.

[11] Onnx runtime. https://onnxruntime.ai/.

[12] Openvino. https://docs.openvino.ai/latest/
home.html.

[13] Pytorch. https://pytorch.org/.

[14] Raspberry pi. https://www.raspberrypi.com/.

[15] Scipy. https://www.scipy.org/.

[16] Tensorflow. http://tensorflow.org/.

[17] Texas instruments launchxl-cc2650. https://www.ti.
com/tool/LAUNCHXL-CC2650.

[18] Up edge computing kit. https://www.aaeon.com/
en/c/up-edge-computing-kit.

[19] Ieee standard for low-rate wireless networks. IEEE Std
802.15.4-2015 (Revision of IEEE Std 802.15.4-2011),
pages 1–709, 2016.

[20] Cusignal. https://developer.nvidia.com/blog/
accelerated-signal-processing-with-cusignal,
2023.

[21] Amiruddin Amiruddin, Anak Agung Putri Ratna, Ruki
Harwahyu, and Riri Fitri Sari. Secure multi-protocol
gateway for internet of things. In 2018 Wireless Telecom-
munications Symposium (WTS), pages 1–8, 2018.

[22] Carlos J Bernardos, Antonio De La Oliva, Pablo Ser-
rano, Albert Banchs, Luis M Contreras, Hao Jin, and
Juan Carlos Zúñiga. An architecture for software de-
fined wireless networking. IEEE wireless communica-
tions, 21(3):52–61, 2014.

[23] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. Mxnet: A flexible and efficient ma-
chine learning library for heterogeneous distributed sys-
tems. arXiv preprint arXiv:1512.01274, 2015.

[24] Sinem Coleri Ergen. Zigbee/ieee 802.15. 4 summary.
UC Berkeley, September, 10(17):11, 2004.

[25] Xuanxuan Gao, Shi Jin, Chao-Kai Wen, and Geoffrey Ye
Li. Comnet: Combination of deep learning and expert
knowledge in ofdm receivers. IEEE Communications
Letters, 22(12):2627–2630, 2018.

[26] Georgios Georgis, Alexios Thanos, Marcin Filo, and
Konstantinos Nikitopoulos. A dsp acceleration frame-
work for software-defined radios on x86 64. In ICASSP
2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1648–
1652. IEEE, 2020.

[27] Egidio Gioia, Pierluigi Passaro, and Matteo Petracca.
Amber: An advanced gateway solution to support het-
erogeneous iot technologies. In 2016 24th International
Conference on Software, Telecommunications and Com-
puter Networks (SoftCOM), pages 1–5. IEEE, 2016.

[28] Gwenhael Goavec-Merou. Gnuradio running on em-
bedded boards: porting to buildroot. Proceedings of the
GNU Radio Conference, 2021.

[29] Andrea Goldsmith. Wireless communications. Cam-
bridge university press, 2005.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 787

https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adalm-pluto.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adalm-pluto.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adalm-pluto.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adalm-pluto.html
https://tvm.apache.org/
https://www.arm.com/technologies/compute-library
https://www.arm.com/technologies/compute-library
https://www.gnuradio.org/
https://www.hardwario.com/
https://www.hardwario.com/
https://www.mathworks.com/products/signal.html
https://www.mathworks.com/products/signal.html
https://www.gsma.com/iot/narrow-band-internet-of-things-nb-iot/
https://www.gsma.com/iot/narrow-band-internet-of-things-nb-iot/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://onnx.ai
https://onnx.ai
https://onnxruntime.ai/
https://docs.openvino.ai/latest/home.html
https://docs.openvino.ai/latest/home.html
https://pytorch.org/
https://www.raspberrypi.com/
https://www.scipy.org/
http://tensorflow.org/
https://www.ti.com/tool/LAUNCHXL-CC2650
https://www.ti.com/tool/LAUNCHXL-CC2650
https://www.aaeon.com/en/c/up-edge-computing-kit
https://www.aaeon.com/en/c/up-edge-computing-kit
https://developer.nvidia.com/blog/accelerated-signal-processing-with-cusignal
https://developer.nvidia.com/blog/accelerated-signal-processing-with-cusignal

[30] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and
Yoshua Bengio. Deep learning, volume 1. MIT press
Cambridge, 2016.

[31] Hengtao He, Shi Jin, Chao-Kai Wen, Feifei Gao, Geof-
frey Ye Li, and Zongben Xu. Model-driven deep learn-
ing for physical layer communications. IEEE Wireless
Communications, 26(5):77–83, 2019.

[32] Robin Heydon and Nick Hunn. Bluetooth low energy.
CSR Presentation, Bluetooth SIG https://www. bluetooth.
org/DocMan/handlers/DownloadDoc. ashx, 2012.

[33] Jakob Hoydis, Sebastian Cammerer, Fayçal Ait Aoudia,
Avinash Vem, Nikolaus Binder, Guillermo Marcus, and
Alexander Keller. Sionna: An open-source library for
next-generation physical layer research. arXiv preprint
arXiv:2203.11854, 2022.

[34] Wenchao Jiang, Song Min Kim, Zhijun Li, and Tian He.
Achieving receiver-side cross-technology communica-
tion with cross-decoding. In Proceedings of the 24th
Annual International Conference on Mobile Computing
and Networking, pages 639–652, 2018.

[35] Wenchao Jiang, Zhimeng Yin, Song Mim Kim, and Tian
He. Transparent cross-technology communication over
data traffic. In IEEE INFOCOM 2017-IEEE Conference
on Computer Communications, pages 1–9. IEEE, 2017.

[36] Wenchao Jiang, Zhimeng Yin, Ruofeng Liu, Zhijun Li,
Song Min Kim, and Tian He. Bluebee: a 10,000 x faster
cross-technology communication via phy emulation. In
Proceedings of the 15th ACM Conference on Embedded
Network Sensor Systems, pages 1–13, 2017.

[37] Tarik Kazaz, Christophe Van Praet, Merima Kulin, Pieter
Willemen, and Ingrid Moerman. Hardware accelerated
sdr platform for adaptive air interfaces. arXiv preprint
arXiv:1705.00115, 2017.

[38] Kaipeng Li, Bei Yin, Michael Wu, Joseph R Cavallaro,
and Christoph Studer. Accelerating massive mimo up-
link detection on gpu for sdr systems. In 2015 IEEE
dallas circuits and systems conference (DCAS), pages
1–4. IEEE, 2015.

[39] Zhijun Li and Tian He. Webee: Physical-layer cross-
technology communication via emulation. In Proceed-
ings of the 23rd Annual International Conference on
Mobile Computing and Networking, pages 2–14, 2017.

[40] Ruofeng Liu, Zhimeng Yin, Wenchao Jiang, and Tian He.
Lte2b: Time-domain cross-technology emulation under
lte constraints. In Proceedings of the 17th Conference on
Embedded Networked Sensor Systems, pages 179–191,
2019.

[41] Ruofeng Liu, Zhimeng Yin, Wenchao Jiang, and Tian He.
Xfi: Cross-technology iot data collection via commodity
wifi. In 2020 IEEE 28th International Conference on
Network Protocols (ICNP), pages 1–11. IEEE, 2020.

[42] Ruofeng Liu, Zhimeng Yin, Wenchao Jiang, and Tian
He. Wibeacon: Expanding ble location-based services
via wifi. In Proceedings of the 27th annual international
conference on mobile computing and networking, pages
83–96, 2021.

[43] Roberto Morabito, Riccardo Petrolo, Valeria Loscrì, and
Nathalie Mitton. Legiot: A lightweight edge gateway
for the internet of things. Future Generation Computer
Systems, 81:1–15, 2018.

[44] Tianjie Mu, Xiaohui Chen, Li Chen, Huarui Yin, and
Weidong Wang. An end-to-end block autoencoder for
physical layer based on neural networks. arXiv preprint
arXiv:1906.06563, 2019.

[45] Revathy Narayanan and Swarun Kumar. Revisiting
software defined radios in the iot era. In Proceedings
of the 17th ACM Workshop on Hot Topics in Networks,
pages 43–49, 2018.

[46] Timothy O’shea and Jakob Hoydis. An introduction
to deep learning for the physical layer. IEEE Transac-
tions on Cognitive Communications and Networking,
3(4):563–575, 2017.

[47] Timothy O’shea and Jakob Hoydis. An introduction
to deep learning for the physical layer. IEEE Transac-
tions on Cognitive Communications and Networking,
3(4):563–575, 2017.

[48] John G. Proakis. Digital Communications. McGraw-
Hill New York, 2007.

[49] Morteza Soltani, Wael Fatnassi, Ahmed Aboutaleb,
Zouheir Rezki, Arup Bhuyan, and Paul Titus.
Autoencoder-based optical wireless communica-
tions systems. In 2018 IEEE Globecom Workshops (GC
Wkshps), pages 1–6. IEEE, 2018.

[50] Nasim Soltani, Hai Cheng, Mauro Belgiovine, Yanyu
Li, Haoqing Li, Bahar Azari, Salvatore D’Oro, Tales
Imbiriba, Tommaso Melodia, Pau Closas, et al. Neural
network-based ofdm receiver for resource constrained
iot devices. arXiv preprint arXiv:2205.06159, 2022.

[51] Manolis Surligas, Antonis Makrogiannakis, and Ste-
fanos Papadakis. Empowering the iot heterogeneous
wireless networking with software defined radio. In
2015 IEEE 81st Vehicular Technology Conference (VTC
Spring), pages 1–5. IEEE, 2015.

788 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[52] Chance Tarver, Liwen Jiang, Aryan Sefidi, and Joseph R
Cavallaro. Neural network dpd via backpropagation
through a neural network model of the pa. In 2019 53rd
Asilomar Conference on Signals, Systems, and Comput-
ers, pages 358–362. IEEE, 2019.

[53] Shuai Wang, Jianlin Guo, Pu Wang, Kieran Parsons,
Philip Orlik, Yukimasa Nagai, Takenori Sumi, and Parth
Pathak. X-disco: Cross-technology neighbor discovery.
In 2022 19th Annual IEEE International Conference
on Sensing, Communication, and Networking (SECON),
pages 163–171. IEEE, 2022.

[54] Shuai Wang, Woojae Jeong, Jinhwan Jung, and
Song Min Kim. X-mimo: Cross-technology multi-user
mimo. In Proceedings of the 18th Conference on Embed-
ded Networked Sensor Systems, pages 218–231, 2020.

[55] Shuai Wang, Song Min Kim, and Tian He. Symbol-level
cross-technology communication via payload encoding.
In 2018 IEEE 38th International Conference on Dis-
tributed Computing Systems (ICDCS), pages 500–510.
IEEE, 2018.

[56] Shuai Wang, Zhimeng Yin, Zhijun Li, Yongrui Chen,
Song Min Kim, and Tian He. Networking support for
bidirectional cross-technology communication. IEEE
Transactions on Mobile Computing, 20(1):204–216,
2019.

[57] Chao-Kai Wen, Wan-Ting Shih, and Shi Jin. Deep learn-
ing for massive mimo csi feedback. IEEE Wireless
Communications Letters, 7(5):748–751, 2018.

[58] Hao Ye, Geoffrey Ye Li, and Biing-Hwang Juang. Power
of deep learning for channel estimation and signal detec-
tion in ofdm systems. IEEE Wireless Communications
Letters, 7(1):114–117, 2017.

[59] Chaorui Zhang, Peng Xie, Deyuan Li, Jiekai Zhang, and
Rong Yu. Wireless home gateway: Software-defined
radio architecture and applications. In IET International
Conference on Communication Technology and Appli-
cation (ICCTA 2011). IET, 2011.

[60] Zhongyuan Zhao, Mehmet Can Vuran, Fujuan Guo, and
Stephen D Scott. Deep-waveform: A learned ofdm
receiver based on deep complex-valued convolutional
networks. IEEE Journal on Selected Areas in Commu-
nications, 39(8):2407–2420, 2021.

[61] Banghua Zhu, Jintao Wang, Longzhuang He, and Jian
Song. Joint transceiver optimization for wireless com-
munication phy using neural network. IEEE Journal on
Selected Areas in Communications, 37(6):1364–1373,
2019.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 789

Democratizing Direct-to-Cell Low Earth Orbit Satellite Networks
Lixin Liu1, Yuanjie Li1,2, Hewu Li1,2, Jiabo Yang1, Wei Liu1, Jingyi Lan1, Yufeng Wang1,

Jiarui Li1, Jianping Wu1,2, Qian Wu1,2, Jun Liu1,2, Zeqi Lai1,2
1Tsinghua University, 2Zhongguancun Laboratory

Abstract
Multi-tenant Low Earth Orbit (LEO) satellites emerge as a

cost-effective win-win solution for direct 4G/5G access to our
regular phones/IoTs anywhere on Earth. However, the current
hop-by-hop stateful cellular session impedes this effort due
to its need for tight functional coupling and stable service
relationships among satellite operators, mobile operators, and
users. Our empirical study with real satellite data shows that,
it restricts LEO satellites’ serviceable areas, limits the use of
available (possibly competitive) satellites, and suffers from
signaling storms and dynamic many-to-many relationships
in extreme LEO mobility. We thus devise MOSAIC to strive
for self-serve multi-tenant LEO satellites. MOSAIC defines
policy-embedded one-time tokens for pay-as-you-go local
satellite access. These tokens allow satellites to self-serve
users anywhere without relying on remote mobile operators,
alleviate inter-satellite coordinations to enjoy competitive
satellites, and simplify many-to-many service relationships
for on-demand multi-tenancy. MOSAIC is attack-resilient and
incrementally deployable using our SIM-based solution. Our
evaluations with the real satellite data and commodity 3GPP
NTN protocol stack validate MOSAIC’s viability.

1 Introduction
Space is the new business growth point for cellular networks.
The emergent direct-to-cell LEO satellites, such as SpaceX’s
Starlink [1, 2], Iridium [3, 4], Globalstar [5], AST [6, 7], and
Lynk [8] complement terrestrial networks to eliminate their
coverage holes for 2.7 billion “unconnected” global users [9]
and offer their regular phones/IoTs direct satellite access via
4G, 5G, and beyond. They can significantly save operators’
infrastructure costs in under-served areas and expand their ser-
vice to anywhere on Earth for new subscribers and revenues.
So, mobile network operators (MNOs) and satellite network
operators (SNOs) have actively partnered to deploy [10–15]
and standardize [16–27] direct-to-cell LEO satellite services.

Rather than owning dedicated satellites by every MNO,
building multi-tenant direct-to-cell satellites for sharing is a
more practical and favorable win-win solution for MNOs and
SNOs [1] (Figure 1). On the one hand, satellites are a scarce
and competitive resource for MNOs. The highly congested
near-Earth space leaves insufficient orbital slots for all MNOs’
satellites [28–30]. LEO satellites’ capital expenses are also
prohibitive for MNOs [31, 32]. Instead, renting satellites is
more affordable and lowers the barriers to entry for MNOs.
On the other hand, SNOs also have incentives to partner with
MNOs due to their lack of licensed 4G/5G spectrums to serve

SNOs MNOs UEs

LEO
mobility

Cells

t1 t2

Figure 1: Dynamic multi-tenant direct-to-cell LEO satellites.

regular phones/IoTs independently. Akin to cloud computing,
leasing satellites to more MNOs increases SNOs’ revenues
and return on investment through economies of scale.

Sharing satellite access has been a decades-old practice.
Traditional geostationary satellites are single-hop physical
pipes that are easily sharable using the infrastructure-as-a-
service model. While ideal for multi-tenancy, this transparent
pipe model suffers from low service coverage, missed radio
processing deadlines, and unaffordable bandwidth demands
in 4G/5G due to its heavy reliance on remote ground stations
(§3.1). To this end, modern LEO satellites like Starlink, AST,
and Lynk have adopted onboard cellular network functions
for scalable and performant direct-to-cell services [8, 33–36].

However, cellular network functions in LEO satellites are
not easily sharable due to their requirement for tight func-
tional coupling and stable service relationships among SNOs,
MNOs, and user equipment (UEs). This requirement is rooted
in the cellular architecture’s stateful hop-by-hop session that
assumes fixed, always-on, and trusted infrastructure. It is hard
to meet in multi-tenant LEO satellites due to their fast mobil-
ity, intermittent accessibility to MNOs for remote control, and
3rd-party nature as intermediate session nodes. Our empirical
study with real satellite data shows that (§3), this defect is
detrimental to everyone: It impedes UEs’ flexible use of any
available satellites, restricts MNOs’ serviceable areas, compli-
cates MNOs’ use of diverse (potentially competitive) SNOs’
satellites, and exhausts SNOs’ satellites with signaling storms
and dynamic many-to-many relationship management.

We explore an alternative cellular scheme for self-serve
multi-tenant direct-to-cell satellites. Our solution, MOSAIC
(Multi-Operator Satellite Access via In-band Control), adopts
the pay-as-you-go paradigm that is more suitable than hop-by-
hop stateful sessions for sharing the mobile infrastructure like
LEO satellites (§5): Akin to mobile bike sharing [37], each
MNO supplies its UEs with self-certified one-time tokens (a
satellite version of restrictive blind signatures from the offline
cash system [38]) as “coins” to pay for local satellite access
on demand. These tokens embed UE-specific roaming, billing,
and QoS policies to let any authentic satellite self-serve UEs
without contacting remote MNOs. This UE-initiated in-band

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 791

state provision enables near-stateless/sessionless satellites for
transparent pipe-like multi-tenancy. It also simplifies inter-
satellite coordination and dynamic many-to-many service
relationships to avoid signaling storms and encourage the use
of competitive SNOs’ satellites. MOSAIC’s tokens retain the
same security level as the legacy 4G/5G and are incrementally
deployable using our SIM card-based deployment (§6).

We prototype MOSAIC and evaluate it using real satellite
data and Amarisoft’s commodity 3GPP non-terrestrial net-
work (NTN) protocol stack. Compared to the NTN [16–27]
and Starlink [34–36], MOSAIC scales to a large number of
satellites, COTS UEs, and MNOs with signaling storm free-
dom, 116% serviceable area expansion to the LEO constella-
tion’s entire coverage, and 4.71–14.25⇥ service resumption
latency reduction in LEO mobility at negligible costs.

2 Why Multi-Tenant LEO Mobile Satellites?

In this section, we motivate the need for direct-to-cell LEO
satellites (§2.1) and the incentives for sharing them among
MNOs from the MNO, SNO, and UE perspectives (§2.2).

2.1 The Need for Direct-to-Cell LEO Satellites

Direct-to-cell satellites originate as a complementary method
to connect phones/IoTs where the terrestrial infrastructure
cannot reach. To offer ubiquitous access, terrestrial cellular
networks should deploy radio access networks (RANs) with
numerous radio base stations to cover broad geographic areas
and bridge them to the Internet via core networks (Figure 2a).
While profitable in urban areas with sufficient subscribers,
such capital-intensive infrastructure loses revenues when cov-
ering rural areas with few subscribers [39, 40] and is even
undeployable in oceans and airplanes, thus leaving 2.7 billion
global users unconnected [9, 41]. Instead, direct-to-cell satel-
lites can complement terrestrial networks with their broad
coverage, offer direct cellular access to phones/IoTs, and save
MNOs’ capital and operation costs in under-served areas.

Traditional direct-to-cell satellites, such as Inmarsat [42],
Thuraya [43], and Tiantong [44], operate in the geostationary
orbit (GEO) at an altitude of 35,786 km. While excellent for
broad coverage, GEO satellites are unfriendly to commodity
phones/IoTs since their distant transmission is power-hungry,
slow, and noisy. Dedicated satphones with high-gain antennas
can alleviate this issue, but they are not widely available or
affordable to most consumers. Instead, modern satellites like
Starlink [1, 2], Iridium [3, 4], Globalstar [5], AST [6, 7], and
Lynk [8] operate in LEOs at the altitude of 340–2,000 km
to be closer to phones/IoTs for faster network speed, lower
energy costs, and more affordable hardware. Due to each LEO
satellite’s smaller coverage, a constellation with 10s–1,000s
satellites is typically adopted for global coverage.

RRC
PDCP
RLC
MAC
PHY

NGAP
SCTP

NG-C
IP

RAN

NGAP
SCTP

IP

Core
Control plane

MNO
AMF

RRC
…PDCP

RLC
MAC
PHY

SNOUE

SDAP
PDCP
RLC
MAC
PHY

GTP-U
UDP

NG-U
IP

RAN
GTP-U
UDP

IP

Core
User plane

MNO
UPF

SDAP
…PDCP

RLC
MAC
PHY

SNOUE
RF repeater RF repeater

(a) Transparent satellite pipe [20, 44] (option 8 in Fig.5a)

RRC
…PDCP

RLC
MAC
PHY

SNO

RLC
MAC
PHY

F1AP
SCTP

Layer-2/3 network
F1-C

Control plane

UE MNO

onboard RAN-DU

PDCP

NG-C

NGAP
SCTP

IP

RAN-CU
NGAP
SCTP

IP

Core

AMF

F1AP
SCTP

RRC

SDAP
…PDCP

RLC
MAC
PHY

SNO

RLC
MAC
PHY

GTP-U
UDP

Layer-2/3 network
F1-U

User plane

UE MNO

PDCP

NG-U

GTP-U
UDP

IP

GTP-U
UDP

IP

Core

UPF

GTP-U
UDP

SDAP

onboard RAN-DU RAN-CU

(b) Onboard RAN-DU [20] (option 2 in Fig.5a, also used in Starlink [33–36])

RRC
…PDCP

RLC
MAC
PHY

SNO

RRC
PDCP
RLC
MAC
PHY

NGAP
SCTP

Layer-2/3 network

NG-C NGAP
SCTP

IP

Core

AMF

Control plane

UE MNO

on-board RAN
SDAP

…PDCP
RLC
MAC
PHY

SNO

SDAP
PDCP
RLC
MAC
PHY

UDP

Layer-2/3 network

NG-U
UDP

IP

Core

UPF

User plane

UE MNO

on-board RAN
GTP-U GTP-U

(c) Onboard RAN [20] (option 1 in Fig.5a, full-fledged satellite base stations)
Figure 2: State-of-the-art cellular network function splits in
3GPP NTN and Starlink for direct-to-cell satellites.

2.2 Incentives for LEO Satellite Multi-Tenancy
The traditional satellite network market is monopolistic: Each
SNO independently launches its own satellites (most of which
reside in the GEO) to operate its own network services using
dedicated satellite-specific radio spectrums. While feasible
for standalone GEO satellites for customized terminals, this
dedicated mode is not technically feasible or commercially
profitable for both MNOs and SNOs in direct-to-cell LEO
constellations due to three fundamental constraints:

1. MNOs: Scarce orbital slots. LEOs are highly crowded,
with about 8,300 satellites [29] and 27,000 space junks [28],
leading to 3,500–60,000 conjunction events per month [45,
46] and 24,410 collision avoidance maneuvers per year [47].
The recent mega-constellation deployment further congests
LEOs and raises collision risks [30] and RF interferences [48].
This situation leads to more stringent and time-consuming
orbit allocations (typically years) by ITU [49]. There are
insufficient orbital slots to accommodate all MNOs’ satellites.

2. SNOs: Shortage of licensed 4G/5G spectrums. To
be compatible with commodity phones/IoTs, direct-to-cell
satellites should use the legacy 4G/5G spectrums, most of
which have been allocated to terrestrial MNOs by ITU/FCC.
SNOs alone do not have sufficient licensed cellular spectrums
to offer direct-to-cell services.

3. MNOs & SNOs: Prohibitive capital costs. Despite
advances in satellite miniaturization and rocket reusability,
deploying a LEO constellation is still capital-intensive for
both MNOs and SNOs [31, 32]. Building dedicated direct-to-
cell LEO constellations raises the barrier to entry for MNOs
and lowers the commercial return on investment for SNOs.

To this end, SNOs like Starlink [10–12, 33, 50], AST
[6, 7, 51], and Lynk [8] have recently partnered with global
MNOs (e.g., T-Mobile, AT&T, Vodafone, and KDDI) to ad-
vocate multi-tenant direct-to-cell satellite services. FCC has
recently proposed a regulatory framework to foster collabo-
rations between SNOs and MNOs, allowing SNOs to utilize
spectrum previously allocated only to MNOs through lease

792 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

HUAWEI
Mate60 Pro

satellite
phone

Iridium
9602 IoT
module

China
Telecom

Tiantong T900
Thuraya

X5-Touch

HUAWEI
Mate50 Pro

satellite
phone

(a) Direct-to-cell UEs

Oceania

North America Europe

Starlink dishes

(b) Open probes [54]

Dataset Scale Description
TLEs
[55]

50,922,755 Two-
Line Elements

Real LEO satellites’
ephemeris

Iridium
RF

943,003 RF link
measurements

From our Iridium
RF receivers

RIPE
open
probes
[54]

7,800,177 ping
and 382,464
traceroute logs

From 50 open Star-
link dishes as net-
work probes

GEO
direct-
to-cell

3,903,065 PHY,
MAC, RLC, RRC,
& NAS logs

From Thuraya X5-
Touch and Tiantong
T900 satphones

(c) Real satellite dataset
Figure 3: Equipment and satellite data in our empirical study.

UE Ground station MNO

Transparent
LEO satellite

(a) Reliance on ground stations (GS) (b) Servicable areas limited by GS
Figure 4: Limited coverage for transparent LEO satellites.

agreements or partnerships [52]. Each MNO rents SNOs’
satellites and grants its licensed 4G/5G spectrums to them for
direct phone/IoT connection. The SNO’s satellites can host
multiple MNOs’ direct-to-cell services, while each MNO can
rent diverse SNOs’ satellites for coverage and cost optimiza-
tions. Akin to cloud computing, LEO multi-tenancy yields
a win-win situation: it lowers the barrier to entry for MNOs,
complements MNOs’ terrestrial coverage in under-served ar-
eas at low costs, and increases SNOs’ revenues and return
on investment through economies of scale. UEs also benefit
from it through a more open, competitive market that offers
cheaper satellite data plans and complementary coverage1.

3 Challenges for Multi-Tenant LEO Satellites

While appealing to SNOs, MNOs, and UEs, multi-tenant
direct-to-cell LEO satellites are still in their infancy. The
ongoing direct-to-cell satellite solutions under development,
such as Starlink [34–36] and 3GPP NTN [16–27], have not
started to support multi-tenancy. Our empirical study driven
by real satellite data in Figure 3 shows that traditional 2G/3G
GEO transparent pipe sharing model is not feasible for LEOs
due to its incomplete coverage, 4G/5G deadline violations,
and unaffordable bandwidth demands (§3.1). While moving
4G/5G functions to LEO satellites can resolve this issue, its
multi-tenancy can be impeded by the cellular hop-by-hop
stateful session’s need for tight functional coupling and stable
service relationships among SNOs, MNOs, and UEs (§3.2).

3.1 Transparent Satellite Pipe as a Service?
Sharing satellite access is a decades-old practice. Most GEO
satellites today are transparent physical pipes that can multi-
plex radio signals from diverse MNOs. Similar to fiber rentals,
it is easy for MNOs to rent these satellites to relay raw RF
signals (IQ samples) between UEs and terrestrial infrastruc-
ture, as shown in Figure 4a. This physical network slicing has

1The latest Huawei Mate 60 Pro+ smartphone has supported both
Tiantong and Beidou satellites for messaging services [53].

RRC PDCP High-RLC Low-RLC High-MAC Low-MAC High-PHY Low-PHY RFData

Option1

Deadline demand

Option2 Option3 Option4 Option5 Option6 Option7 Option8

Bandwidth
demand(5G)

10ms 1.5~10ms 100μs 100s of μs 250μs
3Gbps 4.5Gbps 7.1Gbps 15.2Gbps 157.3Gbps
4Gbps 5.2Gbps 5.6Gbps 9.8Gbps 157.3GbpsDL

UL

Central Unit

Distributed Unit

(a) Standard functional split options in 4G/5G radio functions [56–58]

MNO

SNO

UE

7.86 Gbps/sat
(PCS, 5MHz)

ISLIQ sample
data

(b) IQ sample data aggregation at ISLs (c) Aggregated IQ sample throughput

(d) Starlink terminal’s RTT w/o ISLs (e) Starlink terminal’s RTT w/ ISLs

Starlink ground station
0 50 100 150 200 250 300

User

11.6 ms 11.7 ms 22.3 ms

200 ms

270 ms 19.3 ms
Option

4

0 100μs 250μs 10ms
Option

5-8
Option

1-3

(f) RTT between the user and its nearest ground station (w/ ISLs)
Figure 5: Transparent satellite pipes cannot meet 4G/5G’s
deadline and throughput requirement for basic functionality.
been successful in direct-to-cell GEO satellites for low-speed
2G/3G. It is a preferable multi-tenancy model for both MNOs
and SNOs due to its simplicity and transparency: MNOs
can rent satellites on demand as plug-and-play pipes with-
out exposing their internal network functions to SNOs, thus
retaining complete control of their mobile services. SNOs
can transparently accommodate and isolate diverse (poten-
tially competitive) MNOs without deploying or maintaining
complex, per-MNO cellular functions in satellites.

Unfortunately, while excellent for low-speed 2G/3G GEO
satellites, this transparent pipe sharing becomes technically
infeasible for faster 4G/5G LEO satellites for three reasons:

(1) Incomplete coverage: For a standalone satellite, UEs
and ground stations must concurrently reside in its coverage
for functional direct-to-cell services. While acceptable for
GEO satellites with broad coverage, this issue limits low-
coverage LEO satellites’ globally serviceable areas (Fig-
ure 4b). Most “unconnected” UEs today [9] reside in remote
areas with sparse or no ground stations, thus leaving them
still disconnected by bent-pipe satellites. This prevents MNOs
from expanding their services to these UEs for more revenue.

(2) Missed 4G/5G radio deadlines: To expand coverage,
LEO satellites can be networked via inter-satellite links (ISLs)
to reach remote ground stations. However, such a networked
physical pipe still cannot meet 4G/5G’s basic functional re-
quirements. From the functional split view, networked trans-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 793

session migrated

Source
RAN-DU

Target
RAN-DU RAN-CUUE Source

RAN
Target
RAN Core

P8: measurement report

P9: UE context setup

P13: random access

P14: rrc reconfiguration complete

P15: UE context release

downlink data delivery status

P11: rrc reconfiguration

downlink data delivery status

service available

P12: UE context modification response

P10: UE context modification request

SNO MNOSNO MNO

(b) Inter-RAN handover (option 1)

P5: path switch request
downlink data

P6: path switch request Ack
P7: release resources

service available

handover preparation

handover execution

P2: session context request

P0: service request
P1: service request

P3: rrc reconfiguration
P4: session context request ack

(a) Service request

service request procedure

(c) Inter-RAN-DU handover (option 2)

UE

service available

session migrated

hop-by-hop session

hop-by-hop session

registration procedure

Figure 6: Signaling procedures in 4G/5G satellites [61].
parent LEO satellites essentially follow the standard 3GPP
option-8 split [56–58] in Figure 5a: Each satellite relays all
serving UEs’ RF IQ samples to remote ground stations for
processing. For functional correctness, each 4G/5G IQ sam-
ple should be delivered to the ground station within 250µs,
which accounts for 80 km distance between the satellite and
ground station [56]. This stringent deadline is unsatisfiable
for LEO satellites, whose distance to ground stations is at
least 340 km. Figure 5d–5e quantify real Starlink dish termi-
nals’ ping RTTs to ground stations with/without multi-hop
ISL traversals based on the RIPE’s global open Starlink dish
probes [54]. Both RTTs exceed the 250-µs deadline by 1–2
orders of magnitude, thus crashing the basic 4G/5G radio
functions if the transparent satellite pipe model was used.

(3) Unaffordable bandwidth demands: Each transparent
LEO satellite relays all serving UEs’ IQ samples to ground
stations for processing, which requires 7.86 Gbps for a typical
5 MHz radio channel [58]. As shown in Figure 5b–5c, all
these satellites’ IQ samples to remote ground stations will
accumulate and congest ISLs (typically with 20 Gbps capac-
ity [59, 60]), thus further impeding the 4G/5G functionality.

3.2 In-Orbit Cellular Function as a Service?

To avoid the transparent LEO satellite pipe’s constraints for
functional 4G/5G in §3.1, SNOs have started to offload ter-
restrial cellular network functions to LEO satellites. Starlink
Gen 2 satellites have equipped medium access control (MAC)
and radio link control (RLC) protocols [33, 34], resulting in
an option-2 split in Figure 5a. 3GPP also extends its 4G/5G
standards to place partial (option-2) or complete (option-1)
radio functions to satellites [20] (Figure 2b–2c). Due to the
stringent 4G/5G radio deadlines in Figure 5a, only option-

(a) RAN (Option 1 in Fig.6b) (b) RAN-DU (Option 2 in Fig.6c)
Figure 7: Signaling storms in satellites under LEO mobility.

1 and 2 split are feasible for LEO satellites. Both localize
the radio processing to avoid missing deadlines and wasting
ISL bandwidth, thus enabling functional direct-to-cell 4G/5G
LEO satellite services for commodity phones/IoTs.

However, in-orbit cellular functions are not easily sharable
from the multi-tenancy perspective. Localizing radio process-
ing in satellites in Figure 2 requires exposing MNOs’ internal
cellular functions to SNOs’ fast-moving, intermittently acces-
sible, and potentially untrusted LEO satellites. This functional
split among SNOs, MNOs, and UEs becomes burdensome in
LEO satellites due to two fundamental issues:
Tight functional coupling: Today’s cellular network
adopts a stateful session-based architecture for carrier-grade
services. To activate services for each UE, it should set up a
hop-by-hop session across the UE, base station, and core net-
work that binds this UE’s ID, QoS, billing, and security states.
As the UE moves, it should migrate this hop-by-hop session
to the new infrastructure node to retain services. This stateful
session implies a tight coupling and trust among the UE, base
station (SNO), and core network (MNO) to coordinate for
successful network services, which is not flexible or efficient
for LEO multi-tenancy from all participants’ perspectives:
� SNOs: Signaling storms. The exposure of MNOs’ stateful

cellular functions can exhaust the SNO’s satellites. Each LEO
satellite has a short-lived coverage for each area due to its fast
mobility (e.g., ⇡3 minutes for a Starlink satellite at 7.6km/s).
When entering a new area, each LEO satellite should take
over all active UEs’ sessions from the previous LEO satellite
for continuous services. The session migration procedures
differ between functional split options (F1AP [62] for option-
2 between local and remote radio functions in Figure 6c, and
NGAP [63] for option-1 between RAN and core network in
Figure 6b). We evaluate the number of signaling processed by
each satellite per second in Figure 7. Since each satellite can
cover multiple MNOs (each having 1,000s of UEs), both incur
signaling storms for LEO satellites.These signaling storms
can consume up to 15.75% of total ISL bandwidth.
� MNOs: Restricted serviceable areas. Due to the tight

functional coupling, the radio functions in SNOs’ satellites in
Figure 2b–2c still rely on the remote ground station to contact
the terrestrial MNO and fetch each UE’s session states for
functioning. Note that most LEO satellites today do not have
active or reliable ISLs2. Similar to transparent pipes in §3.1,
they cannot serve UEs in remote areas without ground stations
even if physically covering them (Figure 4). To independently

2For example, Starlink’s ISLs have just started to operate in limited
areas [64, 65], while AST, Globalstar, and Lynk’s satellites have no ISLs.

794 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SNO1's satellite MNO

t

t+Δtt+2Δt
t

t+Δt

t+2Δt

 count
SNO2's satellite

(a) Distribution of global MNOs [67] (b) MNO update interval per satellite

(c) Visible satellites/beams (Iridium RF) (d) Switch interval (Iridium RF)
Figure 8: Dynamic SNO-MNO-UE service relationship.

function without MNOs, SNOs’ satellites should equip the
MNO’s full-fledged radio and core network functions, which
becomes out of the MNO’s control due to satellites’ intermit-
tent accessibility and is vulnerable to attacks in space [66].

� MNOs & UEs: Inflexible use of competitive SNOs. As
explained in §2.2, both MNOs and UEs have incentives to
employ diverse LEO satellites from multiple SNOs. However,
the hop-by-hop session in Figure 2 limits this flexibility due
to its tight coupling among the UE, SNO, and MNO. As the
LEO satellite moves, the UE and its MNO should re-establish
or migrate the session among competitive SNOs’ satellites
that are unlikely to coordinate directly. Re-establishing the
session requires the new satellite to fetch UE states from the
ground station, thus limiting its serviceable area without ISLs
(Figure 4). Migrating the session from the old SNO’s satellite
to the new SNO’s satellite is prohibitive due to its competitive
nature. While the MNO’s terrestrial core can bridge these
satellites for indirect migration, its reliance on remote ground
stations again limits LEO satellites’ serviceable area.
Dynamic SNO-MNO-UE service relationship: Due to the
extreme LEO mobility, the many-to-many relationship among
SNOs, MNOs, and UEs fluctuates and challenges everyone:

� SNOs: Exhaustive MNO reconfigurations. Each SNO
aims to host as many MNOs as possible for higher revenue.
As its LEO satellite moves, it should repeatedly reconfigure its
serving MNOs in the current coverage (Figure 1 and 8a–8b).
With its cellular functions coupled to MNOs, this reconfigu-
ration is more exhaustive than transparent pipes in §3.1 since
it should manage MNOs’ per-UE stateful sessions (Figure 7).

� MNOs & UEs: Dynamic trust establishment. As shown
in Figure 8c–8d, the LEO satellites that each MNO and UE
can employ change over time due to their transient coverage,
some of which can be untrusted. They must frequently re-
establish trust with the new incoming satellite to maintain the
hop-by-hop stateful session (thus signaling storms), which is
hardly scalable to LEO constellations from diverse SNOs.

4 Overview

We propose an alternative cellular network scheme for multi-
tenant direct-to-cell LEO satellites to address issues in §3.

Online/offline token provisioning (§5.2)

MOSAIC's functions
Legacy cellular functions

Online/offline token clearing (§5.2)

Pay-as-you-go local access (§5.3)

RRC
PDCP
RLC
MAC
PHY

SNOs

UPF
5GC

UE MNOs

Self-serve multi-tenant
orbital functions (§5.1)

MNO
certificate

UE
blacklist

Token
bucket

Intermittent network links

Radio1

UPF1

Tokens
Token issuer

UDM

PCF
AUSF

…

RRC
PDCP
RLC
MAC
PHY

Radio2

UPF2

Radio3

UPF3

Figure 9: Overview of MOSAIC.

Our solution, MOSAIC, adopts in-orbit cellular functions for
functional direct-to-cell 4G, 5G, and beyond (§3.1). As shown
in §3.2, these functions are not easily sharable due to their
tight functional coupling and demands for stable service re-
lationships among SNOs, MNOs, and UEs. Both are hard
to meet in SNOs’ LEO satellites due to their fast mobility,
intermittent accessibility to remote MNOs when ISLs are not
reliable or active, and 3rd-party nature for MNOs and UEs.

To this end, MOSAIC shifts from the hop-by-hop session-
based cellular service to pay-as-you-go satellite self-service.
We note that, the need for tight cellular functional coupling
and stable service relationships stems from the hop-by-hop
stateful session for carrier-grade services. These sessions are
inherently vulnerable to extreme LEO mobility, intermittent
satellite connectivity, and untrusted satellites. Instead, the
pay-as-you-go paradigm is more suitable for sharing mobile
infrastructure like LEO satellites3: Analogous to bike-sharing
systems [37], each UE pays for its runtime satellite access on-
demand using one-time digital tokens (“coins”) provisioned
by its MNO. Any SNO’s authentic local satellite can accept
these tokens to serve this UE without pre-establishing ses-
sions or contacting MNOs. When this satellite can reach the
remote MNO (e.g., using ISLs immediately if available or ge-
ographically covering the MNO’s ground station afterward),
it uses these tokens as a proof of service to charge the MNO
for on-demand satellite leasing. This scheme departs from the
session-based cellular architecture today in three aspects:
� Loose coupling: Each satellite locally self-service UEs

without contacting remote ground stations or other satellites.
This alleviates the coordination among satellites and ground
stations, prevents signaling storms for SNOs under fast LEO
mobility, lets the MNO employ remote satellites for more
coverage and revenue, and facilitates the UE to take advantage
of diverse (potentially competitive) SNOs’ satellites.
� Simple SNO-MNO-UE relationship: The pay-as-you-go

tokens eliminate stateful sessions and decouple the SNO,
MNO, and UE to benefit everyone. SNOs’ in-orbit cellular

3Although the pay-as-you-go paradigm has also existed in terrestrial
mobile networks (e.g., prepaid SIM cards [68]), it is still based on hop-by-
hop stateful session. It is infeasible for multi-tenant LEO satellites (§3.2).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 795

functions become near-stateless, thus more transparent and
friendly for multi-tenancy (similar to pipes in §3.1). MNOs
and UEs can rent SNOs’ satellites on demand, which is more
cost-effective and flexible to use competitive satellites.

� Retain carrier-grade services: Despite near-stateless, this
scheme can still retain carrier-grade services. Its pay-as-you-
go paradigm naturally enforces the billing and even avoids
traditional 4G/5G’s exhaustive charging data signalings [69].
The MNO can embed the roaming, QoS, and other policies
into its digitally signed tokens. When accepting these tokens
from the UE, the SNO’s satellite locally learns these policies
to enforce them without directly contacting remote MNOs.

Figure 9 overviews MOSAIC. It comprises multi-tenant
satellites from SNOs, the remote terrestrial home network
from MNOs, and UEs. Satellites equip full-fledged radio and
data-plane functions to meet the 4G/5G deadline and band-
width requirements in §3.1. These functions’ states are decou-
pled from satellites and provisioned by UEs’ tokens, result-
ing in near-stateless satellites for transparent multi-tenancy.
To foster self-service, MOSAIC does not mandate ISLs in
these satellites for immediate access to ground stations. Each
MNO’s terrestrial home maintains its subscriber database and
provisions its UEs with self-certified, policy-embedded to-
kens online or offline. For compatibility and integration with
terrestrial 4G/5G, the MNO can reuse its core network to
manage these tokens. The UEs store these tokens in their
SIM cards and feed them to the satellites via runtime in-band
signaling for pay-as-you-go services.

5 Design of MOSAIC
This section addresses three key issues to realize MOSAIC:

1. How can SNOs arrange cellular functions in satellites to
enable self-serve multi-tenancy for MNOs (§5.1)?

2. How can MNOs generate pay-as-you-go tokens for UEs
to leverage these 3rd-party satellites, while still retaining
full (remote) control of carrier-grade services (§5.2)?

3. How can UEs consume these tokens to access any local
authentic satellites without mutual trust (§5.3)?

5.1 Self-Serve Multi-Tenant Orbital Functions
The first step for MOSAIC is to enable multi-tenant direct-to-
cell LEO satellites for SNOs that are (I) as easily sharable by
MNOs as the classic transparent pipe in §3.1 but (II) free of
their incomplete global coverage, 4G/5G deadline violations,
and bandwidth exhaustion in §3.1. The challenge arises from
the tension between both goals: (II) requires pushing 4G/5G
functions to LEO satellites, which, however, suffers from tight
coupling with MNOs and complex SNO-MNO-UE service
relationship dynamics to meet (I). As explained in §3.2, this
tension is rooted in the hop-by-hop stateful cellular session.

To this end, MOSAIC rearranges orbital cellular functions
to be self-contained for (II) and decouples them from stateful
sessions for (I). Each satellite deploys self-contained 4G/5G

radio and user-plane functions, so that it can independently
serve local UEs in case its ISLs are unavailable/disrupted and
remote ground stations are unreachable. These orbital cellular
functions are near-stateless and decoupled from MNOs: At
runtime, they are locally driven by UE-paid tokens in §5.2
provisioned by MNOs that have embedded session states,
thus free of signaling coordination (storms) among satellites
and ground stations. This design allows the satellite to serve
MNOs and UEs on demand and approximates the transparent
pipes in §3.1. We next elaborate on the design details.

Step 1: Self-contained cellular functions in satellites. As
shown in Figure 9, each satellite in MOSAIC runs full-fledged
4G/5G radio functions as standalone base stations, thus free of
deadline violations and bandwidth exhaustion in §3.1. It also
integrates the core network’s user-plane functions to enforce
self-serve traffic forwarding, QoS, and billing. To decouple
these functions from stateful sessions, MOSAIC adopts a
session state proxy in each satellite. This local proxy emulates
control-plane core network functions for radio and user-plane
functions through the standard interface (e.g., NGAP [70]
and GTP-U [71] in 5G). It provisions session states to these
functions using the UE-paid tokens rather than contacting
remote MNOs. Even without ISLs or access to ground stations
in the worst case, each satellite can still independently offer
the minimum 4G/5G access and local communications (e.g.,
voice calls, short messaging, and emergency SoS) for UEs
inside its coverage4. In this case, each satellite can still serve
a considerable number of users due to its wide coverage area
(covering 10–100s km2). When the ground stations or ISLs
are available, it can also roll back to the legacy 4G/5G to fetch
states from MNOs (though not necessary in most cases).

Step 2: Transparent MNO multi-tenancy. To serve a
MNO in a given geographic area, each LEO satellite should
be (1) granted the use of this MNO’s licensed 4G/5G spectrum
in this area for the radio access; (2) paid by UE-side tokens
for runtime on-demand access; and (3) paid by MNOs offline
by showing these tokens as a proof of service. To achieve
this, the MNO signs a digital certificate for each authorized
satellite that binds its spectrum grant with this satellite’s iden-
tity and geographic areas to use these spectrums. The satellite
stores this certificate as a proof for UEs and global spectrum
regulators to offer services when covering the target areas. At
runtime, it accepts UE-side tokens with session states to drive
its stateless 4G/5G functions, and saves these tokens into its
bucket for offline financial clearing with the MNO (detailed in
§5.2). Its stateless functions can easily accommodate multiple
MNOs with their certificates for multi-tenancy.

Step 3: Dynamic multi-tenancy under LEO mobility. As
the LEO satellite rapidly moves over time, its serving MNOs
also update frequently in response to its terrestrial coverage
change. MOSAIC’s stateless nature simplifies this process:
Except for 4G/5G spectrums and cell broadcast information,

4Services that mandate ground stations (e.g., emergency calls) may be
unavailable but are also impossible for any solutions without the connectivity.

796 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SNO

T1

MNO1’s area
MNO2’s area
Earth surface

T2

α-axisγ-a
xis

map in T1

Cell served by SAT1/2/3/4 Cell served by other SATs
Intermittent ISLsCellular service map of each MNO

SAT1SAT2

SAT4
SAT3

map in T2

Figure 10: MOSAIC’s dynamic multi-tenancy.

no other stateless cellular functions need to be reconfigured
since they are decoupled from MNOs. To further simplify
spectrum and cell information updates, MOSAIC inherits the
idea of Earth-fixed geographic cells from SpaceCore [66]
that are stable despite satellite mobility and coupled with
each MNO’s location-dependent roaming, QoS, billing, and
spectrum policies. As shown in Figure 10, for each MNO,
MOSAIC defines its 4G/5G cells by their geography rather
than their fast-changing service satellites. MOSAIC uses
SpaceCore’s affine spherical coordinate to align these cells
with satellites’ orbital parameters, thus linearizing each satel-
lite’s runtime mapping of cells it covers. Each satellite tracks
its runtime coverage to these cells, determines the MNOs
to be served using its local certificates, and reconfigures its
radio with these MNOs’ 4G/5G spectrums and geographic
cell identity. If a LEO constellation is used, the successive
satellite takes over a cell’s service when the previous satellite
leaves, while retaining the same geographic cell and service
area IDs for UEs to prevent unnecessary handover signalings.

5.2 Pay-as-you-go Satellite Access Tokens
The key enabler of MOSAIC’s pay-as-you-go satellite access
is its self-certified, policy-embedded one-time tokens. These
tokens are generated by MNOs, provisioned to each UE online
or offline based on its data plan, consumed by UEs for runtime
local satellite access, and deposited by SNOs back to MNOs
online or offline to close the financial transaction. The issue
is that, UEs in remote areas may have to pay these tokens
for access to SNOs’ satellites out of the MNO’s reachability.
This threatens the MNO’s controllability of its carrier-grade
services and the security of the token-based satellite access.

To this end, MOSAIC adopts the idea of cryptographic
“restrictive blind signatures” from the offline cash system [38]
as provably secure one-time tokens, embeds MNO-controlled
carrier-grade service policies into these tokens for remote en-
forcement, locally restrains the UE-side token misuses using
MNO-issued tamper-resistant SIM cards, and lets the MNO
detect and penalize token misuses as the ultimate defense.
Semantics of policy-embedded tokens: Each one-time to-
ken represents a unit of satellite access defined by each MNO
based on its billing granularity (e.g., by time, data volume,
message count, satellite access count, or even flat rate). The
MNO embeds each UE’s location-dependent roaming, QoS,
billing, access control, and other policy states into its token
to enforce its carrier-grade services. The UE should consume

the corresponding token to enjoy the carrier-grade satellite
services in the target location. Some MNOs may want to offer
multi-stage data plans (e.g., “$10/GB for the first 5GB data,
then free data throttled at 128Kbps afterward”). MNOs can
enforce them by generating and provisioning a corresponding
quota of differentiated tokens for each stage for the UE.
Token generation/provision: Figure 11a illustrates how
each MNO generates and provisions tokens for each UE. It
can occur offline (e.g., the user purchases the prepaid SIM card
with pre-generated tokens) or online (e.g., the MNO offers
tokens to the UE after the initial registration over a secure
channel). It involves the MNO, the UE, and the MNO-issued
tamper-resistant SIM card to the UE. There are two steps:

(1) Preparation: The MNO maintains two databases for the
UE subscription and the consumed token, both of which can
reuse the legacy cellular functions (detailed in §6). Following
the one-time restrictive blind signature [38], the MNO gener-
ates tokens using a function pair hx,(Gq,g,g1,g2,H ,H0)i,
where x is its private key, (Gq,g,g1,g2) is its public key
for UEs/SNOs based on the classic discrete logarithm chal-
lenge [72], H is a public hash function for token generation
and verification, and H0 is a public hash function for SNOs
for runtime challenge-response token verification.

(2) Token generation: To create a token, the MNO gener-
ates a random number pair (a,b) to the UE. The UE with the
SIM card generates a third random number o2, and computes
a number pair (A,B) based on (a,b,o2) and MNO’s public
key in Figure 11a. To restrain the UE-side token manipulation,
the SIM card stores o2 for later token consumptions below.
To retain MNOs’ control of carrier-grade services, MOSAIC
extends [38] to bind (A,B) with each UE’s session states p (in-
cluding but not limited to location-dependent roaming, QoS,
billing, and access control profile) using the hash function H

and digitally signs this binding as sign(A,B) using the private
key x. The UE stores the tuple hA,B,sign(A,B)i as a token.
SIM-enforced one-time token consumption: At runtime,
the UE should consume a token to “pay” for the satellite
access (whose detailed workflow will be introduced in §5.3).
For correctness, each token should be used at most once. This
can be threatened by selfish or malicious UEs that attempt to
gain free or unauthorized satellite access by spending a used
token multiple times. The issue is that such token misuse may
occur for SNOs’ satellites in remote areas without ISLs or
ground stations to reach the MNO for detection. MOSAIC
must mitigate it locally without the remote MNO’s assistance.

MOSAIC mitigates this threat using SIM card-assisted
token consumption. Recall that SIM cards are MNO-issued,
trusted, and tamper-resistant hardware that are resilient to UE
manipulations. They are mandatory for UEs to gain network
services. Although the MNO may not be able to remotely
detect the UE’s token multi-spending, it can delegate this task
to SIM cards for local enforcement. A side benefit of this
approach is that its local nature also saves time and signaling
overhead among satellites and remote ground stations.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 797

o! ∈" ℤ#
B$ ← g%

&! B&
s ∈" ℤ#∗

A ← (Ig!)(

w ∈" ℤ#
a ← g)
b ← (Ig!))

a, b, p

z* ← z(
x%, x!, e ∈" ℤ#

B ← g%
+" , g!

+!A$
(,B$

u, v ∈" ℤ#
a* ← a-g.

b* ← b(-A.
c* ← ℋ(A, B, p, z*, a*, b*)

c ← c*/u	mod	q
c, A, B, z*, a*, b*, u

r ← cx + w	mod	qr
g/ = h0a

(Ig!)/= z0b

?

?

r* ← ru + v		mod	q

c′ ← ℋ(A, B, p, z*, a*, b*)

c** = c?
c′′ ← c*/u	mod	q

A token < D, E, FGHI D, E = J, K*, L*, M*, N* > is provisioned.

UE

MNO signs the token

SIM card
stores metadata

MNO

(a) Token generation/provision (MNO–UE)

d! ← s d + e 	mod	q

A ≠ 1
d ← ℋ"(A, B, I# , date/time)

?
< 9, :, ;<=> 9, : >

dd!

o$	still	in	memory?
r%! ← d!o% + o$	mod	q r%!

g%
&!" = A'

("B'
r% ← r%! + d u%s + x%	mod	q

r$ ← ds + x$	mod	q

?

(H%, H$)
verify	sign(A, B)

g%
&!g$

&# = A(B

Service available

?

SNOUE

SIM-enforced
multi-spending

restraint

Token verification

token

(b) One-time token consumption (UE–SNO)

! ← ℋ!(%, ', (" , !)*+/*-.+)
g#$!g%$" = A&B

% ≠ 1?

?

send < A, B, sign A, B >,
r#, r% , date/time

verify sign A, B

A in DB? store

Reject

Multi-spending

add)BBCDE* into blacklist
)BBCDE* ← F#((!)(!#)/((")("#)

Y

N

Y

N

MNOSNO

UE blacklist

update blacklist

The token has been cleared.

token

(c) Token clearing (SNO–MNO)
Figure 11: MOSAIC’s self-certified, policy-embedded one-time tokens for pay-as-you-go local satellite access.

Figure 11b shows how the SIM card enforces the local one-
time token consumption. To use a token hA,B,sign(A,B)i, the
UE should correctly respond to the serving satellite’s runtime
challenge. The computation of this response must rely on
this token’s random number o2, which has been stored in the
SIM card and never exposed to the UE. After computing the
response and receiving the token acknowledgment from the
satellite, the SIM card deletes this token’s o2. In case the
UE double-spends the same token, its random number o2 has
been lost in the SIM card, thus failing to pass the satellite’s
challenge and access network services. If the token packet
from the UE to the satellite is lost over the air, the UE will
not receive the token acknowledgment. After the timeout, the
UE will retransmit the token for loss recovery.
Token clearing and misuse penalty: Upon the successful
token validations, the SNO’s satellite obtains the token as
proof of its service to remote UEs. It can use this token to
charge the corresponding MNO by usage, as shown in Fig-
ure 11c. This token-clearing process can happen either online
(if the satellite has ISLs or direct ground station coverage to
contact the MNO) or offline otherwise. For the latter case, the
LEO satellite should maintain a token bucket to hold and clear
these tokens when it eventually moves to cover the MNO’s
accessible ground station. On receiving the satellite’s tokens,
the MNO records them in its consumed token database. In the
extreme case when the UE manages to crack the SIM card to
bypass its local one-time consumption enforcement (though
we are unaware of such attacks for commercial SIM cards
in reality), the MNO can still eventually detect it by compar-
ing the multi-spent token with those in this database. In this
case, the MNO notifies this UE to the satellite. The satellite
blacklists this UE and later denies its service as a penalty. In
practice, this process is responsive due to the considerable
ground station availability, as we will evaluate in §7.

5.3 Local Self-Service via In-Band Control

We last present how the UE can use tokens in §5.2 to enjoy
self-serve satellites in §5.1. Its policy-embedded tokens can
locally drive the stateless satellite to establish and enforce
carrier-grade services via in-band control, thus alleviating the
need to redirect to MNOs via ISLs (which may not always

exist in LEO satellites today) or ground stations (unavailable
in remote areas in Figure 4b) and minimizing the amount
of signaling. To maximize the number of phones/IoTs (thus
higher revenue) to enjoy MOSAIC, this in-band control re-
quires no changes for the UE hardware or the standard 4G/5G
interfaces between UE and infrastructure.
Preparation: Each UE should prepare tokens in §5.2 in
advance for later satellite access. There are various ways
to achieve this. For example, the UE can purchase prepaid
SIM cards with tokens, retrieve tokens from the MNO offline
through a secure out-of-band channel (e.g., WiFi or terrestrial
4G/5G when available), or fetch tokens from the MNO online
through an end-to-end secure channel if the serving satellite
has active ISLs or direct coverage to the ground station.
Service establishment: There are two scenarios:
• Uplink service: When the UE needs to send data but has

no active connectivity, it should establish the service with a
satellite. As shown in Figure 12, the UE first selects any au-
thentic satellite based on its broadcasted identity and sets up
an insecure radio connectivity. It then performs identity-based
cryptography [73, 74] to authenticate this satellite using its
certificate in §5.1 and negotiates local security keys for this
connection, thus preventing the invocation of signaling pro-
cedures with the remote MNO. After the successful satellite
authentication, it follows the procedure in Figure 11b to con-
sume token. For backward compatibility, the UE and satellite
piggyback the necessary information using standard transpar-
ent ULInformationTransfer and DLInformationTransfer message
containers in 4G/5G [26, 27]. After the token consumption,
the satellite extracts the UE’s session states from the token
to enforce carrier-grade services. If any of these procedures
fails, the satellite will terminate the service or roll back to the
legacy procedure in Figure 6 if it can reach the MNO.
• Downlink service: When a satellite receives data destined

for the UE, it should forward the data to satellites covering
this UE or establish downlink services if covering the UE by
itself. The challenge is that MOSAIC’s stateless satellite has
no prior knowledge of the UE’s location. 4G/5G resolves this
issue by paging the UE through all base stations in the service
area through the downlink broadcast channel, which, however,
is expensive for satellites due to their broad global coverage
and many more UEs to serve in these areas.

798 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RRC system information broadcast message (satellite ID 𝑰𝒔)

UE SNO

ULInformationTransfer (Mobile network identity 𝐈𝐌 , 𝐫𝐞𝐪)

𝑰𝒔 , master public key 𝑷𝑲 → public key of sat 𝒑𝒖𝒃𝒔
encrypt (𝒕𝒐𝒌𝒆𝒏 , 𝒎) with 𝒑𝒖𝒃𝒔→ request 𝒓𝒆𝒒

if 𝑚 = 𝑚′ → UE authenticates sat
encrypt (𝑲, 𝒓𝟏, 𝒓𝟐) with 𝒑𝒖𝒃𝒔→response 𝒓𝒆𝒑

decrypt(𝒓𝒆𝒒) with 𝒑𝒓𝒊𝒔,𝑰𝑴 → 𝒎’, 𝒕𝒐𝒌𝒆𝒏
generate challenge 𝒅

DLInformationTransfer (𝒎′, 𝒅)

ULInformationTransfer (𝐫𝐞𝐩)

decrypt(𝒓𝒆𝒑) with 𝒑𝒓𝒊𝒔,𝑰𝑴 → 𝑲, 𝒓𝟏, 𝒓𝟐
verify token and policy → sat authenticates UE

service available

RRC connection setup

Figure 12: MOSAIC’s in-band control for local self-service.
Instead, MOSAIC leverages the Earth-fixed geographic

cells in §5.1 and Figure 10 as the UE’s location reference
for downlink services. MOSAIC assigns each UE’s IP ad-
dress as PLMN.cell-ID.UE-identity, where PLMN is the UE’s
serving MNO’s 4G/5G Public Land Mobile Network identity,
cell-ID is this UE’s residing geographic cell’s identity, and
UE-identity is this UE’s globally unique identity (e.g., IMSI in
4G and SUCI in 5G). This IP address is globally unique and
locates this UE at the cell granularity. For each geographic
cell, MOSAIC assigns one satellite per MNO that fully covers
this cell to serve it. This is achieved in the LEO constellation
through an initial bipartite matching between satellites and
geographic cells per MNO and linear cell mapping update
over time in Figure 10. For multiple MNOs, the SNO runs
this matching separately to distribute MNOs among multiple
satellites. Given the UE’s packet with its geographic IP ad-
dress, the satellite can easily detect if it is responsible for this
cell for paging or locates the satellite serving this cell for geo-
graphic satellite routing. Upon receiving the paging message,
the UE follows Figure 12 to establish the connectivity to this
satellite and receive the downlink data.
Carrier-grade service enforcement: With the MNO-
signed token from the UE, the serving satellite can extract the
session states p from each token to locally enforce various
carrier-grade services per UE, including but not limited to:

• Billing: The pay-as-you-go nature readily enforces it;
• QoS: The token embeds the 4G/5G QoS indicator for the

satellite to run MAC-layer QoS-aware radio scheduling;
• Location-based service: The MNO can embed the appli-

cable location in each token to let the satellite enforce
location-specific roaming and access control; and

• Customized service: Some services (e.g., emergency
calls) mandate redirecting data to specific infrastructure.
The MNO can embed these rules into the corresponding
token for the satellite to guide its traffic forwarding.

UE-driven mobility support: MOSAIC’s pay-as-you-go

paradigm implicitly moves the mobility support out of the
infrastructure. The extreme LEO satellite mobility does not
trigger any signaling procedures for a static UE, thus avoiding
signaling storms in §3.2. The UE’s in-band state provision
also prevents inter-satellite coordination for handovers, letting
the UE access any available and even competitive satellites.
When the UE roams to a new geographic cell, it does not
have to update its location to the remote core network like the
legacy 4G/5G or SpaceCore [66]. Instead, it can immediately
gain services using the tokens tailored to this new cell.
Security analysis: MOSAIC’s pay-as-you-go paradigm de-
parts from today’s stateful session-based cellular architecture.
It does not require the strong trust among the SNOs, MNOs,
and UEs that is a must-have for hop-by-hop stateful sessions
(§3.2), thus more dependable for multi-tenancy in untrusted
satellites. Appendix A details how MOSAIC is resilient to
threats from UEs, SNOs, MNOs, and external attackers to re-
tain at least the same security as the legacy cellular network.

6 Practical Deployment
We focus on three issues for MOSAIC’s practical large-scale
deployment: (1) How to minimize SNOs’ satellite changes
for MOSAIC? (2) How to integrate MOSAIC satellites with
MNOs’ terrestrial 4G/5G for coexistence? (3) How to enable
MOSAIC for commercial off-the-shelf (COTS) phones/IoTs?

Our deployment resolves these issues with three principles:
(I) MOSAIC as a plug-and-play proxy: For the minimal

changes for SNO’s satellites, we realize MOSAIC as
an external proxy for the unmodified cellular functions.

(II) Seamless integration with terrestrial 4G/5G: MOSAIC
reuses and incrementally upgrades terrestrial cellular
core networks to integrate pay-as-you-go satellites.

(III) SIM-based deployment for UEs: Rather than changing
the COTS UE hardware, we realize MOSAIC’s UE-
side logic as SIM applet and mobile app. UEs can
readily enjoy MOSAIC with a new SIM card.

Figure 9 shows MOSAIC’s practical deployment scheme
based on these principles. It spans three participants:
• SNO-side satellites: Each satellite installs the legacy cel-

lular RAN and user-plane function (UPF). It further installs a
proxy that emulates the cellular core network’s control-plane
functions. This proxy packages MOSAIC’s self-serve multi-
tenant functions in §5.1. It maintains this satellite’s certificates
from MNOs, accepts tokens from each UE through ULInforma-
tionTransfer messages, extracts the UE’s session states from
tokens, and feeds these states to RAN and UPF to enforce
carrier-grade services. As the LEO satellite moves, this proxy
also updates its mapping to cells and MNOs (§5.1 and §5.3).
To facilitate this proxy’s deployment with minimal satellite
changes, we can reuse operational satellites’ built-in software-
defined telemetry, tracking, and control (TT&C) features to
remotely upgrade onboard satellite software/firmware5.

5For instance, Starlink has demonstrated its quick satellite software up-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 799

HUAWEI Mate60
Pro satellite phone

HUAWEI Mate50
Pro satellite phone

sysmoISIM-SJA2

SNOMNO

Amarisoft Callbox NR-4-U Ultimate
IoT/NR-NTN protocol stack

Figure 13: Our MOSAIC prototype and testbed setup.

• MNO-side terrestrial infrastructure: For tokens in
§5.2, MOSAIC reuses the standard subscription server (HSS
in 4G [77] and UDM in 5G [78]) as the user profile database
and charging function (OCS/OFCS in 4G [77] and CHF in 5G
[78]) as the consumed token database. It offers tokens to UEs
and their SIM cards through the standard APDU interface for
remote over-the-air update [79]. This unifies the management
between satellite and terrestrial cellular networks. It also uses
this core network to bridge the handover between satellites
and terrestrial base stations using procedures in Figure 6. This
integration requires no changes for terrestrial base stations.

• UE-side SIM card: MOSAIC requires no hardware
changes for COTS phones/IoTs. Instead, each UE just needs
to (1) get a SIM card from the MNO with MOSAIC’s token
capabilities in §5.2 as an applet and (2) install a mobile app
to store tokens in §5.2 and invoke the in-band control in §5.3.
This app coordinates with the SIM/eSIM via TelephonyMan-
ager APIs [80] to jointly perform procedures in §5.2–5.3.
MNOs can remotely upgrade SIMs/eSIMs and provision to-
kens using the standard over-the-air update interfaces [81,82].
Proof-of-concept prototype (Figure 13): We follow the
above methodology to prototype MOSAIC with Amarisoft
Callbox NR-4-U Ultimate [83], one of the first available
3GPP NTN software protocol stacks on the market for direct-
to-cell satellite communication testing. This suite realizes
full-stack 3GPP-R17 IoT/NR-NTN protocols and standard-
compliant LEO satellite RF channel emulators [19]. We use
one Amarisoft node to emulate the SNO’s LEO satellite, one
Amarisoft node to emulate the MNO’s terrestrial 4G/5G core,
and COTS phones/IoTs with programmable sysmoISIM-SJA2
SIM cards [84] and an Android app to realize MOSAIC’s pay-
as-you-go paradigms. We test various COTS UEs, including
the Huawei Mate 60 Pro with direct-to-cell communication
with the Tiantong GEO satellite via 2G GMR, and Huawei
Mate 50 with messaging services via Beidou GEO satellites.

7 Evaluation

We evaluate MOSAIC using a combination of qualitative anal-
ysis, quantitative micro-benchmark test with our prototype
in Figure 13, and large-scale what-if emulations driven by
satellite data in Figure 3. We compare MOSAIC with state-of-
the-art in Figure 2, assess its modules in §5.1–5.3, and show

grade capability [75] to defend against jamming attacks. Spire Global de-
ployed software-defined satellites to facilitate remote firmware upgrade [76].

COTS 4G/ Self- Multi- Competitive
UEs? 5G? service? tenancy? satellites?

Transparent pipe
p

⇥ ⇥
p p

Starlink [33–36]
p p

⇥ Partial Partial
NR NTN (5G) [20]

p p
⇥ ⇥ ⇥

IoT NTN (4G) [23]
p p

⇥ ⇥ ⇥
SpaceCore [66] ⇥

p p
⇥ ⇥

MOSAIC
p p p p p

Table 1: Comparison of direct-to-cell satellite solutions.

(a) Service establishment (b) Satellite handover in LEO mobility
Figure 14: MOSAIC reduces signalings for satellites.

how it addresses issues in §3.2 for SNOs, MNOs, and UEs.

7.1 Qualitative Advantages over SOTAs
Table 1 compares MOSAIC with existing work in Figure 2
regarding their support for multi-tenant LEO satellites to di-
rectly connect COTS phones/IoTs. By offloading cellular
functions to satellites, MOSAIC avoids the transparent satel-
lite pipes’ shortage of enabling satellite 4G/5G for UEs (§3.1).
By replacing the stateful hop-by-hop cellular sessions with
the pay-as-you-go paradigm, MOSAIC also overcomes the
limitations in §3.2 to enable self-serve satellites for SNOs for
transparent multi-tenancy. Its near-stateless nature lets UEs
and MNOs flexibly use competitive SNOs’ satellites for com-
plementary coverage and lower costs. While SpaceCore [66]
achieves similar stateless 5G core functions in LEO satellites
with UE-driven state management, it cannot readily support
multi-tenancy or competitive satellites because it assumes all
satellites belong to a single MNO (i.e., no trust concerns).
Moreover, unlike MOSAIC, SpaceCore requires modifying
4G/5G radio resource control (RRC) messages to piggyback
UE states, thus not applicable to COTS phones/IoTs.

7.2 Self-Serve Multi-Tenant Orbital Functions
We assess how MOSAIC’s self-service paradigm in §5.1 frees
SNOs’ satellites from signaling storms, expands their global
serviceable areas for more revenues, and simplifies their dy-
namic many-to-many mapping to MNOs and UEs.
Self-contained orbital cellular functions: MOSAIC’s
function split in §5.1 lets each satellite independently serve
UEs without interacting with other satellites or ground sta-
tions, thus free of signaling storms in §3.2. Figure 14a counts
the signalings for each fast-moving LEO satellite to establish
services for incoming UEs using the procedure in Figure 6a.
It confirms that MOSAIC avoids the signaling storms with its

800 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 15: Service setup latency. Figure 16: DL paging cost.

Figure 17: Serviceable areas. Figure 18: Mapping overhead.
pay-as-you-go tokens. Note that SpaceCore also saves signal-
ings with its UE-driven state fetching but requires modifying
4G/5G standards, thus not applicable to COTS UEs.

A side benefit of MOSAIC’s self-contained orbital cellular
functions is that it saves UE-perceived service latencies. Fig-
ure 15 shows that, compared to NTN, MOSAIC’s localized
service setup reduces signaling latency by up to 5.19⇥, 1.33⇥,
and 2.33⇥ in Starlink, Globalstar, and Iridium, respectively.
Its service setup latency is slightly higher than SpaceCore by
0.33⇥ as a tradeoff for compatibility with COTS UEs with
additional standard-compliant signalings (Figure 12).
Expansion of serviceable areas: MOSAIC’s self-service
nature eliminates satellites’ reliance on ground stations for
broader serviceable areas. We define each LEO constellation’s
cellular service ratio as h= Areas with functional satellite 4G/5G

Total areas covered by all satellites . Fig-
ure 17 showcases Starlink Phase II satellites’ service ratio as
a function of activated satellites. When ISLs are not reliable,
NTN’s serviceable areas are constrained by ground stations
similar to transparent pipes in §3.1. More satellites do not
suffice to fulfill serviceable areas due to the non-uniform dis-
tribution of ground stations in Figure 4b. Instead, MOSAIC is
free of this deficiency. It expands these satellites’ serviceable
areas with up to 116% increment and achieves 100% service
ratio within this LEO constellation’s terrestrial coverage.
Simplified dynamic many-to-many mapping: MOSAIC
adopts the orbit-aligned geographic cell division in §5.1 to
simplify the dynamic SNO-MNO-UE service relationships.
Figure 18 compares this method with H3 hexagonal cells
[85] (likely used by Starlink [86]) and the latitude-longitude
rectangular cells in terms of their computation cost of dynamic
re-mapping. MOSAIC reduces CPU cycles by 100⇥, 63⇥,
and 73⇥ in Starlink, Globalstar, and Iridium, respectively.

7.3 Pay-as-you-go Satellite Access Tokens

We next evaluate the efficiency, scalability, and resiliency of
MOSAIC’s pay-as-you-go tokens in §5.2 for MNOs and UEs.
Efficiency of token consumption: MOSAIC’s localized
token consumption in Figure 11b slightly incurs extra delays
between the UE and satellite. As shown in Figure 19a, each
token’s consumption latency is 16.4 ms, 41.9 ms, and 34.8
ms in Starlink, Globalstar, and Iridium, respectively. They are
marginal compared to MOSAIC’s savings in Figure 15.

(a) Token consumption latency (b) Num. tokens each (e)SIM can support
Figure 19: MOSAIC token’s system overhead.

Scalability of SIM-enforced tokens: MOSAIC’s SIM-
enforced one-time token requires storing per-token metadata
o2 in the SIM card. Figure 19b quantifies the number of avail-
able 1024-bit tokens that each commercial standard-compliant
SIM card (with 64KB–384KB RAM [84,87–89]) can support.
Each SIM card can store 3,279-19,661 tokens’ 160-bit meta-
data o2. If the MNO lets each token represent 1 minute, 1 text,
or 1 MB of data quota, then the quota of MOSAIC based on
today’s SIM card is comparable to prepaid SIM cards on the
market today (e.g., 250 units/month SIM [68])6.
Scalability of token generation and verification: Both
are scalable to many UEs. Our test with a workstation using a
single core of 2.30GHz Intel Xeon Gold 5218 shows that, each
MNO in this setup can generate 1,175 tokens/s (Figure 11a)
and verify 1,401 tokens/s (Figure 11c) on average.
Resiliency to token manipulations: MOSAIC’s SIM-
enforced token consumption locally restrains most token mis-
use since the SIM is tamper-resistant. In the extreme case
where the MNO-controlled SIM is cracked and remote LEO
satellites have no ISLs to reach remote MNOs, the token mis-
use is still detected when the LEO satellites eventually move
to the ground station to interact with MNOs in Figure 11c.
Figure 20 quantifies this worst-case token multi-spending by
a misbehaved UE before it is detected by blacklisted by SNOs
and MNOs. Due to LEO satellites’ fast mobility and consid-
erable ground station availability (exemplified in Figure 4b),
even this worst-case misuse time is still bounded by 0.2–0.88
satellite orbital periods (22.8–87.7 minutes). It can be further
shortened if ISLs exist for timely token clearing in Figure 11c.

7.4 Local Self-Service via In-Band Control
We last assess how MOSAIC’s UE-driven procedures in §5.3
localize satellite access, simplify signalings in LEO mobility,
and facilitate the use of competitive SNOs’ satellites.
Service establishment: MOSAIC’s uplink service estab-
lishment has been studied in §7.2. Its downlink service is
similar to the uplink one except for the additional paging
procedure, which could overload the 4G/5G broadcast chan-
nel given numerous UEs in satellites’ broad coverage [91].
Figure 16 compares the paging load assuming 5MHz 4G/5G
radio bands for each satellite and 400 UEs/km2 by following
[91]. Compared to NTN and SpaceCore, MOSAIC reduces
paging channel load by 23⇥, 4⇥, 8⇥ in Starlink, Globalstar,
and Iridium, respectively. Note that NTN and SpaceCore’s
paging load can even exceed the 4G/5G channel capacity, thus
unable to support numerous UEs. Instead, by mapping each

6Besides, existing SIM cards allow for 100,000–500,000 read/write opera-
tions during their lifetime [90], so the number of writes won’t be a bottleneck.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 801

(a) Misuse time per token (b) Misuse count per token
Figure 20: Worst-case token misuse when SIMs are cracked.
geographic cell to a corresponding satellite in §5.3, MOSAIC
reduces the areas to page for functional 4G/5G services.
UE-driven mobility support: As explained in §5.3, MO-
SAIC’s UE-driven primitive avoids procedures triggered by
extreme LEO satellite mobility. As shown in Figure 14b, this
helps MOSAIC eliminate the signaling storms in §3.2: Rather
than coordination between satellites, each new satellite di-
rectly fetches each UE’s states from its one-time tokens.
Use of competitive SNOs’ satellites: By minimizing the
coordination among satellites and ground stations, MOSAIC’s
in-band control lets UE freely choose any authentic satellite
for use. Instead, existing solutions require the MNO’s involve-
ment to indirectly coordinate competitive SNOs’ satellites,
which require ISLs to remote ground stations and incur sig-
naling storms. Figure 21 quantifies these costs assuming two
SNOs (Starlink and Iridium) with ISLs. Compared to the
state-of-the-art, MOSAIC saves 850–7,640⇥ signaling costs
and 4.71–14.25⇥ latencies due to its local in-band control.

8 Limitations
MOSAIC is our first step to enable self-serve multi-tenant
direct-to-cell satellites for our regular phones/IoTs. While
encouraging, we believe that it could be further improved in
at least three aspects in the future work: (1) For SNOs, while
MOSAIC’s pay-as-you-go token grants service access, it does
not guarantee verifiable carrier-grade service. Selfish SNOs
may not offer carrier-grade services after gaining tokens, thus
causing overbilling. This issue could be resolved using recent
two-sided measurement and negotiation mechanisms [69, 92].
(2) For MNOs, while MOSAIC’s policy-embedded tokens
let MNOs retain cellular policy control, the offloaded cellu-
lar functions to satellites still cannot be directly managed by
MNOs. How to enhance MNOs’ configurability and manage-
ability of on-board satellite cellular functions deserves further
research. (3) For UEs, MOSAIC’s tokens suppress signaling
overhead at the cost of some UE-to-satellite bandwidths due
to its in-band control. It is worth exploring how to compress
tokens for more bandwidth-efficient pay-as-you-go services.

9 Related Work
We are witnessing a boom in LEO networks. Extensive efforts
have been made on LEO physical topology [30,93], link-layer
scheduling [94,95] and handovers [96,97], network-layer rout-
ing [98–100], edge computing applications [101, 102], and
real-world measurements [103–105]. Instead, enabling direct-
to-cell satellites for commodity phones/IoTs has gained less

(a) Handover signaling message costs (b) Service resumption latency
Figure 21: Inter-SNO satellite handover under LEO mobility.
attention until recently. These LEO satellites differ from other
non-terrestrial 4G/5G via balloons [106] or UAVs [107–109]
due to their extreme mobility and scale in foreign outer
space. Recent studies [20,66,110] focus on coping with these
challenges for functional satellite 4G/5G. Our work comple-
ments them by exploring the sharing of direct-to-cell satellites
among SNOs and MNOs as a cost-effective win-win solution.

Cellular network multi-tenancy has been a long-standing
desire and is becoming a reality in terrestrial networks with
the maturity of standards [111–113], cloudified 5G [114,115],
and decentralized architecture [92, 116, 117]. But these ter-
restrial efforts cannot support sharing the extremely mobile
LEO satellite infrastructure (§3), which motivates our design.
MOSAIC borrows the idea of UE-driven state management
from SpaceCore [66] but extends it as pay-as-you-go tokens
for multi-tenancy. MOSAIC’s SIM-based solution also avoids
SpaceCore’s incompatibility with regular phones/IoTs.

10 Conclusion
We present MOSAIC, a pay-as-you-go solution to enable self-
serve multi-tenant LEO direct-to-cell satellites for our regular
phones/IoTs in under-served areas via 4G, 5G, and beyond.
MOSAIC departs from today’s hop-by-hop stateful cellular
session that impedes multi-tenancy due to its need for tight
functional coupling and stable relationships among SNOs,
MNOs, and UEs. Instead, it adopts policy-embedded one-
time tokens for on-demand satellite services. This paradigm
realizes near-stateless satellites for transparent multi-tenancy,
alleviates their reliance on remote ground stations for self-
service, and alleviates inter-satellite coordinations to encour-
age the use of diverse satellites from competitive SNOs.

In a broader context, MOSAIC is an attempt to democratize
cellular networks from space. While cellular democratization
has been nice-to-have in terrestrial networks to foster market
competition, it has become a must-have in space due to the
mutual need for scarce orbital slots from satellite operators,
licensed spectrums from mobile operators, and lowered capi-
tal costs of LEO constellations for both participants. We hope
our lessons can spur this effort toward a win-win sharing of
space networks by the community and for the community.
Acknowledgment: We thank our shepherd, Dr. Deepak
Vasisht, and all reviewers for their valuable feedback. This
work is supported by the National Key Research and Devel-
opment Plan of China (2022YFB3105201) and the National
Natural Science Foundation of China (62202261). Hewu Li
and Yuanjie Li are the corresponding authors.

802 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] SpaceX. SpaceX Invites World’s Carriers to Col-
laborate: No More Cell Phone Dead Zones. https:

//www.spacex.com/updates/#direct2cell, 2022.

[2] FCC. Application for Mobile Satellite Service by
SpaceX. https://fcc.report/IBFS/SAT-PPL-20221206-
00170, Jun. 2022.

[3] Qualcomm. Qualcomm Introduces Snapdragon Satel-
lite, The World’s First Satellite-Based Solution Capa-
ble of Supporting Two-Way Messaging for Premium
Smartphones and Beyond. https://tinyurl.com/

yjy325am, 2023.

[4] Iridium. Iridium certus as a 5g companion for land
mobile communications. https://tinyurl.com/

ype5s2zt, 2019.

[5] SpaceNews. Apple lends globalstar $252 million for
satellite-enabled iphones. https://tinyurl.com/

4bxapj4x, 2023.

[6] AST SpaceMobile, Mobile Network Opera-
tors. https://ast-science.com/company/

mobile-network-operators/, 2023.

[7] AT&T leases spectrum to AST SpaceMobile. https:
//tinyurl.com/mr356tha, 2023.

[8] SatelliteToday. Lynk Co-Founder Says Satellite-to-
Cell Tech Will Be ’Bigger than 5G’. https://

tinyurl.com/2p9a3an8, 2021.

[9] Measuring digital development: Facts and Figures
2022. https://www.itu.int/itu-d/reports/

statistics/facts-figures-2022/, 2022.

[10] SpaceX and T-Mobile partner for direct-to-cellphone
satellite service. https://spacenews.com/spacex-and-
t-mobile-partner-for-direct-to-cellphone-satellite-
service/, 2022.

[11] KDDI Signs Agreement with SpaceX to Bring
Satellite-to-Cellular service to Japan. https://

tinyurl.com/yax9seaz, 2023.

[12] SpaceX’s Starlink signs direct-to-cell deal with Swiss
telco Salt. https://tinyurl.com/2beh6rkp, 2023.

[13] Emergency SOS via satellite on iPhone 14 and
iPhone 14 Pro lineups made possible by $450
million Apple investment in US infrastructure.
https://www.apple.com/newsroom/2022/11/emergency-
sos-via-satellite-made-possible-by-450m-apple-
investment/, 2022.

[14] Samsung targets satellite-enabled smart-
phone chips after surprise iPhone 14 feature.
https://www.cnbc.com/2023/02/23/samsung-turns-to-
space-with-satellite-enabled-smartphone-chip.html,
2023.

[15] Qualcomm and Leading Global Smartphone Manu-
facturers Collaborate to Bring Snapdragon Satellite
to Smartphones. https://tinyurl.com/yyrn7edz,
2023.

[16] 3GPP. Technical specification group ser-
vices and system aspects; study on using
satellite access in 5g; stage 1 (release 16).
https://www.3gpp.org/DynaReport/22822.htm.

[17] 3GPP. TR22.926: Guidelines for Extraterritorial 5G
Systems, Dec. 2021.

[18] 3GPP. TR23.737: Study on Architecture Aspects for
Using Satellite Access in 5G, Jun. 2018.

[19] 3GPP. TR38.811: Study on New Radio (NR) to support
non-terrestrial networks, 2020.

[20] 3GPP. TR38.821: Solutions for NR to support non-
terrestrial networks (NTN), 2020.

[21] 3GPP. TR24.281: Study on PLMN Selection for Satel-
lite Access, Sep. 2021.

[22] 3GPP. TR28.808: Study on Management and Orches-
tration Aspects of Integrated Satellite Components in
a 5G Network, Dec. 2021.

[23] 3GPP. TS36.331: E-UTRA; Radio Resource Control
(RRC), Jun. 2023.

[24] 3GPP. TS38.331: 5G NR: Radio Resource Control
(RRC), Jun. 2023.

[25] 3GPP. TS24.008: Core network protocols; Stage 3,
Mar. 2023.

[26] 3GPP. TS24.301: Non-Access-Stratum (NAS) for EPS,
Apr. 2023.

[27] 3GPP. TS24.501: Non-Access-Stratum (NAS) for 5G,
Apr. 2023.

[28] NASA. Space Debris and Human Spacecraft.
https://www.nasa.gov/mission_pages/

station/news/orbital_debris.html, 2021.

[29] ESA. Space debris by the numbers. https:

//www.esa.int/Safety_Security/Space_

Debris/Space_debris_by_the_numbers, April
2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 803

https://www.spacex.com/updates/#direct2cell
https://www.spacex.com/updates/#direct2cell
https://tinyurl.com/yjy325am
https://tinyurl.com/yjy325am
https://tinyurl.com/ype5s2zt
https://tinyurl.com/ype5s2zt
https://tinyurl.com/4bxapj4x
https://tinyurl.com/4bxapj4x
https://ast-science.com/company/mobile-network-operators/
https://ast-science.com/company/mobile-network-operators/
https://tinyurl.com/mr356tha
https://tinyurl.com/mr356tha
https://tinyurl.com/2p9a3an8
https://tinyurl.com/2p9a3an8
https://www.itu.int/itu-d/reports/statistics/facts-figures-2022/
https://www.itu.int/itu-d/reports/statistics/facts-figures-2022/
https://tinyurl.com/yax9seaz
https://tinyurl.com/yax9seaz
https://tinyurl.com/2beh6rkp
https://tinyurl.com/yyrn7edz
https://www.nasa.gov/mission_pages/station/news/orbital_debris.html
https://www.nasa.gov/mission_pages/station/news/orbital_debris.html
https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers
https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers
https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers

[30] Yuanjie Li, Hewu Li, Wei Liu, Lixin Liu, Wei Zhao,
Yimei Chen, Jianping Wu, Qian Wu, Jun Liu, Zeqi Lai,
and Han Qiu. A Networking Perspective on Starlink’s
Self-Driving LEO Mega-Constellation. In The 29th
International Conference on Mobile Computing and
Networking (MobiCom). ACM, 2023.

[31] Starlink Hits 250,000 Customers, Elon Musk Hints:
SpaceX Booking Over $300 Million/Year. https:

//tinyurl.com/ycxscdae, 2022.

[32] SMALLSAT RIDESHARE PROGRAM. https://

www.spacex.com/rideshare/, 2023.

[33] SPACEX GEN2 DIRECT-TO-CELLULAR SYSTEM,
ATTACHMENT A. https://fcc.report/IBFS/SAT-MOD-
20230207-00021, 2023.

[34] Jayasuryan V Iyer, Khasim Shaheed Shaik Maham-
mad, Yashodhan Dandekar, Ramakrishna Akella, Chen
Chen, Phillip E Barber, and Peter J Worters. System
and Method of Providing a Medium Access Control
Scheduler, 2022. US Patent 11,540,301.

[35] Chen Chen, Pavel Chikulaev, Sergii Ziuzin, David
Sacks, Peter Worters, Darshan Purohit, Yashodhan
Dandekar, Vladimir Skuratovich, Andrei Pushkin, and
Phillip Barber. Low Latency Schedule-driven Han-
dovers, 2023. US Patent 11,729,684.

[36] Jared Michael Greene, Mohammed Faraz Admani, Ja-
cob Nelson Glueck, Sergii Ziuzin, Francesco De Paolis,
Dhruv Dawar, and Christopher Yu. System and Method
of Providing Access to Compute Resources Distributed
Across a Group of Satellites, 2023. US Patent App.
17/955,401.

[37] Bicycle-sharing System. https://en.wikipedia.

org/wiki/Bicycle-sharing_system, 2023.

[38] Stefan Brands. Untraceable Off-line Cash in Wallets
with Observers. In 13th Annual International Cryptol-
ogy Conference (CRYPTO). Springer, 1994.

[39] China makes big investments in 5G. http://

english.www.gov.cn/news/topnews/202107/25/

content_WS60fca12bc6d0df57f98dd886.html,
Jul 2021.

[40] A Huge Investment On 5G Base Station For
A Faster Network. https://howmuchhub.com/

5g-base-station-cost/, 2022.

[41] Mobile network coverage. https://www.itu.

int/itu-d/reports/statistics/2022/11/24/

ff22-mobile-network-coverage/, 2022.

[42] Inmarsat satellite communications. https://www.

inmarsat.com/.

[43] Thuraya Telecom. https://thuraya.com/.

[44] Andrew Jones. China kicks off a busy 2021
in space with communications satellite launch.
https://www.space.com/china-launches-tiantong-1-
03-communications-satellite, Jan 2021.

[45] Tereza Pultarova. SpaceX Starlink Satellites Re-
sponsible for Over Half of Close Encounters in Or-
bit. https://www.space.com/spacex-starlink-satellite-
collision-alerts-on-the-rise, 2022.

[46] Average monthly conjunction rates surge from
2017 to 2020. https://spacenews.com/space-traffic-
management-idling-in-first-gear/, 2020.

[47] SpaceX Constellation Status Report: June 1,
2023–November 30, 2023. https://licensing.

fcc.gov/myibfs/download.do?attachment_key=

25957549, Dec. 2023.

[48] ITU. ITU Radio Regulatory Framework for Space Ser-
vices. https://www.itu.int/en/ITU-R/space/

snl/Documents/ITU-Space_reg.pdf, 2022.

[49] ITU. Orbit/Spectrum International Regulatory Frame-
work: Challenges in the 21st Century. https://

tinyurl.com/2ar7kt2a, 2016.

[50] Starlink direct to cell. https://www.starlink.com/
business/direct-to-cell, 2023.

[51] MobileEurope. AT&T, Vodafone and AST Space-
Mobile Hit New Satellite-to-Mobile 5G Milestone.
https://www.mobileeurope.co.uk/att-vodafone-and-
ast-spacemobile-hit-new-satellite-to-mobile-5g-
milestone/, 2023.

[52] FCC. Single Network Future: Supplemental Cover-
age from Space. https://docs.fcc.gov/public/

attachments/DOC-400678A1.pdf, Feb. 2024.

[53] GSMArena. Huawei Mate 60 Pro+ debuts: a
souped-up Mate 60 with satellite voice call support.
https://www.gsmarena.com/huawei_mate_60_

pro_unveiled_an_soupedup_mate_60_with_

satellite_voice_call_support-news-59832.

php, Sep. 2023.

[54] RIPE Atlas. List of Starlink Terminals as Open
Network Probes. https://atlas.ripe.net/

frames/probes/?search=Starlink&status=&af=

&country=, 2023.

[55] Space Track. https://www.space-track.org, 2023.

[56] Open RAN functional splits, explained. https://

tinyurl.com/2h8zxbbc, 2021.

804 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://tinyurl.com/ycxscdae
https://tinyurl.com/ycxscdae
https://www.spacex.com/rideshare/
https://www.spacex.com/rideshare/
https://en.wikipedia.org/wiki/Bicycle-sharing_system
https://en.wikipedia.org/wiki/Bicycle-sharing_system
http://english.www.gov.cn/news/topnews/202107/25/content_WS60fca12bc6d0df57f98dd886.html
http://english.www.gov.cn/news/topnews/202107/25/content_WS60fca12bc6d0df57f98dd886.html
http://english.www.gov.cn/news/topnews/202107/25/content_WS60fca12bc6d0df57f98dd886.html
https://howmuchhub.com/5g-base-station-cost/
https://howmuchhub.com/5g-base-station-cost/
https://www.itu.int/itu-d/reports/statistics/2022/11/24/ff22-mobile-network-coverage/
https://www.itu.int/itu-d/reports/statistics/2022/11/24/ff22-mobile-network-coverage/
https://www.itu.int/itu-d/reports/statistics/2022/11/24/ff22-mobile-network-coverage/
https://www.inmarsat.com/
https://www.inmarsat.com/
https://licensing.fcc.gov/myibfs/download.do?attachment_key=25957549
https://licensing.fcc.gov/myibfs/download.do?attachment_key=25957549
https://licensing.fcc.gov/myibfs/download.do?attachment_key=25957549
https://www.itu.int/en/ITU-R/space/snl/Documents/ITU-Space_reg.pdf
https://www.itu.int/en/ITU-R/space/snl/Documents/ITU-Space_reg.pdf
https://tinyurl.com/2ar7kt2a
https://tinyurl.com/2ar7kt2a
https://www.starlink.com/business/direct-to-cell
https://www.starlink.com/business/direct-to-cell
https://docs.fcc.gov/public/attachments/DOC-400678A1.pdf
https://docs.fcc.gov/public/attachments/DOC-400678A1.pdf
https://www.gsmarena.com/huawei_mate_60_pro_unveiled_an_soupedup_mate_60_with_satellite_voice_call_support-news-59832.php
https://www.gsmarena.com/huawei_mate_60_pro_unveiled_an_soupedup_mate_60_with_satellite_voice_call_support-news-59832.php
https://www.gsmarena.com/huawei_mate_60_pro_unveiled_an_soupedup_mate_60_with_satellite_voice_call_support-news-59832.php
https://www.gsmarena.com/huawei_mate_60_pro_unveiled_an_soupedup_mate_60_with_satellite_voice_call_support-news-59832.php
https://atlas.ripe.net/frames/probes/?search=Starlink&status=&af=&country=
https://atlas.ripe.net/frames/probes/?search=Starlink&status=&af=&country=
https://atlas.ripe.net/frames/probes/?search=Starlink&status=&af=&country=
https://tinyurl.com/2h8zxbbc
https://tinyurl.com/2h8zxbbc

[57] 3GPP. TR38.821: Study on new radio access technol-
ogy: Radio access architecture and interfaces, 2020.

[58] China Mobile. Transport requirement for
CU&DU functional splits options. https:

//www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_

93/Docs/R3-161813.zip, 2016.

[59] Inigo Del Portillo, Bruce G Cameron, and Edward F
Crawley. A Technical Comparison of Three Low Earth
Orbit Satellite Constellation Systems to Provide Global
Broadband. Acta Astronautica, pages 123–135, 2019.

[60] Nils Pachler, Inigo del Portillo, Edward F Crawley, and
Bruce G Cameron. An updated comparison of four
low earth orbit satellite constellation systems to pro-
vide global broadband. In 2021 IEEE international
conference on communications workshops (ICC work-
shops), pages 1–7. IEEE, 2021.

[61] 3GPP. TS38.401: NG-RAN; Architecture description.
https://portal.3gpp.org/desktopmodules/

Specifications/SpecificationDetails.aspx?

specificationId=3219, 2023.

[62] 3GPP. TS38.473: NG-RAN; F1 Application Protocol
(F1AP). https://tinyurl.com/yp4mev39, 2023.

[63] 3GPP. TS38.413: NG-RAN; NG Application Protocol
(NGAP). https://tinyurl.com/yc55kmaf, 2023.

[64] Reddit. Starlink’s laser links are active.
https://www.reddit.com/r/Starlink/

comments/xsupcn/laser_links_are_active/,
Sep. 2022.

[65] Ramish Zafar. Starlink Turns On Laser Satellites For
Region With Four Months Long Night. https://

tinyurl.com/yws6um6y, Nov. 2022.

[66] Yuanjie Li, Hewu Li, Wei Liu, Lixin Liu, Yimei Chen,
Jianping Wu, Qian Wu, Jun Liu, and Zeqi Lai. A Case
for Stateless Mobile Core Network Functions in Space.
In Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM). ACM, 2022.

[67] List of Global Mobile Network Operators. https:

//www.frequencycheck.com/countries/, 2023.

[68] SpeedTalk Mobile. Flexible “Pay as You Go”
Phone Plans. https://speedtalkmobile.com/

pay-as-you-go-phone-plans/, 2023.

[69] Yuanjie Li, Kyu-Han Kim, Christina Vlachou, and Jun-
qing Xie. Bridging the Data Charging Gap in the
Cellular Edge. In Proceedings of the ACM Special
Interest Group on Data Communication (SIGCOMM),
pages 15–28. ACM, 2019.

[70] 3GPP. TS38.413: NG Application Protocol, Oct. 2021.

[71] 3GPP. Ts29.281: 3gpp evolved packet system (eps);
evolved general packet radio service tunneling protocol
for user plane (gtpv1-u), Sep. 2021.

[72] Discrete Logarithm— Wikipedia, The Free En-
cyclopedia. https://en.wikipedia.org/wiki/

Discrete_logarithm.

[73] Identity-based cryptography— Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/wiki/

Identity-based_cryptography, 2023.

[74] Identity-based encryption— Wikipedia, The Free En-
cyclopedia. https://en.wikipedia.org/wiki/

Identity-based_encryption, 2023.

[75] Pentagon Impressed by Starlink’s Fast
Signal-Jamming Workaround in Ukraine.
https://www.pcmag.com/news/pentagon-impressed-
by-starlinks-fast-signal-jamming-workaround-in-
ukraine, 2022.

[76] How Software-Defined Satel-
lites Will Shape Communications.
https://interactive.satellitetoday.com/via/april-
2021/how-software-defined-satellites-will-shape-
communications/, 2021.

[77] 3GPP. TS23.401: General Packet Radio Service en-
hancements for Evolved Universal Terrestrial Radio
Access Network (E-UTRAN) access, Dec. 2015.

[78] 3GPP. TS23.501: System architecture for the 5G Sys-
tem (5GS), Apr. 2023.

[79] ETSI. Smart Cards; Card Application Toolkit (CAT)
(Release 17), 2022.

[80] Android TelephonyManager API. https://tinyurl.
com/5aswc3b7.

[81] GSMA. SGP.02 v4.2. https://www.gsma.com/

esim/resources/sgp-02-v4-2/, 2020.

[82] GSMA. SGP.22 v3.0. https://www.gsma.com/

esim/resources/sgp-22-v3-0/, 2022.

[83] Amarisoft Callbox Ultimate Series. https://www.

amarisoft.com/ultimate/, 2023.

[84] sysmoISIM-SJA2. https://osmocom.org/

projects/cellular-infrastructure/wiki/

SysmoISIM-SJA2.

[85] H3: Uber’s Hexagonal Hierarchical Spatial Index.
https://s2geometry.io/, 2021.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 805

https://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_93/Docs/R3-161813.zip
https://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_93/Docs/R3-161813.zip
https://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_93/Docs/R3-161813.zip
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3219
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3219
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3219
https://tinyurl.com/yp4mev39
https://tinyurl.com/yc55kmaf
https://www.reddit.com/r/Starlink/comments/xsupcn/laser_links_are_active/
https://www.reddit.com/r/Starlink/comments/xsupcn/laser_links_are_active/
https://tinyurl.com/yws6um6y
https://tinyurl.com/yws6um6y
https://www.frequencycheck.com/countries/
https://www.frequencycheck.com/countries/
https://speedtalkmobile.com/pay-as-you-go-phone-plans/
https://speedtalkmobile.com/pay-as-you-go-phone-plans/
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Identity-based_cryptography
https://en.wikipedia.org/wiki/Identity-based_cryptography
https://en.wikipedia.org/wiki/Identity-based_encryption
https://en.wikipedia.org/wiki/Identity-based_encryption
https://tinyurl.com/5aswc3b7
https://tinyurl.com/5aswc3b7
https://www.gsma.com/esim/resources/sgp-02-v4-2/
https://www.gsma.com/esim/resources/sgp-02-v4-2/
https://www.gsma.com/esim/resources/sgp-22-v3-0/
https://www.gsma.com/esim/resources/sgp-22-v3-0/
https://www.amarisoft.com/ultimate/
https://www.amarisoft.com/ultimate/
https://osmocom.org/projects/cellular-infrastructure/wiki/SysmoISIM-SJA2
https://osmocom.org/projects/cellular-infrastructure/wiki/SysmoISIM-SJA2
https://osmocom.org/projects/cellular-infrastructure/wiki/SysmoISIM-SJA2

[86] Does Starlink use H3? https://github.com/uber/

h3/issues/717, 2022.

[87] T-Mobile’s Triple Cut Prepaid Sim Card (64K).
https://www.walmart.com/ip/T-Mobile-Triple-Cut-
Sim-Card/193539534.

[88] GSMA. SGP.22: eSIM Technical Specification, Oct.
2022.

[89] Hologram Global IoT SIM cards. https://www.

hologram.io/products/global-iot-sim-card/.

[90] Do I need an industrial sim card? https://support.

open-m2m.com/en/knowledgebase/article/

do-i-need-a-standard-or-industrial-sim-card,
2023.

[91] 3GPP. TP for TR 36.763 capturing RAN2 #114e agree-
ments. https://tinyurl.com/46ebmru9, 2021.

[92] SVR Anand, Serhat Arslan, Rajat Chopra, Sachin Katti,
Milind Kumar Vaddiraju, Ranvir Rana, Peiyao Sheng,
Himanshu Tyagi, and Pramod Viswanath. Trust-free
Service Measurement and Payments for Decentralized
Cellular Networks. In Proceedings of the 21st ACM
Workshop on Hot Topics in Networks (HotNets), 2022.

[93] Debopam Bhattacherjee and Ankit Singla. Network
Topology Design at 27,000 km/hour. In ACM CoNEXT,
2019.

[94] Deepak Vasisht, Jayanth Shenoy, and Ranveer Chandra.
L2D2: Low Latency Distributed Downlink for LEO
Satellites. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, pages 151–164, 2021.

[95] Bill Tao, Maleeha Masood, Indranil Gupta, and Deepak
Vasisht. Transmitting, Fast and Slow: Scheduling Satel-
lite Traffic through Space and Time. In The 29th In-
ternational Conference on Mobile Computing and Net-
working (MobiCom’23). ACM, 2023.

[96] Jian Li, Kaiping Xue, Jianqing Liu, and Yongdong
Zhang. A user-centric handover scheme for ultra-dense
leo satellite networks. IEEE Wireless Communications
Letters, 9(11):1904–1908, 2020.

[97] Senbai Zhang, Aijun Liu, Chen Han, Xiang Ding, and
Xiaohu Liang. A network-flows-based satellite han-
dover strategy for leo satellite networks. IEEE Wireless
Communications Letters, 10(12):2669–2673, 2021.

[98] Yuanjie Li and Hewu Li and Lixin Liu and Wei Liu
and Jiayi Liu and Jianping Wu and Qian Wu and Jun
Liu and Zeqi Lai. “Internet in Space” for Terrestrial
Users via Cyber-Physical Convergence. In Twentieth
Workshop on Hot Topics in Networks (HotNets). ACM,
2021.

[99] Debopam Bhattacherjee, Waqar Aqeel, Ilker Nadi
Bozkurt, Anthony Aguirre, Balakrishnan Chan-
drasekaran, P Brighten Godfrey, Gregory Laughlin,
Bruce Maggs, and Ankit Singla. Gearing up for the
21st century space race. In Proceedings of the 17th
ACM Workshop on Hot Topics in Networks (HotNets),
2018.

[100] Handley, Mark. Delay is Not an Option: Low Latency
Routing in Space. In Proceedings of the 17th ACM
Workshop on Hot Topics in Networks (HotNet), pages
85–91. ACM, 2018.

[101] Bhattacherjee, Debopam and Kassing, Simon and Lic-
ciardello, Melissa and Singla, Ankit. In-orbit Com-
puting: An Outlandish thought Experiment? In Pro-
ceedings of the 19th ACM Workshop on Hot Topics in
Networks (HotNets), 2020.

[102] Bradley Denby and Brandon Lucia. Orbital Edge Com-
puting: Nanosatellite Constellations as a New Class of
Computer System. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems (AS-
PLOS), pages 939–954, 2020.

[103] François Michel, Martino Trevisan, Danilo Giordano,
and Olivier Bonaventure. A First Look at Starlink
Performance. In Proceedings of the 22nd ACM Internet
Measurement Conference (IMC), pages 130–136, 2022.

[104] Sami Ma, Yi Ching Chou, Haoyuan Zhao, Long Chen,
Xiaoqiang Ma, and Jiangchuan Liu. Network charac-
teristics of leo satellite constellations: A starlink-based
measurement from end users. In IEEE Conference on
Computer Communications (INFOCOM). IEEE, 2023.

[105] Melisa López, Sebastian Bro Damsgaard, Ignacio Ro-
dríguez, and Preben Mogensen. An empirical analysis
of multi-connectivity between 5g terrestrial and leo
satellite networks. In 2022 IEEE Globecom Workshops
(GC Wkshps), pages 1115–1120. IEEE, 2022.

[106] Frank Uyeda, Marc Alvidrez, Erik Kline, Bryce Petrini,
Brian Barritt, David Mandle, and Chandy Aswin
Alexander. SDN in the Stratosphere: Loon’s Aerospace
Mesh Network. In Proceedings of the ACM Special
Interest Group on Data Communication (SIGCOMM).
ACM, 2022.

[107] Moradi, Mehrdad and Sundaresan, Karthikeyan and
Chai, Eugene and Rangarajan, Sampath and Mao, Z
Morley. SkyCore: Moving Core to the Edge for Unteth-
ered and Reliable UAV-based LTE Networks. In Pro-
ceedings of the 24th Annual International Conference
on Mobile Computing and Networking (MobiCom),
pages 35–49. ACM, 2018.

806 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/uber/h3/issues/717
https://github.com/uber/h3/issues/717
https://www.hologram.io/products/global-iot-sim-card/
https://www.hologram.io/products/global-iot-sim-card/
https://support.open-m2m.com/en/knowledgebase/article/do-i-need-a-standard-or-industrial-sim-card
https://support.open-m2m.com/en/knowledgebase/article/do-i-need-a-standard-or-industrial-sim-card
https://support.open-m2m.com/en/knowledgebase/article/do-i-need-a-standard-or-industrial-sim-card
https://tinyurl.com/46ebmru9

[108] Ayon Chakraborty, Eugene Chai, Karthikeyan Sun-
daresan, Amir Khojastepour, and Sampath Rangarajan.
SkyRAN: A Self-organizing LTE RAN in the Sky. In
Proceedings of the 14th International Conference on
emerging Networking EXperiments and Technologies
(CoNEXT), pages 280–292, 2018.

[109] Ramanujan K Sheshadri, Eugene Chai, Karthikeyan
Sundaresan, and Sampath Rangarajan. SkyHAUL: A
Self-Organizing Gigabit Network In The Sky. In Pro-
ceedings of the Twenty-second International Sympo-
sium on Theory, Algorithmic Foundations, and Proto-
col Design for Mobile Networks and Mobile Comput-
ing (MobiHoc), pages 101–110, 2021.

[110] Ruolin Xing, Xiao Ma, Ao Zhou, Schahram Dustdar,
and Shangguang Wang. From Earth to Space: A First
Deployment of 5G Core Network on Satellite. China
Communications, 20(4):315–325, 2023.

[111] 3GPP. TS 23.251: Network Sharing; Architecture and
functional description, Mar. 2022.

[112] 3GPP. TR28.835: Study on Management Aspects of
5G Multiple Operator Core Network Sharing Phase
2. https://portal.3gpp.org/desktopmodules/

Specifications/SpecificationDetails.aspx?

specificationId=4035, 2023.

[113] Multi-Tenant and Sharing (MORAN and MOCN).
https://www.parallelwireless.com/products/

multi-tenant-and-sharing/, 2021.

[114] Xenofon Foukas and Bozidar Radunovic. Concordia:
Teaching the 5G vRAN to Share Compute. In Proceed-
ings of the 2021 ACM SIGCOMM 2021 Conference,
pages 580–596, 2021.

[115] Binh Nguyen, Tian Zhang, Bozidar Radunovic, Ryan
Stutsman, Thomas Karagiannis, Jakub Kocur, and Ja-
cobus Van der Merwe. ECHO: A Reliable Distributed
Cellular Core Network for Hyper-Scale Public Clouds.
In Proceedings of the 24th Annual International Con-
ference on Mobile Computing and Networking (Mobi-
Com), 2018.

[116] Zhihong Luo, Silvery Fu, Natacha Crooks, Shaddi
Hasan, Christian Maciocco, Sylvia Ratnasamy, and
Scott Shenker. LOCA: A Location-Oblivious Cellular
Architecture. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
2023.

[117] Zhihong Luo, Silvery Fu, Mark Theis, Shaddi Hasan,
Sylvia Ratnasamy, and Scott Shenker. Democratizing
cellular access with cellbricks. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, 2021.

A Security Analysis

MOSAIC’s pay-as-you-go paradigm departs from traditional
stateful session-based cellular architecture. It does not require
the strong trust among the SNOs, MNOs, and UEs that is
a must-have for conventional hop-by-hop stateful sessions
(§3.2), thus more feasible for multi-tenancy over untrusted
satellites. We next show how MOSAIC is resilient to various
threats from UEs, SNOs, MNOs, and external attackers to
retain at least the same security as the legacy cellular network.

Mitigating threats from UEs: A selfish UE is incentivized
to forge, manipulate, or multi-spend a token for unauthorized
satellite access. MOSAIC avoids so with its cryptographically
restrictive blind signature-based tokens (whose security has
been formally proved in [38]) and SIM-assisted protection.
Without the MNO’s secret key x in §5.2, the UE cannot forge
or modify a valid token. The MNO-issued tamper-resistant
SIM locally denies the UE’s token multi-spending. In the
worst rare case that the SIM is cracked, the MNO can still
detect the multi-spending and permanently blacklists this UE
for later services in the clearing phase in Figure 11c.

Mitigating threats from MNOs: A selfish MNO may want
to save its rental bill to SNOs by underclaiming its usage of
satellites. MOSAIC’s pay-as-you-go tokens offer undeniable
proof of service for SNOs to mitigate this threat: Each satellite
can only gain the token if serving the UE. By showing the
ownership of these tokens to trusted third parties (e.g., court),
the SNO can prove the MNO’s satellite usage for charging.

Mitigating threats from SNOs: An unauthorized satellite
without the certificate from the MNO cannot legally use this
MNO’s licensed 4G/5G spectrums; otherwise, it fails to pass
the authentication in Figure 12 and can be detected by spec-
trum regulators (e.g., ITU/FCC). Besides, a selfish SNO may
refuse to offer carrier-grade services after gaining the UE’s to-
ken, thus overbilling the UE and MNO. This issue has existed
in terrestrial cellular networks for decades [69, 92, 117] due
to the lack of verifiable accounting and QoS. To avoid this at-
tack, MOSAIC can leverage the two-sided measurement and
negotiation in [69,92] between the UE and satellite to form an
undeniable, publicly verifiable proof of service enforcement.
The SNO can only convincingly charge the MNO when both
this proof and token are available.

Mitigating threats from external attackers: MOSAIC
retains at least the same security as the legacy 4G/5G. Like
4G/5G, it adopts authentication and key agreement in Fig-
ure 12 to protect its over-the-air signaling and data. Its tokens
and certificates are exchanged afterward over the encrypted
channel, thus resilient to eavesdropping or manipulation by
man-in-the-middle attackers. MOSAIC’s in-band control also
localizes the UE’s state retrieval to mitigate potential leaks
during the state migrations between satellites and ground sta-
tions in the outer space filled by untrusted 3rd-party satellites.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 807

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=4035
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=4035
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=4035
https://www.parallelwireless.com/products/multi-tenant-and-sharing/
https://www.parallelwireless.com/products/multi-tenant-and-sharing/

B Acronyms in This Work

AMF Access and Mobility Management Function
AUSF AUthentication Server Function
COTS Commercial Off-The-Shelf
CU Central Unit (in radio access networks)
DU Distributed Unit (in radio access networks)
F1AP F1 Application Protocol [62]
GEO Geostationary Earth Orbit
GTP-U GPRS Tunneling Protocol–User plane [71]
HSS Home Subscriber Server
IMSI International Mobile Subscriber Identity
ISL Inter-Satellite Link
LEO Low Earth Orbit
MNO Mobile Network Operator
MM Mobility Management protocol
NAS Non-Access Stratum
NGAP Next Generation Application Protocol [20, 70]
NTN Non-Terrestrial Network
OCS Online Charging System
OFCS OFfline Charging System
PCF Policy and Charging Function
PDU Protocol Data Unit
PDCP Packet Data Convergence Protocol
PLMN Public Land Mobile Network
RAN Radio Access Network
RLC Radio RLC Control protocol
RRC Radio Resource Control protocol
SCTP Stream Control Transport Protocol
SM Session Management protocol
SMF Session Management Function
SNO Satellite Network Operator
SUCI Subscription Concealed Identifier
SUPI Subscription Permanent Identifier
UDM Unified Data Management
UE User equipment
UP User Plane
UPF User Plane Function

808 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Known Knowns and Unknowns: Near-realtime Earth Observation Via Query
Bifurcation in Serval

Bill Tao, Om Chabra, Ishani Janveja, Indranil Gupta, Deepak Vasisht
University of Illinois Urbana-Champaign

Abstract

Earth observation satellites, in low Earth orbits, are increas-
ingly approaching near-continuous imaging of the Earth. To-
day, these satellites capture an image of every part of Earth
every few hours. However, the networking capabilities haven’t
caught up, and can introduce delays of few hours to days in
getting these images to Earth. While this delay is acceptable
for delay-tolerant applications like land cover maps, crop type
identification, etc., it is unacceptable for latency-sensitive ap-
plications like forest fire detection or disaster monitoring. We
design Serval to enable near-realtime insights from Earth im-
agery for latency-sensitive applications despite the network-
ing bottlenecks by leveraging the emerging computational
capabilities on the satellites and ground stations. The key
challenge for our work stems from the limited computational
capabilities and power resources available on a satellite. We
solve this challenge by leveraging predictability in satellite
orbits to bifurcate computation across satellites and ground
stations. We evaluate Serval using trace-driven simulations
and hardware emulations on a dataset comprising ten million
images captured using the Planet Dove constellation compris-
ing nearly 200 satellites. Serval reduces end-to-end latency
for high priority queries from 71.71 hours (incurred by state
of the art) to 2 minutes, and 90-th percentile from 149 hours
to 47 minutes.

1 Introduction

Low Earth Orbit (LEO) satellites promise to deliver continu-
ous, high-resolution imagery of the Earth through large con-
stellations of low cost cubesats. These constellations, e.g.,
Planet Dove [50], deploy imaging sensors on cubesats in low
orbits nearly 500 Kilometers above the Earth’s surface. Due
to their low orbits and large constellation size, they can cap-
ture an image of every location on Earth multiple times per
day. The imagery from these satellites is useful for many
applications such as disaster monitoring [11, 18], precision
agriculture [9, 40], disease modeling [14], climate monitor-
ing [64], and financial analytics [62].

However, Earth observation constellations today cannot
support many latency sensitive applications because they suf-
fer from large latency of few hours to days between an image
capture and its availability to the end user [59]. For example,
a fire department needs the images of a wildfire within a few
minutes so as to limit risks to human lives, forest ecosystems,

Figure 1: Serval distributes computation across satellites
and ground stations to prioritize latency-sensitive imagery
and insights.

and property. Such delays largely arise from a satellite’s data
transfer process (see Fig. 1). Satellite imagery must be trans-
ported to ground stations on Earth, and from there to the cloud,
where processing, storage, and insight generation can occur.
This pipeline can incur a delay of hours and sometimes days.
This is due to several factors: (a) orbital dynamics, as satellites
have intermittent access to ground stations on Earth—about
ten minutes per contact, with 4-5 good quality contacts per
day; and (b) the bandwidth from satellite to ground station
is limited due to the large distance from satellite to Earth,
making it nearly impossible to downlink all the images from
a satellite during every contact.

This paper’s goal is to enable near-real-time insights from
satellite imagery by reducing the time-to-insight for satellite
imagery to O(minutes). We do so by by leveraging emerging
compute capabilities on satellites and ground stations. This is
feasible today due to the ongoing push to equip satellites with
small amounts of compute resources such as a Raspberry Pi or
a NVIDIA Jetson, e.g., in 2020, the European Space Agency
(ESA) deployed a neural-network based cloud detector on
their Φ-Sat-1 mission [28]. Similarly, many recent proposals
from industry [7, 46] and academia [60, 61] argue for co-
locating ground stations and data centers to reduce terrestrial
networking delays and enable compute on ground stations.
Our core idea is to leverage the emerging general-purpose
computational capabilities available on satellites and ground
stations to prioritize latency-sensitive images such as those
containing forest fires, while deprioritizing other images that
are relatively less latency-sensitive.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 809

To achieve this goal, we build Serval 1, a novel edge com-
puting framework designed to derive near-real-time insights
from LEO satellites. Serval allows multiple long-running
queries to execute simultaneously on incoming satellite im-
agery. Given a query set, Serval intelligently distributes com-
pute across satellite, ground station, and the datacenter. Simi-
lar to comodity products for satellite imagery analysis such
as Planet Analytics [1], Serval represents each query as a
logical intersection of a sequence of filters, e.g. “forest fires in
California” is denoted as three sequential filters {California,
forest, fire}, each of which involves geographical or statistical
computation (e.g., a neural network). Different queries may
have different latency-sensitivity and compute requirements.
Unlike past work [23], Serval does not discard any images
because new applications can emerge post-collection (e.g.,
historical data analysis or disaster management). For example,
recently Planet [51], a leading Earth observation company,
used their satellite imagery to retroactively track the origin and
flight of a balloon that entered the United States airspace [5],
which would be impossible if images had been discarded.
Instead, Serval focuses on dynamically reordering image
delivery to reduce end-to-end delays for latency-sensitive con-
tent.

The key challenges in Serval stem from the scale of satel-
lite imagery and the limited compute capabilities available
inside a LEO satellite. First, each satellite generates nearly a
Terabyte of data per day. Second, a satellite needs to perform
the query compute on this data using its limited compute ca-
pacity. LEO satellites generally have small solar panels that
generates limited power. For instance, the model used in [23]
has a 7W solar panel, a large fraction of which is utilized for
critical satellite function. However, a Jetson TX2 itself con-
sumes 11.3W. Moreover, solar panel power supply is further
diminished because it generates no power when the satellite
is on the dark side of the Earth. This means that the computer
onboard cannot be always on. Together, this means it is in-
feasible for all images being collected by the satellite to be
processed on-board.
Serval’s key insight is based on our observation that a

query is typically composed of two kinds of filters, determined
by the rate of change of the data the filter pertains to. The data
beneath some filters may change quite quickly—we call these
as dynamic filters. Examples include (the outline of) fires,
(position of) boats, etc. However, the data beneath the second
class of filters changes much more slowly—we call these
as glacial filters. Examples include forest identification, and
ocean and land boundaries—these boundaries do not often
change within a day (or even weeks).
Serval bifurcates a query—it assigns the temporally static

(glacial) parts of the query to spatially static entities (ground
stations, the cloud) while assigning temporally dynamic parts
of the query to spatially dynamic entities (satellites). Consider

1Smart Edge-based Realtime Visual Analytics for LeoSats

a query such as “forest fires in California”. Serval can de-
compose this query into identifying “California”, identifying
“forests”, and identifying “fire”. In this set, “California" and
“forests” are both glacial filters, while “fire” is a dynamic filter.
Our key insight is that glacial filters can be pre-computed on
the ground stations using stale imagery (e.g., a day-old im-
age). Such glacial filter computation can be done even before
an image is captured at the satellite and the results can be
conveyed to the satellite. Serval’s bifurcated approach has
two advantages. First, the pre-computed glacial filter results
on the ground means that the LEO satellite only needs to com-
pute the dynamic filters of a query. Second, the same glacial
filter inferences can be reused by multiple satellites (single
compute, multiple use). The glacial filter offload to ground
stations is enabled by the predictability of satellite orbits and
as a result, predictability of the geographical location and
time of each image.

For some filters that have to run in real-time, such as cloud
detection, we can infer high-quality priors by additionally
incorporating auxiliary information available at the ground
station, e.g., weather forecast information. Cloud detection
is an important component of RGB image analysis because
clouds occlude useful information and must be rejected prior
to processing. For instance, if the forecasted cloud cover is
either very low or very high, Serval can skip the cloud de-
tection step altogether aboard the satellite.

We evaluate Serval using a combination of trace-driven
simulations and hardware emulation on two applications: ‘for-
est fires in California’, and ‘vessel counting at ports’. These
applications represent opposite ends of a spectrum: the for-
mer outputs a set of images, while the latter outputs counts.
We designed a LEO satellite simulator and evaluated Serval
using real image traces collected from PlanetScope, a con-
stellation of over 200 CubeSats launched by Planet Lab. Our
paper is, to the best of our knowledge, the largest evaluation
performed using data collected by a real operational satel-
lite constellation. Specifically, our traces contain ten million
images collected using 151 satellites across 20 days. We
evaluate Serval using two different satellite configurations
and two different ground station configurations.

Contributions: We summarize our contributions below:

• We present the first system that distributes compute across
satellites and ground stations to deliver near-real-time
insights from Earth observation satellites.

• We propose a new bifurcated query execution approach
that offloads glacial (slowly-changing) filter computation
to the ground in order to reduce computational load on
satellites, and end-to-end latency.

• To the best of our knowledge, we are the first to evaluate
our system on a real-world raw and continuous trace col-
lected by the world’s largest LEO satellite constellation
for Earth observation.

810 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

• Our evaluation shows that the Serval scheduler improves
end-to-end median percentile latency on high-priority im-
ages from over 70 hours to 2 minutes (90-th percentile
from 149 hours to 47 minutes), while also improving de-
tection accuracy and reducing satellite compute load by
over 80%.

2 Background

In the 1990’s, Iridium, Globestar, and Teledesic [27, 30, 42]
planned constellations of tens of satellites to provide direct
connectivity to handheld terminals. Similarly, early imaging
constellations, such as NOAA’s series for weather sensing,
comprised of a couple of satellites. These early constellations
triggered important research in satellite networking [19, 21,
34, 38, 49, 52].

More recently, within the last 5-10 years, the emergence
of large LEO constellations, comprising of hundreds of satel-
lites, has been driven by lower launch and manufacturing
costs of small satellites. For instance Planet’s Dove constel-
lation for Earth imagery is composed of nearly 200 low-cost
cubesats (‘shoebox-sized’ satellites) with off-the-shelf com-
ponents. Our work focuses on these modern constellations for
Earth observation. These modern constellations differ from
traditional satellite constellations in three ways:
• Constellation size: Modern satellite constellations (e.g.,

Planet Inc. [26], Spire Inc. [3], etc.), consist of hundreds
of satellites as opposed to few satellites in traditional
constellations. This allows modern constellations to get
more frequent imagery of any part of Earth with revisit
frequency of few hours as opposed to a delay of several
days from traditional constellations.

• Data volumes: The low orbit of LEO satellites and im-
proved imaging hardware enables high resolution imagery
(e.g. 1m2 per pixel). They capture images of Earth in dif-
ferent parts of the frequency spectrum, e.g., RGB, Ra-
dio Waves, Infrared, etc. The multi-spectral imagery, in-
creased satellite number, and high resolution lead to in-
creased data volumes—from few GBs of data per day to
TBs of data per day. For instance, Planet’s Dove satellites
generates approximately one Terabyte of data per satellite
per day.

• Applications: Traditional Earth observation satellites
could only support delay-tolerant applications like crop
yield estimates, land cover use, etc. Modern constella-
tions gather images more frequently and offer the promise
of real-time applications like disaster monitoring, traffic
analysis, maritime monitoring, etc.

• Processing pipelines: Modern data processing pipelines
increasingly rely on modern Machine Learning (ML)
methods, in contrast to (merely) traditional signal pro-
cessing based approaches. For example, European Space
Agency’s Φ-Sat-1 [28] recently demonstrated the ability

to perform neural network-based cloud detection on board
a satellite.

Network pipeline: Finally, we provide a brief description of
satellite network pipeline as context for the rest of the paper.
LEO satellites for Earth observation operate in polar orbits
and go around the Earth once every 1.5 hours appoximately.
During each orbit, they pass over a different part of the Earth
due to Earth’s rotation. The data from these satellites is usu-
ally downloaded using few dedicated ground stations with
Gbps link capacities [25]. Due to a satellite’s orbital motion,
it can contact each ground station four to six times a day, with
each contact lasting up to ten minutes. To improve down-
load latency and increase the number of contacts, recent work
has proposed distributed ground station designs with multiple
general-purpose ground stations [60,61]. In the industry, Ama-
zon and Microsoft have launched ground-station-as-a-service
platforms [7, 46], wherein satellite operators can rent time on
existing ground stations to download data from satellites.

3 Serval’s Design

In this section, we present the problem setup, Serval’s ap-
proach to distributing compute across Earth and space, and
Serval’s incorporation of auxiliary information. Finally, we
describe Serval’s execution engine.

3.1 Problem Setup

Fig. 1 shows the three layers in a satellite networking system:
(1) the LEO satellite constellation containing hundreds of
orbiting satellites, (2) few ground stations across the world,
each of which can communicate with satellites, and (3) the
cloud consisting of one or more data centers. The satellites
continuously image the Earth’s surface and send the captured
images down whenever they make the next contact with a
ground station. The ground stations eventually upload images
to the cloud.

The satellites are energy-constrained, i.e., they have ac-
cess to limited amounts of power, and only a fraction of the
power is available for compute. The primary usage of the
power is to maintain temperature, power attitude determina-
tion, and control systems, communicate with ground stations,
and other critical satellite functionality. We assume each satel-
lite has limited computational capability such as a Jetson
TX2 or Jetson AGX Orin. This assumption is validated by
recent proposals of incorporating compute in satellites in
academia [15, 22, 23, 44, 45], and by recent launches that in-
corporate computational capabilities on satellites [4, 28].

Ground stations have no power limits and are equipped
with more (though not infinite) computational resources than
satellites. This assumption is reasonable in both traditional
ground station designs which were capital-intensive, as well

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 811

Figure 2: Serval represents queries as a set of sequential
filters. The picture above represents two queries: ‘images
containing forest fire in California’, and ‘Number of ves-
sels at ports’.

Figure 3: Example output images for queries ‘California
Forest Fire’ (left) and ‘Vessels Counting in Port’ (right).

as in modern ground station designs wherein cloud providers
co-locate compute resources at the ground stations.

Graph representation: Application developers who are
customers of the satellite constellation operator company sub-
mit queries that will run on the Earth observation imagery.
For example, Planet Inc. has a product named “Analytics"
which allows users to run user-defined analytic applications.
The user can choose a specific object detection model to run,
and limit the set of images to run the selected model on by
defining additional filters based on image metadata, includ-
ing date, time, geographic location, cloud cover ratio, etc. [1].
However, today such queries are executed offline on the cloud
once all the images have been delivered to the cloud — we
seek to execute them in real-time.

While some queries may not be sensitive to taking days to
generate a response, several queries are latency-sensitive and
require responses in minutes. The satellite operator company
may charge a premium for such latency-sensitive queries.
Examples include: (a) a forest department may design a query
like ‘images of forest fires in California’; (b) a trading firm
may be interested in a query like ‘number of ships at major
ports across the world’; (c) a disaster response team might
be interested in ‘images of, or number of, flood-damaged
buildings in Florida’.
Serval supports two types of queries: (I) image outputs:

queries that require images to be outputted matching the query,
e.g., forest fire images from California may be needed for a
detailed inspection of the damage and to create a plan for
action, (II) statistic outputs: queries that only require the
inference to be delivered, e.g., a hedge fund may need the
count of cars in different parking lots across Beijing, rather
than the actual images, or, financial traders may need to know

the count of ships at a port.
We represent each query as a sequence of filters, which is

consistent with the current commodity products such as Planet
Analytics [1]. For example, ‘forest fires in California’ can be
represented as California→forest→cloud→fires. Similarly,
‘ships around ports’ is represented as Port→Cloud→Ship
count. Note that each query contains a cloud filter to remove
images that are occluded by clouds. The filter representation
is depicted visually in Fig. 2.

Each filter is a computational block that takes an image as
an input and outputs either a boolean value or a number. For
example, the California filter performs a geographical check
and returns True or False, i.e., do the geographical coordinates
of the image overlap with the geographical boundaries of Cal-
ifornia. Similarly, the filters Vessel counter may be a neural
network (a stock network, or one supplied by the application
developer) that detects and counts the number of vessels in an
image. Cloud, Forest, and Fire are other neural network-based
filters in examples above.
Serval’s goal is to prioritize images that pass all the filters

corresponding to at least one latency-sensitive query. We also
note that the filter representation of our queries lends itself
to cross-query optimization. For example, if two different
queries rely on the same underlying filters, Serval does not
need to perform the computation twice, e.g., if two queries
both rely on forests in California, then we do not need to
perform forest detection twice. Similarly, Cloud filter needs
to be computed only once for an image even though the image
may be relevant to multiple queries.

Note on inter-satellite links: While Inter-satellite Links
(ISLs) have generated a lot of interest, none of the Earth ob-
servation constellations today are equipped with ISLs. Hence
we do not consider ISLs. Starlink demonstrated feasibility of
laser-based ISLs [41, 57], and Planet and Telesat announced
their plans to explore radio-frequency ISLs across orbits (e.g.,
from Low Earth Orbit to Middle Earth Orbit or Geostationary
Orbits) [36]. Given the uncertainty over feasibility and type
of ISLs, we choose to exclude them in our analysis. If ISLs
mature in the future, Serval’s design can be generalized to
accommodate and exploit ISLs.

3.2 Distributing Compute Across Earth and
Space

Today’s delay between image capture at satellite and image de-
livery to the cloud/end-user ranges from several hours to many
days. To enable near-realtime insights for the end user(s),
Serval’s primary goal is to reduce this delay to minutes
for latency-sensitive queries, while accommodating the con-
straints imposed by the satellite’s limited power and compute
capabilities. Towards this goal, we first consider the place-
ment of computation at the different compute units: satellite,
ground station, and the cloud servers. There are two existing

812 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

approaches to perform inference on Earth imagery:
(i) In-order Delivery and Computation: In the traditional

approach, images are delivered to the cloud in the same times-
tamp order as they were captured by the satellite, and then
inference is run on these images in the cloud. This approach
suffers from large delays because of networking bottlenecks.
Specifically, the LEO satellites exhibit fast motion with re-
spect to ground stations on the Earth [23, 61]. Therefore,
any ground station-satellite contact is fleeting – less than ten
minutes per contact, few contacts per satellite per day. This in-
termittent connectivity, in conjunction with the small number
of ground stations, leads to large networking delays. Since
images cannot be processed before they are received at the
data center, the time-to-insight for this approach is very large.

(ii) In-orbit Computation: Recently, there is a growing push
to place computation on the satellites. The first wave of this
push demonstrated the use of satellite computation to reject
cloud-occluded images [28]. Orbital edge computing [23]
broadens the scope of satellite computing to reject images
that do not meet the application goals, e.g., if the goal is to se-
lect images containing buildings, the satellite runs a building
detector and rejects images that contain no buildings. This
approach places a high computational load on satellites.

Specifically, such in-orbit computation techniques suffer
from two problems: (a) as the number of applications in-
creases or becomes more complex (such as the compositional
filters discussed in Sec. 3.1), satellites cannot accommodate
this compute with their limited resources, and (b) new appli-
cations emerge for historical data. Such applications may not
be known a priori. If a satellite discards data that does not
match current applications, new applications that emerge later
cannot be served.
Serval takes the practical approach of distributing com-

pute between satellites and ground stations. Our approach is
centered around three properties of satellite imagery:

• Image locations are predictable: Satellites follow pre-
dictable orbital paths that can be estimated using their
orbit descriptors, e.g., using Two Line Element (TLE) or-
bit descriptors published by observatories as well as many
satellite operators. Therefore, even before an image is
taken, we can predict what the geographical content of
the image is.

• Content of most images is glacial: For most images
taken at a given location, most of their content is glacial,
i.e., stationary—it does not change rapidly within a few
days. An image that contains buildings yesterday, will
likely contain buildings today. Similarly, forests, desserts,
farms, and other land types rarely change over the time
span of a few days.

• Ground station compute capabilities are rising: In-
creasingly, ground stations are designed to include com-
putational resources. These computers are more powerful
and better resourced in terms of power and networking as

compared to computational devices on the satellite.
Based on these observations, Serval divides the filters for

all the queries into two types: (a) fast-changing dynamic filters
that need to be executed on the satellite at run-time, and (b)
glacial slow-changing filters that can be executed using stale
imagery on the ground stations. Serval executes the glacial
filters at the ground station or the cloud before the image is
captured and uses the ground stations to communicate the
results to the satellite in advance. This allows the satellite to
process a very small fraction of images on the satellite in the
bottleneck execution path.

Pre-computing such glacial information can significantly
reduce the compute requirements on the satellite. As satellites
orbit rapidly around the earth, their footprint looks like thin
belts that extend almost vertically from the south pole to the
north pole. Therefore, ordinary user requests, such as forests
in California or farm land in the U.S., generally only makes
up a tiny portion of a satellite’s imagery.
Serval attaches a dynamic or glacial attribute to each filter

to aid the execution engine. This can either be supplied by the
developer, or estimated from data. Consider the query ‘forest
fires in California’. We find that among the millions of images
captured by a constellation, only 0.4% contain any land area
in California. Two-thirds of California images contain forests,
i.e., only 0.25% of all images captured by the constellation
contain ‘forests in California’. Since we can estimate the
exact set of images that will contain ‘forests in California’
using historical data, the satellite needs to run a fire detector
on only this small set of images. In this case, California and
Forest are glacial filters, and Fire is a dynamic filter. Only
dynamic filters need to run on satellites using fresh data.

3.3 Incorporating Auxiliary Information
Sources

Ground stations, unlike satellites, have continuous access to
auxiliary information sources like weather forecasts. We ask
if such information can be used by Serval to either improve
inference quality or to skip computation on the satellite.

We first make the observation that clouds occlude many of
the images taken by a satellite, and a cloud-occluded image
is not useful for any query. In fact, there has been a lot of
work in cloud detection for satellite imagery before [28, 35,
47, 53], both using statistical methods [35, 53] and neural
networks [28, 47].

Given this observation, Serval’s key idea is to leverage
weather forecasts in order to skip on-board processing of
images over areas that are forecast to have high cloud cover.
Concretely, if the probability of cloud cover is high, then
Serval assigns a ‘cloudy’ tag to the image and exclude it
from any other computation and de-prioritize its transfer to the
ground station. Conversely if the probability of cloud cover is
very low, then Serval assigns a ‘cloud-free’ tag to the image.
In this case, the processing pipeline on the satellite can skip

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 813

Figure 4: Serval’s satellite execution engine re-orders the
images to prioritize latency-sensitive data download.

the Cloud filter and proceed to the next steps of computation.
Finally, all other images that are not tagged in either of the
above ways are processed through the Cloud filter on-board
the satellite.

In practice, we use cloud probability thresholds of
{0.2,0.8} for the above processing. If the cloud cover proba-
bility for an image is less than 0.2, Serval assumes the image
to be cloud-free. If the probability is greater than 0.8, Serval
de-prioritizes the image. If the probability is between these
two values, Serval processes the image through the Cloud
filter, which is a neural network model.

While the current version of Serval does not incorporate
weather forecasts in other inferences, there are many other po-
tential optimizations for future work. For applications like for-
est fire, weather forecasts also contain information regarding
forest fire risks, which can be used to select high-likelihood
images to run filters on. Also, cloud detectors are known to
confuse smoke and cloud which can be improved by com-
bining cloud detection results and weather forecasts. Finally,
auxiliary information may contain other types of information
such as information extracted from previous satellite images,
e.g., if a different satellite observed forest fire in the same
region a few hours ago.

3.4 Serval’s Execution Engine

We describe how Serval captures the insights discussed in
Sections 3.1-3.3. We discuss how Serval’s execution engine
works on a satellite, at a ground station, and in the cloud.

3.4.1 The Satellites

Fig. 4 shows that each satellite maintains three queues for
images: (i) a low priority queue, (ii) a high priority queue,
and (iii) a compute queue. The low priority queue contains
images that do not match any latency-sensitive query. The
high priority queue contains images that definitely match
latency-sensitive queries. The compute queue contains images
that need more computation to be performed on the satellite

in order to ascertain their status.

Network delivery order: When the satellite comes into con-
tact with the ground station, it will first downlink images in the
high priority queue. If the high priority queue is emptied and
ground station contact remains, it will downlink the images
in compute queue. This is because even though computation
hasn’t run on these images on the satellite, these images have a
higher likelihood of being latency-sensitive than images in the
low-priority queue. Finally, if the compute queue is emptied
and ground station contact remains, it will downlink images
from the low priority queue. This multi-queue architecture
allows Serval to benefit from limited compute available on
satellites, even when it may not be able to compute on all
images.

Image placement in queues: When a satellite comes in
contact with a ground station, the ground station sends the
following information to the satellite: (a) pre-computed val-
ues for glacial or slow-moving filters for each image that
the satellite is expected to capture in its upcoming orbital
path leveraging the observation from Sec. 3.2 that satellite
orbits are predictable, and (b) weather predictions for the ge-
ographical location corresponding to each image the satellite
is expected to capture. For each image captured by a satellite,
Serval’s first goal is to identify whether the image meets the
requirements for any (at least one) of the on-board queries.
Serval does so by immediately applying all pre-computed
filters. For a given query, if any of its pre-computed filters
rejects the image, the image is considered rejected by that
query. If an image is rejected by all queries, then the image
is placed in the low priority queue. Note that in practice this
entire filtering process is fast as it does not involve signifi-
cant compute but is a quick classifier based on pre-computed
inferences received from the ground station.

To be placed in the compute queue, an image must meet
two criteria: (a) all the pre-computed glacial filters in at least
one query must select that image, and (b) there must be at
least one dynamic filter in that query that needs computation.
For example, for ‘forest fires in California’, if an image is
selected by the California and Forest filters, it is placed in the
compute queue to run the Cloud and Fire filters.

Any image that is selected by all the filters in at least one
query is placed by Serval into the high priority queue. If a
query has some dynamic filters, then an image moves to the
high-priority queue from the compute queue. For example,
in the example above, if the image in the compute queue is
selected by both Cloud and Fire filters, it will move to the
high priority queue. Note that, if all the filters in a query are
glacial filter (precomputed on the ground station), then, some
images can skip the compute queue and directly move to the
high priority queue as well.

Finally, if the output of a query is an inference and not an
image (e.g., Vessel Count), then Serval places the image in
the low priority queue and creates an empty image with just

814 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the metadata information (e.g., number of cars in parking lots
or number of vessels at a port). Serval places this (much)
smaller metadata value in the high priority queue.

In situations where the satellite has sufficient surplus energy
to compute on an image, Serval pulls an image from the
compute queue and runs the dynamic filters corresponding to
the query on the image. At any time, if the satellite determines
that an image is not possibly high priority in the multi-stage
filtering process, it will immediately put it into the low priority
queue and start doing computation on the next image. On
the other hand, if the satellite determines that an image is
high-priority, it will put the image into the high priority queue
without running additional filters on that image. In each queue,
images are ordered by their capture timestamp.

3.4.2 The Ground Stations

Recall that ground stations have much higher computation
capability than the satellites, while having much fewer power
constraints. In Serval, the ground station maintains two
queues: a high priority queue and a low priority queue. When
a ground station receives an image from the satellite, it first
runs the uncompleted filters of the query and the places the
image in the high priority if the image is selected by all the
filters in at least one query, otherwise it places it in the low
priority queue. Whenever the ground station has free computa-
tional resources, Serval opportunistically uses the downtime
to compute the results of ‘glacial’ filters for upcoming satellite
contacts. A ground station has a steady backhaul connection
to the cloud, and uses this backhaul to constantly stream im-
ages to the cloud starting from the high-priority queue.

3.4.3 The Cloud

The cloud acts as a frontend to all users. The images and
insights will be uploaded to the cloud and made available
for users to download. The cloud also acts as the central
coordinator of the entire Serval system and computes the
future orbits, positions of satellites and other preemptively
computed values for the images taken in the future. The cloud
will also schedules satellite-ground station contacts and sends
the pre-computed values to the appropriate ground station
to be relayed to the satellites in the control plane. Fig. 5
demonstrates Serval’s placement of different filters for the
example queries in Fig. 2.

4 Experimental Setup

We evaluate Serval using a combination of trace-driven simu-
lations and emulations. Our code is open source and available
at https://github.com/ConnectedSystemsLab/Serval.

Figure 5: Serval Example Execution: The placement of
different compute units for queries defined in Fig. 2.

4.1 Applications
We picked two sample user applications to evaluate Serval’s
performance: (a) identification of all Forest Fire images in
California, and (b) Counting Marine Vessels in Ports in the
world’s busiest ports, including Shanghai, Singapore, Hong
Kong, Hamad, and Jebel Ali. These applications cover vast
geographical areas, and yet they are different in output (im-
ages vs. count) and in their internal query filters, ML models,
and resultant computational needs.

Fig. 2 showed that the California Forest Fire application is
a sequence of four filter stages:
1. Is the Image from California? A geographic filter (Glacial
filter);
2. Is the Image in a woody zone? Computed from stale data
(Glacial filter);
3. Is the Image cloud-free? (Dynamic filter); and
4. Does the Image contain smoke or haze from a forest fire?
(Dynamic filter).

Using Planet images, we trained three deep-learning mod-
els for the identification of the forest, fire, and cloud. The
forest and fire identification is based on a ResNet architec-
ture [31] while the cloud identification is based on a Mo-
bileNet architecture [33]. The label for woody/non-woody is
obtained from the USDA Forest Service; the labels for cloud
and non-cloud are obtained from Planet UDM2; the fire labels
are manually created. We divided our data into a training set
and a testing set.

Our second application, Marine Vessel in Ports Counting,
is a sequence of three filter stages:
1. Is the Image near one of the focus port areas? A geographic
filter (Glacial filter);
2. Is the Image cloud-free? (Dynamic filter); and
3. Counting the number of vessels in the image. (Dynamic
filter).

We trained a ResNet-based [31] vessel classifier using a
Kaggle planet imagery dataset2. This dataset did not con-
tain bounding boxes or vessel counts as training labels; it
just contained vessel classification labels. Therefore, we used

2https://www.kaggle.com/datasets/rhammell/ships-in-satellite-imagery

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 815

https://github.com/ConnectedSystemsLab/Serval

the trained classifier and a weakly supervised object detec-
tion [58] (WSOD) to draw object bounding boxes on sample
images taken by Planet. We then trained a yolov5 [37] model
using our automatically labeled training images. We divided
our data into a training set and a testing set.

Obtaining historical data for forests: To simulate extract-
ing forest data from stale images, we initially run the forest
model over images collected from the first 10 days. We, then,
evaluated Serval over the last 10 days of the trace we ob-
tained. To label each image in the later 10 days, we find all
images in the first 10 days that intersect with the image, and
if any such image is labeled as forest, we determine that the
target image is forest.

Weather data: We obtained weather forecast data from open-
meteo for all the images [2]. For each image that requires
cloud detection, if the cloud coverage is more than 80%, we
determine that it is cloudy without running the cloud detection.
Similarly, if cloud coverage is less than 20% we determine
that it is not cloudy without running the model. If the cloud
coverage is between 20% and 80%, we run the cloud detection
model.

4.2 Real-world Dataset
We obtained a large image dataset from Planet’s Dove satel-
lite constellation [50], comprising nearly 200 satellites. This
dataset contains the metadata (size, location, etc.) for all im-
ages captured by all 200+ satellites between July 1st and July
20th, 2021. We use this time interval because of the preva-
lence of forest fires in California during the summer of 2021.
This dataset contains metadata for ten million images. Due to
the limited quota of images we can download, we analyzed the
metadata to find images in California and multiple port areas.
Based on our analysis of the metadata, we requested around
40k complete images from Planet’s Planetscope API [51].
Each image contains 4 channels (red, green, blue, NIR). The
collective size of our downloaded images is 13 TB.

Planet has 3 different types of sensors to collect images:
PS2, which covers an area of 24km by 8km; PS2.SD, which
covers an area of 24km by 16km; and PSB.SD, which covers
an area of 32.5km by 19.6km. The runtime of a neural network
largely depends on the image size and not the content of the
image. Therefore, for the images that we only downloaded
the metadata, we used the average running time of the models
as an assumed running time for the corresponding model on
those images, when necessary.

4.3 Hardware-benchmarking and Simulator
Design

First, we use real hardware to benchmark the performance
of different filters, such as the Machine Learning models for
various filters. Table 1 shows that we evaluated Serval using

two different modes of on-board computers for satellites:
Jetson ORIN 30W and 15W modes. The microcomputer is
equipped with a GPU that is able to run neural network based
models in the images.

Mode 15W 30W
CPU Cores 4x1.1MHz 8x1.7MHz
GPU Speed 420 MHz 624 MHz

RAM 32 GB 32 GB
Storage 64 GB 64 GB

Table 1: Jetson AGX Orin Hardware Configurations

We tested the performance of Serval at scale in simula-
tion. Our simulator computes the orbits of satellites using
Two-Line-Element [32] orbit descriptors for each Planet satel-
lite. The simulator tracks satellite-ground station contacts and
the link quality of each of these contacts by following the
specifications of Planet’s ground stations in [25]. The simula-
tor also keeps track of the energy generation and consumption
on each satellite, as well as the compute time on it. We ran
the simulation with a time granularity of ∆t = 1min. For each
satellite, we assume that it is equipped with the Jetson AGX
Orin and operates in one of its two power modes.

Power management: Our simulator models the satellite
power profile in Table 2. The satellite generates power using a
solar panel. The satellite’s ADACS (Advanced Data Acquisi-
tion and Control System) and other systems always need to be
on and consume continuous power. We select these numbers
to match previously reported numbers [23]. When the satellite
takes photos or transmit power, it will also cost energy. We
schedule the computation in a greedy approach: whenever
there is spare power available and images requiring compu-
tation, the satellite will run the next-queued computation (if
any).

Resource limit: We run two applications that target a small
fraction of the Earth’s surface area. In practice, many more
applications may run on satellite imagery and cover a larger
geographical area. Therefore, for fairness, we limit network
and compute usage for Serval to 1% of the total network
and compute capacity available on the satellite (roughly pro-
portional to the surface area of the geography we cater to
as compared to all the area imaged by Planet’s satellites).
Note that high-priority images identified by Serval are bot-
tlenecked by this network restriction, other images (e.g., from
other locations) can still use the full network.

Ground stations: We evaluated Serval’s performance un-
der two different ground station configurations: (a) a state-
of-the-art distributed ground station architecture [61] where
we placed 200 ground stations across the globe; and (b) a tra-
ditional monolithic ground station configuration from Planet’s
current ground station system [20,24]. We model approximate

816 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Component Power
ADACS 1.13W

Computation Depends on hardware
Camera 6J per photo

Transmission 50 W

Table 2: Power consumption of the satellites

Application 1 Application 2
Filter Amount Filter Amount
Total 10097097 Total 10097097

California 37037 Port 2642
Forest 26153 Cloud-less 1769

Cloud-less 24578 Vessel 1769
Fire 243

Table 3: Number of images in each stage of the pipeline.

locations of Planet’s ground stations from publicly accessi-
ble information. The ground station system in our simulation
consists of 12 different ground stations distributed across the
globe, carrying 48 antennas in total, where each antenna can
talk to a single satellite at a time. We assume that the ground
stations have a steady backhaul Internet connection that is
sufficient to transmit everything it receives to the cloud.

We used the link quality model described by Planet in [25]
for traditional ground station setup. For distributed ground
station network, we scaled down the downlink data rate for
each ground station to 25%—this makes the total downlink
bandwidth constant across the two scenarios (as done in [61]).

5 Microbenchmarks

5.1 Number of Final Images ≪ Number of Col-
lected Images

Table 3 quantifies the proportion of latency-sensitive images
across different days. For the California forest fire application,
just 0.36% of the images pass the geographic filter (Califor-
nia) and just 0.26% of the images pass the Forest filter. The
number of actual fire images is just 243. Therefore, in Serval,
the satellite needs to analyze at most 26k images and select
243 latency-sensitive images to download. For the vessel in
ports application, we find 1769 images containing vessels at
ports. These small final image counts indicate the potential
latency benefits from transferring only a small (but just right!)
set of images from the satellite down to the cloud.

5.2 Preemptive Compute at Ground Station
We estimate the burden on the ground station to run the re-
quired preemptive computation task by profiling it on a large
cluster of computation nodes. The results show that on one

10
20

RA
M

 (G
B)

0

1

CP
U

(%
)

0

1

GP
U

(%
)

19 17:30 19 17:40 19 17:50 19 18:00 19 18:10 19 18:20 19 18:30
Minutes

10

15

Po
we

r (
W

)

Figure 6: Resource utilization over time for satellite “103b"
passing over California

data-center-grade GPU such as NVIDIA Tesla K80, it takes
an average of 4.39s to run the forest detector on one image
taken by the satellite. Running a forest detector on all Califor-
nia images across ten days takes no more than 24 GPU hours.
This cost is distributed across multiple ground stations (at
least 12 stations in our setup) and due to the station’s higher
power, this is preferable to running the same compute on the
satellites. Further, because such data is glacial, this station
runtime (O(hours)) suffices to update the satellite’s glacial
filters and auxiliary information once a day.

5.3 Hardware Emulation
We tested the system load of a typical satellite under Serval
via hardware emulation. We emulate the satellite with a Rasp-
berry Pi serving as an onboard control system, connected to a
Jetson ORIN serving as the computation system. The Rasp-
berry Pi “captures" images and sends them to the Jetson for
running on-board computation. After receiving results from
the Raspberry Pi, the Jetson will execute Serval’s execution
engine (Section 3). The Raspberry Pi will send images over a
TCP connection for emulating the satellite-ground station link,
to a dedicated server. We emulated the time period from 17:30
on July 19, 2021, to 18:30 on July 19, 2021: when satellite
“103b" flies over California and does on-board computation
on the interesting images.

Figure 6 shows the variation of system load over time. We
observe that before 18:05, the Jetson periodically wakes up to
do heartbeat communication with the controller (Raspberry
Pi) and consumes low energy. When the satellite starts to pass
over California, we see a significant increase in all types of
resource usage on the Jetson machine, especially GPU usage,
because the applications require running neural networks on
the GPU. After the satellite passes California, the CPU, GPU
utilization, and power consumption drop to normal levels. We
use the numbers obtained from these emulations to benchmark
different filters in our simulated at-scale evaluation below.

We trained different deep learning models (as described
above) to perform tasks of cloud detection, forest detection,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 817

vessel detection, and forest fire detection. Table 4 presents the
average run time of each filter on the Jetson device. Specif-
ically, we report the time taken to classify one image using
the filter.

Model 15W 30W
Cloud 1.5 3
Forest 17 8.5
Fire 0.246 0.245

Vessel 3.85 1.846

Table 4: Average runtime of filters on Jetson machine
(seconds)

6 End-to-End Results

6.1 End-to-end Performance

We evaluate the end-to-end latency for all the latency-sensitve
imagery that matches our two applications. We define the la-
tency as the delay between when the corresponding image is
generated and when the information is delivered to the cloud
and available for the user to download. For the vessel counting
application, just the vessel count needs to be delivered to the
user. Fig. 7 shows the distribution of the end-to-end latency
achieved by Serval compared to in-order delivery. We plot
this result for two hardware configurations of the AGX ORIN
– 15W power consumption and 30W power consumption, to
benchmark Serval’s benefits across different types of com-
putational platforms. AGX ORIN can operate in these power
modes and offers less computational capability in the lower
power mode.

Using the 15W power mode, and a monolithic ground sta-
tion architecture, Serval reduces the median latency by 70×
from 78.2 hours to 1.1 hours, and 90-th percentile from 145.55
hours to 2.71 hours. For Serval, a large part of this latency
stems from the fact that even after high-priority images have
been identified, they must wait for the first ground station
contact. Distributed ground stations (DGS) [7, 46, 61] have
recently been designed to provide more opportunities for
data download. In the DGS case, Serval can download im-
ages with a median latency of 0.03 hours, compared to 71.71
hours median latency for in-order delivery. Even the 90th per-
centile for Serval is 0.78 hours, compared to 149.05 hours
for in-order delivery. This result shows that even with sim-
ple compute capabilities on the satellite, Serval can achieve
near-realtime delivery of latency-sensitive insights.

Next, we compare results for the high-power 30W mode on
Jetson AGX ORIN deployed on the satellite. In this case, the
delays for the baseline do not change because it includes no
compute. For Serval, the median delay is 1.1 hours (90-th
percentile – 2.7 hours) and 0.03 hours (90-th percentile – 0.78
hours) for monolithic ground stations and DGS respectively.
Note that the median delay for monolithic stations does not

change. This validates our hypothesis that the delay stems
from the sparsity of ground station locations. When com-
bined with DGS, Serval can achieve a median latency of
few minutes. Unless noted otherwise, the evaluation below
is performed using the 30W, DGS, 1% resource-constrained
setting.

Impact of scaling up applications: Recall that, for the eval-
uation below, we limit the Serval’s resource usage for high-
priority images to 1%. We would like to see how having more
or less applications would impact the performance of Serval,
which is equivalent to changing the resource usage threshold.
We tested resource limit values of 0.05%, 0.1% and 0.5%.
Figure 7c shows that Serval’s performance remains steady
even when the resource limit is reduced to 0.5% from 1%.
Its performance starts to decrease when the resource limit is
reduced to 0.1%, and the computation starts to emerge as a
bottleneck. As discussed in our future work (Sec. 8), such
bottlenecks can be overcome by architectural optimizations.

Effect of running computation on satellites: To evaluate
the effect of running compute on satellite, we compared the
performance of Serval against the case when satellites will
do no computation tasks on board but only prioritize all im-
ages based on glacial filters alone. The results are illustrated
in Figure 8a. By running compute on the satellite, Serval
was able to reduce the median latency by 23×.

One might wonder why filtering based on glacial filters
is insufficient since the number of California forest images
is small. This is because the high-priority traffic arrives in
a bursty manner: when a satellite is over an area of interest,
it continuously captures images that need to run the com-
putation. When a satellite is not over an area of interest, it
does not require computation. This is true for all applications
whose images are not evenly distributed across the globe.
Therefore, when a satellite is in contact with a ground station,
the proportion of images in transmission queues with high
“pre-computed" scores could be much larger than the average
during a satellite-ground station contact. On the other hand,
we know that for instance, only 1% of images are forest fire in
all California forest images. Therefore, running computation
on the satellite can help filter a significant chunk of images
that pass the glacial filter pre-computed on the ground.

Benefit of using auxiliary information: To validate our
decision to use side-channel information for cloud detection,
we first checked the accuracy of weather information. The
results are shown in Table 5. In this experiment, we only run
the cloud detector on images that have a cloud coverage value
between 20% and 80%. From the table, we can see that this
method saves 83.6% computation on cloud detection while
yielding an accuracy of 96.3% and recall of 99.3%. Indeed,
we can precisely estimate the cloudiness of a majority of
images without sacrificing accuracy, saving a large amount of
compute.

818 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10−1 100 101 102

Latency (hours)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F
In-Order
Serval
In-Order (DGS)
Serval (DGS)

(a) Latency with Jetson ORIN in 15W
mode

10−1 100 101 102

Latency (hours)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

In-Order
Serval
In-Order (DGS)
Serval (DGS)

(b) Latency with Jetson ORIN in 30W
mode

10−1 100 101 102

Latency (hours)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Serval 0.5%
Serval 0.1%
Serval 0.05%
In-Order

(c) Serval’s performance with varying re-
source constraints

Figure 7: End-to-end latency of Serval compared to in-order baseline. Serval can achieve a median end-to-end latency of
0.1 hours when using distributed ground stations. Serval’s performance is stable across different hardware constraints.

10−1 100 101 102

Latency (hours)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Serval (no compute)
Serval

(a) Effect of running computation on satel-
lites.

10−1 100 101 102

Latency (hours)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Serval (no weather)
Serval

(b) Effect of weather information.

10−1 100 101 102

Latency (hours)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Serval
Serval (no forest)

(c) Effect of using historical data on forest
(California forest fire).

Figure 8: Effect of different components in Serval. (Ground station setup is DGS)

Prediction Cloudy (>0.5) Not Cloudy
(<0.5)

High (>0.8) 251 226
Medium (0.2-
0.8)

1668 4873

Low (<0.2) 1245 31750

Table 5: Accuracy of weather information. Each row indi-
cates the weather forecast, and each column indicates the
output of the Cloud filter.

We evaluated the weather information’s contribution to
the end-to-end performance by comparing Serval against
when the side channel information is disabled. The results are
shown in Figure 8b. We can see that by employing weather
information, Serval improves the median latency by 8.8×.

Benefit of using historical data: Does pre-computation of
glacial filters on the ground station have an advantage? To
test this hypothesis, we move the Forest filter to the satellite
and test if this move hurts the latency. For this experiment,
we consider a single application: “California forest fire". The
comparison is shown in Figure 8c. We can see that the median
latency increased by 1670× when we don’t use historical data.
We observe that there are two reasons for this large perfor-

mance drop: (a) running forest model on satellites consumes
a great amount of computation time (the number of images
is larger, and each image requires more computational re-
sources) and (b) since the model is being run in real-time,
some of the fire images do not look like forest for the neural
network, because of the presence of the smoke. Therefore,
these images get misclassified as ‘not forest’ and placed in
the low priority queue. However, Serval considers stale data
for such analysis when it places the glacial filter execution
on ground stations. Such images are not occluded by forest.
The second benefit is an unintended consequence of running
glacial filters on ground stations.

Comparison to early discard : As an extension to the above
experiment, we compared Serval’s performance against an
early discard scheme inspired by OEC [23]. OEC relies solely
on computation on satellites and discards all images deemed
low priority. Similar to the above experiment, since OEC does
not use historical data or ground station computation, it incor-
rectly discards some images that contain forest fire. In fact,
OEC only successfully identified and downlinked 14.7% of
all images with forest fire. Since it discards all “low priority"
images on the satellite, the “false negative" images do not
even have a chance to reach the user. The “false negative"
images appear in the “long tail" distribution in Figure 8c. In
contrast, Serval’s classifier makes fewer mistakes because

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 819

6600 6800 7000 7200 7400
Time (min)

10 1

100

101

Av
er

ag
e

Po
we

r (
W

)

Transmission
Computation
Regular

Figure 9: Average Power over time for different applica-
tions

of its reliance on historical data. Even when Serval makes
a mistake, it just adds additional latency to that image rather
than discarding that image. For the vessel counting applica-
tion, both OEC and Serval are able to downlink all images
containing vessels primarily because historical data doesn’t
help with the classification strategy.

6.2 Satellite Power Usage
We monitored the power usage for different functions during
the simulation period. The energy cost consists of 3 main
parts: regular power (ADACS and other essential functions
to keep the satellite alive), transmission power and compute
power. Figure 9 illustrates a sample satellite’s ("Dove 103b")
power consumption profile during a period in which it flys
over California. We observed that while the satellite is con-
stantly consuming power for regular functions and from time
to time for transmission, the compute function is only acti-
vated when the satellite receives some potential high-priority
image. We can see that the compute power consumption is
much more sparse than either transmission or regular main-
tenance. In our simulation, we saw 68.1% energy being con-
sumed by transmission, 28.9% consumed by regular mainte-
nance, and 2.9% consumed by computation. Because of our
limit on resource utilization for the high-priority applications,
we only used 1% of the 2.9% total compute energy, and the
rest of the energy was reserved for other computation tasks
(e.g., for other tenant applications, satellite maneuvering, etc.
).

7 Related Work

Our work builds on results in terrestrial edge computing, video
processing systems, and orbital edge computing.

Terrestrial edge computing pipelines: Edge computing has

been a widely studied topic in terrestrial networks [8,13,17,29,
54, 55] for diverse applications such as traffic camera analyt-
ics [8, 12], augmented reality systems [56], and robotics [63].
These systems tend to push computation as close to the video
sensor as possible while being cognizant of the resource con-
straints of the edge devices. Serval naturally builds on this
line of research. Satellites are similar to resource-constrained
mobile devices with relatively weak connectivity to the cloud.
The LEO setting presents the additional challenge that the
sensor devices (satellites) themselves are moving. Serval
addresses this by leveraging the predictable orbital paths of
satellites, query filters and bifurcation, and using auxiliary
information.

Video processing systems: Much recent work [6,8,13,39,48,
65] has focused on improving the execution of video analytics
pipelines on edge devices. These systems consider different
aspects of optimizing video analytics such as efficient model
retraining [13], model merging for efficient execution on edge
GPUs [48], etc. This line of work makes varying assumptions
about the availability of compute resources such as powerful
GPUs and continuous connectivity with the cloud—these lux-
uries are not available on satellites. Nevertheless, ideas from
video processing systems are complementary to Serval, and
our work opens an avenue to explore such future directions.
For instance, model merging, an idea from video process-
ing systems, can be useful if the models (inside the filters of
different Serval queries) share a lot of common layers.

Satellite edge computing: Traditional satellites packaged
radiation-hardened specialized hardware [10]. Due to the
lower orbits of LEOSats which suffer much less radiation
exposure, and for economies of scale in manufacturing, there
has been a move towards general-purpose hardware for
LEOSats [28]. This has blossomed research in satellite edge
computing systems [15, 16, 22, 23, 43–45]. Some papers pro-
pose new edge-enabled functionalities for communication
megaconstellations [15, 16], e.g., deploying content delivery
networks in space to improve network performance. This
work is independent of Serval due to its focus on a different
class of satellites. [45] and [44] evaluate the performance
of compression techniques and Machine learning models on
satellite-compatible hardware such as NVIDIA Jetson Nano
and/or NVIDIA Jetson AGX. We believe such optimizations
demonstrate the feasibility of deploying Machine Learning
workloads on satellites, and such architectural optimizations
(including from other domains like approximate computing)
can be applied orthogonally to Serval to improve perfor-
mance.

Our work is closest to Orbital Edge Computing (OEC [23])
and Kodan [22]. Both OEC and Kodan aim to reduce the
amount of satellite imagery transferred to Earth by enabling
early rejection of imagery that is not considered useful. While
OEC reimagines different satellites in a constellation as a com-
putational nanosatellite pipelines that seamlessly distribute

820 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

computational tasks, Kodan focuses more on the computation
at each satellite. In contrast to both these works, Serval does
not discard any images on the satellite, and focuses on reduc-
ing the delay of latency-sensitive images via prioritization
and reordering. This has the advantage that post facto queries
on historical can be performed, e.g., in a recent high-profile
incident, Planet used historical satellite imagery to trace the
historical motion of a Chinese balloon entering into the US
airspace from its origin to destination [5]. Kodan’s contri-
bution is orthorgonal to ours, since Kodan aims to train the
optimal neural network model for specific user applications,
while we focus on how to optimally schedule compute on
satellites and ground stations given a fixed neural network.
Hence Kodan can be used alongside Serval.

8 Concluding Discussion

We build Serval, a distributed computation framework for
near-realtime insights from Earth imagery satellites. Serval
can deliver latency sensitive imagery such as forest fire im-
agery in minutes as opposed to hours or days of delay for
traditional in-order delivery systems. We conclude by listing
some possible extensions of Serval in future work:
• Multi-modal imagery: Serval currently focuses on

RGB imagery captured by satellites. Increasingly, satel-
lites capture other forms of imagery such as radar, hyper-
spectral, and multi-spectral. We believe Serval can natu-
rally extend to support these emerging image types.

• Merging filters across queries: As the number of applica-
tions scales, there are more opportunities to reduce redun-
dant compute within and across queries. Multiple queries
may share filters to reduce compute on satellites. More-
over, multiple neural network models may share weights
for a subset of the layers and present opportunities for
model merging techniques like [48] to optimize compute
on the satellite.

• Architectural optimizations: We did not consider archi-
tectural optimizations such as model pruning or precision
drop to pack more compute on the limited satellite re-
sources. Such techniques can further improve Serval’s
performance.

Acknowledgments

We are grateful to anonymous reviewers and our shepherd
Lixia Zhang for feedback on this work. This work was par-
tially sponsored by NSF Award CNS-2237474, by NSF Award
CNS-1908888, and by generous contributions from Cisco and
Microsoft. We are grateful to Kiruthika Devaraj from Planet
Inc. for discussions and feedback on early ideas. Access to
Planetscope imagery was provided by the UIUC library’s
contract with Planet Inc.

References

[1] Analytics Overview. https://developers.planet.
com/docs/analytics/.

[2] Open-meteo: Open-source weather api. https://open-
meteo.com/.

[3] Spire Global Inc. https://spire.com/.

[4] Living on the edge: Satellites adopt powerful computers.
https://spacenews.com/living-on-the-edge-
satellites-adopt-powerful-computers/, 2022.

[5] One more way ai can help us harness one of
the most underutilized datasets in the world.
https://www.planet.com/pulse/one-more-
way-ai-can-help-us-harness-one-of-the-
most-underutilized-datasets-in-the-world,
2023.

[6] Neil Agarwal and Ravi Netravali. Boggart: Towards
General-Purpose acceleration of retrospective video an-
alytics. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
933–951, Boston, MA, April 2023. USENIX Associa-
tion.

[7] Amazon Inc. AWS Ground Station . https://aws.
amazon.com/ground-station/.

[8] Ganesh Ananthanarayanan, Victor Bahl, Landon Cox,
Alex Crown, Shadi Nogbahi, and Yuanchao Shu. Video
analytics-killer app for edge computing. In Proceed-
ings of the 17th annual international conference on mo-
bile systems, applications, and services, pages 695–696,
2019.

[9] Bruno Aragon, Rasmus Houborg, Kevin Tu, Joshua B.
Fisher, and Matthew McCabe. CubeSats Enable High
Spatiotemporal Retrievals of Crop-Water Use for Preci-
sion Agriculture. Remote Sensing, 2018.

[10] William Bamford, Luke Winternitz, and Curtis Hay. Gps
world, innovation: Autonomous navigation at high earth
orbits. 2005.

[11] Panagiotis Barmpoutis, Periklis Papaioannou, Kosmas
Dimitropoulos, and Nikos Grammalidis. A review on
early forest fire detection systems using optical remote
sensing. IEEE Sensors, 2020.

[12] Johan Barthélemy, Nicolas Verstaevel, Hugh Forehead,
and Pascal Perez. Edge-computing video analytics for
real-time traffic monitoring in a smart city. Sensors,
19(9):2048, 2019.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 821

https://developers.planet.com/docs/analytics/
https://developers.planet.com/docs/analytics/
https://open-meteo.com/
https://open-meteo.com/
https://spire.com/
https://spacenews.com/living-on-the-edge-satellites-adopt-powerful-computers/
https://spacenews.com/living-on-the-edge-satellites-adopt-powerful-computers/
https://www.planet.com/pulse/one-more-way-ai-can-help-us-harness-one-of-the-most-underutilized-datasets-in-the-world
https://www.planet.com/pulse/one-more-way-ai-can-help-us-harness-one-of-the-most-underutilized-datasets-in-the-world
https://www.planet.com/pulse/one-more-way-ai-can-help-us-harness-one-of-the-most-underutilized-datasets-in-the-world
https://aws.amazon.com/ground-station/
https://aws.amazon.com/ground-station/

[13] Romil Bhardwaj, Zhengxu Xia, Ganesh Anantha-
narayanan, Junchen Jiang, Yuanchao Shu, Nikolaos Kar-
ianakis, Kevin Hsieh, Paramvir Bahl, and Ion Stoica.
Ekya: Continuous learning of video analytics models on
edge compute servers. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), pages 119–135, Renton, WA, April 2022. USENIX
Association.

[14] A. Bhattachan, N. Skaff, S. Vimal, J. Remais, and D. P.
Lettenmaier. Using geospatial datasets to characterize
mosquito larval habitats in the Los Angeles Basin. In
AGU Fall Meeting Abstracts, 2019.

[15] Debopam Bhattacherjee, Simon Kassing, Melissa Lic-
ciardello, and Ankit Singla. In-orbit computing: An
outlandish thought experiment? In Proceedings of the
19th ACM Workshop on Hot Topics in Networks, Hot-
Nets ’20, 2020.

[16] Vaibhav Bhosale, Ketan Bhardwaj, and Ada Gavrilovska.
Toward loosely coupled orchestration for the LEO satel-
lite edge. In 3rd USENIX Workshop on Hot Topics in
Edge Computing (HotEdge 20). USENIX Association,
June 2020.

[17] Christopher Canel, Thomas Kim, Giulio Zhou, Cong-
long Li, Hyeontaek Lim, David G Andersen, Michael
Kaminsky, and Subramanya Dulloor. Scaling video
analytics on constrained edge nodes. Proceedings of
Machine Learning and Systems, 1:406–417, 2019.

[18] Kejie Chen, Jean-Philippe Avouac, Saif Aati, Chris
Milliner, Fu Zheng, and Chuang Shi. Cascading and
pulse-like ruptures during the 2019 ridgecrest earth-
quakes in the eastern california shear zone. Nature
Communications, 2020.

[19] M. Chu, D. Drynan, and L. R. Benning. Integrating
satellite links into a land-based packet network. ACM
SIGCOMM Comput. Commun. Rev., 1985.

[20] Kyle Colton, Joseph Breu, Bryan Klofas, Sydney Marler,
Chad Norgan, and Matthew Waldram. Merging Diverse
Architectures for Multi-Mission Support. In Small Satel-
lite Conference, 2020.

[21] Olivier L. de Weck, Richard de Neufville, and Mathieu
Chaize. Staged deployment of communications satellite
constellations in low earth orbit. Journal of Aerospace
Computing, Information, and Communication, 2004.

[22] Bradley Denby, Krishna Chintalapudi, Ranveer Chandra,
Brandon Lucia, and Shadi Noghabi. Kodan: Addressing
the computational bottleneck in space. In Proceedings of
the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating

Systems, Volume 3, ASPLOS 2023, New York, NY, USA,
2023. Association for Computing Machinery.

[23] Bradley Denby and Brandon Lucia. Orbital edge com-
puting: Nanosatellite constellations as a new class of
computer system. In ACM ASPLOS, 2020.

[24] Kiruthika Devaraj, Ryan Kingsbury, Matt Ligon, Joseph
Breu, Vivek Vittaldev, Bryan Klofas, Patrick Yeon, and
Kyle Colton. Dove High Speed Downlink System. In
Small Satellite Conference, 2017.

[25] Kiruthika Devaraj, Matt Ligon, Eric Blossom, Joseph
Breu, Bryan Klofas, Kyle Colton, and Ryan Kingsbury.
Planet High Speed Radio: Crossing Gbps from a 3U
Cubesat. In Small Satellite Conference, 2019.

[26] Anna Escher. Inside Planet Labs’ new satel-
lite manufacturing site. TechCrunch. https:
//techcrunch.com/2018/09/14/inside-planet-
labs-new-satellite-manufacturing-site/,
2018.

[27] C.E. Fossa, R.A. Raines, G.H. Gunsch, and M.A. Tem-
ple. An overview of the iridium (r) low earth orbit
(leo) satellite system. In IEEE National Aerospace and
Electronics Conference, 1998.

[28] Gianluca Giuffrida, Luca Fanucci, Gabriele Meoni,
Matej Batič, Léonie Buckley, Aubrey Dunne, Chris van
Dijk, Marco Esposito, John Hefele, Nathan Vercruyssen,
Gianluca Furano, Massimiliano Pastena, and Josef As-
chbacher. The -sat-1 mission: The first on-board deep
neural network demonstrator for satellite earth obser-
vation. IEEE Transactions on Geoscience and Remote
Sensing, 2022.

[29] Peizhen Guo, Bo Hu, and Wenjun Hu. Mistify: Au-
tomating DNN model porting for On-Device inference
at the edge. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21), pages
705–719. USENIX Association, April 2021.

[30] JOHN HANSON, MARIA EVANS, and RONALD
TURNER. Designing good partial coverage satellite
constellations. Astrodynamics Conference. 1990.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[32] Felix R. Hoots and Ronald L. Roehrich. Models for
Propagation of NORAD Element Sets. Technical report,
Aerospace Defense Command, United States Airforce,
1980.

822 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://techcrunch.com/2018/09/14/inside-planet-labs-new-satellite-manufacturing-site/
https://techcrunch.com/2018/09/14/inside-planet-labs-new-satellite-manufacturing-site/
https://techcrunch.com/2018/09/14/inside-planet-labs-new-satellite-manufacturing-site/

[33] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations, 2017.

[34] Y.C. Hubbel. A comparison of the iridium and amps
systems. IEEE Network, 1997.

[35] Gary J. Jedlovec, Stephanie L. Haines, and Frank J. La-
Fontaine. Spatial and temporal varying thresholds for
cloud detection in goes imagery. IEEE Transactions on
Geoscience and Remote Sensing, 2008.

[36] Rachel Jewett. Planet to support nasa re-
lay networks for telesat, ses. Satellite Today.
https://www.satellitetoday.com/government-
military/2022/08/23/planet-to-support-nasa-
relay-networks-for-telesat-ses/.

[37] Glenn Jocher, Alex Stoken, Jirka Borovec, Ayush
Chaurasia, Liu Changyu, Adam Hogan, Jan Hajek, Lau-
rentiu Diaconu, Yonghye Kwon, Yann Defretin, et al.
ultralytics/yolov5: v5. 0-yolov5-p6 1280 models, aws,
supervise. ly and youtube integrations. Zenodo, 2021.

[38] H. Keller, H. Salzwedel, G. Schorcht, and V. Zerbe.
Comparison of the probability of visibility of the most
important currently projected mobile satellite systems.
In IEEE Vehicular Technology Conference. Technology
in Motion, 1997.

[39] Mehrdad Khani, Ganesh Ananthanarayanan, Kevin
Hsieh, Junchen Jiang, Ravi Netravali, Yuanchao Shu,
Mohammad Alizadeh, and Victor Bahl. RECL: Respon-
sive Resource-Efficient continuous learning for video
analytics. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
917–932, Boston, MA, April 2023. USENIX Associa-
tion.

[40] J. Kong, Y. Ryu, R. Houborg, and M. Kang. Monitoring
canopy photosynthesis in high spatial and temporal res-
olution using CubeSat imagery. In AGU Fall Meeting
Abstracts, 2019.

[41] Kuiper Systems LLC. Application of kuiper sys-
tems llc for authority to launch and operate a non-
geostationary satellite orbit system in ka-band frequen-
cies. FCC, https://licensing.fcc.gov/myibfs/
download.do?attachment_key=1773885.

[42] R.J. Leopold. The iridium communications systems. In
Singapore ICCS/ISITA ‘92, 1992.

[43] Israel Leyva-Mayorga, Marc M. Gost, Marco Moretti,
Ana Pérez-Neira, Miguel Ángel Vázquez, Petar
Popovski, and Beatriz Soret. Satellite edge computing

for real-time and very-high resolution earth observation.
arXiv 2212.12912, 2022.

[44] Martina Lofqvist and José Cano. Optimizing data pro-
cessing in space for object detection in satellite imagery.
CoRR, abs/2107.03774, 2021.

[45] Martina Lofqvist and José Cano. Accelerating deep
learning applications in space. arXiv 2007.11089, 2020.

[46] Microsoft. Azure Orbital. https://azure.
microsoft.com/en-us/services/orbital/.

[47] Sorour Mohajerani and Parvaneh Saeedi. Cloud-net:
An end-to-end cloud detection algorithm for landsat 8
imagery. In IGARSS 2019 - 2019 IEEE International
Geoscience and Remote Sensing Symposium, 2019.

[48] Arthi Padmanabhan, Neil Agarwal, Anand Iyer, Ganesh
Ananthanarayanan, Yuanchao Shu, Nikolaos Karianakis,
Guoqing Harry Xu, and Ravi Netravali. Gemel: Model
merging for Memory-Efficient, Real-Time video analyt-
ics at the edge. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 23),
pages 973–994, Boston, MA, April 2023. USENIX As-
sociation.

[49] C. Partridge and T.J. Shepard. Tcp/ip performance over
satellite links. IEEE Network, 1997.

[50] Planet Inc. Dove Satellite Constellation. https://www.
planet.com/our-constellations/.

[51] Planet Inc. Planetscope. https://developers.
planet.com/docs/data/planetscope/.

[52] Stephen R. Pratt, Richard A. Raines, Carl E. Fossa, and
Michael A. Temple. An operational and performance
overview of the iridium low earth orbit satellite system.
IEEE Communications Surveys, 1999.

[53] William B Rossow and Leonid C Garder. Cloud detec-
tion using satellite measurements of infrared and visible
radiances for isccp. Journal of climate, 1993.

[54] Mahadev Satyanarayanan, Paramvir Bahl, Ramon Cac-
eres, and Nigel Davies. The case for vm-based cloudlets
in mobile computing. IEEE Pervasive Computing,
8(4):14–23, 2009.

[55] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and
Lanyu Xu. Edge computing: Vision and challenges.
IEEE internet of things journal, 3(5):637–646, 2016.

[56] Yushan Siriwardhana, Pawani Porambage, Madhusanka
Liyanage, and Mika Ylianttila. A survey on mobile
augmented reality with 5g mobile edge computing: ar-
chitectures, applications, and technical aspects. IEEE
Communications Surveys & Tutorials, 23(2):1160–1192,
2021.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 823

https://www.satellitetoday.com/government-military/2022/08/23/planet-to-support-nasa-relay-networks-for-telesat-ses/
https://www.satellitetoday.com/government-military/2022/08/23/planet-to-support-nasa-relay-networks-for-telesat-ses/
https://www.satellitetoday.com/government-military/2022/08/23/planet-to-support-nasa-relay-networks-for-telesat-ses/
https://licensing.fcc.gov/myibfs/download.do?attachment_key=1773885
https://licensing.fcc.gov/myibfs/download.do?attachment_key=1773885
https://azure.microsoft.com/en-us/services/orbital/
https://azure.microsoft.com/en-us/services/orbital/
https://www.planet.com/our-constellations/
https://www.planet.com/our-constellations/
https://developers.planet.com/docs/data/planetscope/
https://developers.planet.com/docs/data/planetscope/

[57] SpaceX. Spacex non-geostationary satellite sys-
tem. FCC, https://fcc.report/IBFS/SAT-LOA-
20161115-00118/1158350.pdf.

[58] Peng Tang, Xinggang Wang, Angtian Wang, Yongluan
Yan, Wenyu Liu, Junzhou Huang, and Alan Yuille.
Weakly supervised region proposal network and object
detection. In Proceedings of the European conference
on computer vision (ECCV), pages 352–368, 2018.

[59] Bill Tao, Maleeha Masood, Indranil Gupta, and Deepak
Vasisht. Transmitting, fast and slow: Scheduling satel-
lite traffic through space and time. In Proceedings of the
29th Annual International Conference on Mobile Com-
puting and Networking, ACM MobiCom ’23, New York,
NY, USA, 2023. Association for Computing Machinery.

[60] Deepak Vasisht and Ranveer Chandra. A distributed
and hybrid ground station network for low earth orbit
satellites. In ACM HotNets, 2020.

[61] Deepak Vasisht, Jayanth Shenoy, and Ranveer Chandra.
L2d2: Low latency distributed downlink for low earth
orbit satellites. In ACM SIGCOMM, 2021.

[62] Maria Fernandez Vidal and Peter Bull. Using satellite
data in financial inclusion. 2019.

[63] Yiding Wang, Weiyan Wang, Duowen Liu, Xin Jin,
Junchen Jiang, and Kai Chen. Enabling edge-cloud
video analytics for robotics applications. IEEE Transac-
tions on Cloud Computing, pages 1–1, 2022.

[64] M. Wiseman and A. Bradley. Impact of the length of the
sea ice-free summer season on Alaskan Arctic coastal
erosion rates. In AGU Fall Meeting Abstracts, 2019.

[65] Zhujun Xiao, Zhengxu Xia, Haitao Zheng, Ben Y. Zhao,
and Junchen Jiang. Towards performance clarity of
edge video analytics. In 2021 IEEE/ACM Symposium
on Edge Computing (SEC), pages 148–164, 2021.

824 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://fcc.report/IBFS/SAT-LOA-20161115-00118/1158350.pdf
https://fcc.report/IBFS/SAT-LOA-20161115-00118/1158350.pdf

Spectrumize: Spectrum-efficient Satellite Networks for the Internet of Things

Vaibhav Singh, Tusher Chakraborty, Suraj Jog, Om Chabra†, Deepak Vasisht†, and Ranveer Chandra
Microsoft Research, †UIUC

Abstract
Low Earth Orbit satellite constellations are gaining traction
for providing connectivity to low-power outdoor Internet of
Things (IoT) devices. This is made possible by the devel-
opment of low-cost, low-complexity pico-satellites that can
be easily launched, offering global connectivity without the
need for Earth-based gateways. In this paper, we report the
space-to-Earth communication bottlenecks derived from our
experience of deploying an IoT satellite. Specifically, we char-
acterize the challenges posed by the low link budgets, satellite
motion, and packet collisions. To address these challenges,
we design a new class of techniques that use the Doppler
shift caused by the satellite’s motion as a unique signature for
packet detection and decoding, even at low signal-to-noise
ratios and in the presence of collisions. We integrate these
techniques into our system, called Spectrumize, and evaluate
its performance through both simulations and real-world de-
ployments. Our evaluation shows that Spectrumize performs
3× better compared to the classic approach in detecting pack-
ets with over 80% average accuracy in decoding.

1 Introduction

The emergence of the "new space" era has led to the growing
popularity of small satellites aimed at connecting Internet of
Things (IoT) devices. These satellites offer connectivity to
devices where terrestrial networks do not exist, for example,
in farms, forests, oceans, and others. With their small size and
low-complexity hardware, these satellites are easy to build
and launch into orbit, resulting in the rapid growth of the
IoT satellite industry. Over a dozen companies [3–6, 33, 35]
are investing heavily in deploying constellations of hundreds
of these small IoT satellites to provide connectivity using
the Direct-to-Satellite (DtS) model. This allows IoT devices
on the ground to uplink data directly to orbiting satellites,
without requiring deployment of gateway devices. The satel-
lites collect and downlink data to ground stations which have
terrestrial backhaul for cloud-based data aggregation.

The main focus of IoT satellites is to achieve a low price
point, setting them apart from traditional earth observation
and broadband connectivity satellites. These satellites are
smaller in size and optimized for IoT applications, which typ-
ically require low data rates, usually in the range of hundreds
of bits per second, and operate at a bandwidth of around a
hundred kilohertz. Therefore, IoT satellites are equipped with
simple connectivity hardware, such as half-wave dipole cable

(a) Our satellite and 4 others from the same constellation

(b) Our industry collaborator’s ground station

Figure 1: Our real-world testbed: an IoT satellite launched in
collaboration with FOSSA [7], and multiple ground stations.

antennas with no beamforming capability or inter-satellite link
(ISL) [43]. Similarly, ground stations (GS) and IoT devices
on the ground are designed to be simple and can be deployed
anywhere using small antennas that are either omnidirectional
or have limited directionality. In conclusion, the connectivity
design and hardware of IoT satellites closely resemble that of
state-of-the-art terrestrial IoT networks.

We collaborated with FOSSA Systems [7], an IoT satellite
company, to launch an IoT pico-satellite and investigate the
characteristics of this emerging network class. We utilized
their ground stations in Spain to facilitate data downloads
from the satellite. To our surprise, despite using standard
hardware, we encountered significant packet loss during the
downlink from the satellite to the ground station. Specifically,
we found that 65.28% of the packets transmitted by the satel-
lite were lost and remained undecoded by the ground station.
This paper stems from the challenges of enabling a robust
downlink from low-cost, low-power IoT satellites. In particu-
lar, we observe that the following three challenges limit our
ability to decode downlink transfer from IoT satellites.

Challenge 1: Low link budget – The link budget for satellite
to ground communication is low because of the large distance
(around 500 km), limited directionality of antennas on satel-
lites, ground stations without beamforming capabilities, and
atmospheric attenuation. We observe an average link budget
of only −133.78 dBm during a satellite pass over a ground

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 825

station. Increasing transmission power is not feasible due to
power constraints on the satellite and regulatory restrictions.
Though the use of a high-end setup like a phased array an-
tenna on the ground can increase the link budget, it requires
a large antenna setup and is expensive, especially for IoT
satellites that operate on lower frequency bands like VHF and
UHF. Lower link budget leads to frequent packet drops and
a low data rate. It is particularly problematic for the down-
link transmissions because ground stations also experience
increased noise floor due to terrestrial transmissions.

Challenge 2: Packet collisions and spectral inefficiency –
LEO IoT satellites have limited antenna directionality and can
transmit signals across vast areas on Earth, referred to as their
footprint. These footprints can span up to a million square
kilometers of surface area. Since multiple satellites operate
within the same frequency band, their transmissions collide
at ground stations located within the overlapping footprints
(Fig. 2). For example, consider the Swarm constellation con-
sisting of 170+ satellites [9]. A ground station situated in a
polar region, ideal due to the satellites’ orbital dynamics, falls
within the view of an average of 7 satellites simultaneously.
Consequently, satellites may encounter a high collision rate
when downloading data to the ground station. As a preemp-
tive measure, ground stations are scheduled in advance to
communicate with only one satellite, even when in the line
of sight of multiple satellites. This scheduling strategy, while
necessary, has a significant impact on spectral efficiency.

Challenge 3: Satellite motion – The satellite-ground link
exhibits fluctuations in link quality due to two distinct types
of motion: (a) the orbital motion of the satellite introduces
variations in the distance between the ground device and the
satellite, and (b) localized satellite motion, often characterized
by tumbling. This phenomenon is particularly pronounced
in small-sized IoT satellites, as they lack an altitude control
system to stabilize their motion. While large broadband satel-
lites tackle this issue through real-time bit-rate adaptation, it
presents a more formidable challenge with IoT satellites due
to their lower data rates and limited bandwidth. This challenge
is especially evident in receive-only distributed ground sta-
tions employed for downloading data from the satellite [2,48].
As a result, the satellite chooses conservative bit rates for
transmission that can work even for the lowest signal-to-noise
ratio (SNR). This leads to sub-optimal spectrum efficiency.

This paper presents Spectrumize, a novel approach de-
signed to enhance the spectral efficiency of IoT satellite down-
links, thereby enhancing reliability, robustness, and scalability
in satellite-based IoT networks. Spectrumize stands out by
not treating satellite motion as a problem but as a unique
enabler for satellite-based IoT networks. The core concept
behind Spectrumize hinges on the predictability of satellite
motion, which results in predictable Doppler shifts in the sig-
nal unique to each satellite. Consequently, we leverage the
temporal variation of these Doppler shifts as signatures, akin

to codes in CDMA. Much like CDMA, Doppler signatures
empower us to elevate SNR and demultiplex simultaneous
transmissions, resulting in higher spectral efficiency.

SNR boosting: As mentioned previously, distinguishing the
signal received from a satellite from noise at a ground station
can be challenging. Traditional methods of packet detection
using preamble-based correlation are often ineffective be-
cause of the signal’s frequency shifts due to Doppler effects.
We have made two key observations: first, Doppler shifts be-
tween satellites and ground stations are predictable due to
stable orbital paths, and second, satellites typically transmit
a periodic train of packets. To address this, Spectrumize em-
ploys a series of preambles, each adjusted with the appropriate
Doppler correction, for correlation with the received signal
to facilitate packet detection. In our empirical studies, we
confirm that both Doppler shift correction and signal repeti-
tion are necessary for successful packet detection, even in the
presence of hardware errors like carrier frequency offsets.

Collision resolution: Spectrumize introduces a new approach
to address packet collision challenges in satellite IoT net-
works, particularly those caused by overlapping satellite foot-
prints. This approach relies on three distinguishing factors:
the unique Doppler shift of each satellite-ground link, the
symbol reception time, and the received signal intensity. By
leveraging the distinct Doppler shift patterns experienced by
colliding packets from different satellites, we use the Doppler
signature as a self-contained code to demultiplex signals from
multiple transmissions. As a result, a ground station can si-
multaneously download data from multiple satellites, leading
to a significant enhancement in spectral efficiency.

We conduct evaluations of Spectrumize through simula-
tion, emulation, and real-world testbed, which encompasses
our satellite in orbit. This testbed also involves other satel-
lites from the same constellation and multiple ground stations
provided by our industry collaborator, FOSSA. Utilizing this
testbed, we characterize the nature of satellite-ground trans-
missions for IoT satellites and validate our design. The results
demonstrate that Spectrumize outperforms state-of-the-art
methods, achieving a 3× enhancement in packet detection
with an average decoding accuracy exceeding 80%.
Summary of Contributions:
• We characterize the communication challenges posed by

the constraints in a deployed IoT satellite network.

• We propose a new ‘Doppler signature as a code’ approach
to boost satellite decoding and demultiplexing performance.

• We evaluate Spectrumize in a real-world testbed including
satellites in orbit.

2 Motivation from Real-world Experience

IoT satellites constitute a rapidly growing category of low-
cost, low-complexity mini-satellites. As of 2022, approxi-

826 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Control & config
messages from GS to
satellite

Data from IoT
devices to satellite

Downlink from
satellite to GS

Receive-only GS

TX-capable GS

IoT devices

IoT satellites

> Million
Sq km

Figure 2: Overview of end-to-end satellite IoT communication
using Direct-to-Satellite technology.

mately two thousand such satellites have been launched into
orbit [8]. Swarm, FOSSA, Astrocast, EchoStar, Myriota, and
more than ten other companies are leading this growing satel-
lite IoT industry [3–6, 35]. To gain a better understanding
of the industry practices, challenges, and the need for inno-
vation in this burgeoning industry, we collaborated with an
industry leader, FOSSA Systems [7], to launch an IoT satellite
shown in Fig. 1a. Our collaborator designed and launched
the satellite according to industry standards, without any de-
sign input from us. We utilized the satellite as a real-world
testbed for our research along with the collaborator’s ground
station to communicate with the satellite, creating a testbed
that accurately represents the ecosystem of today’s satellite
IoT industry. In this section, we delve deeper into the practices
of the satellite IoT network industry and share our firsthand
experiences with the challenges it presents.

2.1 Satellite as the Global IoT Gateway

In traditional terrestrial wide-area IoT networks such as Lo-
RaWAN, IoT devices follow a star-of-stars topology with
a gateway aggregating data from the IoT devices. In con-
trast, in satellite IoT networks, the IoT gateway is carried
by the satellites themselves. This is achieved through direct-
to-satellite (DtS) communication, where IoT devices on the
earth send data directly to the overhead satellites. As the satel-
lite orbits around the Earth, it can collect data from different
locations and work as the global IoT gateway (Fig. 2). Simi-
larly, our satellite carries a SX1302 LoRa gateway produced
by Semtech [10]. The satellite has dimensions of around
10cm× 5cm× 5cm – this class of satellites is smaller than
cube-satellites and is referred to as pico-satellite. Due to its
small size, the satellite’s power is restricted, with a maximum
average power of 1.6 watts produced by its solar panel and
stored in rechargeable batteries. To maintain low hardware
complexity and cost-effectiveness, the satellite does not have
any active altitude control system. It orbits Earth in a low
earth orbit (LEO), typically between 450 to 550 kilometers

above Earth’s surface, allowing it to observe different parts of
the planet over time. Because of its orbital motion, the satellite
can only communicate with ground devices for brief periods,
typically lasting 5-9 minutes for a location on Earth. There
are usually only 2-3 such communication windows per day
for a location. As a result, a constellation of 150+ satellites is
required to ensure 24/7 global coverage.

2.2 Ground Stations
To communicate with our satellite, we rely on two ground
stations provided by our collaborator (Fig. 1b), which we use
for downloading data and configuring the satellite through
Telemetry, Tracking, and Command (TT&C) communication.
To keep costs low, these ground stations use low-end connec-
tivity hardware, including omnidirectional or directional Yagi
antennas, rather than phased array antennas (Fig. 1b). The
directional Yagi antennas have a beamwidth of 30° and a gain
of 12 dBic, and they are coupled with rotators that can move
them to point towards the satellite when it is in view. While
we primarily use Yagi antennas, several other companies opt
for omnidirectional antennas, which can further simplify their
designs [2, 25]. The antenna is linked to a software-defined
radio (SDR) to process the communication signal. The idea
of using SDR-based ground stations is also popular in the
ground station as a service industry [14, 29]. Furthermore,
due to the short contact time and low data rate of the sat-
ground communication link, there is currently a significant
effort to develop receive-only distributed ground stations that
can reduce data latency in satellite IoT networks [1, 2, 48].
For example, SatNOGS is an open-source global network of
ground stations equipped with low-cost SDR and Raspberry
Pi [1]. Our satellite also broadcasts health beacons targeting
these distributed ground stations.

2.3 Communication
Our IoT satellite communicates with ground devices in three
ways: 1) the satellite collects data from IoT devices, 2) the
satellite communicates with ground stations for TT&C and
downloading data to ground stations, and 3) the satellite sends
data/beacons to distributed ground stations. In this section,
we focus on communication between the satellite and ground
stations. The satellite is equipped with a half-wave dipole
cable antenna and does not have beamforming capability.
It employs a Semtech SX1262 radio to communicate with
the ground stations, which supports both LoRa and 2-FSK
modulation [21]. We use the 401 - 402 MHz band assigned
by the local regulators for Earth exploration satellites, me-
teorological aids, and meteorological satellites. The uplink
communication (ground station to satellite) takes place on
401.3 MHz, while the downlink communication (satellite to
ground station) occurs on 401.9 MHz. The satellite also sends
a health beacon every 30-120 seconds on 401.7 MHz. The

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 827

channel bandwidth is max 125 kHz with LoRa modulation
and 39 kHz with 2-FSK.

Before a satellite-ground station communication takes
place, the contact is scheduled in advance using the satellite’s
two-line element (TLE) and the ground station’s location [47].
During the contact, the communication is initiated by sending
specific commands from the ground station to the satellite.
Once the satellite receives a command, it relays it back to the
ground station. The ground station confirms the command if
it matches the one it sent, and then the command is executed.
Depending on the command, the satellite either updates its
onboard configuration or sends data to the ground station.
When the satellite sends data, it does so in a stream of N data
packets, where N is defined in the command. If the satellite
does not have N packets to send, it sends all the packets that it
has. Since the channel is not expected to be used for multiple
satellite-ground communications at the same time, the packets
are transmitted at a plain interval without any random back-
off. A constant bit rate is maintained during communication,
given the low bandwidth and short contact time.

2.4 Our Experience and Challenges

Following the successful launch of our satellite, we com-
menced the commissioning phase which involves several
stages such as initial orbit determination and tracking, first
contact with the satellite, sequential activation and checks of
spacecraft subsystems, and calibration of payloads, sensors,
and control systems. Ideally, this phase should take about
two weeks to complete. Unfortunately, we encountered some
issues from the first contact with the satellite which extended
the duration of the commissioning phase by several weeks. It
was persistent across other satellites launched together. The
issue primarily appeared to be related to the downlink com-
munication, prompting us to conduct further investigations to
identify the root cause.

The expected signal from our satellite using 2-FSK modu-
lation can be seen in Fig. 3a(top) in the time domain, which
was emulated in the lab using our satellite’s RF setup. When
we transfer the signal in the frequency domain using Fast
Fourier Transformation (FFT) as shown in Fig. 3a(bottom),
we see two distinct peaks with the perfect frequency deviation
configured in 2-FSK modulation. In Fig. 3b, we can see the
signal recorded by the SDR of our ground station during a
satellite pass of approximately 10 minutes. According to the
config of our satellite’s regular beacon transmission, we ex-
pect to receive 10-14 packets. However, in the received signal
shown in Fig. 3b, we do not see any clear signs of the packets
as we saw in the emulated signal (Fig. 3a). When we transfer
the received signal to the frequency domain using FFT, as
shown in Fig. 3b(bottom), we do not see any clear peaks cor-
responding to 2-FSK modulated packets. It is apparent that
the packets are buried under the heavy noise and interference
on the ground. Nevertheless, we attempted to run a classic

preamble-based packet detection by running correlation be-
tween the received signal and the known packet preamble.
Ideally, we should have seen a prominent correlation peak
corresponding to the beginning of each packet in the signal,
translating to 10-14 peaks in our case. However, as shown
in Fig. 4, we hardly see a prominent correlation peak. We
then conducted a manual inspection of the received signal in
search of the packets and found 12 packets in the signal, as
shown in Fig. 3c after zooming in on the signal. We ran FFT
on this part of the signal and found clear 2-FSK peaks in the
frequency domain, confirming that the packet was transmit-
ted from the satellite. In aggregate, the SNR of the received
signal was so low that the classic preamble correlation-based
technique failed in detecting packets. This experience led us
to dig deeper into the reasoning behind our experience.

To begin with, the link between the satellite and ground
station has a low link budget due to several factors, such as
the omnidirectional radiation pattern of the satellite’s antenna,
the long distance between the two (hundreds of kilometers),
the satellite’s power limitation, and regulatory restrictions on
the power flux density of satellite transmission on the ground.
For instance, in the case discussed, the link budget is −112
dBm with the satellite’s transmission EIRP of 22 dBm, which
is comparable to other satellite service providers like Swarm
reporting −108.24 dBm [43]. However, these values are cal-
culated by assuming an elevation angle of 50°. The elevation
angle has a direct impact on path loss and consequently, the
link budget. In other words, a lower elevation angle means the
satellite is closer to the horizon, resulting in a lower link bud-
get. Using data from the TinyGS, an opensource distributed
ground station network for IoT satellites, over a six-week
period, we found that the average elevation angle across the
ground stations is 26.68° indicating that the link budget is
lower in the real world than the value calculated for nominal
elevation angle of 50°. Furthermore, the link budget in reality
is even lower due to environmental factors such as weather
and surrounding infrastructure that cause signal attenuation.
The average RSSI across the TinyGS ground stations was
found to be −133.78 dBm, which is −128.12 dBm for our
ground stations. Note that this data had packet survival bias
since we have the RSSI values for only the detected packets,
whereas, the packets having a RSSI below the minimum de-
tectable intensity (MDI) of ground station radio or very poor
SNR values, are not detected and hence not recorded. Addi-
tionally, we noticed that the rotation of the satellite around its
own axis, known as tumbling, leads to the antenna depointing,
resulting in decreased signal strength.

The ability to detect and decode packets despite having
an RSSI above the MDI depends on the level of noise and
interference at the ground station, which can originate from
both terrestrial and non-terrestrial sources. Interference from
other satellite constellations is common since IoT satellites
often use a band designated for Earth exploration, meteoro-
logical, and mobile satellites. In addition, interference from

828 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Emulated signal containing 2-FSK
packets transmitted by satellite. Time do-
main (top) and frequency domain (bottom).

(b) Signal received at the ground station
in real-world. Time domain (top) and fre-
quency domain (bottom).

(c) Packet found after manual inspection by
zooming in the signal. Time domain (top)
and frequency domain (bottom).

Figure 3: Our experience in processing signal received from our satellite at the collaborator’s ground station.

Figure 4: Packet detection from a real-world signal using
single preamble correlation. Results: no clear correlation
peak at the beginnings of packets.

terrestrial communication can significantly affect the satel-
lite signal due to the low link budget, and operation in the
ISM band can make them susceptible to direct terrestrial in-
terference [15, 28, 31, 59]. Besides, the use of low-cost and
low-complexity hardware in ground stations also contributes
to the noise. As a combined effect of these factors, the SNR
value gets extremely poor and becomes negative [19]. To
highlight the extent of the poor SNR values, the average SNR
at our ground station locations was found to be as low as −18
dB, while it was −17.11 dB across TinyGS ground stations.

In addition to external interference, IoT satellites also face
interference from other satellites within their own constella-
tion. This is due to the omnidirectional radiation pattern of a
satellite’s antenna, which results in a footprint that can cover
millions of square kilometers. The footprints of adjacent satel-
lites from the same constellation overlap with each other as

shown in Fig. 2. As mentioned earlier, ground stations are
strategically placed in locations where they can maximize the
number of satellite passes, such as the polar regions. With
over 170 IoT satellites in a constellation like Swarm, a ground
station in such an optimal location spends 83% of its time
in the overlapping footprint of two or more satellites. At any
given time, the ground station can see up to 23 satellites with
a median of 4 (see Appendix A). Now, the satellites having
overlapped footprints create interference with each other as
they transmit to a ground station in an overlapping region.
As a solution, when downloading data from a satellite at a
ground station, only one satellite is scheduled for communi-
cation at a time, despite multiple satellites being within view.
The ground station sends a command to the scheduled satel-
lite to initiate data transfer while keeping the others silent.
This approach, while addressing interference issues, results in
significantly reduced spectral efficiency. This impact is even
more pronounced for ground stations located in polar regions,
which are almost all the time in overlapping footprints of
multiple satellites.

3 Spectrumize’s Algorithm

In this section, we present our technique for detecting and
decoding the packets received from IoT satellites that are
severely buried under the noise floor (Fig. 3b (top)). We
found that conventional technique of correlating with a sin-
gle preamble exhibits poor performance (Fig. 4), where the
peaks corresponding to packet start time are obscured by the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 829

Satellite Doppler Based Signature across packets

Time

Frequency
DataPreamble

• Packets are sent periodically, but in the case of satellite reception, each packet is affected by a doppler shift
• Doppler shift is produced because of the relative motion between the satellite and the ground station
• Each packet has a preamble to aid packet detection

DataPreamble

Sat 1 Doppler Signature
Sat 2 Doppler Signature

Figure 5: Unique Doppler Signatures allow us to disentangle
the collisions from two different satellites at a ground station.

overwhelming noise.
To enhance the prominence of the peaks associated with

packet start times, it is crucial to increase the correlation score
of the genuine packet within the noisy received signal. To do
so, we leverage two unique observations specific to the IoT
satellite domain.

1. Downlink from satellite to ground stations are
contention-free transmissions: Traditional wireless net-
works, such as WiFi and cellular, operate on a contention-
based system where transmitters employ carrier sense before
transmitting packets. Consequently, packet transmissions in
traditional wireless networks do not typically adhere to a pe-
riodic or predetermined pattern. However, the dynamics in
IoT satellite networks differ. Techniques like carrier sense
are ineffective due to the vast footprint of satellites on the
Earth’s surface, making it possible for distant satellites to
inadvertently collide at a ground station. As a result, the cur-
rent industry standard for deploying downlink communication
protocols from IoT satellites to ground stations adheres to a
contention-free schedule.

More specifically, the IoT satellite network employs a cen-
tralized downlink scheduler that assigns ground stations to
receive packets from specific satellites during each satellite’s
contact period with the ground station. The IoT satellite re-
ceives this transmission schedule in advance, along with com-
mands that specify the number of packets, denoted as N, that it
can transmit. During the satellite’s contact period with its des-
ignated ground stations, it transmits a train of N data packets,
each periodically spaced. It’s essential to note that because the
satellite does not perform carrier sensing before transmitting
data packets, its packet transmissions follow a deterministic
periodic pattern, as illustrated in Fig. 5. The key insight of
Spectrumize is that this known periodic sequence of N pack-
ets can be harnessed to construct a longer virtual preamble
train. This virtual preamble train serves to enhance the corre-
lation score of the target signal, elevating it above the noise
floor and facilitating the detection of packets.

2. Orbital motion of satellites contribute unique Doppler
signatures at the physical layer: The second pivotal insight
underpinning Spectrumize revolves around the exploitation
of the orbital motion of the satellite during its contact period
with a ground station, which introduces a distinctive Doppler
signature unique to each satellite-ground station link. This

signature is influenced by factors such as the satellite’s po-
sition and velocity w.r.t. the stationary ground station. Fig 5
provides an example of two satellites, each characterized by
its unique Doppler signature. These Doppler signatures effec-
tively introduce an additional layer of physical modulation
over the existing data packets transmitted. In essence, this
process is akin to the codes used in CDMA. Similarly, we can
harness this well-known temporally varying Doppler signa-
ture of the satellite-ground station link to enhance signal SNR
and to demultiplex simultaneous transmissions.

We next detail our packet detection and collision resolu-
tion algorithm, followed by techniques to address hardware
imperfections like CFO and time jitter in the packet sequence.

3.1 Packet Detection

Following the transmit schedule and command from the
ground station, the satellite transmits N data packets to the
assigned ground station during its contact period. Each indi-
vidual data packet is preceded by a preamble to help with the
detection of packet start time and subsequent decoding. Let
the preamble signal be denoted by p(t). Then the sequence
of preambles s(t) transmitted by the satellite over the course
of the N data packets is:

s(t) =
N−1

∑
k=0

hk p(t − kτ)+n(t) (1)

where τ represents the inter-packet interval at which the
satellite transmits its data packets. The wireless channel expe-
rienced by the kth data packet, denoted as hk, and the received
signal’s noise, n(t), comprise both thermal noise and exter-
nal interference originating from terrestrial source or other
satellite transmissions.

Traditional packet detection methods would attempt to find
the packet start times by correlating the received signal s(t)
with the known preamble p(t). However, in our real-world
experiments, due to the overwhelming amount of noise, we
could not detect any packet start times reliably. To address
this challenge, Spectrumize’s insight is that we can leverage
the known periodicity of the transmitted signal and construct
a longer virtual preamble train to correlate with the received
signal. This, in turn, would allow us to boost the correlation
score and would raise the peaks corresponding to the packet
start times above the noise floor.

Specifically, the simulated preamble train p̃(t) that we con-
struct to correlate with the received signal s(t) is:

p̃(t) =
N−1

∑
k=0

p(t − kτ) (2)

where p(t) is the known preamble structure. So given the
virtual preamble train, our packet detection method works by
correlating s(t) with p̃(t). That is, we want to find

arg maxt ′ |s(t) p̃∗(t − t
′
)| (3)

where p̃∗ is the complex conjugate of p̃. The time t
′

that

830 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

maximizes the above correlation would be when the preamble
trains in the two signals s(t) and p̃(t) perfectly align. So when
the two trains align, the value of the correlation score is

Corr_Score =
N−1

∑
k=0

hk
∣∣∣∣p(t)∣∣∣∣2 (4)

As observed in Eq. 4, the utilization of a preamble train for
correlation results in the aggregation of correlation terms from
each preamble in the train. This aggregation allows the peak
corresponding to the packet start times to surpass the noise
floor. It’s important to note, however, that the terms in the
summation do not add up constructively due to the presence
of the channel term hk. The channel hk introduces a random
phase and gain variation to each term in the summation. While
coherent addition of the terms in the summation would be
the ideal scenario for packet detection, we still get significant
gains from non-coherent combination alone. In Appendix B,
we present the proof for the following Lemma.

Lemma 3.1 Consider a1,a2, . . . ,an to be complex numbers
on the unit circle with random phase. That is, ai = e jθi where
θi is uniformly sampled from [0,2π]. Let sn be defined as
sn = ∑

n
i=1 ai. Then we have E

[
∥sn∥2

]
= O(n).

The above Lemma 3.1 demonstrates that the gains from non-
coherent combining grows monotonically with the number
of terms in the non-coherent summation. Hence, leveraging a
preamble train allows us to detect the packets buried under the
noise floor, and this was not possible with single preamble-
based correlation techniques. This observation also aligns
with the rich body of literature on non-coherent combining
and beamforming of wireless signals [32, 37, 50, 51, 58].

Up to this point, we have discussed how leveraging a virtual
preamble train can enhance the SNR and enable the detection
of packet start times. However, this alone is not sufficient. In
addition to the wireless channel’s contribution represented by
hk, it is crucial to consider the presence of a Doppler signature
component. As previously discussed, the orbital motion of
the satellite results in a unique Doppler signature for each
satellite-ground station link, which overlays the data transmis-
sions from the satellite. This time-varying Doppler signature
is denoted as fd(t). As illustrated in Fig. 5, the Doppler sig-
natures for two satellites are depicted in green and blue. This
signature essentially introduces frequency modulation on top
of the sequence of data packets transmitted by each satellite.
Given that the Doppler signature differs for each satellite-
ground station link, we can liken them to CDMA codes. We
can leverage these Doppler signatures to further enhance the
SNR of the desired signal.

Specifically, we can modify our simulated preamble train
p̃(t) as follows

p̃(t) =
N−1

∑
k=0

p(t − kτ) e j2π fd(t)t (5)

Note that the actual received signal s(t) from the satellite
already has the Doppler shift encoded in it, so in the correla-

tion equation shown in Eq. 4, when we plug in our modified
p̃(t) from Eq. 5, the Doppler signature terms will cancel and
our correlation score is going to remain the same as in Eq. 4.
Hence, correcting for this Doppler signature fd(t) is essential
for the correlation across preambles from different packets to
add up constructively.

Packet separation: We would like to emphasize that the
term e j2π fd(t)t effectively functions as a time-varying code in
this context, aiding in the separation of packets between trans-
missions from terrestrial sources or other satellites operating
in the same frequency band. To illustrate this, let’s consider
the reception of transmissions from two satellites, as depicted
in Fig. 5, with their respective Doppler signatures denoted
as f 1

d (t) and f 2
d (t). Without loss of generality, let’s focus on

detecting the start times of packets from satellite 1, while
considering packets from satellite 2 as interference. For satel-
lite 1, employing the modified preamble train shown in Eq.
5, our correlation score achieves its highest value when the
simulated preamble train with the Doppler signature aligns
precisely with the train of packets present in the transmitted
signal from satellite 1.

However, when considering the transmissions from satellite
2 that cause interference at the ground station, the correlation
between our simulated preamble train and the signal from
satellite 2 diminishes. This is because the Doppler signature
encoded in satellite 2’s transmissions differs from the Doppler
signature we are seeking in the received signal. Specifically,
the correlation score for satellite 2’s transmission will be:

Corr_Score ∼
N−1

∑
k=0

hk
∣∣∣∣p(t)∣∣∣∣2e j2π(f 2

d (t)− f 1
d (t))t (6)

Hence, as evident from the above equation, the correla-
tion terms from different packets in the train no longer add
up constructively. This occurs because the value of the term
(f 2

d (t)− f 1
d (t)) varies with time, contributing different phase

offsets to each term in the summation. Consequently, by har-
nessing the unique Doppler signature for each satellite, we can
further effectively suppress transmissions from other sources.

3.2 Hardware Imperfections

However, it is important to note that we have not yet accounted
for hardware imperfections in our technique. Due to these
hardware imperfections and the lack of perfect synchroniza-
tion, there will be disparities between the real signal s(t) and
our simulated preamble train p̃(t). More specifically, the re-
ceived signal s(t) will exhibit a Carrier Frequency Offset
(CFO) component, causing it to deviate from the simulated
preamble train p̃(t). Additionally, our assumption of a uni-
form periodic train of data packets every τ seconds may not
hold true in practical scenarios. Processing delays through
different layers of the network stack often introduce some
jitter, causing the packets in the train not to be transmitted at
precisely τ-second intervals.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 831

It is imperative that we consider the impact of these hard-
ware imperfections when creating the virtual preamble train
used for detecting the presence and start times of packets.
However, standard channel-based techniques are inadequate
for estimating these offsets, as we must first locate the packet
to measure these channels. Consequently, we begin with a set
of initial values and iterate on these values until we observe
the peaks from the data packets rising above the noise floor.
Specifically, we construct the virtual preamble train with a
CFO value of ∆ f and jitter denoted as ε. In this scenario, our
modified virtual preamble takes the following form –

p̃(t) =
N−1

∑
k=0

p(t − k(τ+ ε)) e j2π fd(t)t e j2π∆ f t (7)

The above equation for the preamble train takes into ac-
count the unique Doppler signature fd(t), the Carrier Fre-
quency Offset (CFO) ∆ f , and the jitter ε in the periodic train.
It is worth noting that the jitter may result in non-uniformly
spaced packets, rather than just a uniformly perturbed period-
icity of ε. However, for the sake of maintaining manageable
computational complexity, we assume only a jitter in the pe-
riodicity of the train. Our experiments have demonstrated
that this approach is sufficient to elevate the correlation score
above the noise floor.

The algorithm operates as follows: We start by selecting a
set of candidate CFO values {∆ f1, . . . ,∆ fx} and a set of can-
didate jitter values {ε1, . . . ,εy}. It is important to note that the
Doppler signature is known, thanks to the TLE information
from the satellite. For each pair of CFO and jitter values, we
create a virtual preamble train to correlate with the received
signal s(t). From the collection of candidate preamble trains,
we identify the CFO value ∆ f ∗ and jitter value ε∗ that maxi-
mize the correlation score with s(t). These chosen values of
CFO and jitter may not be perfectly accurate, but our objec-
tive is to select values that are close enough to elevate the
correlation score above the noise floor. This approach enables
us to determine the position of the first packet in the signal.
However, what about subsequent packets?

According to Eq.4, the correlation peaks for subsequent
packets decrease as we decode and discard packets from the
signal. It causes the peaks of trailing packets in the train to
become increasingly obscured by noise. This makes detection
as challenging as single-preamble-based detection for these
trailing packets, as Eq.4 loses its summation advantage. To
tackle this issue, we must restore the summation advantage by
reconstructing the preamble train. To achieve this, following
the initial packet detection and decoding, we remove the cor-
responding portion in the signal and append it to the end of
the signal. We apply the same process to the virtual preamble
train, with the second packet now becoming the head of the
train. This procedure continues until we successfully decode
all the packets in a circular queue fashion. This approach en-
sures the train’s length is maintained, allowing us to preserve
the summation advantage in Eq. 4.

3.3 Collision Resolution for Packet Decoding

As previously mentioned, ground stations frequently find
themselves within the overlapping footprints of multiple satel-
lites due to the large coverage areas of these satellites. Al-
though they have the potential to communicate with several
satellites, current scheduling practices dictate that only one
satellite can be active at a time. This precaution is taken to pre-
vent collisions between transmissions from satellites within
the same constellation, but it comes at the cost of poor spectral
efficiency. As a remedy, Spectrumize facilitates simultane-
ous transmissions in the same frequency band from multiple
satellites within the same constellation.

Spectrumize efficiently separates and decodes data symbols
from the intended satellite while filtering out symbols from
collided packets of other satellites. This capability is made
possible by the distinct Doppler signature unique to each
satellite-ground station link. Each packet, within its duration,
carries a Doppler signature that differs significantly among
satellites. In essence, each packet can be seen as encoded with
a unique physical layer code defined by its Doppler signature,
as demonstrated in our results. Multiplying the combined sig-
nals of collided packets by the complex conjugate of the rele-
vant Doppler signature (f ∗d (t)) allows us to enhance the SNR
of the desired packet’s data symbols while attenuating data
symbols from interfering packets. This approach leverages
Doppler signatures in a manner akin to CDMA codes. Fol-
lowing this SNR enhancement, we employ a standard LoRa
collision resolution algorithm to further isolate the symbols
corresponding to the target packet, effectively eliminating
symbols from interfering packets.

We focus on LoRa modulation for our packet decoding use
case, which is prevalent in the satellite IoT industry [6, 7, 43].
Our satellite employs LoRa modulation along with 2-FSK,
and the techniques we employ can also be extended to 2-FSK.
Numerous studies have delved into decoding collided LoRa
packets [24, 45, 46, 52, 53]. In our work, we employ the CIC
algorithm [38] for decoding collided packets. It is important
to note that merely applying the CIC algorithm [38] to the
received signal s(t) without prior Doppler signature correc-
tion, as demonstrated in Section 4, is ineffective, especially
for long packets. The correction of the Doppler signature is a
prerequisite for successfully decoding collided packets and
extracting the desired data symbols.

4 Evaluation

We evaluate Spectrumize’s performance in both simulation
and real-world environments. In simulation and benchtop em-
ulator setup, we assess the micro-benchmarks and scalability
of Spectrumize, while in the real-world testbed, we evaluate
its performance in actual operation settings.

832 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Single preamble with Doppler signature (b) Preamble train without Doppler (c) Preamble train with Doppler signature

Figure 6: Micro-benchmark of packet detection techniques: a single preamble or a train without the Doppler signature suffering
from large noise. A preamble train with the Doppler signature applied exhibits a 13dB gain in correlation detection power.

4.1 Real-world Testbed
Our real-world testbed consists of our own satellite that is
launched in collaboration with FOSSA Systems, along with
two ground stations operated by the same collaborator, as
described in Section 2. While most of the experiments are
conducted using our own satellite, we also use other satellites
in the constellation for certain experiments, such as those
involving packet collisions. At the ground stations, we collect
raw SDR recordings of satellite passes, as well as the SNR and
RSSI values of the packets that are decoded by the Semtech
SX126x radio. This radio is connected to the receive chain
of the ground station through an RF splitter. Additionally, we
utilize the Microsoft Azure Orbital ground stations to receive
signals from our satellite [29].

4.2 Simulator and Benchtop Emulator Setup
For simulations, we employ MATLAB, leveraging the Com-
munications Toolbox for 2-FSK modulation and LoRaMatlab
for LoRa modulation [12]. To bring the evaluation closer
to real-world conditions, we also establish a benchtop em-
ulator setup. In this benchtop setup, we utilize three SDRs,
specifically USRP B200 [11], integrated with GNU Radio and
tuned to the satellite frequency plan. Two of these SDRs repli-
cate the transmitters of two distinct satellites, while the third
serves as the ground station. To introduce the Doppler effect,
we calculate the Doppler signature for a satellite pass over our
actual ground station location using the corresponding satel-
lite’s TLE. Subsequently, we multiply this Doppler signature
with the transmission signal. It’s important to note that, simi-
lar to the real-world testbed, there is no clock synchronization
across the SDRs.

4.3 Packet Detection
In order to assess the effectiveness of Spectrumize’s packet
detection technique, we initially conduct a series of micro-
benchmark tests to determine how different parameters impact
our approach, as detailed in Section 3. Subsequently, we apply

our method to the data collected from the real-world testbed,
and compare its performance with the conventional technique.

4.3.1 Micro-benchmark

We first conduct the benchtop emulation to examine the im-
pact of different correlation setups. We take a scenario where
a satellite transmits 2-GFSK packets at a 9600 baud rate, ev-
ery 30 seconds, with Doppler variation and Additive White
Gaussian Noise (AWGN) based on real-world measurements.
Our baseline approach employs classic preamble-based cor-
relation for packet detection in the received signal. However,
we encounter a lack of prominent correlation peaks at the start
of packets, as illustrated in Fig. 4. To improve the correlation
results, we correlate the signal with a single preamble mul-
tiplied by the Doppler signature. This results in marginally
improved correlation outcomes where the peak remains rela-
tively subtle in terms of correlation magnitude as shown in
Fig. 6a. Subsequently, we experiment with correlating the sig-
nal using a preamble train aligned with the satellite’s packet
transmission sequence but without Doppler correction. This
approach yields subpar results, with indistinct peaks that are
challenging to distinguish, as demonstrated in Fig. 6b. Fi-
nally, we implement our proposed method, which involves
correlating the signal with a preamble train multiplied by the
Doppler signature. This approach demonstrates a significant
improvement, showcasing a gain of approximately 13dB in
correlation detection power, as depicted in Fig. 6c. In cer-
tain scenarios, we achieve an even higher gain of up to 25dB
demonstrating the effectiveness of our technique in detecting
packets despite heavy noise.

After examining our technique’s performance under ideal
conditions, we then investigate its robustness against real-
world factors such as hardware imperfections. We begin by
introducing a CFO of 100 Hz to the transmitted packets. When
we use our correlation technique to detect these packets, we
observe a decrease in the correlation peak (Fig. 7a), but it is
still very prominent compared to the baseline results shown
in Fig. 4. Next, we consider an extreme case of Doppler esti-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 833

(a) Preamble train with Doppler signature
and 100 Hz CFO

(b) Preamble train with Doppler signature
having 500 Hz estimation error

(c) Preamble train with Doppler signature
and 0.3 sec packet interval mismatch

(d) Impact of Doppler estimation error (e) Impact of interval mismatch error

Figure 7: Robustness of packet detection to errors: our packet detection is robust to timing or frequency mismatch.

mation error, 500 Hz. Although the resulting correlation peak
is shorter (Fig. 7b) than the ideal case, it is still very promi-
nent. We then study the impact of packet interval mismatch
by adding a 0.3 sec delay to each preamble in our preamble
train. As shown in Fig. 7c, this factor has a negative impact on
our performance. However, we still obtain a distinguishable
correlation peak that is much higher than the baseline. For
further investigation of the impact of these factors, we try out
a range of values. The results are presented in Fig. 7d and 7e.
In Fig. 7d, we demonstrate the effect of Doppler estimation er-
ror and CFO on the F1 score for packet detection. We observe
that our technique can tolerate a Doppler estimation error of
up to 1 kHz, while the CFO can reach several hundred Hz
without significantly affecting the F1 score. Fig. 7e shows
the impact of packet interval estimation error on the F1 score,
indicating that our technique can perform well with an inter-
val estimation error of up to one second. However, we have
observed an average interval estimation error of around 0.18
sec in real-world scenarios, and our algorithm makes iterative
adjustments to the preamble train to further reduce this error.
Additionally, we found that when the F1 score decreases, it is
mainly due to a decrease in precision rather than recall. This
indicates that our technique can detect actual packets even
under very adverse conditions.

4.3.2 Real-world evaluation

In addition to emulating our technique, we also test it in real-
world scenarios using our testbed. We apply our technique on

SDR recording traces gathered from ground station setups,
which contain packets transmitted from our satellite. We col-
lect traces from 67 satellite passes at various times over a
one-year period to ensure that we capture a range of factors
related to satellite orbital motion and noise at the ground sta-
tion, including weather conditions. These traces contain over
700 packets of varying lengths transmitted using 2-GFSK and
LoRa modulation schemes with intervals of a few seconds to
a minute between transmissions. To carry out the evaluation,
we implement our technique using MATLAB and execute it
in a virtual machine having 32 GiB RAM and 4 vCPUs.

The results of the real-world evaluation and comparisons
among different approaches are presented in Fig. 8. Fig. 8a
displays the F1 score for packet detection using Spectrumize
and a classic approach of single preamble-based correlation
at different SNR values (rounded off to the closest integer
number). Additionally, the distribution of packets across SNR
values is shown. As we only have the SNR values for the
packets decoded by the SX126x radio at the ground station
during a pass, we use this as a reference and calculate relative
SNR values for the packets detected by our approach but not
by the SX126x radio. Fig. 8a demonstrates that Spectrumize
outperforms the classic approach by 5× in low SNR scenar-
ios, where we have a higher distribution of packets since a
significant amount of packets reaching the ground station
suffer from low SNR. In Fig. 8b, the overall performance
of Spectrumize and other approaches in detecting packets is
shown. Spectrumize exhibits 3× better performance than the
classic approach of single preamble-based correlation and

834 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) F1 score for packet detection using
Spectrumize and classic approach along
with distribution of packet by SNR

(b) Overall F1 score for packet detection
using Spectrumize and other approaches

Figure 8: Real-world evaluation: performance of Spectrumize
in packet detection and comparison against classic approach
(single preamble correlation without Doppler correction) and
other intermediate approaches.

2× better performance even when we incorporate Doppler
correction with a single preamble.

4.4 Collision Resolution

As explained in Section 2 and 3, packet collision is a signifi-
cant problem when downloading data from a satellite, affect-
ing the spectral efficiency. We now evaluate how effectively
Spectrumize mitigates this issue.

4.4.1 Simulation

We first evaluate Spectrumize’s ability in resolving packet
collision through simulation. It further aims to assess the scal-
ability of Spectrumize in terms of the number of satellites
visible from a ground station as illustrated in Fig. 2. We select
a polar region as the location for the ground station, as this
is where satellites most frequently pass overhead, resulting
in higher overlaps of their footprints. We simulate over 170
IoT satellites from the Swarm constellation by using their
TLEs. Satellites are set to transmit packets at 2-second inter-
vals when they come into view of the ground station. The
packet length is set to 3.5 seconds to cause frequent collisions.
The rest of the simulation setup is similar to that described in

(a) Collision resolution accu-
racy by number of satellites in
view of ground station

(b) Collision resolution accu-
racy by the correlation coeffi-
cient of Doppler signatures

Figure 9: Performance of Spectrumize in collision resolution
and its scalability in simulation.

Figure 10: Performance of Spectrumize’s collision resolution
in real-world. Spectrumize achieves over 80% accuracy on
average across different SNR conditions.

Section 4.2. As discussed in Section 3.3, we here use Spectru-
mize for packet detection and boosting the SNR of a packet
of interest w.r.t. colliding packets using Doppler signature.
We later employ CIC [38] to extract the symbols in a packet.
Since the opensource source code of CIC supports only LoRa
modulation, we use LoRa packets in our simulation. However,
a similar technique can be translated to 2-FSK.

The performance of Spectrumize in resolving packet colli-
sions is depicted in Fig. 9a, where we illustrate how its accu-
racy varies by the number of satellites that cause collisions.
We begin with a few satellites from the Swarm constellation
and gradually increase the number to the maximum in the
simulation. We achieve an accuracy of over 90% in resolving
collisions caused by up to eight satellites. The accuracy goes
down as the number of satellites causing collision increases.
This occurs since more satellites lead to a higher probability
of similarity in Doppler signatures among the satellites. In
Fig. 9b, we show the impact of similarity in Doppler signa-
ture on the accuracy, where it is measured in terms of the
correlation coefficient between Doppler signatures from two
satellites. The accuracy is observed to decline exponentially
with the correlation coefficient.

4.4.2 Real-world evaluation

In addition to the simulation, we conduct the real-world evalu-
ation of Spectrumize’s ability to resolve packet collision using
our testbed. To perform this evaluation, we use multiple satel-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 835

lites from the same constellation launched by our collaborator.
We configure two satellites to cause packet collision at the
ground stations using LoRa modulation with a spreading fac-
tor of 11, a bandwidth of 125 kHz, and a code rate of 8. Given
the limited number of satellites in orbit, naturally occurring
collision scenarios are low. To address this, we employ our
benchtop emulator to create such collisions and enrich the
dataset of SDR traces. We then employ Spectrumize on the
SDR traces to detect the packets and resolve the collision. We
further compare its performance with the standalone CIC [38]
approach proposed for terrestrial networks as a baseline. It
is important to note that CIC does not use Doppler correc-
tion. The results in Fig. 10 show that Spectrumize achieves
over 80% accuracy on average, with more than 70% accu-
racy in low SNR conditions and 90% accuracy in good SNR
conditions. On the other hand, CIC performs poorly in low
SNR conditions as it relies on the classic approach of sin-
gle preamble correlation for packet detection. Although the
performance slightly improves with the SNR, the absence of
Doppler adjustment hampers its performance. We also ob-
serve that CIC struggles in decoding longer packets compared
to shorter ones given the Doppler change within a packet.

5 Related Work

The quest to enhance spectral efficiency in satellite communi-
cation has garnered considerable attention in the state-of-the-
art literature, with numerous techniques proposed, including
MIMO and beamforming. [20, 44, 54], cognitive radio com-
munication [39, 40], and interference mitigation and cancella-
tion [16, 22, 22, 22, 23, 41], among others. As the coexistence
of space and terrestrial networks becomes important in 5G
and 6G, this field is gaining significant interest [18, 26, 34].
However, all of these techniques have been developed for
broadband communication in space. This paper focuses on
solving the problem of spectral efficiency in narrowband IoT
satellite communication, which has unique challenges such
as power constraints, lack of beamforming capability, lower
frequency and bandwidth, and the use of low-cost and low-
complexity connectivity hardware. As a remedy, we leverage
the unique Doppler signature of satellites in packet detection
and collision resolution.

5.1 Packet detection

In wireless communication, a preamble is added to the start
of a packet to aid in synchronization. Various correlation-
based methods have been proposed and implemented to de-
tect the preamble in the received signal [27, 30, 56, 57]. How-
ever, in low SNR situations encountered in satellite IoT net-
works, single-preamble correlation techniques are not effec-
tive, as we have previously shown. To counteract the Doppler
shift caused by the high relative motion of LEO satellites,

Doppler compensation techniques are typically used in satel-
lite communication, both at the hardware and software lev-
els [13, 17, 42, 49, 55]. To the best of our knowledge, we are
the initial proponents of utilizing a series of preambles multi-
plied with the Doppler shift of a satellite to identify packets
in situations where the signal-to-noise ratio is low.

5.2 Collision resolution

The process of collision resolution in satellite communica-
tion is well researched, but not specifically in the context of
narrowband IoT satellite communication. On the other hand,
in terrestrial IoT networks, such as LoRa, various techniques
have been proposed to address packet collision. For exam-
ple, Choir [24] groups LoRa symbols based on the CFO of
the transmitter hardware, while FTrack [53] generates time-
frequency tracks of the symbols using sliding window Short
Term Fourier Transforms (STFT) on the de-chirped signal.
Similarly, mLoRa [52] and CoLoRa [46] group LoRa sym-
bols based on the power of the received signal. NScale [45]
translates the packet time offset into frequency features for
improved robustness, while CIC [38] cancels out interference
by combining spectra obtained from different parts of each
symbol. However, the major challenges in applying these
techniques to satellite IoT networks are very low SNR and
RSSI, and Doppler frequency offset.

6 Conclusion

The IoT satellite industry is growing rapidly due to the low
cost, low-complexity, and ease of deployment of satellite con-
stellations in orbit. However, our experience with launching a
satellite shows that the downlink from the IoT satellite to the
ground station suffers from large packet losses due to their
low link budget, large footprint and packet collisions, and
satellite motion. This paper introduces Spectrumize, a novel
approach to improve the spectral efficiency of IoT satellite
downlink. Spectrumize leverages the predictable motion of
the satellite and uses the temporal variation of the Doppler
shift as a signature to boost signal SNR and de-multiplex
simultaneous transmissions. Our evaluation involving our
launched satellite and collaborator’s ground stations shows
that Spectrumize improves downlink communication by 3×
over state-of-the-art.

7 Acknowledgement

We extend our gratitude to FOSSA Systems for their invalu-
able support in establishing the real-world testbed and sharing
their expertise on industry practices. Our sincere appreciation
also goes to the shepherd and the anonymous reviewers for
their insightful feedback.

836 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] SatNOGS – Open Source global network of satellite
ground-stations. https://satnogs.org/.

[2] TinyGS – The Open Source Global Satellite Network.
https://tinygs.com/.

[3] Australian IoT startup Myriota raises USD 19 million.
https://tinyurl.com/mw77mzh3, 2020.

[4] Satellite launches fueling race to connect out of reach
devices. https://tinyurl.com/3ehc65r8, 2021.

[5] SpaceX buys out satellite IOT startup Swarm technolo-
gies. https://tinyurl.com/5y58ar4u, 2021.

[6] Cash-rich EchoStar to take on global IoT market next
year. https://tinyurl.com/2rmw8kdw, 2023.

[7] FOSSA Systems - Global Cost-Effective IoT Connec-
tivity. https://fossa.systems/, Feb 2023.

[8] Nanosatellite Launch Forecasts - Track Record and
Latest Prediction. https://tinyurl.com/2p948kwv,
2023.

[9] Swarm - Low cost global satellite connectivity for IoT.
https://swarm.space/, 2023.

[10] SX1302: LoRa Core Digital Baseband Chip for Lo-
RaWAN network gateways. https://tinyurl.com/
5d8xsb7k, 2023.

[11] USRP B200. https://www.ettus.com/
all-products/ub200-kit/, 2023.

[12] Bassel Al Homssi, Kosta Dakic, Simon Maselli, Hans
Wolf, Sithamparanathan Kandeepan, and Akram Al-
Hourani. IoT network design using open-source LoRa
coverage emulator. IEEE access, 9:53636–53646, 2021.

[13] Irfan Ali, Naofal Al-Dhahir, and John E Hershey.
Doppler characterization for LEO satellites. IEEE trans-
actions on communications, 46(3):309–313, 1998.

[14] Amazon Inc. AWS Ground Station. https://aws.
amazon.com/ground-station/.

[15] Anritsu. Resolving Interference Issues at Satellite
Ground Stations. https://tinyurl.com/2fbdzpek.

[16] Bassel F Beidas, Hesham El Gamal, and Stan Kay. Itera-
tive interference cancellation for high spectral efficiency
satellite communications. IEEE transactions on com-
munications, 50(1):31–36, 2002.

[17] HD Black and A Eisner. Correcting satellite Doppler
data for tropospheric effects. Journal of Geophysical
Research: Atmospheres, 89(D2):2616–2626, 1984.

[18] Christophe Braun, Andra M Voicu, Ljiljana Simić, and
Petri Mähönen. Should we worry about interference in
emerging dense NGSO satellite constellations? In 2019
IEEE International Symposium on Dynamic Spectrum
Access Networks (DySPAN), pages 1–10. IEEE, 2019.

[19] Tusher Chakraborty, Heping Shi, Zerina Kapetanovic,
Bodhi Priyantha, Deepak Vasisht, Binh Vu, Parag Pandit,
Prasad Pillai, Yaswant Chabria, Andrew Nelson, et al.
Whisper: IoT in the TV White Space Spectrum. In 19th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2022, pages 401–417. USENIX
Association, 2022.

[20] Dimitrios Christopoulos, Symeon Chatzinotas, Gan
Zheng, Joël Grotz, and Björn Ottersten. Linear and
nonlinear techniques for multibeam joint processing in
satellite communications. EURASIP journal on wireless
communications and networking, 2012:1–13, 2012.

[21] Semtech Corporation. Semtech SX1262. https:
//www.semtech.com/products/wireless-rf/
lora-transceivers/sx1262, 2020.

[22] Cottatellucci, Laura and Debbah, Merouane and Gal-
linaro, Gennaro and Mueller, Ralf and Neri, Massimo
and Rinaldo, Rita. Interference mitigation techniques
for broadband satellite systems. In 24th AIAA Interna-
tional Communications Satellite Systems Conference,
page 5348, 2006.

[23] Marcos Alvarez Díaz, Nicolas Courville, Carlos Mos-
quera, Gianluigi Liva, and Giovanni E Corazza. Non-
linear interference mitigation for broadband multime-
dia satellite systems. In 2007 International Workshop
on Satellite and Space Communications, pages 61–65.
IEEE, 2007.

[24] Rashad Eletreby, Diana Zhang, Swarun Kumar, and Os-
man Yağan. Empowering low-power wide area networks
in urban settings. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communica-
tion, pages 309–321, 2017.

[25] Tim Fernholz. Silicon Valley satellite startup installs
ground station in Antarctica. https://tinyurl.com/
4na6w7v6, Feb 2020.

[26] Ghaith Hattab, Prakash Moorut, Eugene Visotsky, Mark
Cudak, and Amitava Ghosh. Interference analysis of
the coexistence of 5G cellular networks with satellite
earth stations in 3.7-4.2 GHz. In 2018 IEEE Interna-
tional Conference on Communications Workshops (ICC
Workshops), pages 1–6. IEEE, 2018.

[27] David L Herrick and Paul K Lee. CHESS a new reliable
high speed HF radio. In Proceedings of MILCOM’96

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 837

https://satnogs.org/
https://tinygs.com/
https://tinyurl.com/mw77mzh3
https://tinyurl.com/3ehc65r8
https://tinyurl.com/5y58ar4u
https://tinyurl.com/2rmw8kdw
https://fossa.systems/
https://tinyurl.com/2p948kwv
https://swarm.space/
https://tinyurl.com/5d8xsb7k
https://tinyurl.com/5d8xsb7k
https://www.ettus.com/all-products/ub200-kit/
https://www.ettus.com/all-products/ub200-kit/
https://aws.amazon.com/ground-station/
https://aws.amazon.com/ground-station/
https://tinyurl.com/2fbdzpek
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1262
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1262
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1262
https://tinyurl.com/4na6w7v6
https://tinyurl.com/4na6w7v6

IEEE Military Communications Conference, volume 3,
pages 684–690. IEEE, 1996.

[28] Nozhan Hosseini and David W Matolak. Software de-
fined radios as cognitive relays for satellite ground sta-
tions incurring terrestrial interference. In 2017 Cogni-
tive Communications for Aerospace Applications Work-
shop (CCAA), pages 1–4. IEEE, 2017.

[29] Microsoft. Azure Orbital. https://azure.
microsoft.com/en-us/services/orbital/.

[30] Sumeeth Nagaraj, Sheehan Khan, Christian Schlegel,
and Marat V Burnashev. Differential preamble detection
in packet-based wireless networks. IEEE Transactions
on Wireless Communications, 8(2):599–607, 2009.

[31] NASA. State-of-the-Art of Small Space-
craft Technology. https://www.nasa.gov/
smallsat-institute/sst-soa/communications,
2022.

[32] Cunhua Pan, Hong Ren, Maged Elkashlan, Arumugam
Nallanathan, and Lajos Hanzo. The non-coherent ultra-
dense C-RAN is capable of outperforming its coherent
counterpart at a limited fronthaul capacity. IEEE Jour-
nal on Selected Areas in Communications, 36(11):2549–
2560, 2018.

[33] Eugenio Pasqua. Satellite IoT connectivity: Three
key developments to drive the market size beyond
USD 1 billion. https://iot-analytics.com/
satellite-iot-connectivity/, Aug 2022.

[34] Deyi Peng, Dongxuan He, Yun Li, and Zhaocheng Wang.
Integrating terrestrial and satellite multibeam systems
toward 6G: Techniques and challenges for interference
mitigation. IEEE Wireless Communications, 29(1):24–
31, 2022.

[35] Jason Rainbow. Spanish startup to upgrade tiny satel-
lites to take on Global IOT Market. https://tinyurl.
com/4vkm6r6z, Feb 2023.

[36] Microsoft Research. CosmicBeats-Simulator: A space
simulation platform that caters to individuals with di-
verse research interests, including networking, AI, com-
puting, and more. Unlike traditional simulators tied
to specific research applications, our design allows
for seamless integration of various space-related re-
search verticals. https://github.com/microsoft/
CosmicBeats-Simulator, 2023.

[37] François Rottenberg, Ming-Chun Lee, Thomas Choi,
Jianzhong Zhang, and Andreas F Molisch. Robust
non-coherent beamforming for FDD downlink massive
MIMO. In 2020 IEEE 91st Vehicular Technology Con-
ference (VTC2020-Spring), pages 1–5. IEEE, 2020.

[38] Muhammad Osama Shahid, Millan Philipose, Krishna
Chintalapudi, Suman Banerjee, and Bhuvana Krish-
naswamy. Concurrent interference cancellation: De-
coding multi-packet collisions in LoRa. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, pages
503–515, 2021.

[39] Shree Krishna Sharma, Symeon Chatzinotas, and Björn
Ottersten. Satellite cognitive communications: Inter-
ference modeling and techniques selection. In 2012
6th Advanced Satellite Multimedia Systems Conference
(ASMS) and 12th Signal Processing for Space Communi-
cations Workshop (SPSC), pages 111–118. IEEE, 2012.

[40] Shree Krishna Sharma, SYMEON Chatzinotas, and
BJORN Ottersten. Cognitive radio techniques for satel-
lite communication systems. In 2013 IEEE 78th vehicu-
lar technology conference (VTC Fall), pages 1–5. IEEE,
2013.

[41] Shree Krishna Sharma, Symeon Chatzinotas, and Björn
Ottersten. In-line interference mitigation techniques
for spectral coexistence of GEO and NGEO satellites.
International Journal of Satellite Communications and
Networking, 34(1):11–39, 2016.

[42] Marvin K Simon and Dariush Divsalar. Doppler-
corrected differential detection of MPSK. IEEE trans-
actions on communications, 37(2):99–109, 1989.

[43] Swarm Technologies Inc. Application for Mo-
bile Satellite Service. https://fcc.report/IBFS/
SAT-LOA-20181221-00094, 2018.

[44] Shigenori Tani, Katsuyuki Motoyoshi, Hiroyasu Sano,
Atsushi Okamura, Hiroki Nishiyama, and Nei Kato. An
adaptive beam control technique for Q band satellite
to maximize diversity gain and mitigate interference to
terrestrial networks. IEEE Transactions on Emerging
Topics in Computing, 7(1):115–122, 2016.

[45] Shuai Tong, Jiliang Wang, and Yunhao Liu. Combating
packet collisions using non-stationary signal scaling in
LPWANs. In Proceedings of the 18th International Con-
ference on Mobile Systems, Applications, and Services,
pages 234–246, 2020.

[46] Shuai Tong, Zhenqiang Xu, and Jiliang Wang. Col-
ora: Enabling multi-packet reception in lora. In IEEE
INFOCOM 2020-IEEE Conference on Computer Com-
munications, pages 2303–2311. IEEE, 2020.

[47] David A Vallado and Paul J Cefola. Two-line element
sets-practice and use. In 63rd International Astronauti-
cal Congress, Naples, Italy, pages 1–14, 2012.

838 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://azure.microsoft.com/en-us/services/orbital/
https://azure.microsoft.com/en-us/services/orbital/
https://www.nasa.gov/smallsat-institute/sst-soa/communications
https://www.nasa.gov/smallsat-institute/sst-soa/communications
https://iot-analytics.com/satellite-iot-connectivity/
https://iot-analytics.com/satellite-iot-connectivity/
https://tinyurl.com/4vkm6r6z
https://tinyurl.com/4vkm6r6z
https://github.com/microsoft/CosmicBeats-Simulator
https://github.com/microsoft/CosmicBeats-Simulator
https://fcc.report/IBFS/SAT-LOA-20181221-00094
https://fcc.report/IBFS/SAT-LOA-20181221-00094

[48] Deepak Vasisht, Jayanth Shenoy, and Ranveer Chan-
dra. L2D2: Low Latency Distributed Downlink for LEO
Satellites. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, SIGCOMM ’21, page 151–164, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[49] Enric Vilar and John Austin. Analysis and correc-
tion techniques of doppler shift for non-geosynchronous
communication satellites. International journal of satel-
lite communications, 9(2):123–136, 1991.

[50] Quang-Doanh Vu, Le-Nam Tran, and Markku Juntti.
Distributed noncoherent transmit beamforming for
dense small cell networks. In ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 4599–4603.
IEEE, 2019.

[51] Quang-Doanh Vu, Le-Nam Tran, and Markku Juntti.
Noncoherent joint transmission beamforming for dense
small cell networks: Global optimality, efficient solution
and distributed implementation. IEEE Transactions on
Wireless Communications, 19(9):5891–5907, 2020.

[52] Xiong Wang, Linghe Kong, Liang He, and Guihai Chen.
mlora: A multi-packet reception protocol in lora net-
works. In 2019 IEEE 27th International Conference on
Network Protocols (ICNP), pages 1–11. IEEE, 2019.

[53] Xianjin Xia, Yuanqing Zheng, and Tao Gu. FTrack: Par-
allel decoding for LoRa transmissions. In Proceedings
of the 17th Conference on Embedded Networked Sensor
Systems, pages 192–204, 2019.

[54] Liang Yin, Ruonan Yang, Yuanzhou Yang, Li Deng, and
Shufang Li. Beam pointing optimization based down-
link interference mitigation technique between NGSO
satellite systems. IEEE wireless communications letters,
10(11):2388–2392, 2021.

[55] Moon-Hee You, Seong-Pal Lee, and Youngyearl Han.
Adaptive compensation method using the prediction
algorithm for the Doppler frequency shift in the LEO
mobile satellite communication system. ETRI journal,
22(4):32–39, 2000.

[56] Li Zhen, Hao Qin, Bin Song, Rui Ding, Xiaojiang Du,
and Mohsen Guizani. Random access preamble de-
sign and detection for mobile satellite communication
systems. IEEE Journal on Selected Areas in Communi-
cations, 36(2):280–291, 2018.

[57] Li Zhen, Yukun Zhang, Keping Yu, Neeraj Kumar,
Ahmed Barnawi, and Yongbin Xie. Early collision de-
tection for massive random access in satellite-based
internet of things. IEEE Transactions on Vehicular Tech-
nology, 70(5):5184–5189, 2021.

[58] Lizhong Zheng and David N. C. Tse. Communication
on the Grassmann manifold: A geometric approach to
the noncoherent multiple-antenna channel. IEEE trans-
actions on Information Theory, 48(2):359–383, 2002.

[59] Xiangming Zhu, Chunxiao Jiang, Linling Kuang, Ning
Ge, and Jianhua Lu. Non-orthogonal multiple ac-
cess based integrated terrestrial-satellite networks.
IEEE Journal on Selected Areas in Communications,
35(10):2253–2267, 2017.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 839

A Simulation of Orbital Dynamics

Throughout the paper, particularly in Section 2, we incorpo-
rate various statistical data related to the orbital dynamics of
a LEO IoT satellite constellation. This data includes informa-
tion on the satellite’s footprint coverage, elevation angles, and
more. To generate these statistics, we utilize the CosmicBeats
Simulator [36] provided by Microsoft Research. We configure
the simulator with the locations of our ground stations and
the TLEs for the complete Swarm constellation.

B Proof of Lemma 3.1

Lemma: Consider a1,a2, . . . ,an to be complex numbers on
the unit circle with random phase. That is, ai = e jθi where
θi is uniformly sampled from [0,2π]. Let sn be defined as
sn = ∑

n
i=1 ai. Then we have E

[
∥sn∥2

]
= O(n).

Proof: sn is the sum of n random phasors on the unit circle
with phase sampled uniformly from [0,2π]. By leveraging the
commutative property of addition of complex numbers we
have

sn = sn−1 +an (8)
We know that an has magnitude 1 and has uniform random

phase in [0,2π]. Hence, the phase difference between the
complex numbers an and sn−1 can also be treated as uniformly
distributed in [0,2π]. Let the phase difference between an and
sn−1 be denoted by φn. So from a simple inner product, we
have

∥sn∥2 = ∥sn−1∥2 +∥an∥2 +2 cos(φn) ∥an∥ ∥sn−1∥ (9)

∥sn∥2 = ∥sn−1∥2 +1+2 cos(φn) ∥sn−1∥ (10)

E
[
∥sn∥2]= 1

2π

∫ 2π

0

(
E
[
∥sn−1∥2]+1+

2 cos(φn) E
[
∥sn−1∥

])
dφ (11)

E
[
∥sn∥2]= E

[
∥sn−1∥2]+1 (12)

We know that s1 = 1. Hence, by induction we can see that

E
[
∥sn∥2]= O(n) (13)

The key takeaway from the above lemma is that even
though we are adding up unit phasors with random phase
values in [0,2π], the expected magnitude of their summation
grows monotonically with number of terms rather than go-
ing to 0. Hence, by leveraging a virtual preamble train in
Spectrumize, although we do not see the complete benefits of
coherent combination, we still see enough gains that allows
our system to detect satellite packets even in very low signal
strength conditions.

840 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Application-Level Service Assurance with 5G RAN Slicing

Arjun Balasingam

MIT CSAIL

Manikanta Kotaru

Microsoft

Paramvir Bahl

Microsoft

Abstract

This paper presents Zipper, a novel Radio Access Network

(RAN) slicing system that provides assurances of application-

level throughput and latency. Existing RAN slicing systems

optimize for slice-level assurance, but these methods fail to

provide predictable network performance to individual mobile

apps. Extending the slice-level formulation to app-level

introduces an intractable optimization problem with exploding

state and action spaces. To simplify the search space, Zipper

casts the problem as a model predictive controller, and

explicitly tracks the network dynamics of each user. It uses

an efficient algorithm to compute slice bandwidth allocations

that meet each app’s requirements. To assist operators with

interfacing admission control policies, Zipper exposes a

primitive that estimates if there is bandwidth available to

accommodate an incoming app’s requirements.

We implemented Zipper on a production-class 5G virtual

RAN testbed integrated with hooks to control slice bandwidth,

and we evaluated it on real workloads, including video

conferencing and virtual reality apps. On a representative

RAN workload, our real-time implementation supports up to

200 apps and over 70 slices on a 100 MHz channel. Relative

to a slice-level service assurance system, Zipper reduces tail

throughput and latency violations, measured as a ratio of

violation of the app’s request, by 9×.

1 Introduction

A rapidly growing number of mobile applications—such as

mixed reality, cloud gaming, video conferencing, and cloud

robotics—require predictable network connectivity (i.e.,

throughput and latency). The 3GPP specifications for 5G

Radio Access Networks (RANs) recognized this requirement

for next-generation mobile apps and introduced network

slicing [20], a virtualization primitive that allows an operator to

run multiple differentiated virtual networks, called slices, atop

a single physical network. A slice can support a set of users or

a set of applications1 with similar connectivity requirements.

1By “app”, we refer to a single mobile application. “User” refers to a

mobile device, which can run multiple apps.

It can span multiple network domains, including the radio

access network (RAN) [15,24,41], core [46,68], transport [59]

and fronthaul [8]. Operators can distribute resources, like

physical resource blocks (PRBs) in the RAN, amongst the

slices to provide differentiated connectivity. RAN slicing is of

particular interest for service assurance [13] since the last-mile

wireless link is often the bottleneck for mobile apps [4, 6].

Existing approaches [7, 15, 24, 41, 72] allocate PRBs to

different slices to guarantee slice-level service assurance,

e.g., through service-level agreements (SLAs) for total slice

throughput. However, in order to realize the vision of network

slicing, where apps achieve the network performance that

they require, the service assurance should be provided at

application-level. Existing approaches fall short of enabling

operators to provide this important capability. Slice-level

service assurance does not guarantee throughput and latency to

each app in the slice, since different users in the same slice can

experience wildly different channel conditions, as we explain

in §3. We need app-level service assurance in order to meet the

requirements of each app within a slice. However, two key chal-

lenges arise when optimizing for app-level service assurance:

Challenge #1: Search space complexity. Prior approaches [7,

24, 41, 72] provide slice-level service assurance by tracking

a state space consisting of aggregate slice-level statistics, in-

cluding the average channel quality of all users in a slice, the

observed slice throughput, etc. To extend these slice-level meth-

ods to support app-level requirements, one could potentially

expand the state space to track the channel quality, the observed

throughput, and the observed latency experienced by each app

in a slice,essentially treating each app as a slice for the purposes

of service assurance. However, the state space, consisting of all

possible values that the tracked variables can take, grows ex-

ponentially in terms of the number of tracked variables. Thus,

treating each app as a slice grows the state space exponentially

in the number of apps rather than in the number of slices. Fur-

ther, the control policy involves searching through this state

space to determine an allocation of PRBs to slices that com-

plies with the SLA constraints. This results in an intractable

optimization problem for practical deployments, where each

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 841

S
u
b
c
a
rr
ie
rs

Time

Radio Resources

Communication

Service Provider

Apps

Each app requests SLAs
(e.g., min throughput,

max latency)
Realized throughputs

and latencies

Allocate subcarriers (bandwidth)
to slices to meet app SLAs

2 slices

Figure 1: Apps express their connectivity requirements in terms of

SLAs, and the operator provisions slice bandwidths to fulfill all SLAs.

slice accommodates tens to hundreds of apps (§3.2).

Challenge #2: Determining resource availability. To

compute slice bandwidth allocations within the total available

bandwidth, operators typically run admission controllers that

admit or reject incoming apps according to a policy that de-

pends on slice monetization preferences, fairness constraints,

and other objectives. Algorithms for admission control have

been studied widely [9, 10, 52, 62] and are not the focus of this

paper. However, operators need a way to determine if the RAN

has resources to accommodate the SLAs of an incoming app,

in addition to the apps already admitted. We cannot adapt prior

approaches [29, 37, 40], which compute required PRBs to

support slice-level SLAs, because the state-space complexity

precludes treating each app as a slice (§3.3).

This paper presents Zipper, a real-time RAN slicing system

that dynamically allocates PRBs (i.e., bandwidth) to network

slices to ensure app-level throughput and latency SLAs for ev-

ery app in every slice.2 As illustrated in Fig. 1, under this model,

apps express their network requirements to the operator in the

form of SLAs, i.e., minimum throughput and maximum latency.

The operator then fulfills these SLAs over the shared wireless

medium by bundling apps into slices, and then computing and

allocating the PRBs required by each slice. This paradigm of

operators provisioning connectivity, so that each app meets its

desired network requirements, is similar to the familiar model

of cloud computing—where the developer requests a combina-

tion of compute, memory, and I/O bandwidth for a particular

workload, and the cloud service provider finds the right allo-

cation of resources to reliably deliver the desired performance.

Zipper addresses the challenges in enabling app-level ser-

vice assurance via three contributions:

• To manage the search space complexity, we decouple

the network model and the control policy by formulating

SLA-compliant PRB allocation as a model predictive

control (MPC) problem. Zipper uses standalone predictors

to forecast each of the tracked state space variables, such as

the wireless channel experienced by each app. It then feeds

these predictions into a control algorithm that computes a

sequence of future bandwidths for each slice based on the

predicted state. Our insight is that Zipper does not need to

enumerate different future states within the state space, by

using the well-known MPC framework (§4.1).

• We propose an efficient control algorithm to allocate

2We focus on app-level, but our solution also generalizes to the user-level.

PRBs (i.e., bandwidth) amongst the slices. Zipper efficiently

prunes the search space of possible PRB allocations

using the insight that app throughput and latency vary

monotonically with the number of PRBs (§4.2).

• We forecast RAN resource availability, guided by the

following question: for an incoming app A, does the RAN

have enough PRBs to admit A, given the other apps already

admitted? Naively applying Zipper’s bandwidth estimation

algorithm for a distribution of possible channel conditions

experienced by the app resulted in prohibitive estimation

times. We instead design a family of deep neural networks

(DNNs) to predict the distribution of required PRBs. We

train these neural networks on simulations of Zipper’s

control algorithm offline and then apply them to predict the

resource availability in real time (§4.3).

We design an O-RAN-compatible [34] architecture to realize

these algorithmic concepts (Fig. 4). We have implemented

Zipper atop a production-class end-to-end 5G vRAN platform,

implementing hooks [25] across different modules in vRAN

Distributed Unit (DU) to control slice bandwidth dynamically

without compromising real-time performance (§5). On a

typical RAN workload consisting of video streaming, con-

ferencing, IoT, and virtual reality apps, our real-time system

can support up to 200 apps and over 70 slices on a 100 MHz

channel. We find that Zipper outperforms prior schedulers

and slicing frameworks (§6); relative to a slice-level service

assurance scheduler [41], Zipper reduces SLA violations,

measured as a ratio of the violation of the app’s request, by 9×.

2 Related Work

RAN slicing. While a static allocation of PRBs to slices

provides traffic isolation and simplifies radio resource

management [57], it does not guarantee reliable slice

performance, since throughput and latency vary with dynamic

wireless channel conditions. Orion [24] and SCOPE [7]

are slicing-capable RAN virtualization frameworks, and

implement existing slice bandwidth schedulers like Network

Virtualization Substrate (NVS) [41]. NVS, designed originally

for WiMAX, allocates PRBs among slices to deliver a target

aggregate slice throughput, assuming invariant Modulation

and Coding Scheme (MCS) conditions. However, RAN

operators adjust MCS according to time-varying channel

conditions. Slice-level service assurance is also the primary

focus of many other RAN slicing proposals [3, 14, 17, 45, 55].

RadioSaber [15], a recent RAN slicing system, allocates

PRBs to slices in a channel-aware manner, by extending

NVS to query each slice’s Medium Access Control (MAC)

scheduler and find the PRBs that are best-suited for each user’s

channels. RadioSaber is complementary to Zipper: it focuses

on slice-level throughput assurance for enterprise slices, while

Zipper is designed for app-level SLAs. Future work includes

incorporating RadioSaber’s techniques for channel-aware

PRB allocation into Zipper.

LACO [72] proposes a reinforcement learning-based

842 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Slice A

VR rendering x 2
8 Mbps, 60 ms

Slice B

File sync x 1
20 Mbps, 250 ms

0

10

20

30

0 10 20 30 40

Time (s)

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

App 1 (Slice A) App 2 (Slice A)

ZipperNVS

0

5

10

15

20

0 10 20 30 40

Time (s)

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

App 1 (Slice A) App 2 (Slice A)

10

100

1000

10000

0 10 20 30 40

Time (s)

L
a
te

n
c
y
 (

m
s
)

App 1 (Slice A) App 2 (Slice A)

10

30

100

0 10 20 30 40

Time (s)

L
a
te

n
c
y
 (

m
s
)

App 1 (Slice A) App 2 (Slice A)

Zipper NVS

0 10 20 30 40 0 10 20 30 40

0.0

2.5

5.0

7.5

10.0

Time (s)

B
a

n
d

w
id

th
 (

M
H

z
)

−5

0

5

10

15

0 10 20 30 40

Time (s)

S
N

R
 (

d
B

)

App 1 (Slice A) App 2 (Slice A) App 3 (Slice B)

Figure 2: Zipper can efficiently manage an expressive and comprehensive state space to deliver SLAs for each app in each slice.

framework to provide latency guarantees in multi-tenancy

environments by minimizing the number of bits missing the

specified latency tolerance. By contrast, this paper presents

a novel framework that tailors radio resource schedules for

applications SLAs such as throughput and latency in the

presence of dynamic wireless channel conditions.

Admission control. Admission control proposals for RAN

slicing cover traffic prediction [58], load balancing [9], pric-

ing [52,62], and game-theoretic formulations [10]. Zipper does

not propose a new method for admission control; instead, we

recognize that, to use Zipper on production networks, operators

need to know if Zipper’s slice controller has resources to ac-

commodate the SLAs of an incoming app. Typical approaches

to assess resource availability [29, 40] are not compatible with

Zipper’s app-level formulation; we elaborate in §3.3. Recent

5G network slicing proposals [15, 24, 72] do not address how

to estimate resource availability, which is vital for operators to

use these systems in practice.

RAN virtualization. Virtual RANs serve multiple logical

RANs from the same physical hardware. They have garnered

significant attention [18, 21, 65], with a number of proposals

across different compute platforms, including CPUs [21, 27,

61,67], DSPs [5] and GPUs [50]. Zipper leverages this body of

work to dynamically allocate RAN resources among different

virtual resources and expose them to the network slices.

Scheduling. Efficient RAN utilization is a key principle of

mobile network design [30, 32]. Canonical algorithms, such as

proportionally-fair [63], round-robin, and priority-based [71]

schedulers, only consider aggregate throughput and fairness.

3 Problem Setup and Challenges

In this section, we formalize the optimization problem of

providing app-level throughput and latency assurance, and

illustrate, through a toy example, the challenges in computing

slice bandwidth allocations efficiently.

3.1 Problem formulation

Zipper allocates slice bandwidths to meet app-level through-

put and latency SLAs, while (i) each app’s wireless channel

quality fluctuates and (ii) apps join and leave the network

asynchronously. We assume that the operator configures its

RAN with a set of slices, catering to different traffic types (e.g.,

cloud gaming, video streaming, etc.) and to different enterprise

policies (e.g., separate slices for Zoom and Microsoft Teams

sessions). The operator configures each each slice with a partic-

ular MAC scheduler, which is responsible for allocating PRBs

to apps in each slice. Fig. 2 illustrates a RAN serving two

slices: slice A for VR remote rendering and slice B for video

downloads (e.g., video editing).

Formalizing SLAs. We assume that each app selects a slice,

based on its specific throughput and latency requirements.3 For

example, in Fig. 2, the two VR apps each require a minimum

throughput of 8 Mbps and a worst-case latency of 60 ms, while

the file sync app requests a minimum throughput of 20 Mbps

and a worst-case latency of 250 ms. Let xSLA
a and dSLA

a denote

the throughput and latency SLAs for an app a.

Let x̄a(t) be the average throughput over a moving window

of Tw slots. App a requires that x̄a(t) ≥ xSLA
a . Similarly, let

d̄a(t) be the average latency over Tw. When app a expresses a

latency SLA, it requires that the average latency da(t)≤dSLA
a .

Formalizing slice bandwidth allocation. We formalize the

optimization problem to compute SLA-compliant schedules.

Since there can be multiple valid allocations that satisfy the

SLAs, we choose the one that minimizes the total bandwidth:

argmin
Ss(t),Bs(t)∀s∈S ∀t

∑
t
∑
s∈S

Bs(t) (1)

s.t. ∑
s∈S

Bs(t)≤B ∀t (2)

xa(t)≥xSLA
a ∀a∈As ∀s∈S ∀t (3)

da(t)≤dSLA
a ∀a∈As ∀s∈S ∀t, (4)

where B is the total bandwidth available at the base station, S is

the set of network slices, and As(t) is the set of apps subscribed

to slice s∈S at time t. Bs(t) denotes the bandwidth allocated to

slice s in scheduling round t. Ss is the MAC schedule for slice s.

At each timestep t, Zipper must select Bs(t) for each slice

s∈ S such that the throughput and latency SLAs for all apps

a ∈ As(t) are satisfied, as captured by the constraints in

Eqn. 3 and Eqn. 4 respectively. Eqn. 2 ensures that the sum

of slice bandwidths does not exceed the bandwidth available

3Alternatively, the slice controller can automatically match the app to a

slice already catering to apps with similar connectivity requirements. We leave

app-to-slice matching to future work.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 843

at the base station. The objective in Eqn. 1 states that Zipper

must find the sequence of slice schedules and corresponding

bandwidths that minimizes the overall spectral utilization.

This approach differs from previous approaches that com-

pute the minimum bandwidth required by each slice to satisfy

slice-level SLAs, such as average slice throughput. For exam-

ple,Fig. 2 visualizes the results achieved by NVS [41],a widely-

used slice-level service assurance system [7,19,24], for our toy

example with two slices. Notice that NVS is not able to meet

the throughput for App 1, and instead overcompensates for App

2. However, directly extending slice-level service assurance

approaches to satisfy app-level SLAs explodes the state space.

Sometimes, the network could be at capacity, and the formu-

lation in Eqn. 1-Eqn. 4 will not have a valid solution. To make

the problem tractable, we can relax the constrains in Eqn. 3

and Eqn. 4 into two penalty functions that quantify how far—if

at all—an app deviates from its throughput and latency SLAs:

f a
x (t)=

∣

∣min
(

xa(t)−xSLA
a ,0

)

/xSLA
a

∣

∣ (5)

f a
d (t)=

∣

∣min
(

dSLA
a −da(t),0

)

/dSLA
a

∣

∣ (6)

f a
x (t) in Eqn. 5 is nonzero only when the throughput is less than

the SLA and measures the deviation as a fraction of the SLA.

Similarly, f a
d (t) measures the deviation as a fraction of agreed-

upon latency SLA, if that SLA is violated. So, we modify the

objective of Zipper (Eqn. 1) to include a term that minimizes

these penalties. In practice, penalties will remain to close to

0 most of the time, since operators admit/reject incoming apps

by determining whether the RAN has sufficient capacity.

3.2 Challenge: state space complexity

Prior methods [41, 72] monitor aggregate state variables like

average slice throughput [41], average channel quality across

all users, and average latency across all users [72], to deliver ser-

vice assurance at the slice level. The search space for such state

vectors grows exponentially with the number of slices. Fig. 2

shows that considering a slice level state space could yield

poor app performance. While the slice-level method meets

the overall slice throughput SLAs, it violates App 1’s SLA

because App 1 has an inferior channel quality to that of App 2.

We could expand the state space by considering app-level

characteristics, e.g., average measured app throughput,

average measured app latency, channel quality of each user,

etc. We could then extend slice-level service assurance

approaches to meet app-level SLAs, treating each app as an

individual slice for the sake of service assurance. However,

the state space grows exponentially with the number of apps,

rather than with the number of slices. The number of apps

served by each slice in a base station could range from tens

to hundreds, resulting in an intractable state space to deliver

real-time performance. For example, LACO [72] trains an

agent using reinforcement learning to learn a policy that selects

slice bandwidths. If we adapt that architecture to a fine-grained

state space, the training complexity explodes, since the agent

needs to explore a more expansive search space.

3.3 Challenge: determining RAN resource availability

Apps 1, 2

Time Slot

R
B

s

throughput: 1 RB/slot
latency: 5 slots

App 3

Before App 3 ZipperSLA translation

+ App 3 Time Slot

R
B

s

Time Slot

R
B

s

Extra BW!

Figure 3: Translating an app’s SLAs directly to required slice band-

width can ignore schedules with greater spectral efficiency.

Recall that the slice controller’s bandwidth allocations Bs

cannot exceed the total available bandwidth B. As load at

the RAN increases, it becomes more challenging to fulfill all

SLAs under this bandwidth constraint. As a result, operators

typically run admission controllers on top of their slicing

systems, only admitting apps that can receive the requested

SLAs. Admission control policies can depend on a variety of

objectives, such as slice monetization preferences, operational

costs, fairness, energy constraints, etc. Admission control

for network slicing has received significant attention over the

years [9,10,52,62], and is not the focus of this paper. However,

in order to interface the slice controller with a particular policy,

we need a mechanism [52] that answers the following question:

for a pre-determined time period (i.e., contract duration),

can the RAN fulfill the SLAs for an incoming app without

compromising on commitments made to existing apps?

NVS adds a buffer to each slice [41] to absorb errors that

operators make in admitting apps that it cannot support.

However, a constant buffer can underutilize the spectrum.

Prior work [37] injects the incoming app into a separate “best

effort slice” and observes whether it achieves its SLAs to

determine if the RAN has resources in the desired slice to

accommodate this app. However, performance in the “best

effort” slice may not faithfully represent performance in the

target slice. A more analytical approach [29, 40] is to translate

the SLAs for the incoming app into a measure of resource

blocks required to support that app in the desired slice via an

analytical model or a lookup table that maps SLAs to a PRB

requirement. These methods can waste spectrum.

Consider the example in Fig. 3, where a slice in the RAN

initially serves Apps 1 and 2. We show the resource block

schedule for these two apps; notice that the RAN allocates 4

RBs of bandwidth to the slice. Our goal is to determine how

much bandwidth is required to accommodate App 3, who has a

throughput SLA of 1 RB/slot and a latency SLA of 5 slots. Sim-

ply translating the 1 RB/slot throughput SLA for App 3 to RB

overhead, would lead us to allocate an extra RB of bandwidth

to the slice. Zipper, by contrast, accommodates App 3—along

with Apps 1 and 2—without adding any more bandwidth.

SLAs are two-dimensional (i.e., throughput and latency),

and a slice could have an arbitrarily complex PRB scheduler,

whose behavior depends on additional factors, such as the

status of app queues at the base station and changing MCS

in response to the wireless channel. It is therefore challenging

844 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Slice n

…

Slice 1

PHY

Slice 1

MAC

…

Merge

I/Q

File

Sync

Video

Conf

IoT

VR

V2X
app

SLAs

Slice n

slice s bandwidth allocation: B
s

Slice Manager

Bandwidth

Optimizer

Channel

Forecaster

Admission

Controller

SNR
estimates

SNR
est

§5.2

§5.3

§5.4

§5.5
Channel

Forecaster

meas.

SNR

Figure 4: Zipper provisions connectivity by dynamically optimizing network slice bandwidth and resource allocation to meet app-level SLAs.

to map SLAs to a PRB differential via an analytical model.

We need a primitive to determine RAN resource availability

for an incoming app that generalizes to MAC schedulers

and apps with different demand patterns. Recent RAN

slicing systems [15, 24] do not address how to interface their

slice controllers with operators’ admission control policies.

Since the RAN is often the bottleneck link [4, 6], it is often

oversubscribed. Thus, slicing systems are unusable in practice

without a mechanism to estimate resource availability and an

accompanying admission control policy.

4 Design

In this section, we describe how we design Zipper, illustrated

in Fig. 4 to enable app-level service assurance. Zipper consists

of a model predictive control (MPC) framework to manage

the search space complexity (§4.1), uses an efficient algorithm

to compute slice bandwidth allocations within this MPC

formulation (§4.2), and exposes a primitive to help operators

forecast RAN resource availability (§4.3).

Traffic
demand

Wireless
channel

Model
Optimizer

BW
binary

search

predictions

slice BW
actions

MAC
scheduler

measured SNR

System

measured throughput and latency

State
Track history

Figure 5: Zipper uses model predictive control (MPC) to compute

slice bandwidths that comply with all app SLAs. With MPC, Zipper

decouples prediction from control to manage the state space.

4.1 Model predictive control

MPC [26] is a framework to solve sequential decision making

problems over a moving look-ahead horizon. It decouples

a controller, which solves a classical optimization problem,

from a predictor, which explicitly models uncertainty in

the environment. MPC has proven practical in a number of

real-world control problems, including in adaptive bitrate

selection for video streaming [66, 70] and in robotics [64].

Fig. 5 illustrates how Zipper applies MPC to solve the op-

timization problem formulated in Equations 1-4. The state

space consists of (i) the average throughput and average la-

tency experienced by each app over the past Tw slots, (ii) the

average signal-to-noise ratio (SNR) of each user over Tw as

a measure of the channel quality, and (iii) the incoming data

traffic. The action space consists of a bandwidth allocation Bs

for each slice s. Independent forecasters predict how each of

the state space variables evolves over a short term planning

horizon. The controller uses these predictions to determine the

bandwidth schedule Bs(t) for each slice.

MPC allows us to use network models to explicitly predict

the future states over the short term, and thus avoid searching

over different future states within the state space. We describe

predictive models for each of the state space variables ahead.

Forecasting the wireless channel. Zipper supports different

channel predictors that forecast how each app’s wireless

channel (i.e., SNR)4 will evolve over the near term. Forecasting

the wireless channel is a well-researched and fundamentally

challenging problem [38, 44, 47, 49]. We acknowledge this in

our design, and do not aim for a perfect predictor. Instead, we

quantify a desirable performance for our bandwidth allocation

task, and then propose methods that meet that target.

To understand the impact of SNR prediction error on

Zipper’s ability to meet SLAs, we run a simple experiment,5

involving a 40 MHz channel and 10 video conferencing apps

(i.e., 2 Mbps min throughput, 150 ms max latency), split across

2 slices. We randomly assign each user a 30-second SNR trace

gathered on a production 5G network. To understand the effect

of prediction error in the worst case, we introduce a dummy

predictor that simply returns the ground truth SNR value

added to some constant prediction error. Fig. 6a visualizes the

results as CDFs of the throughput and latency penalties (f a
x (t)

and f a
x (t) in Eqn. 5 and Eqn. 6 respectively) for different

prediction errors. As expected, larger prediction errors lead

to higher penalties. However, notice that a small (but not

insignificant) error of 2 dB has a modest impact on penalty.

We also observe that the MAC scheduler uses the SNR

forecast to determine what MCS to assign an app. The 3GPP

standards define 32 MCS values [35], and MAC schedulers use

a lookup table to map measured channel quality to MCS [39].

We find that this table is quantized in 2 dB steps, so a prediction

error of under 2 dB may still yield the correct MCS. The

results from Fig. 6a and this insight about MCS quantization

show why MPC is resilient to modeling error in the context

of Zipper’s scheduling problem.

To forecast each user’s channel, we train a sequence-to-

4For simplicity, we forecast SNR as an aggregate quantity over all subcar-

riers in a given time slot. However, Zipper can support richer predictors and

schedulers [15] predict SNR at a subcarrier granularity.
5We evaluate Zipper more extensively against an Oracle policy in §6.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 845

0 dB 2 dB

C
u
m

.
P

ro
b
a
b
ili

ty

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

Tput Penalty (%)

C
u
m

.
P

ro
b
a
b
ili

ty
Constant SNR

prediction error

0 dB 2 dB 5 dB
NR

rror
10 dB 20 dB

(a) Resilience to SNR error.

−10

−5

0

5

10

0 30 60 90 120

Prediction Timestep (ms)

P
re

d
.
E

rr
o

r
(d

B
)

RNN EWMA

(b) SNR prediction error.

Figure 6: Zipper is resilient to modest∼2 dB error in forecasting SNR.

Its MPC framework supports different channel forecasters. While

both have small median errors, the RNN model outperforms EWMA.

sequence Recurrent Neural Network (RNN) [56], which uses

an input sequence of SNR measurements over the last 1 second

to predict a sequence of SNR measurements over the next

150 milliseconds. App. A.1 describes the architecture of this

RNN. We train this model using a dataset of SNR traces [54]

collected over a commercial network at scale. We evaluate

the accuracy of this RNN on a holdout set from the same bank

of traces. Fig. 6b shows the prediction error (relative to the

ground truth) at different points over the 150 ms prediction

horizon. Each boxplot shows a distribution of error over all

traces in our holdout set. We compare the accuracy of our

RNN against a simpler predictor that tracks the SNR with

an exponentially-weighted moving average (EWMA). Both

predictors have a suitable median performance, which falls

within our target of∼2 dB error. However, the RNN has a more

consistently tight distribution. Moreover, as we describe below,

prediction errors at later timesteps are less consequential, since

Zipper recomputes fresh allocations at a finer granularity of 50

ms. Although we use this RNN model in our implementation,

Zipper could use any other predictor—including the EWMA

filter—with comparable error.

Other state space variables. Zipper tracks the average

throughput and latency, xa(t) and da(t) respectively, expe-

rienced by each app in the past Tw time slots. Since Zipper

only tracks historical averages, there is no need for prediction.

We assume that the traffic demand for each app follows the

throughput SLA requested by the app. If the traffic demand

from an app is higher than the agreed upon throughput

SLA, Zipper only ensures that it fulfills the negotiated SLAs.

Tuning slice bandwidths using more detailed traffic demand

predictions is part of future work.

4.2 Tuning slice bandwidths efficiently

Given the state space, defined as each app’s SNR, average

throughput, average latency, and traffic demand, the slice man-

ager must find the most spectrally-efficient slice bandwidth

allocation that satisfies the SLAs, as we formalize in §3.1.

One approach to is to analytically derive a function that maps

SLAs to a valid slice bandwidth. However, this is challenging,

since the expected throughput and latency of any given app

depends not only that app’s channel quality and queue status

at the base station, but also on the characteristics of the other

App 1

R
e

s
o

u
rc

e

B
lo

c
k
s

Time Slots Time Slots

R
e

s
o

u
rc

e

B
lo

c
k
s

3 slots/packet

1 slot/packet

App 2

Add BW

Packets in queue:

Figure 7: Exposing more bandwidth to a slice reduces packet latency.

apps contending for the same radio resources in the slice.

Monotonicity. Our insight is that both app throughput and app

latency are monotonic functions of slice bandwidth. Fig. 7 illus-

trates this monotonicity property for latency with an example.

Consider two apps (green and orange) with different packet

sizes, and a round-robin MAC scheduler. We define latency as

the difference between the times at which (i) the first byte of a

packet arrives at the base station and (ii) the last byte of a packet

is sent over the air. The diagram on the left visualizes a round-

robin schedule for a slice with 4 resource blocks. Notice that

the green app’s packet is spread across multiple slots, and since

the MAC is round-robin, the packet’s latency is at least 3 slots.

By contrast, when the bandwidth is 6 resource blocks (diagram

on the right), the packet latency is just 1 slot. Thus, per-packet

latency is a monotonically-decreasing function of slice band-

width. Similarly, the app throughput increases monotonically

with slice bandwidth. App. A.2 elaborates on this property.

Because app throughput and latency vary monotonically

with slice bandwidth, there exists a minimum bandwidth Bs

for s ∈ S that satisfies all SLAs. Therefore, a solution that

minimizes Eqn. 1 is one that minimizes the individual slice

bandwidths, and Zipper can optimize each slice independently.

Computing bandwidths. Zipper treats slice MAC schedulers

as a blackbox; the search algorithm does not need to know the

scheduling logic. Instead Zipper uses each slice’s scheduler

as a building block to find the smallest bandwidth that satisfies

the SLAs of all apps in the slice. In each time interval t, Zipper

computes Bs(t) using an iterative algorithm that simulates the

MAC scheduler for different candidate bandwidths B̃s. Zipper

queries the MAC scheduler for each B̃s. Zipper supplies the

MAC scheduler with (i) all outstanding packets in each app’s

queue, and (ii) a forecast of each app’s channel quality over

the scheduling horizon (§4.1). Zipper evaluates the resulting

schedule S̃s by computing the penalty scores, f a
x (t) and f a

d (t)
as defined in Eqn. 5 and Eqn. 6, respectively, to determine if

the schedule satisfies the SLAs. Then, amongst the set of valid

schedules (i.e., when f a
x (t) = f a

d (t) = 0), Zipper chooses the

one that requires the least slice bandwidth, i.e., the smallest B̃s.

Zipper navigates the search space of candidate bandwidths

using binary search. It starts with the entire range 0≤ B̃s≤B,

and prunes the search space by half in each iteration. In the

first iteration, Zipper computes a MAC schedule S̃ for the allo-

cation B/2. For instance, if at least one app’s throughput in S̃

is less than the throughput agreed to in the SLA, then Zipper

determines that the slice needs more bandwidth to satisfy the

constraint; so it continues the search in the range (B/2,B]. By

contrast, if all performance metrics comply with the SLA con-

straints, then Zipper determines that the slice could possibly

846 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Admitted

apps

.

.

.

BW regressor

Slice 1

Slice 2

Slice n

BW dist.

Policy
App SLAs

SNR buckets ⊛

❌ ✅
AdmitReject

e.g., admit if p95 < B+ε

Incoming

app

Total

BW dist.

Includes incoming
app + admitted apps

Figure 8: Zipper builds a family of DNNs that forecasts bandwidth

distributions for slices consisting of different MAC schedulers and

apps with different demand patterns.

meet the SLAs with less bandwidth; so it continues the search

in the range [0,B/2). We can apply this binary search optimiza-

tion because app throughput and latency vary monontonically

with slice bandwidth.

Zipper computes schedules in a cascading manner, where,

in each timestep t, Zipper solves the MPC problem for a finite

future horizon of Th. It recomputes its allocation every Te≤Th

in order to incorporate recent snapshots of user channel and

app queue statuses. We use Th = 150 ms and Te = 50 ms6 to

ensure that Zipper is reactive but not myopic. If Bs(t) violates

Eqn. 2 for any slice s, Zipper resolves the conflict to ensure

that the allocated bandwidth does not exceed the capacity.

Resolving conflicts. Since Zipper tunes slice bandwidths in-

dependently, the allocations could conflict, i.e., ∑s∈SBs(t)>B,

which violates Eqn. 2. To resolve conflicts, Zipper deducts—

from each slice—the excess bandwidth in proportion to the

share of bandwidth that each slice was originally allocated.

In practice, Zipper will not trigger this step often because it

gates incoming requests with an admission controller (§4.3).

App. A.3 provides pseudocode for how Zipper computes

slice bandwidth allocations. Note that Zipper only considers

the number of resource blocks in aggregate when allocating

resource blocks to a slice. In future work, we can extend Zipper

to determine the most suitable set of resource blocks given

the channel conditions, using the techniques proposed by Ra-

dioSaber [15]. We can also model methods to increase user

capacity, such as beam steering [11, 28].

4.3 Forecasting RAN resource availability

To estimate if the RAN has resources to support an incoming

app, Zipper answers the following question: for the contract du-

ration, does the RAN have enough PRBs to accommodate the

incoming app and to fulfill SLAs for all other admitted apps?

Predicting bandwidth statistics. Zipper estimates the distri-

bution of bandwidths, i.e., number of PRBs, that each slice will

require over a predetermined contract duration—including the

incoming app. Translating the SLAs of each app in a slice to

radio resource requirements [29, 40] can yield overestimates

of the required bandwidth. Instead, Zipper simulates its slice

manager over thousands of channel traces. Direct simulations

capture how the slice MAC exploits statistical multiplexing

6We found that Zipper was not very sensitive to Th and Te; we selected

Te =50 ms because our SNR predictors are most accurate over this horizon

(§4.1). A shorter horizon allows us to replan with fresh estimates of SNR.

to fulfill the SLAs without adding bandwidth to a slice (§3.3).

However, running thousands of simulations for a reasonable

contract duration (e.g., 5 mins) is expensive, since the slice

manager computes and evaluates many MAC schedules.

All we need from the simulations is the bandwidth statistics—

not the PRB schedules. To approximate the bandwidth

statistics, Zipper develops a family of deep neural networks

(DNNs), instead of running thousands of micro-simulations

at runtime. Fig. 8 illustrates the design of this module. Since

each slice caters to apps with similar network requirements

(i.e., SLAs), we tailor a DNN for the traffic characteristics

of each slice, similar to lookup tables in prior work [29, 40]

that translate SLAs to PRB requirements. Each DNN treats

a slice’s MAC scheduler as a blackbox process and learns the

nonlinear relationship between inputs—app demand patterns,

SLAs, and channel quality—and the required bandwidth.

To create a simple and tractable input embedding for the

DNN, we make a few assumptions. First, we assume that all

apps in a slice have the same SLAs; this is reasonable because,

in practice, network slices often isolate similar kinds of traf-

fic [24]. Moreover, slight variations in SLAs (e.g., 4 Mbps vs.

5 Mbps video conference flows) should have negligible impact

on bandwidth requirements. Second, in order to discretize the

space of possible SNR values, we assign each app to an SNR

bucket from the set {poor, bad, good, great}, where each

bucket corresponds to a range of SNR values (e.g., -5 dB≤ bad

< 2 dB).7 Zipper drops each incoming app into the best effort

slice for a brief period (e.g., 5 seconds), computes its median

SNR, and assigns it an SNR bucket. For existing apps, Zipper

uses SNR measured over the lifetime of each app to determine

the most suitable bucket. Note that the best effort slice is only

for measuring SNR, not for assessing resource availability. For

each slice, Zipper generates a feature embedding consisting

of the number of apps in the slice (including the incoming app,

if applicable), and the number of apps in each SNR bucket.

App. B.1 describes the DNN architecture.

Training DNNs. We generate training data by using Zipper’s

slice manager as a simulator. We start by enumerating all

possible feature embeddings, and run a micro-simulation of

Zipper for each embedding using simulated channel traces

(assuming a Rayleigh channel model) with SNR values

corresponding to the SNR bucket for that embedding. We

prune the space of embeddings using some simple heuristics.

For instance, if we find that a simulation of 55 apps—all with

poor SNRs—requires a maximum bandwidth of 100 MHz,

we discard all embeddings with 56 or more poor apps, since

those configurations will also require at least 100 MHz.

Estimating resource availability. Each DNN returns

slice bandwidths as a probability distribution Ps for slice

s. To compute a distribution of the required spectrum, we

convolve8 the slices’ independent probability distributions:

7Note that we only discretize SNR into bins to estimate resource availability

with the DNNs; at runtime, the slice controller forecasts SNR (§4.1).
8The probability distribution of a sum of independent random variables is

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 847

Management
switch

PTP
grandmaster

Datapath
switch

Telco-grade
servers

Azure Stack
Edge Pro

Radio Unit (RU)

(a) Hardware configuration

Core

Azure Private

5G Core

gNBZipper

Admission

Controller

Slice

Manager

Centralized

Unit (Altran)

Distributed Unit

L2 (Altran)

L1 (FlexRAN)

UE ID, S-NSSAI (slice), SNR,

Buffer occupancy, DL/UL throughput

Monitor

Control

Slice

bandwidth

(b) Software stack

Figure 9: We implement Zipper atop a production-class 5G network.

P = P1 ⊛ P2 ⊛ ··· ⊛ Pn. P is the forecasted distribution of

required bandwidth. Operators can choose a suitable percentile

of P (e.g., p95, p99, etc.) based on their tolerance preferences.

For instance, a conservative policy might deem resources

available for the incoming app if the p99 bandwidth is less

than the total available bandwidth B.

5 Implementation

We implemented Zipper atop an end-to-end production-class

5G network built on virtual RAN (vRAN) and Core compo-

nents. Our testbed uses commercial off-the-shelf user devices.

Testbed hardware. As illustrated in Fig. 9a, our production

testbed consists of two 32-core HPE ProLiant DL110 Gen10

Plus Telco-Grade servers with Intel Xeon-Gold 6338N CPUs

and an Azure Stack Edge Pro device. The servers perform all

baseband processing in software, except for LDPC decoding

which is performed by a lookaside accelerator—Intel eASIC

ACC100—to meet the stringent real-time requirements

posed by baseband processing workloads. We use Foxconn

RPQN-7800 5G Open Radio Units (RUs) operating on 100

MHz channels in the n78 band. We obtained FCC STA licenses

to operate the radios for experimental purposes. The radio units

support the popular O-RAN split Option 7.2x [51], designed

to reduce the optical bandwidth required for fronthaul traffic

while keeping the RU simple and inexpensive. The radio has

four antennas and supports up to four spatial streams. The RU

and the Telco servers are synchronized using a Qulsar Qg2

carrier-grade PTP Grandmaster [53]. The testbed additionally

includes a high-speed datapath switch Arista 7050 to carry the

fronthaul traffic, as well as a management switch from Netgear

to facilitate remote management of the hardware devices.

Testbed software. Fig. 9b illustrates the software stack. For

the L1, our testbed runs production-ready Intel FlexRAN

v20.11 [18]. For the L2/L3, we use Altran 5G vRAN software

from Capgemini [2]. A single Telco server hosts both the

Altran and FlexRAN software, while Zipper runs on another

server. We installed Azure Private 5G Core (AP5GC) [48]

on the Azure Stack Edge Pro device to provide 5G core

services. Both Altran vRAN and AP5GC core support

standard-compliant slicing and can provide differentiated

service to commercial devices. We integrated all of these

systems end-to-end to realize a production-class 5G network

using virtualized RAN and Core components.

Zipper can programmatically control the RAN using this

the convolution of their individual distributions [31].

virtualized setup . We implemented a vRAN data collection

system to retrieve SNR of each user and buffer occupancy from

the 5G vRAN software. We monitor the user throughput using

diagnostic information from AP5GC. We utilize the buffer

occupancy and user throughput information to estimate the

latency experienced by each dataflow. We use a custom slice

bandwidth controller from Altran 5G vRAN that changes the

slice bandwidth according to the output from Algorithm 1. The

controller is lightweight, and this API allows us to adjust slice

bandwidth allocations at the granularity of a few milliseconds.

Zipper is compatible with O-RAN specifications [34]. Zip-

per would be hosted in the Near-Real-Time RAN Intelligent

Controller (RIC). In an O-RAN deployment, Zipper would

retrieve SNR, buffer occupancy and throughput from the E2

Monitor interface, and would send slice bandwidth control

signals over the E2 Control interface.

Zipper slice manager. Our implementation of the slice man-

ager (Fig. 4), which includes the MPC framework, bandwidth

allocation algorithm, and resource availability module, is

about 4,000 lines of Go. The slice manager is multi-threaded.

It computes the bandwidth allocations for each slice in parallel.

When Zipper receives a new app request, the slice manager

spawns a new thread to run the admission controller. Zipper

obtains RAN telemetry (i.e., SNR measurements, app buffer

occupancy [43], etc.) from the vRAN via a UDP socket.

Zipper populates its state—maintained over a moving horizon

Tw (§3.1)—with these measurements. We implemented data

buffers to support quick, thread-safe read/write access that

meets the stringent slot deadlines for 5G workloads [1].

6 Evaluation

We evaluate Zipper with typical RAN workloads (§6.1) on our

production-grade testbed (§6.2) and in emulated environments

(§6.3-§6.5). Our evaluation highlights include:

• On our end-to-end testbed, Zipper dynamically tunes slice

bandwidths every millisecond to fulfill app SLAs (§6.2).

• Compared to a slice-level service assurance scheduler,

Zipper reduces tail throughput and latency penalties as a

percentage of app SLAs by 9× (§6.3).

• Zipper can support 150 apps drawn from a typical workload,

and incur nearly no penalty in throughput and latency (§6.3).

• In order to fulfill app SLAs, Zipper utilizes about 30% more

bandwidth than RAN schedulers without SLA constraints,

but 50% less bandwidth than prior slicing systems (§6.3) .

• Zipper’s admission control framework can intelligently

allocate unutilized bandwidth, admitting 15% more apps

for a first-come-first-served policy (§6.4).

• Zipper supports 200 apps and 70 slices in real time (§6.5).

6.1 Evaluation setup

Emulation. We develop a real-time emulation framework to

compare Zipper against baselines under controlled network

environments. We develop a data generator to emulate realistic

demand patterns for different apps, and develop a channel

848 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

App Type Min Tput Max Latency QCI [36] Freq.

Video conf. 2 Mbps 150 ms 40 30%

Voice 200 kbps 100 ms 20 30%

Vehicle-to-X 200 kbps 50 ms 40 10%

Video stream. 2 Mbps 300 ms 60 20%

VR offload 10 Mbps 30 ms 68 5%

File sync 20 Mbps — 80 5%

Table 1: Apps, SLAs, and frequencies selected for experiments.

emulator that exposes apps to real network traces. We describe

both below.

Apps. For our experiments, we choose several representative

applications that cover the gamut of throughput and latency

requirements. Table 1 summarizes the SLAs we select for

these applications, based on the definitions in the 3GPP

specifications [36], and also reports the frequency of each app

type (as a percentage) in our experiments. Since we do not

have access to real-world cellular traces, we mimic a typical

workload according to breakdowns of mobile Internet traffic

published in industry technical reports [23, 60].

For file sync apps, we instrument iPerf [22] to send UDP

traffic at different rates. For video conferencing, video stream-

ing, IoT, and v2x apps, we implement a data generator in Go to

send UDP packets at different sending rates and inter-packet

delays. For VR remote rendering, we gather traces from a real

Hololens app, and replay the packet captures over UDP.

SNR traces. To evaluate Zipper against the baselines under

a controlled setting, we use a publicly available dataset of

SNR traces, collected by running mobile traffic (e.g., Netflix

videos, Amazon browsing, etc.) over a production 5G network

in Ireland [54]. Our testbed experiment with real client devices

(§6.2) evaluates Zipper on a live wireless channel.

Base station configuration. For all of our experiments, we

configure our base station to have a total bandwidth of 100 MHz

and 4×4 MIMO (i.e., 4 layers). For simplicity, we configure

all slices to numerology µ=1 (i.e., 30 kHz subcarrier spacing).

In our experiments, each slice caters to apps of the same type.9

6.2 End-to-end evaluation

We begin by evaluating Zipper end-to-end on our production-

grade 5G vRAN testbed (§5), in order to demonstrate that

Zipper can deliver reliable connectivity by dynamically

adjusting slice bandwidths in real-time, while adapting to

variations in channel. For this experiment, we consider a

scenario where the base station has one slice that serves a

single file sync app. We would like to see that Zipper (i)

allocates minimal slice bandwidth such that it does not always

use all 100 MHz available, and (ii) adapts the bandwidth

allocation for this slice as the measured channel quality varies.

We run a 17 Mbps iPerf flow on a OnePlus mobile phone that

is connected to the 5G base station running Zipper. During

the download, we both walk around the room and stand in a

9If the operator does not know the app type ahead of time, she could match

apps with similar connectivity requirements, by clustering based on SLAs

(e.g., high bandwidth only, or high bandwidth and low latency).

0

20

40

60

100 200 300

Time (s)

S
lic

e
 B

W
 (

M
H

z
)

0

5

10

15

20

100 200 300

T
p

u
t

(M
b

p
s
)

0

20

40

60

S
lic

e
 B

W
 (

M
H

z
)

−5

0

100 200 300

S
N

R
 (

d
B

)

0

5

10

15

20

T
p

u
t

(M
b

p
s
)

stationary

Figure 10: Zipper tunes the bandwidth allocated to a slice serving a

mobile OnePlus phone running 17 Mbps iPerf flow.

fixed location to capture a variety of channel conditions.

Fig. 10 shows a stacked time series chart of the bandwidth

that Zipper allocates to the slice (bottom), the application

throughput (middle), and the SNR of the OnePlus phone (top).

The segment highlighted in yellow corresponds to the segment

of time during which the UE was stationary. Notice that Zip-

per reliably meets the target throughput of 17 Mbps—without

significantly over-delivering. To do this, it adjusts its slice

bandwidth allocation at a millisecond granularity; notice, in

particular during the stationary period, where the measured

SNR is relatively high and stable, the allocated bandwidth is

accordingly lower (i.e., 30 MHz).

6.3 SLA compliance

Setup. In order to evaluate Zipper’s ability to comply with

SLAs, we use our emulation framework (§6.1) to compare

Zipper against other schemes in settings where the wireless

conditions are controlled. Like the testbed, our emulator runs

in real time. We compare Zipper against the following four

baseline algorithms:

• The Single Slice policy schedules all apps together in one

slice, using a proportional fair scheduler [63], which is

widely used by base stations today [4].

• The QoS policy [12, 71], like Single Slice, schedules all

apps in one slice with a proportional fair scheduler, but

additionally prioritizes each app according to its QoS Class

Identifier (QCI). The 3GPP standards specify a unique QCI

priority for each traffic type [36]. Table 1 shows the QCIs

we use for the apps in our experiments. This policy is also

common in production RAN deployments today.

• The NVS policy [41] is a dynamic network slicing algorithm

for WiMAX, which provides slice-level QoS guarantees by

multiplexing slices over time. Each slice requests an aggre-

gate throughput (for all users). The NVS controller tracks

each slice’s throughput. In each time interval (e.g., 10 ms),

it computes—for each slice—a priority, which is defined

as the ratio of requested throughput to average throughput,

and then selects the slice with the highest priority. While

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 849

95th percentile 99th percentile

50 100 150 200 50 100 150 200
0

25

50

75

100

Number of Apps

T
p

u
t

P
e

n
a

lt
y
 (

%
)

Zipper Oracle NVS QoS Single Slice

Figure 11: Tail throughput penalties for varying load. Apps scheduled

by Zipper experience 95th percentile penalties close to 0%.

the NVS paper assumes constant MCS, we implement a

modified version of the algorithm that uses channel forecasts

to dynamically adjust MCS. NVS is a popular benchmark

among recent RAN slicing proposals [15, 19, 24].

• The Oracle policy simply runs Zipper’s bandwidth alloca-

tion algorithm (§4.2), but instead of forecasting wireless

channel, it reads the true channel quality that each user will

experience from the trace of SNR values. This algorithm

allows us to validate our hypothesis that Zipper should be

robust to modest SNR prediction error (§4.1).

Zipper and all baselines have access to the same overall

bandwidth (e.g., 100 MHz channel). These algorithms differ

in how they divide up the bandwidth amongst slices.

We vary the number of apps, ensuring, for all baselines, that

apps connect in the same order and that each has the same SNR

trace. We create 6 slices—one for each traffic type—and run

each experiment for 3 minutes. We measure the throughput and

latency penalties (Eqn. 5 - Eqn. 6) for each app, after all apps

have connected to the RAN (i.e., we exclude the time when

apps join/leave the RAN). To create some background load

at the base station, we assign twenty 20 Mbps iPerf flows to

a “best effort” slice.10 We do not use the resource availability

estimator to admit/reject apps for these experiments.

Metrics of merit. We compare how well the different schemes

satisfy each app’s throughput and latency requirements, since

these two quantities impact the quality-of-experience for

most typical mobile apps [23, 36, 60]. In particular, for each

experiment, we compute the throughput and latency penalties,

defined in Eqn. 5 - Eqn. 6, and report the p95 and p99 penalties

to quantify the tail performance. A lower penalty is better.

Note that we evaluate penalties (as a fraction of the requested

SLAs) instead of evaluating absolute throughputs and latencies.

The penalty metric allows us to directly compare app-level

service assurance across slices serving apps with significantly

different network requirements. Consider a slice serving a 20

Mbps file sync app A and a different slice serving a 2 Mbps

video conferencing session B. A scheme that delivers 19 Mbps

to A and 1 Mbps to B would yield 1 Mbps less than the requested

amount for each app. But 1 Mbps is more consequential to B

(50%) than it is to A (5%). The penalty metric captures this.

Throughput penalties. Fig. 11 shows the results. The Single

Slice scheduler consistently incurs the highest penalty. It

cannot differentiate between traffic types, and its proportional

fair scheduler will attempt to maximize throughput subject

10We assign these flows the lowest QCI priority amongst those in Table 1.

95th percentile 99th percentile

50 100 150 200 50 100 150 200
1

10

100

Number of AppsL
a

te
n

c
y
 P

e
n

a
lt
y
 (

%
) Zipper Oracle NVS QoS Single Slice

Figure 12: Tail latency penalties for varying base station loads. Apps

scheduled by Zipper have low 95th and 99th percentile penalties.

to some fairness constraints. Therefore, it tends to favor

bandwidth intensive apps (e.g., file sync). Notice that, because

Single Slice runs a proportional fair scheduler, it does not

starve any app (throughput penalty is never 100%). The QoS

policy does marginally better than Single Slice. The QCI

priorities only control the relative frequencies at which the

scheduler allocates resource blocks to apps, but if there is a

contention, an app with higher priority may not get its desired

rate. Moreover, the standards pre-define the QCIs [36], and

the scheduling algorithm has no ability to dynamically tune

these priorities to have the desired effect on app throughput.

NVS sees a marked improvement in penalty, compared to

both Single Slice and QoS. However, the throughput penalties

are still high, even at low loads (e.g., p95 penalty for 50

apps is 25%). This is because it optimizes for slice-level

throughput instead of for app-level. Zipper, by contrast,

exhibits comparatively lower penalties at both p95 and p99.

Latency penalties. Fig. 12 shows the latency penalties (on

a log-scale) for the same experiment. The Single Slice policy

delivers the worst latency penalties: it tends to favor bandwidth-

intensive apps, and thus, low bandwidth, latency-critical apps

(e.g., v2x and voice) will suffer. These apps, in particular, expe-

riences latencies as high as 200 ms. QoS achieves around 40%

lower penalties than Single Slice at p95, since the QCI priorities

allow the scheduler to explicitly prioritize the latency-critical

apps with higher QCI by scheduling them more frequently.

This is because NVS multiplexes slices over time, and, in each

timestep, it gives all bandwidth to the slice it chooses. Even if

the switching interval is low, apps can go unscheduled for long

periods of times in configurations with many slices. Zipper,

by contrast, maintains very low latencies up to 150 apps, after

which the base station starts to become oversubscribed.

Notice that Zipper’s performance is comparable to that of

the Oracle. The difference in the p95 penalty is <5% for fewer

than 150 apps, which is consistent with our observations when

modeling the system (§4.1). The gap widens slightly at 200

apps, since the system is more congested, and thus, assigning

a suboptimal MCS would be more consequential.

RAN utilization. Fig. 11 and Fig. 12 show that Zipper reliably

delivers the connectivity requested by each app. However,

fulfilling SLAs for each app rather than for a slice in aggregate

requires more bandwidth. We conduct an experiment to

measure how much spectrum or capacity Zipper wastes at the

expense of allocating resources to meet SLAs. Fig. 13 shows

a 150-second time series snapshot of the aggregate RAN

850 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

All apps (inlcuding best effort)

Apps with SLAs

0 50 100 150

0

50

100

150

200

0

200

400

600

Time (s)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Zipper Oracle NVS QoS Single Slice

Figure 13: Throughput for 75 apps + 20 best effort apps. Zipper meets

the SLAs reliably, and allocates excess capacity to best effort.

95th percentile 99th percentile

6 18 48 72 6 18 48 72
0

25

50

75

100

Number of Slices

T
p

u
t
P

e
n

a
lt
y
 (

%
)

Zipper NVS

(a) Throughput penalty

95th percentile 99th percentile

6 18 48 72 6 18 48 72
0

25

50

75

100

Number of SlicesL
a
te

n
c
y
 P

e
n

a
lt
y
 (

%
) Zipper NVS

(b) Latency penalty

Figure 14: Zipper’s performance is invariant to the number of slices.

throughput achieved by Zipper and the different baselines

for 75 apps (+ 20 best effort apps). On top chart, we show the

throughput amongst the 75 apps that requested SLAs, and on

the bottom chart, we plot the total RAN throughput (including

best effort). The dotted blue line shows the total throughput

requested by the 75 apps.

Zipper, Oracle, and NVS closely track the requested through-

put at the level of slice—providing reliable and consistent

performance despite the wireless channels that each app expe-

riences. Single Slice and QoS fall about 18% below the target

throughput. However, as Fig. 11 shows, this drop translates to

far worse in terms of throughput penalty.

When we include the best effort apps, we find that QoS and

Single Slice indeed achieve the highest total RAN throughput.

NVS does not schedule the best effort apps because there is

no excess bandwidth when all bandwidth is allocated to a

single slice in a given scheduling interval. Zipper strikes a

nice balance between these extremes: in addition to meeting

requested SLAs, Zipper utilizes spectrum about 50% better

than NVS and 30% worse than Single Slice or QoS.

Scaling up slices. The experiments so far considered 6

slices—one for each app type. However, an operator may

choose to have multiple slices for the same app type, for e.g.,

if Zoom and Teams want to isolate their traffic. Therefore, we

would like Zipper to be invariant to the number of slices. We

run an experiment similar to the setup described above; we fix

the number of apps at 100 and vary the number of slices. We

still dedicate each slice to serving a unique app type, and we

randomly assign apps to slices when there are multiple slices

of the same type. Fig. 14a and Fig. 14b show the throughput

and latency penalties, respectively, for Zipper and NVS.

NVS scales poorly with the number of slices. Since NVS

95th percentile 99th percentile

100 125 150 175 200 225 100 125 150 175 200 225
0

25

50

75

100

Number of Apps

T
p

u
t

P
e

n
a

lt
y
 (

%
)

Zipper (Conditional) Zipper (DNN) Zipper

Figure 15: Both the conditional and DNN-based resource estimation

methods achieve bounded (and low) penalties.

does not multiplex slices across frequency, slices get scheduled

less frequently. Both penalties suffer with more slices, even

when the switching interval is short (i.e., 10 ms). By contrast,

Zipper’s performance is invariant to the number of slices, since

it multiplexes slices across frequency and time.

6.4 Forecasting RAN resource availability

Setup. To evaluate this module, we consider a simple first-

come-first-served (FCFS) policy that admits incoming apps

in the order that they arrive, as long as there is enough capacity

to accommodate them without violating SLAs for other apps.

Specifically, from the distribution P (§4.3), we admit an

incoming app to its designated slice if the p95 bandwidth is

within an ε=5 MHz tolerance of the total bandwidth B, and

assigns it to the best effort slice otherwise (i.e., P < B+ ε).

Note that the specific policy does not matter for this evaluation;

we only want the policy to be consistent across different

resource availability modules that we compare.

We compare against a “conditional” resource availability

primitive: it (i) admits the incoming app into a best effort

slice, (ii) measures its throughput and latency penalties for

10 seconds, and (iii) then admits in FCFS order if it incurs

zero penalty or leaves it in the best effort slice otherwise. This

form of probing resource availability conditionally is common

in many admission control proposals [29, 37, 52]. Our goal

is to evaluate if the resource availability forecasts provided

by Zipper’s DNN family yield better RAN utilization than

this “conditional” primitive. Both use Zipper to compute slice

bandwidth schedules in real-time. As in §6.3, we draw apps

from the distribution in Table 1, and select app arrival times

and contract durations at random.

Bounded penalty. A good forecaster of resource availability

should ensure that it can satisfy the SLAs of apps that it has al-

ready admitted before committing to a new app. This amounts

to ensuring that the RAN maintains a bounded and low penalty,

as more apps connect to the system. Fig. 15 shows the 95th

and 99th percentile throughput penalties for different numbers

of apps that try to connect to the RAN; the algorithm named

“Zipper” uses no admission controller. Notice that, by letting

each incoming app experience the network, both methods that

use an admission control policy keep the penalties bounded,

and, more importantly, close to 0% at the 95th percentile.

Admit rate. While the penalties are bounded, does the RAN

have some unutilized capacity that it could have allocated by

admitting more apps? Fig. 16a compares the admit rates for

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 851

0

25

50

75

100

100 125 150 175 200 225

Number of Apps

A
d

m
it
 R

a
te

 (
%

)

Conditional DNN

(a) Admit rate

0

100

200

300

50 100 150 200

Number of Apps

R
A

N
 T

p
u

t
(M

b
p

s
) Conditional DNN

(b) RAN utilization

Figure 16: Zipper’s DNN resource estimator achieves a higher admit

rate and utilization by squeezing in apps with lighter demand.

Zipper NVS

0 20 40 60 0 20 40 60
0.00

0.25

0.50

0.75

1.00

Runtime (ms)

C
u

m
.
P

ro
b

a
b

ili
ty

Apps 25 100 175

(a) Number of apps

Zipper NVS

0 20 40 60 0 20 40 60
0.00

0.25

0.50

0.75

1.00

Runtime (ms)

C
u

m
.
P

ro
b

a
b

ili
ty

Slices 6 18 72

(b) Number of slices

Figure 17: Runtime of Zipper and NVS. Even though Zipper involves

more computation than NVS, it is still practical for large workloads.

different resource availability modules. As we would expect,

when the base station is not congested (e.g., 100 apps), the

admit rate is high (around 95%) for both the conditional and

DNN-based policies. However, as more apps join the system,

the DNN policy has a higher admit rate—about 15% higher

for 225 apps. We observe similar trends for latency.

The policy that uses the “conditional admit” forecaster re-

jects apps too aggressively because it conditions its decision

on an app’s measured penalty in the best effort slice. At higher

loads, Zipper ends up allocating most—if not all—spectrum to

slices serving apps with SLAs. So Zipper allocates little band-

width to the best effort slice, and the incoming app receives

infrequent air time in its initial 10 second sampling period. Its

penalties are thus high, and the controller has little confidence

that the app can meet its requirements in the target slice.

The DNN’s admit rate is higher at greater load because it

is able to differentiate between different traffic types. For in-

stance, the DNN infers that a voice app could still achieve its

light target throughput and latency because the slice’s MAC

scheduler could accommodate a new app without degrading the

SLAs of the apps already admitted to that slice. By contrast, the

“conditional admit” mechanism has little data make this infer-

ence, since the voice app gets little air time in a best effort slice.

RAN utilization. Aggressive resource availability forecasts

can underutilize the RAN. Fig. 16b compares the total RAN

throughput for both estimators. Notice that the two methods

diverge around 150 apps, after which the DNN can better pack

more “lightweight” apps.

6.5 Microbenchmarks

We profile Zipper’s slice allocation and management overhead

as we stress the system with more apps and with more slices.

For the traffic distribution listed in Table 1, we profile the time

it takes to compute the bandwidth allocations and MAC sched-

ules. We compare Zipper with NVS. Fig. 17 shows the results

as a CDF of runtimes over all scheduling intervals in each 3

minute experiment. The vertical black lines indicate the dead-

lines required to operate in real time. Zipper, though more com-

plex, reliably meets processing deadlines, as the load increases

with more apps or fewer slices (i.e., more apps per slice).

7 Discussion

Network APIs. Provisioning connectivity based on app SLAs

creates new opportunities. For instance, a developer can split

their app into multiple data streams (e.g., audio, video, and

sensory for VR), and define SLAs independently for each one.

Because Zipper internally estimates network capacity to fore-

cast resource availability, an operator using Zipper could create

a network API that exposes metrics like true network capacity

to developers. This helps make the network more transparent.

ML components. The ideal deployment for Zipper should

have a V100 GPU. However, note that Zipper is compatible

with any channel predictor, and Fig. 6 shows that a simple

EWMA predictor works reasonably well. Moreover, the DNNs

in the resource availability estimator are lightweight and do not

have real-time deadlines, unlike channel prediction; if resource

constrained, operators could serve the DNN on a CPU.

Application adaptivity. An important benefit of the paradigm

proposed by Zipper is that application developers no longer

need to stress about making their apps reactive to the network.

By design, Zipper seeks to provision the right amount of

bandwidth so that each app experiences a relatively static

network. As a result, interactive and adaptive apps will no

longer have to adapt to changing network conditions.

8 Conclusion

We developed Zipper, the first 5G RAN slicing system for

application-level service assurance. Zipper formulates the

scheduling problem with MPC and develops an efficient

optimization algorithm to compute SLA-compliant schedules

in real-time. Zipper also introduces a primitive to forecast

RAN resource availability, with which operators can interface

an admission control policy. We implemented Zipper on a

production-grade 5G vRAN testbed, adding critical hooks

to control slice bandwidths in real time. We evaluated Zipper

extensively on realistic workloads, our results showed that

Zipper more reliably fulfills app-level SLAs than do QoS

schedulers and slice-level service assurance systems.

There several opportunities to extend Zipper. First, to accom-

modate highly mobile users, we can co-optimize slicing across

base stations. Second, we believe we can extend the formu-

lation and optimization techniques we developed to other SLA

types, such as energy consumption and bit error rate. Finally,

we hope to explore robust economic models for admission

control that build on Zipper’s resource availability estimator.

Acknowledgments

We thank the reviewers, Mohammad Alizadeh, Hari Balakrish-

nan, Xenofon Foukas, Anuj Kalia, Radhika Mittal, and Deepak

Vasisht for helpful conversations and detailed feedback.

852 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] A. Al-Dulaimi, X. Wang, and C.-L. I. Network Slicing

for 5G Networks, pages 327–370. John Wiley & Sons,

New Jersey, USA, 2018.

[2] Altran. Capgemini altran. Technical report, Capgemini,

2023.

[3] S. Bakri, P. A. Frangoudis, A. Ksentini, and M. Bouaziz.

Data-driven ran slicing mechanisms for 5g and beyond.

IEEE Transactions on Network and Service Management,

18(4):4654–4668, 2021.

[4] A. Balasingam, M. Bansal, R. Misra, K. Nagaraj,

R. Tandra, S. Katti, and A. Schulman. Detecting if lte

is the bottleneck with bursttracker. In The 25th Annual

International Conference on Mobile Computing and

Networking, MobiCom ’19, New York, NY, USA, 2019.

Association for Computing Machinery.

[5] M. Bansal, A. Schulman, and S. Katti. Atomix: A

framework for deploying signal processing applications

on wireless infrastructure. In 12th USENIX Symposium

on Networked Systems Design and Implementation

(NSDI 15), pages 173–188, Oakland, CA, May 2015.

USENIX Association.

[6] N. Baranasuriya, V. Navda, V. N. Padmanabhan, and

S. Gilbert. Qprobe: Locating the bottleneck in cellular

communication. In Proceedings of the 11th ACM

Conference on Emerging Networking Experiments and

Technologies, CoNEXT ’15, New York, NY, USA, 2015.

Association for Computing Machinery.

[7] L. Bonati, S. D’Oro, S. Basagni, and T. Melodia. Scope:

An open and softwarized prototyping platform for nextg

systems. In Proceedings of the 19th Annual Interna-

tional Conference on Mobile Systems, Applications, and

Services, MobiSys ’21, page 415–426, New York, NY,

USA, 2021. Association for Computing Machinery.

[8] N. Budhdev, R. Joshi, P. G. Kannan, M. C. Chan, and

T. Mitra. Fsa: Fronthaul slicing architecture for 5g using

dataplane programmable switches. In Proceedings of

the 27th Annual International Conference on Mobile

Computing and Networking, MobiCom ’21, page

723–735, New York, NY, USA, 2021. Association for

Computing Machinery.

[9] P. Caballero, A. Banchs, G. de Veciana, and X. Costa-

Pérez. Multi-tenant radio access network slicing:

Statistical multiplexing of spatial loads. IEEE/ACM

Transactions on Networking, 25(5):3044–3058, 2017.

[10] P. Caballero, A. Banchs, G. de Veciana, X. Costa-Pérez,

and A. Azcorra. Network slicing for guaranteed rate

services: Admission control and resource allocation

games. IEEE Transactions on Wireless Communications,

17(10):6419–6432, 2018.

[11] Z. Cao, Q. Ma, A. B. Smolders, Y. Jiao, M. J. Wale, C. W.

Oh, H. Wu, and A. M. J. Koonen. Advanced integration

techniques on broadband millimeter-wave beam steering

for 5g wireless networks and beyond. IEEE Journal of

Quantum Electronics, 52(1):1–20, 2016.

[12] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and

P. Camarda. Downlink packet scheduling in lte cellular

networks: Key design issues and a survey. IEEE com-

munications surveys & tutorials, 15(2):678–700, 2012.

[13] M. Chahbar, G. Diaz, A. Dandoush, C. Cérin, and

K. Ghoumid. A comprehensive survey on the e2e 5g

network slicing model. IEEE Transactions on Network

and Service Management, 18(1):49–62, 2020.

[14] C.-Y. Chang and N. Nikaein. Ran runtime slicing system

for flexible and dynamic service execution environment.

IEEE Access, 6:34018–34042, 2018.

[15] Y. Chen, R. Yao, H. Hassanieh, and R. Mittal. Channel-

aware 5g ran slicing with customizable schedulers. In

20th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 23), 2023.

[16] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau,

F. Bougares, H. Schwenk, and Y. Bengio. Learning

phrase representations using RNN encoder–decoder

for statistical machine translation. In Proceedings of

the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1724–1734,

Doha, Qatar, Oct. 2014. Association for Computational

Linguistics.

[17] E. Coronado and R. Riggio. Flow-based network slicing:

Mapping the future mobile radio access networks. In

2019 28th International Conference on Computer Com-

munication and Networks (ICCCN), pages 1–9, 2019.

[18] I. Corporation. Flexran reference architecture for

wireless. https://www.intel.com/content/www/

us/en/developer/topic-technology/edge-5g/

tools/flexran.html, 2022.

[19] X. Costa-Pérez, J. Swetina, T. Guo, R. Mahindra, and

S. Rangarajan. Radio access network virtualization for

future mobile carrier networks. IEEE Communications

Magazine, 51(7):27–35, 2013.

[20] X. de Foy. Network slicing – 3gpp use case. Technical

report, Internet Engineering Task Force, 2017.

[21] J. Ding, R. Doost-Mohammady, A. Kalia, and L. Zhong.

Agora: Real-Time Massive MIMO Baseband Processing

in Software, page 232–244. Association for Computing

Machinery, New York, NY, USA, 2020.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 853

https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html

[22] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, and

K. Prabhu. Iperf. https://iperf.fr/, 2022.

[23] Ericsson. Ericsson mobility report. Technical report,

Ericsson, 2021.

[24] X. Foukas, M. K. Marina, and K. Kontovasilis. Orion:

Ran slicing for a flexible and cost-effective multi-service

mobile network architecture. In Proceedings of the 23rd

Annual International Conference on Mobile Computing

and Networking, MobiCom ’17, page 127–140, New

York, NY, USA, 2017. Association for Computing

Machinery.

[25] X. Foukas, B. Radunovic, M. Balkwill, and Z. Lai.

Taking 5g ran analytics and control to a new level. In

Technical Report, December 2022.

[26] C. E. Garcia, D. M. Prett, and M. Morari. Model

predictive control: Theory and practice—a survey.

Automatica, 25(3):335–348, 1989.

[27] K. C. Garikipati, K. Fawaz, and K. G. Shin. Rt-opex:

Flexible scheduling for cloud-ran processing. In

Proceedings of the 12th International on Conference on

Emerging Networking EXperiments and Technologies,

CoNEXT ’16, page 267–280, New York, NY, USA,

2016. Association for Computing Machinery.

[28] Y. Ghasempour, M. K. Haider, and E. W. Knightly.

Decoupling beam steering and user selection for

mu-mimo 60-ghz wlans. IEEE/ACM Transactions on

Networking, 26(5):2390–2403, 2018.

[29] T. Guo and A. Suárez. Enabling 5g ran slicing with

edf slice scheduling. IEEE Transactions on Vehicular

Technology, 68(3):2865–2877, 2019.

[30] T. Guo and A. Suárez. Enabling 5g ran slicing with

edf slice scheduling. IEEE Transactions on Vehicular

Technology, 68(3):2865–2877, 2019.

[31] R. V. Hogg and A. T. Craig. Introduction to mathematical

statistics.(5"" edition). Englewood Hills, New Jersey,

1995.

[32] Y. Huang, S. Li, Y. T. Hou, and W. Lou. Gpf: A

gpu-based design to achieve 100 µs scheduling for 5g

nr. In Proceedings of the 24th Annual International

Conference on Mobile Computing and Networking,

MobiCom ’18, page 207–222, New York, NY, USA,

2018. Association for Computing Machinery.

[33] M. Hüsken and P. Stagge. Recurrent neural networks for

time series classification. Neurocomputing, 50:223–235,

2003.

[34] C.-L. I and S. Katti. O-ran: Towards an open and smart

ran. Technical report, Open RAN Alliance, 2018.

[35] E. T. S. Institute. Physical layer procedures for data.

ETSI 3rd Generation Partnership Project (3GPP), 06

2018.

[36] E. T. S. Institute. System Architecture for the 5G System.

ETSI 3rd Generation Partnership Project (3GPP), 06

2018.

[37] M. Jiang, M. Condoluci, and T. Mahmoodi. Network

slicing management & prioritization in 5g mobile

systems. In European Wireless 2016; 22th European

Wireless Conference, pages 1–6, 2016.

[38] W. Jiang and H. D. Schotten. Deep learning for

fading channel prediction. IEEE Open Journal of the

Communications Society, 1:320–332, 2020.

[39] M. T. Kawser, N. I. B. Hamid, M. N. Hasan, M. S. Alam,

and M. M. Rahman. Downlink snr to cqi mapping for

different multipleantenna techniques in lte. International

journal of information and electronics engineering,

2(5):757, 2012.

[40] B. Khodapanah, A. Awada, I. Viering, D. Oehmann,

M. Simsek, and G. P. Fettweis. Fulfillment of service

level agreements via slice-aware radio resource man-

agement in 5g networks. In 2018 IEEE 87th Vehicular

Technology Conference (VTC Spring), pages 1–6, 2018.

[41] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan.

Nvs: A substrate for virtualizing wireless resources

in cellular networks. IEEE/ACM Transactions on

Networking, 20(5):1333–1346, 2012.

[42] S. Kumar, E. Hamed, D. Katabi, and L. Erran Li. Lte

radio analytics made easy and accessible. SIGCOMM

Comput. Commun. Rev., 44(4):211–222, aug 2014.

[43] H. Lee, S. Noghabi, B. Noble, M. Furlong, and L. Cox.

Bumblebee: Application-aware adaptation for edge-

cloud orchestration. In Symposium on Edge Computing.

ACM/IEEE, December 2022.

[44] J. Lee, S. Lee, J. Lee, S. D. Sathyanarayana, H. Lim,

J. Lee, X. Zhu, S. Ramakrishnan, D. Grunwald, K. Lee,

and S. Ha. Perceive: Deep learning-based cellular uplink

prediction using real-time scheduling patterns. In Pro-

ceedings of the 18th International Conference on Mobile

Systems, Applications, and Services, MobiSys ’20, page

377–390, New York, NY, USA, 2020. Association for

Computing Machinery.

[45] J. Li, W. Shi, P. Yang, Q. Ye, X. S. Shen, X. Li, and

J. Rao. A hierarchical soft ran slicing framework for

differentiated service provisioning. IEEE Wireless

Communications, 27(6):90–97, 2020.

854 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://iperf.fr/

[46] X. Li, C. Guo, L. Gupta, and R. Jain. Efficient and

secure 5g core network slice provisioning based on vikor

approach. IEEE Access, 7:150517–150529, 2019.

[47] C. Luo, J. Ji, Q. Wang, X. Chen, and P. Li. Channel state

information prediction for 5g wireless communications:

A deep learning approach. IEEE Transactions on

Network Science and Engineering, 7(1):227–236, 2018.

[48] Microsoft. Azure private 5g core. Technical report,

Microsoft, 2023.

[49] L. S. Muppirisetty, T. Svensson, and H. Wymeersch.

Spatial wireless channel prediction under location uncer-

tainty. IEEE Transactions on Wireless Communications,

15(2):1031–1044, 2015.

[50] Nvidia. Nvidia aerial sdk. https://developer.

nvidia.com/aerial-sdk, 2022.

[51] O-RAN. O-ran specifications. Technical report, O-RAN

Alliance, 2023.

[52] M. O. Ojijo and O. E. Falowo. A survey on slice

admission control strategies and optimization schemes

in 5g network. IEEE Access, 8:14977–14990, 2020.

[53] Qulsar. Qulsar qg2. https://qulsar.com/Products/

Systems/Qg_2.html, 2022.

[54] D. Raca, D. Leahy, C. J. Sreenan, and J. J. Quinlan.

Beyond throughput, the next generation: A 5g dataset

with channel and context metrics. In Proceedings of the

11th ACM Multimedia Systems Conference, MMSys ’20,

page 303–308, New York, NY, USA, 2020. Association

for Computing Machinery.

[55] D. A. Ravi, V. K. Shah, C. Li, Y. T. Hou, and J. H. Reed.

Ran slicing in multi-mvno environment under dynamic

channel conditions. IEEE Internet of Things Journal,

9(6):4748–4757, 2022.

[56] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.

Learning representations by back-propagating errors.

nature, 323(6088):533–536, 1986.

[57] O. Sallent, J. Perez-Romero, R. Ferrus, and R. Agusti. On

radio access network slicing from a radio resource man-

agement perspective. IEEE Wireless Communications,

24(5):166–174, 2017.

[58] V. Sciancalepore, K. Samdanis, X. P. Costa, D. Bega,

M. Gramaglia, and A. Banchs. Mobile traffic forecasting

for maximizing 5g network slicing resource utilization.

In 2017 IEEE Conference on Computer Communications,

INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017,

pages 1–9, Atlanta, GA, 2017. IEEE.

[59] N. Shahriar, S. Taeb, S. R. Chowdhury, M. Zulfiqar,

M. Tornatore, R. Boutaba, J. Mitra, and M. Hemmati.

Reliable slicing of 5g transport networks with band-

width squeezing and multi-path provisioning. IEEE

Transactions on Network and Service Management,

17(3):1418–1431, 2020.

[60] C. Systems. Cisco annual internet report (2018 - 2023).

Technical report, Cisco Systems, 2020.

[61] K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, and G. M.

Voelker. Sora: High-performance software radio using

general-purpose multi-core processors. Commun. ACM,

54(1):99–107, jan 2011.

[62] S. Troia, A. F. R. Vanegas, L. M. M. Zorello, and G. Maier.

Admission control and virtual network embedding in

5g networks: A deep reinforcement-learning approach.

IEEE Access, 10:15860–15875, 2022.

[63] D. Tse and P. Viswanath. Fundamentals of Wireless Com-

munication. Cambridge University Press, Cambridge,

UK, 2005.

[64] P. Wieber. Trajectory free linear model predictive control

for stable walking in the presence of strong perturbations.

In 2006 6th IEEE-RAS International Conference on

Humanoid Robots, Genova, Italy, December 4-6, 2006,

pages 137–142, Genova, Italy, 2006. IEEE.

[65] J. Wu, Z. Zhang, Y. Hong, and Y. Wen. Cloud radio

access network (c-ran): a primer. IEEE network,

29(1):35–41, 2015.

[66] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong,

K. Zhang, P. Levis, and K. Winstein. Learning in situ:

a randomized experiment in video streaming. In 17th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI 20), pages 495–511, Santa Clara,

CA, feb 2020. USENIX Association.

[67] Q. Yang, X. Li, H. Yao, J. Fang, K. Tan, W. Hu, J. Zhang,

and Y. Zhang. Bigstation: Enabling scalable real-time

signal processingin large mu-mimo systems. SIGCOMM

Comput. Commun. Rev., 43(4):399–410, aug 2013.

[68] Q. Ye, J. Li, K. Qu, W. Zhuang, X. S. Shen, and X. Li.

End-to-end quality of service in 5g networks: Examining

the effectiveness of a network slicing framework. IEEE

Vehicular Technology Magazine, 13(2):65–74, 2018.

[69] W. Yin, K. Kann, M. Yu, and H. Schütze. Comparative

study of CNN and RNN for natural language processing.

CoRR, abs/1702.01923, 2017.

[70] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A control-

theoretic approach for dynamic adaptive video streaming

over http. In Proceedings of the 2015 ACM Conference

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 855

https://developer.nvidia.com/aerial-sdk
https://developer.nvidia.com/aerial-sdk
https://qulsar.com/Products/Systems/Qg_2.html
https://qulsar.com/Products/Systems/Qg_2.html

on Special Interest Group on Data Communication,

SIGCOMM ’15, page 325–338, New York, NY, USA,

2015. Association for Computing Machinery.

[71] Y. Zaki, T. Weerawardane, C. Görg, and A. Timm-Giel.

Multi-qos-aware fair scheduling for LTE. In Proceedings

of the 73rd IEEE Vehicular Technology Conference,

VTC Spring 2011, 15-18 May 2011, Budapest, Hungary,

pages 1–5, Budapest, Hungary, 2011. IEEE.

[72] L. Zanzi, V. Sciancalepore, A. Garcia-Saavedra, H. D.

Schotten, and X. Costa-Pérez. Laco: A latency-driven

network slicing orchestration in beyond-5g networks.

IEEE Transactions on Wireless Communications,

20(1):667–682, 2021.

856 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Allocating Slice Bandwidth in Zipper

A.1 Forecasting the wireless channel with an RNN

G
R

U

-1000 ms 150 ms

Output

SNR

Input SNR

G
R

U

G
R

U

G
R

U

G
R

U

…

…

Decoder Cell

Encoder Cell

State

current time

Predict next 150 ms
using measurements

from past 1 second.

Figure 18: Architecture of RNN model to forecast wireless channel.

To forecast each user’s channel, we train a sequence-to-

sequence Recurrent Neural Network (RNN) [56], which uses

an input sequence of SNR measurements over the last 1 second

to predict a sequence of SNR measurements over the next

150 milliseconds. Each RNN cell is a Gated Recurrent Unit

(GRU) [16], a lightweight mechanism that learns both short-

term and long-term trends in a signal. GRUs are popular in

temporal prediction tasks, like time-series prediction [33] and

natural language models [69]. Zipper’s RNN model includes

two types of GRU cells—encoder and decoder—allowing the

model to develop two distinct skills: (i) to build a model of the

current state by looking at past values and (ii) to understand the

current state to predict future values. Our implementation uses

50 hidden neurons in each layer of the encoder and decoder.

Fig. 18 illustrates the architecture of this RNN.

RNNs are emerging a popular method to forecast timeseries,

including wireless channel [38, 44, 47, 49]. We develop and

train a model, but note that Zipper can support any predictor

of wireless channel. §4.1 characterizes the requirements for

suitable predictor.

A.2 Monotonicity of throughput and latency

An app’s instantaneous RAN throughput depends on (i)

the number of resource blocks it is allocated in each slot

and (ii) the MCS scheme used to modulate data onto those

resource blocks [4, 42]. If a scheduler assigns an app more

resource blocks (i.e., bandwidth) in a slot, then the app will

experience a higher throughput. Therefore, app throughput

is a monotonically-increasing function of slice bandwidth.

§4.2 explains how latency is a monotonically-decreasing

function of slice bandwidth. The intuition is that adding more

bandwidth to a slice gives the scheduler more space to fit

packets for an app and therefore reduce its latency.

A.3 Algorithm

Algorithm 1 specifies (in pseudocode) how Zipper computes

slice bandwidth allocations. SearchBandwidth() is a

recursive function that evaluates candidate bandwidths,

pruning the search space with binary search, using the property

that app throughput and latency vary monotonically with slice

bandwidth.

Algorithm 1 Allocating slice bandwidth in Zipper

1: procedure ZIPPER

2: for each scheduling round t do

3: for slice s∈S do

4: Bs← FINDBANDWIDTH(s, B)

5: Resolve conflict if ∑s∈SBs >B

6: Update app xa(t) and da(t) and run MAC/PHY

7: function FINDBANDWIDTHSLICE(s, B)

8: Grab snapshot of app queues, throughput, and latency from s

9: Forecast SNR for apps in s

10: return SEARCHBANDWIDTH(s, 0, B, NULL)

11: function SEARCHBANDWIDTH(s, Bmin, Bmax, best)

12: B̃s←(Bmin+Bmax)/2 ▷ Find midpoint bandwidth.

13: schedule← RUNMAC(s, B̃s)

14: throughput← ISTHROUGHPUTVALID(schedule)

15: latency← ISLATENCYVALID(schedule)

16: if throughput ∧ latency then

17: best = B̃s ▷ Save best bandwidth.

18: decrease = true

19: if B̃s≤Bmin or B̃s≥Bmax then

20: return best

21: if decrease then

22: return SEARCHBANDWIDTH(s, Bmin, B̃s, best)

23: else

24: return SEARCHBANDWIDTH(s, B̃s, Bmax, best)

B Estimating resource availability in Zipper

B.1 DNN architecture

Zipper builds a family of DNNs to estimate resource avail-

ability. Each DNN caters to different slice types. The input

embedding consists of (i) the number of apps in the slice (in-

cluding the incoming app, if applicable) and (ii) the number of

apps in each SNR bucket. There are four possible SNR buckets.

Each DNN is a fully-connected network with 5 hidden

layers, ranging from 512 to 10 neurons. The final layer has

7 output values for different percentiles of the probability

distribution, i.e., p10, p25, p50, p75, p90, p95, p99.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 857

CHISEL: An optical slice of the wide-area network

Abhishek Vijaya Kumar*, Bill Owens¶, Nikolaj Bjørner†, Binbin Guan†, Yawei Yin†, Paramvir Bahl†,
Rachee Singh*

*Cornell University, †Microsoft, ¶NYSERnet

Abstract
Network slicing reserves a portion of the physical resources of
radio access networks and makes them available to consumers.
Slices guarantee traffic isolation, strict bandwidth and quality
of service. However, the abstraction of slicing has been lim-
ited to access networks. We develop CHISEL, a system that
dynamically carves slices of the wide-area network (WAN),
enabling an end-to-end network slicing abstraction. CHISEL
creates optical slices between WAN endpoints to avoid queue-
ing and congestion delays inherent in packet switched paths
in WANs. CHISEL incrementally allocates optical spectrum
on long-haul fiber to provision slices. This task is made chal-
lenging by the co-existence of data-carrying channels on the
fiber and numerous physical constraints associated with pro-
visioning optical paths e.g., spectrum contiguity, continuity
and optical reach constraints. CHISEL leverages the empiri-
cal finding that cloud WANs have abundant optical spectrum
to spare — 75% of optical spectrum on 75% of fiber spans
is unused. CHISEL can optimally allocate terabits of slice
requests while consuming minimal optical spectrum within
seconds without increasing spectral fragmentation on fiber.
CHISEL trades-off optimality of slice bandwidth allocation
for faster run-time, provisioning slices within 2% of optimal
in less than 30 seconds in a commercial cloud WAN. Finally,
CHISEL reduces the latency of provisioning optical slices
on hardware by 10X. Compared to IP tunnels of equivalent
capacity, CHISEL consumes 3.3X fewer router ports.1

1 Introduction
Next generation mobile wireless networks are undergoing
a technological revolution. The 3rd Generation Partnership
Project (3GPP) has played a key role in this change by defin-
ing international standards that govern the capability and im-
plementation of 5G technology [1]. Recently, 3GPP defined
a network slice as “A logical network that provides specific
network capabilities and network characteristics.” Network
slices guarantee traffic isolation, bandwidth and quality of ser-
vice (QoS) by dynamically creating logical network instances
that share the underlying physical network.

A case for end-to-end network slices. Slicing is primarily
limited to access networks in the mobile network architecture

1CHISEL’s code and data is at: http://opticalslice.network/.

User Equipment Base station Core Network Cloud WAN

applications

access network slice
Figure 1: Access network slices.

(Figure 1) [30]. In this setting, traffic from user equipments
(UEs) can be allocated a network slice for guaranteed QoS
on the access network. However, the remaining network path
from the radio access network (RAN) to the traffic destination
does not support the slicing abstraction. Many applications
(e.g., voice, live-video, gaming) require strong network per-
formance guarantees for reliable user experience. We aim to
enable this by extending network slices from user endpoints
all the way to the application server for an end-to-end QoS
guarantee. The strict performance requirements of service-
oriented traffic flows in next-generation mobile networks com-
pound the need for end-to-end network slices [2].
Slices of the wide-area network. Next-generation mobile
networks like 5G, offer a unique opportunity to implement
end-to-end network slicing. Unlike the monolithic implemen-
tation of previous generations of mobile wireless, 5G disag-
gregates the access and packet core capability. The disaggre-
gated access and packet core can be implemented as network
functions on cloud-hosted servers and accelerators (Figure 2).
The resulting cloudification of 5G networks has extended the
placement of mobile network functions from operator base
stations to cloud edges and datacenters [8]. Enabling end-to-
end network slices from user equipment to cloud edges and
datacenters requires a mechanism for slicing the cloud WAN.

Figure 2: Access network slices vs. end-to-end network slices.

Optical slicing. In this work we undertake the task of slicing
the wide-area network to implement end-to-end slices for net-
work transport in the era of disaggregated and cloud-hosted
mobile wireless networks. At their core, network slices pro-
vide dedicated bandwidth to their clients with strict QoS guar-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 859

http://opticalslice.network/

antees. While tunneling abstractions (e.g., MPLS tunnels [11],
IP-in-IP [35]) make similar promises regarding performance,
they fall short in practice (§2). By virtue of being built over
packet-switched networks, such tunneling abstractions suffer
from queuing delays and congestion at packet switches. These
phenomena weaken the latency and throughput guarantees
offered by tunneling, making them unsuitable for WAN slic-
ing. Instead, we propose to slice the wide-area network at the
physical or the optical layer.

We propose CHISEL, a system that provisions on-demand
optical slices of the WAN. CHISEL’s slices expose a network
connection of dedicated bandwidth and strict performance
guarantees to network tenants (e.g., mobile access providers)
of the cloud WAN. CHISEL slices provide one-hop connec-
tions between a source and destination router in the WAN
by provisioning an all-optical path between them. CHISEL’s
slices achieve traffic isolation and performance guarantees
on shared network infrastructure by optically bypassing all
electrical packet switching between the endpoints of the slice.

Challenges. Provisioning on-demand optical WAN slices is
challenging in practice for several reasons. First, while cloud
providers are financially incentivized to provide an end-to-
end slicing abstraction, the deployed network infrastructure
(optical switches, fiber, amplifiers etc.) must support exist-
ing inter-datacenter traffic. Thus, carving on-demand optical
slices requires accommodating slice requests in the partially
occupied optical spectrum on fiber without disrupting existing
traffic. Second, carving all-optical slices of the spectrum chal-
lenges physical limits like optical reach of signal transmission
on fiber. Finally, cloud operators use static channel maps to
assign optical spectrum to packet switches, making dynamic
spectrum slicing slow and potentially disruptive.

Contributions. We tackle these technical challenges by first
examining the utilization of spectrum in the optical backbone
of a large commercial cloud provider. We find that nearly 75%
of optical fiber spans in the cloud backbone have more than
75% of their spectrum freely available, showing that sufficient
spectrum is free for CHISEL to carve wide-area optical slices
(§3). We make the following contributions to leverage the
available optical spectrum for enabling WAN slices:

Optimal slice allocation. CHISEL formulates the problem
of dynamically allocating optical spectrum in cloud WANs as
an optimization. CHISEL’s optimization algorithm encodes
physical constraints of optical signal transmission — limited
optical reach, wavelength continuity and contiguity. CHISEL’s
algorithm can efficiently allocate optical slices in planet-scale
WANs in seconds without fragmenting the spectrum (§4, §5).

Rapid and hitless provisioning of slices. CHISEL develops
tools to implement optimal slice allocations computed by the
algorithm on WAN optical switches. CHISEL can program-
matically provision a slice of spectrum within 10 seconds
without disrupting the existing channels on fiber (§6).

Field and lab experiments for evaluation. We build a hard-

ware testbed to mimic a point-to-point wide-area fiber span
of 2,600 km to proof-of-concept optical slicing. Additionally,
we evaluate CHISEL in the field by provisioning a slice in an
educational WAN located in New York, USA. Both laboratory
and field experiments show that allocating on-demand optical
spectrum is not disruptive to existing traffic and CHISEL can
provision an optical slice in tens of seconds (§6).

Results. We show that CHISEL can compute slice allocations
for terabits of bandwidth within a few seconds. Moreover,
CHISEL takes tens of seconds to allocate an on-demand slice
on optical hardware. CHISEL’s allocations can be efficiently
packed with existing wavelengths without increasing spec-
trum fragmentation. Not only do CHISEL-provisioned optical
slices enable better performance guarantees and isolation than
packet-switched tunnels, they offer these benefits at a lower
price point. We show that CHISEL slices consume 3.3X fewer
router ports compared to traffic engineering (TE) tunnels of
the same bandwidth (§7).

General-purpose abstractions for optical circuit switch-
ing. We note that slicing optical spectrum on-demand is a
general idea that is broadly applicable to other settings where
network tenants require strict performance guarantees that
go beyond the ability of packet switched networks. We be-
lieve that cloudified 5G network operators would benefit from
CHISEL’s optical slices in the near term (§8).

2 CHISEL Design
CHISEL creates on-demand optical slices of the WAN, in
response to user requests. CHISEL’s users are the tenants
of the WAN, like cloudified access network operators [8].
Optical slices are optical tunnels, similar in function as tunnels
at higher layers of the networking stack (e.g., IP-in-IP, MPLS,
GRE) — they provide a bandwidth pipe between the two
ends of the slice. Unlike traditional tunnels, optical slices
provide guaranteed network bandwidth and quality of service
between endpoints. These strict guarantees are made possible
by dynamic reservation of physical resources on the optical
WAN. CHISEL’s slices eliminate packet switching on the slice
since bulk of network delays, packet drops and performance
jitter are caused at the router hops in the path [4].

0 5 10 15 20 25
Time (hours)

0

5

10

15

20

25

rtt
 (m

s)

Optical Routed

Figure 3: Latency difference of all-optical and routed paths between
the same endpoints in a WAN.

860 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Why optical slicing? We quantify the benefit of an optical
slice vs. a packet switched path in a production WAN. We
describe the detailed setup for this experiment in Appendix A.
We use isochronous round-trip testing or irtt measurements at
every 500 ms over the span of 24 hours to compare the latency
between the same endpoints in the WAN over an all-optical
path (like the ones enabled by CHISEL) and a routed path.
We find that despite keeping all factors the same, e.g., , the
underlying fiber path, the endpoint equipment, time of day
etc., the all-optical path outperforms the routed path in terms
of latency and jitter by a significant amount (Figure 3). Moti-
vated by this experiment and the intuition that optical paths
offer more predictable performance, we implement network
slicing in the wide-area at the optical layer.

What about statistical multiplexing? CHISEL slices the
WAN by carving chunks of optical spectrum, dynamically.
This is similar to circuit switching at the physical layer. One
might argue that packet switched paths offer a multitude of
benefits to networks, like statistical multiplexing [29] over
network resources and CHISEL is decidedly avoiding packet
switched long-haul paths. Moreover, circuit switching necessi-
tates the reservation of resources which can lead to inefficient
utilization of the network. However, the optical layer of cloud
WANs is massively over-provisioned by design (§3), making
abundant optical spectrum available for reservation with no
downside. Therefore, by using CHISEL, we are not making
the network inefficient in carrying existing traffic and are ad-
ditionally saving network tenants from the downside inherent
to routed paths — unpredictable performance.

Why is this new? Network operators incrementally provi-
sion capacity on long-haul fiber (§3). At first glance, these
well-known network capacity provisioning mechanisms seem
sufficient to achieve CHISEL’s goals [31]. However, CHISEL
must dynamically carve bandwidth on fiber at both line-rate
(§6) and sub line-rate granularity (§8) in operational networks
without causing side-effects to existing traffic. These require-
ments pose harder technical challenges in terms of system
design, hardware implementation and algorithmic complexity.
We focus on these challenges in this work.

Our contribution. CHISEL relies on the availability of op-
tical spectrum in operational cloud networks. We first show
that optical spectrum is available in abundance in large parts
of a cloud network (§3.3), making it feasible to carve it for op-
tical slicing. Spectrum allocation on an operational network is
subject to a number of complex physical constraints of signal
transmission on fiber and hardware limitations. We formulate
the problem of efficient spectrum slicing by encoding these
constraints as an optimization objective (§4) and solve it in
a few seconds for large WANs. Finally, implementing the
optimal allocation of optical slices computed by CHISEL’s op-
timization requires careful software design that works around
the limitations of current optical hardware. CHISEL acceler-
ates this by programmatically creating all-optical slices within

seconds on off-the-shelf optical hardware without disrupting
existing data-carrying channels (§6).

How will CHISEL enable end-to-end network slicing?
Radio-access network slices are created and managed by a
Network Slice Subnet Management Function (NSSMF) as
per the 3GPP standard [26]. Similarly, CHISEL will interface
with the transport NSSMF to provision WAN transport slices.
Together with the RAN and core NSSMFs, CHISEL will en-
able end-to-end slices from the user end point to the traffic
destination in next-generation mobile wireless networks.

3 Optical spectrum in long-haul fiber
Long-haul connectivity in wide-area networks is built with
optical wavelengths on fiber. Cloud providers provision their
WANs by laying fiber between cloud datacenters. Such fiber,
often referred to as “dark fiber”, is acquired by expensive
manual effort of laying fiber under the ground. Once acquired,
long-haul fiber is incrementally utilized for several decades.

Figure 4: shows how capacity between routers (in blue) is provi-
sioned by adding wavelengths via optical hardware (in pink). Provi-
sioned capacity translates to spectrum allocation on optical fiber.

Capacity is provisioned incrementally. Based on the es-
timated capacity required between routers, cloud operators
provision wavelengths on the fiber. Provisioning a wavelength
requires connecting ports on a packet router to an optical
switch or multiplexer which can add or drop an optical wave-
length onto connected fiber (Figure 4). A wavelength is a
unit of optical spectrum on fiber that is encoded with bits
egressing from router ports. Provisioning a wavelength incurs
bulk of the hardware cost of acquiring network capacity (e.g.,
router ports, transceivers, optical switch ports) and is done
incrementally as the need for more capacity arises.

A CB

A’ B’ C’
1 2 1 3

L3 links
L1 links

Spectrum chunk:1

Spectrum chunk: 2 Spectrum chunk: 3

L3 topology

A

B

C

Figure 5: Spectrum allocation to provision router edges A−B, A−C
and B−C. Edge A−B uses spectrum chunk 2 on optical span A′−B′.
Edge B−C uses chunk 3 on span B′−C′. Edge A−C uses chunk 1
on both spans A′−B′ and B′−C′.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 861

Optical spectrum is limited. A wavelength on fiber can
have variable spectral widths, corresponding to the size of
optical spectrum they occupy. Advances in optics and signal
processing have enabled transmitting over 100 wavelengths
on a single strand of fiber. However, the overall spectrum
on fiber is limited to the frequencies in the C-band of the
electromagnetic spectrum. Optical signals with frequencies
belonging to the C-band and nearby suffer the lowest loss as
they propagate. Therefore, most long-haul signal transmis-
sion in WANs is limited to the C-band. Figure 5 shows how
multiple wavelengths occupy the optical spectrum on fiber.

3.1 Spectrum translates to network capacity

Higher layers in the networking stack abstract network con-
nections as edges between routers, annotated with capacity.
The physical network underlying this graph abstraction trans-
lates edge capacities into allocations of optical spectrum in
fiber (Figure 5). The Shannon capacity [33] of a wavelength
i.e., the theoretical upper bound on the wavelength’s capac-
ity, is proportional to the width of spectrum allocated to the
wavelength. Thus, allocating larger chunks of spectrum leads
to higher data rates and vice versa.

Modulation format. Modulating the wavelength with higher-
order modulation formats (e.g., 8-QAM, 16-QAM) packs
more bits per symbol of the wavelength, resulting in higher
data rates or capacity of the wavelength. Overall, the choice
of spectral width and modulation format decides the data rate
of router ports that are the endpoints of a newly provisioned
network edge in the logical wide-area network.

Signal quality. Sustaining higher order modulation formats
requires a sufficiently high signal-to-noise-ratio or SNR — the
second factor that determines the Shannon capacity of a data
channel. Signal quality can be engineered by the operator only
to a certain extent. Factors outside the control of the operator
affect the signal quality e.g., impairments to fiber, noise and
power levels of amplifiers etc.Thus, the signal quality can
often limit the achievable data rates of wavelengths.

Optical reach. A consequence of the selected modulation
format is the reach of the optical signal. Optical reach is the
longest distance a signal can travel on fiber before it needs
to be regenerated. After traversing distances higher than the
optical reach on fiber, it is essential to regenerate signals to re-
cover data bits from the errored bits. Signal regenerations are
expensive in terms of hardware and power since they require
conversion of optical signals into electrical signals followed
by a conversion back into optical signals. Higher order mod-
ulation formats are more susceptible to signal attenuation
during transmission and therefore have shorter optical reach.

3.2 Spectrum usage in the wild

Operational networks provision wavelengths manually to-
day. Network operators keep offline channel maps that map
capacity between router ports to wavelengths and their corre-
sponding spectral widths on all fiber spans in the WAN. For

instance, in Figure 4 three router ports are multiplexed to feed
bits into the chunk of spectrum allocated on fiber towards
node B whereas a single port feeds bits to the smaller chunk
of spectrum on fiber towards node C.

Ideally, spectrum channel maps should be correct, efficient
and performant. Correct channel maps ensure that different
router ports are not allocated overlapping spectrum. Efficient
channel maps reduce the amount of spectrum used to provi-
sion the network as electromagnetic spectrum, especially the
C-band, is limited. Performant channel maps ensure that the
allocated spectrum meets the network capacity and optical
reach goals. For example, an operator intends to augment the
capacity between router ports in Austin, TX and New York
City, NY. In this case, the provisioned wavelength should have
an optical reach roughly equivalent to the distance between
the two cities ≈ 2,800 km. In Figure 5, to connect A and
C directly at the Network layer, an operator must provision
the same wavelength on both fiber spans A′−B′ and B′−C′.
Maintaining continuity of wavelength allocations across spans
is essential in fiber transmission to connect endpoints without
regenerations at intermediate hops, like B.

Regenerations or OEO conversions. Cloud providers op-
erate point-to-point optical networks [37]. In point-to-point
optical networks, physically adjacent locations in the WAN
are also adjacent electrically. In other words, all wavelengths
undergo optical to electrical to optical (OEO) conversion at ev-
ery hop in the network. Operators run point-to-point networks
for flexibility and operational simplicity. The OEO conversion
forces correction of errors that happen during transmission
of signals. In such networks, capacity between router ports
in Austin, TX and New York City, NY can be provisioned
using different wavelengths on multiple fiber spans connect-
ing the two cities. For instance, in Figure 5, A and C have
indirect connectivity via B. This connection is enabled by two
different wavelengths, 2 on A′−B′ and 3 on B′−C′.

Fully-loaded line systems. Cloud providers operate fully-
loaded line systems [14]. In such line systems only a frac-
tion of the optical spectrum is provisioned and connected to
router ports. However, the entire spectrum has optical chan-
nels traversing it. The optical channels that are not connected
to router ports simply carry noise generated by specialized
equipment. Network operators fully-load their optical line sys-
tems to ensure that the network will function as needed in the
future, when high network demands necessitate the allocation
of the entire spectrum. The steady-state of optical spectrum
in an operational cloud network appears fully utilized since
operators use fully-loaded line systems. Therefore, it is im-
portant to differentiate between noise-carrying wavelengths
and data-carrying wavelengths. Data-carrying wavelengths
are the ones that contribute to spectrum utilization since they
are allocated for provisioning capacity in the network.

862 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.00

0.25

0.50

0.75

1.00

25 50 75 100
Percent free spectrum in C−band

C
D

F
 o

ve
r

al
l f

ib
er

 s
pa

ns

(a) Percentage unused spectrum.

0.00

0.25

0.50

0.75

1.00

0 10 20 30
of free spectrum chunks

C
D

F
 o

ve
r

al
l f

ib
er

 s
pa

ns

(b) Number of unused spetrum chunks.

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100 125
size (# pixels) of free spectrum chunks

C
D

F
 o

ve
r

al
l f

ib
er

 s
pa

ns

max
mean

(c) Size of unused spectrum chunks.
Figure 6: Figure 6a shows the percentage of optical spectrum pixels that are free across all spans in a commercial cloud provider’s WAN.
Figure 6b shows the number of contiguous unused chunks of spectrum across all spans in the cloud provider’s network. Figure 6c shows the
size of unused regions of spectrum on fiber.

3.3 Available spectrum

We measure the state of optical spectrum on fiber spans of
a large commercial cloud provider. We collect which wave-
lengths (or frequencies) map to different ports of wide-area
optical switches or reconfigurable optical add/drop multiplex-
ers (ROADMs). Since the cloud provider runs a fully-loaded
line system, the data collected from optical switches alone
will not accurately inform us of the true spectrum alloca-
tion. Instead, we augment the Layer-1 data collected from
ROADMs with Layer-3 network capacity information that
maps router ports to ROADM ports. If we find that no router
ports map to a given part of the optical spectrum, we mark that
spectrum available. In this manner, we differentiate between
noise-carrying vs. data-carrying optical channels in the WAN.

The C-band consists of frequencies in the range 191100−
195900 Ghz. We discretize the frequency band into 128 pixels,
each corresponding to 37.5 GHz of frequency. Using the
cross-layer data, we mark which pixel is free vs. used by data-
carrying wavelengths for all spans in the planet-scale cloud
WAN. Since CHISEL’s goal is to allocate unused portions of
spectrum to slice requests, we quantify the unused spectrum
on optical spans of the WAN. Figure 6a shows that 75% of
optical spans have over 75% of their spectrum available. The
free pixels in the spectrum are concentrated in a small number
of contiguous chunks of free spectrum. Figure 6b shows that
free pixels in over 70% of spans are concentrated in less than
10 contiguous chunks. Finally, majority of spans have free
spectrum chunks that are less than 25 pixels wide (Figure 6c).

Implications for CHISEL. Our empirical analysis shows
that the physical layer of wide-area networks is heavily over-
provisioned in terms of optical spectrum on fiber. The main
reason for the low utilization of optical spectrum is the large
difference between switching capacity of state-of-the-art net-
work routers and data-carrying capacity of modern optical
fiber. Fiber can carry tens of terabits of traffic, which is a mag-
nitude higher than the total port capacities of a router linecard.
Moreover, operators incrementally deploy more router ports
to provision capacity but fiber is typically acquired by mul-
tiple strands in the same conduit. Large providers can fill

the the spectrum over the next several years from the time
they first acquire fiber. This fits well with CHISEL’s agenda —
there is sufficient free optical spectrum on fiber for CHISEL
to carve slices without impacting existing traffic.

4 Bandwidth slices in optical WANs
We formalize the problem of carving optical slices on opera-
tional optical cloud WANs. Our goal is to establish end-to-end
optical slices for access network operators using the available
optical spectrum in the cloud backbone.

4.1 Switching in the optical domain

CHISEL’s goal is to dynamically carve optical spectrum on
end-to-end wide-area paths. This task is subject to physi-
cal considerations of signal transmission on fiber. Moreover,
while CHISEL’s algorithm will be a part of a Layer 1 software-
defined controller [9, 12, 20, 34] optical switches should be ca-
pable of efficiently implementing decisions made by CHISEL.
We briefly discuss the signal transmission and hardware con-
siderations that shape CHISEL’s algorithm design.

Discrete units of spectrum. The entire spectrum on fiber
is limited to the C-band and parts of the L-band. Roughly,
there is 4,800 GHz of usable spectrum on fiber. We discretize
the spectrum into chunks of 37.5 GHz. While fiber carries
wavelengths, the decisions of routing wavelengths on different
fiber paths are made by the optical switches or ROADMs.
Each ROADM has a grid of pixels to represent parts of the
spectrum. A pixel is one unit of spectrum that the ROADM
can provision towards a wavelength that connects ROADM
ports to router ports. We denote the grid of an optical switch
(v) using Sv where Sv

i represents the ith pixel’s state. If Sv
i is

1, it means the corresponding part of the optical spectrum is
already in use and Sv

i = 0 implies the corresponding portion
of the spectrum is available to carve slices using CHISEL.

Slicing requests. CHISEL receives a set of slicing requests
from clients. Each request specifies the desired bandwidth
between a pair of source and destination WAN routers. We
represent every slice using the source and destination pair (sd)
of the slice. We represent the set of fiber paths between source

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 863

s and d using Psd . We compute the set of fiber paths using
Yen’s k-shortest path algorithm [40]. Each fiber path p ∈ Psd
is an ordered set of optical circuit switches or ROADMs and
v ∈ p means that path p contains switch v. The variable yp

sd
is an indicator that path p is chosen to carve slice sd,where
p ∈ Psd . We use xsd to refer to the vector of spectrum pixels
allocated to the sd slice. The vector xsd is indexed at position
j by x j

sd . x j
sd is binary.

4.2 Optimal slice allocation

In this section, we discuss the physical, hardware and opera-
tional constraints that impact optical slicing with CHISEL.

Pick only one path for a slice request. This constraint
ensures that of the possible fiber paths that can be selected for
carving the sd slice, CHISEL should select only one.

∑
p∈Psd

yp
sd = 1, ∀sd (1)

Using available parts of the spectrum for slices. The spec-
trum allocated to a slice on a fiber path must not overlap with
the spectrum that has already been allocated for carrying inter-
datacenter traffic in the cloud WAN. Sv is a binary vector that
represents the initial state of spectrum utilization on switch v.
Sv is a result of the existing capacity provisioned in the cloud
network before CHISEL can carve slices. Sv is an input to
CHISEL. The decision variable xsd in CHISEL’s optimization
is a binary vector of size M, where M is the total pixels in
every optical switch. xsd represents pixels allocated to the sd
slice. The following constraint ensures that CHISEL allocates
only the available portions of spectrum to slices:

(yp
sd = 1) =⇒ xsd · (Sv)ᵀ = 0, ∀sd, p ∈ Psd ,v ∈ p (2)

Non-overlapping use of spectrum slices. The spectrum
allocated to different slices by CHISEL should not overlap.
We encode this constraint as:

∑
sd

∑
p∈Psd ,p3v

yp
sd · xsd ≤ 1, ∀v ∈V (3)

The constraint selects switches (xsd) that are on the chosen
path (yp

sd) for a slice (sd) and ensures that a pixel on each
switch is allocated across all slices at most once. We use 1 to
present a vector of length M consisting of all 1s.

Spectral width. The spectral width of an optical slice is the
portion of the spectrum assigned to it by CHISEL. We denote
the spectral width of the sd slice with wsd .

j=M

∑
j=1

x j
sd = wsd , ∀sd (4)

Slice bandwidth. The bandwidth allocated to a slice is de-
cided by two factors: (1) the chosen path for the slice and (2)
the spectral width of the slice. The chosen path determines
the signal quality of the received signal. The signal quality, in
turn, determines which modulation format can the signal be

modulated with. Higher order modulation formats can pack
more bits on the channel, increasing their bandwidth. We
represent the modulation format of a optical path (p) with
mod(p). The data rate of a slice is the product of the spectral
width of the slice and the modulation format of optical path.

(yp
sd = 1) =⇒ wsd ·mod(p)≤ Bsd , ∀sd, p ∈ Psd (5)

Wavelength contiguity. Optical spectrum allocation is sub-
ject to the physical constraint of contiguity. As per this con-
straint, CHISEL must assign every slice contiguous parts of
the spectrum on fiber. Wavelength contiguity ensures efficient
use of the spectrum since every data channel on the fiber
must be separated from the next with guard bands. Chopping
the spectrum in non-contiguous smaller chunks increases the
number of guard bands, wasting the spectrum available for
carrying data. By allocating contiguous parts of the spectrum
to slices, CHISEL minimizes the number of guard bands.

To represent this constraint we track the first pixel that
transitions from used to unused states. We call this state the
toggle state and denote it by the binary variable t j

sd . Pixels
after the toggle state should not be used in a slice allocation.
We encode the contiguity constraint using three inequalities:

x j−1
sd ≤ x j

sd + t j
sd , ∀sd, j ∈ {2, . . .M} (6)

t j−1
sd ≤ t j

sd , ∀sd, j ∈ {2, . . .M} (7)

t j
sd + x j

sd ≤ 1, ∀sd, j ∈ {1, . . .M} (8)
The first inequality enforces the toggle to be 1 whenever

the j’th pixel transitions from used to unused. Inequality (7)
ensures that the toggle remains 1 after it is set, and (8) prevents
pixels to be used after the first transition from used to unused.
What about wavelength continuity? A key physical con-
straint for spectrum allocation on optical fiber is called wave-
length continuity constraint. This constraint ensures that the
pixels assigned to all switches on the path for a slice should
be the same. For instance, if pixels 2 and 3 are assigned to al-
locate a slice on one optical span of the selected path, all other
spans should also use pixels 2 and 3 for the slice. A discontin-
uous allocation of spectrum across optical spans necessitates
a conversion of the signal to the electrical domain to change
the wavelength of the channel. OEO conversions are expen-
sive and CHISEL avoids them. Instead of adding spectrum
continuity as a constraint to the optimization, CHISEL embeds
it in the formulation by assigning one spectrum allocation
decision variable (xsd) for all spans on the path of a slice.
This reduces the number of decision variables and constraints,
making CHISEL’s optimization scale to large problem sizes.
Objective. CHISEL’s goal is to maximize the bandwidth
provisioned towards slices. We express the overall slice band-
width as the total bandwidth allocated to all slices by CHISEL:

∑
sd

∑
p∈Psd

yp
sd ·wsd ·mod(p) (9)

864 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 Optical slicing with CHISEL

Inputs:
G〈V,E〉: optical network G, optical switches V and

fiber links E
Sv: binary vector indicating initial spectrum

utilization on the optical switch v
Psd : set of fiber paths between optical terminals s, d
Bsd : bandwidth request for the sd slice

mod(p): modulation format supported on path p
M: total pixels available on optical switches

Outputs:
yp

sd ∈ {0,1} 1 if fiber path p in Psd is selected to
carve the sd slice, 0 otherwise

xsd ∈ {0,1}M binary vector represents spectrum
allocated to sd

tsd ∈ {0,1}M binary vector represents toggle of xsd
wsd ∈ {1, . . .M} spectral width of the sd slice

Maximize: ∑sd ∑p∈Psd
yp

sd ·wsd ·mod(p)

subject to ∀sd, p ∈ Psd ,v ∈ p:
(1) ∑p∈Psd

yp
sd = 1

(2) (yp
sd = 1) =⇒ xsd · (Sv)ᵀ = 0

(3) ∑sd ∑p∈Psd ,i3v yp
sd · xsd ≤ 1

(4) ∑
j=M
j=1 x j

sd = wsd

(5) (yp
sd = 1) =⇒ wsd ·mod(p)≤ Bsd

(6) x j−1
sd ≤ x j

sd + t j
sd j ∈ {2, . . .M}

(7) t j−1
sd ≤ t j

sd j ∈ {2, . . .M}
(8) t j

sd + x j
sd ≤ 1 j ∈ {1, . . .M}

Managing spectral fragmentation. An important considera-
tion for CHISEL is to allocate slices in a way that does not in-
crease spectral fragmentation on fiber spans. Higher spectral
fragmentation makes it challenging to find large enough con-
tiguous free pixels in the spectrum. The lack of large chunks
of contiguous spectrum can hamper provisioning capacity in
the network. We encourage CHISEL to reduce spectral frag-
mentation by pushing the allocated slices to the extreme left
of the spectrum on any fiber span.

∑
sd

∑
p∈Psd

yp
sd ·wsd ·mod(p)+ ε∑

sd
∑
p
[yp

sd ·mod(p) ·
j=M

∑
j=1

t j
sd]

(10)

Key insight. Equation 10 sums the toggle variables for a
slice on every span. Recall that the toggle variables (t j

sd) are
set for all pixel counts higher compared to the one where the
spectrum allocation of a slice ends. Therefore, larger sum of
toggle variables means the slice allocation is to the left of the
spectrum since that will allow more toggle variables to be
set. By encouraging the allocations to be shifted to the left of
the spectrum, we aim to close gaps in allocations of CHISEL.

We trade-off the two goals i.e., allocating spectrum for most
slice requests and reducing spectral fragmentation using the
parameter ε. We set the value of epsilon empirically to achieve
high slice allocations with less spectral fragmentation in §5.4.

Implementation. Algorithm 1 summarizes CHISEL’s opti-
mization formulation for allocating slices in the WAN. We
implement Algorithm 1 in Python 3 and solve it using the
commercial solver, Gurobi [16]. We evaluate CHISEL on an
Ubuntu 22.04.1 server with 128 cores and 1024 GB RAM.

5 Slice allocation with CHISEL

We first evaluate our implementation of CHISEL’s optimiza-
tion formulation (Algorithm 1) on the optical WAN of a large
commercial cloud provider. We then show that our results are
robust on different publicly available network topologies.

Network topologies. We work with a large commercial
cloud provider to collect optical topology information in their
WAN. The physical topology consists of optical switches or
ROADMs and fiber spans that connect them. In addition to the
cloud provider’s network topology, we also evaluate CHISEL
on publicly available topologies in the Topology Zoo [39].
These topologies (G〈V,E〉) are input to an instance of Alg 1.
We compute k-shortest paths between all pairs of nodes in
the topology to provide possible fiber paths for slices (Psd in
Alg 1). We set k = 4 for the evaluation.

Initial spectrum state. We infer the spectrum utilization on
fiber spans of the commercial cloud WAN (§3.3). For each
fiber span, we construct a bitmap (Sv) of 128 pixels (M in
Alg 1), each pixel representing 37.5 GHz of the 4,800 GHz of
spectrum in the C-band. We collect spectrum channel maps
for all fiber spans in the cloud network and mark bits in the
bitmap to 1 if they are allocated to a data-carrying channel.
Figure 6a in §3.3 shows the percentage of unset bits in the
bitmap across all fiber spans. While Topology Zoo provides
several real network topologies, it does not have spectrum
utilization information for them. Instead, we use the bitmaps
from the cloud provider network as a distribution of spectrum
allocations. For every edge in a network from Topology Zoo,
we randomly sample a bitmap from the distribution to popu-
late the spectrum bitmaps of edges in all network topologies.

Modulation formats and fiber lengths. We use geographic
distance between the end points of individual fiber spans as a
proxy for the lengths of fiber spans. We derive the length of
fiber paths input to CHISEL by adding the lengths of individ-
ual fiber spans that compose the path. Modulation formats and
the corresponding data rates of wavelengths are a function of
the path length (Table 1). Thus, we assign modulation formats
to all paths input to CHISEL based on their fiber path length.

Mod. format QPSK 8-QAM 16-QAM

Data rate 100 Gbps 150 Gbps 200 Gbps
Optical reach 5,000 km 2,500 km 800 km

Table 1: Data rates and optical reach of sigal modulation on fiber.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 865

Hardware pixel counts. State-of-the-art flexgrid ROADMs
can allocate spectrum to wavelengths in increments of 6.25
GHz. Ideally, 6.25 GHz should be the width of one pixel
for CHISEL. However, optical line-side ports on ROADMs
operate at coarser granularity of spectrum, traditionally 37.5
GHz and above. Moreover, very fine-grained allocation of
spectrum increases the number of variables that CHISEL has
to contend with (xsd in Algorithm 1). Given CHISEL solves a
mixed-integer program, a class of problems well known for
being NP-Hard, increasing the width of a pixel also improves
the scalability of CHISEL. Therefore, we set each pixel to
have a width of 37.5 GHz while evaluating CHISEL. We note
that this is not a fundamental limitation of CHISEL but a
hyperparameter that the operator can set for their network.

5.1 Efficiency of slice allocations

We generate slice requests on the cloud WAN to test what
fraction of them can get allocated by CHISEL. We scale the
number of slice requests input to CHISEL and observe what
fraction of overall bandwidth demands can be successfully
allocated on the cloud WAN.
Granularity of slice allocations. In practice, customers of
CHISEL can request a variety of slice bandwidths, similar
to numerologies in 5G parlance. To test this, we allow each
slice request to select a bandwidth value from 50 Gbps to
200 Gbps in discrete increments of 50 Gbps. For each slice
request, we randomly sample a bandwidth value from the set
[50, 100, 150, 200] Gbps. Figure 7 shows the percentage of
overall slice bandwidth requests were successfully allocated
by CHISEL on the cloud WAN. The shaded region shows the
std. deviation from the mean allocation across five instances
of the experiment for each data point. For smaller number
of slice requests, CHISEL can allocate nearly 100% of the
requests but as we increase the number of slices beyond 50,
CHISEL is limited by the availability of contiguous spectrum
in the WAN. Interestingly, we find that only a handful of fiber
spans are bottlenecks in allocating more spectrum.

50 100 150 200
Number of slices

0

20

40

60

80

100

Al
lo

ca
te

d
de

m
an

ds
 (%

)

Figure 7: shows the percentage of slice bandwidth requests CHISEL

can optimally allocate on the cloud wide-area network.

5.2 Scalability of the algorithm

The mixed integer program (MIP) in Algorithm 1 forms the
core of CHISEL. MIPs are difficult to scale to large prob-

lem sizes. We pay attention to these scaling challenges while
both designing the MIP and providing it inputs. For instance,
we obviate the need to encode continuity constraints (§4)
for slices and decide appropriate pixel widths to reduce the
number of decision variables in Algorithm 1. For MIPs, com-
mercial solvers like Gurobi allow setting a MIP gap which is
the difference between the solution found by Gurobi and the
optimal solution. Gurobi estimates the optimal by relaxing
the integer program to a linear program which can be solved
quickly. The MIP gap parameter tells Gurobi to find solutions
that are close to the optimal. We set the MIP gap to 2%, a
small percentage away from optimal, for the next set of ex-
periments. We evaluate the time it takes for the optimization
to converge to a solution within 2% of optimal.
Scaling with the number of slice requests. Figure 8a shows
the time needed to solve Algorithm 1 as we increase the
number of slice requests. We find that CHISEL’s optimization
can be solved within 12 seconds on average for up to 200
slice demands, allocating optical spectrum for up to 40 Tbps
across all slices. To put this in context, a well-known resource
allocation problem in WANs, traffic engineering (TE), routes
traffic on an existing Layer 3 network graph. The time budget
to compute optimal routes in TE is nearly five minutes [24].
Scaling with slice granularities. Next, we show how long
CHISEL takes to allocate slices at different granularities. We
allow slices to request bandwidth from ranges [50, 100, 150,
200] Gbps, [150, 200, 250, 300] Gbps, [250, 300, 350, 400]
Gbps and [350, 400, 450, 500] Gbps. Figure 8b shows that
it takes longer for CHISEL to allocate large slices close to
500 Gbps per slice. This is because it is harder to find large
contiguous chunks of spectrum that already do not have data-
carrying channels on it vs. allocating smaller chunks needed
for small slice granularity. We show the modulation formats
of CHISEL-provisioned slices in Appendix B.
Scaling with network sizes. Figure 8c shows how well our
findings generalize to other network topologies aside from the
one of the commercial cloud provider. We find that CHISEL
can scale to different realistic network topologies and slice
counts while staying within 2% of the optimal solution. For
all networks in Figure 8c, CHISEL takes less than 30 seconds
to converge to a solution that is 2% away from the optimal.

5.3 Bounded sub-optimality for fast runtime

We evaluate how CHISEL performs in tight time budgets of
cloud operators who need to provision optical slices rapidly.
To do this, we give Gurobi small time budgets and evaluate the
quality of solutions found for Algorithm 1 within these time
budgets. We find that for small slice bandwidths, CHISEL can
find solutions with less than 2% MIP Gap within 5 seconds.
So, we focus on the time vs. MIP gap tradeoff for larger
slice bandwidths in Figure 9. It shows how far the solution
is from the optimal when the solver is given a time budget.
We find that CHISEL converges to within 5% of optimal in
thirty seconds even for large slice bandwidth requests (e.g.,

866 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

50 100 150 200
Number of slices

0.0

2.5

5.0

7.5

10.0

12.5

Ti
m

e(
s)

(a) Solver time vs. slice count.

50-200 150-250 250-400 350-500
Slice granularity (Gbps)

10

20

30

40

Ti
m

e(
s)

(b) Solver time vs. slice granularity.

CLOUDWAN IBM ABILENE ATT
WAN

5

10

15

20

25

30

Ti
m

e
(s

)

(c) Solver time vs. network topology.
Figure 8: Figure 8a the time taken by CHISEL to allocate different number of slices. CHISEL can efficiently compute slice allocations within
2% of optimal in less than 10 seconds for up to 200 slices. Figure 8b measures the effect of slice granularities on how long CHISEL takes to
compute solutions. We show that CHISEL takes longer to find large slice (350−500 Gbps per slice) allocations. Figure 8c shows how the time
to compute slice allocations with CHISEL changes for different network topologies. All experiments are repeated five times with different
randomly sampled slices bandwidths. The shaded region around data points show the 25 and 75 percentile of results.

300–750 Gbps per slice). While there is a small improvement
in MIP Gap when the time budget is increased to 60 seconds,
increasing the budget past 90 seconds is not needed since the
problem has converged to optimal.

30 60 90 120
Time limit (s)

0

1

2

3

4

5

M
IP

 G
ap

 (%
)

Figure 9: shows how CHISEL can tradeoff optimality for faster
runtime in practical deployments.

5.4 Spectral fragmentation

In §4 we formulate two goals for CHISEL. The first (Equa-
tion 9) objective maximizes the bandwidth allocation across
all slice requests. The second (Equation 10) objective maxi-
mizes the bandwidth allocation across slices while attempting
to push all allocations on the low end of the optical spectrum.
This formulation aims to reduce the fragmentation of spec-
trum by incentivizing the solver to allocate all slices in the
lower frequencies. We evaluate the effect of both objectives
on the amount of fragmentation and the allocated bandwidth.

We increase the value of ε in Equation 10 from 0.01 to 1 to
vary the importance of fragmentation awareness in CHISEL.
To show the effect of fragmentation clearly, we start with
empty spectrum allocation on all spans of the cloud network
and then allocate 200 slices in the range 50−200 Gbps. Fig-
ure 10 compares the fragmentation index (Eq 11) for all spans
in the network and finds that operators can set ε to minimize
fragmentation while allocating all slice requests.

F = 1− largest block of free spectrum
Total free spectrum

(11)

0 100 200 300 400 500
Number of spans

0.0
0.2
0.4
0.6
0.8

fra
gm

en
ta

tio
n

in
de

x

100.00%

91.00%
73.85%19.46%

97.91%

Epsilon=0.01
Epsilon=0.05
Epsilon=0.1

Epsilon=1
Epsilon=0

Figure 10: Fragmentation index of spectrum on spans with various
degrees of fragmentation awareness in CHISEL. Each curve is anno-
tated with percentage of allocated bandwidth across slices.

6 Hardware Evaluation
Once CHISEL computes slice allocations (§5), it must pro-
gram these allocations on to the hardware. In this section,
we discuss the process of physically allocating spectrum on
optical fiber. We experiment with slice allocation on a labora-
tory hardware testbed that mimics a single optical span in a
production network. We then repeat these experiments in the
field in the optical WAN of an ISP in NY state.
Lab experiment setup. In the lab we replicate a typical
optical span in cloud WANs using the optical line system
equipment from the equipment manufacturer, VENDOR-A.
The span connects two optical switches with 2,600 km of opti-
cal fiber. The two end points of the span have optical switches
or ROADMs which can add/drop wavelengths on the fiber.
ROADMs come in the form of linecards that fit into optical
shelves which are multiple rack unit chassis devices. The
2,600 km fiber span is constructed using fiber spools. Like
in a typical production setting, we connect an amplifier node

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 867

at every 80–100 km of fiber distance on this span. Overall,
our testbed has 26 nodes in as many shelves where node 0
and node 25 have ROADM cards. Figure 11a shows one of
the 26 shelves in our hardware testbed. We loaded this span
with three bi-directional channels added and dropped at the
ROADMs at the endpoints. The channels are roughly posi-
tioned at 25% 50% and 75% points of the C-band spectrum.

Field experiment setup. We verify our findings by repeat-
ing the lab tests in the production network of a regional ISP
connecting universities, ISPWAN, in New York state. We
were given access to ROADMs in two locations in ISPWAN.
These two ROADMs are connected by a multi-hop optical
path spanning ≈ 300 km. ISPWAN’s optical line system is
from the equipment manufacturer, VENDOR-B. Figure 11b
shows one of shelves of VENDOR-B line system equipment
used in ISPWAN.

6.1 Adding optical channels on fiber spans

We begin our experiments in the lab testbed. The optical line
system in the lab consists of VENDOR-A equipment. Mod-
ifications to the VENDOR-A line system can be done using
a GUI (Figure 16 in Appendix C.1). To provision a channel,
we first create a software port and assign it a center frequency
and spectral width. In all our lab testbed experiments, we
use channels of spectral width 37.5 GHz, same as the pixel
width in CHISEL’s algorithm. We repeat the same steps for
configuring ports on the ROADM at the far end of the span.

Equalizing power levels. After provisioning the new channel,
the channel has to be built by the line system. Figure 16 in
Appendix C.1 shows the GUI status while a channel is being
built. Building the channel requires the proprietary vendor line
system controller to communicate with all nodes in the span,
including the amplifiers and the ROADMs about the newly
provisioned channel. Finally, the power levels of all amplifiers
on the span are equalized to ensure that the new spectrum on
the fiber receives adequate amplification power. We note that
building of the channel and equalizing its power consumes
the bulk of the time to provision the channel. Depending on
the vendor ecosystem and number of nodes on the span, it
takes roughly five minutes to provision a channel.

6.2 Effect on existing data channels

Previous work has expressed concerns about the adverse ef-
fects of adding new wavelengths on existing channels in fiber
spans [42]. Since CHISEL must provision channels to meet
slicing requests, we set out to measure how addition and
removal of channels on the testbed fiber span impacts the
quality factor (Q-factor) of existing channels. Recall that the
hardware testbed has 3 existing channels (six bidirectional
channels) on it. We remove one of the channels by deleting
the software port and tearing down the L1 connection between
the software ports. We verify, by measuring receive power
of the deleted channel at the endpoints of the span, that the
channel has indeed been removed. We add the channel back

soon after it has been removed. We repeat this experiment
with a second channel. We find that the remaining channels
on the span, regardless of their position in the spectrum, re-
main unaffected with both the addition and the removal of
new channels (Figure 11c).

Finally, we repeat this experiment in the field. We note that
ISPWAN uses a different optical line system than the one
in our lab. However, this line system is also primarily pro-
grammed using a GUI. We add a wavelength at the ROADM
located in CITY-B and drop the wavelength at the ROADM
in CITY-A. During the process, the existing telemetry mecha-
nism in the production network is gathering the performance
statistics. Figure 11d shows the Q-factor of existing chan-
nels on the span (not including the wavelength we added).
Confirming the findings from our lab experiment, the figure
shows that all wavelengths on the path remain unaffected by
the addition of the new channel.

6.3 Latency of provisioning channels

We used the equipment from two major vendors of optical
line systems in WANs and found that both use GUI-based
management tools for creating and deleting channels. These
tools only allow configuring channels and equalizing them
serially at every node on the span. In our experiments, the
process of creating and equalizing channels took ≈5 minutes
for spans with moderate number of nodes on the path. We set
out to investigate if creating channels programmatically would
significantly reduce the delay of provisioning wavelengths.
Benefits of automating provisioning. VENDOR-B provides
a REST API for configuring their line system. Seldom used
in practice by network operators, we leverage the REST inter-
face to programmatically add optical channels in a lab setup
of the VENDOR-B line system. Our tool first provisions the
software port on the ROADM for a new channel and con-
figures its position in the spectrum and spectral width. Our
tool uses channels of 50GHz spectral width since it was the
only available width on this ROADM. It then equalizes the
power on nodes in the path. We repeat the provisioning of a
channel rapidly using our tool and find that on average it takes
8 seconds seconds to add a new channel. Therefore automa-
tion shaves off most of the observed latency of provisioning
channels seen by network operators.
Parallel equalization of power. In an attempt to reduce the
latency of provisioning a channel, CHISEL’s automatic pro-
visioning tool equalizes the channels in parallel instead of
sequentially. We find equalizing in parallel can further reduce
the latency of provisioning wavelengths significantly in prac-
tice. We release our tool to aid operators in rapid provisioning
of channels in their networks.
Contrast with heavily-loaded spans. Our findings in §6.1
are from networks with lightly loaded spectrum, both in the
lab (Figure 11c) and in the field (Figure 11d). Large portions
of the spectrum in these settings were free. To ensure that
our findings hold in heavily loaded optical networks, we use

868 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Optical shelf (VENDOR-A). (b) Optical shelf (VENDOR-B).

0.0

2.5

5.0

7.5

10.0

15:00 20:00 25:00 30:00 35:00
Time (Minutes:Seconds)

Q
Fa

ct
or

(c) Q-factor (lab experiment).

0.0

2.5

5.0

7.5

10.0

12.5

30:00 00:00 30:00
Time (Minutes:Seconds)

Q
Fa

ct
or

(d) Q-factor (field experiment).
Figure 11: Figure 11a one shelf of equipment that forms one node in the 26 node hardware testbed used by CHISEL. Figure 11c shows that the
addition and removal of channels does not affect the Q-factor of existing wavelengths on the same fiber. Figure 11d shows the same effect in
the field. Q-factor of the channel that is being added is not shown in Figure 11d.

CHISEL’s tool to programmatically provision wavelengths
that fill the optical spectrum on fiber and monitor the effect
of adding these wavelengths on existing channels on the span.
We provide details of this setup in Appendix C.1. Over time,
we kept adding wavelengths to the span and monitoring the
two channels that are connected to data sources. Figure 12
shows that even with increasing spectrum utilization, addition
of new waves does not disrupt signal transmission on the
existing wavelengths on the span. Figure 17 shows the fully-
loaded spectrum at the end of our experiment. In summary,
our experiments show that it is safe to provision wavelengths
incrementally as instructed by CHISEL’s algorithm.

0 200 400 600 800
Time (s)

0

2

4

6

8

10

qf
ac

to
r

25.0% 50.0% 75.0% 100%

Channel 1 Channel 2

Figure 12: Impact of adding new wavelengths on fiber as a function
of percentage spectrum occupied by existing channels.

7 CHISEL vs. wide-area traffic engineering
An alternative to optical slicing with CHISEL is using Layer
2 or Layer 3 tunnels for allocating bandwidth between end-
points in the WAN. This approach is used by WAN traffic
engineering (TE) [18, 19, 23]. Cloud providers deploy TE to
efficiently use their network infrastructure [18, 19, 23]. TE
systems take demands between sources and destinations as
input to solve a multi-commodity flow problem that allocates
demands on network tunnels. Network tunnels are built by
tunnelling protocols like MPLS [32], IP-in-IP [35], GRE [25]
etc.At the optical layer, cloud WANs are point-to-point which
means that the tunnel abstraction of Layer-2 and above is
enabled by a series of one-hop optical links [37].

We contrast the two approaches of allocating bandwidth,
CHISEL vs. WAN TE, along the axis of marginal hardware

expense needed to provision the bandwidth. We assume that
CHISEL and network TE take the same hop paths in the net-
work with one difference — CHISEL constructs an end-to-
end optical slice over the path while TE constructs a packet
switched tunnel over the path. We compare the hardware cost
of allocating slices using CHISEL with that of allocating equal
bandwidth using TE. We implement the most commonly used
TE formulation that maximizes network throughput [18, 23].
Both the TE algorithm and CHISEL allocate the bandwidth
requests and we compute the number of router ports required
to provision the slice requests for both. TE tunnels carry traf-
fic that undergoes OEO conversion at every hop by design
and thus consumes router ports not only for adding (dropping)
traffic at the source (destination) router but also at all interme-
diate hops. In contrast, an all-optical slice from CHISEL only
needs router ports at the slice source and destination router.

Figure 13 shows the number of network ports used in provi-
sioning different number of slices in the cloud WAN. We find
that allocating bandwidth using CHISEL’s slices not only im-
proves performance under strict QoS requirements (Figure 3)
but is also significantly cheaper in terms of the hardware
cost of provisioning network bandwidth compared with cloud
WAN TE. On average, CHISEL-provisioned slices consume
2.6−3.3X fewer router ports than an equivalent TE tunnel.

25 50 100 150 200
Slices

0

500

1000

1500

Nu
m

be
r o

f p
or

ts

3.3x
3.1x

2.9x
2.6x

2.6x

Chisel TE

Figure 13: Hardware cost reduction using CHISEL vs. TE.

8 Giving tenants access to optical slices
Once CHISEL computes optimal allocations to slice requests
(§5), it provisions the slices on the optical line system (§6).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 869

The final step of provisioning an end-to-end slice is to give
the network tenants access to the provisioned optical slice.
In this section we discuss the mechanism CHISEL uses to
furnish optical slices to its clients. CHISEL exposes the slice’s
allocated bandwidth using ports on WAN routers. Since slice
allocations are dynamic, CHISEL needs a mechanism to map
the slice to router ports dynamically. If this mapping is static,
CHISEL would need to reserve router ports and potentially
waste the allocated ports if they were not needed.

1
2

3
4

5

Pa
ck

et
 S

w
itc

h A

C
C

M
D

C N
1

RO
AD

M

6

N
2

Figure 14: Mapping router ports to optical spectrum.

Dynamically mapping router ports to slices. CHISEL
uses colorless, directionless multiplexers and demultiplexers
(CCMDs) which connect multiple ports of WAN routers to
the client port of the ROADM using coherent optical transpon-
ders. Each of these transponders are tuned to generate signals
of specific wavelengths. Once CHISEL has provisioned the
slice, it can program the ROADM to select wavelengths in-
cident on the client port that correspond to the appropriate
router ports. For instance, Figure 14 shows that the ROADM
can select ports 1, 2, 3 to drop traffic from those ports into the
allocated optical slice. While the remaining router ports (4,
5, 6) are connected to the same CCMD and ROADM client
port C, the ROADM can select alternate routes for traffic from
those ports by dropping their channels on a different network
port of the ROADM (e.g., N2). CCMDs are common and
relatively inexpensive equipment that can be leveraged by
CHISEL to make allocated spectrum available on router ports.

8.1 Sub-rate optical slices with OTN switching

Our evaluation of CHISEL (§6) allocates slices at the gran-
ularity of 37.5 GHz of the optical spectrum. A slice of this
spectral width can carry up to 200 Gbps of traffic depending
on the signal quality of the channel in fiber, length of the
fiber path and modulation format with which the channel is
encoded. While we expect cloudified access networks require
large optical slices for service-oriented traffic classes (e.g.,
voice over IP, tele-presence), some clients of CHISEL might
want to carve smaller chunks of the optical spectrum.

We discuss whether CHISEL can be used to to carve smaller
bandwidth slices. We note that the CHISEL spectrum alloca-
tion algorithm (Algorithm 1) is agnostic to pixel width and
can compute allocations of spectral widths as small as 6.25
GHz. This is in line with the the capability of state-of-the-art
flexgrid ROADMs that can only allocate spectrum in multi-
ples of 6.25 GHz pixels. The challenge of allocating spectrum
at this fine granularity lies in the lower bound on the spectrum
expected at the client port of a ROADM (Figure 14). The

minimum width of spectrum that the client port of a ROADM
can add or drop on the fiber is restricted by the minimum spec-
trum of light produced by optical transponders that connect
router ports to ROADM client ports. This lower bound is 37.5
GHz for the line system equipment we work with.

However, the problem of carving sub-rate slices i.e., slices
that need bandwidth lower than that one a single wavelength
on fiber, can be solved using Optical transport networking
(OTN) switches. OTN switches can multiplex sub-rate chan-
nels from router ports in the time domain to feed a larger wave-
length to the ROADM client port. The use of OTN switches
will not change how the CHISEL algorithm functions but will
change how sub-rate slices are made available to clients.

9 Related Work
We now place CHISEL in the context of related work:

Optical reconfigurability in WANs. Researchers have de-
veloped techniques to reconfigure the optical backbone to
improve throughput [38] and reliability [42]. For instance,
RADWAN [38] adapts data rates of long-haul links in re-
sponse to changes in signal quality. ARROW [42] recovers
from fiber cuts by migrating wavelengths to alternate paths.
CHISEL uses similar ideas of optical reconfiguration as these
systems but solves a very different challenge: that of opti-
cal spectrum slicing. Previous work in networked systems
has largely ignored the problem of spectrum management,
especially at the scale and time budget demanded by network
slicing. OWAN [21] schedules transfers on existing optical
circuits in the WAN to meet long-running bulk transfers. In
contrast, CHISEL establishes new circuits in operational net-
works for slicing without impacting engineered traffic. The
resources allocated by OWAN are optical circuits whereas the
resource allocated by CHISEL is optical spectrum, similar to
radio spectrum allocation in RAN slicing. As a result, chal-
lenges faced by CHISEL are around fast spectrum allocation,
spectral fragmentation and hardware support for dynamic
spectrum allocation in WANs.

Optical network design. ISPs have studied the design of
optical networks in depth [5, 6, 7, 10, 15, 27, 28]. Shoofly [37]
solves a similar problem in the context of cloud providers.
Shoofly uses optical bypass to lower the cost of provisioning
capacity in cloud WANs. In contrast, CHISEL is solving a
runtime problem and not a design-time problem.

Spectral allocation. Optical communication researchers
have studied the problem of spectral allocation and fragmen-
tation in fiber [41]. However, they approach spectral allo-
cation as a network capacity provisioning problem that is
done infrequently. Authors of [31] discuss the problem of
assigning wavelength to circuits in a traffic demand matrix
without considering existing traffic on the network. In con-
trast, CHISEL considers existing traffic on the network and
also models the hardware constraints into the algorithm. In
contrast, CHISEL works in tandem with traffic engineering

870 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and allocates spectrum at fine granularity for optical slices.
Our goal with CHISEL is to not replace existing network
provisioning or network traffic engineering. Instead, CHISEL
introduces a new way of rapidly allocating bandwidth at the
physical layer for clients who need it.

Elastic spectrum slicing. Researchers have established elas-
tic bandwidth circuits using optical frequency division multi-
plexing (OFDM) modulation format and variable bandwidth
cross connects (OXC) [22]. This work builds a mechanism to
dynamically change the bandwidth associated with a circuit
in the spectrum domain. It is complementary to our work
since CHISEL’s algorithm determines how much bandwidth
to allocate to each circuit and can be modified to work with a
different circuit switch’s characteristics.

Wide-area traffic engineering TE is a related problem that
allocates bandwidth along tunnels in WANs using a central-
ized, software-defined controller [19, 23, 36].

RAN slicing. There has been a lot of work on slicing the
radio access network and algorithms for slicing with high
efficiency [13]. CHISEL is complementary to RAN slicing
and in fact extends the reach of RAN slicing to WANs.

10 Conclusions
We develop CHISEL, a system that creates slices of optical
spectrum on fiber. CHISEL’s algorithm computes bandwidth
optimal slice allocations that consume 2.6−3.3X fewer router
ports compared to Layer-3 traffic engineering. CHISEL dy-
namically allocates spectrum slices while limiting spectral
fragmentation. CHISEL programs spectral allocations auto-
matically within seconds without impacting existing data-
carrying channels on fiber. We have released CHISEL’s ex-
perimental data, implementation and automation tools [3].

References
[1] 3GPP. 3GPP TS 23.501 version 16.6.0 Release 16.

Technical report, 2020.

[2] 3GPP. Service requirements for enhanced V2X scenar-
ios. Technical report, 2020.

[3] Anonymous. Chisel Code and Data. http://
opticalslice.network.

[4] Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed,
Mohammad Alizadeh, and Hari Balakrishnan. Toward
formally verifying congestion control behavior. In Pro-
ceedings of the 2021 ACM SIGCOMM 2021 Conference,
SIGCOMM ’21, page 1–16, New York, NY, USA, 2021.
Association for Computing Machinery.

[5] Ajay Kumar Bangla, Alireza Ghaffarkhah, Ben Preskill,
Bikash Koley, Christoph Albrecht, Emilie Danna, Joe
Jiang, and Xiaoxue Zhao. Capacity planning for the
google backbone network. 2015.

[6] M. Birk, G. Choudhury, B. Cortez, A. Goddard, N. Padi,
A. Raghuram, K. Tse, S. Tse, A. Wallace, and K. Xi.
Evolving to an sdn-enabled isp backbone: key technolo-
gies and applications. IEEE Communications Magazine,
2016.

[7] A. Brzezinski and E. Modiano. Dynamic reconfigura-
tion and routing algorithms for ip-over-wdm networks
with stochastic traffic. Journal of Lightwave Technology,
23(10):3188–3205, 2005.

[8] Microsoft News Center. AT&T to run its mobility net-
work on Microsoft’s Azure for Operators cloud, deliver-
ing cost-efficient 5G services at scale, 2021.

[9] Mayur Channegowda, Reza Nejabati, and Dimitra Sime-
onidou. Software-defined optical networks technology
and infrastructure: Enabling software-defined optical
network operations (invited). J. Opt. Commun. Netw.,
5(10):A274–A282, Oct 2013.

[10] Angela L Chiu, Gagan Choudhury, George Clapp,
Robert Doverspike, Mark Feuer, Joel W Gannett, Janet
Jackel, Gi Tae Kim, John G Klincewicz, Taek Jin Kwon,
et al. Architectures and protocols for capacity effi-
cient, highly dynamic and highly resilient core networks.
IEEE/OSA Journal of Optical Communications and Net-
working, 2011.

[11] Cisco. What is MPLS - Multiprotocol La-
bel Switching. https : / / www . cisco . com /
c / en / us / products / ios-nx-os-software /
multiprotocol-label-switching-mpls / index .
html, (Accessed on 2021-01-20).

[12] N. Cvijetic, A. Tanaka, P. N. Ji, K. Sethuraman, S. Mu-
rakami, and T. Wang. SDN and OpenFlow for dynamic
flex-grid optical access and aggregation networks. Jour-
nal of Lightwave Technology, 32(4):864–870, Feb 2014.

[13] A. Destounis, G. Paschos, S. Paris, J. Leguay,
L. Gkatzikis, S. Vassilaras, M. Leconte, and
P. Medagliani. Slice-based column generation
for network slicing. pages 1–2, 2018.

[14] Mark Filer, Hacene Chaouch, and Xiaoxia Wu. To-
ward transport ecosystem interoperability enabled by
vendor-diverse coherent optical sources over an open
line system. Journal of Optical Communications and
Networking, 10(2):A216–A224, 2018.

[15] Jennifer Gossels, Gagan Choudhury, and Jennifer Rex-
ford. Robust network design for ip/optical backbones.
IEEE/OSA Journal of Optical Communications and Net-
working, 11(8):478–490, 2019.

[16] Gurobi. GUROBI Optimization. https://www.
gurobi.com/, (Accessed on 2019-10-02).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 871

http://opticalslice.network
http://opticalslice.network
https://www.cisco.com/c/en/us/products/ios-nx-os-software/multiprotocol-label-switching-mpls/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/multiprotocol-label-switching-mpls/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/multiprotocol-label-switching-mpls/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/multiprotocol-label-switching-mpls/index.html
https://www.gurobi.com/
https://www.gurobi.com/

[17] Pete Heist. IRTT (Isochronous Round-Trip Tester) .
https://github.com/heistp/irtt, 2021.

[18] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with Software-driven
WAN. SIGCOMM, 2013.

[19] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-
Fares, Min Zhu, Richard Alimi, Kondapa Naidu B.,
Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu
Liang, Kirill Mendelev, Steve Padgett, Faro Rabe, Saikat
Ray, Malveeka Tewari, Matt Tierney, Monika Zahn,
Jonathan Zolla, Joon Ong, and Amin Vahdat. B4 and
after: Managing hierarchy, partitioning, and asymmetry
for availability and scale in google’s software-defined
wan. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, SIG-
COMM ’18, page 74–87, New York, NY, USA, 2018.
Association for Computing Machinery.

[20] Chris R. Jackson, Reza Nejabati, Fernando Agraz, Al-
bert Pagès, Michael Galili, Salvatore Spadaro, and Dim-
itra E. Simeonidou. Demonstration of the benefits of
SDN technology for all-optical data centre virtualisation.
Optical Fiber Communication Conference, page Tu3L.3,
2017.

[21] Xin Jin, Yiran Li, Da Wei, Siming Li, Jie Gao, Lei Xu,
Guangzhi Li, Wei Xu, and Jennifer Rexford. Optimiz-
ing bulk transfers with software-defined optical WAN.
SIGCOMM, 2016.

[22] Bartłomiej Kozicki, Hidehiko Takara, Yukio Tsuk-
ishima, Toshihide Yoshimatsu, Kazushige Yonenaga,
and Masahiko Jinno. Experimental demonstration of
spectrum-sliced elastic optical path network (slice). Opt.
Express, 18(21):22105–22118, Oct 2010.

[23] Umesh Krishnaswamy, Rachee Singh, Nikolaj Bjørner,
and Himanshu Raj. Decentralized cloud wide-area net-
work traffic engineering with BLASTSHIELD. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 325–338, Renton, WA,
April 2022. USENIX Association.

[24] Umesh Krishnaswamy, Rachee Singh, Paul Mattes, Paul-
Andre C Bissonnette, Nikolaj Bjørner, Zahira Nasrin,
Sonal Kothari, Prabhakar Reddy, John Abeln, Srikanth
Kandula, Himanshu Raj, Luis Irun-Briz, Jamie Gaudette,
and Erica Lan. OneWAN is better than two: Unifying a
split WAN architecture. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
23), pages 515–529, Boston, MA, April 2023. USENIX
Association.

[25] Tony Li, Dino Farinacci, Stanley P. Hanks, David Meyer,
and Paul S. Traina. Generic Routing Encapsulation
(GRE). RFC 2784, March 2000.

[26] Affirmed Networks. Network slice management . Tech-
nical report, 2020.

[27] P. Papanikolaou, K. Christodoulopoulos, and E. Var-
varigos. Joint multi-layer survivability techniques for
ip-over-elastic-optical- networks. IEEE/OSA Journal
of Optical Communications and Networking, 9(1):A85–
A98, 2017.

[28] P. Papanikolaou, K. Christodoulopoulos, and E. Var-
varigos. Optimization techniques for incremental plan-
ning of multilayer elastic optical networks. IEEE/OSA
Journal of Optical Communications and Networking,
10(3):183–194, 2018.

[29] Larry L. Peterson and Bruce S. Davie. Computer Net-
works, Fifth Edition: A Systems Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
5th edition, 2011.

[30] Petar Popovski, Kasper F. Trillingsgaard, Osvaldo Sime-
one, and Giuseppe Durisi. 5G Wireless Network Slicing
for eMBB, URLLC, and mMTC: A Communication-
Theoretic View. In IEEE Access, 2018.

[31] R. Ramaswami and K.N. Sivarajan. Routing and wave-
length assignment in all-optical networks. IEEE/ACM
Transactions on Networking, 3(5):489–500, 1995.

[32] Eric C. Rosen, Arun Viswanathan, and Ross Cal-
lon. Multiprotocol label switching architecture, January
2001. RFC 3031.

[33] Claude E. Shannon. Two-way communication channels.
1961.

[34] D. Simeonidou, R. Nejabati, and S. Azodolmolky. En-
abling the future optical Internet with OpenFlow: A
paradigm shift in providing intelligent optical network
services. International Conference on Transparent Op-
tical Networks, pages 1–4, June 2011.

[35] W. Simpson. IP in IP Tunneling. RFC 1853, October
1995.

[36] Rachee Singh, Sharad Agarwal, Matt Calder, and
Paramvir Bahl. Cost-effective cloud edge traffic en-
gineering with cascara. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 201–216. USENIX Association, April 2021.

[37] Rachee Singh, Nikolaj Bjørner, Sharon Shoham, Yawei
Yin, John Arnold, and Jamie Gaudette. Cost-effective ca-
pacity provisioning in wide area networks with shoofly.

872 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/heistp/irtt

In Proceedings of the 2021 ACM SIGCOMM 2021 Con-
ference, SIGCOMM ’21, page 534–546, New York, NY,
USA, 2021. Association for Computing Machinery.

[38] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster,
Mark Filer, and Phillipa Gill. Radwan: Rate adaptive
wide area network. ACM SIGCOMM, August 2018.

[39] The Internet Topology Zoo . The Internet Topology
Zoo. http://www.topology-zoo.org/dataset.
html, (Accessed on 2013-03-02).

[40] Jin Y. Yen. An algorithm for finding shortest routes
from all source nodes to a given destination in general
networks. Quarterly of Applied Mathematics, 27:526–
530, 1970.

[41] Yawei Yin, Mingyang Zhang, Zuqing Zhu, and S. J. B.
Yoo. Fragmentation-aware routing, modulation and
spectrum assignment algorithms in elastic optical net-
works. In Optical Fiber Communication Confer-
ence/National Fiber Optic Engineers Conference 2013,
page OW3A.5. Optica Publishing Group, 2013.

[42] Zhizhen Zhong, Manya Ghobadi, Alaa Khaddaj,
Jonathan Leach, Yiting Xia, and Ying Zhang. Arrow:
Restoration-aware traffic engineering. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, SIG-
COMM ’21, page 560–579, New York, NY, USA, 2021.
Association for Computing Machinery.

A Optical vs. Electrical paths
In this section we provide an in-depth detail about the setup
for Figure 3 in §2. For this experiment, we gained access to
two machines connected to two routers in ISPWAN, a NY
state based WAN. We established two routes between the two
routers, one that goes over a routed path and one that is an all-
optical path. The routed path has 4 intermediate routers. The
all-optical path bypasses conversion to the electrical domain
entirely. The length of the fiber path in between these routers
is the same — roughly 500 km.

We set out to contrast the performance of the two paths
using isosynchronous RTT measurements [17]. We start an
irtt server on one of the machines. We start measurement
of both paths from the other machine at the same time and
run it for roughly 24 hours. We measure every 500 ms and
track the mean and standard deviation of RTT between the
machines. Figure 3 in §2 shows that the routed path performs
worse compared to the all-optical path consistently. Moreover,
the jitter on the routed path is significantly higher than the
optical path. This paves the way for CHISEL’s design. CHISEL
implements slicing in the wide-area by carving chunks of the
optical spectrum.

B CHISEL algorithm evaluation
In this section we characterize the slices carved by CHISEL.
This is in addition to the experiments in §5.

B.1 Modulation formats of slices

Figure 15 shows the modulation formats of slices allocated by
CHISEL. Most slices are short enough to have the modulation
format of 8-QAM (150G), some slices with shorter fiber paths
have the modulation format 16-QAM (200G) and some have
the modulation format of QPSK (100G).

50-200 150-250 250-400 350-500
Slice granularity (Gbps)

0

25

50

75

100

%
 o

f M
od

ul
at

io
ns

100 Gbps
150 Gbps

200 Gbps

Figure 15: Modulation formats of slices.

B.2 Comparison with TE

We provide a detailed description of the setup for comparing
CHISEL with wide-area traffic engineering in §7. We evaluate
TE as an alternative to CHISEL on the same network graph
with the same set of slice requests. The slice requests between
router pairs and their corresponding bandwidths form the de-
mand matrix for TE. We compute k-shortest paths for both TE
and CHISEL. For TE, we solve the most common optimization
formulation — the max throughput edge formulation [18].

TE computes allocations along paths it considers tunnels
and CHISEL allocates spectrum along paths it considers op-
tical slices. While both can meet the demands, we compare
the number of router ports the two approaches will use across
the entire network. We show in Figure 13 that TE requires
a significantly larger number of router ports. This large dif-
ference in ports consumed by CHISEL and TE arises from
the fact that TE tunnels are constructed over point to point
optical links in the WAN. Therefore, traffic carried over TE
tunnels consumes router ports at ingress as well as egress at
each intermediate router hop in the tunnel.

C Hardware Evaluation
We evaluated CHISEL using the optical line system from two
major equipment vendors: VENDOR-A and VENDOR-B. We
found that line systems from both vendors were primarily
programmed in the field using graphical interfaces.

C.1 VENDOR-A hardware testbed

The VENDOR-A lab testbed consisted of a point-to-point
optical link typical of cloud WANs. The two end points of

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 873

http://www.topology-zoo.org/dataset.html
http://www.topology-zoo.org/dataset.html

the link were ROADMs with add/drop capability. In between
the two ROADMs were amplification sites. Overall, the two
ROADMs were connected using fiber spools of 2,600 km.
The testbed took 26 shelves in our lab and Figure 11a shows
one of the shelves. Configuration on the VENDOR-A line
system was done over a GUI. Figure 16 shows the status of
the GUI as we added a channel between the ROADMs and
waited for the line system to build the channel.

C.2 VENDOR-B hardware testbed

We used the VENDOR-B line system in our field experiment
with sysname. This line system had a GUI similar to VENDOR-
A’s GUI for configuration but it also provided a REST API
to make the same configuration.

We also used VENDOR-B line system in the lab setting to
test automatic addition and removal of optical slices through
code. To do this, we created an optical span in the lab with
two amplifiers and ROADM ports on each end of the span.
This span had two legitimate light sources and configured
channels. Our goal was fully populate the spectrum on this
span. To do this, we used an amplifier as a source of noise
channels to the ROADM. Once we had the amplifier setup as
a light source, we developed the software tool to populate the
entire spectrum on the span.

C.3 Fully loading the spectrum

We automated the creation of slices on VENDOR-B ROADM
cards using the REST interface exposed by the card. The
creation of a slice involves three main steps, first, we create
a channel on the frequency picked by CHISEL in either the
add/drop or passthrough modes, second, we enable the com-
ponents of the channel so that they start receiving or sending
signals and finally, we equalize the channel. We configure
the terminal ROADMs in the setup in add/drop mode. the
passthrough mode is for the intermediate ROADMs in the
path to enable light to pass through them.

We now describe the process in detail for a single ROADM.
The channel creation step invokes a POST request with
the mode of the channel which can either be add/drop or
passthrough and the spectrum frequency picked by CHISEL.
In the second step we issue a GET request to list the compo-
nents of the channel and enable them to be in service. Finally,
we make a GET request to start the equalization process. Dur-
ing this, we periodically (1s) monitor the power level of the
newly provisioned wavelength using a different GET end-
point. The first two steps complete within 2 seconds and the
third step completes within 5-7 seconds.

We run the script in a loop to completely fill the spectrum
of the ROADM form VENDOR-B. We can see in figure 17
that all the channels that have been provisioned are equalized
to have power higher than -16dBm.

874 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 16: VENDOR-A GUI for provisioning waves.

Figure 17: GUI on the ROADM showing that the complete spectrum is filled. The power levels of all the created channels are around -16dBm.
The power levels of existing channels carrying data are not affected throughout the experiment.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 875

LuoShen: A Hyper-Converged Programmable Gateway for Multi-Tenant
Multi-Service Edge Clouds

Tian Pan†∗, Kun Liu†∗, Xionglie Wei†∗, Yisong Qiao†∗, Jun Hu†, Zhiguo Li†, Jun Liang†,

Tiesheng Cheng†, Wenqiang Su†, Jie Lu†, Yuke Hong†, Zhengzhong Wang†, Zhi Xu†,

Chongjing Dai†, Peiqiao Wang†, Xuetao Jia†, Jianyuan Lu†, Enge Song†, Jun Zeng†,

Biao Lyu‡†, Ennan Zhai†, Jiao Zhang�, Tao Huang�, Dennis Cai†, Shunmin Zhu�†�
†Alibaba Cloud ‡Zhejiang University �Purple Mountain Laboratories �Tsinghua University

Abstract
Edge clouds are expected to be a key revenue growth driver

for cloud vendors in the next decade; however, simply replicat-

ing the network infrastructure for the public cloud to the edge

experiences deployment issues. At the edge, the challenge for

cloud network design is to deliver the required performance

under the stringent restrictions of hardware budget and de-

ployment footprints, while retaining functionality equivalence.

To this end, we propose LuoShen, a hyper-converged gateway

for multi-tenant multi-service edge clouds by consolidating

the entire cloud network infrastructure into a 2U server switch

with a P4-centric architecture. At the data plane, LuoShen

conducts pipeline folding and fits the original overlay and

underlay devices into the switch pipeline via meticulous on-

chip resource budgeting. At the control plane, LuoShen relies

on BGP peering to ensure inter-component reachability. Lu-

oShen achieves 1.2Tbps throughput and reduces the upfront

cost, deployment size and power usage by 75%, 87%, 60%,

compared with the original cloud network architecture. It has

been deployed in Alibaba Cloud at hundreds of edge sites.

1 Introduction
The past decade has witnessed the rise of the public cloud

to reshape the global IT infrastructure [10]. The success of

the public cloud lies in a win-win economic model: cloud

vendors save money by bulk purchasing computing resources

at lower costs, while cloud customers utilize the shared re-

sources without investing in their own expensive hardware in

a pay-as-you-go manner [28, 32, 49]. Following this model,

we have built 28 public cloud regions globally for worldwide

service coverage [6]. Recently, however, we have seen a surge

in customer requests to provide cloud infrastructure close to

their sites to address evolving needs, such as ultra-low-latency

applications like machine learning inference [56], local data

processing of large volumes of data [52], data residency due

to security or data sovereignty [43] and the cloudification of

∗These authors contributed equally to this work. �Corresponding author.

telecom infrastructure [23, 29]. These requirements can cer-

tainly be addressed by on-premises data centers; however, not

everyone can afford to build their own. To meet local process-

ing needs, we start to build edge clouds near our customers

with products like Local Region [2] and Cloud Box [1, 3].

To offer customers the same product experience as provided

by the public cloud and reduce the time-to-market cycle of our

edge clouds, replicating the existing public cloud architecture

to the edge is a wise strategy. In our public cloud, to manage

traffic bursts from various cloud services and accommodate

large forwarding tables due to multi-tenancy, we deploy dif-

ferent roles of gateway clusters for handling different cloud

services [41]. However, when extending such “role-splitting”

gateway architecture to the edge, we’ve encountered several

deployment issues. The first is how to fit the entire network

infrastructure within a constrained space. For example, the

Cloud Box condenses the entire cloud infrastructure into a

42U server cabinet. If the network infrastructure consumes

too much space, there will be little room left for the server

payload, which will reduce the available VMs for sale as well

as the vendor’s revenue. The second is how to save upfront

and operational costs without economies of scale [49]. A typ-

ical public cloud region can have tens of thousands of servers,

thus the costs of the network infrastructure can be spread over

the vast number of servers. However, such economies of scale

diminish in a single edge cloud as the network infrastructure

constitutes a substantial proportion of its upfront cost due to

the much reduced server payload. Moreover, as the number of

edge clouds grows rapidly, such cost inefficiency will be mag-

nified many times. The third is how to provide the required

stable performance in extreme cases. Although the traffic vol-

umes and the table sizes are significantly reduced at the edge,

high-bandwidth traffic and heavy-hitter flows may still occur

in some edge cloud use cases, e.g., high-bandwidth traffic

directed from the local edge cloud to the remote public cloud,

IoT traffic aggregation into a single heavy-hitter flow after

being tunneled. Besides, the cloud network infrastructure in

production should be durable for a longer service time to save

development expenses and adapt to future traffic growth.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 877

To address the above issues, we propose LuoShen, a hyper-

converged programmable gateway for multi-tenant multi-

service edge clouds, which provides the required performance
under the stringent restrictions of hardware budget and de-
ployment footprints, while retaining functionality equivalence.

Unlike the expensive role-splitting gateway architecture that

uses separate underlay/overlay devices to handle different

cloud services like VM-VM (same VPC), VM-VM (differ-

ent VPC), VM-Cross-region-VM, VM-IDC/IDC-VM, VM-

Internet/Internet-VM and SLB, LuoShen fits the entire cloud

network infrastructure into a 2U server switch with a “P4-
centric” design. That is, all stateless cloud network functions

are converged into the Tofino pipeline, with the remaining

stateful processing handled by the CPU and accelerated by

the FPGA. All traffic will traverse through the Tofino pipeline

before being forwarded to the external networks or distributed

to the CPU/FPGA by the converged underlay devices. At the

data plane, we propose a novel pipeline layout with pipeline

folding and carefully budget the on-chip resources to house

all the major cloud network functions. At the control plane,

we achieve resource isolation, efficient table provisioning and

inter-component BGP peering for coexistence of different

components. To save the development costs, retain the system

stability and shorten the time-to-market cycle, we extensively

reuse mature code from the existing public cloud infrastruc-

ture. LuoShen has been deployed in Alibaba Cloud for over

two years at hundreds of edge sites. We share the experiences

and lessons from its development and deployment.

Our major contributions are summarized as follows.

• LuoShen is the world’s first hyper-converged gateway

disclosed for multi-tenant multi-service edge clouds. It

follows a p4-centric architecture and achieves a good bal-

ance of performance, costs and deployment footprints.

• At the data plane, we propose techniques such as pipeline

folding, pipe/table bypass, on-chip resource budgeting

to maximize the table convergence density in the Tofino.

• At the control plane, we reserve multiple configuration

channels, and conduct BGP peering with hot standby for

inter-component reachability and high availability.

• LuoShen achieves 1.2Tbps throughput and reduces the

upfront cost, deployment size and power usage by 75%,

87%, 60%, compared with the role-splitting architecture.

2 Background and Motivation
In this section, we introduce the cloud network infrastructure

in Alibaba Cloud over the years, followed by the issues we’ve

encountered when mirroring the infrastructure at edge clouds.

2.1 VPC Network Infrastructure
Virtual private clouds in the public cloud. The public cloud

vendors serve a massive number of tenants with a shared

infrastructure, where tenant isolation is essential to ensure that

their resources are segregated and secure, e.g., one tenant’s

traffic should be invisible to any other tenant [40]. In addition,

some tenants own lots of VMs distributed worldwide but still

want to manage them in a unified network address space. To

this end, the cloud vendors are expected to virtualize a flat

address space for each tenant, hiding the physical network

intricacies [26]. To satisfy the isolation and virtualization

needs, virtual private clouds (VPCs) [55] are created in the

public cloud. The VPC multiplexes the underlying resources

and offers a logically isolated address space, and each VPC

is uniquely identified by its VNI. Today, overlay protocols,

such as VXLAN [37], NVGRE [24], GENEVE [27], are used

for VPC implementation. They leverage tunneling to stretch

virtualized networks over an underlying L3 network within

or across geo-distributed data centers.

Networking requirements of VPCs. A tenant’s VMs need

to cooperate for delivering scalable cloud services and this

produces the VM-to-VM traffic. These VMs can reside in

one VPC as the simplest deployment case. They can also

reside in multiple VPCs within the same region as some

tenants wish to isolate different parts of their infrastructure

into different VPCs for more precise access control. A tenant’s

VPCs can even reside in multiple regions as top tenants deploy

VMs across geo-distributed data centers for global service

delivery. To this end, the cloud vendors need to address the

communication requirements between VMs in the same VPC,

in different VPCs within the same region, and across regions.

For enterprise customers who use public cloud resources, the

connectivity between their on-premises data centers (IDCs)

and their VPCs needs to be established. For cloud services

through the Internet, to allow Internet traffic to enter into

VPCs and vice versa, the connectivity between the Internet

and the selected VPCs is also needed. Besides, to handle the

massive scale and rapid growth of cloud traffic, either from the

Internet (north-south traffic) or from within the data centers

(east-west traffic), horizontal scaling of VMs is required and

the incoming traffic needs to be directed to the load balancers

first, before reaching the backend VMs [18, 39, 42, 57].

Roles of gateways/load balancers in the VPC network. As

mentioned, traffic and address space isolation is achieved by

assigning one or more VPCs to each tenant, where traffic is

isolated within a VPC by default, unless the routes to the ex-

ternal networks are explicitly added to the cloud gateway [31]

at the VPC border. Therefore, the first role of a gateway is

to route outbound traffic from the local VPC to the external

networks and vice versa. To achieve this, the gateway will

query its routing table with the VNI of the local VPC and the

destination VM IP as the key to obtain the VNI of the next-

hop VPC/tunnel if the external network is another virtual net-

work. Besides, traffic will be forwarded across the underlying

physical network when being tunneled between two adjacent

virtual network devices (e.g., vSwitch [44] or cloud gateway).

Therefore, the second role of a gateway is a virtual tunnel

endpoint (VTEP), where the outer header encapsulation or

decapsulation is conducted when relaying traffic onto or off a

physical network domain. When tunneling a packet from the

local gateway to a remote VTEP across a physical network,

878 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: Major cloud services and the corresponding traffic

routes in Alibaba Cloud’s VPC network infrastructure.

Cloud services Traffic routes
VM-VM (same VPC) VM-vSwitch-VGW-vSwitch-VM

VM-VM (different VPCs) VM-vSwitch-VGW-vSwitch-VM
VM-Cross-region-VM VM-vSwitch-TGW-Cross-region-TGW-vSwitch-VM

VM-IDC VM-vSwitch-TGW-CSW-IDC
IDC-VM IDC-CSW-TGW-vSwitch-VM

VM-Internet VM-vSwitch-IGW-Internet
Internet-VM Internet-IGW-vSwitch-VM

Internet-LB-Service Internet-IGW-SLB-vSwitch-VM
VM-LB-Service VM-vSwitch-VGW-SLB-vSwitch-VM

the outer SIP will be the gateway’s physical IP, the outer DIP

will be the remote VTEP’s physical IP, and the VNI of the

tunnel will also be encapsulated. Furthermore, as most legacy

IDCs are non-virtualized (e.g., bare-metal servers) [11, 58],

protocol translation is needed for connecting IDCs and VPCs.

Similarly, address translation is also required when the gate-

way provides external connectivity to the Internet. For traffic

to be load balanced, it will be delivered to the gateway first,

then the gateway will route the traffic to the load balancer.

For a better understanding of our design, we elaborate on our

gateway’s different use cases (see Table 1) as follows.

1©VM-VM (same VPC): If two VMs are in the same VPC,

inter-VM traffic will first query the VXLAN routing table,

confirming that the destination VM is in the local VPC. Then,

traffic will be forwarded to the physical server hosting the

destination VM with the server IP obtained by querying the

VM-NC mapping table using the local VNI and the VM IP.

2©VM-VM (different VPCs): If two VMs are in different

VPCs within the same region, inter-VM traffic will query the

VXLAN routing table twice. In the first pass, we will obtain

the VNI of the VPC containing the destination VM. In the

second pass, we use the obtained VNI to query the routing

table again and the remaining procedure is the same with 1©.

3©VM-Cross-region-VM: For cross-region VM communi-

cation, traffic from the source VM will first query the VXLAN

routing table at the local gateway to obtain the VNI of the

cross-region tunnel and the physical IP of the remote gate-

way. After that, traffic will be tunneled to the remote gateway,

where its VXLAN routing table will be queried for the VNI

of the remote VPC containing the destination VM. The re-

maining procedure is the same with the second pass of 2©.

4©VM-IDC: For communication between a virtual network

and a non-virtualized network, a specialized device is placed

at the border of the public cloud to decapsulate the packets

from the virtual network and make the VXLAN-to-VLAN

translation if needed. On receiving the outbound traffic from

VMs to IDCs, the gateway will first query the VXLAN routing

table to tunnel the traffic to the specialized device.

5©IDC-VM: For inbound traffic from IDCs to the public

cloud, the specialized device at the border of the cloud will

encapsulate the incoming packets with VXLAN headers and

then tunnel them to the gateway of the destination VM. The

remaining procedure is the same with 2©.

6©VM-Internet: The VMs in the cloud use private ad-

dresses while accessing the Internet needs public addresses.

Therefore, the outbound traffic to the Internet needs to query

the SNAT table (key: VM IP, value: EIP) at the local gateway

to obtain the public address EIP. Then, the gateway will re-

place the VM IP (i.e., inner SIP) with the EIP and decapsulate

the tunnel header before sending the traffic to the Internet.

7©Internet-VM: The inbound traffic from the Internet will

be tunneled to the VM via the gateway. The tunnel encapsu-

lation requires the destination VM IP, the VNI of the VPC

containing the VM and the physical address of the server host-

ing the VM, which can be obtained by querying the DNAT

table at the gateway using the EIP (i.e., DIP of the packet).

8©Internet-LB-Service: Traffic to be load balanced will first

hit the gateway before reaching the load balancer. For traffic

from the Internet, it will query the DNAT table at the gateway

and then be encapsulated and tunneled to the load balancer.

9©VM-LB-Service: For traffic from the VMs in the cloud

(e.g., to use database hosted on servers behind a load balancer),

it will query the VXLAN routing table and VM-NC mapping

table at the gateway and then be tunneled to the load balancer.

Alibaba Cloud’s solution for scalable VPC networking.
The challenges of building a scalable VPC network infrastruc-

ture lie in many aspects. In a typical cloud region, there are

tens of thousands of servers, equipped with 25G/100G NICs,

contributing to dozens of Tbps traffic to the gateway. The gate-

way contains several major tables including the VXLAN rout-

ing table, the VM-NC mapping table and the SNAT/DNAT

table. In our cloud region, there are O(1M) VPCs and O(1M)

VMs, leading to a very large VXLAN routing table, VM-NC

mapping table and SNAT/DNAT table. Fitting these tables

into an x86 server may not be a serious problem; however,

if you want to make hardware acceleration to combat the

rapid growth of cloud traffic, the hardware’s on-chip memory

can easily be exhausted [41]. In Alibaba Cloud, we adopt a

centralized gateway model that the traffic from the source

VM will first be tunneled from its vSwitch to the gateway,

where the next-hop forwarding decision will be made. That

is, the gateway needs to handle all kinds of traffic as listed in

Table 1, leading to a sophisticated packet processing pipeline

under ultra-high traffic rates. Moreover, as traffic volumes and

cloud services change rapidly, the infrastructure needs to be

elastic and flexible. Finally, as the central hub of east-west

and north-south traffic, the stability of the gateway is equally

important as its performance since failures of the gateway will

affect a wide range of tenants and their services. To address

these challenges, we have the following architectural designs.

The first design is separation of underlay and overlay net-
work devices. Fig. 1 shows the VPC network infrastructure

in Alibaba Cloud. There are underlay devices such as SW,

LSW, BSW and overlay devices such as vSwitch, SLB and

gateways (vendor-specific acronyms are defined in Table A1

in §D). The underlay devices provide underlying network con-

nectivity on top of which overlay tunnels are built. The traffic

through the overlay tunnels carried by the underlay devices

includes 1©east-west traffic between VMs within a region (via

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 879

Figure 1: In Alibaba Cloud, different roles of gateway clusters

are deployed to forward traffic of different cloud services.

SW); 2©traffic routed to the gateways/SLB (via SW, BSW and

LSW); 3©traffic routed to the external networks (e.g., Internet,

via LSW and BSW). The overlay devices provide tenant isola-

tion, virtual routing/forwarding, and tunnel encap/decap. The

separation of the underlay and overlay enables rapid cloud

service iteration. When cloud services need a change, we only

need to update the overlay devices without reconstructing the

underlay infrastructure. Besides, caching VM-to-VM routes

at vSwitches enables bypassing overlay gateways for faster

routing directly through the scalable underlay SW fabric [54].

The second design is deploying different roles of gateway
clusters for different cloud services. To handle cloud-scale

traffic and huge forwarding tables caused by multi-tenancy,

the logically centralized gateway is further split into multiple

gateway clusters, each dealing with a particular cloud service.

For example, VGW handles VM-to-VM traffic within a region,

TGW handles VM-to-VM traffic across regions as well as traf-

fic between VMs and IDCs, IGW handles Internet traffic, SLB
is for server load balancing, CSW is a specialized device for

VXLAN-to-VLAN translation and vice versa, XGW holds all

the gateway tables for fallback traffic processing. In the early

days, all gateways are based on x86 servers and clustered for

scalable performance. To prevent CPU overload due to traf-

fic bursts, some gateways are accelerated via programmable

switches [41]. To increase elasticity and flexibility, some state-

ful gateways, such as NAT and VPN, reside on servers in the

form of NFV instances [47]. All the gateways will advertise

their VIPs to the underlay network and the vSwitch will tun-

nel the VM traffic to different gateways by encapsulating the

traffic with different outer DIPs based on the VNIs and the in-

ner DIPs. Table 1 shows some major cloud services and their

corresponding traffic routes. In the “role-splitting” gateway

architecture, failures will be isolated within a single gateway

cluster. If horizontal splitting of tenants [41] is enabled, fail-

ures will be further isolated within a single physical gateway

in the cluster. Similarly, the development, deployment and

update of different gateway clusters can also be decoupled.

2.2 Rise of Edge Clouds
Extending public cloud services to the edge. Alibaba Cloud

has built 28 public cloud regions across the globe. However,

we are increasingly requested by more and more customers

to provide cloud infrastructure close to their locations for the

following use cases. The first is ultra-low-latency applications

such as cloud gaming, live streaming, manufacturing control

and machine learning inference [56], which cannot afford the

large latencies of task processing in the remote cloud. The

second is local data processing needs for large volumes of

data generated at the edge, e.g., data uploaded by IoT nodes,

which can save network bandwidth usage between the edge

and the remote cloud. The third is data residency needs due

to security or data sovereignty [43], e.g., financial services.

Another potential market is the cloudification of telecom in-

frastructure, e.g., cloud-native 5G core and RAN [23, 34]. To

meet the above needs, we replicate our public cloud infrastruc-

ture to the edge, expecting to continue its past success. In this

way, there is no need for our customers to build and operate

their own on-premises IDCs and they can use the same tools

and APIs that they use in the public cloud to manage their

edge clouds. Specifically, we have launched two edge cloud

products, namely, Local Region [2] and Cloud Box [1,3]. The

Local Region is a local public cloud infrastructure serving

nearby customers in the same city while the Cloud Box is a

highly-converged public cloud infrastructure within a 42U

server cabinet. They both offer a user experience akin to the

public cloud but with significantly reduced capacities, e.g.,
a Local Region usually has dozens of servers, and a Cloud

Box contains even fewer. As a comparison, our largest public

cloud region houses hundreds of thousands of servers.

Deployment constraints of edge clouds. When extending

the VPC network infrastructure to the edge, we’ve experi-

enced the following deployment issues. 1© Fitting the entire
public cloud into limited space. Edge clouds have small foot-

prints but full functionality of the public cloud. For example,

for Cloud Box, the entire cloud infrastructure (including com-

pute, storage, network, power supply, cooling system) will be

packed into a 42U server cabinet, leaving limited space to ac-

commodate servers running tenants’ VMs. In addition, if the

network occupies too much cabinet space, the server payload

will be further compacted, which reduces the available VMs

for sale as well as the cloud vendor’s revenue. If we pack the

9 different types of underlay and overlay devices (as shown

in Fig. 1) with 1:1 backup into the 42U cabinet, there will be

little room left for the server payload. 2© Cost disadvantages
without economies of scale. In a public cloud region, the VPC

network infrastructure consists of a few clusters of underlay

and overlay devices, serving tens of thousands of servers. The

upfront and operational costs of the VPC network infrastruc-

ture can be spread over the huge number of servers due to the

economies of scale [49]. However, for a single edge cloud,

the situation has changed as the network infrastructure will

occupy a significant proportion of its upfront cost due to the

much reduced server payload. Moreover, the “role-splitting”

architecture is not conducive to operational cost reduction.

Last but not least, as the edge clouds are placed near the cus-

tomer sites, they will have a huge site number compared with

the public clouds. For example, Alibaba Cloud now has only

880 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

28 public cloud regions but the number of edge clouds grows

rapidly. That is, the cost inefficiency of the original VPC net-

work architecture in a single edge cloud will be magnified

thousands of times when edge clouds become more popular.

Possible solutions and their limitations. The traffic load is

significantly reduced at the edge due to the fewer tenants

served. Therefore, the 3-tier switch fabric for underlay traffic

processing can be simplified and the role-splitting gateway

clusters for overlay traffic handling are indeed overkill. Ac-

cordingly, in our first generation of edge cloud products, we

simply use a few ToR switches for the underlay and a few

x86 server-based gateways and load balancers for the overlay.

Specifically, for the Local Region, we use separate x86 servers

to build XGW and SLB. As the XGW holds all the gateway

tables, it can easily replace all the single-role gateways, signif-

icantly saving the upfront and operational costs as well as the

deployment footprints. For the Cloud Box, to maximally save

the cabinet space, we further converge the XGW and the SLB

into a single x86 server, using different groups of CPU cores

to perform different tasks. To handle potential traffic growth

in the future, horizontal scaling [41, 50] is still leveraged.

Although extensive horizontal scaling will cause cost inef-

ficiency and large deployment footprints of the VPC network

infrastructure, we believe this will not happen soon at the edge.

However, two real edge cloud use cases change our minds.

The first is about the high-bandwidth requirement at the edge.

In this case, our customer expects to migrate his data from the

local IDC to the remote public cloud through the nearest point

of presence (PoP). However, the nearest PoP is in another city

hundreds of miles away from the customer IDC and a leased

line from an ISP is needed for the IDC-PoP connection. To

save expenses and time, our customer decides to route his

data to the public cloud directly through the Local Region in

his city, which produces hundreds of Gbps traffic and floods

the XGWs in the Local Region. The second is about CPU

overload by a heavy-hitter flow. In this case, our customer

uses the Cloud Box to manage his IoT devices. The data col-

lected by the IoT devices is sent through a tunnel to the Cloud

Box. The tunnel aggregates the traffic into a single flow that

reaches dozens of Gbps. At the XGW, the heavy-hitter flow

is hashed to a CPU core via the RSS mechanism [25], which

easily overloads the CPU core and causes packet drops.

3 LuoShen’s Architecture
In this section, we list the design goals of LuoShen, followed

by its architectural innovation to achieve these goals.

3.1 Design Goals
1©Small deployment footprints. The VPC network infrastruc-

ture at the edge should have small footprints to leave more

room for the server payload, maximizing the VM capacity.
2©Complete VPC network functions. At the edge, our cus-

tomers want ultra-low latency but do not want to compromise

the consistent product experience of the public cloud. The

VPC network inside the 42U server cabinet needs to provide

the same functions as provided by the public cloud.

3©Cost efficiency. Considering the large edge cloud number,

the upfront and operational costs of the network infrastructure

in each edge cloud should be controlled. Besides, network

architectures with smaller energy footprints are preferred.

4©Performance stability. In a multi-tenant cloud, failures

of the shared network infrastructure will affect a large number

of tenants. As the gateway is the central hub of the cloud

traffic, its performance stability needs to be strengthened to

avoid being overloaded by either high-bandwidth traffic or

heavy-hitter flows. Once a failure occurs, traffic should be

taken over by the backup component as soon as possible.

5©Elasticity and flexibility. Different edge cloud use cases

have different network customization needs in terms of traffic

scale and network functionality, so the edge cloud network

infrastructure should be elastic and programmable to quickly

respond to the changing service requirements.

6©Avoid reinventing the wheel. We have invested tremen-

dous person-months into developing the network infrastruc-

ture for the public cloud. The stability of the system has stood

the test of time. As the edge clouds inherit all the functions of

the public cloud, to save the development costs, retain the sys-

tem stability and shorten the time-to-market cycle, we’d better

reuse as much code as possible from the existing systems.

3.2 Hyper-Converged Gateway
Opportunities for infrastructure convergence. Pro-

grammable switches [15, 16] have been proved to work

well even under cloud-scale traffic bursts [41]. They are

suitable for stateless forwarding which covers a majority of

cloud gateway functions. However, some cloud services are

stateful (e.g., SLB, NAT) and better to be processed by the

CPU due to the large memory footprints as well as the high

processing complexity. To deal with high-bandwidth traffic,

the stateful processing can also be offloaded to the FPGA. In

the following, we discuss how to converge the core functions

of the VPC network infrastructure into a Tofino chip [5] and

how to converge the remaining functions into the CPU with

high-performance functions accelerated by the FPGA.

1©Converge different gateway functions sharing the same
table. As you may notice in §2.1, many gateway functions in

our cloud share the same forwarding tables, e.g., the VXLAN

routing table is involved in all gateway functions except

Internet-related services. Hence, we can converge these func-

tions from different gateways into the same Tofino pipeline

stages. Actually, in past deployments, we have already made

efforts in this direction, e.g., VGW handles VM-VM (same

VPC), VM-VM (different VPCs) and VM-LB-Service traffic

within a region and TGW handles all the cross-region traffic

between two VMs and between VMs and IDCs. Actually,

VGW and TGW also share the VXLAN routing table, that is,

they can be further converged into a single gateway. Besides,

given that Tofino is programmable, we can also converge the

VXLAN-to-VLAN translation function into it, saving space

originally for CSW. Finally, in the Tofino, we converge VGW,

TGW and CSW into a converged gateway called CGW .

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 881

2©Converge different gateway functions without table over-
lapping. In edge clouds, the gateways serve tenants a few

miles away, so there is a significant reduction in the number

of table entries compared to the public cloud. As a result, it is

possible to converge different gateway functions into the same

Tofino chip even though their tables have no overlap. Specif-

ically, we can place different functions in different pipeline

stages. Packets will be sequentially processed by each func-

tion when they traverse through the pipeline. In this way, we

can further converge CGW and IGW into the Tofino chip.

3©Converge underlay and overlay devices. After we con-

verge overlay devices (i.e., CGW, IGW) into the Tofino, there

are still many standalone underlay devices such as SW (for

switching east-west traffic), LSW (for routing traffic to gate-

ways) and BSW (for connecting Internet/remote regions),

which need additional costs as well as space for placement.

Given that Tofino has ultra-high throughput, if its on-chip

resources are still available, we can further converge the un-

derlay devices together with the overlay devices into the same

gateway. Specifically, we converge the original SW and LSW

into a new SW, which is further converged with the CGW and

IGW into the Tofino (BSW is still standalone). In this way,

one Tofino handles both overlay and underlay traffic.

4©Process fallback traffic and stateful forwarding at the
CPU. The P4 switch pipeline cannot handle all types of cloud

traffic. Some traffic needs fallback processing. For example,

the VM-to-VM route caching at vSwitches requires special

treatment of the first packet of the VM-to-VM traffic within a

region. If a packet from a VM cannot hit the route cache at the

vSwitch, it will be forwarded to the gateway [54]. After query-

ing the VM-NC mapping table at the gateway, a reply packet

containing the mapping relationship will be constructed and

sent back to the vSwitch for route cache population. However,

the reply packet construction is a bit complicated for the P4

pipeline and better to leave to the CPU. Besides, some cloud

services (e.g., NAT, VPN) require stateful processing at the

gateway with large session tables. These tables are too large

to fit into the Tofino and better to use CPU to process them.

5©Offload high-bandwidth stateful forwarding to the
FPGA. Although we can use kernel-bypass techniques (e.g.,
DPDK) [13] to accelerate CPU-based stateful packet process-

ing, for some stateful cloud services, high-bandwidth traffic

can easily overload a CPU core [36, 41, 48]. One example is

east-west traffic load balancing. Sometimes, a massive num-

ber of VMs want to access the cloud service hosted on a server

cluster behind a load balancer. The load balancer may face

huge traffic pressure since the east-west traffic in a data center

is usually not rate-limited. As a comparison, the Internet-

related and cross-region traffic are often rate-limited based

on tenants’ spending. To handle high-bandwidth stateful for-

warding, we can use FPGA with large HBM to meet both

search speed and memory capacity requirements [57].

The server-switch hardware. According to the above infras-

tructure convergence principles, we build LuoShen, a hyper-

Figure 2: LuoShen fits the entire VPC network infrastructure

into a 2U server switch with full functionality retained.

converged programmable gateway for multi-tenant multi-

service edge clouds. LuoShen fits the entire VPC network

infrastructure into SNA [8], a 2U server switch developed by

Alibaba Cloud’s infrastructure team, with full public cloud

network functionality retained. Inside LuoShen, the original

single-role gateways (including VGW, TGW, CSW, IGW) and

the underlay devices (including SW and LSW) are converged

into a Tofino chip, handling both overlay and underlay traf-

fic; the XGW and SLB are converged into a CPU, handling

fallback traffic and conducting traffic load balancing, respec-

tively; the SLB+ in an FPGA conducts traffic load balancing

hardware acceleration. LuoShen essentially follows a “P4-

centric” architecture inherited from our centralized gateway

model in the public cloud (§2.1), because most of the gateway

functions are now converged into the P4 switch pipeline. In

the public cloud, the cloud gateways are the central hub of

the east-west and north-south traffic. Now, for edge clouds,

the Tofino in LuoShen becomes the new central hub of the

edge cloud traffic. In LuoShen, the 64×100G ports of Tofino

are split into different purposes. Some ports directly connect

to servers to receive VM traffic, some ports connect to BSW

for Internet access and cross-region communication, some

ports connect to on-premise IDCs, and some ports connect to

the CPU and FPGA for fallback and stateful traffic process-

ing (the CPU sits on a NIC for hardware offloading/traffic

rate-limiting, while the FPGA is plugable so that we can also

select other cards for fast adapting to the diverse edge cloud

service needs). Besides, a large number of ports that are not

shown explicitly in Fig. 2 are used internally for pipeline

folding [41], which will be detailed in 4.1. As a comparison,

in the public cloud, all ports of the P4-accelerated gateways

are connected to the upstream switches (i.e., LSW). Since

we converge the 8 standalone overlay and underlay devices

into a 2U box, LuoShen has superior advantages in terms

of deployment footprints, upfront and operational costs, and

power consumption for edge cloud deployment.

Functionality equivalence analysis. To provide tenants with

the same product experience as that of the public cloud,

we need to achieve functionality equivalence after conver-

gence. We compare the two architectures before and af-

ter convergence (Fig. 1 and Fig. 2). First, all the gate-

ways/SLB functionality is retained because VGW, TGW,

CSW, IGW are now in the P4 pipeline while XGW and

SLB are now in the CPU/FPGA. Second, the functionality

of east-west traffic switching as well as traffic routing to

882 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 3: Packet journeys of three different cloud services converge at LuoShen.

gateways/SLB/Internet/IDCs/remote regions provided by the

original underlay device SW and LSW is also retained after

they are converged into the new SW in LuoShen. Specifically,

the original SW needs to route the VM traffic to the gate-

ways/SLB through LSW, however, this function is no longer

needed since physical servers are now directly connected with

LuoShen. It also needs to switch the east-west traffic which

hits the route cache at vSwitches and this function is still re-

tained at the new SW. The original LSW needs to route traffic

to gateways/SLB/Internet/IDCs/remote regions. Since VGW,

TGW, CSW, IGW are now in the Tofino which is directly

connected with physical servers, there is no need to explic-

itly route traffic to these gateways. However, the function to

route traffic to XGW/SLB/Internet/IDCs/remote regions of

the original LSW is still retained at the new SW, which will

forward the corresponding traffic through the P4 switch ports

to these external destinations outside the Tofino.

To summarize, in LuoShen’s P4-centric architecture, the

core functions of the VPC network infrastructure are of-

floaded to the P4 pipeline. All incoming traffic will go through

CGW, IGW and the new SW sequentially in the pipeline be-

fore being distributed to CPU/FPGA or external networks by

the SW. Since all traffic experiences the “distribute after deep

pipelining” packet flow, the P4 pipeline becomes the traffic

aggregation point. Thus, the traffic of different cloud services

will be queuing together in the pipeline. However, there is no

need to worry about it at present as the high-capacity pipeline

is sufficient to accommodate the traffic from the edge.

Packet journeys in LuoShen. Fig. 3 shows the packet jour-

neys of three different cloud services converging at LuoShen.

The first is VM-to-VM traffic across VPCs within a region,

where the outer IP is set to CGW VIP by the vSwitch due

to a route cache miss. Then, the packet will be routed to the

CGW in LuoShen and query the VXLAN routing table and

VM-NC mapping table to obtain the VNI of the destination

VPC as well as the server IP of the destination VM. Finally,

the packet will query the FIB in SW and be forwarded to

the destination VM. The second is VM traffic load balancing

for accessing the cloud service behind SLB, which is more

complicated as the Tofino needs to interact with the SLB+ in

the external FPGA (we use FPGA for SLB acceleration). The

packet containing VIP 1 (i.e., the IP of the cloud service) as

the inner DIP will be routed to CGW in LuoShen to query the

VXLAN routing table and VM-NC mapping table to obtain

the VIP of SLB+. After that, the packet will be forwarded by

SW to the SLB+, where server load balancing is performed

by querying a session table to find the real server (identified

by RSIP 1 and 10.1.4.11 in Fig. 3) using the 5-tuple. Then,

the packet will be reencapsulated with the real server address

as the inner/outer DIP and routed back to the Tofino (because

the FPGA has no other connection to the network). Finally,

the packet will be forwarded by SW to the selected real server

behind SLB+. The third is Internet traffic load balancing for

accessing the cloud service behind SLB. The packet flow is

almost the same with the second case, except that the traffic

from the Internet will be routed to IGW first to query the

DNAT table using the DIP to obtain the VIP of SLB, and the

server load balancing is performed in the CPU this time.

4 Data Plane
In this section, we show how to fit the core functions of the

VPC network infrastructure into a single Tofino chip through

sophisticated pipeline layout and on-chip memory budgeting.

4.1 Tofino Pipeline Layout
Pipeline folding for CGW/IGW/SW convergence. The

Tofino has 4 pipelines and each pipeline consists of an ingress

pipe and an egress pipe, connected by a traffic manager

(TM). Each pipeline has limited SRAM/TCAM memory re-

sources [30], distributed equally in 12 stages of that pipeline.

Each pipeline stage is shared by the ingress pipe and the egress

pipe, e.g., if we fit a large table into stage 0 of the ingress

pipe, there will be little space left for stage 0 of the egress

pipe. When converging the core functions of the VPC network

into the Tofino, we should first evaluate if the stage/memory

resources are sufficient to hold the deep pipeline of CGW,

IGW, and SW. Actually, in our P4-based single-role gateways

for the public cloud [41], the stage/memory occupancy of

some major tables, such as the VM-NC mapping table, has

already exceeded the resources of a single pipeline. Besides,

other tables, such as SNAT/DNAT table for Internet access

and meter tables for rate-limiting, will also have large memory

footprints. Although the table sizes will shrink at the edge, a

single Tofino pipeline still cannot hold all the converged core

functions of the VPC network.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 883

(a) LuoShen’s pipeline layout. (b) Another layout option.

Figure 4: Two optional ways of pipeline folding.

To this end, we conduct pipeline folding to assemble the

four independent pipelines into a 48-stage deep pipeline for

CGW/IGW/SW convergence (as shown in Fig. 4a). The traffic

of different cloud services will sequentially traverse through

the deep pipeline and be processed at the corresponding stages.

For example, the VM-VM (same VPC) traffic will go through

Ingress Pipe 0, Egress Pipe 1, Ingress Pipe 1, Egress Pipe

3, Ingress Pipe 3, and Egress Pipe 0, while the Internet-VM

traffic will go through Ingress Pipe 0, Egress Pipe 1, Ingress

Pipe 1, Egress Pipe 2, Ingress Pipe 2, Egress Pipe 3, Ingress

Pipe 3, and Egress Pipe 0. Notice that there is one explicit pipe

branch at Ingress Pipe 1 with either Egress Pipe 2 or Egress

Pipe 3 as the next-hop pipe to separately process Internet-VM

or VM-Internet traffic. There is also an inexplicit pipe brach at

Ingress Pipe 0 (not shown in Fig. 4a) with either Egress Pipe

1 or Ingress Pipe 0 itself as the next-hop pipe as some cloud

services need to query the VXLAN routing table twice (e.g.,
VM-to-VM traffic across VPCs). Last but not least, as the FIB

in SW is embedded in Ingress Pipe 3, it will select the next-

hop ports from Egress Pipe 0 according to the FIB lookup

results (the 16 ports of Egress Pipe 0 are connected to the

external destinations outside the Tofino such as XGW/SLB

in CPU, SLB+ in FPGA, physical servers, Internet/remote

regions through BSW, and on-premises IDCs).

Major tables in the pipeline. We show how the major tables

of CGW, IGW and SW are distributed in the pipeline.

1©CGW (Fig. 5a): CGW contains all the major tables of

VGW, TGW and CSW. As the VXLAN routing table and

the VM-NC mapping table are the two largest, we separate

them into different pipes. To determine whether an incom-

ing packet will be processed locally or bypass the current

pipe, we place a CGW Classify at the front of Ingress Pipe

0. In this way, Internet traffic will directly bypass CGW

(we detail the bypass logic later). The packet flows of dif-

ferent cloud services related to CGW are listed as follows.

VM-VM (same VPC): CGW Classify->VXLAN Routing-

>VM-NC Mapping; VM-VM (across VPCs, same region):

CGW Classify->VXLAN Routing(resubmit)->VM-NC Map-

ping; VM-Cross-region-VM (sender): CGW Classify-

>VXLAN Routing(resubmit)->Next-Hop; VM-Cross-region-

VM (receiver): CGW Classify->VXLAN Routing(resubmit)-

>VM-NC Mapping; VM-IDC: CGW Classify->VXLAN

Routing(resubmit)->Next-Hop->Egress VBR(VXLAN-to-

VLAN); IDC-VM: CGW Classify->Ingress VBR(VLAN-

to-VXLAN)->VXLAN Routing(resubmit)->VM-NC Map-

ping. Notice that we use Ingress/Egress VBR for VLAN-to-

(a) CGW’s forwarding logic.

(b) IGW’s forwarding logic.

(c) SW’s forwarding logic.

Figure 5: Distribution of major tables in the pipeline.

VXLAN translation and vice versa to deal with IDC traffic.

Besides, we use Next-Hop to obtain the physical address of

the remote device in either VM-Cross-region-VM (sender) or

VM-IDC case. Finally, the resubmit ability of Tofino enables

circular lookups of the VXLAN routing table in several cases.

2©IGW (Fig. 5b): IGW contains SNAT for VM-Internet

traffic and DNAT for Internet-VM traffic, as well as their

rate-limiting tables (i.e., Meter Out and Meter In). The packet

flows are: VM-Internet: IGW Classify->SNAT->Meter Out;

Internet-VM: IGW Classify->DNAT->Meter In. Similar to

CGW Classify, IGW Classify is used to filter the traffic

that should be processed locally. Besides, it will also decide

whether the traffic should be sent to SNAT or DNAT accord-

ing to packet header fields. Notice that Meter In occupies the

entire pipe while Meter Out shares its pipe with the SNAT ta-

ble. The reason is that, most rate-limiters for the VM-Internet

direction are installed at vSwitches while all rate-limiters for

the opposite direction are installed at the gateway, so that

Meter Out is much smaller than Meter In at the gateway.

3©SW (Fig. 5c): SW is responsible for underlay traffic for-

warding according to the outer DIP. The possible destinations

can be XGW/SLB in CPU, SLB+ in FPGA, physical servers,

Internet/remote regions through BSW, and IDCs. SW con-

ducts FIB lookup at Ingress Pipe 3 to select the next hop and

then rewrites the MAC headers at Egress Pipe 0.

Pipe/table bypass logic. Although each packet will sequen-

tially pass through CGW, IGW and SW, not all tables have

to be queried, e.g., Internet traffic will go through the CGW

pipes but there is no need to query the VXLAN routing table.

Hence, we can make an early judgment to determine whether

the packet will be processed by the local pipe or even the lo-

cal table to reduce unnecessary processing overhead. Usually,

the judgment is placed at the front of a pipe, e.g., in CGW

Classify, we set flags in the metadata according to the VNI

and DIP in the packet header to classify traffic into different

cloud services and the flags can be carried by the metadata

across pipeline stages. Fig. 6 shows the P4 code framework

884 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 struct metadata_t {
2 bit<1> flag; /* whether to bypass the current pipe */
3 bit<4> subflag; /* whether to bypass the current table */
4 ...
5 }
6 control Ingress(...) {
7 action tb1_ac1() { flag = 0; }
8 action tb1_ac2() { flag = 1; subflag = 0; }
9 action tb1_ac3() { flag = 1; subflag = 1; }

10 ...
11 table tb1 {
12 /* to distinguish different cloud services */
13 key = { ... }
14 /* to take different bypass actions */
15 actions = {
16 tb1_ac1; /* bypass the current pipe */
17 tb1_ac2; /* enter the current pipe, query tb2 */
18 tb1_ac3; /* enter the current pipe, query tb3 */
19 ... } }
20 table tb2 { ... }
21 table tb3 { ... }
22 ...
23 apply {
24 tb1.apply();
25 if (flag == 1) {
26 if (subflag == 0) { tb2.apply(); }
27 else if (subflag == 1) { tb3.apply(); }
28 ...
29 }
30 ... /* flag is 0, bypass the current pipe */
31 } }

Figure 6: P4 code framework for pipe/table bypass.

for pipe/table bypass. Specifically, we use flag for pipe bypass

and subflag for table bypass in the local pipe. For components

that span across multiple pipes (e.g., IGW), we can place

separate judgment logic at the front of each pipe, or let the

judgment results from the first pipe pass down to the subse-

quent pipes. The former consumes additional stage occupancy

while the latter increases metadata bridge usage [41].

Rationale behind pipeline design.
1©Two optional ways of pipeline folding. In designing the

pipeline layout, we have also considered another option in

Fig. 4b, which has separate pipelines folded for CGW and

IGW, achieving 3.2Tbps total bandwidth. However, it has

limitations: (1) Traffic balance is hard to achieve between

two pipelines. (2) Table occupancy balance is also hard to

guarantee between two pipelines. (3) Although more ports are

exposed to servers, there is also tight coupling between the

cloud services and the ports, which adds constraints for server

placement. (4) Our selected pipeline layout maximally reuses

the existing code by porting the entire IGW codebase from the

existing P4-based IGW gateway [41] for rapid deployment.

2©Component sequence in the pipeline. Someone may won-

der why the sequence is CGW->IGW->SW. In fact, we can

place either CGW or IGW in the front. However, the overlay

devices (CGW and IGW) must be placed ahead of the under-

lay device (SW) because the gateway always conducts outer

IP modification based on the VNI and the inner IP first (e.g.,
via VXLAN route lookup), then uses the outer DIP to query

the FIB in SW to determine the next-hop forwarding port.

3©Next-hop selection at the ingress pipe. You may no-

tice that all next-hop selection happens at the ingress pipe

(e.g., VXLAN routing table resubmit at Ingress Pipe 0,

SNAT/DNAT selection at Ingress Pipe 1, FIB lookup in SW

at Ingress Pipe 3). This is because we must rely on the TM of

Tofino for packet switching and it is necessary to determine

where the packet will go before it is sent to the TM.

4©Performance issue and the coping strategy. The current

pipeline layout also has limitations: (1) The original 4 parallel

pipelines are folded into one, decreasing the bandwidth from

6.4Tbps to 1.6Tbps. As 4 ports are connected with the CPU

and FPGA, the actual gateway bandwidth is only 1.2Tbps. (2)

Lots of Tofino ports are used for internal loopback, thereby

greatly reducing the number of ports for connecting physical

servers. However, for edge clouds, as the 1.2Tbps throughput

is more than enough and the server payload in a Cloud Box is

restricted, the above-mentioned will no longer be a problem.

In real deployment, hot standby is leveraged which doubles

the available gateway bandwidth as well as server payload.

4.2 On-Chip Resource Budgeting
As Tofino has scarce SRAM/TCAM, pipeline stages, and PHV

resources, we need to carefully budget the on-chip resource

occupancy to fit multiple gateway functions into the chip.

Table placement for balanced resource occupancy. In Lu-

oShen, forwarding tables are distributed in the 8 cascaded

pipes based on the service logic as well as balanced pipeline

resource occupancy. As mentioned in 4.1, the SRAM/TCAM

memories in each pipeline stage are shared by the ingress pipe

and the egress pipe. That is, for each pipeline, we can have

different resource occupancy combinations like ingress-heavy,

egress-heavy or balanced, but we can never have ingress-

heavy and egress-heavy simultaneously. When fitting the

tables into the Tofino, we also follow this principle to bal-

ance the resource occupancy of the 4 pipelines. For exam-

ple, Pipeline 0 is ingress-heavy as its ingress pipe stores the

VXLAN routing table, therefore, its egress pipe can only store

very small tables for MAC rewrite. Similarly, Pipeline 1 is

egress-heavy due to the VM-NC mapping table at Egress Pipe

1, Pipeline 2 is balanced because its ingress pipe has Meter

In while its egress pipe has DNAT, Pipeline 3 is egress-heavy

due to the SNAT and Meter Out at its egress pipe.

Stage occupancy compression. After pipeline folding, all

tables of the cascaded CGW/IGW/SW are fit in the 48 stages.

The stages are consumed mainly in two ways: (1) table de-

pendency, (2) large table occupancy. The table dependency

means the packet processing behavior of the current stage

depends on the table lookup results of the previous stage, e.g.,
CGW Classify occupies the first stage of Pipeline 0 to set by-

pass flags for subsequent stages. Clearly, in a hyper-converged

gateway, table dependencies occur more often. The large table

occupancy means the large table that cannot be fit in one stage

will span across multiple stages. In LuoShen, for (1), we rely

on the P4 compiler to generate the dependency graph; for (2),

we shrink some large tables (e.g., the VM-NC mapping table)

to reduce their stage occupancy for edge clouds.

PHV usage optimizations. PHV is a set of containers that

carry the headers and metadata along the pipeline. The first

PHV optimization is to reduce the metadata bridging as much

as possible by meticulous table placement because metadata

bridging not only decreases the switching throughput through

the TM [41] but also consumes more PHV resources at both

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 885

Figure 7: Multi-component table configuration channels.

ingress pipe and egress pipe. The second PHV optimization

is to overlay two or more header/metadata fields in the same

PHV container if their lifetimes do not intersect by using the

pa_alias pragma to instruct the compiler. Moreover, we break

the large header/metadata field into smaller pieces of the same

size intentionally to increase the possibility of PHV sharing.

5 Control Plane
Resource isolation. Multiple components run on LuoShen’s

CPU. They are (1) DPDK-based forwarding instances such

as XGW and SLB, (2) control plane agents of the data plane

components in Tofino (CGW/IGW/SW), FPGA (SLB+) and

CPU (XGW/SLB). Although the underlying CPU resources

are shared, these components have different performance re-

quirements (e.g., line-rate forwarding) and do not want to be

interrupted by others. To achieve performance isolation, we

dockerize [38] these components and bind XGW and SLB to

dedicated CPU cores. As the number of CPU cores is limited,

we also allow components (e.g., CGW and IGW agents) to

share the CPU cores while using cgroups [46] for resource

isolation. Except for CPU, resource isolation for memory/disk

is also needed to contain memory leaks and core dump files.

Multi-component table configuration. Unlike the single-

role gateways, LuoShen converges multiple components in

its data plane, thereby requiring multiple table configuration

channels (Fig. 7). For each channel, a control plane agent

at the CPU receives table update requests pushed from its

remote controller and installs them into the corresponding

data plane component through the underlying interface (e.g.,
BF Runtime). For rapid deployment of LuoShen, we reuse

the agent code directly from the single-role gateway so that

the remote controller can talk directly to LuoShen without

any modification (e.g., in Fig. 7, the IGW controller controls

LuoShen and IGW). The channels to Tofino, FPGA and CPU

are physically isolated to avoid table configuration collisions.

For the Tofino, the channel to CGW/IGW and the channel to

SW are also separate (i.e., through RPC and SAI). Although

CGW and IGW share the same channel, the complete sepa-

ration of their tables in the Tofino pipeline makes their table

configuration entirely lockless. Besides, to speed up table

configuration, we use batch to assemble multiple table update

requests and issue them in one shot to the BF Runtime.

Inter-component BGP peering. LuoShen converges the

role-splitting VPC network infrastructure of the public cloud

into one device, where internal components still need to com-

municate with each other (e.g., SW needs to route traffic to

the next-hop components). To exchange the reachability in-

formation between components, we set up BGP speakers at

the control plane for inter-component BGP peering so that a

component can learn the routes to others and it can also adver-

tise its reachability to others. Specifically, we set up separate

BGP speakers for XGW, SLB, SLB+ with both learning and

advertising capabilities. For CGW, IGW, SW, we set up one

BGP speaker for all of them. For CGW and IGW, as there

is only one path in the pipeline, there is no need for them to

learn BGP routes and their agents only perform advertising.

For SW, as it is the final component in the pipeline, its control

plane only needs to learn the routes for next-hop selection.

With BGP peering, LuoShen achieves high availability based

on component-level ECMP load balancing and fast failure

recovery, which are discussed in §A due to page limitation.

6 LuoShen’s Performance
We illustrate LuoShen’s performance under pressure test and

in production. The pressure test topology is shown in §B.

On-chip memory occupancy. Fig. 8 shows the memory us-

age in ingress/egress pipes. Generally, LuoShen consumes

more SRAM than TCAM because most major tables (e.g.,
VM-NC, SNAT/DNAT, meters, counters) are based on ex-

act match. Besides, as the Tofino contains more SRAM than

TCAM, we use ALPM [51] to reduce the TCAM usage at the

cost of additional SRAM usage [41]. Except for the VXLAN

routing table, Classify tables, ACLs, and FIB in SW will also

consume TCAM. Fig. 9 and Fig. 10 show how we achieve

balanced pipeline resource occupancy via meticulous table

placement. For Pipeline 0, we place the VXLAN routing table

in the later stages in the ingress pipe as it has dependencies

with the tables in its front (e.g., CGW Classify). As each

stage is shared by the ingress and egress, we have to place

the tables for MAC rewrite in the early stages in the egress

pipe for balanced memory usage. For Pipeline 2, the pipeline

resources are shared in a good balance by the ingress (Meter

In) and egress (DNAT). Fig. 11 shows the memory usage of

CGW/IGW/SW. The SRAM/TCAM occupancy is exactly as

expected. However, even in a hyper-converged gateway, the

memories are not fully exhausted. The reason is that table

dependencies make stages exhausted earlier than memories.

Fig. 12 shows the maximum PHV usage in different pipelines.

After PHV optimizations, the PHV has not been exhausted

in all pipelines. Pipeline 2 has the lowest PHV usage since it

contains only two major tables (i.e., DNAT and Meter In).

Performance under pressure test. Fig. 13 shows table con-

figuration speedup via batching. As CGW and IGW share

the same download channel, the improved table configuration

efficiency will not only reduce the gateway’s cold start time

but also alleviate download channel congestion. Fig. 14 shows

the throughput and latency of the VM-to-VM traffic within

the same VPC. LuoShen can achieve 1.2Tbps line-rate for-

warding with 256B packets and the latency is bounded within

886 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 8: SRAM/TCAM usage

in ingress/egress pipes.

Figure 9: SRAM usage distri-

bution over stages (Pipeline 0).

Figure 10: SRAM usage distri-

bution over stages (Pipeline 1).

Figure 11: SRAM/TCAM us-

age of CGW/IGW/SW.

Figure 12: PHV usage in differ-

ent pipelines (the worst case).

Figure 13: Table configura-

tion speedup via batching.

Figure 14: Throughput/latency of

VM-to-VM traffic (same VPC).

Figure 15: Latency of different

traffic routes (512B packets).

5μs even with 9000B packets. Fig. 15 shows the latency of

different cloud traffic routes with 512B packet size. The traffic

of VM-VM (same VPC) and VM-Internet has the lowest la-

tency due to the shortest route inside the Tofino (only through

6 pipes) without a resubmit at Ingress Pipe 0. The traffic of

cross-VPC, cross-region and IDC has a slightly higher latency

due to the resubmit operation. The traffic of Internet-VM has

an even higher latency due to its longer route through 8 pipes.

The traffic of the remaining cloud services will be routed to

the external CPU and FPGA, producing the longest latency.

Fig. 16 shows the throughput of different cloud traffic routes

with 512B packet size. The traffic traversing through the ex-

ternal CPU and FPGA has the lowest throughput, exactly as

expected. However, we notice that the traffic of VM-IDC and

VM-Internet also has slightly reduced throughput. The reason

is that they both experience decapsulation of outer headers.

Performance in production. Fig. 17 shows the converged

traffic throughput at an edge site, which is around 50Gbps.

As edge clouds have just been rolled out, most edge sites do

not have heavy traffic. However, we still select the P4-centric

architecture as it not only addresses the extreme cases but also

reserves a large performance margin for future traffic growth,

which makes the architecture durable. Fig. 18 shows the traffic

throughput of different cloud services of the edge site. It

can be inferred that most edge cloud traffic is IDC/Internet-

related. Most of the VM-to-VM traffic within the same VPC

is shortcut by the underlay network due to route caching.

Cross-VPC traffic is currently very limited. Fig. 19 shows the

CPU utilization of different components. SLB has the highest

CPU usage as a data plane function. The control plane agents

of CGW/IGW/SW also consume considerable CPU time.

Advantages of LuoShen at the edge. We compare LuoShen

with the role-splitting gateway architecture in the public cloud

in upfront cost, deployment size and power consumption. We

assume that the gateway/load balancer/switch clusters in the

public cloud will be reduced to separate devices in edge clouds

with one device for each role. Table 2 shows that LuoShen

reduces the upfront cost, deployment footprints and power

Table 2: LuoShen vs role-spliting in cost, size and power.
Cost (unit) Size (U) Power (W)

LuoShen 15 2 ∼1000
Role-splitting 61 15 >2500

consumption by 75%, 87% and 60%, respectively. Due to

page limitation, we discuss the calculation in §C.

7 Experiences and Lessons
Step-by-step deployment. To decompose the complexity

from infrastructure convergence, we deploy LuoShen in a step-

by-step way in production. We deploy the components in the

Tofino first since CGW and IGW cover the majority of cloud

network functions while SW provides the next-hop selection

ability. XGW/SLB/SLB+ are implemented by reusing the

existing x86 devices in the public cloud. As CGW/IGW/SW

are highly coupled, we have to deploy them together in one

pass. After they become more stable, we start to add XGW,

SLB and SLB+ one by one for complete deployment.

Function upgrade. As Tofino, CPU and FPGA are physically

separated, they can be upgraded independently. By contrast, as

CGW, IGW and SW are highly coupled, we have to upgrade

them as a whole, which will involve cross-team collaboration

as they are managed by different teams. The function isolation

issue in Tofino has also been discussed in [19, 53]. In 2018,

Barefoot announced Tofino Fast Refresh [14] to address the

hot upgrade issue. The feature can reset an entire P4 pipeline

within 50ms. However, as LuoShen deeply relies on pipeline

folding with one component spanning across pipelines and

two components possibly sharing the same pipeline, simply

using Tofino Fast Refresh for component upgrade may have

consistency issues. For example, when CGW resets Pipeline

0 and Pipeline 1 for an upgrade, the state of SW and IGW

in the same two pipelines will disappear for a short time and

their table query/update requests on the fly will be discarded.

Capacity expansion. The gateway capacity expansion in-

cludes the upgrade of performance and table size. For perfor-

mance, CPU is more likely to become the system bottleneck.

Some of the solutions we’ve tried include (1) adjusting the

number of CPU cores used by different services, (2) migrating

workloads from LuoShen to external x86 servers, (3) horizon-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 887

Figure 16: Throughput of differ-

ent traffic routes (512B packets).

Figure 17: Converged traffic

throughput at an edge site.

Figure 18: Traffic throughput

of different cloud services.

Figure 19: CPU utilization of

different components.

tal scaling with more LuoShen gateways. In real deployment,

we prefer (3) for stability and ease of maintenance. For table

size, we borrow the horizontal table splitting technique from

Sailfish [41] to share large tables among more gateways.

Failure isolation. In the public cloud, different gateway clus-

ters are physically separated. In each cluster, tenants’ entries

are horizontally split into multiple gateways. Therefore, fail-

ures will be isolated within a gateway. However, as each

gateway is associated with a huge number of tenants, the blast

radius of a failure will still be large. In edge clouds, LuoShen

serves all tenants miles away. That is, the failure of LuoShen

will affect all tenants at the edge site, although the number will

not be so large. In the Tofino, as CGW/IGW/SW are cascaded

in a folded pipeline, the stability of each component is critical

and we reuse the mature code from the single-role gateways.

At the CPU, we rely on docker and cgroup for failure isolation.

Finally, hot standby is our last resort to guarantee a failsafe.

Telemetry and debugging. As packet flows of different cloud

services converge at LuoShen, for network-wide telemetry, we

should probe all traffic routes in the gateway [59]. To achieve

this, we generate probes with pre-defined header fields for

all cloud service coverage. For network anomaly debugging,

we need to pinpoint the exact anomaly locations. To achieve

this, we collect and export telemetry data to the CPU at each

component/pipe/stage along the anomaly forwarding path.

Elastic NFV deployment. For LuoShen, if we deploy NFV

instances in its CPU, the elasticity will be restricted as the

CPU has already been excessively used (with XGW, SLB and

control plane agents). But, if we deploy NFV instances in

x86 servers, the CPU cores for tenants’ VMs will be occupied

(some tenants are concerned about this as the server payload

is valuable at the edge). We develop an NFV framework that

can autoscale across LuoShen’s boundary by horizontally ex-

panding table entries onto x86 servers during peak workloads.

8 Related Work
Building hybrid CPU/ASIC/FPGA network systems is a com-

mon tactic [9,11,35,41,57] to combat traffic growth that goes

far beyond Moore’s law [45]. However, few systems succeed

in fitting the entire multi-tenant cloud network infrastructure

with multi-service packet flows into a 2U box deployed in

production. For example, ServerSwitch [35] takes advantage

of both commodity servers and switching ASICs to perform

flexible and performant underlay traffic processing in DCNs.

Tiara [57] proposes a hardware-accelerated L4 load balancer

with a 3-tier architecture of P4/FPGA/CPU. While Tiara fits

the SLB function for the public cloud into a 5U box, Lu-

oShen fits the entire VPC network infrastructure (including

SLB) into a 2U box tailored for edge clouds. Sailfish [41]

uses Tofino to accelerate the single-role cloud gateways (e.g.,
VGW). While Sailfish and LuoShen both use pipeline folding

to provide sufficient stage resources, LuoShen considers ad-

ditional constraints. In addition to fitting table entries within

Tofino, it must also consolidate multi-service packet flows,

achieve equivalent implementation of underlay/overlay de-

vices, expose ports to interact with external CPU/FPGA, and

maximize codebase reuse. Bluebird [11] uses Tofino to accel-

erate the bare-metal cloud services which have similar packet

flows with our VM-IDC, IDC-VM scenarios with VXLAN-

to-VLAN translation and vice versa. Comparatively, LuoShen

is an “all-in-one” gateway with a more sophisticated pipeline

layout to consolidate almost all cloud network functions.

Different from our centralized gateway model, other cloud

vendors distribute the VPC network functions to end-

hosts [12, 17, 20–22, 31, 33]. For example, VFP [21] installs

virtual routing, tunnel encap/decap, and load balancing into

a host stack, which is scalable and fault-tolerant as there is

no single point of failure. The host stack performance can

further be accelerated by SmartNICs [22] or by a remote DPU

pool [12] to deal with high-bandwidth traffic bursts. Such dis-

tributed cloud network architecture could also be a good fit for

edge clouds. Considering the consistency with our existing

infrastructure, LuoShen takes an alternative approach with

different design tradeoffs. It offloads almost all VPC network

functions to the gateway to maximally free up valuable CPU

cores for tenants’ VMs. SmartNIC acceleration is not neces-

sary which saves upfront cost. The IDC/cross-region traffic is

also handled by the same gateway which saves cost and space.

To address single point of failure, LuoShen relies on Tofino

to absorb traffic bursts and reuses mature code for stability.

Some vendors build white box server switches without ser-

vice logic (e.g., Accton’s CSP-7551 [4]). LuoShen’s idea can

be extended to them to build other hyper-converged systems.

9 Conclusion
We propose LuoShen, a hyper-converged gateway for edge

clouds, which fits the entire VPC network infrastructure of

the public cloud into a 2U server switch with a P4-centric

architecture. To adapt to the new design constraints of perfor-

mance, costs and deployment footprints, we rearchitect the

data plane and control plane. LuoShen has been deployed in

Alibaba Cloud for over two years at hundreds of edge sites.

Acknowledgements: We thank the anonymous reviewers and

our shepherd Anirudh Sivaraman for constructive feedback.

888 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Alibaba cloud launches cloud box - extending

public cloud services to local devices. https:
//www.alibabacloud.com/blog/alibaba-cloud-
launches-cloud-box---extending-public-
cloud-services-to-local-devices_596688,

2020.

[2] Alibaba cloud launches local regions. https://infr
astructure.aliyun.com/local-regions, 2021.

[3] Alibaba cloudbox - product page. https://www.aliy
un.com/product/ecs/cloudbox, 2021.

[4] Csp-7551, hyper network appliance. https://www.ac
cton.com/product-csp-7551/, 2021.

[5] Tofino: P4-programmable ethernet switch asic

that delivers better performance at lower power.

https://www.intel.com/content/www/us/en/
products/network-io/programmable-ethernet-
switch/tofino-series/tofino.html, 2021.

[6] Alibaba cloud’s global infrastructure. https://www.
alibabacloud.com/global-locations, 2022.

[7] Cascade lake: Overview. https://www.intel.com/
content/www/us/en/products/platforms/detai
ls/cascade-lake.html, 2022.

[8] The journey towards predictable network in al-

ibaba cloud. https://opennetworking.org/wp-
content/uploads/2022/05/Dennis-Cai-Final-
Slide-Deck.pdf, 2022.

[9] Mina Tahmasbi Arashloo, Pavel Shirshov, Rohan

Gandhi, Guohan Lu, Lihua Yuan, and Jennifer Rexford.

A scalable vpn gateway for multi-tenant cloud services.

ACM SIGCOMM Computer Communication Review,

48(1):49–55, 2018.

[10] Michael Armbrust, Armando Fox, Rean Griffith, An-

thony D Joseph, Randy Katz, Andy Konwinski, Gunho

Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A

view of cloud computing. Communications of the ACM,

53(4):50–58, 2010.

[11] Manikandan Arumugam, Deepak Bansal, Navdeep Bha-

tia, James Boerner, Simon Capper, Changhoon Kim,

Sarah McClure, Neeraj Motwani, Ranga Narasimhan,

Urvish Panchal, et al. Bluebird: High-performance

{SDN} for bare-metal cloud services. In 19th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 22), pages 355–370, 2022.

[12] Deepak Bansal, Gerald DeGrace, Rishabh Tewari,

Michal Zygmunt, James Grantham, Silvano Gai, Mario

Baldi, Krishna Doddapaneni, Arun Selvarajan, Arunku-

mar Arumugam, et al. Disaggregating stateful network

functions. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages

1469–1487, 2023.

[13] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast

userspace packet processing. In 2015 ACM/IEEE Sym-
posium on Architectures for Networking and Communi-
cations Systems (ANCS), pages 5–16. IEEE, 2015.

[14] Antonin Bas. Leveraging stratum and tofino fast refresh

for software upgrades. Accessed: Jul, 4:2021, 2018.

[15] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick

McKeown, Jennifer Rexford, Cole Schlesinger, Dan

Talayco, Amin Vahdat, George Varghese, et al. P4:

Programming protocol-independent packet processors.

ACM SIGCOMM Computer Communication Review,

44(3):87–95, 2014.

[16] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-

ese, Nick McKeown, Martin Izzard, Fernando Mujica,

and Mark Horowitz. Forwarding metamorphosis: Fast

programmable match-action processing in hardware for

sdn. ACM SIGCOMM Computer Communication Re-
view, 43(4):99–110, 2013.

[17] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan

Arefin, Anshuman Gupta, Brian Fahs, Dima Rubinstein,

Enrique Cauich Zermeno, Erik Rubow, James Alexander

Docauer, et al. Andromeda: Performance, isolation, and

velocity at scale in cloud network virtualization. In 15th
USENIX symposium on networked systems design and
implementation (NSDI 18), pages 373–387, 2018.

[18] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody

Smith, Roman Kononov, Eric Mann-Hielscher, Ardas

Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-

nah Dylan Hosein. Maglev: A fast and reliable software

network load balancer. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
16), pages 523–535, 2016.

[19] Yong Feng, Zhikang Chen, Haoyu Song, Wenquan Xu,

Jiahao Li, Zijian Zhang, Tong Yun, Ying Wan, and Bin

Liu. Enabling in-situ programmability in network data

plane: From architecture to language. In 19th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 22), pages 635–649, 2022.

[20] DANIEL FIRESTONE. A virtual switch platform for

host sdn in the public cloud. USENIX Open Access
Policy, page 6.

[21] Daniel Firestone. {VFP}: A virtual switch platform

for host {SDN} in the public cloud. In 14th USENIX

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 889

Symposium on Networked Systems Design and Imple-
mentation (NSDI 17), pages 315–328, 2017.

[22] Daniel Firestone, Andrew Putnam, Sambhrama

Mundkur, Derek Chiou, Alireza Dabagh, Mike

Andrewartha, Hari Angepat, Vivek Bhanu, Adrian

Caulfield, Eric Chung, et al. Azure accelerated

networking:{SmartNICs} in the public cloud. In 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 51–66, 2018.

[23] Xenofon Foukas and Bozidar Radunovic. Concordia:

Teaching the 5g vran to share compute. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, pages

580–596, 2021.

[24] Pankaj Garg and Y Wang. Nvgre: Network virtual-

ization using generic routing encapsulation. Technical

report, 2015.

[25] Stephen D Goglin and Linden Cornett. Flexible and

extensible receive side scaling, September 1 2009. US

Patent 7,584,286.

[26] Albert Greenberg, James R Hamilton, Navendu Jain,

Srikanth Kandula, Changhoon Kim, Parantap Lahiri,

David A Maltz, Parveen Patel, and Sudipta Sengupta.

Vl2: A scalable and flexible data center network. In

Proceedings of the ACM SIGCOMM 2009 conference
on Data communication, pages 51–62, 2009.

[27] Jesse Gross, Ilango Ganga, and T. Sridhar. Geneve:

Generic Network Virtualization Encapsulation. RFC

8926, November 2020.

[28] Rolf Harms and Michael Yamartino. The economics of

the cloud. Microsoft whitepaper, Microsoft Corporation,

3:157, 2010.

[29] Antonios Katsarakis, Zhaowei Tan, Matthew Balkwill,

Bozidar Radunovic, Andrew Bainbridge, Aleksandar

Dragojevic, Boris Grot, and Yongguang Zhang. rvnf:

Reliable, scalable and performant cellular vnfs in the

cloud. Technical report, Technical Report MSR-TR-

2021-7, Microsoft, 2021.

[30] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon

Kim, Jeongkeun Lee, Vyas Sekar, and Srinivasan Se-

shan. Tea: Enabling state-intensive network functions

on programmable switches. In Proceedings of the An-
nual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,
architectures, and protocols for computer communica-
tion, pages 90–106, 2020.

[31] Teemu Koponen, Keith Amidon, Peter Balland, Martín

Casado, Anupam Chanda, Bryan Fulton, Igor Ganichev,

Jesse Gross, Paul Ingram, Ethan Jackson, et al. Net-

work virtualization in multi-tenant datacenters. In 11th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), pages 203–216, 2014.

[32] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming

Zhang. Cloudcmp: comparing public cloud providers.

In Proceedings of the 10th ACM SIGCOMM conference
on Internet measurement, pages 1–14, 2010.

[33] Anthony Liguori. The nitro project–next generation aws

infrastructure. In Hot Chips: A Symposium on High
Performance Chips, 2018.

[34] Yunzhuo Liu, Hao Nie, Hui Cai, Bo Jiang, Pengyu

Zhang, Yirui Liu, Yidong Yao, Xionglie Wei, Biao Lyu,

Chenren Xu, et al. X-plane: A high-throughput large-

capacity 5g upf. In Proceedings of the 29th Annual
International Conference on Mobile Computing and
Networking, pages 1–14, 2023.

[35] Guohan Lu, Chuanxiong Guo, Yulong Li, Zhiqiang

Zhou, Tong Yuan, Haitao Wu, Yongqiang Xiong, Rui

Gao, and Yongguang Zhang. {ServerSwitch}: A pro-

grammable and high performance platform for data cen-

ter networks. In 8th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 11), 2011.

[36] Jianyuan Lu, Tian Pan, Shan He, Mao Miao, Guangzhe

Zhou, Yining Qi, Shize Zhang, Enge Song, Xiaoqing

Sun, Huaiyi Zhao, et al. Cloudsentry: Two-stage heavy

hitter detection for cloud-scale gateway overload pro-

tection. IEEE Transactions on Parallel and Distributed
Systems, 2023.

[37] Mallik Mahalingam, Dinesh Dutt, Kenneth Duda, Puneet

Agarwal, Lawrence Kreeger, T Sridhar, Mike Bursell,

and Chris Wright. Virtual extensible local area network

(vxlan): A framework for overlaying virtualized layer 2

networks over layer 3 networks. Technical report, 2014.

[38] Dirk Merkel et al. Docker: lightweight linux containers

for consistent development and deployment. Linux j,
239(2):2, 2014.

[39] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun

Lee, and Minlan Yu. Silkroad: Making stateful layer-

4 load balancing fast and cheap using switching asics.

In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 15–28,

2017.

[40] Jayaram Mudigonda, Praveen Yalagandula, Jeff Mogul,

Bryan Stiekes, and Yanick Pouffary. Netlord: a scalable

multi-tenant network architecture for virtualized data-

centers. ACM SIGCOMM Computer Communication
Review, 41(4):62–73, 2011.

890 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[41] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang

Xu, Yisong Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan

Lu, et al. Sailfish: Accelerating cloud-scale multi-tenant

multi-service gateways with programmable switches. In

Proceedings of the 2021 ACM SIGCOMM 2021 Confer-
ence, pages 194–206, 2021.

[42] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin

Murthy, Albert Greenberg, David A Maltz, Randy Kern,

Hemant Kumar, Marios Zikos, Hongyu Wu, et al.

Ananta: Cloud scale load balancing. ACM SIG-
COMM Computer Communication Review, 43(4):207–

218, 2013.

[43] Zachary NJ Peterson, Mark Gondree, and Robert Bev-

erly. A position paper on data sovereignty: The impor-

tance of geolocating data in the cloud. In 3rd USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud
11), 2011.

[44] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jack-

son, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex

Wang, Joe Stringer, Pravin Shelar, et al. The design and

implementation of open {vSwitch}. In 12th USENIX
symposium on networked systems design and implemen-
tation (NSDI 15), pages 117–130, 2015.

[45] Lawrence G Roberts. Beyond moore’s law: Internet

growth trends. Computer, 33(1):117–119, 2000.

[46] Rami Rosen. Resource management: Linux kernel

namespaces and cgroups. Haifux, May, 186:70, 2013.

[47] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krish-

namurthy, Sylvia Ratnasamy, and Vyas Sekar. Making

middleboxes someone else’s problem: Network process-

ing as a cloud service. ACM SIGCOMM Computer
Communication Review, 42(4):13–24, 2012.

[48] Enge Song, Nianbing Yu, Tian Pan, Qiang Fu, Liang Xu,

Xionglie Wei, Yisong Qiao, Jianyuan Lu, Yijian Dong,

Mingxu Xie, et al. Mimic: Smartnic-aided flow back-

pressure for cpu overloading protection in multi-tenant

clouds. In 2022 IEEE 30th International Conference on
Network Protocols (ICNP), pages 1–11. IEEE, 2022.

[49] George J Stigler. The economies of scale. The Journal
of Law and Economics, 1:54–71, 1958.

[50] Luis M Vaquero, Luis Rodero-Merino, and Rajkumar

Buyya. Dynamically scaling applications in the cloud.

ACM SIGCOMM Computer Communication Review,

41(1):45–52, 2011.

[51] Henry Wang. Algorithmic longest prefix matching in

programmable switch, December 17 2019. US Patent

10,511,532.

[52] Jianyu Wang, Jianli Pan, Flavio Esposito, Prasad

Calyam, Zhicheng Yang, and Prasant Mohapatra. Edge

cloud offloading algorithms: Issues, methods, and per-

spectives. ACM Computing Surveys (CSUR), 52(1):1–

23, 2019.

[53] Tao Wang, Xiangrui Yang, Gianni Antichi, Anirudh

Sivaraman, and Aurojit Panda. Isolation mechanisms for

{High-Speed}{Packet-Processing} pipelines. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 1289–1305, 2022.

[54] Chengkun Wei, Xing Li, Ye Yang, Xiaochong Jiang,

Tianyu Xu, Bowen Yang, Taotao Wu, Chao Xu, Yilong

Lv, Haifeng Gao, et al. Achelous: Enabling programma-

bility, elasticity, and reliability in hyperscale cloud net-

works. In Proceedings of the ACM SIGCOMM 2023
Conference, pages 769–782, 2023.

[55] Timothy Wood, Prashant J Shenoy, Alexandre Gerber,

Jacobus E van der Merwe, and Kadangode K Ramakr-

ishnan. The case for enterprise-ready virtual private

clouds. In HotCloud, 2009.

[56] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas

Chen, Sy Choudhury, Marat Dukhan, Kim Hazelwood,

Eldad Isaac, Yangqing Jia, Bill Jia, et al. Machine learn-

ing at facebook: Understanding inference at the edge.

In 2019 IEEE international symposium on high perfor-
mance computer architecture (HPCA), pages 331–344.

IEEE, 2019.

[57] Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong

Wang, Luyang Li, Wenchen Han, Nan Chen, Lebing

Wan, Lichao Liu, Zhipeng Ding, et al. Tiara: A scal-

able and efficient hardware acceleration architecture for

stateful layer-4 load balancing. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 22), pages 1345–1358, 2022.

[58] Xiantao Zhang, Xiao Zheng, Zhi Wang, Hang Yang,

Yibin Shen, and Xin Long. High-density multi-tenant

bare-metal cloud. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages

483–495, 2020.

[59] Shunmin Zhu, Jianyuan Lu, Biao Lyu, Tian Pan, Chen-

hao Jia, Xin Cheng, Daxiang Kang, Yilong Lv, Fukun

Yang, Xiaobo Xue, et al. Zoonet: a proactive telemetry

system for large-scale cloud networks. In Proceedings
of the 18th International Conference on emerging Net-
working EXperiments and Technologies, pages 321–336,

2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 891

Appendices
A High Availability with Hot Standby
In a production environment, we deploy at least two LuoShen

gateways in a hot-standby mode to achieve high availability,

as shown in Fig. A1. The same components of the two Lu-

oShen gateways will advertise the same VIP to the outside so

that the upstream switches/routers can conduct ECMP load

balancing to split the incoming traffic equally between the

two components. With such design, we can easily scale out

our gateway system to handle the edge cloud traffic growth in

the future. For example, in Fig. A1, two CGW components

advertise the same VIP to the upstream BSW, which will

conduct ECMP load balancing on the traffic towards CGW.

Except for traffic load balancing, the same components of the

two LuoShen gateways can also back up for each other for

fast failure recovery. For example, in Fig. A1, two IGW com-

ponents advertise the same VIP to the upstream BSW, which

will conduct ECMP load balancing on the traffic towards IGW.

However, at a certain time, if there is a link or component

failure of the IGW in one gateway, it will trigger BGP route

withdrawal in the upstream BSW. After that, traffic will be

forwarded by the upstream BSW to the remaining IGW. Ac-

cording to our measurement, the BGP route withdrawal will

be quickly completed in milliseconds during a link failure.

Figure A1: In production, LuoShen achieves load balancing

and high availability with hot-standby deployment.

B Performance Test Topology
In order to pressure test LuoShen’s performance, we build

a test topology as shown in Fig. A2. As mentioned in §4.1,

the Tofino chip in LuoShen only exposes the 16 ports of its

Pipeline 0 after pipeline folding and 4 of them are connected

with the CPU and FPGA. Therefore, we use a traffic generator

to inject 1.2Tbps traffic through 12 optical fibers into the re-

maining 12×100G ports. By changing the traffic header fields

(e.g., VNI, DIP), we can conduct pressure tests on different

traffic routes inside LuoShen for different cloud services.

C Calculation of Cost, Size and Power
When deploying the role-splitting gateway architecture of the

public cloud at the edge, due to the reduced traffic volumes at

the edge, we reduce the original role-based clusters of devices

Figure A2: Performance test topology.

to multiple devices accordingly, with one device for a partic-

ular cloud function. In this way, we will have a device list

including an x86 server attached with an FPGA (2U) to imple-

ment SLB+, two x86 servers (2*2U) to implement XGW and

SLB, three P4-based gateways (3*2U) to implement VGW,

IGW and TGW, three switches (3*1U) to implement CSW,

LSW and the original SW. Then, we calculate the cost, size

and power of LuoShen and the role-splitting architecture, re-

spectively. 1© Upfront cost: As the exact cost numbers of

FPGA, x86 server, P4-based gateway and LuoShen are con-

fidential, we normalize them to 1:10:10:15 according to our

experience (for the sake of simplicity, we omit the cost of

switches). Accordingly, the cost of LuoShen is 15 while the

cost of the role-splitting is (1+10)+2*10+3*10=61. 2© De-

ployment footprints: LuoShen will occupy 2U while the role-

splitting will occupy 2U+2*2U+3*2U+3*1U=15U. 3© Power

consumption: Generally, an FPGA consumes 100W [11, 57],

an x86 server consumes 500W [57] and its CPU consumes

200W [7], a P4-based gateway consumes 300W [39]. There-

fore, the power consumption of the role-splitting architec-

ture is at least (100W+500W)+2*500W+3*300W=2500W

(we still omit the power consumption of switches). LuoShen

contains one P4 switch, two CPUs and one FPGA. Besides,

the optical modules, fans, disks will additionally consume

around 200W. Therefore, the power consumption of LuoShen

is around 300W+2*200W+100W+200W=1000W.

D Acronym Definition

Table A1: Definition of vendor-specific acronyms.
Acronym Expansion

SLB Server Load Balancer
XGW eXtendable Gateway
IGW Internet Gateway
VGW Virtual Private Gateway
TGW Transit Gateway
CGW Cloud Gateway

vSwitch Virtual Switch
NC Node Controller
SW Switch

CSW Customer Switch
LSW Integrated Access Switch
BSW Border Switch
IDC Internet Data Center
VBR Virtual Border Router

892 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Sprinter: Speeding Up High-Fidelity Crawling of the Modern Web

Ayush Goel1 Jingyuan Zhu1 Ravi Netravali2 Harsha V. Madhyastha3

1University of Michigan 2Princeton University 3University of Southern California

Abstract—Crawling the web at scale forms the basis of many

important systems: web search engines, smart assistants, gener-

ative AI, web archives, and so on. Yet, the research community

has paid little attention to this workload in the last decade. In

this paper, we highlight the need to revisit the notion that web

crawling is a solved problem. Specifically, to discover and fetch

all page resources dependent on JavaScript and modern web

APIs, crawlers today have to employ compute-intensive web

browsers. This significantly inflates the scale of the infrastruc-

ture necessary to crawl pages at high throughput.

To make web crawling more efficient without any loss of

fidelity, we present Sprinter, which combines browser-based

and browserless crawling to get the best of both. The key to

Sprinter’s design is our observation that crawling workloads

typically include many pages per site and, unlike in traditional

user-facing page loads, there is significant potential to reuse

client-side computations across pages. Taking advantage of this

property, Sprinter crawls a small, carefully chosen, subset of

pages on each site using a browser, and then efficiently identifies

and exploits opportunities to reuse the browser’s computations

on other pages. Sprinter was able to crawl a corpus of 50,000

pages 5x faster than browser-based crawling, while still closely

matching a browser in the set of resources fetched.

1 INTRODUCTION

To make the most of the enormous trove of information avail-

able on the web, all of us today rely upon a range of ef-

forts. Web search engines help users find pages relevant to

their needs. Data from the web serves as input to smart as-

sistants such as Siri and Alexa, and is used to train genera-

tive AI models that can answer our questions. Web archives

store repeated snapshots of web pages to document changes

over time and to preserve the content of deleted pages. Re-

searchers continually study the web to help improve its per-

formance and security.

A key enabler for all of the above is a capability that

we take for granted today: the ability to crawl the web at

scale. Web crawlers have traditionally crawled a page by

first downloading the page’s HTML, and then recursively

fetching all embedded links to images, CSS stylesheets,

scripts, etc. If one deploys many such so called static

crawlers [32, 28] across a fleet of machines, the rate of crawl-

ing is limited by the network bandwidth of each machine.

Given that web crawlers have existed for over three

decades, why revisit this topic now? Because, static crawlers

no longer suffice. On today’s web, the URLs of many of the

resources on a page are determined at runtime, rather than

being statically embedded in the page’s source. To discover

and fetch such resources, modern “dynamic” crawlers [5,

Dynamic Sprinter

Static

Better

0

25

50

75

100

0 25 50 75 100
Crawling throughput per server (pages/s)

F
id

e
lit

y
 (

%
 o

f
b
y
te

s
)

Figure 1: Tradeoff between fidelity and performance with dif-

ferent crawlers.

2, 4] leverage web browsers such as Chrome, Firefox, or

Edge. However, due to the compute overheads associated

with JavaScript (JS) execution and with browsers in general,

the rate at which one can crawl pages drops by an order

of magnitude relative to static crawling (Figure 1). Con-

sequently, dynamic crawlers need to be deployed across a

much larger number of servers in order to sustain the same

crawling throughput as that feasible with static crawlers.

Thus, anyone seeking to crawl the web today has to make

do either with the poor performance of dynamic crawlers or

the incompleteness of static crawlers. Unfortunately, there

is no easy fix. One could try to augment a static crawler

with a lightweight JavaScript execution engine, but keeping

up with constantly evolving web APIs is a challenge best

left to the developers of widely used browsers. On the other

hand, proposals that attempt to mitigate the impact of client-

side web computations on user-perceived web performance

have little utility in the context of crawling. For example,

overlapping the browser’s computations with its network ac-

tivity [41, 24, 56] or parallelizing the browser’s execution

of JavaScripts [40] can reduce page load times, but crawl-

ing throughput remains unchanged since the total amount of

client-side computation is the same.

We address this undesirable status quo with Sprinter, a

new crawler which judiciously combines browser-based and

browserless crawling. Sprinter crawls pages at a much faster

rate than dynamic crawlers while matching them in the re-

sources fetched. Our main observation is that large-scale

web crawling workloads typically include many pages from

each site and there is significant potential to reuse client-side

computations across pages (§3.1).To exploit this property,

our design of Sprinter is based on three key principles.

First, when Sprinter crawls a page using a browser, it

strives to minimize the amount of JS code executed. For

every script file on a page, Sprinter attempts to reuse the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 893

browser’s execution of that file on a previously crawled page.

In user-facing page loads, execution of the same file is sel-

dom exactly identical across multiple pages. In contrast,

Sprinter can reuse JS execution at such a coarse granularity

because it can skip executing a JS file as long as the URLs of

the resources that file would fetch match those fetched dur-

ing a prior execution of that file.

Second, even if none of the JS files on a page are exe-

cuted, crawling the page with a browser imposes significant

compute overhead. Therefore, on any site, Sprinter crawls

the vast majority of pages on the site without a browser. To

realize browserless crawling that does not sacrifice fidelity,

we implement a lightweight page instrumentation framework

that tracks the web APIs used on any page without sup-

port for executing these APIs. When it crawls a page with-

out a browser, Sprinter uses this instrumentation to identify

whether it can safely reuse JS executions from pages that it

previously crawled with a browser.

Lastly, to maximize the fraction of pages that can be

crawled without a browser, Sprinter crawls the pages on a

site in a carefully chosen order. For any given site, Sprinter

efficiently identifies a subset of pages such that most of the

scripts seen on other pages are fetched as part of this sub-

set. Sprinter crawls these pages first using a browser and

captures the effects of JS executions. Most of the remaining

pages can then be crawled without a browser, since Sprinter

can identify all resources to be fetched on those pages with-

out executing any JS code or web APIs.

We used Sprinter to crawl a corpus of 50,000 pages spread

across a diverse collection of 100 sites. It offered a 5x

speedup in crawling throughput compared to existing dy-

namic crawlers. When we recrawled the same corpus a week

later, the rate at which Sprinter crawls pages improved by a

further 78%. Importantly, Sprinter preserves almost all re-

source fetches issued by a browser-based crawler, and it is

compatible with legacy web servers. Sprinter’s source code

is available at https://github.com/goelayu/Sprinter.

2 BACKGROUND AND MOTIVATION

We begin by describing common web crawling workloads

and quantifying the limitations of existing strategies for sup-

porting these workloads.

2.1 Target workloads

Web crawlers take as input a seed list of URLs to pages that

need to be crawled. The input configuration to the crawler

can specify a range of options such as timeout per page,

retry policy, politeness constraints (i.e., time gap between

crawls of pages on the same site), and whether other pages

discovered while crawling the seed list should also be recur-

sively crawled. Some crawlers provide the option of saving

page screenshots [2] and triggering user interactions (e.g.,

scrolling or clicking) on rendered pages [4]. In this work, we

focus on supporting the common need for crawlers to save

the content of resources that are fetched on every page that

is crawled. To not make any assumptions about what the

crawls will be used for, we aim to fetch and save all page re-

sources requested by a browser such as Chrome, rather than

a subset that may suffice for a particular use case.

We focus on supporting workloads where pages are

crawled from a large number of sites. This is the case in

any large-scale system that relies on web crawls, e.g., to sup-

port web search, ChatGPT, and Siri, their providers aim to

crawl the entire web. Even in more focused crawls, it is

common to crawl many sites and many pages in each site.

For example, after every presidential term in the US, the

Internet Archive captures a snapshot of 1.3 million govern-

ment websites, crawling roughly 700 pages on average per

site [14]. Similarly, research studies attempting to under-

stand the web’s security vulnerabilities [44] have crawled

roughly 2500 pages per site. When pages are crawled from a

single site (e.g., a research study of pages on Facebook), the

rate at which pages can be crawled is constrained by the rate

limits imposed by the site being crawled.

2.2 Shortcomings of static crawling

As mentioned earlier, web crawling has traditionally relied

on static crawlers, which identify all the resources to fetch

on every page by extracting links embedded in the page’s

source. To demonstrate and quantify why static crawlers

are now insufficient, we compile Corpus10k, a collection of

10,000 pages comprising 100 randomly sampled pages from

each of 100 sites: roughly 33 sites chosen at random from

three ranges – [1, 1000], [1000, 100k], and [100k, 1m] –

from Alexa’s site rankings. This corpus spans a diverse col-

lection of sites and is representative of real-world crawls in

that it includes a large number of pages per site crawled.

On a server which has a 16-core 2.1 GHz Intel Xeon CPU,

a 1 Gbps network connection, and a 500 GB SSD disk,

we crawl every page in Corpus10k using a custom crawler

which loads every page in Google Chrome but also fetches

all URLs, both absolute and relative, that are embedded in

text-based resources (i.e., HTML, CSS, and JS). We record

all responses using a web record and replay tool [9]. We

then separately crawl every page from our recorded copy

once using Chrome and once using our custom static crawler

(which mimics wget2 [12], a state-of-the-art static crawler),

with network caching enabled in both cases, i.e., across all

pages, each unique resource was only fetched once. Com-

paring the two types of crawlers in this manner eliminates

any differences that might arise due to server-side non-

determinism [36].

First, the “Dynamic - Static” line in Figure 2 shows that

a static crawler fails to fetch 32% of bytes on the median

page. This is because, on a modern web page, which re-

sources are served to a client are often determined only when

the client executes the scripts included on the page. Since a

static crawler can identify the URLs of a page’s resources

894 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/goelayu/Sprinter

0.00

0.25

0.50

0.75

1.00

10
0

10
1

10
2

10
3

% of bytes fetched by Dynamic

C
D

F
 a

c
ro

s
s
 p

a
g

e
s

Dynamic − Static
Static − Dynamic

Figure 2: Compared to a dynamic (i.e., Chrome-based)

crawler, a static crawler both fails to fetch some resources and

fetches many additional resources. Distribution shown is over

10,000 pages spread across 100 sites. Note logscale on x-axis.

var EA = fetch(“crazyegg.com/usnews.com.json”)
// json contents: {

script_url: ”crazyegg.com/commonscripts/759.js”
}

const n = document.createElement("script");
n.src = EA.script_url;
const r = document.getElementsByTagName("script")[0];
r.parentNode.insertBefore(n, r);

9297.js

utag.js

Figure 3: Snippet of JS code from www.usnews.com. The

browser first fetches a JSON file, and then requests a JS file

referenced inside the JSON.

only by parsing the source code of the page, it is blind to

such resource fetches. Figure 3 shows an example.

Second, Figure 2’s “Static - Dynamic” line shows that,

on the median page, the static crawler fetches 93% more

bytes than fetched by Chrome; on some pages, this over-

head is as high as 200x. These extra resource fetches arise

because, within a single page, web developers often embed

resources that are applicable across a large number of client

device types, expecting the client browser to download the

resources applicable to it. Examples include multiple reso-

lutions of the same image, or different font files for the same

HTML text. To enable the client to pick the appropriate ver-

sion of any particular resource, modern pages either use me-

dia queries [17] or CSS selectors [11]; see Figure 4 for exam-

ples. A static crawler is unable to evaluate media queries and

does not know which CSS selectors are dynamically applied

during JavaScript execution. Therefore, it offers no control

on whether to fetch only resources applicable to the machine

used for crawling a page or to fetch every resource that might

be requested in any load of the page.

2.3 Compute overheads of browser-based crawling

Given the shortcomings of static crawlers, state-of-the-art

web browsers are often employed to crawl pages [2, 5, 4].

We observe that Chrome is the most widely used in browser-

based crawling frameworks because of its better support for

web APIs [18] and for automation capabilities [8]. For this

<picture>
<source srcset=”ct.img/600x338” media=“(min-width:768px)”>
<source srcset=”ct.img/400x225” media=“(min-width:0px)”>

</picture>

.icon-calendar
{font-family: {src: url(“fonts/icomoon.woff”)}}

index.html

style.css

if (body.firstChild.hasAttr(“data-widget”)){
var inode = document.createElement(“i”);
inode.class = “icon-calendar”;
body.firstChild.insertBefore(inode)

}

widget.js

Figure 4: Code snippet from www.chicagotribune.com

showing the two causes for a static crawler’s extra resource

fetches. (a) It will fetch both versions of the ct.img image,

irrespective of the width of the client device’s display. (b) It will

fetch the font file fonts/icomoon.woff, whether or not the

CSS selector .icon-calendar is used in the rest of the page.

The CSS selector is only added if the HTML code contains a

data-widget attribute.

0

25

50

75

100

Static Dynamic Dynamic w/o
script execution

R
e

s
o

u
rc

e
 u

ti
liz

a
ti
o

n
 (

%
) CPU Network Disk

Figure 5: A comparison of average CPU, network, and disk

utilization by static and dynamic crawlers.

reason, in the rest of this paper, we refer to Chrome1 when

discussing overheads of browser-based crawling.

We observe that the average number of pages that we

could crawl per second with Chrome was only 12% of that

achievable with the static crawler. The cause for this signifi-

cant drop in crawling throughput is shown in Figure 5, which

plots the average utilization of CPU, network, and disk with

either crawler. Unlike the static crawler, which was limited

by network bandwidth, the dynamic crawler ended up satu-

rating all CPUs. If we were to use a 10 Gbps network, more

than 5000 CPU cores would be necessary for the dynamic

crawler to fully utilize the network, which is infeasible to

accommodate on a single server.

We break down the reasons behind Chrome’s high CPU

usage using data from Chrome’s in-built profiler [7]. We find

three primary contributors: 1) the JavaScript engine, which

is responsible for parsing and interpreting JS code, 2) inside

the rendering engine, computation of the layout tree which

1We use Chrome in a headless mode as it is known to be more compute

efficient [49, 21].

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 895

www.usnews.com
www.chicagotribune.com

specifies on-screen positions for page content, and 3) time

spent inside Chrome’s internal code, into which the profiler

has no visibility. Together, these three sources of computa-

tion account for 96% of the compute delays on the median

page, with JavaScript execution alone accounting for about

half. Given the complex inter-dependencies between these

three tasks, none of them can be simply eliminated to reduce

Chrome’s computation overheads. For example, JavaScript

execution queries layout information when scripts inspect

the position of elements on the screen.

2.4 Minimizing browser’s computation delays

The observation that the amount of client-side computation

needed to load a web page has increased in recent times is

not new. A large body of prior work [57, 42, 40, 41] has

focused on addressing the impact of this overhead on user-

perceived web performance. However, those solutions have

little utility in the context of web crawling for two reasons.

First, many proposals for reducing the impact of client-

side computation on page load times aim to either increase

the overlap between the browser’s use of the client CPU and

network [41, 46] or parallelize the browser’s execution of

scripts on a page [40]. Such solutions can reduce the end-

to-end latency of individual crawls, but the total amount of

computation that the crawler needs to perform, and thus the

crawling throughput, will remain unchanged.

Second, others [42, 57, 1] rely on server-/proxy-side sup-

port to ship processed versions of pages so as to minimize the

amount of JavaScript that clients need to execute. Notwith-

standing the fact that such solutions are not usable until they

are adopted by millions of domains, we estimate their best

case utility by crawling pages in Corpus10k with script exe-

cution in Chrome disabled. A comparison of “Dynamic” and

“Dynamic w/o script execution” in Figure 5 shows that the

latter marginally reduces the gap between CPU and network

utilization. However, client-side computation remains a sig-

nificant bottleneck, thereby limiting crawling throughput to

still be only 17 pages per second.

Alternatively, one could attempt to build a lightweight

browser from scratch which only supports crawling, but does

not enable users to visit web pages, i.e., has no graphical

interface, does not support user interactions, etc. However,

significant engineering effort would be required to constantly

keep up with updates in HTML, CSS, and JavaScript APIs.

For example, when we load the landing pages of the top 1000

Alexa sites using a version of Chrome from five years ago

(v65), it fails to fetch 16% of the resources fetched by the

most recent version of Chrome (v114). This is because cer-

tain JavaScript APIs that are commonly used today were not

supported by Chrome v65, e.g., support for optional chain-

ing [15] was only added in v80. It would be best for web

crawlers to rely on widely used browsers which are well-

maintained, instead of having to replicate the effort in a

lightweight browser dedicated to crawling.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Fraction of JS files that are shared

C
D

F
 a

c
ro

s
s
 s

it
e

s Same source + same fetches
Same source

Figure 6: For the sites in Corpus10k, most JavaScript files ap-

pear on multiple pages and a script typically fetches the same

resources on all the pages which include that script.

3 OVERVIEW

The takeaway from the previous section is that, today, opera-

tors of web crawlers are stuck with having to choose between

two less than ideal options: use static crawlers and miss out

on some resources, or make do with the poor performance

of dynamic browser-based crawlers. We seek to resolve this

quandary by enabling high-fidelity crawling at high through-

put. We do so while respecting two constraints. First, we

make sure to crawl all the resources on a page that a browser

would fetch, but make it configurable whether to crawl only

the resources relevant to the machine on which the crawler

is executed. Second, to make our crawler compatible with

the legacy web, we require no changes to web pages and the

servers that host them.

3.1 Observations and approach

The high-level observation that guides our approach is that,

on any site, there typically is significant overlap across pages

both in the JavaScript code that they include and JavaScript-

initiated fetches when a browser loads them. Figure 6

demonstrates this property on the pages in Corpus10k.

First, for every site, out of all the unique JS files seen on at

least one of the 100 pages on that site, we compute the frac-

tion which are included in multiple pages; here, we consider

the combination of a file’s URL and a hash of its source code

to be a unique identifier for a file. The “Same source” line

plots the distribution of this fraction across the 100 sites in

our corpus. For the median site, 72% of JS files were shared

across multiple pages.

Next, we examine the likelihood that a JS file fetches the

same set of resource URLs when it is executed on differ-

ent pages. For this, we consider a script file’s execution

uniquely by the file’s URL, the hash of its source, and the

set of URLs it fetches. When we consider only those exe-

cutions which result in at least one fetch, the “Same source

+ same fetches” line in Figure 6 shows that, on the median

site, 65% of unique file executions – at least with respect to

resource fetches – are repeated across multiple pages.

The takeaway from these observations, coupled with the

property that web crawling workloads typically crawl a large

number of pages per site (§2.1), is that there exists signifi-

896 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Store/lookup

signatures
Pages to crawl

dynamically

Phase 1: Static crawl

Download only

statically linked

JS files to compute

set cover

Phases 2,4: Dynamic crawl

Load pages

while executing

instrumented JS

Page URLs

Phase 3: Static crawl

Crawl pages

where all JS

can be skipped

Pages to crawl statically

Compute

cache

Pages to recrawl dynamically

Lookup

signatures

Figure 7: Sprinter crawls the pages on any site in four phases which alternate between browserless and browser-based crawling.

cant redundancy in a dynamic crawler’s execution of JS files.

When the browser used by the crawler executes a JS file that

it had previously executed on a different page on the same

site, the numbers from Figure 6 indicate that the same set

of resources are often requested as on the previous page.

The browser’s network cache will ensure that it does not

have to waste network bandwidth in re-downloading those

resources. But, the browser will still execute every JS file in

its entirety just to identify these resources.

To improve crawling performance by reducing the

crawler’s computations, our approach aims to first eliminate

redundant execution of JS files. Specifically, whenever our

crawler, Sprinter, crawls any page, it skips executing a JS file

if a) it has already executed that file while crawling a differ-

ent page on the same site, and b) it identifies that, if executed,

the file will fetch the same resources as it did on the pre-

viously crawled page. However, as observed earlier (§2.4),

a browser imposes high compute overhead even when it is

used to load pages with execution of scripts disabled. There-

fore, second, on pages where it can reuse the executions of

all JS files, Sprinter does not even employ a browser to crawl

those pages. Put together, Sprinter uses a browser to crawl

only a small subset of pages in each site and minimizes the

browser’s execution of JavaScripts.

3.2 Challenges

Realizing the above approach requires us to answer the fol-

lowing three questions.

• Whenever a script appears on multiple pages, it is not

guaranteed to initiate the same resource fetches on all

pages; in our corpus, 48% of repeated scripts had at least

one execution where they fetched a different set of URLs

than what they fetched in their first execution. Prior to ex-

ecuting a script, how can Sprinter efficiently identify that

the script’s execution will match a prior execution, and it

is safe to skip executing it?

• Classic memoization involves storing the results of ex-

ecution and using them to skip future executions of the

same code in the same runtime context. In contrast, when

Sprinter crawls a page without a browser, how can it reuse

the browser’s prior computations on other pages? Mim-

icking the entire browser runtime will significantly in-

crease complexity and degrade performance.

• Finally, on each site, which subset of pages should

Sprinter crawl using a browser? To minimize Sprinter’s

compute overheads, it is key that the subset be small.

However, for Sprinter to crawl all the remaining pages on

the site without a browser, we must ensure that the script

executions on the pages crawled using a browser suffice to

skip executing all the JS files on the remaining pages.

4 DESIGN

As shown in Figure 7, Sprinter crawls a corpus of pages

from any particular website in four phases. In the first

phase, Sprinter identifies the subset of pages that need to be

crawled with a browser. It crawls those pages in the second

phase while skipping JS executions whenever feasible. Next,

Sprinter crawls the remaining pages on the site using its aug-

mented static crawler. Finally, it recrawls some of the pages

from the third phase using a browser. We present our design

of Sprinter by first describing its operation in phases 2 (§4.1)

and 3 (§4.2), and lastly, phases 1 and 4 (§4.3).

4.1 Memoizing JavaScript execution

Sprinter maintains a compute cache in order to take advan-

tage of the opportunities to reuse JS executions across the

pages on a site. On any page that Sprinter crawls with a

browser, prior to executing JS on the page, the browser looks

up the compute cache to determine whether the execution

can be skipped. Upon a cache miss, the browser executes the

JS code and logs a summary of its execution in the compute

cache, for use on other pages.

Execution signatures to enable reuse. When JS code runs

within a browser, it can read from or write to the JavaScript

heap and HTML DOM object. It can also read the return

values from various web APIs. Therefore, to enable reuse of

JS executions without violating correctness, we associate the

execution of every block of JS code with a signature which

includes the values at the start of executing that block of code

for all state from the heap or DOM that is read within that

block. When the browser executes any block of JS code,

its execution is guaranteed to result in the same externally

visible effects (i.e., writes to the DOM and heap, and URL

fetches) as a prior execution which had the same signature, if

the block does not invoke any non-deterministic APIs (e.g.,

Date, Random or Performance). Figure 8 shows an ex-

ample block of code and the corresponding signature.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 897

var gKey = window.grumi.key; // “bfd2-4adc”
fetch(`https://www.geoedge.com/${gKey}/grumi-ip`)
var NYTD = {PageViewID:‘mubjhislka7867’};
window.NYTD = NYTD;

{
Reads: [“window.grumi.key”,”bfd2-4adc”],
Writes: [“window.NYTD”,”{PageViewID:‘mubjhislka7867’}”]
Fetches: [“https://www.geoedge.com/bfd2-4adc/grumi-ip“]

}

vendor.js

Signaturevendor.js

Figure 8: JavaScript code from www.nytimes.com which

reads a global variable using the window object and, based

on the property read, fetches a URL. It also writes to the win-

dow object. Signature for this includes the global state read and

written (both the keys and the values) and the fetches initiated.

However, to construct code signatures, modern browsers

provide no APIs to extract the necessary runtime informa-

tion about JavaScript execution. To remedy this, Sprinter

uses a custom JS instrumentation framework, similar to the

ones used in prior work [31, 40, 42]. This instrumentation

framework runs inside a man-in-the-middle (MITM) proxy

which sits in front of the browser. For every new JS file

requested by the browser, the proxy statically analyzes the

code in the file and rewrites it by injecting code that tracks

the state and APIs that are accessed when the file is executed.

Sprinter’s instrumentation tracks variables on the heap which

are in either 1) the global scope, which is accessible using

the window object, or 2) the closure scope, which is created

within a function but persists after the function’s execution if

there exists a nested function declared in the same enclosed

scope. For the DOM object, Sprinter tracks all APIs that

can read from (e.g., getElementById) or write to (e.g.,

appendChild) the DOM.

Once the browser finishes loading a page, Sprinter’s in-

jected JS code compiles signatures for the scripts on the page

and stores them in the compute cache which is co-located

with the proxy. These signatures include both the above-

mentioned information needed to identify the opportunity

for reuse, and the writes to the heap and DOM that need to

be executed when the corresponding code is skipped, along

with any fetches initiated; see Figure 8. When a previously

cached JS file is fetched in future page loads, the proxy em-

beds stored signatures for the code in this file directly into

the file. When processing each JS file, the browser uses the

embedded signatures to determine if any code within the file

can be skipped.

Granularity of JS execution reuse. Given our results from

§3.1, it is natural to try and reuse the browser’s JS executions

at the granularity of entire files, i.e., prior to processing any

script file, the browser uses cached signatures for that file to

determine whether to skip all the code in the file or execute

all of it. However, as shown in the “Full signature” line in

Figure 9, the cache hit rate is pretty poor. On the median site

in Corpus10k, only 40% of JS file executions can be skipped.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Fraction of JS file executions that are skipped

C
D

F
 a

c
ro

s
s
 s

it
e

s

Full signature
Trimmed signature
Oracle

Figure 9: Cache hit rate for JavaScript files that initiate fetches

for other URLs.

To improve the hit rate, our key insight is that, unlike in

user-facing page loads, we do not need to restrict Sprinter’s

skipping of a JS file’s execution only when it is guaranteed to

execute in a manner exactly identical to a previous execution

of the same file. Rather, as long as we can guarantee that the

code will fetch the same resource URLs, we can skip it. A

crawler does not need to preserve other aspects of JavaScript

execution, such as visual changes by modifying the DOM or

functional changes by adding event handlers that allow users

to interact with the page.

This observation enables us to trim file signatures and only

include state that influences resource fetches. To identify

this state, we turn to dynamic taint tracking [47]. Our in-

strumentation of any JS file marks all statements that initiate

URL fetches (such as XMLHTTPRequest.send) and all

DOM nodes with a src property as sinks. We also mark all

control-flow statements as sinks. At the end of any file’s ex-

ecution, we include in the file’s signature only those reads

which propagate values to any of the sinks.

The “Trimmed signature” line in Figure 9 shows that trim-

ming the signatures stored in Sprinter’s compute cache im-

proves the cache hit rate on the median site to over 80%.

This is because a large fraction of reads performed by JS on

the web does not influence the set of URLs fetched. Further-

more, we see that the cache hit rate with Sprinter is close

to the best achievable hit rate, which we obtain via post-

hoc analysis of JS executions to identify when the set of

URLs fetched matched a prior execution. The gap between

“Trimmed signature” and “Oracle” is due to Sprinter’s con-

servative tracking of all control-flow dependencies, instead

of only the ones that influence the URLs fetched.

4.2 Statically crawling pages

So far, we have discussed how Sprinter reuses execution

across pages. However, as mentioned in §2.3, JS execution

is only a part of the total compute overhead of web browsers.

To maximize Sprinter’s performance, we now discuss how it

crawls pages without a browser in phase 3.

Crawling without a browser. We observe that the primary

utility of crawling a page within a browser is its implemen-

tation of the JavaScript heap and the DOM object, and its

898 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

www.nytimes.com

support of various APIs. However, if we are able to skip ex-

ecuting a file, we only need to compile the read state in its

signature, for which we need a log of all the writes performed

by previously executed or skipped JS files. We do not need

to apply these writes to the browser’s heap and DOM since

there are no user interactions at the time of crawling.

Based on this insight, Sprinter’s static crawler maintains a

shadow heap, which is a key-value map from the properties

of the heap to the corresponding values. It also maintains

a shadow DOM, which it constructs by parsing the page’s

HTML at the start of every page load and offers the same

read and write APIs as the ones provided by the browser.

For every page that it statically crawls in phase 3, Sprinter

fetches the page’s HTML, extracts all embedded resource

URLs, and recursively fetches them. For every JS file

fetched, the static crawler looks up the shadow heap and

DOM to construct the file’s signature. Upon a successful

cache hit, Sprinter logs the writes included in the file’s sig-

nature to the shadow heap and shadow DOM, and issues any

resource fetches included in the signature. It repeats this pro-

cess until all resources on the page have been fetched. When-

ever there is a cache miss for a JS file, the static crawler

is unable to execute the file, and it defers these pages for

browser-based crawling in phase 4 (§4.3).

Handling additional fetches. Crawling pages as de-

scribed above has the downside of fetching additional re-

sources that a browser would not (as described in §2.2). For

Corpus10k, this increases the total number of bytes fetched

by 3.5x. Unlike during dynamic crawling, when the net-

work is severely underutilized (Figure 5), these additional

fetches significantly degrade overall throughput when crawl-

ing without a browser.

If the input configuration to Sprinter specifies that only

the resources relevant to the machine executing the crawler

be downloaded, its static crawler does so by leveraging the

browser’s processing of pages crawled earlier in phase 2.

First, during every page load executed within a browser,

Sprinter adds to its compute cache the media queries eval-

uated and the corresponding value (true or false). For any

media query encountered during browserless page loads, the

static crawler fetches the corresponding URL if the compute

cache either returns a true value or does not contain any entry

for that media query. Similar to our observation of similarity

in JS executions across pages, we find that, for the median

site in Corpus10k, 92% of all media queries occur on more

than one page. Second, the static crawler uses the cached

signatures for JS files to identify which selectors were ap-

plied when the browser executed those files. It fetches only

the URLs contained within these selectors.

4.3 Scheduling page crawls

Given the high compute overhead of loading pages in a

browser and extracting signatures, we must minimize the

number of pages that Sprinter crawls using a browser. How-

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
% of pages in set cover / % of all JS files covered by

set cover

C
D

F
 a

c
ro

s
s
 s

it
e

s

Pages
JS

Figure 10: Approximate set cover captures a large fraction

of JS files (“JS”), while the number of pages in the set cover

(“Pages”) are a small fraction of the total corpus size.

ever, Sprinter can crawl a page without a browser only if it

is able to skip executing every JS file on that page. Hence,

the subset of pages on any site that Sprinter crawls without

a browser in phase 3 should ideally be such that all of the JS

files that appear on any of these pages also appear in at least

one of the pages previously crawled with a browser in phase

2. This does not guarantee that the static crawler will find a

compute cache entry with a matching signature for every JS

file, but at least makes it possible.

Need for scheduling. Since the set of JS files on any page is

not known apriori, Sprinter could use a browser to crawl the

pages on any site in a random order and switch to browser-

less crawling once the set of JS files converges, i.e., once

the union of JS files remains unchanged for n consecutive

pages crawled. But, we find that there is no value of n that

offers a good tradeoff between compute overheads and cov-

erage of JS files. For example, with n = 2, we would need to

crawl only 8% of pages on the median site in Corpus10k with

a browser, but only 49% of the JS files seen across all the

pages on this site appear on those pages. With n = 10, the

fraction of JS files covered by browser-based loads increases

to 82%; however, 38% of pages now need to be crawled us-

ing a browser.

Efficient identification of set cover. Sprinter takes an al-

ternate approach of carefully selecting which subset of pages

on each site to crawl using a browser in phase 2. Though we

cannot predict which JS files are on the remaining pages, we

leverage our finding from §3.1 that the same JS file often

fetches the same resources across pages of a site. Therefore,

instead of finding a subset of pages that includes all the JS

files used on that site, we find a subset that includes all the

JS files that are statically embedded in the remaining pages.

When these files are executed as part of the browser-based

loads, all the JS files that are dynamically fetched on this

site’s pages will likely be fetched and executed.

Thus, in phase 1, Sprinter crawls all pages using a static

crawler which only fetches the JS files that are directly

linked. We then have a set of JS files for every page, and

Sprinter computes the set cover, i.e., the subset of sets whose

union matches the union of all sets. Since computing the op-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 899

900 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

25

50

75

100

Dynamic Server
Assisted Dynamic

Sprinter Static

C
ra

w
lin

g
 t

h
ro

u
g

h
p

u
t

(p
a

g
e

s
/s

)

0

25

50

75

100

Dynamic Server
Assisted Dynamic

Sprinter Static

%
 o

f
b
y
te

s
 f
e

tc
h

e
d

 b
y

D
y
n

a
m

ic

(a) (b)

Figure 12: Comparison of (a) crawling throughput and (b) fidelity of Sprinter against the three baselines.

Baselines. Our primary baselines represent existing static

and dynamic crawlers. For the static approach, we port

wget2, a popular open-source crawler, to be compatible with

our proxy-based setup; we verified that our static crawler

is identical to wget2 in terms of fetched content. For the

dynamic approach, we first considered three popular open-

source crawlers: Archivebox [2], Browsertrix [4], and Broz-

zler [5]. However, our benchmark results for each revealed

substantial performance drawbacks, likely because their pri-

mary goal was high fidelity, not necessarily high through-

put. Specifically, undue overheads stem from spawning a

new browser instance for each crawled page, using a CPU-

intensive MITM proxy, and relying on an outdated Chrome

automation framework. Therefore, we instead built an in-

house Chrome-based crawler that achieves 20%, 33%, and

250% higher throughput than Archivebox, Browsertrix, and

Brozzler, respectively. We verified that our custom crawler

fetches the same set of resources as Archivebox when used

to crawl the landing pages for the 100 sites in Corpus50k.

Our third baseline is representative of prior server-/proxy-

assisted solutions to reduce client-side computations in user-

facing page loads [42, 57]. To the best of our knowledge,

none of these systems are open sourced, and we are unaware

of any domains that have adopted these techniques. There-

fore, to evaluate Sprinter against this prior work, we consider

the best case outcome of these systems, where all client-side

JS execution is eliminated. We mimic such a scenario by

using our Chrome-based crawler to crawl a version of every

page wherein we include links to all the resources fetched by

JS files in the page’s main HTML. The browser loads this

modified HTML with JS execution disabled. We refer to this

baseline as server assisted dynamic crawling.

Metrics. We measure the crawling throughput of each

crawler as the average number of pages it can crawl per sec-

ond on a single server. For each crawler, we run a sufficiently

large number of instances so as to saturate either the CPU or

the network. We expect crawling throughput to linearly in-

crease with the number of servers. We run 5 trials for each

experiment and plot the median value, with error bars plot-

ting the minimum and the maximum values.

We consider the default goal of crawling to be to match

a Chrome-based crawler. Therefore, we measure the fidelity

offered by a crawler as the fraction of bytes it fetches of all

the resources fetched by Chrome when crawling the same

pages. When the goal is to crawl all resources that are rele-

vant to any client device, we measure fidelity as the fraction

of bytes fetched out of the union of the resources fetched by

the static and dynamic crawlers.

6.2 Throughput and Fidelity

6.2.1 Comparison with baselines

To compare Sprinter with the three baselines, we load pages

in Corpus50k using each of the four crawlers separately. We

monitor the resources fetched by each crawler on every page,

and the total time taken to finish crawling the entire corpus.

We also monitor the CPU and network utilization to identify

the bottleneck for each crawler.

Figure 12(a) plots the crawling throughput achieved with

each crawler, and Figure 12(b) shows the fidelity achieved.2

Static crawler achieves the best crawling throughput by far

of 96 pages per second. However, it misses out on 37% of

the bytes fetched by the dynamic crawler. In contrast, the

dynamic crawler could only crawl at a rate of 6 pages per

second. Since CPU utilization was at 100% throughout the

entirety of the crawl with the dynamic crawler, throughput

increased to 13 pages per second with the server-assisted dy-

namic crawler, which does not execute any JS.

Sprinter offers a significant additional speedup, improving

crawling throughput to 31 pages per second, a 5x improve-

ment relative to the dynamic crawler. Importantly, it does

so without requiring any changes to the web and while pre-

serving 99.2% of the bytes fetched by the dynamic crawler.

The 0.8% of bytes that went unfetched stem from the incom-

plete support for all web APIs in our current implementa-

tion. 50% of these unfetched bytes correspond to JavaScript

files, 27% to images, and 17% to HTMLs, with the remain-

ing accounted for by CSS and other content types. While

no resources went unfetched on the median page, the 90th

percentile page was missing 1 resource.

2We see no variation across runs in the resources fetched by each crawler

because all of our crawls rely on one snapshot of every page crawled from

the live web.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 901

0

10000

20000

30000

40000

0

50

100

150

2 3 4
Phases

P
a

g
e

s

T
h

ro
u

g
h

p
u

t
(p

a
g

e
s
/s

)

pages throughput

Figure 13: Number of pages crawled during each of the dif-

ferent phases of Sprinter and the corresponding throughput

achieved in each phase.

P
h
a
s
e
 1

Phase 2 Phase 3 Phase 4

0

10000

20000

30000

40000

50000

400 800 1200 1600
Time (s)

P
a

g
e

s

Figure 14: A timeline of Sprinter’s crawl of Corpus50k, showing

the duration and number of pages crawled in each phase.

6.2.2 Throughput in each phase

Sprinter’s crawling throughput varies widely across phases.

Figure 13 plots the number of pages crawled in each phase

and the corresponding throughput. Whereas, Figure 14

shows a timeline of how Sprinter’s crawling of the pages in

Corpus50k proceeds over time.

• No page is fully crawled in phase 1; Sprinter only stat-

ically crawls the HTML files and embedded JavaScript

files for every page so as to identify the subset of pages

to be crawled with a browser in phase 2. Therefore, phase

1 finishes in 151s, the quickest of all four phases.

• Phase 2 is the slowest since Sprinter not only has to crawl

pages with a browser, but it also has to incur the overheads

of statically analyzing and rewriting every JavaScript file,

executing these instrumented files inside Chrome, and

processing the information it collects to generate and store

per-file signatures. In this phase, Sprinter crawls 1413

pages in 620s, resulting in a crawling throughput of a little

over 2 pages per second.

• Sprinter crawls the vast majority of pages in phase 3:

42497 pages in 316s. The average throughput of 135

pages per second in this phase is even higher than what

a static crawler can achieve (96 pages per second, as

shown in Figure 12(a)). This is because, unlike a static

crawler, Sprinter leverages browser-based execution of

media queries and CSS selectors in phase 2 to eliminate

fetches of resources relevant only for other client types.

• In Phase 4, Sprinter recrawls the remaining 6090 pages

0

10

20

30

40

Dynamic Dynamic+JS
reuse

Sprinter w/
random schedule

Sprinter

C
ra

w
lin

g
 t

h
ro

u
g

h
p

u
t

(p
a

g
e

s
/s

)

Figure 15: Incremental benefit offered by each of the tech-

niques used in Sprinter.

with a browser; about a quarter of these are because they

contained a JS file not executed in phase 2, and the re-

maining pages incurred at least one compute cache miss.

The crawling throughput of 11 pages per second in this

phase is better than in phase 2 because significantly fewer

JS files need to be instrumented.

At the end of phase 4, Sprinter’s compute cache had 3089

entries. The cache hit rate of 95.6% is the key enabler of

Sprinter’s throughput improvements as it could crawl a large

fraction of pages in phase 3, without requiring a browser. We

cannot further reduce the total crawl time by immediately

spawning a browser to crawl any page that incurs a cache

miss in phase 3 because both phases 3 and 4 are bottlenecked

by the CPU.

6.2.3 Contribution of techniques

To understand the performance benefits of each of the tech-

niques used in Sprinter, we incrementally add them to the

dynamic crawler and measure crawling throughput.

First, we evaluate the benefits of only using JS memoiza-

tion (§4.1) in Chrome, loading all pages in the corpus in a

random order. Figure 15 shows that “Dynamic+JS reuse”

provides a roughly 66% speedup over “Dynamic”.

Next, we crawl some of the pages with a browser and

the rest using Sprinter’s augmented static crawler (§4.2). To

determine which pages to crawl using a browser, we con-

sider the strawman approach (§4.3) wherein we transition to

browserless crawling once the union of JS files remains un-

changed for n consecutive pages. For Corpus50k, we observe

that n = 25 results in browser-based loads fetching the same

fraction of all JS files as that covered by Sprinter’s chosen

set cover. Even this unsophisticated combination of dynamic

and static crawling – “Sprinter w/ random schedule” in Fig-

ure 15 – roughly doubles the crawling throughput.

Finally, by efficiently choosing a carefully chosen subset

of pages to crawl with a browser, Sprinter crawls 88% fewer

pages using a browser in phase 2, resulting in a further 1.6x

improvement in throughput.

6.3 Sensitivity to crawling parameters

We evaluate the impact of the following three configuration

parameters on Sprinter’s crawling throughput: 1) the number

of pages crawled per site, 2) the time gap between repeated

902 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

5

10

15

100 200 300 400 500

Number of pages per site

%
 p

a
g

e
s
 i
n

 s
e

t
c
o
ve

r

Figure 16: Percentage of pages selected by Sprinter for

browser-based crawling as a function of number of pages

crawled per site. Bars show value for median site, with error

bars for the 25th and 75th percentiles.

Dynamic

0

10

20

30

40

10 20 100 500
Pages per site

C
ra

w
lin

g
 t

h
ro

u
g

h
p

u
t

(p
a

g
e

s
/s

)

Figure 17: Sprinter’s crawling throughput as a function of the

number of pages per site.

crawls, and 3) whether fetching all statically embedded re-

source URLs is desired.

6.3.1 Number of pages per site

The key to Sprinter’s high crawling throughput is its judi-

cious partitioning of pages, crawling a small fraction using

a browser and the remaining without. We examine how the

fraction chosen for browser-based crawling varies as a func-

tion of the number of pages being crawled per site. For 5

different values of the number of pages per site, Figure 16

plots this fraction for the 25th, median, and 75th percentile

sites. The percentage of pages in Sprinter’s carefully se-

lected “set cover” for the median site goes down from 6%

with 100 pages per site to 1.6% with 500 pages per site.

As a result, Sprinter is able to crawl a corpus of 10k pages

at an average rate of 15 pages per second. But, for a 50k

page corpus, its throughput improves to 31 pages per sec-

ond (Figure 17). Akin to how a static crawler benefits more

from network caching with more redundant resource fetches,

Sprinter’s compute cache enables it to reuse more client-side

computations when it crawls more pages per site.

On the flip side, lower the number of pages per site, lower

Sprinter’s throughput. Figure 17 shows that, with 10 pages

per site, Sprinter crawls 4 pages per second on average,

which is slower than the dynamic crawler. For Sprinter to

offer any benefit, we see that it must be asked to crawl at

least 20 pages per site. As a result, workloads that only crawl

landing pages of sites [10] will not benefit from Sprinter.

0

10

20

30

No signature Week old
signatures

Month old
signatures

C
ra

w
lin

g
 t

h
ro

u
g

h
p

u
t

(p
a

g
e

s
/s

)

Figure 18: Sprinter can crawl pages faster by leveraging sig-

nature information from previous crawls of the same corpus.

6.3.2 Repeated crawling

In many web crawling workloads, the same corpus of pages

is repeatedly recrawled. For example, a web search engine

must ensure that its search index reflects the latest content

on every page, and web archives must track changes to page

content over time. In such cases, Sprinter will crawl the en-

tire corpus in 4 phases the first time. However, when the

corpus is recrawled, Sprinter can directly jump to crawling

pages statically in phase 3, leveraging JS execution signa-

tures from the previous crawls. Pages where no compute

cache entry was found for at least one JS file would have to

be recrawled with a browser in phase 4.

To measure the crawling throughput with Sprinter when

the same corpus is crawled multiple times, we recrawl

Corpus10k once three weeks after our initial crawl, and again

a week later. We then use Sprinter in our replay setup

to crawl pages from our last copy of the corpus. We run

Sprinter once starting with an empty compute cache, once

using signatures from the crawl a week before, and once us-

ing signatures from the crawl a month before.

Figure 18 shows that reusing signatures from a week ago

improves Sprinter’s throughput by 78% as compared to when

no prior crawl existed. Reusing month-old signatures also

speeds up Sprinter. But, since the compute cache entries are

more stale and more previously unseen JS files are fetched,

the benefits are significantly lower.

6.3.3 Preserving static fetches

Thus far in our evaluation, we have considered the goal of

crawling to be to fetch the same resources on every page

as a dynamic crawler. However, in some cases, it might be

desirable to also crawl all resources that would be fetched by

a static crawler. For example, web archivists might want to

preserve all versions of every image on a page, so as to be

able to accurately render the preserved page irrespective of

the client device used to visit this page in the future.

In these cases, Sprinter can be configured to not elimi-

nate fetches using the techniques mentioned in §4.2. The re-

sultant throughput of Sprinter drops to 28 pages per second

which, though 9% lower than when it only tries to match

the dynamic crawler, is still 4.6x faster than the dynamic

crawler. This drop in throughput is because of Sprinter’s

static crawler having to fetch additional bytes in phase 3.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 903

Chrome

version

Lightweight browser Sprinter

of APIs

added

of files

added/-

modified

of APIs

added

LOC

added

v108 4 41 1 9

v109 3 70 1 13

v110 4 58 1 6

v111 7 109 0 0

Total 18 278 3 28

Table 1: Comparison of number of APIs that need to handled

by Sprinter and a lightweight browser.

Note that the impact of this configuration option on

Sprinter’s throughput depends on the number of pages

crawled per site. With more pages per site, phase 3 is able

to achieve higher crawling throughput due to the benefits of

network caching.

6.4 Maintainability

Web APIs and their specifications are constantly up-

dated [38]. Web crawlers need to be correspondingly up-

dated over time to ensure that web pages using the latest

APIs are accurately crawled. Dynamic crawlers leveraging

web browsers such as Chrome and Firefox simply need to

update to the latest version of the browser, as these browsers

are well-maintained and constantly updated to support most

of the latest web APIs.

To get a measure of the effort that would be needed to

maintain Sprinter or a lightweight browser such as phan-

tomJS, we look at all the APIs added in the 4 most recent

versions of Chrome (v108 to v111). For each API, we manu-

ally read its specification. Only a subset of these would need

to be implemented by a lightweight browser designed for the

purpose of crawling, e.g., any API that takes effect only dur-

ing user interactions (such as webRTC APIs to enable video

conferencing or navigator.credentials API to enable se-

cure logins) would not have to be handled. Sprinter’s instru-

mentation of JS code would need to keep track of an even

smaller subset of APIs, only those which influence execu-

tion signatures, i.e., any API that can read from or write to

the global state.

Table 1 compares the number of APIs that need to be

tracked and implemented by Sprinter versus a lightweight

browser designed for crawling. Across the four versions,

a lightweight browser would be required to implement 18

APIs; in Chrome’s source, these APIs touch 278 files

(Chrome’s commit history only shows files added/modified,

not the number of lines of code). In contrast, Sprinter needs

to handle only 3 of these APIs, requiring 28 lines of code.

7 RELATED WORK

Scalable web crawling. The engineering issues associated

with web crawling are well studied [33, 58, 19, 37, 22, 23].

Some of these crawlers [37, 23, 22] are able to achieve a

crawling throughput of upwards of 1000 pages per server.

However, all of these crawlers only download the HTML file

for every page URL. In contrast, Sprinter downloads all the

resources which would be fetched by browser-based crawlers

such as Archivebox [2], Brozzler [5], and Browsertrix [4].

Incremental crawling A large amount of prior work [27,

39, 25, 52] has focused on incremental web crawling, i.e.,

how to efficiently recrawl pages. These techniques are help-

ful only when the same set of pages are crawled multiple

times. Sprinter, on the other hand, eliminates redundant

computations across pages even within a single crawl.

Resource bottlenecks of large-scale distributed systems.

Prior work has studied the bottlenecks in scaling various dis-

tributed data processing workloads such as sorting [45], data

analytics [43], and distributed deep learning [54, 48, 20].

These efforts first identify the hardware resource (CPU,

GPU, network, or disk) that constrains overall performance,

and then propose solutions to optimize the utilization of that

resource. To the best of our knowledge, we are the first to

study the compute bottleneck in browser-based web crawl-

ing and propose a solution to reduce its impact.

Web performance optimization. The negative impact

of a web browser’s computations on user-perceived latency

while loading web pages is well-known [55, 56]. As dis-

cussed earlier (§2.4), proposals to lower page load times

either do not reduce the total amount of computation that

web clients need to perform [41, 46, 40] or require server-

side changes [42, 57]. Sprinter is backward compatible with

the legacy web and reduces the total amount of client-side

processing by memoizing and reusing computations across

pages on the same site.

Compute memoization. Memoization is widely used

across different kinds of application. Prior work has lever-

aged such techniques to reduce compile-time latency [51,

34], improve runtime performance [30, 53], minimize

scheduling overheads [26], and enable faster auditing of web

applications [35]. Sprinter uses similar memoization tech-

niques to reduce the amount of client-side computation re-

quired to crawl pages, and it maximizes its benefits by selec-

tively identifying the state that influences URL fetches.

8 CONCLUSION

Over the years, crawling web pages with high fidelity has

evolved from a workload that is limited by network band-

width to a CPU-intensive one. In this paper, we showed that

the key to mitigating this new bottleneck is to strategically

minimize the use of the web browser and its execution of

JavaScripts. Our design of Sprinter does so by efficiently

identifying and exploiting opportunities to safely reuse the

browser’s computations across the pages on any site. We

hope that our work will spur a new wave of innovation in

scalable web crawling, a task that underlies many important

systems in today’s society.

904 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

REFERENCES

[1] Amazon silk. https://docs.aws.amazon.com/silk/

latest/developerguide/what-is-silk.html.

[2] Archivebox. https://github.com/ArchiveBox/

ArchiveBox.

[3] Babel. https://babeljs.io/.

[4] Browsertrix crawler. https://github.com/

webrecorder/browsertrix-crawler.

[5] Brozzler. https://github.com/internetarchive/

brozzler.

[6] Cascadia. https://github.com/andybalholm/

cascadia.

[7] Chrome cpu profiler. https://developer.chrome.com/

docs/devtools/performance//.

[8] Chrome devtools protocol. https://chromedevtools.

github.io/devtools-protocol/.

[9] Chrome web page replay. https://chromium.

googlesource.com/catapult/+/HEAD/web page

replay go/README.md.

[10] Common crawl. https://commoncrawl.org/.

[11] CSS selectors. https://developer.mozilla.org/en-US/

docs/Web/CSS/CSS Selectors.

[12] Gnu wget2. https://github.com/rockdaboot/wget2.

[13] Goquery. https://github.com/PuerkitoBio/goquery.

[14] Internet archive end of term 2020 web crawls. https:

//archive.org/details/EndOfTerm2020WebCrawls.

[15] Optional chaining. https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Operators/

Optional chaining.

[16] Puppeteer. https://pptr.dev/.

[17] Using media queries. https://developer.mozilla.

org/en-US/docs/Web/CSS/Media Queries/

Using media queries.

[18] Web APIs. https://caniuse.com/?compare=

chrome+114,firefox+113&compareCats=all.

[19] F. Ahmadi-Abkenari and A. Selamat. An architecture

for a focused trend parallel web crawler with the appli-

cation of clickstream analysis. Information Sciences,

2012.

[20] T. Akiba, K. Fukuda, and S. Suzuki. Chainermn:

Scalable distributed deep learning framework. arXiv

preprint arXiv:1710.11351, 2017.

[21] A. S. Bale, N. Ghorpade, S. Rohith, S. Kamalesh,

R. Rohith, and B. Rohan. Web scraping approaches and

their performance on modern websites. In International

Conference on Electronics and Sustainable Communi-

cation Systems, 2022.

[22] P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Ubi-

crawler: A scalable fully distributed web crawler. Soft-

ware: Practice and Experience, 2004.

[23] P. Boldi, A. Marino, M. Santini, and S. Vigna. Bubing:

Massive crawling for the masses. ACM Transactions

on the Web, 2018.

[24] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha,

and V. Sekar. Klotski: Reprioritizing web content to

improve user experience on mobile devices. In NSDI,

2015.

[25] J. Cho and H. Garcia-Molina. The evolution of the web

and implications for an incremental crawler. In VLDB,

2000.

[26] H. Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable determin-

istic multithreading through schedule memoization. In

OSDI, 2010.

[27] J. Edwards, K. McCurley, and J. Tomlin. An adaptive

model for optimizing performance of an incremental

web crawler. In WWW, 2001.

[28] M. Erdélyi, A. A. Benczúr, J. Masanés, and D. Siklósi.

Web spam filtering in internet archives. In Interna-

tional Workshop on Adversarial Information Retrieval

on the Web, 2009.

[29] U. Feige. A threshold of ln n for approximating set

cover. Journal of the ACM, 1998.

[30] A. Goel, V. Ruamviboonsuk, R. Netravali, and H. V.

Madhyastha. Rethinking client-side caching for the

mobile web. In HotMobile, 2021.

[31] A. Goel, J. Zhu, R. Netravali, and H. V. Madhyastha.

Jawa: Web archival in the era of JavaScript. In OSDI,

2022.

[32] G. Gossen, E. Demidova, and T. Risse. ICrawl: Im-

proving the freshness of web collections by integrating

social web and focused web crawling. In JCDL, 2015.

[33] A. Heydon and M. Najork. Mercator: A scalable, ex-

tensible web crawler. In WWW, 1999.

[34] M. Johnson. Memoization of top down parsing. arXiv

preprint cmp-lg/9504016, 1995.

[35] T. Kim, R. Chandra, and N. Zeldovich. Efficient patch-

based auditing for web application vulnerabilities. In

OSDI, 2012.

[36] R. Ko, J. Mickens, B. Loring, and R. Netravali.

Oblique: Accelerating page loads using symbolic ex-

ecution. In NSDI, 2021.

[37] H.-T. Lee, D. Leonard, X. Wang, and D. Loguinov. Irl-

bot: scaling to 6 billion pages and beyond. ACM Trans-

actions on the Web, 2009.

[38] J. Li, Y. Xiong, X. Liu, and L. Zhang. How does web

service API evolution affect clients? In IEEE Interna-

tional Conference on Web Services, 2013.

[39] G. S. Manku, A. Jain, and A. Das Sarma. Detecting

near-duplicates for web crawling. In WWW, 2007.

[40] S. Mardani, A. Goel, R. Ko, H. Madhyastha, and R. Ne-

travali. Horcrux: Automatic javascript parallelism for

resource-efficient web computation. In OSDI, 2021.

[41] R. Netravali, A. Goyal, J. Mickens, and H. Balakrish-

nan. Polaris: Faster page loads using fine-grained de-

pendency tracking. In NSDI, 2016.

[42] R. Netravali and J. Mickens. Prophecy: Accelerating

mobile page loads using final-state write logs. In NSDI,

2018.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 905

https://docs.aws.amazon.com/silk/latest/developerguide/what-is-silk.html
https://docs.aws.amazon.com/silk/latest/developerguide/what-is-silk.html
https://github.com/ArchiveBox/ArchiveBox
https://github.com/ArchiveBox/ArchiveBox
https://babeljs.io/
https://github.com/webrecorder/browsertrix-crawler
https://github.com/webrecorder/browsertrix-crawler
https://github.com/internetarchive/brozzler
https://github.com/internetarchive/brozzler
https://github.com/andybalholm/cascadia
https://github.com/andybalholm/cascadia
https://developer.chrome.com/docs/devtools/performance//
https://developer.chrome.com/docs/devtools/performance//
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/README.md
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/README.md
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/README.md
https://commoncrawl.org/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://github.com/rockdaboot/wget2
https://github.com/PuerkitoBio/goquery
https://archive.org/details/EndOfTerm2020WebCrawls
https://archive.org/details/EndOfTerm2020WebCrawls
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining
https://pptr.dev/
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
https://caniuse.com/?compare=chrome+114,firefox+113&compareCats=all
https://caniuse.com/?compare=chrome+114,firefox+113&compareCats=all

[43] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and

B.-G. Chun. Making sense of performance in data an-

alytics frameworks. In NSDI, 2015.

[44] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou.

CSPAutoGen: Black-box enforcement of content secu-

rity policy upon real-world websites. In CCS, 2016.

[45] A. Rasmussen, G. Porter, M. Conley, H. V. Mad-

hyastha, R. N. Mysore, A. Pucher, and A. Vahdat. Tri-

tonsort: A balanced large-scale sorting system. In

NSDI, 2011.

[46] V. Ruamviboonsuk, R. Netravali, M. Uluyol, and H. V.

Madhyastha. Vroom: Accelerating the Mobile Web

with Server-Aided Dependency Resolution. In SIG-

COMM, 2017.

[47] P. Saxena, R. Sekar, and V. Puranik. Efficient fine-

grained binary instrumentation with applications to

taint-tracking. In CGO, 2008.

[48] A. Sergeev and M. Del Balso. Horovod: fast and easy

distributed deep learning in tensorflow. arXiv preprint

arXiv:1802.05799, 2018.

[49] S. M. Shariff, H. Li, C.-P. Bezemer, A. E. Hassan, T. H.

Nguyen, and P. Flora. Improving the testing efficiency

of selenium-based load tests. In International Work-

shop on Automation of Software Test, 2019.

[50] P. Slavı́k. A tight analysis of the greedy algorithm for

set cover. In STOC, 1996.

[51] A. Suresh, E. Rohou, and A. Seznec. Compile-time

function memoization. In International Conference on

Compiler Construction, 2017.

[52] Q. Tan and P. Mitra. Clustering-based incremental web

crawling. ACM Trans. Inf. Syst., 2010.

[53] Y. Tang and J. Yang. Secure deduplication of general

computations. In USENIX ATC, 2015.

[54] C. Unger, Z. Jia, W. Wu, S. Lin, M. Baines, C. E. Q.

Narvaez, V. Ramakrishnaiah, N. Prajapati, P. Mc-

Cormick, J. Mohd-Yusof, et al. Unity: Accelerating

{DNN} training through joint optimization of algebraic

transformations and parallelization. In OSDI, 2022.

[55] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,

and D. Wetherall. Demystifying page load performance

with wprof. In NSDI, 2013.

[56] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,

and D. Wetherall. How speedy is SPDY? In NSDI,

2014.

[57] X. S. Wang, A. Krishnamurthy, and D. Wetherall.

Speeding up web page loads with Shandian. In NSDI,

2016.

[58] Q. Zheng, Z. Wu, X. Cheng, L. Jiang, and J. Liu. Learn-

ing to crawl deep web. Information Systems, 2013.

906 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Hairpin: Rethinking Packet Loss Recovery in Edge-based Interactive Video Streaming

Zili Meng1,2,3, Xiao Kong1,3, Jing Chen1,3, Bo Wang1, Mingwei Xu1,
Rui Han3, Honghao Liu3, Venkat Arun4, Hongxin Hu5, Xue Wei3

1Tsinghua University, 2Hong Kong University of Science and Technology,
3Tencent, 4UT Austin, 5University at Buffalo, SUNY

Abstract
Interactive streaming requires minimizing stuttering events (or
deadline misses for video frames) to ensure seamless interaction
between users and applications. However, existing packet loss
recovery mechanisms uniformly optimize redundancy for initial
transmission and retransmission, which still could not satisfy the
delay requirements of interactive streaming, but also introduces
considerable bandwidth costs. Our insight is that in edge-based
interactive streaming, differentiating retransmissions on redun-
dancy settings can often achieve a low bandwidth cost and a low
deadline miss rate simultaneously. In this paper, we propose
Hairpin, a new packet loss recovery mechanism for edge-based
interactive streaming. Hairpin finds the optimal combination of
data packets, retransmissions, and redundant packets over mul-
tiple rounds of transmissions, which significantly reduces the
bandwidth cost while ensuring the end-to-end latency require-
ment. Experiments with production deployments demonstrate
that Hairpin can simultaneously reduce the bandwidth cost by
40% and the deadline miss rate by 32% on average in the wild
against state-of-the-art solutions.

1 Introduction
Edge-based interactive video streaming is coming to age.
Emerging interactive streaming services, such as cloud
gaming, has been attracting considerable attention from both
academic [24,28,44,53,63] and industrial communities [3,8,9].
These services run applications (e.g., video games) on remote
servers, stream the contents (e.g., screens) to users, and interact
with users in real time. To provide a seamless interaction between
servers and users, the streaming needs to be delivered with low
latency. To reduce the network round-trip time (RTT) for inter-
active streaming, operators deploy servers on edge computing
nodes. For example, cloud gaming applications render gaming
scenes on remote servers and deliver these scenes to users over
the Internet, where these servers could be deployed near the users
to shorten the physical distance of the streaming. By deploying in-
teractive streaming services at the edge, the median network RTT
of these edge-based applications could be reduced to 10-20ms.

To provide a satisfactory user experience, controlling the ratio
of frames violating the latency requirement is critical for inter-
active streaming applications [56]. This is due to the continuous
interactions between users and applications: Interactive stream-
ing users will start to experience stutters when the end-to-end
delay is above 50-200ms (i.e., the deadline of delivering a frame).
However, even if only 0.1% of the frames stutter, users may

Init. TX

1st RTX

2nd RTX
3rd RTX

Retransmission
optimizations

Redundancy optimizations
0 15%5% 10% 20%

The design space of …

Our solution - Hairpin

Existing solutions

Du
pA

ck
[21

],
PT

O
[32

]

WebRTC [45], Bolot[22], USF [58]

Hairpin

Figure 1: An illustration of the design space of existing solutions and
Hairpin. By co-designing the redundancy and retransmission at the
transport layer, Hairpin is able to break the existing trade-off between
bandwidth cost and deadline miss rate.

experience stutters every one minute at a frame rate of 24fps.
Thus, to improve user experience, we need to reduce the ratio
of deadline misses in an interactive streaming service [57].

In this case, a major challenge to control the deadline misses
comes from the high instantaneous loss rate on the Internet. Due
to the spatial dependency within video frames and temporal
dependency between video frames, interactive streaming
expects packets to be reliably delivered [57]. However, from
our measurement of our edge-based cloud gaming service in
production with O(10,000) users, sessions can experience a
drastically high instantaneous loss rate. Although the average
loss rate is considerably low by mechanisms such as proper
rate control, our measurement observes that more than 2% of
video frames suffer from an instantaneous loss rate of 20% or
higher (§2.1). It indicates that those lost packets are concentrated
on a few frames. Thus, although the network RTT can be very
low with edge deployments, retransmissions of lost packets
take additional time and will consequently violate the deadline.
Thus, it is essential to optimize the loss recovery mechanisms
to control the deadline miss rate (DMR) of video frames.

Unfortunately, existing solutions to recover packet losses
cannot meet the stringent DMR requirements with a reasonable
bandwidth cost. As shown in Figure 1, one line of research
efforts (the vertical dimension) is devoted to quickly retrans-
mitting lost packets, such as probe timeout (PTO) [33], from
the transport layer. However, merely retransmitting lost packets
cannot meet the requirement of interactive streaming – the
DMR is much higher than 0.1% (§4.3). Another line of effort
(the horizontal dimension) is devoted to adaptive forward error
correction (FEC) so that the client might be able to recover
packets based on redundant packets without retransmission [5].
Yet, redundancy-based solutions come with the price of a
considerable bandwidth cost of 20% or more due to the high
instantaneous loss rate. For content providers, such a high
bandwidth cost will drastically increase operating expenses and

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 907

degrade users’ video quality. To the best of our knowledge,
none of the existing solutions jointly optimized retransmission
and redundancy. Such an orthogonal design of redundancy and
retransmission, even when adopted together, still cannot meet
the needs of bandwidth cost and DMR for interactive streaming.

Our key insight is to break the trade-off by differentiating
retransmission packets. Edge-based interactive streaming ser-
vices can achieve an average RTT of 10-20ms between ap-
plication servers and users by deploying the servers on the
edge [27,58,89]. In this case, limited times of retransmissions
(but not too many) are tolerable for applications that have a dead-
line of 50-200ms (§2.1). But the strategy for retransmission
packets must be different for the initial transmission packets.
The volume of retransmission packets is much less than initial
transmission packets since packet loss is always the minority.
Yet, retransmission packets have a much tighter time requirement
since they have already consumed time. This brings new changes
to reduce the bandwidth cost and the DMR at the same time
(§2.4). By differentiating the strategies for initial transmission
and retransmission packets, we can break the trade-off between
bandwidth cost and DMR, and improve the performance signifi-
cantly (§4.4).

We then propose Hairpin1, a new packet loss recovery mecha-
nism to jointly optimize packet retransmission and redundancy
for edge-based interactive streaming (§3.3). However, as later
elaborated in §3.2, to further analytically optimize the perfor-
mance, we still face the challenge of (1) the dependency of
decisions and future states, (2) the multi-dimensionality of de-
cisions, and (3) the convoluted goal of DMR and bandwidth
cost. In response, Hairpin further formulates the problem into a
Markov decision process (MDP), which is known for efficiently
optimizing the temporal dependency [79]. We then encodes the
decisions and states into nodes of MDP to reduce the complexity
and achieve the optimal result.

We conduct a week-long packet-level measurement campaign
on Tencent START cloud gaming service to motivate the design
of Hairpin (§2.3 and §2.4). We then implement Hairpin and
evaluate it with both trace-driven simulators and real-world
deployments in production (§4.1). Experiments demonstrate that
Hairpin could significantly push forward the Pareto frontier [1]
by reducing the DMR by 67%-80% and achieve comparable
bandwidth costs simultaneously compared with state-of-the-art
baselines (§4.3). Preliminarily testing Hairpin in Tencent START
cloud gaming in production also shows significant and consistent
performance improvements in different types of networks (§4.7).
We will release the simulation codes of Hairpin.

Our main contributions are summarized as follows:
• We motivate the need for joint optimization of retransmission

and redundancy through the operating experiences of a
production edge-based interactive streaming service (§2).

• We present challenges in the joint optimization over retrans-
missions and redundancy for edge-based interactive streaming,

1In badminton, a hairpin shot is played when the shuttle is very near to the
ground and the net (the deadline of a shot) [76].

and then propose Hairpin with MDP formulation (§3).
• We implement and integrate Hairpin in a cloud gaming appli-

cation in production, and extensively evaluate its performance
with trace-driven simulation and real-world deployments (§4).

2 Background and Motivations
We introduce the interactive streaming (§2.1), present our mea-
surement of packet losses (§2.2), analyze why existing solutions
are insufficient (§2.3), and motivate the design of Hairpin (§2.4).

2.1 Interactive Video Streaming
Interactive streaming applications are increasingly attracting
interest in many scenarios. Examples include cloud gam-
ing [3,8,9], remote driving [2,54], cloud phone / PC [13,18,39],
and regional videoconferencing [4], forming a considerable
market value of billions of dollars. Compared with legacy
live video streaming, with the intensive deployment on edge
nodes (or content generators in VR), the network delay over the
wide-area network could be reduced for interactive streaming
(e.g., an average RTT of 10-20ms [27,58,89]). With the recent
emergence of the metaverse and so on, these interactive video
streaming applications are going to be increasingly dominant on
the Internet. Edge-based interactive streaming imposes specific
requirements on transport, as summarized below.

Stringent deadline requirements. Since interactive streaming
applications continuously interact with humans, controlling
end-to-end delay is critical for a seamless user experience. For
example, videoconferencing may expect an end-to-end delay of
<130ms for network [49,56], while cloud gaming would argue
for a latency of <96ms [50]2. In practice, server- and client-side
processing usually take ≈30 ms [14,42,74,83]. Therefore, the
end-to-end round-trip delay for the network should not exceed
50-150ms (depending on scenarios), which is the deadline
required by the application [11,75].

This also corroborates our measurement study with users
in our production cloud gaming service. We measure our
cloud gaming service in production for one week (details in
Appendix A), with O(10,000) users every day, and collect a
variety of metrics. Unless other specified, the analysis using
online data in this paper is also from this measurement campaign.
We categorize the measured round-trip interaction delay of each
video frame into several intervals. We present the appearance
distribution of the position of those frames in a flow for each
category in Fig. 2, where the x-axis is the position of that frame in
a session normalized by the length of that session. Compared to
the uniform distribution of low-delay frames (solid lines), frames
with an end-to-end delay of >100ms (dashed lines) have a higher
probability to appear around the end of a flow. We hypothesize
that this is because users tend to exit a session if they have a high
end-to-end delay. User’s exiting behavior is a critical metric for
user’s experience in real-time video streaming [32]. In the mean-
time, setting a deadline for the delivery and reducing the fraction
of higher than that specific value has also been widely adopted

2Based on the statistics of the majority of people.

908 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 % 3 0 % 6 0 % 9 0 % 9 5 % 1 0 0 %
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 0

PD
F

P o s i t i o n

> 2 0 0 m s1 5 0 - 2 0 0 m s1 0 0 - 1 5 0 m s5 0 - 1 0 0 m s0 - 5 0 m s

Figure 2: Probability density
function (PDF) of the position of
frames with different total delays.

1 0 - 4 1 0 - 3 1 0 - 2 1 0 - 1 1 0 00 %5 0 %
8 0 %9 0 %9 5 %
9 8 %9 9 %

1 0 0 %

CD
F

L o s s r a t e

F r a m e - l e v e l (I n s t a n t a n e o u s)S e s s i o n - l e v e l (A v e r a g e)

H i g h i n s t a n t a n e o u s l o s s r a t e a t t a i l

Figure 3: Session-level and
frame-level loss rate distributions
(both axes are log-scaled).

*Note: Unless otherwise specified, all measurements in §2 and §3 are
from the production in the wild (measurement details in §4.1).

in real-time video streaming [56, 57]. The similarity between
the 50ms and 100ms curve in Fig. 2 also indicates that, as long
as packets could be delivered within the deadline (∼100ms in
this case), faster delivery barely improves the user’s experience.

Thus, we should minimize the deadline miss rate (DMR) to
enable a seamless experience for users in interactive streaming,
where in our cloud gaming service, the deadline for interaction
delay is around 100ms. For interactive streaming, it is essential
to minimize the occurrence of deadline misses for frames to an
ultra-low level. For example, even a DMR of 10−3 still leads
to a poor experience every 1000 frames (17 seconds at 60 fps),
which drastically degrades the user’s experience [11].

Reliable delivery. Meanwhile, interactive streaming also
requires reliable delivery for each frame. For commercial video
codec, failing to deliver a part of the frame will lead to severe
image quality degradation. Moreover, the loss of one frame
would also lead to blurring for the subsequent frames due to
the dependency between frames3. Therefore, existing interactive
streaming services usually try their best to reliably deliver frames.
For example, industrial frameworks (e.g., WebRTC) [5, 46]
and academic efforts [22, 40, 61] propose to employ forward
error correction (FEC) to recover lost packets at the receiver if
possible, and will retransmit lost packets if the recovery fails [7].

Low bandwidth cost. The bandwidth cost is still one of the
largest operating expenses in our and other cloud gaming
service [17]. Moreover, to achieve a satisfactory user experience,
interactive streaming must stream with high video resolution and
frame rate (e.g., 60fps and >1080p for cloud gaming), which
requires high goodput to support. Given the requirements of low
operating expenses and high video quality for users, we need
to control the bandwidth cost in packet loss recovery.

2.2 Packet Losses in Edge-based Interactive Streaming
Our observation from our cloud gaming service is that although
the median loss rate is as low as 10−3, the instantaneous loss rate
could be very high. In our measurement campaign as described
in §2.1, we also calculate the session-level loss rate, which is the
ratio of total lost packets in one user session (minutes to hours,
containing at least O(10,000) frames), to reflect the average

3Mechanisms such as scalable video coding (SVC) allow limited packet losses,
yet reduce the bandwidth efficiency and require client support [70].

loss rate over a long timescale. We then calculate frame-level
loss rate, which is the ratio of lost packets within one frame
(tens of milliseconds), to show the instantaneous loss rate over
a short timescale. For example, if a session has 1M packets and
10 of them are lost, the session-level average loss rate is 0.01%.
Meanwhile, if these 10 packets belong to the same video frame
which has 50 packets in total, the frame-level instantaneous loss
rate will be 20% for that frame and 0% for other frames.

As shown in Fig. 3, the session-level loss rate is 0.05% at the
median, which is comparable to similar measurements [45]. How-
ever, the instantaneous frame-level loss rate could be very high:
2% frames lose more than 20% of their packets within one frame.
Such a high instantaneous packet loss poses a great challenge in
controlling the deadline miss rate to 10−3 or lower – we can no
longer ignore these transient behaviors and have to deliver video
frames in time even when the instantaneous loss rate is high.

Moreover, these packet losses cannot be easily mitigated by re-
ducing the sending rate. To achieve a low latency, most CCAs in
interactive streaming use delay as the signal to reduce the sending
rate (e.g., BBR [25], Copa [15], GCC [26]). In this case, conges-
tion losses rarely happen since the sending rate has already been
reduced based on an increasing delay in advance, which has also
been measured in related work [26]. Our online measurements
unveil similar observations: our cloud gaming service has already
adopted a delay-based CCA similar to GCC [26], which is widely
deployed in interactive streaming applications such as Chrome
and Stadia. We further demonstrate the weak correlation between
RTT4 increases and packet losses in our measurement in §2.4. As
shown in Fig. 3, losses are still outstanding at the tail, indicating
that merely controlling the bit rate or frame rate is still insufficient
to avoid packet losses for edge-based interactive streaming.

2.3 Why Existing Solutions Fail?
As we discussed in §1, packet losses contribute a lot to deadline
misses. Thus, we investigate why existing packet loss recovery
mechanisms are insufficient for edge-based interactive streaming.
Existing solutions mainly fall into two categories as follows.

Retransmissions. Existing transport protocols (e.g., TCP)
rely on retransmissions to cope with packet losses. Merely
relying on retransmissions is insufficient to achieve an extremely
low DMR for interactive streaming frames at the magnitude
of 0.1% or lower. For example, when the packet loss rate is
instantaneously 20%, there would still be 0.16% packets lost
even after 3 retransmissions. Note that since there could be tens
to hundreds of packets per frame, being unable to deliver even
one packet would violate the deadline requirement of that frame
since interactive streaming requires all packets to be reliably
delivered (§2.1). Thus, the DMR of frames is still considerably
high when relying on retransmissions and rate controls only. Our
evaluation in §4 also demonstrate the performance degradation.

Redundancy-based algorithms. There are also several solutions
4In this paper, we use RTT to represent the delay at the network layer that does
not contain the time of retransmission. We use application delay to refer to the
delay at the application layer that contains the retransmissions.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 909

0 5 1 0 1 5 2 0 2 5 5 0 7 5 1 0 00 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

0 5 1 0 1 5 2 0 2 5 5 0 7 5 1 0 00 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

(b) W i F i

CD
F

R T T (m s)

0 % 1 ~ 5 % 5 ~ 1 0 % 1 0 ~ 1 5 % 1 5 ~ 2 0 %
2 0 ~ 2 5 % 2 5 ~ 3 0 % 3 0 ~ 3 5 % 3 5 ~ 4 0 % 4 0 ~ 1 0 0 %

(a) E t h e r n e t

CD
F

R T T (m s)
Figure 4: RTT distributions measured in production, categorized by
the frame-level loss rate. Note that retransmissions are not counted.

in interactive streaming with redundancy mechanisms such as
FEC. However, existing adaptive FEC solutions from both the
industry [5,46] and academia [22,40,61] optimize the FEC pa-
rameters only for the initial transmission. They adjust the number
of FEC packets according to loss rate and retransmit packets as
usual when packet loss occurs. Note that packet losses are not de-
terministic: when the transient loss probability increases to 20%,
it does not mean precisely one packet loss every five packets. In
this case, to achieve an extremely low DMR of 10−3 or lower,
FEC rates need to be much higher than the loss rate, leading to se-
vere bandwidth cost (§4). For example, WebRTC, a state-of-the-
art interactive streaming framework, will send 100% redundant
packets during this short timescale of high instantaneous loss rate
for initial transmissions. In this case, there will be considerable
bandwidth cost while the DMR might still not be satisfied. We
further evaluate the performance of other baselines in §4.2.

2.4 Motivations
Therefore, with the reduced RTT, retransmissions are tolerable to
some extent for edge-based interactive streaming. In this case, we
have the following observations on how and what to retransmit.

RTT being much lower than the deadline enables the joint
optimization of redundancy and retransmission. As we
discussed before, with an RTT of 10-20 ms and a deadline
of 50-150 ms, multiple retransmissions are tolerable to some
extent. This enables the joint optimization of redundancy and
retransmission, which results in benefits in two folds:
• Reduce the deadline miss rate. In existing FEC mechanisms,

many of the deadline misses come from the packet losses in
the retransmissions. When adding redundancy packets over re-
transmission packets, we could effectively avoid the loss of re-
transmission packets and further reduce the deadline miss rate.

• Save bandwidth costs. To achieve the same DMR, the
bandwidth cost of adding redundancy to retransmissions is
significantly lower than that of only adding redundancy to
initial transmissions. This is because retransmission packets
are always the minority in bandwidth consumption – redun-
difying retransmissions will only introduce a little bandwidth
cost, but could have significant DMR improvements.

When more rounds of retransmissions are tolerated (e.g., with
smaller RTTs), the joint optimization will have more significant
benefits (later presented in §4.5). We are thus motivated to utilize
the retransmission chances enabled by edge deployments and
jointly optimize the redundancy and retransmission mechanisms.

1 2 4 8 1 6 3 2 6 4 1 2 8
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

1 2 4 8 1 6 3 2 6 4 1 2 8
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

CD
F

D u r a t i o n (f r a m e s)

> 4 0 % > 3 5 % > 3 0 % > 2 5 %
> 2 0 % > 1 5 % > 1 0 % > 5 %

(b) W i F i(a) E t h e r n e t

CD
F

D u r a t i o n (f r a m e s)
Figure 5: The distribution of the duration of each loss event measured
in production. We measure the duration of each time when the loss
rate is larger than different thresholds (5%, ..., 40%). Loss rates are
measured at the frame level. The network type is reported from our
cloud gaming clients. Better viewed in color.

Loss recovery adaptions at the server are possible. Dynam-
ically optimizing the tail cases of high instantaneous loss rate
needs quick adaption. According to our measurement, the
feedback loop between the server and client is smaller than the du-
ration of loss events, making the joint optimization of redundancy
and retransmission practical. This comes in two folds:
• The feedback loop does not inflate with the increase in the loss

rate. We measure the RTT of our cloud gaming service and cat-
egorize them into different frame loss rate intervals. As shown
in Fig. 4(a), the distribution of RTT does not significantly vary
with the frame loss rate. The RTT in WiFi increases with the
increase of frame loss rate (e.g., due to retransmissions at the
link layer [31]). Nevertheless, even when the frame-level loss
rate is 30% (the dashed green curve in Fig. 4(b)), 60% of those
acknowledged packets have an RTT of less than 25ms. This
indicates (i) the server is able to quickly detect the network
condition changes, and (ii) there are still multiple transmission
chances when the instantaneous loss rate increases.

• The duration of loss events is transient but still longer than
several feedback loops. We measure the duration of lossy
frames in our cloud gaming service and present the results
in Fig. 5. According to our measurements, most loss events
span multiple RTTs. For example, 70% of frames with a
frame-level loss rate of >10% will last more than 2 frames
in Ethernet sessions, which is several times the median RTT
(12ms) at the frame rate of 60fps. Therefore, the reaction
from the server is still effective to alleviate packet losses by
adjusting the redundancy parameters.

3 Hairpin Optimizer
As we discussed above, edge-based interactive streaming needs
to reduce the deadline miss rate and bandwidth cost. For clarity,
we first present the formula of frame deadline miss rate (DMR)
and bandwidth cost (BWC):

DMR=
#Frames arrive after the deadline

#Total frames

BWC=
Redundancybyte+Retransmissionbyte

Databyte

(1)

A higher DMR or BWC means more frequent stutters or higher
operating expenses respectively, both of which interactive
streaming service providers will try to avoid. Note that pushing

910 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

DMR to an extremely low level is critical since the lower it is,
the better user’s experience is going to be.

In this section, we first summarize some intuitions in the
design space of joint optimization of redundancy rate and
retransmission and present a strawman solution (§3.1). We then
present the design challenges in the joint optimization of retrans-
mission and redundancy (§3.2). We address these challenges
by providing a Markov chain-based optimization algorithm to
efficiently improve both the DMR and BWC (§3.3). We finally
discuss how Hairpin handles the inaccuracy in measurement, the
overhead in online deployment, and other practical issues in §3.4.

3.1 Basic Idea and Strawman Solution
Differentiating retransmissions from initial transmissions.
The most important insight in this paper is to understand the
significance of differentiating retransmissions from initial trans-
missions. In other words, we want an adaptive redundancy rate
based on the planning of multiple transmission chances. The
short RTT of edge-based interactive streaming enables packets
to have more than one transmission chance without violating
the deadline. The ratio of RTT and remaining time t indicates
the potential number of (re)transmissions. For example, when
the current RTT is 20ms and packets still have 40ms towards
their deadline, the ratio follows t

RTT = 40ms
20ms =2, indicating that

these packets could be approximately transmitted twice before
the deadline. Packets with more transmission chances could bet-
ter utilize the potential retransmissions to deliver packets before
the deadline, which has already been discussed in §2.4. There-
fore, our basic idea is to take future transmission chances into
consideration when optimizing the redundancy rate. When one
batch of packets has more foreseeable transmission chances (i.e.,
the deadline is still far away), we could reduce the redundancy
rate to save bandwidth costs. When the remaining time of these
packets is getting closer to the deadline due to retransmissions,
we could further increase the redundancy rate to avoid deadline
misses.

Strawman solution: RTT-aware adaptive FEC algorithm.
Therefore, a strawman solution is to (i) add redundancy to
both initial transmissions and retransmissions, and (ii) consider
the remaining transmission chance in the optimization of the
redundancy rate. Since there have already been existing solutions
on the redundancy rate based on network conditions [5,22,61],
we could introduce a multiplier controlled by the transmission
chance over the existing redundancy rate optimizations, i.e. a
strawman solution is to reduce the redundancy rate when there
are many transmission chances, and increase it when transmis-
sion chances are few. Thus, we could enhance these algorithms
by introducing a factor over the results from existing algorithms.

FEC consists of two parameters (d,k), where d data packets
and k redundant packets are sent as a block. Block is composed
to the convenience of FEC encoding. If there are up to k packets
lost in an FEC block (d,k), an ideal FEC decoder can recover all
data packets with any remaining packets [64,65,85]. We denote
β = k

d as the FEC redundancy rate, and d as the FEC block size.

Specifically, given a packet loss rate α and bitrate B, assume
one of the state-of-the-art solutions has already determined that
β0(α,B) should be the optimized redundancy. We could then
increase or decrease the redundancy rate β0(α,B) based on the
remaining transmission chance t

RTT , i.e.:

β(α,B,RTT,t)=k·RTT
t

·β0(α,B) (2)

where k is a coefficient to adjust how aggressive the strawman
solution is going to increase or decrease the redundancy rate.

In fact, according to our evaluation in §4.6, such a strawman
solution is enough to push the Pareto frontier of DMR-BWC
forward. However, it confronts a series of shortcomings, which
prevents the operator from further improvements in performance.
We will elaborate on these challenges in the following section.

3.2 Design Challenges
Although we have presented a heuristic RTT-aware adaptive
FEC algorithm as above, it is still challenging to optimize these
parameters due to the following reasons.

Temporal dependency: cascading decision-making between
transmission rounds. When considering multiple transmission
chances, the decision of FEC parameters of one round of
transmission would cascadingly affect the optimization of
the next round. For example, if we aggressively add a high
redundancy rate to a group of packets, the number of packet
losses will then be decreased. On the contrary, a low redundancy
rate for the same group of packets would probabilistically
increase the number of packet losses under the same network
condition. However, these packet losses bring more packets
to retransmit in the next round. If we consider all actions for
F packets for the foreseeable L rounds of transmission, the
action space will be extremely large: Since for each redundancy
decision, there are F possible scenarios of the number of packets
to transmit in the next round (depending on how many packets
are lost), the number of variables that we need to optimize will be
O(FL)5. Therefore, in the enlarged action space over multiple re-
transmissions, it is challenging to efficiently optimize. Moreover,
the conditional probability between scenarios is not linear (e.g.,
hypergeometric for individually independently and identically
distributed losses). Therefore, using traditional optimization
methods such as integer programming in an extremely large
action space is impractical. We need to coordinate the choices in
different rounds of transmission to achieve optimal performance.

Spatial dependency: redundancy rate and block size are
tightly coupled. Even in a single round, different variables
(e.g., redundancy rate, block size, etc.) still have complicated
dependencies on each other. This goes to the following aspects:

(a) Number of packets to transmit in one round affects redun-
dancy rates. The number of packets to transmit in the different
rounds is varying, depending on how many data packets are lost

5For a frame with 50 packets (F=50), and 5 potential transmission rounds (L=5,
e.g., RTT is 20ms and deadline is 100ms), this turns into 108 variables.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 911

1 2 3 1’ 2’ 3’

1 1 2 2 3 3 1 1 2 2

1 2 3 1’ 2’ 3’

RTT

RTTRTT
Deadline

Figure 6: Smaller block sizes in one frame could have better
performance. Scenarios above and below represent using small and
large blocks. Data and FEC packets are shaded orange and blue.

0 4 8 1 2 1 6 2 0
0 %

2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

CD
F

R e c e i v e t i m e (m s)

 B l o c k s i z e :5 3 01 0 3 51 5 4 02 0 4 52 5 5 0

(a) Cumulative distribution.

0 1 0 2 0 3 0 4 0 5 0
0
4
8

1 2
1 6

Re
ce

ive
 tim

e (
ms

)

B l o c k s i z e (p a c k e t s)

9 9 % i l e
9 0 % i l e
5 0 % i l e

(b) Trend of percentiles.

Figure 7: Block receiving time with different block sizes. FEC blocks
are burstily sent out at the server side. Fig. 7(b) is processed from
Fig. 7(a). Measurement details in §4.2. Better viewed in color.

during the last transmission. The penalty of redundancy rate on
BWC also varies according to the number of packets to retrans-
mit. For example, when there are few packets to retransmit, even
adding a redundancy rate of 100% for retransmissions would
not consume too much bandwidth, as also discussed in §2.4.
Therefore, fewer data packets to retransmit would encourage a
more aggressive redundancy rate. The strawman solution is not
aware of the dependency here, leading to its suboptimal result.

(b) Dispersion of blocks might lead to deadline misses when
using larger blocks. Due to the bandwidth limit at the bottleneck
link, packets sent out at the same time could be dispersed [47]
and arrive at the receiver one by one. In this case, constructing
large blocks will increase the delay to wait for all packets
at the receiver. Since packet losses can only be determined
after the completion of one block, smaller blocks may know
earlier whether they need retransmission and enjoy additional
transmission chances before the deadline. For example, in Fig. 6,
due to the early determination of packet loss, the retransmission
of data packets for small blocks could arrive at the receiver
before the deadline, while no packets could arrive before the
deadline for large blocks. We quantify the influence of block size
by measuring the receiving time of FEC blocks from our service
online with different block sizes. As we can see in Fig. 7 and 7(b),
with a block size of 50 packets, more than 10% blocks could span
10ms at the receiver, which is even comparable to the RTT. Also,
smaller block sizes might also be beneficial when the loss rate
is higher than the redundancy rate. As illustrated in Fig. 6, when
the first four packets are lost during the transmission, data packet
#3 could still be successfully delivered for a small block size (the
case above in Fig. 6). For large blocks, there is no way to recover
any lost packet if the loss rate is larger than the redundancy rate.

Convoluted goal: deadline miss rate and bandwidth cost. Un-
like latency or throughput which we can directly measure, the es-
timation of the expected deadline miss rate needs to consider mul-
tiple potential rounds of transmission. In this way, the strawman

solution, without explicitly estimating whether that frame is go-
ing to miss the deadline or not, will have suboptimal results. For
example, the relationship between the packet loss rate and the suc-
cess rate of delivering a video frame with tens of packets in a sin-
gle round is hypergeometric, even under the identical and indepen-
dent distribution (i.i.d.) assumption. Considering multiple future
rounds together will only make the relationship between deadline
miss rate and network conditions more convoluted. Moreover,
some applications or even the same application in different oper-
ating regions may have different preferences over deadline miss
rate v.s. bandwidth cost. The traffic cost in some regions might be
higher than in another, and some applications may give it all for
the user’s experience while others may not. Therefore, we need to
explicitly optimize towards the goal to achieve the optimal result.

3.3 Model Formulation and Optimization
We have the following designs to address the challenges above.

Encode the temporal dependency in multi-round planning
into edges in Markov chain. Markov chain is widely used
in the optimization of the sequential decision-making process
(e.g., reinforcement learning [79]). With the Markov chain,
we can formulate the loss detection between two rounds of
(re)transmission into the transition between two Markov nodes.
In this case, by only focusing on the optimal parameters between
the transition of the current state and its potential states in the
next round, we could decouple the cascading effects of the
transitions between neighbor nodes, which reduces the action
space significantly. We further show in Appendix B.1 that, in
such a Markov chain, locally focusing on the neighbor nodes
could still have globally optimal results.

Encoding the spatial dependency between variables into
nodes in Markov chain. To ensure the number of packets
to transmit is considered in the optimization, we build a 2-D
Markov chain, with two dimensions as the transmission chance
and the number of packets to transmit. We present the state
transition of our Markov chain in Fig. 8. Each node is represented
by (d,l), where d denotes the number of remaining data packets
to transmit, and l represents the remaining transmission chance
for those packets. Our goal is to find out the optimal redundancy
rate for node (B,L), where B is a given block size, and L is the
remaining transmission chance from Eq. 3. In this case, both the
temporal dependency and spatial correlation between variables
could be formulated into this 2-D Markov chain.

Explicitly optimize deadline miss rate and bandwidth cost
with Markov chain formulation. We finally provide an explicit
expression of the deadline miss rate and bandwidth cost for multi-
round optimization within the formulation of MDP. We inversely
calculate the DMR and BWC at different states from the last
chance to transmit (as the last layer of the Markov chain), to the
first chance to transmit (as the first layer of the Markov chain).
In this way, the transition probabilities between states could be
directly iterated. We further decouple the optimization of redun-
dancy rate and block size to improve the optimization efficiency.

912 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0, 0

1, 0

𝐹 , 0

2, 0

0, 1

1, 1

𝐹 , 1

2, 1

0, 𝐿

1, 𝐿

𝐹 , 𝐿

2, 𝐿

……

……

……

……

…
…

…
…

…
…

Deadline satisfied

Deadline missed
One missed packet will
lead to the deadline miss
of the block.

Transmission chance
𝑑

0, 2

1, 2

𝐹 , 2

2, 2

…
…

Figure 8: The absorbing Markov chain in redundancy rate optimization
at given loss rate and frame size. l is the estimated remaining
transmission chances for the packets to transmit.

We present the analytical model and the algorithm below. In
interactive streaming, frames are continuously generated and
sent out from the server. There are thousands to millions of
frames within one stream, depending on the specific application,
where the retransmission of previous frames overlaps with the
transmission of subsequent frames. Therefore, similar to the
finite element analysis in mechanics [10], we pick one frame
from the stream, and analyze the expected DMR and BWC of
that frame. The expected DMR and BWC of one frame should
be consistent with the DMR and BWC of a stream. We list all
notations that will use in Table 2 in Appendix B.1. Specifically,
Hairpin optimizes the FEC parameters as follows:

Step 1: Calculating remaining transmission chance. Given
current network RTT, the remaining time towards deadline T ,
the bottleneck bandwidth Θ, and a certain block size d, the
remaining transmission chance L could be calculated as:

L=
T−d/Θ

RTT
(3)

Step 2: Generating absorbing Markov chain. We then
calculate the optimal redundancy rate given the current loss
rate α and frame size F. We iteratively calculate the absorbing
Markov chain from layer l −1 to layer l. For the node (d,l),
at a certain redundancy rate β ,we respectively calculate the
DMR(d,l;β) and BWC(d,l;β) based on the DMR and BWC
from the l − 1-th layer. We leave the detailed equations to
Appendix B.1. Then, we calculate the optimal β for (d,l):

βopt(d,l)=argminβ utility(DMR(d,l;β),BWC(d,l;β)) (4)

Here, utility(DMR, BWC) is the utility function to balance
preference for low DMR and low BWC. For simplicity, we adopt
a linear combination of DMR and BWC as the optimization goal:

utility(DMR,BWC)=DMR+λ ·BWC (5)

Note that Hairpin does not fall into the same trade-off between
DMR and BWC as baselines, but improves both DMR and BWC,
as we will evaluate later in §4.3. In practice, service providers
can adjust the coefficient λ to balance stuttering events and
bandwidth costs in different scenarios. A lower λ indicates that
users prefer the deadline miss rate more than bandwidth costs. We
also evaluate performance with different utility functions in §4.5.

0 4 8 1 2 1 6 2 01 0 - 5
1 0 - 4
1 0 - 3
1 0 - 2
1 0 - 1
1 0 0 R e l y i n g o n R T X : m a g n i t u d e s o f d i f f e r e n c e

Fa
ilur

e R
ate

P a c k e t s t o r e t r a n s m i t

M e c h a n i s m (r e d u n d a n c y , l o s s r a t e)
 D U P (2 0 0 % , 2 0 %)
 D U P (1 0 0 % , 2 0 %)
 D U P (1 0 0 % , 1 0 %)
 F E C (2 0 0 % , 2 0 %)
 F E C (1 0 0 % , 2 0 %)
 F E C (1 0 0 % , 1 0 %)

F e w p a c k e t s i n R T X : n o m a j o r d i f f e r e n c e

Figure 9: A theoretical illustration of the failure rate of retransmitting
different numbers of packets by per-packet duplication or constructing
FEC blocks. The failure rate of DUP increases with the number of
packets to retransmit, since we need to ensure every data packet is
delivered. We vary the redundancy rate and loss rate.

Therefore, the redundancy rate for (B,L) could be optimized
accordingly. After calculating all nodes at the layer l, we could
then calculate the DMR and BWC at the layer l+1, until the node
(B,L) has been calculated. Since the iterations between nodes
are linear, as long as the utility function is monotonic to DMR
and BWC (e.g., linear relationship), the optimality still holds.

We set DMR(d,0) to 1 for d > 0 since one missed packet
would lead to the miss of the block (shaded green). We also set
all DMR(0,l) to 0 since there is no remaining packet to transmit.
The BWC for all these boundary nodes is set to 0. Note that
different block sizes and remaining transmission chance could
multiplex the same chain to accelerate the optimization, since
the chain only depends on loss rate α and frame size F.

Step 3: Calculating optimal block size. We enumerate the
possible block sizes from 1 to the frame size, calculate the DMR
and BWC for each block according to the chain in Step 2, and
finally find the optimal block size in terms of a given utility
function. We leave the mathematical details to Appendix B.2.
According to our evaluation in §4.6, not surprisingly, when the
bottleneck bandwidth is high (i.e., the dispersion is insignificant),
the optimal block size for most scenarios is the frame size.
Nevertheless, when the dispersion is significant, constructing
smaller blocks could achieve better DMR. Operators could
optimize the block size for improvements at the last mile.

During the optimization of block sizes, we also optimize the
trade-off of when a loss has been detected, whether to retransmit
that packet as soon as possible or wait for other packets to for-
mulate an FEC block. On recovery ability, constructing several
lost packets into one FEC block might be more effective than
individually retransmitting (or duplicating, if with redundancy)
each packet. We calculate the failure rate of delivering these
packets when there are different numbers of packets to retransmit
at different redundancy rates and loss rates and present the results
in Fig. 9. When there are few packets that need retransmission,
whether duplicating or constructing FEC blocks has no major
difference (dashed line and solid lines shaded green). However,
when optimizing at the tail for interactive streaming, there could
be multiple packet losses within one frame. Therefore, consid-
ering each frame could contain tens of packets, it is possible to
suffer losses of 4 packets or more at the tail. Constructing FEC
blocks for these retransmission packets could reduce the failure
rate of delivering packets by several magnitudes.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 913

Step 4: Getting the optimal parameters. Finally, based on
network conditions and remaining time towards a deadline,
Hairpin can calculate the optimal block size based on Step 3, and
the optimal redundancy rate with the block size based on Step 2.

3.4 Deployment Discussions
In §3, we analytically optimize the FEC parameters given certain
network conditions. The reality might be more complicated than
the theoretical model. In this section, we discuss several practical
concerns of Hairpin based on our operational experiences. Our
further trace-driven simulation and deployments in production
in §4 also demonstrate the effectiveness of Hairpin in the wild.

Reducing computational overhead online. Hairpin adopts
an optimization-based algorithm, which might not scale to
production-scale deployments in terms of computational
overhead. Since the optimization needs to run frequently
(approximately every frame) and scale to tens of thousands of
users simultaneously, it should be computation-efficient and
time-efficient. In response, we do an offline step of enumerating
the state space and solving each specific instance. Then, in
the online step, the algorithm will be reduced to a simple table
lookup towards pre-computed optimized redundancy parameters.
We enumerate the state space of Hairpin as below.
1. Remaining transmission chance: 1 to 10.
2. Loss rate: 0% to 50% with quantization of 1%.
3. Frame size: 5 to 60 packets with quantization of 5 packets.
4. Number of packets to (re)transmit: 5 to 60 packets with

quantization of 5 packets.
Hairpin then stores the best redundancy rate and block size
under different conditions. We found that the benefits of finer
quantization are marginal. Our further evaluation in the real
world in §4.7 shows that the memory consumption (2MB) and
table lookup time are negligible for online deployment.

Handling network fluctuations. We discuss how Hairpin
handles the fluctuations in network conditions. For RTT, as
presented in Fig. 4, RTT does not increase too much – the
median RTT always allows Hairpin to have 3-5 transmission
chances no matter the loss rate. Moreover, we further measure
the network conditions in Hairpin with a short sliding window
to make sure Hairpin has the most recent network conditions.
We set the measurement window to 2 frames and evaluate the
sensitivity of this parameter in §4.5. In this case, the transient
fluctuation of RTT could be reflected in the optimization results
immediately. We later demonstrate in §4 that Hairpin behaves
well with real-world traces and production deployments.

Handling various loss patterns. In this paper, when given a
certain loss rate, Hairpin assumes the pattern of packet losses
is identically and independently distributed (in the transition
probability of Eq. 6). Note that the duration of a certain loss
rate still follows the results of the online measurement in Fig. 5.
In practical deployment, working with FEC codecs that could
recover from different loss patterns (bursty or arbitrary) [65],
Hairpin could also handle different loss patterns since Hairpin

Rate Controller Video Encoder

FEC
Encoder

Packet Sender

Statistics
Collector

Client

Data Flow Control Flow

Hairpin
Optimizer (§3.3)

Video Decoder

FEC Decoder

Packet Receiver

Server

Figure 10: Overview of Hairpin implementation.

only focuses on how many packets within a block are lost. Since
our data is collected frame by frame, if the burstiness spans over
several frames, it will be directly reflected on the value of loss
rates. If the burstiness spans within the frame, no matter how
the pattern changes, the number of lost packets will not change,
which does not affect the recovery efficiency of the FEC codec.
For example, when there are 4 packet losses in one block, no
matter whether these losses are consecutive or separated in the
block, as long as there are 4 additional FEC packets in the same
FEC block, the client would be able to recover these packet losses.
Therefore, Hairpin does not rely on the assumption of underlying
loss patterns, but only focuses on the number of lost packets.
Packet losses might be consecutive across several frames. In this
case, due to the short feedback loop enabled by edge deployments,
Hairpin should have already timely reacted as analyzed in §2.4.

4 Evaluation
We introduce the implementations in §4.1 and experiment
settings in §4.2. We further answer the following questions:
• How does Hairpin perform under real-world traces? We

demonstrate that Hairpin could push forward the Pareto
frontier of baselines on DMR and BWC (§4.3).

• Is Hairpin sensitive to the settings of parameters? We
investigate the performance variation of Hairpin with
different parameters, and demonstrate that Hairpin has
performance improvements in a wide range (§4.5).

• Which design in Hairpin contributes to the performance
improvement against other baselines? In §4.4, we break down
the performance improvements of Hairpin.

• How does Hairpin make decisions and how each optimization
affects the user’s experience? We further dive into the details
of Hairpin’s design in §4.6.

• How does Hairpin perform well in the wild? Finally, we de-
ploy Hairpin in production servers and find that Hairpin signif-
icantly improves both DMR and BWC in the real world (§4.7).

4.1 Hairpin Implementation
We implement Hairpin in both an ns3-based WebRTC
simulator [88] and our cloud gaming application in production.
We present the workflow of Hairpin in the network stack in
Fig. 10. Without Hairpin, interactive contents are first encoded
with Video Encoder by the application, and then sent out
at the transport layer frame-by-frame. Then the video frames
could be received by the protocol stack at the client. Packet

Sender and Packet Receiver abstract the network stack
at the transport layer for connection management. After that,
Video Decoder decodes the streaming contents and displays

914 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 2 4 6 8 1 0 1 2 1 40
5

1 0
1 5
2 0
2 5
3 0
3 5

R T X

B o l o t U S F

W e b R T C N O W

W e b R T C ' 1 4
P T O

B o l o t + P T O U S F + P T O

W e b R T C N O W + P T O

W e b R T C ' 1 4 + P T OH a i r p i nBa
nd

wid
th

Co
st (

%)

D e a d l i n e M i s s R a t e (1 / 1 0 k)

B e t t e r

(a) Ethernet traces.

0 5 1 0 1 5 2 0 2 5 3 00
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5

R T X

B o l o t
U S F

W e b R T C N O W

W e b R T C ' 1 4
P T O

B o l o t + P T O U S F + P T O

W e b R T C N O W + P T O

W e b R T C ' 1 4 + P T O
H a i r p i nBa

nd
wid

th
Co

st (
%)

D e a d l i n e M i s s R a t e (1 / 1 0 k)

B e t t e r

(b) WiFi traces.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 80
5

1 0
1 5
2 0
2 5
3 0

R T XB o l o t U S F

W e b R T C N O W
W e b R T C ' 1 4

P T O
B o l o t + P T O

U S F + P T O

W e b R T C N O W + P T O

W e b R T C ' 1 4 + P T O

H a i r p i n

Ba
nd

wid
th

Co
st (

%)

D e a d l i n e M i s s R a t e (1 / 1 0 k)

B e t t e r

(c) Cellular traces.

Figure 11: Trace-driven simulation. The blue dashed line is the envelope of all baselines on the Pareto frontier.

them to users. Meanwhile, network conditions (e.g., RTT, packet
loss events) will be measured at the server, collected by the
Statistics Collector, and reported to Rate Controller

to adaptively adjust the streaming bit-rate according to network
conditions [26]. Hairpin inserts between the existing application
layer and transport layer, and optimizes the redundancy
parameters based on current network conditions, as shown in
Fig. 10. The network statistics is still passed to the congestion
controller (rate controller) without modification. The underlying
transport protocol in our cloud gaming service is a customized
version of the RTP protocol [69] based on UDP to allow the
loss of redundant packets without modifying the kernel at the
client. We implement Reed-Solomon FEC due to its recovery
performance when the redundancy rate is <100% [65], and
implement a customized FEC codec for the redundancy rate of
>100%. Note that Hairpin could also work with other codecs
(e.g., XORFEC, FlexFEC, etc.) as long as their parameters are
exposed to Hairpin. We discuss FEC codecs in Appendix C.

4.2 Experiment Setup
Traces. As for simulation traces, we collect a dataset in one
production server in the wild on our cloud gaming service in two
weeks in January and August 2021, resulting in more than 100M
video frames and more than 600 hours of playtime. This also
supports our measurements in §2 and §3. Users access the ser-
vice via either Ethernet, WiFi, or cellular connection, which we
collect from our cloud gaming client. The cloud gaming service
streams at the frame rate of 60fps and the bit rate ranging from
2Mbps to 30Mbps. The network conditions are recorded on the
server of our cloud gaming service, including the average RTT,
average bit rate, and loss rate at the frame level (approximately
every 16 ms). The traces contain 1,995 Ethernet gaming sessions,
741 WiFi sessions, and 572 cellular sessions in total, each lasting
from minutes to hours. To the best of our knowledge, we are
the first to collect online traces from an interactive streaming
service for weeks at both the frame level and packet level.

Baselines. We orthogonally review the public adaptive FEC
mechanisms and retransmission mechanisms with deployments
in practice. On the axis of retransmission optimization, we
implement the following baselines.
• Out-of-order. Traditionally, packet losses are detected by

checking the out-of-order packets, such as TCP duplicated
ACK [21]. We use it as our default loss detection mechanism.

• Probe timeout (PTO). Besides, to quickly detect packet
losses of tail packets, recent researchers also propose an
aggressive timeout-based loss detection mechanism [33].

On the axis of redundancy parameter optimization, we implement
the following mechanisms:
• WebRTC′14 comes from the research paper published by

Google in 2014 [46].
• WebRTCNOW is the adaptive FEC mechanism used in

WebRTC now (adopted by Google Stadia [35], Meet [23],
etc.), replacing the WebRTC′14. The difference is that
WebRTC′14 is aware of RTT and will reduce the redundancy
rate when RTT is low, while WebRTCNOW is more aggressive
on adding redundancy. We migrate the implementation of the
m88 version of Chromium released in December 2020 [7].

• Bolot [22] and USF [61] are two heuristic adaptive FEC
algorithms from the research community. Unlike Hairpin,
they do not add redundant packets for retransmissions.

• RTX adds no redundancy, but fully relies on retransmissions.
Note that none of these baselines optimize the redundancy
for retransmissions here. Since these two lines of work are
orthogonal to each other, we combinatorially implement
2 (retransmission) × 5 (redundancy) = 10 baselines.

Hairpin Setup. In our simulation, we set the coefficient in the
utility function in Eq. 5 to λ =10−4, the measurement window
of network conditions to 2 frames, and the deadline to 100ms.
We evaluate the sensitivity of these parameter settings in §4.5.

4.3 Trace-driven Simulations
To evaluate the performance of Hairpin in dynamic network
conditions, we simulate Hairpin over real-world traces as
introduced in §4.2. We emulate the collected traces of loss
rate and RTT with ns-3, and evaluate whether Hairpin could
capture the network dynamics of loss and RTT variations and
effectively adapt in real traces. We first present the trade-off
between DMR and BWC over three sets of traces in Fig. 11.

As shown in Figure 11, RTX has the lowest bandwidth cost
since RTX only retransmits a packet after it is lost. However,
it also has the highest deadline miss rate among all baselines.
Meanwhile, WebRTCNOW working with PTO has the lowest
DMR among all baselines but also the highest BWC. Other
baselines stay on the Pareto frontier in the trade-off between
DMR and BWC. In contrast, Hairpin could break the trade-off

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 915

0 5 1 0 1 5 2 0 2 5 3 00
2
4
6
8

H a i r p i n

B a s e l i n e s
B a s e l i n e s

Ba
nd

wid
th

Co
st (

%)

D e a d l i n e M i s s R a t e (1 / 1 0 k)

B e t t e r

H a i r p i n S a m e

Figure 12: Breaking down the
performance improvements of
Hairpin.

Ba
nd

w
id

th
 C

os
t (

%
)

Figure 13: Parameter sensitivity of
λ in Hairpin, and the effectiveness
of differentiating retransmission.

and achieve a much better DMR and BWC, as the red stars
denoted in Figure 11: 67%-80% lower than the lowest DMR
(WebRTCNOW), and comparable BWC as RTX. Thus, as we
analyzed above, Hairpin could effectively improve both DMR
and BWC significantly compared with all other baselines.

Note that the traces here are collected from our production
servers, including the network RTT and instantaneous loss rate,
with a fined granularity of every 16ms. The results in WiFi
traces are worse than in Ethernet traces since WiFi traces have
higher loss rates and RTTs, as measured in §2.4. Results over
cellular traces are surprisingly good. This is because, during our
online measurements, we just started to provide cloud gaming
service for cellular users and had admission control over network
conditions during that time. In all, Hairpin could significantly
push forward the Pareto frontier of existing baselines in all traces.

4.4 Performance Breakdown
As discussed before, the performance improvement of Hairpin
comes from two aspects: a carefully crafted optimization model,
and the design space of differentiating retransmissions from
initial transmissions. To investigate the contribution of these two
components, we set up another candidate: HairpinSame. Hair-
pinSame adopts the same Markov Chain-based model as Hairpin,
but enforces the redundancy rate of all rounds to be the same.
We further sweep the choice of λ from{10−4,10−2,10−1,1,5,10}
for HairpinSame to show the trade-off between bandwidth cost
and deadline miss rate in this non-differentiating scenario. We
also present the envelope of all baselines from Figure 11(b) as
the blue dashed line in Figure 12.

As shown in Figure 12, even without differentiating retrans-
missions, HairpinSame is still able to significantly push the
frontier forward. For example, when the bandwidth cost is 4.5%,
Hairpin is able to reduce the deadline miss rate from to 0.28%
to 0.17%, as shown in the gap between the purple solid line and
blue dashed line. We are not going to argue that the proposed
Markov chain algorithm outperforms all the baselines due to the
optimization algorithm. We hypothesize that the improvement
is due to the change of the optimization goal. Previous baselines
focus on the optimization of tail latency, which is different
from deadline miss rate as discussed in §2. In fact, we further
present the latency distribution of Hairpin and all baselines in
Appendix D (Figure 22), and the results of Hairpin and baselines
are comparable for most percentiles below the 99.9th. Therefore,
with the focus mostly on the extreme tails after the 99.9th per-

0 4 0 8 0 1 2 0 1 6 00
1 0
2 0
3 0
4 0

H a i r p i n

B a s e l i n e sH a i r p i n

Ba
nd

wid
th

Co
st (

%)

D e a d l i n e M i s s R a t e (1 / 1 0 k)
B e t t e r

(a) Deadline = 50ms.

0 1 2 3 4 5 6 70
1 0
2 0
3 0
4 0

H a i r p i n

B a s e l i n e sH a i r p i n

Ba
nd

wid
th

Co
st (

%)

D e a d l i n e M i s s R a t e (1 / 1 0 k)
B e t t e r

(b) Deadline = 200ms.

Figure 14: The performance of Hairpin and all baselines (labels
omitted for brevity) on WiFi traces when the deadline requirement
from the application is different.

centile, Hairpin is able to significantly reduce the deadline miss
rate, or reduce bandwidth cost for the same deadline miss rate.

Nevertheless, with the new design space of differentiating
retransmissions, Hairpin can further reduce the deadline miss rate
from 0.17% to 0.06% when the bandwidth cost is 4.5%, as shown
in the gap between the red star and purple line in Figure 12. This
further demonstrates the importance of differentiating retrans-
missions. Both designs are critical to performance improvement.

We further want to see how far a naive algorithm, which does
nothing but differentiates retransmissions, will go. To this end,
we have HairpinFixedRTX, which only adds FEC packets to
retransmissions with a fixed ratio, and never adds FEC packets
to initial transmissions, in contrast to all existing solutions in
§4.2. We vary the static redundancy rate for retransmissions
from 2% to 200%. As shown in the gap between the green solid
line and the blue dashed line in Figure 13, HairpinFixedRTX
significantly improves the trade-off between DMR and BWC
against existing baselines. The series of red stars will later
be explained in §4.5. This demonstrates that differentiatedly
adding FEC over initial transmission and retransmission packets
can effectively improve performance. As we discussed in §3,
even naively differentiating the retransmissions with another
fixed redundancy rate would already be helpful, illustrating the
necessity of differentiating retransmissions.

4.5 Parameter Sensitivity
We also evaluate how Hairpin performs with different parameters.

Utility coefficient λ . For the utility coefficient λ in Eq. 5, as
introduced in §4.2, it could adjust the preference over the trade-
off between the DMR and BWC. A higher λ indicates that users
prefer the BWC more, while a lower λ indicates that the DMR
is outweighing the BWC. Therefore, we change λ from 10−1 to
10−7, and present the DMR and BWC of Hairpin with different
λ over WiFi traces in Fig. 13. Note that Fig. 13 is zoomed in
from Fig. 11(b). As shown in the red stars in Fig. 13, the BWC is
decreasing with the increase of λ , while the DMR is increasing
by a little. Thus, operators could adjust λ to balance the DMR
and BWC according to the requirements of applications.

The setting of the deadline. In the evaluation in §4.3, the
deadline is set to 100ms. We also investigate how Hairpin
performs when the deadline is shorter or longer. Thus, we present
the results of DMR and BWC of Hairpin and baselines over WiFi
traces when the deadline is set to 50ms (Fig. 14(a)) or 200ms

916 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5 60 %
9 0 %
9 9 %

9 9 . 9 %
9 9 . 9 9 %1 0 0 %

CD
F

T r a n s m i s s i o n r o u n d
(a) Number of rounds.

1 2 3 4 5 6
0
5

1 0
1 5
2 0
2 5
3 0
3 5

Los
s ra

te (
%)

i - t h t r a n s m i s s i o n r o u n d

R T XU S FB o l o tW e b R T C ' 1 4W e b R T C N O WH a i r p i n

(b) Loss rates by round.

Figure 15: The loss rate in each transmission round.

0
2
4
6
8

1 0
1 2

H a i r p i n
W e b R T C 1 4

W e b R T C N O WB o l o tR T X U S F

Nu
mb

er
of

sta
lls D u p A c k P T O 2 5 % ~ 7 5 %1 0 % ~ 9 0 %M e d i a nA v e r a g e

(a) Number of stalls per session.

0 5 1 0 1 5 2 0 2 5 3 00
5

1 0
1 5
2 0
2 5
3 0 B y f r a m eB y t i m e

Ba
nd

wid
th

cos
t (%

)

D e a d l i n e m i s s r a t e (1 / 1 0 k)
(b) DMR by frame and by time.

Figure 16: The effect of DMR on other metrics.

(Fig. 14(b)). As presented in Fig. 14, given the same trace, when
the deadline is shorter (50ms), the advantages of Hairpin over
baselines are a little less than when the deadline is 100ms. This
is because the retransmission chance is less and the design space
is smaller when the deadline is shorter. Nevertheless, Hairpin is
still much better than all existing baselines. When the deadline is
longer, the benefits are even larger due to the larger design space
in retransmission. Results over other sets of traces are similar.

4.6 Hairpin Deep Dive
We further provide a deeper understanding of Hairpin in the
following aspects.

Understanding Hairpin’s decisions. In Appendix D, we
present the redundancy rate and block size results of Hairpin
to provide a deeper understanding of how Hairpin optimizes
in different scenarios. Besides, we present the number of
transmission rounds of Hairpin and baselines in Fig. 15(a).
When Hairpin gradually increases the redundancy rate in future
transmission rounds, most frames could therefore be delivered.
Thus, the 99.9th percentile of the number of transmission rounds
in Hairpin is less than all other baselines by more than one.
Similarly, when we inspect the loss rate in each round as shown
in Fig. 15(b), Hairpin also successfully maintains the lowest
loss rate when the transmission round goes up. Note that the loss
rate here is significantly high due to the survivorship bias – only
lost packets will have another transmission round, while loss has
already indicated a degraded network performance. This also
indicates that the loss is not i.i.d. but bursty in the experiments.

Optimizing towards extremely low DMR. We further illustrate
why we need to achieve an extremely low DMR and how it
affects user’s experience. As analyzed in §3.1, a lower DMR
approaching zero directly indicates fewer stall events in a gaming
session. We measure the number of stall events in each gaming
session, where stall event is only counted once if there are
multiple missed frames in one second or if it lasts longer than
one second. As shown in Fig. 16(a), Hairpin can reduce the

0 5 1 0 1 5 2 0 2 50
5

1 0
1 5
2 0
2 5

H a i r p i n

B a s e l i n e sH a i r p i n

Ba
nd

wid
th

Co
st (

%)

D e a d l i n e M i s s R a t e (1 / 1 0 k)
B e t t e r

(a) GCC [88].

0 5 1 0 1 5 2 0 2 50
5

1 0
1 5
2 0
2 5

H a i r p i n

B a s e l i n e sH a i r p i n

Ba
nd

wid
th

Co
st (

%)

D e a d l i n e M i s s R a t e (1 / 1 0 k)
B e t t e r

(b) NADA [90].

Figure 17: The performance of Hairpin and all baselines (labels omit-
ted for brevity) on WiFi traces with different deadline requirements.

average and median number of stall events (which is also critical
for user’s opinion scores [67]) by a half or more against baselines.
By having a DMR of 0.06%, Hairpin is able to reduce the
75th percentile number of stalls in a session to 2. Considering
the duration of a gaming session (minutes to hours), this will
considerably improve the user’s experience.

We also show the difference of calculating DMR by frame
and by time in Fig. 16(b). In this paper, we do not argue using
a new metric (DMR by frame) is better – we calculate DMR
by the number of missed frames over total frames because of
the simplicity in the formulation in §3.3. Calculating DMR by
time is almost equivalent to DMR by frame since the stalled
time is the number of stalled frames (missed frames) times the
interval between frames. Therefore, we replot Fig. 11(b) using
two different DMRs. As shown in Fig. 16(b), the results are
almost the same with each other.

Integrating with congestion control. To further investigate the
performance of Hairpin when interacting with the CCA, we
integrate the Hairpin with two CCAs in the WebRTC framework,
GCC [26] and NADA [90], in our simulation. We then replay
the collected traces by setting their bandwidth, RTT, and loss
rate to the link in ns-3. The bandwidth ranges from 2Mbps
to 30Mbps. As shown in Fig. 17, Hairpin could still achieve
significant advantages over all existing baselines.

4.7 Real-World Experiments
Finally, we deploy the Hairpin in a production server in our
cloud gaming service. We conduct an A/B test in production
of Hairpin against the WebRTCNOW baseline. The bit rate of
the cloud gaming service also supports the range of 2-30Mbps as
simulated in §4.3. The A/B test runs for one week in September
2021, covering 17k sessions in total, all of which have a duration
of at least 4 minutes. Hairpin has been integrated into the
UDP-based connections of our cloud gaming service since then.
Since other optimizations are also deployed into our service after
we deploy Hairpin, to make a fair comparison, we only present
the results from the controlled A/B test in September 2021.

Performance. As shown in Table 1, Hairpin is able to improve
both the average DMR and the average BWC compared to
WebRTCNOW . Specifically, for Ethernet sessions, Hairpin could
improve the DMR by 32% while also reducing the BWC by
40% against WebRTCNOW . For WiFi sessions, the improvements
on DMR and BWC are 30% and 43%. We also measure the
ratio of sessions with an average DMR of larger than 1%, i.e.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 917

Ethernet DMR BWC P(DMR>1%) #Session
WebRTCNOW 0.34% 30.4% 6.9% 8380
Hairpin 0.23% 3.0% 4.6% 7306

WiFi DMR BWC P(DMR>1%) #Session
WebRTCNOW 0.72% 31.8% 19.3% 652
Hairpin 0.51% 3.0% 15.3% 613

Table 1: Real-world experiment results. P(DMR>1%) denotes the
ratio of sessions with an average DMR of larger than 1%.

tail sessions. Hairpin could also reduce the tail sessions by 34%
and 21% for Ethernet and WiFi sessions respectively compared
to WebRTCNOW . Note that the DMRs in real-world experiments
are a little higher than those in simulations (§4.3). This might
be because of other external factors (e.g., user devices) that
could affect the DMR. Nevertheless, Hairpin could significantly
improve the users’ experiences on both the DMR and BWC
compared to WebRTCNOW .

Overhead. We further measure the overhead of the optimization
of Hairpin. As introduced in §3.4, to accelerate the optimization
online, we precompute the optimized FEC parameters and store
the result table for online look-up. At our quantization granularity
of the table, it takes 1.98MB to store the table, which is negligi-
ble on servers since the table is static and could be shared by all
connections. Moreover, according to our measurements, the time
of looking up the table is always less than 1ms, which is also neg-
ligible since the table is looked up at the granularity of the frame.

5 Related Work
We first discuss the limitations in Appendix E, and then discuss
some pieces of related work here.

Deadline-aware optimization. Optimizing transport protocols
for deadline-aware flows has been intensively studied in the net-
working community. Research efforts have been devoted to the
optimization of transport protocols under the assumption of deliv-
ery deadline in video streaming [72,87], space network [73], and
others. There are also deadline-aware optimization in datacenters
for flow completion time [30,78,82] and job completion time [36].
These research efforts mainly focus on the priority-aware schedul-
ing between different packets, jobs, or flows. Instead, Hairpin
is orthogonal to them and optimizes within one stream.

Loss recovery optimization. There are many previous research
efforts in individually optimizing the retransmission mecha-
nisms [21,62,68] or redundancy strategies [5,22,29,40,51,59,61].
Even for the joint optimization of redundancy and retransmission,
we are not the first work to propose similar strategies. In wireless
communications, there are already previous efforts in the joint
optimization of redundancy and retransmission [12,60]. There
are also researches trying to combine retransmission and redun-
dancy (e.g., WebRTC2011 [71] and also [16,37,86]). However,
as discussed in §2.4 and evaluated in §4, without optimizing
redundancy over retransmissions, the tail performance is far
from satisfactory for edge-based interactive streaming. Besides,
there are also research efforts trying to adopt loss-resilient video
codec [41,80], which are unfortunately not deployable for ser-

vices in the wild due to their hardware support. To the best of our
knowledge, Hairpin is the first work to (i) jointly optimize the
retransmission and redundancy towards the tail performance, and
(ii) deploy in a real interactive streaming application in production.
There are also researches to reduce packet losses by manipulating
sending patterns [20,38], which can work together with Hairpin.

Low-latency interactive streaming. Finally, as an emerging
direction, low-latency interactive streaming also attracts much
attention. At the transport layer, intensive efforts have also been
devoted to the optimization of CCAs [26,41,48,90], or the cross-
layer optimization for interactive streaming to link layer [31].
As for the infrastructure, recent efforts propose to introduce edge
computing for shorter latency [58,77,89], which are orthogonal
to Hairpin. In contrast, Hairpin is inserted between the transport
layer and the application layer, and is designed to optimize the
redundancy of edge-based interactive streaming. In the evalua-
tion and deployment of Hairpin (§4), we have already integrated
Hairpin with some efforts above for a better user experience.
Moreover, there are other research efforts [34,84] that optimize
other application metrics for interactive video streaming in
image or video quality (e.g., SSIM [81] or PSNR [6]), which
are orthogonal to the interaction delay (the delay for each frame)
we focus on in this paper – they focus on the sharpness of the
video but we focus on the interaction lag that users may have

6 Conclusion
We propose Hairpin, a packet loss recovery mechanism for edge-
based interactive streaming to differentiate retransmissions and
jointly optimize redundancy with retransmissions. Hairpin mo-
tivates the joint optimization with real-world measurements, and
optimizes the redundancy and retransmissions with Markov de-
cision process. Both trace-driven simulations and real-world de-
ployments show that the joint optimization significantly reduces
the DMR and BWC compared with state-of-the-art solutions.

This work does not raise any ethical issues.

Acknowledgements
We sincerely thank our shepherd Junchen Jiang, anonymous
reviewers, and labmates in the Routing Group from Tsinghua Uni-
versity for their valuable feedback. This work is sponsored by the
National Natural Science Foundation of China (No. 62221003
and 62372261) and the Tsinghua-Tencent Collaborative Grant.
Bo Wang and Mingwei Xu are the corresponding authors.

References
[1] Pareto front - wikipedia. https://en.wikipedia.org

/wiki/Pareto_front.

[2] 5g can make remote driving a reality, telefon-
ica and ericsson demostrate at mwc. https:

//www.telefonica.com/en/web/press-office/

-/5g-can-make-remote-driving-a-reality-tel

efonica-and-ericsson-demostrate-at-mwc, 2017.

918 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://en.wikipedia.org/wiki/Pareto_front
https://en.wikipedia.org/wiki/Pareto_front
https://www.telefonica.com/en/web/press-office/-/5g-can-make-remote-driving-a-reality-telefonica-and-ericsson-demostrate-at-mwc
https://www.telefonica.com/en/web/press-office/-/5g-can-make-remote-driving-a-reality-telefonica-and-ericsson-demostrate-at-mwc
https://www.telefonica.com/en/web/press-office/-/5g-can-make-remote-driving-a-reality-telefonica-and-ericsson-demostrate-at-mwc
https://www.telefonica.com/en/web/press-office/-/5g-can-make-remote-driving-a-reality-telefonica-and-ericsson-demostrate-at-mwc

[3] Cloud gaming (beta) with xbox game pass — xbox.
https://www.xbox.com/en-US/xbox-game-pass/

cloud-gaming, 2020.

[4] Critical services report: Video conferencing (uk) — blog.
https://samknows.com/blog/critical-service

s-report-video-conferencing-uk, 2020.

[5] Issue 93006: Update to media opt util: - code review.
https://webrtc-codereview.appspot.com/93006,
2020.

[6] Peak signal-to-noise ratio - wikipedia. https://en.wik

ipedia.org/wiki/Peak_signal-to-noise_ratio,
2020.

[7] Psa: Webrtc m88 release notes. https:

//groups.google.com/g/discuss-webrtc/c/

A0FjOcTW2c0/m/UAv-veyPCAAJ, 2020.

[8] Stadia - one place for all the ways we play.
https://stadia.google.com/, 2020.

[9] Your games. your devices. play anywhere — nvidia geforce
now. https://www.nvidia.com/en-us/geforce-n

ow/, 2020.

[10] Finite element method - wikipedia. https://en.wikip

edia.org/wiki/Finite_element_method, 2021.

[11] Optimizing 5g for a new class of low-latency experiences
[video]. https://www.qualcomm.com/news/onq/

2021/07/20/optimizing-5g-new-class-low-lat

ency-experiences, 2021.

[12] Ashfaq Ahmed, Arafat Al-Dweik, Youssef Iraqi,
Husameldin Mukhtar, Muhammad Naeem, and Ekram
Hossain. Hybrid automatic repeat request (harq) in wireless
communications systems and standards: A contemporary
survey. IEEE Communications Surveys & Tutorials, 2021.

[13] Amit. Huawei news — huawei launched cloud mobile
phone. https://www.huaweiupdate.com/huawei-l

aunched-cloud-mobile-phone/, 2020.

[14] ArsTechnica. Nvidia gtx 1080 review: The new perfor-
mance king. https://arstechnica.com/gadgets/

2016/05/nvidia-gtx-1080-review/4/, 2016.

[15] Venkat Arun and Hari Balakrishnan. Copa: Practical
delay-based congestion control for the internet. In Proc.
USENIX NSDI, 2018.

[16] Luca Baldantoni, Henrik Lundqvist, and Gunnar Karlsson.
Adaptive end-to-end fec for improving tcp performance
over wireless links. In Proc. IEEE ICC, 2004.

[17] Matthew Ball and Jacob Navok. Challenge #3: Enormous
bandwidth costs and operational burdens — cloud gaming:
Why it matters and the games it will create. https:

//www.matthewball.vc/all/cloudmiles, 2020.

[18] Asha Barbaschow. Alibaba unveils cloud 2.0, wuy-
ing cloud computer, and xiaomanlv logistics robot.
https://www.zdnet.com/article/alibaba-unvei

ls-cloud-2-0-wuying-cloud-computer-and-xia

omanlv-logistics-robot/, 2020.

[19] Apurv Bhartia, Bo Chen, Feng Wang, Derrick Pallas,
Raluca Musaloiu-E, Ted Tsung-Te Lai, and Hao Ma.
Measurement-based, practical techniques to improve
802.11 ac performance. In Proc. ACM IMC, 2017.

[20] Saad Biaz and Nitin H Vaidya. ”de-randomizing” conges-
tion losses to improve tcp performance over wired-wireless
networks. IEEE/ACM Transactions on Networking, 2005.

[21] Ethan Blanton, Dr. Vern Paxson, and Mark Allman. TCP
Congestion Control. IETF RFC 5681, 2009.

[22] J-C Bolot, Sacha Fosse-Parisis, and Don Towsley. Adaptive
fec-based error control for internet telephony. In Proc.
IEEE INFOCOM, 1999.

[23] brianhu. Google meet troubleshooting playbook - network
and hardware troubleshooting. https://www.goog

lecloudcommunity.com/gc/Workspace-Product-A

rticles/Google-Meet-Troubleshooting-Playboo

k-Network-and-Hardware/ta-p/165810, 2021.

[24] James Bulman and Peter Garraghan. A cloud gaming
framework for dynamic graphical rendering towards
achieving distributed game engines. In Proc. USENIX
HotCloud, 2020.

[25] Neal Cardwell, Yuchung Cheng, C Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. Bbr:
Congestion-based congestion control. ACM Queue, 2016.

[26] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Save-
rio Mascolo. Congestion control for web real-time commu-
nication. IEEE/ACM Transactions on Networking, 2017.

[27] Marc Carrascosa and Boris Bellalta. Cloud-gaming:
Analysis of google stadia traffic. arXiv:2009.09786, 2020.

[28] Hao Chen, Xu Zhang, Yiling Xu, Ju Ren, Jingtao Fan,
Zhan Ma, and Wenjun Zhang. T-gaming: A cost-efficient
cloud gaming system at scale. IEEE Transactions on
Parallel and Distributed Systems, 2019.

[29] Ke Chen, Han Wang, Shuwen Fang, Xiaotian Li, Minghao
Ye, and H. Jonathan Chao. Rl-afec: Adaptive forward error
correction for real-time video communication based on
reinforcement learning. In Proc. ACM MMSys, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 919

https://www.xbox.com/en-US/xbox-game-pass/cloud-gaming
https://www.xbox.com/en-US/xbox-game-pass/cloud-gaming
https://www.xbox.com/en-US/xbox-game-pass/cloud-gaming
https://samknows.com/blog/critical-services-report-video-conferencing-uk
https://samknows.com/blog/critical-services-report-video-conferencing-uk
https://webrtc-codereview.appspot.com/93006
https://webrtc-codereview.appspot.com/93006
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
https://groups.google.com/g/discuss-webrtc/c/A0FjOcTW2c0/m/UAv-veyPCAAJ
https://groups.google.com/g/discuss-webrtc/c/A0FjOcTW2c0/m/UAv-veyPCAAJ
https://groups.google.com/g/discuss-webrtc/c/A0FjOcTW2c0/m/UAv-veyPCAAJ
https://stadia.google.com/
https://stadia.google.com/
https://www.nvidia.com/en-us/geforce-now/
https://www.nvidia.com/en-us/geforce-now/
https://en.wikipedia.org/wiki/Finite_element_method
https://en.wikipedia.org/wiki/Finite_element_method
https://www.qualcomm.com/news/onq/2021/07/20/optimizing-5g-new-class-low-latency-experiences
https://www.qualcomm.com/news/onq/2021/07/20/optimizing-5g-new-class-low-latency-experiences
https://www.qualcomm.com/news/onq/2021/07/20/optimizing-5g-new-class-low-latency-experiences
https://www.huaweiupdate.com/huawei-launched-cloud-mobile-phone/
https://www.huaweiupdate.com/huawei-launched-cloud-mobile-phone/
https://arstechnica.com/gadgets/2016/05/nvidia-gtx-1080-review/4/
https://arstechnica.com/gadgets/2016/05/nvidia-gtx-1080-review/4/
https://www.matthewball.vc/all/cloudmiles
https://www.matthewball.vc/all/cloudmiles
https://www.zdnet.com/article/alibaba-unveils-cloud-2-0-wuying-cloud-computer-and-xiaomanlv-logistics-robot/
https://www.zdnet.com/article/alibaba-unveils-cloud-2-0-wuying-cloud-computer-and-xiaomanlv-logistics-robot/
https://www.zdnet.com/article/alibaba-unveils-cloud-2-0-wuying-cloud-computer-and-xiaomanlv-logistics-robot/
https://www.zdnet.com/article/alibaba-unveils-cloud-2-0-wuying-cloud-computer-and-xiaomanlv-logistics-robot/
https://www.googlecloudcommunity.com/gc/Workspace-Product-Articles/Google-Meet-Troubleshooting-Playbook-Network-and-Hardware/ta-p/165810
https://www.googlecloudcommunity.com/gc/Workspace-Product-Articles/Google-Meet-Troubleshooting-Playbook-Network-and-Hardware/ta-p/165810
https://www.googlecloudcommunity.com/gc/Workspace-Product-Articles/Google-Meet-Troubleshooting-Playbook-Network-and-Hardware/ta-p/165810
https://www.googlecloudcommunity.com/gc/Workspace-Product-Articles/Google-Meet-Troubleshooting-Playbook-Network-and-Hardware/ta-p/165810

[30] Li Chen, Kai Chen, Wei Bai, and Mohammad Alizadeh.
Scheduling mix-flows in commodity datacenters with
karuna. In Proc. ACM SIGCOMM, 2016.

[31] Wei Chen, Liangping Ma, and Chien-Chung Shen.
Congestion-aware mac layer adaptation to improve video
teleconferencing over wi-fi. In Proc. ACM MMSys, 2015.

[32] Sheng Cheng, Han Hu, Xinggong Zhang, and Zongming
Guo. Rebuffering but not suffering: Exploring continuous-
time quantitative qoe by user’s exiting behaviors. In Proc.
IEEE INFOCOM, 2023.

[33] Yuchung Cheng, Neal Cardwell, Nandita Dukkipati,
and Priyaranjan Jha. The RACK-TLP Loss Detection
Algorithm for TCP. IETF RFC 8985, 2021.

[34] Mallesham Dasari, Kumara Kahatapitiya, Samir R. Das,
Aruna Balasubramanian, and Dimitris Samaras. Swift:
Adaptive video streaming with layered neural codecs. In
Proc. USENIX NSDI, 2022.

[35] Andrea Di Domenico, Gianluca Perna, Martino Trevisan,
Luca Vassio, and Danilo Giordano. A network analysis on
cloud gaming: Stadia, geforce now and psnow. Network,
2021.

[36] Andrew D Ferguson, Peter Bodik, Srikanth Kandula, Eric
Boutin, and Rodrigo Fonseca. Jockey: guaranteed job la-
tency in data parallel clusters. In Proc. ACM EuroSys, 2012.

[37] Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath
Raghavan, Neal Cardwell, Yuchung Cheng, Ankur Jain,
Shuai Hao, Ethan Katz-Bassett, and Ramesh Govindan.
Reducing web latency: the virtue of gentle aggression. In
Proc. ACM SIGCOMM, 2013.

[38] Tobias Flach, Pavlos Papageorge, Andreas Terzis, Luis Pe-
drosa, Yuchung Cheng, Tayeb Karim, Ethan Katz-Bassett,
and Ramesh Govindan. An internet-wide analysis of traffic
policing. In Proc. ACM SIGCOMM, 2016.

[39] Mary Jo Foley. Microsoft marches toward launch-
ing its ’cloud pc’ service, possibly this summer.
https://www.zdnet.com/article/microsoft-mar

ches-toward-launching-its-cloud-pc-service

-possibly-this-summer/, 2021.

[40] Silas L Fong, Ashish Khisti, Baochun Li, Wai-Tian
Tan, Xiaoqing Zhu, and John Apostolopoulos. Optimal
streaming codes for channels with burst and arbitrary
erasures. IEEE Transactions on Information Theory, 2019.

[41] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu,
Riad S Wahby, and Keith Winstein. Salsify: Low-latency
network video through tighter integration between a video
codec and a transport protocol. In Proc. USENIX NSDI,
2018.

[42] GFXBench. 3d graphics performance of google pixel c.
https://gfxbench.com/device.jsp?D=Google+Pix

el+C, 2017.

[43] Moinak Ghoshal, Pranab Dash, Zhaoning Kong, Qian Xu,
Y.Charlie Hu, Dimitrios Koutsonikolas, and Yuanjie Li.
Can 5g mmwave enable multi-user ar apps? In Proc. PAM,
2022.

[44] Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming
Guo, and Junchen Jiang. Pano: Optimizing 360 video
streaming with a better understanding of quality perception.
In Proc. ACM SIGCOMM, 2019.

[45] Osama Haq, Mamoon Raja, and Fahad R Dogar. Measur-
ing and improving the reliability of wide-area cloud paths.
In Proc. WWW, 2017.

[46] Stefan Holmer, Mikhal Shemer, and Marco Paniconi.
Handling packet loss in webrtc. In 2013 IEEE International
Conference on Image Processing, 2013.

[47] Manish Jain and Constantinos Dovrolis. End-to-end
available bandwidth: Measurement methodology, dy-
namics, and relation with tcp throughput. In Proc. ACM
SIGCOMM, 2002.

[48] Ingemar Johansson and Zaheduzzaman Sarker. Self-
Clocked Rate Adaptation for Multimedia. IETF RFC 8298,
2017.

[49] Alan Jones, Peter Sevcik, and Rebecca Wetzel. Internet
connection requirements for effective video conferencing
to support work from home and elearning — netforecast.
https://www.netforecast.com/wp-content/upl

oads/NFR5137-Videoconferencing_Internet_Requ

irements.pdf, 2021.

[50] Teemu Kämäräinen, Matti Siekkinen, Antti Ylä-Jääski,
Wenxiao Zhang, and Pan Hui. A measurement study on
achieving imperceptible latency in mobile cloud gaming.
In Proc. ACM MMSys, 2017.

[51] Balázs Kreith, Varun Singh, and Jörg Ott. Fractal: Fec-
based rate control for rtp. In Proc. ACM Multimedia, 2017.

[52] Tong Li, Kai Zheng, Ke Xu, Rahul Arvind Jadhav,
Tao Xiong, Keith Winstein, and Kun Tan. Tack:
Improving wireless transport performance by taming
acknowledgments. In Proc. ACM SIGCOMM, 2020.

[53] Xiaofei Liao, Li Lin, Guang Tan, Hai Jin, Xiaobin Yang,
Wei Zhang, and Bo Li. Liverender: A cloud gaming system
based on compressed graphics streaming. IEEE/ACM
Transactions on Networking, 2016.

[54] Ruilin Liu, Daehan Kwak, Srinivas Devarakonda, Kostas
Bekris, and Liviu Iftode. Investigating remote driving over

920 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.zdnet.com/article/microsoft-marches-toward-launching-its-cloud-pc-service-possibly-this-summer/
https://www.zdnet.com/article/microsoft-marches-toward-launching-its-cloud-pc-service-possibly-this-summer/
https://www.zdnet.com/article/microsoft-marches-toward-launching-its-cloud-pc-service-possibly-this-summer/
https://www.zdnet.com/article/microsoft-marches-toward-launching-its-cloud-pc-service-possibly-this-summer/
https://gfxbench.com/device.jsp?D=Google+Pixel+C
https://gfxbench.com/device.jsp?D=Google+Pixel+C
https://gfxbench.com/device.jsp?D=Google+Pixel+C
https://www.netforecast.com/wp-content/uploads/NFR5137-Videoconferencing_Internet_Requirements.pdf
https://www.netforecast.com/wp-content/uploads/NFR5137-Videoconferencing_Internet_Requirements.pdf
https://www.netforecast.com/wp-content/uploads/NFR5137-Videoconferencing_Internet_Requirements.pdf

the lte network. In Proceedings of the 9th International
Conference on Automotive User Interfaces and Interactive
Vehicular Applications, pages 264–269, 2017.

[55] Bill Marczak and John Scott-Railton. Move fast
and roll your own crypto: A quick look at the con-
fidentiality of zoom meetings - the citizen lab.
https://citizenlab.ca/2020/04/move-fast-rol

l-your-own-crypto-a-quick-look-at-the-confi

dentiality-of-zoom-meetings/, 2020.

[56] Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Justine
Sherry, Hongqiang Harry Liu, and Mingwei Xu. Achieving
Consistent Low Latency for Wireless Real Time Commu-
nications with the Shortest Control Loop. In Proc. ACM
SIGCOMM, 2022.

[57] Zili Meng, Tingfeng Wang, Yixin Shen, Bo Wang,
Mingwei Xu, Rui Han, Honghao Liu, Venkat Arun,
Hongxin Hu, and Xue Wei. Enabling High Quality
Real-Time Communications with Adaptive Frame-Rate.
In Proc. USENIX NSDI, 2023.

[58] China Mobile and ZTE. Powered by sa: 5g mec-based
cloud game innovation practice. GSMA 5G Case Studies (
https://www.gsma.com/futurenetworks/wp-conte

nt/uploads/2020/03/Powered-by-SA-5G-MEC-Bas

ed-Cloud-Game-Innovation-Practice-.pdf), 2020.

[59] Marcin Nagy, Varun Singh, Jörg Ott, and Lars Eggert.
Congestion control using fec for conversational multimedia
communication. In Proc. ACM MMSys, 2014.

[60] Hoang Anh Ngo and Lajos Hanzo. Hybrid automatic-
repeat-request systems for cooperative wireless commu-
nications. IEEE Communications Surveys & Tutorials,
16(1):25–45, 2013.

[61] Chinmay Padhye, Kenneth J Christensen, and Wilfrido
Moreno. A new adaptive fec loss control algorithm for
voice over ip applications. In Proc. IEEE INFOCOM, 2000.

[62] Colin Perkins, Orion Hodson, and Vicky Hardman. A
survey of packet loss recovery techniques for streaming
audio. IEEE Network, 1998.

[63] Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakr-
ishnan. Flare: Practical viewport-adaptive 360-degree
video streaming for mobile devices. In Proc. ACM
Mobicom, 2018.

[64] Vincent Roca, Mathieu Cunche, Jerome Lacan, Amine
Bouabdallah, and Kazuhisa Matsuzono. Simple Reed-
Solomon Forward Error Correction (FEC) Scheme for
FECFRAME. IETF RFC 6865, 2013.

[65] Vincent Roca, Jani Peltotalo, Jerome Lacan, and Sami
Peltotalo. Reed-Solomon Forward Error Correction (FEC)
Schemes. IETF RFC 5510, 2009.

[66] Carolyn Rowe, Diana Hanson, Chiffers Craig, David
Coulter, Justin Gilmore, David Byrd, Ajayan Borys, Kelly
Baker, Baard Hermansen, Serdar Soysal, et al. Microsoft
teams call flows - microsoft teams — microsoft docs.
https://docs.microsoft.com/en-us/microsoftt

eams/microsoft-teams-online-call-flows, 2021.

[67] Michael Rudow, Francis Y. Yan, Abhishek Kumar, Ganesh
Ananthanarayanan, Martin Ellis, and K.V. Rashmi. Tambur:
Efficient loss recovery for videoconferencing via streaming
codes. In Proc. USENIX NSDI, 2023.

[68] Pasi Sarolahti, Markku Kojo, and Kimmo Raatikainen. F-
rto: an enhanced recovery algorithm for tcp retransmission
timeouts. ACM SIGCOMM Computer Communication
Review, 2003.

[69] Henning Schulzrinne, Stephen L. Casner, Ron Frederick,
and Van Jacobson. RTP: A Transport Protocol for
Real-Time Applications. IETF RFC 3550, 2003.

[70] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand.
Overview of the scalable video coding extension of the
h. 264/avc standard. IEEE Transactions on circuits and
systems for video technology, 2007.

[71] Mikhal Shemer. Commit - video coding robustness:
Updating hybrid mode’s settings — google git. https:

//webrtc.googlesource.com/src/+/ae7a0522c59d

932d72f3d3377c38bebab7ab2b31%5E%21/, 2011.

[72] Hang Shi, Yong Cui, Feng Qian, and Yuming Hu. Dtp:
Deadline-aware transport protocol. In Proc. APNet, 2019.

[73] Hang Shi, Lei Zhang, Xutong Zuo, Qian Wu, Hewu Li,
and Yong Cui. Multipath deadline-aware transport proxy
for space network. IEEE Internet Computing, 2021.

[74] Shu Shi, Cheng-Hsin Hsu, Klara Nahrstedt, and Roy
Campbell. Using graphics rendering contexts to enhance
the real-time video coding for mobile cloud gaming. In
Proc. ACM Multimedia, 2011.

[75] Ivan Slivar, Lea Skorin-Kapov, and Mirko Suznjevic.
Cloud gaming qoe models for deriving video encoding
adaptation strategies. In Proceedings of ACM International
Conference on Multimedia Systems (MMSys), 2016.

[76] Kaarmukilan S.P. What is hairpin net shot in badminton? -
quora. https://www.quora.com/What-is-hairpin

-net-shot-in-badminton/answer/Kaarmukilan-S

-P, 2020.

[77] Zhaowei Tan, Yuanjie Li, Qianru Li, Zhehui Zhang, Zhehan
Li, and Songwu Lu. Supporting mobile vr in lte networks:
How close are we? Proc. ACM SIGMETRICS, 2018.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 921

https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://www.gsma.com/futurenetworks/wp-content/uploads/2020/03/Powered-by-SA-5G-MEC-Based-Cloud-Game-Innovation-Practice-.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2020/03/Powered-by-SA-5G-MEC-Based-Cloud-Game-Innovation-Practice-.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2020/03/Powered-by-SA-5G-MEC-Based-Cloud-Game-Innovation-Practice-.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2020/03/Powered-by-SA-5G-MEC-Based-Cloud-Game-Innovation-Practice-.pdf
https://docs.microsoft.com/en-us/microsoftteams/microsoft-teams-online-call-flows
https://docs.microsoft.com/en-us/microsoftteams/microsoft-teams-online-call-flows
https://docs.microsoft.com/en-us/microsoftteams/microsoft-teams-online-call-flows
https://webrtc.googlesource.com/src/+/ae7a0522c59d932d72f3d3377c38bebab7ab2b31%5E%21/
https://webrtc.googlesource.com/src/+/ae7a0522c59d932d72f3d3377c38bebab7ab2b31%5E%21/
https://webrtc.googlesource.com/src/+/ae7a0522c59d932d72f3d3377c38bebab7ab2b31%5E%21/
https://www.quora.com/What-is-hairpin-net-shot-in-badminton/answer/Kaarmukilan-S-P
https://www.quora.com/What-is-hairpin-net-shot-in-badminton/answer/Kaarmukilan-S-P
https://www.quora.com/What-is-hairpin-net-shot-in-badminton/answer/Kaarmukilan-S-P

[78] Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar.
Deadline-aware datacenter tcp (d2tcp). In Proc. ACM
SIGCOMM, 2012.

[79] Martijn van Otterlo and Marco Wiering. Reinforcement
Learning and Markov Decision Processes, pages 3–42.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[80] Tingfeng Wang, Zili Meng, Mingwei Xu, Rui Han, and
Honghao Liu. Enabling high frame-rate uhd real-time
communication with frame-skipping. In Proc. ACM
Workshop on Hot Topics in Video Analytics and Intelligent
Edges, 2021.

[81] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error visibility
to structural similarity. IEEE Transactions on Image
Processing, 2004.

[82] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and
Ant Rowtron. Better never than late: Meeting deadlines
in datacenter networks. In Proc. ACM SIGCOMM, 2011.

[83] Raphael Wimmer, Andreas Schmid, and Florian Bockes.
On the latency of usb-connected input devices. In Proc.
ACM CHI, pages 1–12, 2019.

[84] Saman Zadtootaghaj, Steven Schmidt, Saeed Shafiee Sabet,
Sebastian Möller, and Carsten Griwodz. Quality estimation
models for gaming video streaming services using percep-
tual video quality dimensions. In Proc. ACM MMSys, 2020.

[85] Mo Zanaty, Varun Singh, Ali C. Begen, and Giridhar
Mandyam. RTP Payload Format for Flexible Forward
Error Correction (FEC). IETF RFC 8627, 2019.

[86] Fan Zhai, Yiftach Eisenberg, Thrasyvoulos N Pappas,
Randall Berry, and Aggelos K Katsaggelos. Rate-distortion
optimized hybrid error control for real-time packetized
video transmission. IEEE Transactions on Image
Processing, 2006.

[87] Lei Zhang, Yong Cui, Junchen Pan, and Yong Jiang.
Deadline-aware transmission control for real-time video
streaming. In Proc. IEEE ICNP, 2021.

[88] Songyang Zhang. Soonyangzhang/webrtc-gcc-ns3: test
google congestion control on ns3. https://github.c

om/SoonyangZhang/webrtc-gcc-ns3, 2020.

[89] Xu Zhang, Hao Chen, Yangchao Zhao, Zhan Ma, Yiling
Xu, Haojun Huang, Hao Yin, and Dapeng Oliver Wu.
Improving cloud gaming experience through mobile edge
computing. IEEE Wireless Communications, 2019.

[90] Xiaoqing Zhu, Rong Pan, Michael A. Ramalho, and
Sergio Mena de la Cruz. Network-Assisted Dynamic
Adaptation (NADA): A Unified Congestion Control
Scheme for Real-Time Media. IETF RFC 8698, 2020.

1 1 0 1 0 0
0 %

2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

CD
F

N e t w o r k D e l a y (m s)

E t h e r n e t
W i F i

(a) Frame-level delay

1 0 - 5 1 0 - 4 1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0 %

2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

CD
F

D e l a y R a t i o

E t h e r n e t
W i F i
> 1 0 0 m s
> 8 0 m s
> 6 0 m s
> 4 0 m s
> 2 0 m s

(b) Session-level delay ratio

Figure 18: Network delay distributions of the interactive streaming
service of company T. Delay ratio is the ratio of frames with a delay
of >20,>40,>60,>80 and >100 ms in each session. Note that the
delay here is measured at the application layer (details in §4.2).

0 . 0 5 0 . 1 0 . 2 0 . 5 1 2 5 1 00 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

CD
F

D u r a t i o n (s e c)

E t h e r n e tW i F i

Figure 19: Distribution of network RTT maintenance duration in our
interactive streaming service.

Appendices
A Measurements in Production
We present our measurement results on the cloud gaming service
X in production to support some claims in the paper.

To investigate the effect of edge acceleration of interactive
streaming in the wild, we conduct a measurement campaign
on the cloud gaming service X. The measurements last for one
week with thousands of sessions (containing heterogeneous users
through Ethernet, WiFi with Windows and MacOS systems) and
are presented in Fig. 18. As shown in Fig. 18(a), the majority
of network delay collected at the granularity of video frame
falls into 10-20ms for both Ethernet and WiFi. We also measure
the flow-level delay ratio at different thresholds and present the
results in Fig. 18(b). With the edge acceleration, the ratio of
frames with longer than 100ms delay in most flows is less than
10−2. Among them, Ethernet flows perform slightly better than
WiFi flows. This validates the effectiveness of edge acceleration:
the average network delay could be reduced to 10-20ms with
a proper edge acceleration.

We further measure the fluctuation of RTT by the duration
when RTT is roughly kept at the same level. We quantify it by
calculating the transmission chance (i.e., layer L) for the RTT
measured by each frame, and calculate the duration when the
chance is kept the same. For example, given a deadline of 100ms
in this paper, when the RTT measurements are [26ms, 18ms,
17ms, 22ms, 17ms, 19ms, 19ms], the transmission chances
are [3, 5, 5, 4, 5, 5, 5]. In this case, the durations of each
transmission chance are [1, 2, 1, 3], which are denoted as RTT
maintenance durations. We present the distribution of RTT
maintenance duration measured in our cloud gaming service
in Fig. 19. The RTT maintenance duration of Ethernet is much
longer than that of WiFi, indicating that Ethernet has a more
stable end-to-end delay. Meanwhile, the median duration of both
Ethernet and WiFi is above hundreds of milliseconds, which is

922 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/SoonyangZhang/webrtc-gcc-ns3
https://github.com/SoonyangZhang/webrtc-gcc-ns3

Notation Explanation
Inputs:

α Network loss rate.
T Remaining time till the deadline.

RTT The network round-trip time.
Θ The network bottleneck bandwidth.
F The frame size of that frame.

Intermediate variables:
L Remaining transmission chance.

l(n,r)
The number of lost packets at the r-th layer
with n data packets.

k(n,r)
The number of redundant packets at the r-th
layer with n data packets.

DMR Deadline miss rate.
BWC Bandwidth cost.

Outputs:
βi Redundancy rate at the i-th layer.
bi FEC block size at the i-th layer.

Table 2: Notations in §3 and Appendix B.

much higher than the feedback loop of Hairpin. This indicates
that RTT does not frequently change, and Hairpin is able to
detect and react to the fluctuations of RTT.

B Optimization Model
In this section, we present the notations used in the Markov
chain in §3.3. We list all notations in Table 2. We further present
the detailed designs here.

B.1 Optimization of the Redundancy Rate
We build an absorbing Markov chain to model the redundancy
and calculate the deadline miss rate considering retransmission,
as shown in Fig. 8. We first define the state in the Markov chain
as (n,r), where n is the number of unacknowledged packets
within the block, and r is the number of retransmission. For
example, (d0,0) represents the initial transmission where all d0
packets have not been received before (since it is the first time
of transmission). (3,2) denotes that there are still 3 data packets
that need to be retransmitted for the second time.

For node (d,l), given redundancy rate β , its DMR follows:

DMR(d,l;β)=
d

∑
d′=0

p((d,l)→(d′,l−1);β)·DMR(d′,l−1) (6)

where p((d,l)→(d′,l−1);β) is the transition probability from
(d,l) to (d′,l−1) and could be calculated based on the current
loss rate α and redundancy rate β . Similarly, the BWC could
also be updated as:

BWC(d,l;β)=β
d
F
+

d

∑
d′=0

p((d,l)→(d′,l−1);β)·BWC(d′,l−1) (7)

where the latter term is the additional BWC introduced in this
layer l.

We then calculate the transition probability between states
in the Markov chain. For the transition between state (n1,r)
to (n2,r−1), we know that n2 data packets are lost in the r-th
transmission and need to be transmitted for the (r+1) time. We

first discuss the scenario of n2>0. We denote the total number
of packet losses (including data and redundancy) in the r-th trans-
mission as l(n1,r). We denote the number of redundant packets
in the r-th transmission as k(n1,r). Since the packet losses of all
packets should not be less than the packet losses of data packets,
we have l(n1,r)⩾ n2. Meanwhile, since there are only k(n1,r)
redundant packets in total, we have l(n1,r)⩽n2+k(n1,r). We
also have l(n1,r)>k(n1,r), otherwise the lost packets could be
recovered with FEC. Therefore, the probability of n2 data packet
losses under the condition of l(n1, r − 1) total packet losses
follows the hypergeometric distribution:

H(n2;n1+k(n1,r−1),n1,l(n1,r))

=

(
n1

n2

)(
k(n1,r)

l(n1,r)−n2

)/(
n1+k(n1,r)

l(n1,r)

) (8)

Thus, the transition probability from (n1,r) to (n2,r−1) is:

p((n1,r)→(n2,r−1))=

∑
l(n1,r)

H(n2;n1+k(n1,r),n1,l(n1,r))·P(l(n1,r) losses) (9)

On the other hand, at the loss rate of α, losing l(n1,r) packets
in all n1+k(n1,r) packets follows the Binomial distribution:

P(l(n1,r) losses)=Bi(l(n1,r);n1+k(n1,r),α)=(
n1+k(n1,r)

l(n1,r)

)
α

l(n1,r)(1−α)n1+k(n1,r)−l(n1,r)
(10)

Therefore, by substituting Eq. 8 and 10 into Eq. 9, we can have
the transition probability for n2>0. Similarly, when state transits
from (n1,r) to (0,r−1), then the number of lost packets in the
r-th layer of Fig. 8 must be less than k(n1,r). Therefore, the
transition probability satisfies:

p((n1,r)→(0,r−1))=
k(n1,r)

∑
i=0

Bi(i;n1+k(n1,r),α) (11)

B.2 Optimization of Block Size
In the following analysis, we are going to compare the utility of
transmitting the whole frame for L chances, or splitting the frame
into several blocks and some of them enjoying L+1 chances.
With that, we assume that the dispersion is less than one RTT.

Therefore, when the block size is set to d, there are NL+1
blocks that could enjoy L+1 chances of transmission, and the
remaining NL blocks with L chances of transmission, where

NL+1=

⌊
DDL−(L+1)·RTT

d/Θ

⌋
NL=

⌈
F
d

⌉
−NL+1

(12)

Therefore, the on-time delivery of the frame requires the on-time
delivery of each block. Since the deadline miss rate is equal to
one minus the probability of on-time delivery, we have the frame

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 923

DMR (FDMR) given a certain block size d as:

1−FDMR(d)=(1−DMR(L+1,d))NL+1 ·(1−DMR(L,d))NL

⇒FDMR(d)=1−(1−DMR(L+1,d))NL+1 ·(1−DMR(L,d))NL

=NL+1 ·DMR(L+1,d)+NL ·DMR(L,d)
(13)

where the last equation holds since DMR(L, d) ≪ 1 and
(1−α)n = 1− nα when α ≪ 1. As for the bandwidth cost,
recalling Eq. 7, the number of extra packets of the frame is the
sum of the number of extra packets for each block. Since the
BWC of each block shares the same denominator (frame size
S), the frame BWC is also the sum of BWC of each block:

FBWC(d)=NL+1 ·BWC(L+1,d)+NL ·BWC(L,d) (14)

Therefore, the optimal block size is:

dopt =argmax
d

utility(FDMR(d),FBWC(d)) (15)

In our implementation, we iterate the possible block size B
from 1 to the frame size S, and store the optimal block size in
each scenario in an offline lookup table. Since the DMR(L,B)
and BWC(L,B) are accessible in the absorbing Markov chain
constructed above, the construction of the table is time-efficient.

C Implementation Details
We are going to introduce the sending mechanism beneath
Hairpin and the implementation of the redundancy optimization
in Hairpin.

Acknowledgement aggregation. In wireless networks, re-
searchers also propose to aggregate several acknowledgements at
the client side to alleviate the uplink interference [52]. However,
the delayed acknowledgement might also interfere with the
measurements of RTT, delay the detection of packet losses and
waste potential chances of retransmission. In our implemen-
tation, to eliminate the interference from acknowledgement
mechanisms, we disable the aggregation of acknowledgements.
The precise measurement of RTT in the scenario of aggregated
acknowledgement could also be implemented with recent efforts
such as TACK [52], which is out of our scope.

Note that this is different from the aggregation on wireless
routers [19]. Such aggregations due to wireless channel
competition should be reflected in our measurements of network
RTT fluctuations in Fig. 4. In our simulation with online
measurements and deployments in production, Hairpin behaves
well even with the RTT fluctuations.

FEC codec. For the scenarios with a redundancy rate of ⩽100%,
we implement the FEC codec as RS-FEC, as suggested by many
other related efforts [65]. We refer the readers to [65] for the
details of RS-FEC. However, when implementing the redundancy
rate of >100%, RS-FEC is not designed to reliably recover lost
packets in all cases. For example, when there are 2 data packets
and 4 FEC packets, RS-FEC cannot always recover 2 data

1 2 4 80

6

8

1 0

95%
ile

BW
C (

%)

Ave
rag

e B
WC

 (%
)

Ave
rag

e D
MR

 (1/
10k

) D e a d l i n e m i s s r a t e (A v e r a g e , l e f t a x i s)D e a d l i n e m i s s r a t e (9 5 % i l e , l e f t a x i s)B a n d w i d t h c o s t (A v e r a g e , r i g h t a x i s)B a n d w i d t h c o s t (9 5 % i l e , r i g h t a x i s)

M e a s u r e m e n t w i n d o w (f r a m e)

95%
ile

DM
R (

1/1
0k)

0

6

8

1 0

0 . 0

4 . 5

5 . 0

5 . 5

0

1 9

2 0

2 1

Figure 20: Sensitivity of the measurement window in §3.4.

R T X P T O
W e b R T C ' 1 4

W e b R T C ' 1 4 + P T O H a i r p i n U S F
U S F + P T O B o l o t

B o l o t + P T O
W e b R T C N O W

W e b R T C N O W + P T O

+ 0 . 5 m s
+ 1 . 0 m s
+ 1 . 5 m s
+ 2 . 0 m s
+ 2 . 5 m s

R e f

Ave
rag

e D
ela

y E t h e r n e t W i F i C e l l u l a r (R e f = 1 4 m s) (R e f = 2 1 m s) (R e f = 3 7 m s)

Figure 21: Average end-to-end delay of in the experiments in §4.3.
We trim the lowest average delay in different traces for comparison.

packets when there are 4 packet losses due to the invertibility of
the decoding matrix: it depends on whether two packets received
at the client are linearly independent at the generation matrix.

Therefore, we implement a customized FEC codec. For
example, for data packets a and b, when considering them as
two numbers (with a length of up to 12kbits), we could calculate
a+ b, a+ 2b, 2a+ b, etc., and send them to the client. The
only overhead is the additional bits that could overflow from
the addition, which is much less than the data bits. Moreover,
as shown in Fig. 25, in most cases the redundancy rate is less
than 100%. Therefore, the overall decoding overhead is also
acceptable. We leave the further adoption of advanced FEC
codec when the redundancy rate is >100% as our future work.

D Supplementary Experiments
Measurement window. We also evaluate the performance of
Hairpin by adjusting the measurement window of the network
conditions that we discussed in §3.4. Since Hairpin optimizes
the redundancy parameters based on real-time measurements
of the network conditions, the size of the measurement
window might affect the performance of Hairpin. We vary the
measurement window from the last 1 to 8 frames and reconduct
the experiments over WiFi traces. We measure the average
and 95th percentile DMR and BWC, and present the results
in Fig. 20. The DMR and BWC are quite robust: By varying
the measurement window from 1 to 8, the average DMR and
average BWC vary within 0.47%-0.49% and 6.94%-7.19%,
which is subordinate to the improvements in §4.3 (Fig. 11(b)).
In practice, operators can decide the measurement window based
on the fluctuations of network conditions.

Per-frame latency of Hairpin. Besides, we also measure the
average end-to-end delay for the successfully delivered frames in
the experiments in §4.3 for Hairpin and different baselines. As
shown in Fig. 21, the average end-to-end delay of Hairpin does
increase compared to the baseline with the lowest average delay.
However, the increase is only 0.1-1.5ms for all traces, which is
negligible compared with the RTT (1%-7%), and considering

924 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 2 0 4 0 6 0 8 0 1 0 0
0 %

9 0 %
9 9 %

9 9 . 9 %
9 9 . 9 9 %

1 0 0 %
CD

F

F r a m e d e l a y (m s)

R T XB o l o tU S FW e b R T C N O WW e b R T C ' 1 4H a i r p i n

Figure 22: The distribution of the delivery time of each frame. Note
that the y-axis is log-scaled.

0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %
0 %

9 0 %

9 9 %
9 9 . 9 %

CD
F

L o s s r a t e

R T XU S FB o l o tW e b R T C ' 1 4W e b R T C N O WH a i r p i n

(a) Initial transmission

0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %
0 %

2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %
CD

F

L o s s r a t e

R T XU S FB o l o tW e b R T C ' 1 4W e b R T C N O WH a i r p i n

(b) The 3rd retransmission

Figure 23: Distribution of loss rates by frame in each round of
transmission.

0 5 1 0 1 5 2 0 2 50
5

1 0
1 5
2 0
2 5
3 0
3 5

H a i r p i n k = 0 . 5
k = 1

k = 2
k = 4

H a i r p i nH a i r p i n - l i nE n v e l o p e o f b a s e l i n e s

Ba
nd

wid
th

Co
st (

%)

D e a d l i n e M i s s R a t e (1 / 1 0 k)

B e t t e r

Figure 24: Heuristic-based Hairpin (Hairpin-lin). The envelope of
baselines is from Figure 11(b).

the deadline effect we discussed in §2.1. Furthermore, operators
could also adopt less aggressive mappings (e.g., increasing λ)
to tradeoff between the tail delay and average delay.

We also present the distribution of the delay of each frame
in Fig. 22. Similar to Fig. 21, the average (median) latency
of frames of Hairpin is similar to other baselines. However,
Hairpin could reduce the tail latency significantly. For example,
Hairpin can reduce the 99.9th percentile frame latency to 80ms
while all baselines of longer than 100ms. Looking at the vertical
axis, Hairpin is also capable of reducing the ratio of higher than
100ms by more than a half, as shown in Fig. 11(b).

Loss rates in each round. We further present the distributions
of loss rates of all frames in each round (specifically, initial
transmission and the third retransmission) in Fig. 23. This
expands the results in Fig. 15(b). We can tell from Fig. 23(a) that
due to the conservative redundancy strategy of Hairpin, the loss
rate of Hairpin is higher. However, when retransmission starts,
Hairpin is able to maintain a low loss rate – which means a high
success rate in delivering frames – compared to other baselines.
This shows the strategy of Hairpin: conservatively adding FEC
packets when deadline is far away, and aggressively adding FEC
packets to retransmissions.
The improvements of using Markov chain. As we analyzed in
§3.2, a strawman solution is good but not enough to fully utilize
the design space of redundancy and retransmission. Thus, we
also evaluate the heuristic baseline we present in §3.1 (denoted

0 8 1 6 2 4
1 0 %
2 0 %
3 0 %
4 0 %

P a c k e t s t o t r a n s m i t

Lo
ss

rat
e

(a) Redundancy rate (L=1).

0 8 1 6 2 4
1 0 %
2 0 %
3 0 %
4 0 %

P a c k e t s t o t r a n s m i t

Lo
ss

rat
e

(b) L=2.

0 8 1 6 2 4
1 0 %
2 0 %
3 0 %
4 0 %

P a c k e t s t o t r a n s m i t

Lo
ss

rat
e

(c) L=3.

2 0 4 0 6 0 8 0
2 0
3 0
4 0
5 0
6 0

B o t t l e n e c k B a n d w i d t h (M b p s)

RT
T (

ms
)

051 01 52 02 5

B l o c k s i z e

P a c k e t s t o t r a n s m i t

0 2 4 6 8 1 0

0
2
4
6
8

1 0

R e d u n d a n c y r a t e

Y T
itle

A

0 %1 0 0 %2 0 0 %3 0 0 %4 0 0 %5 0 0 %

(d) Block size and legends.

Figure 25: Optimization results by Hairpin. Fig. 25(a) to 25(c) present
the redundancy rate with different transmission chances L.

as Hairpin-lin, with sweeping the coefficient k from 0.5 to 4,
and present the results in Figure 24. As we can see, Hairpin-lin
(green line) does improve the trade-off compared to existing
baselines (dashed blue line). Yet, there is still a half gap between
Hairpin-lin and the Markov chain-based Hairpin (the red star).
Therefore, it is necessary to analytically formulate the problem
with the Markov chain to further push the trade-off forward.

Understanding Hairpin’s decisions. We further present the
redundancy rate results of Hairpin to provide a deeper under-
standing of how Hairpin optimizes in different scenarios. For
redundancy rate, since the optimization of the absorbing Markov
chain (§3.2) relies on the remaining transmission chance L, loss
rate, remaining data packets to transmit, and the frame size, we
present the optimized redundancy rate over different parameters
in Fig. 25(a) to 25(c). With more transmission chances, Hairpin
would decrease the redundancy rate and rely on retransmissions
for packet loss recovery. With fewer packets to retransmit,
Hairpin also prefers a higher redundancy rate, as discussed in
§3.2. Moreover, when the number of packets to transmit is
small, the optimized redundancy rate is up to 500% in Fig. 25(a),
demonstrating the effectiveness of a redundancy rate of >100%.

As for the optimization of block size, as we also discussed
in §3.2, the optimal block size is the frame size (24 packets)
in many cases. Nevertheless, as we discussed, at the decision
boundary of remaining transmission chance, smaller block sizes
do enjoy a slightly better performance by having additional
transmission chances. As shown in Fig. 25(d), although the
optimal block size is the frame size in most cases, when the RTT
is around 33ms and 50ms (the dividing point between 1, 2, and
3 transmission chances), the optimal block size might be smaller
than the frame size. For example, compared to setting the block
size to the frame size, the DMR with the optimized block size
of Hairpin could be further reduced by 1.78× around the RTT
of 50ms and bottleneck bandwidth of 60Mbps. We optimize the
block size for the last mile performance improvement.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 925

E Limitations
Delay components in interactive streaming. Hairpin could
have maximum benefits when the end-to-end network delay
dominates the total delay from the video encoder to the decoder
in Fig. 10. This is generally true in interactive streaming services.
Related measurement studies also demonstrate that the network
delay is still one of the bottlenecks of edge-based interactive
streaming [43, 57]. Therefore, we focus on the optimization
of streams between edge servers and clients. Our deployments
in the wild demonstrate that optimizing the network latency
could significantly improve the user’s experience (note that
DMR is measured end-to-end). Hairpin can also work with
the optimization of other delay components (e.g., encoding,
decoding, etc.) to further improve the performance.

Deployment efforts for applications. Another concern of
deploying Hairpin is that both the server and the client need
modification to support the redundancy and retransmissions.
There are previous efforts implementing the FEC mechanism
over TCP [16, 37], which needs to modify the TCP protocol
stack at the client and are not suitable for products at scale.
For scenarios where TCP is compulsory for transport, the
deployment of Hairpin may depend on the ability to modify
the reception mechanism of TCP packets at the client. However,
most interactive streaming applications adopt UDP to reduce
the network delay [23,35,55,66], including our service. In this
case, Hairpin could be implemented within the application at
the server and the client, which is practical for most applications.

926 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Finding Adversarial Inputs for Heuristics using Multi-level Optimization

Pooria Namyar†‡, Behnaz Arzani†, Ryan Beckett†, Santiago Segarra†⋆,
Himanshu Raj†, Umesh Krishnaswamy†, Ramesh Govindan‡, Srikanth Kandula†

†Microsoft, ‡University of Southern California, ⋆Rice University

Abstract– Production systems use heuristics because they
are faster or scale better than their optimal counterparts. Yet,
practitioners are often unaware of the performance gap be-
tween a heuristic and the optimum or between two heuristics
in realistic scenarios. MetaOpt is a system that helps analyze
these heuristics. Users specify the heuristic and the optimal
(or another heuristic) as input, and MetaOpt encodes these
efficiently for a solver to find performance gaps and their
corresponding adversarial inputs. Its suite of built-in opti-
mizations helps it scale to practical problem sizes. We used
MetaOpt to analyze heuristics from three domains (traffic
engineering, vector bin packing, and packet scheduling). We
found a production traffic engineering heuristic can require
30% more capacity than the optimal in realistic cases. We
modified the heuristic based on the patterns in the adversar-
ial inputs MetaOpt discovered and reduced the performance
gap by 12.5×. We examined adversarial inputs to a vector
bin packing heuristic and proved a new lower bound on its
performance.

1 Introduction
Many solutions to network and systems problems are heuris-
tic approximations to potentially intractable optimal algo-
rithms [3, 20, 35, 38, 39, 53, 57, 58, 76]. These heuristics are
often faster or scale better than their optimal counterparts.
However, operators often do not fully understand how these
heuristics will behave with new and untested inputs or how
far from the optimal their results may drift in realistic use.

For example, Microsoft uses a heuristic, demand pinning
(DP), on its wide-area network [46, 56]. It routes small de-
mands (i.e., demands ≤ a threshold) through their shortest
path and uses a more computationally complex optimization
to route the rest [38] (DP reduces the number of demands the
optimization routes and completes faster). In Fig. 1, we show
an example where DP allocates 40% less demand than the
optimal routing. With this gap, Microsoft may have to either
over-provision its network by 40%, delay 40%, or drop 40%
of its customers’ demands! Note that the 40% gap is a lower
bound, and the worst-case gap can be higher.

We often do not understand the potential impact of such
heuristics at scale: Does their gap depend on the problem size?
Which inputs make them perform poorly? Are there realistic
scenarios that they struggle with? We ask if we can develop
techniques to analyze heuristics and answer such questions.

As a first step towards this goal, we have developed

1 2 3

4 5

100 100

50

50
50

Demand DP (thresh = 50) OPT
src-dest value path value path value

1-3 50 1-2-3 50 1-4-5-3 50
1-2 100 1-2 50 1-2 100
2-3 100 2-3 50 2-3 100

Total DP 150 Total OPT 250

FIGURE 1: Suboptimal performance of DP. (left) Topology with
unidirectional links. (right) A set of demands and their flow allo-
cations using the DP heuristic and the optimal (H′) solution. DP
first sends the demands at or below the threshold (50) over their
shortest paths and then optimally routes the remaining demands.

MetaOpt, a system that allows users to automatically dis-
cover the performance gap between a heuristic H and any
other function H′ for much larger problem sizes than in Fig. 1.
MetaOpt also returns the adversarial inputs to these functions
that cause large performance gaps. Users can use MetaOpt
to (a) understand the performance gap of H relative to the
optimal or to another heuristic; and (b) examine adversarial
inputs to provide performance bounds on H or to modify H to
improve its performance gap (§2).

In many problem domains, such as traffic engineering [38,
39, 46, 58], vector bin packing [35, 60], and packet schedul-
ing [5, 64, 74], we can specify both H′ and H either as an
optimization (with an objective and several constraints) or
as a feasibility problem (with a set of constraints). Then, we
can model the problem of finding large performance gaps
between H and H′ in the language of optimization theory:

arg max
s.t. input I∈ConstrainedSet

H′(I)−H(I), (1)

where H() and H′() take I as input and solve the correspond-
ing algorithms. ConstrainedSet specifies a set of constraints
that limit the set of values I can take.

In theory, we could throw this model at a solver [16, 36]
and find performance gaps, but existing solvers do not support
these optimizations. This model is an instance of a bi-level op-
timization [15] (with connections to Stackelberg games [23],
see §6), and practitioners have to rewrite them into single-
level optimizations before using a solver [15]. Rewriting a
bi-level optimization into a single-level one by hand is tedious
and can lead to poor performance if done incorrectly.

MetaOpt abstracts away this complexity and only asks users
to specify H′ and H (§3). It also provides helper functions to
make it easier to specify H′ and H. These functions are espe-
cially useful for constructs (e.g., conditionals, randomization)
that are harder to express as optimization constraints.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 927

Under the hood, MetaOpt performs rewrites automatically
and supports multiple solvers (Gurobi [36] and Zen [16]).
We add three techniques to scale MetaOpt to large problems
(e.g., large topologies and demands for traffic engineering).
First, since many rewrites can introduce non-linearities, we
carefully select which part of the input to rewrite. Second, we
introduce a new rewriting technique (Quantized Primal-Dual)
that allows MetaOpt to trade-off between scale and optimality.
Third, we design a new partitioning technique for graph-based
problems to improve MetaOpts scalability further.

We show the versatility of MetaOpt1 by using it to study
several heuristics in traffic engineering [38, 39, 46, 58], vector
bin packing [35, 60], and packet scheduling [5, 64, 74]. We
have applied MetaOpt to (a) study performance gaps of these
heuristics, (b) analyze adversarial inputs to prove properties,
and (c) devise and evaluate new heuristics (see Table 1):
• DP can allocate 33% less demand compared to the optimal

in large topologies. We analyzed adversarial inputs MetaOpt
found and designed modified-DP which reduced this gap
by an order of magnitude.

• We show for the first time that a two-dimensional vector
bin packing heuristic FFDSum can require at least twice as
many bins as the optimal across all problem sizes.

• A recently proposed programmable packet scheduler, SP-
PIFO [64], an approximation of PIFO [64], can delay the
highest priority packet by at least 3× relative to PIFO.

2 Heuristic Analysis at a Glance
Network and systems designers use heuristics when the opti-
mum is too expensive to compute at relevant problem scales.
We use examples of heuristics to motivate the types of anal-
yses designers might wish to perform and describe how
MetaOpt can aid these analyses.

2.1 Heuristics and their Importance
We describe heuristics from traffic engineering, cluster re-
source allocation, and switch packet scheduling.

Traffic engineering (TE). There are many techniques to scale
TE solutions to large networks/demands (see §A.2 for details):

Demand Pinning (DP) [46,56] is a heuristic that Microsoft
uses in production. It pre-allocates flows along the shortest
path for any node pair with demand smaller than a threshold
Td and uses the SWAN [38] optimizer on the rest. When many
demands are small, this can result in substantial speedup.

Partitioned Optimization Problems (POP) [58] divides
node pairs (and their demands) uniformly at random into
partitions. It then assigns each partition an equal share of
the edge capacities and solves the original problem (e.g., the
SWAN LP optimization [38]) once per partition. POP is faster
than SWAN because it can solve each LP sub-problem much

1Our code is available at https://github.com/microsoft/MetaOpt.

faster than the original [22] and can do so in parallel.

Vector bin packing (VBP). Production deployments use VBP
to allocate resources in clusters efficiently [2, 35, 37, 53, 68].
One version of VBP takes a set of balls and bins with spe-
cific sizes and multiple dimensions (e.g., memory, CPU,
GPU [32, 48, 69]) and tries to pack the balls into the fewest
number of bins. The optimal algorithm for this version is
APX-hard [71]. Instead, many practitioners use a heuristic,
first fit decreasing (FFD), which is greedy and iterative. At
each step, FFD picks the unassigned ball with the largest
weight and places it in the first bin that fits (has enough
capacity). Prior works propose different ways to weigh the
balls [35, 37, 53, 60, 66, 67, 72]. One variant, FFDSum, uses
the sum across all dimensions as the weight of a ball.

Packet scheduling [5, 74]. Push-In-First-Out (PIFO [64])
queuing is a scheduling primitive that enables various
packet scheduling algorithms for programmable switches. SP-
PIFO [5] uses n priority FIFO queues to approximate PIFO
and presents a heuristic we can implement at line rate. In SP-
PIFO, each queue has a priority (usually equal to the priority
of the last packet in it). A queue only admits a new packet if
its priority is higher than the packet’s priority. The algorithm
scans queues from lowest to highest priority and places the
new packet in the first queue that accepts it. SP-PIFO updates
all queue priorities if no queue admits the packet.

Performance Analyses. Often, heuristic designers wish to
answer questions such as:
• How far is my heuristic from the optimum?
• What inputs cause my heuristic’s performance to degrade

at practical problem instances?
• How can I redesign my heuristic to improve its perfor-

mance?
• How can I compare the performance of two heuristics?
• Can I prove lower bounds on a heuristic’s performance

relative to another standard algorithm?

2.2 MetaOpt, a Heuristic Analyzer
MetaOpt is a heuristic analyzer that can help designers answer
these questions. It finds (a) the performance gap between
a given H() and an alternative H′() (where H′() can be the
optimal solution) and (b) the adversarial inputs to H() that
cause the performance gap. The performance of a heuristic
measures its solution quality. Users decide what performance
metric to use; for example, they can define the performance
as the total flow that the heuristic admits in TE or the average
packet delay in packet scheduling. The performance gap is the
difference between the performance of H() and H′(). MetaOpt
can analyze a broad set of well-defined heuristics (see §3).
We discuss its limitations in §5.

2.3 Using MetaOpt to Analyze Heuristics
Heuristic designers can use MetaOpt to answer the questions
we presented in §2.1. They can use MetaOpt in two ways:

928 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/microsoft/MetaOpt

MetaOpt finds performance gaps MetaOpt helps prove properties MetaOpt helps modify heuristics

TE DP and POP can be 33.9% and 20% less efficient than
optimal. MetaOpt finds realistic demands with strong
locality that produce the same gap.

– Modified-DP (which we designed with
MetaOpt’s help) has an order of magnitude
lower gap than DP. We cannot improve the
gap by running DP and POP in parallel.

VBP MetaOpt finds tighter performance gaps under realistic
constraints. It also finds the same examples which took
theoreticians decades to find and prove a tight bound for
1d-FFD.

MetaOpt helped prove a tighter ap-
proximation ratio for 2-d FFDSum
than previously known [60].

–

PIFO MetaOpt finds SP-PIFO can delay the highest priority
packet by 3×, and also finds inputs where AIFO incurs
6× more priority inversion than SP-PIFO.

MetaOpt helped prove a new
bound on the weighted average de-
lay of SP-PIFO.

Modified-SP-PIFO (which MetaOpt helped de-
sign) has 2.5× lower weighted average packet
delay.

TABLE 1: MetaOpt (1) finds the performance gap between the heuristic and optimal; (2) helps prove various properties about the heuristic;
and (3) helps modify them to improve their performance.

(a) to find performance gaps and (b) to prove properties or
improve heuristics based on the adversarial inputs it finds. We
next describe the results we obtained by applying MetaOpt
to the heuristics in §2.1. We present more details and other
results in §4. These use cases are not the only way operators
can use MetaOpt, but they demonstrate its versatility (see §8).

Finding performance gaps. We show how MetaOpt helps
find performance gaps in TE and packet scheduling.

Performance gaps in traffic engineering. We use MetaOpt
to find the performance gaps for DP and POP, where H′()
is the optimal multi-commodity flow algorithm (§A.1). We
measure the performance gap as the difference between the
heuristic’s and the optimal’s total flow, normalized by the total
network capacity. The performance gap is a lower bound on
the optimality gap, the worst-case gap between the two.

We find DP and POP incur 33.9% and 20% relative perfor-
mance gaps on a large topology (Cogentco, §4). This means
there exists (and we can find) adversarial traffic demands that
cause DP to use at least 33.9% more capacity than optimal.
Network operators that use DP may need to over-provision
the network by that much to satisfy this demand.

MetaOpt, by default, searches for adversarial inputs among
all possible demands. We can constrain MetaOpt to search
over realistic demands. These are sparse and exhibit strong
locality, which means few node pairs that are close to each
other exchange most of the traffic [3]. When we run MetaOpt
with these constraints, the gap for POP and DP remains almost
the same as before, but the discovered adversarial demands
exhibit stronger locality and are sparser (i.e., the adversarial
demands that MetaOpt finds becomes more realistic).

Performance gaps in packet scheduling. We compare
SP-PIFO to PIFO. We compute and compare the priority-
weighted average packet delay (§4) between the two algo-
rithms, which penalizes them if they increase the delay of
high-priority packets. MetaOpt shows there exists an input
packet sequence where SP-PIFO is 3× worse than PIFO.

We also use MetaOpt to compare SP-PIFO and AIFO [74]

(two heuristics). AIFO emulates PIFO through a single FIFO
queue and replaces H() in this scenario. MetaOpt finds inputs
for which AIFO incurs 6× more priority inversions than SP-
PIFO. Such analyses can help designers weigh performance
trade-offs against switch resource usage.

Proving properties of and improving heuristics. MetaOpt
discovers performance gaps and the corresponding adversarial
inputs. We show how to prove performance bounds for these
heuristics or to improve them in several cases2. These require
the user to analyze the inputs further to see if they share a
common pattern (see §B.2 for an example).

A new bound for vector bin-packing. VBP heuristics try to
minimize the number of bins they use. Theoreticians prove
bounds on their approximation ratio: the worst-case ratio of
the number of bins the heuristic uses compared to the optimal
over any input. Recent work [60] showed 2-dimensional FFD-
Sum asymptotically approaches an approximation ratio of 2
(where the optimal uses nearly infinite bins). We prove (§4)
that the approximation ratio is always at least 2 — even when
the optimal requires a finite number of bins!

A new bound and a better heuristic for packet scheduling.
We analyzed adversarial inputs MetaOpt found for SP-PIFO
and proved a lower bound on its priority-weighted average
delay relative to PIFO. The bound is a function of the priority
range and the number of packets.

Adversarial inputs to SP-PIFO trigger priority inversions,
which means they cause SP-PIFO to enqueue high-priority
packets behind low-priority ones. We tested a Modified-SP-
PIFO that splits queues into groups; it assigns each group
a priority range and runs SP-PIFO on each group indepen-
dently. This modification reduces the possibility of packets
with vastly different priorities interfering with each other and
causing priority inversions. Modified-SP-PIFO reduces the
performance gap of SP-PIFO by 2.5×. Users should weigh
the trade-off between the improved performance gap, the

2One may have to sacrifice other metrics such as run-time to improve the
gap. Users have to weigh this trade-off and decide if it is acceptable.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 929

 Followers: H’ H
 Leader: max gap Formulate

Heuristic PartitioningOne-shot
rewrite

MetaOptUser

one or more
one-shot opt.

Existing solvers

FIGURE 2: MetaOpt’s workflow involves four steps; (1) User en-
codes H and H′ §3.2, (2) MetaOpt automatically applies rewrites
to obtain a single-level optimization §3.3, (3) it partitions the
problem into smaller subproblems to achieve scalability §3.5,
(4) MetaOpt feeds the resulting optimizations into existing
solvers [36, 55] and finds large performance gaps.

Optimal Heur. Formul. Rewrite

OptMaxFlow
POP Convex(Random) §A.3 KKT/PD
DP Convex(Conditional) §A.3 KKT/PD

VBP MILP FFD NonConv.(Greedy) §B.1 Feasibility

PIFO MILP SP-PIFO NonConv.(Priority) §C.1 Feasibility
AIFO NonConv.(Admission) §C.2 Feasibility

TABLE 2: Overview of the five heuristics we explored in this
paper. We cover how to formulate the heuristics as optimizations
in the appendix and discuss their rewrites as constraints in §3.3.

memory allocation, and the impact on ongoing traffic to de-
cide if they should deploy Modified-SP-PIFO.

Improving traffic engineering heuristics. We found that
DP performs poorly when small demands traverse long paths.
We used MetaOpt to analyze a Modified-DP, which routes
demands on their shortest paths if the shortest path is less
than k hops and the demand is less than Td. This simple
change reduced the performance gap by an order of magnitude.
Modified-DP presents a trade-off between the speed and the
performance gap of the heuristic. Users can control this trade-
off through k and Td. MetaOpt can guide users in choosing
these values by quantifying each choice’s performance gap.

3 MetaOpt Design
Our goal is to build a widely applicable system that finds large
performance gaps between H and H′quickly and at scale.

3.1 MetaOpt Approach
This is a hard problem when H and H′ are arbitrary algorithms,
but we observe that we can formulate many heuristics in
networks and systems as:
Convex optimization problems in which the heuristic
seeks to optimize an objective subject to a collection of con-
straints. DP and POP fall into this category: DP solves opti-
mization for large demands, and POP solves optimization for
each partition.
Feasibility problems in which the heuristic searches for a
solution that satisfies a collection of constraints. FFDSum
and SP-PIFO fall into this category: FFDSum packs balls into
bins subject to weight and capacity constraints, and SP-PIFO
places packets into the queues based on their priorities.

We can find the performance gap between any H′ and H
through a bi-level or meta optimization (hence MetaOpt) as
long as H falls in one of these two classes. We do not need
convexity for H′ — we need it to be either an optimization or

minw,ℓ

(
w2 + ℓ2)

2 · (w + ℓ)≥ P
P ≥ 0

solve for w,ℓ,λ

2(w + ℓ)≥ P
P ≥ 0
λ≥ 0
2w−2λ = 0
2ℓ−2λ = 0
λ

(
w + ℓ− P

2
)

= 0w = ℓ = P
4 λ = P

4

KKT
encode

optimize

solve

FIGURE 3: Rewrite using KKT in an example where we find
a rectangle’s optimal width w and length ℓ such that its perime-
ter is ≥ P . The inner variables are w and ℓ. The right panel
shows the feasibility problem using the KKT theorem. Equations
with λ variables correspond to first-order derivatives of inequality
constraints in the original problem. P is a variable of the outer
optimization but is treated as a constant in the inner problem.

a feasibility problem. We model the problem as3:

argmax
I

H′(I) − H(I) (leader problem)

s.t. I ∈ ConstrainedSet (input constraints)

H′(I) = max
f ′∈F ′

H′_Objective(f ′,I) (optimal)

H(I) = max
f∈F

H_Objective(f ,I) (heuristic) (2)

where the leader or outer optimization maximizes the differ-
ence between the two functions (i.e., the performance gap)
over a space of possible inputs I. This leader problem is sub-
ject to follower or inner problems (H′ and H). We model the
performance of H’ on input I through H’_Objective. This func-
tion decides the values for the variables f ′, internally encodes
problem constraints, and computes the overall performance
of H′. H’_Objective treats the outer problem’s variables, I, as
input and constant. We define H_Objective the same way.

Bi-level Optimization: A Brief Primer. Modern solvers do
not directly support the style of bi-level optimizations we
described in Equation 2 [36]. To solve these, users need to
rewrite the bi-level optimization as a single-level optimiza-
tion [15]. These rewrites convert an optimization problem
into a set of feasibility constraints: if the inner problems are
both optimizations, the rewrites will replace both H′() and H()
with a set of feasibility constraints in the outer optimization.
The resulting formulation is a single-level optimization that
modern solvers [16, 36] can attempt to solve.

Fig. 3 shows an example of an inner problem and the cor-
responding rewrite. This somewhat contrived example finds
a rectangle’s optimal length and width subject to some con-
straints (the outer problem may want to optimize P). The
rewrite uses the Karush–Kuhn–Tucker (KKT) theorem [22]
and converts convex optimizations with at least one strictly
feasible point [22] into feasibility problems. The theorem
states any point that solves the new problem matches the
solution of the original. We describe another technique in

3Note that we can transform minimization optimizations to maximization
by negating their objective.

930 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Input: dk requested rate of demand k

Input: Pk paths for demand k

Input: p̂k shortest path
Input: Td demand pinning threshold
for all demand k ∈ D do

if dk <= Td then

f
p̂k
k = dk

end if
end for
MaxFlow()

DP Pseudocode

OuterVar: dk requested rate of demand k

Input: Pk paths for demand k

Input: p̂k shortest path
Input: Td demand pinning threshold
for all demand k ∈ D do

ForceToZeroIfLeq(dk−f
p̂k
k ,dk,Td)

end for
MaxFlow()

Modeling DP in MetaOpt

FIGURE 4: Modeling DP in MetaOpt. (see Table A.1 for notation)

§3.4, which exploits the Primal-Dual theorem [22]. Both of
these rewriting techniques produce a single-level optimization
equivalent to the bi-level formulation if the inner problems are
convex [15]. The problem MetaOpt solves has properties that
allow us to reduce the overhead of these rewrites (see §3.3).

3.2 MetaOpt: The User View

Inputs. MetaOpt could have asked the user to input the single-
level formulation, which can be hard and error-prone. The
rewritten single-level formulation can have an order of mag-
nitude more constraints than the original bi-level formulation
(§4) and is hard to optimize for practitioners who do not
understand bi-level optimizations.

MetaOpt simply lets the user input H and H′ (Fig. 2). It then
automatically produces a single-level formulation, optimizes
the rewrites, feeds these into a solver of the user’s choice
(MetaOpt currently supports Gurobi [36] and Zen [16]), and
produces performance gaps and adversarial inputs.

How to specify H or H′. It can be hard to describe H or H′ in
the optimization language. When we modeled problems in
MetaOpt, we observed certain constructs are common across
many heuristics. We encode these as helper functions to make
it easier for users less familiar with optimization theory to
model their heuristics. The set of helper functions is not com-
plete (there may be constraints for which we have not devised
a corresponding helper function) but the interface is extensible
and we can add new functions as needed.

For instance, a user who wants to compare the performance
of DP and the optimal TE multi-commodity flow would have
to specify the formulation of both of these algorithms. Stan-
dard textbooks describe the former [17], so we focus on the
latter. DP involves a conditional (an if statement on the left
of Fig. 4) where the outcome is determined based on the de-
mands. These demand values are variables of the outer prob-
lem and unknown apriori, which means we need to determine
the outcome of these conditionals as part of the optimization
and model them as convex constraints.

We can use the big-M method [22] (§A.3) to convert this
if statement into constraints optimization solvers support.
MetaOpt provides a helper function, ForceToZeroIfLeq (see
Fig. 4), to help users do this conversion. This level of indi-
rection makes it easier for the user to specify DP and also

aligned? feasibility?

as is

convex?

as is

primal-dual
kkt

NA

H′ or H N

Y

N

Y N

Y

FIGURE 5: MetaOpt automatically converts the bi-level problem
to a single-level optimization. It supports any follower, which
either (1) is a convex optimization; (2) is a feasibility problem; or
(3) has an objective that aligns with the outer problem.

gives MetaOpt the flexibility to optimize or change the formu-
lations when needed. For example, the big-M method causes
numerical instability in larger problems, and MetaOpt uses an
alternate method to convert it to constraints (see §A.3).

Our helper functions (§D, Table A.8) codify common de-
sign patterns and help specify constraints across a diverse set
of problems. We show how to use and combine them to model
other heuristics, such as, FFD, which involves greedy deci-
sions, and SP-PIFO, which involves dynamic priority updates.
These helper functions encode succinct and readable models.

3.3 Automatic Rewrites
MetaOpt produces a bi-level optimization from H′ and H
(Equation 2) and then automatically rewrites it. While the
underlying theory behind rewrites is well-known [15], to our
knowledge, there are no automated rewriters, and the pro-
cess has required human intervention until now. We need
to be careful when we automate rewrites. For example, one
challenge is modeling non-linear constraints that involve the
multiplication of variables. In the Primal-Dual rewrite (§3.4),
the constraints in the dual depend on the type of optimization
(maximization or minimization) and whether the correspond-
ing primal variable is unconstrained, positive, or negative [22].

We have developed automatic rewrite techniques for KKT,
Primal-Dual, and a new variant of the latter (i.e., Quantized
Primal-Dual §3.4). Users can choose which rewrite they use.

MetaOpt does not naïvely rewrite the bi-level formulation
and only rewrites the inner problems if necessary. We call this
technique selective rewriting. It avoids rewriting in two cases
(Fig. 5): when the inner problem is a feasibility problem or
when it is “aligned”. In these cases, we can directly merge
the inner problem’s constraints into the outer problem and
remove its objective if they have one.

An aligned inner problem is one where optimizing the outer
problem’s objective directly or indirectly optimizes the inner
problem as well. We observe that the objective of MetaOpt
is such that one of H′ or H is always aligned with the outer
problem. The outer problem maximizes H′ and minimizes H to
maximize the gap. This aligns with H′ if H′ is a maximization
problem and with H when H is a minimization (both H and H′

solve the same problem, so they are either both maximizations
or both minimizations).

For all other instances, we need to rewrite the inner problem.
MetaOpt currently rewrites an inner problem only if it is an

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 931

solve for w,ℓ,λ

2(w + ℓ) ≥ P
λ ≥ 0
P ≥ 0
P λ − 2λ2 = w2 + ℓ2

Primal-dual

solve for w,ℓ,λ

2(w + ℓ) ≥
Q∑

j=1
Ljxj

λ ≥ 0

xj ∈ {0,1}
∑Q

j=1 xj ≤ 1

Q∑
j=1

Ljzj − 2λ2 = w2 + ℓ2

zj = λxj ∀j ∈ {1, . . . ,Q}

Quantized Primal-dual

P =
Q∑

j=1
Ljxj

FIGURE 6: Left shows rewrite using primal-dual theorem. It
has fewer constraints and different multiplicative terms (P λ ver-
sus λ(w + ℓ − P

2) in the KKT rewrite). On the right, we show
how to quantize the parameters of the outer problem (P). The
QPD rewrite no longer has any multiplicative terms since we can
linearize the multiplication of binary (xj) and continuous vari-
ables (λ). The quadratic terms (e.g., w2) is due to the quadratic
objective of the original problem. Ljs are constants.

unaligned convex optimization. KKT and Primal-Dual apply
to these cases. MetaOpt also supports unaligned non-convex
inner problems that can be written as a feasibility problem
(e.g.,SP-PIFO and FFD). See §5 for other extensions.

With all this, MetaOpt generates a single-level formulation
that is equivalent to the bi-level optimization, preserves the
theoretical properties, and scales well.

3.4 The Quantized Primal-Dual Rewrite
The KKT rewrite does not scale beyond small problems. It
introduces multiplicative terms (pink highlighted constraint in
Fig. 3) that commodity solvers support (special ordered sets
in Gurobi [36] and disjunctions in Z3 [55]). However, these
constraints with multiplicative terms slow down the solvers
and dictate their latency.

A similar observation holds for the Primal-Dual
rewrite [15]. It uses the strong duality theorem [22] to convert
an optimization into a feasibility problem. According to this
theorem, any feasible point of a convex problem is optimal
iff the primal objective at that point is the same as the dual.
Therefore, the Primal-Dual rewrite contains a constraint that
ensures the primal and dual objectives are equal in addition
to the primal and the dual constraints. Fig. 6 (left) shows
the Primal-Dual rewrite for the optimization in Fig. 3. This
rewrite can generally result in non-linear constraints that
impact the scalability.

To scale, we have developed a technique called Quantized
Primal-Dual (QPD) that converts the Primal-Dual rewrite into
a simpler problem (see Fig. 6). In QPD, we replace the input
P with

∑Q
j=1 Ljxj where Ljs are constants we choose a

priori and xjs are binary variables. We require
∑

j xj ≤ 1,
which means the outer problem has to pick one of the Q+1
values (0,L1, . . . ,LQ) for P . We only need to quantize the
leader’s variables that appear in the multiplicative terms of

Cluster 3

Cluster 1
Cluster 2

(a) Clustered Topology.

d35d30

d50 d53

d05d03

0

d34

0 d04

0

0 d24

d43

d02

d10

d20

d40

d60

d70

d01

0

d21

d31

d41

d51

d61

d71

d12

d32

d42

d52

d62

d72

d13

d23

d63

d73

d14

0

d54

d64

d74

d15

d25

d45

d65

d75

d06

d16

d26

d36

d46

d56

0

d76

d07

d17

d27

d37

d47

d57

d67

0

Cl
us

te
r

1
Cl

us
te

r
2

Cl
us

te
r

3

Cluster 1 Cluster 2 Cluster 3

D11 D12 D13

D21 D23

D31 D32 D33

D22

(b) Clustered Demand Matrix.

3.2

9.7

00

0

0.80.3

1.1 00

0

0

0

0

0

0

0 0

0

0

0 0 0 0

00 0

00

0

0.8

8.9

1.1

1.4

000

0

0 0

0

0 0

4.9

0

0

0 0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Cl
us

te
r

1
Cl

us
te

r
2

Cl
us

te
r

3

Cluster 1 Cluster 2 Cluster 3

0 0

0

0

0.1

0

0

0

0.5

0

0

0

0

0

0

0

0

0

0

0

0

0

0.7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Cl
us

te
r

1
Cl

us
te

r
2

Cl
us

te
r

3

Cluster 1 Cluster 2 Cluster 3

0 0

0.1

3.6

3.2

0.1

1.4

5.9

2.4

0.7

0

0

0.5

0.1

0.6

1.5

8.9

1.5

9.9

1.3

7.6

0

5.9

0

0

0.7

2.6

0

0

0

0

0.2

1.9

0.3

6.5

0

4.1

0.8

2.0

9.5

0.5

2.4

0

9.8

6.2

0.4

1.6

5.8

4.6

0.8

0.7

0

Cl
us

te
r

1
Cl

us
te

r
2

Cl
us

te
r

3

Cluster 1 Cluster 2 Cluster 3

Initialization
D = 0

Intra-Cluster Demands (Dii)
Ex. Find worst-case D11
Fix rest of the demands

Inter-Cluster Demands (Dij)
Ex. Find worst-case D31
Fix rest of the demands

(c) MetaOpt’s Clustering Method.

FIGURE 7: Partitioning in MetaOpt. We first find the demands
that maximize the gap between H′ and H in each cluster. We then
fix the demands within each cluster and, one by one, find the
demands between pairs of clusters that increase the gap.

the Primal-Dual rewrite. The inner problem is still optimal
under this rewrite, but we trade off the optimality of the outer
problem for speed by quantizing the input space.

Two challenges remain: (a) determining the number of
quanta and (b) picking the values (Lj). Using more quanta
leads to more integer variables, slowing down the solver. Us-
ing fewer quanta results in lower-quality adversaries as we
will limit the input to only a few pre-selected values.

Since QPD rewrites are much faster to solve than the other
rewrites, we can sweep multiple quanta choices and pick the
best. We use the exact KKT rewrite on smaller problems to
find good candidates. We observe empirically that adversarial
inputs occur at so-called extreme points. For example, the
worst-case demands have either 0 or the maximum possible
value in POP4. Although we do not have a formal proof,
we conjecture that the intuition behind these observations is
similar to the intuition behind the simplex theorem [18].

We evaluate how these rewrites impact the scalability and
investigate the approximation gap of QPD in §4.

3.5 Partitioning to Scale MetaOpt

We have found it necessary to use more aggressive scaling
techniques to analyze problem instances at practical scales,
such as TE heuristics for realistic topologies and demands.
One such technique is partitioning. We can partition any

4For DP, the worst-case demands take values of 0, the demand pinning
threshold Td, or the maximum possible demand.

932 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Topology #Nodes #Edges #Part. DP POP
Cogentco 197 486 10 33.9% 20.76%

Uninett2010 74 202 8 28.4% 20.15%
Abilene [65] 10 26 – 12.69% 17.31%

B4 [39] 12 38 – 13.16% 17.89%
SWAN [38] 8 24 – 2.29% 22.08%
TABLE 3: Details of the topologies used in §4.1 and discovered gap.

problem, but we show the key steps in Fig. 7 for the TE
heuristics where the problem has an intrinsic graph structure.

First, we partition nodes in the underlying network graph
into clusters and solve the rewritten single-level optimization
on each cluster in parallel. In this step, we only consider the
intra-cluster demands (the diagonal pink blocks in Fig. 7).

We then freeze the demands from the last step and find the
demands between pairs of clusters that worsen the gap by solv-
ing the rewritten problem on each pair. This step iteratively
fills the blue blocks of the demand matrix in Fig. 7.

We can parallelize the second step between cluster pairs
with little overlap and produce an overall demand by adding
the values MetaOpt discovers after invoking each optimiza-
tion. This method speeds up MetaOpt because each individual
optimization, whether per cluster or per cluster pair, is much
smaller than the overall problem.

We empirically find this partitioning approach consistently
discovers inputs with large performance gaps. This is because
more than one adversarial input exists, and our partitioning
method does not bias against them. For example, the adver-
sarial inputs for DP follow a common pattern where demands
between distant nodes are just below the threshold. For such
inputs, the heuristic wastes the capacity of many links by
routing the demands on their shortest paths. In contrast, the
optimal routing allocates those link capacities to multiple de-
mands between nearby nodes. Our partitioning method still
allows MetaOpt to find many inputs with this pattern.

4 Evaluation
We apply MetaOpt to traffic engineering, vector bin pack-
ing, and packet scheduling heuristics to show its generality.
MetaOpt helped us quantify and understand the performance
gaps of heuristics, prove theoretical properties, and design
heuristics with lower performance gaps. Table 1 summarizes
our findings. We also show the importance of our optimiza-
tions in MetaOpt and quantify its speed and scalability.

Implementation. Our prototype is in C# and uses Gurobi
v9.5.2 [36]. We also have a port that uses Z3 [55]. To partition
the graph, we adapt the previous code [3, 25] for spectral
clustering [59] and FM partitioning [19,24] and report results
for different cluster numbers and clustering techniques.

4.1 Heuristics for WAN Traffic Engineering
In this section, we (a) obtain performance gaps for DP and
POP with respect to the optimal max-flow algorithm and (b)
devise modified versions of these heuristics based on our

Heu Additional Constraints on I Density Gap

DP
– 54.06% 33.9%
locality (distance of large demands ≤ 4) 12.03% 33.4%

POP
– 16.14% 20.76%
locality (distance of large demands ≤ 4) 4.74% 20.70%

(a) Impact of adding locality constraints on gap and density.

0 5 10 15 20 25
distance

0
10
20
30
40
50

Fr
ac

tio
n

of

 d
em

an
ds

 (%
)

Large Demands ≤ 4
No Constraint

(b) Impact of adding locality constraints on DP

0 5 10 15 20 25
distance

0
10
20
30
40
50

Fr
ac

tio
n

of

 d
em

an
ds

 (%
)

Large Demands ≤ 4
No Constraint

(c) Impact of adding locality constraints on POP

FIGURE 8: Using MetaOpt to find practical adversarial inputs on
Cogentco. We can find more local and sparser adversarial inputs
by constraining the input space.

analysis of their adversarial patterns.

Experiment Setup. We use K-shortest paths [73] to find the
paths between node pairs (= 4 if unspecified). We constrain
the demands to be below a maximum value (half the average
link capacity if unspecified) to ensure they are realistic and a
single demand does not create a bottleneck. For DP, we vary
the demand pinning threshold (=5% of average link capacity
if unspecified). For POP, we vary the number of partitions
(=2 if unspecified) and report the average gap over 5 random
trials (see §A.3). We report runtimes on an AMD Opteron
2.4GHz CPU (6234) with 24 cores and 64GB of memory and
use all available threads (unless mentioned otherwise). We
timeout each optimization after 20 minutes.

Topologies. We use two large topologies from [1] and three
public production topologies [38, 39, 65] (Table 3).

Metrics. We normalize the performance gap by the sum of
the link capacities so we can compare across different scales.

Finding performance gaps. We compare DP and POP to the
optimal max-flow on topologies that range from 8 to nearly
200 nodes (Table 3). We use the QPD rewrite (§3.4) and
partitioning (§3.5) for most experiments but do not need the
partitioning technique for small topologies (SWAN, B4, and
Abilene). DP’s performance gap ranges from 2% to over 33%.
POP also exhibits a large performance gap (up to 22%).

These performance gaps are over any possible input de-
mand. We can also use MetaOpt to obtain performance gaps
on realistic inputs. Production demands are sparse and ex-
hibit strong locality [3]. We can express these properties in
MetaOpt through constraints on the input space (I in Equa-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 933

http://www.topology-zoo.org/maps/Cogentco.jpg
http://www.topology-zoo.org/maps/Uninett2010.jpg

0.0 2.5 5.0 7.5 10.0 12.5
norm threshold (%)

0

10

20

30
no

rm
 a

dv
er

s
 g

ap
 (%

) Abilene B4 SWAN

(a) Gap vs. the threshold value for DP.

2 4 6 8
#connected nearest neighbors

0
10
20
30
40
50

no
rm

 a
dv

er
s

 g
ap

 (%
) #nodes

13 11 9

(b) Gap vs. connectivity.

FIGURE 9: DP’s performance gap increases with the threshold
and decreases with the connectivity.

tion 2). The gaps for DP and POP on those inputs are only
slighly lower than in the unconstrained case, but we find ad-
versarial demands that are sparser and more local (Fig. 8).

Designing heuristics with lower performance gap. We can
use the adversarial inputs from MetaOpt to design new heuris-
tics or explore whether we can combine heuristics to improve
their gap. We first describe how we identified patterns in the
adversarial inputs of DP and POP and then show how we used
these patterns to improve these heuristics’ performance gap.

Adversarial input patterns for DP. Intuitively, DP’s per-
formance gap increases as we increase its threshold since the
heuristic forces more demands on their shortest path. Yet, the
gap grows faster on some topologies even though they have
roughly the same #nodes, #edges, and diameter.

We used synthetic topologies to study DP. To create each
topology, we start with a ring graph and then connect each
node to a varying number of its nearest neighbors. The re-
sults (Fig. 9(b)) indicate that the performance gap grows with
the (average) shortest path length (fewer connections across
nearest neighbors = longer shortest paths). Intuitively, if the
shortest path lengths are longer on average, DP will use the
capacity on more edges to route the small demands. This re-
duces the available capacity to route the rest of the demands.

Adversarial input patterns for POP. Since POP is a ran-
dom heuristic, we search for inputs that maximize the ex-
pected gap. We approximate this expectation by an empirical
average over n random partition samples. Then, we check
whether the adversarial inputs can generalize by testing them
on 100 other random instances. When MetaOpt uses a small
number of samples to estimate the expected gap, the adver-
sarial inputs overfit. We can improve its generalization by
increasing the number of samples but at the cost of scalability.
We find n = 5 permits scaling without overfitting (Fig. 10(a)).

POP’s performance gap increases as we increase the num-
ber of paritions because each partition (1) gets a smaller frac-

1 2 3 4 5 6 7 8 9 10
#random instances of Pop to compute average

8
12
16
20
24

no
rm

 a
dv

er
s

 g
ap

 (%
) Discovered 100 other random inst.

(a) Gap vs. instances to approximate the expected value.

1 2 3 4
num paths

10
20
30
40
50

no
rm

 a
dv

er
s

 g
ap

 (%
)

5-part 4-part 3-part 2-part

(b) Gap vs. #paths and #partitions for avg POP.

FIGURE 10: POP’s performance gap when varying (a) #instances
to approximate average and (b) #paths and #partitions.

Heuristic Distance Threshold wrt avg link cap
DP – 0.1%

modified-DP
≤ 6 1% (10x)
≤ 4 5% (50x)

(a) Maximum threshold such that discovered gap ∼ 5%.

modified-DP
 ≤ 4

modified-DP
 ≤ 6

modified-DP
 ≤ 8

DP
0

10
20
30
40

no
rm

 a
dv

er
s

 g
ap

 (%
)

1.40 5.16 5.04

26.41

7.79

32.64

17.49

33.39
Td = 1%
Td = 5%

(b) DP vs. modified-DP

FIGURE 11: We propose modified-DP based on insights from
MetaOpt. It only pins small demands between near nodes, is more
resilient, and pins more demands with the same gap.

tion of each edge’s capacity, and (2) has less information
about the global state. We can reduce this gap by increasing
the number of paths as it helps each partition better allocate
the fragmented capacity.

Modified-DP. DP has a higher performance gap when
nodes have a larger average distance. We use this insight to
modify DP and design a heuristic with a lower gap. Modified-
DP only pins demands that are (a) smaller than a threshold
and (b) between nodes less than k hops apart (user specifies
k). This heuristic routes small demands between distant nodes
optimally, leaving more capacity for other demands. Its gap
is 12.5× smaller than DP for Td = 1% and k = 4.

Increasing the distance threshold in modified-DP allows
for better scalability by pinning more demands but at the cost
of a higher performance gap. MetaOpt can help users adjust
the parameter k based on their needs.

Modified-DP has another benefit. We can use a higher
demand threshold (10 - 50×) and maintain the same gap as
the original DP. We show this by using MetaOpt to compute
the maximum threshold each method can admit while having a

934 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

max #balls ball size granularity FFD(IMetaOpt)
20 0.01× 8
20 0.05× 7
14 0.01× 7

TABLE 4: MetaOpt finds slightly tighter bounds when constrain-
ing the number and size of balls. For OPT(I)=6, the tightest
known theoretical bound for FFD [30] is 8. This assumes the
input can have unlimited balls of any size.

OPT(I) MetaOpt theoretical bound [60]
#balls approx ratio #balls approx ratio

2 6 2.0 4 1.0
3 9 2.0 12 1.33
4 12 2.0 24 1.5
5 15 2.0 40 1.6

TABLE 5: MetaOpt finds adversarial examples with tighter ap-
prox. ratio for 2d-FFD than the best known theoretical bound [60].

gap≤ 5% (Fig. 11(a)). Operators can leverage this to pin more
demands when small demands exhibit strong locality [3].

Meta-POP-DP. This meta-heuristic runs POP and DP in
parallel and selects the best solution for each input. The two
heuristics appear to have distinct adversarial inputs: DP under-
performs when distant pairs have small demands, and POP
when large demands that go through the same link end up
in the same partition. We expected combining them would
reduce the performance gap significantly compared to each
one. But MetaOpt shows the new heuristic only improves
the performance gap by 6% on the Cogentco topology. It
finds inputs where small demands are between distant pairs
(adversarial to DP) and large demands are between nearby
nodes that end up in the same partition (adversarial to POP).

4.2 Heuristics for Vector Bin Packing

We use MetaOpt to (a) derive performance gaps that verify
known results for FFD in one dimension and (b) prove a new
property for FFD in 2 dimensions.

Finding performance gaps. Performance in FFD is measured
by the number of bins required to fit a given number of balls.
After decades of theoretical studies on 1d-FFD [14, 30, 43,
52], the work in [30] established the tight bound FFD(I)≤
11
9 H′(I)+ 6

9 for any I (H′ is the optimal). To prove tightness,
the authors craft a careful example where H′(I) = 6 bins
and FFD(I) = 8. MetaOpt found the same example when we
constrained its inputs to H′(I) = 6 and proved FFD needs 8
bins in the worst-case.

[30] assumes (1) I can have an unlimited number of balls
and (2) the balls in I can have any size (even 0.00001cm3!).
However, when packing jobs (balls) in machines (bins) [68],
we often know a priori an upper bound on the number of jobs
or the quantization levels for resource requirements. We can
incorporate such constraints and ensure MetaOpt finds practi-
cal performance gaps. As Table 4 shows, when we constrain
the number of balls and the ball sizes, MetaOpt finds adver-

SP-PIFO PIFO(OPT)
0

2

4

6

No
rm

 A
vg

 d
el

ay

3

11

3
4 4

Better

Priorities: 100 1 0

FIGURE 12: SP-PIFO can delay the highest priority packet (rank
= 0) by 3×. We show the average delay of packets with the same
priority normalized by the average delay of the highest-priority
packets in PIFO. We assume packets have priorities between
0 - 100, and the queues can admit all the packets (similar to
SP-PIFO). When 10K packets arrive at the same time, and the
queues drain at 40 Gbps, the average delay for the highest priority
packets in PIFO is 0.74ms (the performance gap in this figure is
independent of the number of packets).

MetaOpt max objective #priority inversions
SP-PIFO [5] AIFO [74]

AIFO()−SP-PIFO() 6 37
SP-PIFO()−AIFO() 24 11

TABLE 6: Using MetaOpt to compare two heuristics. We show
the number of priority inversions on an 18-packet trace from
MetaOpt. The total queue size is 12 and SP-PIFO has 4 queues.

sarial inputs that produce a tighter bound compared to [30].

Proving properties. While multi-dimensional FFD is widely
used in practice [35,37,53], its theoretical guarantees are less
well understood. Recently, [60] crafted an example where 2-
dimensional FFDSum uses α times more bins than the optimal.
α ∈ [1,2) and α→ 2 as the optimal tends to infinity. In other
words, α is strictly less than 2 for a finite size problem.

MetaOpt found adversarial inputs with α = 2 for every
problem size we considered (Table 5). For example, when the
optimal uses 4 bins, MetaOpt finds an adversarial input with
12 balls causing FFDSum to use 8 bins. In constrast, [60] uses
24 balls and only achieves approximation ratio of 1.5.

We studied the adversarial inputs from MetaOpt and proved
the following theorem, establishing an approximation ratio of
at least 2 for FFDSum. §B.2 contains the detailed proof.

Theorem 1. In 2-dimensional VBP, for any k > 1, there exists
an input I with OPT (I) = k and FFDSum(I)≥ 2k.

4.3 Heuristics for Packet Scheduling
We use MetaOpt to compare the performance of SP-PIFO with
both optimal (PIFO [64]) and another heuristic (AIFO [74]).
Unlike SP-PIFO, AIFO uses a single queue but adds admission
control based on packet priorities to approximate PIFO.

Finding performance gaps. We use the average delay of
packets weighted by their priorities to compare PIFO and SP-
PIFO. MetaOpt discovers packet traces where SP-PIFO fails
to prioritize packets correctly and incurs 3× higher delays for
high-priority packets than PIFO (Fig. 12).

We also use MetaOpt to compare SP-PIFO and AIFO. Un-
like SP-PIFO, AIFO is designed for shallow-buffered switches,
and its admission control can drop packets. For a fair compar-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 935

10 2 10 1 100 101 102 103 104104

time (s) - log scale
0.0

0.5

1.0

1.5

2.0

2.5

no
rm

 a
dv

er
s g

ap
 (%

)

Better

MetaOpt SA HC Random

(a) Gap vs. latency for B4 + DP (Td = 1%)

MetaOpt SA HC Random
0
2
4
6
8

10
12

no
rm

 a
dv

er
s g

ap
 (%

)

10.26

0.96 0.88 0.92

Better

(b) B4 + DP (Td = 5%)

MetaOpt SA HC Random
0

5

10

15

20

no
rm

 a
dv

er
s g

ap
 (%

)

17.11

10.21 10.22

5.85

Better

(c) B4 + average gap of POP

10 2 10 1 100 101 102 103 104104 105

time (s) - log scale
0
2
4
6
8

10
12
14

no
rm

 a
dv

er
s g

ap
 (%

)

Better

MetaOpt SA HC Random

(d) Gap vs. latency for Cogentco + DP (Td = 1%)

MetaOpt SA HC Random
0
5

10
15
20
25
30

no
rm

 a
dv

er
s g

ap
 (%

) 26.48

10.64 10.55 8.79

Better

(e) Cogentco + DP (Td = 5%)

MetaOpt SA HC Random
0

5

10

15

20

no
rm

 a
dv

er
s g

ap
 (%

)

18.42

7.83 7.90 7.17

Better

(f) Cogentco + average gap of POP

FIGURE 13: MetaOpt is faster and finds larger gaps between OPT and POP or DP on Cogentco and B4. We report the gap relative to the
total capacity and use only one thread to run each method for fair comparison (SA = Simulated Annealing, HC = Hill Climbing).

ison, we assume both heuristics use the same switch buffer
size, and we split the buffer evenly across SP-PIFO queues.
With limited buffers, these algorithms may drop packets, so
we need to consider the impact of their respective drop rates
when comparing their performance. We borrow a metric from
SP-PIFO: we count k priority inversions when a packet is
inserted in a queue after k lower priority packets (even if the
queue is full and the packet would have been dropped). We
found (Table 6):

AIFO sometimes outperforms SP-PIFO because (1) it has
one large queue instead of n smaller ones – SP-PIFO drops
many packets when faced with a burst of packets with the
same priority since it assigns them to a single smaller queue;
and (2) SP-PIFO lacks admission control – we can create an
adversarial pattern where lower-priority packets arrive right
before a group of high-priority ones to make SP-PIFO admit
the lower-priority packets and drop the higher-priority ones.

But SP-PIFO also sometimes outperforms AIFO because
(1) AIFO lacks a sorting mechanism, which can cause high-
priority packets to get delayed behind lower-priority ones,
and (2) AIFO depends on an estimate of the distribution based
on the most recent window of packets. MetaOpt found traces
in which a few packets with entirely different priorities com-
pared to others can disrupt AIFO’s distribution estimate!

Proving properties. MetaOpt shows that SP-PIFO’s adver-
sarial inputs exhibit significant priority inversions. We used
these inputs to prove a lower bound on the worst-case per-
formance gap, in terms of priority-weighted average delay,
between SP-PIFO and PIFO (see §C.3):

Theorem 2. For any number of packets N ≥ 1, integer pri-
orities between 0−Rmax and q ≥ 2 queues, there exists
a sequence of packets I where the difference between the
weighted average packet delay that results from SP-PIFO is

(Rmax−1)(N −1−p)p where p = ⌈(N −1)/2⌉ (3)

worse compared to PIFO.

Designing better heuristics. SP-PIFO uses the same set of
queues to schedule packets with a wide range of priorities. We
found it underperforms when the difference between packet
priorities is large. Theorem 2 also confirms this, as the gap is
proportional to Rmax.

We evaluated a Modified-SP-PIFO, in which we limited the
range of packet priorities that can compete with each other:
we formed m queue groups where each group served a fixed
priority range. SP-PIFO runs on queues within a group. This
modified version can reduce the gap of SP-PIFO by 2.5×.

4.4 Evaluating MetaOpt

We show MetaOpt can find solutions faster than other baseline
search methods and helps users describe H′ and H in a compact
way. We also show how our various design choices help.

How fast MetaOpt discovers a performance gap. Alterna-
tives to MetaOpt include random search, hill climbing [29],
and simulated annealing [45]. Random search repeatedly
picks new random inputs and returns the one with a max-
imum gap. Hill climbing (HC) and simulated annealing (SA)
use information from past observed inputs to guide the search
(more details in §E).

936 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

#binary var #contin var #constr
100

102

104

106

lo
g

sc
al

e

0.
0K

0.
4K

0.
2K

0.
0K

0.
4K

0.
2K

0.
3K 1.

8K

2.
2K

0.
3K 2.

3K 3.
6K

1.
2K 2.
7K 4.
0K

1.
9K 3.
5K 6.
0K

Better

MaxFlow
DP

QPD selective
QPD always

KKT selective
KKT always

FIGURE 14: Users specify DP and OPT in MetaOpt. We show
the complexity of these specifications and the rewrites in terms of
the number of variables and constraints (see Fig. A.2 for POP).

MetaOpt finds 1.7× - 17× larger gaps than the next best
(Fig. 13). The baselines fail since they ignore the heuristic’s
details and treat it as a black box. MetaOpt uses its knowledge
of the heuristic and the topology to guide the search.

MetaOpt is the only method that consistently discovers
substantially larger gaps over time, while other techniques
get stuck in local optima and improve only slightly even after
many hours (Fig. 13(a), 13(d)).

Input and rewrite complexity. Users specify H′ and H, and
MetaOpt automatically applies selective rewrites (§3.3) to
scale better. We evaluate how complex these specifications
and rewrites are regarding the number of binary variables,
continuous variables, and constraints (Fig. 14). In general,
solvers perform better if these quantities are lower.

We use DP as an example to highlight three features in
MetaOpt’s design (Fig. 14). The three metrics show the user’s
inputs are more compact than the rewritten optimization; they
have a fifth of the constraints and half the number of con-
tinuous variables. This quantifies how MetaOpt’s automatic
rewrites can reduce the user’s burden. Selective rewrites are
important: we can use them to reduce the number of con-
straints (2.2K vs. 3.6K for QPD) and continuous variables
(1.8K vs. 2.3K for QPD) compared to when we always rewrite
the bi-level optimization. We can produce more compact spec-
ifications (with fewer variables and constraints) through QPD
compared to KKT, even with selective rewrites. This explains
why it helps MetaOpt scale.

The impact of partitioning. MetaOpt partitions the problem
to find larger gaps faster than both (non-partitioned) quan-
tized primal-dual and KKT, even on medium-sized topologies
(Fig. 15(a)). For larger topologies, KKT and primal-dual can-
not find large gaps without partitioning.

As we increase the number of partitions, MetaOpt scales
better and finds larger gaps until it eventually plateaus (10 for
Cogentco in Fig. 15(b)). We can slightly improve the gap if
we double the solver timeout.

The inter-cluster step in partitioning is important, especially
for heuristics that underperform when demands are between
distant nodes (DP in Fig. 15(c)). The partitioning algorithm
also impacts the discovered gap (Fig. 15(d)).

The impact of quantization. To quantify, we compare the
relative difference between the gap from quantized primal-

100 101 102 103 104104 105

time (s) - log scale

0
10
20
30
40

no
rm

 a
dv

er
s

 g
ap

 (%
) BetterQuantized PD w clustering

Quantized PD
KKT

(a) KKT vs Quantized primal-dual vs w partitioning on Uninett2010

4 6 8 10 12 14 16
0

10
20
30
40

no
rm

 a
dv

er
s

 g
ap

 (%
)

timeout
600 1200

(b) Number of partitions and solver timeout on Cogentco

DP (1%) DP (5%) Avg POP0
5

10
15
20
25
30
35

no
rm

 a
dv

er
s g

ap
 (%

) wo inter
w inter

(c) Inter-cluster on Cogentco

FM Spectral0
5

10
15
20
25
30
35

no
rm

 a
dv

er
s g

ap
 (%

)

(d) Graph partitioning on Cogentco

FIGURE 15: Partitioning helps MetaOpt find larger gaps faster.

dual and KKT (which does not use quantization). We found
quantization has little impact on solution quality: 4% for
DP and 0 for POP on B4 (we can not scale KKT to larger
topologies). For POP, we use two quantiles: 0 and the max
demand. If a demand d in an uncongested partition falls in
between these values, forcing the demand to zero cannot
decrease the gap: the rewrite’s throughput would drop by d,
and the optimal throughput by some value between 0 and d.
A similar argument applies to the congested case.

We use three quantiles for DP: 0, the threshold, and the max
demand. For a high enough threshold, quantized primal-dual
may avoid assigning the threshold value to demands between
distant nodes to not violate capacity constraints, whereas KKT
can assign any value, which causes the relative difference in
solution quality.

5 Discussion
We have shown MetaOpt applies to various heuristics in mul-
tiple domains. We have developed a simple partitioning tech-
nique to scale MetaOpt to large problem instances (with parti-
tioning, it focuses on finding large performance gaps instead
of the worst-case). We defer the following to future work:

Application to a broader set of heuristics. MetaOpt only ap-
plies to heuristics, which we can model as convex or feasibility
problems. A number of heuristics in systems and networking
do not fit in either of these two categories (e.g., mixed integer
maximizations or minimizations [76] that we cannot cast as
a feasibility problem). Our approach in MetaOpt has roots
in the theory of Stackelberg games and goes beyond bi-level

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 937

optimization. We discuss how the theory in this space can
help extend MetaOpt’s scope in §6.

Finding adversarial settings. The set up (e.g., topology in
DP) influences the performance gap as well. Users can model
this aspect as part of MetaOpt and find adversarial problem
settings. This may impact MetaOpt’s scalability.

Ease of use. In MetaOpt, users have to write their heuristics in
the optimization language, which requires expertise. MetaOpt
provides a set of helper functions to simplify the process.
However, there is room for improvement in enabling users to
model their heuristics and extending MetaOpt to explain why
a heuristic underperforms automatically.

6 Extending MetaOpt’s scope
We observe the dynamics of the problem MetaOpt addresses
resembles leader-follower games (Stackelberg equilibria [49]).
In such games, a leader maximizes their payoff and controls
the inputs to one or more followers. With this fixed input from
the leader, the followers have to respond and optimize for
their own payoff and decide outputs, which the leader does
not control but influences their payoff.

These games apply to a variety of leader-follower combi-
nations (e.g., optimization-based and Bayesian) and there
are various techniques to find the equilibrium in such
games [21, 44, 70, 75]. Hence, in theory, we can use these
techniques to analyze the performance gaps of a broader class
of heuristics than MetaOpt currently supports, as long as we
have a leader-follower combination where we know how to
compute the equilibrium. This is future work.

7 Related Work
To the best of our knowledge, no prior work finds provable ad-
versarial inputs for heuristics that approximate optimal prob-
lems. Our techniques (e.g., big-M, convex rewrites, and gener-
ally translating the problem to one that is amenable to off-the-
shelf solvers) are not per-se novel [8, 26, 31], and prior work
in networking have used some of these theories [6, 11, 12, 42].
However, no other work has combined them in this way. We
also extend them to randomized, conditional, and sequential
non-convex heuristics. Without our changes, we could not
apply existing solvers directly or quickly find large gaps.

Our qualitative results – the optimality gap and hard exam-
ples for POP, DP, FFD, SP-PIFO, and AIFO – are novel. We
also find and prove tighter bounds for the optimality gap of
FFD and SP-PIFO.

Our work is different from most prior techniques. Tradi-
tional algorithmic worst- or average-case analyses [27,54] are
specific to an individual heuristic and must be applied case by
case. We cannot do such analyses for some heuristics as they
only find loose bounds or do not account for realistic input
constraints (none exist for DP, POP, or [63, 76]).

Verification methods seek inputs that violate an statically-
specified safety or correctness invariant on a given func-

tion [41]. In contrast, we look for inputs that maximize the
performance gap.

Model checking approaches based on SMT solvers [4, 7, 9,
10, 34] can search for adversarial inputs that result in perfor-
mance gaps greater than a fixed bound when users can encode
both the optimal and heuristic as pure feasibility problems.
However, these approaches cannot handle bi-level optimiza-
tion, where the optimal or heuristic must be formulated as
optimizations (e.g., traffic engineering).

Local search algorithms [29, 45] apply to any (potentially
black-box) heuristic or optimal algorithm. However, the flip
side of such generality is that they are slow on large input
spaces, get stuck in local optima, and fail to find practical
inputs because they ignore the inner workings of the heuristic.

Recent work finds malicious inputs to learned tech-
niques [33, 51]. However, none of these find provably large
gaps or even consider the optimal algorithm. Other broadly
related work include [13, 28, 50, 61].

Our partitioning approach is different from [3,58]. NCFlow
and POP need to return a feasible solution given an input
(e.g., one that respects capacity and path constraints). As a
result, they have to combine the solutions from all partitions to
ensure their feasibility. This makes them complex when they
have to enforce global constraints. For example, POP [58]
sacrifices quality and partitions demands separately to ensure
the sub-problems enforce rigorous constraints. MetaOpt does
not need such constraints because it generates an input for the
problem, not the solution. Notice a certain ‘coming full circle’
aspect here: we use a similar (but not the same) partitioning
to analyze the optimality gap of POP quickly.

This paper is an extended version of [56]. Compared to this
workshop paper, we changed the methodology to improve
generality and scalability, added helper functions for ease
of use, added support for heuristics from VBP and packet
scheduling, and did a more extensive evaluation.

8 Conclusion
MetaOpt is a heuristic analyzer for heuristics that can be posed
as an optimization or a feasibility problem. It can be used to
find performance gaps at scale, prove lower bounds on worst-
case gaps, and devise improvements to heuristics. At its core,
MetaOpt solves a bi-level optimization problem. To do this
efficiently, it selectively rewrites heuristic specifications as
a single-level optimization, and incorporates several scaling
techniques. Future work can include using it to evaluate and
improve other heuristics, increasing its expressivity (§6), and
identifying infeasible inputs instead of adversarial ones.

Acknowledgments. We thank our shepherd, Marco Chiesa,
and the anonymous reviewers for their insightful comments.
We also thank Siva Kakarla, Rodrigo Fonseca, Jeff Mogul,
Jay Lorch, and Daniel Berger for their helpful feedback. This
material is based upon work supported in part by the U.S.
National Science Foundation under grant No. CNS-1901523.

938 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Internet Topology Zoo. http://www.topology-

zoo.org/.

[2] Yarn resource allocation of multiple resource-types.
https://bit.ly/3YMDL2Z.

[3] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai
Menache, Matei Zaharia, and Peter Bailis. Contracting
wide-area network topologies to solve flow problems
quickly. In NSDI, 2021.

[4] Anup Agarwal, Venkat Arun, Devdeep Ray, Ruben Mar-
tins, and Srinivasan Seshan. Automating network heuris-
tic design and analysis. In HotNets, 2022.

[5] Albert Gran Alcoz, Alexander Dietmüller, and Laurent
Vanbever. {SP-PIFO}: Approximating {Push-In}{First-
Out} behaviors using {Strict-Priority} queues. In 17th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20), pages 59–76, 2020.

[6] David Applegate and Edith Cohen. Making intra-
domain routing robust to changing and uncertain traf-
fic demands: Understanding fundamental tradeoffs. In
Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer
communications, pages 313–324, 2003.

[7] Mina Tahmasbi Arashloo, Ryan Beckett, and Rachit
Agarwal. Formal methods for network performance
analysis. In NSDI, 2023.

[8] Bryan Arguello, Richard L. Chen, William E. Hart,
John D. Siirola, and Jean-Paul Watson. Modeling
bilevel program in pyomo. https://www.osti.gov/
servlets/purl/1526125.

[9] Venkat Arun, Mohammad Alizadeh, and Hari Balakr-
ishnan. Starvation in end-to-end congestion control. In
SIGCOMM, 2022.

[10] Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed,
Mohammad Alizadeh, and Hari Balakrishnan. Toward
formally verifying congestion control behavior. In SIG-
COMM, 2021.

[11] Behnaz Arzani, Alexander Gurney, Bo Li, Xianglong
Han, Roch Guerin, and Boon Thau Loo. Fixroute: A uni-
fied logic and numerical tool for provably safe internet
traffic engineering. arXiv preprint arXiv:1511.08791,
2015.

[12] Behnaz Arzani, Nicholas Iodice, Steven Hwang, Praha-
lad Venkataramanan, Roch Geurin, and Boon Thau Loo.
Sunstar: A cost-effective multi-server solution for reli-
able video delivery. arXiv preprint arXiv:1812.00109,
2018.

[13] Nirav Atre, Hugo Sadok, Erica Chiang, Weina Wang,
and Justine Sherry. Surgeprotector: Mitigating tem-
poral algorithmic complexity attacks using adversarial
scheduling. In SIGCOMM, 2022.

[14] Brenda S Baker. A new proof for the first-fit decreasing
bin-packing algorithm. Journal of Algorithms, 1985.

[15] Y. Beck and M. Schmidt. A Gentle and Incom-
plete Introduction to Bilevel Optimization. https:
//optimization-online.org/?p=17182, July 2023.

[16] Ryan Beckett and Ratul Mahajan. A general framework
for compositional network modeling. In Proceedings
of the 19th ACM Workshop on Hot Topics in Networks,
pages 8–15, 2020.

[17] Dimitri Bertsekas and Robert Gallager. Data Networks.
Englewood Cliffs, 1992.

[18] Dimitris Bertsimas and John N Tsitsiklis. Introduction
to linear optimization, volume 6. Athena Scientific
Belmont, MA, 1997.

[19] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lam-
biotte, and Etienne Lefebvre. Fast unfolding of commu-
nities in large networks, 2008.

[20] Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi,
Ishai Menache, Nikolaj Bjørner, Asaf Valadarsky,
and Michael Schapira. TEAVAR: striking the
right utilization-availability balance in WAN traffic
engineering. In SIGCOMM, 2019.

[21] Branislav Bosansky and Jiri Cermak. Sequence-
form algorithm for computing stackelberg equilibria
in extensive-form games. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 29, 2015.

[22] Stephen Boyd and Lieven Vandenberghe. Convex Opti-
mization. Cambridge University Press, 2004.

[23] Wu chang Feng, Francis Chang, Wu chi Feng, and
Jonathan Walpole. Provisioning on-line games: A traffic
analysis of a busy counter-strike server.

[24] A. Clauset, M.E.J. Newman, and C. Moore. Finding
community structure in very large networks. Phys. Rev.,
2004.

[25] Aaron Clauset. Fast Modularity Community Structure
Inference Algorithm. https://bit.ly/3aAVGQH.

[26] Benoît Colson, Patrice Marcotte, and Gilles Savard.
Bilevel programming: A survey. 4OR, 2005.

[27] Thomas H Cormen, Charles E Leiserson, Ronald L
Rivest, and Clifford Stein. Introduction to algorithms.
MIT press, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 939

http://www.topology-zoo.org/
http://www.topology-zoo.org/
https://bit.ly/3YMDL2Z
https://www.osti.gov/servlets/purl/1526125
https://www.osti.gov/servlets/purl/1526125
https://optimization-online.org/?p=17182
https://optimization-online.org/?p=17182
https://bit.ly/3aAVGQH

[28] Anthony Corso, Robert Moss, Mark Koren, Ritchie Lee,
and Mykel Kochenderfer. A survey of algorithms for
black-box safety validation of cyber-physical systems.
Journal of AI Research, 2021.

[29] L. Davis. Bit-climbing, representational bias, and test
suit design. Proc. Intl. Conf. Genetic Algorithm, pages
18–23, 1991.

[30] György Dósa. The tight bound of first fit decreasing
bin-packing algorithm is ffd(i) ≤ 11/9opt(i) + 6/9.
In Combinatorics, Algorithms, Probabilistic and Exper-
imental Methodologies: First International Symposium,
ESCAPE. Springer, 2007.

[31] Pablo Garcia-Herreros, Lei Zhang, Pratik Misra, Erdem
Arslan, Sanjay Mehta, and Ignacio E Grossmann. Mixed-
integer bilevel optimization for capacity planning with
rational markets. Computers & Chemical Engineering,
86:33–47, 2016.

[32] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
resource fairness: Fair allocation of multiple resource
types. In NSDI, 2011.

[33] Tomer Gilad, Nathan H. Jay, Michael Shnaiderman,
Brighten Godfrey, and Michael Schapira. Robustify-
ing network protocols with adversarial examples. In
HotNets. ACM, 2019.

[34] Saksham Goel, Benjamin Mikek, Jehad Aly, Venkat
Arun, Ahmed Saeed, and Aditya Akella. Quantitative
verification of scheduling heuristics. arXiv preprint
arXiv:2301.04205, 2023.

[35] Robert Grandl, Ganesh Ananthanarayanan, Srikanth
Kandula, Sriram Rao, and Aditya Akella. Multi-
resource packing for cluster schedulers. In SIGCOMM,
2014.

[36] Gurobi Optimization, LLC. Gurobi Optimizer Refer-
ence Manual, 2022.

[37] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan,
Esaias E Greeff, David Dion, Star Dorminey, Shailesh
Joshi, Yang Chen, Mark Russinovich, and Thomas
Moscibroda. Protean: Vm allocation service at scale. In
OSDI, 2020.

[38] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
WAN. In SIGCOMM, 2013.

[39] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,

Jim Wanderer, Junlan Zhou, and Min Zhu. B4: Experi-
ence with a globally-deployed software defined WAN.
In SIGCOMM, 2013.

[40] Virajith Jalaparti, Ivan Bliznets, Srikanth Kandula, Bren-
dan Lucier, and Ishai Menache. Dynamic pricing and
traffic engineering for timely inter-datacenter transfers.
In SIGCOMM, 2016.

[41] Ranjit Jhala and Rupak Majumdar. Software model
checking. ACM Comput. Surv., 41:21:1–21:54, 2009.

[42] Chuan Jiang, Sanjay Rao, and Mohit Tawarmalani. Pcf:
provably resilient flexible routing. In Proceedings of the
Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,
architectures, and protocols for computer communica-
tion, pages 139–153, 2020.

[43] David S Johnson. Near-optimal bin packing algo-
rithms. PhD thesis, Massachusetts Institute of Tech-
nology, 1973.

[44] Jan Karwowski, Jacek Mańdziuk, and Adam Żychowski.
Sequential stackelberg games with bounded rationality.
Applied Soft Computing, 132:109846, 2023.

[45] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vec-
chi. Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

[46] Umesh Krishnaswamy, Rachee Singh, Nikolaj Bjørner,
and Himanshu Raj. Decentralized cloud wide-area net-
work traffic engineering with BLASTSHIELD. In NSDI,
2022.

[47] Alok Kumar et al. Bwe: Flexible, hierarchical bandwidth
allocation for wan distributed computing. In SIGCOMM,
2015.

[48] Huaicheng Li, Daniel S. Berger, Stanko Novakovic, Lisa
Hsu, Dan Ernst, Pantea Zardoshti, Monish Shah, Samir
Rajadnya, Scott Lee, Ishwar Agarwal, Mark D. Hill, Mar-
cus Fontoura, and Ricardo Bianchini. Pond: Cxl-based
memory pooling systems for cloud platforms, 2022.

[49] Tao Li and Suresh P Sethi. A review of dynamic stackel-
berg game models. Discrete & Continuous Dynamical
Systems-B, 22(1):125, 2017.

[50] Zinan Lin, Hao Liang, Giulia Fanti, and Vyas Sekar.
Raregan: Generating samples for rare classes. arXiv
preprint arXiv:2203.10674, 2022.

[51] Roland Meier, Thomas Holterbach, Stephan Keck,
Matthias Stähli, Vincent Lenders, Ankit Singla, and Lau-
rent Vanbever. (self) driving under the influence: Intox-
icating adversarial network inputs. In HotNets. ACM,
2019.

940 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[52] Yue Minyi. A simple proof of the inequality ffd(l)≤
11/9opt(l) + 1, ∀l, for the ffd bin-packing algorithm.
Acta Mathematicae Applicatae Sinca, 1991.

[53] Jayashree Mohan, Amar Phanishayee, Janardhan Kulka-
rni, and Vijay Chidambaram. Looking beyond GPUs
for DNN scheduling on Multi-Tenant clusters. In OSDI,
2022.

[54] Rajeev Motwani and Prabhakar Raghavan. Randomized
algorithms. Cambridge university press, 1995.

[55] Leonardo de Moura and Nikolaj Bjørner. Z3: An effi-
cient SMT solver. In International conference on Tools
and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[56] Pooria Namyar, Behnaz Arzani, Ryan Beckett, Santiago
Segarra, Himanshu Raj, and Srikanth Kandula. Mind-
ing the gap between fast heuristics and their optimal
counterparts. In HotNets, 2022.

[57] Pooria Namyar, Behnaz Arzani, Srikanth Kandula, Santi-
ago Segarra, Daniel Crankshaw, Umesh Krishnaswamy,
Ramesh Govindan, and Himanshu Raj. Solving Max-
Min Fair Resource Allocations Quickly on Large
Graphs. In NSDI, 2024.

[58] Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid,
Peter Kraft, Akshay Agrawal, Srikanth Kandula,
Stephen Boyd, and Matei Zaharia. Solving large-scale
granular resource allocation problems efficiently with
POP. In SOSP, 2021.

[59] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On
spectral clustering: Analysis and an algorithm. In NIPS,
2002.

[60] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi
Wieder. Heuristics for vector bin packing. January 2011.

[61] Pedro Reviriego and Daniel Ting. Breaking cuckoo hash:
Black box attacks. IEEE Transactions on Dependable
and Secure Computing, 2021.

[62] Thomas Sauerwald. Sorting networks. https:
//www.cl.cam.ac.uk/teaching/1415/AdvAlgo/
advalg.pdf.

[63] Rachee Singh, Nikolaj Bjorner, Sharon Shoham, Yawei
Yin, John Arnold, and Jamie Gaudette. Cost-effective ca-
pacity provisioning in wide area networks with Shoofly.
In SIGCOMM, 2021.

[64] Anirudh Sivaraman, Suvinay Subramanian, Mohammad
Alizadeh, Sharad Chole, Shang-Tse Chuang, Anurag
Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
and Nick McKeown. Programmable packet scheduling

at line rate. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, page 44–57, New York,
NY, USA, 2016. Association for Computing Machinery.

[65] Stanford University IT. Abilene core topology, 2015.

[66] Mark Stillwell, David Schanzenbach, Frédéric Vivien,
and Henri Casanova. Resource allocation algorithms
for virtualized service hosting platforms. Journal of
Parallel and Distributed Computing, 2010.

[67] Chunqiang Tang, Malgorzata Steinder, Michael Spre-
itzer, and Giovanni Pacifici. A scalable application
placement controller for enterprise data centers. In
WWW, 2007.

[68] Abhishek Verma, Madhukar Korupolu, and John Wilkes.
Evaluating job packing in warehouse-scale computing.
In 2014 IEEE International Conference on Cluster Com-
puting (CLUSTER), 2014.

[69] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at google with borg. In Eu-
roSys, 2015.

[70] Jiali Wang, He Chen, Rujun Jiang, Xudong Li, and Zihao
Li. Fast algorithms for stackelberg prediction game
with least squares loss. In International Conference on
Machine Learning, pages 10708–10716. PMLR, 2021.

[71] Gerhard J. Woeginger. There is no asymptotic ptas for
two-dimensional vector packing. Inf. Process. Lett.,
1998.

[72] Timothy Wood, Prashant Shenoy, Arun Venkataramani,
and Mazin Yousif. Black-box and gray-box strategies
for virtual machine migration. In NSDI, 2007.

[73] Jin Y. Yen. Finding the K Shortest Loopless Paths in a
Network. Management Science, 17(11):712–716, 1971.

[74] Zhuolong Yu, Chuheng Hu, Jingfeng Wu, Xiao Sun,
Vladimir Braverman, Mosharaf Chowdhury, Zhenhua
Liu, and Xin Jin. Programmable packet scheduling
with a single queue. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, SIGCOMM ’21, page
179–193, New York, NY, USA, 2021. Association for
Computing Machinery.

[75] Yunxiao Zhang and Pasquale Malacaria. Bayesian stack-
elberg games for cyber-security decision support. Deci-
sion Support Systems, 148:113599, 2021.

[76] Zhizhen Zhong, Manya Ghobadi, Alaa Khaddaj,
Jonathan Leach, Yiting Xia, and Ying Zhang. Arrow:
Restoration-aware traffic engineering. In SIGCOMM,
2021.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 941

https://www.cl.cam.ac.uk/teaching/1415/AdvAlgo/advalg.pdf
https://www.cl.cam.ac.uk/teaching/1415/AdvAlgo/advalg.pdf
https://www.cl.cam.ac.uk/teaching/1415/AdvAlgo/advalg.pdf

Term Meaning

V,E,D,P Sets of nodes, edges, demands, and paths

N,M,K Number of nodes, edges, and demands, i.e., N =
|V|,M = |E|,K = |D|

ce,p ce: capacity of edge e ∈ E
path p: set of connected edges

(sk, tk,dk) The kth element in D has source and target
nodes (sk, tk ∈ V) and a non-negative vol-
ume (dk)

f ,fp
k

f : flow assignment vector with elements fk

fp
k

: flow for demand k on path p

TABLE A.1: Multi-commodity flow problems’ notation.

A Details of Traffic Engineering
Table A.1 summarizes our notation.

A.1 Multi-commodity flow problem
The optimal form of WAN-TE typically involves solving a
multi-commodity flow problem. Given a set of nodes, capac-
itated edges, demands, and pre-chosen paths per demand, a
flow allocation is feasible if it satisfies demand and capac-
ity constraints. The goal is to find a feasible flow to opti-
mize a given objective (e.g., total flow [3], max-min fair-
ness [38,39,57], or utility curves [47]). We define the feasible
flow over a pre-configured set of paths as (see Table A.1)

FeasibleFlow(V,E ,D,P) ≜
{

f | (4)

fk =
∑

p∈Pk

fp
k , ∀k ∈ D (flow for demand k)

fk ≤ dk, ∀k ∈ D (flow below volume)∑
k,p|p∈Pk,e∈p

fp
k ≤ ce, ∀e ∈ E (flow below capacity)

fp
k ≥ 0 ∀p ∈ P,k ∈ D (non-negative flow)

}
Among all the feasible flows, the optimal solution seeks to

maximize the total flow across the network:

OptMaxFlow(V,E ,D,P) ≜argmax
f

∑
k∈D

fk (5)

s.t. f ∈ FeasibleFlow(V,E ,D,P).

A.2 More details on DP and POP heuristics

Demand Pinning (DP) [46]. First, it routes all demands at or
below a predefined threshold Td through their shortest path.
It then jointly routes the rest of the demands optimally over
multiple paths:

DemandPinning(D,P) ≜
{

f | (6)

fp
k =

{
dk if p is shortest path in Pk

0 otherwise
, ∀k ∈ D : dk ≤ Td

}
,

We can pose DP as an optimization with constraints that
route demands below the threshold on the shortest paths:

DemPinMaxFlow(V,E,D,P) ≜argmax
f

∑
k∈D

fk (7)

s.t. f ∈ FeasibleFlow(V,E,D,P)
f ∈ DemandPinning(D,P)

Partitioned Optimization Problems (POP). [58] POP di-
vides node pairs (and their demands) uniformly at random
into partitions, assigns each partition an even share of edge
capacities, and solves the original problem (e.g., the SWAN
optimization [38]) in parallel, once per partition.

POPMaxFlow(V,E ,D,P) ≜ (8)⋃
part. c

OptMaxFlow(V,Ec,Dc,P),

where ∪ is the vector union, the per-partition demands Dc

are disjoint subsets of the actual demands drawn uniformly at
random, and the per-partition edge list Ec matches the original
edges but with proportionally smaller capacities.

A.3 Formulation of DP and POP

Demand Pinning formulation for quantized demands. DP
has conditional or if clauses: if a demand is smaller than the
threshold Td, then route it over its shortest path; otherwise,
use the optimal algorithm to route it.

We describe the shortest path for demand k using p̂k and
write the if clause as:

f p̂k

k ≥
Q∑

q=1
1 [Lq ≤ Td]Lqxk

q , ∀k ∈ D. (9)

The {0,L1, . . . ,LQ} are the quantas and xk
q s are binary vari-

ables that pick which quanta is active for demand k. The term
1 [Lq ≤ Td] is constant at runtime and only shows which
terms exist in the sum.

Note that dk =
∑

q Lqxk
q by the definition of quantization.

Thus, if the demand dk is smaller than the threshold Td, Equa-
tion 9 will ensure that the allocation on the shortest path is
equal to dk.5

Demand Pinning big-M formulation. We can also encode
DP using the standard big-M approach from optimization
theory. This formulation does not require quantized demands
and is useful for the KKT rewrite. However, big-M can cause
numerical instability at scale.

5When dk ≤ Td, Equation 9 effectively becomes f
p̂k
k
≥ dk . In the

converse case (dk > Td), Equation 9 becomes f
p̂k
k
≥ 0 (a no-op).

942 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Input: dk requested rate of demand k

Input: Pk paths for demand k

Input: p̂k shortest path
Input: Td demand pinning threshold
for all demand k ∈ D do

if dk <= Td then

f
p̂k
k

= dk

end if
end for
MaxFlow()

DP Pseudocode

OuterVar: dk requested rate of demand k

Input: Pk paths for demand k

Input: p̂k shortest path
Input: Td demand pinning threshold
for all demand k ∈ D do

ForceToZeroIfLeq(dk−f
p̂k
k

,dk,Td)
end for
MaxFlow()

Modeling DP in MetaOpt

MetaOpt

FIGURE A.1: The pseudocode for DP and how users can model it in MetaOpt using the helper functions.

#binary var #contin var #constr
100

102

104

106

lo
g

sc
al

e

0.
0K

0.
4K

0.
2K

0.
0K

0.
3K

0.
1K0.
1K 5.

5K

5.
2K

0.
1K 6.

0K

6.
0K

3.
7K 7.
6K 11
.9

K

4.
4K 8.
5K 13
.9

K

Better

MaxFlow
POP

QPD selective
QPD always

KKT selective
KKT always

FIGURE A.2: The complexity of user’s input for POP and the
subsequent rewrites in terms of the size of the optimization.

∑
p∈Pk, p ̸=p̂k

fp
k ≤ max(M(dk − Td),0) , ∀k ∈ D,

dk − f p̂k

k ≤ max(M(dk − Td),0) , ∀k ∈ D,

where M is a large pre-specified constant. Notice that when-
ever demand dk is below the threshold Td, the constraints
allocate zero flow on all but the (default) shortest path — DP
routes the full demand on the default path in such cases. We
can use standard optimization theory to convert the max in
these constraints into a set of linear constraints [22] (this re-
quires us modifying the objective but does not impact the final
solution’s quality).

Partitioned Optimization Problems Formulation. POP is
convex as it is the union of solutions to disjoint linear opti-
mizations (Equation 8). It is hard to encode POP as it uses
random partitions, which makes POP (I) a random variable
in the leader problem, but MetaOpt needs a deterministic
representation of the heuristic. We can consider a specific
instance of each random variable (e.g., one random assign-
ment of demands to partitions). However, it will overfit to that
instance and not reflect POP’s true behavior.

We use the expected value or tail percentile of the gap from
multiple random trials. To compute the average, we replace
H in Equation 2 with its expected value and approximate the
expectation through empirical averages over a few randomly
generated partitions (see §4.1). To find the tail, we use a

sorting network [40, 62] to compute the desired percentile
across multiple random trials.

In addition, we encode an advanced version of POP in §A.4
that splits large demands across multiple partitions instead of
assigning each demand to one partition.

A.4 POP Client Splitting
In §2, we introduce the (basic) POP heuristic [58], which
incorporates resource splitting for our WAN TE problem,
and in §A.3, we present POP as a convex optimization. The
work in [58] also specifies an extended full-fleshed version of
POP that incorporates “client splitting”. We next show how
to express this variant as a convex optimization problem.

We can think of POP client splitting as an operation that
takes in a set of demands D and returns a modified set Dcs =
ClientSplit(D) that can then be input into POP as in (8). The
function ClientSplit() generates several duplicates of the
existing demands and reduces their volume in proportion. It
performs several operations where it replaces (sk, tk,dk)∈D
with two elements of the form (sk, tk,dk/2). It iterates and
repeats this operation until it terminates (see [58]).

We encode a version of client splitting where we split an
element in D if its demand value dk is larger than or equal
to a threshold dth, and we keep splitting it until either we get
to a predefined number of maximum splits (of the original
demand6) or the split demand is lower than dth.

Without loss of generality, we describe this idea for a single
demand d1: we can replicate this process for all demands in
D. Take for example the scenario where we split the demand
at most twice (which creates at most 4 virtual clients). We
a-priori encode all the flow variables for all possible splits
of d1: we use seven variables of the form fi,j instead of the
single fi where f11 is the flow if we do not split the client;
f1,2 and f1,3 are the flows if we split the client once and f1,4
through f1,7 are the flows if we split the client twice. These

6Notice that [58] pre-specifies a total aggregated number of splits across
all clients whereas we set the a maximum for per-client splits. This slight
modification facilitates the convex representation of the heuristic.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 943

Term Meaning

i, j,d indexes for ball, bin and dimension

Yi,Cj Multi-dim vectors of ball and bin sizes

Wi Weight of ball i

αij = 1 if ball i is assigned to bin j and 0 otherwise

xij Vector of resources allocated to ball i in bin j

fij = 1 if ball i can fit in bin j and 0 otherwise

TABLE A.2: Our notation to formulate FFD as a feasibility
problem. We use bold to indicate multi-dimensional vectors and
capitalize variables, which are typically constants for FFD, but
can be variables of the outer problem in MetaOpt.

flows have to satisfy:

0≤ f1,1 ≤ d1,

0≤ f1,i ≤
d1
2 , for i ∈ {2,3}

0≤ f1,i ≤
d1
4 , for i ∈ {4,5,6,7}.

The variable f1,1 should be zero unless d1 < dth (when we
do not split clients), which we can achieve using big-M con-
straints (§A.3):

f1,1 ≤max(M(dth−d1),0).
We want f1,2 and f1,3 to be exactly zero unless d1 ≥ dth and
d1/2 < dth, which we can achieve by doing

f1,i ≤max(M(d1−dth + ϵ),0), for i ∈ {2,3},
f1,i ≤max(M(dth−d1/2),0), for i ∈ {2,3},

where we added the small pre-specified ϵ > 0 to allow for the
case where d1 = dth. Lastly, we want f1,4 through f1,7 to be
exactly zero unless d1 ≥ 2dth. We encode this as:

f1,i ≤max(M(d1−2dth + ϵ),0), for i ∈ {4,5,6,7}.
We can replicate this procedure for all dk and encode POP
with client splitting as a convex optimization problem. Once
this is done, the techniques in §3.4 apply.

B Details of Vector Bin Packing
B.1 Formulation of FFD (First-Fit-Decreasing)
We formulate the first-fit-decreasing heuristic as a feasibility
problem (a set of constraints and no objective). Such a formu-
lation allows the bi-level optimization in MetaOpt to become
a single-level optimization without a rewrite (§3.3). To our
knowledge, this formulation of FFD is novel.

Modeling FFD using MetaOpt’s helper functions.
Fig. A.3 (right) shows how users can easily model FFD
without having to go through the mathematical details. It
also shows the mapping between the helper functions and the
pseudocode using different colors.

Details of how we model FFD as an optimization. Table A.2
lists our notation. The model uses binary variables. It is not

Bin index j −→
Fit fij 0 0 1 0 1 1
RHS of Equation 11 0 1

2 1 2
4

4
5

4
6

αij 0 0 1 0 0 0
TABLE A.3: Illustrating how we model first-fit in Equation 11.

a scalable method to solve FFD in practical systems, and we
propose it only as an effective method to find adversarial
inputs for the FFD heuristic.

Modeling decreasing ball weights: Recall that FFD places
the unassigned ball with the largest weight in each iteration.
We can use a sorting network [62] to ensure we pick balls in
decreasing order. Instead, we propose a simpler alternative:

We observe the ball-weighting functions are a fixed func-
tion of the ball size. Let Y be a multi-dimension vector that
captures the size of the i’th ball on each dimension. Then, the
weight of the i’th ball, Wi, is

∑
d Y d

i in FFDSum [66],
∏

d Y d
i

in FFDProd [72] and Y 1
i /Y 2

i in FFDDiv [67] respectively.7

We constrain the input space (ConstrainedSet in Equa-
tion 2) to ensure that we assign balls in decreasing order of
their weight if we assign them based on their index:

Wi ≥ Wi+1 ∀item i (10)

Modeling first-fit: FFD assigns each ball to the first bin that
has enough capacity. Let bins be ordered by their index and
αij be a binary variable with value of 1 iff bin j is the first bin
(i.e., the one with the smallest index) that has enough capacity
for ball i. We model the first-fit constraint as:

αij ≤
fij +

∑
bin k<j(1 − fik)

j
∀itemi, ∀bin j (11)∑

bin j

αij = 1 ∀item i (12)

Table A.3 shows an example that illustrates this constraint in
action. It is easy to prove that the right-hand-side of Eqn. 11 is
1 for the first bin where the ball can fit (i.e., smallest index in
set of bins {j∥ fit fij = 1}) and less than 1 for all other bins.
The second constraint is necessary to ensure that αij = 1 for
exactly the first-fitting bin for each ball.

Modeling resource allocation and capacity constraints:
We first ensure our allocation is consistent with the ball as-
signment: we allocate sufficient resources only from the as-
signed bin (not any other bin). We can do this simply by:
xij ≜ Yiαij . Here, the resource assigned to a ball i at bin j
(xij) is simply the product of the ball size vector Y with the
assignment indicator variable α. But Y is a variable of the
outer (or leader) problem, so such equations are non-linear.
To linearize, we use a technique similar to what is colloqui-
ally known as big-M in optimization literature. Let Z be an

7The FFDDiv function applies only to two dimensions.

944 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Input: Y(size of balls), C(capacity of bins)
for all ball i do

for all bin j do
rij = Cj −Yi−

∑
ball u<i

xd
uj

if ∀d : rd
ij ≥ 0 and ∀d,k < j : xd

ik = 0 then

xij = Yi

else
xij = 0

end if
end for

end for

FFD Pseudocode

OuterVar: Y(size of balls)
Input: C(capacity of bins)
for all ball i do

for all bin j do
rij = Cj −Yi−

∑
ball u<i

xd
uj

fij = AllLeq([−rd
ij]d,0)

γij = AllEq([xd
ik]d,k<j,0)

αij = AND(fij ,γij)

IfThenElse(αij, [(xij ,Yi)], [(xij ,0)])
end for

end for

Modeling FFD in MetaOpt

MetaOpt

FIGURE A.3: The pseudocode for FFD and how users can model it in MetaOpt using the helper functions.

appropriately large postive constant, then:

xd
ij ≤ Zαij ∀item i ∀binj ∀dimd (13)∑

bin j

xd
ij = Y d

i ∀item i ∀dimd (14)

We define the residual capacity of bin j after placing ball i
in it as (remember we allocate ball i only after we place all
the balls with a lower index):

rij ≜ Cj − Yi −
∑

balls u<i

xuj ∀item i ∀binj (15)

The sum on the right captures how much resources we have
already allocated to other balls from this bin. We next ensure
fij is 1 iff the bin j has adequate resources to fit ball i. Let
M be some appropriately large positive constant:

min
d

rd
ij ≤ Mfij ≤ M + min

d
rd

ij , ∀item i ∀binj ∀dimd (16)

Here, if ball i fits in bin j, the residual capacity rd
ij should

be greater than 0 across all dimensions d. Therefore, Equa-
tion 16 clamps Mf between a positive number and M plus
that positive number (remember rij is the remaining capacity
of bin j after placing ball i in it).8 Since f is a binary variable,
the only feasible assignment in this case is 1. Conversely, if
the ball does not fit in a bin, the residual capacity rd

ij is below
0 on at least one dimension d and the constraint in Eqn. 16
clamps Mf to be between a negative number and M plus that
negative number which forces f to be 0. In practice we set
the value of M to be larger than the largest single-dimension
bin capacity (i.e.,maxj,d Cd

j).

8Corner case: when the residual capacity is precisely 0 on all dimensions,
we want f to still be 1, but these constraints will allow f to be 0 as well. This
is a rare case, but it can occur in practice. We can solve this corner case in
a few different ways, including adding a small value ϵ to the left-most term
in Equation 16.

Unique solution for FFD: The Equations 11–16 uniquely
specify a solution to the iterative first-fit-decreasing heuristic.
These constraints are linear even if the ball and bin sizes are
variables in the outer problem. This is key because MetaOpt
can apply without having to rewrite the heuristic follower.
Counting the number of bins: In this case, MetaOpt seeks in-
puts that cause the heuristic to use more bins than the optimal.
To find such adversarial inputs, the outer (leader) problem
needs the number of bins used by FFD:

Num. bins used by FFD ≜
∑
bin j

max
ball i

αij . (17)

The term simply counts bins that have at least one ball. This
is linear (max has a linear rewrite) and does not give rise to
any additional concerns.

B.2 Proof of Theorem 1
Our goal is to show that for any k > 1, an input I exists where
FFDSum(I) needs at least 2k bins while OPT(I) only needs
k. Since we are proving a lower bound on the approximation
ratio of FFDSum, it suffices to show an example for each k.
We do this by the following; for every value of k > 1, we can
find m and p such that k = 2m + 3p and p ∈ {0,1}. Then,
we create an example consisting of 6m + 9p balls where
FFDSum(I) = 2OPT(I) = 2k. We show the constructed
example in Table A.4 along with the allocation from OPT
and FFDSum.

C Details of Packet Scheduling Heuristics
We describe how we model SP-PIFO [5] and AIFO [74] as
feasibility problems. These formulations are to the best of
our knowledge novel. Table A.5 lists our general notations,
and Table A.6 and Table A.7 show our specific notations for
SP-PIFO and AIFO respectively.

Definition (Ranks and Priorities). Packet scheduling pa-
pers [5, 74] use both ranks and priorities: a packet with a

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 945

Ball Ball Wei Num Bin ID Bin ID
ID Size ght (OPT) (FFD)
1 [0.92, 0.00] 0.92 m B1 B1
2 [0.91, 0.01] 0.92 m B2 B2
3 [0.48, 0.20] 0.68

×p

C1 C1
4 [0.68, 0.00] 0.68 C2 C2
5 [0.52, 0.12] 0.64 C3 C1
6 [0.32, 0.32] 0.64 C3 C2
7 [0.19, 0.45] 0.64 C2 C3
8 [0.42, 0.22] 0.64 C1 C3
9 [0.10, 0.54] 0.64 C1 C4
10 [0.10, 0.54] 0.64 C2 C5
11 [0.10, 0.53] 0.63 C3 C6
12 [0.06, 0.48] 0.54 m B2 B1
13 [0.07, 0.47] 0.54 m B1 B2
14 [0.01, 0.53] 0.54 m B1 B3
15 [0.03, 0.51] 0.54 m B2 B4

TABLE A.4: Constructed example to prove the approximation
ratio of 2d-FFDSum is always lower bounded by 2 for any value
of OPT(I) > 1.

higher rank has a lower priority and vice-versa. If a packet
has rank Rp, and Rmax is the maximum possible rank, we
can compute the the packet’s priority by Rmax−Rp. This
ensures that all the packets with a rank lower than Rp have
higher priority values, and all those with a rank higher than
Rp have lower priority values.

C.1 Formulation of SP-PIFO
SP-PIFO approximates PIFO [64] using n strict priority FIFO
queues. It keeps a packet rank for each queue (i.e., queue rank)
that shows the lower bound on packet ranks the queue admits.
For each packet, it starts from the lowest priority queue until
it finds the first queue that can admit the packet (packet rank
≥ queue rank). If a queue admits the packet, SP-PIFO adds
the packet to the queue and updates the queue rank to the
recently admitted packet’s rank (i.e., push up). If none of
the queues admit the packet (packet rank < highest-priority
queue rank), it reduces the rank of all the queues such that the
highest-priority queue can admit the packet (i.e., push down).
Fig. A.4 (left) shows the pseudocode for SP-PIFO.

Modeling SP-PIFO using MetaOpt’s helper functions.
Fig. A.4 (right) shows how users can easily model SP-PIFO
without having to go through the mathematical details. It
also shows the mapping between the helper functions and the
pseudocode using different colors.

Modeling push down. SP-PIFO reduces the rank of all the
queues if none of the queues can admit the packet. This hap-
pens when the rank of the highest priority queue is higher
than the packet rank (Rp). We model this as:

l̂pq = lp−1
q + max(0, lp−1

N − Rp) (18)

This constraint keeps the queue ranks the same if the packet

Term Meaning

P,p Number of packets and index for packet

Rmax,Rp Maximum rank and Rank of packet p

wp Weight of packet p

dpj = 1 if packet p dequeued after j, o.w. = 0

TABLE A.5: Our notation for formulating packet scheduling
heuristics as feasibility problems. We capitalize variables which
are typically constants for heuristic but can be variables of the
outer problem in MetaOpt.

Term Meaning

N,q number of queues, and index for queue

lp−1 vector of queue ranks when deciding for packet p

l̂p vector of queue ranks after push down for packet p

xpq = 1 if packet p is in queue q, o.w. =0

TABLE A.6: Additional Notations for SP-PIFO.

rank Rp is greater than the highest priority queue lp−1
N . Oth-

erwise, it applies push down and reduces the rank of all the
queues so that the highest priority queue can admit the packet
(after the update, the rank of highest priority queue N is the
same as packet rank Rp).

Deciding on the proper queue. Recall SP-PIFO adds a
packet to the queue with the lowest priority among the ones
that can admit the packet; that is the q that admits the packet
(Rp ≥ l̂pq) but the one lower priority queue q− 1 does not
admit the packet (Rp < l̂pq−1). We model this as following:

Mxpq ≤ M + Rp − l̂pq ∀packetp ∀queueq (19)

Mxpq ≤ M + l̂pq−1 − Rp − ϵ ∀packetp ∀queueq (20)∑
q

xpq = 1 ∀packetp (21)

where M is a large constant (≥ Rmax) and ϵ is a small
constant (< 1). The first constraint ensures a queue with rank
greater than the rank of the packet does not admit the packet (if
Rp < l̂pq , the constraint forces xpq to 0). The second constraint
ensures a queue does not admit the packet if a lower priority
queue admits the packet (if Rp ≥ l̂pq−1, the constraint forces
xpq to). The last constraint forces the optimization to place
the packet in one of the queues.

Modeling push up. Recall SP-PIFO updates the rank of the
queue to the most recently admitted packet’s rank. We model
this as:

lpq = l̂pq + xpq(Rp − l̂pq) ∀packetp ∀queueq (22)

This constraint only updates the rank of queue q to Rp if the
packet is placed in the queue (xpq = 1). We can linearize this
constraint [22].

Unique solution for SP-PIFO. We can combine these con-

946 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Input: incoming packets p with rank Rp

Input: number of queues N

l0 = 0
for all packet p do

if Rp < lp−1
N then

l̂p = lp−1 + (Rp− lp−1
N)

end if
for queue q ∈ {1, . . . ,N} do

if l̂pq ≤Rp < l̂pq−1 then

xpq = 1

lpq = Rp

else
xpq = 0

end if
end for

end for

SP-PIFO Pseudocode

OuterVar: incoming packets p with rank Rp

Input: number of queues N

l0 = 0
for all packets p do

αp = IsLeq(Rp− lp−1
N − ϵ,0)

IfThen(αp, [(̂lp, lp−1 + Rp− lp−1
N)])

for all queue q ∈ {1, . . . ,N} do

upq = IsLeq(Rp− l̂pq−1− ϵ,0)

lpq = IsLeq(l̂pq −Rp,0)

fpq = AND(up, lp)

IfThenElse(fpq , [(xpq ,1),(lpq ,Rp)], [(xpq ,0)])
end for

end for

Modeling SP-PIFO in MetaOpt

MetaOpt

FIGURE A.4: The pseudocode for SP-PIFO and how users can model it in MetaOpt using the helper functions.

straints to uniquely specify SP-PIFO’s decisions on a se-
quence of incoming packets. All these constraints are linear
or linearizable using standard techniques even though packet
ranks are variables in the outer problem.

Computing weighted average delay. We measure the gap in
terms of the average delay of forwarding packets weighted
by their priority. To measure delay of a packet, we count
how many packets SP-PIFO decides to dequeue before it. Let
dpj indicate whether packet p is dequeued after packet j. We
model the weighted average delay as:

Weighted avg delay = 1
P

∑
pktp,j ̸=p

(Rmax − Rp)dpj (23)

Next, we define dpj . We first assign weights to the packets
such that the weights respect the order in which the packets
should be dequeued (a packet p has a higher weight than j if
it should be dequeued before j). We assign weights wp as:

wp = −p +
∑

queueq

qP xpq (24)

This weighting guarantees that (1) a packet from a higher
priority queue always has a higher weight than a packet from
a lower priority queue, and (2) among the packets in the same
priority queue, the one arrived earlier has a higher weight.
Packet p is dequeued after packet j if the weight of packet j
is higher.

wj − wp ≤ Mdpj ≤ M + wj − wp ∀packetsp,j (25)

Note that weights are unique.

C.2 Formulation of AIFO
AIFO [74] is an admission control on top of a FIFO queue that
tries to approximate the same set of packets a PIFO queue
would admit and is specifically designed for shallow buffers.
AIFO keeps a window of recently seen packet ranks and com-
putes the relative rank of the new packet with respect to this
window. Then, it compares this quantile estimate with the
fraction of available space in the queue (multiplied by some
constant burst factor). If the quantile is lower or equal, AIFO
admits the packet. Otherwise, it drops the packet.

Finding quantile estimate. Recall that AIFO computes how
many packets in its recent window have lower ranks than an
incomming packet p. We model this as:

Rp − Rj ≤ Mgpj ≤ M + Rp − Rj − ϵ (26)

∀packetp∀packetj : p − K ≤ j ≤ p − 1

gp =
∑

pkt j:p−K≤j≤p

gpj (27)

where M is a large constant (M ≥ Rmax) and ϵ is a small
constant (ϵ < 1). Observe that the first constraint compares
the current packet with the last K packets (the ones in the
window). For every pair, if Rp > Rj , the left constraint in
Equation 26 forces Mgpj to be positive and consequently
gpj = 1 (packet j in the window has a lower rank). If Rp≤Rj ,
the right constraint forces gpj to be 0. Equation 27 keeps
track of the number of packets in the window with rank less
than the rank of packet p. For packets p < K, we add some
additional variables that represent the rank of packets arrived

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 947

Term Meaning

B burst factor

C queue size in the number of packets

ap 1 if packet p is admitted, = 0 if dropped

K number of samples in the window to estimate the
quantile

gp number of packet ranks in the window smaller
than rank of packet p

gpj 1 if rank of packet j in the window is smaller than
rank of packet p

TABLE A.7: Additional Notations for AIFO.

and departed before this sequence.

Deciding to admit or drop. Recall that AIFO admits the
packet if the quantile estimate of the current packet rank is
less than some factor of the available capacity of the queue.
We model this as:

ĉp = B
C −

∑
pkt i<p ai

C
∀packetp (28)

ĉp − gp + ϵ ≤ Zap ≤ Z + ĉp − gp ∀packetp (29)

where Z is a large constant (≥ maximum of window size
and queue size). The first constraint computes the fraction
of available capacity multipled by a constant (burst factor
in [74]) and the second constraint ensures ap = 0 (i.e., we
drop the packet) if the quantile estimate is higher than the
available capacity metric ĉp and ap = 1 otherwise.

Computing the final ordering of packet is similar to SP-
PIFO. These constraints in combination find AIFO’s unique
solution. All the constraints are also linear.

C.3 Proof of Theorem 2

We use the same approach as our proof for FFDSum. We
show a constructive example that matches the gap. In our
example, first p packets with the lowest rank (=0) arrive, then 1
packet with the highest possible rank (=Rmax), and finally, p∗

packets with the second highest possible rank (=Rmax−1).
Given this sequence of packets; SP-PIFO first adds all the

p packets with the lowest rank to the lowest priority queue
and then, updates the queue rank to 0 (i.e., push up). Then, it
adds the highest rank packet to the lowest priority queue and
updates the queue rank to Rmax. Lowest priority queue can
not admit the packets with rank=Rmax−1 anymore because
the condition to admit a packet is that the queue rank should
be lower than the packet rank. So, all the p∗ packets are
enqueued in a higher priority queue. As a result, all these p∗

packets are going to be forwarded before the p packets with
highest priority (Fig. A.5 shows this using an example).

We can compute the weighted sum of packet delays for
SP-PIFO and PIFO as:

77

SP-PIFO
…

p*
008 …

p

H
igher priority

0 …7 087

Incoming Packets
…

pp*

FIGURE A.5: Example of the input trace for SP-PIFO when
Rmax = 8. In this case, SP-PIFO dequeues all the packets with
the lowest rank (highest priority) after all the second lowest pri-
ority packets (r = Rmax − 1). Packets arrived earlier are on the
right side of the queue.

WdelayPIFO = Rmaxp(p − 1)
2 + pp∗ + p∗(p∗ − 1)

2 (30)

WdelaySP-PIFO = p∗(p∗ − 1)
2 + Rmaxpp∗ + Rmaxp(p − 1)

2
(31)

We can compute the difference in the weighted sum of
delays as:

WdelaySP-PIFO − WdelayPIFO = (Rmax − 1)pp∗ (32)

= (Rmax − 1)(N − 1 − p)p

Note that p + p∗ = N − 1. We can derive Theorem 2 by
finding the maximum of Equation 32.

D List of MetaOpt Helper Function
Table A.8 lists the helper functions in MetaOpt. MetaOpt
internally and automatically translates these into constraints.
For specific use cases, please refer to Fig. A.1 for DP, Fig. A.3
for FFD, and Fig. A.4 for SP-PIFO.

E Black-box search methods
We next describe our baselines in more detail. We compared
MetaOpt to these baselines in §4.

Random search. This strawman solution picks random in-
puts, computes the gap, and returns the input that resulted in
the maximum gap after .

Hill climbing is a simple local search algorithm. It first ran-
domly chooses an arbitrary input d0 and then generates its
neighbors (daux): it adds to d0 a value, which it draws from
a zero-mean σ2-variance Gaussian distribution. If this neigh-
boring input increases the gap the hill climber moves to it.
Otherwise it draws another neighbor.

The hill climber repeats these steps until it fails to make
progress and terminates. This happens when it fails to increase
the gap for K consecutive iterations. The hill climber outputs
its current solution as a local maximum once it terminates
(Algorithm 1).

948 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Helper Function Description

IfThen(b, [(xi,Fi())]) if binary variable b = 1 then xi = Fi() for all i.

IfThenElse(b, [xi,Fi()], [(yj,Gj())]) if binary variable b = 1 then xi = Fi() for all i, otherwise yj = Gj() for all j.

b = AllLeq([xi],A) b = 1 if all xis are ≤ a constant A, otherwise b = 0.

b = IsLeq(x,y) b = 1 if x≤ y, otherwise b = 0.

b = AllEq([xi],A) b = 1 if all xis are = a constant A, otherwise b = 0.

b = AND([ui]) b = 1 if all uis are = 1, otherwise b = 0.

b = OR([ui]) b = 1 if at least one ui = 1, otherwise b = 0.

y = Multiplication(u,x) Linearizes multiplication of a binary variable u and a continuous variable x.
(Internally, we choose a simpler encoding if x is non-negative)

y = MAX([xi],A) y = maximum of xis and a constant A.

y = MIN([xi],A) y = minimum of xis and a constant A.

[bi] = FindLargestValue([xi], [ui])
bi = 1 if xi is the largest among the group of variables xj with corresponding
uj = 1, otherwise bi = 0. At least one bi = 1.

[bi] = FindSmallestValue([xi], [ui])
bi = 1 if xi is the smallest among the group of variables xj with corresponding
uj = 1, otherwise bi = 0. At least one bi = 1.

r = Rank(y, [xi]) r = rank of variable y among the group of variables [xi] (quantile).

ForceToZeroIfLeq(v,x,y) Forces v = 0 if x ≤ y (users can model this with IfThen, but this one is cus-
tomized and faster). Internally, we choose a simpler encoding if v is binary.

TABLE A.8: MetaOpt’s helper functions. (b and u are binary variables, and x and y are continuous variables)

Algorithm 1 Hill climbing

Input: d0, σ2, K

d← d0, k← 0
while k < K do

daux←max(d + z,0) where z∼N (0,σ2I)
if gap(daux) > gap(d) then d← daux, k←−1 end if
k← k + 1

end while
Output: d

We re-run the hill climber Mhc times with different initial
inputs and return the solution that produces the maximum gap
to minimize the impact of the starting point.

Simulated annealing refines hill-climbing and seeks to avoid
getting trapped in a local maxima [45]. The difference be-
tween the two algorithms is simulated annealing may still
(with some probability) move to a neighboring input even if
that input does not improve the gap.

Simulated annealing gradually decreases the probability
of moving to inputs that do not change the gap: it defines
a temperature term, tp, which it decreases every Kp itera-
tions to tp+1 = γtp. Here, 0 < γ < 1 which ensures tp→ 0.
If gap(daux) ≤ gap(d), we have d← daux with probabil-
ity exp(gap(daux)−gap(d)

tp
). We repeat the process Msa times

and return the best solution.

Hill climbing vs simulated annealing. Hill climbing has
less parameters and is better suited for smooth optimizations
where there are few local-optima. But simulated annealing
is better suited for intricate non-convex optimizations with
many local-optima because its exploration phase, although
slower, allows it to avoid local optima and works better in the
long run.

Both of these algorithms have a number of hyperparam-
eters: we run grid-search to find the ones that produce the
highest gap.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 949

Towards provably performant congestion control

Anup Agarwal†, Venkat Arun⋆, Devdeep Ray†, Ruben Martins†, Srinivasan Seshan†

†Carnegie Mellon University, ⋆University of Texas at Austin

Abstract
We seek to ease the design of congestion control algorithms

(CCAs) that provably perform well under diverse network
scenarios including, cellular links, policers, token bucket
filters, operating system jitter, etc. Guaranteeing performance
under such conditions is hard as it requires considering
combinatorial possibilities of CCA and network interactions.
We build a framework that allows us to reason about CCAs.
It describes (1) the necessary actions that any performant
CCA must take, and (2) a provably sufficient amount of
information for CCAs to consider when deciding their sending
rate. Combining this framework with techniques in formal
methods, we synthesize CCAs that provably perform across
a diverse set of network conditions. Our methodology also
led us to discover and prove fundamental impossibility results.

1 Introduction
End-to-end congestion control algorithms (CCAs) for the
Internet must operate on varied network paths, each with its
unique combination of physical links (e.g., wired, cellular,
low-latency data center, satellite [3, 14, 15, 31, 57, 61, 63])
and processing elements (e.g., load balancers, schedulers,
NICs, switches, routers). On such paths, CCAs balance often
conflicting objectives like utilization, delay, packet losses,
convergence time, fairness, and flow-completion time.

A robust general-purpose CCA that performs well across
diverse network scenarios has remained elusive. All existing
general-purpose CCAs (e.g., Cubic, BBR, PCC, Copa) per-
form poorly in some practical scenario [6, 7, 17, 20, 60] (§2).

We report on our attempt at an ambitious task: “to design
CCAs that can provably meet performance objectives on a
broad set of network paths”. Unsurprisingly, this was hard.
Our initial optimism came from recent work, CCAC [7] that
uses computational methods to search for network behaviors
that break a given CCA. We thought we could simply iterate
over CCA design by asking CCAC if it violates a performance
property, and if so, fix the CCA and repeat the process.

This was not as straightforward. While CCAC describes
a scenario where a given CCA breaks, it does not tell us how
to fix the CCA, i.e., (Q1) how should it change its sending rate
choices, and in doing so (Q2) what signals/statistics might it
consider. CCAC also does not tell us (Q3) if the performance
property is even achievable by some CCA.

To answer these questions, we examined the CCAs
developed over the last few decades. They consider numerous

statistics to infer congestion (e.g., derivatives, integrals,
exponentially weighted moving averages of loss/delay
signals). There is no consensus on what statistics a CCA
should maintain. On closer observation, we find that the
statistics maintained by CCAs (implicitly) describe latent
properties of the path that the CCA is running on. For instance,
ssthresh in Reno/New Reno [33, 34] estimates a lower bound
on the BDP of the network; BBR [15] explicitly maintains
estimates of bandwidth and propagation delay.

We formalize this intuition by defining belief set as the set of
paths (described using parameters like link rate, propagation
delay, and buffer size) that the CCA believes it could be
running on and the possible instantaneous state(s) of each
path (e.g., packets in queue/on the wire). Given a model of
the network (e.g., CCAC [7]), we give a canonical way to
compute the belief set as the exhaustive set of paths and states
that can explain the history of observations made by the CCA.

The belief set (or beliefs) gives us a way to model all CCAs
and formally reason about them. First, we show that it is neces-
sary for any performant CCA to shrink the size of the belief set,
i.e., reduce uncertainty in the possible paths it could be running
on, e.g., probe to check if the link rate could be higher. Second,
we formally prove that the belief set is a sufficient set of
statistics for a performant CCA to consider, i.e., if a CCA can
ensure a certain performance property, then a “belief-based
CCA” can also ensure it, where a belief-based CCA is one
whose sending rate is a pure function of the belief set.

Beliefs help answer the above questions (Q1-3) and enable
two key results. First, by combining beliefs with CCAC, we
built a tool, CCmatic. It uses program synthesis techniques
to systematically solve the search problem: “find a CCA in
a search space that ensures given performance properties over
all specified network paths or scenarios”. Sufficiency of beliefs
allows us to define an exhaustive and tractable search space,
necessity of beliefs allows us to define performance properties,
and techniques from CCAC allow us to define the network
paths. CCmatic synthesized CCAs that guarantee performance
across all paths described by models like CCAC, where
existing CCAs struggle to even guarantee 1% utilization [7].
Despite being designed for theoretical “worst-case” links, the
synthesized CCAs outperform or match existing CCAs on em-
pirical links that resemble “average-case” networks. By design,
the synthesized CCAs are short, modular, human-interpretable,
and come with proven performance guarantees.

Second, experimenting with CCmatic, it sometimes reported

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 951

that no CCA in the search space could meet the performance
property, hinting that perhaps our performance property cannot
be achieved. Despite the sufficiency of the belief set, this is not
a definitive proof because CCmatic only explores a subset of
belief-based CCAs due to computational limits. Nevertheless,
using the sufficiency and necessity properties of the belief set,
we prove a previously unknown fundamental tradeoff between
loss and convergence time on shallow buffered networks.
Intuitively, the combination of short buffers and jitter creates
uncertainty in delay measurements, forcing CCAs to rely on
loss-based signals. If CCAs probe for bandwidth aggressively,
they converge faster but risk losses. If they probe conserva-
tively, they mitigate losses but converge slowly. We quantify
this relationship and synthesize CCAs that achieve different
points on the Pareto frontier. Note, while this tradeoff may
seem intuitive, formalizing it requires careful treatment (§6.2).

Our contributions are: (1) the belief framework to reason
about congestion control (§4), (2) CCmatic, a tool to
synthesize CCAs (§5), (3) the CCAs synthesized by CCmatic,
proofs about their performance properties, and their empirical
evaluation (§6.1, §6.3, §6.4), and (4) the impossibility
theorems (§6.2). Note, to provide provable performance
guarantees, we make several assumptions which we hope to
relax in future work (§2, §8). In particular, we do not formally
study fairness between multiple flows.

2 Motivation
We motivate beliefs using an example and outline our goals.

Belief set example. Consider a hypothetical CCA that
knows it is running on a simple link with constant round-trip
propagation delay Rm = 100 ms, an infinite buffer β=∞, and a
constant, but unknown, bandwidth C MBps. Initially, the CCA
could be running on any path on the Internet, i.e., C could be
any non-zero value (e.g., 100 MBps). I.e., the CCA believes
C∈(0,∞) MBps. Say the CCA has been sending at rate λ=10
MBps, and observes that all packets are ACKed 100 ms after
transmission (i.e., RTT = Rm). Such RTTs could be produced
by any path with C≥10 MBps. Now, say the CCA increases λ

to 15 MBps. If RTTs increase or losses happen, the CCA can
conclude that C≤15 MBps. Combining this with CCA’s past
observations, we can update the belief set to C∈ [10,15] MBps.
Otherwise, if RTT remains at 100 ms, then C∈ [15,∞) MBps.

We can compute beliefs for any CCA given its past
observations on a network model. The belief set serves as a
useful tool to reason about the performance of any CCA. For
instance, if the CCA above believes that C ∈ [15,∞) MBps,
then it needs to keep increasing its rate until it obtains an upper
bound on C by deliberately causing losses or increasing RTTs.
Otherwise, without an upper bound, the CCA risks arbitrarily
low utilization because the actual link rate could be arbitrarily
large, e.g. 1500 MBps. I.e.,

LEMMA 2.1. To avoid arbitrarily low utilization, a CCA
needs to shrink the set of possible paths (the belief set) it could

Belief-based
CCA

BELIEFS

(§4) Belief
computation

rate

signals

Traditional
CCA

STATE

signals cwnd
rate

Figure 1: Beliefs standardize the state in congestion control.

be running on by obtaining an upper bound on C.

In addition to it being necessary to shrink beliefs, we show
in §4 that the belief set is the only information a CCA needs in
order to decide sending rate. This is because the belief set is the
only information a CCA needs to estimate the performance im-
pact of its actions. This vastly simplifies CCA design (Fig. 1).

Traditionally, CCAs decide (Q1) what state (statistics)
to maintain from input signals, and (Q2) sending rate. For
instance, to answer Q1, CCA designers often consider “what
does packet loss tell us about the state of the network?”, “when
can bandwidth be measured?”, “what length of interval should
be considered to sample bandwidth?” [15, 16].

Belief computation is uniquely determined by a network
model and exhaustively derives all possible information about
the network’s path/state directly from the time series of CCA’s
sending and acknowledgment sequence numbers.1 We no
longer need to make ad-hoc decisions to answer Q1. This effec-
tively decouples Q1 and Q2 and standardizes the state a CCA
has to maintain. With beliefs, the CCA only decides the com-
putation in the shaded box that maps beliefs to sending rate.

Goals and non-goals. We want CCAs that provably achieve
bounds on utilization, delays, losses, and time to converge to
variations in link rate, under the following scenarios:

S1. Non-congestive delays or jitter. Delays can occur due
to reasons unrelated to congestion [6, 29], e.g., delayed ACKs,
ACK aggregation, OS scheduling, delays at the MAC and
physical layers. This hinders CCAs from bounding end-to-end
delays while ensuring high utilization. Traditional loss based
CCAs [31, 33, 34, 52] fill up queues until they experience a loss
and cannot bound delays. Delay based CCAs [8, 12, 15, 21, 46,
56, 57] use variation in measured round-trip times (RTTs) to es-
timate congestion. Jitter can cause these CCAs to mis-estimate
congestion and send at a rate as much as 10× away from the cor-
rect rate [7, 21, 46, 60]. For instance, jitter can trick BBR [15]
and Copa [8] into achieving near-zero utilization [7]. Recent
learning-based CCAs (§7) also do not explicitly consider jitter.

S2. Shallow buffers with jitter. Paths with shallow buffers
are common on the internet [24, 27, 28], because they prevent
buffer-bloat and help manage cost/area/power of routers [4,
23]. On such paths, it is challenging to maintain utilization
while avoiding excessive losses. Traditional loss-based CCAs,
including Cubic [31], get poor utilization in single flow cases
([55], §6.4). ACK-clocked CCAs, despite pacing, send bursts
of packets due to jitter (e.g., ACKs-aggregation [29]) which

1RTTs, ACK rates, and losses can be derived from sequence numbers.

952 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

risks excessive losses [7]. BBRv1 [15] is paced, but uses
aggressive probes that incur O(BDP) losses periodically [17].
BBRv2 [27] and BBRv3 [28] incur lower loss on average but
still incur O(BDP) losses in some cases (Appendix H).

In this paper, we only focus on the single-flow case with
an infinite backlog of data to transmit when designing prov-
ably performant CCAs for S1 and S2. Designing provably
fair CCAs robust to jitter is a hard problem [6] that we do not
address. Our current formal framework gives no guarantees or
predictions on the outcome of multi-flow experiments. Never-
theless, we empirically evaluate the fairness of our synthesized
CCAs under simple network conditions (Appendix H). We find
that some of our CCAs are fair while others are not. We believe
that addressing S1 and S2 in the single-flow case is a key step to-
wards addressing the multi-flow case. S1 and S2 are important
real-world scenarios that have been the focus of recent changes
to BBR [27, 28]. There are several situations where a flow is
alone in its bottleneck queue [13] where our insights imme-
diately apply (e.g., cellular networks). Our loss-convergence
tradeoff (§6.2) also applies with multiple flows and may guide
how buffers should be sized for networks with jitter.

Formally addressing S1 and S2, even in the single-flow case,
was challenging. As described above, none of the existing
CCAs achieve our goals. Beliefs and automated reasoning
allowed us to systematically explore the design space of
CCAs, unveiling previously unknown tradeoffs and novel
CCA mechanisms. We discovered and quantitatively proved
a fundamental tradeoff between loss and convergence time
on networks with shallow buffers. We synthesized CCAs
that are on this Pareto frontier. Existing CCAs, unaware
of the tradeoff, make sub-optimal tradeoffs or only explore
a subset of useful points on the Pareto frontier. We also
discovered new ways to use sending rate decisions to augment
the information obtained from RTTs and ACK rates. This
leads to better estimates of the network parameters (bottleneck
bandwidth/buffer) and state (queuing or extent of congestion)
(§6.2.1). We illustrate here with two examples.

Example 1. CCAs use the gap between instantaneous and
minimum RTTs to estimate queueing delay. Non-queueing
delays can create RTTs larger than the minimum RTT and
cause a CCA to erroneously infer that a queue is built up.
However, if the CCA has been sending at a low rate, then
we know there is no queue buildup even if there is inflation
in RTTs. In such cases sending rate choices provide a better
estimate about queueing than RTTs alone.

Example 2. Say a CCA sent a burst of packets to probe for
available bandwidth and observed that the probe did not incur
any packet loss. Then we can conclude that either the buffer or
the bandwidth is large enough to have accommodated the burst.
I.e., both the buffer and bandwidth cannot be small as that
would have incurred a loss. We cannot make such a conclusion
by relying on ACK rate and RTT measurements alone. Due
to jitter, a burst may not lead to an immediate increase in ACK
rate ([7], §4) which traditionally would have allowed us to

C – bottleneck link rate [r]
Rm – round trip prop. delay [t]
β – bottleneck buffer size [b]
D – max per-packet jitter [t]
MSS – maximum segment size [b]
BDP – C·Rm [b]
βs – buffer in seconds (β/C) [t]
T – time steps [unitless]
λ(t) – inst. sending rate [r]

θ(t) – instantaneous inflight [b]
q(t) – inst. bottleneck queue [b]
qdel(t) – inst. queueing delay [t]
RTT(t) – inst. round trip time [t]
S(t) – cumulative service [b]
A(t) – cumulative arrivals [b]
L(t) – cumulative loss [b]
[.]L(t), [.]U (t) – inst. lower and
upper bounds on parameter or
state, e.g., CL(t), CU (t)

Table 1: Glossary of symbols. The square brackets show the
units: bytes [b], rate [r], and time [t]. inst. = instantaneous. In-
flight is bytes that are unacknowledged and not inferred as lost.

CCA

Figure 2: CBR-delay network model.

conclude bandwidth is large. Likewise, an inflation in RTTs
could be due to jitter, and we cannot assume that the bottleneck
buffer is large enough to accommodate the inflation in RTTs.

CCmatic automatically synthesizes CCAs that use such
insights to make non-trivial decisions about when/how to
probe/drain. E.g., it realized that draining is necessary not only
to maintain low delay, but also to restrict losses when probing
for bandwidth on paths with jitter and shallow buffers (§6.2.1).

Our work addresses an important and challenging set of sce-
narios, and establishes a formal methodology for further explo-
ration. In the future, we hope to extend our methodology to for-
mally explore fairness between multiple flows, and robustness
to application-limited flows and non-congestive losses (§8).

3 Network models
We use CCAC [7] to succinctly express and efficiently explore
the scenarios in §2. CCAC uses a single bottleneck abstraction
to summarize the cumulative effects multiple elements on a
network path. It uses bounded model checking [19] to provide
a trace of CCA execution under various network behaviors.

Our investigations revealed that CCAC expresses behaviors
that are perhaps too adversarial for any CCA to handle (§6.1,
§6.2). So, we explore two other network models that are
weaker, i.e., they are less challenging from the CCA’s point
of view as they capture strictly fewer behaviors. We briefly
describe these models and use notation from Table 1. Note,
if a CCA works on a stronger model then it also works on a
weaker model, and an impossibility result for a weaker model
holds for a stronger model.

CBR-delay. This is motivated from [6]. It abstracts the
network as a constant bit rate (CBR) box followed by a
non-deterministic delay (or jitter) box, and a propagation delay
of Rm seconds (shown in Fig. 2). The CBR box has a constant
(over time), but arbitrary bottleneck bandwidth of C bytes/sec-
ond, and a buffer of size β bytes. It expresses the queueing

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 953

or congestive delays (and losses) at the bottleneck queue in a
network path. The delay box can add up to D seconds of delay
non-deterministically. Note, non-determinism is different
from randomness or stochasticity (e.g., uniform random
delays). Non-determinism allows the network to arbitrarily
inject bursts and provably express the cumulative effect of
various sources of jitter [6, 7, 10, 42]. Non-determinism (as
opposed to randomness) can express non-congestive delays
that may have causal effects or correlations.

CCAC [7]. It includes all behaviors captured by CBR-delay.
Additionally, CCAC can non-deterministically accept a burst
of packets without building up a queue, effectively hiding
congestive delays/losses even when the CCA is sending above
the link rate. In contrast, CBR-delay can inject non-congestive
delays but not non-deterministically hide congestive delays.
This is a crucial and previously unknown distinction that
changes the tradeoffs that CCAs must make (§6.1, §6.2).

Ideal link. It cannot add any jitter to packets. It is simply
a FIFO queue, with a constant (but arbitrary) bandwidth and
propagation delay. Several theoretical analysis [9, 18, 45, 49,
62] have used similar modeling. We study this to compare
CCAs designed for the ideal link vs. stronger models.

Variations in link rate over time. Like CCAC, all the
models assume a fixed link rate over time. We use CCAC’s
approach to express variations in link rates. CCAC and
CBR-delay express short-term link rate variations using
jitter. All the models express long-term link rate variations by
arbitrarily choosing initial conditions. E.g., a trace that begins
with a high congestion window (cwnd) relative to C emulates a
scenario where link rate decreased. Alternatively, a large initial
queue buildup, and low cwnd can emulate a case where the link
rate decreased and the CCA backed off, but the queue has not
drained. One can stitch such traces together to explore longer
executions with potentially multiple link rate variations (§5.2).

Formal definition. Mathematically, we view a network
model as a relation that relates ⟨path,state,CCA_action⟩ to
⟨next_state,CCA_feedback⟩. Note, due to non-determinism,
the relation may map a CCA action on a given path and state
to multiple feasible next states and feedbacks. The network
model also defines a set of initial states, and the domains of
path, state, action, and feedback.

For example, in the CBR-delay model, a path is described
by the parameters: link rate, propagation delay, amount of
jitter, and buffer size, e.g., ⟨C,Rm,D,β⟩; and state by: bytes in
the bottleneck queue (q) and bytes in flight (θ), e.g., ⟨q,θ⟩. The
model’s relation is defined by constraints, such that feasible
solutions to the constraints are the tuples in the relation.

4 Belief framework
DEFINITION 4.1. A belief set (or beliefs) for a given network
model is the set of paths (and their latest states) that could
have produced (according to the network model) the historical

Network model

Beliefs

Invert. Interpret constraints on network
behaviors as constraints on beliefs

Figure 3: Inverting the network model to compute beliefs.
Depending on the CCA’s observations, we may get different
bounds on the belief set. The bottom three plots illustrate the
constraints on the belief set we get depending on whether the
CCA observed qdel>D, loss, or neither (for CBR-delay).

sequence of CCA’s observations. It is the CCA’s belief about
the paths and states of the network it is running on.

For example, for the CBR-delay model, the belief set is a
set of tuples of the form ⟨C,Rm,D,β,q,θ⟩. Such a tuple is in
the belief set if and only if it can explain (according to the
network model), the observations of the CCA thus far. We use
the term observations to collectively refer to CCA’s actions
and feedback from the network.

Computing beliefs. We can “invert” the network model’s
relation to compute beliefs (Fig. 3). Specifically, the
constraints of the model describe the feasible ways in which
the network’s state and feedback can evolve (e.g., how it
services (delays) packets, drops packets, and builds queues),
given the CCA’s sending behavior, the network path, and the
network’s initial state. I.e., the constraints describe feasible
combinations of ⟨S(t),L(t),q(t),θ(t)⟩, A(t), ⟨C,Rm,D,β⟩, and
⟨q(0),θ(0)⟩. If we fix the observations, i.e., ⟨A(t),S(t),L(t)⟩,
then the constraints describe the feasible paths and states that
could have produced CCA’s observations. This is the belief
set. Each constraint of the network model gives us a constraint
on the belief set. This is similar to conversion of a partially
observable markov decision process (POMDP) into a belief
MDP [37]. We perform the inversion §5.1 and §6.2.

As a quick example, for the CCAC model, in an interval
of length T , the network can serve at a rate C and inject a
burst of D seconds, i.e., S(T)−S(0)≤CT+CD, where S(t)
is cumulative bytes served (delivered) until time t. If we invert
this constraint on S to a constraint on C, we get C≥ S(T)−S(0)

T+D .

Shrinking beliefs is necessary. CCAs need to shrink the
size of the belief set, i.e., infer the possible parameters and
states of the network they are running on. We illustrate this
using a family of lemmas (Lemma 2.1, Lemma 4.1) that show
the dimensions along which beliefs need to shrink to ensure
different performance properties.

LEMMA 4.1. To ensure an upper bound on queueing delay
(qdel), a CCA needs to shrink the set of possible propagation

954 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

delays the network could have.

Consider a CCA that aims to ensure qdel ≤ 10 ms on an
ideal link. Say it has set cwnd = 10 MB, and observes that
all RTTs are 100 ms, yielding an average throughput of
cwnd/RTT = 100 MBps. Such RTTs can be explained by C =
100 MBps, and any Rm∈ [0,100] ms, and qdel=100−Rm, i.e.,
qdel∈ [0,100] ms. Now, say the CCA decreases cwnd to 5MB.
If RTTs are still 100ms, i.e., RTTs do not decrease with cwnd,
the CCA can conclude that Rm = RTT = 100 ms and qdel = 0 ms.
Otherwise, if RTTs drop to 50 ms, i.e., the average throughput
is still 100 MBps, Rm and qdel still remain in [0,100] ms.

Until a CCA decreases cwnd to the point that RTTs stop
decreasing, it cannot obtain a lower bound on Rm, consequently
it cannot ensure an upper bound on qdel.

Beliefs are sufficient. Beliefs allow a CCA to compute
possible next state(s) and feedback(s) (and consequently
potential future performance) for different sending rate
choices. Due to this, a CCA does not need to look at any
information other than the belief set when deciding its actions.

THEOREM 4.1. If there exists a deterministic CCA that en-
sures a performance property on a network model, then, there
exists a belief-based CCA that ensures the performance prop-
erty on the model. Where, a deterministic CCA is a CCA whose
actions are a function of the entire history of past observations
(i.e., its actions and feedback) and a belief-based CCA is a
CCA whose actions are a function of the belief set computed
using the network model over the history of past observations.

For this theorem, we assume that the performance property
is specified as a boolean valued function over a belief set and
CCA’s action on that set. We show in Appendix A how the
properties we use can be expressed in this form.

We use this theorem to (1) synthesize CCAs as function
of the belief set, and (2) to prove impossibility results, i.e., if
there is no action that can ensure a performance property over
all tuples in a valid belief set, then the performance property
is not achievable. We use such arguments in §6.2.

Appendix A gives a formal proof by constructing a
belief-based CCA using the deterministic CCA. Here we give
the intuition. We view congestion control as a 2-player (CCA
vs. network) zero-sum game. The network tries to prevent
the CCA from achieving its performance property. The CCA
chooses its sending rate and the network delivers, delays, or
drops packets. The only “rule” is that the network’s actions
must correspond to some path in the network model.

The belief set exhaustively summarizes the history of the
game, making it memoryless (similar to the board state in
chess). Beliefs serve as a “board” by meeting the two require-
ments: (R1) we can determine the set of feasible moves for the
players from the board allowing us to enforce the game rules
(Lemma A.1), and (R2) we can update the board by applying
the moves (Lemma A.2). As a result, future progressions
of the game (and any optimal strategies) depend only on the
board (beliefs) irrespective of the history that led to the board.

GENERATOR

VERIFIER

1 Candidate
CCA

✓
2 Counterexample

scenario
✓

✗
4 No solution

✗
3 Solution CCA

Figure 4: CEGIS loop (adapted from [1]).

5 CCmatic: Synthesizing CCAs
We use Counter-Example Guided Inductive Synthesis
(CEGIS) [51] (a program synthesis technique) to synthesize
(search for) CCAs given a specification (i.e., a network model
and a performance property).

CEGIS iteratively generates a candidate CCA from a search
space 1 , and finds a counterexample scenario (network path,
initial state, and non-deterministic choices) that breaks the
performance property for the candidate CCA 2 (Fig. 4). The
search space is pruned using the counterexamples (see below),
and eventually the loop terminates if either (1) the verifier
cannot find a counterexample (and thus, the CCA achieves
the performance property) 3 , or (2) the entire search space
has been pruned (no CCA in the search space can achieve the
performance property) 4 .

We implement the generator and verifier using the constraint
solver Z3 [47], by encoding the search inputs (i.e., search
space, network models, and performance properties) into
SMT (Satisfiability Modulo Theories) constraints in the
theory of linear real arithmetic (LRA) [38]. In the generator,
we only search for CCAs that pass unit checks (e.g. do not
add bytes with seconds). For each counterexample, we add
constraints to prune all CCAs that make the same sending
rate choices as the candidate CCA on the counterexample. We
explored encodings that prune more CCAs, these did not yield
significant reduction in search time, and we omit their details.

For encoding into SMT, we use beliefs to define the search
space (§5.1) and a transition system abstraction to systemat-
ically define performance properties (§5.2). For the network
models, we adopt the encoding proposed by CCAC [7].
It discretizes time and uses Network Calculus [41] style
formulas to constrain how the network serves packets. Note,
the synthesis happens offline. One can directly implement
the synthesized CCAs in network stacks like the Linux kernel
and QUIC [40]. For completeness, we provide details on the
implementation of the verifier and generator in Appendix C.

5.1 Belief-based CCA Template
In CEGIS, the search space is often specified using a template
or grammar. The template has placeholders (or holes) that
the generator fills to synthesize a concrete CCA. It describes
the inputs (e.g., loss/delays signals) that the CCA takes and
the mathematical/logical operators it can use to compute
its outputs (i.e., rate and state). Due to Theorem 4.1, the
templates do not need to describe state computations. They
can just take beliefs as inputs and produce rate as the output

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 955

Belief set
Over-approx

belief set

Figure 5: Over-approximating beliefs.

to fill the shaded box in Fig. 1.

Inputs. We face two challenges with beliefs. First, the belief
set may be a complicated object in the ⟨path,state⟩ space. For
easier encoding, we over-approximate it using closed-form
expressions (see below). Second, our network models do not
directly model variations in link rate (§3). When the link rate
varies, it can go outside the belief set. To address this, we re-
compute beliefs using a recent history of observations (§5.1.2).

Over-approximating beliefs. We construct closed-form ex-
pressions representing bounds on the network parameters and
states. For example, we use CL and CU to represent lower and
upper bounds on the C values in the belief set, and pass these
bounds as input to the CCA. By default, we pass upper and
lower bounds on C (CU , CL), and qdel (qdelU , qdelL) as a proxy
for q. We describe how we compute them in §5.1.1. We assume
the CCA knows Rm, and design CCAs for D=Rm (i.e., jitter
can be as large as Rm, e.g., due to WiFi ACK aggregation [29]).
This enables efficient synthesis by discretizing time in units
of Rm (as in CCAC [7]). In reality, a CCA does not know Rm.
Nevertheless, we show in Appendix B that if we use a CCA
designed for Rm equal to the minimum RTT seen thus far, we
can guarantee performance because the synthesized CCAs are
inherently robust to uncertainty in RTTs caused by jitter.

While the closed-form expressions may over-approximate
beliefs, i.e., include extra paths that cannot produce the
CCA’s observations (Fig. 5), they never remove paths that can
produce its observations. We use the verifier’s (i.e., CCAC’s)
assistance to both validate correctness of the closed-form
expressions and to derive them (§5.1.1).

Over-approximation (as opposed to under-approximation)
does not break soundness. The CCA believes it could be
running on extra paths, and needs to take actions that do
not violate performance on the extra paths. However, over-
approximation does break completeness, i.e., Theorem 4.1
no longer applies.2 It may happen that we summarize two
different histories using the same approximate beliefs even
though the actual belief sets are different. A belief-based
CCA is allowed to take different actions on the histories, but
a CCA in the template is forced to take the same action. As
a result, CCmatic may output “no solution in template” even
though a belief-based CCA works. When this happens, we
explore weaker network models where we can add additional
beliefs (e.g., βL, qU) or tighten existing ones (§6.2.1). Despite
approximations, CCmatic synthesizes novel CCAs (§6.1).

Operators. Some CCAs use nonlinear operators like cube

2Note, Theorem 4.1 also does not apply because we only explore a subset
of belief-based CCAs using CCmatic.

root [31] or division [8]. Non-linearities slow down SMT
solvers [58]. Instead, we search for piece-wise linear functions
to map belief bounds to sending rates, represented as (nested)
if-else statements. The generator synthesizes the conditionals
and expressions in these statements as linear combinations
of the belief bounds. While CCmatic only searches for CCAs
in the template, we are able to generalize CCmatic’s insights
to arbitrary CCAs, e.g., impossibility results in §6.2.

Listing 1: Belief-based CCA template

1 condi = ? CU + ? CL+ ? qdelU + ? qdelL+
2 ? MSS/Rm+ ? Rm>0
3 exprj = ? CU + ? CL+ ? MSS/Rm
4 if (cond1): rate = expr1;
5 elif (cond2): ...
6 else: rate = exprn;
7 rate = max(rate, MSS/Rm) # Ensure +ve rate.

Summary. Our templates take the form in Listing 1. ?
denotes holes to be chosen by the generator. Different
templates have different number (and nesting) of the “if”
conditions. To keep the search tractable, we restrict the domain
of the holes to be a small finite set, e.g., {−3,−5/2,−2...,3}.

5.1.1 Computing belief bounds

Queueing delay. Traditionally CCAs estimate queueing
delay as RTT −Rm [8]. However, this does not account for
non-congestive delays. In the CCAC and CBR-delay models,
RTT(t)=Rm+qdel(t)+jitter(t), where 0≤ jitter(t)≤
D. Consequently, qdel(t)∈ [qdelL(t),qdelU (t)] where,

qdelU (t)=RTT(t)−Rm

qdelL(t)=max(0,RTT(t)−Rm−D) (5.1)

Link rate. BBR [15] estimates link rate as the measured
ACK rate. Jitter can create transient variations in ACK rate
and mislead this estimate. Using the verifier (CCAC), we
computationally derive the set of link rates that can explain
an average ACK rate of r (i.e., the CCA received rT bytes in
an interval [t1,t2] of length t2−t1=T seconds). We also derive
this set analytically in Appendix B.

We query CCAC for feasible values of r after fixing λ(t)=λ

(for all t). We repeat for different values of λ to obtain the
bounds: rT ∈ [C(T−D),C(T+D)] if λ≥C, and rT ∈ [λ(T−
D),C(T+D)] otherwise. A CCA can be sure that λ≥C in two
cases, (1) RTT >Rm+D over the entire interval (or qdelL>0)
(indicating non-zero queueing), or (2) there are losses in the
interval (we verify this, see below). By inverting the bounds
on r, we get bounds on C (algebraic steps in Appendix B):

CL(t)= max
0≤t1≤t2≤t

r·T
T+D

CU (t)= min
0≤t1≤t2≤t

r·T
T−D

(5.2)

Note, CU is only computed over the intervals where qdelL>0
or loss > 0. We checked these calculations by asking CCAC
if there is a trace and CCA (i.e., CCAC is free to choose λ(t))
for which C /∈ [CL,CU]. CCAC returned UNSAT, confirming
that no traces violate our calculation.

956 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.1.2 Handling stale beliefs

Our network models do not explicitly model variations in link
rate. Such variations can make the beliefs inconsistent (or
stale), i.e., the network can take actions outside the belief set,
leading the CCA to make bad decisions. For example, the
link rate may decrease below CL making the beliefs stale. The
CCA may still transmit at rate CL thinking that C ≥ CL, but
cause losses due to the reduced link rate.

We “time out” beliefs periodically (e.g., every 10Rm), and
also when they become empty (or invalid), e.g., CU < CL.
On a timeout, we re-compute beliefs using the history of
observations since the last timeout. When beliefs become
inconsistent by a large margin, they become invalid quickly.
However, if they are slightly inconsistent, they may remain
valid. The periodic (speculative) timeouts helps make beliefs
consistent in the second case. For example, say C decreases
below CL, i.e., C=CL−ε for some ε>0. The beliefs become
empty when CU <CL. CU = r·T

T−D , where r could be as large

as C·(T+D)
T . For CU <CL, we need C(T+D)

T−D <CL=C+ε. This
can take arbitrarily long time for arbitrarily small ε.

We retain our performance guarantees as long as any of
the following holds: (1) the network parameters change
infrequently so that they become consistent on the periodic
timeouts, (2) parameters change by large margin, so that
beliefs become invalid and timeout, or (3) parameters change
within the belief set (i.e., remain consistent). We may violate
our guarantees if the parameters frequently (e.g., every Rm)
change to values just outside the belief set. However, since
the beliefs are slightly off (e.g., 5%), our guarantees will
also only be slightly off. Note, in general, frequent changes
in network parameters is a hard problem for end-to-end
congestion control due to feedback delay. Our CCAs react to
changing network parameters at similar timescales as existing
end-to-end CCAs (Appendix F, Appendix H).

Note, the periodic timeouts can interfere with a CCA’s
probes to estimate the belief set. We add constraints to
prevent unnecessary timeouts. E.g., a CCA might be draining
the queue and may not observe any delays/losses. If we
recompute beliefs only using the recent history, there may be
no upper bound on C, and the CCA would need to re-probe
CU from scratch. To prevent this, we only time out beliefs
when the size of belief set is small (e.g., CU ≤ 1.1CL), and
we put bounds on how much the belief set can expand, e.g.,
CU (now)≤2CU (last_timeout). These restrictions along with
the timeout period affect how quickly CCAs tracks changes
in link rate. Appendix F (Lemma F.2) studies this theoretically
and Appendix H (Fig. 19 and Fig. 18) studies this empirically.

5.2 Transition system based properties
The verifier uses bounded model checking to explore short
snapshots of a CCA’s execution under the network model.
On such snapshots, metrics like long-term average utilization
may be violated (e.g., CCA may take time to ramp up sending

(I) Beliefs
inconsistent.
CL(0)> C∨
CU (0)< C

(II) Beliefs
consistent.

CL(0)≤ C∧
CU (0)≥ C

(III) Beliefs
converged. II∧
CL(0)> C

2 ∧
CU (0)< 2C

(IV) Queue
converged.

III∧q(0)<
2C·(Rm +D)

Beliefs become consistent

Beliefs shrink

Queue drains

Figure 6: An example transition system. The formulas in the
boxes (e.g., “III∧q(0)<2C·(Rm+D)”) define the states.

rate when the link rate increases). We use CCAC’s approach
to prove lemmas over the snapshots and stitch them using
mathematical induction (on time) to prove properties about
arbitrarily long executions. To do this stitching, we need to
define what “progress” CCAs need to make in a transient
period (e.g., CCA ramps up sending rate until it meets a
utilization objective and then maintains utilization). CCACs
approach to define progress is ad hoc and CCA dependent.
This becomes unwieldy as the number of objectives and CCAs
increase. To systematically state lemmas, we use a transition
system abstraction. We use it to build (1) proofs about the
performance of CCAs, and (2) invariants used for synthesis.

Transition system. Fig. 6 shows an example transition
system. The states are represented as symbolic boolean
formulas (e.g., “beliefs are consistent”, or CL(0)≤C≤CU (0)).
For each state, users specify (1) transitions made in time
0 to T (e.g., “beliefs shrink”: CL(T) > 1.5CL(0)) and (2)
objectives during the period (e.g., “delay is at most D seconds”:
∧t∈[0,T]qdel(t) ≤ D). Note, users only declare “what”
properties the CCA should ensure, CCmatic figures out “how”.

A belief-based CCA under our network models typically
makes the following transitions. Whenever the link rate
changes, the beliefs can become inconsistent (stale). Even-
tually, the beliefs become consistent (due to §5.1.2), then
the beliefs shrink (as this is necessary from §4), and finally,
the CCA reaches the steady state (e.g., state IV) where it
meets its steady-state objectives. Users can express both
steady-state and transient objectives. For instance, high loss
may be acceptable during slow start (e.g. in state I-III), but
not for subsequent bandwidth probes (e.g., in state IV).

Proofs and encoding. We build a lemma for each state
(e.g., State I =⇒ (State I objectives∧State I transitions)) and
take the conjunction (logical and) of these lemmas. This
conjunction serves as the proof of performance for the CCA,
as it exhaustively describes the states that the CCA visits and
performance it ensures in each state. It is exhaustive because
the disjunction of the transition system states is a tautology,
i.e., covers all possible states. Appendix F gives the encoding
of the lemmas and shows how they work together in a proof.

The transitions happen eventually, i.e., may occur over
multiple steps. Due to this, the encoding of lemmas needs
to ensure that transition progress adds up over stitched
executions. For instance, we encode “beliefs shrink” as “at
least one of C − CL and CU − C decreases” and “neither

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 957

increases”. The second literal, “neither increases”, is required.
Without it, both CL and CU can increase in one execution, and
decrease in the subsequent execution and the progress does
not add up. Such a CCA can meet the “at least one” criterion
without ever transitioning to state III.

Synthesis invariant. We do not directly use the proof (i.e.,
the conjunction of lemmas) for synthesis. Instead, we build
under-specified invariants that are necessary for a proof but
not sufficient. We under-specify for two reasons. First, the
lemmas contain constants that depend on the CCA, which
is not known at the time of synthesis (e.g., 2C, C

2 , in Fig. 6).
Second, before synthesis, we do not even know if there exists
a CCA that can meet the lemmas. Under-specification allows
us to synthesize reasonable-looking CCAs, which we then
process post synthesis (see below).

To under-specify, we drop literals (inequalities) with
unknown constants. Notice, that such literals define states
III and IV (Fig. 6). Due to dropping, we cannot distinguish
between states II-IV. We coalesce states II-IV into one, and
allow the CCA to take any transition that is valid for states II-IV
(effectively taking disjunction of the transitions). We similarly
combine state III and IV objectives into steady_state_obj,
and retain state II objectives as transient_obj. The result is
Eq. 5.3 below. We use it for synthesizing CCAs with different
choices of objectives (§6.1).

beliefs inconsistent =⇒
(State I objectives ∧ beliefs become consistent)

∧beliefs consistent =⇒ (transient_obj∧(beliefs shrink
∨ large queue drains ∨ steady_state_obj)) (5.3)

Users are free to choose the degree of under-specification.
They may drop literals (as we do), set loose bounds for the
constants (e.g., CU (0)<10C for state III), or even synthesize
CCAs that meet specific constants.

Post synthesis. The synthesis invariant is not a sufficient
proof. Hence, after synthesis, we build proof lemmas for the
solution CCAs. To determine the constants in the lemmas, we
use binary search to identify the region of values for which
the lemmas hold. We describe this process in Appendix F. If
there is no value of constants for which a particular lemma
holds, we tweak the CCA, invariant, and/or the lemma(s). For
example, when trying to build proof lemmas for a particular
synthesized CCA (cc_probe_slow in §6.1), we found that the
queue needs to be drained before beliefs can converge, i.e.,
“queue converged” in state IV (Fig. 6) needs to happen before
“beliefs converged” in state III. So we reorder and redefine the
states in the transition system and lemmas to reflect this and
build a proof of performance for cc_probe_slow.

6 Results
We present four types of results. (§6.1) CCAs synthesized
by CCmatic for various environments and objectives combi-
nations. (§6.2) Fundamental tradeoffs inspired by negative

outputs of CCmatic. (§6.3) Proofs that the synthesized CCAs
ensure their performance objectives. (§6.4) Empirical eval-
uation of the synthesized CCAs to validate our mathematical
modeling and proofs of performance.

6.1 Synthesis queries
A query describes the search inputs: (1) search space, (2)
network model, (3) performance properties. Using CCmatic
is an iterative process. One may realize that the performance
properties are infeasible, the network model is too adversarial,
or the approximations in the template are limiting. As we
ran queries, our understanding improved, and we built new
queries that better reflected our requirements (Table 2).

Objectives. We require CCAs to ensure a lower bound on
the utilization, and upper bounds on the amount/frequency of
losses and bytes in flight (to bound packet latencies). We add all
these objectives to steady_state_obj in Eq. 5.3. Our primary
focus is on exploring asymptotic bounds, e.g., are losses O(C),
O(log(C)), etc. So we specify asymptotic bounds with loose
constants. For example, we query CCAs that ensure utilization
≥50%, and inflight≤5·C·(Rm+D). The loose constants allow
under-specifying the synthesis invariant (§5.2). Later, when
building proofs, we identify the best constants the synthesized
CCAs can achieve (Appendix F). Note, the inflight bound has
to be at least CRm +CD . Because, to provide a utilization
lower bound, a CCA needs to fill the wire (CRm bytes) and
build D seconds or CD bytes of queueing (Theorem 2 of [6]).

We classify loss amount into small and large. Small means
that loss is at most a few packets independent of C, or O(1).
Otherwise, loss is large, or ω(1), it increases with C. The
verifier (SMT solver) explores traces numerically and there is
no direct way to encode ω(1). As a workaround, we classify
more than 3MSS loss as large. For frequency, we query CCAs
that cause at most one small loss every other Rm, and never incur
large losses. By default, we put these constraints in steady_-
state_obj, later we also put them in transient_obj, e.g., G4 .

Environments. We sought CCAs that can handle paths
with arbitrary buffer sizes and adversarial delay jitter as
modeled by CCAC and CBR-delay (§2, §3). As stepping
stones, we designed CCAs for restricted buffer sizes, viz.
(1) infinite (β = ∞), (2) small fixed (β = 1

2 CD), and (3)
large (β ≥ 3·C·(Rm +D)). These values formed interesting
thresholds during our experimentation. We represent arbitrary
buffer as β≥0, i.e., the verifier is free to choose the buffer size.

Templates and solutions. We synthesize all CCAs that
satisfy a query. When CEGIS finds a solution, we prune it
from the search space and let the loop continue until it cannot
find more solutions. For each solution, we also prune CCAs
that have same coefficients for the belief bounds but different
coefficients for the constants (i.e., MSS/Rm, Rm) to avoid
enumerating similar CCAs.

When CCmatic does not produce a solution, we increase
(1) the program size (number of “if” expressions), and (2) the

958 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Environment Objectives Template Trace # Solutions Time # Itr
Network

model (§3) β
Constrain loss

(transient_obj)
Expr
(“if”)

Search
size (# CCAs)

Length
(# Rm) (secs) (CEGIS)

G1
CCAC Infinite N/A 2 3×104 4 0 16 40
CCAC Infinite N/A 2 3×104 5 4 CCA1 48 58
CCAC Infinite N/A 2 3×104 11 6 CCA1 CCA3 7328 64

G2 CCAC Small fixed No 2 3×104 7 6 CCA2 CCA3 4942 49
G3 CCAC Arbitrary No 2 3×104 11 2 CCA3 7699 52

CCAC Small fixed Yes 3 108 11 0 5067 79
G4 CCAC Arbitrary Yes 3 108 11 0 6851 76

G5
Ideal Infinite N/A 2 3×104 3 48 26 86
Ideal Small fixed Yes 2 3×104 3 194 51 229
Ideal Arbitrary Yes 2 3×104 3 23 21 67

G6 CBR-delay Arbitrary Yes 2 2×106 7 20 CCA4 19331 513

G7

CCAC Large No 2 3×104 11 6 CCA1 CCA3 9812 79
CCAC Large Yes 2 3×104 11 4 CCA1 6884 45

CCAC Arbitrary Yes only if
β≥3C(Rm+D)

4 3×1011 9 6 CCA5 46582 691

Table 2: Summary of queries. The “# solutions” column also lists CCAs that are representative of the solutions produced. Some
entries in “constrain loss” column are not applicable (N/A) as (congestive) loss is not possible when buffer is infinite.

Listing 2: Synthesized CCAs (αR=MSS/Rm)

G1 CCA1 cc_qdel
if (qdelL >0):

rate =1/2CL
else:

rate =2CL

G2 CCA2 cc_probe_fast
if (CU <2CL):

rate =CL
else:

rate =2CL

G3 CCA3 cc_probe_drain
if (CU >2CL−2αR):

rate =2CL+αR
else:

rate =CL−αR

G6 CCA4 cc_probe_slow
if (qU >MSS):

rate =CL,λ−qU/Rm
else:

rate =2CL,λ+αR

G7 CCA5 cc_probe_qdel
if (CU <3/2CL):

if (qdelL >Rm):
rate =αR

else:
rate =CL

else:
if (CU >2CL):

rate =2CL+αR
else:

rate =CL

length of the trace that the verifier considers (to give CCAs
more time to show the progress required by our invariant).
E.g., in G1 , we get more solutions as we increase the trace
length. For other queries we only show queries with the largest
templates and longest traces. We also add new or tighter beliefs
to the templates when we explore weaker models, e.g., G6 .

Synthesized CCAs. Listing 2 shows the synthesized
CCAs. We group similar queries together. G1 , G2 , and
G3 explore CCAC with infinite, small and arbitrary buffer
respectively. CCmatic synthesized CCA1 (cc_qdel), CCA2
(cc_probe_fast), and CCA3 (cc_probe_drain). CCmatic
automatically figured out non-trivial insights about the
network. E.g., cc_qdel simultaneously guarantees bounds
on utilization and inflight. It sends above CL until qdelL > 0.
qdelL>0 (Eq. 5.1) can only happen if queue is non-zero which
can only happen if the link is utilized. Likewise, draining
whenever qdelL>0 ensures inflight is bounded.

cc_probe_fast and cc_probe_drain “probe” when CL and

CU are far. They send above CL resulting in either increasing CL
(due to increase in ACK rate), or decreasing CU (due to increase
in qdel or losses). cc_probe_drain additionally drains queues
by sending below CL. cc_probe_fast does not drain as it was
synthesized for a small buffer which trivially bound inflight.

We empirically evaluated cc_probe_drain and found that
it incurs periodic large loss (experimental setup described
in §6.4). This was surprising as we specifically queried for
a CCA that avoids large losses in steady state. We realized this
happened because of under-specifying the synthesis invariant.
Due to the disjunction, “beliefs shrink ∨···∨ steady_state_-
obj”, the CCA is allowed to cause large losses if this allows
shrinking beliefs. As a result, on the periodic belief timeouts
(§5.1.2), cc_probe_drain caused losses when re-probing to
re-estimate beliefs (similar to BBR’s 8 cycle probes).

G4 We updated our query to ensure that when beliefs
are consistent, CCA’s probes (increasing sending rate)
should not incur large losses.3 I.e., we “AND” the syn-
thesis invariant with the formula: “beliefs consistent =⇒
(sending rate increases =⇒ no large loss)”. This is equivalent
to updating transient_obj in Eq. 5.3. CCmatic did not
produce any solution after this modification.

G5 To dig deeper, we investigated weaker network models
(§3). We set D = 0 to emulate an ideal link. CCmatic
synthesized a CCA that sends at rate “CL + MSS/Rm”,
allowing it to probe for bandwidth while risking at most
constant losses. However, this does not work with CCAC.
Since CCAC can delay packets, this probe may not lead to an
immediate increase in ACK rate. For CCAC, a CCA needs
to build D seconds of queueing to disambiguate effects of
utilization (congestion) from non-congestive delays (see §6.2).
Sending at CL+MSS/Rm takes Ω(CL) time to build a queue
of D seconds, and the same CCA cannot show progress (shrink

3Large losses may still happen when the link rate decreases. No CCA can
avoid this due to feedback delay.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 959

beliefs) in a short fixed-length trace.

G6 We ran synthesis for CBR-delay using the same beliefs
as CCAC. CCmatic could not synthesize any CCA that
could avoid large loss. This led us to discover and prove a
fundamental tradeoff between loss and convergence time
(§6.2). The proof led us to a tighter beliefs for CBR delay.
Using these, CCmatic synthesized CCA4 (cc_probe_slow).
cc_probe_slow meets the loss-convergence tradeoff implying
that it is tight. It risks O(1) packet loss and takes O(C) time
to converge. For the synthesis, we added belief bounds on link
rate (CL,λ), buffer size, and bytes in queue (qU). We explain
these bounds and working of cc_probe_slow in §6.2.1.

G7 There is no loss-convergence tradeoff when buffers are
large. We want a CCA that converges fast without incurring
large loss. Additionally, on shallow buffers, we want large loss
to occur only when needed i.e., for probing (shrinking beliefs).
CCAs already synthesized do not fit this bill. CCA1 (cc_qdel)
avoids large losses when the buffer is large, but causes large
losses on short buffers even when it is not shrinking beliefs.
CCA3 (cc_probe_drain) avoids large loss when it is not
shrinking beliefs, but causes large losses when probing even on
large buffers. CCmatic synthesized CCA5 (cc_probe_qdel).
It gets the best of cc_qdel and cc_probe_drain.

6.2 Loss vs. convergence tradeoff

In G4 and G6 , CCmatic had failed to produce CCAs that
risk at most constant loss on CBR-delay and CCAC. All
human designed CCAs that we could think of also failed. On
investigating the counterexample traces for the human and
machine designed CCAs, we suspected that it is impossible to
avoid large loss events. On trying to prove this, we discovered
a tradeoff between amount of loss and convergence time, i.e.,
time it takes for a CCA to ramp up its sending rate to the link
rate. This tradeoff applies whenever the link rate increases,
and the CCA needs to ramp up (including slow start).

THEOREM 6.1. For an end-to-end deterministic CCA running
on a CBR-delay network with parameters ⟨C,Rm,D,0< β≤
CD⟩, to avoid getting arbitrarily low utilization, the CCA must
either (1) cause ω(1) packet loss, i.e., losses that increases
with C, or (2) take Ω(C(Rm+βs)) time to converge to the link
rate. Where, βs=β/C, i.e., buffer size in seconds.

In general, for a CCA to ramp from C0 to C while risking
O(f (C)) loss, the convergence time is Ω(F−1(C)(Rm+βs)),
where F−1 is the inverse of F , and function F is defined as:

F(0)=C0 and, F(k)=F(k−1)+ f (F(k−1))/βs

If C is not in the domain of F−1, we evaluate F−1 at the
smallest value greater than C in the domain of F−1. The
function F(k) tracks the maximum rate a CCA can ramp up
to in k RTTs under the loss allowance f . Correspondingly,
F−1(C) gives the minimum number of RTTs needed to ramp
up to rate C under loss allowance f .

0 25 50 75 100 125 150 175 200

Bandwidth C [same unit as ε]

0

20

40

60

C
o

n
ve

rg
en

ce
ti

m
e

F
−

1
(C

)
[R

T
T

s]

f (C)

log(C)√
C

const

C

Figure 7: Each curve shows F−1(C) corresponding to f (C)
in the legend. I.e., under loss allowance f , the time F−1, to
converge from some small (positive) rate ε to C. Time from C0
to C is given by “time from ε to C”− “time from ε to C0” or
F−1(C)−F−1(C0).

Fig. 7 shows the convergence time F−1 for different choices
of loss allowances f . For example, if the CCA is willing to
risk O(C) losses, i.e., f (C) = C, then the convergence time
is Ω(log(C/C0)). If f (C) = const (independent of C), then
the convergence time is Ω(C−C0). For other functions f , the
convergence time may not have a nice closed form expression.

While this tradeoff may seem intuitive, it only holds when
there is complicated jitter. On ideal links, a CCA can ramp
up in O(1) time while risking O(1) packet losses, using packet
trains [39]. The inter-arrival times for a packet train is the
inverse of the bottleneck rate (i.e., MSS/C) and reveals C.
Such techniques may even work for links with iid (independent
and identically distributed) jitter. However, in practice,
links do exhibit complicated jitter patterns and break such
bandwidth estimates [22].

Below, we provide intuition and outline the proof for Theo-
rem 6.1. We also prove a similar loss-convergence tradeoff for
ideal links when packet trains are not allowed and β = 0. This
proof is similar to that of Theorem 6.1, we omit it for brevity.

Intuition & counterexample trace. The tradeoff is valid
only on shallow buffers (i.e., β ≤ CD). This renders RTT
measurements meaningless, forcing the CCAs to rely on
losses . On larger buffers, faster convergence is attainable
by relating how RTT varies with varying sending rate. When
β≤CD, the queueing delays are at most D seconds. The delay
box can choose jitter such that RTTs are at most Rm + D. Such
RTTs could be due to queueing delays (resulting from varying
sending rates), or due to jitter in the delay box, and there is
no way for the CCA to distinguish between the two.

We investigated a CCA that additively increases its sending
rate every RTT until it sees a loss, to see why it cannot avoid
large loss. The verifier gave us a trace where the CCA keeps
blindly increasing its sending rate even when it is already above
the link rate. Eventually the queue builds up and O(BDP) loss
happens. The CCA needs to resort to blind increases because it
does not get any feedback until it causes loss (as queueing delay
measurements are meaningless). If these blind increases are
aggressive, this results in larger losses with faster convergence
and vice versa. cc_probe_slow drains queues along with

960 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

additive increments to meet the bound in Theorem 6.1 (§6.2.1).

Proof outline. (Full proof in Appendix D) We first show that
due to β≤CD, a CCA must cause loss to avoid arbitrarily low
utilization (Step 1.). Then we compute a tight lower bound be-
lief (CL,λ) for C, for CBR-delay (belief computations in §5.1.1
were for CCAC) (Step 2.). The CCA could be running on any
link with C≥CL,λ, and it needs to ensure it does not cause loss
on any of these links. This allows us to compute the amount
of loss a CCA risks any time it probes for bandwidth (Step
3.). If we restrict this risk of loss to a constant independent of
C, it gives us a constraint on how quickly the CCA can ramp
up, giving us a lower bound on the convergence time (Step 4.).

6.2.1 cc_probe_slow shows Theorem 6.1 is tight

We describe beliefs for CBR-delay, how cc_probe_slow
works, and why cc_probe_slow does not work for CCAC.

Bandwidth and buffer beliefs. For CBR-delay, to obtain
an upper bound on C, a CCA needs to cause loss or build more
than D seconds of queueing (from Step 1. of Theorem 6.1).
We compute the set of paths ⟨C,β⟩ that can produce CCA’s
observations until time t∗, such that the CCA has not observed
qdel>D or loss until t∗. This means that until t∗−RTT(t∗),
the enqueued bytes never exceeded the dequeued bytes by
more than D seconds (CD bytes) or buffer size. I.e., ∀t1,t2,
such that, 0≤ t1≤ t2≤ t∗−RTT(t∗):∫ t2

t1
λ(s)ds−C·(t2−t1)≤CD (6.1a)

and,
∫ t2

t1
λ(s)ds−C·(t2−t1)≤β (6.1b)

From (6.1a), we define CL,λ as:

CL,λ(t
∗)= max

0≤t1≤t2≤t∗−RTT(t∗)

∫ t2
t1 λ(s)ds

t2−t1+D
(6.2)

We evaluate (6.1b) over the interval [t∗1 ,t
∗
2] (length T∗= t∗2 −t∗1)4

corresponding to the tightest bound on CL,λ:
CL,λ(t

∗)·(t∗2 −t∗1 +D)−C·(t∗2 −t∗1)≤β

or, C·T∗+β≥CL,λ(t
∗)·(T∗+D) (6.3)

From (6.2) and (6.3), we get the belief set illustrated in Fig. 8:
{⟨C,β⟩ |C ≥CL,λ(t∗)∧C·T∗+β≥CL,λ(t∗)·(T∗+D)}. CL,λ
tells two things, (1) the link rate is at least CL,λ, and (2) if
the link rate is CL,λ, then the buffer is at least CL,λD bytes.

In the SMT encoding, we only evaluate Eq. 6.2 over
intervals of length T∗=Rm. This is because the measurement
interval T∗ influences CCA’s probing behavior (see below and
Appendix E). The initial conditions (including initial beliefs)
are chosen by the verifier (§3). As a result, verifier’s initial
choice of T∗ influences the CCAs probing which should be
in full control of the CCA. Fixing T∗=Rm solves this issue.

Queue beliefs. For ease of discussion we define “probe inter-
val” as an interval that leads to increase in CL,λ using Eq. 6.2.
We show in Appendix E that probe intervals needs to be start

4Other intervals may produce a tighter Eq. 6.3 but we over-approximate.

β

C

Belief set

(CL,λD, CL,λ)

(
0, CL,λ

T∗+D
T∗

)

slope = −1
T∗

β

C

L1

L2 qB − β

qB = CL,λ· (T + D) + α− CT

Prb 1 (T = T∗)

Prb 2 (T < T∗)

Figure 8: Belief set for CBR-delay (left). Queue buildup as
a function of C (right). L1, L2 lines are the belief constraints.

with a drained queue, otherwise, the CCA risks losing all pack-
ets in the queue at the beginning of the probe interval. For the
CCA to gauge the queue state, we add qU as an upper bound on
the bottleneck queue bytes. We compute it as: (bytes already
in queue)+(enqueued bytes)−(dequeued bytes on smallest
C). I.e., qU (t+δt)=max(0,qU (t)+(λ(t)−CL,λ(t))δt).

In summary, the template now includes inputs as CL,λ,
T∗=Rm, and qU . For brevity, we omit details on timeouts for
these beliefs.

How cc_probe_slow works. We discuss a generalized
version called cc_probe_slow_k. It drains queues until qU ≤α

(according to Listing 2). Then probes by sending CL,λ·(T∗+
D)+α bytes paced over T∗ time. α is a constant and T∗=kRm
is the interval length over which the CCA measures CL,λ. This
probe ensures (1) progress (beliefs shrink), i.e., causes losses,
qdel>D, or increases CL,λ; while ensuring (2) loss ≤2α.

Progress. The probe builds queues. On the network with
rate C, the queue build up is (enqueued bytes)− (dequeued
bytes)=CL,λ·(T∗+D)+α−C·T∗ (“Prb 1” illustrates this in
Fig. 8). On the network with rate CL,λ, the queue build up is
CL,λD+α (i.e., more than D seconds). If the CCA does not ob-
serve qdel>D, then it knows that C is higher than CL,λ, and the

line L1 (Fig. 8) moves up. I.e., CL,λ becomes
CL,λ·(T∗+D)+α

T∗+D =
CL,λ+

α

T∗+D >CL,λ. Likewise, if the CCA does not observe
loss, then L2 shifts right. If the CCA does observe qdel>D or
loss, then it knows that it sent above C and obtains an (implicit)
upper bound on C, ensuring a lower bound on utilization.

Loss. Loss due to the probe is ∆L = (bytes already in
queue)+(queue buildup)−(buffer)=q+qB−β. In Fig. 8, the
horizontal distance between a point (β,C) in the belief set
and the line Prb 1 shows qB−β. This distance, i.e., “CL,λ·(T∗+
D)+α−CT∗−β” is at most α (from Eq. 6.3). Bytes already in
the queue is also at most α as probe only happens when (q≤)
qU ≤α. Hence, ∆L≤2α, i.e., constant independent of C.

Also notice, if we probe over a shorter interval T <T∗, then
there are networks (β, C) for which qB−β is larger (Prb 2 in
Fig. 8) and loss on those networks is O(C). To avoid large loss,
the probing interval T needs to be at least as long as the past
measurement interval T∗ (Appendix E formally proves this).

cc_probe_slow steady-state behavior. In steady state,
cc_probe_slow follows a “Probe, Drain1, Drain2” cycle.
Table 3 shows the result of this cycle on two paths in the belief
set. These lie on the corners of belief set on the line L2 (Fig. 8).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 961

Path Metrics Probe Drain1 Drain2
Duration

T∗ D=Rm D=Rm

Sent by CCA CL,λ·(T∗+D)+α α CL,λRm−2α

qU CL,λD+α 2α 0
Serviced1 CL,λT∗ CL,λD CL,λRm
Queue1 CL,λD 2α 0
Loss1 α 0 0P1

Util1 100% 100% 100%
Serviced2 CL,λ·(T∗+D) α CL,λRm−2α

Queue1 0 0 0
Loss2 α 0 0P2

Util2 100% ≈0% T∗
T∗+D ·100%

Table 3: Steady-state behavior of cc_probe_slow on two
extreme paths in the belief set: P1 = ⟨C = CL,λ,β = CL,λD⟩
and P1 = ⟨C = CL,λ

T∗+D
T∗ ,β = 0⟩. “Serviced” shows bytes

serviced by the CBR box, and qU is computed at the end of
the probe/drain duration. Note, for drain1, the CCA sends
packets due to line 7 of the template (Listing 1), even though
rate=CL,λ−qU/Rm<0.

Notice the two paths are very different, but CCA’s observations
are exactly the same. The loss is the same, and the delay box
can ensure RTTs are the same (as qdel≤D). In fact all paths
on the line joining P1 and P2 can produce CCA’s observations,
and form the steady-state belief set. Utilization is lowest on
P2 and highest on P1. The bandwidths of P1 and P2 differ by
a factor of T∗

T∗+D . To bound inflight on P1, CCA’s average
sending rate cannot be more than CL,λ, as a result, the average
utilization on P2 cannot be more than T∗

T∗+D . The only way to
increase utilization is to reduce uncertainty (size of belief set)
by increasing T∗. This also increases convergence time (e.g.
if the link rate increases when the CCA is in steady state).

If we replace α with f (CL,λ), where f (.) is the loss
allowance (§6.2). Then the resulting family of CCAs
(parameterized by f (.) and T∗) allows us to tune the tradeoff
between loss vs. convergence time vs. utilization. We can
even adapt these over time (Appendix H).

Discussion. The probe works as CBR-delay ensures that
if a probe did not cause loss in the past then repeating the
probe will not cause a loss. This is not true for CCAC due to
its non-deterministic token bucket filter (TBF). CCAC can
arbitrarily decide how many tokens to keep in the bucket. A
past probe may not have lost packets as the token bucket was
full. However, on repeating the probe, CCAC can choose to
keep the token bucket empty, and drop O(bucket) packets.
Due to this, we conjecture that either large losses cannot
be avoided for CCAC or will require asymptotically longer
convergence time (e.g., quadratic instead of linear in BDP).

6.3 Proofs of performance
Ensuring the under-specified synthesis invariant is not a suffi-
cient proof (§5.2). We summarize the lemmas that serve as the
proof of performance for CCA1 (cc_qdel) and CCA4 (cc_-
probe_slow). These represent CCAs designed for deep and
shallow buffers respectively. We give the full list and encoding

of lemmas in Appendix F. Note, we describe theoretical
worst-case bounds. Empirical performance is better (§6.4).

cc_qdel. On a CCAC link with parameters ⟨C,Rm,D =
Rm,β ≥ 3C·(Rm +D)⟩, cc_qdel ensures that beliefs become
consistent exponentially fast, they converge exponentially fast,
and it drains queue at a rate proportional to C.5 After beliefs
are consistent, converged, and the queue is drained, the CCA
is in steady state and remains in steady state. Note, this is
despite the periodic beliefs timeouts (§5.1.2), i.e., the beliefs
remain close to each other even after timing out. In steady
state (state IV in §5.2), cc_qdel gets at least 89% utilization,
keeps RTT ≤4.4(Rm+D) seconds, and loses at most 3 packets
in any Rm duration. Additionally, cc_qdel never incurs large
loss events when probing for bandwidth as long as the beliefs
are consistent, i.e., in states II, III, IV.

cc_probe_slow. On the CBR-delay model with parameters
⟨C,Rm,D,β⟩, cc_probe_slow ensures that beliefs (CL,λ, qU)
become consistent exponentially fast, and CL,λ converges addi-
tively. I.e., when the link rate decreases, cc_probe_slow ramps
down exponentially fast. When the link rate increases, cc_-
probe_slow ramps up additively. In steady state, cc_probe_-
slow ensures at least 30% utilization, keeps RTT ≤ 1.5(Rm+
D). It ensures that it loses at most 2 packets in any Rm dura-
tion whenever beliefs are consistent and the link rate has not
decreased. Note, in §6.2.1, we showed steady-state utilization
≥ T∗

T∗+D 100% = 50% (for T∗ = Rm = D). The proved worst-
case utilization is lower because CL,λ may reduce on timeouts.

6.4 Empirical evaluation
Our goal with empirical evaluation is to validate our mathemat-
ical modeling and proofs of performance. Further evaluation
is warranted before deployment.

Implementation. We implement CCA1 (cc_qdel) and
CCA4 (cc_probe_slow_k, see §6.2.1 for “_k”) over UDP
using [54]. For cc_probe_slow_k, we run cc_qdel until a
large loss event (resembling TCP slow start), and set α=5MSS
instead of 1MSS to account for false-negatives in loss detection.
As a result, probes may lose 2α=10MSS bytes.

We initially implemented the CCAs in the Linux kernel,
but found bugs in kernel’s pacing implementation and the
cong_control API to be insufficient (Appendix G). We
compare against Cubic, BBRv1 (Linux kernel v5.4.0),
BBRv2 [27], BBRv3 [28], and Copa [8, 54].

Scenarios and metrics. We use iperf to generate traffic and
mahimahi [48] to emulate scenarios with jitter and shallow
buffers (§2) with the aim of validating our performance proofs.
We measure utilization, delay, loss, and convergence time met-
rics under a variety of parameter ⟨C,Rm,D,β⟩ choices. Each tu-
ple constitutes a different “run”. We emulate jitter by injecting

5A CCA cannot drain the queue faster than this. Even if it stops sending
packets, the queue will only drain by C·t bytes in time t.

962 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 10 15

Max peak queue [BDP]

0

20

40

60

80

100

M
in

a
vg

u
ti

li
za

ti
o

n
[%

]

102 103

BDP [Packets, log10]

0

100

101

102

103

A
vg

p
k

ts
lo

st
p

er
R

m

BBRv1

BBRv2

BBRv3

Cubic

cc qdel

Copa

cc probe slow 1

cc probe slow 2

cc probe slow 3

Figure 9: Summary of utilization, queue, and loss. Right
subplot shows runs with β≤BDP. Additionally, for visibility,
we only show three CCAs, and use symlog scale on y-axis.

up to D=Rm seconds of uniformly random delay, while ensur-
ing FIFO service and constant average link rate (Appendix H).

Results. Fig. 9 summarizes utilization, queue (proxy for
delay), and losses across runs (e.g., each run gives us an
average utilization, and we compute the minimum across runs).
Appendix H shows the metrics for each run and also studies
convergence time and fairness. The synthesized CCAs are
within their proven performance bounds and achieve tradeoffs
between loss, convergence, utilization, and delay that prior
CCAs cannot achieve.

cc_probe_slow meets the proven lower bound on utiliza-
tion, upper bound on RTTs, and incurs at most constant loss
(independent of BDP) across buffer sizes, bandwidths and
propagation delays. On the same networks, Copa starves as
it is not robust to jitter [7]. BBRv1 is able to ensure utilization
despite random jitter, but incurs excessive losses (that increase
with the BDP) on shallow buffers. Cubic gets low utilization
when buffers are short (β≪BDP) and also bloats queues when
buffers are large (β≫BDP). cc_qdel’s performance is similar
to BBRv1, but with provable guarantees on utilization even
with worst-case jitter. Unlike BBRv1, the v2 and v3 variants
do not incur high losses on average but incur O(BDP) losses
to converge exponentially fast when the link rate increases
(Appendix H). They also get lower utilization than the v1
variant. cc_probe_slow_k gets higher utilization at the cost
of higher convergence time (Appendix H) with increasing k.

7 Related work
Our work extends [2], which introduced the concept of CCA
synthesis using CEGIS. We propose the belief framework to
make such synthesis far more practical and powerful. Related
work not covered in §2 can be classified into:

Automatic CCA design. Past works have explored online
learning [20], reinforcement learning [36, 43, 53], model
predictive control (MPC) [32, 35], and (partially observable)
markov decision process (POMDP) formulations [56]. CCAs
produced by these works are not human-interpretable or are
not explicitly designed for adversarial network behaviors.

CCmatic CCAs are modular, human-interpretable, and
provably robust under adversarial network behaviors.

Reasoning about CCAs. Past works use different network
models: (1) deterministic (e.g. fluid model) [18, 62], (2)
stochastic [30], and (3) non-deterministic [6]. Some also limit
their scope to a small class of CCAs [9, 18, 62]. Deterministic
models are easier to reason about but may not accurately reflect
real world behaviors. With stochastic models, it is hard to de-
duce probability distributions that characterize real networks.
Non-deterministic models do not require a distribution but may
be too adversarial. Beliefs can be computed regardless of the
modeling choice, and facilitate reasoning about complicated
network models across all possible CCAs. Beliefs and CC-
matic add to the emerging toolkit for performance reasoning.

8 Discussion, limitations, and future work
We built the belief framework allowing us to both (1) build
novel CCAs and (2) prove tradeoffs between objectives. Using
this, we built CCmatic to automatically synthesize CCAs for
different environment/objective combinations, alleviating hu-
mans from figuring out complex details like when/how long to
probe/drain. CCmatic also gives insights when objectives are
infeasible. Due to formal methods and program synthesis, CC-
matic CCAs are human-interpretable and provably performant.

While our work makes significant progress, it has several
limitations that, if addressed, would bring us closer to “solving
congestion control”. First, we focus on single-flow scenarios.
Designing provably fair CCAs will likely require a contract
between CCAs allowing them to disambiguate effects of jitter
from the actions of other flows. For instance, (1) flows could
agree on a mapping between delay (or delay variation) and their
sending rates [6], or (2) flows could agree on how much they
can increase or decrease their sending rate in a single RTT ([18],
Appendix H). Second, the CCAs synthesized for adversarial
noise perform reasonably on ideal links. This may not hold
as we explore other scenarios/objectives, and we may require
extensions for average-case analysis. Third, we only explore a
subset of belief-based CCAs due to computational limits. We
hope to use techniques like robust adversarial reinforcement
learning [50] and minimax [44] to improve design space explo-
ration, given our 2-player game formulation in Theorem 4.1.

We believe our methodology (i.e., inverting environment
models to build beliefs) is applicable to other domains where
environment models exist. E.g., adaptive bitrate (ABR) algo-
rithms and scheduling. ABR shares similar environments as
CCAs, and recent work has built models for scheduling [5, 26].

Acknowledgments
We would like to thank anonymous reviewers and our shepherd
Philip Brighten Godfrey for feedback that helped improve
our paper. This work was supported in part by NSF grants
CNS-2212102, and CNS-2212390.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 963

References
[1] Alessandro Abate, Cristina David, Pascal Kesseli,

Daniel Kroening, and Elizabeth Polgreen. “Counterex-
ample Guided Inductive Synthesis Modulo Theories”.
In: Computer Aided Verification. Ed. by Hana Chockler
and Georg Weissenbacher. Cham: Springer Interna-
tional Publishing, 2018, pp. 270–288.

[2] Anup Agarwal, Venkat Arun, Devdeep Ray, Ruben
Martins, and Srinivasan Seshan. “Automating Network
Heuristic Design and Analysis”. In: Proceedings of
the 21st ACM Workshop on Hot Topics in Networks.
HotNets ’22. Austin, Texas: Association for Computing
Machinery, 2022, pp. 8–16.

[3] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. “Data Center
TCP (DCTCP)”. In: Proceedings of the ACM SIG-
COMM 2010 Conference. SIGCOMM ’10. New Delhi,
India: Association for Computing Machinery, 2010,
pp. 63–74.

[4] Guido Appenzeller, Isaac Keslassy, and Nick McKe-
own. “Sizing Router Buffers”. In: Proceedings of the
2004 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications.
SIGCOMM ’04. Portland, Oregon, USA: Association
for Computing Machinery, 2004, pp. 281–292.

[5] Mina Tahmasbi Arashloo, Ryan Beckett, and Rachit
Agarwal. “Formal Methods for Network Performance
Analysis”. In: 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). Boston,
MA: USENIX Association, Apr. 2023, pp. 645–661.

[6] Venkat Arun, Mohammad Alizadeh, and Hari Balakrish-
nan. “Starvation in End-to-End Congestion Control”.
In: Proceedings of the 2022 ACM SIGCOMM 2022
Conference. SIGCOMM ’22. Amsterdam, Netherlands:
Association for Computing Machinery, 2022.

[7] Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed,
Mohammad Alizadeh, and Hari Balakrishnan. “Toward
Formally Verifying Congestion Control Behavior”. In:
Proceedings of the 2021 ACM SIGCOMM 2021 Con-
ference. SIGCOMM ’21. Virtual Event, USA: Associa-
tion for Computing Machinery, 2021, pp. 1–16.

[8] Venkat Arun and Hari Balakrishnan. “Copa: Practical
Delay-Based Congestion Control for the Internet”. In:
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18). Renton, WA: USENIX
Association, Apr. 2018, pp. 329–342.

[9] D. Bansal and H. Balakrishnan. “Binomial conges-
tion control algorithms”. In: Proceedings IEEE IN-
FOCOM 2001. Conference on Computer Communi-
cations. Twentieth Annual Joint Conference of the

IEEE Computer and Communications Society (Cat.
No.01CH37213). Vol. 2. 2001, 631–640 vol.2.

[10] Anne Bouillard, Marc Boyer, and Euriell Le Corronc.
Deterministic Network Calculus: From Theory to Prac-
tical Implementation. John Wiley & Sons, 2018.

[11] Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj,
Mickael Randour, and Pierre Vandenhove. “Games
where you can play optimally with arena-independent
finite memory”. In: Logical Methods in Computer
Science 18 (2022).

[12] L.S. Brakmo and L.L. Peterson. “TCP Vegas: end to
end congestion avoidance on a global Internet”. In:
IEEE Journal on Selected Areas in Communications
13.8 (1995), pp. 1465–1480.

[13] Lloyd Brown, Yash Kothari, Akshay Narayan, Arvind
Krishnamurthy, Aurojit Panda, Justine Sherry, and
Scott Shenker. “How I Learned to Stop Worrying About
CCA Contention”. In: Proceedings of the 22nd ACM
Workshop on Hot Topics in Networks. HotNets ’23.
Cambridge, MA, USA: Association for Computing
Machinery, 2023, pp. 229–237.

[14] Carlo Caini and Rosario Firrincieli. “TCP Hybla: A
TCP Enhancement for Heterogeneous Networks”. In:
Int. J. Satell. Commun. Netw. 22.5 (Sept. 2004),
pp. 547–566.

[15] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. “BBR:
Congestion-Based Congestion Control”. In: ACM
Queue 14, September-October (2016), pp. 20–53.

[16] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, So-
heil Hassas Yeganeh, Ian Swett, Jana Iyengar, Victor
Vasiliev, Priyaranjan Jha, Yousuk Seung, and Van Ja-
cobson. BBR Congestion Control Work at Google IETF
101 Update. [Online; accessed 4. Mar. 2024]. Slides 4,
17. URL: https://datatracker.ietf.org/meeting/
101/materials/slides-101-iccrg-an-update-on-
bbr-work-at-google-00.

[17] Neal Cardwell, Yuchung Cheng, Soheil Hassas
Yeganeh, Ian Swett, and Van Jacobson. BBR Congestion
Control. [Online; accessed 26. Jun. 2023]. Mar. 2022.
URL: https://datatracker.ietf.org/doc/html/
draft-cardwell-iccrg-bbr-congestion-control-
02.

[18] Dah-Ming Chiu and Raj Jain. “Analysis of the increase
and decrease algorithms for congestion avoidance in
computer networks”. In: Computer Networks and ISDN
Systems 17.1 (1989), pp. 1–14.

[19] Edmund Clarke, Armin Biere, Richard Raimi, and Yun-
shan Zhu. “Bounded Model Checking Using Satisfia-
bility Solving”. In: Formal Methods in System Design
19.1 (July 2001), pp. 7–34.

964 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00
https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00
https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02

[20] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten God-
frey, and Michael Schapira. “PCC: Re-architecting
congestion control for consistent high performance”.
In: 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15). 2015, pp. 395–
408.

[21] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan,
Yossi Gilad, Brighten Godfrey, and Michael Schapira.
“PCC Vivace: Online-Learning Congestion Control”.
In: 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). 2018, pp. 343–
356.

[22] Constantinos Dovrolis, Parameswaran Ramanathan,
and David Moore. “What do packet dispersion
techniques measure?” In: Proceedings IEEE INFO-
COM 2001. Conference on Computer Communica-
tions. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Society (Cat. No.
01CH37213). Vol. 2. IEEE. 2001, pp. 905–914.

[23] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and
T. Roughgarden. “Routers with Very Small Buffers”.
In: Proceedings IEEE INFOCOM 2006. 25TH IEEE In-
ternational Conference on Computer Communications.
2006, pp. 1–11.

[24] Tobias Flach, Pavlos Papageorge, Andreas Terzis, Luis
Pedrosa, Yuchung Cheng, Tayeb Karim, Ethan Katz-
Bassett, and Ramesh Govindan. “An Internet-Wide
Analysis of Traffic Policing”. In: Proceedings of the
2016 ACM SIGCOMM Conference. SIGCOMM ’16.
Florianopolis, Brazil: Association for Computing Ma-
chinery, 2016, pp. 468–482.

[25] Hugo Gimbert and Wiesław Zielonka. “Games Where
You Can Play Optimally without Any Memory”. In:
CONCUR 2005 - Concurrency Theory. Berlin, Heidel-
berg: Springer-Verlag, 2005, pp. 428–442.

[26] Saksham Goel, Benjamin Mikek, Jehad Aly, Venkat
Arun, Ahmed Saeed, and Aditya Akella. Quantitative
Verification of Scheduling Heuristics. 2023. arXiv:
2301.04205 [cs.LO].

[27] Google. BBRv2. [Online; accessed 1. Aug. 2023]. URL:
https://github.com/google/bbr/tree/v2alpha.

[28] Google. BBRv3. [Online; accessed 14. Sep. 2023].
URL: https://github.com/google/bbr/tree/v3.

[29] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Mo-
hammad Alizadeh, and Hari Balakrishnan. “ABC: A
Simple Explicit Congestion Controller for Wireless Net-
works”. In: 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). Santa
Clara, CA: USENIX Association, Feb. 2020, pp. 353–
372.

[30] Prateesh Goyal, Mohammad Alizadeh, and Thomas
E. Anderson. Optimal Congestion Control for Time-
varying Wireless Links. 2022. arXiv: 2202 . 04321
[cs.NI].

[31] Sangtae Ha, Injong Rhee, and Lisong Xu. “CUBIC:
A New TCP-Friendly High-Speed TCP Variant”. In:
SIGOPS Oper. Syst. Rev. 42.5 (July 2008), pp. 64–74.

[32] Cunwu Han, Dehui Sun, Lei Liu, and Song Bi. “A
new robust model predictive congestion control”. In:
Proceeding of the 11th World Congress on Intelligent
Control and Automation. IEEE. 2014, pp. 4189–4193.

[33] Tom Henderson, Sally Floyd, Andrei Gurtov, and Yoshi-
fumi Nishida. RFC 6582: The NewReno Modification to
TCP’s Fast Recovery Algorithm. [Online; accessed 15.
Aug. 2023]. Apr. 2012. URL: https://datatracker.
ietf.org/doc/html/rfc6582.

[34] Janey C. Hoe. “Improving the Start-up Behavior of a
Congestion Control Scheme for TCP”. In: Conference
Proceedings on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications.
SIGCOMM ’96. Palo Alto, California, USA: Associa-
tion for Computing Machinery, 1996, pp. 270–280.

[35] Amjad J Humaid, Hamid M Hasan, and Firas A Ra-
heem. “Development of model predictive controller for
congestion control problem”. In: feedback 2 (2014),
p. 3.

[36] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael
Schapira, and Aviv Tamar. “A deep reinforcement learn-
ing perspective on internet congestion control”. In: In-
ternational Conference on Machine Learning. PMLR.
2019, pp. 3050–3059.

[37] Leslie Pack Kaelbling, Michael L Littman, and Anthony
R Cassandra. “Planning and acting in partially observ-
able stochastic domains”. In: Artificial intelligence
101.1-2 (1998), pp. 99–134.

[38] Samuel Kolb, Stefano Teso, Andrea Passerini, and Luc
De Raedt. “Learning SMT(LRA) Constraints Using
SMT Solvers”. In: Proceedings of the 27th Interna-
tional Joint Conference on Artificial Intelligence. IJ-
CAI’18. Stockholm, Sweden: AAAI Press, July 2018,
pp. 2333–2340.

[39] K. Lai and M. Baker. “Measuring bandwidth”. In: IEEE
INFOCOM ’99. Conference on Computer Communi-
cations. Proceedings. Eighteenth Annual Joint Con-
ference of the IEEE Computer and Communications
Societies. The Future is Now (Cat. No.99CH36320).
Vol. 1. 1999, 235–245 vol.1.

[40] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio
Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor
Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 965

https://arxiv.org/abs/2301.04205
https://github.com/google/bbr/tree/v2alpha
https://github.com/google/bbr/tree/v3
https://arxiv.org/abs/2202.04321
https://arxiv.org/abs/2202.04321
https://datatracker.ietf.org/doc/html/rfc6582
https://datatracker.ietf.org/doc/html/rfc6582

Westin, Raman Tenneti, Robbie Shade, Ryan Hamil-
ton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi.
“The QUIC Transport Protocol: Design and Internet-
Scale Deployment”. In: Proceedings of the Conference
of the ACM Special Interest Group on Data Commu-
nication. SIGCOMM ’17. Los Angeles, CA, USA:
Association for Computing Machinery, 2017, pp. 183–
196.

[41] Jean-Yves Le Boudec and Patrick Thiran. Network
calculus: a theory of deterministic queuing systems for
the internet. Springer, 2001.

[42] Jean-Yves Le Boudec and Patrick Thiran. Network
calculus: a theory of deterministic queuing systems for
the internet. Vol. 2050. Springer Science & Business
Media, 2001.

[43] Wei Li, Fan Zhou, Kaushik Roy Chowdhury, and
Waleed Meleis. “QTCP: Adaptive congestion control
with reinforcement learning”. In: IEEE Transactions on
Network Science and Engineering 6.3 (2018), pp. 445–
458.

[44] G.F. Luger. Artificial Intelligence: Structures and
Strategies for Complex Problem Solving. Pearson
Addison-Wesley, 2009.

[45] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and
Teunis Ott. “The Macroscopic Behavior of the TCP
Congestion Avoidance Algorithm”. In: SIGCOMM
Comput. Commun. Rev. 27.3 (July 1997), pp. 67–82.

[46] Tong Meng, Neta Rozen Schiff, P Brighten Godfrey,
and Michael Schapira. “PCC proteus: Scavenger trans-
port and beyond”. In: Proceedings of the Annual con-
ference of the ACM Special Interest Group on Data
Communication on the applications, technologies, ar-
chitectures, and protocols for computer communication.
2020, pp. 615–631.

[47] Leonardo de Moura and Nikolaj Bjørner. “Z3: An
Efficient SMT Solver”. In: Tools and Algorithms for
the Construction and Analysis of Systems. Ed. by C. R.
Ramakrishnan and Jakob Rehof. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 337–340.

[48] Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens, and
Hari Balakrishnan. “Mahimahi: Accurate Record-and-
Replay for HTTP”. In: 2015 USENIX Annual Techni-
cal Conference (USENIX ATC 15). Santa Clara, CA:
USENIX Association, July 2015, pp. 417–429.

[49] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim
Kurose. “Modeling TCP Throughput: A Simple Model
and Its Empirical Validation”. In: Proceedings of the
ACM SIGCOMM ’98 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer
Communication. SIGCOMM ’98. Vancouver, British

Columbia, Canada: Association for Computing Ma-
chinery, 1998, pp. 303–314.

[50] Lerrel Pinto, James Davidson, Rahul Sukthankar, and
Abhinav Gupta. “Robust Adversarial Reinforcement
Learning”. In: Proceedings of the 34th International
Conference on Machine Learning. Ed. by Doina Precup
and Yee Whye Teh. Vol. 70. Proceedings of Machine
Learning Research. PMLR, Aug. 2017, pp. 2817–2826.

[51] Armando Solar-Lezama, Christopher Grant Jones, and
Rastislav Bodik. “Sketching Concurrent Data Struc-
tures”. In: SIGPLAN Not. 43.6 (June 2008), pp. 136–
148.

[52] K. Tan, J. Song, Q. Zhang, and M. Sridharan. “A Com-
pound TCP Approach for High-Speed and Long Dis-
tance Networks”. In: Proceedings IEEE INFOCOM
2006. 25TH IEEE International Conference on Com-
puter Communications. 2006, pp. 1–12.

[53] Chen Tessler, Yuval Shpigelman, Gal Dalal, Amit Man-
delbaum, Doron Haritan Kazakov, Benjamin Fuhrer,
Gal Chechik, and Shie Mannor. “Reinforcement Learn-
ing for Datacenter Congestion Control”. In: SIGMET-
RICS Perform. Eval. Rev. 49.2 (Jan. 2022), pp. 43–
46.

[54] venkatarun95. genericCC. [Online; accessed 9. Jun.
2023]. URL: https://github.com/venkatarun95/
genericCC.

[55] Curtis Villamizar and Cheng Song. “High performance
TCP in ANSNET”. In: ACM SIGCOMM Computer
Communication Review 24.5 (1994), pp. 45–60.

[56] Keith Winstein and Hari Balakrishnan. “TCP Ex
Machina: Computer-Generated Congestion Control”.
In: Proceedings of the ACM SIGCOMM 2013 Confer-
ence on SIGCOMM. SIGCOMM ’13. Hong Kong,
China: Association for Computing Machinery, 2013,
pp. 123–134.

[57] Keith Winstein, Anirudh Sivaraman, and Hari Balakr-
ishnan. “Stochastic Forecasts Achieve High Through-
put and Low Delay over Cellular Networks”. In: 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13). Lombard, IL: USENIX
Association, Apr. 2013, pp. 459–471.

[58] Dongpeng Xu, Binbin Liu, Weijie Feng, Jiang Ming,
Qilong Zheng, Jing Li, and Qiaoyan Yu. “Boosting
SMT solver performance on mixed-bitwise-arithmetic
expressions”. In: PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language
Design and Implementation, Virtual Event, Canada,
June 20-25, 2021. Ed. by Stephen N. Freund and Eran
Yahav. ACM, 2021, pp. 651–664.

[59] Lisong Xu, K. Harfoush, and Injong Rhee. “Binary
increase congestion control (BIC) for fast long-distance

966 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/venkatarun95/genericCC
https://github.com/venkatarun95/genericCC

networks”. In: IEEE INFOCOM 2004. Vol. 4. 2004,
2514–2524 vol.4.

[60] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Ragha-
van, Riad S. Wahby, Philip Levis, and Keith Winstein.
“Pantheon: the training ground for Internet congestion-
control research”. In: 2018 USENIX Annual Technical
Conference (USENIX ATC 18). Boston, MA: USENIX
Association, July 2018, pp. 731–743.

[61] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshmi-
narayanan Subramanian, and Carmelita Görg. “Adap-
tive Congestion Control for Unpredictable Cellular Net-
works”. In: Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication.
SIGCOMM ’15. London, United Kingdom: Associa-
tion for Computing Machinery, 2015, pp. 509–522.

[62] Doron Zarchy, Radhika Mittal, Michael Schapira, and
Scott Shenker. “Axiomatizing Congestion Control”.
In: Proc. ACM Meas. Anal. Comput. Syst. 3.2 (2019),
33:1–33:33.

[63] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. “Congestion Control for Large-Scale RDMA
Deployments”. In: Proceedings of the 2015 ACM Con-
ference on Special Interest Group on Data Communi-
cation. SIGCOMM ’15. London, United Kingdom:
Association for Computing Machinery, 2015, pp. 523–
536.

A Beliefs are sufficient
LEMMA A.1. The set of feasible actions that the network is
allowed to take in the future can be determined by the belief set.

Proof. Recall, the only rule in our game is that the sequence
of network’s actions should be allowed by some path in the
network model. As a result, a network action is feasible if and
only if the sequence of past actions combined with the network
action is allowed by some path in the network model. We
will show that the network can compute the set of all feasible
actions using the belief set.

We argue that the set of feasible actions is the set of actions
that are allowed by some ⟨path,state⟩ tuple in the belief set.
First, if an action A is allowed on path P , and state S from the
belief set. Then all the past network actions are allowed by path
P (as P is in the belief set, and a path is in the belief set if all
past actions can be explained by it). So the sequence of actions,
including past and A , is consistent with the path P , hence
A is a feasible action. Second, if an action A is not allowed
on any ⟨path,state⟩ tuple in the belief set, then it cannot be a
feasible action as the sequence of past actions and A cannot
be explained by any single path in the network model.

NaCa

Na

Ca

(a) Game tree T .

Bn0 Bc1
Ca

Bn Bc
Ca Na

Na

(b) Condensed graph G .

Figure 10: Constructing condensed graph from game tree.

LEMMA A.2. Belief set for a future time can be computed by
the belief set at the current time and the CCA’s observations
between the current and future times.

Proof. We compute the future belief set as follows. Enumerate
all tuples in the current belief set. Filter out the tuples that
cannot produce the trace of CCA’s observations between the
current and future times. Filtering can be done by replaying
the CCA’s sending rate choices on the tuple, and checking
if the tuple has feasible network actions that produce the
exact observations of the CCA. The set of remaining tuples
is same as the future belief set (as if it were computed using
the entire history of CCA’s observations). This is because
a tuple is in the remainder set iff it can produce both (1) all
CCA’s observations till now (as it is in current belief set) and
from now to the future time (as it was not filtered out).

THEOREM. If there exists a deterministic CCA that ensures
a given performance property, on a given network model, then,
there exists a belief-based CCA that ensures the performance
property on the network model. Where, the beliefs are derived
from the given network model, and the performance property
is defined as a boolean valued function of the belief set and
the action taken by the CCA on that belief set.

Proof. We construct a belief-based CCA (AB) by inspecting
the executions of the given deterministic CCA (AD), and show
that AB ensures the given performance property (P f).

Preliminaries. An execution (or trace) is a sequence
of CCA actions (Cai) and network actions (Nai), e.g.,
⟨Ca1,Na1,Ca2,Na2,...⟩. We say that an execution is valid if it
conforms to the rules of the game, i.e., the sequence of network
actions correspond to some path in the network model.

We annotate each step of the execution by the beliefs
computed over the entire history until that step, e.g., the
belief set is Bci after Cai, and Bni after Nai. At the start of
all traces, the belief set is Bn0. The annotation looks like:
⟨|Bn0Ca1|Bc1Na1|Bn1Ca2|Bc2Na2|Bn2 ...⟩.

The performance property is defined as a function P f
that maps ⟨Belief, CCA action⟩ (e.g., ⟨Bn, Ca⟩) to True or
False. While in §5.2 and §6.3, we do not directly state the
performance properties this way, we show that they can be
defined this way at the end of the proof.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 967

Construction. The high level summary of the construction
is that AB can arbitrarily pick one CCA action (sending rate
choice) whenever AD takes different actions on the same
belief set. As a result, AB is a pure function of belief set (it
does not take different actions on the same belief). First, we
will show that AB function is well-defined i.e., it assigns a
rate choice to each belief Bn that it can witness in an execution.
We will show this is because AB only ever reaches a belief set
Bn if AD reached it. We will use Lemma A.2 and Lemma A.1
to show this. Second, we will show that AB satisfies the
performance property because it only takes an action Ca on
Bn if AD took it and so P f (⟨Bn,Ca⟩) evaluates to true for AB
as it evaluated true for AD .

We consider the set of all executions of AD on the given
network model. We visualize them in the form of a (directed)
game tree T (Fig. 10a). The nodes in T are placeholders.
A unique node includes the entire history of the CCA and
network actions until the node. If it is the turn of the CCA to
play, the node has an outgoing edge labelled with the CCA
action Ca. If it is the network’s turn to play, the node has
outgoing edges corresponding to all feasible network actions,
each labelled with a network action Na. We label each node in
the tree with the belief set computed over the history of actions
until the node. We get two kinds of labels, (1) beliefs after
CCA action (Bc), and (2) beliefs after network action (Bn).

From the tree, we construct a condensed graph G (Fig. 10b)
as follows. Within each label type, we merge the nodes that
have the same belief value (i.e., if two nodes have labels BnI ,
BnII , with BnI = BnII , we coalesce the nodes). Likewise for
BcI =BcII . Note, we do not merge nodes with different label
types even if they have the same belief value. Then for each
node with a Bn label type (i.e., CCA’s turn to play), we just
keep one outgoing edge (arbitrarily) resembling the CCA
action that AB takes on that belief value.

Note, in our construction of G , we never remove edges corre-
sponding to network actions, and all edges (both CCA and net-
work actions) have the same destination node label in T and G .

AB is the desired belief-based CCA. With the above
construction, we will argue that (1) AB is well-defined, i.e.,
it assigns an action (outgoing edge) to each belief set that it
can reach (ever witness in any execution), and (2) all actions
of AB satisfy the performance property.

AB is well-defined. AB assigns a rate choice (CCA action)
to each belief set that it can witness under the network model.
We prove by contradiction. Say there is a valid execution e pro-
duced by AB that reaches a belief set Bni for which AB never
assigns an action, andBni is the first such belief in the execution.
AB does not define an action for Bni in two cases, (1) Bni is not
in G , and (2) Bni is in G but does not have an outgoing edge.

Case 1. We know Bni ̸=Bn0 because Bn0 is in G (it is the root
node of T , and we do not remove any nodes when constructing
G). As a result, e looks like ⟨··· |Bni-1Cai|BciNai|Bni⟩, where,
Bni-1 is in G .

Since AB produced e, AB took action Cai on the belief Bni-1,
i.e., Cai is the outgoing edge for node Bni-1 in G . AB only takes
this action, if AD took this action on a node with label Bni-1.
We argue that in T , this action leads to a node with label Bci.
This comes from Lemma A.2, AD could have arrived from any
history at the belief Bni-1, but taking the action Cai on Bni-1
updates the belief to Bci no matter the history. Thus, from our
construction, Bci also exists in G and is the destination node on
the edge Cai (as we do not remove nodes in the construction and
the destination node labels are same in G and T for each edge).

Now, we argue that in T , Nai is an outgoing edge for the
node with label Bci. This is because according to e, Nai is
a feasible network action on the belief Bci, as a result Nai is
a feasible action on the node with label Bci independent of
history in T that led to this node (from Lemma A.1). Since
the game tree describes all executions of AD , each node with
label type Bc has an edge for each feasible network action,
so T has an edge with action Nai on the node with label Bci.
Again from Lemma A.2, Nai takes belief from Bci to Bni in T .

Since Bci, Nai and Bni exist in T , they also exist in G . And
in G , Nai points from Bci to Bni, and Cai points from Bni-1 to
Bci. This is because we never remove any edges corresponding
to network actions, nor do we remove any nodes, and the
destination nodes have same labels in T and G . Since Bni
exists in G , we arrive at a contradiction.

Case 2. Bni exists in G only if it exists in T . All nodes with
label type Bn have a CCA action in T . So Bni has an action
in T . In constructing G , we never remove all edges for a node
with label type Bn, so we will keep at least one outgoing edge
(action) for Bni. This is a contradiction.

AB satisfies P f . Recall, P f is defined as a function of
⟨Bn,Ca⟩. From our construction, AB takes an action Ca on Bn
only if G has edge Ca on Bn. This happens only if T has such
and edge which happens only if AD takes Ca on Bn. Since,
AD satisfies the performance property, P f (⟨Bn,Ca⟩) = True.
Hence, all of AB ’s actions satisfy the performance property.

Performance properties in §5.2 and §6.3 can be expressed
as a boolean valued function of belief set and CCA’s
action on that belief set. At a high level, our performance
properties dictate that the CCA (1) ensures some bounds
on metrics like loss, delays, and utilization, and (2) makes
progress. We show how both these can be expressed as a
function of belief and CCA action.

We can compute delays, losses, and utilization for each
tuple in the belief. The tuple tells us the starting queue, link
rate, and buffer; and the CCA action tells us the sending rate.
We can use this to calculate if the sending rate choice inflates
delays or causes losses (e.g., using dq

dt =(λ(t)−C)+, where
(x)+ = max(0,x)). Likewise, we can compute if the link is
utilized during the action using starting queue, link rate and
the sending rate choice. If the CCA violates the delay, loss,
utilization bounds on any tuple then the property evaluates to

968 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

False on the ⟨belief,CCA action⟩ pair, otherwise the property
evaluates to True.

For progress, there are two types, (1) shrinking beliefs, and
(2) stabilizing queue. For the first, we can check if an action
can lead to shrinking beliefs by emulating all valid network
actions. The CCA makes progress only if the beliefs shrink
no matter the network action. For the second, the queue state
is present in the belief tuple, and we can compute how the rate
choice and link rate in the tuple will change the queue; and
determine whether the queue will stabilize.

Note, our proof does not hold for arbitrary safety properties
defined as boolean valued function over the entire execution.
For instance, an arbitrary safety property might require that
every time a CCA sends at rate 10 Mbps, in the next RTT it
must send at 20 Mbps. Since we change the specific decisions
that AB makes compared to AD , such a safety property can
be violated.

Also, note that we cannot express our performance
properties solely as a function of the belief set. For example,
the belief set does not tell us if the CCA will cause loss on
an action, and we need to know the CCA’s action on a belief
set to evaluate loss. This is different from chess where the
winning condition is just a function of the board state. Thus,
Theorem 4.1 is non-obvious [11, 25].

B Computing beliefs

B.1 Propagation delay and jitter
We assume that the CCA knows Rm and D. Due to discretiza-
tion of time in the SMT encoding, all quantities with units of
time are integer multiples of the discretization interval. The
time for synthesis and verification scales with the number of
intervals considered (§6.1). To cover as many RTTs in as few
intervals as possible, we set Rm = D = 1 interval. As a result
the constant value 1 reveals Rm and D in the templates.

This is a non-issue as jitter inherently creates uncer-
tainty in RTTs. CBR-delay with parameters ⟨Rm, D⟩ can
emulate parameters ⟨Rm

′, D′⟩ as long as Rm
′ ≥ Rm and

Rm
′+D′≤Rm+D. Now, say the actual network parameters

are ⟨Rm
a, Da⟩. From the first RTT measurement we set

Rm = RTT ∈ [Rm
a,Rm

a+Da] (as there are no other flows, so
no queuing). At this point, we run the CCA designed for
⟨Rm,D=Rm⟩ and get the performance guarantees for ⟨Rm,D⟩
as long as Da ≤Rm+D−Rm

a. If some future RTT ′ is <Rm,
we update Rm=RTT ′ and repeat our argument, this time with
better performance guarantees as Rm is closer to Rm

a. E.g., if
we guarantee q≤Rm for ⟨Rm,D⟩, then on the actual network
we guarantee q≤Rm≤Rm

a+Da and our guarantee improves
as Rm

a−Rm decreases. Same reasoning holds for CCAC.
In summary, we run the CCA designed for ⟨Rm =

minRTT,D = minRTT⟩ and get the guarantee we promised
for the network ⟨minRTT,minRTT⟩, when we are actually
running on the network ⟨Rm

a,Da⟩. We get these guarantees as
long as Da≤2minRTT , which is true if the real network can be

Listing 3: CCAC constraints on S

S(t)≤TA(t)=SU (t) (B.1)
S(t)≤A(t)−L(t) (B.2)
S(t)≥TA(t−D)=SL(t) where, (B.3)
TA(t)=C·t−W(t) (B.4)
q(t)≥0 =⇒ W ′(t)=0 (B.5)
q(t)=A(t)−L(t)−TA(t) (B.6)

TA(t) – cumulative tokens (in units of bytes) admitted
q(t) – inst. bytes in the bottleneck queue
W(t) – cumulative tokens (in units of bytes) wasted
L(t) – cumulative bytes lost

captured by the CBR-delay model with parameters Da≤Ra.

B.2 Bandwidth
We show the analytical derivation of the link rate belief bounds
(CL and CU) for the CCAC model. Before that we briefly
give relevant background on CCAC (for detailed background
please see [7]).

Background on CCAC. CCAC models the network as a gen-
eralized token bucket filter. It puts constraints (Listing 3) on
how the network serves packets (i.e., S(t), service curve, or cu-
mulative bytes serviced by time t), based on how packets arrive
into the network (i.e., A(t), cumulative bytes arrived by time t).

Tokens arrive at rate C bytes/secs, i.e., C·t tokens arrive
by time t. On a token arrival, the network decides whether
to admit it or waste it (Eq. B.4). The network uses admitted
tokens to send packets, so the packets sent are upper bounded
by the number of admitted tokens (Eq. B.1). Also, the network
cannot send more bytes than arrived but not lost (Eq. B.2).

To emulate non-congestive jitter, the network can choose
to delay sending packets even when tokens are available. To
ensure jitter is bounded, all tokens must be used within D
seconds, and the network should only admit a token if it knows
it will be used within D seconds.6 This puts a lower bound on
service (Eq. B.3).

Additionally, to prevent the network from wasting all
the tokens, tokens cannot be wasted when there are packets
waiting for tokens, i.e., there are packets that have arrived
(but not lost) and do not have corresponding admitted
tokens (Eq. B.5 and Eq. B.6). These packets are put into a
queue, and they build congestive delays. Other packets that
have corresponding tokens but have not been delivered as
considered as facing non-congestive delays.

Analytical derivation. CCAC visualizes its constraints
using graphs like Fig. 11. From such graphs, we can determine
the minimum and maximum average ACK rate (r) that a CCA

6Due to non-determinism, the network can look into the future to make
these decisions.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 969

0D 1D 2D 3D Time

0CD

1CD

2CD

3CD

B
yt

es

SU

SL

Feasible
behaviorsT = 1D, rL = 0C

1

T = 1D, rU = 2C
1

T = 2D, rL = 1C
2

T = 2D, rU = 3C
2

T = 3D, rL = 2C
3

T = 3D, rU = 4C
3

Figure 11: Computing ACK rate range based on C. ACK
rate is the slope of the lines. Over different time intervals
(T), the lines show feasible service curves with the maximum
(rU) and minimum (rL) slopes. Service curves need to be
non-decreasing and lie in the shaded region.

CL CH C

r

C(T +D)
T

C(T−D)
T

λ ≥ C Feasible
behaviors

CL C

r

CH =∞
C(T +D)

T

λ(T−D)
T

λ < C

Figure 12: Inverting bounds on observations to get bounds on
network parameters. For observed ACK rate, draw horizontal
line (red dashed line) corresponding to the observed ACK
rate r, the points intersecting with the feasible region give the
range of link rates [CL,CU] that could have produced r.

can get for different λ and C choices. Specifically, consider
the case when λ ≥ C. In this case, tokens cannot be wasted
(W ′=0). As a result SL and SU have slope C, and the network
has to ensure that at all times S is between the SL and SU
lines. We look at different feasible choices of S, and find the
maximum and minimum slope of S (ACK rate) over time
intervals of different lengths. Note, we are interested in the
“average” ACK rate over the intervals, so we look at the slope
of the line joining the start and end points of the interval.

Fig. 11 shows different feasible S curves along with
minimum and maximum slopes in different intervals. For
example, over an interval of length D, r ∈ [0,C]. Similarly,
r ∈ [C/2,3C/2] for 2D long intervals, r ∈ [2C/3,4C/3] for
3D long intervals. For kD long intervals, r ∈ [k−1

k C, k+1
k C].

Following a similar exercise, we find that for intervals with
length T , r ∈ [C(T−D)

T , C(T+D)
T]. I.e., S follows an ideal link

with rate C with an additional burst or delay of CD bytes.

We repeat this for the case when λ<C. Here, we consider
two extreme cases: (C1) SL, SU have slope λ, and (C2) SL,
SU have slope C. The first case corresponds to the network
wasting tokens because packets arrive slower than tokens,
and the second corresponds to a large queue build up at time
t=0 preventing the network from wasting tokens. When we

inspect the graphs (not shown, similar to Fig. 11), we find that
over intervals of length T , r∈ [λ(T−D)

T ,λ(T+D)
T] in case C1, and

r∈ [C(T−D)
T ,C(T+D)

T] in case C2. When we look at other cases
between C1 and C2, i.e., SL and SU take slopes in the range
[λ,C], we get more feasible values of r. Taking the union of
all the r ranges, we find that in any T long interval, whenever
λ<C, r∈ [λ(T−D)

T ,C(T+D)
T].

We invert the bounds on r to get bounds on C. Fig. 12
illustrates this. Specifically, when λ>C, we have, ∀T:

C·(T−D)

T
≤r≤ C·(T+D)

T
On rearranging, we get:

r·T
T+D

≤C≤ r·T
T−D

(B.7)

Likewise, when λ<C, we have, ∀T:
λ·(T−D)

T
≤r≤ C·(T+D)

T
On rearranging, we get:

r·T
T+D

≤C (B.8)

From Eq. B.7 and Eq. B.8, we get:

C≥max
T

r·T
T+D

=CU and C≤min
T

r·T
T−D

=CL

Where CU can only be computed over intervals where λ>C.
The CCA can compute CL and CU as defined. r can be mea-

sured directly by the CCA. The CCA can also infer if λ(t)>C
at all time steps t in an interval if (qdelL(t)>0)∨(L′(t)>0) for
all time steps t in the interval. We checked that this condition
holds by querying CCAC if C > CU can happen when we com-
pute CU over intervals where (qdelL(t)> 0)∨ (L′(t)> 0) is
true. CCAC returned UNSAT implying that C has to be ≤CU .

C Synthesis details
For completeness, we describe the workings of the generator
and verifier in CEGIS (§5). For ease of understanding, we
interpret the search (or program synthesis) problem as a ∃∀
formula [1]. For instance, “does there exist a belief-based
CCA, such that forall traces captured by the network model,
the CCA ensures the desired performance properties”. More
formally, the formula is:

∃ ? ∀trace (CCA∧Network) =⇒ Performance (C.1)
? and trace represent vector of variables. ? are the holes

in the CCA template (Listing 1). Assigning value to the holes
produces a concrete CCA. A trace (timeseries) describes the
execution of the CCA under the network model. It is specified
using the dimensions of the network model’s relation (§3),
e.g., path, feedback, CCA actions. In our case, the trace
includes variables like C, β, Rm, D, rate(t), A(t), S(t), L(t),
TA(t), W(t) (Table 1, Listing 3).

The CCA, Network, and Performance are boolean valued
SMT formulas (in the theory of linear real arithmetic
(LRA) [38]) over the ? and trace variables. CCA ensures that
the congestion control decisions are made according to the

970 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CCA. It encodes that the rate(t) variables are assigned using
the values of ? and trace variables according to the CCA
template. We produce this encoding by symbolically executing
the CCA template. Network encodes what assignments to the
trace variables result in executions that are deemed feasible
according to the network model. These look like Listing 3.
We also encode belief computations (§5.1.1) and timeouts
(§5.1.2) in Network, these constraints merely populate the
belief bounds and don’t affect the actions that the network
takes. Performance encodes the desired objectives using the
transition system. We use the synthesis invariants (Eq. 5.3)
to specify Performance.

The formula can be read as “does there exist an assignment
to the holes in the template such that for all traces, if the packets
are sent according to the CCA and the service/delay/loss
decisions are made according to the network model, then the
trace satisfies the desired performance properties”.

Verifier operation. For a given CCA (i.e., value of ?),
the verifier produces a counterexample trace by solving the
formula:

? =value of ? ∧CCA∧Network∧¬Performance (C.2)
This is a quantifier-free formula (i.e., no ∃ or ∀ quantifiers).
The verifier uses an SMT solver (e.g., Z3 [47]) to solve this
formula. This is a formula on the trace variables (as the
? variables have been substituted by fixed values). The
assignment to the trace variables describes a trace where
the given CCA violates the performance properties on the
network model. If the formula is unsatisfiable, then there is
no counterexample that breaks the CCA.

Generator operation. Given a set of counterexample traces
(say X), the generator solves the following formula to propose
a new candidate CCA:∧

trace∈X
(CCA∧Network) =⇒ Performance (C.3)

This is a formula on the ? variables (as the trace variables
have been substituted by concrete counterexamples from
the set X). The assignments to the ? variables that satisfy
the formula are those on which either the trace is no longer
feasible according to the CCA/network model, or it satisfies
the performance properties.

Note, in this formulation, only CCA depends on the holes,
the Network and Performance only depend on the trace
variables. On each trace in X, Network evaluates to True and
Performance evaluates to False (as the trace was generated
by the verifier by satisfying “··· ∧ Network∧ Performance”).
As a result, Eq. C.3 simplifies to:∧

trace∈X
¬CCA (C.4)

Effectively, the new candidate should not produce the exact
same trace of rate choices as made by the prior candidate
CCAs. So all the CCAs that have the same buggy control flow
exploited by the counterexample trace are pruned from the
search space.

D Loss vs. convergence tradeoffs
Tradeoff theorem and proof. For ease of understanding, we
show the proof for a CCA trying to ramp up its rate from 0 to
the link rate C, while trying to avoid large loss events. Later
we generalize this to CCA trying to ramp up from arbitrary
C0 to C, while trying to risk at most O(f (C)) losses for some
function f (.).

THEOREM. For an end-to-end deterministic CCA running on
a CBR-delay network with parameters ⟨C,Rm,D,0<β≤CD⟩,
to avoid getting arbitrarily low utilization, the CCA must either
(1) cause ω(1) packet loss, i.e., losses that increases with C,
or (2) take Ω(C(Rm+β/C)) time to converge to the link rate.

Proof. We will first show that under the parameters of the
proof, i.e., β ≤ CD, the CCA must cause loss to avoid
arbitrarily utilizing the link (Step 1.). Then we compute a tight
lower bound belief for C, under the CBR-delay link (our prior
belief computations were for CCAC) (Step 2.). This allows
us to compute the amount of loss the CCA risks any time it
tries to probe for bandwidth (Step 3.). If we restrict this risk of
loss to a constant independent of C, it gives us a constraint on
how quickly the CCA can ramp up, giving us a lower bound
on the convergence time (Step 4.).

For the proof, we assume the CCA knows Rm, D, and βs. βs
is the seconds of queueing that the buffer can tolerate (i.e., β/C).
Knowledge of these quantities only makes the proof stronger.
If CCAs need to respect the tradeoff with the knowledge, then
they also need to respect it without the knowledge. Note, cc_-
probe_slow meets the theorem bounds without knowing βs.

Step 1. Since βs ≤ D, the CCA must cause loss to avoid
arbitrarily low utilization. This immediately follows from
Theorem 2 of [6], i.e., to avoid arbitrarily low utilization, the
CCA must cause more than D queueing delay. If the buffer
size is ≤ D seconds, the CCA will have to cause loss. For
completeness, we repeat the proof in Appendix D.1.

Step 2. Until the time that loss happens, we compute the
set of paths (link rates) that the CCA could be running on
given its observations. If the CCA has not seen a loss event by
time t∗, then the CCA never over-flowed the buffer until time
t∗−RTT(t∗). I.e., in any time interval before t∗−RTT(t∗)7,
the net bytes enqueued and the net bytes dequeued differ by
at most β. I.e., ∀t1,t2, such that, 0≤ t1≤ t2≤ t∗−RTT(t∗):∫ t2

t1
λ(s)ds−C·(t2−t1)≤β

Substituting β = Cβs and rearranging, we get, ∀t1, t2.
0≤ t1≤ t2≤ t∗−RTT(t∗):

C≥
∫ t2

t1 λ(s)ds

t2−t1+βs

7Note, the CCA only knows what happened in the network one RTT ago.
At time t, the CCA has no information about what may have happened in the
network during the time interval (t−RTT(t),t].

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 971

1RTT 2RTT 3RTT
0

∫ T
λ(s)ds

CL,λ

α

0

α(
T+

βs)

βs

+α

α

βs

2
α(

T+
βs)

βs

+α

2 α

βs

3
α(

T+
βs)

βs

+α

3 α

βs

Figure 13: CL,λ puts constraints on
∫ T

λ(s)ds, and
∫ T

λ(s)ds
puts constraints on CL,λ. Over the intervals, the red and blue
values show the maximum value of

∫ T
λ(s)ds and CL,λ respec-

tively. The green arrows show the constraint dependencies.
I.e., CL,λ in [kRTT,(k+1)RTT) puts constraints on

∫ T
λ(s)ds

in [kRTT,(k+ 1)RTT) and
∫ T

λ(s)ds in [kRTT,(k+ 1)RTT)
puts constraints on CL,λ in [(k+1)RTT,(k+2)RTT).

Based on this we define CL,λ as:

CL,λ(t
∗)= max

0≤t1≤t2≤t∗−RTT(t∗)

∫ t2
t1 λ(s)ds

t2−t1+βs
(D.1)

The set of paths that can produce the trace up to t∗ is {⟨C =
C∗,β = C∗βs⟩|C∗ ≥ CL,λ(t)}. The CCA could be running
on any of these paths, and it needs to ensure its performance
properties no matter which of these paths it is running on.

Step 3. On the path ⟨C∗,C∗βs⟩, loss happens whenever the
CCA over-flows the buffer, i.e., if the enqueued and dequeued
bytes differ by more than the buffer size in some time interval.
I.e., loss happens if for some interval [t1,t2],∫ t2

t1
λ(s)ds>C∗·(t2−t1)+C∗·βs

Specifically, on the path ⟨CL,λ(t),CL,λ(t)βs⟩, i.e., the smallest
link rate that can justify CCA’s observations, the amount of
loss is: ∆L(t0,t)=

∫ t
t0λ(s)ds−

(
CL,λ(t)·(t−t0)+CL,λ(t)·βs

)
Step 4. Convergence can only happen after the CCA causes

loss (until loss the CCA could be running on arbitrarily large
link rate from Step 1.). It needs to do this while ensuring that
the amount of loss it risks is bounded, i.e., for all intervals 0≤
t1≤ t2, ∆L(t1,t2)≤α for some constant α independent of C. We
compute a lower bound on the time to loss under this constraint.

Loss happens only if buffer overflows, i.e., in some interval
[t∗1 ,t

∗
2]

∫ t∗2
t∗1

λ(s)ds>C·(t∗2 −t∗1)+C·βs. We also know that CCA
needs to ensure ∆L(t∗1 ,t

∗
2)≤α. From this, loss happens only

if CL,λ(t∗2)≥C−α/βs. See Appendix D.1 for details.

We compute time for CL,λ to increase to C−α/βs. Initially
CL,λ(0) = 0. Since CL,λ can only be computed after the first
RTT (from the definition of CL,λ), CL,λ is 0 over the entire
interval [0,RTT). This puts constraints on sending rate choices
in [0,RTT). Specifically, substituting CL,λ =0 in ∆L≤α, we
get,

∫ t2
t1 λ(s)ds≤α for all intervals [t1,t2] inside [0,RTT). Thus,

if we compute CL,λ(t) at any time t ∈ [RTT,2RTT), we get
CL,λ(t)≤ α

βs
(because on intervals 0≤ t1 ≤ t2 < 2RTT−RTT ,

i.e., t2 < RTT , the numerator in Eq. D.1, “
∫ t2

t1 λ(s)ds”, is at
most α).

We can similarly obtain that in interval [kRTT,(k+1)RTT),
CL,λ is at most k·(α/βs) (illustrated in Fig. 13). For CL,λ to
ramp up to C−α/βs, we need k≥C·(βs/α)−1. Hence, the
convergence time is at least k RTTs, or “C·(βs/α)−1 RTTs”.
Before loss, each RTT can be as large as Rm+βs (either due
to queueing delay or jitter), making the convergence time
=(C·(βs/α)−1)·(Rm+D)=Ω(C(Rm+βs)).

Generalizing Theorem 6.1. If the CCA wants to ramp up
from C0 to C while ensuring its risks at most f (C) loss, then
the convergence time is Ω(F−1(C)(Rm+βs)), where F−1 is
the inverse of F and F is defined by the recursion:

F(0)=C0 and, F(k)=F(k−1)+ f (F(k−1))/βs

If C is not in the domain of F−1, we evaluate F−1 at the
smallest value greater than C in the domain of F−1.

We obtain this result by replacing CL,λ(0)=C0 in Step 4.,
and ensuring that risk of loss ∆L≤ f (CL,λ). The function F(k)
tracks the maximum possible value of CL,λ at any time in the
interval [kRTT,(k+1)RTT).

D.1 Proof details
We fill in the details skipped in the proof.

Step 1. We will prove below that the CCA must cause
RTT >Rm+D or loss to avoid arbitrarily low utilization. Since
(1) the buffer is not big enough to build D seconds of delay
(because βs < D), and (2) the delay box in CBR-delay can
avoid adding any jitter, the end-to-end delays can always be
≤ Rm +βs ≤ Rm +D, forcing the CCA to cause losses (as it
can no longer cause RTT >Rm+D).

Proof. We prove by contradiction, i.e., if the CCA does
not cause RTT > Rm + D or loss, then we can construct an
execution where the CCA gets arbitrarily low utilization. Say
the CCA produces an infinite execution with RTT ≤Rm+D
without ever causing loss on a CBR-delay link (say link I)
with bandwidth CI and βs seconds of buffering. This exact
RTT sequence can be produced by another CBR-delay link
(say link II) with rate CII ≫ CI (see construction below).
Since the CCA is deterministic, and it gets same sequence of
RTTs as feedback on both links, it will make the same sending
rate choices on both the links.8 However, the CCA’s average
sending rate is ≈CI (as it does not build large queues on link I
given that its RTTs are at most Rm+D). Such sending rate gets
arbitrarily low utilization on link II for arbitrarily large CII .

Construction. Link II can produce same RTT sequence
as link I, by choosing jitterII(t)=RTT I(t)−Rm−qdelII(t)
(we use subscripts I and II to refer to quantities on link I and
II respectively). With this choice RTT II(t)=Rm+qdelII(t)+

8Note RTTs capture all the information that a CCA can obtain from
feedback. Metrics like loss, ACK-rate, etc. can be derived from packet send
events and RTT sequence [6].

972 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

jitterII(t) = RTT I(t). We just need to show that this is a
feasible choice for jitterII , i.e., 0≤jitterII(t)≤D.

jitterII(t)≤D.
We know RTT I(t)≤Rm+D, or RTT I(t)−Rm≤D,

thus jitterII(t)=RTT I(t)−Rm−qdelII(t)

≤D−qdelII(t)≤D

(as qdelII(t)≥0 by definition of qdel)

jitterII(t)≥0.
Since CII ≫CI , qdelII(t)≤qdelI(t)

(increasing C decreases congestive queueing delays)

As a result, RTT I(t)=Rm+qdelI(t)+jitterI(t)

≥Rm+qdelII(t)+jitterI(t)

Or, RTT I(t)−Rm−qdelII(t)≥jitterI(t)≥0
Thus, jitterII(t)=RTT I(t)−Rm−qdelII(t)≥0

Step 4. Loss only happens when CL,λ≥C−α/βs. For loss
to happen, the buffer needs to overflow, i.e., in some interval
[t∗1 ,t

∗
2] ∫ t∗2

t∗1
λ(s)ds>C·(t∗2 −t∗1)+C·βs (D.2)

And, we also know the CCA need to ensure its risk of loss is
bounded, i.e., ∆L(t∗1 ,t

∗
2)≤α, i.e.,∫ t∗2

t∗1
λ(s)ds−

(
CL,λ(t

∗
2)·(t∗2 −t∗1)+CL,λ(t

∗
2)·βs

)
≤α

or,
∫ t∗2

t∗1
λ(s)ds≤CL,λ(t

∗
2)·(t∗2 −t∗1 +βs)+α (D.3)

We can only meet both these constraints (i.e., Eq. D.2 and
Eq. D.3) when:

CL,λ(t
∗
2)·(t∗2 −t∗1 +βs)+α>C·(t∗2 −t∗1)+C·βs

or, CL,λ(t
∗
2)>C−α/(t∗2 −t∗1 +βs)

or, CL,λ(t
∗
2)>C−α/βs

E Synthesizing cc_probe_slow

We describe properties of probe intervals used in §6.2.1 to in-
form belief computation and encoding. Recall, probe intervals
are intervals that lead to increase in CL,λ through the equation:

CL,λ(t
∗)= max

0≤t1≤t2≤t∗−RTT(t∗)

∫ t2
t1 λ(s)ds

t2−t1+D

Measurement intervals influence probing intervals, or
future probe intervals cannot be shorter than past probe
intervals. Say in the past Cp

L,λ was computed over an interval

of length T p. In the future, CL,λ increases to C f
L,λ =Cp

L,λ+ε,
and was computed over an interval T f < T p. We will show
that this action risks losing more than constant loss, i.e., loss
can increase with C.

The amount of loss the future probe risks is (from difference

in net enqueued bytes, dequeued bytes, and buffer size):

∆L=
∫ T f

λ(s)ds−
(
C·T f +β

)
(E.1)

We make the following substitutions in Eq. E.1:

(1)
∫ T f

λ(s)ds=C f
L,λ·(T

f +D) (from the definition of CL,λ).

(2) C f
L,λ=Cp

L,λ+ε

(3) From the past probe, we know
∫ T p

λ(s)ds ≤ C·T p + β

(as loss did not happen, Eq. 6.3), and
∫ T p

λ(s)ds =
Cp

L,λ·(T
p+D) (from the definition of CL,λ). From these

two inequalities, we get Cp
L,λ·(T

p+D)≤C·T p+β.

We substitute C·T p+β=Cp
L,λ·(T

p+D), or Cp
L,λ=

C·T p+β

T p+D ,
to evaluate how much loss would happen on this network.

On making the substitutions, and algebraic simplifications,
we get:

∆L=
(CD−β)·(T p−T f)

T p+D
+ε·(T f +D) (E.2)

For T f <T p, ∆L can be an increasing function of C as long as
β<CD, e.g., β=Cβs for βs <D. Hence, loss is not bounded
by a constant independent of C.

A probe interval must start with drained queue. Say
[t1,t2] is a probing interval, i.e., it leads to an increase in CL,λ,
and it does not start with a drained bottleneck queue; then we
will show that the probe interval risks losing all the packets in
the bottleneck queue. As a result, to ensure losses are bounded,
a CCA needs to ensure that the bottleneck queue is bounded
at the beginning of the probe interval.

Say the [t1,t2] probe interval causes an increase in CL,λ at
time t, i.e., 0≤ t1≤ t2≤ t−RTT(t), and,

CL,λ(t)=

∫ t2
t1 λ(s)ds

t2−t1+D
>CL,λ(t−ε) (E.3)

for some small ε > 0. If this is not true, then [t1,t2] is not a
probing interval. By definition, CL,λ can only increase over
time, so CL,λ(t−ε)≥CL,λ(t2). Using this and Eq. E.3, we get,∫ t2

t1
λ(s)ds

t2−t1+D >CL,λ(t2), or,∫ t2

t1
λ(s)ds−CL,λ(t2)·(t2−t1+D)>0 (E.4)

The risk of loss during the probe is: ∆L = (bytes
already in queue) + (enqueued bytes) − (dequeued
bytes+buffer). We evaluate this equation on the path
⟨C=CL,λ(t2),β=CL,λ(t2)D⟩. It can produce observations till
time t2 as it is in the belief set (derived in §6.2.1), assuming
until t2, the CCA has not witnessed RTT >Rm+D, or losses.
Plugging this path into ∆L, we get:

∆L=q(t1)+
∫ t2

t1
λ(s)ds−

(
CL,λ(t2)·(t2−t1)+CL,λ(t2)·D

)
(E.5)

From Eq. E.5 and Eq. E.4, we get ∆L>q(t1).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 973

(I) Beliefs
inconsistent

(II) Beliefs
consistent
Lemma F.1

(III) Beliefs
converged
Lemma F.3

(IV) Queue
converged
Lemma F.5

Lemma F.2

Lemma F.4

Lemma F.6

Figure 14: State transition lifetime of cc_qdel. Note, a link
rate change can cause a transition between any two states
(these “all to all” transitions are not shown).

F Proofs of performance
The synthesized CCAs ensure the synthesis invariant, but that is
not sufficient to meet the performance objectives due to under-
specification (§5.2). We build proofs, consisting of lemmas,
that describe the states the CCA visits, transitions it makes,
and the objectives it ensures. In the interest of space, we only
discuss lemmas for cc_qdel. Lemmas for cc_probe_slow are
similar but use CL,λ, and qU belief bounds instead of CL and CU .

Using the verifier, we checked that the lemmas are true
for cc_qdel running on the CCAC network model with
parameters ⟨C,Rm,D = Rm,β ≥ 3C·(Rm + D)⟩. We give a
summary of how the lemmas work together, describe how we
built them, and then discuss each lemma.

Summary. Fig. 14 describes how the lemmas are related to
each other. The lemmas are true over any 10Rm seconds trace
of the CCA’s execution. We stitch together lemmas to reason
about performance over arbitrarily long time horizons.

Whenever the link rate changes significantly, CL and CU
beliefs may become inconsistent. The CCA ensures that these
beliefs become consistent exponentially fast (Lemma F.2), they
converge to a small range exponentially fast (Lemma F.4), and
finally, the CCA reaches steady state (Lemma F.6), i.e., the
bottleneck queue reduces additively at rate proportional to C.9

The lemmas ensure that progress always happens in the same
direction. Specifically, the beliefs cannot become inconsis-
tent on their own, i.e., without link rate varying (Lemma F.1),
the beliefs cannot diverge post convergence (Lemma F.3),
the bottleneck queue cannot become unbounded after it con-
verges (Lemma F.5). In other words, once the CCA reaches
steady state (IV), it stays there. In the steady state (IV), cc_-
qdel gets at least 89% utilization, keeps RTTs to less than
4.4(Rm+D) seconds, and loses at most 3 packets in any Rm du-
ration (Lemma F.7). Additionally, Lemma F.8 ensures thatcc_-
qdel never incurs large loss events when probing for bandwidth
as long as the beliefs are consistent, i.e., in states II, III, IV.

Building lemmas using binary search. The lemmas
include non-trivial constants, we obtain all these by using
binary search. For instance, to compute utilization in steady
state, we ask the verifier if cc_qdel violates Lemma F.5 for
different choices of utilization. When we ask this query
for utilization = 100% the verifier gives a counterexample

9A CCA cannot drain the queue faster than this. Even if the CCA stops
sending packets, and the bytes are serviced at rate C, then the queue will only
drain by C·t bytes in time t.

showing that cc_qdel can get lower than 100% utilization.
However, when we repeat for 50%, the verifier says UNSAT,
implying on (worst-case) all executions that start in steady
state, cc_qdel gets at least 50% utilization. We repeat and find
that cc_qdel ensures 89% utilization in steady state.

LEMMA F.1. Initial beliefs are consistent =⇒ final beliefs are
consistent. Where, beliefs are consistent≡CL(t)≤C≤CU (t),
and we evaluate initial beliefs at t = 0 and final beliefs at
t=T =10Rm.

This lemma verifies that our belief computations are correct.
I.e., any bandwidth C that can produce the observations in the
trace from t=0 to t=T , and also produce observations before
t = 0 (i.e., C is in the initial belief set or “initial beliefs were
consistent”) should be in the final belief set (or “final beliefs
should be consistent”). This lemma is true for any CCA.

LEMMA F.2. (¬ Initial beliefs are consistent) =⇒ (final
beliefs move towards consistency ∨ final beliefs are consistent
∨ steady state objectives). Where,

Final beliefs move towards consistency≡
(CL inconsistent =⇒ C beliefs decrease)∧
(CU inconsistent =⇒ C beliefs increase)

CL inconsist.≡CL(0)>C, CU inconsist.≡CU (0)<C

C beliefs dec.≡At least one decreases∧None increases

At least one decreases≡
CL(T)·1.1<CL(0)∨CU (T)·1.1<CU (0)

None increases≡CL(T)≤CL(0)∧CU (T)≤CU (0)
C beliefs inc. is defined symmetric to C beliefs dec.

Steady state objectives≡(Utilization lower bounded

Inflight upper bounded ∧ No large loss events)

≡ S(T)−S(0)
C(T−D)

≥83%∧

∀t.θ(t)≤4.4C·(Rm+D)∧∀t.L(t)−L(t−1)≤3MSS

In each trace, the beliefs move towards consistency by
a multiplicative factor, i.e., exponentially fast. The 1.1×
factor is a worst-case movement over all possible 10Rm long
executions. In traces where CL, CU are far from C, beliefs
move quicker. Beliefs start moving slower (but at least 1.1×)
only when they are very close to C. So in practice the amount
that the beliefs move varies over time and the beliefs become
consistent much quicker than if they only improved by only
1.1× every 10Rm seconds.

To encode “final beliefs move towards consistency”, we
require that (i) at least one of the C beliefs move in the correct
direction and (ii) neither of them move in the wrong direction.
The second clause (i.e., ii) is needed to ensure that the progress
made by the CCA in consecutive traces adds up. Without this,
it can happen that CL increases and CU decreases in the first
trace, then CU increases and CL decreases, and so on. In each

974 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

trace at least one of CL or CU is moving in the right direction
(satisfying clause i), but their progress is not adding up.

LEMMA F.3. (Initial beliefs are consistent ∧ ini-
tial beliefs are converged) =⇒ (final beliefs are
consistent ∧ final beliefs are converged). Where,
beliefs are converged≡CL(t)≥ 27C

40 ∧CU (t)≤3C.

When the beliefs are in the range [27C
40 ,3C], they do not go

outside this range unless the link rate varies. This is despite
periodic belief timeouts (§5.1.2). The beliefs are only timed
out when they are well within this range, so that they stay within
the range even after the timeout if the link rate hasn’t changed.

Recall, we found the constants 27/40 and 3 by binary
search, i.e., the tightest range for which Lemma F.3 is true.

LEMMA F.4. (Initial beliefs are consistent ∧¬ initial beliefs
are converged) =⇒ (final beliefs are consistent∧ (final beliefs
shrink ∨ final beliefs are converged ∨ steady state objectives)).
Where,
Final beliefs shrink≡At least one improves ∧None degrade

At least 1 imp.≡CL(T)>1.7CL(0)∨CU (T)<1.7CU (0)
None degrade≡CL(T)≥CL(0)∧CU (T)≤CU (0)

The beliefs shrink by a multiplicative factor i.e., exponen-
tially fast. Similar to Lemma F.2, we need the “at least one
improves” and “none degrades” pattern to ensure that the
progress made by the CCA adds up.

LEMMA F.5. (Initial beliefs are consistent ∧ initial beliefs
are converged ∧ initial bottleneck queue is bounded)
=⇒ (final beliefs are consistent ∧ final beliefs are con-
verged ∧ final bottleneck queue is bounded). Where,
bottleneck queue is bounded≡q(t)≤3.3C·(Rm+D).

LEMMA F.6. (Initial beliefs are consistent ∧ initial beliefs are
converged ∧¬ initial bottleneck queue is bounded) =⇒ (final
beliefs are consistent ∧ final beliefs are converged ∧ (final
bottleneck queue is bounded ∨ bottleneck queue reduces)).
Where, bottleneck queue reduces≡q(T)<q(0)−CRm/2.

To drain the queue, the CCA takes time that is linear in the
queue size (i.e., it decreases queue additively, proportional
to the BDP in each trace). Note, no CCA can multiplicatively
reduce the number of bytes in the bottleneck queue. Even if
the CCA stops sending packets, and the bytes are serviced at
rate C, then the queue will only drain by C·t bytes in time t,
this is independent of the number of bytes in the queue (i.e.,
not a multiple of the queue size).

LEMMA F.7. (Initial beliefs are consistent ∧ initial beliefs are
converged ∧ initial bottleneck queue is bounded) =⇒ steady
state objectives.

LEMMA F.8. (Initial beliefs are consistent) =⇒
(rate increases =⇒ no large loss events). Where,
rate increases≡rate(T)>rate(0).

Once the C beliefs are consistent, when cc_qdel is probing
(or ramping up, i.e., “rate increases”), it never incurs any large
loss events losses. Large losses may happen if the link rate
decreases (there is no way to avoid this). Note, this is only true
on networks with large buffers, i.e., β≥3C·(Rm+D).

G Implementation issues in the Linux kernel
We originally implemented the synthesized CCAs in the
Linux kernel. We uncovered bugs in the kernel’s pacing
implementation and also found the cong_ctrl API to be
insufficient to implement the synthesized CCAs.

Pacing bug. To implement pacing, the Linux kernel
pre-computes the “time to send the next packet” as the inverse
of the pacing rate, i.e., inter-send-time. If the CCA’s sending
rate changes before the pre-computed time, then the kernel
implements the wrong sending rate until the time to send
the next packet. This leads to a discrepancy in the number of
packets actually sent vs. the number of packets that the CCA
wanted to send in a time interval.

In general, it is hard to implement pacing correctly. Pacing
constrains two things, (1) a lower bound on the inter-send-time
between packets and (2) number of packets sent in a time
interval. Practically, a pacing implementation cannot meet
both these constraints. Due to delays in CPU scheduling and
interrupt handling, an instruction’s execution may be delayed.
These delays can cause a pacing implementation to miss a
sending opportunity. When this happens, pacing implementa-
tion can either temporarily increase the sending rate to correct
for the delayed opportunity (there by violating the lower bound
on inter-send-time) or process the delayed sending opportunity
as is (there by not sending any bytes corresponding to the
delay and violating the constraint on total packets sent).

In fact, the pacing implementation of the genericCC [54]
(the framework that we used to implement the synthesized
CCAs in userspace over UDP) was also incorrect. We
modified it so that it faithfully honors the lower bound on
inter-send-time to ensure constant loss. Doing so creates a
minor discrepancy between the packets sent over an interval vs.
packets the CCA expected to send. Specifically, we maintain
last_sent_time and compute inter_send_time whenever
the CCA changes its sending rate. We launch a thread that
polls (busy waits) to check if the sender is allowed to send (i.e.,
current_time is ≥last_sent_time+inter_send_time).

The busy waiting can be avoided by setting two interrupts:
(1) sleeping for time = inter_send_time, and (2) whenever
ACKs are received. Before either of these two interrupts
hit, no packets are sent or received and so there is no reason
for CCA to change its rate, so it is okay to sleep until these
interrupts as the inter_send_time does not become stale
until these interrupts. Note, setting interrupts increases the
delays caused in scheduling threads. This can increase the
discrepancy between the actual packets sent vs. the packets
the CCA expected to send. The pacing implementation may
choose to transiently increase the sending rate to correct for

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 975

sending opportunities missed due to scheduling delays.

API. The Linux kernel also does not provide a direct API to
change the sending rate after packets are sent. The kernel only
gives a callback on ACKs. Since ACKs can be delayed due to
non-congestive delays, the CCA ends up setting a potentially
stale sending rate for O(D) time. This can be worked around
by setting up timer interrupts or instrumenting a callback on
packet send events. The genericCC API provides callbacks
on both packet send and receive events.

H Supplementary empirical evaluation
We empirically evaluate the synthesized CCAs across a
variety of ⟨C,Rm,D,β⟩ parameters. Specifically, we explore
combinations of C ∈ {24,48,96} Mbps, Rm ∈ {20,40,80}
ms, D = Rm, and β ∈ {1/16,1/8,1/4,1/2,1,2,4,8,16} BDP.
Each tuple is a 60 seconds long “run”. We discard the first
20 seconds of each run (to study steady-state behavior) and
compute metrics over the remainder.

To emulate jitter, we inject up to Rm seconds of random
ACK aggregation with a fixed average link rate. We sample
agg_delay ∈ [0,D = Rm) uniformly randomly. We serve
a batch of C· agg_delay bytes after waiting for agg_delay
seconds, ensuring an average bandwidth of C. We sample
agg_delay after every batch.

Fig. 15 and Fig. 16 show the utilization, delay, and loss
metrics for each run. The synthesized CCAs are withing their
proof bounds in each run. In some of the runs, cc_probe_-
slow’s utilization is less than 50% (expected steady-state
utilization in §6.2.1), this is because in those runs, it has not
reached steady-state at the end of the run.

Note, BBRv2 and BBRv3 are not robust against adversarial
jitter. On short buffers, they do not cause loss in steady-state.
This is needed to ensure a lower bound on utilization on
CBR-delay (Step 1. of Theorem 6.1), because otherwise their
observations could be explained by an arbitrary large link rate.
We believe this is why they get lower utilization when buffer
is small in Fig. 15.

Convergence time. We study convergence time in Fig. 18
and Fig. 19. We show a run with Rm =80 ms. For increasing
link rate, we double the link rate every 20 seconds starting
at 24 Mbps. For decreasing link rate, we halve the link rate
every 20 seconds starting at 96 Mbps. In both cases we set the
buffer size as the BDP when link (wire) rate is 96 Mbps. I.e.,
β=BDP=96 Mbps ·80 ms≈624 packets (each packet sends
1538 bytes on the wire in our setup).

cc_probe_slow meets its convergence time bounds. It con-
verges additively when link rate increases and exponentially
fast when link rate decreases (due to belief timeouts).

BBRv2 and BBRv3 have low loss on average, but incur large
loss events, i.e., O(BDP)whenever link rate increases, and they
start probing exponentially fast. This happens at the 20 second
and 40 second marks when the link rate increases (not shown).

To synthesize a CCA that follows the tradeoff choice
made by BBRv2 and BBRv3, we would need to remove the
under-specification in our synthesis invariant. We want to
be able to cause large losses when we are in state II (i.e., the
link rate changed, and we want to converge), but do not want
to cause large losses in state IV (when the link rate has not
changed, but we just want to check if it may have increased
after a belief timeout). Because of under-specification we
cannot distinguish between these scenarios during synthesis.
We leave this for future work.

We can manually design such a CCA using the version of
cc_probe_slow parametrized by f (.) and T∗ (§6.2.1). We can
adapt the loss allowance f (.) depending on if the CCA is in
steady-state (causing periodic small losses), or if the CCA
needs to converge (is not causing losses). This can also be
done in a fashion similar to BIC [59] and Cubic [31], i.e.,
loss allowance adapts depending on how much the link rate
changed. We leave this exploration for future work.

Fairness. Currently, our formal theoretical framework does
not provide any guarantees in multi-flow scenarios, nor does
it provide any predictions for the outcomes of multi-flow
experiments. Nevertheless, we explore the fairness properties
of the synthesized CCAs empirically.

Fig. 17 shows a run with C = 96 Mbps, Rm = 80 ms,
β= 1/2 BDP on an ideal link. We run 4 flows that share the
same bottleneck. Each flow is started 30 seconds after the
previous flow and lasts for 4×30=120 seconds. Results are
qualitatively similar for other parameter and network model
combinations. For each run (i.e., ⟨C,Rm,D,β⟩ combination
mentioned at the beginning of the section), we compute the
Jain’s fairness index (JFI) for the average rates of the 4 flows
between time 100 to 110 seconds (i.e., when all 4 flows
are running). When β ≤ 2BDP, the JFI for cc_probe_slow
across the parameter combinations is 0.94±0.06 (i.e., mean
± stddev) without jitter and 0.86 ± 0.11 with jitter. When
β> 2BDP, cc_probe_slow effectively runs cc_qdel as there
is no large loss event (§6.4). cc_qdel is unfair and gets JFI of
0.58±0.24 without jitter and 0.43±0.18 with jitter.

Even though cc_probe_slow was designed for single-flow
scenarios, it is able to converge to a fair share of the available
bandwidth. We believe this is because, to track changes in
link rate, cc_probe_slow increases its effective rate (CL,λ)
additively and reduces its effective rate (CL,λ) multiplicatively
allowing it to reach a fair allocation similar to AIMD [18].

976 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

50

100
〈24, 20〉 〈24, 80〉 〈24, 160〉

0

50

100

A
vg

u
ti

li
za

ti
o

n
[%

]

〈48, 20〉 〈48, 80〉 〈48, 160〉

2−1 23

0

50

100
〈96, 20〉

2−1 23

Buffer size [BDP, log2]

〈96, 80〉

2−1 23

〈96, 160〉

BBRv1

BBRv2

BBRv3

Cubic

cc qdel

Copa

cc probe slow 1

cc probe slow 2

cc probe slow 3

0

5

10

15

〈24, 20〉 〈24, 80〉 〈24, 160〉

0

5

10

15

P
ea

k
q

u
eu

e
[B

D
P

]

〈48, 20〉 〈48, 80〉 〈48, 160〉

2−1 23

0

5

10

15

〈96, 20〉

2−1 23

Buffer size [BDP, log2]

〈96, 80〉

2−1 23

〈96, 160〉

BBRv1

BBRv2

BBRv3

Cubic

cc qdel

Copa

cc probe slow 1

cc probe slow 2

cc probe slow 3

Figure 15: Average utilization and maximum queue use with varying bandwidth, propagation delay and buffer sizes for a link
with random ACK aggregation. The tuple at the top of each subplot shows ⟨C Mbps,Rm ms⟩.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 977

0

20

40

〈24, 20〉 〈24, 80〉 〈24, 160〉

0

20

40

A
vg

#
p

k
ts

lo
st

p
er

R
m 〈48, 20〉 〈48, 80〉 〈48, 160〉

2−1 23

0

20

40

〈96, 20〉

2−1 23

Buffer size [BDP, log2]

〈96, 80〉

2−1 23

〈96, 160〉

BBRv1

BBRv2

BBRv3

Cubic

Copa

cc probe slow 1

cc probe slow 2

cc probe slow 3

Figure 16: Packet loss with varying bandwidth, propagation
delay and buffer sizes for a link with random ACK aggregation.
The tuple at the top of each subplot shows ⟨C Mbps,Rm ms⟩.
We compute number of packets lost in every Rm long interval
and take average over all the intervals. We omit cc_qdel,
it causes O(BDP) losses with a higher constant factor than
BBRv1 (Fig. 9), and ends up skewing the graphs.

0 50 100 150 200

Time [s]

0

50

100

150

S
en

d
in

g
ra

te
[M

b
p

s]

Figure 17: With multiple flows, cc_probe_slow is able to
fairly share the available bandwidth. Every 30 seconds, we
start a new flow for a total of 4 flows shown by the different
colors. We use translucency to show the sending rates when
the graphs overlap.

0

50

100 BBRv1

0

50

100 BBRv3

0

50

100

A
rr

iv
a

l
ra

te
a

t
b

o
tt

le
n

ec
k

[M
b

p
s]

cc probe slow 1

0 10 20 30 40 50 60

Time [s]

0

50

100 cc probe slow 3

Figure 18: Convergence time for increasing C. cc_probe_-
slow_k converges additively when the link rate increases.
Increasing k increases utilization by a multiplicative factor
(Fig. 15) at the cost of increasing convergence time by a
multiplicative factor.

0

100

200
BBRv1

0

100

200
BBRv3

0

100

200

A
rr

iv
a

l
ra

te
a

t
b

o
tt

le
n

ec
k

[M
b

p
s]

cc probe slow 1

0 10 20 30 40 50 60

Time [s]

0

100

200
cc probe slow 3

Figure 19: Convergence time for decreasing C. cc_probe_-
slow_k converges exponentially fast when the link rate
decreases.

978 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

EPVerifier: Accelerating Update Storms Verification with Edge-Predicate

Chenyang Zhao§ ∗, Yuebin Guo§ ∗, Jingyu Wang§ †, Qi Qi§, Zirui Zhuang§,
Haifeng Sun§, Lingqi Guo§, Yuming Xie⋆, Jianxin Liao§ †

§ State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications ⋆Huawei Technologies Co., Ltd

Abstract
Data plane verification is designed to automatically verify net-
work correctness by directly analyzing the data plane. Recent
data plane verifiers have achieved sub-millisecond verification
for per rule update by partitioning packets into equivalence
classes (ECs). A large number of data plane updates can be
generated in a short interval, known as update storms, due
to network events such as end-to-end establishments, disrup-
tion or recovery. When it comes to update storms, however,
the verification speed of current EC-based methods is often
slowed down by the maintenance of their EC-based network
model (EC-model).

This paper presents EPVerifier, a fast, partitioned data plane
verification for update storms to further accelerate update
storms verification. EPVerifier uses a novel edge-predicate-
based (EP-based) local modeling approach to avoid drastic
oscillations of the EC-model caused by changes in the set of
equivalence classes. In addition, with local EPs, EPVerifier
can achieve a partition of verification tasks by switches that
EC-based methods cannot to get better parallel performance.
We implement EPVerifier as an easy-to-use tool, allowing
users to quickly get the appropriate verification results at any
moment by providing necessary input. Both dataset trace-
driven simulations and deployments in the wild show that
EPVerifier achieves robustly fast update storm verification and
superior parallel performance and these advantages expand
with the data plane’s complexity and storm size growth. The
verification time of EPVerifier for an update storm of size
1M is around 10s on average, a 2-10× improvement over the
state-of-the-art.

1 Introduction

Network faults such as forwarding loops, black holes, and
reachability issues caused by misconfigurations, hardware or
software problems can result in significant economic losses
and social impact [12, 16, 21]. Manual troubleshooting is

*Chenyang Zhao and Yuebin Guo contributed equally to this work.
†Jingyu Wang and Jianxin Liao are the corresponding authors.

Storm Size (Number of Updates)

8.5%

44.4%

80.8% 92.2%

9.3%
23.2%

57.7%
76.8%

101 102 103 104

APKeep Flash

Updating
Network Model

Identifying
Network Changes

Checking
Network Correctness

APKeep Flash APKeep Flash APKeep Flash

50%

100%

Pe
rc

en
ta

ge

The high overhead of
updating network model
slows down update storm
verification significantly

Figure 1: For the state-of-the-art equivalence-class-based data
plane verifiers, the proportion of the Updating Network Model
to the overall verification time explodes as the storm size (the
number of updates in the update storm) expands.

inefficient and prone to introduce new errors due to over-
sight. Therefore, network verification is proposed to auto-
matically detect network correctness and avoid error-prone
manual analysis by inferring all possible network behav-
iors based on the network’s control plane configurations
[5, 10, 13, 14, 25, 26, 32, 34] or data plane forwarding state
[6, 15, 17–20, 23, 33, 37], which are known as control plane
verification and data plane verification, respectively.

In particular, this paper focuses on data plane verifica-
tion, which directly checks the data plane to detect whether
the network violates invariants (loop and blackhole) or other
user-defined specifications (e.g., reachability). A typical data
plane verification process usually consists of three steps: 1)
Identifying network changes, which identifies hop-by-hop for-
warding behavior changes when updates come by analyzing
rule dependency. 2) Updating network model, which updates
the network model that is consistent with the data plane for-
warding behavior 3) Checking network correctness, which
checks the correctness of the data plane on a forwarding graph

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 979

extracted from the network model. To be useful in practice,
such data plane verifications need to be completed as rapidly
as possible. Otherwise, the verification results may be invalid
due to inconsistencies between the network state captured be-
fore verification and the actual network state that the updates
are delivered into.

On the one hand, recent tools like APKeep [37] achieve
sub-millisecond verification of each update when data plane
updates arrive relatively slowly. Still, on the other hand,
a large number of data plane updates can be arrived in a
short time frame due to network events such as end-to-end
establishments, disruption or recovery, etc., which is called
update storms [15]. In this case, although Flash [15] gets
substantial speed up on update storm verification by avoiding
redundant computations and applying a series of engineer-
ing optimizations, updating the network model still slows
down the verification speed. For example, as shown in Figure
1, in a synthetic wide-area backbone network containing 87
routers and 2308 links, the time consumption of updating
network model as a percentage of the overall verification time
increases with the size of the update storm and stays at a high
level (> 75%) regardless of whether the optimization is ap-
plied or not. This is because their network model is based on
global equivalence classes (ECs) and therefore cannot avoid
network model oscillations, i.e., redundantly modify the part
of the network model where no traffic change occurs. Besides,
Flash divides the header space into multiple subspaces and
distributes the verification of these subspaces to a cluster of
verifiers in parallel. This simple and straightforward partition
can be applied directly to all data plane verification systems.
However, this kind of partition is prone to bottlenecks in prac-
tice because the updates that arrive are most likely not evenly
distributed across subspaces.

To address the above problems and further accelerate up-
date storms verification, we present EPVerifier, a fast, par-
titioned data plane verifier for update storms. Instead of
partitioning packets into a set of ECs and maintaining an
EC-based network model (EC-model) to represent the data
plane forwarding state, EPVerifier maintains network packet
flow with edge predicates(EPs) to form an EP-based network
model, which we call EP-model. Each EP represents the local
packet flow of one specific unidirectional edge. Although the
time consumption of checking network correctness increases
compared to the EC-based methods, such cost is worth it for
update storms. This is because checking network correct-
ness consumes much less time than updating the network
model when there are a large number of updates, and the
EP-model fundamentally avoids modifying the part of the
network model where no packet flow changes, thus greatly
speeding up the network model updating. For parallelism,
EPVerifier can divide verification tasks in a switch-based way
that EC-based methods cannot. This is because EP has a
local nature that EC does not. Data plane updates that affect
only the forwarding behavior of a single switch will also only

affect edge predicates on that switch. However, using ECs
to represent network traffic makes the same EC appear on
different switches, meaning that traffic changes on one switch
may also affect other switches. This local nature allows the
EPVerifier to divide switches into clusters, which we call re-
gions. We divide the regions after the update storms arrive to
ensure that updates are evenly distributed among regions. We
fully implement EPVerifier as an easy-to-use tool, users can
quickly get the appropriate verification results at any moment
by providing necessary input. The evaluation results on both
datasets simulations and deployments in the wild show that
EPVerifier achieves robustly fast update storm verification
and superior parallel performance and these advantages ex-
pand with the data plane’s complexity and storm size growth.
Compared to the state-of-the-art, EPVerifier is up to more
than 10× faster.
Contributions. In summary, our main contributions are:

• We propose a novel network modeling approach based
on edge predicates (EPs), which can quickly load a large
number of data plane updates as they arrive. This ap-
proach fills the gap for fast update storm verification.

• A novel verification approach that can divide verification
tasks by switches to achieve fast update storms verifica-
tion in parallel.

• EPVerifier, an implementation of our approaches, eval-
uated on both datasets trace-driven simulations and de-
ployments in the wild. EPVerifier achieves substantial
gains compared to the state-of-the-art, and such advan-
tages expand with the complexity of the data plane and
the growth of the update storm size.

Roadmap. The problem definition for updating storm verifi-
cation (§ 2) and the architecture and workflow of EPVerifier
(§ 3) are given first, followed with examples to illustrate the
difference between our approach and the state-of-the-art (§
4). Then, the design details (§ 5) are presented and the exper-
imental results (§ 6) are shown. After disscussing future (§ 7)
and related work (§ 8), the conclusion is drawn (§ 9).

2 Problem Definition

Network model. On a data plane consists of N devices, the
forwarding behavior of each device i is controlled by its rout-
ing table Ti, where each item Ti[k] is a 3-tuple (m,a, p). Here
m denotes the packets matched by this item, a denotes where
the packets matched by this item will be forwarded to, and
p denotes the priority of a routing table item. Since the m
of different items in the same routing table may overlap, the
packets governed by each item are determined by both m and
p. When a packet arrives, device i iterates through each item
on Ti in decending order of priority to get the highest priority
item Ti[k] that matches the packet and forwards the packet to
Ti[k].a. The data plane forwarding behavior then can be mod-
eled using an edge-labeled directed graph G(V,E, l), where
the nodes V represent devices, and edges E represent simplex

980 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

links. The function l : E → Label assigns to each edge a
label that represents the packet flow on this edge. Note that
different network models have different labels, for example,
for the EC-model, the label is a set of equivalence classes,
while for the EP-model it is an edge predicate.
Identifying network changes. Consider an update storm
S consisting of K data plane updates, where each update
is denoted as an insertion or deletion of a 4-tuple FIB rule
r(match, f rom, to, priority). And the installation process of
these updates in the data plane is the insertion or deletion
of the item (match, to, priority) from the routing table Tf rom.
However, the change of packet flow due to the entry insertions
or deletions is not straightforward because of the priority, i.e.,
we cannot directly modify the edge label based on r.match.
Therefore, to specify the set of packets that a rule actually af-
fects, we need a new field hit, introduced by [37], to represent
the set of packets that a rule actually affects in the network.
The hit is defined as follows:

r.hit = r.match∧¬(∨r′.prio>r.prior′.match) (1)

Here r′ denotes other FIB rules that share the routing table
with r. With hit field, the network change of S is defined as
follows:

S.change = (r1.hit, ...,rK .hit) (2)

Updating network model. The update process of the network
model G is actually the modification process of the edge label
l. For the insertion of rule r, there are two parts of the edge
label that need to be modified: 1) r.hit need to be merged into
the label on edge(r. f rom,r.to) and 2) deleted from the label
on edge(r. f rom,∗), here ∗ means any value that is not r.to.
The similar goes for rule deletion.
Checking network correctness. After updating the network
model, the verifier uses graph algorithms to check the cor-
rectness of the network on a forwarding graph G′(V,E, l′)
extracted from the network model. Similar to G, the forward-
ing graph G′ is also an edge-labeled directed graph, but l′ is
only a subset of l that affected by update storm S. Specifically,
l′ satisfies the following constraint:

l′[(v,v′)] = l[(v,v′)]∧ (∨i=K
i=1 ri.hit) ∀(v,v′) ∈ E (3)

Verification partition. There are two natural ways to decom-
pose complex verification tasks into smaller, parallel computa-
tions: subspace-based partition and switch-based partition, as
described in turn. First, the subspace-based partition achieves
parallelism by dividing the forwarding state of the overall
network into multiple subspaces. Namely, subspace-based
partitions build multiple network models, each representing
the forwarding behavior in a subspace, just like network slices.
Second, the purpose of the switch-based partition is to divide
the network model into different clusters of switches, which
we call regions, and manage the forwarding state of different
regions in parallel. In other words, switch-based partition only
constructs one network model but maintains different parts

…

Updater

Dispatcher

Switch-based
Partitioner

Network Update
Sequence

Region Update
Sequences

Region 1

Verifier
Forwarding Graph

Network Invariant Checker Specification Checker

EP
Changes

N
et

w
or

k
To

po
lo

gy
,

C
on

fig
ur

at
io

n,
 e

tc
.

U
pd

at
e

St
or

m
s

①

②

④

⑤

U
ser-defined

Specifications

Identify

Region 2
EP

Changes

Region 3
EP

Changes

EP-Model

Generate

③

⑥

Update

⑦

Figure 2: The architecture and workflow of EPVerifier, which
requires three inputs: 1) the data plane topology and configu-
ration provided by the controller for building the EP-model 2)
Controller-generated update storms that will be delivered into
the data plane 3) the user-defined specifications (reachability,
waypointing, etc.)

simultaneously to keep the overall network model consistent
with the data plane forwarding behavior.

3 Architecture and Workflow

As shown in Figure 2, the EPVerifier is composed of the
following three parts:
The Dispatcher aims to guarantee the data plane updates in
the update storms evenly across the different regions. When
an update storm arrives, it divides the EP-model into multiple
regions based on the distribution of data plane updates on
each switch, ensuring that the number of updates in each
region is as equal as possible.
The Updater corresponds to the identifying network change
and updating network model of the data plane verification
process. More specifically, it identifies the EP changes in each
region in parallel and applies these changes to the EP-model.
The Verifier is responsible for checking network correctness.
It first extracts the forwarding graph from the EP-model, and
then applies the corresponding algorithm on this graph to
verify the network invariants or user-defined specifications.
Workflow. A typical workflow of using the EPVerifier is as
illustrated in Figure 2. First, the controller * needs to pro-

*Note that the EPVerifier can run in any environment that can provide
data plane updates. For simplicity, we use "controller" to refer to the assisted
system that provides data plane updates to it.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 981

S

A

B

W

D

C

𝜶𝜶𝟏𝟏
𝛂𝛂𝟏𝟏, EC1

𝛂𝛂𝟒𝟒

𝛂𝛂𝟐𝟐
𝛂𝛂𝟑𝟑

EC2

EC4

EC3

EC5 EC7

EC6

EC8 EC9 EC10 EC11

r1. match= α2, from=A, to=B, priority=∞+1

r2. match= α3, from=W, to=B, priority=∞+2

r3. match= α4, from=B, to=C, priority=∞+3

S

A W

D

C

1

1 1

1

S

A

B

W

D

C

2,3,4

2,4 2,3,4

2,3,4

S

A

B

W

D

C

2,3,5,6,7

2,5,6,7
2,3,5,6,7

S

A

B

W

D

C

2,
5,

7,
8,

9,
10

,1
1

2,5,7,10,11

10
,1

1

2,3,5,7

6

2,5,7,8,9

2,5,7,8,9,
10,11

S

A W

D

C

S

A

B

W

D

C

𝛂𝛂
𝟏𝟏

𝛂𝛂𝟏𝟏 − 𝛂𝛂𝟐𝟐
𝛂𝛂𝟏𝟏

𝛂𝛂 𝟏𝟏

S

A

B

W

D

C

𝛂𝛂
𝟏𝟏

𝛂𝛂𝟏𝟏 − 𝛂𝛂𝟐𝟐

𝛂𝛂 𝟏𝟏

S

A

B

W

D

C

𝛂𝛂
𝟏𝟏

𝛂𝛂𝟏𝟏 − 𝛂𝛂𝟐𝟐𝛂𝛂𝟏𝟏 − 𝛂𝛂𝟑𝟑

𝛂𝛂 𝟑𝟑

𝛂𝛂𝟏𝟏 − 𝛂𝛂𝟑𝟑

𝛂𝛂 𝟏𝟏

𝛂𝛂
𝟏𝟏

𝛂𝛂𝟏𝟏 𝛂𝛂𝟏𝟏

𝛂𝛂 𝟏𝟏 𝛂𝛂 𝟑𝟑

(a) Initial Network Model (b) After insert r1 (c) After insert r2 (d) After insert r3

S no update A update

EC-model
use integers to
represent ECs

EP-model
use packet sets to

represent EPs

Figure 3: EPVerifier uses edge predicates to avoid the network model oscillations.

vide the data plane topology and configuration information
to EPVerifier for initializing an EP-based network model in
the bootstrap stage (①). Then, EPVerifier converts each up-
date storm obtained from the controller into a network update
sequence (②), where each item is a data plane update repre-
senting the insertion or deletion of a 4-tuple FIB rule (See
§ 5.2 for more details). The Dispatcher then divides the EP-
model into multiple regions according to the distribution of
updates (③). After that, the Updater identifies the EP changes
in each region in multiple threads (④) and updates the EP-
model to maintain its consistency with data plane forwarding
behavior in parallel (⑤). Finally, the Verifier extracts the for-
warding graph from the updated EP-model (⑥) and uses it
to verify different specifications (⑦), note that here EPVeri-
fier only verifies network invariants (loop and black-hole) by
default, but users also have the option to provide additional
user-define specfications such as reachability, waypointing,
etc. (See § 5.3 for more details.)

4 Example

In this section, we use examples to illustrate 1) the difference
between EP-model and EC-model (§ 4.1) and 2) the difference
between switch-based partition for EP-model and subspace-
based partition for EC-model (§ 4.2).

4.1 Network Model

As shown in Figure 3, our example is based on a small net-
work of six switches. We use a directed edge-labeled graph
to represent the forwarding state of the data plane, and the

label on each edge indicates the packet flow on that edge. For
simplicity, let us assume that an update storm consisting of
three rules arrives at some point. The details of the three rules
r1, r2 and r3 are shown in the top-middle of the Figure 3. The
three rules are delivered to switches A, W and B and the set
of matched packets are α2,α3,α4, respectively. For priority,
r1, r2 and r3 have increasing priority and are higher than all
existing rules in the network.

The initial state of the data plane is shown in the top-left
corner of the Figure 3, where the packets matched by α1 from
S are forwarded to D via A, W and C. We show how α1, α2,
α3 and α4 overlap with each other by parallel lines in the
top-right corner of the Figure 3.

We now discuss how the EC-based method maintains EC-
model. Since each equivalence class(EC) is a set of packets
that experience the same forwarding actions throughout the
network [20], thus, in our example, the network initially con-
tains only one equivalence class, EC1, which denotes the
identical group of packets represented by α1. However, EC1
is continuously split into the final 7 ECs after inserting all
three rules: First, with the insertion of r2, the action of all
packets matched by α2 on switch A changes from W to B
because the priority of r1 is greater than all the old rules on
switch A. This results in splitting the EC1 into EC2, EC3 and
EC4 in the EC-model. After this, with the insertion of rule
r2, EC4 is split into EC5, EC6 and EC7. Finally, after the
insertion of rule r3, EC3 and EC6 are split into EC8, EC9
and EC10, EC11 respectively.
Network model oscillations. Note that although each rule
insertion only affects the packet flow on 1-2 edges, each EC

982 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 4: Two natural ways for the data plane verification partition.

split caused by rule insertions results in a large number of
modifications to the EC model (red label in the forwarding
graph). This is due to the fact that the equivalence classes of
the entire network appear on a large number of edges in the
EC-Model, i.e., the global nature of ECs. Although the EC-
based method can be improved in practice to avoid problems
such as the explosion of the number of equivalence classes
[37], redundant computation [15], the dramatic oscillation of
the EC-model caused by changes in the set of equivalence
classes are fundamentally unavoidable. Thus, we conclude
that the global nature of EC fundamentally limits the speed of
updating the network model and thus slows down the update
storms verification.

We then illustrate how EPVerifier avoids the above oscil-
lations of the network model and accelerates the verification
time of update storms. Unlike the EC-model that divides pack-
ets into a set of ECs and uses ECs to label each directed edge
in the network forwarding graph, the EP-model of EPVerifier
represents packet flow in the network by maintaining edge
predicates (EPs). An edge predicate is defined as follows.
Definition (Edge Predicate): An edge predicate(EP) is a
3-tuple(f rom, to,P), indicating that any packet p ∈ P will be
forwarded by device f rom to device to.

As the definition describes, each directed edge (f rom, to)
in the EP-model corresponds to each EP individually, deter-
mining that each EP in the network model will only appear
once, i.e., the local nature of EP. When a rule update comes,
such local EPs allow EPVerifier to keep the network model
consistent with the data plane by only modifying those EPs
whose bound edges have packet flow changes. For example,
as shown in Figure 3, we use the packet flow on each edge to
represent the EPs in the network model. In this case, when
rule r1 arrives, EP-model only needs to modify the EP on
edge (A,W) and (A,B) because there are packet flow changes
on them due to the installation of rule r1.

In summary, for the network model, the EC-based methods
cannot avoid the oscillations in the network model caused
by changes in the EC set due to the global nature of EC,
which slows down the verification time of update storms.
To further accelerate and achieve fast verification of update
storms, EPVerifier uses EPs to represent packet flow in the
network instead of global ECs to ensure that only the part of
the network model with packet flow changes is modified.

4.2 Partition
Suppose we want to divide the overall verification task into
two smaller tasks for parallel computation. As described in §
2, there are two natural ways to achieve parallelism: subspace-
based partition and switch-based partition. We now illustrate
the difference between them.

The subspace-based partition achieves parallelism by slic-
ing the forwarding state of the overall network into multiple
subspaces. Specifically, as shown in the left side of the Figure
4, The subspace-based partition creates two network models,
each accepting the updates from subspace1 and subspace2,
respectively. Ideally, when the updates are evenly distributed
among different subspaces, this simple and straightforward
partition can significantly reduce the number of updates a
single network model needs to handle. However, since the
subspaces and the corresponding network models are built
before the arrival of update storms, the subspace-based parti-
tion will easily encounter the following limitations in practice:
1) updates are biased towards one subspace, e.g., as shown
in Figure 4, r1,r2,r3 and r4 are generally biased towards
subspace2. 2) Some updates may affect multiple subspaces at
the same time, e.g., r3 affects both subspace1 and subspace2.

Unlike subspace-based partition, the purpose of the switch-
based partition is to divide the forwarding graph into different
clusters of switches, which we call regions, and manage the
forwarding state of different regions in parallel. The key

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 983

Algorithm 1: Divide update storm R into N region
update sequences

1 for i ∈ Range(len(V)) do
2 v←the unvisited switch that has the maximum

number of updates;
3 r← the region sequence index that has the

minimum number of updates;
4 add all updates on v to the sequence Sr;

5 return S;

difference between switch-based partition and subspace-based
partition is that the regions are divided after the update storms
arrive. Therefore, switch-based partitioning can modify the
partition of regions according to the update storms to make
the number of updates in different regions as even as possible.
For example, as shown in the right side of Figure 4, the switch-
based partition first divides the network model in terms of
switches. Then it combines the switches into region1 and
region2 according to the rules distribution to ensure that the
four rules are evenly distributed among the two regions.

While switch-based partition performance is better than
subspace-based partition, EC-based methods are unable to
apply this partition. This is because the edge label of the
EC-model is a set of equivalence classes, which re-couples
the various regions that were intended to be isolated from
each other, and the synchronization costs associated with this
coupling are unacceptable. Hence the state-of-the-art EC-
based data plane verifier [15] only divides the network into
multiple subspaces to squeeze out the parallel potential of
the EC-model. In contrast, after employing edge predicates
in place of equivalence classes, we make a key observation
that EP’s inherently local properties make it highly conducive
for switch-based partition. This is because each update can
affect only the EP of those edges emanating from the switch
where the update is being installed, so EPVerifier can easily
divide the EP-model into isolated regions and maintain them
in parallel for fast verification of update storms.

5 Design Detail

In this section, we discuss the design detail of EPVerifier.
We first show how to divide the network model into multiple
regions by switches (§ 5.1). And then illustrate the EP-model
updating process (§ 5.2), followed with an introduction on
how to use the EP-model to check the correctness of the data
plane (§ 5.3).

5.1 Switch-based Partition
Representation of the packet set P. Considering a packet
with a match field of h bits, we can think of this packet as
a boolean formula consisting of h boolean variables. For
example, an IP match field of 128.0.0.0/16 can be represented

Algorithm 2: GetHit(r)

1 r.hit← r.match;
2 for r′ ∈ r. f rom.rules do
3 if r′.prio > r.prio && r′.hit ∧ r.hit ̸= False then
4 r.hit← r.hit ∧¬r′.hit;

5 if r.hit = BDD.False then break;

as x1 ∧ x2 ∧ ·· · ∧¬x16. Therefore, the EP, which represents
a set of packets that can traverse through an edge, can also
be represented as a Boolean formula. We adopt the methods
of [33], use binary decision diagram (BDD [9]) to encode
the packet matching field. This enables us to take advantage
of the efficient logical operations provided by BDD, such as
conjunction (∧), disjunction (∨), and negation (¬), in order
to compute and update EPs.
EPs that belong to different switches. The prerequisite for
efficient operations between different BDDs is to share the
same boolean variables, so existing BDD libraries usually use
BDD managers to organize BDDs that share the same boolean
variables, and only BDDs that belong to the same manager
can perform logical operations with each other. However, in
such cases, BDDs that belong to the same BDD manager incur
significant synchronization costs in multi-threaded situations.
Therefore, to accelerate update storms verification, EPVerifier
employs distinct BDD managers for EPs in different switches
to circumvent synchronization costs. With distinct switch
EPs, EPVerifier can then freely combine the switches in the
network into multiple regions.

According to the above description, for a certain update
storm R, in addition to the set of edges E and the set of
points V that represent the topological information of the data
plane, the EPVerifier uses three variables to maintain the EP
model with N regions: S, B and M, as described in turn. First,
S1−SN indicates the update sequences of each region, where
N indicates the maximum number of regions in the network.
Note that N should be smaller than the number of CPU cores
to avoid frequent context switching. Second, B is an array of
BDD managers. For each v ∈ V , B[v] is the BDD manager
of switch v. Namely, All EPs on switch v are encoded by
B[v]. Finally, M is a hash table, which takes the network
model edge as the key. For each edge e(v,v′), M[e] is a BDD
encoded by B[v], indicating the set of packets that can pass
on e. Note that each M[e] is initialized to BDD.False at the
beginning to indicate that there is no traffic on e.

The algorithm 1 shows a sample program for dividing the
update storm R into N region update sequences. It uses a
greedy algorithm to generate N update sequences as evenly
as possible. Specifically, the algorithm picks the switch with
the maximum number of updates in the update storm (Line
2) and adds all the updates to the sequence with the fewest
updates (Line 3-4). Finally, after all the switches have been

984 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 3: UpdateEP(Si)

1 for (r, isInsert) ∈ Si do
2 if isInsert then RuleInsert(r, i) ;
3 else RuleRemove(r, i) ;

4 Function RuleInsert(r, i):
5 GetHit(r);
6 M[(r. f rom,r.to)]←M[(r. f rom,r.to)]∨ r.hit;
7 for r′ ∈ r. f rom.rules do

// sorted by decreasing priorities
8 if r′.prio≤ r.prio && r′.hit ∧ r.hit ̸=

BDD.False then
9 if r′.to ̸= r.to then

10 M[(r. f rom,r′.to)]←
M[(r. f rom,r′.to)]∧¬(r′.hit ∧ r.hit);

11 r′.hit← r′.hit ∧¬r.hit;

12 r. f rom.rules← r. f rom.rules∨ r;

13 Function RuleRemove(r, i):
14 M[(r. f rom,r.to)]←M[(r. f rom,r.to)]∧¬r.hit;
15 r. f rom.rules← r. f rom.rules\ r;
16 for r′ ∈ r. f rom.rules do

// sorted by decreasing priorities
17 if r′.prio≤ r.prio && r′.match∧ r.hit ̸=

BDD.False then
18 if r′.to ̸= r.to then
19 M[(r. f rom,r′.to)]←

M[(r. f rom,r′.to)]∨(r′.match∧r.hit);

20 r.hit← r.hit ∧¬r′.hit;
21 r′.hit← r′.hit ∨ (r.hit ∧¬r′.hit);

22 if r.hit = BDD.False then break;

visited, the final set of region update sequences S is returned
(Line 5).

5.2 Updating EP-model
As described in § 2, rules sharing a routing table may have
overlapping match fields, so the set of packets actually af-
fected by a rule’s insert or remove is determined by both
match and priority, i.e., the hit field.

As shown in Algorithm 2, we calculate the hit field of each
arriving rule update to obtain the impact of this update on the
forwarding behavior of the data plane. And this procedure
illustrates that a rule update may directly or indirectly affect
two types of EPs: 1) the EPs on edge(r. f rom,r.to), which
are directly affected by rule r, 2) and the EPs on other edges’
f rom = r. f rom which are indirectly affected by rule r, note
that these EPs are directly affected by other rules that share
the routing table with the rule r.

Each region rule sequence Si is an array of 2-

tuple(r, isInsert) items. Each item indicates an insertion
(isInsert = True) or deletion (isInsert = False) of a rule r in
the network model. Each rule r is specified as a 4-tuple
(f rom, to,match, priority), where match means the set of
packets matched by this rule, f rom and to means that this rule
will be installed to device f rom and its action is forwarded to
device to.

Algorithm 3 summarizes the update process of EPs in the
region i. For all rules that have an impact on region i, the
EPVerifier calls different methods for rule insertion and dele-
tion separately (Line1-3). For the insertion of rule r (Line
4-12), EPVerifier first calculates the hit field of r according to
the definition of hit (Line 5) and updates the EPs directly af-
fected by r (Line 6). After that, the algorithm iterates through
all the rules r′ that share a routing table with r in descend-
ing order of priority (Line 8) and updates the EPs indirectly
affected by r (Line 8-10), and maintains r′.hit (Line 11). Fi-
nally, EPVerifier adds rule r to the rule set rules of r. f rom to
complete the insertion of rule r (Line 12). For the deletion
of rule r (Line 13-22), since the hit field is already computed
during rule insertion, the EPs on edge(r. f rom,r.to) can be
updated directly at this point using r.hit (Line 14) and the
rule r deleted from r. f rom.rules (Line 15). Subsequently,
similar to rule insertion, EPVerifier updates the EPs directly
affected by those rules with lower priority than r (Line 16-22).
Besides, we find that a rule r affects or is affected by another
rule r′ when their match fields consisting of h bits overlap.
So we can use Trie [22] instead of BDD conjunction to speed
up the rule update installation. Such optimization is omitted
from Algorithm 3.

5.3 Verification
EP transfer algorithm. As described in § 5.1, EPVerifier
employs distinct BDD managers for EPs in different switches
to circumvent synchronization costs. However, BDDs that
belong to different BDD managers cannot operate logical
operations with each other. This is unacceptable for checking
network correctness, which requires the operation of EPs on
different switches. Therefore EPVerifier needs to use the
EP transfer algorithm to migrate the packet flow changes in
different regions to the same BDD manager and generate a
forwarding graph for checking network correctness.

The migration process of EP is the process of migrating
BDDs from a regional BDD manager to a network BDD man-
ager. Specifically, EPVerifier uses two steps to complete the
migration of BDDs: 1) In the region BDD manager, a BDD
is transformed into a set of formulas it represents. For in-
stance, a BDD representation of (x1∧x2∧x3)∨ (x1∧x2∧x3)
would yield a formula set: [x1∧x2∧x3,x1∧x2∧x3]. 2) In the
Network BDD Manager, the formulas are re-converted into bi-
nary decision diagrams (BDDs). While in the worst-case rule,
updates may affect all formulas in the formula set of EPs and
thus cause excessive EP transfer overhead, our experiments
(§ 6.4) show that most rule updates have little impact on EP

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 985

Algorithm 4: TransferEP(e, old, i)

1 delta← old \ e;
2 for f ormula ∈ delta. f ormulas do
3 M′[e.edge]←

M′[e.edge]\B0.encoding(f ormula);
4 a f f ected← a f f ected∨B0.encoding(f ormula);

5 delta← e\old;
6 for f ormula ∈ delta. f ormulas do
7 M′[e.edge]←

M′[e.edge]∨B0.encoding(f ormula);
8 a f f ected← a f f ected∨B0.encoding(f ormula);

formulas, i.e. only 1-2 atomic formulas change. Therefore,
EPVerifier performs incremental migration of changed EPs
rather than starting from scratch to avoid redundant calcula-
tions. In other words, in addition to maintaining a hash table
M that stores network traffic managed by different BDD man-
agers, EPVerifier also maintains an M′ that stores network
traffic encoded by a same BDD manager. Meanwhile, the pro-
cess of maintaining M′ is incremental, i.e., after the updating
of M, the EP transfer algorithm is used to migrate the changes
in M into M′. We use B0 to represent the BDD manager of
M′. The algorithm 4 summarizes the incremental migration
of an EP change old→ e from M to the M′. Note that update
storms may have both rule insertions and deletions, so the
algorithm 4 migrates the decreases (Line 1-4) and increases
(Line 5-8) of e into M′ in two parts and records the set of
packets a f f ected by this update storm for verification.

Algorithm 5: CheckInvariants(G)

1 for s ∈V do
2 Traverse(n,a f f ected,{});
3 Function Traverse(s, p,history):
4 if p = B0.False then return;
5 if s ∈ history then Alert(′loop′);
6 for (s,s′) ∈ E do
7 if M′[(s,s′)] ̸= B0.False then
8 p← p\M′[(s,s′)];
9 history∨ s′;

10 Traverse(s′,M′[(s,s′)]∧ p,history);
11 history\ s′;
12 M′[(s,s′)]←M′[(s,s′)]\ (M′[(s,s′)]∧ p);

13 if p ̸= B0.False then Alert(′blackhole′);

Network invariants. With the forwarding graph G(V,E,M′),
operators can check network invariants, including loop and
blackhole, by traversing G. The algorithm 5 summarizes the
process by which EPVerifier verifies network invariants using
the network forwarding graph. The algorithm starts the depth-

first search (DFS) traversal from each node n ∈ V (Line1).
In addition to the s representing the current node, the DFS
traversal process carries two parameters: p and history, as
described in turn. First, p represents the packets carried dur-
ing the current traversal, encoded by BDD. Second, history
stores the nodes that have been visited. p is initialized to the
set of packets a f f ected by this update storm at the beginning
of the traversal, while history is initialized to the empty set
(Line2). The traversal stops when p is empty (Line 4). When
the traversal reaches a previously traversed node, a forwarding
loop exists in the network (Line 5). Otherwise, the algorithm
starts with the neighbor node s′ of s in the G for DFS (Line
6). For every s′, the algorithm updates history and carries
M′(s,s′)∧ p for DFS (Line 8-11), and after the traversal of
s′, the algorithm avoids repeated traversals by updating M′

(Line 12). Finally, when all neighboring nodes are traversed,
a blackhole exists if packets remain in s (Line 13).

Algorithm 6: CheckOtherSpecification(G, l)

1 M′[l]← B0.False;
2 Reach←{};
3 Traverse(source,match,waypoints,dst);
4 for node ∈ (waypoints∨dst) do
5 if Reach[node] ̸= match then Alert(′Failure′);

6 Function Traverse(source, p,waypoints,dst):
7 if match = B0.False then return;
8 if source = dst then
9 Reach[source]← Reach[source]∨match;

10 return;

11 if source ∈ waypoints then
Reach[source]← Reach[source]∨match;

12 for (source,next) ∈ E do
13 p← p\M′[(source,next)];
14 Traverse(next,M′[(source,next)]∧

p,waypoints,dst);

Other specifications. In addition to network invariants, Oper-
ators may need to check other specifications, such as whether
certain packets can be forwarded from device a through de-
vice b to device c or whether network invariants are violated
when a link is broken, etc. We now explore how EPVerifier
verifies these specifications. Here, we define a specification
as a 4-tuple(match,source,waypoints,dst), i.e., all packets
matched by a match from device source must be forwarded
in the network via waypoints must be forwarded to device
dst. For such a policy, we carry the packets representing
all the matched packets from the source and traverse G to
simulate the packet forwarding process in the network. This
policy is not violated only when all packets can pass through
waypoints to dst intact. In the case of a change in network
state, such as a broken link, we modify the network forward-
ing graph before traversal.

986 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: Dataset Information.

Network Node Links FIB rules Storm Size
Airtel1 68 220 6.89×104 10K
Airtel2 68 260 9.84×104 10K

Berkeley 23 252 1.28×107 1M
INET 315 40770 2.49×108 1M

RF1755 87 2308 3.37×107 1M
RF3257 161 9432 7.45×107 1M
RF6461 138 8140 7.50×107 1M

The algorithm 6 summarizes how EPVerifier uses the net-
work forwarding graph G(V,E,M′) to verify that when the
link l fails, all packets from source that are matched by match
can are forwarded to device dst via waypoints. The algorithm
first sets the EP on l to False to simulate a link failure (Line 1),
and then initializes the variable Reach (Line 2), which records
the packets that can be reached on each waypoint. Unlike the
verification invariant, the algorithm directly carries the set of
packets match of interest to the user for DFS traversal (Line
3). During the subsequent traversal (Line 6-14), the algorithm
keeps track of the packet forwarding process by maintaining
the Reach variable. After the traversal is completed, the spec-
ification is verified by checking whether all packets in match
reach waypoints and dst (Line 4-5).

6 Evaluation

We fully implement EPVerifier as an easy-to-use tool and test
it exhaustively with trace-driven simulations and deployments
in the wild.

6.1 Setup
Implementation. We implemented EPVerifier as an easy-to-
use tool in ∼4000 lines of Java code. In particular, EPVerifier
exposes a init() function that accepts data plane topology and
configuration information for initializing the EP-model and a
verify() function that accepts update storms with user-defined
specifications (if any) for verifying data plane correctness.
For the parallelism part, we use the standard asynchronous
thread of OpenJDK. For BDD operations, we use JDD, a
BDD library for Java [30].
Dataset. Table 1 summarizes the information about the
dataset we use. They all come from the open source dataset
[1,17]. The Airtel1 and Airtel2 are generated using the ONOS
SDN-IP application [3, 11]. And the remaining five datasets
are synthetic datasets generated using the mechanism in [36].
Specifically, [17] collects IP prefixes from real-world BGP up-
dates collected by the Route Views project [4] and computes
the shortest paths in the network topology [27].
Methods to compare. We compare EPVerifier with two state-
of-the-art data plane verifiers, APKeep [37] and Flash [15],
because their evaluation identifies that they achieve the most
generic and fastest data plane verification. 1) APKeep∗: Since

we did not find an open-source implementation of APKeep,
we implement APkeep ourselves following the pseudocode
in [37], referred to as APKeep∗. 2) Flash: we use its open-
source implementation in Java [2]. Apart from the above
two methods, we also consider EPVerifier∗, standing for
EP-model with subspace-based partition instead of switch-
based partition to evaluate the performance gap between the
subspace-based partition and our switch-based partition.
Simulation objective. We use the above dataset traces to
discuss the following questions:

• what is the overall performance gap between EPVerifier
and the state-of-the-art data plane verifiers? (§ 6.2)

• what is the performance gap between the EP-based net-
work model and the EC-based network model? (§ 6.3)

• what is the performance gap between switch-based parti-
tion and subspace-based partition? (§ 6.4)

Simulation testbed. We run all our simulation experiments
on a Ubuntu 20.04(x64) LTS with a 3.4 GHz Intel 8-core CPU
and 32 GB of RAM. The OpenJDK v19.0.2 is installed for
Java support.
Deployment. Apart from simulations, We deploy EPVerifier
and Flash onto a network control plane of a commercial data
center backbone network for testing the real-world perfor-
mance of EPVerifier (§ 6.5). The placement and operations
are similar to those described in § 3, operators provide infor-
mation about the update storms they are interested in, as well
as a snapshot of the network before the update storms are
issued, to the verifiers, which then parse these information
and check whether the delivery of each update storm violates
network invariants or user-defined specifications.

6.2 Overall Performance
We now evaluate the overall performance of EPVerifier in
dealing with update storms. For network correctness, we
verify the presence of forwarding loops in the network be-
cause the verification of forwarding loops requires completely
traversing the entire forwarding graph while other specifica-
tions only need to traverse part of it. Since we use an 8-core
CPU, we divide the network into eight subspaces or eight
regions to make full use of the eight threads. As described in
Table 1, for each dataset, we randomly select 10K or 1M rule
insertions to form a update storm and deliver it to EPVerifier.
After this update storm is installed and the loop is verified, we
record the memory consumption and install another update
storm, which is composed of 10K or 1M rule deletions in the
same order.

The overall time, memory consumption and the number of
BDD operations for the above process under different scenar-
ios and datasets are summarized in Table 2.

In terms of time consumption, we can see that EPVeri-
fier achieves significant performance improvements on most
datasets, especially on the last four datasets where the network
topology is dense and prone to update storms; for example,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 987

Table 2: Time, memory cost and BDD operations of different methods

Network Time cost (s) Memory Usage (MB) BDD Operations
APKeep∗ (speedup) Flash (speedup) EPVerifier∗ (speedup) EPVerifier (speedup) APKeep∗ Flash EPVerifier∗ EPVerifier APKeep∗ Flash EPVerifier∗ EPVerifier

Airtel1 0.44 (4.9×) 0.10 (1.1×) 0.03 (0.3×) 0.09 (1×) 63.76 64.15 65.67 407.41 1×106 3×105 8×104 5×105

Airtel2 0.23 (2.6×) 0.08 (0.9×) 0.03 (0.3×) 0.09 (1×) 66.37 63.78 65.37 399.48 1×106 3×105 1×105 6×104

Berkeley 2262.15 (157×) 34.29 (2.4×) 41.57 (2.9×) 14.42 (1×) 1434.57 1312.56 1866.29 2829.26 7×109 1×107 3×106 4×106

INET 14458.69 (557×) 800.65 (31×) 38.60 (1.5×) 25.98(1×) 8178.28 6124.18 2149.38 5253.45 2×1010 3×109 7×107 7×107

RF1755 10196.17 (856×) 100.08 (8.4×) 48.03 (4×) 11.91 (1×) 2924.07 2419.23 2018.21 3364.27 2×1010 2×108 4×106 5×106

RF3257 10473.87 (785×) 208.95 (15.7×) 37.05 (2.8×) 13.34 (1×) 4947.75 3876.56 2191.80 3987.75 2×1010 7×108 1×107 1×107

RF6461 8736.91 (668×) 157.57 (12×) 34.51 (2.6×) 13.07 (1×) 4502.41 3567.80 2135.69 3987.23 2×1010 6×108 1×107 1×107

EPVerifier is 557× and 31× faster than APKeep and Flash
respectively on the INET dataset, and at least 10x faster on
the last three datasets. The overhead of the network model
oscillations (§ 4.1) depend mainly on the number of edges in
the network model, so for the Airtel1 and Airtel2 with fewer
edges and small storm sizes, the acceleration of update storm
verification by EPVerifier is insignificant because the advan-
tage gained by EPVerifier in the updating network model
phase is overshadowed by the subsequent EP transfer (§ 5.3).
In the meantime, the EPVerifier∗ using subspace-based parti-
tion does not require EP transfer and therefore performs best
in these two datasets.

In terms of memory usage, EPVerifier uses more memory
when the network is small because it uses a separate BDD
manager on each switch and each BDD manager needs to
allocate a certain size of cache when it is initialized. However,
this memory consumption does not explode as the complexity
of the network rises because the total number of updates as the
source of BDDs is the same regardless of the number of BDD
managers. It can be seen that in the last four dense networks,
EPVerifier’s memory consumption compares to that of Flash
and APKeep.

Finally, the number of BDD operations is good evidence
of the time performance improvement of EPVerifier. In all
datasets, the number of BDD operations of EPVerifier∗ and
EPVerifier is at least one magnitude less than that of Flash
and APKeep.

In summary, we can conclude that EPVerifier achieves
robustly fast update storm verification. In dense networks
that are prone to update storms, EPverifier is more than 10×
faster than state-of-the-art.

6.3 Performance of EP-model

We now consider the performance gap between the
equivalence-class-based network model (EC-model) and our
edge-predicate-based network model (EP-model). For all
datasets, we randomly select updates at different sizes (start-
ing from 1) to form update storms and use Flash and EPVer-
ifier to verify the forwarding loop, respectively. We do not
apply any partition to these verifiers to focus on the effects of
the network model.

The result is shown in Figure 5. We find that the advantage
of EP-model is not obvious when the storm size is small. This
is because when the storm size is small, the additional BDD

operations brought about by EP transfer and traversing the
forwarding graph are not negligible compared to the improve-
ment brought about by the model update. However, as the
storm size increases, the EP-model advantage starts to emerge
and this advantage increases with the size of the update storm.
Notice that the acceleration effect of EP-model is not the same
for different datasets. This is because the number of edges is
different in each dataset. When the number of edges is higher,
the number of labels that need to be modified for the network
oscillation (§ 4.1) of EC-model is also higher. Therefore, the
improvement brought by EP-model is more obvious at this
time. For example, for the INET dataset with tens of thou-
sands of edges, EP-model is much faster than EC-model even
when the storm size is very small. Thus, we can conclude that
the advantage of EP-model expands with the complexity of
the data plane and the growth of storm size.

6.4 Performance of Switch-based Partition

Compared to subspace-based partition. We evaluate the
performance gap between our switch-based partition and
subspace-based partition. Specifically, we divide the net-
work into two subspaces and manually place updates into the
two subspaces to achieve a different distribution of updates in
the subspaces. We then compare the performance of verifying
the update storm composed of these updates under the two
partitioning approaches with EP-model. The result is shown
in Figure 6. The x-axis is the ratio of the variance of the
number of updates in the two subspaces to the total number
of updates, which indicates the average distribution degree
of updates in the subspaces. Obviously, when the value of
x is between 0 and 1, when x is 0, it means that the updates
are evenly distributed in two subspaces, and when it is 1, it
means that all updates are in one subspaces. The y-axis is
the ratio of the verification time of the two partition methods.
Thus, the switch-based partition performs better when y is
greater than 1. We can see that the verification time of the
subspace-based partition rises as the variance of the rules in
the two subspaces increases. For the last five datasets in Table
1 with complex topology and large storm sizes, the switch-
based partition still outperforms the subspace-based partition
even if the updates are evenly distributed among the two sub-
spaces. This is because the subspace-based partition uses
only two BDD managers, one for each subspace, while the
switch-based partition assigns a BDD manager to each switch.

988 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5: Verification time for different storm sizes

Figure 6: Effects of updates
distribution on subspace-
based partition verification
time.

Figure 7: Each update only
affects a few formulas.

Figure 8: Per update BDD op-
erations decrease due to the
possible overlap of formulas
affected by each update.

Figure 9: The update storms
verification time in real-world
network.

Too many BDDs in the BDD manager will slow down the
BDD operations. In addition, for Airtel1 and Airtel2 datasets
with simple topology and small storm size, the performance
of the subspace-based partition is better because the number
of BDDs in the model is limited in this case and the switch-
based partition needs to go through a redundant EP transfer
process.

Cost of EP transfer. Since switch-based partitions have to
suffer additional EP transfer progress due to the limitation
of BDD (§ 5.3), we now discuss the overhead of it. First,
the complexity of the EP transfer algorithm depends mainly
on the number of formulas that need to be transferred to the
forwarding graph. Therefore, for each dataset, we select the
device with the highest number of updates and apply these
updates one by one to the EP-model and transfer them to the
forwarding graph. We record the number of formulas affected
by each update. Figure 7 shows the results. We can see that for
all datasets, most of the updates (more than 97%) affect only
one or two formulas, and the average number of transferred
formulas does not exceed 2. Second, the main time of the EP

transfer process is spent on the BDD operations. We generate
update storms of different sizes and calculate the per update
BDD operations during the EP transfer. As shown in Figure
8, for all datasets, with storm size increases, per update BDD
operations tend to decrease due to the possible overlap of
formulas affected by each update. Then, we can say that the
overhead of EP transfer is acceptable, i.e., it does not explode
with the complexity of the data plane and the storm size.

6.5 Deployment in the Wild

We evaluate the performance of EPVerifier by deploying it
and Flash onto network control plane of a commercial data
center backbone network with hundreds of switches and thou-
sands of links. We verify 50 update storms with EPVerifier
and Flash respectively and statistics the verification time of
the both. The results are shown in Figure 9. The x-axis is the
verification time and the y-axis is the Cumulative Distribution
Function (CDF). Similar to the simulation results, EPVeri-
fier still greatly accelerates update storm verification in real
deployments.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 989

7 Discussion and Future Work

The update storms. The concept of update storms is intro-
duced by Flash [15]. However, a similar phenomenon of net-
work update aggregation is prevalent in networks because the
source of network updates, a change in the user’s intent, gen-
erally affects a certain number of devices (virtual or physical),
resulting in a large number of network updates. For exam-
ple, in modern multi-tenant data centers, fast programming
interfaces in the forwarding plane may result in thousands of
updates per second [18].
Packet transformations. In addition to normal forwarding
rules, there may be rules in the real network that can modify
packet information, such as NAT. For these transformation
rules, we can extend our design to handle them just like the
fine-grained PPM network model of APKeep [37]. More
specifically, we can model each transformation rule as a node
in the network model to simulate the packet rewrite triggered
by the corresponding rule. We leave a full design and imple-
mentation to future work.
Distributed verification. Most data plane verification tools
use a centralized architecture where the server collects all
data plane information and verifies it. While this architecture
is inherently non-scalable, EPVerifier’s switch-based partition
is very suitable for implementing distributed, on-device data
plane verification. A preliminary idea is that we can maintain
the individual EP information of each switch and verify it
centrally. Detailed design is left as one of our future works.

8 Related Work

Data plane verification. There is a long line of research
on data plane verification. The early data plane verifiers
[6, 7, 19, 23] use different formal methods to analyze the data
plane snapshot. While useful, these verification tools are too
poor to detect network errors in a timely manner and cannot
handle real-time changes in the data plane to ensure that the
results are correct in real-time. To overcome the above limi-
tations, [17, 18, 20, 33] use novel algorithms and achieve per
rule update real-time verification. Veriflow [20] is the first
data plane verification tool that implements real-time verifica-
tion by dividing packets into equivalence classes to split the
verification task of the entire network into multiple indepen-
dent verification tasks for the equivalence classes. Concurrent
with Veriflow, Netplumber [18] implements incremental data
plane verification based on Header Space Analysis (HSA).
It is worth noting that Netplumber’s HSA-based scheme for
modeling network traffic information as a plumbing graph
has similar localization properties as EP-model, but when the
traffic in the network becomes progressively more complex,
the plumber graph’s node-by-node approach to the traffic
limits its speed of verification, as demonstrated by experi-
ments by [37]. Although these real-time data plane verifiers
can achieve millisecond or even sub-millisecond verification

speed, problems such as the exploding number of equivalence
classes, excessive redundant computations, and inability to
handle multiple match field still limit them. To further extend
data plane verification, APKeep [37] solves the equivalence
class explosion problem by merging equivalence classes, but
when there are plenty of rule updates, many redundant com-
putations in APKeep’s PPM model still slow down the verifi-
cation speed. Flash [15] avoids the redundant computations
in the equivalence class model through a series of improve-
ments and engineering optimizations. Inspired by [36], Flash
divides the verification task according to subspace to speed
up the verification of update storms. However, Flash still
cannot solve the network oscillation problem caused by the
equivalence class itself.
Control plane verification analyzes control plane informa-
tion, network topology, and environmental context to verify
the forwarding behavior of all packets and network intent
under the data plane, which is generated by combining this
information [5, 10, 13, 14, 25, 26, 32, 34]. They are comple-
mentary to EPVerifier and can use EPVerifier to accelerate
the verification of the generated data planes.
Stateful network verification. Compared to data plane ver-
ification, the progress of stateful network verification is at
a lower level and can only accomplish offline verification
tasks. [28, 29] model stateful middleware by adding state in-
formation to packet headers based on symbolic execution
techniques, and propose a modeling language SEFL to speed
up the symbolic execution process. [24] proposes a middle-
ware abstraction modeling method based on an SMT solver
for verifying reachability and improves the verification speed
by reducing the verification network size. [31] solves the ver-
ification problem of traffic isolation property by abstracting
the processing order of packets. [8] further abstracts the state
change of middleware based on [31] to achieve complexity
optimization. [35] is implemented based on a symbolic model
detection technique, which abstracts the network into individ-
ual packet forwarding models and achieves high scalability
with a customized symbolic model detection algorithm.

9 Conclusion
This paper presented EPVerifier, a fast, partitioned data plane
verification for update storms. EPVerifier achieves robustly
fast update storm verification compared to the state-of-the-art.
To achieve this, EPVerifier introduces an EP-based network
model to avoid the network model oscillation and a switch-
based Partitioning scheme to partition the update storm verifi-
cation task into smaller parts for parallel computation. Both
dataset trace-driven simulations and the deployments in the
wild show that EPVerifier achieves substantial gains compared
with the state-of-the-art. We believe the design of EP-model
and switch-based partition can help data plane verification
scale to large, complex data planes, which are prone to gener-
ate update storms.
Acknowledgements. We thank the anonymous NSDI review-

990 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ers and our shepherd Brighten Godfrey for their valuable
feedback. We thank Bokun Li, Jinming Wu and Ruilong
Ma for their invaluable feedback on an early draft of this
paper. This work is supported in part by the National Nat-
ural Science Foundation of China under Grants (62101064,
62171057, 62201072, 62071067), in part by the Ministry of
Education and China Mobile Joint Fund (MCM20200202),
Beijing University of Posts and Telecommunications-China
Mobile Research Institute Joint Innovation Center.

References
[1] Delta-net. https://github.com/delta-net/datasets.

[2] Flash artifact for sigcomm22. https://github.com/snlab/flash.

[3] The onos project. https://opennetworking.org/onos/.

[4] Route views. http://www.routeviews.org/.

[5] ABHASHKUMAR, A., GEMBER-JACOBSON, A., AND AKELLA, A.
Tiramisu: Fast and general network verification. arXiv preprint
arXiv:1906.02043 (2019).

[6] AL-SHAER, E., AND AL-HAJ, S. Flowchecker: Configuration anal-
ysis and verification of federated openflow infrastructures. In Pro-
ceedings of the 3rd ACM workshop on Assurable and usable security
configuration (2010), pp. 37–44.

[7] AL-SHAER, E., MARRERO, W., EL-ATAWY, A., AND ELBADAWI,
K. Network configuration in a box: Towards end-to-end verification
of network reachability and security. In 2009 17th IEEE International
Conference on Network Protocols (2009), IEEE, pp. 123–132.

[8] ALPERNAS, K., MANEVICH, R., PANDA, A., SAGIV, M., SHENKER,
S., SHOHAM, S., AND VELNER, Y. Abstract interpretation of stateful
networks. In Static Analysis: 25th International Symposium, SAS
2018, Freiburg, Germany, August 29–31, 2018, Proceedings 25 (2018),
Springer, pp. 86–106.

[9] ANDERSEN, H. R. An introduction to binary decision diagrams.
Lecture notes, available online, IT University of Copenhagen (1997),
5.

[10] BECKETT, R., GUPTA, A., MAHAJAN, R., AND WALKER, D. A
general approach to network configuration verification. In Proceed-
ings of the Conference of the ACM Special Interest Group on Data
Communication (2017), pp. 155–168.

[11] BERDE, P., GEROLA, M., HART, J., HIGUCHI, Y., KOBAYASHI, M.,
KOIDE, T., LANTZ, B., O’CONNOR, B., RADOSLAVOV, P., SNOW,
W., ET AL. Onos: towards an open, distributed sdn os. In Proceedings
of the third workshop on Hot topics in software defined networking
(2014), pp. 1–6.

[12] DONNELLY, C. Microsoft 365 outage affecting teams, outlook and
azure users blamed on ‘networking fault’. Website, 2023. https:
//www.computerweekly.com/news/252529561/Microsoft-365-
outage-affecting-Teams-Outlook-and-Azure-users-blamed-
on-networking-fault.

[13] FAYAZ, S. K., SHARMA, T., FOGEL, A., MAHAJAN, R., MILLSTEIN,
T. D., SEKAR, V., AND VARGHESE, G. Efficient network reachability
analysis using a succinct control plane representation. In OSDI (2016),
vol. 16, pp. 217–232.

[14] GEMBER-JACOBSON, A., VISWANATHAN, R., AKELLA, A., AND
MAHAJAN, R. Fast control plane analysis using an abstract representa-
tion. In Proceedings of the 2016 ACM SIGCOMM Conference (2016),
pp. 300–313.

[15] GUO, D., CHEN, S., GAO, K., XIANG, Q., ZHANG, Y., AND YANG,
Y. R. Flash: fast, consistent data plane verification for large-scale net-
work settings. In Proceedings of the ACM SIGCOMM 2022 Conference
(2022), pp. 314–335.

[16] HERN, A. Google suffers global outage with gmail, youtube and major-
ity of services affected. Website, 2020. https://www.theguardian.
com/technology/2020/dec/14/google-suffers-worldwide-
outage-with-gmail-youtube-and-other-services-down.

[17] HORN, A., KHERADMAND, A., AND PRASAD, M. R. Delta-net:
Real-time network verification using atoms. In NSDI (2017), vol. 17,
pp. 735–749.

[18] KAZEMIAN, P., CHAN, M., ZENG, H., VARGHESE, G., MCKEOWN,
N., AND WHYTE, S. Real time network policy checking using header
space analysis. In NSDI (2013), pp. 99–111.

[19] KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Header space
analysis: Static checking for networks. In Presented as part of the 9th
{USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 12) (2012), pp. 113–126.

[20] KHURSHID, A., ZOU, X., ZHOU, W., CAESAR, M., AND GODFREY,
P. B. VeriFlow: Verifying Network-Wide invariants in real time. In
10th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 13) (Lombard, IL, Apr. 2013), USENIX Association,
pp. 15–27.

[21] LABUSCHAGNE, H. Big rsaweb outage. Website,
2023. https://mybroadband.co.za/news/fibre/478521-big-
rsaweb-outage.html.

[22] MAABAR, M. Trie data structure. https://bioinformatics.cvr.
ac.uk/trie-data-structure/, 2014.

[23] MAI, H., KHURSHID, A., AGARWAL, R., CAESAR, M., GODFREY,
P. B., AND KING, S. T. Debugging the data plane with anteater. ACM
SIGCOMM Computer Communication Review 41, 4 (2011), 290–301.

[24] PANDA, A., LAHAV, O., ARGYRAKI, K. J., SAGIV, M., AND
SHENKER, S. Verifying reachability in networks with mutable datap-
aths. In NSDI (2017), vol. 17, pp. 699–718.

[25] PEDROSA, A. F. S. F. L., WALRAED-SULLIVAN, M., AND MILL-
STEIN, R. G. R. M. T. A general approach to network configuration
analysis. In 12th USENIX symposium on networked systems design
and implementation (NSDI 15) (2015), pp. 469–483.

[26] PRABHU, S., CHOU, K. Y., KHERADMAND, A., GODFREY, B., AND
CAESAR, M. Plankton: Scalable network configuration verification
through model checking. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20) (2020), pp. 953–967.

[27] SPRING, N., MAHAJAN, R., AND WETHERALL, D. Measuring isp
topologies with rocketfuel. ACM SIGCOMM Computer Communica-
tion Review 32, 4 (2002), 133–145.

[28] STOENESCU, R., POPOVICI, M., NEGREANU, L., AND RAICIU, C.
Symnet: static checking for stateful networks. In Proceedings of the
2013 workshop on Hot topics in middleboxes and network function
virtualization (2013), pp. 31–36.

[29] STOENESCU, R., POPOVICI, M., NEGREANU, L., AND RAICIU,
C. Symnet: Scalable symbolic execution for modern networks. In
Proceedings of the 2016 ACM SIGCOMM Conference (2016), pp. 314–
327.

[30] VAHIDI, A. Jdd: a pure java bdd and z-bdd library. https://
bitbucket.org/vahidi/jdd, 2003.

[31] VELNER, Y., ALPERNAS, K., PANDA, A., RABINOVICH, A., SAGIV,
M., SHENKER, S., AND SHOHAM, S. Some complexity results
for stateful network verification. In Tools and Algorithms for the
Construction and Analysis of Systems: 22nd International Conference,
TACAS 2016, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings 22 (2016), Springer, pp. 811–830.

[32] WEITZ, K., WOOS, D., TORLAK, E., ERNST, M. D., KRISHNA-
MURTHY, A., AND TATLOCK, Z. Scalable verification of border
gateway protocol configurations with an smt solver. In Proceedings of
the 2016 acm sigplan international conference on object-oriented pro-
gramming, systems, languages, and applications (2016), pp. 765–780.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 991

https://github.com/delta-net/datasets
https://github.com/snlab/flash
https://opennetworking.org/onos/
http://www.routeviews.org/
https://www.computerweekly.com/news/252529561/Microsoft-365-outage-affecting-Teams-Outlook-and-Azure-users-blamed-on-networking-fault
https://www.computerweekly.com/news/252529561/Microsoft-365-outage-affecting-Teams-Outlook-and-Azure-users-blamed-on-networking-fault
https://www.computerweekly.com/news/252529561/Microsoft-365-outage-affecting-Teams-Outlook-and-Azure-users-blamed-on-networking-fault
https://www.computerweekly.com/news/252529561/Microsoft-365-outage-affecting-Teams-Outlook-and-Azure-users-blamed-on-networking-fault
https://www.theguardian.com/technology/2020/dec/14/google-suffers-worldwide-outage-with-gmail-youtube-and-other-services-down
https://www.theguardian.com/technology/2020/dec/14/google-suffers-worldwide-outage-with-gmail-youtube-and-other-services-down
https://www.theguardian.com/technology/2020/dec/14/google-suffers-worldwide-outage-with-gmail-youtube-and-other-services-down
https://mybroadband.co.za/news/fibre/478521-big-rsaweb-outage.html
https://mybroadband.co.za/news/fibre/478521-big-rsaweb-outage.html
https://bioinformatics.cvr.ac.uk/trie-data-structure/
https://bioinformatics.cvr.ac.uk/trie-data-structure/
https://bitbucket.org/vahidi/jdd
https://bitbucket.org/vahidi/jdd

[33] YANG, H., AND LAM, S. S. Real-time verification of network proper-
ties using atomic predicates. IEEE/ACM Transactions on Networking
24, 2 (2015), 887–900.

[34] YE, F., YU, D., ZHAI, E., LIU, H. H., TIAN, B., YE, Q., WANG, C.,
WU, X., GUO, T., JIN, C., ET AL. Accuracy, scalability, coverage:
A practical configuration verifier on a global wan. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication (2020), pp. 599–614.

[35] YUAN, Y., MOON, S.-J., UPPAL, S., JIA, L., AND SEKAR, V.
Netsmc: A custom symbolic model checker for stateful network verifi-
cation. In NSDI (2020), pp. 181–200.

[36] ZENG, H., ZHANG, S., YE, F., JEYAKUMAR, V., JU, M., LIU, J.,
MCKEOWN, N., AND VAHDAT, A. Libra: Divide and conquer to verify
forwarding tables in huge networks. In 11th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 14) (2014),
pp. 87–99.

[37] ZHANG, P., LIU, X., YANG, H., KANG, N., GU, Z., AND LI, H.
Apkeep: Realtime verification for real networks. In NSDI (2020),
pp. 241–255.

992 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Netcastle: Network Infrastructure Testing At Scale

Rob Sherwood ⋆, Jinghao Shi †, Ying Zhang †, Neil Spring †, Srikanth Sundaresan †, Jasmeet Bagga†

Prathyusha Peddi †, Vineela Kukkadapu †, Rashmi Shrivastava †, Manikantan KR †, Pavan Patil †

Srikrishna Gopu †, Varun Varadan †, Ethan Shi †, Hany Morsy †, Yuting Bu †, Renjie Yang †

Rasmus Jönsson †, Wei Zhang †, Jesus Jussepen Arredondo †, Diana Saha †, Sean Choi ‡

⋆NetDebug.com †Meta Platforms Inc. ‡Santa Clara University

Abstract

Network operators have long struggled to achieve reliability.

Increased complexity risks surprising interactions, increased

downtime, and lost person-hours trying to debug correctness

and performance problems in large systems. For these rea-

sons, network operators have also long pushed back on de-

ploying promising network research, fearing the unexpected

consequences of increased network complexity. Despite the

changes’ potential benefits, the corresponding increase in

complexity may result in a net loss.

The method to build reliability despite complexity in Soft-

ware Engineering is testing. In this paper, we use statistics

from a large-scale network to identify unique challenges in

network testing. To tackle the challenges, we develop Netcas-

tle: a system that provides continuous integration/continuous

deployment (CI/CD) network testing as a service for 11 dif-

ferent networking teams, across 68 different use-cases, and

O(1k) of test devices. Netcastle supports comprehensive net-

work testing, including device-level firmware, datacenter dis-

tributed control planes, and backbone centralized controllers,

and runs 500K+ network tests per day, a scale and depth of

test coverage previously unpublished. We share five years of

experiences in building and running Netcastle at Meta.

1 Introduction

Decades of accumulated network deployment experience can

be pragmatically summarized as: seemingly simple changes

to the network can break things in ways that are both catas-

trophic and non-obvious even to experts. Other times the

breakage is subtle and thus hard to detect and root cause [31].

This unfortunate state of affairs is due to the complex reality

of modern networks. Many aspects contribute to complexity

including the number and variety of devices, workloads, de-

vice types and manufacturers, as well as typical distributed

systems problems of state distribution, race conditions, con-

sensus, and propagation delays. Compounding these issues,

each of these dimensions of complexity seem to be individu-

ally increasing (more devices, more workloads, more device

types, etc.) for a multiplicative increase in total complexity.

Any change to the system risks non-obvious performance

impact or even outages; increased complexity only exacer-

bates this danger. Thus, it is natural for network operators to

want to limit changes to the network. However, this is not prac-

tical in today’s world. Many changes are initiated by network

operators out of necessity, e.g., for network growth or to re-

place obsolete, inefficient, or failed devices. Moreover, many

changes happen without consultation or control of network

operators: new users join the system, usage patterns change,

and new services are regularly deployed—all assuming that

the network will “just work”. Thus, increased complexity

coupled with regular, sometimes unvetted, change requires

constant vigilance of operators to keep networks reliable.

Modern software engineering promises us that complexity

can be managed with increased testing and test automation [2].

This is particularly true in software-as-a-service (“SaaS”)

models where large distributed systems with thousands of

active developers continuously change under the covers, unno-

ticed by end-users, and rarely introducing bugs. These systems

rely heavily on various levels of unit, regression, performance,

stress, and end-to-end testing to continuously ensure that the

proposed changes do not break desired functionality. Only

changes that do not break tests are allowed to land (“continu-

ous integration” - CI) and automated tooling regularly applies

these changes to the production systems and monitors the

state of new deployments (“continuous deployment” - CD)

for regressions. With sufficient test coverage, even non-trivial

changes (e.g., a large refactoring) can be performed safely.

It should, in theory be possible to run a network with both

high-reliability and a high rate of change, using SaaS prin-

ciples. However, this assumes that it is possible to verify by

exhaustion that the network works correctly before and after

a proposed change, which in turn requires writing an offline

non-production test for every conceivable situation. This sim-

ple assumption is challenging to meet in practice. In this paper,

we first use the well-known testing matrix [21] concept to

quantify the complexity of network testing in production. In

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 993

addition to the theoretical analysis, we reveal the real-world

challenges of testing large network systems. Motivated by

them, we share the development and operation of a single

automated, centralized network testing system: Netcastle,

which has been in production for five years at Meta. This

paper provides the following contributions:

First, we analyze the complexity of network testing for-

mally using the concept of the testing matrix and quantify

testing complexity in a production network. Further, we re-

view the limitations of our original test methodologies and

use them to derive the requirements for an idealized network

testing as a service system (§2) including the need for fungi-

ble shared hardware resources, dynamic L1 topologies, and a

testing pyramid hierarchy that trade-off control vs. coverage.

This is the first work that provides systematic and quantitative

analysis of the network testing problem.

Second, we present Netcastle, a collection of software and

hardware systems that provide network testing as a service

(§4). It hides low-level resource management details with

high-level abstractions that ease test development. Its man-

agement layer automatically handles test scheduling to maxi-

mize resource utilization and minimize noise. In addition, it

leverages advanced hardware modules such as optical switch

and smart power distribution units (PDUs) to provide flexible

topology and isolation in a common physical infrastructure.

Third, We share five concrete testing use cases built on

top of Netcastle infrastructure, including data center network

testing, wide-area Backbone network testing, FBOSS white-

box switch testing, and OpenBMC firmware testing (§5). They

not only provide details of real-world network tests but also

demonstrate how Netcastle enables them flexibly.

Fourth, We evaluate Netcastle’s scalability and usability

in §6. It comprises over 500 racks with 3MW power and

thousands of switches. It supports 171 test scenarios across

multiple teams in Meta. It manages 87K assets and receives

495K reservations per day, which is around 6 reservations per

second. The services handle 37M requests daily at an average

of 428 queries per second. Moreover, we show its impact with

five severe bugs that were caught by Netcastle which would

otherwise cause catastrophic outages.

Fifth, as the first to propose and share the network testing

as a service framework with academia, we discuss the test-

ing implications for network complexity and possible future

research directions in §7.

2 Motivation

We first motivate the problem by leveraging a well-known

metric in software engineering, the test matrix [21]. Intuitively,

complexity is a function of the building blocks of the network:

e.g., features, components, and device types. In a well-run

system, all individual elements will have corresponding tests

to ensure they are functioning correctly; as will the interaction

between the elements. Thus, the more complex a system, the

more tests needed to validate correctness, and thus the larger

the test matrix. For the largest networks, such as at Meta, the

testing system complexity itself can limit the rate of change

of the network and is therefore worth studying on its own.

To illustrate the above, in this section, we quantify the test

matrix for a single software system and show how it can grow

multiplicatively over features, tests, etc. We then describe how

the composition of systems in a network make the overall test

matrix grow exponentially. This untrammelled growth serves

as the primary motivation for Netcastle; the bigger the test

matrix, the more engineering that is required to tame it. More

discussions of test matrix are in §A.

2.1 A Single Project’s Testing Matrix

FBOSS [5, 29] is the software that manages the switch hard-

ware of Meta’s data centers. Its many functions include trans-

lating high-level messages from the routing stack to the un-

derlying hardware, exporting statistics, and sourcing network

alerts (e.g., port down). FBOSS is updated across the global

fleet at least monthly. With each new code or configuration

change, the FBOSS binary is tested against all elements of its

test matrix to ensure none of the new changes have (a) bro-

ken other features (e.g., does ARP expiration still work?), (b)

caused a performance problem (e.g., did the route insertion

rate drop below a threshold), or (c) caused a regression in a

critical scaling dimension (e.g., maximum routes supported).

The FBOSS test matrix has the following dimensions:

• Each switch hardware platform deployed in production [1]:

e.g., Wedge40/Wedge100/Wedge400 (rack switches), Mini-

pack/Minipack2 (100G/200G fabric switch)

• Each Vendor SDK type/version: e.g., Broadcom SDK

6.5.17, 6.5.18, SAI

• Each boot mode: cold (empty ASIC memory), warm (pre-

populated ASIC memory)

• Each feature test: 800+ different features – see "fboss/f-

boss/agent/hw/bcm/tests/*" in [29]

Validating that a given change has not caused a regression

requires all combinations of (6 hardware types) × (3 SDK

versions) × (2 boot modes) × (800 feature tests) = 28,800

tests. Each test can take from a few seconds to tens of minutes

to run; a serial run of all FBOSS tests would take (imprac-

tically) days to finish. Developers may launch several test

runs daily and there are dozens of developers, resulting in

hundreds of thousands of test runs per day from this single

software project (more data in §6.1.1 and Figure 8).

While it might be tempting to take short cuts in this test

matrix, e.g., test more intelligently than the brute-force com-

bination of all dimensions, experience has shown that this can

lead to bugs being deployed into production. For example, it is

not uncommon for a bug to only affect a single feature on one

SDK version and one switch type. Predicting these unlikely

interactions in advance is hard and predicting incorrectly can

994 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

cause an outage, so our hard-won lesson is that brute-force

testing all combinations is necessary.

Software engineering best practices dictate that every new

feature or change should add its own tests, thus adding com-

plexity to the system. How much complexity a change adds

depends exactly on how it affects the test matrix:

• New element to an existing dimension: When the FBOSS

team introduced a new switch type, Minipack, they in-

creased the “switch hardware” testing dimension from 5

to 6 devices, resulting in a corresponding 20% increase in

tests from 24,000 per run to 28,800 tests per run. This is

the least complex type of change.

• Adding a new test matrix dimension: This is more

complex—even a simple dimension with a binary element

doubles the size of the test matrix; more elements would

result in a correspondingly larger matrix. For example, the

FBOSS team experimented with the Algorithmic Longest

Prefix Match (ALPM) route memory storage algorithm

which increases route capacity. Since ALPM potentially af-

fected all tests and was not initially deployed pervasively, it

required a new binary dimension to the test matrix, ALPM

off vs. ALPM on, or a 100% increase in test matrix size.

• Adding multiple new dimensions to the test matrix: An

example of a dimension with potentially more elements is

the parameter values for Explicit Congestion Notification

(ECN) support. ECN has a threshold parameter for when to

mark packets and every queue has a different allocation of

the shared buffer—forming two independent testing dimen-

sions. In practice, we explored 4 different ECN threshold

values and 3 different queue allocations for a net 1200%

increase in test matrix size.

2.2 Multiple Project Combinatorial Explosion

Above, we showed that a single network component can have

a very large number of tests; testing the network as a whole

across different software components results in a combina-

torial explosion of tests, e.g., does feature A in version B of

FBOSS correctly inter-operate with feature X in version Y of

BGP? For the number of software systems and features that

interact, this testing matrix quickly become intractable. To

see why, we note that FBOSS updates the global data center

fleet software every two weeks, and the Backbone controller

and switch firmware (details in §5) every 3-6 weeks. Such

frequent large-scale releases are only possible if we can have

safe, efficient, and extensive testing.

3 Evolution and Challenges

Before Netcastle, every network team ran their own indepen-

dent test lab and processes. As a result, we have a number

of different physical facilities for data center network testing,

new hardware testing, backbone network testing, etc. Each of

them is set up manually with a small number of switches un-

der a fixed wiring, and hard-coded with static configurations.

Making changes to the testbed often requires physical access,

together with manual and ad-hoc efforts.

We term these disparate labs “traditional” and in this sec-

tion, describe key problems with that approach that moti-

vated the Netcastle design. Network testing labs must be

isolated from the production network, but this isolation and

non-standard testing configurations lead to maintenance chal-

lenges. Thus a common theme of traditional test lab problems

is “lab rot”— the tendency for labs to accumulate old configu-

rations, forgotten topologies, unmanaged devices, and unclear

ownership. Lab rot increases uncertainty in the test signal (is

it my code or the lab that is broken?), risks security problems

(e.g., missing patches), and wastes resources that users hoard

to protect against the misconfigurations of others. This gener-

ation of testing exposed several challenges that leads to the

Netcastle design, which is summarized in Table 1.

3.1 Physical resource limits

Limited Lab Scale, Unbounded Device Heterogeneity. Test

labs are an extra expense, so are typically much smaller than

production networks. When a test lab is allocated to each

individual team, they are particularly limited in size, making it

difficult to find problems that only appear at production scale

(e.g., table exhaustion) or infrequently (e.g., race conditions).

At the same time, network testing is meant to confirm that

device A will interoperate with device B, across all deployed

device types and all relevant configurations. Compounding

this interoperability problem is that meeting the relevant spec-

ification or RFC alone is not necessarily sufficient; real inter-

operability requires “bug-level compatibility” testing which

requires all n2 pairs. Further, more device types are added

to the network faster than old device types are decommis-

sioned, resulting in unbounded device heterogeneity, and high

demand for testing. Because individual teams maintain small

scale test labs, this results in compromises to test coverage.

Device, Power, and Space Fragmentation. Physical reali-

ties mean that at lab construction time, each row and each

rack within that row is allocated an amount of space (rack

units) and electrical power (kilowatts) that is cost prohibitive

to change. However, many test setups require locality in the

form of direct physical connection. This means that when con-

structing topologies of nearby resources that can be directly

connected, fragmentation is possible: devices in a row that

are not used by one test setup may be too few to be usable by

another. This fragmentation can be aggravated if test device

use is of unbounded duration or devices cannot be reclaimed.

3.2 Automating test configurations

Static, Manually Maintained Topologies. A hardware test net-

work must support many topologies: physical cables that di-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 995

Network Testing Challenges Addressed By Netcastle

Physical Disparate Testing Labs Automated Device Enumeration + Lab Syncer (§4.5)

resource Limited Scale Fungible Centralized Resource Pool (§4.1)

limits Device, Power, Space Fragmentation Centralized Fiber Infrastructure (§4.2, §4.3)

Automate config Static, Manual Topologies Any-To-Any Optical Interconnects (§4.3)

Manage and Large Testing Matrices Netcastle Test Runner (§4.4) parallelization

schedule Test Harness Hording Finite Reservations + Usage Monitoring (§4.1)

tests Testing Conflicts Reservations (§4.1, §7.7)

Reduce test Broken Testing Devices Lab Doctor (§4.6)

noise Test devices not maintained Lab Doctor (§4.6) + Finite Reservations (§4.1, §7.5)

Debug tests Network Testing Distributed System Respect the Testing Pyramid (§7.3)

Table 1: Summary of Problems Resolved By Netcastle Design

rectly connect the devices under test. It is not practical to

manually rearrange cables at the time scales of when tests run:

cable moves can take up to a day to schedule from onsite per-

sonnel, while tests run many times per second. Instead, avail-

able devices are partitioned into different manually configured

topologies, e.g., Clos, star, or snake. With this partitioning, it

is not sufficient to have a device of type A available; it must

also be cabled appropriately. Ultimately, this means more

device types are needed for tests with different topologies.

At the same time, the manual maintenance that supports

standard topologies makes it more difficult to manage one-off,

experimental topologies. “Innovative” cabling decisions (i.e.,

“who ran this fiber through the ceiling!? and what will break if

I unplug it?”) meant to support these topologies can become

difficult to manage and contribute to lab rot.

3.3 Managing and scheduling tests

Test Equipment Hoarding. Test lab users tend to hoard equip-

ment, not through malice, but as a practical reaction to the

difficulty of acquiring reliable test gear. Once a user has gone

through the significant effort to get a test harness installed,

debugged, and working correctly, they are rightly hesitant to

release ownership because the cost of setting it all back up

again is high. Hoarding aggravates the problem of limited

lab scale (fewer available resources of specific types) and

fragmentation (fewer available resources in specific racks).

Test conflicts. Unfortunately, one test may adversely impact

another. Although labs are designed for test isolation, due to

hidden dependencies on external services, unclear ownership,

and raw complexity it is inevitable that some amount of test

breakage occurs due to stepping on toes. A simple example is

mistakenly believing a device/cable was not in use and chang-

ing it in the middle of someone else’s test . More subtly, net-

working devices often have non-obvious inter-dependencies:

the Wedge series of switches have a main CPU complex run-

ning Linux (the “microserver”) and a completely separate

baseboard management controller (BMC [10]). This archi-

tecture allowed a different developer to mistakenly log into

each system on the same switch and run tests in parallel with

apparent but incomplete isolation. In most cases a test on the

microserver would not affect a test on the BMC, but under cer-

tain test workloads, e.g., PCI controller reset, it would cause

subtle and hard to debug test breakage. Also, we discuss in

§ 7.7 a hard-to-fix architectural issue in traditional labs where

test equipment often depended on other test equipment.

3.4 Reducing testing signal noise

Tests leave devices in complex, broken states. Tests intention-

ally run on questionable code, configurations, and topologies.

As a result, they can break devices in obscure and hard to

revert ways. For example, a test configuration may disconnect

a switch from its console server and management interfaces,

making it unreachable without onsite intervention. In extreme

cases, e.g., bad firmware, it is possible to cause permanent

physical damage to the hardware. This need to verify and de-

bug test equipment before use both justifies the desire to hoard

test equipment and also takes resources offline, compounding

problems of scale and fragmentation.

Test devices are not maintained like production devices. Large

scale production networks are maintained with ruthless ho-

mogeneity and pervasive automation. Because lab networks

are heterogeneous and transient, they are both hard to auto-

mate and cannot be easily directly managed with existing

production management tooling. As a result, software up-

grades, security patches, system problem detection (“did the

disk fill up?”, “did the optic stop working?”), hardware fault

detection, etc., typically lag behind the production network,

leaving devices in various states of disrepair.

3.5 Debugging complex tests

Network testing is distributed systems. While a test setup is

simple to sketch on paper, e.g., “n1 nodes from vendor X , n2

nodes from vendor Y , running software of a certain version

and a certain topology, send messages m1 . . .mn, and a link

goes down at time t”, actually deploying and validating that

these parameters are setup and timed correctly is a complex

distributed systems problem. Test devices can be unavailable,

996 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

temporarily lose connectivity, have bugs independent from

the target of the test (e.g., from previous tests), etc. Similarly,

correctly sequencing the control signals that cause test events,

e.g., “send a BGP HELLO and then the link goes down”, and

read their results so that the test runner’s understanding of

the current state correctly reflects the physical reality (“did

the link actually go down? Before or after the HELLO?”)

reduces directly to standard distributed systems consensus

problems. And while one might expect that test labs do not run

in a byzantine adversarial model and thus consensus should

be easy, practical experience shows that significant time is

spent debugging the tests themselves; and the bigger and

more complicated the test, the more things that can go wrong.

Ultimately, tests need to be highly repeatable and problems

in the test, e.g., 1 in 1000 race conditions in the test code

adds unacceptable noise if it is supposed to catch even less

frequent race conditions in the systems under test.

4 Netcastle Testing Infrastructure

The Netcastle team provides “network test infrastructure as

a service”. The team does not write the tests, instead they

provide and maintain the backend software and lab resources,

and document best practices so that partner teams (in § 5) can

focus on testing their own code instead of on the challenges

in § 2. Figure 1 shows this interface. In this section, we

describe how Netcastle addresses the problems described

in § 3. The relationship between the problems and features

to address them is summarized in Table 1. By using these

complementary solutions, more and larger tests are made

possible, often by avoiding “lab rot".

The goal of Netcastle is to combine independent, smaller

test labs from different teams into a communal pool of test

resources, eliminating fragmentation and scale limitations.

The project aims to replicate the cloud IaaS experience where

users can reserve virtual machines via API without worrying

about the physical location or available resources. Netcastle

offers the same experience for reserving test equipment with

strong test isolation, freeing developers from worrying about

backend infrastructure maintenance and allowing them to

focus on writing tests. To accomplish this vision, Netcastle

provides many tools, processes, and points of integration to

cover in detail, so we summarize the most innovative elements

here and illustrate how they are used in Figure 3.

4.1 Centralized Reservations Guard Resources

In Netcastle, all test equipment must be reserved for finite time

through a centralized system; users can query and update this

reservation system via CLI, web interface, or a remote API

that supports automation. Resources are annotated with key/-

value pair attributes such as CPU/device type, kernel version,

etc., enabling queries that find resources by these attributes.

Individual resources can be grouped into larger atomically

reservable units (“ensembles”), e.g., reserving an entire Clos

topology rather than individual devices. This simplifies the

user interaction and avoids reservation deadlock.

The centralized reservation system also has less obvious

benefits. If the requested resources are unavailable, the caller

can queue to wait until they become available, which im-

proves resource utilization, particularly for automated testing

(see § 7.5 for details and where this can go wrong). Keeping

records of these wait times helps to identify which resource

types are in high enough demand to warrant adding more,

and instances when a component has failed when a queue is

unexpectedly stalled. Automated tools can programmatically

determine whether a device is participating in a test and act

appropriately, for example, alerts, software updates, and other

maintenance activities are suppressed for lab devices that are

are participating in a test. Requiring each reservation to be of

limited duration reduces resource hoarding and allows better

sharing of finite resources. Similarly the reservation system

provides instrumentation to monitor end-to-end test system

performance (e.g., “the queue for routers of type Y is now 45

minutes long—something must be wrong,” e.g., like § 7.5).

Given the importance of the centralized reservation system

for Netcastle, it needs to have high performance (130k+ reser-

vations a day, see § 6.1.1) and high availability (downtime

impacts developer productivity). While intuitively trivial to

build, the reservation system had to be redesigned/replaced

three times as load increased over time.

4.2 Centralized Fiber Infrastructure

To remove physical locality as a constraint, and reduce re-

source waste through fragmentation, we deploy centralized

passive fiber infrastructure to all test racks. That is, from each

rack in the lab, we pull many pairs of fiber (96 or 192 pairs,

depending on rack type) to a single central passive “fiber row”

that is shared by and sized for the whole lab. By attaching

a passive fiber patch cable from the corresponding ports in

the central fiber row, any two devices anywhere in the lab

can be directly L1 connected. This enables lab devices to be

placed wherever there is physical space and power, making

the devices interchangeable and reducing fragmentation.

The centralized fiber row is also an ideal place to deploy test

equipment shared between teams, including packet generators

and passive optical switches. Decoupling physical locality

also reduces the number of variations of device deployments,

which simplifies automation and reduces lab rot.

4.3 Any-To-Any Optical Interconnects

In addition to manually connecting patch cables in the cen-

tral fiber row, Netcastle also supports the ability to dynam-

ically, programmatically, create L1 optical topologies. De-

spite the investment in the central fiber row and the existence

of commercial-off-the-shelf programmable passive optical

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 997

Proposed Code

Change

Developer

Test Results

Netcastle Service

Storage

Checkout

Code, Tests, and

team specific

Netcastle drivers

Identify, reserve and

health-check hardware

resources from test pool.

Create Arbitrary L1

Topology With Optical

Switch Network

Run Test and record all

outputs, logs, results

Re-run any tests that have

infrastructure failures

(e.g., non-test link failure)
Identify any failed

resources and remediate

with Lab Doctor.

Figure 1: Netcastle testing as a service model.

Rack #1

Optical

Patch Panel

Switch

Model B

Switch Model A

Switch Model A

Static

Patch

Cables Type 1

Optical

Switch

Type 2

Optical

Switch

Type 1

Optical

Switch

Type 1

Optical

Switch

Type 1

Optical

Switch

Type 2

Optical

Switch

Centralized Fiber Infra:

Optical Patch Panels

Shared

Packet

Generator

Any-to-Any

Optical

Interconnects

Figure 2: Physical Infrastructure of a Netcastle Lab

switches [14, 15, 33], this is non-trivial due to scale and link

setup latencies. Specifically, in order for the link to come up

between two devices, the signal to noise ratio, as measured

by “light loss level”, must be lower than manufacturer spec-

ifications. For example, MSA, a common 100Gbps optical

standard, allows for a light loss budget of up to 5dB total

noise [35] between two devices, including passive connectors

(∼0.15–0.5 dB per connector) and the fiber itself (0.5 dB/KM

for single mode or 1.0 dB/KM for multimode), must be less

than 5dB in order to achieve a high quality connection [24].

Existing commercial passive optical switches fall in to two

broad groups. The first use Micro-Electromechanical Systems

(MEMS) mirrors or crystals to bend light [14,33]; establishing

a link relatively fast(∼10ms) but adding significant light loss

(2.5–3dB). They have medium port densities (200–400 ports

per device). The second use robotic arms to manage physical

passive fabric cables [15]; these can take minutes to establish

each link but have light loss equivalent to passive gear (0.5dB

per connector), and support high port densities of over 1000

ports per device. Our challenge in making these pieces scale

is twofold: first, developer time is important, so it would be

prohibitive to have to wait hours to setup a large network

topology using only robotic arm based switches. Second,

for the number of devices in our labs, there is not a single

device big enough to support any-to-any connectivity. We

cannot use a "multi-hop" passive optical network with chained

optical switches, because it would exceed our light loss budget

(e.g., 2 devices each at 2.5dB loss, plus optical connectors,

exceeds 5.0 dB). Complicating matters, our data centers prefer

OCP [32] standard optics which are cost optimized and have

a smaller light loss budget of 3.5dB. We could use different

optics (e.g., Multi-Source Agreement or other standards) in

our lab, but then we risk testing on equipment that are not

used in production, which could undermine our test results.

Faced with these multi-dimensional problems, we devel-

oped a hybrid solution that allows limited any-to-any connec-

tivity in our labs (Figure 2). The first insight is that the light

loss budget for a given standard (3.5dB for OCP, 5.0 for MSA)

is really a minimum guarantee and, due to manufacturing vari-

ance, a device may support somewhat higher light loss. In

practice, we found that most of our nominally 3.5dB OCP

optics in fact supported a light loss budget of 5dB. Second, af-

ter discussion with multiple MEMS manufacturers, we found

that stated light loss for an optical switch (e.g., 2.5–3.0 dB)

is a conservative maximum; real light loss varies depending

on the distance across the device from the input port to the

output port. In practice, by carefully picking input and out-

put fiber ports that are physically close to each other, we can

significantly reduce light loss. Last, to balance the trade-off

between high density, but slow, and and medium density, but

fast, connectivity switches, we build a hybrid leaf-spine fabric

of optical switches. The leaf nodes which connect directly

to the devices under test use the medium density fast con-

nectivity optical switches. We use the high density with slow

connectivity switches as spine switches. Then, similar to leaf-

spine topologies with electrical-optical switches in the DC,

we connect every leaf optical switch to every spine optical

switch. As a result, we can achieve any-to-any connectivity

across our leaf-spine optical switch fabric with a centralized

scheduler: when a developer wants to create an L1 connec-

tion between two devices, the centralized scheduler looks up

which leaf switches and ports the devices are connected to

and allocates a leaf-to-spine-to-leaf optical circuit that is al-

ready set up and physically close to the input ports. Thus with

this design, we get all three of our desired properties of scale,

meeting our light loss budget, and quick link setup.

This any-to-any topology-on-demand feature has enabled

a number of network-wide test use cases. For example, exam-

ining different generations of data center networks (§5, §6)

require creating arbitrary topologies quickly, running tests,

and tearing the topologies down. However, topology dynamics

introduce additional complexity and potential failures (§7).

4.4 Netcastle Test Runner

Netcastle test “runner” is a unified interface for launching

tests and parsing results. The runner combines an array of

workflows, including one-off interactive manual testing on

998 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Netcastle System Components (b) Basset lifecycle

Figure 3: Netcastle Components.

single devices, batch parallel processing across thousands

of devices (“test this code with all feature combinations on

all types of devices”), to long running stress runs (“run this

test 10k times and count failed runs”). The runner automates

calls to the reservation system and lab doctor, copies test

code and configurations into place, parses the test output, and

reports the results. In addition to its own internal accounting

databases, the runner must integrate with the graphical tools

that developers use to review code, the company-wide test

result database that monitors the test results history (e.g.,

to differentiate between flaky tests vs. tests that are newly

consistently failing), and the CI/CD systems that decide if a

given build is stable enough to move to the next step in the

deployment cycle. For large test runs, the runner also handles

sharding across multiple assets in parallel and retrying tests

when assets fail for infrastructure reasons. It parses the test

output and decides if a given test failure is legitimate (e.g., a

bug) vs. a failure in the underlying test infrastructure (§ 7).

Like the centralized reservation system, Netcastle runner

is intuitively simple; however, the combinations of use-cases,

systems that it must integrate with, and the distributed systems

problems associated with setting up and running multi-asset

tests, has made it a non-trivial piece of software (§ 7.5).

4.5 Lab Syncer: Asset Verification

To combat lab rot, Netcastle deploys many pieces of auto-

mated tooling. Lab syncer compares dynamically inferred

data (e.g., from connecting to every port on a console server,

and from screen scraping management switches) to a central-

ized configuration to discover devices and report changes to

the assets under management. Lab Syncer also verifies that all

assets have a common collection of addresses and metadata,

e.g., that the reservation tags (device type, kernel version, etc.)

match reality and that every device has a proper DNS name.

4.6 Lab Doctor: Device Remediation

The lab doctor performs health checks on devices as they exit

a reservation to prevent broken resources from returning to

the resource pool. It applies a well-known set of remediations

to unhealthy devices; it also runs periodically on unreserved

assets to ensure that they are healthy. Unhealthy assets that

1 # 1. Reserve testbed

2 testbed = Basset.reserve("dc_test_pool", purpose="Testing")

3 # 2. Check individual device health

4 is_healty, details = LabDoctor.check_health(testbed)

5 if not is_healthy:

6 # this will be classified as infra error

7 raise TestbedError(f"Testbed is not healthy: {details}")

8 # 3. Reconfigure connections to achieve desired topology

9 OpticalSwitchService.setUp(testbed, desired_topology)

10 # 4. Check topology level healthiness

11 TopologyValidationService.validate(testbed)

12 # 5. Connect to Ixia traffic generator

13 TrafficGenerationService.setup(testbed)

14 # 6. Run tests, example: warmboot without packet loss

15 # 6.1 Start traffic

16 TrafficGenerationService.start_traffic(testbed, TRAFFIC_SPEC)

17 # 6.2 Perform warmboot

18 forwarding_stack_service.clear_counter("pkt_loss")

19 forwarding_stack_service.perform_warmboot()

20 # 6.3 Assert no packet loss

21 pkt_loss = forwarding_stack_service.get_counter("pkt_loss")

22 TrafficGenerationService.stop_traffic(testbed)

23 assertEqual(pkt_loss, 0)

24 # 7. Tear down topology and release testbed

25 OpticalSwitchService.tearDown(testbed)

26 Basset.release(testbed)

Figure 4: Example Netcastle Test Case pseudocode.

cannot be automatically fixed are marked DEAD until manual

investigation. Figure 3(b) shows the complete asset life cycle.

4.7 Putting it together

Figure 3(a) shows how each component interacts with the test

life cycle. Figure 4 is a pseudocode example illustrating how a

test developer utilizes Netcastle. The process begins by reserv-

ing a test pool of resources and calling on Lab Doctor to check

device health status. Then, the optical switch is configured

to set up the topology and the traffic generation service (step

5), followed by a measurement to verify its accuracy. Next,

in step 6, the test developer runs a set of tests, which we will

explain further in §5. Finally, the topology is dismantled, and

all assets are returned to the pool. This process ensures that

resources are efficiently used and that the test environment is

well-maintained throughout the process.

5 Netcastle Use Cases

In this section, we present five test scenarios that use Netcastle

and how they relate to experiences from § 7.

5.1 Facebook Open Switch Software Test

FBOSS test aims to achieve rapid, automatic test and deploy-

ment for switch software [5, 29]. As we discuss in § 3, every

FBOSS code change must be tested across all features, de-

vice types, and environments before commit and deployment.

FBOSS updates the global data center fleet software every

two weeks; this cadence is only possible and safe through

extensive testing using Netcastle in the following aspects.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 999

Figure 5: DC Network Testing Usecase.

1. Hardware functional tests verify that FBOSS works

seamlessly on multiple hardware on a single switch box.

About 800 test cases per switch ASIC and SDK combina-

tion verify core functions (e.g., QoS, load balancing), they

run on every code commit and complete in about an hour.

2. Hardware benchmark tests ensure that the current ver-

sion of FBOSS meets a certain performance threshold (e.g.,

warmboot time, ECMP shrink time, TX/RX rates). About

20 test cases per switch hardware type and SDK com-

binations verify that changes meet performance criteria,

running once per day.

3. Integration tests verify FBOSS switches work seamlessly

with other entities in the data center. These tests run on

every code commit and completes in about 10 minutes.

Netcastle enables the FBOSS team to focus on writing tests

for the software functionality, as Netcastle is able to obtain

quality test signals that strictly distinguishes test failures be-

tween the software, hardware and the test infrastructure. Fur-

thermore, the FBOSS team is able to have a more predictable

deployment cycle, as they can predict how long a test cycle

will take and how much coverage the the test signals provide.

5.2 Board Management Controller Test

OpenBMC [10] is an open-source software for managing

board management controllers (BMCs) that are embedded in

servers and switches to control hardware such as fan speed and

remote server access. As the code is shared among switches

and servers, thorough testing of OpenBMC is needed to pre-

vent bad code from causing extensive damage. OpenBMC

releases new versions 4-6 times per platform per year. The

main challenges of testing OpenBMC are the diverse hard-

ware it supports—over 19 different types at Meta—and the

need to provide test signals publicly as it is open-source.

Netcastle solves these challenges as follows. For every pull

request, Netcastle runs OpenBMC tests on variety of hard-

ware types to catch regressions, and makes the test signals

available to the open-source repository, facilitating debugging

Figure 6: Netcastle Hardware Platform.

efforts by the community. Finally, Netcastle is used in validat-

ing OpenBMC image binaries. Thus, by utilizing Netcastle,

OpenBMC is able to avoid building another set of testing

infrastructure and a build pipeline, and is simultaneously able

to reap the benefits of obtaining high quality test signals.

5.3 DC Network Testing

The Data Center Network Engineering team conducts multi-

device testing on FBOSS switches and other vendor switches,

focusing on network-wide objectives and configuration cor-

rectness. This includes designing and validating data center

topology, managing network capacity, and more. Figure 5

shows a common set up for DC network testing. It faithfully

mimics the production fabric topology in a smaller scale [5]:

four pods are set up with two ToRs, connecting to two fabric

switches, interconnected by two spine switches at the aggrega-

tion layer, and four aggregation switches at the core layer. The

tests mainly consists of the following steps: test configuration

setup, inducing disruptive events (e.g., software/hardware re-

boot/crashes, switch drain/undrain, link flaps), and recording

the results (e.g., resource utilization and packet loss during

the disruptive event). In the example in Figure 4, step 6 tests

the packet loss during switch warmboot operations.

Testing new features presents challenges such as isolating

the correct topology, and filtering false test signals from manu-

ally induced test failures. Netcastle addresses these challenges

by enabling easy isolation of the testing topology through

simple scripts for controlling switch interfaces, allowing con-

figuration to reserve and use specific switches for testing, and

filtering bad signals that are manually induced.

1000 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.4 Express Backbone Controller

The EBB Controller [17] is the SDN WAN controller that

manages Meta’s inter-region global backbone network. The

team has integrated Netcastle into its CI/CD pipeline since

2019 and ships a new release every 3-4 weeks. They required

external traffic generators for their test cases; this pushed

the Netcastle team to automate reservations and access to

third party traffic generation tools. In this topology, software

VLANs mimic edge data centers. Five lab express backbone

(leb) routers are interconnected with parallel 200G physical

links. This setting is used to test new controller software,

traffic engineering algorithms, new EB router platforms, and

SDKs, among other operations.

5.5 Hardware NPI

New Product Introduction (NPI) validates prototype network-

ing gear and verifies that the hardware works correctly. This

includes, among others, environmental tests, sensor and power

checks, and data plane performance tests. Data plane testing

is simplified by connecting ports in a “snake” topology: Port i

is connected to port i+1 ∀ i mod 2 = 0, and traffic sent out

of one port is received by the next. This reduces the traffic

generator requirements from the full number of ports to only

two; one source and one sink.

6 Evaluation

In this section, we demonstrate the impact of Netcastle with

both real-world statistics and incidents caught.

6.1 System Evaluation

6.1.1 Scale: Tests, Daily Tests, and Reservations

Netcastle has grown to be the primary testing infrastructure

for the Meta network. Figure 7 shows the cumulative number

of tests developed on Netcastle over three years. From §2.1,

the FBOSS team alone has 800+ different tests before con-

sidering different hardware and software configurations. In

total, there are close to 4500 total tests developed across 20+

teams. The significant increase from week 40-80 represents

Netcastle’s largest adoption period. The steady increase after

week 80 shows its continuous benefit as the network grows.

Another metric of scale is the number of test runs per day.

Figure 8 shows the amount of daily tests in the course of three

months, ranging from 300K to as high as 700K. The average

daily test runs is around 500K, demonstrating its scale.

We further demonstrate the lab reservation’s usage in Fig-

ure 9 for a period of recent 4 months. The reservation system

can scale to as large as 130K reservations per day. The notice-

able drop around day 90 is caused by the ramping down of

development activity close to holidays.

6.1.2 Effectiveness: Failed Tests and Errors

The purpose of Netcastle is to catch test failures before bugs

manifest in production. Because Netcastle is integrated in

both code review stages and continuous deployment stages,

we can identify test failures at each stage. Figure 10 shows

that in the past four months, Netcastle caught over 500K test

failures just during code commit time. Further, the dashed

curve represents the necessity of testing during deployment, as

it captured issues with other dependent systems. Such failures

are orders of magnitude fewer than the failures that manifest

at code commit time. Yet, the volume is high—100K.

Not only are the test failures caught by Netcastle abundant

but they are also high-quality. Tests in Netcastle are grouped

into jobs for efficiency. A Netcastle test job can have 3 out-

comes: succeed (all tests passed), test failure, or infra error.

Jobs with infra errors are automatically retried and reported

as “Infra Error - No Signal” when retry limit is exhausted.

This helps developers focus on legitimate test failures that

indicate code bugs, rather than noise caused by infra issues.

Figure 11 shows the fraction of cumulative number of Net-

castle jobs that fail because of infra error and other reasons

(true failures). We observed the fraction of jobs with infra

errors is higher than jobs with legitimate test failures. Infra

errors increase as the testing framework scales and becomes

more complex, while the legitimate test failures grows flatter,

demonstrating both the necessity and effectiveness of distin-

guishing legitimate test failures from infra issues, especially

as the physical infrastructure of Netcastle grows.

6.1.3 Optical Switch Reconfiguration

Finally, we present the need for topology reconfiguration in

Figure 12. The number of reconfigurations per day ranges

from 40 to 160. The high frequency is due to multiple teams

co-sharing the testing facility, especially the traffic genera-

tor which relies on the optical reconfiguration to inject high

volume of traffic at different parts of the topology.

6.2 Five Bugs Kept Out of Production

Netcastle tests integrate with the Meta code commit process.

It generates 150K test failures yearly, some of which have

prevented catastrophic failures. We share five examples below.

6.2.1 OpenBMC Watchdog Didn’t Reset

In January 2021, two changes from the open source

OpenBMC upstream were pulled and submitted for review.

Each change was tested and landed successfully. However,

the two changes were not tested together. With both changes,

OpenBMC failed to reset the on-board watch dog timer, and

rebooted every 5 minutes. This failure resulted in a lab outage,

as all lab devices were rebooting repeatedly and all OpenBMC

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1001

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100 120 140

C
u
m

u
la

ti
v
e

#
 o

f
te

st
s

Week

Figure 7: Tests increase weekly.

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 20 40 60 80 100 120 140 160 180

D
ai

ly
 T

es
t

R
u
n
s

Day

Figure 8: Netcastle test runs per day.

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 0 20 40 60 80 100 120 140 160

#
 o

f
re

se
rv

at
io

n
s

Day

Figure 9: Daily lab reservations.

 1

 10

 100

 1000

 10000

 100000

 1x106

 0 20 40 60 80 100 120 140

C
u
m

u
la

ti
v
e

fa
il

ed
 t

es
ts

 o
n
 d

if
f

Day

Failed tests on code review

Failed tests on deployment

Figure 10: Failed tests by stage.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 20 40 60 80 100 120 140

F
ra

ct
io

n

Week

Failed tests due to infra error

Failed tests due to other reasons

Figure 11: Infra error and test failures.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 20 30 40 50 60#
 o

f
o
p
ti

ca
l

to
p
o
lo

g
y
 r

ec
o
n
fi

g
u
ra

ti
o
n

Day

Figure 12: Optical reconfigurations.

tests failed. This bug was caught well before reaching produc-

tion, and since the test failures were immediate and substantial,

it took less than an hour to root cause. Before Netcastle, a

similar bug took months to root cause.

6.2.2 FBOSS RIBv2 Redesign Missed Features

The Routing Information Base (RIB) is a critical data struc-

ture in FBOSS that stores routes learned from routing pro-

tocols and prepares the Forwarding Information Base (FIB)

for programming the switch ASICs. Over time, FBOSS has

added many use cases and optimizations to the original RIB,

including multi-protocol support, fast lookups via radix trees,

UCMP, and MPLS. However, the implementation of these

features increased the difficulty of adding new use cases and

scaling needs. To address this challenge, the FBOSS team

initiated a complete redesign of this core data structure. De-

spite being reimplemented by experienced engineers, massive

errors were found in the code: MPLS, mirroring, and traffic

engineering did not work as expected. With tests in place,

issues were quickly fixed.

6.2.3 Warmboot Packet Loss due to Agent Race

Warmboot is a switch ASIC feature that allows forwarding

packets while we we update the FBOSS agent software. Net-

castle has the ability to run tests after warmboot from one

commit to another, allowing explicit testing of upgrades and

rollbacks. In one upgrade, we discovered that a subset of

prefixes were experiencing high input discards, and further

investigation revealed that a drop rule had been installed in

the ASIC but not in the control plane. We also observed that

changing the traffic pattern caused previously functioning des-

tination prefixes to fail. We traced the issue to a race condition

in the agent software that occurred when adding and remov-

ing FDB entries during warmboot with traffic running. A

hidden drop rule caused by a race condition would have been

extremely disruptive. This issue was challenging to reproduce

even in a controlled lab setup; in production, without control

over the traffic, it would have been nearly impossible.

6.2.4 Micro-Loop Causing Packet Loss During Drains

“Draining” redirects traffic away from a switch that is being

taken offline for maintenance. Our tests check that packet

loss during drains lasts less than 30ms. However, during one

incident, packet loss continued for 300ms. The root cause of

the issue was a micro-loop that formed during routing conver-

gence. When the switch is drained, its transit neighbors are

expected to send BGP withdraw messages to the spine to stop

attracting traffic. However, the routes were unprogrammed in

the Forwarding Information Base (FIB) before the BGP with-

drawal was sent to the spine. As a result, the traffic coming

from the spine was sent back by the transit switches. Packets

were discarded when their time-to-live (TTL) expired.

If this issue had not been detected in the lab, it could have

caused significant problems during drain operations, which

are performed hundreds of times a day. This black-hole of traf-

fic for 300ms will be handled differently by applications, with

responses ranging from normal retransmission and congestion

response to abandoning connections and failing queries. The

small scale and duration makes such events difficult to detect

and troubleshoot in a production environment. Fortunately,

using the granular metrics provided by Netcastle, we were

able to consistently reproduce and test various hypotheses.

6.2.5 “Factory Reset" Backbone Lab Devices

“Provisioning” is the process of configuring devices (switches

or servers) to an operational state. Recently, a faulty provision-

1002 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ing workflow led to network devices entering a mode called

zero-touch-provisioning: essentially a factory reset state. This

state lacked the necessary boot configuration required for op-

eration within our backbone network. This problem was first

observed in the Netcastle infrastructure since we were testing

the new workflow in the lab. However, we promptly blocked

the code change responsible for the misconfiguration to pre-

vent any impact on production. If this issue had not been

discovered in the Netcastle and the new provisioning work-

flow had been rolled out, it would have resulted in a complex

and lengthy recovery process. Currently, in EBB, we perform

per-plane rebuilds, which involves rebuilding a network shard

of 42 devices in parallel. In the worst-case scenario, the bug

would have brought down 42 backbone devices, resulting in

the loss of hundreds of Terabytes of capacity.

These examples illustrate Netcastle’s capability to identify

both production tooling issues and device software bugs.

7 Experiences

7.1 Test Signal Quality Is Paramount

Obvious to state but infuriating in the details, the testing

signal, e.g., did a given test ’pass’ or ’fail’, as relayed to the

developers/automated tooling must have extremely low false

positive and false negative rates. A false negative, say due to a

failure in the infrastructure rather than a regression in the code,

is often hard to distinguish from a rare bug which can cause

developers to waste significant time. A false positive, say

when the test runner fails to catch that a test is actually failing

but reports as “pass”, allows buggy code to be pushed deeper

into the continuous deployment ("CD") pipeline. Deeper in

the CD pipeline has more noise and variance and so bugs there

are harder to replicate, isolate, and debug, and ultimately risk

being pushed into production. Worse, any noise in the test

signal degrades developer confidence and can cause them to

ignore test results or make them less inclined to write more

tests in the future. The key insight is, intuitively similar to

the famous Nyquist-Shannon sampling theorem, if one wants

to catch a code that fails at a certain rate, e.g., 1 in 1000 run

race condition, then the corresponding test signal must have

proportionately much higher sampling rate/stability (e.g., 1

in 100k test runs result in a false positive). Getting the test

infrastructure to this level of engineering confidence is no

small effort. Most of the experiences shared below derive

from this main point about test signal quality.

7.2 The Test Infrastructure Itself Must Be

Testable

The potential for test signal noise is highest when there are

bugs in the Netcastle software itself, such as in critical com-

ponents like the runner. To prevent this, Netcastle has 100%

unit test coverage and a complex system of tests that run

with each release. In one incident, a bug in the centralized re-

source reservation system caused conflicting tests to produce

a large amount of noise and risked the project’s reputation in

its early phases. This testing bug resulted in a significant loss

of developers’ trust, which put the project at risk.

7.3 Respect the Testing Pyramid

The Testing Pyramid [36] is a widely accepted testing ab-

straction that emphasizes the importance of writing simple

tests with fewer moving parts. The number of tests for each

type (e.g., unit, component, system, end-to-end) should be

inversely proportional to their complexity, creating a pyramid

shape. This principle has significant implications for Netcastle

and network testing. Despite networking being a distributed

system, writing distributed tests directly, such as designing

a test with 20 different routers to verify BGP convergence

properties, introduces significant testing noise. Therefore, Net-

castle and developer teams constantly simplify tests to reduce

noise and test the same logic with fewer moving parts, fur-

ther down the pyramid. An example of simplifying tests is

the FBOSS hardware test, where instead of using external

devices to source/sink packets for data center switch func-

tional testing, individual switch ports are put into a temporary

loopback mode. This replaces an earlier setup where switches

were connected to physical servers and test packets were

sourced/sinked via remote procedure call (RPC). The move

from a distributed system with complex RPC calls to a single

machine with only local processing reduced testing noise and

eliminated the need to maintain servers.

7.4 Infrastructure vs. Code Errors

When infrastructure errors occur in Netcastle, effort is put

into distinguishing them from code errors to avoid disrupting

developers. Skipped tests can be retried on different devices

to produce a more reliable result, and infrastructure errors

are handled by the Netcastle oncall team while code errors

are sent to individual developer teams. Lab doctor tests are

used to check device health before and after each run, and any

changes in device health can help determine whether an error

is due to infrastructure or code issues. However, there is no

perfect way to separate infrastructure from code errors, and

manual triage is often required to determine the root cause.

7.5 Do Not Under Estimate/Engineer Complex-

ity of Testing Workloads

Many of the initial false steps in the project can be attributed

to under-estimating and ultimately under-engineering the Net-

castle software systems. The team initially underestimated the

need for production-level performance, monitoring, and alert-

ing in the testing system, assuming that running tests were not

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1003

production workloads. However, the team realized the impor-

tance of testing after encountering bugs in the Netcastle code

that delayed test signal for code needed to fix a bug in produc-

tion. The root cause was the lack of a service-level agreement

(SLA) for test result return time. Now, Netcastle has a firm

SLA with each developer team, and violations trigger SEV

alerts [9] and standard production system management proce-

dures to prevent future incidents.

7.6 Manage Latency vs. Completeness

As test coverage grew, we found that not all tests could be

run and reported to developers in a timely manner, such as

within 30 minutes while they waited for test results to see if

their code could be deployed. To compromise, we created a

hierarchy of tests that ran at different time scales and with

varying levels of coverage. This model mirrors the testing

pyramid, with tests categorized as quick and low coverage,

periodic and medium coverage, and comprehensive and high

coverage. This classification evolved over time due to the need

for faster test signal and the growing number of tests, making

manual classification impractical. Had we used hierarchies

from the beginning, we could have avoided the need for the

clunky one-test-per-class heuristic.

7.7 Test Equipment Should Not Depend On

Other Test Equipment

In our earlier test labs, we discovered that managing a col-

lection of switches in a standard Clos/leaf-spine topology

as individual test equipment can cause interference between

tests running on different switches. For instance, tests run-

ning on spine switches could unexpectedly disrupt tests on

leaf switches and vice versa, leading to incorrect assump-

tions about network connectivity and causing test failures.

Additionally, some leaf nodes had servers attached to them

that were only accessible if the leaf switch was running all

necessary software, which was not always the case.

To address this issue, we took two steps. First, we desig-

nated upstream devices, such as spines connected to leaves, as

"production" test gear, meaning they were not reservable and

stayed functional during adjacent testing. Second, for devel-

opers who wanted to test pairs of gear, we used the concept

of an "ensemble" to create atomic units of the desired gear.

This prevented a single test device from being reserved, which

depended on a test device in someone else’s reservation.

8 Related Work

Network Testing Frameworks Testing new networking re-

search ideas is complex and requires consideration of various

circumstances such as network size, hardware specifications,

and protocols used. Due to the high cost and proprietary nature

of network testing frameworks built by owners of large net-

works, publicly available network testing frameworks based

on emulators are becoming more popular. Emulators such as

Flexplane [25], NIST Net [4], Mininet [20], and NS3 [28] are

widely used tools to emulate large scale networks and test

new networking concepts.

In addition to these publicly available tools, there are

numerous firms with the business model of providing net-

work testing tools [13]. Some notable firms include, Ixia

(Keysight) [34], Forward Networks [11] and Fluke Net-

works [8]. However, while these tools can be used to detect

anomalies in the current network, they are not built with the

purpose of testing newly added features, thus they do not

naturally support incremental testing of new features.

Network Testing/Verification Methodology. First of all,

there are numerous works on verifying correctness of the

network [16, 18, 19, 26, 30]. For example, Reitblatt et al. [27]

discusses formal method of verifying the correctness network

transitions. Similarly, Veriflow [18] is built to verify invari-

ants of the network in real-time. CrystalNet [22] builds an

emulation platform for production. However, these methods

only check for issues in the software states, making it hard to

detect and report any hardware related issues.

Some articles discuss industry methods for network testing,

such as Spirent’s best practices outlined in [6]. These prac-

tices include Vendor Performance Testing, Network Failure

Threshold Testing, Configuration Defect Testing, and PASS

Methodology Testing. While these practices offer practical

guidance, they do not provide a formal theoretical approach

for testing networks, which can make it difficult to quantify

testing difficulties.

9 Conclusion

Large network operators have real, but hard to quantify, con-

cerns with managing complexity in their networks. In this

paper, we first quantify network testing complexity and share

the production challenges. We then present the architecture

from the Netcastle "test infrastructure as a service" model

as well as lessons learned from over three years of growth.

Looking forward, we hope that the research community will

leverage our "testing matrix as complexity" model (§2.1) and

use it in their research to understand which changes opera-

tors are more or less likely to deploy in production. We hope

that researchers consider these effects when considering new

schemes/research as their choices have real impact on net-

work complexity: the people testing it will have to try to tame

that complexity.

This work does not raise any ethical issues.

1004 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Facebook datacenter network. https://engineering.

fb.com/2019/03/14/data-center-engineering/

f16-minipack/.

[2] K. Beck. Test Driven Development. By Example

(Addison-Wesley Signature). Addison-Wesley Longman,

Amsterdam, 2002.

[3] R. Bush. Into the future with the internet vendor task

force a very curmudgeonly view or testing spaghetti:

A wall’s point of view. SIGCOMM Comput. Commun.

Rev., 35(5):67–68, Oct. 2005.

[4] M. Carson and D. Santay. Nist net: A linux-based net-

work emulation tool. SIGCOMM Comput. Commun.

Rev., 33(3):111–126, July 2003.

[5] S. Choi, B. Burkov, A. Eckert, T. Fang, S. Kazemkhani,

R. Sherwood, Y. Zhang, and H. Zeng. Fboss: Building

switch software at scale. In Proceedings of the 2018

Conference of the ACM Special Interest Group on Data

Communication, SIGCOMM ’18, page 342–356, New

York, NY, USA, 2018. Association for Computing Ma-

chinery.

[6] S. Communications. Testing the data center network:

Best practices. https://www.infopoint-security

.de/medien/testing_the_data_center_network-

best_practices_whitepaper.pdf, November 2013.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms. The MIT Press, 2nd edition,

2001.

[8] F. Corporation. Fluke networks. https://www.fluk

enetworks.com/, Jan. 2021.

[9] G. Eason. Incident response @ FB, facebook’s SEV

process, July 2016.

[10] T. Fang. Introducing openbmc: an open software frame-

work for next-generation system management. https:

//code.facebook.com/posts/1601610310055392,

Mar. 2015.

[11] I. Forward Networks. Forward networks. https://fo

rwardnetworks.com/, 2021.

[12] T. Griffin. RFC4264 BGP wedgies. https://tools.

ietf.org/html/rfc4264, Nov. 2005.

[13] S. T. Help. Top 30 network testing tools (network per-

formance diagnostic tools). https://www.software

testinghelp.com/network-testing-tools/, Jan.

2021.

[14] HUBER+SUHNER. Polatis series 7000 optical switch.

https://www.polatis.com/series-7000-384x38

4-port-software-controlled-optical-circui

t-switch-sdn-enabled.asp, Jan. 2021.

[15] T. Inc. Telescent physical layer switching. https:

//www.telescent.com/, 2021.

[16] K. Jayaraman, N. Bjørner, J. Padhye, A. Agrawal,

A. Bhargava, P.-A. C. Bissonnette, S. Foster, A. Hel-

wer, M. Kasten, I. Lee, A. Namdhari, H. Niaz, A. Parkhi,

H. Pinnamraju, A. Power, N. M. Raje, and P. Sharma.

Validating datacenters at scale. In Proceedings of the

ACM Special Interest Group on Data Communication,

SIGCOMM ’19, page 200–213, New York, NY, USA,

2019. Association for Computing Machinery.

[17] M. Jimenez and H. Kwok. Building express backbone:

Facebook’s new long-haul network. https://engine

ering.fb.com/2017/05/01/data-center-engine

ering/building-express-backbone-facebook-s-

new-long-haul-network/, May 2017.

[18] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.

Godfrey. Veriflow: Verifying network-wide invariants

in real time. In 10th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 13), pages

15–27, Lombard, IL, Apr. 2013. USENIX Association.

[19] D. Kim, J. Nelson, D. R. K. Ports, V. Sekar, and S. Se-

shan. Redplane: Enabling fault-tolerant stateful in-

switch applications. In Proceedings of the 2021 ACM

SIGCOMM 2021 Conference, SIGCOMM ’21, page

223–244, New York, NY, USA, 2021. Association for

Computing Machinery.

[20] B. Lantz, B. Heller, and N. McKeown. A network in a

laptop: Rapid prototyping for software-defined networks.

In Proceedings of the 9th ACM SIGCOMM Workshop

on Hot Topics in Networks, Hotnets-IX, New York, NY,

USA, 2010. Association for Computing Machinery.

[21] W. E. Lewis. Software Testing and Continuous Quality

Improvement, Third Edition. Auerbach Publications,

USA, 2nd edition, 2008.

[22] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada,

N. P. Lopes, A. Rybalchenko, G. Lu, and L. Yuan. Crys-

talnet: Faithfully emulating large production networks.

In Proceedings of the 26th Symposium on Operating Sys-

tems Principles, SOSP ’17, page 599–613, New York,

NY, USA, 2017. Association for Computing Machinery.

[23] Z. M. Mao, R. Govindan, G. Varghese, and R. H.

Katz. Route flap damping exacerbates internet rout-

ing convergence. SIGCOMM Comput. Commun. Rev.,

32(4):221–233, Aug. 2002.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1005

https://engineering.fb.com/2019/03/14/data-center-engineering/f16-minipack/
https://engineering.fb.com/2019/03/14/data-center-engineering/f16-minipack/
https://engineering.fb.com/2019/03/14/data-center-engineering/f16-minipack/
https://www.infopoint-security.de/medien/testing_the_data_center_network-best_practices_whitepaper.pdf
https://www.infopoint-security.de/medien/testing_the_data_center_network-best_practices_whitepaper.pdf
https://www.infopoint-security.de/medien/testing_the_data_center_network-best_practices_whitepaper.pdf
https://www.flukenetworks.com/
https://www.flukenetworks.com/
https://code.facebook.com/posts/1601610310055392
https://code.facebook.com/posts/1601610310055392
https://forwardnetworks.com/
https://forwardnetworks.com/
https://tools.ietf.org/html/rfc4264
https://tools.ietf.org/html/rfc4264
https://www.softwaretestinghelp.com/network-testing-tools/
https://www.softwaretestinghelp.com/network-testing-tools/
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.telescent.com/
https://www.telescent.com/
https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/

[24] J. Networks. How to calculate power margin for fiber-

optic cable. https://www.juniper.net/document

ation/en_US/release-independent/junos/to

pics/task/installation/fiber-optic-cable-

budget-margin-calculating.html, July 2020.

[25] A. Ousterhout, J. Perry, H. Balakrishnan, and P. La-

pukhov. Flexplane: An experimentation platform for

resource management in datacenters. In 14th USENIX

Symposium on Networked Systems Design and Imple-

mentation (NSDI 17), pages 438–451, Boston, MA, Mar.

2017. USENIX Association.

[26] S. Prabhu, K. Y. Chou, A. Kheradmand, B. Godfrey, and

M. Caesar. Plankton: Scalable network configuration

verification through model checking. In 17th USENIX

Symposium on Networked Systems Design and Imple-

mentation (NSDI 20). USENIX Association, Feb. 2020.

[27] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and

D. Walker. Abstractions for network update. ACM SIG-

COMM Computer Communication Review, 42(4):323–

334, 2012.

[28] G. F. Riley and T. R. Henderson. The ns-3 network

simulator. In Modeling and tools for network simulation,

pages 15–34. Springer, 2010.

[29] F. O. Source. Fboss open source. https://github.c

om/facebook/fboss, 2021.

[30] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negre-

anu, and C. Raiciu. Debugging p4 programs with vera.

SIGCOMM ’18, page 518–532, New York, NY, USA,

2018. Association for Computing Machinery.

[31] J. Stone and C. Partridge. When the crc and tcp check-

sum disagree. SIGCOMM Comput. Commun. Rev.,

30(4):309–319, Aug. 2000.

[32] J. Taylor. Facebook’s data center infrastructure: Open

compute, disaggregated rack, and beyond. In Optical

Fiber Communication Conference, page W1D.5. Optical

Society of America, 2015.

[33] C. Technologies. Calient s series photonic switch. ht

tps://www.calient.net/products/s-series-

photonic-switch/, 2021.

[34] K. Technologies. Connect and secure your network with

keysight. https://www.keysight.com/us/en/cmp

/2020/network-visibility-network-test.html,

Jan. 2021.

[35] Wikipedia. Multiple source agreement optics. https:

//en.wikipedia.org/wiki/Optical_module, July

2017.

[36] J. Willet. Evolution of the testing pyramid. https:

//www.james-willett.com/the-evolution-of-

the-testing-pyramid/, Sept. 2016.

A Appendix: Network Testing Is Hard In The-

ory

In this section, we try to quantify why network testing is hard.

Specifically, we define a formal metric for system complexity

based on the number of states and allowed state transitions.

We then argue that in non-trivial systems, the only way to enu-

merate the actually allowed state transitions (including bugs,

surprising interactions, the halting problem, etc.) is through

testing. A testing matrix is a common software engineering

term for the multi-dimensional space of all possible interac-

tions in a system. We then introduce the concept of a theoret-

ically complete testing matrix: that is, a conservative/worst

case set of conditions/states that if one were to theoretically

test all elements of the matrix, the system could be proven

by exhaustion to be bug free. We then combine these two

definitions to show that network testing is the combinatorial

combination of software and hardware systems testing and

that by our metrics is uncountably infinite in all but the most

trivial of cases.

A.1 Quantifying System Complexity

From our literature review, there does not appear to be a

commonly agreed upon method to quantify the complexity of

a general system, so we define our own. From computational

complexity theory, formally the complexity of an algorithm is

the minimum number of bits needed to represent the algorithm

and its inputs [7]. Inspired by this definition, we quantify the

complexity of a system as:

Definition A.1 Measure of System Complexity: the mini-

mum number bits required to describe all possible states and

the allowed state transitions of a system.

Consider a system with n different states where the allow-

able state transitions can be (possibly inefficiently) repre-

sented as an n× n matrix of bits denoting “state transition

i → j is allowed”. By this definition, naively this system

would require log(n) bits to describe the possible states plus

n2 bits to describe the state transitions or log(n)+n2 bits to

capture this system’s complexity. However, if this system’s

allowed state transition matrix was sparse, summarizable with

few rules or otherwise compressible, then the minimum num-

ber of bits required to represent it could be much smaller than

n2. From this definition, and matching our intuition, a system

gets more complex as it adds more states or as the allowed

state transitions become harder to describe.

This definition captures a critical combinatorial property of

system complexity: when two or more smaller systems (“com-

ponents”) are coupled into a larger system, the complexity

1006 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.juniper.net/documentation/en_US/release-independent/junos/topics/task/installation/fiber-optic-cable-budget-margin-calculating.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/task/installation/fiber-optic-cable-budget-margin-calculating.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/task/installation/fiber-optic-cable-budget-margin-calculating.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/task/installation/fiber-optic-cable-budget-margin-calculating.html
https://github.com/facebook/fboss
https://github.com/facebook/fboss
https://www.calient.net/products/s-series-photonic-switch/
https://www.calient.net/products/s-series-photonic-switch/
https://www.calient.net/products/s-series-photonic-switch/
https://www.keysight.com/us/en/cmp/2020/network-visibility-network-test.html
https://www.keysight.com/us/en/cmp/2020/network-visibility-network-test.html
https://en.wikipedia.org/wiki/Optical_module
https://en.wikipedia.org/wiki/Optical_module
https://www.james-willett.com/the-evolution-of-the-testing-pyramid/
https://www.james-willett.com/the-evolution-of-the-testing-pyramid/
https://www.james-willett.com/the-evolution-of-the-testing-pyramid/

increases multiplicatively. That is, if one couples two systems

that have m and n states respectively, then the resulting system

C has n×m different possible states and thus (n+m)2 possi-

ble state transitions. As above, the state transition matrix of C

may still be compressible and thus the minimum bits needed

to describe them may be smaller than (n+m)2 in practice.

That said, as the number of coupled components increase, the

ability to succinctly summarize the allowed state transitions

of the larger becomes harder, e.g., it requires a combinatorial

multiplication of rules.

Note crucially that “allowed state transitions” are the ones

allowed by the actual deployed running implementation and

not limited to the transitions intended by the original design

intent. A network architect may believe they have designed a

simple system with few possible states and limited state tran-

sition rules (“no persistent loops”, “control plane processes

never reach the segmentation fault state”, etc.). However, the

implementation of the actual system including bugs, hardware

failure, environmental effects, unforeseen vendor incompat-

ibilities, etc. may in fact be much more complex. Thus, for

any large, practical system, there may be unintended and sur-

prising state transitions: i.e., the allowed state transitions an

emergent property of the coupling of many systems. More so,

the “halt” state is important to any system, so enumerating

the states that can transition to ’halt’ is directly equivalent to

the well-known and undecidable halting problem. As a result,

we claim that the only way to even approximately enumerate

possible state transitions, and thus quantify the system’s com-

plexity, is through providing specific inputs and testing which

state transitions are and are not actually allowed.

A.2 Theoretically Complete Testing Matrix

We define a theoretically complete testing matrix as a test

matrix where if all possible tests were evaluated, then the

components/system under test would be proven to be correct

by exhaustion. As we will show, this is often not a practical

tool as many of the dimensions of the theoretically complete

testing matrix will be infinite in practice, we believe it is still

a useful vehicle for quantifying network complexity.

There are two properties of a theoretically complete test

matrix:

1. It makes no simplifying assumptions about the imple-

mentation of the components under test. As a result:

2. Similar to Definition A.1, each dimension or component

added to the system increases the size of the testing

matrix multiplicatively.

Quantifying Software Systems Testing First, let’s consider

constructing the simplest possible theoretically complete test

matrix. Consider a toy, single threaded user-space process

(the “process under test”) that has n different possible states

and the only information it stores is the value of the current

state. The test matrix for such a software system is O(n2), as

the programmer needs to test all possible state transitions to

make sure each works as expected. Note that it is important

to test not only the valid state transitions (functional tests) but

also test the invalid transitions (negative testing) to verify that

they are correctly prevented. The current state and the next

state form the first two dimensions of our testing matrix and

each cell in the matrix is a single bit representing the pass/fail

result of running the test.

Next, let us relax our toy application assumption by assum-

ing that it keeps non-trivial information across state transitions

(e.g., allocates memory, opens a file, etc.) such that we now

need to consider the history of all state transitions - another

dimension to our matrix. This new dimension is potentially

infinite in size (all permutations of all possible paths through

the state diagram) and practically infinite for long running pro-

grams. While seemingly abstract, the history of all possible

state transitions is where we catch the most common types of

bugs: memory corruption, resource leaks, privilege elevation,

etc. Then, let us further relax our single-threaded assumption

by allowing the process to use threads, asynchronous I/O, or

other form of scheduling non-determinism. This adds schedul-

ing order as another dimension to our test matrix which is

exponential in the number of threads for each state change.

Now relax the single process assumption and allow the pro-

cess under test to have non-trivial communication with both

the kernel and other processes (local or remote). Thus, the

theoretically complete testing matrix for a distributed system

of software processes is the multiplicative product of each

software component in the system. In other words, if one

wants to be absolutely certain to prevent bugs in a non-trivial

multi-threaded distributed system, they need to write suffi-

cient tests that cover the multiplicative product of: all possible

state transitions × all possible state transitions histories × all

possible schedule orderings × all possible states of the other

components in the system.

Quantifying Hardware Systems Testing Hardware sys-

tems have a superset of possible bugs as compared to software

systems and thus their testing matrices are correspondingly

larger. Consider the logical design of a single integrated circuit

or component. Often before construction, such components

are modeled in a software simulator, and similar to software

testing, are tested across all possible inputs/outputs and state

transitions. As a result, all of the above analysis for software

test matrices applies to hardware testing matrices as well.

Additionally, hardware systems must test for manufacturing

repeatability (e.g., if a component requires a physical size

tolerance of ±X%, what is the distribution in practice) and

manufacturing process changes (e.g., different vendors of sol-

der, electronics components). Hardware systems must test

under different operating conditions (e.g., temperature, hu-

midity, vibrations, electromagnetic interference) and typically

ship with specified operating tolerances (e.g., run between

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1007

50-85 degrees F). All of these aspects add new dimensions to

the theoretically complete testing matrix.

A.3 Testing Network Systems

Computer networks are, by definition, transitively coupled

hardware and software systems. That is, state from any one

node could in theory be transferred to any/every other node

in the system. As a result, the complexity (Definition A.1)

and theoretically complete testing matrix of a network is the

combinatorial explosion of all possible testing matrices of all

connected hardware and software systems. More than just a

theoretical concept, large network outages happen in practice

because of rapid distribution of state from a single failed

component. A typical example is a single faulty electrical

component (e.g., a capacitor) in one optical interface on a

single switch can cause a shared link to flap up and down,

which various control plane software systems (e.g., spanning

tree protocol in L2, BGP in L3) then propagates the new

forwarding state to other nodes in the system, which each try

to adapt to the new state based on local policy. The result of

these transitive interactions, despite decades of experience and

armies of network engineering experts, are often surprising

and detrimental [12, 23].

Unique to networking, practical deployments are often the

worst case for many software and hardware testing scenarios.

For example, device up-time is typically long (over a year in

some routers) so the set of all possible paths through the state

machine is in practice large. Networking gear is expected to

operate in a variety of environments on the edges of their

operating tolerances from (in theory) climate controlled data

centers to road-side optical devices to the WiFi access point

under your desk that collects dust bunnies. Despite formal

protocol standards which should in theory ensure interop-

erability, in practice all-to-all interoperability tests are still

required between different implementations and many deploy-

ments effectively require “bug-level” compatibility. Last, for

reasons of compatibility as well as practical software engi-

neering and business realities [3], networking devices tend to

monotonically accumulate features over time (e.g., Apple talk

support, RIP, etc.). All of these elements add to the complex-

ity of network systems and thus increase the complexity of

testing these systems.

1008 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

MESSI: Behavioral Testing of BGP Implementations

Rathin Singha1 Rajdeep Mondal1

Ryan Beckett2 Siva Kesava Reddy Kakarla3 Todd Millstein1 George Varghese1

1University of California, Los Angeles 2Microsoft 3Microsoft Research

Abstract

Complex network protocols like the Border Gateway Pro-
tocol (BGP) are prone to implementation errors that cause
unintended behaviors with potentially global consequences.
We introduce an approach and tool called MESSI (Modular
Exploration of State and Structure Inclusively) to automati-
cally generate tests for black-box BGP implementations. Our
approach is model-based, leveraging an executable model of
BGP to generate behavioral tests. However, doing so effec-
tively requires addressing new challenges such as the stateful
nature of BGP and the need to generate complex structures
like regular expressions in route maps. We used MESSI to
generate roughly 150K tests that capture different aspects
of BGP, such as route-map filtering, the decision process,
route aggregation, and dynamics. These tests identified 22
correctness bugs across several widely used open-source BGP
implementations (FRR, Quagga, GoBGP, BIRD, Batfish) and
one closed-source implementation. Eight of these errors have
already been fixed. While our models are BGP-specific our
approach is not: thus we expect it can be adapted to test other
stateful protocols with complex structures.

1 Introduction

The Border Gateway Protocol (BGP) is the backbone of
modern internet routing, as it connects the various autonomous
systems to one another [47]. Due to its ability to enforce
expressive policies, BGP is also widely used by organizations,
for example, to establish reliable communication in data
centers and to shape policies within enterprises. Due to its
ubiquity and large blast radius, BGP errors can have large-scale
effects across the globe. Unfortunately, BGP-related outages
are quite common [7, 18, 31, 36, 41, 43, 50]. While there has
been significant research on identifying BGP configuration
errors (e.g., [5, 24, 26, 34, 48]), there has been less work on
automatically identifying BGP protocol implementation
errors, which occur frequently in the various widely used
BGP implementations and are the focus of this work [8, 9, 19].
According to a study conducted in [39], 36% of the significant
and customer-impacting incidents in Microsoft’s network are

caused by software implementation bugs.
Our goal is to automatically generate tests for BGP

implementations that cover a wide range of BGP behaviors.
Doing so is challenging because each test case consists of a
triplet of an incoming route announcement, a configuration
that indicates how incoming announcements should be
treated, and the current BGP state of the router. Traditional
test-generation approaches are not sufficient: for example,
fuzzing is unlikely to find combinations of these inputs that
explore a wide variety of interesting behaviors. Instead, we
are inspired by recent work that employs model-based testing
to find errors in black-box protocol implementations [33].
The basic idea of that approach, called SCALE, is to build an
executable model of a protocol and then symbolically execute
the model in order to generate tests. The model encodes the
intended behavior of the protocol, as specified in RFCs, and
the use of symbolic execution ensures that the generated tests
cover a wide variety of scenarios represented by different
execution paths through the model. The resulting tests can then
be executed on multiple black-box protocol implementations,
with any differences among them identified as potential errors.

While promising, the SCALE approach targeted DNS
nameserver implementations. The BGP setting introduces
several new challenges for test generation. First, BGP is state-
ful: the handling of a BGP announcement depends on earlier
announcements; by contrast, DNS nameservers are stateless.
Handling state dramatically increases the search space for test
generation and requires correlating state with other protocol
inputs to identify interesting behaviors. Second, DNS configu-
rations consist of a flat set of records in a zone file. By contrast,
BGP configurations are like little programs, with complex and
often hierarchically structured policies defined via route maps.
Notably, BGP policies depend heavily on regular expressions:
but it is infeasible to symbolically generate regular expressions
both theoretically (the theory of strings with symbolic regular
expressions describes non-regular languages) and in practice.
Third, DNS nameserver implementations all accept a standard
format for configurations; in contrast, the various BGP
implementations like Cisco, Juniper, Quagga, BIRD, and
GoBGP have distinct configuration languages that differ in
both obvious and subtle ways, making it difficult to perform

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1009

differential testing across them.
We present an approach and corresponding tool called

MESSI1 (Modular Exploration of State and Structure
Inclusively) to overcome these challenges. First, we handle the
complexity of BGP by decomposing it into several modules
and generating tests for each module individually. The
benefit of this decomposition is that testing each module only
requires us to model the portion of BGP inputs, configurations,
and states that are relevant to that module, which makes a
model-based approach tractable. For example, generating tests
for route-map filtering requires us to model the way that a
route map processes an input route, but it does not require us
to model the state. In contrast, generating tests for the BGP
decision process requires us to model router state, but only
a specific portion of it — the single best route installed so far
to a destination — and does not require us to model complex
configurations. In addition to these models, MESSI also
includes models for route aggregation as well as for dynamics,
which models router state changes such as updates to a route
map and updated route announcements.

Second, we handle test generation in the presence of
regular expressions through a hybrid approach. Inspired by
enumerative combinatorics [38], we use a form of enumerative
testing to generate (not just count) all forms of regular expres-
sions up to a specified size. We then generate positive and
negative example strings for each regular expression, doing
so in a manner that provides coverage guarantees over the
regular expression’s finite automaton representation. Finally,
our model of route-map filtering treats regular expressions
concretely — we supply it with specific regular expressions
that we have generated, and the model uses only the given
positive and negative example strings when building concrete
routes to match against such regular expressions. Finally, to
handle the diversity of BGP configuration languages, we have
created our own intermediate representation for configurations
along with a lightweight shim that translates from this
representation to the various vendor-specific languages.

Our tool MESSI generated roughly 150K test cases for
the BGP decision process, Route filtering, Aggregation, and
Dynamics within two days. From 150K tests, we found around
1500 failed test cases across all implementations. We added
tags to each test case based on the path they traverse in the
code logic and thus grouped equivalent failed cases into
buckets. Although the BGP implementations we tested are
well maintained and in use for several years, we still found
22 bugs across different BGP implementations, including
FRR [27], Quagga [45], GoBGP [28], and Batfish [3]. 11 of
the bugs are acknowledged by the developers and 8 of them
are already fixed. Our tool is able to find 18 bugs that were
unknown previously, while the other 4 had been reported
earlier. These bugs cover a range of BGP features, e.g., route
map logic, route aggregation, community lists, etc.

1https://github.com/rsingha108/MESSI

The rest of this paper is structured as follows. §2 describes
the background and motivation of this work using some
noteworthy bugs that were automatically found by our tool. §3
describes our solutions to the new challenges that automated
testing of BGP introduces, such as regex undecidability and
statefulness. Then in §4.2, we describe the experimental setup
and methodology, showing how our solutions were executed
to test black-box BGP implementations. § 4.3 presents our
results – a list of major bugs, with their descriptions, that we
were able to find using our tool. §6 surveys related work, while
§7 outlines future work and draws conclusions.

Contributions: This paper’s contributions are:
• The first automated approach and tool MESSI to identify

RFC violations in black-box BGP implementations.
• Modular exploration to deal with protocol complexity.
• Efficient enumerative testing of regular expression inspired

by enumerative combinatorics, which cannot otherwise be
handled by symbolic testing.

• A testing framework to catch bugs that are generated due to
dynamics of BGP often caused by incorrect implementation
attempts to do an incremental computation

2 Background & Motivation

The Border Gateway Protocol (BGP) operates as an essential
component of the Internet’s control plane that connects
different autonomous systems (ASes). The BGP protocol has
many different aspects. We focus on four specific aspects —
the decision process, route filtering, route aggregation, and
dynamics — as these are complex and commonly used, and
we observed many correctness bugs due to them in the bug
databases for popular BGP implementations.

The decision process refers to the determination by a BGP
router of the best route to some destination, which involves
a comparison of route attributes (Local preferences, AS path
length, Multi-Exit Discriminator, etc.). The best route is added
to the routing information base (RIB) of the BGP router and ad-
vertised to neighbors. Route filtering empowers administrators
to tailor route advertisements based on desired policies. It is
performed by route maps, which are effectively functions that
permit or deny route advertisements based on the properties of
those advertisements. Route maps can also transform accepted
routes by updating their attributes. Accepted routes then go
through the decision process described above. Route aggre-
gation is a feature that enables the representation of routes to
multiple contiguous IP prefixes as a single summarized route,
thus enhancing routing efficiency. Finally, BGP routers must
constantly adapt to changes in the environment, for example,
the withdrawal of route advertisements and updates to routing
policies. We refer to such changes as BGP dynamics.

In this section, we demonstrate through concrete examples
the challenges for testing BGP implementations as well as the
capabilities of our MESSI approach and tool.

1010 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/rsingha108/MESSI

MESSI

Route Map

bgp community-list expanded
DELCOM permit [1-2]*:[1]?

route-map RMAP permit 10
 match local-preference 150
 set comm-list DELCOM delete

100.10.1.0/24, LP=150
COM=[22221:1]

1

2

3

Generate Config

Send Route

Extract RIB Routing Information Base
100.10.1.0/24, Com=[22221:1]

Figure 1: A MESSI test for the BGP route filtering with
regular expression.

2.1 Route Filtering and Regular Expressions

Figure 1 shows a pair of a route map and route announcement
that MESSI automatically generated to test BGP’s route
filtering behavior. The route map permits routes that have
local preference 150 and deletes specific communities from
such routes, namely those matching the regular expression
in the community list DELCOM, which MESSI also generated.
The generated route announcement should be permitted by
the route map since it has the right local preference, and its
community 22221:1 should be deleted since it matches the
regular expression [1-2]*:[1]?. However, as shown in the
figure, when we tested this route map and route announcement
on the FRR BGP implementation, we found that the route was
accepted, but the community was not deleted.

Upon investigation, we learned that the bug arises only
when the matched regular expression has only one ? symbol in
it that appears at the end, and the configuration is installed via
the command line because this symbol is also overloaded as
the “help” command in the configuration console. The result is
that the permit line in the configuration is completely ignored.
Finding this bug is non-trivial: it requires a configuration
containing a regex that ends with ?, and there be no other ?
symbol in it; it also needs a route announcement that matches
the corresponding route-map stanza and matches the regex.
When we raised this issue on FRR’s GitHub page, they
acknowledged it and suggested two workarounds. The first
is to use ˆ+V+? on the CLI to escape it. The second is to enter
a blank space directly after the ?.

2.2 BGP Dynamics

Many BGP implementation bugs lurk in the dynamics of BGP.
For example, when a router configuration is changed, the
router may not behave as intended after the change is made.
This is often caused by (incorrect) implementation attempts

Route Map
ip prefix-list TEST seq 5
permit any

route-map RMAP permit 10
 match ip-address

prefix-list TEST
exit

10.1.1.0/24

1

2

3

Generate Config

Send Route

Extract RIB

10.2.2.0/24

Routing Information Base
10.1.1.0/24

Routing Information Base
10.1.1.0/24

2

4

4

5 Extract RIB

MESSI

Figure 2: A MESSI test for route filtering with dynamics.

to do more efficient incremental computation. We describe
an example of this kind that MESSI found automatically.

Dynamics Bug in Route Filtering. Figure 2 shows a
pair of a route map and route generated by MESSI. In the
FRR BGP implementation, initially, because of the permit
any line in the generated prefix list, the announcement
for 10.1.1.0/24 is permitted. Subsequently, suppose the
definition of the prefix list is changed to only permit the
prefix 10.2.2.0/24. Therefore, when a route announcement
to 10.1.1.0/24 is sent, it should now be rejected, but we
found it was (erroneously) still accepted. The bug was caused
by an ANY flag that the implementation maintained that was
not properly reset upon configuration updates because of an
incorrect (but efficient!) incremental computation. The bug
was acknowledged and fixed by the developers.

2.3 Route Map Semantics
Figure 3 shows a test case generated by MESSI where
it simultaneously generated a route map and a route. The
route map refers to a community list with two communities
0.11 and 0:222 and permits any route that has one of those
communities. MESSI generated a route with community
0:222 for this test, which should match with community-list
COMM, and the route should be accepted by the router.

When we ran this test case on the FRR router, FRR did
not accept the route. Further investigation showed that the
FRR documentation stated the semantics of the community
list to be "OR" – i.e., if the incoming route mentions any of
the communities in the community list, then it should match
the community list. However, the implementation displayed
"AND" semantics: it only matched when the route contains
all the communities in the community list. This was evident
when we tested the same route map with an incoming route
that has community [0:11 0:222]. When we posted this
issue on the GitHub page of FRR, the developers confirmed
it was a documentation bug and fixed the issue.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1011

MESSI

Route Map
bgp community-list COMM
permit 0:11 0:222

route-map RMAP permit 10
 match community COMM

100.10.1.0/24
COM=[0:222]

1

2

3

Generate Config

Send Route

Extract RIB Routing Information Base

Figure 3: A MESSI test showing buggy behavior of Commu-
nity list in Route Maps

3 Model Based Testing for BGP

This section describes our approaches to addressing the
challenges of test generation for BGP in MESSI. First, we
overview our approach at a high level. We then explain in
detail how MESSI generates tests for each of the four key
aspects of BGP on which we focus.

3.1 Overview
The MESSI approach builds on prior work on model-based
testing for network protocol implementations [33]. Specifi-
cally, we built an executable model of (parts of) the BGP proto-
col based on the relevant RFCs. We generally adopted the be-
haviors that are most commonly used across all the implemen-
tations based on our interpretation of the documentation. To
generate tests, we symbolically execute the model [35], which
involves picking execution paths through the model, determin-
ing the constraints under which each such path will be taken,
and then solving the constraints to generate a concrete test that
traverses the path. If any unexpected behavior is observed dur-
ing testing, we check whether it is a genuine bug or the software
implementer’s choice. It is a cyclic and iterative process, where
we manually validate the model based on our reading of the
RFCs but also through our testing setup – unexpected behaviors
can indicate bugs in our model, which is then refined.

The model is built in C# using a constraint-solving library
called Zen [4, 6]. Zen allows the model to be written as
regular C# code but with some inputs declared as symbolic.
It then performs symbolic execution to solve for these inputs
automatically, leveraging Satisfiability Modulo Theories
(SMT) solvers like Z3 [21] to solve the constraints. A model
would typically have an unbounded number of paths, but
Zen offers various ways to limit the set of desired paths, for
example, those whose size is bounded by a depth.

Prior work that used this approach built a single monolithic
model of the network protocol, which in that case was a DNS

Route
map in

Route
map outBest path

selection
algo

Figure 4: An overview of BGP route selection.

nameserver [33]. However, BGP is significantly more complex
than DNS nameservers. For example, BGP is stateful, whereas
DNS nameservers are stateless, and BGP configurations are
much closer to programs — containing forms of conditionals,
function calls, and nested structure, for example — than to
DNS configurations, which are a sequence of flat records.
Symbolic execution on a monolithic model of BGP is
infeasible due to path explosion: the number of paths grows
exponentially in the model size. Thus a monolithic model will
have a prohibitively large number of paths, allowing only a
small subset of protocol behaviors to be tested in practice.

We address this challenge via modular exploration. Instead
of a single monolithic model of BGP, we built separate
models for key aspects of BGP. Figure 4 shows the BGP
route selection process. When a route is received, a route map
defined in the BGP configuration is used to determine whether
the route is permitted or denied (as shown on the left of the
main router); this is called route filtering. Subsequently, the
best route to a destination is selected and installed in the RIB;
this is called the decision process. Finally, the selected route
is sent to neighbors after passing through a route filtering step.

Leveraging this structure, we built separate models for route
filtering and for the decision process. In general, if there are
m possible execution paths for route filtering and n paths for
the decision process, then there can be m·n paths for a model
that combines them, whereas in our approach, there are only
m + n paths to explore. Modular exploration also enables
us to tailor each model’s symbolic inputs to only the parts of
BGP that are relevant to that feature, which further simplifies
each model and makes test generation feasible. For example,
route filtering involves a BGP route map and an input route
to be processed, but it is independent of the state of the router,
which, therefore, need not be modeled. On the other hand, the
BGP decision process depends on the current router state but
is independent of the route maps in the BGP configuration.

Figure 5 overviews the architecture of MESSI. The sym-
bolic module contains separate executable models for the BGP
decision process, route filtering, route aggregation, and forms
of protocol dynamics, which we discuss in turn in the following
subsections. As shown in the figure (and discussed further be-
low), each such model has a different set of inputs and outputs
tailored to that feature’s role in the overall BGP process. In
each case, we use Zen to generate concrete test cases (indicated

1012 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

MESSI

Regex
Module

Symbolic
Module

Decision
Process

Route
Filtering

Route
Aggregation

2 Configs

Route

1 peer

Route

Best
Route

2 peers

Config

Route

1 peer 2 peers

2 Specific
Routes

Flags

Dynamics
(Route-map)

Agg.
Route

Figure 5: The architecture of MESSI

in the figure as the Symbolic Module), which we then execute
on black-box BGP implementations. A particular challenge
for test generation of route filtering is the need to generate
regular expressions, as these are commonly used in route maps
to match on communities and AS paths in routes. We have
developed a special technique to handle regular expressions
(shown as the Regex Module) that we describe in detail below.

3.2 Decision Process
As shown in Figure 5, we model the decision process as a
function that takes two routes to a single destination and
returns the route that is more preferred. We argue that these
inputs are sufficient to identify any error in the BGP decision
process. The decision process is used whenever a router
receives an incoming route announcement and decides to
permit it (possibly with some modifications). At that point,
the newly permitted route is compared against the current
best route to that destination in the RIB to determine whether
the RIB should be updated. Our model captures exactly this
scenario, where one of the two input routes models the current
best route in the RIB and the other models the new route.

The BGP decision process involves comparing the various
attributes of the two given routes in a particular order of
precedence, in order to decide which route is more preferred.
For example, first, the attribute called “local preference” of
the two routes is checked, and the route with the higher local
preference is preferred. If the local preference values are equal,
then the BGP decision process moves on to check the values
of other attributes, and so on.

Our Zen model is, therefore, simply a function that takes
two routes and compares their attribute values in the correct
precedence order to determine which route is preferred.
Marking the two routes as symbolic ensures that Zen will
explore all paths through this function and, for each path,
will generate two concrete input routes that cause execution

1 Zen<Route> Compare(Zen<Route> r1, Zen<Route> r2){
2 // compare attributes
3 var gtLp = r1.LocalPref() > r2.LocalPref();
4 var neLp = r1.LocalPref() != r2.LocalPref();
5 var ltLen = r1.PathLen() < r2.PathLen();
6 var neLen = r1.PathLen() != r2.PathLen();
7 ...
8 var ltRid = r1.RouterId() < r2.RouterId();
9 var neRid = r1.RouterId() != r2.RouterId();

10
11 // compare the routes
12 var ridCmp = If(ltRid, r1, If(neRid, r2, r1));
13 ...
14 var lenCmp = If(ltLen, r1, If(neLen, r2, ...));
15 var lpCmp = If(gtLp, r1, If(neRid, r2, lenCmp));
16 return lpCmp;
17 }

Figure 6: Pseudo-code for BGP decision process.

to follow that path. For example, Zen will generate a pair of
input routes for the case when the first route has a higher local
preference than the second one, another pair for the case when
the second route has a higher local preference than the first
one, and many pairs where the local preferences of the two
routes are equal so that other paths will be explored.

In Figure 6, we show the pseudo-code for the BGP decision
process. Note that we assume that the always-compare-med
and compare-routerid flags are enabled. Turning the first
flag on allows us to have a complete ordering between routes.
However, we can easily modify our model to accommodate
other comparison modes for MED. In Lines 3 to 9, we first
compare the routes’ attributes according to the decision
process preference. Next, we order these decisions Lines 12
to 15 by comparing the attributes in the correct order. We build
the hierarchy of attribute comparisons in a bottom-up fashion
using nested if-then-else expressions. If the local preference of
the first route is higher, then we return the first route. Otherwise,
if the second is preferred, we return it instead. If they are
equal, then we move on to the AS path length. In this way, we
mimic the BGP decision process by sequentially comparing
the attributes of the two routes in order of preference.

3.3 Route Filtering
To test route filtering, we employ a hybrid approach, which
leverages both an executable model for symbolic execution
and a special approach to support generation of regular
expressions. We describe each in turn.

3.3.1 Zen Model

As shown in Figure 5, we model the route filtering process
in Zen as a function that takes two inputs: a configuration,
specifically a route map and associated definitions like
prefix lists and community lists; and an incoming route. The
route filtering process applies the route map to the route to
determine if the route is permitted or denied; in the case that it

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1013

is permitted, the route is also modified as specified in the route
map. Notably, route filtering is stateless: the processing of an
incoming route by a route map is independent of the current
router state, such as the contents of the RIB. Hence there is
no need to model that state. The previous section showed
examples of pairs of route maps and routes that MESSI
automatically generated from its route filtering model.

In general, a route map consists of one or more stanzas.
Each stanza consists of an action (permit or deny), zero or
more match statements, which indicate the conditions under
which the stanza matches the input route, and zero or more set
statements, which update the incoming route if it is permitted.
Stanzas are processed sequentially until finding a stanza that
matches the input route, in which case the corresponding
action and set statements are applied. Route maps can also
contain more sophisticated control flow; for instance, stanzas
can be chained together, with one falling through to the next,
and route maps can invoke other route maps.

Handling the full complexity of route maps described
above is simply infeasible. Therefore, we take our cue from
prior work on model-based testing for protocols, which
found that small configurations were sufficient to surface
many interesting implementation errors [33]. Our Zen model
considers a route map to consist of exactly one stanza. While
this is a significant simplification, it nonetheless creates a rich
space of policies to explore. Within a stanza, we allow any
number of match statements, and they can match on all of the
different attributes of a route. We similarly allow any number
of set statements, which can update those attributes in various
ways, for example, adding and deleting communities. Finally,
as shown in the earlier examples, our model also includes
auxiliary structures like prefix lists and community lists, which
can be generated by Zen and referred to in route maps.

3.3.2 Generating Regular Expressions

One significant source of complexity in route maps that we
cannot avoid is the use of regular expressions to match on
communities and AS paths. Their usage is ubiquitous, and reg-
ular expressions are also a common source of errors; thus, any
test generation approach for route maps must support them. A
naive approach would be for our Zen model to simply include
the logic for checking whether a string satisfies a regular
expression and ask Zen to symbolically execute this code. How-
ever, doing so would dramatically explode the number of paths
through our model (since, for example, it would include the
logic to convert a regex to a DFA). Further, solvers [21] cannot
handle the theory of strings with symbolic regular expressions
since they can describe non-regular languages [46].

Instead, we developed a hybrid approach to generating
route maps containing regular expressions that avoids the need
to symbolically execute the regex matching process while also
obtaining useful coverage guarantees for both regexes and the
strings that are matched against them. First, we exhaustively
enumerate regex structures up to some size (a form of

Algorithm 1 Enumerating regexes at a given level
1: function REGEXENUMERATOR(Rn−1)
2: Rn← []
3: for i in range(len(Rn−1)) do
4: r←Rn−1[i]
5: Rn←Rn+[r,(r)∗,(r)+,(r)?]
6: for s in (Rn−1[i :]) do
7: Rn←Rn+[(r)|(s)] ▷ Alternation
8: Rn←Rn+[(r)(s)] ▷ Concatenation
9: end for

10: end for
11: return Rn
12: end function

coverage), which are regexes that are parameterized by the
base regexes within them. Next, we employ random generation
to produce the base regexes for each regex structure, yielding
concrete regexes. Third, for each such regex we generate a set
of positive and negative example strings that together cover
all nodes and edges in the DFA representation of the regex.
Finally, these regexes and their associated examples are given
as concrete inputs to our Zen model to use when building route
maps and routes. Next, we describe these steps in more detail.

Regex enumeration algorithm. We are inspired by work in
enumerative combinatorics to count [38] (not generate) regular
expressions. Similar ideas can apply to other complex protocol
structures for which a recursive formulation is feasible. We
use the algorithm shown in Algorithm 1 to enumerate regex
structures exhaustively up to some level n, given the regex
structures up to level n−1.

We use the character ‘x’, which represents a regex to be
filled in later, as the sole regex structure at level 0. According
to the algorithm, level 1 will consist of the regex structures
{x, (x)*, (x)+, (x)?}. Similarly at level 2 we will have regex
structures like (x*)|(x+), (x+)?, and so on. The number of
regex structures at every level increases exponentially, so we
stop at level 3 with 4686 such structures.

At the nth level the complexity of Regex Generation is
O(R2

n−1) where Rn−1 is number of regexes generated at the
(n− 1)th level. If we solve the recursion T (n) = T (n− 1) ∗
T (n−1) then we get T (n)=O(22n

)
Random regex generation. For each of these structures,

we randomly generate valid community regexes to fill in their
placeholder values ‘x’, via the following grammar:

T ::= (E1 | ... | Ek) (top-level-regex)
E ::= ^S$ (end-to-end-regex)
S ::= (C1...Ck) (sequence-regex)
C ::= P :P (community-regex)
P ::= (B1...Bk) (community-segment-regex)
B ::= R | R* | R+ | R? (base-regex)
R ::= [N-N] (regex-number-range)
N ::= 0 |1 | ... |9 (number)

1014 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1

2

3 5

4 6

7 9 10

11 8

Figure 7: Node Coverage on the DFA: To generate a positive
example that covers state 5 in the above figure, we first find a
path P1 (dotted maroon) from the starting state 1 to state 5 .
In this case, it is 1 → 3 → 5 . Then we find another path
P2 (dashed brown) from state 5 to the accepting state 10 .

An example random regex generated from this grammar is:

(^[2-4]+[3-5]*:[2] [3]:[1-2]?$)|(^[5-6]+:[4]*$)

After plugging these randomly generated strings into the regex
structures generated by the enumeration algorithm, we obtain
a set of concrete regexes.

String generation For each regex that the Zen model uses
in a community list, we require both positive and negative
examples to use as concrete community values in routes, and
we would like to choose these examples in a way that covers
many interesting behaviors of the regex. We have devised a
simple and effective approach to doing this, through efficient
graph algorithms on the DFA representation of each regular
expression. Specifically, we generate positive examples that
together cover all nodes as well as all edges of the DFA that
are reachable, and similarly for the negative examples.

Figure 7 illustrates the approach on an example DFA. Sup-
pose we wish to identify a positive example that includes node
5 . First, we use depth-first search (DFS) to find a path from

the start node 1 to node 5 (shown in the figure as the dotted
path). Then we use DFS again to find a path from node 5 to the
accepting node 10 (the dashed path). Each DFA edge is labeled
with the input character that causes that edge to be traversed, as
usual (not shown in the figure). Hence, we traverse the concate-
nation of these paths to collect these labels, yielding a positive
example. We iterate this process over all nodes, keeping track
at each iteration which nodes have already been covered. We
use an analogous approach to cover each edge, using DFS to
identify a path from the start node to the edge’s source and a
path from the edge’s target to the accepting node. Finally, to
generate negative examples, we use the same procedure but on
the DFA that represents the complement of the original regex.

3.3.3 Regex Testing

Using the algorithms discussed above, we obtain a total of
253,958 test cases, each consisting of a regular expression and
a string that should be either a positive or negative example.
We use these test cases in two ways. First, we generate a
route-filtering test case for each one to test the regex-matching

logic of the BGP implementations. For example, given the
regex ^[2-4]+[3-5]*:[2]+$ and positive example 2335:22,
we generate the following route-map, which accepts routes
whose community matches our regex, as well as an input route
whose community value is [2335:22]:

ip community−list 101 permit ^[2−4]+[3−5]∗:[2]+$
route map FILTER_ROUTES permit 10

match community 101

Second, we randomly choose a small subset of the generated
regexes (4 in our experiments) and “hardcode” these into our
Zen model. For each such regex, we also randomly choose
a small set (3 in our experiments) of associated positive and
negative examples to use in community lists. When symbolic
execution explores a path that successfully matches the input
route against a community list, Zen selects one of the pre-
determined regexes to use in the generated route map and one
of its positive examples to use in the generated input route. This
allows us to generate complex tests involving regexes (e.g. tests
with multiple match and set statements), without modeling and
symbolically reasoning about regex matching logic. The Zen
model also uses this pool of regexes and examples to generate
tests for community deletion.

We have described our regex generation process specifically
for community regexes, but we use a similar approach to
generate regexes over AS paths and the corresponding
positive and negative example AS path values. Note that
each component of our hybrid approach (symbolic, random,
enumerative) has coverage guarantees, although of different
forms; one can increase test coverage by increasing resources.

3.4 Route Aggregation
As shown in Figure 5, we model the route aggregation process
in Zen as a function that takes two routes, the aggregate prefix,
as well as some aggregation-specific flags, and produces (pos-
sibly multiple) output routes. Our Zen aggregation model first
checks whether each of the two incoming routes matches the
aggregation prefix. Based on this information and the values
of various aggregation-specific flags, it then determines the
set of routes to return. Aside from the matching-med-only
flag, another example flag is summary-only, which, if set,
indicates that only the aggregate route should be advertised.
Conversely, if this flag is not set, then both the individual
routes and aggregate route should be advertised.

3.5 Testing BGP Dynamics
BGP routers must constantly respond to changes in the
environment — a link can go down, a route can be withdrawn,
a route policy can be updated, etc. Efficiently handling
these kinds of changes is challenging for developers. We
have observed that erroneous incremental computation
is at the heart of many identified implementation bugs
(e.g., [1, 11, 12, 23]). We have developed an approach in

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1015

Route Map

ip community-list 1 permit 2:5
route-map RMAP permit 10
 match local-preference 200
 match community 1

LP=200,
AS-path=[100,200],

MED=3,
COM=2:5

Permit

LP=100 COM=4:5
Deny Deny

Figure 8: Changes to route map to alter the route-map decision.

MESSI to generate tests to identify incorrect incremental
computation. We consider how the route filtering process is
affected by a limited form of dynamics: either a modified route
map or a modified (withdrawn and newly received) route.2

The setup for testing a modified route map is shown in
Figure 8. Now our Zen model takes three inputs: an original
route map, a route to match against, and an updated route map.
The goal is to produce test cases whereby the route matches
the original route map but not the updated one and vice versa.

Figure 9 similarly shows the setup for testing the case of mod-
ified routes. Now a test case consists of a route map, an original
route, and an updated route, and we require that the original
and updated routes are treated differently by the route map.

The key challenge in generating tests (for even the very
limited dynamics we focus on) is the large size of the search
space. For example, consider the Zen model for testing
route-map changes, which takes as input two route maps
and a route. If we perform symbolic execution naively, Zen
must explore the space of all possible pairs of route maps that
behave differently on the given route. This space is too large,
so we will end up exploring a small subset of the space, but
with no clear guarantees on coverage.

Instead, we leverage Zen to perform a form of exhaustive
local search. Specifically, we define a distance metric between
route maps, which intuitively represents the number of
changes to individual stanza actions and match statements
that must be made to transform one route map into another
akin to Hamming distance. Then we ask our Zen model to
only generate pairs of route maps that are within distance k
of one another (k=1 in our experiments), which can be done
exhaustively in a reasonable amount of time.

For example, consider the following route map:

ip community−list 1 permit [1−2]+:[1−2][3]∗
route map FILTER_ROUTES permit 10

match community 1

We consider changing the action from permit to deny as
a cost of one. Similarly, changing the regex in community
list 1 to another regex is considered a cost of one. Notably, we
treat match or set statements on different attributes as being
infinitely far apart. For example, if the match community

2Our use of “small step” BGP dynamics should not be confused with
“multi-step” BGP dynamics that manifest in phenomena such as BGP looping
and route flap damping.

Route Map

ip community-list 1 permit 2:5
route-map RMAP permit 10
 match local-preference 200
 match community 1

LP=200,
AS-path=[100,200],

MED=3,
COM=2:5 Permit

LP=100 COM=1:2
Deny Deny

Figure 9: Dynamic Testing by changing route attributes to
alter the route-map decision

statement in our example is changed to a match metric
statement, then the distance is infinite. In short, our distance
metric models the kinds of local changes that network
operators often make to route maps, in our experience, and
it also makes symbolic test-case generation feasible.

We use a similar approach to test a modification to the
incoming route. Namely, we define a distance metric on route
announcements, where each attribute modification has a cost
of one, and the Zen model exhaustively explores pairs of
routes that have distance at most k (k=1 in our experiments).

We also tested the dynamics of route aggregation similarly,
where we allow changes to either the route attributes in one
setting or the values of aggregation-specific flags and aggre-
gation prefix (config) in another setting. The distance metric is
defined in a similar fashion as above: changing the aggregate
prefix, the flags, or a route attribute is considered a cost of one.
In our experiments, we constrained this cost to be at most 1.

While supported by our model, increasing distance beyond
1 increases both test cases and generation time exponentially.

3.6 Vendor-specific Translators
BGP is a complicated protocol, and vendors tend to implement
their own configuration languages, which differ in syntax,
semantics, and features. For instance, both FRR and Quagga
support prefix lists, community lists, and AS path lists. How-
ever, GoBGP supports sets of prefixes, communities, and AS
paths, as opposed to lists. The fundamental difference between
these two representations is that elements within a list have
sequential priority, which allows for overlapping permitted
and denied ranges, whereas set members are unordered. We
address these differences through special-purpose translators
that convert our Zen-generated tests to the input language of
a particular implementation.

As an example, suppose Zen generates the following prefix
list, denoted in FRR syntax:

ip prefix−list PR seq 1 deny 10.1.0.0/15
ip prefix−list PR seq 2 permit 10.0.0.0/8 ge 15 le 18

Note that the prefix on line 1 is in the prefix range on line 2.
Our GoBGP translator converts this list into the following set
of all prefix ranges permitted by line 2 but not denied by line 1:

NAME PREFIX
PR 10.0.0.0/8 16..18

10.2.0.0/15 15..15

1016 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Implementation Language Description

FRR [27] C Used by ISPs, DCs
Quagga [45] C Used in Linux
GoBGP [28] Go Used by ISPs, research
Batfish [3, 26] Java Open-source simulator
Fastplane [40] C++ Fast BGP simulator
BIRD [13] C Dynamic IP routing daemon

Table 1: Implementations tested by MESSI.

10.4.0.0/14 15..15
10.8.0.0/13 15..15
10.16.0.0/12 15..15
10.32.0.0/11 15..15
10.64.0.0/10 15..15
10.128.0.0/9 15..15

The translator produces prefix sets whose elements are
mutually exclusive, which simplifies translation; but it implies
we never test GoBGP prefix sets with overlapping elements.

Note that our test cases cover a broad range of settings
and attributes, some of which might not be supported by
every implementation. For example, GoBGP does not support
setting the MED attribute or the removal of AS numbers
from an AS path, while both FRR and Quagga do. We
also did not find documentation for route aggregation in
GoBGP, while both FRR and Quagga have extensive support
for it with special flags such as matching-med-only and
summary-only. Similarly, BIRD only offers basic support
for regular expressions. Thus while translating test cases for
a specific implementation, we ignore inapplicable tests.

3.7 Implementation Testing

We use an automated testing setup that takes as input the trans-
lated test cases and sets up a network of Docker containers,
one of which runs the implementation under test. The other
containers use ExaBGP to send route announcements to this
container. We parse the RIB of the implementation under test
to obtain the installed routes that result from each test; we
consider a test to fail if an implementation’s RIB differs from
that expected by our model. We group failed tests to reduce
the manual effort of debugging. During test generation, our
Zen code produces a tag for each test case based on the path
it traverses in the code, which roughly indicates the kinds of
match and set statements that the test exercises. Failed tests
are grouped into buckets by tag, and one representative test
from each bucket is manually investigated to confirm whether
it is a bug or not. This approach is analogous to the bucketing
technique from our prior work on test generation for DNS [33].

FRR [27]
Community list AND/OR matching semantics Fixed
Filtering routes tagged with Internet Community Fixed
Delete Community Regex not working Fixed
Route map permits all routes if internet commu-
nity permitted

Fixed

Prefix list matches mask greater than or equals Acked
Changing MED results in incorrect aggregation Fixed
Route map change from permit any prefix results
in incorrect route installation

Fixed

Quagga [45]
Community list matching AND/OR semantics Found
Filtering routes tagged with Internet Community Found
Delete Community Regex not working Found
Route map permits all internet community routes Found
Changing MED results in incorrect aggregation Found

GoBGP [28]
Prefix set matching with zero masklength but
nonzero range

Acked

Withdrawn route is still advertised Fixed
Route installed in RIB with incorrect MED Fixed

Batfish [3, 26]
Space in Community regex giving error Acked
Internet community route filtering Found

Fastplane [40]
Set MED not advertised Found
AS prepend with 0 Found
AS path regex parsing issue Found
AS path regex matching issue Found
Community Regex matching issue Found

Table 2: Bugs found for different BGP implementations.

Stats Decision Filtering Aggregation Dynamics

Tests 18 142916 128 11246
Failed 5 457 0 12

Buckets 2 204 0 4
Bugs 1 17 0 4

Acked 1 7 0 3
Fixed 1 4 0 3

Table 3: Experimental results.

4 Results

4.1 System Overview

We generate tests for each module described earlier using the
corresponding Zen model. We test implementations using
Docker [42] by creating working Docker images of each
implementation. For route-map filtering, test generation takes
around 2 days; hence, we pipelined test generation by testing
the implementations. We used Python scripts for vendor-
specific translation (§3.6) and response grouping (§3.7).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1017

4.2 Experiments

We tested six BGP implementations: FRR, Quagga, GoBGP,
Batfish, Fastplane, and BIRD. Table 1 shows their source code
language and a brief description of their focus or how they are
used. Table 2 catalogues all the bugs we found. In Table 3, the
first three rows show the number of Zen-generated test cases
, failed tests and buckets respectively. The last three rows list
the number of bugs found, acknowledged and fixed across
all implementations respectively. We found at least 2 bugs
in each of the 5 implementations except BIRD, in which we
found no bugs. Many of our identified bugs relate to regexes
or dynamics. However, BIRD has rudimentary support for
regexes, making many of our test cases inapplicable. Further,
unlike FRR and Quagga, BIRD restarts the daemon upon
config changes, making incremental update errors unlikely.

We next describe the results for each module individually.
Decision Process: For testing the decision process of BGP,

we made a model of the BGP decision algorithm in Zen. It gen-
erated 18 test cases corresponding to every path (pseudocode
shown in Figure 6). We found 1 bug in the decision process
of GoBGP and found 4 discrepancies across FRR and Quagga,
which revealed some implementation-specific behavior – i.e.,
for Quagga to choose the route with lower router-id, the bgp
bestpath compare-routerid flag has to be enabled; by
contrast, this is enabled by default for FRR.

Route Filtering: To test BGP route filtering, MESSI
simultaneously generates an incoming route along with an
inbound routing policy (route map) as a test case. A route map,
in general, can have multiple stanzas, with each stanza having
its own match and set statements. However, as stated earlier,
MESSI generates tests with only one stanza.

We encoded the route map evaluation logic (explained in
§3.3) in Zen for test generation. We also restrict each field
of the route and the route map with some validity constraints.
The regex testing was discussed earlier in § 3.3.3. MESSI
generated 4686 regexes (up to level 3) using enumeration
Algorithm 1 and generated positive and negative examples
using the coverage algorithm (Figure 7) with a total of 253,958
test cases for regex testing.

In the route map, we only allowed prefix lists to have 3
entries. We did this not only to reduce the search space but
also to ensure that we had test cases that could check whether
the BGP implementations were following the sequential order
while matching entries within the prefix list. IP addresses were
limited to unsigned integers within a certain specified range.
This is a necessary step so that Zen does not generate invalid IP
addresses such as 0.0.25.203 that do not follow CIDR rules.

Second, for ease of computation, we represented subnet
masks in their unsigned integer form. The primary reason for
doing this is that Zen does not support shift operations like
« and ». Thus instead of representing the masks internally
as a number in the range 0-32, we converted them to their
corresponding unsigned integers. This made it easier to AND

1 Zen<bool> RMapDynamics(Zen<Route> route,
2 Zen<RouteMap> r1, Zen<RouteMap> r2)
3 {
4 // Limit maximum distance to 1
5 var cond1 = GetDifference(r1, r2) <= 1;
6 // get decisions from the two route maps
7 var dec1 = r1.Match(route);
8 var dec2 = r2.Match(route);
9 // check whether they have different results

10 var cond2 = Not(dec1 == dec2);
11 return And(cond1, cond2);
12 }

Figure 10: Constraints for route map dynamics

the subnet masks with the IP addresses to get the prefix value.
We also constrained the prefix mask, LE, and GE values

to obey the rule mask <= GE <= LE. Additionally, to avoid
repetition and redundancy, all entries in the prefix list were
made unique. AS path and Community lists were limited to
1 entry each. This tactic was again taken to reduce the number
of test cases. Finally, local preference and MED values were
restricted within a pre-specified range.

This setup generated 142,916 tests, revealing 15 previously
unknown bugs across the tested implementations.

Route Aggregation: MESSI uses the model described in
§3.4 to simultaneously generate the aggregate prefix, the flags,
and two individual prefixes for a test case.

Zen generates 128 test cases to cover all paths in this
module. We did not find any bugs in the route aggregation
logic across all implementations.

BGP Dynamics: We also tested the dynamics (explained
in §3.5) related to route map filtering and route aggregation.
The dynamics of route map filtering are further classified into
two categories - (1) dynamic changes in the route map and (2)
dynamic changes in the incoming route. In the experiments,
we use the distance metric (how close route maps or routes
are to each other) defined in §3.5.

For (1), we wrote a wrapper method around the route map
evaluation module to generate two route maps and an incoming
route, subject to the constraints that the route maps should
differ by, at most, a unit distance, and one of them should allow
the route while the other denies the route. This setup generated
7404 test cases. Figure 10 shows the logic for implementing
the wrapper. First Line 5 limits the maximum distance between
two route maps to 1. Next, Lines 7 to 8 evaluates the incoming
route against the two route maps. Finally, in Line 10, we check
to see whether the two decisions are different. For a particular
test case, both these conditions must be satisfied.

For (2) we wrote another Zen wrapper to simultaneously
generate two routes and one route map. The constraints it is
subjected to are: first, the two routes should differ by at most a
unit distance; and second, the route map should give different
decisions for the two routes. This setup generated 28 test cases.

We also tested route aggregation dynamics, simultaneously
generating configs (aggregate prefix + flags) and incoming

1018 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

routes for two scenarios: changing routes and changing con-
fig. Every change is of unit distance. In both scenarios, our
constraints ensured the published set of routes are different for
the two different settings. In the changing routes scenario, we
altered one route keeping a constant config. Conversely, in the
changing config scenario, we modified the config while main-
taining identical routes. This setup generated 3814 test cases.

Additionally, with each test case, we tested the effect
of withdrawal. Dynamic testing revealed 4 bugs across all
implementations.

4.3 Example Bugs
In this subsection, we provide more examples of the bugs that
MESSI identified, in addition to the ones presented in §2.

Bug #4: The following test was generated by MESSI:

Route Map:
ip community−list 1 permit internet
route map FILTER_ROUTES permit 10

match community 1
Route: 100.10.0.0/16, COM = [0:11]

In the above test case, the route map is configured in a
way that only permits routes with the Internet community.
Although it is expected that only routes containing the internet
community (0:0) will be permitted, we observed that FRR
and Quagga permit all incoming routes due to a bug in
handling the community list. In the source code, there was
a code snippet that was setting the decision as permit if
internet community was contained in the community list.
The developers in FRR acknowledged and fixed this bug.

Bug #5: MESSI generated the following test case:

Route Map:
ip community−list 1 permit 0:0
route map FILTER_ROUTES permit 10

match community 1
Route: 100.10.0.0/16, COM = [0:0]

Here, the route map permits routes tagged with 0:0
(internet) community, and the incoming route has commu-
nity 0:0. Therefore, the expected decision is PERMIT. For this
particular test case, we observed some discrepancies across
different implementations. When we ran this test on FRR,
it denied the route, although Fastplane and Batfish allowed
it (as expected). If we use internet in the route map, and
the incoming route has 0:0 as a community, then FRR gives
the expected output. But, Batfish doesn’t give the expected
output. When we filed this issue, FRR developers fixed it by
deprecating the internet community. We have reported this
to the Batfish developers and are waiting for their response.

Bug #6: In another test case generated by MESSI the
route map permits all routes that match with default route
0.0.0.0/0 with a mask length greater than or equal to zero.
But in FRR, we observed that it does not work. It works as
expected in Batfish and Fastplane. However, ge 1 does work,
and it was given as a workaround by the FRR developers.

Route Map:
ip prefix−list PFXL seq 5 permit 0.0.0.0/0 ge 0
route−map FILTER_ROUTES permit 10

match ip address prefix−list PFXL
Route: 100.10.0.0/16...

The documentation does not explain why ge 0 does not
work. Neither does FRR throw any error if ge 0 is provided
in the configuration. GoBGP had a similar issue: if there is
a prefix set with prefix 0.0.0.0/0 but with a range on mask
length, it should match all routes within that mask length range
but did not match a prefix generated by MESSI. The GoBGP
developers acknowledged this and will hopefully fix this soon.
The failed test case generated by MESSI was:

prefix−set ps1:
ip−prefix: 0.0.0.0/0, mask−range: 10..10

policy−definitions:
conditions:

match−prefix−set: ps1
Route: 100.10.0.0/10

Bug #7: A route map contains a set statement that deletes
specific communities from routes that match with some
community list. The route communities are not deleted as
expected because of an additional delete tag that was added
to the name of the community list, which made the delete
community not work. We found this bug in Quagga and in
earlier versions of FRR (fixed later). The failing test case was:

Route Map:
ip community−list 101 permit [1−2]+:[3−4]
route map FILTER_ROUTES permit 10

set coom−list 101 delete
Route: COM = [11:4 0:1]

The expected result is the deletion of community 11:4 from
the route but it did not delete any communities.

Bug #8: The following test was generated by MESSI:

Route Map:
ip prefix−list PFXL seq 5 permit 99.0.0.0/8 le 31
route−map FILTER_ROUTES permit 10

match ip address prefix−list PFXL
Route: 99.10.11.0/24, MED = 4

This test case failed for GoBGP and Fastplane. Here, the
incoming route has a MED 4, and the inbound route map
accepts the route without modifying it. But the installed route
had MED 0. This error was fixed in GoBGP and is under review
by the Fastplane developers. The same test case was also
generated by our decision process setup.

Bug #9: Another test case generated by MESSI revealed
a bug in Fastplane. The test case is as follows:

Route Map:
route−map FILTER_ROUTES permit 10

set as−path prepend 0 100
Route: AS−path = 200

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1019

Here the inbound route map has a set statement that should
add AS 0 and AS 100 to the AS path of the route, but it
only appended AS 100 to the existing AS path. All other
implementations appended it correctly. This issue is likely
due to a highly compact zero-terminated representation that
Fastplane uses to represent the AS path for BGP routes.

5 Limitations

Our model currently focuses on RFC compliance errors only;
we do not consider performance bugs or coding bugs such as
overflow errors. We do not test route reflectors, confederations,
reserved ASNs, and well-known communities, and some regex
features such as constraining a route’s community set size.

Modular exploration does not test possibly complicated
interactions among multiple BGP features. However, the mod-
ular approach is more scalable, allowing each feature to be
tested extensively; it also allows easily adding support for new
features without changing existing portions of the model sig-
nificantly. We can also use our approach to test the integration
of multiple modules when desired.

MESSI automatically configures routers through the com-
mand line interface. Certain bugs (e.g., §2.1) would not be
revealed by alternative testing approaches, such as directly
writing the configuration file. In future work, we could employ
multiple test setups to widen the scope of errors found.

6 Related Work

We classify related work into the following categories.
Model-based verification: This approach uses a formal

model to verify software. For example, Bagpipe [51] verifies
BGP configurations against a formal model of BGP. Verifi-
cation scales for configurations but not for implementations.

Fuzz testing: Fuzz testing is widely used for software
testing in general [2, 14, 37, 52] and specifically for BGP
implementations (e.g., [20, 22]). Although fuzzers are
effective at finding parser bugs, they are less effective at
finding behavioral bugs such as those described in §2.

Symbolic execution: Symbolic execution invokes SMT
solvers to generate test cases for as many execution paths of a
program as possible (e.g., [17, 29, 30]). BGP implementations
contain thousands of lines of low-level code, which makes
symbolic execution infeasible in practice.

Model learning: Recent work uses active learning to cre-
ate abstract models from black-box protocol implementa-
tions [25]; errors are detected by comparing the models of
different implementations. Compared to our approach, the
drawback is the need to learn a model for each protocol imple-
mentation; we generate tests for arbitrary protocol implemen-
tations from a single reference model. However, their models
can be used for purposes other than error detection.

Model-based testing: This general category uses an abstract
model of a system to generate tests [16,44,49]. MESSI extends
the SCALE model-based testing approach for DNS implemen-
tations [33] to account for BGP’s complexity and statefulness.

Enumerative Testing: This approach generates inputs up to
a given size that meet a specified predicate [15]. We use a form
of enumeration to generate regexes for BGP configurations.

7 Future Work and Conclusion

We plan to extend MESSI to test other BGP features such
as route redistribution and route reflection. We also aspire
to automatically derive the constraints from the BGP RFCs,
say using large language models like GPT-4, to alleviate the
current burden of manually building the model.

The ideas in MESSI should extend to other stateful
protocols with complex structures, as well as to other software
systems, such as web servers. BGP has a comparatively simple
stateful model: if one excludes dynamics, the forwarding
of a route depends only on the previous best stored route.
However, the state of other protocols may depend on many
past messages; this raises the question of efficiently driving
such protocols to specified states. MESSI’s combination
of symbolic, random, and enumerative testing of structures
should extend to other protocol structures.

A common slogan when an Internet outage occurs is:
“It’s always DNS . . . except when its BGP” [10] because
the majority of major Internet incidents [10] are caused
by bugs in DNS (zone files or implementations) or BGP
(configurations or implementations). Previous work targets
DNS zone file bugs [32], DNS implementation bugs [33],
and BGP configuration bugs (e.g., [26]); MESSI fills the
remaining gap by targeting BGP implementation bugs.

In terms of ideas, MESSI adds techniques to the repertoire
of model-based testing approaches for protocol implementa-
tions (e.g., SCALE [33]) to deal with: 1. complexity (modular
exploration), 2. protocol statefulness (generating both the best
route and a new route); 3. implementation statefulness due to
incremental computation (generating two configurations that
differ by a single change); 4. complex structures (combining
symbolic with enumerative testing for regexes).

Inspired by the famed soccer player, MESSI tries to attack
the goal of BGP testing from many angles, generating over
150K test cases automatically that have already led to the
discovery of 22 new bugs in 5 BGP implementations.

Acknowledgements

We thank our shepherd Eric Eide and the anonymous reviewers
for their insightful comments. We also thank the BGP devel-
opers for their feedback on the bug reports. This work was
partially supported by NSF grant CNS-1901510 and by Cisco.

1020 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] About the real-time effect of BGP policy configuration.
https://github.com/osrg/gobgp/issues/2164.

[2] American fuzzy lop. https://lcamtuf.coredump.cx/
afl/.

[3] Batfish network configuration analyzer. https:
//github.com/batfish/batfish.

[4] Ryan Beckett. Zen. https://github.com/microsoft/
Zen/tree/master.

[5] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A general approach to network configuration
verification. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’17, pages 155–168, New York, NY, USA,
2017. ACM.

[6] Ryan Beckett and Ratul Mahajan. A general framework
for compositional network modeling. In Proceedings
of the 19th ACM Workshop on Hot Topics in Networks,
pages 8–15, 2020.

[7] Ann Bednarz. Global microsoft cloud-service outage
traced to rapid bgp router updates. Network World, 2023.

[8] BGP ‘address-family ipv4’ sub-configuration
is not shown in the running configuration.
https://quickview.cloudapps.cisco.com/
quickview/bug/CSCvk45884.

[9] BGP bug bites juniper software. https:
//www.networkworld.com/article/2289950/bgp-
bug-bites-juniper-software.html.

[10] BGP, DNS, and the fragility of our critical systems.
https://www.f5.com/labs/articles/cisotociso/
bgp-dns-and-the-fragility-of-our-critical-
systems.

[11] BGP route-map work incorrectly when prefix-
list modify from deny any to permit. https:
//github.com/FRRouting/frr/issues/13007.

[12] BGPD: aggregate-address with summary-only and
matching-med-only does not work when metric is
changed. https://github.com/FRRouting/frr/
issues/11912.

[13] BIRD routing software. https://
bird.network.cz/?get_doc&v=20&f=bird-5.html.

[14] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages
1032–1043, 2016.

[15] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko
Marinov. Korat: automated testing based on java
predicates. In Phyllis G. Frankl, editor, Proceedings of
the International Symposium on Software Testing and
Analysis, ISSTA 2002, Roma, Italy, July 22-24, 2002,
pages 123–133. ACM, 2002.

[16] Josip Bozic, Lina Marsso, Radu Mateescu, and Franz
Wotawa. A formal tls handshake model in lnt. arXiv
preprint arXiv:1803.10319, 2018.

[17] Cristian Cadar, Daniel Dunbar, Dawson R Engler,
et al. Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In
OSDI, volume 8, pages 209–224, 2008.

[18] Tom Strickx Celso Martinho. Understanding how face-
book disappeared from the internet. Cloud Flare, 2021.

[19] Cisco ios xe software bgp resource public
key infrastructure dos vulnerability. https:
//bst.cisco.com/quickview/bug/CSCvz55292.

[20] Stanislav Dashevskyi. A simple BGP fuzzer
based on boofuzz. Github, 2023. https:
//github.com/Forescout/bgp_boofuzzer.

[21] Leonardo De Moura and Nikolaj Bjørner. Z3: An
efficient smt solver. In Proceedings of the Theory and
Practice of Software, 14th International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, page 337–340,
Berlin, Heidelberg, 2008. Springer-Verlag.

[22] Donatas Abraitis et al. Donald Sharp. fuzzing tar-
gets and supported fuzzers available in frr. Github,
2023. https://docs.frrouting.org/projects/dev-
guide/en/latest/fuzzing.html.

[23] eBGP doesn’t withdraw routes to other ebgp peers when
peer goes down. https://github.com/osrg/gobgp/
issues/2208.

[24] Nick Feamster and Hari Balakrishnan. Detecting bgp
configuration faults with static analysis. In Proceedings
of the 2Nd Conference on Symposium on Networked
Systems Design & Implementation - Volume 2, NSDI’05,
pages 43–56, Berkeley, CA, USA, 2005. USENIX
Association.

[25] Tiago Ferreira, Harrison Brewton, Loris D’Antoni, and
Alexandra Silva. Prognosis: closed-box analysis of
network protocol implementations. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, SIG-
COMM ’21, page 762–774, New York, NY, USA, 2021.
Association for Computing Machinery.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1021

https://github.com/osrg/gobgp/issues/2164
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://github.com/batfish/batfish
https://github.com/batfish/batfish
https://github.com/microsoft/Zen/tree/master
https://github.com/microsoft/Zen/tree/master
https://quickview.cloudapps.cisco.com/quickview/bug/CSCvk45884
https://quickview.cloudapps.cisco.com/quickview/bug/CSCvk45884
https://www.networkworld.com/article/2289950/bgp-bug-bites-juniper-software.html
https://www.networkworld.com/article/2289950/bgp-bug-bites-juniper-software.html
https://www.networkworld.com/article/2289950/bgp-bug-bites-juniper-software.html
https://www.f5.com/labs/articles/cisotociso/bgp-dns-and-the-fragility-of-our-critical-systems
https://www.f5.com/labs/articles/cisotociso/bgp-dns-and-the-fragility-of-our-critical-systems
https://www.f5.com/labs/articles/cisotociso/bgp-dns-and-the-fragility-of-our-critical-systems
https://github.com/FRRouting/frr/issues/13007
https://github.com/FRRouting/frr/issues/13007
https://github.com/FRRouting/frr/issues/11912
https://github.com/FRRouting/frr/issues/11912
https://bird.network.cz/?get_doc&v=20&f=bird-5.html
https://bird.network.cz/?get_doc&v=20&f=bird-5.html
https://bst.cisco.com/quickview/bug/CSCvz55292
https://bst.cisco.com/quickview/bug/CSCvz55292
https://github.com/Forescout/bgp_boofuzzer
https://github.com/Forescout/bgp_boofuzzer
https://docs.frrouting.org/projects/dev-guide/en/latest/fuzzing.html
https://docs.frrouting.org/projects/dev-guide/en/latest/fuzzing.html
https://github.com/osrg/gobgp/issues/2208
https://github.com/osrg/gobgp/issues/2208

[26] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-
Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd
Millstein. A general approach to network configuration
analysis. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages
469–483, Oakland, CA, 2015. USENIX Association.

[27] FRR routing software. https://github.com/
FRRouting/frr.

[28] GoBGP routing software. https://github.com/osrg/
gobgp.

[29] Patrice Godefroid, Adam Kiezun, and Michael Y Levin.
Grammar-based whitebox fuzzing. In Proceedings of the
29th ACM SIGPLAN conference on programming lan-
guage design and implementation, pages 206–215, 2008.

[30] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart:
Directed automated random testing. In Proceedings of
the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 213–223,
2005.

[31] DAN GOODIN. Google goes down after major bgp
mishap routes traffic through china. ARS Technica, 2018.

[32] Siva Kesava Reddy Kakarla, Ryan Beckett, Behnaz
Arzani, Todd Millstein, and George Varghese. Groot:
Proactive verification of dns configurations. In
Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM ’20, page
310–328, New York, NY, USA, 2020. Association for
Computing Machinery.

[33] Siva Kesava Reddy Kakarla, Ryan Beckett, Todd Mill-
stein, and George Varghese. {SCALE}: Automatically
finding {RFC} compliance bugs in {DNS} nameservers.
In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 307–323,
2022.

[34] Siva Kesava Reddy Kakarla, Alan Tang, Ryan Beckett,
Karthick Jayaraman, Todd Millstein, Yuval Tamir, and
George Varghese. Finding network misconfigurations by
automatic template inference. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 999–1013, 2020.

[35] James C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385–394, July 1976.

[36] Eduard Kovacs. Bgp flaw can be exploited for prolonged
internet outages. Security Week, 2023.

[37] Hyojeong Lee, Jeff Seibert, Dylan Fistrovic, Charles
Killian, and Cristina Nita-Rotaru. Gatling: Automatic
performance attack discovery in large-scale distributed
systems. ACM Trans. Inf. Syst. Secur., 17(4), apr 2015.

[38] Jonathan Lee and Jeffrey Shallit. Enumerating regular
expressions and their languages. In Proceedings of the
9th International Conference on Implementation and
Application of Automata, CIAA’04, page 2–22, Berlin,
Heidelberg, 2004. Springer-Verlag.

[39] Hongqiang Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao,
Sri Tallapragada, Nuno Lopes, Andrey Rybalchenko,
Guohan Lu, and Lihua Yuan. Crystalnet: Faithfully
emulating large production networks. In SOSP ’17 Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, pages 599–613. ACM, October 2017.

[40] Nuno Lopes and Andrey Rybalchenko. Fast bgp simula-
tion of large datacenters. In VMCAI: Verification, Model
Checking, and Abstract Interpretation, January 2019.

[41] Robert McMillan. Youtube outage underscores big
internet problem. Info World, 2008.

[42] Dirk Merkel et al. Docker: lightweight linux containers
for consistent development and deployment. Linux j,
239(2):2, 2014.

[43] Sebastian Moss. Verizon bgp route leak causes cloudflare
customer outages, aws issues. Data Center Dynamics,
2019.

[44] Javier Paris and Thomas Arts. Automatic testing of tcp/ip
implementations using quickcheck. In Proceedings
of the 8th ACM SIGPLAN Workshop on Erlang, pages
83–92, 2009.

[45] Quagga routing software. https://www.nongnu.org/
quagga/.

[46] Regular expressions. https://microsoft.github.io/
z3guide/docs/theories/Regular%
20Expressions/.

[47] Yakov Rekhter, Susan Hares, and Tony Li. A Border
Gateway Protocol 4 (BGP-4). RFC 4271, January 2006.

[48] Alan Tang, Siva Kesava Reddy Kakarla, Ryan Beckett,
Ennan Zhai, Matt Brown, Todd Millstein, Yuval Tamir,
and George Varghese. Campion: Debugging router
configuration differences. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference, SIGCOMM ’21,
page 748–761, New York, NY, USA, 2021. Association
for Computing Machinery.

[49] Margus Veanes, Colin Campbell, Wolfgang Grieskamp,
Wolfram Schulte, Nikolai Tillmann, and Lev Nachman-
son. Model-based testing of object-oriented reactive

1022 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/FRRouting/frr
https://github.com/FRRouting/frr
https://github.com/osrg/gobgp
https://github.com/osrg/gobgp
https://www.nongnu.org/quagga/
https://www.nongnu.org/quagga/
https://microsoft.github.io/z3guide/docs/theories/Regular%20Expressions/
https://microsoft.github.io/z3guide/docs/theories/Regular%20Expressions/
https://microsoft.github.io/z3guide/docs/theories/Regular%20Expressions/

systems with spec explorer. Formal Methods and Testing:
An Outcome of the FORTEST Network, Revised Selected
Papers, pages 39–76, 2008.

[50] Brandon Vigliarolo. Faa grounds all us departures after
notam goes down. The Register, 2023.

[51] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D
Ernst, Arvind Krishnamurthy, and Zachary Tatlock.
Bagpipe: Verified bgp configuration checking. In Proc.
OOPSLA, 2016.

[52] zzuf - multi-purpose fuzzer. http://caca.zoy.org/
wiki/zzuf.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1023

http://caca.zoy.org/wiki/zzuf
http://caca.zoy.org/wiki/zzuf

A High-Performance Design, Implementation, Deployment,
and Evaluation of The Slim Fly Network

Nils Blach1, Maciej Besta1, Daniele De Sensi1,2, Jens Domke3,
Hussein Harake5, Shigang Li1,4, Patrick Iff1, Marek Konieczny6, Kartik Lakhotia7,

Ales Kubicek1, Marcel Ferrari1, Fabrizio Petrini7, Torsten Hoefler1

1 ETH Zürich 2 Sapienza University of Rome 3 RIKEN Center for Computational Science (R-CCS)
4 BUPT, Beijing 5 Swiss National Supercomputing Centre (CSCS) 6 AGH-UST 7 Intel Labs

{ nils.blach, maciej.besta, htor } @ inf.ethz.ch

Orange IB cables:

Optical cables for inter-rack

InfiniBand connections.

Each bunch contains 10 links

Black IB cables:

Copper cables for intra-rack

InfiniBand connections

Colored Ethernet cables:

The blue, white and green

cables are Ethernet cables

Figure 1: First real-world deployment of the Slim Fly topology. The left-most rack displays labels detailing the arrangement of various components such as
InfiniBand (IB) switches, compute nodes and Ethernet switches. Two types of IB links are present: black copper links for intra-rack connections and orange
optical fiber links for inter-rack connections. The orange lines above the racks represent bundles of ten optical fiber links each. Additionally, blue, white and
green (arbitrary color scheme) Ethernet cables are visible within the racks, which establish the cluster management network together with the Ethernet switches.

Abstract
Novel low-diameter network topologies such as Slim Fly (SF)
offer significant cost and power advantages over the estab-
lished Fat Tree, Clos, or Dragonfly. To spearhead the adoption
of low-diameter networks, we design, implement, deploy, and
evaluate the first real-world SF installation. We focus on de-
ployment, management, and operational aspects of our test
cluster with 200 servers and carefully analyze performance.
We demonstrate techniques for simple cabling and cabling
validation as well as a novel high-performance routing archi-
tecture for InfiniBand-based low-diameter topologies. Our
real-world benchmarks show SF’s strong performance for
many modern workloads such as deep neural network train-
ing, graph analytics, or linear algebra kernels. SF outperforms
non-blocking Fat Trees in scalability while offering compa-
rable or better performance and lower cost for large network
sizes. Our work can facilitate deploying SF while the associ-
ated (open-source)1 routing architecture is fully portable and
applicable to accelerate any low-diameter interconnect.
1https://github.com/spcl/opensm

1 INTRODUCTION

Low-diameter2 network topologies such as Slim Fly (SF) [1]
have gained significant traction during the last decade. Initial
designs in that line of work, Dragonfly (DF) [2] and Flattened
Butterfly [3], both with diameter three, focused on improv-
ing latency and physical layout. After that, SF lowered the
diameter to two, based on an observation that low-diameter
does not only improve performance by reducing end-to-end
latencies, but it also reduces cost and power consumption.
This is because, when the diameter is lower, packets on aver-
age traverse fewer switches, switch buffers, and links. Thus,
fewer links and buffers are needed to construct the network
(for a fixed bandwidth), and less dynamic power is needed for
moving the packets through the network.

SF’s construction costs, consumed power, and latency are
lower than those of Clos and Fat Tree (FT) by respectively,
≈25-30%, ≈25-30%, and ≈50% [1]. However, SF has still
not seen a real physical deployment, and it is uncertain how to

2Network diameter is the maximum distance between any two switches.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1025

https://github.com/spcl/opensm

deploy SF in practice. To spearhead the practical development
of low-diameter networks and show the state-of-the-practice,
we design, implement, deploy, and evaluate the first SF instal-
lation that includes switches and endpoints, as shown in Fig. 1.
We discuss the encountered challenges, and we show that the
construction process is straightforward and comparable to
established designs such as Clos.

Moreover, to maximize performance benefits from using
SF, we design and implement a novel high-performance mul-
tipath routing scheme for general low-diameter networks, and
we install and use it with the deployed SF cluster. Our rout-
ing shows superior performance over the state-of-the-art, and
it is independent of the underlying topology details and of
the interconnect architecture. Thus, it could be portably used
on different topologies (e.g., Xpander [4]) and on different
architectures (e.g., Ethernet or InfiniBand [5]).

The equipment available to us is based on the InfiniBand
(IB) architecture [5]. IB enables a high-speed switched fabric
with hardware (HW) support for remote direct memory ac-
cess (RDMA) [6, 7]. IB is widely used in high-performance
systems, for example four out of ten most powerful systems in
the Top500 list (Jun. 2023 issue) [8], manufactured by IBM,
Nvidia, and Atos, use the IB interconnect. We use our routing
protocol with the IB networking stack; our whole implemen-
tation is publicly available to foster future research into multi-
path routing. Importantly, we provide the first multipathing
for IB that can use arbitrary paths (including non-minimal and
disjoint ones) and that is independent of the structure details
of the underlying network [9, 10].

In our evaluation, we consider a broad range of
communication-intense applications that represent traditional
dense computations (like physics simulations), sparse graph
processing [11, 12, 13, 14, 15, 16], deep neural network (DNN)
training [17, 18, 19], and a number of microbenchmarks test-
ing particular popular communication patterns. Our results
showcase that SF delivers high performance while achieving
optimal, or near optimal scalability, which directly translates
to low construction costs. To further reinforce these outcomes,
we also conduct a comprehensive comparison between SF and
a non-blocking FT that we deploy using the same hardware.
Here, SF offers comparable or better performance to FT in
a majority of used applications. Simultaneously, its superior
scalability ensures up to 50% cost improvements over FT,
particularly for large installation sizes [1].

2 NETWORK MODEL & TOPOLOGIES
We start with fundamental concepts and notation. We model
a network as an undirected graph G = (V,E); V is a set of
switches3 (|V |= Nr) and E is a set of full-duplex inter-switch
cables (we do not model endpoints explicitly). A network
has N endpoints, with p endpoints attached to each switch

3We abstract away HW details and denote switches and routers with a common term
“switch”. However, we use a term “routing” when referring to determining a path,
because IB switches in our physical implementation have routing capabilities.

(concentration). We also use the term node to refer to either a
switch or any of its endpoints, when the discussion is generic.
Total port count in a switch (radix) is k = k′+ p, where k′

is the number of channels from a switch to other switches
(network radix). The diameter is D. All the symbols are listed
in Tab. 1.

Table 1: The most important symbols used in this work.
V,E Sets of vertices/edges (switches/links, V = {0, . . . ,Nr −1}).
N The number of endpoints in the network.
Nr The number of switches in the network (Nr = |V |).
p The number of endpoints attached to a switch.
k′ The number of channels from a switch to other switches.
k Switch radix (k = k′+ p).
D,d Network diameter and the average path length.

We overview SF’s structure in Fig. 2, and compare it to a
3–level Fat Tree with diameter four, as they are widely used
in medium and large installations [20, 21], and to a diameter-
3 Dragonfly, which has also been deployed in practice [22,
23]. SF has >50% fewer switches and >55% fewer cables
than a full-bandwidth non-blocking FT of a comparable size.
Second, SF’s switches form groups that are not necessarily
fully connected; FT’s edge and aggregation switches form
pods, DF’s groups are fully connected. Third, both SF and
DF are direct topologies (each switch is attached to some
number of servers), while in a FT, only edge switches attach
to servers.

3 FIRST AT-SCALE SF INSTALLATION
We start by discussing the deployment of the first SF cluster,
illustrating the simplicity of its construction and arguing why
deploying other SFs would also be straightforward. The clus-
ter is hosted by the Swiss National Supercomputing Centre
(CSCS).

3.1 Deployed Hardware Equipment
We use 50 36-port, 56Gb/s IB SX6036 switches and 200 com-
pute endpoints. Each endpoint hosts two 20-core Intel Xeon
CPUs and 32 GiB RAM, split equally in a Non-Uniform
Memory Access (NUMA) configuration, and a single Mel-
lanox ConnectX-3 MT4099 HCA, which implements the IB
Architecture Specification Volume 1, Release 1.2. Copper
and optical cables are used for intra and inter-rack switch
connections, respectively.

3.2 Topology Structure and Construction
We use a SF based on the graphs by McKay, Miller, and
Širáň [24]. We outline its structure, the details are in Ap-
pendix A and in the original SF paper [1]. The complete SF
installation is shown in Fig. 1 with a highlighted view of the
group structure in Fig. 3. One first chooses a prime power
q; q is an input parameter that determines the whole topol-
ogy structure. For example, the number of vertices (switches)
is Nr = 2q2 and the network radix k′ = 3q−δ

2 . In our case,
Nr = 50, thus q = 5 and k′ = 7 (every switch connects to
7 other switches). Interestingly, this construction forms the

1026 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

diameter: 2

A pod A switch

diameter: 4 Slim Fly (SF)Fat Tree (FT)

diameter: 3

Dragonfly (DF)
Core

routers

A bunch of cables
between each pod
and core switches

A group (fully
connected)

A group
(not necessarily
fully connected)

A group
becomes

a rack
A group
becomes

a rack

A pod
becomes

a rack

Core switches
form a rack

One cable
between any
two groups

A bunch
of cables
between
any two
groups

Only edge
switches attach

to endpoints

Many
endpoints
attached

50% ports connect
to endpoints, but

only in edge switches
Moderate
endpoint

concentration

Figure 2: The structure of a small example Fat Tree (FT), Dragonfly (DF), and Slim Fly (SF), and the corresponding installations. Each topology comes with a
modular design, where switches form groups (SF, DF) or pods (FT). Such groups can become racks in a physical installation.

Each switch
has p = 4
endpoints
attached

Each switch has
k' = 7 links to
other switches

Each rack
consists of

subgroups 0
and 1

Each subgroup 0
has identical intra

connections

There are q = 5 links
between subgroups

within each rack

Each rack has
q = 5 switches

Endpoints in
subgroup 0

Endpoints in
subgroup 1

Switches in
subgroup 0

Switches in
subgroup 1

Ports to
endpoints

Ports to
switches

Figure 3: Internal organization of a rack. The image displays a side-by-side
comparison of a theoretical diagram and an actual photograph of a single rack
in the cluster. The rack consists of two distinct subgroups, each housing 5 IB
switches and 40 compute nodes (endpoints). Each IB switch is connected to
4 endpoints and 7 other IB switches.

famous Hoffman-Singleton graph [25, 26], which is opti-
mal with respect to the Moore Bound [27]. Finally, one uses
p =

⌈
k′
2

⌉
endpoints connected to each switch to ensure full

global bandwidth [1]. In our case, p = 4. Note that, while the
switch port count in the considered SF is k′+ p = 11 (and
11-port switches would be the appropriate selection when
building the SF from scratch), we use 36-port switches be-
cause this has been the only HW equipment available to us.

The whole installation consists of five identical racks. Ev-
ery two racks are connected with the same number of 2q = 10
cables. There are 2q = 10 switches in each rack. Each rack
consists of two subgroups, subgroup 0 and subgroup 1. All

subgroups 0 and all subgroups 1 are identical, but a subgroup 0
and 1 are usually different. We place switches from sub-
group 0, together with their attached endpoints, at the top of
each rack; subgroup 1 goes to the bottom of the rack. The de-
tails on how any two switches are connected is determined by
the underlying algebraic structure of the SF topology. We of-
fer full details in Appendix A, with Appendix A.3 explaining
the three simple equations that determine switch connectivity;
here, we stress that the deployment is straightforward.

3.3 Deployment Efficiency and Ease
To facilitate deployment, we develop scripts that outline both
intra- and inter-rack connections. The output of these scripts
can be used to create diagrams for every rack pair to ensure
a smooth wiring process. Thanks to the algebraic structure
of the SF topology, such descriptions for any SF can be au-
tomatically generated, providing concrete port-to-port link
descriptions and rack placements for each switch. We illus-
trate an example diagram of connections between racks 0
and 1, and between 0 and 2, that was created based on these
generated descriptions, in Fig. 4.

We use our scripts as a basis of an efficient 3-step wiring
process. First, we wire intra-subgroup connections; they are
identical across all racks for each of the two subgroups. The
second step consists of connecting each switch from sub-
group 0 to its neighboring switches in subgroup 1 within the
same rack. As the subgroups are of equal size, an incorrectly
connected pair will result in easily recognizable errors, which
break that symmetry. Lastly, the inter-rack connections are es-
tablished. Hereby, the fact that each switch in a rack uses the
same port to connect to the switches in another rack, enables
straightforward connection of rack-pairs.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1027

The simplicity of the wiring process can mainly be at-
tributed to the scalable three-step approach, which is equally
applicable to larger SF topologies, enabling the efficient de-
ployment of SF clusters. Overall, stripping the previous sys-
tem and executing the 3-step wiring process were completed
within 3 days by a team of two.

0.0.0

8 9 10 11

0.0.1

8 9 10 11

0.0.2

8 9 10 11

0.0.3

8 9 10 11

0.0.4

8 9 10 11

1.0.0

8 9 10 11

1.0.1

8 9 10 11

1.0.2

8 9 10 11

1.0.3

8 9 10 11

1.0.4

8 9 10 11

0.1.0

8 9 10 11

0.1.1

8 9 10 11

0.1.2

8 9 10 11

0.1.3

8 9 10 11

0.1.4

8 9 10 11

1.1.0

8 9 10 11

1.1.1

8 9 10 11

1.1.2

8 9 10 11

1.1.3

8 9 10 11

1.1.4

8 9 10 11

Rack 0 Rack 1

0.0.0

8 9 10 11

0.0.1

8 9 10 11

0.0.2

8 9 10 11

0.0.3

8 9 10 11

0.0.4

8 9 10 11

1.0.0

8 9 10 11

1.0.1

8 9 10 11

1.0.2

8 9 10 11

1.0.3

8 9 10 11

1.0.4

8 9 10 11

0.2.0

8 9 10 11

0.2.1

8 9 10 11

0.2.2

8 9 10 11

0.2.3

8 9 10 11

0.2.4

8 9 10 11

1.2.0

8 9 10 11

1.2.1

8 9 10 11

1.2.2

8 9 10 11

1.2.3

8 9 10 11

1.2.4

8 9 10 11

Rack 0 Rack 2

Figure 4: Illustration of the example diagrams created from the output
of our scripts, facilitating the cabling process. The diagrams show all the
inter-rack connections and the corresponding ports in switches. Each switch
is labeled using a triple (S,R, I), where S ∈ {0,1} indicates the subgroup
type, R ∈ {0, ...,4} indicates the rack, and I ∈ {0, ...,4} is the consecutive
switch ID within a rack/subgroup. Then, we only show ports 8–11; these
ports are used to connect racks. Ports 1–4 (for endpoints) and 5–7 (for intra-
rack switch-switch links) are omitted for clarity. The equations presented
in Appendix A.3 determine which switches are connected based on the
assigned labels.

3.4 Correctness Verification
We provide a set of scripts that ensure the correctness of the
cabling. These scripts utilize the auto-generated port-to-port
link descriptions and rack placements for each switch and
compare it with the output of ibnetdiscover, an IB com-
mand that performs fabric discovery. This allows us to not
only identify incorrectly wired cables and provide concrete
instructions on how to rectify mistakes, but also detect miss-
ing or broken links. These scripts could even be used on a
live cluster, while going through the wiring process, to imme-
diately identify and flag errors.

4 HIGH-PERFORMANCE MULTIPATHING
We now propose a novel high-performance multipath routing
protocol for low-diameter networks, which we use on the
described SF deployment. For this, we extend the recently
proposed FatPaths multipath routing protocol [28] so that it

A minimal path
(globally): 2 hops

Layer 1

Layer 2

FatPaths: layers as link subsets.

Acyclicity of layers restricts
layers' structure, there may be

large link overlap across layers

Layers define separate
forwarding trees for each node,

ensuring advantageous paths

Initial network: all the links. This work: layers as sets of paths.

Layer 0 (FatPaths and this work)
(solid links) (solid paths)

(dashed paths)(dashed links)
Layer 1

Layer 2

Almost-minimal paths: 3 hopsOnly minimal paths

Figure 5: Layered routing in FatPaths and in this work. Traffic is divided and
sent using different layers. Our scheme relaxes the requirement in FatPaths for
all layers to be trees, as in our scheme deadlock resolution is decoupled from
layer creation. This ensures more flexibility in developing layers, leading
to more throughput. Specifically, while in FatPaths, paths in different layers
often overlap (cf. Layer 1 and 2), our routing alleviates this issue and reduces
overlap/congestion and increases performance.

offers vastly superior throughput while still ensuring very low
latency.

4.1 Original FatPaths Routing in Slim Fly
In terms of path diversity, FT has multiple same-length min-
imal paths between any two edge switches. Thus, one often
uses ECMP [29] for multipath routing in FT. In SF (and
to some degree in DF [28]), there is usually only one mini-
mal path, but multiple “almost” minimal paths between any
switch pair. This makes it challenging to achieve high path
diversity in SF using ECMP. To alleviate this and to enable
non-minimal high-speed multipathing in SF, the FatPaths ar-
chitecture has recently been proposed [28]. FatPaths harnesses
the concept of layered routing [30, 31] for low-diameter net-
works. In layered routing, one first creates layers: subsets of
switch-switch links. Within one layer, one uses shortest-path
routing. However, as a layer does not contain all the links,
paths within this layer are usually non-minimal (in the global
sense). If two nodes4 want to communicate using multiple
paths, the sending node simply sends its data using paths re-
siding in different layers. Note that multipathing is orthogonal
to transport-level issues, and one can use different layers to
transfer different flows between two nodes, but also different
packets or flowlets within one flow [28]. In FatPaths, selecting
links (when constructing layers) is done with simple random
uniform sampling; a more elaborate scheme minimizing load
imbalance is also provided. Layered routing is summarized
in Fig. 5.

4.2 Proposed Multipath Routing: Summary
The central issue in layered routing is how to divide links
into layers. We aim to minimize the number of layers (which
minimizes the usage of HW resources in switches) while si-
multaneously maximizing the number of disjoint and almost-

4Multipathing can be applied both at the switch and at the endpoint level. Thus, we use
a term “node” to refer to switches or endpoints when a discussion is generic

1028 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

minimal paths between any switch pair (for more path diver-
sity). Moreover, a detailed analysis from FatPaths indicates
that – to maintain high performance in layered routing in vir-
tually all low-diameter networks and traffic patterns – at least
three disjoint paths per switch pair are needed [28]. Thus, the
main goal of the layer construction algorithm is to find a min-
imum set of layers that together provide each switch pair with
at least three disjoint paths while ensuring minimum overlap
between specific layers. Ideally, these three paths include the
minimal one (that always exists) and two “almost” minimal
ones (in the following, an “almost” minimal path means a
path that is longer by one hop than the minimal path between
two given switches).

An overview of our proposed layer routing is shown in
Fig. 5 (right). The key difference between our scheme and
FatPaths is that we do not remove links from layers in or-
der to ensure deadlock-freedom or to introduce non-minimal
paths. Instead, we decouple deadlock resolution from layer
creation, and explicitly construct paths satisfying the appro-
priate constraints on their count, non-minimal length, and
well-balancedness. This facilitates creating layers that result
in much higher throughput.

4.3 Generating Routing Layers
Our layer construction scheme is detailed in Algorithm 1. The
input is the topology of inter-switch connections G = (V,E),
and the desired number of layers |L|. The output is a set
of layers L, where each layer contains a collection of paths
connecting different pairs of nodes. These paths together
define a separate forwarding tree for each node.

The layer generation starts with assigning all links to
layer 1. In layer 1, we only use minimal paths, as we want
to ensure that the single minimal path existing between all
node pairs is included in at least one layer for each pair. More-
over, a matrix W and a priority queue p are initialized. These
structures are used to find advantageous non-minimal paths
for each node pair. Intuitively, a priority p(u,v) of a node
pair u,v is determined by the number of non-minimal paths
already assigned to u,v (and maintained in other layers). The
higher p(u,v) is, the lower the priority of u,v is. Hence, when
looking for new non-minimal paths, node pairs with fewer
paths assigned are prioritized. This facilitates balancing the
number of advantageous paths across all pairs of nodes, to
eliminate potential hotspots in the network.

Second, each entry W (r,s) in matrix W describes the
weight of a link between switches r,s. This weight equals
the number of paths (from any layer) that already use this link.
The higher W (r,s) is, the more paths use the corresponding
link. Hence, when selecting new paths, we use W to balance
numbers of paths across single links, minimizing risk of con-
gestion. We also use W to balance the paths in the first layer
to ensure minimal overlap of minimal paths.

Then, for every layer 2 . . . |L|, and for each node pair in each
layer, we find a single almost-minimal path that minimizes

overlap with respect to paths already added to any other layer.
For this, when finding paths in a layer l, we first copy the
current priorities of node pairs into a list that preserves the
current state of priorities (copy_pairs). Here, node pairs with
the same priority are in a random order, but come before any
node pair with lower priority. Note that each node pair appears
twice in the list, once for each direction. This enables using
different paths when routing in different directions, further
increasing the flexibility of path selection.

After that, we iterate over each node pair, in an attempt to
construct a path for each such pair in each layer. Note that, in
principle, it is possible that one cannot find a path for each
node pair in each layer (we elaborate on dealing with such
rare cases in Appendix B.1; we resolve them with a simple
fallback to a minimal path – our evaluation shows that this
does not negatively impact throughput).

In each such iteration, we first use the find_path routine to
try to find an almost-minimal path for a given node pair pair,
based on already inserted paths for that layer (specified in l)
and weights assigned to each link (specified in W). If we are
able to find a valid path, we accordingly update priorities p
(update_priorities) and link weights W (update_weights). Fi-
nally, we insert the path into layer l (add_path_to_layer).

Algorithm 1: Construct routing layers; details are in § 4.3

Input : Network topology G = (V,E), number of layers |L|
Result : A set of L routing layers
// W ∈ RNr×Nr contains weights of links; p is a priority
queue, with entries being pairs of nodes

1 W = init_link_weight_matrix() // Set all matrix entries to 0
2 p = init_p_queue(G) // Each node pair gets the same priority
3 L = {E} // Layer 0 contains all the links (E)
4 for l = 1 to |L|−1 do
5 init_layer(l) // Initialize the next layer as empty
6 node_pairs = copy_pairs(p)
7 while node_pairs ̸= /0 do
8 pair = node_pairs.dequeue()
9 path = find_path(G, W , pair, l)

10 if valid(path) then
11 update_priorities(path, p)
12 update_weights(path, W)
13 add_path_to_layer(path, G, l)
14 end
15 end
16 L = L∪{l} // Add a new layer to finalized layers
17 end

5 IMPLEMENTATION OF MULTIPATHING
The IB architecture [5] enables a high-speed switched fab-
ric with HW support for RDMA [6, 32] and atomic oper-
ations [33]. IB provides lossless destination-based packet
forwarding that relies on link-level, credit-based flow con-
trol [34]. We now discuss the used IB features.

An IB network usually forms a single subnet consisting of
physical IB switches and Host Channel Adapters (HCAs) that
correspond to Ethernet NICs. All communication up to and
including the transport layer is implemented within these two
components.

Routing configuration is managed by a centralized subnet
manager (SM). The SM configures connected IB devices,
appropriately computes the forwarding tables to implement

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1029

the used destination-based routing algorithm, and monitors
the network for failures. Within an IB subnet, each HCA and
each switch receive a unique local identifier (LID), assigned
by the SM.

Each physical IB port has several independent virtual lanes
(VLs). Each VL has its own receive and transmit buffers and
flow control resources. There can be up to 15 VLs per physical
port (depending on the equipment) and 1 VL for management
traffic. Multiple VLs per port are used for deadlock freedom
and to eliminate head-of-line blocking [34] (we discuss dead-
locks in more detail in § 5.2).

Each switch provides a forwarding table called the Linear
Forwarding Table (LFT) that – for a given packet – deter-
mines the outgoing port using the destination address (DLID)
from the packet header. Then, for a given outgoing port, to
determine the outgoing VL for a given packet, the switch uses
a four-bit Service Level (SL) field from the packet header, in
combination with the incoming and outgoing packet ports, to
index into the SL-to-VL table. This enables packets to change
virtual lanes at each hop and it allows for seamless utilization
of switches with potentially different numbers of virtual lanes.

5.1 Routing
OpenSM, our choice of IB compliant SM, provides com-
plete subnet information, including a list containing all nodes
(switches, HCAs, routers) and ports, as well as the connec-
tions between them. We use this information to create and
populate forwarding tables so that they implement the pre-
scribed layered routing.

Multipathing In ECMP, each router stores multiple pos-
sible next-hops that each lie on a minimal path towards the
destination. This approach of storing multiple next-hops for
a given destination is not possible in IB. However, it can be
emulated by assigning multiple LIDs to each HCA, a fea-
ture that we use to enable multipathing and to implement
our layered routing in an IB setting. An HCA can receive a
contiguous range of LID addresses. This range is determined
by the so called LID Mask Control (LMC) value. Specifi-
cally, for an LMC equal x, each HCA port hosts a consecutive
range of 2x LIDs. Then, one routes towards each such LID
using a different path. We use the information provided by
OpenSM to appropriately populate forwarding tables so that
they implement the layered routing described in § 4.

Implementation of Layers We assign multiple addresses
to each node; one address falls into one layer (each layer
gets one address from each node). Hence, a layer is physi-
cally formed by the assigned addresses and the associated
forwarding entries that route traffic to these addresses. The
forwarding entries are set according to the specification of
layers in the initialization phase. Our scheme for construct-
ing layers provides a data structure port, which specifies the
output port to be used for a packet traveling to a node d, from
a switch s, within a layer l; this output port is denoted with
port[l][s][d].

Routing Within Layers The number of layers equals the
number of addresses assigned to each node. Thus, we can
treat the layer ID as the offset to the base (i.e., to the first)
LID of each node. Hence, for instance, routing in the first
layer (ID 0) uses the base LID of each node, whereas routing
in the second layer uses the base LID plus offset 1.

Populating Forwarding Tables To populate forwarding
entries, we add a value port[l][s][d] into the LFT of switch s,
as the outgoing port number for packets being routed towards
node d. As the destination address, we use the base LID of
the node, increased by the offset l, to ensure routing within
layer l. As the last step, we run a deadlock-resolution scheme
that fills all SL-to-VL tables, eliminating the risk of deadlocks
(cf. § 5.2).

5.2 Deadlock-Freedom
One downside of IB’s credit-based flow control ensuring loss-
lessness is the possibility of deadlocks. Specifically, an IB
network may enter a state in which packets in different buffers
wait for each other indefinitely long to free the buffers, result-
ing in a deadlock. To overcome this, most routing schemes
use different VLs to send packets [35, 36, 37, 38, 39, 40]. By
splitting a single port buffer into multiple independent logical
VLs, one can break dependencies between waiting packets.

In FatPaths, each layer is acyclic, to ensure no dead-
locks within each layer. However, this does not imply global
deadlock-freedom on IB because of its lossless design based
on channels. Specifically, one has to ensure that dependencies
between packets using routes stored in any layers are also
deadlock-free. Thus, we change the FatPaths approach by
decoupling deadlock-avoidance from layer creation. Instead,
we apply deadlock-removal after the layers are created. This
also enables much more throughput because acyclic layers
vastly restrict the choice of paths to be taken.

In our IB implementation, we propose and enable the use
of two different deadlock-avoidance schemes. Firstly, if a
sufficient number of VLs is available, we use the scheme in-
troduced with the Deadlock-Free Single Source Shortest-Path
(DFSSSP) [36] algorithm, which is already integrated in IB.
Intuitively, given a ready routing (i.e., the populated forward-
ing tables), DFSSSP first finds all dependencies that could
lead to a deadlock, and then it iteratively accommodates these
dependencies in a deadlock-free way, by assigning selected
routes to use yet unoccupied VLs. If not enough VLs are
available, the algorithm fails. If not all VLs are exhausted,
DFSSSP additionally balances the number of paths using each
VL, for more throughput.

By increasing the number of layers used, the total number
of unique paths between node pairs increases, resulting in a
higher number of virtual lanes (VLs) required to resolve dead-
locks using the DFSSSP scheme. To maximize the number
of supported layers, we propose a novel deadlock avoidance
scheme based on the Duato’s approach [41], that is agnostic
to the number of layers and tailored for IB deployments that

1030 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

rely exclusively on paths of length <= 3, such as those based
on SF with our multipath routing method. The proposed al-
gorithm ensures that the first, second, and third inter-switch
hop of any path connecting two nodes use disjoint subsets of
VLs. To achieve this, at least three VLs need to be available,
and switches, for a given packet, must be able to identify their
respective positions on the path using only the packet’s SL,
incoming and outgoing port.

To illustrate the algorithm’s functionality, we consider each
case individually. The first case, which involves paths of
length 1 (sw1 − sw2), can be solved trivially since sw1 can
determine that it is the first hop along the path by checking
whether the incoming packet port is connected to an endpoint.
This information can then be encoded easily in the SL-to-VL
table.

The strategy to address the second case, paths of length 2
(sw1− sw2− sw3), is the same as the one for case three; there-
fore, we only present it once. In the third and final case, paths
of length 3 (sw1 − sw2 − sw3 − sw4), we treat sw1 as in case
one but use a different approach to differentiate between sw2
and sw3. We establish a proper coloring of switches, using at
most as many colors as there are available SLs. This color
assignment is then mapped to SLs, ensuring each switch has
a unique color and SL among its neighbours. By setting the
SL of a packet routed along a path of length 2 or 3 to the
SL assigned to the second switch (sw2) along that path, it is
guaranteed that the packet’s assigned SL matches the SL of
the second hop but not the SL of the third. Subsequently, if
a switch is neither the first nor last hop on a path – a condi-
tion trivially determined through the incoming and outgoing
packet ports – then the switch’s position along the path can
be ascertained by whether the incoming packet’s assigned
SL matches the SL assigned to the switch. Specifically, if the
SLs match, then the given switch must be the second hop; if
they don’t, then it must be the third. Thus, we can differenti-
ate the second hop from a potential third hop and select the
appropriate subset of VLs at each hop accordingly.

If fewer than 3 VLs are available or no proper coloring
using the available SLs can be established, the algorithm fails.
Similar to the DFSSSP scheme, the disjoint VL subsets can
be chosen to balance the number of paths crossing each VL.

5.3 Load Balancing
For load balancing, we rely on the respective protocol higher
up in the stack to choose a layer out of the set of possible ones
available for a given destination. In our case, this is the Open
MPI [42] implementation of the Message Passing Interface
(MPI) standard [43]. Open MPI serves as a communication
library and directly interfaces with the IB networking API
(Verbs). To optimize traffic flow, we utilize Open MPI’s de-
fault load balancing technique, which distributes traffic evenly
across the available paths using a round-robin selection pro-
cess. More advanced, adaptive schemes can seamlessly be
used by changing the selection policy.

For fault tolerance, we rely on IB’s subnet manager. We
stress that our routing can be seamlessly used with other trans-
port schemes besides the ones used in the deployed cluster.

5.4 Path Diversity vs. Network Size
Increasing the number of different paths between each node
pair requires more layers and thus also more addresses as-
signed to each node (i.e., a larger LMC value). However, using
more addresses within one node decreases the maximum num-
ber of nodes that can be used in the network overall (because
the address field size is fixed to 16 bits). We analyze this trade-
off in Tab. 2. We assume the maximum SF network based on
{36, 48, 64}-port switches, that guarantees full global band-
width. The results illustrate that one can use 4 layers without
having to make any compromises on the networks size, but
anything beyond 4 layers would reduce the maximum net-
work size. At this point, the constraining factor is no longer
the switch radix, but the address space. In § 6 and § 7, we
show that – fortunately – our routing scheme’s performance
is already quite substantial with just 4 layers and does not
need more than 8 layers for high performance.

Table 2: Maximum number of switches and servers supported by a single-
subnet, full global bandwidth, SF-based IB network, with “#A”= 2LMC many
addresses per node.

36-port switches 48-port switches 64-port switches
#A Nr N k′ p Nr N k′ p Nr N k′ p

1 512 6144 24 12 882 14112 31 16 1568 32928 42 21
2 512 6144 24 12 882 14112 31 16 1250 23750 37 19
4 512 6144 24 12 800 12000 30 15 800 12000 30 15
8 450 5400 23 12 450 5400 23 12 450 5400 23 12
16 288 2592 18 9 288 2592 18 9 288 2592 18 9
32 162 1134 13 7 162 1134 13 7 162 1134 13 7
64 98 588 11 6 98 588 11 6 98 588 11 6
128 72 360 9 5 72 360 9 5 72 360 9 5

6 THEORETICAL ANALYSIS
We conduct a theoretical analysis of the developed routing
protocols using the deployed SF network as a case study.
We focus on how well our routing uses the diversity of non-
minimal paths, which is necessary for high performance [28].

Baselines and Parameters We analyze our layered routing
that minimizes path overlap (§ 4) and compare it to a simple
random layer construction (RUES, Random Uniform Edge
Selection) and to the state-of-the-art FatPaths scheme [28].

We vary different parameters, including the fraction p of
preserved links in a layer, which refers to the proportion of
links from the network that are included in each layer for the
RUES scheme (specifically, we consider p = 40%, p = 60%,
and p = 80%), and the number of layers used. We focus on
the deployed SF with 50 switches, but the results general-
ize to larger sizes. Overall, we show that the proposed lay-
ered routing is superior to the state-of-the-art in crucial met-
rics: lengths, distribution, and diversity of used paths, and the
achieved throughput.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1031

1 2 3 4 5 6 7 8 9 10
Path Length

0%

20%

40%

60%

80%

100%

4 Layers AVG

RUES (p=40%)
RUES (p=60%)
RUES (p=80%)
FatPaths
This Work

1 2 3 4 5 6 7 8 9 10
Path Length

4 Layers MAX

RUES (p=40%)
RUES (p=60%)
RUES (p=80%)
FatPaths
This Work

1 2 3 4 5 6 7 8 9 10
Path Length

8 Layers AVG

RUES (p=40%)
RUES (p=60%)
RUES (p=80%)
FatPaths
This Work

1 2 3 4 5 6 7 8 9 10
Path Length

8 Layers MAX

RUES (p=40%)
RUES (p=60%)
RUES (p=80%)
FatPaths
This Work

Fr
ac

tio
n

of
 S

wi
tc

h
Pa

irs

Figure 6: Histograms of average path lengths and maximum path lengths across all layers for each switch pair.

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0 in
f

Crossing Paths

0%

20%

40%

60%

80%

100%

4 Layers

RUES (p=40%)
RUES (p=60%)
RUES (p=80%)
FatPaths
This Work

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0 in
f

Crossing Paths

8 Layers

RUES (p=40%)
RUES (p=60%)
RUES (p=80%)
FatPaths
This Work

Fr
ac

tio
n

of
 L

in
ks

Figure 7: Histograms (bin size = 20) of counts of paths crossing each
individual link.

1 2 3 4 5 6
Disjoint Paths

0%

20%

40%

60%

80%

100%

4 Layers

RUES (p=40%)
RUES (p=60%)
RUES (p=80%)
FatPaths
This Work

1 2 3 4 5 6
Disjoint Paths

8 Layers

RUES (p=40%)
RUES (p=60%)
RUES (p=80%)
FatPaths
This Work

Fr
ac

tio
n

of
 S

wi
tc

h
Pa

irs

Figure 8: Histograms of counts of disjoint paths for different switch pairs.

6.1 Path Lengths
The first important metric for evaluating routing is the length
of paths constructed using the proposed routing schemes.
Specifically, when routing in SF, one wants to use the single
available minimal path (with 1 or 2 hops, depending on picked
switch pairs) and the “almost” minimal ones – with 3 hops –
as indicated in the FatPaths study [28]. To analyze whether
the considered routing ensures this, we compute the average
and maximum lengths of the set of paths connecting each
individual switch pair, as produced by the respective routing
schemes. Fig. 6 shows the analysis results.

Our novel layered scheme outperforms all others, because
it ensures that the highest fraction of switch pairs uses the
“almost” minimal paths of length at most 3. The downside of
RUES is that the more randomness is employed, the larger
the maximum path length becomes. For a sampling factor
p = 80%, there is no switch pair with a path of length more
than 4, whereas for p = 40% some switch pairs have paths of
length greater than 8. This indicates large differences in path
lengths in different layers for some switch pairs, even if the

1 2 4 8 16 32 64 128
Number of Layers

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut

×8Thi
s W

ork

FatPa
ths

Injected Load = 10%

1 2 4 8 16 32 64 128
Number of Layers

×8
This Work

FatPaths

Injected Load = 50%

1 2 4 8 16 32 64 128
Number of Layers

×8

This Work

FatPaths

Injected Load = 90%

Figure 9: Maximum achievable throughput for the adversarial traffic pattern
under three different injection loads (fraction of communicating endpoint
pairs).

average path length is between 3 and 4. This can negatively
impact load balancing efforts as it becomes more difficult
to predict path latency. Then, in FatPaths, large fractions of
switch pairs use paths of length 2, which means that these
links may likely become congested.

Doubling the number of layers does not change the overall
trends and it has mostly no effect on the average path length
distributions. Only the maximum path lengths display a small
shift to the right. This is because using more layers increases
the probability of finding a longer path.

6.2 Path Distribution
We now count the total number of paths that cross each indi-
vidual link, see Fig. 7. Our layered routing ensures a balanced
scenario, i.e., close to equal utilization of each link. This cor-
responds to a “single bar”, i.e., the “tighter” the distribution
the better balanced the paths are.

Similarly to the analysis on path length, less randomness
leads to better results, which is expected because as layers
become less dense, the links that are present will be more
utilized. Hence, any link that by chance is included in more
than an average number of layers will have a higher number
of crossing paths and vice versa. FatPaths performs similarly
to RUES for a sampling factor of p = 80%. The distributions
for 8 layers are slightly shifted to the right compared to 4
layers, as they have twice as many paths.

6.3 Path Diversity
Two paths are disjoint if they do not share common links.
In layered routing, we aim to maximize the number of such
paths used by node pairs. Fig. 8 displays counts of disjoint
paths between switch pairs. The FatPaths layer construction
based on minimizing path overlap underperforms because

1032 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of its acyclic layers. Moreover, unlike in previous analyses,
more randomness (and thus sparser layers) leads to better
result for RUES. For a sampling factor of p = 40% and 8
layers, ≈97.5% of switch pairs have at least the 3 desired
disjoint paths. This is the best performing algorithm out of
the ones considered. However, this comes at the expense of
disadvantageous path lengths and path distribution.

Our scheme does not need to make a similar trade-off be-
cause with 8 layers already around 88.5% of switch pairs have
at least 3 disjoint paths, which we have verified to grow to
almost 100% percent when scaling to the next higher config-
uration that uses 16 layers. At the same time, the lengths and
path distributions over links are highly beneficial.

6.4 Maximum Achievable Throughput
We also analyze the maximum achievable throughout (MAT).
MAT is defined as the maximum fraction of traffic demands
from all endpoint pairs that can be accommodated simultane-
ously, while adhering to network and routing constraints. For
example, a throughput of 1.5 denotes that the network can
sustain 1.5 times the traffic demand of each communicating
node pair simultaneously.

Here, we consider an adversarial traffic pattern, which max-
imizes stress on the interconnect by incorporating several
large elephant flows between endpoints that are separated by
more than one inter-switch hop, and combining these large
flows with many small flows [44]. We use TopoBench [44],
a throughput evaluation tool which relies on linear program-
ming to compute MAT. The results are displayed in Fig. 9.

Our algorithm outperforms FatPaths for different traffic in-
tensities and layer counts. This is most important for a small
number of layers, which is key for routing on IB hardware
as using many layers reduces the supported network sizes
(cf. Tab. 2). Our layered routing experiences diminishing re-
turns beyond 16 layers. This is expected, as almost 100% of
endpoint pairs have at least 3 disjoint paths for 16 layers (one
needs at least that many disjoint paths to ensure high perfor-
mance with non-minimal routing). Before diminishing returns
set in, FatPaths requires 8× as many layers to reach equivalent
performance, making our design much more practical.

6.5 Insights & Takeaways - Theoretical Results
Our novel IB layered routing achieves superior performance
in all considered path quality measures and especially in MAT.
Almost around 60% of switch pairs have at least 3 disjoint
non-minimal paths when using only 4 layers, which grows
to 88.5% with 8 layers. Furthermore, we achieve the most
balanced distribution of paths over the links in the network.
FatPaths performs similarly in terms of average and maximum
path lengths, but underperforms in the available number of
disjoint paths per switch pair. For RUES, a sampling factor
of p = 60% achieved the most balanced results across all
metrics, but RUES performs much worse in comparison to
FatPaths and our work overall.

7 EVALUATION
We now illustrate the feasibility of our SF installation by
evaluating a broad set of applications from numerous domains
against a comparable FT installation.

7.1 2-Level Non-Blocking Fat-Tree
FT topologies have historically been the usual choice for large-
scale computing systems, largely due to their predictable be-
havior and full-bandwidth capabilities, when configured in a
non-blocking manner. However, their high cost often leads to
oversubscribed deployments at the tree’s lowest level, reduc-
ing construction costs at the expense of bisection bandwidth.

To ensure a fair performance comparison with our SF in-
stallation, we construct a 2-level non-blocking FT, reusing the
same hardware. The FT and SF both share the same network
diameter and full-bandwidth capabilities. Our FT configura-
tion employs 6 core and 12 leaf switches, compatible with
our 36-port switches. Each leaf switch connects to each core
switch through 3 links, and the remaining ports link to evenly
distributed endpoints. This configuration supports up to 216
endpoints, making the FT marginally under-subscribed and
thus strengthening the fairness of our comparison.

7.2 Workloads & Configurations
We utilize a significant subset of the benchmarks included in
the TSUBAME2 HyperX (t2hx) benchmark suite [10] and en-
hance them with a custom implementation of MPI_Alltoall5,
as well as three DNN proxies introduced by Hoefler et al. [57].
The configuration of each benchmark is provided in Tab. 3.
Our analysis includes three classes of benchmarks:

Microbenchmarks We evaluate the system’s bandwidth
using Intel MPI Benchmarks’ (IMB) measurements of the
Allreduce and Bcast collectives [45], and a custom alltoall.
We also assess the effective bisection bandwidth (ebb) of the
system using Netgauge’s eBB benchmark [46].

Scientific Application & HPC Benchmarks We evaluate
a wide range of benchmarks, covering various scientific appli-
cations, all of which are listed in Tab. 3 and taken directly from
the t2hx benchmark suite. We also analyze the performance
of the High Performance Linpack (HPL) [55] benchmark and
of the breadth-first search (BFS) [60] in the Graph 500 Bench-
mark [53]. Additionally, we extend the BFS performance
analysis by changing the average degree of the vertices (edge-
factor), while scaling the number of vertices linearly with
the number of participating compute nodes. Specifically, we
consider edgefactors 16, 128 and 1024.

DNN Proxies The DNN proxies evaluated on SF include
ResNet152 [56] (pure data parallelism), CosmoFlow [58]
(data and operator parallelism) and GPT-3 [59] (data, operator,
and pipeline parallelism), as outlined in Tab. 3. For GPT-3,
each pipeline stage processes one DNN-layer.

5Details on the performance improvements for the custom alltoall collective,
over the default, can be found in the appendix (Sec C.1).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1033

Table 3: Workload Configurations.

Workload Configuration # Nodes (N) Scaling Metric

Custom Alltoall Message Sizes: 1B → 4MiB 2,4,8,16,32,64,128,200 Weak Bandwidth [MiB/s]
IMB Bcast/Allreduce [45] Message Sizes: 1B → 32MiB 2,4,8,16,32,64,128,200 Weak Bandwidth [MiB/s]
eBB [46] Message Size: 128MiB 2,4,8,16,32,64,128,200 Strong Bandwidth [MiB/s]
CoMD [47] 1003 Atoms per Process 25,50,100,200 Weak Time [s]
FFVC [48] 1283 Cuboid per Process for ≤ 64 processes, else 643 25,50,100,200 Weak Time [s]
mVMC [49] Unmodified job_middle weak-scaling test 25,50,100,200 Weak Time [s]
MILC [50, 51] benchmark_n8 Input 25,50,100,200 Weak Time [s]
NTChem [52] taxol Model 25,50,100,200 Strong Time [s]
BFS16 [53, 54] # Vertices: 223, 224, 225, 226 Avg. Degree: 16 25,50,100,200 Weak Giga-Traversed Edges per Second [GTEPS]
BFS128 [53, 54] # Vertices: 223, 224, 225, 226 Avg. Degree: 128 25,50,100,200 Weak Giga-Traversed Edges per Second [GTEPS]
BFS1024 [53, 54] # Vertices: 223, 224, 225, 226 Avg. Degree: 1024 25,50,100,200 Weak Giga-Traversed Edges per Second [GTEPS]
HPL [55] Matrix A ≈ 1 GiB ,1 GiB ,1 GiB and 0.25 GiB pre Process 25,50,100,200 Weak Giga-Floating point OP/s [GFLOPS]
ResNet152 [56, 57] Pure Data Parallelism 40,80,120,160,200 Weak Iteration Time [s]
Cosmoflow [57, 58] Model Shards: 4 Data Shards: # Nodes

4 40,80,120,160,200 Weak Iteration Time [s]
GPT-3 [59, 57] Pipeline Stages (layers): 10 Model Shards: 4 Data Shards: # Nodes

40 40,80,120,160,200 Weak Iteration Time [s]

(a) MPI Bcast - SF L vs. FT (b) MPI Allreduce - SF L vs. FT (c) Custom Alltoall - SF L vs. FT (d) eBB - SF L vs. FT

Figure 10: Relative performance difference of SF (linear placement strategy) over FT for various Microbenchmarks; eBB performance of SF L in comparison to
maximum bandwidth and FT performance (higher is better), including routing improvement of this work over DFSSSP (heatmap).

7.3 Execution Environment
To ensure consistency and reproducibility, all benchmarks
were compiled using GCC v4.8.5 and executed using Open-
MPI v1.10.7. We use one MPI rank per node and assign one
OpenMP thread per physical core on Socket 1 of the dual-
socket system (pinning on Socket 2 introduces non-negligible
slowdowns due to inter-socket communication).

We investigate two MPI rank placement strategies: linear
and random. The linear strategy places rank j on node j, a
commonly used approach that enhances latency and traffic
locality, especially for FTs [61, 62]. This strategy also models
a system with minimal fragmentation. In contrast, the random
strategy represents systems with significant fragmentation. It
randomizes rank placement to potentially reduce network bot-
tlenecks on SF, albeit at the cost of increased latency. For FT,
the linear placement significantly outperformed its random
counterpart in all microbenchmarks and exhibited comparable
performance in the remaining tests. Consequently, we report
SF performance relative to the FT’s linear placement only.

Each benchmark configuration is executed five times; mi-
crobenchmarks are executed for at least 100 iterations. We
assess all SF benchmarks using our new multipath routing
algorithm based on both minimal and almost minimal paths,
as well as the defacto standard multipath routing algorithm in
IB (DFSSSP), that leverages minimal paths only [63]. We in-

stantiate each routing algorithm once with 1, 2, 4, and 8 layers,
respectively, but only report the results of the best-performing
variant for each benchmark configuration. For all FT bench-
marks we choose the commonly used ftree routing [64]. Mean
and standard deviation of the results are reported, with the
latter indicated using red error bars for all bar plots. Relative
performance differences of SF over FT are annotated above
each bar. Any significant performance gains or losses of our
novel routing algorithm in comparison to DFSSSP for any
benchmark are either explicitly stated in the text or visualized
using heatmaps.

In the main text, we present comprehensive results for
SF using the linear placement strategy, and include only mi-
crobenchmark results for the random placement strategy due
to space considerations. Detailed results of the random strat-
egy for other benchmarks, which largely mirror those obtained
with the linear strategy, are in Appendix C.

7.4 Microbenchmarks
Fig. 10a–10c illustrate the relative performance differences
of SF with linear placement over FT and Fig. 11a–11c of SF
with random placement over FT for MPI collectives bcast,
allreduce, and custom alltoall.

Generally, SF’s performance using the linear placement
strategy closely matches that of the FT, with FT only dis-
playing minor advantages in bcast and allreduce for 8 and

1034 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) MPI Bcast - SF R vs. FT (b) MPI Allreduce - SF R vs. FT (c) Custom Alltoall - SF R vs. FT (d) eBB - SF R vs. FT

Figure 11: Relative performance difference of SF (random placement strategy) over FT for various Microbenchmarks; eBB performance of SF R in comparison
to maximum bandwidth and FT performance (higher is better), including routing improvement of this work over DFSSSP (heatmap).

Figure 12: Runtime of scientific workloads (lower is better) - SF L vs. FT

Figure 13: Performance of HPC benchmarks (higher is better) - SF L vs. FT

16 node configurations at smaller, latency-sensitive message
sizes. This marginal edge of FT in specific configurations is
due to its architecture, wherein leaf switches connect to at
least 16 nodes, facilitating localized communication with zero
inter-switch hops, thus minimizing latency. While SF, under
linear placement, enjoys the benefits of zero inter-switch hops
mostly for configurations of up to 4 nodes – owing to its de-
sign of connecting 4 nodes per switch – random placement
generally does not benefit from this localized communica-
tion advantage. As a result, SF experiences marginally lower
performance in comparison to FT for these latency-sensitive
scenarios with the random placement strategy.

In contrast, for the communication-intensive alltoall collec-
tive, SF’s performance closely mirrors, or even slightly sur-

Figure 14: Iteration time of DNN proxy workloads (lower is better) SF L vs.
FT and routing improvement of this work over DFSSSP (heatmap) for SF L.

passes, that of the FT for small message sizes when employing
the linear placement strategy (cf. Fig. 10c). However, in 8,
16, and 32 node configurations, particularly with bandwidth-
critical message sizes, SF lags due to congestion caused by
all inter-switch communication occurring between 2, 4, or 8
switches, respectively. This leads to traffic bottlenecks on the
often single shortest path between these switches. While our
new routing scheme, as discussed in § 6, theoretically miti-
gates this congestion, the absence of adaptive load balancing
limits practical improvements to at most 7% over DFSSSP.

Switching to the random placement strategy markedly im-
proves SF’s performance for the alltoall collective, as shown
in Fig. 11c. This strategy not only overcomes the noted bottle-
necks but also enables SF to significantly outperform FT. This
improvement results from the random placement strategy’s
enhanced traffic distribution across the network, showcasing
the trade-off between increased latency for smaller message
sizes and superior traffic balancing within the SF topology.
These findings imply that the integration of adaptive load bal-
ancing with our routing scheme could effectively address the
congestion issues identified with linear placement, underscor-
ing the potential of our routing scheme to optimize network
performance for demanding communication patterns.

Lastly, in Fig. 10d and Fig. 11d, we present the ebb across
various node counts for the linear and random placement
strategy, respectively. At maximum node count we achieve

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1035

approximately half of the injection bandwidth, equating to
75% of the theoretical bisection bandwidth optimum [1], with
both strategies. Though the FT matches SF’s full-system ebb,
it outperforms SF with linear placement for the 8, 16, and 32
nodes configurations. This discrepancy mirrors the observa-
tions for the alltoall collective and is similarly overcome with
the random placement strategy (cf. Fig. 11d).

In the right section of both Fig. 10d and Fig. 11d, heatmaps
display the performance gains of our new routing scheme
over DFSSSP for the eBB benchmark. Notably, for the linear
placement strategy, improvements of up to 28% are observed
for the earlier described node configurations, which are es-
pecially prone to congestion. Under the random placement
strategy, the level of improvement is less significant, with only
up to 7%, suggesting that this strategy’s primary advantage
lies in its ability to distribute traffic more evenly, even in the
absence of adaptive load balancing.

7.5 Scientific Workloads & HPC Benchmarks
In Fig. 12, we present the runtime and relative performance
of the solver/kernel for each of the scientific workloads on
SF, using the linear placement strategy. The scaling behavior
of each workload, based on their configurations detailed in
Tab. 3, is evident. Notably, the drop in runtime for FFVC when
scaling from 50 to 100 nodes is due to the decrease in the
workload’s problem size when running on > 64 nodes. Utiliz-
ing almost minimal paths in combination with minimal paths
does not generate any significant speedup for these workloads
over pure minimal routing (DFSSSP), and generally results
in only small runtime variances of < 1%. This is due to the
communication time only constituting a small fraction of the
overall runtime for these scientific workloads [10, 65].

Fig. 13 shows the performance of the HPC benchmarks,
which display similar weak-scaling behavior as the scien-
tific workloads. HPL exhibits almost linear scaling perfor-
mance when increasing the number of nodes from 25 to 50
or 100 nodes, indicating that the overhead introduced by the
increased amount of communication is negligible. Consistent
with these results, introducing almost minimal paths to the
routing impacts performance by less than 1% for the HPL
benchmark. The only exception is the 200 node setting, where
the decrease in the problem size (per node) is likely the main
cause for the deviation from the linear scaling observed.

In the case of the Graph 500 - BFS benchmark, we expe-
rienced high variance with the default implementation. To
mitigate this, we fixed the seed for the graph generation and
used the same source vertex for each BFS run. The BFS scal-
ing results show more fluctuations in comparison to the HPL
results, particularly for the sparser variant. This is accompa-
nied by greater variability in speedup through almost minimal
paths, which ranged from -5% to +1%. It is not clear whether
this can be attributed purely to network communication or to
other factors such as caching effects and system noise.

Overall, our experiments show SF competes effectively

with FT in terms of performance, while being very effective
for scaling both scientific workloads and HPC benchmarks,
even when limited to minimal paths.

7.6 Deep Learning Workloads
The left part of Fig. 14 shows the runtime and relative per-
formance of the DNN proxies when linearly increasing the
number of nodes from 40 to 200. ResNet152 with pure data
parallelism only requires allreduce for gradient aggregation.
CosmoFlow with a hybrid of data and operator parallelism re-
quires allgather, reduce-scatter, allreduce, and point-to-point
communications. GPT-3 with a hybrid of data, operator, and
pipeline parallelism requires allreduce and point-to-point com-
munications. As we increase the data shards proportionally to
the number of nodes, the scalability is mainly determined by
allreduce across the data dimension.

We find that CosmoFlow’s runtime on SF is comparable to
that on FT. In contrast, GPT-3 notably performs better on SF
for configurations with 160 and 200 nodes, while ResNet152
begins to lag as the node count increases. Although both
GPT-3 and ResNet152 predominantly rely on allreduces at
higher node counts, their diverging performance trends can
be attributed to differences in message sizes; GPT-3 handles
significantly larger messages than ResNet152. Expectedly, the
performance trend of GPT-3 matches the trend of MPI Allre-
duce for the high node count configurations (cf. Fig. 10b).

The right part of Fig. 14 shows that our work generally out-
performs DFSSSP for GPT-3, with up to 24% improvements.

7.7 Insights & Takeaways - Empirical Results
When analyzing communication-intensive workloads on con-
figurations with 8, 16, or 32 nodes, we identified some con-
gestion challenges. These challenges stemmed from the non-
adaptive nature of the path selection. However, by employing
a random placement strategy, these issues were effectively
counteracted. Our findings subsequently indicate that SF con-
sistently achieves performance on par with, or even surpass-
ing, the well-established FT topology, particularly under con-
ditions of full-system utilization. Additionally, SF displays
effective scaling capabilities across a diverse range of work-
loads. In comparison to the established DFSSSP, our novel
routing approach exhibited promising performance, register-
ing improvements of over 20%.

7.8 Scalability & Cost Analysis
FT topologies are the preferred choice for large-scale HPC de-
ployments due to their adaptability, adoptable bisection band-
width, established routing, and isolation advantages. These
properties often benefit application performance consistency
[66, 67, 68]. However, their low-diameter configurations do
not scale as well as contemporary topologies [69].

We compare the scalability and deployment cost of 2-level
FTs (FT2), 3-level FTs (FT3), 2-D HyperX (HX2) [10, 70],
and SF. Our evaluation, summarized in Tab. 4, includes both

1036 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 4: Maximal scalability and costs of SF deployments compared to non-blocking FT2, FT2 oversubscribed by 3 (FT2-B), FT3 and 2-D HyperX (HX2) under
given port constraints. For the fixed size cluster we use 64-port switches for the FT2 and FT-B, 40-port switch for HX2, and 36-port for SF and FT3.

36-port switches 40-port switches 64-port switches 2048 nodes clusters
FT2 FT2-B FT3 HX2 SF FT2 FT2-B FT3 HX2 SF FT2 FT2-B FT3 HX2 SF FT2 FT2-B FT3 HX2 SF

Endpoints 648 972 11664 2028 6144 800 1200 16000 2744 7514 2048 3072 65536 10648 32928 2048 2048 2048 2197 2178
Switches 54 45 1620 169 512 60 50 2000 196 578 96 80 5120 484 1568 96 59 303 169 242
Links 648 324 23328 2028 6144 800 400 32000 2548 7225 2048 1024 131072 10164 32928 2048 344 4320 2028 2057

Costs [M$] 1.5 1.1 45 4.5 13.8 2.4 1.7 84.2 7.8 22.4 9 7.2 491 45.5 146 7.5 2.7 8.3 6.4 5.8
Cost/Endp [k$] 2.2 1.2 3.8 2.2 2.2 3 1.5 5.2 2.8 2.9 4.4 2.3 7.5 4.3 4.4 3.6 1.3 4 3.1 2.8

the non-blocking FT2 variant and its 3:1 oversubscribed ver-
sion (FT2-B). The pricing details are in Appendix D.

Scalability We show that SF networks offer a distinct ad-
vantage in scalability by evaluating maximum network size
for a HW setup with 36, 40, and 64-port switches. SF can ac-
commodate approximately 10, 6, and 3 times more endpoints
than FT2, FT2-B, and HX2 respectively, while maintaining
a lower or comparable cost-to-endpoint ratio and the same
network diameter of 2. FT3 can accommodate more endpoints
than SF, however, this comes at a significantly larger (around
1.75x) cost-to-endpoint ratio and increased network diameter
which has an impact on a performance of latency critical ap-
plications. This makes SF a compelling choice for large-scale
diameter-2 deployments.

Cost When the number of endpoints is predetermined, SF’s
requirement for fewer port switches can reduce overall de-
ployment costs, while keeping comparable benchmark per-
formance to FT2 as shown in § 7. Tab. 4 further shows an
example of fixing a cluster requirement to 2048 endpoints.
Realising such a cluster using SF in comparison to FT2, HX2,
and FT3 results in absolute cost saving of $1.7M, $0.6M, and
$2.5M respectively. While using FT2-B might be cheaper in
this scenario, it does not provide the full bandwidth property
as SF, FT2, HX2, and FT3.

8 RELATED WORK
Our work touches on different areas. We now outline related
works, excluding the ones covered in past sections.

Network Topologies Several recent networks build upon SF.
This includes Megafly [71], Bundlefly [72], Galaxyfly [73],
and Xpander [4]. Yet, they do not provide diameter-2 and thus
none of them are competitive with SF in latency, cost, or power
consumption, as observed by recent results [28]. Although
PolarFly has shown promising results in recent studies, its
advantages over SF can be attributed to the diligent design
of routing protocols that leverage its structure to guarantee
optimal routing decisions [74, 75]. Some recent designs based
on similar principles target on-chip networks only [76, 77].

Physical Interconnect Installations The majority of works
on interconnects use simulations for evaluation [1, 2, 3, 4, 71,
72, 73, 78, 79, 80, 81]. However, some topologies have been
evaluated with real installations. This includes – for example –
HyperX [10] and Dragonfly [22]. Here, we offer the first real
evaluation of Slim Fly.

Congestion Control & Load Balancing In general, we
do not focus on transport protocols (flow, congestion). Here,
we rely on mechanisms from the FatPaths [28] architecture.
In layered routing, traffic is balanced across layers. We use
simple randomized and round-robin schemes, which results in
high performance. Other schemes could also be incorporated,
including load balancing based on flows [29, 82, 83, 84, 85,
86, 87, 88, 89], flowcells [90], flowlets [91, 92, 93, 94, 95],
and single packets [96, 97, 98, 99, 100, 101].

9 CONCLUSION

Slim Fly (SF) is the first network topology that lowered cost
and improved performance by reducing the network diameter
to two, promising significant improvement over established
interconnects. However, it has not yet been tested in practice.
We address this by deploying the first at-scale SF installation
and establishing and implementing open-source routines for
cabling and physical layout, to guide future deployments and
effectively verify cabling. This can foster the adoption of SFs
in broad industry and facilitate practical deployments of other
low-diameter topologies, including the most recent ones, such
as PolarFly or Bundlefly.

We further introduce a novel high-performance routing
scheme that improves upon state of the art, achieving up to
24% speedup for the evaluated deep neural network (DNN)
workloads over the standard IB multipath routing algorithm
(DFSSSP) through non-minimal paths.

We use the first practical, real-world deployment of SF
to demonstrate the topology’s ability to scalably process a
wide selection of modern workloads such as distributed DNN
training, graph analytics, or linear algebra kernels. It consis-
tently matches or surpasses the performance of a comparable
non-blocking Fat Tree (FT) deployment for a wide selec-
tion of workloads, for example, achieving a 66% speedup for
distributed deep neural network training. Importantly, SF si-
multaneously delivers superior scalability. For example, it en-
ables connecting between 3× and 10× the number of servers
compared to other diameter-2 topologies like 2-level FT and
2-D HyperX, while maintaining both a comparable cost-to-
endpoint ratio and full bandwidth. For larger installation sizes,
SF’s scalability translates to significant cost advantages, for
example, 50% over full bandwidth non-blocking 3-level Fat
Tree configurations [1]. Overall, this effort will spearhead
future research into more powerful network topologies.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1037

Acknowledgments
We thank Colin McMurtrie, Mark Klein, Angelo Mangili,
and the whole CSCS team granting access to the Ault and
Daint machines, and for their excellent technical support with
the Slim Fly cluster infrastructure. We thank Timo Schnei-
der for help with infrastructure at SPCL. This project re-
ceived funding from the European Research Council (Project
PSAP, No. 101002047), and the European High-Performance
Computing Joint Undertaking (JU) under grant agreement
No. 955513 (MAELSTROM). This project received funding
from the European Union’s HE research and innovation pro-
gramme under the grant agreement No. 101070141 (Project
GLACIATION). This project was supported by JSPS KAK-
ENHI Grant Number JP19H04119.

References
[1] Maciej Besta and Torsten Hoefler. 2014. Slim fly: a cost effective

low-diameter network topology. In ACM/IEEE Supercomputing.
New Orleans, Louisana, 348–359. ISBN: 9781479955008. DOI: 10
.1109/SC.2014.34.

[2] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. 2008.
Technology-Driven, Highly-Scalable Dragonfly Topology. In Proc.
of Intl. Symp. Comp. Arch. (ISCA ’08). IEEE Computer Society,
Washington, DC, USA, 77–88. ISBN: 978-0-7695-3174-8. DOI: 10
.1109/ISCA.2008.19.

[3] John Kim, William J. Dally, and Dennis Abts. 2007. Flattened But-
terfly: A Cost-efficient Topology for High-radix Networks. In Proc.
of Intl. Symp. Comp. Arch. (ISCA ’07). ACM, San Diego, California,
USA, 126–137. ISBN: 978-1-59593-706-3. DOI: 10.1145/125066
2.1250679.

[4] Asaf Valadarsky, Michael Dinitz, and Michael Schapira. 2015.
Xpander: unveiling the secrets of high-performance datacenters.
In ACM HotNets.

[5] The InfiniBand Trade Association. 2004. Infiniband Architecture
Spec. Vol. 1, Rel. 1.2. InfiniBand Trade Association.

[6] Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. 2013.
Enabling highly-scalable remote memory access programming with
mpi-3 one sided. In ACM/IEEE Supercomputing, 1–12.

[7] Salvatore Di Girolamo et al. 2019. Network-accelerated non-
contiguous memory transfers. In ACM/IEEE Supercomputing.

[8] Jack J Dongarra, Hans W Meuer, Erich Strohmaier, et al. 1997.
Top500 supercomputer sites. Supercomputer, 13, 89–111.

[9] Maciej Besta, Jens Domke, Marcel Schneider, Marek Konieczny,
Salvatore Di Girolamo, Timo Schneider, Ankit Singla, and Torsten
Hoefler. 2020. High-performance routing with multipathing and
path diversity in ethernet and hpc networks. IEEE TPDS.

[10] Jens Domke et al. 2019. HyperX Topology: First At-Scale Imple-
mentation and Comparison to the Fat-Tree. In ACM/IEEE Super-
computing.

[11] Maciej Besta et al. 2017. To push or to pull: on reducing communi-
cation and synchronization in graph computations. In ACM HPDC.
ACM. Washington, DC, USA, 93–104. ISBN: 9781450346993. DOI:
10.1145/3078597.3078616.

[12] Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer,
Michał Podstawski, Claude Barthels, Gustavo Alonso, and Torsten
Hoefler. 2023. Demystifying graph databases: analysis and taxon-
omy of data organization, system designs, and graph queries. ACM
CSUR.

[13] Maciej Besta et al. 2021. Sisa: set-centric instruction set architec-
ture for graph mining on processing-in-memory systems. In ACM
MICRO.

[14] Maciej Besta et al. 2021. Graphminesuite: enabling high-
performance and programmable graph mining algorithms with set
algebra. VLDB.

[15] Maciej Besta et al. 2020. High-performance parallel graph coloring
with strong guarantees on work, depth, and quality. In ACM/IEEE
Supercomputing.

[16] Maciej Besta et al. 2022. Practice of streaming processing of dy-
namic graphs: concepts, models, and systems. IEEE TPDS.

[17] Tal Ben-Nun, Maciej Besta, Simon Huber, Alexandros Nikolaos
Ziogas, Daniel Peter, and Torsten Hoefler. 2019. A modular bench-
marking infrastructure for high-performance and reproducible deep
learning. In IEEE IPDPS. IEEE, 66–77.

[18] Maciej Besta and Torsten Hoefler. 2023. Parallel and distributed
graph neural networks: an in-depth concurrency analysis. IEEE
TPAMI.

[19] Maciej Besta et al. 2023. The graph database interface: scaling
online transactional and analytical graph workloads to hundreds of
thousands of cores. In ACM/IEEE Supercomputing.

[20] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008.
A scalable, commodity data center network architecture. In ACM
SIGCOMM Computer Communication Review number 4. Vol. 38.
ACM, 63–74.

[21] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington,
Nelson Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Sub-
ramanya, and Amin Vahdat. 2009. Portland: a scalable fault-tolerant
layer 2 data center network fabric. ACM SIGCOMM CCR, 39, 4,
39–50.

[22] Greg Faanes et al. 2012. Cray Cascade: A scalable HPC system
based on a Dragonfly network. In Proc. of the International Confer-
ence for High Performance Computing, Networking, Storage and
Analysis (SC’12) Article 103. IEEE Computer Society, Salt Lake
City, Utah, 103:1–103:9. ISBN: 978-1-4673-0804-5. http://dl.ac
m.org/citation.cfm?id=2388996.2389136.

[23] Daniele De Sensi, Salvatore Di Girolamo, Kim H. McMahon, Dun-
can Roweth, and Torsten Hoefler. 2020. An in-depth analysis of the
slingshot interconnect. CoRR, abs/2008.08886. https://arxiv.o
rg/abs/2008.08886 arXiv: 2008.08886.

[24] Brendan D McKay, Mirka Miller, and Jozef Siran. 1998. A note on
large graphs of diameter two and given maximum degree. J. Comb.
Theory Ser. B, 74, 1, (Sept. 1998), 110–118. DOI: 10.1006/jctb.1
998.1828.

[25] Alan J Hoffman and Robert R Singleton. 1960. On moore graphs
with diameters 2 and 3. IBM Journal of Research and Development,
4, 5, 497–504.

[26] Paul R Hafner. 2003. The hoffman-singleton graph and its automor-
phisms. Journal of Algebraic Combinatorics, 18, 1, 7–12.

[27] Mirka Miller and Jozef vSirávn. 2005. Moore graphs and beyond: a
survey of the degree/diameter problem. Electronic Journal of Com-
binatorics, Dynamic survey, 14, (Dec. 2005), 1–61.

[28] Maciej Besta, Marcel Schneider, Karolina Cynk, Marek Konieczny,
Erik Henriksson, Salvatore Di Girolamo, Ankit Singla, and Torsten
Hoefler. 2020. Fatpaths: routing in supercomputers and data centers
when shortest paths fall short. ACM/IEEE Supercomputing.

[29] C Hopps. 2000. RFC 2992: Analysis of an Equal-Cost Multi-Path
Algorithm. (2000).

[30] Jayaram Mudigonda, Praveen Yalagandula, Mohammad Al-Fares,
and Jeffrey C Mogul. 2010. SPAIN: COTS Data-Center Ethernet for
Multipathing over Arbitrary Topologies. In NSDI, 265–280.

1038 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://doi.org/10.1109/SC.2014.34
https://doi.org/10.1109/SC.2014.34
https://doi.org/10.1109/ISCA.2008.19
https://doi.org/10.1109/ISCA.2008.19
https://doi.org/10.1145/1250662.1250679
https://doi.org/10.1145/1250662.1250679
https://doi.org/10.1145/3078597.3078616
http://dl.acm.org/citation.cfm?id=2388996.2389136
http://dl.acm.org/citation.cfm?id=2388996.2389136
https://arxiv.org/abs/2008.08886
https://arxiv.org/abs/2008.08886
https://arxiv.org/abs/2008.08886
https://doi.org/10.1006/jctb.1998.1828
https://doi.org/10.1006/jctb.1998.1828

[31] Brent Stephens, Alan Cox, Wes Felter, Colin Dixon, and John Carter.
2012. PAST: Scalable Ethernet for data centers. In ACM CoNEXT.

[32] Infiniband Trade Association and others. 2014. Rocev2. (2014).

[33] Hermann Schweizer et al. 2015. Evaluating the cost of atomic op-
erations on modern architectures. In ACM/IEEE PACT. IEEE, 445–
456.

[34] William Dally and Brian Towles. 2003. Principles and Practices of
Interconnection Networks. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA. ISBN: 0122007514.

[35] Jens Domke, Torsten Hoefler, and Satoshi Matsuoka. 2016. Routing
on the Dependency Graph: A New Approach to Deadlock-Free High-
Performance Routing. In Proceedings of the 25th Symposium on
High-Performance Parallel and Distributed Computing (HPDC’16).
(June 2016).

[36] Jens Domke, Torsten Hoefler, and Wolfgang E. Nagel. 2011.
Deadlock-Free Oblivious Routing for Arbitrary Topologies. In Pro-
ceedings of the 25th IEEE International Parallel & Distributed
Processing Symposium (IPDPS). IEEE Computer Society, (May
2011), 613–624.

[37] Timo Schneider, Otto Bibartiu, and Torsten Hoefler. 2016. Ensuring
deadlock-freedom in low-diameter infiniband networks. In Proceed-
ings of the IEEE 24th Annual Symposium on High-Performance
Interconnects (HOTI) (Santa Clara, CA, USA).

[38] Keun Sup Shim, Myong Hyon Cho, Michel Kinsy, Tina Wen,
Mieszko Lis, G. Edward Suh, and Srinivas Devadas. 2009. Static vir-
tual channel allocation in oblivious routing. In 2009 3rd ACM/IEEE
International Symposium on Networks-on-Chip. IEEE. DOI: 10.11
09/nocs.2009.5071443.

[39] Tor Skeie, Olav Lysne, Jose Flich, Pedro Lopez, Antonio Robles, and
Jose Duato. 2004. Lash-tor: a generic transition-oriented routing al-
gorithm. In Proceedings. Tenth International Conference on Parallel
and Distributed Systems, 2004. ICPADS 2004. IEEE, 595–604.

[40] Tor Skeie, Olav Lysne, and Ingebjørg Theiss. 2002. Layered short-
est path (lash) routing in irregular system area networks. In ipdps.
Citeseer, 0162.

[41] Jose Duato, Sudhakar Yalamanchili, and Ni Lionel. 2002. Intercon-
nection Networks: An Engineering Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA. ISBN: 1558608524.

[42] Edgar Gabriel et al. 2004. Open mpi: goals, concept, and design
of a next generation mpi implementation. In European Parallel
Virtual Machine/Message Passing Interface Users’ Group Meeting.
Springer, 97–104.

[43] Lyndon Clarke, Ian Glendinning, and Rolf Hempel. 1994. The mpi
message passing interface standard. In Programming environments
for massively parallel distributed systems. Springer, 213–218.

[44] Sangeetha Abdu Jyothi, Ankit Singla, P Brighten Godfrey, and
Alexandra Kolla. 2016. Measuring and understanding throughput of
network topologies. In ACM/IEEE Supercomputing.

[45] Intel Corporation. 2018. Intel®mpi benchmarks user guide. https:
//software.intel.com/en-us/imb-user-guide. (2018).

[46] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. 2008.
Multistage switches are not crossbars: effects of static routing in
high-performance networks. In Proceedings of the 2008 IEEE In-
ternational Conference on Cluster Computing, 29 September - 1
October 2008, Tsukuba, Japan, 116–125. DOI: 10.1109/CLUSTR.2
008.4663762.

[47] ExMatEx. 2012. Comd proxy application. http://www.exmatex
.org/comd.html. (2012).

[48] the University of Tokyo Institute of Industrial Science. 2014. Ffvc-
mini. https : / / github . com / fiber - miniapp / ffvc - mini.
(2014).

[49] RIKEN Advanced Institute for Computational Science. 2016. Mvmc-
mini. https : / / github . com / fiber - miniapp / mVMC - mini.
(2016).

[50] G. Bauer, S. Gottlieb, and T. Hoefler. 2012. Performance Modeling
and Comparative Analysis of the MILC Lattice QCD Application
su3 rmd. In Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012).
IEEE Computer Society, Ottawa, Canada, (May 2012), 652–659.
ISBN: 978-0-7695-4691-9.

[51] Steven Gottlieb, W. Liu, William D Toussaint, R. L. Renken, and
R. L. Sugar. 1987. Hybrid-molecular-dynamics algorithms for the
numerical simulation of quantum chromodynamics. English (US).
Physical review D: Particles and fields, 35, 8, 2531–2542. DOI:
10.1103/PhysRevD.35.2531.

[52] RIKEN Advanced Institute for Computational Science. 2016.
Ntchem-mini. https://github.com/fiber- miniapp/ntche
m-mini. (2016).

[53] James A. Ang, Brian W. Barrett, Kyle B. Wheeler, and Richard C.
Murphy. 2010. Introducing the graph 500. In.

[54] Koji Ueno, Toyotaro Suzumura, Naoya Maruyama, Katsuki Fu-
jisawa, and Satoshi Matsuoka. 2016. Extreme scale breadth-first
search on supercomputers. In 2016 IEEE International Conference
on Big Data (Big Data), 1040–1047. DOI: 10.1109/BigData.201
6.7840705.

[55] Antoine Petitet, R. Whaley, Jack Dongarra, and A. Cleary. 2008.
Hpl - a portable implementation of the high-performance linpack
benchmark for distributed-memory computers, (Jan. 2008).

[56] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015.
Deep residual learning for image recognition. (2015). arXiv: 1512
.03385 [cs.CV].

[57] Torsten Hoefler, Tommaso Bonato, Daniele De Sensi, Salvatore Di
Girolamo, Shigang Li, Marco Heddes, Jon Belk, Deepak Goel, and
Steve Scott Miguel Castro. 2022. HammingMesh: A Network Topol-
ogy for Large-Scale Deep Learning. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking,
Storage and Analysis (SC’22). (Nov. 2022).

[58] Amrita Mathuriya et al. 2018. Cosmoflow: using deep learning to
learn the universe at scale. In SC18: International Conference for
High Performance Computing, Networking, Storage and Analysis.
IEEE, 819–829.

[59] Tom Brown et al. 2020. Language models are few-shot learners.
Advances in neural information processing systems, 33, 1877–1901.

[60] Maciej Besta, Florian Marending, Edgar Solomonik, and Torsten
Hoefler. 2017. Slimsell: a vectorizable graph representation for
breadth-first search. In IEEE IPDPS. IEEE, 32–41.

[61] George Michelogiannakis, Khaled Z Ibrahim, John Shalf, Jeremiah
J Wilke, Samuel Knight, and Joseph P Kenny. 2017. Aphid: hier-
archical task placement to enable a tapered fat tree topology for
lower power and cost in hpc networks. In 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). IEEE, 228–237.

[62] Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. Slurm:
simple linux utility for resource management. In Job Scheduling
Strategies for Parallel Processing. Dror Feitelson, Larry Rudolph,
and Uwe Schwiegelshohn, (Eds.), 44–60.

[63] J. Domke, T. Hoefler, and W. Nagel. 2011. Deadlock-Free Oblivi-
ous Routing for Arbitrary Topologies. In Proceedings of the 25th
IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE Computer Society, Anchorage, AL, USA, (May
2011), 613–624. ISBN: 0-7695-4385-7.

[64] Joan Jacobs. 2010. D-mod-k routing providing non-blocking traffic
for shift permutations on real life fat trees. In https://api.seman
ticscholar.org/CorpusID:1831393.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1039

https://doi.org/10.1109/nocs.2009.5071443
https://doi.org/10.1109/nocs.2009.5071443
https://software.intel.com/en-us/imb-user-guide
https://software.intel.com/en-us/imb-user-guide
https://doi.org/10.1109/CLUSTR.2008.4663762
https://doi.org/10.1109/CLUSTR.2008.4663762
http://www.exmatex.org/comd.html
http://www.exmatex.org/comd.html
https://github.com/fiber-miniapp/ffvc-mini
https://github.com/fiber-miniapp/mVMC-mini
https://doi.org/10.1103/PhysRevD.35.2531
https://github.com/fiber-miniapp/ntchem-mini
https://github.com/fiber-miniapp/ntchem-mini
https://doi.org/10.1109/BigData.2016.7840705
https://doi.org/10.1109/BigData.2016.7840705
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://api.semanticscholar.org/CorpusID:1831393
https://api.semanticscholar.org/CorpusID:1831393

[65] Benjamin Klenk and Holger Fröning. 2017. An overview of mpi
characteristics of exascale proxy applications. In High Performance
Computing: 32nd International Conference, ISC High Performance
2017, Frankfurt, Germany, June 18–22, 2017, Proceedings. Springer-
Verlag, Frankfurt, Germany, 217–236. ISBN: 978-3-319-58666-3.
DOI: 10.1007/978-3-319-58667-0_12.

[66] Craig B Stunkel, Richard L Graham, Gilad Shainer, Michael Kagan,
SS Sharkawi, B Rosenburg, and GA Chochia. 2020. The high-speed
networks of the Summit and Sierra supercomputers. IBM Journal of
Research and Development, 64, 3/4, 3–1.

[67] Sebastien Varrette, Hyacinthe Cartiaux, Teddy Valette, and Abatcha
Olloh. 2022. Aggregating and Consolidating two High Performant
Network Topologies: The ULHPC Experience. In Practice and
Experience in Advanced Research Computing, 1–6.

[68] Abhinav Bhatele, Nikhil Jain, Misbah Mubarak, and Todd Gamblin.
2019. Analyzing cost-performance tradeoffs of hpc network designs
under different constraints using simulations. In Proceedings of the
2019 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation, 1–12.

[69] Georgios Kathareios, Cyriel Minkenberg, Bogdan Prisacari, German
Rodriguez, and Torsten Hoefler. 2015. Cost-effective diameter-two
topologies: analysis and evaluation. In ACM/IEEE Supercomputing.
ACM, 36.

[70] Jung Ho Ahn, Nathan Binkert, Al Davis, Moray McLaren, and
Robert S. Schreiber. 2009. HyperX: Topology, Routing, and Pack-
aging of Efficient Large-Scale Networks. SC.

[71] Mario Flajslik et al. 2018. Megafly: a topology for exascale sys-
tems. In International Conference on High Performance Computing.
Springer, 289–310.

[72] Fei Lei, Dezun Dong, Xiang-Ke Liao, and José Duato. 2020. Bundle-
fly: a low-diameter topology for multicore fiber. In Proceedings of
the 2020 International Conference on Supercomputing. (June 2020),
1–11. DOI: 10.1145/3392717.3392747.

[73] Fei Lei, Dezun Dong, Xiangke Liao, Xing Su, and Cunlu Li. 2016.
Galaxyfly: a novel family of flexible-radix low-diameter topologies
for large-scales interconnection networks. In ACM ICS.

[74] Kartik Lakhotia, Maciej Besta, Laura Monroe, Kelly Isham, Patrick
Iff, Torsten Hoefler, and Fabrizio Petrini. 2022. PolarFly: a cost-
effective and flexible low-diameter topology. In Proceedings of the
International Conference on High Performance Computing, Net-
working, Storage and Analysis, 1–15.

[75] Kartik Lakhotia, Kelly Isham, Laura Monroe, Maciej Besta, Torsten
Hoefler, and Fabrizio Petrini. 2023. In-network allreduce with multi-
ple spanning trees on polarfly. In ACM SPAA.

[76] Maciej Besta, Syed Minhaj Hassan, Sudhakar Yalamanchili, Rachata
Ausavarungnirun, Onur Mutlu, and Torsten Hoefler. 2018. Slim noc:
a low-diameter on-chip network topology for high energy efficiency
and scalability. In ACM ASPLOS number 2. Vol. 53. ACM New
York, NY, USA, 43–55. DOI: 10.1145/3296957.3177158.

[77] Patrick Iff, Maciej Besta, Matheus Cavalcante, Tim Fischer, Luca
Benini, and Torsten Hoefler. 2022. Sparse hamming graph: a cus-
tomizable network-on-chip topology. In DAC.

[78] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P Brighten Godfrey.
2012. Jellyfish: Networking data centers randomly. 9th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI).

[79] Jung Ho Ahn, Nathan Binkert, Al Davis, Moray McLaren, and
Robert S Schreiber. 2009. HyperX: topology, routing, and packaging
of efficient large-scale networks. In ACM/IEEE Supercomputing, 41.

[80] Michihiro Koibuchi, Hiroki Matsutani, Hideharu Amano, D. Frank
Hsu, and Henri Casanova. 2012. A case for random shortcut topolo-
gies for HPC interconnects. In ISCA’12. IEEE, 177–188.

[81] Maciej Besta, Marcel Schneider, Salvatore Di Girolamo, Ankit
Singla, and Torsten Hoefler. 2021. Towards million-server network
simulations on just a laptop. arXiv preprint arXiv:2105.12663.

[82] Andrew R Curtis, Wonho Kim, and Praveen Yalagandula. 2011.
Mahout: low-overhead datacenter traffic management using end-
host-based elephant detection. In INFOCOM, 2011 Proceedings
IEEE. IEEE, 1629–1637.

[83] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Felter,
Kanak Agarwal, John Carter, and Rodrigo Fonseca. 2014. Planck:
millisecond-scale monitoring and control for commodity networks.
In ACM SIGCOMM Computer Communication Review number 4.
Vol. 44. ACM, 407–418.

[84] Siddhartha Sen, David Shue, Sunghwan Ihm, and Michael J. Freed-
man. 2013. Scalable, optimal flow routing in datacenters via local
link balancing. In CoNEXT.

[85] Fung Po Tso, Gregg Hamilton, Rene Weber, Colin Perkins, and
Dimitrios P. Pezaros. 2013. Longer is better: exploiting path diversity
in data center networks. In IEEE 33rd International Conference on
Distributed Computing Systems, ICDCS, 430–439.

[86] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang.
2011. Microte: fine grained traffic engineering for data centers. In
Proceedings of the Seventh COnference on emerging Networking
EXperiments and Technologies. ACM, 8.

[87] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon
Poutievski, Arjun Singh, and Amin Vahdat. 2014. Wcmp: weighted
cost multipathing for improved fairness in data centers. In ACm
EuroSys.

[88] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,
Nelson Huang, and Amin Vahdat. 2010. Hedera: dynamic flow
scheduling for data center networks. In NSDI. Vol. 10, 19–19.

[89] Abdul Kabbani, Balajee Vamanan, Jahangir Hasan, and Fabien Duch-
ene. 2014. FlowBender: Flow-level Adaptive Routing for Improved
Latency and Throughput in Datacenter Networks. In Proceedings of
the 10th ACM International on Conference on emerging Networking
Experiments and Technologies. ACM, 149–160.

[90] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John B.
Carter, and Aditya Akella. 2015. Presto: edge-based load balancing
for fast datacenter networks. In ACM SIGCOMM.

[91] Naga Praveen Katta, Mukesh Hira, Aditi Ghag, Changhoon Kim,
Isaac Keslassy, and Jennifer Rexford. 2016. CLOVE: how I learned
to stop worrying about the core and love the edge. In Proceedings
of the 15th ACM Workshop on Hot Topics in Networks, HotNets,
155–161.

[92] Mohammad Alizadeh et al. 2014. CONGA: Distributed congestion-
aware load balancing for datacenters. In Proceedings of the 2014
ACM conference on SIGCOMM. ACM, 503–514.

[93] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and
Tom Edsall. 2017. Let it flow: resilient asymmetric load balancing
with flowlet switching. In NSDI, 407–420.

[94] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman,
and Jennifer Rexford. 2016. Hula: scalable load balancing using
programmable data planes. In Proceedings of the Symposium on
SDN Research. ACM, 10.

[95] Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur Berger.
2007. Dynamic load balancing without packet reordering. ACM
SIGCOMM Computer Communication Review, 37, 2, 51–62.

[96] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur,
and Randy H. Katz. 2012. Detail: reducing the flow completion time
tail in datacenter networks. In ACM SIGCOMM, 139–150.

[97] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
Andrew W. Moore, Gianni Antichi, and Marcin Wojcik. 2017. Re-
architecting datacenter networks and stacks for low latency and high
performance. In ACM SIGCOMM.

1040 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://doi.org/10.1007/978-3-319-58667-0_12
https://doi.org/10.1145/3392717.3392747
https://doi.org/10.1145/3296957.3177158

[98] Advait Dixit, Pawan Prakash, Y Charlie Hu, and Ramana Rao Kom-
pella. 2013. On the impact of packet spraying in data center networks.
In INFOCOM, 2013 Proceedings IEEE. IEEE, 2130–2138.

[99] Jiaxin Cao et al. 2013. Per-packet load-balanced, low-latency routing
for clos-based data center networks. In ACM CoNEXT, 49–60.

[100] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah,
and Hans Fugal. 2015. Fastpass: a centralized zero-queue datacenter
network. ACM SIGCOMM Computer Communication Review, 44,
4, 307–318.

[101] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Green-
halgh, Damon Wischik, and Mark Handley. 2011. Improving dat-
acenter performance and robustness with multipath TCP. In Pro-
ceedings of the ACM SIGCOMM 2011 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communi-
cations, 266–277.

[102] Van Emden Henson and Ulrike Meier Yang. 2002. Boomeramg:
a parallel algebraic multigrid solver and preconditioner. Applied
Numerical Mathematics, 41, 1, 155–177. Developments and Trends
in Iterative Methods for Large Systems of Equations - in memorium
Rudiger Weiss. DOI: https://doi.org/10.1016/S0168-9274(0
1)00115-5.

[103] Mantevo Project. 2016. Minife finite element mini-application. htt
ps://github.com/Mantevo/miniFE. (2016).

A Details of Slim Fly Construction

A.1 Selecting Topology Size, Parametrizing In-
put

Overall, one first chooses a prime power q that satisfies the
equation q = 4w+ δ for some δ ∈ {−1,0,1} and w ∈ N. q
is an input parameter that determines the whole topology
structure. For example, the number of vertices (switches)
is Nr = 2q2 and the network radix k′ = 3q−δ

2 . In our case,
Nr = 50, thus q = 5, which satisfies the equation q = 4w+δ

for w = 1, δ = 1, and k′ = 7. Hence, every switch is connected
to 7 other switches. Interestingly, this construction forms the
famous Hoffman-Singleton graph [25, 26], which is optimal
with respect to the Moore Bound. Finally, as a regular and di-
rect network, it is recommended to attach p =

⌈
k′
2

⌉
endpoints

to each switch to ensure full global bandwidth [1]. In our case,
p = 4.

A.2 Finding Needed Algebraic Structures
Once q is selected, one uses it to construct several alge-

braic structures. Specifically, one finds a base ring Zq (for
us, Z5 = {0,1, ...,4}), its primitive element ξ that generates
all elements of Zq (for us, ξ = 2), and two generator sets
X = {ξ0,ξ2, ...,ξq−3} and X ′ = {ξ1,ξ3, ...,ξq−2} (for our in-
stallation, X = {1,4} and X ′ = {2,3}). While not complex,
details on these structures are not necessary to understand our
Slim Fly deployment. The interested readers may check them
in the original publication [1].

A.3 Labeling and Connecting Switches
Each switch receives a 3-tuple label from a set {0,1}×Zq ×
Zq. Thus, SF switches come in two flavors determined by
the first elements of their labels: (0, ·, ·) and (1, ·, ·). These

labels determine how the switches are connected. Specifically,
switches with labels (0, ·, ·) are connected using the following
equation [1]:

switch (0,x,y) is connected to (0,x,y′) ⇐⇒ y− y′ ∈ X . (1)

Symmetrically, switches with labels (1, ·, ·) use the follow-
ing equation:

switch (1,m,c) is connected to (1,m,c′) ⇐⇒ c− c′ ∈ X ′. (2)

Lastly, two switches with labels (0, ·, ·) and (1, ·, ·), respec-
tively, are connected according to the following equation:

switch (0,x,y) is connected to (1,m,c) ⇐⇒ y = m · x+ c (3)

A.4 Topology Structure & Physical Layout
The graph underlying the SF topology consists of two same-
size subgraphs. One subgraph contains routers (0,x,y), the
other consists of routers (1,m,c). Each subgraph contains q
identical groups of routers. Groups in different subgraphs
usually differ from one another. There are no connections
between groups within the same subgraph, i.e., no two routers
(0,x,y) from different groups are linked, the same holds for
routers (1,m,c). However, each group from one subgraph has
connections to every other group in the other subgraph; thus
the groups form a fully connected bipartite graph.

This property facilitates physical layout and we use it in
our installation. Specifically, as recommended in the origi-
nal work [1], we combine groups from different subgraphs
pairwise; these combined groups form racks. In general, this
leads to q racks, each with 2q routers. In our installation, we
have 5 racks, each with 10 routers and 40 compute nodes.

A.5 Constructing Slim Fly with N nodes
As the space of valid SF topologies is quite sparse, we show
the simple steps needed to find a SF network with the number
of nodes as close to N as possible:

1. Obtain the cube root R of the desired node count N

2. Find prime powers close to R

3. Obtain the corresponding full-bandwidth network con-
figurations (see previous sections)

4. Verify network sizes and select the network that is closest
to N in terms of number of supported nodes

B Routing Details

B.1 Details of Layer Generation
We provide more details on crucial parts of layer generation.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1041

https://doi.org/https://doi.org/10.1016/S0168-9274(01)00115-5
https://doi.org/https://doi.org/10.1016/S0168-9274(01)00115-5
https://github.com/Mantevo/miniFE
https://github.com/Mantevo/miniFE

B.1.1 Finding Almost-Minimal Paths
We look for almost-minimal paths that are exactly 3 hops

long (one hop longer than SF’s diameter of two), while bal-
ancing the number of paths crossing each link (to avoid highly
congested links). We do not target longer paths, in order to
conserve network resources (i.e., a flow taking fewer hops
occupies fewer buffers).

For this, we design a heuristic based on a modified breadth
first search graph traversal starting from the source node src,
constraining the path length to 3. In theory one could also
define a range of valid lengths. The heuristic obtains the set
P of all valid paths starting in src and ending in the destina-
tion node dst; P = {(u1, . . . ,ul) | l = 3∧u1 = src∧ul = dst}.
Here, a path is considered valid if it satisfies the given length
constraint 3 and if its insertion into the layer does not affect
any previously inserted paths. Then, we choose a path p ∈ P
that minimizes link weights, i.e., ∀p′ ∈P ω(p)≤ω(p′) where
ω(p) is the sum of weights of links included in p.

B.1.2 Node Pair Priority Queue
The order in which the paths are inserted is very important,

because it may impact whether we are able to find new paths.
If one would first find a given number of paths for a single
node pair, and only then proceed to the next node pair, some
node pairs might not receive any, or much fewer, paths than
other pairs. To alleviate this, we balance the total number of
added almost-minimal paths across all node pairs. For this,
each node pair is assigned a priority value, equal to its total
number of almost-minimal paths across all layers; the lower
the value, the more important it is to find a path for this node
pair. Therefore, the number of required priority levels is upper-
bounded by |L|−1, because each node pair can have at most
one almost-minimal path per each of |L| − 1 layers, and is
initially in the highest priority value (value of 0). The lowest
priority level is value |L|−1, which only contains node pairs
who have had an almost-minimal path inserted in every layer.

Whenever a path is added to a layer, all of the node pairs
that have a non-minimal path inserted have their priority de-
creased and they move up to the next higher priority layer. For
instance, in Fig. 16 by assuming that the minimum length for
an almost-minimal path is two, adding the illustrated path to
a layer, results in both node pairs (v1,v4) and (v2,v4) having
an almost-minimal path added for them (assuming we allow
paths of length 2 and 3 as non-minimal paths and dst is one of
the receiving nodes). Therefore, both of their priorities would
be decreased by 1. This also assumes that the paths were
not already in this layer, which could have been the case for
(v2,v4).

The node_pairs list generated from the priority queue p
in Algorithm 1 contains the entries of the priority queue in
the order of priority value, and randomized within each level.
Hence, the layer generation algorithm first tries to add an
almost-minimal path for all nodes of priority value 0 in a
random order, and then move to the nodes of the next value.

Hence, it first processes all node pairs with no inserted paths,
then with one inserted path, and so forth, facilitating a bal-
anced path distribution across node pairs.

B.1.3 Path Weighting

A weight update is performed after the insertion of a new
path into any layer. The weight of each link in any existing
path is increased by the total number of new “routes” that now
occupy the link. An example is shown in Fig. 15. The weight
of link (v1,v2) is increased by 9 because it has 9 new routes
using it, as there are 3 sending nodes (a1−a3) and 3 receiving
nodes (b1 −b3). The weight of link (v3,v4) is increased by 27
as there are 9 sending nodes (a1 −a9) and 3 receiving nodes
(b1 −b3).

a1a1 a2
a3 a4 a5

a6 a7 a8 b2
a9 b1 b3

W(v1,v2)+=9 W(v2,v3)+=18 W(v3,v4)+=27
v4

v4
v3v2v1

sending nodes sending nodes sending nodes

inserted path

receiving nodes

Figure 15: Illustration of the weight update methodology employed by the
algorithm. After the insertion of the path from v1 to v4, the weights of the
links (v1,v2), (v2,v3) and (v3,v4) are increased by 9, 18, and 27, respectively.

B.1.4 Potential Invalidity of Paths

For a given source src and destination dst, it may happen
that P = /0, in which case no almost-minimal path is added
to a given layer for that node pair. There are two scenarios
when this may happen, we illustrate them in Fig. 16 and in
Fig. 17. The first one occurs when a path for the node pair is
already included in another (previously inserted) path into the
layer. For instance, after the path in the figure is inserted into
layer l, all sub-paths ((v2,v4), (v3,v4)) become included as
well, forcing v2 and v3 to route along minimal paths towards
destination v4 in layer l.

The second scenario occurs when no path of required
length can be found because routing via any of the source
node’s neighbors would result in a path too short or too long.
In our second example, the almost-minimal paths are con-
strained to have length exactly 3. At first, the two almost-
minimal paths q= (v1,v2,v3,u3) and q′ = (w1,w2,w3,u3) are
inserted, which fixes the paths for all node pairs in the set
{(vi,u3),(wi,u3) | i ∈ {1,2,3}}. Now any path for the node
pair (u1,u3) that respects the already inserted paths will have
length l ∈ {1,2,4} because it would have to come from the
following set of paths: {(u1,q), (u1,q′), (u1,u3), (u1,u2,u3),
(u1,u2,v2,v3,u3), (u1,u2,w2,w3,u3)}. If this scenario occurs,
we route minimally, i.e. path (u1,u3).

B.1.5 Specification of Forwarding Tables

In layered routing, each forwarding entry (l,s,d) ∈ layers×
switches× switches corresponds to the port that switch s uses

1042 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a1a1 a2
a3 a4 a5

a6 a7 a8 b2
a9 b1 b3

p(v1,v4)+=1 p(v2,v4)+=1 minimal routing
from v3 to v4

v4v3v2v1

sending nodes sending nodes sending nodes

inserted path

receiving nodes

Figure 16: Illustration of an almost-minimal path from v1 to v4, which
enforces minimal routing from src nodes like a7, located on the sub-paths, to
dst nodes, i.e. b1, in this layer.

b1
b2

b3
v1

b4
b5

b6
v2

b7
b8

b9
v3

c1
c2

c3
w1

c4
c5

c6
w2

c7
c8

c9
w3

inserted path q inserted path q'

a1
a2

a3
u1

a4
a5

a6
u2

a7
a8

a9
u3

Figure 17: Illustration of a scenario in which no almost-minimal, valid path
of length exactly 3 can be found for node pair (u1,u3) in the given layer due
to the prior insertion of two valid paths.

when routing in layer l and transmitting a packet addressed
to a switch d.

C Additional Results

C.1 Changes for Custom Alltoall
We decided not to use the OpenMPI’s default implementation
of alltoall, as the algorithms it relies on result in sub-optimal
performance for the deployed SF. Empirically, we determined
that the best-performing alltoall for our system was a sim-
ple algorithm that posts all non-blocking send and receive
requests simultaneously and then waits for completion. Other
collectives did not show a similar impact, and we thus used
the default implementations. These issues are not expected
with newer hardware.

C.2 Scientific Workloads & HPC Benchmarks
We show in Fig. 18 the runtime and relative performance
of the solver/kernel for each of the scientific workloads on
SF using the random placement strategy. We observe similar
trends as for the linear placement strategy for all scientific
workloads and SF’s performance aligns closely with FT’s,
while no significant speedup or slowdown through the use of
non-minimal paths could be observed.

Figure 18: Runtime of scientific workloads (lower is better) - SF R vs. FT

(a) SF R vs. FT (b) SF L vs. FT

Figure 19: Runtime of additional scientific workloads (lower is better)

In Fig.19, we present the relative performance of two ad-
ditional scientific workloads, AMG[102] and MiniFE [103],
on SF, using both placement strategies. For this assessment,
AMG was configured with a 1283 cube per process, while
MiniFE was set with grid input dimensions of nx|y|zb

= 90.
In accordance with these configurations, clear weak-scaling
behavior is evident under the random placement strategy. On
the other hand, with the linear placement strategy, the ob-
served trends are less distinct, and, there are instances where
SF outperformed FT by unexpected margins. We believe that
this disparity can’t be merely attributed to the variations in
communication stemming from the placement strategy, as the
applications in consideration aren’t generally communication-
bound and the FT is fully non-blocking. However, the precise
cause remains unclear.

Fig. 20 shows the performance of the HPC benchmarks on
SF using the random placement strategy, results that largely
mirror those obtained using the linear placement strategy.

C.3 Deep Learning Workloads
The left part of Fig. 21 shows the runtime and relative per-
formance of the DNN proxies with the random placement
strategy. The results are also very similar to those obtained
using the linear placement strategy, including GPT-3 match-
ing the performance trends of the MPI Allreduce pattern with
the random placement strategy and comparable node counfig-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1043

Figure 20: Performance of HPC benchmarks (higher is better) - SF R vs. FT

Figure 21: Iteration time of DNN proxy workloads (lower is better) SF R vs.
FT and routing improvement of this work over DFSSSP (heatmap) in SF R

urations (cf. Fig. 11b).
However, similar to previous results, the right part of Fig. 21

shows that our work generally matches or outperforms DF-
SSSP, achieving up to a 1.18x speedup.

D Pricing details

We based our pricing on data colfaxdirect.com6 and SHI.com7.
Regarding the equipment selection, we use InfiniBand Topol-
ogy Configurator 8. For different switch sizes, we selected
different models from current Nvidia offerings. For exam-
ple, for a 36-port switch, we chose Mellanox SB7800 EDR
100Gb/s9. For a 40-port switch, we decided to use Mellanox
Quantum QM8700 HDR 200Gb/s 10. Finally, for a 64-port
switch, we use Nvidia QM9700 NDR 400G 11 model. For
AoC cables, we selected active fiber links, and for DAC ca-
bles, we chose passive copper cables for endpoint connections.
Again, we base our estimations on mentioned earlier Infini-
Band Topology Configurator online service. However, it can
be challenging to determine the cost of networking hardware
because the prices of such hardware can vary greatly depend-

6COLFAX DIRECT website
7SHI website
8Mellanox InfiniBand Topology Generator tool
9Mellanox SB7800 EDR 100Gb/s product detail
10Mellanox Quantum QM8700 HDR 200Gb/s product detail
11Nvidia QM9700 NDR 400G product detail

ing on the quantity ordered, and large orders may be eligible
for substantial discounts.

1044 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.colfaxdirect.com
https://www.shi.com/
https://www.nvidia.com/en-us/networking/infiniband-configurator/
http://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3049
http://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3685
http://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=4165&idcategory=0

Crescent: Emulating Heterogeneous Production Network at Scale

Zhaoyu Gao∗, Anubhavnidhi Abhashkumar∗, Zhen Sun⋄, Weirong Jiang∗†, Yi Wang∗

ByteDance∗, Cornell University⋄

Abstract
This paper presents the design, implementation, evaluation,
and deployment of Crescent, ByteDance’s network emulation
platform, for preventing change-induced network incidents.
Inspired by prior art such as CrystalNet, Crescent achieves
high fidelity by running switch vendor images inside con-
tainers. But, we explore a different route to scaling up the
emulator with unique challenges. First, we analyze our past
network incidents to reveal the difficulty in identifying a safe
emulation boundary. Instead of emulating the entire network,
we exploit the inherent symmetry and modularity of data cen-
ter network architectures to strike a balance between coverage
and resource cost. Second, we study the node-to-host assign-
ment by formulating it as a graph partitioning problem. Eval-
uation results show that our partitioning algorithm reduces
the testbed bootup time by up to 20× compared with random
partitioning. Third, we developed an incremental approach to
modify the emulated network on the fly. This approach can be
30× faster than creating a new testbed of the same scale. Cres-
cent has been actively used for three and a half years, which
led to a significant reduction in change-induced network in-
cidents. We also share Crescent’s success in many other use
cases and the critical lessons learned from its deployment.

1 Introduction

As one of the largest and fastest-growing global online ser-
vice providers, ByteDance’s physical network infrastructure
has expanded rapidly in recent years to meet the explosive
business demand [5, 7]. Such a wild expansion has created
a hyperscale and heterogeneous global network that consists
of medium- and large-scale data centers (DCs), regional and
global wide area networks (WANs), points of presence (PoPs)
of all sizes, and virtual DCs (vDCs) from multiple public
cloud providers. We have network switches from nearly all
the major switch vendors and multiple generations of net-
work architectures co-existing across different DCs/PoPs. As

†corresponding author

(a) # network devices and changes
(normalized using 2020-1H).

(b) Trend of # network incidents per
thousand changes.

Figure 1: Growth of network size, network changes, and net-
work incidents in last 3.5 years.

shown in Figure 1a, the total number of switches in our net-
works has grown by 7.5× in the past three and a half years.
Meanwhile, the number of changes made on these networks
has increased at an even higher rate. The changes, mainly on
topology and switch configurations, include modifications
to our network structures, routing policies, device software,
peering with cloud and Internet service providers (ISPs), etc.
Many such changes require network operators’ careful de-
signs, detailed Methods of Procedure (MOPs), and cautious
executions. But even with those efforts, we still ran into a
series of outages due to missed or unforeseen issues. In the
second half of 2020, network changes accounted for approx-
imately one-third of our incidents. Since the networks kept
growing bigger and increasingly complex, it became a daunt-
ing challenge for our network operators to think through all
scenarios and identify all possible issues before performing
changes to the production networks.

To reverse the alarming trend of the change-induced in-
cidents, we developed Crescent, a high-fidelity emulation
platform to provide a production-like environment for net-
work operators to test and verify their changes. As shown in
Figure 1b, we rolled out Crescent during the second half of
2020. Since then, we have witnessed a steady decrease in net-
work incidents along with increased deployment and usage of
Crescent. Around the mid of 2022, we enforced Crescent as a
mandatory requirement to conduct critical network changes,
which has further bent down the curve.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1045

We are aware that a plethora of solutions have been pro-
posed in recent years to prevent network incidents caused by
configuration changes. One popular alternative to emulation
is control plane verifiers (CPV) [12, 29, 55, 57, 59] which em-
ploy either simulation or formal modeling to verify the impact
of configuration changes on specific reachability properties of
the network. But most of them cannot detect vendor-specific
behaviors (VSBs), which have caused many of our incidents
(§2.2). Hoyan [55] attempts to model VSB by actively track-
ing the differences between its analysis output and the real
production behavior. But, it can only catch VSBs that are
present in production and requires extra efforts to update its
VSB models. Many VSBs that caused our incidents (§2.2)
were neither documented nor seen in production beforehand.
Other limitations of CPV have been discussed in [19, 41].

Network emulators [3, 4, 8, 10, 23, 40, 41, 53] overcome the
aforementioned CPV limitations by running switch vendor
software images in virtual machines (VMs) or containers.
Nevertheless, very few emulators can scale to emulate large
networks, and most require manual efforts to adapt production
configurations to the format supported by the vendor images
(§4.2). The closest work to Crescent is CrystalNet [41], which
leveraged cloud VMs to scale up and proposed reducing the
size of the emulated network by finding a safe static boundary.
But as admitted in [41], the boundary found by CrystalNet
is based on certain assumptions from their routing policies
that do not apply to everyone. Analysis of our past incidents
confirms that such a boundary is much harder to find in reality
(§2.2). This led us to a different route from CrystalNet in
scaling up the emulator. The design and implementation of
Crescent aim to answer the following questions, which are
also the main contributions of this paper.

First, if it is hard to identify a safe emulation boundary,
does it mean we have to emulate the entire network? Based
on the analysis of our past incidents as well as the experience
from other hyperscalers [13, 15, 32, 41, 42, 48, 51], we see
that the changes on different devices have different impacts.
High-level core devices (e.g., WAN devices) tend to have
more complicated configurations, and the incidents due to the
changes in these devices tend to be more severe. On the other
hand, the devices inside a DC are normally in modular and
symmetric architecture, and incidents caused by the changes
in these devices have a limited blast radius. Inspired by these
observations, we proposed emulating a baseline topology that
includes all the core devices while sampling the lower-level
non-core devices.

Second, the above baseline topology is still quite large. Be-
cause of the high resource requirement to run switch images,
we need many hosts to emulate a large network. Then will
it matter how we map the network nodes to different hosts?
CrystalNet mapped nodes to many VM hosts but did not an-
swer this question. We conducted thorough experiments to
show that the performance was heavily impacted by the node-
to-host assignment. We formulated it as a graph partitioning

WAN

DC

Cloud 2

Cloud 1

Spine

Aggregation

ToR

core
non-core

Figure 2: Simplified view of ByteDance’s network.

problem and proposed a variant of the community detection
algorithm to solve it. Evaluation results show that our algo-
rithm resulted in 20× improvement in testbed bootup time
compared with random partitioning.

Third, how to test a network change plan involving devices
(i.e., devices under test, namely DUT) that are not part of the
above baseline topology? We connect DUT to the baseline
topology through controlled expansion to form a connected
graph. And instead of rebuilding the testbed for the expanded
network, we create the expanded nodes and wire them dynam-
ically to the baseline topology which has been emulated in a
pre-built testbed called canary testbed. Such an incremental
emulation scheme improved the testbed ready time for testing
a network change plan by 30×.

Last, emulation is only the first step; it reproduces the
impact of a configuration change but still requires someone
to analyze the updates’ impact. Instead of asking users to
regularly monitor and interact with the emulated network,
Crescent takes a more proactive approach. It tightly integrates
with a diverse range of efficient verification tools to proac-
tively detect errors and unexpected behaviors that arise due
to changes in real-time.

The rest of the paper is structured as follows: §2 outlines
the motivation and describes the challenges in our network.
The design of Crescent to address these challenges is pro-
posed in §3, while scalability is tackled with a novel graph
partitioning algorithm in §4. The incremental emulation ap-
proach is detailed in §5, along with various verification and
monitoring tools integrated into Crescent to automatically
detect issues in an emulated network in §6. Evaluation re-
sults for Crescent are presented in §7, with other use cases
described in §8. Lessons learned from building and running
Crescent for 3.5 years are shared in §9, with related works
discussed in §10. Finally, §11 concludes the work.

2 Background and Motivation

2.1 ByteDance’s Network

Our network mainly consists of three components: (1) a set of
data center networks (DCNs) at different scales, (2) a global

1046 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

WAN and several regional WANs that connect all DCs and
PoPs, and (3) vDCs from various third-party cloud providers
that are connected to our major DCs. Figure 2 gives a simpli-
fied overview of our network. All these components together
form one of the world’s largest networks, serving as one of
the largest online services [7].

ByteDance’s DCN is a variant of traditional multi-stage
Clos network that can be described in the following simpli-
fied model. The bottom layer consists of ToR (Top of Rack)
switches, each of which directly connects a rack of servers.
These ToRs also connect to the middle layer aggregating con-
nections from the bottom layer. These middle layer switches
connect to the top layer, that comprises the core switches that
aggregate middle layer fabrics and connect to other DCNs,
WANs, and clouds. To be consistent with terminologies used
in other works, e.g., [32], we call the middle layer “aggrega-
tion layer”, and the top layer “spine layer”. We define the core
devices in our network as the WAN and spine layer devices,
and the other devices as non-core devices [13, 42].

For the third-party clouds, we have no direct control over
their physical devices. But we can configure certain routing
policies in their management portals to control the peering and
the traffic between our DC’s border devices and the clouds.
These policies are applied based on different demands and
thus sometimes are not standardized, i.e., different regions
may have different policies. Even in the same region, there
can be different numbers of spine devices connected to a
same cloud. As a result, the configurations on core devices
are complicated and non-standardized.

Different from those core devices, the configuration of non-
core devices in DCN is usually highly standardized. It entails
that the devices on the same level tend to exhibit the same rout-
ing behaviors (e.g., receive the same routes from higher level
devices, and announce the same granularity of routes to higher
level devices). The high standardization for the non-core de-
vice configurations is ensured by (1) generating configuration
for all non-core devices using automatic script and config
templates; and (2) checking the running configurations peri-
odically to detect violations against DCN design rules [26,38].
Many other hyperscalers [13, 15, 32, 41, 42, 48, 51] also adopt
the practice of standardizing and simplifying the configura-
tions of non-core devices in DCN. Leveraging symmetry and
synergy created by such standardization and simplification to
streamline network analysis has been studied by many works
in network verification [15, 16, 30, 43]. To the best of our
knowledge, we are the first to extend this idea to the area of
network emulation.

2.2 Incidents Analysis

In this section, we show two examples of our past network
incidents. Then, we give a statistical analysis of all change-
induced incidents in our network over the past years. These
incidents motivate our features, design choices, and use cases.

Figure 3: An illustration of incident B.

2.2.1 Incidents Examples

Incident A. In one incident, a config change was made on
a global WAN device to prepend an AS number to the AS-
PATH of a DC route. However, the same AS number of global
WAN was used for prepending, which triggered an unexpected
VSB: while some vendors prevent AS loop only for eBGP,
others consider iBGP too. Each of our global WAN devices
peers with a route reflector (RR) through iBGP. The vendor
of RR did not consider the route with prepended AS number
forming an AS loop and propagated the route to the rest of
global WAN. But the vendor of the rest of global WAN treated
this as an AS loop and dropped the route. To prevent such an
incident, we need to emulate at least the global WAN device
under change, the RR and another global WAN device. To
detect this issue via end-to-end connectivity test, we need to
emulate more devices, i.e., from the origin DC of the affected
route and from the DC connected to the other global WAN.
Incident B. In another incident, a network operator drained
the traffic on a switch by disabling the peers in a BGP peer
group and then re-enabling the peers to undrain the traffic.
However, for this vendor, disabling the BGP peer group op-
eration will automatically delete all statements that associate
peers to a peer group under IPv4-family section (highlighted
in Figure 3). Later re-enabling the peers will not automatically
add those statements back. Figure 3 illustrates this incident:
when doing this operation on R0, the highlighted statement
disappeared after the traffic undrain operation. The BGP peer
group G1 has a route policy to extend AS-PATH length to 2
from R1 or R2 to R0. However, the newly enabled peer ip1 is
not associated with G1, thus has a shorter AS-PATH compared
to the other peers, e.g., ip2, leading to all traffic going through
the link from R1 to R0, which caused severe link congestion.
To capture this issue, emulation must include all the core de-
vices shown in the Figure 3, emulate R0 with its respective
vendor image, and compare the routes before and after the
change.

We can draw 2 quick takeaways from the above incidents:

1. VSBs are notoriously hard to prevent because people are
often unaware of VSBs, most of which are not well docu-
mented. These VSBs could lead to all kinds of incidents,
also observed in prior works [41, 55]. High-fidelity emu-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1047

lation using switch vendor images is the effective option
to capture the unknown VSBs.

2. Emulating only the devices under test is insufficient to
catch the impact of a change. It is difficult to identify the
minimum scope of the network to be emulated, especially
when the blast radius of the impact of a network change is
hard to predict [32, 42]. More discussions are in §2.3.

2.2.2 Statistical Analysis

We conduct a statistical analysis over the O(100) incidents
that happened in our networks in the last 3 years. Out of them,
about 1/3 network incidents were caused by network changes
and thus can be potentially captured by emulation. The others
are caused by issues such as traffic bursts, capacity losses,
device failures, etc. Among these change-induced incidents,
30% of them involved VSBs. The impact of these incidents
spans all 5 severity levels, among which level 1 means the
most severe incident, while level 5 means the least. Approx-
imately 80% of change-induced incidents are identified as
level 3 or higher, resulting in substantial business losses. By
further examining the change-induced network incidents, we
found that over 90% of these incidents happened on our
core devices. This is likely because the configurations on
core devices are more complex than non-core devices, i.e.,
more routing protocols besides BGP (e.g., ISIS, OSPF, SRTE,
etc) are used, more route policies are applied, and more com-
plex topologies are formed. Such complexity is more likely
to trigger various unknown VSBs.

2.3 Cost v.s. Coverage

To prevent the above incidents, an intuitive solution is to em-
ulate the entire network, but it comes with a high cost (with
respect to resource usage). As the number of devices to be
emulated increases, so does the cost. We list all the vendor’s
images, for one or more versions, and the corresponding re-
source requirements in Table 1. Note that different images
have different resource requirements , e.g., memory usage,
the primary resource bottleneck, ranges from 1 to 16 GB.

An alternative is to find a tighter safe boundary as defined
in CrystalNet [41]. After analyzing the incidents that hap-
pened in our network from the past 3 years, we find that their
strategy to find a safe boundary does not apply to other net-
works like ours. First, it assumes that AS-PATH removal and
rewrite are rare, leading to shortened boundaries. However, in
our network, these actions are frequently utilized, particularly
on core devices, and have caused 15% of our incidents. Sec-
ond, we find the expansion algorithm proposed by CrystalNet
is primarily about expanding the network to higher layers.
This is not enough for us to find a safe boundary to prevent
55% inter-DC incidents in our network. For instance, to pre-
vent Incident A, we need to include our global WAN and two
DCNs to detect the issue. But CrystalNet can only expand un-

til the global WAN that contains all DUTs of this change. On
the other hand, it’s crucial to expand the network downwards
and include both DCs. Similarly, in Incident B, it’s important
to emulate all lower-level devices and observe that after the
change, R3 will only forward traffic to R1 and not both R1
and R2. Overall, CrystalNet’s expansion algorithm can poten-
tially miss approximately 60% of the incidents, among which
10% involve both the limitations. Moreover, we find that in
some scenarios, even when their assumption holds, e.g., only
AS-PATH prepend policy exists, an incident may still happen
due to other issues, e.g., ECMP reduction in Incident B.

Vendor Image type vCPU RAM(GB) Size (GB) Port limit

v1 container 1 2 1.60 unlimited
VM 2 4 2.08 64

v2 VM 2 8 1.47 64
v3 VM 2 8 4.31 128

v4 VM 2 4 1.57 10
VM 8 16 4.14 100

v5 container 1 2 0.43 64
v6 VM 2 4 1.34 10
v7 VM 4 5 1.48 96

Table 1: Specifications of various vendor images (v1-7).

Based on our analysis result, it is essential to always em-
ulate the core devices in our network to avoid those 90%
incidents that are caused by network changes on our core de-
vices. Besides, incidents that happen on core devices tend to
cause a larger blast radius than non-core ones. Meanwhile, we
are not trading off safety for cost. By including the sampled
non-core devices into the canary testbed (§3), the rest (less
than 10%) of network incidents caused by changes on non-
core devices can also be captured by Crescent, assuming their
configurations are standardized. By doing this (i.e. including
all the core devices and sampled non-core devices), we only
need to emulate less than 2% of our entire network fleet.

2.4 Scalability over Multiple Hosts
Even though we choose to emulate a small fraction of our
entire network, it still contains thousands of devices that we
cannot emulate on a single host due to the high resource re-
quirement of emulating each device (Table 1). A natural idea
is to employ multiple hosts, as CrystalNet [41] did. But, it is
unclear how CrystalNet maps thousands of nodes onto multi-
ple hosts. In other words, how to partition a given network to
let each host emulate a subset of the network? While similar
problems have been studied in other contexts e.g. [52], none
of them applies to the emulators like CrystalNet and Crescent.
We observe that a multihost testbed using different node-to-
host assignment schemes can yield significant performance
differences. For example, a simple random partitioning may
not scale at all (§7.2). We study this challenge by uncovering
the system bottleneck, formulating it as a graph partition-
ing problem, and solving it with a variant of the community

1048 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Maintenance
request Monitor & Verifier

Local Agent

Sub-Topology
Selection

Parsing Adaptation

Emulation

Adapted switch config

Switch image

Local Agent

Sub-Topology
Selection

Parsing Adaptation

Emulation

Adapted switch config

Switch image

Figure 4: An illustration of Crescent workflow to create a new
multihost canary testbed.

detection algorithm (§4.3).

3 Crescent Design Overview

We build a canary testbed to emulate the baseline topology
that includes all the core devices and sampled non-core de-
vices. We sample the non-core devices by selecting one plane
out of multiple planes, and selecting one device per vendor
on each level of a plane. To keep it simple and consistent,
our strategy is to always pick devices from the 1st plane on
every level, ensuring that aggregate routes can be activated,
the same as in our production network. Also we integrate
each testbed with proactive monitoring and verification tools
to automate the detection of impact of changes.

3.1 Multi-Host Canary Testbed
We run the large-scale canary testbed by distributing thou-
sands of emulated nodes across a cluster of baremetal servers
using a multi-host setup (§4.1). We employ a novel partition-
ing algorithm to minimize the number of cross-host links,
which significantly reduces the canary testbed bootup time
(§4.3) as well as the time to connect DUTs to a canary testbed.

Figure 4 shows the workflow in a multi-host setup. Each
host runs a local agent that manages emulation on that host.
When the agent receives input for a maintenance request, it
first identifies which new nodes and links need to be emulated
on that host. Next, it fetches the configurations of new nodes
from production networks and parses and adapts them to be
compatible with vendor images. After this, the agent launches
and connects each node’s containers with the appropriate
configurations and vendor images. Finally, when required, it
sends the emulation data to the monitoring and verification
tools for proactive analysis.

3.2 Connect DUTs to Canary Testbed
Instead of creating a large-scale testbed from scratch for every
network change request, we run multiple instances of non-
stop canary testbeds. For each request, we connect its DUTs
to one idle canary testbed.

If DUTs are not in the baseline topology, Crescent needs
to emulate these DUTs in new containers and connect them
to the canary testbed, along with the intermediate nodes be-
tween them. Crescent achieves this using a novel expansion
algorithm that ensures the heterogeneity of the devices along
the paths from DUTs to canary testbed (§5.1). The expansion
algorithm considers different factors (e.g., vendors, planes,
levels) when exploring the paths from DUTs to the running
canary testbed. To allow DUTs and the intermediate devices
to connect to and disconnect from the canary testbed on the
fly, Crescent supports dynamic link addition/removal (§5.2).

It is more cost-effective to run a nonstop canary testbed
than rebuilding a new one. Also based on our historical data,
over 50% of our network changes happened on core devices. It
suggests that there is no need to create any new containers for
most of the requests, as we already include all core devices in
canary testbed. Besides, the time to connect DUTs to canary
testbed is also much lower than the time to rebuild a new
canary testbed (§7.1).

3.3 Proactive Verification and Monitoring
Emulation alone can not detect network issues (e.g., loop and
blackhole) at scale. It must be combined with various veri-
fication and monitoring tools (§6) to automatically analyze
the impact of change on an emulated network. After automat-
ically applying each command of the MOP to DUTs, we take
a snapshot of the converged network and proactively run the
verification and monitoring tasks to detect potential issues
caused by each command.

4 Building Canary Testbed

A large-scale high-fidelity canary testbed containing all core
devices in our network is the key to the design of Crescent
as described in §3. In this section, we discuss our approach
to address the scalability challenge in running a large-scale
canary testbed. We formalize the scalability challenge as
a graph partitioning problem and then propose a heuristic
algorithm to solve the problem.

4.1 Network Emulation
Crescent’s network emulation platform shares similarities
with most of the other container-based network emulators [3,
8–10,41,53]. Each node is wrapped in an individual container
with a switch OS running inside. A link on the same host
is emulated by a veth pair, while a link across hosts is em-
ulated by OVS bridge. Figure 5 shows an example of such
a container network implemented in Crescent. We defer the
implementation details to §A.

We run the canary testbed on a cluster of baremetal hosts.
On each host, Crescent runs a local agent that interacts with
OS for node and link creation. Running a multi-host canary

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1049

Figure 5: An illustration of Crescent implementation with virtual nodes (container-based and VM-based) and links.

testbed is straightforward with this setup. When booting up a
testbed, we send the same topology input to all the host agents.
The input topology specifies the host each node is running
on. Then, each local agent boots up the local portion of the
testbed based on the input topology, including the nodes and
links. The agent creates local veth pairs between nodes on the
same host and OVS bridges for cross-host links.

4.2 Multi-Vendor Config Adaptation

Upon the testbed bootup, Crescent immediately loads the con-
figuration file into the emulated nodes. However, we find the
production configuration cannot be directly applied to the em-
ulated nodes due to the limitations of the vendor’s software
switch images. To that end, Crescent has to adapt the pro-
duction configuration into an image-compatible form before
loading it into the emulated nodes. Figure 6 shows an example
where Crescent adapts an interface’s configuration to ensure
ISIS [1] is activated on this interface. First, it is important to
note that the interface names in emulation may not precisely
match those used in production. Therefore, it is necessary
to rename these interfaces and maintain a mapping between
the emulated interface names and their counterparts in the
production environment. Second, certain security-enhanced
commands, like “macsec,” can prevent ISIS from being ac-
tivated and thus must be filtered. Last, the MTU (Maximum
Transmission Unit) value in the production environment is
typically greater than the default MTU value supported by
our host. Thus, we must reduce the MTU value in the adapted
config to a value lower than the default MTU value on our
host. Config adaptation, which involves all vendors and image
types, is critical to automating large-scale testbed creation.
Whenever a new, previously unseen configuration template is
introduced, extension of Crescent is necessary to support it.

4.3 Multi-Host Partitioning

A large-scale canary testbed with thousands of nodes must
run in a distributed manner. Nonetheless, prior research, such

Figure 6: An example of configuration adaptation to a simple
interface config to activate ISIS status on this interface.

as Crystalnet [41], does not delve into the detail on how to
partition a large-scale testbed across a set of hosts (or VMs on
cloud). Other works [56,60] focuses on minimizing cross-host
communication overhead by reducing the number of cross-
host links. However, we find that cross-host communication
overhead is negligible (§7.3). Crescent also tries to reduce the
number of cross-host links, but for a different reason, i.e., to
reduce testbed creation and DUT connection time.
Cross-host Link Creation Overhead. A simple strawman
approach is to partition all the emulated nodes across hosts
randomly, following a uniform distribution. However, we find
that it creates thousands of cross-host links, which incurs a
significant overhead on creating a testbed and connecting
DUTs. This phenomenon is because the overhead to create
cross-host links increases linearly in the Linux kernel. It is not
specific to the OVS bridge, but also applicable to the Linux
bridge (used by CrystalNet [41]). As shown in Figure 7, both
Linux bridge and OVS bridge creation incur a linear overhead
(the x-axis is in log scale), i.e., the more links there are on the
host, the longer it takes to create a new link1. This overhead
is inevitable even if all bridges are created in parallel.

Consequently, we must minimize the number of cross-host
links. The benefit has two folds. First, connecting DUTs usu-
ally needs to create O(100) new links (§5.2), thus, by reducing

1Besides merely creating the bridge, the bridge creation operation we
consider here also includes the operations of creating veth pair, binding
VXLAN port to the bridge, and bringing up all these virtual devices

1050 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7: Overhead of cross-host link creation (OVS bridge
and Linux bridge).

the number of cross-host links, we can substantially expedite
the process of connecting DUTs. Second, when booting up
the multihost testbed, with fewer cross-host links to create,
the overall bootup time can also be reduced.
Problem Model. We model the cross-host link minimization
problem as follows. Given a graph G = (V,E,WV ,WE), where
V is the set of vertices, E is the set of edges, wv ∈WV is the
weight of node v and we ∈WE is the number of links between
the vertices connected by e. In practice, we find that memory
usage is usually the bottleneck. Thus the node’s weight is the
memory a node needs, which is constrained by the server’s
total amount of available memory C. Given the server capacity
C, the goal is to find a partition P for V with n disjoint sets
V1, V2, ..., Vn.

min ∑
i, j

∑
e∈Ei j

we

s.t. 1≤ i, j ≤ n

Ei j = E ∩ Vi × V j

V = V1 ∪ V2 ∪ ... Vn

Vi∩V j = /0

∑
v∈Vk

wv ≤ C,1≤ k ≤ n

(1)

Partitioning Algorithm. This is a graph partitioning prob-
lem, which is NP-complete [56]. It has also been widely
studied in previous literatures [21, 56, 60]. In the field of
social networks, the problem is called community detec-
tion [18, 22, 31]. Namely, detecting closely connected ver-
tices in a graph merely based on the links rather than other
attributes, which is different from clustering.

To solve the problem, we explore the traditional community
detection algorithm [31]. The traditional approach begins
with a set of all n vertices in the graph, with no edges between
them. Then, it adds edges between pairs one by one in order of
their weights. As edges are added, the resulting graph shows
a nested set of increasingly large components (connected
subsets of vertices), eventually forming a partitioning scheme.

We made a few modifications to the traditional commu-
nity detection algorithm to solve the optimization problem
(1). First, we define the edge weight when merging two com-
ponents with newly added edges as the geometric mean of
the two components’ weights. Second, we add a capacity

Core devices Core devices

Vendor A Vendor B

Production network Emulated network

Plane 1 Plane 2 Plane 1 Plane 2

DUT

Figure 8: DUT sampling and topology expansion.

constraint to the traditional algorithm to ensure the size of
each partition does not exceed a single host memory capacity.
Last, to avoid being trapped in a local optimum partition-
ing scheme, we follow an exponential stochastic process to
randomly choose the next edge to add to the graph. These
modifications ensure that the algorithm generates a scheme
with well-balanced partitions, all within the server’s capacity.
We defer the detailed algorithm pseudocode to §B.

5 Connecting DUTs to Canary

For a maintenance request, if DUTs are not in the canary
testbed, Crescent needs to connect these DUTs to the canary
testbed, along with the intermediate nodes between them.

5.1 Topology Expansion

As mentioned in §2.1, the configuration on non-core devices is
auto-generated, and DCN topology is highly standardized. We
take advantage of this simplicity and standardization to do a
more controlled expansion. While finding a generic algorithm
that works for all networks may be challenging, we have
successfully tested this strategy in hundreds of maintenance
requests without causing any issues in production.

When expanding from DUTs, the algorithm ensures that
each node has at least one neighbor for each vendor, level,
and plane. The number of devices included in the expansion
process grows exponentially. However, given that there are
at most 3 to 4 levels from the canary testbed to the lowest
non-core device (i.e., ToR), at most 3 different vendors on the
same level in our DCN, and tens of planes, each DUT will
only expand to tens of devices to establish paths up to the
canary testbed at worst.

If DUTs are on the lower level, they also exhibit similar
routing behavior per level. And we can apply the same expan-
sion rules to select DUTs for emulation during maintenance.

Figure 8 presents an example of applying the algorithm on
a change with 8 DUTs in a plane. It only shows the result for
two planes. In this example, all 8 ToR DUTs have a similar
configuration, and the devices belong to two vendors. After
sampling, we reduce the emulated DUTs to 2. And besides

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1051

the 2 DUTs, we only emulate 7 instead of 24 additional nodes.
We explain the expansion algorithm in §C.

5.2 Dynamic Connection
To connect the DUTs to a canary, Crescent sends a new topol-
ogy input to all the host agents of the canary testbed. Each
agent compares its local topology information with the newly
received topology to find the new links it needs to create. Sim-
ilarly, when removing links, the local agent must determine
the existing nodes as well as the links it needs to destroy based
on the topology information.

CrystalNet [41] does not support dynamic link addition
and removal; thus, we extend its techniques to enable this
functionality. Link addition/removal requires rebooting nodes
on both ends of the link because no vendor image supports dy-
namic interface addition/removal, i.e., software switch OS can
only detect interfaces during bootup. To solve this issue, we
decouple the network stack from the actual DUT container’s
runtime. For each actual DUT container, we create a container
to hold the network stack for the DUT container. This way,
links can be added after stopping the DUT container, and we
can restart the DUT after adding all the new links.

6 Proactive Verification and Monitoring

We run various verification and monitoring tasks to test, an-
alyze, and troubleshoot the changes made in the emulated
network before pushing it to production. Motivated by our
incidents (§2.2), our tools are tailored to catch the following
behaviors: routing loop, blackholes, unexpected ECMP reduc-
tion, and unexpected route withdrawal/change/churn. We run
four major tasks to cover these issues.
Config Checker. A static configuration analysis tool similar
to RCC [26] analyzes the routing-related segments of the
parsed switch configurations to identify basic syntactical and
semantical errors. We first convert vendor-specific configu-
rations into a vendor-independent format. Then our config
checker analyses them to identify common errors like un-
defined variables [26] (referring variables without defining
them), configuration dissimilarity (configs deviating from the
template [38]), etc. This tool’s primary goal is to detect non-
standard configurations on non-core devices and to identify
any new configuration errors on DUTs.
Route Differ. Our route-differ aims to detect local forwarding
changes at each node. It periodically captures the emulated
nodes’ latest FIB (Forwarding Information Base) and com-
pares it to the previous snapshot to detect route changes. A
centralized full-scale implementation may not perform well
in emulation due to resource scarcity. As a runtime optimiza-
tion, we developed a lightweight distributed version to run
the diff locally within each container and only send the result
to the central process for aggregation. The route differ plays
a crucial role in identifying incidents that lead to reduced

ECMP next hop count, resulting in congestion (e.g., Incident
B as discussed in §2.2). Additionally, this helps in detecting
unexpected additions or removal of routes.
Pingmesh. We run end-to-end ping connectivity tests between
all the emulated servers of a network. It is much simpler
than the original Pingmesh [33]. We run a script inside each
emulated server to ping the other IPs and to only send the ping
failure messages to the central process for aggregation. The
main objective of this task is to identify connectivity-related
incidents, e.g., Incident A in §2.2
Data Plane Verifier. Data plane verifiers (DPV) model how
packets will be sent in the network across a set of forwarding
tables and verify if they satisfy specific policies, like detect-
ing routing loops, blackholes, waypoint violations, etc. We
built our DPV based on APKeep [58] with customized op-
timizations. The occurrences of blackhole and routing loop
incidents are primarily detected by DPV.

7 Evaluation

In this section, we evaluate Crescent performance for (1) the
time to connect different numbers of DUTs to the canary
testbed, (2) canary testbed bootup time at different scales, (3)
the time to run the most commonly used MOP commands for
a canary testbed, and (4) the time to run various verification
and monitoring tasks.

We show the impact of three different partitioning schemes
on the performance metrics. The first scheme is random parti-
tioning that assigns all n emulated nodes to k hosts randomly,
so that each host has n

k nodes to run. In the experiment, we
find that the random partitioning scheme over the original
testbed creates too many cross-host links, which prevents the
testbed from booting up successfully. The second scheme is
done by our proposed algorithm (§4.3). We call it Crescent
scheme. The last scheme is done by manually partitioning the
canary testbed into k parts, with each part containing nodes
within a specific geographic affinity region This scheme is
referred to as the Geo-manual. The Geo-manual scheme is
provided by one of our network experts who is familiar with
our network architecture.

We do all the experiments on a dedicated cluster of bare-
metal servers, each equipped with a 2.10GHz 128-core CPU
and 500GB DDR4 RAM. Currently, a canary testbed with-
out any connected DUTs takes k = 4 servers to run. Unless
otherwise specified, all results shown in this section are the
median over 10 runs.

7.1 Connection Time

The Crescent partitioning scheme (§4.3) minimizes the num-
ber of cross-host links. Thus it is expected to outperform
random partitioned testbeds when connecting DUTs. The
connection time is measured as the time to establish cross-

1052 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Connection time. (b) Bootup time.
Figure 9: Connection time and testbed bootup time.

host links between two pre-existing testbeds (i.e., canary and
a small testbed with DUTs).

Figure 9a shows the testbed connection time for differ-
ent numbers of neighbors (i.e., aggregation level devices) to
connect to the canary testbed. The geo-manual scheme al-
most yields the same connection time as the Crescent scheme,
while it takes 2-3 times longer to connect the same testbed to
the canary for the random scheme. This is because the random
scheme has the most cross-host links. Note that connecting
DUTs to the canary testbed yields a much better performance
than creating a new large-scale canary testbed. For example,
it only takes about 2 minutes to connect a DUT to the canary,
while it takes about an hour on our platform to create a new
canary testbed, resulting in a 30× performance improvement.

7.2 Bootup Time
We show Crescent’s scalability by adjusting the size (i.e. the
number of nodes) of the canary testbed. We define scaling
factor as the ratio of the size of a scaled canary testbed over
the size of the original canary testbed. For example, if the
original canary testbed contains N nodes, and the scaled ca-
nary testbed contains 0.75N nodes, then the corresponding
scaling factor is 75%. When scaling down the canary testbed,
we sample core devices on the spine level to ensure that the
canary remains completely interconnected. When scaling up,
we add more non-core devices to the canary testbed. In this
experiment, we set the number of hosts proportional to the
size of the scaled testbed. For example, given that each host
runs about 25% portion of the original canary testbed, we use
5 hosts to run a 125% scaled testbed.

Figure 9b shows the system bootup time with different
scaling factors for the three partitioning schemes. It shows
only Crescent scheme is scaling, while both the other two
stop scaling at a certain point, i.e., 100% for Random and
125% for Geo-manual. A scheme is considered not scalable
when it takes too much time to boot up a new testbed. In this
experiment, we set the limit to 2 hours. The reason that the
Geo-manual strategy fails to scale is because there are a few
DCNs whose size are much larger than the others, thus it ends
up with an imbalanced partitioning scheme when adding non-
core devices. Crescent partitioning scheme also outperforms
the other two in terms of bootup time. For example, it is 20×
faster to boot up the original canary testbed (i.e., 100%) with

Crescent partitioning scheme than the random partitioning.
We need to reboot canary testbeds occasionally. For ex-

ample, when there is a significant change to our production
network (e.g., a new DC or a new backbone dataplane is
added), we need to reshard the testbed to rebalance all the
partitions. To that end, we use the proposed algorithm (§4.3)
to generate a new partitioning scheme, then reboot canary
testbeds in production with the new partitioning scheme one
by one. During the service reboot, we want to introduce min-
imum impact to the online service, i.e., DUTs of planned
maintenances can still connect to the running canary testbeds.
In that case, Crescent scheme exhibits a better bootup time,
about 10% faster than Geo-manual scheme. Moreover, the
Geo-manual strategy stops scaling when running 125% size
of the original canary testbed. This is because our global net-
work is not geo-graphically balanced, i.e., certain regions may
have more devices than others. Consequently, we may need
to manually divide these regions to rebalance the network.
Nevertheless, as our network expands, manually rebalancing
the graph becomes increasingly challenging, even infeasible.

After booting up a canary, it’s necessary to periodically
update its configuration to align with the latest changes in
our production network. Although more than 50% network
changes occur on core devices (3), typically only a small frac-
tion (less than 10%) of the network undergoes changes in
canary. In the worst-case scenario, where the entire canary
testbed needs updating, it takes an average of 208.4s to com-
plete the process, which includes fetching, parsing, uploading,
and reloading configuration in the emulated node. Given that
we update the canary on a daily basis, the 3min update time
is almost negligible for our platform in practice.

(a) Traffic drain. (b) Traffic undrain.
Figure 10: Convergence time with different operations.

7.3 Network Convergence Time
In this experiment, we show that the emulated network can
converge quickly after applying MOP commands to different
levels of devices. We test the traffic drain operation, which
is one of the most commonly used operations in network
maintenance. We test the operation in the canary testbed
across various levels of devices, including ToR, lower level
aggregation (LA), higher level aggregation (HA), lower level
spine (LS), and higher level spine (HS) devices. We use a
BGP listener to collect all BGP update messages from all
the emulated nodes in the canary testbed. The convergence

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1053

Partitioning
Task Runtime (s) Random Geo-manual Crescent

route-diff 2.31±0.2 1.58±0.11 1.57±0.19
pingmesh 2±0.5 1±0.3 1±0.5
DPV loop 52±6

DPV reach-diff 55±4
config check 21±1.2

Table 2: Evaluation of proactive task performance.
time is measured as the duration from the time an operation
is issued to the time the last BGP update message is received.

Figure 10a shows the convergence time for traffic drain
operations on different levels of devices. Surprisingly, the
random partitioning scheme converges faster than the other
two schemes. The reason is that the overall convergence time
largely depends on the route update processing time instead
of the route propagation time. Since both Crescent and geo-
manual scheme tend to put the geographically close nodes
on the same host, and most route updates happen within the
same DCN, the host that runs the nodes of the DCN becomes
the bottleneck for route update processing. Whereas, in the
random scheme, the nodes that get affected by this operation
are spread across all hosts, thus can process the route updates
much faster with more resources. Figure 10b also shows the
convergence time for undraining traffic after maintenance is
done on the device. Overall, as depicted in both figures, the
emulated network can converge very quickly, i.e., within 10s.
Compared to other overhead, such as testbed connection time,
the network convergence overhead is negligible.

7.4 Verification Time
We conducted four experiments, each with eight DUTs. After
connecting the DUTs and network convergence, we execute
multiple verification and monitoring tasks. Table 2 displays
the average runtime for all experiments across all partition-
ing schemes. For DPV, we list the result of loop check and
reachability difference (reach-diff) tasks. The reach-diff tasks
compute end-to-end reachability differences for all network
traffic classes. Since DPV tasks model and analyze O(100K)
routes for O(1K) devices, they have a longer runtime than
other tasks. The config checker has the next longest runtime.
These centralized tasks fetch and send route/configs to a verifi-
cation service and remain agnostic to the partitioning scheme.
Route diff and pingmesh are lightweight, distributed tasks
executed inside the containers, resulting in a faster runtime.
Both the Crescent and geo-manual schemes exhibit similar
runtime results for these tasks. And the random scheme shows
a slight increase in runtime. Overall, it takes approximately a
minute to verify the network for all tests.

8 Beyond Network Change

Crescent’s primary mission was to prevent change-induced
network incidents. Meanwhile, we have found Crescent help-

ful in many other use cases.

8.1 Catching Regression Under Failures
Some network changes may not trigger immediate impact
until certain failures (e.g., link down) events occur. This has
led to a few outages in the past. To expose such deferred
impact from a network change, we run periodic workflows
on Crescent to catch regressions in the network for various
failure scenarios. We import the latest configurations from
production networks and inject failure events such as a node
or link down for critical parts of the network. Some significant
errors we have identified so far include:

1. A border device missing a critical configuration that could
lead to routing loops under specific link failures.

2. A global WAN device missing routes for specific regions
due to misconfiguration. This could cause blackholes in
case of another WAN device failure.

3. A newly-added configuration having incorrect community
commands that could redirect a large volume of traffic to
the management device, leading to congestion.

8.2 Self-Service Platform
Crescent provides rich user interfaces, including a web portal
and chatbot, to assist users in creating emulation environments
for any purpose.
Network Design Evaluation. When building a new network
or evolving an existing one, our planners need to evaluate
multiple design choices and conduct feasibility studies before
coming up with the final MOPs. They leverage Crescent to
create large testbeds, which would cost much higher if using
physical devices. In one case, they found tens of bugs in their
configuration templates.
Device Behavior Comparison. Cautious about VSB, our
operators use Crescent to test the vendor software for non-
standardized behaviors. One of these tests helped us discover
VSB regarding BGP route aggregation. We observed that the
inherited attributes for the aggregate route differed among the
vendors. For example, some did not inherit the AS-PATH at
all, while some inherited the common AS numbers.
Incident Reproduction. Crescent serves as a learning plat-
form to reproduce past incidents, which is used to refresh our
memory and educate new hires. Such training helps us avoid
repeating similar mistakes from the past.

8.3 SDN Testing
SDN-based traffic engineering (TE) [36,39,45,54] has played
an important role in our networks. A high-fidelity testbed is
needed to test the correctness of the TE software, including
the controllers and their dependent components. Small-scale
physical testbeds are helpful but cannot scale to the same size
as the production network. Besides, multiple TE projects may

1054 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

compete for limited physical testbeds, with high overhead to
reset the environment during handover. Instead of waiting for
days to use physical testbeds, it takes minutes for TE devel-
opers to create a production-like environment using Crescent
for both component and integration tests of TE software.

9 Discussion

Crescent has been deployed in ByteDance since 2020. It has
been serving tens of network change requests per week. This
section shares our lessons learnt from its deployment and our
thoughts for future work.

9.1 Lessons Learned

Road To Enforcement. Crescent has been integrated with
our production network change workflow since its early days.
But as shown in Figure 1b, it took almost two years from the
initial rollout of Crescent to enforce it as a mandatory step
for changing critical devices in production networks. Other
than resource constraints, the major blockers were the lack
of vendor images and the unfriendliness of user interfaces.
We should partner with switch vendors earlier to develop and
qualify the images as a collaborative effort. And we should
involve our users more closely when designing user interfaces.
Unknown Image Limitations. Switch vendor images are
blackboxes to us. Many of their limitations are unknown or
undocumented. Some of these limitations may even manifest
in a surprising way. For example, when we created a certain
amount of ports in a container running a vendor image, its
LLDP process started crashing while its layer 3 and above
protocols, including BGP, worked fine. We did not notice the
issue until the host ran out of memory. It turned out that the
vendor used memory to store all the logs, and the huge-sized
LLDP crash logs exhausted the host memory.
Fidelity Can Backfire. Crescent’s mission is to prevent net-
work incidents. But as it is deployed in production hosts,
failure to isolate from the production network could trigger
unexpected consequences. For example, each emulated de-
vice connects to the host via a management or CPN interface
through the docker bridge. Docker would add a default route
automatically for such interfaces. In one case, we did not
remove such a default route, and the emulated device sent
syslog messages to the production collector, which could not
distinguish it from the production device. This caused false
alarms as the syslog reported many down links. It cost our net-
work operators tremendous efforts to figure it out. We added
the fix to remove the default route from each container and
disable the syslog configuration during adaptation.
Kernel Tuning Can Help. In addition to employing multiple
hosts, we explored increasing the number of containers for
each host to support emulating larger networks. But, we failed
to create a large number of containers while both CPU and

memory usage were well below the host limits. After dig-
ging into the container logs, we spotted an error message and
realized certain kernel settings for inotify should be relaxed.

9.2 Incidents Missed
The deployment of Crescent has significantly reduced the
number of incidents, as demonstrated in Figure 1b. Emula-
tion and verification using Crescent has helped detect and
prevent various errors from occurring in production, e.g., con-
figuration syntax errors and routing loops. However, there
are still some network incidents that cannot be captured ad-
equately with Crescent. For instance, we cannot identify is-
sues related to traffic dependencies. One such incident was
caused by hash polarization or imbalance, emerging from
an unevenly balanced traffic load after being hashed twice
or more. Additionally, high-level Quality of Service issues
such as congestion, latency, and jitter can cause traffic-related
complications. Emulation also lacks the potential to capture
hardware-related issues. These include common problems
like device failures, link flapping, etc, and rare issues like
reduced Optical Transport Network (OTN) capacity leading
to packet losses, etc. Moreover, in some cases, incidents may
result from other components interacting with the network
and its configuration, such as malfunctioning management
software like a Netconf controller. While we have some re-
gression tests with failures, these still need to be exhaustive,
as certain failures could lead to never-emulated scenarios.
Nevertheless, we constantly look for potential problems and
enhance our emulation testing pipeline.

9.3 Future Work
Crescent does not attempt to search the tight safe boundary, as
we think the correct boundary, if it exists, depends on certain
assumptions of the routing policies. One idea to explore in
future is to derive the routing policies from production net-
work configurations, confirm them with network operators,
and then add invariant checks for these policies. The derived
routing policies can help guide the search of the boundary.
Selecting the appropriate boundary is one method of reducing
emulation resources without impacting fidelity. Another op-
tion is to investigate reducing the size of the emulation image
by customizing it to include only relevant routing features.

Crescent presents network emulation as an alternative to
CPV, but both can be used in combination to achieve high
fidelity and performance. CPV can model specific aspects
of the network, while emulation can emulate the remaining
components to incur minimal performance overhead.

The baseline topology may evolve, e.g., adding more core
devices to the production network. Today Crescent has to re-
create the canary testbed with re-partitioning. We are explor-
ing the possibility of updating the canary testbed dynamically
with minimum overhead.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1055

We plan to quantify Crescent’s fidelity by comparing the
data plane of the emulated network with the one in production.
The key challenge is that the data plane in production is more
dynamic due to link flaps, controller programming, etc.

Finally, we anticipate that the number of emulation jobs
will increase over time on multiple canaries. The scheduler
plays a critical role in determining which job to schedule
first. We are exploring using different scheduling strategies to
handle incoming requests so that we can handle those requests
not merely based on the request order, but also based on other
factors, e.g., request emergency level.

10 Related Work

Network Emulation. Network emulation allows network
operators to evaluate and design networking solutions. In
today’s landscape, commercial and open source network em-
ulators, such as EVE-NG [4], GNS3 [8], DockerTopo [3],
Mininet [40], Maxinet [53], vrnetlab [10], and SEED [23], are
widely adopted by network operators for small scale network
tests. Nevertheless, these emulators prove inadequate when it
comes to large-scale network emulation involving thousands
of nodes, primarily due to their lack of features such as dy-
namic lab formation (e.g., automatic node and link creation)
and automatic configuration adaptation. CrystalNet [41] is
the closest work to ours, which enables a large scale emula-
tion for DC networks. Our work is inspired by CrystalNet,
but with several enhancements on top. First, we find the al-
gorithm to identify a safe boundary proposed in [41] is not
safe for us. As a result, we choose to always include core
devices in emulation. Second, we propose a greedy algorithm
to address the graph partitioning problem when running a
large-scale testbed using a multihost setup. Note that running
a large-scale testbed with a better partitioning scheme can
benefit any multi-host setup, no matter with VMs on a cloud
infrastructure or with baremetal servers. In another word, the
deployment strategy (where to run) addressed by CrystalNet
is orthogonal to the partitioning scheme (how to run). Last,
we made other efforts to enhance system automation for Cres-
cent, e.g., combining emulation with automatic verification,
config adaptation, etc. In summary, all of these emulators lack
the features required for automatic timely verification through
high-fidelity large-scale emulation, such as cross-vendor adap-
tation, dynamic link/node alterations for connecting DUT, etc.
Network Verification. Over the years, researchers have devel-
oped many DPVs and CPVs. DPVs usually analyze devices’
forwarding rules and detect reachability policy violations. Re-
cently researchers have added optimizations like making them
incremental based on data plane updates [14,34,58], partition-
ing packets into equivalence classes to reduce the input search
space [35, 58], parallelizing verification by dividing global
properties to local checks [37], etc. CPVs usually model the
network control plane to detect similar reachability violations.
Similarly, researchers have added optimizations like making

them incremental based on configuration updates [57], model-
ing policies as graph properties [12], using Packet and Failure
Equivalence Class [59] and abstract interpretation [15, 16, 30]
to reduce the input search space, etc. Hoyan [55] is a verifier
that aims to model vendor software behavior. It uses black-
box testing to detect modeling deficiency but requires manual
intervention to correct the model. We can integrate Crescent
with any of these verifiers.
Configuration Management. Operators have made many
attempts to automate configuration management. Network
synthesizers use high-level policy intents to produce policy-
compliant configurations. Some [17, 24] create brand-new
configurations from scratch. Whereas others [11, 25, 46] in-
crementally update the existing configurations. Some are very
platform-specific, like Facebook’s configuration management
and syntax generation tool called Robotron [50]. NAssim [20]
creates configuration models from device user manuals using
NLP and deep-learning techniques. However, these are still
limited in terms of feature coverage. Crescent can operate or-
thogonally to assist these tools’ development for troubleshoot-
ing, debugging, etc.

11 Conclusion

Network changes are a major source of incidents. As a solu-
tion, we have developed Crescent, a large-scale high-fidelity
emulation platform coupled with timely verification and mon-
itoring tools. Instead of emulating the entire network, we
exploit the symmetry and modularity of data center networks
and build canary testbeds that emulate all core devices and
sampled non-core devices. To achieve high scalability, we
use a multi-host setup and propose a graph partitioning algo-
rithm for a scalable node-to-host assignment to reduce the
overhead due to cross-host links. We support dynamic link
addition/removal to allow expansion/modification to the ca-
nary testbed on the fly. Our experience running Crescent has
demonstrated its effectiveness in detecting problematic net-
work changes, especially those resulting from undocumented
vendor-specific behaviors.

Acknowledgements
We would like to thank many ByteDance colleagues who have
contributed to this work. These include Jianghang Ning, Puyi
Dang, Xiang Zhao, Yanlin Qiao, Feiyu Yue, Yuchen Shi, Hui
Liu, Yifeng Zhou, Beixin Huang, Anjian Chen, Changqing
Zhu, Henry Han, Weibin Wang, Amandeep Singh, Jianfei
Cheng, Yanwen Chen, Jianwei Hu, Dong Zhao, Weibin Shen,
Huang Zhang, Jintao Liu, Juntao Zhong, Gen Li, Bo Cao,
Rohit Khairnar, Navneet Nagori, Wenhao Wang, Sisi Wen, Rui
Du, Haotian Deng, Yiyang Chang, Yantong Meng, Heng Qiu,
Yihan Zou, Yibo Zhu, Chuanxiong Guo, and many others. We
would also like to thank Peng Zhang at XJTU, our reviewers,
and our shepherd Guyue Liu, for their helpful comments.

1056 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Intermediate System to Intermediate System (IS-IS)
Extensions for Traffic Engineering (TE). https:
//datatracker.ietf.org/doc/html/rfc3784, June
2004.

[2] QEMU Documentation/Networking. https:
//wiki.qemu.org/Documentation/Networking,
2019. Last accessed on February 13, 2023.

[3] docker-topo. https://github.com/networkop/
docker-topo, 2020. Last accessed on February 13,
2023.

[4] EVE-NG. https://www.eve-ng.net/, 2021. Last ac-
cessed on Sep 13, 2023.

[5] Hyperscale Data Center Count Grows to
659 – ByteDance Joins the Leading Group.
https://www.srgresearch.com/articles/
hyperscale-data-center-count-grows-to-
659-bytedance-joins-the-leading-group, 2021.
Last accessed on Sep 14, 2023.

[6] KVM guest virtual network configuration us-
ing MacVTap. https://www.ibm.com/docs/en/
linux-on-systems?topic=configurations-kvm-
guest-virtual-network-configuration-using-
macvtap, 2021. Last accessed on Sep 13, 2023.

[7] Cloudflare Radar. https://radar.cloudflare.com,
2023. Last accessed on Sep 14, 2023.

[8] GNS3. https://www.gns3.com/, 2023. Last accessed
on Sep 13, 2023.

[9] MaxiNet. https://maxinet.github.io/, 2023. Last
accessed on Sep 4, 2023.

[10] vrnetlab. https://github.com/vrnetlab/
vrnetlab, 2023. Last accessed on Sep 13, 2023.

[11] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson,
and Aditya Akella. Aed: Incrementally synthesizing
policy-compliant and manageable configurations. In
Proceedings of the 16th International Conference on
emerging Networking EXperiments and Technologies,
pages 482–495, 2020.

[12] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson,
and Aditya Akella. Tiramisu: Fast multilayer network
verification. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
201–219, 2020.

[13] Anubhavnidhi Abhashkumar, Kausik Subramanian,
Alexey Andreyev, Hyojeong Kim, Nanda Kishore Salem,

Jingyi Yang, Petr Lapukhov, Aditya Akella, and Hongyi
Zeng. Running bgp in data centers at scale. In 18th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 65–81, 2021.

[14] Ryan Beckett and Aarti Gupta. Katra: Realtime verifi-
cation for multilayer networks. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 22), pages 617–634, 2022.

[15] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. Control plane compression. In Proceedings of
the 2018 Conference of the ACM Special Interest Group
on Data Communication, pages 476–489, 2018.

[16] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. Abstract interpretation of distributed network
control planes. Proceedings of the ACM on Program-
ming Languages, 4(POPL):1–27, 2019.

[17] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra
Padhye, and David Walker. Don’t mind the gap: Bridg-
ing network-wide objectives and device-level configu-
rations. In Proceedings of the 2016 Conference of the
ACM Special Interest Group on Data Communication,
pages 328–341, 2016.

[18] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lam-
biotte, and Etienne Lefebvre. Fast unfolding of commu-
nities in large networks. Journal of statistical mechanics:
theory and experiment, 2008(10):P10008, 2008.

[19] Matt Brown, Ari Fogel, Daniel Halperin, Victor Heo-
rhiadi, Ratul Mahajan, and Todd Millstein. Lessons
from the evolution of the batfish configuration analysis
tool. In Proceedings of the 2023 Conference of the ACM
Special Interest Group on Data Communication, pages
122–135, 2023.

[20] Huangxun Chen, Yukai Miao, Li Chen, Haifeng Sun,
Hong Xu, Libin Liu, Gong Zhang, and Wei Wang.
Software-defined network assimilation: bridging the last
mile towards centralized network configuration manage-
ment with nassim. In Proceedings of the 2022 Con-
ference of the ACM Special Interest Group on Data
Communication, pages 281–297, 2022.

[21] Patrick Ciarlet Jr and Françoise Lamour. On the va-
lidity of a front-oriented approach to partitioning large
sparse graphs with a connectivity constraint. Numerical
Algorithms, 12(1):193–214, 1996.

[22] Marek Ciglan and Kjetil Nørvåg. Fast detection of
size-constrained communities in large networks. In
International Conference on Web Information Systems
Engineering, pages 91–104. Springer, 2010.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1057

https://datatracker.ietf.org/doc/html/rfc3784
https://datatracker.ietf.org/doc/html/rfc3784
https://wiki.qemu.org/Documentation/Networking
https://wiki.qemu.org/Documentation/Networking
https://github.com/networkop/docker-topo
https://github.com/networkop/docker-topo
https://www.eve-ng.net/
https://www.srgresearch.com/articles/hyperscale-data-center-count-grows-to-659-bytedance-joins-the-leading-group
https://www.srgresearch.com/articles/hyperscale-data-center-count-grows-to-659-bytedance-joins-the-leading-group
https://www.srgresearch.com/articles/hyperscale-data-center-count-grows-to-659-bytedance-joins-the-leading-group
https://www.ibm.com/docs/en/linux-on-systems?topic=configurations-kvm-guest-virtual-network-configuration-using-macvtap
https://www.ibm.com/docs/en/linux-on-systems?topic=configurations-kvm-guest-virtual-network-configuration-using-macvtap
https://www.ibm.com/docs/en/linux-on-systems?topic=configurations-kvm-guest-virtual-network-configuration-using-macvtap
https://www.ibm.com/docs/en/linux-on-systems?topic=configurations-kvm-guest-virtual-network-configuration-using-macvtap
https://radar.cloudflare.com
https://www.gns3.com/
https://maxinet.github.io/
https://github.com/vrnetlab/vrnetlab
https://github.com/vrnetlab/vrnetlab

[23] Wenliang Du, Honghao Zeng, and Kyungrok Won. Seed
emulator: an internet emulator for research and educa-
tion. In Proceedings of the 21st ACM Workshop on Hot
Topics in Networks, pages 101–107, 2022.

[24] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,
and Martin Vechev. Network-wide configuration syn-
thesis. In International Conference on Computer Aided
Verification, pages 261–281. Springer, 2017.

[25] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,
and Martin Vechev. Netcomplete: Practical network-
wide configuration synthesis with autocompletion. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 579–594, 2018.

[26] Nick Feamster and Hari Balakrishnan. Detecting bgp
configuration faults with static analysis. In 2nd USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 05), pages 43–56, 2005.

[27] Andrew D Ferguson, Steve D Gribble, Chi-Yao Hong,
Charles Edwin Killian, Waqar Mohsin, Henrik Muehe,
Joon Ong, Leon Poutievski, Arjun Singh, Lorenzo Vi-
cisano, et al. Orion: Google’s software-defined net-
working control plane. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 83–98, 2021.

[28] Clarence Filsfils, Stefano Previdi, Les Ginsberg, Bruno
Decraene, Stephane Litkowski, and Rob Shakir. Seg-
ment routing architecture. Technical report, 2018.

[29] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-
Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd
Millstein. A general approach to network configuration
analysis. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages
469–483, May 2015.

[30] Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and
David Walker. Efficient verification of network fault
tolerance via counterexample-guided refinement. In In-
ternational Conference on Computer Aided Verification,
pages 305–323. Springer, 2019.

[31] Michelle Girvan and Mark EJ Newman. Community
structure in social and biological networks. Proceedings
of the national academy of sciences, 99(12):7821–7826,
2002.

[32] Ramesh Govindan, Ina Minei, Mahesh Kallahalla,
Bikash Koley, and Amin Vahdat. Evolve or die: High-
availability design principles drawn from googles net-
work infrastructure. In Proceedings of the 2016 Con-
ference of the ACM Special Interest Group on Data
Communication, pages 58–72, 2016.

[33] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, et al. Pingmesh: A large-scale
system for data center network latency measurement and
analysis. In Proceedings of the 2015 Conference of the
ACM Special Interest Group on Data Communication,
pages 139–152, 2015.

[34] Dong Guo, Shenshen Chen, Kai Gao, Qiao Xiang, Ying
Zhang, and Y Richard Yang. Flash: fast, consistent data
plane verification for large-scale network settings. In
Proceedings of the 2022 Conference of the ACM Special
Interest Group on Data Communication, pages 314–335,
2022.

[35] Alex Horn, Ali Kheradmand, and Mukul Prasad. Delta-
net: Real-time network verification using atoms. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 735–749, 2017.

[36] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Expe-
rience with a globally-deployed software defined wan.
ACM SIGCOMM Computer Communication Review,
43(4):3–14, 2013.

[37] Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar
Agrawal, Ashish Bhargava, Paul-Andre C Bissonnette,
Shane Foster, Andrew Helwer, Mark Kasten, Ivan Lee,
et al. Validating datacenters at scale. In Proceedings of
the 2019 Conference of the ACM Special Interest Group
on Data Communication, pages 200–213. 2019.

[38] Siva Kesava Reddy Kakarla, Alan Tang, Ryan Beckett,
Karthick Jayaraman, Todd Millstein, Yuval Tamir, and
George Varghese. Finding network misconfigurations by
automatic template inference. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 999–1013, 2020.

[39] Umesh Krishnaswamy, Rachee Singh, Nikolaj Bjørner,
and Himanshu Raj. Decentralized cloud wide-area
network traffic engineering with blastshield. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 325–338, 2022.

[40] Bob Lantz, Brandon Heller, and Nick McKeown. A net-
work in a laptop: rapid prototyping for software-defined
networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, pages 1–6, 2010.

[41] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin
Cao, Sri Tallapragada, Nuno P Lopes, Andrey Ry-
balchenko, Guohan Lu, and Lihua Yuan. Crystalnet:
Faithfully emulating large production networks. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, pages 599–613, 2017.

1058 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[42] Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and
Onur Mutlu. A large scale study of data center network
reliability. In Proceedings of the Internet Measurement
Conference 2018, pages 393–407, 2018.

[43] Gordon D Plotkin, Nikolaj Bjørner, Nuno P Lopes, An-
drey Rybalchenko, and George Varghese. Scaling net-
work verification using symmetry and surgery. ACM
SIGPLAN Notices, 51(1):69–83, 2016.

[44] Rusty Russell. virtio: towards a de-facto standard for
virtual i/o devices. ACM SIGOPS Operating Systems
Review, 42(5):95–103, 2008.

[45] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan
Katz-Bassett, Harsha V Madhyastha, Italo Cunha, James
Quinn, Saif Hasan, Petr Lapukhov, and Hongyi Zeng.
Engineering egress with edge fabric: Steering oceans
of content to the world. In Proceedings of the 2017
Conference of the ACM Special Interest Group on Data
Communication, pages 418–431, 2017.

[46] Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever.
Snowcap: synthesizing network-wide configuration up-
dates. In Proceedings of the 2021 Conference of the
ACM Special Interest Group on Data Communication,
pages 33–49, 2021.

[47] John Scudder, Rex Fernando, and Stephen Stuart. Bgp
monitoring protocol (bmp). Technical report, 2016.

[48] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, et al. Jupiter
rising: A decade of clos topologies and centralized con-
trol in google’s datacenter network. ACM SIGCOMM
computer communication review, 45(4):183–197, 2015.

[49] Kotikalapudi Sriram, Doug Montgomery, D McPherson,
Eric Osterweil, and Brian Dickson. Problem definition
and classification of bgp route leaks. Technical report,
2016.

[50] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY Wong,
and Hongyi Zeng. Robotron: Top-down network man-
agement at facebook scale. In Proceedings of the 2016
Conference of the ACM Special Interest Group on Data
Communication, pages 426–439, 2016.

[51] Alan Tang, Ryan Beckett, Steven Benaloh, Karthick Ja-
yaraman, Tejas Patil, Todd Millstein, and George Vargh-
ese. Lightyear: Using modularity to scale bgp control
plane verification. In Proceedings of the 2023 Con-
ference of the ACM Special Interest Group on Data
Communication, pages 94–107, 2023.

[52] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahade-
van, Dejan Kostić, Jeff Chase, and David Becker. Scal-
ability and accuracy in a large-scale network emulator.
SIGOPS Oper. Syst. Rev., 36(SI):271–284, dec 2003.

[53] Philip Wette, Martin Dräxler, Arne Schwabe, Felix Wal-
laschek, Mohammad Hassan Zahraee, and Holger Karl.
Maxinet: Distributed emulation of software-defined net-
works. In 2014 IFIP Networking Conference, pages 1–9.
IEEE, 2014.

[54] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve
Padgett, Matthew Holliman, Gary Baldus, Marcus Hines,
Taeeun Kim, Ashok Narayanan, Ankur Jain, et al. Tak-
ing the edge off with espresso: Scale, reliability and
programmability for global internet peering. In Proceed-
ings of the 2017 Conference of the ACM Special Interest
Group on Data Communication, pages 432–445, 2017.

[55] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu,
Bingchuan Tian, Qiaobo Ye, Chunsheng Wang, Xin Wu,
Tianchen Guo, Cheng Jin, et al. Accuracy, scalability,
coverage: A practical configuration verifier on a global
wan. In Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication on
the applications, technologies, architectures, and proto-
cols for computer communication, pages 599–614, 2020.

[56] Ken Yocum, Ethan Eade, Julius Degesys, David Becker,
Jeff Chase, and Amin Vahdat. Toward scaling net-
work emulation using topology partitioning. In 11th
IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer Telecommunica-
tions Systems, 2003. MASCOTS 2003., pages 242–245.
IEEE, 2003.

[57] Peng Zhang, Aaron Gember-Jacobson, Yueshang Zuo,
Yuhao Huang, Xu Liu, and Hao Li. Differential network
analysis. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
601–615, 2022.

[58] Peng Zhang, Xu Liu, Hongkun Yang, Ning Kang,
Zhengchang Gu, and Hao Li. Apkeep: Realtime verifica-
tion for real networks. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 241–255, 2020.

[59] Peng Zhang, Dan Wang, and Aaron Gember-Jacobson.
Symbolic router execution. In Proceedings of the 2022
Conference of the ACM Special Interest Group on Data
Communication, pages 336–349, 2022.

[60] Huaiyi Zhao, Xinyi Zhang, Yang Wang, Zulong Diao,
Yanbiao Li, and Gaogang Xie. Improving the scalability
of distributed network emulations: an algorithmic per-
spective. IEEE Transactions on Network and Service
Management, 2023.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1059

A Network Emulation

In this part, we describe the detials about how we emulate
network devices, how we wire these emulated devices via
various types of virtual interfaces (§A.2), and how we emulate
edges (§A.3) and control plane network (§A.4) with Crescent.

A.1 Emulating Network Devices

Most of our switch vendors only provide VM images, while
a couple also provide container images. Table 1 outlines all
the vendors’ images supported by Crescent, along with the
least resources (e.g., CPU, memory) required to boot up. For
vendors that support both VM and container images, we use
container images as default because they are more lightweight
than VM ones. However, if a device uses functions not sup-
ported by container images but supported by VM images, e.g.,
Segment Routing [28], we will emulate it with the VM image.
Some vendors provide multiple VM images of different specs.
For example, v4 provides two VM images: one supporting
more ports while consuming more resources. Thus before
emulating a device of v4, we count the number of ports the
device needs to emulate. If it is below the limit, we use the
image with a lower resource requirement.

Native Vendor Image Support. Crescent uses containers as
the basic units to mock up network devices [3,4,41]. Crescent
treats VM images the same as container images by wrapping
the VM image, a KVM hypervisor, and other libraries into
a container image. We host a centralized image registry for
hosts to pull the images from. By making this implementation
choice, we are able to manage all emulated devices using a
single underlying runtime system. Specifically, Crescent uses
the Docker engine to manage all images and containers.

A virtual network interface attached to a container with a
VM running inside are mapped to an interface of the VM via
a MacVTap interface [6], which forwards ingress traffic to
or egress traffic from the guest OS’s corresponding virtual
interface without traversing guest OS’s kernel (e.g., container
1,2, and 3 in Figure 5). Inside the container, we use virtio [44]
as the default network interface adapter attached to the guest
VM to achieve a better performance. However, due to com-
patibility issue, some vendor’s image only supports obsolete
network adapters such as e1000 [2].

While there may be some additional overhead in wrapping a
VM image into a container and routing traffic through virtual
interfaces compared to running guest VMs directly on the
host, this overhead is negligible in comparison to the time it
takes for network convergence. For example, our evaluation
using vendor v3 shows that the additional overhead resulted
in about 2×10−4s of end-to-end ping latency, while network
convergence could take several seconds.

A.2 Emulating Network Links

We use different virtual network interfaces to wire the emu-
lated devices. We emulate a link on the same host by a veth
pair directly connecting two virtual interfaces attached to two
emulated devices. We must put a virtual network interface
attached to a container running with a container image into
the container’s namespace before its containerized switch OS
boots up [41]. Otherwise, the switch OS cannot recognize the
virtual network interfaces. To deal with this issue, Crescent
pauses a container immediately after the container starts run-
ning so that its network namespace is ready to attach virtual
interfaces before starting the OS.

We setup a virtual link across two hosts with a VXLAN
tunnel via the OVS bridge. One end of a veth pair is attached
to the emulated device container network namespace, and the
other end is attached to the OVS bridge. OVS is responsible
for encapsulating and decapsulating packets across hosts. We
always reserve the first virtual interface (i.e., eth0 in Figure 5)
for the management port of the emulated device. The man-
agement port’s virtual interface is then attached to the host’s
default Docker bridge, which is exposed for users to log into
the emulated device via SSH or Web UI.

Figure 5 illustrates how we wire devices on the same host
and across hosts. Containers running a guest switch VM inside
(e.g., containers 1-3) use MacVTap to pipe traffic from the
virtual interfaces attached to the VM to the virtual interface
attached to the container or vice versa. For a container booted
up from a container-based image, e.g., container 4, an end of
the veth pair is attached to the container directly.

A.3 Emulating Edges

We consider three types of network elements at the edge: ISP,
cloud, and servers under ToR, over which we have no, partial,
and complete control in reality, respectively.

ISPs and clouds peer with our border devices via BGP. For
the minimum requirements, Crescent must be able to inject
the routes received from the edges into our network to ensure
some properties, e.g., the traffic to certain IP prefixes must be
routed through the gateway between our network and a public
cloud rather than the gateway to an ISP’s network. We have
a partial control over the cloud peers (such as the ability to
specify route policies), while no control over the ISP peers.
As mentioned in [41], one way to replay the routes received
from cloud peers is to inject these routes directly into our
border devices using BGP speakers. However, the simplicity
of this approach comes at a cost, as it can only be used to
replay the routes announced from the edge to our network, but
not vice versa. For example, if we want to observe the routes
announced from our network to cloud peers (e.g., to avoid
route leaks [49] from us), we would have to employ another
component to collect the routes announced to the cloud peers,
then analyze the collected routes later.

1060 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Crescent emulates these edge peers using a lightweight
switch container image, as opposed to the proposed approach
in [41]. Crescent adds loopback and static prefixes to an
emulated device (which need not be identical to the real-world
cloud peers) to establish BGP connections with our border
devices and then configures these devices to announce the
routes. By doing this, we are also emulating the cloud peer’s
behavior in addition to merely injecting routes to our border
devices, which allows us to capture not only the changes in
FIB of our border devices but also those of the emulated cloud
peers with our proactive monitoring tools (§6). Besides, this
approach allows us to emulate and validate route policies over
which we have control on some public cloud peers in our
emulation environment.

In a production DC, there are tens of servers under each
ToR, where we have full control of their network stack. For
ToR level devices, Crescent connects at least one virtual server
to it to run proactive monitoring such as pingmesh (§6). These
virtual servers are emulated using lightweight Linux images
by default. We also support running switch images in these
virtual servers, to help emulate the scenarios where advanced
users establish BGP sessions between a server and the ToR.

A.4 Emulating Control Plane Network

Our networks are impacted not only by device configuration
changes, but also by traffic engineering (TE) controllers that
install BGP routes to override the default routing behaviors. It
is critical to ensure the reliability of the software implemented
for the TE controllers and their dependent components, e.g.,
BGP speakers for route announcement and BGP Monitoring
Protocol (BMP [47]) collector for route collection. Instead
of competing for limited physical testbeds, we utilize Cres-
cent to provide a testing environment for these SDN software.
One way is to containerize these SDN software and then
let them establish connections to emulated devices through
the emulated network. Nonetheless, this in-band approach
requires TE developers to wrap their software into container
images, which takes extra efforts if the software was not orig-
inally developed for a containerized deployment. Also it is
not resource-efficient to emulate the in-band network while
the controller manages only a small portition of the network.
Crescent provides a more flexible option by using a dedicated
Linux bridge to emulate Control Plane Network (CPN) [27].
CPN can be used to establish out-of-band connections be-
tween emulated devices and software components in a way
that is transparent to the software under test. This method
eliminates the need for the SDN software to be enclosed in
containers, thereby reducing the amount of time required for
our software developers to set up the test.

B Multi-Host Partitioning Algorithm

Algorithm 1 shows the pseudocode of the heuristic multi-host
partitioning algorithm proposed in §4.3.

C Topology Expansion

Algorithm 2 presents our topology expansion algorithm. This
algorithm primarily takes the devices under change and ex-
pansion_width (w) as input and returns the emulated nodes
as output. It uses a variable N to track all traversed nodes and
map them to their traversed neighbors.

The algorithm first expands the topology upwards (line
5) and downwards (line 6) to add upstream and downstream
neighbors. This expansion uses a modified depth-first search
(DFS) algorithm called MV _DFS (line 11). MV _DFS stands
for multi-vendor DFS. It is a directional DFS to expand the
network by w and add all required vendors per level. For each
node, MV _DFS does not explore all the node’s neighbors. It
terminates when it has added at least w neighbors and ensures
they represent all the unique vendors attached to this node
(line 28). The algorithm customizes the for-loop traversal in
line 21 in two ways. It prioritizes nodes already selected for
emulation. This strategy ensures we reduce the number of
expanded nodes. And it also prioritizes nodes belonging to
vendors that it has yet to explore in that loop. This strategy
aims to satisfy the condition in line 28 as soon as possible.
During MV _DFS, it adds nodes (line 22) representing either
the leaf or top node or those representing nodes with newly
explored neighbors (line 26).

Next, the algorithm expands the network horizontally (line
7). It ensures that for each device under change, we add other
nodes from all vendors that belong to the same level (lines 33-
34). Again, the algorithm customizes this to prioritize nodes
already selected for emulation.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1061

Algorithm 1: Randomized Multi-Host Partitioning
1 Preprocess: Generate an undirected weighted graph (V,E). For

every partition p, we have a corresponding node p′ in V . And for
every pair of partitions p1, p2, we have e = edge(p′1, p′2) in E and
e.weight = # of links between p1 and p2. We also define the cost
of a node p′: p′.cost = sum(memory_cost of each node in p).

2 Input: V,E, partition_memory_limit
3 Output: map(v→ n) for each v in V // map each node to a

partition number

4 u f ← union_find(V); // assign each v in V to a new set
5 non_zero_edges← [e for e in E if e.weight ̸= 0] ;
6 zero_edges← [e for e in E if e.weight = 0];

// Instead of always choosing the edge with the
largest weight,

// we sample(without replacement) from a distribution
based on the edge weight.

7 non_zero_edge_distribution← distribution over non_zero_edges,
p(ei) = ei.weight/sum;

8 zero_edge_distribution← distribution over zero_edges,
p(ei) =

√
ei.src.cost× ei.dst.cost/sum;

9 while non_zero_edge_distribution is not empty or
zero_edge_distribution is not empty do

// Merge the edges with non-zero weight first. If
all remaining edges has zero weight,

// use the geometric mean of src.cost and dst.cost
as weight.

// sample_without_replacement: with replacement, a
value can be selected multiple times.

// For each edge we only visit it once, so we use
without_replacement here.

10 if non_zero_edge_distribution is not empty then
11 e←

non_zero_edge_distribution.sample_without_replacement();

12 else
13 e←

zero_edge_distribution.sample_without_replacement();
14 src_root← u f .get_root(e.src);
15 dst_root← u f .get_root(e.dst);
16 if src_root = dst_root then
17 continue;
18 if src_root.cost +dst_root.cost > partition_memory_limit

then
19 continue;
20 new_root← u f .union(e.src, e.dst);
21 new_root.cost← src_root.cost +dst_root.cost

22 m←map();
23 for v in V do
24 m[v]← indexof(u f .get_root(v));
25 return m

Algorithm 2: Topology Expansion
1 Global inputs: S: devices under change, w: expansion width;
2 Global output: T : emulated devices, initialized to S;
3 Global variables: N: map node to a set of its neighbors;
4 procedure TOPO_Expansion()
5 EXPAND_VERTICAL(up);
6 EXPAND_VERTICAL(down);
7 EXPAND_HORIZONTAL();
8 Input: dir: direction (up or down);
9 procedure EXPAND_VERTICAL(dir)

10 for s ∈ S do
11 MV_DFS(s, dir);
12 if N has changed then
13 for n in new nodes in N do
14 T .add(n);

15 Input: s: visiting node;
16 procedure MV_DFS(s, dir)
17 if s ∈ N then
18 return
19 newN←{};
20 D← s.neighbors(dir);
21 for n ∈ D do

// The for loop will prioritize nodes already
in T and belonging to untraversed vendors.

22 if n is top or leaf node then
23 newN.add(n);
24 else
25 MV_DFS(n, dir);
26 if N has changed then
27 newN.add(n);
28 if size(newN)≥ w and vendors(newN) = vendors(D)

then
29 break;
30 N[s]← newN;
31 procedure EXPAND_HORIZONTAL()
32 for s ∈ S do

// Prefer selecting n already in T −D
33 if L(s) ̸= /0 s.t. L represents other nodes at same level then
34 ∀v ∈ vendors,∃n ∈ L(s,v) s.t. T .add(n);

1062 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Reasoning about Network Traffic Load Property at Production Scale
Ruihan LiPA, Fangdan YeA, Yifei YuanA, Ruizhen YangA, Bingchuan TianA, Tianchen GuoA, Hao WuA,
Xiaobo ZhuA, Zhongyu GuanA, Qing MaA, Xianlong ZengA, Chenren XuP, Dennis CaiA, Ennan ZhaiA

PPeking University AAlibaba Cloud

Abstract
This paper presents JINGUBANG, the first reported system for
checking network traffic load properties (e.g., if any link’s
utilization would exceed 80% during a network change) in
a production Wide Area Network (WAN). Motivated by
our network operators, JINGUBANG should meet three im-
portant requirements: (R1) comprehensive support for com-
plex traffic behavior under BGP, IS-IS, policy-based routes
(PBR), and segment routes (SR), (R2) reasoning on traffic
load of billions of flows across a period of time, (R3) real-
time failure-tolerance analysis. These requirements pose chal-
lenges in modeling the complex traffic behavior and main-
taining the checking efficiency. JINGUBANG has successfully
addressed these challenges. First, we propose the traffic distri-
bution graph (or TDG), capable of modeling equal-cost multi-
path (ECMP), packet rewriting, and tunneling, introduced by
BGP/IS-IS, PBR, and SR, respectively. Second, we design an
algorithm based on TDG to simulate traffic distribution for
billions of flows across a time period both efficiently and ac-
curately. Third, JINGUBANG proposes an incremental traffic
simulation approach that first computes an incremental TDG
and then simulates only the differential traffic distribution,
avoiding the need to simulate the entire network traffic distri-
bution from scratch. JINGUBANG has been used in the daily
checking of our WAN for more than one year and prevented
service downtime resulting from traffic load violations.

1 Introduction
Alibaba Cloud serves over one billion customers with its ser-
vices including cloud computing, search, and video. To sup-
port these services, we operate a global Wide Area Network
(WAN) infrastructure to interconnect tens of data centers. Our
WAN is a traditional, distributed network, rather than an SDN
network. This WAN maintains hundreds of routers and for-
wards a huge amount of service traffic by combining diverse
protocols including BGP, IS-IS, policy-based routes (PBR),
and segment routes (SR). According to our recent three-year
records, more than 90% of outages caused by misconfigura-
tions on our WAN were related to traffic load violations.1

Checking whether network traffic load meets our variety
of specifications, therefore, is vital to the availability and reli-
ability of our WAN. For example, in the scenario of planned
network changes (e.g., updating configurations and upgrading

1Since Hoyan [41] was used three years ago, Hoyan has prevented most
misconfigurations causing routing reachability errors in our network. The
remaining misconfiguration-related outages, in recent three years, happened
tens of times a year and accounted for about 30% of all our network outages.

network routers), our network operators need to ensure that
no link would be overloaded at any point during the entire
planned change time window. As another example, our op-
erators need to check whether any traffic load property (e.g.,
no drastic traffic load increase on any link) may be violated
if given links fail. Conventional techniques (e.g., traffic engi-
neering [4, 11, 17, 19, 25, 26]) do not help since they mainly
focus on optimizing and controlling traffic load; however,
what we need is a system capable of answering our queries
about specified traffic load properties.

Requirements. We decided to build a system to model the
traffic behavior and proactively check traffic load violations
in our WAN. By surveying our operators, a practical checking
system must meet the following requirements.

R1: Comprehensive protocol support. The checker should
support comprehensive traffic behavior under BGP, IS-IS,
PBR, SR, and static routes. Our WAN uses BGP and IS-IS for
routing; our traffic scheduling and engineering heavily rely
on PBR and SR, due to their precise traffic control and low
operation cost. For example, SR can specify forwarding paths
on a per-hop basis, while PBR can identify QoS and classify
traffic into different classes.

R2: Reasoning on traffic load for billions of flows in a
period of time. The checker should support the traffic load
reasoning not only at a single time point, but also during a
period of time. In a network change scenario, the change time
window may last multiple hours; thus, our operators need to
check whether the intended traffic load properties can hold
during the entire change window. In addition, billions of flows
can appear during the time period; thus, the checker must be
scalable to reason on the traffic load of billions of flows.

R3: Real-time failure-tolerance analysis. Our operations
frequently run failure-tolerance analysis to check if a set of
failed routers and links would cause traffic load violations.
The checker should offer an efficient what-if analysis to meet
the real-time requirement of our operators.

State of the arts. No prior work, nevertheless, can simultane-
ously satisfy all the above requirements. Specifically, current
network verification systems have been focused on checking
reachability properties (e.g., if packets/route advertisements
sent from a router A can reach another router B) in terms of
control plane [1, 2, 10, 12, 14, 15, 22, 31, 32, 34, 39–42] and
data plane [3, 18, 20, 21, 23, 24, 28, 30, 35, 37]; thus, they are
unable to reason about traffic load properties in the network.

A recent effort, QARC [36], closest to our goal, proposes a
verification approach to checking whether links may be over-
loaded under any failure up to a given degree (i.e., k-failure

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1063

tolerance reasoning for network traffic load). QARC, how-
ever, cannot meet our requirements. First, QARC’s encoding
is based on the shortest path with flow quantities. It is non-
trivial to extend the encoding to support PBR and SR, which
introduces traffic behavior beyond shortest-path-forwarding,
e.g., packet rewriting and tunneling. Second, the verification
algorithm of QARC mainly focuses on traffic load reasoning
at a single time point. Extending the algorithm to efficient
verification of traffic load in a period of time is not straight-
forward. Finally, QARC’s main focus is k-failure tolerance
typically with small k, it is reported that it cannot scale to a
larger number of failed links/routers (e.g., k > 5) [36].

Our approach: JINGUBANG.2 In this paper, we present JIN-
GUBANG, the first system for checking network traffic load
properties for WANs. JINGUBANG simultaneously achieves
the above-mentioned requirements proposed by our operators.
In essence, JINGUBANG is a system that can simulate traf-
fic distribution (i.e., traffic load on each link) for traffic load
property reasoning. Specifically, JINGUBANG takes as inputs
(i) the network topology and routers’ configurations, (ii) IP
prefixes advertised into the network, and (iii) multiple traffic
snapshots each recording the traffic information of a set of
flows entering the network at a time point, then accurately
simulates the traffic distribution, and finally checks whether
it meets the given traffic load property.

Building JINGUBANG requires us to address three chal-
lenges (corresponding to the three requirements, respectively).
First, the traffic behavior under BGP, IS-IS, PBR, and SR is
complex. In particular, SR relies on tunneling and PBR offers
fine-grained flow processing such as packet rewriting. In ad-
dition, routing protocols (e.g., BGP, IS-IS) enforce protocol-
based equal-cost multipath (ECMP), where traffic is load-
balanced first between BGP next hops and then between IS-IS
next hops. To comprehensively model the traffic behavior
under those protocols, we introduce the traffic distribution
graph (or TDG), translating the traffic behavior of different
protocols into a uniform traffic forwarding representation.
TDG can represent not only destination-based forwarding be-
havior (like BGP and IS-IS) with ECMP but also tunneling
and packet rewriting used in SR and PBR. (§4.1)

The second challenge is efficiently reasoning on traffic
load for billions of flows in a period of time. In our operation,
the time period to be checked typically lasts several hours,
involving a huge number of time points (1 minute for each
in our settings). A strawman solution is to generate many
TDGs, each corresponding to a time point, and then run traf-
fic simulation on each of all these TDGs. Such a solution is
inefficient. We observe that traffic flows across different time
points highly overlap. Driven by this insight, we propose an
approach that constructs only one TDG with the union of all
the traffic flows, enabling us to simulate traffic distribution

2In ancient Chinese mythology, Jingu Bang is a tool used by Yu the Great
to measure water levels during his efforts to control floods. Therefore, we
named our network traffic load checking system JINGUBANG.

across a period of time within one run. To further improve the
efficiency of handling billions of flows, we propose two opti-
mizations based on sampling and equivalence classes which
significantly reduce the number of flows to be considered
while still maintaining accuracy. (§4.2-§4.4)

Third, daily operation requires a large number of what-
if analysis on network link (or router) failures. Straightfor-
wardly simulating traffic for each link (or router) failure re-
quest cannot meet the real-time requirement of our operators.
To support real-time failure-tolerance analysis, JINGUBANG
proposes an incremental traffic simulation approach that first
computes an incremental TDG and then simulates only the
differential traffic distribution, avoiding the need to simulate
the entire network traffic distribution from scratch. (§5)

Scope. JINGUBANG operates under two key settings: (i) a time
point is defined as a minute for the purpose of checking traffic
load properties, (ii) traffic is assumed to be distributed evenly
or based on pre-configured weights across ECMP paths. Thus,
the examination of micro-burst congestion [45] and ECMP
unfairness falls outside the scope of this paper, as these consid-
erations are orthogonal to our operators’ requirements. 3 In
addition, JINGUBANG takes as input flows entering our WAN
and external routes advertised into our WAN, and will suffer
from inaccuracy if traffic measurement is imprecise [5, 38] or
route monitoring is incomplete (§7).

Real-world deployment. JINGUBANG has been used to check
network traffic load in our WAN and successfully prevented
service downtime in operations such as network changes and
failure-tolerance analysis. We share our experience with JIN-
GUBANG in §6 and evaluate JINGUBANG in §7.

Ethics. This work does not raise any ethical issues.

2 Background and Motivation
This section starts by describing the background of our WAN
(§2.1), and then presents our motivation (§2.2).

2.1 Background: Our Production WAN
Alibaba Cloud operates a private WAN infrastructure that
interconnects all its data centers and peers with external ISPs,
serving both traffic internal to Alibaba Cloud and traffic be-
tween Alibaba Cloud and external networks. Our WAN is a
distributed setting without a centralized SDN controller. By
Jan 2023, this WAN has tens of autonomous systems (ASes),
nearly a thousand routers, and tens of thousands of links,
where each router has a forwarding table with millions of
entries. 4 Our operators conduct hundreds of network changes
per week, with frequent changes such as link capacity expan-
sions and IP prefix publications happening a dozen times per
day. Our WAN uses BGP (including eBGP and iBGP), IS-IS,
static routes, SR, and PBR to route our network traffic.

3 In >99% of our WAN links, the top flow consumes <1% bandwidth.
With a large number of flows and no elephant flows, flow-level ECMP can
be approximated by evenly distributing flow volumes across ECMP paths.

4We omit absolute numbers for the confidentiality reason.

1064 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Interface X

G
10.0.0.7

A
10.0.0.1

B
10.0.0.2

D
10.0.0.4

E
10.0.0.5

F
10.0.0.6

Interface IP 11.0.0.5

G's PBR config:
interface X, inbound
 match src 20/8
 remark dscp 5

BGP RIB:
 *30/8, nexthop 11.0.0.5
Connected RIB:
 *11.0.0.4/30, directly connected

BGP RIB:
 *30/8, nexthop 10.0.0.5
 *30/8, nexthop 10.0.0.6
IS-IS RIB:
 *10.0.0.5/32, SR tunneled
 *10.0.0.6/32, SR tunneled

A's SR config:
route 10.0.0.5/32, match dscp 5
 path 10.0.0.2, 10.0.0.5 weight=10
route 10.0.0.6/32, match dscp 5
 path 10.0.0.3, 10.0.0.6 weight=8
 path 10.0.0.4, 10.0.0.6 weight=2

2~
12 G

bps

f2: 2~12 Gbps
20.0.0.1->30.0.0.1
dscp=0

5~10 Gbps

4~8 Gbps

1~2 Gbps

5~10 Gbps

4~8 Gbps

1~2 Gbps

f1: 8 Gbps
20.0.0.1->30.0.0.1
dscp=5

C 10.0.0.3

AS 200

AS 100

Figure 1: Motivating example. The green boxes represent
RIBs for router A and G, respectively. Two yellow boxes are
G’s PBR configuration and A’s SR configuration, respectively.
In the given period of time (say one hour), the traffic rate of
f2 fluctuates between 2 Gbps and 12 Gbps, while f1 keeps
8 Gbps. G belongs to AS 100, and A~F belong to AS 200.
This example shows how BGP, IS-IS, PBR, and SR work
together to distribute the traffic in our WAN.

PBR and SR. Unlike routing protocols (e.g., IS-IS and BGP),
PBR and SR are non-destination-based forwarding techniques.
A PBR policy can match packets by their destination ad-
dresses, source addresses, and DSCP values; for matched
packets, it can set next hops or modify packet fields (e.g.,
DSCP). SR forwards the packets along one or more explicit
paths built on Multiprotocol Label Switching (MPLS) or IPv6
stacks (i.e., SRv6); different paths may have different routing
weights. The mainstream SR used in our WAN is SRv6.

Traffic monitoring. Our WAN employs a large-scale traffic
monitoring system that collects detailed traffic information
from the network via Netflow [8] and sFlow [29] at a sampling
rate of 8192. The monitoring system records the information
of traffic flows entering each interface of routers, including the
value of each field (e.g., the IP-port 5-tuple), the timestamp of
report time, and the total traffic volume of each flow sent since
the last report time. The system generates a traffic snapshot
per minute, recording the traffic flows (entering our WAN)
and their rates in that minute. JINGUBANG receives 60 one-
minute traffic snapshots every hour.

2.2 Motivations and Goals
Motivating example. Figure 1 shows a small but illustrative
example of a traffic distribution situation in our operation.
Suppose two traffic flows f1 and f2 enter the network by
router A and G, respectively. In the given period of time,
the traffic rate of f1 keeps 8 Gbps, while f2’s rate fluctuates
between 2~12 Gbps. When receiving f2, G sets f2’s DSCP
to 5 according to G’s PBR configuration; then, G routes f2
to A based on its eBGP route. By receiving f1 and f2 (both
with DSCP=5), A performs the longest prefix matching for the
flow based on A’s routing information base (RIB), identifying
two iBGP next hops E and F . The traffic rate from A to E

Figure 2: Traffic load fluctuation on one of the links in our
WAN during randomly sampled three days.

and F is equal, i.e., 10~20 Gbps/2=5~10 Gbps, because of the
ECMP of iBGP. Router A looks up the direct next hop to E
and F by checking A’s SR configuration. According to A’s SR
configuration in Figure 1, A distributes the traffic into three
paths (A→ B, A→C, and A→ D) in traffic rates 5~10 Gbps,
4~8 Gbps, and 1~2 Gbps, respectively. Note that A→C and
A→ D forward traffic rates in a ratio of 4:1 due to weights 8
and 2 specified in A’s SR configuration.

Requirements from our operators. It is hard to ensure
whether the traffic meets the intended properties (say “whether
all traffic on C→ F keeps the rate lower than 8 Gbps even
if B→ E fails”) in a real WAN which is much larger than
the above-mentioned motivating example. By surveying our
operators, Table 1 lists representative scenarios where our
operators need to check traffic load properties. There are
mainly two types of analysis: what-if analysis and auditing.
The former mainly focuses on network changes and specified
failure scenarios, while the latter checks a network without
any change. As shown in Table 1, our operators want to check
traffic not only at a single time point but also over a period
of time, because the network traffic fluctuates significantly
during a time period. Figure 2 shows the traffic fluctuation
occurred on one link in our WAN in randomly sampled three
days. We can observe that the network traffic load fluctuates
between 10% and 50% of this link bandwidth during these
three days. Furthermore, as shown in Table 1, we should sup-
port protocols including BGP, IS-IS, SR, and PBR, since our
WAN employs these types of protocols to forward traffic.

Traffic load properties of interest. The network traffic load
property our operators mainly focus on is whether the traffic
load/rate (in absolute number or percentage) or the change
of it on a given set of links is above or below the specified
threshold, such as “the traffic rate on the given set of links
should be lower than 3 Gbps” and “given a network change,
the traffic load on a specified link should not increase by 40%
during the change”. The prop in Figure 4 shows the formal
definition of properties of interest (detailed in §3.3).

Representative scenarios for what-if analysis. We now de-
scribe two representative scenarios (network change analysis
and failure tolerance analysis) to illustrate why we need what-
if analysis in our WAN.

Network change analysis. Network changes, e.g., changing
configuration and updating routers, are one of the most im-
portant operations. In a typical network change, the operator
makes a step-by-step change plan including each atomic step

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1065

Table 1: The main specifications our operators express in their operations.
Type Name Specification Protocols

What-if
Analysis

Change analysis Whether the traffic load property holds in the network change time window BGP/IS-IS/SR/PBR
Change safety Whether the network change would cause a traffic violation for a specified period of time BGP/IS-IS/SR/PBR
Failure tolerance Whether the traffic load property holds if a specified set of routers or links becomes unavailable BGP/IS-IS/SR/PBR

Auditing Daily auditing Whether the traffic load property holds for a given period of time BGP/IS-IS/SR/PBR

to be executed (e.g., changing routing policy, turning off inter-
faces, and cutting off the connection with neighbor routers),
and reserves a network change time window (e.g., 1am-7am
on the upcoming Thursday). Because network changes are
prone to failures [27,41], our operators want to check whether
the network change would cause traffic load violations at
any point in the change time window (note that network traf-
fic fluctuates significantly during a period of time as shown
in Figure 2) based on the traffic monitored in similar time
periods (e.g., 1am-7am on last Thursday).

Failure tolerance analysis. Another key type of operations
is to check whether the load property holds if a specified set
of links (or routers) becomes unavailable, due to the follow-
ing scenarios: (i) router upgrading/replacement, and (ii) link
maintenance. In the above cases, the router or link should
be specified as unavailable, and the operators want to know
whether the “failure” may cause any property violation.

Non-goal. JINGUBANG can check failure tolerance under
a given set of failed routers or links, but cannot check arbi-
trary k-failure tolerance (i.e., whether the property holds if
arbitrary k links fail). While QARC [36] presented a good
first step toward checking arbitrary k-failure tolerance, our
operation experience found that designing a production-scale
k-failure-tolerance checking for quantitative properties is ex-
tremely hard. This is because such a checker needs to support
more detailed protocol properties, e.g., BGP add-path and SR
tunnels, which significantly expands the encoding space. We
leave scalable k-failure traffic load checking to future work.

2.3 Related Work
For the traffic load property reasoning, why the state-of-the-
art efforts do not help? Existing verification systems [2, 3,
10, 12, 14, 15, 18, 20, 21, 23, 24, 28, 30–32, 34, 35, 37, 39–43]
mainly focus on checking qualitative properties such as packet
reachability (e.g., “whether a given route sent from router A
can reach another router B”). To the best of our knowledge,
except QARC [36], none of the prior work is able to check
quantitative properties related to the traffic load.

Traffic engineering. The major goal of traffic engineering
(TE) is to optimize network traffic and resource usage [4, 11,
17, 19, 25, 26]. Our goal, on the contrary, is to check whether
the network implementation (e.g., network topology, router
configurations, and injected routes) satisfies the high-level
traffic load properties. In particular, Alibaba Cloud uses a
hybrid approach to realizing the TE optimization objectives
via reconfiguring routers (e.g., setting up SR tunnels) and
injecting routes (e.g., advertising BGP routes). However, they
are unable to answer what-if or auditing queries about traffic

Flow Number
Reduction (§4.4)

Basic checking part

TDG Construction
(§4.1) TDG

- RIBs
- PBR
- SR tunnels

Route Simulation
via Hoyan Traffic Distribution

Traffic Snapshots:
S1...Sn

Prefixes

Topology &
Configurations

Failure
Model

Traffic
Distribution

Traffic Distribution
Under Failure

Traffic Load Property

YES
or

NO

- Diff. RIBs
- PBR
- SR tunnels Real-time checking part

Traffic Simulation
(§4.2, §4.3)

Real-Time Failure
Tolerance Analysis (§5)

S'1...S'n

Figure 3: JINGUBANG’s workflow overview. Solid arrows
denote the basic traffic property checking process; dashed
arrows mean the failure-tolerance checking process.

properties as shown in Table 1. In addition, our work can
also be used in non-TE scenarios. For example, when a router
needs to be updated from vendor A to B, JINGUBANG can
check that the new configuration under vendor B is correct in
that no traffic load properties are violated.

Network emulation. Network emulators, e.g., Crystal-
Net [27], run the real control plane software in emulated
environments and generate the corresponding forwarding be-
haviors for validation purposes. We do not choose emulation
due to two issues. First, the emulator needs vendors to provide
their router firmware within virtual machines or containers.
However, we found it practically hard to get such support
from all vendors for all router models in our WAN. Second,
running real router software requires a large number of com-
puting resources (e.g., $100 per hour for emulating just one
data center [27]). As routers in WAN typically have much
more sophisticated firmware than data center switches, emulat-
ing a WAN can be even more expensive. Therefore, emulation
is useful but not a good choice for our purpose.

Quantitative property analysis. Our focus on traffic proper-
ties is also different from the work on probabilistic analysis of
the network control plane [16, 34, 44] and data plane [13, 33].
We check traffic at the network implementation level, which is
different from the work [6, 46] that validates network designs.

3 JINGUBANG Overview
We built JINGUBANG, the first system for checking traffic load
properties in production. JINGUBANG meets the requirements
specified by our operators in §1.

3.1 JINGUBANG Workflow
Figure 3 shows the workflow of JINGUBANG. At a high level,
JINGUBANG takes as inputs (i) the network topology and
routers’ configurations, (ii) IP prefixes advertised into the
network, and (iii) multiple traffic snapshots each recording
a set of traffic flow information at a time point (say one
minute), then accurately simulates the traffic distribution (de-
fined later), and finally checks whether the distribution meets

1066 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 2: Important terminologies.
Terms Meaning

flow A traffic flow, defined as ⟨dst, src, dscp⟩
located flow A traffic flow at a particular interface

defined as ⟨dst, src, dscp, interface, traffic volume⟩
traffic snapshot A set recording all located flows entering the

network at the given time point
traffic distribution A vector recording the traffic load of each link

in the network at the given time point

the specified traffic load property. For failure-tolerance anal-
ysis, JINGUBANG takes an additional failure model as input,
which specifies a collection of unavailable routers or links.

As shown in Figure 3, we have two parts in JINGUBANG:
the basic checking part (i.e., the solid arrows) and the real-
time checking part (i.e., the dashed arrows). The real-time part
is used for failure-tolerance analysis, i.e., checking “whether
the property holds if a specified set of routers or links becomes
unavailable”, while the basic part is responsible for the regular
checking, such as network change analysis and daily auditing.

Basic checking part. In the basic part, we use Hoyan [41]
to generate the RIBs, PBR, and SR tunnels for each virtual
routing and forwarding (VRF) of all routers in the network.

Then, JINGUBANG reads multiple traffic snapshots
S1, · · · ,Sn. Each traffic snapshot records a set of located flows
entering the network at the corresponding time point (e.g., all
traffic flow information from 12:30am to 12:31am on Aug
20, 2022), where a located flow is represented as ⟨dst, src,
dscp, interface, traffic volume⟩. For example, in Figure 1, f1
can be represented as ⟨30.0.0.1, 20.0.0.1, dscp=5, interfaceA,
8 Gbps⟩. By reading n traffic snapshots, S1, · · · ,Sn, JIN-
GUBANG’s flow number reduction module (§4.4) generates n
snapshots, S ′1, · · · ,S ′n, but each with a much smaller size due
to our proposed sampling and equivalence class approaches.

By putting the above information together, JINGUBANG
constructs a traffic distribution graph (or TDG) and simulates
the traffic distribution (§4.2, §4.3). Finally, it checks whether
the traffic distribution meets the specified property.

Real-time checking part. In the real-time part, JINGUBANG
takes the failure model—containing a collection of specified
failed routers or links—as input. We first use Hoyan to gener-
ate differential RIBs that record the difference of RIBs due to
the failure. Then, JINGUBANG checks the TDG computed in
the basic process and only updates the affected part. Finally,
JINGUBANG computes traffic distribution under the given
failure via the incremental traffic simulation module (§5).

3.2 Important Terminologies
Table 2 summarizes important terminologies, including flow,
located flow, traffic snapshot, and traffic distribution. For the
sake of simplicity, we may use the term “flow” for the located
flow when the context is clear. Besides, the terms “traffic rate”
and “traffic volume” of a flow may be used interchangeably
at a given time point, since they are equal in unit time.

task ::= conf ; flow ; [fail ;] prop ; Checking task
· · · · · ·

prop ::= (link l : expr)∗ Traffic load property
expr ::= (load |diff) (≥|≤) n (Gbps |%) Per-link property

Figure 4: Specification of JINGUBANG checking tasks.

3.3 JINGUBANG Checking Task’s Specification
The specification of an JINGUBANG’s checking task is similar
to previous verification systems [2,3,9,37] with the additional
traffic load properties. As shown in Figure 4, our operators
will use a domain-specific language (DSL) to specify four
parts: conf, flow, fail (optional), and prop: (i) conf specifies
the topologies and configurations of the network to check;
(ii) flow specifies the traffic snapshots; (iii) fail is only used
for real-time checking, and allows the operators to specify a
failure model, i.e., a collection of failed routers and links in
this checking task; (iv) prop specifies the traffic load property,
defined as a set of ⟨link, per-link traffic load property⟩ pairs,
where a per-link traffic load property (defined in expr) speci-
fies the condition that the traffic load or its difference (in the
failure scenario) on a link should hold.

Given a task defined above, JINGUBANG simulates the traf-
fic distribution and checks if the specified traffic load property
holds. The checking part follows directly from the simulated
traffic distribution. Below we discuss how to simulate the
traffic distribution accurately and efficiently in detail.

4 Traffic Simulation Using TDG
Given the complex features used in our WAN, flows exhibit
various behavior as described in §2.2. In order to accurately
simulate the traffic load on each link, we need to correctly
model the traffic behavior of each flow in the traffic snapshots,
such as ECMP, packet rewriting, and tunneling.

In this section, we first introduce the traffic distribution
graph (TDG), capable of modeling the above-mentioned traf-
fic behavior of flows. We then describe how to simulate traffic
distribution based on TDG. Finally, we propose additional
optimizations to further improve the simulation efficiency.

4.1 Traffic Distribution Graph
There are two existing ways that may be used to model the
network behavior: 1) the shortest-path-based approach [14,
36] and 2) the SMT-based approach [2]. Neither of them can
model the traffic behavior in our WAN. First, the shortest-path-
based approach uses a weighted graph to model the behavior
of each traffic class, where the shortest paths correspond to
the actual forwarding paths. This approach is fundamentally
limited in expressiveness: it cannot model iBGP and local
preference which are inevitable in WANs. Second, the SMT-
based approach encodes the entire control plane into an SMT
formula and employs a solver to solve the formula. While
there are encodings [2] for BGP, it is nontrivial to extend
them to model the complex features in our WAN. In addition,
SMT solving often induces prohibitively high overhead in

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1067

n0 : (f1, iA0 ,⊥) n1 : (f1,vrf A
0 ,⊥) n2 : (f1,vrf A

0 ,E)

n3 : (f1,vrf A
0 ,F)

n4 : (f1,vrf A
0 , p1) n5 : (f1,eA

1 , p1) n6 : (f1, iB0 , p1) n7 : (f1,vrf B
0 , p1)

n8 : (f1,eB
1 , p1)

n9 : (f1, iE0 , p1)

n10 : (f1,vrf A
0 , p2) ...

n11 : (f1,vrf A
0 , p3) ...

n18 : (f1, iA2 ,⊥)n17 : (f1,eG
1 ,A)

n16 : (f1,vrf G
0 ,A) n15 : (f1,vrf G

0 ,⊥) n14 : (f2, iG0 ,⊥)

1 0.5

0.5

1 1 1 1

1

1

0.8

0.2

1

1
11

1

1
1

Figure 5: A (partial) TDG representing the example scenario in Figure 1. The green, red, yellow, and purple nodes correspond to
router A, B, E, and G, respectively. Other nodes are omitted due to space limits.

runtime [36], which makes it impractical for our WAN with a
large number of routers and prefixes.

To model the complex behavior under BGP, IS-IS, PBR,
and SR, while still supporting efficient reasoning for traffic
load properties, we introduce the traffic distribution graph (or
TDG). Below, we first define the TDG and illustrate the TDG
for the motivating example in Figure 1. The formal definition
and construction of TDG can be found in Appendix B.
Definition. A TDG, corresponding to a traffic snapshot, mod-
els the entire traversal of all flows in this traffic snapshot in a
fine-grained manner. Specifically, a TDG is a directed acyclic
graph (JINGUBANG performs loop checking beforehand and
will report errors if the TDG contains loops), where a node
contains three elements: (i) the corresponding flow, i.e., ⟨dst,
src, dscp⟩, (ii) its location (e.g., receiving at an interface or
being processed at a VRF), and (iii) its next hop (e.g., an IP
address or an SR tunnel) based on the RIB lookup and policy
matching results on the router. An edge between two nodes
denotes a single processing step for this flow, such as forward-
ing the flow from an interface on router A to an interface on
router B, looking up the RIB on a router’s VRF, and so on.
Each edge is associated with a non-negative weight repre-
senting the fraction of traffic volume distributed on that edge;
thus, it is required that the sum of weights on all outgoing
edges of a node equals 1. Finally, the sources in the TDG
denote the initial state of flows entering the network.
Example. Figure 5 shows a (partial) TDG for the motivating
example shown in Figure 1. For readability, nodes are colored
based on the routers they correspond to; specially, green, red,
yellow, and purple nodes correspond to routers A, B, E, and
G, respectively. Each node is labeled with a name nk. We use
vrf X

k to denote the k-th VRF on router X . We also use iXk (eX
k ,

resp.) to denote the k-th interface labeled with the incoming
(outgoing, resp.) flow direction on router X .

The node n0 denotes the initial state of flow f1 entering the
network on router A’s interface iA0 , where ⊥ means that the
next hop is currently unknown. The edge (n0,n1) corresponds
to the step that f1 will be matched against the RIB on vrf A

0 .
The two edges from n1 correspond to the BGP lookup step,
which finds the next hop E and F . Note that the weights
on the two edges are both 0.5, reflecting the BGP ECMP
mechanism implemented by router vendors. The edge (n2,n4)
corresponds to the step that A resolves the next hop for E and

finds the SR tunnel p1; the two edges from n3 denote that two
tunnels are resolved for F and the weights reflect the ones set
in the SR configurations. Then (n4,n5) and (n5,n6) denote
that the flow is sent to the outgoing interface and forwarded to
B’s interface iB0 ; the meaning of other edges follows directly.

Similarly, the node n14 denotes the initial state of flow f2
entering router G’s interface iG0 with no next hops. The edge
(n14,n15) corresponds to the PBR step which modifies f2 to f1.
The edges from n15 to n18 and finally to n1 are similar to the
ones described above. Note that after f2’s DSCP is modified,
it undergoes processing identical to f1. Therefore, the TDG
does not have repetitive nodes for f2 after n18, showcasing its
efficiency in WAN scenarios where it is common for flows to
enter through different ingress points but later be processed
identically. In contrast, the shortest-path-based modeling [14,
36] has to build complete graphs for both f1 and f2, even
though the two graphs may share a large common subgraph.

4.2 Simulating A Single Traffic Snapshot
Given a TDG modeling the traffic behavior of all flows in
a traffic snapshot, we can compute the traffic distribution of
each flow on the TDG following its structure. By aggregating
the traffic load of all flows traversing a link, we can obtain
the traffic load of that link for the given traffic snapshot.

Algorithm 1 shows the traffic simulation algorithm for a sin-
gle traffic snapshot S , implementing the above idea. First, the
function TRAFFICSIM constructs a TDG for all located flows
in the traffic snapshot S . After that, the function TRAFFICSI-
MONTDG takes the generated TDG and the traffic snapshot
S as inputs to compute TL, i.e., the traffic distribution at the
given time point. Recall that the traffic distribution is a vector
that records the traffic load of each link in the given snap-
shot (§3). Specifically, TRAFFICSIMONTDG calculates the
traffic volume entering each node and distributes it on each
edge of the TDG in topological order. For each node n in the
TDG, we compute the traffic volume that reaches n (i.e., V [n])
by summing up all volumes V [e] on each incoming edge e
of n (line 7). Then, the volume at n is distributed into each
outgoing edge of n determined by their weights, e.g., ECMP
and SR weight (line 8). Finally, a link l’s volume (or rate)
TL[l] is computed by aggregating V [e] for each edge e where
e denotes the forwarding step along the link l (line 10). Thus,
we obtain a traffic distribution for a given time point.

1068 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1: Traffic simulation at a time point
1 Function TRAFFICSIM(S) :
2 Construct the TDG (N,E,w) for all (fk, ik,vk) in S ;
3 return TRAFFICSIMONTDG(S , T DG(N,E,w));

4 Function TRAFFICSIMONTDG(S , T DG(N,E,w)) :
5 Add an incoming edge e′k to source node nk for each located

flow in S and let V [e′k]← vk;
6 forall n in N sorted in topological order do
7 V [n]← sum{V [e]} for all n’s incoming edge e;
8 V [e]←V [n]×w(e) for all n’s outgoing edge e;

9 forall link l in the network do
10 TL[l]← sum{V [e]} for all e in E that share the same pair

of interfaces with l;

11 return TL;

4.3 Simulating Multiple Traffic Snapshots
We now consider the case where the system accepts multiple
traffic snapshots as input and needs to validate traffic load
properties for a period of time. A naive solution may simply
apply the TRAFFICSIM function, which is designed for a sin-
gle traffic snapshot, to each input traffic snapshot. However, it
is inefficient for scenarios requiring a large number of traffic
snapshots. For example, a planned change with a 2-hour time
window requires 120 per-minute traffic snapshots.

To improve efficiency, we make the key observation that
the input traffic snapshots are highly correlated. In the above
example, all the traffic snapshots are extracted from the con-
tinuous 2-hour period. Thus, a located flow may appear across
multiple snapshots which allows us to avoid repetitive com-
putation for each appearance.

We then propose a global-construction separate-evaluation
approach. As shown in Algorithm 2, JINGUBANG constructs
a global TDG representing the union of all flows in all traffic
snapshots (line 2) and calls TRAFFICSIMONTDG with the
global TDG and each given traffic snapshot (line 3). Thus, the
output of the algorithm TLM is a matrix recording the traffic
distributions across multiple time points.

4.4 Flow Number Reduction Optimization
To further improve the efficiency of traffic simulation, we next
propose two optimization techniques that can significantly
reduce the number of flows needed to be simulated.

Traffic sampling optimization. First, we propose a sampling
approach with provable guarantees on the accuracy loss to
reduce the number of flows in the traffic snapshot. Our key
insight is that a flow with a higher traffic volume should have
a higher probability of being sampled, and the total traffic
volume should be preserved. For example, if we sample only
one flow from the traffic snapshot S , the sampled flow should
carry the total volume of all flows in S .

Based on this insight, we propose the traffic sampling algo-
rithm. This algorithm attempts to draw K located flows from
the traffic snapshot S . In each round, the algorithm draws

a flow from S such that a flow with a volume v gets drawn
with probability v/V , where V is the total traffic volume of
all flows. Then, we assign V/K as the volume to the sam-
pled flow and add it to the new traffic snapshot S ′. Repeating
this process K times, we sample K located flows with a pre-
served total volume. We leave the algorithm’s mathematical
representation and pseudocode in Appendix A.1.

It is important to note that the number of distinct flows
in the sampled traffic snapshot is likely to be much lower
than the parameter K. This is because high-volume flows are
likely to be sampled multiple times, and their volumes can
be aggregated in the sampling process. We define the flow
sample ratio as the ratio of the number of distinct flows in
the sampled snapshot S ′ to the number of distinct flows in S ,
which is related not only to the sample parameter K, but also
to the distribution of volumes in S .

Traffic sampling can introduce errors in estimating the
traffic load on a link. Intuitively, for links with low/high traffic
load, it is reasonable to require that the estimated traffic load
does not deviate by an unacceptable absolute/relative value,
respectively. We rigorously establish a lower bound of K
such that traffic volumes of all links are guaranteed not to
deviate by given absolute and relative values at a given level
of confidence. The significance of K’s proven bound lies in its
tightness, making it practical for the use in our WAN, which is
detailed in Appendix A.2. In the derivation of K’s bound, we
start from the law of large numbers and make no assumptions
about the distribution of flows in S . We also evaluate traffic
sampling by experiments in §7.

Traffic equivalence class optimization. Besides, we observe
that many flows exhibit the same behavior in the network
despite that they differ in field values and incoming locations.
For example, suppose in the motivating example there is an-
other flow f3 entering the network at some interface of A
and matches the same BGP route and SR policy as f1 does.
Instead of performing the computation for both f1 and f3, we
may only perform the computation for one of them, assuming
it carries the volume of both flows.

Leveraging this insight, we propose the traffic equivalence
class (TEC). Two flows are equivalent if they have the same
traffic distribution over all links of the network; a TEC is a
set of located flows that are equivalent to one another. See
Appendix C for the formal definition and generation of TECs.

Among multiple flows in a TEC, we only need to consider
one for traffic simulation. Therefore, given a traffic snapshot
S , we can aggregate flows in the same TEC by replacing them
with a single flow that has the combined volume of all flows
in the TEC. As a result, we generate a new traffic snapshot S ′
that has a much smaller number of flows.

5 Real-Time Failure-Tolerance Analysis
Checking whether the network satisfies the intended traffic
load properties under a variety of failure scenarios is a key
task in our daily operation (see Table 1). In such a task, our op-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1069

Algorithm 2: Traffic simulation for a period of time
1 Function TRAFFICSIMMUL({Sk}m

k=1) :
2 Construct the TDG (N,E,w) for all (fk, ik,vk) in

⋃m
k=1 Sk;

3 TLM[Sk]← TRAFFICSIMONTDG(Sk , (N,E,w)) for all
k = 1, · · · ,m;

4 return TLM;

erators submit a large number of checking requests for failure-
tolerance analysis, each specifying a set of failed routers or
links, and expect to obtain results within seconds.

To meet the high-efficiency challenge, we observe that a
typical checking request contains a small number (i.e., O(10))
of link and router failures. Thus, the new TDG for the failure
scenario may only differ slightly from the one without failure.
For example in Figure 1, if B→ E fails, the new TDG has
all the nodes and edges except the edges n1 → n2 → ··· →
n9 in Figure 5. This observation allows us to adopt a two-
phase design, where we first compute the TDG and store the
necessary information for the network (without failure) in
the basic checking part (see Figure 3), and then perform an
incremental computation in the real-time checking part (see
Figure 3) for each received failure-tolerance checking request.

There are two key steps to be conducted incrementally:
TDG construction (§5.1) and traffic simulation (§5.2).

5.1 Incremental TDG Construction
When a failure happens, RIBs on routers converge to a new
state (including the new SR tunnels); thus, the routes/tunnels
may change, and the nodes in the old TDG corresponding to
changed routes/tunnels may need to be updated (e.g., connect-
ing to different nodes or changing the weights of outgoing
edges). In addition, the nodes corresponding to the failed links
or routers should also be updated by removing their associated
edges. All other nodes irrelevant to the failure (e.g., receiving
a flow at an active interface) remain unchanged. Therefore, to
construct the new TDG, we keep most nodes and edges in the
old TDG, and only re-run the construction for changed nodes.

Based on this observation, we construct the TDG for a
given failure model incrementally. The algorithm takes the
old TDG, the set of changed routes (e.g., next hops changed)
and tunnels (e.g., tunnel removed) ∆Rib, and the new RIBs
(denote Rib′) for the failure as input, and generates the new
TDG incrementally. The algorithm also outputs the set of
changed nodes chg for the post incremental traffic simulation
(§5.2). Note that simulating Rib′ and ∆Rib is easy; many
existing systems [12, 41] can extract the information.

The pseudocode and detailed description of the algorithm
can be found in Appendix D.1. We illustrate how the algo-
rithm works using the following example.

Example. Suppose B→ E in Figure 1 fails. Due to the failure,
the SR tunnel A→ B→ E becomes invalid and thus the set
chg contains the nodes for matching tunnel p1 (i.e., n2 and
n4-n9 in Figure 5). Furthermore, the BGP next hop E is also

... n1 · · ·

n3

n5 n6 ...

n10 ...

n11 ...

...

1

1 0.8

0.2

1

1

1

Figure 6: The (partial) TDG representing the example in
Figure 1 when link B→ E fails. Solid lines represent edges
in both the old (i.e., before failure) and new (i.e., after failure)
TDGs; dashed lines represent edges only in the old TDG.

inactive, so chg also contains n1 (in Figure 5) representing the
match of the BGP route that is changed by the failure. Then
the algorithm removes all outgoing edges for the nodes in chg.
Using BFS exploration, the algorithm only re-constructs the
edge from n1 to n3 with weight 1. The constructed TDG is
shown in Figure 6.

5.2 Incremental Traffic Simulation
With the new TDG, one may re-run the traffic simulation al-
gorithm on it to compute the volume on each node and edge
as in Algorithm 1. However, since the new TDG largely over-
laps with the old TDG, this straightforward approach leads to
numerous redundant computations. In particular, if a node’s
volume remains unchanged and its outgoing edges/weights
are also unchanged, the traffic distribution on the outgoing
edges of that node should remain the same as that in the
old TDG. We therefore only need to run the simulation for
the affected nodes where either the volume or the outgoing
edges/weights change. Clearly, all nodes in chg are affected
nodes since their outgoing edges are changed; all nodes with
incoming edges (in the old TDG) from any node in chg may
also be affected, since their volumes may be changed. In addi-
tion, when updating the volume on the new TDG, other nodes
may also be affected due to the change in their volume; thus,
we also need to update the set of affected nodes along with
the execution of traffic simulation.

Algorithm 3 shows the incremental traffic simulation for
a single traffic snapshot; it can be naturally generalized to
support multiple snapshots similar to the approach described
in §4.3. The detailed description is in Appendix D.2.

Example. We illustrate the incremental computation of the
example in §5.1. Suppose without failure, the volume of n1’s
incoming edges is 8 and 2 Gbps respectively as shown in
Figure 7. As shown in Figure 7a, the affected nodes α initially
contain n1, n2, and all nodes from n4 to n9, since all of them
are in chg as described in §5.1. Thus, the first node that needs
to be updated is n2 or anyone from n4 to n9, as none of them
have any incoming edges in the new TDG G′. Suppose n5
gets updated first. Since n5 has no incoming edges in G′, its
volume is updated to 0; since the outgoing edge n5→ n6 only
appears in the old TDG G, the algorithm also decreases the
traffic distribution on the corresponding link from A→ B,
as shown in Figure 7b. The update of n2 and others from
n4 to n9 is similar and we omit the detailed description due

1070 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

... n1 · · ·

n3

n5 n6 ...

n10 ...

n11 ...

...

8G 5G

5G

5G

4G

1G

2G

(a) Initially, affected nodes α contains n1,
n2, and all nodes from n4 to n9 as described
in §5.1.

... n1 · · ·

n3

n5 n6 ...

n10 ...

n11 ...

...

8G 5G

5G

0G

4G

1G

2G

(b) After updating n5, the volume on n5→
n6 is decreased to 0 Gbps. Since n5→ n6
corresponds to link l = A→ B in Figure 1,
TL[l] is updated to 0.

... n1 · · ·

n3

n5 n6 ...

n10 ...

n11 ...

...

8G 0G

10G

0G

4G

1G

2G

(c) After updating n1, the volume on n1→
n3 is increased to 10 Gbps and n3 is added
to α.

Figure 7: Representative steps of Algorithm 3 running on the TDG in Figure 6. The black (blue, resp.) number on an edge e
denotes the value of ve (v′e, resp.), and the nodes in red are in α, after the corresponding step.

Algorithm 3: Incremental traffic simulation
1 Function INCTRAFFICSIM(G, V , TL, G′, chg) :
2 Let G = (N,E,w), G′ = (N′,E ′,w′);
3 V ′[n]←V [n] for all n ∈ N′;
4 V ′[e]←V [e] for all n ∈ E ′;
5 α← chg∪{n|∃n′ ∈ chg s.t. (n′,n) ∈ E};
6 forall n in N′ sorted in topological order of G′ do
7 if n is not in α then
8 continue;

9 V ′[n]← sum{V ′[e]} for all n’s incoming edge e ∈ E ′;
10 forall e = (n,n′) ∈ E ′ ∪E do
11 V ′[e]←V ′[n]×w′(e) if e ∈ E ′;
12 Let ve =V [e] if e ∈ E else 0;
13 Let v′e =V ′[e] if e ∈ E ′ else 0;
14 if v′e ̸= ve then
15 Add n′ to α ;
16 TL[l]← TL[l]+v′e−ve if e corresponds to link l;

17 return TL;

to space limits. After those nodes are updated, the traffic
distribution on link B→ E is correctly decreased to 0 as
expected. The next node of interest to be updated is n1. As
shown in Figure 7c, since the volume on the only outgoing
edge n1 → n3 increases, the algorithm adds n3 to α. In the
following iterations, the algorithm updates n3 and all other
nodes afterward, which results in the correct increase of traffic
distribution for all links on the paths from A to F .

6 Deployment and Use Cases
JINGUBANG has been used in our WAN for more than one
year and covers operation scenarios in Table 1. During this
time, no outage resulting from traffic load violations occurred,
since JINGUBANG successfully detected many violations
ahead of time; before JINGUBANG, tens of outages caused by
load violations happened every year. As a result, JINGUBANG
prevents millions of dollars in losses. We next present real
cases for two representative operation scenarios, i.e., validat-
ing network changes and validating failure tolerance.

6.1 Validating Network Changes
JINGUBANG has been regularly used to check whether net-
work change plans are correctly designed. JINGUBANG suc-

Table 3: Network change risks detected by JINGUBANG: root
causes and their frequency of occurrence.

Root causes
Change plan

errors
Unexpected

routes
Existing

misconfiguration
Percentage 44% 33% 23%

cessfully detected several severe network change risks. Ta-
ble 3 shows the statistics of root causes of network changes
that were detected by JINGUBANG in the past one year. We
classify the root causes into three types: change plan errors,
unexpected routes, and existing misconfiguration. Specifically,
change plan errors refer to errors in the change plan itself; un-
expected routes mean that the change triggers issues because
certain routes were not considered during the change; existing
misconfiguration refers to hidden misconfigurations in the
network that were not triggered because there was no traffic,
but this change triggered the error configuration. We now
detail several real, tricky cases as examples for demonstrating
the effectiveness of JINGUBANG.

Change plan errors. Given the complexity and large size of
our WAN, it is nontrivial to change the network correctly even
for simple configuration-changing tasks. Our operators use
JINGUBANG to check a change plan against intended link load
properties during the time window of network changes. In
one of our real network changes, our operators planned an im-
portant topology architecture upgrade for one business region
in our WAN. The original topology in that region has many
edge routers and border routers. Each edge router Ai is di-
rectly connected with all the border routers B j with 100 Gbps
links, while all the edge routers are connected in full mesh
with 10 Gbps links. All routers run IS-IS as underlay and SR
as overlay; the IS-IS cost for the links between the edge and
border routers is 10000, and the cost between the edge routers
is 5. For the new topology, our operators planned to add a
layer of core routers Ck between the edge layer and border
layer connected using 100 Gbps links. The IS-IS cost of links
between the core routers and the border routers should be
10, while the cost of the links between core routers and edge
routers is 10000. After the upgrade, traffic from border routers
to edge routers should pass the core routers. In this network
change, our operators first added all the core routers and set
up the links without disabling old links between the border
routers and the edge routers. Then, our operators disabled

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1071

AS1

DC1 DC2… …
DC1

DC2

DC3
10/29

10/24

AS2
WAN

Region 1 Region 2
B

A

C2

C1 B1

B2

(a) Unexpected routes. (b) Existing misconfiguration.

Figure 8: Severe risks detected by JINGUBANG.

IS-IS on the links between edge and border layers one by one
via changing the interfaces on the edge routers to passive.

Given the change plan, JINGUBANG checked link overload
for all links in the WAN using traffic snapshots in a similar
time window. JINGUBANG detected that just after disabling
the first edge router’s (A1) interfaces to the border routers, the
utilization of links between A1 and other edge routers sud-
denly increases to up to 150% during the time period, indicat-
ing severe link overload that would result in service downtime.
The reason for the link overload is that: after disabling A1’s
link to the border routers, the IS-IS shortest path from the
border router B j to A1 becomes B j-Ai-A1 instead of B j-Ck-A1
as in the desired topology; meanwhile, the links between A1
and other edge routers as backup links have a capacity of only
10 Gbps, significantly smaller than the 100 Gbps of other
links. As a result, the traffic from border routers to A1 caused
links between A1 and other edge routers to overload.

This situation is very hard to be detected without JIN-
GUBANG. First, without JINGUBANG, our operators have to
manually check link overload for each step in the change
plan, which is error-prone. Second, what we describe is just a
subset topology of our WAN. Our operators have to analyze
IS-IS shortest paths for the entire scope, which should cover
at least nearby regions. Third, the backup links between edge
routers are designed to carry a small amount of traffic; thus, in
addition to identifying that IS-IS shortest paths pass through
those links, our operators have to manually analyze the traffic
rate passing those links. As a result, our operators cannot
detect such complex outages without JINGUBANG. Before
JINGUBANG, similar problems occurred multiple times.

Unexpected routes. Our WAN carries millions of routes;
some of them are well understood while some of them are
unexpected. It is impossible for the operators to examine the
effect of a change on all of the routes, especially for the un-
expected routes. JINGUBANG offers an intuitive approach to
checking the correctness of a change plan under the existence
of unexpected routes. Figure 8(a) shows such a case. In this
scenario, router A was configured with a default route (i.e.,
0/0) to forward DC2’s traffic to router B while router B did
not advertise any routes to router A. Due to business reasons,
our operators needed to block the traffic from DC2 going
to Region 2. After carefully checking that no traffic flowing
from DC2 to Region 2, our operators planned to update the
policy on router B such that it can advertise routes from Re-
gion 2 (those routes have pre-defined communities) to router
A, and also add policies on router A to explicitly drop traffic
matching those routes. Our operators used JINGUBANG to

check that the traffic load should remain the same during the
change. However, JINGUBANG identified load decreases on
links in Region 1, violating the intended traffic load property.
The root cause is that, DC3 in Region 2 was advertising a
10/24 route, while a service in DC1 in Region 1 unexpectedly
used and advertised 10/29. Before the change, traffic from
DC2 can reach the service in DC1 by matching the default
route on router A and the 10/29 route on router B. After the
change on routers A and B, the traffic would match the 10/24
route on router A and thus get dropped, which may cause a
service outage. Without JINGUBANG, such risk is very hard
to detect due to the unawareness of those routes; but fortu-
nately, JINGUBANG successfully prevented it by identifying
the violation to the specified traffic load property.

Existing misconfiguration. A typical network change may
only involve a small set of routers. However, given the exist-
ing misconfiguration on other routers in the network, such
changes can introduce severe risks. Figure 8(b) shows a real
case in our WAN. In this scenario, traffic from DC1 to DC2
used to exit AS1 via router C2. Our operator planned to shift
the exit point from C2 to C1. To achieve this, our operators
first changed the policies on the routers that act as BGP route
reflectors [7] (not shown in the figure) to propagate routes
that would be advertised by C1 to DC2; then changed the poli-
cies on C1 to advertise these routes while assigning them a
higher local preference to make them effective. Our operators
use JINGUBANG to check that no links in the network would
be overloaded during the change. JINGUBANG successfully
detected overloaded links between B1 and B2 (highlighted in
red). The root cause of this risk was that, while the change plan
could successfully steer the traffic from C2 to C1, however,
due to the incorrect IS-IS cost setup in AS2, traffic transited
from B1 to B2 instead of flowing directed to DC2, causing
the low-capacity links between B1 and B2 to overload. This
risk is extremely hard for our operators to identify manually
because (i) the change plan correctly altered the exit point
on AS1 as intended and (ii) the misconfigured IS-IS costs in
AS2 were not a problem before the change because there was
no large volume of traffic going through those links. Fortu-
nately, JINGUBANG successfully prevented the severe risk by
detecting the overloaded links.

6.2 Validating Failure Tolerance
Our WAN is designed to tolerate failures up to a certain level
by configuring redundant links and backup routers, which
we call the redundancy property. However, due to the high-
churn network changes and carelessness of our operators,
redundancy property is violated in many regions in our WAN.
Our operators cannot know the violations without a checker.
Once the bottlenecked links or routers fail, a cascading failure
would span across the entire WAN.

Our operators systematically inject router and link failures
and use JINGUBANG to check two properties: (i) no link over-
load and (ii) no drastic drop in link load (which is typically

1072 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

caused by reachability issues). JINGUBANG has successfully
detected tens of failure risks. One of them happened on a re-
mote site of our WAN, where we deployed two border routers
to provide service to our customers abroad. After our oper-
ators injected a failure model that made one of the border
routers unavailable, JINGUBANG detected that the traffic load
on several links close to that site dropped hugely. Further ana-
lyzing each flow using JINGUBANG’s capability of flow-level
traffic simulation, JINGUBANG successfully identified a prefix
where flows with destinations in that prefix got dropped on the
other router. We examined this situation with our operators,
and confirmed that the prefix belongs to a new service and
one of the routers is configured incorrectly such that the prefix
is only advertised out of another router.

7 Evaluation
We evaluate the accuracy and efficiency of JINGUBANG using
real-world data obtained from our production WAN.

Experiment setup. Besides the entire WAN, we select two
sub-networks, N1 and N2, to represent diverse scales of net-
work traffic. N1 and N2 are chosen as they respectively ac-
count for 7% and 85% of the total traffic in our WAN. In each
hour, there are billions of flows entering N2 and hundreds of
millions of flows entering N1. There are hundreds of routers
in both N1 and N2. All networks are configured with BGP,
IS-IS, SR, and PBR. Unless otherwise specified, we use JIN-
GUBANG to check traffic load across one hour (i.e., 60 time
points). All the experiments are conducted on a server with
768 GB RAM and a 2.50 GHz 104-core processor.

Performance. We first use JINGUBANG to check traffic load
for each hour across one randomly selected day. As shown
in Figure 9, the time cost for checking these hours is within
an order of magnitude, ranging from 19.6 s to 25.6 s for N1,
168.2 s to 272.4 s for N2, and 225.5 s to 308.4 s for the WAN.

Accuracy. We inject failures that actually occurred in the
selected hours. We define the accuracy for each link as
min(rsim,rreal)
max(rsim,rreal)

×100% where rsim represents the traffic rate com-
puted by JINGUBANG and rreal represents the rate measured
by the router. Based on this, we further determine the overall
accuracy of JINGUBANG by averaging accuracy of all links
with weights proportional to the link’s traffic load. Figure 9
depicts such accuracy of each hour. The overall accuracy
ranges from 88.2% to 94.6% for N1, 87.4% to 92.5% for N2,
and 87.8% to 92.1% for the WAN, which is stable and meets
our operators’ requirements. Nevertheless, the accuracy is
not 100%, mostly because our route simulation takes external
routes advertised into our WAN as input and they are provided
by our internal route monitoring system, which occasionally
misses certain routes due to coverage issues.

We further demonstrate the variation of rsim and rreal dur-
ing one hour using an example link. The link connects two
service areas of our WAN and its link load varies between
40% and 95% within a single hour. As shown in Figure 10,

JINGUBANG can accurately track these fluctuations. Over the
60 time points, the median, 90th-percentile, and maximum
error rate is 4.0%, 8.7%, and 19.0%, respectively, indicating
the high accuracy of JINGUBANG.

Multiple traffic snapshots. 5 We evaluate the checking time
of JINGUBANG for different numbers of time points. As
shown in Figure 11, JINGUBANG’s checking speed at 60 time
points is only 4.2× (from 4.5s to 18.9s) and 5.2× (from 67.5s
to 353.9s) slower than at one time point for networks N1 and
N2, respectively. The reason behind this is that the sets of
flows at consecutive time points have a significant amount of
overlap with each other. By constructing a single TDG for
all 60 time points, JINGUBANG avoids duplicate processing
and speeds up the checking by 14.1× (11.4×) for N1 (N2),
compared to construct separate TDGs for each time point.

Traffic equivalence classes. In Figure 12, we show the im-
pact of applying TEC on the performance of JINGUBANG for
different flow sample ratios in network N1. When traffic sam-
pling is disabled, the use of TEC significantly accelerates the
checking, from 601.8s to 18.4s, resulting in a 32.7× speedup.
This improvement is substantial due to the large number of
flows that can be grouped into a single class. However, when
the flow sample ratio is 11%, the speedup is only 3.8× (from
33.4s to 8.8s) as many low-rate flows are not sampled, but
their equivalence class still exists because of either the large
flow number in the class or the presence of an elephant flow.
We do not evaluate the use of TEC in N2 as it would result in
memory exhaustion without TEC.

Traffic sampling. Figure 13 illustrates the relationship be-
tween the flow sample ratio and the time cost of JINGUBANG
in network N2. By setting the sample ratio to 11%, the check-
ing time can be significantly reduced from 358.3s to 113.7s, a
3.2× speedup. To assess its impact on accuracy, we define the
maximum accuracy loss as the maximum reduction in link
load accuracy for all links that use ≥5% of their bandwidth.
As also shown in Figure 13, the accuracy loss does not exceed
1.1% across 10 runs. Besides, for links with bandwidth uti-
lization <5%, the absolute changes in their traffic rates due to
traffic sampling never exceed 60 Mbps. Therefore, for most
links, the accuracy loss is not substantial at all. As an example,
in Figure 10, we additionally plot rsim after sampling at the
flow ratio of 11%, and the difference is barely noticeable.

Incremental simulation. The daily operation of our WAN
involves handling up to O(100) checking requests per hour,
each of which asks us to validate a few traffic load properties
under up to O(10) failed links. To compare the checking
time between incremental and full simulation, we randomly
selected O(100) checking requests and depict the CDF of
time cost using two methods in Figure 14. We apply the traffic
sampling with a flow ratio of 11% in N2. As demonstrated in

5Since our operation suggests that JINGUBANG can check N2 and the
WAN at a similar time cost (as also shown in Figure 9), and for simplicity,
we do not evaluate JINGUBANG on the WAN in the following experiments.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1073

N1 N2 WAN
Network

0

100

200

300

Si
m

ul
at

io
n

tim
e

(s
)

Time cost
Accuracy

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Figure 9: Performance and accuracy.

0 10 20 30 40 50 60
Minute

0%

20%

40%

60%

80%

100%

Tr
af

fic
 lo

ad
 p

er
ce

nt
ag

e

Simulation, not sampled
Simulation, 11%-sampled
Ground truth

Figure 10: Per-minute accuracy.

13 6 10 20 60
Number of time points

0

1000

2000

3000

4000

Si
m

ul
at

io
n

tim
e

(s
) N2, single TDG

N2, sep. TDGs
N1, single TDG
N1, sep. TDGs

Figure 11: Effects of the single TDG.

9% 14% 20% 29% 38% 100%
Flow sample ratio

0

200

400

600

Si
m

ul
at

io
n

tim
e

(s
) Time

Time (No TEC)

Figure 12: Effects of TEC.

11% 17% 26% 36%47% 100%
Flow sample ratio

0%

1%

2%

3%

4%

5%

M
ax

. a
cc

ur
ac

y
lo

ss
0

200

400

600

Si
m

ul
at

io
n

tim
e

(s
)Time

Accuracy loss

Figure 13: Effects of traffic sampling.

0 20 40 60 80 100 120
Traffic simulation time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 re

qu
es

ts

N2(s=11%) incr.
N2(s=11%) full
N1(s=100%) incr.
N1(s=100%) full

Figure 14: Failure-tolerance check time.

the figure, the average time cost for incremental simulation is
4.3s, which is a significant improvement over the average time
cost of 113.7s for full simulation. This 26.2× speedup meets
our deployment requirements and shows the effectiveness of
using incremental simulation in our WAN.

JINGUBANG is also capable of handling router failures in
an incremental manner. However, such requests are relatively
infrequent, occurring dozens of times per month. Neverthe-
less, with ∼100 checking requests that involve supported
kinds of router failures, we find that incremental simulation
in N1 (N2) costs 2.3s (14.5s) on average, which is still 8.0×
(7.8×) faster than full simulation.

8 Discussions and Lessons
We now present our lessons and discuss limitations.

Verifying arbitrary k-failure tolerance. The k-failure prob-
lem lies beyond the scope of this paper, as discussed in §2.2.
Meanwhile, we argue that JINGUBANG provides a solid foun-
dation by efficiently modeling comprehensive traffic behav-
iors at a production scale. We plan to extend the model to
support arbitrary k-failure verification in future research.

Addressing vendor-specific behaviors. Improving JIN-
GUBANG’s precision is often hindered by vendor-specific traf-
fic behaviors and unexpected corner cases. For instance, SR
tunnels are configured with specific next-hop IPs and DSCP
values. If traffic flows match the next-hop IP but exhibit differ-
ent DSCP values, routers from one vendor attempt alternative
SR tunnels configured for other DSCP values, while other
routers default to the IS-IS shortest path. 6 We refine JIN-
GUBANG’s accuracy over years of operation and defer the
proactive identification of such behaviors to future work.

Enhancing user experience. JINGUBANG can indicate if traf-
fic properties remain intact under various conditions but falls
short in diagnosing reasons for property violations. Even with
additional traffic flow visualization utilities, pinpointing the
root issues remains time-intensive for both system developers

6We use real examples, but omit the vendor names.

and network operators. We envision an automated system that
can find victim routes, identify configuration errors, and even
offer potential repair solutions as the next step.

Handling altered traffic snapshots. JINGUBANG cannot
reason about shifts in traffic snapshots. Failures, for example,
can prompt routers to announce altered routes to ISPs, leading
to changes in the traffic entering our WAN. Since ISP routers
fall outside our simulation domain and are not covered by
our monitoring system, we currently rely on heuristic rules
defined by our operators to adapt to such changes in traffic
snapshots. A rigorous methodology to understand variations
in traffic snapshots is left for subsequent research.

9 Conclusion
This paper presents JINGUBANG, the first traffic load property
checking system for production WAN. JINGUBANG makes
three contributions: (i) a new model, named the traffic distri-
bution graph, capable of encoding complex traffic behavior
under BGP, IS-IS, SR, and PBR; (ii) an efficient traffic simula-
tion approach, which can handle billions of flows in a period
of time; (iii) an incremental simulation approach, enabling
real-time failure-tolerance checking. JINGUBANG has been
used to check our WAN for more than one year and prevented
many potential failures resulting from traffic load violations.

Acknowledgments
We thank our shepherd, Stefano Vissicchio, and anonymous re-
viewers for their insightful comments. This work is supported
in part by National Key Research and Development Plan,
China (Grant No. 2023YFB2903902), National Natural Sci-
ence Foundation of China (Grant No. 62022005, 62272010,
and 62061146001), and Alibaba Cloud through Alibaba Re-
search Intern Program and Alibaba Innovative Research Pro-
gram. Ennan Zhai and Chenren Xu are co-corresponding
authors. Ruihan Li and Chenren Xu are affiliated with School
of Computer Science at Peking University, Zhongguancun
Laboratory, and Key Laboratory of High Confidence Software
Technologies (Peking University), Ministry of Education.

1074 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson,

and Aditya Akella. Tiramisu: Fast multilayer network
verification. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
201–219, Santa Clara, CA, February 2020. USENIX
Association.

[2] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A general approach to network configuration
verification. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’17, page 155–168, New York, NY, USA,
2017. Association for Computing Machinery.

[3] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra
Padhye, and David Walker. Don’t mind the gap: Bridg-
ing network-wide objectives and device-level configu-
rations. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, page 328–341, New York,
NY, USA, 2016. Association for Computing Machinery.

[4] Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai
Menache, Nikolaj Bjørner, Asaf Valadarsky, and
Michael Schapira. Teavar: striking the right utilization-
availability balance in wan traffic engineering. In
Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM ’19, page 29–43,
New York, NY, USA, 2019. Association for Computing
Machinery.

[5] Tobias Bühler, Romain Jacob, Ingmar Poese, and Lau-
rent Vanbever. Enhancing global network monitoring
with magnifier. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 23),
pages 1521–1539, Boston, MA, April 2023. USENIX
Association.

[6] Yiyang Chang, Sanjay Rao, and Mohit Tawarmalani.
Robust validation of network designs under uncertain
demands and failures. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
17), pages 347–362, Boston, MA, March 2017. USENIX
Association.

[7] Enke Chen, Tony J. Bates, and Ravi Chandra. BGP
Route Reflection: An Alternative to Full Mesh Internal
BGP (IBGP). RFC 4456, April 2006.

[8] Benoît Claise. Cisco Systems NetFlow Services Export
Version 9. RFC 3954, October 2004.

[9] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,
and Martin Vechev. NetComplete: Practical Network-
Wide configuration synthesis with autocompletion. In
15th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 18), pages 579–594, Renton,
WA, April 2018. USENIX Association.

[10] Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Maha-
jan, Todd Millstein, Vyas Sekar, and George Varghese.
Efficient network reachability analysis using a succinct
control plane representation. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 16), pages 217–232, Savannah, GA, November
2016. USENIX Association.

[11] Mikel Jimenez Fernandez and Henry Kwok. Building
express backbone: Facebook’s new long-haul network,
2017.

[12] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-
Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd
Millstein. A general approach to network configuration
analysis. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages
469–483, Oakland, CA, May 2015. USENIX Associa-
tion.

[13] Nate Foster, Dexter Kozen, Konstantinos Mamouras,
Mark Reitblatt, and Alexandra Silva. Probabilistic
netkat. In Peter Thiemann, editor, Programming Lan-
guages and Systems, pages 282–309, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg.

[14] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya
Akella, and Ratul Mahajan. Fast control plane analysis
using an abstract representation. In Proceedings of the
2016 ACM SIGCOMM Conference, SIGCOMM ’16,
page 300–313, New York, NY, USA, 2016. Association
for Computing Machinery.

[15] Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and
David Walker. Efficient verification of network fault
tolerance via counterexample-guided refinement. In
Isil Dillig and Serdar Tasiran, editors, Computer Aided
Verification, pages 305–323, Cham, 2019. Springer In-
ternational Publishing.

[16] Nick Giannarakis, Alexandra Silva, and David Walker.
Probnv: probabilistic verification of network control
planes. Proc. ACM Program. Lang., 5(ICFP), aug 2021.

[17] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
wan. In Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM, SIGCOMM ’13, page 15–26,
New York, NY, USA, 2013. Association for Computing
Machinery.

[18] Alex Horn, Ali Kheradmand, and Mukul Prasad. Delta-
net: Real-time network verification using atoms. In

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1075

14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 735–749, Boston,
MA, March 2017. USENIX Association.

[19] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Hölzle, Stephen Stuart, and Amin Vahdat. B4: experi-
ence with a globally-deployed software defined wan. In
Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, SIGCOMM ’13, page 3–14, New York,
NY, USA, 2013. Association for Computing Machinery.

[20] Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar
Agrawal, Ashish Bhargava, Paul-Andre C Bissonnette,
Shane Foster, Andrew Helwer, Mark Kasten, Ivan
Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi,
Hanukumar Pinnamraju, Adrian Power, Neha Milind
Raje, and Parag Sharma. Validating datacenters at scale.
In Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM ’19, page 200–213,
New York, NY, USA, 2019. Association for Computing
Machinery.

[21] Karthick Jayaraman, Nikolaj Bjørner, Geoff Outhred,
and Charlie Kaufman. Automated analysis and debug-
ging of network connectivity policies. Technical Report
MSR-TR-2014-102, Microsoft, July 2014.

[22] Siva Kesava Reddy Kakarla, Ryan Beckett, Behnaz
Arzani, Todd Millstein, and George Varghese. Groot:
Proactive verification of dns configurations. In Proceed-
ings of the Annual Conference of the ACM Special Inter-
est Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’20, page 310–328, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

[23] Peyman Kazemian, George Varghese, and Nick McK-
eown. Header space analysis: Static checking for net-
works. In 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 12), pages 113–
126, San Jose, CA, April 2012. USENIX Association.

[24] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew
Caesar, and P. Brighten Godfrey. VeriFlow: Verifying
Network-Wide invariants in real time. In 10th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 13), pages 15–27, Lombard, IL, April
2013. USENIX Association.

[25] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghu-
raman, Nikhil Kasinadhuni, Enrique Cauich Zermeno,
C. Stephen Gunn, Jing Ai, Björn Carlin, Mihai
Amarandei-Stavila, Mathieu Robin, Aspi Siganporia,

Stephen Stuart, and Amin Vahdat. Bwe: Flexible, hier-
archical bandwidth allocation for wan distributed com-
puting. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIG-
COMM ’15, page 1–14, New York, NY, USA, 2015.
Association for Computing Machinery.

[26] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, and David Gelernter. Traffic engineering
with forward fault correction. In Proceedings of the
2014 ACM Conference on SIGCOMM, SIGCOMM ’14,
page 527–538, New York, NY, USA, 2014. Association
for Computing Machinery.

[27] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin
Cao, Sri Tallapragada, Nuno P. Lopes, Andrey Ry-
balchenko, Guohan Lu, and Lihua Yuan. Crystalnet:
Faithfully emulating large production networks. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, page 599–613, New York, NY,
USA, 2017. Association for Computing Machinery.

[28] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid,
Karthick Jayaraman, and George Varghese. Checking
beliefs in dynamic networks. In 12th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 15), pages 499–512, Oakland, CA, May 2015.
USENIX Association.

[29] Sonia Panchen, Neil McKee, and Peter Phaal. InMon
Corporation’s sFlow: A Method for Monitoring Traffic
in Switched and Routed Networks. RFC 3176, Septem-
ber 2001.

[30] Aurojit Panda, Katerina Argyraki, Mooly Sagiv, Michael
Schapira, and Scott Shenker. New Directions for Net-
work Verification. In Thomas Ball, Rastislav Bodik,
Shriram Krishnamurthi, Benjamin S. Lerner, and Greg
Morriset, editors, 1st Summit on Advances in Program-
ming Languages (SNAPL 2015), volume 32 of Leib-
niz International Proceedings in Informatics (LIPIcs),
pages 209–220, Dagstuhl, Germany, 2015. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik.

[31] Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly
Sagiv, and Scott Shenker. Verifying reachability in net-
works with mutable datapaths. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 699–718, Boston, MA, March 2017.
USENIX Association.

[32] B. Quoitin and S. Uhlig. Modeling the routing of an au-
tonomous system with c-bgp. IEEE Network, 19(6):12–
19, 2005.

[33] Steffen Smolka, Praveen Kumar, Nate Foster, Dexter
Kozen, and Alexandra Silva. Cantor meets scott: se-

1076 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

mantic foundations for probabilistic networks. In Pro-
ceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL ’17, page
557–571, New York, NY, USA, 2017. Association for
Computing Machinery.

[34] Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent
Vanbever, and Martin Vechev. Probabilistic verification
of network configurations. In Proceedings of the An-
nual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communi-
cation, SIGCOMM ’20, page 750–764, New York, NY,
USA, 2020. Association for Computing Machinery.

[35] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and
Costin Raiciu. Symnet: Scalable symbolic execution
for modern networks. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, page 314–327,
New York, NY, USA, 2016. Association for Computing
Machinery.

[36] Kausik Subramanian, Anubhavnidhi Abhashkumar,
Loris D’Antoni, and Aditya Akella. Detecting network
load violations for distributed control planes. In Pro-
ceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI 2020, page 974–988, New York, NY, USA, 2020.
Association for Computing Machinery.

[37] Bingchuan Tian, Xinyi Zhang, Ennan Zhai,
Hongqiang Harry Liu, Qiaobo Ye, Chunsheng
Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang,
Da Yu, Chen Tian, Haitao Zheng, and Ben Y. Zhao.
Safely and automatically updating in-network acl con-
figurations with intent language. In Proceedings of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’19, page 214–226, New York, NY, USA,
2019. Association for Computing Machinery.

[38] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Stefano
Vissicchio, and Laurent Vanbever. Stroboscope: Declar-
ative network monitoring on a budget. In 15th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 18), pages 467–482, Renton, WA,
April 2018. USENIX Association.

[39] Yaron Velner, Kalev Alpernas, Aurojit Panda, Alexander
Rabinovich, Mooly Sagiv, Scott Shenker, and Sharon
Shoham. Some complexity results for stateful network
verification. In Marsha Chechik and Jean-François
Raskin, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 811–830, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[40] Anduo Wang, Limin Jia, Wenchao Zhou, Yiqing Ren,
Boon Thau Loo, Jennifer Rexford, Vivek Nigam, An-

dre Scedrov, and Carolyn Talcott. Fsr: Formal analysis
and implementation toolkit for safe interdomain routing.
IEEE/ACM Transactions on Networking, 20(6):1814–
1827, 2012.

[41] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu,
Bingchuan Tian, Qiaobo Ye, Chunsheng Wang, Xin Wu,
Tianchen Guo, Cheng Jin, Duncheng She, Qing Ma,
Biao Cheng, Hui Xu, Ming Zhang, Zhiliang Wang, and
Rodrigo Fonseca. Accuracy, scalability, coverage: A
practical configuration verifier on a global wan. In Pro-
ceedings of the Annual Conference of the ACM Spe-
cial Interest Group on Data Communication on the Ap-
plications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM ’20, page
599–614, New York, NY, USA, 2020. Association for
Computing Machinery.

[42] Ennan Zhai, Ang Chen, Ruzica Piskac, Mahesh Balakr-
ishnan, Bingchuan Tian, Bo Song, and Haoliang Zhang.
Check before you change: Preventing correlated fail-
ures in service updates. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 575–589, Santa Clara, CA, February 2020.
USENIX Association.

[43] Peng Zhang, Aaron Gember-Jacobson, Yueshang Zuo,
Yuhao Huang, Xu Liu, and Hao Li. Differential network
analysis. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
601–615, Renton, WA, April 2022. USENIX Associa-
tion.

[44] Peng Zhang, Dan Wang, and Aaron Gember-Jacobson.
Symbolic router execution. In Proceedings of the ACM
SIGCOMM 2022 Conference, SIGCOMM ’22, page
336–349, New York, NY, USA, 2022. Association for
Computing Machinery.

[45] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind
Krishnamurthy. High-resolution measurement of data
center microbursts. In Proceedings of the 2017 Internet
Measurement Conference, IMC ’17, page 78–85, New
York, NY, USA, 2017. Association for Computing Ma-
chinery.

[46] Yunmo Zhang, Hong Xu, Chun Jason Xue, and Tei-Wei
Kuo. Probabilistic analysis of network availability. In
2022 IEEE 30th International Conference on Network
Protocols (ICNP), pages 1–11, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1077

APPENDIX
A Traffic Sampling
In this appendix, we will formally define the traffic sampling
process (first presented in §4.4), then prove a practical bound
for the error rate, and demonstrate its use in our WAN.

A.1 Algorithm
Initially, we consider a single network and a single traffic
snapshot at a specific time point. We will extend our anal-
ysis to encompass multiple networks (e.g., networks under
different failure scenarios) and multiple time points later.

Suppose that there are N located flows f1, · · · , fN in the
traffic snapshot S , with volumes v1, · · · ,vN , respectively. We
denote the set of flows as F , i.e., F := { f1, · · · , fN} and the
total volume as V , i.e., V := ∑

N
i=1 vi. The network contains

M links, where the volume of the i-th link is li, which is a
function of the traffic snapshot.

Lemma 1. Assuming the absence of traffic loops, the volume
on each link in the network is a linear function of the volumes
of the flows in the traffic snapshot. More specifically,

li =
N

∑
j=1

wi(f j)v j,

where
wi : F → [0,1]

is the flow weight function for the i-th link, for all i= 1, · · · ,M.

Proof. This lemma follows from the construction of TDGs
during the traffic simulation process. The flow weight func-
tions can be easily calculated according to these TDGs.

Then we give a formal definition of traffic sampling, corre-
sponding to Algorithm 4.

Definition 1. In traffic sampling, a new traffic snapshot S ′ is
generated by selecting K flows, F1, · · · ,FK , from the original
traffic snapshot S , each with a volume of V

K . These K flows
are considered as K independent and identically distributed
(i.i.d.) random variables, and the probability of selecting the
i-th flow in the original traffic snapshot is defined as

P(F1 = fi) =
vi

V

for all i = 1, · · · ,N.

As noted previously in Appendix A.1, the number of dis-
tinct flows in the sampled traffic snapshot is typically much
less than K, since a flow with a large volume can easily be
sampled multiple times.

Algorithm 4: Traffic sampling algorithm
1 Function SAMPLE(S , K) :
2 Let V be the total volume of all flows in S ;
3 Let P be the probability distribution s.t.

∀(fk, ik,vk) ∈ S ,P(fk, ik) = vk/V ;
4 S ′← /0;
5 repeat K times
6 Draw a (fk, ik) from the probability distribution P;
7 Add (fk, ik,V/K) to S ′;
8 return S ′;

A.2 Error Bound
We next introduce the error bound for traffic sampling.

Theorem A.1. Suppose that M links have volumes l1, · · · , lM
before sampling. After sampling, these links have volumes
represented by M random variables L1, · · · ,LM . Given a max-
imum relative error µ, a maximum absolute error ∆, and a
confidence parameter δ, the following holds with probability
at least 1−δ:∣∣Li− li

∣∣≤max
{

∆,µli
}
∀i ∈ {1, · · · ,M}

if the number of samples K satisfies

K ≥ 2V
∆

(
1
µ
+

1
3

)
ln
(

2M
δ

)
.

Proof. For the i-th link, we define K random variables

X (i)
j = wi(Fj)

V
K

∀ j ∈ {1, · · · ,K}.

Since F1, · · · ,FK are i.i.d., X (i)
1 , · · · ,X (i)

K are i.i.d., too. Besides,
we have

E
[
X (i)

1

]
=

N

∑
r=1

wi(fr)
V
K
P(F1 = fr)

=
N

∑
r=1

wi(fr)
V
K

vr

V

=
1
K

N

∑
r=1

wi(fr)vr =
li
K

and

Var
[
X (i)

1

]
= E

[(
X (i)

1

)2
]
−
(
E
[
X (i)

1

])2

≤
N

∑
r=1

(
wi(fr)

V
K

)2

P(F1 = fr)

≤
N

∑
r=1

wi(fr)
V 2

K2
vr

V
=

V
K2 li.

According to Lemma 1, we know

Li =
K

∑
i=1

wi(Fk)
V
K

=
K

∑
i=1

X (i)
i ,

1078 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

which implies E[Li] = KE
[
X (i)

1

]
= li as well as Var[Li] =

K Var
[
X (i)

1

]
≤ V

K li.

As 0≤ X (i)
1 ≤

V
K holds almost surely, the use of Bernstein’s

equalities on
{

X (i)
j −

li
K

}K

j=1
yields

P
[∣∣Li− li

∣∣≥ t
]
≤ 2exp

(
−

1
2 t2

Var[Li]+
1
3

V
K t

)

≤ 2exp
(
−K

V
3t2

6li +2t

)
for any t > 0.

Taking t as max{∆,µli}, we have

P
[∣∣Li− li

∣∣≥max
{

∆,µli
}]
≤ 2exp

(
−K

V

(
2li
t2 +

2
3t

)−1
)

≤ 2exp

(
−K

V

(
1
µ

2
∆
+

1
3

2
∆

)−1
)
.

So

P
[∣∣Li− li

∣∣≥max
{

∆,µli
}]
≤ δ

M
as given

K ≥ 2V
∆

(
1
µ
+

1
3

)
ln
(

2M
δ

)
.

Finally, by the union bound,

P
[
∀i ∈ {1, · · · ,M}

∣∣Li− li
∣∣< max

{
∆,µli

}]
= 1−P

[
∃i ∈ {1, · · · ,M}

∣∣Li− li
∣∣≥max

{
∆,µli

}]
≥ 1−

M

∑
i=1

P
[∣∣Li− li

∣∣≥max
{

∆,µli
}]

≥ 1−M× δ

M
= 1−δ,

which proves the theorem.

This theorem bounds either the relative error or absolute
error. As a corollary, we can bound only the relative error for
links whose volumes are greater than a threshold value.

Corollary A.1. Given a maximum relative error µ, a thresh-
old volume VT , and a confidence parameter δ, the inequality∣∣Li− li

∣∣≤ µli holds for all links with volumes above the thresh-
old (i.e., li ≥VT) with probability at least 1−δ, if the number
of samples K satisfies

K ≥ 2V
VT

(
1
µ2 +

1
3µ

)
ln
(

2M
δ

)
.

Proof. Setting ∆ = µVT , we have∣∣Li− li
∣∣≤max

{
∆,µli

}
= µli

for all links satisfying li ≥ VT . Therefore, applying Theo-
rem A.1 directly proves this corollary.

Thus far, we have demonstrated the theorem for a single
failure model and a single traffic snapshot. However, it is
straightforward to extend these results to accommodate multi-
ple models and snapshots. This can be achieved by treating
links associated with different failure models or traffic snap-
shots as distinct entities. As a result, instead of examining M
interfaces, we consider M×A×B interface-failure-snapshot
combinations, where A is the number of failure models and B
is the number of snapshots. The proof of the theorem remains
valid. It is worth noting that the parameter M appears within
the logarithmic function in the inequality. Thus, its increase
has a minimal impact on the overall result.

Evaluation. The proven bound is practical enough for use
in our WAN. In network N2 (as defined in §7), we employ a
flow sample ratio of 11% to expedite the checking process by
a factor of 3.2. The application of the theorem ensures that
the error is limited to either 150 Mbps in absolute terms or
2.4% in relative terms for all links, with probability at least
99%. In our experiments (as detailed in §7), across 10 trials,
either the relative error does not exceed 1.1% or the absolute
error does not exceed 60 Mbps for all links in network N2.

B Traffic Distribution Graph
In this appendix, we will formally define the traffic distribu-
tion graph (i.e., TDG, first presented in §4.1), and then detail
our TDG construction algorithm.

B.1 Formal Definition
Formally, let F denote the space of all flows, V denote the set
of all VRFs in the network, I denote the set of all interfaces,
IP denote the set of all IP addresses, and T denote the set of
tunnels (e.g., established by SR and MPLS) in the network.
To differentiate the direction of a flow at an interface, we use
I ∗ = I ×{in,out} to denote the set of interfaces labeled with
flow directions. A traffic distribution graph is defined as a
triple (N,E,w), where N ⊂ F × (I ∗∪V)× (IP ∪T ∪{⊥})
is the set of nodes in the graph, E ⊂ N×N is the set of edges,
w : E→ R[0,1] is the weight function where R[0,1] denotes the
set of real numbers ranging from 0 to 1 (inclusive).

B.2 TDG Construction
Algorithm 5 shows the overall construction algorithm. Func-
tion CONSTRUCTTDG takes a set of located flows as input
and constructs the TDG in a standard BFS fashion as shown
in function BFSEXPLORE. Function EXPLORENODE takes a
newly generated node and explores new edges and nodes ac-
cording to the network’s behavior on that node. Specially, we
currently support the following five types of flow processing
used in our production network.
• (Line 12-14) When a flow is received at an interface, a
PBR policy defined on that interface may be applied to the
flow. In this case, the algorithm needs to generate a node
corresponding to the PBR’s modification to the flow and its

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1079

Algorithm 5: Construction of TDG
1 Function CONSTRUCTTDG({(fk , ik)}m

k=1) :
2 S←{(fk , ik ,⊥) : k = 1, ..,m}; N← /0; E← /0; w is undefined;
3 BFSEXPLORE(S, N, E, w);
4 return (N,E,w);

5 Function BFSEXPLORE(S, N, E, w, Rib) :
6 while S is not empty do
7 Pop a node n from S and add it to N;
8 EXPLORENODE(n, N, E, w, Rib);

9 Function EXPLORENODE(n, N, E, w, Rib) :
10 Let n = (f ,x,h);
11 switch (f ,x,h) do
12 case x is an interface and f is incoming to x do
13 Generate a node n′ = (f ′,y,h) if the PBR policy defined on x

modifies f to f ′ and change its location to y;
14 Add e = ((f ,x,h),(f ′,y,h)) to E and set w(e) to 1;

15 case x is an interface and f is outgoing do
16 Generate a node n′ = (f ,y,h′) where y is the interface

connected with x, h′ is h if h is a tunnel otherwise ⊥;
17 Add e = ((f ,x,h),n′) to E and set w(e) to 1;

18 case x is a VRF and h is an SR tunnel do
19 If the router is the endpoint of h, then generate a node

n′ = (f ,x,⊥); otherwise generate a node n′ = (f ,y,h)
where y is the outgoing interface of h on the corresponding
router;

20 Add e = ((f ,x,h),n′) to E and set w(e) to 1;

21 case x is a VRF and performs BGP matching for f do
22 Generate nodes nk = (f ,x,hk) for all BGP next hops hk using

Rib;
23 Add ek = ((f ,x,h),nk) to E and set w(ek) to 1/m for all k

where m is the total number of next hops;

24 case x is a VRF and h is an indirect next hop do
25 Generate nodes nk = (f ,x,hk) for all resolved next hops hk

(can be IP addresses or tunnels) using Rib;
26 Add ek = ((f ,x,h),nk) to E and set w(ek) according to the

weight defined on corresponding the SR policy or IS-IS;

27 Add new generated nodes into S if they are not in N;

location (e.g., redirect the flow to a VRF), and add an edge
with weight 1 to the node.
• (Line 15-17) When a flow is ready to be forwarded out to an-
other router, the algorithm generates a node for the receiving
interface and adds an edge with weight 1.
• (Line 18-20) When a flow is forwarded in an SR tunnel, the
algorithm needs to generate nodes based on whether the flow
reaches the endpoint. If so, the algorithm generates a node
with next hop ⊥ indicating that the flow reaches the endpoint
of the tunnel and needs further lookup for the next hops;
otherwise, the algorithm generates a node with the same next
hop and the corresponding outgoing interface. The weight of
the edge is set to 1 in both cases.
• (Line 21-23) When a flow needs to look up the BGP RIB
on a VRF, the algorithm needs to generate nodes for all next
hops. To reflect the BGP ECMP mechanism implemented by
router vendors, the weights of the edges to those nodes should
be set equally.
• (Line 24-26) If an indirect next hop needs to be resolved by
IS-IS or SR, the algorithm needs to generate nodes for each
resolved next hop. The weights on the edges to the nodes
should be correctly set based on the SR configuration or the
IS-IS protocol (e.g., normal ECMP).

C Traffic Equivalence Class
In this appendix, we will formally define the traffic equiva-
lence class (i.e., TEC, first presented in §4.4), and then detail
our TEC construction algorithm.

C.1 Formal Definition
We define traffic equivalence class (TEC) using the notion of
TDG. Given a TDG G, we use G[f1 7→ f2, i1 7→ i2] to denote
the TDG obtained by changing f1 to f2 and i1 to i2 for all
nodes in G.

We first define the notion of flow equivalence.

Definition C.1. Two located flows (fk, ik),k = 1,2 are
equivalent, denoted as (f1, i1) ≡ (f2, i2), iff G1 = G2[f2 7→
f1, i2 7→ i1)] and G2 = G1[f1 7→ f2, i1 7→ i2)], where Gk =
CONSTRUCTTDG({ fk, ik}) is the TDG constructed for
(fk, ik).

Now we define the notion of traffic equivalence class below.

Definition C.2. A set of located flows {(fk, ik),k = 1, · · · ,m}
forms a traffic equivalence class, if (f j, i j) ≡ (fk, ik) for all
j,k ∈ {1, · · · ,m}.

C.2 TEC Generation
Ideally, to achieve optimal efficiency we may want each TEC
to contain as many flows as possible. However, this task is
computationally hard due to the large number of flows. To
balance computational efficiency with the optimality of TECs,
we adopt a compositional approach. We establish equivalence
classes for the value space of each field based on a global
view of the network and then compose these classes together.

Let D and S be the sets of all prefixes (which can be effi-
ciently collected from RIBs and router configurations) used
to match destination and source IPs, respectively. Two flows
((s1,d1,v), i1) and ((s2,d2,v), i2) are considered equivalent if
(i) the longest prefix match in S (D, resp.) for s1 (d1, resp.)
is the same as that for s2 (d2, resp.) and (ii) two interfaces
i1 and i2 sit in the same VRF and are configured with the
same PBR policy. The correctness relies on the fact that at
any router, there must be a subset of prefixes D′ ⊂ D (S′ ⊂ S)
used to match destination (source) IPs; therefore, d1 and d2
(s1 and s2) still share the same longest prefix match, leading to
the same forwarding behavior and traffic distribution. While
establishing equivalence for DSCPs is feasible, we do not
further consider such equivalence, since our WAN only uses
a small number of them.

D Incremental TDG Construction and Traffic
Simulation

In this appendix, we provide the detailed description of our in-
cremental TDG construction and traffic simulation algorithms,
in §D.1 and §D.2, respectively.

1080 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 6: Incremental TDG construction
1 Function INCUPDATETDG((N,E,w), ∆Rib, Rib′) :
2 N′← N; E ′← E; w′← w;
3 let chg be the set of nodes n ∈ N s.t. n representing the

matching of some r ∈ ∆Rib or a failed router/link;
4 forall n ∈ chg do
5 remove e from E ′ and w′(e)←undefined for all n’s

outgoing edge e;

6 BFSEXPLORE(chg, N′, E ′, w′, Rib′);
7 return G′ = (N′,E ′,w′), chg

D.1 Algorithm for Incremental TDG Construc-
tion

Algorithm 6 presents how to incrementally construct a TDG
for a given failure model. The algorithm takes the old TDG,
the set of changed routes (e.g., next hops changed) and tunnels
(e.g., tunnel removed) ∆Rib, and the new RIBs (denote Rib′)
for the failure as input, and generates the new TDG incremen-
tally. Note that simulating Rib′ and ∆Rib is easy, since many
existing systems [12, 41] can extract the information.

In the first step, we find the nodes that may change in
the given TDG. As described above, a node changes if (i)
it represents route/tunnel matching for some r in ∆Rib; or
(ii) its location field is associated with a failed link or router
(e.g., the location field is an interface of some failed link). To
efficiently identify those nodes, we maintain a mapping from
routers, links, and routes/tunnels respectively to nodes in the
TDG, when constructing a TDG (in the basic part).

Second, for those changed nodes chg, the algorithm re-
moves all their outgoing edges and invalids all associated
weights, since they may be inconsistent with the failure case.
To reflect the new behavior under the failure, the algorithm
performs the standard BFS algorithm from those changed
nodes to construct the new edges and nodes using the new
RIBs Rib′. Finally, the algorithm returns a new TDG with the
set of changed nodes chg for the post processing (§5.2).

D.2 Detailed Description of Incremental Traf-
fic Simulation Algorithm

Algorithm 3 shows the incremental traffic simulation for a
single traffic snapshot. Using the approach described in §4.3,
it can be naturally generalized to support multiple snapshots.

Algorithm 3 takes two parts of input: (i) the information
computed in the basic part including the old TDG G, the
volume V for nodes and edges in G, and the traffic distribution
TL for all links, and (ii) the new TDG G′ and the changed
nodes chg computed by the incremental TDG construction
(as detailed in §5.1).

The algorithm then computes the volume V ′ on nodes and
edges incrementally based on the old volume V and also up-
dates the traffic distribution TL incrementally based on the
change of volume on edges. Similar to the traffic simulation al-
gorithm in the basic part, the incremental algorithm computes

the new volume of nodes and edges following the topologi-
cal order of the new TDG G′ but only for the affected nodes
(line 6-16). Initially, the affected nodes α contains all nodes
in chg and those having incoming edges from chg (line 5) as
described above, and keeps adding potentially affected nodes
to α. For an affected node n, the algorithm updates its volume
(line 9) and computes the volume of all its outgoing edges
in G′ (line 11). Then the algorithm checks if any outgoing
edges’ volumes get changed for all the edges in both G and
G′. If some edge’s volume has changed, the node on the other
end of the edge may become affected and so the algorithm
adds that node to α (line 15). Furthermore, the algorithm also
updates the traffic distribution by adding the changed volume
to the corresponding link if needed. Finally, the updated TL
contains the traffic distribution for all links under the failure
and is returned.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1081

POSEIDON: A Consolidated Virtual Network Controller that Manages Millions of
Tenants via Config Tree

Biao Lyu∗†, Enge Song†, Tian Pan†, Jianyuan Lu†, Shize Zhang†, Xiaoqing Sun†, Lei Gao†,
Chenxiao Wang†, Han Xiao†, Yong Pan†, Xiuheng Chen†, Yandong Duan†, Weisheng Wang†,
Jinpeng Long†, Yanfeng Wang†, Kunpeng Zhou†, Zhigang Zong†, Xing Li∗†, Guangwang Li†,

Pengyu Zhang†, Peng Cheng∗□, Jiming Chen∗, Shunmin Zhu¶†□

∗Zhejiang University †Alibaba Cloud ¶Tsinghua University

Abstract
As the cloud rapidly expands in scale, the virtual network

controller must manage an increasing number of devices with
higher update frequencies. Furthermore, the emergence of
cloud-native services has substantially intensified program-
triggered updates, leading to more frequent API invocations.
To enhance performance and extensibility, we propose POSEI-
DON, a novel virtual network control framework. Specifically,
to reduce operational expenses (OpEx), we have consolidated
the common functions of multiple service controllers into
a single controller. To manage heterogeneous devices and
eliminate the multi-table lookup complexity due to config
dependencies, we introduce Trident, a tree-based service- and
device-independent abstraction, so that config dependency cal-
culation can be replaced by more efficient tree traversal. After
deploying POSEIDON on Alibaba Cloud, we observed a 21x
increase in the throughput of virtual network configuration
tasks, along with a 4.4x decrease in the P99 API processing
latency. POSEIDON completes the task of enabling hundreds
of Elastic IP addresses (EIPs) 1.8 to 55 times faster than Ven-
dors A and B, both of which are among the top 5 providers [6],
for identical network configuration jobs.

1 Introduction
Today’s cloud virtual networks are managed by multiple sep-
arate controllers [14], which are responsible for configuring,
monitoring, and recovering individual service [14, 30, 31]
in the cloud virtual networks, such as virtual private cloud
(VPC), VMs, etc. Managing and configuring large-scale cloud
virtual networks are extremely challenging due to the follow-
ing reasons:

• Rapid growth of northbound API calls and southbound
devices: The controller needs to process massive number
of network configuration API calls which are generated
by cloud users, network operators, etc. In 2022, our cloud
controller processed ∼17 trillion API calls per day. To make
it worse, the number of devices to be managed also increases

□ Co-corresponding author

dramatically. In our cloud, a single ACL rule change might
lead to config updates across ∼100,000 servers.

• Long search chains and large table size: A virtual network
service, such as VPC, usually depends on other services,
such as ACL and routing. When configuring virtual net-
works, the controller needs to query databases associated
with the targeted service and its dependent services. Since
the number of services increase dramatically over years,
the dependencies become so complex such that we need to
spend lots of engineering effort to process each API call.
In addition, the size of tables in each database increases
dramatically as well, which makes the table lookups for
API parsing more time-consuming. We observed that due
to these two factors, the 90% (P90) tail completion time for
handling an API call has nearly doubled over the past year.

• Cloud-native applications intensify the controller per-
formance requirements: Cloud-native applications [4] re-
quire extremely high throughput for concurrent resource
creation/deletion, which demands much higher controller
performance compared to traditional console-based network
configuration. For instance, to handle surges in user access
during peak events, social media applications require the
creation of tens of thousands of backends to be completed
within an exceptionally short time.

• High cost of managing separate controllers: To ensure
the agility and iterative development of various services, we
build and maintain separate controllers, one for each service
(same as Andromeda [14]). In the past few years, with the
growth of services, the number of controllers has boomed
to over 50, leading to a substantial increase in the costs of
managing numerous controllers by separate teams.
Some existing works focus on improving control effi-

ciency and minimizing direct human interaction with net-
work devices [13], with device-independent unified con-
fig abstraction/model [10, 16, 20–22], or even automating
control decision-making with user intent [17–19, 27]. An-
dromeda [14] introduces how to improve the performance and
scalability of pushing the configurations to Google’s virtual
network devices. However, they do not touch how to compute

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1083

the updates of configurations (abbreviated as configs) needed
on a physical server based on the tenant’s intent, which is the
actual performance bottleneck of a virtual network controller.

To address the above challenges, we propose POSEIDON,
a virtual network controller consisting of a unified virtual
network control abstraction over heterogeneous devices and
services. POSEIDON introduces innovations in three aspects.

1) At the architecture level, we find that among several
modules in a controller, only the module that parses user
intents changes frequently due to the addition of new APIs,
devices and dependencies. Other parts do not change much.
Therefore, we consolidate and unify the more stable modules
of different controllers into one, which greatly reduces the
development and operational costs of the controller when
introducing new services and new devices.

2) At the abstraction level, in order to unify the manage-
ment of heterogeneous devices and diverse services, we ab-
stract them into generic objects. Then, to eliminate the table
lookup complexity due to dependencies between configura-
tions, we propose Trident, a novel abstraction for describing
configuration dependencies. We find that the dependency be-
tween configs is transitive, so we can associate multiple ser-
vices to generate a config tree. Based on this tree, we can
easily find the configs that a particular config depends on, as
well as the devices they configure, by traversing the nodes,
thus eliminating traditional complex database table lookups.

3) At the implementation level, to address the issue of large
config tree traversal time in production, we deploy a traversal
cache to bypass the time-consuming reverse tree traversal
for top tenants and design a hierarchical storage structure for
achieving both high I/O performance and strong data stability.

We deploy POSEIDON on Alibaba Cloud and keep it run-
ning for more than 3 years. We obtain the following results.

• With POSEIDON, virtual network controller’s latency is sig-
nificantly reduced and throughput is increased. When en-
abling hundreds of EIPs (Elastic IP address) [8] in a same
VPC, POSEIDON’s latency is 1.8x~55x and 2.6x~4.8x lower
than cloud vendor A (Top 5 [6]) and cloud vendor B (Top
5). Compared with the previous controller, its throughput
has increased from 160 TPS to more than 3400 TPS (21x).

• The costs of developing and maintaining lots of controllers
has been significantly mitigated with the consolidated con-
troller in POSEIDON. The controllers’ lines of codes has
been significantly reduced by 22%~41%. Beneath the con-
solidated controller, the human efforts of developing a con-
troller for a new service is reduced by 50%.

• The consolidated controller has taken over lots of the work-
load from each service controller, reducing the CPU and
memory consumption by 50%.

2 Background and Challenges
In this section, we present the virtual network configuration
workflow and discuss the challenges encountered during years
of production deployment of our virtual network controller.

Controller

Config
changes
calculation

VM1

VM4

VM2

VPC1

vGateway

Server1

VM3VM4

Server2

VPC1: Tunnel ID,
Route, ACL;
VM4: PIP
EIP1: BW

Configure
cloud infra

VM4: server2; EIP1: BW

Tenant Intent Virtual Network Controller

Tenant intent
mapping

VM3
VPC2

VM1 VM2

vSwitch

Database

vSwitch

…
VPC-ACL

VPC-route
VPC-subnet

EIP-BW
EIP-PIP

EIP-VM

…

Cloud control APIs:
 i) Create VM4 in VPC1
 ii) Assign EIP1 to VM4

1

2

VPC-status VM-status

3

Physical Device

Figure 1: Virtual network configuration workflow.
2.1 Background
As Fig. 1 shows, the workflow consists of three steps:
1⃝ Tenant intents mapping to cloud control APIs. When

tenants attempt to configure their virtual networks (e.g., VM
create/deletion), they use the cloud control APIs [1–3, 7]
provided by cloud vendors to describe their intents. The cloud
control APIs are standard interfaces for tenants to create, read,
update and delete their virtual resources (e.g., VMs). Different
vendors offer different suites of cloud control APIs [1–3, 7].
Taking VPC configuration as an example, in Fig. 1, a tenant
intent of “create VM4 in VPC1 with a public address EIP1”
can be implemented with two cloud control APIs as “create
VM4 in VPC1” and “assign EIP1 to VM4”, which are fed to
the virtual network controller for further processing.
2⃝Device config changes calculation. After receiving ten-

ants’ API calls, the controller needs to compute the necessary
updates to be configured on the physical devices. This is done
with the following steps.
• Step 1: Identify all the dependent configs. Let us use the

VM4 creation in VPC1 as an example (see Fig. 1). Because
VM4 belongs to a specific VPC, to create VM4, we need
to identify the VPC VM4 belongs to, which is VPC1. In
addition, we also need to identify the dependencies of VPC1,
such as ACL rules and routing tables. This step is done by
doing SQL-based database queries. In this process, many
tables, such as VPC-ACL, VPC-VM, etc, are queried.

• Step 2: Identifying the physical devices onto which the con-
figs must be installed, as any network config is implemented
on the physical device. As shown in Fig. 1, Server2 and
vGateway need to be configured with the dependent configs.

• Step 3: Config changes calculation. After executing step
1, we know the configs needed for a API call. With step 2,
we know the targeted devices and their existing configs. If
the configs in step 1 already exist on the device, no config
change is applied on the physical server. In contrast, the
difference between the two is pushed to the physical server.
In our initial controller implementation, for each cloud con-

trol API, we write SQL code to manipulate databases and use
if-else control block to arrange the SQL query order based on
our service logic and the value acquired by table lookups. As
device number, table size and if-else logic grow, the config
changes calculation time is increasing rapidly.
3⃝Physical device configuration. In the last step, the calcu-
lated config changes are pushed to the physical device. For

1084 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2020 2021 2022

Year

0

5

10

15
D

a
ily

 A
P

I
C

a
lls

 (
T

)

Figure 2: Daily API calls grow
year by year in our cloud.

2017 2018 2019 2020 2021 2022

Year

0

10

20

N
e

w
 S

e
rv

ic
e

s
/D

e
v
ic

e
s

0

25

50

75

N
e

w
 T

a
b

le
s

Service

Device

Table

Figure 3: The number of yearly
added services, devices and tables.

2017 2018 2019 2020 2021 2022

Year

0

5

10

N
o
.
o
f
E

n
tr

ie
s
 (

M
)

VM-server

Figure 4: Number of entries in VM-
server table of a region.

example, in Fig. 1, the intent of “create VM4 in VPC1” is
eventually translated into the following device configs: the
private IP (PIP) and VPC ID are configured on vSwitch for
VM communication and VXLAN tunnel encapsulation, the
routes and ACLs of the VPC are also added to vSwitch to
regulate VM traffic, the VM-server mapping is installed to
vGateway to route traffic from remote VMs to the VMs on
the local host. Apart from that, in production, we need to
deal with devices with different hardware forms, e.g., x86- or
Tofino-based vGateway [25]. Therefore, the controller needs
to ensure that the translated configs in installed on these het-
erogeneous devices both timely and correctly.

2.2 Challenges
In this section, we describe two challenges of building a vir-
tual network controller that manages millions of tenants.

2.2.1 Insufficient Performance for Growing Workloads
The scale of networks and the number of services grow dra-
matically over the past decades. We find that previous con-
troller has degrading performance when handling the growing
workloads due to the following three reasons.
Rapid growth of northbound API calls and southbound
devices. Over the years, the usage of cloud resources by ten-
ants has significantly increased. For example, in the past two
years, the average number of PIPs within a VPC has increased
from hundreds of thousands to millions. This causes a rapid
growth in the number of VMs in VPCs. When a cloud user
creates, deletes or updates of a VM, the user has to call the
cloud controller API to take the corresponding actions. As the
number of VMs increases, the number of cloud control API
calls increases dramatically as well. Meanwhile, the grow-
ing number of tenants further exacerbates the frequencies of
API calls that the controller needs to handle. As shown in
Fig. 2, the API calling frequencies have doubled in two years,
reaching tens of trillions of calls within a single day.

Furthermore, as the scale of an individual VPC increases,
the physical devices the VPC covers also expand. This leads to
a sharp rise in the number of southbound devices that a single
API call needs to configure, imposing additional performance
overhead on the controller. For instance, in extreme cases, a
change of a single ACL rule in a large VPC may require a
batch configuration to more than 100,000 servers.
Long search chains and large table size. With expansion of
our cloud scale, the number of services and their dependencies
increase, leading to a growing number of tables that need to
be queried sequentially to finish the process of a single API
call (sometimes dozens of tables are queried). Fig. 3 shows

the recent growth of tables in our cloud. When a new table is
added to record the relationship between services, the number
of tables involved in the SQL query logic of some APIs may
increase. Since the cloud controller needs to handle trillions of
API calls each day, the additional table queries in a single API
causes a significant burden on our database. Simultaneously,
with the increase in the number and scale of virtual networks,
the number of entries in major tables also grows, resulting in
a longer database search/update latency. Using the VM-server
table as an example, Fig. 4 shows its recent growth.

Due to the significant growth in table size and the number of
tables being queried, over the span of one year, the P99 latency
of calculating config changes for one API in our cloud (config-
ure the vGateway) has increased from 860ms to 1615ms. The
growth in latency has far exceeded the performance improve-
ments of our controller that employs nested table searches,
resulting in a lack of scalability in performance.

We follow a distinct cyclical pattern to iterate our systems
in Alibaba, typically spanning several years. In the beginning
of a span, a significant number of new services/devices/tables
will be added to our cloud (e.g., 2017 and 2020 in Fig. 3).
After that, a considerable amount of time is required for de-
bugging and large-scale deployments. In this period, new de-
vices/services/tables (e.g., 2018, 2019, 2021 and 2022 in the
figure) are added only for reliability or security reasons, hence
the number will be very limited. After that, we will kick-off a
new cycle with a batch of new services/devices/tables.

Cloud-native applications intensify the controller perfor-
mance requirements. The emerging cloud-native applica-
tions [4] require that the controller allocates and releases
resources in a short time to adapt to the elastic changes in
workloads. Such program-triggered API calling approach re-
sults in a significantly higher frequency than tenants manually
configuring the network, posing challenges to the controller’s
performance on throughput and latency. For example, in e-
commerce business, the time of peak traffic is known, and to
save costs, resources will be massively scaled up (e.g., tens of
thousands of containers) just before the peak arrives, which
needs a high-throughput controller. Similarly, cloud-native
based social media applications need to handle surges in user
access during hot events. To cope with the sudden increase in
traffic, thousands of backends need to be elastically scaled in
a short interval (e.g., 500ms). This poses challenges to both
the controller’s throughput and latency. Insufficient controller
performance will lead to backlog of tasks and delayed con-
figurations. In the past, this will only impact the experience

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1085

of network operators as they need to wait a bit longer before
configurations take effect. However, for cloud-native appli-
cations, when the controller cannot support rapid network
configurations for a large number of new instances, the un-
expected surge in user traffic cannot be handled, resulting in
service interruptions and user experience degradation.

2.2.2 High Cost of Managing Separate Controllers
Service-dedicated controllers for rapid iteration. In the be-
ginning, we had only a small number of services, and different
service teams developed and maintained service-dedicated
controllers independently to ensure rapid iteration and iso-
lated deployment. If we develop a monolithic controller that
covers all services, huge continuous code integration efforts
will be needed for such a complicated system, hindering itera-
tion pace. Google’s Andromeda [14] also holds a similar view-
point. They believe that different services and their associated
devices need to be managed by separate controllers [14].

However, as our services expand, the number of controllers
has increased to dozens (e.g., LB controllers, VPC controllers,
cross-region controllers), and the development and mainte-
nance costs of these controllers gradually become unsustain-
able. Fig. 3 shows the annual additions of services, devices,
and tables between services in our cloud. When a new ser-
vice is added, we need to not only develop new APIs, but
also deal with possible dependencies with existing services.
When a new device is added, it requires extensive develop-
ment of device-specific tasks in the controller, such as life
cycle management, consistency checks, device-dependent rule
translations. Furthermore, during rapid iteration, each con-
troller requires dedicated personnel from the service team for
maintenance. The maintenance costs also increase linearly
with the number of controllers.
Code redundancy and logic dependencies between con-
trollers. In the service-dedicated controller architecture, we
discover that the code redundancy for the southbound inter-
faces of different controllers is relatively high, as these in-
terfaces are service-agnostic and primarily responsible for
device management and configuration. However, each ser-
vice team independently optimizes the performance of their
interfaces, leading to significant waste of human resources.

In addition, as the business grows, the dependencies be-
tween services have become increasingly complex. A cloud
control API processing may require multiple controllers to
collaborate. For example, the Internet gateway is managed by
both the VPC controller and the cross-region controller, so
any modifications to the VPC controller must also consider
the potential impact on the cross-region controller. The code
redundancy and logic dependencies diminish the benefits of
managing separate controllers.

3 Design
3.1 Design Overview
To address these challenges, we propose POSEIDON, a virtual
network controller that can manage a large-scale cloud with

Tree-based Config Changes Calculation

VPC

Unified Agent

D
at

a
pl

an
e

Unified Controller

Trident changes

Cross-
region

Load
Balance

Forwarding PlaneForwarding Plane

Cloud control APIs

Pushing Service

C
on

tr
ol

 p
la

ne

NAT…

Unified Agent

Trident operations Service related
Service independent

Server Gateway

…

Figure 5: Layered controller architecture of POSEIDON.

millions of tenants. It contains the following 5 key designs:
Partial consolidation architecture. To reduce the costs of
developing and maintaining multiple service-dedicated con-
trollers, POSEIDON introduces a layered design that incor-
porates the consolidation of common logic among various
services into a unified controller (§3.2), as shown in Fig. 5.
Trident: Service-independent abstraction. To unify the
management of heterogeneous devices and diverse services,
we design Trident, a service- and device-independent cloud
control abstraction for the unified controller. Trident exposes 5
operations over 3 objects, allowing for flexible programming
of existing cloud control APIs. Specifically, in order to achieve
equivalence with SQL-based config changes calculation, Tri-
dent offers Relate/Unrelate, a pair of unique operations to
represent the relations between objects (§3.3).
Config representaion through Trident tree. By continu-
ously recording Trident operations, we can build a tree-like
data structure named as Trident tree. Trident tree represents
configurations, devices and relations between them (§3.4).
Tree-based config changes calculation. With Trident tree,
the service-related table lookup logic (SQL+if-else) is re-
placed by equivalent tree traversal which decoupled config
changes calculation from specific service logic. To acceler-
ate the config calculation process, we take advantage of the
observation that the descendant relation is transitive in the
Trident tree and propose function-based descendant relation
calculation with O(1) computational complexity (§3.5).
Cloud-scale performance optimizations. For production
deployment, we design a hierarchical storage structure for
POSEIDON and deploy a traversal cache to bypass the time-
consuming reverse Trident tree traversal for top tenants who
have substantial number of virtual network elements (§3.6).

Fig. 6 shows the workflow of device configuration of PO-
SEIDON. In POSEIDON, after tenant intents are mapped to
cloud control APIs, instead of writing (SQL + if-else) query
logic, the service-related controllers maintained by individ-
ual service teams translate the APIs into Trident operations.

1086 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Create a VM in VPC1 with EIP1

b. Enable EIP1 on PIP4

(1) Create VM4, PIP4;
(2) Relate VM4 to PIP4,
PIP4 to VPC1, Server2 to
VM4;
(3) Update FlowTable1.

(1) Create
EIP1, Bandwidth;
(2) Relate PIP4 to EIP1,
EIP1 to Bandwidth,
Gateway group1 to EIP1

User intent

Trident
operations

Cloud
control API

a. Create a VM in VPC1

Trident
changes

Server2: Add ACL1,
Route1, VPC1, PIP4, VM4.
Gateway group1: Update
FlowTable1.

Server2: Add EIP1,
Bandwidth.
Gateway group1: Add
EIP1, Bandwidth.

1

2

3

Figure 6: Device configuration workflow of POSEIDON.

Then, the unified controller changes the config tree topology
according to the Trident operations and conducts tree-based
config changes calculation to generate the device-independent
Trident changes, which will finally be configured into devices.

3.2 Consolidation of Separate Controllers
In this section, we discuss the problems of consolidating all
the functions of multiple controllers into a big one. Then, we
introduce the partial consolidation adopted by POSEIDON.

3.2.1 Problems with full consolidation of controllers
To reduce the overhead of multiple controllers, it is natural to
consider consolidating their functions into one big controller.
However, full consolidation incurs significant costs. In our
clouds, each service-dedicated controller is rapidly iterated to
satisfy changing service requirements. Before each iteration
goes online, it is necessary to conduct comprehensive testing
of the controller on all relevant APIs and their parameters.
Given there are x controllers (in our cloud x is 50~60), and
each is iterated Iteri times a month and has Testi test cases
to cover before put online, the total test cost is O(Σx

i=1Iteri ∗
Testi). Comparatively, after full controller consolidation, the
iteration frequency will be the sum of the iteration frequencies
of each controller. Moreover, on each iteration, all the test
cases need to be examined and the total test cost grows to
O(Σx

i=1Iteri ∗Σx
i=1Testi), which is likely to impede the rapid

iteration of cloud services.

3.2.2 POSEIDON’s choice: partial consolidation
Despite the significant cost of full consolidation, we have
observed that some parts of the controller are service-
independent, which can be consolidated without high cost.
For example, at the northbound of the controller, the API pars-
ing logic is service-related and constantly undergoes rapid
iterations. In the middle, although config changes calculation
for different services may involve orchestration of different
table query sequences, the underlying table query mechanism
is quite similar. At the southbound, the controller needs to
interact with devices. The code for interacting with different
devices often shares a significant amount of common logic

such as life cycle management which transitions between de-
vice states. Additionally, the device update frequencies are
usually much lower compared to the service iteration frequen-
cies (Fig. 3), making southbound logic more stable.

Based on the above observations, to maintain the flexible
iterative capability of cloud service at the northbound and re-
duce the OpEx of maintaining multiple controllers, we carry
out partial consolidation of common parts of each controller.
Specifically, we build a service-independent abstraction layer
in the middle, offering a set of atomic operations, enabling
flexible orchestration of diverse northbound service require-
ments using these atomic operations. Past SQL + if-else ap-
proach poses a high demand for developers’ understanding of
mechanisms of cloud networks. With the new abstraction, de-
velopers only need to parse APIs into these atomic operations
that are independent of both services and devices. Beneath
this abstraction layer, we consolidate the implementations of
different controllers for config changes calculation and device
configuration to reduce redundant development and mainte-
nance costs, as shown in Fig. 5. As mentioned in §2.1, config
changes calculation is the most time-consuming step. Consol-
idation helps us concentrate on its optimization collectively,
rather than conducted by individual teams.

Furthermore, for installing configs on heterogeneous de-
vice, we deployed a unified agent on each device for receiving
Trident changes, as shown in Fig. 5. There is a device-specific
program for translating unified Trident changes into device-
specific primitives on the agent. The program is developed by
the device management team, who is more familiar with the
command-line interface of the device.

3.3 Service-independent Abstraction
We first introduce three goals of designing abstractions for
managing virtual network, then elaborate on how POSEIDON
abstracts the API parsing logic and various services/devices.

3.3.1 Goals of designing abstraction
• Service-independent: The processing logic is agnostic to

service, namely, all APIs share a unified codebase.

• Device-independent: The objects should hide device het-
erogeneity to ease the programming with the abstraction.

• Equivalence: The results obtained with the abstraction
should be the same as past SQL + if-else based approach.

3.3.2 POSEIDON’s abstraction
Based on the design rationale, we propose Trident, the cloud
control abstraction for the unified controller in POSEIDON.
Trident exposes 3 objects (Conf, Device, Group) and 5 op-
erations (Create, Update, Delete, Relate, Unrelate) upward,
facilitating the interpretation of existing cloud control APIs.
Conf: During virtual network configuration, the manipulation
of tenant resources through cloud control APIs will finally
translate into manipulation of configs (e.g., routes and ACLs)
on the physical device. We use Conf to denote the manipula-
ble configs (e.g., VM, ACL in Fig. 7) on the device.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1087

Device: In order to hide the differences of underlying devices
in the abstraction, we use Device to abstract different kinds
of devices (e.g., server, gateway in Fig. 7) that carry configs.
Group: To manage increasing workloads, horizontally scal-
ing devices into clusters is common in the cloud [15, 25, 26].
Within the same cluster, all device share same configs. To
avoid the repetitive config changes calculation for devices
within the same cluster, we introduce Group as the repre-
sentative of the devices to carry Confs for the cluster. For
consistency, we also create a Group with the same name for
an isolated device that does not form a cluster (e.g., Server1).
Create/Update/Delete: The CRUD (Create, Read, Update,
Delete) of tenant resources through cloud control APIs in-
ternally turns into CRUD of related Confs/Devices/Groups
by the unified controller. Since this paper focuses on virtual
network configuration due to Trident tree changes, we do
not include the read operation in this paper, which will only
involve retrieving values from the tree. The Create/Delete
Devices takes place when devices are allocated/deallocated
for the scale-out or scale-in of cloud workloads.
Relate/Unrelate: There may be relations between Confs, De-
vices and Groups. Specifically, for relations between two
Confs, we use Conf1→Conf2 to denote that the success-
ful configuration of Conf1 depends on Conf2. For example,
VPC→ACL meaning that each time configuring a VPC, we
need to configure its ACL simultaneously. For relations be-
tween Devices and Groups, we use Device1→Group1 to de-
note that Device1 belongs to Group1 as Device1 has the same
configurations with other devices (if any) in Group1. For re-
lations between Groups and Confs, we use Group1→Conf1
to denote that Conf1 is configured to all the devices attached
to Group1. As Group1 represents a cluster of devices, we no
longer associate Conf1 with each device attached to Group1
to reduce redundant configurations. In other words, the rela-
tion between Conf and Device will not exist. In Trident, we
introduce Relate to add → between two objects if they have a
relation and Unrelate to remove → if the relation disappears.

3.4 POSEIDON’s Trident tree
With Trident, the processing of cloud control API is abstracted
into creating/deleting objects and relating/unrelating objects
to other objects. After that, multiple “Device→Group→Conf”
chains are formed. To enhance visualization and compre-
hension, we represent these interconnected chains as a tree
structure, referred as “Trident tree”, e.g., the tree in Fig. 7.
3.4.1 Building Trident tree
Fig. 6 shows the equivalent Trident operations for the two
example APIs. These operations create, delete various objects,
and modify the relations between them. For example, the Tri-
dent operations of API a in Fig. 6 will create two Confs, VM4
and PIP4, as shown in Fig. 7. Then, it will build relations
between VM4, PIP4 and the dependent Confs. Additionally,
VM4 needs to be related with the corresponding Group, indi-
cating its creation on the Devices represented by that Group
(i.e., Server2). These two API calls form a path (marked with

Server1 Server2 GW1 GW2

Conf

Device
Group

Device

Relate

ACL1

Server1

VPC1

Route1

PIP1 PIP2 PIP3 PIP4

VM1 VM2

VPC2

Server2

VM3 VM4

 EIP1

Gateway
Group1

Bandwitdth1ACL2 Route2

Create
Conf

Update
Conf's
data

vGW

FlowTable1

Figure 7: Trident abstraction and an example of Trident tree.

the blue and red path in Fig. 7). With more API calls, finally, a
Trident tree that records the dependencies between objects is
created as shown in Fig. 7. Since the configs within the Group
are identical, we consider the Group as the root of the Trident
tree in the following config changes calculation procedure.

3.4.2 Handling API calls with Trident tree
Any API call can be represented as changes to the Trident
tree, and based on the Confs changes of the Group, we can
determine what updates should be made to the Devices within
it. We use the API “create VM4 in VPC1” to illustrate this
statement. To execute this API call, we have two steps:

1) We identify the Confs that VM4 depends on. This is
achieved by traversing from VM4 to its descendants, which
are PIP4, VPC1, ACL1, and Route1. Then, by traversing from
these dependent Confs to their roots with a reverse tree traver-
sal, we can locate the target Groups that carry these Confs
(i.e., Server1 and Server2).

2) We deduce the actual changes that need to be pushed to
the devices based on the relations between dependent Confs
and Groups. We can obtain the set of Confs carried by target
Groups (e.g., Server2) by traversing their descendants before
and after changing the tree topology with Trident operations.
By performing a diff operation on the two Conf sets, we can
obtain config changes for target Groups. In Fig. 7, the added
descendants of Server2 include VM4, PIP4, VPC1, ACL1, and
Route1. Hence, the config changes of Server2 are “add VM4,
PIP4, VPC1, ACL1, Route1”. These changes are represented
with Trident objects and device-independent.

3.5 Tree-based Config Changes Calculation
3.5.1 Basic procedure
Algo. 1 describes the solution adopted by POSEIDON. API
calls change the tree topology by either adding/deleting tree
nodes or modifying the relations between them (line 3). Af-
ter the tree is updated, we can find all the dependent Confs
of these Trident operations by traversing the tree (line 4).
Then, by reversely traversing from these dependent Confs to
their roots, we can obtain the target Devices. As Devices are
represented by their Groups, finding Groups is enough for

1088 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

subsequent calculation (line 5). For each Group, the Confs
that need to be added/deleted/updated are obtained by detect-
ing the changes of its descendants (line 6-13). For example,
when a Group’s descendants expand due to a new Conf being
added, we need to add a corresponding configuration rule to
the Devices represented by this Group (line 8-9).
Algorithm 1: Tree-based config changes calculation.

1 Function ChangesCalculate(Cloud control API):
2 Mapping API to Trident operations.
3 Change the Trident objects and their relations according to

Trident operations.
4 con f _set = all the dependent Confs of Trident operations.
5 group_set = FindRoots(con f _set).
6 for group in group_set do
7 for c in con f _set do
8 if c will be added into descendants of group then
9 Add c to group.

10 else if c will be removed from descendants of group
then

11 Delete c from group.

12 else if c changes & c is in descendants of group then
13 Update c in group.

3.5.2 Fast finding descendant changes for a Group
A critical step in this procedure is to verify whether a Conf
resides in a Group’s descendants (line 8, 10, 12).
Naive tree traversal is unscalable. The naive approach
employs a widely used traversal algorithm, e.g., depth-first
search, which has a time complexity of O(nodes), starting
from the Group and checking each visited tree node. However,
this solution is very time-consuming for large-scale cloud net-
works, as most devices accommodate a significant number of
configs (i.e., Confs in Trident tree), and the number of configs
keeps growing as the device performance improves. For exam-
ple, our gateway accommodates millions of VXLAN routing
table entries [25]. It is inefficient if each API call requires
a complete tree traversal, which will consumes hundreds of
seconds for traversing the Trident tree with millions of nodes.
Descendant relation is transitive. We adopt descendant rela-
tion between Conf and Group to indicate that a Conf is within
the descendants of a Group, that is, the Conf is configured
to the Devices represented by the Group. We observe that in
Trident tree, the descendant relation is transitive and can be
propagated from parent nodes to their children. Specifically, if
a Conf is configured on a Group, then all of its children must
also be configured on the same Group. Because parent nodes
need to be configured together with the dependent Confs (i.e.,
their children) on the Group. Therefore, for a Conf, deter-
mining whether it has a descendant relation with a Group
only requires examining its parents. If any parent of the Conf
has a descendant relation with a Group, the Conf inherits the
descendant relation with that Group. We employ reference
count to record the descendant relation between Conf and
Group, denoted as re f (Group,Con f). For example, we can
use re f = 1 to indicate there is a descendant relation while

Server1

ACL1

Server1

VPC1

Route1

PIP1 PIP2

VM1 VM21 1

1 1

1 1

1 OR 1 = 1

(a) OR-based

Server1

ACL1

Server1

VPC1

Route1

PIP1 PIP2

VM1 VM21 1

1 1

2 2

1 + 1 = 2

(b) SUM-based

Server1

ACL1

Server1

VPC1

Route1

PIP1 PIP2

VM1 VM21 1

1 1

F(1) + F(1) = 2

F(2) = 11

(c) Function-based
Figure 8: re f (Server1,Con fX) calculation. The changes and
unchanges are marked by red and black, respectively.

re f = 0 to indicate no relation.
There are multiple potential solutions to execute an API call

on the Trident tree with transitive descendant relation. Here,
we illustrate the pros and cons of two potential solutions.
Solution1: OR-based re f calculation. To figure out whether
a Conf is a descendant of a Group, we can check if ei-
ther of its parents is a descendant of the Group. This in-
dicates that we can apply the OR operation on the ref-
erence count of all parents to obtain the reference count
of the Conf itself. Thus, we have re f (Group,Con fA) =
∨ire f (Group,Pi), where Pi is the ith parent of Con fA. As
shown in Fig. 8, re f (Server1,V PC1) = re f (Server1,PIP1)
OR re f (Server1,PIP2) = 1. The computational complexity
is O(Pi) (for a detailed analysis, please refer to §B.3).

Based on our experience, a Conf’s parents can reach several
million in our cloud. For example, during shopping festivals, a
VPC can have millions of VMs. Therefore, the OR calculation
due to a single API call (like VM create or delete) could take
more than tens of seconds. In order to ensure accuracy of
re f calculation, when a Conf’s parent undergoes a change,
the calculation triggered by changes of other parents will be
blocked until the refresh of the re f for this round (e.g., tens
of seconds) is completed. This approach significantly limits
the system’s throughput and increases its latency, making it
unsuitable for production deployment.
Solution2: SUM-based re f calculation. Another solution
is asking a Conf to inherit all parents’ re f by using a
summation method, as defined by re f (Group,Con fA) =
Σire f (Group,Pi). Whenever the re f (Group,Con f) becomes
zero, we need to delete the Conf from the Group. Because the
summation method adheres to the reversibility property, the
computational complexity of this SUM-based calculation is
O(1) (for a detailed analysis, please refer to §B.4).

However, this solution also has a limitation, as any change
in a node’s re f propagates through all its descendants layer by
layer. For example, creating VM2 of VPC1 on Server1 will
cause re f (Server1,V PC1) to increase from 1 to 2, as shown
in Fig. 8. As ACL1 and Route1 are children of VPC1, this
will result in synchronized changes for re f (Server1,ACL1)

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1089

Table 1: Changes of re f (Group,Con f) when Trident tree changes. The blue and red text denote the changes due to the blue and
red operations in Fig. 7, respectively. “0 → 1” represents the value changes from 0 to 1.

Group
Conf VM1, PIP1

VM2, PIP2
VM3, PIP3, VPC2

ACL2, Route2
VM4
PIP4

VPC1 ACL1
Route1

EIP1
Bandwidth1

FlowTable1

Server1 1 0 0 2 1 0 0
Server2 0 1 0 → 1 0 → 1 0 → 1 0 → 1 0

Gateway Group1 0 0 0 0 0 0 → 1 1

and re f (Server1,Route1) as well. When the re f of a Conf
changes only within the positive range, it implies that a de-
scendant relation always exists and there is no need to trigger
a configuration to the corresponding Group. For cloud net-
works, service dependencies are intricate and the tree depth
can reach dozens of layers. While this propagation may trig-
ger re f changes in many layers, it won’t incur configuration
updates, leading to a waste of computation resources.
Our solution: Function-based re f calculation. As dis-
cussed, the OR-based solution has high computational com-
plexity, while the SUM-based solution has ineffective propa-
gation. With lessons of both, we propose function-based re f
calculation. Specifically, to reduce computational complexity,
we retain the reversibility property advantage of the SUM-
based solution, refreshing re f with O(1) complexity. In addi-
tion, to address the ineffective propagation, we filter out irrele-
vant changes from a Conf’s parents by counting the number of
its parents with a non-zero re f . The ref calculation is defined
by re f (Group,Con fA) = ΣiF(re f (Group,Pi)), where F(x)
is a piecewise function as F(x) = 1,x > 0;F(x) = 0,x = 0.
With this function, any changes of x within the positive range
will not alter its function value (remain 1), thereby preventing
ineffective re f calculation propagation (hide children from
irrelevant re f changes of parents).

Assuming we continuously create VMs of VPC1 on
Server1, re f (Server1,V PC1) will keep increasing. With our
solution, re f (Server1,ACL1) and re f (Server1,Route1) will
always remain 1, as shown in Fig. 8. This demonstrates
that children won’t inherit irrelevant re f changes from their
parent. However, if there are no more VMs of VPC1 on
Server1, re f (Server1,V PC1) will be 0. With our solution,
re f (Server1,ACL1) and re f (Server1,Route1) will become
0 in response because F(0) = 0. To sum up, our solution ad-
dresses the performance and overhead issues of previous two
solutions, making it suitable for large-scale cloud networks.

3.5.3 Fast finding updates for a Conf.
When we need to update a Conf, we perform a reverse traver-
sal on the tree from the Conf to locate the Groups that accom-
modate it. Then, we push the modification of the Conf to the
Devices under these Groups. In production environment, there
are always concurrent updates to the same Conf. To ensure
the correctness of the order in which updates are pushed to
devices, we introduce a version field to Conf. On each update,
the version is incremented by 1. When multiple updates of a
Conf are pushed to a device, the on-device unified agent main-
tains the update install order based on the version numbers
and performs reordering for out-of-order updates.

Redis

Conf's value

DB

Trident changes

Memory

Unified agent

Trident ops

Trident ops

Read Redis

Ref

Version

Relation

Conf1: value

……

Trident ops1

……

Figure 9: Hierarchical storage structure of POSEIDON.

3.5.4 A tree-based config changes calculation example
With the ability of re f and version to fast detect the changes
of Group’s descendants and updates of Conf, we can modify
lines 8, 10, and 12 in Algo. 1. For example, we can replace
the logic of line 8 by checking if ref transitions from 0 to a
positive value. By observing changes in version and ensuring
re f is not 0, we can determine whether an update needs to
be pushed to a certain Group, which can replace the logic
of line 12. With re f and version, unnecessary configurations
can be efficiently filtered out. Finally, we read the value of the
Confs that require deployment to generate the final Trident
changes and push them to the unified agent. Table 1 illustrates
the changes in re f resulting from Trident operations parsed
from API a and API b in Fig. 6. Using these changes, we
can efficiently compute config changes. For example, when
re f (Server2,ACL1) transitions from 0 to 1, it indicates that
ACL1 needs to be configured on Server2. Similarly, an update
to FlowTable1 will increase its version by 1, requiring this
update to be pushed to the Gateway Group1, which has a
descendant relation (with a non-zero re f) with FlowTable1.

3.6 Cloud-Scale Performance Optimizations
Hierarchical storage structure of POSEIDON. In order to
achieve higher I/O performance while ensuring data reliability,
we propose a hierarchical storage structure for POSEIDON,
consisting of memory, Redis and database, as shown in Fig. 9.
Among these, memory provides the highest performance but
is vulnerable to data loss in case of power failure. Redis offers
intermediate performance and a certain level of reliability, as
it periodically batches data onto hard disk. The database is
stored onto disk, offering the lowest performance but ensuring
data persistence even during power loss.

POSEIDON needs to store various data objects, including
Trident operations, re f s, versions, Conf relation and Conf’s
value. Based on the data read frequency and reliability re-
quirements, they are stored in three different storage mediums.
Among them, Trident operations are derived from the interpre-
tation of APIs. All other data structures are calculated based
on them. Hence, Trident operations serve as the source of

1090 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Server1

PIP1 PIP9……

VPC1Route1 Traversal cache
of VPC1

PIP8

Fastpath

VM1 VM2

…… PIP y

VM x

Server y

……

……

Figure 10: Traversal cache.

data for config changes calculation but will not be frequently
accessed during the calculation. Therefore, they are suitable
for storage in database as ground truth data. In the event of
memory power loss, they can be used to restore other data.
The re f , version, and relation involve high-frequency read
and write requirements, thus they reside in memory. The en-
tire computation process takes place in memory for ultimate
performance. In addition, we store the Conf’s value in Redis,
as the Conf’s value has a lower read frequency compared to
re f /version/relation but higher than Trident operations. This
is because the controller only needs to read the Conf’s value
in the final step of config changes calculation. To minimize
the storage pressure on memory, we store it in Redis. In addi-
tion, in order to prevent data lost of Redis due to failover, we
design a failover detection method in §B.6.
Traversal cache. Based on POSEIDON’s deployment experi-
ences, we have observed performance degradation when per-
forming config changes calculation for some top tenants (e.g.,
those with millions of VMs). In a real case, the reverse tree
traversal time reaches a surprising 150s when a visited Conf
has 105 parent nodes. To tackle this issue, we introduce traver-
sal cache. The basic idea is to maintain an additional cache
for nodes with an excessive number of parent nodes, which
directly records the Groups obtained from the reverse traver-
sal. As shown in Fig. 10, as the parents of VPC1 continue to
increase, when reaching a certain threshold, we will attach a
traversal cache to VPC1, which records the Groups holding
descendant relation with VPC1. When Route1 changes, VPC1
will be visited during the reverse traversal to find the Groups.
When VPC1 is visited, the Groups recorded in its traversal
cache will be directly retrieved, eliminating the need for time-
consuming traversal of the entire tree. This is shown in Fig. 10,
where the green line with traversal cache bypasses the entire
tree traversal. When Trident tree is updated by Trident opera-
tions, the traversal cache will be refreshed according to the
function-based re f calculation.

4 Evaluation
POSEIDON has been deployed in our production cloud for
over three years and is responsible for handling the major-
ity of API processing. The following data were collected
from a production region containing hundreds of thousands
of vSwitches, thousands of GWs, and tens of millions of VMs.

4.1 Performance improvement
End-to-end completion time under different TPS. Experi-
ment setting. For a controller, the key performance metric is
its concurrent processing capacity and the corresponding com-
pletion time. Since the concurrent capacity of unrelated API
calls can be enhanced through horizontal scaling, we focus on
the capacity for processing related API calls. Specifically, we
conducted experiments to measure the concurrent capacity of
Vendor A (Top 5 [6]), Vendor B (Top 5), and ours (Top 5) on
two of the most widely used APIs in our public cloud services,
that is, Enable and Disable Elastic IP (EIP) [5] for a VM in a
same VPC. We have selected these two APIs for two specific
reasons. Firstly, they enable us to precisely gauge the time it
takes for the controller to process an API call, excluding any
time spent on unrelated modules like the VM’s startup time,
which occurs when utilizing the VM creation API. Secondly,
these two APIs represent a 10% of the 1200 APIs available to
our customers. It should be noted that as POSEIDON utilizes
the same logic and codes to handle all APIs, there is no spe-
cific optimization to these two APIs. We leverage the Cloud
control API interfaces provided by the major cloud vendors to
initiate API calls with different transactions per second (TPS).
By recording the time taken for successful (for testing en-
abling EIP) or unsuccessful (for testing disabling EIP) pings
to these EIPs, we can obtain the P50, P90, and P99 completion
time. It is important to note that the timing starts from when
the controllers of Vendor A/B and ours receive the API calls
returning timestamp when the controller’s acknowledgment
of receiving the API calls), which effectively eliminates the
impact of transmission latency on the measurements. All the
experiments were conducted in the region of Jakarta†† from
August 20th to 29th, 2023.

Performance analysis. Fig. 11 depicts the P50, P90, and
P99 completion time for enabling EIP. As shown in the figure,
the completion time of Vendor A and Vendor B is 1.8x~55x
and 2.6x~4.8x higher than that of POSEIDON. Moreover, our
system demonstrates superior stability in high concurrent
scenarios. Even with 400TPS, the P50 of POSEIDON remains
consistently stable at 1.3s. The reason for testing Vendor B’s
performance only up to 200TPS is that when we attempted
300TPS, an unsupported error occurred. The specific error
details can be found in the appendix (Fig. A1). Furthermore, it
is worth noting that during the testing at 400 TPS, the majority
of completion time for Vendor A are below 30s. However,
there are 8 specific cases where the process of enabling EIP
took over 300s. Thus, the P99 of Vendor A is much higher
than that of ours (about 55x). This observation suggests that
the Vendor A control plane encounters instability under high
TPS scenarios. In the case of disabling EIP, the completion
time for Vendor A and Vendor B are 1.6x~12x and 1.3x~2.5x
compared to ours, respectively, which will be detailed in the
appendix (Fig. A2) due to the space limits.

††We repeated the experiments across multiple regions and observed con-
sistent results; for brevity, we illustrate only one set of results in this paper.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1091

0 100 200 300 400

Transactions per Second

1
2
3
4
5
6
7
8
9

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

Poseidon

Vendor A

Vendor B

(a) P50

0 100 200 300 400

Transactions per Second

0

5

10

15

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

Poseidon

Vendor A

Vendor B

(b) P90

0 100 200 300 400

Transactions per Second

10
1

10
2

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

Poseidon

Vendor A

Vendor B

(c) P99
Figure 11: End-to-end completion time of API calling for enabling EIP.

2 4 6 8 10

Threshold

100

200

300

400

T
ra

v
e
rs

a
l
T

im
e
 (

m
s
)

400

500

600

700

S
to

ra
g
e
 (

M
B

)

Time

Storage

Figure 12: Threshold selection
of traversal cache.

10
1

10
2

10
3

10
4

10
5

No. of Nodes

10
1

10
3

10
5

T
ra

v
e
rs

a
l
T

im
e
 (

m
s
)

w/o traversal cache

w/ traversal cache

Figure 13: Traversal time opti-
mization with traversal cache.

10
1

10
2

10
3

10
4

10
5

No. of Nodes

0

150

300

450

600

750

900

S
to

ra
g
e
 (

M
B

) w/o traversal cache

w/ traversal cache

Figure 14: The storage usage
(w/ vs. w/o traversal cache).

P50 P95 P99
0

100

200

300

400

500

600

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
s
) Prior-gen

Poseidon

Figure 15: Completion time of
config changes calculation.

Traversal cache. Threshold selection. The most important
metric for the traversal cache is the threshold, which deter-
mines the number of parent nodes that trigger the attachment
of a traversal cache for a Conf. We conducted experiments
in a Trident tree containing hundreds of thousands of nodes.
Fig. 12 shows the effects of the threshold on the P99 com-
pletion time of reverse traversal from all nodes to find their
roots, as well as the storage consumed by the traversal cache.
As the threshold increases from 2 to 8, the P99 completion
time remains relatively stable, while the storage consumption
decreases significantly. Once the threshold exceeds 8, there is
a notable increase in the P99. Therefore, the threshold of 8 is
a sweet trade-off point and is adopted in our production.

Traversal time optimization. Fig. 13 shows the P99 com-
pletion time for traversing (traversal time) different scales of
Trident tree. As the number of nodes increases, the traver-
sal time increases in both scenarios. When the Trident tree
contains 100,000 nodes, the traversal time without traversal
cache reaches 157s, which has a significant impact on the user
experience due to a long configuring delay. When we attach a
traversal cache for the node whose parents number exceeds
the threshold, the traversal time is notably reduced. Even if
the number of nodes reaches 100,000, the traversal time with
traversal cache is less than 1s, that is, only 792ms.

Storage usage. Fig. 14 illustrates the storage usage
with/without traversal cache. As shown in the figure, traversal
cache only causes a small piece of extra storage costs.
Config changes calculation. Bottleneck of prior-gen. Af-
ter conducting a thorough analysis of the performance bot-
tleneck of the prior generation controllers, we have figured
that the main bottleneck resides in the table lookup I/O of
database for calculating config changes. Based on our histor-
ical records, for the prior-gen, the P99 completion time for
config changes calculation reached 9s at 160TPS. In order to
overcome the I/O bottleneck in config changes calculation,
POSEIDON caches the Trident tree in the memory and Redis,
which significantly improves the the completion time and

500 1000 1500 2000 2500 3000 3500

Transactions per Second

130

140

150

160

170

180

190

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
s
)

P90

P95

P99

Figure 16: Completion time
of config changes calculation.

10
3

10
4

10
5

10
6

10
7

No. of Entries

0

5

10

15

20

25

30

R
e
c
o
v
e
ry

 T
im

e
 (

m
in

)

Prior-gen

Poseidon

103 104 105

0.5

1.0

Figure 17: Recovery time af-
ter restarts.

concurrent capacity of calculating config changes.
Completion time improvement. Fig. 15 depicts the config

changes calculation completion time of the same API in the
prior-gen and POSEIDON controller. The experiment is con-
ducted by calling the API 100 times repeatedly. As illustrated
in the figure, the completion time is notably improved com-
pared to the prior-gen. The P50, P95 and P99 completion
time of prior-gen are 3x, 3.5x and 4.4x larger than that of
POSEIDON. In addition, compared to the prior-gen, a smaller
difference between P99 and P50 of POSEIDON indicates a
smaller variance and thus a more stable performance.

Concurrent capacity improvement. Fig. 16 shows the config
changes calculation completion time of POSEIDON under
different TPS. As illustrated in the figure, P99 experiences a
drastic increases after 1500TPS. There is a sharp increase in
P90 and P95 when the frequency of concurrent calls exceed
3000TPS. The P99 of POSEIDON is less than 200ms when the
frequency of concurrent calls is 3432TPS. Compared to the
prior-gen, where the performance sharply deteriorated to 9s
after reaching 160TPS, the concurrent processing capability
of the config changes calculation module in POSEIDON has
been greatly enhanced.
Completion time of key steps in POSEIDON. Fig. 18 depicts
the completion time distribution of three key steps in the PO-
SEIDON workflow. The concurrent calling frequency is about
1,000TPS. As shown in the figure, config changes calculation
is the most time-consuming work due to its high complexity
and a multitude of I/O between memory and Redis. The P99
of config changes calculation, pushing and enabling is about

1092 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

40 60 80 100 120 140

Latency (ms)

0.2
0.4
0.6
0.8
1.0

C
D

F

(a) Config changes calculation

10 20 30 40 50 60

Latency (ms)

0.2
0.4
0.6
0.8
1.0

C
D

F

(b) Config changes pushing

0 5 10 15 20

Latency (ms)

0.98

0.99

1.00

C
D

F

(c) Config changes enabling
Figure 18: Completion time of three key steps in the POSEIDON workflow.

100ms, 20ms and 3ms, respectively. It also can be seen from
the figure that the CDF curve of config changes calculation
(Fig. 18(a)) is the shallowest one since the completion time
is greatly affected by the number of Confs and their depen-
dencies in the Trident tree (as shown in Fig. 13), which varies
dramatically. Besides, the tail in Fig. 18(b) and Fig. 18(c) is
much longer than that of Fig. 18(a). The reason for the long
tail in Fig. 18(b) is the extreme case for a small piece of cus-
tomers. When pushing the updates of the routing table for a
large VPC, the changes need to be pushed to hundreds of thou-
sands of devices, resulting in a few outliers with extremely
long completion time. The long tail in Fig. 18(c) is caused
by resource constraints on the device when other applications
exhaust the available resources.

4.2 OpEx and development cost optimization
OpEx. Since the common logic of controllers has been taken
over by the POSEIDON unified controller, the service-related
controllers focus on translating the API into Trident opera-
tions, leading to a notable reduction in the number of Lines
of Codes (LOC) of controllers. As shown in Table 2, the re-
duction rate of LOC are 22%~41%, which demonstrates a
significant mitigation in OpEx.

Development cost. Additionally, as the controller’s develop-
ment no longer needs to care about lots of works (e.g., config
changes calculation and pushing, consistency checking, etc),
the development cost has also gained a substantial reduction.
By comparing the development cost of two LB controllers
with similar business logic, we found that the cost has been
reduced by half. When developing a controller without POSEI-
DON, the human effort is 6 person-months and 66K lines of
code are written. With POSEIDON, the human effort amounts
to 3 person-months and we write 30K lines of code.

It is important to note that the reduction in OpEx and devel-
opment cost has not been added to the POSEIDON platform,
as the LOC of the POSEIDON is only around 150K, which is
much lower than the total LOC reduction.

Table 2: Reduction in Lines of Code of controllers.
LOC (prior-gen) LOC (POSEIDON) Reduction

LB1 167K 98K 41.3%
LB2 76.9K 46.9K 36.4%
VPC 873K 559K 36%
NAT 107K 65K 39.3%
VPN 97K 70K 27.8%

Private Link 31.8K 22.8K 28.3%
Accelerator 135K 105K 22.2%

Table 3: Resource consumption of unified agent.
Physical device Virtual element
SNA Server VM LB GW

CPU-Avg 0.12% 0.21% 0.81% 0.47% 0.16%
CPU-Max 0.94% 1.04% 1.88% 1.41% 0.99%
Memory 0.16% 1.30% 0.47% 0.31% 0.73%

4.3 Benefit and cost of unified agent
Recovery time after restarts. Fig. 17 illustrates the recovery
time for devices carrying different numbers of entries. The
more entries, the more reduction. The persistent storage of
config changes by the unified on-device agent enables fast
data recovery. The substantial optimization of recovery time
mitigates the downtime of devices, which improves the overall
utilization of devices and facilitates device iterations.
Resource consumption. The POSEIDON agent is deployed
on the device, consuming computing and storage resources.
We evaluate resources consumption for different physical de-
vices (e.g., Smart Network Appliance (SNA) [25]) and virtual
elements, as shown in Table 3. For the CPU, the average usage
remains below 1%, and the maximum usage is below 2%. As
for memory usage, it does not exceed 1% for all cases except
the server. This indicates that the agent only needs to consume
a small piece of on-device resources.

5 Experiences of deploying POSEIDON
How to migrate to POSEIDON? For a large-scale public
cloud provider, how to migrate from its old controller to PO-
SEIDON without affecting the quality of ongoing services is
a very challenging task. Initially, we leveraged lots of test
cases to verify the consistency between the POSEIDON and
the old controller. Only upon passing all test cases would we
allow the replacement of the old controller with POSEIDON
in the production environment. However, infrequently used
services not covered by the test cases led to continuous online
configuration errors. The practice of debugging after errors
has seriously compromised the availability of our services,
resulting in a substantial number of complaints. We gradually
recognized that test cases could not guarantee comprehensive
coverage of all usage of numerous services. Consequently, we
opted for a dual-running test in production, leveraging mas-
sive real user API calls to eliminate uncovered corner cases.
Specifically, we apply a dual-running test where both the old
controller and POSEIDON are running to handle the same
API calls, but deliver configs to production devices and test
devices, respectively. For each physical device in production,
POSEIDON will fully take over the configuration management
only after it has accurately handled the API calls of over 90%
of the tenants using the device, over 95% of the services im-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1093

plemented by the device, and over 90% of the APIs related
to the device for a specified period—this period being one
week for smaller regions and one month for larger regions.
Employing this strategy, the faults attributed to POSEIDON
have been significantly mitigated throughout the year.
POSEIDON’s performance in extreme situations: Extensive
route fluctuations. For tenants with self-built Internet data
center (IDC), their IDC’s BGP routes must be learned by their
VPCs in the cloud. Some tenants operate large-sized IDCs
with thousands of BGP routes. When there are fluctuations in
the links between IDCs and the cloud, it triggers massive BGP
route convergence. In extreme cases, BGP route oscillation
may also occur. All changes in BGP routes must be processed
and configured by the controller. For prior-gen controller, it
takes over five minutes to converge two thousand routes. With
POSEIDON, the converge time is reduced to tens of seconds,
significantly mitigating the impact on tenant services.

Large-scale device restart. Normally, network devices un-
dergo scattered restarts due to upgrades or SW/HW issues.
Extremely, there may be a widespread batch restart of devices,
e.g., during a power outage. Over the past years, we expe-
rienced three data center-level power outage incidents. The
first two were handled by the prior-gen controllers. During
restarts, a sudden surge in config retrieval requests from a vast
number of devices directly saturated the database connections.
Consequently, the recovery took hours. For the third incident
with POSEIDON deployed, due to its trident tree algorithm
and hierarchical storage, the recovery was finished in minutes.
Where to record the descendant relation between Conf
and Group? How to record these relations in a Trident tree
will affect the performance of configuration delivery, includ-
ing the incremental configuration delivery (i.e.a tenant adding
a new Conf) which ensures the timeliness of user configura-
tion delivery, and the full configuration delivery (i.e.device
restart) which is crucial to device upgrades and maintenance.
Specifically, if each Conf records its targeted Device, it will
be easy to calculate the incremental config changes, but the
full configuration delivery will be very slow because all Confs
must be traversed. In contrast, if each Group records the Conf
it needs, the full configuration delivery will be fast because
all required configs are already recorded in the Group, while
the incremental configuration delivery will be slightly slower
because the Trident tree needs to be reversely traversed to
find the roots. Note that we cannot record the relation in both
Conf and Group as this implementation contains too many
locks, leading to terrible performance. Considering POSEI-
DON servers a large-scale public cloud, where device updates
are extremely frequent, and stability maintenance is a critical
task, we choose Group to record the descendant relation to
achieve the best performance of full configuration delivery.

6 Related work
The previous abstraction works [9, 12, 16, 22–24, 27] provide
a unified abstraction to shield the heterogeneity of devices,

making the network configuration easier for network opera-
tors. For example, based on NETCONF [16], YANG [9] has
been proposed to facilitate device-independent configuration.
However, these abstractions only provide device-independent
capabilities and do not support service-independent config
changes calculation. Our proposed abstraction, Trident, elim-
inates the need to maintain service-specific config changes
calculation logic for each controller, greatly reducing OpEx.

The architecture of network control systems has also been
widely researched. [17, 21] manage various services and het-
erogeneous devices of physical network in unified manner,
which could notably reduces the OpEx of managing networks
consists of diverse devices. [17–19] introduce intent-driven
network management, which takes network management a
step further. Andromeda [14] and Achelous [30] design the
mechanism of configuring the devices in their VPC with the
config changes. However, all the above works do not touch the
config changes calculation procedure in the virtual network,
whose optimization is first discussed in this paper.

Additionally, there are several notable efforts [11, 28, 29]
dedicated to achieving rapid, highly scalable, and automated
database-based incremental view maintenance. We acknowl-
edge that the adoption of these methods could indeed improve
the controller performance with SQL-based optimizations.
While further SQL-based optimization of the controller may
meet current performance requirements, it sets us on a path
where future performance improvements become heavily re-
liant on SQL-database enhancements—a challenge we have
struggled with for over a decade. To have a better assurance
of controller performance with predictable improvement, we
choose to optimize the whole architecture, especially in vir-
tual network abstraction and API processing logic. In this way,
the performance enhancement is guaranteed irrespective of
the SQL-database we employ. Nevertheless, combining SQL-
based optimizations [11, 28, 29] and architecture optimization
proposed in this paper might be an interesting exploration and
the community could be inspired by POSEIDON.
7 Conclusion
This paper presents POSEIDON, a pioneering effort to build
a unified virtual network controller capable of managing a
virtual network at the scale of millions of tenants. With PO-
SEIDON, we can save the OpEx of managing numerous con-
trollers without sacrificing flexibility of services iterations.
The innovative config dependency abstraction enables the
calculation of config changes independent of both service
logic and physical devices. We have been operating Alibaba
Cloud with POSEIDON over 3 years, and it has substantially
mitigated the workload of adding services/devices, lowered
the configuration latency, and reduced network incidents.
Acknowledgements: The work was partially supported by
National Science Foundation of China (NSFC) under Grants
(62293511, 62372053). We thank our shepherd Soudeh Ghor-
bani and the anonymous reviewers for their helpful comments
that greatly improved the paper.

1094 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Alibaba Cloud API. https://api.alibabacloud.c
om/home, 2023.

[2] AWS Cloud Control API, manage cloud infrastructure
with a consistent set of APIs. https://aws.amazon
.com/cloudcontrolapi/, 2023.

[3] Azure REST API reference . https://learn.micr
osoft.com/en-us/rest/api/azure/, 2023.

[4] Build cloud-native applications in Azure.
https://azure.microsoft.com/en-us/solu
tions/cloud-native-apps/, 2023.

[5] Elastic IP Address in Alibaba Cloud. https://www.
alibabacloud.com/en/product/eip, 2023.

[6] Gartner Says Worldwide IaaS Public Cloud Services
Revenue Grew 30% in 2022, Exceeding 100 Billion
for the First Time. https://www.gartner.com/en
/newsroom/press-releases/2023-07-18-gartn
er-says-worldwide-iaas-public-cloud-servi
ces-revenue-grew-30-percent-in-2022-excee
ding-100-billion-for-the-first-time, 2023.

[7] Google Cloud Platform APIs and references . https:
//cloud.google.com/compute/docs/apis, 2023.

[8] What is an EIP? https://www.alibabacloud.com
/help/en/eip/product-overview/what-is-eip,
2024.

[9] M Bjorklund. RFC 6020: YANG-A Data Modeling
Language for the Network Configuration Protocol. Tail-
f Systems, 2010.

[10] M Bjorklund. RFC 7950: The YANG 1.1 Data Modeling
Language, 2016.

[11] Mihai Budiu, Tej Chajed, Frank McSherry, Leonid
Ryzhyk, and Val Tannen. DBSP: Automatic Incremental
View Maintenance for Rich Query Languages. Proceed-
ings of the VLDB Endowment, 16(7):1601–1614, 2023.

[12] Eric Hayden Campbell, William T Hallahan, Priya Sriku-
mar, Carmelo Cascone, Jed Liu, Vignesh Ramamurthy,
Hossein Hojjat, Ruzica Piskac, Robert Soulé, and Nate
Foster. Avenir: Managing Data Plane Diversity with
Control Plane Synthesis. In USENIX NSDI 21, pages
133–153, 2021.

[13] Huangxun Chen, Yukai Miao, Li Chen, Haifeng Sun,
Hong Xu, Libin Liu, Gong Zhang, and Wei Wang.
Software-Defined Network Assimilation: Bridging the
Last Mile Towards Centralized Network Configuration
Management with NAssim. In Proceedings of the ACM
SIGCOMM 2022, pages 281–297, 2022.

[14] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan
Arefin, Anshuman Gupta, Brian Fahs, Dima Rubinstein,
Enrique Cauich Zermeno, Erik Rubow, James Alexander
Docauer, et al. Andromeda: Performance, Isolation, and
Velocity at Scale in Cloud Network Virtualization. In
USENIX NSDI 18, pages 373–387, 2018.

[15] Danielle E Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A Fast and Reliable Soft-
ware Network Load Balancer. In USENIX NSDI 16,
pages 523–535, 2016.

[16] R Enns, M Bjorklund, J Schoenwaelder, and A Bier-
man. RFC 6241: Network configuration protocol (NET-
CONF), 2011.

[17] Andrew D Ferguson, Steve Gribble, Chi-Yao Hong,
Charles Killian, Waqar Mohsin, Henrik Muehe, Joon
Ong, Leon Poutievski, Arjun Singh, Lorenzo Vicisano,
et al. Orion: Google’s Software-Defined Networking
Control Plane. In USENIX NSDI 21, pages 83–98, 2021.

[18] Victor Heorhiadi, Sanjay Chandrasekaran, Michael K
Reiter, and Vyas Sekar. Intent-Driven Composition of
Resource-Management SDN Applications. In Proceed-
ings of the ACM CoNEXT 2018, pages 86–97, 2018.

[19] Arthur S Jacobs, Ricardo J Pfitscher, Rafael H Ribeiro,
Ronaldo A Ferreira, Lisandro Z Granville, and Sanjay G
Rao. Deploying Natural Language Intents with Lumi.
In Proceedings of the ACM SIGCOMM 2019 Posters
and Demos, pages 82–84, 2019.

[20] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy
Stribling, Leon Poutievski, Min Zhu, Rajiv Ramanathan,
Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, et al.
Onix: A Distributed Control Platform for Large-scale
Production Networks. In USENIX OSDI 10, 2010.

[21] Hongqiang Harry Liu, Xin Wu, Wei Zhou, Weiguo Chen,
Tao Wang, Hui Xu, Lei Zhou, Qing Ma, and Ming Zhang.
Automatic Life Cycle Management of Network Config-
urations. In Proceedings of the ACM SIGCOMM 2018
Workshop on SelfDN, pages 29–35, 2018.

[22] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. OpenFlow: Enabling
Innovation in Campus Networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, 2008.

[23] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray.
OpenDaylight: Towards a Model-Driven SDN Con-
troller Architecture. In Proceeding of the IEEE WoW-
MoM 2014, pages 1–6. IEEE, 2014.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1095

https://api.alibabacloud.com/home
https://api.alibabacloud.com/home
https://aws.amazon.com/cloudcontrolapi/
https://aws.amazon.com/cloudcontrolapi/
https://learn.microsoft.com/en-us/rest/api/azure/
https://learn.microsoft.com/en-us/rest/api/azure/
https://azure.microsoft.com/en-us/solutions/cloud-native-apps/
https://azure.microsoft.com/en-us/solutions/cloud-native-apps/
https://azure.microsoft.com/en-us/solutions/cloud-native-apps/
https://www.alibabacloud.com/en/product/eip
https://www.alibabacloud.com/en/product/eip
https://www.gartner.com/en/newsroom/press-releases/2023-07-18-gartner-says-worldwide-iaas-public-cloud-services-revenue-grew-30-percent-in-2022-exceeding-100-billion-for-the-first-time
https://www.gartner.com/en/newsroom/press-releases/2023-07-18-gartner-says-worldwide-iaas-public-cloud-services-revenue-grew-30-percent-in-2022-exceeding-100-billion-for-the-first-time
https://www.gartner.com/en/newsroom/press-releases/2023-07-18-gartner-says-worldwide-iaas-public-cloud-services-revenue-grew-30-percent-in-2022-exceeding-100-billion-for-the-first-time
https://www.gartner.com/en/newsroom/press-releases/2023-07-18-gartner-says-worldwide-iaas-public-cloud-services-revenue-grew-30-percent-in-2022-exceeding-100-billion-for-the-first-time
https://www.gartner.com/en/newsroom/press-releases/2023-07-18-gartner-says-worldwide-iaas-public-cloud-services-revenue-grew-30-percent-in-2022-exceeding-100-billion-for-the-first-time
https://cloud.google.com/compute/docs/apis
https://cloud.google.com/compute/docs/apis
https://www.alibabacloud.com/help/en/eip/product-overview/what-is-eip
https://www.alibabacloud.com/help/en/eip/product-overview/what-is-eip

[24] Jeffrey C Mogul, Drago Goricanec, Martin Pool, Anees
Shaikh, Douglas Turk, Bikash Koley, and Xiaoxue Zhao.
Experiences with Modeling Network Topologies at Mul-
tiple Levels of Abstraction. In USENIX NSDI 20, pages
403–418, 2020.

[25] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang
Xu, Yisong Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan
Lu, et al. Sailfish: Accelerating Cloud-Scale Multi-
Tenant Multi-Service Gateways with Programmable
Switches. In Proceedings of the ACM SIGCOMM 2021,
pages 194–206, 2021.

[26] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin
Murthy, Albert Greenberg, David A Maltz, Randy Kern,
Hemant Kumar, Marios Zikos, Hongyu Wu, et al.
Ananta: Cloud Scale Load Balancing. ACM SIG-
COMM Computer Communication Review, 43(4):207–
218, 2013.

[27] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY Wong,
and Hongyi Zeng. Robotron: Top-down Network Man-
agement at Facebook Scale. In Proceedings of the ACM
SIGCOMM 2016, pages 426–439, 2016.

[28] Debnil Sur, Ben Pfaff, Leonid Ryzhyk, and Mihai Budiu.
Full-stack SDN. In Proceedings of the ACM HotNets
2022, pages 130–137, 2022.

[29] Lalith Suresh, João Loff, Faria Kalim, Sangeetha Abdu
Jyothi, Nina Narodytska, Leonid Ryzhyk, Sahan Gam-
age, Brian Oki, Pranshu Jain, and Michael Gasch. Build-
ing Scalable and Flexible Cluster Managers Using
Declarative Programming. In USENIX OSDI 20, pages
827–844, 2020.

[30] Chengkun Wei, Xing Li, Ye Yang, Xiaochong Jiang,
Tianyu Xu, Bowen Yang, Taotao Wu, Chao Xu, Yilong
Lv, Haifeng Gao, Zhentao Zhang, Zikang Chen, Zeke
Wang, Zihui Zhang, Shunmin Zhu, and Wenzhi Chen.
Achelous: Enabling Programmability, Elasticity, and Re-
liability in Hyperscale Cloud Networks. In Proceedings
of the ACM SIGCOMM 2023, pages 769–782, 2023.

[31] Shunmin Zhu, Jianyuan Lu, Biao Lyu, Tian Pan, Chen-
hao Jia, Xin Cheng, Daxiang Kang, Yilong Lv, Fukun
Yang, Xiaobo Xue, et al. Zoonet: A Proactive Telemetry
System for Large-Scale Cloud Networks. In Proceed-
ings of the ACM CoNEXT 2022, pages 321–336, 2022.

Appendices
A Additional Figures

End-to-end completion time for disabling EIP. Fig. A2 il-
lustrates the completion time of disabling EIP under different
TPS. Compared to Vendor A, our cloud is less affected by
TPS. The P50, P90 and P99 of Vendor A increase dramati-
cally (about 8x, 15x and 16x compared to their lowest value,
respectively). Meanwhile, the P50, P90 and P99 of ours only
experience a slight increase, that is, the increase rate is 1.02x,
1.9x and 3.1x. respectively. The P50, P90 and P99 of Vendor
B remain stable throughout all the tests, but it still cannot
measure data above 200TPS. Moreover, Vendor A performs
better than Vendor B at lower TPS.

For Vendor A, the completion time of enabling EIP (as
shown in Fig. 11) is higher than that of disabling EIP, whereas
for us and Vendor B, it is the other way around. When conduct-
ing enabling and disabling EIP in our cloud, both server and
gateway require configuration. For the case of enabling EIP,
both devices must be configured successfully for a successful
ping. While for the case of disabling EIP, a unsuccessful ping
is achieved when either device has been configured. There-
fore, the completion time of disabling EIP is less than that of
enabling EIP in our cloud.
Resource usage analysis. While theoretically we can use a
single POSEIDON controller to serve all service-related con-
trollers, it may lead to an explosion radius affecting all ser-
vices. To minimize the explosion radius, we deploy indepen-
dent POSEIDON controller for each service-related controller.
However, the development and maintenance of these POSEI-
DON controllers are managed by a single team to reduce the
OpEx. This low-sharing deployment may not effectively im-
prove the overall resource consumption and, in some cases,
may even increase it. We conducted a comprehensive analysis
of CPU and memory consumption of the VPC controller with
and without POSEIDON, as well as the resource usage of PO-
SEIDON for VPC controller. Fig. A3 shows the total resource
usage for processing all the API of VPC. The POSEIDON in
the figure represents the total resource usage of VPC con-
troller and POSEIDON controller. As shown in the figure, the
CPU and memory usage of POSEIDON is 2.5x and 1.75x than
that of prior-gen VPC controller. Based on our observations,
the resource usage of the VPC controller halved because lots
of works have been taken over by the POSEIDON controller.
However, the works taken over by POSEIDON involve are
the CPU- and memory-intensive tasks, e.g., config changes
calculation. In order to provide significantly improved config
changes calculation performance compared to the prior-gen,
the resource consumption of the POSEIDON’s config changes
calculation component is slightly higher than that of prior-gen
VPC controller. In summary, the total resource usage of PO-
SEIDON and VPC controller is higher than that of prior-gen

1096 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure A1: Error of testing Vendor B for 400TPS.

0 100 200 300 400

Transactions per Second

0

5

10

15

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

Poseidon

Vendor A

Vendor B

(a) P50

0 100 200 300 400

Transactions per Second

0

10

20

30

40

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

Poseidon

Vendor A

Vendor B

0 100 200

2

4

6

(b) P90

0 100 200 300 400

Transactions per Second

0

10

20

30

40

50

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

Poseidon

Vendor A

Vendor B

0 100 200

2

4

(c) P99
Figure A2: End-to-end completion time of API calling for disabling EIP.

CPU Memory TPS
0.0

0.5

1.0

1.5

2.0

2.5

C
P

U
/M

e
m

o
ry

 U
s
a
g
e

0

500

1000

1500

2000

2500

3000

3500

M
a
x
im

iz
e
 T

P
S

Prior-gen

Poseidon

Figure A3: Resource usage increase and concurrent
processing capacity improvement.

VM-VPC

VM4: VPC1

VM1: VPC1

……

VPC-ACL

VPC1: ACL1

VPC2: ACL2

……

VPC-Route

VPC1: Route1

VPC2: Route2

……

Relation
VPC1->ACL1,
Route1
Server2->VM4

VM4->PIP1

PIP1->VPC1

……

VM-PIP

VM4: PIP4

VM1: PIP1

……

VPC-PIP

VPC1: PIP1,2,4

VPC2: PIP3

……

Dependent config of VM4 on Server2:
VM4, PIP4, VPC1, ACL1, Route1, ……

Existing configurations

Server2: VM3, PIP3, VPC2, ACL2, Route2

……

 Config changes
of Server2:

Add VM4, PIP4,
VPC1, ACL1,

Route1

SQL-based Poseidon

Figure A4: Config changes calculation (SQL-based vs. PO-
SEIDON).

VPC controller. However, we believe that this trade-off is well
worth it because the concurrent processing capacity of config
changes calculation has increase by about 21x, as shown in
Fig. A3.

B Supplementary Materials

B.1 Design goal achievement analysis of ab-
straction

Why Trident-based config changes calculation is service-
independent. According to the Algo. 1, it can be observed
that our code for config changes calculation is the same for

any API, meaning it is independent of the service.
Why Trident-based config changes calculation is device-
independent. Since we abstract all heterogeneous devices
into a standardized object type, namely “Device”, our im-
plementation of config changes calculation and pushing is
agnostic to the specific devices. The device-specific transla-
tion is done by the unified agent.
Why SQL-based and Trident-based config changes cal-
culation is equivalent. To guarantee the equivalence, we
analyze the essence of the cloud control APIs and their exe-
cution. The majority of cloud control APIs can be regarded
as the CRUD (create/read/update/delete) of tenant resources
(see §B.2). The execution of cloud control APIs is to translate
tenant intents for resource manipulation into configurations
on the physical device. As mentioned in §2.1, the controller
will make config changes calculation for each cloud control
API, which can further be divided into two steps: (1) find all
the dependent configs of the target tenant resource; (2) search
a table recording all the existing configs on each device to
calculate the necessary changes to install. The original API
execution approach is service-dependent since the key/value
of each table and the table query sequence need prior knowl-
edge of the related service. For example, in Fig. A4, for the
API “create VM4 in VPC1”, by sequentially querying five
tables, its dependent configs of “VM4, PIP4, VPC1, ACL1,
Route1” can be obtained. By querying the existing configs of
the device, the necessary changes can be calculated as “Add
VM4, PIP4, VPC1, ACL1, Route1 on Server2”. Parsing the
API with SQL needs a deep understanding of the service
logic. To guarantee the equivalence, the information of de-
pendent configs and existing configs can also be obtained
through the implementation of Trident. Specifically, we can
get the needed information by searching for the relation table,
as shown in Fig. A4. This procedure is service-independent
since the query table is same for all APIs (i.e., Relation table).

B.2 Trident operations of cloud control API

Based on our analysis of the cloud control APIs provided
by major cloud vendors (including ourselves), most of them

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1097

Table A1: API of configuring Public (Elastic) IP.
Create Delete Update Read

AWS 1 3 2 5
GCP 1 1 1 2
Azure 4 1 1 3

Ali Cloud 5 4 3 8

Algorithm 2: Abstraction of API: Create Resource1
1 Create Con fR1 of Resource1
2 for C in Con fR1 ’s dependant Conf do
3 Relate Con fR1 to C

4 for G in Con fR1’s target Group that needs to be configured do
5 Relate G to Con fR1

are Create/Delete/Update/Read, as shown in Table A1. In
addition, there are a few other APIs such as Associate and
Disassociate. Algo. 2,3,4,5 detail how to abstract the main
cloud control API into Trident operations.

B.3 Computational complexity analysis of OR-
based calculation

The OR-based re f calculation has excessively high computa-
tional complexity. When re f (Group,Pi) changes, recalcula-
tion is needed to refresh re f (Group,Con fA). The change of
re f (Group,Pi) can have two cases: i.e., re f (Group,Pi) turns
from 0 to 1 or 1 to 0. For the 0 to 1 case, according to the
OR calculation rule, as long as at least one re f (Group,Pi)
is 1, re f (Group,Con fA) is 1. Hence, we can directly in-
fer that re f (Group,Con fA) is 1 without complex computa-
tion. By contrast, for the 1 to 0 case, we cannot assert that
re f (Group,Con fA) becomes 0 unless we perform the OR
calculation to each re f (Group,Pi). In another case, if one
parent node is unrelated due to tree changes, because the OR
operation does not satisfy reversibility, once a bitwise OR
operation is performed, it cannot simply be reversed to ob-
tain the value before this parent node was included. In other
words, it’s not possible to determine the updated OR value
based on the change in a parent node’s re f and the current
OR value. Because it is necessary to perform a bitwise OR on
the re f values of all parent nodes to obtain the OR result, the
complexity is proportional to the number of parents as O(Pi).

B.4 Computational complexity analysis of
SUM-based calculation

To address the performance issue of OR-based ref calculation,
we can adopt SUM-based solution to inherit Conf’s re f from
its parents. The advantage of SUM is that during calculation,
we can refresh Conf’s current re f based on the change of its
parent’s re f and Conf’s past re f . In SUM-based solution, if
re f = 0, it indicates no descendant relation, while in other

Algorithm 3: Abstraction of API: Delete Resource1
1 for C1 in Con fR1 ’s children do
2 Unrelate Con fR1 to C2

3 for C2 in Con fR1 ’s parents Conf do
4 Unrelate C2 to Con fR1

5 Delete Con fR1

Algorithm 4: Abstraction of API: Update Resource1
1 Update Con fR1 of Resource1

cases, it indicates the presence of a descendant relation. At
the start, we initialize re f (Group,Group.children) to 1 and
continuously propagate this value to the remaining Confs ac-
cording to the SUM rule, as defined by re f (Group,Con fA) =
Σire f (Group,Pi).

Since SUM adheres to the reversibility property, for sce-
narios where a parent node is removed, the new result can
be obtained simply by subtracting that parent node’s re f .
Similarly, for scenarios where a new parent node is added,
the result can be updated by simply adding the re f of
that new parent node. Moreover, for scenarios where the
re f of a parent node changes, the re f (Group,Con fA) can
also be expressed as re f (Group,Px) + Σi ̸=xre f (Group,Pi).
When only re f (Group,Px) undergoes a change, we can de-
duce that ∆re f (Group,Con fA) = ∆re f (Group,Px). It im-
plies that when a re f (Group,Px) undergoes a change,
re f (Group,Con fA) will experience a similar change. For
instance, when a re f (Group,Px) transitions from 0 to 3,
re f (Group,Con fA) will also increase by 3 accordingly. Since
the refreshing mechanism focuses solely on the change of a
specific parent, the computational complexity is only O(1).

B.5 Case study of POSEIDON

To clearly illustrate the workflow of POSEIDON, we present a
step-by-step introduction using the API call of “create VM4
in VPC1” as an example.

Step 1: After the user issues this API call, service-related
controllers (e.g., VPC controller in Fig. 5 in this example)
will map the API into Trident operations. This step is service-
related and generates different Trident operations based on
the processing logic specific to each service API. The Trident
operations corresponding to this API are shown as the blue
color text in Fig. 6.

Step 2: Subsequently, upon receiving the Trident op-
erations, the service-independent unified controller will
add/delete/update Confs or modify their relations according to
the operations. The changes incurred by the above operations
are depicted in blue in Fig. 7.

Step 3: Then, based on the nodes/topology changes in the
Trident tree, we calculate the appropriate Trident changes for
Groups. §3.4.2 details the procedure for this example.

1098 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 5: Abstraction of API: Associate Re-
source1 to Resource2

1 Relate Con fR1 of Resource1 to Con fR2 of Resource2

Step 4: Finally, the unified controller will push the Trident
changes to the unified agent residing on the devices within
Groups. Specifically, this example involves pushing “Add
ACL1, Route1, VPC1, PIP4, VM4” to Server2 and “Update
FlowTable1” to GW1 and GW2, according to Fig. 6 and Fig. 7.
Upon receiving the Trident changes, a program on the agent
translates them into device-specific primitives to enable the
user’s intent.

B.6 Redis failover detection and data recovery

Unlike the real-time data storage in the database, Redis caches
the latest data in memory and performs batch storage. When
failover occurs, the cached data in memory will be lost. There-
fore, we need to detect the failover and conduct data recovery.
We inject lots of probes and accumulate them at the frequency
of batch storage. When probes’ data meet expectations, this
batch of data are stored in Redis. Otherwise, this batch of data
must be lost due to failover. We can locate the batch of data
affected by failover according to the timestamp of the probe.
Then, the data obtained from the database will be re-pushed.

C Additional Experiences

C.1 How to choose pushing and pulling when
configuring devices?

Most traditional controllers deliver configurations to the phys-
ical devices in a pushing mode, namely, the controller actively
pushes config changes to devices so that user’s intent can
take effect in a timely manner. However, in large-scale public
clouds, the pushing method will cause large pressure on sys-
tematical performance (e.g., TPS, southbound bandwidth), as
there are enormous underlying devices. What’s worse, users
may frequently modify their network, and each modification
may consist of thousands of underlying config changes (e.g.,
a newly added route entry may involve thousands of VM host
servers). Another way to deliver configurations is the pulling
method, where devices pull configs from the controller on-
demand or periodically [14, 30]. This method eliminates the
above performance bottlenecks at the cost of adding con-
figuration delay. POSEIDON employs the pushing method
for most configuration delivery, and utilizes the on-demand
pulling method for FlowTable. This is because communica-
tions between VMs usually occur within a small subset, so
most information in the FlowTable will not be queried by the
device. Besides, in our production enviroment, the additional
latency caused by FlowTable configuration delay is too short

to be perceived by users.

C.2 How to deploy POSEIDON to a small-scale
virtual network?

POSEIDON is an SDN architecture designed for high-
performance control of large-scale virtual networks. Its Tri-
dent abstraction is implemented through a Trient Tree struc-
ture maintained in memory, cache, and database. However,
for a small-scale virtual network with medium performance
requirements, POSEIDON may be over-engineered and cost-
prohibitive. For example, a standard deployment of POSEI-
DON requires at least 8 high-performance physical servers
to support virtual network control in a data center of 10,000
servers. However, the number of servers may be less than 100
in some edge regions or small private cloud environments.
(Even the number of servers in some cluster is less than 20
in some edge POP site.) In such a small-scale deployment,
POSEIDON’s architecture needs to be optimized to reduce
resource usage, especially memory usage. One possible idea
is to design a variant of Trident tree with high compression
and efficient data exchange. The Tridient tree currently im-
plemented by tree structure requires that all configuration
relationships should be maintained in memory, which is a
performance-first but cost-ignoring approach. Therefore, lim-
ited memory resources in small-scale scenarios can be solved
by compressing Trident data, or even maintaining only part
of the relationship in memory through data exchange.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1099

OPPerTune: Post-Deployment Configuration Tuning of Services Made Easy

Gagan Somashekar* 1 Karan Tandon* 2 Anush Kini2 Chieh-Chun Chang4 Petr Husak4

Ranjita Bhagwan+ 5 Mayukh Das3 Anshul Gandhi1 Nagarajan Natarajan2

1Stony Brook University 2Microsoft Research 3Microsoft365 Research 4Microsoft 5Google

Abstract
Real-world application deployments have hundreds of inter-
dependent configuration parameters, many of which signif-
icantly influence performance and efficiency. With today’s
complex and dynamic services, operators need to continu-
ously monitor and set the right configuration values (configu-
ration tuning) well after a service is widely deployed. This
is challenging since experimenting with different configura-
tions post-deployment may reduce application performance
or cause disruptions. While state-of-the-art ML approaches
do help to automate configuration tuning, they do not fully
address the multiple challenges in end-to-end configuration
tuning of deployed applications.

This paper presents OPPerTune, a service that enables con-
figuration tuning of applications in deployment at Microsoft.
OPPerTune reduces application interruptions while maximiz-
ing the performance of deployed applications as and when
the workload or the underlying infrastructure changes. It auto-
mates three essential processes that facilitate post-deployment
configuration tuning: (a) determining which configurations
to tune, (b) automatically managing the scope at which to
tune the configurations, and (c) using a novel reinforcement
learning algorithm to simultaneously and quickly tune nu-
merical and categorical configurations, thereby keeping the
overhead of configuration tuning low. We deploy OPPerTune
on two enterprise applications in Microsoft Azure’s clusters.
Our experiments show that OPPerTune reduces the end-to-
end P95 latency of microservice applications by more than
50% over expert configuration choices made ahead of de-
ployment. The code and datasets used are made available at
https://aka.ms/OPPerTune.

1 Introduction
The performance and efficiency of large services and applica-
tion deployments depend heavily on how they are configured.
Configurations can be system-level, such as the read_ahead_-
kb parameter, which decides how much extra data to read
from disk during I/O in Linux, and resources.limits.cpu that
limits the amount of CPU a Kubernetes container uses. They

*These authors contributed equally.
+Work done while employed at Microsoft Research.

can also be application-level, such as maxmemory, the mem-
ory usage limit at which Redis starts evicting keys. Any large
application deployment invariably includes hundreds, if not
thousands, of such configuration parameters at multiple layers
and components [25, 35, 48, 50, 66, 75] .

Today, application operators determine the configuration
values using domain-knowledge and canary testing on rela-
tively small deployments before widely deploying the applica-
tion. However, application behavior can change considerably
with time and therefore the configuration values set before
deployment may not work well in the longer term; e.g., devel-
opers continuously add features, the user population and their
usage behavior varies [47], the underlying hardware hosting
the applications also can also change [67, 75]. Consequently,
to squeeze the most performance—say throughput or latency—
or to make it run efficiently on as small a set of resources as
possible without compromising performance, operators need
to constantly monitor and modify these configuration parame-
ters well after they have deployed the application.

Manually exploring and changing the configurations at
regular time intervals can be tedious and risky, given that
the number of parameters is large and, more often than
not, the values of parameters can depend on each other
and the deployment environment. Several recent efforts
have proposed using machine learning (ML) based tech-
niques [15, 25, 27, 40, 44, 46, 48, 61, 68, 69] to automate the
process of configuration tuning. These efforts use online learn-
ing or reinforcement learning (RL) to set the configurations,
observe the application state to determine how well it is do-
ing, and then iteratively refine the configuration based on the
observed states. This approach does reduce the burden on the
operator, and yet, the problem is far from solved. The algo-
rithm is only one necessary component of post-deployment
configuration tuning. Through our experience deploying pop-
ular techniques (e.g., Bayesian Optimization (BO)) and state-
of-the-art frameworks (e.g., SelfTune [40], Kubernetes Au-
toscaler [3]) for parameter tuning in application deployments
at Microsoft, we have observed that there are significant gaps
to be bridged in the end-to-end process of configuration tun-
ing. Some of these gaps, discussed below, may have been
overlooked by prior research, as they are more pronounced in
actual production deployments.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1101

https://aka.ms/OPPerTune

First, since services can easily have hundreds of config-
uration parameters, it would be prohibitively expensive to
automatically tune all of them simultaneously. Thus, an au-
tomated approach should determine which components or
layers of the service to tune, and for each component or layer,
which configuration parameters it should tune.

Second, when a service is running, all configuration pa-
rameters are not equally easy to tune. For instance, chang-
ing worker_process of Nginx (this sets the number of Nginx
worker processes) requires only a service reload after chang-
ing a configuration file [2] with no downtime, but changing
wiredTigerCollectionBlockCompressor in MongoDB requires
a pod restart which leads to a downtime of close to 8 seconds
when deployed with the recreate strategy on Kubernetes [6].
Changing isolcpus, the parameter that isolates CPUs from
the kernel scheduler in Linux, will require an entire system
reboot [63]. Previously proposed algorithms do not consider
this varying difficulty of tuning different types of parameters.
Importantly, to reduce potential disruptions for deployed ser-
vices, the tuning approach should use a very small number of
iterations to converge on the right values.

Third, the tuning system needs to determine the right gran-
ularity for each tuning instance. It could tune a single set of
configuration values for the entire service, or it could tune dif-
ferent values for each geography, or perhaps for every machine
type. We refer to this as determining the right tuning scope.
Currently, the operator has to scope the tuning instances man-
ually irrespective of the tuning algorithm used.

Finally, standard algorithms for tuning work only on numer-
ical [30,40] or only on categorical [19,20, 38,65] parameters;
real-world services will almost always have a combination
of categorical and numerical parameters. For instance, Re-
dis’s maxmemory and maxmemory-policy (sets the eviction
policy) are related parameters that are of type numeric and
categorical, respectively. The key difference between han-
dling numerical and categorical parameters is the notion of
continuity. Categorical parameters lack continuity so the per-
formance can change drastically every time the value of the
parameter is changed. There is no easy way to encode/decode
categoricals as numerals as the usual approaches like 1-hot
encoding [34] would increase the search space substantially.
Popular techniques like BO [16,17] do handle such hybrid pa-
rameter spaces, but they are not meant for scenarios where the
environment of the service changes continually. Deep neural
models for configuration tuning [45, 57], on the other hand,
are usually trained offline rather than in deployment.

We have designed, developed, and deployed OPPerTune
(Online Post-deployment Performance Tuner), a configura-
tion tuning service that addresses all the above challenges.
Given a superset of configuration parameters1 that can be
potentially tuned, OPPerTune can automatically create, man-
age, and scope tuning instances for application operators of

1This work focuses on application- and infrastructure-layer parameters.

large-scale services. The key contributions we make are:
1. OPPerTune introduces a novel tuning algorithm, as part of
its backend, that can tune categorical and numerical parame-
ters simultaneously within the same instance.
2. OPPerTune uses a novel decision-tree based algorithm to
automatically determine the right scope of tuning instances,
taking into account the varying application context in produc-
tion environments, such as workload types and volumes.
3. We have built and deployed OPPerTune as a cloud ser-
vice at Microsoft. First-party applications that are already in
production can be on-boarded to our service with minimal
engineering overhead.

We have evaluated OPPerTune on two applications: (i)
the social networking application from the DeathStarBench
benchmark suite driven by workload traces collected from a
large-scale service that is part of Microsoft Teams application,
and (ii) a large-scale ML experimentation pipeline that uses
Azure ML for model development and Apache Spark for data
processing. Our evaluation and comparison with closely re-
lated works [17,40,45,58,65] show that by using OPPerTune
to tune configuration parameters: (i) the tail latency of the
application consisting of tens of microservices reduces by
more than 50% while tuning in deployment, even under sig-
nificant workload variations, compared to carefully-chosen
pre-deployment configurations; (ii) service disruptions that
may occur due to configuration tuning are reduced by nearly
30%; and (iii) workload completion times drop by 10%–50%
on two Azure ML clusters, over two weeks of deployment;

2 OPPerTune Overview
The goal of OPPerTune is to continuously tune the configura-
tion parameters of an application such that, over time, a given
reward metric (e.g., daily P95 latency) is maximized, and
the application sustains good performance through long-term
and short-term hardware changes and workload fluctuations.
Throughout, we use the term ‘application’ to refer to the sys-
tem/service/application being tuned to avoid confusion with
the OPPerTune service itself. OPPerTune works under the
least knowledge of the application being tuned, i.e., black-box
access. In particular, it does not have access to the code-base
of the application, does not require any form of instrumen-
tation or any knowledge of how its performance metrics are
computed. OPPerTune relies only on the reward as feedback
from the application (after a certain amount of time) for a set
of configuration values it sets for the application. It uses this
feedback to tune the configurations iteratively. OPPerTune’s
back-end supports algorithms that can function with or with-
out context (e.g., workload characteristic, resource utilization,
etc.). If context is available, the operators can use all of the
algorithms in the back-end, but this is not necessary.

Consider the following example. A web application uses
two containers on a single machine: one to host a front-end
webserver, and the other to run a back-end database. While
serving user requests, the application can enlist OPPerTune

1102 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: OPPerTune service architecture. Applications cre-
ate tuning instances on the server to tune various configuration
parameters. Autoscoper helps automatically create, manage,
and scope tuning instances based on the application’s dynamic
context. Selector helps pick the most promising configuration
parameters to tune.

to learn how to distribute the machine’s memory and compute
between the webserver and the database so as to minimize
P95 request latency. OPPerTune consumes feedback (or re-
ward) from the application in the form of observed hourly
P95 latency, and uses multiple hours’ feedback to converge on
the right memory and compute distribution between the two
containers. Request characteristics can vary with time; thus,
OPPerTune may need to change the distribution of memory
and compute frequently, and converge quickly to stable con-
figuration values while continuing to minimize P95 latency.
OPPerTune architecture: Figure 1 presents the high-level
architecture of the OPPerTune service. The basic unit of the
service is a tuning instance that consists of (a) configuration
parameters, their data types, enumerations of possible val-
ues/ranges for categorical/numerical configurations; and (b)
a tuning algorithm for updating the instance. Applications
can create one or more tuning instances to tune configura-
tion parameters across various layers of the application stack,
based on its requirements (as shown for ‘App 2’ in the fig-
ure). Alternatively, OPPerTune provides an automatic scop-
ing component (autoscoper) to help applications create, man-
age, and scope the tuning instances in deployment based on
dynamic context information they provide (as shown for ‘App
1’). OPPerTune can also aid applications to pre-determine
(using an offline step) which configuration parameters to tune
in deployment via the selector module.
Creating, fetching, and updating tuning instances: An ap-
plication intending to use OPPerTune makes an API call
to create a tuning instance along with a list of parame-
ters and their meta-data (e.g., range of parameters). This
step can be automated, as in prior works [62, 72], or can
involve the developer to convey a super set of parameters
along with their meta-data. The operators can use their
domain-knowledge to select a subset of parameters to pass
to OPPerTune, but this is optional. The parameter list can
be arbitrarily large, and OPPerTune’s selector module will
pick the performance-critical parameters as discussed later

in this section. OPPerTune persists tuning instances on a
database for the application to access at any point in time,
possibly from multiple machines. For each tunable configu-
ration parameter, the operator can optionally supply the cost
(e.g., is a system restart required) associated with changing
it. When such cost information is available, OPPerTune uses
it to decide how often to tune the configuration parameters.
OPPerTune implements the standard fetch and update client-
API paradigm of existing work [14,40] for online tuning. The
application invokes (a) Predict to fetch the recommended con-
figuration values from a tuning instance, and (b) SetReward,
at some point in time after (one or more) Predict calls, with
a reward value. The SetReward call updates the associated
tuning instance, as per the tuning algorithm it uses. Any delay
in sending back the rewards will only delay the model up-
date/convergence but not affect the application performance.

OPPerTune supports parallel exploration when enough
servers/resources are available to deploy multiple instances of
the same application. If the servers in the cluster are identical,
a single OPPerTune instance can be employed to which all
servers issue Predict and SetReward calls. OPPerTune would
use all deployments to explore and converge towards a single
optimal configuration for the application. For heterogeneous
servers,AutoScope (Section 4) can enlist contextual attributes
(e.g. region, hardware type) to cluster the servers, and tune
parameters for different deployments.
Autoscoper: Applications may have different performance
characteristics on machines with different CPUs or memory
sizes, and hence may consider using a different configuration
tuning instance for each machine type. Similarly, applications
could behave differently for light versus heavy workloads, and
for different API call types. For instance, if the application
runs independently on the cluster machines with varying hard-
ware and workloads, then it could create one tuning instance
per machine (as is done in [40] for tuning configuration pa-
rameters of a workload scheduler). Thus, tuning instances for
the application could be “scoped” along (at least) three dimen-
sions: infrastructure (e.g., machine type), functionality (e.g.,
API call), and workload (e.g., requests per second). Currently,
determining the “right” scope for tuning instances is usually
done, if at all, by domain experts [40], and periodically revis-
ited. As an alternative, in Section 4, we present AutoScope,
an automatic, efficient, and interpretable way of scoping tun-
ing instances. A Predict call to an AutoScope instance returns
configuration values corresponding to the context presented.
Configuration selector: For applications that have several
hundreds or thousands of configuration parameters to tune
across various layers of the application stack,OPPerTune em-
ploys a selector module to pick the most promising configu-
ration parameters to tune. The selector module uses a simple
and effective microbenchmarking strategy to identify such
configurations, as discussed in Section 5. The module pro-
vides a list of parameters, ordered in decreasing order of their
importance, along with a score that quantifies the importance.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1103

The operator can then choose the top-n parameters from this
list, based on their importance score.
Rounds and Sample complexity: Online tuning algorithms,
implemented in OPPerTune’s back-end, iteratively tune the
configuration parameters. Each iteration is called a round.
At each round, the tuning algorithm (i) determines the next
set of parameter values for the application, (ii) observes a
reward computed by the application over a predetermined
period (1 hour, 24 hours, etc.), and (iii) updates its “policy”
(which prescribes how to choose parameters) based on the
reward. Changes made by the algorithm to configuration val-
ues can cause disruptions, e.g., may necessitate application
restarts or even cause downtime. Thus, a desired property of
a tuning service is that it require only a few rounds to learn
suitable configuration values. This quantity, proportional to
the number of rewards measured, is called sample complexity.
OPPerTune achieves low sample complexity for tuning in
real deployments, as we demonstrate in Section 7, using multi-
ple techniques including a novel tuning algorithm (Section 3),
automatic scoping, and microbenchmarking.

3 Configuration Tuning in Hybrid Spaces
In this section, we present a novel algorithm for the post-
deployment configuration tuning problem (Section 2) on a
hybrid space wherein the configuration parameters are a mix
of numerical and categorical ones. We consider the basic
setting when OPPerTune has no additional knowledge (“con-
text”) about the system being tuned; the setting where some
context may be available is considered in the next section.

3.1 Problem Definition and Terminology
We pose the problem of configuration tuning for an applica-
tion post deployment as that of online learning with bandit
feedback. That is, we want to tune iteratively, only interfacing
with the application for setting new parameter values (e.g., #
CPU cores or memory size for containers), and for obtaining
feedback in response to the set parameter values, as an ob-
served reward value that is to be optimized (e.g., latency or
throughput of the application).

A key aspect of bandit formulation is the explore-exploit
tradeoff. We want to exploit the “best” parameters as per pol-
icy learned so far to ensure that the application is functioning
well without disruption; at the same time, we want to explore
potential parameter choices that might yield better rewards.
This tradeoff is especially important in practical scenarios
where the reward function itself changes with time—the same
parameter choices could have different effects on the service
at different time points. For instance, diurnal workload fluctu-
ations can induce very different reward values for the same
setting of memory requirements for a container, depending
on how and when the reward is computed, e.g., hourly P95 la-
tency can vary significantly between peak and off-peak hours.

Bandit learning techniques that can handle time-varying
rewards, therefore, are more appropriate to our problem than

popular alternatives such Bayesian Optimization (BO) [16,
17], heuristic search and global optimization [52], and genetic
algorithms [32]. For instance, BO needs to evaluate the same
reward function at multiple parameter values by design. This
is infeasible for post-deployment tuning because we cannot
evaluate a deployed application multiple times. Most systems
research that leverage BO typically use it in offline scenarios
(i.e., pre-deployment tuning in controlled settings) [17, 22],
in contrast to our post-deployment tuning scenario.

3.2 Hybrid Configuration Space
In practical scenarios, the space of configuration parameters
can be complex: (i) it can be very large; if there are n pa-
rameters to tune, with, say, s possible values each, we have
sn choices, and (ii) they may be discrete (e.g., number of
CPU cores), real-valued (e.g., CPU utilization threshold), or
categorical (e.g., cache eviction policy). Some state-of-the-
art techniques for bandit learning/RL work for categorical
spaces [19, 20, 38, 65] or numerical spaces [30, 40], but not
both. Others have high sample complexity for tuning in de-
ployment [42, 57]. To address this gap, we design a novel
learning algorithm to handle hybrid configurations efficiently.

Formally, the “hybrid configuration space” comprises: (a)
categorical space C over k categorical parameters, and (b)
numerical spaceW over m numerical parameters which is a
bounded subspace of Rm. In our formulation, we treat discrete
parameters as numerical rather than categorical to exploit the
fact that they are ordered spaces.

3.3 Proposed Algorithm: HybridBandits
Our configuration tuning HybridBandits algorithm is pre-
sented in Algorithm 1. It leverages two simple but key ideas.
At each round, (1) it maintains different types of policies for
sampling categorical and numerical actions; in particular: (i)
ε-greedy policy for the categorical configuration space, stan-
dard in multi-arm bandit algorithms, where with probability
ε a random arm is explored, and with probability 1−ε, high-
reward arms are exploited; and (ii) a “perturbation” policy for
numerical configurations, where the algorithm samples nu-
merical configurations from an ε-radius ball centered around
the “current best” configuration vector, and (2) it uses a single
reward that the system provides as feedback to update both
the policies simultaneously. In particular, it applies sample-
efficient gradient-descent update [30, 40] for the numerical
parameters, and the exponential weights update [41, Chap.
11] for the categorical parameters.

Algorithm description: Algorithm 1 maintains a multino-
mial distribution p(t) over categorical actions C, i.e., there is
a probability associated with each possible k-tuple of cate-
gorical parameter choices at every round t. For the numerical
actions, it maintains a vector w(t) ∈Rm.

Initialization: The weights for the numerical parameters w
are initialized to default choices that the application provides.
The multinomial p is initialized to the uniform distribution,

1104 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 HybridBandits: Post-Deployment Configuration Tuning for Hybrid Spaces

1: Input: exploration parameter ε ∈ (0,1), learning rate η > 0, space C of k categorical parameters, spaceW of m numerical parameters.
2: Initialize: categorical space weights p(0)i = 1/∣C∣, for 1 ≤ i ≤ ∣C∣ // uniform distribution, and numerical parameters w(0) ∈W // default
3: for t = 0,1,2, . . . do
4: Let p̃i ∶= (1−ε)p(t)i +ε

1
∣C∣

// Define explore-exploit multinomial distribution over the categorical space

1 Sample categorical and numerical actions to deploy

5: Sample c ∼ p̃ from the multinomial and let a(t)c be the corresponding k-tuple of categorical parameters
6: Sample numerical parameters from a ball centered at w(t), radius ε; i.e., w̃(t) ∶=w(t)+εu, where u ∈Rm is sampled from {u ∶ ∥u∥2 = 1}

// Identical to Bluefin [40]
2 Deploy the actions and measure reward

7: Deploy numerical a(t)r ∶=ΠW(w̃(t)) // appropriately scaled and categorical actions a(t)c in the application
8: Receive reward r(t) ∶= rt(a(t)c ,a(t)r) ∈R // black-box access to a metric, e.g., hourly P95 latency, computed by the application

3 Perform updates based on the reward received

9: Update numerical parameters center: w(t+1)
←w(t)+ 1

ε
⋅η ⋅ r(t) ⋅u, where u is the sample obtained in Step 6.

10: Define scaled reward: r̃(t) = r(t)/p̃c, where c is the sample obtained in Step 5

11: Update categorical distribution: p(t+1)
c ← p(t)c eηr̃(t) , and for i ≠ c, p(t+1)

i ← p(t)i ; Renormalize p(t+1) to sum to 1

i.e., pi =
1
∣C∣

for i ∈ C. At each round, the algorithm performs:
Sampling actions (Steps 5-6): For the categorical ac-
tions, following the standard exponential weights algorithm
(EXP3, [41, Chap. 11]), it samples a k-tuple from the distribu-
tion p (exploit) with probability 1−ε, and from the uniform
distribution (explore) with probability ε. For the numerical
actions, it samples a m-dimensional vector from a ball cen-
tered at the current w, with radius ε.
Deploy actions and receive reward (Steps 7-8): The sam-
pled numerical (scaled appropriately) and categorical con-
figurations are then deployed in the application, and (after a
certain amount of time) the algorithm receives a reward value
from the application (implementation details in Section 7).
Update policies (Steps 9-11): For the numerical parameter
weights, the algorithm follows the gradient estimation scheme
studied in the optimization literature [30], as well as applied
in the context of online system parameter tuning [40]. For
the categorical parameters, it: (a) computes an unbiased es-
timate of the reward for the sampled choices, and (b) scales
the probability of the sampled choices using a factor that is
exponential in the reward estimate.

The algorithm has hyperparameters ε and η, and we set
these to default values in all of our experiments (following
SelfTune [40]). In practice, C can be very large; the mi-
crobenchmarking strategy (Section 5) can be used to restrict
C to the most impactful categorical parameters, and to ensure
that the algorithm has low sample complexity. We conjecture
that Algorithm HybridBandits has convergence guarantees
for certain classes of reward functions (for instance, if the
reward functions rt are convex, for any fixed combination of
the categorical parameters in C). Empirically (in Section 7,
and in our synthetic problem setup in Appendix B), we find
that the algorithm convergences well in practice; obtaining a
formal proof of convergence is an exciting open problem. We

also note that when the configuration space contains only nu-
merical parameters, HybridBandits is the same as SelfTune’s
Bluefin algorithm.

4 Automatic Scoping of Tuning Instances
Consider an operator who wants to tune the parameters of
a distributed application that is I/O-bound. There are two
extreme options available to the operator in terms of how
they can set up tuning instances on the OPPerTune server
(Figure 1): (1) set up one “global” instance to tune all the
application parameters across all machines/workloads, that,
say, uses HybridBandits presented in Section 3 for tuning;
or (2) set up multiple “local” instances based on the domain
expertise that the workloads are I/O-bound; e.g., one instance
per disk type or one instance per spindle speed, where each in-
stance independently tunes parameters using HybridBandits.
The latter option is more appealing as the application per-
formance, and therefore the optimal parameter choices will
likely vary with the disk type the workloads are accessing.

In this section, we consider the setting when OPPerTune is
provided some context of the application (i.e., disk type and
spindle speed in the above example) being tuned at every
round. OPPerTune can exploit the observed context to simul-
taneously do scoping and configuration tuning.

4.1 Joint Scoping and Configuration Tuning
To perform joint scoping and configuration tuning, at each
round, along with the reward, the application must provide
additional context information such as machine type, disk
type, spindle speed, workload volume, etc. Using this
additional context, OPPerTune determines a lightweight and
interpretable scoping policy that the operators can understand.
For instance, given job type jobtype and requests per second
(rps) as context, and numcores and mem as the configuration

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1105

I0
0 I0

1 I0
2 I0

3 I0
4 I0

5 I0
6 I0

7 I1
0 I1

1 I1
2 I1

3

RPS > 500

I1
4 I1

5 I1
6

Job 3

I1
7

Cluster A

It
0 It

1 It
2 It

3

RPS > 1000

It
4

Job 4

It
5

Cluster B

It
6 It

7I0 I1 I2 I3

RPS > 1000

I4 I5 I6 I7

Job 1,
Job 2

Cluster A

⋮

. . .

numcores=2
mem=1G

numcores= 4
mem=2G

numcores=8
mem=3G

numcores=16
mem=2G

RPS
Cluster

Job

RPS
Cluster

Job

RPS
Cluster

Job

(a) Tree0 (b) Tree1

(c) Treet(d) TreeFinal

Scope 7

Figure 2: AutoScope: Iteratively learning to scope tuning
instances via decision trees. At each round, the observed
context (rps, cluster, job) is used to update the tree model and
the leaf instance (numcores, mem configurations) it lands in.

values to tune, it learns rules of the form if (jobtype ==
‘cpu_bound’) and (rps > 1000) then numcores=16,
mem=2G else numcores=4, mem=2G.

These kinds of scoping rules can be captured by decision
tree models illustrated in Figure 2(d). Each root-to-leaf path in
the tree constitutes a scope, and each leaf maintains a tuning
instance for the scope. In the Figure, ‘Scope 7’ is interpreted
as application running in Cluster A, when its workload vol-
ume (RPS) > 1000, involving jobs of type 1 or 2. Its leaf node
maintains a tuning instance, i.e., values for the two parameters
numcores and mem. These values will be returned for Pre-
dict requests satisfying this scope, and will be updated when
a reward arrives for these requests from the application.

4.2 Proposed Algorithm: AutoScope
Learning decision trees in the bandit setting is a challenging
problem, and popular tree learning algorithms do not apply
(see Section 8). We extend a state-of-the-art technique pro-
posed in [39] (for trees with only one parameter in leaf nodes)
to our general setting where each leaf node is a tuning instance
with several (hybrid) parameters.

We start by giving the key intuitions, before giving a de-
tailed technical description of the tree learning algorithm.

Algorithm outline: AutoScope maintains a binary deci-
sion tree fT of max specified height h (h = 3 suffices for
scenarios evaluated in Section 7), as illustrated in Figure 2.
At first, the tree f (0)T effectively behaves like a single tun-
ing instance, initialized identical to Algorithm 1, i.e., all the
leaf instances I0

k in Figure 2 (a), for 0 ≤ k ≤ 7, are initialized
identically. At round t, the algorithm observes a context vec-
tor, denoted as ct . When the current tree model f (t)T (ct) is
applied to ct , it will land in a unique leaf node containing a
tuning instance. That is, the context vector is first applied to a

linear model in the root node (whose weights are initialized
to default value in the beginning). Depending on the sign of
the resulting value, ct traverses left or right, and continues
in this fashion making branching decisions at every inter-
mediate node until it reaches a leaf. The root-to-leaf path ct
traverses is its “current scope”, and AutoScope will invoke
the leaf’s tuning instance. Figure 2 (b) shows the attributes
(RPS > 500,cluster =A,Job= 3) getting resolved to the scope
6 (I1

6) in the first round.
This amounts to doing one round of Algorithm 1 on the

leaf’s tuning instance, thereupon updating it. Now the techni-
cal challenge is updating the tree model f (t)T parameters (i.e.,
the internal node weights for making branching or scoping
decisions), besides the configuration parameter values in each
of the leaf nodes. We describe the algorithm in detail next.

Algorithm description: We present the procedure for
jointly learning the scoping and the tuning instances, i.e.,
parameters corresponding to each scope, formally in Algo-
rithm 2 in Appendix A. The algorithm maintains a decision
tree model denoted fT ; each internal node j in the tree has a
linear model z j ∈Rd (where d is the number of context vari-
ables) that makes routing decisions of the form ⟨c(t),z j⟩ > 0.
Each root-to-leaf path in the tree corresponds to a scope. Each
scope ends at a leaf node ℓ which holds a tuning instance,
i.e., pℓ ∈ [0,1]∣C∣ (for categorical actions) and wℓ ∈ Rm (for
numerical actions). We work with binary trees of height h
with 2h scopes (and tuning instances).

Learning a tree policy entails learning the internal node
parameters z j, for 0 ≤ j ≤ 2h−2 and the leaf instances pℓ,wℓ,
for 0 ≤ ℓ ≤ 2h−1. Widely-used tree learning algorithms like
CART [23], C4.5 [56], and their variants do not apply to the
bandit feedback setting because they need access to labeled
training data (which in our scenario means optimal parame-
ters for different context vectors, which is difficult to obtain in
practice). There has been recent work on learning trees using
bandit feedback [28, 29], but they work only for categorical
spaces. The closest to our setting is the technique proposed
in [39], but it handles only a single parameter (either numeri-
cal or categorical) in the leaf nodes. We extend their technique
to handle multi-dimensional, hybrid tuning instances in the
leaf nodes.

Algorithm 2 follows the structure of Algorithm 1 closely.
Each leaf node is initialized (Step 2) identical to Algorithm 1,
Step 2. The first key difference is that, at each round t, the ob-
served context ct determines which tuning instance, i.e., leaf
node is selected (Steps 4–5). Once the leaf node is selected, in
Step 6, we use the corresponding tuning instance to obtain the
configuration and deploy the system with this configuration
(Step 7) to observe the reward just as in Algorithm 1. The
second key difference is how the tree is updated (Steps 8–9),
as discussed below.

The main challenge in learning decision trees in general,
not just in the bandit setting, is that the tree function fT ∶

ct ↦ leaf ℓ is highly discontinuous and non-differentiable. If

1106 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

we can approximate fT with a differentiable function, then
we will be able to jointly learn fT model as well as the leaf
node parameters using online gradient descent techniques in
a sample-efficient manner. We leverage the relaxation in [39]
that, in particular, replaces discontinuous branching decisions
(“go left or right”) at the internal nodes with differentiable
sigmoid functions (“go left with probability 0.9 and right with
probability 0.1”).

Using chain rule of differentiation, we can show that the
gradient of the reward function rt with respect to the tree
model parameters (both internal node and leaf) can be written
as a tensor product of the gradient of rT with respect to the
leaf node parameters and the gradient of fT with respect to
the tree model parameters.

Scalability: AutoScope scales well with arbitrary state
spaces. Its model size scales linearly in the size of context
vector c and the tree’s height is typically very small. Though
there are far too many ways of jointly slicing the context
dimensions, AutoScope tries to automatically find scopes that
are most beneficial in improving the reward metric without
other hints.

5 Configuration Selection
For applications that have several hundreds or thousands of
configuration parameters to tune across various layers of the
application stack, OPPerTune employs a configuration selec-
tor module (Figure 1) that leverages a simple and effective
microbenchmarking strategy to identify the most promising
configuration parameters. while the techniques outlined here
are heuristic, they are inspired by optimization theory [51,53].

The role of the selector module is two-fold: (a) it prunes
the size of the configuration space, which in turn helps reduce
the algorithm’s sample complexity; and (b) it helps minimize
the number of disruptions (e.g., container restarts) in the ap-
plication while tuning. If (b) is the only goal, selecting just
the configuration parameters that do not require restarts, may
suffice. However, that might compromise on application per-
formance by ignoring configurations that could significantly
impact the performance (as illustrated in Section 7.3).

OPPerTune uses a microbenchmarking strategy to assess
the effect of changing each configuration parameter on the
application’s performance (i.e., the reward value), while keep-
ing the others fixed. Let us consider numerical configurations
for the moment. The strategy is inspired by how coordinate
descent algorithms [51], which are rigorously studied in the
optimization community, work. These algorithms pick one
coordinate (i.e., configuration parameter) at a time and com-
pute the gradient of the reward function with respect to only
that parameter. They iteratively pick coordinates (cyclically
or randomly) to optimize the reward function.

We do not know of any variants of these algorithms that
provably work in our online bandit setting. But, we find that
the basic idea is empirically effective for the goal of selecting
candidate parameters to tune. We use the same gradient esti-

mation technique employed in Step 9 of Algorithm 1 for each
configuration parameter while holding all other parameters
fixed (to the default choices, for example). OPPerTune ac-
complishes this by simply creating microbenchmarking in-
stances, each with just one configuration parameter, and per-
forming one round of the HybridBandits algorithm. The mag-
nitude of the (scalar) gradients computed at the instances tells
us the impact of each configuration parameter. In practice,
this idea can also be extended to categorical spaces—perform
one round of the algorithm on each categorical parameter, and
compute the magnitude of change in reward for a randomly
chosen value vs. the default value for the parameter.

The configuration selector module then picks top-n param-
eters, sorted by decreasing magnitudes of these “gradients”
where n is customizable by the application. This greedy se-
lection strategy, i.e., picking the coordinate (or parameter)
yielding maximum absolute gradient, has been shown to be
provably better than other heuristics for selecting coordinates,
for some classes of reward functions [53].

Microbenchmarking can be done in canary/test deploy-
ments of the application. The tuning instances for the appli-
cation can work with the selected configuration parameters
in deployment. OPPerTune provides a flag to periodically
revisit microbenchmarking and re-assess the top-n parameter
selections. Operators can turn this flag on when there are
long-term changes (e.g., hardware, new workloads).

6 OPPerTune Implementation
OPPerTune’s implementation has three major components:
the server, client, and the algorithm backend. We have imple-
mented the server in Go using Fiber [10], and the client in
Python (for ease of integration with applications which are
often written in Python). We have implemented our proposed
algorithms in Python, and have integrated the server with ex-
isting Python implementations of other algorithms. We now
describe each component in some detail.
1. OPPerTune Server: The server implements three key in-
terfaces for the applications (clients) submitting requests via
REST API calls: a) creation of tuning instances, b) fetching
the values from the instances, and c) updating the instances
using the the reward values sent back to the server. The server
persists configuration tuning instances (consisting of the list
of parameters to tune and their constraints, and the model
for tuning) in a database. Persisting instances enables re-
suming from the saved model state at a later point of time,
and freeing the memory taken up by instances that are not
needed. For each fetch call from the client, the server responds
with the configuration values along with a requestId. The
client is expected to pass the reward value along with the
associated requestId, for the server to be able to correctly
issue an update to the corresponding tuning instance. System
changes that are bursty and short-lived can potentially impact
the observed reward. OPPerTune mitigates this by eliciting
an optional reward measurement period from developers that

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1107

sustains such spikes (e.g., aggregation of the metric over a
time period). Furthermore, our bandit algorithms (Section 3
and 4) accommodate such adversarial changes. We host the
server on Microsoft Azure that provides persistent storage,
high availability, and wide accessibility.
2. OPPerTune Client: The client is a library which imple-
ments easy-to-use REST API calls; these calls provide ab-
straction over raw HTTP requests, and applications use them
to create, fetch (i.e., Predict), or update (i.e., SetReward) in-
stances at the OPPerTune server. The library also manages
mapping client requests to API endpoints, payload prepara-
tion, and error-checking. We provide an installable package
of OPPerTune client for applications to use.
3. Service Backend/Tuning Algorithms: The backend con-
sists of implementations of various tuning algorithms, and au-
toscoper and configuration selector components. Any tuning
algorithm is expected to implement Predict and SetReward
interfaces. We have implemented (i) the proposed algorithms
HybridBandits and AutoScope; (ii) state-of-the-art online pa-
rameter tuning algorithm Bluefin [30, 40] and deep reinforce-
ment learning (RL) algorithm DDPG [45, 55, 57]; and (iii)
with minimal effort, we have integrated the contextual bandits-
based algorithm Slates [65], and BayesianOptimization from
the popular Python libraries VowpalWabbit [12] and scikit-
optimize [11], respectively. The challenge in using deep RL
techniques such as DDPG in deployment, typically, is their
prohibitive model sizes and sample complexity. They use con-
text differently than AutoScope to learn policies that require
large complex models (the notion of scoping is implicit in
DDPG). Hence, we have implemented a custom version of
DDPG with light-weight models, similar to AutoScope, to be
of use in post-deployment tuning.

7 Evaluation
To evaluate OPPerTune, we use a combination of mi-
crobenchmarking and real deployments of two applications.
Our evaluation focuses on the following aspects: 1) How
does application performance improve using OPPerTune?,
2) How does OPPerTune reduce the cost of tuning (e.g., sys-
tem restarts)? 3) How effectively does automatic scoping
accelerate the tuning process in real deployments by reducing
sample complexity?, and 4) How scalable is our service im-
plementation (OPPerTune server and backend algorithms)?

7.1 Evaluated Applications
To evaluate OPPerTune, we use two applications, each serv-
ing certain classes of workloads.
7.1.1 Social Networking Application
We use the SocialNetwork application from the
DeathStarBench [31] benchmarking suite which mim-
ics a stack consisting of a gateway server (Nginx), database
engine (MongoDB), caches (Redis), and application logic.
The application creates a network of users, and supports
API calls to create and read messages from the users’ home

Microservice type Number of parameters
Categorical Continuous Discrete
MS RS MS RS MS RS

memcached 0 0 4 8 16 8
MongoDB 12 0 6 12 12 12

Nginx 0 0 0 4 8 4
RabbitMQ 0 0 0 2 0 2

Redis 4 0 0 8 16 8
App logic 0 0 0 24 23 24

MS=Microservices, RS=Rightsizing (Kubernetes)

Table 1: SocialNetwork application configuration parameters
(217 in total) used for Figures 4, 5, and Tables 3, 6.

pages. We use wrk2 [9] to emulate two workloads: (a)
constRPS: a mix of 90% GET (read timeline) and 10%
POST (create posts) requests (this mix has been used in
previous work [40]), with the requests generated at a constant
rate (requests-per-second), and (b) AMStraces: real access
traces collected from AMS, a large-scale asynchronous
media-sharing service that is part of the Microsoft Teams
application, on 3 production clusters over 4 weeks from Sep
14, 2022 to Oct 10, 2022 (see Appendix C.1 for details on the
traces and experiments).

For this application, the performance metric of interest is
P95 latency of requests submitted. This metric is critical to
consumer-facing services [26, 31]. For the constRPS work-
load, we measure the P95 latency for each 10-minute period,
and for AMStraces, we measure it for each hour. This is fed
as the reward value to the OPPerTune service.

Table 1 outlines the list of microservices that
SocialNetwork uses. Here, “rightsizing” layer refers to
configuration parameters in Kubernetes that are used to
determine the compute and memory limits for containers
running the microservices. For each of the microservices,
we tune a mix of real-valued, discrete, and categorical
parameters picked from prior works and product docu-
ments [1, 4, 5, 7, 8, 13, 40, 61]. We note that operators
can use such prior knowledge to reduce the number of
parameters. However, the design of OPPerTune does not
enforce this approach and the operators can pass arbitrarily
large number of parameters. OPPerTune can automatically
select a subset of performance-critical parameters if needed,
as discussed in Section 7.3. The optimal values of these
parameters depend on the workload characteristics; e.g., to
support the same P95 latency, the MongoDB microservice
will require higher resource limits for a higher request
volume, and a larger number of clients would require higher
concurrency setting for Nginx, etc. Additionally, the cost
of tuning these parameters is passed to OPPerTune so it
can decide how often to tune (as noted in Section 2). For
example, some of these parameters require a container
restart. OPPerTune piggybacks on scheduled maintenance
(once daily for AMS) to tune such parameters. We defer the
evaluation of other types of tuning costs (e.g., performance
degradation without impacting availability and revenue cost
associated with changing resource parameters) to future

1108 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

research. We use the default values of all the parameters as
the starting configuration for all the algorithms.

We deploy the SocialNetwork application on a cluster with
7 virtual machines (VMs) provisioned on Azure. Each VM
hosts a copy of the application stack, with the component
microservices running on individual containers on the same
VM, managed by Kubernetes. Thus, by tuning the parameters
in Table 1 appropriately, OPPerTune allocates each VM’s
resources in the right proportions to the various microservices
so as to minimize P95 latency.

We use separate, dedicated VMs (7 more) in the same
cluster as Kubernetes master nodes, to generate the workloads.
Each VM has Intel Xeon Platinum 8272CL processor (32
vCPUs), 64 GiB RAM and 250 GiB storage (large enough to
support the entire application stack).
7.1.2 ML-Experimentation Pipeline
We deploy OPPerTune in one of Microsoft’s ML experimen-
tation pipelines called MLExp (real name withheld) that uses
Apache Spark to prepare data before training various ML
models. This is an actual production deployment consisting
of workloads and jobs. Each workload is an experiment, con-
sisting of a collection of jobs arranged in a directed acyclic
graph (DAG). A job loads, selects, filters, or processes data
in different ways. MLExp supports 11 job types.

Table 2 shows the configuration parameters that MLExp
developers manually set for each job before submitting the
workload to the cluster. We use OPPerTune to tune the same
set of parameters for each job, initialized to modest initial-
ization values elicited from the developers for our and the
baseline algorithms.

Developers wish to minimize average job completion
time over all jobs that comprise a workload. Lower job com-
pletion times imply lower workload completion time, which
further implies faster iterations of building ML models. When
a workload completes, the platform provides the individual
job completion times, which OPPerTune uses as the reward
for updating tuning instances.

One could argue that setting the parameters in Table 2
to maximum values (such as setting spark.driver.memory to
25GB, spark.driver.cores to 4, etc.) would minimize average
job completion time. However this does not work in practice
because MLExp’s scheduler will enqueue this workload until
all the specified resources are available, thereby increasing
the completion time. Hence, OPPerTune attempts to find the
right balance between increasing these values and decreasing
the workload’s wait time in the MLExp scheduler’s queue.

We have integrated OPPerTune in two production compute
clusters: Cluster1, with 120 nodes, 1800 cores, and 7.03 TB
of memory, and Cluster2 with 100 nodes, 1500 cores and 5.86
TB of memory. Each of these clusters serves 24 workloads on
average every day, submitted by the ML pipeline developers.
Figure 3 shows the spread of completion times for the 11
job types in the two clusters over a period of 1 week before
integrating with OPPerTune.

Parameter Range
Min Max

spark.driver.memory 4GB 25GB
spark.driver.cores 1 4
spark.executor.memory 4GB 24GB
spark.executor.cores 1 4
spark.executor.instances 24 384
spark.default.parallelism 100 10000
spark.sql.shuffle_partitions 100 10000

Table 2: Job configuration parameters used for Tables 4, 5.

Figure 3: Apache Spark job completion times sorted by the
P95 percentile in the third week of November 2022 in two
production clusters of MLExp application.

7.2 Improving Application Performance
A) Effectiveness of HybridBandits: We first look at how
effective the proposed algorithm HybridBandits is for perfor-
mance tuning of applications in deployment, and how it fares
relative to various state-of-the-art tuning techniques that we
implement as part of OPPerTune backend (as discussed in
Section 6). For this evaluation, we use the SocialNetwork ap-
plication, as it has a mix of real-valued, discrete, and categor-
ical parameters (Table 1). For each rps (constRPS workload),
we run each tuning algorithm for a maximum of 50 rounds.
The results are presented in Figure 4. We report the mean
and standard deviation of P95 latencies, for the converged
configuration values, over 5 trials (10-minute windows each).

“Predeployment” in Figure 4 refers to the baseline perfor-
mance against manually chosen configurations that optimized
the performance for a 3500 rps workload (which is close
to the peak capacity supported by our cluster), and keeping
them fixed for the rest of the rps. “Kubernetes Autoscaler”
refers to the Vertical Pod Autoscaler (VPA) [3] for deter-
mining the rightsizing parameters. VPA performs poorly in
general, as rightsizing decisions are solely based on container
utilization, and not P95 latency of the application. We also
baseline against several existing approaches, i.e. Bayesian Op-
timization (BO)2, state-of-the-art RL techniques Slates and
DDPG (we set episode length to 1 for the constRPS ex-
periments, so DDPG is effectively standard contextual ban-
dits [74]), and SelfTune’s Bluefin with HybridBandits.

2Our implementation of BO differs from CherryPick [17] in the choice
of acquisition function. We use GP-UCB instead of EI, motivated by the
superior performance of GP-UCB as demonstrated by Hoffman et al. [36].

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1109

Figure 4: Comparison of various techniques for post-
deployment configuration tuning of the SocialNetwork ap-
plication using constRPS workloads. ‘Predeployment’ is the
baseline performance achieved with configuration choices we
manually chose based on 3500-rps workload.

First, the benefit of using OPPerTune service post-
deployment is clear: every algorithm, almost for every
rps, finds better configuration choices to adapt to chang-
ing workload volumes. Second, almost for every rps,
HybridBandits significantly outperforms BO, Slates, and
DDPG, and achieves the best P95 latency. For instance, at the
peak workload of 3600 rps, HybridBandits achieves nearly
2x reduction in P95 latency compared to the best config-
uration predicted by BO that has a large variance. Third,
the utility of tuning categorical parameters together with the
numerical parameters, using HybridBandits, is clear at high
workloads, compared to Bluefin algorithm in the SelfTune
framework [40] that supports only numerical parameters. In
particular, HybridBandits (32.6ms) achieves about 15% re-
duction in P95 latency relative to Bluefin (38.6ms) for the
3600-rps workload. DDPG performs reasonably well in high
workloads, despite the absence of informative context. We
see similar results when the initial configuration to our al-
gorithm is bad (i.e., yields very high latency), indicating
HybridBandits’s ability to converge to near-optimal config-
urations quickly even if the configurations are poor in the
initial few rounds.

Takeaway 1. OPPerTune with HybridBandits achieves the
best performance, especially at peak workloads, among the
state-of-the-art ML techniques used in systems performance
optimization.

B) Effectiveness of AutoScope: We now evaluate the
benefits of automatically scoping tuning instances us-
ing AutoScope, in terms of the application performance as
well as sample complexity. We consider SocialNetwork with
AMStraces and MLExp for this evaluation.
1. SocialNetwork + AMStraces: We compare

AutoScope with a domain-expertise based scoping strategy,
informed by the diurnal patterns of workloads in AMStraces.
We use one tuning instance for every 2 consecutive hours in
a cluster-day. Each tuning instance runs HybridBandits in-
dependently to learn suitable configuration parameters for
its 2-hour scope. We refer to this as HybridBanditscluster,hour.
For AutoScope, we use average rps over every 2 consecutive
hours in a day as context. We build a simple estimator for rps
values using the first week traces, and use them for all the
weeks. This is because we can not know the true rps values
(in the future) at the time of Predict calls.

We let all the methods use the first 3 weeks’ traces to tune
the configuration parameters for SocialNetwork in deploy-
ment. We then evaluate the converged parameters on the last
week’s trace. In Table 3, we present, for each technique and for
each cluster, (a) P50, P95, and maximum value of hourly P95
latency, computed over the last week, i.e., over 168 hours, and
(b) sample complexity of the technique (i.e., # rewards used
while tuning). We compare AutoScope with (i) the baseline of
using “Pre-deployment choices” of configuration parameters,
(ii) domain-expertise based scoping HybridBanditscluster,hour,
(iii) deep-RL based DDPG that uses rps, and CPU and mem-
ory utilization of microservices and VMs as features (“states”)
for implicit scoping, and (iv) AutoScopecluster where a sepa-
rate AutoScope instance is created for each cluster with rps
as the scoping attribute. We see that max P95 latencies for
Clusters 2 and 3 are in the order of seconds with the Pre-
deployment choices. OPPerTune, using each of the three
algorithms, significantly reduces the worst-case P95 latencies.
Importantly, AutoScope achieves significantly better perfor-
mance in general compared to HybridBanditscluster,hour, and
DDPG in Clusters 2 and 3 especially.

Remarkably, AutoScope achieves this performance using
one-third of samples (i.e., # rewards) as that of other tech-
niques. AutoScope exploits the overlap of diurnal patterns
and workload volumes (Appendix C.1) across clusters to im-
prove overall performance, using as few as 8 tuning instances
(a height-3 tree), compared to manual scoping using 36 (3
clusters × 12 time-windows in a day) tuning instances. More-
over, AutoScopecluster (one AutoScope instance per cluster)
performs similarly (except for max latencies) to AutoScope;
a single instance of AutoScope can adapt to application dy-
namics across deployments when the presented context (here,
workload volumes) adequately captures the dynamics.

Takeaway 2. OPPerTune with AutoScope is able to sig-
nificantly improve the application performance, using 3x
fewer samples needed by manual scoping strategies.

2. MLExp: For this application, we have 3 types of context
information available at the job submission time, namely, job
type (11 possible values), dataset size (‘large’ or ‘small’),
and cluster used (1 or 2). So, as a baseline, we use the fol-
lowing domain-expertise based scoping strategy. We create
one tuning instance per combination, yielding 11×2×2 = 44

1110 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Method (P50, P95, max) of P95 latency of each hour over the 4th week (ms) Sample Complexity
Cluster 1 Cluster 2 Cluster 3 (#rewards for tuning)

P50 P95 max P50 P95 max P50 P95 max

Pre-deployment choices 12.7 19.4 23.8 12.4 18.2 1959.1 12.3 44.1 4018.4 -
HybridBanditscluster, hour 10.6 17.3 19.3 9.5 19.6 21.0 10.9 17.4 36.7 756

DDPG 10.4 17.0 23.2 8.3 14.2 18.4 9.2 18.1 32.6 756
AutoScopecluster 10.6 15.8 17.0 8.7 15.8 16.8 7.1 15.2 17.6 756

AutoScope 10.1 15.8 23.7 8.5 13.5 17.1 7.9 15.7 33.4 252

Table 3: Comparison of various techniques for post-deployment configuration tuning of the SocialNetwork application using real
workloads (AMStraces). Algorithms in the last three rows, implemented in OPPerTune, use the first 3 week-traces for tuning.
The first row is the baseline performance achieved with manually-chosen configuration choices.

instances. Each instance runs Bluefinindependently to tune
Apache Spark configuration parameters (Table 2) for the
jobs in the scope. We refer to this as Bluefincluster, type, size.
AutoScope uses the 3 context values for scoping via height-
3 trees, i.e., at most 8 tuning instances (in the leaves). We
initialized all the instances using the default choices for job
parameters that the developers provided.

We use workloads submitted to the 2 clusters in the
Nov 20-Dec 03, 2022 period to tune job parameters us-
ing Bluefincluster, type, size (suffix indicates the manual scop-
ing strategy) and AutoScope. We ensured that each of the
44 instances using Bluefincluster, type, size, as well as the 8 in-
stances of AutoScope get at least 5 reward values during the
period (to make meaningful updates). We then evaluate the
converged instances on the workloads submitted to the 2 clus-
ters between Dec 04, 2022 and Dec 10, 2022. Whenever a
developer submits an ML workload, a Predict call is made
which decides the scope. Rewards (completion times) are sent
back when workloads are complete.

The mean and standard deviation of the workload (i.e., ex-
periment) completion times over one week for different tech-
niques are presented in Table 4. We compare AutoScope with
(i) Pre-deployment choices, (ii) Expert choices, which are job-
specific configuration choices we elicited from MLExp devel-
opers; they have implemented hand-crafted heuristics (refined
over several months) to improve the job completion times on
the clusters, based on individual job characteristics such as the
number of data records processed in the pipeline, type of the
job, repartitioning costs, etc., and (iii) Bluefincluster, type, size.

We see that Bluefincluster, type, size and AutoScope have re-
duced the mean workload completion times by more than
50% that of the Pre-deployment choices in Cluster 1; and by
about 10% in Cluster 2. Also, they perform as well as the Ex-
pert choices in Cluster 1, and better (significance determined
using standard t-test at p-value of 0.05) in Cluster 2. For 8 out
of 11 job types, AutoScope achieves up to 2× smaller P95
completion times than expert choices (see Appendix C.2).

A highlight of this deployment study is that AutoScope,
using only 90 samples (rewards) for 8 instances, is able
to achieve performance competitive to Bluefincluster, type, size
that uses 407 samples for 44 instances. The manual cluster-
ing of Bluefincluster, type, size indeed is marginally better than

Method
Experiment Completion Time

(in minutes)
Sample Complexity

(#rewards)
Cluster 1 Cluster 2 Cluster 1 Cluster 2

Pre-deployment choices 105.85 ± 16.75 36.66 ± 1.60 - -
Expert choices 42.41 ± 5.28 34.46 ± 4.72 - -

Bluefincluster, type, size 38.56 ± 6.55 30.79 ± 0.52 94 313
AutoScope 38.98 ± 5.90 32.71 ± 0.26 29 61

Table 4: Comparison of techniques for post-deployment con-
figuration tuning of Apache Spark parameters in MLExp ap-
plication, on 2 production clusters, over 1 week of evaluation.
AutoScope is competitive to domain-expertise based scoping
strategy (Bluefincluster, type, size) using far fewer samples.

AutoScope. This is expected because Bluefincluster, type, size
fits optimal parameters for individual partitions of the deploy-
ment, i.e., job type, size, cluster. This is sample-inefficient
in practice, as we can share parameters when partitions are
similar (say two job types with similar resource requirements).
AutoScope does this and can achieve similar results with a
third of the samples. We also present individual job comple-
tion time statistics for the 11 different job types in Table 5.
The observations are similar to Table 4.

7.3 Mitigating Cost Of Tuning In-Deployment
So far, we have focused on the impact of tuning on the ap-
plication performance. We now turn to the cost of tuning in
deployment—every change to configuration parameters in
production introduces potential risk. This section also demon-
strates how operators can use the selector (Section 5) module
of OPPerTune to select a subset of parameters that improve
another metric of interest along with performance. In this case,
we use availability as the metric of interest. As we discussed
in Section 2, tuning certain configuration parameters necessi-
tates microservice/pod restarts, causing downtimes. Improv-
ing latency of the application at the expense of throughput, or
service reliability, may not be acceptable.

We evaluate OPPerTune, in terms of how it trades off im-
proving performance and mitigating restarts while tuning, on
the SocialNetwork application and constRPS workloads. The
results are summarized in Table 6 and in Figure 5. We consider
various strategies for picking configuration parameters, fol-
lowed by tuning the selected parameters with HybridBandits,
to mitigate the number of pod restarts. The first row of the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1111

Method Job Completion Time in minutes (mean ± std. dev)
Select Filter Explode Normalize Stats Extract Dedup Split Sample Debug Eval

Default choices 14.92 ± 19.80 18.43 ± 7.53 21.70 ± 6.64 3.12 ± 2.26 4.17 ± 1.41 2.04 ± 1.01 4.86 ± 1.28 2.24 ± 0.45 6.49 ± 2.50 6.13 ± 2.88 4.09 ± 2.24
Expert choices 6.20 ± 6.87 5.58 ± 1.29 7.16 ± 2.56 1.96 ± 0.45 3.73 ± 1.17 1.43 ± 0.20 5.59 ± 2.31 2.52 ± 0.44 3.06 ± 0.78 3.31 ± 0.98 2.26 ± 0.88

Bluefincluster, type, size 4.84 ± 4.71 5.21 ± 0.87 7.42 ± 4.01 1.88 ± 0.38 2.51 ± 0.66 2.14 ± 0.09 3.18 ± 0.25 3.08 ± 0.39 2.78 ± 0.32 2.96 ± 0.19 1.85 ± 0.21
AutoScope 4.92 ± 4.23 6.45 ± 0.46 6.69 ± 3.12 1.66 ± 0.19 2.36 ± 0.42 2.22 ± 0.13 4.77 ± 0.35 2.97 ± 0.12 2.62 ± 0.3 3.88 ± 0.1 1.78 ± 0.23

Table 5: Job completion times for various job types submitted to 2 MLExp clusters over 1 week of evaluation.

Parameters/ P95 Latency (ms) (mean ± std. dev)
Layers tuned RPS = 2000 RPS = 2800 RPS = 3200 RPS = 3600

MS ∪ RS 5.973 ± 0.046 17.864 ± 1.150 21.068 ± 1.641 32.656 ± 2.798
NR 6.916 ± 0.076 24.545 ± 1.184 31.281 ± 1.958 70.542 ± 22.485
MS 6.405 ± 0.039 24.209 ± 1.594 26.764 ± 2.184 38.853 ± 2.500
RS 6.828 ± 0.022 25.373 ± 0.607 26.774 ± 2.168 70.175 ± 8.267

MBT-25 6.820 ± 0.060 23.697 ± 1.802 27.022 ± 1.278 34.503 ± 2.642
MBT-50 6.094 ± 0.075 19.248 ± 1.362 21.888 ± 0.853 37.821 ± 1.489

MS=Microservices, RS=Rightsizing, NR=NoRestarts, MBT=Microbenchmark-Top

Table 6: Comparison of various ways of selecting param-
eters to tune (here, via OPPerTune-HybridBandits) in the
SocialNetwork application stack using constRPS workloads.
Microbenchmarking strategy (last row) yields performance
nearly as good as tuning all the parameters (first row).

table (“Microservices ∪ Rightsizing”) corresponds to tuning
all the parameters listed in Table 1. The second row of the ta-
ble (“NoRestarts”) corresponds to tuning only the parameters
that do not require any restarts. As expected, they achieve the
best and the worst P95 latency values, respectively.

In Section 5, we introduced the microbenchmarking strat-
egy in OPPerTune for picking the most promising configura-
tions ahead of tuning in deployment. The last row of Table 6
shows the performance achieved using HybridBandits on
the top-50 parameters (See Appendix D for the list of pa-
rameters): (i) in 3 out of 4 workload rates, we see that the
strategy achieves statistically similar performance as the best
(“Microservices ∪ Rightsizing”); (ii) with the reduced con-
figuration space, HybridBandits converges within 30 rounds,
compared to the 50 rounds needed by the best method (not
indicated in the table); and (iii) HybridBandits is superior to
tuning only the microservices layer parameters (third row) or
rightsizing layer parameters (fourth row). We also included
the performance using top-25 in the fifth row for comparison.

Figure 5: Number of microservice pod restarts (per round)
and mean P95 latency (RPS=2800) while tuning different pa-
rameters/layers of SocialNetwork app using HybridBandits.

Figure 5 shows the relationship between average P95 la-
tency (measured in milliseconds) and the number of pod
restarts per round for each of the five strategies shown in Ta-
ble 6. We see that our microbenchmarking strategy achieves
a good trade-off between cost and performance, using 2800-
rps workload as example (though the findings are consistent
across all rps). The best average P95 latency (17.9ms) of
“Microservices ∪ Rightsizing” or “MS ∪ RS” comes at the ex-
pense of 29 pod restarts per round as seen from Figure 5. The
microbenchmarking strategy (“MB-50” in 5) nearly matches
the best method’s P95 latency (19.2ms), with nearly 30%
fewer pod restarts per round (20 restarts).

Takeaway 3. HybridBandits + microbenchmarking strat-
egy of OPPerTune reduces the cost of tuning in terms of ser-
vice disruptions in deployment significantly, while achieving
competitive performance.

7.4 Scalability
We evaluate the scalability of OPPerTune service with re-
spect to various tuning algorithms that we implemented (or in-
tegrated) as part of the backend (as discussed in Section 6). We
perform this study on the same VM type as in Section 7.1.1.

We focus on the throughput of OPPerTune service, i.e.,
number of Predict and SetReward requests served, with vari-
ous back-end algorithms; so, we use a simple synthetic appli-
cation to stress-test the service and the algorithms.

Using wrk2, we simulate a scenario where there is one client
that (a) creates a new instance, specifying 30 configuration
parameters (25 numerical and 5 categorical for algorithms that
allow hybrid configurations) and the algorithm to use, and (b)
then repeatedly sends Predict and SetReward requests to the
created instance on the OPPerTune server, for 120 seconds.
For algorithms which need context (AutoScope, DDPG), we
use random context vectors of size d = 8. For rewards, we use
a random value between 0 and 1 (actual reward value does
not matter for this study). We maintain the instance state in
memory for all the tuning algorithms for this study.

In this setting, we first verified that our Go-based server
can handle 4096 rps without dropping any request, bypassing
the tuning algorithm. Table 7 shows the OPPerTune service
throughput for various backend algorithms. First, we find
that the ordering of Bluefin, HybridBandits, AutoScope, and
DDPG (our implementations) is as expected. The latency
of the requests is proportional to the size of the model—
HybridBandits achieves lower throughput than Bluefin, be-
cause it needs to sample from a probability distribution
over all possible categorical choices (∣C∣ = 720 in this study).

1112 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm Bluefin HybridBandits AutoScope DDPG Slates BO

Throughput (RPS) 2226 1540 825 594 2.2 1.5

Table 7: Maximum throughput of OPPerTune service with
various back-end algorithms.

Among the algorithms that use context, i.e., AutoScope and
DDPG, AutoScope is faster because its inference time is
proportional to hd +m+ ∣C∣, where h = 3 is the tree height
for experiments in this paper, d = 8, m = 25, for this study
(see notation in Section 3.2); whereas, DDPG has to per-
form inference using a neural network of size (m+ k+d)×
#hidden layers, where m+k = 30 parameters in this study, and
#hidden layers = 32 for experiments in this paper. Popular im-
plementations of BO and Slates algorithms, that we integrated
in our back-end, do not scale at all.

8 Related Work
Configuration Tuning: Performance optimization of sys-
tems through configuration tuning is a long-studied prob-
lem [37, 59, 60] that continues to garner interest from the
systems research community. Prior works on configuration
tuning mainly focus on parameters of specific subsystems of
applications [16,17,24,46,54,69,69–71] such as database and
storage or of the hosting infrastructure [21, 22, 55, 58, 63]. In
such works, the configuration search space is relatively small,
and the advantages of jointly tuning parameters across the
software stack are not considered. Moreover, the approaches
are tailored to the specific subsystem being tuned, sometimes
requiring domain expertise [16, 24]. Recently, jointly tuning
parameters across the software stack [25,48] and across multi-
ple components of an application [61, 64] is gaining attention.
Such works either ignore the cost of reconfiguration [61] or
require an expensive offline training [25, 48, 64].

RL/Bandit Algorithms: While there are several RL-based
configuration tuning approaches [55, 57, 73], they are either
limited in the type of parameters being tuned or are inef-
ficient for online post-deployment tuning scenarios. Some
approaches do handle hybrid parameter spaces [43, 49] via
cascaded optimization which are effective only when trained
offline. Deploying parameters, observing a reward and making
updates in real systems fits the bandits paradigm (sample; re-
ward; update) better than long-horizon RL paradigm (sample;
reward; sample; reward; . . .; update). Long-horizon/episodic
RL has higher sample complexity and needs hand-crafted state
information (e.g, utilization metrics) to learn effective poli-
cies. While this allows robustness in dynamic environments,
it poses additional engineering overhead, and hand-designing
state information is challenging in enterprise scenarios. In
our experience working with developers, determining a useful
reward cycle (time horizon) is fairly easy with some domain
expertise making our bandits approach effective compared
to RL and our proposed HybridBandits can tune all types of
parameters in deployment without such overhead.

Recent work on learning trees using bandit feedback [28,
29] are designed for categorical spaces. Popular tree learning
algorithms like CART [23] and C4.5 [56] do not apply to the
bandit feedback setting because they need access to labeled
training data (which in our scenario means optimal parameters
for different context vectors, which we do not have).
Tuning Frameworks: Recent works have addressed the need
for a generic configuration tuning framework for production
systems [33,40,58,67,75]. KEA [75], Microsoft’s internal tun-
ing framework for cluster-wide configurations, uses historical
data to make decisions on parameters in the pre-deployment
stages. The most recent SelfTune [40] framework from Mi-
crosoft for tuning cluster managers supports post-deployment
tuning but lacks support for tuning categorical parameters
and requires domain expertise for setting up tuning instances
for complex, distributed applications. Google’s Vizier [33]
is their internal service for hyper-parameter tuning of ML
workloads in the offline setting. Twine [67] is Meta’s clus-
ter management system for workload-specific customizations
such as tuning of hardware and OS settings. OpenTuner [18]
provides a framework to build domain-specific tuners.

9 Conclusion
We have designed, built, and deployed the OPPerTune con-
figuration tuning service at Microsoft. Our work differs from
related work on configuration tuning in many ways: 1) we
tackle challenges arising in post-deployment tuning, 2) we
focus on sample complexity of algorithms as well as the cost
of tuning, unlike systems tuning efforts that rely on offline
training or controlled settings, 3) we give an end-to-end solu-
tion for configuration tuning that is fairly general and readily
applicable. We demonstrate through two real-world deploy-
ments that our techniques yield state-of-the-art performance,
are sample-efficient, and reduce the tuning cost.

This work addresses many challenges in post-deployment
configuration tuning through OPPerTune. However, future
work can address the following challenges and also improve
the framework for easier adoption. Firstly, OPPerTune’s scal-
ability can be evaluated by using it to tune applications with a
very large (say, thousands) number of parameters. Secondly, a
fine-grained analysis of different costs (e.g., performance and
revenue) associated with tuning parameters can be conducted.
Thirdly, tuning parameters from different layers of the soft-
ware stack (e.g., OS and hardware), along with an analysis of
their interrelationships, would be an exciting direction. Lastly,
OPPerTune can be implemented as a Kubernetes operator
for seamless integration with the application ecosystem.

10 Acknowledgment
We are grateful to Sayak Ray Chowdhury for discussions and
feedback on the tuning algorithms. We would like to thank our
shepherd Arpit Gupta and the anonymous reviewers for their
valuable feedback. This work was supported by NSF grants
CNS 2324859, 2214980, 2106434, 1909356, and 1750109.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1113

References
[1] Beginner’s guide. https://nginx.org/en/docs/

beginners_guide.html.

[2] Controlling nginx. https://nginx.org/en/docs/
control.html.

[3] Kubernetes Vertical Pod Autoscaler. https:
//github.com/kubernetes/autoscaler/blob/
master/vertical-pod-autoscaler/.

[4] memcached(1). https://linux.die.net/man/1/
memcached.

[5] MongoDB. https://docs.mongodb.com/manual/
reference/parameters/.

[6] Recreate Deployment. https://kubernetes.
io/docs/concepts/workloads/controllers/
deployment/#strategy.

[7] Redis configuration. https://redis.io/topics/
config.

[8] Tuning nginx for performance. https://www.nginx.
com/blog/tuning-nginx/.

[9] wrk2 HTTP Workload Generator. https://github.
com/giltene/wrk2.

[10] Fiber. https://github.com/gofiber/fiber, 2022.

[11] Scikit-optimize. https://github.com/
scikit-optimize/scikit-optimize, 2022.

[12] The vowpal wabbit library. https://github.com/
VowpalWabbit/vowpal_wabbit, 2022.

[13] Randy Abernethy. The Programmer’s Guide to Apache
Thrift. 2018.

[14] Alekh Agarwal, Sarah Bird, Markus Cozowicz, Lu-
ong Hoang, John Langford, Stephen Lee, Jiaji Li,
Dan Melamed, Gal Oshri, Oswaldo Ribas, et al. A
multiworld testing decision service. arXiv preprint
arXiv:1606.03966, 7, 2016.

[15] Ibrahim Umit Akgun, Ali Selman Aydin, Andrew Bur-
ford, Michael McNeill, Michael Arkhangelskiy, and
Erez Zadok. Improving storage systems using machine
learning. ACM Trans. Storage, nov 2022.

[16] Sami Alabed and Eiko Yoneki. High-dimensional
bayesian optimization with multi-task learning for
rocksdb. EuroMLSys ’21, 2021.

[17] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen,
Shivaram Venkataraman, Minlan Yu, and Ming Zhang.
Cherrypick: Adaptively unearthing the best cloud con-
figurations for big data analytics. In Proceedings of the

14th USENIX Conference on Networked Systems Design
and Implementation, NSDI’17, 2017.

[18] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni,
Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May
O’Reilly, and Saman Amarasinghe. Opentuner: An ex-
tensible framework for program autotuning. In Proceed-
ings of the 23rd international conference on Parallel
architectures and compilation, pages 303–316, 2014.

[19] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and
Robert E Schapire. The nonstochastic multiarmed ban-
dit problem. SIAM journal on computing, 32(1):48–77,
2002.

[20] Alberto Bietti, Alekh Agarwal, and John Langford. A
contextual bandit bake-off. Journal of Machine Learn-
ing Research, 22(133):1–49, 2021.

[21] Muhammad Bilal, Marco Canini, and Rodrigo Ro-
drigues. Finding the right cloud configuration for analyt-
ics clusters. In Proceedings of the 11th ACM Symposium
on Cloud Computing, SoCC ’20.

[22] Muhammad Bilal, Marco Serafini, Marco Canini, and
Rodrigo Rodrigues. Do the best cloud configurations
grow on trees? an experimental evaluation of black box
algorithms for optimizing cloud workloads. Proc. VLDB
Endow., 2020.

[23] L Breiman, JH Friedman, R Olshen, and CJ Stone. Clas-
sification and regression trees. 1984.

[24] Zhen Cao, Geoff Kuenning, and Erez Zadok. Carver:
Finding important parameters for storage system tun-
ing. In 18th USENIX Conference on File and Storage
Technologies (FAST 20).

[25] Stefano Cereda, Stefano Valladares, Paolo Cremonesi,
and Stefano Doni. Cgptuner: A contextual gaussian
process bandit approach for the automatic tuning of it
configurations under varying workload conditions. Proc.
VLDB Endow., 14(8):1401–1413, oct 2021.

[26] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56:74–80, 2013.

[27] Songyun Duan, Vamsidhar Thummala, and Shivnath
Babu. Tuning database configuration parameters with
ituned. Proc. VLDB Endow., 2(1):1246–1257, aug 2009.

[28] Adam N Elmachtoub, Ryan McNellis, Sechan Oh, and
Marek Petrik. A practical method for solving contextual
bandit problems using decision trees. Uncertainty in
Artificial Intelligence, 2017.

[29] Raphaël Féraud, Robin Allesiardo, Tanguy Urvoy, and
Fabrice Clérot. Random forest for the contextual bandit

1114 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://nginx.org/en/docs/beginners_guide.html
https://nginx.org/en/docs/beginners_guide.html
https://nginx.org/en/docs/control.html
https://nginx.org/en/docs/control.html
https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/
https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/
https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/
https://linux.die.net/man/1/memcached
https://linux.die.net/man/1/memcached
https://docs.mongodb.com/manual/reference/parameters/
https://docs.mongodb.com/manual/reference/parameters/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy
https://redis.io/topics/config
https://redis.io/topics/config
https://www.nginx.com/blog/tuning-nginx/
https://www.nginx.com/blog/tuning-nginx/
https://github.com/giltene/wrk2
https://github.com/giltene/wrk2
https://github.com/gofiber/fiber
https://github.com/scikit-optimize/scikit-optimize
https://github.com/scikit-optimize/scikit-optimize
https://github.com/VowpalWabbit/vowpal_wabbit
https://github.com/VowpalWabbit/vowpal_wabbit

problem. In Artificial intelligence and statistics, pages
93–101. PMLR, 2016.

[30] Abraham D Flaxman, Adam Tauman Kalai, and H Bren-
dan McMahan. Online convex optimization in the bandit
setting: gradient descent without a gradient. In Proceed-
ings of the sixteenth annual ACM-SIAM Symposium on
Discrete Algorithms, pages 385–394, 2005.

[31] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayantara Katarki, Ariana Bruno, Justin
Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu,
Meghna Pancholi, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Yuan He, and Christina Delimitrou. An
Open-Source Benchmark Suite for Microservices and
Their Hardware-Software Implications for Cloud and
Edge Systems. In Proceedings of the Twenty Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), 2019.

[32] Mitsuo Gen and Runwei Cheng. Genetic algorithms
and engineering optimization, volume 7. John Wiley &
Sons, 1999.

[33] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra,
Greg Kochanski, John Elliot Karro, and D. Sculley, edi-
tors. Google Vizier: A Service for Black-Box Optimiza-
tion, 2017.

[34] John Hancock and Taghi Khoshgoftaar. Survey on cate-
gorical data for neural networks. Journal of Big Data,
7, 04 2020.

[35] Herodotos Herodotou, Yuxing Chen, and Jiaheng Lu.
A survey on automatic parameter tuning for big data
processing systems. ACM Comput. Surv., 53(2), apr
2020.

[36] Matthew Hoffman, Eric Brochu, and Nando de Freitas.
Portfolio allocation for bayesian optimization. In Pro-
ceedings of the Twenty-Seventh Conference on Uncer-
tainty in Artificial Intelligence, UAI’11, page 327–336,
Arlington, Virginia, USA, 2011. AUAI Press.

[37] Chiaki Ishikawa, Ken Sakamura, and Mamoru Maekawa.
Dynamic tuning of operating systems. In Mamoru
Maekawa and Laszio A. Belady, editors, Operating Sys-
tems Engineering, pages 119–142, Berlin, Heidelberg,
1982. Springer Berlin Heidelberg.

[38] Satyen Kale, Lev Reyzin, and Robert E Schapire. Non-
stochastic bandit slate problems. Advances in Neural
Information Processing Systems, 23, 2010.

[39] Ajaykrishna Karthikeyan, Naman Jain, Nagarajan
Natarajan, and Prateek Jain. Learning accurate deci-
sion trees with bandit feedback via quantized gradient
descent. Transactions on Machine Learning Research,
Sep 2022.

[40] Ajaykrishna Karthikeyan, Nagarajan Natarajan, Gagan
Somashekar, Lei Zhao, Ranjita Bhagwan, Rodrigo Fon-
seca, Tatiana Racheva, and Yogesh Bansal. SelfTune:
Tuning cluster managers. In 20th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 23), pages 1097–1114, Boston, MA, April 2023.
USENIX Association.

[41] Tor Lattimore and Csaba Szepesvári. Bandit algorithms.
Cambridge University Press, 2020.

[42] Boyan Li, Hongyao Tang, YAN ZHENG, HAO Jianye,
Pengyi Li, Zhen Wang, Zhaopeng Meng, and LI Wang.
Hyar: Addressing discrete-continuous action reinforce-
ment learning via hybrid action representation. In In-
ternational Conference on Learning Representations,
2021.

[43] Boyan Li, Hongyao Tang, YAN ZHENG, HAO Jianye,
Pengyi Li, Zhen Wang, Zhaopeng Meng, and LI Wang.
Hyar: Addressing discrete-continuous action reinforce-
ment learning via hybrid action representation. In In-
ternational Conference on Learning Representations,
2021.

[44] Zhao Lucis Li, Chieh-Jan Mike Liang, Wenjia He,
Lianjie Zhu, Wenjun Dai, Jin Jiang, and Guangzhong
Sun. Metis: Robustly tuning tail latencies of cloud sys-
tems. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 981–992, Boston, MA, July
2018. USENIX Association.

[45] Timothy Lillicrap, Jonathan Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep rein-
forcement learning. CoRR, 09 2015.

[46] Chen Lin, Junqing Zhuang, Jiadong Feng, Hui Li, Xu-
anhe Zhou, and Guoliang Li. Adaptive code learning
for spark configuration tuning. In 2022 IEEE 38th In-
ternational Conference on Data Engineering (ICDE),
pages 1995–2007, 2022.

[47] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye,
Guoyao Xu, Liping Zhang, Yu Ding, Jian He, and
Chengzhong Xu. Characterizing microservice depen-
dency and performance: Alibaba trace analysis. In Pro-
ceedings of the ACM Symposium on Cloud Computing,
SoCC ’21, page 412–426, New York, NY, USA, 2021.
Association for Computing Machinery.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1115

[48] Ashraf Mahgoub, Alexander Michaelson Medoff,
Rakesh Kumar, Subrata Mitra, Ana Klimovic, Somali
Chaterji, and Saurabh Bagchi. OPTIMUSCLOUD: Het-
erogeneous configuration optimization for distributed
databases in the cloud. In 2020 USENIX Annual Techni-
cal Conference (USENIX ATC 20), 2020.

[49] Warwick Masson, Pravesh Ranchod, and George
Konidaris. Reinforcement learning with parameterized
actions. In AAAI, 2016.

[50] Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, Chetan
Bansal, Chandra Maddila, Balasubramanyan Ashok,
Sumit Asthana, Christian Bird, and Aditya Kumar. Rex:
Preventing bugs and misconfiguration in large services
using correlated change analysis. In 17th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI 20), pages 435–448, 2020.

[51] Yu Nesterov. Efficiency of coordinate descent methods
on huge-scale optimization problems. SIAM Journal on
Optimization, 22(2):341–362, 2012.

[52] Vladimir I Norkin, Georg Ch Pflug, and Andrzej
Ruszczyński. A branch and bound method for stochas-
tic global optimization. Mathematical programming,
83(1):425–450, 1998.

[53] Julie Nutini, Mark Schmidt, Issam Laradji, Michael
Friedlander, and Hoyt Koepke. Coordinate descent con-
verges faster with the gauss-southwell rule than ran-
dom selection. In International Conference on Machine
Learning, pages 1632–1641. PMLR, 2015.

[54] David Buchaca Prats, Felipe Albuquerque Portella, Car-
los H. A. Costa, and Josep Lluis Berral. You only
run once: Spark auto-tuning from a single run. IEEE
Transactions on Network and Service Management,
17(4):2039–2051, 2020.

[55] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbig-
niew T. Kalbarczyk, and Ravishankar K. Iyer. FIRM:
An intelligent fine-grained resource management frame-
work for slo-oriented microservices. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), 2020.

[56] J Ross Quinlan. Program for machine learning. C4. 5,
1993.

[57] Fabiana Rossi, Valeria Cardellini, Francesco
Lo PRESTI, and Matteo Nardelli. Dynamic multi-
metric thresholds for scaling applications using
reinforcement learning. IEEE Transactions on Cloud
Computing, pages 1–1, 2022.

[58] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski,
Przemyslaw Zych, Przemyslaw Broniek, Jarek Kus-
mierek, Pawel Nowak, Beata Strack, Piotr Witusowski,
Steven Hand, and John Wilkes. Autopilot: Workload
autoscaling at google. In Proceedings of the Fifteenth
European Conference on Computer Systems, EuroSys
’20, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[59] Jeffrey Semke, Jamshid Mahdavi, and Matthew Mathis.
Automatic tcp buffer tuning. SIGCOMM Comput. Com-
mun. Rev., 28(4):315–323, oct 1998.

[60] Dennis Shasha. Lessons from wall street: Case studies in
configuration, tuning, and distribution. In Proceedings
of the 1997 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’97, page 498–501,
New York, NY, USA, 1997. Association for Computing
Machinery.

[61] G. Somashekar, A. Suresh, S. Tyagi, V. Dhyani,
K. Donkada, A. Pradhan, and A. Gandhi. Reducing the
tail latency of microservices applications via optimal
configuration tuning. In 2022 IEEE International Con-
ference on Autonomic Computing and Self-Organizing
Systems (ACSOS), pages 111–120, Los Alamitos, CA,
USA, sep 2022. IEEE Computer Society.

[62] Gagan Somashekar and Rajat Kumar. Enhancing the
configuration tuning pipeline of large-scale distributed
applications using large language models (idea paper).
In Companion of the 2023 ACM/SPEC International
Conference on Performance Engineering, ICPE ’23
Companion, page 39–44, New York, NY, USA, 2023.
Association for Computing Machinery.

[63] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F.
Wenisch. Softsku: Optimizing server architectures for
microservice diversity @scale. In Proceedings of the
46th International Symposium on Computer Architec-
ture, ISCA ’19, page 513–526, New York, NY, USA,
2019. Association for Computing Machinery.

[64] Akshitha Sriraman and Thomas F. Wenisch. Mtune:
AutoTuned Threading for OLDI microservices. In Pro-
ceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation, OSDI 2018, page
177–194, USA, 2018. USENIX Association.

[65] Adith Swaminathan, Akshay Krishnamurthy, Alekh
Agarwal, Miro Dudik, John Langford, Damien Jose, and
Imed Zitouni. Off-policy evaluation for slate recom-
mendation. Advances in Neural Information Processing
Systems, 30, 2017.

[66] Chunqiang Tang, Thawan Kooburat, Pradeep Venkat-
achalam, Akshay Chander, Zhe Wen, Aravind

1116 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Narayanan, Patrick Dowell, and Robert Karl. Holistic
configuration management at facebook. In Proceedings
of the 25th symposium on operating systems principles,
pages 328–343, 2015.

[67] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan,
Jonathan Kaldor, Scott Michelson, Thawan Kooburat,
Aravind Anbudurai, Matthew Clark, Kabir Gogia, Long
Cheng, Ben Christensen, Alex Gartrell, Maxim Khutor-
nenko, Sachin Kulkarni, Marcin Pawlowski, Tuomas
Pelkonen, Andre Rodrigues, Rounak Tibrewal, Vaish-
navi Venkatesan, and Peter Zhang. Twine: A unified
cluster management system for shared infrastructure.
In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 787–803.
USENIX Association, November 2020.

[68] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and
Bohan Zhang. Automatic database management system
tuning through large-scale machine learning. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD ’17, page 1009–1024,
New York, NY, USA, 2017. Association for Computing
Machinery.

[69] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and
Bohan Zhang. Automatic database management system
tuning through large-scale machine learning. In Pro-
ceedings of the 2017 ACM international conference on
management of data, pages 1009–1024, 2017.

[70] Muhammad Wajahat, Salman Masood, Abhinav Sau,
and Anshul Gandhi. Lessons learnt from software tun-
ing of a memcached-backed, multi-tier, web cloud appli-
cation. In 2017 Eighth International Green and Sustain-
able Computing Conference (IGSC), pages 1–6, 2017.

[71] Jinhan Xin, Kai Hwang, and Zhibin Yu. Locat: Low-
overhead online configuration auto-tuning of spark sql
applications. In Proceedings of the 2022 International
Conference on Management of Data, SIGMOD ’22,
page 674–684, New York, NY, USA, 2022. Association
for Computing Machinery.

[72] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tian-
wei Sheng, Ding Yuan, Yuanyuan Zhou, and Shankar
Pasupathy. Do not blame users for misconfigurations. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, page 244–259,
New York, NY, USA, 2013. Association for Computing
Machinery.

[73] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin
Cheng, Jiashu Xing, Yangtao Wang, Tianheng Cheng,
Li Liu, Minwei Ran, and Zekang Li. An end-to-end

automatic cloud database tuning system using deep rein-
forcement learning. In Proceedings of the 2019 Interna-
tional Conference on Management of Data, SIGMOD
’19, page 415–432, New York, NY, USA, 2019. Associ-
ation for Computing Machinery.

[74] Zihan Zhang, Xiangyang Ji, and Simon Du. Is rein-
forcement learning more difficult than bandits? a near-
optimal algorithm escaping the curse of horizon. In
Proceedings of Thirty Fourth Conference on Learning
Theory, pages 4528–4531, 2021.

[75] Yiwen Zhu, Subru Krishnan, Konstantinos Karanasos,
Isha Tarte, Conor Power, Abhishek Modi, Manoj Kumar,
Deli Zhang, Kartheek Muthyala, Nick Jurgens, Sarvesh
Sakalanaga, Sudhir Darbha, Minu Iyer, Ankita Agarwal,
and Carlo Curino. Kea: Tuning an exabyte-scale data
infrastructure. In Proceedings of the 2021 International
Conference on Management of Data, SIGMOD/PODS
’21, 2021.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1117

A AutoScope Algorithm

Algorithm 2 AutoScope: Automatic Scoping of Configura-
tion Tuning via Decision Trees

1: Input: tree height h, learning rate η > 0, categorical pa-
rameter space C ∶= C1×C2×⋯×Ck, numerical parameter
spaceW =W1×W2×⋯×Wm

2: Initialize: Tree node weights z(0)j ∈R
d , for each internal

node 0≤ j ≤ 2h−2, ℓth leaf node categorical space weights
p(0)i,ℓ = 1/∣C∣, for 1 ≤ i ≤ ∣C∣ // uniform distribution, and ℓth

leaf node numerical parameters w(0)i,ℓ ∈Wi, for 1 ≤ i ≤m,
0 ≤ ℓ ≤ 2h−1 // default choices

� Each leaf node := a “tuning instance”, and is
initialized identical to Algorithm HybridBandits Step 2.

3: for t = 0,1,2, . . . do
1 Determine the scope using the tree guided by

the observed context, and use the appropriate tuning in-
stance

4: Observe context c(t) ∈Rd

5: Get the instance at the leaf node ℓ by navigating the
tree fT (c(t);{z

(t)
j })

6: Sample categorical and numerical actions following
Steps 4–6 of Algorithm HybridBandits on the ℓth instance

2 Deploy the actions and measure reward
7: Follow Steps 7–8 of Algorithm HybridBandits and

observe the reward r(t) = rt(⋅)

3 Perform updates on the tree
8: Update the ℓth instance using Steps 9–11 of Algo-

rithm HybridBandits // Other tuning instances remain the
same

9: Update tree node weights, for 0 ≤ j ≤ 2h − 2:
z(t+1)

j ← z(t)j +η∇̃z j rt(⋅) // ∇̃ is the estimated gradient
as in [38]

B HybridBandits Convergence
We design a simple synthetic function characterized by five
continuous parameters and one categorical parameter. The
categorical parameter offers a choice between two options
{f1, f2} while all continuous parameters are bounded within
the range [0,1]. The blackbox function, f ∶[C,W]→R, calcu-
lates the root mean squared error of the continuous parameters.
Additionally, it incorporates a bias term that depends on the
categorical parameter’s choice (bias=1 if f2 else bias=0). We
compare the convergence of our proposed HybridBandits al-
gorithm, with Hyperopt’s Tree of Parzen Estimators (TPE)
and the random search baseline in Figure 6. The metric plotted
here is the mean cumulative “regret” (i.e., the difference be-
tween the estimates of the parameters and their optimal values,
accumulated over rounds) with shaded 95% Confidence In-
terval (CI). We can see that random search does not converge
as expected, while HybridBandits demonstrates significantly

faster convergence compared to TPE.

Figure 6: Mean ± 95% CI cumulative regret over 25 runs.

C Experiment Details
In this section, we provide additional experimental details.

C.1 SocialNetwork + AMStraces
The AMStraces consist of traces collected from 3 different
data center regions across two continents. The traces consist
of the number of GET and PUT requests that arrive each
minute over four weeks along with additional details like
payload size, latency, etc. The peak requests per minute (RPM)
across the 3 clusters are around 30000, 40000, and 140000.
As seen in Figure 7, the traces show a diurnal pattern with a
reduced load over the weekend. We sample from these traces
such that a day’s original trace can be replayed in 1.2 hours.
We started with a higher sampling rate and arrived at this as
it succinctly captures the patterns in the original traces yet
makes the experiment iteration feasible.

The PUT and GET requests in the AMStraces are mapped
to the PUT (compose-post) and GET (read-user-timeline and
read-home-timeline) requests of the social networking appli-
cation. The payload size of the PUT requests is also driven
by the payload sizes from the traces. The call graphs of the
GET and PUT requests in the social networking application
capture the complexities of the GET and PUT requests in the
AMS service.

C.2 MLExp
In Table 8, we provide 95th percentile of the job com-
pletion time in minutes. For 8 out of 11 job types,
AutoScope achieves up to smaller P95 completion times than
expert choices.

D Microbenchmarking: Top-50 Parameters
Figure 8 gives the top-50 parameters used in Table 6 and
Figure 5. The figure also indicates the importance of tuning
the application (30 out of top-50) and Kubernetes parameters

1118 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7: Requests Per Minute (RPM) across the three clusters over a week. The figure shows a diurnal pattern with a significant
reduction in traffic over the weekends.

Method P95 Job Completion Time in minutes
Select Filter Explode Normalize Stats Extract Dedup Split Sample Debug Eval

Default choices 58.39 29.16 31.78 6.72 5.96 3.71 6.96 2.96 11.56 10.76 7.64
Expert choices 17.36 7.65 9.9 2.68 5.48 1.75 9.04 3.13 4.38 4.60 3.55

Bluefincluster, type, size 13.47 6.33 12.38 2.49 3.92 2.29 3.56 3.69 3.43 3.13 2.11
AutoScope 11.45 7.05 10.56 1.85 3.12 2.35 5.14 3.14 3.15 3.94 2.09

Table 8: P95 Job completion times for various job types submitted to 2 MLExp clusters over 1 week of evaluation.

(20 out of top-50) jointly as they are both critical to the appli-
cation’s performance. We can also see a mixture of numerical

and categorical parameters among the top 50 parameters.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1119

Figure 8: Top 50 parameters selected by the micro-benchmarking strategy in Section 6, and the maximum absolute relative
difference in P95 latencies observed by perturbing each of the 50 parameters one at a time w.r.t. a fixed baseline.

1120 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Parcae: Proactive, Liveput-Optimized DNN Training on Preemptible Instances

Jiangfei Duan‡♠ Ziang Song§♠ Xupeng Miao†♠ Xiaoli Xi†

Dahua Lin‡ Harry Xu♯ Minjia Zhang⋄ Zhihao Jia†

Carnegie Mellon University† The Chinese University of Hong Kong‡

ByteDance§ University of California, Los Angeles♯ Microsoft⋄

Abstract
Deep neural networks (DNNs) are becoming progressively
large and costly to train. This paper aims to reduce DNN
training costs by leveraging preemptible instances on modern
clouds, which can be allocated at a much lower price when idle
but may be preempted by the cloud provider at any time. Prior
work that supports DNN training on preemptive instances
employs a reactive approach to handling instance preemptions
and allocations after their occurrence, which only achieves
limited performance and scalability.

We present Parcae, a system that enables cheap, fast, and
scalable DNN training on preemptible instances by proac-
tively adjusting the parallelization strategy of a DNN training
job to adapt to predicted resource changes before instance pre-
emptions and allocations really happen, which significantly
reduces the cost of handling these events. Parcae optimizes
liveput, a novel metric that measures the expected training
throughput of a DNN job under various possible preemp-
tion scenarios. Compared to existing reactive, throughput-
optimized systems, Parcae’s proactive, live-optimized solution
considers both the throughput of a job and its robustness under
preemptions. To optimize liveput, Parcae supports lightweight
instance migration and uses an availability predictor to fore-
cast future preemptions. It then uses a liveput optimizer to
discover an optimal strategy to parallelize DNN training un-
der predicted preemptions. We evaluate Parcae on a variety
of DNNs and preemption traces and show that Parcae outper-
forms existing spot-instance DNN training systems by up to
10×. More importantly, Parcae achieves near-optimal perfor-
mance for training large DNNs under frequent preemptions,
in which case existing approaches cannot make any progress.

1 Introduction
Deep neural networks (DNNs) have surpassed human predic-
tive performance on a spectrum of tasks, including computer
vision [18], natural language progressing [14], game play-
ing [44], and content generation [46]. The success of DNNs is

♠ Contributed equally. Work done during internships at CMU.

associated with progressively increasing energy and financial
costs. For example, a single training run of GPT-3 [12], a
language model with 175 billion parameters, requires more
than 1.5 million GPU hours and costs $4.6 million to train
on AWS even with the lowest priced GPUs [37]. While pre-
trained models are publicly available and can be fine-tuned
for different downstream tasks, training new models is often
required for emerging applications and datasets.

Modern cloud platforms provide a variety of cheap pre-
emptible instances, which can be leveraged to minimize the
monetary cost of DNN training. First, spot GPU instances
allow users to take advantage of unused GPU capacity at a
price up to 90% lower than on-demand counterparts [1]. Sec-
ond, modern data centers generally reserve additional GPU
capacity for urgent jobs, which can be allocated by other jobs
in a preemptible manner [35]. Third, some ML systems [51]
support opportunistically running training jobs on inference-
dedicated GPUs to maximize resource utilization and preempt
these training jobs when inference requests arrive. While this
paper focuses on spot GPUs, our techniques can easily gener-
alize to other preemptible resources.

Existing systems that support DNN training on spot in-
stances use a reactive approach to handling instance preemp-
tion and allocation, and can be categorized into two classes:
checkpoint- and redundancy-based systems. We introduce the
two categories and identify the limitations of these reactive
approaches in performance and scalability when applied to
DNN training on preemptible instances.

The first line of work uses checkpoints to maintain model
states during training. For example, Varuna [8] periodically
saves model states to persistent storage and loads the latest
checkpoint back after a preemption, as shown in Figure 1c.
Although Varuna offers promising training throughput when
spot instances have low preemption rates, it struggles to make
progress when preemptions are frequent. This is due to two
reasons: (1) saving and loading checkpoints incur significant
IO overhead, particularly as model size increases, making
frequent checkpointing costly, and (2) high preemption rates
cause training to frequently roll back to the last saved check-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1121

(a) Regular Training with On-demand Instance (b) Redundancy-based Training with Spot Instance (e.g., Bamboo)

(c) Checkpoint-based Training with Spot Instance (e.g., Varuna)

(d) Liveput-based Training with Spot Instance (e.g., Parcae)

!!

!"

!#

1 2 3 4

1 2 3 4

1 2 3 4

!$

!%

!&

1 2 3 4

1 2 3 4

1 2 3 4

Iteration (= 1 (= 2

. . .

!!

!"

!#

1 2 3 4

Iteration (= 1

!!

!"

!#

1 2 3 4

1 2 3 4

1 2 3 4

!$

!%

!&

1 2 3 4

1 2 3 4

1 2 3 4

!$

!%

1 2 3 4

1 2 3 4

Iteration (= 1 (= 2 (= 4

Save
Checkpoint Lo

ad
 C

he
ck

po
in

t

2 3 4 1 !!

!"

!#

1 2 3 42 3 4 1

1 2 3 42 3 4 1

!$

!%

!&

1 2 3 4

(= 2

2 3 4 1 !$

!%

!&

1 2 42 3 4 1

1 3 42 3 4 1

!!

!"

!#

1 2 3 4

1 2 3 4

1 2 3 4
!% 1 2 3 4

Iteration (= 1 (= 2

. . .

(= 3(= 2

Availability
Prediction

M
igration

!$ 1 2 3 4

!' 1 2 3 4

(= 3

!& 1 2 3 4

3

Reconfiguration

!% 1 2 3 4 5

!$ 1 2 3 4 5

Lo
ad

 C
he

ck
po

in
tReconfiguration

2

(= 3

. . .

!$

!%

1 2 3 4

1 2 3 4

(= 5

. . .

M
igration !& 1 2 3 4

(= 4

!) 1 2 3 4

(= 4

U
pdate

U
pdate

U
pdate

U
pdate

U
pdate

U
pdate

U
pdate

U
pdate

U
pdate

Reconfiguration

Lo
ad

 C
he

ck
po

in
t

(= 5
M

igration !) 1 2 3 4

(= 5

!(1 2 3 4

Device

Preemption

Pipeline Stage

Model Update

Redundant Stage

Uncommitted Mini-batch

Unutilized Instance

Prediction Result

Figure 1: Illustration of pipelined data parallelism training over on-demand and spot instance respectively. Preempted spot
instances are marked with red markers. X j represents the j-th mini-batch of input data.

point, resulting in wasted computation as model updates made
since the last checkpoint are lost.

The second line of work uses redundant computation to
provide resilience in the presence of preemptions. For ex-
ample, as shown in Figure 1b, Bamboo [47] replicates DNN
computations across spot instances by letting each instance in
a pipeline perform normal computations over assigned DNN
layers (dark boxes) and redundant computations over its suc-
cessor’s layers (striped boxes). Upon an instance preemption,
its predecessor has all the information (e.g., layers and activa-
tions) to continue DNN training. Although Bamboo achieves
higher training throughput than pure checkpointing-based
methods when preemption rates are high, its computation effi-
ciency can still be limited. This is because it is difficult to com-
pletely hide the overhead of redundant computation through
pipeline bubbles, especially for large-scale models (§10.2).
Additionally, storing redundant model states increases per-
GPU memory consumption. Existing redundancy-based meth-
ods such as Bamboo address this challenge by increasing
pipeline depth, but this can lead to reduced computation effi-
ciency and increased vulnerability to preemptions.

To address the performance and scalability limitations of
existing approaches, this paper presents Parcae, a proactive,
liveput-optimized system for DNN training on spot instances.
Parcae combines data and pipeline parallelism for DNN train-
ing on spot instances, and maintains identical semantics as
on-demand training. A key insight behind Parcae is that dif-
ferent strategies to parallelize DNN training exhibit diverse
robustness under preemptions. For example, a strategy with

long pipelines achieves higher throughput but is more vulner-
able to preemptions than a strategy with shorter pipelines.

Parcae is designed to maximize preemption-aware through-
put in a proactive way. We purpose a formulation of liveput for
DNN training on preemptible instances, which is the expected
training throughput of a DNN job under different preemp-
tion scenarios. A key advantage of liveput is that it considers
both the throughput of a parallel configuration and its ro-
bustness under preemptions. Figure 1d illustrates how Parcae
optimizes liveput. After observing two preemptions (i = 2
in the figure), Parcae anticipates that the cloud has reached
its capacity limit and expects additional preemptions in the
near future. Therefore, instead of maintaining two pipelines
each with five instances, which maximizes throughput, Parcae
keeps four instances on each pipeline, which is more robust
under additional preemptions and maximizes liveput. This
allows Parcae to cheaply handle future preemptions using
lightweight live migrations (i = 3,4 in the figure).

There are three key challenges Parcae must address to
optimize liveput: (1) predicting liveput, (2) handling preemp-
tions, and (3) discovering parallel configurations to maximize
liveput. We elaborate these challenges and the main ideas
Parcae uses to overcome them.

First, spot instances can be preempted and reallocated
due to many reasons (e.g., market price changes, resource
constraints) at any time. It is challenging to know ahead
of time when and which specific instances will be pre-
empted/allocated by the cloud provider; nor does the cloud
provider provides any hints or auxiliary information on how

1122 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

instance preemption and addition decisions are made. How-
ever, estimating the liveput of a parallel configuration requires
considering a variety of preemption scenarios.

Instead of predicting preemptions and allocations for in-
dividual instances, Parcae uses a two-level approach to fore-
casting the availability of instances at a coarse granularity.
First, the availability predictor takes the instance preemption
and allocation history as input and only predicts the num-
ber of available instances in the near future. Second, the
Monte Carlo preemption sampler uses the predicted instance
availability to sample preemptions. This two-level approach
allows Parcae to employ a lightweight predictor to forecast
spot-instance availability and quickly estimate the liveput of
different parallel configurations.

Second, existing checkpoint- and redundancy-based ap-
proaches to handling preemptions introduce significant mem-
ory and computation overheads. Checkpoint-based systems
(e.g., Varuna [8]) omit all model updates since the last check-
point after each preemption, and periodically saving and load-
ing checkpoints introduce additional overheads. These over-
heads are substantial even by adopting fine-grained check-
pointing mechanisms [32] for better overlapping (see §10.2).
Meanwhile, redundancy-based systems (e.g., Bamboo [47])
require redundant computation on each instance even in the
absence of preemptions, which decreases training throughput
and increases monetary cost due to redundant computations.

To effectively handle preemptions, Parcae uses a
lightweight live migration mechanism that allows DNN train-
ing to proceed despite losing instances and without introduc-
ing redundant computation as done by prior work. To achieve
this goal, Parcae’s live migration mechanism always uses the
same number of samples to update model’s parameters in
each training iteration and opportunistically reorder samples
to avoid redundant computation or restarting training. This ap-
proach preserves model accuracy by leveraging the stochastic
nature of DNN training — all training samples are drawn in-
dependently from an intrinsic data distribution and reordering
samples does not affect model accuracy [10].

Third, optimizing liveput requires reasoning about instance
preemptions and allocations and quickly adapting to new
resources allocations while minimizing transition cost. Recent
work (e.g., PipeDream [34] and Alpa [55]) has proposed a
variety of techniques to automatically discover throughput-
optimized parallel configurations for DNN training. However,
all these approaches assume a fixed set of GPUs and do not
apply to spot-instance training.

To address this challenge, Parcae’s liveput optimizer formu-
lates the problem of maximizing liveput as an optimization
task and uses a novel dynamic programming algorithm to ex-
plore the search space of parallel configurations that combine
data and pipeline parallelism and discover an optimal parallel
configuration in the search space.

The above techniques allow Parcae to significantly outper-
form prior work. Figure 2 compares Parcae against Bamboo

0 500 1000 1500 2000 2500 3000 3500
Time (Seconds)

0

200

400

600

800

1000

1200

Nu
m

be
r o

f M
in

i-B
at

ch
es

2.38x

On-demand
Parcae (Ideal)
Parcae
Varuna
Bamboo

Figure 2: Comparing Parcae and prior work for training GPT-
2 [38] on 32 spot GPU instances. Note that Parcae, Bamboo,
and Varuna use an identical preemption trace.

and Varuna for training GPT-2 on 32 spot V100 GPU in-
stances on AWS using a collected preemption trace. Parcae
outperforms Bamboo and Varuna by 2.4× under the same pre-
emptions. The grey curve shows an ideal case, where Parcae
knows all future preemptions and allocations and maximizes
liveput accordingly. Parcae achieves 89% efficiency of the
ideal case. We have evaluated Parcae on a variety of DNN
models and preemption traces and shown that Parcae outper-
forms Varuna by up to 9.9× and Bamboo by up to 10.8×.
Moreover, our evaluation shows that Bamboo and Varuna can-
not scale to large models — for certain spot-instance traces,
both of them cannot make any progress for training GPT-
3 [12] with 6.7 billion parameters, while Parcae can achieve
almost identical performance as its ideal case (i.e., knowing
all future preemptions and allocations).

This paper makes the following contributions:
• We propose liveput, a novel metric that simultaneously

consider the performance and robustness of a paralleliza-
tion strategy for DNN training on spot instances.

• We build Parcae, a liveput-optimized system for spot-
instance training that accurately predicts instance avail-
ability, cheaply handles preemptions, and efficiently op-
timizes training performance under preemptions.

• We evaluate Parcae and show that it outperforms Varuna
and Bamboo by up to 9.9× and 10.8×, and supports
training large-scale models on spot instances.

2 Background

2.1 Distributed DNN Training
Data parallelism. Data parallelism [7, 36] is the most widely
used parallelization strategy in distributed DNN training.
Each GPU has a model replica and performs forward and
backward computations for different batches of data samples
independently. It requires to synchronize model gradients
(e.g., All-Reduce [4]) before mode update.

Pipeline parallelism. Pipeline parallelism [19] partitions
DNN model into different stages with data dependency. Each
stage is trained on one GPU, and different GPUs communicate

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1123

activations and corresponding gradients, which are computed
by forward and backward computation respectively, instead of
parameter gradients. A mini-batch of training samples is split
into multiple micro-batches in pipeline training and pipeline
parallelism exploits the opportunity to parallelize the compu-
tations of different micro-batches.

Hybrid data and pipeline parallelism. Some studies [15,
33] combine data and pipeline parallelism to further acceler-
ate the training of large models. Given a number of GPUs,
the training throughput varies for different parallel configura-
tions, which describes the number of stages and data-parallel
pipelines it owns. Some recent systems (e.g., FlexFlow [48],
Alpa [55], Galvatron [30]) further involve more complicated
model parallelism to benefit distributed training of particular
DNNs. However, they can not be applied on spot instance
with dynamic device membership. Our approach considers
hybrid data and pipeline parallelism, follows Varuna and Bam-
boo, and leaves the exploration of more fine-grained model
parallelism as our future work.

2.2 Spot-Instance Training
Recent frameworks [6, 8, 47] exploit cheap but preemptible
instances provided by clouds to train DNN models on. Torch-
Elastic [6] focuses on elastic data parallelism training and
cannot be adopted to large models, where pipeline parallelism
is definitely needed. Since the availability of spot instances
varies significantly and frequently, it is critical to decide the
parallel configuration for a DNN model in response to preemp-
tions and allocations. Bamboo [47] keeps the pipeline depth
fixed and varies the number of pipelines according to the avail-
ability of spot instances. This mechanism makes it difficult for
Bamboo to utilize spot instances, which have low availabil-
ity, for large models that require a long pipeline. Varuna [8]
introduces job morphing to dynamically change the parallel
configuration and maximize throughput for a given number
of spot instances. For instances with low preemption rate or
models with negligible reconfiguration cost, switching to the
optimal parallel configuration is definitely optimal. However,
the current spot instance market and DNN models violate the
two conditions, making it sub-optimal to always adopt the
parallel configuration with the optimal throughput.

3 Liveput
This section introduces liveput, a new metric for DNN training
that describes the expected training throughput of a paralleliza-
tion strategy on spot instances by simultaneously considering
its throughput and robustness under preemptions.

3.1 Definition of Liveput
To address the challenge mentioned above, we introduce
liveput, a novel metric for distributed DNN training on spot in-
stances that considers both the performance of a DNN system
as well as potential preemptions.

" = $ % = &

!!

!"

1 2 3

1 2 3

Configurations #Preemptions "#$%&'#(&")*+,(&"Preemption Scenarios Distribution

" = & % = $

!!

!"

!#

1 2

1 2

1 2

40% 60%
+* = 1 +* = 0

100% +* = 20

1

2

100% +* = 1

0

1

2

100% +* = 3

100% +* = 2

20% 80%
+* = 2 +* = 1

100

90

100%×2×50 = 100

100%×1×50 = 50

40%×1×50 = 20

100%×3×30 = 90

100%×2×30 = 60

20%×2×30
+ 80%×1×30 = 36

Figure 3: Comparing the liveput and throughput of different
parallel configurations and preemption scenarios.

Definition 1 (Liveput). Let (D,P) denote the parallel con-
figuration of a DNN training job, where P is the number of
pipeline stages, and D is the number of data-parallel pipelines.
The liveput of this training job is the expectation of its through-
put under all possible preemption scenarios:

LIVEPUT(D,P,V) = E
v⃗∼V

[THROUGHPUT(Dv⃗, P⃗v)] (1)

where V : {0,1}D×P→ [0,1] is the probability distribution of
all preemption scenarios. Each v⃗ is an preemption indicator
vector, vk = 1 if instance k will be preempted and vk = 0
otherwise. THROUGHPUT(Dv⃗, P⃗v) is the throughput of the
new parallel configuration (Dv⃗, P⃗v) after preemption v⃗.

Note that we follow prior work [8, 47] and focus on data-
and pipeline-parallel DNN training in this paper, while the
liveput definition can easily generalize to other parallel con-
figurations such as model [21] and reduction [48] parallelism.

3.2 Comparing Liveput and Throughput
A key advantage of liveput is that it considers how the per-
formance of a parallel configuration changes under different
preemption scenarios. Figure 3 demonstrates this advantage
with a DNN training example on six spot instances with
two possible parallel configurations: {D = 2,P = 3} and
{D = 3,P = 2}. For simplicity, we assume the throughput
of a pipeline with three (or two) stages is 50 (or 30) sam-
ples/second and ignore the parameter synchronization cost.
We compare the two parallel configurations under three pre-
emption scenarios: (a) no preemption, (b) one preemption,
and (c) two preemptions. We also assume that the preemption
probabilities of all instances are the same.

Figure 3 compares the throughput and liveput of the two
parallel configurations under the three preemption scenar-
ios. Throughput is independent of instance preemptions;
therefore, {D = 2,P = 3} achieves a higher throughput than
{D = 3,P = 2} for all cases. On the other hand, liveput con-
siders the amount of possible preemptions as well as the distri-

1124 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

bution of these preemptions over spot instances. When there is
no preemption (i.e., fixed resource allocation), liveput is equiv-
alent to throughput. Once a concrete future preemption sce-
nario is given as a prior condition, the corresponding liveput
can be treated as the effective throughput after such a pre-
emption. For example, under preemption of 1 or 2 instances,
the configuration {D = 3,P = 2} achieves higher effective
throughput than {D= 2,P= 3}. Intuitively, due to data depen-
dencies between the pipeline stages, longer pipelines are more
vulnerable to preemptions, since a single preemption would
invalidate an entire pipeline within a mini-batch, and shorter
pipelines exhibit better elasticity and resilience under frequent
preemptions. Existing throughput-optimized approaches fail
to consider this trade-off when estimating training efficiency
and may make suboptimal decisions.

4 Parcae Overview
Figure 4 shows an overview of Parcae, a liveput-optimized sys-
tem for DNN training on spot instances. Computing liveput re-
quires predicting instance preemptions and allocations. Since
predicting instance-wise availability is infeasible (§5.1), Par-
cae uses a two-level approach to forecasting the availability
of all instances at a coarse granularity, where an availability
predictor takes the instance preemption/allocation history as
input and only predicts the number of available instances in
the future, and the Monte Carlo preemption sampler uses the
predicted availability to sample preemptions and allocations.

Parcae’s liveput optimizer takes the predicted instance avail-
ability as input and discovers a parallel configuration to max-
imize the liveput of the DNN model. The liveput optimizer
formulates the problem of maximizing liveput as an opti-
mization task and uses a dynamic programming algorithm to
discover an optimal parallel configuration.

To migrate across different parallel configurations and han-
dle potential preemptions, Parcae uses three live migration
strategies. These migration strategies leverage statistical ro-
bustness of DNN training, allow Parcae to significantly reduce
migration and preemption overheads compared to existing
checkpoint- and redundancy-based systems.

For the rest of this paper, we introduce Parcae’s availability
predictor in §5, live migration strategies in §6, and liveput
optimizer in §7. §8 describes how Parcae handles exceptional
cases where actual preemptions mismatch Parcae’s predic-
tions. Finally, we discuss Parcae’s design and implementation
on modern clouds in §9 and evaluate its performance in §10.

5 Availability Predictor
5.1 Instance-wise Availability Unpredictability
There are several factors that affect spot-instance preemptions
and allocations, including the types of the instances a user
requires and their availability zones, the price of the current
spot instance market, and competitions from other users. Most
existing approaches to predicting the availability of spot in-
stances focus on estimating their prices [16,17], which cannot

Availability Predictor (§5)

Liveput Optimizer (§7)

Spot Instance

Cloud Provider

Spot Instance +/-

4,4+, 4,

Live Migration (§6)

Parallelization Advisor (§7.2)

Cost Estimator (§8)

Preemption Sampler (§7.3)

Figure 4: An overview of Parcae.

be used to estimate their lifetime. Prior work [16, 27, 31, 53]
has also tried to predict the reliability of spot instances based
on historical data collected from cloud providers. These at-
tempts rely heavily on the cloud behaviour, which varies
across cloud providers and availability zones within a cloud.
Moreover, for a new cloud or zone, applying these data-driven
approaches before running a job is expensive and time con-
suming. As a result, accurately forecasting individual in-
stances’ preemptions (i.e., v⃗ in Definition 1) is impractical
since clouds currently do not support specifying preferences
on the instance preemption order (i.e., which instances to pre-
empt first), nor do they provide any auxiliary information that
can help understand preemption and allocation decisions.

5.2 Statistical Availability Prediction
To make Parcae a general and practical DNN training system
on spot instances, the only visible and reliable information
is the past preemption/allocation records of the current user-
submitted training job. Instead of forecasting when and which
instance will be preempted in the future, Parcae uses a coarse-
grained time-series forecasting approach. We observe that
it is possible to predict the total amount of available spot
instances for short time intervals in the future and benefit
Parcae’s proactive optimization performance.

Problem formulation. We split the timeline of a training
job into equally sized intervals, where the length of an interval
T is a hyper-parameter. For the i-th interval, we define a tupe
(Ni,N+

i ,N−i) to represent the number of available instances,
newly allocated instances, and preempted instances within the
i-th interval, respectively. We assume that node preemptions
and allocations only happen at the beginning of each time
interval and that all available spot instances are stable within a
time interval; this assumption is reasonable since each interval
is small (e.g., 1 minute). Therefore, we have Ni = Ni−1 +
N+

i −N−i (i > 0). Instead of predicting N+
i and N−i , Parcae’s

availability predictor only forecasts a sequence of Ni (i.e.,
overall availability) and uses Ni to derive N+

i and N−i . This
design is based on an important observation that a cloud does
not preempt existing instances and allocate new instances at
the same time, therefore N+

i = max(0,Ni−Ni−1) and N−i =

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1125

F

G

1 2 3 4

1 2 3 4

1 2 3 4

2

1 3 4

1 2 3 4

+ = 3 5 = 4 + = 2 5 = 4

Intra-stage Migration
1 2 3 4

1 2 3 4

1 2 3 4

3 4

1 2 3 4

+ = 3 5 = 4 + = 2 5 = 4

Inter-stage Migration
1

2

1 2 3 4

1 2 3 4

1 2 3 4

+ = 3 5 = 4 + = 2 5 = 5

1 5432

1 5432

Pipeline Migration

1 2 3 4

1 2 3 4

1 2 3 4

! " #
2

1 3 4

1 2 3 4

+ = 3 5 = 4 + = 2 5 = 4

Intra-stage Migration

H I ℎ

K L M N

O

G

G

K L M N

!

H I ℎ

" # 3 4

+ = 3 5 = 4 + = 2 5 = 4

Inter-stage Migration
1

2

+ = 3 5 = 4 + = 2 5 = 5

1 5432

1 5432

1 2 3 4

1 2 3 4

1 2 3 4

" #

H I ℎ

K L M N

O

G P

1 2 3 4

K L M N

" #G

H
I ℎ

G, O →×
R, F → ∅
O → P

P, O →×
I, ℎ → ∅
P ⇒ H

Pipeline Migration
1 2 3 4

1 2 3 4

1 2 3 4

#

H I ℎ

K L M N

G

O

P R

K L M N

H I ℎOP, R →×
I, ℎ → ∅
P ⇒ H

F

G

1 2 3 4

1 2 3 4

1 2 3 4

! " #
2

1 3 4

1 2 3 4

+ = 3 5 = 4 + = 2 5 = 4

(a) Intra-stage Migration

H I ℎ

K L M N

O

G

K L M N

!

H I ℎ

" # 3 4

+ = 3 5 = 4 + = 2 5 = 4

(b) Inter-stage Migration
1

2

+ = 3 5 = 4 + = 2 5 = 5

1 5432

1 5432

1 2 3 4

1 2 3 4

1 2 3 4

" #

H I ℎ

K L M N

O

G P

1 2 3 4

K L M N

" #G

H I ℎ

(c) Pipeline Migration
1 2 3 4

1 2 3 4

1 2 3 4

#

H I ℎ

K L M N

G

O

P R

K L M N

H I ℎOG, O →×
R, F → ∅

U#$%&': O → P

P, O →×
I, ℎ → ∅

U#$%(&: P ⇒ H

P, R →×
U)#)(: WNN ⇒ WNN

Figure 6: Illustrations of different migration strategies over a 3×4 parallel configuration facing 2 preempted instances.

2 6 12
#Look-ahead Intervals

0

1

2

3

4

N
or

m
al

ize
d

L1
 D

ist
an

ce Averaging Smoothing
Exponential Smoothing
Current Available Nodes
ARIMA

(a) ARIMA vs. other models

0 1 2 3 4 5 6 7 8 9 10 11
Hours

10

15

20

25

30

#A
va

ila
bl

e
N

od
es

Real Trace
Predicted Trace

(b) ARIMA-predicted vs. real trace
Figure 5: (a) Comparison of normalized L1 distance of pre-
dictive performance for ARIMA and other solutions (H= 12,
lower is better). (b) Comparison between ARIMA-predicted
trace (H= 12, I= 4) and the ground truth.

max(0,Ni−1−Ni). Formally, in the time-series forecasting
problem, an agent takes the instance availability trace in the
past H intervals as input and forecasts the instance availability
for the future I time intervals:

(Ni, · · · ,Ni+I−1) = PREDICTION(Ni−H , · · · ,Ni−1). (2)
Note that (Ni, · · · ,Ni+I−1) can be used to derive the predicted
instance preemptions and allocations for the next I intervals.

Limited input data prevents Parcae from using complex
prediction models such as deep neural networks. Instead,
we propose to leverage lightweight statistical algorithms
(e.g., moving averaging, exponential smoothing, current avail-
able nodes) and empirically study their performance in Fig-
ure 5a (more details are in Appendix B). We select the
auto-regressive integrated moving average (ARIMA) algo-
rithm [11] as our availability predictor due to its superior
performance. We observe that ARIMA can faithfully de-
scribe the tendency of instance availability, as shown in Fig-
ure 5b. Finally, our evaluation on collected real-world pre-
emption/allocation traces further verifies that the ARIMA pre-
dictor can help Parcae achieve near-optimal liveput (§10.2).

6 Live Migration
This section describes the proactive migration mechanism
of Parcae. Existing checkpoint- and redundancy-based ap-
proaches handle preemptions reactively, leading to significant
overheads. Instead, we design several fine-grained live mi-
gration strategies to proactively handle different future pre-
emption scenarios. Given the preemption prediction results,
Parcae could schedule efficient adjustments in advance to
adapt to the dynamic instance availability.

6.1 Pipeline-aware Preemption Mapping
Before introducing live migration, we first discuss the pre-
emption mapping step in Parcae. Recall that the outputs of
the availability predictor (§5) only include statistical informa-
tion (i.e., the number of preemptions or allocations during a
time interval). However, the impact of an instance preemption
highly depends on the instance’s position in the data- and
pipeline-parallel topology. Therefore, instance-wise preemp-
tion predictions (i.e., v⃗ in Definition 1) is still necessary to
make efficient live migration decisions.

To bridge this gap, Parcae uses a probabilistic model to
reason about the mapping from preemption events to actual
instances. This preemption mapping is essential for data- and
pipeline-parallel training because of the unique dependen-
cies between instances. In particular, instances in the same
pipeline have sequential dependencies for both forward and
backward computation, and instances in the same stage have
synchronization dependencies for parameter synchronization.
For each preemption event, Parcae assumes that all spot in-
stances may be preempted with the same probability (see
the example in Figure 3). Note that such an assumption can
be replaced by more accurate estimations when additional
preemption information is provided by cloud providers.

6.2 Migration Strategies
Parcae uses three migration strategies (Figure 6) to handle
preemptions: intra-stage, inter-stage, and pipeline migration.

Intra-stage migration. In pipeline-parallel training, in-
stances in the same stage maintain the same shard of model
parameters. Therefore, when an instance is preempted, Parcae
can opportunistically divert an available instance from the
same stage in another broken pipeline. This intra-stage mi-
gration allows Parcae to re-establish a complete pipeline. As
shown in Figure 6 (a), when instances a and f are preempted,
Parcae can replace f by moving b to the second pipeline (e.g.,
f → b), resulting in two complete pipelines. Intra-stage mi-
gration only requires updating the communication routing
(e.g.,→) of a few instances and does not involve transferring
parameters since b and the preempted instance f share the
same model parameters and states.

Inter-stage migration. When intra-stage migration does
not help recover broken pipelines, Parcae opportunistically
performs inter-stage migrations, which moves intstances
across stages. Figure 6 (b) shows an inter-stage migration,

1126 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

where instances b and f are preempted, and Parcae moves e
from the first stage to the second stage of the first pipeline
(e.g., b⇒ e), resulting in two complete pipelines. Inter-stage
migration requires transferring model parameters (e.g.,⇒)
as the instances keep the model parameters and states of dif-
ferent stages. Both intra- and inter-stage migrations preserve
pipeline depth and manage to recover as many data-parallel
pipelines as possible.

Pipeline migration. Changing the pipeline depth is an im-
portant choice for maximizing training efficiency. Compared
with the other two migration strategies, pipeline migration
requires repartitioning the DNN model into a different num-
ber of pipeline stages, which involves significant migration
overheads as instances need to broadcast their model param-
eters (e.g., All ⇒ All). Pipeline migration is similar to the
reconfiguration mechanism in prior work (e.g., Varuna [8],
Bamboo [47]) to handle instance preemptions.

Parcae makes migration decisions by considering the cur-
rent parallel configuration, the new optimized parallel config-
uration and the actual preemptions. Given the probabilistic
mapping of predicted preemptions, Parcae automatically re-
newals the optimal parallel configuration and the migration
strategy (§7.2). Once the prediction mismatches with the ac-
tual availability, Parcae adjusts the parallel configuration as
well as the corresponding migration strategies for adaptation
(§8). The actual migration decisions are finalized when pre-
emptions really happen, and Parcae leverages the grace period
(e.g., 30s on Azure [2]) to perform these migrations.

7 Liveput Optimizer
This section describes Parcae’s liveput optimizer, which de-
termines the parallel configurations of training a DNN model
on spot instances to maximize its liveput.

7.1 Problem Definition
We formulate liveput maximization as an optimization prob-
lem, where the objective is to discover a sequence of parallel
configurations to maximize the committed training samples in
expectation of spot instance availability. The sequence length
is set to be consistent with the number of time intervals pre-
dicted by the availability predictor (Section 5). Formally, the
objective function Φ is the accumulated number of committed
training samples during the I time intervals:

Φ(D,P | N) =
I−1

∑
i=0

φ(Di,Pi,Ni | Di+1,Pi+1,Ni+1), (3)

where Ni is the predicted number of available instances (see
Section 5) at the i-th time interval. Recall that Parcae derives
N−i+1 (i.e., the number of instances to be preempted) and N+

i+1
(i.e., the number of instances to be launched) from Ni and Ni+1.
In addition, the preemption distribution v⃗i+1 (Definition 1) is
generated from Ni and N−i+1 using the probabilistic preemp-
tion model developed in Section 6.1. Finally φ calculates the
number of committed samples within a interval:

φ(Di,Pi,Ni | Di+1,Pi+1,Ni+1) (4)

= E
v⃗i+1

[LIVEPUT(Di+1,Pi+1 | v⃗i+1)×Teff],

Teff = T −Tmig(Di,Pi,Di+1,Pi+1 | v⃗i+1),

where T and Teff are the length of the time interval and ef-
fective training time after migrations, respectively, and Tmig
is the migration overhead. Note that φ extends liveput by
making the preemption distribution v⃗i+1 a prior. With these
definitions, the objective of the liveput optimizer is:

argmax
D,P

Φ(D,P | N) (5)

where N = {N1,N2, · · · ,NI} is the output of the availability
predictor, and Parcae discovers a sequence of parallel config-
urations (D,P) to maximize liveput.

7.2 Parallelization Advisor
Parcae uses a dynamic programming algorithm to explore
the optimization space and discovers an optimal sequence of
parallel configurations. Specifically, let F(i+ 1,Di+1,Pi+1)
represent the maximal number of committed training samples
at the end of the i-th time interval, which uses parallel config-
uration (Di+1,Pi+1). We start from F(0,D0,P0) = 0 and have
the following optimal substrates:

F(i+1,Di+1,Pi+1) (6)

= max
∀Di×Pi≤Ni

{
F(i,Di,Pi)+

φ(Di,Pi,Ni | Di+1,Pi+1,Ni+1)

}
,

and figure out the final target as max∀DI×PI≤NI {F(I,DI ,PI)}.
The DP algorithm considers all possible parallel con-

figurations that satisfy resource constraints (i.e., Di×Pi ≤
Ni), and φ(Di,Pi,Ni | Di+1,Pi+1,Ni+1) is the product of two
terms in Equation (4). Here the exploration adapts a simi-
lar search space as Varuna with a size of O(N logN), which
is large enough for most recent large DNNs consisting of
a stack of homogeneous layers. It is also possible to ex-
tend to a larger search space (e.g., Alpa) for more com-
plicated workloads. The first term LIVEPUT can be re-
placed by THROUGHPUT(Di+1,Pi+1), where (Di+1,Pi+1) is
the new parallel configuration after live migration. Note that
(Di+1,Pi+1) should be a feasible model partition that satisfies
the device memory capacity. For unfeasible cases that violate
memory constraints, their THROUGHPUT is set to be zero.

The second term Teff depends on the preemption distri-
bution, (Di,Pi), (Di+1,Pi+1), and the migration strategy to
transit from (Di,Pi) to (Di+1,Pi+1). Given a pair of parallel
configurations (Di,Pi) and (Di+1,Pi+1), there may exist mul-
tiple migration strategies with different overheads Tmig, and
the cost of each migration strategy also depends on the DNN
workload. Parcae uses a cost estimator (Section 9.4) to es-
timate Tmig for different migration strategies. If the pipeline
depth changes (i.e., Pi+1 ̸= Pi), Parcae infers that pipeline mi-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1127

gration is performed. Otherwise, Tmig should be attributed to
either inter- or intra-stage migrations. When both of them are
applicable, Parcae selects the one with lower migration cost.
In the absence of preemptions (i.e., Ni+1 = Ni), there can be
no migration cost if (Di+1,Pi+1) equals to (Di,Pi).

7.3 Preemption Mapping Sampler
As introduced in Section 6.1, preemption mapping is nec-
essary to reason about live migration, since preemptions at
different positions in the data- and pipeline-parallel topology
require different migration strategies. Given Ni spot instances,
among which N−i+1 are to be preempted, the number of possi-
ble preemption mappings on a D×P topology grows expo-
nentially in N−i+1. The large preemption mapping space makes
it infeasible to explicitly consider all preemption scenarios or
analyze the exact solutions mathematically.

To address this issue, Parcae uses sampling techniques
to explore the mapping space and quickly discovers reason-
able accurate approximations. Specifically, Parcae applies
Monte Carlo (MC) sampling over the large space of all pre-
emption scenarios and randomly samples v⃗ while preserving
N−i+1 = ∑

Ni
j=1 v j. For each sampled v⃗, Parcae identifies the cor-

responding migration costs. Parcae ensembles multiple trails
of sampling to approximate the expectation in Equation (4).
Note that this sampling step can be done offline in advance,
therefore it does not block the dynamic programming opti-
mization procedure. This allows parallelization advisor to
quickly compute new parallel configurations and migration
strategies during spot-instance training.

8 Exception Handling
This section describes how Parcae handles exceptional cases
where actual spot-instance preemptions mismatch Parcae’s
predictions or the suggested parallel configuration is not com-
patible with the available spot instances.

Parallelization adaptation. Compared to prior work, Par-
cae proactively adjusts parallel configurations by predicting
instances’ availability and planning live migrations ahead.
However, if actual preemptions rarely differ from predictions,
the liveput optimizer may not work on available spot instances.
To address this issue, Parcae includes a configuration adapta-
tion step to adjust the target parallel configuration before live
migration. Specifically, when the number of actual available
spot instances is greater (or less) than the predicted Ni, Parcae
adds (or drops) data-parallel pipelines while preserving the
pipeline depth. When available spot instances cannot even for-
mulate a single pipeline, it will try to re-partition the pipeline
into fewer stages. This adaptation ensures a feasible configu-
ration without significant migration overheads, performing at
least as well as existing throughput-optimized approaches that
reactively handle preemptions when predictions go wrong.

Fault tolerance. Even if the predictions align well with
actual preemptions, there still exist rare cases where the mi-
gration strategies do not work. For example, if all instances

DNN Model Spot Service

Cloud ProviderUser

job
s

submit
AWS Azure GCP

On-demand CPU Instance

ParcaeScheduler (§8.1)

Liveput
Optimizer (§7)

Availability
Predictor (§5)

Migration Manager
Sample

Manager

ParcaeAgent (§8.2)

Spot GPU Instance

Parcae
Runtime

ParcaeAgent (§8.2)

Spot GPU Instance

Parcae
Runtime

ParcaePS (§8.3)

On-demand CPU Instance

Parameter
Server

Parameter
Server

Parameter
Server

migration
instruction

training
status

model statesgradients

sync

spot instance +/-

0
sample

id

Figure 7: Overview of Parcae’s design and implementation.

in one stage are preempted, both inter- and intra-stage migra-
tion cannot recover this stage’s status. Parcae uses a cheap,
in-memory checkpointing mechanism (§9.3) to handle these
cases. In addition, for the extreme cases where the number of
available instances is less than the minimum feasible pipeline
depth P, the training process has to be suspended until new
spot instances are available.

9 Parcae’s Design and Implementation
Parcae consists of three main components as illustrated in Fig-
ure 7. First, ParcaeScheduler (§9.2) runs persistently on one
on-demand CPU instance, determining the migration sched-
ule based on our liveput optimizer and availability predictor.
It also manages the training data samples to maintain the
training semantics. Second, each spot GPU instance runs a
ParcaeAgent (§9.2), which performs assigned training work-
load, monitors training progress, and executes the migration
strategies issued by the ParcaeScheduler. Third, ParcaePS
(§9.3) runs on several on-demand CPU instances to keep
model checkpoints for rare rollback cases.

Parcae’s implementation consists of ∼ 8K LoC in Python
and takes PyTorch [25] as the default runtime. Communica-
tions between ParcaeScheduler and ParcaeAgent use etcd [5],
a distributed key-value store. We implement live migration
strategies by modifying DeepSpeed [40]. We show the work-
flow of ParcaeScheduler and ParcaeAgent in Algorithm 1 and
introduce the detailed components as follows.

9.1 ParcaeScheduler
ParcaeScheduler has two major components: a migration man-
ager and a sample manager. The former is responsible for
parallelization and live migration, and the latter handles the
data samples distribution.

1128 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Migration manager. As shown in Algorithm 1, the migra-
tion manager keeps receiving instance availability information
(i.e., preemption or allocation interruptions) from the cloud
provider and updating the current number of available in-
stances (line 3). As discussed in §8, the parallel configuration
(Di,Pi) computed in the previous iteration using predicted
availability may be incompatible with the current instances’
availability. To handle this exception, ParcaeScheduler first
adjusts the target parallel configuration (line 4) and then gen-
erates the required migration strategy Si based on the current
and target configurations (Di−1,Pi−1) and (Di,Pi). Note that
the adaptation step (line 4) is performed before generating the
migration strategy (line 5) so it will not involve re-adjustment
overheads. Next, the availability predictor will forecast the
number of available instances for a series of future intervals
(i.e., Ni+1, · · · ,Ni+I) based on the historical information (line
7). Finally, the liveput optimizer makes parallelization sugges-
tions for the following time interval using the prediction (line
8). The workflow continues until the training job is completed.

The handling of instance preemption and allocation inter-
ruptions are slightly different. Allocations are controllable
as they only occur after we consciously send requests to the
cloud, although they may not always succeed. We let a new
instance join after its ParcaeAgent is successfully initialized.
In contrast, preemptions are passive and may interrupt in-
stances at any time, which requires additional mechanisms
to handle various exceptions. Fortunately, the clouds usually
provide a small grace period to inform the preemption before
it happens. As the duration is usually enough to finish a mini-
batch’s training, we utilize the preemption notice to simplify
the implementation and enforce instances to be preempted
only at the mini-batches’ boundaries. Parcae also handles rare
failures that may interrupt training process, in which case
ParcaeScheduler restarts training using the latest checkpoint
in ParcaePS, avoiding losing model updates.

Sample manager. The training dataset is divided into mini-
batches of fixed size and trained by DNNs iteratively. Each
mini-batch of samples are “committed” after each iteration.
However, preemptions may terminate training at any time, re-
sulting in uncommitted mini-batches (Figure 1). To guarantee
the same training semantics as on-demand instances, the sam-
ple manager tracks each data sample, records all uncommitted
samples’ indices, and makes them rejoin the training process
later. This guarantees that all data samples are trained exactly
once per epoch, preserving identical theoretical convergence
property as the original data feeding order. We also provide
a convergence experiment in Figure 16 to verify its training
correctness.

9.2 ParcaeAgent
A ParcaeAgent runs on each spot GPU instance to interact
with ParcaeScheduler as shown in Algorithm 1. It repeatedly
receives a migration instruction from the ParcaeScheduler
(line 13). If no migration is required, the ParcaeAgent re-

Algorithm 1 Workflow of Parcae components.
▷ ParcaeScheduler

1: function MIGRATIONMANAGER(D0,P0)
2: for i in 1, 2, 3, · · · do
3: Ni ← Receive availability info from cloud provider
4: (Di,Pi)← AdjustParallelConfiguration(Ni)
5: Si← GetMigrationStrategy ((Di−1,Pi−1), (Di,Pi))
6: Send migration strategy Si to all ParcaeAgents
7: Ni+1, · · · ,Ni+I ← AvailPredictor(Ni−H+1, ...,Ni)
8: (Di+1,Pi+1)← LiveputOpt

(
(Di,Pi),Ni, ...,Ni+I

)
9: if job completes then

10: break
▷ ParcaeAgent

11: function PARCAERUNTIME(model, batch_size)
12: while job does not complete do
13: Receive migration instruction m from ParcaeScheduler
14: Apply migration instruction m if m is not empty
15: X ,Y ← DataLoader(batch_size)
16: Train(model, X , Y)

quests a batch of training samples and starts model training
(line 15-16). Otherwise, it performs the assigned migration in-
struction (line 14). ParcaeAgent manages to reuse the current
model states to alleviate checkpoint overheads and rollbacks.
For example, intra-stage migration is implemented by rebuild-
ing communication groups and reusing previous model states
on each GPU. For inter-stage and pipeline migration, addi-
tional costs are required for loading the latest model states
from other instances via GPUs’ peer-to-peer communications.
Specially, if all instances of a stage are preempted, all the
ParcaeAgents have to roll back to a previous checkpoint. In
this way, ParcaeScheduler automatically generates the most
efficient migration strategy and let the ParcaeAgents transit to
the target parallel configuration. Note that, the ParcaeSched-
uler also notifies a ParcaeAgent if it will be preempted or stay
idle (i.e., Ni−Di×Pi instances will be idle) by sending a halt
or termination instruction to the ParcaeAgent.

9.3 ParcaePS
Parcae needs checkpoints to handle rare cases as introduced
in §8. Unlike prior checkpointing approaches relying on ex-
pensive cloud storage (e.g., S3 on AWS), Parcae employs
several cheap on-demand CPU instances (e.g., c5.4xlarge
instance, 0.68$/hour) to maintain the latest model states in
their DRAM. Instead of directly communicating model states
and weights as prior checkpointing approaches, the ParcaePS
maintains an up-to-date checkpoint by iteratively synchroniz-
ing gradients with spot GPU instances to update the model
states the on CPU side (e.g., parameters and optimizer states),
which reduces communication by 5× for stateful optimizers
(e.g., Adam [23]) in the FP16 format [41]. Parcae also parti-
tions gradients into small pieces for better overlapping and
prevents bandwidth competition with cross-stage activation
transfer.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1129

Table 1: Overview of the four trace segments evaluated.

Trace HADP HASP LADP LASP
Availability High High Low Low
Preemption intensity Dense Sparse Dense Sparse
#avg instances 27.05 29.63 16.82 14.60
#preemption events 9 6 8 3
#allocation events 8 5 12 0
length 1h 1h 1h 1h

0 1 2 3 4 5 6 7 8 9 10 11
Hours

0

10

20

30

#A
va

ila
bl

e
N

od
es

HADP LADPHASP LASP

Figure 8: The complete trace and segments of four scenarios.

9.4 Cost Estimator
We develop a cost estimator to estimate migration cost by con-
sidering different preemption scenarios and parallel configu-
rations. We conduct an empirical study to profile the migra-
tion cost and find that it varies across several factors (details
in Appendix A). Some of these terms have relatively fixed
overheads like CUDA context initialization (less than 10s).
The communication group updating and model building costs
are associated with the parallel configuration (less than 30s).
The model transfer cost varies considerably according to the
preemptions (up to 60s). We consider the instance network
topology for each preemption scenario and adopt an α−β

model [49] to accurately estimate the communication cost.

10 Evaluation

10.1 Experimental Setup
DNNs. We select five popular DNNs for various applications.
ResNet-152 [18] and VGG-19 [45] are CV tasks, and we use
CIFAR-100 [24] as the training dataset. BERT [14], GPT-
2 [38], and GPT-3 [12] are popular model architectures for
NLP tasks, and we evaluate them on WikiText-2 [28]. We use
GPT-2 and GPT-3 including 1.5 and 6.7 billion model param-
eters respectively. More setting details are in Appendix C.

Traces. Due to the dynamic availability of spot instance,
it is almost impossible to evaluate different systems on real
spot instances multiple times and expect consistent dynamic
environments. Instead, to make a fair comparison, we take
the real spot instance availability traces and replay them on
regular instances. Specifically, we collect a 12-hour trace on
a 32-instance cluster with p3.2xlarge instances on AWS.
Inspired by Bamboo [47], we extract representative segments
from the whole trace for our evaluation. We design two new
measurements for each segment, including the availability
(i.e., the average number of instances) and the preemption
intensity (i.e., the number of instance preemption and alloca-

Table 2: Comparison of monetary cost (×1e−6USD) for dif-
ferent models and approaches. We report per-image cost for
ResNet and VGG and per-token cost for BERT and GPT.

Model Trace On-Demand Varuna Bamboo Parcae

ResNet

HADP 8.68 (2.3×) 10.86 (2.8×) 9.77 (2.6×) 3.81 (1×)
HASP 8.68 (2.4×) 5.32 (1.5×) 7.61 (2.1×) 3.62 (1×)
LADP 8.68 (3.2×) 4.89 (1.8×) 6.72 (2.5×) 2.71 (1×)
LASP 8.68 (3.4×) 2.43 (1.0×) 6.96 (2.7×) 2.54 (1×)

VGG

HADP 12.43 (2.7×) 12.10 (2.6×) 12.11 (2.6×) 4.62 (1×)
HASP 12.43 (2.7×) 6.52 (1.4×) 13.12 (2.8×) 4.66 (1×)
LADP 12.43 (3.4×) 5.43 (1.5×) 9.40 (2.6×) 3.66 (1×)
LASP 12.43 (4.0×) 3.37 (1.1×) 8.88 (2.9×) 3.11 (1×)

BERT

HADP 0.10 (2.9×) 0.09 (2.6×) 0.09 (2.6×) 0.03 (1×)
HASP 0.10 (2.8×) 0.06 (1.6×) 0.06 (1.9×) 0.03 (1×)
LADP 0.10 (3.4×) 0.07 (2.4×) 0.07 (2.4×) 0.03 (1×)
LASP 0.10 (4.2×) 0.03 (1.2×) 0.07 (3.0×) 0.02 (1×)

GPT-2

HADP 0.62 (2.9×) 0.49 (2.3×) 0.55 (2.6×) 0.21 (1×)
HASP 0.62 (3.0×) 0.44 (2.1×) 0.62 (3.0×) 0.21 (1×)
LADP 0.62 (3.5×) 0.63 (3.6×) 0.64 (3.6×) 0.18 (1×)
LASP 0.62 (4.1×) 0.27 (1.8×) 0.31 (2.1×) 0.15 (1×)

GPT-3

HADP 2.39 (2.5×) 9.35 (9.9×) 2.07 (2.2×) 0.94 (1×)
HASP 2.39 (3.0×) 1.81 (2.3×) 1.74 (2.2×) 0.80 (1×)
LADP 2.39 (3.6×) 3.81 (5.7×) 7.28 (10.8×) 0.67 (1×)
LASP 2.39 (4.8×) - - 0.49 (1×)

tion events). Table 1 and Figure 8 show four extracted 1-hour
trace segments based on different availability and preemp-
tion intensity. Traces with over 70% available instances are
high availability (i.e., HA) traces, otherwise have low avail-
ability (i.e., LA). Dense preemption intensity traces (i.e., DP)
have around 20 instance preemption and allocation events,
but sparse preemption intensity traces (i.e., SP) only have
few. We replay these four trace segments on 32 on-demand
V100-16GB GPU instances to simulate spot-instance clusters.

10.2 End-to-End Evaluation
We first compare the end-to-end training performance be-
tween Parcae and existing SOTA spot-instance training
systems including Bamboo [47] (redundancy-based) and
Varuna [8] (checkpoint-based). We also compare with on-
demand instances training approach. The results are displayed
in Figure 9a and Table 2. In all experiments, Parcae looks
ahead 12 intervals based on the availability predictor, while
Parcae (Ideal) looks ahead 12 intervals based on truth traces.

Parcae significantly outperforms both Bamboo and Varuna
in terms of throughput for almost all the models and preemp-
tion traces. On average, Parcae delivers an overall of 2.59×
higher throughput than Varuna and 3.0× than Bamboo. Ap-
parently, Parcae is much more economical than Varuna and
Bamboo as it completes more samples with the same mon-
etary costs. Compared with on-demand instances, Parcae is
3.24× cheaper, and Parcae (Ideal) even achieves competitive
throughput, e.g., only 14.2% lower for GPT-2 on high avail-
ability traces. The results also show that the performance of
Parcae is quite close (i.e., up to 13.3%) to Parcae (ideal).

The performance improvement mainly comes from two as-
pects. First, Parcae’s liveput optimized configurations balance
the trade-off between throughput and available duration, in-

1130 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

HADP HASP LADP LASP
0

2e3
2.8x2.6x

1.5x2.1x 1.8x2.5x
1.0x

2.7x

ResNet-152

HADP HASP LADP LASP
0

2e5
2.6x2.6x

1.6x1.9x
2.4x2.4x

1.2x
3.0x

BERT-Large

HADP HASP LADP LASP
0

2e4
2.3x2.6x 2.1x3.0x 3.6x3.6x

1.8x2.1x

GPT-2 (1.5B)

HADP HASP LADP LASP
0

5e3
1e4

x x9.9x
2.2x 2.3x2.2x

5.7x10.8x

GPT-3 (6.7B)

Th
ro

ug
hp

ut
On-demand Varuna Bamboo Parcae Parcae (Ideal)

(a) Parcae throughput.

1 4 8 12 14
#Look-ahead Intervals

0

10K

20K

30K

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

Parcae
Parcae (Ideal)

(b) The effect of I in predictor.
Figure 9: (a) Training throughput comparison among existing frameworks and Parcae on four traces. The dotted on-demand line
shows the best throughput with on-demand instances. The numbers over the bars represent the speedup of Parcae over Varuna
and Bamboo respectively. (b) The GPT-2 training throughput for the HADP trace with different look-ahead intervals.

HADP HASP LADP LASP
0

1e5

2e5

Th
ro

ug
hp

ut
 (t

ok
en

s/
s) Parcae-S

Parcae-M Monetary Cost
Trace Parcae-S Parcae-M

HADP 3.13 3.78
HASP 3.12 3.71
LADP 2.57 3.28
LASP 2.27 3.00

Figure 10: The comparison of throughput and monetary cost
(×1e−8USD/token) of BERT for Parcae on single-GPU in-
stances (Parcae-S) and multi-GPU instances (Parcae-M).

0.5 1 2 3 4 5
Prediction Rate (mins per prediction)

3.2e4

3.5e4

3.8e4

Th
ro

ug
hp

ut Parcae (Ideal)
Parcae

Figure 11: GPT-2 training throughput (tokens/s) using the
HADP trace with different prediction rates.

stead of greedily doing expensive reconfiguration like Varuna.
While Bamboo maintains a fixed long pipeline depth (e.g., 16
for GPT-2), leading to many unutilized instances, especially
for low availability traces. Second, the migration mechanism
in Parcae is highly efficient to handle preemptions. Varuna
is designed for low preemption environments and relies on
shared storage (e.g. S3) to save and load checkpoints. Al-
though Varuna overlaps checkpoint saving with training itera-
tions, when preemptions happen, it requires rolling back to the
last checkpoint and loses tens of seconds’ (i.e., the duration
of one complete checkpointing) training progress for large
models. To recover from preemptions, Varuna needs to load
the last checkpoint from persistent storage and restart train-
ing, which is also expensive. Bamboo is designed for high
preemption environments based on redundant computation.
It can efficiently handle preemptions, but the redundant com-
putation is inefficient and brings additional synchronization
overheads between redundant and normal modules.

Multi-GPU instances. To demonstrate the generality of
Parcae, we also evaluate Parcae on multi-GPU instances. Un-
fortunately, we fail to collect meaningful multi-GPU spot
instance traces on the cloud (e.g. p3.8xlarge with 4 V100
GPUs) as they show extremely low availability recently. In-
stead, we propose to generate the 4-GPU instance based on
the single GPU trace by accumulating every four preemption
or allocation events. Each 4-GPU instance is allocated at the
first allocation event and preempted at the last preemption
event. In this way, multi-GPU instance trace will have higher
GPU hours than the single GPU trace in total. For multi-GPU
instances, we follow prior work [39, 43] using pipeline par-
allelism only for inter-nodes. Figure 10 shows the training
throughput and cost for different trace segments. Although
our trace generation favors multi-GPU instances in theoretical
availability, Parcae on single GPU instance still performs bet-
ter in terms of both throughput and monetary cost. The major
reason is that preempting one 4-GPU instance will interrupt 4
pipelines, significantly slowing down training. Besides, unuti-
lized 4-GPU instances are also significant as it takes four
times more GPUs to increase a new pipeline.

10.3 Breakdown Analysis
Look-ahead interval length. Figure 9b shows the results of
training GPT-2 with different numbers of look-ahead intervals
on the HADP trace. Here Parcae looks back past 12 intervals
and predicts the next 1,4,8,12, and 14 intervals respectively.
The results show that Parcae (Ideal) keeps improving by con-
sidering longer futures and achieves the best performance
when looking ahead 12 intervals. It shows the benefits of
liveput-optimized configurations by considering future pre-
emptions and allocations. On the other hand, Parcae exhibits
a slightly different pattern, where its performance improves
significantly by looking ahead 4 intervals compared with 1
interval (1.8×). As Parcae looks ahead more intervals, the
prediction error increases as we evaluated in Figure 5a. Fig-
ure 9b shows that Parcae can still yield significant improve-
ment compared with looking ahead 1 interval, and achieves
best performance by looking ahead 12 intervals. Overall, Par-
cae’s throughput is 12.8% lower than that of the ideal case.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1131

Parcae Bamboo Varuna
0

20
40
60
80

100

Pe
rc

en
ta

ge
 (%

)

Trace HADP

Parcae Bamboo Varuna
0

20
40
60
80

100
Trace LADP

Effective Comp
Redundant Comp

Reconfiguration
Checkpoint

Unutilized

Figure 12: GPU hours breakdown of GPT-2 execution.

The result demonstrates that looking ahead longer can indeed
help Parcae make more optimized decisions, and that there is
still room to improve our availability predictor.

Prediction rate. Figure 11 shows the results of training
GPT-2 with different prediction rates on the HADP trace. As
the prediction rate decreases, so do the training throughput
achieved by Parcae and Parcae (Ideal). Fortunately, the ex-
ecution time of the liveput optimizer is much less than one
minute, which allows Parcae to use a high prediction rate and
optimize frequently (i.e., per minute) for better performance.

GPU hours breakdown. To further understand the per-
formance and drawbacks of different approaches, we break-
down the GPU hours of GPT-2 training into five components
(Figure 12). The results demonstrate that Parcae spends the
majority of GPU hours performing effective computation (i.e.,
committed mini-batches). In contrast, Bamboo spends more
than 40% GPU hours on redundant computation on HADP,
while wastes more than 50% GPU hours on LADP. Similarly,
Varuna takes a long time to handle preemptions, including
checkpointing and reconfiguration. As a result, their unuti-
lized parts are quite small compared with Parcae. The results
also align with the disadvantages we mentioned in §10.2.

Parcae components analysis. Figure 13 shows how each
component contributes to the performance improvements,
using GPT-2 as an example. We start from a checkpoint-
based approach with throughput-optimized execution plans.
By adding ParcaePS and migration strategies, we improve
the throughput by 13%-67%. Especially for trace LADP with
low availability, it leaves little room for parallel configuration
variation. When there are frequent preemption and allocation
events, the migration allows training to make more progress
than frequently triggering the costly reconfiguration. Finally,
adopting liveput optimized parallel configurations improves
an additional 25.5% over migration mechanisms.

10.4 Proactive v.s. Reactive
Preemption Tolerance. We evaluate the performance of Par-
cae (i.e., Parcae-Proactive) and Parcae-Reactive with GPT-2
on a synthetic preemption trace Figure 14. The auxiliary base-
line (i.e., Parcae-Reactive) is created by disabling the liveput
optimization in Parcae and only enabling the parallelization
adaptation mechanism (§8). Parcae-Reactive can be classi-

HADP HASP LADP
0

20K

40K

1x
1.16x1.25x

1.58x

1x
1.07x1.13x

1.20x

1x
1.24x

1.67x
2.08x

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

Checkpoint-based
+ParcaePS

+Migration
Parcae

Parcae (Ideal)

Figure 13: The decomposed throughput speedup on GPT-2.

3 6 9 15 30
#Preemption

0

2e4
4e4
6e4

Th
ro
ug

hp
ut

1.
00

x

0.
94

x

1.
02

x

1.
00

x

0.
97

x

1.
01

x

1.
00

x

1.
18

x

1.
33

x

1.
00

x

1.
20

x

1.
39

x

1.
00

x

1.
23

x

1.
51

x

Parcae-Reactive
Parcae-Proactive

Parcae-Proactive (Ideal)

Figure 14: The throughput comparison between Parcae and
Parcae-Reactive under different preemption intensity.

fied as a throughput-optimized system and used to highlight
the advantages of our proactive, liveput-based approach. We
generate the synthetic trace from the HASP trace by scaling
the number of preemption events from 3 to 30 within one
hour. The performance gap between Parcae-Reactive and
Parcae-Proactive becomes larger as the preemption intensity
increases, showing that our proactive approach can be more
effective for scenarios with more frequent preemptions.

Case study. As a case study, we compare the liveput-
optimized Parcae with throughput-optimized Parcae-Reactive
in detail using GPT-2 and partial HADP trace. Figure 15a
shows each interval’s instance availability, parallel configura-
tion (D×P), and average throughput as time elapses. We
observe that for intervals with stable availability, Parcae-
Reactive can select configurations with relatively higher
throughput. However, greedily selecting execution plans that
maximize throughputs suffers when preemptions or alloca-
tions happen because it neglects high reconfiguration costs.
It can barely make training progress when the available
instances frequently change. In contrast, Parcae carefully
chooses parallel configurations by considering the future in-
stance availability and adapting efficient migration strategies
accordingly to ensure high training efficiency while mitigating
expensive reconfiguration. For example, in the first 8 inter-
vals, Parcae selects a pipeline depth of 7 and avoids changing
pipeline depth as Parcae-Reactive does (e.g., 8 and 13). Al-
though resulting in some unused instances, the progress made
is still larger than running with Parcae-Reactive because of
its reconfiguration overheads. Similar observation exists in
the last 10 consecutive intervals, where Parcae maintains the
same parallel configurations but leverages lightweight inter-
and intra-stage migrations to adapt to dynamic preemptions

1132 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4×7
4×8 2×13

3×7 3×6
3×8

4×6 3×7
2×11

2×7 2×10
3×8 ⋯

⋯ Parcae-Proactive Config
Parcae-Reactive Config 4×8

2×13
3×10 4×8

#i
ns

ta
nc

es

Th
ro

ug
hp

ut
 (t

ok
en

/s
)

Time (min)

(a) Parallel configuration (D×P) and average throughput inside each interval (i.e., 1 minute).

0 10 20 30 40
Time (min)

0

2e7

4e7

6e7

8e7

To
ta

l T
ok

en
s

Parcae-Reactive
Parcae-Procative

(b) Accumulated tokens.
Figure 15: The comparison between Parcae-Reactive and Parcae-Proactive approaches for GPT-2 on HADP trace.

0 20 40 60 80 100
Epochs

0

1

2

3

4

5

Lo
ss

Resnet-152 on CIFAR100

On-demand
Parcae

Figure 16: The loss curve of ResNet-152 on CIFAR100.

and allocations. As a result, Parcae achieves 16% more accu-
mulated tokens within 40 minutes (Figure 15b).

10.5 Convergence Preservation
Figure 16 visualizes the convergence curve of training loss
between Parcae running on spot instances and the baseline
on on-demand instances. We observe that both convergence
rates are very close, and Parcae reaches the same training loss
of 0.058 as the baseline after training for 110 epochs. This
verifies that the Parcae design and implementation align with
the model convergence.

11 Related Work
Dynamic preemptible instances. There is a trend of using
preemptible instances on modern clouds for cheap service.
Tributary [16] studies the latency issues from preemptions
and proposes to switching preemptible offerings from clouds
with different preemption likelihoods. BurScale [9] employs
autoscaling to handle transient queuing in web service traf-
fic. SciSpot [22] presents a reliability model for temporally
constrained preemptions to optimize the job scheduling for
scientific computing. HotSpot [42] transparently migrates
spot VMs in lower price and achieves higher cost-efficiency.
Snape [52] improves spot resources’ availability by dynami-
cally mixing on-demand VMs with spot eviction predictions.
SpotServe [29] realizes fast and reliable serving of LLMs on
cheap preemptible instances with dynamic reparallelization
and optimal context migration. Prior work has demonstrated
the cost benefits of spot instances in cloud computing and

motivates the following related research.
Preemptible distributed DNN training. Recently, using

preempible instances for machine learning tasks is becoming
popular as they are much more cost effective, like what is
done in Varuna [8] and Bamboo [47]. SageMaker in AWS [3]
automatically pauses the training job when a spot instance is
interrupted and resumes from the checkpoint in S3 if the spot
instance becomes available again. CM-DARE [26] analyzes
distributed training under transient cloud GPU servers and pro-
vides a performance modeling methodology. SpotTune [27]
leverages spot instances to paralleize hyper-parameter tuning
for ML models. SkyPilot [54] migrates training workload to
spot resources from other clouds and relaunch jobs using the
periodical checkpoint from cloud storage. These approaches
make meaningful explorations in this direction but are still
suffering from the limited performance due to preemptions.

Oobleck [20] and Gemini [50] are concurrent works
for quick failure recovery in distributed DNN train-
ing. Oobleck introduces pipeline reinstantiation with pre-
computed pipeline templates. Gemini uses in-memory check-
points and orchestras checkpoint traffic schedule. Both are
reactive approaches. Besides, Gemini targets dedicated in-
stances and relies on high network bandwidth to reduce check-
pointing time, while the bandwidth is low for spot instances.

12 Conclusion
In this work, we present an efficient distributed training sys-
tem over spot instances, Parcae. The key idea is to proactively
adjust the parallelization strategy using a novel metric, liveput,
considering both training throughput and instance availability.
With holistic system mechanisms and implementation opti-
mizations, Parcae significantly outperforms checkpoint- and
redundancy-based solutions in evaluations.

Acknowledgement
We thank the anonymous reviewers and our shepherd, Le Xu,
for their comments and helpful feedback. This material is
based upon work supported by NSF awards CNS-2147909,
CNS-2211882, and CNS-2239351, and awards from Amazon,
Cisco, Google, Meta, Oracle, Qualcomm, and Samsung.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1133

References
[1] Amazon ec2 spot instances. https://aws.amazon.

com/ec2/spot/.

[2] Use azure spot virtual machines. https://learn.
microsoft.com/en-us/azure/virtual-machines/
spot-vms.

[3] Amazon sagemaker spot training. https:
//docs.aws.amazon.com/sagemaker/latest/
dg/model-managed-spot-training.html, 2018.

[4] Nvidia nccl. https://developer.nvidia.com/nccl,
2021.

[5] Operating etcd clusters for kubernetes.
https://kubernetes.io/docs/tasks/
administer-cluster/configure-upgrade-etcd/,
2021.

[6] Pytorch elastic. https://github.com/pytorch/
elastic, 2021.

[7] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI, 2016.

[8] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ra-
machandran Ramjee, and Nipun Kwatra. Varuna: scal-
able, low-cost training of massive deep learning models.
In Proceedings of the Seventeenth European Conference
on Computer Systems, pages 472–487, 2022.

[9] Ataollah Fatahi Baarzi, Timothy Zhu, and Bhuvan Ur-
gaonkar. Burscale: Using burstable instances for cost-
effective autoscaling in the public cloud. In Proceedings
of the ACM Symposium on Cloud Computing, pages 126–
138, 2019.

[10] Léon Bottou. Stochastic gradient descent tricks. In
Neural networks: Tricks of the trade, pages 421–436.
Springer, 2012.

[11] George EP Box, Gwilym M Jenkins, Gregory C Reinsel,
and Greta M Ljung. Time series analysis: forecasting
and control. John Wiley & Sons, 2015.

[12] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen

Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot
learners. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020.

[13] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. Training deep nets with sublinear memory
cost. CoRR, abs/1604.06174, 2016.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. In Jill
Burstein, Christy Doran, and Thamar Solorio, editors,
Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 4171–4186. Association
for Computational Linguistics, 2019.

[15] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu
Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun
Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu, and Wei
Lin. Dapple: A pipelined data parallel approach for
training large models. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’21, page 431–445, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[16] Aaron Harlap, Andrew Chung, Alexey Tumanov, Gre-
gory R. Ganger, and Phillip B. Gibbons. Tributary:
spot-dancing for elastic services with latency slos. In
Haryadi S. Gunawi and Benjamin Reed, editors, 2018
USENIX Annual Technical Conference, USENIX ATC
2018, Boston, MA, USA, July 11-13, 2018, pages 1–14.
USENIX Association, 2018.

[17] Aaron Harlap, Alexey Tumanov, Andrew Chung, Gre-
gory R Ganger, and Phillip B Gibbons. Proteus: agile ml
elasticity through tiered reliability in dynamic resource
markets. In Proceedings of the Twelfth European Con-
ference on Computer Systems, pages 589–604, 2017.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-
30, 2016, pages 770–778. IEEE Computer Society, 2016.

1134 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://learn.microsoft.com/en-us/azure/virtual-machines/spot-vms
https://learn.microsoft.com/en-us/azure/virtual-machines/spot-vms
https://learn.microsoft.com/en-us/azure/virtual-machines/spot-vms
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
https://developer.nvidia.com/nccl
https://kubernetes.io/docs/tasks/administer-cluster/configure- upgrade-etcd/
https://kubernetes.io/docs/tasks/administer-cluster/configure- upgrade-etcd/
https://github.com/pytorch/elastic
https://github.com/pytorch/elastic

[19] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Xu Chen, HyoukJoong Lee,
Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng
Chen. Gpipe: Efficient training of giant neural networks
using pipeline parallelism. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 103–112, 2019.

[20] Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and
Mosharaf Chowdhury. Oobleck: Resilient distributed
training of large models using pipeline templates. In
Jason Flinn, Margo I. Seltzer, Peter Druschel, Antoine
Kaufmann, and Jonathan Mace, editors, Proceedings of
the 29th Symposium on Operating Systems Principles,
SOSP 2023, Koblenz, Germany, October 23-26, 2023,
pages 382–395. ACM, 2023.

[21] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond
data and model parallelism for deep neural networks.
In Proceedings of the 2nd Conference on Systems and
Machine Learning, SysML’19, 2019.

[22] Jcs Kadupitiya, Vikram Jadhao, and Prateek Sharma.
Scispot: Scientific computing on temporally constrained
cloud preemptible vms. IEEE Transactions on Parallel
and Distributed Systems, 2022.

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In Yoshua Bengio and Yann
LeCun, editors, 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

[24] Alex Krizhevsky and Geoffrey Hinton. Learning multi-
ple layers of features from tiny images. 2009.

[25] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,
Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,
Brian Vaughan, Pritam Damania, et al. Pytorch dis-
tributed: Experiences on accelerating data parallel train-
ing. Proceedings of the VLDB Endowment, 13(12).

[26] Shijian Li, Robert J Walls, and Tian Guo. Characterizing
and modeling distributed training with transient cloud
gpu servers. In 2020 IEEE 40th International Confer-
ence on Distributed Computing Systems (ICDCS), pages
943–953. IEEE, 2020.

[27] Yan Li, Bo An, Junming Ma, Donggang Cao, Yasha
Wang, and Hong Mei. Spottune: Leveraging transient
resources for cost-efficient hyper-parameter tuning in
the public cloud. In 2020 IEEE 40th International Con-
ference on Distributed Computing Systems (ICDCS),
pages 45–55. IEEE, 2020.

[28] Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models. In
5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017.

[29] Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi,
Dahua Lin, Bin Cui, and Zhihao Jia. Spotserve: Serv-
ing generative large language models on preemptible
instances. Proceedings of ASPLOS Conference, 2024.

[30] Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi,
Xiaonan Nie, Hailin Zhang, and Bin Cui. Galvatron:
Efficient transformer training over multiple gpus using
automatic parallelism. Proc. VLDB Endow., 16(3):470–
479, 2023.

[31] Ashish Kumar Mishra, Brajesh Kumar Umrao, and Dhar-
mendra K Yadav. A survey on optimal utilization of
preemptible vm instances in cloud computing. The Jour-
nal of Supercomputing, 74(11):5980–6032, 2018.

[32] Jayashree Mohan, Amar Phanishayee, and Vijay
Chidambaram. {CheckFreq}: Frequent,{Fine-
Grained}{DNN} checkpointing. In 19th USENIX
Conference on File and Storage Technologies (FAST
21), pages 203–216, 2021.

[33] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. Pipedream: Gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, page 1–15, New York,
NY, USA, 2019. Association for Computing Machinery.

[34] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie
Chen, and Matei Zaharia. Memory-efficient pipeline-
parallel DNN training. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pages 7937–7947. PMLR,
2021.

[35] Andrew Newell, Dimitrios Skarlatos, Jingyuan Fan, Pa-
van Kumar, Maxim Khutornenko, Mayank Pundir, Yirui
Zhang, Mingjun Zhang, Yuanlai Liu, Linh Le, Bren-
don Daugherty, Apurva Samudra, Prashasti Baid, James
Kneeland, Igor Kabiljo, Dmitry Shchukin, Andre Ro-
drigues, Scott Michelson, Ben Christensen, Kaushik
Veeraraghavan, and Chunqiang Tang. Ras: Continuously
optimized region-wide datacenter resource allocation.
In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 505–520,
New York, NY, USA, 2021. Association for Computing
Machinery.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1135

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Z. Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neu-
ral Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 8024–8035, 2019.

[37] David A. Patterson, Joseph Gonzalez, Quoc V. Le,
Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David R. So, Maud Texier, and Jeff Dean. Carbon
emissions and large neural network training. CoRR,
abs/2104.10350, 2021.

[38] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners. OpenAI blog,
1(8):9, 2019.

[39] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. Zero: Memory optimizations toward train-
ing trillion parameter models. In SC20: International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–16. IEEE, 2020.

[40] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. Deepspeed: System optimizations enable
training deep learning models with over 100 billion pa-
rameters. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 3505–3506, 2020.

[41] Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. {ZeRO-Offload}:
Democratizing {Billion-Scale} model training. In 2021
USENIX Annual Technical Conference (USENIX ATC
21), pages 551–564, 2021.

[42] Supreeth Shastri and David E. Irwin. Hotspot: auto-
mated server hopping in cloud spot markets. In Pro-
ceedings of the 2017 Symposium on Cloud Computing,
SoCC 2017, Santa Clara, CA, USA, September 24-27,
2017, pages 493–505. ACM, 2017.

[43] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language
models using model parallelism. CoRR, abs/1909.08053,
2019.

[44] David Silver, Aja Huang, Chris J. Maddison, Arthur
Guez, Laurent Sifre, George van den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe,
John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. Mastering the game of
Go with deep neural networks and tree search. Nature,
529(7587):484–489, jan 2016.

[45] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
In Yoshua Bengio and Yann LeCun, editors, 3rd Interna-
tional Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

[46] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differen-
tial equations. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021.

[47] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yi-
fan Qiao, Zhihao Jia, Minjia Zhang, Ravi Netravali, and
Guoqing Harry Xu. Bamboo: Making preemptible in-
stances resilient for affordable training of large dnns.
CoRR, abs/2204.12013, 2022.

[48] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep
Baines, Carlos Efrain Quintero Narvaez, Vinay Ramakr-
ishnaiah, Nirmal Prajapati, Patrick S. McCormick, Ja-
maludin Mohd-Yusof, Xi Luo, Dheevatsa Mudigere,
Jongsoo Park, Misha Smelyanskiy, and Alex Aiken.
Unity: Accelerating DNN training through joint opti-
mization of algebraic transformations and paralleliza-
tion. In 16th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2022, Carlsbad, CA,
USA, July 11-13, 2022, pages 267–284. USENIX Asso-
ciation, 2022.

[49] Leslie G Valiant. A bridging model for parallel com-
putation. Communications of the ACM, 33(8):103–111,
1990.

[50] Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xin-
wei Fu, T. S. Eugene Ng, and Yida Wang. GEMINI: fast
failure recovery in distributed training with in-memory
checkpoints. In Jason Flinn, Margo I. Seltzer, Peter
Druschel, Antoine Kaufmann, and Jonathan Mace, edi-
tors, Proceedings of the 29th Symposium on Operating
Systems Principles, SOSP 2023, Koblenz, Germany, Oc-
tober 23-26, 2023, pages 364–381. ACM, 2023.

[51] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and

1136 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Yangqing Jia. Antman: Dynamic scaling on gpu clusters
for deep learning. In Proceedings of the 14th USENIX
Conference on Operating Systems Design and Imple-
mentation, OSDI’20, USA, 2020. USENIX Association.

[52] Fangkai Yang, Lu Wang, Zhenyu Xu, Jue Zhang, Liqun
Li, Bo Qiao, Camille Couturier, Chetan Bansal, Soumya
Ram, Si Qin, et al. Snape: Reliable and low-cost com-
puting with mixture of spot and on-demand vms. In
Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pages 631–643, 2023.

[53] Sheng Yang, Samir Khuller, Sunav Choudhary, Subrata
Mitra, and Kanak Mahadik. Scheduling ml training
on unreliable spot instances. In Proceedings of the
14th IEEE/ACM International Conference on Utility
and Cloud Computing Companion, pages 1–8, 2021.

[54] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-
Lin Chiang, Romil Bhardwaj, Woosuk Kwon, Siyuan
Zhuang, Frank Sifei Luan, Gautam Mittal, Scott Shenker,
and Ion Stoica. SkyPilot: An intercloud broker for sky
computing. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
437–455, Boston, MA, April 2023. USENIX Associa-
tion.

[55] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.
Gonzalez, and Ion Stoica. Alpa: Automating inter- and
intra-operator parallelism for distributed deep learning.
In Marcos K. Aguilera and Hakim Weatherspoon, ed-
itors, 16th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2022, Carlsbad, CA,
USA, July 11-13, 2022, pages 559–578. USENIX Asso-
ciation, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1137

Table 3: Overview of the five DNNs evaluated.

Model mini-batch micro-batch Dataset
ResNet-152 [18] 2048 32 CIFAR-100 [24]
VGG-19 [45] 2048 32 CIFAR-100 [24]
BERT-Large [14] 1024 8 WikiText-2 [28]
GPT-2 (1.5B) [38] 128 1 WikiText-2 [28]
GPT-3 (6.7B) [12] 64 1 WikiText-2 [28]

Table 4: Migration costs in our experiments on AWS.
Cost Terms Magnitude (s) Interfering Factor
Start process < 1

Instance stateRendezvous 0∼ 10
Init CUDA context 0∼ 10
Load data 0∼ 10 Dataset
Build model 0∼ 10 Model, ConfigurationUpdate comm. groups 0∼ 20

Model states transfer 0∼ 60 Model, Configuration
Preemption Scenario

A Addition Details of Migration Costs

Table 4 lists detailed costs of migrations and their magnitudes.
All of them are profiled multiple times and averaged over five
DNN models (see Table 3).

B Additional Details of ARIMA

The ARIMA time-series forecasting algorithm is sensitive to
trivial perturbations in inputs, which may impede its under-
standing of essential patterns from previous instance history.
We introduce a few optimizations to ensure its predictions
are faithful. First, we flatten random spikes that last for only
1-2 intervals in previous instance history, since such trivial
noise will likely cause abrupt rise and falls in prediction.
ARIMA also likes to simulate the tendency of the entire input
curves. When input curves have multiple "hops", we ensure
that ARIMA only learns from the most recent variations that
are indeed beneficial for prediction. Second, though ARIMA
can accurately capture intermediate fluctuations, its prediction
can be so steep that it easily hits the upper and lower bound-
aries of available instances on intervals of sudden increase
and decrease. To do so, we set upper and lower boundaries to
limit the predicted curves based on observations of all spot
instance traces we have. Additionally, our empirical study on
traces indicate most intervals have a limitation on the extent
of growth. Thus, we would also apply such constraints on
predictions. We also apply additional penalty to flatten ex-
cessively steep predictions such as their predictions follow
the essential patterns of AWS traces. We take care to reset
ARIMA mispredictions when the generation deviates seri-
ously from the input. With these rules and modifications, we
ensure the ARIMA model can sufficiently describe future
scenarios by learning from the past history.

HADP HASP LADP LASP
0

1e3

2e3

2.6x 2.6x

1.4x

2.8x
1.5x

2.6x

1.1x

2.9x

VGG19

Th
ro

ug
hp

ut

On-demand
Varuna

Bamboo
Parcae

Parcae (Ideal)

Figure 17: Training throughput comparison of VGG19 among
existing frameworks and Parcae on four traces. The dotted
on-demand line shows the best throughput with on-demand
instances. The numbers over the bars represent the speedup
of Parcae over Varuna and Bamboo respectively.

C Additional Experimental Details
C.1 End-to-End Evaluation Setting
We select five popular DNNs for various applications and
summarize them in Table 3. For all the models, we used
Adam optimizer with half precision (i.e., FP16) for training.

Parallel Configuration. Parcae and Varuna will adjust
parallel configurations according to instance availability dur-
ing training. The parallel configuration of Parcae is decided
by migration manager, while it is decided by job morphing
for Varuna. We follow the settings of Vauna and first run a
one-time profiling to collect primitive parameters of the hard-
ward and the DNN model. Varuna will automatically decide
the optimal parallel configuration considering DNN models
and number of availability instances. Table 5 summarizes the
parallel configurations used for Bamboo in our evaluation.
Bamboo maintains a fixed pipeline depth and its redundant
computation consumes a huge amount of memory. For dif-
ferent models, we tuned the number of pipeline stages and
partitions to find an optimal parallel configuration for Bam-
boo. We find it requires at least 20 stages for Bamboo to run
GPT-3 even with activation checkpointing [13] enabled, and
Bamboo performs best for P = 23.

VGG Results Figure 17 shows the end-to-end evaluation
results of VGG19. Parcae significantly outperforms Varuna
and Bamboo, except for trace LASP, where Varuna achieves
comparable performance with Parcae. We move these results
in the appendix due to the limited page space.

C.2 Parcae Components Evaluation
Cost Estimation Accuracy. The cost estimator estimates mi-
gration cost for different preemption scenarios and parallel
configurations. An accurate estimator is important for accu-
rate liveput optimization. We compare the estimated migration
cost predicted by cost estimator with the real migration time
measured by actual executions. Figure 18a shows the results

1138 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 5: The parallel configuration of Bamboo in evaluation.

Model D P
ResNet-152 [18] 8 4
VGG-19 [45] 8 4
BERT-Large [14] 4 8
GPT-2 (1.5B) [38] 2 16
GPT-3 (6.7B) [12] 1 23

1 2 4 8 16 32 64
Estimated Cost (s)

1
2
4
8

16
32
64

Re
al

 C
os

t (
s) BERT

GPT-2
GPT-3

(a) The accuracy of cost estimator.
HADP HASP LADP LASP

0.0

0.1

0.2

Ti
m

e
(s

)

(b) The cost of migration advisor.

Figure 18: (a) Comparison between the estimated and actual
reconfiguration time for different models. (b) Optimization
time of looking ahead 12 intervals for GPT-2.

for different DNN models. The dashed lines indicate a rela-
tive difference of −15% and 15% between real and estimated
migration cost, respectively. The results demonstrate that our
cost estimator is appropriate to evaluate the migration cost for
different preemption scenarios and models.

Optimization Cost. ParcaeScheduler periodically runs on-
line liveput optimization to suggest the parallel configuration
for the next interval. We evaluate the optimization time it
takes to look ahead 12 intervals for one run on one CPU ma-
chine. Figure 18b shows the results of GPT-2 on different
trace segments. Overall, one optimization takes less than 0.3
seconds, which is negligible compared with interval length.
Therefore, the liveput optimization will not delay the training
process.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1139

Accelerating Neural Recommendation Training with Embedding Scheduling

Chaoliang Zeng∗, Xudong Liao∗, Xiaodian Cheng, Han Tian, Xinchen Wan, Hao Wang, Kai Chen
iSING Lab, Hong Kong University of Science and Technology

Abstract
Deep learning recommendation models (DLRM) are ex-
tensively adopted to support many online services. Typical
DLRM training frameworks adopt the parameter server (PS)
in CPU servers to maintain memory-intensive embedding
tables, and leverage GPU workers with embedding cache to
accelerate compute-intensive neural network computation and
enable fast embedding lookups. However, such distributed sys-
tems suffer from significant communication overhead caused
by the embedding transmissions between workers and PS.
Prior work reduces the number of cache embedding transmis-
sions by compromising model accuracy, including oversam-
pling hot embeddings or applying staleness-tolerant updates.

This paper reveals that many of such transmissions can be
avoided given the predictability and infrequency natures of
in-cache embedding accesses in distributed training. Based on
this observation, we explore a new direction to accelerate dis-
tributed DLRM training without compromising model accu-
racy, i.e., embedding scheduling—with the core idea of proac-
tively determining "where embeddings should be trained" and
"which embeddings should be synchronized" to increase the
cache hit rate and decrease unnecessary updates, thus achiev-
ing a low communication overhead. To realize this idea, we
design Herald, a real-time embedding scheduler consisting
of two main components: an adaptive location-aware inputs
allocator to determine where embeddings should be trained
and an optimal communication plan generator to determine
which embeddings should be synchronized. Our experiments
with real-world workloads show that Herald reduces 48%-
89% embedding transmissions, leading up to 2.11× and up to
1.61× better performance with TCP and RDMA, respectively,
over 100 Gbps Ethernet for end-to-end DLRM training.

1 Introduction

Deep learning-based recommendation systems have been ex-
tensively applied to a wide range of online services [9, 53],
consuming significant infrastructure capacity and compute
cycles across production datacenters [2]. Training a deep
learning recommendation model (DLRM) poses challenges
in both memory and computation. A typical DLRM (§2.1)
consists of (1) embedding tables, which are large lookup ta-
bles that store millions to billions of semantic embedding

∗ Equal contribution.

vectors (embeddings for short) and consume a tremendous
memory footprint (a few KB per embedding [29] and up to
tens of GBs to TBs in total [30, 47, 52–54]), and (2) multi-
layer perceptron (MLP), which makes up the dense model
and contributes to most of the computation cycles. These
hybrid requirements make it challenging to train a DLRM
efficiently. Specifically, hardware accelerators notably GPUs,
which are widely incorporated into deep learning training, can
execute high-performance dense model computation, but fail
to provide large enough memory capacity to fully support the
embedding tables component.

To address this dilemma, a common practice [2, 21, 29, 38]
separates dense model computations and embedding table op-
erations (lookup and update) in DLRM training. It typically
adopts the parameter server (PS) architecture [26] to maintain
globally shared embeddings in memory-optimized and cost-
effective CPU servers while leveraging GPUs to accelerate the
dense model computation with data parallelism. GPU workers
will further cache a few hot embeddings in their local memory
to accelerate the embedding lookup operation. However, a
single training sample may involve up to thousands of em-
beddings in production workloads [2]. A naive cache-enable
system still suffers from significant communication overhead
for embedding transmissions1 in bulk synchronous parallel
(BSP) [12] training (§2.2), due to stale cached-embedding
updates and embedding gradient synchronizations.

Prior efforts [3, 31] mitigate this communication overhead
by reducing the number of embedding transmissions between
workers and PS. They either oversample training data con-
taining only hot embeddings with fast inter-server collective
communication [3] or apply a staleness-tolerant embedding
update manner [31]. Both approaches deviate from the vanilla
BSP training and do not provide any theoretical guarantee of
model accuracy. However, a high and stable model accuracy
is critical in production. For example, even an order of 0.1%
accuracy loss is intolerable in Meta recommendations [2].
Therefore, DLRM is more favorable to BSP training without
a bias on training embeddings [34, 38].

In this paper, we explore a new direction, i.e., embedding
scheduling (§3), to accelerate distributed DLRM training with-
out compromising model accuracy. The core idea is to deter-
mine (1) where embeddings should be trained by distributing

1In this paper, we refer to both the transmission of embedding value and
the transmission of embedding gradient as embedding transmission.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1141

batch training samples to likely cache-hitting2 workers and
(2) which embeddings should be synchronized by identifying
embeddings to be trained in upcoming iterations for a low
communication overhead. These optimization opportunities
come from two crucial characteristics of in-cache embedding
accesses during the DLRM training.
• Predictability: since the embeddings required by training

samples and the current cache snapshot of each worker
are visible before the computation, the upcoming cache
accesses and their results (hit or not) are predictable under
a partition of batch samples.

• Infrequence: the physical accesses to most in-cache em-
beddings are infrequent enough that the popularity of an
embedding may be less than the total number of training
samples assigned to a worker in the entire training process.

These two characteristics imply that with proactive embed-
ding scheduling during the input generation, there exists a
potential to train each infrequently accessed embedding in
a fixed worker, respectively, which can effectively increase
the cache hit rate and avoid unnecessary synchronizations
for consistency (as this embedding is not required by other
workers). Furthermore, our theoretical analysis proves that
accelerating DLRM training with embedding scheduling can
preserve the model consistency and hence the exactly same
model accuracy as vanilla synchronous training.

When considering the whole DLRM training data flow, it is
important to make the embedding scheduling decision in real
time for two main reasons. First, production recommendation
systems require online training from the streaming data for
high-velocity inference queries [21, 29, 38]. Second, even for
offline training, preparing scheduling decisions for the en-
tire training process in advance is difficult, if not impossible,
given the huge scheduling space and the unpredictable num-
ber of training iterations (and thus the number of scheduling
decisions), which depends on the real-time evaluation result
of the model. As a result, for offline training, we can only
prepare the scheduling result for the early iterations, and we
still need real-time scheduling for the rest training iterations.

Nevertheless, designing a real-time embedding scheduler is
non-trivial. The scheduling budget, i.e., the available schedul-
ing time, to conduct a scheduling decision for an iteration
is limited, as the scheduling overhead should not be larger
than the training time of an iteration to prevent introducing
additional overhead when overlapping training and schedul-
ing. Moreover, the scheduling budget varies among different
workloads and training settings, so the embedding scheduler
must be adaptive to different training tasks.

To this end, we propose Herald3 (§4), a real-time embed-
ding scheduler that leverages information including the re-
quired embeddings of input samples and the locations of

2In this paper, we refer to hitting the latest version of an embedding in
the cache as a cache hit for short.

3We presented a preliminary idea of Herald in an earlier workshop pa-
per [49].

those embeddings, to reduce embedding transmissions and
thus achieve efficient DLRM training. Herald addresses the
above challenges with a decoupling idea. Specifically, it
determines "where embeddings should be trained" via an
adaptive location-aware inputs allocation (LAIA) algorithm.
The adaptive LAIA algorithm leverages the diverse ratios
of infrequently-accessed embeddings among embedding ta-
bles, and conducts partition decisions based on a subset of
selective tables for the batch inputs partition. Therefore, it ef-
fectively meets various scheduling budgets with a high cache
hit rate. Herald further identifies "which embeddings should
be synchronized" for this iteration in conjunction with the
batch partition result of the next iteration by enabling sample
prefetching. Herald figures out a minimal list of embeddings
that should be synchronized to minimize gradient transmis-
sions via an optimal communication plan generator.

We have implemented Herald on top of HET [31] (§5)
and evaluated it via extensive simulations and a small-scale
testbed with 8 Nvidia 3090 GPU workers on typical real-
world workloads (§6). Evaluation results show that compared
with HET, Herald reduces 48%-89% embedding transmis-
sions. As a result, Herald delivers up to 2.11× and up to
1.61× better performance with TCP and RDMA, respectively,
over 100 Gbps Ethernet for end-to-end DLRM training.

This paper makes the following contributions:
• We explore embedding scheduling as a new direction to

accelerate DLRM training by leveraging two key character-
istics of in-cache embedding accesses, i.e., predictability
and infrequency (§3).

• We design Herald, a real-time embedding scheduler to
meet various scheduling budgets while preserving a high
scheduling quality (§4).

• We verify the benefit of embedding scheduling via testbed
experiments on our Herald implementation (§5 and §6).
This work does not raise any ethical issues. Herald is avail-

able at https://github.com/HKUST-SING/herald.

2 Background & Motivation

2.1 Deep Learning Recommendation
A deep learning recommendation system models the recom-
mendation decision as a problem to predict the probability of
a specific event, e.g., the likelihood of a web viewer watching
the recommended content (video or article). To fully exploit
high-dimensional (categorical) features, the technique of rep-
resentation learning is widely applied to project a category ID
to a dense feature vector, also called embedding. This embed-
ding is used as a representation of the category ID to apply in
numerical computation for recommendation processing.
DLRM architecture. Figure 1 illustrates the high-level archi-
tecture of a DLRM with the example of apps recommendation.
There are two primary components: embedding tables and

1142 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/HKUST-SING/herald

Continuous
(Dense)
Features

Training
Sample

(User-App
pair)

Categorical
(Sparse)
Features

App 1
App 2
App 3

Age

#App Installs

Use
r In

sta
lled

 App
s

Recommended
App Type

App Emb. Table

MLP
Stack

Preference

Type Emb. Table

Index Embedding

1 [1.5, 3.3, …]
2 [3.2, 4.5, …]
3 [8.2, 6.9, …]
… …

…

…

…

Type 1
Type 2
Type 3
…

Index Embedding

1 [7.5, 3.3, …]
2 [9.2, 4.3, …]
3 [8.4, 6.7, …]
… …

Figure 1: A high-level architecture of a typical DLRM with
the example of apps recommendation.

Distributed Storage
(Hive etc.)

Streaming Data
(Kafka etc.)

MLP

GPU Worker
MLP

GPU Worker
MLP

GPU Worker

Embedding Tables

CPU Parameter Server

Embedding Pull Gradient Push

Figure 2: The data flow of DLRM training in production
environments. We omit the data flow of MLP synchronization,
which is not the focus of this paper.

multi-layer perceptron (MLP). The DLRM leverages embed-
ding tables to project sparse features into dense representa-
tions, i.e., embeddings, by looking up every table with the
corresponding category IDs as indexes. All these dense fea-
tures, including embeddings and dense inputs, are processed
by the MLP layer for the final prediction result. The value
of embeddings, together with the parameters in MLP, will be
iteratively updated during the training process.
Overview of distributed DLRM training systems. Figure 2
shows the data flow of the typical distributed DLRM train-
ing [2, 21, 29, 38]. DLRM training systems usually support
different types of data I/O interfaces, e.g., Hive and Kafka, to
provide good compatibility for various scenarios. Given the
diverse requirements on computing and memory for MLP and
embedding tables, respectively, DLRM training systems tend
to separate the training of these two components. They train
the MLP layer on compute-optimized GPU workers with data
parallelism. To accommodate the scaling up of embedding
table sizes (tens of GBs to TBs [30,47,52–54]), they maintain
embeddings in memory-optimized CPU PS. This separation
design introduces significant communication overhead when
applying BSP for the non-degraded and reproducible model
accuracy [5, 22, 34, 38]. In every training iteration, workers
pull embeddings from PS on demand and push embedding
gradients to PS at the end of this iteration.
Embedding cache. Given the skewed popularity distribution
of embeddings, recent work [3, 31, 52] reduces embedding

Model Dataset
W1 Wide & Deep [7] Criteo AD [10]
W2 Neural Collaborative Filtering [19] MovieLens 25M [17]
W3 DeepFM [16] Avazu [23]
W4 Deep & Cross [43] Criteo Sponsored Search [40]

Table 1: Workloads in our case studies.
W1 W2 W3 W4

N
or

m
. e

m
b.

 p
ar

am
.

1

2

3

4

Per-worker batch size
64 128 256

Figure 3: The number of embeddings used in an iteration in-
creases with the per-worker batch size. The results are normal-
ized to that number with a batch size of 64 for each workload.

communications by exploiting an embedding cache in GPU
workers. However, a naive cache-enable system provides lim-
ited performance improvement for BSP training, as it saves
an embedding pull only when the queried embedding hits
the cache (with the latest version) and does not save any
embedding synchronizations. Therefore, they optimize the
communication cost by compromising the BSP training pro-
cedure. For example, HET [31] tolerates a bounded staleness
of each embedding by tracking the embedding version. Upon
retrieving an embedding from the cache, it first compares the
local version with the global version in PS and only pulls
the embedding from PS if the difference between these two
versions exceeds a threshold. A similar behavior happens for
gradient synchronizations. HET still communicates with PS
in every iteration for version checking, but these costs are
much smaller than those of embedding transmissions.

2.2 Embedding Communication Matters

To quantify the contribution of embedding communication
in the end-to-end DLRM training with BSP, we study typical
DLRM workloads as listed in Table 1.

In the DLRM training, we find that a larger batch size (the
number of training samples in an iteration) may lead to more
embedding transmissions. The reason is that different sam-
ples may involve different sparse features and thus operate
on different embeddings. Therefore, the number of operated
distinct embeddings in an iteration grows with a larger group
of samples (a larger batch size). Figure 3 demonstrates that
the number of distinct embeddings used in an iteration can
increase 2.7×-4.0× when the per-worker batch size increases
from 64 to 256. However, the number of synchronized param-
eters in the MLP layer only depends on the MLP architecture,
and thus does not change with the batch size.

We evaluate the distributed training efficiency of HET [31],
the state-of-the-art cache-enabled embedding model train-
ing framework. The evaluation configuration follows the de-
fault setting as described in §6.1. We disable the embedding

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1143

W1 W2 W3 W4
(r

at
io

 o
f t

ot
al

 ti
m

e)
C

om
m

. o
ve

rh
ea

d

0.3

0.4

0.5

0.6

Embedding size
128 256 512

Figure 4: Embedding communication overhead can consume
up to 63% of the end-to-end training time. The embedding
size is the dimensions of an embedding or the number of
columns of embedding tables.

prefetching4 to precisely quantify the embedding communi-
cation overhead and its breakdown. The result is shown in
Figure 4, where the embedding communication overhead for
many of these workloads is high despite using state-of-the-art
communication libraries like NCCL, and consumes up to 63%
of end-to-end DLRM training time. It is worth noting that the
ratio of the communication time to the total training time may
not monotonically increase with the embedding size (the num-
ber of dimensions of an embedding or the number of columns
of embedding tables), as the embedding size increases both
computation time and communication time.

The embedding communication includes worker pull and
worker push, which can be caused by either cache miss or
cache update. When a cache miss occurs, the worker will
pull the required embedding and push an evicted embedding
if the cache is full. For cache updates, the worker will push
the embedding gradients and pull the required embeddings
with the latest version updated by other workers. Based on
our evaluation, cache update is the major reason that causes
embedding transmissions (71%-95%). In terms of the com-
munication direction, pull and push contribute to a similar
overhead (less than 9% coefficient of variance).

3 Embedding Scheduling

To reduce the number of worker pulls/pushes during the train-
ing, we propose a new direction to accelerate distributed
DLRM training without compromising the model accuracy:
embedding scheduling, which utilizes an embedding sched-
uler to determine where embeddings should be trained and
which embeddings should be synchronized.

3.1 Rationales
In the forward propagation, a cache hitting on the required
embedding can prevent worker pull and potential worker push
caused by a cache eviction. Therefore, the embeddings to be

4HET supports prefetching the embeddings that will be used in the next
iteration from the PS at the beginning of an iteration. We will enable this
feature in end-to-end evaluation. However, prefetching brings limited im-
provement in vanilla BSP training, since most embedding pulls are for the
updated embeddings as shown in the later paragraph, and these updated em-
beddings are valid after finishing the synchronization of the current iteration.

trained can be scheduled to appropriate workers, where the
training embeddings in each worker are most likely to hit the
cache. Meanwhile, accessing an embedding in the forward
propagation will incur a corresponding update in the back-
ward propagation. However, synchronizing every embedding
update is unnecessary, even in synchronous training. The rea-
son is that an embedding is related to a sparse feature, and this
feature may not be trained in the following iterations by other
workers. It may happen in two scenarios: (1) this feature does
not appear in the later training samples, or (2) this feature
is only trained by the same worker. In other words, the up-
dated embeddings only need to be synchronized to PS when
they are required by other workers in the following training.
Putting all this together, we derive two philosophies to reduce
the embedding transmissions:

P 1. training in-cache embeddings as much as possible, and

P 2. performing on-demand synchronizations.

These philosophies can be followed by proactively partition-
ing the batch samples among workers and identifying the
necessary embeddings for synchronizations.

Figure 5 describes a contrived and illustrative example
to elaborate on how embedding scheduling reduces commu-
nication overhead. The vanilla training without embedding
scheduling (Figure 5b) neither optimizes for cache hit rate
nor avoids unnecessary embedding synchronizations due to
the ignorance of workers’ cache content and the following
inputs. As a result, the cache miss or hit during the training
is totally random, and every updated embedding should be
synchronized. However, such embedding communication can
be optimized with embedding scheduling (Figure 5c).

We can formulate the scheduling problem as a Markov De-
cision Process (MDP) as described in Appendix A. However,
given the complexity of finding a globally optimal scheduling
decision for the entire training process, we downgrade the
scheduling problem to find a local quality decision for every
iteration in this work.

3.2 Opportunities
Embedding scheduling is feasible given two characteristics
of in-cache embedding accesses.
Predictability. There are two prerequisites for embedding
scheduling: knowing current cache snapshots as well as pre-
dicting and determining future embedding accesses. Fortu-
nately, both are achievable in DLRM training. As modern
training frameworks decouple the training computation and
the input preparation, we can foresee and decide proper em-
bedding accesses a-priori when proceeding with input gen-
eration for each worker. The input generation is usually per-
formed in a data loader, which partitions a batch of inputs into
multiple micro-batches for every worker. Meanwhile, main-
taining cache snapshots in the data loader is trivial. Therefore,

1144 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Id: 4 Id: 2 Id: 0Iter. 𝑡

Iter. 𝑡 + 1

Parameter Server

Id: 1 Id: 3 Id: 5

Worker

Id: 0 Id: 1
Emb Cache

Worker

Id: 2 Id: 3
Emb Cache

Worker

Id: 4 Id: 5
Emb Cache

(a) Toy example

Iter. 𝑡 + 1

Iter. 𝑡

Parameter Server
Pull 4 Push 4 Push 2 Pull 0 Push 0

Worker

Id: 0 Id: 1
Emb Cache

Worker

Id: 2 Id: 3
Emb Cache

Worker

Id: 4 Id: 5
Emb Cache

Id: 4 Id: 2 Id: 0

Id: 1 Id: 3 Id: 5

(b) Training w/o embedding scheduling

Iter. 𝑡 + 1
Id: 0 Id: 2 Id: 4

Worker

Id: 0 Id: 1
Emb Cache

Iter. 𝑡

Parameter Server

Worker

Id: 2 Id: 3
Emb Cache

Worker

Id: 4 Id: 5
Emb Cache

Id: 1 Id: 3 Id: 5

No push/pull

(c) Training w/ embedding scheduling
Figure 5: (a) A contrived example showing performance gain with embedding scheduling, assuming that all caches have empty
slots for new embeddings. (b) The vanilla training incurs a total of 2 times worker pulls and 3 times worker pushes at iteration
t. (c) The training with embedding scheduling does not incur any embedding transmissions at iteration t, since all trained
embeddings hit caches and their updates are not required by the others in the later iteration.

Criteo AD
MovieLens 25M

Avazu
Criteo Sponsored Search

D
oI

0.99996
0.99998
1.00000

Num. of workers
0 20 40 60 80 100 120

Figure 6: The degree of infrequence is consistently high
across different scales of training clusters in studied datasets.

a tailored data loader with an embedding scheduler can allo-
cate input samples to workers based on their in-cache embed-
dings and identify embedding dependencies among iterations
for on-demand synchronizations.
Infrequency. Although a small set of "hot" embeddings
could contribute to the majority of the total number of ac-
cesses [3,31], the access of individual in-cache embeddings is
usually infrequent. We define that an in-cache embedding is
infrequently accessed when the popularity of this embedding
is less than the total number of samples trained by a worker
during the entire training epoch. The more infrequently-
accessed embeddings there are the more potential transmis-
sions can be optimized. To evaluate the degree of infrequence
(DoI), i.e., the ratio of infrequently-accessed embeddings over
the whole in-cache embeddings, we make profiling on real-
world datasets as listed in Table 1, and consider each worker
can cache 10% of the total embeddings. As shown in Figure 6,
our profiled datasets exhibit consistently high DoI (> 99%)
even in large training clusters. The high DoI indicates that
most in-cache embeddings can each be trained in a consistent
worker and their updates can avoid global synchronizations.

3.3 Model Consistency Analysis

Accelerating distributed DLRM training under BSP with em-
bedding scheduling can preserve model consistency and thus
the exactly same model accuracy. Compared with vanilla dis-
tributed training, embedding scheduling makes two changes:
a tailored input partition algorithm (vs. a random partition
algorithm) and on-demand synchronizations (vs. full-set syn-
chronizations). In BSP, on-demand synchronizations ensure

that all workers use the latest parameters for the incoming
training iteration, which is the same behavior as the vanilla
distributed training performs.

We prove that the training model will not be affected by the
choice of input partition algorithm under BSP. Considering a
parameter optimizer followed by the SGD algorithm [14], the
gradient calculation for model weights w on a given batch of
n training samples is expressed as follows:

∇w =
1
n

Σ
n
i=1

∂L(xi,w)
∂w

, (1)

where xi is the i-th training sample of the batch, and L is
the loss function. Based on Equation 1, the gradient of the
batch is the sum of the individual gradient for each training
sample in the batch. Since the individual gradient depends
only on input samples and current model weights, which have
been synchronized before this iteration begins under BSP,
partitioning the batch into m micro-batches takes no effect on
the gradient result:

1
n

Σ
n
i=1

∂L(xi,w)
∂w

=
1
n

Σ
m
i=1Σ

n/m
j=1

∂L(xi j,w)
∂w

, (2)

where xi j is the j-th training sample in the i-th micro-batch
(for worker i). Therefore, any partition result generated by any
partition algorithm preserves the same gradients as in BSP
throughout training and hence converges to the same model.

4 Design

Based on the above ideas, we design an embedding scheduler,
called Herald, to accelerate distributed DLRM training on top
of the state-of-the-art cache-PS architecture [3,31]. Real-time
scheduling is a crucial property when 1) training over stream-
ing samples [21, 29, 38], as pre-processing the whole dataset
is difficult, if not impossible, in this case, and 2) the number
of training iterations (scheduling decisions) is unpredictable.
In this work, we target to support real-time scheduling, where
only a few batch inputs instead of the whole dataset are avail-
able at a time and the available batch inputs keep updating
during the training procedure. We leave discussions on break-
ing this assumption in §7.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1145

W1 W2 W3 W4
N

ec
e.

 it
er

. t
im

e
(m

s)

0

20

40

Per-worker batch size
64 128 256

Figure 7: The necessary iteration time varies among different
datasets and different per-worker batch sizes, where the em-
bedding size is 256.

Inputs partition
(iteration 𝑡)

Batch inputs
(iteration 𝑡)

Adaptive location-aware
inputs allocation (§4.3)

Communication plan
(iteration 𝑡 − 1)

Communication plan
generation (§4.4)

Scheduling budget

Figure 8: Herald overview.

4.1 Challenges
Integrating real-time embedding scheduling into training
frameworks is challenging due to limited and varied schedul-
ing budgets, i.e., the available scheduling time.
Limited scheduling budget for real-time scheduling. For a
scheduling problem, there exists a tradeoff between schedul-
ing quality and scheduling overhead. High-quality embedding
scheduling can effectively reduce communication overhead,
but at the cost of consuming a long scheduling time. Such
long scheduling time, however, prevents the scheduling from
being hidden by the iterative training, and thus introduces
extra training overhead. The scheduling budget of real-time
scheduling should be smaller than the iteration training time.
Varied scheduling budgets across different workloads and
training settings. The scheduling budget is not static and
is affected by many factors, including workload and training
setting. We regard necessary iteration time, i.e., the training
time excluding the embedding communication time in an iter-
ation, as a valid scheduling budget, and show these results in
Figure 75 with the same setting as Figure 4. It reveals an up to
78% coefficient of variance across different workloads within
the same setting and an up to 67% coefficient of variance
across different settings within the same workload. Varied
scheduling budgets indicate that a static scheduling algorithm
is not generic enough to support highly variant workloads and
settings.

4.2 Overview
Figure 8 overviews Herald, which decouples the schedule
targets to support real-time scheduling. Specifically, Herald
determines "where embeddings should be trained" via an

5Following the industry practice [2], we focus on weak scaling, which
linearly increases the total batch size with the number of workers, instead of
strong scaling, which keeps the per-iteration total batch size constant.

Herald Data loader Worker

Comm. plan (𝒕 − 𝟏)

Inputs (𝒕)

Batch inputs
(𝒕)

Parameter server

Updated emb.
(𝒕 − 𝟏)

Iteration training
(𝒕 − 𝟏)

Comm. plan (𝒕)

Inputs (𝒕 + 𝟏)

Batch inputs
(𝒕 + 𝟏)

Updated emb.
(𝒕)

Iteration training
(𝒕)

Figure 9: Herald training data flow. Herald leverages input
prefetching to generate the communication plan in time.

adaptive location-aware inputs allocation (LAIA) algorithm
(§4.3), which meets varied scheduling budgets with a high
cache hit rate. Herald determines "which embeddings should
be synchronized" under a given inputs partition via an optimal
communication plan generator (§4.4). The above scheduling
process is executed on every worker instead of a centralized
orchestrater, so that the scheduling can be computed locally
to save the distribution time of scheduling results.

As discussed before (§3.1 and Appendix A), the scheduling
scope in the current design choice is within the single batch
to achieve a low scheduling overhead. Given a batch of inputs
of iteration t, Herald first generates a partition solution, which
allocates each input to a proper worker for iteration t based
on current embeddings’ location information. However, there
is a lag in the generation of the communication plan, which
depends on the requirements of the next iteration. To guaran-
tee that each worker can retrieve the latest embeddings under
the generated partition solution, Herald figures out an optimal
communication plan, which lists a minimal list of embeddings
that each worker should synchronize with PS, for the previ-
ous iteration, i.e., iteration t − 1. We discuss extending the
scheduling scope to multiple batches in §7.

Figure 9 illustrates the data flow of the training with Her-
ald. From a worker’s point of view, in every iteration, the
worker receives both training samples and a communication
plan from the data loader before proceeding computation, and
synchronizes the embeddings listed in the communication
plan after backward propagation. Due to the time lag of com-
munication plan generation, Herald needs to partition the next
batch inputs before proceeding to that batch, which is possi-
ble as prefetching next batch samples is already commonly
adopted in today’s data loaders [1, 6, 36].

It is worth noting that Herald only controls the embedding
update from workers to PS (i.e., worker push), but remains
the update manner from PS to workers (i.e., worker pull)
the same as existing cache systems operate. Herald relies
on the internal cache consistency protocol in existing cache
systems (e.g., version check in HET [31]) to pull the updated
embeddings from PS and cache them in individual workers.
Therefore, Herald preserves the same cache consistency as
the underlying cache system. Moreover, as the cache miss
results in only a minor fraction of embedding transmissions
(§2.2), Herald does not optimize the policy of embedding

1146 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1: Static LAIA

input :Batch samples (Inputs) and worker list
(Workers)

output :Inputs partition (Alloc)
1 Init Alloc;
2 Init all workers as available;
3 capacity = size(Inputs)/size(Workers);
4 for i in Inputs do
5 for w in Workers do
6 score(i,w) = |cache(w)∩ embs(i)|;
7 end
8 Find worker w with the largest score among the

available workers;
9 Alloc(i,w) = 1;

10 if ΣiAllocw == capacity then
11 Mark w as unavailable;
12 end
13 end
14 return Alloc;

cache evictions caused by the cache miss to avoid additional
scheduling overhead.
Scheduling budget measurement. To preserve real-time
scheduling, the scheduling budget should not be larger than
the iteration time, which consists of both computation time
and communication time. However, with embedding schedul-
ing, the communication depends heavily on the scheduling
results, which are hard to predict precisely before training6.
Therefore, we utilize the necessary iteration time (as defined
in §4.1), which can be profiled in advance, as a loose schedul-
ing budget. For Herald scheduling, as only the input partition
can adapt to the scheduling budget, and the upper bound of the
communication plan generation time is predictable given the
workload and the training setting, the real scheduling budget
used in Herald should be the necessary iteration time minus
the communication plan generation time. As our measure-
ment is conservative (by considering a loose metric), it is not
likely to overestimate the scheduling budget. Furthermore,
our evaluation (§6.2.2) shows that Herald is resilient to the
underestimation of the scheduling budget.

4.3 Location-aware Inputs Allocation

We first elaborate a static LAIA algorithm that heuristically
partitions batch inputs into proper workers based on the cur-
rent cache snapshots and a full set of table information. Then
we observe that embedding tables are not equally important
for scheduling, with the diverse DoIs among embedding ta-
bles. Based on this observation, we introduce an adaptive
LAIA algorithm, which conducts the partition with selective
embedding tables to meet the scheduling budget.

6Even during training, the communication time after scheduling can vary
among iterations.

D
oI

0
0.5
1.0

0 20 40 60 80 100 120
(a) Criteo AD

D
oI

0
0.5
1.0

0 20 40 60 80 100 120
(b) MovieLens 25M

D
oI

0
0.5
1.0

0 20 40 60 80 100 120
(c) Avazu

D
oI

0

0.5

1.0

Num. of workers
0 20 40 60 80 100 120

(d) Criteo Sponsored Search
Figure 10: The DoI of different embedding tables exhibits a
large variance. Each line represents an embedding table.

Static LAIA. As it is impractical to conduct a brute-force
search in real time for the optimal partition solution that max-
imizes the cache hit rate, we propose a heuristic partition
algorithm, LAIA, as shown in Algorithm 1. LAIA calculates a
score to quantify the relevance between every input sample
and worker (Line 6). The score is defined as the number of
embeddings that reside in the worker cache (with the latest
version) and are required by the input sample simultaneously.
After scoring, LAIA allocates each input to the worker with
the highest score (Line 8-9) while ensuring evenly distributed
inputs among workers (Line 10-12).

Furthermore, when there is a tie in finding the largest score
(Line 8), LAIA will randomly select a worker from the candi-
dates. This randomization tends to evenly cache embeddings
across all workers. Therefore, in the later scheduling, LAIA
can achieve a good balance of the total score (i.e., cache hit
rate) among workers. We do not proactively treat the load bal-
ance as a scheduling goal in Algorithm 1 for a low scheduling
overhead. With consecutive iterations, LAIA moves towards
gathering embeddings that tend to be accessed together in
many training samples on the same worker.
DoI diversity among tables. We observe that since every
embedding table represents a unique physical feature, the dis-
tribution of embedding popularities in different tables may
exhibit different skewness and hence diverse table DoIs. Fig-
ure 10 shows this DoI variance, where we measure the DoI of
an individual table as the ratio of the number of infrequently
accessed embeddings over the total number of in-cache em-
beddings of this table. Among the profiled datasets (except
for MovieLens 25M which has only two tables7), there exist

7For those datasets that have a small number of tables, although the DoI
diversity is not obvious, they have a low demand for this property, as their
scheduling overhead is inherently small.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1147

both tables with consistently high DoI (> 99%) and tables
with relatively low DoI (as low as < 1%). Recalling that the
potential performance gain achieved by embedding schedul-
ing comes from the infrequent embedding updates (§3.2),
this DoI diversity indicates that the embedding tables are not
equally important for scheduling.
Being adaptive. Based on the above observation, we can ac-
commodate Algorithm 1 to varied scheduling budgets. In
Algorithm 1, scoring (Line 4-7) is one of the most time-
consuming functions due to its three-layer loop, including
inputs iteration, workers iteration, and tables iteration (im-
plicitly shown in Line 6). Therefore, by only considering
scheduling-worthy (i.e., high-DoI) embedding tables, the time
overhead of scoring and thus Algorithm 1 can be reduced.
Given the scheduling budget, we can determine the maximum
number, k, of embedding tables that should be considered in
scoring.
Table profiling. To identify the k embedding tables with
the highest DoI in runtime, we incorporate a table profiler
into Herald to continuously measure the DoI of each table.
Specifically, the profiler counts the appearance of every em-
bedding in every batch input and maintains the DoI of each
table dynamically. The profiling runs parallel to the allocation
function to avoid interference with the scheduling process.
The profiler periodically updates the k embedding tables with
the highest DoI to LAIA for scheduling. The interval to update
the profiling result can be decided by either the change of the
selective embedding tables or the profiling time.

4.4 Communication Plan Generation

To figure out the necessarily synchronized embeddings for
on-demand synchronizations, we introduce a concept of em-
bedding dependency. An embedding dependency appears
when an embedding with the latest version is cached on a
worker and there are other workers assigned to train this em-
bedding in this iteration. The worker caching the latest version
should synchronize this embedding to PS before this itera-
tion begins. Therefore, all embedding dependencies of this
iteration become the communication plan of the previous iter-
ation. As discussed in §4.2, Herald can timely generate the
communication plan with the inputs prefetching.

Based on the above idea, Herald generates the commu-
nication plan for each worker given the inputs partition re-
sult of the next iteration, as described in Algorithm 2. The
embs_by_others are all embeddings required by workers ex-
cept for worker w itself (Line 2) in the next inputs, and the
embedding dependencies (communication plan) of worker w
are the intersection of embs_by_others and its cached embed-
dings (Line 3). The generated communication plan is optimal
between two iterations, as it contains the minimal list of em-
beddings required by other workers in the next iteration. Since
we focus on the PS architecture, the embedding dependencies
of a worker do not need to be distinguished among target

Algorithm 2: Embedding dependency generation
input :Batch samples (Inputs), worker list

(Workers), and inputs allocation (Alloc)
output :Embedding dependency (Dep)

1 for w in Workers do
2 embs_by_others = embs(Inputs−Allocw);
3 Depw = embs_by_others∩ cache(w);
4 end
5 return Dep;

workers. We will discuss how to support on-demand synchro-
nization with peer-to-peer communication in Appendix B.

5 Implementation

We have implemented a system prototype of Herald with C++
and Python. Besides the design described in §4, Herald main-
tains cache snapshots of all workers inside the scheduler to
provide information on embedding locations. These cache
snapshots are used for the scoring function in inputs alloca-
tion, and updated at the end of the allocation based on the
partition result, which avoids synchronizations among sched-
ulers in different workers. Cache snapshots follow the same
caching policy as workers’ for consistency.
HET plugin. We have integrated Herald in HET8. We replace
the data loader implementation in HET with communication
plan support. Herald data loader returns training samples and
synchronized embedding indexes as sparse inputs. To support
prefetching batch inputs while preventing from interfering
with the training process, Herald is launched by dedicated
threads, and the scheduling results from Herald are transmit-
ted to the data loader via shared memory.
Multi-threading. We utilize spare CPU resources to acceler-
ate the scheduling by enabling multi-threading. We manage a
thread pool for multi-threading processing. The parallelism
can be easily applied to most Herald functions, including scor-
ing (Line 4-7 in Algorithm 1), cache snapshots update, and
communication plan generation (Algorithm 2). However, it
is non-trivial to parallelize the function of worker allocation
(Line 8-12 in Algorithm 1) due to its dependency between
two allocation actions. Preserving the consistency of the al-
location result inevitably introduces a lock and limits the
parallelism of this function. We implement two versions of
the worker allocation function: a single-threading version
and a lock-free multi-threading version which may compro-
mise the result consistency. In the multi-threading version, we
evenly divide the worker capacity and training samples among
threads. Therefore, each thread can independently allocate
its samples to the workers without considering the allocation
result of other threads. The allocation result of each thread is
then merged into the final allocation.

8https://github.com/Hsword/Hetu

1148 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/Hsword/Hetu

6 Evaluation

Our evaluation seeks to answer the following three questions:
How does Herald improve cache embedding communica-
tion overhead? Simulation experiments (§6.2.1) with repre-
sentative datasets show that Herald reduces the average num-
ber of embedding transmissions by 48%-89%, where LAIA
algorithm contributes to the major improvement according to
the performance breakdown.
How lightweight and effective is Herald for real-time and
adaptive scheduling? Deep dive profiling (§6.2.2) on Herald
shows that even adopting the single-threading worker allo-
cation function, multi-threading benefits 92% of scheduling
time. Furthermore, adaptive Herald preserves consistently
high scheduling quality with less than 1.11× transmission
increase compared with static Herald across different scales
of training clusters.
How does Herald perform in end-to-end DLRM training?
Testbed experiments (§6.3) with real-world workloads show
that Herald provides 1.09×-2.11× and 1.02×-1.61× speedup
over HET in end-to-end training with TCP and RDMA, re-
spectively, over 100 Gbps Ethernet. Herald preserves the ef-
fectiveness in the multi-GPU and multi-node scenario.

6.1 Evaluation Settings
Our evaluations include both cache simulation for micro-
benchmarks and testbed for end-to-end training. Unless men-
tioned otherwise, both the simulation and testbed contain 8
workers and 1 PS. Each worker contains an embedding cache
following LRU policy. The embedding cache can house 10%
of PS-side embedding tables, following the caching strategy
studied in [25, 31, 48]. We adopt the single-threading version
of the worker allocation function whenever possible for the
best scheduling quality, and adopt the multi-threading version
when evaluating the scalability of LAIA algorithm (§6.2.2).
The default thread pool size in Herald is 16.
Testbed. Both workers and PS are equipped with a 20-core
Intel Xeon Gold 5218R CPU at 2.1 GHz and 64 GB (256
GB in PS) of RAM. Each worker is also equipped with an
Nvidia 3090 GPU. These workers and PS are connected at 100
Gbps Ethernet with Mellanox ConnectX-5 NICs. The default
underlying transport is TCP. We also incorporate RDMA into
HET implementation. All machines run Ubuntu 18.04 (Linux
5.4.0), CUDA 11.3.19, cuDNN 8.2.0, and NCCL 2.9.9.
Baseline. We compare Herald with HET [31] and FAE [3].
FAE is designed in a static caching manner. For a fair compar-
ison, we implement FAE on top of HET. As discussed in §1
and §8, both baselines reduce the embedding transmissions by
compromising model accuracy and are orthogonal to Herald.
Therefore, we adopt vanilla BSP training in HET and FAE.
Other settings are configured as same as Herald. Baselines
and Herald leverage a hybrid synchronization model [24],

9We upgrade HET from CUDA 10 to CUDA 11.

Optimization Reduced embedding transmissions
Pull Push Overall

Vanilla (w/o embedding scheduling) - - -
LAIA (§4.3) 54% 17% 35%
Communication plan (§4.4) 0% 13% 7%
Herald 54% 63% 59%

Table 2: Breakdown of contribution by each optimization with
the W1 dataset.

where MLP parameters are synchronized in ring-based all-
reduce and embedding parameters are synchronized with PS.
Baselines and Herald enable the embedding prefetching.
Workloads. We use four real-world models with representa-
tive datasets for end-to-end experiments, as listed in Table 1.
We exclude the first 10 iterations for warm-up and report
the performance for the subsequent iterations. We do not in-
clude training accuracy results because Herald can preserve a
consistent model accuracy, as analyzed in §3.3. The default
batch size is 128 in the simulation and 256 in the testbed,
and the default embedding size is 512. Since Herald with
multi-threading can meet the scheduling budget of the above
workloads in the default training setting based on our evalua-
tion (§6.2.2), we adopt static LAIA (Algorithm 1) rather than
its adaptive version in end-to-end experiments by default.

6.2 Micro-benchmarks

6.2.1 Cache Performance

We first study the cache behaviors by comparing Herald with
vanilla training manner, i.e., a random inputs partition and
full-set embedding synchronizations.
Cache behaviors. Figure 11 shows the number of cache
embedding transmissions by normalizing to that of vanilla
training across different datasets. Overall, applying Herald
can reduce 48%-89% embedding transmissions. We further
decompose the cache embedding transmissions based on the
communication direction. It shows that Herald effectively
reduces the number of worker pulls by 43%-88% and worker
pushes by 51%-90%.
Improvement breakdown. To figure out the reason behind
these improvements, we further break down the contribu-
tion made by each optimization with the Criteo AD dataset
(W1), as shown in Table 2. We find that LAIA contributes to
the major improvements. For worker pull, LAIA distributes
the embeddings required by inputs to most likely hit worker
caches (reducing the number of worker pulls by 54%). Mean-
while, the worker push performance is jointly optimized by
LAIA and communication plan, where the location-aware
partition mechanism reduces embedding dependencies while
on-demand synchronizations make such dependencies reduc-
tion benefit to embedding transmissions reduction. Therefore,
the optimization of LAIA and communication plan alone only
reduces the number of worker pushes by 17% and 13%, re-
spectively, but the combination of the two, i.e., Herald, can
reduce the number of worker pushes by 63%.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1149

Overall Push Pull

Em
be

dd
in

g
tra

ns
m

is
si

on
s

0

0.5

1.0

W1 W2 W3 W4

Figure 11: Herald can reduce 48%-89%
embedding transmissions.

3.2 0.6 2.6 1.3

Scoring
Worker allocation

Cache snapshots update
Communication plan generation

Timeline (ms)
0 1 2 3 4 5 6 7 8

Figure 12: Breakdown of scheduling
overhead with the W1 dataset.

24 24 24

14

8
4

Increased transmissions
Num. selective tables

In
cr

ea
se

d
tra

ns
m

is
si

on
s

0

0.5

1.0

1.3

N
um

. of tables

0

10

20

Num. of workers
64 72 80 88 96 104

Figure 13: Adaptive LAIA is scalable
with less than 1.11× transmissions in-
crease.

2.11

1.5

1.09

1.38
1.61

1.22
1.02

1.14

TCP RDMA

Sp
ee
du
p

0

0.5

1.0

1.5

2.0

W1 W2 W3 W4

Figure 14: Herald improves end-to-end
training by up to 2.11× speedup over
TCP and up to 1.61× over RDMA.

0.9 0.89

0.52

0.84

0.42

0.6

0.42

0.6

Herald HET
Sc

al
in

g
fa

ct
or

0

0.5

1.0

W1 W2 W3 W4

Figure 15: Herald utilizes distributed
computing resources efficiently with
high scaling factors.

1.97
2.15 2.05 2.11

Sp
ee
du
p

0

1

2

3

4% 6% 8% 10%

Figure 16: Herald preserves a consistent
effectiveness under limited cache sizes.

6.2.2 Scheduler Performance

We profile the Herald scheduler overhead with the same ma-
chine as the testbed (§6.1) to evaluate its time consumption
and scheduling quality. In this part, we focus on the Criteo
AD dataset only.
Overhead breakdown. Through our measurement, the per-
batch scheduling overhead is 7.7 ms (16 threads) on average.
Figure 12 shows the breakdown of this scheduling overhead,
where the major overhead is caused by the scoring function,
consuming 3.2 ms (42%). 92% of the overhead, including
scoring, cache snapshots update, and communication plan
generation, are accelerated by multi-threading. Although the
worker allocation function runs in a single thread, it con-
tributes to only 0.6 ms (8%) overhead.
Scalability of adaptive LAIA. We further evaluate the adap-
tiveness of LAIA across different scales of training clusters.
We assume that the scheduling budget10 does not change
when increasing the scale of training clusters. Thereby, we
find the number of tables that LAIA can be considered during
the scoring, so that the whole scheduling time is not larger
than the scheduling budget, i.e., 18.2 ms in this case. In this ex-
periment, we use a multi-threading worker allocation function
for adaptive LAIA. We report the results of different cluster
scales, where the number of selective tables is smaller than
the total number of tables (i.e., 26) in Criteo AD dataset. The
increased transmissions are the ratio of the embedding trans-
missions incurred by adaptive LAIA to that incurred by static

10The scheduling budget increases with the scaling training clusters due to
the larger dense parameters synchronization time. Therefore, we can score
with a larger number of embedding tables in adaptive LAIA than we report.

LAIA. As shown in Figure 13, adaptive LAIA introduces less
than 1.11× transmission increase by scoring with at least 4
tables. This result indicates that Herald is scalable and adap-
tive to different scales of training clusters. Moreover, it also
reveals that Herald is resilient to the underestimation of the
scheduling budget by preserving a high scheduling quality
with a small set of selective tables.
Herald vs. brute-force search. The performance of Herald
compared with the brute-force search is shown in Appendix C
due to the space limitation.

6.3 End-to-end Training

We demonstrate that Herald accelerates end-to-end training,
improves scalability, and preserves performance superiority
even under limited cache sizes and large-scale clusters.
Training speedup. Figure 14 shows the training speedup of
Herald over HET across different workloads. We observe
that Herald can achieve 1.09×-2.11× speedup over TCP
and 1.02×-1.61× over RDMA. Specifically, we find that the
speedup of W1 is the highest among all, which accords with
the results in Figure 4 that W1 has the highest embedding
communication ratio. The above speedups are attributed to
the communication reduction of Herald in the number of em-
bedding transmissions, as explained in §6.2.1.
Scalability. The high training performance makes the dis-
tributed training system more scalable. We evaluate the scal-
ability of Herald and HET with the metric of scaling factor
defined as in [51]: TN

NT where T is the throughput of a single
worker, N is the number of workers, and TN is the overall
throughput of a cluster with N workers. Note that T in Herald

1150 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

51.6

1.67

15.6

28.4

Sp
ee
du
p

0

20

40

60

W1 W2 W3 W4

Figure 17: Herald achieves tremendous
speedup compared with FAE-like static
caching.

1.6 1.48

1.02

1.53

Sp
ee
du
p

0

1

2

3

W1 W2 W3 W4

Figure 18: Herald preserves the per-
formance superiority in a large-scale
testbed.

1.6
1.4 1.39 1.41

Sp
ee

du
p

0

1

2

3

Num. of servers
1 2 3 4

Figure 19: Herald preserves the perfor-
mance superiority when increasing the
number of servers for PS.

equals that in HET, as both frameworks behave the same in
the single-worker training. We measure the throughput of a
single worker with a single GPU server, where the PS runs
on CPUs in the same server to eliminate network communi-
cation. Figure 15 shows the scaling factor of Herald and HET
in every workload. Herald improves the scaling factor from
0.42-0.60 to 0.52-0.90, which indicates that incorporating
Herald into distributed DLRM training can utilize resources
more efficiently.

Training performance under limited cache sizes. Given
the ever-expanding size of the embedding tables and the rel-
atively slow evolution of accelerator device memory, it is
likely that the ratio of in-cache embeddings becomes smaller.
We study the impact of different embedding cache sizes on
W1. The cache ratio, i.e., the ratio of the number of in-cache
embeddings to the total number of embeddings, ranges from
4% to 10%. As shown in Figure 16, Herald preserves the
performance superiority over HET and the speedup (1.97×-
2.15×) does not vary a lot across different sizes of embedding
cache. The reason is that, as discussed in §2.2, embedding
transmissions are dominated by the embedding update, and
this dominance holds across different embedding cache sizes.
Therefore, the distributed DLRM training framework still ben-
efits from reducing embedding pulls and pushes in embedding
updates even under a small embedding cache size. This ex-
periment verifies the consistent effectiveness of Herald under
limited cache sizes.

Compared with FAE (static caching). FAE [3] is quite
a different cache model from Herald and HET. First, FAE
is a static cache, i.e., the cached embeddings are predeter-
mined and fixed before training. Second, all workers in FAE
cache exactly the same embeddings, and they synchronize all
cached embeddings with all-reduce as dense parameters. We
build FAE-like static caching on top of HET. Our FAE-HET
implementation supports caching at most 1% embeddings in
each worker and training workloads with a per-worker batch
size of 128. For implementation efficiency, we change em-
bedding interactions from concatenation to sum pooling in
all workloads. As shown in Figure 17, Herald outperforms
FAE with a 1.67×-51.59× speedup. The huge improvement
mainly comes from two reasons. First, since Herald’s workers
can cache arbitrary embeddings, Herald’s overall cache size

is larger than FAE’s, thus leading to a higher cache hit rate.
Second, the embedding scheduling in Herald further improves
the efficiency of the cache usage (by reducing the number of
worker pulls and worker pushes) compared with FAE.
Multi-GPU and multi-node scenario. Lastly, we evaluate
Herald in a multi-GPU and multi-node testbed, consisting of
10 × 8-GPU servers as workers. Each worker contains 80
CPU cores, and the thread pool size is also set to 80. The
other settings remain the same as the default. At such a large
scale, Herald adopts adaptive scheduling (§4.3) to bound the
scheduling time. Figure 18 shows the results. By comparing to
HET, Herald can achieve 1.02×-1.60× speedup among four
workloads by leveraging 77%-100% of tables for scheduling.
We further evaluate the Herald performance when increasing
the number of servers for PS on the W1 workload. As shown
in Figure 19, the improvement of Herald may have a slight
decrease (achieving about 1.4× speedup) when the capability
of PS increases. The reason is that increasing the number
of servers for PS can relieve or even eliminate the network
bottleneck in the PS architecture [41].

7 Discussions

Scheduling without batch prefetching. If the streaming
dataset only provides a single batch of inputs at a time, i.e.,
no batch prefetching support, Herald will fail to generate
communication plans for the on-demand synchronizations.
In this case, Herald’s LAIA algorithm still works to provide
a cache-friendly inputs partition. Based on the optimization
breakdown (Table 2), scheduling with only LAIA can preserve
a considerable overall improvement.
Scheduling among multiple batches. If the scheduling bud-
get is sufficient or even unlimited (offline scheduling in this
case), Herald’s scheduling scope can be extended to multiple
batches to achieve a better scheduling quality.

Inputs partition. Instead of finding a locally high-scoring
allocation of a single batch as in Algorithm 1, the partition
algorithm for multiple batches should seek an allocation with
a globally high score. However, searching for such globally
high-scoring allocation is onerous, as allocation scores are
dependent on batches. Different allocation results of the front
batch may result in totally different cache snapshots, and thus
affect the allocation score of the following batch. A potential

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1151

heuristic method to reduce the exploration space is to leverage
the power of two choices [32], which considers the top-2
highest scoring allocations of a batch, explores the next batch
based on these two allocations in parallel, and finally returns
the allocation with the highest overall scoring.

Beyond preserving the same batch order when allocating
the multi-batch inputs, there exists work to reorder inputs
among training iterations for embedding transmissions sav-
ing [4]. However, the non-random ordering of training sam-
ples may increase the gradient variance during the SGD train-
ing and lead to overfitting, as the model may learn some
spurious patterns from these handcrafted sample orders [13].

Communication plan generation. In current practice, work-
ers may execute different sizes of communication plans in
an iteration. This kind of work imbalance will result in idle
workers at the synchronous barrier of the iteration. This issue
can be improved by considering multiple batches when gen-
erating the communication plan for both embedding pull and
push, as discussed in Appendix A, with additional embedding
dependency checking. For embedding pull, the worker can
prefetch an embedding if it is not trained by other workers
until the time this worker accesses it. For embedding push,
the worker can synchronize more embeddings beyond the
requirement in the next iteration. Based on this idea, we can
re-schedule communication plans to balance the communi-
cation workload among workers, and thus reduce the overall
communication time.

8 Related Work

Distributed recommendation systems. Several specialized
systems have been proposed for scalable and efficient training
upon DLRMs. Persia [28] advocates mixing the synchronous
and asynchronous mechanisms to update MLP and embed-
ding tables, respectively. However, the asynchronous scheme
is not scalable and can compromise accuracy with an increas-
ing number of workers [34]. XDL [21] proposes optimiza-
tions including hierarchical sample compression, workflow
pipeline, and zero copy. It provides systematical optimiza-
tions on the DLRM training pipeline, and can benefit from the
embedding scheduling to further optimize inter-worker/PS
communication. We acknowledge that the embedding schedul-
ing only works for data parallelism. For the system adopting a
hybrid parallelism strategy, like Neo [33], embedding schedul-
ing can provide a partial system acceleration.
Communication acceleration. There are many efforts ex-
erted to accelerate communication for deep learning training.
A line of work speeds up individual messages with efficient
collective communication design. Besides those designed for
deep neural networks [8, 35, 39, 41, 42, 45], many collective
communication approaches [11, 24, 27, 37] are proposed to
optimize the synchronization of sparse parameters. Another
line of work exploits communication scheduling [18, 20, 50],
which organizes the message transmission order of different

layers to overlap communication with computation. All the
above communication acceleration methods try to answer
"how to efficiently transmit messages". In contrast, Herald
accelerates communication by answering "which messages
should be transmitted".
Serving large embedding tables. There are two common
architectures to resolve the large memory requirement on
embedding tables. The first one applies model parallelism di-
rectly across multiple GPU workers, where each GPU stores a
shard of tables on its high-bandwidth memory (HBM) [27,44].
However, this manner is sub-optimal, as the GPU resource
is usually scarce and expensive. The second architecture is
the cache-PS architecture [52] as the focus of this paper. This
architecture leverages the skewness feature of datasets to
accelerate embedding accesses with high popularity, while
Herald further identifies the infrequency feature among those
cached embeddings. To reduce the communication between
cache and PS, existing works apply accuracy-compromising
optimizations including oversampling hot inputs (access-
ing only hot embeddings) [3], reordering training samples
among batches [4], and updating embeddings with staleness-
tolerance [31]. On the contrary, Herald optimizes the em-
bedding communication with embedding scheduling, which
can preserve the model (accuracy) consistency theoretically.
Moreover, when the accuracy is not that sensitive, Herald
can also benefit from the above philosophies to optimize the
scheduling process. Another orthogonal line of optimization
focuses on cache prefetching by scheduling the embedding
IO and the computation inside a worker [5, 15, 25].

9 Conclusion

This paper presents Herald, a runtime embedding scheduler
for efficient cache-enabled recommendation model training.
By leveraging the predictability and infrequency of embed-
ding cache accesses, Herald applies an adaptive location-
aware inputs allocation mechanism and an on-demand syn-
chronization strategy to reduce the embedding transmissions
between workers and PS during training. Extensive experi-
mental results show that Herald can significantly reduce the
embedding communication overhead and thus boost the end-
to-end recommendation model training.

Acknowledgments

We thank the anonymous NSDI reviewers and our shepherd
Mohammad Alizadeh for their constructive comments. We
thank Yilun Jin for insightful discussions, and appreciate HET
maintainers for their timely responses to our issues. This work
is supported in part by Hong Kong RGC TRS T41-603/20R,
GRF 16213621, ITF ACCESS, NSFC 62062005, Key-Area
Research and Development Program of Guangdong Province
(2021B0101400001), and the Turing AI Computing Cloud
(TACC) [46]. Kai Chen is the corresponding author.

1152 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In OSDI, 2016.

[2] Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade
Nie, Carole-Jean Wu, and Kim Hazelwood. Understand-
ing training efficiency of deep learning recommendation
models at scale. In HPCA, 2021.

[3] Muhammad Adnan, Yassaman Ebrahimzadeh Maboud,
Divya Mahajan, and Prashant J Nair. Accelerating rec-
ommendation system training by leveraging popular
choices. In VLDB, 2021.

[4] Muhammad Adnan, Yassaman Ebrahimzadeh Maboud,
Divya Mahajan, and Prashant J Nair. Heterogeneous ac-
celeration pipeline for recommendation system training.
In arXiv, 2022.

[5] Saurabh Agarwal, Ziyi Zhang, and Shivaram Venkatara-
man. Bagpipe: Accelerating deep recommendation
model training. In arXiv, 2022.

[6] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. Mxnet: A flexible and efficient ma-
chine learning library for heterogeneous distributed sys-
tems. In arXiv, 2015.

[7] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen Ander-
son, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide
& deep learning for recommender systems. In DLRS,
2016.

[8] Minsik Cho, Ulrich Finkler, and David Kung. Blue-
connect: Novel hierarchical all-reduce on multi-tired
network for deep learning. In SysML, 2019.

[9] Paul Covington, Jay Adams, and Emre Sargin. Deep
neural networks for youtube recommendations. In Rec-
Sys, 2016.

[10] CriteoLabs. Criteo display ad challenge. https://www.
kaggle.com/c/criteodisplay-ad-challenge.

[11] Jiawei Fei, Chen-Yu Ho, Atal N Sahu, Marco Canini,
and Amedeo Sapio. Efficient sparse collective communi-
cation and its application to accelerate distributed deep
learning. In SIGCOMM, 2021.

[12] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang.
Mini-batch stochastic approximation methods for non-
convex stochastic composite optimization. In Math.
Program., 2016.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep learning. In MIT press, 2016.

[14] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. In arXiv,
2017.

[15] Huifeng Guo, Wei Guo, Yong Gao, Ruiming Tang, Xi-
uqiang He, and Wenzhi Liu. Scalefreectr: Mixcache-
based distributed training system for ctr models with
huge embedding table. In SIGIR, 2021.

[16] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo
Li, and Xiuqiang He. Deepfm: a factorization-machine
based neural network for ctr prediction. In arXiv, 2017.

[17] F Maxwell Harper and Joseph A Konstan. The movie-
lens datasets: History and context. In TIIS, 2015.

[18] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy
Campbell. Tictac: Accelerating distributed deep learn-
ing with communication scheduling. In MLSys, 2019.

[19] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie,
Xia Hu, and Tat-Seng Chua. Neural collaborative filter-
ing. In WWW, 2017.

[20] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra
Fedorova, and Gennady Pekhimenko. Priority-based
parameter propagation for distributed dnn training. In
MLSys, 2019.

[21] Biye Jiang, Chao Deng, Huimin Yi, Zelin Hu, Guorui
Zhou, Yang Zheng, Sui Huang, Xinyang Guo, Dongyue
Wang, Yue Song, et al. Xdl: an industrial deep learning
framework for high-dimensional sparse data. In DLP-
KDD, 2019.

[22] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed dnn training in heterogeneous
gpu/cpu clusters. In OSDI, 2020.

[23] Kaggle. Avazu mobile ads ctr. https://www.kaggle.
com/c/avazu-ctr-prediction.

[24] Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo
Cho, Eunji Jeong, Hyeonmin Ha, Sanha Lee, Joo Seong
Jeong, and Byung-Gon Chun. Parallax: Sparsity-aware
data parallel training of deep neural networks. In Eu-
roSys, 2019.

[25] Youngeun Kwon and Minsoo Rhu. Training personal-
ized recommendation systems from (gpu) scratch: look
forward not backwards. In ISCA, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1153

https://www.kaggle.com/c/criteodisplay-ad-challenge
https://www.kaggle.com/c/criteodisplay-ad-challenge
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction

[26] Mu Li, David G Andersen, Alexander J Smola, and Kai
Yu. Communication efficient distributed machine learn-
ing with the parameter server. In NeurIPS, 2014.

[27] Shengwei Li, Zhiquan Lai, Dongsheng Li, Yiming
Zhang, Xiangyu Ye, and Yabo Duan. Embrace: Ac-
celerating sparse communication for distributed training
of deep neural networks. In ICPP, 2022.

[28] Xiangru Lian, Binhang Yuan, Xuefeng Zhu, Yulong
Wang, Yongjun He, Honghuan Wu, Lei Sun, Haodong
Lyu, Chengjun Liu, Xing Dong, et al. Persia: An
open, hybrid system scaling deep learning-based rec-
ommenders up to 100 trillion parameters. In SIGKDD,
2022.

[29] Zhuoran Liu, Leqi Zou, Xuan Zou, Caihua Wang,
Biao Zhang, Da Tang, Bolin Zhu, Yijie Zhu, Peng Wu,
Ke Wang, et al. Monolith: real time recommendation
system with collisionless embedding table. In arXiv,
2022.

[30] Michael Lui, Yavuz Yetim, Özgür Özkan, Zhuoran Zhao,
Shin-Yeh Tsai, Carole-Jean Wu, and Mark Hempstead.
Understanding capacity-driven scale-out neural recom-
mendation inference. In ISPASS, 2021.

[31] Xupeng Miao, Hailin Zhang, Yining Shi, Xiaonan Nie,
Zhi Yang, Yangyu Tao, and Bin Cui. Het: Scaling out
huge embedding model training via cache-enabled dis-
tributed framework. In VLDB, 2021.

[32] Michael Mitzenmacher. The power of two choices in
randomized load balancing. In TPDS, 2001.

[33] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-
hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,
Mustafa Ozdal, Jade Nie, Jongsoo Park, et al. Software-
hardware co-design for fast and scalable training of deep
learning recommendation models. In ISCA, 2022.

[34] Maxim Naumov, John Kim, Dheevatsa Mudigere, Srini-
vas Sridharan, Xiaodong Wang, Whitney Zhao, Serhat
Yilmaz, Changkyu Kim, Hector Yuen, Mustafa Ozdal,
et al. Deep learning training in facebook data centers:
Design of scale-up and scale-out systems. In arXiv,
2020.

[35] NVIDIA. Collective communications library (nccl).
https://developer.nvidia.com/nccl.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep
learning library. In NeurIPS, 2019.

[37] Cèdric Renggli, Saleh Ashkboos, Mehdi Aghagolzadeh,
Dan Alistarh, and Torsten Hoefler. Sparcml: High-
performance sparse communication for machine learn-
ing. In SC, 2019.

[38] Haidong Rong, Yangzihao Wang, Feihu Zhou, Junjie
Zhai, Haiyang Wu, Rui Lan, Fan Li, Han Zhang, Yuekui
Yang, Zhenyu Guo, et al. Distributed equivalent substi-
tution training for large-scale recommender systems. In
SIGIR, 2020.

[39] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. In
arXiv, 2018.

[40] Marcelo Tallis and Pranjul Yadav. Reacting to variations
in product demand: An application for conversion rate
(cr) prediction in sponsored search. In arXiv, 2018.

[41] Xinchen Wan, Hong Zhang, Hao Wang, Shuihai Hu,
Junxue Zhang, and Kai Chen. Rat - resilient allreduce
tree for distributed machine learning. In APNet, 2020.

[42] Hao Wang, Han Tian, Jingrong Chen, Xinchen Wan,
Jiacheng Xia, Gaoxiong Zeng, Wei Bai, Junchen Jiang,
Yong Wang, and Kai Chen. Towards domain-specific
network transport for distributed dnn training. In NSDI,
2024.

[43] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang.
Deep & cross network for ad click predictions. In AD-
KDD, 2017.

[44] Zehuan Wang, Yingcan Wei, Minseok Lee, Matthias
Langer, Fan Yu, Jie Liu, Shijie Liu, Daniel G Abel,
Xu Guo, Jianbing Dong, et al. Merlin hugectr: Gpu-
accelerated recommender system training and inference.
In RecSys, 2022.

[45] Jiacheng Xia, Gaoxiong Zeng, Junxue Zhang, Weiyan
Wang, Wei Bai, Junchen Jiang, and Kai Chen. Rethink-
ing transport layer design for distributed machine learn-
ing. In APNet, 2019.

[46] Kaiqiang Xu, Xinchen Wan, Hao Wang, Zhenghang
Ren, Xudong Liao, Decang Sun, Chaoliang Zeng, and
Kai Chen. Tacc: A full-stack cloud computing infras-
tructure for machine learning tasks. arXiv preprint
arXiv:2110.01556, 2021.

[47] Xinyang Yi, Yi-Fan Chen, Sukriti Ramesh, Vinu Ra-
jashekhar, Lichan Hong, Noah Fiedel, Nandini Seshadri,
Lukasz Heldt, Xiang Wu, and Ed H Chi. Factorized deep
retrieval and distributed tensorflow serving. In MLSys,
2018.

[48] Chunxing Yin, Bilge Acun, Carole-Jean Wu, and Xing
Liu. Tt-rec: Tensor train compression for deep learning
recommendation models. In MLSys, 2021.

1154 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://developer.nvidia.com/nccl

[49] Chaoliang Zeng, Xiaodian Cheng, Han Tian, Hao Wang,
and Kai Chen. Herald: An embedding scheduler for
distributed embedding model training. In APNet, 2022.

[50] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong
Ho, Xiaodan Liang, Zhiting Hu, Jinliang Wei, Pengtao
Xie, and Eric P Xing. Poseidon: An efficient communi-
cation architecture for distributed deep learning on gpu
clusters. In ATC, 2017.

[51] Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang,
Raman Arora, and Xin Jin. Is network the bottleneck of
distributed training? In NetAI, 2020.

[52] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Rui-
quan Ding, Mingming Sun, and Ping Li. Distributed
hierarchical gpu parameter server for massive scale deep
learning ads systems. In MLSys, 2020.

[53] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian,
Chang Zhou, Xiaoqiang Zhu, and Kun Gai. Deep inter-
est evolution network for click-through rate prediction.
In AAAI, 2019.

[54] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan,
Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and
Kun Gai. Deep interest network for click-through rate
prediction. In SIGKDD, 2018.

A The Problem Definition of Embedding
Scheduling

Prerequisites. Considering a distributed learning system
with n workers and a per-worker batch size of m, the overall
batch size is n×m. The embedding table length, i.e., the total
number of embeddings in the table, is d. The total number of
iterations is T . The goal of embedding scheduling is to mini-
mize the communication overhead, specifically the operation
time of push and pull operations between workers and the PS.

For modeling simplicity, we delay the operation of the em-
bedding push to the next iteration without violating the BSP
training. In this model, an iteration proceeds with the follow-
ing operations: retrieving the batch inputs, pushing the embed-
dings, pulling the embeddings, DLRM forward propagation,
DLRM backward propagation, and dense parameter synchro-
nization. There exists a synchronous barrier between two
operations. Finally, we can model the problem as a Markov
Decision Process (MDP) with the following components.
State space S . An iteration can be described by a state
including the training batch of the current iteration and the
current state of embeddings. The training batch is related
to the dataset and the current iteration number. The state of
embeddings S is a matrix with d rows and n+ 1 columns,
where the value of si, j is 1 if the j-th worker (j = n+1 refers
to the PS) has the latest version of the i-th embedding, a
value between 0 to 1 if the j-th worker has a non-aggregated
gradient (a partially aggregated gradient for PS) of the i-th
embedding, and 0 for the rest.
Action space A . The action space is defined by three action
matrices: a sample assignment matrix P, an embedding push
matrix Q, and an embedding pull matrix R. State actions are
enforced based on these three matrices sequentially.

P is a matrix with n×m rows and n columns, where the
value of pi, j is 1 if the i-th sample is assigned to the j-th
worker, and 0 otherwise. Each sample can only be assigned to
one worker, i.e., ∑ j pi, j = 1. The sample assignment matrix P
can transfer to the embedding assignment matrix U according
to the accessing embeddings of each sample. The embedding
assignment matrix U is a matrix with d rows and n columns,
where the value of ui, j is 1 if the i-th embedding is assigned
to the j-th worker, and 0 otherwise.

Q is a matrix with d rows and n columns, where the value
of qi, j is 1 if the j-th worker pushes the i-th embedding to the
PS, and 0 otherwise. Q should preserve the availability of the
latest version of embeddings at PS if this embedding is not
available by its assigning workers:

qi, j = 1, if 0 < si, j < 1 and Σ j′∈nui, j′ >= 1
or si, j = 1 and si,n+1 = 0 and Σ j′∈n, j′ ̸= jui, j′ >= 1

R is a matrix with d rows and n columns, where the value
of ri, j is 1 if the j-th worker pulls i-th embedding from the PS,
and 0 otherwise. R is subject to two rules that ① the worker

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1155

should pull the assigning embedding if it does not maintain
the latest version of this embedding, and ② the PS has the
latest version of the embedding when there is a pull request:

① ri, j = 1, if ui, j = 1 and si, j ̸= 1
② ri, j = 1 ⇒ si,n+1 = 1

There is an implicit assumption that the PS has the latest
version of the i-th embedding when performing rule ①. This
assumption is maintained by Q.
State transition. The transition of the training batch is trivial.
In terms of the state of embeddings, the transition is as follows:
for j ∈ [1,n] (workers),

s′i, j =

1

Σ j′∈nui, j′
, if ui, j = 1

0,
if ui, j = 0 and ∃ j′ such that ui, j′ = 1
or Σui, j = 0 and qi, j = 1 and si, j ̸= 1

si, j, otherwise

for j = n+1 (PS),

s′i,n+1 =

{
0, if Σ j′∈nui, j′ >= 1
min(1,si,n+1 +Σ∀ j′,qi, j′=1si, j′), otherwise

Reward function R . The reward is the negative of the com-
munication latency. We assume the latency to push or pull an
embedding remains the same. Since we preserve a strict order
between the operations of push and pull, and the latency of
these two operations depends on the worker with the largest
workload, we define the reward function as follows:

R (s,a) =−[max
j

d

∑
i=1

qi, j +max
j

d

∑
i=1

ri, j]

Objective. Based on the above-defined MDP, our objec-
tive is to find a policy π(S) → A that maps states to ac-
tions, which maximizes the expected cumulative reward
E
[
∑

T
t=0 R (St ,At)

]
.

A conventional solution to solve the above problem is
dynamic programming. However, it does not work well in
practice given the curse of dimensionality (the number of
iterations in this problem), not to mention the fact that some-
times it is difficult to retrieve the entire dataset in advance
from the streaming data and hard to predict the number of
training iterations. Herald focuses on single batch schedul-
ing, i.e., finding a quality action for the current state to get a
high reward. Therefore, both the pull operation and the push
operation perform on demand, and existing cache systems
(like HET [31]) work with on-demand embedding pulls by
design. Moreover, delaying the push operation after retrieving
the batch inputs may be different from the practice, where the
embedding push operation happens during the synchroniza-
tion of the previous iteration. According to our analysis, the
push action (Q) is mainly affected by the sample assignment.
Therefore, in practice, we can decide on the push operation
with an early sample assignment for the next iteration.

Herald scheduling quality
Herald scheduling time
Brute-force search scheduling time

Sc
he

du
lin

g
qu

al
ity

0

0.5

1.0 Scheduling tim
e (m

s)1

102

104

Num. of workers
2 3 4 5 6 7 8 9 10 11 12

Figure 20: Herald vs. brute-force search (scheduling time is
in log scale).

B Point-to-point Embedding Synchronization
In this paper, we follow the same distributed cache model as
HET’s [31], where each worker only communicates with PS.
In this cache model, embedding synchronization requires at
least two steps, one worker push and one worker pull. We
can reduce the synchronization path to one step by direct
P2P synchronization between two workers. Moreover, P2P
embedding synchronization can eliminate the potential net-
work bottleneck caused by the PS architecture [41]. Herald
can support P2P embedding synchronization by distinguish-
ing synchronization targets during the communication plan
generations. These targets finally become a receiving commu-
nication plan to indicate which embeddings would be received
in an iteration for each worker.

C Herald vs. Brute-force Scheduling
To evaluate the effectiveness of Herald scheduler, we also im-
plement a scheduler that leverages brute-force search as the
baseline. The brute-force search scheduler explores all possi-
ble allocations and returns an allocation that incurs minimal
embedding transmissions. Since the search space expands ex-
ponentially with the number of workers and per-worker batch
size, we restrict the per-worker batch size to 1. We define the
scheduling quality of Herald as the ratio of the number of
embedding transmissions incurred by the brute-force search
scheduler to that incurred by Herald.

We measure the scheduling quality and the scheduling time
across different numbers of workers and report their average
values for 90 iterations after 10 warm-ups used to fill the
cache. For easy parallelism, the thread pool size is identical to
the number of workers for both schedulers. Figure 20 demon-
strates that Herald can achieve a scheduling quality from 0.45
to 0.57, indicating that there is still room to exploit embedding
scheduling in the future. In terms of scheduling time, Herald
consistently preserves a low scheduling overhead (< 0.7 ms).
Meanwhile, the scheduling time of the brute-force search
scheduler increases rapidly, consuming up to a few seconds
when there are more than 10 workers in this tiny search space.
This result reveals that the brute-force search scheduler is
impractical for large-scale DLRM training.

1156 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

DISTMM: Accelerating Distributed Multimodal Model Training

Jun Huang∗

The Ohio State University
Zhen Zhang

Amazon Web Services
Shuai Zheng
Boson AI, Inc

Feng Qin
The Ohio State University

Yida Wang
Amazon Web Services

Abstract

Multimodal model training takes multiple types of inputs to
process with differently structured submodules, and aggre-
gates outcomes from the submodules to learn the relationship
among various types of inputs, e.g., correlating text to image
for text-to-image generation. The differences of submodule
architectures as well as their inputs lead to heterogeneity in
terms of computation efficiency. Failing to account for such
heterogeneity, existing distributed training systems treat all
submodules as a monolithic entity and thus have sub-optimal
performance. Moreover, the outcome aggregation phase in-
troduces cross-sample dependencies with contrasting positive
and negative sample pairs (i.e., contrastive loss). Such de-
pendencies make the existing pipeline parallelism scheduling
algorithms not applicable for multimodal training with con-
trastive loss.

To address the limitations of existing solutions, we propose
DISTMM. For a given multimodal model, DISTMM exploits
the heterogeneity among submodules, applying different dis-
tributed parallelism strategies for each submodule, e.g., using
Tensor Parallelism for a computation-intensive submodule,
and Data Parallelism for a submodule with a small number
of parameters. DISTMM balances the computation of par-
allelized submodules to reduce the computing resource idle
time of waiting for the slowest submodule. DISTMM further
optimizes the locality of submodules by leveraging the hetero-
geneous bandwidth of interconnections among accelerators.
To address the limitation of existing pipeline execution sched-
ules, we propose a new pipeline execution primitive, called
batch-sync instruction, and a corresponding schedule, called
DISTMM-Pipe. We build a prototype of DISTMM and eval-
uate it with existing solutions on models with various sizes
ranging from 1.1 billion to 26 billion parameters and observe
1.32-3.27× speedup over Megatron-LM.

∗Work was done when interned at AWS.

1 Introduction

Deep learning has recently witnessed the rise of foundation
unimodal models focused on processing unimodal data such
as GPT [4], LLaMA [36] and ViT [9], where models are pre-
trained on web-scale text or image data. However, real-world
data typically do not exist in isolation so human experience
itself is multimodal. For example, a movie is a blend of visu-
als, dialogue, and music. To bridge the gap between isolated
data modalities, multimodal models have emerged as a trans-
formative paradigm, which offers a holistic representation
to enhance performance in real-world scenarios, capturing
intricate relationships that remain elusive to unimodal models.

A multimodal model has unique characteristics in terms
of model structure, which consists of multiple submodules.
Each submodule has a specific functionality, e.g., transform-
ing image inputs to feature vectors, or combining multiple
feature vectors, etc. As the functionalities are different, the
architecture and the scale of the submodules vary accord-
ingly. For example, Contrastive Language–Image Pre-training
(CLIP) [29] adopts a deeper and wider structure for process-
ing image inputs, while using a relatively shallow design of
a submodule for transforming text inputs. Furthermore, the
data input sizes also vary across submodules, e.g., the im-
ages in Common Objects in Context (COCO) dataset [20]
have an input size of 512×512 pixels, while the input length
of corresponding text captions is from 5 to 20 words. The
heterogeneity among submodules leads to different demands
of computing powers. However, existing distributed training
systems are mainly designed for training unimodal models
with homogeneous computing power requirements, leading
to suboptimal performance in multimodal model training.

Moreover, multimodal models require a large number of
data samples to compute the contrastive loss function due
to model quality requirements [5]. In the distributed train-
ing setting, scaling out multimodal model training with data
parallelism and tensor parallelism linearly increases the max-
imum batch size for contrastive loss. However, scaling out
multimodal model training with pipeline parallelism results

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1157

in a bounded maximum batch size for contrastive loss per
forward and backward. The absence of pipeline parallelism
support hinders the scalability of the multimodal model both
in training speed and model size.

To address the aforementioned challenges (more details
in Sec 3) for efficient multimodal model training, this paper
proposes DISTMM, which is, to the best of our knowledge,
the first distributed training system specifically designed for
multimodal models. DISTMM introduces four components
that work collaboratively to optimize multimodal model train-
ing. For a given multimodal model training task and a cluster
configuration, the modality-aware partitioner of DISTMM
adaptively applies parallelism strategies for different submod-
ules to minimize the overhead from parallelization. With
efficient parallelism for each submodule, the load balancer
redistributes the training data to ensure balanced computa-
tions among the submodules, which minimizes the computing
resource idle time of waiting for the slowest submodule. The
placement manager then assigns devices for each submodule
based on the parallelism solution and the interconnect topol-
ogy of devices, so that DISTMM can utilize heterogeneous
bandwidth. Finally, to achieve a targeted sample size required
by the training task, the pipeline executor generates the exe-
cution schedule (i.e., when and what to do for computations,
communications, or memory movements) for combining out-
puts across multiple micro-batches of input data.

In summary, we make the following contributions:
• We propose an idea to partition and parallelize the submod-

ules of a multimodal model based on their modalities and
redistribute the training data, resulting in balanced compu-
tation among submodules with high computation efficiency.

• We design a submodule placement mechanism to reduce
the communication volume by aligning the model’s hetero-
geneity with the heterogeneous bandwidth in the cluster.

• We propose a new pipeline parallelism instruction to in-
crease the supported batch size by fully utilizing the mem-
ory capacity, and a corresponding pipeline parallelism
schedule to avoid dependency overheads introduced by the
new instructions.

• Based on the above ideas, we build DISTMM and evalu-
ate it on eight Amazon EC2 p3.16xlarge instances with
64 GPUs. Our results show that DISTMM achieves 1.32-
3.27× speedup over Megatron-LM on three structurally
different multimodal models, i.e., CLIP, CoCa, and LiT.

2 Background

2.1 Unimodal and Multimodal Models

Unimodal models. The unimodal models are designed to
interpret and learn from one specific type of data modality,
e.g., text, images, or audio. The model architecture is thus
homogeneous with sequential execution order for consistently

processing a single type of data. A typical unimodal model
architecture consists of multiple transformer-based layers [4,
7, 36, 37]. Within each layer, the structure is the same, i.e.,
attention mechanisms and feed-forward networks.

Multimodal models. On the other hand, multimodal mod-
els aim to combine and align multiple data modalities, e.g.,
processing image and text data simultaneously. It relies on
specialized architectures or configurations for processing each
modality and aligning the processed feature vectors [9,29,38].
Typically, a multimodal model consists of multiple submod-
ules each processing one modality independently. As an ex-
ample, CLIP [29] employs two specialized modal submodules,
namely, text and image. The image submodule is a Vision
Transformer (ViT) [9] while the text submodule is a tradi-
tional Transformer submodule [37]. On top of multiple modal
submodules, the modality interactive submodule takes the
outputs from each modal submodule to compute the corre-
lation among them. An exception is the Multimodal Large
Language Model (MLLM) [1, 21, 41], whose LLM submod-
ule integrates both the functionality of modality interactive
submodule and text modal submodule.

2.2 Multimodal Model Training
To perform various multimodal tasks, multimodal models re-
quire different learning approaches. Fusion models integrate
multimodal data to perform tasks including classification, de-
tection, or prediction. This integration is either conducted
through contrastive learning or simply achieved by fusing
the features through operations such as cross-attention [38].
Co-learning models leverage information from one modality
to improve or supplement the learning in another modality. It
is achieved by contrastive learning to identify a unified rep-
resentation containing multimodal information. Generative
models generate content based on contextual understanding
across multiple data modalities. For generative models such
as MLLM, modal submodules are trained separately with
contrastive learning first, and then the whole model will be
trained with multimodal instruction tuning [21, 41].

Contrastive learning. Out of all multimodal learning meth-
ods used in various multimodal models, contrastive learning is
the most fundamental learning method. Since aligning the rep-
resentation across features of different modalities is crucial for
the downstream task, contrastive learning generates positive
and negative samples to contrast them to learn a robust uni-
fied representation across different modalities. Compared to
cross-modal learning or reconstruction-based representation
learning, contrastive learning is more effective by bridging
the processing abilities between different modal submodules
according to previous study [38]. Most multimodal models
adopt contrastive learning [5] as the only training method or
combine it with other unimodal learning methods.

Unlike only comparing each sample’s output feature vector

1158 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

with the corresponding label in unimodal learning, contrastive
learning systematically compares the feature vector of each
data point with all feature vectors across diverse modalities.
Specifically, positive pairs are constructed by comparing the
feature vectors of a single sample across different modalities,
affirming their shared identity. Conversely, negative pairs are
formed by comparing feature vectors from distinct samples
and modalities, establishing dissimilarity. Multimodal models
learn effective representations and understand relationships
between modalities by distinguishing positive and negative
pairs. To achieve this, the core of contrastive learning is to
compute a similarity matrix, which measures pairwise sim-
ilarities between feature vectors. During multimodal model
training, the loss of contrastive learning maximizes the sim-
ilarity scores of positive pairs and minimizes the similarity
scores of negative pairs. For example, CLIP model performs
contrastive learning by using dot products of their text and
vision submodules’ feature vectors to compute a similarity
matrix. With similarity matrix, the objective of CLIP training
is to minimize a cross-entropy loss over similarity scores.

The effectiveness of contrastive learning relies on a large
number of positive and negative samples from feature vectors
generated by the same model update [2]. For instance, Sim-
CLR [6] used a batch size of 4096 to generate 4096 positive
samples and 33,554,432 negative samples. CLIP [29] used a
batch size of 32,768 to generate 32,768 positive samples and
2,147,483,648 negative samples. Some low-cost alternatives
utilize feature vectors from the previous model updates to
approximate comparison in a large batch size. One problem
of such approximation is the downgraded model quality since
feature vectors are no longer consistent. PIRL [24] used a
memory bank to store the previous feature vectors. Mean-
while, MoCo [12] replaced the memory bank with a queue of
feature vectors generated by its momentum encoders. Accord-
ing to theory in [17], a larger number of consistent positive
and negative samples enhance the model’s discriminative
power, generalization ability, and understanding of complex
cross-modal relationships.

3 Motivation

This section discusses the problems in existing solutions and
corresponding objectives in designing a multimodal model
training system. The existing solutions did not take the unique
model architecture and special learning paradigm of multi-
modal models into account.

3.1 Multimodal Model Characteristics.

Heterogeneous submodules. As discussed in Section 2.1,
multimodal models have multiple modal submodules and
one or more modality interactive submodules. Influenced by
the design choices and architectural complexity, the sizes

(a) Vision > Text

Modality
Interaction

(b) Vision = Text

Text data

(c) Text > Vision

Layers VisionText

Modality
Interaction

Modality
Interaction

Image data Text data Image data Text data Image data

Text Vision Text Vision

Figure 1: Three categories of vision-language models. The
height of each rectangle denotes the number of layers and
the width denotes hidden dimension of each layer. Text and
Vision denote text submodule and vision submodule.

of submodules in multimodal models can vary significantly,
which introduces heterogeneity.

Each modality (e.g., text, image, and audio) has unique char-
acteristics and features that may require specialized process-
ing to effectively capture modality-specific patterns. The fo-
cus of the multimodal task may also influence the processing
strategy, which requires more understanding of fine-grained
details on one modality than on others. The inherent com-
plexity of each modality and the task requirements result
in different computational demands among the modal sub-
modules. Figure 1 illustrates three different archetypes of
vision-language models. CLIP model belongs to Figure 1(a).
The heterogeneity of CLIP model is driven by its vision-
focused requirements, leading to a larger vision submodule.
The LiT [10] model belongs to the category of Figure 1(c),
whose text submodule has more parameters. The Contrastive
captioner (CoCa) [38] model falls in the category of Fig-
ure 1(b), which uses equal-sized vision and text submodules.

Heterogenous submodules have varied GPU utilization.
The parameter size differences result in varied hidden di-
mensions between heterogenous submodules, which lead to
differently scaled operations to execute. The scale of opera-
tions affects the choices of kernels for underlying libraries.
Large-scale operations are likely to be represented with more
efficient kernels than small-scale operations. Additionally,
fixed overheads such as kernel launches and memory trans-
fers are amortized by large-scale operations. The training
efficiency is limited by the submodules with fewer parame-
ters, as they may not utilize the hardware as efficiently as the
larger submodules.

Imbalanced input sizes. Depending on the modality type, the
input sizes can vary significantly as well, e.g., the text input
length is 77 words while the image input size is 512×512
pixels for CLIP training. Larger input sizes lead to more effi-
cient computation by leveraging the parallelism and vector-
ization capabilities of the hardware. This results in optimized
memory utilization and computational throughput. Within the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1159

multimodal model consists of submodules with imbalanced
inputs, the training efficiency is limited by the submodule
with smaller input sizes.

Large batch size requirement. According to the observa-
tions in [5, 29, 39] and the theory in [17], a larger number of
negative and positive samples are beneficial for learning ro-
bust and generalizable representations in contrastive learning,
which directly results in a trained model with higher quality
(i.e., more accurate, more robust, and more reliable). Further-
more, prior study [6] shows that training with a larger number
of negative and positive samples not only converges faster
but converges to a model that performs better, no matter how
long it is trained. Increasing the batch size for the similarity
matrix is the only way to generate the sufficient number of
negative and positive samples without bringing inconsistency.
For example, given a batch size of N, there are N positive
pairs and N2 −N negative pairs in a similarity matrix. As a
result, multimodal model training in practice requires a large
batch size to ensure expected model quality.

3.2 System Challenges.
Although 3-dimension (3D) parallelism strategies (data, ten-
sor, and pipeline parallelism) are effective for most unimodal
models, it is inefficient to apply them to train multimodal
models. We first lay out the reasons why applying the 3D
parallelism to multimodal model training is inefficient, then
conclude with the objectives on how to optimize 3D paral-
lelism for multimodal models.

Memory overhead and imbalanced computation of Data
Parallelism (DP). For models that can easily fit into one de-
vice, data parallelism is the go-to strategy to parallelize the
training. Data parallelism only partitions batch dimensions
and evenly distributes the data batch to all devices. Applying
data parallelism to a multimodal model training results in all
submodules being colocated on each device. Due to the colo-
cation, the heterogeneity and imbalanced input sizes among
different submodules lead to uneven computation scales and
hardware utilization. Moreover, the colocation of different
submodules also reduces the available memory per submod-
ule, which limits the batch size for computation and eventu-
ally reduces the computation efficiency. In conclusion, the
heterogeneous nature of the multimodal model cannot be
fully utilized under the colocation solution of data parallelism.
Therefore, it is needed to have a non-colocation solution to
support more efficient multimodal model training.

Unnecessary partition overheads of Tensor Parallelism
(TP). For models that cannot fit into a single device, tensor
parallelism is used to evenly split the model and parallelize
the model partition’s execution. For multimodal model train-
ing, tensor parallelism homogeneously partitions submodules
with different sizes according to the entire model’s memory
consumption. Since the smaller submodule only contributes

little to the entire model’s memory consumption, tensor paral-
lelism will overly partition the smaller submodule, leading to
unnecessary overhead. To address this issue, it is needed to
have an adaptive partitioning method that considers the model
sizes and structures of different submodules.

Unexpected training semantics with Pipeline Parallelism
(PP). As discussed in 3.1, multimodal model’s model qual-
ity is associated with the training batch size. However, all
existing pipeline parallelism schedules, including 1F1B [11],
GPipe [13], and PipeDream [25] split a global batch into
multiple micro-batches and conduct pipelined forward and
backward step on every micro-batch. Applying such pipeline
parallelism to multimodal model training results in model
quality degradation compared to non-pipeline parallelism ap-
proaches. Therefore, a new pipeline parallelism scheme for
multimodal model training is needed.

4 DISTMM Overview

DISTMM is a distributed training system optimized for mul-
timodal model training workloads by tackling the challenges
discussed in Section 3.2. The design of DISTMM improves
the computation efficiency of each submodule in a multi-
modal model, reduces communication overheads in multi-
node distributed training, and ensures the model quality when
pipeline parallelism is used for training large models. By
design, DISTMM treats submodules within a model sepa-
rately with independent parallelism strategies to maximize
efficiency. In addition, it aligns the computation duration of
each submodule to minimize the cost of interactions among
submodules. As shown in Figure 2, DISTMM has four com-
ponents, which are Modality-aware partitioner, Data load bal-
ancer, Heterogeneity-aware placement manager, and Pipeline
executor. We overview the components in the following text
and leave the detailed design and analysis in Section 5.

Modality-aware partitioner. Modality-aware partitioner
splits the whole multimodal model into submodules based on
their input modalities. The neural network architecture and
configuration of each submodule are typically different from
each other, due to the input modality differences, e.g., using
ViT [9] for vision inputs and BERT [7] for text inputs. Based
on the submodule sizes, Modality-aware partitioner applies
independent parallelism strategies to avoid overprovisioning
parallelism degrees for small submodules. Modality-aware
partitioner only handles model-level partitioning by trans-
forming model description input into submodule partitions,
leaving batch dimension partitioning to Data load balancer. In
principle, this allows DISTMM to maintain high computation
efficiency for each submodule.

Data load balancer. Without realizing the structural differ-
ences, a naive way is to assign the same amount of computing

1160 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Modality-aware Partitioner

Model

⊕

Submodule
partitions

Data Load Balancer

Data
RedistributionGbs: 72

Heterogeneity-aware Placement
Manager

Inter-node Network

Bs:3×24

Bs: 4×18

Pipeline Executor

x xForward pass and backward pass of submodule0 for micro-batch xx x Idle cycleForward pass and backward pass of submodule1 for micro-batch x

1 2 3 4 5 6 7 1 8 2 9 3 10 4 11 5 12 6 7 8 9 10 11 12
1 2 3 4 5 6 1 7 2 8 3 9 4 10 5 11 6 12 7 8 9 10 11 12
1 2 3 4 5 1 6 2 7 3 8 4 9 5 10 6 11 7 12 8 9 10 11 12
1 2 3 4 1 5 2 6 3 7 4 8 5 9 6 10 7 11 8 12 9 10 11 12

1 2 3 4 5 6 7 1 8 2 9 3 10 4 11 5 12 6 7 8 9 10 11 12
1 2 3 4 5 6 1 7 2 8 3 9 4 10 5 11 6 12 7 8 9 10 11 12
1 2 3 4 5 1 6 2 7 3 8 4 9 5 10 6 11 7 12 8 9 10 11 12
1 2 3 4 1 5 2 6 3 7 4 8 5 9 6 10 7 11 8 12 9 10 11 12

1 2 3 1 4 2 5 3 6 4 5 6
1 2 1 3 2 4 3 5 4 6 5 6

1 2 3 1 4 2 5 3 6 4 5 6
1 2 1 3 2 4 3 5 4 6 5 6

1 2 3 1 4 2 5 3 6 4 5 6
1 2 1 3 2 4 3 5 4 6 5 6

1 2 3 1 4 2 5 3 6 4 5 6
1 2 1 3 2 4 3 5 4 6 5 6Mbs: 3

#Mb: 6

1 2 3 4 5 6 7 1 8 2 9 3 10 4 11 5 12 6 7 8 9 10 11 12
1 2 3 4 5 6 1 7 2 8 3 9 4 10 5 11 6 12 7 8 9 10 11 12
1 2 3 4 5 1 6 2 7 3 8 4 9 5 10 6 11 7 12 8 9 10 11 12
1 2 3 4 1 5 2 6 3 7 4 8 5 9 6 10 7 11 8 12 9 10 11 12

Mbs: 2
#Mb: 12

⊕ Interactive Computations
4 pipelines

3 pipelines

Figure 2: DISTMM overview.

devices and utilize the same batch size across all the sub-
module partitions of different modalities. This can easily lead
to computing resources idling at the interactive computation
phase because some submodules need fewer computation
cycles than others. To achieve overall high computation ef-
ficiency, submodule partitions require a careful design for
the resource allocation and adjustment of the batch size for
each modality input. Data load balancer takes submodule
partitions and cluster configuration as inputs, assigning dif-
ferent numbers of devices to different submodule partitions
based on their estimated memory consumption and measured
execution time. To minimize device idle time introduced by
the heterogeneous resource placement, Data load balancer
redistributes batch sizes of different modalities to balance the
computation duration.

Heterogeneity-aware placement manager. Computing
clusters typically have much higher bandwidths for intra-node
communication (e.g., NVLink) than that for inter-node com-
munication (e.g., Ethernet). Heterogeneity-aware placement
manager groups submodule partitions within the same modal-
ity and places them close to each other to exploit the high-
bandwidth links for frequent communication. Furthermore,
Heterogeneity-aware placement manager places submodule
partitions from different modalities on separate nodes so that
the infrequent communication volume (e.g., gradient AllRe-
duce) on low-bandwidth links will be reduced.

Pipeline executor. Pipeline executor generates a cus-
tomized pipeline parallelism execution schedule for each sub-
module. The customized schedule maintains the semantics
of the training procedure and minimizes hardware idle time.
Pipeline executor inserts mid-point synchronization to main-
tain the semantics of the modality interaction among different
modal submodules, in which each submodule gathers activa-
tions of prior micro-batches (from last mid-point synchroniza-

tion till now) from submodules with different modalities and
itself to complete the modality interaction.

An illustrated example. Figure 2 provides an example of
training a vision-language model with DISTMM in a cluster
with 64 devices across eight nodes. Assuming the multimodal
model has more parameters for encoding image data (yellow)
than that of processing text inputs (blue).

Modality-aware partitioner assigns different parallelism
strategies for each modal submodule, shown in the top-left
part. Different submodules are replicated differently (four
versus three) with different numbers of devices by Data load
balancer, so that submodules can complete the computation
of different batch sizes (18 versus 24) for a given global batch
at the same time.

Heterogeneity-aware placement manager deploys vision
submodules and text submodules on different devices and
groups the devices with the same modality, which reduces
both intra-node and inter-node communication volume.

Pipeline executor generates customized pipeline execution
plans for each device which integrates a synchronization in-
struction to preserve the same training semantics with non-
pipeline parallelism solution. The synchronization instruction
gathers feature vectors to conduct interactive computation. In
this case, a gathered global image feature vector consists of 3
pipeline parallelism groups’ 4 previous image feature vectors,
where each image feature vector’s batch size is 2. Similarly, a
gathered global text feature vector consists of 4 pipeline paral-
lelism groups’ 2 previous text feature vectors, where each text
feature vector’s batch size is 3. The workloads on submodules
for different modalities are balanced by Data load balancer
which ensures that they arrive at the synchronized interactive
computation at the same time.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1161

5 DISTMM Design

5.1 Modality-aware Partitioner

The heterogeneity of the model structure and the difference of
the inputs across modalities are the root cause of the low over-
all computation efficiency in multimodal training (detailed
in Section 3.1). Modality-aware partitioner therefore applies
adaptive partition strategy to improve the computation effi-
ciency, which accounts for heterogeneity among submodules.

Adaptive Partition Allocation. We design a new partition
strategy that fully utilizes the heterogeneous structure with the
multimodal model. Modality-aware partitioner takes model
definition as an input, which contains the configuration of
each modal submodule and modality interactive submodule.

Modality-aware partitioner first parallelizes submodules
with independent parallelism strategies to satisfy memory
constraints while maintaining low overheads. As discussed
in 3.1, modality interactive submodule focuses on aligning
high-level information, which does not require a complex
computation. It therefore has a highly parallelizable nature.
So Modality-aware partitioner equally distributes the compu-
tation load of modality interactive submodule to every device.

Modality-aware partitioner then individually applies adap-
tive partitioning to each modal submodule to maximize effi-
ciency. This component follows the common practice [15,34]
of efficiently training an unimodal model, which involves
determining the minimum parallelism degree required and
selecting parallelism strategies accordingly, with careful con-
sideration of the model size. For modal submodules that can
fit into a single device, our approach advocates the use of data
parallelism to maximize efficiency. Alternatively, for modal
submodules that cannot fit within a single device, employ-
ing tensor parallelism is recommended. Notably, for modal
submodules that surpass the capacity of a single node, our
strategy favors pipeline parallelism, as extant research [26]
indicates that extending tensor parallelism across nodes in-
troduces significant overheads. The resulting model partition
on each device after Modality-aware partitioner is an adap-
tively partitioned modal submodule and evenly parallelized
modality interactive submodules.

An illustrative example. We construct examples with hy-
pothetical performance numbers to illustrate how Modality-
aware partitioner works. Figure 3 (a) shows an example of
applying the tensor parallelism in a homogeneous way for
the entire model. This homogeneous way of applying tensor
parallelism leads to the sequential execution of the first and
smaller submodule (blue colored) with 10% GPU utilization,
and the second and larger submodule (orange colored) with
30%. As a result, its average GPU utilization for each GPU is
2 ·10%+3 ·30% = 22%, where the smaller submodule’s 10%
utilization is the performance bottleneck. Figure 3 (b) shows
the partition result by Modality-aware partitioner, where the

GPU1

(a) Colocated solution

⊕

GPU2

⊕

GPU3

⊕

GPU4

⊕

30%

(b) DistMM solution

30%

30%

30%

10%

10%

10%

10%

35%

35%

35%

20%

1 2 3 4 5

GPU1

⊕

GPU2

⊕

GPU3

⊕

GPU4

⊕
1 2 3 4 5

GPU1

GPU2

GPU3

GPU4

GPU1

GPU2

GPU3

GPU4

Efficiency breakdown

Time

Figure 3: Modality-aware partitioner example. Placements
(on left) describe how submodules are partitioned.

⊕
denotes

distributed modality interactive submodules. Efficiency break-
down (on right) includes each submodule’s duration with its
GPU utilization. The x-axis stands for each submodule’s du-
ration and y-axis represents the GPU id. Percentages in the
duration stand for each submodule’s GPU utilization.

3 3

GPU1

(a) Colocated solution

⊕
3 3

GPU2

⊕
3 3

GPU3

⊕
3 3

GPU4

⊕

40%

(b) DistMM solution

40%

40%

40%

20%

20%

20%

20%

1 2 3 4 5

45%

45%

45%

45%

1 2 3 4 5

12

GPU1

⊕

4

GPU2

⊕

4

GPU3

⊕

4

GPU4

⊕ GPU1

GPU2

GPU3

GPU4

GPU1

GPU2

GPU3

GPU4

Efficiency breakdown

Time

Figure 4: Data load balancer example. Placements (on left)
describe the data sample assignment for each submodule.
Numbers inside the submodule are the number of assigned
data samples per batch.

smaller submodule is not partitioned and the larger submod-
ule is partitioned into three parts via the tensor parallelism.
The separation of submodules and adaptive tensor parallelism
partitioning allow the smaller submodule to achieve a much
better GPU utilization. The GPU utilization of the smaller
submodule can be improved from 10% to 20% due to the
increase in computational workload. The improved average
GPU utilization helps reduce the duration of the entire model.
However, it also introduces additional overhead of imbalanced
duration among GPUs (i.e., GPU1 versus other GPUs).

5.2 Data Load Balancer
While the adaptive partition strategy reduces partition over-
heads, it does not address the heterogeneity of inputs.
Modality-aware partitioner does not assign the batch size of
input data to submodule partitions. Different modal submod-

1162 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ule partitions have different computation patterns and inputs
which results in different execution durations and memory
consumptions under the same batch size. Without considering
the differences, some modal submodules may finish first and
have to wait for others to gather the outputs.

We view Data load balancer as a resource manager, and
the goal is to balance the computing duration among differ-
ent modal submodules under memory constraints. Data load
balancer takes a cluster setup, i.e., the number of nodes and
the number of devices per node, and training configuration,
i.e., the model partitions generated by Modality-aware par-
titioner and the global batch size, as inputs. Note that each
model partition consists of an adaptively partitioned modal
submodule for a specific modality and an evenly partitioned
modality interactive submodule. Data load balancer produces
a resource assignment plan, which assigns the number of de-
vices and the data batch size for each model partition. This
resource assignment problem is equivalent to minimizing the
time taken by the slowest model partition, and has the opti-
mal substructure property: a resource assignment plan that
maximizes throughput is composed of resource assignments
for partial modalities that maximize throughput for smaller
clusters. DISTMM uses dynamic programming to find the
optimal solution.

An illustrative example. We construct examples with hy-
pothetical performance numbers to illustrate how Data load
balancer works. Figure 4 provides an example resource as-
signment plan from Data load balancer and compares it with a
colocated plan. The colocated plan colocates multiple modal
submodules and replicates each submodule onto all devices
(Figure 4 (a)). In contrast, Data load balancer together with
Modality-aware partitioner separates modal submodules with
different modalities and replicates them differently, i.e., the
smaller submodule has one replica, and the larger submodule
has three replicas (Figure 4 (b)). With a smaller number of
replicas for each submodule, the number of samples per de-
vice is increased, especially for the smaller submodule. Thus,
the computation efficiency improves for both submodules.

5.3 Heterogeneity-aware placement manager
The generated resource assignment plan from Data load bal-
ancer does not include the model placement to specific de-
vices. Heterogeneity-aware placement manager deploys the
resource assignment plan by placing the submodules in a
communication-efficient way. It takes bandwidth heterogene-
ity into consideration to optimize the communication over-
head in distributed multimodal model training.

5.3.1 Intra-submodule placements

Heterogeneity-aware placement manager prioritizes the com-
munication patterns within a single modal submodule for
placement assignments. The priority is determined by the

communication frequency and the data volume transmitted in
each communication pattern. Heterogeneity-aware placement
manager generates placement assignments where communi-
cations with higher priority (TP) are conducted in the network
with higher bandwidth (NVLinks within node) and communi-
cations with lower priority (PP and DP) are conducted in the
lower bandwidth network (Ethernet).

5.3.2 Inter-submodule placements

As a non-colocated solution, Heterogeneity-aware placement
manager only places one single-modality partition together
with evenly parallelized modality interactive submodules on
a single device, which reduces the communication volume
involved in modality interaction and gradient synchronization.

Overhead reduction in modality interaction. As described
in section 2.2, multimodal model’s modality interaction con-
sists of similarity matrix computation. For the multimodal
models with vision modality and text modality, the similarity
computation on each device consists of two dot products in
the distributed setting, the first dot product is between the
local image feature vectors and gathered entire text feature
vectors and the second dot product is between the local text
feature vectors and gathered image feature vectors. With non-
colocated placement, since there is only one modal submodule
on each device, the similarity computation is reduced to one
dot product between the feature vectors of local modality
and the gathered feature vectors of opposite modality. So
Heterogeneity-aware placement manager halves the commu-
nication volume of modality interaction compared with the
colocated placement since image and text feature vectors
share the same tensor shape.

Table 1: The list of symbols frequently used in the paper.

Symbol Description
Mbs Micro-batch size
Rbs Required micro-batch size for modality interaction
K Required number of micro-batches (K = Rbs/Mbs)
N Total number of GPUs
P The number of pipeline parallelism degree
M Memory capacity per GPU
Ms Static (Weight, gradient, state) memory consumption
Mg Gradient memory consumption
Ma Activation memory consumption

Note: Above symbols are of the whole multimodal model. We add index 1
and 2 to the above symbols to stand for the first and second submodules.

Overhead reduction in gradient synchronization. For com-
munication in gradient all-reduce, Heterogeneity-aware place-
ment manager reduces the communication volume from the
entire model’s gradients in colocated solution to the gradients
of the submodules hosted in this specific device. In the whole

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1163

3 3

⊕
3 3

⊕
3 3

⊕
3 3

⊕

12

⊕

4

⊕
4

⊕

4

⊕
(a) Gradient Allreduces in colocated solution

(b) Heterogenity-aware placement

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

GPU1

GPU2

GPU3

GPU4

GPU1

GPU2

GPU3

GPU4

Duration breakdown

Time

Figure 5: Communication reduction example. Placements
(on left) describe the patterns of gradient AllReduce (green
and red) under different placements. Duration breakdown (on
right) includes the computation and communication durations
within each device. The x-axis stands for each submodule’s
computation or communication duration.

system’s perspective, the volume is reduced from Mg1 +Mg2
to max(Mg1,Mg2). As shown in examples with hypothetical
duration numbers described by Figure 5, gradient communi-
cation volume is reduced from the whole model’s gradients
(red and green) to only the gradient of the larger submod-
ule (green). The gradient all-reduce volume does not change
with the mini-batch size. The computing duration increases
when the mini-batch size increases, which further reduces the
communication duration ratio in total training time.

5.4 Pipeline Executor

When applying existing pipeline parallelism to multimodal
model training, the available memory after static memory
consumption (weight, gradient, and state) is divided into P
blocks to store P micro-batches’ activation to ensure effi-
cient pipelining. Since static memory consumption and ac-
tivation are divided into P partitions, the maximum micro-
batch size is ((M−Ms/P)/(Ma/P))/P = (M−Ms/P)/Ma),
which is bounded by M/Ma. Such bounded micro-batch size
is much smaller than what is needed for training a qual-
ity multimodal model in practice. Note that Table 1 shows
the meaning of the symbols used in this paper. As a com-
parison, data parallelism’s maximum micro-batch size is
(M ·N−Ms ·N)/Ma) =N ·(M−Ms·)/Ma) and the tensor par-
allelism’s maximum micro-batch size is (M ·N −Ms)/Ma),
which means scaling out the cluster size N can linearly in-
crease the maximum micro-batch size.

To address this issue, we propose a new instruction in
pipeline parallelism called batch-sync instruction used by the
Pipeline executor. This instruction can preserve the required
semantics by ensuring the modality interactive submodule is
executed with the needed large batch size. We also propose
a new pipeline parallelism schedule called DISTMM-Pipe
which adopts batch-sync instruction without introducing any

extra idle cycles.

Batch-sync instruction. Given a model quality requirement
of batch size Rbs and K = Rbs/Mbs, Pipeline executor’s
batch-sync instruction consists of the following four steps:
(1) the memory movement step that concatenates K feature
vectors computed by previous K forward instructions into
a continuous feature vector, (2) the forward pass of modal
interactive submodule is executed with the continuous feature
vector, (3) the backward pass of modality interactive submod-
ule is executed, which produces gradients corresponding to
the continuous feature vector, and (4) the memory dispatching
step that dispatches the continuous gradients to K gradients
corresponding to the feature vectors of each micro-batch.

However, integrating batch-sync instruction to pipeline par-
allelism schedule introduces overhead due to dependency is-
sues. Since the batch-sync instruction depends on the previous
forward instructions and vice versa, the backward instructions
depend on the batch-sync instruction. The batch-sync instruc-
tion works as a barrier between the involved forward and
backward instructions. In 1 forward and 1 backward (1F1B)
schedule [25], batch-sync instruction can only be inserted be-
tween the 1 forward and 1 backward of a single micro-batch
due to dependency, which limits the maximum batch size for
modality interaction to a single micro-batch. In GPipe sched-
ule [13], batch-sync instructions can be inserted between the
required number of forward and backward instructions. As
shown in Figure 6, applying the batch-sync instruction with-
out a customized schedule results in dependency issues, where
forward and backward instructions are separated by the corre-
sponding batch-sync instruction and cause extra idle cycles.

DISTMM-Pipe schedule. To bypass the dependency barrier
so as to mitigate the overhead introduced by the batch-sync
instruction, we propose DISTMM-Pipe schedule. DISTMM-
Pipe launches 2 ·K micro-batches with Mbs/2 as the micro-
batch size for each gradient accumulation cycle. The doubled
micro-batches bypass the dependency barrier since each batch-
sync instruction only introduces dependency issues between
K forward and backward instructions. As shown in Figure 6,
after each batch-sync instruction, backward instruction and
forward instruction belonging to different K micro-batches are
executed in an interleaved way under DISTMM-Pipe sched-
ule, which ensures there are no extra idle cycles caused by
dependency issues.

In terms of model quality, Pipeline executor’s maximum
batch size to the modality interaction can be formulated as
((M−Ms/P)/(Ma/(2 ·P))) = (M ·P−Ms)/(2 ·Ma), which
grows linearly with the number of pipeline stages P. Com-
pared to existing pipeline parallelism’s maximum batch size
(M−Ms/P)/Ma which is bounded by M/Ma, Pipeline execu-
tor can preserve any model quality requirements by scaling
out the cluster size while existing pipeline parallelism cannot.

Schedule alignment. With the pipeline parallelism degree

1164 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5 6 7 1 8 2 9 3 10 4 11 5 12 6 13 7 14 8 15 9 161 0 1 1 1 2 1 3 1 4 1 5 1 6
1 2 3 4 5 6 1 7 2 8 3 9 4 10 5 11 6 12 7 13 8 14 9 151 0 161 1 1 2 1 3 1 4 1 5 1 6
1 2 3 4 5 1 6 2 7 3 8 4 9 5 10 6 11 7 12 8 13 9 141 0 151 1 161 2 1 3 1 4 1 5 1 6
1 2 3 4 S 1 5 2 6 3 7 4 8 S 5 9 6 10 7 11 8 12S 9 131 0 141 1 151 2 16S 1 3 1 4 1 5 1 6

P0
P1
P2
P3

flush

1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8
1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8

1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8
1 2 S 3 4 S 1 2 3 4 5 6 S 7 8 S 5 6 7 8

P0
P1
P2
P3

Dependency issue

flush

DistMM-Pipe
Overhead
reduction

Figure 6: Comparison between pipeline parallelism schedule with dependency issue and DISTMM-Pipe schedule. S stands for
batch-sync instruction. The modal quality requirement is 2 ·Mbs.

assigned by Modality-aware partitioner and resource assign-
ment plan by Data load balancer, Pipeline executor generates
the DISTMM-Pipe schedule for each modal submodule. The
schedules for different modal submodules are aligned through
batch-sync instructions, which have a gathering communica-
tion for the global similarity matrix. Since the computation
durations of each submodule are already balanced by Data
load balancer, this alignment will not introduce any overhead
caused by imbalanced durations between different schedules.

6 Implementation

We have built DISTMM with ∼2600 lines of code in Python.
DISTMM is built on top of PyTorch [28]. It provides simple
APIs to transform model scripts written for training on a
single device to distributed multi-node multi-device setups.
The goal of DISTMM is to minimize the user effort while
fully utilizing the hardware resources.

APIs. There are four types of APIs: partition annotation,
training loop, data loading, and initialization. Users anno-
tate each submodule with the partition annotation API to
allow DISTMM to partition them accordingly based on the
pattern described by annotation. The training loop API pro-
vides an integrated function that includes both forward and
backward computation. Users can use this integrated function
to train the model, instead of constructing the training loop
by themselves. For logging purposes, we provide hooks to
log the intermediate results, e.g., loss values. For loading data
samples correctly for load balancing purposes (Section 5.2),
users need to wrap their data loading procedure using the
data loading API. The data loading API provides the same
user interface as the one from PyTorch framework, allowing
a drop-in replacement for the training script with PyTorch.
Before the computation starts on the cluster, training scripts
are required to call the initialization API with configurations
of the cluster and the model.

Configuration. DISTMM includes the multimodal model
implementations on OpenCLIP [14] with DISTMM’s parti-
tion annotations. The implemented models can be launched
by specifying the model type in the training script. For models
that have not been implemented, users need to provide the

model description and add partition annotations to the corre-
sponding operations and submodules, which helps Modality-
aware partitioner to correctly recognize and partition the
whole model. Users need to replace forward and backward
calls in the training loop with DISTMM’s integrated func-
tions, which return the equivalent result as a single forward
and backward computation. For submodules with pipeline
parallelism partitioning, the actual computation is a sequence
of forward and backward computations under DISTMM-Pipe
schedule. Besides DISTMM’s forward and backward replace-
ment, users need to call DISTMM’s initialization and specify
the data source with DISTMM’s data loading API in the
training loop. Users also need to provide the environment con-
figuration including cluster size, node size, and GPU memory
limits for Heterogeneity-aware placement manager. To control
the partitioning process, users can provide a partition strategy
configuration including the partition strategy candidates and
corresponding partition degree range to limit the search or
simply specify a particular partitioning solution.

7 Evaluation

In this section, we seek to answer the following questions:
• How well does DISTMM perform on models with different

structures?
• How well does DISTMM perform on models ranging from

small scale to large scale?
• How effective is each component? Specifically, What is the

impact of Modality-aware partitioner on the efficiency im-
provement of submodules with different structures? What is
the impact of Data load balancer on the efficiency improve-
ment with fixed submodule partitions? What is the impact
of Heterogeneity-aware placement manager on reducing
inter-node communication volume with fixed submodule
partitions and fixed resource allocation plans?
Our experiments are conducted on a cluster of 8 Amazon

EC2 p3.16xlarge nodes where each node contains dual 24-
core Intel Xeon CPUs and 8 NVIDIA Tesla V100 (16GB)
GPUs. The GPUs within a node are connected with NVLinks.
The nodes are connected to 25 Gbps networks. All nodes run
Ubuntu 20.04, CUDA 11.6 and PyTorch 2.0.1.

We measure the iteration time of training three different

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1165

models, namely, CLIP [29], CoCa [38], LiT [39]. Each model
has unique characteristics in terms of the model structure.
Specifically, CLIP model, which is designed for image-text
retrieval (ITR), has a larger submodule for image modality
input; CoCa model, which is used in natural language for
visual reasoning (NLVR), has a relatively balanced (i.e., sizes
of the submodules are similar) submodules for image and text
inputs; LiT model, which is designed for visual question an-
swering (VQA), has a larger submodule for text inputs. These
selected models are representative, as they comprehensively
cover the design space for multimodal models with two input
data modalities, e.g., vision and language in our evaluation.

We further scale up the model sizes to study the system
performance characteristics according to scaling law [16]. In
our evaluation, we measure the system performance of model
sizes in three categories: 1) single-device scale: the model is
trainable on a single device; 2) single-node scale: the model
requires memory more than the capacity of a single device,
but the aggregated memory of devices in a single node is
sufficient; 3) multi-node scale: the model is only trainable on
multiple nodes. We summarize the configuration of models
in Table 2.

We use Megatron-LM [34] as the baseline. Megatron-
LM system provides state-of-the-art performance for training
transformer-based unimodal models. As elaborated in Sec-
tion 5.4, existing pipeline parallelism schedules cannot pre-
serve the semantics of the user-defined training configuration.
Therefore, we only use Tensor and Data Parallelisms from
Megatron-LM. According to the convention of multimodal
training for vision and language tasks, we use sequence length
of 77 words and images sized 336×336 pixels [9].

7.1 End-to-End Performance
As shown in Figure 7, for models sized at single-device scale,
DISTMM is 1.32–1.39× faster than Megatron-LM. These
models include CLIP(760M, 350M), CoCa(760M,760M),
and LiT(350M, 760M) 1. At this model scale, Megatron-
LM colocates two submodules in every GPU. In compari-
son, DISTMM uses Modality-aware partitioner to separate
submodules, and balances the computation workloads among
submodules via Data load balancer. DISTMM also optimizes
the placement with Heterogeneity-aware placement manager
to lower the communication cost.

For models that are not trainable on a single GPU, but can
be trained on eight GPUs on a single node, i.e., single-node
scale, DISTMM is 1.48–1.67× faster than Megatron-LM.
The evaluated models include CLIP(6.7B, 2.7B), CoCa(6.7B,
6.7B), and LiT(2.7B, 6.7B). Megatron-LM partitions two sub-
modules using the same tensor parallelism degrees. On the
other hand, DISTMM applies modality-aware partitioning
and assigns the most computation-efficient tensor parallelism
degree to each submodule depending on their parameter sizes.

1(X, Y) denotes the sizes of vision and text submodule, respectively.

When scaling the model size to multi-node scale, DISTMM
outperforms the baseline by up to 3.27×. The evaluation
includes CLIP(13B, 6.7B), CoCa(13B, 13B), and LiT(6.7B,
13B). For these models, we enable pipeline parallelism in
DISTMM using Pipeline executor. Megatron-LM cannot
maintain the batch size requirement of the training (de-
tailed in Section 5.4), thus only the tensor parallelism is
enabled. To support model sizes at the multi-node scale,
Megatron-LM uses tensor parallelism across multiple nodes,
e.g., CoCa (13B, 13B) is partitioned into 16 tensor paral-
lelism. Its 16 partitions are placed on two nodes. In compari-
son, DISTMM uses tensor parallelism within each node, and
leverages pipeline parallelism crossing nodes. Thus, we have
much lower communication overhead [27, 34] as compared
to Megatron-LM.

7.2 Effectiveness of Individual Components
To understand the sources of improvement, we designed a
sequence of experiments, each dedicated to activating a sin-
gle component of DISTMM at a time. We tailored the model
setup and cluster configuration for each targeted component to
mitigate potential side effects and dependencies on other com-
ponents. Modality-aware partitioner and Data load balancer
contribute to the training duration reduction by improving
GPU utilization through adaptive partitioning and load bal-
ancing. In this paper, the GPU utilization is calculated by:

Model FLOPs
FLOPS ·T

, where Model FLOPs is the number of floating-point opera-
tions required to perform a single forward and backward pass,
FLOPS represents the number of floating-point operations per
second supported by a GPU, and T denotes duration.

To evaluate the Modality-aware partitioner, we choose
the single-node scaled models that need tensor parallelism
to demonstrate the GPU utilization differences between
DISTMM’s adaptive partitioning and Megatron-LM’s ho-
mogenous partitioning. In the evaluation of Data load bal-
ancer, we need to mitigate the side effects of Modality-aware
partitioner. To do this, we choose the single-device scaled
models that do not need tensor parallelism to demonstrate the
GPU utilization differences after Data load balancer’s load bal-
ancing. Heterogeneity-aware placement manager contributes
to the training duration reduction by reducing inter-node com-
munication volume through communication-efficient place-
ment. To evaluate it excluding DISTMM’s computation op-
timization side effects, we choose the single-device scaled
models to demonstrate the communication percentage differ-
ences between Megatron-LM and Heterogeneity-aware place-
ment manager’s placement without load balancing. Since
DISTMM-Pipe is the only pipeline parallelism schedule that
can be applied to multimodal model training without changing
the training semantics as described in Section 5.4, DISTMM-
Pipe is effective by ensuring the required modal quality.

1166 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Model Vision submodule Text submodule Total # of Parameters

Layers Hidden Size # of Parameters Layers Hidden Size # of Parameters

CLIP
24 1536 760M 24 1024 350M 1.1B
32 4096 6.7B 32 2560 2.7B 9.3B
40 5140 13B 32 4096 6.7B 19.7B

CoCa
24 1536 760M 24 1536 760M 1.52B
32 4096 6.7B 32 4096 6.7B 13.4B
40 5140 13B 40 5140 13B 26B

LiT
24 1024 350M 24 1536 760M 1.1B
32 2560 2.7B 32 4096 6.7B 9.4B
32 4096 6.7B 40 5140 13B 19.7B

Table 2: Configuration details of the models: CLIP, CoCa, and LiT.

(760M,350M) (6.7B,2.7B) (13B,6.7B)
0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
tim

es

1.39X 1.48X

2.70X

Megatron-LM
DistMM

(a) CLIP

(760M,760M) (6.7B,6.7B) (13B,13B)
0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

tim
es

1.32X
1.60X

2.80X

Megatron-LM
DistMM

(b) CoCa

(350M,760M) (2.7B,6.7B) (6.7B,13B)
0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
tim

es

1.35X
1.67X

3.27X

Megatron-LM
DistMM

(c) LiT

Figure 7: End-to-end iteration times of DISTMM normalized to Megatron-LM on three models with varied parameter configura-
tions. The label of x-axis (X, Y): (size of vision submodule, size of text submodule)

CLIP(6.7B,2.7B) CoCa(6.7B,6.7B) LiT(2.7B,6.7B)0.0

0.1

0.2

0.3

0.4

GP
U

ut
iliz

at
io

ns

10.2%

26.9%28.0%

33.7%

19.8%

24.0%

42.5%

32.3%

24.3%
22.5%

41.7%

36.0%

Megatron-LM Text Megatron-LM Vision DistMM Text DistMM Vision

Figure 8: GPU utilization comparison on text and vision sub-
modules between DISTMM and Megatron-LM’s data paral-
lelism and tensor parallelism combined solution.

7.2.1 Effectiveness of Modality-aware Partitioner

Experimental setup. We use performance timers to mea-
sure the computing duration when running CLIP(6.7B, 2.7B),
CoCa(6.7B, 6.7B), and LiT(2.7B, 6.7B) in the 8 Amazon EC2
p3.16xlarge instances setting. Megatron-LM applies tensor
parallelism degree 8 to both text and vision submodules and
applies data parallelism to replicate the two submodules as a
whole. In DISTMM’s solution, the Modality-aware partitioner
applies adaptive partitioning individually to two submodules.

Results. Figure 8 shows the GPU utilization differences
of both text and vision submodules between DISTMM and
Megatron-LM. For CLIP(6.7B, 2.7B), the text submodule’s
GPU utilization is largely increased, since the tensor par-

allelism is reduced from 8 to 4. For CoCa(6.7B, 6.7B),
Megatron-LM’s colocated solution limits the GPU utilization
of text submodule by sharing the same batch size as vision sub-
module. In DISTMM’s solution, text submodule and vision
submodule share the same tensor parallelism partition degree
but have larger batch sizes for increasing available memory
under non-colocation. For LiT(2.7B, 6.7B), its lower activa-
tion memory consumption leads to a larger global batch size,
resulting in higher GPU utilization than CLIP(6.7B, 2.7B).

7.2.2 Effectiveness of Data Load Balancer

Experimental setup. We use performance timers to measure
the computation duration when running CLIP(760M, 350M),
CoCa(760M, 760M), and LiT(350M, 760M) in the 8 Amazon
EC2 p3.16xlarge instances setting. Megatron-LM applies data
parallelism to the whole model. In DISTMM’s solution, the
Data load balancer redistributes the data to different submod-
ules, resulting in more balanced workloads.

Results. As shown in Figure 9, the GPU utilization of both
submodules have improved. The improvement amount is as-
sociated with the size of the submodule. DISTMM’s Data
load balancer puts more workload on the smaller submodule
to balance the duration and efficiency. In CLIP(760M, 350M),
the text submodule’s batch size is increased from 8 to 150
while the vision submodule’s batch size is increased from 8 to
10. The resulting GPU utilization improvement comes from
increased batch sizes. For CoCa(760M, 760M), even though
the parameter sizes are the same for text and vision submod-
ules, the sequence length differences lead to the workload

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1167

CLIP(760M,350M) CoCa(760M,760M) LiT(350M,760M)0.0

0.1

0.2

0.3

0.4

0.5

GP
U

ut
iliz

at
io

ns

9.9%

33.0%

46.2%

34.3%

21.0%

33.2%

54.7%

34.5% 33.6%

28.9%

51.2%

35.1%

Megatron-LM Text Megatron-LM Vision DistMM Text DistMM Vision

Figure 9: GPU utilization comparison on text and vision sub-
modules between DISTMM and Megatron-LM.

CLIP CoCa LiT
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Co
m

m
un

ica
tio

n
pe

rc
en

ta
ge

s

35.4%

25.7%

44.0%

24.5%

32.5%

19.9%

Megatron-LM
DistMM

Figure 10: Communication duration’s percentage in end-to-
end training comparison between DISTMM and Megatron-
LM’s data parallelism solution.

imbalance. After the data load balancing, the text submodule
gains a large GPU utilization improvement, where text sub-
module replicates 16 times and vision submodule replicates
48 times. For LiT(350M, 760M), since the submodules are
balanced before Data load balancer, both submodules gain
large GPU utilization improvements for increased batch sizes.

7.2.3 Effectiveness of Heterogeneity-aware Placement
Manager

Experimental setup. We use performance timers to measure
communication duration when running CLIP(760M, 350M),
CoCa(760M, 760M), and LiT(350M, 760M) in the 8 Ama-
zon EC2 p3.16xlarge instances setting. The communication
duration involves all-gather communication for distributed
modality interaction and all-reduce communication for gradi-
ent synchronization. Megatron-LM applies data parallelism
to the whole model. In DISTMM’s solution, Heterogeneity-
aware placement manager places submodules of different
modalities onto different nodes without load balancing.

Results. As shown in Figure 10, the communication percent-
ages of each model have been reduced due to the communica-
tion volume reduction. DISTMM’s solution achieves largest
communication reduction in CoCa(760M, 760M), since its

text and vision submodules share a similar parameter size.

8 Related Work

Model reordering. IOS [8] explores the parallel opportuni-
ties within the modal structure similar to DISTMM through
reordering the operators on the same device to improve ef-
ficiency, while DISTMM reorders operators on different de-
vices. Rammer [23] orders operators by fusing parallelizable
operations without dependencies into a fused kernel to im-
prove resource utilization, which focuses on inference with
an extremely small batch size instead of DISTMM’s training
workload. DeepSpeed-MoE [30] proposes expert parallelism
to reorder and parallelize homogeneous MoE experts, while
DISTMM focuses on heterogeneous modal submodules.

Model partitioning. Several systems implement one or many
strategies out of the 3D parallelism partitioning. Pytorch’s
DDP [19] and Horovod [32] replicate a model on every de-
vice to use data parallelism, while ZeRO [31] splits both
weights and model states across all devices to accommo-
date larger models for data parallelism. FlexFlow [22], Mesh-
Tensorflow [33], and Gshard [18] split operations in a way
to represent data parallelism and model parallelism. Mega-
tron [34] and DeepSpeed-Megatron [35] support 3D paral-
lelism to parallelize the models in a manually optimized way.
Alpa [40] and Pathway [3] combine single program multiple
data (SPMD) and multiple programs multiple data (MPMD)
abstraction to enable automatic 3D parallelism parallelization.
However, unlike DISTMM, these systems do not consider the
heterogeneous nature of multimodal models.

9 Conclusion

This paper introduced DISTMM, a distributed multimodal
model training system. It consists of four heterogeneity-aware
system components designed specifically for multimodal
model training. DISTMM utilizes the parallelization opportu-
nities within the multimodal model structure, and successfully
solves the performance bottlenecks through adaptively par-
titioning each submodule and load balancing the partitions.
To preserve the model quality, DISTMM also orchestrates a
parallel execution by introducing new pipeline parallelism in-
struction and corresponding schedule. Our experiments show
that DISTMM can outperform the state-of-the-art training
system for models with varied structures and varied sizes.

10 Acknowledgments

The authors would like to thank our shepherd Dr. Deepak
Narayanan and the anonymous reviewers for their valuable
feedback and thoughtful suggestions.

1168 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, An-
toine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur
Mensch, Katherine Millican, Malcolm Reynolds, et al.
Flamingo: a visual language model for few-shot learn-
ing. Advances in Neural Information Processing Sys-
tems, 35:23716–23736, 2022.

[2] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Kho-
dak, Orestis Plevrakis, and Nikunj Saunshi. A theoreti-
cal analysis of contrastive unsupervised representation
learning. arXiv preprint arXiv:1902.09229, 2019.

[3] Paul Barham, Aakanksha Chowdhery, Jeff Dean, Sanjay
Ghemawat, Steven Hand, Daniel Hurt, Michael Isard,
Hyeontaek Lim, Ruoming Pang, Sudip Roy, et al. Path-
ways: Asynchronous distributed dataflow for ml. Pro-
ceedings of Machine Learning and Systems, 4:430–449,
2022.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learn-
ers. Advances in neural information processing systems,
33:1877–1901, 2020.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International con-
ference on machine learning, pages 1597–1607. PMLR,
2020.

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International con-
ference on machine learning, pages 1597–1607. PMLR,
2020.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[8] Yaoyao Ding, Ligeng Zhu, Zhihao Jia, Gennady Pekhi-
menko, and Song Han. Ios: Inter-operator scheduler for
cnn acceleration. Proceedings of Machine Learning and
Systems, 3:167–180, 2021.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

[10] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch,
Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-
e: An embodied multimodal language model. arXiv
preprint arXiv:2303.03378, 2023.

[11] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu
Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun
Yang, Lixue Xia, et al. Dapple: A pipelined data paral-
lel approach for training large models. In Proceedings
of the 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 431–445,
2021.

[12] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 9729–9738, 2020.

[13] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Effi-
cient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32, 2019.

[14] Gabriel Ilharco, Mitchell Wortsman, Ross Wight-
man, Cade Gordon, Nicholas Carlini, Rohan
Taori, Achal Dave, Vaishaal Shankar, Hongseok
Namkoong, John Miller, Hannaneh Hajishirzi,
Ali Farhadi, and Ludwig Schmidt. Openclip.
https://doi.org/10.5281/zenodo.5143773, 2021.

[15] Abhinav Jangda, Jun Huang, Guodong Liu, Amir
Hossein Nodehi Sabet, Saeed Maleki, Youshan Miao,
Madanlal Musuvathi, Todd Mytkowicz, and Olli
Saarikivi. Breaking the computation and commu-
nication abstraction barrier in distributed machine
learning workloads. In Proceedings of the 27th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
402–416, 2022.

[16] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scal-
ing laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[17] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot,
Ce Liu, and Dilip Krishnan. Supervised contrastive
learning. Advances in neural information processing
systems, 33:18661–18673, 2020.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1169

[18] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

[19] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,
Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,
Brian Vaughan, Pritam Damania, et al. Pytorch dis-
tributed: Experiences on accelerating data parallel train-
ing. arXiv preprint arXiv:2006.15704, 2020.

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects
in context. In Computer Vision–ECCV 2014: 13th Euro-
pean Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part V 13, pages 740–755. Springer,
2014.

[21] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. Visual instruction tuning. arXiv preprint
arXiv:2304.08485, 2023.

[22] Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe
Han, and Xiaowei Li. Flexflow: A flexible dataflow ac-
celerator architecture for convolutional neural networks.
In 2017 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 553–564.
IEEE, 2017.

[23] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rtasks. In
Proceedings of the 14th USENIX Conference on Operat-
ing Systems Design and Implementation, pages 881–897,
2020.

[24] Ishan Misra and Laurens van der Maaten. Self-
supervised learning of pretext-invariant representations.
In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 6707–6717,
2020.

[25] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream: Gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 1–15, 2019.

[26] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, et al. Efficient large-scale language
model training on gpu clusters using megatron-lm. In

Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1–15, 2021.

[27] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, et al. Efficient large-scale language
model training on gpu clusters using megatron-lm. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1–15, 2021.

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Py-
torch: An imperative style, high-performance deep learn-
ing library. Advances in neural information processing
systems, 32, 2019.

[29] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. In International conference on ma-
chine learning, pages 8748–8763. PMLR, 2021.

[30] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia
Zhang, Reza Yazdani Aminabadi, Ammar Ahmad Awan,
Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advanc-
ing mixture-of-experts inference and training to power
next-generation ai scale. In International Conference on
Machine Learning, pages 18332–18346. PMLR, 2022.

[31] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. Zero: Memory optimizations toward train-
ing trillion parameter models. In SC20: International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–16. IEEE, 2020.

[32] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. arXiv
preprint arXiv:1802.05799, 2018.

[33] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, et al. Mesh-tensorflow: Deep learning for super-
computers. Advances in neural information processing
systems, 31, 2018.

[34] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter lan-
guage models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

1170 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[35] Shaden Smith, Mostofa Patwary, Brandon Norick,
Patrick LeGresley, Samyam Rajbhandari, Jared Casper,
Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay
Korthikanti, et al. Using deepspeed and megatron to
train megatron-turing nlg 530b, a large-scale genera-
tive language model. arXiv preprint arXiv:2201.11990,
2022.

[36] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

[38] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung,
Mojtaba Seyedhosseini, and Yonghui Wu. Coca: Con-
trastive captioners are image-text foundation models.
arXiv preprint arXiv:2205.01917, 2022.

[39] Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas
Steiner, Daniel Keysers, Alexander Kolesnikov, and Lu-
cas Beyer. Lit: Zero-shot transfer with locked-image text
tuning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 18123–
18133, 2022.

[40] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. Alpa:
Automating inter-and {Intra-Operator} parallelism for
distributed deep learning. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 22), pages 559–578, 2022.

[41] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and
Mohamed Elhoseiny. Minigpt-4: Enhancing vision-
language understanding with advanced large language
models. arXiv preprint arXiv:2304.10592, 2023.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1171

Approximate Caching for Efficiently Serving Text-to-Image Diffusion Models

Shubham Agarwal
Adobe Research

Subrata Mitra∗

Adobe Research
Sarthak Chakraborty†

UIUC
Srikrishna Karanam

Adobe Research

Koyel Mukherjee
Adobe Research

Shiv Kumar Saini
Adobe Research

Abstract
Text-to-image generation using diffusion models has seen
explosive popularity owing to their ability in producing high
quality images adhering to text prompts. However, diffusion-
models go through a large number of iterative denoising steps,
and are resource-intensive, requiring expensive GPUs and
incurring considerable latency. In this paper, we introduce a
novel approximate-caching technique that can reduce such
iterative denoising steps by reusing intermediate noise states
created during a prior image generation. Based on this idea,
we present an end-to-end text-to-image generation system,
NIRVANA, that uses approximate-caching with a novel cache
management policy to provide 21% GPU compute savings,
19.8% end-to-end latency reduction, and 19% dollar savings
on two real production workloads. We further present an
extensive characterization of real production text-to-image
prompts from the perspective of caching, popularity and reuse
of intermediate states in a large production environment.

1 Introduction
Text-to-image generation has drastically matured over the

years [34, 87] and has now become a widely popular fea-
ture offered by various companies [8, 14], being integrated
into various new creative workflows [10]. The popularity of
text-to-image models has become massive. Adobe recently re-
ported [10] that over 2 billion images were created using Fire-
fly [9] text-to-image service. Similar popularity has also been
reported for Dall-E-2 from OpenAI [12]. Figure 1a shows
the staggering growth over time in the numbers of prompts
submitted to a portal running stable-diffusion-based text-to-
image model, as captured by the DiffusionDB dataset [79].

State-of-the-art in text-to-image: In text-to-image genera-
tion, given a text prompt describing certain desirable charac-
teristics of an image, a deep neural network model generates
an image capturing the descriptions provided in the prompt.
While researchers have been attempting to design viable and
consistent text-to-image models for quite some time using
∗Corresponding author (subrata.mitra@adobe.com)

†Work done at Adobe Research

(a) (b)
Figure 1: (a) Shows normalized growth in workload over 5 weeks in Diffu-
sionDB. (b) Latency for tiny, standard and XL stable-diffusion models
from Hugging Face [51] repository on three different GPU architectures in
AWS. The image quality produced by the larger XL model is far superior
to the smaller two models but comes with a substantially large latency
overhead which also implies higher costs.

(a)

(b)
Figure 2: (a) Shows how vanilla DMs work. (b) Shows how DMs with
approximate-caching works, where first K denoising steps are skipped after
an intermediate noise belonging to a different prompt present in the cache
is retrieved and reused.

VAEs [52], GANs [42] and other techniques [37], the most
popular text-to-image production systems of today [9, 17] are
based on Diffusion-Models (DMs) [36, 49]. The widespread
adaptation of DMs can be attributed to their capability to gen-
erate superior quality images and to condition the generation
more accurately according to the input prompt.

Problems with DMs: Text-to-image products should offer
real-time interaction like search platforms. However, image
generation using DMs is a computational resource-intensive
task and suffers from relatively long latency. During the in-
ference phase in DMs (that is generating an image from text),
essentially a Gaussian noise is iteratively denoised, using the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1173

input prompt as a condition, to produce the output image in
a Markov process [39]. The traditional DMs use as much as
1000 such iterative diffusion steps [36] for this. Some subse-
quent optimizations [61,76] enable such denoising to be done
with approximately 50-100 iterative steps [2]. Still, even with
50 iterative steps, image generation with DMs is a resource-
intensive and slow task that prohibits interactive experience
and results in huge computational costs on expensive GPUs.

In Figure 1b, we show the latency (in seconds) for
different GPU architectures (i.e., A100, A10g, and V100
from NVIDIA) that are available on Amazon Web Ser-
vices (AWS) and for a few DMs of different sizes (i.e., # of
parameters): Stable Diffusion XL, Stable Diffusion
2.1, Tiny Stable Diffusion from Hugging Face repos-
itory [51] with typical 50 diffusion steps for image generation
during inference. It can be observed that while smaller mod-
els (e.g., Tiny and Standard) can provide significantly low
inference latency compared to a larger model(e.g., XL), it usu-
ally comes with significant degradation in the quality of the
generated image [67]. Therefore, using a smaller model to
reduce latency for better user experience might actually defeat
the purpose. Latency can also be reduced by using a more
powerful GPU for inference, as can be observed in Figure 1b,
but pricing for cloud instances with powerful GPUs such as
NVIDIA A100s is significantly high. For instance, in the US
East region [1] the V100 is priced at approximately $3.06 per
hour, the A10g at $8.144 per hour, and the A100 at $32.77
per hour making an A100 instance 4X costlier than A10g
and more than 10X costlier than a V100. Therefore, while
inference latency can be reduced with more powerful GPUs,
inference cost per image also significantly increases.

In this paper, we introduce an efficient text-to-image gen-
eration system called NIRVANA that uses novel approximate
caching technique to significantly reduce the computational
cost and latency by effectively reusing intermediate states
created during image generation for prior prompts.

Figure 2 illustrates the key idea behind NIRVANA. For an
input prompt shown in red in Figure 2a we show how the
vanilla or standard DMs work through multiple iterative de-
noising steps. Here, the process starts from a Gaussian noise
at state xN and then performs N denoising steps with the input
prompt as the condition to finally produce a coherent image
in state x0. Figure 2b shows how in approximate caching, first
K steps are skipped, and directly a suitable intermediate noise
from a different prompt is retrieved and used. The value of
K depends on the similarity between the new input prompt
and the prompt from which the noise was retrieved. There-
fore, the amount of compute and latency savings can vary
across prompts based on the availability of similar prompts in
the cache that stores the intermediate noises/states produced
during the image generation from previously encountered
prompts. The phrase approximate caching emphasizes the
fact that in this system, we are not directly reusing the re-
trieved object from the cache, rather we are retrieving an

“man on a white horse
on snowy mountain”

“mountains with covered
snow and mountaineer”

15

“dog astronaut walking
on the moon”

“astronaut on
the moon”

10

Figure 3: Images generated using NIRVANA

intermediate state and further conditioning those to tailor the
generated image according to the new prompt. Thus, NIR-
VANA is very different from a retrieval-based system such as
GPT-CACHE [7], PINECONE [4] that proposes direct retrieval
of an image from a cache based on the input prompt.

NIRVANA selects the value of K for a particular input
prompt by effectively controlling the hit-rate vs. compute
savings trade-off. Hit-rate here means how likely an incom-
ing prompt can be matched to a similar enough prompt in the
cache, while K denotes the # steps we skip at the beginning
of the DMs when using the retrieved noise from the cache.
The hit-rate, can be made significantly high if we are plan-
ning to skip a very small number of steps at the beginning
(i.e., lower value for K). The reason being, if we are skip-
ping less diffusion steps at the beginning, noise from very
dissimilar prompts can still be denoised effectively to produce
a coherent image. While for high K, the scope for further
denoising conditioned on the new prompt becomes limited.
However, it provides huge compute savings when done for
certain amenable prompts. Careful design of NIRVANA can
navigate this complexity by calculating a suitable value for K
for each incoming prompt to maintain high quality as well as
optimize for maximum compute savings.

Figure 3 shows some real examples using prompts from
DiffusionDB [79] to illustrate how NIRVANA can transform a
noise from a seemingly different prior prompt to a coherent
and high-quality image while providing significant latency
and compute reduction at the same time.

Furthermore, in NIRVANA, we design a novel approximate-
cache management policy, called Least Computationally Ben-
eficial and Frequently Used (LCBFU), that manages the storage
of noises in such a manner that for a given cache storage size,
we optimize the space for the noises that is likely to give the
best computational efficiency to NIRVANA.

Overall, NIRVANA can maintain generated image qual-
ity very close to vanilla diffusion-models (i.e., DMs without
approximate-caching) while providing 21 % savings in GPU
computation, 19.8 % reduction in latency, and 19% amortized
savings on dollars spent on image generation. Our study in-

1174 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

volving 60 users with 1000 images shows that 79% users
liked NIRVANA generated images which is far better than the
best baseline GPT-CACHE [7] with only 31% likes, and much
closer to the quality of images generated by the expensive and
slow VANILLA model, liked by 86% users.

We summarize our contributions in this paper as follows:
1. We introduce the novel idea of approximate caching that

provides significant computation saving in the production
pipeline of diffusion models for text-to-image generation.

2. We propose an effective cache-management mechanism,
called LCBFU, that can optimize the reuse of computation
states and computation savings.

3. We present end-to-end design details and rationale for NIR-
VANA, which is our optimized text-to-image deployment
system on the cloud.

4. We characterize real production prompts for text-to-image
models from the perspective of reusability and caching.

5. We present extensive evaluation with two real and large
production prompts from text-to-image models, along with
a human evaluation and several sensitivity studies.

2 Background
2.1 Diffusion Models (DMs)

Diffusion models (DMs) progressively denoise a random
Gaussian noise to generate an image conditioned on text.
The training procedure contains a forward diffusion process,
which obscures an image by adding noise repeatedly in a
Markov process until it saturates to Gaussian noise. In the
backward diffusion process, the original image is recovered
by removing noise repeatedly. Each denoising step is called
“sampling” since the model generates a sample by removing
noise, and the method used for sampling is called the sampler.

In the forward diffusion process, Gaussian noise gets pro-
gressively added to an initial image x0 for T steps to get xT .
With the Markov chain assumption, it is expressed as:

q(x1:T |x0) :=
T

∏
t=0

q(xt |xt−1) (1)

q(xt |xt−1) := N (xt |
√

1−βtxt−1,βt I) (2)
where q(xt |xt−1) is the posterior probability, and β1, ...,βT

is the noise schedule (either learned or fixed) to regulate the
noise level at each diffusion step. Similarly, the backward
diffusion process can be written as:

pθ(x0:T) := p(xT)
T

∏
t=0

pθ(xt−1|xt) (3)

pθ(xt−1|xt) := N (xt−1|µ̄t , β̄t I) (4)
where pθ(.) denotes the probability of observing xt−1 given

xt . Here, p(xT) = N (xT |0, I). Here, µ̄t and β̄t is learned.
The objective is to learn p(θ) that maximizes the likelihood
of training data in the backward/reverse diffusion process.
Recent optimizations approximate the backward diffusion
process by skipping certain intermediate states at predeter-
mined timesteps [54, 90], thus reducing inference steps from
T ≈ 1000 steps to N ≈ 50 steps. This is achieved by learning

a sampler that predicts how much noise will remain after T/N
step for every one diffusion step. Notably, each step consumes
equal time and compute as it uses the same denoising process
on the same diffusion model [87]. Even with these optimiza-
tions, image generation still takes 10 seconds on A10g and 6
seconds on A100 GPUs for large models (Figure 1b).

Diffusion model backbone is based on the U-Net architec-
ture [70]. When a text prompt is given, the image genera-
tion process is conditioned through cross-attention within the
model [69]. Thus, it develops a text-to-image framework capa-
ble of generating visually coherent and contextually relevant
images based on textual descriptions.

In practice, each xi can either be the actual image or its latent
representation computed by an image encoder [69]. Generally,
the latter approach, termed as latent diffusion model (LDM)
is preferred since it captures the hidden characteristics of an
image. We use the same in our work. To generate the final
image from its latent space x0 at the end of backward diffusion,
x0 is decoded with the inverse of the image encoder.

2.2 Dynamics of Image Generation
The amount of reconditioning needed for the retrieved noise

to suit the new prompt depends on K. We observe that various
concepts/characteristics of an image, like, layout, color, shape
or objects, style, etc. are not easy to modify beyond certain K.
With initial noise being random Gaussian, similar to recent
works [89] (see Appendix E for details), we observed for our
dataset that LDM models [69] decide the layout of the objects
first within the initial ∼20% of diffusion steps. Color map
for the overall image then gets decided within ∼40% steps
followed by the shape and the size of the objects and then
the artistic style of the image. Overall, we observed that after
∼50% of the steps, the concepts get frozen and no further
attempts to recondition the intermediate image are reflected
in the final generated image. For example, when attempting
to recondition the image of a brown horse grazing in a green
field (Figure 4), the color can be modified after K = 10, but
not after K = 15. Similarly, actions, objects, and backgrounds
could be modified only till certain steps and not beyond that.

3 Understanding User Prompts
We first show some characterization of real user prompts in

DiffusionDB dataset [79] having 2 million prompts ranging
from 8 Aug, 2022 to 22 Aug, 2022. Each entry has the user-id,
prompt, timestamp, and the generated image in the dataset.
(1) Top-Y% most popular prompt clusters over days

We cluster the prompt queries for each day using DBSCAN
algorithm [73] on their CLIP text embeddings [68] with mul-
tiple eps values (eps controls the maximum distance between
two samples for one to be considered the neighbor of other).
We find top-Y% (with Y = 1, 2, 5, and 10) clusters and extract
the most popular prompts on Day 1. We then track how many
of these top-Y% clusters remain in the top-Y% on the fol-
lowing day (Day 2 to Day 18) and report this fraction as the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1175

Figure 4: A noise from a brown horse successfully
transforms into a white horse at K=10, while K=15
fails. The same noise becomes a bear even at K=20.

Figure 5: Popularity of top Y% popular prompt
clusters over days for different similarity thresh-
old between prompts (eps value)

Figure 6: Average number of noun, adjective,
color, count, and verb changes across similarity
for both short and long prompts

longevity probability of popular prompt clusters in Figure 5.
We repeat this analysis with different eps values (eps = 0.01,
0.1, 0.2, 0.5) in DBSCAN algorithm.
Takeaway. From Figure 5, we see that most of the clusters in
the top-Y% prompt clusters do not remain popular in top-Y%
even on Day 2 when the clusters are tightly packed (eps=0.01).
There is a more significant drop in popularity after 2 days.
However, as we increase eps and make clusters more loosely
packed, it effectively gathers more prompts within a cluster
and hence the decay rate of popular prompts is less. We em-
pirically verified that with increasing eps, higher number of
prompts and more dissimilar prompts are clustered together,
and hence the longevity of the top-Y% cluster increases. This
shows the extent of similarity in prompts over time and the po-
tential for reuse. Approximate-caching idea works even with
less similar prompts, as it can recondition the retrieved noise.
Thus, the high longevity of popular cluster, as seen in plots
for eps=0.2 and eps=0.5, shows potential of approximate-
caching for generating images in production environments.
(2) Most similar short and long prompt pairs

We divide the prompt queries into short and long prompts,
based on the 70th percentile word count (≈15 words). For
each set, we then form pairs of most similar prompts using
cosine-similarity between their CLIP embeddings and group
them into 4 buckets based on their similarity scores: Very
Low (less than 0.65), Low (0.65 to 0.8), Medium (0.8 to 0.9),
and High (more than 0.9). For each bucket, we analyze what
attributes (e.g., noun, adjective, verb, color, count) changed
between the pair of prompts within the same bucket and show
the average number of changes along these attributes, for both
long and short classes of prompts in Figure 6.
Takeaway. In Figure 6, we see that as the similarity of
the prompts within a pair increases, the average number of
changes decreases. We also see that within each bucket, the
average number of noun changes is the most, followed by ad-
jective and verb changes. Longer prompts have more changes
as compared to the shorter prompts within the same similarity
bucket. This indicates that even when several attributes in
the text of the prompt change, the CLIP embedding failed
to appropriately distinguish the difference between the two

prompts. This highlights a limitation in identifying similar
prompts when prompts are very long, as two prompts can be
misleadingly retrieved as very similar.

(a) (b)
Figure 7: Query prompt similarity (a) for inter v/s intra-session per user,
(b) range for intra, inter per user and across diff users

(3) Intra vs. inter-session similarity in prompt queries
We group the prompts per user, then divide the prompts

from that user into 1-hour sessions. We then compare the
similarity of prompts within the same sessions (intra) and
across different sessions (inter) of the same user in Figure 7a.
In Figure 7b, we further compare these with similarity scores
between prompts from sessions of 100 random other users.
Takeaway. Figure 7a shows, many users exhibit high intra-
session similarity, meaning users tend to use similar prompts
within a session with a lot of repetitions (indicated by a clus-
ter of points at 1). Also, there is high inter-session similarity,
but it is lower than intra-session, indicating diverse queries
across sessions. In Figure 7b, we observe that prompts within
a session (intra-session, left) exhibit high similarity. Notably,
prompts across sessions (inter-session, middle) of the same
user and even with prompts from different users (across-users,
right) also demonstrate significant similarity. Interestingly, the
similarity between prompts from different users is notably
higher, suggesting a promising opportunity for efficient ap-
proximate caching utilizing the power of the masses.

4 NIRVANA Overview
4.1 Approximate Caching

For a new query prompt PQ, NIRVANA uses approximate-
caching to reduce computation by retrieving an intermediate
state that was created after Kth iteration of a previous image

1176 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

generation process and directly reusing and reconditioning
that for PQ for the remaining N−K steps.

Analytical Modeling: Let L denote the total end-to-end la-
tency of image generation using approximate caching. Within
this, C represents the cumulative GPU computation time for
N diffusion model steps. The set of possible values for K is
denoted as K . Each search operation in the vector database
(VDB) incurs a latency cost denoted as ls, and retrieving the in-
termediate state from the cache introduces a latency denoted
as lr. We use fc to indicate the overall compute savings.

Therefore, for prompts effectively utilizing approximate
caching with a cache generated at K, the total latency experi-
enced can be expressed as:

ls +C · N−K
N

+ lr (5)

In contrast, prompts for which NIRVANA cannot locate a
match in the cache will undergo a total latency of ls +C .

This distinction arises from the design, where it attempts to
retrieve an intermediate state from the file system (incurring
latency overhead lr) only when a hit is confirmed in the VDB,
ensuring the existence of the state in the cache.

Let us denote the hit-rate@K for approximate caching as
h(K) which is defined as the likelihood that when an inter-
mediate state from Kth diffusion step is used, it takes at most
N −K diffusion steps to generate a faithful reconditioned
image where N is fixed. That is, (1−h(K)) fraction of cache
exists, which we cannot recondition by running N−K steps.

Now at K = 0 (running diffusion model from scratch), all
historical prompts are theoretically usable since an image can
be reconditioned in at most N− 0 steps, leading to h(0) =
1.0. As K increases, h(K) decreases, since we can use only
a smaller fraction of intermediate states from Kth step to
recondition an image by running diffusion at most N −K
steps. For lower values of K, h(K) is less than 1.0 but can still
be relatively high. That is, the diffusion models can effectively
recondition the retrieved state if the state is from the initial
diffusion steps, resulting in the generation of faithful images.

The decrease in h(K) is influenced by how dissimilar the
prompts are. When K surpasses a certain threshold, denoted
as KT , the retrieved state is no longer suitable for further
reconditioning, as discussed in § 2.2, and thus, h(K ≥ KT) = 0.

Consequently, the effective fraction of savings in GPU com-
putation for a given K can be expressed as:

fC = h(K) · K
N

(6)

It is evident that substantial savings can be achieved when
both K and h(K) are sufficiently high. However, the challenge
lies in the fact that as K increases, h(K) tends to decrease
while aiming to maintain the quality Q of the generated im-
ages1. This trend is described in § 5.2 for DIFFUSIONDB
dataset [79] across different discrete K values.
1 For example, if we assume that h(K) decreases linearly from 1.0 at K = 0
to 0 at K = KT following the equation h(K) = − K

KT
+ 1, then the optimal

single value of KOPT that maximizes fractional savings will be: KOPT =

KT /2, resulting in effective compute savings of f max
C = KT /4N. Similarly,

Now we define hopt(K) as the fraction of cache stored at
Kth diffusion step that is used to exactly recondition an image
for N−K steps. For example, with N = 50,K = 5, we get
hopt(K) is the fraction of cache that can be used to recondition
an image by running diffusion steps for exact 45 steps. Thus,

hopt(K) = h(K)−h(K′), where argmin
K′

(K′ > K) (7)

h(minK) = ∑
K∈K

hopt(K) (8)

In essence, hopt(K) quantifies the probability that K repre-
sents the maximum potential savings for incoming prompts.
h(minK) represents the overall hit-rate, i.e., fraction of PQ
having a cache hit.

Our primary objective is to minimize end-to-end latency (L)
while maintaining the quality (Q) of generated images. We
operate under the constraint that reconditioning of an image
with a cache at the selected K values must ensure a specified
level of quality Q compared to when the image is generated
from scratch. The goal is to find the optimal K value that
satisfies these objectives and the below quality constraint.

Thus, for a given incoming prompt PQ and its corresponding
cached prompt Pc

Objective (Minimize L): (following Eq. 5)

min
K

L = ∑
K∈K

(
ls +hopt(K) · lr +hopt(K) ·C · N−K

N

)
(9)

Quality Constraint:

Q(Ic
K |PcK ,PQ)> α ·Q(I0|PQ) (10)

where Ic
K represents the image generated by using cache

c at K and then reconditioning for N −K diffusion steps.
α ∈ [0,1] represents the tolerance threshold over the quality
of images generated and is such that Ic

K is not much worse than
I0. In our implementation (§ 5.3.1), we employ the CLIPScore
metric [46] to define Q with α = 0.9. We opt for CLIPScore
due to its widespread use in evaluating image quality.

In our use case, where lr, ls << C , the objective reduces to

min
K

L = ∑
K∈K

(
hopt(K) ·C · N−K

N

)
(11)

which maximizes K and hopt(K) to obtain minimal latency.
This framework demonstrates the relationship between la-

tency and quality in the context of approximate caching.
Notably, the wasted overhead of NIRVANA can be captured

as (1− h(K)) · ls where the vector database is queried and
results in a cache miss. This means if we operate in a set-
ting where h(K) is low even if K is high, NIRVANA may not
provide latency benefits if ls is comparable to GPU compute

for a slowly decaying quadratic form expressed as h(K) = −
(

K
KT

)2
+ 1,

f max
C = 2KT

3
√

3N
> KT

4N . Therefore, the slower the decay of h(K) with respect to

K the higher the compute savings we can expect.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1177

Figure 8: NIRVANA Overview

latency C and such overhead reduction can be an important
design aspect as we discuss in § 5.2. It is important to note
that, due to the disparate costs of high-end GPUs, even if
there is not much latency reduction, it can still be significantly
cost-effective to use NIRVANA as it drastically cuts expensive
GPU compute costs on the cloud. In our setting, we observed
ls is of the order of 100 ms whereas C is of the order of 10 s.

4.2 System Components
Figure 8 shows the main components and the exe-

cution paths of NIRVANA. At first, an embedding vec-
tor ep is generated for the current input prompt PQ us-
ing an embedding-generator A . Then an optional
match-predictor module B predicts whether there would
be a close enough match for this embedding in the vector-
database (VDB) C . If the presence of a similar enough cached
entry is likely, then NIRVANA starts the process of retrieving
an intermediate state from the cache. First, a search query
is sent to the VDB to find the closest cached embedding of
ep, denoted by ec. A VDB uses efficient approximate nearest
neighbor (ANN) [62] search to find such closest embeddings.
For each cached historical prompt in the VDB, NIRVANA stores
several intermediate states during the vanilla diffusion pro-
cess. Which of these intermediate states corresponding to the
match prompt ec is optimal for the new prompt vector ep is cal-
culated using a heuristic by the cache-selector module D .
Then this particular intermediate state is retrieved from EFS
storage E (i.e. Elastic File System for NIRVANA) using the
pointer of the storage location pointed by the search result of
the VDB query and the particular intermediate state number (i.e.
K as explained in § 4.1) calculated by the cache-selector
module. An intermediate state Ic

K is an L×D dimensional
latent representation captured during the denoising process of
ec, after Kth step. Finally, this retrieved intermediate state Ic

K is
passed to the DM F along with ep for it to be reconditioned for
image generation for the rest of the denoising steps. However,
there are two situations when NIRVANA directly falls back to
the vanilla diffusion model to generate an image from scratch
(using Gaussian noise), sacrificing any optimization: (i) when
match-predictor module predicts that a close entry in the

VDB is unlikely (arrow 1), and (ii) when VDB query returns a
match ec that is very dissimilar to ep (arrow 2) .

To maintain the cache under a fixed size of storage and to
prevent the VDB from arbitrarily growing and keep on storing
stale entries, a cache-maintainer module G works in the
offline mode and implements the novel LCBFU protocol to
keep both the cache and VDB entries fresh.

5 NIRVANA Design Details
We present the detailed design of various components in

NIRVANA. The full algorithm can be found in Appendix A.

5.1 Embedding Generator
Similar to vanilla DMs, NIRVANA first computes a 768-

dimensional vector CLIP embedding [68] (ep) from the text
prompt. CLIP effectively positions visually similar prompts
closer in the embedding space, which optimizes the likelihood
of cache hits in our case.

5.2 Match Predictor
Using ep, NIRVANA could directly make a search query to

VDB for the closest prompt in the cache. If cache exists, there
will be substantial savings in GPU usage for image generation.
However, in case of cache miss, the search to VDB becomes a
latency overhead without getting any reduction in the GPU
computation. Now, several factors including: a) if it is in the
same LAN vs. far away from the GPUs, b) the particular
architecture of the VDB and its internal indexing mechanism,
and c) the compute resources dedicated to it etc., dictate the
magnitude of the wasted latency overhead during each miss.

To reduce this overhead, NIRVANA uses a component called
match-predictor, (B in Figure 8), which predicts if an
embedding close enough to ep is likely to be present in the
VDB. If the prediction says it is unlikely, then NIRVANA simply
bypasses cache retrieval flow altogether, reducing the wasted
overhead. Additionally, match-predictor also reduces VDB
load corresponding to search misses, improving scalability.

Internally, match-predictor uses a lightweight classifier
for predictions that runs on the CPU of the same node where
the DM runs on the GPU. This reduces the classification la-
tency by orders of magnitude compared to a query to the VDB,
making latency overhead insignificant.

Recall from § 4.1 that analytically the latency overhead
is (1− h(K))× ls. Now let cp denote the precision of the
match-predictor classifier. The effective overhead of NIR-
VANA with an active match-predictor is then:

1−max(h(K),cp) · ls, where h(K),cp ∈ [0,1]

This means that either when h(K) = 1.0, i.e., prompts are
so similar that for every incoming prompt, there is a suitable
match available in the cache, or when cp = 1.0, i.e., the clas-
sifier is perfect in predictions, the system will not have any
wasted latency overhead. Note that, when cp < 1.0, NIRVANA
would miss some opportunity of compute savings during false-
negative cases as it would directly fall back to vanilla DM and

1178 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 CacheSelector-Profiling(K , Ic
K , α)

1: for K in K do
2: [IK]← model(PQ, Ic

K , K) ∀ PQ
3: min_sim←min{sim s | ∀I ∈ [IK], quality(I)> α}
4: sim_K_map[K]←min_sim
5: end for
6: return sim_K_map

generate an image from scratch instead of attempting to re-
trieve an intermediate state. For this classifier, NIRVANA uses
One-Class Support Vector Machine (One-Class SVM) [20]
which constructs a decision function for outlier detection. This
is trained by utilizing all prompt embeddings stored in the
VDB and assigning them a positive label of 1. To achieve high
precision and recall, we effectively overfit the model to the
existing prompt embedding space. Further, we use Stochastic
Gradient Descent (SGD) to enable faster retraining of the clas-
sifier when embeddings in VDB change significantly (i.e., >
5%). NIRVANA achieves a cp = 0.95 for production prompts.
Why not a Bloom Filter? Similar to our motivation, Bloom
filters [29] are popularly used as a low-cost mechanism to
check cache entries in various web services and database sys-
tems [19]. Bloom-filters use hashing algorithms to calculate if
an item is likely to be present in the cache with zero false neg-
ative rate but with some false positive rate. However, Bloom
filters are not suitable for NIRVANA as we do not search for
an exact match for cache entries, we search for the nearest
neighbors in the VDB by using ANN algorithms.

5.3 Cache Retrieval
Cache Retrieval and cache-maintainer are the main com-

ponents of NIRVANA. In this section, we elaborate on the
design of the cache retrieval phase which has three internal
components VDB, cache-selector, and storage-system. In
§ 5.4 we discuss the design of cache-maintainer.
Vector Database: NIRVANA stores the embedding of the
historical prompts in a vector-database (VDB) for fast and
efficient similarity search with the embedding of incoming
prompts. A VDB uses indexing methods like quantization,
graphs, or trees to store and perform high-dimensional simi-
larity search over vectors. For a query embedding vector, it
can find m approximate nearest neighbors. In NIRVANA, for
each incoming search with ep, VDB already populated with
the embeddings, its payload points to the path where the
corresponding intermediate states of ec at different Ks are
stored. NIRVANA uses cosine-similarity as a measure to
find the nearest neighbor. While NIRVANA can work with
any VDB such as Qdrant [21], Milvus [18], Weaviate [23],
Elasticsearch [13], in this paper we present results with
Qdrant as benchmarking [3] shows low read latency at scale
and moderately low update and delete latency.
Elastic File System as Storage: NIRVANA stores the actual
intermediate noise states on AWS Elastic File System (EFS).
After comparing with LustreFS [16] on read latency, through-
put, and storage cost, we chose EFS as our storage system.

Figure 9: Quality of image generation with
cache vs. similarity score across K. Thresh-
olds for cache usage at different K values.

� �
1 def cache_selector(s):
2 if s > 0.95: k = 25
3 elif s > 0.9: k = 20
4 elif s > 0.85: k =

15
5 elif s > 0.75: k =

10
6 elif s > 0.65: k = 5
7 else: k = 0
8 return k� �

Figure 10: Determining K
based on similarity score (s).

The size of the files containing intermediate-state depends
on the architecture of the DM. For NIRVANA the default DM
uses an intermediate-state of the size of 144 KB and stores
for 5 distinct values of K ∈K = {5,10,15,20,25} as increas-
ing beyond K = 25 compromises output quality significantly
and more granular Ks does not necessarily yield proportional
gains but increases algorithmic complexity.
5.3.1 Cache Selector

The cache-selector component primarily determines
which K ∈K for ec from EFS should be retrieved to recondi-
tion the intermediate state for the rest of the N−K steps with
prompt PQ for maximum compute saving while maintaining
acceptable image quality.
How do we choose the K? We observed empirically that
the number of steps that can be skipped is correlated to the
similarity between ep and ec. Based on this observation, we
perform an offline profiling/characterization (Algorithm 1) to
find the appropriate K such that the intermediate-state gener-
ated at Kth diffusion step is optimal based on the similarity
score between the two prompt’s embeddings (Eq. 10). The
algorithm ("CacheSelector-Profiling(.)") generates images at
each value of K for a set of prompts with their nearest cache
prompt. It then finds the minimum similarity score such that
all generated images are above a quality threshold α. This is
then chosen as the minimum similarity at which the value of
K works and is stored to be used later at run-time. As shown in
Figure 9, we plot the image quality (higher the better) against
various similarity scores between the query and the cached
prompts across multiple values of K.

We use the profiled information to determine the opti-
mal value of K for image generation at run-time. Using
the similarity score s between ep and ec obtained from
VDB, we choose a K such that the quality score at the plot
(x = K, similarity_score = s) is ≥ α. We choose α = 0.9.
In simple words, we search the inverse map stored by Algo-
rithm 1. The red band in Figure 9 represents the threshold α.
Each line in the figure, corresponding to different K values,
intersects this red band at the specific similarity scores above
which that particular K value is applicable. Thus, if similarity
score is high, we can skip a greater number of diffusion steps
and choose higher K to achieve acceptable image quality. But,
if similarity score is low, we can skip only a limited number
of iterations and hence, a lower K. Figure 10 shows the logic

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1179

for computing the optimal K given a similarity score s be-
tween two prompts that is identified for DiffusionDB dataset
using the previously discussed profiling technique. Based on
this, we query the cache storage to obtain Ic

K . Once NIRVANA
retrieves the appropriate intermediate noise from the cache ,
DM denoises it for N-K steps to generate the final image.

Quality vs. performance tradeoff: NIRVANA is designed
to extract as much compute savings as possible without de-
grading the quality of images. However, if more aggressive
compute savings is needed for certain use cases that are ready
to sacrifice some accuracy, NIRVANA can trivially expose a
knob that can be used to trade off quality vs. compute savings.
The cache-selector heuristic can be biased to select higher
values of K. This will provide more compute reduction while
letting image quality degrade, as NIRVANA will get fewer
steps to recondition the retrieved noise according to the new
prompt. At the extreme, for K = N, NIRVANA will behave
exactly like a pure image retrieval system [4, 7].

5.4 Cache Maintenance: LCBFU Policy
In popular production text-to-image system, there is a large

stream of incoming prompts. The cost associated with to-
tal storage used increases, and VDB performance also de-
grades beyond a certain limit of entries if we keep on storing
the cache. Therefore, even though NIRVANA can theoreti-
cally support infinite cache, the storage cost and increasing
search latency would eventually make it unattractive. The
cache-maintainer component works in the background to
maintain the entries in the cache storage in EFS and in VDB.

To achieve this, NIRVANA uses a novel cache maintenance
policy Least Computationally Beneficial and Frequently Used
(LCBFU) customized for approximate caching in DMs. The fun-
damental idea is that not all intermediate states are equally
beneficial for overall compute and latency savings. Interme-
diate states with high K values can provide huge compute
savings but can be used only when PQ has high similarity
to one of the cached items. Items stored at low K are usable
with a variety of prompts since they can be reconditioned
even when the similarity with PQ is relatively low, but pro-
vides low compute savings. With LCBFU, NIRVANA can limit
a total of 1 TB cache in EFS without degrading any perfor-
mance or quality, which on average corresponds to 1.5 million
intermediate-states or noises and 300k unique prompt embed-
dings stored in the VDB.

Drawbacks of traditional cache policies: Due to the
unique compute model of approximate-caching, the tradi-
tional cache policies such as LRU (least recently used), LFU
(least frequently used), and FIFO (first-in first-out) are not
very useful in NIRVANA, since they treat each item in the
case homogeneously and only focus on the access patterns or
arrival sequence while evicting an item. As discussed in § 2.1,
hit-rate alone does not determine the efficiency of NIRVANA
as items with large K values, even though less frequently
accessed can provide significant overall compute reduction.

LCBFU: We design the LCBFU that takes into account both
access frequency of items as well as potential compute benefit
in case of a hit. It evicts items with least LCBFU-score which
for each item i is calculated as fi×Ki. Here fi is the access
frequency of item i and Ki denotes which step of the denois-
ing process this intermediate state belongs to. Notably, since
the cache-selector heuristic determines K based on the
similarity of ep and ec, an aggressive heuristic (high K for low
similarity), will force high fi for high K noises and hence low
K noises will be evicted. For example, an item with Ki = 25
was accessed 100 times, its LCBFU-score is 2500, while an
item with K j = 5 was accessed 200 times, its LCBFU-score
is 1000. Thus, the item i has a higher LCBFU-score since it
will provide better compute savings while generating an im-
age. LCBFU prioritizes compute savings while managing the
trade-offs for optimal user experience at different K values.

The complete mechanism of LCBFU is described as follows:
• Insertion: With every cache miss, we directly insert all

the intermediate states generated at diffusion denoising
step K ∈ K to the cache-storage and the corresponding
embedding of the prompt to the VDB. Thus |K | are stored in
the cache storage per prompt. The insertions are performed
without any eviction until we reach the target storage limit.
After that, every insertion is preceded by an eviction.

• Eviction: For eviction, LCBFU maintains a running list of
LCBFU-score in a K-min heap, and evict the top-|K | items
from the heap root just before inserting |K | intermediate-
states for a new prompt. The LCBFU-score evicts image
noises which contribute least to compute savings.

With this cache eviction policy, cases can arise for a par-
ticular prompt where noises at some Ks are evicted, while
noises at other Ks are still in the cache. This creates holes in
the intermediate-states stored.

Handling of holes: Once eviction policy creates a hole,
no straightforward way exists to fill that hole, as targeted re-
generation of the intermediate state is not possible without
running the full diffusion process. However, the heuristic used
by cache-selector (§ 5.3.1) is oblivious to the existence of
these holes while determining an appropriate K to be used
with the retrieved prompt. NIRVANA handles this situation by
choosing the intermediate state with the largest value K that
is less than or equal to the optimal K (e.g. it can use K=10,
if a hole is at K=15). This ensures that NIRVANA continues
to generate high-quality images, albeit with little sacrifice in
potential compute savings when it encounters the holes. How-
ever, we observed that such cases arise only in 4-5% of the
prompts, resulting in imperceptible performance degradation.

NIRVANA does not actively use any strategy to clean such
holes. Only when all the intermediate-states for a prompt cor-
responding to all the |K | values turn into holes, LCBFU marks
that prompt embedding as dirty and removes it from VDB as
well as corresponding metadata from the storage-system.
cache-maintainer performs both insertions and deletions

on VDB in batches, and at the same time, the classifier in the

1180 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

match-predictor is also retrained with the fresh entries in
the VDB. Recall, as mentioned in § 5.2 and § 5.3, both VDB
update and classifier updates are fast and takes only around
7.5 and 0.04 seconds respectively for 10k records.

Discussions: In Appendix C, we explore NIRVANA’s adapt-
ability to image diversity, workload shifts, the generalizability
of caching, LCBFU policy, and its use with ML optimizations.

6 Implementation
NIRVANA is implemented in Python using PyTorch [65] for

diffusion model architecture, enabling user-friendly modules
and seamless support for SYSTEM-X production integration.
Our design also enables easy integration with image gen-
eration frameworks like Stable Diffusion. More details on
batching and framework used are given in Appendix B

System Components: Our system components consist of
(i) a classifier that uses SGDOneClassSV M [20] from scikit-
learn [66] with ν = 0.001, where ν controls the trade-off
between training errors and support vectors, (ii) VDB hosted in
a Docker container on an AWS m5.4xlarge EC2 instance with
HNSW indexing of 256 for prompt embedding search [62],
(iii) AWS EFS system that offers web and file system ac-
cess, object storage, and scalability, (iv) MySQL database to
record accesses of cache items, and (v) a text-to-image gen-
erator powered by a larger version of stable diffusion-based
model with DDIM (Denoising Diffusion Implicit Model) sam-
pler [76]. It generates images in N = 50 iterations utilizing
approximately 8 GB of memory for a batch size of 1.

7 Evaluation
We first evaluate the overall effectiveness of NIRVANA in

terms of quality and in providing significant compute and
end-to-end latency savings, throughput, and cost savings for
serving on the AWS cloud platform. We perform a user study
with 60 participants to compare the image generation quality
against baselines. We present LCBFU benefits against common
cache-management policy to demonstrate the effectiveness of
NIRVANA’s internal component design. We also perform and
present ablation studies. The key takeaways are:
• NIRVANA generates high quality image while reducing

both GPU usage and end-to-end latency by up to 50%.
• NIRVANA reduces all three - cost, latency and compute

requirements of DM by ∼20% on average.
• With a 27% improvement in system throughput, NIR-

VANA ensures a stable user experience with minimal re-
sponse time variations.

7.1 Methodology
Base Diffusion Model: As the base text-to-image model, we
use a larger Stable Diffusion based model (which we call
VANILLA), having approximately 1.5 times the number of
parameters as compared to the 2.3B parameter Stable Diffu-
sion XL model [67]. Our model operates within a 96-pixel
latent space and performs N = 50 denoising steps to generate

an image in 8.59 seconds, on average, on an A10g GPU. The
final image generated is of size 768×768×3.
Experimental Setup: We run the DM and
embedding-generator of NIRVANA on a single NVIDIA
A10g GPU (24 GB GPU memory), while the other compo-
nents are run on a 32-core AMD EPYC 7R32 2.8 GHz CPU
with 128 GB CPU memory. The GPU and the CPU machines
were attached to a sub-network which included EFS and VDB.
We optimize GPU usage by reusing prompt embeddings with
diffusion model embeddings, reducing GPU overhead.
Dataset: We evaluate NIRVANA on two production datasets.
• DiffusionDB [79]: A total of 2M images for 1.5M unique

prompts, with a total dataset size of ≈ 1.6 T B. We filtered
the dataset and removed NSFW images

• SYSTEM-X: Prompts from production setup SYSTEM-X
spanning over 8 weeks, containing over 7M images for
6.2M unique prompts, with a total size of ≈ 5 T B.

Unless otherwise mentioned, we evaluate the results on DIF-
FUSIONDB dataset, since SYSTEM-X data is proprietary.
Baselines: We compare two versions of NIRVANA: (1) with
match-predictor (referred as NIRVANA) and (2) without
match-predictor (referred as NIRVANA-w/oMP) against
the following baselines:
• GPT-CACHE: Retrieves image for the closest prompt

based on BERT embedding similarity. Otherwise, gener-
ates an image from scratch [7]

• PINECONE: Retrieves image for the closest prompt based
on CLIP text embedding similarity. Otherwise, generates
an image from scratch [4]

• CRS (Clip Retrieval System): Clip Retrieval System [5]
is another image retrieval method that uses the embedding
of the final image generated by the previous prompts when
retrieving the closest image for a given input prompt.

• SMALLMODEL: A smaller diffusion model [69] with
860M parameters, consuming only 33% of compute/la-
tency compared to VANILLA, generating an image by 50
diffusion steps in 3.05 seconds on average on A10g.

Workload Generator and Cache Preload: The workload
generator dispatched prompts in the order in which they ar-
rived, using the dataset’s arrival timestamp field to create a
stream of prompts. Each prompt query was dispatched to the
NIRVANA immediately upon the completion of the preced-
ing query. This query stream began only after the initial 10k
prompts were employed to preload the VDB and EFS with their
respective caches for kick-starting the system.
Evaluation Metrics: We evaluate NIRVANA on various met-
rics covering both quality and efficiency aspects.
1. Quality Metrics:

• FID Score (Fréchet Inception Distance): Computes
the difference between two image datasets and corre-
lates with human visual quality perception [47].

• CLIP Score: Evaluates the alignment between gener-
ated images and their textual prompts [46]

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1181

• PickScore: A metric designed for predicting user pref-
erences for generated images [53]

2. Efficiency Metrics: To evaluate the efficacy of NIRVANA
in providing system efficiency, we report an average of
5 runs for % savings in GPU usage time, % reduction
in end-to-end latency of image generation, % increase in
throughput as number of images generated per second in a
cluster and also amortized dollar-cost per image generation.
We also report hit-rate = h(minK) (Eq. 8) for NIRVANA.

7.2 Overall Performance on Quality
In this section, we evaluate how NIRVANA performs signifi-

cantly better with respect to image generation quality.
Quantitative Generation Performance: Table 1 summa-

rizes NIRVANA’s improvements in terms of the quantitative
image quality metrics. When compared against the retrieval-
based baselines (§7.1), NIRVANA and NIRVANA-w/oMP im-
prove performance significantly as captured by all three met-
rics [77]. Retrieval-based baselines directly retrieve the image
generated from the most similar previous prompt for the query
prompt. Hence, these methods fail to capture the differences
between the incoming prompt and the retrieved prompt, since
similarity metrics are unable to capture these (§3). Thus, all
the retrieval-based baselines incur a significant hit in the qual-
ity of the image generated, which is of utmost importance in
production user-facing text-to-image use cases. Compared to
SMALLMODEL, both NIRVANA and NIRVANA-w/oMP per-
form far superior, which shows bigger models retain quality
even with approximate-caching.

The metrics for VANILLA show the generated image quality
without any kind of approximations. The performance of NIR-
VANA is very close to VANILLA when compared against CLIP
and Pick score for both datasets. This shows that approximate-
caching does not hurt the overall performance.

We measure FID (lower the better) of baselines against im-
ages generated using VANILLA for the same prompts. We also
compute FID of VANILLA to indicate the inherent variability
of the generated images without any change in the base model.
To calculate FID for VANILLA, we generated 4 sets of images
with 4 different seeds and calculated the FID between these
resulting 4C2 sets of images. As can be seen for both datasets,
NIRVANA and NIRVANA-w/oMP exhibit much lower FID
values than even the internal dissimilarities between different
sets of generations by the VANILLA model. This means that
images generated by NIRVANA will be indistinguishable from
the VANILLA model - which is the design goal.

NIRVANA performs slightly better than NIRVANA-w/oMP
due to the presence of match-predictor which generates an
image from scratch during a predicted cache miss. However,
this comes with a very small hit on NIRVANA’s efficiency,
compared to NIRVANA-w/oMP (see §7.3).

User Study for Accessing Quality: We conduct a user
study with 60 participants to demonstrate the qualitative anal-
ysis. We evaluate 1000 randomly chosen prompts from DIF-

Quality

Dataset Models FID ↓ CLIP Score ↑ PickScore ↑

DiffusionDB

GPT-CACHE 7.98 25.84 19.04
PINECONE 10.92 24.83 18.92

CRS 8.43 24.05 18.84
SMALLMODEL 11.14 25.64 18.65

NIRVANA−w/oMP 4.94 28.65 20.35
NIRVANA 4.68 28.81 20.41

VANILLA 6.12-6.92 30.28 20.86

SYSTEM-X

GPT-CACHE 8.15 26.32 19.11
PINECONE 10.12 24.43 18.83

CRS 8.38 23.81 18.78
SMALLMODEL 11.35 25.91 18.92

NIRVANA−w/oMP 4.48 28.94 20.31
NIRVANA 4.15 29.12 20.38

VANILLA 5.42-6.12 30.4 20.71

Table 1: We compare NIRVANA against several baselines GPT-CACHE,
PINECONE, CRS that are pure retrieval-based techniques, a smaller-model,
and with vanilla diffusion model. CLIP score and PickScore are based on
text-to-image score. FID is image-to-image comparisons, using VANILLA
images as Ground Truth. Classifier has 0.96 Precision, 0.95 Recall.

FUSIONDB, where each user was presented with 15 random
<prompt, generated-image> pairs and were asked to vote
Yes, or No based on whether the generated image properly rep-
resents the given prompt. Out of these 15 prompt-image pairs,
5 pairs were generated by GPT-CACHE, the best-performing
image-retrieval-based baseline, next 5 pairs generated by NIR-
VANA and, next 5 using VANILLA. The images from these
three types were shuffled and presented to each user in a
random order and no prompt was repeated within a session.
Users were also given the option to disclose reasons for No.

In Figure 11, we show the ratio between Yes and No re-
sponses for each of the three models aggregated across all
users. It can be seen that GPT-CACHE gets the lowest num-
ber of Yes votes, while NIRVANA is just marginally beneath
the upper bound VANILLA. When analyzed for reasons of No
(∼12% of the negative responses), we discovered that 80% of
these reasons were for the images generated by GPT-CACHE.
These insights underscore the challenges of relying solely on
retrieval-based solutions for image generation and hence we
do not use these baselines in further evaluation.

This reinforces the fact that NIRVANA is much superior in
maintaining image quality, which is of paramount importance
for commercial deployment.

7.3 System Efficiency of NIRVANA
We compare NIRVANA in terms of image generation latency,

hit rate, compute savings, and cost of running NIRVANA.
Latency: Latency in Table 2 refers to the average end-to-

end latency across two million prompt queries tested. We
plot the nth percentile over the median of response latencies
for some baselines. An image generation system should ex-
hibit low latency for enhanced user experience. However, pure
retrieval techniques like GPT-CACHE provide low latency
but produce low-quality images and experience significant
fluctuations in their end-to-end latency since they need to

1182 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 11: User survey response

Latency(s) 90th/median 95th/median 99th/median

GPTCache 2.8 29.52 29.64 29.75
NIRVANA 6.9 1.20 1.21 1.21
VANILLA 8.6 1.01 1.02 1.02

Table 2: Average latency and nth percentile over median
values of the response latencies for approaches

Figure 12: Throughput comparison of models
against a stream of queries over time

Figure 13: Cost comparison of model compo-
nents against a stream of queries over time

run diffusion model from scratch for certain prompts that
are dissimilar from the cached prompts, thus impacting the
user experience [26] as shown in Table 2. NIRVANA reduces
such variance in latency compared to the baselines and also
the overall latency compared to VANILLA providing a much
more stable and faster user experience. The key to minimiz-
ing response time variability lies in the smoother transition in
compute time across different prompts, attributable to NIR-
VANA’s ability to retrieve caches at various values of K.

This observation underscores that NIRVANA not only re-
duces overall latency by 19.8% but also minimizes variance in
response times across different prompts, ultimately providing
a consistent and stable user experience [30].

Throughput: We quantify throughput as the number of
prompts processed per minute by the system. To evaluate
this, we replay the stream of prompts from the DiffusionDB
dataset. We assess the relative throughput of NIRVANA in
comparison to VANILLA, considering two cache settings. The
first setting employs LCBFU with a cache size of 1.5 million
items, while the second setting involves an increasing cache
configuration where no cache eviction occurs, effectively pro-
viding a theoretically infinite cache size. Figure 12 represents
our findings, where the x-axis corresponds to the stream of
queries, and we plot the relative throughput of the system.
Notably, our results indicate that NIRVANA achieves ∼1.28
times higher throughput than VANILLA for both settings.

Cost of Image Generation: To provide a detailed cost
breakdown for NIRVANA and VANILLA, we considered spe-
cific AWS components and their associated expenses, as per
AWS pricing [1]. We use the g5.24xlarge GPU (96 GB GPU)
instance from the US East region which costs $8.144 per
hour. This cost was used to estimate the GPU-related ex-
penses incurred by VANILLA and NIRVANA. VANILLA solely
uses the GPU resources for each image generation. However
NIRVANA also relies on additional components besides GPU,
namely VDB [6] and EFS. For VDB, the cost is estimated at
$0.12 per hour which covers storage and search operations
performed over the prompt embeddings. Additionally, NIR-
VANA incurs costs associated with EFS. In the US East region,
utilizing the standard storage type with 20% frequent access
over elastic throughput cost amounts to $0.09 per hour. To
determine the overall amortized cost of NIRVANA, we cal-
culated it by dividing the GPU cost by the throughput and

then adding the costs related to VDB and EFS. It is important
to note that this cost analysis was conducted under identical
settings for both systems. Despite the inclusion of these addi-
tional expenses, Figure 13 highlights that NIRVANA manages
to achieve a remarkable 19% reduction in cost compared to
VANILLA. This significant cost efficiency underscores the
practical advantages of NIRVANA in real-world deployment.

Hit-Rate and Compute Savings: Figure 15 highlights the
hit-rate and compute-savings of NIRVANA across K (x-axis).
Averaging over all Ks, NIRVANA achieves a substantial hit-
rate of 88% and noteworthy compute savings of 21% as in-
dicated by the blue and black dotted lines. The cumulative
hit-rate curve illustrates how the hit-rate varies with different
values of K and plots h(K). Additionally, the bar plot show-
cases the potential savings achievable at each K and the actual
savings realized at specific K values. For instance, at K = 25,
there is a potential savings of 50%, while the actual hit-rate
is 8%, resulting in an actual savings of 4%.

7.4 LCBFU Performance
We experiment the effectiveness of LCBFU against common

caching techniques like FIFO, LRU, and LFU. To ensure a
fair evaluation, we maintained the same workload generator
settings across all experiments with cold cache setting. FIFO
removed the earliest added noises from the cache. LRU and
LFU evict cache items based on their access frequency and
recency. Table 3(a) reports hit-rate (Eq. 8) and % compute
savings (% of GPU time savings when compared against
VANILLA) for various cache eviction policies across different
cache sizes. The hit-rate of LCBFU is comparable to LRU and
LFU while outperforming FIFO. Notably, as highlighted in
Table 3(b), the proposed LCBFU offers substantial compute
savings compared to all other policies since it is designed
to incorporate K with image access frequency for eviction.
LCBFU is not designed to have the best hit rate.

7.5 Sensitivity Analysis
We now present some sensitivity analysis regarding NIR-

VANA’s design choices. Additional sensitivity analyses are
present in the Appendix D.

Embedding type: We conducted a comparison of NIR-
VANA using various types of embeddings for query and/or
cache. Some embeddings are applied to the query as well
as cache prompts, while other is applied just to the cached

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1183

Cache Size #noises in cache FIFO LRU LFU LCBFU

1GB 1500 0.58 0.65 0.64 0.65
10GB 15000 0.68 0.77 0.78 0.77
100GB 150000 0.74 0.85 0.83 0.82
1000GB 1500000 0.83 0.95 0.94 0.93

(a) Hit rate
Cache Size #noises in cache FIFO LRU LFU LCBFU

1GB 1500 0.11 0.12 0.12 0.12
10GB 15000 0.13 0.14 0.14 0.15
100GB 150000 0.14 0.16 0.16 0.18
1000GB 1500000 0.17 0.20 0.19 0.23

(b) % Compute savings
Table 3: Performance of different eviction techniques.
Compute savings with LCBFU eviction is significant.

Figure 15: Hit rate and compute
saved across K’s

Figure 16: Overhead latency distribution with and
without match-predictor.
Embedding Prompt/Cache FID↓ CLIPScore↑ HitRate↑ ComputeSavings↑

BERT Query & Cache 4.53 28.94 0.77 0.16
CLIPImage Only Cache 4.85 28.49 0.84 0.18
CLIP Query & Cache 4.94 28.65 0.93 0.23

Table 4: Quality of generation for different embed-
dings.

prompt and CLIP embedding is maintained for the query
prompt. This is indicated by the column ‘Prompt/Cache’. The
results, summarized in Table 4, indicate that the quality of im-
age generation, assessed through metrics such as FID, CLIP
Score, and PickScore remains consistent across different em-
bedding types. However, the hit rate and compute savings
achieved with the CLIP Text embeddings significantly out-
perform the other two embedding types. Hence, we selected
CLIP Text embeddings for our system design.

Effectiveness of Match-Predictor: We conducted an
evaluation to assess the effectiveness of using the
match-predictor within NIRVANA, where we measured
the average overhead in image generation latency. Figure 16
shows that match-predictor contributes significantly to
lowering the overhead latency values as a considerable frac-
tion of queries has negligible overhead, approximately equal
to zero. This behavior is attributed to the match-predictor’s
ability to promptly predict whether a particular prompt is
present in the cache or not. It reduces the requirement for
I/O-related activities, resulting in decreased latencies. Net-
work delays in VDB/EFS cause right-tail latency. About 4% of
these cases result from cache misses, reduced to zero with
match-predictor. However, right-tail latency persists due
to network call delays, even with match-predictor.

8 Related Works
ML optimizations. Various techniques like model dis-

tillation [63, 72], pruning [38], quantization [60] and oth-
ers [50, 57, 85] exists for large DMs but often degrades the
quality as well. DeepSpeed [35] is an optimization library
for distributed inference and implements multiple techniques
for the same. These can make the base model faster but are
orthogonal to NIRVANA as they do not fundamentally change
the nature of the iterative denoising process that NIRVANA
exploits for compute reduction.

Model-serving in Cloud. Past research [33, 44, 58, 83, 86]
explored efficient ML model serving to reduce inference
latency. Clipper [33] implements optimizations like layer
caching, ensembling methods, and straggler mitigation. Cock-
tail [44] designs a cost-effective ensemble-based model serv-
ing framework along with proactive autoscaling for resource

management to provide high throughput and low latency.
Other works [31, 32, 86] optimized the prediction pipeline
cost during load variations. However, these are complimen-
tary to NIRVANA and can be integrated easily. Tabi [78] uses
multiple heterogeneous models for Large Language Models.

Text-to-image models. Diffusion model is one of the
main classes of text-to-image models, which was popular-
ized by Dall-E [12], Imagen [71] and Stable Diffusion [69].
Several other enterprises like Midjourney [17], Deci [15],
and Adobe [9] have built their own diffusion models. Algo-
rithmic optimizations include designing of faster sampling
step [49, 54, 76, 80, 90] and parallel sampling [75, 90] and
hence trading off compute for speed. However, our work is
orthogonal, and the underlying diffusion model can be chosen
from any of the above-mentioned works.

Caching. Caching in DNN inference has been explored
in the past [33, 43, 55, 56] including caching intermediate
layer outputs to avoid running every layer again on different
input [33, 56]. Kumar et al. [56] coins the term approximate
caching for above, but our semantics are orthogonal since we
cache the intermediate image noise, and not the model layer
outputs. None of the caching policies implemented in these
works (LRU, static cache) work in our case. Other caching
techniques [28, 84] are non-trivial to extend for our purpose.
Retrieval-based works [4,5,7] uses caching to retrieve images
for the most similar prompt, but suffer in quality (see §7).

Approximations in System Design: Various forms of ap-
proximations are employed in system designs to reduce re-
dundant computation, enhancing efficiency in domains such
as big data [24, 25, 27, 40, 41, 48, 64, 74], mobile comput-
ing [45, 81], and video processing [82, 88]. However, none of
these approaches apply to DMs.

9 Conclusion
In this paper, we introduced the design and implementation

of NIRVANA that uses a novel technique called approximate-
caching to significantly reduce compute cost and latency
during text-to-image generation using DMs by caching and
reusing intermediate-states created while processing prior
text prompts. We also presented a new cache management
technique to optimize performance under a fixed storage.

1184 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Aws product and service pricing | amazon web services. https:

//aws.amazon.com/pricing/?aws-products-pricing.sor
t-by=item.additionalFields.productNameLowercase&aws-p
roducts-pricing.sort-order=asc&awsf.Free%20Tier%20Type
=*all&awsf.tech-category=*all. (Accessed on 09/20/2023).

[2] Complete guide to samplers in stable diffusion - félix sanz. https:
//www.felixsanz.dev/articles/complete-guide-to-sampler
s-in-stable-diffusion. (Accessed on 09/21/2023).

[3] Hugging face model repository. https://huggingface.co/models.

[4] Making stable diffusion faster with intelligent caching | pinecone. ht
tps://www.pinecone.io/learn/faster-stable-diffusion/.
(Accessed on 09/21/2023).

[5] rom1504/clip-retrieval: Easily compute clip embeddings and build a
clip retrieval system with them. https://github.com/rom1504/c
lip-retrieval. (Accessed on 09/21/2023).

[6] Vector search database | qdrant cloud. https://cloud.qdrant.io/
calculator. (Accessed on 09/20/2023).

[7] zilliztech/gptcache: Semantic cache for llms. fully integrated with
langchain and llama_index. https://github.com/zilliztec
h/GPTCache. (Accessed on 09/21/2023).

[8] Adobe express with ai-powered firefly integration now commercially
available. https://news.adobe.com/news/news-details/2023/
Adobe-Express-With-AI-Powered-Firefly-Integration-Now
-Commercially-Available/default.aspx, 2023.

[9] Adobe firefly. https://www.adobe.com/sensei/generative-ai/firefly.html.
2023.

[10] Adobe unleashes new era of creativity for all with the commercial
release of generative ai. https://news.adobe.com/news/news-d
etails/2023/Adobe-Unleashes-New-Era-of-Creativity-for
-All-With-the-Commercial-Release-of-Generative-AI/defa
ult.aspx, 2023.

[11] Aitemplate. https://github.com/facebookincubator/AITempl
ate, 2023.

[12] Dall-e 2. https://openai.com/dall-e-2. 2023.

[13] Elasticsearch. https://www.elastic.co/, 2023.

[14] Intel labs introduces ai diffusion model, generates 360-degree images
from text prompts. https://www.businesswire.com/news/home
/20230621842353/en/Intel-Labs-Introduces-AI-Diffusion
-Model-Generates-360-Degree-Images-from-Text-Prompts,
2023.

[15] Introducing decidiffusion 1.0: : 3x the speed of stable diffusion with
the same quality. https://deci.ai/blog/decidiffusion-1-0-3x-faster-than-
stable-diffusion-same-quality/. 2023.

[16] Lustrefs. https://www.lustre.org/, 2023.

[17] Midjourney. https://www.midjourney.com/home/. 2023.

[18] Milvus - vector database. https://milvus.io/, 2023.

[19] Myrocks and bloom filters. https://mariadb.com/kb/en/myrock
s-and-bloom-filters/, 2023.

[20] Oneclass svm. https://scikit-learn.org/stable/modules/ge
nerated/sklearn.svm.OneClassSVM.html, 2023.

[21] Qdrant - vector database. https://qdrant.tech/, 2023.

[22] Stable diffusion batch prediction with ray data. https://docs.ray
.io/en/latest/data/examples/stablediffusion_batch_pred
iction.html, 2023.

[23] Weaviate - vector database. https://weaviate.io/, 2023.

[24] Shubham Agarwal, Gromit Yeuk-Yin Chan, Shaddy Garg, Tong Yu,
and Subrata Mitra. Fast natural language based data exploration with
samples. In Companion of the 2023 International Conference on
Management of Data, pages 155–158, 2023.

[25] Ganesh Ananthanarayanan, Michael Chien-Chun Hung, Xiaoqi Ren,
Ion Stoica, Adam Wierman, and Minlan Yu. {GRASS}: Trimming
stragglers in approximation analytics. In 11th USENIX symposium
on networked systems design and implementation (NSDI 14), pages
289–302, 2014.

[26] Xiao Bai, Ioannis Arapakis, B Barla Cambazoglu, and Ana Freire.
Understanding and leveraging the impact of response latency on user
behaviour in web search. ACM Transactions on Information Systems
(TOIS), 36(2):1–42, 2017.

[27] Martin Beck, Pramod Bhatotia, Ruichuan Chen, Christof Fetzer,
Thorsten Strufe, et al. {PrivApprox}:{Privacy-Preserving} stream
analytics. In 2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 659–672, 2017.

[28] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. {LHD}: Improving
cache hit rate by maximizing hit density. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18), pages
389–403, 2018.

[29] Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[30] Peter M Broadwell. Response time as a performability metric for online
services. Computer Science Division, University of California, 2004.

[31] Lequn Chen, Weixin Deng, Anirudh Canumalla, Yu Xin, Matthai Phili-
pose, and Arvind Krishnamurthy. Symphony: Optimized model serv-
ing using centralized orchestration. arXiv preprint arXiv:2308.07470,
2023.

[32] Daniel Crankshaw, Gur-Eyal Sela, Corey Zumar, Xiangxi Mo, Joseph E.
Gonzalez, Ion Stoica, and Alexey Tumanov. Inferline: Ml prediction
pipeline provisioning and management for tight latency objectives,
2020.

[33] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin,
Joseph E Gonzalez, and Ion Stoica. Clipper: A {Low-Latency} online
prediction serving system. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 613–627, 2017.

[34] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and
Mubarak Shah. Diffusion models in vision: A survey. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2023.

[35] deepspeed.ai. Deepspeed. https://www.deepspeed.ai/, 2023.

[36] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans
on image synthesis. Advances in neural information processing systems,
34:8780–8794, 2021.

[37] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

[38] Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for
diffusion models. arXiv preprint arXiv:2305.10924, 2023.

[39] Paul A Gagniuc. Markov chains: from theory to implementation and
experimentation. John Wiley & Sons, 2017.

[40] Shaddy Garg, Subrata Mitra, Tong Yu, Yash Gadhia, and Arjun Kashetti-
war. Reinforced approximate exploratory data analysis. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 37, pages
7660–7669, 2023.

[41] Inigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and Thu D
Nguyen. Approxhadoop: Bringing approximations to mapreduce frame-
works. In Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, pages 383–397, 2015.

[42] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in Neural Information Processing
Systems, 2014.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1185

https://aws.amazon.com/pricing/?aws-products-pricing.sort-by=item.additionalFields.productNameLowercase&aws-products-pricing.sort-order=asc&awsf.Free%20Tier%20Type=*all&awsf.tech-category=*all
https://aws.amazon.com/pricing/?aws-products-pricing.sort-by=item.additionalFields.productNameLowercase&aws-products-pricing.sort-order=asc&awsf.Free%20Tier%20Type=*all&awsf.tech-category=*all
https://aws.amazon.com/pricing/?aws-products-pricing.sort-by=item.additionalFields.productNameLowercase&aws-products-pricing.sort-order=asc&awsf.Free%20Tier%20Type=*all&awsf.tech-category=*all
https://aws.amazon.com/pricing/?aws-products-pricing.sort-by=item.additionalFields.productNameLowercase&aws-products-pricing.sort-order=asc&awsf.Free%20Tier%20Type=*all&awsf.tech-category=*all
https://aws.amazon.com/pricing/?aws-products-pricing.sort-by=item.additionalFields.productNameLowercase&aws-products-pricing.sort-order=asc&awsf.Free%20Tier%20Type=*all&awsf.tech-category=*all
https://www.felixsanz.dev/articles/complete-guide-to-samplers-in-stable-diffusion
https://www.felixsanz.dev/articles/complete-guide-to-samplers-in-stable-diffusion
https://www.felixsanz.dev/articles/complete-guide-to-samplers-in-stable-diffusion
https://huggingface.co/models
https://www.pinecone.io/learn/faster-stable-diffusion/
https://www.pinecone.io/learn/faster-stable-diffusion/
https://github.com/rom1504/clip-retrieval
https://github.com/rom1504/clip-retrieval
https://cloud.qdrant.io/calculator
https://cloud.qdrant.io/calculator
https://github.com/zilliztech/GPTCache
https://github.com/zilliztech/GPTCache
https://news.adobe.com/news/news-details/2023/Adobe-Express-With-AI-Powered-Firefly-Integration-Now-Commercially-Available/default.aspx
https://news.adobe.com/news/news-details/2023/Adobe-Express-With-AI-Powered-Firefly-Integration-Now-Commercially-Available/default.aspx
https://news.adobe.com/news/news-details/2023/Adobe-Express-With-AI-Powered-Firefly-Integration-Now-Commercially-Available/default.aspx
https://www.adobe.com/sensei/generative-ai/firefly.html
https://news.adobe.com/news/news-details/2023/Adobe-Unleashes-New-Era-of-Creativity-for-All-With-the-Commercial-Release-of-Generative-AI/default.aspx
https://news.adobe.com/news/news-details/2023/Adobe-Unleashes-New-Era-of-Creativity-for-All-With-the-Commercial-Release-of-Generative-AI/default.aspx
https://news.adobe.com/news/news-details/2023/Adobe-Unleashes-New-Era-of-Creativity-for-All-With-the-Commercial-Release-of-Generative-AI/default.aspx
https://news.adobe.com/news/news-details/2023/Adobe-Unleashes-New-Era-of-Creativity-for-All-With-the-Commercial-Release-of-Generative-AI/default.aspx
https://github.com/facebookincubator/AITemplate
https://github.com/facebookincubator/AITemplate
https://openai.com/dall-e-2
https://www.elastic.co/
https://www.businesswire.com/news/home/20230621842353/en/Intel-Labs-Introduces-AI-Diffusion-Model-Generates-360-Degree-Images-from-Text-Prompts
https://www.businesswire.com/news/home/20230621842353/en/Intel-Labs-Introduces-AI-Diffusion-Model-Generates-360-Degree-Images-from-Text-Prompts
https://www.businesswire.com/news/home/20230621842353/en/Intel-Labs-Introduces-AI-Diffusion-Model-Generates-360-Degree-Images-from-Text-Prompts
https://deci.ai/blog/decidiffusion-1-0-3x-faster-than-stable-diffusion-same-quality/
https://deci.ai/blog/decidiffusion-1-0-3x-faster-than-stable-diffusion-same-quality/
https://www.lustre.org/
https://www.midjourney.com/home/
https://milvus.io/
https://mariadb.com/kb/en/myrocks-and-bloom-filters/
https://mariadb.com/kb/en/myrocks-and-bloom-filters/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
https://qdrant.tech/
https://docs.ray.io/en/latest/data/examples/stablediffusion_batch_prediction.html
https://docs.ray.io/en/latest/data/examples/stablediffusion_batch_prediction.html
https://docs.ray.io/en/latest/data/examples/stablediffusion_batch_prediction.html
https://weaviate.io/
https://www.deepspeed.ai/

[43] Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural
language models with a continuous cache. In International Conference
on Learning Representations, 2017.

[44] Jashwant Raj Gunasekaran, Cyan Subhra Mishra, Prashanth Thi-
nakaran, Bikash Sharma, Mahmut Taylan Kandemir, and Chita R Das.
Cocktail: A multidimensional optimization for model serving in cloud.
In 19th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 22), pages 1041–1057, 2022.

[45] Peizhen Guo, Bo Hu, Rui Li, and Wenjun Hu. Foggycache: Cross-
device approximate computation reuse. In Proceedings of the 24th
annual international conference on mobile computing and networking,
pages 19–34, 2018.

[46] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin
Choi. Clipscore: A reference-free evaluation metric for image caption-
ing. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 7514–7528, 2021.

[47] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard
Nessler, and Sepp Hochreiter. Gans trained by a two time-scale up-
date rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

[48] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro
Molina, Kristian Kersting, and Carsten Binnig. Deepdb: Learn from
data, not from queries! arXiv preprint arXiv:1909.00607, 2019.

[49] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion proba-
bilistic models. Advances in neural information processing systems,
33:6840–6851, 2020.

[50] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation
of large language models. In International Conference on Learning
Representations, 2021.

[51] Jina.ai. Benchmark vector search databases with one million data.
https://jina.ai/news/benchmark-vector-search-databases
-with-one-million-data/, 2022.

[52] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

[53] Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe
Penna, and Omer Levy. Pick-a-pic: An open dataset of user preferences
for text-to-image generation. arXiv preprint arXiv:2305.01569, 2023.

[54] Zhifeng Kong and Wei Ping. On fast sampling of diffusion proba-
bilistic models. In ICML Workshop on Invertible Neural Networks,
Normalizing Flows, and Explicit Likelihood Models, 2021.

[55] Roland Kuhn. Speech recognition and the frequency of recently used
words: A modified Markov model for natural language. In Coling
Budapest 1988 Volume 1: International Conference on Computational
Linguistics, 1988.

[56] Adarsh Kumar, Arjun Balasubramanian, Shivaram Venkataraman, and
Aditya Akella. Accelerating deep learning inference via freezing. In
11th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
19), 2019.

[57] Fan Lai, Yinwei Dai, Harsha V Madhyastha, and Mosharaf Chowdhury.
{ModelKeeper}: Accelerating {DNN} training via automated training
warmup. In NSDI, 2023.

[58] Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico
Santambrogio, Markus Weimer, and Matteo Interlandi. {PRETZEL}:
Opening the black box of machine learning prediction serving systems.
In OSDI, 2018.

[59] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from
transformers via speculative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR, 2023.

[60] Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel
Kang, Shanghang Zhang, and Kurt Keutzer. Q-diffusion: Quantizing
diffusion models. arXiv, 2023.

[61] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numer-
ical methods for diffusion models on manifolds. arXiv preprint
arXiv:2202.09778, 2022.

[62] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small world
graphs. IEEE transactions on pattern analysis and machine intelli-
gence, 42(4):824–836, 2018.

[63] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano
Ermon, Jonathan Ho, and Tim Salimans. On distillation of guided
diffusion models. In CVPR, 2023.

[64] Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang.
Verdictdb: Universalizing approximate query processing. In Proceed-
ings of the 2018 International Conference on Management of Data,
pages 1461–1476, 2018.

[65] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing
systems, 32, 2019.

[66] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[67] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim
Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: im-
proving latent diffusion models for high-resolution image synthesis.
arXiv preprint arXiv:2307.01952, 2023.

[68] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh,
Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela
Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine
learning, pages 8748–8763. PMLR, 2021.

[69] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser,
and Björn Ommer. High-resolution image synthesis with latent diffu-
sion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10684–10695, 2022.

[70] O Ronneberger, P Fischer, and T Brox. Convolutional networks for
biomedical image segmentation. In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015 Conference Proceed-
ings, 2022.

[71] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang,
Emily L Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu
Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-image diffu-
sion models with deep language understanding. Advances in Neural
Information Processing Systems, 35:36479–36494, 2022.

[72] Tim Salimans and Jonathan Ho. Progressive distillation for fast sam-
pling of diffusion models. In International Conference on Learning
Representations, 2021.

[73] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and
Xiaowei Xu. Dbscan revisited, revisited: why and how you should
(still) use dbscan. ACM Transactions on Database Systems (TODS),
42(3):1–21, 2017.

[74] Nikhil Sheoran, Subrata Mitra, Vibhor Porwal, Siddharth Ghetia, Jatin
Varshney, Tung Mai, Anup Rao, and Vikas Maddukuri. Conditional
generative model based predicate-aware query approximation. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 8259–8266, 2022.

[75] Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima
Anari. Parallel sampling of diffusion models, 2023.

[76] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion
implicit models. In International Conference on Learning Representa-
tions, 2020.

1186 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://jina.ai/news/benchmark-vector-search-databases-with-one-million-data/
https://jina.ai/news/benchmark-vector-search-databases-with-one-million-data/

[77] Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip
for assessing the look and feel of images. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages 2555–2563,
2023.

[78] Yiding Wang, Kai Chen, Haisheng Tan, and Kun Guo. Tabi: An efficient
multi-level inference system for large language models. In Proceedings
of the Eighteenth European Conference on Computer Systems, pages
233–248, 2023.

[79] Zijie J Wang, Evan Montoya, David Munechika, Haoyang Yang, Ben-
jamin Hoover, and Duen Horng Chau. Diffusiondb: A large-scale
prompt gallery dataset for text-to-image generative models. arXiv
preprint arXiv:2210.14896, 2022.

[80] Zike Wu, Pan Zhou, Kenji Kawaguchi, and Hanwang Zhang. Fast
diffusion model, 2023.

[81] Mengwei Xu, Xiwen Zhang, Yunxin Liu, Gang Huang, Xuanzhe Liu,
and Felix Xiaozhu Lin. Approximate query service on autonomous
iot cameras. In Proceedings of the 18th International Conference on
Mobile Systems, Applications, and Services, pages 191–205, 2020.

[82] Ran Xu, Jinkyu Koo, Rakesh Kumar, Peter Bai, Subrata Mitra, Sasa
Misailovic, and Saurabh Bagchi. {VideoChef}: Efficient approximation
for streaming video processing pipelines. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 43–56, 2018.

[83] Neeraja J Yadwadkar, Francisco Romero, Qian Li, and Christos
Kozyrakis. A case for managed and model-less inference serving.
In Proceedings of the Workshop on Hot Topics in Operating Systems,
pages 184–191, 2019.

[84] Juncheng Yang, Yao Yue, and Rashmi Vinayak. Segcache: a memory-
efficient and scalable in-memory key-value cache for small objects. In
18th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 21), pages 503–518, 2021.

[85] Miao Yin, Yang Sui, Siyu Liao, and Bo Yuan. Towards efficient ten-
sor decomposition-based dnn model compression with optimization
framework. In CVPR, 2021.

[86] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. {MArk}:
Exploiting cloud services for {Cost-Effective},{SLO-Aware} machine
learning inference serving. In 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19), pages 1049–1062, 2019.

[87] Chenshuang Zhang, Chaoning Zhang, Mengchun Zhang, and In So
Kweon. Text-to-image diffusion model in generative ai: A survey.
arXiv preprint arXiv:2303.07909, 2023.

[88] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Phili-
pose, Paramvir Bahl, and Michael J Freedman. Live video analytics
at scale with approximation and {Delay-Tolerance}. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17), pages 377–392, 2017.

[89] Yuxin Zhang, Weiming Dong, Fan Tang, Nisha Huang, Haibin Huang,
Chongyang Ma, Tong-Yee Lee, Oliver Deussen, and Changsheng Xu.
Prospect: Expanded conditioning for the personalization of attribute-
aware image generation. arXiv preprint arXiv:2305.16225, 2023.

[90] Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and
Anima Anandkumar. Fast sampling of diffusion models via operator
learning. In International Conference on Machine Learning, pages
42390–42402. PMLR, 2023.

A NIRVANA Algorithm
NIRVANA first uses the match-predictor to predict if

there is a close match for the prompt query PQ. If the predic-
tion is yes, it makes a VDB call to get the nearest prompt and
finds the K using heuristics (see 5.2). Next, it retrieves the
intermediate image noise at Kth step from EFS and passes it to
the diffusion model to generate the final image in N −K
steps. If there is no match predicted or found, NIRVANA
takes fallback to generate an image from scratch. Note, using
match-predictor reduces the case where VDB call is made
for cache miss cases.

Algorithm 2 GenerateImageCache(PQ)

1: Pe← Embed(P)
2: if MatchPredictor(Pe) is True then
3: // Generate using cache
4: (neigh,score)← search_VDB(Pe)
5: K← heuristics_K(score)
6: if K ̸= 0 then
7: pathK ← neigh[′payload′][′noise′][K]
8: c_noise← retrieve_EFS(pathK)
9: I← model(P,c_noise,K)

10: else
11: // No suitable cache found, generate from scratch
12: I← model(P, null, 0)
13: end if
14: else
15: // Generate from scratch
16: I← model(P, null, 0)
17: end if
18: return I

B Implementation Details
Batch Processing: While deploying, our diffusion model

takes up around 80% of GPU memory with batch size 1, so
concurrent batching isn’t supported.

AITemplate (AIT): We leverage AITemplate (AIT) [11],
a Python framework to accelerate inference serving of the
PyTorch-based diffusion model by converting it into CUDA
(NVIDIA GPU) / HIP (AMD GPU) C++ code. It provides
high-performance support during the inference process.

C Discussions
Image diversity. Since NIRVANA reuses previous interme-

diate states from the cache, over time the diversity of images
generated by the system can be reduced if the majority of the
prompts encountered by the system are very similar. This can
be addressed in the following ways: first, by actively chang-
ing the seed of the denoising process after retrieval. We ob-
served that for K < 35 this can increase diversity. However,
if prompts become too similar, then NIRVANA would attempt
to save compute more aggressively using a higher K where
seed change becomes ineffective. In that case, NIRVANA can

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1187

be designed to let an ε fraction of prompts follow the vanilla
diffusion process to maintain the diversity of images.

Change in prompt characteristics. If the characteristics
of the prompts suddenly change due to some external fac-
tors, NIRVANA will find less similar items in the cache and
will automatically move towards lower K, or even for more
dissimilar prompts the match-predictor will kick in and
redirect the prompts to vanilla diffusion process. While this
will reduce compute savings, by design NIRVANA will not
let the image quality degrade in case of a sudden change in
prompt characteristics.

Generalizability of Approximate Caching: The concept
of approximate caching easily extends to iterative generation
approaches. It can also be applied to other architectures, such
as Transformers (in LLMs) in sequential decoding [59], or at
the layer level [56] for models like U-Net.

Cache management policy: The proposed LCBFU policy
prioritizes compute savings, particularly with higher K values.
However, there’s a nuanced trade-off, notably for frequently
accessed prompts at lower K (e.g., K = 5) v/s less frequent
access at higher K (e.g., K = 25). Eviction at lower K may
seem to impact the user experience by removing frequently
used cache, but a lower K = 5 facilitates alternative matches
with a lower similarity score requirement. Preserving K = 25
is critical for its similarity to specific prompts and substan-
tial compute savings; evicting it might result in the absence
of a highly similar prompt. Hence, (LCBFU) aims for max-
imum compute optimization with minimal impact on user
experience.

ML optimizations. Several techniques are used to reduce
the compute footprint and latency of models such as the use
of lower precision [60], distillations [63, 72], pruning [38],
batched-inference optimizations [22]. NIRVANA is comple-
mentary to such techniques as it can be used on top of those
optimized models as well to reduce redundant computation
using approximate caching. However, if a new family of gen-
erative models emerges that does not require such a large
number of iterative steps, then NIRVANA’s applicability will
become limited. But since as of today, DMs with 50 or more
denoising steps produce the best and production quality im-
ages, NIRVANA provides an attractive proposition for compute
reduction.

D Additional Results from Sensitivity Analysis
D.1 Match-Predictor Settings

The SGDOneClassSV M match-predictor can produce
binary predictions (0 or 1) by employing various thresholds.
These thresholds influence the Precision (P) and Recall (R)
values obtained from the match-predictor. To determine
the optimal settings, we conducted an ablation study, mea-
suring the overhead latency under different P and R config-
urations. The resulting plot in Figure 17 led us to select the
settings with a P = 96 and R = 95. The choice is made to

prioritize high precision, aiming to minimize false positives.
Simultaneously, we aim to maintain a high recall to avoid
missing opportunities for using approximate-caching.

Figure 17: Hit rate and compute saved across K’s

D.2 Decomposition of End-to-End Latency in
NIRVANA

In Figure 18 we show the end-to-end latency of VANILLA
diffusion model and also how different components of NIR-
VANA contribute towards its end-to-end latency. We can see
noise retrieval from EFS and VDB search is the main contrib-
utor to the overhead.

Figure 18: Time taken by different components of VANILLA and NIRVANA
for generating an image using 50 steps on A10g GPU instance.

D.3 Image Quality across Long vs. Short
Prompts

As we discussed in §3, the prompt queries can be either long
or short. We perform ablation to see how the system works
with them. The ablation results presented in Table 5 indicate
that NIRVANA performs more effectively with slightly shorter
prompts compared to very lengthy ones. This disparity in
performance can be intuitively attributed to the retrieval tech-
nique employed. Longer prompts tend to challenge the ability
of embeddings (in our case, CLIP) to capture the context
adequately. If the prompt retrieved from the cache signifi-
cantly deviates from the query despite high similarity based
on CLIPText embeddings (as discussed in §3), it may result
in the generation of incoherent images

Prompt FID ↓CLIPScore ↑

Short 7.96 28.48
Long 11.48 28.96

Table 5: Generation of short v/s long prompts. Less than 15 words are
considered short.

D.4 Quality with different Caching Policy
We conducted an evaluation to compare image quality met-

rics, including FID, CLIPScore, and PickScore, while using
different cache eviction techniques. The results, presented in
Table 6, demonstrate that image generation quality remains

1188 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

consistent across all caching techniques. Therefore, the choice
of eviction mechanism should prioritize improved compute
savings and hit rates.

Policy FID ↓CLIPScore ↑ PickScore ↑

FIFO 5.12 28.25 20.31
LRU 4.82 28.54 20.38
LFU 4.98 28.61 20.42
LCBFU 4.94 28.65 20.41

Table 6: Quality of generation for different eviction techniques with 1500
GB cache.

E Concept Development in Image Generation
This section gives a motivating example of how various con-

cepts/characteristics develop during image generation [89].
In Figure 19, we present an illustrative example of image

Figure 19: Generation across K
generation using a prompt that encompasses various aspects,
including color, layout, content, size, style, and more. We
divide the generation steps into four distinct time buckets,
labeled t1, t2, t3, and t4, with each bucket having a unique
role in shaping different facets of the image. The formation of
color initiates in t1 and becomes relatively stable by t2. Style,
here referring to generating a digital art image in the style
of a detailed photograph, commences in t1 and experiences
significant development in t2. The image’s content, featuring
a bird and leaves, begins to manifest partially towards the end
of t2, with substantial development occurring in t3. Layout,
which dictates the positioning of elements like the blackbird,
starts its formation in t1 and progresses towards the end of this
phase. By the time we reach t4, most aspects of the image are
firmly established, with this final bucket primarily responsible
for fine-tuning and enhancing details and clarity.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1189

THC: Accelerating Distributed Deep Learning Using Tensor Homomorphic
Compression

Minghao Li††, Ran Ben Basat†, Shay Vargaftik§, ChonLam Lao††,
Kevin Xu††, Michael Mitzenmacher††, Minlan Yu††

Harvard University ††, University College London †, VMware Research §

Abstract

Deep neural networks (DNNs) are the de facto standard for
essential use cases, such as image classification, computer vi-
sion, and natural language processing. As DNNs and datasets
get larger, they require distributed training on increasingly
larger clusters. A main bottleneck is the resulting commu-
nication overhead where workers exchange model updates
(i.e., gradients) on a per-round basis. To address this bottle-
neck and accelerate training, a widely-deployed approach is
compression. However, previous deployments often apply
bi-directional compression schemes by simply using a uni-
directional gradient compression scheme in each direction.
This results in significant computational overheads at the pa-
rameter server and increased compression error, leading to
longer training and lower accuracy.

We introduce Tensor Homomorphic Compression (THC), a
novel bi-directional compression framework that enables the
direct aggregation of compressed values and thus eliminat-
ing the aforementioned computational overheads. Moreover,
THC is compatible with in-network aggregation (INA), which
allows for further acceleration. Our evaluation shows that
training representative vision and language models with THC
reaches target accuracy by 1.40× to 1.47× faster using INA
and 1.28× to 1.33× faster using a software PS compared
with state-of-the-art systems.

1 Introduction

In the past decade, the scale of machine learning training and
data volume has increased dramatically due to the growing de-
mand for various ML applications [11,13,23,54,62,70,72,76].
Alibaba’s general-purpose ML platforms also reported a rapid
increase in ML training data, from hundreds of gigabytes
to tens or even hundreds of terabytes, at an internet scale,
within a few years [75]. This trend is expected to continue
in the future [59] with the rapid advancements of giant mod-
els [11, 13, 44, 52, 60]. To support these large-scale models,
we need large-scale distributed training [19, 30, 51, 71].

However, distributed training incurs high communication
overhead. Recent research [73] has shown that the synchro-
nization cost of GPT2 [50] and BERT-base [14] in a 8-worker
setting can be as high as 42% and 49% of the total time during
training, even with state-of-the-art frameworks. As the num-
ber of workers increases, the communication overhead rises
substantially [59]. Meanwhile, computing devices are push-
ing more data into the network with specialized ML accelera-
tors [18, 42, 47, 77] and more advanced GPU/TPU hardware,
which further increases the communication overhead [65, 80].

To reduce the communication overhead, many compres-
sion schemes have been conceived [6, 10, 15, 64, 73, 74]. One
common problem of these solutions is that they apply bi-
directional compression. For example, in the Parameter Server
(PS) architecture, the PS nodes first decompress all gradients,
aggregate them, and then compress the aggregated gradients
again. Such compression and decompression operations result
in significant computational overheads and affect the training
convergence time and attainable accuracy (see Section §2.1).

To address these problems, we introduce Tensor Homomor-
phic Compression (THC), a novel bi-directional compression
framework enabling the direct aggregation of compressed
tensors (e.g., gradients) without first decompressing them,
eliminating much of the aforementioned computational over-
head. Additionally, direct aggregation can also run on pro-
grammable switches for further acceleration.

This paper focuses on developing a THC framework to
reduce the communication overhead of data parallelism for the
parameter server architecture. Importantly, PS is effective in
GPU/CPU hybrid clusters [28, 39,46, 73], which are common
in clouds [27]. Furthermore, when we colocate a PS with each
worker, it essentially functions as an AllReduce [28].

From an algorithmic standpoint, the technical challenge
is designing an algorithm that enables workers to accurately
compress their gradients in a way that allows aggregating
their results without decompressing each worker’s message.
We propose Homomorphic Compression – a property that
enables this and develops efficient schemes that satisfy it
while optimizing the accuracy.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1191

Worker 1

Worker

PS Train Compress

Model

GradientWeights

Updated
Weights

Update Normalize &
DecompressAggregated

Update
Aggregated

Compressed Update

Sum

Compressed
Gradients

Decompress
(e.g., recover
indices, scale

up values)

Compress
(e.g., sort

and sparsify,
quantize)

THC removes decompress
and compress at PSon GPU

Figure 1: End-to-end workflow when using typical compression algorithms.

No
Compression

Topk
10%

DGC
10%

TernGrad0
1
2
3
4

Ti
m

e
(m

s)

4 PS
1 PS

4 PS

1 PS

4 PS

1 PS

4 PS1 PS

PS agg.
PS compr.

comm.
worker compr.

(a) Communication round time of
one 4MB partition.

No
Compression

Topk
10%

DGC
10%

TernGrad0
1
2
3
4
5
6
7

NM
SE

(b) NMSE of various compression
schemes with four workers.

Figure 2: Communication time and error.

A key idea behind THC’s ability to satisfy this property
is an initial communication stage with minimal information
exchange between the workers at the beginning of each round
that allows them to coordinate and ensure that their com-
pressed gradients are directly aggregable. To ensure high
accuracy, THC does not directly encode the gradients but
rather pre- and post-processes them with the GPU-friendly
Randomized Hadamard Transform (RHT) to transform the
gradients to a different representation that is amenable to ac-
curate quantization. Since RHT preserves the tensor sizes (i.e.,
norms), by merely exchanging these norms during a prelimi-
nary light communication stage (a single float per client), the
clients can align their quantization values such that they can
be averaged without decompression. Furthermore, this com-
munication step overlaps with applying the RHT transform
and thus does not increase the compression time. THC also
employs an advanced non-uniform quantization technique
we developed and an error-feedback mechanism to further
improve the bandwidth to accuracy tradeoff.

We built THC on top of the BytePS [28] PyTorch extension.
Our PS can run on either software or programmable switches.
We perform extensive evaluation over seven representative
DNN models on a local testbed and AWS EC2. Testbed results
show that THC achieves the target accuracy 1.42× to 1.47×
faster with aggregation on a programmable switch and 1.28×
to 1.33× with a software PS, compared to the state-of-the-
art distributed training framework (Horovod RDMA). THC
with the programmable switch also improves the training
throughput by up to 54% over Horovod RDMA. 1

1THC is available at https://github.com/SophiaLi06/BytePS_THC.

2 Background and Motivation

In this section, we give the background on compression and
in-network aggregation and motivate the need for direct ag-
gregation on compressed data. Gradient compression, a well-
studied approach to lower the network communication of dis-
tributed training, reduces the volume of gradients transmitted
in synchronization steps at the expense of convergence speed
and accuracy. There are two key techniques: sparsification
and quantization. Sparsification may filter out coordinates of
small magnitude in the gradient tensor. TopK [64] is a straight-
forward sparsification algorithm that only sends the top k
percent (by magnitude) of coordinates and their indices. Spar-
sification becomes lossy when many coordinates are nonzero.
Quantization reduces the size of each element by reducing
the precision of gradients. For example, TernGrad [74] re-
duces the bit length of the gradient coordinates to two bits
by converting each float into a value x ∈ {−1,0,1}. Different
compression techniques offer various accuracy, bandwidth,
and time complexity tradeoffs.

2.1 Compression Cost and Tradeoffs
Figure 1 shows the bi-directional compression process in ex-
isting PS systems [6,73]. Workers send compressed gradients
to the PS. The PS decompresses and aggregates gradients.
Then, to reduce the traffic back to workers, the PS compresses
the aggregated results again before transmission. In such a
design, while compression reduces the communication cost,
decompressing and compressing data on PS nodes introduce
high compute overhead and additional compression errors.

To quantize the computational overhead and estimation er-
ror of compression schemes, we run a microbenchmark trans-
mitting a single 4MB partition (the recommended partition
size that balances pipelining efficiency and system overheads
as specified in BytePS repository [12]) on our local testbed.
Training frameworks usually batch gradients and chunk them
into same size partitions before communication [35,46]. Since
communication time grows linearly with the number of parti-
tions, we simply measure the times for a single partition in
our microbechmark. We measure the worker-side compres-
sion and decompression time ("worker compr."), the PS side
compression and decompression time ("PS compr."), the PS
aggregation time ("PS agg.") and the worker-PS communica-
tion time ("comm.") as shown in Figure 2a.

1192 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/SophiaLi06/BytePS_THC

Pre-process
(RHT)

Get max
. norm

Bound
the

support
Quantize Pack

Lookup

Estimate

Post-
process
(Inverse

RHT)

Error
feedback

PSWorker

4.3

5.2

5.1 5.1 5.3

5.1

UnpackNormalize

3

Sum

Calc max
norm .

4.2

5.3

5.2

3

3

3

Norm

Update

Max norm

Gradient

Figure 3: An illustration of THC, with the section numbers of each component.

With one PS and four workers, two sparsification schemes
TopK 10% and DGC 10% [38] that communicate the top 10%
coordinates by magnitude slow down the end-to-end time by
19.3% and 27.1% of the no-compression round time. This is
due to the high PS computational overhead of compression
and decompression that contributes up to 56.9% of the round
time even when the communication time is reduced. Note
that the computational overhead of TopK and DGC grow as
the PS aggregates more coordinates, making it a poor choice
when the worker-to-parameter server ratio is imbalanced.

When we use colocated PS (i.e., have four PS in total),
TopK 10% reduces the communication time by 60.4% of that
of no compression but takes an extra 0.54 ms (34.0% of the
round time) to run compression/decompression on the PS.
The end-to-end round time reduction is therefore diluted to
20.6% of that of no compression.

One can use other compression schemes (e.g., TernGrad)
that take less time for decompression/compression at the PS
side. However, these schemes have larger quantization errors.
Figure 2b shows the NMSE (Normalized Mean Squared Er-

ror, NMSE(x, x̂) = ||x−x̂||22
||x||22

), which quantifies the difference

between the actual vector x and the vector restored after com-
pression x̂. TernGrad results in an NMSE that is by an order
of magnitude larger than that of TopK 10% (i.e., 6.95 vs. 0.46
with four workers). This large gap in NMSE means that Tern-
Grad requires more iterations to reach the target accuracy or
might fail to reach the target accuracy at all. In fact, provable
convergence rates for distributed SGD have a linear depen-
dence on NMSE (e.g., [29]), rendering quantization schemes
with large NMSE less appealing for distributed training.

To address these limitations, THC allows direct aggregation
of compressed gradients, which eliminates decompression and
compression operations at PSes while ensuring high accuracy.
A detailed comparison between THC and other compression
schemes under different bit budgets is in Section §8.4.

2.2 In-network Aggregation
In-network aggregation [45] is another option to reduce com-
munication overhead. Recent research [33, 57] has demon-
strated that programmable switches can aggregate gradients
from multiple workers, reducing the switch-to-PS traffic and
resulting in a substantial training performance improvement.
However, using switches does not reduce the traffic volume
generated by the workers as gradient compression does.

Most existing compression solutions are incompatible with
in-network aggregation solutions because switches can not
easily decompress and compress the data due to their pro-
grammability and resource limitations [33, 49]. Since THC
supports direct aggregation over compressed data, it only re-
quires the PS to do summation, which programmable switches
can readily perform with their ALUs. This also offers new
opportunities for incorporating compression with in-network
aggregation to further improve training performance.

3 THC Overview
We propose the Tensor Homomorphic Compression (THC)
framework, which allows the PS to merely aggregate the in-
coming compressed gradients and transmit the (still com-
pressed!) aggregated values back to the workers. THC hence
enables us to avoid the computational overhead of compres-
sion and decompression at PS while still having accurate
estimation of the gradients’ average. We first introduce the
homomorphic compression property to model such system
constraints. Consider n workers and let ∇i be the i-th worker’s
gradient. We define the Uniform Homomorphic Compression
(UHC) property as follows:

Definition 1 (Uniform Homomorphic Compression)

∇̂avg =
1
n
·∑

i
Decompress(Compress(∇i))

= Decompress

(
1
n
·∑

i
Compress(∇i)

)
.

That is, with the Uniform Homomorphic Compression prop-
erty, the average of the decompressed gradients is mathemat-
ically equivalent to decompressing the average compressed
gradient. Leveraging this property, the PS simply sums the
compressed gradients and sends the result back (still in com-
pressed form). Finally, each worker averages the result and
applies the decompression to derive the update ∇̂avg.

The key challenge for THC is to design compression algo-
rithms that retain the UHC property while ensuring high accu-
racy. Non-homomorphic compression techniques require the
PS to decompress the gradients before aggregation because
they rely only on worker-local information. When workers
use different quantization ranges (e.g., [4, 53]), the PS must
decompress each gradient separately, sum them up, and com-
press again, increasing processing delay at the PS side and

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1193

the errors caused by compression. We know of one previous
compression scheme, SignSGD [10], that is homomorphic as
it simply counts, for each coordinate, the number of workers
which had a positive value for it. However, this scheme is bi-
ased, and thus its error does not decrease with the number of
workers, making it yield large errors in practice. In THC, we
retain an accuracy that is similar to that of the uncompressed
baseline and achieve the UHC property.

We present the THC framework, illustrated in Figure 3.
The THC workflow starts by having workers compress their
gradients, which commonly consist of 32-bit floats. Each co-
ordinate is quantized and then encoded into a table index
(formally introduced in Section §4.2) that requires a small
number of bits. The table indices are then packed and sent
to the PS. The PS looks the table indices up in a lookup ta-
ble to restore the corresponding table values and sums up
the looked-up table values coordinate-wise. After summing
values from all workers, PS packs the result and broadcasts it.
Finally, each worker decompresses and normalizes the result
to obtain the average gradient’s estimate.

The table here serves two purposes: first, it allows an ef-
ficient expansion of the indices to wider values that allow
summation without overflows. Second, we can use the table to
minimize the quantization error, as we later show, by picking
the table values in correspondence to the underlying data dis-
tribution. Since the table is small (of size 2b, where b is a small
constant) and hardcoded (does not depend on the gradients
or number of workers), and lookups do not require arithmetic
operations, we consider it as part of the direct aggregation.

Figure 4 visualizes the THC implementation we adopt
in our system prototype. Namely, each 32-bit coordinate is
encoded into a 4-bit table index, which then gets converted
into a 8-bit table value on the PS. The broadcast summation
result also uses 8 bits per coordinate. Therefore, our system
prototype provides a ×8 bandwidth reduction from workers
to the PS and a ×4 bandwidth reduction in the other direction.

The THC algorithm is described in detail in Section §4; in
Section §5, we introduce further optimizations for THC and
the end-to-end training procedure; then, Section §6 shows how
THC can be seamlessly used in conjunction with in-network
aggregation to further accelerate the training.

4 Tensor Homomorphic Compression
In this section, we explain how to achieve the UHC property
effectively. We start by giving background on stochastic quan-
tization, a core building block of our THC approach. We then
show (Section §4.2) that stochastic quantization with uniform
intervals, a technique that has been used previously in com-
pression, has the UHC property. However, its performance
in terms of the accuracy per bit is relatively poor, because
it is unoptimized. This poor compression performance can
lead to worse training time and/or model accuracy than an
uncompressed baseline. We, therefore, introduce further op-
timizations that improve the compression performance. Our

PS on CPU
or Switch

Sum

Lookup

Table Indices

Aggregated
Compressed Update

Table Values
8 bits … 8 bits

4 bits … 4 bits

Compress

Normalize &
Decompress

32 bits … 32 bits

Worker

32 bits … 32 bits

8 bits … 8 bits

Train

Update

on GPU

Figure 4: THC’s workflow illustration.

main conceptual advance is to use non-uniform quantization
intervals while maintaining the UHC property; that is, we
show how to optimize the choice of quantization values in
Section §4.3. Finally, Section §5 provides important technical
optimizations for speed and accuracy.

4.1 Background on Stochastic Quantization
A main building block that is used for gradient compression is
quantization, a technique that allows representing gradient en-
tries (e.g., 32-bit floats) using a small (e.g., 4) number of bits
while bounding the error. At a high level, our Tensor Homo-
morphic Compression (THC) framework leverages Stochastic
Quantization (SQ) that rounds a given real-value a to one
of two quantization values q0,q1 such that q0 ≤ a ≤ q1. SQ
quantizes a to q0 with probability (q1−a)/(q1−q0) and to q1
otherwise. An appealing property of SQ is that the expected
value of the quantization is exactly a, i.e., it is unbiased. This
is especially useful in distributed scenarios where using SQ
results in a decrease in the error of estimating the average
as the number of workers increases [68]. Our focus in what
follows is minimizing the error introduced by quantization
while maintaining the UHC property.

4.2 The Uniform THC Algorithm
As we now show, it turns out that using a variation of SQ
with uniform intervals where all workers use the same set of
intervals already yields a solution that is both unbiased and
homomorphic. However, the accuracy per-bit of this solution
leaves much to be desired, which is where we focus our efforts
in the following sections.

The most popular form of SQ is Uniform SQ (USQ), in
which the quantization values are uniformly spaced. For
example, given the range [m,M] and using 2b quantization
values, their locations are q0 = m,q1 = m+(M −m)/(2b −
1), . . . ,q2b = M. USQ quantizes a value a ∈ [m,M] to one of
its nearest quantization values. We first show that USQ, when
all workers globally use the same range [m,M] and b, satisfies
the UHC property. Note that for implementation this requires
all workers to first obtain the global minimum and maximum
to perform quantization, which is different than the standard
use of USQ (where each worker quantizes based on their own
local minimum and maximum value). For convenience, we
henceforth denote ⟨i⟩= {0, . . . , i−1} for any i ∈ N.

1194 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 Uniform THC
Input: bit budget b

Preliminary stage

Worker i:
1: Compute mi = min{∇i} and Mi = max{∇i}
2: Send (mi,Mi) to the PS
PS:
3: Compute m = mini {mi} and M = maxi {Mi}
4: Send (m,M) to workers

Main stage

Worker i:
5: Compute Xi = USQ(∇i,m,M,b)
6: Send Xi to PS
PS:
7: Compute X = ∑i∈⟨n⟩ Xi
8: Send X to workers
Worker i:
9: Estimate ∇̂avg = m+ 1

n ·X · M−m
2b−1

Definition 2 (Homomorphic USQ) Let ∇0,∇1, . . . ,∇n−1 ∈
Rd be the input gradients, and let mi = min{∇i} and Mi =
max{∇i} be the i’th gradient’s minimum and maximum. Let
m = mini {mi} and M = maxi {Mi} and consider a set of uni-

formly spaced quantization values
{

m+ k · M−m
2b−1 | k ∈

〈
2b
〉}

.
The workers perform stochastic quantization using these
quantization values on all input gradients.

This approach is homomorphic (Definition 1) since (C and D
stand for Compress and Decompress):

1
n
· ∑

i∈⟨n⟩
D(C(∇i)) =

1
n
· ∑

i∈⟨n⟩

(
m+C(∇i) ·

M−m
2b −1

)

= m+

(
1
n
· ∑

i∈⟨n⟩
C(∇i)

)
· M−m

2b −1
= D

(
1
n
· ∑

i∈⟨n⟩
C(∇i)

)
.

With this primitive at hand, we introduce a simplified (uni-
form) variant of the THC framework, which we generalize to
a non-uniform setting to obtain better performance.

The pseudo-code of Uniform THC is given by Algorithm
1. It begins with a preliminary communication round where
each worker computes and sends the smallest and largest
gradient entry to the PS (lines 1-2). In turn, the PS computes
the extreme global values and distributes them back to the
workers (lines 3-4). This communication round is light and
requires each worker to transmit and receive only two floats.
Next, each worker quantizes its gradient using the global
extremes (i.e., perform Homomorphic USQ) and sends the
result to the PS (lines 5-6). Then, the PS sums all the quantized
vectors and sends their sum to the worker (lines 7-8). Finally,
each worker divides the sum by the number of workers to
obtain the estimate of the average (line 9).

As detailed in Section 5, we can reduce the quantization
error by pre-processing the input gradient prior to its quanti-
zation and post-processing the average’s estimate at the end.

4.3 The Non-uniform THC Algorithm
In many cases, it is possible to choose the quantization values
in a non-uniform manner to optimize the accuracy-bandwidth
tradeoff. However, it is unclear how to leverage existing
non-uniform quantization methods (e.g., [8, 9, 53, 66, 67])
to improve our homomorphic compression. Namely, in non-
uniform methods, the sender transmits a table index z that is
then converted to the table value T [z] by the receiver. Here,
T is a lookup table that converts indices to values that may
not be uniformly spaced, i.e., T [z+1]−T [z] may not equal
T [z′+1]−T [z′] for different indices z,z′.

For example, consider quantizing values in the range
[−1,1] using four quantization values. Using USQ, the lookup
table is T0[0] =−1,T0[1] =−1/3,T0[2] = 1/3,T0[3] = 1. In
this case, any sum of table indices corresponds to a single
sum of quantization values. For example, suppose two senders
send indices z,z′ and consider two cases: (1) z = 0,z′ = 3 and
(2) z = 1,z′ = 2. In both cases, T0[z] + T0[z′] = 0. That is,
z+ z′ = 3 implies that T0[z] +T0[z′] = 0. Intuitively, the re-
ceiver can sum the indices and deduce the sum of sent values
instead of performing two table lookups.

In contrast, consider non-uniform quantization that uses
the table T1[0] = −1,T1[1] = −1/2,T1[2] = 1/2,T1[3] = 1.
Consider the two cases in which z+ z′ = 4: (1) z = 1,z′ = 3
and (2) z = z′ = 2. In the first case, T1[z]+T1[z′] = 1/2 while
in the second T1[z] + T1[z′] = 1. That is, the sum of table
indices does not determine the sum of table values.

Our insight is that we can overcome this by using a subset
of the uniformly spaced quantization values. To that end,
for a bit-budget of b bits per coordinate, we define a hy-
perparameter g ≥ 2b − 1 called granularity. We then use
a table T :

〈
2b
〉
→ ⟨g+1⟩ that maps table indices to val-

ues that are integers in the larger range. Intuitively, one can
think about this as running USQ with g+1 quantization val-
ues, but where all senders are only allowed the same 2b in-
dices. A table value T [z] then corresponds to the quantiza-
tion value m + T [z] · M−m

g+1 , same as in USQ. For instance,
in the above example of quantizing values in the range
[−1,1], the PS can use a table T2[0] = 0,T2[1] = 1,T2[2] =
3,T2[3] = 4 to map each table index into (the larger) range
⟨5⟩. The benefit is that the table values are now directly ag-
gregable; for example, consider three senders with the two
cases (1) z = z′ = z′′ = 1 and thus T2[z] = T2[z′] = T2[z′′] =
1, i.e., all quantization values are −1 + 1−(−1)

4 = − 1
2 ; (2)

z = z′ = 0,z′′ = 2 and thus T2[z] = T2[z′] = 0,T2[z′′] = 3,
i.e., the first two quantization values are −1 and the third
is −1+3× 1−(−1)

4 = 1
2 . Notice that the sum of table values

is the same in both cases, and so is the sum of quantization
values; in contrast, the sum of table indices differ.

Intuitively, g introduces a tradeoff where larger g results
in more fine-grained quantization values and lower error but
also requires more bits to represent the summation and higher
bandwidth requirement from the PS or switch to the workers.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1195

The pseudocode for the non-uniform variant of THC ap-
pears in Algorithm 2 (the Preliminary stage is the same as
in Algorithm 1). Notice that the lookup table Tb,g depends on
bit-budget b and the granularity g. When clear from context,
we omit the subscripts and write T .

Each worker i then calculates the set of quantization val-
ues Q ⊂ [m,M] given the (global) m,M and the granular-
ity g (Line 1). Next, it stochastically quantizes each coor-
dinate to a value in Q, giving the result Xi ∈ Qd (Line 2).
The worker then transforms each quantized coordinate into
its uniform-HC value in ⟨g+1⟩ using the linear transforma-
tion (Line 3). The next stage involves computing which b-
bit table indices (in

〈
2b
〉
) would map to the uniformly par-

titioned values by applying the inverse mapping (Line 4).
Finally, it sends the result Zi to the PS (Line 5).

The PS then gets the set of vectors {Zi}i∈⟨n⟩. It looks up
each vector (coordinate-wise) and sums them up, correspond-
ing to the sum of the Yi’s (Line 6). Then, the PS sends the
result, Y , to the workers, still in compressed form (Line 7). Ob-
serve that the PS only performs table lookups and summation
without decompressing the vectors and without additional
processing and re-compression that increases the error.

The final part takes place in parallel, where each worker
i first computes the average of ∑i∈⟨n⟩Yi by dividing Y by n
(Line 8). It then applies the inverse transformation to Line 3
to obtain an estimate ∇̂avg of the average gradient (Line 9).

To show that our algorithm is homomorphic, we general-
ize Definition 1 to account for the lookup table (C,D and T
stand for Compress, Decompress and table lookup)
Definition 3 (Non-uniform homomorphic compression)

∇̂avg =
1
n
· ∑

i∈⟨n⟩
D(T (C(∇i))) = D

(
1
n
· ∑

i∈⟨n⟩
T (C(∇i))

)
.

That is, a non-uniform HC (NUHC) scheme generalizes UHC
by allowing the PS to apply a lookup table T to the com-
pressed gradients before aggregating them.

Notice that if g = 2b − 1 and T is the identity mapping,
NUHC is identical to UHC (in that case, the lookup table is
redundant). As shown above, for T that is the identity map-
ping, the compression is uniform homomorphic. We now
show that if 0 = T (0) < T (1) < .. . < T (2b − 1) = g then
Algorithm 2 is homomorphic. 2 This is because

1
n
· ∑

i∈⟨n⟩
D(T (C(∇i))) =

1
n
· ∑

i∈⟨n⟩
D(T (Zi)) =

1
n
· ∑

i∈⟨n⟩
D(Yi) =

1
n
·

(
∑

i∈⟨n⟩
m+Yi ·

M−m
g

)
=

m+

(
1
n
· ∑

i∈⟨n⟩
Yi

)
· M−m

g
= D

(
1
n
· ∑

i∈⟨n⟩
T (C(∇i))

)
,

where we used (i) C(∇i) = Zi, (ii) T (C(∇i)) = Tb,g[Zi] = Yi,
and (iii) D(Yi) = m+Yi · M−m

g .

2In fact, it is sufficient that T is injective and satisfies 0,g ∈ Im(T); the
above definition is without loss of generality.

Algorithm 2 Non-uniform THC
Input: bit budget b, granularity g, and their lookup-table Tb,g

Main stage ▷ Preliminary stage same as in Algorithm 1

Worker i:
1: Compute Q = CalcQuantizationValues(m,M,Tb,g)
2: Compute Xi = SQ(∇i,Q)
3: Compute Yi = (Xi −m) · g

M−m ▷ Yi ∈ ⟨g+1⟩d

4: Compute Zi = T−1
b,g [Yi] ▷ Zi ∈

〈
2b〉d

5: Send Zi to PS
PS:
6: Compute Y = ∑i∈⟨n⟩ Tb,g[Zi] ▷ Y ∈ ⟨g ·n+1⟩d

7: Send Y to workers
Worker i:
8: Compute Yavg =

1
n ·Y ▷ Yavg ∈ [0,g]d

9: Estimate ∇̂avg = m+Yavg · M−m
g

The above result shows that Algorithm 2 is homomorphic
for many choices of lookup tables. As we later demonstrate,
very small lookup tables (e.g., for b= 4 we can usually use g∈
{16, . . . ,51}) are sufficient to obtain accurate quantization.

5 Optimizing THC

We next describe optimizations that improve THC’s
bandwidth-accuracy tradeoff (§5.1-§5.2) and speed (§5.3).

5.1 Pre- and Post-processing Using the Ran-
domized Hadamard Transform

For pre-processing, we utilize the Randomized Hadamard
Transform (RHT) that improves quantization accuracy by
reducing the expected range and transforming coordinates
to approach a normal distribution. The RHT of a vec-
tor x ∈ Rd is defined as 1√

d
· H · D · x, where H is the

Hadamard matrix [25] and D is a diagonal matrix with
i.i.d. Radamacher variables (taking ±1 with equal proba-
bilities) on its diagonal. An important property RHT is
that the special recursive structure of H allows a fast GPU-
friendly O(d logd) time implementation, significantly faster
than general matrix multiplication. The post-processing is
then the inverse transform, i.e., RHT−1(x) = 1√

d
·D ·H · x,

which has identical complexity to RHT.
RHT has two key benefits: First, RHT reduces the range of

coordinate values, improving accuracy. More concretely, a key
quantity that determines the error of a quantization scheme
is its range (the difference between the largest and smallest
quantization values), M − m (see Appendix A.2 for more
details). Intuitively, when the range is large, one is forced to
quantize to values that are further away from the encoded
quantity, thus increasing the error. As proven by [3], and
using M′,m′ to denote the maximal and minimal value after
the RHT transform, E[M′−m′] = O

(
(M−m) ·

√
logd / d

)
.

This decrease in the expected range significantly improves
the quantization accuracy.

1196 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

To further decrease the range, and thus the quantization
error, we leverage known results about the distribution of the
transformed coordinates to derive a threshold tp, for an appro-
priate p ∈ (0,1), such that approximately a p fraction of the
transformed coordinates are expected to fall outside [−tp, tp].
Namely, it is known that each coordinate in the RHT of a vec-
tor x ∈ Rd follows a distribution that approaches (for a large
enough d) the normal distribution N (0,1/∥x∥2) [68]. In par-
ticular, this means that the probability of a coordinate landing
outside the range diminishes exponentially in tp, giving an
opportunity to significantly reduce the range at the expense
of a small bias and allowing us to pick an appropriate p, as
we describe below in § 5.3. Our algorithm then optimizes the
quantization values to minimize the error of the coordinates
in [−tp, tp], and truncates the rest by rounding those larger
than tp to tp and those smaller than −tp to −tp.

To address this small bias, we compensate for it using a
technique called error-feedback (EF) [29], which includes
sending the vector x = ∇+ e that adds the previous error e
to the current gradient ∇, and later updating e to account for
the quantization error. It is known that when the bias is not
too large, EF guarantees the convergence of the training [36].
The effect of rotation and error feedback is evaluated in detail
in Appendix D.3, along with comparison to uniform THC.

The second key benefit of RHT is that, since the distribution
of the coordinates after applying RHT is known, we can com-
pute the optimal lookup table T offline, as we explain next.

5.2 Constructing the Optimal Lookup Table

As explained, after applying RHT and truncating, our goal is
to design a lookup table that minimizes the quantization error
of the resulting vector. This vector has two types of coordi-
nates: (1) the truncated coordinates have no error (beyond
the truncation) since, by design, there are always quantization
values at {−tp, tp}; (2) the non-truncated coordinates have a
distribution that approaches the truncated normal distribution.
Intuitively, this allows us to design the lookup table T to min-
imize the quantization error of a truncated normal random
variable and thereby minimize the NMSE.

Formally, the optimal lookup table needs to minimize the
error in quantizing a truncated normal random variable (A ∼
N (0,1) | A ∈ [−tp, tp]), where tp = Φ−1(1− p/2) and Φ is
the CDF of the normal distribution. As we later show, we
can use this pre-computed table for a normal random variable
with any variance by scaling the quantization values.

Formally, denoting by P(a,z) the probability of sending the
index z ∈

〈
2b
〉

given a value a ∈ [−tp, tp], the optimization
problem aims to find the table T and probabilities P. Let us
further denote by φ the pdf of the normal distribution. Then,
the following optimization problem gives the optimal lookup
table as Tb,g,p[z] = T [z]:

minimize
P,T

∫ tp

−tp
∑

z∈⟨2b⟩
P(a,z) · (a−T [z])2 ·φ(a) ·da

subject to

(Unbiasedness) ∑
z∈⟨2b⟩

P(a,z) ·T [z] = a ∀a ∈ [−tp, tp]

(Probability) ∑
z∈⟨2b⟩

P(a,z) = 1 ∀a ∈ [−tp, tp]

P(a,z)≥ 0 ∀a ∈ [−tp, tp], z ∈
〈
2b
〉

(Granularity) T [z] ∈
{

2tp
g · i− tp | i ∈ ⟨g+1⟩

}
∀z ∈

〈
2b
〉

As we elaborate in Appendix B, we optimally solve the
above problem. To that end, we wrote a specialized ILP solver
that leverages various properties of the above optimization
problem to reduce the search space and speed up the computa-
tion of T . Recall that for any b,g, p, we compute the optimal
Tb,g,p table only once offline and thus the solver’s runtime
does not affect THC’s performance.

5.3 Accelerating the Preliminary Stage

Heretofore, we discussed a preliminary stage in which the
workers exchange information that depends on the trans-
formed vectors to determine the quantization range. A natural
implementation would, therefore, include transforming the
vectors using RHT and then exchanging the information re-
quired for setting M and m.

Instead, we leverage special properties of RHT, namely that
(i) it preserves the norm of the transformed vector and (ii) that
there is a tight connection between the maximal norm and the
values M,m we are seeking. Accordingly, each client i first
computes the norm of its vectors xi and then parallelizes the
following operations: performing the RHT and obtaining the
maximum norm among the workers’ gradients using the PS.
Then it can set M =(tp/

√
d) ·ℓ,m=−M where ℓ=max∥xi∥2

and proceed to the quantization.

5.4 Putting It All Together

We are now ready to describe our complete THC training pro-
cess, whose pseudocode is given Algorithm 3, color coding
the different steps. In the first learning step, each worker
computes its local gradient and adds the error-feedback.
Next, the preliminary stage, in which the clients exchange
their norms, is parallelized with the RHT part of the pre-
processing; later, the transformed vector is normalized and
clamped. Next, during main stage, the workers and PS fol-
low our Non-uniform THC algorithm (see Algorithm 2)
to obtain an estimate of the average of the pre-processed
vectors. Then, each worker post-processes the estimate us-
ing the inverse transform. Finally, in the second learning
step, the workers update the error-feedback and model.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1197

Algorithm 3 Training with THC

1: Input: Support parameter p and its threshold tp. Bit bud-
get b, granularity g, and lookup-table Tb,g,p.

2: for r = 0,1, . . . do
3: for worker i ∈ ⟨n⟩ in parallel do
4: Compute local gradient, ∇i
5: xi = ∇i + er

i ▷ Error-feedback for round r

6: in parallel
7: (i) Send ∥xi∥ to PS
8: Receive ℓ= maxi ∥xi∥ from PS
9: (ii) Ri = RHT(xi) ▷ R = HDrxi

10: end in parallel
11: M = (tp/

√
d) · ℓ ; m =−M

12: x′i = clamp(Ri,min = m,max = M) ▷ Truncation
13: Q = CalcQuantizationValues(m,M,Tb,g,p)
14: Xi = SQ(x′i,Q) ▷ Stochastic Quantization
15: Yi = (Xi −m) · g

M−m ▷ Yi ∈ ⟨g+1⟩d

16: Zi = T−1
b,g,p[Yi] ▷ Zi ∈

〈
2b〉d

17: Send Zi to PS
18: Receive Y = ∑i∈⟨n⟩Yi = ∑i∈⟨n⟩ Tb,g,p[Zi] from PS
19: Compute Yavg =

1
n ·Y ▷ Yavg ∈ [0,g]d

20: Estimate x̂′avg = m+Yavg · M−m
g

21: Compute ∇̂avg = RHT−1(x̂′avg) ▷ Global update

22: er+1
i = xi −RHT−1(Xi) ▷ Quantization error

23: Update model using ∇̂avg
24: end for
25: end for

6 THC with Other System Opportunities

In this section, we discuss how THC leverages the opportuni-
ties of in-network aggregation and explore potential optimiza-
tions to address issues such as packet loss and stragglers.

Aggregation at Programmable Switches In our THC
framework, we can offload PS completely to programmable
switches for further hardware acceleration. Our THC de-
sign simplifies the PS by removing the compression and
decompression operations. Since THC already compresses
floating-point gradients to integer table indices, it fits pro-
grammable switches well. We do not need additional conver-
sions from floating points to integers at workers as used in
previous work [33, 57, 79].

Packet Loss and Stragglers THC is a compression algo-
rithm that tolerates data loss, allowing it to ignore the tail out-
liers that can negatively impact performance during training
introduced by packet loss [69] or straggler problems [22, 78].

Packet losses and stragglers may occur between workers
and the PS. For each gradient, if a worker doesn’t receive the
corresponding aggregation result packet within a specified
time threshold, the worker could fill in the missing data with
zeros and continue with the received aggregation results. This
practice may lead to some workers updating their models
with different information. To mitigate the impact, we can

implement a synchronization scheme, where workers coordi-
nate their model parameters after every epoch by choosing
to copy the parameters of another worker when encountering
severe packet loss. Our simulation results shows that there is
no significant impact on THC model accuracy or convergence
within the reasonable data center packet loss rate range (less
than 1% [21, 37]) (see Section §8.4). This result aligns with
the observations in [69].

To handle packet losses from workers to the PS, we can
perform partial aggregation: the PS broadcasts partial aggre-
gation results once it hears from the majority (e.g., 90%) of
workers. We evaluate the impact of stragglers and partial ag-
gregation in Section §8.4 and show that THC with partial
aggregation over 90% of workers reach the baseline accuracy.

7 Implementation

THC Worker. We develop THC prototype of workers atop
BytePS’s PyTorch extension [28]. During each iteration, the
BytePS worker receives the calculated gradient from the front-
end PyTorch and passes it to our compression module. Our
compression module runs the THC algorithm on GPUs and
employs a GPU-friendly implementation of RHT. It also
keeps the error-feedback records to compensate for the biased
quantization as mentioned in Section 5.

The communication module is a C++ module developed
based on Data Plane Development Kit (DPDK), which pro-
vides kernel bypassing so that applications can directly re-
ceive data from the NIC using busy polling. The communica-
tion module assembles packets based on compression results
and communicates with the PS.

Another approach is to adopt the RDMA protocol, such
as RoCEv2 [5]. However, adopting the RDMA protocol re-
quires additional header parsing functions on the switch side.
SwitchML [57] has demonstrated that the RoCEv2 protocol
can be used with in-network aggregation by carefully parsing
the header. For THC, we consider this as future work.

THC Parameter Servers. We implement two versions of
parameter servers: the software version written in C++ and
the programmable switch version implemented on the Intel
Tofino switch [26]. In the programmable switch version, the
PS performs table lookup using the “Table” control block.
After the table lookup, the switch sends packets carrying table
values through recirculation ports. The "Register" extern then
takes care of value aggregation. Please see Appendix C.2 for
the resource usage of the programmable switch PS.

8 Evaluation

We evaluate our THC prototype by training popular computer
vision and language models on a local four-worker testbed
and AWS EC2. Experiments show that employing THC
gives shorter time-to-accuracy (1.40× to 1.47× speedup)
and higher throughput (25% to 54% increase) on our local

1198 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 200 400 600 800 1000 1200 1400 1600
30

50

70

90

Ac
hi

ev
ab

le
Ac

cu
ra

cy
 (%

)

y=90%
VGG16 (Top 5 Accuracy)

0 5 10 15 20
50

60

70

80 y=81%

GPT-2

0 5 10 15 20
50

60

70

80 y=83%
RoBERTa-base

700 800 900 1000 1100 1200
Minutes

89

90

91

Ac
hi

ev
ab

le
Ac

cu
ra

cy
 (%

) VGG16 (Top 5 Accuracy) (zoom-in)

10 11 12 13 14 15 16 17
Minutes

80

81

82
GPT-2 (zoom-in)

10 11 12 13 14 15 16 17
Minutes

80
81
82
83
84

RoBERTa-base (zoom-in)

THC-Tofino THC-CPU PS DGC 10% TopK 10% TernGrad Horovod-RDMA

Figure 5: Time to accuracy (TTA) comparison over one image processing task (i.e., VGG16) and two NLP tasks (i.e., GPT-2 and
RoBERTa-base). The second row zooms in on the competitive results.

testbed with a programmable switch, compared to state-of-the-
art training frameworks. THC also outperforms DGC-10%,
TopK-10%, and TernGrad in time-to-accuracy as it has little
impact on accuracy and eliminates the overhead at the PS.

Testbed Setup. Our local testbed has four GPU machines
as workers, each with one NVIDIA A100 GPU and one
NVIDIA MCX516A-CCAT ConnectX-5 100G dual-port NIC
connecting to a Tofino2 switch. For large-scale experiments,
we use eight AWS EC2 p3.16xlarge instances, each with eight
NVIDIA V100 GPUs and 25 Gbps network bandwidth.

Systems for Comparison. We run three versions of THC:
(1) with a programmable switch as the PS (labeled as THC-
Tofino), (2) with the software PS process running on a single
stand-alone CPU machine (connected to the Tofino2 with a
ConnectX-5 100G dual-port NIC) (THC-CPU PS), and (3)
with colocated PSes for each worker (THC-colocated), which
build on BytePS’s PS architecture and uses BytePS’s RDMA
module for a fair comparison. We compare THC with two
state-of-the-art systems: (1) Horovod which uses RDMA for
communication (Horovod-RDMA) and (2) BytePS with colo-
cated PSes for each worker (BytePS). We also compare THC
against three popular compression algorithms: DGC [38] and
TopK [64] are sparsification algorithms that only communi-
cate the top k% of coordinates by magnitude (here we set
k = 10 and refer to them as DGC 10% and TopK 10%); and
TernGrad [74], a quantization algorithm that converts each
coordinate into a value x ∈ {−1,0,1} (we refer to it as Tern-
Grad). TernGrad represents a stream of quantization algo-
rithms [4, 10] with small differences in design. BytePS, DGC
10%, TopK 10%, and TernGrad all use BytePS’s colocated
PSes and RDMA module. We also tried Espresso [73] but
faced convergence issues.3

On AWS EC2, we deploy THC with software PS built on
top of BytePS [28] servers. We compare THC against BytePS
with colocated PS (BytePS) and Horovod [58]. All systems
use the TCP protocol to communicate. Unless noted other-

3We followed the instructions in Espresso’s git repository and installed
all desired versions of software. Unfortunately, we couldn’t get models to
converge (training loss became "nan" within three iterations and the accuracy
stalled around 0.1%). We contacted the authors but they do not have time to
fix it. See https://github.com/zhuangwang93/Espresso/issues/3.

wise, we use the following THC configuration: granularity 30,
p-fraction 1/32, and 16 quantization levels. This configuration
avoids overflow for up to eight workers, saturates the worker
to PS bandwidth of our system prototype, and consistently
achieves high accuracy across various models.

Workloads. We evaluate THC with network-intensive [33,
57] computer vision models (VGG16 and VGG19 [62]) and
language models (RoBERTa-base, RoBERTa-large [40], Bart-
large [34], BERT-base [14], and OpenAI GPT-2 [50]). We
train the vision models with the ImageNet1K dataset [55] and
train the language models with the GLUE (General Language
Understanding Evaluation benchmark) SST2 (The Stanford
Sentiment Treebank) task [63]. Unless noted otherwise, we
set the per-GPU batch size as 32. We include results for
computation-intensive models that don’t benefit much from
accelerated inter-machine communication in Appendix D.

Metrics. We first measure time-to-accuracy (TTA) as the
training time needed to reach a target validation accuracy. We
set the target accuracy based on the convergence of our no-
compression baseline. We then present the training throughput
(images per second or tokens per second referred to as samples
per second) for all training tasks. We also show the break-
down of computation and communication time to highlight
the factors that contribute to THC’s improvements.

8.1 End-to-End Training Performance
Time-to-accuracy. Figure 5 shows that for GPT-2, THC-
Tofino reaches the 81% target accuracy 1.47× faster than
the Horovod-RDMA baseline, and THC-Software PS reaches
the target accuracy 1.33× faster. For RoBERTa-base, THC-
Tofino achieves the 83% target accuracy 1.43× faster than the
Horovod-RDMA baseline; and THC-Tofino also achieves a
1.40× speedup to reach the 90% target accuracy for VGG16.
Note that even though our system prototype uses DPDK,
which has similiar performance with RDMA, we still notably
outperform Horovod-RDMA. THC-software PS reduces net-
work communication with minimal impact on model conver-
gence, thanks to the optimizations explained in Section 5.
Using the programmable switch (THC-Tofino) further accel-
erates the training by reducing the volume of transmitted data
through in-network aggregation.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1199

https://github.com/zhuangwang93/Espresso/issues/3

VGG16
VGG19

RoBERTa-

base RoBERTa-

large Bart-

large BERT-

base GPT-2
0

200

400

600

800

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(s
am

pl
es

/s
ec

)

BytePS
Horovod-RDMA
THC-Colocated PS
THC-CPU PS
THC-Tofino
DGC 10%
TopK 10%
TernGrad

Figure 6: Training throughput with 100Gbps links over differ-
ent network-intensive architectures.

25 40 100
Bandwidth (Gbps)

0
100
200
300
400
500
600
700

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(im
ag

es
/s

ec
)

BytePS
Horovod-RDMA
THC-CPU PS
THC-Tofino

Figure 7: Training throughput
for different bandwidths.

No Compr.
THC-
Tofino THC-

CPU PS DGC
10% Topk

10% TernGrad0.0

0.2

0.4

Ti
m

e
(s

ec
on

d)

PS agg.
PS compr.
comm.

worker compr.
worker compu.

Figure 8: Average training
round time breakdown.

Although training with DGC 10% and TopK 10% also
approach the target accuracy, they suffer from the high PS
compression overhead that leads to longer training epoch time
and TTA. TernGrad stalls at low accuracy for all three models
despite its high training throughput (Figure 6). This is because
TernGrad loses information during its compression and thus
cannot improve end-to-end TTA with more training epochs.

Training throughput. To examine the synchronization
round time reduction we achieve with THC, we measure the
throughput in Figure 6. THC-Tofino provides higher through-
put than all alternatives (except TernGrad). For example, THC-
Tofino achieves 54% improvement over Horovod-RDMA for
GPT-2. THC-colocated has 11% to 37% higher throughput
than TopK because THC eliminates the PS-side compression
operations. TernGrad provides the highest throughput because
it uses fewer bits per coordinate and has shorter PS time and
compression overhead. However, TernGrad does not improve
TTA as Figure 5 shows due to its low accuracy (Section 8.2).

Effectiveness with different bandwidth. We train the
VGG16 architecture under different network bandwidth set-
tings (25, 40, and 100Gbps) in Figure 7. THC-Tofino achieves
1.85×, 1.45×, and 1.43× training throughput over Horovod-
RDMA at 25Gbps, 40Gbps, and 100Gbps respectively. When
the bandwidth decreases from 40Gbps to 25Gbps, the through-
put of Horovod-RDMA drops significantly because it faces
more network bottlenecks. Meanwhile, the performance of
THC-Tofino and THC-CPU PS downgrades gracefully as the
bandwidth decreases, leading to higher training speedups at
low bandwidths. We expect THC to offer more benefits un-
der slower networks (e.g., 10Gbps, 1Gbps) which we might
encounter in federated learning settings.

VGG16
VGG19

RoBERTa-

base BERT-

base GPT-2
0

500
1000
1500
2000
2500
3000

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(s
am

pl
es

/s
ec

)

BytePS Horovod THC

Figure 9: Training throughput across eight AWS EC2
p3.16xlarge instances.

8.2 Breakdown of Network and Compute Time
In Figure 8, we break down the time per iteration into the
time spent at the PS, workers, and the communication, when
training VGG16 at 100Gbps with THC-Tofino, THC-CPU
PS, TopK 10%, and TernGrad. At the PS, we measure the
compression time and aggregation time. At the workers, we
measure the training time and compression time.

THC-CPU PS reduces the gradient communication time
(comm.) to 32.5% of that of the no-compression baseline. As
a tradeoff, we introduce compress and decompress operations
on the GPU on the worker side. However, these operations
only increase the overall worker time by 9.5%. The result
demonstrates that in distributed training settings where work-
ers periodically synchronize a large amount of data, saving
bandwidth by slightly increasing the worker GPU computa-
tion time is worthwhile. THC-Tofino achieves more savings
by further reducing communication time through in-network
aggregation and offloading the PS to the switches.

For DGC 10% and TopK 10%, they have to run expensive
sorting operations on the PS (DGC 10% additionally requires
local gradient accumulation), introducing a significant over-
head at the PS side. Therefore, although TopK10% gives
similar communication time as THC-CPU PS, the overall
round time is 46.5% higher than that of THC-CPU PS.

TernGrad uses only two bits per coordinate and requires
simple summation at the PS. Thus, it has a short communica-
tion and PS time. However, TernGrad produces high NMSE
and correspondingly can produce poor TTA results.

8.3 THC Performance on AWS EC2
We measured throughput on AWS EC2 instances equipped
with workers containing multiple GPUs at a larger scale (Fig-
ure 9). Since AWS instances have 8 GPUs per worker, we have
a higher intra-machine communication overhead compared
to our local testbed setting. This means that inter-machine
communication overhead, which THC optimizes for, takes
a smaller portion of training time. Despite this, THC con-
sistently outperformed all the baseline models, resulting in
throughput improvements of 1.05× to 1.16×.4

4Note that Bart-large and RoBERTa-large are not displayed in Figure 9
due to the V100 GPU’s memory limitations on the EC2 environment. We
used a smaller batch size and reported it in Appendix D separately.

1200 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

−0.6

−0.4

−0.2

0.0
RoBERTa

8 16 24 32 40 48 56 64
Number of Workers

−5
−4Di

ff.
 fr

om
 B

as
el

in
e

better

Baseline
THC
TopK
QSGD

−0.6

−0.4

−0.2

0.0
BERT

8 16 24 32 40 48 56 64
Number of Workers

−7
−6Di

ff.
 fr

om
 B

as
el

in
e

better

Baseline
THC
TopK
QSGD

Figure 10: Scalability of THC. Displaying the difference in training
accuracy from baseline after two epochs (i.e. if the final training
accuracy for 4 worker RoBERTa baseline is 95%, then the accuracy
for 4 worker RoBERTa QSGD would be 90%).

8.4 THC Simulation Results

We run simulations to understand THC under different system
configurations. As the number of workers increase, the perfor-
mance of THC increases due to the UHC property. We show
that the error of THC scales well from 4 to 64 workers, in con-
trast to biased compression algorithms like TopK whose error
can increase by 9.9× over the same margin. Furthermore,
under the synchronization and partial aggregation schemes,
THC shows less than a 0.5% drop in training accuracy in the
presence of packet loss and straggling workers.

Simulation Environment. We simulate THC on an aca-
demic cluster with 4 A100/V100 GPUs per node. Multiple
worker training is modeled by storing multiple passes of the
backpropagation before performing an update step. This al-
lows us to compress and decompress the aggregated gradient
with THC’s algorithm (and others) before updating the model,
reproducing the communication steps in actual systems.

For the scalability experiments, we train BERT and
RoBERTa [40] on SST2 [63] with batch size 8. The con-
figuration uses granularity 36, p-fraction 1/32, and bit budget
4. We choose language tasks for the scalability results because
they are more sensitive to small compression errors in the gra-
dient. The other simulations train ResNet50 [23] models on
the CIFAR100 [32] dataset with a batch size 128, workers 10,
granularity 20, p-fraction 1/512, and bit budget 4.

Scalability. We fine-tune a model for two epochs for each
compression algorithm with 4, 8, 16, 32, and 64 workers
and then compute the percentage difference from the un-
compressed baseline accuracy. We track the difference in
accuracy rather than the absolute accuracy because machine
learning effects can alter the baseline accuracy as the batch
size (number of workers) changes. We compare THC with bit
budget 4 against baseline (no compression), TopK [64] and
Quantized Stochastic Gradient Descent (QSGD) [4]. QSGD is
chosen because we want to compare compression algorithms
that have the same compression ratio: QSGD is analogous
to an unbiased version of TernGrad/SignSGD with a tunable
compression ratio. We choose the k-value and number of in-
tervals of TopK and QSGD respectively to match the overall
compression ratio of THC with bit budget 4.

0 20 40 60 80 100
Epochs

0

20

40

60

80

100

Tr
ai

n
Ac

cu
ra

cy

baseline
0.1%, Sync
0.1%, Async
1.0%, Sync
1.0%, Async

0 20 40 60 80 100
Epochs

0

20

40

60

80

100

Tr
ai

n
Ac

cu
ra

cy

baseline
1 straggler
2 stragglers
3 stragglers

Figure 11: Resiliency to Gradient Losses. Displaying attain-
able accuracy with packet drops and stragglers.

Figure 10 shows that for BERT, the accuracy of THC actu-
ally improves as the number of workers increases, with the
error decreasing from −0.1% to 0 (no difference from base-
line) from 4 to 64 workers. Although there seems to be some
outlier at 8 workers that is likely due to randomness in the
training process, these trends match our predictions in Sec-
tion 4 and can be attributed to the increased accuracy of the
estimate of the average gradient. In comparison, the error of
TopK quickly inflates by 9.9× from −0.047% to −0.46% in
the same region because bias in the compression dominates
and causes larger compression errors. The data for RoBERTa
show a similar trend, with THC becoming the most accurate
at 32 workers and beyond.

Such results are promising for THC because actual system
performance depends on both throughput and compression ac-
curacy. As we showed in §8.1, THC has a higher throughput in
training than most compression algorithms. At 16 workers and
beyond, THC also shows the highest accuracy, implying that
THC will have better time-to-accuracy results for a system
with many workers. The advantage over other compression
algorithms is more apparent in larger scale systems because
biased algorithms such as TopK lose accuracy at scale.

However, we cannot increase the number of workers to an
arbitrary large size without incurring costs to accuracy. From
each worker, the largest value per coordinate aggregated at
the switch is equal to the granularity, so the maximum ag-
gregated result is m = g× (# o f workers) and the number
of bits needed to send this value downstream is ⌈log2 m⌉. If
we keep the number of bits sent downstream constant, we
must decrease the granularity for a larger number of workers
to prevent overflow, which increases the error. This can be
seen from our results in Figure 15 in Appendix D. One ad-
vantage however is that as the granularity decreases, we can
also decrease the bit budget for THC, sending fewer bits per
coordinate upstream. On the other hand, if we keep the granu-
larity constant, then we must send more bits per coordinate
downstream, decreasing the throughput. In these experiments,
we kept the granularity constant and instead adjusted the com-
pression ratio of the downstream data (including for TopK
and QSGD for fair comparison). It is likely that the optimal
strategy is to employ a combination of the options depending
on the specifics of the system.

Packet Loss. We simulate packet losses in both directions
between workers and the PS. Figure 11 shows that even with

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1201

a packet loss rate of 1%, which greatly decreases the final
training accuracy with no synchronization, our proposed syn-
chronization scheme reduces the training accuracy drop from
24% to 1.5%. With 0.1% packet loss, synchronization re-
duces the accuracy discrepancy from 11% to 0.5%, which is
nearly indistinguishable from baseline. The corresponding
test accuracies are shown in Figure 16 of Appendix D and
demonstrate similar results.

Stragglers. To mitigate stragglers, we model a scheme
where the PS only waits for the top n% of the workers for
aggregation. Figure 11 shows the effect of randomly choos-
ing a 1/2/3 stragglers during each round and dropping their
gradients. With 10 workers, this corresponds to waiting for
90%/80%/70% of the workers. Waiting for the top 90%
reaches the baseline accuracy, whereas 80% and 70% show
only a 5-6% decrease in final training accuracy.

9 Related Work and Discussions

Systems Support for Gradient Compression. Gradient com-
pression systems have been developed to train large models
that are increasingly bottlenecked by communication, given
the slower growth of bandwidth compared to GPU capabil-
ity. Previous systems (e.g., HiPress [6] and Espresso [73])
focus on compression awareness and finding compression
strategies and work division (e.g., compression on GPU or
CPU). These systems maximize the overlap of efficient com-
munication and compression to hide existing overhead. THC,
on the other hand, mitigates compression overhead by reduc-
ing the number of compress/decompress operations. THC is
complementary with these works.

In-network Aggregation for ML. SwitchML [57] and
ATP [33] have demonstrated the benefits of aggregating gra-
dients within networks, but they do not support compression
as the data is restricted to the format that can be directly ag-
gregated. OmniReduce [17] and ASK [24] propose using a
key-value data structure for in-network aggregation. However,
these approaches require compressing the gradient data into
the key-value format and make assumptions about the data it-
self. In THC, we support aggregation directly on compressed
data, making it orthogonal to previous works. This leads to
efficient in-network aggregation with compression.

Supporting Other AllReduces. An important future re-
search direction is incorporating homomorphic compression
in other types of all-reduce like ring-based or tree-based. Cur-
rently, compression schemes fail to improve the performance
of these types [2]. For example, in the widely-deployed ring
all-reduce that requires O(n2) aggregation operations, exist-
ing schemes would need an excessive number of decompres-
sion and re-compression operations, leading to poor accu-
racy and slowdown compared to an uncompressed baseline.
THC makes the first step towards making compression al-
gorithms ring-based or tree-based all-reduce friendly. For

example, we may run the reduce operation directly on gradi-
ents compressed with Uniform THC using the same number
of bits required for the PS aggregation (e.g., 8). However,
this method is not compatible with our various optimizations,
such as sending just b (e.g., 4) bits or using the lookup table,
and is thus sub-optimal.

Colocated with Other Training Paradigms. While THC
primarily focuses on data parallelism, it can seamlessly in-
tegrate with state-of-the-art training paradigms that use hy-
brid approaches combining tensor, pipeline, and data paral-
lelism [43, 61]. Since all these optimizations are clearly sepa-
rated in different dimensions, THC can be applied to the line
of data parallelism without additional adaption. Moreover,
Megatron-LM [43] reports that data parallelism remains the
dominating factor in training throughput; thus, gradient ex-
changes will continue to make a significant contribution to
computation and communication costs. We believe that in-
creasing the degree of data parallelism is still a better choice,
emphasizing THC’s crucial role in training optimization.

Compatibility with Security. An extensively studied ap-
plication of homomorphism is Homomorphic Encryption
(HE) [1] in the security field. Although we consider HE as
orthogonal to our work, it might be feasible to combine THC
with other security practices. For example, applying differ-
ential privacy [16] techniques first and then compressing the
tensors with THC can be practicable.

10 Conclusion

THC is a novel framework that formally defines homomor-
phic compression. As homomorphic compression supports
direct aggregation of compressed data, it also allows an el-
egant combination of gradient compression and in-network
aggregation. To demonstrate THC’s generalizability, we build
a distributed DNN training system prototype that employs
both the THC algorithm and in-network aggregation to ac-
celerate gradient synchronization. Testbed experiments with
four GPU workers, one programmable switch, and 100Gbps
network show that our system prototype achieves up to 1.47×
TTA improvement when we enable both gradient compression
and in-network aggregation.

11 Acknowledgment

We thank the NSDI reviewers and our shepherd, Qun Huang,
for their invaluable feedback. This work was supported in
part by ACE, one of the seven centers in JUMP 2.0, a Semi-
conductor Research Corporation (SRC) program sponsored
by DARPA. Ran Ben Basat was supported by the Meta Net-
work for AI faculty award. Michael Mitzenmacher was sup-
ported in part by NSF grants CCF-2101140, CNS-2107078,
and DMS-2023528. We thank Vyas Sekar for proposing the
term ‘Homomorphic Compression’.

1202 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and
Mauro Conti. A survey on homomorphic encryption
schemes: Theory and implementation. ACM Comput.
Surv., 51(4), jul 2018.

[2] Saurabh Agarwal, Hongyi Wang, Shivaram Venkatara-
man, and Dimitris Papailiopoulos. On the utility of
gradient compression in distributed training systems. In
D. Marculescu, Y. Chi, and C. Wu, editors, Proceed-
ings of Machine Learning and Systems, volume 4, pages
652–672, 2022.

[3] Nir Ailon and Bernard Chazelle. Approximate nearest
neighbors and the fast johnson-lindenstrauss transform.
In Proceedings of the thirty-eighth annual ACM sympo-
sium on Theory of computing, pages 557–563, 2006.

[4] Dan Alistarh, Demjan Grubic, Jerry Z. Li, Ryota
Tomioka, and Milan Vojnovic. Qsgd: Communication-
efficient sgd via gradient quantization and encoding. In
Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, page
1707–1718, Red Hook, NY, USA, 2017. Curran Asso-
ciates Inc.

[5] InfiniBand Trade Association. InfiniBand Trade As-
sociation. RoCE v2 Specification. . https://cw.
infinibandta.org/document/dl/7781, 2014.

[6] Youhui Bai, Cheng Li, Quan Zhou, Jun Yi, Ping Gong,
Feng Yan, Ruichuan Chen, and Yinlong Xu. Gradi-
ent compression supercharged high-performance data
parallel dnn training. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Prin-
ciples, SOSP ’21, page 359–375, New York, NY, USA,
2021. Association for Computing Machinery.

[7] Ran Ben Basat, Michael Mitzenmacher, and Shay Var-
gaftik. How to send a real number using a single bit (and
some shared randomness). In Nikhil Bansal, Emanuela
Merelli, and James Worrell, editors, 48th International
Colloquium on Automata, Languages, and Program-
ming, ICALP 2021, July 12-16, 2021, Glasgow, Scot-
land (Virtual Conference), volume 198 of LIPIcs, pages
25:1–25:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

[8] Ran Ben Basat, Shay Vargaftik, Amit Portnoy, Gil
Einziger, Yaniv Ben-Itzhak, and Michael Mitzenmacher.
QUIC-FL: Quick Unbiased Compression for Federated
Learning. arXiv preprint arXiv:2205.13341, 2022.

[9] Ran Ben-Basat, Yaniv Ben-Itzhak, Michael Mitzen-
macher, and Shay Vargaftik. Optimal and Near-
Optimal Adaptive Vector Quantization. arXiv preprint
arXiv:2402.03158, 2024.

[10] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzade-
nesheli, and Animashree Anandkumar. signsgd: Com-
pressed optimisation for non-convex problems. In In-
ternational Conference on Machine Learning, pages
560–569. PMLR, 2018.

[11] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learn-
ers. Advances in neural information processing systems,
33:1877–1901, 2020.

[12] ByteDance. BytePS Environment Variables.
https://github.com/bytedance/byteps/blob/
master/docs/env.md, 2021.

[13] Aaron Daniel Cohen, Adam Roberts, Alejandra Molina,
Alena Butryna, Alicia Jin, Apoorv Kulshreshtha,
Ben Hutchinson, Ben Zevenbergen, Blaise Hilary
Aguera-Arcas, Chung ching Chang, Claire Cui, Cosmo
Du, Daniel De Freitas Adiwardana, Dehao Chen,
Dmitry (Dima) Lepikhin, Ed H. Chi, Erin Hoffman-
John, Heng-Tze Cheng, Hongrae Lee, Igor Krivokon,
James Qin, Jamie Hall, Joe Fenton, Johnny Soraker,
Kathy Meier-Hellstern, Kristen Olson, Lora Mois
Aroyo, Maarten Paul Bosma, Marc Joseph Pickett,
Marcelo Amorim Menegali, Marian Croak, Mark Díaz,
Matthew Lamm, Maxim Krikun, Meredith Ringel Mor-
ris, Noam Shazeer, Quoc V. Le, Rachel Bernstein, Ravi
Rajakumar, Ray Kurzweil, Romal Thoppilan, Steven
Zheng, Taylor Bos, Toju Duke, Tulsee Doshi, Vincent Y.
Zhao, Vinodkumar Prabhakaran, Will Rusch, YaGuang
Li, Yanping Huang, Yanqi Zhou, Yuanzhong Xu, and
Zhifeng Chen. Lamda: Language models for dialog
applications. In arXiv. 2022.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[15] Ron Dorfman, Shay Vargaftik, Yaniv Ben-Itzhak, and
Kfir Yehuda Levy. Docofl: Downlink compression for
cross-device federated learning. 2023.

[16] Cynthia Dwork, Aaron Roth, et al. The algorithmic
foundations of differential privacy. Foundations and
Trends® in Theoretical Computer Science, 9(3–4):211–
407, 2014.

[17] Jiawei Fei, Chen-Yu Ho, Atal N. Sahu, Marco Canini,
and Amedeo Sapio. Efficient sparse collective communi-
cation and its application to accelerate distributed deep
learning. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, ACM SIGCOMM ’21, page 676–691,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1203

https://cw.infinibandta.org/document/dl/7781
https://cw.infinibandta.org/document/dl/7781
https://github.com/bytedance/byteps/blob/master/docs/env.md
https://github.com/bytedance/byteps/blob/master/docs/env.md

New York, NY, USA, 2021. Association for Computing
Machinery.

[18] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alka-
lay, Michael Haselman, Logan Adams, Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz,
Lisa Woods, Sitaram Lanka, Steven K. Reinhardt,
Adrian M. Caulfield, Eric S. Chung, and Doug Burger.
A configurable cloud-scale dnn processor for real-time
ai. In 2018 ACM/IEEE 45th Annual International Sym-
posium on Computer Architecture (ISCA), pages 1–14,
2018.

[19] Amir Gholami, Ariful Azad, Peter Jin, Kurt Keutzer,
and Aydin Buluc. Integrated model, batch, and domain
parallelism in training neural networks. In Proceedings
of the 30th on Symposium on Parallelism in Algorithms
and Architectures, pages 77–86, 2018.

[20] Kaja Gruntkowska, Alexander Tyurin, and Peter
Richtárik. EF21-P and Friends: Improved Theoretical
Communication Complexity for Distributed Optimiza-
tion with Bidirectional Compression. arXiv preprint
arXiv:2209.15218, 2022.

[21] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A large-scale system for data center network
latency measurement and analysis. SIGCOMM Comput.
Commun. Rev., 45(4):139–152, aug 2015.

[22] Wang Hao, Qin Yuxuan, Lao ChonLam, Le Yanfang,
Wu Wenfei, and Chen Kai. Preemptive switch memory
usage to accelerate training jobs with shared in-network
aggregation. In 2023 IEEE 30th International Confer-
ence on Network Protocols (ICNP), pages 1–11, 2022.

[23] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[24] Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and
ChonLam Lao. A generic service to provide in-network
aggregation for key-value streams. In Proceedings of the
28th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 2, ASPLOS 2023, page 33–47, New
York, NY, USA, 2023. Association for Computing Ma-
chinery.

[25] A Hedayat and Walter Dennis Wallis. Hadamard ma-
trices and their applications. The Annals of Statistics,
pages 1184–1238, 1978.

[26] Intel. Barefoot Tofino. https://www.
barefootnetworks.com/technology/#tofino.

[27] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of Large-Scale Multi-Tenant GPU clusters for
DNN training workloads. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 947–
960, Renton, WA, July 2019. USENIX Association.

[28] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed DNN training in heterogeneous
GPU/CPU clusters. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 463–479. USENIX Association, November
2020.

[29] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian
Stich, and Martin Jaggi. Error feedback fixes signsgd
and other gradient compression schemes. In Interna-
tional Conference on Machine Learning, pages 3252–
3261. PMLR, 2019.

[30] Mehrdad Khani, Manya Ghobadi, Mohammad Alizadeh,
Ziyi Zhu, Madeleine Glick, Keren Bergman, Amin Vah-
dat, Benjamin Klenk, and Eiman Ebrahimi. Sip-ml:
High-bandwidth optical network interconnects for ma-
chine learning training. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference, ACM SIGCOMM
’21, page 657–675, New York, NY, USA, 2021. Associ-
ation for Computing Machinery.

[31] Jakub Konečnỳ and Peter Richtárik. Randomized dis-
tributed mean estimation: Accuracy vs. communication.
Frontiers in Applied Mathematics and Statistics, 4:62,
2018.

[32] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
tiple layers of features from tiny images. 2009.

[33] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi
Chen, Wenfei Wu, Aditya Akella, and Michael Swift.
ATP: In-network aggregation for multi-tenant learning.
In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), pages 741–761.
USENIX Association, April 2021.

[34] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. Bart: Denois-
ing sequence-to-sequence pre-training for natural lan-
guage generation, translation, and comprehension. arXiv
preprint arXiv:1910.13461, 2019.

[35] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,
Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,

1204 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.barefootnetworks.com/technology/#tofino
https://www.barefootnetworks.com/technology/#tofino

Brian Vaughan, Pritam Damania, et al. Pytorch dis-
tributed: Experiences on accelerating data parallel train-
ing. arXiv preprint arXiv:2006.15704, 2020.

[36] Xiaoyun Li, Belhal Karimi, and Ping Li. On distributed
adaptive optimization with gradient compression. In
International Conference on Learning Representations,
2021.

[37] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
Lossradar: Fast detection of lost packets in data center
networks. In Proceedings of the 12th International on
Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’16, page 481–495, New York,
NY, USA, 2016. Association for Computing Machinery.

[38] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill
Dally. Deep gradient compression: Reducing the com-
munication bandwidth for distributed training. In In-
ternational Conference on Learning Representations,
2018.

[39] Juncai Liu, Jessie Hui Wang, and Yimin Jiang. Janus:
A unified distributed training framework for sparse
mixture-of-experts models. In Proceedings of the ACM
SIGCOMM 2023 Conference, ACM SIGCOMM ’23,
page 486–498, New York, NY, USA, 2023. Association
for Computing Machinery.

[40] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A ro-
bustly optimized BERT pretraining approach. CoRR,
abs/1907.11692, 2019.

[41] Yurii Lyubarskii and Roman Vershynin. Uncertainty
Principles and Vector Quantization. IEEE Transactions
on Information Theory, 56(7):3491–3501, 2010.

[42] Bradley McDanel, Sai Qian Zhang, H. T. Kung, and
Xin Dong. Full-stack optimization for accelerating cnns
using powers-of-two weights with fpga validation. In
Proceedings of the ACM International Conference on
Supercomputing, ICS ’19, page 449–460, New York, NY,
USA, 2019. Association for Computing Machinery.

[43] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia.
Efficient large-scale language model training on gpu
clusters using megatron-lm. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’21, New York,
NY, USA, 2021. Association for Computing Machinery.

[44] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo
Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,
Alisson G Azzolini, et al. Deep learning recommen-
dation model for personalization and recommendation
systems. arXiv preprint arXiv:1906.00091, 2019.

[45] NVIDIA. NVIDIA Scalable Hierarchical Aggregation
and Reduction Protocol (SHARP). . https://docs.
nvidia.com/networking/display/SHARPv200,
2020.

[46] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed dnn
training acceleration. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 16–29, New York, NY, USA, 2019. Association
for Computing Machinery.

[47] Lucian Petrica, Tobias Alonso, Mairin Kroes, Nicholas
Fraser, Sorin Cotofana, and Michaela Blott. Memory-
efficient dataflow inference for deep cnns on fpga. In
2020 International Conference on Field-Programmable
Technology (ICFPT), pages 48–55, 2020.

[48] Constantin Philippenko and Aymeric Dieuleveut. Bidi-
rectional compression in heterogeneous settings for
distributed or federated learning with partial partici-
pation: tight convergence guarantees. arXiv preprint
arXiv:2006.14591, 2020.

[49] Dan R. K. Ports and Jacob Nelson. When should the
network be the computer? In Proceedings of the Work-
shop on Hot Topics in Operating Systems, HotOS ’19,
page 209–215, New York, NY, USA, 2019. Association
for Computing Machinery.

[50] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners. OpenAI blog,
1(8):9, 2019.

[51] Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya
Akella. Cassini: Network-aware job scheduling
in machine learning clusters. arXiv preprint
arXiv:2308.00852, 2023.

[52] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Min-
jia Zhang, Reza Yazdani Aminabadi, Ammar Ahmad
Awan, Jeff Rasley, and Yuxiong He. DeepSpeed-MoE:
Advancing mixture-of-experts inference and training to
power next-generation AI scale. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
and Sivan Sabato, editors, Proceedings of the 39th Inter-
national Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages
18332–18346. PMLR, 17–23 Jul 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1205

https://docs.nvidia.com/networking/display/SHARPv200
https://docs.nvidia.com/networking/display/SHARPv200

[53] Ali Ramezani-Kebrya, Fartash Faghri, Ilya Markov, Vi-
talii Aksenov, Dan Alistarh, and Daniel M Roy. Nuqsgd:
Provably communication-efficient data-parallel sgd via
nonuniform quantization. J. Mach. Learn. Res., 22:114–
1, 2021.

[54] Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi. You only look once: Unified, real-time
object detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
June 2016.

[55] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

[56] Mher Safaryan, Egor Shulgin, and Peter Richtárik.
Uncertainty Principle for Communication Compres-
sion in Distributed and Federated Learning and the
Search for an Optimal Compressor. arXiv preprint
arXiv:2002.08958, 2020.

[57] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with In-
Network aggregation. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 785–808. USENIX Association, April 2021.

[58] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. arXiv
preprint arXiv:1802.05799, 2018.

[59] Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Be-
siroglu, Marius Hobbhahn, and Pablo Villalobos. Com-
pute trends across three eras of machine learning. arXiv
preprint arXiv:2202.05924, 2022.

[60] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

[61] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter lan-
guage models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[62] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition,
2014.

[63] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D Manning, Andrew Y Ng, and Christopher
Potts. Recursive deep models for semantic composi-
tionality over a sentiment treebank. In Proceedings of
the 2013 conference on empirical methods in natural
language processing, pages 1631–1642, 2013.

[64] Sebastian U. Stich, Jean-Baptiste Cordonnier, and Mar-
tin Jaggi. Sparsified sgd with memory. In Proceedings
of the 32nd International Conference on Neural Infor-
mation Processing Systems, NIPS’18, page 4452–4463,
Red Hook, NY, USA, 2018. Curran Associates Inc.

[65] Peng Sun, Wansen Feng, Ruobing Han, Shengen Yan,
and Yonggang Wen. Optimizing network perfor-
mance for distributed dnn training on gpu clusters: Ima-
genet/alexnet training in 1.5 minutes, 2019.

[66] Ananda Theertha Suresh, X Yu Felix, Sanjiv Kumar,
and H Brendan McMahan. Distributed Mean Estima-
tion With Limited Communication. In International
Conference on Machine Learning, pages 3329–3337.
PMLR, 2017.

[67] Shay Vargaftik, Ran Ben Basat, Amit Portnoy, Gal
Mendelson, Yaniv Ben Itzhak, and Michael Mitzen-
macher. Eden: Communication-efficient and robust
distributed mean estimation for federated learning. In
International Conference on Machine Learning, pages
21984–22014. PMLR, 2022.

[68] Shay Vargaftik, Ran Ben-Basat, Amit Portnoy, Gal
Mendelson, Yaniv Ben-Itzhak, and Michael Mitzen-
macher. Drive: One-bit distributed mean estimation.
Advances in Neural Information Processing Systems,
34:362–377, 2021.

[69] Hao Wang, Jingrong Chen, Xinchen Wan, Han Tian, Ji-
acheng Xia, Gaoxiong Zeng, Weiyan Wang, Kai Chen,
Wei Bai, and Junchen Jiang. Domain-specific communi-
cation optimization for distributed dnn training. arXiv
preprint arXiv:2008.08445, 2020.

[70] Wei Wang, Meihui Zhang, Gang Chen, H. V. Jagadish,
Beng Chin Ooi, and Kian-Lee Tan. Database meets deep
learning: Challenges and opportunities. SIGMOD Rec.,
45(2):17–22, September 2016.

[71] Weiyang Wang, Moein Khazraee, Zhizhen Zhong,
Manya Ghobadi, Zhihao Jia, Dheevatsa Mudigere, Ying
Zhang, and Anthony Kewitsch. TopoOpt: Co-optimizing
network topology and parallelization strategy for dis-
tributed training jobs. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
23), pages 739–767, Boston, MA, April 2023. USENIX
Association.

1206 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[72] Zheng Wang and Michael O’Boyle. Machine learning
in compiler optimization. Proceedings of the IEEE,
106(11):1879–1901, 2018.

[73] Zhuang Wang, Haibin Lin, Yibo Zhu, and T. S. Eugene
Ng. Hi-speed dnn training with espresso: Unleashing the
full potential of gradient compression with near-optimal
usage strategies. In Proceedings of the Eighteenth Eu-
ropean Conference on Computer Systems, EuroSys ’23,
page 867–882, New York, NY, USA, 2023. Association
for Computing Machinery.

[74] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan
Wang, Yiran Chen, and Hai Li. Terngrad: Ternary gradi-
ents to reduce communication in distributed deep learn-
ing. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17,
page 1508–1518, Red Hook, NY, USA, 2017. Curran
Associates Inc.

[75] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin,
and Yu Ding. Mlaas in the wild: Workload analysis
and scheduling in large-scale heterogeneous gpu clus-
ters. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 945–960.
USENIX Association, 2022.

[76] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[77] Xilinx. Vitis AI. https://www.xilinx.com/
products/design-tools/vitis/vitis-ai.html,
2023.

[78] Mingran Yang, Alex Baban, Valery Kugel, Jeff Libby,
Scott Mackie, Swamy Sadashivaiah Renu Kananda,
Chang-Hong Wu, and Manya Ghobadi. Using trio: Ju-
niper networks’ programmable chipset - for emerging
in-network applications. In Proceedings of the ACM
SIGCOMM 2022 Conference, ACM SIGCOMM ’22,
page 633–648, New York, NY, USA, 2022. Association
for Computing Machinery.

[79] Yifan Yuan, Omar Alama, Jiawei Fei, Jacob Nelson,
Dan R. K. Ports, Amedeo Sapio, Marco Canini, and
Nam Sung Kim. Unlocking the power of inline Floating-
Point operations on programmable switches. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 683–700, Renton, WA,
April 2022. USENIX Association.

[80] Xiang Zhou, Ryohei Urata, and Hong Liu. Beyond 1 tb/s
intra-data center interconnect technology: Im-dd or co-
herent? Journal of Lightwave Technology, 38(2):475–
484, 2020.

A Uniform THC Preliminaries

Given a bandwidth budget of b bits per coordinate (e.g., per
gradient entry), we define a compression scheme using a pair
of compression and decompression operators.

Definition 4 (compression operator) A compression oper-
ator C : Rd → {0,1}b·d takes a real-valued d-dimensional
vector and outputs a (b ·d)-bits compressed representation.

Definition 5 (decompression operator) A decompression
operator D : {0,1}b·d → Rd takes a (b ·d)-bits compressed
representation and outputs a real-valued d-dimensional esti-
mate of the input vector.

More generally, a compression scheme may require sending
some additional information. We, therefore, allow b ·d+O(1)
bits in practice.

For a vector x ∈Rd , we denote its estimate by x̂ = D(C(x)).
The goal of a compression scheme is then, given a bandwidth
budget b, to minimize some error metric, e.g., the expected
squared error, E[∥x− x̂∥2]. Before describing THC, for ease
of presentation, we present a simplified (uniform) version of
the THC framework and later generalize it.

A.1 Uniform Homomorphic Compression

In distributed deep learning, at each training round, the mean
of the workers’ gradients forms the update of the model’s
parameters for the next round. Without compression, we could
add all the workers’ gradients and divide the results by the
number of workers.

To reduce the bandwidth with a minimal impact on accu-
racy, the Distributed Mean Estimation (DME) problem has
been extensively studied [4, 31, 41, 56, 66–68]. Namely, in
DME, workers compress their gradients before sending them
for aggregation. Most DME works only consider compression
in this direction, while messages from the parameter server
to workers remain uncompressed. To achieve bidirectional
compression, several works further suggest that the server,
after decompressing and aggregating the gradients, will re-
compress the result before sending it back (e.g., [20, 48]),
introducing additional delay and error. Avoiding these prob-
lems motivates the following definition; for convenience, we
henceforth denote ⟨i⟩= {0, . . . , i−1} for any i ∈ N.

Definition 6 (Uniform Homomorphic Compression) We
say that a compression scheme (C,D) is uniform homomor-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1207

https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html

phic if for any n,d ∈ N and x0,x1, . . . ,xn−1 ∈ Rd , it satisfies

1
n
· ∑

i∈⟨n⟩
D(C(xi)) = D

(
1
n
· ∑

i∈⟨n⟩
C(xi)

)
.

That is, a Uniform Homomorphic Compression (UHC)
scheme allows averaging the compressed representations and
applying a single decompression invocation.

That is, by using UHC, the parameter server can sum up the
compressed gradients and send ∑i C(xi) back (in compressed
form) without increasing the delay and error.

A.2 Uniform Stochastic Quantization
Two desired properties of gradient quantization schemes in
a distributed setting are unbiasedness (i.e., E[x̂] = x) and in-
dependence (i.e., each worker makes the random choice of
their quantization values independently). These features are
especially useful in distributed deep learning as the errors of
the different workers then cancel out on average rather than
add up, leading to a better estimation of the mean.

One of the most fundamental compression techniques that
offer both properties is uniform stochastic quantization (USQ).
Intuitively, given a vector, x ∈ Rd , and denoting its minimum
by m and maximum by M, using USQ to quantize each co-
ordinate x[j] to a single bit means rounding it to m with
probability (x[j]−m)/(M −m) and to M with probability
(M − x[j])/(M −m). That is, the sender encodes the coor-
dinate x[j] using one bit C(x)[j] ∈ {0,1} and the receiver
estimates it as x̂ = D(C(x)) = m+(M−m) ·C(x). Note that
m and M need to be sent to the receiver as well. However,
considering that d is large, this overhead is negligible.

This idea generalizes to any number of bits per coordinate
b by partitioning the range [m,M] into 2b − 1 uniform (i.e.,
equal-length) intervals where each entry is rounded to one of
its nearest endpoints c0,c1 with probabilities (x[j]−c0)/(c1−
c0) and (c1 − x[j])/(c1 − c0) to make the estimate unbiased.
That is, when the message for coordinate x[j], C(x)[j] ∈

〈
2b
〉
,

is sent to the receiver that estimates the coordinate as m+
C(x)[j] · (M−m)/(2b −1).

Despite its popularity and simplicity, in our context, USQ
has two main drawbacks. First, USQ is not homomorphic; this
is because each worker has its own minimum and maximum
values, and accordingly, the b-bit messages describing the
same coordinate by different workers are not amenable to
aggregation without decompression. Second, USQ’s error
highly depends on the input vector’s distribution, e.g., the
difference between the minimum and maximum. For example,
for b = 1, if the input vector is (1,−1,0,0, . . . ,0), all the zero-
valued coordinates will be rounded with an error of 1, and the
vector’s estimate will greatly differ from the input.

Several recent works propose pre-processing each gradient
and post-processing the average’s estimate. The insight is

to change the vector’s distribution prior to quantization to
avoid bad cases. For example, [66] proposes to preprocess
by applying the randomized Hadamard transform to ensure
that the range is small with high probability and postprocess
using the inverse transform. As another example, Kashin’s
representation [41, 56] allows projecting the vector into a
higher-dimensional space with similar magnitude coefficients.

B Optimally Solving the Lookup Table Opti-
mization Problem

As described in Section 5.2, the solution of the following
optimization problem yields the optimal lookup table Tb,g,p =
T . Observe that the problem depends on the parameters b,g, p,
where b is the number of bits workers send for each quantized
coordinate, g is the granularity (the range of values that the
table can take), and p is the expected fraction of transformed
and scaled coordinates that are not taken into account when
determining the truncation range [−tp, tp].

minimize
P,T

∫ tp

−tp
∑

z∈⟨2b⟩
P(a,z) · (a−T (z))2 ·φ(a) ·da

subject to

(Unbiasedness) ∑
z∈⟨2b⟩

P(a,z) ·T (z) = a ∀a ∈ [−tp, tp]

(Probability) ∑
z∈⟨2b⟩

P(a,z) = 1 ∀a ∈ [−tp, tp]

P(a,z)≥ 0 ∀a ∈ [−tp, tp], z ∈
〈
2b
〉

(Granularity) T (z) ∈
{

2tp
g · i− tp | i ∈ ⟨g+1⟩

}
∀z ∈

〈
2b
〉

Recall that, without loss of generality, we may assume that
0 = T (0)< T (1)< .. . < T (2b −1) = g, which significantly
narrows down the search range from (g+1)2b

(which is the
number of options to choose a table value for each table index).
Namely, this observation means that the number of possible
options for T is SaB(g− 2b − 1,2b − 1) (SaB stands for the
stars-and-bars), where SaB(n,k) =

(n+k−1
k−1

)
is the number of

options for throwing n identical balls into k distinct bins. This
is because we can think of 2b −1 bins representing the values{

T (i+1)−T (i) | i ∈
〈
2b −1

〉}
; this way, ‘throwing a ball’

into the i’th bin corresponds to increasing the difference by 1,
and we have g−2b −1 balls as all bins must be non-empty
to enforce the strict monotonicity. The number of options is
therefore SaB(g−2b −1,2b −1) =

(g−3
2b−2

)
≪ (g+1)2b

. For
example, if b = 4,g = 51, we reduce the number of options
from 5215 ≈ 5.5 ·1025 to

(48
14

)
≈ 4.8 ·1011. We note that these

b,g values are the largest ones that we have found to be of
interest as they yield a solution whose accuracy is on par with
an uncompressed baseline.

1208 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 4 Stars-and-Bars (n,k) Enumeration

1: Initialize B[0] = n, B[1] = B[2] = . . . ,B[k−1] = 0
2: Yield(B) ▷ This is the 0’th option
3: for j = 1,2, . . . ,SaB(n,k)−1 do
4: a = min{i | B[i]> 0}
5: B[a+1] = B[a+1]+1
6: S = B[a]−1
7: B[a] = 0
8: B[0] = S
9: Yield(B) ▷ B is the j’th option

10: end for

To further reduce the number of options, if g is odd, we
leverage the symmetry of the normal distribution (i.e., that
φ(a) = φ(−a) for any a ∈ R). In particular, together with the
fact that the number of table indices is even, this implies that
a table index T (z) exists in the optimal table if and only if
there exists z′ such that T (z′) = g−T (z). In particular, this
can be manifested as the following additional constraint:

(symmetry) T (z) = T (z+2b−1)− g+1
2 ∀z ∈

〈
2b−1

〉
Notice that this further reduces the number of options to

SaB
(

g+1
2 −2b−1 −1,2b−1 −1

)
. Using the b = 4,g = 51 ex-

ample, we reduced the number of options to just 100947.

This allows us to efficiently solve the problem optimally
by computing the target integral for every possible value of
T . For each value, we use the fact that stochastic quantiza-
tion (picking one of the two closest quantization values with
probabilities that make it unbiased) is optimal given the quan-
tization values [7]. In particular, this means that we can easily
derive the optimal P values and thus compute the integral.
For example, if b = 2,g = 4 and T (0) = 0,T (1) = 1,T (2) =
3,T (3) = 4, we can compute the integral as:

∫ −tp/2

−tp

(
a− (−tp)

tp/2
· (a− (−tp/2))2 +

−tp/2−a
tp/2

· (a− (−tp))
2
)
·φ(a) ·da

+
∫ tp/2

−tp/2

(
a− (−tp/2)

tp
· (a− tp/2)2 +

tp/2−a
tp

· (a− (−tp/2))2
)
·φ(a) ·da

+
∫ tp

tp/2

(
a− tp/2

tp/2
· (a− tp)

2 +
tp −a
tp/2

· (a− tp/2)2
)
·φ(a) ·da

Enumerating over the options: The last ingredient in our
solver is a simple method to iterate over all the stars-and-bars
options. Namely, consider wanting to throw n balls into k bins
and let B[i] denote the number of balls in the i’th bin. Then,
the enumeration process is given by Algorithm 4.

The resulting solver is quite efficient: we ran it once for
each of over 4000 different (b,g, p) combinations and com-
puted all the optimal tables within mere minutes.

C Additional Parameter Server Details

C.1 Pseudocode of Parameter Server (PS)

Pseudocode 1 THC PS processing logic
Input: Gradient packet pkt from worker. Workers generate

pkt.round_num and insert the pkt.num_worker along with gra-
dient data for each packet before sending.

1: if pkt.roundnum < expected_roundnum[pkt.agtr_idx] then
2: Notify straggler
3: else
4: if pkt.roundnum = expected_roundnum[pkt.agtr_idx] then
5: recv_count[pkt.agtr_idx] += 1
6: else
7: recv_count[pkt.agtr_idx] = 1
8: expected_roundnum[pkt.agtr_idx] = pkt.roundnum
9: end if

10: Table indices lookup
11: Aggregate table values
12: if recv_count[pkt.agtr_idx] = pkt.num_worker then
13: Multicast back aggregation result
14: else
15: Drop pkt
16: end if
17: end if

The PS progressing logic is demonstrated as shown in Pseu-
docode 1. When workers’ compressed gradient packets arrive,
the PS will first check whether the pkt.roundnum is less than
the expected_roundnum it stores. If so, then this packet is car-
rying obsolete data, and the PS will discard this packet and
notify the sender that it is likely straggling (Line 1-2). Oth-
erwise, the PS regards it as a normal case and updates the
corresponding recv_count counter. (Line 5-7) After the PS
finishes the table lookup and aggregation process for each
packet, it will check if the aggregation is complete by compar-
ing its recv_count counter and the pkt.num_worker (Line 12).
If the aggregation is complete, it will multicast the aggregated
gradient packet back, or drop the packet (Line 13-16).

C.2 Switch Resources Usage
The programmable switch version of THC Parameter Server
has 32 aggregation blocks. Each aggregation block has a
copy of the lookup table and can aggregate 32 bits (i.e., four
8-bit table values) in one pass. Overall, the programmable
switch PS consumes 39.9 Mb of SRAM and 35 ALUs. THC
workers send packets of 1024 table indices, so each packet
needs 1024

(32×4) = 8 passes to have all 1024 elements aggregated.
Therefore, we recirculate a packet twice through each of the
four pipelines (eight passes in total) and consume up to two
recirculation ports per pipeline. When we have N workers,
the first N − 1 packets are dropped after aggregation while
the N-th packet is recirculated through all four pipelines once
again to collect the aggregation results.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1209

ResNet50

ResNet101

ResNet1520
200
400
600
800

1000
1200
1400
1600

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(s
am

pl
es

/s
ec

)

BytePS
Horovod-RDMA
THC-CPU PS
THC-Tofino
DGC 10%
TopK 10%
TernGrad

Figure 12: Throughput of
training ResNet models on the
local testbed.

RoBERTa-
large

Bart-
large

0
50

100
150
200
250
300

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(s
am

pl
es

/s
ec

)

N-to-N BytePS
Horovod

THC

Figure 13: Throughput of train-
ing RoBERTa-large and Bart-
large on AWS EC2.

D Evaluation Figures

D.1 Computational-intensive Model Training
with THC

Figure 12 demonstrates the throughput results of training
ResNet [23] models on our local testbed. Due to their
computational-intensive nature, ResNet models don’t experi-
ence much network bottleneck and hence don’t benefit from
accelerating inter-machine communication. Even with the
most aggressive TernGrad compression, we are only able to
improve the training throughput by up to 4.5% of that of
Horovod-RDMA. So, computational-intensive models are
poor candidates for gradient compression and should be
trained with full-precision gradients unless the network band-
width is low.

D.2 AWS EC2 Large Language Models Train-
ing Results

Figure 13 show the throughput results of training RoBERTa-
large and Bart-large on AWS EC2. We achieve a 1.11×
throughput improvement for RoBERTa-large and a 1.12×
throughput improvement for Bart-large.

D.3 Optimizations of THC
To see how THC performs with the different optimizations
mentioned in Section 4, we train both uniform and non-
uniform THC with different optimizations. We use 4 workers
on SST2 [63] with RoBERTa. To measure the performance,
we enable all optimizations on THC, and then we run uniform
THC (UTHC) with and without rotation and error feedback.
We keep all optimizations for THC because the algorithm
assumes rotation and error feedback to be enabled a prior, so
it would not make sense to disable them for the test.

From Figure 14, we see that THC performs the best over-
all as expected, nearly reaching baseline accuracy. UTHC
with and without error feedback seems to perform similarly,
although error feedback seems to increase the performance
slightly. The largest difference is disabling rotation, which
drops the final accuracy by about 5%. This is expected, since

removing rotation introduces a large bias into the algorithm,
resulting in a large error.

0 4125 8250 12375 16500
Number of Update Steps

60

70

80

90

Ac
cu

ra
cy

 (%
)

RoBerta

Baseline
THC
UTHC,EF,Rot
UTHC,EF,No Rot
UTHC,No EF,Rot
UTHC,No EF,No Rot

11000 12375 13750 15125 16500
Number of Update Steps

89
90
91
92
93
94
95
96
97

Ac
cu

ra
cy

 (%
)

RoBerta

Figure 14: Accuracy of THC with Optimizations. The figure
on the right is zoomed in on the last epoch, and accuracies
are calculated on a sliding window of 336 batches.

D.4 NMSE for Different Granularities
We repeatedly compute the NMSE of the compression un-
der different granularities. A gradient is first drawn from a
lognormal distribution (which well approximate gradients in
neural networks) and then copied multiple times to match the
number of simulated workers. We run THC on the copies of
the gradient and compute the NMSE. Repeating 100 times,
we report the average NMSE as we increase the granularity.
Figure 15 varies the granularity of THC, while maintaining
10 workers and used a p-fraction of 1/1024. Three curves are
plotted with bit budget 2/3/4.

In Figure 15, we first note that the largest discrepancy in
NMSE is between different bit budgets where the error de-
creases by almost an order of magnitude between bit budgets
of 2 to 3 to 4. The bit budget corresponds directly to the
compression ratio of the algorithm, so it is expected that the
accuracy should increase as we use more bits for compres-
sion. Furthermore, the NMSE of THC also decreases as the
granularity increases since larger granularity values allows
for more fine-grained choices of quantization values, though
this effect is more difficult to see.

5 10 15 20 25 30 35 40 45
Granularity

10−2

10−1

100

NM
SE 2 bit budget

3 bit budget
4 bit budget

Figure 15: NMSE under different granularities and number
of workers (plotted on log scale)

1210 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

D.5 Test Accuracies for Resiliency Results
Similar to the training accuracy results, the test accuracy
shows that (1) synchronization is beneficial when the system
is lossy and (2) waiting for the top 90% of workers does not
affect the final accuracy. Figure 16 shows that under 1%/0.1%
loss, the discrepancy from baseline drops from 6%/3.2% to
1.5%/0.4%. For 80%/70% stragglers, the error from baseline
is roughly 0.5%.

0 20 40 60 80 100
Epochs

0
10
20
30
40
50
60
70

Te
st

 A
cc

ur
ac

y

baseline
0.1%, Sync
0.1%, Async
1.0%, Sync
1.0%, Async

0 20 40 60 80 100
Epochs

0
10
20
30
40
50
60
70

Te
st

 A
cc

ur
ac

y

baseline
1 straggler
2 stragglers
3 stragglers

Figure 16: Test Accuracy with Gradient Losses

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1211

Accelerating Skewed Workloads With Performance Multipliers
in the TurboDB Distributed Database

Jennifer Lam⋆, Jeffrey Helt⋆, Wyatt Lloyd⋆, Haonan Lu†

⋆Princeton University, †University at Buffalo

Abstract
Distributed databases suffer from performance degradation
under skewed workloads. Such workloads cause high con-
tention, which is exacerbated by cross-node network latencies.
In contrast, single-machine databases better handle skewed
workloads because their centralized nature enables perfor-
mance optimizations that execute contended requests more
efficiently. Based on this insight, we propose a novel hybrid
architecture that employs a single-machine database inside a
distributed database and present TurboDB, the first distributed
database that leverages this hybrid architecture to achieve up
to an order of magnitude better performance than representa-
tive solutions under skewed workloads.

TurboDB introduces two designs to tackle the core chal-
lenges unique to its hybrid architecture. First, Hybrid Concur-
rency Control is a specialized technique that coordinates the
single-machine and distributed databases to collectively en-
sure process-ordered serializability. Second, Phalanx Replica-
tion provides fault tolerance for the single-machine database
without significantly sacrificing its performance benefits. We
implement TurboDB using CockroachDB and Cicada as the
distributed and single-machine databases, respectively. Our
evaluation shows that TurboDB significantly improves the
performance of CockroachDB under skewed workloads.

1 Introduction

Distributed databases support large applications by sharding
data across many machines to provide capacity far greater than
what can fit on a single machine. However, these databases of-
ten experience severe performance degradation under skewed
workloads where most requests contend on a small subset of
data. This contention results in excessive aborts and retries
that are expensive in the distributed setting. Unfortunately,
many real-world workloads are highly skewed [3, 9, 10, 62].

In contrast, single-machine databases store all data on one
machine. Although these databases cannot support large-scale
applications, they handle skewed workloads more efficiently.
For instance, Cicada [37], a single-machine database, can
achieve much higher throughput and lower latency for TPC-C
New-Order than CockroachDB, a representative distributed

database, running on 48 servers [54]. This drastic difference
stems from two performance multipliers, such as local concur-
rency control and one-stop execution, which single-machine
databases can employ due to their centralized nature, but dis-
tributed databases cannot.

Local concurrency control techniques handle conflicts more
efficiently by leveraging global knowledge of, and centralized
control over, transactions, as all transactions access the same
machine. However, when data is spread over multiple servers,
these techniques, such as memory fences in Silo [58] and
shared lock tables in MVTL [1], are infeasible.

One-stop execution, which handles transactions entirely
within a single machine, enables shorter transaction lifetimes.
For instance, a lock’s acquisition and release, as part of trans-
action execution on a single machine, takes only nanosec-
onds to microseconds. However, distributed lock manage-
ment, which requires multiple round trips between servers,
takes orders of magnitude longer. Short transaction lifetimes
lower the likelihood of conflicts and thus aborts. Aborting and
retrying distributed transactions is more costly than aborting
local transactions, due to network delays.

Empowered by local concurrency control and one-stop ex-
ecution, single-machine databases offer a natural solution to
the challenge of skewed workloads. Therefore, this paper
proposes a novel hybrid architecture that employs a single-
machine database within a distributed database to improve
performance under skewed workloads. The single-machine
database “turbocharges” overall performance under skew
while the distributed database scales capacity.

Specifically, one server of the distributed database is des-
ignated as the turbo, which runs a single-machine database.
The turbo co-locates many popular, contended data items,
creating a focal point on which the single-machine database
can concentrate its performance multipliers. The remaining
servers run a distributed database to handle less contended
requests, which access less popular data.

TurboDB is the first distributed database to employ this
hybrid architecture. The architecture enables it to achieve sig-
nificantly better performance than representative distributed
databases under skewed workloads. However, it requires Tur-
boDB to overcome two new correctness challenges.

First, a transaction may access data on both the single-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1213

machine and distributed databases. Thus, some of its requests
are executed with local concurrency control employed by
the turbo while the rest of its requests are executed with dis-
tributed concurrency control. TurboDB must ensure the trans-
action as a whole is isolated from other transactions, and all
transactions provide the correct consistency guarantees. Sec-
ond, TurboDB must make the turbo fault tolerant. Although
there are replication techniques for single-machine databases,
none automatically work for TurboDB because they require
full control of transactions, which the turbo does not have, i.e.,
the turbo is part of the distributed database, and its execution
partially relies on the rest of the system.

TurboDB addresses these challenges, while preserving the
performance benefits of the turbo, through two novel designs:
Hybrid Concurrency Control and Phalanx Replication.

Hybrid Concurrency Control (HCC) leverages timestamp
ordering to stitch together local and distributed concurrency
control protocols. HCC ensures all requests of the same trans-
action commit at the same timestamp, and that all transac-
tions are serialized in their timestamp order, thus guarantee-
ing process-ordered serializability [16, 40]. To maximize the
performance advantages of local concurrency control, HCC
applies finale commit, a serial-commit protocol that avoids
unnecessary blocking and aborts on the turbo.

Phalanx Replication tackles the unique challenge of repli-
cating a single-machine database in a distributed setting. A
later-received transaction may be assigned a smaller times-
tamp due to clock skew and network asynchrony. Thus, exist-
ing replication techniques for single-machine databases that
rely on assigned timestamps being monotonically increasing
do not automatically work for TurboDB’s setting. To address
this challenge, Phalanx uses Frontline, a mechanism that deter-
mines the correct replication order even when timestamps may
be out-of-order. Phalanx also employs a set of techniques to
reduce replication costs, including per-core replication and de-
coupled log replay. The non-turbo servers are replicated with
standard techniques for distributed databases, e.g., Raft [43].

We implement TurboDB using Cicada [37] and Cock-
roachDB [54], which are representative single-machine and
distributed databases, respectively. We evaluate TurboDB us-
ing YCSB+T and TPC-C, with a variety of read-write ratios
and levels of skew. TurboDB achieves up to an order of mag-
nitude higher throughput and 50% lower latency for highly-
skewed YCSB+T, and up to 1.6× higher throughput and lower
latency for highly contended TPC-C than CockroachDB.

In summary, this paper makes the following contributions:

• A novel system architecture that incorporates a single-
machine database within a distributed database to “tur-
bocharge” the performance under skewed workloads.

• TurboDB, the first design that leverages this new architec-
ture using HCC and Phalanx to ensure the correctness of
the combination while retaining the performance benefits
of the turbo.

• An implementation and evaluation that shows TurboDB
outperforms a representative distributed database by up to
an order of magnitude under skewed workloads.

2 Background and Motivation

This section provides background on distributed databases
and then discusses the challenge of skewed workloads.

2.1 Distributed Databases

Front-end client machines translate user requests into transac-
tions whose requests are executed on the servers that store the
data. Databases run concurrency control protocols to ensure
that transactions appear to take effect in an order that satisfies
specific consistency guarantees. TurboDB provides process-
ordered serializability [16, 40], which guarantees there exists
a total order amongst committed transactions, and the total
order respects the order in which clients issue transactions.
Process-ordered serializability is stronger than snapshot isola-
tion and plain serializability [44].

Fault tolerance. Distributed databases tolerate server fail-
ures by replicating each server onto multiple replicas through
consensus protocols such as Raft [43].

2.2 The Challenge of Skewed Workloads

Many real-world workloads are highly skewed [2, 4, 8–10, 28,
62]. For instance, Facebook’s TAO reports the most popular
data items are queried several orders of magnitude more often
than other objects [3, 9], and Twitter’s Twemcache reports
an even higher skew [62]. Skewed workloads are difficult in
general and particularly adversarial to distributed databases.

First, skewed workloads introduce more conflicts—i.e., con-
current transactions access overlapping (popular) data items
with at least one write—in a distributed setting, because dis-
tributed concurrency control must coordinate multiple servers,
thus prolonging transaction execution due to network trans-
mission times. The longer the execution, the more likely it
is that transactions conflict. Conflicts often result in aborts,
which are especially expensive as retrying distributed transac-
tions takes a long time, due to network delays.

Second, the overall performance of the database is limited
by its performance on the few popular data items as they are
accessed by most requests. As a result, the excessive aborts
and prolonged execution, due to distributed concurrency con-
trol that often incurs multiple rounds of inter-machine com-
munication, on the popular data have a disproportionately
large negative effect on the overall performance.

A natural solution. Single-machine databases can better
handle skewed workloads because their local concurrency
control executes conflicting transactions more efficiently by

1214 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: TurboDB designs Hybrid Concurrency Control (HCC) to integrate the turbo and servers. The requests on popular keys
are mostly sent to the turbo, which runs local concurrency control and a specialized replication protocol. Less popular requests
are processed by servers running distributed concurrency control and a standard replication protocol.

employing techniques that are infeasible in a distributed set-
ting, such as memory fences [58], shared lock tables [1], and
single-threaded timestamping [23]. Because no cross-server
coordination is needed, transactions can be processed in one
stop within the machine, thus greatly shortening the execu-
tion time and, in turn, reducing conflicts. These performance
multipliers, i.e., local concurrency control and one-stop exe-
cution, enable fast processing of popular data items, lifting
the performance bottleneck of the overall database.

3 Design Overview

TurboDB is built on a hybrid architecture that incorporates
a single-machine database as the turbo. The turbo leverages
its performance multipliers to efficiently execute transactions
that contend on popular data, enhancing overall performance
under skewed workloads.

3.1 A Hybrid Architecture
As shown in Figure 1, TurboDB is built on a standard dis-
tributed database and dedicates one of its storage servers to
running a single-machine database (the turbo). The turbo
and remaining servers run local and distributed concurrency
control protocols, respectively. The turbo can send/receive
requests to/from all the servers through RPCs. The servers, as
part of the distributed database, are made fault tolerant using
standard techniques. The turbo is made fault tolerant through
a special technique: Phalanx Replication (§5).

Data placement. To leverage the turbo’s performance multi-
pliers for skewed workloads, TurboDB co-locates many popu-
lar keys on the turbo. The more popular keys the turbo stores,
the greater performance improvement it brings to the system.
Given the capacity and load on the turbo, some popular keys
may remain on the servers. The information on data locations,

i.e., the mapping of a key to the server or turbo that stores it, is
stored on each server and can be kept up-to-date via standard
techniques, e.g., Zookeeper [66].

3.2 Transaction Life Cycle

As shown in Figure 1, the overall flow of TurboDB executing
a transaction with its hybrid architecture is as follows:

➊ A client receives a user request and translates it into a
transaction. The client sends the transaction to one of
the servers, and this server will serve as the coordinator
for processing this transaction.

➋ The coordinator executes the transaction following Hy-
brid Concurrency Control (§4) by sending its requests to
the servers and/or turbo which store the data this trans-
action accesses.

➌ Committed transactions replicate their state on servers
through the standard technique the distributed database
uses, e.g., Raft, and replicate their state on the turbo
through Phalanx (§5).

➍ The coordinator replies to the client with the results of
the transaction after it is committed and replicated, and
the client then replies to the user.

Limitations. First, TurboDB assumes that data popularity
does not change significantly or abruptly over time, i.e., data
popularity changes on relatively slow timescales compared to
how fast data can be migrated. To deal with changes in data
popularity, TurboDB relies on existing techniques to migrate
data between the turbo and servers. Second, co-locating pop-
ular keys on the turbo would make it more difficult to react to
load spikes, i.e., sudden increases in request rate, and less re-
silient to failures or slowdowns. TurboDB partially mitigates
this issue by not oversubscribing the turbo, i.e., it reserves
enough CPUs and memory for moderate load increases.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1215

As the first step in exploring a hybrid database architecture,
TurboDB focuses on its core design challenges. We leave
investigating the above limitations to future work.

Core challenges. The core challenges in TurboDB’s use
of a hybrid architecture are ensuring correctness and fault
tolerance while preserving the high performance of the turbo.

4 Hybrid Concurrency Control

This section explains Hybrid Concurrency Control (HCC),
which orchestrates the local and distributed concurrency con-
trol protocols co-existing in TurboDB’s architecture. HCC
ensures the system as a whole is process-ordered serializable,
without significantly sacrificing the turbo’s performance.

4.1 HCC Insight
HCC ensures consistency across the whole system by coordi-
nating the local and distributed concurrency control protocols.
A naive design would use traditional two-phase locking (with
two-phase commit) across the turbo and servers to handle
transactions that access both databases. While this ensures
that transactions are serialized, it negates the performance ben-
efits of using the turbo. Locking popular keys, even for one
RTT across phases, prolongs the transaction’s lifetime and
reduces concurrency, sacrificing one-stop execution (§2.2).

To maintain the performance multipliers of the turbo, we
apply a specialized two-phase protocol (consisting of the
execute and commit phases) that does not acquire distributed
locks on the turbo in the execute phase and employs finale
commit, which is a serial two-step mechanism, in the commit
phase to reduce unnecessary aborts on the turbo and enable
one-stop execution.

To provide process-ordered serializability, HCC leverages
timestamp ordering [7] to ensure that both local and dis-
tributed concurrency control protocols commit all requests
of a transaction at the same timestamp, which represents the
transaction’s serialization point. HCC thus assumes both local
and distributed protocols are timestamp-based, which is true
of many existing protocols [14, 37, 41, 54, 58].

4.2 The Execute Phase
The client starts a transaction by generating a unique times-
tamp, a combination of the client’s ID and the current time.
Timestamps generated by the same client are strictly increas-
ing. The client sends the transaction and timestamp to a server,
which acts as the transaction’s coordinator. The timestamp is
used to inform the local and distributed protocols to commit
all requests of this transaction at this timestamp.

Algorithm 4.1 shows the coordinator logic. In the execute
phase, the coordinator buffers writes locally, and issues read
requests (lines 3–12). The values returned by these reads may
be used to complete any missing key dependencies, e.g., the

Algorithm 4.1: Transaction coordinator logic
1 Function HYBRIDCONCURRENCYCONTROL(tx, t) :
2 results←{} // transaction results

// Begin the execute phase
3 for req in tx.read_set do
4 if req.key on turbo then
5 res, is_aborted← LOCALCC(req, t, “read_only”)

// remove turbo reads
6 tx.read_set← tx.read_set− req

7 else
8 res, is_aborted← DISTRIBUTEDCC(req, t)

9 if is_aborted is true then
10 exit(tx.abort)

11 results← results ∪ res
12 UPDATEKEYDEPENDENCIES(tx, res)

// Begin the commit phase
13 hot_set←{}
14 for req in tx.write_set do

// read_set now only has server reads
15 if req.key on turbo then
16 hot_set← hot_set ∪ req
17 continue

// Send writes required by DistCC
18 res, is_aborted← DISTRIBUTEDCC(req, t)
19 if is_aborted is true then
20 exit(tx.abort)

21 results← results ∪ res

22 for req in hot_set do
23 res, is_aborted← LOCALCC(req, t, “finale_commit”)
24 if is_aborted is true then
25 SENDABORTMSGTOSERVERS(tx)
26 exit(tx.abort)

27 results← results ∪ res

28 SENDCOMMITMSGTOSERVERS(tx)
29 return results

value returned by a read request determines what to read/write
in another request (line 12). The coordinator sends each re-
quest and the timestamp to either a server or the turbo, based
on the up-to-date key-location mapping it stores (lines 4–8).

Each server executes reads following the distributed con-
currency control protocol. The turbo, in contrast, encapsulates
these reads as a standalone read-only transaction so that ac-
tive locks are not left behind after the execute phase, ensuring
that these reads do not block other transactions on the turbo.
Specifically, the turbo executes the “read-only transaction”
with its local concurrency control, by returning the values at
the specified timestamp. Each key accessed by these reads
stores a piece of metadata, which records that “transaction tx
read this key at timestamp t.” This metadata will be used in the
commit phase if the same transaction updates the same keys.
In such cases, this metadata signals to the turbo that the reads
(which were executed as a standalone read-only transaction)
in the first phase and the writes in the second phase are from
the same transaction, and the turbo will handle the commit
accordingly. We discuss the details next.

1216 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.3 The Commit Phase
After all reads are executed and key dependencies are re-
solved, the transaction enters the commit phase (lines 13–
29). A naive design would send the remaining requests, i.e.,
buffered writes, to the turbo and servers in parallel, commit-
ting them with corresponding concurrency control protocols.
However, this would cause unnecessary aborts on the turbo,
e.g., when the turbo commits its part of the transaction, but the
distributed concurrency control aborts the other part, the trans-
action as a whole must be aborted, wasting the work on the
turbo. Moreover, trying to commit in parallel requires extra co-
ordination between the turbo and servers, which would result
in prolonged execution on the turbo and forfeit its one-stop
execution. Therefore, HCC enforces a serial commit order: it
first attempts to commit on the servers before attempting to
commit on the turbo.

Finale commit. The coordinator divides the buffered writes
into cool and hot sets, which update the servers and the turbo,
respectively (lines 13–17). The coordinator sends the cool
set and the timestamp to the servers and attempts to commit
these writes at the specified timestamp through distributed
concurrency control, e.g., two-phase commit (2PC) could be
involved. Other messages as part of the distributed concur-
rency control, e.g., prepare messages for reads, may be sent
together, depending on the specific protocol (lines 18–21).

If at least one server decides to abort this transaction, e.g.,
at the end of the prepare phase of 2PC, the coordinator aborts
this transaction without (unnecessarily) attempting to commit
the hot set (lines 19 and 20). If the servers agree to commit the
transaction, the coordinator sends the hot set and the times-
tamp to the turbo and attempts to commit these writes at the
timestamp through local concurrency control (lines 22–27). If
the turbo cannot commit a write because some requests have
read the key at this timestamp, the turbo checks if the most
recent reads are from the same transaction as this write, e.g.,
the “read-only transaction” in the execute phase, and allows
the write to commit in this case.

If the turbo commits the hot set, the coordinator then sends
a commit message to each involved server to finally commit
this transaction (line 28); otherwise, the transaction is aborted,
and an abort message is sent to each server (line 25). If the
transaction commits, the coordinator can respond to the client
without waiting for the acknowledgments of the commit mes-
sages (line 29), reducing latency by one RTT, a technique
used in many systems, e.g., CockroachDB. If the transaction
is aborted, it will be retried by the coordinator (lines 24–26).

Finale commit enforces a serial commit order: trying to
commit the cool set on servers→ servers are ready to commit
→ trying to commit the hot set on the turbo → the turbo
commits→ the servers commit. This serial order preserves the
turbo’s performance multipliers by ensuring that a transaction
does not compete for resources on the turbo if it cannot be
committed on the servers and that each transaction updates

Server {B}

C

Coord.

Server {A}

Client submits tx
Execute Finale commit

read1(C)=A

read2(B)

write3(A)

Prepare

Ready

Ready

Commit

Commit

write4(D)
& Commit

Local CC

Acks

Local CC

Distributed CC

D
Turbo

Resp to client

Figure 2: tx has 2 reads and 2 writes where the return value of
read1 determines which key write3 updates. HCC integrates
distributed concurrency control that may hold locks across
phases and local concurrency control that does not.

the turbo at most once at the commit time, thus preserving
one-stop execution.

Figure 2 shows an example execution. Transaction tx has
four requests that include a key dependency: read1 deter-
mines which key write3 updates. Keys A and B are on two
servers while C and D are stored on the turbo. In the execute
phase, read1 is executed by local concurrency control as a
standalone read-only transaction without leaving behind locks
while read2 holds an active lock following distributed con-
currency control (e.g., 2PL). write4 is sent to the turbo in the
commit phase only if read2 and write3 are ready to commit
on the servers, which will finally commit read2 and write3 if
the turbo commits write4.

4.4 Correctness of HCC

This section explains why HCC enforces process-ordered seri-
alizability and ensures that transactions eventually terminate.

HCC is safe. HCC guarantees process-ordered serializability
by satisfying the following requirements: (1) there exists
a total order among all transactions, and (2) the total order
respects the process order (§2.1).

First, HCC guarantees (1) by committing all requests of
each transaction at the same timestamp, assigned by the client
at the transaction’s start. Specifically, the pre-assigned times-
tamp is used by the reads in the execute phase to retrieve
values, by the servers to commit the cool set, and by the turbo
to commit the hot set. Therefore, the timestamp is the serial-
ization point of each transaction, and the timestamp order is
the transactions’ commit order. Because timestamps uniquely
identify each transaction (§4.2), and timestamp order is a total
order, transactions’ commit order is total.

Second, HCC guarantees (2). Because each client generates
timestamps in a strictly increasing manner (§4.2), later-issued
transactions must have larger timestamps than any previously
issued transactions by the same client, thus must appear later
in the total order, respecting the process order.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1217

HCC is live. Distributed concurrency control guarantees that
the requests executed on the servers do not deadlock. Local
concurrency control guarantees that the requests executed on
the turbo do not deadlock. HCC’s finale commit enforces a
serial commit order between the servers and turbo, i.e., all
transactions follow the same access order: servers → the
turbo, thus transactions that access both servers and the turbo
do not deadlock. Therefore, HCC guarantees that transactions
eventually terminate.

5 Phalanx Replication

Another core challenge of TurboDB’s hybrid architecture
is correctly replicating the turbo for fault tolerance without
trading off its performance multipliers.

5.1 Phalanx Insight
A naive solution would be deploying a standard consensus
protocol designed for distributed systems, i.e. Raft. However,
recent work on single-machine databases [26, 32, 46, 51] has
shown that doing so significantly degrades the database’s per-
formance. They thus propose special techniques to replicate
such databases. Specifically, they assign transactions strictly
increasing timestamps and ensure that transactions are both
committed and replicated in this timestamp order. Leveraging
this timestamp order, these techniques remove most of the
replication work from the critical path of transaction execu-
tion, preserving good performance. While Phalanx leverages
the insight of these techniques, it cannot, however, directly
apply them to TurboDB’s hybrid setting.

The challenge is that these techniques require transactions
be timestamped in strictly increasing order, which is straight-
forward for single-machine databases, which have full control
over transactions. In contrast, as part of a hybrid database,
the turbo passively accepts transactions whose timestamps
have been predetermined by the clients. Due to network asyn-
chrony, the turbo may have to execute transactions whose pre-
determined timestamps are smaller than any it has previously
seen. Phalanx must tackle this unique timestamp challenge.

In the following subsections, we first explain the techniques
Phalanx uses to preserve the performance of the turbo, then
detail the timestamp challenges and Phalanx’s timestamp man-
agement that tackles the challenges.

5.2 Protocol Basics
Phalanx arranges its replicas in a chain. The head of the chain
is the primary; the rest are backups; and the last backup is the
tail. The primary is the only replica that communicates with
servers and runs local concurrency control, e.g., the “turbo”
in Section 4 is this primary replica. Phalanx sequentially prop-
agates the turbo’s log, i.e., a sequence of committed updates
grouped by transactions, down the chain to each backup. Once

the tail receives the log, it sends the primary an acknowledg-
ment (ack). Each backup applies the log’s updates in an order
specified by Phalanx (§5.3).

As a variant of primary-backup [59], Phalanx tolerates f
failures with f +1 replicas while a coordination service, e.g.,
ZooKeeper [66], may be used to detect failures and handle
membership changes in the replica group.

Decoupled replication. Phalanx preserves the turbo’s per-
formance multipliers by decoupling replication from transac-
tion execution, shielding execution from replication delays
as much as possible. Specifically, when the primary com-
mits a transaction, it makes its effect immediately visible
to future transactions (not yet to users), buffers its response
into a response queue, and appends its committed updates
to a replication log. The updates in the replication log are
asynchronously propagated to the backups, while the primary
continues to execute future transactions, i.e., replication does
not block transaction execution. The responses of commit-
ted transactions are released by the response queue (i.e., they
are sent to their coordinators) in order when these transac-
tions’ updates have been applied by all backups, i.e., when
the primary receives an ack that indicates the completion of
replication from the tail.

Allowing the primary to execute future transactions without
being blocked by the replication of committed transactions
best utilizes the turbo’s performance multipliers. It is safe to
make committed transactions visible to future transactions
before they are replicated, i.e., there is no risk of cascading
aborts, because they will certainly commit (the finale-commit
guarantees that the turbo being ready to commit the trans-
action’s hot set implies that its cool set must have first been
ready to commit on the servers; neither side will abort). More-
over, their results will be visible to the users only after they
are successfully replicated.

Per-core replication. Phalanx partitions the replication log
across CPU cores. Each core propagates its sub-logs in paral-
lel, reducing inter-core synchronization. Algorithm 5.1 shows
the pseudocode. For simplicity, the pseudocode illustrates the
primary and backups propagating a single log entry, but our
implementation batches entries for performance. When the
replication of a transaction starts (line 34), the primary finds
an available core, e.g., core 3, and appends a new entry to
core 3’s sub-log (lines 36-37). This new entry contains this
transaction’s updates and commit timestamp. Periodically,
core 3 propagates new entries to the next replica in the chain
(line 41). When the next backup receives these new entries
(Algorithm 5.2), it appends them to the sub-log for which
its own core 3 is responsible and then propagates these en-
tries to the next replica (lines 46-50). Due to a one-to-one
correspondence between cores across all replicas (Figure 3),
sub-logs managed by the same core become (eventually) iden-
tical across all replicas. The primary’s replication log is stored
on all backups and partitioned across cores in the same way.

1218 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 5.1: Phalanx primary handling requests
30 Function HANDLEREQUEST(coord, req_msg) :

// Receive a request msg from a coordinator
31 req← req_msg.req; t← req_msg.t; flag_str← req_msg.flag
32 res, is_aborted← LOCALCC(req, t, flag_str)
33 if not is_aborted then
34 response_queue.APPEND(coord, res, t)

// Find a core i to start replication
35 if req is update then
36 log_entryi ← {req, t}
37 sublogi.APPEND(log_entryi)
38 unacked_entriesi← unacked_entriesi + log_entryi

// Update core i’s ts
39 corei.ts ←min{corei.ts, t}

// Update the global Frontline if needed
40 t f ←min{t f , corei.ts}

// Propagate entry to the next replica
41 tail_acki ← next_backup.PROPAGATE(log_entryi, t f)

// Once receiving the ack
42 unacked_entriesi ← unacked_entriesi − log_entryi
43 corei.ts ←min{unacked_entriesi.t}
44 t f ←min{∀ts ∈ cores.ts}

Decoupled log replay. When a backup receives new log
entries, it appends these entries to its own sub-log of the
corresponding core (line 46), which eventually replays the
sub-log, i.e., the core applies the updates in its sub-log to the
backup’s database (lines 51-54). The backup propagates the
new entries to the next backup without waiting for its local
replay to complete (line 50). When these new entries finally
reach the tail, the tail replays them and sends an ack to the
primary, indicating that all backups have received these new
log entries. Algorithm 5.2 shows the pseudocode.

When the primary receives the ack (line 41), the transac-
tions associated with these new entries are considered safe,
i.e., their state is stored on all backups and will be replayed by
each backup. Yet, Phalanx must ensure a correct log-replay
order before the transactions’ responses can be returned to
their coordinators. That is, Phalanx must guarantee that the
transactions take effect on each backup in the same order as
the primary, enabling backups to seamlessly and correctly
take over the primary’s role if the primary fails. Phalanx lever-
ages timestamps to enforce such a log-replay order, and the
next section explains a unique challenge Phalanx must tackle
and how Phalanx overcomes it.

5.3 Timestamp Challenges & Frontline
Existing solutions execute and replicate transactions in a
monotonically increasing timestamp order to ensure that once
a transaction finishes, all the transactions before it (e.g., ones
whose values this transaction may have read) must have been
replicated and returned to their users, since they have smaller
timestamps than the current transaction. Yet, the turbo has
no control over timestamp generation and thus cannot expect
timestamps to be monotonically increasing. Transactions are

Algorithm 5.2: Backup receives propagated entry
45 Function PROPAGATE(new_entry, t f):

// Append new log entry, then propagate
46 sublogi.APPEND(new_entry)
47 if this is tail then

// Tail acks to the primary
48 SENDACK(to:primary, new_entry, t f)

49 else
// Propagate down the chain

50 next_backup.PROPAGATE(new_entry, t f)

// Apply sublog entries up to t f (i.e., t < t f)
51 for entry in sublogi do
52 if entry.t < t f then

// Apply entry to the database
53 this.APPLY(entry)

// Remove replayed entry from sublog
54 sublogi← sublogi− entry

Algorithm 5.3: Primary releases buffered responses
55 Function RELEASEBUFFRESPS():

// Periodically invoked by the primary
56 for resp in response_queue do
57 coord← resp.coord; res← resp.res; t← resp.t
58 if resp.t < t f then

// Releases and removes response
59 SENDRESPONSE(to:coord, res, t)
60 response_queue← response_queue− resp

timestamped by the client machines and may arrive at the
turbo in any order. Thus, naively applying existing solutions
to TurboDB may lead to two issues.

First, out-of-order timestamps may incur unnecessary stalls,
because the system cannot replicate a transaction until it is
certain that no future transaction with a smaller timestamp
will arrive. That is, later-arriving transactions with smaller
timestamps block the replication of earlier transactions that
have larger timestamps. For example, in Figure 3, w3 arrives
later than w1 or w2 but has a smaller timestamp, then it blocks
w1 and w2 from replicating. Even worse, the system can never
be certain when such transactions (e.g., w3) may arrive or if
they even exist.

Second, we cannot naively disobey the timestamp order,
lest incorrect behavior arise during failover, as shown in Fig-
ure 3. Let’s say w1 and w2 belong to tx1 and tx2 and have
timestamps 8 and 10, respectively. If tx2 reads the value writ-
ten by w1 (from tx1), then we must ensure that by the time
tx2’s w2 is replicated w1 must have replayed on all replicas
and will not be lost in f failures of f +1 replicas. Otherwise,
since tx2 and tx1 may be handled by different cores, backups
may potentially replay w2 without replaying w1. If the pri-
mary then fails, no backup (or the new primary) will have
applied w1 to the database. As a result, future transactions
will only observe w2, but not w1, which violates serializability.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1219

This shows that Phalanx must replicate w1 and w2 in their
timestamp order to preserve the dependencies between them,
e.g., w2 depends on w1.

Design insight. Phalanx selectively obeys the timestamp or-
der. It replays and returns transactions in timestamp order
only when necessary: when there exist dependencies among
transactions. We say that transaction tx2 depends on transac-
tion tx1 (denoted tx1⇒ tx2) if their requests access the same
key(s), and at least one is an update. Since HCC (§4) guar-
antees that a dependent (tx2) always has a larger timestamp
than the transaction it depends on (tx1), Phalanx can preserve
dependencies by replaying them in their strictly increasing
timestamp order. If a transaction does not depend on another,
i.e., tx1 ⇏ tx2 and tx2 ⇏ tx1, Phalanx can replay them in any
order, avoiding unnecessary stalls.

Frontline. Phalanx enables selective timestamp ordering by
designing Frontline, a timestamp tracking technique. Each
core on the primary keeps track of ts, which is the timestamp
of the most recent, safe transaction (log entry) in this core’s
sub-log. A transaction is safe if it has been appended to the
logs of all backups. A core updates its ts when it receives
the ack of its propagated entries from the tail. The frontline
t f is the minimum ts across all cores. t f represents a thresh-
old timestamp at which all transactions in the database with
timestamps less than or equal to t f are safe.

When a core of the primary begins propagating log en-
tries, it piggybacks the current frontline t f with them. Upon
receiving both the entries and t f (line 45), the backup core
appends the new entries to its sub-log and continues propagat-
ing both the entries and t f to the next backup (line 50). This
backup then replays all entries whose timestamps are less
than t f , i.e., these entries (updates) are applied to the database
(lines 51–54). Log replay is uninterruptible, that is, cores will
not handle new entries until the current replay is complete.
Replayed updates are then removed from the sub-log. The tail
sends an ack to the primary when it has appended these new
entries to its log (lines 47–48).

When the primary’s core receives the ack, it updates its
core-local safe time ts and cross-core frontline t f accordingly
(lines 43–44). The primary periodically loops through the
buffered response queue to release the responses of transac-
tions whose timestamps are less than or equal to t f (algo-
rithm 5.3). These responses are released to their correspond-
ing coordinators in their timestamp order.

When the transactions received by the primary happen to
have monotonically increasing timestamps, ts and t f are ad-
vanced monotonically, similar to existing techniques. When
the primary receives a new, out-of-order transaction whose
timestamp is smaller than that of earlier transactions and
the current t f , the primary immediately lowers t f and the
corresponding core’s ts below the transaction’s timestamp
(lines 39–40). By immediately lowering t f , Phalanx prevents
the primary from prematurely releasing the responses of fu-

Core 1:

Core 2:

Core 3:

W1

W2

W3

t = 8

t = 10

t = 5

Core 1:

Core 2:

Core 3:

W2

t = 10

Primary Backup
(Next primary)

Real time

W1

W3

Figure 3: Writes operations w1, w2, w3 from transactions tx1,
tx2, and tx3 (not shown), respectively, being replicated in each
core’s sub-log.

ture transactions that may depend on this out-of-order trans-
action. That is, any future dependent transaction will only be
released after the out-of-order transaction is finished. Algo-
rithm 5.3 shows pseudocode for releasing buffered responses.

Buffering read responses. Although only updates are repli-
cated to the backups, the primary must also buffer the re-
sponses of reads, including the reads in read-write transac-
tions and read-only transactions. The primary handles these
responses the same way that it handles update responses: it
ensures that the updates observed by these reads have been
stored on all replicas and cannot be lost in f failures.

Correctness. Phalanx guarantees that a transaction’s re-
sponse is released (i.e., this transaction is finished) only if
its updates have been inserted in the logs of all backups and
will eventually be replayed. For all transactions that have
dependencies among them: HCC guarantees that they are
timestamped in strictly increasing order, which reflects their
dependencies. The frontline’s forward movement returns them
in this order. Otherwise, Phalanx does not block the replay
of the current transaction tx1 for the possible arrival of a later
transaction tx2 that has a smaller timestamp, thereby avoiding
unnecessary stalls. This is safe because tx1 must not depend
on tx2 as tx1 was executed before tx2, and tx2 must not depend
on tx1 because tx2’s timestamp is smaller than tx1’s, thus it is
safe to replay them in either order.

Failover. When the primary fails, the next live backup be-
comes the new primary. The new primary finishes replaying
all sub-logs up to the frontline it knows, and then discards the
remaining entries in its logs before servicing new requests.
This is safe because the responses of these discarded trans-
actions could not have been released to their coordinators.
When the coordinators query the status of these discarded
transactions, e.g., they have not received any responses for
some time, the new primary replies with abort messages that
make the coordinators abort these transactions on the servers.

1220 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6 Evaluation

We evaluate our system to answer the following questions:

• How well does TurboDB perform, compared to a represen-
tative distributed database, under skewed workloads?

• How well does TurboDB scale performance, specifically
throughput, compared to the baseline?

• How well does TurboDB perform under different workloads
with a variety of read-to-write ratios and levels of skew?

Implementation. We build TurboDB on CockroachDB [54]
and Cicada [37], which are written in Go and C++, respec-
tively. We change ∼4 K lines of Go in CockroachDB’s code-
base. We also employ Cicada’s library to implement, replicate
(i.e., implement Phalanx), and network (using gRPC [25]) a
single-machine database in ∼10 K lines of C++. Of those,
direct changes to Cicada’s library are 5 lines long.

Baseline. We compare TurboDB with CockroachDB, which
is a production distributed database that has been widely
adopted by industry [34]. Its distributed concurrency con-
trol technique is a combination of timestamp-ordering and
locking-based mechanisms, and it tolerates server failures
with Raft. Our experiments have fault tolerance enabled for
both TurboDB (Phalanx and Raft) and CockroachDB (Raft).

6.1 Experimental Setup
Workloads. We evaluate TurboDB under YCSB+T [17] and
TPC-C [56]. YCSB+T contains one-shot key-value transac-
tions, i.e., all requests are sent in one round in parallel as data
locations are known a priori. Our experiments use the default
parameters: 8B key, 512B value, 10 keys per transaction, and
95% reads. There are a total of 160M keys. We vary the levels
of skew by controlling the Zipfian constant (Zipf): uniform
workloads have a Zipf of 0.01, medium-skewed workloads
have a Zipf of 0.99 (∼8% of requests access the most popular
key), and high-skewed workloads have a Zipf of 1.2 (∼25%
of requests access the most popular key). We also include
experiments that vary the read-to-write ratio.

TPC-C contains complex, multi-shot transactions, i.e., re-
quests must be sent in multiple steps as data read in prior steps
determines the read-/write-sets in later steps. TPC-C has five
types of transactions: New Order, Payment, Delivery, Order
Status, and Stock Level. We only implemented New Order
which has the most complex transaction logic. We have 10 dis-
tricts per warehouse and vary the level of skew by controlling
the number of warehouses that are evenly distributed across
machines. Our experiments show 64, 16, and 8 warehouses.
The fewer warehouses, the more skewed the workload is.

Data placement. For the YCSB+T experiments, we promote
hot data items to the turbo. We identify hot data items using a
simple queries-per-second (QPS) count. It promotes as many
data items to the turbo as can fit in its memory, taking care

not to oversubscribe the turbo’s CPU and memory capacity:
40M keys of 160M. We place the remaining, cool data items
on CockroachDB, allowing its default data sharding schemes
to balance the load. For the TPC-C experiments, we manually
promote the two hottest tables—Warehouse and District—to
the turbo. The remaining tables are partitioned by warehouse
across the CockroachDB nodes.

Testbed. We run all experiments on CloudLab [22] in one
data center. Each machine has 2.0 GHz CPUs with 8 physi-
cal (16 virtual) cores, 64GB RAM, and a 10Gbps network
interface. For YCSB+T experiments, CockroachDB has 8
servers. Raft is run among these 8 servers instead of on a
set of separate machines, as suggested by the CockroachDB
technical team. TurboDB has 8 servers that handle the work-
loads. One of the 8 servers is the turbo, and the rest runs
CockroachDB. TurboDB employs another 2 standalone ma-
chines as the backups, which do not directly handle the work-
load. Thus, TurboDB has a total of 10 server machines. The
YCSB+T scalability experiments use up to 16 servers (18
servers for TurboDB). Similarly, the TPC-C experiments have
9 servers for CockroachDB and 11 servers for TurboDB.

An additional set of machines generate closed-loop client
requests. Each experiment lasts 180 seconds. The first 120
warm up the system, e.g., the system shards the data. Perfor-
mance metrics are collected during the remaining 60.

6.2 Result Overview

TurboDB outperforms CockroachDB by an order of magni-
tude higher throughput and 2× lower latency for YCSB+T,
and by 1.6× higher throughput and lower latency for TPC-
C, under skewed workloads. TurboDB scales out as well as
CockroachDB under uniform workloads and shows much bet-
ter scalability under medium and highly skewed workloads.
TurboDB shows comparable performance to CockroachDB
under uniform workloads and more significant performance
improvements while skew increases. TurboDB consistently
outperforms CockroachDB with different read-to-write ratios.

6.3 Latency & Throughput

This section compares the performance of TurboDB and Cock-
roachDB in terms of latency and throughput under YCSB+T
and TPC-C workloads.

YCSB+T. Figure 4a plots the median latency vs. throughput
graph for uniform, medium, and high skew as we increase
load on the system. The dashed horizontal line shows a me-
dian latency of 10 ms, a reasonable operating point. TurboDB
consistently outperforms CockroachDB under medium and
high skew, due to its turbo being able to efficiently execute
contended transactions. For instance, TurboDB has more than
4× lower abort rate than CockroadhDB with a Zipf of 1.2.
Although TurboDB is not designed for uniform workloads,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1221

1

10

100

10k 100k

10 ms

s=1.2

s=0.99

s=0.01s=0.01

s=0.99

s=1.2

p
5
0
 L

a
te

n
cy

 (
m

s
)

L
o
g

Throughput (tps) Log

CockroachDB
TurboDB

(a) Median latency vs. throughput

0

20k

40k

60k

80k

100k

uniform medium high

T
h
ro

u
g
h
p
u
t
(t

p
s)

Level of Skew

CockroachDB

 19K
 8K 3K

TurboDB

 13K

 48K

 83K

(b) Throughput varying skew

 0

 10

 20

 30

 40

 50

uniform medium high

p
9
9
 L

a
te

n
cy

 (
m

s)

Level of Skew

CockroachDB

 25

 14
 18

TurboDB 35
 30

 9

(c) Tail latency at 80% of load

Figure 4: Latency (medium and tail) and throughput of TurboDB and CockroachDB under YCSB+T workloads with varying
levels of skew (s indicates the Zipfian constant.

10

100

1k

500 1K 2.5K

8w 16w 64w

8w

16w
64w

65ms

p
5
0
 L

a
te

n
cy

 (
m

s)
 L

o
g

Throughput (tps) Log

CockroachDB
TurboDB

(a) Median latency vs. throughput

 0

1K

2K

3K

4K

81664

T
h
ro

u
g
h
p
u
t
(t

p
s
)

Warehouses

CockroachDB

1.4K
1.8K2.0K

TurboDB

2.3K
2.6K

2.8K

(b) Throughput varying skew

 0

 50

 100

 150

 200

 250

81664

p
9
9
 L

a
te

n
cy

 (
m

s
)

Warehouses

CockroachDB
186

138

 89

TurboDB
160

113108

(c) Tail Latency at 80% of load

Figure 5: Latency (medium and tail) and throughput of TurboDB and CockroachDB under TPC-C New Order workloads with
varying levels of skew, controlled by the number of warehouses (w).

its performance is comparable to (slightly worse than) Cock-
roachDB for these workloads, due to the design choices Tur-
boDB makes specifically for skewed workloads, e.g., finale
commit and chain-shaped replication may increase latency.

Figure 4b shows the throughput while varying the level of
skew at the operating point, i.e., a median latency of 10 ms.
TurboDB exhibits more significant throughput advantages
when skew increases, e.g., up to 17× improvements. This is
because a higher level of skew causes more transactions to
abort on CockroachDB, while TurboDB can reduce aborts
with its local concurrency control and execute these trans-
actions more quickly with its one-stop execution. Moreover,
TurboDB’s throughput increases when skew increases be-
cause more requests can benefit from the turbo, while the per-
formance of traditional databases often keeps getting worse
when the workload becomes more skewed.

Figure 4c shows the tail (p99) latency when both systems
operate at 80% of their maximum load. TurboDB exhibits
slightly higher latency on uniform and medium skewed work-
loads. This is because HCC’s serial finale commit and Pha-
lanx’s chain propagation increase latency, and this affects the
tail of the distribution more significantly. However, this la-
tency impact is offset by the latency improvements under high
skew workloads where TurboDB has 2× lower tail latency.

TPC-C New Order. Figure 5 shows the performance under
TPC-C New Order workloads, which exhibits a similar take-
away of performance improvements enabled by TurboDB

while the improvements are not as significant as that for
YCSB+T. This is because TPC-C transactions are multi-shot
and have much more complex logic than YCSB+T, and be-
cause it is non-trivial to partition TPC-C and find the right pop-
ular data items to store on the turbo. Our experiments make
the turbo store popular District tables, and we expect even
greater performance improvements with careful partitioning.
That said, TurboDB achieves consistently better performance
under medium and high skew, as shown in Figure 5a. Tur-
boDB achieves consistently higher throughput (up to 1.65×
higher) with low (64 warehouses), medium (16 warehouses),
and high skew (8 warehouses), as shown in Figure 5b. Tur-
boDB has lower tail latency for medium and high skew (up
to 1.5× lower), and slightly higher tail latency when skew is
low. The low skew setting (64 warehouses) still exhibits some
contention and is far from being uniform, and TurboDB’s
performance improvements may diminish when the number
of warehouses is sufficiently large.

6.4 Scalability

Figure 6 shows peak throughput of TurboDB and Cock-
roachDB under YCSB+T when we increase the number of
machines (and the amount of data stored) in the system. Fig-
ure 6a shows that TurboDB can scale as linearly as Cock-
roachDB under uniform workloads for which TurboDB is
not designed specifically. This shows that the overhead of
TurboDB’s design under uniform workloads does not much

1222 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

30k

60k

90k

 0 2 4 6 8 10 12 14 16

Cicada

T
h

ro
u

g
h

p
u

t
(t

p
s)

Number of servers

CockroachDB
TurboDB

(a) Uniform (s = 0.01)

0

30k

60k

90k

 0 2 4 6 8 10 12 14 16

Cicada

T
h

ro
u

g
h

p
u

t
(t

p
s)

Number of servers

CockroachDB
TurboDB

(b) Medium skew (s = 0.99)

0

30k

60k

90k

 0 2 4 6 8 10 12 14 16

Cicada

T
h

ro
u

g
h

p
u

t
(t

p
s)

Number of servers

CockroachDB
TurboDB

(c) High skew (s = 1.2)

Figure 6: Scalability under YCSB+T read-heavy (95% reads) workloads while increasing the number of servers and the amount
of data. The dashed line denotes the peak throughput of networked, replicated Cicada (the turbo).

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

uniform medium high

R
e
a
d
 a

b
o
rt

 r
a
tio

Level of Skew

CockroachDB

0.00

0.03

0.12
TurboDB

0.02
0.04

0.03

(a) YCSB+T Abort ratio

 0

 50

 100

 150

 200

 250

 300

 350

uniform medium high

p
9
9
 W

ri
te

 L
a
te

n
cy

 (
m

s)

Level of Skew

CockroachDB

 74

215

113

TurboDB

 85
 43

 23

(b) p99 latency of write-only txns

0

10

20

30

40

50 60 70 80 90 100

 3K tps

 83K tps

N
o

rm
a

liz
e

d
 t
h

ro
u

g
h

p
u

t

Read percentage

CockroachDB
TurboDB

(c) Varying Read Fraction (s=1.2)

Figure 7: Additional experiments that report abort ratios, write tail latency, and throughput with different read fractions.

affect the system’s overall performance, because the workload
is “easy,” i.e., uniform, and additional overhead is affordable.

TurboDB scales throughput significantly better than Cock-
roachDB under medium and highly skewed workloads, as
shown in Figure 6b and Figure 6c. CockroachDB does not
scale under skewed workloads because it is bottlenecked on
processing contended transactions that access a small set of
popular keys. Adding more machines does not address the bot-
tleneck. In contrast, TurboDB scales throughput linearly until
the turbo reaches its capacity, i.e., when networked, replicated
Cicada is running at maximum throughput.

TurboDB’s throughput approaches that of networked, repli-
cated Cicada, denoted by the dotted horizontal line, with a
sufficient number of servers. TurboDB can sustain its through-
put and scales no worse than traditional distributed databases
after Cicada becomes the bottleneck. Moreover, TurboDB
scales up faster at higher skew because more transactions can
leverage the performance multipliers of the turbo.

6.5 Additional Experiments
We show more experiments with YCSB+T workloads.

Abort ratio. An important source of improvements enabled
by the turbo is the reduction of aborts. (Another source is
the fast execution of contended transactions, enabled by one-
stop execution.) Figure 7a plots the abort ratio which is the
number of the transactions that were ever aborted to the num-
ber of committed transactions, under uniform, medium, and

high skew. While TurboDB has abort ratios similar to Cock-
roachDB under uniform and medium skewed workloads, Tur-
boDB has a 4× lower abort ratio under high skew, which is
enabled by the performance multipliers of the turbo.

Write latency. To fully understand TurboDB’s performance
improvements, we examine the latency of write-only transac-
tions from Figure 4b’s workload. We focus on write requests
because they lead to conflicts and because they reflect the
costs of replication as only writes are replicated through Pha-
lanx. Figure 7b shows the tail (p99) latency of write-only
transactions at different levels of skew. TurboDB has signifi-
cantly lower write latency at medium and high skew because
the turbo can execute these writes with fewer aborts and be-
cause one-stop execution avoids cross-phase locking, while
CockroachDB requires distributed locks (i.e., write intents)
that significantly prolongs the execution time.

Varying read fractions. Figure 7c shows the throughput
of both systems when we vary the read-to-write ratio of the
highly skewed YCSB+T workloads (Zipf of 1.2). We nor-
malize throughput against the maximum throughput under
the default setting of 95% reads. Both TurboDB and Cock-
roachDB have lower throughput with more writes, because
write operations are more costly compared to reads and be-
cause writes increase the likelihood of conflicts, and TurboDB
has consistently higher throughput than CockroachDB.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1223

7 Related Work

TurboDB builds on earlier work on single-machine databases,
distributed databases, partitioning techniques, and replication
techniques. Section 5 discussed replication techniques. We
now review each of the other categories in turn.

Single-machine databases. There exists a large body of
research on designing and building fast single-machine
databases [23, 24, 29, 31, 33, 37, 47, 58]. Because their data
resides on one machine, these databases capitalize on readily
available global views of the system to employ sophisticated
optimizations (see discussion in §2). In contrast, in distributed
databases, global views are non-trivial to construct.

TurboDB’s design makes it possible for these optimizations
to be used in distributed systems. What’s more, TurboDB
improves its performance while retaining the distributed sys-
tem’s ability to scale system capacity to support large-scale
applications—ones that would have been too large to fit in a
single-machine database.

We highlight the constraint that TurboDB requires the turbo
(single-machine database) to employ a timestamp-based con-
currency control. That said, many existing databases would
make good candidates [29, 33, 37, 58].

Distributed databases and systems. There also exists a
large body of work on distributed databases and distributed
systems [12, 49, 52, 54, 55, 65]. Some achieve good perfor-
mance by constraining operations of a transaction to access
the same logical partition [11, 13]. These systems rely on
careful data partitioning, which may be challenging for to-
day’s complex applications to achieve. In contrast, TurboDB
requires no partitioning constraints.

Some other systems trade off strong consistency for bet-
ter performance [11, 38, 39, 42, 50]. Unfortunately, weakly
consistent transactions complicate application development,
yet, are still subject to performance degradation under skewed
workloads. In contrast, TurboDB provides strong consistency
(process-ordered serializability).

Some other systems support restricted transaction mod-
els, e.g., read-only and/or write-only transactions [21, 38, 39].
Unfortunately, this complicates application development. In
contrast, TurboDB supports general transactions.

Sequencers and RDMA. Some systems leverage a central-
ized component, e.g., a sequencer or a shared log, to serialize
all transactions [5, 6, 30, 35, 36, 55, 60]. These techniques’ in-
sights bears similarity to TurboDB’s, i.e., leveraging a power-
ful centralized entity to tackle the most challenging problems
in the system’s design. However, unlike TurboDB, they re-
quire that all transactions pass through the sequencer. Instead,
TurboDB only forwards a fraction of (popular) keys through
the turbo, enabling scalability with less internal complexity
and fewer resources than recent scalable sequencer-based
systems [18, 27].

Some systems leverage specialized hardware and network
abstractions [20], e.g., RDMA and DPDK [19]. These net-
working optimizations are orthogonal to TurboDB’s perfor-
mance improvements, as TurboDB can also adopt and benefit
from them.

Partitioning techniques. One line of work handles con-
tention by partitioning the keyspace by workload access pat-
terns, i.e., keys that are likely accessed together by transac-
tions are co-located on the same machine [15, 45, 48, 53, 54,
57, 61, 63]. These works aim to reduce the number of nodes
that each transaction must contact—ideally, only one—such
that they are as “non-distributed” as possible. For instance,
Chiller [64] and Quro [61] co-locate keys that are both popular
and often accessed together on the same machine.

While these partitioning techniques benefit workloads
where transactions minimally access keys on different ma-
chines, their benefits diminish when no such obvious groups
of keys exist. In contrast, TurboDB’s performance benefits are
agnostic to whether the keyspace is partitionable. Even when
transactions access both the turbo and the servers, TurboDB’s
HCC and Phalanx ensure such transactions benefit from the
turbo’s performance multipliers.

8 Conclusion

Distributed databases are challenged by skewed workloads,
which are common in real-world applications. These work-
loads cause high contention, which are exacerbated by net-
work latencies. TurboDB presents a novel hybrid architec-
ture that integrates a single-machine database in a distributed
database to “turbocharge” its overall performance under
skewed workloads. TurboDB leverages the single-machine
database’s performance multipliers to efficiently execute con-
tended transactions. It introduces new designs, HCC and Pha-
lanx, that tackle the challenges of concurrency control and
replication under its hybrid architecture. Consequently, Tur-
boDB achieves up to an order of magnitude better perfor-
mance than a representative distributed database.

Acknowledgments. We thank our shepherd, Dan Ports, and
our anonymous reviewers for their invaluable feedback. We
also thank Christopher Hodsdon, Yue Tan, Samuel Ginzburg,
Mike Wong, and Gongqi Huang for their helpful suggestions.
This material is based upon work supported by the National
Science Foundation under Grant No. CNS 2241719, CNS
1824130, CNS 2327609, and CNS 2321724. Any opinions,
findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

Availability. Code and experimental scripts are available at
https://github.com/princeton-sns/TurboDB.

1224 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/princeton-sns/TurboDB

References

[1] Marcos K Aguilera, Tudor David, Rachid Guerraoui, and
Junxiong Wang. Locking timestamps versus locking ob-
jects. In ACM Symposium on Principles of Distributed
Computing (PODC), 2018.

[2] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wy-
att Lloyd, and Kaushik Veeraraghavan. Challenges to
adopting stronger consistency at scale. In Workshop on
Hot Topics in Operating Systems (HotOS), 2015.

[3] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba
Borthakur, and Mark Callaghan. Linkbench: A database
benchmark based on the facebook social graph. In ACM
International Conference on Management of Data (SIG-
MOD), pages 1185–1196, 2013.

[4] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In ACM SIGMETRICS and PER-
FORMANCE Joint International Conference on Mea-
surement and Modeling of Computer Systems, pages
53–64, 2012.

[5] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prab-
hakaran, Ted Wobbler, Michael Wei, and John D Davis.
CORFU: A shared log design for flash clusters. In
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 1–14, 2012.

[6] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber,
Ming Wu, Vijayan Prabhakaran, Michael Wei, John D
Davis, Sriram Rao, Tao Zou, and Aviad Zuck. Tango:
Distributed data structures over a shared log. In ACM
Symposium on Operating Systems Principles (SOSP),
pages 325–340, 2013.

[7] Philip A Bernstein and Nathan Goodman. Concurrency
control in distributed database systems. ACM Comput-
ing Surveys (CSUR), 13(2):185–221, 1981.

[8] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott
Shenker. Web caching and zipf-like distributions: Ev-
idence and implications. In IEEE International Con-
ference on Computer Communications (INFOCOMM),
volume 1, pages 126–134. IEEE, 1999.

[9] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov,
Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat
Venkataramani. TAO: Facebook’s distributed data store
for the social graph. In USENIX Annual Technical Con-
ference (ATC), pages 49–60, 2013.

[10] Audrey Cheng, Xiao Shi, Aaron Kabcenell, Shilpa
Lawande, Hamza Qadeer, Jason Chan, Harrison Tin,
Ryan Zhao, Peter Bailis, Mahesh Balakrishnan, Nathan
Bronson, Natacha Crooks, and Ion Stoica. TAOBench:
An end-to-end benchmark for social network work-
loads. Proceedings of the VLDB Endowment (PVLDB),
15(9):1965–1977, 2022.

[11] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivas-
tava, Adam Silberstein, Philip Bohannon, Hans-Arno
Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yer-
neni. Pnuts: Yahoo!’s hosted data serving platform. Pro-
ceedings of the VLDB Endowment (PVLDB), 1(2):1277–
1288, 2008.

[12] James C. Corbett, Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, JJ Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s globally distributed database. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 261–264, 2012.

[13] CosmosDB. CosmosDB. https://azure.microsoft.
com/en-us/services/cosmos-db/, 2022.

[14] James Cowling and Barbara Liskov. Granola: Low-
overhead distributed transaction coordination. In
USENIX Annual Technical Conference (ATC), Jun 2012.

[15] Carlo Curino, Evan Jones, Yang Zhang, and Sam Mad-
den. Schism: A workload-driven approach to database
replication and partitioning. Proceedings of the VLDB
Endowment (PVLDB), 3(1–2):48–57, Sep 2010.

[16] Khuzaima Daudjee and Kenneth Salem. Lazy database
replication with ordering guarantees. In IEEE Interna-
tional Conference on Data Engineering (ICDE), 2004.

[17] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe
Röhm. YCSB+T: Benchmarking web-scale transac-
tional databases. In IEEE International Conference on
Data Engineering (ICDE) Workshops, pages 223–230,
2014.

[18] Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo
Alvisi, and Robbert Van Renesse. Scalog: Seamless
reconfiguration and total order in a scalable shared log.
In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 325–338, 2020.

[19] DPDK. DPDK. http://dpdk.org/, 2020.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1225

https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
http://dpdk.org/

[20] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast remote memory.
In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2014.

[21] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy
Zwaenepoel. Orbe: Scalable causal consistency using
dependency matrices and physical clocks. In ACM Sym-
posium on Cloud Computing (SoCC), 2013.

[22] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and
operation of CloudLab. In USENIX Annual Technical
Conference (ATC), pages 1–14, 2019.

[23] Jose M Faleiro and Daniel J Abadi. Rethinking serializ-
able multiversion concurrency control. Proceedings of
the VLDB Endowment (PVLDB), 8(11):944–955, 2015.

[24] Jose M. Faleiro, Daniel J. Abadi, and Joseph M. Heller-
stein. High performance transactions via early write vis-
ibility. Proceedings of the VLDB Endowment (PVLDB),
10(5), 2017.

[25] gRPC. gRPC, 2020. https://github.com/grpc.

[26] Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou,
Lidong Zhou, and Li Zhuang. Rex: Replication at the
speed of multi-core. In European Conference on Com-
puter Systems (EuroSys), pages 1–14, 2014.

[27] Christopher Hodsdon, Theano Stavrinos, Ethan Katz-
Bassett, and Wyatt Lloyd. Mason: Scalable, contiguous
sequencing for building consistent services. Journal of
Systems Research (JSys), 3(1), 2023.

[28] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt
Lloyd, Sanjeev Kumar, and Harry C. Li. An analysis
of facebook photo caching. In ACM Symposium on
Operating Systems Principles (SOSP), November 2013.

[29] Yihe Huang, William Qian, Eddie Kohler, Barbara
Liskov, and Liuba Shrira. Opportunities for opti-
mism in contended main-memory multicore transac-
tions. Proceedings of the VLDB Endowment (PVLDB),
13(5):629–642, Jan 2020.

[30] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Design guidelines for high performance RDMA systems.
In USENIX Annual Technical Conference (ATC), pages
437–450, 2016.

[31] Robert Kallman, Hideaki Kimura, Jonathan Natkins,
Andrew Pavlo, Alexander Rasin, Stanley Zdonik, Evan

P. C. Jones, Samuel Madden, Michael Stonebraker, Yang
Zhang, John Hugg, and Daniel J. Abadi. H-store: A
high-performance, distributed main memory transaction
processing system. Proceedings of the VLDB Endow-
ment (PVLDB), 1(2):1496–1499, Aug 2008.

[32] Manos Kapritsos, Yang Wang, Vivien Quema, Allen
Clement, Lorenzo Alvisi, and Mike Dahlin. All about
eve: Execute-verify replication for multi-core servers.
In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 237–250, 2012.

[33] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and
Ippokratis Pandis. Ermia: Fast memory-optimized
database system for heterogeneous workloads. In ACM
International Conference on Management of Data (SIG-
MOD), pages 1675–1687, 2016.

[34] Cockroach Labs. CockroachDB, 2020. https://www.
cockroachlabs.com/.

[35] Jialin Li, Ellis Michael, and Dan RK Ports. Eris:
Coordination-free consistent transactions using in-
network concurrency control. In ACM Symposium on
Operating Systems Principles (SOSP), pages 104–120,
2017.

[36] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana
Szekeres, and Dan RK Ports. Just say NO to paxos
overhead: Replacing consensus with network ordering.
In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 467–483, 2016.

[37] Hyeontaek Lim, Michael Kaminsky, and David G An-
dersen. Cicada: Dependably fast multi-core in-memory
transactions. In ACM International Conference on Man-
agement of Data (SIGMOD), pages 21–35, 2017.

[38] Wyatt Lloyd, Michael J Freedman, Michael Kamin-
sky, and David G Andersen. Don’t settle for eventual:
Scalable causal consistency for wide-area storage with
COPS. In ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 401–416, 2011.

[39] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky,
and David G Andersen. Stronger semantics for low-
latency geo-replicated storage. In USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), pages 313–328, 2013.

[40] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai
Mu, and Wyatt Lloyd. The SNOW theorem and latency-
optimal read-only transactions. In USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), pages 135–150, 2016.

1226 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/grpc
https://www.cockroachlabs.com/
https://www.cockroachlabs.com/

[41] Haonan Lu, Shuai Mu, Siddhartha Sen, and Wyatt Lloyd.
NCC: Natural concurrency control for strictly serial-
izable datastores by avoiding the timestamp-inversion
pitfall. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 305–323,
2023.

[42] MySQL. MySQL 5.6 Reference Manual. https://
dev.mysql.com/doc/refman/5.6/en/, 2020.

[43] Diego Ongaro and John Ousterhout. In search of an un-
derstandable consensus algorithm. In USENIX Annual
Technical Conference (ATC), pages 305–319, 2014.

[44] Christos H. Papadimitriou. The serializability of concur-
rent database updates. Journal of the ACM, 26(4):631–
653, October 1979.

[45] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. Skew-
aware automatic database partitioning in shared-nothing,
parallel OLTP systems. In ACM International Confer-
ence on Management of Data (SIGMOD), pages 61–72,
2012.

[46] Dai Qin, Angela Demke Brown, and Ashvin Goel. Scal-
able replay-based replication for fast databases. Proceed-
ings of the VLDB Endowment (PVLDB), 10(13):2025–
2036, 2017.

[47] Dai Qin, Angela Demke Brown, and Ashvin Goel. Cara-
cal: Contention management with deterministic con-
currency control. In ACM Symposium on Operating
Systems Principles (SOSP), page 180–194, 2021.

[48] Abdul Quamar, K Ashwin Kumar, and Amol Deshpande.
Sword: scalable workload-aware data placement for
transactional workloads. In International Conference
on Extending Database Technology (EDBT), pages 430–
441, 2013.

[49] Kun Ren, Dennis Li, and Daniel J Abadi. SLOG:
serializable, low-latency, geo-replicated transactions.
Proceedings of the VLDB Endowment (PVLDB),
12(11):1747–1761, 2019.

[50] riak. riak, 2022. https://riak.com/index.html.

[51] Weihai Shen, Ansh Khanna, Sebastian Angel, Sid-
dhartha Sen, and Shuai Mu. Rolis: A software approach
to efficiently replicating multi-core transactions. In
European Conference on Computer Systems (EuroSys),
pages 69–84, 2022.

[52] Swaminathan Sivasubramanian. Amazon DynamoDB:
A seamlessly scalable non-relational database service.
In ACM International Conference on Management of
Data (SIGMOD), pages 729–730, 2012.

[53] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie
Duggan, Aaron J Elmore, Ashraf Aboulnaga, Andrew
Pavlo, and Michael Stonebraker. E-store: Fine-grained
elastic partitioning for distributed transaction process-
ing systems. Proceedings of the VLDB Endowment
(PVLDB), 8(3):245–256, 2014.

[54] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan Van-
Benschoten, Jordan Lewis, Tobias Grieger, Kai Niemi,
Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Grunier, Justin Jaf-
fray, Lucy Zhang, and Peter Mattis. CockroachDB: The
resilient geo-distributed sql database. In ACM Interna-
tional Conference on Management of Data (SIGMOD),
pages 1493–1509, 2020.

[55] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J Abadi.
Calvin: Fast distributed transactions for partitioned
database systems. In ACM International Conference
on Management of Data (SIGMOD), pages 1–12, 2012.

[56] TPC. TPC-C: An on-line transaction processing bench-
mark. http://www.tpc.org/tpcc/, 2020.

[57] Khai Q Tran, Jeffrey F Naughton, Bruhathi Sundar-
murthy, and Dimitris Tsirogiannis. JECB: A join-
extension, code-based approach to OLTP data partition-
ing. In ACM International Conference on Management
of Data (SIGMOD), pages 39–50, 2014.

[58] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In ACM Symposium
on Operating Systems Principles (SOSP), pages 18–32,
2013.

[59] Robbert Van Renesse and Fred B Schneider. Chain repli-
cation for supporting high throughput and availability.
In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 91–104, 2004.

[60] Michael Wei, Amy Tai, Christopher J Rossbach, Ittai
Abraham, Maithem Munshed, Medhavi Dhawan, Jim
Stabile, Udi Wieder, Scott Fritchie, Steven Swanson,
et al. vCorfu: A cloud-scale object store on a shared log.
In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 35–49, 2017.

[61] Cong Yan and Alvin Cheung. Leveraging lock con-
tention to improve OLTP application performance. Pro-
ceedings of the VLDB Endowment (PVLDB), 9(5):444–
455, 2016.

[62] Juncheng Yang, Yao Yue, and KV Rashmi. A large
scale analysis of hundreds of in-memory cache clusters
at twitter. In USENIX Symposium on Operating Systems

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1227

https://dev.mysql.com/doc/refman/5.6/en/
https://dev.mysql.com/doc/refman/5.6/en/
https://riak.com/index.html
http://www.tpc.org/tpcc/

Design and Implementation (OSDI), pages 191–208,
2020.

[63] Erfan Zamanian, Carsten Binnig, and Abdallah Salama.
Locality-aware partitioning in parallel database systems.
In ACM International Conference on Management of
Data (SIGMOD), pages 17–30, 2015.

[64] Erfan Zamanian, Julian Shun, Carsten Binnig, and Tim
Kraska. Chiller: Contention-centric transaction exe-
cution and data partitioning for modern networks. In

ACM International Conference on Management of Data
(SIGMOD), pages 511–526, 2020.

[65] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan R. K. Ports. Build-
ing consistent transactions with inconsistent replica-
tion. ACM Transactions on Computer Systems (TOCS),
35(4):12:1–12:37, 2018.

[66] ZooKeeper. Apache ZooKeeper. https://zookeeper.
apache.org/, 2022.

1228 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://zookeeper.apache.org/
https://zookeeper.apache.org/

SIEVE is Simpler than LRU:
an Efficient Turn-Key Eviction Algorithm for Web Caches

Yazhuo Zhang∗

Emory University
Juncheng Yang∗†

Carnegie Mellon University
Yao Yue

Pelikan Foundation

Ymir Vigfusson
Emory University & Keystrike

K. V. Rashmi
Carnegie Mellon University

Abstract
Caching is an indispensable technique for low-cost and
fast data serving. The eviction algorithm, at the heart of a
cache, has been primarily designed to maximize efficiency—
reducing the cache miss ratio. Many eviction algorithms have
been designed in the past decades. However, they all trade off
throughput, simplicity, or both for higher efficiency. Such a
compromise often hinders adoption in production systems.

This work presents SIEVE, an algorithm that is simpler
than LRU and provides better than state-of-the-art efficiency
and scalability for web cache workloads. We implemented
SIEVE in five production cache libraries, requiring fewer than
20 lines of code changes on average. Our evaluation on 1559
cache traces from 7 sources shows that SIEVE achieves up
to 63.2% lower miss ratio than ARC. Moreover, SIEVE has
a lower miss ratio than 9 state-of-the-art algorithms on more
than 45% of the 1559 traces, while the next best algorithm
only has a lower miss ratio on 15%. SIEVE’s simplicity comes
with superior scalability as cache hits require no locking. Our
prototype achieves twice the throughput of an optimized 16-
thread LRU implementation. SIEVE is more than an eviction
algorithm; it can be used as a cache primitive to build ad-
vanced eviction algorithms just like FIFO and LRU.

1 Introduction
Web caches, such as Content Delivery Networks (CDNs)

and key-values caches, are widely deployed in today’s digital
landscape to reduce user request latency [14, 21, 22, 33, 69,
73, 76, 100], network bandwidth [54, 55, 79, 95], and repeated
computation [28, 89, 97, 98]. As a critical component of mod-
ern infrastructure, these caches often have a large footprint.
For example, Netflix used 18,000 servers for caching over 14
PB of application data in 2021 [68]; while Twitter reportedly
had 100s of clusters using 100s of TB of DRAM and 100,000s
of CPU cores for in-memory caching in 2020 [96].

At the heart of a cache is the eviction algorithm, which
plays a crucial role in managing limited cache space. Such
∗Equal contribution.
†Corresponding author: Juncheng Yang, sieve@cachemon.com.

Mean miss ratio reduction
from FIFO

0 0.10

1559 traces, 7 datasets

0.20
FIFO-Resertion / CLOCK
obj = tail
while obj.visited:
 obj.visited = false
 prev = obj.prev
 move obj to head
 obj = prev

|head(new)--[hand]--tail(old)|

SIEVE
obj = hand
while obj.visited:
 obj.visited = false
 # skip obj, do nothing
 obj = obj.prev
hand = obj.prev

0.1718CACHEUS

CLOCK 0.1369

0.1883SIEVE

LRU 0.1259

0.1798ARC

0.1774LIRS

Si
m

pl
er

0.1551LHD

Figure 1: SIEVE is simple and efficient. The code snippet shows how FIFO-
Reinsertion and SIEVE find eviction candidates. Minor code changes convert
FIFO-Reinsertion to SIEVE, unleashing lower miss ratios than state-of-the-art
algorithms.

algorithms are efficient when they can retain more valu-
able objects in the cache to achieve a lower miss ratio—the
fraction of requested objects that must be fetched from the
backend. The quest for high efficiency has spurred a long
repertoire of clever algorithms, but most, if not all, trade
off simplicity in exchange for efficiency gains. For exam-
ple, ARC [67], SLRU [55], 2Q [60], and MQ [106] manage
multiple least-recently-used (LRU) queues to achieve better
efficiency. LHD [16], CACHEUS [75], LRB [79], and GL-
Cache [93] use machine learning techniques that further in-
crease system and lookup complexity. Furthermore, many of
these algorithms require explicit or implicit parameter tuning
to achieve good efficiency on a target workload.

The conventional wisdom among systems operators is that
simple is beautiful: simplicity is a key appealing feature for
an algorithm to be deployed in production since it commonly
correlates with effectiveness, maintainability, scalability, and
low overhead. To illustrate, note that most caching systems or
libraries in use today, such as ATS [2], Varnish [11], Nginx [7],
Redis [9], and groupcache [25], use only FIFO and LRU
policies.

We have stumbled upon an easy improvement (Fig. 1) to
a decades-old algorithm (FIFO-Reinsertion) that materially
improves its efficiency across a wide range of web cache
workloads. Instead of moving the to-be-evicted object that

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1229

has been accessed to the head of queue, SIEVE keeps it in
its original position. It should be noted that both SIEVE and
FIFO-Reinsertion insert new objects at the head of the queue.
The new algorithm is called SIEVE 1: a simple and efficient
turn-key cache eviction policy. We implemented SIEVE in five
production cache libraries, which required fewer than 20 lines
of change on average, underscoring the ease of real-world
deployment.

Despite a simple design, SIEVE can quickly remove un-
popular objects from the cache, achieving comparatively high
efficiency compared to the state-of-the-art algorithms. By ex-
perimentally evaluating SIEVE on 1559 traces from five public
and two proprietary datasets, we show that SIEVE achieves
similar or higher efficiency than 9 state-of-the-art algorithms
across traces. Compared to ARC [67], SIEVE reduces miss
ratio by up to 63.2% with a mean of 1.5% 2. As a compari-
son, ARC reduces LRU’s miss ratio by up to 33.7% with a
mean of 6.7%. Moreover, compared to the best of all algo-
rithms, SIEVE has lower miss ratio on over 45% of the 1559
traces. In comparison, the runner-up algorithm, TwoQ, only
outperforms other algorithms on 15% of the traces.

SIEVE’s design eliminates the need for locking during
cache hits, resulting in a boost in multi-threaded throughput.
Our prototype implementation in Cachelib [37] demonstrates
that SIEVE achieves twice the throughput of an optimized
LRU implementation when operating with 16 threads.

Through empirical evidence and analysis, we illustrate that
SIEVE’s efficiency stems from sifting out unpopular objects
over time. SIEVE transcends a single standalone algorithm
— it can also be embedded within other cache policies to
design more advanced algorithms. We demonstrate the idea
by replacing the LRU components in ARC, TwoQ, and LeCaR
with SIEVE. The SIEVE-supported algorithms significantly
outperform the original LRU-based algorithms. For example,
ARC-SIEVE reduces ARC’s miss ratio by up to 62.5% with a
mean reduction of 3.7% across the 1559 traces.

Our work makes the following contributions.
• We present the design for SIEVE: an easy, fast, and surpris-

ingly efficient cache eviction algorithm for web caches.
• We demonstrate SIEVE’s simplicity by implementing it in

five production cache libraries by changing less than 20
lines of code on average.

• Using 1559 traces from 7 datasets, we show that SIEVE
outperforms all state-of-the-art eviction algorithms on more
than 45% of the traces.

• We illustrate SIEVE’s scalability using our Cachelib-based
implementation, which achieves 17% and 125% higher
throughput than optimized LRU at 1 and 16 threads.

• We show how SIEVE, as a turn-key cache primitive, opens
new opportunities for designing advanced eviction algo-
rithms, e.g., replacing the LRU in ARC, TwoQ, and LeCaR
with SIEVE.
1SIEVE sifts out unpopular objects from cache over time (§5).
2Due to a large number of traces, the mean miss ratio looks small.

2 Background and Related Work
2.1 Web caches

Web caches are essential components of modern Internet
infrastructure, playing a crucial role in reducing data access
latency and network bandwidth. Key-value caches, e.g., Mem-
cached [5], Pelikan [8] and Cachelib [37], are widely used
in modern web services such as Twitter [97] and Meta [20]
to reduce service latency. CDN caches are deployed close to
users to reduce data access latency and high WAN bandwidth
cost [14, 91, 95, 101].
Cache metrics. Caches are measured along two primary
axes: efficiency and throughput performance. Cache effi-
ciency measures how well the cache can store and serve the
required data. A cache miss occurs when the requested data
is not found in the cache, requiring access to the backend
storage to retrieve the data. Common cache efficiency metrics
include (1) object miss ratio: the fraction of requests that are
cache misses; (2) byte miss ratio: the fraction of bytes that
are cache misses. A lower miss ratio indicates higher cache
efficiency, as more requests are served directly from the cache,
reducing backend load, access latency, and bandwidth costs.

Throughput performance, on the other hand, is as impor-
tant as efficiency because the goal of a cache is to serve data
quickly and help scale the application. Beyond throughput,
scalability is also increasingly important [72, 98] as modern
CPUs often surpass 100 cores. Scalability measures through-
put growth with the number of threads accessing the cache. A
more scalable cache can better harness the many cores in a
modern CPU.
Access patterns. Web cache workloads typically follow
Power-law (generalized Zipfian) distributions [20, 26, 27, 34,
49, 52, 55, 81, 82, 97], where a small subset of objects account
for a large proportion of requests. In detail, the ith popular
object has a relative frequency of 1/iα, where α is a parameter
that decides the skewness of the workload. Previous works
find different α values from 0.6 to 0.8 [26], 0.56 [49], 0.71–
0.76 [51], 0.55–0.9 [20], and 0.6–1.5 [97]. The reasons for
the large range of α include (1) the different types of work-
loads, such as web proxy and in-memory key-value cache
workloads; (2) the layer of the cache, noting that many prox-
y/CDN caches are secondary or tertiary cache layers [55];
and (3) the popularity of the service, such as the most popular
objects receiving greater volume of requests in more popular
(widely-used) web applications. Moreover, web caches often
serve constantly growing datasets — new content and objects
are created every second.

In contrast, the backend of enterprise storage caches or
single-node caches, such as the page cache, often has a fixed
size, not regularly observing new objects. Further, many stor-
age cache workloads often have scan and loop patterns [75],
in which a range of block addresses are sequentially requested
in a short time. Such patterns are rare in web cache workloads
according to our observation on 1559 traces from 7 datasets.

1230 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2.2 Cache eviction policies
The cache eviction algorithm, which decides which objects

to store in the limited cache space, governs the performance
and efficiency of a cache. The field of cache eviction algo-
rithms has a rich literature [12,17–19,23,29,32,35,36,39,41,
44–46, 53, 58, 62, 63, 71, 74, 78, 83, 86, 88, 90, 102].
Increasing complexity. Most works on cache eviction al-
gorithms focused on improving efficiency, such as LRU-
k [70], TwoQ [60], SLRU [61], GDSF [29], EELRU [77],
LRFU [39], LIRS [59], ARC [67], MQ [105], CAR [15],
CLOCK-pro [58], TinyLFU [42, 43], LHD [16], LeCaR [84],
LRB [79], CACHEUS [75], GLCache [93], and HALP [80].
Over the years, new cache eviction algorithms have gradually
convoluted. Algorithms from the 1990s use two or more static
LRU queues or use different recency metrics; algorithms from
the 2000s employ size-adaptive LRU queues or use more com-
plicated recency/frequency metrics, and algorithms from the
2010s and 2020s start to use machine learning to select evic-
tion candidates. Each decade brought greater complexity to
cache eviction algorithms. Nevertheless, as we show in §4,
while the new algorithms excel on a few specific traces, they
do not show a significant improvement (and some are even
worse) compared to the traditional ones on a large number
of workloads. The combination of limited improvement and
high complexity explains why these algorithms have not been
used in production systems.
The trouble with complexity. Multiple problems come
with increasing complexity. First, complex cache eviction
algorithms are difficult to debug due to their intricate logic.
For example, we find two open-source cache simulators used
in previous works have two different bugs in the LIRS [59]
implementation. Second, complexity may affect efficiency
in surprising ways. For example, previous work reports that
both LIRS and ARC exhibit Belady’s anomaly [50, 85]: miss
ratio increases with the cache size for some workloads. It’s
worth noting that FIFO, although simple, also suffers from this
anomaly. Third, complexity often negatively correlates with
throughput performance. A more intricate algorithm performs
more computation with potentially longer critical sections,
reducing both throughput and scalability. Furthermore, many
of these algorithms need to store more per-object metadata,
which reduces the effective cache size that can be used for
caching data. For example, the per-object metadata required
by CACHEUS is 3.3× larger than that of LRU. Fourth, com-
plex algorithms often have parameters that can be difficult to
tune. For example, all the machine-learning-based algorithms
include many parameters about learning. Although some al-
gorithms do not have explicit parameters, e.g., LIRS, previous
work shows that the implicit ghost queue size can impact the
efficiency [85].
Trade-offs in using simple eviction algorithms. Besides
works focusing on improving cache efficiency, several other
works have improved cache throughput and scalability. For
example, MemC3 [47] uses Cuckoo hashing and CLOCK

eviction to improve Memcached’s throughput and scalabil-
ity; MICA [64] uses log-structured storage, data partitioning,
and a lossy hash table to improve key-value cache through-
put and scalability. Segcache [98] uses segment-structured
storage with a FIFO-based eviction algorithm and leverages
macro management to improve scalability. Frozenhot [72] im-
proves cache scalability by freezing hot objects in the cache
to avoid locking. However, it’s crucial to note that while these
approaches excel in throughput and scalability, they often
compromise on cache efficiency due to the use of simpler,
weaker eviction algorithms such as CLOCK3 and FIFO.

2.3 Lazy promotion and quick demotion
Promotion and demotion are two cache internal operations

used to maintain the logical ordering between objects4. Re-
cent work [94] shows that “lazy promotion” and “quick demo-
tion” are two important properties of efficient cache eviction
algorithms.

Lazy promotion refers to the strategy of promoting cached
objects only at eviction time. It aims to retain popular objects
with minimal effort. An example of lazy promotion is adding
reinsertion to FIFO. In contrast, FIFO has no promotion, and
LRU performs eager promotion – moving objects to the head
of the queue on every cache hit. Lazy promotion can improve
(1) throughput due to less computation and (2) efficiency due
to more information about an object at eviction.

Quick demotion removes most objects quickly after they
are inserted. Many previous works have discussed this idea in
the context of evicting pages from a scan [16,60,67,70,75,77].
Recent work also shows that not only storage workloads but
web cache workloads also benefit from quick demotion [94]
because object popularity follows a power-law distribution,
and many objects are unpopular.

To the best of our knowledge, our proposed cache evic-
tion algorithm, which we call SIEVE, is the simplest one that
effectively achieves both lazy promotion and quick demotion.

3 Design and Implementation
3.1 SIEVE Design

In this section, we introduce SIEVE, a cache eviction algo-
rithm that achieves both simplicity and efficiency.
Data structure. SIEVE requires only one FIFO queue and
one pointer called “hand”. The queue maintains the insertion
order between objects. Each object in the queue uses one bit
to track the visited/non-visited status. The hand points to the
next eviction candidate in the cache and moves from the tail
to the head. Note that, unlike existing algorithms, e.g., LRU,
FIFO, and CLOCK, in which the eviction candidate is always
the tail object, the eviction candidate in SIEVE is an object

3CLOCK was recently shown to be more efficient than LRU [94].
4Note that the terms “promotion” and “demotion” are also commonly

used in the context of cache hierarchy. In this case, promotion refers to the
process of moving data to a faster device, while demotion involves moving
the data to a slower device [65, 87].

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1231

FIFO-Reinsertion
EvictReinsert

Evict
SIEVE

FIFO-Reinsertion Snapshot

SIEVE Snapshot

"survived" obj newly inserted objHand: identify victim

Insert

Insert

Figure 2: An illustration of SIEVE. Note that FIFO-Reinsertion and
CLOCK are different implementations of the same algorithm. We use FIFO-
Reinsertion in the illustration but will use CLOCK in the rest of the text
because it is more commonly used and is shorter.

somewhere in the queue.
SIEVE operations. A cache hit in SIEVE changes the visited
bit of the accessed object to 1. For a popular object whose
visited bit is already 1, SIEVE does not need to perform any
operation. During a cache miss, SIEVE examines the object
pointed by the hand. If it has been visited, the visited bit is
reset, and the hand moves to the next position (the retained
object stays in the original position of the queue). It continues
this process until it encounters an object with the visited bit
being 0, and it evicts the object. After the eviction, the hand
points to the next position (the previous object in the queue).
While an evicted object is in the middle of the queue most
of the time, a new object is always inserted into the head of
the queue. In other words, the new objects and the retained
objects are not mixed together.

At first glance, SIEVE is similar to CLOCK/Second
Chance/FIFO-Reinsertion 5. Each algorithm maintains a sin-
gle queue in which each object is associated with a visited
bit to track its access status. Visited objects are retained (also
called "survived") during an eviction. Notably, new objects
are inserted at the head of the queue in both SIEVE and FIFO-
Reinsertion. However, the hand in SIEVE moves from the tail
to the head over time, whereas the hand in FIFO-Reinsertion
stays at the tail. The key difference is where a retained ob-
ject is kept. SIEVE keeps it in the old position, while FIFO-
Reinsertion inserts it at the head, together with newly inserted
objects, as depicted in Fig. 2.

We detail the algorithm in Alg. 1. Line 1 checks whether
there is a hit, and if so, then line 2 sets the visited bit to one.
In the case of a cache miss (Line 3), Lines 5-12 identify the
object to be evicted.
Lazy promotion and quick demotion. Despite a simple
design, SIEVE effectively incorporates both lazy promotion
and quick demotion. As described in §2.3, an object is only
promoted at the eviction time in lazy promotion. SIEVE op-
erates in a similar manner. However, rather than promoting
the object to the head of the queue, SIEVE keeps the object
at its original location. The "survived" objects are generally
more popular than the evicted ones, thus, they are likely to
be accessed again in the future. By gathering the "survived"

5Note that Second Chance, CLOCK, and FIFO-Reinsertion are different
implementations of the same eviction algorithm.

Algorithm 1 SIEVE

Input: The request x, doubly-linked queue T , cache size C, hand p
1: if x is in T then ▷ Cache Hit
2: x.visited← 1
3: else ▷ Cache Miss
4: if |T |=C then ▷ Cache Full
5: o← p
6: if o is NULL then
7: o← tail of T
8: while o.visited = 1 do
9: o.visited← 0

10: o← o.prev
11: if o is NULL then
12: o← tail of T
13: p← o.prev
14: Discard o in T ▷ Eviction
15: Insert x in the head of T .
16: x.visited← 0 ▷ Insertion

objects, the hand in SIEVE can quickly move from the tail to
the area near the head, where most objects are newly inserted.
These newly inserted objects are quickly examined by the
hand of SIEVE after they are admitted into the cache, thus
achieving quick demotion. This eviction mechanism makes
SIEVE achieve both lazy promotion and quick demotion with-
out adding too much overhead.

The key ingredient of SIEVE is the moving hand, which
functions like an adaptive filter that removes unpopular ob-
jects from the cache. This mechanism enables SIEVE to strike
a balance between finding new popular objects and keeping
old popular objects. We discuss more in §5.

3.2 Implementation
Simulation. We implemented SIEVE in libCacheSim [92].
LibCacheSim is a high-performance cache simulator de-
signed for running cache simulations and analyzing cache
traces. It supports many state-of-the-art eviction algo-
rithms, including ARC [67], LIRS [59], CACHEUS [75],
LeCaR [84], TwoQ [60], LHD [16], Hyperbolic [24], FIFO-
Reinsertion/CLOCK [35], B-LRU (Bloom Filter LRU), LRU,
LFU, and FIFO. For all state-of-the-art algorithms, we used
the configurations from the original papers.
Prototype. Because of SIEVE’s simplicity, it can be imple-
mented on top of a FIFO, LRU, or CLOCK cache in just a few
lines by adding, initializing, and tracking the “hand” pointer.
The object pointed to by the hand is either evicted or retained,
depending on whether it has been accessed.

We implemented SIEVE caching in five different open-
source cache libraries: Cachelib [20], groupcache [25],
mnemonist [6], lru-dict [3], and lru-rs [4]. These represent the
most popular cache libraries of five different programming
languages: C++, Golang, JavaScript, Python, and Rust. All
five of these production cache libraries implement LRU as the
eviction algorithm of choice. Aside from mnemonist, which
uses arrays, they all use doubly-linked-list-based implementa-
tions of LRU. Adapting these LRU implementations to use
SIEVE was a low effort, as mentioned earlier.

1232 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: Datasets used in this work. CDN 1 and 2 are proprietary, and all
others are publicly available.

trace
collections

approx
time # traces cache

type
request
(million)

object
(million)

CDN 1 2021 1273 object 37,460 2,652
CDN 2 2018 219 object 3,728 298
Tencent Photo [103] 2018 2 object 5,650 1,038
Wiki CDN [1] 2019 3 object 2,863 56
Twitter KV [97] 2020 54 KV 195,441 10,650
Meta KV [10] 2022 5 KV 1,644 82
Meta CDN [10] 2023 3 object 231 76

4 Evaluation
In this section, we evaluate SIEVE to answer the following

questions.
• Does SIEVE have higher efficiency than state-of-the-art

cache eviction algorithms?
• Can SIEVE improve a cache’s throughput and scalability?
• Is SIEVE simpler than other algorithms?

4.1 Experimental setup
Workloads. Our experiments use open-source traces from
Twitter [97], Meta [10], Wikimedia [1], TencentPhoto [103,
104], and two proprietary CDN datasets. We list the dataset
information in Table 1. It consists of 1559 traces that together
contain 247,017 million requests to 14,852 million objects.
Notably, our research is centered around web traces. We re-
played the traces in the simulator and the prototypes as a
closed system with instant on-demand fill.
Metrics. Miss ratio serves as a key performance indica-
tor when evaluating the efficiency of a cache system. How-
ever, when analyzing different traces (even within the same
dataset), the miss ratios can vary significantly, making direct
comparisons and visualizations infeasible, as shown in Fig. 3.
Therefore, we calculate the miss ratio reduction relative to a
baseline method (FIFO in this work): mrFIFO−mralgo

mrFIFO
where mr

stands for miss ratio. If an algorithm’s miss ratio is higher than
FIFO, we use mrFIFO−mralgo

mralgo
. This metric has a range between

-1 and 1.
We measure throughput in millions of operations per sec-

ond (Mops) to quantify a cache’s performance. To evaluate
scalability, we vary the number of trace replay threads from 1
to 16 and measure the throughput.
Testbed. Our evaluations were conducted on Cloudlab [40]
and focused on two key aspects: simulation-based efficiency
and prototype-based throughput and simplicity.

We used libCacheSim [92], a high-performance cache sim-
ulator, to evaluate the efficiency of different cache algorithms.
These simulations ran on various node types at either the
Clemson or Utah sites, subject to availability.

We evaluate the throughput and simplicity using prototypes,
as described in §3.2. The prototype evaluations were con-
ducted on the c6420 node from the Clemson site. This node
type has a dual-socket Intel Gold 6142 running at 2.6 GHz
and is equipped with 384 GB DDR4 DRAM. We turned off

turbo boost and pinned threads to CPU cores in one NUMA
node in our evaluations. We validated the efficiency results
from the simulator and prototype using 60 randomly selected
traces and found the same conclusion.

4.2 Efficiency results
In this section, we compare the efficiency of different evic-

tion algorithms. Because many caches today use slab-based
space management, in which evictions happen on objects of
similar sizes, we do not consider object size in this section.
The cache sizes are determined as a percentage of the num-
ber of objects in a trace. We evaluate eight cache sizes using
1559 traces from the 7 datasets and present two representa-
tive cache sizes at 0.1% and 10% of the trace footprint (the
number of unique objects in the trace).
Three large datasets CDN1, CDN2 and Twitter. Fig. 3
shows the miss ratio reduction (from FIFO) of different algo-
rithms across traces. The whiskers on the boxplots are defined
using p10 and p90, allowing us to disregard extreme data
and concentrate on the typical cases. At the large cache size,
SIEVE demonstrates the most significant reductions across
nearly all percentiles. For example, SIEVE reduces FIFO’s
miss ratio by more than 42% on 10% of the traces (top
whisker) with a mean of 21% on the CDN1 dataset using
the large cache size (Fig. 3a). As a comparison, all other algo-
rithms have smaller reductions on this dataset. For example,
CLOCK/FIFO-Reinsertion, which is conceptually similar to
SIEVE, can only reduce FIFO’s miss ratio by 15% on average.
Compared to advanced algorithms, e.g., ARC, SIEVE reduces
ARC miss ratio by up to 63.2% with a mean of 1.5%. We
remark that a 1.5% mean miss ratio reduction on the huge
number of traces is significant. For example, ARC only re-
duces LRU’s miss ratio by 6.3% on average (not shown).
A similar observation can be made on the CDN2 dataset.
Although LHD is the best algorithm on the Twitter dataset,
SIEVE scores second and outperforms most other state-of-the-
art algorithms.

When the cache is very small, TwoQ and LHD sometimes
outperform SIEVE. This is because TwoQ and LHD can
quickly remove newly-inserted low-value objects similar to
SIEVE. The primary reason for SIEVE’s relatively poor perfor-
mance is that new objects cannot demonstrate their popularity
before being evicted when the cache size is very small. A
similar problem also happens with ARC and LIRS. ARC’s
adaptive algorithm sometimes shrinks the recency queue to
very small and yields a high miss ratio. LIRS, which uses a
1% queue for new objects, suffers the most when the cache
size is small, as we see its miss ratio on some traces higher
than FIFO. In contrast, TwoQ does not suffer from the small
cache sizes because it reserves a fixed 25% of the cache space
for new objects, preventing overly aggressive demotion. How-
ever, we remark that the production miss ratios reported in
previous works [13, 55, 97, 98] are close to the miss ratios we
observe at the large cache size.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1233

SIE
VE

ARC

Tin
yLF

U
Tw

oQ LIR
S

LH
D

CAC
HEU

S

Hyp
erb

olic
CLO

CK
LR

U
B-LR

U
0.0

0.1

0.2

0.3

0.4

M
iss

 R
at

io
 R

ed
uc

tio
n

fro
m

 F
IF

O

(a) CDN1 workloads, large cache, 1273 traces

SIE
VE

ARC

Tin
yLF

U
Tw

oQ LIR
S

LH
D

CAC
HEU

S

Hyp
erb

olic
CLO

CK
LR

U
B-LR

U

0.0

0.1

0.2

0.3

M
iss

 R
at

io
 R

ed
uc

tio
n

fro
m

 F
IF

O

(b) CDN2 workloads, large cache, 219 traces

SIE
VE

ARC

Tin
yLF

U
Tw

oQ LIR
S

LH
D

CAC
HEU

S

Hyp
erb

olic
CLO

CK
LR

U
B-LR

U
0.0

0.1

0.2

0.3

0.4

M
iss

 R
at

io
 R

ed
uc

tio
n

fro
m

 F
IF

O

(c) Twitter workloads, large cache, 54 traces

SIE
VE

ARC

Tin
yLF

U
Tw

oQ LIR
S

LH
D

CAC
HEU

S

Hyp
erb

olic
CLO

CK
LR

U
B-LR

U
0.0

0.1

0.2

0.3

0.4

M
iss

 R
at

io
 R

ed
uc

tio
n

fro
m

 F
IF

O

(d) CDN1 workloads, small cache, 1273 traces

SIE
VE

ARC

Tin
yLF

U
Tw

oQ LIR
S

LH
D

CAC
HEU

S

Hyp
erb

olic
CLO

CK
LR

U
B-LR

U
−0.05

0.00

0.10

0.20

M
iss

 R
at

io
 R

ed
uc

tio
n

fro
m

 F
IF

O

(e) CDN2 workloads, small cache, 219 traces

SIE
VE

ARC

Tin
yLF

U
Tw

oQ LIR
S

LH
D

CAC
HEU

S

Hyp
erb

olic
CLO

CK
LR

U
B-LR

U
−0.05

0.00

0.10

0.20

0.30

M
iss

 R
at

io
 R

ed
uc

tio
n

fro
m

 F
IF

O

(f) Twitter workloads, small cache, 54 traces

Figure 3: The box shows the miss ratio reduction from FIFO over all traces in the dataset. The box shows P25 and P75, the whiskers show P10 and P90, and the
triangle shows the mean. The large cache uses 10% of the trace footprint, and the small cache uses 0.1% of the trace footprint. SIEVE achieves similar or better
miss ratio reduction compared to state-of-the-art algorithms.

SIE
VE

ARC

Tin
yLF

U
Tw

oQLIR
S

LH
D

CAC
HEU

S

Hyp
erb

olic
CLO

CK
LR

U
B-LR

U
0.0

0.2

0.4

M
iss

 R
at

io
 R

ed
uc

tio
n

fro
m

 F
IF

O Meta (KV) Meta (CDN) Tencent Wiki

(a) Large cache

SIE
VE

ARC

Tin
yLF

U
Tw

oQLIR
S

LH
D

CAC
HEU

S

Hyp
erb

olic
CLO

CK
LR

U
B-LR

U

0.0

0.1

0.2

M
iss

 R
at

io
 R

ed
uc

tio
n

fro
m

 F
IF

O Meta (KV) Meta (CDN) Tencent Wiki

(b) Small cache

Figure 4: Miss ratio reduction on Meta (KV + CDN), Wiki CDN, and
Tencent Photo CDN datasets. The different opacity of the same color indicates
multiple traces from the dataset. Some negative results are not shown.

The secret behind SIEVE’s efficiency is the ability to
quickly remove newly-inserted unpopular objects (quick de-
motion), the ability to sift out old unpopular objects, and the
balance between new and old objects. We discuss more in §5.
Four small datasets: Meta KV, Meta CDN, Wiki, and Ten-
centPhoto. Because each dataset contains fewer than ten
traces, we use scatter plots to compare the algorithms. Fig. 4
demonstrates that SIEVE outperforms all other algorithms on
all four datasets at the large cache size. When the cache size is
small, the observation is similar to that made in Fig. 3. SIEVE
is the best algorithm on the Wiki dataset. TwoQ and LHD are
the best on Meta and TencentPhoto datasets. Although not
the best, SIEVE remains highly competitive.
Best-performing algorithm per dataset. We have demon-
strated that SIEVE provides larger miss ratio reductions across
traces than state-of-the-art algorithms. For a more quantitative
comparison, Fig. 5 shows the fraction of traces each algorithm
performs the best.

0.0 0.2 0.4 0.6 0.8 1.0
Twitter
CDN2
CDN1

Meta (KV)
Meta (CDN)

Tencent
Wiki

SIEVE ARC TwoQ LHD Others

(a) Large cache
0.0 0.2 0.4 0.6 0.8 1.0

Twitter
CDN2
CDN1

Meta (KV)
Meta (CDN)

Tencent
Wiki

SIEVE ARC TwoQ LHD Others

(b) Small cache

Figure 5: Best-performing algorithms on each dataset. Table 1 shows the
number of traces per dataset.

With a large cache size, SIEVE outperforms all other algo-
rithms on the Tencent Photo, Wiki, and Meta KV datasets. On
the CDN1 and CDN2 datasets, SIEVE is the best algorithm
on 48% and 38% of the 1273 and 219 traces. On the Twitter
dataset, although SIEVE is the best on only 30% of the traces,
it is important to note that no other algorithms are the best on
more than 18% of the traces. When using the small cache size,
SIEVE, TwoQ is the best algorithm winning on the two Meta
datasets. On the other datasets, SIEVE and LHD have similar
shares being the best-performing algorithms. The reason for
the observation is similar to that previously explained.

4.3 Throughput performance
Besides efficiency, throughput is the other important metric

for caching systems. Although we have implemented SIEVE
in five different libraries, we focus on Cachelib’s results. Be-
cause all other libraries implement strict LRU and do not
consider object sizes, evaluations yield the same miss ratio as
our simulation. Moreover, strict LRU is not scalable, as we
show next.

Fig. 6 shows how throughput grows with the number of

1234 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 4 8 16
Number of Threads

0

10

20

30

Th
ro

ug
hp

ut
 (M

op
s) SIEVE

LRU (optimized)
TwoQ (optimized)
LRU

(a) Meta KV trace

1 2 4 8 16
Number of Threads

0

10

20

30

40

Th
ro

ug
hp

ut
 (M

op
s) SIEVE

LRU (optimized)
TwoQ (optimized)
LRU

(b) Twitter trace

Figure 6: Throughput scaling with CPU cores on two KV-cache workloads.

Table 2: Lines of code requires modification to add SIEVE to a production
cache library.

Cache library Language Lines
groupcache [25] Golang 21

mnemonist [6] Javascript 12
lru-rs [4] Rust 16

lru-dict [3] Python + C 21

trace replay threads using two production traces from Meta
and Twitter. To better emulate real-world deployments in
which the working set size (dataset size) grows with the hard-
ware specs (#cores and DRAM sizes), we scale the cache size
and working set size together with the number of threads. To
scale the working set size, each thread plays the same trace
with the object id transformed into a new space. For example,
the benchmark sends 4× more requests to 4× larger cache
size at 4 threads compared to the single-thread experiment.
We set the cache size to be 4× nthread GB for both traces,
which gives miss ratios of 7% (Meta) and 2% (Twitter). We
remark that the miss ratio is close to previous reports [13, 98].

The LRU and TwoQ in Cachelib use extensive optimiza-
tions to improve the scalability. For example, objects that
were promoted to the head of the queue in the last 60 sec-
onds are not promoted again, which reduces lock contention
without compromising the miss ratio. Cachelib further adds a
lock combining technique to elide expensive coherence and
synchronization operations to boost throughput [38]. As a
result of the optimizations, both LRU and TwoQ show im-
pressive scalability results compared to the unoptimized LRU:
the throughput is 6× higher at 16 threads than using a single
thread on the Twitter trace. As a comparison, unoptimized
LRU’s throughput plateaus at 4 threads.

Compared to these LRU-based algorithms, SIEVE does not
require “promotion” at each cache hit. Therefore, it is faster
and more scalable. At a single thread, SIEVE is 16% (17%)
faster than the optimized LRU (TwoQ) and on both traces.
At 16 threads, SIEVE shows more than 2× higher throughput
than the optimized LRU and TwoQ on the Meta trace.

4.4 Simplicity
Prototype implementations. SIEVE not only achieves bet-
ter efficiency, higher throughput, and better scalability, but
it is also very simple. We chose the most popular cache
libraries/systems from five different languages: C++, Go,
JavaScript, Python, and Rust, and replaced the LRU with

Table 3: Lines of code (excluding comments and empty lines) and per-object
metadata size required to implement each algorithm in our simulator. We
assume that frequency counter and timestamps use 4 bytes and pointers use
8 bytes.

Algorithm cache hit eviction insertion metadata size
FIFO 1 4 3 16B
LRU 5 4 3 16B
ARC 64 108 20 17B
LIRS 96 120 64 17B
LHD 192 81 64 13B

LeCaR 72 76 20 40B
CACHEUS 168 140 150 54B

TwoQ 28 16 8 17B
Hyberbolic 4 20 4 16B

CLOCK 4 9 3 17B
SIEVE 4 9 3 17B

SIEVE.
Although different libraries/systems have different imple-

mentations of LRU, e.g., most use doubly-linked-list, and
some use arrays, we find that implementing SIEVE is very
easy. Table 2 shows the number of lines (not including the
tests) needed to replace LRU — all implementations require
no more than 21 lines of code changes 6.
Advanced algorithms in simulator. Most of the complex
algorithms we evaluated in §4.2 are not implemented in pro-
duction systems. Therefore, we compare the lines of code
needed to implement cache hit, insert, and evict in our simu-
lator. Although we implemented our own linked list and hash
table data structures in C for our simulator, we do not include
the code lines related to list and hash table operations, i.e., ap-
pending to the list head or inserting to the hash table requires
one line.

Table 3 shows that FIFO requires the fewest number of
lines to implement. On top of FIFO, implementing LRU adds
a few lines to promote an object upon cache hits. CLOCK
and SIEVE require close to 10 lines to implement the eviction
function because both need to find the first object that has not
been visited. However, we remark that SIEVE is simpler than
LRU and CLOCK because SIEVE does not require moving
objects to the head of the queue in either hit or miss (evict).
Besides these, all other algorithms require one to two orders
more lines of code to implement the three functions.
Per-object metadata. In addition to the implementation com-
plexity, we also quantified the per-object metadata needed to
implement each algorithm. FIFO does not require any meta-
data when implemented using a ring buffer. However, such
an implementation does not support overwrite or delete. So
common FIFO implementation also uses a doubly-linked list
with 16 bytes of per-object metadata similar to LRU. CLOCK
and SIEVE are similar, both requiring 1-bit to track object
access status. When implemented using a doubly linked list,

6While most LRU implementations are straightforward to adapt for SIEVE,
CacheLib is an exception. Cachelib is highly optimized for LRU-based algo-
rithms. Many optimizations are not needed for SIEVE, making it impractical
to quantify code modifications for integration with SIEVE. Therefore, it is
not included in Table 2.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1235

Hand
movement 1st round sifting

n round

sifting

Tail

Head

B
C
D

F

C E

H I J

Evict

Insert

A

E

F
B
D

A

H
J

B
D

A

G
J

I

LG K

G

L

K

M
E

(a) Density of colors indicates inherent object popularity (blue: newly inserted
objects; red: old objects in each round), and the letters represent object IDs.
The first queue captures the state at the start of the first round, and the second
queue captures the state at the end of the first round.

Logical Time (#requests)

0.5

0.6

0.7

M
iss

 R
at

io

ARC LRU SIEVE

(b) Trace 1, full trace (one week)

Logical Time (#requests)

0.7

0.8

0.9

M
iss

 R
at

io

ARC LRU SIEVE

(c) Trace 2, first two days of a week-long trace

Figure 7: Left: illustration of the sifting process. Right: Miss ratio over time for two traces. The gaps between SIEVE’s miss ratio and others enlarge over time.

they use 17 bytes per-object metadata. Compared to SIEVE,
advanced algorithms often require more per-object metadata.
Many key-value cache workloads have objects as small as
10s of bytes [66, 97], and large metadata wastes the precious
cache space.
ZERO parameter. Besides being easy to implement and
having less metadata, SIEVE also has no parameters. Except
for FIFO, LRU, CLOCK, and Hyperbolic, all other algorithms
have explicit or implicit parameters, e.g., the sizes of queues
in LIRS, the learning rate in LeCaR and CACHEUS, and the
decay rate and age granularity in LHD. Note that although
ARC has no explicit parameters, its adaptive algorithm uses
implicit parameters in deciding when and how much space to
move between the queues. As a comparison, SIEVE has no
parameter and requires no tuning.

5 Distilling SIEVE’s Effectiveness
Our empirical evaluation shows that SIEVE is simultane-

ously simple, fast, scalable, and efficient. In a well-trodden
field like cache eviction, SIEVE’s competitive performance
was a genuine surprise to us as well. We next report our anal-
ysis that seeks to understand the secrets behind its efficiency.

5.1 Visualizing the sifting process
The workhorse of SIEVE is the “hand” that functions as

a sieve: it sifts through the cache to filter out unpopular ob-
jects and retain the popular ones. We illustrate this process in
Fig. 7a, where each column (queue) represents a snapshot of
the cached objects over time from left to right. As the hand
moves from the tail (the oldest object) to the head (the newest
object), objects that have not been visited are evicted – the
same sweeping mechanism that underlies CLOCK [30, 35].
For example, after the first round of sifting, objects at least as
popular as A remain in the cache while others are evicted. The
newly admitted objects are placed at the head of the queue —
much like the CLOCK policy, but a departure from CLOCK,
which does in-place replacements to emulate LRU. During
the subsequent rounds of sifting, if objects that survived pre-
vious rounds remain popular, they will stay in the cache. In
such a case, since most old objects are not evicted, the evic-
tion hand quickly moves past the old popular objects to the
queue positions close to the head. This allows newly inserted
objects to be quickly assessed and evicted, putting greater

eviction pressure on unpopular items (such as “one-hit won-
ders”) than LRU and its variations [67]. As previous work has
shown [16, 55, 94], quick demotion is crucial for achieving
high cache efficiency.

Fig. 7b and Fig. 7c show the cumulative miss ratio over
time of different algorithms on two representative production
traces. After the cache is warmed up, the miss ratio gaps be-
tween SIEVE and other algorithms widen over time, support-
ing the interpretation that SIEVE indeed sifts out unpopular
objects and retains popular ones. A similar observation can
be seen in Fig. 10a.

5.2 Analyzing the sifting process
We now analyze the popularity retention mechanism in

SIEVE. To clarify the exposition, suppose the SIEVE cache
can fit C equally sized objects. Since SIEVE always inserts
new objects at the head, and objects that are retained remain
in their original positions within the queue, the algorithm
implicitly partitions the cache between new and old objects.
This partition is dynamic, allowing SIEVE to strike a bal-
ance between exploration (finding new popular objects) and
exploitation (enjoying hits on old popular objects).

SIEVE performs sifting by moving the hand from the tail
to the head, evicting unpopular objects along the way, which
we call one round of sifting. We use r to denote the number
of rounds. We first enumerate the queue positions p from
the tail (p = 0) to the head (p = C− 1). We then further
denote that an object at position p in round r is examined
(during eviction) or inserted at time T r

p . Note that T effectively
defines a logical timer for the examined objects: whenever an
object is examined, T increases by 1, regardless of whether the
examined object is evicted or retained. In addition, T changes
once each round for an old object (retained from previous
rounds).

For an old object x at position p, we define the “inter-
examination time” Ie(pr) = T r

p −T r−1
p′ where p′ was the po-

sition of x in round r−1. Clearly, p′ ≥ p. For a new object
inserted in the current round, the inter-examination time is
defined as the time between its examination and insertion. We
further define an old object x’s “inter-arrival time” Ia(xr) as
the time, measured again in the number of objects examined,
between the first request to the x in round r and the last re-

1236 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 20 40 60 80
Cache Size (X% of Working Set)

0.0

0.2

0.4

0.6

0.8

M
iss

 R
at

io

LRU
ARC
LFU
SIEVE

(a) Miss ratio over size

0 20 40 60 80
Cache Size (X% of Working Set)

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
r O

bj
ec

t R
at

io

SIEVE
LFU
ARC
LRU

(b) Popular object ratio over size

Figure 8: Miss ratio and popular object ratio on a Zipfian dataset (α = 1.0).

quest to x in round r−1. For a new object, the inter-arrival
time is the time between its insertion and the second request.
If an old object is not requested in the last round or a new
object does not have a second request, its inter-arrival time is
infinite.

In round r, consider two consecutive retained objects x1 and
x2 at position p1 and p2 = p1+1. The inter-examination times
are Ie(pr

1) = T r
p1
−T r−1

p′1
and Ie(pr

2) = T r
p2
−T r−1

p′2
, respectively.

The transition yields two invariants:

T r
p2
−T r

p1
= 1

T r−1
p′2
−T r−1

p′1
≥ 1

The first equation follows from x1 and x2 being consecutively
retained objects; the second inequality expresses that other
evictions may have taken place between x1 and x2 in the
previous round. Together, these imply that Ie(pr

1) ≥ Ie(pr
2).

The result generalizes further: for any two retained old objects
in the queue, the object closer to the head has a smaller inter-
examination time.

Moreover, if an object is retained, its inter-arrival time must
be no greater than its inter-examination time. Therefore, for
any retained object x at position px, its inter-arrival time Ia(xr)
must be smaller than the tail object’s inter-examination time:

Ia(xr)≤ Ie(pr
x)≤ Ie(pr

0) (1)

Using the commonly assumed independent reference
model [31, 48, 56, 57] with a Poisson arrival, we can expect
any retained object to be more popular than some dynamic
threshold set by the tail object’s inter-examination time Ie(pr

0).
Since evicting an object keeps the hand pointer at its original
position (relative to the tail), the more objects are evicted
during a round, the longer the inter-examination time. As a
result, SIEVE effectively adapts the popularity threshold so
that more objects are retained in the next round.

Following our sifting process metaphor, the mesh size in
SIEVE is determined by the tail object’s inter-examination
time Ie(pr

0), which is dynamically adjusted based on object
popularity change. If too few objects are retained in one round
(mesh size too small), then we will have an increased tail
inter-examination time Ie(pr

0) (a larger mesh size) in the next
round.

5.3 Deeper study with synthetic workloads
Production trace workloads are often too complex and dy-

namic to analyze. One consistent finding from past workload
characterization work, however, is that object popularity in
web cache workloads invariably follows a heavy-tailed power-
law (generalized Zipfian) distribution [27, 97]. Therefore, we
opted for synthetic power-law workloads for our study. It
allows us to easily modify workload features to better un-
derstand their impact on performance. Using these synthetic
workloads, we further scrutinize SIEVE’s effectiveness.
Miss ratio over size. Fig. 8a displays the miss ratio of
LRU, LFU, ARC, and SIEVE at different cache sizes. Notably,
LFU, ARC, and SIEVE all exhibit lower miss ratios than LRU,
demonstrating their efficiency. Despite being considered opti-
mal for synthetic power-law workloads, LFU performs simi-
larly to ARC and is visibly worse than SIEVE. This is because
objects with medium popularity, such as objects with ranks
around the cache size C, are only requested once before their
eviction. LFU cannot distinguish the true popularity of these
objects and misses out on an opportunity for better perfor-
mance. As a comparison, both ARC and SIEVE can quickly
remove new and potentially unpopular objects, which allows
cached objects to enjoy more time in the cache to demonstrate
their popularity. Between the two algorithms, SIEVE further
extends the tenure of these objects in the cache because when
the hand sweeps through the newly inserted objects, the ob-
jects closer to the head must have strictly shorter inter-arrival
times (expected to be more popular) to survive.
Popular object ratio over size. To capture how different
algorithms manage popular objects, we define a metric called
“popular object ratio”. Under the assumption of a static and
known popularity distribution, the optimal caching policy
retains the most popular content within the cache at all times.
Given a cache size C and a workload following a power-
law distribution, the popular objects are the C most frequent
objects in the workload, denoted by H. The popular ratio
of objects in the cache at time t is calculated by It =

|H∩At |
C

where At denotes the cache contents at time t.
Fig. 8b shows the popular object ratio at different cache

sizes. LRU evicts objects based on recency, which only
weakly correlates with popularity. In this scenario, LRU stores
the least number of popular objects. LFU stores slightly more
“popular objects” than ARC. SIEVE, however, successfully
filters out unpopular objects from the cache.
Varying the popularity skew. Fig. 8 shows a distribution
with Zipfian skewness α= 1. We further studied how different
concentration of popularity affects SIEVE’s effectiveness. Due
to space restrictions, we focus on results with large cache
sizes for the remainder of this subsection. Results using the
small cache size are either similar or do not reveal interesting
patterns.

Fig. 9a and Fig. 9b demonstrate the impact of varying skew
on miss and popular object ratios. As skew increases, making
popular objects more prominent, it becomes easier to identify

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1237

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Zipf Parameter (skewness α)

0.0

0.2

0.4

0.6

0.8
M

iss
 R

at
io

LRU
ARC
LFU
SIEVE

(a) Miss ratio

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Zipf Parameter (skewness α)

0.00

0.25

0.50

0.75

Po
pu

la
r O

bj
ec

t R
at

io

SIEVE
LFU
ARC
LRU

(b) Popular object ratio

0 50000 100000 150000 200000 250000 300000
0

1

0 100000 200000 300000 400000 500000
0

1

Ha
nd

 P
os

iti
on

 fr
om

 Ta
il

Logical Time (#requests)
0

1

Zipf 0.8 Zipf 1.0 Zipf 1.2

(c) Hand movement in SIEVE

Figure 9: Left two: miss ratio and popular object ratio on Zipfian workloads with different α. Right: hand position in the cache over time in Zipfian workloads.

and cache the popular objects, increasing the popular object
ratio and reducing the miss ratio for all tested algorithms.
Among ARC, LFU, and SIEVE, we observe that SIEVE always
shows a higher popular ratio with a lower miss ratio across
skewness, indicating the efficiency of SIEVE is not limited to
very skewed workloads.

Fig. 9c illustrates the hand position in the SIEVE cache over
time, advancing towards the head with each retained object
and pausing during evictions. Therefore, the more objects are
retained, the faster the movement. We observe that the hand
moves more slowly in the first round than in the later rounds
because that is when many unpopular objects are evicted. In
subsequent rounds, the hand lingers at positions close to the
head for most of the time because SIEVE keeps a new object
at position p only if it is more popular (shorter inter-arrival
time) than the object at position p−1. In other words, SIEVE
performs quick demotion [87].

In more skewed workloads, the hand moves quickly due
to early arrival and higher request volumes for popular ob-
jects, allowing SIEVE to cache most popular objects by the
end of the first round. Consequently, the hand rapidly transi-
tions from tail to head with fewer evictions and spends less
time near the head, as new objects are more likely to be re-
tained, hastening its progress. Nevertheless, the time of each
round varies depending on the frequency of encountering po-
tentially popular objects, highlighting SIEVE’s adaptability
to workload shifts. When new popular objects appear, the
hand accelerates, replacing existing cached objects with the
newcomers by giving less time to set their visited bit.

SIEVE is adaptive. To visualize SIEVE’s adaptivity via the
sifting process, we created a new workload by joining two Zip-
fian (α = 1.0) workloads that request different populations of
objects. Fig. 10 shows the interval miss ratio (per 100,000 re-
quests) over time on this conjoined workload. The changeover
happens at the 50% midway time mark. We observe that the
interval miss ratio of LFU skyrockets to nearly 100% (beyond
figure bounds) since new objects cannot replace the old ob-
jects. Relative to LRU and ARC, SIEVE’s miss ratio spike is
larger because it takes time for the hand to move back to the
tail before it can evict old objects. However, SIEVE’s spike
is invisible when the cache size is small (not shown). With
respect to the interval miss ratio spike, we observe the popular
object ratio of all algorithms (the curves overlap) dropping to

0.0 0.5 1.0
Logical Time

0.15

0.20

0.25

0.30

M
iss

 R
at

io

ARC
SIEVE

LRU
LFU

(a) Interval miss ratio

0 0.5 1
Logical Time

0.0

0.2

0.4

0.6

0.8

Po
pu

la
r O

bj
ec

ts
 R

at
io

SIEVE
LFU
ARC
LRU

(b) Popular object ratio over time

Figure 10: Interval miss ratio and popular object ratio over time on a work-
load constructed by connecting two different Zipfian workloads (α = 1).

0.8 1.0 1.2
Zipf Parameter (skewness α)

0

100

200

In
st

ru
ct

io
ns

 p
er

 re
qu

es
t

0.
51

0.
22

0.
05

0.
55 0.

25

0.
060.
43 0.

18

0.
04

LRU FIFO SIEVE

(a) Large cache

0.8 1.0 1.2
Zipf Parameter (skewness α)

0

100

200

300

In
st

ru
ct

io
ns

 p
er

 re
qu

es
t

0.
90

0.
60

0.
25

0.
91

0.
63

0.
280.
80

0.
49

0.
19

LRU FIFO SIEVE

(b) Small cache

Figure 11: Average number of instructions per request when running LRU,
FIFO, and SIEVE caches. The top number denotes the miss ratio.

0 when the workload changes at the midway point. Whereas
LFU never recovers from the drop, the popular object ratios
in all other algorithms quickly recover to large proportions.
Finally, the figures corroborate our interpretation of the sift-
ing process: SIEVE’s miss ratio drops over time, while the
fraction of popular objects increases over time.

6 SIEVE as a Turn-key Cache Primitive
6.1 Cache primitives

Beyond being a cache eviction algorithm, SIEVE can serve
as a cache primitive for designing more advanced eviction
policies. To study the range of such policies, we categorize
existing cache eviction algorithm designs into four main ap-
proaches. (1) We can design simple and easy-to-understand
eviction algorithms, such as FIFO queues, LRU queues, LFU
queues, and Random eviction. We call these simple algorithms
cache primitives. SIEVE falls under this category. (2) We can
improve the cache primitives. For example, FIFO-Reinsertion
is designed by adding reinsertion to FIFO; LRU-K [70] is
designed by changing the recency metric in LRU. (3) We can
compose multiple cache primitives with objects moved be-
tween them. For example, ARC, SLRU, and MQ use multiple
LRU queues. (4) We can run multiple cache primitives and

1238 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SIEVE LeCaR TwoQ ARC S3-FIFO
0.0

0.2

0.4

M
iss

 R
at

io
 R

ed
uc

tio
n

fro
m

 F
IF

O

Original replace LRU with SIEVE

(a) Large cache

SIEVE LeCaR TwoQ ARC S3-FIFO
0.0

0.1

0.2

0.3

M
iss

 R
at

io
 R

ed
uc

tio
n

fro
m

 F
IF

O

Original replace LRU with SIEVE

(b) Small cache

0.0 0.2 0.4 0.6 0.8 1.0

Small
cache

Large
cache

SIEVE-Belady LRU-Belady FIFO-Belady

(c) Best-performing algorithms across traces.

Figure 12: Impact of replacing LRU with SIEVE in advanced algorithms (a,b). The potential of FIFO, LRU, and SIEVE when endowed with foresight (c).

craft a decision-maker to select eviction candidates suggested
by the primitives. For example, LeCaR [84] uses reinforce-
ment learning to choose between the eviction candidates from
LRU and LFU; HALP [80] uses machine learning (MLP) to
choose one object from the eight objects at the LRU tail.

Having an efficient cache primitive not only provides an
effective and simple eviction algorithm but also enables other
approaches to design more efficient algorithms. The ideal
cache primitive is simultaneously (1) simple, (2) efficient, and
(3) fast — in terms of high throughput. For example, FIFO
and LRU meet these requirements and are frequently used to
construct more advanced algorithms. However, they are less
efficient than complex algorithms.

While we have shown that SIEVE is simple, efficient, and
fast in §4, to further understand SIEVE as a cache primi-
tive, we compare the number of instructions needed to run
FIFO, LRU, and SIEVE caches. We remark that the number
of instructions may not necessarily correlate with latency or
throughput but rather a rough metric of CPU resource usage.
We used perf stat to measure the number of instructions
for serving power-law workloads (100 million requests, 1
million objects) in our simulator. We then deduct the simu-
lator overhead by measuring a no-op cache, which performs
nothing on cache hits and misses.

Fig. 11 shows that SIEVE generally executes fewer instruc-
tions per request than FIFO and LRU, a difference accentu-
ated in skewed workloads and larger cache sizes. Compared
to LRU, SIEVE requires fewer instructions since SIEVE needs
only to check and possibly update a Boolean field on cache
hits, which is much simpler than moving an object to the
head of the queue. Besides LRU, SIEVE also requires fewer
instructions than FIFO because of the difference in miss ra-
tios. Because SIEVE has a lower miss ratio than FIFO, fewer
objects need to be inserted due to cache misses, leading to
fewer instructions per request on average. The only exception
is when SIEVE and FIFO have similar miss ratios, in which
case, FIFO executes fewer instructions than SIEVE. Overall,
SIEVE requires up to 40% and 24% fewer instructions than
LRU and FIFO, respectively.

6.2 Turn-key cache eviction with SIEVE

As a cache primitive, SIEVE can facilitate the design of
more advanced eviction algorithms. To understand the bene-
fits of using a better cache primitive, we replaced the LRU in
LeCaR, TwoQ, and ARC with SIEVE. Note that for ARC, we
only replace the LRU for frequent objects.

We evaluate these algorithms on all traces and show the
miss ratio reduction(from FIFO) in Fig. 12a and Fig. 12b.
Compared to SIEVE, LeCaR has much lower efficiency; how-
ever, when replacing the LRU in LeCaR with SIEVE, it sig-
nificantly reduces LeCaR’s miss ratio by 4.5% on average.
TwoQ and ARC achieve efficiency close to SIEVE; however,
when replacing the LRU with SIEVE, the efficiency of both
algorithms gets boosted. For example, ARC-SIEVE achieves
the best efficiency among all compared algorithms at both
small and large cache sizes. It reduces ARC’s miss ratio by
3.7% on average and up to 62.5% on the large cache size (re-
call that ARC reduces LRU’s miss ratio by 6.3% on average).
ARC-SIEVE also reduces SIEVE’s miss ratio by an average
of 2.4% and up to 40.6%.

To understand the potential in suggesting eviction candi-
dates, we evaluated the efficiency of FIFO, LRU, and SIEVE,
granting them access to future request data. Each eviction can-
didate is either evicted or reinserted, depending on whether
the object will be requested soon. We assume that an object
will be requested soon if the logical time (number of requests)
till the object’s next access is no more than C

mr , where C is
the cache size and mr is the miss ratio. This mimics the case
that we have a perfect decision-maker choosing between the
eviction candidates suggested by multiple simple eviction
algorithms. Fig. 12c shows that when supplied with this addi-
tional information, SIEVE achieves the lowest miss ratio on
97% and 94% of the 1559 traces at the large and small cache
size, respectively.

These results highlight the potential of SIEVE as a pow-
erful cache primitive for designing advanced cache eviction
algorithms. Leveraging lazy promotion and quick demotion,
SIEVE not only performs well on its own but also bolsters the
performance of more complex algorithms.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1239

SIE
VE

ARC

Tin
yLF

U
Tw

oQ LIR
S

LH
D

CAC
HEU

S

Hyp
erb

olic
CLO

CK
LR

U
B-LR

U
0.0

0.1

0.2

0.3

0.4

By
te

 M
iss

 R
at

io
 R

ed
uc

tio
n

fro
m

 F
IF

O

(a) Large cache

SIE
VE

ARC

Tin
yLF

U
Tw

oQ LIR
S

LH
D

CAC
HEU

S

Hyp
erb

olic
CLO

CK
LR

U
B-LR

U

0.0

0.1

0.2

0.3

By
te

 M
iss

 R
at

io
 R

ed
uc

tio
n

fro
m

 F
IF

O

(b) Small cache

Figure 13: Byte miss ratio across all CDN traces.

1 2 5 10 20 40
Cache Size (X% Working Set, 5688 GB)

0.00

0.05

0.10

0.15

0.20

By
te

 M
iss

 R
at

io

LRU
ARC
LRB
SIEVE

(a) Wiki2018 trace

1 2 5 10 20 40
Cache Size (X% Working Set, 8627 GB)

0.0

0.1

0.2

0.3

By
te

 M
iss

 R
at

io

LRU
ARC
LRB
SIEVE

(b) Wiki2019 trace

Figure 14: Byte miss ratios at different cache sizes on two Wiki CDN traces
used in LRB evaluation.

7 Discussion
7.1 Byte miss ratio

To gauge SIEVE’s efficiency in reducing network band-
width usage in CDNs, we analyzed its byte miss ratio by
considering object sizes. We chose the cache size at 10% and
0.1% of the trace footprint in bytes. Fig. 13a and Fig. 13b
show that SIEVE presents larger byte miss ratio reductions at
ALL percentiles than state-of-the-art algorithms at both cache
sizes, showcasing its high efficiency in CDN caches.

We further compared SIEVE with LRB [79], the state-of-
the-art machine-learning-based cache eviction algorithm op-
timized for byte miss ratio. Due to LRB’s long run time,
we only evaluated LRB on the two open-source Wiki traces
provided by the authors. Fig. 14a and Fig. 14b show that
LRB performs better at small cache sizes (1% and 2%), while
SIEVE excels at larger cache sizes. We conjecture that at a
small cache size, the ideal objects to cache are popular ob-
jects with many requests, which LRB can more easily identify
because they have more features (most of LRB’s features
are about the time between accesses to an object). When the
cache size is large, most objects in the cache have few re-
quests. Without enough features, a learned model can provide
little benefits [94, 99]. In summary, compared to complex
machine-learning-based algorithms, SIEVE still has competi-
tive efficiency.

7.2 SIEVE is not scan-resistant
Besides web cache workloads, we evaluated SIEVE on

some block cache workloads. However, we find that SIEVE
sometimes shows a miss ratio higher than LRU. The primary
reason for this discrepancy is that SIEVE is not scan-resistant.
In block cache workloads, which frequently feature scans,
popular objects often intermingle with objects from scans.

Consequently, both types of objects are rapidly evicted af-
ter insertion. Since SIEVE does not use a ghost cache — a
shadow cache that keeps track of recently evicted items to
make smarter future eviction decisions — it cannot recognize
the popular objects when they are requested again. This prob-
lem is less severe on the large cache size, but when the cache
size is small, we observe that having a ghost is critical to be
scan-resistant. We conjecture that not being scan-resistant
is probably the reason why SIEVE remained undiscovered
over the decades of caching research, which has been mostly
focused on page and block accesses.

7.3 TTL-friendliness
Time-to-live (TTL) is a common feature in web

caching [97, 98]. It specifies the duration during which an
object can be used. After the TTL has elapsed, the object
expires and can no longer be served to the user, even if it may
still be cached. Most existing eviction algorithms today do not
consider object expiration and require a separate procedure,
e.g., scanning the cache, to remove expired objects. Similar
to FIFO, SIEVE maintains objects in insertion order, which
allows objects in TTL-partitioned caches, e.g., Segcache [98],
to be sorted by expiration time. This provides a convenient
method for discovering and removing expired objects.

8 Conclusion
We design SIEVE, a simple, efficient, fast, and scalable

cache eviction algorithm for web caches that leverages “lazy
promotion” and “quick demotion”. The high efficiency in
SIEVE comes from gradually sifting out the unpopular ob-
jects. SIEVE is the first and the simplest cache primitive that
supports both lazy promotion and quick demotion. This serves
as the foundation for SIEVE’s high efficiency and high perfor-
mance. Evaluated on 1559 traces from 7 datasets, we show
that SIEVE outperforms complex state-of-the-art algorithms
on over 45% of the traces. We implemented SIEVE in five
open-source production libraries using less than 20 lines on
average.

Availability
The code and data used in this work are open-sourced

at https://github.com/cacheMon/NSDI24-SIEVE. This
repository includes both the simulator and prototypes.

Additionally, we have engineered cache libraries based on
SIEVE for various programming languages. More information
is available at https://sievecache.com.

Acknowledgments
We thank the anonymous reviewers and our shepherd Kay

Ousterhout for constructive suggestions. We are grateful to
the individuals and organizations that have generously open-
sourced and shared production traces. We thank Cloudlab [40]
for the infrastructure support for running experiments. We
also appreciate the members of SimBioSys and PDL Consor-
tium for their interest, insights, feedback, and support.

1240 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/cacheMon/NSDI24-SIEVE
https://sievecache.com

References
[1] Analytics/data lake/traffic/caching. https:

//wikitech.wikimedia.org/wiki/Analytics/
Data_Lake/Traffic/Caching. Accessed: 2023-04-
27.

[2] Apache traffic server. https://trafficserver.
apache.org/. Accessed: 2023-04-27.

[3] lru-dict. https://github.com/amitdev/lru-dict.
Accessed: 2023-04-27.

[4] lru-rs. https://github.com/jeromefroe/lru-rs.
Accessed: 2023-04-27.

[5] Memcached - a distributed memory object caching
system. http://memcached.org/. Accessed: 2023-
04-27.

[6] mnemonist. https://github.com/
Yomguithereal/mnemonist. Accessed: 2023-
04-27.

[7] Nginx. https://nginx.org/. Accessed: 2023-04-
27.

[8] pelikan. https://github.com/pelikan-io/
pelikan. Accessed: 2023-04-27.

[9] Redis. http://redis.io/. Accessed: 2023-04-27.

[10] Running cachebench with the trace workload.
https://cachelib.org/docs/Cache_Library_
User_Guides/Cachebench_FB_HW_eval. Accessed:
2023-04-27.

[11] Varnish cache. https://varnish-cache.org/. Ac-
cessed: 2023-04-27.

[12] Ismail Ari, Ahmed Amer, Robert B Gramacy, Ethan L
Miller, Scott A Brandt, and Darrell DE Long. ACME:
Adaptive Caching Using Multiple Experts. In WDAS,
volume 2, pages 143–158, 2002.

[13] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a
Large-Scale Key-Value Store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’12, pages 53–64,
New York, NY, USA, 2012. Association for Computing
Machinery.

[14] Nirav Atre, Justine Sherry, Weina Wang, and Daniel S.
Berger. Caching with Delayed Hits. In Proceedings
of the Annual Conference of the ACM Special Inter-
est Group on Data Communication on the Applica-
tions, Technologies, Architectures, and Protocols for

Computer Communication, SIGCOMM ’20, pages 495–
513, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[15] Sorav Bansal and Dharmendra S. Modha. CAR: Clock
with Adaptive Replacement. In 3rd USENIX Con-
ference on File and Storage Technologies, FAST’04,
2004.

[16] Nathan Beckmann, Haoxian Chen, and Asaf Cidon.
LHD: Improving cache hit rate by maximizing hit den-
sity. In 15th USENIX symposium on networked systems
design and implementation, NSDI’18, pages 389–403,
2018.

[17] Nathan Beckmann and Daniel Sanchez. Talus: A sim-
ple way to remove cliffs in cache performance. In 2015
IEEE 21st International Symposium on High Perfor-
mance Computer Architecture, HPCA’15, pages 64–75,
Burlingame, CA, USA, February 2015. IEEE.

[18] Nathan Beckmann and Daniel Sanchez. Maximizing
Cache Performance Under Uncertainty. In 2017 IEEE
International Symposium on High Performance Com-
puter Architecture, HPCA’17, pages 109–120, Austin,
TX, February 2017. IEEE.

[19] L. A. Belady. A study of replacement algorithms
for a virtual-storage computer. IBM Systems Journal,
5(2):78–101, 1966.

[20] Benjamin Berg, Daniel S. Berger, Sara McAllister,
Isaac Grosof, Sathya Gunasekar, Jimmy Lu, Michael
Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-
Balter, and Gregory R. Ganger. The CacheLib caching
engine: Design and experiences at scale. In 14th
USENIX symposium on operating systems design and
implementation, OSDI’20, pages 753–768. USENIX
Association, November 2020.

[21] Daniel S. Berger, Benjamin Berg, Timothy Zhu, Sid-
dhartha Sen, and Mor Harchol-Balter. RobinHood: Tail
latency aware caching – dynamic reallocation from
Cache-Rich to Cache-Poor. In 13th USENIX sympo-
sium on operating systems design and implementation,
OSDI’18, pages 195–212, Carlsbad, CA, October 2018.
USENIX Association.

[22] Daniel S Berger, Ramesh K Sitaraman, and Mor
Harchol-Balter. AdaptSize: Orchestrating the hot ob-
ject memory cache in a content delivery network. In
14th USENIX symposium on networked systems design
and implementation, NSDI’17, pages 483–498, 2017.

[23] Adit Bhardwaj and Vaishnav Janardhan. Pecc:
Prediction-error correcting cache. In Workshop on
ML for Systems at NeurIPS, volume 32, 2018.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1241

https://wikitech.wikimedia.org/wiki/Analytics/Data_Lake/Traffic/Caching
https://wikitech.wikimedia.org/wiki/Analytics/Data_Lake/Traffic/Caching
https://wikitech.wikimedia.org/wiki/Analytics/Data_Lake/Traffic/Caching
https://trafficserver.apache.org/
https://trafficserver.apache.org/
https://github.com/amitdev/lru-dict
https://github.com/jeromefroe/lru-rs
http://memcached.org/
https://github.com/Yomguithereal/mnemonist
https://github.com/Yomguithereal/mnemonist
https://nginx.org/
https://github.com/pelikan-io/pelikan
https://github.com/pelikan-io/pelikan
http://redis.io/
https://cachelib.org/docs/Cache_Library_User_Guides/Cachebench_FB_HW_eval
https://cachelib.org/docs/Cache_Library_User_Guides/Cachebench_FB_HW_eval
https://varnish-cache.org/

[24] Aaron Blankstein, Siddhartha Sen, and Michael J.
Freedman. Hyperbolic caching: Flexible caching for
web applications. In 2017 USENIX annual technical
conference, ATC’17, pages 499–511, Santa Clara, CA,
July 2017. USENIX Association.

[25] bradfitz. group cache. https://github.com/
golang/groupcache. Accessed: 2023-04-27.

[26] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker.
Web caching and Zipf-like distributions: evidence and
implications. In Proceedings. Eighteenth Annual Joint
Conference of the IEEE Computer and Communica-
tions Societies, pages 126–134 vol.1, New York, NY,
USA, 1999. IEEE.

[27] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and
Scott Shenker. On the implications of Zipf’s law
for web caching. Technical report, University of
Wisconsin-Madison Department of Computer Sci-
ences, 1998.

[28] Daniel Byrne, Nilufer Onder, and Zhenlin Wang.
mPart: miss-ratio curve guided partitioning in key-
value stores. In Proceedings of the 2018 ACM SIG-
PLAN International Symposium on Memory Manage-
ment, ISMM’18, pages 84–95, Philadelphia PA USA,
June 2018. ACM.

[29] Pei Cao and Sandy Irani. Cost-Aware WWW Proxy
Caching Algorithms. In USENIX Symposium on Inter-
net Technologies and Systems, USITS’97, Monterey,
CA, December 1997. USENIX Association.

[30] Richard W. Carr and John L. Hennessy. WSCLOCK:
a simple and effective algorithm for virtual memory
management. In Proceedings of the eighth ACM sym-
posium on Operating systems principles, SOSP ’81,
pages 87–95, New York, NY, USA, December 1981.
Association for Computing Machinery.

[31] H. Che, Z. Wang, and Y. Tung. Analysis and design
of hierarchical Web caching systems. In Proceedings
IEEE INFOCOM 2001. Conference on Computer Com-
munications. Twentieth Annual Joint Conference of the
IEEE Computer and Communications Society (Cat.
No.01CH37213), volume 3, pages 1416–1424, Anchor-
age, AK, USA, 2001. IEEE.

[32] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh,
and Sachin Katti. Cliffhanger: Scaling performance
cliffs in web memory caches. In 13th USENIX sympo-
sium on networked systems design and implementation,
NSDI’16, pages 379–392, 2016.

[33] Asaf Cidon, Daniel Rushton, Stephen M. Rumble, and
Ryan Stutsman. Memshare: a dynamic multi-tenant

key-value cache. In 2017 USENIX annual technical
conference, ATC’17, pages 321–334, Santa Clara, CA,
July 2017. USENIX Association.

[34] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking
cloud serving systems with ycsb. In Proceedings of
the 1st ACM symposium on Cloud computing, pages
143–154, 2010.

[35] Fernando J Corbato. A paging experiment with the
multics system. Technical report, MASSACHUSETTS
INST OF TECH CAMBRIDGE PROJECT MAC,
1968.

[36] Peter J Denning. The working set model for program
behavior. Communications of the ACM, 11(5):323–333,
1968.

[37] Meta developers. Cachelib. https://cachelib.org.
Accessed: 2023-04-27.

[38] Meta developers. Distributed mutex.
https://github.com/facebook/folly/blob/
2c00d14adb9b632936f3abfbf741373871cd64a6/
folly/synchronization/DistributedMutex.h.
Accessed: 2023-04-27.

[39] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, S.H.
Noh, Sang Lyul Min, Yookun Cho, and Chong Sang
Kim. LRFU: a spectrum of policies that subsumes the
least recently used and least frequently used policies.
IEEE Transactions on Computers, 50(12):1352–1361,
December 2001.

[40] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb,
Aditya Akella, Kuangching Wang, Glenn Ricart, Larry
Landweber, Chip Elliott, Michael Zink, Emmanuel
Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The
design and operation of CloudLab. In Proceedings
of the USENIX Annual Technical Conference (ATC),
pages 1–14, July 2019.

[41] Gil Einziger, Ohad Eytan, Roy Friedman, and Ben
Manes. Adaptive Software Cache Management. In Pro-
ceedings of the 19th International Middleware Confer-
ence, pages 94–106, Rennes France, November 2018.
ACM.

[42] Gil Einziger, Ohad Eytan, Roy Friedman, and Ben-
jamin Manes. Lightweight robust size aware cache
management. ACM Transactions on Storage, 18(3),
August 2022.

[43] Gil Einziger, Roy Friedman, and Ben Manes. TinyLFU:
A Highly Efficient Cache Admission Policy. ACM
Transactions on Storage, 13(4):1–31, December 2017.

1242 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/golang/groupcache
https://github.com/golang/groupcache
https://cachelib.org
https://github.com/facebook/folly/blob/2c00d14adb9b632936f3abfbf741373871cd64a6/folly/synchronization/DistributedMutex.h
https://github.com/facebook/folly/blob/2c00d14adb9b632936f3abfbf741373871cd64a6/folly/synchronization/DistributedMutex.h
https://github.com/facebook/folly/blob/2c00d14adb9b632936f3abfbf741373871cd64a6/folly/synchronization/DistributedMutex.h

[44] Assaf Eisenman, Asaf Cidon, Evgenya Pergament,
Or Haimovich, Ryan Stutsman, Mohammad Alizadeh,
and Sachin Katti. Flashield: a hybrid key-value cache
that controls flash write amplification. In 16th USENIX
symposium on networked systems design and imple-
mentation, NSDI’19, pages 65–78, Boston, MA, Febru-
ary 2019. USENIX Association.

[45] Assaf Eisenman, Maxim Naumov, Darryl Gardner,
Misha Smelyanskiy, Sergey Pupyrev, Kim Hazelwood,
Asaf Cidon, and Sachin Katti. Bandana: Using non-
volatile memory for storing deep learning models. In
A. Talwalkar, V. Smith, and M. Zaharia, editors, Pro-
ceedings of machine learning and systems, volume 1
of mlsys’20, pages 40–52, 2019.

[46] Ohad Eytan, Danny Harnik, Effi Ofer, Roy Friedman,
and Ronen Kat. It’s time to revisit LRU vs. FIFO. In
12th USENIX workshop on hot topics in storage and
file systems, hotStorage’20. USENIX Association, July
2020.

[47] Bin Fan, David G Andersen, and Michael Kaminsky.
MemC3: Compact and concurrent MemCache with
dumber caching and smarter hashing. In 10th USENIX
symposium on networked systems design and imple-
mentation, NSDI’13, pages 371–384, 2013.

[48] Philippe Flajolet, Daniele Gardy, and Loÿs Thimonier.
Birthday paradox, coupon collectors, caching algo-
rithms and self-organizing search. Discrete Applied
Mathematics, 39(3):207–229, 1992.

[49] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anir-
ban Mahanti. Youtube traffic characterization: a view
from the edge. In Proceedings of the 7th ACM SIG-
COMM conference on Internet measurement, pages
15–28, 2007.

[50] Xiaoming Gu and Chen Ding. On the theory and
potential of lru-mru collaborative cache management.
SIGPLAN Not., 46(11):43–54, jun 2011.

[51] Lei Guo, Enhua Tan, Songqing Chen, Zhen Xiao, and
Xiaodong Zhang. The stretched exponential distribu-
tion of internet media access patterns. In Proceedings
of the twenty-seventh ACM symposium on Principles
of distributed computing, pages 283–294, 2008.

[52] Syed Hasan, Sergey Gorinsky, Constantine Dovrolis,
and Ramesh K Sitaraman. Trade-offs in optimizing
the cache deployments of cdns. In IEEE INFOCOM
2014-IEEE conference on computer communications,
pages 460–468. IEEE, 2014.

[53] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo,
Chen Ding, and Zhenlin Wang. Kinetic modeling of

data eviction in cache. In 2016 USENIX annual techni-
cal conference, ATC’16, pages 351–364, Denver, CO,
June 2016. USENIX Association.

[54] Xinyue Hu, Eman Ramadan, Wei Ye, Feng Tian, and
Zhi-Li Zhang. Raven: belady-guided, predictive (deep)
learning for in-memory and content caching. In
Proceedings of the 18th International Conference on
emerging Networking EXperiments and Technologies,
CoNEXT ’22, pages 72–90, New York, NY, USA,
November 2022. Association for Computing Machin-
ery.

[55] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt
Lloyd, Sanjeev Kumar, and Harry C. Li. An analy-
sis of Facebook photo caching. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 167–181, New York, NY,
USA, November 2013. Association for Computing Ma-
chinery.

[56] Stratis Ioannidis, Laurent Massoulie, and Augustin
Chaintreau. Distributed caching over heterogeneous
mobile networks. In Proceedings of the ACM SIG-
METRICS international conference on Measurement
and modeling of computer systems, SIGMETRICS’10,
pages 311–322, 2010.

[57] Stratis Ioannidis and Edmund Yeh. Adaptive Caching
Networks with Optimality Guarantees. In Proceedings
of the 2016 ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer
Science, SIGMETRICS’16, pages 113–124, Antibes
Juan-les-Pins France, June 2016. ACM.

[58] Song Jiang, Feng Chen, and Xiaodong Zhang. CLOCK-
Pro: an effective improvement of the CLOCK re-
placement. In Proceedings of the annual conference
on USENIX Annual Technical Conference, ATC’05,
page 35, USA, April 2005. USENIX Association.

[59] Song Jiang and Xiaodong Zhang. LIRS: an efficient
low inter-reference recency set replacement policy to
improve buffer cache performance. In ACM SIGMET-
RICS Performance Evaluation Review, volume 30 of
SIGMETRICS’02, pages 31–42, June 2002.

[60] Theodore Johnson and Dennis Shasha. 2Q: A Low
Overhead High Performance Buffer Management Re-
placement Algorithm. In Proceedings of the 20th
International Conference on Very Large Data Bases,
VLDB’94, pages 439–450, San Francisco, CA, USA,
September 1994. Morgan Kaufmann Publishers Inc.

[61] R. Karedla, J.S. Love, and B.G. Wherry. Caching strate-
gies to improve disk system performance. Computer,
27(3):38–46, March 1994.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1243

[62] Cong Li. DLIRS: Improving Low Inter-Reference
Recency Set Cache Replacement Policy with Dynam-
ics. In Proceedings of the 11th ACM International
Systems and Storage Conference, SYSTOR ’18, pages
59–64, New York, NY, USA, June 2018. Association
for Computing Machinery.

[63] Conglong Li and Alan L. Cox. GD-Wheel: a cost-
aware replacement policy for key-value stores. In
Proceedings of the Tenth European Conference on
Computer Systems, EuroSys’15, pages 1–15, Bordeaux
France, April 2015. ACM.

[64] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. MICA: A holistic approach to fast
In-Memory Key-Value storage. In 11th USENIX sym-
posium on networked systems design and implemen-
tation, NSDI’14, pages 429–444, Seattle, WA, April
2014. USENIX Association.

[65] Adnan Maruf, Ashikee Ghosh, Janki Bhimani, Daniel
Campello, Andy Rudoff, and Raju Rangaswami.
MULTI-CLOCK: Dynamic Tiering for Hybrid Mem-
ory Systems. In 2022 IEEE International Symposium
on High-Performance Computer Architecture (HPCA),
pages 925–937, April 2022. ISSN: 2378-203X.

[66] Sara McAllister, Benjamin Berg, Julian Tutuncu-
Macias, Juncheng Yang, Sathya Gunasekar, Jimmy Lu,
Daniel S. Berger, Nathan Beckmann, and Gregory R.
Ganger. Kangaroo: Theory and practice of caching
billions of tiny objects on flash. In ACM Transactions
on Storage, volume 18 of TOS’22, August 2022.

[67] Nimrod Megiddo and Dharmendra S Modha. ARC: A
self-tuning, low overhead replacement cache. In 2nd
USENIX conference on file and storage technologies,
FAST’03, 2003.

[68] Sailesh Mukil. Cache warming: Lever-
aging ebs for moving petabytes of data.
https://netflixtechblog.medium.com/
cache-warming-leveraging-ebs-for-moving-
petabytes-of-data-adcf7a4a78c3. Accessed:
2023-04-27.

[69] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McEl-
roy, Mike Paleczny, Daniel Peek, Paul Saab, and oth-
ers. Scaling memcache at facebook. In 10th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI’13, pages 385–398, 2013.

[70] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard
Weikum. The LRU-K page replacement algorithm
for database disk buffering. ACM SIGMOD Record,
22(2):297–306, June 1993.

[71] Sejin Park and Chanik Park. FRD: A filtering based
buffer cache algorithm that considers both frequency
and reuse distance. In Proc. of the 33rd IEEE Inter-
national Conference on Massive Storage Systems and
Technology (MSST), 2017.

[72] Ziyue Qiu, Juncheng Yang, Juncheng Zhang, Cheng Li,
Xiaosong Ma, Qi Chen, Mao Yang, and Yinlong Xu.
Frozenhot cache: Rethinking cache management for
modern software. In Twenty-third EuroSys Conference,
EuroSys’23, New York, NY, USA, 2023. Association
for Computing Machinery.

[73] KV Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion
Stoica, and Kannan Ramchandran. EC-Cache:load-
balanced,low-latency cluster caching with online era-
sure coding. In 12th USENIX symposium on operating
systems design and implementation, OSDI’16, pages
401–417, 2016.

[74] John T. Robinson and Murthy V. Devarakonda. Data
cache management using frequency-based replacement.
In Proceedings of the 1990 ACM SIGMETRICS con-
ference on measurement and modeling of computer
systems, SIGMETRICS’90, pages 134–142, New York,
NY, USA, 1990. Association for Computing Machin-
ery.

[75] Liana V. Rodriguez, Farzana Yusuf, Steven Lyons,
Eysler Paz, Raju Rangaswami, Jason Liu, Ming Zhao,
and Giri Narasimhan. Learning Cache Replacement
with CACHEUS. In 19th USENIX Conference on File
and Storage Technologies, FAST’21, pages 341–354.
USENIX Association, February 2021.

[76] Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob
Cauble, Harshad Deshmukh, Dan Gibson, Milo M. K.
Martin, Amanda Strominger, Thomas F. Wenisch, and
Amin Vahdat. CliqueMap: productionizing an RMA-
based distributed caching system. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, SIG-
COMM’21, pages 93–105, Virtual Event USA, August
2021. ACM.

[77] Yannis Smaragdakis, Scott Kaplan, and Paul Wilson.
EELRU: simple and effective adaptive page replace-
ment. ACM SIGMETRICS Performance Evaluation
Review, 27(1):122–133, May 1999.

[78] Alan Jay Smith. Sequentiality and prefetching in
database systems. ACM Transactions on Database
Systems, 3(3):223–247, September 1978.

[79] Zhenyu Song, Daniel S Berger, Kai Li, Anees
Shaikh, Wyatt Lloyd, Soudeh Ghorbani, Changhoon
Kim, Aditya Akella, Arvind Krishnamurthy, Emmett

1244 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://netflixtechblog.medium.com/cache-warming-leveraging-ebs-for-moving-petabytes-of-data-adcf7a4a78c3
https://netflixtechblog.medium.com/cache-warming-leveraging-ebs-for-moving-petabytes-of-data-adcf7a4a78c3
https://netflixtechblog.medium.com/cache-warming-leveraging-ebs-for-moving-petabytes-of-data-adcf7a4a78c3

Witchel, and others. Learning relaxed belady for con-
tent distribution network caching. In 17th USENIX
symposium on networked systems design and imple-
mentation, NSDI’20, pages 529–544, 2020.

[80] Zhenyu Song, Kevin Chen, Nikhil Sarda, Deniz Alt-
inbuken, Eugene Brevdo, Jimmy Coleman, Xiao Ju,
Pawel Jurczyk, Richard Schooler, and Ramki Gum-
madi. Halp: Heuristic aided learned preference evic-
tion policy for youtube content delivery network. In
20th USENIX Symposium on Networked Systems De-
sign and Implementation, pages 1149–1163, Boston,
MA, April 2023. USENIX Association.

[81] Kunwadee Sripanidkulchai, Bruce Maggs, and Hui
Zhang. An analysis of live streaming workloads on
the internet. In Proceedings of the 4th ACM SIG-
COMM conference on Internet measurement, pages
41–54, 2004.

[82] Aditya Sundarrajan, Mingdong Feng, Mangesh Kas-
bekar, and Ramesh K Sitaraman. Footprint descrip-
tors: Theory and practice of cache provisioning in a
global cdn. In Proceedings of the 13th International
Conference on emerging Networking EXperiments and
Technologies, pages 55–67, 2017.

[83] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar,
and Kai Li. RIPQ: Advanced photo caching on flash
for facebook. In 13th USENIX Conference on File and
Storage Technologies, FAST’15, pages 373–386, 2015.

[84] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Mar-
tinez, Steven Lyons, Jason Liu, Raju Rangaswami,
Ming Zhao, and Giri Narasimhan. Driving cache re-
placement with ML-based LeCaR. In 10th USENIX
workshop on hot topics in storage and file systems,
hotStorage’18, Boston, MA, July 2018. USENIX As-
sociation.

[85] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad,
and Nohhyun Park. Cache modeling and optimization
using miniature simulations. In 2017 USENIX annual
technical conference, ATC’17, pages 487–498, Santa
Clara, CA, July 2017. USENIX Association.

[86] Hua Wang, Xinbo Yi, Ping Huang, Bin Cheng, and
Ke Zhou. Efficient SSD Caching by Avoiding Unnec-
essary Writes using Machine Learning. In Proceed-
ings of the 47th International Conference on Parallel
Processing, ICPP’18, pages 1–10, Eugene OR USA,
August 2018. ACM.

[87] Theodore M Wong and John Wilkes. My cache or
yours?: Making storage more exclusive. In USENIX
Annual Technical Conference, ATC’02, pages 161–175,
2002.

[88] Nan Wu and Pengcheng Li. Phoebe: Reuse-Aware On-
line Caching with Reinforcement Learning for Emerg-
ing Storage Models, November 2020.

[89] Xingbo Wu, Li Zhang, Yandong Wang, Yufei Ren,
Michel Hack, and Song Jiang. zExpander: a key-value
cache with both high performance and fewer misses. In
Proceedings of the Eleventh European Conference on
Computer Systems, Eurosys’16, pages 1–15, London
United Kingdom, April 2016. ACM.

[90] Gang Yan and Jian Li. RL-Bélády: A Unified Learning
Framework for Content Caching. In Proceedings of
the 28th ACM International Conference on Multime-
dia, pages 1009–1017, Seattle WA USA, October 2020.
ACM.

[91] Gang Yan and Jian Li. Towards Latency Awareness for
Content Delivery Network Caching. ATC’22, pages
789–804, 2022.

[92] Juncheng Yang. libcachesim: a high-performance
library for building cache simulators. https://
libcachesim.com/. Accessed: 2023-04-27.

[93] Juncheng Yang, Ziming Mao, Yao Yue, and K. V.
Rashmi. GL-Cache: Group-level learning for efficient
and high-performance caching. FAST’23, pages 115–
134, 2023.

[94] Juncheng Yang, Ziyue Qiu, Yazhuo Zhang, Yao Yue,
and K. V. Rashmi. FIFO can be better than LRU: the
power of lazy promotion and quick demotion. In The
19th Workshop on Hot Topics in Operating Systems
(HotOS 23), 2023.

[95] Juncheng Yang, Anirudh Sabnis, Daniel S. Berger, K. V.
Rashmi, and Ramesh K. Sitaraman. C2DN: How to
harness erasure codes at the edge for efficient content
delivery. In 19th USENIX symposium on networked
systems design and implementation, NSDI’22, pages
1159–1177, Renton, WA, April 2022. USENIX Asso-
ciation.

[96] Juncheng Yang, Yao Yue, and K. V. Rashmi. Slides
of a large scale analysis of hundreds of in-memory
cache clusters at twitter. https://www.usenix.org/
sites/default/files/conference/protected-
files/osdi20_slides_yang.pdf. Accessed:
2023-04-27.

[97] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large
scale analysis of hundreds of in-memory cache clusters
at Twitter. In 14th USENIX symposium on operating
systems design and implementation, OSDI’20, pages
191–208. USENIX Association, November 2020.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1245

https://libcachesim.com/
https://libcachesim.com/
https://www.usenix.org/sites/default/files/conference/protected-files/osdi20_slides_yang.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/osdi20_slides_yang.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/osdi20_slides_yang.pdf

[98] Juncheng Yang, Yao Yue, and Rashmi Vinayak. Seg-
cache: a memory-efficient and scalable in-memory key-
value cache for small objects. In 18th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion, NSDI’21, pages 503–518. USENIX Association,
April 2021.

[99] Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue,
and K.V. Rashmi. Fifo queues are all you need for
cache eviction. In Symposium on Operating Systems
Principles (SOSP’23), 2023.

[100] Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Mer-
chant, and Homer Wolfmeister. CacheSack: Admission
Optimization for Google Datacenter Flash Caches. In
2022 USENIX Annual Technical Conference, ATC’22,
pages 1021–1036, Carlsbad, CA, July 2022. USENIX
Association.

[101] Yiying Zhang, Gokul Soundararajan, Mark W. Storer,
Lakshmi N. Bairavasundaram, Sethuraman Subbiah,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Warming up storage-level caches with bon-
fire. In Proceedings of the 11th USENIX conference on
File and Storage Technologies, FAST’13, pages 59–72,
USA, February 2013. USENIX Association.

[102] Chen Zhong, Xingsheng Zhao, and Song Jiang. LIRS2:
an improved LIRS replacement algorithm. In Proceed-
ings of the 14th ACM International Conference on
Systems and Storage, SYSTOR’21, pages 1–12, Haifa
Israel, June 2021. ACM.

[103] Ke Zhou, Si Sun, Hua Wang, Ping Huang, Xubin He,
Rui Lan, Wenyan Li, Wenji Liu, and Tianming Yang.
Tencent photo cache traces (SNIA IOTTA trace set
27476). In Geoff Kuenning, editor, SNIA IOTTA Trace
Repository. Storage Networking Industry Association,
February 2016.

[104] Ke Zhou, Si Sun, Hua Wang, Ping Huang, Xubin He,
Rui Lan, Wenyan Li, Wenjie Liu, and Tianming Yang.
Demystifying cache policies for photo stores at scale:
A tencent case study. In Proceedings of the 2018 In-
ternational Conference on Supercomputing, ICS ’18,
page 284–294, New York, NY, USA, 2018. Association
for Computing Machinery.

[105] Y. Zhou, Z. Chen, and K. Li. Second-level buffer cache
management. IEEE Transactions on Parallel and Dis-
tributed Systems, 15(6):505–519, June 2004.

[106] Yuanyuan Zhou, James Philbin, and Kai Li. The multi-
queue replacement algorithm for second level buffer
caches. In Proceedings of the annual conference on
USENIX Annual Technical Conference, ATC’01, pages
91–104, USA, 2001. USENIX Association.

1246 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Harvesting Idle Memory for Application-Managed Soft State with Midas

Yifan Qiao Zhenyuan Ruan‡ Haoran Ma Adam Belay‡ Miryung Kim Harry Xu

UCLA ‡MIT CSAIL

Abstract
Many applications can benefit from data that increases perfor-
mance but is not required for correctness (commonly referred
to as soft state). Examples include cached data from backend
web servers and memoized computations in data analytics sys-
tems. Today’s systems generally statically limit the amount of
memory they use for storing soft state in order to prevent un-
bounded growth that could exhaust the server’s memory. Static
provisioning, however, makes it difficult to respond to shifts
in application demand for soft state and can leave significant
amounts of memory idle. Existing OS kernels can only spend
idle memory on caching disk blocks—which may not have the
most utility—because they do not provide the right abstractions
to safely allow applications to store their own soft state.

To effectively manage and dynamically scale soft state, we
propose soft memory, an elastic virtual memory abstraction
with unmap-and-reconstruct semantics that makes it possible
for applications to use idle memory to store whatever soft state
they choose while guaranteeing both safety and efficiency.
We present Midas, a soft memory management system that
contains (1) a runtime that is linked to each application to
manage soft memory objects and (2) OS kernel support that
coordinates soft memory allocation between applications
to maximize their performance. Our experiments with four
real-world applications show that Midas can efficiently and
safely harvest idle memory to store applications’ soft state, de-
livering near-optimal application performance and responding
to extreme memory pressure without running out of memory.

1 Introduction

A wide range of applications can benefit from storing soft state
in memory, including web applications [43], databases [32],
key-value stores [30], CDN services [12, 34], and model serv-
ing frameworks [9]. Data is considered soft state when it is help-
ful for efficiency, but discarding it does not impact correctness
because it can easily be reconstructed if it is later needed. For ex-
ample, caches and memoization are both common forms of soft
state. Soft state enables applications to trade extra memory con-

sumption for better performance, and these gains generally in-
crease with the amount of memory available [45, 47]. A signif-
icant fraction of memory is left idle in today’s datacenters [27,
48], suggesting there is a large untapped opportunity to improve
overall efficiency by using idle memory to store soft state.

While spending memory on soft state can improve
performance, it must not compete with the need to store regular
application data. For example, if too much memory is spent
on soft state, this could lead to swapping to disk or worse still,
out-of-memory errors, which can result in failures. Because
of this, developers often limit their storage of soft state to a
small static amount, for fear that they may run out of memory.
In other words, it is a challenge to allocate enough soft state
to consume all available idle memory, but to not go beyond
the point where it would cause performance issues or failures.

Existing OS abstractions for elastically responding to
changes in available idle memory are too limited. For example,
the Linux Kernel maintains a page cache that automatically fills
idle memory but it can only be used to cache disk blocks. This
constrains idle memory to storing just a single type of soft state
which may or may not provide the most utility for applications.

An ideal abstraction would instead democratize access to
idle memory so that each application could choose how to best
spend it (i.e., the type of soft state that is most beneficial). For
example, suppose an application does not rely much on local
storage, but frequently accesses objects stored in a key value
store over the network. Instead of being limited to the page
cache, idle memory could be spent on caching the key-value
store’s objects locally, resulting in a much greater benefit.

This problem is further complicated in today’s multi-
tenant cloud. It is common for each server to run multiple
applications, and they may come from different users and
exhibit dramatically different performance sensitivity to the
amount of soft state. At the same time, adding memory to one
application can lead to reductions in the performance of others.
Consequently, determining how to dynamically balance
the soft state needs of different applications in a way that
maximizes overall memory utility/performance is a challenge.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1247

Insight. In this paper, we aim to answer the following
question: can we provide a new virtual memory abstraction for
soft state (herein referred to as “soft memory”) that developers
can use to coordinate with the kernel so that they can take full
advantage of all available memory? In other words, our goal
is to no longer limit idle memory to the page cache, and to
instead allow its use to be customized by each application in
a way that maximizes overall utility.

Unlike existing systems that perform caching entirely in
the user space [2, 9, 30], we propose Midas, a system that
coordinates with the kernel to dynamically provision soft
memory between applications. The advantage of this approach
is two-fold. First, application developers can program with
the illusion of an “unlimited cache”, and are thus freed of the
burden of manually managing their soft state. To avoid running
out of memory, the kernel responds to memory pressure by
rapidly unmapping soft memory pages. To transparently
recover any lost soft state, later accesses will automatically
trigger the application to reconstruct the missing soft state.
Second, the kernel has global visibility of all applications,
their memory usage, and the amount of idle memory, making
it possible to understand each application’s sensitivity to
memory size and automatically coordinate soft memory
allocation between applications. Midas also incorporates the
page cache by treating it as another source of soft memory.

Challenges. Midas is a soft memory management system that
achieves (1) programming flexibility and (2) dynamic memory
provisioning, with unmap-and-reconstruct semantics, to
guarantee both safety and efficiency. Realizing these benefits
requires overcoming four major challenges:

First, what interfaces shall we expose to developers? To im-
prove usability, Midas provides developers with a soft memory
pointer abstraction (similar to C++ smart pointers) to access
soft memory easily and safely (see §4.1). Midas offers a set
of high-level key-value store APIs, which are similar to those
of popular cache services (such as Memcached [30], Redis [2],
CacheLib [9], etc.), but enhanced to allow the exposure of
more semantics to the runtime. A critical interface we expose
to developers is data structure reconstruction—developers
not only register soft memory objects but also specify their
(re)construction logic, so soft state can be transparently
regenerated if it is later accessed after it was evicted.

Second, how shall soft memory be managed? Program
data is allocated as objects on the heap but the kernel cannot
recognize them, as it is only aware of memory pages. As a
result, if we let the kernel manage soft memory alone, it could
only reclaim space in coarse-grained units without knowledge
of what objects the space contains. For example, reclaiming
hot (i.e., frequently accessed) objects in a soft-state cache can
lead to significant slowdowns. In addition, it is undesirable to
reclaim space from the programs that would benefit the most
from soft state when others need it less, but such performance
sensitivity information is invisible to the kernel.

To solve the problem, we propose a runtime library that can
be linked into each application to recognize object behaviors,
letting the runtime and the kernel co-manage soft memory.
The Midas runtime offers a log-structured allocator [41] and a
concurrent evacuator that continuously identifies and compacts
hot objects into a small soft memory space. This information
(of hot and cold regions) is shared with the kernel so that it can
focus its reclamation on regions with cold objects (see §4.2).

Third, how can we coordinate soft memory allocation
between applications? The runtime can only see each applica-
tion’s individual behavior without any global knowledge of the
server’s available memory and other applications’ needs. Fur-
thermore, the runtime can only manage objects in user space,
but cannot dynamically add/remove memory between appli-
cations. To overcome this challenge, we propose a global coor-
dinator inside the Linux kernel. The coordinator periodically
probes each application by communicating with the runtime to
request information regarding the application’s sensitivity to
cache size. Cold regions of soft memory from applications that
are less sensitive to size changes will be reclaimed and memory
will be given to those that are more sensitive (and hence benefit
more from a larger cache) by the kernel (see §4.3).

Finally, how can the kernel quickly reclaim soft memory
without disrupting a running application? Since the kernel
operates at page granularity, a natural idea is to swap out
pages that contain soft-state data. Unfortunately, swapping is
disruptive—swapping out a page blocks all incoming memory
allocations and hence all threads of the application; frequently
swapping pages can introduce significant overheads that
prevent applications from reaching service-level agreements
(SLA) [40] (see §2).

To maintain high efficiency, Midas instead uses the kernel
to unmap pages directly (which is much faster than swapping
them to disk). When pages are unmapped, their underlying
data is lost—this is acceptable for soft state because it can
be regenerated. Without coordination, however, the kernel
cannot distinguish soft state from application data, making
unmapping potentially unsafe.

To solve this problem, our runtime is designed in a way that
is resilient to data loss. A soft pointer-based interface detects
data loss through segmentation faults that are triggered by the
runtime’s functions. These functions are carefully designed
to capture faults and transparently invoke a reconstruction
interface to regenerate the needed data (see §4.2.3).

Compared to paging, Midas does not freeze the execution
when shrinking soft memory, resulting in less disruption
to the application. Furthermore, reconstruction focuses on
recovering the individual objects that are needed and hence
is much more fine-grained and can be more efficient than
swapping, which brings back entire pages. Reconstruction
may require more computation than paging (the amount of
computation depends on exact soft state data). Therefore,
Midas provides a profiling tool that warns developers when
reconstruction incurs a high cost (discussed in §4.4).

1248 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

20 40 60 80 100
Cached Working Set (%)

0

2

4

6

8
No

rm
al
iz
ed

Th
ro
ug

hp
ut

SocialNet
MongoDB
HDSearch

Figure 1: The throughput of all three applications increases by
caching more soft state, but the benefit varies: SocialNet is 1.8×
faster by caching 70% of its working set, while HDSearch, in contrast,
achieves a 3.3× throughput increase by caching 50% state.

Results. With Midas, one can easily allow applications to
take advantage of soft state that do not currently support
it. It is also easy to port legacy code that uses an existing
cache system to use Midas instead. Our evaluation shows that
Midas can efficiently and safely harvest idle memory to store
applications’ soft state and achieve near-optimal performance
while reacting to extreme memory pressure quickly enough
to avoid running out of memory. By effectively granting
soft memory to the applications that benefit the most, Midas
achieves 1.34× higher overall throughput than Cliffhanger
(a state-of-the-art caching system). Midas is available at
https://github.com/uclasystem/midas.

2 Motivation

Many types of applications can benefit from soft state. For ex-
ample, a web frontend could cache content locally after loading
it from a backend to reduce network traffic and improve re-
sponse times; a database could cache the results of user queries
to reduce disk I/O and improve throughput; and a data analytic
or machine learning system could memoize intermediate
computation results to eliminate redundant computations.

To gain a high-level understanding of how much improve-
ment can be achieved by storing soft state, we experimented
with three datacenter applications: SocialNet (from Death-
StarBench [18]), MongoDB [32], and HDSearch (from
µSuite [46]). Each of these applications are capable of
using soft state. SocialNet [18] is a web forum built using
microservices; it employs Memcached and Redis to cache
user data in its frontend services. MongoDB [32] is a NoSQL
database; it has a built-in, in-memory caching engine that
caches recently queried data. HDSearch is an image search
service that memoizes the feature vectors of the images in its
corpus, generated by a GPU-based DNN.

Figure 1 shows the throughput of each application with vary-
ing amounts of soft state. The x-axis represents the percentage
of each application’s working set cached in memory, and the
y-axis shows the normalized throughput (to its performance
without soft state). Soft state is helpful to all applications
but the amount of benefit it provides varies. SocialNet is the
least sensitive to its soft state size; however, it still sees a
1.8× speedup by storing 70% of its soft state. HDSearch, in

0 2 4 6 8 10 12
Time (minutes)

0

5

10

15

Th
ro
ug

hp
ut

(K
O
PS

)

1
Figure 2: SocialNet starts to swap when it caches excessive data
and exhausts all available memory at t = 8min and it experiences a
throughput collapse.

0

50

100

M
em

or
y

Us
ag

e
(%

)

0 5 10 15
Time (minutes)

5

10

Th
ro
ug

hp
ut

(K
O
PS

) Static
Optimal

1Figure 3: Statically provisioning the cache space for SocialNet is sub-
optimal. During t=0min–5min, the cache is overprovisioned which
wastes memory. After that, the cache becomes underprovisioned
which limits performance.

contrast, is more sensitive to the soft state size—its throughput
increases by more than 3× with only 50% of its soft state.

Real-world datacenter applications can access a massive
amount of data. For example, a web forum like Twitter
generates petabytes of new data every day [49]. Thus, blindly
storing soft state in memory without a proper limit can hurt
application performance. An example of this problem is
shown in Figure 2. Storing soft state increases the throughput
of SocialNet up to a point. However, when idle memory
becomes exhausted, the kernel begins to swap out pages (at
t=8min), leading to a severe collapse in throughput.

A simple strawman solution is to statically provision a
limited memory capacity for storing soft state so that memory
use does not grow unbounded. However, provisioning the
right capacity is extremely challenging in practice.

First, for each application, we must find its sweet spot
of cache capacity; underprovisioning limits performance
while overprovisioning wastes memory. In addition, data-
center applications often have phased behaviors and load
variability [7, 8], making it impossible to have a simple static
configuration that is optimal at all times. For example, Figure
3 shows the results of SocialNet when statically provisioning
it with 4 GiB for storing soft state. It takes about 5 minutes
to fully fill this memory, leading to a suboptimal utilization
during this period. Performance increases with more usage
until it exhausts the soft state limit. After that, performance
flattens out despite the possibility of higher throughput if
additional soft state memory were available (the optimal line).

Second, as shown by Figure 1, different applications gain
different amounts of benefits through caching. To achieve
optimal overall performance with a limited amount of memory,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1249

https://github.com/uclasystem/midas

Soft Data Structures (§4.1.2)
(array, hash table, queue, …)

Soft Memory Pointer (§4.1.1)

Midas Abstractions (§4.1)

Midas Runtime (§4.2)

Evacuator (§4.2.2)Log Allocator (§4.2.1)

Page-Fault-Resilient Functions (§4.2.3)

Soft Memory (pages)

Application

Process 1

…

Process N

Midas Global Coordinator (§4.3)

grant/revoke

manage objects

se
m

an
tic

s

Figure 4: Midas enables developers to utilize soft memory easily and
efficiently with three major components: a familiar programming
abstraction, an application-integrated runtime, and a global soft-
memory budget coordinator.

one must grant space correctly to the applications that benefit
the most. For example, initially MongoDB’s performance
is most sensitive to the amount of soft state (the left side of
Figure 1), and thus we should prioritize its need. However,
the return diminishes quickly after caching 30% of its state.
To make the best use of the remaining memory, we should
respond by granting memory to HDSearch.

These problems call for a new system that can provide
elastic access to soft state for applications and dynamically
coordinate usage among applications in response to each
one’s execution phase and sensitivity to soft state size. To
be efficient, soft state should be able to quickly scale up and
down its capacity with little disruption. To be safe, the system
should be resilient to data loss caused by scaling down. To be
responsive, the system should conduct coordination among
applications quickly. Finally, to be practical, the system should
provide familiar programming abstractions for developers to
store and access soft state.

3 Midas Overview
As shown by Figure 4, Midas consists of three main com-
ponents: a programming abstraction for using soft memory
(§4.1), an application-integrated runtime that manages soft-
memory objects (§4.2), and a global coordinator that arbitrates
soft memory usage across different applications (§4.3).

Midas provides programming abstractions that enable sim-
ple and efficient use of soft memory through familiar APIs. At
a low-level, programmers can interact with Midas through soft
memory pointers, an abstraction that provides object ownership
similar to C++ smart pointers. However, it differs in that under-
lying objects can be forcibly released when under memory pres-
sure, even if still in scope. If a released object is later accessed,
a reconstructor function is invoked to regenerate the missing
object (e.g., by fetching it from a database over the network).

Building upon soft memory pointers, Midas provides a
higher-level library of familiar STL-style soft data structures—
including arrays, hash tables, and queues. These hide the
complexity of managing individual soft memory pointers, and
can be used as drop-in replacements for existing data structures.
For example, a developer building a key-value store similar
to Memcached could use a soft hash table to store soft memory
objects. Midas’s high-level interface is generally sufficient for
most use cases, but developers are free to build their own cus-
tom soft data structures through use of soft memory pointers.

Midas manages soft memory objects through a runtime
that is linked as a library with the application. It serves as an
allocator for soft memory objects. It works cooperatively with
the coordinator (discussed next) to determine the best memory
to release (i.e., idle memory first, then cold objects, and finally
hot objects). To achieve this, the runtime provides a moving
allocator that embraces the idea of log-structured memory [41]
to organize soft memory into different segments. An evacuator
thread scans and compacts logs to segregate hot objects, cold
objects, and dead objects. This helps both to coordinate which
memory should be freed and to reduce fragmentation.

However, the runtime is not trusted for correct operation.
If it fails to respond quickly enough or if memory pressure
becomes too severe, pages will be unmapped in an uncoordi-
nated fashion to avoid swapping. In the event such forcible
revocation happens, the runtime is designed to safely tolerate
page faults when accessing unmapped memory. To achieve
this, we developed a set of page-fault-resilient functions and
used them as primitives to build our runtime.

Midas’s global coordinator dynamically adjusts the soft
memory budget among applications to optimize their overall
performance. It periodically probes the marginal utility of soft
memory for each application by granting a small amount of
additional memory and observing the effect on performance.
Using this information, the coordinator can optimize the
allocation of soft memory by granting it to the applications
that benefit the most. The coordinator defines the global
utility function as the weighted average of all applications’
performance and employs a hill-climbing algorithm to
approach the global optimal point. Midas allows operators
to specify the weight of each application to indicate relative
significance, similar to the nice interface of Linux.

4 Design

4.1 Soft Memory Abstraction
Soft memory is a new type of memory that can be revoked
under memory pressure. In Midas, soft memory is backed
by physical pages that can be unilaterally unmapped and
reclaimed by the OS kernel. Accessing reclaimed soft memory
will trigger a reconstruction event to rebuild the missing data.
Midas provides a smart-pointer-like API to enable developers
to easily use soft memory, hiding the complex details of soft
memory allocation/deallocation, page-fault handling, and data

1250 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 template <typename T, typename... ReconArgs >
2 class SoftMemPool {
3 SoftMemPool(std::function <T(ReconArgs...)>
4 reconstructor);
5 SoftUniquePtr <T, ReconArgs...> new_unique();
6 SoftSharedPtr <T, ReconArgs...> new_shared();
7 };
8

9 template <typename T, typename... ReconArgs >
10 class SoftUniquePtr {
11 ~SoftUniquePtr();
12 T read(ReconArgs... args);
13 void write(T newval);
14 bool cmpxchg(const T &oldval , T newval);
15 };

Listing 1: Midas’s soft memory pool and unique pointer interface.
1 template <typename T> class SoftArray {
2 SoftArray(size_t size , std::function <T(size_t)>
3 reconstructor);
4 T read(size_t idx);
5 void write(size_t idx, T t);
6 bool cmpxchg(size_t idx, const T &oldval , T newval);
7 };
8

9 class BlockCache {
10 BlockCache(size_t sz) : array_(sz, [](size_t idx) {
11 return read_from_storage(idx); }) {}
12 Block read(size_t idx) { return array_.read(idx); }
13 void write(size_t idx, Block block) {
14 array_.write(idx, block);
15 write_to_storage(idx , block);
16 }
17

18 SoftArray <Block > array_;
19 };

Listing 2: Midas’s soft array interface and a simple user-level storage
block cache (similar to Linux’s page cache) built using soft array.

reconstruction (§4.1.1). Furthermore, Midas offers high-level
data structure libraries as composable building blocks (§4.1.2).

4.1.1 Soft Memory Pointer

Listing 1 shows Midas’s soft memory pool and pointer
interface. To use soft memory, developers first need to create
a soft memory pool which can later be used to allocate soft
memory pointers. The pool abstraction conceptually groups
together soft pointers whose objects can be reconstructed in
a similar way. Midas exposes the pool as a C++ template class
whose parameters consist of two parts: T, which is the object
type of soft pointers to allocate, and ReconArgs, which are the
types of arguments used for reconstructing a missing object.
Developers can initialize a pool with a reconstructor
function and then allocate pointers using new_unique (for
soft unique pointers, similar to C++’s std::unique_ptr)
and new_shared (for shared pointers).

Soft memory pointers support automatic lifetime man-
agement through reference counting. Developers can use
its read API to get the value of the pointed object. In case
the underlying soft memory has been reclaimed, Midas will
automatically reconstruct the missing object using the recon-
struction arguments passed into read (we will show a concrete
example soon in §4.1.2). Midas hides the raw reference and
returns the value by copying. This is critical as the underlying
reference may become invalid any time when the soft memory
gets reclaimed. With copying, Midas restricts potential

faulting sites to stay inside Midas’s internal code, thereby
freeing developers from handling complicated page faults in
the application code. The copying design incurs negligible
performance overheads (only a few additional cache accesses).
write enables developers to update the object value. However,
different from read, write does not require reconstruction
arguments as Midas can directly rebuild the object using the
new value. Soft pointers also support atomic operations like
compare-and-exchange, enabling developers to atomically
update object values to support multi-threaded applications.

With its smart pointer design, Midas is able to capture rich
application semantics for effectively managing soft memory.
For example, since all soft object accesses go through the
read/write API, Midas can accurately track the hotness
information of each object which can be leveraged by Midas
runtime for making intelligent object placement and eviction
decisions (details in §4.2). Soft pointer’s automatic lifetime
management enables cascading eviction, improving the
efficiency of using soft memory. For instance, in a web forum
application, a forum post object may contain a soft unique
pointer to an attached picture. Under memory pressure, Midas
may decide to evict the post object in which case the reference
count of the picture pointer will automatically drop to zero
and trigger evicting the dangling picture object cascadingly.

4.1.2 Soft Data Structures

To further reduce the programming effort of using soft
memory, Midas offers high-level data structures as convenient
building blocks. Midas’s built-in data structures include soft
arrays, soft hash tables, and soft queues; developers can also
easily build more based on the soft pointer abstraction.

Listing 2 presents the interface of soft array (lines 1-8).
Developers can create a soft array by specifying its size and
reconstructor (which rebuilds the array element of a given
index). Soft array supports standard read, write, and atomic
operations by index. Under the hood, a soft array is simply
implemented via an ordinary array of soft pointers.

Lines 10-21 present a user-level storage block cache as a
simple illustrative application, similar to Linux’s page cache.
BlockCache internally wraps a soft array whose elements
are storage blocks (line 20). This enables it to efficiently
leverage idle memory to cache storage blocks in a best-effort
manner. For each block read request, it simply retrieves the
result from the soft array (line 14). Upon an element miss,
the array automatically reconstructs the element by reading
the block back from the storage device (lines 12-13). For each
block write request, BlockCache updates both the cache in
array and the data in storage.

4.2 Application-Integrated Runtime

Midas runtime is the key component that manages soft objects
to enable efficient use of soft memory. It includes a log-
structured memory allocator that serves memory allocation

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1251

L E H Sz Ptr Data Soft Ptr
1b 1b 2b 48b28b

…Used segments
(sorted by hotness)

Free segments …

Figure 5: Midas organizes soft memory using a free segment list and
a used segment list (sorted by segment’s hotness, useful for Midas’s
evacuator in §4.2.2). It employs a log-structured allocator to serve
memory allocation requests. Each object has a 10-byte header, which
includes a liveness bit, an evacuating bit, hotness bits, an object size
field, and a reversed pointer field.

requests and organizes objects into a list of segments (§4.2.1),
a concurrent evacuator that constantly compacts hot objects
and releases cold and dead objects (§4.2.2). Page faults can
happen in Midas runtime when the soft memory it is accessing
gets reclaimed and unmapped because of memory pressure.
To ensure robustness, we carefully built the runtime using a
set of page-fault-resilient functions which are able to capture
page faults and gracefully recover from them (§4.2.3).

In Midas, the runtime as well as the soft memory it manages
are linked directly into each application’s address space.
Compared to traditional cache services (e.g., Memcached) that
run in a separate process, our design offers several important
advantages. First, it provides direct and efficient soft memory
accesses for applications, eliminating the inter-process
communication (IPC) overhead. Second, it enables our
runtime to profile the application and collect semantics, greatly
facilitating semantics-aware optimizations. Third, since
each application has its own runtime, we can easily enforce
soft memory isolation among applications and adaptively
customize the memory management policy of each application.

4.2.1 Log-structured Soft Memory Allocator

Midas embraces the idea of log-structured memory [41]
to manage soft memory; it reduces memory fragmentation
through compaction, thereby achieving higher efficiency in
utilizing soft memory.

Midas’s log-structured allocator organizes soft memory
using a free segment list and a used segment list, illustrated
in Figure 5. Segments are the units for Midas to perform
evacuation to compact objects and reclaim space (details in
§4.2.2). The total size of all segments (used and free) equals the
soft memory budget that the linked application receives from
the global coordinator (§4.3). For each memory allocation
request, the allocator allocates space from a free segment;
if the current one is full, it will pop a new one from the free
list. Midas backs each segment using a 2 MiB huge page; this
reduces TLB pressure and page table walk cost. While small
objects reside in only one segment (i.e., they do not cross the
segment boundary), big objects whose sizes are larger than 2
MiB span across multiple segments. Since the free list does not
provide any address contiguity guarantee for segments, Midas

breaks the big object into smaller pieces—each one fits into
a single segment—and chains them together using segment
headers. The decomposition is transparent to application
developers; upon object read, Midas automatically reads all
segregated pieces and stitches them back. This is possible
thanks to Midas’s pass-by-copy interface (§4.1).

Each allocated object has a 10-byte header inlined with
its data, used for tracking the object’s runtime information.
This includes 1) a liveness bit, indicating whether the object
has been deallocated; 2) an evacuating bit, marked by the
evacuator to synchronize evacuation with object accesses; 3)
hotness bits, a counter that will be incremented (or unchanged
when it has reached the maximum) each time the object gets
accessed; 4) a size field, indicating the total size of the object;
5) a reverse pointer field, used by the evacuator, if it moves
the object, to rewrite the soft pointer.

4.2.2 Soft Memory Evacuator

As the allocation goes on, the application may eventually
deplete the free segment list. It is the responsibility of Midas’s
evacuator to constantly release cold and dead objects, ensuring
the best use of soft memory by only storing hot objects. In
addition, the evacuator tracks segments in order of hotness
in a used list (see Figure 5), to simplify the design and improve
the speed of memory reclamation, in which the kernel forcibly
unmaps application’s soft memory pages under intense
memory pressure (§4.3).

Midas’s background thread continuously monitors the
free segment ratio and triggers evacuation if it falls below
a configurable threshold (our default value is 90%). The
evacuation mainly consists of three stages:
Scanning Stage. The evacuator first scans through all objects
in the used segment list. For each scanned object, it decrements
the embedded hotness counter (similar to the CLOCK
algorithm [15]). The evacuator treats objects with a zero pre-
scanning hotness value, in addition to deallocated objects, as
dead objects; they will be released in the compaction stage. The
evacuator calculates the live ratio of each segment (i.e., the per-
centage of live bytes) during scanning, and then uses it to sort
all scanned segments to decide their priority for compaction.
The segment with the lowest live ratio will be compacted first
as it yields the largest benefits (in terms of the reclaimed space).
Compaction Stage. The evacuator compacts one segment at a
time. For each live object, it first relies on the evacuation bit to
synchronize with application threads to avoid data race (similar
to AIFM [40]). It then copies the object into a new segment and
leverages the reversed pointer field to rewrite the address of the
corresponding soft pointer. After evacuating all live objects, it
moves the segment from the used list into the free list.
Sorting Stage. After compaction, the evacuator calculates the
segment-level hotness value for all segments in the used list,
defined as ∑∀ob j∈seg SIZE(ob j) ·HOT NESS(ob j). It finally
sorts the used list by segment-level hotness in ascending order.

1252 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 for each segment S to compact {
2 D = pick_destination_segment();
3 for each object O in S {
4 try {
5 // A wrapper around our PF-resilient memcpy
6 copy_object_into(O, D);
7 } catch (SoftMemUnmapped &exception) {
8 if (exception.fault_addr belongs to O)
9 break; // Skip S as it has gone

10 else // It must belong to D
11 goto line2; // Pick a new D and restart
12 }
13 }
14 }

Listing 3: Midas implements its evacuator’s compaction code using a
page-fault-resilient memory copy function.

4.2.3 Page-Fault-Resilient Functions

Midas runtime directly manipulates soft memory during
allocation and evacuation. Since the kernel may unmap soft
pages to reclaim memory under pressure (details in §4.3), the
runtime has to be aware of page faults and be able to recover
from them gracefully. We carefully built the runtime to achieve
this goal. First, we stored the important metadata (e.g., the
free and used segment lists) in normal memory instead of soft
memory, therefore it will not be lost under memory pressure.
This is viable as the metadata only consumes little memory
(less than 10 MiB). Second, we introduced page-fault-resilient
functions and used them as primitives to build the runtime.

A page-fault-resilient function is able to capture any internal
page fault that stems from dereferencing unmapped soft mem-
ory and respond to it by reverting all side effects and throwing
a SoftMemUnmapped(fault_addr) exception to the caller.
As a concrete example, in Midas we internally implemented
a page-fault-resilient memory copy function, which is used to
build the evacuator’s compaction code to withstand page faults
(see Listing 3). Page faults can happen when copying objects
from the old segment into the new segment. To deal with this
case, Midas uses its resilient memory copy function (line 7)
to capture and handle the potential exception (lines 8-13).

Midas registers its own signal handler to facilitate capturing
and handling all soft-memory-related page faults. Addition-
ally, a page-fault-resilient function satisfies the following
requirements to ensure resilience:

• It embeds a fault recovery code block for aborting the
partial execution and rolling back side effects. Midas
runtime maintains a mapping from resilient functions to
their recovery blocks so that when page fault happens the
handler can invoke the corresponding recovery code.

• All of its inner non-resilient functions have to be inlined
to prevent the control flow from jumping out of its scope.
Otherwise, the page fault handler is unable to find the
corresponding recovery code.

• It preserves its stack frame base pointer (by disabling the
compiler optimization) so that the fault handler can easily
unwind its stack and throw an exception back to its caller.

4.3 Global Soft Memory Coordinator
Midas’s global coordinator is responsible for granting
server’s idle memory to applications as soft memory and
coordinating the budget across applications to optimize the
overall performance.

4.3.1 Soft Memory Management Mechanism

The coordinator maps idle memory pages directly into an
application’s address space as soft memory segments. For
each application, the coordinator dynamically maps or unmaps
pages to readjust its soft memory budget. To facilitate the
management, the application’s runtime shares its free segment
list and used segment list with the coordinator.

To grant more soft memory to an application, the co-
ordinator maps more pages to it and inserts them into the
free segment list. Similarly, to reclaim memory from an
application, the coordinator unmaps pages. The coordinator
first tries to pop out and unmap the segments from the free list;
since they do not hold any useful live objects, unmapping them
does not incur any impact on the application’s performance.
Meanwhile, the runtime strives to avoid the exhaustion of the
free list by triggering evacuation (§4.2.2).

The synergy between the runtime and the coordinator is able
to handle moderate memory pressure (i.e., the common case).
However, under severe pressure, the evacuation may fall be-
hind, leading to an empty free segment list. To avoid depletion,
the coordinator reacts by unmapping used segments which may
induce performance disruption in two folds. First, when the ap-
plication later tries to access an unmapped object, the runtime
will experience a page fault which incurs overhead. Second,
the runtime has to spend additional time reconstructing the
missing object. To alleviate this issue, the coordinator priori-
tizes cold segments over hot segments. Thanks to the evacuator,
the segments in the used list have been ordered by their hotness
(§4.2.2). Therefore, the coordinator can realize prioritization
by simply unmapping segments based on their order in the list.

4.3.2 Coordination Policy

Midas continuously adjusts each application’s soft memory
budget by solving the following optimization problem:

maximize
m ∑

∀i∈APPS
wiΓi(mi) , subject to ∑

∀i∈APPS
mi=M

For each application i, wi denotes its weight (which is either
specified by the operator or uses the default value 1) and Γi
denotes its performance utility when assigned soft memory
of size mi. The server-wide overall utility is defined as the
weighted sum of all application’s utilities. M denotes the
server’s total idle memory.

By default, the coordinator estimates Γi as −RCOSTi,
where RCOSTi is the application’s CPU usage spent on
reconstructing missing objects. Midas’s runtime can easily

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1253

collect this per-application information and report it to the
coordinator. Developers can also plug in the real performance
metric reported by applications—which already exists in many
datacenter applications [11]—for a more faithful Γi.

Midas solves the optimization problem using the hill climb-
ing approach [42]. It periodically probes every application’s
marginal utility benefit ∂Γi(mi)

∂mi
by additionally assigning a

small portion of memory ∆mi and monitoring the change of
utility ∆Γi . Midas regrants the soft memory budget from the
application with the lowest marginal utility benefit to the one
with the highest benefit.

In contrast, Cliffhanger (a recent cache service) [13]
adopts a coordination policy that optimizes for the overall
cache hit rate, but this does not necessarily optimize the
overall performance. For example, caching objects that are
frequently accessed may not be helpful if they can be cheaply
reconstructed. Midas avoids this issue by using both access
frequency and reconstruction cost as metrics for optimization.

4.4 Discussion

Though Midas is mainly designed for caching hot data and
memoizing intermediate computation results, developers have
the freedom to put any data into soft memory as long as it is re-
constructible. However, storing data that is expensive to recon-
struct but infrequently accessed can lead to performance issues.
Midas provides a profiling tool that generates runtime warnings
if such cases are detected. In addition,Midas offers a debugging
mode where we validate the reconstruction logic by calling the
user-defined reconstruction function and comparing its result
with the actual cached object using the object’s comparison
operator. Bugs are reported if these objects are not identical.

Midas also incorporates Linux’s page cache by simply
treating it as another per-application soft memory pool. For
each application, Midas’s shim layer intercepts all POSIX
file operations and caches the file data using a soft hash table,
whose keys are file inode numbers along with block-aligned
offsets and values are file blocks. The reconstructor rebuilds
the missing block by performing the actual file read.

5 Implementation

Midas is implemented in C++ and includes bindings for C.
Our implementation has 2,814 LOC for the soft memory
abstraction (§4.1), 3,866 LOC for the runtime (§4.2), and
1,029 LOC for the global coordinator (§4.3).

Soft data structures store their metadata (e.g., a hash table’s
bucket array that stores indices) in normal memory and store
their data payload (e.g., a hash table’s key-value pairs) in soft
memory using soft pointers.

The log-structure allocator enforces 16-byte alignment
for allocated data to make it GCC-compatible. The evacuator
adopts a concurrent pauseless design similar to AIFM [40].

The evacuator ensures atomicity when evacuating or recon-
structing large objects that span across multiple soft memory
segments. Midas registers its own SIGSEGV handler. For each
segmentation fault, the handler checks whether the faulting
memory address belongs to a soft memory region and whether
the faulting program counter (PC) belongs to a page-fault-
resilient function; for faults that do not meet these conditions,
the handler treats them as unrecoverable exceptions and aborts
the program. To facilitate the PC check, Midas leverages a
linker script to place all resilient functions into a separate code
segment whose layout is known at compile time.

During each application’s initialization, the runtime
registers itself to the global coordinator using ioctl and
uses mmap to create a shared memory region for exposing
information—including its free segment list and used list
(implemented as arrays) and the application’s reconstruction
cost (implemented as a counter)—to the coordinator.

We implemented the global coordinator as a user-space
daemon (that runs the coordination policy) and a privileged
kernel module (that executes the coordination decision by
mapping/unmapping pages to/from user processes directly).
Every 5 seconds, the coordinator probes the marginal utility of
each application and makes a new adjustment to soft memory
budgets. It probes an application by either granting or revoking
64 MiB soft memory and monitoring its performance change.
In each adjustment, it regrants up to 256 MiB soft memory from
the application with the lowest marginal utility to the one with
the highest utility. To avoid oscillation, it refrains from grant-
ing more soft memory to the application until it has consumed
the additional memory offered in the previous round.

6 Programming with Midas

We present general guidelines of programming with Midas
(§6.1) followed by concrete examples of porting four real
applications (§6.2).

6.1 Guidelines

When is it safe to use soft memory? Developers can
generally use soft memory to store any application data that
follows the unmap-and-reconstruct semantics. To support
evacuation, developers have to implement copy constructors
for objects stored in soft memory.
When is it beneficial to use soft memory? Developers should
generally consider using soft memory when applications can
opportunistically benefit from having additional memory.
Typical use cases include caching in web applications and
memoization in data analytics systems. They often have
unknown marginal utility and unbounded memory footprint,
making them hard to handle efficiently through static provi-
sioning. Midas can benefit them by automatically rightsizing
their soft memory budget and harvesting idle memory.

1254 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Applications Abstractions
used

Porting
effort (LOC)

CPU
cores

Normal
mem. (GiB)

Peak soft
mem. (GiB)

Reconstruction
cost (µs/obj.) Dataset

HDSearch [46] Soft hash table 36 12 1.7 13.6 1244.2 OpenImg [25], 1.9M images
WiredTiger [33] Soft pointer 332 12 3.7 21.3 20.6 Facebook USR [8], 50M KV

Storage Server [24] Soft array 29 4 1.1 20.4 10.5 multilate [23], 16 GiB disk

SocialNet [18]
Soft hash table

Soft queue
175 20 1.3 12.2 99.1–3227.7

Socfb-Penn94 [39],
41.5K nodes, 1.4M edges

Table 1: We ported four applications into Midas with low programming effort. All four applications extensively use soft memory while their
data reconstruction costs vary drastically.

How to migrate from traditional cache services? Exist-
ing applications that employ local cache services (e.g., Mem-
cached [30] or Redis [2]) can directly use Midas as a drop-in re-
placement. Existing applications that employ distributed cache
services (e.g., AWS ElastiCache [1]) can use Midas as a fast lo-
cal cache tier to reduce the overhead of accessing remote cache.

6.2 Application Case Studies
We ported four applications to Midas. They cover a range of
CPU usage,normal and soft memory usage,data reconstruction
cost, and Midas’s abstraction usage (see Table 1).
HDSearch [46] is an image search service based on content
similarity. For each query, a feature extraction backend
transforms the input image into a feature vector via a DNN
(running on GPU), and then caches the result along with a
hash of the image (using Memcached for memoization). To
port this application, we replaced Memcached with our soft
hash table, which only involves 36 LOC changes. It has 1.7
GiB normal memory usage and 13.6 GiB peak soft memory
usage. Reconstructing KV pairs is expensive (1244.2 µs per
object) as it requires re-performing transformation on GPU.
WiredTiger [33] is a NoSQL key-value storage engine used
by MongoDB [32]. It persists all key-value pairs in storage
indexed via an in-memory B+ tree. It has a built-in in-memory
caching engine that caches the data of B+ tree’s internal nodes
and leaf nodes to reduce expensive storage I/Os. To port
WiredTiger, we implement its caching engine using Midas’s
soft memory pool and pointer abstractions; we created a
soft memory pool with a reconstruction method that wraps
WiredTiger’s existing code for handling cache misses, and
replaced ordinary B+ tree pointers with soft memory pointers
allocated from the pool. This only involves 332 LOC changes.
With our port, WiredTiger has 3.7 GiB normal memory usage
and 21.3 GiB peak soft memory usage. Reconstructing a tree
node object requires reading its content from the disk and
rebuilding the index, which takes 20.6 µs.
Storage Service is an NVMe-based block storage service
similar to Reflex [24]. It exposes a standard block I/O interface
using RPC to support accessing 4KiB storage blocks remotely.
Its original design uses SPDK [3] to communicate with the
storage block device, which bypasses Linux’s page cache.
To port it, we cache the block data using a soft array, similar

to the BlockCache design in Listing 2. This requires adding
29 LOC. With our port, it uses 1.1 GiB normal memory and
20.4 GiB peak soft memory. Reconstructing an array element
requires a block I/O which takes 8.5 µs to finish.
SocialNet is a twitter-like latency-critical web service from
DeathStarBench [18]. It is built using 12 microservices with
sophisticated fan-out patterns and call dependencies. Its orig-
inal design uses Memcached/Redis to cache users’ data and
memoize results of certain queries, and employs pools to cache
TCP connections/RPC sessions. Since each microservice has
its own binary and runs within its own process, Midas treats
SocialNet as 12 different applications. To port it, for each
microservice, we replace its Memcached/Redis usage with
Midas’s soft hash table and connection pool with Midas’s soft
queue; this involves 175 LOC changes. With our port, it uses
1.3 GiB normal memory and 12.2 GiB peak soft memory. It
takes 99.1–3227.7 µs to reconstruct an object depending on
its type; for example, it takes only 99.1 µs to re-establish an
RPC session but requires 3227.7 µs to re-fetch a user’s post.

7 Evaluation

Our evaluation seeks to answer the following questions:
1. Can Midas judiciously coordinate soft memory among

applications to optimize overall performance? (§7.1)
2. Can Midas quickly and reactively harvest available idle

memory to improve utilization and performance? (§7.2)
3. Can Midas quickly react to memory pressure to avoid out-

of-memory killing while maintaining good performance?
(§7.3 and §7.4)

4. How does the data reconstruction cost of an application
affect its performance? (§7.4)

Setup. We conducted experiments on one server that equips a
48-core Intel Xeon Gold 6252 CPU and 128 GiB memory. The
server ran Ubuntu 20.04 with Linux 5.14. In line with prior
work [37], we enable hyperthreading, but disable dynamic
CPU frequency scaling, transparent huge pages, and kernel
mitigations for transient execution attacks. For interactive
services (e.g., SocialNet), we use a separate server to generate
load, which connects to the application server via a 10 GbE
network. For all four applications, we generated requests
with Zipfian distribution, consistent with the study of real
datacenter workloads [9].

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1255

0

50

100

O
ve
ra
ll

Th
ro
ug

hp
ut

(%
)

Midas
Overprovisioning
Static Provisioning
Cliffhanger

0

2

4

6

So
ci
al
Ne

t
P9

9
La
te
nc
y

(m
s)

Midas
Overprovisioning
Static Provisioning
Cliffhanger

0 5 10 15 20 25 30 35
Time (minutes)

0

10

20

M
em

or
y

Us
ag

e
(G
iB
)

Idle
Midas
Static Provisioning
Cliffhanger

1Figure 6: When co-running four applications with 20 GiB idle
memory, Midas dynamically coordinates their soft memory budgets
and reaches an equilibrium in around 20 minutes. Overall, it harvests
19.6 GiB idle memory as soft memory and achieves 75.0% of the
ideal throughput (measured by overprovisioning soft memory for
all applications regardless of the 20 GiB total budget constraint).

0

5

10

Midas Cliffhanger

0

5

10

0

5

10

0 5 10 15 20 25 30 350

5

10

0 5 10 15 20 25 30 35
Time (minutes)

M
em

or
y
Us

ag
e
(G
iB
)

HDSearch
WiredTiger

Storage Server
SocialNet

Granted

1Figure 7: Midas and Cliffhanger converge to different allocations
of soft memory between applications because of fundamental
differences in their coordination policies.

7.1 Coordinating Soft Memory

In this experiment, we investigated whether Midas can
judiciously coordinate soft memory usage among applications
to optimize overall performance.

We provisioned the server with 20 GiB idle memory and
co-ran all four applications (§6) using Midas. Initially, all
applications start with the same amount of soft memory (i.e.,
5 GiB), but Midas will dynamically adjust it. SocialNet has 12
loosely-coupled microservices and we start by evenly splitting
the 5 GiB budget across them. We measured the overall
throughput (defined as the average of all applications’ through-
put normalized to their ideal throughput) and the soft memory
usage. We compared Midas with three different baselines. The
first baseline overprovisions soft memory for each application
to cache all of possible soft state. This leads to a 67.5 GiB
soft memory usage that is impossible to achieve under 20 GiB
idle memory; thus, this represents the ideal throughput. The
second baseline limits itself to the 20 GiB soft memory budget
and statically partitions it across four applications in an even
manner (i.e., each application gets 5 GiB soft memory). The
third baseline is Cliffhanger [13]. Similar to Midas, it dynam-
ically coordinates soft memory among applications. However,
it adopts a different coordination policy of maximizing the
global cache hit rate as opposed to maximizing the overall
performance utility. As the original version of Cliffhanger
only supports Memcached, we emulated Cliffhanger by
implementing its coordination policy atop Midas.

A good result for Midas would show that it quickly reaches
an equilibrium by judiciously coordinating soft memory usage
among applications and achieves good overall throughput

close to the ideal throughput (of the overprovisioning
baseline). In contrast, the overall throughput of the static
provisioning baseline should be suboptimal, as it equally
treats all applications and fails to prioritize the soft memory
need of applications that can benefit the most. On the contrary,
Cliffhanger does coordinate soft memory among applications,
but it optimizes for the overall cache hit rate which does not
guarantee optimal overall performance (§4.3.2). Therefore,
we expect Cliffhanger to achieve overall throughput better
than the static baseline but worse than Midas.

Figure 6 shows the results. The top figure presents the
overall throughput of four systems normalized to the ideal
value. The bottom figure presents soft memory usage; we leave
out the usage of the overprovisioning baseline as it is much
higher (67.5 GiB) than the amount of idle memory (20 GiB).
Midas’s overall throughput converges in around 20 minutes
and achieves 75.0% of the ideal throughput by harvesting
98.0% idle memory. It also reduces SocialNet’s 99th percentile
latency by 58.4% from 5.5ms to 2.3ms. In contrast, the
static provisioning baseline only achieves 48.7% of the ideal
throughput and fails to improve SocialNet’s tail latency due to
the lack of coordination. It also uses 3.1 GiB less soft memory
than Midas as some microservices of SocialNet fail to fully use
their statically-provisioned soft memory budgets due to small
soft memory footprints. Cliffhanger uses a similar amount of
soft memory to Midas. Due to its coordination policy, it con-
verges on the overall cache hit rate (not shown due to the space
constraint) but oscillates in terms of the overall throughput.
Therefore, it only achieves 56.0% throughput on average.

Figure 7 presents the per-application soft memory usage
of Midas and Cliffhanger. For each application, the gray line

1256 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

represents the soft memory budget it receives, while the color-
ful line represents the amount of soft memory it uses. Because
of the difference in their coordination policies, Midas and
Cliffhanger make very different allocations of soft memory be-
tween applications except for the storage server. For example,
since it is time-consuming to reconstruct HDSearch’s objects
(as it involves recomputing the feature vectors of images), Mi-
das scales up HDSearch’s soft memory to cache more objects.
However, since HDSearch has a relatively low request skew-
ness (compared to other applications) and consequently a lower
cache utility (in terms of hit rate), Cliffhanger deprioritizes
it by scaling down its soft memory, significantly impacting
its performance (and therefore the overall performance).

In summary, the experiment demonstrates that Midas can
efficiently utilize available memory as soft memory and
judiciously coordinate soft memory among applications,
achieving high overall performance close to the ideal one that
requires 3.4× more memory.

7.2 Harvesting Available Idle Memory

In this experiment, we investigated whether Midas can quickly
and reactively harvest additional idle memory—whenever it
is available—to improve memory utilization and application
performance.

We ran an application using Midas and dynamically added
idle memory to the server. A good result for Midas would show
that it quickly detects any new idle memory and reactively
grants it to SocialNet as additional soft memory to improve
performance. Additionally, we expect that the marginal benefit
decreases as SocialNet uses more soft memory and caches
more hot items.

Figure 8 presents the results of SocialNet. The results of
other applications show similar trends and can be found in Ap-
pendix A. Initially, the server has 2 GiB idle memory (the dark
gray line). With Midas, SocialNet fully utilizes them as soft
memory (the blue line) and achieves 13 MOPS throughput (the
pink line). At t=5min, we added 4 GiB more idle memory to
the server. Midas immediately detects this change and rapidly
ramps up its soft memory usage; it only takes around 3 min-
utes for SocialNet to reach a new steady state. Benefiting from
more soft memory, SocialNet’s throughput increases by 46%
from 13 MOPS to 19 MOPS, and its 99th percentile latency
decreases by 27% from 5.5ms to 4ms (the light brown line). At
t=15min, we again added 4 GiB more idle memory. This time
we observed a reduced marginal benefit as SocialNet has al-
ready cached most hot items; it takes 15 minutes to reach a new
equilibrium (i.e., 8.5 GiB soft memory usage) and yields a 43%
improvement of 99th percentile latency (from 4ms to 2.3ms).

In summary, these results highlight Midas can quickly detect
idle memory and reactively scale up its soft memory usage
to improve memory utilization and application performance.

10

15

20

Th
ro
ug

hp
ut

(K
O
PS

)

Throughput

0 5 10 15 20 25 30
Time (minutes)

0

5

10

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

2

4

6

P9
9
La

te
nc

y
(m

s)

P99 Latency

1Figure 8: With Midas, SocialNet effectively harvests additional
idle memory by scaling up its soft memory usage, improving both
throughput and tail latency.

10

15

20

Th
ro
ug

hp
ut

(K
O
PS

)

Throughput

0 5 10 15 20
Time (minutes)

0

5

10

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

2

4

6

P9
9
La

te
nc

y
(m

s)

P99 Latency

1Figure 9: Under moderate memory pressure (t=5min-15min), Midas
is able to reactively scale down SocialNet’s soft memory usage to
avoid running out of memory with moderate performance impact.

10

15

20

Th
ro
ug

hp
ut

(K
O
PS

)

Throughput

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (minutes)

0

5

10

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

2

4

6

P9
9
La

te
nc

y
(m

s)

P99 Latency

1Figure 10: Midas is able to avoid out-of-memory killing even under
extreme memory pressure (t = 5min and t = 10min). SocialNet
experiences brief throughput collapses and tail latency spikes but
quickly recovers to normal once the pressure is finished.

7.3 Reacting to Memory Pressure

In this experiment, we investigated whether Midas can quickly
react to memory pressure to avoid out-of-memory killing and
studied its impact on application performance.

Similar to §7.2, we ran SocialNet using Midas, but
dynamically decreased the server’s idle memory with a
colocated memory antagonist. We measured the impact on
SocialNet’s soft memory usage and performance.

Under moderate memory pressure, ideally, Midas’s global
coordinator should reactively unmap free soft memory
segments while Midas’s evacuator should be able to replenish
them (by evicting cold objects and evacuating hot objects)
to match the coordinator’s unmapping rate. A good result for
Midas would show that SocialNet’s throughput degrades gradu-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1257

ally and mildly as the pressure persists, since Midas prioritizes
the eviction of cold and dead objects over hot objects.

Under intense memory pressure, we expect the coordinator
to also unmap the used soft memory segments as the evacuator
cannot keep up with the high unmapping rate. In this case,
SocialNet may experience a sudden throughput collapse due
to the loss of hot objects. However, a good result for Midas
would show that SocialNet is still able to operate without expe-
riencing any out-of-memory killing. In addition, immediately
after the pressure is finished, SocialNet’s performance should
be able to recover to normal by reconstructing back hotter
objects and evicting colder objects.

Figure 9 presents the results under moderate memory
pressure. Initially, the server has 10 GiB soft memory. The
application uses around 9.6 GiB of it as soft memory and
achieves around 20 MOPS throughput and 2.3ms 99th

percentile latency. At t=5min, the memory antagonist starts to
allocate 8 GiB more memory at a moderate rate of 0.8 GiB/min,
resulting in the decrease of idle memory until t =15min. As
shown by the bottom figure, Midas is able to reactively scale
down SocialNet’s soft memory usage through reclamation
to avoid running out of memory. As shown by the top figure,
SocialNet’s throughput and 99th percentile latency remain un-
affected in the beginning, as Midas prioritizes the reclamation
of cold soft memory. After running below 5 GiB idle memory,
SocialNet experiences a mild throughput drop and latency
increase, as Midas starts to reclaim hotter soft memory.

Figure 10 presents the results under intense memory
pressure. In this case, the antagonist allocates memory as fast
as Linux permits (7 GiB/s), making it an extremely challenging
case to handle. Despite the high rate, Midas is still able to avoid
out-of-memory killing by rapidly scaling down SocialNet’s
soft memory usage. In this case, Midas has to unmap the used
soft memory segments, inevitably causing brief throughput
collapses and latency spikes (at t = 5min and t = 10min).
However, once the memory pressure is finished, SocialNet’s
throughput and latency quickly recovers to the normal level,
consistent with the numbers reported in Figure 8 and 9.

The results of other applications also show similar trends
(see Appendix B). In summary, these results demonstrate that
Midas can always quickly react to memory pressure to avoid
out-of-memory killing while maintaining good application
performance whenever it is possible.

7.4 Design Drill-Down

Soft Pointer Dereference Cost. We measured the latency of
dereferencing a soft pointer and compared it to the latency of
dereferencing an ordinary C++ unique_ptr, when the pointer
and data pointed to are originally in memory (i.e., not in CPU’s
cache). Table 2 shows the results of small objects (32 B) and
large objects (4 MiB), and Appendix D has more results of
other object sizes.

For small objects that fit into CPU’s cache line (Table 2a),
Midas is able to deliver comparable read latency as its extra

[read|write] Average Median P90
Latency (cycles) read/write read/write read/write

C++ unique_ptr 367 / 199 382 / 176 510 / 332
SoftUniquePtr 400 / 393 370 / 368 516 / 500

(a) Small objects (32 B).

[read|write] Average Median P90
Latency (Mcycles) read/write read/write read/write

C++ unique_ptr 0.97 / 1.39 0.94 / 1.36 0.99 / 1.37
SoftUniquePtr 1.77 / 1.15 1.75 / 1.14 1.77 / 1.18

(b) Large objects (4 MiB).
Table 2: Midas’ soft pointer only adds moderate dereferencing cost
compared to C++’s ordinary smart pointer.

Live Object Ratio 10% 30% 50% 70% 90%

Reclamation Cooperative 312.5 243.1 173.6 104.2 34.7
Tput. (MiB/s) Direct 8268.5

Table 3: Midas’s cooperative reclamation reclaims memory at the
throughput of 35 MiB/s-313 MiB/s, depending on the live object ratio
of soft memory. Midas’s direct reclamation trades off reclamation
quality for faster speed; it achieves a throughput of 8269 MiB/s,
exceeding the rate at which the Linux kernel can allocate memory.

object copying overhead is negligible. Midas achieves higher
write latency (< 200 cycles) as it has to additionally update
the metadata in the object header.

For large objects (Table 2b), Midas achieves ≈800K cycles
(82%) higher read latency since now the additional object copy-
ing happens in memory (rather than in CPU’s cache). However,
Midas achieves lower write latency than unique_ptr thanks
to its optimized memory copy implementation.
Memory Reclamation Speed. We measured Midas’s memory
reclamation throughput using a synthetic microbenchmark.
Under moderate memory pressure, the coordinator reclaims
memory with the cooperation from the runtime (Figure 9); we
refer to it as cooperative reclamation. Under severe memory
pressure, the coordinator directly unmaps soft memory
segments (Figure 10); we refer to it as direct reclamation.

Table 3 presents the throughput of both reclamation
methods. The speed of cooperative reclamation depends on
the live object ratio of soft memory; the lower the live ratio,
the easier to make room by compacting hot objects, thereby
yielding faster reclamation speed. It achieves a throughput of
313 MiB/s under 10% live ratio and 35 MiB/s under 90% live
ratio. To handle intense memory pressure, direct reclamation
trades off reclamation quality for faster reclamation speed;
it achieves a significantly higher throughput of 8269 MiB/s,
unrelated to the live object ratio. This exceeds the rate at which
the Linux kernel can allocate memory (7-8 GiB/s measured
in our machine), therefore Midas can always safely harvest
server’s idle memory without leading to OOM killing.
Performance Impact of Data Reconstruction. To examine
the performance impact of using soft memory, we conducted

1258 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1000 2000 3000 4000
Reconstruction Cost (μs/object)

0
25
50
75

100

Effi
ci
en

cy
(%

)

20% Soft Mem. 50% Soft Mem. 80% Soft Mem.

Figure 11: Midas’s efficiency (y-axis) as a function of data
reconstruction cost normalized to the ideal throughput of caching
all soft state. Midas’s efficiency increases as the reconstruction cost
decreases, delivering >80% efficiency for applications with <1024
µs/object reconstruction cost when caching 80% of soft state.

an experiment using a synthetic application; we measured
its performance with varying data reconstruction costs under
different soft memory ratios (i.e., the ratio of cached soft state).
Intuitively, the cheaper the data reconstruction, the lighter the
performance impact it incurs.

Figure 11 shows the result. When the soft memory ratio
is 20%, Midas is able to deliver >80% efficiency when the
reconstruction cost is <128 µs/object. When the soft memory
ratio is higher, Midas can tolerate a higher cost as reconstruc-
tion happens less frequently; thus, it is able to provide >80%
efficiency for applications with <256 µs/object reconstruction
cost under 50% memory ratio and <1024 µs/object under
80% memory. This suggests that Midas can still achieve high
performance with moderate data reconstruction costs.

8 Related Work

Resource Harvesting and Deflation. Datacenters today
suffer from low resource utilization [6, 17, 50]. To make use
of vacant resources, major cloud providers now offer spot
VMs [5, 20, 31], which run at a low priority and get evicted
under resource pressure. Others propose new VM designs to
gracefully adjust VMs’ resource usage. Harvest VM is a new
type of VM that grows and shrinks according to the amount
of unallocated resources at its underlying server, including
CPU [6], memory [17], and storage [38]. Similarly, deflatable
VM [45] codesigns the hypervisor, VM, and the application to
reclaim resources from applications under memory pressure.
These approaches focus on VMs only, and take minutes to
re-configure a VM to release resources.
Resource Disaggregation and Remote Memory. Resource
disaggregation and remote memory systems are another
trending approach for improving utilization, thanks to faster
datacenter networking [19, 26, 29]. Their key idea is to
break the server hardware boundary with a fast network
interconnection to exploit stranded resources on a remote
server. Various systems have established the viability of
disaggregated storage [22, 24], accelerators [35, 51], and
memory [4, 21, 44, 54]. While some provide remote memory
transparently via OS paging, it is also possible to use a library-
based approach that modifies the application to bypass the

OS. AIFM [40] proposes remote-able data structures to build
remote-memory-aware applications. Semeru [52], Mako [28],
and MemLiner [53] co-design the JVM with the kernel to offer
transparent remote memory for Java programs. Like Midas,
these systems adopt customized pointer formats for their
remote-able objects. Unlike Midas, they do not consider the
unmap-and-reconstruct semantics and suffer from swapping
or out-of-memory killing under intense memory pressure.
Cache Services. Improving cache performance is important to
datacenter applications, especially in a shared setting [10, 36].
Fairride [36] and RobinHood [10] provide fair and latency-
aware cache-sharing policies, and CliffHanger [13] uses a hill
climbing method to incrementally optimize cache allocation
across applications. Memshare [14] further improves the
cache partitioning with a log-structured allocator for higher
hit rates. However, existing cache service systems still rely
on static memory allocation, and cannot efficiently use idle
memory. CacheLib [9] provides a library-based approach for
caching, but it again relies on static provisioning and lacks
global coordination, hindering its ability to manage memory
across multiple applications.
Cooperative Memory Revocation. In parallel with our work,
researchers are also exploring the benefits of soft state by
managing it at the application level [16]. Midas instead uses
kernel coordination and unmap-and-reconstruct semantics,
which enables it to reclaim pages even if applications do not
cooperate or are slow to respond. This makes it possible to react
to severe memory pressure without running out of memory.

9 Conclusion

In this paper, we presented Midas, a system that efficiently
and safely harvests idle memory to store the soft state
that is most beneficial to each application, improving both
memory utilization and application performance. Midas
provides familiar high-level programming abstractions and
maximizes overall performance through coordination between
an application-integrated runtime and a global coordinator.
Our evaluation demonstrates that Midas is able to effectively
use soft memory to achieve near-optimal performance and
can respond to extreme memory pressure fast enough to avoid
running out of memory.

Acknowledgement

We thank the anonymous reviewers for their valuable
and thorough comments. We are grateful to our shepherd
Sanidhya Kashyap for his feedback. This work is supported
by NSF grants CNS-1907352, CNS-2007737, CNS-2006437,
CNS-2128653, CNS-2106838, CCF-1764077, CHS-1956322,
CCF-1460325, CCF-2106404, and CNS-2104398, an Amazon
Ph.D. fellowship, a gift from Amazon, a contract from
Samsung, and a contract from Cisco.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1259

References

[1] Amazon elasticache. https://aws.amazon.com/
elasticache/, 2023.

[2] The redis database. https://redis.com/, 2023.

[3] Storage performance development kit. https:
//spdk.io, 2023.

[4] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout,
M. K. Aguilera, A. Panda, S. Ratnasamy, and S. Shenker.
Can far memory improve job throughput? In EuroSys,
2020.

[5] Amazon Elastic Compute Cloud. Amazon ec2 spot in-
stances. https://aws.amazon.com/ec2/spot, 2022.

[6] P. Ambati, I. Goiri, F. Frujeri, A. Gun, K. Wang, B. Dolan,
B. Corell, S. Pasupuleti, T. Moscibroda, S. Elnikety,
M. Fontoura, and R. Bianchini. Providing SLOs for
Resource-Harvesting VMs in cloud platforms. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 735–751. USENIX
Association, Nov. 2020.

[7] D. Ardelean, A. Diwan, and C. Erdman. Performance
analysis of cloud applications. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 18), pages 405–417, Renton, WA, Apr. 2018.
USENIX Association.

[8] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale
key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’12, page 53–64, New York,
NY, USA, 2012. Association for Computing Machinery.

[9] B. Berg, D. S. Berger, S. McAllister, I. Grosof, S. Gu-
nasekar, J. Lu, M. Uhlar, J. Carrig, N. Beckmann,
M. Harchol-Balter, and G. R. Ganger. The CacheLib
caching engine: Design and experiences at scale. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 753–768. USENIX
Association, Nov. 2020.

[10] D. S. Berger, B. Berg, T. Zhu, S. Sen, and M. Harchol-
Balter. RobinHood: Tail latency aware caching –
dynamic reallocation from Cache-Rich to Cache-Poor.
In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 195–212,
Carlsbad, CA, Oct. 2018. USENIX Association.

[11] B. Beyer, C. Jones, J. Petoff, and N. R. Murphy. Site
reliability engineering: How Google runs production
systems. " O’Reilly Media, Inc.", 2016.

[12] M. Calder, R. Gao, M. Schröder, R. Stewart, J. Padhye,
R. Mahajan, G. Ananthanarayanan, and E. Katz-Bassett.
Odin: Microsoft’s scalable Fault-Tolerant CDN measure-
ment system. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages
501–517, Renton, WA, Apr. 2018. USENIX Association.

[13] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti.
Cliffhanger: Scaling performance cliffs in web memory
caches. In 13th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 16), pages 379–
392, Santa Clara, CA, Mar. 2016. USENIX Association.

[14] A. Cidon, D. Rushton, S. M. Rumble, and R. Stutsman.
Memshare: a dynamic multi-tenant key-value cache. In
2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 321–334, Santa Clara, CA, July 2017.
USENIX Association.

[15] F. Corbató. A Paging Experiment With the MULTICS
System. Project MAC. Massachusetts Institute of
Technology, 1968.

[16] M. Frisella, S. L. Sanchez, and M. Schwarzkopf. Towards
increased datacenter efficiency with soft memory. In
Proceedings of the 19th Workshop on Hot Topics in Op-
erating Systems, HOTOS ’23, page 127–134, New York,
NY, USA, 2023. Association for Computing Machinery.

[17] A. Fuerst, S. Novaković, I. n. Goiri, G. I. Chaudhry,
P. Sharma, K. Arya, K. Broas, E. Bak, M. Iyigun,
and R. Bianchini. Memory-harvesting vms in cloud
platforms. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’22, page
583–594, New York, NY, USA, 2022. Association for
Computing Machinery.

[18] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi,
N. Katarki, A. Bruno, J. Hu, B. Ritchken, B. Jackson,
et al. An open-source benchmark suite for microservices
and their hardware-software implications for cloud &
edge systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
3–18, 2019.

[19] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han,
R. Agarwal, S. Ratnasamy, and S. Shenker. Network
requirements for resource disaggregation. In OSDI,
pages 249–264, 2016.

[20] Google Cloud. Preemptible vm instances.
https://cloud.google.com/compute/docs/
instances/preemptible, 2022.

1260 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://redis.com/
https://spdk.io
https://spdk.io
https://aws.amazon.com/ec2/spot
https://cloud.google.com/compute/docs/instances/preemptible
https://cloud.google.com/compute/docs/instances/preemptible

[21] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.
Efficient memory disaggregation with infiniswap. In
NSDI, pages 649–667, 2017.

[22] J. Hwang, Q. Cai, A. Tang, and R. Agarwal. TCP ≈
RDMA: CPU-efficient remote storage access with i10.
In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), pages 127–140,
Santa Clara, CA, Feb. 2020. USENIX Association.

[23] Jacob Leverich. Mutilate: High-performance mem-
cached load generator. https://github.com/
leverich/mutilate, 2023.

[24] A. Klimovic, H. Litz, and C. Kozyrakis. ReFlex: Remote
flash ≈ local flash. In ASPLOS, pages 345–359, 2017.

[25] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings,
I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov, M. Malloci,
A. Kolesnikov,T. Duerig, and V. Ferrari. The open images
dataset v4: Unified image classification, object detection,
and visual relationship detection at scale. IJCV, 2020.

[26] H. Li, D. S. Berger, S. Novakovic, L. Hsu, D. Ernst,
P. Zardoshti, M. Shah, I. Agarwal, M. D. Hill, M. Fon-
toura, and R. Bianchini. First-generation memory
disaggregation for cloud platforms, 2022.

[27] C. Lu, K. Ye, G. Xu, C. Xu, and T. Bai. Imbalance in the
cloud: An analysis on Alibaba cluster trace. In Big Data,
pages 2884 – 2892, 2017.

[28] H. Ma, S. Liu, C. Wang, Y. Qiao, M. D. Bond,
S. M. Blackburn, M. Kim, and G. H. Xu. Mako: A
low-pause, high-throughput evacuating collector for
memory-disaggregated datacenters. In PLDI, 2022.

[29] Mellanox. RDMA aware programming manual
(rev. 1.7). https://www.mellanox.com/related-
docs/prod_software/RDMA_Aware_Programming
_user_manual.pdf.

[30] Memcached. A distributed memory object caching
system. http://memcached.org, 2020.

[31] Microsoft Azure. Azure spot virtual machines. https:
//azure.microsoft.com/en-us/pricing/spot,
2022.

[32] MongoDB. https://www.mongodb.com/, 2022.

[33] MongoDB. Wiredtiger storage engine. https://www.
mongodb.com/docs/manual/core/wiredtiger/,
2023.

[34] U. Naseer and T. A. Benson. Configanator: A data-driven
approach to improving CDN performance. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 1135–1158, Renton,
WA, Apr. 2022. USENIX Association.

[35] Nvidia. Virtual gpu (vgpu) | nvidia. https:
//www.nvidia.com/en-us/data-center/virtual-
solutions/.

[36] Q. Pu, H. Li, M. Zaharia, A. Ghodsi, and I. Stoica.
FairRide: Near-Optimal, fair cache sharing. In 13th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), pages 393–406, Santa Clara,
CA, Mar. 2016. USENIX Association.

[37] Y. Qiao, C. Wang, Z. Ruan, A. Beley, Y. Zhang, M. Kim,
and G. H. Xu. Hermit: Low-latency, high-throughput,
and transparent remote memory via feedback-directed
asynchrony. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23).
USENIX Association, Apr. 2023.

[38] B. Reidys, J. Sun, A. Badam, S. Noghabi, and J. Huang.
BlockFlex: Enabling storage harvesting with Software-
Defined flash in modern cloud platforms. In 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pages 17–33, Carlsbad, CA,
July 2022. USENIX Association.

[39] R. A. Rossi and N. K. Ahmed. The network data repos-
itory with interactive graph analytics and visualization.
In AAAI, 2015.

[40] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Belay.
AIFM: High-performance, application-integrated far
memory. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
315–332. USENIX Association, Nov. 2020.

[41] S. M. Rumble, A. Kejriwal, and J. Ousterhout. Log-
structured memory for DRAM-based storage. In 12th
USENIX Conference on File and Storage Technologies
(FAST 14), pages 1–16, Santa Clara, CA, Feb. 2014.
USENIX Association.

[42] S. J. Russell. Artificial intelligence a modern approach.
Pearson Education, Inc., 2010.

[43] A. Shalita, B. Karrer, I. Kabiljo, A. Sharma, A. Presta,
A. Adcock, H. Kllapi, and M. Stumm. Social hash:
an assignment framework for optimizing distributed
systems operations on social networks. In 13th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 16), pages 455–468, 2016.

[44] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS:
A disseminated, distributed OS for hardware resource
disaggregation. In OSDI, pages 69–87, 2018.

[45] P. Sharma, A. Ali-Eldin, and P. Shenoy. Resource
deflation: A new approach for transient resource
reclamation. In Proceedings of the Fourteenth EuroSys
Conference 2019, EuroSys ’19, New York, NY, USA,
2019. Association for Computing Machinery.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1261

https://github.com/leverich/mutilate
https://github.com/leverich/mutilate
https://azure.microsoft.com/en-us/pricing/spot
https://azure.microsoft.com/en-us/pricing/spot
https://www.mongodb.com/
https://www.mongodb.com/docs/manual/core/wiredtiger/
https://www.mongodb.com/docs/manual/core/wiredtiger/
https://www.nvidia.com/en-us/data-center/virtual-solutions/
https://www.nvidia.com/en-us/data-center/virtual-solutions/
https://www.nvidia.com/en-us/data-center/virtual-solutions/

[46] A. Sriraman and T. F. Wenisch. µsuite: A benchmark
suite for microservices. In 2018 IEEE International
Symposium on Workload Characterization (IISWC),
pages 1–12, 2018.

[47] K. Tati and G. M. Voelker. Shortcuts: Using soft state
to improve dht routing. In C.-H. Chi, M. van Steen, and
C. Wills, editors, Web Content Caching and Distribution,
page 44–62, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg.

[48] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin,
S. Hand, M. Harchol-Balter, and J. Wilkes. Borg: The
next generation. In EuroSys, 2020.

[49] Twitter Inc. Processing billions of events in real
time at twitter. https://blog.twitter.com/
engineering/en_us/topics/infrastructure/
2021/processing-billions-of-events-in-
real-time-at-twitter-, 2021.

[50] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes. Large-scale cluster management
at Google with Borg. In Proceedings of the European
Conference on Computer Systems (EuroSys), Bordeaux,
France, 2015.

[51] L. Vilanova, L. Maudlej, S. Bergman, T. Miemietz,
M. Hille, N. Asmussen, M. Roitzsch, H. Härtig, and
M. Silberstein. Slashing the disaggregation tax in
heterogeneous data centers with fractos. In Proceedings
of the Seventeenth European Conference on Computer
Systems, EuroSys ’22, page 352–367, New York, NY,
USA, 2022. Association for Computing Machinery.

[52] C. Wang, H. Ma, S. Liu, Y. Li, Z. Ruan, K. Nguyen, M. D.
Bond, R. Netravali, M. Kim, and G. H. Xu. Semeru:
A memory-disaggregated managed runtime. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 261–280. USENIX
Association, Nov. 2020.

[53] C. Wang, H. Ma, S. Liu, Y. Qiao, J. Eyolfson, C. Navasca,
S. Lu, and G. H. Xu. MemLiner: Lining up tracing and
application for a far-memory-friendly runtime. In OSDI,
2022.

[54] C. Wang, Y. Qiao, H. Ma, S. Liu, Y. Zhang, W. Chen,
R. Netravali, M. Kim, and G. H. Xu. Canvas: Isolated
and adaptive swapping for multi-applications on remote
memory. In NSDI, 2023.

1262 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://blog.twitter.com/engineering/en_us/topics/infrastructure/2021/processing-billions-of-events-in-real-time-at-twitter-
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2021/processing-billions-of-events-in-real-time-at-twitter-
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2021/processing-billions-of-events-in-real-time-at-twitter-
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2021/processing-billions-of-events-in-real-time-at-twitter-

A Harvesting Available Idle Memory

0
5

10
15

Th
ro
ug

hp
ut

(K
O
PS

) Tput

0 10 20 30 40 50
Time (minutes)

0
5

10
15

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

1(a) HDSearch.

0.3

0.4

0.5

Th
ro
ug

hp
ut

(K
O
PS

) Tput

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (minutes)

0
5

10
15

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

(b) WiredTiger.

0.3

0.4

0.5

Th
ro
ug

hp
ut

(M
O
PS

) Tput

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (minutes)

0
5

10
15

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

1(c) Storage server.

Figure 12: With Midas, applications can reactively scale up their
soft memory usage to harvest additional idle memory and improve
performance.

In this section, we evaluated the other three applications
individually under the same setting as in §7.2 to show how
Midas can harvest available idle memory to improve memory
utilization and application performance. Figure 12 presents the
results. Similar to Figure 8, Midas can quickly detect any idle
memory and reactively grant it to the application to improve
its performance. As applications expose different allocation
speeds and utilities of their soft state, the average time to scale
up the soft memory usage as well as the performance gain
also varies across applications. HDSearch takes longer to fully
utilize the additional soft memory because it needs expensive
GPU computations to re-construct a cache-missed object. It
also enjoys higher throughput increases by memoizing com-
putation results with additional soft memory. On the contrary,
both WiredTiger and storage server can quickly utilize all ad-
ditional soft memory, but they only get marginal performance
improvement after caching most hot blocks at t=10min.

B Reacting to Memory Pressure

0
5

10
15
20

Th
ro
ug

hp
ut

(K
O
PS

) Tput

0 5 10 15 20
Time (minutes)

0
5

10
15

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

1(a) HDSearch.

0.3

0.4

0.5

Th
ro
ug

hp
ut

(M
O
PS

) Tput

0 5 10 15 20
Time (minutes)

0
5

10
15

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

(b) WiredTiger.

0.3

0.4

0.5
Th

ro
ug

hp
ut

(M
O
PS

) Tput

0 5 10 15 20
Time (minutes)

0
5

10
15

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

1(c) Storage server.

Figure 13: Under moderate memory pressure (t = 5min-15min),
Midas is able to reactively scale down applications’ soft memory
usage to avoid running out of memory while minimizing its impact
on their throughput.

In this section, we further investigated whether Midas can
quickly react to memory pressure by running the other three
applications individually under the same setting as in §7.3.
Similarly, we measured memory utilization and application
throughput under moderate memory pressure and intense
memory pressure, respectively.

Figure 13 presents the results of each individual application
under moderate memory pressure. Similar to Figure 9,
At t = 5min, the memory antagonist starts to allocate 10
GiB more memory with a moderate rate of 1.0 GiB/min,
leading to the decrease of idle memory until t = 15min. As
shown by the bottom figure, for all three applications, Midas
reactively scaled down their soft memory usage and avoided
out-of-memory killing. As shown by the top figure, application
throughput drops gradually and mildly as the reclamation goes
on and never experiences any severe disruption.

Figure 14 shows the results of each individual application
under intense memory pressure. Similar to Figure 10, the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1263

0
5

10
15
20

Th
ro
ug

hp
ut

(K
O
PS

) Tput

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (minutes)

0
5

10
15

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

1(a) HDSearch.

0.3

0.4

0.5

Th
ro
ug

hp
ut

(M
O
PS

) Tput

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (minutes)

0
5

10
15

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

(b) WiredTiger.

0.3

0.4

0.5

Th
ro
ug

hp
ut

(M
O
PS

) Tput

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (minutes)

0
5

10
15

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

1(c) Storage server.

Figure 14: Midas is able to avoid out-of-memory killing even under
extreme memory pressure (t = 5min and t = 10min). The victim
application experiences brief throughput collapses but quickly
recovers to normal once the pressure is finished.

memory antagonist intensely allocated 5 GiB memory at
t=5min and t=10min. Despite the high memory allocation
rate, Midas is still able to rapidly reclaim application’s soft
memory and avoid running out of memory. Because Midas
has to unmap the used soft memory segments in this case, both
WiredTiger and Storage server experience brief throughput
collapses. However, once the memory pressure is finished,
their throughput can quickly recover to the normal level,
consistent with the numbers reported in Figure 12 and 13.
HDSearch has a relatively lower request rate, therefore it is
more tolerable to the enforced soft memory unmapping and
does not experience severe throughput collapse at all.

C SocialNet Microservices Memory Usage

We have reported the overall soft memory usage of SocialNet
in Figure 7. Among SocialNet’s 12 microservices, two mi-
croservices used the most soft memory, namely UserTimeline

0.0

2.5

5.0
Midas Cliffhanger

0 5 10 15 20 25 30 350.0

2.5

5.0

0 5 10 15 20 25 30 35
Time (minutes)

M
em

or
y
Us

ag
e
(G
iB
)

UserTimeline PostStorage Granted

1
Figure 15: Memory usage of two major microservices in SocialNet.
Midas dynamically coordinates memory between the microservices
to achieve high memory utilization and optimal performance for
SocialNet.

and PostStorage. Figure 15 reported the detailed memory
usage for each of them.

UserTimeline is the frontend microservice that handles
user requests. It fetches a group of user posts from the storage
backend and composes them as a timeline webpage. It caches
composed user timelines in soft memory to reduce backend
storage accesses. PostStorage is the backend database mi-
croservice that stores user posts. It handles post requests from
UserTimeline with MongoDB and caches hot posts using soft
memory. As shown in 15, at first, Midas reactively grants soft
memory to both microservices to quickly recover SocialNet’s
throughput and latency. As UserTimeline gets more soft mem-
ory, it caches more hot timelines and consequently reduces
its request rate to PostStorage. At t=8min, Midas’s profiling
reveals that PostStorage is no longer frequently accessed and
therefore has relatively low cache utility, so Midas reactively
scales down PostStorage’s soft memory. At t=20min, Social-
Net reaches a new equilibrium, where UserTimeline consumes
most of the soft memory budget and PostStorage only keeps
a small portion of soft memory. Cliffhanger, in contrast, only
profiles the cache hit rate of each microservice regardless of
their cache access rate and performance sensitivity. Therefore,
it continuously grants soft memory to PostStorage, resulting
in overprovisioning soft memory to SocialNet.

D Soft Pointer Dereference Cost

In this section, we reported the detailed results of soft pointer
dereference cost when reading and writing large objects in
various sizes and compared them with the cost of dereferencing
an ordinary C++ unique_ptr. Similar to Table 2, we measured
the P90 latency and throughput of accessing large objects
(Figure 16) in various sizes.

As shown in Figure 16, reading a large object whose size
is smaller than 512 KiB with Midas soft pointer has similar
latency and throughput compared to dereferencing a C++
unique_ptr, although dereferencing a soft pointer incurs an
additional memory copy. This is because the object and its

1264 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

104

105

106

107

P9
0
La

te
nc

y
(c
yc

le
s)

read write

102 103 104
0

5

10

15

Th
ro
ug

hp
ut

(G
B/
s)

102 103 104

Object Size (KB)

C++ unique_ptr SoftUniquePtr

1Figure 16: Midas’s soft pointer achieves similar performance com-
pared to C++’s ordinary smart pointer when objects can fit into CPU
L2 cache, and it only adds moderate dereferencing cost otherwise.

copy can both fit into the CPU L2 cache and hence the second
copy is fast. For all object sizes, soft pointer offers lower write
latency and higher write throughput than unique_ptr thanks
to Midas’s optimized memory copy implementation.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1265

Efficient Exposure of Partial Failure Bugs in
Distributed Systems with Inferred Abstract States

Haoze Wu† Jia Pan† Peng Huang‡

Johns Hopkins University† University of Michigan‡

Abstract
Many distributed system failures, especially the notorious
partial service failures, are caused by bugs that are only
triggered by subtle faults at rare timing. Existing testing is
inefficient in exposing such bugs. This paper presents Legolas,
a fault injection testing framework designed to address this gap.
To precisely simulate subtle faults, Legolas statically analyzes
the system code and instruments hooks within a system. To
efficiently explore numerous faults, Legolas introduces a novel
notion of abstract states and automatically infers abstract states
from code. During testing, Legolas designs an algorithm that
leverages the inferred abstract states to make careful fault
injection decisions. We applied Legolas on the latest releases
of six popular, extensively tested distributed systems. Legolas
found 20 new bugs that result in partial service failures.

1 Introduction

Deployed distributed systems frequently encounter faults in
the underlying hardware and dependent software. While these
systems are generally fault-tolerant, an unexpected fault can
still expose bugs. Indeed, real-world distributed system outages
are often triggered by some fault events [6, 14, 16, 34].

Fault injection testing,also known as chaos engineering [48],
has gained popularity to find fault-induced bugs early. Various
solutions are developed to inject common faults such as
crashes [3,15,40],disk faults [13,26],and network partitions [2,
3,27]. Despite the progress, many complex fault-induced bugs
remain hidden in existing testing and cause failures after
deployment. These bugs share several characteristics.

First, they cause puzzling symptoms where the services
seem to work but are partially broken, which are notorious in
production distributed systems [10, 12, 22, 23, 36]. Figure 1
shows a real failure from a ZooKeeper deployment. The clients
experienced timeouts in create requests, but get requests still
succeeded. Pinging the leader also showed that it was alive.
As another example, users reported [5, 9, 25] that their Kafka
cluster occasionally experienced partial breakdown, and one
broker could not return to an in-sync status.

Second, these bugs are triggered under subtle faulty con-
ditions, such as a network error that only affects some oper-
ations but not others [1, 36], transient slowness [17, 21], or
microburst [28]. In the aforementioned ZooKeeper example,

Leader Follower

Request

Processors

Leaner

Handler

Snap

shot
…

Follower

NewExisting

Client

create

set

get

void serialize(OutputArchive oa) {

 synchronized (node) {

 ...

 oa.writeRecord(node, "node");

 }

}
// stuck due to a network issue

Figure 1: A real ZooKeeper production incident [46] triggered by a
partial network fault, which caused the writeRecord operation to be
stuck while holding a lock.

(0, 1] (1, 2] (2, 3] (3, 4] (4, 5] (5, 6]

Elapsed Time (second)

101

102

103

#
 o

f
o
p
s
 t

o
 i
n
je

c
t

Figure 2: Hundreds to thousands of operations per second are
candidates for injecting IOException during ZooKeeper’s execution.

the buggy code works properly in normal conditions. The
failure was only exposed by a partial network fault between a
leader and a new follower, and the fault only affects a specific
operation (writeRecord). The faults can also originate from
software and be system-specific, such as a custom exception
from an RPC to a remote component (e.g., when the database
is overloaded). The Kafka failure example was caused by a
custom exception returned from an RPC to the dependent
ZooKeeper service. Simulating these fault conditions in testing
requires precise control of the fault types and locations.

Third, these bugs require careful choices of when and where
the fault occurs. Distributed systems have a large number of
fault points (Figure 2), but since these systems are robust, most
faults would be tolerated or result in an expected failure (e.g.,
abort on error in reading a file). To expose the ZooKeeper
failure, a transient network latency increase must be injected
while a new follower is requesting a snapshot from the leader.
Injecting the fault at other times or other locations is ineffective.
A random injection choice,which is commonly used in existing
solutions, will have a high chance of missing the buggy point.

We present Legolas, a fault injection framework designed
to efficiently expose the above class of complex fault-induced
bugs in large distributed systems. Unlike the practice of

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1267

injecting system-agnostic faults externally in the environment
or libraries, Legolas uses program analysis to perform fine-
grained and system-specific fault injection. It analyzes the fault
conditions for each instruction in the code and instruments
hooks to precisely simulate subtle faults within the system.

With more faults to consider, the problem of a large fault
injection space becomes more pronounced.

Our insight is that production bugs occur in unusual
conditions—otherwise, existing testing likely has exposed
it. Thus, we can selectively inject faults by checking if the
system reaches an unusual condition. Unfortunately, we do
not know beforehand whether a program point is unusual or
not. Using ad-hoc heuristics, such as only injecting faults
when the program is inside a critical section, can miss many
failure-inducing conditions. We should still systematically
explore the injection choices for generality and completeness.

Based on this insight, Legolas introduces a novel notion of
abstract state to guide systematic but efficient exploration of
the fault injection space. The basic idea is to use system states
to group injection points. A system’s state can be represented
by its variables and concrete values. This representation,
however, is massive for large systems, and it would make
almost all injection points appear in unique groups. For fault
injection, we need a more high-level state representation, in
which multiple injections likely yield similar effect.

Legolas uses a simple yet novel static analysis that auto-
matically infers abstract states from the target system code.
The automation is feasible because developers usually leave
clear hints in the code about abstract states: the system checks
one or more state variables’ concrete values in a branch to see
if an important condition occurs; if so, it performs some sig-
nificantly different action. An abstract state thus can indicate
that a system enters a unique stage of service, e.g., request
parsing, snapshotting, and leader election.

Specifically, Legolas first infers concrete state variables
in a system. It then identifies code blocks that are control-
dependent on some concrete state variable. It finally creates a
mnemonic abstract state variable for each such block, which
will be set when the program execution reaches that point.

Leveraging the inferred abstract states, Legolas can effi-
ciently explore the injection space. During testing, the in-
jection hooks Legolas instruments dispatch queries to the
Legolas controller. The controller checks the system’s current
abstract states and decides whether to grant an injection or
not. Essentially, Legolas enables stateful fault injection.

We design a stateful injection decision algorithm called
budgeted-state-round-robin (bsrr). Other stateful policies are
also feasible, and it is easy to add and switch policies in
Legolas. Compared to the straightforward new-state-only
policy, bsrr is robust to tolerate potential inaccuracies in the
abstract state analysis. It also reduces biases in injections.

We have built an end-to-end prototype for the Legolas
framework, including the static analyzer, fault injection con-
troller, workload driver, and failure checkers.

We apply Legolas to six large distributed systems: Kafka,
ZooKeeper, HDFS, HBase, Cassandra, and Flink. Legolas
automatically instruments these systems and extracts abstract
states without special tuning. We run fault injection exper-
iments on these systems’ recent releases. Using the bsrr
algorithm, Legolas finds 20 new bugs with a median time
of 58 minutes. These bugs all cause partial service failure
symptoms. We report the bugs to developers. Four reports are
marked as critical, fourteen reports are marked as major, and
two are marked as normal. Eleven reports have been explicitly
confirmed by developers so far. We also compare Legolas
(bsrr) with state-of-the-art solutions and other policies. The
best performing baseline is the new-state-only policy with
Legolas, which exposes eight bugs. The random injection
policy only exposes three bugs in a median of 362 minutes.

In summary, this paper makes the following contributions:
• We propose an approach that uses program analysis to

enable customized and fine-grained fault injection.
• We introduce a novel concept of abstract state and a method

that automatically infers abstract states from a given system’s
code. We design a new decision algorithm that leverages
the inferred abstracts to guide efficient fault injections for
exposing complex bugs that cause partial service failures.

• We build a fault injection framework Legolas and evaluate
Legolas on large distributed systems.

2 Overview of Legolas

Legolas is an end-to-end fault injection testing framework
for large distributed systems. It aims to efficiently expose
fault-induced bugs like the motivating examples.
Scope. Consider a distributed system S that consists of mul-
tiple processes 𝑃 and provides a range of services 𝑅. One
definition of a partial failure is that a subset of 𝑃 are faulty
(crash, Byzantine, or gray faults [23]), which may be tolerated
and not affect the functionalities of S.

Legolas focuses on exposing partial failures with respect
to services, where some 𝑅 𝑓 ⊂ 𝑅 fail to maintain their safety
or liveness properties, while other services 𝑅 \ 𝑅 𝑓 behave
as expected. In contrast, in a total failure, all services in 𝑅

break. An intuitive strategy to uncover partial failures is thus
to perturb each service based on their specifications, but this
strategy can be difficult to apply with large concrete codebases.

Owing to the modular designs prevalent in large distributed
systems, each service is typically implemented by a specific
component made up of threads; each process 𝜋 encompasses
disjoint sets of components that provide different services for
S . For example, a leader process in ZooKeeper has dedicated
request handlers, snapshot manager, quorum messenger, etc.
If one thread fails, the recovery mechanisms will try to avoid
interruptions to the corresponding service. Thus, Legolas is
designed to perturb each component (some thread) within
𝜋—instead of crashing 𝜋 outright—by inducing faults to the
instructions executed by the component. This allows for a
deeper exploration of the potential partial failures in S.

1268 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

source
code

Legolas
analyzer{ } { }

Legolas
agent libabstract state

extraction

fault point
identification

1

2

instrumented
system

static analysis phase dynamic testing phase
system cluster

node1
node2

node3

Legolas server

Abstract state
tracker

Injection
controller

Failure checkers

4 budgeted state round
robin (bsrr) algorithm

5

injection
query

inform
state

clients 3

agent

Workload driver

Figure 3: Fault injection workflow with Legolas.

+

InjectionQuery query = new InjectionQuery(serverId,
 threadId, ..., invokedMethodSig, faultIds);
InjectionCommand command = stub.inject(query);
if (command.id == -1) return; // no injection
/* simulate the decided fault */
...

LegolasAgent.inject("org.apache.zookeeper.server.DataTree",
 "serializeNode", 1115,"<org.apache.jute.OutputArchive:
 void writeRecord(...)>", 268, 0, 3);
outputArchive.writeRecord(node, "node");

Figure 4: Injection hook instrumented for code in Figure 1.

Workflow. Figure 3 shows the workflow with Legolas. It takes
a system’s code as an input,uses static analysis to identify faulty
conditions unique to the system, and instruments injection
hooks directly within the system (1) to simulate subtle faults.

In addition, Legolas runs a novel analysis that automatically
extracts abstract states from the system code (2). It identifies
code locations that may represent an important change in the
system’s service status, and inserts mnemonic abstract state
variables at these locations. Legolas then links a thin agent
library with the target system.

During testing, Legolas starts a cluster of the instrumented
system and runs the workload driver (3). When a node reaches
an injection hook, the embedded agent dispatches an RPC
query to the Legolas controller, which decides whether to
grant the injection or not. If the agent receives a positive reply,
it will simulate the fault inside the node directly.

Importantly, the Legolas server tracks abstract states for
eachnode. When a node enters a new abstract state, the Legolas
agent informs the state tracker in the server. The controller
leverages the abstract state to make injection decisions. In
particular, we design an algorithm called budgeted state round-
robin (bsrr) (4). To determine the injection outcome, Legolas
runs the failure checkers (5).

3 Identify and Instrument Injection Points

A widely-used fault injection approach is to introduce node-
level faults such as process crashes and network disconnections
externally in the environment. This approach is suitable for
exposing distributed protocol bugs or crash-recovery bugs.
However, partial failures are often triggered by subtle faults
in the implementations. Existing solutions that inject fine-
grained faults focus on the boundaries between an application
and libraries or services, and take an interception approach.
For example, LFI [43] intercepts libc API such as recv and
returns error codes to applications. Although their injection is
more fine-grained (library APIs or service requests) than node-
level faults, they miss internal errors in a system. Moreover, it
is difficult for them to precisely simulate partial faults because
they do not directly control the program execution.

To address these issues, Legolas goes deeper—to the pro-
gram statements inside a system—and takes an instrumen-
tation approach. It uses static program analysis to deduce

potential faulty conditions for each statement and add injec-
tion control points to directly simulate faults in situ.
Identify Faulty Conditions. The Legolas analyzer locates
each call instruction in the system and examines its invoca-
tion target to extract potential fault conditions. A straight-
forward way is to leverage the method signature. However,
two challenges arise. First, a method may internally throw
an exception that is not declared in the signature. Some lan-
guages also do not enforce or support exception specification
in method signature. Second, due to polymorphism and inter-
face, a call site of a method may be impossible to encounter
an exception declared in the method signature. This is es-
pecially problematic with I/O related exceptions. Consider
dump(OutputStream out) throws IOException, which is declared
this way because the argument out is an abstract class with
IOException in its methods’ signatures. However, if a call
site of dump passes a ByteArrayOutputStream as an argument,
injecting an IOException causes an invalid scenario.

To handle the first issue, Legolas inspects the method body
and deduces the exceptions. However, it cannot simply collect
the exceptions in the throw instructions. This is because
the method may have an exception handler that catches the
exception. Legolas analyzes the error handlers in the function
to determine if an exception may be (i) caught and handled;
(ii) caught and re-thrown; (iii) uncaught. Only (ii) and (iii) are
treated as the true method-level exceptions.

To address the issue of invalid injection, Legolas designs
an inter-procedural, context-sensitive analysis to check call
instructions with potential IOException. It deduces whether
the objects (argument, return, field, class) associated with a call
site may come from definition points with known in-memory
object types, and ignores the fault if so.

Besides exceptions, the fault condition could also be a delay.
All operations could in theory experience some delay. In
practice, mild delays are benign and developers need evidence
to explain the delay. Legolas by default only considers function
calls that involve I/O as delay injection candidates.
Instrument Injection Hooks. For each program point with
potential faulty conditions, Legolas instruments an injection
hook. Legolas also emits a thin agent to link with the target
system. At runtime, when an injection hook is reached, the
agent creates a query to a controller (Figure 4), which includes
the interposed operation, possible fault ids, node id, name and

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1269

id of the current thread. If the injection is granted, the agent
looks up the fault id, which can be either a delay or some
exception. For delay, the agent simply invokes the thread sleep
function. We focus on worst-case situations and use 1 minute
as the default delay (the writeRecord call in Figure 1 can
hang for over 15 minutes under default Linux TCP settings).
For exception, the agent constructs an exception instance and
throws it before the injection hook returns.

Automatically creating an exception instance to throw is
a non-trivial task. Some custom exception type includes
complex arguments and compositions. Legolas analyzes the
constructor and recursively reduces complex arguments to
primitive types. It then creates an exception instance by
assigning the primitive fields with default values.

Where to add the injection hooks also requires careful
considerations. The straightforward way is to instrument each
call instruction that Legolas analyzes to possibly encounter a
fault. Suppose foo() is analyzed to possibly throw MyError,
but that is only because foo() internally calls bar(), which can
throw that error. If MyError is injected at the call sites of foo(),
we need further explanation of why this exception occurs. For
deep call chains, such injections make the exception reasoning
difficult and may turn out to be invalid.

To address this issue, Legolas instruments as deep as possi-
ble. It identifies faults that originate from a method through
explicit throw statement. It then only instruments calls to
either a method that has a non-empty list of such faults, or an
external function. If the called method is from an interface
or abstract class, Legolas injects at the caller’s call sites to
handle potential invalid injections.
Benefits. Legolas’s approach eases fault simulation without
requiring a special environment (e.g., a FUSE-based file sys-
tem [13,49]). It also gives precise control to simulate partial
faults, e.g., a partial disk failure that only affects a subset of
file operations; only some RPCs within certain code region
are delayed. It also supports simulating custom errors. While
a custom error may be caused by some environment fault, it
can be difficult to simulate them with external injection. For
example, a method may throw an exception only when all
three retries of a connection fail.

4 Abstract State Guided Fault Injection
A key challenge in fault injection for distributed systems is
the enormous injection choices (Figure 2). Moreover, only
few choices can expose bugs. This is because production dis-
tributed systems have extensive fault resilience mechanisms.
Insight. Our insight is that many fault injection attempts
are unnecessary because they are testing the same or similar
scenarios. Take a ZooKeeper code snippet in Figure 5 as an ex-
ample. The SyncRequestProcessor component is responsible
for synchronizing the requests to log files on disks. Suppose
we are injecting faults on I/O operations. There are numerous
injection points here, including operations inside the called

public class SyncRequestProcessor extends Thread {
 public void run() {
 int logCount = 0;
 while (true) {
 Request si = queuedRequests.take();
 if (zks.getDB().append(si)) {
 logCount++;
 if (logCount > snapCount) {
 if (snapThd != null && snapThd.isAlive()) {
 LOG.warn("Too busy to snap, skipping");
 } else {
 (snapThd = new Thread(() -> {
 zks.takeSnapshot();
 })).start();
 }
 logCount = 0;
 }
 }
 ...
 }
 }
}

S0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

S1

S2

S3

Figure 5: The grayedareas are code regions containing I/O operations.
The bug in Figure 1 occurs inside a call chain from line 13.

o1 o2 o3 o4 o7

t

o5 o8 o9 …o10

buggy point

futile point

o6

A

B

C D

on

system state

Figure 6: Group the injection points by the state they appear in.

functions. Line 6, which syncs requests to logs, gets executed
at each loop iteration, while line 13 only occurs occasionally.
With limited testing resources, we may only inject faults on
operations inside line because of their frequent occurrences.
Idea. Inspecting the system state for each component can help
us make better decisions. For the previous example, we could
realize that the system enters a rare state (snapshotting) when it
reaches line 13. Operations in this state couldbe ofhigh interest.
Our basic idea is thus to group the injection points based on the
underlying system state (Figure 6). Grouping helps avoid being
indiscriminate when making injection decisions. The injection
points that lie in the same group of state are hypothesized to
yield similar outcomes if injected, while the injection points
in different groups may yield different outcomes.

However, we do not just focus on rare states, as defining
them is subjective. Moreover, the presence of an injection
point in a rare state does not imply a bug. Neither does an
injection point in a common state guarantee the absence of
bugs. For example, a bug may be exposed with a fault occurring
inside the append call in Figure 5—which is in a common
state—when it is executed for the fourth time.

We thus explore the injection space systematically. That is,
if there were four chances, we try to explore injections in all
four states, instead of spending them only in one state.

4.1 State Representation Choices
The next question is how to define the system state for effective
grouping? Unlike distributed protocols that have specifica-
tions, determining the state representation for complex system
implementation is not easy. The complete execution states—
the program counter, stack traces, and memory snapshot—are

1270 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

S
0

S
2

S
3

S
1

Figure 7: State machine with abstract states for Figure 5. Each state
is an abstraction over the concrete state variable logCount.

obviously too excessive. A more reasonable representation is
to use some key state variables (SV). A value change of these
variables then could indicate the system is in a different state.
This representation, however, can still be excessive.

Take Figure 5 as an example. If we treat the logCount as
a state variable (SV), the value is incremented for 𝑛 times,
and each increment is counted as a new state. Using such a
representation not only requires frequent state tracking, but
also degrades the injection point grouping to be useless.

The key reason is that some values in a concrete state
variable do not imply a significant change, at least for fault
injection purposes. All the increment-by-one value transitions
of logCountwhile n<=snapCount indicate the same information
about the system, while only the transition of n>snapCount

indicates something new (starting to snapshot).
Essentially we need a more high-level representation than

concrete state variables (SV), which we define as abstract
state variable (ASV). The intuition behind ASVs is that
they represent different stages of service in a system. For the
example in Figure 5, a natural way to define the abstract state
is to divide the execution into four stages— 𝑆0 to 𝑆3 . Figure 7
shows the corresponding abstract state machine. This simpler
representation can recognize when the system starts to do
snapshot (state 𝑆2). In turn, they can effectively group the
injection points to make fault injection efficient.

4.2 Infer Abstract State Variables
The Legolas analyzer uses a simple yet novel method to
automatically infer ASVs in a system. The feasibility of the au-
tomation is based on our insight that developers usually already
encode sufficient hints about ASVs. In particular, developers
checks one or more state variables (SV) in a branch, and if
certain condition occurs, the system performs some action, i.e.,
if (func(state_var1, var2, ...)) { do_action1(); } . From

our inspection, in long-lived components, it is a common
practice to utilize SV to designate different functionalities at
different iterations. For example, the QuorumPeer component in
ZooKeeper uses a static variable state to indicate the node sta-
tus, which could be LEADING, FOLLOWING, etc. The QuorumPeer

component then has a while loop that does a switch case on
this SV to select different functionalities over time.

Legolas first locates all the task-unit classes in the system.
These classes are generally threads or workers, such as classes
that extend Thread or Runnable in Java. The analyzer then runs
ASV inference on each task-unit class.

Algorithm 1 lists the core algorithm. It starts by inferring the
SVs in the code (Line 2). InferCSV simply treats all non-static,
non-constant fields defined in a task unit to be SVs.

Legolas then analyzes the main task method of the task
unit class, such as the run() method of a Thread. It finds the

Algorithm 1: Infer abstract state variables
1 Function InferASV(task_class):
2 𝑐𝑠𝑣_𝑙𝑖𝑠𝑡 ← InferCSV(𝑡𝑎𝑠𝑘_𝑐𝑙𝑎𝑠𝑠);
3 𝑡𝑎𝑠𝑘_𝑚𝑒𝑡ℎ𝑜𝑑← getTaskMethod(𝑡𝑎𝑠𝑘_𝑐𝑙𝑎𝑠𝑠);
4 𝑑𝑒𝑝_𝑔𝑟𝑎𝑝ℎ← buildDependence(𝑡𝑎𝑠𝑘_𝑚𝑒𝑡ℎ𝑜𝑑, 𝑐𝑠𝑣_𝑙𝑖𝑠𝑡);
5 𝑎𝑠𝑣_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠← [𝑡𝑎𝑠𝑘_𝑚𝑒𝑡ℎ𝑜𝑑.body().getFirst()];
6 Process(task_method.body(), dep_graph, false);
7 Function Process(𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠, 𝑑𝑒𝑝_𝑔𝑟𝑎𝑝ℎ, 𝑓 𝑙𝑎𝑔):
8 𝑖𝑛𝑠𝑡 ← 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠.begin();
9 ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑜𝑛← false;

10 while 𝑖𝑛𝑠𝑡 ≠ 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠.end() do
11 if isBranch(𝑖𝑛𝑠𝑡) then
12 <𝑐𝑜𝑛𝑑, 𝑏𝑙𝑜𝑐𝑘𝑠, 𝑛𝑒𝑥𝑡>← parseBranch(𝑖𝑛𝑠𝑡);
13 if dep_graph.contains(cond) then
14 for block← blocks do
15 Process(block.body(), dep_graph, true);
16 end
17 end
18 𝑖𝑛𝑠𝑡 ← 𝑛𝑒𝑥𝑡;
19 else
20 ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑜𝑛← ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑜𝑛 | isAction(𝑖𝑛𝑠𝑡);
21 𝑖𝑛𝑠𝑡 ← 𝑖𝑛𝑠𝑡.next();
22 end
23 end
24 if ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑜𝑛 and 𝑓 𝑙𝑎𝑔 then
25 𝑎𝑠𝑣_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠.add(𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠.begin());

basic blocks in the task method that are control dependent on
some SV and treats each such basic block as a new ASV.

Specifically, the analyzer iterates through instructions in the
task method. Upon a branch instruction, it checks if the branch
condition is dependent on some SV (Line 13). This check
considers not only direct usage of SV but also indirect data
dependence, i.e., a branch condition involving a local variable
that gets its value from an SV. Accordingly, the analyzer builds
a data dependence graph of the SVs (Line 4). The algorithm
then recursively processes the basic blocks control dependent
on this branch instruction (Line 15). A system should perform
non-trivial actions in an abstract state. Thus, we check if the
basic block contains at least one function invocation or an
operation that could change a state variable (Line 20).

Once the proper basic blocks are located, the analyzer
assigns indexes for them, 𝑎𝑠𝑣0, . . ., 𝑎𝑠𝑣𝑛. The indexes are
local to the task class. For each inferred ASV, the analyzer
instruments a call to the Legolas agent. At runtime, the agent
notifies the Legolas state tracker of the 𝑎𝑠𝑣𝑖 that is entered,
along with the node id, the name and id of the current task.

Note that our ASV is not equivalent to conventional control-
flow path. We make program paths collapse into more mean-
ingful ones (service stages) that guide fault injection.

Example. Figure 8 shows the ASVs Legolas infers and
inserts for the code in Figure 5. The inferred ASV is slightly
different from 𝑆2 in the simplified snippet in Figure 7. This
is because the logCount is a local variable, thus the Legolas
analyzer does not treat it as an SV. Another variable snapThd is

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1271

asv0

asv1

asv2

asv3

LegolasAgent.inform(identityHashCode, ..., 0);
while (true) {
 Request si = queuedRequests.take();
 if (request == requestOfDeath) break;
 LegolasAgent.inform(identityHashCode, ..., 1);
 if (zks.getDB().append(si)) {
 logCount++;
 if (logCount > snapCount) {
 if (snapThd != null && snapThd.isAlive()) {
 LegolasAgent.inform(identityHashCode, ..., 2);
 LOG.warn("Too busy to snap, skipping");
 } else {
 LegolasAgent.inform(identityHashCode, ..., 3);
 (snapThd = new Thread(...
 }
 logCount = 0;
...

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Figure 8: The ASVs Legolas infers for Figure 5.

o1 o2 o3 o7

t

o8 o9 o10

buggy point

futile point

A B

system state

o11

inject

…

Figure 9: The buggy point may not be the first request in a state.

a non-static field of SynchRequestProcessor. Legolas treats it
as an SV and infers the 𝑎𝑠𝑣3 that represents the snapshot stage.
This result is in fact more accurate than using logCount, be-
cause it infers an additional state (𝑎𝑠𝑣2)—a previous snapshot
is ongoing while the snapshot threshold is reached.

Alternative. We also explored other ASV inference meth-
ods. For example, we observe that although some function only
uses local variables, it can still represent an important system
service stage, e.g., handling an event. Defining an ASV at the
function entry can be useful. We chose our above inference
method for its simplicity. As Section 7 later show, it is general
enough to apply on all the popular distributed systems we
evaluate and achieve significant performance. It is also feasible
to extend Algorithm 1 and analyze the functions called in
the task method to extract more thorough stages. However,
only analyzing the main task method already provides a good
generalization to capture key stages in a component that match
the system modularity and design documentations.

4.3 Injection Decision Algorithm
With the inferred abstract states, Legolas enables stateful
decision policies for efficient fault injection. When the con-
troller receives an injection request from the Legolas agent,
the controller checks which abstract state the target system is
in at the time of the injection request to make a decision.

A straightforward stateful policy is to grant an injection
request only if the system is in a new state, which we call a new-
state-only policy. While this policy matches the intuition that
complex bugs are often only triggered when the system enters
an unusual condition, it has several drawbacks. As Figure 9
shows, there can be multiple injection requests from one state,
and a buggy point may not be the first request. Indeed, for the
ZooKeeper example, even though the bug only appears in the
snapshot state, the snapshot function performs several write
operations before it reaches the buggy point. This policy also

Algorithm 2: Budgeted state round robin (bsrr) policy
Global Vars: Queue<State> rrl, Map<State,Info> visit
/* invoked at start of a fault injection trial */

1 Function setupNewTrial():
2 resetIfAllUsed(𝑟𝑟𝑙, 𝑣𝑖𝑠𝑖𝑡);
3 while !𝑟𝑟𝑙.empty() do
4 𝑠← 𝑟𝑟𝑙.pop();
5 info← 𝑣𝑖𝑠𝑡.get(𝑠);
6 if info = nil or info.budget > 0 then
7 𝑟𝑟𝑙.append(s);
8 break;
9 end

10 end
11 while !𝑟𝑟𝑙.empty() and 𝑣𝑖𝑠𝑖𝑡.get(𝑟𝑟𝑙.front()).budget = 0 do
12 𝑟𝑟𝑙.pop();
13 end
14 updateProbabilities(𝑣𝑖𝑠𝑖𝑡);

/* invoked for each injection request */

15 Function shouldInject(request):
16 𝑐𝑢𝑟𝑟 ← getCurrentState(𝑟𝑒𝑞𝑢𝑒𝑠𝑡);
17 if not visit.contains(𝑐𝑢𝑟𝑟) then
18 𝑣𝑖𝑠𝑖𝑡.put(𝑐𝑢𝑟𝑟 , new Info());
19 𝑟𝑟𝑙.append(𝑐𝑢𝑟𝑟);
20 end
21 info← 𝑣𝑖𝑠𝑖𝑡.get(𝑐𝑢𝑟𝑟);
22 info.occur← info.occur + 1;
23 if rrl.front() ≠ curr then return false;
24 if info.budget > 0 and rand() < info.prob then
25 info.budget← info.budget - 1;
26 return true;
27 end
28 return false;

relies on the abstract state analysis to be precise. If the static
analysis misses instrumenting an ASV close to the buggy
point, the buggy point will likely be treated as in a seen state.
In addition, the system can take a long time to enter a new
state. If we only wait for new states, we may not inject anything
when the workload finishes and waste an experiment trial.

To address these drawbacks, we design a budgeted-state-
round-robin (bsrr) policy. Algorithm 2 lists its algorithm.

The algorithm allocates a budget (default 5) for each state to
be potentially granted injection more than once. This relaxes
the stringent new state requirement. After all states use up
their budgets, the budgets are reset (Line 2).

It keeps a round-robin list of the abstract state tuples (rrl in
Algorithm 2). Suppose the list has 𝑠1, 𝑠2, . . . , 𝑠𝑛. The algorithm
intends to grant injection requests from state 𝑠1 for the first
trial, grant requests from 𝑠2 for the second trial, and so on. In
other words, it focuses on one state in one trial.

Specifically, before each trial, bsrr rotates the state focused
in the last trial to the end of the round-robin list (Line 7). If a
state’s budget is used up, it is removed from the list.

The round-robin design addresses the imbalanced injections
problem illustrated by Figure 10: in all three experiment trials,

1272 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

t

buggy point

system state
inject

A

B

C

trial 1 trial 2 trial 3

futile point

Figure 10: All injection chances are given to operations in state A.

we would inject operations in the frequent state A (within its
budget), while no operation in state B or C is injected.

The algorithm also applies randomization to allow exploring
different choices when a state has multiple injection requests.
The probability 𝑝 should be set properly. If it is too large, we
would always grant the first (few) requests in a state. If it is
too small, we may waste the injection trial.

We calculate 𝑝 for each state tuple based on 𝑐—the
times this state appears in injection requests. We set 𝑝 =

1− 𝑒𝑙𝑛(0.01)/(𝑐+1) . This formula’s rationale is that we want to
(i) grant at least one injection among the 𝑐 requests to avoid
wasting the trial; (ii) let the injection occur neither too early
nor too late among the 𝑐 requests. The probability that all
𝑐 injections are not granted is (1− 𝑝)𝑐. Because of (i), this
probability should be close to 0. Suppose (1− 𝑝)𝑐 = 𝜖 . With
(ii), 𝜖 should not be too small; otherwise 𝑝 is too close to 1
and the injection would be too early. We set 𝜖 to 0.01, and
solve this equation, which gives 𝑝 = 1− 𝑒𝑙𝑛(0.01)/𝑐. We use
1− 𝑒𝑙𝑛(0.01)/(𝑐+1) instead to handle corner cases of 𝑐 = 2 or 3.

The bsrr policy is adaptive to leverage information from
prior trials. Upon each injection request, the algorithm dynam-
ically updates the parameter 𝑐 (Line 22). Before a trial starts,
it uses the occurrences from previous trials to re-calculate the
probabilities for the visited states (Line 14). Similarly, bsrr
updates the round-robin list dynamically (initially empty). If
a state in an injection request is not visited before, it is added
to the round-robin list for later exploration (Line 19).

5 Testing Experiment
Legolas starts fault injection testing after the analyzer finishes
instrumentations (§3, § 4.2) on the target system. Legolas uses
a client-server architecture to manage the testing (Figure 3),
where the Legolas agents embedded in the system send RPC
requests to a Legolas server that is composed of an abstract
state tracker, injection controller, workload driver, and failure
checkers. The testing proceeds in continuous trials.

5.1 Injection Trial
In each trial, Legolas starts a cluster of the target system and
then invokes the workload driver (Section 5.2). The trial ends
when the workload finishes (successfully or not).

To support stateful injection decision algorithm (Sec-
tion 4.3), while the target system is restarted in each trial,
the Legolas server will live throughout the experiment. Thus,
it carries information such as the round-robin list across trials.

When a node enters a new abstract state, the Legolas agent
notifies the state tracker, which maintains one Abstract State
Machine (ASM) per task-unit (usually a thread) for each system
node. Each state update event is a tuple of node id, ASM-name

(class name), ASM-instance (class instance), and ASV. The
tracker records the current ASV and transitions for each ASM.

When a node reaches an injection hook, the Legolas agent
sends an injection query to the controller, which is a tuple of
node id, ASM-instance, operation, and fault ids. The controller
runs the bsrr algorithm to decide whether to grant the injection
or not. Notice, however, that the injection query does not carry
the ASV information. The controller obtains the associated
ASV by indexing the node id and ASM-instance from the
injection query to the ASM map in the state tracker.

Legolas by default grants at most one injection in one trial.
Allowing multiple injections in a trial only requires a simple
change. While it seems more attractive to keep injecting faults
in a trial, that choice has several disadvantages. Although
distributed systems are designed to be fault-tolerant, each
system has a limited tolerance level. If we keep injecting in a
single run, the system may likely break as expected. Moreover,
each injected fault can alter the system state and leave side
effects. With continuously injected faults, it becomes very
difficult to judge the system behavior and tell which fault is
responsible for the symptom. Also importantly, if injections
are performed non-stop, we may go deeper in an execution
path, but we will not inject earlier, skipped operations or
explore other paths, sacrificing completeness.

5.2 Workload Driver
Legolas uses a workload driver to exercise the target system.
For each system, we select several existing, representative test
cases to create the workload driver.

To better suit our objectives, we make a few adaptations to
the test cases. First, the driver creates multiple clients and each
client is typically dedicated to interacting with one node. In
this way, Legolas can observe the status of every system node
without mixing signals. Second, the driver divides workloads
into phases, e.g., create, read and write. Only when the current
workload phase finishes successfully will the next phase starts.
This is to localize the failed system functionalities and avoid
unnecessary errors that mislead the results. Third, in one
workload phase, each client is expected to send a series of
requests and will report its progress to Legolas server after
one request completes. The Legolas server also tracks when a
client timeouts or encounters exceptions. This allows Legolas
to more accurately assess the failure impact. Lastly, we use a
small workload scale, such that a trial does not take long and
Legolas can explore more trials.

5.3 Failure Checkers
To determine the testing results, Legolas currently provides
three failure checkers:
• Crash checker: it monitors the OS signals to check if a

system node crashes, aborts, or exits with a non-zero status.
• Client checker: it approximates Panorama [22], a state-of-

the-art gray failure detector, to identify whether differential
observability exists. In particular, it marks a trial suspicious

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1273

System Release SLOC Type

ZooKeeper 3.6.2 95K Coordination service
HDFS 3.2.2 689K Distributed file system
Kafka 2.8.0 322K Event streaming system
HBase 2.4.2 728K Distributed database
Cassandra 3.11.10 210K Distributed database
Flink 1.14.0 78K Stateful streaming system

Table 1: Evaluated distributed systems in latest releases.

if (1) a fault is injected in one node, but only another node’s
clients report errors; (2) the system’s own detector indicates
a node is active, but the node’s clients report errors; (3) only
a subset of clients fail to complete their workloads.

• Log checker: it scans the logs of each system node to identify
whether there are log entries at warning or error level.
As a testing framework, Legolas is extensible to add more

checkers. For example, users can add checkers about inconsis-
tency [38], semantic failures [37], or transaction isolation [30].

When a fault is injected, Legolas records the stack trace
of the originating operation. With the stack traces, Legolas
further clusters the trials by stack trace similarities so that
similar symptoms are investigated together.

6 Implementation
We implement Legolas with around 7,500 SLOC for the core
components, and 100–300 SLOC for the workload driver for
each evaluated target system. The Legolas static analyzer is
built on top of the Soot [52] framework, so it supports systems
in JVM bytecode, including Java and Scala. Its core analysis
algorithms are based on universal programming language
constructs such as thread classes, member variables, branches,
and conditionals. Thus, they are language-independent. The
controller and orchestrator are designed in a client-server
architecture using Java RMI for local RPCs.

7 Evaluation
Our evaluation aims to answer several key questions: (1)
does Legolas work on large distributed systems? (2) can
Legolas expose new complex fault-triggered bugs? (3) does
the abstract states Legolas infers significantly help the fault
injection efficacy? (4) how does Legolas using the bsrr policy
compare to other policies and state-of-the-art solutions?
Evaluated Systems. We evaluate Legolas on the recent stable
releases of six popular, large-scale distributed systems (Ta-
ble 7). These systems have different functionalities, written
with various programming paradigms. Our appendix lists the
workloads we use in the testing.
Measure. For a testing tool, its ability to exposes new bugs is
a key measure. Our evaluation thus centers around this aspect
(Section 7.2). Since our target systems are widely deployed in
production and have been extensively tested for years, finding
new bugs in their latest releases is not an easy task.

Additionally, we apply Legolas on a number of randomly
sampled known bugs in old releases of the systems (Sec-
tion 7.5), including the running example in Figure 1.

System Class ASM ASV Static. Injected

Total Mean Min Max Methods Points

ZK 708 36 226 6 1 31 484 1947
HDFS 4636 104 390 4 1 16 2127 3913
Kafka 5829 51 220 4 1 15 343 754
HBase 10462 96 312 3 1 17 5874 11051
CSD 4636 104 390 4 1 18 2127 3913
Flink 4852 48 110 2 1 6 997 2299

Table 2: Statistics of applying Legolas static analyzer. Class: ana-
lyzed Java classes; ASM: classes analyzed as abstract state machines;
Mean, min, and max of ASV are abstract state variables in each ASM.

Setup. We run experiments on servers with a 20-core 2.20GHz
CPU and 64 GB memory running Ubuntu 18.04.

Each system’s fault injection experiment consists of 2000
trials. A trial’s time is dominated by the system startup and
workload execution. The trials’ durations vary depending on
how the system reacts to the injected faults and whether it fails
early or not. The experiment time for the six systems is 2.7 hrs,
10.7 hrs, 23.5 hrs, 8.4 hrs, 54.6 hrs, and 26.5 hrs respectively.

We use the bsrr policy (Section 4.3), and set the state budget
to the default value of 5 for all systems.

Due to the large scale of experiments and time constraints,
our testing focuses on the following faults: (1) I/O related
exceptions, e.g., IOException, ClosedChannelException; (2)
custom exception types that inherit from IOException; (3)
delays to function calls that involve disk or network I/O.
We run two separate experiments (exception and delay) for
each system. We observe that IOException is widely used to
represent more than hardware issues. For example, developers
add throw new IOException statements for situations such as
“unreasonable length”, “missing signature”, “current epoch
is less than accepted epoch”, and “snapshot already exists”,
which are difficult to simulate by external fault injection tools.

7.1 Injection Points and Abstract States
Legolas successfully applies on the six systems. Besides
scaffolding information (e.g., class paths, task class types), the
analyzer does not require additional input for a new system.
The injection policies are also not specially tuned.

As Table 2 shows, the number of task classes (ASMs) Lego-
las extracts is much smaller compared to the number of classes
in the system. It also varies across different systems due to
their design choices. For example, ZooKeeper has a relatively
small number, while Cassandra has over 100; yet, ZooKeeper
has the largest ASVs per ASM. This is because ZooKeeper
uses long-running threads, while Cassandra adopts an event-
driven architecture that uses many short-lived runnables. The
mean ASVs per ASM is moderate, because currently Legolas
only analyzes the direct ASM classes and task entry methods.

We further manually inspect the 36 ASMs and 226 ASVs
Legolas generates for ZooKeeper. We find that they can repre-
sent the state transitions in ZooKeeper at different granularities.
For example, in the QuorumPeer ASM, the ASVs exactly match
the states of a node in the quorum: for the states such as

1274 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Looking, Observing, Leading, and Following, there exists ex-
actly one ASV for each. In the SyncRequestProcessor ASM,
the ASVs capture local state transitions: there is one ASV
in which the transaction log is written, one when flushing
in-memory log, and one when the snapshot is taken.

Dynamically, 24 ASMs and 76 ASVs are traversed during
our testing. For the 150 non-traversed ASVs, 46 are from the
12 unutilized ASMs. We check the rest 104 ASVs to see if
they encode meaningful execution states. In 20 of them, the
code blocks have at least one I/O operation. In another 58
ASVs, they are in the exception handlers or shutdown blocks.
In 8 ASVs, they only print a log. The remaining 18 ASVs do
not contain significant operations and are introduced due to
code optimizations by Soot. For the 20 unvisited ASVs that
contain I/O operations, we tried to enlarge our workload (more
reads/writes, reconfiguration), which did not help. However,
our small workload achieves decent utilization of the ASVs.

7.2 Finding New Bugs
Our overall experience in the fault injection experiments is that
the evaluated systems are robust to tolerate or at least cleanly
abort various faults in most places. Take ZooKeeper as an
example. If a thread is doing a socket write and a network delay
is injected, this thread will get stuck. In general, ZooKeeper
can handle the fault correctly even though this thread hangs.
For example, if the LearnerHandler thread hangs in this way,
the QuorumPeer is able to confirm the stale PING state and
abandon the problematic QuorumPeer.

Despite the robustness, Legolas finds new bugs in all tested
systems. It finds 20 unique bugs (Table 8 in Appendix). All
bugs are non-trivial and require domain knowledge to un-
derstand, such as mishandling of errors, design flaws, and
synchronization issues. They all trigger partial failure symp-
toms, such as some requests get stuck while others succeed.

We reported the bugs to developers. Four reports are marked
as critical, fourteen as major, and two as normal. Eleven reports
have been explicitly confirmed by developers so far. Our bug
reports generate substantial discussions with developers, with
a median of 21 comments and a maximum of 42 comments.
Our reports to ZooKeeper inspired the developers to adopt
fault injection testing practice.
Case Studies. HDFS-15925 In one trial, Legolas injects an
IOException in the BlockReceivermodule while one datanode
is forwarding the data blocks to a mirror (another datanode).
One client gets stuck without any error log, and its work-
load progress is partial (1/5), while other clients finish the
workload (5/5). After investigation, we find that normally
the datanode in such a situation will inform the client of
this error state immediately. Then the client will resend the
blocks. This process would be fast. Through code analysis,
we find the root cause is a complex timing bug. In particular,
when the datanode encounters the IOException it sets the
mirrorError flag (Figure 11). However, a concurrency condi-
tion exists in which the mirrorError flag set could be shortly

class PacketResponder {
 public void run() {
 while (isRunning() && !lastPacketInBlock) {
 PipelineAck ack = new PipelineAck();
 try {
 if (type != LAST_IN_PL && !mirrorError) {
 ack.readFields(downstreamIn);
 }
 } catch (IOException ioe) {
 ...
 }
 }
 }
}

class BlockReceiver {
 private int receivePacket() {
 if (mirrorOut != null && !mirrorError) {
 try {
 ...
 packetReceiver.mirrorPacketTo(mirrorOut);
 ...
 } catch (IOException e) {
 handleMirrorOutError(e);
 }
 }
 return lastPacketInBlock?-1:len;
 }
}

IOException injected inside

set flag mirrorError

gets stuck

Figure 11: A timing bug that causes the packet responder to get
blocked when the datanode encounters an IOException.

0 250 500 750 1000 1250 1500

Experiment time (minutes)

0
2
4
6
8

10
12
14
16
18
20

#
 o

f
b
u
g
s
 e

x
p
o
s
e
d bsrr

random

new state only

exhaustive

Figure 12: Efficacy of decision policies in Legolas on detecting new
bugs. bsrr: our budgeted-state-round-robin algorithm.

after the PacketResponder thread checks this flag, causing
PacketResponder to not notice this status and get blocked, and
the ACK packet will not be sent by the mirror datanode.

Legolas exposes the bug five times in the experiment, with
the first time in trial 124 at around 43 minutes.

HDFS-15869 The HDFS namenode uses the EditLog to
maintain a transaction log of the namespace modifications.
In one trial, Legolas injects a delay to a remote write in
the FSEditLogAsync thread. The injection occurs when the
thread sends a response to the client and other servers, after it
commits a transaction. This causes the whole FSEditLogAsync

to be unable to proceed. The critical logSync function cannot
be executed for incoming transactions. This is undesirable
because FSEditLogAsync’s key feature is asynchronous edit
logging that is supposed to tolerate slow I/O.

7.3 Impact of Abstract States and BSRR
This paper’s thesis is that our inferred abstract states can enable
efficient fault injection. Section 7.2 shows that Legolas finds
complex new bugs with our bsrr algorithm. To further validate
our thesis, we compare the bsrr algorithm with alternative
decision policies on the 20 new bugs.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1275

Detected Bugs Median Detection Time

FATE 1 1057.9 minutes
CrashTuner 4 20.4 minutes
CORDS 0 N/A

Table 3: Effectiveness of existing work on the 20 new bugs.

For each policy, we run a 2000-trial experiment and measure
the number of bugs it exposes, as well as the time it takes to
expose the bugs. The latter is an important metric. If a solution
cannot expose a bug within a reasonable time, developers in
practice likely will not use it even if the solution in theory
may expose the bug after a long time.

Figure 12 shows the result. The exhaustive policy only
exposes one bug. The random policy only exposes three bugs.
It is also inefficient. It takes a median of 208 minutes and a
max of 994 minutes to find the three bugs. After finding the
third bug, it fails to find more bugs in 24 hours.

The new-state-only policy (§ 4.3) exposes eight bugs in
a median of 11.4 minutes. It is the best among the baseline
policies, showing the advantages of our inferred abstract states.

The bsrr significantly outperforms all alternatives. It ex-
poses 20 bugs in a median of 58.2 minutes (min 4.0 minutes,
max 302.0 minutes). Compared to new-state-only, it is more
robust in leveraging the imperfectly inferred abstract states,
exposing much more bugs while achieving good efficiency.

The inferred ASVs help improve the fault injection efficacy
in two ways. First, they can capture the unusual system service
stages, allowing Legolas to inject in places that are not well
tested and buggy. For example, in HDFS-15957, one of the
ASVs Legolas infers for FSEditLogAsync represents the state
of sending a response to client while FSEditLogAsync is com-
mitting transactions. The ASVs for the running ZooKeeper
example also belong to this category. Second, the inferred
ASVs can help make progress in skipping uninteresting in-
jection points. For example, in HDFS-15925, the injection
(Figure 11) occurs inside the DataXceiver thread in the datan-
ode. The relevant ASV that Legolas infers corresponds to the
processOp stage. Although this ASV is just the main stage of
the thread, the other ASVs Legolas infers in other threads
help avoid wasting too much time in injecting in other places.

7.4 Comparing with Other Solutions
Research Baselines. We compare Legolas with three state-
of-the-art fault injection research projects, FATE [15] Crash-
Tuner [40] and CORDS [13]. FATE tests multiple failures by
using a concept of failure IDs to efficiently enumerate the
combinations of failures. CrashTuner uses meta-info variable
accesses to decide the timing of injecting node crashes for
exposing crash recovery bugs. CORDS uses a FUSE file sys-
tem to inject a single corruption or read/write error to one
file-system block at a time, and enumerate all possible faults.

The first two works focus on node-level faults, making them
not directly comparable to Legolas. We apply their key ideas
to attempt meaningful comparisons. We define the failure
IDs as described in the FATE paper and implement a policy

in Legolas to grant an injection request when its associated
failure ID has not been visited. For CrashTuner, because its
analyzer component is not available, we re-implement its static
analysis to identify all meta-info variable accesses and assign
each access point a global ID. We instrument each access
point to record the accesses at runtime. Then we grant an
injection request when some meta-info variable access occurs
within the past 5 ms and the access ID has not been seen. The
latter is needed because a system may access the meta-info
variable in a deterministic order, leading to only one injection
being always granted if the access ID is not checked.

For CORDS, we utilize similar procedures as described in
the paper to enumerate file system level errors on the requests
to FUSE. For the experiment, we use the same workloads as
in Legolas but use the injection algorithm in CORDS.

Table 3 shows the result. FATE only detects one of the
20 new bugs in 1057.9 minutes. CrashTuner only detects
four bugs. Legolas significantly outperforms both solutions.
CORDS does not detect any of the 20 new bugs despite
enumerating all of its injection choices during the experiment.
Although CORDS is a fine-grained fault injection tool, its
fault scope is limited. It only injects corruption or error of
a file block. Only 2 of the 20 bugs’ root causes are related
with that. For the two cases, they require a transient error and
special timing, while CORDS injects persistent corruption or
error that more likely leads to a total failure (node crash).
Popular Tool Baselines. We further compare Legolas with
three fault injection tools that are popular among developers:
CharybdeFS [49] (a fault-injection filesystem), tcconfig [19]
(a network fault injection tool based on Linux Traffic Control),
and byte-monkey [53]. Byte-monkey is closer to Legolas in
that it also performs bytecode-level fault injection.

These tools rely on user-provided parameters to configure
the injection, such as the packet loss rate and probability of
returning an error code. Settings that are too large or too small
produce meaningless results. We choose one moderate setting
and one mild setting for each tool. We exercise the target
systems using the same workloads from Legolas.

Most injections lead to either a high percentage of successful
trials or a high percentage of early exits (shown in appendix).
For the small percentage of partial_progress injection trials,
the failed client requests either happen directly because of the
injected fault (e.g., the server logs that it is unable to read data
from client) or the system is in the middle of fault handling
and successfully recovers. We verify that none of these trials
expose any of the 20 new bugs Legolas finds. We also vary
the parameters, but the conclusions remain the same.

In the Legolas decision policy comparison experiments
(§ 7.3), its random policy exposes three bugs. In comparison,
the evaluated popular tools do not expose any bugs with their
random strategies. The discrepancies are due to the probability
factor and the fact that Legolas’s in-situ injection mechanism
has more precise control—it instruments operations that are
possible to throw IOException (or its subtype) errors, which

1276 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

System Bug Id (Exposure Time)

ZooKeeper ZK-2029 (15.4 min), ZK-2201 (30.6 min), ZK-2247
(52.1 min), ZK-2325 (2.6 min), ZK-2982 (18.5 min)

Cassandra CA-6364 (10.0 min), CA-6415 (330.6 min), CA-8485
(25.3 min), CA-13833 (86.7 min)

HDFS HDFS-11608 (29.2 min), HDFS-12157 (39.9 min)

Table 4: Legolas exposes known bugs in old releases.

ZooKeeper HDFS Kafka Cassandra HBase Flink

8.9 s 31.6 s 36.9 s 20.9 s 77.6 s 63.9 s

Table 5: Time of static analysis and instrumentation.

may be caused by complex environment errors. For instance,
while tcconfig injects packet loss, it fails to trigger errors for
function calls that internally throw IOException only upon
a sequence of network errors. Also, its injection has a low
chance of affecting only a special subset of operations.

7.5 Exposing Known Bugs
Besides finding new bugs, we further evaluate Legolas’s
capabilities on exposing known partial failure bugs. We sample
11 real-world partial-failure issues from older system releases.
In particular, we first use keywords matching on Jira to collect
all cases whose root cause is related to I/O exception or delay.
Then we randomly sample 50 of them, and select all the cases
that satisfy our definition of partial failures and require one
fault, which result in 11 cases. As Table 4 shows, Legolas can
relatively quickly reproduce these known bugs.

7.6 Performance
We measure the fault injection trial duration for Legolas.
Figure 13 shows the results. Although Legolas tracks abstract
states and dispatches the fault injection queries through RPCs,
the injection duration is still acceptable, with a maximum
of around 70 seconds. Legolas uses local RPCs based on
Java RMIs. Our microbenchmark shows the RMI latency
is between 10 𝜇s–50 𝜇s. The bsrr policy function for one
injection request has a median latency of 3 ms.

Table 5 shows the performance of the Legolas static analysis
and instrumentation. The analysis is fast, with the longest time
being (73 s) in analyzing HBase.

7.7 Effort and False Positive
The static analysis and instrumentation steps in Legolas are
fully automated. The fault injection experiment does not re-
quire manual tuning. Our workload drivers are adapted from
existing test cases and re-usable across versions. The main
effort in using Legolas is to confirm a bug after testing. How-
ever, this is common for testing tools, not a unique requirement
of Legolas. For the new bug finding exercise in Section 7.2,
it roughly takes a graduate student author one to two weeks
per system to examine the testing results, read and understand
the relevant source code, and confirm where the bug is.

A false positive occurs if the fault being injected turns out
to be impossible in reality. We observe such false positives

cassandra flink hbase hdfs kafka
zookeeper

0

20

40

60

Du
ra

tio
n

(s
)

Figure 13: Distribution of one fault injection trial duration.

ZooKeeper HDFS Kafka Cassandra HBase Flink

w/ i.i.a 0 0 0 0 0 0
w/o i.i.a 45 (6) 20 (9) 0 894 (10) 86 (10) 0

Table 6: Number of trials that have invalid injections, with and
without the invalid injection analysis in Section 3. The numbers in
parentheses are the unique locations of these invalid injections.

in initial development of Legolas and they are caused by
the same problem: it injects an IOException to a function
that declares IOException in its signature but cannot possibly
have I/O errors. For example, we inject an IOException to the
writeBoolean call inside the Cassandra serialize method.
This injection triggers a buggy symptom. However, this
method uses a memory buffer for the writeBoolean call.

As described in Section 3, we introduce an inter-procedural,
context-sensitive analysis to eliminate such false injections.
Table 6 shows the number of false injection trials for each
system with and without this analysis. The result shows that the
analysis successfully eliminates all of these invalid injections.

Another potential source of false injection is the automatic
exception instance creation. Our method may create some
invalid exception instances. However, we did not observe such
false positives in our experiments.

Our failure checkers (Section 5.3) can make mistakes. When
they mark a trial as being suspicious, it may turn out not to be a
bug. For example, in ZooKeeper, the write requests to followers
are forwarded to the leader. When the client checker flags a trial
where a fault is injected in node 1 and the clients connected
to node 2 experience write timeouts, it is possible that the
node 1 is the leader and it is temporarily unavailable because
of the delay injection. Developers may consider this to be a
false positive, but the false positive is from the checker rather
than the fault injection—the injected fault is legitimate. Our
current checkers are basic. From our experience, to enhance
checkers with more comprehensive bug rules, the knowledge
of system-specific protocols and modularity practices must
be exploited. After the enhancement, developers may still
disagree on the definition of a bug. However, Legolas’s core
contribution is on fault injection methodology.

Our bug confirmation process is as follows. We first utilize
the basic checkers to highlight suspicious trials. For each
suspicious trial, we analyze how the fault propagates its effect
from one component to another and leads to the suspicious
symptom. We then diagnose whether that is a bug and check
if the design documentation describes the expected behavior.
Finally, we will report it to developers to discuss with them.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1277

8 Discussion and Limitations
Our ASV inference currently only analyzes states inside the
task classes and the task entry functions. Thus, the inferred
ASVs for each task are relatively coarse-grained. The analysis
can be extended to other task functions and states that are
passed to other classes through function calls, which will
extract more detailed ASVs. However, it is not always the
more detailed the better. A large system typically has tens to
hundreds of task classes, so too fine-grained ASVs can lose
the benefits of effectively grouping injection requests.

Our workload drivers use workloads on a small scale to
exercise the target system. More workloads can be added to
the Legolas workload drivers, which is not a difficult task and
would allow Legolas to expose fault-induced bugs that require
large workloads (e.g., performance bugs).

Legolas injects a single fault in one fault injection trial.
It would miss bugs triggered by multiple faults. Supporting
injection of multiple faults in Legolas only requires a simple
change. However, the decision algorithm and failure checkers
would likely require significant changes. Indeed, we tried
enabling multi-fault injection for the ZooKeeper experiment,
but it only improved the efficiency for one bug.

Legolas does not explicitly control non-determinism in the
target system, such as thread schedules, which is the focus of
concurrency testing tools. Thus, while Legolas can expose a
concurrency bug, it may not expose it reliably or efficiently.
Legolas can be combined with concurrency testing tools.

9 Related Work
Fault Injection. Early fault injection work targets standalone
software. Faults are injected into hardware, simulated en-
vironment [20], or libraries (LFI [43]). Fault injection test-
ing becomes popular in distributed systems with much re-
search [2–4,7, 13,15,24,26,27,40,45]. Many inject coarse-
grained faults externally such as node crashes to expose proto-
col or crash recovery bugs. The injection is done randomly, or
exhaustively, or based on user specifications. Several solutions
proposed more advanced techniques. For example, LDFI [3]
leverages data lineage to inject crashes or network faults if
the faults could prevent correct outcomes; CrashTuner [40]
injects crashes when meta-info variables are accessed.

Legolas focuses on complex partial failure bugs. It uses an
instrumentation approach to inject system-specific, instruction-
level faults within a target system. It designs a novel static
analysis method that automatically infers abstract states from
distributed system code. Its decision algorithm leverages the
abstract states to efficiently explore the fault space.

Recent fault injection research addresses other applications,
such as multi-threaded programs [32], cluster-management
controllers [51], microservices [44, 57], and REST applica-
tions [8]. Legolas is orthogonal to these efforts. It targets
large-scale distributed systems and aims to expose partial
failure bugs triggered by exceptions or delays in the operations

of a component within a distributed system node.
Model Checking. Model checking enumerates the possible
interleaving of non-deterministic events such as messages.
It has been applied to distributed systems [18, 29, 31, 50,
54]. Distributed system model checkers (dmcks) including
MODIST [54], SAMC [31], and FlyMC [42] also explore the
interleaving of crash/reboot failure events. Legolas shares
high-level similarity with these solutions in that it systemat-
ically explores the fault injection space. However, Legolas
is a complementary effort. Existing dmcks target protocol
bugs caused by complex interleaving of node-level events,
while Legolas targets implementation-level bugs triggered by
diverse faults in fine-grained program instructions. Legolas
can leverage a dmck to drive the target system into unexplored
states, allowing Legolas to try more injections.
Distributed Concurrency Bug Detection. Several
projects [33,35,39,56] aim to detect concurrency bugs in dis-
tributed systems. FCatch [35] applies happens-before analysis
on correct execution traces to identify unprotected conflicting
operations. Legolas is a general fault injection framework
aiming to expose diverse bugs.
Partial Failure Detection. Failure detectors are part of a
running production distributed system to determine whether
the system is faulty or not. Recent works [22,36,41,47] explore
advanced detectors for the notorious partial failures. Legolas
is an offline testing tool. It can leverage these advanced
techniques in its checkers to find more bugs in testing.
Error Handling Bug Detection. Error handling code is
known to be buggy. Studies [36, 55] have shown that this is
also true for distributed systems. Aspirator [55] uses rules
to statically find simple error handling bugs such as empty
handlers. Legolas focuses on fault injection to systematically
test distributed systems and uncover diverse types of bugs.

10 Conclusion

This paper presents Legolas, a fault injection testing frame-
work that aims to catch complex partial failure bugs in large
distributed systems. Legolas uses static analysis to enable
fine-grained, system-specific fault injection. It designs a novel
method to extract abstract states from system code and uses
them to efficiently explore the fault injection space. We apply
Legolas on six distributed systems and find 20 new bugs. Lego-
las is available at https://github.com/OrderLab/Legolas.

Acknowledgments
We thank our shepherd, Peter Alvaro, and the anonymous
reviewers for their valuable and detailed feedback that im-
proved our work. We appreciate the help from the developers
of the open-source distributed systems we evaluated. We
thank CloudLab [11] for providing the resources to run our
experiments. This work was supported in part by NSF grants
CNS-2317698, CNS-2317751, and CCF-2318937.

1278 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/OrderLab/Legolas

References

[1] Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan,
and Samer Al-Kiswany. Toward a generic fault toler-
ance technique for partial network partitioning. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 351–368. USENIX
Association, November 2020.

[2] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta,
and Samer Al-Kiswany. An analysis of network-
partitioning failures in cloud systems. In Proceedings
of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI ’18, pages 51–68,
Berkeley, CA, USA, 2018. USENIX Association.

[3] Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein.
Lineage-driven fault injection. In Proceedings of the
2015 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’15, pages 331–346, New
York, NY, USA, 2015. ACM.

[4] Cory Bennett and Ariel Tseitlin. Chaos monkey released
into the wild. http://techblog.netflix.com/2012/07/
chaos-monkey-released-into-wild.html, 2009.

[5] Dmitry Bugaychenko. Kafka production failure because
of BadVersionException. https://issues.apache.org/
jira/browse/KAFKA-1407, 2014.

[6] Haicheng Chen, Wensheng Dou, Yanyan Jiang, and Feng
Qin. Understanding exception-related bugs in large-scale
cloud systems. In Proceedings of the 34th IEEE/ACM
International Conference on Automated Software Engi-
neering, ASE ’19, page 339–351. IEEE Press, 2020.

[7] Haicheng Chen, Wensheng Dou, Dong Wang, and Feng
Qin. CoFI: Consistency-guided fault injection for cloud
systems. In Proceedings of the 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering,
ASE ’20, page 536–547, New York, NY, USA, 2021.
Association for Computing Machinery.

[8] Yinfang Chen, Xudong Sun, Suman Nath, Ze Yang,
and Tianyin Xu. Push-Button reliability testing for
Cloud-Backed applications with rainmaker. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 1701–1716, Boston,
MA, April 2023. USENIX Association.

[9] Kim Christensen. Kafka partial cluster break-
down. https://issues.apache.org/jira/browse/

KAFKA-3577, 2016.

[10] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, and Haryadi S. Gunawi. Limplock:
Understanding the impact of limpware on scale-out cloud

systems. In Proceedings of the 4th Annual Symposium
on Cloud Computing, SOCC ’13, pages 14:1–14:14, New
York, NY, USA, 2013. ACM.

[11] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,
Kuangching Wang,Glenn Ricart,Larry Landweber,Chip
Elliott, Michael Zink, Emmanuel Cecchet, Snigdhaswin
Kar, and Prabodh Mishra. The design and operation of
CloudLab. In 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19), pages 1–14, Renton, WA, jul
2019. USENIX Association.

[12] Mostafa Elhemali, Niall Gallagher, Nick Gordon, Joseph
Idziorek, Richard Krog, Colin Lazier, Erben Mo,
Akhilesh Mritunjai, Somasundaram Perianayagam, Tim
Rath,Swami Sivasubramanian, James Christopher Soren-
son III, Sroaj Sosothikul, Doug Terry, and Akshat Vig.
Amazon DynamoDB: A scalable, predictably perfor-
mant, and fully managed NoSQL database service. In
Proceedings of the 2022 USENIX Annual Technical Con-
ference, USENIX ATC ’22, pages 1037–1048, Carlsbad,
CA, July 2022. USENIX Association.

[13] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Re-
dundancy does not imply fault tolerance: Analysis of
distributed storage reactions to single errors and corrup-
tions. In Proceedings of the 15th Usenix Conference on
File and Storage Technologies, FAST ’17, page 149–165,
USA, 2017. USENIX Association.

[14] Supriyo Ghosh, Manish Shetty, Chetan Bansal, and
Suman Nath. How to fight production incidents? an
empirical study on a large-scale cloud service. In Pro-
ceedings of the 13th Symposium on Cloud Computing,
SoCC ’22, page 126–141, New York, NY, USA, 2022.
Association for Computing Machinery.

[15] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Al-
varo, Joseph M. Hellerstein, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, Koushik Sen, and Dhruba
Borthakur. FATE and DESTINI: A framework for cloud
recovery testing. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implemen-
tation, NSDI’11, pages 238–252, Berkeley, CA, USA,
2011. USENIX Association.

[16] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto,
Agung Laksono, Anang D. Satria, Jeffry Adityatama, and
Kurnia J. Eliazar. Why does the cloud stop computing?:
Lessons from hundreds of service outages. In Proceed-
ings of the 7th ACM Symposium on Cloud Computing
(SoCC), pages 1–16, October 2016.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1279

http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
https://issues.apache.org/jira/browse/KAFKA-1407
https://issues.apache.org/jira/browse/KAFKA-1407
https://issues.apache.org/jira/browse/KAFKA-3577
https://issues.apache.org/jira/browse/KAFKA-3577

[17] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears,
Casey Golliher, Swaminathan Sundararaman, Xing Lin,
Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, Gary Grider, Parks M. Fields, Kevin
Harms, Robert B. Ross, Andree Jacobson, Robert Ricci,
Kirk Webb, Peter Alvaro, H. Birali Runesha, Mingzhe
Hao, and Huaicheng Li. Fail-slow at scale: Evidence of
hardware performance faults in large production systems.
In Proceedings of the 16th USENIX Conference on
File and Storage Technologies, FAST’18, pages 1–14,
Berkeley, CA, USA, 2018. USENIX Association.

[18] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Jun-
feng Yang, and Lintao Zhang. Practical software model
checking via dynamic interface reduction. In Proceed-
ings of the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP ’11, October 2011.

[19] Tsuyoshi Hombashi. tcconfig: A tc command wrapper.
https://github.com/thombashi/tcconfig, 2022.

[20] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K.
Iyer. Fault injection techniques and tools. Computer,
30(4):75–82, April 1997.

[21] Lexiang Huang, Matthew Magnusson, Abishek Ban-
galore Muralikrishna, Salman Estyak, Rebecca Isaacs,
Abutalib Aghayev, Timothy Zhu, and Aleksey Chara-
pko. Metastable failures in the wild. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI ’22, pages 73–90, Carlsbad, CA, July
2022. USENIX Association.

[22] Peng Huang, Chuanxiong Guo, Jacob R. Lorch, Lidong
Zhou, and Yingnong Dang. Capturing and enhancing
in situ system observability for failure detection. In
13th USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’18, pages 1–16. USENIX
Association, October 2018.

[23] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R.
Lorch, Yingnong Dang, Murali Chintalapati, and Ran-
dolph Yao. Gray failure: The Achilles’ heel of cloud-
scale systems. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems, HotOS XVI, British
Columbia, Canada, May 2017. ACM.

[24] LLC. Jepsen. Jepsen: a framework for distributed sys-
tems verification, with fault injection. https://github.
com/jepsen-io/jepsen, 2023.

[25] Jiahongchao. updateisr should stop after failed several
times due to zkVersion issue. https://issues.apache.

org/jira/browse/KAFKA-3042, 2015.

[26] Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen.
PREFAIL: A programmable tool for multiple-failure

injection. In Proceedings of the 2011 ACM International
Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’11, pages 171–
188, New York, NY, USA, 2011. ACM.

[27] Xiaoen Ju,Livio Soares,Kang G. Shin,Kyung Dong Ryu,
and Dilma Da Silva. On fault resilience of OpenStack.
In Proceedings of the 4th Annual Symposium on Cloud
Computing, SoCC ’13, pages 2:1–2:16, New York, NY,
USA, 2013. ACM.

[28] Pravein Govindan Kannan, Nishant Budhdev, Raj Joshi,
and Mun Choon Chan. Debugging transient faults in
data centers using synchronized network-wide packet
histories. In Proceedings of the 18th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI ’21, pages 253–268. USENIX Association, April
2021.

[29] Charles Killian, James W. Anderson, Ranjit Jhala, and
Amin Vahdat. Life, death, and the critical transition:
Finding liveness bugs in systems code. In 4th USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI 07), Cambridge, MA, April 2007. USENIX
Association.

[30] Kyle Kingsbury and Peter Alvaro. Elle: Inferring isola-
tion anomalies from experimental observations. Proc.
VLDB Endow., 14(3):268–280, November 2020.

[31] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi
Joshi, Jeffrey F. Lukman,and Haryadi S. Gunawi. SAMC:
Semantic-aware model checking for fast discovery of
deep bugs in cloud systems. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and
Implementation, OSDI ’14, page 399–414, USA, 2014.
USENIX Association.

[32] Guangpu Li, Shan Lu,Madanlal Musuvathi, Suman Nath,
and Rohan Padhye. Efficient scalable thread-safety-
violation detection: Finding thousands of concurrency
bugs during testing. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 162–180, New York, NY, USA, 2019. Association
for Computing Machinery.

[33] Haopeng Liu, Guangpu Li, Jeffrey F. Lukman, Jiaxin Li,
Shan Lu, Haryadi S. Gunawi, and Chen Tian. Dcatch:
Automatically detecting distributed concurrency bugs
in cloud systems. In Proceedings of the Twenty-Second
International Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-
LOS ’17, pages 677–691. ACM, April 2017.

[34] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman
Nath. What bugs cause production cloud incidents? In
Proceedings of the Workshop on Hot Topics in Operating

1280 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/thombashi/tcconfig
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/jepsen
https://issues.apache.org/jira/browse/KAFKA-3042
https://issues.apache.org/jira/browse/KAFKA-3042

Systems, HotOS ’19, page 155–162, New York, NY, USA,
2019. Association for Computing Machinery.

[35] Haopeng Liu, Xu Wang, Guangpu Li, Shan Lu, Feng Ye,
and Chen Tian. FCatch: Automatically detecting time-
of-fault bugs in cloud systems. In Proceedings of the
Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’18, pages 419–431. ACM, 2018.

[36] Chang Lou, Peng Huang, and Scott Smith. Understand-
ing, detecting and localizing partial failures in large sys-
tem software. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
559–574, Santa Clara, CA, February 2020. USENIX
Association.

[37] Chang Lou, Yuzhuo Jing, and Peng Huang. Demysti-
fying and checking silent semantic violations in large
distributed systems. In Proceedings of the 16th USENIX
Symposium on Operating Systems Design and Implemen-
tation, OSDI ’22, pages 91–107, Carlsbad, CA, USA,
July 2022. USENIX Association.

[38] Haonan Lu,Kaushik Veeraraghavan,Philippe Ajoux, Jim
Hunt, Yee Jiun Song, Wendy Tobagus, Sanjeev Kumar,
and Wyatt Lloyd. Existential consistency: Measuring and
understanding consistency at facebook. In Proceedings
of the 25th Symposium on Operating Systems Principles,
SOSP ’15, page 295–310, New York, NY, USA, 2015.
Association for Computing Machinery.

[39] Jie Lu, Feng Li, Lian Li, and Xiaobing Feng. CloudRaid:
hunting concurrency bugs in the cloud via log-mining. In
Proceedings of the 2018 ACM JointMeeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, FSE ’18, pages
3–14. ACM, November 2018.

[40] Jie Lu, Chen Liu, Lian Li, Xiaobing Feng, Feng Tan,
Jun Yang, and Liang You. CrashTuner: Detecting crash-
recovery bugs in cloud systems via meta-info analysis. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, page 114–130, New York,
NY, USA, 2019. Association for Computing Machinery.

[41] Ruiming Lu, Erci Xu, Yiming Zhang, Fengyi Zhu,
Zhaosheng Zhu, Mengtian Wang, Zongpeng Zhu, Guang-
tao Xue, Jiwu Shu, Minglu Li, and Jiesheng Wu.
PERSEUS: A fail-slow detection framework for cloud
storage systems. In Proceedings of the 21st USENIX
Conference on File and Storage Technologies, FAST ’23,
USA, 2023. USENIX Association.

[42] Jeffrey F. Lukman, Huan Ke, Cesar A. Stuardo, Riza O.
Suminto, Daniar H. Kurniawan, Dikaimin Simon, Satria

Priambada, Chen Tian, Feng Ye, Tanakorn Leesataporn-
wongsa, Aarti Gupta, Shan Lu, and Haryadi S. Gunawi.
FlyMC: Highly scalable testing of complex interleavings
in distributed systems. In Proceedings of the Fourteenth
EuroSys Conference 2019, EuroSys ’19, New York, NY,
USA, 2019. Association for Computing Machinery.

[43] Paul D. Marinescu and George Candea. LFI: A practical
and general library-level fault injector. In 2009 IEEE/I-
FIP International Conference on Dependable Systems
Networks, DSN ’09, pages 379–388. IEEE, June 2009.

[44] Christopher S. Meiklejohn,Andrea Estrada,Yiwen Song,
Heather Miller, and Rohan Padhye. Service-level fault
injection testing. In Proceedings of the ACM Sympo-
sium on Cloud Computing, SoCC ’21, page 388–402,
New York, NY, USA, 2021. Association for Computing
Machinery.

[45] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli,
Pandian Raju, and Vĳay Chidambaram. Finding crash-
consistency bugs with bounded black-box crash testing.
In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation, OSDI
’18, page 33–50, USA, 2018. USENIX Association.

[46] Donny Nadolny. Debugging distributed systems. In
SREcon 2016, Santa Clara, CA, April 7-8 2016.

[47] Biswaranjan Panda, Deepthi Srinivasan, Huan Ke, Karan
Gupta, Vinayak Khot, and Haryadi S. Gunawi. IASO:
A fail-slow detection and mitigation framework for dis-
tributed storage services. In Proceedings of the 2019
USENIX Conference on Usenix Annual Technical Con-
ference, USENIX ATC ’19, page 47–61, USA, 2019.
USENIX Association.

[48] Casey Rosenthal, Lorin Hochstein, Aaron Blohowiak,
Nora Jones, and Ali Basiri. Chaos Engineering. O’Reilly
Media, Inc., 2017.

[49] ScyllaDB. CharybdeFS: A fuse based fault injection
filesystem. https://github.com/scylladb/charybdefs,
2021.

[50] Jiri Simsa, Randy Bryant, and Garth Gibson. dbug:
Systematic evaluation of distributed systems. In 5th
International Workshop on Systems Software Verifica-
tion (SSV 10), Vancouver, BC, October 2010. USENIX
Association.

[51] Xudong Sun, Wenqing Luo, Jiawei Tyler Gu, Aishwarya
Ganesan, Ramnatthan Alagappan, Michael Gasch, Lalith
Suresh, and Tianyin Xu. Automatic reliability testing
for cluster management controllers. In Proceedings of
the 16th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’22, pages 143–159,
Carlsbad, CA, July 2022. USENIX Association.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1281

https://github.com/scylladb/charybdefs

[52] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vĳay Sundaresan. Soot - a
java bytecode optimization framework. In Proceedings
of the 1999 Conference of the Centre for Advanced
Studies on Collaborative Research, CASCON ’99, pages
13–, Mississauga, Ontario, Canada, 1999. IBM Press.

[53] Alex Wilson. Bytecode-level fault injection for the JVM.
https://github.com/mrwilson/byte-monkey, 2019.

[54] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu,
Xuezheng Liu, Haoxiang Lin, Mao Yang, Fan Long,
Lintao Zhang, and Lidong Zhou. MODIST: Transpar-
ent model checking of unmodified distributed systems.
In Proceedings of the 6th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI ’09,
page 213–228, USA, 2009. USENIX Association.

[55] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna
Rodrigues, Xu Zhao, Yongle Zhang, Pranay U. Jain,
and Michael Stumm. Simple testing can prevent most
critical failures: An analysis of production failures in
distributed data-intensive systems. In Proceedings of the
11th USENIX Conference on Operating Systems Design
and Implementation, OSDI’14, pages 249–265, Berkeley,
CA, USA, 2014. USENIX Association.

[56] XinHao Yuan and Junfeng Yang. Effective concurrency
testing for distributed systems. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’20, pages 1141–1156. ACM, March
2020.

[57] Jun Zhang, Robert Ferydouni, Aldrin Montana, Daniel
Bittman, and Peter Alvaro. 3MileBeach: A tracer with
teeth. In Proceedings of the ACM Symposium on Cloud
Computing, SoCC ’21, page 458–472, New York, NY,
USA, 2021. Association for Computing Machinery.

CharybdeFS tcconfig Byte-monkey
FS syscalls error, delay packet loss, delay exceptions

moderate 10%, 8 s 20%, 300 ms 10%
mild 1%, 1 s 10%, 80 ms 1%

Table 9: Configurations of the baseline tools.

System Release SLOC Workload

ZK 3.6.2 95K 3 clients create 10 entries in total, each writes
and reads a random entry 40 times.

HDFS 3.2.2 689K 5 clients each writes a 10KB file 5 times, 5
clients each reads 5 files 5 times.

Kafka 2.8.0 322K 3 clients creates 15 topics, 15 clients each pro-
duces a topic, 30 clients consume a topic.

HBase 2.4.2 728K creates 5 tables, each with 5 columns, each with
5 rows, 5 clients r/w a random row 100 times.

Cassandra 3.11.10 210K creates 1 table, inserts 5 rows, 3 clients select
and update a random table field 100 times

Flink 1.14.0 78K 1 client submit batch workload, 1 client submit
streaming workload, 1 Kafka consumer to re-
ceive 170 messages from the batch workload,
1 Kafka producer to send 5 messages to the
streaming workload, 1 Kafka consumer to re-
ceive 10 messages from the streaming workload

Table 7: Evaluated distributed systems in latest releases, and the
workload Legolas uses in the fault injection experiments.

zk
hd

fs ka hb cs
d

byte-monkey

0
500

1000
1500
2000

of

 tr
ia

ls

zk
hd

fs ka hb cs
d

charybdefs

0
500

1000
1500
2000

zk
hd

fs ka hb cs
d

tcconfig

0
500

1000
1500
2000

fail_to_start
early_fail

partial_warmup
zero_progress

partial_progress
finish_workload

(a) w/ moderate fault injection config.

zk
hd

fs ka hb cs
d

byte-monkey

0
500

1000
1500
2000

of

 tr
ia

ls

zk
hd

fs ka hb cs
d

charybdefs

0
500

1000
1500
2000

zk
hd

fs ka hb cs
d

tcconfig

0
500

1000
1500
2000

(b) w/ mild fault injection config.
Figure 14: 2000 fault injection trials with existing tools: Byte-
monkey, CharybdeFS, tcconfig.

Appendix A Evaluation Details

Table 8 lists the injected fault, symptom, and root cause for
each of the 20 new bugs that Legolas finds.

Table 9 shows the configuration settings we use for the
baseline fault injection tools (Byte-monkey, CharybdeFS, and
tcconfig) in the evaluation.

Figure 14 shows the aggregated fault injection results using
the baseline tools.

1282 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/mrwilson/byte-monkey

Bug Id Injected Fault Symptom Root Cause

ZK-4074 delay when Learner is executing
writePacket

requests to one follower get stuck and the follower cannot
rejoin the quorum for a long time

write in a critical section and prevents
QuorumPeer from entering the receiving stage

ZK-4203 an exception during accepting a con-
nection from the second follower

one follower keeps trying to join the quorum but keeps
failing, even though the other 2 nodes get the request

the ERROR state set by learner is not discovered
by the leader in some condition

ZK-4419 an exception when a learner creates
a socket to connect to leader

one follower takes a long time to join the quorum and causes
temporary service unavailability

the server state is prematurely changed, which
triggers unnecessary re-election

ZK-4424 an exception when leader is config-
uring socket options for a follower

causes re-election and partial service unavailability error is unnecessarily re-thrown, which causes
handler exit and costly re-creations

KA-13457 an exception when a broker is accept-
ing a connection

some client requests to create topics experience InvalidRepli-
cationFactorException errors for a long time

error is swalloed without closing the socket
channel

KA-13468 an exception when the log manager
initalize a log

a broker proceeds but consumers hang for more than 3
minutes without any error log

the log manager should handle the error but
instead let it propagate to the request handler

KA-13538 an exception when a broker is access-
ing checkpoint file

some clients get unexpected TopicExistsException even
though they have never created the topic before

a design flaw in the client library for handling
broker change

KA-14882 a delay when a broker sends request
to ZooKeeper

some retry of topic creation requests gives the client Top-
icExistsException

broker controllers do not roll back the meta-
data in ZooKeeper when topic creation fails

KA-14886 a delay when handling a request from
consumer and storing data to disk

a critical thread pool in broker gets full soon after the delay
of a single request from client

the delayed thread blocks multiple threads and
causes the thread pool to be used up

HD-15925 IOException when a datanode is for-
warding a packet to the mirror

normally a client is immediately notified of the error, but
now the client hangs for 1min

race condition causes PacketResponder to be
blocked without notifying the client

HD-15957 exception when namenode finishes
sync edit log andnotifies journalnode

some client hangs forever without any log and the expected
file does not exist in HDFS

namenode dismisses one client RPC, adding
retry of the notification resolves the issue

HD-15869 delay when namenode sends the edit
log notifications

namenode hangs even with the async edit logging the notification sending is performed syn-
chronously and blocks queued edit logs

HA-17552 error after the namenode accepts a
socket before creating a reader

some client hangs instead of timing out after ping interval read method does not re-throw the socket
timeout exception

HA-18024 an exception when namenode con-
figures socket options

some client hangs for a long time socket connection is not closed when error
happens

HB-26256 a delay when the region server tries
to open a region using HDFS RPC

table creation command hangs for a long time without any
error but list command shows the table exists

region sequence idfile write operation is block-
ing without any timeout

HB-26955 an exception when the master tries
to do an update operation

some table create requests experience a long delay retry code misses the case when a server is
quickly reinitialized

CS-16603 a delay in serializing a mutation to
commit log in node 2

clients to node 1 experience sporadic CQL operation timeout
due to unconfigured table

the add method is not protected with a timeout

CS-17564 exception when deleting file during
a compaction task

node continues after erroreous startup state and later causes
client failures

missing sync. to wait for compaction comple-
tion before setting node startup flag

FL-30032 an IOException when sending a wa-
termark to Kafka

synchronous batch processing request from client finishes
without errors while the job is actually not finished

the exception is not handled properly and then
a few messages do not get sent to Kafka

FL-31746 an IOException when task managers
finish a job and commit some data

when the job is finished, the client throws confusing errors
due to a fault in commit phase

The commit phase does not affect the correct-
ness of output but its fault is propogated to
the client with confusing messages

Table 8: New bugs found by Legolas. All issues cause partial failure symptoms. The root causes are diverse. ZK: ZooKeeper; KA: Kafka; HD:
HDFS; HA: Hadoop; HB: HBase; CS: Cassandra; FL: Flink.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1283

Load is not what you should balance: Introducing Prequal

Bartek Wydrowski
Google Research

Robert Kleinberg
Google Research and Cornell

Stephen M. Rumble
Google (YouTube)

Aaron Archer
Google Research

Abstract
We present Prequal (Probing to Reduce Queuing and La-
tency), a load balancer for distributed multi-tenant systems.
Prequal aims to minimize real-time request latency in the
presence of heterogeneous server capacities and non-uniform,
time-varying antagonist load. It actively probes server load
to leverage the power of d choices paradigm, extending it
with asynchronous and reusable probes. Cutting against re-
ceived wisdom, Prequal does not balance CPU load, but in-
stead selects servers according to estimated latency and active
requests-in-flight (RIF). We explore its major design features
on a testbed system and evaluate it on YouTube, where it
has been deployed for more than two years. Prequal has dra-
matically decreased tail latency, error rates, and resource use,
enabling YouTube and other production systems at Google to
run at much higher utilization.

1 Introduction

We report our experience deploying the power of d choices
(PodC) load balancing paradigm [1, 2, 18] to run multiple
large-scale web services at Google, focusing on YouTube,
where it has run successfully for several years. To our knowl-
edge, this is the first public report of PodC being used suc-
cessfully for load balancing at this scale.

The PodC paradigm involves sampling d ≥ 2 servers for
their load and sending the next request to the least loaded
one. Two key questions for any implementation are: what
signal is used to represent the load, and how is the sampling
done? We answer those questions with the name of our load
balancing system: Probing to Reduce Queuing and Latency
(Prequal). Namely, our two signals are requests-in-flight (RIF)
and latency, and we sample servers by actively probing them.

Many existing load balancing systems (e.g., NGINX [19],
Envoy [7], Finagle [8], YARP [26], C3 [23]) offer some vari-
ant of PodC, and most of them offer RIF, latency, or some
combination as the load balancing signal. We introduce two
primary new innovations. First, we combine RIF and latency

in a new way that works especially well, called the hot-cold
lexicographic (HCL) rule. Second, we introduce a novel asyn-
chronous probing mechanism that reduces probing overheads
(CPU + critical-path latency) while retaining the freshness of
the load signal offered by synchronous probing.

For purposes of this paper, we refer to Prequal as a load
balancing system, but technically, it is load a balancing pol-
icy implemented within Google’s Stubby RPC framework
(externally, gRPC [24]). As such, we expect that some of
our innovations could be integrated into these other existing
load balancers. Our main thrust is the two innovations above
(HCL, async probing); other implementation details of our
system are incidental to our message.

Prequal has been deployed in a diverse collection of 20+
large-scale services at Google over the past several years.
In addition to driving most of the YouTube serving stack,
it has found success in a wide variety of other applications,
including search ads, logs processing, and serving ML models.
In the typical application, query processing times are tens to
hundreds of milliseconds, but in one system the queries take
around ten minutes, and in another they range from seconds
to hours. Most of these services are part of a complex tangle
of services calling each other, and we have seen benefits from
deploying Prequal for the most critical services, regardless of
whether others in the tangle are also using Prequal.

We care about CPU and latency overheads from probing,
but in our deployment experience we have found them to
be small and more than pay for themselves. Probe response
times within a data center are well below 1 millisecond. For
some applications, fractions of a millisecond matter, so we
used async probing to take it off the critical path. We created
parameters that can shrink the CPU overheads arbitrarily.
Moreover, better balance saves CPU by reducing resource
contention. On net, we find that CPU utilization usually dips
slightly when deploying Prequal. More importantly, systems
are provisioned to control tail latency at peak load, so even an
increase in mean CPU usage can result in provisioning wins
when combined with decreases in tail latency.

Our evaluation of Prequal consists of two parts: a holistic

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1285

Figure 1: Queries flow down the tree, responses flow up. A
separate balancing job is optional on each link. Load balanc-
ing policies may vary by link: A→ B uses Prequal, while B
→ D does not.

evaluation in the wild on YouTube (§2 and §3), and bench-
marks on a testbed to evaluate each of the major design
choices independently (§5). The default incumbent load bal-
ancing policy that we displaced at YouTube and other parts of
Google is (dynamic) weighted round robin (WRR), which fo-
cuses on balancing CPU utilization across distributed servers
in a single job. Thus, the evaluation in §3 focuses on compar-
ing Prequal to WRR. §2 explains why CPU-balancing policies
like WRR are a formidable competitor in this environment,
but also why it pays to rethink that approach, motivating our
paper title. §5 and §6 include quantitative and qualitative com-
parisons against well-known load balancing policies from the
literature, including other variants of PodC.

2 Environment and motivation

We describe the operating environment for YouTube and other
large cloud services, motivating why balancing CPU load
would seem to be a self-evidently superior approach. Next,
we examine a scenario in which balancing CPU load back-
fires spectacularly, motivating the Prequal approach. Finally,
we show data from YouTube illustrating that our motivating
circumstance occurs commonly.

Large-scale services like YouTube are typically composed
of many distributed jobs issuing queries among themselves via
RPC. Fig. 1 depicts a vastly simplified version with only five
jobs, queries flowing down a tree, and responses flowing back
up. In any of these interactions, the job sending the query is
called the client job, while the job returning the response is the
server job. For instance, on edge A→ B, A is the client and B
is the server, while B is the client on edges B→ C and B→ D.
To ensure scalability and redundancy, each job is distributed
across a large number of machines, called replicas (Fig. 2).
To avoid overloading any server replica, a load balancing
policy must be used between each pair of communicating
jobs, to determine which server replica should receive each
query. Some policies require proxying the queries through a
separate load balancing job whose only function is to decide
where to forward each query, while others can operate directly

machine 101

client replica 1

machine 150

client replica 50

query

response

server
replica 1

antagonist A

server
replica 2

antagonist C

antagonist B

server
replica 100

empty

antagonist D

al
lo

ca
tio

n

1.
1x

ut
ili

za
tio

n
sp

ik
e

machine 1 machine 2 machine 100

Figure 2: Zooming in on any single link from Fig. 1: server
replicas respond to queries from client replicas while their
machines run antagonist processes. Aggregate utilization
(dashed line) may exceed allocation (dotted line) during
spikes in demand.

between client replicas and server replicas (Fig. 1).1 Prequal
is well-suited to both modes of operation, and in fact we use
it both ways in different systems at Google.

Each job runs within a single data center, although different
jobs might run in different data centers. Each replica runs
inside its own virtual machine (VM), which has access to a
guaranteed portion of the CPU cycles on its host machine;
this amount is called its (CPU) allocation. The fraction of its
allocation that a replica uses over any given time period is its
(CPU) utilization, which could be more or less than 100%,
since the allocation is just a guaranteed minimum. The server
job’s aggregate (job) utilization is the fraction of its overall
CPU allocation that it uses, across all replicas. In the usual
case, each replica has the same allocation, so aggregate job
utilization equals average replica utilization.

A server replica typically shares its machine with many
other VMs, which we call antagonists. The machine (CPU)
utilization accounts for both our server replica and all antag-
onists, and is distinct from both replica and job utilizations.
In order to ensure consistent performance for all users of this
multi-tenant system, isolation mechanisms attempt to pre-
vent the behavior of one VM on a machine from adversely
affecting the behavior of another. The philosophy here is: "If
your usage stays within your allocation, you will be fine."
However, if a VM overflows its CPU allocation, it may suffer
when the isolation system kicks in.

Given this isolation regime and design philosophy, it seems
self-evident that trying to balance CPU utilization across repli-
cas within one job is the best approach.2 Indeed, the WRR
policy works well at Google. It uses smoothed historical
statistics on each replica’s goodput, CPU utilization, and er-
ror rate to periodically compute individual per-replica weights.
Clients then route queries to replicas in proportion to these

1At this scale, even the balancing job must be distributed across machines.
2Trying to balance machine CPU utilization across these entire heteroge-

neous machines would work at cross purposes to the isolation mechanism.

1286 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 3: Normalized CPU usage heatmap with 1-minute
samples (top) and 1-second samples (bottom) for the YouTube
homepage service running across hundreds of machines in
a single datacenter. Darker colors represent denser regions.
The usage limit, represented by 1.0 (red line) is satisfied in all
of the 1m intervals but on 1s intervals it is frequently violated
at peak load — sometimes by more than a factor of two!

weights. In the absence of errors, each replica weight wi
is calculated as qi/ui, where qi and ui represent the recent
query-per-second (QPS) rate and CPU utilization of replica i.
Historically, WRR originated in networking [11] but has also
been adapted for replica selection as we just described [4, 9].

We now describe a scenario where this approach back-
fires, even if we could balance CPU load perfectly. Suppose
that our server job has 100 replicas running on identical ma-
chines, each replica allocated 40% of the CPU on its machine.
Moreover, suppose that antagonist load is soaking up the full
remaining 60% on machines 1 and 2, whereas the other 98 ma-
chines have ample spare capacity, safely above 4%. Finally,
suppose that our job experiences a temporary spike in demand
that would raise its aggregate utilization to 1.1x its allocation,
i.e., 44% of each machine, on average. A load balancer that at-
tempts to equalize CPU utilization across replicas will aim to
peg each replica at this average. All 100 replicas will exceed
their CPU allocation, but the last 98 will be okay because the
system will let them momentarily spill outside their allocation
to soak up the unused CPU cycles. On the heavily contended
machines 1 and 2, CPU isolation mechanisms will typically
kick in and hobble those replicas, sometimes in ways that
affect all queries served by them. Thus, although the prob-
lematic load is only the extra 10% on only 2% of our replicas
(i.e., ~0.18% of our 1.1x load), it could degrade performance
on a full 2% of our queries. Tail latency at p993 is likely to
spike. Fig. 6 in §5.1 exhibits this behavior on a testbed.

In this overload case, equalizing replica utilizations was
exactly the wrong load-balancing policy because the available
machines differed greatly in their capacity to absorb additional
load. Furthermore, since the difference in available capacity
is due to antagonist processes, it cannot be predicted by our
job in advance but can potentially be detected at runtime.

Equalizing replica utilizations can be a great idea if all

3We use expressions like p99 to denote percentiles of a distribution.

replicas always stay within their allocation, as this maximizes
the amount of traffic we can serve, subject to the allocation.
Unfortunately, Fig. 3 shows it is easy to trick ourselves. Plot-
ting CPU utilization over 1m time intervals leads us to believe
that the replicas are all respecting their allocations, but using
1s intervals reveals greater underlying variability in the signal,
with frequent bursts up to nearly twice the limit! In other
words, overload is not really a special case; at sufficiently
small timescales, there is nearly always some replica in over-
load, even if our aggregate load fits within our job allocation.
The only questions are whether this replica is unlucky enough
to be on a highly contended machine, and whether the spike
lasts long enough for isolation mechanisms to kick in.

Thus, avoiding high tail latency requires some mechanism
to alert clients quickly about highly-loaded replicas in real-
time. The mechanism should use load signals that are as
current as possible, and are highly predictive of high latency
when serving future requests. CPU utilization fails to meet
these criteria, partly because it is a trailing signal. It must
be averaged over a time window to be meaningful, which
automatically imposes a lower bound on its staleness. This
signal also overlooks other factors that contribute to latency,
like contention for locks, memory bandwidth, or other shared
resources that are sometimes tough to measure or isolate.

Prequal instead uses two load signals: RIF and latency.
RIF is an instantaneous signal (its precise value is available
at the time of a probe), and our latency estimates are near-
instantaneous as well (§4). Here are our main design goals.

1. Minimize probing overheads. The number of probes per
query should be a small constant, and latency estimation
(running on server replicas) must be lightweight, taking
O(1) or Õ(1) update time per query.

2. Probing should not add significant latency to the query’s
critical path. Prequal accomplishes this via asyn-
chronous probing: the current query is assigned using
probe responses initiated by previous queries.

3. Minimize tail latency. Prequal removes the worst probes
(those with the highest RIF and/or estimated latency)
before they can be used for replica selection, in a pro-
cess inspired by the theory of balanced allocations with
memory [14, 16].

4. Limit RAM footprint of query processing on server repli-
cas.4 Prequal avoids assigning queries to replicas that
have an anomalously large RIF, even if their estimated
latency is low. The RIF signal does double duty, since it
is also a strong leading indicator of future load.

Recall that Prequal can be used either with or without a
dedicated load balancing layer (Fig. 1). Advantages of the
dedicated layer include (1) keeping probes local when clients

4RIF has a material impact on RAM because most in-flight queries are in
some stage of processing, not sitting in a queue. The RPCs themselves are
often small.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1287

query server jobs in a distant data center, (2) the balancer
often has fewer replicas than the client does, so each one
sees a larger fraction of the query stream, hence its probes are
fresher (as measured by number of queries landing on a server
replica since the most recent probe), (3) software upgrades to
the balancer need not touch the clients. Disadvantages include
(1) further RPC overhead (latency, CPU, network), (2) it is
an extra job to manage, and (3) one still needs to balance the
load arriving at the balancers, although that is usually easier
because the balancer’s work is fairly uniform, and it is usually
cheaper to overprovision the balancer than the server.

3 Evaluation of deployment in YouTube

A couple of years ago, we identified load imbalance as the
cause of persistent SLO5 violations in YouTube, prompting
us to switch some key services to Prequal. These included
YouTube’s Homepage service, which is responsible for user-
tailored recommendations. With Prequal we saw dramatic
improvements across all metrics, including reductions of 2x
in tail latency, 5-10x in tail RIF, 10-20% in tail memory usage,
2x in tail CPU utilization, and a near-elimination of errors
due to load imbalance. In addition to meeting SLOs, this
also allowed us to significantly raise the utilization targets
that govern how much traffic we are willing to send to each
datacenter, thereby saving significant resources. Based on this
success, we rolled out Prequal to many other major services
that comprise YouTube, and subsequently to a wide variety
of other services at Google, as detailed in §1.

The YouTube service is composed of many subsidiary jobs
— answering search queries, providing recommendations, and
serving ads, to name a few. Queries from some of these
jobs trigger a cascade of subsidiary queries, as illustrated in
Fig. 1. Since these jobs are so diverse, their query processing
requirements (CPU, RAM, latency, etc.) vary widely as well.
In this section we show the results of switching from WRR
to Prequal using a small subset of live, user-facing traffic
for the Homepage job itself, with the load balancing policies
in other parts of the system held constant. Historically, the
Homepage was the first server job where we deployed Prequal,
while most other jobs still used WRR. At the time of this
experiment, most but not all of these were using Prequal. In
both cases, the impact of the switchover was similar. We state
Prequal’s impact here, but defer the details of its design to
§4. We then explore this design space via experiments on a
testbed (not YouTube) in §5.

The first result to notice is that explicitly balancing on RIF
really works, bringing down the tail from ~225 to ~50 (Fig. 4).
Since Homepage query processing carries a large amount of
per-query state, this reduces our tail RAM usage by 10-20%,
allowing us to reduce our RAM footprint accordingly. As
shown in Fig. 3, WRR was very effective at maintaining a

5SLO = service level objective [10]

Figure 4: Heatmaps of normalized cpu usage, normalized
memory usage, and the number of requests in flight on each
YouTube Homepage server replica, first using WRR to bal-
ance load before transitioning to Prequal shortly after 08:00.

tight CPU load distribution at the 1m time scale, but much
poorer when measuring tail CPU utilization at 1s resolution.
Prequal fixes that, dropping the tail by ~2x. As a consequence,
Prequal decreased occasional server replica error spikes of
0.01-0.1% down to nearly zero and reduced latency by 10-
20% at the median and 40-50% at the tail (Fig. 5).

Fig. 5 normalizes each latency quantile (p50, p99, p99.9)
separately, based on a typical value for that quantile at the
daily traffic trough. This reveals that Prequal does such a
good job of pulling in the tail latency at peak load that the
p99 and p99.9 actually suffers less at peak (in a multiplicative
sense) than p50 does. This is the opposite of the behavior one
would normally expect, and that we indeed see for WRR.

For these experiments, we configured Prequal to send 5
probes per query, meaning the total number of RPCs is mul-
tiplied by 6. Moreover, as an early adopter of Prequal, this
service still uses the synchronous probing mode (§4), which
adds latency to the critical path. While we intend to migrate to
asynchronous probing, our experience with YouTube shows
that the improvements we get by pulling in the tails more than
compensates for these overheads. This is particularly true for
services with relatively heavyweight requests, e.g., tens or
hundreds of milliseconds of processing time per query. We
set a 3ms timeout for our probes, but most return far quicker
than that.6 The probing delay and the extra CPU spent on
processing the probes are both in the noise compared to the
savings.

4 System design

When load-balancing a torrent of queries, every millisecond
matters. Prequal is designed so that clients can select a replica

6Elsewhere at Google, we successfully use a 1ms timeout, and could
probably do so here too.

1288 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5: Normalized YouTube Homepage server request
error rate and latency p99.9 (red), p99 (green), and p50 (blue).
Failures were due to timeouts or load shedding stemming
from imbalance. Cutting over from WRR to Prequal shortly
after 08:00 eliminated most errors and reduced tail latency by
40-50% and median latency by 5-10%. Each latency quantile
is normalized separately to a typical value at daily trough for
that quantile, which is why it is possible for the p50 line to lie
above the other two after the cutover. The spikes near 22:00
and 23:00 are unrelated to the experiment.

based on up-to-date information (ideally no more than a few
milliseconds old) while keeping the process of sending and
receiving probes out of the critical serving path. Hence, the
most consequential design decisions center around how to
maintain a pool of high-quality probes and how to assign
queries to replicas based on the information in the pool. The
following are some key questions.

1. How often should a client probe replicas, and which ones
should it probe?

2. What information should replicas report in probe re-
sponses, and how should they compute it?

3. When selecting a replica to handle a query, how should
a client make use of the information in its probe pool?

4. How should a client manage its pool of probe responses?
In particular, when should elements be removed?

Probing rate Clients issue a specified number of probes,
rprobe, triggered by each query. In addition, they can be con-
figured to issue probes after a specified maximum idle time
has been exceeded, to ensure the availability of recent probe
responses in the pool even when no queries have arrived in the
recent past. The probing rate (per unit time) is therefore the
product of the query arrival rate with rprobe (or the minimum
probing rate, whichever is greater). We link the probing rate
to the query rate because that is the rate at which the client
must make decisions. It is also strongly tied to how rapidly
the load statistics on the replicas (particularly RIF) change
over time, although that also depends on the ratio of client
replicas to server replicas. Probing at a rate that greatly ex-
ceeds the query arrival rate would thus yield many redundant
probes, whereas probing at too low a rate runs the risk that
probe results will be “stale” (only weakly correlated with the

replica’s current state) by the time they are used.
Probe destinations are sampled uniformly at random with-

out replacement from the set of available replicas. This design
choice is motivated by the theory literature on balanced al-
locations, which advocates sampling a uniformly random
set of probe targets. It also helps to avoid the thundering
herd phenomenon, when a replica with low estimated latency
is inundated with queries from many clients simultaneously
seeing it as the best choice, leading to queueing and high
latency [15]. This is unlikely to happen in Prequal, where
each client’s probe pool represents only a small random sub-
set of replicas, and conversely, each replica belongs to the
probe pools of only a small (in expectation) random subset of
clients.

We allow rprobe to be fractional 7, even less than one. Prob-
ing consumes a small but nonzero amount of server CPU and
network bandwidth, so it is desirable to lower the probing
rate to the extent that doing so has only negligible impact on
tail latency. Our experiments in §5.3 reveal that rprobe > 1 is
quite safe from the standpoint of tail latency.
Load signals Prequal includes a server-side module for
tracking RIF and latency statistics and responding to probes,
as follows. We say that the query arrives at the server when
the application logic receives the RPC from Stubby, and fin-
ishes when the application logic hands the response RPC back
to Stubby. We define the latency of the query to be the length
of this interval, during which the query contributes to this
server’s RIF count. If there is any application-level queue-
ing, then the latency includes the sojourn time in the queue.
However, it is more common for the application to eschew
queueing and rely on thread or fiber scheduling instead. We
do not attempt to capture the network latency, because all
server replicas reside in the same datacenter.

When responding to a probe, the RIF comes from sim-
ply checking a counter. The latency estimate is more subtle.
When a query finishes, we record its latency, tagged by the
value of the RIF counter when it arrived. When a probe
prompts us to estimate latency, we consult a set of recent
latency values at (or near) the current RIF, and report the
median8. The per-query overhead of maintaining these data
structures is small. At moderate-to-high query arrival rates,
the samples are plentiful enough that we base the latency
estimates entirely on queries that finished in the last few hun-
dredths of a second.
The probe pool Prequal clients maintain a pool of probe re-
sponses to be used in replica selection. Each pool element in-
dicates the replica that responded, the response receipt time,9

and the load signals discussed above. The pool is capped
at a maximum size: we have found that a pool size of 16
suffices to achieve the benefits of Prequal, and the gains from

7Each query triggers either brprobec or drprobee probes, rounding deter-
ministically so as to guarantee rprobe probes per query in the limit.

8The median was chosen as a summary statistic robust to outliers.
9The sent time would be ideal, but could introduce clock skew.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1289

increasing beyond 16 are modest. New probe responses are
added to the pool upon receipt, evicting a probe if necessary
to respect the maximum pool size.

Replica selection Prequal could access many load signals,
and we have chosen to focus on RIF and latency. The latency
signal is obvious: since we want to minimize latency, why
not route queries to the replicas exhibiting minimum latency?
The RIF part is important because when the replica must store
significant per-query state (as in YouTube), its RAM alloca-
tion must be a constant offset plus a term that is linear in its
max anticipated RIF. In addition, RIF is an instantaneous sig-
nal that is a leading indicator of future load, since it represents
the queries processing right now. The latency signal is based
on observed latencies of queries that have completed recently.
Both signals are more up-to-date than CPU utilization, which
must be averaged over a long time period to be meaningful.

From the RAM perspective, RIF matters only if our choice
of replica raises the max RIF. In principle, we would prefer
to balance on latency at all other times, although we must
temper this impulse because of the leading versus trailing
indicator consideration described above.

To minimize both latency and RIF, Prequal selects replicas
using a hot-cold lexicographic (HCL) rule that labels probes
in the pool as either hot or cold based on their RIF value.
Prequal clients maintain an estimate of the distribution of
RIF across replicas, based on recent probe responses. They
classify pool elements as hot if their RIF exceeds a specified
quantile (QRIF) of the estimated distribution, otherwise cold.
In replica selection, if all probes in the pool are hot, then
the one with lowest RIF is chosen; otherwise, the cold probe
with the lowest latency is chosen. Our experiments (§5.2)
suggest that QRIF ∈ [0.6,0.9] is a good choice, although even
0 is effective (i.e., RIF-only control).

An exception arises if the pool is empty. Then, Prequal
simply falls back to selecting a uniformly random replica. In
fact, our experience suggests it is useful to invoke this fallback
whenever the pool occupancy drops below 2.

One popular approach to combining two signals is to use a
linear combination of them with a scaling constant to put them
into the same units. In our experiments, HCL outperforms
RIF-only (§5.3), which outperforms every non-trivial linear
combination of RIF and latency (§5.2 and Appendix A). The
HCL approach also nicely captures our hierarchy of concerns:
containing latency is nice, but replicas obeying their RAM
allocations is often a hard constraint.

Probe reuse and removal Prequal manages the probe pool
to avoid three conditions: staleness, when the load signals
are too old to be accurate; depletion, when the pool becomes
empty; and degradation, when the loads represented in the
pool exhibit a selection bias towards replicas with higher load.
These are intertwined and the discussion will necessarily be
somewhat circular, so we start with the simplest.

Depletion: Prequal employs several probe removal pro-

cesses (detailed below) to control staleness and degradation,
including removing probes when they are used. In order to
stave off pool depletion without increasing the probing rate,
we can extend the life of each probe by reusing it up to breuse
times. This reuse limit is set according to the formula

breuse = max
{

1, 1+δ

(1−m/n)·rprobe−rremove

}
, (1)

where δ > 0 is a configuration parameter that governs the
net rate at which probes accumulate in the pool, m is the
maximum pool size, n is the number of replicas, rprobe is the
probing rate discussed above, and rremove is the rate of probe
removal discussed below. We always set breuse ≥ 1, and when
it is fractional, we randomly round it to its floor or ceiling so
as to preserve the expectation.

Staleness occurs for two reasons: aging and overuse. As
a probe ages, its load data becomes less accurate because
the replica receives new queries and finishes ones it already
had. Overuse is a special case of aging that we can partially
mitigate; namely, when the client itself sends a query to that
replica, it can compensate by incrementing the RIF value
on that probe. Ideally, we would also increase its latency
estimate, but currently we do not. Part of Prequal’s solution
for general staleness is to set a time limit on probes and
remove them from the pool when their age exceeds this limit.
In addition, whenever a new probe arrives that would increase
the pool beyond its size limit, we drop the oldest probe.

Degradation is the subtlest of these phenomena. If the
probes corresponding to lightly-loaded replicas are contin-
ually being selected and removed from the pool, then the
probes that remain after many rounds of replica selection
correspond to highly-loaded replicas. To avoid this, Prequal
periodically removes the worst probe from the pool. This is
analogous to — but much more permissive than — the use of
only the least-loaded of d randomly selected bins in the stan-
dard power-of-d-choices model. It turns out that broadening
the bin-selection policy from “use only the best of d random
probes” to “avoid using the worst of d random probes” qual-
itatively preserves the theoretical guarantees for the power-
of-d-choices model [21]. When removing the worst probe,
Prequal alternates between two rules: removing the oldest
probe (i.e., worst age) and removing the probe deemed worst
according to the same ranking used for replica selection (but
in reverse): if at least one probe in the pool is hot, the hot
probe with highest RIF is removed; otherwise, the cold probe
with highest latency is removed.

We define a rremove parameter, and delete that many probes
from the pool with each query. As with the probing rate, this
number may be fractional, in which case the actual number
of probes removed is always either the floor or the ceiling,
deterministically rounded to achieve the configured rate of
probe removal on average. By alternating our removals be-
tween oldest and most loaded, we achieve a unified approach
to avoid both staleness and degradation (on top of the probe
timeouts).

1290 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

To summarize, Prequal removes probes from the pool for
four reasons. It evicts the oldest probe in the pool when nec-
essary to avoid exceeding the maximum pool size. Probes are
removed once they reach their reuse budget or when their age
exceeds a timeout threshold. Additionally, they are removed
at a configurable rate per query, alternating between worst
and oldest.

Synchronous mode So far, we described Prequal with asyn-
chronous probing (i.e., async mode), which maintains a probe
pool to take probing off the critical serving path. The asyn-
chrony is helpful in many use cases, such as when the probe
latency is non-negligible or the CPU overhead of probing is
high compared to the queries. However, we have also imple-
mented a sync mode of Prequal in which there is no probe
pool. Instead, when a query arrives, the client issues some d
probes (at least 2, typically 3-5) to random replicas, waits to
receive a sufficient number of responses (typically d−1) and
then chooses among those using the same replica selection
rule described above. We describe the sync mode here be-
cause it has been used in YouTube services as reported in §3,
but all of the experiments reported in §5 use async Prequal
because that mode is better for most uses.

One significant use case that requires sync mode is when
replicas hold state that influences the cost of query execution,
e.g., a replica may cache certain data in memory to prevent
reading from a slower storage layer. Sync probing allows us
to include relevant information from the query in the probe.
If the replica then determines that it can execute that query
more efficiently because of data it already has in the cache,
then it can manipulate its reported load so as to attract the
query, e.g., by scaling down its reported load by 10x. We
have used sync Prequal in this way for part of YouTube.

Error aversion to avoid sinkholing Suppose a certain
replica has a problem (such as misconfiguration) that causes
it to process queries very quickly by immediately returning
errors for a non-trivial fraction of its queries. Then its latency
on the remaining successful queries, RIF, CPU utilization,
and other metrics will make it appear less loaded than it nor-
mally would, given the amount of traffic sent its way. If the
load balancer is not smart about this, this replica can attract
more and more traffic, in a phenomenon known as sinkhol-
ing. Prequal includes some heuristics to avoid sinkholing, but
since they are not central to our contribution, we have chosen
to simplify our exposition by omitting details.

5 Testbed evaluation

In §3 we reported on our experience deploying Prequal in
YouTube. The comparison between Prequal and WRR in that
section constitutes one type of evaluation, under conditions
that arguably represent the ground-truth definition of a real-
istic workload. However, evaluating the deployed version of
Prequal in production does not shed light on how individual

aspects of its design affect its performance. In this section we
report on a set of tests performed on a testbed environment
that allows for more controlled experiments with Prequal and
baselines, while preserving key features of the production
environment for which Prequal was designed: variable query
costs and unpredictable time-varying antagonist load.

We first describe our testbed and the baseline system param-
eters. Within each experiment, we explain which parameters
we changed from the baseline.

Our testbed consists of one client job and one server job,
each comprising multiple replicas running on distinct but
identical physical machines colocated in the same datacenter.
The queries represent a very simple CPU-intensive workload:
they simply iterate an expensive hash function. In order to
simulate variability in query costs, we vary the number of
iterations, drawing it from a normal distribution whose stan-
dard deviation equals its mean (then truncated at zero). The
jobs are running within a standard Google datacenter, on com-
modity multicore machines, using Google’s standard isolation
mechanisms, and the antagonist traffic is just whatever we
happen to encounter in the wild.

The system configuration in our experiments, as well as
Prequal’s configuration parameters, exemplify a represen-
tative operating environment in which Prequal performs as
intended and its benefits become evident. All experiments
use 100 client replicas and 100 server replicas, and each of
the server replicas is allocated 10% of the machine’s CPU. In
addition, the probe pool size is 16, probes age out of the pool
after one second, and the net probe-pool drift rate in Equa-
tion (1) is δ = 1. Unless otherwise specified, we set QRIF =
2−0.25 ≈ 0.84 and rremove = 1. We use 3 probes per query as
our baseline probe rate to stay safely away from probe rates
low enough to impact performance. We target different ag-
gregate utilizations in each experiment as necessary to induce
the behaviors we wish to illustrate. Wherever we plot CPU
utilization, it is scaled as a percentage of the allocation.

Some of the plots in these experiments show quantiles of
RIF values. Since this data is all integer, the quantiles should
be integer as well. However, when our monitoring system
builds histograms, all instances of an integer k are uniformly
smeared across the interval [k− 1

2 ,k+
1
2). For this reason, the

plots of our RIF quantiles contain fractional values.

5.1 Robustness to variable antagonist load

In this experiment, we start with the aggregate CPU load at
about 75% of our allocation, and ramp it up in 8 multiplicative
steps of 10/9, yielding 0.75x, 0.83x, 0.93x, 1.03x, 1.14x,
1.27x, 1.41x, 1.57x, and 1.74x our allocation. We increased
the load by increasing the aggregate query rate from about
5.6k queries per second (henceforth, qps) to around 13k qps,
while holding the mean work per query constant. Within each
load level, we use WRR for the first half of the period, then
Prequal for the second half.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1291

75% 83% 93% 103% 114% 127% 141% 157% 174%
Below Alloc←− −→ Above Alloc

(a) Tail Latency

(b) Errors

(c) Distribution of CPU Utilization

Figure 6: Load ramp experiment. Gray background denotes
WRR policy, white denotes Prequal. Note that tail latency is
plotted on a log scale.

The top plot in Fig. 6 shows the effect on median and tail
latency, on a log scale, measured in microseconds. We employ
a 5s timeout for each query, so the graph tops out at 5s. In
the first three steps (below allocation) the latency distribution
stays steady for both WRR and Prequal at roughly 80ms (p50),
182ms (p90), 265ms (p99), and 325ms (p99.9). Then, as soon
as we first exceed our CPU allocation (by 1.03x) in step 4,
the behaviors of WRR and Prequal rapidly diverge.

For WRR, the p99.9 latency maxes out at the 5s limit, while
p99 jumps about 26% to 335ms, slightly above the previous
p99.9. By step 6 (1.27x allocation), p99 has maxed out, and
p90 is starting to show a visible bump to ~203ms (+11%). By
step 8 (1.57x allocation), p90 has maxed out, and even p50
has risen to ~111ms (+39%). By step 9, even p50 has risen to
~150ms (+88%).

In contrast, Prequal suffers almost no visible change at
p99.9 in load steps 4 and 5, and by step 6, p99.9 rises only to
~350ms (+8%). It does begin to rise appreciably at load step 7
(1.41x allocation), but even at step 9 it is still contained around
700ms, far from the 5s timeout. Meanwhile p99 latency does
not visibly degrade until load step 7, p90 does so around step
8, and p50 does so around step 9.

The second plot shows error rates, which are zero for both
WRR and Prequal up through step 3. Note that this is the

absolute number of errors per second, not a percentage. WRR
starts showing a very small error rate (5 to 20 errors/s) at load
step 4. By load step 5, the error rate rises visibly, increasing
much faster than the incoming qps. By step 9, more than a
quarter of all queries are returning errors. Essentially all of
these are "deadline exceeded" errors, from queries that hit
their 5s deadline. In contrast, Prequal returns zero errors at
all load levels in this experiment.

The bottom plot shows a heatmap of the CPU utilization
distributions for WRR and Prequal. Here, one can see that
WRR is doing a superb job at accomplishing what it was
designed to do: balance CPU load. In contrast, the CPU
distribution for Prequal is substantially looser. So why are
the latency and error metrics for WRR so bad? It is precisely
the explanation that we offered as motivation in §2. Digging
further into the server-level data for WRR (not pictured), we
see a strong correlation between the server replicas with high
antagonist load and ones where our latency suffers. Mean-
while, Prequal shifts load away from those server replicas to
avoid the worst of the latency impact.

This collection of results explains the title of our paper.
Although it is counterintuitive for most people, in this case the
load balancer that achieves near-perfect load balance (WRR)
is clearly worse (higher errors and latency). That is because
the real goal of a load balancer is not to balance load: it is
to direct load where capacity is available.

These results are possible only because many server repli-
cas in our system are not fully allocated with antagonists, and
at any given moment, many of these antagonists are not using
their full CPU allocations. Prequal allows our job to shift load
among replicas so as to fit into these cracks of temporary spare
capacity. This has two implications for service provisioning:
(1) We can provision much more aggressively, because Pre-
qual can deal with transient load spikes. (2) In theory, this
could even enable overcommitment, because it enlarges the
relevant resource pool from the level of one machine to a
much larger set of machines, enabling more effective statisti-
cal multiplexing.

5.2 Replica selection rule

In modern datacenters with thousands of machines, it is com-
mon for the machines to span multiple hardware generations
and processor architectures. When provisioning a job across
multiple machines, we can try to account for these differences
by applying a performance multiplier to different machine
types, e.g., 1 CPU core of type A is equivalent to 1.2 CPU
cores of type B. However, it gets tricky to do this well at
scale because the performance skew is often highly depen-
dent on the particular workload, e.g., YouTube may be more
suited to one of the hardware generations, while Google Maps
is better suited to the other. As a result, when our replicas
are assigned to machines with different hardware, their effec-
tive throughput becomes heterogeneous, and it is the faster

1292 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

machines that exhibit lower latency when unloaded (by defi-
nition). In this case, the way to minimize mean latency is to
fill the fast machines until their latency degrades to match the
slow machines, and then fill both fast and slow together.

There are various ways that a replica selection rule could
be designed to fulfill this goal. We experimented with nine
replica selection rules ranging from very simple baselines to
sophisticated rules used in popular open-source load balancers
(e.g. [26]) and in the research literature (e.g. [23]).

In describing the replica selection rules we evaluated, we
distinguish between client-local and server-local quantities.
The former are measured at the client (or load balancer) itself,
the latter are measured at the server replica and reported back
to the client (or load balancer). For example, client-local
RIF refers to the number of queries the client has sent to the
replica that have not yet yielded responses. Server-local RIF
refers to the total number of queries the replica has received
(from all clients) that it has not yet finished processing. In
the literature on load balancing of HTTP traffic there is also a
distinction between individual requests and connections; the
latter may be long-lived, comprising multiple requests. Since
the queries in our work represent short-lived connections, we
ignore this distinction in our experiment, treating connections
and requests as synonymous.

We evaluated the following replica selection rules.

• Random selects a uniformly random replica.

• Round Robin (RR) cycles through the replicas, keep-
ing track of the most recently chosen one and always
selecting the next available replica in cyclic order.

• Weighted Round Robin (WRR) is as described in §2.

• Least Loaded (LL) represents the LeastLoaded policy
implemented in the NGINX and Envoy reverse prox-
ies [6, 19]. It chooses the available replica with the least
client-local RIF, breaking ties in favor of one nearest to
the most-recently-chosen replica in cyclic order.

• Least Loaded with Power of Two Choices (LL-Po2C)
samples two available replicas uniformly at random and
selects the one with the least client-local RIF. This modi-
fication of LL is also implemented in NGINX and Envoy.

• YARP-Po2C is a replica selection rule from Microsoft’s
YARP reverse proxy library [26] based on power-of-two-
choices. All replicas are periodically polled to report
their (server-local) RIF. Replica selection is performed
by randomly sampling two replicas and selecting the one
with lower reported RIF. In our experiments we set the
polling interval to 500ms, a 30x faster rate of polling
than in the standard YARP-Po2C implementation. We
chose the 500ms interval to approximately equalize the
total number of RIF reports each client receives, per
second, with the number of probe responses received per
second by Prequal clients in our experiment.

• Linear, C3, and Prequal all use the asynchronous prob-
ing method described in §4, but they differ in the scoring
rule used to select a replica from the pool of probe re-
sponses.

• Linear uses a linear combination of RIF and latency. To
represent RIF and latency in comparable units, we scale
RIF by the median query processing time measured on
replicas with one request in flight. A replica’s score is
defined to be an equally weighted average10 of latency
and scaled RIF.

• C3 in this paper uses the replica scoring function de-
scribed in [23] with Prequal’s probing logic. It computes
a RIF estimate for each replica as q̂ = 1 + os · n + q̄,
where os is the client-local RIF, n is the number of
clients participating in the job, and q̄ is an exponentially
weighted moving average of the server-local RIF. It then
computes a score for each replica as Ψ= (R−µ−1)+ q̂3 ·
µ−1, where R and µ−1 are exponentially weighted mov-
ing averages of the client-local and server-local response
time, respectively. See [23] for intuitions justifying the
formulae for q̂ and Ψ.

• Prequal uses the HCL replica selection rule described
in §4, with the RIF limit quantile set to QRIF = 0.75.

The results of our experiment are depicted in Fig. 7. We
tested the replica selection rules at two different levels of
aggregate CPU load — 70% and 90% of our allocation —
and reported two quantiles of tail latency, the 90th percentile
(p90) and 99th percentile (p99).

The replica selection rules that performed best at all load
levels and latency quantiles were C3 and Prequal. What these
rules have in common is that they incorporate server-local
quantities, they penalize high (server-local) RIF severely, and
they favor low-latency replicas when there are multiple repli-
cas with low RIF. In the case of Prequal this behavior is
evident in the way it distinguishes between hot and cold repli-
cas. In the case of C3 it is implicit in the scoring function’s
cubic dependence on estimated queue size, q̂: when q̂ is near
zero it contributes negligibly to the score, but it rapidly grows
to predominate the score as q̂ moves away from zero.

Comparing C3 and Prequal, one sees a small quantitative
advantage for Prequal (3-8%) at all load levels and latency
quantiles we tested. Another convenient feature of Prequal’s
replica selection rule is that it has a tunable parameter, QRIF,
that allows it to span the full range from RIF-only to latency-
only control, depending on the needs of the application. Ad-
ditionally, Prequal uses fewer signals than C3, simplifying
the implementation and monitoring.

It is noteworthy that the LL policy, which bases replica
selection on client-local rather than server-local RIF, expe-
riences high p99 latency when load is at 70% of allocated

10In the supplementary material, we report on an experiment showing
that the performance of the Linear rule is equally poor for most weightings,
except when it degenerates to RIF-only control.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1293

200 400 600 800 1000 1200

4984 TO

TO TO

294 TO

TO TO

173 314

1667 TO

343 1804

940 2654

224 569

623 1918

210 2642

213 1169

206 698

245 1036

161 299

164 304

149 281

152 286

Latency (ms)

70%

90%

L
oa

d
(%

of
al

lo
c)

RoundRobin
Random
WeightedRR

LeastLoaded
LL-Po2C
YARP-Po2C

Linear
C3
Prequal

Figure 7: Comparison of replica selection rules. Dark por-
tions of bars represent 90th percentile, light portions are 99th
percentile. Bars representing latencies exceeding 1.25sec are
truncated. Timeouts are represented by ’TO’.

capacity. Even when a server has no active connections from
a given client, it can be highly loaded with queries from other
clients. If this possibility happens more than 1% of the time,
that is enough to impact p99 latency. When load is 90% of
allocation, we see that even p90 latency suffers heavily under
the LL policy. Combining LL with Po2C improves latency
at all load levels and quantiles in our experiments, but the
LL-Po2C rule still lags far behind Prequal and C3.

YARP-Po2C’s selection rule using server-local RIF fares
better at high load than LL-Po2C which uses client-local RIF,
as one might expect. However, its decisions are often based
on stale information due to the infrequent polling of replicas,
and this adversely affects latency.

Interestingly, the replica selection rule based on a 50-50
linear combination of latency and RIF performed much worse
than Prequal’s and C3’s scoring rules. This indicates that
a linear function of RIF doesn’t penalize high RIF severely
enough compared to C3’s cubic function or Prequal’s strict
prioritization of cold replicas over hot ones.

Finally, the WRR policy performs quite well when load was
at 70% of allocation, but its p99 latency suffers greatly at 90%
load. This is consistent with the results in §5.1, where the tail
latency experienced by WRR increases sharply in response to

(a) Tail Latency at 99p and 99.9p

(b) RIF Quantiles

4 2
√

2 2
√

2 1
√

1
2

1
2

Probe Rate

Figure 8: Probing rate experiment. Rates (top) are expressed
in probes/query.

a modest increase in aggregate CPU load. (WRR experienced
this crossover at different load levels in the two experiments,
probably because of differing amounts of antagonist load.)

5.3 Tunable parameters

Prequal has a few tunable parameters that influence its behav-
ior and performance. In this section we evaluate the impact of
two of those parameters, probe rate and RIF limit threshold.
The first influences the freshness of the load signals, while the
second influences the propensity for steering queries toward
low estimated latency versus avoiding high RIF.
Probing Rate In the YouTube application, the probes are
so light compared to the queries themselves that the probing
overhead is negligible. Unfortunately, this is not true for all
applications. Thus, we seek to identify the minimum probing
rate we can tolerate while retaining the benefits of Prequal.

In this experiment, we ramp down the probing rate from
4x to 1

2 x the query rate, in 6 multiplicative steps of
√

2 each,
while keeping the probe removal rate steady at 0.25 per query,
and breuse increases to compensate, guided by (1). In order to
magnify the effects, we ran the system very hot, at roughly
1.5x our CPU allocation throughout.

Fig. 8 shows the resulting latency and RIF, as well as the
θRIF control parameter. The take-home point is that Prequal
is fairly insensitive to the probing rate until we drop below

1294 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

one probe per query, at which point the negative effects be-
come significant. At probing rates of 1√

2
x and 1

2 x, the tail
RIF distributions jump visibly, and this change is echoed by
both latency quantiles. Anecdotally, we have observed this
phenomenon across many similar experiments, always around
1 probe per query.
RIF Quantile We now present an experiment to explore
the RIF vs latency tradeoff expressed by the quantile that dis-
tinguishes hot from cold replicas in the HCL rule. To do this,
we partition our 100 server replicas into 50 fast and 50 slow
replicas, the latter group standing in for servers from earlier
hardware generations. We artificially inflate the query work
by a factor of 2 on the slow replicas, thereby causing them to
burn 2x the CPU cycles and act as if they were 2x slower. We
vary the QRIF parameter over the course of the experiment,
starting at 0 (meaning RIF-only control), and ramping it up
from 0.910 ≈ 0.35 to 0.9, in steps of 10

9 , then to 0.99, 0.999,
and 1 (meaning latency-only control). Throughout, the mean
load is held steady at about 75% of the CPU allocation.

Note that there is actually a discontinuity in the behavior
of Prequal between the last two steps. At QRIF = 0.999, the
RIF limit is effectively the maximum RIF: any replica tied
for the max is considered hot. In contrast, when QRIF = 1, the
RIF limit is ∞, and every replica is considered cold.

Fig. 9 shows the results. The RIF limit threshold QRIF
increases from 0 on the left (pure RIF control) to 1 on the
right (pure latency control). The top two plots show the
p99, p90, and p50 latencies. As we would expect, all three
latency quantiles go down as we shift more towards latency-
based control, up through step 12 (QRIF = 0.99). Specifically,
p99 drops from ~162ms to ~142ms (-12%), p90 drops from
93ms to 75ms (-19%) and p50 drops from ~34.5ms to ~31ms
(-10%). At step 13, all three quantiles begin to edge up
slightly. When we switch to full latency control in step 14, all
quantiles move up sharply, especially p99, which jumps up
from ~148ms (step 13) to about 178ms (+20%). Even more
dramatic is p99.9 (not shown), which falls from 210ms in step
0 to 198ms in step 12, rises back to 210ms in step 13, and
then fluctuates chaotically in the 337ms to 502ms range in
step 14 (1.6x to 2.4x, compared to step 13).

It appears that even a tiny bit of RIF control goes a long
way. Why is it that pure latency control results in such worse
latency than QRIF = 0.999? We hinted at our interpretation
earlier: RIF is a valuable leading signal of load, so ignoring it
entirely is a bad idea.

The bottom plot shows the CPU utilization distribution. No-
tice the two crossing bands, which correspond to the “slow”
(i.e., even) and “fast” (i.e., odd) replicas. The slow (respec-
tively, fast) replicas correspond to the band that is decreasing
(respectively, increasing) to the right. This is exactly as we
would expect, as increasing QRIF means we balance more
often based on latency, which favors the fast replicas. In
addition, the CPU distributions are tighter to the left, where
RIF control is higher. This is because RIF is quite a good

(a) Tail Latency at 90p, 99p

(b) RIF Quantiles

(c) Distribution of CPU Utilization

0 .35 .39 .43 .48 .53 .59 .66 .73 .81 .90 .99 .999 1.0

RIF Limit Threshold

Figure 9: RIF Limit experiment. QRIF varies from 0 at left
(pure RIF control) to 1 at right (pure latency control).

predictor of future CPU utilization.
This experiment justifies the HCL rule, since turning the

dial towards more latency-based control does indeed decrease
latency, and turning it up even as high as 0.73 (step 9) has next
to no impact on RIF. At step 7 (QRIF = 0.59), all three RIF
quantiles are just as good as with RIF-only control, despite the
fact that the vast majority of queries are being routed based on
latency. In this experiment, the probe pool has size 16 and is
nearly always full. Because of the use-best and remove-worst
processes, the probe pool is not uniformly random. But if it
were, then the probability of all 16 probes being hot would
be roughly 2−16 ≈ 1.5× 10−5, since θRIF and p50 RIF are
both 5 during step 7. Otherwise, the query is routed to a cold
replica based on latency. This is what allows us to have the
best of both worlds, most of the time: simultaneously routing
based on latency and avoiding the highest-RIF replicas.

6 Related work

The “power of two choices” paradigm for randomized load
balancing was first analyzed in the influential work of Broder
et al. [2] and Mitzenmacher [18]. Over the years, these ideas

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1295

made their way from the theory literature into a wide variety
of applications in industry, as noted in the prize citation for the
2020 ACM Paris Kanellakis Theory and Practice Award [1].
Theoretical results on the power of two choices initially per-
tained to the case of throwing n balls into n bins, but they
were soon generalized to the “heavily loaded” setting, when
balls exceed bins [3]. Qualitatively, these results show that
load-balancing processes based on randomly sampling mul-
tiple choices and selecting the best ones vastly outperform
simpler procedures based on sampling a single bin for each
ball. Subsequent theoretical research affirmed that this finding
is surprisingly robust to varying the modeling assumptions or
the specific rule for selecting among the sampled bins; see,
for example, the surveys [17, 25]. Of particular relevance to
the design of Prequal is the generalization to load-balancing
processes with memory [13, 14,16], the closest analogue in
the theory literature to our use of asynchronous probing.

The need for datacenter task scheduling with sub-second
latencies has prompted a great deal of research into decen-
tralized load balancers. Several proposed systems in this
branch of the load balancing literature leverage the power-
of-d-choices (PodC) paradigm. One prominent example is
Sparrow [20], a scheduler for highly parallel jobs that each
consist of a large number of tasks. Sparrow aims to minimize
the job response time, i.e. the time when the last constituent
task of a job finishes executing. This goal motivates a dif-
ferent set of design choices, combining batch sampling and
late binding: a client whose job comprises m tasks places
d ·m reservations on randomly selected server replicas; the m
replicas that become available soonest request to run the m
tasks, and the other (d−1) ·m reservations are canceled. This
achieves a similar effect to probing d ·m replicas and selecting
the m best probe responses, with reservations playing the role
of probes. Our setting differs in that jobs are not batched,
which allows us to substitute a simpler and more efficient
probing mechanism, avoiding the use of reservations and late
binding which would incur undesirable overheads in our en-
vironment. Building upon Sparrow’s batch sampling idea,
Eagle [5] is a hybrid scheduler that incorporates a distributed
probe-based scheduler using batch sampling to handle short-
lived tasks, alongside a centralized scheduler that places long
tasks on replicas. The hybrid scheduler design makes sense
in settings where a wide disparity in job sizes makes head-of-
line blocking a potentially serious problem; in our setting the
jobs (queries) are short-lived, allowing the fully distributed
load-balancing solution offered by Prequal to perform well in
the production environment of YouTube and in our testbed.

A centralized PodC-based load-balancer is incorporated
into RackSched [27], where it runs on a top-of-rack switch
to make microsecond-scale inter-server scheduling decisions
enabling rack-scale computing. Client-based probing solu-
tions such as ours are inapplicable in their setting, where the
resource cost of probing is comparable to the resource cost
of serving requests. Instead of probing, their servers piggy-

back load signals into normal traffic and the scheduler treats
these load signals as implicit probes. Another rack-scale
load balancing system using a RIF-based queueing policy
is R2P2 [12], whose JBSQ(n) policy is a variation on the
LeastLoaded policy discussed in §5.2. Both RackSched and
R2P2 rely on all connections passing through a single router
or switch; as explained in §2, at the scale of a service such as
YouTube using a single load balancer is not a viable option.

C3 [23] is another distributed load balancer with the same
design goal as Prequal— minimizing tail latency by adaptively
selecting replicas in response to real-time load feedback —
but a very different methodology using much more state. C3
uses distributed rate control and backpressure, with every
client maintaining exponentially weighted moving average
estimates of latency and RIF for every server replica, and
using a token-bucket based rate limiter for each server replica.
Prequal’s design, in which the only state clients maintain is a
probe pool of bounded size, is better suited to load balancing
at the scale of a system such as YouTube.

Many existing load balancing systems (e.g., NGINX [19],
Envoy [7], Finagle [8], YARP [26]) offer some variant of
PodC, and most of them offer (client-local) RIF, latency, or
some combination as the load balancing signal. As detailed
in §5.2, the use of signals local to the client or load-balancer
adversely affects performance at scale, when many clients or
balancers might be sharing the same pool of replicas.

A number of other production systems leverage PodC load
balancing. Netflix’s Zuul [22] incorporates decentralized rout-
ing of requests from load balancers to backends by randomly
considering two candidates and using a combination of local
and piggybacked RIF statistics from previous responses to
choose the least-loaded server. Unlike Prequal, Zuul eschews
active probing and does not incorporate latency information.
NGINX’s implementation [19], like Zuul, is probe-less, but its
selection criterion is configurable: “least-connections” uses
the lowest RIF from a given balancer to each backend and
“least-time” uses estimated latency based on prior requests
and the number of current connections. Given our experience
with Prequal, we believe it is likely that the performance of
the load-balancing mechanisms described in [19,22] could be
improved by supplementing the piggybacked data with active
probing.

Acknowledgments

We wish to recognize the contributions of our current and
former Google colleagues Melika Abolhassani, Doug Rohde,
and Aliaksei Kandratsenka, who built and experimented ex-
tensively with an earlier prototype of Prequal. Their previous
yeoman’s work gave us a large head start on the current it-
eration of the project. We have also benefitted from helpful
discussions with David Applegate, Thomas Adamcik, Pratik
Worah, and Soheil Yeganeh, along with excellent suggestions
from Philip Fisher-Ogden on the exposition.

1296 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] 2020 ACM Paris Kanellakis Theory and Practice
Award. https://www.acm.org/media-center/
2021/may/technical-awards-2020, 2020. Accessed:
2023-05-02.

[2] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and
Eli Upfal. Balanced allocations. SIAM J. Comput.,
29(1):180–200, 1999.

[3] Petra Berenbrink, Artur Czumaj, Angelika Steger, and
Berthold Vöcking. Balanced allocations: The heavily
loaded case. SIAM J. Comput., 35(6):1350–1385, jun
2006.

[4] Alejandro Forero Cuervo. Load balancing in the data-
center. In Jennifer Petoff, Niall Murphy, Betsy Beyer,
and Chris Jones, editors, Site Reliability Engineering:
How Google Runs Production Systems, chapter 20,
pages 231–247. O’Reilly, Sebastopol, 2016.

[5] Pamela Delgado, Diego Didona, Florin Dinu, and Willy
Zwaenepoel. Job-aware scheduling in eagle: Divide
and stick to your probes. In Marcos K. Aguilera, Brian
Cooper, and Yanlei Diao, editors, Proceedings of the
Seventh ACM Symposium on Cloud Computing, Santa
Clara, CA, USA, October 5-7, 2016, pages 497–509.
ACM, 2016.

[6] Envoy github repository. https://github.com/
envoyproxy/envoy. Accessed: 2023-09-21.

[7] Envoy homepage. https://www.envoyproxy.io. Ac-
cessed: 2023-09-21.

[8] Deterministic Aperture: A distributed, load bal-
ancing algorithm. https://blog.twitter.com/
engineering/en_us/topics/infrastructure/
2019/daperture-load-balancer, 2019. Accessed:
2023-09-21.

[9] gRPC Weighted Round Robin load balancing com-
ponent. https://github.com/grpc/grpc/tree/
master/src/core/ext/filters/client_channel/
lb_policy/weighted_round_robin. Accessed:
2023-05-03.

[10] Chris Jones, John Wilkes, Niall Murphy, and Cody
Smith. Service level objectives. In Jennifer Petoff, Niall
Murphy, Betsy Beyer, and Chris Jones, editors, Site Re-
liability Engineering: How Google Runs Production
Systems, chapter 4, pages 37–48. O’Reilly, Sebastopol,
2016.

[11] Manolis Katevenis, Stefanos Sidiropoulos, and Costas
Courcoubetis. Weighted round-robin cell multiplexing
in a general-purpose ATM switch chip. IEEE Journal

on Selected Areas in Communications, 9(8):1265–1279,
1991.

[12] Marios Kogias, George Prekas, Adrien Ghosn, Jonas
Fietz, and Edouard Bugnion. {R2P2}: Making {RPCs}
first-class datacenter citizens. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 863–
880, 2019.

[13] Dimitrios Los, Thomas Sauerwald, and John Sylvester.
Balanced allocations: Caching and packing, twinning
and thinning. In Proceedings of the 2022 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1847–1874, 2022.

[14] Dimitrios Los, Thomas Sauerwald, and John Sylvester.
Balanced allocations with heterogeneous bins: The
power of memory. In Proceedings of the 2023 An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 4448–4477, 2023.

[15] Michael Mitzenmacher. How useful is old informa-
tion? IEEE Trans. Parallel Distributed Syst., 11(1):6–
20, 2000.

[16] Michael Mitzenmacher, Balaji Prabhakar, and Devavrat
Shah. Load balancing with memory. In The 43rd
Annual IEEE Symposium on Foundations of Computer
Science, 2002. Proceedings., pages 799–808. IEEE,
2002.

[17] Michael Mitzenmacher, Andréa W. Richa, and Ramesh
Sitaraman. The power of two random choices: A survey
of techniques and results. In Sanguthevar Rajasekaran,
Panos M. Pardalos, and José Rolim, editors, Handbook
of Randomized Computing, volume 1, pages 255–312.
Springer Science & Business Media, 2001.

[18] Michael David Mitzenmacher. The Power of Two
Choices in Randomized Load Balancing. PhD thesis,
UC Berkeley, 1996.

[19] Nginx and the “Power of Two Choices” load-balancing
algorithm. https://www.nginx.com/blog/nginx-
power-of-two-choices-load-balancing-
algorithm/, 2018. Accessed: 2023-05-04.

[20] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and
Ion Stoica. Sparrow: Distributed, low latency schedul-
ing. In Proceedings of the 24th ACM Symposium on Op-
erating Systems Principles (SOSP), pages 69–84, 2013.

[21] Gahyun Park. A generalization of multiple choice
balls-into-bins. In Proceedings of the 30th Annual
ACM SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, pages 297–298, 2011.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1297

https://www.acm.org/media-center/2021/may/technical-awards-2020
https://www.acm.org/media-center/2021/may/technical-awards-2020
https://github.com/envoyproxy/envoy
https://github.com/envoyproxy/envoy
https://www.envoyproxy.io
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/daperture-load-balancer
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/daperture-load-balancer
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/daperture-load-balancer
https://github.com/grpc/grpc/tree/master/src/core/ext/filters/client_channel/lb_policy/weighted_round_robin
https://github.com/grpc/grpc/tree/master/src/core/ext/filters/client_channel/lb_policy/weighted_round_robin
https://github.com/grpc/grpc/tree/master/src/core/ext/filters/client_channel/lb_policy/weighted_round_robin
https://www.nginx.com/blog/nginx-power-of-two-choices-load-balancing-algorithm/
https://www.nginx.com/blog/nginx-power-of-two-choices-load-balancing-algorithm/
https://www.nginx.com/blog/nginx-power-of-two-choices-load-balancing-algorithm/

[22] Rethinking Netflix’s edge load balancing.
https://netflixtechblog.com/netflix-edge-
load-balancing-695308b5548c, 2018. Accessed:
2023-05-04.

[23] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja
Feldmann. C3: Cutting tail latency in cloud data stores
via adaptive replica selection. In 12th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 2015), pages 513–527, 2015.

[24] Varun Talwar. gRPC: a true internet-scale RPC
framework is now 1.0 and ready for production
deployments. https://cloud.google.com/
blog/products/gcp/grpc-a-true-internet-
scale-rpc-framework-is-now-1-and-ready-
for-production-deployments, 2016. Accessed:
2023-09-21.

[25] Udi Wieder. Hashing, load balancing and multiple
choice. Foundations and Trends® in Theoretical Com-
puter Science, 12(3–4):275–379, 2017.

[26] YARP: Yet Another Reverse Proxy. https://
microsoft.github.io/reverse-proxy/. Accessed:
2023-09-21.

[27] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu,
Christos Kozyrakis, Ion Stoica, and Xin Jin. Racksched:
A microsecond-scale scheduler for rack-scale comput-
ers. In 14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2020, pages 1225–
1240. USENIX Association, 2020.

A Linear combinations of latency and RIF

.769 .785 .801 .817 .834 .868 .886 .904 .922 .941 .960 .980 1.0

Coefficient of RIF

(a) Latency quantiles

(b) RIF quantiles

Figure 10: Evaluating replica selection rules based on linear
combination of latency and RIF.

To evaluate the effectiveness of replica selection rules that
use a linear combination of latency and RIF, we used our
testbed11 to experiment with a variant of Prequal that uses the
some asynchronous probing method detailed in §4, modified
to select replicas using a linear combination of latency and
RIF. In other words, the HCL replica selection rule was
replaced with one that chooses among the replicas represented
in the probe pool by minimizing the score

scoreλ
i = (1−λ) · latencyi +λ ·α ·RIFi (2)

where latencyi, RIFi, respectively, denote the latency and RIF
in the probe response from replica i, α is a scale factor applied
to RIF to convert it into the same units as latency, and λ∈ [0,1]
is a tunable parameter that adjusts the relative weight given
to latency and RIF. Setting λ = 0 corresponds to latency-only
control, whereas λ = 1 corresponds to RIF-only control.

To set the scale factor α, we used the approximate median
query response time for server replicas with one request in

11See the start of §5 for a general description of the testbed environment.

1298 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://netflixtechblog.com/netflix-edge-load-balancing-695308b5548c
https://netflixtechblog.com/netflix-edge-load-balancing-695308b5548c
https://cloud.google.com/blog/products/gcp/grpc-a-true-internet-scale-rpc-framework-is-now-1-and-ready-for-production-deployments
https://cloud.google.com/blog/products/gcp/grpc-a-true-internet-scale-rpc-framework-is-now-1-and-ready-for-production-deployments
https://cloud.google.com/blog/products/gcp/grpc-a-true-internet-scale-rpc-framework-is-now-1-and-ready-for-production-deployments
https://cloud.google.com/blog/products/gcp/grpc-a-true-internet-scale-rpc-framework-is-now-1-and-ready-for-production-deployments
https://microsoft.github.io/reverse-proxy/
https://microsoft.github.io/reverse-proxy/

flight. This value turned out to be 75 milliseconds. Note that
for any α > 0, the set of scoring rules {scoreλ | 0 ≤ λ ≤ 1}
obtained by varying λ over the interval [0,1] is always equal
to the set of convex combinations of latency and RIF. In other
words our choice of α = 75ms affects the way that this set of
scoring rules is parameterized by λ, but doesn’t affect the set
itself.

We evaluated linear combination scoring rules by measur-
ing quantiles of latency and RIF in our testbed at a constant
level of aggregate CPU utilization (equal to 94% of our alloca-
tion) while varying λ. Replicas were partitioned into an equal
number of fast (odd-numbered) and slow (even-numbered)
ones, with a 2x difference in query processing speed, as in the
RIF quantile experiment described in §5.3. We initially exper-
imented with varying λ over the full range [0,1] in increments
of 0.1. It was evident from this initial experiment that linear
combination rules with λ≤ 0.7 performed poorly compared
to larger values of λ, which prompted us to examine the range
depicted in Fig. 10 at a finer resolution. Of the 13 linear com-
binations tested in the experiment, all quantiles of latency and
RIF improved monotonically as λ increased, with λ = 1 (i.e.,
RIF-only control) dominating all other linear-combination
feedback control rules, in most cases by a wide margin.

Recall from Fig. 9 in §5.3 that RIF-only control (repre-
sented in that figure by RIF limit threshold 1.0, the rightmost
configuration) performs strictly worse than Prequal at all quan-
tiles of latency and RIF. Since the results of the experiment
reported here show that RIF-only control performs strictly
better than any other linear combination of latency and RIF,
it follows by transitivity that Prequal strictly dominates all
linear combinations of latency and RIF.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1299

Orthcatter: High-throughput In-band OFDM Backscatter with Over-the-Air Code
Division

Caihui Du
Beijing Institution of Technology

Jihong Yu ∗

Beijing Institution of Technology
Rongrong Zhang

Capital Normal University

Ju Ren
Tsinghua University

Jianping An
Beijing Institution of Technology

Abstract
The existing ambient backscatter systems suffer from either
more spectrum utilization or low throughput. we propose
Orthcatter, the first in-band OFDM backscatter system that
provides a higher throughput while consuming fewer spec-
trum resources. Our key innovation is the designed over-the-
air code division technique that enables the cancellation of
the co-channel interferences, solving the core challenge of
the in-band backscatter communication. Unlike the common
code-division systems that generate orthogonal codewords
locally, we construct the quasi-orthogonal backscatter code-
words by swapping the subcarriers of each excitation OFDM
symbol and concrete this design passively with a double
side-band symbol construction method. Armed with these
quasi-orthogonal codewords, we design a two-step interfer-
ence cancellation scheme, significantly improving reliability.
We prototype and test Orthcatter. The results show that Or-
thcatter can achieve throughput of 248kbps and a BER of
10−4 under OFDM WiFi exciter, improving by over 4.6× and
300× compared with the state-of-the-art in-band backscatter
system. Our throughput and BER can even be 11kbps higher
and 59× better than the prior side-band backscatter systems,
and the exciter-to-tag communication range is 3× of prior
OFDM backscatter systems.

1 Introduction

The proliferation of wireless applications brings about the
ever-increasing deployments of wireless devices, which em-
phasizes the importance of lower power consumption and
saving spectrum resources. Since ambient backscatter sys-
tems utilize the existing exciters for communication rather
than requiring a dedicated carrier emitter, they are ultra-low
power and play an important role in future IoT applications.
Therefore, many novel backscatter systems have been pro-
posed [7, 10, 11, 14, 19–23, 27, 29, 33–38]. Among them, the
OFDM backscatter has received the most attention due to

∗Corresponding author: Jihong Yu.

Table 1: Summary of OFDM backscatter systems.

Technology
High

throughput
Little spectrum

occupation
Single

receiver

LScatter [9] Ë é é
SyncScatter [12] Ë é é
HitchHike [35] Ë é é
STScatter [33] Ë é Ë

RapidRider [31] Ë é é
TScatter [27] Ë é é

WiFi Backscatter [20] é Ë Ë
WiTAG [7] é Ë Ë

Study in [22] [23] é Ë Ë

Orthcatter Ë Ë Ë

the wide deployment of OFDM exciters. Inspired by them,
we envision that a ready-to-use OFDM backscatter system
should satisfy the three requirements:

• High throughput. Its data rate should be at least hun-
dreds of kbps to support various high data rates applications
such as telecommuting and live streaming.

• Little spectrum occupation. Due to the scarce spectrum
resources, its transmission should leverage the excitation spec-
trum rather than occupying additional frequencies.

• Single receiver. It should support one-radio demodula-
tion. That is, only one receiver is required to decode the tag
data, boosting the potential for working with such popular
single-receiver mobile devices as laptops and smartphones.

If these requirements were satisfied, OFDM backscatter
systems could be pervasively adopted for ultra-low power
communication and thus radically change our life. For ex-
ample, even in smart cities with a crowded radio spectrum,
backscatter devices can still provide efficient data transmis-
sion by reusing the signal and spectrum of the existing ex-
citers. Passive wearable sensors can also interact with one-
receiver devices like smartphones or smartwatches without
consuming extra spectrum or power resources. Unfortunately,
to our knowledge, no existing systems satisfy these require-
ments simultaneously (c.f. Table 1).

The reason preventing this lies in that prior works are

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1301

forced to tradeoff between the less spectrum occupation and
the higher throughput. Specifically, studies in [9, 12, 27, 31,
33, 34, 36] provide side-band backscatter systems. They show
high throughput yet consuming significant spectrum resources
because they must shift the backscatter signal into a new chan-
nel, referred to as the backscatter channel, to avoid the original
signal. The frequency shift doubles the channel occupancy
and requires an empty channel which may not exist in today’s
crowded wireless environment. Moreover, their backscatter re-
ceivers do not known the excitation data a priori, they have to
use two physically-separated receivers and synchronize them
for decoding the tag data [12,27,31,34–36]. This significantly
complicate their deployment and limit their usage.

Studies in [7, 11, 20, 22, 23] design in-band backscatter sys-
tems. Unlike the side-band systems, they do not frequency
shift the backscatter signal, so they would not occupy extra
spectrum and can decode tag data by reusing the receiver that
is already deployed for the exciter’s transmission. However,
the backscatter signal is strongly interfered by the coexisting
original signal. These works cannot eliminate such interfer-
ence effectively, suffering from poor BER (over 10−1) and low
throughput (tens of kbps). Therefore, the existing backscat-
ter systems transmit the tag data either in an independent
backscatter channel for a higher data rate (namely side-band
systems), or in the original channel with poor reliability for
saving the spectrum resources (namely in-band systems).

Solving the trade-off problem, we present Orthcatter, the
first in-band OFDM backscatter system that has a communi-
cation ability comparable to the side-band systems. Similar to
prior works, Orthcatter reflects the ambient excitation signal
to generate the backscatter signal and embeds every 1-bit tag
data over an excitation data segment in the backscatter signal.
We define such excitation data segment carrying tag data as
the backscatter codeword and define the excitation data seg-
ment in the original signal overlapping with the backscatter
codeword in the time and frequency domain as the original
codeword. These codewords possess two features. 1) As Or-
thcatter transmits data at the single-symbol rate, the length
of the backscatter codeword equals that of an OFDM sym-
bol. We emphasize that the backscatter codeword is not an
OFDM symbol; instead, it is constructed by combining halves
of two successive OFDM symbols (c.f. §3.1). 2) Consider in-
band Orthcatter, the original codeword would interfere with
the backscatter codeword, posing great challenge for tag data
decoding. We would make the original and backscatter code-
word quasi-orthogonal during backscatter modulation and
design the interference cancellation scheme in §3.2.

As shown in Figure 1, Tag in Orthcatter not only changes
the phase of the backscatter codewords to embed his data but
also varies their content to make them so different from the
original codewords that the receiver Bob can perform inter-
ference cancellation. Our key observation is that the random-
ization process at the scrambler of an OFDM exciter ensures
any non-overlapped data segments are non-identical. Inspired

OFDM
exciter
(Alice)

OFDM
receiver

(Bob)

Original signal

Tag

OFDM subcarrier

Interference
cancellation

Tag data

Different

Decode

...

...

Backscatter signal

...
Backscatter
codeowrd

Original
codeowrd

Figure 1: Concept of Orthcatter.

by this, we design the over-the-air code division technique
which makes the original and backscatter codewords contain
non-overlapping excitation data segments. This way, the cor-
relation result between such codewords is small. We find such
correlation results less than 0.5 under the 802.11g WiFi and
less than 0.1 under the 20MHz LTE. Since the correlation
results are not equal to 0 (i.e., orthogonal), we define the
relation between our original and backscatter codewords as
quasi-orthogonal for distinction. The quasi-orthogonality
provides a chance for the receiver Bob to effectively cancel
the interference from the original codewords and decode the
tag data. To passively generate the backscatter codewords, we
design the double side-band symbol construction method
with a passive RF switch. During backscattering, this switch
creates two OFDM symbols whose in-band parts would splice
over the air into a new symbol that contains the backscatter
codeword quasi-orthogonal with the original one.

In the design of Orthcatter, we answer three questions.
1) How to design the quasi-orthogonal codewords uti-

lized for backscattering? To enable interference cancel-
lation on the receiver side, it is crucial to ensure that the
backscatter codewords are quasi-orthogonal to the original
ones. This is challenging because the backscatter codewords
are constructed from the uncontrolled excitation data seg-
ments rather than the Pseudo-Noise (PN) sequences that can
be locally generated by conventional code-division systems.
Furthermore, modifying each excitation data in the original
codeword with such PN sequences to create the backscatter
codeword is also not feasible. This is because Tag can only
modulate the original signal in the time domain where the
subcarriers carrying the excitation data would overlap. Hence,
we must design the backscatter without local PN sequences.
Solution. We propose the over-the-air code division in §3.1
which makes the backscatter and original codewords quasi-
orthogonal by building the former to carry non-overlapping
excitation data segments with the latter. As shown in Figure
2, we generate the quasi-orthogonal backscatter codeword via
two steps: subcarrier swapping and tag data mapping. In the
first step, we exchange the position of the first and second
half of each backscattered OFDM symbol in frequency do-
main. In the second step, we maps every bit of tag data into
a manipulated excitation data segment. Note that we utilize
the second half of a backscattered OFDM symbol and the

1302 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

first half of its following one to carry every bit of tag data.
This way, the original and backscatter codewords would carry
non-overlapping data segments and are thus quasi-orthogonal.

2) How to passively generate the backscatter code-
words? The over-the-air code division technique requires
to swap frequency-domain subcarriers. However, a passive
tag can only modulate the excitation signal in the time domain
where the subcarriers overlap. This scheme also needs to em-
bed the first and second half of each backscatter symbol with
different tag data, requiring the modulation of the tag at the
half-symbol level. However, the state-of-the-art works like
RapidRider and STScatter [31,33] just support single-symbol
modulation for the overlapped subcarriers in the time domain.
Solution. We propose a double side-band symbol construction
method in §3.1, which gets the desired backscatter OFDM
symbol with a passive RF switch. This switch, toggling at
f Hz, can create two copies of an excitation OFDM symbol
with frequency deviation of ± f from its center frequency
during backscattering. We set f = BW/2 where BW is the
bandwidth of the excitation signal so that just one half of each
copy would fall inside the excitation channel and they can
splice into a new OFDM symbol over the air which conveys 1-
bit tag data, referred to as a backscatter symbol. This realizes
the subcarrier swapping because the backscatter symbol is
built by reversing the order of the first and second half of the
two neighbour original excitation symbols, respectively. In
addition, we vary the phase of these copies individually, mak-
ing each in-band half of the copies modulated independently
and achieving the half-symbol level modulation.

3) How to cope with the interference from the original
signal? Since Orthcatter is an in-band system that conducts
the backscatter communication in the same channel as the
original one, the original signal would greatly interfere with
its communication. Prior in-band works [22,23] use the redun-
dant coding which embeds 1-bit tag data into multiple OFDM
symbols or packets to cope with this interference. This signif-
icantly degrades the throughput to tens of kbps, e.g., 40kbps
in [22]. In addition, their communication distance is still short,
e.g., 5m in [22], because the original signal is not diminished
at all and still hurts the tag data decoding. Therefore, we
should cancel the interference of the original signal before
decoding tag data for better decoding performance.
Solution. Given that the over-the-air code division ensures the
quasi-orthogonality, we solve this through the proposed quasi-
orthogonal interference cancellation and decoding scheme in
§3.2. Bob can cancel the original signal via coarse and ac-
curate cancellation. The coarse cancellation process roughly
computes the original channel state from the inner product of
the received OFDM symbol and the quasi-orthogonal code-
words, and the accurate cancellation process adopts an adap-
tive filter to eliminate the residual original signal after the
coarse cancellation process. Superior to prior works, most
of the original signal is canceled before tag data decoding.
Hence, our Orthcatter improves communication performance.

By answering these questions, we prototype Orthcatter and
conduct experiments with typical OFDM exciters like WiFi
and LTE. Our main results are summarized as follows.

• Orthcatter has an impressive throughput of 248kbps. It is
6.2× and 4.6× higher than the in-band backscatter systems
[22] and [23], respectively. It is 11kbps higher than the side-
band backscatter system RapidRider [31].

• Orthcatter’s minimal BER under WiFi exciters is 3.4×
10−4, which is 59× and over 300× better than the side-band
system RapidRider and the in-band system [23], respectively.
• Orthcatter is generic because it does not involve any

upper-layer coding schemes of the exciter. It can work with
different types of OFDM exciters, such as WiFi and LTE.
Moreover, our tag can be put 3× further from the exciter
Alice than prior OFDM backscatter works.

In summary, we design and build Orthcatter, the first in-
band OFDM backscatter system that saves spectrum resources
while providing considerable throughput. Our design makes
the following technical contributions:

1) Over-the-air code division. This technique makes the
original and backscatter codewords quasi-orthogonal. It en-
ables the interference cancellation that is not supported in
existing in-band works [22, 23].

2) Double side-band symbol construction. This method
concretes the backscatter codewords and embeds tag data
while keeping the power consumption similar to existing
backscatter systems [27, 35, 36].

3) Quasi-orthogonal interference cancellation and de-
coding. This method separates the backscatter signal and the
original one on the receiver side. It decodes tag data under
much smaller interference, enabling better decoding perfor-
mance than the state-of-the-art in-band works [22, 23].

2 Motivation and Design Overview

2.1 What makes Orthcatter outstanding?
Before introducing our Orthcatter, we first show what makes
it outstanding. To explain this, we classify the current OFDM
backscatter systems into two types: side-band and in-band.
Tags in side-band backscatter systems would frequency shift
the backscatter signal to another channel to avoid the original
signal [12, 27, 31, 33, 35, 36]. Since the original signal would
not interfere with backscatter transmission, they provide high
throughput, e.g., hundreds of kbps, and good BER perfor-
mance, e.g., around 10−3. However, they share some severe
drawbacks: 1) Large spectrum resources occupation. The
frequency shift here consumes significant spectrum resources,
e.g., 20MHz under OFDM WiFi exciter. 2) Vulnerable trans-
mission. Since a tag cannot sense or occupy an empty channel
for communication, the transmission suffers from strong inter-
ference in today’s crowded wireless environment. 3) Complex
deployment. Most of these works [12, 27, 31, 35, 36] have to
use and synchronize two physically-separated receivers since

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1303

Bob
Tag

Subcarrier swap

Tag data
embedding

Over-the-air code division
Quasi-orthogonal interference

cancellation and decoding

Decode excitation data

Coarse cancellation

Accurate cancellation

Decode
tag data

Get quasi-orthogonal
codewords

Interference cancellation

Backscatter
signal

Original signal

Backscatter codeword(Quasi-
orthogonal to original codeword)

...

Symbol 2Symbol 1

...

Alice

Original codeword

Symbol 1

... ...

Symbol 2

Double side-band
symbol construction

Ambient signal

Figure 2: Orthcatter overview. Symbols 1 and 2 are two OFDM symbols, the backscatter codeword carrying 1-bit tag data is built
from two excitation symbols by Tag. It is interfered by the original codeword.

they need to receive the original and backscatter signals in
two frequency channels for decoding tag data.

Tags in the in-band backscatter systems transmit his data in
the original channel [7,20,22,23]. These works saves the spec-
trum resources and can get tag data by reusing the receiver
deployed for Alice’s transmission. Moreover, other ambient
signals would not interfere with their transmission because
commercial systems can occupy the wireless channel through
channel access methods like RTS/CTS scheme [13]. How-
ever, the received signal is a superposition of the original and
backscatter signals. Worse still, the receiver cannot cancel the
original signal effectively. To address this problem, redundant
coding is used to make the superposed signal decodable on the
receiver side. WiFi Backscatter [20] and WiTag [7] embeds
1-bit tag data over a WiFi frame with tens of OFDM symbols.
Both [22] and [23] encode 1-bit tag data over multiple OFDM
symbols. Unfortunately, they still experience poor BER. For
example, although [23] encodes 1-bit tag data over four WiFi
symbols (16 µs), its minimal BER is over 10−1.

Observation. We observe that the root cause preventing
the interference cancellation is the extreme similarity between
the received original signal and the backscatter signal. For
example, a received OFDM symbol Yr in [23] is

Yr = Yo +Yb =
N

∑
i=1

Ho(i)Sie− j2π fit +
N

∑
i=1

Hb(i)BSie− j2π fit (1)

where Yo is the original symbol, Yb is the backscatter symbol,
N is the number of subcarriers in a symbol, and B is the tag
data. Consider the i-th subcarrier, Si is its excitation data, fi
is its center frequency, Ho(i) is the direct-link channel state,
and Hb(i) is the backscatter channel state.

The differences between Yo and Yb just lie in the channel
state and an initial phase offset that exists only when the trans-
mitted tag data is ‘1’. Consequently, the receiver cannot dis-
tinguish Yo and Yb, and has to decode with strong interference.
Denote by S = {Si, · · · ,SN} the data carried by the original
codeword, the observation inspires us to design Orthcatter that
enables interference cancellation by making Yo and Yb carry
different S. The problem hindering our design is whether we
can achieve this without consuming extra power. Our answer

is YES, and our insight is that two non-overlapping excitation
data segments would be quasi-orthogonal thanks to the scram-
bler at the OFDM exciter. Specifically, we make Yb carry the
backscatter codeword that is quasi-orthogonal to the original
codeword carried by Yo (c.f. Figure 2). Yr here hence becomes

Yr = Yo +Yb =
N

∑
i=1

Ho(i)Sie− j2π fit +Hb(i)BŜie− j2π fit (2)

where Ŝi is the excitation data carried by the i-th subcarrier in
the backscatter symbol. Since the backscatter codeword Ŝ =
{Ŝ1, · · · , ŜN} and S are quasi-orthogonal, Bob can separate Yo
and Yb, and decodes tag data under much smaller interference.
Therefore, Orthcatter achieves better performance.

2.2 What is Orthcatter?
Orthcatter is an in-band OFDM backscatter system that out-
performs the prior works. We first give a brief description
of the architecture of OFDM technology. Communication
systems like WiFi and LTE utilize OFDM to embed their data
into different subcarriers. For simplicity, we denote an OFDM
symbol by S = ∑

N
i=1 Sie− j2π fit where fi is the frequency of the

subcarrier i and Si is the carried excitation data. A scrambler
would randomize Si to avoid the all-zero or all-one sequences.
That said, two segments of Si would be nonidentical if they
do not overlap. We refer to such feature as quasi-orthogonal
and employ it to design Orthcatter. As shown in Figure 2,
Orthcatter has three parts: Alice, Tag, and Bob.

• Alice. Alice is an OFDM-based exciter and is beyond
control. In our experiments, we choose two typical OFDM
exciters for Alice: 802.11g WiFi [6], and LTE [4].

• Tag. Tag could piggyback his data over the ambient
OFDM excitation signals. He can naturally support generic
OFDM exciters including WiFi and LTE without hardware
modification. During transmission, Tag adopts the over-the-
air code division technique (c.f. §3.1) which embeds and
spreads his data with quasi-orthogonal backscatter codewords.
As shown in Figure 2, the backscatter codeword conveys 1-
bit tag data and is quasi-orthogonal to its counterpart in the
original excitation signal, i.e., the original codeword in Figure

1304 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2. Such a backscatter codeword is generated passively with
the double side-band symbol construction method. Through
this design, Tag can embed his data at the single-symbol rate
same as existing side-band systems like RapidRider [31] and
thus has an impressive throughput. We emphasize that: 1) As
an in-band backscatter system, Tag’s transmission takes place
in the same channel as the excitation signal. 2) Tag is passive
with around 63.3µW power consumption (c.f.§4).

• Bob. Bob is an OFDM receiver that decomposes the
incoming signal into frequency-domain OFDM symbols
through FFT. He decodes the excitation and tag data from
this symbol through the quasi-orthogonal interference can-
cellation and decoding method explained in §3.2. To achieve
this for a strong or weak backscatter signal, he would roughly
compute the ratio between the original and backscatter signal
strength, and uses a ratio-aware scheme to decode the exci-
tation data. He then eliminates the original signal through a
two-step cancellation process and decodes tag data. Bob needs
only one receiver staying at the original excitation channel.

Benefits. Orthcatter enables tag data transmission over
ambient OFDM signals with two main advantages: 1) Tag
data is transmitted while being decoded in the same channel
as the original excitation signal with only one receiver needed.
2) Interference from the excitation signal is cancelled. With
these advantages, Orthcatter has the potential to be deployed
in noisy and signal-rich environments like office buildings and
smart cities. Orthcatter achieves even better throughput and
BER than the state-of-the-art side-band backscatter system
like RapidRider [31], meaning that it consumes few spectrum
resources without harming the communication ability. We
believe that our design benefits a wide range of applications.

3 Design

3.1 Encoding: Over-the-air code division
As shown in Figure 2, we construct the backscatter codeword
from two adjacent excitation OFDM symbols, i.e., symbols
1 and 2, and utilize its quasi-orthogonality with the original
codeword to achieve reliable in-band backscatter communica-
tion. To enable this, we design the over-the-air code division
technique. We first introduce the challenges in our design.

Challenges. Facing the signal collision problem, the tradi-
tional systems would carefully design their transmitted code-
words for signal separation. For instance, the CDMA [30]
system spreads their messages with orthogonal codewords so
that the receiver can decode them independently. [25] intro-
duces structured permutation when generating its transmitted
codewords and utilizes the data carried by the collision-free
subcarriers to infer the data carried by the collided subcar-
riers. That said, it works only when two channels partially
overlap. These schemes cannot be applied directly to in-band
backscatter systems for two reasons.

1) Tag cannot build the quasi-orthogonal codeword by

utilizing the PN sequence to spread tag data like exist-
ing CDMA systems. In a generic backscatter system, the
tag data is spread by the uncontrolled excitation data in-
stead of the locally generated PN sequences adopted by ex-
isting CDMA systems. If Tag tries to modulate the excita-
tion data with a PN sequence, it would modulate all the ex-
citation data in one OFDM symbol instead of any individ-
ual one [33]. For instance, denote the phase shift to convey
data in the PN sequnece by e jφt and an OFDM symbol by
S = {S1,S2, . . . ,SN}. Embedding this data via backscatter
yields the symbol Ŝ = {S1e jφt ,S2e jφt , . . . ,SNe jφt} instead of
the desired {S1e jφt ,S2, . . . ,SN}. Here the value of the normal-
ized correlation result between S and Ŝ is still one, and the
quasi-orthogonality is not established.

2) Constructing the desired quasi-orthogonal code-
words must consume similar power as prior backscatter
systems. As shown in Figure 2, generating the backscatter
codeword requires changing the subcarrier pattern and modu-
lating at the half-symbol level. This causes trouble because
excitation data of an OFDM symbol are independent in the
frequency domain and coexist in the time domain. However,
without energy-consuming components like ADCs and mix-
ers, Tag cannot convert his received time-domain signal to
the frequency domain to manipulate the excitation codewords
individually. Hence, we must keep time-domain modulation
while changing the subcarrier pattern to generate the desired
backscatter codewords without rising energy consumption.

Solutions: over-the-air code division. Recall that an ex-
citation data segment that is embedded with 1-bit tag data
is called a backscatter codeword, we aim at making it quasi-
orthogonal to its counterpart in the original excitation signal,
i.e., the original codeword. To this end, we design the over-the-
air code division technique, which builds quasi-orthogonal
codewords without relying on local PN sequences. As shown
in Figure 3, this method makes the original and backscatter
codewords carry non-overlapping excitation data segments.
This way, since the randomization at Alice ensures that two
non-overlapping data segments are different, the original and
backscatter codewords are quasi-orthogonal. Specifically, the
backscatter codeword is built by two steps: subcarrier swap-
ping and tag data mapping.

To explain this, we take the symbol 1 (denoted as S1)
and symbol 2 (denoted as S2) as an example, each con-
taining N subcarriers which are denoted by S11 ∼ S1N and
S21 ∼ S2N , respectively. In the subcarrier swapping step,
Tag reverses the order of the first and second half of each
OFDM symbol. This changes S1 and S2 into the backscat-
ter symbols Ŝ1 = {S1N/2+1 · · ·S1N ,S11 · · ·S1N/2} and Ŝ2 =
{S2N/2+1 · · ·S2N , S21 · · ·S2N/2}. In the tag data mapping
step, he pieces the second half of Ŝ1, i.e., S1N/2+1 ∼ S1N , and
the first half of Ŝ2, i.e., S2N/2+1 ∼ S2N , to form the backscat-
ter codeword {S11 . . .S1N/2,S2N/2+1 . . .S2N} conveying 1-bit
tag data, i.e., the backscatter codeword in Figure 3. This is
completely different from prior works [31, 35, 36] that em-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1305

Frequency

Time

In-band

Tag

Frequency

Time In-band

...

Frequency

Time

In-band

...

...

Splice...

Tag data
mapping

Frequency

Time In-band

...

...

...

...

Frequency

Time

In-band

Ambient signal

×-BW/2

×BW/2

Subcarrier swapping

Original codeword

...

Carry 1-bit tag data
(backscatter codeword)...

...

...

...

...

Original symbol 2

Original symbol 1

Backscatter Symbol 2

Backscatter Symbol 2

Backscatter symbol 1

Backscatter symbol 1

Codeword

Backscatter
signal

Figure 3: Overview of the over-the-air code division. The backscatter codeword carries 1-bit tag data and is interfered with by
the original codeword. We make them quasi-orthogonal for interference cancellation.

beds 1-bit data over the whole S1 or S2. This way, the orig-
inal codeword coexisting with such backscatter codeword
is {S1N/2+1 . . .S1N ,S21 . . .S2N/2}. They are made from non-
overlapping excitation data and hence are quasi-orthogonal.
Note that the rest of the in-band subcarriers, i.e., S1N/2+1 ∼
S1N and S2N/2+1 ∼ S2N , would not be wasted, they are also
utilized to form other quasi-orthogonal codewords. Specif-
ically, S1N/2+1 ∼ S1N is pieced with the second half of the
preceding backscatter symbol and S2N/2+1 ∼ S2N is pieced
with the first half of the backscatter symbol following Ŝ2.

We emphasize that these backscatter symbols Ŝ1 and Ŝ2
would hardly be affected by the impact brought by propaga-
tion delays, echoes, and reflections. The reason is that the
time domain guard signal, i.e., CP, in an OFDM system is uti-
lized to add immunity to these effects. During our generation
process, the tag would change the CP and the data part of an
OFDM symbol based on the same scheme and tag data, mak-
ing it still hold that the CP is the same as the end of the OFDM
backscatter symbol, that said, the receiver still receives the
backscatter codeword Sb = {S1N/2+1 . . .S1N ,S21 . . .S2N/2}.

Passive quasi-orthogonal codeword generation. The key
left is to arm a tag with the ability of modulating subcarri-
ers of an OFDM symbol, i.e., conducting half-symbol level
modulation. To this end, Orthcatter leverages the fact that an
f Hz square wave generated by the tag can shift the original
signal by ± f Hz during backscattering. Such a double side-
band characteristic is unwanted in prior side-band backscatter
systems because it introduces interference in the adjacent
channels. In contrast, we turn it into profits and design the
double side-band symbol reconstruction method, which
passively builds the backscatter codeword. Specifically, Tag
adopts a passive switch and toggles it at f = BW/2 to create
the square wave. As shown in Figure 3, this square wave shifts
the original OFDM symbols S1 and S2 by ±BW/2. This way,
the in-band parts of these frequency-shift subcarriers would
splice over the air forming the backscatter OFDM symbols
Ŝ1 and Ŝ2. Since S1 and S2 are shifted by the same process,

we take S1 as an example to explain this in details. Suppose
Tag toggles the switch at ft = BW/2, his antenna reflection
coefficient Γ(t) would be changed following a square wave
yt(t). From the Fourier analysis [17], yt(t) is

yt(t) =
4
π

∞

∑
n=1

Γ̄sin
(
(2n−1)2π ftt

)
2n−1

≈ 4Γ̄

π
sin(2π ftt) =

2 jΓ̄
π

(
e− j2π ft t − e j2π ft t

) (3)

where Γ̄ denotes the amplitude and phase of Γ(t). For exam-
ple, Γ̄ = j when Tag alters Γ(t) between ± j.

Let fc and yb(t) respectively be the OFDM excitation sig-
nal’s center frequency and baseband waveform. The backscat-
ter signal output from the switch is

yout(t) = A1yb(t)e− j2π fctyt(t)

=
2A1yb(t)Γ̄ j

π

(
e− j2π(fc+ ft)t − e− j2π(fc− ft)t

) (4)

where A1 is the antenna gain. This equation shows that the in-
band subcarriers of yout(t) is {S1N/2+1 . . .S1N ,S11 . . .S1N/2},
which is the desired backscatter OFDM symbol Ŝ1. Conse-
quently, we passively achieve the subcarrier swapping. After
this, Tag should embed his data over the built quasi-orthogonal
codewords, e.g., the backscatter codeword in Figure 3. This
requires embedding different tag data over the first and second
half of Ŝ1 because they belong to the different backscatter
codewords. That said, Tag needs to take two adjacent data
during modulation and change the phases of the subcarriers
at a time. Ŝ1 after embedding tag data (td) is

Ŝ1 =

{S1N/2+1, . . . ,S1N ,S11, . . . ,S1N/2}, td = {0,0}
{−S1N/2+1, . . . ,−S1N ,S11, . . . ,S1N/2}, td = {1,0}
{S1N/2+1, . . . ,S1N ,−S11, . . . ,−S1N/2}, td = {0,1}
{−S1N/2+1, . . . ,−S1N ,−S11, . . . ,−S1N/2}, td = {1,1}

(5)

This indicates that the modulation is performed at the half-
symbol level. In traditional backscatter systems, this is

1306 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

unattainable because the subcarriers are inseparable in the
time domain where a passive tag conducts his modulation [33].
In contrast, our tag would create two copies of backscatter sig-
nals at two side-bands, whose in-band parts form the backscat-
ter symbol. Employing such double side-band nature, we can
thus modulate the first and second half of the backscatter sym-
bol individually. To further explain this, we distinguish (5)
into two cases based on whether the phases of the first and
second half of Ŝ1 are opposite.
• Case 1: Tag data is {1,0} or {0,1}. Recall (5), the

phases of the first and second half of Ŝ1 are opposite, so we al-
ter Γ(t) between ± j to transmit these tag data. We consider an
antenna with impedance ZA = 50. Since Γ(t) = ZL(t)−ZA

ZL(t)+ZA
, al-

tering the load impedance ZL(t) between ± j50 could change
Γ(t) . The output signal yout1(t) is shown in (6), and we re-
verse it for tag data of {1,0} and do nothing for {0,1}.

yout1(t) =
2A1yb(t)

π

(
− e− j2π(fc+ ft)t + e− j2π(fc− ft)t

)
(6)

• Case 2: Tag data is {1,1} or {0,0}. The phases of the
first and second half of these subcarriers are identical, making
yt(t) in Case 1 unsuitable. We here delay yt(t) by ft

4 to create
an additional π/2 phase offset, reformulating (3) into

yt(t) =
2 jΓ̄

π

(
e− j2π ft (t− 1

4 ft
)− e j2π ft (t− 1

4 ft
))

=−2Γ̄

π

(
e− j2π ft t + e j2π ft t

) (7)

We change the load impedance ZL(t) between 0 and +∞ to
alter Γ(t) between ±1 and transmit the tag data. Such yout(t)
is stated in (8) and is reversed when tag data is {0,0}.

yout(t) =
−2A1

π

(
e− j2π(fc+ ft)t + e− j2π(fc− ft)t

)
(8)

As analysed above, we change ZL(t) among ± j50, 0 and
+∞ to get (5), which enables the half-symbol level modulation.
Compared with the prior works [27, 31, 35, 36] that changes
ZL(t) between 0 and +∞, our ZL(t) has two additional values.
This would hardly increase the hardware complexity or the
power consumption because we only need to arm Tag with
a passive RF switch that has more states. As confirmed in
§4, such a passive RF switch has a less than 3.3µW power
consumption which is similar to the power consumption of
the RF switch adopted by the prior backscatter works [32].

3.2 Decoding: Quasi-orthogonal interference
cancellation

We have presented how to generate the backscatter signal car-
rying the quasi-orthogonal backscatter codewords where tag
data are embedded. Here we focus on decoding the tag data at
Bob. As illustrated in Figure 2, we need the quasi-orthogonal
codewords to perform interference cancellation and get tag

Original
OFDM symbol

Region A

...

Backscatter
OFDM symbol

...

Region B

Received
OFDM symbol

Null subcarriers

Region B

Figure 4: Illustration of the received OFDM symbol. Region
A contains only the original excitation OFDM subcarriers and
Region B contains only the backscatter OFDM subcarriers
due to the existence of null subcarriers.

data. To this end, we first decode the excitation data from the
received superposition signal. Specifically, we would roughly
compute the signal strength ratio. If the excitation signal is
10dB stronger than the backscatter one, we employ the capture
effect to decode it. Otherwise, we utilize the null subcarriers to
create the linear equations with a unique solution and decode
the excitation data by solving these equations. Second, we
infer the quasi-orthogonal codewords and conduct a two-step
interference cancellation scheme to extract the backscatter
signal. In the step 1, we regard the original channel state as
constant among different subcarriers and roughly subtract the
extracted excitation signal from the received one. In the step
2, we utilize the adaptive filter to further eliminate the residual
excitation signal, and decode tag data from the left signal. Our
decoding process is detailed as follows.

Decoding the excitation data. We need to decode the
excitation data first to infer the quasi-orthogonal codewords.
Since the original signal is much stronger than the backscatter
one, we decode the excitation data from it based on the capture
effect. However, such decoding would result in a higher BER
unless the original signal is 10dB higher than the backscatter
one [24]. That said, to get the excitation data correctly, Bob
must first sense the ratio of the excitation signal strength to
the backscatter one before employing the capture effect.

We achieve this through an empty part of the OFDM spec-
trum, i.e., the null subcarriers. These subcarriers usually lie
on the sides of an OFDM symbol spectrum as the frequency-
domain guard interval. However, these subcarriers would be
moved to to the center of the backscatter symbol by the over-
the-air code division scheme. This makes some subcarriers
in the received OFDM symbol come from either the original
or backscatter symbol, which can be utilized for computing
the signal strength ratio. As shown in Figure 4, the received
subcarriers in Region A only come from the original OFDM
symbol, and those in Region B are only from the backscat-
ter OFDM symbol. Therefore, we calculate the original and
backscatter signal strength from the subcarriers strength in
these regions. If the original subcarriers is 10dB stronger
than the backscatter ones, we adopt the capture effect to get
the excitation data; otherwise, we design the following ap-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1307

proach. Take the OFDM symbol S1 as an example. Denote
the received symbol of S1 by S̃1

S̃1 = hoS1+hbŜ1 (9)

where ho and hb mean the original and backscatter channel,
and S1 and Ŝ1 are the corresponding symbols. Consider all
the subcarriers, we have

S̃11
S̃12

...
S̃1N

= ho

S11
S12

...
S1N

+hb

e jφ1t S1N/2+1
...

e jφ1t S1N
e jφ2t S11

...
e jφ2t S1N/2

(10)

where φ1t and φ2t are the phase offsets carrying different tag
data. We take a deeper look at (10). It has N equations and less
than N variables because the pilot and null subcarriers would
make some among S11 ∼ S1N known a priori. For example,
an 802.11g WiFi symbol has 4 pilot and 12 null subcarriers,
i.e., solving 52 variables in (10) with 64 equations. Therefore,
it has a unique solution and we can solve it to get the channel
states, i.e., ho and hb, and the excitation data. In this way, we
get the excitation data under either strong or weak backscatter
signals. We can exam this decoding result through the check
code like cyclic redundancy check (CRC) adopted by the
exciter. The task here hence moves to decode tag data.

Decoding the tag data. Since the quasi-orthogonal code-
words are inferred after decoding the excitation data, Bob
tends to decode the tag data from the inner product of the
received OFDM symbol and the quasi-orthogonal codewords.
There are still two problems to be solved. First, unlike the
standard CDMA systems whose received signals from dif-
ferent transmitters have similar strength, our backscatter sig-
nal here is much weaker than the original one. Second, the
relation between the original and backscatter codewords is
quasi-orthogonal instead of orthogonal, meaning that the inner
product between these codewords would not be zero. Conse-
quently, the original signal greatly interferes with decoding
the tag data. To address these problems, we design a two-step
interference cancellation scheme. Our goal is to compute the
original channel state ho and subtract hoS1 from S̃1.

1) Coarse cancellation. To this end, we first assume that
ho in (9) is constant across different subcarriers to compute
its rough value. Specifically, Bob computes the normalized
inner product among S̃1, S1, and Ŝ1, and gets

N

∑
i=1

S̃1iS1∗i
|S̃1i||S1i|

=Nho +hbe jφ1t

N/2

∑
i=1

S1N/2+iS1∗i
|S1N/2+i||S1i|

+hbeφ2t

N/2

∑
i=1

S1iS1∗N/2+i

|S1i||S1N/2+i|

(11)

N/2

∑
i=1

S̃1iS1∗N/2+i

|S̃1i||S1N/2+i|
= ho

N/2

∑
i=1

S1iS1∗N/2+i

|S1i||S1N/2+i|
+

N
2

hbe jφ1t (12)

0 20 40 60

Sampling points

-1

0

1

S
tr

en
g

th Before cancellation

0 20 40 60

Sampling points

-1

0

1

S
tr

en
g

th After cancellation

(a) Received OFDM symbol

0 20 40 60

Sampling points

0

1

2

3

E
rr

o
r

am
p

li
tu

d
e

With coarse cancellation
Without coarse cancellation

(b) Adaptive filter’s convergence time

Figure 5: Empirically measured convergence time and inter-
ference cancellation performance.

N/2

∑
i=1

S̃1N/2+iS1∗i
|S̃1N/2+i||S1i|

= ho

N/2

∑
i=1

S1N/2+iS1∗i
|S1N/2+i||S1i|

+
N
2

hbe jφ2t (13)

where S1∗i is the complex conjugate of S1i.
Solving these equations yields the ho under the hypothesis

that it remains constant among different subcarriers. However,
the frequency selective fading resulting from the multi-path
effect would break such hypothesis. For distinction, we denote
such computed ho as ĥo. Since subtracting ĥoS1 from the
received symbol S̃1 cannot remove all the original excitation
symbol, we further conduct the accurate cancellation process.

2) Accurate cancellation. In this process, we adopt the
adaptive filtering algorithm to output the remaining S1 af-
ter the coarse cancellation [18]. Specifically, given that the
backscatter codewords are quasi-orthogonal to the original
ones, we regard them as noise and utilize the least-mean-
square (LMS) adaptive filter to reconstruct the remained S1
in S̃1. Denote that S̄1 = S̃1−S1ĥo, the LMS filter is

e(n) = d(n)−ω
H(n)u(n)

ω(n+1) = ω(n)+µu(n)e∗(n)
(14)

where u(n) = S1n/|S1n| is the input variable, d(n) =
S̄1n/|S1n| is the optimal output, ω(n) is the LMS filter, and
e(n) is the estimation error with n = 1,2, . . .N. µ is the step
size not smaller than 2/R, and R equals the square root of the
self-correlation of the input variable u(n).

Since u(n) is very limited, e.g., 64 when the excitation
signal follows 802.11g WiFi, we set µ to its maximum value
for a shorter convergence time. We further subtract the output
from S̄1 to decrease the interference caused by the residual
original signal. As shown in Figure 5(a), the original signal is
eliminated after our two-step interference cancellation.

Although the LMS filter can distinct the original symbol
from the received superposition one, we emphasize that the
coarse cancellation is still necessary because the adaptive
filter would waste sampling points before convergence [18].
This can be ignored in common wireless systems where the
received signal with countless sampling points is input into
the filter. In contrast, in our Orthcatter where the input sig-
nal is an OFDM symbol with limited sampling points, such
a waste would greatly degrade the performance and hence

1308 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

should be avoided. The empirically measured convergence
time is shown in Figure 5(b), confirming that the coarse can-
cellation process significantly reduces the error and decreases
the number of required sampling points.

We then decode the tag data by correlating the left
signal after the interference cancellation with the inferred
backscatter codeword. Since each backscatter codeword
crosses two OFDM symbols, we take two OFDM symbols
S1 and S2 to explain this. According to the modulation
scheme, the halves of the received symbols containing a
1-bit tag data is Š = {Š1N/2+1, . . . , Š1N , Š21, . . . , Š2N/2} ≈
e jφ2t hb{S11, . . . ,S1N/2,S2N/2+1, . . . ,S2N}, and the backscat-
ter codeword is Sb = {S11, . . . ,S1N/2,S2N/2+1, . . . ,S2N}.
Therefore, the inner product between Š and Sb is

Zi =
(N/2

∑
i=1

Š1i+N/2S1∗i
|Š1i+N/2||S1i|

+
N/2

∑
i=1

Š2iS2∗i+N/2

|Š2i||S2i+N/2|

)
= e jφ2t hbN

Since the phase of Zi is arctan
(hbN sinφ2t

hbN cosφ2t

)
= φ2t , Bob finally

decodes tag data from the phase of Zi. The operations above
benefit our Orthcatter in two ways: First, it decodes tag data
under a much smaller interference, improving the throughput
and communication distance. Second, since |Zi| is the sum
of all the subcarrier amplitudes, it is distinguishable under
a small SNR. Consequently, Orthcatter has an even smaller
BER than side-band systems as confirmed in §5.

4 Orthcatter Implementation

Challenge & solution. Synchronization accuracy poses great
challenge for OFDM backscatter. Specifically, in the backscat-
ter systems that adopts a dedicated single-tone RF source
as their exciter, the synchronization with the excitation sig-
nal is not required, so they achieves a further Alice-to-Tag
distance, e.g., 20m in RF-transformer [14] and 9m in DigiS-
catter [39]. In contrast, in the OFDM backscatter systems,
Tag must achieve symbol synchronization because his data
is transmitted at the single-symbol rate for higher through-
put [12]. Consequently, most of them [9, 27, 28, 31, 37] main-
tain Alice-to-Tag distance within 1m for better BER. Consider
such limitation, we try to break it in Orthcatter.

The prior works usually utilize an envelope average and
a comparator to determine whether tag receives the ambient
OFDM signal and hence synchronize tag’s transmission with
this signal [37]. While such an energy detection method shows
a small power consumption, it has a very limited synchroniza-
tion distance because it cannot detect the weak signal. To ad-
dress this limitation, we propose a matching scheme instead
of the energy detection method used in works [9,27,28,31,37]
to detect the weaker ambient OFDM signal.

Our sliding window matching scheme (c.f. Figure 6) en-
hances synchronization with the cyclic prefix (CP) of an
OFDM symbol. Given that the CP is a periodic extension

Envelope
detector

Comparator

Threshold
Binary

envelope

+

Delay

s

All-one

within c ?

Y

N

All-zero
within

c ?

N

Delay

s

Detect
CP

Y

Ambient
signal

XNOR

All-zero
 within

c ?

N

Y

Figure 6: The sliding window match-
ing scheme.

-10 0 10 20

Signal Strength ratio (dB)

0.4

0.6

0.8

Traditional

Proposed

Figure 7: Delay of
synchronization.

of the OFDM symbol, it holds that y(t) = y(t + τs), t ∈ [0,τc]
where τc and τs are the duration of the CP and the data part of
an OFDM symbol, respectively. Our basic idea is to use a slid-
ing window that matches every τc of the OFDM signal with
the OFDM signal delayed by τs. As shown in Figure 6, we
would first utilize an envelope detector to extract the envelope
of the OFDM signal and then utilize a comparator with a pre-
determined threshold to binarize the envelope. We divide the
binary envelope sequence into two paths and delay one path
by τs. Finally, we compute the XNOR result between these
paths which would remain one for τc if the CP is detected or
the noise keeps below the threshold. Therefore, if the XNOR
result remains one within τc while neither of these sequences
is all-zero, the CP is detected and Tag can synchronize with
the excitation signal. Note that we set the threshold to 1V
based on the empirically measured noise floor.

To show the advantage of this scheme, we test the syn-
chronization accuracy under 802.11g WiFi exciter. We put
Alice 0.1m away from Tag. As shown in Figure. 7, When the
excitation signal strength is over 1dBm, our approach and the
traditional one has similar synchronization accuracy. This is
because we digitize the ambient signal’s envelope with the
same approach as the traditional one. When the signal strength
drops below -6dBm, our approach maintains a synchroniza-
tion accuracy within 750ns while the traditional approach fail
to detect the ambient signal. Different from the traditional
1-bit detection scheme, our approach is a correlation-based
synchronization scheme that considers multiple bits of the dig-
itized envelope sequence at a time and thereby achieves syn-
chronization under weaker signals. Therefore, our proposed
scheme enables accurate synchronization within a longer dis-
tance. The experiment results in §5 confirm this.

Backscatter tag. We implement Orthcatter following an
open-source backscatter platform [32] that is widely used
[9, 27, 35, 36] (c.f. Figure 8(a)). The power consumption of
its simulated ASIC design is merely 33µW. However, due to
the high tap out cost, it utilizes COTS components to build
its hardware prototype, resulting in power consumption of
40mW. The increased power consumption mainly results from
the utilization of an FPGA and a COTS envelope detector
LT5534 [3]. Both of these components consumes tens of
microwatts energy. We only replace the SPST ADG902 RF
switch [1] with an SP4T ADG904 RF switch [2] to get the re-
quired antenna coefficient for generating the quasi-orthogonal

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1309

5
7
m
m

35mm

(a) Tag prototype

Bob position

20m

LOS

N
L

O
S

Alice

Tag

BobAlice Tag Bob

(b) LOS & NLOS experiment setup

Figure 8: Tag prototype and experiment setup.

codewords. According to the data sheets, these two types of
RF switches have the same maximum quiescent power sup-
ply current of 1µA under the 3.3V voltage supply. Therefore,
our prototype also has about 40mW power consumption. By
conducting ASIC design, the modulation component of Or-
thscatter has 56µW power consumption, and the detection
component implemented by LT5534 is passive, so the simu-
lated overall power consumption of Orthscatter is 63.3µW.

Alice & Bob. We adopt two USRPs for Alice and Bob, and
choose two typical commercial OFDM signals as exciters:
802.11g WiFi and LTE. The WiFi signal is implemented with
the open-source 802.11g WiFi transceiver on Ubuntu [8]. The
LTE signal is generated on MATLAB by the LTE toolbox [5].
They are compatible with the commercial standards [8] [5].

5 Orthcatter Evaluation

We evaluate Orthcatter’s performance under diverse scenarios.
Our experiment confirms that it outperforms the state-of-the-
art in-band backscatter systems [22, 23] in terms of BER,
throughput, and communication distance. 1) The maximal
throughput of Orthcatter is 248kbps, which is 6.2× higher
than [22], and 4.6× higher than [23]. 2) The minimal BER of
Orthcatter under WiFi is 3.4×10−4, which is over 300× bet-
ter than [23]. 3) When the communication distance is 20m, the
throughput of [22] and [23] drops to zero, yet Orthcatter still
experiences throughput of over 50kbps. Orthcatter also outper-
forms the side-band backscatter system like RapidRider [31].
Under the same settings, Orthcatter increases the maximum
throughput by 11kbps and reduces the minimal BER by 59×.

5.1 Experiment Setup
Settings. As shown in Figure 8(b), we test Orthcatter in the
LOS and NLOS scenarios. We use an 802.11g OFDM WiFi
exciter. The packet rate is 500pkt/s, and the transmit power
equals the common value of WiFi products, i.e., 20dBm [16].

Competitions. We compare Orthcatter with in-band [22,
23] and side-band OFDM backscatter systems [31]. Specif-
ically, we choose RapidRider to signify the state-of-the-art
side-band OFDM backscatter system. This work is known
for its throughput and symbol-level modulation. However, it
needs two receivers deployed in the original and backscatter

Steel
shelf

B C

E

G

D

F

7
.8

m

8.4mA
0.5m

3.6m

4
.2

m

Alice

Tag

Bob

(a) Deployment

100

150

200

250

T
h

ro
u

g
h

p
u

t(
k

b
p

s)

A B C D E F G

Position

10
-2

10
0

B
E

R

BER

Throughput

(b) Performance

Figure 9: Testing Orthcatter in laboratory.

channels respectively, occupying more spectrum resources.
[22, 23] are in-band OFDM backscatter systems and have
to use redundant coding schemes to cope with the interfer-
ence caused by the excitation signal. Consequently, they show
much lower throughput and a much worse BER.

5.2 End-to-End Performance

We set the Alice-to-Tag distance same as RapidRider and [23],
i.e, 0.5m and 1m, and choose the same type of the exciter. We
vary the Tag-to-Bob distance in LOS & NLOS to assess end-
to-end performance. Our results are shown in Figure 10 and
Figure 11, confirming that Orthcatter performs best.

BER. We vary the communication distance from 0.5m to
20m and show the BER under LOS&NLOS deployments in
Figure 10(a) and Figure 11(a). As shown in Figure 10(a), our
BER is around 0.1 even when the Tag-to-Bob distance is 6m.
It is outstanding because the BER of [22] increases to 1 under
the same setting, and that of [23] is over 0.1 even for 2m
Tag-to-Bob distance. The side-band RapidRider can maintain
its BER below 0.1 only when Bob is less than 7m from Tag.
Orthcatter also outperforms them in NLOS.

Throughput. In terms of throughput, neither [22], [23],
nor [31] can match our Orthcatter (c.f. Figure 10(b) and Figure
11(b)). Specifically, the maximum throughput in Orthcatter is
248kbps, bigger than 237kbps in RapidRider, and 40kbps in
[22], and 54kbps in [23]. There are two main reasons for these
results. First, the interference cancellation is conducted before
decoding, avoiding the redundant coding method employed
by prior in-band works [22, 23]. Second, although Orthcatter
and RapidRider conduct symbol-level modulation, Orthcatter
experiences a smaller BER and thus better throughput.

Laboratory deployment. We further test Orthcatter in a
laboratory to show how it works in a multipath-rich environ-
ment shown in Figure 9(a). Figure 9(b) shows that Orthcatter
is robust to the multipath effect. Specifically, Orthcatter can
maintain its throughput over 100kbps within the room of
65m2. In position C, the BER is 0.14, similar to the LOS
performance. In position D where the steel shelf blocks the
direct link between Tag and Bob, our BER is 0.12 similar to
the NLOS one. The reason is that our backscatter signal is
still an OFDM signal armed with the cyclic prefix that can

1310 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 10 15 20

Tag-to-Bob distance(m)

10
-3

10
-2

10
-1

10
0

B
E

R

Alice-to-Tag = 0.5m

Alice-to-Tag = 1m

(a) BER

5 10 15 20

Tag-to-Bob distance(m)

50

100

150

200

250

T
h
ro

u
g
h
p
u
t(

k
b
p
s)

Alice-to-Tag = 0.5m

Alice-to-Tag = 1m

(b) Throughput

Figure 10: Orthcatter’s performance in LOS.

5 10 15 20

Tag-to-Bob distance(m)

10
-2

10
-1

10
0

B
E

R

Alice-to-Tag = 0.5m

Alice-to-Tag = 1m

(a) BER

5 10 15 20

Tag-to-Bob distance(m)

50

100

150

200

250

T
h
ro

u
g
h
p
u
t(

k
b
p
s) Alice-to-Tag = 0.5m

Alice-to-Tag = 1m

(b) Throughput

Figure 11: Orthcatter’s performance in NLOS.

0
0.

5 1
1.

5 2
2.

5 3

Alice-to-Tag distance(m)

10
-2

10
-1

B
E

R

WiFi

LTE

(a) Different exciter types

100 300 500 700 1000

Packet rate (pkt/s)

13.5

14

14.5

15

15.5

si
g
n
al

 s
tr

en
g
th

 r
at

io
 (

d
B

)

2

3

4

5

6

B
E

R

10
-3

Signal strength ratio

BER

(b) Different packet rates

7.8 11.7 14.4 15.5 16

Signal strength ratio (dB)

0.001

0.003

0.005

0.007

0.009

B
E

R

(c) Different signal strength ratios

Figure 12: Orthcatter’s performance under different excitation types and packet rates and
signal strength ratios.

0.1 0.3 0.5 0.7 0.9

Alice-to-Tag distance (m)

1

2

3

4

B
E

R

10
-4

Tag in channel 9

Tag in channel 10

Tag absent

Figure 13: Impact of Orthcatter
on the ambient WiFi.

cope with this effect. In addition, the extracted backscatter
OFDM symbol after the interference cancellation process also
has the pilot subcarriers, which can correct the phase error
introduced by the wireless channel.

5.3 Micro Benchmarks

In order to confirm the applicability of Orthcatter to various
exciters and deployments, we change Alice’s signal type and
packet rate and the spatial deployment of Tag. The results
show that when the signal strength ratio between the original
and backscatter signal is 7.8dB, its BER goes to as low as
3.4×10−4, which is 59× better than the minimal BER of the
side-band backscatter system RapidRider [31].

Impact of Alice-to-Tag distance and exciter type. We
demonstrate that Orthcatter can work with longer Alice-to-Tag
distance and other types of OFDM exciters besides WiFi. In
our experiment, the exciter is the down-link LTE signal with a
bandwidth of 1.4MHz and 128 subcarriers (72 data subcarriers
and 56 null subcarriers). We set the Alice-to-Bob distance to
3m and put Tag in between. As shown in 12(a), the BER is
smaller under the LTE exciter. This is because an LTE symbol
contains more subcarriers, making it easier for Bob to perform
the quasi-orthogonal interference cancellation and decoding.
Furthermore, since the CP of an LTE OFDM symbol is far
longer than that of WiFi, the tag working with LTE exciters
can synchronize with Alice at a farther position. It is worth
mentioning that the BER under the LTE exciter of a 1m Alice-
to-Tag distance is similar to such BER of a 2m Alice-to-Tag
distance. That said, when the Tag is within 2m from Alice,
the synchronization error would hardly impact the tag data

decoding. This is much better than prior works whose Alice-
to-Tag distance is restricted to within 1m [9, 27, 28, 31, 37].
Besides, even with 3m Alice-to-Tag distance, the backscatter
communication is still feasible.

Impact of Alice’s packet rate. We here increase Alice’s
packet rate from 100pkt/s to 1000pkt/s and depict our results
in Figure 12(b). We set both the Alice-to-Tag distance and the
Tag-to-Bob distance at 0.5m in this experiment. The results
show that changing excitation rates hardly has impact on the
signal strength ratio and BER.

Impact of signal strength ratio. Since the original and
backscatter signals are mixed on the receiver side, an impor-
tant factor affecting our decoding is the signal strength ratio
between these signals. We test its influence here and show
the results in Figure 12(c). To this end, we should measure
the signal strength ratio. This is actual value that would be
shown in the x axis. In order to accurately measure the ratio,
we replace the wide-band OFDM excitation signal with a
narrow-band sine wave, enabling measurement of the narrow-
band excitation signal and the narrow-band backscatter sig-
nal in the WiFi band. Note that we do not use this ratio for
decoding, but use the estimation from null subcarriers (re-
call Figure 4) instead. We first change the relative positions
among Alice, Tag, and Bob to get different signal strength
ratios. Second, for each deployment, we ask Alice to gener-
ate a sine wave whose frequency spectrum has no overlap
with the side-band backscatter one. Hence, we can receive
the original and backscatter signals separately and compute
their received signal strength. For the testing, we ask Alice to
emit the OFDM WiFi signal to test Orthcatter’s performance
under the measured signal strength ratios. From Figure 12(c),

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1311

we have two observations: 1) When the signal strength ratio
is 7.8dB, i.e., the original signal strength is 6× higher than
backscatter one, the BER of Orthcatter is 3.4×10−4, which
is 59× better than the minimal BER of RapidRider. 2) Even
when the ratio is 16dB, i.e., 40×, Orthcatter can still keep its
BER below 10−2. This demonstrates that Orthcatter can be
deployed under diverse settings.

5.4 Coexist with ambient WiFi
We finally evaluate whether our backscatter transmission
would impact the ambient WiFi traffics including both the
in-band excitation signal (Alice) and an adjacent WiFi signal.
We fix the Tag-to-Bob distance at 0.5m and vary the Alice-
to-Tag distance. We here use two adjacent channels for the
excitation signal (channel 9) and another WiFi signal (chan-
nel 10), respectively. Note that we focus on the encoded data
before passing through the convolutional decoder because
we need to acquire the quasi-orthogonal codewords utilized
for the decoding. That said, the actual BER of the excitation
signal would be lower due to the convolutional decoder. As
shown in Figure 13, Tag would slightly degrade the in-band
and side-band WiFi transmission. Consider the worst case
where Tag is 0.1m from the exciter, the BER is increased by
4.4× 10−5. This increment is small and would be reduced
by the convolutional decoder. Moreover, the impact nearly
disappears when the distance exceeds 0.5m because of the
greatly dropped backscatter signal strength. Therefore, our
backscatter transmission hardly harms the ambient WiFi.

6 Discussion

Supporting Multiple tags. In this paper, we primarily focus
on improving the point-to-point physical-layer backscatter
transmission performance. However, Orthcatter can be ex-
panded to support the access of multiple tags by adopting the
MAC layer protocols like TDMA or Aloha.

Commercial receiver. Since tag data is decoded from the
frequency-domain OFDM symbol, any OFDM receiver that
converts the received signal to the frequency domain can work
with Orthcatter. This means that our work has the potential
for the commercial applications. However, Orthcatter is not
fully compatible with commercial devices that would treat the
weaker backscatter signal as noise and neglect it and do not
provide access to the received encoded OFDM symbol. We
hope that future commercial devices could grant more access
to PHY information to make our Orthcatter applicable.

7 Related work

The related work can be classified into the side-band and
in-band backscatter systems.

Side-band backscatter systems. Hitchhike [35], FreeRider
[36], and MOXcatter [37] are side-band WiFi backscatter sys-
tems. They utilize the codeword translation, which embeds
tag data by transforming the original codeword into another
valid codeword. By avoiding the original signal, these works
provide tens of kbps throughput. RapidRider [31] and STScat-
ter [33] design OFDM backscatter and utilize the phase of the
backscatter symbol to convey their data. This way, their data
is embedded at the single-symbol rate, and their throughput
is hundreds of kbps. In addition, PLoRa [29] focuses on the
LoRa exciter and embed tag data over the initial frequency of
the LoRa signal. LScatter [9] frequency shifts the LTE signal
and embeds tag data over its phase.

In-band backscatter systems. Here the backscatter com-
munication is completed in the same channel as the excitation
to save the spectrum resource. [22] and [23] embed their data
through phase modulation like RapidRider [31] and STScat-
ter [33], yet only has a tens of kbps throughput. [26] and [20]
respectively embed their message over ambient TV and WiFi
signal amplitude and only provide throughput of several kbps.
Aloba [15] conducts LoRa modulation through OOK instead
of frequency modulation and has a limited communication
range of only 1/3 of PLoRa [29]. The performance of these
in-band backscatter systems is incomparable to the side-band
ones because they cannot cope with interference of the exci-
tation signal effectively. Superior to them, our Orthcatter can
cancel the interference and achieve even better performance
than some side-band works.

8 Conclusion

We have designed and implemented Orthcatter, a novel in-
band backscatter system that achieves reliable and high
throughput communication while saving spectrum resources.
The key innovation lies in the designed over-the-air code divi-
sion technique that constructs the quasi-orthogonal codewords
in the backscatter signal from the original excitation signal
passively. This technique enables the in-band interference can-
cellation on the receiver. Our extensive field studies show that
Orthcatter experiences 10−4 BER and 248kbps throughput,
respectively 300× and 4.6× better than the state-of-the-art
in-band system [23]. And it outperforms the side-band sys-
tem like RapidRider [31] in some settings. Orthcatter can
efficiently work under diverse practical scenarios, and would
benefit a wide range of future backscatter applications.

9 Acknowledgements

This work was supported in part by National Natural Science
Foundation of China under Grant No. 62271055, 62171296,
62122095, 62341201 and 62072472, and by Beijing Natural
Science Foundation under Grant No. 4242002, and by a grant
from the Guoqiang Institute, Tsinghua University.

1312 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Adg902 rf switch. https://www.analog.com/media/
en/technical-documentation/data-sheets/
ADG901-902.pdf.

[2] Adg904 rf switch. https://www.analog.com/media/
en/technical-documentation/data-sheets/
ADG904.pdf.

[3] Lt5534 detector. https://www.analog.com/media/
en/technical-documentation/data-sheets/
5534fc.pdf/.

[4] Lte protocol. https://www.3gpp.org/dynareport?
code=36-series.html/.

[5] Lte toolbox. https://ww2.mathworks.cn/help/
lte/.

[6] Wifi protocol. https://www.tutorialspoint.com/
wi-fi/wifi_access_protocols.html/.

[7] Ali Abedi, Farzan Dehbashi, Mohammad Hossein Maza-
heri, Omid Abari, and Tim Brecht. Witag: Seamless wifi
backscatter communication. In Proceedings of the ACM
SIGCOMM, page 240–252, 2020.

[8] Bastian Bloessl, Michele Segata, Christoph Sommer,
and Falko Dressler. An ieee 802.11a/g/p ofdm receiver
for gnu radio. page 9–16, 2013.

[9] Zicheng Chi, Xin Liu, Wei Wang, Yao Yao, and Ting
Zhu. Leveraging ambient lte traffic for ubiquitous pas-
sive communication. In Proceedings of the ACM SIG-
COMM, pages 172–185, 2020.

[10] Huixin Dong, Yirong Xie, Xianan Zhang, Wei Wang,
Xinyu Zhang, and He Jianhua. Gpsmirror: Expanding
accurate gps positioning to shadowed and indoor regions
with backscatter. In Proceedings of the ACM MobiCom,
2023.

[11] Caihui Du, Jiahao Liu, Shuai Wang, Rongrong Zhang,
Wei Gong, and Jihong Yu. Timespan-based backscatter
using a single cots receiver. In Proceeding of the ACM
MobiSys, pages 450–461, 2023.

[12] Manideep Dunna, Miao Meng, Po-Han Wang, Chi
Zhang, Patrick Mercier, and Dinesh Bharadia. Sync-
Scatter: Enabling WiFi like synchronization and range
for WiFi backscatter communication. In Proceeding of
the USENIX NSDI, pages 923–937, 2021.

[13] Yalda Edalat, Katia Obraczka, and Bahador Amiri. A
machine learning approach for dynamic control of rts/cts
in wlans. In proceedings of the EAI MobiQuitous, pages
432–442, 2018.

[14] Xiuzhen Guo, Yuan He, Zihao Yu, Jiacheng Zhang, Yun-
hao Liu, and Longfei Shangguan. Rf-transformer: A
unified backscatter radio hardware abstraction. In Pro-
ceedings of the ACM MobiCom, page 446–458, 2022.

[15] Xiuzhen Guo, Longfei Shangguan, Yuan He, Jia Zhang,
Haotian Jiang, Awais Ahmad Siddiqi, and Yunhao Liu.
Efficient ambient lora backscatter with on-off keying
modulation. IEEE/ACM Transactions on Networking,
30(2):641–654, 2021.

[16] Roger Pierre Fabris Hoefel. Ieee wlans: 802.11, 802.11e
mac and 802.11a, 802.11b, 802.11g phy cross layer link
budget model for cell coverage estimation. In Proceed-
ing of the IEEE CCECE, pages 1877–1882, 2008.

[17] Youjun Hu. Fourier analysis. 1970.

[18] Andrew H Jazwinski. Adaptive filtering. Automatica,
5(4):475–485, 1969.

[19] Jinyan Jiang, Zhenqiang Xu, Fan Dang, and Jiliang
Wang. Long-range ambient lora backscatter with par-
allel decoding. In Proceedings of the ACM MobiCom,
pages 684–696, 2021.

[20] Bryce Kellogg, Aaron Parks, Shyamnath Gollakota,
Joshua R Smith, and David Wetherall. Wi-fi backscat-
ter: Internet connectivity for rf-powered devices. In
Proceedings of the ACM SIGCOMM, pages 607–618,
2014.

[21] Bryce Kellogg, Vamsi Talla, Shyamnath Gollakota, and
Joshua R Smith. Passive wi-fi: Bringing low power to
wi-fi transmissions. In Proceeding of tbe USENIX NSDI,
pages 151–164, 2016.

[22] Taekyung Kim and Wonjun Lee. Exploiting residual
channel for implicit wi-fi backscatter networks. In
Proceeding of the IEEE INFOCOM, pages 1268–1276,
2018.

[23] Taekyung Kim and Wonjun Lee. Channel independent
wi-fi backscatter networks. In Proceeding of the IEEE
INFOCOM, pages 262–270, 2019.

[24] Jeongkeun Lee, Wonho Kim, Sung-Ju Lee, Daehyung
Jo, Jiho Ryu, Taekyoung Kwon, and Yanghee Choi. An
experimental study on the capture effect in 802.11a net-
works. In Proceedings of the ACM WiNTECH, page
19–26, 2007.

[25] Li Erran Li, Kun Tan, Harish Viswanathan, Ying Xu,
and Yang Richard Yang. Retransmission ̸= repeat: sim-
ple retransmission permutation can resolve overlapping
channel collisions. In Proceedings of the ACM Mobi-
Com, page 281–292, 2010.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1313

https://www.analog.com/media/en/technical-documentation/data-sheets/ADG901-902.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADG901-902.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADG901-902.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADG904.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADG904.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADG904.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/5534fc.pdf/
https://www.analog.com/media/en/technical-documentation/data-sheets/5534fc.pdf/
https://www.analog.com/media/en/technical-documentation/data-sheets/5534fc.pdf/
https://www.3gpp.org/dynareport?code=36-series.html/
https://www.3gpp.org/dynareport?code=36-series.html/
https://ww2.mathworks.cn/help/lte/
https://ww2.mathworks.cn/help/lte/
https://www.tutorialspoint.com/wi-fi/wifi_access_protocols.html/
https://www.tutorialspoint.com/wi-fi/wifi_access_protocols.html/

[26] Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gol-
lakota, David Wetherall, and Joshua R Smith. Ambient
backscatter: Wireless communication out of thin air.
In Proceedings of the ACM SIGCOMM, pages 39–50,
2013.

[27] Xin Liu, Zicheng Chi, Wei Wang, Yao Yao, Pei Hao, and
Ting Zhu. Verification and redesign of ofdm backscatter.
In Proceeding of the USENIX NSDI, pages 939–953,
2021.

[28] Xin Na, Xiuzhen Guo, Zihao Yu, Jia Zhang, Yuan He,
and Yunhao Liu. Leggiero: Analog wifi backscatter
with payload transparency. In Proceedings of the ACM
MobiSys, page 436–449, New York, NY, USA, 2023.

[29] Yao Peng, Longfei Shangguan, Yue Hu, Yujie Qian, Xi-
anshang Lin, Xiaojiang Chen, Dingyi Fang, and Kyle
Jamieson. Plora: A passive long-range data network
from ambient lora transmissions. In Proceedings of the
ACM SIGCOMM, pages 147–160, 2018.

[30] Mohammed Saad Talib, Burairah Hussin, and Aslinda
Hassan. Converging vanet with vehicular cloud net-
works to reduce the traffic congestions: A review. Int. J.
Appl. Eng. Res, 12(21):10646–10654, 2017.

[31] Qiwei Wang, Si Chen, Jia Zhao, and Wei Gong.
Rapidrider: Efficient wifi backscatter with uncontrolled
ambient signals. In Proceeding of the IEEE INFOCOM,
pages 1–10, 2021.

[32] Chenren Xu and Pengyu Zhang. Open-source software
and hardware platforms for building backscatter systems.
GetMobile: Mobile Computing and Communications,
23(1):16–20, 2019.

[33] Yifan Yang and Wei Gong. Universal space-time stream
backscatter with ambient wifi. In proceeding of the
IEEE PerCom, pages 101–110. IEEE, 2022.

[34] Jihong Yu, Caihui Du, Jiahao Liu, Rongrong Zhang,
and Shuai Wang. Subscatter: Subcarrier-level ofdm
backscatter. In Proceeding of the IEEE INFOCOM,
pages 1–10, 2023.

[35] Pengyu Zhang, Dinesh Bharadia, Kiran Joshi, and
Sachin Katti. Hitchhike: Practical backscatter using
commodity wifi. In Proceedings of the ACM SenSys,
pages 259–271, 2016.

[36] Pengyu Zhang, Colleen Josephson, Dinesh Bharadia,
and Sachin Katti. Freerider: Backscatter communication
using commodity radios. In Proceedings of the ACM
CoNEXT, pages 389–401, 2017.

[37] Jia Zhao, Wei Gong, and Jiangchuan Liu. Spatial stream
backscatter using commodity wifi. In Proceedings of
the ACM MobiSys, pages 191–203, 2018.

[38] Renjie Zhao, Fengyuan Zhu, Yuda Feng, Siyuan Peng,
Xiaohua Tian, Hui Yu, and Xinbing Wang. Ofdma-
enabled wi-fi backscatter. In The 25th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, pages 1–15, 2019.

[39] Fengyuan Zhu, Yuda Feng, Qianru Li, Xiaohua Tian,
and Xinbing Wang. Digiscatter: Efficiently prototyping
large-scale ofdma backscatter networks. In Proceedings
of the ACM MobiSys, page 42–53, New York, NY, USA,
2020.

1314 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

EdgeRIC: Empowering Real-time Intelligent Optimization
and Control in NextG Cellular Networks

Woo-Hyun Ko∗∗1, Ushasi Ghosh∗∗2, Ujwal Dinesha1, Raini Wu2,
Srinivas Shakkottai1 and Dinesh Bharadia2

1 Texas A&M University, TX, USA, 2 UC San Diego, CA, USA

{whko, ujwald36, sshakkot}@tamu.edu {ughosh, rainiwu, dineshb}@ucsd.edu

Abstract
Radio Access Networks (RAN) are increasingly softwarized
and accessible via data-collection and control interfaces. RAN
intelligent control (RIC) is an approach to manage these in-
terfaces at different timescales. In this paper, we introduce
EdgeRIC, a real-time RIC co-located with the Distributed
Unit (DU). It is decoupled from the RAN stack, and oper-
ates at the RAN timescale. EdgeRIC serves as the seat of
real-time AI-in-the-loop for decision and control. It can ac-
cess RAN and application-level information to execute AI-
optimized and other policies in real-time (sub-millisecond).
We demonstrate that EdgeRIC operates as if embedded within
the RAN stack. We showcase RT applications called µApps
over EdgeRIC that significantly outperforms a cloud-based
near real-time RIC (> 15 ms latency) in terms of attained
system throughput. Further, our over-the-air experiments with
AI-based policies showcase their resilience to channel dynam-
ics. Remarkable, these AI policies outperform model-based
strategies by 5% to 25% in both system throughput and end
user application-level benchmarks across diverse mobile sce-
narios.

1 Introduction

As we move into the age of NextG applications, cellular net-
works need to be versatile and must cater to a wide array
of application-specific requirements concerning throughput,
latency, and reliability. The “one size fits all” cellular net-
work approach is fading, raising the need to be replaced by
an adaptive, application-specific model. Modern applications
can often furnish granular details about their operational con-
text to aid such adaptation. A streaming app can reveal buffer
status, AR/VR applications share viewing angles, robotic con-
trollers offer positional data, and industrial IoT devices in-
dicate data freshness. These capabilities can enable tailored
network responses. For instance, in a video streaming network

∗These authors contributed equally to this work.
The source code for this project is available at https://github.com/
ushasigh/EdgeRIC-A-real-time-RIC.git

Centralized Unit
Control Plane

Near-RT

Distributed Unit
PHY-MAC-RLC

Real-time

Radio

Non-RT
(> 1 s)

(10 ms to 1 s)

(< 1 ms)

< 100 μs

> 10 ms

Cloud

Edge

Orchestration management,
Handoff decision, Sustainability

Load balancing, Network slicing,
 Traffic steering,

Spectrum allocation

Scheduling and MCS control,
 Beam and Interference

management

RU

RICsControl and Optimization

EdgeRIC
Changing policy or
application state

Figure 1: Timescales of RAN Intelligent Control for O-RAN.
We desire real-time control at a latency < 1 ms.

environment, rather than merely maximizing system through-
put, it might be paramount to prioritize users nearing buffer
exhaustion to prevent video playback halts. Different apps
have varied response time needs; while a video might handle
some delay, a VR game demands near-instant reactions.

While application awareness has become critical to the
decision-making process of network functions in both wired
and wireless (cellular) communications, the problem is far
more complex with rapidly changing wireless channels for cel-
lular communications. More specifically, the channel evolves
at the timescale of milliseconds. Such changes in the chan-
nel make the control and optimization of the link to meet
application requirements far more challenging.

The need for cellular networks to adapt to different applica-
tions, all while keeping up with the rapidly changing wireless
channel, is supported by the cellular industry’s pivot towards
the standardization of open interfaces for RANs, encapsulated
by the term O-RAN. By harnessing softwarization and dis-
aggregation at every layer, O-RAN provides the flexibility to
operate the RAN stack across diverse distributed computing
platforms and offers enhanced monitoring and control through
novel interfaces. Alongside this evolution, the RAN Intelli-
gent Control (RIC) concept has gained prominence. RICs,
distinct from the time-critical RAN stack, are designed to
seamlessly access both the application layer and RAN-level

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1315

https://github.com/ushasigh/EdgeRIC-A-real-time-RIC.git
https://github.com/ushasigh/EdgeRIC-A-real-time-RIC.git

data. This dual access facilitates cross-layer decision-making
and control, bolstered by AI/ML enhancements, to serve a
plethora of high-demand applications.

A defining attribute of the RIC is the time scales at which
it operates, necessitating control decisions and information
access at those time scales. Current RIC architectures, visual-
ized predominantly as centralized control microservices, are
placed in the cloud, as depicted in Figure 1. These can be clas-
sified into: (i) Near Real-time RIC (near-RT RIC): Provides a
feedback loop to the RAN stack in a range of 10ms to 1s. (ii)
Non Real-time RIC (non-RT RIC): Operates with a feedback
loop timescale exceeding 1s.

Unfortunately, both these RICs inspired by SDN con-
trollers, adopt a centralized, cloud-based control approach,
minimizing risk to the RAN stack’s essential operations
within each TTI. This approach prevents potential disrup-
tions, such as PHY-MAC task latency breaches leading to UE
detachment. However, the inherent delay in decision-making,
exceeding 10ms due to the wireless channel’s rapid variabil-
ity, creates bottlenecks. Such delays result in broad decision-
making strategies like resource slicing, where, for example,
a streaming app is allocated to a high-throughput RAN slice.
Yet, as network demands grow, this coarse strategy struggles
to maintain efficiency, given the fast-paced fluctuations in
wireless channels that require TTI-scale responsive decisions
for optimal performance.

While O-RAN has enabled unprecedented macro network
optimizations, a vast reservoir of potential remains untapped
in granular, real-time control. To that end, we propose a dis-
aggregated real-time RIC platform called EdgeRIC. EdgeRIC
is positioned on edge-compute close to the radio head, syn-
chronizes intelligence with the granularity of RAN functions,
but is decoupled with the RAN stack, which enables resilient
operation of the RAN stack. EdgeRIC’s careful design en-
ables it to synchronize with RAN events and provide decision-
control, while ensuring functioning of the tight-constrained
RAN stack, even if decisions are not received from EdgeRIC.
EdgeRIC facilitates control decisions and network teleme-
try at the TTI timescale (smallest unit of decision-making
available at RAN), which is faster than underlying channel
variations. The philosophy of EdgeRIC is to revolutionize the
algorithmic control of lower-layer RAN functionalities (PHY-
MAC-RLC), integrated with application awareness, thereby
realizing the true potential of an AI-driven air interface. To
provide an overview, Figure 1 showcases the myriad RAN
enhancements that can be made feasible through intelligent
control across diverse timescales.

Main Contributions
Our contributions are twofold: (i) EdgeRIC: a real-time RIC
module, which facilitates real-time RAN telemetry and con-
trol. EdgeRIC is driven by the basic observation that real-time
control for the cellular stack implies TTI-level sync with the
RAN stack—all events happen between TTIs. Our princi-

pal contribution is rooted in the architectural and engineer-
ing decisions that ensure real-time performance of telemetry
and AI-optimized control policies, without ever violating the
TTI boundaries. EdgeRIC is strategically situated on edge
compute, independent from the RAN stack, and interfaces
with it via an O-RAN-like standard. (ii) EdgeRIC emula-
tor: We further introduce the EdgeRIC training module, a
cloud-compute-based emulator. This module is instrumen-
tal in the design, offline training, and deployment phases of
AI-optimized algorithms. These features are enabled by pro-
viding a comprehensive full-stack, trace-driven (network and
channel) emulation environment that accommodates multiple
users and diverse applications.

Finally, we showcase potential benefits of real-time control
with an AI-optimized µApp to provide resource allocation
decisions at each TTI. We demonstrate (i) throughput in-
creases of 5-10% using RT resource scheduling over near-RT
approaches, (ii) up to 15% throughput increases through ro-
bust Reinforcement Learning (RL) based RT scheduling, and
(iii) up to 30% enhancement in Quality of Experience (QoE)
for video streaming via an application-aware RL-based RT
scheduling policy over application-agnostic approaches. We
also benchmark its performance against a near RT RIC. To the
best of our knowledge, no existing RIC platform has demon-
strated the benefits of real-time AI-in-the-loop-based RAN
control while leveraging cross-layer application information
in over-the-air experiments.

2 Motivation for Real-Time RIC

A fundamental value proposition of RIC is that it would enable
the RAN to adapt to support heterogeneous applications over
a variety of end devices ranging from smartphones, drones,
cars, headsets, to sensors. What timescale of monitoring and
control would enable application and environment responsive
intelligent configuration and control?

Wireless Environment: Our channel measurements at 2.5
GHz across various mobile environments—drones, cars, in-
door robots, and human movement—reveal that wireless chan-
nels fluctuate within milliseconds, highlighting the need for
real-time control in mobile scenarios, illustrated in Figure 2(a).
For instance, drone channels showed quality changes within
3-4 ms in over half the cases. Even in low-mobility scenarios,
like a robot moving indoors, we observed significant changes
within less than 10ms. This demonstrates the importance of
designing systems like ours to adapt quickly to the dynamic
nature of wireless channels. Additionally, even in stable chan-
nel conditions, real-time capabilities enhance RAN functions,
such as enabling more aggressive Modulation and Coding
Scheme (MCS) selections in the absence of packet drops. As
cellular networks evolve towards supporting highly mobile
applications with brief channel coherence times, achieving
RIC latencies that match the sub-millisecond TTI timescale
becomes crucial.

1316 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a) Channel qualities change as low
as every 3 to 4ms under mobility

b) Realtime scheduling can support a
higher system throughput

c) Near RT RL training yields lower
throughput with delayed states

0 50 100
Training Iteration

15

20

25

30

M
ea

n
Th

ro
ug

hp
ut

 [M
bp

s]

Near RT RIC

0 50 100
Training Iteration

15

20

25

30

M
ea

n
Th

ro
ug

hp
ut

 [M
bp

s]

EdgeRIC

Figure 2: NextG networks need real-time intelligence and control.

RAN Control: We next verified the thesis that channel vari-
ations require real-time control by implementing a rule-based
scheduler that prioritizes users with the largest channel quality
index. We ran the experiment over a mix of channels gath-
ered from our mobile experiments and show the throughput
obtained in Figure 2(b). The latency experienced by near-real-
time RIC with a round-trip latency of 30ms, corresponding to
accessing cloud-based compute resources causes the through-
put to drop by a third as compared to real-time control using
the same scheduler located at edge compute accessed with a
round-trip latency of 1ms.

AI Training: Can the RIC can support data collection,
training and adaptation of AI/ML policies? Since many RAN
management tasks involve feedback control, we are specifi-
cally interested in whether reinforcement learning (RL) train-
ing and execution can be supported. We conducted exper-
iments on training an RL-based scheduler with a near-RT
round-trip delay between state-action-reward of 60ms, versus
one that has a round-trip delay of 1ms. As illustrated in Fig-
ure 2(c), the correlations between state-action-reward break
down at near-RT, leading to lower throughput.

The wireless community is focusing on data-driven ap-
proaches for the air interface, enabling intelligent decisions
at the TTI timescale. These encompass various tasks such as
beam-forming decisions [14] [13] [26], interference manage-
ment [18] [40], localization [17], channel estimation [21] [23],
Modulation and Coding Scheme (MCS) selection [44] [15],
power allocation [31], retransmissions and more. As illus-
trated above, none of these will be possible without real-time
RIC co-located with the RAN on edge compute.

3 Related Work
Recent advancements in the development of near real-time
(near-RT) RAN Intelligent Controller (RIC) frameworks and
xApps have gained significant attention. Scope [4] introduces
a containerized method for deploying network elements, sup-
porting real-world emulation, AI/ML data collection, and net-
work control APIs. [5] demonstrates the the integration of
deep RL agents for near-RT RIC-based control, built with
ColO-RAN [32], an AI/ML framework built upon the Colos-
seum network emulator [24]. These works focus on RAN

resource slicing using xApps and RAN-embedded schedulers
assigned to each slice. ORAN E2 [42] presents a software-
defined radio testbed featuring an open-source 5G system
that interacts with the O-RAN near-RT RIC through standard
interfaces, utilizing xApps for RAN slicing. FlexRAN [9]
offers a software-defined RAN platform where a master con-
troller communicates with agents embedded in the LTE stack.
However, FlexRAN lacks the ability to train or utilize AI-
optimized policies while maintaining real-time constraints.
FlexRIC [35] addresses this by providing a more modular
variant of FlexRAN. It simplifies the 5G near-RT RIC archi-
tecture, adhering to the agent-controller approach.

Closer to the TTI-timescale, ChARM [1] presents spec-
trum selection based on supervised learning over IQ samples
collected in real-time, but with control at near-RT RIC. For
even finer control, an architecture for integrating distributed
applications (dApps) into O-RAN has been proposed, with
simulation results on the possible benefits that might be real-
ized via network intelligence at real-time (<10 ms) [7].

Our initial work on EdgeRIC provided an architecture
and messaging scheme for enabling real-time RIC (<1 ms),
along with a feasibility study and demonstrations of the ap-
proach [8, 16]. More recently, an approach entitled Janus [10]
also recognizes the significance of real-time intelligence.
While both EdgeRIC and Janus aim at real-time measure-
ment and control of the RAN, their architectural choices are
fundamentally different. Janus is integrated directly with each
Distributed Unit (DU), making it vendor-specific. Thus, Janus
requires updates to its hooks and codelets within the RAN
software at each site or DU, contingent upon the purchase of
Janus by that specific DU. EdgeRIC avoids such tight cou-
pling by following O-RAN compliant messaging interfaces,
which decouples EdgeRIC from the RAN stack. EdgeRIC
then uses the open source Gym-class interface to connect with
an in-memory database and AI/ML algorithms. EdgeRIC’s
decoupled design allows for robustness by never interfering
with time-critical RAN tasks, ease of runtime data gathering,
standardized training and runtime updating of AI/ML models,
and support across different vendors’ equipment via com-
patibility with universally accepted O-RAN service models.
Finally, since EdgeRIC is implemented over the open source

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1317

Table 1: Comparison of RIC frameworks

Framework Connectivity Monitoring Application Adaptability to Full stack AI training Real World
to RAN stack and control awareness channel fluctuations support with real traces OTA evaluations

FlexRIC [35] Disaggregated 10ms-1s ✓ × × ×
ColO-RAN [32] Disaggregated 10ms-1s ✓ × × ×

dApps [7] Disaggregated 6-10ms × ✓ × ×
Janus [10] Integrated <1ms × ✓ × ✓

EdgeRIC Disaggregated <1ms ✓ ✓ ✓ ✓

software srsRAN stack and uses open messaging standards
and interfaces, it is available for unfettered experimentation
by the research community.

In the applications domain, streaming media has received
much attention for AI-optimized control. For instance, AI/ML
for choosing video streaming rate selection is considered
in [12, 22, 30, 43, 45] from the server’s perspective. In con-
trast, [3] studies optimal policies when the network can be
controlled in the context of WiFi-based access. Here, recon-
figuration of WiFi flow priorities using AI-optimized policies
is shown to improve streaming performance.

In contrast to the above works, EdgeRIC is a simple,
lightweight, disaggregated approach towards ensuring that
TTI-level synchronized policies can be trained in non-RT and
executed in real-time. Specifically, we show that our approach
provides the ability to train robust cross-layer optimized
policies in non-RT and a guarantee of completing the full
feedback loop from sensing, AI-based policy execution and
control within each TTI, and are the first to verify our claims
while running full stack over-the-air experiments on mobile
nodes. Table 1 summarizes comparable frameworks.

4 EdgeRIC Concept Architecture

The EdgeRIC design is primarily driven by the objective of
infusing real-time intelligence into network functions and
decisions at the network’s edge. This approach is particularly
important for making informed decisions based on instan-
taneous channel conditions. By situating decision-making
processes closer to the RAN edge, we ensure that the channel
metrics utilized are as current and relevant as possible, as
opposed to being relayed from a distant cloud infrastructure.

EdgeRIC’s architecture extends beyond edge operations
to foster a cooperative relationship with cloud systems, en-
abling smooth data exchange and access to shared databases.
It adopts a dual strategy, utilizing real-time edge data along-
side cloud analytics to optimize decision-making. This ap-
proach aims to merge the promptness of edge processing with
the extensive insights of cloud computing, emphasizing the
synergy between cloud and edge to enhance cellular network
capabilities. This integration effectively combines local re-
sponsiveness with global intelligence.

Our architecture design is motivated by two fundamen-
tal considerations, namely (i) Disaggregated Programming
Model: O-RAN is driven by the desire to disaggregate the
cellular stack into functional components that can be created
by independent developers and instantiated on distributed
compute resources. Consequently, EdgeRIC must be modular
and decoupled from the RAN components. This will permit
simple models of application development, run-time updates,
robustness to errors, and bi-directional information sharing
with user-defined applications, and (ii) Real-time RAN Con-
nectivity and Control: While functionally decoupled from the
RAN stack, EdgeRIC must enable messaging with TTI-level
sync (< 1ms) with RAN events. This will enable real-time ob-
servability of RAN state, such as channel quality or backlog
buffers, and decision making and control of the RAN stack
each TTI to optimize performance. Consequently, EdgeRIC
must be slaved to the TTI clock at the RAN, and messaging
and decision making must be lightweight.

In order to realize these goals, EdgeRIC is composed of two
modules: (i) the EdgeRIC execution module, which is the seat
of µApps for real-time monitoring control of the RAN, as well
as information aggregation from user applications, and and
(ii) EdgeRIC emulation module, which is used as a full-stack
emulator used for training of AI-based and other algorithms
prior to instantiating them as µApps in the EdgeRIC execution
module. We discuss the architecture and workflow of these
modules below.

4.1 Disaggregated EdgeRIC Architecture
The real-time EdgeRIC execution module is illustrated in
Figure 3, where we have shown it within the O-RAN architec-
ture. O-RAN consists of a radio unit along with disaggregated
microservices that perform the RAN functions. These mi-
croservices are divided across edge compute (near the radio)
and cloud compute resources, based on the required latency
targets. The components of the O-RAN stack are as follows:
(i) RF Frontend: Open Radio Unit (O-RU), (ii) Edge Com-
pute: Real-time components at the Open Distributed Unit
(O-DU) supporting High-PHY, MAC and radio link control,
and (iii) Cloud Compute: Open Centralized Unit (O-CU) with
control and management functions. The final element is (iv)
Cloud Compute: 5G Core, supporting management, billing

1318 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Core

User
Application

Realtime EdgeRIC

O
-R

AN

Non-RealtimeNear-Realtime

rAppsxApps

C
lo

ud
Ed

ge

O-DU

realtime data/control

near-realtime data/control

application data path

RLC

MAC

High PHY

O-CU

O-RU

Application
Server

Cloud Data Center

O
pe

n
AI

 G
ym

 W
ra

pp
er Redis Database

μApps μApps μApps

Realtime Metrics Monitoring Platform

EdgeRIC Emulator module

Cloud Ran Intelligent Controllers

UE

Policy execution for RAN control

Figure 3: EdgeRIC concept architecture, showing its integra-
tion into O-RAN.

and Internet gateway functions.
O-RAN also provides specifications for two cloud-hosted

microservices for (i) near-RT RIC, which supports xApps
for policy adaptation at near-RT (10ms - 1s), and (ii) non-
RT RIC, which supports rApps providing large timescale
microservices management and data analytics. The standard
provides protocols for the near-RT and the non-RT RIC to
communicate with the O-RAN stack and with each other.
In particular, the E2 Application Protocol (E2AP) operates
over SCTP and provides pub-sub and on-demand messaging
between RAN and near-RT RIC at near-RT latency.

EdgeRIC is designed as a microservice for the O-DU,
closely integrated with the O-RAN architecture to enhance
PHY-MAC level RAN functionalities through real-time. It
utilizes µApps for executing real-time policies (with TTI la-
tency), allowing for immediate RAN state adjustments and
control. Connection to the O-RAN stack is achieved through
a specialized real-time-E2 protocol (RT-E2), aligned with the
TTI clock and leveraging IPC for microservice communi-
cation, ensuring a latency around 100 µs to meet stringent
real-time requirements.

EdgeRIC operates in real-time, running on separate CPU
cores at the edge compute cluster to ensure low latency with-
out interfering with the O-RAN PHY-MAC microservices. It
allows µApps to dynamically use RAN and application data
for decision-making. Supporting integration with protocols
like OpenFlow and ROS, EdgeRIC enables cross-layer poli-
cies for PHY-MAC control, enhancing system performance
without disruption.

4.2 EdgeRIC Functional Components
The EdgeRIC real-time execution module, depicted in Fig-
ure 3, features interfaces for real-time communication with

the RAN stack and near-real-time interaction with cloud mod-
ules. These interfaces connect to an Open AI Gym Wrapper,
which abstracts them into a Gym-compatible environment,
allowing components to interact with the RAN using Gym
methods. This design enables µApp developers to employ
either custom or AI/ML-based strategies, benefiting from the
compatibility with standardized reinforcement learning frame-
works. Consequently, µApps can seamlessly integrate these
standardized codeblocks, facilitating efficient development
and deployment within the EdgeRIC ecosystem.

The EdgeRIC execution module incorporates an in-
memory Redis database for managing real-time RAN metrics
and application data. This data supports µApps directly or
through cloud processing, enabling cloud-hosted xApps to
refine policies or ML models based on the data. These en-
hancements are fed back to the Redis database for µApps
integration, allowing them to start with basic policies and im-
prove them over time with cloud-derived insights, optimizing
their performance dynamically.

4.3 EdgeRIC Emulator Module
The EdgeRIC execution module directly enables support for
optimization based approaches to modulation, coding and
queuing that are designed around well studied, substantiated,
and tractable models. For instance, we can immediately in-
stantiate approaches such as proportionally fair [37] or max-
weight [41] scheduling across UEs on a per TTI basis with
execution in RT, as if embedded within the RAN stack.

Our architecture also supports AI/ML approaches such
as Reinforcement Learning (RL), a branch of ML that is
explicitly tailored towards learning feedback-control policies.
Training such policies is often hard in a real-world system,
where user satisfaction is paramount at all times. Hence,
we endow EdgeRIC with a full-stack emulator module for
training, which can support user applications over trace-based
or synthetic channels. The RL workflow is well aligned with
the modality of a emulator based non-RT training of a base
policy using data collected offline or via an emulator. Such
polices can then undergo near-RT adaptation to the current
environment, culminating in RT policy execution. Simulta-
neously, data is gathered at the edge, which is shared with
the non and near-RT RIC for accurate training and adaptation.
This three-timescale workflow is illustrated in Figure 4.

5 EdgeRIC Implementation
We now describe the implementation of EdgeRIC to satisfy
the goals of our concept architecture. The experimental results
that we present in this section were collected on two servers:
Intel Xeon Gold 5218R CPU @ 2.10GHz, 20 cores and Intel
i9 CPU @ 2.4GHz, 12 cores, without using GPUs. We chose
the open source Software Radio Systems srsRAN stack [39]
as the experimental RAN system for EdgeRIC integration
due to its simple, modular codebase, its stability and compati-
bility with various core networks, 4G and 5G versions, and

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1319

Data Logger

μApp: Policy
Execution

Real-time EdgeRIC

Near Real-time
Policy Adaptation
using data traces

Environment

RT

RAN Stack

User
Application

Action

RAN State

All State,
App Reward

App State

Adapted Policy

Training @
EdgeRIC Emulator

Base Policy

Non Real-time

non-RTnear-RT application data

Figure 4: Non-RT policy training on EdgeRIC Emulator, Near-
RT policy adaptation and RT policy execution.

the availability of the srsUE codebase. srsRAN runs on the
general-purpose Ubuntu OS, which does not provide real-time
guarantees.

5.1 EdgeRIC Execution Module

5.1.1 Real-time Connectivity to RAN and messaging

O-RAN specifications provide the E2 interface between the
near-RT RIC and the O-DU or O-CU. Specifically, the E2 ap-
plication protocol (E2AP) operates over SCTP and provides
near-RT services for RAN monitoring and control. E2 does
not support a real-time connectivity service, i.e., it is not syn-
chronized with the TTI clock at the RAN. Hence, we extend
the specification to create a real-time, RAN-synchronized
variant that we call RT-E2. RT-E2 supports the following to
connect EdgeRIC with the PHY-MAC stack at the O-DU.

RT-E2 TTI-Sync: Our system is synchronized to the TTI-
level clock tick from the RAN stack, ensuring that EdgeRIC
and the RAN maintain TTI-by-TTI alignment for accurate
real-time control actions and reward feedback. The RAN
stack uses a TTI counter, referred to as RANtime, included
in all RT-E2 messages to EdgeRIC. Correspondingly, RT-E2
messages from EdgeRIC to RAN specify the TTI for pol-
icy application, ideally set to RANtime+1, to ensure actions
match the current RAN state. To prevent asynchrony caused
by EdgeRIC’s compute time exceeding one TTI, termed "Lazy
RIC," EdgeRIC’s RAN subscriber only retains the most re-
cent RAN message, tagging policy messages with the latest
RANtime+ 1. The RAN disregards any EdgeRIC message
not matching the current RANtime. Additionally, the RAN is
equipped with a default mechanism to manage any potential
Lazy RIC scenarios, ensuring stability despite possible invalid
inputs from EdgeRIC.

RT-E2 Report: This is a periodic pub-sub procedure under
which a module at the O-DU, such as radio link control may

publish information at a given rate. Our default periodicity
is one TTI, i.e., information may be generated in real-time.
µApps at EdgeRIC may subscribe to the RT-E2 Report service
and utilize it for inference and control. Subscription may
be blocking in that the µApp will proceed only when new
information is available from the RAN.

RT-E2 Policy: This is an event-driven pub-sub procedure
under which a µApp at EdgeRIC may publish information
to one of the O-DU modules such as UE priorities for re-
source allocation at the MAC layer. This information is used
directly for real-time control at the O-DU. Subscription is
non-blocking in that the O-DU subscriber will move on if
no new information is available on this procedure, without
breaking the tight TTI deadlines required by PHY-MAC.

RT-E2 API Support: RT-E2, synchronized with the RAN,
supports messaging over TCP/UDP/SCTP or IPC, adapting
to EdgeRIC’s hosting environment. It necessitates both block-
ing and non-blocking pub-sub capabilities and must manage
diverse messages, including sync, state, action, reward fields,
and UE identities. Opting against modifying the O-RAN E2’s
limited SCTP-based messaging, we use ZMQ for RT-E2 due
to its low latency, minimal overhead, versatile pub-sub modes,
and compatibility with IPC or TCP, accommodating our re-
quired message formats.

TTI-Level Events: The sequence of events, occurring every
TTI is shown in Figure 5, where we see (i) state measurement
and transmission from RAN, (ii) reception, processing and
response at EdgeRIC, and (iii) final resource allocation at
RAN. Note that srsRAN receives each EdgeRIC message well
before the TTI boundary, but only reads it in a non-blocking
manner at the beginning of each TTI.

Ed
ge
RI
C

RA
N

TTI[k]

0 1

2 3 4

5 6
5 6

0 1

2 3 4

Time

TTI[k+1]

0: RAN measures state
1: RAN transmits state

5: RAN receives action
6: RAN implements action

2: EdgeRIC receives state
3: EdgeRIC computes action
4: EdgeRIC transmits action

Figure 5: TTI-level events for EdgeRIC to RAN loop.

Real-time operation evaluations: We aim to demonstrate
the effectiveness of our synchronization and messaging tech-
niques between the RAN and RT-RIC, crucial for feedback
control and RL training success. Through tests with the
srsRAN stack and RT-RIC on a server, operating at 10 MHz
downlink load and achieving about 37.5 Mbps throughput,
we found our system maintains a median round trip latency
of just 100 µs. This performance is satisfactory for managing

1320 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1
10 UEs
30 UEs
50 UEs
70 UEs
100 UEs

(a) ZeroMQ RTT for varying no. of users
RTT (ms)

C
D

F

20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(b) Median RTT for varying no. of users
Number of Users

M
ed

ia
n

R
TT

 (m
s)

0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

In-Stack
EdgeRIC

(c) Spectral Efficiency: In-stack vs EdgeRIC
Spectral Efficiency (bits/Hz)

C
D

F

0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

(d) EdgeRIC Policy Computation Time
Time (ms)

C
D

F

Figure 6: EdgeRIC Feedback latency, spectral efficiency and
AI-policy execution times.

information dissemination and control commands for approx-
imately a hundred UEs, showcasing ZeroMQ’s suitability for
real-time operations as illustrated in Figure 6(a) and (b).

In our study on MAC layer resource block (RB) allocation,
the RAN stack communicates UE state information, including
RNTIs, CQIs, buffer states, and previous downlink bitrates, to
the RT-RIC, which then decides on downlink RB allocations
per UE. Figure 6(c) shows that the spectral efficiency achieved
by implementing policies through EdgeRIC is on par with
integrating them directly into the RAN stack, indicating that
our modular approach maintains efficiency while ensuring
RAN stack stability. This underscores the effectiveness of our
decoupled architecture in balancing policy enforcement with
architectural integrity.

5.1.2 Cross-Layer Connectivity and Logging

Our choice of ZMQ for inter-process communication
between RAN and EdgeRIC is also extendable to cross-layer
application awareness, shown in Figure 4. Since ZMQ can
operate over TCP or UDP on an IP network, applications
can simply use ZMQ to publish their state information to
EdgeRIC. Apart from being lightweight and having APIs
in most programming languages, ZMQ also permits client
authentication and encryption via CurveZMQ [6] for security.

We also enable EdgeRIC with an in-memory Redis
database for data logging and sharing, shown in Figure 4.
Redis is a fast, lightweight, key-value store, in which we log
data digests, as well as trained models for sharing across the
elements of EdgeRIC. An added advantage of Redis is that we
can save all traces to drive at experiment conclusion, which
allows for post processing and performance analysis.

5.1.3 Integration with OpenAIGym

OpenAIGym is an open source python library that provides
a framework for developing an interface to interact with and

query the environment by any given algorithm. While it is
typically used for developing and comparing RL algorithms, it
can be used as a standard approach for realtime policy execu-
tion, regardless of whether the policy in question is based on
RL. This openness motivates us to develop an OpenAIGym
interface connecting the RAN stack, EdgeRIC and the con-
trol algorithms in the form of µApps that it hosts. Our Ope-
nAIGym interface allows for swift policy development and
freedom of execution of algorithms as desired. Figure 6(d)
shows the time taken by EdgeRIC to execute a forward pass
of a trained policy network using only CPU, while running a
fully loaded RAN. The mean value is less than 100 µs, which
implies that TTI-scale execution is straightforward.

5.2 EdgeRIC Emulator Module

4G/5G Core

ZMQ Gym μApp

App
Realtime EdgeRIC

Application Server

Namespace 4

srsRAN

realtime data/control near-realtime data/control

TCP/ UDP/
HTTP DASH

ZMQ
snk/srcUE 1

UE 2App ZMQ
snk/src

ZMQ
src/snk

ch
an

ne
l

ch
an

ne
l

Namespace 3

Namespace 1

Namespace 2

G
nu

 R
ad

io
 B

lo
ck

Figure 7: EdgeRIC emulation environment

To bridge the "sim-to-real" gap in RL-optimized control,
we’ve developed the EdgeRIC training module, which forgoes
the need for a complex Python simulator for simulating RAN,
RIC, and application dynamics. This module leverages actual
RAN and RIC codebases with virtual radios and channel sim-
ulation techniques, using ZeroMQ for virtual radio interfaces
in srsRAN, enabling accurate real-world emulation. It routes
complex-valued samples, typical for software-defined radios,
through ZeroMQ sockets, incorporating simulated channel
effects. A GNU Radio flowgraph with ZMQ Source and Sink
blocks allows distribution of these samples to multiple sr-
sUEs, simulating real user equipment. Furthermore, separate
IP namespaces for UEs and application servers facilitate run-
ning real-world TCP or UDP based applications end-to-end,
closely mimicking actual deployment scenarios as shown in
Figure 7. This setup ensures minimal sim-to-real disparity,
making the EdgeRIC emulator highly effective for real-world
applicable policy training and testing.

6 Case Study: An RL based scheduling µApp

In this paper, our illustrative use-case is on realtime down-
link resource block allocation (scheduling), which utilizes
(i) channel quality information (wireless state), (ii) downlink
backlog buffers (RAN state) and (iii) media buffer length for
video streaming (application state). We develop an RL-trained
realtime scheduling application operating on EdgeRIC, which
we refer to as a µApp. We study performance, both from the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1321

perspective of throughout maximization under a variety of
channel conditions, as well as stall minimization in a video
streaming application case. We present the results of real-
world over-the-air experiments to validate our approach. In
this section, we establish the performance gains achievable
with real time RAN control on simulated channel traces.

We use a downlink resource block (RB) scheduling µApp
to illustrate an EdgeRIC application, since (i) scheduling has
to be done each TTI in realtime, (ii) it requires channel quality
information from the wireless link, downlink backlog buffer
on a per-UE basis from the RAN, and can utilize application-
level information such as the media buffer length in a video
streaming for prioritization, and (iii) being such a fundamental
problem, has a variety of baseline approaches to compare
against RL-based scheduling algorithms. We now describe
the design and training of a scheduling µApp.

Weight Based Abstraction of Control: Optimal queueing
and wireless resource management often employ structures
like threshold [11, 25], index [29, 33, 34], and linear poli-
cies [2, 19] for their simplicity and learnability, with some
showing properties like monotonicity or concavity [2]. Sys-
tems such as [27] develop weights to prioritize flows, ensuring
max-min fairness among them. All these structured policies
can effectively be represented by assigning relative priorities
to the different connected UEs. For example, the so-called
Whittle index is a scalar parameter corresponding to the value
of resources allocated to a given UE, which can quickly be
learned independently of other UEs [28]. Resource allocation
may also be done with a fairness metric in mind, such as pro-
portional fairness, where RBs are assigned to a UE based on
the ratio of its current as compared to its average channel qual-
ity, or max-min fairness [38]. Motivated by these ideas, our
general approach for downlink RB allocation is for EdgeRIC
to provide values wi for each connected UE i over realtime
information exchange at each TTI. The 5G MAC will then
allocate an number of RBs in a manner proportional to wi
over the next TTI. Such an abstraction provides simplicity of
actions for the resource allocation policy, while maintaining
its ability to attain near-optimal allocations in realtime.

6.1 Training RL on emulator
We utilize the model-free RL algorithm, Proximal Policy Op-
timization (PPO) [36], for training an agent on optimal re-
source allocation due to its straightforward implementation
and efficiency. Training involves collecting 5,000 samples
per iteration, updating the agent’s policy neural network via
backpropagation, and then using the updated agent to col-
lect another 5,000 samples to evaluate performance and track
progress. Each sample corresponds to a transmission time in-
terval (TTI) and includes the environment’s current state, the
agent’s action, and the resulting reward and next state. The RL
policies, trainable on the emulator, can focus on RAN-specific
scenarios or incorporate application-level data for broader op-
timizations. We specifically explore downlink throughput en-

hancement (Section 7.3) and video streaming stall reduction
(Section 7.4) as two key use cases.

Table 2: RL Specifications: Throughput Maximization

State (s[t]) Bi[t],CQIi[t] ∀i

Action (a[t]) wi[t] ∀i

Reward (r[t]) total throughput

For the throughput-maximization goal, we utilize RAN-
level CQI and UE backlog buffer lengths as state information,
with action being the allocation weights for UEs and the re-
ward as total throughput. Training typically reaches reward
saturation after 100 iterations, equivalent to 500,000 TTI sam-
ples. The RL setup, detailed in Table 2, includes CQI (CQIi[t])
and backlog data (Bi[t]) per UE i and the allocation weight for
UE i (wi[t]) as actions. Factoring in data collection/transfer
to the RL agent and time for actor-critic policy updates, total
training completes in about ten minutes.

6.2 Evaluations on emulator
We conducted emulations using synthetic channel traces to as-
sess the potential gains achievable by a real-time agent for pol-
icy computation and control. Two metrics we use throughout
our study is the downlink system throughput and the down-
link backlog buffer lengths at the RAN. We desire to evaluate
two basic questions, (i) How much does performance improve
with realtime control as opposed to near real time control and
(ii) How does RL-based control policy perform compared to
basic algorithms?

We consider three basic algorithms for weight-based re-
source allocation. In all the below approaches, each UE is
assigned a weight wi[t] at TTI t. The weights are then normal-
ized over all UEs as w̃i[t] = wi[t]/∑ j w j[t]. The RAN receives
the normalized weights w̃i[t] from the RIC, and performs an
allocation of resource block groups (RBGs) in proportion to
the weights, i.e., Ri[t] = w̃i[t]Rtotal [t], where Ri[t] is the assign-
ment to UE i, and Rtotal [t] is the number of RBGs available
in TTI t. While some approaches call for an absolute prioriti-
zation of UEs that have a maximum weight [41], we find in
practice that a proportional division based on weight leads to
better overall performances.
CQI-Fair Allocation: Here, the weight of UE is equal to
its realized CQI. Hence, wi[t] =CQIi[t], where CQIi[t] is the
realized CQI of UE i at time t. This approach effectively tries
to obtain a large total throughput by prioritizing these UEs
that have a large CQI in the current timeslot.
Proportionally-Fair Allocation: The allocation weight for
each UE is determined by the ratio of its current CQI to its av-
erage CQI, aiming to prioritize UEs with better-than-average
channel conditions. The average CQI for UE i, represented
as AvgCQIi[t], is computed using an exponentially weighted
moving average up to time t. Therefore, the weight wi[t] is
calculated as CQIi[t]/AvgCQIi[t].

1322 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Max-weight Allocation: Here, the weight of a UE is the
product of its current CQI and the backlogged bytes in the
downlink queue corresponding to that UE. The max-weight
policy is known to be throughput optimal [41], in that it can
achieve the capacity region of the system. Thus, we have,
wi[t] =CQIi[t]Bi[t], where Bi[t] is the number of backlogged
bytes in the downlink queue of UE i.

Our first question, the performance comparison between
downlink RB allocation algorithms as µApps on EdgeRIC
versus as xApps on a cloud-based RIC focuses on the impact
of latency. µApps on EdgeRIC benefit from low round-trip
latencies of mere tens of microseconds for state information
reception and action generation from the RAN. In contrast,
xApps in the cloud suffer from significant forward and reverse
network latencies, leading to round-trip times in the tens of
milliseconds. To illustrate cloud latency effects, we simulate
appropriate delays within EdgeRIC.

Our experiment with synthetic channel traces shows that us-
ing the CQI-Fair allocation algorithm as a µApp on EdgeRIC,
compared to a cloud-based RIC with 30ms latency, results in a
50% throughput increase with stable backlog buffers (Figure
2(c)). This is further detailed in Table 3. The throughput
improvement is also demonstrated in a 4-user scenario, Figure
14 and Table 7 in appendix, thus underscoring the benefits
of real-time control in enhancing performance metrics.

Table 3: Load: 35Mbps, Channel: 2 UE synthetic channel

EdgeRIC 15ms 30ms
Max CQI Avg. Thrpt. 32.6 24.2 18.0

BL[MB] 0.61 0.64 0.57
Prop. Fair. Avg. Thrpt. 30.7 25.7 21.9

BL[MB] 0.65 0.67 0.68
Max Weight Avg. Thrpt. 30.0 23.3 20.9

BL[MB] 0.60 0.62 0.65

To answer our second question, we demonstrate the
training and evaluation of an RL algorithm. Scenario 1
is based on a 2UE environment. both connected users
have uniform variation in CQI values over time, ranging
from 1 to 15. In scenario 2, one user experiences good
channel conditions (CQI values between 8 and 15), while
the other user experiences poor channel conditions (CQI
values between 1 and 7). In Scenario 3, the CQI values are
randomly generated. Figure 8 shows training and evaluation
on Scenario 2 and Table 8 (appendix) summarizes the
performance of RL algorithms on synthetic channel traces.

We show the CDF of end-to-end latency of the entire event
chain from RAN to EdgeRIC and back (including policy exe-
cution via a forward pass on the policy network), culminating
in resource allocation at each TTI in Figure 9. We observe
that the end-to-end latency is always less than 1 ms, i.e., the
RT-E2 procedures (Section 5.1.1) successfully meet the target
of event completion within each TTI.

Training Curve

0 20 40 60 80 100

Training Iteration

26.5

27

27.5

28

28.5

29

M
ea

n
R

ew
ar

d
-

T
hr

ou
gh

pu
t [

M
bp

s]

PPO

M
ax

 W
eig

ht

M
ax

 C
QI

0

5

10

15

20

25

30

35

A
ve

ra
ge

 T
hr

ou
gh

pu
t [

M
bp

s]

Throughput Evaluation

Figure 8: RL training and evaluation on emulator

0.94 0.96 0.98 1
Time [ms]

0

0.2

0.4

0.6

0.8

1

F
(x

)

CDF plot for RAN and RIC RTT

0 20 40 60 80 100 120
Time [s]

50

100

150

200

C
P

U
 %

Computational Overhead with EdgeRIC

Without EdgeRIC
With EdgeRIC

Figure 9: CDF of End-to-end RTT between RAN and
EdgeRIC, showing that TTI timings are always met.

Finally, we measure the computational overhead of running
EdgeRIC, as compared to running the vanilla srsRAN stack
under a full traffic load. We see that the difference in CPU
utilization is only about 20%, which means that EdgeRIC is
fairly lightweight and does not need execessive additional
compute resources. Hence, co-locating EdgeRIC at the O-DU
level seems quite feasible.

6.3 Scalability Study

0 200 400 600 800
Time [us]

0

0.2

0.4

0.6

0.8

1

F
(x

)

CDF of Policy computation time

5 UEs
10 UEs
20 UEs

0 200 400 600 800 1000 1200
Time [us]

0

0.2

0.4

0.6

0.8

1

F
(x

)

CDF plot for Feedback loop RTT

5 UEs
10 UEs
20 UEs

Figure 10: EdgeRIC is able to handle a large number of UEs

We show that our system is stable and is feasible to operate
as we scale the number of UEs. For the scheduling µapp con-
sidered in this case study, we introduce additional, simulated
UEs (which have the same states and application behavior as
the real UEs) into the system in order to capture the system
performance under an increased number of users. Figure 10
shows that the feedback loop RTT remains well below 1ms
and the ML model inference time is under 400µs.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1323

Laptop
 (UE)

B210
B210

Laptop (UE)

B210
NUC
(UE)

Battery

Laptop
 (UE)B210

(a) Turntable (b) Car (c) Drone (d) Mobile Robot (e) CQI-evolution

Figure 11: Experimental setups for collecting CQI data of various mobility and evolution of their CQI traces

7 EdgeRIC Evaluation

In this section, we evaluate EdgeRIC by addressing three
fundamental questions. These questions are: (i) Does real-
time RAN control through µApps on EdgeRIC outperform
near-real-time control through a cloud-based RIC? (ii) Is it
feasible to implement real-world AI optimization (RL training
and feedback) for resource allocation over EdgeRIC ? and
(iii) Does application state feedback to EdgeRIC provide sig-
nificant improvement to the end-user Quality of Experience
(QoE)? All results presented in this section are based on real
world channel traces and over the air experiments.

7.1 Experimental Setup

EdgeRIC extends the srsRAN codebase, supporting both
software-defined radios and commercial UEs. Built on
srsRAN version 21.10, our setup includes USRP B210 SDRs,
an edge DU, and an embedded 20ms delay in the CU stack for
realism. The srsRAN station features channel trace logging
and operates in the 2.5 GHz EBS band under an experimental
FCC license to prevent interference with local networks. Ex-
periments utilized a 10 MHz bandwidth, involving a stationary
base station and mobile users.

7.1.1 User Devices and Channel Traces

We use a static base-station with different UE types to collect
channel traces as shown in Fig. 11. We considered various
mobility models, both within the laboratory and in outdoor
environments. We extract the channel quality indicator (CQI)
values sampled at each transmission time interval (TTI) for
each user at the srsRAN for runs of approximately 8 minutes
each. Next, we summarize the UEs considered in this study.

TurnTable UE: Figure 11(a) shows the setup of a UE
on a movable turntable, similar to a user sitting on a chair
and rotating. The base station equipped with a B210 is on a
static table, while a UE node with a B210 is mounted on the
turntable. The UE node is moved away from or towards the
base station at about 1 m/s and rotated to produce significant
variations in its CQI values. The distance between the UE
node and the base station ranges from 0.5 meter to 4 meter.

Car UE: Figure 11(b) shows a UE setup in a car, using a
USRP B210 and laptop powered by the car. CQI data was
collected while driving along three paths: 1) a 6-meter-radius
circle with a maximum speed of 4.5 m/s, 2) a 30 meter x 3
meter rectangle with a maximum speed of 5.4 m/s, and 3) a
50-meter straight line with a maximum speed of 9 m/s.

Drone UE: We used a drone experiment to demonstrate
performance with faster channel variations in 3D space. Fig-
ure 11(c) shows a B210 and a NUC (a small and portable
computer) mounted on a Big-Hexy hexa-copter drone, while
the base station, equipped with another B210, was placed on
the ground. The drone was flown over the base station along
two paths: 1) a 10-meter straight line at a height of 15 meters
and with a speed of 2.2 m/s, and 2) a 15-meter straight line at
a height of 20 meters and with a speed of 3 m/s.

Indoor robotic UE: Mobile robots were used to for indoor
mobility experiments. In Figure 11(d), a B210 and laptop
were mounted on a Jackal robot, while the base station with
an X310 was placed on a table. The robot moved along a 1.6
m x 1.6 m square path and rotated at each corner, causing CQI
values to drop due to signal blockage. The working area was
limited to 4 m from the base station, similar to robot control
or industrial IoT with Private 5G.

We show the drone trace in Figure 11(e), and the overall
CDF was earlier shown in Figure 2(a). We see that several
scenarios yield CQI changes in the sub 10 ms range, with the
drone trace showing this effect for almost 90% of samples.

7.1.2 Evaluation Scenarios

To generate realistic scenarios, we collected channel traces
from various environments and utilized them in our emulation
setup. This setup includes the same core, radio access network
(RAN), and user equipment (UE) modules as our over-the-
air experiments that generated the CQI traces. By replaying
the CQI traces with a desired number of UEs, algorithmic
methods can be compared while maintaining the same end-
to-end applications and channel conditions. For end-to-end
over-the-air experiments, we used a X310 as a base station and
two B210s as UEs. One of the UEs had lower channel quality
than the other by placing them at different distances from the
base station. Table 4 summarizes the scenarios considered.

1324 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a) Is real-time needed? b) Is RL useful? c) Is RL generalizable? d) Does EdgeRIC work in
real world?

Real World EvaluationThroughput EvaluationThroughput EvaluationThroughput Evaluation

Figure 12: Snapshot of EdgeRIC performance for throughput maximization

Table 4: Summary of all scenarios

Scenario Channel Description
Channel Traces from Experiments
Scenario 1 2 Drone UEs
Scenario 2 2 Turntable UEs
Scenario 3 2 Car UEs and 2 Drone UEs
Scenario 4 2 Car UEs and 2 Indoor Robotic UEs
Scenario 5 2 Random Walk UEs and 2 Turntable UEs
Complete Over-the-Air Experiments
Scenario 6 2 UEs on indoor mobile robots
Scenario 7 2 UEs on indoor stationary robots

7.2 Micro-benchmarks: Edge vs. Cloud
We use iPerf for measuring throughput and generate mi-
crobenchmarks. We test our scenarios on different UEs, each
with varying traffic loads, and report the throughput and back-
logs observed with different scheduling algorithms presented
in Section 6.2. The validity of our results presented in Section
5.4 is confirmed using realistic channel traces (4 Turntable
UEs), shown in Table 5 and Figure 12(a). This provides evi-
dence in support of the hypothesis that real-time control can
significantly improve the system throughput.

Table 5: Load: 35Mbps, Channel Trace: 4 Turntable UEs

EdgeRIC 50ms 100ms
Max CQI Avg. Thrpt. 33.4 21.2 29.5

BL[MB] 1.34 0.84 1.12
Prop. Fair. Avg. Thrpt. 28.6 26.6 23.5

BL[MB] 1.20 1.29 0.93
Max Weight Avg. Thrpt. 33.2 28.8 31.0

BL[MB] 1.14 1.30 1.12

7.3 Impact of RL on Micro-benchmarks
We present compelling evidence for the feasibility, impact,
and robustness of RL in executing real-time control policies.

We begin by addressing the question of RL training in an
emulation environment, which is answered by the set of curves
in Figure 16 (appendix). These curves demonstrate that RL
training with realistic channel traces is highly efficient, with
an agent typically converging in just 20 to 40 iterations. The
potential of RL is evident from a series of figures that answer
important questions about its application.

Figure 12(b) shows us that RL can achieve higher through-
put than traditional algorithms, bringing us to answer: is RL
truly useful? This is further summarized in Table 6, which
displays the total system throughput and the mean of the total
backlog buffer for various scenarios, offering a snapshot of
the RL performance in real-time. The values displayed in the
table represent the throughput in Mbps (left) and the backlog
buffer in MBytes (right).

Reinforcement learning (RL) schemes can surpass tradi-
tional algorithms under specific conditions, such as varying
UE application loads where the max CQI strategy falls short.
Our RL algorithm, particularly PPO, adapts to mirror the max-
weight algorithm yet excels in scenarios like round-robin al-
locations, serving one UE per TTI. This approach contrasts
with max-weight’s fractional resource distribution across all
UEs, which, while based on a weight-control scheme, may
not always yield optimal results in environments with diverse
load demands.

Table 6: Throughput and Backlog Buffer Evaluation

PPO Max Weight Max CQI
Realistic Channel Traces
Scenario 1 29.1/0.38 26.1/0.53 14.9/0.39
Scenario 2 30.5/0.38 31.9/0.43 14.42/0.39
Scenario 3 25.3/1.5 22.9/1.3 18.67/0.97
Scenario 4 25.9/1.5 23.9/1.21 20.3/1.05
Scenario 5 28.5/0.96 26.3/1.46 23.3/1.01
Over the Air Experiments
Scenario 6 14.6/0.19 6.4/0.45 5.7/0.44
Scenario 7 19.33/0.05 10.71/0.34 9.06/0.35

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1325

a) Is real-time needed? b) Is RL useful? c) Does EdgeRIC
work in real world?

Table 7: RL specifications: Video Streaming

Figure 13: Snapshot of EdgeRIC performance for video streaming application

Figure 12(c) illustrates the transferability of RL models,
showing that a model trained in one scenario can adapt to
others with similar user numbers, highlighting its generaliz-
ability. Specifically, a model from a random walk scenario
was applied to both a 2 Drone UEs setup (Scenario 1) and
a combination of 2 Car UEs and 2 Turntable UEs (Scenario
2). The crucial question of RL’s real-world efficacy in re-
altime wireless control is affirmatively addressed in Figure
12(d). Real-world tests with EdgeRIC revealed that traditional
algorithms struggled with channel variability, impacting per-
formance. In contrast, the RL policy maintained system stabil-
ity and achieved consistent throughput, demonstrating RL’s
potential for performance gains in realtime scenarios.

7.4 Cross-Layer Optimization: Case Study
In this case study on enhancing video streaming performance
through cross-layer optimization, we set up a heterogeneous
environment with four users: two streaming high-quality
video from an HTTP server and two generating background
traffic with iPerf. We use the GPAC [20] library for DASH-
style video segments and define a stall event when the media
buffer drops below 2 seconds. The media buffer size, updated
every 40 milliseconds to match a 24fps video, is communi-
cated to EdgeRIC, along with network states at each TTI. To
simulate realistic conditions, we introduce a 20ms delay rep-
resenting uplink latency on srsRAN. An RL agent, trained
with EdgeRIC, aims to optimize video playout and resource
allocation, responding to both network and application states
to minimize video stalls.

The RL framework specifications for this setup are pre-
sented in Table 7. Here, apart from downlink backlog Bi[t],
and channel quality CQIi[t] of UE i, we augment the state
with the length of the media buffer (in seconds) of the video
streaming application of UE i, denoted MBi[t]. The reward
now depends on the stall performance of the applications,
with smooth playout receiving a positive reward, and a stall
receiving a large negative reward. We next conduct real-world
experiments on video streaming. Comparing the performance
of UE1 and UE2 controlled by the RL policy and the stan-
dard RAN scheduling algorithms in real-time, the RL policy
outperformed the standard algorithms by incorporating “ap-

plication awareness”, demonstrating its potential to provide a
quality of experience (QoE)-optimized solution with proper
training. Figure 13(b) summarizes this statement showing the
metrics observed by playing a video for 120s. Figure 13(c)
presents the results of our experiment, which evaluated the
stall performance of the video streaming application over the
air in a static environment with a one-streamer and one-loader
scenario for 30 s videos. We see that the RL trained policy
only has about a third of the stalls experienced by the other
approaches. Further, to answer the question if a cloud based
RIC can support a video streaming application under a highly
fluctuating channel condition, we implemented a variant of
the max weight scheduling algorithm (infused with the ap-
plication state, wi[t] =CQIi[t]Bi[t]/MBi[t]) and benchmarked
the stall performance for a 30s video. The result is depicted in
Figure 13(a) which clearly indicates that an application aware
real-time control outperforms a near-RT control approach.

8 Limitations and Future Work
We presented a platform EdgeRIC and its full stack emulator.
When combined together, we can train and deploy cross-layer
AI-optimization algorithms that can provide decision and
control at a TTI-timescale. Future directions of this work are:
Scale to 100s of users: Our demonstrations are with four
users, primarily due to the instability with our setup of
srsRAN for a larger number of UEs. However, we have shown
that EdgeRIC platform can send the messages for 100 UEs,
with a RAN to EdgeRIC latency of about 100µs (Figure 6).
That said, we have not tested over-the-air with support for
many more simultaneous UEs, which is key future work.
Mutliple base-stations: Our work has demonstrated perfor-
mance improvements for a single base-station. We anticipate
with multiple base-stations, we would have an EdgeRIC at-
tached to each base-station/DU, with Near-RT RIC coordi-
nating all the EdgeRIC instantiations. This would involve
problems in federated learning that we will explore.
Ethical concerns: Does not raise any ethical issues.
Acknowledgement: This work was funded in part by NSF
Grants CNS 2312978, CNS 1955696, ECCS 2030245, CNS
2312979 and ARO grant W911NF- 19-1-0367. All opinions
and findings are of the authors.

1326 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Luca Baldesi, Francesco Restuccia, and Tommaso
Melodia. ChARM: NextG spectrum sharing
through data-driven real-time O-RAN dynamic control.
arXiv:2201.06326, 2022.

[2] Dimitri P Bertsekas. Dynamic programming and op-
timal control, volume 1,2. Athena scientific Belmont,
MA, 2017.

[3] Rajarshi Bhattacharyya, Archana Bura, Desik Rengara-
jan, Mason Rumuly, Bainan Xia, Srinivas Shakkottai,
Dileep Kalathil, Ricky KP Mok, and Amogh Dhamd-
here. QFlow: A learning approach to high qoe video
streaming at the wireless edge. IEEE/ACM Transactions
on Networking, 30(1):32–46, 2021.

[4] Leonardo Bonati, Salvatore D’Oro, Stefano Basagni,
and Tommaso Melodia. SCOPE: An open and soft-
warized prototyping platform for NextG systems. In
Proceedings of the 19th Annual International Confer-
ence on Mobile Systems, Applications, and Services,
pages 415–426, 2021.

[5] Leonardo Bonati, Salvatore D’Oro, Michele Polese, Ste-
fano Basagni, and Tommaso Melodia. Intelligence and
learning in O-RAN for data-driven NextG cellular net-
works. IEEE Communications Magazine, 59(10):21–27,
2021.

[6] CurveZMQ. http://curvezmq.org/, 2023.

[7] Salvatore D’Oro, Michele Polese, Leonardo Bonati, Hai
Cheng, and Tommaso Melodia. dapps: Distributed ap-
plications for real-time inference and control in o-ran.
IEEE Communications Magazine, 60(11):52–58, 2022.

[8] Harish Kumar Dureppagari, Ujwal Dinesha, Raini Wu,
Santosh Ganji, Woo-Hyun Ko, Srinivas Shakkottai, and
Dinesh Bharadia. Realtime intelligent control for NextG
cellular radio access networks. In Proceedings of the
20th Annual International Conference on Mobile Sys-
tems, Applications and Services, pages 567–568, 2022.

[9] Xenofon Foukas, Navid Nikaein, Mohamed M. Kassem,
Mahesh K. Marina, and Kimon Kontovasilis. FlexRAN:
A flexible and programmable platform for software-
defined radio access networks. In Proceedings of the
12th International on Conference on Emerging Network-
ing EXperiments and Technologies, CoNEXT ’16, page
427–441, New York, NY, USA, 2016. Association for
Computing Machinery.

[10] Xenofon Foukas, Bozidar Radunovic, Matthew Balk-
will, and Zhihua Lai. Taking 5g ran analytics and con-
trol to a new level. In Proceedings of the 29th Annual

International Conference on Mobile Computing and
Networking, pages 1–16, 2023.

[11] Yu-Pin Hsu, Navid Abedini, Natarajan Gautam, Alex
Sprintson, and Srinivas Shakkottai. Opportunities for
network coding: To wait or not to wait. IEEE/ACM
Transactions on Networking, 23(6):1876–1889, 2014.

[12] Tianchi Huang, Rui-Xiao Zhang, Chao Zhou, and Lifeng
Sun. QARC: video quality aware rate control for real-
time video streaming based on deep reinforcement learn-
ing. In Proceedings of the 26th ACM international con-
ference on Multimedia, pages 1208–1216, 2018.

[13] Ish Kumar Jain, Raghav Subbaraman, and Dinesh Bhara-
dia. Two beams are better than one: Towards reliable
and high throughput mmwave links. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, SIG-
COMM ’21, page 488–502, New York, NY, USA, 2021.
Association for Computing Machinery.

[14] Ish Kumar Jain, Rohith Reddy Vennam, Raghav Sub-
baraman, and Dinesh Bharadia. mmFlexible: flexi-
ble directional frequency multiplexing for multi-user
mmWave networks. arXiv preprint arXiv:2301.10950,
2023.

[15] Petteri Kela, Thomas Höhne, Teemu Veijalainen, and
Hussein Abdulrahman. Reinforcement learning for de-
lay sensitive uplink outer-loop link adaptation. In 2022
Joint European Conference on Networks and Communi-
cations 6G Summit (EuCNC/6G Summit), pages 59–64,
2022.

[16] Woo-Hyun Ko, Ushasi Ghosh, Ujwal Dinesha, Raini Wu,
Srinivas Shakkottai, and Dinesh Bharadia. EdgeRIC:
Delivering realtime RAN intelligence. In Proceedings
of the ACM SIGCOMM 2023 Conference, pages 1162–
1164, 2023.

[17] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and
Sachin Katti. SpotFi: Decimeter level localization using
WiFi. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIG-
COMM ’15, page 269–282, New York, NY, USA, 2015.
Association for Computing Machinery.

[18] Merima Kulin, Tarik Kazaz, Ingrid Moerman, and Eli
De Poorter. End-to-end learning from spectrum data:
A deep learning approach for wireless signal identifica-
tion in spectrum monitoring applications. IEEE Access,
6:18484–18501, 2018.

[19] Panqanamala Ramana Kumar and Pravin Varaiya.
Stochastic systems: Estimation, identification, and adap-
tive control, volume 75. SIAM, 2015.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1327

http://curvezmq.org/

[20] Jean Le Feuvre, Cyril Concolato, and Jean-Claude
Moissinac. GPAC: open source multimedia framework.
In Proceedings of the 15th ACM International Confer-
ence on Multimedia, MM ’07, page 1009–1012, New
York, NY, USA, 2007. Association for Computing Ma-
chinery.

[21] Changqing Luo, Jinlong Ji, Qianlong Wang, Xuhui
Chen, and Pan Li. Channel state information predic-
tion for 5g wireless communications: A deep learning
approach. IEEE Transactions on Network Science and
Engineering, 7(1):227–236, 2020.

[22] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural adaptive video streaming with pensieve. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 197–210. ACM,
2017.

[23] Mehrtash Mehrabi, Mostafa Mohammadkarimi, Masoud
Ardakani, and Yindi Jing. Decision directed channel
estimation based on deep neural network k -step predic-
tor for mimo communications in 5G. IEEE Journal on
Selected Areas in Communications, 37(11):2443–2456,
2019.

[24] Tommaso Melodia, Stefano Basagni, Kaushik R.
Chowdhury, Abhimanyu Gosain, Michele Polese, Pe-
dram Johari, and Leonardo Bonati. Colosseum, the
world’s largest wireless network emulator. In Proceed-
ings of the 27th Annual International Conference on Mo-
bile Computing and Networking, MobiCom ’21, page
860–861, New York, NY, USA, 2021. Association for
Computing Machinery.

[25] Arupa Mohapatra, Natarajan Gautam, Srinivas Shakkot-
tai, and Alex Sprintson. Network coding decisions for
wireless transmissions with delay consideration. IEEE
Transactions on Communications, 62(8):2965–2976,
2014.

[26] Mustafa Mohsin, Jordi Mongay Batalla, Evangelos Pal-
lis, George Mastorakis, Evangelos K. Markakis, and
Constandinos X. Mavromoustakis. On analyzing beam-
forming implementation in O-RAN 5G. Electronics,
2021.

[27] Kanthi Nagaraj, Dinesh Bharadia, Hongzi Mao, Sandeep
Chinchali, Mohammad Alizadeh, and Sachin Katti.
Numfabric: Fast and flexible bandwidth allocation in dat-
acenters. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, page 188–201, New York,
NY, USA, 2016. Association for Computing Machinery.

[28] Khaled Nakhleh, Santosh Ganji, Ping-Chun Hsieh, I-
Hong Hou, and Srinivas Shakkottai. NeurWIN: Neural
Whittle index network for restless bandits via deep RL.

In Thirty-Fifth Conference on Neural Information Pro-
cessing Systems, 2021.

[29] Ali ParandehGheibi, Muriel Médard, Asuman Ozdaglar,
and Srinivas Shakkottai. Access-network association
policies for media streaming in heterogeneous environ-
ments. In 49th IEEE Conference on Decision and Con-
trol (CDC), pages 960–965. IEEE, 2010.

[30] Jounsup Park, Philip A. Chou, and Jenq-Neng Hwang.
Rate-utility optimized streaming of volumetric media
for augmented reality. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 9(1):149–162,
2019.

[31] Ali Parsa, Neda Moghim, and Pouyan Salavati. Joint
power allocation and mcs selection for energy-efficient
link adaptation: A deep reinforcement learning approach.
Comput. Netw., 218(C), dec 2022.

[32] Michele Polese, Leonardo Bonati, Salvatore D’Oro, Ste-
fano Basagni, and Tommaso Melodia. ColO-RAN: De-
veloping Machine Learning-based xApps for Open RAN
Closed-loop Control on Programmable Experimental
Platforms. IEEE Transactions on Mobile Computing,
pages 1–14, July 2022.

[33] Vivek Raghunathan, Vivek Borkar, Min Cao, and
P Roshan Kumar. Index policies for real-time multi-
cast scheduling for wireless broadcast systems. In IEEE
INFOCOM 2008-The 27th Conference on Computer
Communications, pages 1570–1578. IEEE, 2008.

[34] Javad Razavilar, KJ Ray Liu, and Steven I Marcus.
Jointly optimized bit-rate/delay control policy for wire-
less packet networks with fading channels. IEEE Trans-
actions on Communications, 50(3):484–494, 2002.

[35] Robert Schmidt, Mikel Irazabal, and Navid Nikaein.
Flexric: An SDK for next-generation sd-rans. In
Proceedings of the 17th International Conference on
Emerging Networking EXperiments and Technologies,
CoNEXT ’21, page 411–425, New York, NY, USA,
2021. Association for Computing Machinery.

[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms, 2017.

[37] Stefania Sesia, Issam Toufik, and Matthew Baker. LTE-
the UMTS long term evolution: from theory to practice.
John Wiley & Sons, 2011.

[38] S. Shakkottai and R. Srikant. Network optimization
and control. Foundations and Trends in Networking,
2(3):271–379, 2007.

[39] srsRAN, Inc. https://www.srslte.com/, 2023.

1328 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.srslte.com/

[40] Raghav Subbaraman, Yeswanth Guntupalli, Shruti Jain,
Rohit Kumar, Krishna Chintalapudi, and Dinesh Bhara-
dia. BSMA: Scalable LoRa networks using full duplex
gateways. In Proceedings of the 28th Annual Interna-
tional Conference on Mobile Computing And Network-
ing, MobiCom ’22, page 676–689, New York, NY, USA,
2022. Association for Computing Machinery.

[41] Leandros Tassiulas and Anthony Ephremides. Stability
properties of constrained queueing systems and schedul-
ing policies for maximum throughput in multihop radio
networks. In 29th IEEE Conference on Decision and
Control, pages 2130–2132. IEEE, 1990.

[42] Pratheek S. Upadhyaya, Aly S. Abdalla, Vuk Marojevic,
Jeffrey H. Reed, and Vijay K. Shah. Prototyping next-
generation O-RAN research testbeds with SDRs, 2022.

[43] Gongwei Xiao, Muhong Wu, Qian Shi, Zhi Zhou, and
Xu Chen. DeepVR: deep reinforcement learning for
predictive panoramic video streaming. IEEE Transac-
tions on Cognitive Communications and Networking,
5(4):1167–1177, 2019.

[44] Lin Zhang, Junjie Tan, Ying-Chang Liang, Gang Feng,
and Dusit Niyato. Deep reinforcement learning-based
modulation and coding scheme selection in cognitive
heterogeneous networks. IEEE Transactions on Wireless
Communications, 18(6):3281–3294, 2019.

[45] Yuanxing Zhang, Pengyu Zhao, Kaigui Bian, Yunxin
Liu, Lingyang Song, and Xiaoming Li. DRL360: 360-
degree video streaming with deep reinforcement learn-
ing. In IEEE INFOCOM 2019-IEEE Conference on
Computer Communications, pages 1252–1260. IEEE,
2019.

A Appendix

In the appendix, we provide additional results for different sce-
narios, which are not critical to the performance but provide
visibility into the system.

0 50 100 150 200 250 300
Timescale [TTI]

0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 T
hr

ou
gh

pu
t[M

bp
s]

Proportional Fair Scheduling

0 50 100 150 200 250 300
Time Scale (TTI)

0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 T
hr

ou
gh

pu
t [

M
bp

s]

Max Weight Scheduling

EdgeRIC
Near RT RIC

Figure 14: EdgeRIC Performance in a 4UE synthetic channel
scenario.

Figure 14 shows that EdgeRIC outperforms Near Real-
time RIC for implementation of microbenchmarks. This is
the scenario with 4UEs on a synthetic channel trace. We
implemented Proportional Fair Scheduling and Max Weight
Scheduling as a µApp in EdgeRIC which exchanges state
information and actions with RAN Stack over ZeroMQ-based
communication. In order for performance comparison, we im-
plemented Near RT RIC by imposing delays in message deliv-
eries between RIC and RAN. We used synthetic CQI traces for
4 UEs and evaluated each algorithm’s performance by compar-
ing their average throughput. The graph on the left side shows
average throughput of Proportional Fair Scheduling and the
graph on the right side shows one of Max Weight Scheduling.
A blue line in the graphs are for EdgeRIC while a red line for
Near RT RIC. As Near RT RIC showed low average through-
put due to the delay, EdgeRIC successfully supported those
microbenchmarks to achieve their best throughput.

Table 7: Load: 30Mbps, Channel: 4UE synthetic channel

EdgeRIC 15ms 30ms
Max CQI Avg. Thrpt. 26.3 16.4 15.9

BL[MB] 1.22 1.25 1.27
Prop. Fair. Avg. Thrpt. 24.27 22.72 20.15

BL[MB] 1.37 1.08 1.27
Max Weight Avg. Thrpt. 25.4 19.8 19.1

BL[MB] 1.33 1.05 0.99

Table 8: Throughput and Backlog Buffer evaluation of syn-
thetic traces

PPO Max Weight Max CQI
Synthetic Channel Traces
Scenario 1 27.8/0.38 25.6/0.38 19.0/0.38
Scenario 2 27.5/0.33 24.7/0.51 18.9/0.38
Scenario 3 26.8/0.38 25.2/0.51 25.2/0.76

Figure 15 shows the real-time CQI traces we collected to
characterize various CQI mobility in different environments.
An x-axis is time in TTI unit and a y-axis is CQI showing real-
time channel quality. The report period of CQI values was 2
TTI period which is approximately 2 mili-seconds. While a
mobile robot has some drops in its CQI traces due to the radio
block by the lid of the laptop mounted on the mobile robot
when rotating, drone’s swift motions caused radical ups and
downs in its CQI traces. In car’s CQI traces, its variation has
a characteristic of a long period and smooth curves because
of its slow acceleration and deceleration. For a turntable, we
was able to generate fast angular acceleration which caused
drastic and kind of periodic changes in its CQI traces by fast
rotation.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1329

0 1000 2000
Time [TTI]

5

10

15

C
Q

I

Mobile Robots

0 1000 2000
Time [TTI]

5

10

15

C
Q

I

Drone

0 1000 2000
Time [TTI]

5

10

15

C
Q

I

Car

0 1000 2000
Time [TTI]

5

10

15
C

Q
I

Turntable

Figure 15: CQI Trace for different UEs

Figure 16 shows the training curves of RL PPO policy
model and its throughput evaluations on DigitalTwin. The
graphs in the first column illustrate the training curve for each
scenario. We trained the policy network of RL for Scenario 1,
3 and 5 which are 2 Drone UEs, 2 Car UEs and 2 Drone UEs,
and 2 Random Walk UEs and 2 Turntable UEs cases. We
used specific CQI trace data to emulate channel conditions
for individual scenarios. To train an RL agent using PPO, we
designed a reward function to maximize throughput for gen-
eral scenarios. Each iteration, we sampled 5000 data samples
including previous state, previous action and current state at
each iteration and updated policy network until the reward
saturates. Most transient periods for training were less than 40
iterations and the training curves converged for all scenarios.
The graphs in the second column describe the throughput
evaluation of the trained policy model. In each graph, we
compared the throughput of PPO to the ones of Max Weight
and max CQI. In each algorithm, a red bar means the mean
of its throughputs and a blue box their range. PPO obviously
outperformed Max CQI, and even achieved almost the same
throughput performance as Max Weight, which is usually con-
sidered as an optimum policy, with somehow higher ranges
than Max Weight.

Scenario 1

0 20 40 60 80 100

Training Iteration

10

15

20

25

30

35

R
ew

ar
d

-
T

hr
ou

gh
pu

t [
M

bp
s]

PPO

M
ax

 W
eig

ht

M
ax

 C
QI

0

10

20

30

A
ve

ra
ge

 T
hr

ou
gh

pu
t [

M
bp

s] Throughput Evaluation

Scenario 3

0 20 40 60 80 100

Training Iteration

15

20

25

30
R

ew
ar

d
-

T
hr

ou
gh

pu
t [

M
bp

s]

PPO

M
ax

 W
eig

ht

M
ax

 C
QI

0

10

20

30

A
ve

ra
ge

 T
hr

ou
gh

pu
t [

M
bp

s]

Throughput Evaluation

Scenario 5

0 20 40 60 80 100

Training Iteration

24

25

26

27

28

29

30

R
ew

ar
d

-
T

hr
ou

gh
pu

t [
M

bp
s]

PPO

M
ax

 W
eig

ht

M
ax

 C
QI

0

10

20

30
A

ve
ra

ge
 T

hr
ou

gh
pu

t [
M

bp
s]

Throughput Evaluation

Figure 16: Can RL train and evaluate on EdgeRIC emulator?

1330 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ADR-X: ANN-Assisted Wireless Link Rate Adaptation for Compute-Constrained
Embedded Gaming Devices

Hao Yin*

University of Washington
Murali Ramanujam*

Princeton University
Joe Schaefer

Microsoft
Stan Adermann

Microsoft

Srihari Narlanka
Microsoft

Perry Lea
Microsoft

Ravi Netravali
Princeton University

Krishna Chintalapudi
Microsoft Research

Abstract
The wireless channel between gaming console and accessories
e.g. controllers and headsets, experiences extremely rapid
variations due to abrupt head and hand movements amidst
an exciting game. In the absence of prior studies on wireless
packet losses for console gaming, through extensive evalua-
tions and user studies, we find that state-of-the-art rate adap-
tation schemes, unable to keep up with these rapid changes,
experience packet loss rates of 2-10% while loss rates that
are 10× lower (0.1-0.5%) are required to ensure a high qual-
ity gaming experience. We present ADR-X, an ANN-based
contextual multi-armed bandit rate adaptation technique that
continuously predicts and tracks the channel and picks appro-
priate data rates. A key challenge for ADR-X is that it must
run on power and compute constrained embedded devices
under realtime constraints. ADR-X addresses this challenge
by meticulously crafting an ANN that leverages existing com-
munication theory results to incorporate domain knowledge.
This allows ADR-X to achieve 10× lower packet losses than
existing schemes while also running 100× faster than state-
of-the-art reinforcement learning schemes, making it suitable
for deployment on embedded gaming devices.

1 Introduction
Gaming is a $200 billion industry experiencing a rapid up-
ward trajectory in growth. A typical gaming setup comprises
a gaming console/PC located within 10 feet of the gamer. Dur-
ing gameplay, various gaming accessories such as controllers
with joysticks and buttons [42,65], headphones or specialized
headsets for audio, VR, or AR [43, 66] connect to the console
either via cables or wireless (Figure 1). The console continu-
ously receives player inputs, such as button interactions and
joystick maneuvers, and adjusts the game state in real-time.
Subsequently, it generates and dispatches audio, video, and
tactile feedback (like haptic responses) to the respective con-
nected accessories. The accessories are typically power and

* These authors contributed equally to this work.

Figure 1: A typical gaming setup.

compute constrained embedded devices e.g. Xbox controllers
use 250-600MHz ARM based processors [1].

Despite wired headsets/headphones impeding free move-
ment, ardent gamers today, prefer wired over wireless connec-
tivity as Wi-Fi1 packet losses deteriorate game audio/video
quality. Prior user studies have determined that packet loss
rates < 0.5% are necessary for a high quality gaming au-
dio/video experience [58, 70]. However, these studies were
conducted in the context of internet game streaming assuming
independent (Bernoulli) packet losses over wired connections.
To the best of our knowledge, no prior study examines the
nature and effect of packet losses in a console gaming session
over wireless links between the accessories and the console.

Amidst an exciting game (e.g. car racing or first person
shooter games), the constant jerky hand (controller) and head
(headset) movements of the gamer, rapidly affect the wire-
less channel resulting in up to 15dB signal strength variations
within 50-100ms (Sec 3.2) – 5−10× faster than usual Wi-Fi
usage scenarios. We find that these rapid changes result in
increased packet losses as the wireless Adaptive Data Rate
(ADR) schemes are too slow to react. We also find that packet
losses occur in succession, pairs and triplets, ≈ 50% of the
time (rather than independently as previous user studies as-
sumed). We conduct the first user study to quantify the effect
of successive packet losses on gaming audio/video experience
and find that (Sec. 3.3) consecutive losses are in fact more
perceptible than random isolated losses; e.g. with 2-3 consec-
utive losses, gamers negatively perceive loss rates as low as

1Although some existing gaming platforms adopt Bluetooth Low Energy
(BLE) for connectivity, low throughput and high congestion in 2.4 GHz
results in large latency, poor scalability.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1331

0.1% for VR, a harsher requirement than that suggested by
prior studies.We have obtained an IRB for this study.

While there exists a vast literature of wireless ADR
schemes (Sec. 2.2), they have neither been tested nor designed
for these severe gaming conditions. It is therefore no surprise
that in our extensive evaluations (Table 1) of the state-of-the-
art ADR techniques, as well as from traces collected from
off-the-shelf gaming devices, we find 1− 10% packet loss
during an active gaming session, falling well short of the
desirable packet loss target.

Our key contribution is a novel wireless ADR technique,
ADR-X, that achieves 10× lower packet losses (0.1-0.3%)
than state-of-the-art during gaming conditions and an order
of magnitude lesser consecutive packet losses by “closely” fol-
lowing and predicting the wireless channel dynamics. ADR-X
takes a hybrid approach – it leverages the well established
analytical results from communication theory alongside an Ar-
tificial Neural Network (ANN) based contextual multi-armed
bandit. It employs online learning to implicitly model, predict
and adapt continuously to host radio hardware, background
interference conditions and gamers’ physical movement pat-
terns that are hard/impossible to model analytically. As we
demonstrate in our evaluations (Sec. 5.2), reinforcement learn-
ing approaches that do not leverage domain knowledge (e.g.
PPO [60]) run 100× slower than ADR-X and are unable to
meet the real-time and low compute constraints imposed by
the embedded gaming accessories.

Designing an ADR scheme that can predictively determine
the ideal data rate under the fast changing gaming channel
conditions poses two key challenges:
Wireless gaming channels are hard to predict analytically.
Communication theory provides analytical functions that can
accurately predict packet error rates over a wired medium [50].
Wireless channels however are far less amenable to modelling
and prediction due to frequency selective fading that changes
rapidly as the gamer changes hand and head orientations dur-
ing gameplay and unpredictable background interference. As
we discuss in Section 2.2 prior attempts [18] to analytically
predict packet loss are extremely sensitive to small calibration
and measurement errors, background interference, wireless
channel asymmetry due to differences between transmitter
and receiver radios, variations due to radio circuit compo-
nents such as Automatic Gain Control (AGC), etc. ADR-X
leverages the capability of ANNs to model and adapt to the
intractable effects of the wireless channel and gamer’s move-
ments in a data-driven manner.
Computation, power and real-time Constraints. (Sec. 4.2)
Gaming accessories e.g. controllers, headphones and headsets,
are low power embedded devices with limited computation
capabilities. For example, Xbox controllers uses 250MHz
ARM processors [42] and employ sleep duty-cycling roughly
1 out of 8ms to save power. A naive strawman approach might
be to employ ANN based online reinforcement learning to

predict the appropriate data rate. However, as our evaluations
show (Sec. 5.2), this approach proves to be extremely compu-
tationally demanding and unsuitable for embedded gaming
devices. The key insight in the design of ADR-X is to rely on
an ANN to model only the intractable effects while leveraging
the predictive power of analytical models used in wired com-
munication channels. This relieves the ANN from the burden
of re-learning well-known communication theoretical results,
making it more accurate and computationally economical.
ADR-X overview. ADR-X employs a contextual multi-armed
bandit architecture (Sec. 4.1) that comprises three stages. The
first stage is an ANN that transforms the wireless channel
measurements (e.g. Signal to Noise Ratio (SNR), Channel
State Information (CSI)) into an equivalent wired channel con-
ducted SNR – CSNR, by implicitly and continuously learn-
ing to model the latent effects such as background interfer-
ence, calibration errors, wireless channel asymmetry, hard-
ware/firmware specifics and gamer movements. The second
stage then leverages communication theory results to predict
packet success rates for each of the possible data rates. In
practice, to facilitate efficient gradient descent-based learn-
ing, we approximate the complex analytical communication
theory models in the second stage using sigmoid functions
(used commonly in training ANNs) with fixed pre-computed
parameters. Finally, the third stage uses an ε−greedy sam-
pling approach commonly used in multi-armed bandits to
pick a suitable data rate. Further, as described in Section 4.2,
ADR-X employs Wi-Fi domain specific feature engineering
for the ANN to allow for a small ANN architecture.
Dealing with survivorship bias. When packets are lost, so
are the associated channel measurements used to train the
ANN. This leads to survivorship bias [63] i.e. the ANN learns
only from successful examples leading to poor performance.
To solve these problems ADR-X uses a specially crafted
re-transmission strategy (Sec. 4.4) with stepped reductions
in data rate for each subsequent re-transmission that serves
as “training wheels” by providing second (or third) chances.
When an ACK is received after one (or more) retries, ADR-
X obtains negative examples corresponding to prior losses
and channel state. As ADR-X learns, its reliance on these
“training wheels” diminishes. Further, ADR-X uses imputa-
tion techniques [14] such as interpolation when packets are
lost despite the re-transmissions.
Quick start using pretrained/federated models. Starting
from a random initialization, when the player plays for the
first time, ADR-X takes about 50s of gameplay to learn and
converge (Sec. 5.3). We find that techniques such as (i) pre-
training the ANN on IEEE channel simulations, and (ii) using
federated model weights from other gamers or prior sessions
reduce this to about 20s. Further, this time reduces to about
10s after a few gaming sessions. The stepped re-transmission
strategy (described earlier) helps ADR-X in these initial few
seconds to overcome high packet losses.

1332 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Summary of contributions.
• We provide the first user study and insights on the nature

of packet losses for console-accessory wireless links and
their effect on the gaming audio/video experience (we
have obtained an IRB for the study). We show that ex-
isting wireless ADR schemes are unable to adapt “fast
enough” in response to the high dynamism of gaming
wireless channels resulting in successive losses rather
than isolated incidents. To the best of our knowledge, our
user study is the first to highlight that the traditionally ac-
cepted target loss rate of 0.5% for individual losses should
be supplemented by 0.1% for successive losses.

• We propose ADR-X, an ANN assisted contextual multi-
armed bandit based novel adaptive data rate scheme that is
suited for power and compute constrained embedded gam-
ing accessories. ADR-X predictively adjusts data rates
based on the history of channel wireless measurements
and packet losses.

• We evaluate ADR-X extensively across 20 diverse games*,
including multiple genres such as First Person Shooter
(FPS), racing, and action. In real-world experiments with
practical hardware, under extensive comparisons against
a bevy of state-of-the-art ADR baselines including sev-
eral ML based approaches, ADR-X is the only scheme
to achieve 0.1−0.3% packet loss on hardware matching
Xbox accessory clock speeds of 250-600MHz.

2 Background and Related Work

Signal to Noise Ratio (SNR) η, determines the data rate at
which bits can be successfully sent over a communication
channel. A data rate too high causes bits to be lost, and a
data rate too low is wasteful in terms of time and energy.
Since wireless channel conditions vary significantly over time;
Adaptive Data Rate (ADR) techniques aim to adapt data rate
to these changes by choosing the most appropriate data rate.
The Modulation Coding Scheme (MCS) index, a number be-
tween 0 to 9, in Wi-Fi determines the data rate of transmission
– the higher the MCS index, the higher the data rate. For each
MCS index m, communication theory allows the bit error rate
to be calculated analytically using a function berm(η) [16].

2.1 Channel Measurements
In OFDM [49] modulation used by Wi-Fi, a 20MHz channel
is split into 52 sub-carriers (sub-channels) in 802.11n and 242
sub-carriers in 802.11ax. Bits in a packet are spread out and
transmitted over these sub-carriers.
CSI. A radio wave transmitted over the ith sub-carrier un-
dergoes changes in amplitude and phase represented by a

* Full list of games with media samples exhibiting the impact of packet
losses is at https://muralisr.github.io/ADRX/.

complex number ci. Channel State Information (CSI) collects
all these values into a vector c =< c1, · · · ,cC >. While all Wi-
Fi radios have to necessarily measure CSI for each received
packet to decode, not all radio hardware/firmware provides
access to CSI information through an API.
RSS. Almost all radios provide Received Signal Strength
(RSS) measured in dBm, for each received packet – this mea-
sures the power level (strength) of a received signal.
SNR. Some radio APIs provide SNR, η (in dB) for each
packet. SNR and RSS in dB are related to each other as [18]

SNR = RSS−NF−AGC (1)

In Eqn. (1) NF is the noise floor of the radio and AGC is
Automatic Gain Control of the radio which is a dynamic
gain introduced by the radio circuit. While some radio APIs
provide Noise Floor (in dBm) of the radio [22,52], they do not
provide AGC. In practice computing SNR using RSS and NF
without accounting for AGC can lead to several dB of error.
SNR per subcarrier. As prior work [18] demonstrates, SNR
is an extremely poor predictor for packet loss due to frequency
selective fading, as each sub-carrier experiences a different
SNR and hence experiences a different bit-error rate. The
success or failure of a packet depends on the aggregate success
of all the bits transmitted across all the sub-carriers. The SNR
of the kth sub-carrier, ηk can be computed by scaling η by the
kth component of unit vector of c,

ζk = C
∑i ∥ci∥2 ∥ck∥

ηk = η−10log10 ζk
(2)

Effective SNR (ESNR). In channels undergoing frequency
selective fading, to tackle the ineffectiveness of SNR in pre-
dicting packet rate, [18] introduces ESNR (ηesnr). It summa-
rizes the per-subcarrier values < η1, · · · ,ηC > into a single
value to represent an equivalent SNR value corresponding
to a flat-fading channel (a channel without frequency selec-
tive fading) by treating the wireless channel to be composed
of several narrow wired channels, one for each sub-carrier.
Thus, for each MCS index m, [18] suggests computing ηesnr
analytically by calculating the average bit rate across all the
sub-carriers,

ηesnr = ber−1
d

(
i=C

∑
i=1

berd(ηi)

)
(3)

ESNR Computation is sensitive and error prone. Calibra-
tion errors and measurement errors of a few dB in CSI, RSS,
noise floor, or SNR are common in all radios. Further, berm
functions are exponential (based on the Q function) with very
sharp transitions from 0 to 1 within 2-3 dB. This makes ESNR
computation extremely sensitive to even small errors – 2-3
dB error can result over 10dB error in effective SNR. Conse-
quently, subsequent work [13] uses an exponentially weighted
mean of ηi, which is estimated during an initial calibration
phase, rather than relying on Eqn. (3).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1333

https://muralisr.github.io/ADRX/

2.2 Existing ADR Techniques
In this paper, we broadly classify ADR techniques into re-
active and proactive ADR techniques. The former relies on
recent packet loss and re-transmission statistics (e.g. using
running average estimates). The latter makes use of channel
measurements such as RSS, SNR, CSI etc. to make a timely
choice based on the current state of the channel. Further,
several recent ADR techniques, both reactive and proactive,
employ ML to cope with vagaries of the wireless channel.
Reactive techniques. ARF [27], AARF [35], and CARA [31]
gradually increase or decrease the rate based on the success
or failure of consecutive transmission results. Several rate
control algorithms are designed to optimize specific metrics
instead of losses only e.g. average transmission time [5, 71],
frame loss ratio [36, 48, 73, 74], bit error rate [64, 69] and
throughput [9, 17, 47, 72, 75].
Reactive techniques Using ML. NeuRA [30] and MLRA
[39] attempt to reduce sampling overhead by using a neural
network model to predict the throughput of unsampled data
rate. Thompson Sampling [34] uses a multi-armed bandit
approach to improve the sampling of different data rates. As
discussed in Section 3.2, reactive techniques in general are too
slow and are unable to keep pace with the channel dynamism
during gaming, leading to a poor gaming experience.
Proactive or channel measurement-based techniques. [33]
uses RSS while [12, 21, 26, 38, 54, 56, 61, 68] use SNR mea-
surements from received packets to dynamically adjust trans-
mission rates. As discussed in Section 2.1 the performance
of these schemes is limited by the fact that RSS and SNR do
not take into account the effects of frequency selective fading.
While ESNR-based techniques [18] account for frequency se-
lective fading, as discussed in Section 2.1 their performance
is limited due to the sensitivity of ESNR computation to
hardware calibration errors and the requirement of offline
calibration for each device.
Proactive schemes using ML. Recently, researchers have
demonstrated the potential use of ML in proactive schemes
through Simulation studies [28, 29, 39, 53]. To the best of
our knowledge, EDRA [11] is the only existing implemented
proactive ML-based ADR scheme. EDRA uses reinforcement
learning, aiming to maximize throughput through joint rate
and bandwidth adaptation by using Deep Q-Learning [19]
with SNR, loss rates, and service times as inputs. However,
EDRA imposes severe computational requirements – even a
single inference takes 1.3-3.7ms on high-performance CPUs
like i7-8700 and i5-6200U.

3 Packet Losses in Gaming
In this section, we analyze wireless packet losses during active
gaming sessions. We show how off-the-shelf ADR schemes
are unable to keep up with the highly dynamic gaming wire-
less channel and cause multiple consecutive packet losses.

We then describe our user studies that show users are more
sensitive to multiple consecutive losses than isolated ones.

0

500

1000

1500

P
a

c
k

e
t

S
iz

e
 [

B
y

te
s

]

0 10 20 30

Time [ms]

UL Audio

DL Audio

Controller

Figure 2: Xbox traffic.

0

500

1000

1500

P
a

c
k

e
t

S
iz

e
 [

B
y

te
s

]

0 10 20 30 40 50 60

Time [ms]

UL Head/Controller Tracking

DL Burst Video Frames

0

500

1000

1500

13 13.5 14

Figure 3: VR traffic.

3.1 Gaming Traffic Patterns
To understand packet flow in gaming traffic, we collect packet
traces for Xbox [41] and Oculus [40] Quest 2 using a sniffer
during multiple gaming sessions – we highlight the results
from two games (out of the 20 games in our corpus) Cross-
FireX (Xbox) and Robo-Recall (Oculus Quest 2), but we note
that trends persist across games. As seen in Figure 2, the
Xbox console transmits one PCM game audio packet (1646
bytes), receives one chat audio packet (492 bytes) and one
game input packet (88 bytes) every 8ms. In VR traffic (Fig-
ure 3), a burst of roughly 50 packets (total of about 500Kb)
comprising game video and audio are transmitted once every
16.6ms (corresponding to 60Hz video frame refresh rate). A
headset tracking packet (326 bytes) is transmitted every 8ms.

3.2 Packet Losses During Gaming
In this sub-section, our goal is to gain insights into how wire-
less packet losses occur during an active gaming session.

Figure 4: The setup for con-
sole gaming experiments.

Figure 5: The setup for VR
gaming experiments.

Measurement methodology. In order to emulate Xbox and
Oculus Quest 2 radio firmware for controlled experiments, we
collect and replay game traces between two PCs. We affix an-
tennas on the console/desktop and the controller (since players
connect to the headset via an audio jack from the controller)
and VR headset (Figure 4, 5). We ask the gamers to play a
game using the controller/headset with the affixed antenna.
This allows the antenna to experience the same head/hand
motions as the headset/controller. When actual gaming traf-
fic is exchanged between the controller/headset and the con-
sole/desktop during a gaming session, we transmit gaming
traffic traces in an interference-free DFS channel [45] between

1334 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 6: Channel, 50%ile SNR, re-transmissions, Losses and MCS
for Xbox Traffic.

4300 4400 4500 4600 4700 4800 4900 5000 5100 5200

Time (ms)

0

10

20

5
0

%
il

e
 S

N
R

[d
B

]

P50 SNR

Loss

Retransmission

4200 4400 4600 4800 5000 5200

Time [ms]

3
4
5
6
7

M
C

S

80ms 80ms

A CB D

Figure 7: Rate adaptation is unable to keep up with rapid channel
changes causing a cluster of losses.

the two PCs. We use PicoScenes toolbox [24, 25] to capture
the transmitted packets and measure their CSI and SNR. We
use these measurements to compute individual SNRs for each
of the 52 Wi-Fi sub-carriers as described in Section 4.2. We
consider three scenarios.
• static – the controller/headset is static, on a table about 5

feet from the transmitter in an empty room
• people movement – the controller/headset is static on a

table 5 feet from the transmitter but with a person walking
around in the room.

• game play – a gamer actively plays using the controller/
headset 5 feet from the transmitter (Figure 4, 5).

Observations. Figure 6 depicts the SNR heatmap for each of
the 52 Wi-Fi sub-carriers spanning a 20MHz Wi-Fi channel
as a function of time for each of the three scenarios. Figure 6
also depicts the instantaneous 50%ile SNR across all the sub-
carriers. This is based on the intuition that a packet loss in
Wi-Fi will occur when a “significant” fraction of sub-carriers
experience fading (low SNR) so that error correction is unable
to recover the correct bits. We also plot packet re-transmission
events and loss events (when the re-transmission fails) and
the MCS index (data rate) chosen by the native ADR scheme
in an off-the-shelf device.

In the static scenario, the wireless channel is excellent with
all the sub-carriers having an SNR of 30dB or higher with
no losses or re-transmissions. In the people movement sce-
nario, the channel sees variations with time due to changes
in multi-path reflections, and occasional packet losses. When
the gamer holds the controller or wears the headset and starts
playing the game, the channel changes rapidly, leading to a
large number of re-transmissions and packet losses. The ADR
scheme shows large frequent variations in MCS Index.
Data rate adaptation is unable to keep up. Figure 7 shows
a zoomed 1s section of the wireless channel for the playing
scenario between 4.2 to 5.2 seconds. The 50%ile SNR across
subcarriers shows a variation of over 15dB with a rapid de-
cline of up to 10dB within 80ms in sections AB and CD. The
interesting observation in Figure 7 is that while the channel
is degenerating, as seen by the decreasing trend in the 50%ile
SNR in AB and CD, the ADR scheme actually increases data

rates (MCS Index) and then starts reducing it when the chan-
nel SNR is improving – the exact opposite of the desired
behavior. This is because of the native ADR scheme, which
is reactive, i.e. relies on recent packet re-transmission and
loss statistics (e.g. running average) to adapt data rate. Before
A, the channel 50%ile SNR improves by almost 15dB within
a matter of 70ms. Based on the running average, after A, as
the channel deteriorates, the data rate is increased causing a
cluster of packet re-transmissions and losses. After B, even
though the channel has an improving trend, data is decreased
due to the history of failures.
Consecutive packet losses. As seen from Figure 7, due to
ADR’s reaction lag, packet losses occur in clusters and con-
secutive packets are lost when channel conditions change
rapidly. Figure 8 shows the distribution of the number of con-
secutive losses for different distances between the controller
and console. As seen from the figure, about 55-65% (100%-
fraction of single packet losses) of all the packet losses occur
with two or more packets lost consecutively. Our experiments
with the VR headset (elided for space constraints) also show
a similar cluster of losses.

3.3 Effect of Consecutive Packet Losses
Prior studies [7, 10, 57, 58, 70] in the context of internet game
streaming have shown that Bernoulli (independently occur-
ring) packet loss rates beyond 0.5% deteriorates audio/video
quality for online gaming. However, to the best of our knowl-
edge, there has not been a study quantifying the effect of con-
secutive packet losses on audio/video quality in a wireless
console gaming setup. Thus, we conduct a study to measure
the effect of consecutive packet losses on gaming audio and
video.
Test data. For our study, we chose 30 Xbox game audio
clips each 15s long, and 60 VR game video clips each
5s long as our original data set. These clips were drawn
from the games in our corpus comprising 15 popular Xbox
games and 5 popular VR games including racing, First Per-
son Shooter (FPS), and other action games(full list of games
with media samples exhibiting the impact of packet losses
is at https://muralisr.github.io/ADRX/). Audio data
is streamed as PCM audio packets (similar to Xbox) with

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1335

https://muralisr.github.io/ADRX/

1
pkt

2
pkt

3
pkt

4
pkt

5
pkt

>5
 p

kt
0

0.1

0.2

0.3

0.4

0.5
P

D
F

3 feet

10 feet

16 feet

Figure 8: Consecutive packet losses due to
slow rate adaptation.

0.1 0.5 1 3 5
Loss Rate [%]

0

1

2

3

1 Pkt

3 Pkts

6 Pkts

Slightly

Worse

Worse

Same

Much

Worse
Consecutive Pkt Losses

Figure 9: Effect of packet losses on game
audio.

0.1 0.5 1 3 5

Loss Rate [%]

0

20

40

60

80

100

1 Pkt

3 Pkts

6 Pkts

Consecutive Pkt Losses

Good

Fair

Poor

Bad

Excellent

Figure 10: Effect of packet losses on game
video.

8ms worth of data in each packet. Video data stream is en-
coded using H.264 video compression. Losses are injected
for each stream randomly, parameterized by different loss
rates ρ = {0.1%, 0.5%, 1%, 5%, 10%} and consecutive loss
length b = {1,3,6} packets. These parameter choices are in-
formed by the loss patterns observed during our experimental
evaluations (Sec. 5) of existing ADR schemes. This gives
us 15 different combinations of < ρ,b >. Once a packet is
randomly dropped with probability ρ, b−1 following packets
are also dropped to capture consecutive losses during rate
adaptation.
Measuring effect on game audio We conduct a user study ad-
hering to the Comparative Mean Opinion Score (CMOS) test
methodology as dictated by the ITU-T P.808 standard [44].
CMOS, as a subjective measure based on human percep-
tion, was chosen for its ability to accurately assess user-
experienced audio quality degradation due to packet losses,
particularly relevant for gamers. In contrast, PESQ [55], an
objective algorithmic measure, lacks this direct user experi-
ence perspective, making CMOS more suitable for evaluating
relative audio quality in our context. IRB approval from the
author’s organization was obtained prior to this study. Ten
unique participants were recruited to listen and compare two
audio clips – a lossy and an original clip, without knowing
which clip was the original. On a scale from -3 (much worse)
to +3 (much better), participants scored audio quality. During
the study, care is taken to sanitize the results for faulty data
points by eliminating incoherent outputs, and a calibration
step is used to ensure proper audio setup on the participants’
computers before the experiment (as per ITU-T P.808). Each
combination of < ρ,b > received 300 votes in all (30 clips
×10 people). As seen from Figure 9, our study reveals that
listeners are more sensitive to consecutive packet losses –
deterioration becomes perceptible at even 0.5% loss if b ≥ 6.
Measuring effect on game video To quantify the effect of
packet losses on VR video, we use the Video Multimethod
Assessment Fusion (VMAF) [46]. VMAF is a popular full-
reference objective video quality assessment model developed
by Netflix that uses human-vision modeling. VMAF predicts
a quality score that ranges from 0 to 100 for each video.
Figure 10 shows that ρ ≤ 0.5 and b ≤ 3 are required to ensure
the highest perception quality.

3.4 Conclusions
We summarize the observations in this section as,
• During gaming, the wireless channel varies by 10-15dB

within a matter of 50-100ms.
• Rate adaptation is unable to keep up with these rapid

changes resulting in consecutive packet losses.
• User studies indicate more than 2 consecutive packet

losses causes “significant” visual artifacts even at the
widely accepted standard of 0.5% packet loss rate. During
gaming, consecutive packet losses become imperceptible
only at the stricter threshold of 0.1%.

4 ADR-X
ADR-X continuously tracks the wireless channel and adapts
data rates predictively using the recent history of channel
measurement time series to avoid incurring losses. The fact
that gaming traffic is periodic 8ms-16ms (Sec. 3.1) facilitates
this approach since wireless channel measurements (e.g. CSI
and SNR) can be measured each time a packet is received.
ADR-X combines the strengths of ANNs to model the un-
measurable or hard-to-measure effects while leveraging the
analytical simplicity of predicting packet loss over wired chan-
nels. This approach allows ADR-X to be both accurate and
computationally efficient.

4.1 Overview of ADR-X
ADR-X takes a contextual multi-armed bandit approach –
where a feature vector derived from the recent history of
channel measurements serves as context (Sec. 4.2). ADR-X
comprises three logical parts – i) CSNR Mapper, an ANN
with learnable parameters that uses online gradient descent
based learning [6] to transform the context into Conducted
SNR (CSNR), ii) PSR Calculator, a layer pre-trained using
standard communication theory results to predict the packet
success rate given CSNR, and finally iii) MCS Sampler, an
explore-exploit module using multi-armed bandit approaches
to select the appropriate transmission rate to facilitate online
training.
CSNR Mapper. CSNR in spirit is the same as ESNR (Sec. 3)
– it maps the wireless channel measurements to a wired equiv-
alent SNR. However, while ESNR is computed analytically,

1336 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 11: Architecture of ADR-X

0 5 10 15 20 25

SNR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
S

R

MCS1

MCS2

MCS3

MCS5

MCS6

MCS7

MCS8

MCS0

MCS4

Figure 12: Example of PSR-SNR
Curves for L=1536 over 802.11n.

0 2 4 6 8 10

Time [s]

0

5

10

15

20

25

30

[d
B

]

Tx-Rx SNR

RX-Tx SNR

Difference

Figure 13: Channel asymmetry

treating each sub-carrier as an individual wire (Eqn. (3)),
CSNR uses an ANN to learn this mapping on the fly in a
data-driven manner. In this way, CSNR hopes to account
for several practical hard to measure or un-measurable latent
effects inherent in wireless communication – such as calibra-
tion and measurement errors, unknown AGC (Automatic Gain
Control) or noise floor, background interference levels, wire-
less channel asymmetry, etc. as well as the nature of player’s
movements.

The CSNR mapper takes an input feature vector f =<
f1, f2, .., fn > extracted from the time series of channel mea-
surements e.g. CSI, SNR, RSSI, etc. (as described in Sec-
tion 4.2) and predicts the CSNR ηcsnr in dB as,

ηcsnr = F(f,(Θ)) (4)

In Eqn. (4), Θ are learnable parameters – weights, biases etc.
PSR Calculator. Since CSNR represents the SNR for a flat
fading channel. Communication theory provides analytical
formulae berm(η) to predict bit-error rate corresponding to
MCS index m (data rate) and SNR η (Sec. 2). Packet Success
Rate (PSR) may then be computed using berm(η) and packet
length L (Figure 12). These PSR functions however, tend to be
complex and hard to compute analytically and typically frac-
tional powers of er f c(x) [2]. For enabling gradient descent
based learning in ADR-X then, we would need to compute an-
alytical expressions for the derivatives of these PSR functions,
which are expensive to compute. Instead, ADR-X observes
that the PSR-SNR curves qualitatively resemble a typical
switching function [4] e.g. a Sigmoid function [8]. Thus,
in ADR-X, the PSR Calculator approximates the PSR-SNR
curves using the Sigmoid functions, a function commonly
used in Neural Networks. The packet success rate is com-
puted as,

PSR(m,L) =
1

1+ e−(αm,L+βm,Lηcsnr)
(5)

In Eqn. (5), PSR(m,L) is the estimated PSR for the data rate
corresponding to MCS index m, and the number of data bytes
L. We first use Matlab IEEE flat fading model simulations to
compute PSR for various values of SNR for different values
of < m,L >. Then we estimate αm,L and βm,L as a Least Mean
Square (LMS) estimate to fit these values. Since there are too
many possible values of L, in our implementation we compute
three sets of PSR-SNR curves for broad L ranges – (0-64
bytes], (64-512 bytes] and (512-1536 bytes] by generating

SNR, PSR values randomly sampling over the range of L.
αm,L and βm,L remain fixed during online training in ADR-X.
MCS Sampler. Once the PSR for each MCS Index is com-
puted, we must choose the appropriate data rate. In ADR-X
we define the optimal MCS value MCS∗ as one that offers
PSR higher than a certain threshold θPSR,

m∗= argmaxmPSR(m,L)> θPSR (6)

Since we aim to achieve < 0.5% PSR, we choose θ = 0.999.
Since the wireless channel changes with time, as described in
Section 3.2, ADR-X must continuously explore to adapt and
train correctly. Always sampling too conservatively will lead
to ADR-X choosing lower MCS values resulting in increased
power consumption and wastefully long transmission times.
Thus, ADR-X must occasionally take risks and explore higher
MCS rates. This problem is well known as the explore versus
exploit problem in reinforcement learning literature and there
exist several techniques [3, 20] to handle this tradeoff. In our
implementation, we choose an ε-greedy approach as it works
well in practice. MCS∗ is chosen with the probability of ε

(0.9 in our implementation) and a rate one step higher with a
probability of 1− ε.

4.2 Feature Engineering
Since ADR-X uses an ANN, it can potentially be generalized
to use different kinds of channel measurements. Almost all ra-
dios provide RSS while some others provide CSI in addition.
Thus, we generate two different flavors of features depend-
ing on the available channel measurements – ADR-X(CSI,
RSS) and ADR-X(RSS). ADR-X(RSS) simply uses a time-
series history of recently measured RSS value samples that are
8ms/16ms apart. ADR-X(CSI, RSS) uses the cumulative dis-
tribution function (CDF) of per-subcarrier SNR (ηi) described
in Section 3. For computing SNR from RSS, we simply use
NF as a constant -101db and let the ANN implicitly model
the errors in the SNR.

For ADR-X(CSI, RSS), the time series history of per-
subcarrier SNR values (Section 3) can lead to a large in-
put to the ANN which can be either 52 (802.11n) or 242
(802.11ax) per time step. ADR-X however, must run on power
and computation-constrained embedded devices such as 250-
600MHz ARM processors (used in Xbox controllers) [1, 42].

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1337

To achieve this, we engineer the features to reduce the burden
on the ANN itself in three steps.
1. Reducing frequency resolution. Instead of using all 52 or
242 values of per-subcarrier SNR, we compute the average
SNR over spectrum bins each 2MHz wide (computing an av-
erage over the constituent subcarriers in each bin) to generate
a vector v =< v1, · · · ,v9 > with nine values. This is based on
the observation that magnitudes of CSI of sub-carriers that
are “close” to each other in frequency are typically similar i.e.
correlated.
2. Sorting SNR values. We sort the nine values of v in a
decreasing order before presenting to the ANN - to create a
CDF representation of the values - vsorted .
3. Including historical time series. Since the per-subcarrier
SNRs show clear trends in 50-150ms time scales, we wish
the ANN to implicitly extrapolate the current channel quality
and compute PSR values. Thus, we provide the ANN with a
time series history of vsorted to allow it to make use of channel
trends. In our implementation, we found that using channel
information from 3 previous provides the most benefit. The
feature vector at time t, ft is computed as,

ft =
[
vsorted

t−(H−1)∆,v
sorted
t−(H−2)∆, · · · ,v

sorted
t

]
(7)

Here, H is the length of the time series and the feature
vector f comprises 9H numbers. Through experimentation,
we chose H = 3 for our implementation. When ADR-X loses
packets, it does not receive channel measurements. In this
case, we use linear interpolation on the historical CSI values
to fill in the gaps as imputation.
4.3 Online Training of ADR-X
ADR-X uses online training to allow it to adapt to changes in
wireless channel conditions.
Training Data. Each time a packet is transmitted, the receipt
of ACK or lack thereof indicates the success or failure of the
transmission. Thus, after each transmission, we obtain the
data < L,m,r >. Here L is the length of the packet, m is the
MCS index used and r is a binary variable equal to 1 if the
ACK was received or 0 if the packet was not received.

Figure 14: Channel measurements and feedback. ADR-X does not
use feedbackbut relies on the reverse channel measurements.
Obtaining RSS, CSI and wireless channel asymmetry. CSI
and SNR are obtained at the receiver (Rx) when a packet
is received, however, ADR-X runs on the transmitter (Tx)
(Figure 14). In principle, the receiver can explicitly provide a
channel feedback message with CSI and SNR information (as
employed in other proactive schemes). This approach consti-
tutes an additional communication overhead and complexity

of transmitting feedback. ADR-X, however, uses the channel
measurements from the received packets (or ACKs) on the
reverse path i.e. Rx-Tx instead of Tx-Rx. While in theory they
are supposed to be the same, in practice, these measurements
will be different (Figure 13), largely due to power differences
but also due to AGC and hardware/firmware differences. As
seen from Figure 13, there is a mean 5dB offset between the
Tx-Rx and Rx-Tx channel SNRs of two devices along with a
variation of up to ± 5dB. ADR-X implicitly learns to model
the channel asymmetry in-situ by using online training meth-
ods to learn the PSR from real transmissions. This allows it
to adapt to deployment scenarios with varying characteristics
and generalize to different devices.
Loss function and weight updates in ADR-X. Suppose that
the kth packet was transmitted using an MCS index m. Let δi,k
depict a binary indicator variable, capturing whether or not
the packet was successfully transmitted and MCS index i was
used. Thus, δi,k = 1 if i=m and the packet’s acknowledgment
was received and 0 otherwise. Further, suppose that the PSR
prediction of the ANN for this packet at MCS index m was
Pmk. The ADR-X loss function is given by,

Jloss =
1
M ∑

k
∑

i
δik (Pik −δik)

2 (8)

In Eqn. (9) M is the total number of packets. Note the loss
function is for the PSR is based on the Eqn. (5) with param-
eters from the channel model simulations, which will regu-
late the PSR from being too close to 1 such that the loss is
minimized trivially. ADR-X trains the weights of the ANN
using gradient decent-based back-propagation to minimize
Jloss using online training. After each packet, it runs one back-
propagation step using the MCS index, success/failure of
the latest packet, and the current feature vector f. We use a
learning rate of 0.001 in our implementation.
Outline of proof for the validity of ADR-X’s loss function.
Let pi be the true PSR for the ith MCS index and qi be that
estimated by ADR-X. As M → ∞, i.e. for a large number of
received packets, we have,

Jloss = pi (1−qi)
2 +(1− pi)q2

i (9)
∂Jloss

∂qi
= 2(qi − pi) (10)

Thus, at extremum qi = pi i.e. qi converges to pi. In other
words ADR-X constantly updates the weights to predict the
true PSRs.

4.4 Packet Re-transmission Strategy
Re-transmission is used in general to improve packet success
rates by giving more chances for the packet to succeed. Packet
losses in ADR-X cause two challenges – first, survivorship
bias and second, high pre-convergence losses.
Survivorship bias. When a packet is lost so is the associated
CSI and RSS information. This causes survivorship bias i.e.

1338 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ADR-X will be able to train only on positive examples us-
ing channel measurements and MCS rates from successful
transmissions. This can undermine the learning process.
Pre-Convergence losses. In the initial stages of learning or
when there are sudden changes in the wireless environment
e.g. due to channel change, ADR-X might experience higher
losses initially leading to poor audio/video experience.
Packet re-transmission strategy. To solve both these prob-
lems, ADR-X relies on a re-transmission strategy of using
packet re-transmissions at stepped lower data rate. Upon
packet loss, ADR-X re-transmits the packet immediately at
three indices below the MCS index suggested by ADR-X for
the original transmission. This choice provides insurance by a
margin of 10dB prediction error. Optionally, we also use a sec-
ond re-transmission at four MCS indices below the original
transmission in case the first re-transmission is also lost pro-
viding a cover of 15dB error. This approach provides negative
examples for transmissions that fail as well as positive exam-
ples when they succeed in re-transmissions. Further, these
re-transmissions also serve as “training wheels” by providing
second (or third) chances. As ADR-X learns, its reliance on
these “training wheels” diminishes and it succeeds without
re-transmissions as we demonstrate in our evaluations.

4.5 Federated Learning for Initialization
When the device is turned on the first time, ADR-X has to start
learning from no prior experience. In practice, this means ini-
tializing the weights of the neural networks randomly. Starting
from no experience, ADR-X may take about 20s - 2 minutes
to converge depending on the interference levels in the chan-
nel (Section 5). It is however possible to reduce this initial
convergence time using two strategies – first, pre-training
ADR-X on simulations and second, by leveraging the experi-
ences learned from other consoles using Federated Learning
(FL) [32]. ADR-X employs both these strategies in order to
reduce initial convergence time.

As we show in our evaluations (Sec. 5.3) using IEEE TGax
Channel Model B [67] simulations ADR-X’s convergence
time reduces to 20-40s with this optimization. The second ap-
proach is based on federated learning (FL) algorithms that con-
duct a weighted model aggregation over all the users through
weighted averaging of ANN network weights. If Wm are the
weights of the mth device. To fuse the individual models, FL
performs a weighted averaging operation:

W̃ =
M

∑
m=1

ΩmWm, (11)

where Ωm is the weight matrix of user m for each neuron in
the neural networks. For a newly joined user (i.e., a user with-
out any prior experience), we generate and apply a privacy-
preserving model [32] with average experience from all users.
Since games played on different consoles can be in different
environments, the federated model represents a generic model
for initialization. However, we note that safe mechanisms to

collect data in a privacy-preserving manner may be required
to deploy Federated Learning successfully in practice.

4.6 Implementation of ADR-X
We implement ADR-X at the application layer as a Pi-
coScenes Plugin [23], on a desktop or portable laptop
equipped with commercial off-the-shelf Qualcomm Atheros
9300 NIC Cards (802.11a/b/g/n) that provides CSI, RSS,
NoiseFloor and SNR information for each received packet.
We use the PicoScenes toolbox [24] APIs (on Ubuntu
20.04.3.) to collect the CSI measurements for each packet
from the NIC. To customize the packet sizes and feedback,
we use the packet injection mode provided by the PicoScenes
Plugins [23]. PicoScenes APIs allow us to modify packet
size, traffic patterns, and MCS directly from the toolbox in
real-time. We implemented the ADR-X with about 1.5 K lines
of C++ code for the whole ADR-X algorithm, including the
gradient descent updates of the neural network.

5 Evaluation of ADR-X
In this section, we evaluate the performance of ADR-X
and compare with seven representative state-of-the-art ADR
schemes with respect to packet loss rates, consecutive packet
loss rates, and average packet transmit times as well as their
run times on embedded platforms. We also examine the con-
vergence of ADR-X’s learning and the benefit of pre-training
through simulations and federated models and the impact of
sudden changes in the wireless environment such as chan-
nel changes. In the end, we summarize the impact of feature
engineering and architecture search for the ANN in ADR-X.

5.1 Experimental Setup
We use the identical setup described in Section 2.1 and imple-
mentation in Section 4.6 for conducting our experiments.
Multiple locations and gamers. We tested ADR-X’s perfor-
mance across 10 different gamers at different locations includ-
ing two different apartments in different apartment complexes
and university labs and conference rooms.
Diverse games and traces. We evaluate ADR-X across 20
diverse games, spanning multiple genres such as FPS, racing,
and action (list of games with media samples is at https://
muralisr.github.io/ADRX/). We use 15-minute (allowing
each ADR algorithm sufficient time to converge to a steady
state) gaming sessions on each game while recording network
packet traces. Each resulting trace contains > 105 packets.
Embedded devices. Since Xbox devices use 250MHz-
600MHz ARM processors, we used Raspberry PI 1 A+ with
250MHz BCM2835 chipset and Raspberry PI 2 600MHz [15]
with BCM2836 chipset for evaluating run-times. These em-
bedded devices are representative of the environment requir-
ing link rate adaptation. Specifically, in Xbox, microphone
audio transmission occurs from the controller to the console,
which is a critical aspect of user experience. Similarly, in the
VR scenario, not only is there a comparable audio uplink, but
video streaming also occurs from the headset to the server.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1339

https://muralisr.github.io/ADRX/
https://muralisr.github.io/ADRX/

Table 1: Summary of the Main Results.
Xbox VR

Loss Rate [%] Loss Rate [%]Methods
Channel

Info Used
Avg. Total

Runtime [µs]
Channel

Condition
No Retry 1 Retry Overall

Consective
Loss (>=3)[%]

Average
Tx Time µs No Retry 1 Retry Overall

Consective
Loss (>=3)[%]

Average
Tx Time [µs]

DFS 20.7 4.4 3.7 1.82 376 25.5 5 4.3 2.11 380
5GHz 25.2 4.7 3.9 1.9 449 27.9 6.2 4.7 2.25 464

1. ARF [27]
(reactive)

Pkt Loss 0.23
2.4GHz 26.7 5.6 4.9 2.36 476 29.3 6.7 5.3 2.5 482

DFS 18.8 2.5 1.9 0.63 295 21.9 3.7 3.1 1.2 337
5GHz 19.6 2.9 2.6 0.84 351 24.9 4 3.5 1.38 360

2. Minstrel [72]
(reactive)

Pkt Loss 4.83
2.4GHz 21.8 3.9 3.2 1.02 367 26.2 4.5 3.8 1.57 359

DFS 8.9 2.3 1.8 0.42 311 11.1 2.2 1.7 0.35 285
5GHz 10.4 2.8 2.3 0.56 373 13 2.5 1.9 0.44 312

3. RAM [12]
(proactive)

SNR 5.62
2.4GHz 11.4 3.4 3 0.68 415 14 2.7 2.2 0.52 337

DFS 6.5 2.5 2.2 0.4 295 10.5 3 2.4 0.5 280
5GHz 8.4 3 2.6 0.46 344 12.4 3.2 2.7 0.53 291

4. ESNR [18]
(proactive)

CSI,SNR 31
2.4GHz 10.1 3.3 2.7 0.54 395 13.6 3.6 3.1 0.66 312

DFS 6.1 2.4 1.9 0.45 281 7.3 2.4 2 0.58 259
5GHz 7.8 2.7 2.3 0.52 306 9.7 2.6 2.2 0.65 284

5. TS [34]
(reactive-ML)

Pkt Loss 67
2.4GHz 8.9 3.5 2.9 0.66 325 10.3 3.3 2.6 0.78 303

DFS 4.5 2.4 1.6 0.39 264 4.85 2.5 1.4 0.53 238
5GHz 5.9 2.7 1.8 0.48 279 6.3 2.7 1.5 0.65 270

6. EDRA [11]
(proactive-ML)

RSS
Pkt Loss

16645
2.4GHz 8.1 3.2 2.1 0.62 295 8.4 2.9 2.2 0.73 289

DFS 1.8 0.57 0.13 0.001 248 3.1 0.42 0.15 0.002 225
5GHz 2.7 0.64 0.21 0.018 257 4.5 0.81 0.43 0.008 239

7a. PPO(RSS)
(proactive-ML)

CSI,RSS,
Pkt Loss

17568
2.4GHz 3.9 1.14 0.32 0.021 265 5.3 1.08 0.51 0.015 243

DFS 0.82 0.23 0.06 0.001 233 0.91 0.15 0.04 0.004 218
5GHz 1.1 0.31 0.13 0.004 247 1.3 0.26 0.11 0.012 224

7b. PPO(CSI,RSS)
(proactive-ML)

CSI,RSS,
Pkt Loss

31081
2.4GHz 1.9 0.57 0.21 0.008 266 1.8 0.41 0.17 0.021 239

DFS 2.4 0.68 0.24 0.015 256 4.8 0.92 0.43 0.024 234
5GHz 3.5 0.72 0.25 0.023 269 5.4 1.2 0.56 0.038 247ADR-X(RSS)

RSS,
Pkt Loss

135
2.4GHz 5.1 1.71 0.49 0.08 277 6.3 1.9 0.67 0.042 255

DFS 1.2 0.33 0.13 0.003 245 1.5 0.27 0.14 0.007 223
5GHz 1.4 0.39 0.15 0.01 253 1.7 0.34 0.15 0.014 231ADR-X(CSI, RSS)

CSI,RSS,
Pkt Loss

381
2.4GHz 2.3 0.79 0.25 0.024 274 2.6 0.56 0.26 0.036 252

This is particularly relevant for scenarios such as VR content
sharing and live streaming, underscoring the importance of
link adaptation in the embedded device side.
External interference scenarios. In a practical environment,
background interference can cause packet losses. Packet
losses due to interference occur independent of channel mea-
surements making learning harder for ADR-X. We consider
three different interference conditions by operating in three
distinct bands – 2.4 GHz band (High Interference), 5 GHz
non-DFS bands (Medium Interference), and the DFS bands
(No Interference). To provide intuition, Figure 15 depicts
the power level and channel width for each of the interfering
Wi-Fi devices in the three different Wi-Fi bands within an
apartment complex between 10:00-10:15 A.M. at one of the
locations where the experiments were conducted. There were
161 active interfering Wi-Fi devices in the 2.4 GHz band, 85
in the 5 GHz band, and none in the DFS band.

Figure 15: The Wi-Fi environment in 2.4 GHz (High Inter-
ference), 5 GHz (Medium Interference) and DFS channels
(No Interference).

5.2 Performance of ADR-X
In this section, we show that ADR-X’s offers 10× lower
loss rate than state-of-the-art under gaming conditions while
being computationally efficient. ADR-X is able to achieve
this efficiency as it eschews a pure black-box ML approach in
favor of synergizing an ANN with communication theoretical
results as described in Sec 4.1. This allows ADR-X to sidestep
computing analytical expressions for the PSR functions in
favor of cheaper switching functions.

Given the large body of prior work in ADR, we choose six
representative state-of-the-art ADR schemes from each of the
four categories (Sec. 2.2) reactive, proactive, reactive using
ML (reactive-ML) and proactive using ML (proactive-ML).
Further, since Proximal Policy Optimization (PPO) is con-
sidered state-of-the-art in reinforcement learning, we imple-
mented our own version of ADR based on PPO as described
in Appendix B as an additional comparison point.
Reactive ADR schemes - 1. ARF [27], 2. Minstrel [72].
ARF, found in most off-the-shelf Wi-Fi devices due to its ease
of implementation, maintains the packet loss rate as a moving
average. The data rate is decreased by one MCS index after
two consecutive packet re-transmissions/losses and increased
after 9/10 successful transmissions. Minstrel is considered
state-of-the-art among reactive ADR schemes and is typically
implemented in the Linux driver as the default ADR algorithm.
It dedicates 10% of its traffic to probing different rates to
search for the maximum achievable throughput.
Proactive ADR schemes - 3. RAM [12], 4. ESNR [18]. Rate

1340 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 10 20 30 40 50 60 70 80

Time [s]

0

0.5

1

1.5

2

2.5

3

P
a

c
k

e
t

L
o

s
s

 P
ro

b
a

b
il

it
y

 [
%

]

Random

Simulation

2
nd

 Trial

Federated Learning

5
th

 Trial

Figure 16: Example of ADR-X(CSI, RSS)
convergence in 5GHz for Xbox traffic.

DFS 5 GHz 2.4 GHz
0

10

20

30

40

50

60

70

80

90

C
o

n
v

e
rg

e
n

c
e

 T
im

e
 [

s
]

Random

Simulation

2
nd

 Trial

Federated Learning

5
th

 Trial

Figure 17: Loss Convergence of of ADR-
X(CSI, RSS) for Xbox.

DFS 5 GHz 2.4 GHz
0

20

40

60

80

100

C
o

n
v

e
rg

e
n

c
e

 T
im

e
 [

s
]

Random

Simulation

2
nd

 Trial

Federated Learning

5
th

 Trial

Figure 18: Loss Convergence of of ADR-
X(CSI, RSS) for VR.

Adaptation in Mobile environments (RAM) represents the
state-of-the-art in proactive schemes that use RSS for channel
measurements. RAM maintains a throughput-vs-(rate, SNR)
table. It uses measured SNR and the table to select the rate that
can maximize throughput. ESNR, described in Section 2.1,
represents the state-of-the-art among proactive schemes that
use both CSI and RSS. It computes ESNR (Eqn. (3)) using
the received packets and computes PSRs to pick the highest
data rate that is predicted to have a <10% packet loss rate.
Reactive ADR with ML – 5. Thompson Sampling (TS) [34].
Thompson sampling based ADR is theoretically optimal [51]
and considered the state-of-the-art in this category. It takes
a multi-armed bandit [37] based on an efficient explore vs
exploit approach to selecting the right data rate.
Proactive ADR with ML – 6. EDRA [11] EDRA uses Q-
learning based Reinforcement Learning (RL) to select rates
aiming to maximize throughput and is the state-of-the-art.
7. PPO based ADR Since, arguably Proximal Policy Opti-
mization (PPO) is the state-of-the-art in RL, we created our
own version of ADR that leverages PPO [60] (PPO-Clip) for
two cases – i) when only RSS is available as a measurement
and ii) both RSS and CSI are available. Due to space con-
straints, we describe the scheme in detail in the Appendix B.
Table 1 summarizes our results averaged across all 10 gamers.
Packet loss rates. For Xbox and VR, and all three interference
conditions, only ADR-X and PPO, achieve overall packet loss
rates (after two MAC re-transmissions) of 0.1-0.25% with
almost negligible consecutive losses – 10× lower than that for
all other ADR schemes except ranges around 2-3% (Overall
Loss Rate in Table 1).
Loss rates without re-transmissions. To answer the ques-
tion, “how well does ADR-X pick the data rate compared
to other schemes?” we examine the loss rates prior to
packet re-transmissions. ADR-X and PPO rely on MAC re-
transmissions only 1.2-2.3% of the time (No Retry Loss Rate
in Table 1), ≈ 4× improvement over all other schemes that
offer between between 6-20%. In fact even with 1 retry, ADR-
X and PPO achieve < 0.5% loss rate while others offer 10×
loss rates (1 Retry Loss Rate in Table 1).
Average transmission times. Choosing a rate too low will
ensure packet transmission success but increase transmission
time. Choosing a rate too high will result in packet losses
and incur re-transmissions, once again increasing the over-
all packet transmission time. Thus, the ability of an ADR

scheme to pick just the right rates can be measured by its
ability to minimize overall packet transmission time. Packet
transmission time is an important metric as it is commonly
used as a proxy for energy consumption [62]. ADR schemes
that minimize the transmission time also reduce the energy
consumption by reducing the duration of time the radio has to
be awake for transmission. In Table 1 we compute the average
time to transmit a packet. The time to transmit a given packet
is the sum of transmission times of all its re-transmissions and
the original transmission. As seen from Table 1, ADR-X and
PPO offer about ≈40% reduction compared to ARF and ≈25-
30% compared to Minstrel and other schemes. An interesting
observation is that even ADR-X(RSS) with only RSS, has a
20−25% lower transmission times than all existing schemes.
Average run-time. Table 1 highlights the average run-time
per data rate decision by each of the algorithms on com-
putationally constrained embedded chip-sets. The run-time
measurements for 250MHz ARM processor are provided in
Table 1, and those for the 600MHz processor are provided
in Table 2. ADR-X runs ≈ 100× faster than PPO. It is the
only scheme that satisfies the 8-16ms time budget (Sec. 3.1)
with significant time left over for duty-cycling to save power.
Effective Quality of Experience (QoE) hinges on balanc-
ing packet losses, transmission time, and power consumption.
While a lower MCS reduces packet loss, it may increase trans-
mission time and power usage. High packet loss, especially
in Wi-Fi, necessitates retransmissions, further raising power
consumption. The primary goal is to finely tune these param-
eters to minimize packet losses and reduce transmission time,
thereby enhancing user experience.

0 50 100 150 200 250 300

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
a
c
k
e
t

L
o

s
s
 P

ro
b

a
b

il
it

y
 [

%
]

2.4 GHz DFS 5 GHz 2.4 GHz

Figure 19: Effect of sudden changes in interference levels.

5.3 Convergence of ADR-X
In this section we ask the question, “How quickly does ADR-
X learn during a gaming session?". We define convergence

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1341

Table 2: Network Architecture Exploration.
Runtime (250 MHz) [µs] Runtime (600 MHz) [µs]Feature Engineering Architecture

(In-Hidden-Out)
Historical
datapoints

Total
parameters Loss (%) Convergence

below 0.5% Training Inference Total Training Inference Total
242-20-1 1 4881 1.31 N/A 4343 3519 7862 1752 1421 3173
726-20-1 3 14561 0.92 N/A 12511 11515 24026 5348 4928 10276Raw (Unsorted)

726-5-20-1 3 3776 0.13 44s 3496 2708 6204 1403 1107 2510
242-20-1 1 4881 1.14 N/A 4250 3408 7658 1761 1426 3187
726-20-1 3 14561 0.87 N/A 12958 12116 25074 5358 4935 10293Sorted

726-5-20-1 3 3776 0.13 42s 3527 2704 6230 1411 1114 2525
27-20-1 3 581 1.34 N/A 478 325 803 194 132 326Freq. Binning

(Unorted) 27-5-20-1 3 281 0.76 N/A 206 156 362 84 63 147
9-5-1 1 56 0.73 N/A 75 47 122 28 16 44
9-20-1 1 221 0.65 N/A 182 135 317 73 53 126
27-5-1 3 146 0.39 89s 134 104 238 55 41 96

27-20-1 3 581 0.31 96s 461 334 794 196 138 334
27-5-15-1 3 246 0.21 57s 183 164 347 72 63 135
27-5-20-1 3 281 0.15 49s 221 159 381 86 65 151

Freq. Binning
(Sorted)

45-5-20-1 5 371 0.17 71s 303 239 542 125 94 219

as the time taken for ADR-X to reach below 0.5% overall
loss rate and 0.1% for consecutive losses. We consider four
different ANN weight initializations, i) Random- randomly
initialized ANN weights; ii) Simulation based pre-training -
ANN weights obtained by training on simulated CSI, RSS and
packet losses using the IEEE TGax Channel Model B [67];
iii) Federated model - a federated model (using [32]) based
on learned weights obtained from 9 different users across
different locations; iv) Successive trials - the gamer plays
multiple games, each 15 minutes long with a break of 10
minutes in between. After each successive gaming session,
weights are passed on to the next session.

To provide an intuition into ADR-X’s convergence dur-
ing a gaming session, Figure 16 depicts the packet loss rates
of ADR-X(CSI,RSS) in the 5GHz channel for Xbox traf-
fic. As seen from Figure 16, while random initialization
takes about 50s to achieve convergence, simulation-based
pre-trained model and federated models take about 35s and
20s respectively. Finally, ADR-X convergence improves to
10s over 5 consecutive gaming sessions.

Figures 17, 18 capture the average convergence times for
Xbox and VR over all user experiments under various in-
terference conditions. Interference-free DFS channels are
the fastest to converge. The higher the external interference,
the longer ADR-X takes to converge. Federated models take
about 20s to converge in highly congested channels.

5.4 Sudden Changes in Interference Levels
In this section, we ask the question “How does ADR-X adapt
upon experiencing sudden changes in the ambient interfer-
ence?”. This can occur when the radio changes its operating
channel into say a highly congested channel. We conduct an
experiment starting in a 5GHz channel on a federated model
(Sec. 5.3) and then change the operating channel between
DFS, 5GHz, and 2.4 GHz as shown in Figure 19. Figures 19
that depicts packet loss as a function of time – each time the
channel changes to higher congestion levels ADR-X adapts,
however loss rates are below 0.5% at all times.

5.5 Benefits of Feature Engineering
In this section, we answer the question, “How crucial are the
various steps of feature engineering to ADR-X?” The feature
engineering 4.2 comprises threes aspects – i) use of historical
time series of CSI, and RSS values ii) reduction the resolution
of the subcarriers through frequency binning and iii) sorting
the SNR per subcarriers. Table 2, summarizes performance
results for ADR-X with and without different kinds of feature
engineering for different ANN architectures. In all cases the
including 3 historical channel measurement values brings a
significant improvement in ADR-X performance. Frequency
binning brings about 10− 20× reduction in runtimes over
both 250MHz and 600MHz ARM processors. With frequency
binning, sorting the SNRs makes a significant improvement in
performance – a reduction in loss rates from 0.7% to 0.15%.

5.6 Architecture exploration
We use a Multilayer Perceptron architecture for our ANN.
Table 2 presents a few representative examples from our ex-
tensive architecture sweep for the ANN architecture – our
choice indicated in gray has a loss rate of 0.15% and compute
time of 151µs on a 600MHz ARM processor.

6 Conclusions
We perform the first study into wireless losses and their ef-
fects on console gaming audio/video experience. Due to
gamer hand/head motion during gaming, the wireless chan-
nel between a console and its accessories experiences rapid
changes. Existing ADR schemes’ inability to cope to fast
channel changes results in 2-10% losses whereas our study
indicates that 0.1-0.5% losses are required for a high quality
experience. This paper introduces ADR-X, a contextual ANN
assisted multi-armed bandit that closely tracks the channel
and adapts quickly. Its novel design exploits communication
theory domain knowledge to make it computationally effi-
cient. Overall, ADR-X achieves 10× lower packet loss than
the ADR schemes widely used today while running 100×
faster than the state-of-the-art ML approaches.

1342 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Xbox controller teardown. https://www.
techinsights.com/blog/xbox-one-teardown.

[2] Milton Abramowitz and Irene A Stegun. Handbook
of mathematical functions with formulas, graphs, and
mathematical tables, volume 55. US Government print-
ing office, 1968.

[3] Deepak Agarwal and Bee-Chung Chen. Statistical Meth-
ods for Recommender Systems. Cambridge University
Press, 2016.

[4] Issa Batarseh and S. B. Dewan. The Switching Function:
analysis of power electronic circuits. The Institution of
Engineering and Technology, 2006.

[5] John Charles Bicket. Bit-rate selection in wireless net-
works. PhD thesis, Massachusetts Institute of Technol-
ogy, 2005.

[6] Michael Biehl and Holm Schwarze. Learning by on-line
gradient descent. Journal of Physics A: Mathematical
and general, 28(3):643, 1995.

[7] Gulnaziye Bingol, Luigi Serreli, Simone Porcu, Alessan-
dro Floris, and Luigi Atzori. The impact of network
impairments on the qoe of webrtc applications: A sub-
jective study. In 2022 14th International Conference on
Quality of Multimedia Experience (QoMEX), pages 1–6.
IEEE, 2022.

[8] Christopher M. Bishop. Pattern Recognition and Ma-
chine Learning. Springer, 2006.

[9] Seongho Byeon, Kangjin Yoon, Changmok Yang, and
Sunghyun Choi. Strale: Mobility-aware phy rate and
frame aggregation length adaptation in wlans. In IEEE
INFOCOM 2017 - IEEE Conference on Computer Com-
munications, pages 1–9, 2017.

[10] Kuan-Ta Chen, Chi-Jui Chang, Chen-Chi Wu, Yu-Chun
Chang, and Chin-Laung Lei. Quadrant of euphoria:
a crowdsourcing platform for qoe assessment. IEEE
Network, 24(2):28–35, 2010.

[11] Syuan-Cheng Chen, Chi-Yu Li, and Chui-Hao Chiu. An
experience driven design for ieee 802.11ac rate adapta-
tion based on reinforcement learning. In IEEE INFO-
COM 2021 - IEEE Conference on Computer Communi-
cations, pages 1–10, 2021.

[12] Xi Chen, Prateek Gangwal, and Daji Qiao. Ram: Rate
adaptation in mobile environments. IEEE Transactions
on Mobile Computing, 11(3):464–477, 2012.

[13] Riccardo Crepaldi, Jeongkeun Lee, Raul Etkin, Sung-Ju
Lee, and Robin Kravets. Csi-sf: Estimating wireless
channel state using csi sampling & fusion. In 2012
Proceedings IEEE INFOCOM, pages 154–162, 2012.

[14] A Rogier T Donders, Geert JMG Van Der Heijden, Theo
Stijnen, and Karel GM Moons. A gentle introduction
to imputation of missing values. Journal of clinical
epidemiology, 59(10):1087–1091, 2006.

[15] Raspberry Pi Foundation. Raspberry pi documentation -
computers, 2023. Accessed: [insert date you accessed
the site].

[16] Andrea Goldsmith. Wireless Communications. Cam-
bridge University Press, 2005.

[17] Rémy Grünblatt, Isabelle Guérin-Lassous, and Olivier
Simonin. Simulation and performance evaluation of
the intel rate adaptation algorithm. In Proceedings of
the 22nd International ACM Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems,
MSWIM ’19, page 27–34, New York, NY, USA, 2019.
Association for Computing Machinery.

[18] Daniel Halperin, Wenjun Hu, Anmol Sheth, and David
Wetherall. Predictable 802.11 packet delivery from
wireless channel measurements. SIGCOMM ’10, page
159–170, New York, NY, USA, 2010. Association for
Computing Machinery.

[19] Hado van Hasselt, Arthur Guez, and David Silver. Deep
reinforcement learning with double q-learning. In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAI’16, page 2094–2100. AAAI Press,
2016.

[20] Mikael Henaff. Explicit explore-exploit algorithms in
continuous state spaces. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

[21] Gavin Holland, Nitin Vaidya, and Paramvir Bahl. A
rate-adaptive mac protocol for multi-hop wireless net-
works. In Proceedings of the 7th Annual International
Conference on Mobile Computing and Networking, Mo-
biCom ’01, page 236–251, New York, NY, USA, 2001.
Association for Computing Machinery.

[22] Intel. Intel ultimate n wifi link 5300, 2009.

[23] Zhiping Jiang and contributors. Developing Your
PicoScenes Plugins. https://ps.zpj.io/plugin.
html, 2021.

[24] Zhiping Jiang and contributors. PicoScenes. https:
//ps.zpj.io/, 2021.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1343

https://www.techinsights.com/blog/xbox-one-teardown
https://www.techinsights.com/blog/xbox-one-teardown
https://ps.zpj.io/plugin.html
https://ps.zpj.io/plugin.html
https://ps.zpj.io/
https://ps.zpj.io/

[25] Zhiping Jiang, Tom H. Luan, Xincheng Ren, Dongtao
Lv, Han Hao, Jing Wang, Kun Zhao, Wei Xi, Yueshen
Xu, and Rui Li. Eliminating the barriers: Demystifying
wi-fi baseband design and introducing the picoscenes
wi-fi sensing platform. IEEE Internet of Things Journal,
9(6):4476–4496, 2022.

[26] Glenn Judd, Xiaohui Wang, and Peter Steenkiste. Ef-
ficient channel-aware rate adaptation in dynamic en-
vironments. In Proceedings of the 6th International
Conference on Mobile Systems, Applications, and Ser-
vices, MobiSys ’08, page 118–131, New York, NY, USA,
2008. Association for Computing Machinery.

[27] Ad Kamerman and Leo Monteban. Wavelan®-ii: A
high-performance wireless lan for the unlicensed band.
Bell Labs Technical Journal, 2(3):118–133, 1997.

[28] Raja Karmakar, Samiran Chattopadhyay, and Sandip
Chakraborty. Smartla: Reinforcement learning-based
link adaptation for high throughput wireless access net-
works. Computer Communications, 110:1–25, 2017.

[29] Raja Karmakar, Samiran Chattopadhyay, and Sandip
Chakraborty. An online learning approach for auto link-
configuration in ieee 802.11ac wireless networks. Com-
puter Networks, 181:107426, 2020.

[30] Shervin Khastoo, Tim Brecht, and Ali Abedi. Neura: Us-
ing neural networks to improve wifi rate adaptation. In
Proceedings of the 23rd International ACM Conference
on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, MSWiM ’20, page 161–170, New York,
NY, USA, 2020. Association for Computing Machinery.

[31] J. Kim, S. Kim, S. Choi, and D. Qiao. Cara: Collision-
aware rate adaptation for ieee 802.11 wlans. In Proceed-
ings IEEE INFOCOM 2006. 25TH IEEE International
Conference on Computer Communications, pages 1–11,
2006.

[32] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Pe-
ter Richtárik, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: Strategies for improving commu-
nication efficiency. arXiv preprint arXiv:1610.05492,
2016.

[33] Lito Kriara and Mahesh K. Marina. Samplelite: A hy-
brid approach to 802.11n link adaptation. SIGCOMM
Comput. Commun. Rev., 45(2):4–13, apr 2015.

[34] Alexander Krotov, Anton Kiryanov, and Evgeny Khorov.
Rate control with spatial reuse for wi-fi 6 dense deploy-
ments. IEEE Access, 8:168898–168909, 2020.

[35] Mathieu Lacage, Mohammad Hossein Manshaei, and
Thierry Turletti. Ieee 802.11 rate adaptation: A practi-
cal approach. In Proceedings of the 7th ACM Interna-
tional Symposium on Modeling, Analysis and Simula-
tion of Wireless and Mobile Systems, MSWiM ’04, page
126–134, New York, NY, USA, 2004. Association for
Computing Machinery.

[36] Mathieu Lacage, Mohammad Hossein Manshaei, and
Thierry Turletti. Ieee 802.11 rate adaptation: A practi-
cal approach. In Proceedings of the 7th ACM Interna-
tional Symposium on Modeling, Analysis and Simula-
tion of Wireless and Mobile Systems, MSWiM ’04, page
126–134, New York, NY, USA, 2004. Association for
Computing Machinery.

[37] T.L Lai and Herbert Robbins. Asymptotically efficient
adaptive allocation rules. Advances in Applied Mathe-
matics, 6(1):4–22, 1985.

[38] Okhwan Lee, Jihoon Kim, Jongtae Lim, and Sunghyun
Choi. Sira: Snr-aware intra-frame rate adaptation. IEEE
Communications Letters, 19(1):90–93, 2015.

[39] Chi-Yu Li, Syuan-Cheng Chen, Chien-Ting Kuo, and
Chui-Hao Chiu. Practical machine learning-based rate
adaptation solution for wi-fi nics: Ieee 802.11ac as a
case study. IEEE Transactions on Vehicular Technology,
69(9):10264–10277, 2020.

[40] Meta. Quest 2. https://www.oculus.com/quest-2/,
2020.

[41] Microsoft. Xbox Series X. https://www.xbox.com/
en-US/consoles/xbox-series-x, 2020.

[42] Microsoft. Xbox Wireless Controller.
https://www.xbox.com/en-US/accessories/
controllers/xbox-wireless-controller, 2020.

[43] Microsoft. Xbox Wireless Headset. https:
//www.xbox.com/en-US/accessories/headsets/
xbox-wireless-headset, 2020.

[44] Babak Naderi and Ross Cutler. An open source im-
plementation of itu-t recommendation p.808 with val-
idation. In Proc. Interspeech 2020, pages 1166–1170,
2020.

[45] National Telecommunications and Information Admin-
istration. Agreement reached regarding u.s. position,
2003.

[46] Netflix. Vmaf - video multi-method assessment fusion.
https://github.com/Netflix/vmaf, 2021.

[47] Ioannis Pefkianakis, Yun Hu, Starsky H.Y. Wong, Hao
Yang, and Songwu Lu. Mimo rate adaptation in 802.11n

1344 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.oculus.com/quest-2/
https://www.xbox.com/en-US/consoles/xbox-series-x
https://www.xbox.com/en-US/consoles/xbox-series-x
https://www.xbox.com/en-US/accessories/controllers/xbox-wireless-controller
https://www.xbox.com/en-US/accessories/controllers/xbox-wireless-controller
https://www.xbox.com/en-US/accessories/headsets/xbox-wireless-headset
https://www.xbox.com/en-US/accessories/headsets/xbox-wireless-headset
https://www.xbox.com/en-US/accessories/headsets/xbox-wireless-headset
https://github.com/Netflix/vmaf

wireless networks. In Proceedings of the Sixteenth An-
nual International Conference on Mobile Computing
and Networking, MobiCom ’10, page 257–268, New
York, NY, USA, 2010. Association for Computing Ma-
chinery.

[48] Ioannis Pefkianakis, Starsky H.Y. Wong, Hao Yang, Suk-
Bok Lee, and Songwu Lu. Toward history-aware robust
802.11 rate adaptation. IEEE Transactions on Mobile
Computing, 12(3):502–515, 2013.

[49] Ramjee Prasad. OFDM for Wireless Communications
Systems. Artech House, 2004.

[50] John G Proakis. Digital communications. McGraw-Hill,
Higher Education, 2008.

[51] Hang Qi, Zhiqun Hu, Xiangming Wen, and Zhaom-
ing Lu. Rate adaptation with thompson sampling
in 802.11ac wlan. IEEE Communications Letters,
23(10):1888–1892, 2019.

[52] Qualcomm. Qualcomm csrc9300 bluetooth & wi-fi
combo chipset, 2014.

[53] Ruben Queiros, Eduardo Nuno Almeida, Helder Fontes,
Jose Ruela, and Rui Campos. Wi-fi rate adaptation using
a simple deep reinforcement learning approach, 2022.

[54] Hariharan Rahul, Farinaz Edalat, Dina Katabi, and
Charles G. Sodini. Frequency-aware rate adaptation
and mac protocols. In Proceedings of the 15th Annual
International Conference on Mobile Computing and Net-
working, MobiCom ’09, page 193–204, New York, NY,
USA, 2009. Association for Computing Machinery.

[55] Antony W Rix, John G Beerends, Michael P Hollier,
and Andries P Hekstra. Perceptual evaluation of speech
quality (pesq)-a new method for speech quality assess-
ment of telephone networks and codecs. In 2001 IEEE
international conference on acoustics, speech, and sig-
nal processing. Proceedings (Cat. No. 01CH37221),
volume 2, pages 749–752. IEEE, 2001.

[56] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly.
Opportunistic media access for multirate ad hoc net-
works. In Proceedings of the 8th Annual International
Conference on Mobile Computing and Networking, Mo-
biCom ’02, page 24–35, New York, NY, USA, 2002.
Association for Computing Machinery.

[57] Steven Schmidt, Babak Naderi, Saeed Shafiee Sabet,
Saman Zadtootaghaj, and Sebastian Möller. Assessing
interactive gaming quality of experience using a crowd-
sourcing approach. In 2020 Twelfth International Con-
ference on Quality of Multimedia Experience (QoMEX),
pages 1–6. IEEE, 2020.

[58] Steven Schmidt, Saman Zadtootaghaj, Shijie Wang, and
Sebastian Möller. Towards the influence of audio quality
on gaming quality of experience. In 2021 13th Interna-
tional Conference on Quality of Multimedia Experience
(QoMEX), pages 169–174. IEEE, 2021.

[59] John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438, 2015.

[60] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

[61] Sayandeep Sen, Neel Kamal Madabhushi, and Suman
Banerjee. Scalable WiFi media delivery through adap-
tive broadcasts. In 7th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 10),
San Jose, CA, April 2010. USENIX Association.

[62] Pablo Serrano, Andres Garcia-Saavedra, Giuseppe
Bianchi, Albert Banchs, and Arturo Azcorra. Per-frame
energy consumption in 802.11 devices and its implica-
tion on modeling and design. IEEE/ACM Transactions
on Networking, 23(4):1243–1256, 2015.

[63] Gary Smith. Standard deviations: Flawed assump-
tions, tortured data, and other ways to lie with statistics.
Abrams, 2014.

[64] Lixing Song and Shaoen Wu. Aarc: Cross-layer wireless
rate control driven by fine-grained channel assessment.
In 2015 IEEE International Conference on Communica-
tions (ICC), pages 3311–3316, 2015.

[65] Sony. DualSense Wireless Controller. https:
//www.playstation.com/en-us/accessories/
dualsense-wireless-controller/, 2020.

[66] Sony. PULSE 3D Wireless Headset. https:
//www.playstation.com/en-us/accessories/
pulse-3d-wireless-headset/, 2020.

[67] TGax. Tgax channel model document. Technical report,
IEEE 802.11, 2014.

[68] Xiaozheng Tie, Anand Seetharam, Arun Venkataramani,
Deepak Ganesan, and Dennis L. Goeckel. Anticipatory
wireless bitrate control for blocks. In Proceedings of the
Seventh COnference on Emerging Networking EXperi-
ments and Technologies, CoNEXT ’11, New York, NY,
USA, 2011. Association for Computing Machinery.

[69] Mythili Vutukuru, Hari Balakrishnan, and Kyle
Jamieson. Cross-layer wireless bit rate adaptation. In
Proceedings of the ACM SIGCOMM 2009 Conference
on Data Communication, SIGCOMM ’09, page 3–14,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1345

https://www.playstation.com/en-us/accessories/dualsense-wireless-controller/
https://www.playstation.com/en-us/accessories/dualsense-wireless-controller/
https://www.playstation.com/en-us/accessories/dualsense-wireless-controller/
https://www.playstation.com/en-us/accessories/pulse-3d-wireless-headset/
https://www.playstation.com/en-us/accessories/pulse-3d-wireless-headset/
https://www.playstation.com/en-us/accessories/pulse-3d-wireless-headset/

New York, NY, USA, 2009. Association for Computing
Machinery.

[70] Abdul Wahab, Nafi Ahmad, and John Schormans. Varia-
tion in qoe of passive gaming video streaming for differ-
ent packet loss ratios. In 2020 Twelfth International Con-
ference on Quality of Multimedia Experience (QoMEX),
pages 1–4. IEEE, 2020.

[71] Shao-Cheng Wang and Ahmed Helmy. Beware: Back-
ground traffic-aware rate adaptation for ieee 802.11. In
2008 International Symposium on a World of Wireless,
Mobile and Multimedia Networks, pages 1–12, 2008.

[72] Linux Wireless. Minstrel rate control algo-
rithm. https://wireless.wiki.kernel.org/
en/developers/documentation/mac80211/
ratecontrol/minstrel, 2015.

[73] Linux Wireless. PID. http://linuxwireless.
sipsolutions.net/en/developers/
Documentation/mac80211/RateControl/PID/,
2015.

[74] Starsky H. Y. Wong, Hao Yang, Songwu Lu, and Vadu-
vur Bharghavan. Robust rate adaptation for 802.11 wire-
less networks. In Proceedings of the 12th Annual In-
ternational Conference on Mobile Computing and Net-
working, MobiCom ’06, page 146–157, New York, NY,
USA, 2006. Association for Computing Machinery.

[75] Wei Yin, Peizhao Hu, and Jadwiga Indulska. Rate con-
trol in the mac80211 framework: Overview, evaluation
and improvements. Computer Networks, 81:289–307,
2015.

1346 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://wireless.wiki.kernel.org/en/developers/documentation/mac80211/ratecontrol/minstrel
https://wireless.wiki.kernel.org/en/developers/documentation/mac80211/ratecontrol/minstrel
https://wireless.wiki.kernel.org/en/developers/documentation/mac80211/ratecontrol/minstrel
http://linuxwireless.sipsolutions.net/en/developers/Documentation/mac80211/RateControl/PID/
http://linuxwireless.sipsolutions.net/en/developers/Documentation/mac80211/RateControl/PID/
http://linuxwireless.sipsolutions.net/en/developers/Documentation/mac80211/RateControl/PID/

Appendices

A Deep Reinforcement Learning Design

A General Overview of DRL. Deep reinforcement learn-
ing (DRL) is an advanced machine learning approach that
combines deep learning and reinforcement learning (RL)
techniques. It leverages neural networks to interpret high-
dimensional inputs, making it adept at handling complex
problems. In the DRL framework, at each time instance t,
the RL algorithm necessitates determining the optimal trans-
mission rate for a packet. This decision is based on the input
state vector S(t), which incorporates the experience vector
harvested from the experience memory. The RL algorithm
then prescribes an action state a(t), encompassing the appro-
priate data rate (MCS) to be employed. Within the RL engine,
there exists a mapping from the state to action, denoted as
S(t)→ a(t), which is regarded as the state-action policy map,
represented by πθ. Here, θ symbolizes the parameters of the
policy map function, which are updated iteratively during the
learning process. Following each transmission, a reward value
r(t) is determined to assess the efficacy of selected action a(t)
at the current state S(t). These rewards are pivotal in training
the RL engine, guiding the optimization of the state-action
policy function through the adjustment of θ to enhance the
anticipation of future rewards.
State, Action, and Rewards in DRL. The efficacy of a DRL
algorithm is fundamentally governed by the appropriate selec-
tion and definition of states, actions, and rewards, which are
essential in training the DRL model. Initially, we delineate the
general design underpinning DRL algorithms, followed by
the proposition of two distinct DRL policies sharing identical
state, action, and reward designs.
State s(t): The state must ideally comprise all information
that is relevant for the actor network and enable it to pre-
dict an appropriate action (data rate). In our implementa-
tion these comprise channel quality CQ and packet length
of the current packet to be transmitted lt . Since, the most
recent channel measurement is usually taken in the past
(typically T ms in the past), the channel may have changed
within these T ms. The actor must be able to implicitly pre-
dict the current state of the channel from history. To enable
this, we provide as state, a vector comprising a history of
n channel states and lengths. The state is thus computed as
S(t) =< CQ(t −T),CQ(t − 2T), · · · ,CQ(t − kT), lt >. We
use k = 3 in our implementation since higher values did not
provide any significant benefit. The contents of CQ are com-
puted by the Input Generator and depend on the type of chan-
nel measurement available in the device. We have designed
DRL for three different kinds of channel measurements, each
of which uses a different CQ.
Action a(t): The action space is all the possible MCSs de-
termined by the IEEE standards for each packet. The policy
network outputs the probability estimated by the neural net-

work for actions to achieve the highest reward. Since the
action space is discrete, we choose the action with the largest
possibility with 95% of the time and 5% of the time we choose
the action randomly to explore other rates.
Reward r(t): We design the reward in DRL to specifically
target packet loss and power consumption as they are the
primary determining factors for user experience in a gaming
scenario. In our design we prioritize packet loss more than
power consumption since packet loss results in immediate
loss of user experience. Further, consecutive packet losses are
discouraged to greater degree as they have more significant
impact on user experience. The reward function as follows:

r(t) =−τ(MCS)−Q∗ρ(t), (12)

where τ(MCS) is the total transmission time by choosing the
current MCS, including the retransmission time if the first
packet is lost and ρ(t). The term −τ(MCS) is a penalty on
long packet transmission times and hence discourages DRL
from choosing low data rates. The term Q ∗ ρ(t) penalizes
packet losses with the weight Q determining the trade-off
between the power consumption and the packet losses. To
prioritize avoiding packet loss ρ(t) is computed as a running
average of the packet loss given by :

ρ(t) = ρ(t −1)∗α+b(t),

b(t) =

{
0 if no packet loss
1 if packet loss

(13)

α denotes the reliability requirements, for instance, α = 0.99
for the audio packets. In this manner, each packet loss has a
long lasting negative impact on the reward, and consecutive
packet losses have a greater impact on the reward calculation.
This choice discourages DRL to quickly eliminate losses.

B Proximal Policy Optimization (PPO)

B.1 PPO Design

Overview of PPO Algorithm. PPO algorithms belong to
class of RL algorithms known an Actor-Critic algorithms
comprising two separate neural network models – an Actor
and a Critic (Fig. 20). An actor model is a state-action pol-
icy map, πθ to learn what action to take under a particular
observed state; θ represent the weights of the neural network.
The critic model Vφ evaluates the effectiveness of πθ by pre-
dicting the expected future reward based on past history of
action-reward pairs;its weights are represented by φ. The critic
learns by trying to minimize the discrepancy between its past
estimates of future rewards and those that it actually observes.
The actor learns by attempting to maximize the expected fu-
ture rewards as predicted by the critic network. Both actor and
critic networks learn in conjunction taking turns based on the
evolution of state, actions and rewards by employing gradient
decent optimization. As time progresses, the critic learns to

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1347

Table 3: Network Architecture Exploration for PPO.
Actor Critic Loss [%] Convergence

below 0.5%
Runtime (250 MHz) [µs] Runtime (600 MHz) [µs]

Architecture
(In-Hidden-Out)

Total
Parameters

Architecture
(In-Hidden-Out)

Total
Parameters Training Inference Total Training Inference Total

27-120-9 4320

27-240-1 6720 2.4 NA 13017 4831 17848 5300 2085 7385
27-40-80-1 4360 2.7 NA 10093 4825 14918 4188 2080 6268
27-80-40-1 5400 2.8 NA 11531 5003 16534 4657 2087 6744
27-80-80-1 8640 2.1 NA 14114 5008 19122 6133 2081 8214

27-240-9 8640

27-240-1 6720 0.69 NA 17327 10169 27496 7371 4148 11519
27-40-80-1 4360 0.98 NA 14900 9660 24560 6239 4115 10354
27-80-40-1 5400 0.76 NA 16294 10153 26447 6750 4154 10904
27-80-80-1 8640 0.47 218s 18949 9970 28919 8191 4135 12326

27-40-80-9 5000

27-240-1 6720 0.49 196s 13758 5537 19296 5571 2385 7956
27-40-80-1 4360 0.65 NA 10346 5773 16119 4454 2406 6860
27-80-40-1 5400 0.61 NA 12169 5662 17831 4927 2417 7344
27-80-80-1 8640 0.42 211s 15693 5638 21331 6465 2422 8887

27-80-40-9 5720

27-240-1 6720 0.36 165s 14444 6708 21152 5941 2760 8701
27-40-80-1 4360 0.43 159s 11708 6659 18367 4844 2766 7610
27-80-40-1 5400 0.41 162s 12835 6515 19350 5305 2749 8054
27-80-80-1 8640 0.28 171s 16438 6557 22994 6834 2759 9593

27-80-80-9 9280

27-240-1 6720 0.16 174s 18156 10485 28641 7598 4413 12011
27-40-80-1 4360 0.24 163s 16210 10586 26796 6561 4417 10978
27-80-40-1 5400 0.19 169s 16731 11011 27742 7039 4452 11491
27-80-80-1 8640 0.13 185s 20250 10825 31075 8534 4416 12950

Flatten

CQ() … CQ(nT)

Channel Tracking

Next Packet Length

Inputs ()

S
o

ftm
a

x

MCS

0

… …

8

Actor: Policy Network

Critic: Q Value Network

Action: ()

Figure 20: The PPO Architecture for Reinforcement Learning.

predict future rewards more accurately and the actor learns to
take more optimal actions for each state. While updating the
policy-map, PPO algorithms constrain the amount of change
allowed in the policy to limit sudden/drastic changes and
hence are stable to sudden changes. In our implementation,
we chose a Multilayer Perceptron (MLP) with two hidden
layers to represent both actor and critic models
Training Methodology. The objective of the PPO algorithm
is to maximize the expected accumulative reward from cur-
rent time t: Rθ(t) = E(S(t),a(t))∼πθ

[
∑

∞
j=t γ(j−t)r(j)

]
, where

γ ∈ [0,1] is the discount factor (usually 0.99) used to avoid
the accumulated reward to be infinity, and r(t) is the reward
by taking action a(t) at state S(t).

The Actor-Critic structure first obtains a finite mini-batch
of sequential samples from the trajectory memory. The PPO
algorithm randomly chooses a start point within each batch
and uses the sub-sequential data to train the network. A new
objective function is proposed in PPO to achieve mini-batch
updates and update the policy smoothly. PPO introduces im-

portance sampling to obtain the expectation of samples gath-
ered from an old policy πold under the new policy πnew we
want to refine with the probability ratio Rθ(t) = πθ(at |st)

πθold (at |st)
.

They maximize the following surrogate objective function:
L(θ) = Ê

[
min

(
Rθ(t),clip(Rt(θ),1− ε,1+ ε)

)
Ât

]
, where ε

is the clipping parameter. Ât is an estimator of the advantage
function at time step t. We use the generalized advantage esti-
mator (GAE) [59] to calculate Ât . By introducing the clipped
objective function, the PPO algorithm won’t stick to the fa-
voring actions with positive advantage, and make quicker
update to avoid actions with a negative advantage function
from a mini-batch of samples. θ = θ−ηθ∇Lθ, where ηθ is
the learning rate for the actor model optimization.
Avoiding Losses During Convergence. When PPO is train-
ing for the first time or when the environment changes sud-
denly, PPO may experience higher packet losses during the
time it takes to learn, adapt and converge to a steady state. In
order to avoid the losses during these vulnerable times, PPO
chooses a relies on a conservative retransmission strategy.
While RL in PPO provides only the data rate of the initial
transmission, the retransmission provides greater reliability
by reducing the data rate to an MCS three steps below that
suggested by PPO. Note that the corresponding longer trans-
mission time also acts as a discouraging penalty to the reward
function

B.2 PPO Network Architecture Exploration.
In this study, we explored various architectural configurations
for the actor and critic networks in the PPO algorithm to eval-
uate their performance on different metrics, including loss

1348 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

percentage, convergence time, and runtime in two different
CPU frequency settings (250 MHz and 600 MHz) for the
CSI based input. The architectures were delineated based on
the input-hidden-output layers, and each configuration’s total
number of parameters was reported. A discernible trend is the
general improvement in loss percentage and convergence time
with more complex network architectures, characterized by a
higher number of parameters. The most notable performances
were observed in configurations employing the 27-80-80-9 ar-
chitecture for the actor network, which consistently achieved
the lowest loss percentages and reasonable convergence times
below 0.5%. Specifically, the combination with the 27-80-
80-1 critic architecture exhibited the most promising results,
recording the lowest loss of 0.13% and a swift convergence
time of 185 seconds.

While the intricate architectures, such as the 27-80-80-9
actor and 27-80-80-1 critic configuration, exhibit good per-
formance in reducing loss and enhancing convergence times,
they necessitate significantly extended runtime durations, es-
pecially at a frequency setting of 250 MHz. This increase in
runtime, which encompasses both the training and inference
phases, exhibits a positive correlation with the complexity of
the network architectures. In summary, while the PPO net-
work is capable of learning from scratch to find a policy that
optimizes the packet loss rate, achieving this necessitates a rel-
atively large network. This complexity poses a challenge for
implementation on embedded devices, where computational
resources are typically limited. This underscores the need
to strike a balance between network complexity and compu-
tational efficiency to achieve optimal performance without
over-burdening the system resources.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1349

RFID+: Spatially Controllable Identification of UHF RFIDs
via Controlled Magnetic Fields

Donghui Dai1, Zhenlin An1,2, Zheng Gong1, Qingrui Pan1,3, Lei Yang1,4

1The Hong Kong Polytechnic University, 2Princeton University, 3The University of Edinburgh
4Shenzhen Research Institute, The Hong Kong Polytechnic University

Abstract
In the fast-paced landscape of UHF RFID technology,

achieving precise spatial-selective identification is of criti-
cal importance in the logistics and retail domain. This work
introduces RFID+, a magnetically-driven UHF RFID system
that leverages the matching loops of commercial-off-the-shelf
UHF RFID tags for efficient energy harvesting from tailored
magnetic fields. The RFID+ delivers a level of spatial pre-
cision comparable to that of HF NFC systems, effectively
mitigating issues of miss-reading and cross-reading. Our pri-
mary contributions reside in the development of a special-
ized multi-turn, capacitor-segmented coil antenna and an in-
novative fast inventory algorithm. The RFID+ seamlessly
integrates traditional radiative coupling with the innovative
magnetic coupling in UHF RFID systems, bolstering their
overall performance and efficiency. Real-world pilot studies
in warehouses and logistics settings reveal that RFID+ signif-
icantly diminishes the miss-reading rate from 22.9% down to
a remarkable 1.06%, while entirely eliminating cross-reading
challenges. Moreover, our RFID+ variant demonstrates bet-
ter resilience against materials traditionally challenging for
UHF RFID, such as water bottles and containers. These ad-
vancements make RFID+ exceedingly relevant for practical
applications in logistical networks.

1 Introduction

Ultra-high frequency (UHF) Radio-Frequency IDentification
(RFID) has arisen as a transformative non-contact identifica-
tion paradigm in the logistics and retail domains [1–3]. By har-
nessing wireless radio frequency (RF) communication, RFID
infrastructures can effortlessly access unique Electronic Prod-
uct Codes (EPC) from passive RFID tags affixed to various
items. A key criterion is the pinpoint identification of tagged
objects within a predetermined Region of Interest (ROI). For
instance, in automated shopping arenas, RFID systems dis-
cern customer selections within a specified vicinity near the
departure point, commonly termed the checkout zone; in en-
vironments such as airports or manufacturing units, RFID
systems adeptly oversee an array of items transitioning on
conveyors; within warehouse contexts, RFID systems dili-
gently oversee item dynamics at ingress and egress junctures.
The efficacy of the RFID paradigm hinges on its prowess to
execute these operations expeditiously and with unparalleled
accuracy, even amidst challenging operational conditions.

Si
gn

al
 S

tre
ng

th
 (l

og
sc

al
e) RFID+

Distance (logscale)

UHF RFID Tag sensitivity

Cross-reading

Region of Interest (ROI) Guard
Miss-reading

NFC

NFC+

Fig. 1: The unpredictable propagation behavior of RF signals has traditionally
rendered UHF RFID susceptible to anomalies of miss-reading and cross-reading.
RFID+ defies this norm by introducing a controlled magnetic field, effectively
addressing both miss-reading and cross-reading challenges similar to the HF NFC+.

Nevertheless, without fully realizing the extensive capabil-
ities of RFID, present-day RFID systems remain under the
shadow of two significant challenges: miss-reading anomaly
and cross-reading anomaly. Conventionally, UHF RFID tags
operate in far-field domains, where the RF signal propagates
as planar electromagnetic (EM) waves, decaying at a pace
of O(1/r2) in relation to distance r. As depicted in Fig. 1,
governing the far-field RF signals is intricate due to their mul-
tifaceted interplay with RF-inimical materials such as metals
or liquids. These signals are prone to reflection or absorp-
tion. Particularly, within the ROI, there is the potential for
multipath signals to nullify each other, culminating in "blind
zones" where the RF intensity is not sufficient to trigger rele-
vant RFID tags (i.e., the miss-reading anomaly). In contrast,
outside the designated ROI, multipath signals may combine
constructively, inadvertently leading to the recognition of un-
desired tags (i.e., the cross-reading anomaly). For instance, as
illustrated in Fig. 2(a-b), the confined and crowded nature of
the checkout lane in an automated store inherently leads to
unavoidable tag miss-reading and cross-reading anomalies.

Modern RFID systems face challenges in addressing cross-
reading and miss-reading anomalies [4, 5] simultaneously.
While increasing transmission power and sensitivity can im-
prove detection, it often leads to unintended cross-readings.
On the other hand, mitigating cross-reading can cause missed
detections. Although recent debates favor a localization-based
approach over the traditional binary reading, its effectiveness
is questioned due to challenges like the "garbage in, garbage
out" [6,7]. While RFGo [8] leverages machine learning for en-
hanced detection, it falls short in dynamic scenarios. NFC+ [7]
previously explored the potential of long-range, magnetical-
coupling HF NFC at 13.56MHz as an alternative to UHF
RFID for improved ROI management. Magnetic signals in-
herently minimize cross-reading owing to their rapid decay,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1351

Fig. 2: Checkout lane. (a) and (b) show the entrance and the exit of the lane. These two
figures are reproduced from [8]. (c) shows our prefetching augmented ROI coverage.

and diminish the likelihood of miss-reading because of their
pronounced penetration through challenging materials such
as liquids and metals. However, NFC+ still faces three chal-
lenges: (1) HF tags are substantially more expensive than
UHF tags, posing deployment barriers; (2) existing infrastruc-
tures, heavily reliant on UHF RFIDs [9], face challenges in
adopting NFC due to compatibility issues; (3) NFC’s reading
rate of 50 tags/s is dwarfed by RFID’s 200 tags/s, making
NFC less suitable for high-speed inventory tasks such as those
involving moving tags on conveyors or checkout zones.

Contrary to HF NFC tags that use coil antennas for induc-
tive or magnetic coupling, UHF RFID tags commonly utilize
dipole antennas to capture and emit electromagnetic waves.
The absence of coils may give the misleading impression that
UHF RFID tags are ill-suited for energy harvesting from mag-
netic fields. However, as illustrated in Fig. 24 (Appendix A),
the architecture of a standard UHF RFID tag includes a small
loop (highlighted in blue) situated near the chip. Commonly
referred to as the "matching" or "tuning" loop, this component
is critical in optimizing energy harvesting and offering protec-
tion against over-voltage issues. Our findings indicate that this
inherent loop structure can, in fact, enable UHF RFID tags to
harvest energy from magnetic fields, thereby mimicking the
inductive coupling characteristics as seen in HF NFC.

In this work, we introduce RFID+, a magnetically-driven
UHF RFID system that innovatively repurposes the matching
loop of a UHF RFID tag as an RF frontend for both energy
harvesting and communication. The system’s objective is
the spatially selective identification of UHF RFIDs through
precision-controlled magnetic fields. As depicted in Fig. 1,
RFID+ not only emulates the propagation features of NFC+
but also overcomes its limitations. Specifically, RFID+ effec-
tively interfaces with widely-used, economical UHF RFIDs
while maintaining a high reading rate.

However, translating RFID+ into practice poses three sig-
nificant engineering hurdles:

• Initially, the feasibility of harnessing energy from mag-
netic fields through the matching loops of commercial UHF
RFIDs has not been thoroughly investigated. To fill this re-
search void, we conduct an exhaustive feasibility study that
shines light on the underlying principles of magnetically-
driven UHF RFID systems. Through empirical evaluations
conducted in real-world scenarios, we not only establish
the viability of this technique but also substantiate its effec-
tiveness and broad applicability.

• Secondly, the necessity arises for the integration of a coil
antenna into a UHF RFID reader, enabling the creation
of a controllable magnetic field. Traditional wavelength-
matched loop antennas (single-coil) commonly seen in HF
NFC (i.e., 13.54 MHz) become problematic when shifted
to the UHF band (i.e., 860 – 960 MHz). This difficulty
stems from the notably shorter wavelength at UHF relative
to the loop’s circumference, potentially leading to certain
regions experiencing mutual magnetic field nullification. To
address this concern, we put forward a tailored multi-turn,
capacitor-segmented coil antenna complemented by a high-
impedance reflector, striving for an even and directional
magnetic field distribution.

• Thirdly, RFID systems driven by magnetic fields have a
range that caps at about 3m, substantially less than the
potential 10m span of those powered by radiative meth-
ods, largely attributed to the swift dissipation of magnetic
fields. This confined ROI intensifies the need for prompt tag
reading. To mitigate potential delays, especially with fast-
moving tags, we initially engage a conventional far-field,
radiatively-coupled reader to prefetch potential tags mov-
ing toward the ROI. Subsequently, we incorporate Bloom
filters alongside the near-field, magnetically-coupled reader
to streamline the inventory procedure.

Contributions. This study re-examines the intricate ROI
management in UHF RFID through the lens of inductive
coupling. We present three major contributions: 1) We vali-
date the potential of magnetically-driven UHF RFID; 2) We
introduce innovative coil antenna designs and a tailored in-
ventory algorithm for RFID+; 3) Through rigorous tests and
real-world pilots, we demonstrate RFID+’s efficacy. We hope
that this research revitalizes academic discourse surrounding
magnetically-driven UHF RFID systems in typical scenarios.

2 Magnetically-Driven UHF RFID

In this section, we start by exploring the basics of UHF RFID,
introduce inductive coupling via tags’ matching loops, and
finally assess the feasibility across COTS UHF tags.

2.1 Background
The coupling mechanism describes the means by which sys-
tems engage in the interchange of energy or information. The
mechanisms adopted by HF NFC and UHF RFID vary sig-
nificantly, largely owing to the different frequency ranges in
which these systems operate.

• Inductively-Coupled HF NFC: Operating at 13.56MHz,
HF NFC employs inductive coupling facilitated by coil anten-
nas. In this arrangement, an oscillating electrical current flows
through the reader’s coil, generating a variable magnetic field
in the surrounding area. When an NFC tag comes within this
field’s sphere of influence, the magnetic flux induces a current
in the tag’s coil antenna, thereby activating the NFC chip and
initiating communication with the reader. Given the reactive

1352 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Reader 920MHz

Patch
Antenna

UHF RFID
Tag

EM Wave

(a) Radiatively-Coupled RFID

Reader 920MHz

Magnetic
Induction Line

Loop
Antenna

UHF RFID
Tag

Coupling
Co-eff. C

(b) Inductively-Cdoupled RFID
Fig. 3: Rationale behind Magnetically-driven UHF RFID

nature of these fields, the effective communication range is
generally limited to a short span of several centimeters.

• Radiatively-Coupled UHF RFID: Typically operating
within the 860-960 MHz frequency range, UHF RFID uti-
lizes radiative coupling, commonly executed through dipole
antennas. In this scenario, the reader emits a UHF radio wave
that, upon reaching an RFID tag, induces an electric current
in the tag’s antenna. Utilizing backscatter technology, the tag
then modifies and reflects the wave back to the reader. This
method allows for a substantially extended operational range,
often reaching up to several meters.

In essence, while HF NFC primarily employs inductive cou-
pling for close-proximity interactions, UHF RFID leverages
radiative coupling to enable longer-distance engagements.

2.2 Inductive Coupling via Matching Loops
Inductive coupling usually requires coil-configured antennas
that the UHF RFID tags are short of. Thus, it seems that UHF
RFID tags are not reactive to magnetic fields at first glance.
Actually, as illustrated in Fig. 25 (Appendix A), every RFID
tag inherently incorporates a single-turn coil, referred to as
the matching loop. This essential component bridges the gap
between dipole-style antennas and the tag’s integrated chips
(ICs), serving three primary functions: Firstly, it facilitates
impedance matching between the antenna and the chip, en-
suring optimal power conveyance. Secondly, this loop aids in
adjusting the voltage levels to align with the chip’s requisites.
Lastly, by safeguarding the correct impedance and voltage
calibrations, it inadvertently fortifies the RFID chip against
potential over-voltage detriments.

These loops can essentially act as standalone coil antennas.
When exposed to a magnetic field, these loops capture an
induced electrical current that then flows to energize the chip,
successfully accomplishing inductive coupling. Therefore,
it becomes feasible to power and interface with UHF RFID
tags through magnetic fields, akin to the operation seen in
NFC systems. To elucidate further, let us juxtapose the opera-
tional mechanics of conventional radiatively-coupled RFID
systems with those of our innovative magnetically-coupled
ones. Fig.3(a) portrays the conventional system where the
reader is equipped with a patch antenna – a specific varia-
tion of a dipole antenna. A tag derives its power from the
transmitted electromagnetic waves fully using its own dipole
antenna. On the other hand, Fig.3(b) illustrates our approach:
the reader comes outfitted with a coil antenna, purposed for
the generation of concentrated magnetic fields. This magnetic
flux subsequently traverses the tag’s matching loop, thereby

Power
Harvesting Unit

RFID Logics
& Memory

Matching
Loop

Switch Open

(a) Non-reflective

Power
Harvesting Unit

RFID Logics
& Memory

Matching
Loop

Switch Closed

(b) Reflective
Fig. 4: Magnetic backscatter communication. (a) With the switch is open, the induced
current is directed towards the harvesting unit; (b) With the switch is closed, the coil
experiences a short-circuit. The current generated within the coil fosters an opposing
magnetic field, which subsequently resonates with the reader’s coil, acting as a reflection.

inducing an electric current. The distinction between the two
approaches lies solely in their signal propagation mechanisms
– via either a patch or a coil antenna. All other system pa-
rameters, including the operating frequency and transmission
power, remain unaltered, making this a financially judicious
solution.

2.3 Communication Immutability
A concern may arise regarding the necessity of altering com-
munication protocols when passive tags obtain power through
magnetic fields. This concern can be addressed by examining
the two communication links of UHF RFID: the downlink
and the uplink.

• Downlink (Reader ⇒Tag): In the downlink, where the
reader communicates to the tag, the goal is to query tags or
send specific commands. The reader employs an Amplitude
Shift Keying (ASK) method, encoding different bit values
with varying amplitude levels. This ASK causes magnetic
strength changes, inducing a current with amplitude variation
in the tag’s matching loop. Thus, even with magnetic power
derivation, the tag’s chip can decode ASK commands.

• Uplink (Tag ⇒ Reader): In the uplink, where tags com-
municate to the reader, the primary goal is to send the stored
EPC. When energized by the reader’s signal, passive tags use
"backscatter modulation" to transmit data. This process in-
volves a switch that connects the tag’s peripherals to its IC, as
depicted in Fig. 4. When the switch is on, the tag directs the
induced current from the loop to the chip, making it absorbent
and non-reflective. However, when off, the tag grounds the
chip, and the loop-initiated current, following Lenz’s law,
creates an opposing magnetic field. This renders the RFID
tag reflective, sending the loop-induced power back to the
reader. The tag thus communicates bits by toggling between
its reflective and non-reflective states or backscattering.

Thus, the modulation techniques employed for both down-
link and uplink communication remain unmodified.

2.4 Experimental Verification
We verify the feasibility of the magnetically-driven approach
using standard COTS RFID hardware. Fig. 5 provides a visual
representation of the experimental configuration, showcas-
ing the tags evaluated. We utilized a widely-used commer-
cial RFID reader (Impinj R420 [10]) set to a frequency of

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1353

USRP X310

Laptop

Sniffer Antenna

LaptopT1

T2

T3

T4

T5

T6

T7

T8

T9

T10

Cut Intact CutIntact

Patch Antenna

Coil Antenna

320 mm

Impinj Reader

150 mm

Antennas

Fig. 5: Experiment Validation. A commercial Impinj reader is equipped
with a patch antenna and a coil antenna, respectively. Ten types of commer-
cial tags are tested.

(d)

(c)

(b)

(a) Preamble 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1

Preamble 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Time (ms)

Preamble 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 0

E
M

 R
FI

D
M

A
G

 R
FI

D

Intact Tag Severed Tag

No Signal

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Time (ms)

Fig. 6: Captured RN16 signals from a tag across four distinct conditions. (a) and (b) display
signals procured from the unaltered tag, powered by EM waves and magnetic fields, correspondingly.
(c) and (d) illustrates signals from the modified tag whose dipole antenna is cut off. As a result, it is
unresponsive to EM-wave query anymore but still functions effectively when exposed to magnetic
fields.

920MHz. Alongside this, we deployed the USRP X310 [11]
device as a dedicated sniffer to capture the communication
between the reader and the tag. Our tests incorporated two
distinct reader antennas: a 15×15 cm2 patch antenna and a
coil antenna with a 32cm diameter. The reader is alternately
connected to each of these antennas, with the transmission
power maintained at 30dBm. The sniffer was strategically
placed close to the reader antenna, roughly 30cm away. For
each trial, we arranged each tag in an approximately parallel
orientation to the loop to maximize the capture of magnetic
flux.

Comparative Tests on Loop Role. Fig. 26 has validated
that COTS RFID tags can be activated and queried using
magnetic fields while the communication protocol remains
consistent1. To test if tags can continue to harness energy from
magnetic fields using only matching loops, we conducted
two comparative inventory tests with an M4 tag (i.e., T1)
positioned 50cm away. We alternated between using a patch
and coil antenna for the reader. The first test assessed the
RN16 responses of the unaltered tag. The signals from both
antennas were largely consistent, as seen in Fig. 6(a) and (b).
In the second test, after cutting off the tag’s dipole antenna
and leaving only the matching loop (see Fig. 5), the tag was
unresponsive to EM-waves but still functions effectively when
exposed to magnetic fields, as shown in Fig. 6(c) and (d).
The comparative results emphasize the crucial role of the
matching loop in energy harvesting. The comparative analyses
were also conducted for the other nine tag types (T2-T10, as
depicted in Fig. 5). The outcomes were consistent across all
tests as summarized in Table 2.

3 Overview

At a high level, RFID+ is elegantly simple: We strategically
replace the conventional electric patch antennas of UHF RFID
readers with tailored coil antennas, in the pursuit of precisely
controlled magnetic field emission aimed at UHF RFID tags
within a specified ROI. Benefiting from rapid attenuation and
strong penetration capabilities, magnetically-driven RFID+
minimizes miss-reading and cross-reading anomalies. To this
end, we introduce a unique multi-turn, capacitor-segmented
coil design for our UHF RFID system in §4 and devise a

1More details can be found in Appendix A.

prefetching-based algorithm to speed up readings in §5. The
subsequent sections elaborate on the technical details.

Scope. The matching loops inherent in existing UHF RFID
tags are clearly not optimized for energy extraction from
magnetic fields, resulting in low radiation efficiency and a
relatively limited range. Our approach balances compatibil-
ity with controllability, designed to integrate seamlessly with
existing UHF RFID tags while offering precise ROI man-
agement in near-field settings like conveyor belts or check-
out zones. In such environments, the desired operational
range is approximately 100-200cm, consistent with prior find-
ings [7, 8, 12]. Thus, our intent is not to supplant existing
radiatively-coupled UHF RFID systems or to extend the long-
range reading capability, but rather to complement them by of-
fering improved spatial controllability within confined ROIs.

4 Spreading Magnetic Fields

In this section, we delve into the novel coil antenna design
tailored for our magnetically-driven UHF RFID system.

4.1 Necessity of a Novel Coil Antenna
Why are traditional coil antennas inadequate for the specific
requirements of magnetically-driven UHF RFID systems? To
answer this question, we use ANSYS HFSS [13] software
to simulate the distributions of magnetic fields generated by
a 7.5cm radius single-turn coil at both 13.56MHz (HF NFC
norm) and 920MHz (UHF RFID standard). The findings,
illustrated in Fig. 7(a), reveal a uniform magnetic field dis-
tribution at the 13.56MHz frequency. However, at 920MHz,
the field distribution shown in Fig. 7(b) exhibits irregularities,
including four intensified regions surrounding the loop and
five weaker areas, or "blind zones," both centrally and at the
corners. Such uneven distribution highlights the limitations
of conventional coil antennas for UHF RFID applications,
specifically in terms of potential activation failures in these
blind zones.

The observed unevenness can be explained as follows: the
coil is considered as a composition of countless tiny elements,
each generating its unique magnetic field with an initial phase.
The overall field is the sum of these individual fields. Phase
alignment results in constructive field addition, while mis-
alignment can cause mutual nullification. To better visualize

1354 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Loop@13.56 MHz (b) Loop@920MHz (c) One coil@920MHz (d) Two coils@920MHz

-40

-30

-20

-10

0

10

20

30

40

(e) Four coils@920MHz
Fig. 7: Simulated magnetic intensity in the vicinity of five distinct antenna structures. (a) denotes an unsegmented loop actuated by a 13.56 MHz HF excitation signal; (b) illustrates
an unsegmented loop energized by a 920 MHz UHF signal; (c) offers a depiction of a segmented loop equipped with lumped capacitors, resonating to a 920 MHz UHF signal; (d)
presents a two-turn segmented loop integrated with fork capacitors, subjected to a 920 MHz UHF excitation; and (e) displays a multi-turn segmented spiral loop with fork capacitors,
stimulated by a 920 MHz UHF signal.

<latexit sha1_base64="RAMbbo13XjBtnN57IJFJn2Asr4s=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2R6UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp611WvWavUa3kcRTiDc7gED26gDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBsHOM0g==</latexit>

V

Clockwise Magnetic Fields

Anti-clockwise Magetic Fields

(b)

(c)

(d)

Clockwise Magnetic Field(a) 13.56 MHz

912 MHz

UnravelUnravel

Fig. 8: Analysis on a loop antenna. (a) Magnetic fields remain in consistent directions
at 13.5MHz; (b) The magnetic fields change their directions alternatively along the coil.
(c) The capacitor-segmented coil eliminates the disparities in the initial phase. (d) The
microstrip lumped caption-segmented coil.

the phase variations as the signal traverses the coil, we rep-
resent the loop linearly, depicted in Fig.8. With HF signals,
characterized by a 22-meter wavelength, phase discrepan-
cies across coil elements are negligible due to the significant
disparity between the wavelength and the coil’s 50 cm circum-
ference. A maximum phase difference is just 0.14 radians,
ensuring a predominantly in-phase superposition, as displayed
in Fig.8(a). Conversely, the UHF signal has a wavelength of
32 cm, comparable to the coil’s circumference. As the signal
traverses the coil, it completes about two cycles, as depicted in
Fig. 8(b). This causes each element’s initial phase to fluctuate
between 0 and 2π repeatedly. The clockwise magnetic fields
stem from positive currents, while negative currents yield
anti-clockwise ones. When refashioned into a loop, these op-
posing magnetic fields combine out-of-phase, resulting in the
observed uneven distribution. Thus, there arises a pressing
demand to pioneer a novel coil antenna design tailored for the
proposed magnetically-driven UHF RFID systems.

4.2 Capacitor-Segmented Coil Antenna
The loop antenna’s limitation stems from the incoherent amal-
gamation of different elements because of phase discrepancies.
A straightforward remedy might be to shrink the loop’s size to
1/4 wavelength, ensuring better phase alignment. Yet, antenna
theory fundamentals suggest that a loop antenna resonates
(evident as a purely real impedance) only when its circum-
ference is roughly equal to a wavelength [14]. More accurate
dimensions need to be ascertained through specialized 3D
electromagnetic simulation.

Capacitor-Segmented Loop. To counteract the loop an-
tenna’s limitations, we propose segmenting the loop physi-
cally and inserting capacitors between adjacent segments, as
shown in Fig. 8(c). Each segment can then be modeled as an
equivalent RLC circuit. Let R, L and C represent the intrinsic
resistance and inductance of a segment, and the capacitance
respectively. Capacitors are known to resist sudden voltage
changes. Under AC conditions, the current behind a capacitor
obtains a phase shift φ, which is given by:

φ = arctan

(
2π f L− 1

2π fC

R

)
(1)

where f symbolizes the frequency of the signal. This equation
indicates that by fine-tuning the capacitor’s value, one can
methodically counterbalance a desired phase shift. As shown
in Fig. 8(c), segmentation at intervals of half a wavelength
along the line results in a 180◦ phase change each time. By
strategically selecting the capacitance values, a corrective
phase shift of −180◦ is introduced by each capacitor. This
ensures the RF signal flowing between consecutive capacitors
retains a uniform initial phase shift. Such alignment gives rise
to uniform clockwise magnetic fields across segments. When
the linear arrangement is formed into a loop, this coherence is
maintained, yielding a consistent magnetic field distribution.
This technique can uphold the loop’s size while guaranteeing
a balanced field distribution.

Fork-Shaped Lumped Capacitor. Utilizing a single dis-
crete capacitor is straightforward, but integrating several
capacitors onto a PCB might result in unexpected power
consumption and enlarged dimensions. Contemporary an-
tenna systems lean towards microstrip lumped antennas that

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1355

2nd Segment

8.2mm

1mm 1mm

0.5mm

7.8mm

1st Segment

39.27mm

(a) Microstrip Lumped Capacitor (b) Equivalent circuit

Fig. 9: Fork-shaped Lumped Capacitor. (a) shows the structure and the size of the
lumped capacitor. (b) shows the equivalent circuit.

smartly embed lumped components within the antenna’s de-
sign. Inspired by prior designs in microstrip antennas [15–17],
we adopt the fork-shaped lumped capacitors. As shown in
Fig. 9(a), the capacitor is implemented by the microstrip line.
In the figure, two segments are positioned 1mm apart. The
former segment ends with a three-sided forked shape that in-
terfaces with the beginning of the subsequent segment. Specif-
ically, the dimensions of the top, left, and bottom sides are
8.2mm, 4mm, and 7.8mm, respectively. The bottom side is
slightly shortened compared to the top to fit the arc design.
Fig.9(b) presents the equivalent circuit where the three sides
are modeled as individual capacitors.

The capacitance of the lumped capacitor is approximated
by 8ε

√
A/π, where A represents the area of the forked con-

figuration and ε is the permittivity coefficient. This equation
suggests that a considerable area is needed to achieve a sub-
stantial capacitance and the corresponding large phase shift.
Thus, to avoid bulky capacitors, we trim the segment length,
thereby adjusting the required phase. Each segment, featur-
ing the aforementioned fork-shaped capacitor, was iteratively
determined in HFSS by tuning the phase shifts according
to segment length. Specifically, our design sets the segment
length at 3.927cm, roughly 11.9% of the 32.872cm wave-
length, deviating from the standard half-wavelength model.
It is crucial to note the compromise: this design necessitates
four times as many lumped capacitors than its half-wavelength
counterpart. Fig. 8(d) showcases this coil design. As the sig-
nal traverses a 3.927cm segment, its phase shifts by 42.84◦.
The lumped capacitor then counters this shift by −42.84◦,
ensuring consistent signal alignment across segments.

4.3 Spiral Coil Antenna
As illustrated in Fig.7(c), the capacitor-segmented loop offers
a markedly even distribution of magnetic field intensity com-
pared to the conventional loop design. The updated design
spreads this energy more uniformly. However, a region of di-
minished intensity remains near the center. This drawback can
be remedied by using multi-turn coils. Accordingly, we intro-
duce a spiral coil antenna, whose design and implementations
are shown in Fig.10. This design features four distinct coil
turns, artfully arranged in a spiral layout, with both the start
and end points of the coil connected using via-holes. A greater
coil density might seem beneficial but poses a challenge: the
potential coupling between neighboring coils. To alleviate
this potential interference, we reserve an 18mm spacing be-
tween them (i.e., half of the segment length) after iterative
optimization. The simulated magnetic intensity distribution of
two-turn and four-turn coil antenna are shown in Fig. 7(d) and

a
u

d
itw

id
g

e
t C

o
m

b
in

e
 R

a
tio

:1
2
2
.5

8
%

 S
u

n
 Ju

l 9
 1

6
:4

1
:0

6
 2

0
2
3

la
n

n
e
r n

u
m

: 0
 p

c
b

 s
iz

e
: -

2
.0

0
*
-
1
.0

0
 m

m

a
u

d
itw

id
g

e
t C

o
m

b
in

e
 R

a
tio

:1
6
6
.8

6
%

 S
u

n
 Ju

l 9
 1

6
:4

2
:2

1
 2

0
2
3

la
n

n
e
r n

u
m

: 0
 p

c
b

 s
iz

e
: -

2
.0

0
*
-
1
.0

0
 m

m

Via

Via

Backside
Match Circuit

Frontside
Match Circuit

75mm

57mm

39mm

21mm
Via

Frontside Backside

Diameter = 150mm

Via

Fig. 10: Spiral Coil Antenna. Multi-turns of coils are arranged in a spiral fashion.

(e), respectively. The simulation results reinforce our hypoth-
esis that a spiral configuration not only enhances the effective
electrical length of the loop antenna but also accentuates its
intensity with the addition of more turns.

4.4 Directional Coil Antenna
Many applications, like inventory management, require direc-
tional coverage to meet user expectations. It is also notable
that today’s EM-driven UHF RFID systems use directional
patch antennas. Thus, aligning with industry norms, our next
steps will focus on crafting a directional coil antenna. A con-
ventional solution is to place a metal reflector behind the coil
antenna to direct magnetic fields forward. However, this ap-
proach faces the issue of half-wave loss. When RF signals
transition from low to high impedance boundaries, the re-
flected wave undergoes a 180◦ phase shift. As depicted in
Fig. 11(a), if the coil-reflector gap is < λ/4, these shifted
magnetic fields destructively interfere with those from the op-
posite side. The constructive superpositions occur only when
the gap is set to λ/4. For our 32cm wavelength, a separation
of about 8cm is required, increasing antenna thickness.

Mushroom-like HIS. Inspired by the artificial magnetic
conductors [18], we introduce a high-impedance surface (HIS)
approach to intrinsically mitigate the half-wave loss. The core
principle behind HIS is illustrated in Fig.11(b) and (c). Rest-
ing atop a metallic base, a series of compact square patches
are arranged in a grid pattern. These mushroom-like patches
(called HIS elements) connect to the base via central via-holes,
with a deliberate spacing between them. As a result, adjacent
elements essentially function as capacitors, connected through
the via-hole to the base metal below. Given the inherent para-
sitic resistance, two proximate HIS elements together resem-
ble a standard parallel resonant RL circuit. The impedance
related to an HIS can be expressed as:

ZHIS =
jωL

1−ω2LC
=

jωL
1− (ω/ω̂)2 (2)

where ω signifies the angular frequency of the prevailing mag-
netic field, while ω̂ = 1/

√
LC represents the resonant angular

frequency. The L and C refer to the parasitic resistance and
lumped capacitance, respectively. Their values are calculated
as outlined in [19]:

L =
ηs

ω
tan(βh) and C =

1
π

wε0(εr1 + εr2)cosh−1
(D

g

)
(3)

1356 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Coil

Ground

<latexit sha1_base64="b4na1dU14aM1OYv3OIr9NZGGYdw=">AAAB/HicdVDLSsNAFJ3UV62vaJduBlvBVUhKqO2u4MZlBfuAJpTJZNIOnTyYmQghxF9x40IRt36IO//GaRtBRQ8MHM65h3vneAmjQprmh1bZ2Nza3qnu1vb2Dw6P9OOToYhTjskAxyzmYw8JwmhEBpJKRsYJJyj0GBl5i6ulP7ojXNA4upVZQtwQzSIaUIykkqZ6vekEHOHcYSrjoyK3i+ZUb5hGu2tbVgeahrmCIpbZ7Zg2tEqlAUr0p/q748c4DUkkMUNCTCwzkW6OuKSYkaLmpIIkCC/QjEwUjVBIhJuvji/guVJ8GMRcvUjClfo9kaNQiCz01GSI5Fz89pbiX94klUHHzWmUpJJEeL0oSBmUMVw2AX3KCZYsUwRhTtWtEM+RKkOqvmqqhK+fwv/JsGVYbcO+aTV6dllHFZyCM3ABLHAJeuAa9MEAYJCBB/AEnrV77VF70V7XoxWtzNTBD2hvn5i/lLY=</latexit>

�
4

<latexit sha1_base64="yh2bhRy0TBTawXWT/CBMd5Jwrns=">AAAB+HicdVDLSsNAFJ3UV62PRl26GWwFVyEpoba7ghuXFewDmlAm00k7dDIJMxOhhnyJGxeKuPVT3Pk3TtsIKnrgwuGce7n3niBhVCrb/jBKG5tb2zvl3cre/sFh1Tw67ss4FZj0cMxiMQyQJIxy0lNUMTJMBEFRwMggmF8t/cEdEZLG/FYtEuJHaMppSDFSWhqb1boXCoQzL6F51sjrY7NmW8226zgtaFv2Cpo4drtlu9AplBoo0B2b794kxmlEuMIMSTly7ET5GRKKYkbyipdKkiA8R1My0pSjiEg/Wx2ew3OtTGAYC11cwZX6fSJDkZSLKNCdEVIz+dtbin95o1SFLT+jPEkV4Xi9KEwZVDFcpgAnVBCs2EIThAXVt0I8QzoIpbOq6BC+PoX/k37DcpqWe9OoddwijjI4BWfgAjjgEnTANeiCHsAgBQ/gCTwb98aj8WK8rltLRjFzAn7AePsElcuTBA==</latexit>⇡
2

<latexit sha1_base64="yh2bhRy0TBTawXWT/CBMd5Jwrns=">AAAB+HicdVDLSsNAFJ3UV62PRl26GWwFVyEpoba7ghuXFewDmlAm00k7dDIJMxOhhnyJGxeKuPVT3Pk3TtsIKnrgwuGce7n3niBhVCrb/jBKG5tb2zvl3cre/sFh1Tw67ss4FZj0cMxiMQyQJIxy0lNUMTJMBEFRwMggmF8t/cEdEZLG/FYtEuJHaMppSDFSWhqb1boXCoQzL6F51sjrY7NmW8226zgtaFv2Cpo4drtlu9AplBoo0B2b794kxmlEuMIMSTly7ET5GRKKYkbyipdKkiA8R1My0pSjiEg/Wx2ew3OtTGAYC11cwZX6fSJDkZSLKNCdEVIz+dtbin95o1SFLT+jPEkV4Xi9KEwZVDFcpgAnVBCs2EIThAXVt0I8QzoIpbOq6BC+PoX/k37DcpqWe9OoddwijjI4BWfgAjjgEnTANeiCHsAgBQ/gCTwb98aj8WK8rltLRjFzAn7AePsElcuTBA==</latexit>⇡
2

Traditional conductor brings half-wave phase shift

Radiated wave Reflected wave

<latexit sha1_base64="kEBW2li770/1bjYwWDfJq9EXnes=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUfFU8OKxgq2FNJTNdtMu3WTD7kQopT/DiwdFvPprvPlv3LY5aOuDgcd7M8zMC1MpDLrut1NYW9/Y3Cpul3Z29/YPyodHbaMyzXiLKal0J6SGS5HwFgqUvJNqTuNQ8sdwdDvzH5+4NkIlDzhOeRDTQSIiwShayZfKmBtS7aai2itX3Jo7B1klXk4qkKPZK391+4plMU+QSWqM77kpBhOqUTDJp6VuZnhK2YgOuG9pQmNugsn85Ck5s0qfRErbSpDM1d8TExobM45D2xlTHJplbyb+5/kZRtfBRCRphjxhi0VRJgkqMvuf9IXmDOXYEsq0sLcSNqSaMrQplWwI3vLLq6Rdr3mXtYv7eqXh5nEU4QRO4Rw8uIIG3EETWsBAwTO8wpuDzovz7nwsWgtOPnMMf+B8/gAlDZB1</latexit>

loss: ⇡

(a) Traditional Metal Reflector

Coil

Ground

Radiated wave Coupled wave

<latexit sha1_base64="GXPxLumN2cfTb1l5nQrCTxFfWJc=">AAAB9HicdVDLSsNAFL3xWeur6tLNYCu4Cknpa1lw47KCfUATymQyaYdOHs5MCqX0O9y4UMStH+POv3HSRlDRAwOHc87l3jlewplUlvVhbGxube/sFvaK+weHR8elk9OejFNBaJfEPBYDD0vKWUS7iilOB4mgOPQ47XvT68zvz6iQLI7u1DyhbojHEQsYwUpLbsXhHDlc531cGZXKltmoNmt1G1mmtUJGWlqrIztXypCjMyq9O35M0pBGinAs5dC2EuUusFCMcLosOqmkCSZTPKZDTSMcUukuVkcv0aVWfBTEQr9IoZX6fWKBQynnoaeTIVYT+dvLxL+8YaqClrtgUZIqGpH1oiDlSMUoawD5TFCi+FwTTATTtyIywQITpXsq6hK+for+J72qaTfM2m213LbyOgpwDhdwBTY0oQ030IEuELiHB3iCZ2NmPBovxus6umHkM2fwA8bbJ+YDkX8=</latexit>⌧ �

HIS brings zero phase shift

HIS elements

Side view

<latexit sha1_base64="45Q/abtJ/GZ3LFIIxgsCTMatxWo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcJuEPUY8OIxAfOAZAmzk95kzOzsMjOrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c781iMqzWN5b8YJ+hEdSB5yRo2V6k+9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCG3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpe1fly3qlVL3I4sjDCZzCOXhwDVW4gxo0gAHCM7zCm/PgvDjvzseiNedkM8fwB87nD+BljOw=</latexit>w
<latexit sha1_base64="1wmbCUe7H6TW/BDMpeJiQxOX3k4=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcJuEPUY0IPHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDvzW0+oNI/lgxkn6Ed0IHnIGTVWqt/1iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJb/wJl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2VL+uVUvUiiyMPJ3AK5+DBNVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP5MZjLk=</latexit>

D

<latexit sha1_base64="pbIzqxi5EFYPlJz2sd/Dp7ULwiE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkiHosePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWao765Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rwxs+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtGtV76p62axV6hd5HEU4gVM4Bw+uoQ530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AcmpjN0=</latexit>

h
<latexit sha1_base64="S7yYew1SfOaRKck6LCZOtioy1P4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkiHosePFYxX5AG8pmO2mXbjZhdyOU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8NJME/YgOJQ85o8ZKDzXVL1fcqjsHWSVeTiqQo9Evf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/m186JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSEN37GZZIalGyxKEwFMTGZvU0GXCEzYmIJZYrbWwkbUUWZseGUbAje8surpFWrelfVy/tapX6Rx1GEEziFc/DgGupwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0m+jSM=</latexit>

2r
<latexit sha1_base64="zRhKRT9euKL8w3T9ZhduHI8NVac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkiHosePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWag775Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rwxs+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtGtV76p62axV6hd5HEU4gVM4Bw+uoQ530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AcgljNw=</latexit>

g
<latexit sha1_base64="ZavEV6wz5V1F/3Cn44Mm//UxTOc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSRD0WvHhswdZCG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHbR2nimGLxSJWnYBqFFxiy3AjsJMopFEg8CEY3878hydUmsfy3kwS9CM6lDzkjBorNS/65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rwxs+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtGtV76p62axV6m4eRxFO4BTOwYNrqMMdNKAFDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AG5pjKQ=</latexit>

+ <latexit sha1_base64="CVdxeQn7wOpTDL6oh6ywrKRbUTA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBiyUpoh4LXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2Vmhf9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aFTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU1442dcJqlByRaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xK2rWqd1W9bNYqdTePowgncArn4ME11OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/cXGMpg==</latexit>-<latexit sha1_base64="ZavEV6wz5V1F/3Cn44Mm//UxTOc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSRD0WvHhswdZCG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHbR2nimGLxSJWnYBqFFxiy3AjsJMopFEg8CEY3878hydUmsfy3kwS9CM6lDzkjBorNS/65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rwxs+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtGtV76p62axV6m4eRxFO4BTOwYNrqMMdNKAFDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AG5pjKQ=</latexit>+
<latexit sha1_base64="ZavEV6wz5V1F/3Cn44Mm//UxTOc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSRD0WvHhswdZCG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHbR2nimGLxSJWnYBqFFxiy3AjsJMopFEg8CEY3878hydUmsfy3kwS9CM6lDzkjBorNS/65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rwxs+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtGtV76p62axV6m4eRxFO4BTOwYNrqMMdNKAFDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AG5pjKQ=</latexit>

+
<latexit sha1_base64="CVdxeQn7wOpTDL6oh6ywrKRbUTA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBiyUpoh4LXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2Vmhf9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aFTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU1442dcJqlByRaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xK2rWqd1W9bNYqdTePowgncArn4ME11OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/cXGMpg==</latexit>-

<latexit sha1_base64="CVdxeQn7wOpTDL6oh6ywrKRbUTA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBiyUpoh4LXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2Vmhf9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aFTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU1442dcJqlByRaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xK2rWqd1W9bNYqdTePowgncArn4ME11OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/cXGMpg==</latexit>-C

L

<latexit sha1_base64="VI1ynpOaXdonXFynMKvFgqLbBks=">AAAB+XicbZBNS8NAEIYn9avWr6hHL4ut4KkkRdRjwYvHCrYW2hA220m7dPPB7qZQQv+JFw+KePWfePPfuG1z0NYXFh7emWFm3yAVXGnH+bZKG5tb2zvl3cre/sHhkX180lFJJhm2WSIS2Q2oQsFjbGuuBXZTiTQKBD4F47t5/WmCUvEkftTTFL2IDmMecka1sXzbrvUxVVwYzqXfmNV8u+rUnYXIOrgFVKFQy7e/+oOEZRHGmgmqVM91Uu3lVGrOBM4q/UxhStmYDrFnMKYRKi9fXD4jF8YZkDCR5sWaLNzfEzmNlJpGgemMqB6p1drc/K/Wy3R46+U8TjONMVsuCjNBdELmMZABl8i0mBqgTHJzK2EjKinTJqyKCcFd/fI6dBp197p+9dCoNp0ijjKcwTlcggs30IR7aEEbGEzgGV7hzcqtF+vd+li2lqxi5hT+yPr8AQkQkzg=</latexit>✏r2
<latexit sha1_base64="o0FtHw6rNTtm1vGaiucf10G/+IQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY8FLx4r2A9IQ9hsN+3S3WzY3Qgl9Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5UcqZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8tMEdohkkvVj7CmnCW0Y5jhtJ8qikXEaS+a3M393hNVmsnk0UxTGgg8SljMCDZW8usDkYW5CpuzelituQ13AbROvILUoEA7rH4NhpJkgiaGcKy177mpCXKsDCOcziqDTNMUkwkeUd/SBAuqg3xx8gxdWGWIYqlsJQYt1N8TORZaT0VkOwU2Y73qzcX/PD8z8W2QsyTNDE3IclGccWQkmv+PhkxRYvjUEkwUs7ciMsYKE2NTqtgQvNWX10m32fCuG1cPzVrLLeIowxmcwyV4cAMtuIc2dICAhGd4hTfHOC/Ou/OxbC05xcwp/IHz+QOSDpC9</latexit>µr2

<latexit sha1_base64="aZri38LsRuR9C8IdiL5AueO92m8=">AAAB+XicbZBNS8NAEIYn9avWr6hHL8FW8FSSIuqx4MVjBVsLbQib7aRdutmE3U2hhP4TLx4U8eo/8ea/cdvmoK0vLDy8M8PMvmHKmdKu+22VNja3tnfKu5W9/YPDI/v4pKOSTFJs04QnshsShZwJbGumOXZTiSQOOT6F47t5/WmCUrFEPOppin5MhoJFjBJtrMC2a31MFeOGcxl4s1pgV926u5CzDl4BVSjUCuyv/iChWYxCU06U6nluqv2cSM0ox1mlnylMCR2TIfYMChKj8vPF5TPnwjgDJ0qkeUI7C/f3RE5ipaZxaDpjokdqtTY3/6v1Mh3d+jkTaaZR0OWiKOOOTpx5DM6ASaSaTw0QKpm51aEjIgnVJqyKCcFb/fI6dBp177p+9dCoNt0ijjKcwTlcggc30IR7aEEbKEzgGV7hzcqtF+vd+li2lqxi5hT+yPr8AQeKkzc=</latexit>✏r1
<latexit sha1_base64="lwO9YD7EE2SyDZ4pEHI2pawyzto=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LLaCp5IUUY8FLx4r2A9IQ9hsN+3SzW7YnQgl9Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5USq4Adf9dkobm1vbO+Xdyt7+weFR9fika1SmKetQJZTuR8QwwSXrAAfB+qlmJIkE60WTu7nfe2LacCUfYZqyICEjyWNOCVjJrw+SLMx16M3qYbXmNtwF8DrxClJDBdph9WswVDRLmAQqiDG+56YQ5EQDp4LNKoPMsJTQCRkx31JJEmaCfHHyDF9YZYhjpW1JwAv190ROEmOmSWQ7EwJjs+rNxf88P4P4Nsi5TDNgki4XxZnAoPD8fzzkmlEQU0sI1dzeiumYaELBplSxIXirL6+TbrPhXTeuHpq1llvEUUZn6BxdIg/doBa6R23UQRQp9Ixe0ZsDzovz7nwsW0tOMXOK/sD5/AGQiJC8</latexit>µr1

(b) Sideview of HIS

(c) Bird’s-eye View of HIS

Fig. 11: Reflection-Induced Phase Shift. (a) When magnetic signals encounter a metallic ground, they experience a 180◦ phase shift due to half-wave loss. To counterbalance this
phase shift, the separation between the coil and the ground must be set to λ/4. If the gap is less than λ/4, reflected signals will destructively interfere with the upward-propagating
magnetic waves. (b) Illustrates a side view of the mushroom-structured HIS, designed to minimize the phase shift from reflections, effectively bringing it close to zero. (c) Depicts a
top-down or bird’s-eye view of the HIS.

Here, ηs =
√

µ0µr2/ε0εr2 and β = ω
√

µ0µr2ε0εr2 stand for
the intrinsic wave impedance and propagation constant, re-
spectively. The constants ε0 and µ0 are the permittivity and
permeability of a vacuum, with relevant parameters defined in
Fig. 11(b). By varying the size and spacing of these elements,
one can fine-tune the resonant frequency and achieve the
desired impedance characteristics for specific applications.

Zero-Phase Shift. When the HIS’s resonant frequency
ω̂ aligns with the frequency ω of the impinging magnetic
field, the HIS manifests as an "infinite" impedance surface,
as evident from Eqn. 2. This phenomenon arises because the
equation’s denominator approaches zero. In this scenario, the
magnetic field’s reflected phase by the HIS is articulated by

θ = Im

(
ln
(

ZHIS −η0

ZHIS +η0

))
≈ 0 (4)

because ZHIS ≫ η0. This implies that an HIS can proficiently
eliminate the 180◦ phase shift induced by the half-wave loss,
facilitating constructive coupling of the reflected waves via
the HIS. By leveraging the properties of the HIS, it becomes
possible to significantly reduce the required separation be-
tween the HIS and the coil antenna to well below λ/4. Simul-
taneously, nearly all of the magnetic energy is constructively
redirected to the opposing side of the antenna. The simulated
magnetic field distributions with and without an HIS reflector
are compared in Appendix B.

4.5 Coil Antenna Array
In near-field communications, interactions are primarily
driven by magnetic fields, which are divided into reactive
and radiative near-field domains. The reactive near-field re-
sides close to the antenna, typically within 0.62

√
D3/λ, while

the radiative near-field or Fresnel Region extends to about
2D2/λ, with D representing the antenna’s maximum linear
dimension(i.e., aperture). For optimal performance, our single
coil’s outermost circumference is set to λ, making its diameter
D = λ/π. Theoretically, the near-field range of a single-turn
coil antenna becomes approximately 12cm, which falls short
for many practical applications. Despite incremental advance-
ments from components such as capacitor-segmented, multi-
turn coils, and the zero-phase reflection of HISs, the range
expansion is still insufficient, extending to merely 50cm. To

<latexit sha1_base64="OmaMjslQD5JAQZRW7BborWNn2HQ=">AAAB6nicdVDLSsNAFJ3UV61a62MnwmARXIU0tLXdFdy4cFHRPqANZTKdtEMnkzAzEUvoJ7hxoYhbf8atO/f6HTppK6jogQuHc+7l3nvckFGpLOvVSC0sLi2vpFcza+sb2c3c1nZTBpHApIEDFoi2iyRhlJOGooqRdigI8l1GWu7oJPFbV0RIGvBLNQ6J46MBpx7FSGnp4qx33cvlLbNsF0ulCrRMa4qEVMpV24aFuZKvZT/en/d33+q93Eu3H+DIJ1xhhqTsFKxQOTESimJGJpluJEmI8AgNSEdTjnwinXh66gQeaqUPvUDo4gpO1e8TMfKlHPuu7vSRGsrfXiL+5XUi5VWcmPIwUoTj2SIvYlAFMPkb9qkgWLGxJggLqm+FeIgEwkqnk9EhfH0K/ydN2yyUzeK5TqMKZkiDPXAAjkABHIMaOAV10AAYDMANuAP3BjNujQfjcdaaMuYzO+AHjKdP/LaSAA==</latexit>

Lx

<latexit sha1_base64="4SBv24qATohr0hhHNdjSkuxX4vM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0iktPZW8OLBQ0X7AW0om+2mXbrZhN2NEEJ/ghcPinj1F3nz37htg2j1wcDjvRlm5vkxZ0o7zqdVWFvf2Nwqbpd2dvf2D8qHRx0VJZLQNol4JHs+VpQzQduaaU57saQ49Dnt+tOrud99oFKxSNzrNKZeiMeCBYxgbaS7m2E6LFcc21kAOXajXqvWXfStuDmpQI7WsPwxGEUkCanQhGOl+q4Tay/DUjPC6aw0SBSNMZniMe0bKnBIlZctTp2hM6OMUBBJU0KjhfpzIsOhUmnom84Q64la9ebif14/0cGllzERJ5oKslwUJBzpCM3/RiMmKdE8NQQTycytiEywxESbdEomBHf15b+kc2G7Nbt6W600G3kcRTiBUzgHF+rQhGtoQRsIjOERnuHF4taT9Wq9LVsLVj5zDL9gvX8BZ0uN3g==</latexit>

Ly

X

Y

Z

Focal Point

<latexit sha1_base64="qZqmrv0tLFwef83MIf5MhcOA+zE=">AAAB+XicbVDLSsNAFL2pr1pfUZdugq1QQUpSxMeuIBSXFewD2hAm02k7dDIJM5NiDP0TNy4UceufuPNvnLZZaPXAhcM593LvPX7EqFS2/WXkVlbX1jfym4Wt7Z3dPXP/oCXDWGDSxCELRcdHkjDKSVNRxUgnEgQFPiNtf3wz89sTIiQN+b1KIuIGaMjpgGKktOSZZqlefvDqZ4muR69+WvLMol2x57D+EicjRcjQ8MzPXj/EcUC4wgxJ2XXsSLkpEopiRqaFXixJhPAYDUlXU44CIt10fvnUOtFK3xqEQhdX1lz9OZGiQMok8HVngNRILnsz8T+vG6vBlZtSHsWKcLxYNIiZpUJrFoPVp4JgxRJNEBZU32rhERIIKx1WQYfgLL/8l7SqFeeicn5XLdauszjycATHUAYHLqEGt9CAJmCYwBO8wKuRGs/Gm/G+aM0Z2cwh/ILx8Q3gz5Ha</latexit>

F (xF , yF , zF)

O

<latexit sha1_base64="4Y0jNmWEcFPrd2rlbnGDIAsVbmA=">AAAB9HicbVDLSsNAFL2pr1pfVZduBluhgpSkiI9dwY3LCvYBbSiT6aQdOpnEmUkxhH6HGxeKuPVj3Pk3TtsstHrgwuGce7n3Hi/iTGnb/rJyK6tr6xv5zcLW9s7uXnH/oKXCWBLaJCEPZcfDinImaFMzzWknkhQHHqdtb3wz89sTKhULxb1OIuoGeCiYzwjWRnLLlce+OEtM2aflfrFkV+050F/iZKQEGRr94mdvEJI4oEITjpXqOnak3RRLzQin00IvVjTCZIyHtGuowAFVbjo/eopOjDJAfihNCY3m6s+JFAdKJYFnOgOsR2rZm4n/ed1Y+1duykQUayrIYpEfc6RDNEsADZikRPPEEEwkM7ciMsISE21yKpgQnOWX/5JWrepcVM/vaqX6dRZHHo7gGCrgwCXU4RYa0AQCD/AEL/BqTaxn6816X7TmrGzmEH7B+vgGk8iQpg==</latexit>

(xn, yn, 0)
n-th element

Fig. 12: Magnetic Antenna Array forms a near-field focal point at inventory region.

ensure comprehensive coverage, we utilize an array of coil
antennas to shape the detection zone as needed. As previously
discussed, the near-field range R is influenced by the square
of the antenna aperture D, following the relationship 2D2/λ.
Consequently, augmenting the aperture by a factor of three
through an array setup could lead to a ninefold enhancement
in the near-field range.

For an antenna array with N coils, as shown in Fig. 12,
adjacent coils are spaced by λ/2. The nth coil’s position is
represented by r⃗n or coordinates (xn,yn,0) with n spanning
from 1 to N. Each coil follows a uniform radiation pattern,
denoted as B̂(⃗r), indicating the magnetic field vector. This
pattern is adjusted based on the decay factor 1

R e−J2πR/λ, where
R denotes the maximum operational range. The total magnetic
field generated by the array at an observation point P(x,y,z)
or r⃗ is given by:

B(⃗r) =
N

∑
n=1

CnBn(⃗r) =
N

∑
n=1

AneJϕn · B̂(⃗r− r⃗n) ·
e−J2π||⃗r−⃗rn||/λ

||⃗r− r⃗n| |
(5)

where Cn = AneJϕn is the nth coil’s complex excitation co-
efficient. Each coil is activated with an amplitude An and a
modifiable phase ϕn.

To direct the magnetic field towards the ROI, the phase
shifts of the N coils’ excitation coefficients in the array must
be tuned. For a desired concentration of the magnetic field
at point r⃗F , the distance to the origin is RF = ||⃗rF || and the
unit vector pointing to this spot is ⃗̂rF = r⃗/||⃗r||. The conjugate
phase method, as referenced in [20, 21], suggests setting each
antenna’s phase ϕn as:

ϕn =
2π

λ
∥⃗rF − r⃗n∥=

2π

λ

√
R2

F + ∥⃗rn∥2 −2RF⃗̂rF · r⃗n (6)

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1357

When RF is much larger than coil size L, the phase adjust-
ments needed to focus on point F are linear and quadratic.
The Fresnel approximation, cited in [22], captures this:

ϕn ≈−2π

λ

(⃗
r̂F · r⃗n

)
+

2π

λ

∥⃗rn∥2

2RF
(7)

A constant phase term, −2πRF/λ, is omitted as it’s relatively
insignificant. This approximation is valid with an error un-
der π/8 if RF > 3

√
L4/8λ. However, for closer focal points,

necessitating F ≫ L to be invalid, Eqn. 6 should be used for
accurate phase fine-tuning. To achieve complete coverage
of a ROI, the array simply needs to adjust its focal point for
meticulous traversal of the area. The small size of the area ren-
ders the scanning process effortlessly manageable in practical
applications. Furthermore, inventory advancements [9,23,24]
that prioritize tag localization before communication can be
swiftly integrated into RFID+, given its primary focus on en-
hancing the RF frontend, which permits extensive customiza-
tion for the signal processing backend.

5 Fast Inventory
In this section, we incorporate the far-field UHF RFID system
with the proposed near-field UHF RFID system to expedite
inventory processing for tags within the ROI.

5.1 Dual-Coupling Systems
Magnetically-driven RFID systems, despite recent advance-
ments, can only reach a maximum range of about 2.5m, signif-
icantly less than the 12m of radiatively-driven RFIDs due to
magnetic properties. This constrains their use to smaller ROIs
like gates or checkout lanes. Within these narrow confines, a
high reading rate, the number of tags recognized per second,
becomes essential. Slow readings might miss rapidly moving
tags. Fig. 2 shows a self-service checkout scenario, where
the system must quickly detect all tagged items in a brief
timeframe to ensure a smooth customer experience. Currently,
prevalent RFID systems use the Q-adaptive anti-collision pro-
tocol, a time-division-based ALOHA derivative. As described
in [25], the peak efficiency of such protocols is approximately
36.8%. This means nearly 74% of the time is lost to channel
contention, posing a significant efficiency challenge.

To mitigate the low efficiency in the channel competition,
we present a prefetching mechanism that harmoniously com-
bines both radiatively-driven RFID and magnetically-driven
RFID systems to enhance the reading speed within the ROI. In
this configuration, one reader interfaces with a patch antenna,
while another is connected to our innovatively designed coil
antenna. For clarity, the two readers are called far-field reader
and near-field reader, respectively. Both antennas are strate-
gically positioned toward the direction from which the tags
approach. As depicted in Fig. 2(c), a conceivable setup would
have the two antennas suspended above the checkout lane,
angled antero-inferiorly. This arrangement ensures that the
coil antenna encompasses the entirety of the near-field ROI

(approximately the 3m-long lane), while the patch antenna
extends its coverage to a broader 10m-long far-field region,
inclusive of the ROI and its surrounding area. Leveraging
the extended reach of the far-field RFID reader, it becomes
feasible to preemptively identify a set of candidate tags ex-
pected to traverse through the ROI. While this set might oc-
casionally register cross-readings or omit certain tags, it still
offers a substantial advantage by expediting the operations
of the near-field reading. In summary, the far-field antenna
initially pre-fetch a set of potential tags, enabling the near-
field reader to swiftly verify their presence in the ROI based
on the far-field’s prior knowledge. This time-divided dual-
stage approach guarantees that operations in the far-field and
near-field do not interfere with each other.

5.2 Acceleration via Perfected Bloom Filter
A Bloom filter (BF) is a space-efficient probabilistic data
structure to represent a set of elements. It can be used to fast
test whether an element is a member of the set. More introduc-
tion about the BF refers to Appendix. C. Initially, the far-field
reader collects a set of candidate tags, denoted by T , utilizing
the time-consuming Q-adaptive algorithm. The EPCs of these
collected tags are then used to construct a Candidate Bloom
Filter (BF). Notably, the construction does not necessitate any
back-and-forth communication between the reader and the
tags, but it is generated by the algorithm. Both the EPCs and
the BF are passed to the near-field reader via Ethernet cables.

In the next phase, the near-field reader uses the previously
obtained BF to check for the presence of tags within the ROI
quickly. Rather than transmitting their full 96-bit EPCs, the
tags merely send 16-bit RN16 packets to indicate their pres-
ence, thus speeding up the inventory process significantly. We
adopt the method outlined in previous work [26,27] to test the
BF on-site directly, which has theoretically demonstrated that
the acquisition overhead is reduced by approximately 60%.
The algorithm subsequently performs a comparative analysis
to identify which candidate tags are genuinely in the ROI, i.e.,
checking the slots during which a desired tag responds based
on the hashing results. This can be seen as a streamlined
polling algorithm that verifies tags against a predefined list of
names without the need for channel competition. Finally, for
missing tags that are not indicated by the BF, the near-field
reader uses the Select command to explore them.

6 Implementation
In this section, we introduce the system implementation of
RFID+ and conduct the microbenchmark on coil arrays.

6.1 Fabrication
Given that RFID+ utilizes dual-coupling to blend far-field and
near-field characteristics, it necessitates two distinct sets of
reader hardware for implementation in actual deployments.
Specifically, a commercial Impinj R420 reader [10], accom-
panied by its patch antenna, serves as the far-field reader in

1358 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Reader

 Tx Array

Laptop

Beamformer

Amplifier x4

Splitter

SIPO Converter

Raspberry Pi

Reader
Phaser x4

Rx Antenna

Fig. 13: Experiment setup.

our prototype. In contrast, the near-field reader is custom-
constructed around the foundation of the USRP X310 [11].

• Near-Field Reader. Our near-field reader prototype is
anchored in the capabilities of the USRP X310, which boasts
two independent RF frontend configurations. One interface
is dedicated to an array of coil antennas for transmission
(TX). The secondary interface liaises with a compact patch
antenna designed for reception (RX). It should be noted that
integrating the TX and RX into a monostatic mode is tech-
nically feasible and would further reduce the system’s size,
benefiting dynamic scenarios. The architectural blueprint of
the reader is shown in Appendix D. Upon upconversion in
the USRP, the resultant signal is split into four distinct path-
ways. Each trajectory is orchestrated by an analog phaser
(i.e., PHSA-152+ from Mini-Circuits [28]). These phasers
enable meticulous phase tuning with an eight-bit granularity.
The signals undergo amplification to achieve a cumulative
transmission power of 30 dBm before they are broadcasted by
the quartet of coil antennas. A Raspberry Pi 4 Model B [29]
orchestrates the coordination among the phaser units.

• Coil Array. At the heart of the system lies a 2×2 coil an-
tenna array, encompassing four distinct coil antennas, each of
which has a 75mm radius and about 1.4λ circumference. (see
Fig. 10). The exact size and shape of the antenna are deter-
mined through iterative optimization to enhance the near-field
magnetic intensity. As depicted in Fig. 13, these antennas
are integrated onto a two-layer 1.6mm FR-4 printed circuit
board (PCB), with HIS reflectors secured to the rear via plastic
standoffs. They operate primarily around the 920MHz. Perfor-
mance enhancement is achieved with an impedance-matching
circuit, aligning the antenna to the 50Ω RFID reader stan-
dards. Each antenna unit, measuring 17cm by 16cm, incurs
an approximate manufacturing expense of $65.53, as detailed
in Appendix E.

6.2 Microbenchmark
Before embarking on a detailed performance evaluation, we
initially provide a quantitative analysis of the performance
improvements attributable to each antenna design component.

• Component Gain. We used a magnetic field probe to
measure the H-field strength induced by each component of
the designed antenna, assessing their respective gains. Dif-
ferent coils, such as conventional single-turn, segmented-line
single-turn, multi-turn, along with HIS reflectors, were con-
structed for evaluation. The data in Tab. 1 show that the
gains from the capacitor-segmented, multi-turn, and direc-

-250 -200 -150 -100 -50 0 50 100 150 200 250
Distance (cm)

-40

-30

-20

-10

0

10

20

P
ow

er
 (d

B
m

)

Coil (w/ HIS)
Coil (w/o HIS)
Patch

-250 -200 -150 -100 -50 0 50 100 150 200 250
Distance (cm)

0

50

100

150

R
ea

di
ng

 ra
te

Coil (w/ HIS)
Coil (w/o HIS)
Patch

(a)

(b)

Below
 Sensitivity miss-reading

5.36 dBm avg. gain
ROI Guard

 cross-reading

Back

ROI GuardBack

Fig. 14: Controllability Analysis across Different Antennas.(a) and (b) show the
signal strength and reading rate as a function of distance, respectively.

tional components were 3.01 dB, 1.96 dB, and 1.68 dB, re-
spectively, contributing to a total increase of 6.65 dB in the
H-field’s peak strength.

Next, we characterize the coil array by analyzing the engi-
neered coil antenna’s attributes. We examined three distinct
configurations: the novel coil array with and without an HIS,
and a traditional electrical patch antenna devoid of a reflector.
For experimental purposes, the antenna was positioned on
the XOY plane. Here, positive (or negative) distances signify
locations either ahead of (or behind) the antenna along Z-axis.
Each configuration was subjected to 20 trials. The reader’s
transmitting power was consistently maintained at 30dBm.

• Strength Distribution. We analyzed the magnetic
field distribution in radiative regions using a spectrum an-
alyzer [30] coupled with magnetic field probes, as depicted
in Fig. 14(a). (1) Frontside: In front of our coil antenna, mag-
netic strength gradually decreased with little variation. Con-
versely, the EM field from the patch antenna fluctuated signif-
icantly, with strengths ranging from -25 to 11dBm@100cm.
Considering a sensitivity threshold of−20dBm [31], the patch
antenna could cause miss-readings @100-200cm and poten-
tial cross-readings @200-250 cm due to EM field unpre-
dictability. (2) Backside: Behind the coil, the strength quickly
fell below the sensitivity level, attributed to null-phase-shift
reflections from the HIS. These reflections added an average
1.68dB gain to the frontside magnetic field, equivalent to a 1.5
times power gain. Our findings emphasized the heightened
issues of miss-reading and cross-reading in traditional RFID
antennas. In contrast, magnetic antennas exhibited enhanced
controllability due to reduced multipath propagation effects.
This study underscores the superiority of the proposed coil
antenna and HIS in spatial control.

• Effective Coverage. Reading rates, defined as the num-
ber of readings recognized per second (r/s), were gathered
across a range of -250 to 250 cm. The results are portrayed in
Fig. 14(b). Frontside: Within 25-175 cm, the coil antenna con-

Table 1: Each Components’ Impact on H-Field Boost.
Elements Segmented Multi-turn HIS Total
Gain (dB) 3.01 1.96 1.68 6.65

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1359

25 50 75 100 125 150 175 200 225 250
Distance (cm)

0

20

40

60

80

100

D
is

co
ve

ry
 ra

te
 (%

)

Coil Array (1 element)
Coil Array (2 elements)
Coil Array (3 elements)
Coil Array (4 elements)
Patch Array (4 elements)

 Guard

ROI

Fig. 15: Inventory Accuracy

<latexit sha1_base64="xZfRlzS0BVbWaOCjGn4B+oUNayQ=">AAAB+nicbVBNTwIxEJ3FL8SvRY9eGgmJJ7KLBDmSePGIiYAJbEi3dKGh2920XQlZ+SlePGiMV3+JN/+NBfag4EsmeXlvpp15fsyZ0o7zbeW2tnd29/L7hYPDo+MTu3jaUVEiCW2TiEfywceKciZoWzPN6UMsKQ59Trv+5Gbhdx+pVCwS93oWUy/EI8ECRrA20sAu9ofRVGApoym6qlca/fLALjkVZwm0SdyMlCBDa2B/mTdIElKhCcdK9Vwn1l6KpWaE03mhnygaYzLBI9ozVOCQKi9drj5HZaMMURBJU0Kjpfp7IsWhUrPQN50h1mO17i3E/7xeooOGlzIRJ5oKsvooSDjSEVrkgIZMUqL5zBBMJDO7IjLGEhNt0iqYENz1kzdJp1px65XaXa3UrGZx5OEcLuASXLiGJtxCC9pAYArP8Apv1pP1Yr1bH6vWnJXNnMEfWJ8/x6OS/Q==</latexit># 36.8%

0 1 2 3 4 5
Time (s)

0

20

40

60

80

100

D
is

co
ve

ry
 ra

te
 (%

)

Q-adaptive Inventory
Fast Inventory

2.4 3.8

Fig. 16: Inventory Efficiency

0 20 40 60 80 100 120 140
Distance (cm)

-80

-70

-60

-50

-40

S
ig

na
l s

tre
ng

th
 (d

B
m

)

40 cm
60 cm
80 cm
100 cm
120 cm

Fig. 17: Spatial Manipulation

sistently showed high reading rates of 115-133 r/s. Beyond
175 cm, this rate drops to zero, mirroring the observed de-
cline in magnetic strength and indicating precise ROI control.
Conversely, the patch antenna’s reading capability persists
beyond 200 cm, capturing nearly 36 r/s at 250 cm. Backside:
Beyond -50 cm, the coil antenna w/ HIS reading rate swiftly
drops to zero. However, both the coil w/o HIS and the patch
antenna display similar reading rates on the backside as seen
on the frontside.

Summary. The outcomes of these two experiments em-
phatically demonstrate the heightened controllability pre-
sented by the proposed coil array in both the physical and
application dimensions relative to traditional electronic patch
antennas. Further, the data suggests a maximum effective
range of 175cm plus a 25cm guard zone.

7 Evaluation

In this section, we conduct a group of experiments within a
sizable office measuring 50 m2 full of multipath reflectors to
evaluate RFID+ comprehensively.

7.1 Inventory Accuracy
We conducted a comparative analysis of RFID+ versus con-
ventional RFID systems, centered on inventory accuracy. Both
systems employed a 2×2 antenna array, with the former uti-
lizing the proposed coil and the latter using a conventional
patch antenna. In our test, a dense collection of 100 tags were
fixed to a flat surface. The accuracy was measured based on
the discovery rate, i.e., the percentage of unique tags identified
from the total of 100 tags.

The results are shown in Fig. 15. From the figure, we have
two main findings: First, RFID+ boasts near-perfect detection
within the ROI, identifying almost all tags for distances up
to 175cm. Beyond this zone, the detection drops drastically.
Traditional RFIDs maintain a good detection rate only up
to 100cm, and their performance diminishes past this point,
mostly due to environmental reflections. Second, the number
of coils in the array influences detection reach. Distances of
flawless detection were reduced to 125cm, 100cm, and 75cm
for arrays with 3, 2, and 1 coils, respectively. Overall, RFID+
offers better ROI management than standard RFIDs.

7.2 Inventory Efficiency
We introduce a Bloom Filter-enhanced fast inventory algo-
rithm to expedite the near-field reader’s inventory process as

discussed in Sec. 5. Leveraging prefetched tags, the far-field
reader constructs Bloom Filters to ascertain tags within the
ROI swiftly. We compared this approach against conventional
inventory methods. Initially, an electronic antenna gathers
EPCs from 100 tags, out of which only 30 prefetched and 20
miss-read tags arrived at the near-field ROI. The efficiency
is gauged by the discovery rate over time. As illustrated in
Fig. 16, our fast inventory approach completes the discov-
ery in 2.4 seconds, contrasted with the 3.8 seconds by the
Q-adaptive algorithm. This marks a 36.8% efficiency boost,
primarily due to the omission of anti-collision procedure.

7.3 Spatial Controllability
Next, we examine RFID+’s capability in finely tuning the
beamforming focal point using the coil array. The focal point
represents the peak of energy concentration derived from the
coordinated quartet of coils. We directed the system’s focus
to five positions along the Z-axis: 40, 60, 80, 100, and 120cm.
For each position, a tag was moved from 10cm to 120cm, and
the backscattered signal strength was measured.

The findings are illustrated in Fig. 17. As anticipated, signal
strength peaked exactly at the 40cm, 60cm, and 80cm marks
when directed there. Beamforming focal point increases the
average received signal strength (RSS) by approximately 7.73
dB at these locations. However, at 100cm and 120cm, the
peaks lagged by 10cm, likely due to power dissipation effects,
namely, the combined power from the four coils is unable
to compensate for the losses experienced over extended dis-
tances. This observation is further mirrored in the peak values
decreased with distances, i.e., from -42.3dBm to -46.5dBm,
-50.2dBm, -51.5dBm, and -53.7dBm. Such precision in focal
adjustments is unparalleled, making it invaluable for special-
ized scenarios like detecting tags in containers or conveyors.

7.4 Penetrability
We assess the penetration capabilities of RFID+, NFC+ [7],
and traditional RFID when tags are positioned on the front
(LoS) and backside (NLoS) of various liquid products. Our ex-
periment evaluates six distinct products: M1 (64mm-thick bot-
tled water), M2 (48mm-thick canned Coke), M3 (40mm-thick
bottled Coke), M4 (85mm-thick boxed milk), M5 (45mm-
thick boxed milk), and M6 (64mm-thick Bottled beer). Such
liquid bottles are placed 50cm ahead of the antenna array,
which is linked to an Impinj R420 reader used to measure the
signal strength.

1360 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Back

Front

0 0 0
M1 M2 M3 M4 M5 M6

0

10

20

30

S
ig

na
l l

os
s

(d
B

)

RFID+ RFID NFC+

0 0 0
M1 M2 M3 M4 M5 M6

0

10

20

30

S
ig

na
l l

os
s

(d
B

)

Fig. 18: Penetrability

Impinj H47 Alien 9662 NXP U9424

-70

-60

-50

-40

-30

-20

-10

0

S
ig

na
l s

tre
ng

th
 (d

B
m

)

XOY XOZ YOZ

Fig. 19: Impact of tag orientation

161820222426283032
Power (dBm)

0

20

40

60

80

100

D
is

co
ve

ry
 ra

te
 (%

)

Distance = 0.50 m
Distance = 0.75 m
Distance = 1.00 m

Fig. 20: Impact of transmission power

Fig. 18 illustrates the difference of signal strengths (i.e.,
loss) acquired when a tag is either affixed to a product or not,
respectively. Notably, NFC+, operating at 13.56MHz, exhibits
superior performance in most scenarios due to its reduced vul-
nerability to water interference. Conversely, UHF frequency
signals experience higher absorption by water molecules,
leading to increased signal loss. Yet, RFID+ surpasses stan-
dard RFID systems, registering average losses of 7.1dB and
13.5dB on the product’s front. These losses rise to 13.5dB
and 20.8dB for RFID+ and RFID, respectively, on the back.
In summary, RFID+ demonstrates potent penetration for liq-
uid products with thicknesses less than 60mm, particularly
near the ROI.

7.5 Impact Analysis
Finally, we consider the two potential factors that affect the
performance of RFID+.

• Impact of Tag Orientation. We investigate the role of tag
orientation in determining RSS. Three distinct tags, namely
Impinj H47, Alien 9662, and NXP U9424 are positioned 50cm
from the coil array. These tags are aligned parallel to the XOY,
XOZ, and YOZ planes, with the coil array set on the XOY
plane. Fig. 19 presents the RSS from the backscatter signals
for each tag across the three configurations. Clearly, optimal
RSS is achieved when the tag orientation is parallel to the
coil array (i.e., XOY), as this allows maximum magnetic flux
to traverse the tag’s matching loops. Conversely, the least
favorable setup is the YOZ orientation, where minimal flux
interacts with the coils. This orientation sensitivity poses a
recurring challenge in RFID systems, attributed to the use
of planar antennas in tags. A practical workaround involves
deploying multiple coils in varied orientations to mitigate
such orientation-based discrepancies.

• Impact of Transmission Power. We investigated the
influence of transmission power on the discovery rate, situat-
ing tags at intervals between 0.5 m and 1 m from the reader.
As depicted in Fig. 20, the discovery rate correlates inversely
with decreasing power levels from 32 dBm to 16 dBm. No-
tably, when transmission power diminishes below 26 dBm,
the discovery rate plunges to under 20% for a 1 m distance
setting. Moreover, an increased separation between the reader
and tags further depresses the rate. For example, at a robust
transmission power of 28 dBm, the discovery rate remains
optimal at 100% for a 0.5 m distance. Yet, when the distances
extend to 0.75 m and 1 m, the rates taper off to 70% and

48%, respectively. This underscores that RFID+, akin to tra-
ditional RFID systems, is power-sensitive, primarily because
energizing the passive tags consumes a significant portion of
the transmitted energy.

8 Pilot Study: Logistic Network Evaluation

8.1 Warehouse Management
We tested RFID+ in a textile factory warehouse with an an-
nual revenue of 100 million USD for contact manufacturing
of branded apparel. The factory uses both RFID and barcodes
for identification, shown in Fig. 21 (a-c). We set up two 2×2
RFID+ antenna arrays near storage shelves. Over 200 tags
were attached to clothing items like T-shirts and jeans, packed
in garment boxes, and moved on a Manual Hand Pallet Jack.
The number of tags is subject to the Manual Hand Pallet Jack’s
maximum capacity and aligns with values reported in earlier
studies [8, 12]. As items passed through the scanning zone,
RFID+ logged the detected products. Fig. 22 depicts the per-
formance of RFID+, as determined by the mean outcome of
ten replicated trials that collectively involved more than 2,000
tags. It detected 98.94% of tags at the gateway, outperforming
the commercial radiatively-coupled RFID system’s 77.14%.
This is because approximately 10% of the regions are blind
spots for reading with conventional radiatively-coupled RFID
electrical antennas [4, 32, 33]. When five volunteers, includ-
ing two students and three workers, manually counted with
barcode scanners, the traditional optical barcode identifica-
tion system noted about 97%. Hence, RFID+ demonstrated
superior accuracy against both commercial RFID and manual
counts. For cross-reading accuracy, we established a 2m×2m
ROI around the coils/antennas and placed tags randomly at
its edges. The results in Fig. 22 show RFID+ had a negligi-
ble 0.09% cross-reading rate, significantly less than the UHF
RFID system’s 42%. The manual method registered 1.4%, a
number potentially increasing with working overtime. In sum-
mary, RFID+ excels in minimizing cross-reading and miss-
reading when contrasted with both traditional RFID systems
and manual inventory methods. It is even capable of approach-
ing the performance of the state-of-the-art (SOTA) system,
NFC+ [7], which records a mere 0.03% rate of miss-readings
and a zero cross-reading rate for randomly oriented objects.
The comparison in Appendix E also highlights RFID+’s out-
performance over another SOTA system RFGo [8] in terms
of generality, affordability, and ease of deployment.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1361

TX Antenna Array

(c)(a)

Checkout area

Warehouse (d)Conveyor

Inventory area

Boxes

(e)

Antenna
Array

Reader

Boxes (b)

TX Array

Fig. 21: Deploying RFID+ in real-world logistics networks. (a-c) show the application in warehouse management, whereas (d-e) illustrate the application in supply chain planning.

1.06 0.09

22.86

42

3 1.4

Miss-reading rate Cross-reading rate
0

10

20

30

40

P
er

ce
nt

ag
e

(%
)

RFID+
UHF RFID
Human-operated

Fig. 22: Performance in Warehouse

0 2 4 6 8
Time (s)

0

20

40

60

80

100
D

is
co

ve
ry

 ra
te

 (%
)

box1
box2
box3
box4
box5
box6
box7
box8
box9
box10

4.15

Avg. time cost

Fig. 23: Performance in Logistics

8.2 Supply Chain Planing
We further explored RFID+’s efficacy in a supply chain set-
ting, wherein boxed products traverse through a conveyor
scanning gateway. This conveyor bridges the warehouse and
the truck’s cargo hold. We demarcated an inventory zone (i.e.,
ROI) on the conveyor, dimensions being 1.5×0.5×1.6m2, as
visualized in Fig. 21(d-e). Each box, housing around 150-200
garments based on the apparel type, is strategically positioned
on the conveyor at 1.5m gaps. Whenever a box enters the
designated zone, the conveyor intuitively reduces its speed
for inventory purposes. Given the tags’ movement on the con-
veyor and the minimal interference risk from neighboring tags
due to the deliberate spacing, our system consistently show-
cased flawless performance without any miss-reading or cross-
reading instances. Fig. 23 portrays the discovery rate vis-a-vis
the time expenditure for ten sequential boxes. An average time
consumption of roughly 4.15 seconds is observed for each
box. This testing underscores RFID+ ’s prowess to seamlessly
integrate into real-world industrial settings, where UHF RFID
consistently sidesteps both miss-reading and cross-reading,
all within a reasonable timeframe.

9 Related Work
The related work can be categorized into the following areas:

(1) UHF RFID Communication. Over time, UHF RFID
systems have been thoroughly tested and understood [5, 7,
12, 34–37]. Their vulnerabilities, including missed readings,
are heightened in RF-unfriendly environments [38] or due
to multipath issues [5]. Historical attempts at remedying
these inaccuracies have explored beamforming [39], nonlinear
backscattering [40], wideband signal [12] and wave optimiza-
tion [41,42]. Besides missed readings, cross-reading errors are
a challenge [43]. Localizing UHF RFID tags has been a pri-
mary method to sieve out unwanted tags from the ROI [12,34].
Still, most localization solutions are antenna-intensive, with
RFGo [8] using eleven antennas, proving costly and intricate
for industrial settings. The NFC+ solution [7] proposes en-
hanced NFC technology as a UHF RFID substitute. Although

NFC is highly secure [44], its low throughput is its Achilles’
heel. The industry has explored merging HF NFC and UHF
RFID technologies by developing dual-frequency tags [45].
However, this approach compromises the low-cost benefit of
standard tags due to the need for custom-designed alternatives.
In contrast, RFID+ innovatively combines the best features of
both technologies, enabling accurate UHF RFID tag detection
with spatially controllable magnetic fields while also ensuring
full compatibility with legacy RFID tags.

(2) Magnetic Antenna Design: Recent studies have fo-
cused on developing magnetic antennas for near-field UHF
RFID applications [46, 47], highlighting this technology’s
potential to substitute LF/HF RFID in tagging individual
items [48]. Traditional solid-line loop antennas primarily be
utilized as RFID reader antennas in low frequency [49] and
high frequency [50, 51] RFID systems. However, these an-
tennas struggle to maintain a uniform magnetic distribution
within the ROI at the UHF band, mainly due to their inability
to be electrically small [14]. Addressing this, Dobkin et al.
introduced the use of lumped series capacitors in loop anten-
nas to counteract current nulls and enhance magnetic strength
in the UHF range [52]. Later studies [15, 17] examined the
properties of segmented line capacitors, eliminating the need
for discrete circuit components. This led to investigations
into various distributed capacitor designs [53–56]. While our
work is inspired by existing research, RFID+ is the first to
harmoniously integrate disparate elements (e.g., capacitor-
segmented loops, multi-turn UHF coils, HISs, coil arrays, etc)
into a unified practical system.

10 Conclusion
This work introduces RFID+, a highly accurate and reliable
system for RFID tag inventory. RFID+ utilizes the tailored
magnetic field to achieve a 99% discovery rate within the
ROI, simultaneously preventing cross-reading of tags outside
this area. Our warehouse analysis indicates that RFID+ has
the potential to revolutionize the logistics industry.

Acknowledgements
We thank all anonymous reviewers and our shepherd Dr. Ze-
rina Kapetanovic for their help and insightful feedback. This
work is supported by the NSFC Key Program (No. 61932017),
UGC/GRF (No. 15204820, 15215421), Innovation and Tech-
nology Fund (ITS/099/21), and Shenzhen Fundamental Re-
search Program (No. JCYJ20230807140410022). Zhenlin An
and Lei Yang are co-corresponding authors.

1362 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] E. C. Jones and C. A. Chung, RFID in logistics: a practical

introduction. CRC press, 2007.

[2] Z. Zhang, G. Xu, and E. C. Kan, “Outlooks for uhf rfid-based
autonomous retails and factories,” IEEE Journal of Radio Fre-
quency Identification, 2022.

[3] S. Pradhan, E. Chai, K. Sundaresan, S. Rangarajan, and L. Qiu,
“Konark: A rfid based system for enhancing in-store shopping
experience,” in Proceedings of the 4th International on Work-
shop on Physical Analytics, 2017, pp. 19–24.

[4] C. Loo, A. Elsherbeni, F. Yang, and D. Kajfez, “Experimental
and simulation investigation of rfid blind spots,” Journal of
Electromagnetic Waves and Applications, vol. 23, no. 5-6, pp.
747–760, 2009.

[5] M. Taguchi and H. Mizuno, “Analysis of dead zone of rfid
system,” in 2006 IEEE Antennas and Propagation Society
International Symposium. IEEE, 2006, pp. 4759–4762.

[6] J. Wang, L. Chang, O. Abari, and S. Keshav, “Are rfid sensing
systems ready for the real world?” in Proc. of ACM MobiSys,
2019, pp. 366–377.

[7] R. Zhao, P. Wang, Y. Ma, P. Zhang, H. H. Liu, X. Lin, X. Zhang,
C. Xu, and M. Zhang, “Nfc+ breaking nfc networking limits
through resonance engineering,” in Proc. of ACM SIGCOMM,
2020, pp. 694–707.

[8] C. Bocanegra, M. A. Khojastepour, M. Y. Arslan, E. Chai,
S. Rangarajan, and K. R. Chowdhury, “Rfgo: a seamless self-
checkout system for apparel stores using rfid,” in Proc. of ACM
MobiCom, 2020.

[9] Y. Ma, N. Selby, and F. Adib, “Minding the billions: Ultra-
wideband localization for deployed rfid tags,” in Proc. of ACM
MobiCom, 2017, pp. 248–260.

[10] Impinj, “Rain rfid readers, connectivity devices for iot so-
lutions,” https://www.impinj.com/products/readers, accessed:
2024-02-27.

[11] Ettus Research, “Usrp x310 high performance software defined
radio,” https://www.ettus.com/all-products/x310-kit/, accessed:
2024-02-27.

[12] B. Liang, P. Wang, R. Zhao, H. Guo, P. Zhang, J. Guo, S. Zhu,
H. H. Liu, X. Zhang, and C. Xu, “Rf-chord: Towards deploy-
able rfid localization system for logistic networks,” in Proc. of
USENIX NSDI, 2023.

[13] Ansys, “Ansys hfss: 3d high frequency simulation software,”
https://www.ansys.com/products/electronics/ansys-hfss, 2024,
accessed: 2024-02-27.

[14] W. L. Stutzman and G. A. Thiele, Antenna theory and design.
John Wiley & Sons, 2012.

[15] Y. Zeng, Z. N. Chen, X. Qing, and J.-M. Jin, “Modeling and
characterization of zero-phase-shift lines and optimization of
electrically large zpsl loop antennas for near-field systems,”
IEEE Transactions on Antennas and Propagation, vol. 64,
no. 11, pp. 4587–4594, 2016.

[16] A. H. Muqaibel, A. Safaai-Jazi, and S. M. Riad, “Fork-coupled
resonators for high-frequency characterization of dielectric
substrate materials,” IEEE transactions on instrumentation
and measurement, vol. 55, no. 6, pp. 2216–2220, 2006.

[17] Z. N. Chen, X. Qing, J. Shi, and Y. Zeng, “Review of zero-
phase-shift-line loop antennas for uhf near-field rfid readers,”
IEEE journal of radio frequency identification, vol. 1, no. 4,
pp. 245–252, 2017.

[18] R. Dewan, M. Rahim, M. Hamid, M. Yusoff, N. A. Samsuri,
N. Murad, and K. Kamardin, “Artificial magnetic conductor
for various antenna applications: An overview,” International
Journal of RF and Microwave Computer-Aided Engineering,
vol. 27, no. 6, p. e21105, 2017.

[19] T. H. Loh, “High impedance surface electromagnetic band gap
metamaterials: Design approach and applications for antenna
engineering,” Invited Paper, 2011.

[20] P. Nepa and A. Buffi, “Near-field-focused microwave antennas:
Near-field shaping and implementation.” IEEE Antennas and
Propagation Magazine, vol. 59, no. 3, pp. 42–53, 2017.

[21] A. Buffi, P. Nepa, and G. Manara, “Design criteria for near-
field-focused planar arrays,” IEEE Antennas and Propagation
Magazine, vol. 54, no. 1, pp. 40–50, 2012.

[22] Wikipedia, “Fresnel diffraction,” https://en.wikipedia.org/wiki/
Fresnel_diffraction, 2024, accessed: 2024-02-27.

[23] J. Wang and D. Katabi, “Dude, where’s my card? rfid position-
ing that works with multipath and non-line of sight,” in Proc.
of ACM SIGCOMM, 2013, pp. 51–62.

[24] L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu, “Tago-
ram: Real-time tracking of mobile rfid tags to high precision
using cots devices,” in Proc. of ACM MobiCom, 2014, pp. 237–
248.

[25] D. Tse and P. Viswanath, Fundamentals of wireless communi-
cation. Cambridge university press, 2005.

[26] L. Yang, Q. Lin, C. Duan, and Z. An, “Analog on-tag hash-
ing: Towards selective reading as hash primitives in gen2 rfid
systems,” in Proc. of ACM MobiCom, 2017, pp. 301–314.

[27] Z. An, Q. Lin, L. Yang, W. Lou, and L. Xie, “Acquiring bloom
filters across commercial rfids in physical layer,” IEEE/ACM
Transactions on Networking, vol. 28, no. 4, pp. 1804–1817,
2020.

[28] Mini-Circuits, “Sphsa-152+ datasheet,” https://www.
minicircuits.com/pdfs/SPHSA-152+.pdf, 2024, accessed:
2024-02-27.

[29] Raspberry Pi Foundation, “Raspberry pi 4 model b,” https:
//www.raspberrypi.com/products/raspberry-pi-4-model-b/, ac-
cessed: 2024-02-27.

[30] Rohde & Schwarz, “Hameg hms3010 3 ghz spectrum ana-
lyzer,” https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/
dl_common_library/dl_brochures_and_datasheets/pdf_1/
HAMEG_DB_EN_HMS3000_3010.pdf, accessed: 2024-02-
27.

[31] D. Dobkin, The rf in RFID: uhf RFID in practice. Newnes,
2012.

[32] L. Ukkonen, D. Engels, A. Sydanheimo, and M. Kivikoski,
“Reliability of passive rfid of multiple objects using folded
microstrip patch-type tag antenna,” in 2005 IEEE Antennas and
Propagation Society International Symposium, vol. 2. IEEE,
2005, pp. 341–344.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1363

https://www.impinj.com/products/readers
https://www.ettus.com/all-products/x310-kit/
https://www.ansys.com/products/electronics/ansys-hfss
https://en.wikipedia.org/wiki/Fresnel_diffraction
https://en.wikipedia.org/wiki/Fresnel_diffraction
https://www.minicircuits.com/pdfs/SPHSA-152+.pdf
https://www.minicircuits.com/pdfs/SPHSA-152+.pdf
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_brochures_and_datasheets/pdf_1/HAMEG_DB_EN_HMS3000_3010.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_brochures_and_datasheets/pdf_1/HAMEG_DB_EN_HMS3000_3010.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_brochures_and_datasheets/pdf_1/HAMEG_DB_EN_HMS3000_3010.pdf

[33] R. H. Clarke, D. Twede, J. R. Tazelaar, and K. K. Boyer, “Radio
frequency identification (rfid) performance: the effect of tag
orientation and package contents,” Packaging Technology and
Science: An International Journal, vol. 19, no. 1, pp. 45–54,
2006.

[34] Z. Wang, M. Xu, N. Ye, R. Wang, and H. Huang, “Rf-focus:
Computer vision-assisted region-of-interest rfid tag recognition
and localization in multipath-prevalent environments,” in Proc.
of ACM IMWUT, 2019.

[35] L. Dodds, N. Naeem, A. Eid, and F. Adib, “Software-controlled
polarization for longer-range rfid reading and localization,” in
2023 IEEE International Conference on RFID (RFID). IEEE,
2023, pp. 90–95.

[36] L. Dodds, I. Perper, A. Eid, and F. Adib, “A handheld fine-
grained rfid localization system with complex-controlled po-
larization,” in Proc. of ACM MobiCom, 2023.

[37] J. Wang, J. Zhang, R. Saha, H. Jin, and S. Kumar, “Pushing the
range limits of commercial passive rfids,” in Proc. of USENIX
NSDI, 2019, pp. 301–316.

[38] Y. Ma, Z. Luo, C. Steiger, G. Traverso, and F. Adib, “Enabling
deep-tissue networking for miniature medical devices,” in Proc.
of ACM SIGCOMM, 2018, pp. 417–431.

[39] S. Chen, S. Zhong, S. Yang, and X. Wang, “A multiantenna
rfid reader with blind adaptive beamforming,” IEEE Internet
of Things Journal, vol. 3, no. 6, pp. 986–996, 2016.

[40] D. Vasisht, G. Zhang, O. Abari, H.-M. Lu, J. Flanz, and
D. Katabi, “In-body backscatter communication and localiza-
tion,” in Proc. of ACM SIGCOMM, 2018, pp. 132–146.

[41] Z. An, Q. Lin, Q. Pan, and L. Yang, “Turbocharging deep
backscatter through constructive power surges with a single rf
source,” in Proc. of IEEE INFOCOM, 2021.

[42] S. Sabesan, M. J. Crisp, R. V. Penty, and I. H. White, “Wide
area passive uhf rfid system using antenna diversity combined
with phase and frequency hopping,” IEEE Transactions on
Antennas and Propagation, vol. 62, no. 2, pp. 878–888, 2013.

[43] M. Bolic, M. Rostamian, and P. M. Djuric, “Proximity detec-
tion with rfid: A step toward the internet of things,” IEEE
Pervasive Computing, vol. 14, no. 2, pp. 70–76, 2015.

[44] D. Dai, Z. An, Q. Pan, and L. Yang, “Magcode: Nfc-enabled
barcodes for nfc-disabled smartphones,” in Proc. of ACM Mo-
biCom, 2023, pp. 1–14.

[45] HUAYUAN RFID NFC Manufacturer, “Dual frequency rfid
cards,” https://www.huayuansh.com/products/rfid-smart-cards/
dual-frequency-rfid-cards/, 2024, accessed: 2024-02-27.

[46] B. Shrestha, A. Elsherbeni, and L. Ukkonen, “Uhf rfid reader
antenna for near-field and far-field operations,” IEEE Antennas
and Wireless Propagation Letters, vol. 10, pp. 1274–1277,
2011.

[47] X. Qing, C. Goh, and Z. Chen, “Segmented loop antenna for
uhf near-field rfid applications,” Electronics letters, vol. 45,
no. 17, pp. 872–873, 2009.

[48] P. V. Nikitin, K. Rao, and S. Lazar, “An overview of near field
uhf rfid,” in 2007 IEEE international conference on RFID.
IEEE, 2007, pp. 167–174.

[49] A. Diet, Y. Le Bihan, C. Conessa, F. Alves, M. Grzeskowiak,
M. Benamara, G. Lissorgues, M. Biancheri-Astier, and
A. Pozzebon, “Lf rfid chequered loop antenna for pebbles on
the beach detection,” in 2016 46th European Microwave Con-
ference (EuMC). IEEE, 2016, pp. 41–44.

[50] M. Benamara, M. Grzeskowiak, A. Diet, G. Lissorgues,
Y. Le Bihan, S. Protat, and C. Conessa, “A twisted loop antenna
to enhance hf rfid detection for different tag positioning,” in
2016 10th European Conference on Antennas and Propagation
(EuCAP). IEEE, 2016, pp. 1–5.

[51] X. Qing, Z. N. Chen, and A. Cai, “Multi-loop antenna for high
frequency rfid smart shelf application,” in 2007 IEEE Antennas
and Propagation Society International Symposium. IEEE,
2007, pp. 5467–5470.

[52] D. M. Dobkin, S. M. Weigand, and N. Iyer, “Segmented mag-
netic antennas for near-field uhf rfid,” Microwave Journal,
vol. 50, no. 6, p. 96, 2007.

[53] Y. S. Ong, X. Qing, C. K. Goh, and Z. N. Chen, “A segmented
loop antenna for uhf near-field rfid,” in 2010 IEEE Antennas
and Propagation Society International Symposium. IEEE,
2010, pp. 1–4.

[54] A. L. Borja, A. Belenguer, J. Cascon, and J. R. Kelly, “A re-
configurable passive uhf reader loop antenna for near-field
and far-field rfid applications,” IEEE Antennas and Wireless
Propagation Letters, vol. 11, pp. 580–583, 2012.

[55] Y. Zeng, X. Qing, Z. N. Chen, and J.-M. Jin, “Directional uhf
near-field rfid reader antenna with an improved magnetic field
distribution,” in 2016 IEEE Region 10 Conference (TENCON).
IEEE, 2016, pp. 135–137.

[56] Z. D. Wang, Y. Z. Yin, X. Yang, and J. J. Wu, “Design of a
wideband horizontally polarized omnidirectional antenna with
mutual coupling method,” IEEE Transactions on Antennas and
Propagation, vol. 63, no. 7, pp. 3311–3316, 2015.

[57] Mike Lenehan, “Monza 4 datasheet – impinj support
portal,” https://support.impinj.com/hc/en-us/articles/
202756908-Monza-4-Datasheet, accessed: 2024-02-27.

[58] Impinj, “Rain rfid tag chips for the internet of things,” https:
//www.impinj.com/products/tag-chips, 2024, accessed: 2024-
02-27.

[59] Alien Technology, “Tags,” https://www.alientechnology.com/
products/tags/, accessed: 2024-02-27.

[60] NXP Semiconductors, “Ucode rain rfid uhf,” https://www.nxp.
com/products/rfid-nfc/ucode-rain-rfid-uhf:MC_50483, 2023,
accessed: 2024-02-27.

[61] Laxcen, “RFID,” http://www.laxcen.com/rfid.html, 2023, ac-
cessed: 2024-02-27.

[62] Z. An, Q. Lin, L. Yang, and W. Lou, “Embracing tag collisions:
Acquiring bloom filters across rfids in physical layer,” in Proc.
of IEEE INFOCOM, 2019, pp. 1531–1539.

[63] B. Sheng, Q. Li, and W. Mao, “Efficient continuous scanning
in rfid systems,” in Proc. of IEEE INFOCOM, 2010.

[64] L. Xie, Q. Li, X. Chen, S. Lu, and D. Chen, “Continuous scan-
ning with mobile reader in rfid systems: An experimental study,”
in Proc. of ACM MobiHoc, 2013, pp. 11–20.

1364 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.huayuansh.com/products/rfid-smart-cards/dual-frequency-rfid-cards/
https://www.huayuansh.com/products/rfid-smart-cards/dual-frequency-rfid-cards/
https://support.impinj.com/hc/en-us/articles/202756908-Monza-4-Datasheet
https://support.impinj.com/hc/en-us/articles/202756908-Monza-4-Datasheet
https://www.impinj.com/products/tag-chips
https://www.impinj.com/products/tag-chips
https://www.alientechnology.com/products/tags/
https://www.alientechnology.com/products/tags/
https://www.nxp.com/products/rfid-nfc/ucode-rain-rfid-uhf:MC_50483
https://www.nxp.com/products/rfid-nfc/ucode-rain-rfid-uhf:MC_50483
http://www.laxcen.com/rfid.html

Matching LoopDipole Antenna

Tag’s chip

Fig. 24: Structure of a Typical UHF RFID Tag. It consists of an integrated chip,
matching loop and a dipole antenna.

Fig. 25: The Popular UHF RFIDs. Each type of tag contains a matching loop (green)
that bridges the dipole antenna with the chip.

Appdendix

A Magnetically-driven UHF RFID Systems

Without loss of generality, Fig. 24 displays a standard UHF
RFID tag design, showcasing a small loop (highlighted in
blue) adjacent to its chip. Consistently, as Fig. 25 further
demonstrates, it is a fundamental trait for nearly every RFID
tag to embody a single-turn coil, known as the matching loop.
This loop is instrumental in the magnetic energy harvesting
process within our system. To inventory such tags, the reader
must adhere to the UHF RFID Gen2 air interface protocol,
which involves several steps: (1) The process begins with the
reader initiating an inventory session by sending out a Select
command to select a group of tags for participation. (2) This is
followed by a Query command to initiate a new frame, during
which each tag that has not yet been identified chooses a
random time slot to respond. (3) In its allocated slot, a tag first
sends out a 22-bit short response (i.e., RN16) to aid in detecting
signal collisions. (4) If the RN16 is successfully decoded by
the reader, it indicates a collision-free transmission from a
single tag (known as a singleton slot). (5) Subsequently, the
reader requests a longer, 128-bit response (i.e., EPC) by issuing
an ACK command. Thus, a tag is required to first transmit an
RN16 response before it can send its full EPC response.

Inventory with the Coil Antenna. To test the viability of
a magnetically-driven UHF RFID system, we initiated a pre-
liminary experiment using the configuration depicted in Fig.5.
An Impinj M4 tag [57] was placed 10cm away as part of the
experimental setup. The Impinj reader is equipped with the
coil antenna for tag activation and querying. Concurrently,
the sniffer discreetly recorded the leaked RF transmissions.
As depicted in Fig. 26, the normalized amplitude of the in-
tercepted signal is showcased. The figure clearly delineates
the reader’s command signals and the tag’s backscattered
responses. The inventory process kicks off with a Select
command, promptly followed by a Query. Responding to the
query, the tag emits a RN16 reply that includes a fixed 6-bit
preamble for signal identification, succeeded by 16 random
bits to facilitate channel contention, as illustrated in Fig. 6.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time (ms)

0

0.1

0.2

0.3

0.4

A
m

pl
itu

de

Select Query
EPC

ACK
RN16

Magnetic Inventory

Fig. 26: RF signal acquired by the sniffer when the tag was queried by a
magnetically-driven UHF RFID reader.

This is subsequently acknowledged by the ACK command, indi-
cating the slot’s availability. Conclusively, the tag broadcasts
its EPC. This process closely parallels the inventory sequence
observed in radiatively-coupled RFID Gen2 systems. It vali-
dates that COTS RFID tags can be activated and queried using
magnetic fields while the communication protocol remains
consistent.

Versatility Validation. To underscore the versatility of
the magnetically-driven approach, we further tested ten tags
from leading manufacturers such as Impinj [58], Alien [59],
NXP [60], and Laxcen [61]. Every tag is placed 50cm in front
of RFID+ to assess its readability. Their performance is re-
flected in reading rates, outlined in Table. 2. Reading rates
ranged from 105 to 129, with Impinj’s H47 tag outperforming
the rest and Alien’s 9654 tag at the lower end. These differ-
ences are likely due to variations in the tags’ internal loop
structures. Broadly speaking, tags with larger loop diameters
tend to register a heightened coupling coefficient, leading to
better reading rates. However, every tag was effectively rec-
ognized by the magnetically driven reader, highlighting the
universal efficacy of our magnetically-driven RFID solution.

B High-Impedance Surface

Fig. 27 showcases the simulated results of the HIS reflec-
tor, utilizing Ansys HFSS [13] as the simulation platform.
Throughout the simulation process, the spiral antenna was
strategically positioned a mere 10 mm (≪ λ/4) above the
HIS substrate. In the absence of the reflector, as visualized
in Fig. 27(a), the magnetic field displays a balanced distri-
bution across both the superior and inferior facets of the an-

Table 2: The configuration and reading rate of different tags

Tag(#) MFR. IC Model Size(mm2) Reading rate (r/s)

T1 Impinj Monza 4QT H47 50×50 129
T2 Monza R6 ER62 74×18 119

T3

Alien

Higgs 3 9662 70×17 121
T4 Higgs 3 9640 94.8×8.25 126
T5 Higgs 3 9654 93×19 105
T6 Higgs 3 9962 73.5×20.2 117

T7 NXP Ucode8 U9624 98×27 105
T8 UR108 U7015 70×15 126

T9 Laxcen Monza 4QT C90G 90×20 107
T10 Monza 5 C50D 50×30 106

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1365

-40

-30

-20

-10

0

10

20

30

Coil

30cm

20
cm

30cm

HIS

Coil

(a) Without HIS (b) With HIS

Fig. 27: Simulated magnetic intensity without and with an HIS reflector attached
to the spiral coil antenna. (a) shows the magnetic field distribution on the antenna’s
tangent radiation plane without HIS; (b) illustrates the magnetic field distribution with
the HIS in place.

tenna. Yet, when the reflector is introduced beneath the UHF
magnetic antenna, as illustrated in Fig. 27(b), there is a pro-
nounced intensification of the field on the antenna’s top sur-
face, accompanied by a significant attenuation on its lower
side. These results vividly demonstrate the prowess of the
HIS-based reflector in steering the magnetic field, accentuat-
ing the radiation efficiency and gain in the desired direction
while simultaneously attenuating undesired emissions. The
incorporation of this reflector could lead to power conserva-
tion for the antenna due to its innate ability to enhance signal
superposition constructively.

C Fundamentals of Bloom Filter

Utilizing a set of prefetched tags (i.e., candidate tags), there
is no longer a need for exhaustive inventory processing in the
near-field. Instead, we employ Bloom filters (BF) to swiftly
ascertain the presence or absence of these candidate tags in the
region of interest [26,62–64]. BF is a time-efficient probabilis-
tic data structure that accurately represents the existing set of
tags. As depicted in Fig. 28, a Bloom filter succinctly charac-
terizes a set T = {t1, t2, . . . , tn} comprising n tags through an
array of M bits, which are initialized to 0. By leveraging K dis-
tinct hash functions, denoted as {h1,h2, . . . ,hK}, each tag is
mapped to an integer within the span of {1, . . . ,M}. For every
tag t in T , the bits corresponding to H = {h1(t), . . . ,hK(t)}
are assigned the value 1. Even though a bit might encounter
collisions, its value remains 1. To determine if a tag t re-
sides in T , it suffices to verify whether all bits associated with
{h1(t), . . . ,hK(t)} are indeed 1. If even one isn’t, then t is not
a member of the set. As a case in point, tag t2 is not part of T
as, in the test BF, its seventh bit does not hold the value of 1.
If all related bits are 1, we postulate that t is within T , albeit
with a caveat: there is a minuscule chance (e.g., < 0.001) of
misclassification, leading to a false positive. Moreover, if a
particular bit is 0 in the candidate BF but transitions to 1 in
the test BF, this alteration indicates the presence of a previ-
ously unaccounted-for tag in the ROI. For example, the last
bit ‘1’ in the test BF is caused by the uncollected tag tn+1 (i.e.,
tn+1 /∈ T).

Time Efficiency. In less complex situations (e.g., n < 100),
using a dictionary search method suffices to meet the goals,
specifically enabling the system to expedite the inventory

0 1 0 0 1 0 1 1 0 1 0 0

<latexit sha1_base64="IKnPrqyYvzwiUEmlSy/6yPxdGvE=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqIVFwMYyovmA5Ah7m71kyd7esTsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9nfvuJayNi9YiThPsRHSoRCkbRSg/Y9/rlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/NT52SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyexvMhCaM5QTSyjTwt5K2IhqytCmU7IheMsvr5LWRdW7rNbua5X6TR5HEU7gFM7Bgyuowx00oAkMhvAMr/DmSOfFeXc+Fq0FJ585hj9wPn8ABriNnw==</latexit>

t1
<latexit sha1_base64="+bXy4byNY4wCY0BfTsJw5GzQEz4=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoMQL2E3BPUY8OIxgnlAsiyzk9lkyOzDmV4hLPkJLx4U8ervePNvnCR70MSChqKqm+4uP5FCo21/W4WNza3tneJuaW//4PCofHzS0XGqGG+zWMaq51PNpYh4GwVK3ksUp6Evedef3M797hNXWsTRA04T7oZ0FIlAMIpG6o09p4qec+mVK3bNXoCsEycnFcjR8spfg2HM0pBHyCTVuu/YCboZVSiY5LPSINU8oWxCR7xvaERDrt1sce+MXBhlSIJYmYqQLNTfExkNtZ6GvukMKY71qjcX//P6KQY3biaiJEUeseWiIJUEYzJ/ngyF4gzl1BDKlDC3EjamijI0EZVMCM7qy+ukU685V7XGfaPSrOdxFOEMzqEKDlxDE+6gBW1gIOEZXuHNerRerHfrY9lasPKZU/gD6/MHtr+PEA==</latexit>

h1(t1)
<latexit sha1_base64="MgAmyaTFsgOTPoCR97WNLnD/SAA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BItQLyUpRT0WvHisYD+gDWGz3bRLN5u4OxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzgkRwjY7zbRU2Nre2d4q7pb39g8Oj8vFJR8epoqxNYxGrXkA0E1yyNnIUrJcoRqJAsG4wuZ373SemNI/lA04T5kVkJHnIKUEj9cZ+vYq+e+mXK07NWcBeJ25OKpCj5Ze/BsOYphGTSAXRuu86CXoZUcipYLPSINUsIXRCRqxvqCQR0162uHdmXxhlaIexMiXRXqi/JzISaT2NAtMZERzrVW8u/uf1UwxvvIzLJEUm6XJRmAobY3v+vD3kilEUU0MIVdzcatMxUYSiiahkQnBXX14nnXrNvao17huVZj2PowhncA5VcOEamnAHLWgDBQHP8Apv1qP1Yr1bH8vWgpXPnMIfWJ8/uEiPEQ==</latexit>

h2(t1)

<latexit sha1_base64="sVIZnPU1RAxhXdTxhOv9UNqUErg=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BItQLyWpRT0WvHisYGuhDWGz3bRLN5u4OxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzgkRwjY7zbRXW1jc2t4rbpZ3dvf2D8uFRR8epoqxNYxGrbkA0E1yyNnIUrJsoRqJAsIdgfDPzH56Y0jyW9zhJmBeRoeQhpwSN1B35F1X03XO/XHFqzhz2KnFzUoEcLb/81R/ENI2YRCqI1j3XSdDLiEJOBZuW+qlmCaFjMmQ9QyWJmPay+b1T+8woAzuMlSmJ9lz9PZGRSOtJFJjOiOBIL3sz8T+vl2J47WVcJikySReLwlTYGNuz5+0BV4yimBhCqOLmVpuOiCIUTUQlE4K7/PIq6dRr7mWtcdeoNOt5HEU4gVOoggtX0IRbaEEbKAh4hld4sx6tF+vd+li0Fqx85hj+wPr8AbnRjxI=</latexit>

h3(t1)
<latexit sha1_base64="lp9KxfCzxNnmUPa8FfPq0Mmli4Q=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BItQLyUpRT0WvHisYD+gDWGz3bRLN5u4OxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzgkRwjY7zbRU2Nre2d4q7pb39g8Oj8vFJR8epoqxNYxGrXkA0E1yyNnIUrJcoRqJAsG4wuZ373SemNI/lA04T5kVkJHnIKUEj9ca+W0W/fumXK07NWcBeJ25OKpCj5Ze/BsOYphGTSAXRuu86CXoZUcipYLPSINUsIXRCRqxvqCQR0162uHdmXxhlaIexMiXRXqi/JzISaT2NAtMZERzrVW8u/uf1UwxvvIzLJEUm6XJRmAobY3v+vD3kilEUU0MIVdzcatMxUYSiiahkQnBXX14nnXrNvao17huVZj2PowhncA5VcOEamnAHLWgDBQHP8Apv1qP1Yr1bH8vWgpXPnMIfWJ8/uESPEQ==</latexit>

h1(t2)

<latexit sha1_base64="hq3mlpAx0Z1600r3C5yxjFXMIEU=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoMQL2E3BPUY8OIxgnlAsiyzk9lkyOzDmV4hLPkJLx4U8ervePNvnCR70MSChqKqm+4uP5FCo21/W4WNza3tneJuaW//4PCofHzS0XGqGG+zWMaq51PNpYh4GwVK3ksUp6Evedef3M797hNXWsTRA04T7oZ0FIlAMIpG6o29ehW9+qVXrtg1ewGyTpycVCBHyyt/DYYxS0MeIZNU675jJ+hmVKFgks9Kg1TzhLIJHfG+oRENuXazxb0zcmGUIQliZSpCslB/T2Q01Hoa+qYzpDjWq95c/M/rpxjcuJmIkhR5xJaLglQSjMn8eTIUijOUU0MoU8LcStiYKsrQRFQyITirL6+TTr3mXNUa941Ks57HUYQzOIcqOHANTbiDFrSBgYRneIU369F6sd6tj2VrwcpnTuEPrM8fuc2PEg==</latexit>

h2(t2)
<latexit sha1_base64="zRmrR93Qtd5s5TclOlmbBpXahn0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BItQLyWpRT0WvHisYGuhDWGz3bRLN5u4OxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzgkRwjY7zbRXW1jc2t4rbpZ3dvf2D8uFRR8epoqxNYxGrbkA0E1yyNnIUrJsoRqJAsIdgfDPzH56Y0jyW9zhJmBeRoeQhpwSN1B35F1X06+d+ueLUnDnsVeLmpAI5Wn75qz+IaRoxiVQQrXuuk6CXEYWcCjYt9VPNEkLHZMh6hkoSMe1l83un9plRBnYYK1MS7bn6eyIjkdaTKDCdEcGRXvZm4n9eL8Xw2su4TFJkki4WhamwMbZnz9sDrhhFMTGEUMXNrTYdEUUomohKJgR3+eVV0qnX3Mta465RadbzOIpwAqdQBReuoAm30II2UBDwDK/wZj1aL9a79bFoLVj5zDH8gfX5A7tWjxM=</latexit>

h3(t2)

<latexit sha1_base64="nYgmkv7tHuuPxgcLOqixCiPYj9A=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5CUAuLgI1lRBMDyRH2NnvJkr29Y3dOCEd+go2FIrb+Ijv/jZvkCk18MPB4b4aZeUEihUHX/XYKa+sbm1vF7dLO7t7+QfnwqG3iVDPeYrGMdSeghkuheAsFSt5JNKdRIPljML6Z+Y9PXBsRqwecJNyP6FCJUDCKVrrHfq1frrhVdw6ySrycVCBHs1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NQpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYZXfiZUkiJXbLEoTCXBmMz+JgOhOUM5sYQyLeythI2opgxtOiUbgrf88ipp16reRbV+V680rvM4inACp3AOHlxCA26hCS1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDCDyNoA==</latexit>

t2 <latexit sha1_base64="zs1nvO/P9KQzgzYTRsDCGVa2TZo=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikqAcPBS8eK9gPaEPZbDft2s1u2N0IJfQ/ePGgiFf/jzf/jds0B219MPB4b4aZeWHCmTae9+2U1tY3NrfK25Wd3b39g+rhUVvLVBHaIpJL1Q2xppwJ2jLMcNpNFMVxyGknnNzO/c4TVZpJ8WCmCQ1iPBIsYgQbK7XdHINqzXO9HGiV+AWpQYHmoPrVH0qSxlQYwrHWPd9LTJBhZRjhdFbpp5ommEzwiPYsFTimOsjya2fozCpDFEllSxiUq78nMhxrPY1D2xljM9bL3lz8z+ulJroOMiaS1FBBFouilCMj0fx1NGSKEsOnlmCimL0VkTFWmBgbUMWG4C+/vEraF65/6dbv67XGTRFHGU7gFM7BhytowB00oQUEHuEZXuHNkc6L8+58LFpLTjFzDH/gfP4AjyGNzQ==</latexit>......

<latexit sha1_base64="46DBnhVwhqSoBOpi9CXwLf5t7gU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA5KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppVyvedaXWrJXrtTyOApzDBVyBBzdQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBetmMsQ==</latexit>

2
<latexit sha1_base64="s6A2N1OFtgDp6fF9f6GkmRBU4Qk=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokW9Vjw4rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqXPVLZbfizkFWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGtn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNkUbgrf88ippXVa860q1US3XqnkcBTiFM7gAD26gBvdQhyYwQHiGV3hzHp0X5935WLSuOfnMCfyB8/kDfF2Msg==</latexit>

3
<latexit sha1_base64="YUd7EX0cmzO+AJkSWpJM5t/+MI0=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBIp1mPBi8cK9gPaUDbbSbt2swm7G6GE/gIvHhSv/iZv/hu3bQ7a+mDg8d4MM/PCVHBtPO/bKW1t7+zulffdg8Oj45OKe9rRSaYYtlkiEtULqUbBJbYNNwJ7qUIahwK74fRu4XefUWmeyEczSzGI6VjyiDNqrPRQH1aqXs1bgmwSvyBVKNAaVr4Go4RlMUrDBNW673upCXKqDGcC5+4g05hSNqVj7FsqaYw6yJeHzsmlVUYkSpQtachS/T2R01jrWRzazpiaiV73FuJ/Xj8z0W2Qc5lmBiVbLYoyQUxCFl+TEVfIjJhZQpni9lbCJlRRZmw2rg3BX395k3Sua/5NrV5t1oswynAOF3AFPjSgCffQgjYwQHiBN3h3npxX52PVWHKKiTP4A+fzBxODi4k=</latexit>

4
<latexit sha1_base64="SfGKgLvBihe+f7uLOxH9xpJX35w=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkfhwLXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2Vmpf9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aFTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU1442dcJqlByRaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xK2hdV76paa9Yq9VoeRxFO4BTOwYNrqMMdNKAFDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AH9ljLQ=</latexit>

5
<latexit sha1_base64="4+de4nDnk10K7jfSrmc53fCIlJw=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomU6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA1KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppX1e8WqXarJbr1TyOApzDBVyBBzdQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBgOmMtQ==</latexit>

6
<latexit sha1_base64="YAiNuTtB/1SRCvS+KmeF2TGpCR4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokU67HgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA1KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppX1e8m0q1WS3Xq3kcBTiHC7gCD2pQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBgm2Mtg==</latexit>

7
<latexit sha1_base64="REw2LjZdJReol6fuL8bT1zyrn7g=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokU7bHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA1KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20ryveTaXarJbr1TyOApzDBVyBB7dQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBg/GMtw==</latexit>

8
<latexit sha1_base64="UUalyS19Wfd6z35oX+e5BB+b56s=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mk+HErePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWat70yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5odOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmX5MBV8iMmFhCmeL2VsJGVFFmbDYlG4K3/PIqaV9UvctqrVmr1Gt5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AYV1jLg=</latexit>

9
<latexit sha1_base64="kVeqTAoIv38TrLFqzHFMM+fVqSM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD547KFfcqrsAWSdeTiqQozkof/WHMUsjrpBJakzPcxP0M6pRMMlnpX5qeELZhI54z1JFI278bHHpjFxYZUjCWNtSSBbq74mMRsZMo8B2RhTHZtWbi/95vRTDGz8TKkmRK7ZcFKaSYEzmb5Oh0JyhnFpCmRb2VsLGVFOGNpySDcFbfXmdtK+qXr1au69VGrU8jiKcwTlcggfX0IA7aEILGITwDK/w5kycF+fd+Vi2Fpx85hT+wPn8AecqjOo=</latexit>

10
<latexit sha1_base64="I712NxrzeSpXY8N+rzp2RWq1e1M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD543KFfcqrsAWSdeTiqQozkof/WHMUsjrpBJakzPcxP0M6pRMMlnpX5qeELZhI54z1JFI278bHHpjFxYZUjCWNtSSBbq74mMRsZMo8B2RhTHZtWbi/95vRTDGz8TKkmRK7ZcFKaSYEzmb5Oh0JyhnFpCmRb2VsLGVFOGNpySDcFbfXmdtK+qXr1au69VGrU8jiKcwTlcggfX0IA7aEILGITwDK/w5kycF+fd+Vi2Fpx85hT+wPn8AeiujOs=</latexit>

11
<latexit sha1_base64="HiKxhs2EIVVAqZ3PL5dIlIHZek4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD15tUK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimGN34mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6adeq3lW1fl+vNOp5HEU4g3O4BA+uoQF30IQWMAjhGV7hzZk4L86787FsLTj5zCn8gfP5A+oyjOw=</latexit>

12
<latexit sha1_base64="nYk8QKus9KKikx0jlsRoz8ACoWE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W962qtWavUa3kcRTiDc7gED26gDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBeVWMsA==</latexit>

1

(a) Candidate Bloom Filter

0 1 0 0 1 0 0 1 0 1 0 1

<latexit sha1_base64="IKnPrqyYvzwiUEmlSy/6yPxdGvE=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqIVFwMYyovmA5Ah7m71kyd7esTsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9nfvuJayNi9YiThPsRHSoRCkbRSg/Y9/rlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/NT52SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyexvMhCaM5QTSyjTwt5K2IhqytCmU7IheMsvr5LWRdW7rNbua5X6TR5HEU7gFM7Bgyuowx00oAkMhvAMr/DmSOfFeXc+Fq0FJ585hj9wPn8ABriNnw==</latexit>

t1
<latexit sha1_base64="nYgmkv7tHuuPxgcLOqixCiPYj9A=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5CUAuLgI1lRBMDyRH2NnvJkr29Y3dOCEd+go2FIrb+Ijv/jZvkCk18MPB4b4aZeUEihUHX/XYKa+sbm1vF7dLO7t7+QfnwqG3iVDPeYrGMdSeghkuheAsFSt5JNKdRIPljML6Z+Y9PXBsRqwecJNyP6FCJUDCKVrrHfq1frrhVdw6ySrycVCBHs1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NQpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYZXfiZUkiJXbLEoTCXBmMz+JgOhOUM5sYQyLeythI2opgxtOiUbgrf88ipp16reRbV+V680rvM4inACp3AOHlxCA26hCS1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDCDyNoA==</latexit>

t2 <latexit sha1_base64="zs1nvO/P9KQzgzYTRsDCGVa2TZo=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikqAcPBS8eK9gPaEPZbDft2s1u2N0IJfQ/ePGgiFf/jzf/jds0B219MPB4b4aZeWHCmTae9+2U1tY3NrfK25Wd3b39g+rhUVvLVBHaIpJL1Q2xppwJ2jLMcNpNFMVxyGknnNzO/c4TVZpJ8WCmCQ1iPBIsYgQbK7XdHINqzXO9HGiV+AWpQYHmoPrVH0qSxlQYwrHWPd9LTJBhZRjhdFbpp5ommEzwiPYsFTimOsjya2fozCpDFEllSxiUq78nMhxrPY1D2xljM9bL3lz8z+ulJroOMiaS1FBBFouilCMj0fx1NGSKEsOnlmCimL0VkTFWmBgbUMWG4C+/vEraF65/6dbv67XGTRFHGU7gFM7BhytowB00oQUEHuEZXuHNkc6L8+58LFpLTjFzDH/gfP4AjyGNzQ==</latexit>......

<latexit sha1_base64="46DBnhVwhqSoBOpi9CXwLf5t7gU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA5KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppVyvedaXWrJXrtTyOApzDBVyBBzdQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBetmMsQ==</latexit>

2
<latexit sha1_base64="s6A2N1OFtgDp6fF9f6GkmRBU4Qk=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokW9Vjw4rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqXPVLZbfizkFWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGtn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNkUbgrf88ippXVa860q1US3XqnkcBTiFM7gAD26gBvdQhyYwQHiGV3hzHp0X5935WLSuOfnMCfyB8/kDfF2Msg==</latexit>

3
<latexit sha1_base64="YUd7EX0cmzO+AJkSWpJM5t/+MI0=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBIp1mPBi8cK9gPaUDbbSbt2swm7G6GE/gIvHhSv/iZv/hu3bQ7a+mDg8d4MM/PCVHBtPO/bKW1t7+zulffdg8Oj45OKe9rRSaYYtlkiEtULqUbBJbYNNwJ7qUIahwK74fRu4XefUWmeyEczSzGI6VjyiDNqrPRQH1aqXs1bgmwSvyBVKNAaVr4Go4RlMUrDBNW673upCXKqDGcC5+4g05hSNqVj7FsqaYw6yJeHzsmlVUYkSpQtachS/T2R01jrWRzazpiaiV73FuJ/Xj8z0W2Qc5lmBiVbLYoyQUxCFl+TEVfIjJhZQpni9lbCJlRRZmw2rg3BX395k3Sua/5NrV5t1oswynAOF3AFPjSgCffQgjYwQHiBN3h3npxX52PVWHKKiTP4A+fzBxODi4k=</latexit>

4
<latexit sha1_base64="SfGKgLvBihe+f7uLOxH9xpJX35w=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkfhwLXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2Vmpf9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aFTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU1442dcJqlByRaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xK2hdV76paa9Yq9VoeRxFO4BTOwYNrqMMdNKAFDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AH9ljLQ=</latexit>

5
<latexit sha1_base64="4+de4nDnk10K7jfSrmc53fCIlJw=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomU6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA1KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppX1e8WqXarJbr1TyOApzDBVyBBzdQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBgOmMtQ==</latexit>

6
<latexit sha1_base64="YAiNuTtB/1SRCvS+KmeF2TGpCR4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokU67HgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA1KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppX1e8m0q1WS3Xq3kcBTiHC7gCD2pQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBgm2Mtg==</latexit>

7
<latexit sha1_base64="REw2LjZdJReol6fuL8bT1zyrn7g=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokU7bHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA1KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20ryveTaXarJbr1TyOApzDBVyBB7dQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBg/GMtw==</latexit>

8
<latexit sha1_base64="UUalyS19Wfd6z35oX+e5BB+b56s=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mk+HErePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWat70yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5odOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmX5MBV8iMmFhCmeL2VsJGVFFmbDYlG4K3/PIqaV9UvctqrVmr1Gt5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AYV1jLg=</latexit>

9
<latexit sha1_base64="kVeqTAoIv38TrLFqzHFMM+fVqSM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD547KFfcqrsAWSdeTiqQozkof/WHMUsjrpBJakzPcxP0M6pRMMlnpX5qeELZhI54z1JFI278bHHpjFxYZUjCWNtSSBbq74mMRsZMo8B2RhTHZtWbi/95vRTDGz8TKkmRK7ZcFKaSYEzmb5Oh0JyhnFpCmRb2VsLGVFOGNpySDcFbfXmdtK+qXr1au69VGrU8jiKcwTlcggfX0IA7aEILGITwDK/w5kycF+fd+Vi2Fpx85hT+wPn8AecqjOo=</latexit>

10
<latexit sha1_base64="I712NxrzeSpXY8N+rzp2RWq1e1M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD543KFfcqrsAWSdeTiqQozkof/WHMUsjrpBJakzPcxP0M6pRMMlnpX5qeELZhI54z1JFI278bHHpjFxYZUjCWNtSSBbq74mMRsZMo8B2RhTHZtWbi/95vRTDGz8TKkmRK7ZcFKaSYEzmb5Oh0JyhnFpCmRb2VsLGVFOGNpySDcFbfXmdtK+qXr1au69VGrU8jiKcwTlcggfX0IA7aEILGITwDK/w5kycF+fd+Vi2Fpx85hT+wPn8AeiujOs=</latexit>

11
<latexit sha1_base64="HiKxhs2EIVVAqZ3PL5dIlIHZek4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD15tUK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimGN34mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6adeq3lW1fl+vNOp5HEU4g3O4BA+uoQF30IQWMAjhGV7hzZk4L86787FsLTj5zCn8gfP5A+oyjOw=</latexit>

12
<latexit sha1_base64="nYk8QKus9KKikx0jlsRoz8ACoWE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W962qtWavUa3kcRTiDc7gED26gDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBeVWMsA==</latexit>

1

<latexit sha1_base64="+uAzyYi6glWVqPbrgZhab+exQ0s=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoiRT14KHjxWMF+QBvKZrtpl242YXcilNAf4cWDIl79Pd78N27bHLT1wcDjvRlm5gWJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw389tPXBsRq0ecJNyP6FCJUDCKVmpjP1MX3rRfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NwpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYY3fiZUkiJXbLEoTCXBmMx+JwOhOUM5sYQyLeythI2opgxtQiUbgrf88ippXVa9q2rtoVap3+ZxFOEETuEcPLiGOtxDA5rAYAzP8ApvTuK8OO/Ox6K14OQzx/AHzucPAV6PWA==</latexit>

tn+1

(b) Test Bloom Filter

Fig. 28: Fast Inventory with Bloom Filters. (a) shows a candidate Bloom filter, which
is a concise bitmap representing the collected candidate tags, acquired by the far-field
reader. (b) shows the test Bloom filter acquired from the near-field reader on site. By
comparing these two bitmaps, we can swiftly discern the tags residing within the ROI.
For example, the tag t2 is a cross-reading, i.e., absent from the ROI, while tag tn+1
represents a tag undetected by the far-field reader.

USRP
Reader S

pl
it
te

r

Server
(MAC)

Phaser

Raspberry Pi

TX Array

Amp.

Amp.

Amp.

Amp.

RX

Beamformer

Phaser

Phaser

Phaser

Fig. 29: Illustration of Near-Field Reader

process through straightforward dictionary queries. However,
with the increase in the number of tags, the search time com-
plexity of a dictionary scales linearly as O(n). On the other
hand, BFs offer efficient lookups for tag presence, maintain-
ing fast query times regardless of the dataset’s size n, with a
complexity of O(log2(n)). Therefore, BF is ideally suited for
rapid inventory applications in warehouses.

D Architecture of Near-Field Reader

The detailed architecture of the near-field reader is illustrated
in Fig. 29. After undergoing upconversion in the USRP, the
emergent signal is bifurcated, creating four separate paths.
These distinct routes are meticulously controlled by ana-
log phasers, specifically the PHSA-152+ model from Mini-
Circuits [28]. These state-of-the-art phasers grant a high level
of precision in phase adjustments, offering an impressive
eight-bit granularity. Following this, the signals are subjected
to an amplification process, ensuring they achieve a robust
transmission power of 30 dBm. Subsequently, these fortified
signals are disseminated by an ensemble of four coil antennas.
To streamline and synchronize the operations of the phaser
units, a Raspberry Pi 4 Model B [29] is strategically deployed,
acting as the central coordination hub with the aid of a cus-

1366 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tomized Serial-In to Parallel-Out (SIPO) Converter.

E Compared with Related Systems

In a parallel comparison, RFID+ outperforms the state-of-the-
art RFID inventory solution RFGo [8] with respect to general-
ity, cost, and deployment ease: First, RFID+ enables seamless
plug-and-play functionality in dynamic environments with-
out the extensive data collection and training RFGo requires.
Moreover, RFID+ proves to be more budget-friendly, employ-
ing a limited number of lower-cost hardware components
like magnetic coils, phase shifters, and HIS reflectors (see

cost breakdown in Tab. 3), in contrast to RFGo’s intricate
setup involving 11 USRP X310 units and numerous antennas.
Lastly, setting up RFID+ is straightforward, requiring only
two perpendicular surfaces, unlike RFGo’s complex three-
dimensional antenna configuration.

Table 3: Pricing Estimation for BOM List of One Antenna Unit

Item (#) Component Description Quantity Price ($)
1 Coil Antenna Two-layer PCB 1 5.42
2 HIS Reflector Two-layer PCB 1 3.06
3 RF Amplifier SKY65111-348LF 1 2.64
4 Phase Shifter SPHSA-152+ 1 50.41
5 Micro Controller Raspberry Pi Pico 1 4.00

Total Cost 65.53

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1367

SMUFF: Towards Line Rate Wi-Fi Direct Transport with
Orchestrated On-device Buffer Management

Chengke WangP, Hao WangS, Yuhan ZhouP, Yunzhe NiP, Feng QianC, Chenren XuPZK∗

PSchool of Computer Science, Peking University SShenzhen Kaihong Digital Industry Development Co., Ltd.
CUniversity of Southern California ZZhongguancun Laboratory

KKey Laboratory of High Confidence Software Technologies, Ministry of Education (PKU)

Abstract – Wi-Fi direct transport provides versatile con-
nectivity that enables convenient data sharing and improves
the productivity of mobile end users. However, as today’s
smartphones are capable of near-Gbps wireless data rates, cur-
rent solutions do not efficiently utilize the available bandwidth
in this single-hop environment. We show that existing trans-
port schemes suffer from resource-intensive reliable delivery
mechanisms, inadequate congestion control, and inefficient
flow control for achieving line-rate transmission in peer-to-
peer Wi-Fi direct links. In this paper, we present SMUFF, a reli-
able file transfer service that achieves nearly the practical line
rate of the underlying wireless bandwidth. We note a unique
feature of direct transport – the sender can monitor each buffer
along the data path and determine an optimal sending rate
accordingly. Therefore, SMUFF can maximize throughput
by strategically backlogging the appropriate amount of data
in the bottleneck buffer. We have deployed SMUFF on four
different phone models, and our evaluations with other trans-
port schemes show that SMUFF achieves up to 94.7% of the
practical line rate and 22.6% throughput improvement with a
37% reduction in CPU usage and a 15% reduction in power
consumption, compared to state-of-the-art solutions.

1 Introduction
Peer-to-peer wireless connectivity is compelling for scenarios
where quick and easy data sharing is critical. It not only im-
proves data transport efficiency by reducing protocol overhead
and backhaul traffic but also prevents potential data privacy
leakage from the cloud. The industry has taken note of these
advancements. An increasing number of smartphone man-
ufacturers are introducing their own file transfer solutions,
such as Apple AirDrop [1, 2], Huawei Share [3], Xiaomi Mo-
bile Direct Fast Exchange [4], and Samsung Quick Share [5].
Looking ahead, these innovations will play a crucial role in
supporting emerging mobile device applications. For instance,
a VR headset may seamlessly load a 2 GB game asset from
a PC [6], autonomous vehicles may exchange road traffic
information via peer-to-peer wireless links [7], and devices
involved in distributed ML training within robotic IoT net-
works or mobile federated learning may need to exchange
model gradients over the wireless channel [8–10]. With such

∗B: chenren@pku.edu.cn

a wide range of applications, there is a need to unleash the
full potential of peer-to-peer wireless data transfer.

With the ubiquitous deployment of Wi-Fi networks, Wi-Fi
Direct [11] is an attractive local wireless data transmission
technology to provide direct connectivity between devices.
The standard claims that 802.11ac (Wi-Fi 5) already provides
theoretical physical layer bandwidth up to 867 Mbps, and
the practical wireless line rate can reach nearly 700 Mbps
(§2.2). However, TCP (CUBIC), the most widely used trans-
port scheme, averages only 442 Mbps on Wi-Fi Direct links,
and other commercial solutions perform even worse (§2.3).
Our further investigation reveals three key reasons that prevent
the current transport schemes from achieving wireless line
rate performance: i) The current reliable delivery mechanism
uses a per-packet ACKing policy, which exacerbates channel
contention on Wi-Fi links, and the compute-intensive network
stack imposes more packet processing overhead. Both of these
drawbacks significantly reduce throughput. ii) Today’s widely
deployed TCP (or QUIC) relies primarily on congestion con-
trol algorithms (CCAs) to probe and estimate the network
bandwidth and adjust the sending rate, which is unsuitable for
the one-hop single-flow scenario as it exhibits unnecessary
startup phase and overreaction to the lossy wireless link. iii)
The flow control mechanisms in existing transport schemes
are inefficient in achieving line rate transmission in Wi-Fi
Direct links as they are unaware of some on-path buffers and
suffer from delayed ACK feedback and fixed parameter con-
figurations. All of the above factors contribute to the reduced
link bandwidth utilization.

In the presence of the above problems, we notice a distinc-
tive characteristic of peer-to-peer direct data transmission that
can be exploited to achieve high link utilization. Specifically,
we are able to monitor the state of each individual buffer in
the whole packet lifecycle because the two communicating
devices are the only entities involved. This is in sharp contrast
to a data center or Internet connection that relies on interme-
diate nodes (routers and switches) to forward the traffic – in
this case, the sender typically needs to use a sophisticated
CCA to indirectly infer the buffer states that are not available
to the end host [12,13] or obtain buffer states with the help of
in-network devices [14–16]. In our scenario, the direct access
to buffer states offers a unique opportunity to achieve a high
data rate by backlogging data in the buffers.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1369

However, designing an efficient mechanism allowing a re-
ceiver to report the buffer state to the sender is not straightfor-
ward. First, existing flow control shipped with today’s TCP
and QUIC uses a per-packet ACK to allow the receiver to re-
port its available space to the sender. However, a dense ACK
stream can significantly reduce the throughput of the high-
speed wireless direct connection [17,18]. Besides, there exists
a non-negligible control latency between the buffer state re-
port and sender decision-making even in our one-hop scenario
(§3.3.1). Therefore, the sender can only receive infrequent
feedback from the receiver and has to strategically determine
a sending rate according to out-of-date buffer states. Further-
more, although our scenario only involves two entities, there
are multiple buffers along the data path (§2.1). The sender
thus needs to coordinate these buffers and ensure its sending
rate does not cause underflow or overflow in any buffer.

In this paper, we present SMUFF, a file transfer service
that improves Wi-Fi Direct transport throughput to line rate
by orchestrating the on-device buffers. We model the trans-
port data path as a series of linearly connected buffers, and
consider the traffic as a fluid that sequentially traverses each
buffer. Our core idea is to identify and address the bottleneck
component within this data path. To maximize throughput,
we maintain an appropriate backlog of data in the bottleneck
buffer. The amount of backlogged data must satisfy two con-
straints: i) Enough data must be backed up to prevent a buffer
underflow, i.e., an empty router queue results in throughput
less than the link rate; and ii) sufficient buffer space must be
reserved to avoid buffer overflows, which can cause packet
drops and complicate the subsequent packet recovery pro-
cess. This leads us to define a “safe range” for the amount
of buffered data. This range ensures that even in situations
where state information is infrequently updated or out of date
due to limited feedback, the buffer remains protected from
both underflow and overflow. To accomplish this, SMUFF sys-
tematically collects state information from on-path buffers
and calculates an optimal sending rate. This rate is carefully
tuned to keep the bottleneck buffer size within the safe range.

SMUFF requires no proprietary hardware or modification to
the device kernel, making it portable across different device
models and easy to deploy. We have deployed the SMUFF
service on four different Android mobile phone models with
release dates spanning five years. Our evaluation shows that
SMUFF achieves an average link utilization of 88.7% and
91.8% for 802.11ac and 802.11ax, respectively. It improves
the link utilization by up to 22.6% while reducing CPU uti-
lization by 37% and energy consumption by 15%, compared
to the state-of-the-art solution.

Our contributions are as follows:
• We reveal the fundamental limitations of existing end-to-

end transport schemes for Wi-Fi Direct. These schemes
designed for multi-hop networks suffer from link under-
utilization in peer-to-peer wireless data transfer.

• We design SMUFF, a file transfer service that is dedicated

App send buffer

Socket write buffer

Storage disk Storage disk

Wi-Fi Direct

Qdisc

Socket read buffer

App receive buffer

Sender Receiver

Netdev backlog

User space

Kernel space

Hardware

Kernel space
& Hardware

Network-bound Computation-bound I/O-bound

WNIC circular buffer WNIC circular buffer

IP defrag. buffer

Figure 1: The end-to-end file transfer path. The Qdisc buffer,
the socket read buffer, and the application receive buffer (high-
lighted in blue) are vulnerable to overflows.

to Wi-Fi Direct towards practical line rate. SMUFF max-
imizes throughput by deriving the optimal sending rate
according to the buffer states.

• We implement SMUFF to be compatible with Android and
demonstrate its ability to reach up to 94.7% utilization of
the wireless line rate.

This work does not raise any ethical issues.

2 Background and Motivation
In this section, we introduce the background and data packet
lifecycle of Wi-Fi Direct (§2.1). We then examine the achiev-
able wireless line rate (§2.2) and the limitations of existing
transmission schemes that prevent them from achieving the
line rate of peer-to-peer direct links (§2.3).

2.1 Wi-Fi Direct and Its Packet Life-Cycle
Wi-Fi Direct is a link layer (L2) technology that allows mo-
bile devices to establish a direct Wi-Fi connection with each
other directly, without the need for a central access point or
any intermediate nodes. This technology is primarily used
for improving daily life productivity such as file transfer be-
tween devices [20]. Note that it only provides L2 connectiv-
ity and does not specify any transport protocols or default
applications. Device vendors need to choose or implement
upper-layer protocols to support reliable data transfer.

The end-to-end pipeline of a file transfer task on a typical
Android device (using Wi-Fi Direct) is shown in Fig. 1. To
simplify the illustration and bypass the heavy TCP network
stack, we use the UDP socket as an example.

Sender. The sender reads data from the disk and encapsulates
it into a series of UDP datagrams. The datagrams are then sent
from userspace and enqueued into the queueing discipline
(Qdisc), which is a software queue that allows traffic shaping
and prioritization. Note that for UDP, the socket write buffer
is a virtual buffer that only counts memory allocation but has

1370 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Buffer Type Overflow Risk Analysis
Application Send Buffer No, the application can stop sending data when the buffer reaches its capacity.

Socket Write Buffer
No. For TCP, the kernel sets the socket as non-writable when the buffer is full. For UDP, the socket write
buffer is a virtual buffer that only tracks packet memory allocation.

Qdisc
Yes, this buffer is shared among all traffic and may overflow if the Wireless Network Interface Card (WNIC)
cannot drain it quickly enough.

WNIC Circular Buffer
No. At the sender, the NIC driver notifies the kernel when the firmware buffer is full. At the receiver, the
kernel prioritizes the interrupt handler responsible for receiving data.

Netdev Backlog Almost never, as the high-priority interrupt handler can process data.
IP Defragmentation Buffer No overflow in single-hop scenarios. Overflow typically results from Denial-of-Service (DoS) attacks [19].

Socket Read Buffer Yes, if the receiving process lacks sufficient CPU time to copy data from it.
Application Receive Buffer Yes, if the receiving system is I/O-bound.

Table 1: Analysis of buffer overflow risk in the Wi-Fi Direct transport data path.

no real queue to buffer data. The kernel blocks the application
from sending more data when the memory counter reaches
a memory allocation threshold. Finally, the WNIC driver
fetches packets from the Qdisc and sends them to the peer.

Receiver. The received packets are stored in the network de-
vice queue (i.e., netdev backlog) by the interrupt handler and
then processed by the kernel. After processing the received
data, the kernel stores the UDP datagrams in the read buffer
and waits for the userspace program to read them. The re-
ceiving application reads the data from the socket read buffer,
performs packet reordering and loss recovery, and asks the
kernel to write to disk.

Buffer Overflow Analysis. Buffer overflow is the primary
cause of packet drops when we send UDP packets at a high
rate. Table 1 gives an analysis of overflow risk. We need to
consider these buffers when designing our system. We iden-
tify three buffers that are susceptible to overflow because of
bounded device capability, as highlighted in blue in Fig. 1:
i) Qdisc. Packet drops happen at Qdisc when the sending
rate is faster than the available wireless bandwidth and the
queue is full. The bounded network capacity cannot drain
the queue fast enough; ii) Socket read buffer. When the sys-
tem is under heavy load, or the processor clock frequency is
constrained by the mandatory thermal throttling mechanism
to avoid overheating, the receiving application process may
not have sufficient CPU time slices to copy the data from the
kernel. The packets could drop if the socket read buffer is full;
iii) Application receive buffer. Like the socket read buffer,
the application buffer is prone to overflow when there is no
available CPU time. This buffer also overflows when the disk
I/O rate cannot keep up with the receiving rate.

In a nutshell, from a buffer management perspective, we
need to carefully pace the sending rate to avoid overflow
in any of these buffers, preferably at the upper layer (e.g.,
userspace transport) instead of inside the kernel or firmware
in WNIC for the sake of programmability and deployability.

2.2 Practical Line Rate Transmission of Wi-Fi Direct

Theoretical transmission rate cannot be achieved in the
real world. While Wi-Fi standards such as 802.11ac (Wi-Fi 5)

and 802.11ax (Wi-Fi 6) claim impressive physical bandwidth
limits1 of up to 867 Mbps and 1.2 Gbps, respectively [21,22],
real-world peak throughput falls far short of these advertised
rates. The gap between the line rate and the physical rate is
inevitable for two reasons: i) Protocol overhead. Network
protocols from the MAC layer to the transport layer require
the process of header information in each data packet. This
additional overhead reduces the effective throughput that can
be achieved; ii) Channel contention. In areas with a high den-
sity of wireless devices or networks, Wi-Fi devices adhere
to Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) mechanism [22] when accessing the wireless
channel, resulting in decreased throughput [23]. To illustrate
the discrepancy between the achievable transmission rate
and the theoretical rate, we conduct an experiment using two
802.11ac supporting devices with a maximum physical band-
width limit of 867 Mbps. We use the iperf tool [24] with
fine-tuned parameters and the iw tool [25] to monitor the
physical layer data rate reported by the wireless NIC (WNIC).
As shown in Fig. 2, for the first 30 seconds we place the two
devices head-to-head, allowing them to reach the maximum
achievable throughput. However, although the physical layer
rate consistently reaches its theoretical maximum, the actual
throughput fluctuates and remains below that rate. From 30
seconds to 60 seconds, we move the devices 5 meters apart
while keeping them stationary. This change caused instability
in the data rate due to increased collisions and retransmissions
caused by other devices sharing the same wireless channel.
Between 60 seconds and 90 seconds, we deliberately intro-
duce channel contention by running TCP traffic on additional
devices operating on the same Wi-Fi channel. The actual
throughput is well below the physical layer rate.

Defining practical line rate transmission. While the physi-
cal layer rate cannot serve as the metric of practical transmis-
sion rate due to protocol overhead and channel contention,
previous research has explored techniques for estimating this

1From a wireless communication perspective, it is the instantaneous
highest data rate based on the modulation and coding scheme determined
by the channel condition (e.g., Signal to Interference plus Noise Ratio, or
SINR) and channel bandwidth according to the Wi-Fi specification.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1371

0 30 60 90
Time elapsed (s)

0

300

600

900

Li
ne

 ra
te

 o
r P

H
Y

ra
te

 (M
bp

s)

Stationary
(~0.1 m)

Stationary
(~5 m)

Stationary
(~5 m)

Channel
interference

Line rate PHY rate

Figure 2: Traces of the phys-
ical rate and the actual UDP
throughput.

TCP
(Cubic)

QUIC

(Cubic)
Fast

Exchange Airdrop

(AWDL)

0

100

200

300

400

500

600

700

T
hr

ou
gh

pu
t (

M
bp

s) Wireless line rate

Figure 3: The Wi-Fi Direct link
throughput of two 802.11ac de-
vices 3 meters apart.

−80 −70 −60
Signal strength (dBm)

0.0

0.2

0.4

0.6

0.8

Lo
ss

 ra
te

 (%
)

Loss rate Throughput

0

200

400

600

Th
ro

ug
hp

ut
 (M

bp
s)

Figure 4: Wi-Fi Direct cannot
guarantee packet loss recovery
(at lower layer).

0 2 4
Time elapsed (s)

0

250

500

750

T
hr

ou
gh

pu
t (

M
bp

s)

Line rate TACK TCP (Cubic)

Figure 5: Congestion control
fails to (quickly) achieve high
utilization of a wireless link.

rate using specific hardware [15, 26]. However, these esti-
mates are inherently approximate and hardware dependent.
In the rest of this paper, we take the empirical approach in
our experiment and define practical line rate as the maximum
instantaneous throughput achievable by iperf UDP over a
one-second window. Such a definition provides a practical and
real-time measure of network performance and is a valuable
metric for our analysis.

2.3 Limitations of Existing Transport Schemes

Existing peer-to-peer transmission schemes fail to achieve
line rate. While the achievable line rate is below the claimed
physical line rate, existing peer-to-peer transmission schemes
still cannot achieve such a line rate over Wi-Fi Direct link. As
shown in Fig. 3, we initiate data transmission tasks over a Wi-
Fi Direct link with two transport layer schemes (TCP CUBIC
and QUIC CUBIC) and two commercial services (Xiaomi
Fast Exchange and Apple AWDL). While the wireless line
rate is 655 Mbps in this setting, TCP (CUBIC), as the most
widely used transport solution, only achieves 442 Mbps on
average. QUIC and other commercial solutions perform even
worse. This pilot study indicates a great opportunity to design
a dedicated transport scheme for Wi-Fi Direct towards its
wireless line rate. In the rest of the section, we investigate the
drawbacks of basic transport layer elements in Wi-Fi Direct
links and their implications on a dedicated transport solution.
Resource-Intensive Reliable Delivery Mechanism. The
Medium Access Control (MAC) layer of Wi-Fi performs “best
effort” retransmission upon packet loss2. Therefore, Wi-Fi Di-
rect is only partially reliable, and packet loss over a wireless
channel is unavoidable. We conduct a Wi-Fi Direct data trans-
fer experiment and confirm that packet loss is not negligible
when the signal is “weak” (i.e., below -70 dBm), as shown
in Fig. 4, which means that the reliable delivery (including
loss recovery and packet reordering) is still a key require-
ment for Wi-Fi Direct and should be handled by the transport
layer. TCP is widely used for reliable delivery, but it has the
following two drawbacks when applied to Wi-Fi Direct:
• Per-packet ACKing intensifies channel contention. A recent

2It retries for failed transmission until the attempt reaches
dot11ShortRetryLimit (7 by default) or the retransmission time
exceeds dot11MaxTransmitMSDULifetime (512 ms by default) [27].

study [18] shows that over a Wi-Fi link, TCP’s default ACK-
ing policy (i.e., at least one ACK every other packet [28])
would hurt the throughput by 33% compared to ACKing ev-
ery 16 packets. This is because uplink and downlink data in a
shared wireless channel will cause extra contention and MAC
protocol overhead, suggesting a reduced ACK frequency for
a delicate transport layer design.

• Computation-intensive network stack stresses computation
resource. The TCP stack is known to be computationally
intensive and causes more packet processing overhead [29].
More recent transport protocols such as QUIC opt for high
efficiency based on UDP, which bypasses the TCP stack and
gives more flexibility to the user space. Therefore, we need a
lightweight transport protocol based on UDP datagrams for
its efficient in-kernel implementation.

Unsuitable Congestion Control. TCP or QUIC relies heavily
on congestion control algorithms (CCAs) to adjust the send-
ing rate. Basically, the goal of CCA is to evenly distribute
bandwidth among the flows traversing a bottleneck link in
a multi-hop path. However, CCAs are unsuitable in the one-
hop, single-flow setting in Wi-Fi Direct links and face the
following two problems:

• Unnecessary Startup Phase. CCAs need to probe the avail-
able bandwidth and send packets conservatively to avoid con-
gestion, adding unnecessary start time to quickly reach the
peak sending rate. Our experiment in Fig. 5 shows that Cubic
spends 0.15 seconds on the slow start phase, while TACK [18],
a TCP variant that reduces ACK frequency to alleviate chan-
nel contention, spends 3.3 seconds on the congestion avoid-
ance phase. In the peer-to-peer scenario, the slow start should
be avoided because of the absence of congestion.

• Overreact to Lossy Link. CCAs could reduce the conges-
tion windows to lower the sending rate due to packet loss or
transient delay spikes, which are common on wireless links.
This overreaction leads to link under-utilization. As shown in
Fig. 5, both CCAs cannot reach the available link bandwidth
and the throughput oscillates due to wireless link fluctuation.
A wireless transport layer should be insensitive to a lossy link.

Inefficient Flow Control. Flow control is designed to prevent
the sender from overwhelming the receiver. To achieve line

1372 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NICFCFS Task 2 Task 1

Packet Aggregation

Smuff Task Queue

NIC

Wi-Fi
Direct

Qdisc
Low Priority

High Priority

Rate Control

Socket Read Buff

Socket 3

Socket 2

App Receive Buff

App 3

App 2

Internet

Sending rate

Buffer OrchestratorTransport Mgmt.

Periodic ACKs

Fast loss recovery

𝑋 !
, 𝑣 !

𝑋
" , 𝑣

"𝑋 #
, 𝑣 #

Device 1

Device 2

App 2
File Transfer

App 3
File Transfer

App 1
Background Traffic

Buffer states
𝑋$, 𝑣$

Figure 6: SMUFF Overview.

rate transmission in Wi-Fi Direct, more delicate flow con-
trol should be used because i) the sender needs to decide a
proper packet sending rate to achieve line rate while avoid-
ing packet drops. An insufficient sending rate will not fully
utilize the WNIC potential, causing link under-utilization,
while an excessive sending rate may cause packet drops at the
sender Qdisc due to the limited queue length. ii) With Gigabit
wireless hardware equipped, the receiver could fall short of
handling such a high speed due to CPU and I/O bottlenecks
and incur buffer overflow. The existing flow control in TCP
and QUIC is inefficient in the following three aspects:
• Unaware of other On-path Buffers. Conventional TCP flow
control only considers transport-layer buffers and is agnostic
to other buffers in the packet life-cycle – underflow or over-
flow on any of them can still cause link under-utilization – a
new flow control design should take all buffers into account.
• Delayed ACK Feedback. The flow control window in TCP
and QUIC assumes ACK-driven updates, which may be de-
layed due to a longer packet queue or ACK frequency reduc-
tion [18]. The window may be slow to adjust to the fluctuating
wireless link due to delayed feedback. The effectiveness of
flow control should not depend on timely ACKs.
• Fixed Parameter Configuration. The maximum flow control
window size is a fixed value during transmission [30, 31] that
varies between implementations and device configurations.
Such a value will not be ideal for other buffers of different
sizes in the packet lifecycle and different link capacities. Flow
control should better handle all of this heterogeneity, dynam-
ics, and complexity.

3 SMUFF Design
In this section, we propose SMUFF, a Wi-Fi Direct file transfer
service to achieve line rate by orchestrating on-device buffers.
We first present the design goals of SMUFF.

3.1 Design Goals
The main idea of SMUFF is to orchestrate multiple buffers
by actively monitoring on-device buffer states and continu-

ously obtaining an optimal sending rate. We design SMUFF
to achieve the following three goals.

G1: Link Bandwidth Utilization Maximization. As pre-
sented in §2.3, existing transport solutions often fall short of
achieving line rate transmission. SMUFF should be designed
to make the full utilization of available Wi-Fi direct link band-
width by dynamically adapting its sending rate at the transport
layer to saturate the network interface.

G2: On-path Buffer Overflow Avoidance. A straightfor-
ward idea is to continuously send packets to saturate the link.
However, this may cause unnecessary packet loss due to buffer
overflow and complicate the loss recovery process. SMUFF
should effectively manage the critical packet buffers along the
data path by monitoring the buffer states and making timely
adjustments to the sending rate to avoid packet loss.

G3: Practical Deployment on Mobile Devices. SMUFF is
designed for easy portability to different phone models. To
make SMUFF practical for deployment, it should not rely on
vendor-specific hardware (e.g., proprietary NICs). In addition,
it must have a low CPU usage footprint and minimize its
impact on concurrent flows on the same devices.

3.2 System Overview
SMUFF is designed as a system service, and an overview
of its workflow and main system components are shown in
Fig. 6. This service provides a platform for applications on
the sender side to submit file transfer tasks, which are then
managed and executed by SMUFF on a first-come, first-served
(FCFS) basis. SMUFF needs to efficiently transfer the files to
the corresponding application on the receiving device.

In the rest of this section, we first present our theoretical
analysis to achieve line rate data delivery (§3.3). We then put
our analysis into practice with two key system components:
Buffer orchestrator (§3.4) collects buffer states and calcu-
lates an optimal sending rate to maximize system throughput;
Transport manager (§3.5) ensures reliable data delivery and
facilitates packet loss recovery.

3.3 Buffer Management Analysis
As shown in §2.1, data is repeatedly processed and transferred
to the next buffer until it reaches its final destination. This
property allows us to take a buffer-by-buffer approach for
flow management. For ease of exposition, we will start with
the management of a single buffer (§3.3.1) and then extend
the methodology to multiple buffers (§3.3.2).

3.3.1 Single Buffer Management
To derive the optimal sending strategy, we begin with the
simple case where there is only one buffer as shown in Fig. 7.
The packet buffer stores the incoming data until the data can
be processed by the next system component. We suppose the
maximum size of the buffer is Xmax. We denote the packet
ingress and egress rate as vin and vout respectively and denote
the current amount of data in the buffer as X . The main
purpose of the buffer is to serve as a cushion to absorb the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1373

egressingress

Packet buffer

Safe Could underflow !Could overflow !

Figure 7: Single buffer management.

variation in the ingress and egress rate. In order to make full
use of the buffer, we translate the design goals G1 and G2
into the following two constraints.

C1: Backlog enough data to avoid buffer underflow. To
keep the system working at its full rate, the buffer needs to
be backlogged (i.e., the buffer never runs out of data). If the
buffer goes empty, the egress rate will decrease and fail to
achieve the line rate.

C2: Reserve enough buffer room to avoid buffer overflow.
To prevent data loss, it is also necessary to allocate sufficient
buffer space to handle incoming data. A buffer overflow oc-
curs when the data pushed into the buffer exceeds its capacity,
resulting in potential loss of information and disruption of
system functionality.

Challenge Brought by Control Latency. Both C1 and C2
can be easily satisfied if we are able to control the ingress
rate vi just in time. We can increase vi when the buffer is
about to underflow and decrease it when the buffer is about
to overflow. However, the conventional assumption of low-
latency data delivery in single-hop wireless networks does not
hold for the line rate transmission. There is a non-negligible
control latency in buffer management, which we define as
the time interval between buffer state reporting and the rate
adjustment taking effect. For example, the buffer states at the
receiver must be relayed to the sender, and the control latency
is dominated by the RTT of the data flow. To demonstrate
such latency, we initiate TCP connections with an increasing
sending rate over an 802.11ac Wi-Fi direct link and obtain
RTT from the kernel data structure. As shown in Fig. 8, the
RTT increases up to 25 ms with the increase in the system
throughput even in this single-hop setting. This intriguing phe-
nomenon finds its roots in the well-documented bufferbloat is-
sue [32]. Notably, this issue becomes increasingly pronounced
as throughput scales to larger proportions, contrasting the ex-
periment result in previous work [15,33,34] where the latency
is no more than a few mill-seconds due to a low throughput
of much less than 20 Mbps. Therefore, in the presence of the
control latency, we need to strategically select the ingress rate
vi to maintain the right amount of data in the buffer.

Buffer Occupancy Estimation. The change in buffer occu-
pancy X depends on the delta of the ingress rate and the
egress rate. This can be formulated as:

Ẋ = vin−vout (1)
where Ẋ is the derivative over the time t (i.e., Ẋ = d

dtX).
Suppose at time t0, the buffer reports its current states, includ-

ing X(t0), vin(t0), and vout(t0). The rate adjustment takes
effect at a later time t1 = t0 +d with a control delay d. There-
fore, we need to estimate the buffer occupancy during t0 to t1
based on the reported values to adjust the sending rate at t1.
We make estimations by exploiting the fact that there exists
a lower and an upper bound for the processing rate of any
system components. For example, the wireless transport rate
must be greater than zero and less than the physical limit.
Therefore, we can assume a value range for vin(t) and vout(t)
for the duration from t to t+d:

vlo
in(t)≤ vin(t)≤ v

up
in (t) (2)

vlo
out(t)≤ vout(t)≤ v

up
out(t) (3)

As a result, we can infer the value range of Ẋ by Eqn. 1,
Eqn. 2, and Eqn. 3:

vlo
in(t)−v

up
out(t)≤ Ẋ ≤ v

up
in (t)−vlo

out(t) (4)
In order to satisfy C1, we must have a sufficient amount of

data in the buffer. From Eqn. 4 we know that from time t0 to
t1, the maximum amount of data that can be consumed from
the buffer is

Xunder =−d× (vlo
in(t0)−v

up
out(t0)) (5)

As a result, if the data in the buffer is less than Xunder at t0,
the buffer may run out of data, resulting in underutilization.

In order to satisfy C2, we need to reserve enough room in
the buffer. Similarly, the maximum amount of data that can be
backlogged from t0 to t1 is d× (vup

in (t)−vlo
out(t)). Therefore,

to avoid overflow and packet loss, the data in the buffer at t0
should be kept below a threshold

Xover = Xmax−d× (vup
in (t0)−vlo

out(t0)) (6)
To satisfy both constraints, the buffer occupancy X has a
“safe” range between two thresholds Xunder and Xover at t0,
as shown in Fig. 7. If X falls within this safe range, we
can ensure that the next system component will consistently
operate at full speed and that no packet loss will occur for
the next time period of control latency d. The existence of
this safe region depends on Xunder < Xover, meaning that the
buffer size Xmax must exceed a certain threshold, specifically
d× (vup

out(t0)−vlo
in(t0)+v

up
in (t0)−vlo

out(t0)).

3.3.2 Multiple Buffer Management

There are typically multiple buffers (or queues) connecting
different system components in a transport system. The data
starts from the sender, gets processed and traverses each com-
ponent and buffer, and arrives at the receiver. In our case as
shown in Fig. 9, the Qdisc at the sender-side stores the packets
sent by the application and waits for the network interface
driver to fetch data to send. Also, the application buffer stores
the data that is read from the transport layer and waits for the
I/O requests to be ready.

While there are three buffers in our Wi-Fi direct use case,
this idea can be generalized to more buffers. Without loss of
generality, suppose there are n buffers. We let Xi denote the
buffer occupancy (i.e., buffer size or queue length) of the i-th

1374 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 50 100 150 200 250 300 350 400 450

TCP sending rate (Mbps)

0

5

10

15

20

25

TC
P

R
TT

 (m
s)

Figure 8: TCP control latency
(RTT) increases as system
throughput increases.

𝑋!"#$%& 𝑋! 𝑋'"#$%& 𝑋' 𝑋("#$%& 𝑋(

Sender
App. buf.Socket buf.Qdisc

𝑣)

Receiver

Send feedback 𝑋* , 𝑣* to the sender

𝑣! 𝑣' 𝑣(

Figure 9: Multiple buffer management for the transport over
the Wi-Fi direct connection.

0 200 400 600
Line rate at t (Mbps)

0

200

400

600

Li
ne

 ra
te

 a
t t
+
d

(M
bp

s)

10
−3

10
−2

10
−1

10
0

Figure 10: Throughput transi-
tion probability within a con-
trol latency (d = 40 ms).

buffer. We let vi denote the instantaneous data rate from the
i-th buffer to the (i+1)-th buffer. Note that v0 and vn are the
sending and receiving rates, respectively.

Our goal is to adjust the sending rate to maximize the
overall throughput of the system. While the overall throughput
is the processing rate of the bottleneck system component,
our idea is to identify the bottleneck component and maintain
a moderate backlog of data in the buffer connected to that
particular component. Our algorithm to determine the sending
rate v0 works in two steps: i) calculate the target amount of
data to backlog for each buffer; ii) adjust the sending rate to
maintain enough data at the bottleneck buffer.

Calculating the target backlog size. We need to ensure that
the backlog size remains within the safe range at all times.
To minimize the buffer usage, we set the target backlog size
X

target
i for the i-th buffer to the lower bound of the safe range

(Xunder
i). On each latest feedback signal (vi,Xi) from the i-th

buffer, we update X
target
i according to Eqn. 5 as follows:

X
target
i =−di×

{
(vlo

i−1−v
up
i) if i > 1

−v
up
i if i = 1

, (7)

where di is the control latency for the i-th buffer, vlo
i ,v

up
i are

the lower bound and upper bound of vi. We leave the settings
of vlo

i ,v
up
i , and di in practice to §3.4. Note that we can also

set the target backlog size X
target
i to any other value within

the safe range (for example, the midpoint of the safe range
(Xunder

i +Xover
i)/2).

Calculating the sending rate. For each feedback signal, the
sender determines the sending rate based on the following:

v0←max
(

min
1≤i≤n

{
vi +

X
target
i −Xi

di

}
,0
)

, (8)

The interpretation of this rule is as follows. For the i-th buffer,
when the current buffer occupancy is less than the target buffer
backlog size (Xi < X

target
i), this buffer could underflow, re-

sulting in link underutilization. Therefore, we need to increase
the rate vi to increase the buffer occupancy in a control delay
time di. Similarly, when the buffer occupancy exceeds the
target backlog size (Xi > X

target
i), we decrease the sending

rate. The outer min operator is used to identify the bottleneck
of the whole system.

3.4 Buffer Orchestrator
The buffer orchestrator bridges the gap between theoretical
buffer management analysis (§3.3) and practical implementa-
tion. Effective buffer management depends on the ability to
quickly and accurately estimate system conditions. Therefore,
the buffer orchestrator needs to perform two tasks: continu-
ously monitoring buffer states and dynamically adjusting the
sending rate.

Monitoring the Buffer States. There are four variables that
characterize a buffer state.

• Buffer Occupancy (X): This variable indicates the current
amount of data in the buffer and can be obtained directly
by reading from the buffer.

• Data Consumption Rate (v): This variable represents the
rate at which data is being consumed from the buffer. It is
estimated over the duration of the control delay and fur-
ther smoothed using an Exponentially Weighted Moving
Average (EWMA) filter.
• Lower and Upper Bounds of the Data Rate (vlo and vup):

These two variables specify the range of values for the
data rate. Different buffers may have distinct properties,
which we discuss as follows.

• Bounds of the network data rate. We conduct an empiri-
cal study to observe throughput variations. Our experiment
involves two mobile devices running 802.11ac; the link is
capable of a maximum PHY rate of 867 Mbps. The devices
are held by two users moving randomly around a room. To
saturate the link, we run an iperf UDP test while fine-tuning
the iperf parameters to ensure that the maximum throughput
is achievable. The result, shown in Fig. 10, is presented in
a heatmap format and plot the transition probabilities from
data rate at time t to rate at time t+d, where d is the control
latency. Two reference lines in blue, y = 1

2x and y = 2x, are in-
cluded to denote throughput reductions of 0.5× and increases
of 2×, respectively. Our results show that within a control
latency duration, the network throughput is highly unlikely
to experience a > 2× increase or a < 0.5× decrease, with a
probability greater than 99%. Therefore, for the Qdisc, we
set the lower bound vlo

1 = 0.5v1 and upper bound v
up
1 = 2v1.

Note that this empirical measurement is specific to our setup.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1375

The throughput variation is affected by the complex wireless
channel environment. To completely prevent buffer overflows
due to rapidly changing channel conditions, SMUFF can use
strict bounds on the data rate, setting the lower bound to zero
and the upper bound to the maximum theoretical data rate.
• Bounds for CPU processing and I/O rate. To determine the
bounds of the processing rate of the socket buffer and the
application buffer at the receiver, we take advantage of the
insight that these rates are largely unaffected by the network,
but are CPU- and I/O-bound (Fig. 1). Therefore, they tend
to exhibit stability within a device that is largely dependent
on the underlying hardware configuration. As a result, for
the socket buffer and application buffer, we set the lower and
upper bounds to the values of 0.9 and 1.1 times the estimated
data rate, respectively, to allow for error tolerance.
Controlling the Sending Rate. In response to signals indi-
cating buffer state updates, the buffer orchestrator calculates
the new sending rate using the formula in Eqn. 8 and adjusts
v0. While the sending rate is determined at the sender, the
control latency di varies depending on the location of the
buffers: i) When dealing with the Qdisc buffer at the sender,
the control latency can be set to a relatively small value (4
ms in our implementation), because polling the buffer state
information from the sender buffers can be done simply by
a system call; ii) When dealing with the two buffers at the
receiver, the control latency is set to the network latency.

3.5 Transport Manager
While buffer orchestrator carefully monitors buffer states and
adjusts the sending rate accordingly, packet loss could still
occur due to lossy wireless link. The loss detector guaran-
tees data delivery reliability based on the sliding window
mechanism and ACKing with two improvements.
Reduce ACK Frequency. Frequent ACK messages exagger-
ate channel contention and have a negative impact on through-
put in Wi-Fi direct transport (§2.3). To address this issue, we
use periodic ACKs and send four ACKs per RTT to reduce
the ACK frequency. This setting proves to be robust in prac-
tice [18]. In addition, an ACK message also carries the states
of the buffers at the receiver side.
Speed up Loss Recovery. We propose three optimizations to
improve the efficiency of the loss recovery procedure. i) The
use of periodic ACKs prevents the receiver from notifying
the sender of lost events until the next ACK is sent. To speed
up recovery, SMUFF immediately sends an ACK containing a
retransmission request when a loss event is detected. ii) To re-
duce overhead, we use Negative Acknowledgments (NACKs),
similar to the SACK option [35] in TCP and the ACK range
in QUIC [31], to inform the sender of missing data. iii) We
use PING messages to periodically probe the RTT and use
an EWMA filter to obtain a smoothed RTT estimate. This
design mitigates RTT measurement bias caused by reduced
ACK frequency and does not require additional computation
or maintenance of a complex per-packet data structure.

3.6 Other Design Considerations

In practice, network-tuning is also important to achieve high
throughput [29, 36–38]. Here we highlight two important
considerations in the SMUFF design.

3.6.1 Packet Aggregation

Packet aggregation can reduce processing overhead in soft-
ware [29]. SMUFF uses packet aggregation to improve
throughput and reduce mobile computation and power costs.
Specifically, SMUFF generates full-size UDP packets, ap-
proaching 64 KB in size, instead of the usual 1500-byte pack-
ets. The IP layer then fragments or reassembles these packets
to meet the Maximum Transmission Unit (MTU) limit, con-
forming to the IP fragmentation feature [39]. Since a substan-
tial amount of energy is drained by the processing of packet
units (i.e., independent of their size, air time, or modulation
and coding scheme) [40], SMUFF is more computation- and
energy-efficient with packet aggregation. The effectiveness
of packet aggregation is evaluated in §5.4.

However, packet aggregation can lead to increased suscep-
tibility to packet loss. In cases where a single packet within
a fragmented small packet is lost, the entire IP packet is con-
sidered lost. To illustrate this concept mathematically, if the
network path loss rate is denoted as L, then the packet loss rate
for a full-sized IP packet can be expressed as 1− (1−L)n,
where n is the number of fragments into which the IP packet
is broken. For example, if the path loss rate is 1% and a full-
size UDP packet is segmented into 43 fragments, the total
packet loss rate rises to an unacceptable 35.1%, significantly
reducing the available throughput. To address this issue, we
consider the infrequency of packet loss events in most usage
scenarios, a phenomenon that contrasts with Internet con-
nections where loss is often attributed to network conges-
tion. Therefore, we empirically set a conservative threshold
of 0.1%. Packet aggregation is only enabled if the current
network loss rate is below this threshold. We provide a evalu-
ation of its performance and the rationale for choosing this
threshold in the evaluation (§5.3).

3.6.2 Flow Prioritization

Data transfer is often a background job. Other foreground
traffic flows are potentially at a disadvantage when sharing
the same outbound device with SMUFF because the buffer
orchestrator will try to keep the Qdisc blocklogged (if the
network is the bottleneck). This can affect interactive traffic
such as web browsing and video streaming. To address this
issue, we strictly prioritize other foreground traffic over the
SMUFF flow. Specifically, there are multiple queues with dif-
ferent priorities at the Qdisc layer, and the packet in the queue
with the higher priority is sent first. Therefore, by setting a
lower priority for the SMUFF packets, we can reduce the im-
pact on other traffic. The effectiveness of flow prioritization
is evaluated in §5.3.

1376 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4 Implementation
We have developed SMUFF for commodity Android devices
as a dedicated system daemon running entirely in userspace,
with a primary focus on minimizing development and integra-
tion complexity. Our implementation consists of about 8000
lines of C++ code and seamlessly integrates with the NDK
toolchain as well as the native dependencies inherent to the
Android platform. SMUFF extends its functionality by provid-
ing a file transfer service over a Linux socket. Applications
wishing to use this service can effectively communicate their
file transfer requirements by interacting with this socket. We
use the SO_PRIORITY option to define the priority for all pack-
ets to be sent by SMUFF. In addition, we set the maximum
buffer size Xmax to twice the bandwidth-delay product (BDP)
to ensure that the safe area exists.

In SMUFF, we use standard system APIs to retrieve buffer
state information. Specifically, to retrieve Qdisc information,
we use the RTM_GETQDISC option of the Linux routing socket.
The Linux routing socket is part of Netlink, which allows
userspace programs to communicate with the kernel via a
socket interface. To get the length of the Qdisc queue, we first
create a socket with the domain AF_NETLINK and the protocol
NETLINK_ROUTE. After sending the request to the socket, the
kernel takes over the processing of the request and places
the result in the socket receive buffer. We then read from the
socket and get the length of the Qdisc queue. To get the state
of the receive buffer, we use the socket option SO_MEMINFO
to get memory-related information. It’s worth noting that
all APIs used are available after Linux 4.12 and have been
supported since Android 9. This compatibility ensures a high
degree of compatibility; we verify that SMUFF works on at
least four different phone models without any code changes.

5 Evaluation

Testbed. We use two Pixel 4 devices for most of the exper-
iment because Android is based on Linux and more readily
customizable. The devices support up to 2 MIMO spatial
streams, 80 MHz bandwidth, short guard interval, and default
rate adaptation, enabling speeds of up to 867 Mbps. To en-
sure the robustness of our results, each test is repeated for 30
times, guaranteeing statistical reliability and comprehensive
data collection. The experiment is conducted in a public of-
fice with over 10 Wi-Fi APs. This experiment environment
closely mirrors common real-world scenarios involving direct
device-to-device connections.

Baselines. We compare SMUFF with the following transport
schemes as baselines:
• TACK [18, 41] is a variant of TCP. It aims to improve

wireless transport performance by minimizing the ACK
frequency to reduce wireless channel contention.

• CUBIC [13] uses the standard TCP socket to send the
data. To make sure it gets the maximum throughput, we
set the socket buffer size to 20 MB and enable the TCP

Signal Strength -20 dBm -40 dBm -60 dBm -80 dBm
Distance < 0.1 m 2~3 m 8~10 m N/A
Scenario head-to-head face-to-face meeting behind walls

Table 2: Wireless signal strength for typical scenarios.

window size scaling [42, 43].
• BBR [12] uses the standard TCP with BBR congestion

control algorithm. As BBR currently does not ship off-the-
shelf with the phones, we recompile the Android kernel
to include BBR and flash the new kernel.

• QUIC [31, 44] is designed to improve transport perfor-
mance for HTTPS traffic. It is based on UDP and is im-
plemented entirely in userspace as SMUFF.

• UDP with the default system configuration is also evalu-
ated. Note that it does not provide reliable delivery.

5.1 Transport Performance

Throughput. We begin by evaluating SMUFF for different
levels of signal strength. The typical conditions and common
usage scenarios are shown in Table 2 for reference. The aver-
age throughput of different transport schemes transferring a 1
GB file is illustrated in Fig. 11. For good Wi-Fi signal (≥−60
dmB), we maintain control over signal strength by manipulat-
ing the distance between the mobile phones, thus simulating
different channel environments relevant to file transfer scenar-
ios. In all cases, SMUFF outperforms other transport schemes.
Across the signal strength settings, it achieves throughput
improvement from 17.8% to 18.2% compared to TACK, the
state-of-the-art variant designed for wireless networks, and a
remarkable 22.6% to 44.5% improvement compared to CU-
BIC. In terms of throughput variance, SMUFF exhibits min-
imal variation across different signal strengths, ensuring a
consistent and reliable transmission service. This stability
is due to SMUFF’s ability to effectively manage data within
buffers. BBR also exhibits low variance, but it achieves lower
throughput due to its goal to achieve the minimum RTprop
time. As saturating the link can result in increased latency,
BBR is conservative in increasing its sending rate. In contrast,
other transport schemes such as TACK, CUBIC, and QUIC,
exhibit significant throughput variance as they struggle to
accurately measure wireless bandwidth. Under conditions of
bad Wi-Fi signal, where the signal strength is at -80 dBm,
all solutions perform similarly, with SMUFF still approach-
ing the practical line rate. Overall, our results consistently
demonstrate the superior network throughput performance of
SMUFF across different signal strength scenarios, confirming
its effectiveness as a reliable data transfer solution.

Flow Completion Time. We compare flow completion times
(FCT) when transferring files of different sizes, as shown in
Fig. 12. For smaller files (i.e., 10 MB), the FCT is mainly
influenced by the time taken to reach the maximum link rate.
SMUFF’s ability to bypass the slow start process leads to re-
markable reductions in transfer times, ranging from 55.7% to
91.4% compared to alternative solutions. In particular, TCP

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1377

-20 -40 -60 -80
Signal Strength (dBm)

0
100
200
300
400
500
600

Th
ro

ug
hp

ut
 (M

bp
s)

Smuff TACK CUBIC BBR QUIC UDP

Figure 11: Throughput of different transport schemes at dif-
ferent signal strengths.

10 MB 100 MB 1 GB10
−1

10
0

10
1

10
2

Fl
ow

 c
om

pl
et

io
n

tim
e

(s
)

Smuff
TACK

CUBIC
BBR

QUIC

Figure 12: FCT of different
transport schemes.

Pixel 4
Redmi K30 MI 5s

Nexus 6P
0.0

0.2

0.4

0.6

0.8

1.0

Li
nk

 u
til

iz
at

io
n

(%
)

Smuff TACK CUBIC

Figure 13: Link utilization on
different device models.

0
300
600
900

Th
ro

ug
hp

ut
(M

bp
s) Moving towards Stationary Moving randomly

0 10 20 30 40 50 60
Time elapsed (s)

0.0
0.3
0.6
0.9

Ta
rg

et
 b

ac
ko

g
si

ze
 (M

iB
)

Figure 14: Trace of the real-time throughput and the target
backlog size of the Qdisc.

variants and QUIC relying on the conventional slow start
mechanism exhibit longer transfer times. TACK, on the other
hand, shows significant variance and a much longer FCT com-
pared to all other schemes, mainly due to its extended slow
start phase caused by ACK shortages. This result is consis-
tent with the analysis presented in §2.3. For medium-sized
files (i.e., 100 MB), SMUFF remains the best scheme with a
44.2% to 67.4% reduction in FCT over the other schemes. For
larger files (i.e., 1 GB), FCT is mainly determined by the link
utilization. Consequently, TACK shows better performance
compared to transferring smaller files. SMUFF still outper-
forms TACK by reducing the FCT by 12.1%. Furthermore,
when averaged across CUBIC, BBR, and QUIC, SMUFF re-
duces transfer time by an impressive 26.3% to 64.4%. This
experiment shows that SMUFF can significantly reduce the
FCT by fully utilizing the link capacity.

Robustness to Mobility. As discussed in §3.3.2, the buffer
orchestrator continuously computes the target backlog size
based on newly received buffer states. To evaluate how effec-
tively SMUFF adapts to mobility, we perform mobility tests
focusing on the target backlog size of the Qdisc buffer. Our
experiment involves two users with devices moving around a
room, simulating realistic mobility scenarios. The real-time
throughput collected at the receiver and the target backlog
size of the Qdisc are recorded, as shown in Fig. 14. The ex-
periment includes three different movement patterns: For the
first 19 seconds (the gray region), both users move toward
each other. Between 19 seconds and 38 seconds (the white re-
gion), both users move away from each other and then remain
stationary. After 38 seconds (the red region), the users roam
randomly in the room. The results show that the target backlog

Redmi K30 Pro Google Pixel 4 MI 5s Nexus 6P
SoC Snapdragon 865 Snapdragon 855 Snapdragon 821 Snapdragon 810

RAM 6 GB 4 GB 3 GB 3 GB
Battery 4700 mAh 2800 mAh 3200 mAh 3450 mAh
Wi-Fi 802.11a/b/g/n/ac/ax 802.11a/b/g/n/ac 802.11a/b/g/n/ac 802.11a/b/g/n/ac

Released 2020 2019 2016 2015

Table 3: Device specifications.

size closely matches the throughput. Such synchronization
demonstrates SMUFF’s ability to make robust adjustments to
its sending rate to prevent overflow or underflow under mobil-
ity. This adaptability to mobility ensures stable and reliable
performance in dynamic network environments.

5.2 Compatibility

Different Device Models. To demonstrate the deployability
and adaptability of SMUFF, we conduct deploy SMUFF and
performance tests on four different smartphone models listed
in Table 3. We compare SMUFF with two sub-optimal schemes
(TACK and CUBIC) and initiate our tests by designating each
device as the sender, with the Pixel 4 serving as the receiver.
This configuration was chosen because the sender actively
manages the sending rate based on buffer states, providing a
robust metric. The results, shown in Fig. 13, show that SMUFF
outperforms TACK and CUBIC on all devices, achieving a
remarkable link utilization rate (achieved throughput divided
by line rate) of up to 94.7%. It’s worth noting that CUBIC’s
performance shows some variability across devices, likely due
to differences in processing capabilities. Overall, our experi-
ments confirm that SMUFF works seamlessly across different
device models, delivering consistently high link utilization.

Wi-Fi Specifications. To evaluate link utilization with dif-
ferent Wi-Fi specifications, we conduct experiments using a
stable signal with a strength of -40 dBm. This evaluation is
performed on both 802.11ac (Wi-Fi 5) and 802.11ax (Wi-Fi
6) networks. We evaluate the throughput of SMUFF against
all other transport schemes. The results, shown in Fig. 15,
highlight the impressive performance of SMUFF, which is
consistently close to the line rate. It achieves an average link
utilization of 88.7% on 802.11ac (equivalent to 576 Mbps)
and an even more remarkable 91.8% on 802.11ax (equivalent
to 645 Mbps). These results demonstrate SMUFF’s ability to
efficiently utilize available network resources across different
Wi-Fi specifications.

1378 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

802.11ac 802.11ax0.0

0.2

0.4

0.6

0.8

1.0

Li
nk

 u
til

iz
at

io
n

(%
)

Smuff
TACK

CUBIC
BBR

QUIC
UDP

Figure 15: Link utilization of
different transport schemes and
Wi-Fi specifications.

0 0.1 0.5 1
Loss rate (%)

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

w/o aggregation
w/ aggregation

Figure 16: Impact of loss rate
on the packet aggregation.

10 Mbps 80 Mbps 160 Mbps
Target foreground throughput

1

10

100

Ac
tu

al
 fo

re
gr

ou
nd

th
ro

ug
pu

t (
%

)

w/o prio. w/ prio.

Figure 17: Flow prioritiza-
tion improves the foreground
throughput.

Smuff
TACK

CUBIC BBR
QUIC UDP Idle

0

50

100

150

PI
N

G
 la

te
nc

y(
m

s)

Figure 18: PING latency of dif-
ferent transport schemes.

5.3 Microbenchmark
We perform some micro-benchmarks to investigate the im-
pacts of design choices made in the development of SMUFF.

Packet Aggregation Robustness. As discussed in §3.6.1,
packet aggregation can make a network more susceptible to
packet loss. To investigate how SMUFF behaves under vari-
ous conditions, we perform tests at -40 dBm signal strength,
both with and without packet aggregation. To simulate packet
loss, we drop packets randomly at the receiver. As shown
in Fig. 16, in scenarios where no packet loss occurs, packet
aggregation effectively reduces processing overhead and im-
proves performance, resulting in an average improvement of
5.4%. However, as the loss rate escalates from 0.1% to 1%,
throughput drops dramatically by up to 62.4%. Such a severe
reduction is primarily due to the vulnerability introduced by
packet aggregation, where the loss of a single IP fragment
packet results in the loss of the entire packet. In contrast, when
packet aggregation is disabled, SMUFF shows efficiency in re-
covering lost packets. Therefore, SMUFF disables aggregation
when the path loss rate exceeds a predefined threshold, ensur-
ing reliability and preserving performance in the presence of
a high packet loss rate.

Flow Prioritization. As discussed in §3.6.2, SMUFF can po-
tentially cause foreground traffic to starve. To evaluate the
effectiveness of flow prioritization in mitigating this problem,
we perform tests by running foreground TCP flows alongside
SMUFF. The TCP flows are configured with different target
throughputs (10, 80, and 160 Mbps). We measure the actual
throughput achieved by the TCP flows with flow prioritiza-
tion enabled and disabled. As shown in Fig. 17, without flow
prioritization, the foreground TCP flows achieve an average
throughput of 2.44 Mbps, 2.74 Mbps, and 2.54 Mbps for differ-
ent target throughputs, indicating a disadvantaged state. With
flow prioritization enabled, the achieved throughput improves
significantly, reaching averages of 2.44 Mbps, 59.1 Mbps,
and 118.2 Mbps for the respective target throughputs. While
SMUFF cannot completely eliminate the impact on other flows
(e.g., only 73.9% of the target throughput is achieved for the
160 Mbps flow) due to the lack of prioritization in the device
firmware buffers, flow prioritization significantly alleviates
the problem of foreground traffic starvation.

SMUFF TACK CUBIC BBR QUIC UDP Idle
Energy (J) 50.7 62.6 59.6 86.6 72.8 55.2 40.6
Overhead (%) 24.8 54.2 48.2 113.3 74.4 36.0 N/A

Table 4: Average energy consumption for transferring a 1 GB
file via peer-to-peer wireless data transfer. “Overhead” is the
additional energy consumption compared with the idle state.

5.4 System Overhead

Computation Overhead. To compare the computational over-
head of SMUFF, we transfer a 1 GB file using SMUFF and
other transport schemes and measure their CPU usage. As
shown in Fig. 19, SMUFF achieves the lowest CPU usage.
There are two reasons for this: First, SMUFF achieves nearly
the wireless line rate and completes the transmission process
much faster; second, SMUFF is based on UDP and thus avoids
the overhead of a compute-intensive TCP stack. We also eval-
uate the effectiveness of packet aggregation. As shown in
Fig. 20, aggregation can reduce the CPU usage of SMUFF
by 18.0% and 21.9% on the sender and receiver side, respec-
tively. This result shows that SMUFF can reduce system load
on resource-constrained mobile devices.

Energy Overhead. We also examine power consumption,
since mobile devices are typically powered by limited bat-
teries. We use the Monsoon power monitor [45] to measure
the average power consumption while transferring a 1 GB
file using SMUFF and other transport schemes. The monitor
works by precisely measuring the input power of the smart-
phone with a sampling rate of 5000 Hz and is widely used
in the research community for measuring power consump-
tion [46, 47]. As shown in Table 4, SMUFF consumes less
energy than all other schemes (24% overhead over baseline)
because it bypasses the computationally intensive TCP stack
and completes the transmission earlier. The result shows that
SMUFF is more energy efficient than other solutions.

Transmission Latency. As buffer saturation may increase
transmission latency for all data flows between peer devices,
we also evaluate the impact of the transport schemes on trans-
mission latency. To measure the latency overhead of SMUFF,
We conduct experiments by sending the ICMP PING mes-
sages [48] every second in the background during the file
transmission. As shown in Fig. 18, compared with TACK

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1379

Smuff TACK CUBIC BBR QUIC
0

1

2

3

4

5

C
PU

 u
sa

ge
 (%

)

user sys irq

Figure 19: CPU usage of dif-
ferent transport schemes.

Smuff Smuff
w/o batch

Cubic0

3

6

9

12

C
PU

 u
sa

ge
 (%

)

Sender

Smuff Smuff
w/o batch

Cubic

Receiver

user sys irq

Figure 20: CPU usage reduc-
tion of packet aggregation.

and TCP CUBIC, SMUFF reduces average latency by 36.9%
and 39.2% because it uses an adaptive adjustment on the
backlogged data at Qdisc buffer. BBR and QUIC maintain a
low latency but fail to fully utilize the available link. SMUFF
keeps the latency below 40 ms with a small variance – such
an increase in latency is acceptable in file transfer scenarios.

6 Discussion
Operating in Non-Wi-Fi One-Hop Networks. SMUFF does
not require the underlying NIC to be a Wi-Fi device. There-
fore, SMUFF could be seamlessly deployed over any NICs that
consume packets from Qdisc. The effectiveness of SMUFF is
based on two premises: i) Sending at line rate would generate
the best performance. ii) NIC itself has some mechanism like
BQL [49] to minimize the underlying buffering. Such con-
ditions hold for most cases. Therefore, SMUFF theoretically
also works in other one-hop networks such as Apple Wireless
Direct Link (AWDL) [2], Neighbor Awareness Networking
(NAN) [50], and wired links.

Benefiting Other Applications. SMUFF can also be used
for other data transfer applications, such as 360-degree video
streaming. SMUFF can introduce a minimal initial delay due
to its extended queue length, but allows for higher video reso-
lution due to its increased throughput once the video begins.
To minimize latency, SMUFF can also be configured to main-
tain a near-zero queue length by setting the target queue size
to zero. This strategy effectively reduces queue latency within
the monitored buffers. However, it is important to note that
latency cannot be similarly reduced for buffers that are not
directly monitored, such as the NIC firmware buffer.

7 Related Work
Queue-based Transport Improvement. The packet queue
provides lower-layer information to the transport control algo-
rithm. This information enables the transport layer to perform
better sending rate adjustment and accomplish different opti-
mization goals. XCP [51], RCP [52], and ABC [15] leverage
the dequeuing rate and the current queue length to let the net-
work middleboxes compute the right sending rate and signal
this rate to the sender. The signal lets the sender “jump” to the
correct sending rate to achieve high throughput. Active Queue
Management (AQM) schemes such as RED [53], CoDel [54],
and PIE [55] drop packets when queue length or queue de-

lay exceeds a threshold to signal congestion. Swift [56] and
QCut [32] monitor the end-host queuing delay and adjust
sending rate accordingly. PowerTCP [16] and HPCC [14]
leverage in-network measurements at programmable switches
to accurately obtain the bottleneck link state. SMUFF also
works on the queue length, but it calculates its variation and
decides to send how many packets so as to backlog the queue.

Wireless Transport Layer Protocol Design. Wireless links
have different characteristics due to unstable channel char-
acteristics. This motivates designs to optimize different as-
pects of the wireless transport. I-TCP [57] splits a TCP con-
nection into two parts (the wireless part and the wired part)
and handles frequent interruptions on the lossy wireless link.
Snoop [58] performs local retransmissions over the wireless
link to hide the packet loss event. TACK [18] reduces chan-
nel contention between data packets and ACKs to improve
throughput. ELN [59] allows senders to distinguish between
packet corruption and congestion losses and respond accord-
ingly. SMUFF is designed to improve the network performance
of the one-hop wireless link. It addresses the challenge of how
to saturate a rapidly changing wireless link.

End-to-end Congestion Control Designed for Wireless
Link. Wireless link speeds vary greatly over time. There are
several ways to predict link speed and improve throughput.
Sprout [33] observes packet arrival times to predict how many
bytes can be sent from the sender. Verus [34] learns the rela-
tionship between packet delay and transmit window size and
uses it to adjust the size of the transmit window. CQIC [60]
and PBE-CC [61] use the physical layer bandwidth informa-
tion exchanged between base stations and handsets to deter-
mine link capacity. SMUFF also needs to capture link capacity
variations, but it does not need to handle the congestion on
the one-hop network and can accurately track the line rate.

8 Conclusion
The rising demand for high-speed peer-to-peer mobile data
transfer calls for an extremely efficient single-hop transport
solution. In this work, we have addressed the challenge of
achieving near wireless line rate transport based on Wi-Fi
Direct by effectively orchestrating all the on-path buffers to
maximize throughput while avoiding packet loss. We believe
that our work identifies an overlooked yet important problem
and our design can benefit other one-hop wireless networks
(e.g., 5G and vehicular) with different PHY/MAC protocols.

Acknowledgments
We are grateful to the anonymous NSDI reviewers for their
constructive critique and valuable comments, all of which
have greatly helped us improve this paper. This work is sup-
ported in part by the National Key Research and Development
Plan, China (Grant No. 2023YFB2903902) and the National
Natural Science Foundation of China (Grant No. 62022005,
62272010 and 62061146001). Chenren Xu is the correspond-
ing author.

1380 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Use AirDrop on iPhone to send items to

nearby devices - Apple Support. https:
//support.apple.com/guide/iphone/use-air
drop-to-send-items-iphcd8b9f0af/ios.

[2] Milan Stute, David Kreitschmann, and Matthias Hol-
lick. One Billion Apples’ Secret Sauce: Recipe for the
Apple Wireless Direct Link Ad hoc Protocol. In ACM
MobiCom, 2018.

[3] Huawei share. https://consumer.huawei.com/en
/support/huaweishare/.

[4] Xiaomi, OPPO and Vivo partner to bring new wireless
file transfer system to global users – Mi Blog. https:
//c.mi.com/thread-2776586-1-0.html.

[5] What is Quick Share on Galaxy? - The Official Samsung
Galaxy Site. https://www.samsung.com/global/g
alaxy/what-is/quick-share/.

[6] VRChat. https://hello.vrchat.com/.

[7] Abderrahmane Lakas and Moumena Shaqfa. Geocache:
Sharing and Exchanging Road Traffic Information Us-
ing Peer-to-Peer Vehicular Communication. In IEEE
Vehicular Technology Conference, 2011.

[8] Xiuxian Guan, Zekai Sun, Shengliang Deng, Xusheng
Chen, Shixiong Zhao, Zongyuan Zhang, Tianyang Duan,
Yuexuan Wang, Chenshu Wu, Yong Cui, et al. ROG:
A High Performance and Robust Distributed Training
System for Robotic IoT. In IEEE/ACM MICRO, 2022.

[9] Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and
Yiran Chen. Hermes: An efficient federated learning
framework for heterogeneous mobile clients. In ACM
MobiCom, 2021.

[10] Jinliang Yuan, Mengwei Xu, Xiao Ma, Ao Zhou, Xu-
anzhe Liu, and Shangguang Wang. Hierarchical Feder-
ated Learning through LAN-WAN Orchestration. arXiv
2010.11612, 2020.

[11] Daniel Camps-Mur, Andres Garcia-Saavedra, and Pablo
Serrano. Device-to-device communications with Wi-Fi
Direct: overview and experimentation. IEEE wireless
communications, 2013.

[12] Neal Cardwell, Yuchung Cheng, C Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
Congestion-Based Congestion Control. ACM Queue,
2016.

[13] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC:
A new TCP-friendly high-speed TCP variant. ACM
SIGOPS Operating Systems Review, 2008.

[14] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan
Yu. HPCC: High precision congestion control. In ACM
SIGCOMM, 2019.

[15] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Moham-
mad Alizadeh, and Hari Balakrishnan. ABC: A Simple
Explicit Congestion Controller for Wireless Networks.
In USENIX NSDI, 2020.

[16] Vamsi Addanki, Oliver Michel, and Stefan Schmid.
POWERTCP: Pushing the Performance Limits of Data-
center Networks. In USENIX NSDI, 2022.

[17] Lynne Salameh, Astrit Zhushi, Mark Handley, Kyle
Jamieson, and Brad Karp. HACK: Hierarchical ACKs
for Efficient Wireless Medium Utilization. In USENIX
ATC, 2014.

[18] Tong Li, Kai Zheng, Ke Xu, Rahul Arvind Jadhav, Tao
Xiong, Keith Winstein, and Kun Tan. TACK: Improving
Wireless Transport Performance by Taming Acknowl-
edgments. In ACM SIGCOMM, 2020.

[19] Yossi Gilad and Amir Herzberg. Fragmentation consid-
ered vulnerable. ACM Transactions on Information and
System Security (TISSEC), 15(4):1–31, 2013.

[20] Wi-Fi Direct Phone Product List. https://www.wi-f
i.org/product-finder-results?sort_by=certi
fied&sort_order=desc&categories=3.

[21] IEEE Standard for Information technology–
Telecommunications and information exchange
between systems–Local and metropolitan area
networks–Specific requirements–Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer
(PHY) Specifications–Amendment 4: Enhancements for
Very High Throughput for Operation in Bands below 6
GHz. 2013.

[22] IEEE Standard for Information Technology–
Telecommunications and Information Exchange
between Systems Local and Metropolitan Area
Networks–Specific Requirements Part 11: Wireless
LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications Amendment 1:
Enhancements for High-Efficiency WLAN. 2021.

[23] Shangqing Zhao, Zhe Qu, Zhengping Luo, Zhuo Lu, and
Yao Liu. Comb Decoding towards Collision-Free WiFi.
In USENIX NSDI, 2020.

[24] Iperf - The ultimate speed test tool for TCP, UDP and
SCTP. https://iperf.fr/, 2023.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1381

https://support.apple.com/guide/iphone/use-airdrop-to-send-items-iphcd8b9f0af/ios
https://support.apple.com/guide/iphone/use-airdrop-to-send-items-iphcd8b9f0af/ios
https://support.apple.com/guide/iphone/use-airdrop-to-send-items-iphcd8b9f0af/ios
https://consumer.huawei.com/en/support/huaweishare/
https://consumer.huawei.com/en/support/huaweishare/
https://c.mi.com/thread-2776586-1-0.html
https://c.mi.com/thread-2776586-1-0.html
https://www.samsung.com/global/galaxy/what-is/quick-share/
https://www.samsung.com/global/galaxy/what-is/quick-share/
https://hello.vrchat.com/
https://www.wi-fi.org/product-finder-results?sort_by=certified&sort_order=desc&categories=3
https://www.wi-fi.org/product-finder-results?sort_by=certified&sort_order=desc&categories=3
https://www.wi-fi.org/product-finder-results?sort_by=certified&sort_order=desc&categories=3
https://iperf.fr/

[25] iw - linux man page. https://linux.die.net/man/
8/iw, 2023.

[26] Ranveer Chandra, Ratul Mahajan, Thomas Moscibroda,
Ramya Raghavendra, and Paramvir Bahl. A Case for
Adapting Channel Width in Wireless Networks. In ACM
SIGCOMM, 2008.

[27] IEEE Standard for Information technology–
Telecommunications and information exchange
between systems Local and metropolitan area networks–
Specific requirements - Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
Specifications. 2016.

[28] Robert Braden. RFC1122: Requirements for Internet
hosts-communication layers, 1989.

[29] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati,
Jaehyun Hwang, and Rachit Agarwal. Understanding
host network stack overheads. In ACM SIGCOMM,
2021.

[30] RFC 793: Transmission Control Protocol, 1981.

[31] Jana Iyengar and Martin Thomson. RFC 9000: QUIC:
A UDP-Based Multiplexed and Secure Transport. 2021.

[32] Yihua Guo, Feng Qian, Qi Alfred Chen, Zhuoqing Mor-
ley Mao, and Subhabrata Sen. Understanding On-device
Bufferbloat for Cellular Upload. In ACM IMC, 2016.

[33] Keith Winstein, Anirudh Sivaraman, and Hari Balakr-
ishnan. Stochastic Forecasts Achieve High Throughput
and Low Delay over Cellular Networks. In USENIX
NSDI, 2013.

[34] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshmi-
narayanan Subramanian, and Carmelita Görg. Adap-
tive Congestion Control for Unpredictable Cellular Net-
works. In ACM SIGCOMM CCR, 2015.

[35] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn
Romanow. RFC 2018: TCP Selective Acknowledgment
Options, 1996.

[36] Sanjib Sur, Ioannis Pefkianakis, Xinyu Zhang, and Kyu-
Han Kim. WiFi-Assisted 60 GHz Wireless Networks.
In ACM MobiCom, 2017.

[37] Shivang Aggarwal, Swetank Kumar Saha, Pranab Dash,
Jiayi Meng, Arvind Thirumurugan, Dimitrios Kout-
sonikolas, and Y. Charlie Hu. Poster: Can Mobile Hard-
ware Keep Up with Today’s Gigabit Wireless Technolo-
gies? In ACM MobiCom Poster, 2019.

[38] UDP Tuning Technique from ESnet. https://faster
data.es.net/network-tuning/udp-tuning.

[39] RFC 791: Internet Protocol, 1981.

[40] Andres Garcia-Saavedra, Pablo Serrano, Albert Banchs,
and Giuseppe Bianchi. Energy consumption anatomy
of 802.11 devices and its implication on modeling and
design. In ACM CoNEXT, 2012.

[41] fillthepipe/fill-the-pipe. https://github.com/fillt
hepipe/fill-the-pipe.

[42] TCP optimization for network performance |
Compute Engine Documentation | Google Cloud.
https://cloud.google.com/compute/docs/netw
orking/tcp-optimization-for-network-perfo
rmance-in-gcp-and-hybrid.

[43] David Borman, Robert T. Braden, Van Jacobson, and
Richard Scheffenegger. RFC 7323: TCP extensions for
high performance, 2014.

[44] litespeedtech/lsquic: LiteSpeed QUIC and HTTP/3 Li-
brary. https://github.com/litespeedtech/lsqui
c.

[45] Monsoon High Voltage Power Monitor. https:
//www.msoon.com/online-store/High-Voltage
-Power-Monitor-p90002590.

[46] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ah-
mad Hassan, Shuowei Jin, Xiao Zhu, Xiaoxuan Zhang,
Denis Rybkin, Zhengxuan Yang, Zhuoqing Morley Mao,
Feng Qian, and Zhi-Li Zhang. A variegated look at 5G
in the wild: Performance, power, and QoE implications.
In ACM SIGCOMM, 2021.

[47] Junxian Huang, Feng Qian, Alexandre Gerber, Z. Morley
Mao, Subhabrata Sen, and Oliver Spatscheck. A close
examination of performance and power characteristics
of 4G LTE networks. In ACM MobiSys, 2012.

[48] Jon Postel. RFC 792: Internet control message protocol.
Technical report, 1981.

[49] Tom Herbert. BQL: Byte Queue Limits. https://lwn.
net/Articles/454378/.

[50] Wi-Fi Aware | Wi-Fi Alliance. https://www.wi-fi.
org/discover-wi-fi/wi-fi-aware.

[51] Dina Katabi, Mark Handley, and Charlie Rohrs. Con-
gestion Control for High Bandwidth-Delay Product Net-
works. In ACM SIGCOMM, 2002.

[52] Nandita Dukkipati and Nick McKeown. Why flow-
completion time is the right metric for congestion con-
trol. In ACM SIGCOMM CCR, 2006.

[53] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM ToN,
1993.

1382 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://linux.die.net/man/8/iw
https://linux.die.net/man/8/iw
https://fasterdata.es.net/network-tuning/udp-tuning
https://fasterdata.es.net/network-tuning/udp-tuning
https://github.com/fillthepipe/fill-the-pipe
https://github.com/fillthepipe/fill-the-pipe
https://cloud.google.com/compute/docs/networking/tcp-optimization-for-network-performance-in-gcp-and-hybrid
https://cloud.google.com/compute/docs/networking/tcp-optimization-for-network-performance-in-gcp-and-hybrid
https://cloud.google.com/compute/docs/networking/tcp-optimization-for-network-performance-in-gcp-and-hybrid
https://github.com/litespeedtech/lsquic
https://github.com/litespeedtech/lsquic
https://www.msoon.com/online-store/High-Voltage-Power-Monitor-p90002590
https://www.msoon.com/online-store/High-Voltage-Power-Monitor-p90002590
https://www.msoon.com/online-store/High-Voltage-Power-Monitor-p90002590
https://lwn.net/Articles/454378/
https://lwn.net/Articles/454378/
https://www.wi-fi.org/discover-wi-fi/wi-fi-aware
https://www.wi-fi.org/discover-wi-fi/wi-fi-aware

[54] Kathleen Nichols and Van Jacobson. Controlling queue
delay. Communications of the ACM, 2012.

[55] Rong Pan, Preethi Natarajan, Chiara Piglione,
Mythili Suryanarayana Prabhu, Vijay Subramanian,
Fred Baker, and Bill VerSteeg. PIE: A lightweight
control scheme to address the bufferbloat problem. In
IEEE HPSR, 2013.

[56] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift: Delay
is Simple and Effective for Congestion Control in the
Datacenter. In ACM SIGCOMM, 2020.

[57] A. Bakre and B.R. Badrinath. I-TCP: Indirect TCP for
mobile hosts. In IEEE ICDCS, 1995.

[58] Hari Balakrishnan, Srinivasan Seshan, and Randy H.
Katz. Improving reliable transport and handoff perfor-
mance in cellular wireless networks. Wireless Networks,
1995.

[59] Hari Balakrishnan and Randy H Katz. Explicit Loss
Notification and Wireless Web Performance. In IEEE
Globecom, 1998.

[60] Feng Lu, Hao Du, Ankur Jain, Geoffrey M. Voelker,
Alex C. Snoeren, and Andreas Terzis. CQIC: Revisiting
Cross-Layer Congestion Control for Cellular Networks.
In ACM HotMobile, 2015.

[61] Yaxiong Xie, Fan Yi, and Kyle Jamieson. PBE-CC: Con-
gestion Control via Endpoint-Centric, Physical-Layer
Bandwidth Measurements. In ACM SIGCOMM, 2020.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1383

Vulcan: Automatic Query Planning for Live ML Analytics
Yiwen Zhang†, Xumiao Zhang†, Ganesh Ananthanarayanan‡, Anand Iyer§,
Yuanchao Shu††, Victor Bahl‡, Z. Morley Mao†¶, Mosharaf Chowdhury†

†University of Michigan, ‡Microsoft, §Georgia Institute of Technology, ††Zhejiang University, ¶Google

Abstract
Live ML analytics have gained increasing popularity with
large-scale deployments due to recent evolution of ML tech-
nologies. To serve live ML queries, experts nowadays still
need to perform manual query planning, which involves
pipeline construction, query configuration, and pipeline place-
ment across multiple edge tiers in a heterogeneous infrastruc-
ture. Finding the best query plan for a live ML query requires
navigating a huge search space, calling for an efficient and
systematic solution.

In this paper, we propose Vulcan, a system that automati-
cally generates query plans for live ML queries to optimize
their accuracy, latency, and resource consumption. Based on
the user query and performance requirements, Vulcan deter-
mines the best pipeline, placement, and query configuration
for the query with low profiling cost; it also performs fast on-
line adaptation after query deployment. Vulcan outperforms
state-of-the-art ML analytics systems by 4.1×-30.1× in terms
of search cost while delivering up to 3.3× better query latency.

1 INTRODUCTION
Recent years have witnessed a growing demand for machine
learning (ML) analytics. Live ML analytics – with appli-
cations in edge-assisted autonomous driving [62, 71, 72],
live traffic analysis [1, 43], and real-time speech recogni-
tion [18, 66] – stands out due to its large-scale deploy-
ments [1,2,4]. Live ML analytics involves ML pipelines at its
core, where each pipeline consists of a series of operators to
perform specific ML tasks. For example, an autonomous driv-
ing perception query that detects surrounding objects of an
autonomous vehicle may contain filtering operators for road
surface removal [23] and 3D data compression [22,53], along
with a 3D object detector to perform object detection [37, 68].

Live ML analytics differentiates itself from ML on stored
data in two key characteristics. First, live ML pipelines are
deployed across heterogeneous infrastructure, spanning multi-
ple tiers such as device edges, on-premise edges, public MEC,
and cloud datacenters [1–3, 6]. Second, live ML queries have
latency requirements besides accuracy targets as the analytics
is based on real-time data. Some analytics, such as object
detection in autonomous vehicles, may have more stringent
requirements than others depending on the priority of the task.
Therefore, before deploying live ML analytics, each query
describing the ML task must go through careful query plan-
ning. Specifically, this involves (i) constructing the pipeline

by selecting a series of operators and ordering them; (ii) de-
termining the physical placement of pipeline operators across
infrastructure tiers; and (iii) selecting configurations of the
pipeline operators, to optimize for query performance. A joint
optimization of the three aspects is required for optimal per-
formance and resource consumption.

Recent research on these topics have been piecemeal, fo-
cused on compute alone, and hence largely sub-optimal for
live ML analytics. Although declarative query languages (e.g.,
SQL) have been proposed for ML queries, there exists no sys-
tematic approach to automatically construct pipelines based
on query’s end-to-end latency requirement. This includes se-
lecting and ordering the filtering modules during pipeline
construction, which have a great impact on the performance
characteristics of ML pipelines. Furthermore, when choosing
physical placement of pipeline components, one cannot af-
ford to exhaustively search for the optimal placement through
real-world deployments. As a result, deployments often rely
on past experience with simple heuristics [3,67]. While recent
solutions have focused largely on selecting query configura-
tions [12,27,28,63,70], they assume the ML analytics compo-
nent to be a monolithic module instead of a pipeline. As such,
they are profiled for compute alone, assuming they are run-
ning in a homogeneous datacenter. In the process, networking
resources are ignored, and the complexities of multi-resource
planning of compute and network are overlooked altogether.
Finally, these solutions rely heavily on domain-specific in-
sights of video content, which are not applicable to general
ML scenarios beyond video analytics [28, 45, 70].

After deploying the query in the wild, one must also adapt
the query plan based on runtime dynamics such as data con-
tent and/or resource changes [12, 28, 52, 54]. Prior solutions
in providing online adaptation [28, 70] focus on data content
changes alone but do not adapt to compute and network re-
source changes, which are common in edge environments [52].
An ideal solution should change query configuration and
placement during online adaption.

In this work, we consider how to perform automatic query
planning – i.e., constructing, placing, and configuring ML
pipelines, along with adapting to runtime dynamics – for
live ML queries based on user-provided performance require-
ments. The goal is to find query plans that optimize latency
and accuracy, while minimizing the network and compute
resource consumption. Generating such query plans, however,
is challenging as jointly optimizing pipeline construction,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1385

Device Edge Public MEC CloudOn-premise Edge

2

3 4

Configure Pipeline

Ground
Distance

Voxel
Size

Model
Selection, ,

Select Placement Online Adaptation

Data Content

Resource

3D Point
Cloud

Voxelization
Ground
Removal

3D Object
Detector

Return
Qualified
Objects

1
Live ML Query

Construct Pipeline

Query = ‘AD Perception’
Input = ‘on-board LiDAR’
Objects_of_interest = ‘all’
ML_Model = [‘PointPillars’]
Filter = [‘gnd_removal’,
‘voxelization‘]
max_Latency_ms = 400
min_Accuracy_mAP = 0.8

Figure 1: The existing workflow of query planning for a live ML query.

placement, and query configuration leads to a much larger
search space. Moreover, as query performance is resource and
data dependent, considering all possible resource and data dy-
namics that may or may not happen in the future can explode
the search space. Clearly, a more efficient online adaptation
technique is needed for faster convergence and lower cost.

We present Vulcan, an ML analytics system that performs
automatic query planning for live ML queries. Its design
includes the following key ideas to overcome the aforemen-
tioned challenges:

(1) Vulcan defines a novel metric to quantify each filter-
ing operator in the pipeline by combining query precision,
recall, resource usage, and latency (§4.2). This converts the
complexity of filter ordering from exponential to linear.

(2) Vulcan carefully identifies components of ML pipelines
that are independent of placement. This allows Vulcan to
dramatically prune the search space of placement options.

(3) Vulcan efficiently explores the best combination of con-
figuration knobs using Bayesian Optimization (BO) [14, 51].
It designs BO’s priori assumptions and acquisition function
to jointly optimize placement and configuration selection.

(4) Vulcan adapts quickly to dynamic changes in data and
resources by (i) designing programming interfaces that allow
for dynamic updates to live pipelines modules without dis-
rupting them, and (ii) leveraging prior knowledge to make
faster decisions on modifying configurations and placement.

We evaluate Vulcan using real-world datasets on a
wide range of applications including traffic monitoring, au-
tonomous driving perception, and automatic speech recog-
nition. Experiments are conducted under an edge hierarchy
that represents real compute and network resource setting of
our production infrastructure. Vulcan generates query plans
with better profiling cost by 4.1×-30.1× over state-of-the-art
ML analytics systems while delivering 3.3× better query la-
tency performance. Vulcan outperforms existing solutions for
ML query configuration and placement selection with up to
2.8× better query latency and 174× lower network resource
consumption. Vulcan also achieves consistently better 99th-p
latency by up to 2.5× by adapting to both data and resource
changes during online adaptation (§6).

In summary, we make the following research contributions:
• We provide an end-to-end system design for live ML

queries for a wide range of real-world ML applications.
• We propose novel solutions on search space reduction for

constructing, placing, and configuring ML pipelines.
• We implement interfaces and control loop for online adap-

tion for fast re-profiling and dynamic re-configuration.

2 BACKGROUND AND MOTIVATION

We start with an overview of the workflow of live ML query
processing, followed by motivating examples to highlight the
key aspects when choosing query plans.

2.1 Processing Live ML Queries
We explain the query planning workflow by walking through
an example query which detects surrounding objects in edge-
assisted autonomous driving, as shown in Figure 1. The input
query specifies input data, object of interests, pipeline opera-
tors, and performance requirements on accuracy and latency.

1 Constructing the pipeline. The first step is constructing
the ML pipeline by choosing a series of operators to perform
the task. Specifically, it involves choosing filtering operators,
such as voxelization and ground removal, to be deployed for
substantial resource efficiency prior to the ML models, such
as the 3D object detector [37, 68] in the case of Figure 1. The
ordering of the filtering operators has a significant impact
on performance. The best ordering is dependent on the data,
resource availabilities, and performance requirements.

2 Configuring the pipeline. After the operators are chosen
in the pipeline, the next step is selecting configuration knobs
to achieve the best tradeoff between query performance and
resource consumption [12, 26, 28, 45, 70]. In our example,
configuration knobs include ground distance, the voxel size,
and the choice of a 3D object detection model.

3 Selecting physical placement. The next step is placing
pipeline operators across the heterogeneous edge infrastruc-
ture, starting from the device edge and to the cloud (Figure 1).
This heterogeneity introduces complexity in placement of the
operators and influences the end-to-end latency performance
of the ML pipeline.

4 Performing online adaptation. After a query is deployed,
its performance is affected by runtime dynamics due to re-
source changes and data variations. Resource changes are

1386 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

𝑳𝒓𝒆𝒒 (ms)𝑨𝒓𝒆𝒒
4000.8

(a) Performance Requirement

I G V D O

(b) Pipeline

Size (MB)𝑳 (ms)	𝑨Config

6|4.4|3.22600.85𝐶!
6|3.6|2.22700.8𝐶"

(c) Query Configuration Results

Figure 2: (a) Performance requirement on accuracy (AAAreq) and la-
tency (LLLreq) of the example query. (b) Query’s pipeline (Input →
GroundRemoval → V oxelization → Ob jectDetector → Out put).
(c) Offline profiling results. The last column records the size of
the data at different stages of the pipeline: data at the source | after
’G’ | after ’V’. Data after ’D’ is not shown due to negligible size.

G V D

G V D

Placement 1 (𝑃!) Placement 2 (𝑃")

Placement 4 (𝑃#)Placement 3 (𝑃$)

G V D

G V D

(a) Placement Choices

𝑳 (ms)𝑨PlacementConfig

4500.8𝑃!𝐶"
3800.8𝑃"𝐶"
5400.8𝑃#𝐶"
5700.8𝑃$𝐶"

𝑳 (ms)𝑨PlacementConfig

4800.85𝑃!𝐶!
4200.85𝑃"𝐶!
5200.85𝑃#𝐶!
5600.85𝑃$𝐶!

(b) End-to-end Performance Results

Figure 3: Placement choices and corresponding end-to-end perfor-
mance. (a) All four feasible placement choices in a two-tier setting
(Device Edge→Datacenter). (b) The baseline approach which first
acquires the optimal combinations of configuration knobs during
offline profiling (C1) and then selects placement fails to meet the
latency target. An ideal solution should select C2 & P2 by jointly
optimizing configuration and placement. Note accuracy does not
depend on placement and remains unchanged.

common because of other workloads on the edge infrastruc-
ture (e.g., 5G RAN containers) or network outages [39, 52].
The content of the data, such as lighting or object densi-
ties [12,28], can also change during the lifetime of a query. An
ideal solution should adapt to runtime dynamics by adjusting
the pipeline’s filters, its configurations, and placement.

2.2 Motivating Examples
We now highlight some of the key challenges toward perform-
ing query planning for live ML queries using toy examples.

Jointly optimizing configuration and placement. Current
practice considers pipeline placement and query configura-
tion separately [12, 28, 33, 49, 67]. Designers first perform
offline profiling to determine the optimal query configuration,
and then select placement based on heuristics (prioritize net-
work or compute, etc.) or greedy algorithms [67]. Such an
approach fails to consider additional query latency introduced
by pipeline placement, leading to sub-optimal query plans.

𝑳𝒓𝒆𝒒 (ms)𝑨𝒓𝒆𝒒
3000.6

(a) Performance Requirement

I V G D O

(b) Pipeline

Size (MB)𝑳 (ms)	𝑨Config

6|4|2.71800.7𝐶!
6|2.8|21900.6𝐶"

(c) Query Configuration Results

𝑳 (ms)	𝑨PlacementConfig

2900.6𝑃!𝐶!

(d) Optimal Query Plan

Figure 4: Given an updated performance requirement, a new pipeline
is required to meet the latency target. The new pipeline swaps the or-
der of the two filters (’V’ & ’G’), delivering a different performance
characteristic than the old one in Figure 2b.

To illustrate this, take an example autonomous driving
query, whose performance requirements and pipeline are
shown in Figure 2a and 2b. Figure 2c records the offline
profiling results assuming only 2 sets of configuration knobs
(C1 and C2) exist. In this case, the baseline approach identifies
C1 as the optimal configuration since it performs better both
in terms of accuracy and latency than C2. It then pairs C1
with one of the placement choices in our simplified two-tier
infrastructure shown in Figure 3a.

However, as shown in Figure 3b, none of placement choices
would satisfy the query’s end-to-end latency requirement if
C1 is selected. The end-to-end latency is composed of the
compute latency (time spent in the object detector) and addi-
tional network latency occurred over the edge. For example,
the additional network latency in P1 is computed as the time
it takes to transmit the output data of the ground removal
module using the link bandwidth, which is set to 20MBps in
this example.1 An ideal solution should select C2 by jointly
considering both placement and configuration.

Constructing pipelines based on performance require-
ments. Different orderings of filtering operators lead to differ-
ent performance characteristics of ML pipelines. Therefore,
an ideal solution must construct the pipeline based on query-
specific performance requirements. For instance, if we change
the performance requirements of the original example query
to a lower latency target with more tolerance on accuracy
(shown in Figure 4a), then none of the query plans in Fig-
ure 3b can satisfy the new latency target as long as they use
the pipeline from Figure 2b. Instead, we need to use a new
pipeline which swaps the order of the two filters (Figure 4b).
As filters are not independent to each other, placing ‘V’ be-
fore ‘G’ reduces more data, leading to better latency but lower
accuracy (Figure 4c). Figure 4d shows the end-to-end results
with the optimal query plan using the new pipeline. We omit
for brevity the same process of finding the optimal placement
and configuration as we did earlier.

Building an ideal solution that handles all the aforemen-
tioned aspects of live ML query planning is non-trivial, as se-
lecting the right pipeline, placement, and configuration jointly

1In this example, the compute latency is assumed to be doubled when
placing the detector on the device edge (i.e., in P3).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1387

Pipeline &
Edge Tier Info

Vulcan Profiler
Pipeline Construction

(§4.2)

Placement Selection
(§4.3)

Query Configuration
(§4.4)

Config Knob
Search Space

Next Placement Next Config

Launch Pipeline
UtilityPipeline Results

Deploy to Edge w/
Optimal Query Plan

Vulcan Monitor
Online Adaptation

(§5)
Runtime

Dynamics

Detect Perform
Reprofiling

Figure 5: High-level workflow of Vulcan.

leads to a huge search space both during offline profiling and
online adaptation. We next describe how Vulcan overcomes
these challenges in a high-level system overview.

3 SYSTEM OVERVIEW

Vulcan is an ML analytics system that provides automatic
query planning for live ML queries. It takes charge of the
entire lifecycle of a ML query by constructing, configuring,
and placing its ML pipeline, and performing online adaptation
after the query is deployed.

Figure 5 presents a high-level system diagram of Vulcan.
A user launches a live ML analytics task by submitting an
input query to Vulcan, along with performance requirements.
An example of Vulcan input queries can be found in Figure 1.
Upon parsing the query, Vulcan Profiler generates its query
plan by determining the query pipeline, placement of pipeline
operators, and pipeline configuration. In Vulcan, query plans
are evaluated using a utility function we define that combines
the query performance and resource consumption (§4.1). To
determine which pipeline to use for a query, Vulcan first con-
structs an initial pipeline by mapping user query specification
to a general template optimized for performance and resource
efficiency, and then determines the best ordering of filtering
operators based on a new metric we define to capture the
impact of filters on query latency and accuracy (§4.2).

Given a constructed pipeline, Vulcan jointly searches for
the best placement and query configuration which, when
combined, gives the highest utility. To explore placement
choices with low cost, Vulcan reuses intermediate results from
pipeline runs, such that a pipeline with the same configuration
only needs to be offline profiled once. In the meantime, it also
early prunes unpromising placement choices to further reduce
the profiling cost (§4.3). For each placement, Vulcan searches
for the best query configuration by leveraging Bayesian Opti-
mization to explore a large number of query configurations
with a small number of trials (§4.4).

After query deployment, Vulcan continues to monitor query
performance to detect runtime dynamics. During such events,
Vulcan reprofiles the pipeline in a quick and low-cost fashion
by leveraging prior knowledge (§5).

4 VULCAN: PROFILER DESIGN
This section introduces the utility function we define to com-
pare query plans, followed by how Vulcan construct, place,
and configure the ML pipelines for live ML queries.
4.1 Defining Utility of Query Plans
We start by defining a utility function to evaluate the value
of a query plan as we explore the search space. Existing
literature has proposed various utility functions [9, 29, 50, 61]
to combine query accuracy and latency. We build on top
of these works and extend the utility function introduced
in VideoStorm [70] to make it resource-aware. Resource
consumption for live ML queries is as important as query
performance, because each ML pipeline is deployed over edge
infrastructure, where limited network and compute resources
must be shared between applications. A query plan with good
performance but excessive resources is undesirable.

Given a pipeline q with placement p and pipeline configura-
tions c, we define Uq,p,c, the utility function of a query plan, as
the ratio of the query performance to resource consumption:

Uq,p,c = Pq,p,c/Rq,p,c (1)

such that the higher the utility value is, the better performance
and cost for the query plan. Pq,p,c combines query accuracy (A)
and end-to-end latency (L) by calculating the reward (penalty)
for achieving good (bad) performance based on a minimum
accuracy target (Am) and a maximum latency target (Lm):

Pq,p,c(A,L) = γ ·αA · (A−Am)+(1− γ) ·αL · (Lm−L) (2)

, where γ ∈ (0,1). γ allows users to express their preference
between accuracy and latency. Rq,p,c combines the compute
and network resource consumption of the pipeline:

Rq,p,c = αgpu ·Rgpu +αnet ·Rnet (3)

The consumption of the compute (Rgpu) is calculated as the
fraction of the GPU processing time used by the query. In
Vulcan, we assume compute cost is dominated by GPU cost,
as the queries we tackle rely heavily on GPU-based DNN
models. The network resource consumption (Rnet) is calcu-
lated as the sum of the fraction of the network bandwidth
used by the pipeline on each network path between the edges.
The constants αA, αL, αgpu, and αnet are set by the operator
to balance query performance and resource usage. Note that
Vulcan’s solution is orthogonal to the utility function and
works for any utility function defined by the operator.
4.2 Determining the Query Pipeline
The first step in profiling is to construct the query pipelines.
Vulcan performs pipeline construction by first generating
an initial pipeline, and then determines the best ordering of
pipeline operators to carry to the later profiling stages.

1388 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Filters
ML
Model

Specialized
Tasks

(A) (B) (C)

Input
Data

Qualified
Results

Figure 6: Template used by Vulcan to construct the initial pipeline.

4.2.1 Constructing the Initial Pipeline
Given a user query, Vulcan generates an initial pipeline us-
ing a general template with several types of building blocks,
as shown in Figure 6. Starting from the data source, Vulcan
constructs the initial pipeline by inserting (A) filtering mod-
ules which reduce the data size or data rate via sampling or
filtering techniques, (B) the ML model to perform the actual
inference task such as object detection, and (C) specialized
modules for additional tasks required by the query, such as
an object tracker (e.g., re-identification modules [31, 38, 40]),
which can be performed only after the major ML inference
task. Vulcan uses a pool of filter and ML modules that are
readily available, provided by users, infrastructure providers,
or third-party developers and organizations (e.g., public ML
model zoos) to handle user queries. Filters and the ML model
to use for the query is specified by the user in the input query
(Figure 1). Based on the chosen operators, Vulcan generates a
list of configuration knobs among which the profiler searches
for an optimal set of configurations (§4.4).

The key insight behind arranging the building blocks in
this way is to reduce the amount of data transfer across the
edge earlier in the pipeline and leave operators with higher
computation cost in later pipeline stages. This maximizes
the savings in both network and compute resource as less
data is transmitted and processed across the edge tiers. The
design can improve end-to-end query latency by reducing the
network latency as well as the GPU processing delay with
potentially smaller data size for ML inference.

This initial pipeline leaves us with a follow-up given the
impact of filter ordering on query performance (§2.2): In what
order should we place the filters?

4.2.2 Selecting the Ordering of Filters
A naïve solution for selecting the filter ordering is to explore
pipeline placement and configuration for all possible order-
ings; this, however, does not scale as the number of filters
increases. In Vulcan, we propose a new solution that compares
the impact of different filter orderings on query’s accuracy,
latency, and resource consumption by evaluating recall and
precision of filters. We first explain how it works for a single
filter before moving on to the multi-filter scenario. We define
recall of a filter as the fraction of samples in the original data
that contains the objects of interest (i.e., relevant data) that
passes through the filter. On the other hand, precision of a
filter is the fraction of data samples in its output that contains
relevant data. For a given filter, we would expect its recall to
be high such that it still captures most of the desired data, and
query accuracy is preserved. A filter with low recall drops
true positive samples which cannot be recovered later in the
pipeline. Among filters with the same recall, we prefer the

ones with higher precision because these filters provide higher
data reduction rate by picking up fewer irrelevant samples,
leading to better latency and resource savings.

We can now define the metric to evaluate how a given filter
affects a query plan’s utility (Uq,p,c). The metric should also
handle a query’s preference between latency and accuracy,
based on the parameter γ defined in Eq (2) in our utility func-
tion. To this end, we leverage a variation of the F-measure
in information retrieval theory [58] to encode this preference.
Denote Fγ as the score for a given filter with its precision and
recall measurements:

Fγ = (1+β
2) · precision · recall

(β2 ·precision)+ recall
(4)

where β = γ/(1− γ). In the F-measure definition, the value
of β captures how many times recall is considered more im-
portant than precision. As we explained earlier, recall and
precision corresponds to query accuracy and latency respec-
tively, and thus the value of γ/(1− γ) (see Eq (2)) is used to
capture our accuracy-latency preference.

Measuring Fγ tells us how well a single filter fits into a
query’s optimal query plan. However, two challenges remain.
First, directly applying Fγ to sort a sequence of filters does not
work well as the recall of a filter can change based on its pre-
ceding filter. Second, filters may have their own configuration
knob that leads to different precision or recall measurements.
Applying one set of configuration for all filters oversimplifies
the problem with inaccurate estimation, whereas evaluating
too many configuration sets increases profiling cost.

We address multiple filters by treating a sequence of filters
as a bulk filter with input being the data source and the output
being the one from the last filter, and measure the overall Fγ

using representative data for each permutation of the avail-
able filters. To deal with filters with various configurations,
we choose a few representative configuration settings to cap-
ture the effect of configuration knobs on filters, where in each
setting all the filters are configured at the x-th percentile in
the range of their configuration knob. Filters with no config-
uration parameter remain unchanged. We empirically find x
= 20-th, 50-th and 80-th good enough at picking promising
pipelines, which results in {3× total number of filter ordering}
Fγ values to collect. Vulcan then picks the ordering which
achieves the highest Fγ to complete the pipeline construction.

4.3 Determining Placement Choices
After constructing the pipeline, the next step is placing each
of the pipeline operators across the edge infrastructure (see
Figure 5). On the one hand, rule-based solutions are good
at reducing search cost but may fail to explore all promising
placement choices. On the other hand, exhaustively searching
through all placement choices requires high search cost during
profiling as we deploy the query across the edge. Vulcan
combines the benefits of the two approaches by (i) reducing
search cost by reusing intermediate results from pipeline runs,
and (ii) early pruning unpromising placement choices.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1389

Algorithm 1: Placement Selection
1 Notation:

q: constructed pipeline (from §4.2.1),
P : all feasible placement choices given q,
Am: accuracy target, Lm: latency target, U : utility,
res: pipeline results used to calculate utility

2 Function SelectBestPlacement(q, Am, Lm):
3 P ← GenerateAllPlacementChoices(q)
4 foreach placement p ∈ P do
5 c← NextCon f ig() ▷ from §4.4
6 count = 0 ▷ reset early pruning counter
7 if c.hasExplored() then
8 res = LoadFromCache(q, c)
9 else

10 res← LaunchPipeline(q, c)
11 CachePipelineResults(res)

12 Up,c =CalculateUtility(q, p, res)
13 if Up,c ≤Up,c(Am,Lm) then
14 count← count +1
15 if count ≥ EarlyPruneCount then
16 continue

17 return argmaxp∈P ,c U(p,c)

4.3.1 Reusing Pipeline Results

The idea of reusing pipeline results is based on two key ob-
servations we make in live ML pipelines. First, query accu-
racy does not depend on the placement choices of a pipeline
with the same query configuration. Second, the amount of
data generated after each pipeline operator is independent of
placement choices. These observations allow us to deploy the
pipeline offline in the datacenter only once per selected query
configuration during the profiling stage to collect pipeline
operator results, and reuse those results to evaluate a new
placement choice by calculating additional latency and re-
source consumption components introduced by the placement,
while reusing the same query accuracy result. Given a total of
M placement choices and N combinations of pipeline config-
urations, our solution improves the search complexity from
O(MN) to O(N) for a given pipeline.

Algorithm 1 describes how Vulcan evaluates placement
choices. Given a pipeline, we begin with generating a collec-
tion of all feasible placement choices. Obviously infeasible
choices where operators are placed in a different order than
they appear in the pipeline (e.g., placing the DNN model in
front of the filters) are excluded from the collection. For each
placement choice, Vulcan explores promising query configu-
rations to evaluate the utility of the query plan (details of how
Vulcan picks query configurations are in Section 4.4). For
every new set of pipeline configurations, Vulcan launches the
pipeline inside the datacenter. In this case, Vulcan not only
collects query performance and resource consumption for
utility calculation but also caches intermediate results from
each pipeline operator, including the operator’s output size,

AData B C D

Figure 7: An example of how additional network latency is calcu-
lated for a pipeline with 4 operators placed across the edge infras-
tructure (i.e., device edge→ on-premise edge→ public MEC→
cloud). Output sizes of shaded operators are used to calculate the
additional latency introduced by the placement.

output bandwidth, and data processing time (i.e., time spent
in a filtering module or GPU inference time)2 (Algorithm 1
lines 10-11). If a chosen pipeline configuration c has been ex-
plored by a previous placement choice, Vulcan calculates the
utility for the new placement p by estimating the new query
end-to-end latency Lp,c and resource consumption Rp,c with-
out launching the pipeline (lines 7-8,12). Lp,c is estimated
by summing up the total processing time of each operator
measured offline excluding the DNN module, the additional
network latency introduced by placement, and the updated
GPU inference latency as shown below:

Lp,c = Loffline,total−Loffline,gpu +∑Lp,net +Lp,gpu (5)

The network component of the new latency, ∑Lp,net , is calcu-
lated by summing up the network latency going across two
adjacent tiers. Figure 7 illustrates how this process works.
The latency is calculated by taking the ratio of a component’s
output size (cached per configuration) to the assigned link
bandwidth capacity the query data traverse through. Note that
only the components sending data to the next tier in the infras-
tructure are considered. The GPU inference latency, Lgpu, is
updated by multiplying with a coefficient based on the GPU
type to reflect the performance difference, which we deter-
mined by profiling all GPUs available in our cluster. Rp,c is
estimated in a similar way by including additional network
bandwidth and GPU processing time introduced by the place-
ment. After all placement choices are explored, Vulcan selects
the placement (together with the optimal configuration) that
achieves the highest utility (line 17).

4.3.2 Pruning Unpromising Placement Choices
Although caching intermediate results allows Vulcan to never
re-launch a pipeline with the same configuration, exhaustively
exploring all feasible placement choices may still incur large
search cost as the profiler strives to find a good configuration
for an unpromising placement. For example, a query prefer-
ring latency performance will not favor the placement that
places the filtering module too far away from the data source.

To apply early pruning, we set a utility threshold which is
equal to the utility value when both minimum performance
metrics is used for the given query configuration and place-
ment, namely U(Qm,Lm), which is evaluated to zero in our
utility definition (§4.1). When the profiler obtains N utility val-
ues below the threshold, we early prune the current placement

2Vulcan also collects the size and bandwidth of the data source to account
for the case where only the data source is placed on the first tier.

1390 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

choice (Algorithm 1 lines 13-16). Compared to other alter-
native pruning solutions, such as building a statistical model
for pruning decisions, this simple scheme works well because
Vulcan profiler is designed to always pick more promising
configuration than its last attempt (§4.4), and consecutive bad
utility values indicate a high probability of unpromising place-
ment. This also allows us to set N to a small value (N = 3
in our implementation) as otherwise the profiler would have
already terminated itself after a small number of attempts.

Placing split ML models. Recent research [21] has proposed
the idea of splitting the layers of a large DNN model and
placing them at different edge tiers. Vulcan can handle such
design as long as the split layers are properly specified in the
input queries as individual modules.

4.4 Determining Query Configuration
For each placement choice, Vulcan leverage Bayesian Opti-
mization (BO) [14, 51] to efficiently explore pipeline config-
urations that achieve the best performance with minimized
resource consumption (see Figure 5).

4.4.1 Why Do We Choose BO?
BO is a methodology for optimizing expensive objective
functions and is widely applied to many computer sys-
tems [8, 13, 35, 42, 48, 64]. At a high level, it learns the shape
of the objective function by picking inputs that has the highest
probability of reaching the global maximum of the function.
As BO accumulates more observations, it becomes more con-
fident on the actual shape of the objective function. This is a
good fit for our solution as we need to quickly find the opti-
mal configuration that maximizes the utility function without
exploring too many choices.

More importantly, we observe BO has many advantages
over other popular optimization schemes in the context of live
ML queries. Greedy Hill Climbing has been applied in query
configuration for video analytics queries [70], but it is purely
exploitative and cannot perform as efficient global exploration
as BO does (§6.3 provides detailed evaluation). Multi-Armed
Bandit (MAB) [25] is another popular optimization scheme
for sequential decision making, but it is designed for optimiz-
ing cumulative rewards, contrasting our goal of finding the
one configuration with the highest utility. In addition, BO
tunes the entire set of input configurations all together for
each iteration no matter how large the input vector is, whereas
MAB can only adjust one knob at a time. We also prefer BO
over population-based optimization scheme such as Particle
Swarm Optimization (PSO), as applying PSO in query con-
figuration requires launching many ML pipelines in parallel,
leading to a much high computation cost (e.g., GPU resourse).

4.4.2 Applying BO to Query Configuration
We define the objective function of BO as f (⃗x), which models
how good a given query plan is based on a given pipeline
and a physical placement choice. The input x⃗ is the set of
query configuration knobs, and the output of f is the utility
value, Uq,p,c for a given pipeline q with placement p and a set

of configurations c. For each iteration, Vulcan launches the
pipeline with the configurations suggested by BO (i.e., x⃗), and
collects the measurements to compute Uq,p,c, which is then
fed back to BO as the new observation.

Choice of prior and acquisition functions. Internally, BO
learns an objective function by leveraging a prior function
and an acquisition function. The former represents the belief
about the space of possible objective functions, whereas the
latter guides BO to choose the next promising input where
the value of acquisition function is maximized. We choose
Gaussian Process as the prior function and use Matern 5/2
as its covariance function to describe the smoothness of the
prior distribution, which is known to perform well among sys-
tems applying BO [8, 64]. Among three major choices of the
acquisition function, namely probability of improvement [36]
(PI), expected improvement [30] (EI), and upper confidence
bound [65] (UCB), we select UCB as it works the best for
our workloads. We defer a dynamic approach of selecting
acquisition functions [15] to future work.

Starting and stopping BO. We start with N random sets of
input query configurations as initial observations for BO to
learn the rough shape of the objective function. We set N = 3
in all of our experiments and found it works well for various
workload settings. Vulcan stops BO when the improvement
of the utility value is less than a threshold for a few consecu-
tive runs (i.e., 10% for 5 consecutive runs, which empirically
works well). We include a sensitivity analysis on how the
parameters we use in the starting and stopping conditions
affect BO’s performance in Section 6.7.

One alternative design which seems promising but we do
not consider is to directly apply BO for placement selection
and pipeline construction by treating available placement
choices and pipelines as another two knobs in the total con-
figuration space. In BO, input parameters are specified in
a continuous range. For example, the voxel size in the vox-
elization module of an AD perception pipelines is chosen
between 0.1 and 0.5. As BO moves within this range, the
behavior of the module changes with the size of the voxel,
leading to a smoother shape of the objective function with
more predictable outputs. In contrast, the behavior of different
placement choices or filter orderings is hard to predict, and
going through the configuration space of those (i.e., place-
ment or pipeline choices indexed by numbers) leads to very
rough shape of the objective function for BO to grasp; thus it
becomes much more difficult to find the global optimum.

5 ONLINE ADAPTATION

This section describes how Vulcan performs online adaptation
to handle runtime dynamics after query deployment. Vulcan
currently does not support concurrent execution of different
ML queries, and we defer the support of multi-resource shar-
ing among concurrent live ML pipelines to future work.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1391

Figure 8: Scenes taken during different time of day from a video
query detecting red vehicles.

5.1 Detecting and Handling Runtime Dynamics
Vulcan leverages two design ideas to quickly converge back
to the best query plan during online adaption: (i) monitor
utility change to detect runtime dynamics, and (ii) leverage
prior knowledge during reprofiling.

Detecting runtime dynamics. Vulcan detects runtime dynam-
ics by monitoring the change in a query’s utility values, as any
runtime dynamics (content, network, or compute based) leads
to a change in utility. This includes all the measurements
required to calculate up-to-date utility (i.e., latency, accuracy,
module output size and bandwidth), and they are periodically
reported to Vulcan monitor via HTTP requests. To obtain
real-time ground truth on query accuracy given unlabeled live
data, Vulcan launches a duplicated pipeline with the most
expensive configuration inside the cloud, which only receives
live data periodically to minimize network cost. A substantial
change in the utility triggers reprofiling which deploys the
query in the cloud similar to the case of offline profiling. We
set the threshold of utility change empirically (10% in our
implementation) via profiling.

Leveraging prior knowledge in reprofiling. We observe that
most of the query, such as the object of interest and where
the query takes place, remains the same after deployment;
meaning, we can take the advantage of prior knowledge from
offline profiling. Figure 8 shows two example scenes taken by
the same camera during different time of the day from a query
that detects red vehicles. We observe a high level of similarity
between the two scenes except for environment illumination.
Let us define the distance between two configurations, CA and
CB, to be the total number of steps needed for each config-
uration knob in CA to change to each knob value in CB. In
this example, applying the same configuration from daytime
to nighttime scenes leads to an average 26.2% utility drop
among all placement choices, but it requires only an average
distance of 2.47 steps to converge back to the query plan with
the highest utility (figures omitted in the interest of space).

To apply prior knowledge, Vulcan makes the following
changes to the normal profiling process. Vulcan keeps track
of the most recent top-K and worst-K configuration per place-
ment choices (K = 3), and applies them as initial data points in
BO such that BO can quickly grasp the shape of the objective
function. We also tune up the exploitation factor in the acqui-
sition function (κ in UCB [65]) to 1/10 of its original value to
focus more on exploitation than exploration. Note that Vulcan

1 HttpProcessor _httpProcessor = new HttpProcessor(
Config.ENDPOINT_URL_SAMPLING);

2 Int sampling_rate = 3; // selecting 1 out of 3 frames
3 var form = new MultipartFormDataContent();
4 form.Add(new StringContent(sampling_rate.ToString()),

"frameSamplingRate");
5 var result = await _httpProcessor.PostAsync(form);

(a) Sending Configuration Updates

1 // POST: api/Config
2 [Produces("application/json")]
3 [HttpPost]
4 public async Task <IActionResult > PostConfig([FromQuery

] string frameSamplingRate = null)
5 {
6 if (frameSamplingRate != null)
7 {
8 Config.FRAME_SAMPLING_RATE = Int32.Parse(

frameSamplingRate);
9 /* sampling rate updated for subsequent frames */

10 }
11 return Ok();
12 }

(b) Posting Configuration Updates

Figure 9: Code snippets of Vulcan APIs on dynamically updating
query configuration. (a) Vulcan Profiler sending the configuration
updates to deal with runtime dynamics. (b) Vulcan Controller at the
container updates the configuration to use the updated value.

does not just stick to the best placement choice but choose
to re-perform placement selection. As runtime dynamics can
involve network and compute resource changes, this allows
Vulcan to change the placement of the pipeline when merely
adjusting query configuration makes little impact on recov-
ering query performance. We evaluate how Vulcan performs
under different types of runtime dynamics in Section 6.6.

5.2 Enabling Online Adaptation
After identifying the right query plan upon runtime dynamics,
we must also enforce this at production scale. Unfortunately,
existing frameworks for large-scale deployment, such as Ku-
bernetes [7], do not support container modification during
execution. Therefore, Vulcan adds its own implementation.

Dynamically updating query configuration. Figure 9 shows
the example interfaces of Vulcan sending configuration up-
dates and posting them inside the container upon a change
in the frame sampling rate of a traffic monitoring query. In
Vulcan, each pipeline module is installed and launched by
a container. Query configurations are updated in real time
without stopping the containers. If any configuration knobs
need to be updated after reprofiling, Vulcan sends out up-
dated configuration using HTTP requests to the containers
that launch the corresponding modules (Figure 9a). The exact
location (ENDPOINT_URL_SAMPLING) of the containers
is acquired when Vulcan first deploys the pipeline. The con-
tainers receiving the request update the configuration right
away, without stopping the current ML task (Figure 9b).

Handling placement changes. If the new query plan involves
a placement change (e.g., during network or compute resource
change), Vulcan migrates the container of the corresponding
module to the updated tier. To perform the migration, Vulcan

1392 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: ML model variations used in evaluation.

Model # Parameters (Million)

YOLO [56] v5n6 v5s6 v5m6 v5l6 v5x6
3.2 12.6 35.7 76.8 140.7

PointPillars [37] SECFPN SECFPN (FP16)
4.9 4.9

SSN [73] SECOND RegNet
6.2 7.1

CenterPoint [68] DCN Circular NMS
6.0 6.1

wav2vec2 [10] base large_10m large_960h
94.4 315.5 315.5

HuBERT [69] large xlarge
315.5 962.5

first launches the module with the same query configuration
on the target tier. It then updates the location of the new
container to the upstream module via the same API for con-
figuration updates described in §5.1, before removing the old
container on the current tier. The new location of the container
is also updated in Vulcan monitor for future adaptation.

6 EVALUATION

We evaluate the effectiveness of Vulcan in performing auto-
matic query planing in terms of profiling time, query perfor-
mance, and query resource consumption. Our key findings:

(1) Vulcan generates query plan with better profiling cost by
4.1×-30.1× over state-of-the-art ML analytics systems
while delivering up to 2.0×-3.3× better latency (§6.2).

(2) Vulcan performs better query configuraiton, placement
selection, and pipeline construction by outperforming ex-
isting solutions with up to 2.8× better query latency and
174× lower network resource consumption (§6.3-§6.5).

(3) Vulcan achieves consistently better 99th-p latency per-
formance (by up to 2.5×) during online adaptation over
the-state-of-the-art (§6.6).

6.1 Experiment Setup

Live ML Queries. We illustrate Vulcan’s performance in
performing query planning for three example live ML queries:

• Video Monitoring: monitors the traffic volume by exam-
ining live video frames and counting the vehicles of a
specific color (white color in our examples).

• Autonomous Driving Perception: takes 3D point cloud as
input and generates a real-time perception (represented as
3D bounding boxes) surrounding a vehicle.

• Automatic Speech Recognition: converts live human
speech (with background noises) into written text.

Datasets. We adopt several real-world datasets for each query
example to perform a comprehensive evaluation. The video
monitoring queries use videos captured by traffic cameras
among different metropolitan areas in Bellevue and Wash-
ington D.C. The autonomous driving queries use LiDAR
sensor data from nuScenes [16]. Automatic speech recogni-
tion queries use the VOiCES dataset [57] with background
noise enabled. Appendix A.1 has more details.

Pipelines. Unless otherwise specified, video monitoring
queries in our evaluation experiments use the same pipeline
which consists of the following components in order: a back-
ground subtractor to detect moving vehicles, a color filter, and
a variations of YOLOv5 [5] object detector. The autonomous
driving pipeline feeds 3D point clouds into a ground removal
module, followed by a voxelization module and a variations
of PointPillars [37], SSN [73], or CenterPoints [68] 3D ob-
ject detector. The speech recognition queries use a pipeline
that consists of an audio sampler, a noise reduction module,
a variation of wav2vec2 [10] or HuBERT [69] model, and
a decoder. Table 1 records all ML model variations we use
in the evaluation. Appendix A.1 describes the details of the
query configuration knobs for all queries.

Baselines. We consider the following baselines for Vulcan.
• Exhaustive search. To determine the optimal placement and
configuration for a ML pipeline, we use exhaustive search to
explore all possible placement choices and configurations.
•ML analytics systems. We implement four state-of-the-art
ML analytics systems: VideoStorm [70], Chameleon [28],
JellyBean [67], and LLAMA [60]. Both VideoStorm and
Chameleon adopt a variant of greedy-hill climbing during
query profiling, and Chameleon applies spatial and temporal
correlations to reduce the search cost during online adaptation.
JellyBean selects models with target accuracy and lowest
cost, and applies beam search to determine query placement
in a greedy fashion. LLAMA dynamically explores query
configuration by computing per-invocation pipeline latency.
• Pipeline placement strategies. Besides JellyBean’s greedy
placement, we implement the following commonly-adopted
placement strategies: (1) prioritizing network (PN) which
places operators closer to the device edge, (2) prioritizing
compute (PC) which places operators closer to the cloud,
and (3) balancing network and compute (NC) which places
filtering modules closer to the device edge and the remaining
operators to the cloud.

Emulation Setup. We emulate a setup of 4 edge tiers consist-
ing of the device edge, the on-prem edge, the public MEC,
and the cloud, which is consistent with our production edge
infrastructure by adding additional network latency and com-
pute overhead. The network bandwidth and compute cost are
emulated based on the real network and hardware settings in
our production infrastructure.

We run all experiments 20 times with different random
seeds, and collect 10th, 50th, and 90th percentiles of data to
include the effect of randomness in Vulcan and other baselines.
The 10th and 90th percentiles are plotted via error bars un-
less otherwise specified. We set Lm for video monitoring, au-
tonomous driving, and speech recognition queries as 2000ms,
400ms, and 500ms, respectively. Qm is set at 0.8 × the accu-
racy achieved by the most expensive configuration for each
type of queries. We set γ (preference of query accuracy over
latency) to be 0.5 for all queries unless otherwise specified.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1393

�% !)��)(%-)+%(#

	�
�

	�
	

	�

�
+)
"%&
%(
#�
�%
'
!

��
)+
'
�&
%2
!
� ���

���

��� ���

	

�.-)()').,��+%/%(#

	�
�

	�
	

	�

�
+)
"%&
%(
#�
�%
'
!

��
)+
'
�&
%2
!
� 	���

���	

��� ��	

	

�*!!�$��!�)#(%-%)(

	�
�

	�
	

	�

�
+)
"%&
%(
#�
�%
'
!

��
)+
'
�&
%2
!
�

��

�

��	 ���

	

�0$�.,-%/! �% !)�-)+' �% !)�-)+'� �!&&1�!�(�.&��(

Figure 10: Comparing the profiling cost of video monitoring, autonomous driving, and speech recognition queries.

���(%��)
���
��

���
���
���
	��

��
�(

%�
�)

������	 ������	
�

	���

���
����
����
���
����

��
'�

"�
)�

�!
&�

������� ������

	�
�

	�
	

	�

�
�&

#(
%�

�
��

#%
!

�
�*

��
�

	 	����

	����

���

����

	���
���	

	�
	 ���

�$'�!�
����#�'#%!

����#�'#%!�
��)���"

�(��"

Figure 11: Comparing end-to-end performance and resource con-
sumption for video monitoring queries.

6.2 End-to-End Improvement
We start with showing the end-to-end improvement of Vulcan
over other baselines in generating query plans for all three
types of queries. We compare exhaustive search, original
VideoStorm that explores all placement choices, VideoStorm+
that explores a combination of all three baseline placement
strategies (i.e., PN, PC and NC) on top of VideoStorm, and
JellyBean. We compare Vulcan with Chameleon and LLAMA
during online adaptation in §6.6 as their query configuration
by design happens in the online phase.

We record profiling time normalized by the time spent by
Vulcan, which achieves the smallest value in both types of
queries. We also record performance (accuracy, median la-
tency, and 99th-p latency) and resource consumption (network
and compute) achieved by the query plan and normalize the
results based on the optimal query plan generated by exhaus-
tive search. For VideoStorm, VideoStorm+, and JellyBean,
we record the query plan achieved with highest utility given
the same profiling time as Vulcan.

Figure 10 records the profiling cost for all types of queries,
and Figure 11 summarizes the performance and resource
consumption for video monitoring queries. Results for au-
tonomous driving and speech recognition queries are sim-
ilar and moved to Appendix A.2 in the interest of space.
Vulcan achieves significantly lower profiling cost than ex-
haustive search, VideoStorm, VideoStorm+, and JellyBean
by at least 60×, 22.2×, 4.1×, and 6.9× respectively across
all three types of queries, and its query performance and re-
source consumption are very close to the optimal one achieved

�!��%
�%$!)%'!$�

�*)%$%#%*(
�'!+!$�

�&���
���%�$!)!%$

�

��

	�

�'
%�
!"!$

��
�!
#
�

��
%'
#
�"
!-
��
�

���

���

��

��
��
��

� � �

�, �*()!+� �!��%�)%'# �*"��$

Figure 12: Profiling cost of query configuration given the same
pipeline and placement.

�"�"����"������'�

� �
�

�
��

��
%�'
�!�
���
�&"
$

���
��
���
���
� �$

�
��
��

#�
�!
��
�
�&
�

���
��	
��

���
���

���
���

���

�	�

�
����

Figure 13: BO’s search path in selecting configurations. The new
maximum in utility is marked in green. The initial random configu-
rations are shown in black.

through exhaustive search, achieving up to 2.0×-3.3× bet-
ter tail latency than other baseline approaches. Vulcan’s per-
formance improvement comes from its joint optimization
of pipeline placement and configuration with low cost. Vul-
can avoids exhaustively searching for optimal placement by
reusing pipeline results. VideoStorm+ improves profiling time
by only exploring a few placement choices, at the cost of
worse latency and network resource consumption, and it is still
outperformed by Vulcan by at least 4.4×. JellyBean’s place-
ment algorithm greedily finds promising placement choices
but separately optimizes query configuration and placement,
leading to sub-optimal latency, accuracy, and resource usage.

6.3 Selecting Better Query Configurations
We next delve into the performance of each profiling compo-
nents in Vulcan, starting with query configuration. Figure 12
shows the profiling cost among Vulcan and other baselines
with the same pipeline and the best placement choice. Even
without the benefits achieved in efficient placement selection,
Vulcan can still outperform VideoStorm, which leverages
greedy hill climbing, by 3.5× in profiling time. To illustrate
how Vulcan achieves this, we plot one of Vulcan’s example

1394 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

���(%��)
���
��	
���
��
���
���

�
��

(%
��

)

������	 ������	
�

����
	���

���
����
����
���

��
'�

"�
)�

�!
&�

������� ������

��
�

��
�

��
	

�
�&

#(
%�

�
��

#%
!

�
�*

��
�

� �����

�
��

	�

��
�

����
����

���� ���	��	� ���

�$'�!�
��

��
��

��)���"
�(��"

Figure 14: Comparing Vulcan with different placement strategies
on serving video monitoring queries.

BO search path in the video monitoring query in Figure 13.
BO focuses its exploration on larger resizing factor after veri-
fying that smaller values lead to worse performance, and finds
the optimal query configuration at the 6th step. BO takes 5
more steps to confirm we are not likely to encounter better
results before stopping, which we do not plot for legibility.

6.4 Selecting Better Placement
We evaluate Vulcan’s placement decisions by comparing with
common placement strategies (§6.1) and JellyBean. Each
baseline placement strategy uses exhaustive search to find the
optimal pipeline configuration, and all comparisons use the
same pipeline. We ignore the profiling time improvement of
Vulcan over other baselines and only focus on comparing the
achieved performance and resource consumption. Figure 14
illustrates the results of video monitoring queries. Results
for autonomous driving and speech recognition queries are
similar and shown in Appendix A.3. We observe that PN pri-
oritizes network latency but fails to consider the large ML
inference latency on slower compute nodes, resulting in worse
end-to-end query latency. PC optimizes ML inference latency,
which does not always lead to better latency. Moreover, it con-
sumes significantly more network resources. NC tries to strike
a balance between PN and PC but still achieves worse latency.
JellyBean’s placement algorithm is based on a fixed query
configuration that is determined in a prior stage, leading to a
sub-optimal placement choice. In comparison, Vulcan always
achieves the same placement choices as the exhaustive search
and delivers up to 2.8× better query latency and 174× network
resource consumption than other baselines, thanks to its joint
optimization between placement and configuration. The per-
formance gap between Vulcan’s query plan and the optimal
query plan is caused by Vulcan picking a different pipeline
configuration, in which case Vulcan takes much less profiling
time with similar performance and resource consumption.

6.5 Selecting Better Pipelines
We now evaluate how well Vulcan selects the filter ordering
during pipeline construction based on performance require-

0.1 0.3 0.5 0.7 0.9
γ

0.0

0.5

1.0

N
or

m
al

iz
ed

 U
til

ity

BGS First
Color Filter First

Vulcan

Figure 15: Compare Vulcan’s selection of filter ordering with fixed
pipeline settings in video monitoring queries.

	
 � � �
��������

�
	��
����
���
����

��
"�

��
��

�"
��

�$
���

!� ��������� ����� �#����

	
 � � �
��������

���
��
	��

��
�#

 �
�$

��������� ����� �#����

Figure 16: Comparing Vulcan with Chameleon during online adap-
tation for video monitoring queries.

ments of the queries. We compare the performance of fixed
pipelines with Vulcan’s choices, which is dynamically deter-
mined based on Fγ in Eq 4 (§4.2). To focus on whether Vulcan
makes the correct choice of filter ordering, we remove the
potential noise of BO by using the best pipeline configuration
determined by exhaustive search. We sweep γ and record the
utility value achieved by picking the corresponding pipeline.
Figure 15 shows that Vulcan is able to select the best pipeline
in 8 out of 9 cases. On the other hand, sticking to the other
two fixed pipeline settings leads to only 6 out of 9 cases and
3 out of 9 cases for selecting the correct filter ordering.

6.6 Handling Runtime Dynamics
To evaluate Vulcan’s online adaptation, we compare it with
Chameleon and LLAMA, the state-of-the-art solution in
adapting runtime dynamics in ML queries. We took a contin-
uously running 6-hour long video from our Washington D.C.
video dataset to monitor red vehicles. Performance (99th-p
latency and accuracy) was collected and reported at the end
of every hour. All three systems started with the same video
monitoring pipeline and placement, where the background
subtractor and the color filter are placed on the device edge,
and the object detector is placed on the public MEC. At the
end of the 3rd hour, we reduced the link capacity from the
on-premise edge to the Public MEC by 20× to simulate a
network outage. We see in Figure 16 that Vulcan achieves
consistently better latency than Chameleon and LLAMA by
up to 2.5×. Neither Chameleon nor LLAMA updates pipeline
placement upon resource changes, causing worse latency after
the outage. On the other hand, Vulcan adjusted the pipeline

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1395

	 � � 	�
����������������

���
���
	��
	��

��

��

��
��
����

��
��
�
�

��
��
�
��
�
��

�

(a) Starting Condition

	 � � 	�
�������� ����������

���
���
	��
	��

��

��

��
��
����

��
��
�
�

��
��
�
��
�!
��

�

(b) Stopping Condition

Figure 17: Sensitivity analysis of BO’s parameters.

placement by placing the object detector onto the on-premise
edge after the outage, thus mitigating the latency hikes.

6.7 Sensitivity Analysis
We analyze the sensitivity of two parameters used in BO
during pipeline configuration in Figure 17. We use the same
experiment setting in Figure 12 with video monitoring queries.
Figure 17a plots the profiling time normalized by the value
picked in Vulcan implementation when sweeping the number
of initial random configurations passed to BO. The number of
random configurations does affect the profiling time but has a
negligible impact on the quality of the query plan achieved.
Figure 17b sweeps the stopping threshold of BO, which is the
number of consecutive rounds without significant improve-
ment. BO needs at least 3 rounds to obtain a good chance of
finding optimal configurations, but adding more rounds won’t
further improve the quality of profiling.

7 RELATED WORK

Configuration management for ML analytics. Finding bet-
ter configurations for ML analytics is a well studied research
topic [28,70]. VideoStorm [70] investigates query’s accuracy-
latency profile and applies a greedy hill-climbing approach to
search for query configurations. Chameleon [28] applies spa-
tial and temporal correlations of video frames to reduce the
search cost of query configurations during online adaptation.
Although VideoStorm and Chameleon works well for ML
quries with fixed pipeline placement, Vulcan jointly explores
placement and configurations for live ML queries deployed
across a heterogeneous infrastructure.

Constructing ML pipelines with declarative queries. Re-
searchers have proposed declarative query languages, espe-
cially for video analytics, to construct ML pipelines [11, 19,
44, 59]. MIRIS [11] provides a declarative interface to select
video object tracks and selects corresponding modules based
on user specification. Viva [59]’s declarative interface allows
users to specify relational hints to express the relationship
among different modules, which helps Viva to construct and
optimize the pipeline. However, those works only consider
accuracy requirement when optimizing pipelines and ignore
the resource demands especially network usage, providing no
guarantees to end-to-end latency performance.

Domain-specific optimization for ML analytics Applying
domain-specific knowledge to perform optimization for ML

analytics is an active research area spanning many use cases
including video analytics [11,19,28], autonomous driving per-
ception [55,71,72], and automatic speech recognition [20,41].
BlazeIt [19] leverages spatiotemporal information of ob-
jects in video to optimize aggregation and limit queries. VI-
Eye [72] achieves better accuracy and latency performance by
exploiting domian knowledge in autonomous driving scenar-
ios to recognize key semantic objects that can be used to align
vehicle-infrastructure point cloud pairs. Vulcan’s design is
orthogonal to domain-specific techniques and can be applied
to different use cases without additional changes.

Continuous learning for ML analytics. Another line of work
that gets increasingly more attention nowadays is continuous
learning in ML analytics [12, 34, 46]. Ekya [12] jointly sched-
ules and allocate resources to ML retraining and inference to
handle data drift. RECL [34] integrates model reusing with
model retraining to quickly adapt to a lightweight expert DNN
model for each specific video scenes. Techniques leveraging
continuous learning is complementary to Vulcan and can be
applied to Vulcan’s online adapation phase. On the other
hand, Vulcan’s design can be applied to those works as well,
including dynamically updating query configurations and fast
detection of data changes by monitoring utility changes.

Reducing cost of ML analytics via filtering. There have
been recent studies on applying different types of filtering
techniques to reduce the resource consumption of ML an-
alytics without compromising accuracy [17, 24, 26, 32, 47].
NoScope [32] searches for and trains a cascade of models that
preserves the accuracy of the ML inference but with far less
computation cost. Focus [26] uses cheap convolutional net-
work classifiers (CNNs) to construct an approximate index of
all possible object classes in the video frame, which reduces
the use of expensive CNNs during query time. Probabilistic
Predicates [47] constructs and applies binary classifiers to
filter out data blob that will not pass query predicate and thus
accelerate queries with expensive user-defined functions. Vul-
can builds up on the idea of applying filtering and propose a
novel technique to order the filters for ML pipelines.

8 CONCLUSION

Serving live ML analytics involves constructing, placing,
and configuring ML pipelines as well as their online adapta-
tion. However, existing query planning solutions for live ML
queries remain elusive with piecemeal and sub-optimal. We
present Vulcan, an ML analytics system that performs auto-
matic query planning for live ML analytics. Vulcan automati-
cally construct the pipeline and determine the best ordering
of filtering operators for query performance. It efficiently ex-
plores placement choices by reusing of intermediate pipeline
profiling results, and leverage Bayesian optimization with
prior knowledge to handle query configuration and online
adaptation. Vulcan outperforms state-of-the-art solutions on
profiling time, query latency, and resource consumption when
serving queries with real-world datasets.

1396 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ACKNOWLEDGEMENTS

We would like to thank Jae-Won Chung, the anonymous NSDI
reviewers, and our shepherd, Danyang Zhuo, for providing
valuable feedback. This work was supported in part by NSF
grants CNS-1845853, CNS-2104243, and CNS-2106184.

REFERENCES

[1] Microsoft rocket for live video analytics.
https://www.microsoft.com/en-us/research/
project/live-video-analytics/, 2020.

[2] Build modern connected applications at the edge with
5g. https://azure.microsoft.com/en-us/blog/
how-developers-can-benefit-from-the-new-
5g-paradigm/, 2022.

[3] Edge video service (evs). https://
azure.microsoft.com/en-us/blog/microsoft-
and-att-demonstrate-5gpowered-video-
analytics/, 2022.

[4] Microsoft rocket for live video analytics. https:
//azure.microsoft.com/en-us/blog/microsoft-
and-att-are-accelerating-the-enterprise-
customer-s-journey-to-the-edge-with-5g/,
2022.

[5] Yolov5. https://github.com/ultralytics/
yolov5, 2022.

[6] Azure public multi-access edge compute (mec).
https://azure.microsoft.com/en-us/solutions/
public-multi-access-edge-compute-mec/, 2023.

[7] Kubernetes. https://github.com/kubernetes/
kubernetes, 2023.

[8] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen,
Shivaram Venkataraman, Minlan Yu, and Ming Zhang.
Cherrypick: Adaptively unearthing the best cloud con-
figurations for big data analytics. In NSDI, 2017.

[9] Lisa Amini, Navendu Jain, Anshul Sehgal, Jeremy Sil-
ber, and Olivier Verscheure. Adaptive control of
extreme-scale stream processing systems. In ICDCS,
2006.

[10] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli. wav2vec 2.0: A framework for self-
supervised learning of speech representations, 2020.

[11] Favyen Bastani, Songtao He, Arjun Balasingam, Karthik
Gopalakrishnan, Mohammad Alizadeh, Hari Balakrish-
nan, Michael Cafarella, Tim Kraska, and Sam Madden.
Miris: Fast object track queries in video. In SIGMOD,
2020.

[12] Romil Bhardwaj, Zhengxu Xia, Ganesh Anantha-
narayanan, Junchen Jiang, Yuanchao Shu, Nikolaos Kar-
ianakis, Kevin Hsieh, Paramvir Bahl, and Ion Stoica.
Ekya: Continuous learning of video analytics models on
edge compute servers. In NSDI, 2022.

[13] Eric Brochu, Tyson Brochu, and Nando de Freitas. A
bayesian interactive optimization approach to procedu-
ral animation design. In SCA, 2010.

[14] Eric Brochu, Vlad M. Cora, and Nando de Freitas. A
tutorial on bayesian optimization of expensive cost func-
tions, with application to active user modeling and hier-
archical reinforcement learning, 2010.

[15] Eric Brochu, Matthew W. Hoffman, and Nando de Fre-
itas. Portfolio allocation for bayesian optimization. In
UAI, 2011.

[16] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh
Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan,
Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes:
A multimodal dataset for autonomous driving. In Pro-
ceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 11621–11631, 2020.

[17] Christopher Canel, Thomas Kim, Giulio Zhou, Cong-
long Li, Hyeontaek Lim, David G Andersen, Michael
Kaminsky, and Subramanya Dulloor. Scaling video ana-
lytics on constrained edge nodes. In MLSys, 2019.

[18] Google Cloud. Speech-to-text: Automatic speech
recognition. https://cloud.google.com/speech-
to-text, 2022.

[19] Matei Zaharia Daniel Kang, Peter Bailis. Blazeit: Op-
timizing declarative aggregation and limit queries for
neural network-based video analytics. In VLDB, 2020.

[20] Nilaksh Das, Monica Sunkara, Dhanush Bekal,
Duen Horng Chau, Sravan Bodapati, and Katrin
Kirchhoff. Listen, know and spell: Knowledge-infused
subword modeling for improving asr performance of
oov named entities. In ICASSP 2022 - 2022 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 7887–7891, 2022.

[21] John Emmons, Sadjad Fouladi, Ganesh Anantha-
narayanan, Shivaram Venkataraman, Silvio Savarese,
and Keith Winstein. Cracking open the dnn black-
box: Video analytics with dnns across the camera-cloud
boundary. In HotEdgeVideo, 2019.

[22] Alireza Ghasemieh and Rasha Kashef. 3d object de-
tection for autonomous driving: Methods, models, sen-
sors, data, and challenges. Transportation Engineering,
8:100115, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1397

https://www.microsoft.com/en-us/research/project/live-video-analytics/
https://www.microsoft.com/en-us/research/project/live-video-analytics/
https://azure.microsoft.com/en-us/blog/how-developers-can-benefit-from-the-new-5g-paradigm/
https://azure.microsoft.com/en-us/blog/how-developers-can-benefit-from-the-new-5g-paradigm/
https://azure.microsoft.com/en-us/blog/how-developers-can-benefit-from-the-new-5g-paradigm/
https://azure.microsoft.com/en-us/blog/microsoft-and-att-demonstrate-5gpowered-video-analytics/
https://azure.microsoft.com/en-us/blog/microsoft-and-att-demonstrate-5gpowered-video-analytics/
https://azure.microsoft.com/en-us/blog/microsoft-and-att-demonstrate-5gpowered-video-analytics/
https://azure.microsoft.com/en-us/blog/microsoft-and-att-demonstrate-5gpowered-video-analytics/
https://azure.microsoft.com/en-us/blog/microsoft-and-att-are-accelerating-the-enterprise-customer-s-journey-to-the-edge-with-5g/
https://azure.microsoft.com/en-us/blog/microsoft-and-att-are-accelerating-the-enterprise-customer-s-journey-to-the-edge-with-5g/
https://azure.microsoft.com/en-us/blog/microsoft-and-att-are-accelerating-the-enterprise-customer-s-journey-to-the-edge-with-5g/
https://azure.microsoft.com/en-us/blog/microsoft-and-att-are-accelerating-the-enterprise-customer-s-journey-to-the-edge-with-5g/
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://azure.microsoft.com/en-us/solutions/public-multi-access-edge-compute-mec/
https://azure.microsoft.com/en-us/solutions/public-multi-access-edge-compute-mec/
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://cloud.google.com/speech-to-text
https://cloud.google.com/speech-to-text

[23] Tiago Gomes, Diogo Matias, André Campos, Luís
Cunha, and Ricardo Roriz. A survey on ground segmen-
tation methods for automotive lidar sensors. Sensors,
23(2), 2023.

[24] Seungyeop Han, Haichen Shen, Matthai Philipose,
Sharad Agarwal, Alec Wolman, and Arvind Krishna-
murthy. Mcdnn: An approximation-based execution
framework for deep stream processing under resource
constraints. In MobiSys, 2016.

[25] Daniel N Hill, Houssam Nassif, Yi Liu, Anand Iyer, and
S V N Vishwanathan. An efficient bandit algorithm for
realtime multivariate optimization. In KDD, 2017.

[26] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik,
Shivaram Venkataraman, Paramvir Bahl, Matthai Phili-
pose, Phillip B. Gibbons, and Onur Mutlu. Focus: Query-
ing large video datasets with low latency and low cost.
In OSDI, 2018.

[27] Samvit Jain, Xun Zhang, Yuhao Zhou, Ganesh Anan-
thanarayanan, Junchen Jiang, Yuanchao Shu, Paramvir
Bahl, and Joseph Gonzalez. Spatula: Efficient Cross-
camera Video Analytics on Large Camera Networks.
In ACM/IEEE Symposium on Edge Computing (SEC),
2020.

[28] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik,
Siddhartha Sen, and Ion Stoica. Chameleon: Scalable
adaptation of video analytics. In SIGCOMM, 2018.

[29] Ramesh Johari and John N. Tsitsiklis. Efficiency loss
in a network resource allocation game. Mathematics of
Operations Research, pages 29(3):407–435, 2004.

[30] Donald R. Jones, Matthias Schonlau, and William J.
Welch. Efficient global optimization of expensive black-
box functions. Journal of Global Optimization, page
13(4):455–492, 1998.

[31] Kai Kai Jüngling and Michael Arens. Local fea-
ture based person reidentification in infrared image se-
quences. In IEEE AVSS, 2010.

[32] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis,
and Matei Zaharia. Noscope: Optimizing neural network
queries over video at scale. In PVLDB, 2017.

[33] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovin-
ski, Trevor Mudge, Jason Mars, and Lingjia Tang. Neu-
rosurgeon: Collaborative intelligence between the cloud
and mobile edge. In ASPLOS, 2017.

[34] Mehrdad Khani, Ganesh Ananthanarayanan, Kevin
Hsieh, Junchen Jiang, Ravi Netravali, Yuanchao Shu,
Mohammad Alizadeh, and Victor Bahl. Recl: Respon-
sive resource-efficient continuous learning for video an-
alytics. In NSDI, 2023.

[35] Yuki Koyama, Issei Sato, Daisuke Sakamoto, and Takeo
Igarashi. Sequential line search for efficient visual de-
sign optimization by crowds. In ACM Transactions on
Graphics, 2017.

[36] Harold J. Kushner. A new method of locating the
maximum point of an arbitrary multipeak curve in the
presence of noise. Journal of Basic Engineering, page
86:97–106, 1964.

[37] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing
Zhou, Jiong Yang, and Oscar Beijbom. Pointpillars: Fast
encoders for object detection from point clouds. In Pro-
ceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 12697–12705, 2019.

[38] Wei Li, Rui Zhao, Tong Xiao, and Xiaogang Wang.
Deepreid: Deep filter pairing neural network for per-
son re-identification. In CVPR, 2014.

[39] Zhuqi Li, Yuanchao Shu, Ganesh Ananthanarayanan,
Longfei Shangguan, Kyle Jamieson, and Paramvir Bahl.
Spider: A Multi-Hop Millimeter-Wave Network for Live
Video Analytics. In ACM/IEEE Symposium on Edge
Computing (SEC), 2021.

[40] Giuseppe Lisanti, Iacopo Masi, Andrew D. Bagdanov,
and Alberto Del Bimbo. Person re-identification by iter-
ative re-weighted sparse ranking. In IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2014.

[41] Linda Liu, Yi Gu, Aditya Gourav, Ankur Gandhe,
Shashank Kalmane, Denis Filimonov, Ariya Rastrow,
and Ivan Bulyko. Domain-aware neural language mod-
els for speech recognition. In ICASSP 2021, 2021.

[42] Daniel Lizotte, Tao Wang, Michael Bowling, and Dale
Schuurmans. Automatic gait optimization with gaussian
process regression. In IJCAI, 2007.

[43] Franz Loewenherz. Video analytics towards vision
zero. https://bellevuewa.gov/sites/default/
files/media/pdf_document/video-analytics-
presentation-ITE-conference-021317.pdf, 2017.

[44] Chenglang Lu, Mingyong Liu, and Zongda Wu. Svql:
A sql extended query language for video databases. In
IJDTA, 2015.

[45] Yan Lu, Shiqi Jiang, Ting Cao, and Yuanchao Shu.
Turbo: Opportunistic Enhancement for Edge Video An-
alytics. In ACM Conference on Embedded Network
Sensor Systems (SenSys), 2022.

[46] Yan Lu, Zhun Zhong, and Yuanchao Shu. Multi-View
Domain Adaptive Object Detection in Surveillance Cam-
eras. In AAAI Conference on Artificial Intelligence
(AAAI), 2023.

1398 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://bellevuewa.gov/sites/default/files/media/pdf_document/video-analytics-presentation-ITE-conference-021317.pdf
https://bellevuewa.gov/sites/default/files/media/pdf_document/video-analytics-presentation-ITE-conference-021317.pdf
https://bellevuewa.gov/sites/default/files/media/pdf_document/video-analytics-presentation-ITE-conference-021317.pdf

[47] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and
Surajit Chaudhuri. Accelerating machine learning infer-
ence with probabilistic predicates. In SIGMOD, 2018.

[48] Ruben Martinez-Cantin, Nando de Freitas, Eric Brochu,
Jose Castellanos, and Arnaud Doucet. A bayesian
exploration-exploitation approach for optimal online
sensing and planning with a visually guided mobile
robot. Autonomous Robots, pages 27(2):93–103, 2009.

[49] Massimo Merenda, Carlo Porcaro, and Demetrio Iero.
Edge machine learning for ai-enabled iot devices: A
review. Sensors, 20(9), 2020.

[50] Robert C. Merton. Continuous-Time Finance. Black-
well, 1990.

[51] Jonas Mockus. Bayesian Approach to Global Optimiza-
tion. Kluwer Academic, 1989.

[52] Shadi Noghabi, Landon Cox, Sharad Agarwal, and
Ganesh Ananthanarayanan. The emerging landscape
of edge-computing. In ACM SIGMOBILE GetMobile,
2020.

[53] Pirouz Nourian, Romulo Gonçalves, Sisi Zlatanova,
Ken Arroyo Ohori, and Anh Vu Vo. Voxelization algo-
rithms for geospatial applications: Computational meth-
ods for voxelating spatial datasets of 3d city models con-
taining 3d surface, curve and point data models. Meth-
odsX, 3:69–86, 2016.

[54] Arthi Padmanabhan, Neil Agarwal, Anand Iyer, Ganesh
Ananthanarayanan, Yuanchao Shu, Nikolaos Karianakis,
Guoqing Harry Xu, and Ravi Netravali. GEMEL: Model
Merging for Memory-Efficient, Real-Time Video Ana-
lytics at the Edge. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2023.

[55] Hang Qiu, Pohan Huang, Namo Asavisanu, Xiaochen
Liu, Konstantinos Psounis, and Ramesh Govindan. Au-
tocast: Scalable infrastructure-less cooperative percep-
tion for distributed collaborative driving. In Proceedings
of the 20th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’22, 2022.

[56] Joseph Redmon and Ali Farhadi. Yolo9000: Better,
faster, stronger. In CVPR, 2017.

[57] Colleen Richey, Maria A. Barrios, Zeb Armstrong, Chris
Bartels, Horacio Franco, Martin Graciarena, Aaron Law-
son, Mahesh Kumar Nandwana, Allen Stauffer, Julien
van Hout, Paul Gamble, Jeff Hetherly, Cory Stephenson,
and Karl Ni. Voices obscured in complex environmental
settings (voices) corpus, 2018.

[58] Van Rijsbergen. Information Retrieval. Butterworth-
Heinemann, 1979.

[59] Francisco Romero, Johann Hauswald, Aditi Partap,
Daniel Kang, Matei Zaharia, and Christos Kozyrakis.
Optimizing video analytics with declarative model re-
lationships. Proc. VLDB Endow., 16(3):447–460, nov
2022.

[60] Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar,
and Christos Kozyrakis. Llama: A heterogeneous &
serverless framework for auto-tuning video analytics
pipelines. In SoCC, 2021.

[61] sBrian T. Ratchford. Cost-benefit models for explain-
ing consumer choice and information seeking behavior.
Management Science, 28, 1982.

[62] Shuyao Shi, Jiahe Cui, Zhehao Jiang, Zhenyu Yan, Guo-
liang Xing, Jianwei Niu, and Zhenchao Ouyang. Vips:
Real-time perception fusion for infrastructure-assisted
autonomous driving. In MobiCom, 2021.

[63] Jiang Shiqi, Lin Zhiqi, Li Yuanchun, Shu Yuanchao, and
Liu Yunxin. Flexible High-resolution Object Detec-
tion on Edge Devices with Tunable Latency. In ACM
International Conference on Mobile Computing and
Networking (MobiCom), 2021.

[64] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
Practical bayesian optimization of machine learning al-
gorithms. In NIPS, 2012.

[65] Niranjan Srinivas, Andreas Krause, Sham M. Kakade,
and Matthias Seeger. Gaussian process optimization in
the bandit setting: No regret and experimental design.
In ICML, 2010.

[66] Voci. Voci: Real-time speech recognition.
https://www.vocitec.com/ads/real-time-
speech-to-text, 2022.

[67] Yongji Wu, Matthew Lentz, Danyang Zhuo, and Yao Lu.
Serving and optimizing machine learning workflows on
heterogeneous infrastructures. In VLDB, 2023.

[68] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl.
Center-based 3d object detection and tracking. In Pro-
ceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 11784–11793, 2021.

[69] Ji Won Yoon, Beom Jun Woo, and Nam Soo Kim.
Hubert-ee: Early exiting hubert for efficient speech
recognition, 2022.

[70] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, and Michael J. Freed-
man. Live video analytics at scale with approximation
and delay-tolerance. In NSDI, 2017.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1399

https://www.vocitec.com/ads/real-time-speech-to-text
https://www.vocitec.com/ads/real-time-speech-to-text

[71] Xumiao Zhang, Anlan Zhang, Jiachen Sun, Xiao Zhu,
Y. Ethan Guo, Feng Qian, and Z. Morley Mao. Emp:
Edge-assisted multi-vehicle perception. In MobiCom,
2021.

[72] Xumiao Zhang, Anlan Zhang, Jiachen Sun, Xiao Zhu,
Y. Ethan Guo, Feng Qian, and Z. Morley Mao. Emp:
Edge-assisted multi-vehicle perception. In MobiCom,
2021.

[73] Xinge Zhu, Yuexin Ma, Tai Wang, Yan Xu, Jianping
Shi, and Dahua Lin. Ssn: Shape signature networks for
multi-class object detection from point clouds. In Com-
puter Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part
XXV 16, pages 581–597. Springer, 2020.

1400 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

�

	�
�

	�
	

	�

�
#"
���
�!
��
��

�

��
"#

��
�*
��
� 	���

���	

�� ��	

	

�(��&$%�'�
����"�%"#

����"�%"# �
����)���!

�&���!

(a) Profiling Cost

���(%��)
���
��

���
���
���
	��

�
��

(%
��

)

������	 ������	
�

��
���
���
���

	���
	
��

��
'�

"�
)�

�!
&�

������� ������

	�
�

	�
	

	�

�
�&

#(
%�

�
��

#%
!

�
�*

��
�

	 	
���

��	

���

����
����

���

���� 	���

�$'�!�
����#�'#%!

����#�'#%!�
��)���"

�(��"

(b) Performance and Resource Consumption

Figure 18: End-to-end performance when exploring the best placement and query configuration for autonomous driving queries.

�

	�
�

	�
	

	�

�"
!�
���

��
��
�
�

��
!"
�
��
�)
��
�

��

�

��	 ��

	

�'��%#$�&�
����!�$!"�

����!�$!"��
����(���

�%���

(a) Profiling Cost

���)&��*
���
��

���
���
���
	��

�
$&

��
�&

&$
&��

�(
�

������	 ������	
�

��
���
���
���

	���
	
��

��
(�

#�
*�

�"
'�

������� ������

�

�

�

�
�'

$)
&�

�
��

$&
"

�!
 +

��
�

	 		

����
��

���

�

����

	�
����

�%("�!
� ��$�($&"

� ��$�($&"�
��!!*���#

�)!��#

(b) Performance and Resource Consumption

Figure 19: End-to-end performance when exploring the best placement and query configuration for speech recognition queries.

���(%��)
���
��	
���
��
���
���

�
��

(%
��

)

������	 ������	
�

	��
���
��
���

����
�	��

��
'�

"�
)�

�!
&�

������� ������

��
�

��
�

��
	

�
�&

#(
%�

�
��

#%
!

�
�*

��
�

� �
	��

��
����

	���

��

����
��� �������� ����

�$'�!�
��

��
��

��)���"
�(��"

Figure 20: Comparing Vulcan with different placement strategies
on serving AD perception queries.

A ADDITIONAL EVALUATION RESULTS
A.1 Datasets and Query Configuration
We describe below the details of the datasets and query con-
figuration we used in the paper.

Datasets:
The traffic monitoring queries use videos captured by traf-

fic cameras among different metropolitan areas in Bellevue
and Washington D.C. The videos are encoded in MP4 for-
mat (1280x720p, 30fps, and 120 seconds long) and randomly
sampled from two-hour long videos among 24 days.

For autonomous driving perception queries, we use LiDAR
sensor data from nuScenes [16], a large-scale autonomous
driving dataset. The dataset features 1000 20-second driving
scenes collected over months, in Boston and Singapore en-
compassing a diverse range of challenging driving situations.

Automatic speech recognition queries use the VOiCES
dataset [57], an English speech audio dataset by male and

���)&��*
���
��	
���
��
���
���

�
$&

��
�

&&
$&

��
�(

�

������	 ������	
�

	��
���
��
���

����
�	��

��
(�

#�
*�

�"
'�

������� ������

�

	

�

�
�'

$)
&�

�
��

$&
"

�!
 +

��
�

� �

��	�

��
	
�

���

�

	�

� ����

	��
����

�%("�!
��

��
��

��!!*���#
�)!��#

Figure 21: Comparing Vulcan with different placement strategies
on serving ASR queries.

female speakers. The dataset contains 3903 audio files (total
15 hours long) containing different room settings, simulated
head movement, and various background noise patterns.

Configuration Knobs. Besides the variation of ML models
described in §6.1, our queries in Evaluation configure the
following additional configuration knobs.

• Video monitoring queries configure input frame sampling
rate (1/2, 1/3, 1/4, 1/5, 1/6) and frame resizing factor (0.6,
0.7, 0.8, 0.9, 1) for frame resolution.

• Autonomous driving queris configure the ground removal
factor3 and voxel size, each with 5 configuration values
(0.1, 0.2, 0.3, 0.4, 0.5).

• Speech recognition queires configure audio sampling rate
(8k, 10k, 12k, 14k, 16k) and frequency mask width (500,

3corresponds to the maximum distance between a ground point and the
estimated 2D ground plane.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1401

1000, 2000, 3000, 4000) of the noise reduction module.

A.2 End-to-End Improvement
Figure 18 and Figure 19 shows the comparison between Vul-
can and other baselines in the end-to-end performance of au-
tonomous driving and speech recognition queries. The same
conclusion can drawn as mentioned in §6.2.

A.3 Selecting Better Placement
Figure 20 and Figure 21 records the performance and resource
consumption of autonomous driving and speech recognition
queries, where PN, PC, and NC use the optimal query plan
achieved by exhaustive search. Similar to §6.4, Vulcan al-
ways achieves the best placement choice, outperforming other
baselines in query performance and resource consumption.

1402 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CASSINI: Network-Aware Job Scheduling in Machine Learning Clusters

Sudarsanan Rajasekaran† Manya Ghobadi† Aditya Akella‡

†Massachusetts Institute of Technology ‡UT Austin

Abstract
We present CASSINI, a network-aware job scheduler for

machine learning (ML) clusters. CASSINI introduces a novel
geometric abstraction to consider the communication pattern
of different jobs while placing them on network links. To
do so, CASSINI uses an Affinity graph that finds a series of
time-shift values to adjust the communication phases of a
subset of jobs such that the communication patterns of jobs
sharing the same network link are interleaved with each other.
Experiments with 13 common ML models on a 24-server
testbed demonstrate that compared to the state-of-the-art ML
schedulers, CASSINI improves the average and tail completion
time of jobs by up to 1.6× and 2.5×, respectively. Moreover,
we show that CASSINI reduces the number of ECN marked
packets in the cluster by up to 33×.

1 Introduction
The ever-growing increase in dataset and model sizes of
deep learning has created a massive demand for efficient
GPU clusters. Several studies have demonstrated that as the
number of GPUs increases, the communication overhead
of distributed Machine Learning (ML) training workloads
quickly takes up a significant portion of training iteration
time [12, 15, 28, 33, 45, 47, 55]. Yet state-of-the-art ML sched-
ulers tend to ignore the communication pattern of ML training
jobs when placing workers on GPUs.

In this paper, we develop a simple but effective approach,
called CASSINI, that integrates with existing ML schedulers to
allow them to efficiently place multiple ML jobs on network
links while minimizing the chances of network congestion.
Our approach requires no special support, such as reservations
and priorities, from switches/NICs and does not require any
changes to the congestion control protocol.

We demonstrate that for a specific combination of jobs,
introducing a small time-shift to delay the start of one of the
iterations enables CASSINI to interleave the computation and
communication patterns of different jobs, thereby improving
the training time. We refer to such combinations of jobs as
compatible and develop CASSINI as a pluggable module to

augment prior ML schedulers to consider a novel compatibil-
ity metric when determining where to place jobs and control
how jobs compete on network links.

Augmenting ML schedulers to take links and servers into
account is inherently challenging because jobs are likely to
traverse multiple links and may compete with different jobs
on different links. To address this challenge, we propose a geo-
metric abstraction that leverages the periodic communication
pattern of Deep Neural Network (DNN) training workloads.
The key idea of our abstraction is to “roll” time around a
circle whose perimeter is proportional to the training iteration
time of ML jobs. To determine the compatibility score of
two (or more) jobs on a link, CASSINI places each job on
its corresponding circle and overlays the circles on top of
each other. It then uses an optimization formulation to rotate
the circles into a position that maximizes interleaving. The
rotation angle of each job corresponds to a time-shift value
to delay the start of the next immediate training iteration to
achieve compatibility.

Looking beyond a single link and extending to jobs running
across a topology, we generalize the geometric abstraction to
cluster-level by introducing a bipartite Affinity graph whose
vertices are a subset of jobs and links. An edge in the Affinity
graph indicates a job is traversing a link. We then use a new
graph traversal algorithm to find unique time-shifts for all
jobs while maintaining their compatibility on all links. Using
our geometric abstraction and Affinity graph, we augment
Themis [40] and Pollux [50] with ≈1000 lines of code.

To evaluate CASSINI, we build a testbed with 24
servers, each with one NVIDIA A100 GPU [8] and
one 50 Gbps RDMA NIC. Our experiments with 13
representative DNN models (VGG11 [26], VGG16 [18],
VGG19 [32], ResNet50 [27], WideResNet101 [72],
BERT [20], RoBERTa [39], XLM [17], CamemBERT [43],
GPT-1 [51], GPT-2 [52], GPT-3 [11], and DLRM [6]) show
that CASSINI improves the tail completion time of jobs by up
to 2.2× and 2.5×, compared to Themis [40] and Pollux [50],
respectively. Moreover, we show that CASSINI reduces the
number of ECN marked packets in the cluster by up to 33×.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1403

(a) Data parallelism in GPT-1 (b) Pipeline parallelism in GPT-2 (c) Tensor parallelism in GPT-3 (d) Hybrid data/pipeline/tensor parallelism in GPT-3

0
10
20
30
40
50

0 200 400 600

Li
nk

 U
til

iza
tio

n
(G

bp
s)

Time (ms)

Iteration 3

0
10
20
30
40
50

0 100 200 300 400

Li
nk

 U
til

iza
tio

n
(G

bp
s)

Time (ms)

0
10
20
30
40
50

0 0.5 1 1.5

Li
nk

 U
til

iza
tio

n
(G

bp
s)

Time (sec)

0
10
20
30
40
50

0 2 4 6

Li
nk

 U
til

iza
tio

n
(G

bp
s)

Time (sec)

5 5
Fwd.
pass

Fwd.
pass

Backprop. and AllReduce phases

Fwd.
pass

Backprop. phase

Fwd.
pass

Fwd.
pass

Fwd.
pass

Fwd.
pass

Backprop. and AllReduce phases

Fwd.
pass

1

2

3

4

6

Fwd. pass

Backprop.

Fwd. pass

AllReduce phase

Backprop.

Iteration 1 Iteration 2 Iteration 1 Iteration 2

1

2

3

4

6Iteration 1 Iteration 2 Iteration 3

Iteration 1 Iteration 2

Figure 1: The traffic pattern of different parallelization strategies when training GPT-1, GPT-2, and GPT-3 models.

2 Background and Motivation

2.1 Distributed DNN Training Traffic Pattern

CASSINI is designed for large GPU clusters with hundreds of
training jobs distributed with data, pipeline, and/or model par-
allel training paradigms. To this end, we study the impact of
different parallelization strategies on network demand using
a series of measurements. Each server in our testbed has one
A100 GPU and one ConnectX-5 Mellanox RDMA NIC with
50 Gbps capacity. In all our experiments, we choose batch
sizes such that the GPU utilization is higher than 80%, and
intra-job pipelining is enabled.

Data parallelism. In data parallel training, the DNN model
is copied into the memory of each GPU while the dataset is
distributed across them. Figure 1(a) shows the communication
pattern of a GPT-1 [51] model (12 layers, 9 GB memory) dis-
tributed across four GPU servers using data parallelism. The
figure shows the traffic pattern of three back-to-back training
iterations. Each iteration contains a forward pass with near-
zero network demand, followed by a period of high utilization
corresponding to the backpropagation and AllReduce phases.

Model/Pipeline parallelism. In model parallel training, the
DNN model is partitioned across workers [29, 35], and parts
of the DNN model are computed on different workers. The
two common techniques for model parallelism are tensor par-
allelism and pipeline (or layer) parallelism [10]. In pipeline
parallelism, the model is partitioned vertically at the layer
boundaries [28, 47]. Figure 1(b) shows the communication
pattern of a GPT-2 [52] model (24 layers, 27 GB memory)
distributed across two servers using pipeline parallelism. We
partition the model vertically in half (i.e., server1 contains
layer1 to layer12, and server2 contains layer13 to layer24) and
use PipeDream’s approach [47] to divide the batch size into
three minibatches. The three small communication peaks
during the forward pass correspond to the activation param-
eters of these three minibatches. The heavy communication
demand following the peaks corresponds to the AllReduce
operation between the embedding layers in the model.

Model/Tensor parallelism. Another variant of model par-
allel training is tensor parallelism [58, 59]. Tensor parallelism
techniques partition the model horizontally such that different

tensors are distributed across workers [31, 64]. Figure 1(c)
shows the communication pattern of a GPT-3 [11] model (96
layers, 35 GB memory) distributed across two servers using
tensor parallelism. We partition the model horizontally in
half, where each server contains half of all the layers. The
figure shows that both forward and backpropagation phases
introduce roughly 25 Gbps traffic followed by a short period
of near-zero network demand during data loading.

Hybrid data/pipeline/tensor parallelism. Today’s DNN
training systems tend to use a hybrid of data/pipeline/tensor
parallelism to train large DNN models [21, 33, 46, 66]. Fig-
ure 1(d) shows the communication pattern of a GPT-3 [11]
model (96 layers, 155 GB memory) distributed across eight
servers using hybrid data/pipeline/tensor parallelism. We use
pipeline parallelism to partition the model’s layers vertically
into two parts. Then, we divide the layers in each partition hor-
izontally to obtain a total of four partitions. Next, we assign
each of these four partitions to a server. Finally, we repli-
cate the same process across another group of four servers
and use data parallelism to distribute the data between these
two groups of four servers. The figure shows the communica-
tion demand of the forward, backpropagation, and AllReduce
phases where each phase has a different network demand.

Key takeaways. We repeat the above experiments us-
ing common DNN models, such as BERT [20], DLRM [6],
WideResNet101 [72], RoBERTa [39], and VGG [62] and ob-
serve similar traffic patterns. Our key takeaways are: (i) the
network demand repeats itself across all iterations, as long as
the training hyper-parameters remain the same; (ii) the net-
work demand of an iteration may consist of multiple Up and
Down phases. The exact magnitude of the network demand
during these Up and Down phases depends on the paralleliza-
tion strategy and hyper-parameters. For instance, Figure 1(d)
shows each training iteration has six Up-Down phases, la-
beled as 1 to 6 . Section 3 describes CASSINI’s approach to
capture the duration and bandwidth of Up-Down phases.

2.2 Interleaving the Up and Down Phases

CASSINI’s goal is to augment ML schedulers to consider the
traffic demand of training jobs when making scheduling deci-
sions. In particular, given the key takeaways in the previous

1404 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

10

20

30

40

50

0 0.5 1 1.5 2 2.5 3

Li
nk

 U
til

iza
tio

n
(G

bp
s)

Time (sec)
(b) Scenario1: jobs start at same time

0

10

20

30

40

50

0 0.5 1 1.5 2 2.5 3

Li
nk

 U
til

iza
tio

n
(G

bp
s)

Time (sec)

(c) Scenario2: the start time of j2 is shifted by 120 ms(d) CDF of iteration time

0

0.2

0.4

0.6

0.8

1

220 240 260 280 300 320

CD
F

Iteration Time (ms)

j1 Scenario2 j2 Scenario2
j2 Scenario2

j1 Scenario2

j1 Scenario1 j2 Scenario1

(a) Experiment setup with four A100 GPU servers,
50 Gbps links, and Mellanox RDMA NICs

j1

j2

Link l1

j1 Scenario1

1.26x

Server1 Server2

Server3 Server4

Start time of the first iteration is shifted

j2 Scenario1

Figure 2: Impact of interleaving the Up-Down phases of two VGG19 jobs sharing link l1.

section, we aim to interleave the bandwidth demand of Up
and Down phases of different jobs to leverage the periodic
network demand of distributed DNN training jobs.

To demonstrate the power of Up-Down network demand
interleaving, we consider two data parallel training jobs, j1
and j2, as shown in Figure 2(a). Each job has one Up and
one Down phase at every training iteration. We run each job
for 1,000 iterations under two scenarios. In the first scenario,
two VGG19 [62] jobs start simultaneously and share l1 fairly.
The communication uses the RDMA-based DCQCN conges-
tion control algorithm [77]. Figure 2(b) shows that both jobs
achieve roughly 22 Gbps bandwidth (i.e., half of l1’s capacity).
In the second scenario, shown in Figure 2(c), we interleave
the Down phase of j1 with the Up phase of j2 and vice versa,
by shifting the start time of j2 by 120 ms (Section 3 describes
how we obtained this value). In this scenario, the jobs do
not compete for bandwidth during their respective Up phases,
giving both jobs the entire available bandwidth. Figure 2(d)
plots the CDF of training iteration times for both scenarios
demonstrating that scenario2 accelerates the 90th percentile
tail iteration time of both jobs by 1.26×.

Perfectly interleaving the Up and Down phases of different
jobs is not always possible. For instance, when BERT [20] and
VGG19 [62] models share a link, no suitable time-shift can
achieve perfect interleaving. But when WideResNet101 [72]
and VGG16 [62] share a link, shifting VGG16 by 150 ms
enables perfect interleaving. Instead of relying on perfectly
matching Up and Down phases of jobs, we define a metric
called compatibility score that captures the potential degree
of interleaving across jobs sharing the network. Section 3
describes a novel technique to determine the compatibility
score and the amount of required time-shift to achieve it.

3 Geometric Abstraction

Consider a time-series representation of the network demand
for a job running in a dedicated cluster with no congestion. As
shown in Section 2, different training jobs have different Up
and Down patterns but the duration and bandwidth demand
of the same job remain more or less the same across training
iterations. The key idea of our abstraction is to roll time
around a circle whose perimeter is equal to the iteration time
of a job. Consequently, the Up-Down phases of all iterations
will appear on approximately the same angles of the circle.

Figure 3(a) illustrates the time-series network demand of
a data parallel VGG16 training job with a training iteration
time of 255 ms. Figure 3(b) shows a circle with perimeter
255 units where the time-series data is plotted around it. The
figure demonstrates that the Up and Down phases of different
iterations cover the same angles of the circle. Our geometric
abstraction captures this property, as shown in Figure 3(c).
The perimeter of the circle is the iteration time, set to 255
units. The Down phase spans 141 units, represented by the
uncolored arc with 200◦ angle, starting at 0◦, on the x-axis.
The Up phase represented by the colored arc occupies the
remainder of the circle.

Rotate the circle to interleave Down and Up phases
of different jobs. To determine the compatibility score of
two (or more) jobs on a link, we place each job on its corre-
sponding circle and overlay the circles on top of each other.
Congestion occurs when the total bandwidth demand of a par-
ticular angle is higher than the capacity of the link, as shown
in Figure 4(a). To find the best interleaving, we rotate the
circles to a position where the summation of the bandwidth
demands is less than the capacity of the link for all angles in
the circle, as shown in Figure 4(b). If such a rotation is found,
the jobs are fully compatible.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1405

141

(a) Network demand

0

10

20

30

40

50

0 400 800 1200

Li
nk

 U
til

iza
tio

n
(G

bp
s)

Time (ms)

(c) Geometric abstraction(b) Network demand rolled
around a circle

141
254
0 0

254

200
∘

Figure 3: CASSINI’s geometric abstraction.

JC

(a) CC phases are colliding

j1

j2

j1

j2

(b) CC and JC phases are
interleaved

CC

JC

CC

JC

JC

CC

CC

Figure 4: Rotating the circles enables inter-
leaving the network demand of j1 and j2.

(a) j1 on unified circle (b) j2 on unified circle

0

40

80

060

120 ∘
180∘

(c) Overlaying the unified circles (d) Final interleaving with rotation

j1

j2

j1

j2

30∘

Figure 5: CASSINI’s unified circles for jobs with different iteration times.

0
13

4

5
6

2

Color intensity represents the
bandwidth demand at each phase

50Gbps

0Gbps

25Gbps

Figure 6: Geometric cir-
cle for the job in Fig. 1(d).

Capturing jobs with different iteration times. The above
technique only works when the perimeters of the circles are
the same. To generalize to the case where jobs have different
iteration times, we place each job on a unified circle whose
perimeter is equal to the Least Common Multiple (LCM) of
the iteration time of all jobs competing on the link. For in-
stance, consider two jobs j1 and j2 competing on a bottleneck
link with iteration times 40 ms and 60 ms, respectively. To de-
termine the compatibility score of the two jobs, we place them
on a circle with a perimeter equal to LCM(40,60) = 120 units.
Figure 5(a) shows j1 on this unified circle. As the perimeter
of the circle is 3× j1’s iteration time, there are three periods
of Up and Down phases in the figure. Similarly, Figure 5(b)
shows j2 on the unified circle. We then overlay the unified
circles on top of each other (shown in Figure 5(c)) and rotate
the circles to determine the compatibility score. Figure 5(d)
shows that by rotating j1 by ∆ = 30◦ counter-clockwise, the
sum of bandwidth demands on all angles of the unified cir-
cles is lower than the link capacity, giving these two jobs a
compatibility score of 1 (i.e., fully compatible).

Capturing the bandwidth demand of model parallel
training jobs. For clarity of presentation, the examples in this
section contain data parallel training jobs with one Up and one
Down phase during each iteration. However, CASSINI’s geo-
metric abstraction is generic and can capture more complex
traffic patterns induced by various parallelization paradigms.
Consider the communication pattern of the GPT-3 model
with hybrid data/pipeline/tensor parallelism shown in Fig-
ure 1(d). Here, GPT-3’s communication pattern consists of
six Up-Down phases with different durations and bandwidth

demands. The geometric circle of this job contains six col-
ored arcs where the length and color intensity of each arc
corresponds to the duration and bandwidth demand of each
Up-Down phase of the model, as shown in Figure 6. Next, we
formalize our geometric representation and show an optimiza-
tion formulation that uses the geometric abstraction to find
rotation angles to interleave the Up-Down phases of multiple
jobs sharing a link, irrespective of the parallelization strategy.

Finding rotation angles. Once jobs are placed on their
unified circles, CASSINI uses an optimization formulation,
shown in Table 1, to find the best angle of rotation for jobs to
maximize their compatibility.

Optimization input. The input is a set of ML jobs Jl = { j}
competing on a link l. We profile each job j to construct its
unified circle, denoted by unified_circle j. The perimeter of
the unified circle is the LCM of the iteration times of all
jobs j ∈ Jl . The data structure of unified_circle j contains
a series of bandwidth demands bw_circle j(α), where α ∈
[0,2π] identifies an arc of the circle that corresponds to an
Up or Down phase in the communication pattern. The total
capacity of link l is denoted by Cl .

Optimization objective and output. The optimization
goal is to overlay the unified circles of each job and ro-
tate them such that the excess bandwidth demand across all
angles is minimized. We define the compatibility score as
score = 1−average(Excess(demandα)), where Excess is the
excess bandwidth demand of all jobs at a particular angle α

(Equation 1). To make the score a unitless metric, we divide
the average excess bandwidth by the link capacity Cl . Note

1406 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Input

Jl = { j} Set of ML jobs j ∈ Jl competing on link l.
{unified_circle j} Set of unified circles for ∀ j ∈ J. Each circle is a

data structure that contains the angles and band-
width demand of Up or Down phases.

bw_circle j(α) Bandwidth demand at angle α on unified_circle j
r j Number of iterations of j in its unified_circle j .
A = {α} Set of discrete angles α ∈ [0,2π]. |A| denotes the

number of discrete angles.
Cl Total link capacity of link l.

Output demandα Total bandwidth demand at angle α when consid-
ering the demand of all jobs j ∈ J.

∆l
j Rotation angle of j ∈ J on link l, in radians.

score Compatibility score of jobs sharing link l.

Auxiliary definitions:

Excess(demandα) =

{
demandα −Cl i f demandα >Cl

0 otherwise
(1)

Maximize: score = 1− ∑α Excess(demandα)

|A|C
(2)

Subject to:

∀α :∑
j

bw_circle j(α−∆
l
j)≤ demandα (3)

∀∆
l
j : 0 ≤ ∆

l
j ≤

2π

r j
(4)

Table 1: CASSINI’s optimization formulation.

that when the excess bandwidth demand is zero, the com-
patibility score is 1 (i.e., 100% compatible). However, when
there are many jobs with large excess bandwidth demands,
it is possible for the score to become negative, indicating a
highly incompatible combination. The optimization objective
is to maximize this compatibility score, and the output of the
optimization is a rotation angle ∆l

j for each job.
Optimization constraints. Equation 3 computes the sum

of the bandwidth demands across all the jobs sharing link l at
a particular angle α on their unified circles, rotated by angle
∆l

j. We bound this value by the output parameter demandα.
Equation 4 bounds the rotation angle ∆l

j between 0 and 2π

r j

because the unified_circle j contains r j iterations of job j.
Hence, setting an upper limit of 2π

r j
ensures that the rotation

angle is in the first iteration and eliminates duplicate solutions.

4 Augmenting ML Schedulers with CASSINI

This section describes how CASSINI extends its link-level
geometric abstraction to the entire cluster.

4.1 CASSINI Affinity Graph

Translating angular rotations to time-shifts. Consider a set
of jobs j ∈ Jl sharing link l. Using the formulation in Table 1,
CASSINI computes a rotation angle ∆l

j for ∀ j ∈ Jl such that
the compatibility score is maximized. Each ∆l

j corresponds
to a time-shift t l

j to delay the start time of j to maximize its
compatibility with all other jobs in Jl . Given that the perimeter
of the unified circle pl , is the LCM of the iteration times
of all jobs j ∈ Jl , CASSINI computes these time-shifts by
multiplying the normalized rotation angle with pl . Formally:

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

j1
j2
j3 l1 l2

S13 S14 S15 S16

Figure 7: Example illustrating a cluster-scale compatibility
challenge: CASSINI must ensure a unique time-shift for j2.

j1

j2

l1

l2

j3

(b) Affinity graph of Figure 7

U V

j l

... ...

Se
t o

f j
ob

s t
ha

t s
ha

re
lin

k(
s)

 w
ith

 o
th

er
 jo

bs

Set of links that carry
m

ore than one job

(a) Bipartite Affinity graph

𝑡!!
"!

𝑡!" 𝑡!"
"!

𝑡!"
""

𝑡!#
""

-

+

k
𝑡!#

-

+

Figure 8: CASSINI’s Affinity graph. Traversing left to right
incurs a negative sign on the weight of edges and vice versa.

∀ j ∈ Jl , t l
j = (

∆l
j

2π
× pl) mod iter_time j (5)

Challenge: ensuring a unique time-shift for each job. In
a large-scale cluster, jobs are likely to traverse multiple links,
and they may compete with different jobs on different links.
Consider the case depicted in Figure 7 where job j1 competes
with job j2 on link l1, and j2 competes with job j3 on link
l2. Theoretically, it is possible to migrate the jobs to pack
workers of the same job under the same rack to avoid sharing
the links altogether, but our experiments show that today’s
ML scheduling systems frequently end up with fragmented
placements because of the dynamic nature of their schedul-
ing decisions and job arrival patterns. In fact, no scheduler
guarantees it can maintain perfect placement throughout time
without continuously migrating jobs to defragment the cluster.
For the case depicted in Figure 7, computing the time-shifts
of j2 using Equation 5 would result in two time-shift values
t l1

j2 and t l2
j2 . Given the interdependence between all servers

participating in a training job, CASSINI must find a unique
time-shift value for each job across links without compromis-
ing the compatibility on any link.

Simple approach. A potential approach to address the
above challenge is to simply break the tie by choosing one
of the t l

j values at random. But this approach cancels out
the benefits of compatibility because it does not respect the
carefully computed time-shifts for different links.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1407

Algorithm 1 Traversing the Affinity graph
1: procedure BFSAFFINITYGRAPH

▷ Input Graph G = (U,V,E): CASSINI’s Affinity graph
▷ Output time_shiftsG: Time-shifts of jobs in G

2: time_shiftsG = {}
3: for all connected subgraphs H ∈ G, H = (UH ,VH ,EH) do
4: time_shiftsH = {}

▷ BFS traversal
5: Mark all vertices u ∈UH as not-visited
6: u = randomly_select_vertex(UH)
7: tu = 0 and mark u as visited

▷ Only enqueue vertices from U (jobs)
8: Q.enqueue(u)
9: while Q is not empty do

10: j = Q.dequeue()
▷ Find the corresponding links and jobs

11: for all neighbors l of j do
12: for all neighbors k of l do
13: if k is not visited then
14: Q.enqueue(k) and mark k as visited

▷ Find the edge from U to V
15: e1 = EH(j, l)

▷ Find the edges from V to U
16: e2 = EH(l,k)

▷ Compute the final time-shift
17: tk = (t j −we1 +we2)% iter_timek
18: time_shiftsH [k] = tk
19: time_shiftsG = time_shiftsG ∪ time_shiftsH

20: return time_shiftsG

Complex approach. Another potential approach is to ex-
pand the footprint of our geometric abstraction from link-level
to cluster-level. This approach requires expanding the opti-
mization formulation in Table 1 to include all jobs that share
their paths with any other jobs in the cluster and to encode
a unique ∆ j in the constraints. This approach is not scalable
because it requires expanding the perimeter of the unified
circle to become the LCM of the iteration times of a large
number of jobs in the cluster. Thus, finding a unique rotation
angle for each job requires adding an exponential number of
constraints to the optimization formulation which increases
the complexity and overhead of the formulation dramatically.

CASSINI’s approach. CASSINI introduces a bipartite
Affinity graph G = (U,V,E), where U and V are two sets
of vertices, and E denotes the edge set between U and V ,
shown in Figure 8(a). Each vertex u ∈U represents a job that
is sharing its path with other jobs somewhere in the network.
Each vertex v ∈V represents a link that carries more than one
job. An undirected edge e = (j, l) ∈ E exists between a job
j ∈ U and a link l ∈ V if j traverses l. The weight of edge
e = (j, l) ∈ E is the time-shift of job j on link l; i.e., we = t l

j.
Traversing the Affinity graph. CASSINI uses a graph

traversal algorithm to find unique time-shifts t j for all jobs
j ∈ J while maintaining compatibility on all links. To consol-
idate t l

j values for each job j and link l into a unique t j value,

Them
is arbiter

Cassini m
odule

(Algorithm
 2)

GPU
 Cluster

Compute
finish-time
fairness for

all jobs

Select
winning bids

Select top placement
candidate

(top_placement)

Server1 Server2
Themis
Agent

Themis
Agent

Servern-1 Servern
Themis
Agent

Themis
Agent

Pe
rf

or
m

an
ce

 m
et

ric
s

Final job placement and time-shifts
({tj}, top_placement)

Placement candidates
(Candidates)

Propose N
placement
candidates

Solve
optimization
formulation

(Table 1)

Construct
Affinity graphs

Compute unique
time-shifts

(Algorithm 1)

Threads Threads

Affinity graph (Gc)

Compatibility score (scorec)

Gtop_placement

Figure 9: Using CASSINI to augment Themis [40].

CASSINI first randomly selects one of the jobs in the Affinity
graph as the reference point with t j = 0 and then traverses
the graph to compute unique time-shifts for all others. Algo-
rithm 1 describes the pseudocode of our graph traversal. In
the general case, the Affinity graph is not necessarily a con-
nected graph, hence, the algorithm traverses each connected
subgraph separately (line 3). The traversal algorithm extends
the Breadth First Search (BFS) algorithm in two ways. First,
only vertices in U are added to the BFS queue (Q) because the
time-shifts correspond to jobs, not links (lines 6- 14). Second,
traversing from jobs (j ∈U) to links (l ∈V) incurs a negative
sign on the t l

j weight on edge e = (j, l), whereas traversing
the reverse direction incurs a positive sign (lines 15-18). As
soon as the vertex corresponding to job j is visited, its unique
time-shift is determined by the algorithm (line 18).

Theorem 1 (Correctness and Uniqueness Guarantee). Given
a cluster with J jobs and a loop-free Affinity graph, G =
(U,V,E), Algorithm 1 guarantees both correct and unique
time-shifts t j for all jobs j ∈ J.

Proof. The key insight behind this theorem is that our graph
traversal maintains the same relative time-shift for all job pairs
in the Affinity graph. The full proof uses induction and is pro-
vided in Appendix A, along with an example corresponding
to the Affinity graph in Figure 8(b).

4.2 Putting It All Together

This section uses Themis [40] as a running example of a
scheduler augmented by CASSINI.

1408 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Overview of Themis. Themis uses a fairness metric, called
finish-time fairness, to achieve long-term fairness across the
entire cluster by periodically updating the placement of jobs.
To achieve fairness, workers in Themis lease resources and
go through periodic auction epochs to help jobs that are far-
thest in terms of their fairness metric bid for more resources.
Themis’s central arbiter determines the global winning bids
to maximize the aggregate improvement in the finish-time
fair metrics across all bidding jobs. To capture network over-
heads, Themis uses a slowdown penalty based on whether the
workers are under the same rack or across racks.

Augmenting Themis with CASSINI. Figure 9 shows
how CASSINI augments Themis. First, CASSINI modifies
Themis’s arbiter to return a set of potential placement candi-
dates instead of a single placement. Then, CASSINI selects
the top placement candidate based on its compatibility met-
ric and computes unique time-shifts for jobs that share the
network. CASSINI transfers the time-shifts to Themis’s agent
running on servers. Finally, Themis’s agent applies the time-
shifts at the start of the epoch. Note that CASSINI respects the
hyper-parameters, such as batch size or the number of work-
ers, decided by Themis (or other schedulers that CASSINI is
augmenting). Next, we describe each step in detail.

Step 1. Discover placement candidates. In this step,
CASSINI decouples the process of finding the number of
workers for each job to improve finish-time fairness from the
exact worker placement in the cluster. To do so, instead of
returning the precise job placements at the end of the auc-
tion phase, we configure Themis to return up to N candidate
placements. These candidate placements all achieve the same
finish-time fairness, but their worker placements are differ-
ent. For instance, consider a case where jobs j1 and j2 each
place a bid on two additional workers, and they both win,
while job k1 is losing one worker, and job k2 is losing three.
In this case, there are two ways to distribute workers: (i)
k1 and k2 each give up one worker to j1, and k2 gives two
workers to j2; or (ii) k1 and k2 each give up one worker to
j2, and k2 gives two workers to j1. Both options are candi-
date placements. Moreover, selecting which workers in k1
and k2 should be reassigned creates another set of candidate
placements. CASSINI collects these candidate placements and
feeds them as input to the next step. This process requires
changing only ≈300 lines of code in Themis.

Step 2. Find unique time-shifts. This step is listed in Algo-
rithm 2 and includes CASSINI’s key contributions. CASSINI
first constructs an Affinity graph Gc for each placement can-
didate c ∈ Candidates (lines 3-12). Following Theorem 1,
to ensure correctness, we discard placement candidates with
loop(s) in any of their Affinity subgraphs (line 15). Then,
CASSINI constructs the unified circles for each job and
solves the optimization formulation in Table 1 for all links
in Gc to obtain the compatibility metric for each link in
Vc (lines 17-22). Given that the placement candidates are
independent of each other, our implementation uses multi-

Algorithm 2 CASSINI Module’s Pluggable Algorithm
1: procedure CASSINIMODULE

▷ Input Jobs: Array of active training jobs in the cluster
▷ Input Links: Array of all links in the cluster
▷ Input Candidates: Array of candidate placements for jobs
▷ Output top_placement, {t j}: Top placement and time-shifts

2: for c ∈Candidates do ▷ (Loop is executed with threads)
▷ Construct CASSINI’s Affinity graph corresponding
to this placement (§4.1)

3: Gc = (Uc,Vc,Ec)
4: for all j ∈ Jobs, l ∈ Links do
5: if j shares links with other jobs then
6: Uc =Uc ∪ j
7: if l carries more than one job then
8: Vc =Vc ∪ l
9: if j is traversing l then

10: e = new Edge between {(j, l)}
11: E = E ∪ e
12: we = 0

▷ Discard this candidate if Affinity graph has a loop
13: if there is a loop in Gc then
14: Candidates.remove(c)
15: continue
16: scorec = {}
17: for l ∈Vc do ▷ (Executed with threads)

▷ List of jobs traversing link l
18: Jl = {}
19: for all neighbors j of l do
20: Jl = Jl ∪ j

▷ Solve CASSINI optimization (Table 1)
21: scorel = CASSINIOPTIMIZATION(Jl)
22: scorec = scorec ∪ scorel

▷ Set the compatibility score of candidate c
23: c.score = scorec

▷ Sort placements based on compatibility metric
24: SORTCANDIDATES(Candidates, “Decreasing")
25: top_placement =Candidate[0]

▷ Find unique time-shifts (Algorithm 1)
26: {t j} = BFSAFFINITYGRAPH(Gtop_placement)
27: return {t j}, top_placement

ple threads to parallelize this computation. Once the com-
patibility score of all candidate placements is determined,
CASSINI sorts each placement candidate based on the aver-
age compatibility score of its member links to find the top
placement candidate top_placement ∈Candidates (lines 24-
25).1 Then, it executes Algorithm 1 on top_placement’s
Affinity graph Gtop_placement to obtain unique time-shifts
{t j},∀ j ∈ Vtop_placement for jobs that share links with other
jobs in this placement (line 26). Finally, top_placement and
its corresponding time-shifts are transferred to Themis’s agent
running on the servers (line 27).

Step 3. Apply time-shifts. When a time-shift t j is received
by the Themis agent running job j, it delays the start of the

1Instead of averaging, tail or other metrics may also be used.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1409

Figure 10: Logical topology of our testbed.

next immediate training iteration by t j. However, even though
the workers of the same job apply a unique time-shift, the
time-shift values can drift due to noise, stragglers, and other
unpredictable events. CASSINI updates the agent on each
server to measure the drift and adjust the time-shifts. Our
evaluations show that time-shift adjustments are rare (§5.7).

5 Evaluations
We evaluate CASSINI on a 24-server cluster and compare
its performance to that of other state-of-the-art ML sched-
ulers. First, we describe our evaluation methodology and
setup (§5.1). Then, we compare CASSINI’s performance gains
with respect to the state-of-art ML schedulers for a mix of
data and model parallel DNN training jobs (§5.2). Next, we
evaluate the impact of data parallelism (§5.3), model paral-
lelism (§5.4), partial compatibility (§5.5), and having multi-
ple GPUs per server on CASSINI’s performance (§5.6). Fi-
nally, we evaluate the frequency of time-shift adjustments
and CASSINI’s overhead (§5.7). CASSINI’s source code is
available at http://cassini.csail.mit.edu.

5.1 Methodology and Setup

Setup. We build a prototype to demonstrate the gains of
CASSINI in real-world settings. Our prototype includes 24
ASUS ESC4000A-E10 servers, each with one A100 Nvidia
GPU [8] (40 GB of HBM2 memory) and one 50 Gbps Mel-
lanox ConnectX5 NIC. We use RoCEv2 for communication
and enable DCB [5] and PFC on these interfaces to support a
lossless fabric for RDMA. The servers run Ubuntu 18.04 LTS.
We use PyTorch [36] version 1.8.0, CUDA version 11.1, and
NCCL version 2.11.4 in our training framework.

Topology. We use a Tofino switch to construct the logical
topology illustrated in Figure 10 with 13 logical switches.
The Mellanox ConnectX5 NICs on each of the servers are
connected to the Tofino switch. The Tofino switch emulates
13 logical switches and 48 bi-directional links for a 2:1 over-
subscribed topology. We use flow table rules that match on
<input port, destination MAC> to forward packets to the
correct output port and physical loopback cables for switch-
to-switch links. We use the default RDMA-based DCQCN
congestion control algorithm [77]. ECN is enabled through
WRED with min and max thresholds set to 1000 and 2000
cells. The PFC skid buffer threshold of each virtual switch is
4000 cells.

DNN workloads. We experiment with 13 popular
DNN models: VGG11 [26], VGG16 [18], VGG19 [32],

ResNet50 [27], WideResNet101 [72], BERT [20],
RoBERTa [39], XLM [17], CamemBERT [43], GPT-
1 [51], GPT-2 [52], GPT-3 [11], and DLRM [6]. All models
have an equal probability of occurrence and the training
duration time is randomly selected between 200 - 1,000
iterations. Table 3 (Appendix B) provides details about model
configurations and batch sizes used in this paper.

Parallelization strategy. We use data parallelism to train
the VGG, ResNet, and BERT family of models using Py-
torch’s DistributedDataParallel framework [38]. This frame-
work distributes the dataset across GPUs and uses RingAllre-
duce to update the gradients during each training iteration.
We train the DLRM and GPT family of models using a hybrid
of data/model parallelism. Following prior work [66], we use
Meta’s opensource codebase for training DLRM [6] where
the embedding tables are partitioned across GPUs, while the
rest of the model is replicated on all GPUs. Finally, we use
Microsoft’s DeepSpeed tool [7] to partition the GPT models
across GPUs using hybrid data/model parallelism.

Traces. Following prior work [40, 44, 50, 75], we use three
sets of traces in our evaluations: (i) Poisson trace: we use a
Poisson distribution for job arrivals where the job arrival time
is determined by the load parameter defined as the average
fraction of GPUs that are serving active jobs in the cluster.
We vary the load between 80% and 100%; (ii) dynamic trace:
where a set of DNN training jobs are present in the cluster,
and a new set of jobs arrive; (iii) snapshot trace: we take
several snapshots of the cluster where all jobs are present at
the start of the experiment.

We implement the following schemes in our testbed.

• Themis. We use the default Themis [40] scheduler as one
of our baselines. The bidding period (epoch) is set to 10 mins.
Jobs participate in an auction where they send bid values for
different GPU allocations. An assignment of GPU servers
is valid until the period of lease time. When the lease time
expires, the job gives up the server, and a new auction is
conducted for all the released servers. When a job arrives,
its initial number of requested workers is randomly selected
between 1 to 12 GPUs. As the experiment progresses, the
number of workers is automatically tuned based on Themis’s
finish-time-fairness metric.

• Th+CASSINI. Themis augmented with CASSINI as de-
scribed in Section 4.2. In particular, this scheduler takes up
to 10 placement candidates from Themis, constructs geomet-
ric circles and Affinity graphs for each placement to capture
the cluster-level compatibility, solves our optimization for-
mulation to find time-shifts for jobs that are competing on
bandwidth, selects the top placement candidate based on com-
patibility ranks, and finally computes a unique time-shift for
jobs. The unique time-shifts and final placement are given to
the Themis agent running on GPUs. Unless otherwise stated,
we use 5◦ as the angle discretization precision (Table 1) to
compute the time-shifts.

1410 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://cassini.csail.mit.edu

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100 110

Ite
ra

tio
n

tim
e

(m
s)

Time (mins)

BERT Themis BERT Th+Cassini
VGG16 Themis VGG16 Th+Cassini
ResNet Themis ResNet Th+Cassini
WideResNet Themis WideResNet Th+Cassini
XLM Themis XLM Th+Cassini
CamemBERT Themis CamemBERT Th+Cassini
VGG19 Themis VGG19 Th+Cassini
VGG11 Themis VGG11 Th+Cassini
RoBERTa Themis RoBERTa Th+Cassini
DLRM Themis DLRM Th+Cassini

0

0.2

0.4

0.6

0.8

1

50 100 200 400 800

CD
F

Iteration time (ms)

Themis

Th+Cassini

Dedicated

(a) (b)

Figure 11: [Poisson trace] (a) Time series of DNN training jobs and their iteration times. (b) CDF of the iteration times.

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25

Ite
ra

tio
n

tim
e

(m
s)

Time (mins)

DLRM-A Themis DLRM-A Th+Cassini
GPT1 Themis GPT1 Th+Cassini
GPT2-A Themis GPT2-A Th+Cassini
GPT3 Themis GPT3 Th+Cassini
GPT2-B Themis GPT2-B Th+Cassini
DLRM-B Themis DLRM-B Th+Cassini

0

0.2

0.4

0.6

0.8

1

200 400 800 1600

CD
F

Iteration time (ms)

Themis
Th+Cassini
Dedicated

(a) (b)

Figure 12: [Poisson trace] (a) Time series of model parallel
jobs and their iteration times. (b) CDF of the iteration times.

• Pollux. We use Pollux as a second baseline [50]. Pollux
considers the system throughput and statistical efficiency to
maximize cluster-wide training performance. It periodically
queries jobs and reassigns GPUs to maximize the overall
goodput of the cluster. Pollux also models migration costs
and avoids frequent job migrations.

• Po+CASSINI. We augment Pollux with CASSINI using an
approach similar to that described in Section 4.2 except that
Pollux uses overall goodput instead of finish-time-fairness
to adjust hyper-parameters during scheduling epochs. Hence,
the number of workers assigned to each job does not always
agree with Themis. To make an apples-to-apples compar-
ison, all CASSINI-related parameters in Po+CASSINI and
Th+CASSINI are the same.

• Ideal. An ideal scheduler that runs each training job on a
dedicated cluster. This scheduler incurs no congestion, as the
entire cluster is dedicated to one job, and there is no need to
take job compatibility into account.

• Random. A random placement scheduler that places work-
ers for each job randomly. This scheduler has the highest
network overhead, because it does not take locality or com-
patibility into account.

Profiling DNN models. Similar to Themis and Pollux, we
profile each DNN using Pytorch and Infiniband port counters.
Our profiling script executes a few iterations of each job to
measure iteration times and collect link utilization patterns for

various batch sizes and numbers of workers. Fine-grained link
utilization data from the port counters enables CASSINI to
build the geometric circles and the corresponding bandwidth
demands for our optimization (bw_circle j(α) in Table 1).

5.2 Performance Gains

We evaluate CASSINI’s performance gains using job ar-
rivals and departures from our Poisson trace. Figure 11(a)
plots the time series of events in the cluster for Themis and
Th+CASSINI. In this experiment, we train a combination of
DNN models. We use model parallelism for the DLRM [6]
model because of its large model size, and we use data paral-
lelism for all the other DNN models. Placement changes are
triggered by job arrivals, job departures, and when the lease
time of any of the servers expires. Given the dynamic nature
of the trace, the servers are occupied gradually, and their lease
times are not synchronized. For instance, at time t = 72 mins,
a data parallel training job for the XLM [17] model arrives
at the cluster, and Themis places it such that one of the links
is shared with WideResNet101 [72] without the knowledge
that XLM and WideResNet101 are not compatible jobs. In
contrast, Th+CASSINI improves the iteration time of XLM by
placing it with compatible jobs. Figure 11(b) plots the CDF of
iteration times of all the data points in Figure 11(a) and shows
that compared to Themis, Th+CASSINI improves the average
and 99th percentile tail iteration times by 1.6× and 1.8× re-
spectively. We observe similar gains between Po+CASSINI
and Pollux. The figure also shows that Th+CASSINI achieves
similar performance as our Ideal benchmark.

To evaluate CASSINI’s performance with model paral-
lelism, we measure iteration times of various jobs trained
using model parallelism, as shown in Figure 12(a). We use
our Poisson trace for the job arrivals and departures. Note
that this trace contains different training instances of the same
DNN models where they differ in their hyper-parameters and
number of workers (details in Appendix B). We use suffixes
on their names to distinguish between the instances, for ex-
ample, GPT2-A and GPT2-B are two different training jobs,
as shown in the legend of Figure 12(a). GPT2-A has a batch

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1411

0
20
40
60
80

100
120
140

0 10 20 30 40 50

N
um

be
r o

f E
CN

 m
ar

ks

(1
00

0p
kt

s/
ite

ra
tio

n)

Time (sec)

(b) ECN marks for VGG16 (c) ECN marks for RoBERTa

Themis Th+Cassini Pollux Po+Cassini IdealRandom

0
20
40
60
80

100
120
140

0 10 20 30 40 50

N
um

be
r o

f E
CN

 m
ar

ks
(1

00
0

pk
ts

/it
er

at
io

n)

Time (sec)

(a) CDF of iteration times

3.6x Gain
1.8x Gain

0

0.2

0.4

0.6

0.8

1

50 100 200 400 800

CD
F

Iteration time (ms)

2.5x Gain

0
50

100
150
200
250
300

0 10 20 30 40 50

N
um

be
r o

f E
CN

 m
ar

ks

(1
00

0p
kt

s/
ite

ra
tio

n)

Time (sec)

(d) ECN marks for DLRM

33x Gain

Figure 13: [Dynamic trace] CDF of training iteration times and the number of ECN marked packets per iteration.

(b) ECN marks for DLRM

Themis Th+Cassini IdealRandom

(c) ECN marks for GPT-1 (d) ECN marks for GPT-2 (e) ECN marks for GPT-3

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

CD
F

Iteration time (sec)

(a) CDF of iteration times

0
100
200
300
400
500
600

0 10 20 30 40 50

N
um

be
r o

f E
CN

 m
ar

ks

(1
00

0p
kt

s/
ite

ra
tio

n)

Time (sec)

0
5

10
15
20
25
30

0 10 20 30 40 50

N
um

be
r o

f E
CN

 m
ar

ks

(1
00

0p
kt

s/
ite

ra
tio

n)

Time (sec)

0

50

100

150

200

250

0 10 20 30 40 50

N
um

be
r o

f E
CN

 m
ar

ks

(1
00

0p
kt

s/
ite

ra
tio

n)

Time (sec)

0

10

20

30

40

0 10 20 30 40 50

N
um

be
r o

f E
CN

 m
ar

ks

(1
00

0p
kt

s/
ite

ra
tio

n)

Time (sec)

5.5x Gain
29.1x Gain4.9x Gain

28.6x Gain

1.6x Gain

Figure 14: [Dynamic trace, model parallelism] CDF of training iteration times and the number of ECN marked packets.

size of 24 with a model hidden size of 1536 (as defined by
Deepspeed’s codebase [7]), while GPT2-B has a batch size
of 70 with a model hidden size of 1184. For instance, at time
t = 8 min, a model parallel GPT-2 [52] training job (labeled
as GPT-2-A) arrives at the cluster and without considering
the communication demands, Themis places this job such
that it shares a link with another large GPT-3 [11] model
in the cluster. GPT-2-A and GPT-3 models are not compat-
ible, causing both training jobs to slow down. In contrast,
Th+CASSINI improves GPT-2-A’s iteration time by placing it
with a compatible GPT-1 model. Figure 12(b) plots the CDF
of iteration times of all the data points in Figure 12(a) and
shows that compared to Themis, Th+CASSINI improves the
average and 99th percentile tail iteration times by 1.2× and
1.6× respectively.

5.3 CASSINI Reduces Congestion

We next demonstrate the effectiveness of CASSINI in reduc-
ing the congestion in the network. We use our dynamic trace
to trigger the arrival of DLRM and ResNet50 to the cluster
while the cluster is busy running other jobs. Given the con-
trast between the network demand between these two models,
this experiment serves as a stress test to highlight the impor-
tance of compatible job placement on network congestion. In
this case, both Pollux and Themis end up placing DLRM on
servers that share network links with other non-compatible
jobs which hurts the iteration times. In contrast, Th+CASSINI
and Po+CASSINI flip the placements of DLM and ResNet50
to achieve compatibility, thereby improving the training itera-
tion times, as depicted in Figure 13(a). Compared to Themis,
Th+CASSINI improves the average and 99th percentile tail
iteration times by 1.5× and 2.2×, respectively. Similarly, com-

pared to Pollux, Po+CASSINI improves the average and 99th

percentile tail iteration times by 1.6× and 2.5×, respectively.
The gains in iteration times are a direct consequence of

CASSINI’s ability to reduce network congestion. Figures 13(b)
to (d) show the number of ECN marked packets per itera-
tion for different models. The figure shows that Th+CASSINI
and Po+CASSINI consistently maintain a lower number of
ECN marks per iteration across the models. In particular, Fig-
ure 13(d) shows that, on average, DLRM is experiencing 27×
and 33× more ECN marks in Themis and Pollux, compared
to their CASSINI-augmented counterparts.

5.4 Impact of Model Parallelism

To ensure CASSINI’s gains are not limited to data parallel
jobs, we run a series of experiments in which all jobs in
the trace use model parallelism. As shown in Section 2.1,
model parallel jobs have several Up and Down phases in
each iteration where the duration and bandwidth demand
of each phase depends on the parallelization strategy and
hyper-parameters. Similar to the data parallel case, we use
CASSINI’s geometric abstraction to capture the duration and
bandwidth demand of Up and Down phases of a series of
model parallel jobs. We then use CASSINI’s optimization
formulation and Affinity graph to compute the time-shifts for
the jobs sharing the same network links. We use our dynamic
trace to trigger the arrival of multiple GPT and DLRM models
while the cluster is training other model parallel jobs.

Figure 14(a) shows the CDF of training iteration times.
We find that similar to the data parallel case, Themis ends up
placing non-compatible jobs, such as <GPT-3 and GPT-2>
or <GPT-1 and DLRM>, on the same network link, whereas
Th+CASSINI places compatible jobs, such as <GPT-1 and

1412 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Snapshot 1

0

10

20

30

40

50

10 10.5 11 11.5

Li
nk

 U
til

iza
tio

n
(G

bp
s)

Time (sec)

0

10

20

30

40

50

10 10.5 11 11.5

Li
nk

 U
til

iza
tio

n
(G

bp
s)

Time (sec)

0

10

20

30

40

50

10 10.5 11 11.5

Li
nk

 U
til

iza
tio

n
(G

bp
s)

Time (sec)

0

10

20

30

40

50

10 10.5 11 11.5

Li
nk

 U
til

iza
tio

n
(G

bp
s)

Time (sec)

0

10

20

30

40

50

10 10.5 11 11.5
Li

nk
 U

til
iza

tio
n

(G
bp

s)
Time (sec)

(b) Snapshot 2 (c) Snapshot 3 (d) Snapshot 4 (e) Snapshot 5

RoBERTa RoBERTa

Compatibility Score: 0.8

WideResNet VGG16 VGG19 VGG16 BERT VGG19 WideResNetVGG19 VGG16 ResNet

Compatibility Score: 1.0 Compatibility Score: 0.6Compatibility Score: 0.9Compatibility Score: 1.0

Figure 15: [Snapshot trace] Link utilization of compatible and partially compatible snapshots.

Snap-
shot
ID

Competing jobs
(batch size)

Th+CASSINI Themis Comp-
atibility
score

time-
shift
(ms)

1 WideResNet101 (800) 138 ms 205 ms 1.0 0 ms
VGG16 (1400) 148 ms 199 ms 150 ms

2 VGG19 (1400) 168 ms 220 ms 1.0 0 ms
VGG16 (1700) 163 ms 220 ms 158 ms
RESNET50 (1600) 59 ms 55 ms 46 ms

3 VGG19 (1024) 166 ms 176 ms 0.9 0 ms
VGG16 (1200) 168 ms 177 ms 100 ms

4 RoBERTa (12) 164 ms 210 ms 0.8 0 ms
RoBERTa (12) 180 ms 208 ms 60 ms

5 BERT (8) 209 ms 213 ms 0.6 0 ms
VGG19 (1400) 294 ms 292 ms 42 ms
WideResNet101 (800) 265 ms 266 ms 191 ms

Table 2: [Snapshot trace] Compatibility score of DNN jobs.

GPT-2> or <GPT-3 and DLRM>, on the same network links.
Consequently, Th+CASSINI improves the average and 99th

percentile tail iteration times by 1.2× and 1.6×, respectively.
We observe similar gains between Pollux and Po+CASSINI.

Figures 14(b) to (e) depict the number of ECN marked
packets per iteration for the models in this experiment. De-
pending on the status of congestion, different models experi-
ence different numbers of ECN marked packets. For instance,
Figure 14(d) shows that compared to Themis, Th+CASSINI
reduces the average number of ECN marked packets by 29×.

5.5 Impact of Partial Compatibility

An important consideration for practical deployment of
CASSINI is to evaluate the impact of placing partially com-
patible jobs on the same link(s). Intuitively, the higher the
compatibility score, the better interleaving is achieved. As
the compatibility score reduces, the gains also diminish. To
evaluate the impact of partial compatibility, we take five snap-
shots of the cluster, as shown in Table 2, and compute the
compatibility scores and time-shift values from our optimiza-
tion formulation (§3) for each snapshot. We then measure the
average communication time of each model under Themis
and Th+CASSINI. The table shows that when the compatibil-
ity score is 0.6, CASSINI’s gain compared to Themis starts
to diminish. Note that CASSINI avoids placing jobs with low
compatibility score (e.g., snapshot 5) on the same link.

We demonstrate the reason behind diminishing returns by
plotting the link utilization of each snapshot in Figure 15.

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

Server1 Server2 Server3 Server4 Server5 Server6

0

0.2

0.4

0.6

0.8

1

0 1 2 3

CD
F

Iteration time (sec)

Themis
Th+Cassini

Ideal
Random

1.9x Gain

(a) Multi-GPU servers (b) CDF of training iteration times

Figure 16: [Dynamic trace] Multi-GPU experiment.

When the compatibility score is high, the opportunity for in-
terleaving is large, and jobs end up interleaving their network
usage most of the time, as shown in Figures 15(a)–(d). How-
ever, as the compatibility score is reduced, jobs are forced
to share the link most of the time, as shown in Figure 15(e).
Additionally, Figure 15(b) demonstrates a desirable feature
of our optimization formulation where compatibility does
not require strict interleaving. In this snapshot, only VGG19
and VGG16 are interleaved, and ResNet’s communications
overlap with both jobs because its network demand is not
significant and can co-exist with the other jobs.

5.6 Impact of Multiple GPUs per Server

Although having multiple GPUs per server enables allocating
more GPUs within the same server to a job, today’s large-scale
training jobs require hundreds of workers [45, 66], making it
impossible to avoid network congestion entirely by relying
on multi-GPU servers. In such cases, CASSINI’s gains are
more pronounced for models that are distributed outside the
boundary of a server.

We evaluate CASSINI’s gains with multi-GPU servers by
removing GPUs from some of our single-GPU servers and
adding them to other servers to compose servers with two
GPUs. We create a topology with six servers, each with two
GPUs, as shown in Figure 16(a). We then use a mix of data
parallel and model parallel jobs and generate a series of job
arrivals using our dynamic trace.

Figure 16(b) demonstrates that compared to Themis,
Th+CASSINI improves the average and 99th percentile tail it-
eration times by 1.4× and 1.9×, respectively. These gains are

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1413

0

0.5

1

1.5

2

Ad
ju

st
m

en
t F

re
q.

 (m
in

)

WideResNet

VGG16

VGG19
VGG16

VGG16

VGG19

ResNet

Snapshot 1 Snapshot 2

Snapshot 3

Better

Figure 17: [Snapshot trace]
The frequency of adjusting
time-shifts for snapshots 1–3.

0

20

40

60

80

100

0

5

10

15

20

25

1 2 4 8 16 32 64 128

Discretization precision (degrees)

Ex
ec

ut
io

n
tim

e
(s

ec
)

Ac
cu

ra
cy

 o
f t

im
e-

sh
ift

 (%
)

Figure 18: Impact of angle
discretization on execution
time and time-shift accuracy.

achieved because some jobs require more than two GPUs to
train. For instance, at a particular instant in our dynamic trace,
the XLM and ResNet50 models each require three GPUs to
train. With the arrival of a network-intensive model DLRM
requesting three more GPUs, Themis decides to place DLRM
such that it shares a server with a non-compatible model
(XLM), making both jobs experience congestion. In contrast,
Th+CASSINI selects a placement where DLRM shares a link
with a compatible model (ResNet50), thereby improving the
training iteration times of both models.

5.7 Adjusting Time-Shifts and Overhead

To maintain CASSINI’s interleaving, workers must respect
the time-shift values given to them through the scheduler.
Given that our servers are not running perfectly in sync, we
evaluate the frequency of automatic time-shift adjustments by
the Themis (or Pollux) agents running on the servers. Note
that respecting the time-shift is only required for compatible
jobs. All other jobs in the cluster can send packets at any
time. A worker triggers an adjustment when the start of the
communication phase deviates by more than five percent of
the ideal iteration time. Figure 17 shows the average frequency
of time-shift adjustments for snapshots 1,2, and 3. In all cases,
the frequency is less than two adjustments per minute.

Finally, we evaluate the impact of angle discretization pre-
cision on CASSINI’s optimization formulation (Table 1). In-
tuitively, the execution time of a coarse-grained discretiza-
tion is fast but such formulation misses interleaving oppor-
tunities, thereby finding imprecise rotation angles. Given
that CASSINI’s time-shifts are driven from rotation angles, a
coarse-grained formulation leads to inaccurate time-shifts. On
the other hand, having fine-grained precision leads to more
accurate time-shifts at the expense of a longer execution time.
Figure 18 demonstrates this trend and shows that using a pre-
cision of 5◦ is the sweet spot for achieving 100% accuracy
for time-shifts while maintaining a low execution overhead.

6 Discussion and Limitations
Sharing with legacy datacenter workloads. We assume the
ML training traffic is not sharing the network with non-ML
legacy datacenter workloads, such as websearch, indexing,
cloud, and storage. We believe this is reasonable because

modern training clusters consist of custom-designed servers,
each with dedicated NICs for training traffic (GPU NICs) and
additional NICs for storage and other traffic (CPU NICs) [4,
45]. The CPU NICs are often connected through a separate
fabric to carry storage and other control plane traffic. Our
abstraction and time-shift values only affect the GPU NICs.

GPU multi-tenancy. For simplicity, we assume GPUs are
dedicated resources for each job, and different jobs are not
sharing the same GPU – this is not far from how many pro-
duction clusters run today to ensure predictable and high-
throughput training performance. Thus, our geometric ab-
straction only considers the network links as shared resources
and allows the Down (Just Compute) phases of different jobs
to overlap. Recent proposals have demonstrated the feasibility
of multi-tenancy on GPUs [9, 67, 69, 70]. We note that captur-
ing GPU multi-tenancy is possible by adding more constraints
in our optimization formulation, but we omit the details for
brevity.

Scaling. Scaling the number of GPUs on each server en-
ables service providers to pack jobs within fewer servers,
thereby reducing the chances of network congestion. In recent
years, the compute requirements of DNN models are growing
exponentially [3]. Training models across multiple servers is
inevitable with growing model and dataset sizes. For exam-
ple, large models like AlphaGo [61] and AlphaZero [60] are
trained using hundreds to thousands of GPUs and TPUs. We
expect CASSINI’s gains to remain consistent for clusters with
multiple GPUs per server, but we leave further investigation
to future work.

CASSINI advocates placing jobs such that jobs with higher
compatibility scores share network links. However, as the
number of jobs sharing a network link increases, it becomes
harder to interleave the communication demands, and the
compatibility score reduces. CASSINI tries to avoid scenarios
where jobs with low compatibility scores share a network link.
We leave the study of the effect of the number of jobs sharing
a network link on the compatibility scores for future work.

7 Related Work
Our work builds on several lines of related research.

Compute scheduling approaches. A large number of sys-
tems and techniques have focused on improving the perfor-
mance of large-scale distributed ML workloads [13, 16, 19,
23,24,36,42,54,63,68,71,73]. Relevant to this paper, several
papers aim to reduce communication overhead using smart
scheduling techniques; e.g., Gandiva [69], Themis [40], Pol-
lux [50], Tiresias [25], Shockwave [76], and Optimus [48].
These schedulers try to minimize network sharing by plac-
ing workers of the same job as close as possible to each
other. However, these approaches do not consider interleaving
the communication patterns of different training jobs when
placing them on servers. CASSINI’s contribution is comple-
mentary to these approaches by considering both the compute
resources and the communication demands of different jobs

1414 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

during scheduling. Moreover, CASSINI is designed as a plug-
gable module to augment these schedulers.

Multi-resource sharing. Recently, Muri [75] proposed
a scheduling technique to interleave critical resources (e.g.,
GPU, CPU, network, storage) of DNN training jobs. Muri
packs jobs that are being executed on the same set of resources
into a group and interleaves their resource requirements us-
ing a Blossom-based scheduler. However, Muri’s approach to
resource interleaving only applies to jobs that share the same
set of GPUs, CPUs, memory, and network resources.2 Hence,
Muri can interleave compute and communication phases of a
set of jobs only if the jobs are sharing the same set of GPUs.
In contrast, CASSINI is able to interleave compute and com-
munication phases of different jobs, irrespective of which
GPUs they occupy. For instance, Muri’s algorithm is not ap-
plicable to interleave the resources of j1 and j2 in Figure 2(a),
because j1 is distributed between server1 and server2 while j2
is distributed between server3 and server4; i.e., these two jobs
do not belong to the same resource group in Muri’s algorithm.
Muri would have been able to interleave the resources if both
j1 and j2 were distributed between all four servers. However,
for many of the large models we use in our experiments, GPU-
sharing is not possible because of the memory requirements of
the model. Moreover, even with GPU sharing, in a large-scale
cluster, cross-group network congestion is common. CASSINI
is able to interleave the Up and Down phases of different jobs,
without requiring them to share the same set of resources.
Similarly, Synergy [44] has proposed a multi-resource in-
terleaving scheduling approach by inferring the sensitivity
of DNN jobs to GPU, CPU, and memory resources using
optimistic profiling. Synergy improves the overall cluster effi-
ciency by performing resource-sensitive allocations instead of
a GPU-proportional allocation. However, Synergy’s approach
does not consider the network bandwidth as a resource and
is unable to interleave the communication phases with other
resources. In contrast, CASSINI’s focus is on interleaving the
network demand with the GPU resources. CASSINI is de-
signed to augment both Muri and Synergy schedulers. Some
previous studies have concentrated on the theoretical analysis
of periodic tasks [22, 34]. However, these approaches exploit
characteristics distinct from those inherent to distributed DNN
training jobs.

Communication-aware scheduling. A variety of ap-
proaches have been developed to accelerate communication
among ML training workers of the same job to reduce net-
work overhead [2,14,23,33,45,55,65,74] and to enable more
efficient pipelining strategies [28,47]. ByteScheduler [49] and
Syndicate [41] accelerate ML training by scheduling and opti-
mizing the order of communication operations between differ-
ent GPU servers used by a training job. ByteScheduler over-
laps compute and communication operations within a train-
ing job, while Syndicate provides a solution for planning and

2Muri [75] states this limitation: “The algorithm avoids cross-group
packing to minimize the packing overhead.”

scheduling communication operations for large DNN train-
ing. Similarly, TACCL [56], BytePS [30], and CLOPT [74]
improve the communication collective algorithms of large
DNN models. BytePS seeks to find a balance between the
Parameter Server [37] and Ring-AllReduce algorithms for
synchronizing the gradients. TACCL proposes a communica-
tion collective algorithm for training large models with data
and model parallelism. CLOPT co-optimizes network topol-
ogy and communication schedules for ML training. These
approaches optimize communication within a training job,
however, they do not consider congestion and network shar-
ing across training jobs. In contrast, CASSINI’s approach is
orthogonal to these techniques because CASSINI focuses on
sharing the network resources across different training jobs.

Difference with prior workshop paper. A prior workshop
paper [53] introduced the idea of using a geometric abstrac-
tion to achieve job compatibility at a single-link level. We
extend this workshop paper in a few important ways. First, the
workshop paper considers compute/communication interleav-
ing at a high level and does not provide a concrete scheduling
technique to achieve it. Specifically, it relies on an unfair con-
gestion control protocol to achieve interleaving, but CASSINI
does not require any changes to or assumptions about the con-
gestion control protocol. Second, the workshop paper ignores
the impact of cluster-level interleaving. Third, the workshop
paper only considers the data parallelism paradigm, and its
geometric abstraction does not generalize to model paral-
lelism techniques. Finally, our optimization formulation, the
Affinity graph abstraction, the design and implementation
of the CASSINI module, and our formal arguments around
correctness (Theorem 1) are all new contributions.

8 Conclusion
CASSINI is a simple but effective approach that can integrate
with existing cluster schedulers to allow them to accommo-
date multiple ML jobs’ network needs. We introduce a novel
metric, called compatibility score, to rank different GPU place-
ments when jobs compete on network links. Our evaluations
show that CASSINI improves the average and tail completion
time of jobs by up to 1.6× and 2.5×, respectively. Moreover,
we show that CASSINI reduces the number of ECN marked
packets by up to 33×.

Acknowledgements. We thank NSDI’s anonymous review-
ers and our shepherd, Xin Jin, for their valuable feedback.
Thanks to Gautam Kumar, Frank Wang, Benoit Pit–Claudel,
Venkat Arun, and Kapil Vaidya for helpful suggestions and
discussions. The MIT-affiliated authors were supported in
part by ACE and CUbiC, two of the seven centers in JUMP
2.0, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA, as well as NSF SHF-2107244, NSF
ASCENT-2023468, NSF CAREER-2144766, NSF PPoSS-
2217099, NSF CNS-2211382, and Sloan fellowship FG-2022-
18504. Akella was supported by NSF grants CNS-2214015
and CNS-2207317, and by a gift from Cisco Research.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1415

References
[1] MLPerf: A broad ML benchmark suite. https://mlperf.

org/.

[2] Baidu, 2017. https://github.com/baidu-research/
baidu-allreduce.

[3] AI and Compute, 2020. https://openai.com/blog/
ai-and-compute/.

[4] Nvidia DGX SuperPOD, 2020. https://www.nvidia.com/
en-us/data-center/dgx-superpod/.

[5] Data Center Bridging eXchange (DCBX), 2021. https://
man7.org/linux/man-pages/man8/dcb-dcbx.8.html.

[6] Deep Learning Recommendation Model for Personalization
and Recommendation Systems, 2021. https://github.com/
facebookresearch/dlrm.

[7] DeepSpeed version of NVIDIA’s Megatron-LM, 2021. https:
//github.com/microsoft/Megatron-DeepSpeed.

[8] NVIDIA A100 Tensor Core GPU, 2021. https://www.
nvidia.com/en-us/data-center/a100/.

[9] R. Ausavarungnirun, V. Miller, J. Landgraf, S. Ghose,
J. Gandhi, A. Jog, C. J. Rossbach, and O. Mutlu. Mask:
Redesigning the gpu memory hierarchy to support multi-
application concurrency. SIGPLAN Not., 53(2):503–518, mar
2018.

[10] T. Ben-Nun and T. Hoefler. Demystifying parallel and dis-
tributed deep learning: An in-depth concurrency analysis. ACM
Comput. Surv., 52(4), aug 2019.

[11] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell,
S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020.

[12] M. A. Chang, A. Panda, D. Bottini, L. Jian, P. Kumar, and
S. Shenker. Network evolution for dnns. SysML, 2018.

[13] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman.
Project adam: Building an efficient and scalable deep learning
training system. In OSDI’14, pages 571–582, 2014.

[14] M. Cho, U. Finkler, D. Kung, and H. Hunter. Blueconnect:
Decomposing all-reduce for deep learning on heterogeneous
network hierarchy. SysML Conference, 2019.

[15] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael,
A. Caulfield, T. Massengil, M. Liu, D. Lo, S. Alkalay, and
M. Haselman. Accelerating persistent neural networks at data-
center scale. In Hot Chips, volume 29, 2017.

[16] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. An-
drew. Deep learning with cots hpc systems. In International
conference on machine learning, pages 1337–1345, 2013.

[17] A. CONNEAU and G. Lample. Cross-lingual language model
pretraining. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[18] A. K. Dash. VGG-16 Architecture. https://iq.opengenus.
org/vgg16/.

[19] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
A. Senior, P. Tucker, K. Yang, Q. V. Le, et al. Large scale
distributed deep networks. In Advances in neural information
processing systems, pages 1223–1231, 2012.

[20] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-
training of deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805, 2018.

[21] A. Gholami, A. Azad, K. Keutzer, and A. Buluç. Integrated
model and data parallelism in training neural networks. CoRR,
abs/1712.04432, 2017.

[22] J. Goossens. Scheduling of offset free systems. Real-Time
Systems, 2003.

[23] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

[24] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He.
Accurate, large minibatch SGD: training imagenet in 1 hour.
CoRR, abs/1706.02677, 2017.

[25] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian,
H. Liu, and C. Guo. Tiresias: A GPU cluster manager for
distributed deep learning. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19),
pages 485–500, Boston, MA, Feb. 2019. USENIX Association.

[26] S. Gupta. VGG-11 Architecture. https://iq.opengenus.
org/vgg-11/.

[27] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 770–778,
2016.

[28] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and
Z. Chen. Gpipe: Efficient training of giant neural networks
using pipeline parallelism. NeurIPS, 2019.

[29] Z. Jia, S. Lin, C. R. Qi, and A. Aiken. Exploring hidden dimen-
sions in accelerating convolutional neural networks. In J. Dy
and A. Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceed-
ings of Machine Learning Research, pages 2274–2283, Stock-
holmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[30] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo. A uni-
fied architecture for accelerating distributed DNN training in
heterogeneous gpu/cpu clusters. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20),
pages 463–479. USENIX Association, Nov. 2020.

[31] C. Karakus, R. Huilgol, F. Wu, A. Subramanian, C. Daniel,
D. Cavdar, T. Xu, H. Chen, A. Rahnama, and L. Quintela.
Amazon sagemaker model parallelism: A general and flexi-
ble framework for large model training, 2021.

[32] A. Kaushik. VGG-19 Architecture. https://iq.opengenus.
org/vgg19-architecture/.

1416 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://mlperf.org/
https://mlperf.org/
https://github.com/baidu-research/baidu-allreduce
https://github.com/baidu-research/baidu-allreduce
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://www.nvidia.com/en-us/data-center/dgx-superpod/
https://www.nvidia.com/en-us/data-center/dgx-superpod/
https://man7.org/linux/man-pages/man8/dcb-dcbx.8.html
https://man7.org/linux/man-pages/man8/dcb-dcbx.8.html
https://github.com/facebookresearch/dlrm
https://github.com/facebookresearch/dlrm
https://github.com/microsoft/Megatron-DeepSpeed
https://github.com/microsoft/Megatron-DeepSpeed
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://iq.opengenus.org/vgg16/
https://iq.opengenus.org/vgg16/
https://iq.opengenus.org/vgg-11/
https://iq.opengenus.org/vgg-11/
https://iq.opengenus.org/vgg19-architecture/
https://iq.opengenus.org/vgg19-architecture/

[33] M. Khani, M. Ghobadi, M. Alizadeh, Z. Zhu, M. Glick,
K. Bergman, A. Vahdat, B. Klenk, and E. Ebrahimi. Sip-ml:
High-bandwidth optical network interconnects for machine
learning training. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, SIGCOMM ’21, pages 657–675, New York,
NY, USA, 2021. Association for Computing Machinery.

[34] M. Ladeira, E. Grolleau, F. Bonneval, G. Hattenberger,
Y. Ouhammou, and Y. Hérouard. Scheduling Offset-Free Sys-
tems Under FIFO Priority Protocol. In M. Maggio, editor,
34th Euromicro Conference on Real-Time Systems (ECRTS
2022), volume 231 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 11:1–11:19, Dagstuhl, Germany,
2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[35] S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. A. Gibson, and E. P.
Xing. On model parallelization and scheduling strategies for
distributed machine learning. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems, volume 27,
pages 2834–2842. Curran Associates, Inc., 2014.

[36] A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose,
and A. Peysakhovich. Pytorch-biggraph: A large-scale graph
embedding system. CoRR, abs/1903.12287, 2019.

[37] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling dis-
tributed machine learning with the parameter server. OSDI’14,
pages 583–598. USENIX Association, 2014.

[38] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li,
A. Paszke, J. Smith, B. Vaughan, P. Damania, and S. Chintala.
Pytorch distributed: Experiences on accelerating data parallel
training. Proc. VLDB Endow., 13(12):3005–3018, aug 2020.

[39] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov. Roberta: A ro-
bustly optimized bert pretraining approach, 2019.

[40] K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkatara-
man, A. Akella, A. Phanishayee, and S. Chawla. Themis: Fair
and efficient GPU cluster scheduling. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI
20), pages 289–304, Santa Clara, CA, Feb. 2020. USENIX As-
sociation.

[41] K. Mahajan, C.-H. Chu, S. Sridharan, and A. Akella. Better
together: Jointly optimizing ML collective scheduling and
execution planning using SYNDICATE. In 20th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 23), pages 809–824, Boston, MA, Apr. 2023. USENIX
Association.

[42] L. Mai, C. Hong, and P. Costa. Optimizing network perfor-
mance in distributed machine learning. In 7th USENIX Work-
shop on Hot Topics in Cloud Computing (HotCloud 15), Santa
Clara, CA, 2015. USENIX Association.

[43] L. Martin, B. Müller, P. J. O. Suárez, Y. Dupont, L. Romary,
É. V. de la Clergerie, D. Seddah, and B. Sagot. Camembert: a
tasty french language model. CoRR, abs/1911.03894, 2019.

[44] J. Mohan, A. Phanishayee, J. J. Kulkarni, and V. Chidambaram.
Looking beyond gpus for dnn scheduling on multi-tenant clus-
ters. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2022), July 2022.

[45] D. Mudigere, Y. Hao, J. Huang, Z. Jia, A. Tulloch, S. Srid-
haran, X. Liu, M. Ozdal, J. Nie, J. Park, L. Luo, J. A. Yang,
L. Gao, D. Ivchenko, A. Basant, Y. Hu, J. Yang, E. K. Ardestani,
X. Wang, R. Komuravelli, C.-H. Chu, S. Yilmaz, H. Li, J. Qian,
Z. Feng, Y. Ma, J. Yang, E. Wen, H. Li, L. Yang, C. Sun,
W. Zhao, D. Melts, K. Dhulipala, K. Kishore, T. Graf, A. Eisen-
man, K. K. Matam, A. Gangidi, G. J. Chen, M. Krishnan,
A. Nayak, K. Nair, B. Muthiah, M. khorashadi, P. Bhattacharya,
P. Lapukhov, M. Naumov, L. Qiao, M. Smelyanskiy, B. Jia,
and V. Rao. Software-hardware co-design for fast and scalable
training of deep learning recommendation models, 2021.

[46] S. Narasimhan. NVIDIA Clocks World’s Fastest BERT
Training Time and Largest Transformer Based Model, Paving
Path For Advanced Conversational AI, Aug. 2019. https:
//devblogs.nvidia.com/training-bert-with-gpus/.

[47] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R.
Devanur, G. R. Ganger, P. B. Gibbons, and M. Zaharia.
Pipedream: Generalized pipeline parallelism for dnn training.
In Proceedings of the 27th ACM Symposium on Operating Sys-
tems Principles, SOSP’19, pages 1–15, New York, NY, USA,
2019. Association for Computing Machinery.

[48] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo. Optimus: An
efficient dynamic resource scheduler for deep learning clusters.
In Proceedings of the Thirteenth EuroSys Conference, EuroSys
’18, New York, NY, USA, 2018. Association for Computing
Machinery.

[49] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and
C. Guo. A generic communication scheduler for distributed
dnn training acceleration. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19, page
16–29, New York, NY, USA, 2019. Association for Computing
Machinery.

[50] A. Qiao, S. K. Choe, S. J. Subramanya, W. Neiswanger, Q. Ho,
H. Zhang, G. R. Ganger, and E. P. Xing. Pollux: Co-adaptive
cluster scheduling for goodput-optimized deep learning. In
15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21), pages 1–18. USENIX Association,
July 2021.

[51] A. Radford, K. Narasimhan, T. Salimans, and
I. Sutskever. Improving language understanding by
generative pre-training. https://s3-us-west-2.
amazonaws.com/openai-assets/research-covers/
language-unsupervised/language_understanding_
paper.pdf.

[52] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever. Language models are unsupervised multitask
learners. 2018. https://d4mucfpksywv.cloudfront.net/
better-language-models/language-models.pdf.

[53] S. Rajasekaran, M. Ghobadi, G. Kumar, and A. Akella. Con-
gestion Control in Machine Learning Clusters. In Proceedings
of the 21st ACM Workshop on Hot Topics in Networks, HotNets
’22, page 235–242, 2022.

[54] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim,
A. Krishnamurthy, M. Moshref, D. Ports, and P. Richtarik. Scal-
ing distributed machine learning with In-Network aggregation.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1417

https://devblogs.nvidia.com/training-bert-with-gpus/
https://devblogs.nvidia.com/training-bert-with-gpus/
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

In 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21), pages 785–808. USENIX As-
sociation, Apr. 2021.

[55] A. Sergeev and M. D. Balso. Horovod: fast and easy distributed
deep learning in tensorflow. CoRR, abs/1802.05799, 2018.

[56] A. Shah, V. Chidambaram, M. Cowan, S. Maleki, M. Musu-
vathi, T. Mytkowicz, J. Nelson, O. Saarikivi, and R. Singh.
TACCL: Guiding collective algorithm synthesis using commu-
nication sketches. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages 593–
612, Boston, MA, Apr. 2023. USENIX Association.

[57] C. J. Shallue, J. Lee, J. M. Antognini, J. Sohl-Dickstein,
R. Frostig, and G. E. Dahl. Measuring the effects of data par-
allelism on neural network training. CoRR, abs/1811.03600,
2018.

[58] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani,
P. Koanantakool, P. Hawkins, H. Lee, M. Hong, C. Young,
R. Sepassi, and B. Hechtman. Mesh-tensorflow: Deep learning
for supercomputers. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

[59] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and
B. Catanzaro. Megatron-lm: Training multi-billion parameter
language models using model parallelism, 2020.

[60] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai,
A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lil-
licrap, K. Simonyan, and D. Hassabis. Mastering chess and
shogi by self-play with a general reinforcement learning algo-
rithm, 2017.

[61] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton,
Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche,
T. Graepel, and D. Hassabis. Mastering the game of go without
human knowledge. Nature, 2017.

[62] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition, 2015.

[63] P. Sun, W. Feng, R. Han, S. Yan, and Y. Wen. Optimizing
network performance for distributed dnn training on gpu clus-
ters: Imagenet/alexnet training in 1.5 minutes. arXiv preprint
arXiv:1902.06855, 2019.

[64] B. Wang, Q. Xu, Z. Bian, and Y. You. Tesseract: Parallelize
the tensor parallelism efficiently. In Proceedings of the 51st
International Conference on Parallel Processing. ACM, aug
2022.

[65] G. Wang, S. Venkataraman, A. Phanishayee, J. Thelin, N. De-
vanur, and I. Stoica. Blink: Fast and generic collectives for
distributed ml. In Conference on Machine Learning and Sys-
tems (MLSys 2020), March 2020.

[66] W. Wang, M. Khazraee, Z. Zhong, M. Ghobadi, Z. Jia, D. Mudi-
gere, Y. Zhang, and A. Kewitsch. TopoOpt: Co-optimizing
network topology and parallelization strategy for distributed
training jobs. In 20th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 23), pages 739–767,
Boston, MA, Apr. 2023. USENIX Association.

[67] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li,
L. Zhang, W. Lin, and Y. Ding. MLaaS in the wild: Workload
analysis and scheduling in Large-Scale heterogeneous GPU
clusters. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 945–960, Renton,
WA, Apr. 2022. USENIX Association.

[68] Z. Xia, Y. Zhou, F. Y. Yan, and J. Jiang. Genet: Automatic
curriculum generation for learning adaptation in networking.
In Proceedings of the ACM SIGCOMM 2022 Conference, SIG-
COMM ’22, page 397–413, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery.

[69] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra,
Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and
L. Zhou. Gandiva: Introspective cluster scheduling for deep
learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 595–610, Carls-
bad, CA, Oct. 2018. USENIX Association.

[70] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin,
and Y. Jia. AntMan: Dynamic scaling on GPU clusters for
deep learning. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages 533–
548. USENIX Association, Nov. 2020.

[71] M. Yang, A. Baban, V. Kugel, J. Libby, S. Mackie, S. S. R.
Kananda, C.-H. Wu, and M. Ghobadi. Using trio: Juniper
networks’ programmable chipset - for emerging in-network
applications. In Proceedings of the ACM SIGCOMM 2022
Conference, SIGCOMM ’22, page 633–648, New York, NY,
USA, 2022. Association for Computing Machinery.

[72] S. Zagoruyko and N. Komodakis. Wide residual networks,
2016.

[73] H. Zhao, Z. Han, Z. Yang, Q. Zhang, F. Yang, L. Zhou, M. Yang,
F. C. Lau, Y. Wang, Y. Xiong, and B. Wang. HiveD: Sharing
a GPU cluster for deep learning with guarantees. In 14th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 515–532. USENIX Association,
Nov. 2020.

[74] L. Zhao, S. Pal, T. Chugh, W. Wang, P. Basu, J. Khoury, and
A. Krishnamurthy. Optimal direct-connect topologies for col-
lective communications, 2022.

[75] Y. Zhao, Y. Liu, Y. Peng, Y. Zhu, X. Liu, and X. Jin. Multi-
resource interleaving for deep learning training. In Proceedings
of the ACM SIGCOMM 2022 Conference, SIGCOMM ’22,
page 428–440, New York, NY, USA, 2022. Association for
Computing Machinery.

[76] P. Zheng, R. Pan, T. Khan, S. Venkataraman, and A. Akella.
Shockwave: Fair and efficient cluster scheduling for dynamic
adaptation in machine learning. In 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23),
pages 703–723, Boston, MA, Apr. 2023. USENIX Association.

[77] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron,
J. Padhye, S. Raindel, M. H. Yahia, and M. Zhang. Congestion
control for large-scale rdma deployments. In Proceedings of
the 2015 ACM Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, page 523–536, New York,
NY, USA, 2015. Association for Computing Machinery.

1418 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Proof of Theorem 1
This section provides the proof of Theorem 1 (Correctness
and Uniqueness Guarantee) in Section 4. To prove uniqueness
we need to show that Algorithm 1 assigns a time shift value
exactly once to every job j ∈ J in the cluster with Affinity
graph G = (U,V,E). To prove the correctness, we need to
show that:

∀l,∀(jn, jm) ∈ {(ji, jk)|(ji, l) ∈ E and (jk, l) ∈ E} :

(t jn − t jm)%pl =(t l
jn − t l

jm)%pl (6)

where pl is the perimeter of the geometric abstraction for link
l. In other words, to guarantee correctness, we prove that for
every pair of jobs sharing a link, the difference in the time-
shift values assigned by the algorithm is equal to the relative
time-shift given by CASSINI’s optimization formulation for
that link.

We first use induction to prove that both the above
statements are true for any connected and loop-free Affinity
graph G = (U1,V1,E1), and later we extend this to a general
Affinity graph with many connected sub-graphs.

Base case: First, we show that both statements hold for a
graph G with only one link l. Algorithm 1 first selects one of
the jobs j1 connected to the link l and sets t j1 = 0. Using its
BFS traversal algorithm for all the other jobs ji connected to
l, Algorithm 1 sets the time shift as:

t ji =−t l
j1 + t l

ji

As the algorithm uses BFS and visits each job exactly once,
the time-shift value is computed and assigned exactly once for
each job. This ensures that for a given job, there is a unique
time-shift value computed by the algorithm.

To show correctness, we need to prove equation 6 for all
job pairs connected to the link l. Say jn and jm are two jobs
connected to the link l, then:

(t jm − t jn)%pl = (−t l
j1 + t l

jm − (−t l
j1 + t l

jn))%pl

= (t l
jm − t l

jn)%pl

This shows that the time shift assignments are correct for the
base case.

Assumption Step: Let us assume that the two statements
hold for every connected and loop-free Affinity graph having
n links.

Induction step: We use the above assumption to prove
that the two statements hold for a connected and loop-free
Affinity graph having n + 1 links. Let G = (Us,Vs,Es) be
the connected sub-graph with n links. Now, we create an
affinity graph with n+1 links, by adding a new link ln which
is already connected to some set of jobs J = { j}. In order to
get a connected and loop-free Affinity graph with n+1 links,

ln has to be connected to exactly one job ji ∈ Us. It has to
be exactly one because having an edge with more than one
job from the sub-graph G will form a loop, and not being
connected with any of the jobs from the sub-graph G will
make the Affinity graph disconnected. Let ji be the job from
subgraph G that is connected to ln. Since ji is the only path
to reach the link ln and the jobs J connected to the link, our
algorithm 1 will reach link ln through job ji. Then, from the
algorithm, the time assignments for the jobs in J are given by:

∀ jk ∈ J, t jk = t ji − t ln
ji + t ln

jk

The uniqueness is guaranteed since BFS visits each job only
once. From the assumption step, the correctness constraints
for all the links in the subgraph G are assumed to be valid, so
we have to only prove equation 6 for the jobs connected to ln.

∀(jm, jn)∈ J,(t jm −t jn)%pl =(t ji −t l
ji +t l

jm −(t ji −t l
ji +t l

jn))%pl

= (t l
jm − t l

jn)%pl

This shows that both statements hold true for any Affinity
graph with n+ 1 links. This concludes the induction proof.
Hence, Algorithm 1 holds true for all connected and loop-free
Affinity graphs.

Now, we extend to an Affinity graph of a cluster with mul-
tiple connected sub-graphs. Since our algorithm solves each
connected sub-graph one by one and assigns a single time-
shift value for each job in the sub-graph, uniqueness is guar-
anteed. For correctness, since there is no edge connecting
jobs and links from different disjoint sub-graphs there are no
constraints across disjoint graphs that need to be checked for
correctness. Hence, this concludes the overall proof.

Example. As an example, traversing the affinity graph in
Figure 8(b) results in the following unique time-shifts for j1,
j2, and j3:

t j1 =0 (reference point) (7)

t j2 =(−t l1
j1 + t l1

j2) mod iter_time j2 (8)

Affinity graph path: j1 →l1 → j2

t j3 =(−t l1
j1 + t l1

j2 − t l2
j2 + t l2

j3) mod iter_time j3 (9)

Affinity graph path: j1 → l1→ j2 → l2 → j3

For the correctness of the algorithm, the graph should be
loop-free. In CASSINI’s design, we eliminate placement con-
figurations that have loops. Themis allocates servers using
an auction procedure, which involves multiple jobs in the
cluster participating in the auction. This allows multiple pos-
sible placement configurations for the jobs participating in the
auction. Hence, it is easy to find many loop-free placement
configurations among them. Similarly, Pollux reallocates re-
sources periodically, involving multiple jobs and creating
many possible placement configurations.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1419

DNN Memory
requirement
(MB)

Batch
size/GPU

Parallelization
strategy

Type

VGG11 [26] 507 512-1800 Data Parallel Vision
VGG16 [18] 528 512-1800 Data Parallel Vision
VGG19 [32] 549 512-1800 Data Parallel Vision
WideResNet101 [72] 243 256-1200 Data Parallel Vision
ResNet50 [27] 98 256-1800 Data Parallel Vision
BERT [20] 450 8-32 Data Parallel Language
RoBERTa [39] 800 8-32 Data Parallel Language
CamemBERT [43] 266 8-32 Data Parallel Language
XLM [17] 1116 4-32 Data Parallel Language
GPT1 [51] 650 - 9000 32-80 Model Parallel Language
GPT2 [52] 1623- 27000 32-80 Model Parallel Language
GPT3 [11] 1952-

155000
16-48 Model Parallel Language

DLRM [6] 890 - 1962 16-1024 Model Parallel Recomm.

Table 3: DNN models used in our experiments.

Themis Th+Cassini Pollux Po+Cassini IdealRandom

(a) ECN marks for Resnet

0

10

20

30

40

50

0 10 20 30 40 50N
um

be
r o

f E
CN

 m
ar

ks

(1
00

0p
kt

s/
ite

ra
tio

n)

Time (sec)

0
20
40
60
80

100
120
140

0 10 20 30 40 50

Ra
te

 o
f E

CN
 m

ar
ki

ng

(1
00

0p
kt

s/
ite

ra
tio

n)

Time (sec)

(b) ECN marks for CamemBERT

Figure 19: Number of ECN marked packets per iteration

B DNN Models
As mentioned in Section 5.1, we run our experiment with
13 popular DNN models: VGG11 [26], VGG16 [18],
VGG19 [32], ResNet50 [27], WideResNet101 [72],
BERT [20], RoBERTa [39], XLM [17], CamemBERT [43],
GPT1 [51], GPT2 [52], GPT3 [11], and DLRM [6]. Table 3
summarizes the parameters of each model and batch sizes.
Note that the batch sizes are provided as a range because
the number of workers and hyper-parameters change during
scheduling epochs. In particular, in different experiments, we
select the batch size according to the hyper-parameters used
in prior work [1, 40, 50, 54, 57]. The memory requirement
of each model reflects the amount of memory each model
occupies in the GPU memory. We adjust the model sizes for
different models depending on the parallelization strategy.

C Number of ECN Marked Packets
Figure 19 plots the number of ECN marked packets per itera-
tion for the models ResNet and CamemBERT. These measure-
ments are from the experiment of Section 5.3. The ResNet
model has relatively lower ECN marks in general than other
models because ResNet has a smaller model size and requires
less network bandwidth for its AllReduce phase.

1420 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Towards Domain-Specific Network Transport for Distributed DNN Training

Hao Wang1, Han Tian1, Jingrong Chen2, Xinchen Wan1, Jiacheng Xia1, Gaoxiong Zeng1

Wei Bai3∗, Junchen Jiang4, Yong Wang1, Kai Chen1

1iSING Lab, Hong Kong University of Science and Technology
2Duke University, 3Microsoft, 4University of Chicago

Abstract
Machine learning (ML) applications present rich character-
istics to underlying network transport, yet little work has
been done so far to systematically exploit these properties
in transport design. This paper takes the initiative to pursue
a domain-specific network transport, called MLT1, for
distributed DNN training that fully embraces several unique
characteristics of machine learning.

At its heart, MLT employs three simple-yet-effective
techniques to form a 3-step progressive scheme against long
tail latency caused by transient packet drops and queueing.
First, it leverages the independencies among gradient updates
to enable per-packet load balancing to minimize network
hotspots without worrying about packet re-ordering. Then, if
hotspot arises, it performs priority queueing/dropping based on
the layers and magnitudes of gradients to optimize the model
convergence. Lastly, if drop occurs, it enables bounded-loss
tolerance—a certain amount of gradient losses tolerated by
the DNN training without affecting the model accuracy. MLT
is readily deployable with commodity switches and imposes
minimal modifications on various DNN training libraries
(e.g., TensorFlow, MXNet and PyTorch) and communication
routines (e.g., PS and Ring All-reduce). We show, via both
testbed experiments and simulations, that MLT effectively
optimizes network tail latency and delivers up to 62.2% better
end-to-end training performance over prior work.

1 Introduction
Deep Neural Networks (DNNs) have been paramount to
modern machine learning applications in computer vision
(CV) [41, 57, 91] and natural language processing (NLP) [74,
99,102]. However, training DNNs can be notoriously slow, due
importantly to the sheer volumes of gradients that need to be
frequently shuffled. While individual forward/backward prop-
agations can be massively parallelized, typical DNN training
still includes 100s of iterations, each ending up with shuffling
massive gradients across 10s to 100s of workers, potentially
causing severe worst-case congestion and tail latencies and
slowing DNN training down to a crawl. Such communication
bottlenecks have been witnessed in production clusters and
reported in many literatures [33, 39, 50, 69, 78, 81, 100, 114].

To reduce the communication overhead in distributed DNN

∗Now with NVIDIA
1MLT: Machine Learning Transport for AI-centric Networking (AICN).

training, many solutions have been proposed recently. Some
of them attempt to reduce traffic volume at application layer
through gradient compression (e.g., sparsification [33,66,101]
or quantization [12]), while others seek to overlap communica-
tion and computation through tensor partitioning and transmis-
sion scheduling [39, 49, 81]. However, while these solutions
effectively optimize the average flow completion time (FCT) in
general, they are susceptible to transient queueing or loss which
could lead to severe tail FCT when network is under pressure.
As we show in §2.2, by reducing the total traffic volume, gradi-
ent compression can reduce the average FCT, but fails to avoid
the long tail FCT caused by sporadic packet loss in the network,
which adversely affects the DNN training performance.

One plausible way to tackle this problem is to borrow the
sophisticated datacenter network transport solutions such
as DeTail [110], pFabric [15], Homa [77] and NDP [38],
to name a few, to deep learning clusters. However, while
these advanced solutions can potentially deliver near-optimal
average or tail latencies, they are too complex by either
re-factoring the whole network stack from physical layer, or
requiring the support of specific switch ASICs (e.g., cutting
payload [38]), or assuming non-blocking network cores,
making them hard to deploy in practice.

In this paper, we ask: can we design a simple, effective yet
readily-deployable solution to the above problem? Motivated
by the special properties of machine learning (§3), we answer
the question affirmatively by presenting MLT (§4), a domain-
specific network transport that can optimize both average and
tail FCTs of distributed DNN training by exploiting a series
of ML-specific properties, in a progressive manner.

First, MLT exploits the property of inter-packet inde-
pendency to perform per-packet load balancing, which
minimizes network hotspots. Per-packet load balancing is
highly desirable by almost all prior datacenter solutions with
multi-pathing. However, none could really enjoy its benefit
without paying considerable cost for packet re-ordering, with
some of them backing off to flowlet as a compromise [13, 96].
Unlike traditional applications where one message often
contains multiple packets (thus order-dependent), we note that
messages in DNN training are essentially gradients, which
are small enough (32bits or less) to allow multiple messages
packed in one packet (thus order-free) (§3.1). By exploring
this, MLT can effectively minimize network hotspots with
perfect packet spraying without re-ordering concern.

Second, when hotspot arises, MLT performs priority

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1421

queueing or dropping at the switch based on the importance of
gradients in the packets. As elaborated in §3.3, we find that the
importance of a gradient depends on its position (i.e., DNN
layer) and magnitude. Typically, gradients of front layers are
less important than back layers due to the popular pre-training
technique used in CV and NLP applications: the front layers
are often pre-trained on large/generic datasets and thus need
fewer updates than the back layers [107]. Meanwhile, larger
gradients are more important than smaller ones, because large
gradients are critical for identifying the correlation between
the intermediate features and the final prediction result.

Lastly, if packet drop occurs, MLT resorts to its final
defense—bounded-loss tolerance—no retransmission up to a
certain packet loss fraction allowed by the approximate SGD-
based training, to protect against the long tail latency (§3.2).
In contrast to today’s all-or-nothing transport primitive (TCP
or UDP), MLT supports a bounded-loss tolerance transport
primitive: by intentionally ignoring packets (bounded by p)
delayed or lost in the network without retransmission, MLT
effectively cuts tail latency while still maintaining the same
model accuracy. We note that while such loss-tolerance prop-
erty has been used in prior work to reduce traffic volume [101]
at the application layer which reduces the average FCT, we
reuse it at the transport layer to cut the tail (§4).

We have implemented MLT (§5) with commodity switches,
integrated it with TensorFlow, MXNet and PyTorch, and
deployed it over our small-scale testbed with 64 RTX3090
GPUs. In our implementation, we only use basic switch
functions such as ECN/RED and priority queueing, and build
MLT transport protocol in user space without modifying
kernel network stack. Through extensive testbed experiments
and large-scale simulations (§6), we find that:

• Compared to the state-of-the-art in communication
optimization of DNN training (BytePS [52]), MLT achieves
up to 12.0%–62.2% training speedup across various DNN
models while maintaining the same accuracy (§6.1).

• Compared to the PyTorch FSDP [115] in fine-tuning
Large Language Models (LLMs) with fully sharded data
parallelism [115], MLT achieves up to 35.5% speedup
without affecting the fine-tuning process (§6.1).

• Compared to one of the best datacenter transports
(NDP [38]), MLT delivers comparable network perfor-
mance (in fact, 6.7%/10.3% lower average/tail FCTs)
under realistic ResNet50-induced traffic, with no switch
modification (§6.2).

• Each design component of MLT contributes effectively to
the ultimate performance of MLT (§6.3).

We believe MLT showcases a first step towards an AI-centric
networking design that systematically explores a series of
ML-specific characteristics. While many questions, from theo-
retical understanding of more ML algorithmics/characteristics
to practical real-world implementation/deployment, remain
open (§7), our exploration in MLT has shown early promise

Parameter
Servers

Workers

Data
Shards

𝝎 ∆𝝎

Figure 1: Data parallelism with Parameter Server
of this direction and hopefully could inspire this community
to think more on how to design AI-centric networking for ML
applications by exploiting its special properties.

2 Distributed DNN Training
2.1 Communication Overhead
Training basics: DNNs learn intricate representations on
large datasets. A training process refines a DNN model upon a
dataset for many epochs, each consisting of multiple iterations.
In each iteration: (1) The DNN model and a data partition
(or mini-batch) are taken as input; (2) the mini-batch travels
through the model from the first layer to the last layer, called
forward propagation (FP), and computes a loss; (3) with the
loss derived, it computes the gradients backwards from the
last layer to the first layer, called backward propagation (BP);
and finally (4) the gradients, which represent information
acquired from the mini-batch, are used to update the model
with optimization algorithms, normally Stochastic Gradient
Descent (SGD) [21, 54, 82].
Parallelism schemes: There are mainly two types of
parallelism schemes for distributed ML: Data Parallelism
(DP) and Model Parallelism (MP). DP aims to faster batch
processing speed while MP tries to achieve better memory
efficiency. When a single GPU can accommodate a model,
the mainstream approach is DP [52]. With the rise of LLMs,
even the latest H100 [9] GPU cannot fit an entire model. As a
result, researchers start to use MP. Some leverage pipelining to
enhance computational efficiency (pipeline parallelism [78]),
while others further divide a tensor across multiple GPUs
(tensor parallelism [90]). Nevertheless, recent wisdom, e.g. ,
ZeRO [84] and FSDP [115], eliminates memory redundancies
of DP and achieves comparable or better performance than
MP in terms of memory efficiency, especially for models that
are hard to evenly distribute [84]. Such DP approach can even
achieve super-linear speedup [84].

Therefore, in this paper, we focus on data parallelism
and leave others as future work (§7). To speed up with DP,
mini-batches of training data are distributed across multiple
machines (or workers) as shown in Figure 1. Different workers
share the same global model and independently compute gradi-
ents (with FP and BP) on their respective mini-batches. Then,
gradients from all workers are synchronized and aggregated
to update the global model2, using either Parameter Server

2There are three general approaches to model synchronization: Bulk
Synchronous Parallelism (BSP) [95], Asynchronous Parallel (ASP) [86],
and Stale Synchronous Parallel (SSP) [104]. Among them, BSP, in which all
workers need to train on the same iterations, is preferred in production due

1422 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RTOmin=200ms
RTOmin=10ms
RTOmin=1ms

Sp
ee

d
(im

ag
es

/s
ec

)

1

10

100

1000

Compression Ratio
1× 2× 4× 8× 16× 32×

(a) Training Speed (for one worker)

FC
T/

m
s

1

10

100

Compression Ratio
1× 2× 4× 8× 16× 32×

(b) Average Flow Completion Time

FC
T/

m
s

1

10

100

1000

Compression Ratio
1× 2× 4× 8× 16× 32×

(c) Tail Flow Completion Time

Figure 2: Time cost of training GoogleNet on ImageNet with different compression ratios and RTOmins in our testbed. Note
that the minimum RTOmin in Linux kernel is 1ms, and we also deep-dive microsecond level RTOmin with simulations in §6.3.
However, please note that the realistic RTOmin in production is set typically at millisecond level even though the base RTT could
be at microsecond level, mainly due to the reason explained in Footnote-3.

architecture [60] or collective routines like All-reduce [80]:
• Parameter Server (PS) [60] is a logically centralized

key-value store. In each iteration, workers pull new model
parameters from PS for training, and then push gradients
to PS for model updating. PS enables flexible parameter
synchronization pattern and is generally fault-tolerant.

• All-reduce [80] is a collective operation to sum up
gradients of all workers. A popular implementation is Ring
All-reduce [88], in which workers form a logical ring. Each
worker receives a chunk of gradients from one neighbor,
adds to its local copy, and sends the chunk to the other
neighbor, until all the gradients are aggregated. Compared
to PS, Ring All-reduce generates more uniform traffic
pattern, but has higher synchronization overhead due to the
smaller flow size and longer communication chain [27].

Communication overhead: The above gradient transmission
and model synchronization demand efficient network trans-
port [81]. In each iteration, each worker can send and receive
model gradients with tens to thousands of MBs [41,57,91]. As a
result, the network communication often takes a significant por-
tion of the total training time. This overhead has been observed
by many recent literatures [31, 33, 39, 50, 60, 63, 78, 81, 112].
For example, training AlexNet on 8 nodes requires more
than 26Gbps bandwidth to avoid blocking computation of
next iteration [112]. Recent measurement has also shown
that communication accounts for 90% of the total training
time over 32 GPUs [78]. Furthermore, as reported by a large
online service provider, due to the communication overhead,
the training performance is far from linear speed-up with an
increasing number of GPU servers in many of their internal
and publicly available training workloads [81].

2.2 Existing Solutions and Problems
There exist solutions to the above problems from different
angles, however, they all have shortcomings.
Gradient sparsification and quantization: One direct way
to optimize the communication overhead is to reduce traffic

to its simplicity and convergence properties over ASP/SSP [11, 35, 72, 78].
Furthermore, BSP also produces deterministic and reproducible results, which
are needed in hyper-parameter tuning [103]. For these reasons, we focus on
BSP in this paper and leave ASP/SSP for future exploration.

volume at application layer through gradient compression (e.g.,
sparsification [33, 66, 101] or quantization [12]). Specifically,
gradient sparsification reduces network traffic by filtering
near zero gradients, whereas gradient quantization represents
the gradients with lower-precision floating point numbers to
reduce traffic volume. While both approaches reduce overall
traffic volume, they do not make communication completely
immune to long-tail latency due to packet drops or queueing
from micro-burstiness.

To show the problem, we train GoogleNet [93], a widely
used model, on ImageNet [29] dataset with different com-
pression ratios from 1× (original) to 32× (93.8%). Our
testbed contains 64 RTX3090 GPUs connected by 25Gbps
bandwidth. The detailed setup is in §6.1.1. For training, we
adopted the PS architecture and set the number of servers
equal to that of workers [81]. During the communication,
workers send gradient updates simultaneously to workers
or PSes, which may elicit a pathological phenomenon called
incast [24] congestion. As RTOmin, short for minimum
retransmission timeout, matters for the impact of incast [24],
we conduct the experiments with different RTOmin values:
200ms—the default value for Linux, 10ms—a common setting
of previous works [25], 1ms—the minimum setting for Linux
(release version) [24].3 To exclude the overhead of gradient
compression operations, we simulate the compression process
by directly modifying the gradient’s length. As reference, the
computation time of GoogleNet is about 30ms for a worker
in one iteration. To emulate a multi-job environment, we also
run two concurrent background DNN training tasks.

Figure 2 shows the experimental results. One key observa-
tion is that the improvement on training speed is quite limited
even with a significant gradient compression (Figure 2(a)),
e.g., a 32× compression in traffic volume only translates to
1.36-2.4× improvement in training speed. The root cause
behind is shown in Figure 2(b)(c): while the gradient compres-

3For theoretical analysis, we also simulate the microsecond level
RTOmin in §6.3, however, in practice, RTOmin in production clusters is
typically set at millisecond level to avoid spurious retransmissions under large
queue-buildups. Today’s commodity switches use shared buffer management
to improve burst tolerance, thus causing high queueing delay. For example,
Broadcom Trident II [116] with 12MB shared buffer and 32 40G ports can
cause up to 12MB/40Gbps=2.4ms queueing delay per hop.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1423

sion reduces the average FCT steadily from 15.3ms to 1.1ms,
the tail FCT, which decides the ultimate communication time
of one iteration, remains high. For large RTOmin = 200ms,
one retransmission timeout costs at least 200ms delay, so the
tail FCT is above 200ms. For smaller RTOmin=10ms or 1ms,
we find that the actual RTO is not determined by RTOmin, and
our measurement shows that the actual RTO is 48ms in case
of 32× compression, which is largely caused by consecutive
losses and spurious retransmissions. Consider the ∼30ms
computation time, such long-tail latency compromises the
overall training efficiency, undermining the benefit brought
by gradient compression.

The reader may wonder if operators can deploy priority flow
control (PFC) [1] to eliminate congestion loss, thus mitigating
long tail latency shown above. However, many studies
have shown that PFC causes a series of performance (e.g.,
congestion spreading and unfairness [116]) and management
problems (e.g., PFC storm and even deadlock [36]). In a
PFC-enabled network, a flow can be paused due to congestion
that is not even on its path. Moreover, PFC cannot eliminate
packet losses due to link failure, including both fail-stop failure
and gray failure [48]. Essentially, the head-of-line blocking
nature of PFC makes the network difficult to understand and
manage, and we leave it for future exploration.

Computation/communication overlapping and scheduling:
Most DNN training frameworks (e.g., MXNet, PyTorch and
TensorFlow) and Poseidon [112] overlap communication with
backward propagation (BP). Instead of waiting for BP on all
DNN layers, they send gradients as soon as one DNN layer is
processed, pipelining the gradient transmission of some layers
with the gradient computation of other layers. Building on Po-
seidon, P3, TicTac [39] and ByteScheduler/BytePS [52,81] fur-
ther overlap communication of the current iteration with the for-
ward propagation (FP) of the next iteration through tensor par-
titioning and priority-based transmission scheduling. Despite
being helpful, these solutions are still insufficient because, by
design, such DNN structure-level overlappings do not directly
solve the tail latency issue shown in Figure 2. Furthermore, they
ignore the network as they are purely endhost-based solutions,
but network switches are unaware of such application-level
priorities when choosing which packets to queue or drop.

Advanced datacenter transport: One plausible way to tackle
the tough tail latency could be introducing the sophisticated
datacenter network transport solutions such as DeTail [110],
pFabric [15], Homa [77] and NDP [38], etc., to deep learning
clusters. These deliberately designed solutions can potentially
deliver near-optimal average or tail latencies, which may
effectively solve the issues in Figure 2. However, the downside
is that these solutions are typically too complex, e.g., either
re-factoring the whole network stack from physical layer,
or requiring switch hardware modifications (e.g., cutting
payload [38]), or assuming non-blocking network cores,
making them hard to deploy in practice.

3 Observations and Opportunities
We seek an effective yet readily-deployable solution without
much complexity. By exploiting the domain-specific prop-
erties of DNN training, we make the following observations
which provide insights for our design.

3.1 Packets Are Order-Independent
Unlike many other applications, packets in DNN training can
tolerate out-of-order delivery. This is because in traditional
applications, the application data unit or message usually
spans multiple packets, and therefore, ordering needs to be
maintained among packets of a message. In contrast, in DNN
training context, the message is just a gradient or parameter,
which is typically represented as a 32-bit floating pointer
number [60]. Therefore, multiple message can be packed
within one packet, and packets can be interpreted indepen-
dently. Such inter-packet order-independency provides an
opportunity for packet-level load balancing in the network.

Meanwhile, the traffic in DNN training is predictable. To
enhance communication efficiency, DNN training frameworks
divide a tensor into buckets, e.g., the default maximum bucket
size in PyTorch [79] is 25MB. To better overlap communica-
tion with computation, BytePS [52] implements tensor parti-
tioning with a default size of 4MB. Such pre-determined maxi-
mum bucket or partition sizes facilitate tensor re-construction
at the receiver end.

3.2 Packet Losses Are Bound-Tolerant
SGD-based DNN training is essentially an approximation
algorithm which estimates better parameter values based on
gradients calculated from mini-batches [21, 62]. It can tolerate
loss for two main reasons: (1) gradient loss from workers
results in dynamic mini-batch sizes instead of directly causing
errors, as SGD updates the model with the average gradient
values collected from workers, the expected gradient for
update can be unbiased under certain random loss; (2) even if
an error occurs, it will self-heal automatically. This is because
in each round SGD recalibrates the gradient vector towards
the optimal based on the current model weights, errors caused
by loss in the earlier iterations will not be propagated to the
latter ones. Recent work [108] has theoretically proven that,
under random loss, this algorithm can converge within the
same magnitude of iterations.

Before using this property, we try to understand it more
precisely. We simulate the scenario of distributed SGD on
different DNN models, and randomly set the gradients to be
0 with ratio p to simulate packet losses in the network. To
quantify the impact, we first train the baseline (no loss) for
500 iterations, which is large enough to make the test accuracy
almost constant for all the models and datasets. The final test
accuracy value is set as Quality Target [4]. Then, we measure
the rounds needed to reach the Quality Target for each ratio
p. This approach is the same as MLPerf [4], a well-known
ML benchmark. We repeat each measurement for 10 times

1424 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Bounded-loss ratio (p) 0%-1% 1%-2% >2%

GoogleNet [93] (0.7%) LSTM [42] (0.8%) ResNet34 [41] (1%) Wide ResNet50 [109] (2.4%)
Model AlexNet [57](0.8%) VGG16 [91] (0.8%) GRU [26] (1.2%) ResNet50 [41] (2.4%)

EfficientNetB0 [94] (0.8%) VGG19 [91] (0.9%) Wide ResNet101 [109] (1.3%) ShuffleNetV2 [71] (2.5%)
VGG13 [91] (0.9%) ResNet18 [41] (0.9%) DenseNet169 [47] (1.6%) ResNet101 [41] (3.3%)

Table 1: The bounded-loss tolerance property for a wide range of DNN models. For LSTM and GRU models, we train them as
NLP tasks using Wikitext-2 [75]; Other models are trained as CV tasks using ImageNet100 [7].

Model GoogleNet GRU

Dataset Cifar100 Caltech101 Wiki.-2 Wiki.-103
Grad. loss 0.8% 0.8% 1.2% 1.4%

Table 2: Loss-tolerant bounds for different datasets

LSTM

C
on

v.
 R

ou
nd

60
70
80
90
100

Random Data Loss Probability(%)
0 2 4 6 8 10

Resnet50

C
on

v.
 R

ou
nd

50

60

70

80

Random Data Loss Probability(%)
0 2 4 6 8 10

Figure 3: Impact of loss on model convergence: when the loss
ratio is below 0.8% (for LSTM) and 2.5% (for ResNet50), the
models converge with the same rounds to the same accuracies,
indicating loss-tolerance.
and calculate the average. Figure 3 shows the example results
of LSTM [42] and ResNet50 [41] trained on Wikitext-2 [75]
and Cifar100 [56] datasets. We find that: (1) when the loss
ratio is below 10%, we can achieve the Quality Target; and
(2) when the loss ratio is below 0.8% (for LSTM) and 2.5%
(for ResNet50), we can achieve this with exactly the same
rounds. We further validate this feature across a wide range of
DNN models using several general training datasets. Table 1
summarizes the results for these models, achieving the Quality
Target with the same rounds.

We refer to this feature as bounded-loss tolerance: DNN
training can tolerate a certain fraction p of data loss while
still converging with the same iterations to the same accuracy.
Despite our fine-grained profiling above, we note that the
general property of tolerating gradient loss in DNN training
is not new and has been explored in prior works [44, 101, 108].
However, while these existing solutions leverage it for
reducing traffic volume [101] or designing reliable PS
algorithms [108] at application layer to reduce average FCT,
our paper reuses it at network transport layer to cut the tail (§4).

In addition, while different models may have different loss
tolerance bounds, we observe that the bounds of one model for
different datasets we used remain similar. We show a case in
Table 2, in which the bounds for GoogleNet over Cifar100 [56]
and Caltech101 [34] are the same, while the bounds for GRU
over Wikitext-2 and Wikitext-103 [75] only differ by 0.2%.
This enables us to profile the loss tolerance bound values for
general DNN models4.

4We note that in practice the bound of a model may vary if datasets differ
greatly in some aspects. To explore the loss tolerance bound of a model on
a large dataset, one practical way is to use the tolerance bound derived from
a smaller sampled sub-dataset from the original dataset as an approximation.
Through experiments, we find that the loss tolerance bounds remain almost
the same between the sampled sub-dataset and the original dataset. We leave

Back
Middle
Front

C
on

v.
 R

ou
nd

20

30

40

Random Data Loss Probability(%)
0 0.4 0.8 1.2 1.6

(a) Loss on different layers

Large
Medium
Small

C
on

v.
 R

ou
nd

20

30

Random Data Loss Probability(%)
0 0.4 0.8 1.2 1.6 2.0

(b) Loss with different values
Figure 4: Gradient losses on different NN layers (a) and with
different magnitudes (b) generate different impacts on model
convergence.

3.3 Packets/Gradients Differ in Importance
We observe that different gradients have different impacts
on DNN training, depending on their layer positions in
DNNs [111], and their magnitudes [44].

First, for convergence, gradients of front layers are often less
important than back layers due to the prevalent pre-training
technique used in CV and NLP applications. Taking CV as
an example, front layers extract low-level features such as
edges and corners, whereas back layers learn more complex
concepts like shapes of certain object. Due to the generality of
low-level features across different tasks and datasets, people
often pre-train the front layers of their DNNs on large and
generic datasets, e.g., ImageNet [29], and then fine-tune them
over the target dataset, which will accelerate the training and
improve the model performance [107]. With per-training,
the front layers extracting low-level features are generally
well learned, thus need fewer updates than the back layers.
Meanwhile, gradients of front layers are more urgent when
pipelining strategies [50, 81] are employed, because the FP
can start once the front-layer gradients are received.

To illustrate the impact of gradient loss on different
layers, we train ResNet50 on Cifar100 [56] during which
we randomly discard gradients from: the front layers (the
first 20% layers), the middle layers (the middle 20% layers),
and the back layers (the last 20% layers) with varying loss
probabilities. We first trained the model without discarding
gradients and found that the test accuracy converged to 93%,
thus in our experiment we set 93% as the target accuracy.
Results in Figure 4(a) show that front-layer gradients have a
much higher bounded-loss tolerance than back-layer gradients.
For instance, to maintain the same convergence speed and
accuracy, we can only tolerate 0.3% gradient loss from the
back layers but over 5% from the front layers.

Second, larger gradients are typically more important
than smaller ones. This is because larger gradients are more
effective for SGD to identify the correlations between the

a full exploration of this as future work.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1425

features and the task than that of smaller ones. As a result, their
losses have more negative impact on model accuracy [59].
Furthermore, larger gradients indicate bigger learning step
sizes, thus having more impact on convergence speed.

To show the impact of gradient loss of different magnitudes,
we again consider three scenarios: randomly dropping
gradients among the smallest 20%, the medium 20%, and
the largest 20% magnitudes with different loss probabilities.
Results in Fig 4(b) show that dropping larger gradients has
a much lower bounded-loss tolerance than that of dropping
smaller ones. For example, to maintain the same convergence
property, we can tolerate more than 20% loss of small
gradients but only 0.4% of the large gradients.

4 The MLT Design
MLT is inspired by the above observations. In this section, we
first introduce the key ideas of MLT (§4.1), and then present
the detailed mechanisms (§4.2). We theoretically prove the
convergence of MLT in Appendix A.

4.1 Key Ideas
1. Minimizing hotspots with order-free per-packet load
balancing. Load balancing aims to eliminate hotspots by
spreading traffic onto multiple paths. Ideally, it should be done
at packet-level. However, to avoid costly packet reordering,
current practice remains to work at the sub-optimal coarse
granularity [13, 15, 19, 113]. Based on the observation in
§3.1, packets of DNN training are order-free, which enables
packet-level spreading without reordering concerns. Thus,
MLT employs per-packet load balancing to minimize network
hotspots (§4.2.1).
2. Gradient-aware packet queueing and dropping. While
DNN training tolerates certain packet losses, the impact of
losing different gradients differs as per the observation in §3.3:
1) in terms of DNN layer, front layer gradients are less impor-
tant than back layer ones, whose dropping has less impact on
model convergence; 2) in terms of magnitude, large gradients
are more important than small ones, whose dropping has more
impact on model accuracy. To respect them, when the switch
queue is full and some packets have to be dropped, MLT en-
forces a gradient-aware selective dropping: 1) Packets carrying
front layer gradients will be selected for dropping over those
carrying back layer ones; 2) Packets carrying smaller gradients
will be selected for dropping over those carrying larger ones.

Furthermore, as mentioned in §3.3, while gradients of
front layers are less important for convergence, they are more
urgent for training pipelining, since FP can start as soon as the
front-layer tensors are received [81]. Therefore, in addition
to selective dropping, we further enforce priority queueing
to prioritize front-layer packets (§4.2.2).
3. Cutting tail latency with bounded-loss tolerance. As
shown in §2.2, gradient compression does not completely
solve the long tail latency issue. This is because network
congestion (packet losses or queueing) may be caused not

Priority queueing
& droppingPer-packet load

balancing

Bounded-loss tolerant
transmission

Leaf
switch

Spine switch

Figure 5: MLT Overview

gradientstensor_id offset

g11 g12 g1mg11 g12 … g1m

g21 g22 g2m

…

gn1 gn2 gnm

Tensors
Independent

partition of gradients

Packets
Sender Receiver

… … …

…

…

…

Figure 6: Tensor packing and unpacking
only by traffic volume, but also by traffic pattern, e.g., high
fan-in burst in a short time.

MLT exploits bounded-loss tolerance (§3.2) to address the
tail latency. Currently, reliability in transport control is “all-
or-nothing”: TCP requires all packets to be received and thus
may get blocked by a tiny fraction of packet losses waiting
for retransmission; whereas UDP has no reliability guarantee.
Neither suits for DNN training. Instead, MLT uses a bounded-
loss tolerant transport protocol that tolerates up to a bound p
fraction of packet losses without retransmission, thus effec-
tively cutting the tail latency while not degrading the training
outcome (§4.2.3).

4.2 Mechanisms
Figure 5 overviews MLT, with a 3-step workflow. First, data
traffic is spread out onto multiple paths on a per-packet basis
to minimize hotpots (Idea 1). Then, if hotspot arises, MLT
performs priority queueing, followed by selective dropping in
case of buffer overflow, based on gradient importance (Idea 2).
Finally, if packet drops which may potentially trigger timeout,
as a final defense, MLT enables bounded loss-tolerant data
transmission to avoid long retransmission delay (Idea 3).
These 3 steps work progressively to protect MLT against the
long tail latency.

4.2.1 Order-free Per-packet Load Balancing

MLT performs fast start at end-hosts, and per-packet load bal-
ancing in the network. To ensure packet independency, MLT
needs careful packet construction.

Order-free packet construction. MLT first performs tensor
packing before transmission (Figure 6). Gradients in a tensor
are divided into separated groups, which are then packed
into packets with tensor ID, layer, and offset information.
When a packet reaches the receiver, gradients in the packet
can be put into the corresponding addresses according to the
tensor ID and gradient offset. For lost gradients, we fill in the
corresponding places with zeros. For lost parameters, we use
the value of the previous iteration. This ensures that the MLT
receiver can still re-construct the tensor even with some lost
or reordered packets.

1426 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Input

Output

Priority Queueing
to speed up

training pipelining

Queue 1

Queue 2

Queue K

Queue 3

Priority levels

DNN models on
worker/server Queueing/dropping at switch

Gradients/parameters

high

low

ECN marking thresholds for
Selective Dropping

Figure 7: Priority Queueing and Selective Dropping
Per-packet load balancing. We consider two design options
for per-packet load balancing. One is to leverage the switch
side per-packet ECMP [43]. The other is to give end-hosts the
control of multi-path routing [46]. This can be done by source
routing or label switching. In our implementation of this paper,
we follow the second option as source routing delivers more
predictable performance by explicitly determining the path for
each packet. With the aid of per-packet load balancing, MLT
effectively minimizes hotspots to a great extent.
4.2.2 Gradient-aware Packet Queueing & Dropping
Congestion may still occur even if per-packet load balancing
is employed. MLT performs priority queueing and selective
dropping in case of queue buildup and buffer overflow, based
on the impact of gradients/packets on DNN training (§3.3).
End-host packet tagging. MLT first tags packets based on
the layers and magnitudes of gradients. To decide packet
priority, a straightforward solution is to map packets of each
layer to a unique priority. However, this is impractical as there
are usually much more DNN layers than switch priorities
(typically 8 [19]). To handle it, MLT evenly distributes all
layers into available priorities: it tags the packets of i-th layer
with iP

L , where L and P are total numbers of DNN layers and
available switch priority queues, respectively.

To encode the magnitude information, we adopt a similar
approach used in gradient sparsification [66]. Given all
gradients in a packet, MLT calculates the mean value and
compares it against a threshold to mark whether the packet
is important or not (indicated by ECN field in packet header
§5.2)5. By default, the threshold is set to median of all
gradients in a tensor. To minimize overhead, we sample 5%
of the gradients (inspired by [66] whose sample rate is <1%).
Switch queueing and dropping. Based on the tagging
information, MLT switches perform priority queueing and
selective dropping as shown Figure 7. For priority queueing,
it maps packets of front layers to high priority queues, which
speeds up the training pipelines. For selective dropping, it
decides whether to drop a packet from two dimensions. On
the layer level, to selectively drop front layer packets, the
corresponding higher priority queues are set with lower
dropping thresholds (more analysis in Appendix B). On

5Note that the magnitude of gradient is a better importance indicator
than that of the original parameter. If the original parameter is small yet the
gradient is large, dropping the gradient may discard update information that
builds new correlation between two features from “unrelated” to “related”.

the magnitude level, the switch drops packets based on
the importance tags; less important packets get selectively
dropped. Note that there is no need for complex deep packet
inspection, and both priority queueing and selective dropping
can be readily implemented with commodity switches by
checking DSCP and ECN fields, respectively (§5.2).

4.2.3 Bounded-loss Tolerant Data Transmission
With well-balanced traffic and deliberate queueing and
dropping mechanisms, packet loss should happen rarely or,
in case it happens, has limited impacts. However, in case of
severe losses that may lead to timeouts, as a final resort, MLT
enables a bounded-loss tolerance data transmission to avoid
long retransmission latency.
Strawman design. To realize bounded-loss tolerant data
transmission, a strawman solution is to let the receiver
application start next iteration once it receives a certain
fraction of gradients. However, this approach suffers from
head-of-line (HoL) blocking due to in-order delivery nature
of reliable transport protocols like TCP. Consider a 10-packet
message where the second packet is lost. Though the transport
layer gets 90% of data, it can only deliver the first packet up
to the application as the lost second packet blocks the delivery
of remaining packets. Consequently, application suffers from
unnecessary retransmission delay to move forward.

The reader may wonder the feasibility of unreliable
transport protocols such as UDP. While unreliable transport
protocols do not have above HoL blocking problem, their best
effort nature cannot guarantee the delivery of a certain portion
of packets. In addition, they lack congestion control to prevent
congestion collapse. Therefore, we decide to come up a new
transport protocol that can guarantee the delivery of a certain
fraction, say (1−p)%, of packets.
Semi-reliable transmission. Before training, MLT first syn-
chronizes among all the nodes with the following information:
(1) loss-tolerant bound p∈[0,1), the maximum tolerable loss
fraction for a tensor; (2) ID and size of each tensor. Note that
we can get this information before the training starts and tensor
sizes are fixed for each of the iterations. Such information is
transmitted via a reliable channel, e.g., TCP or RDMA RC
(Reliable Connection) to ensure reliability.

When the correctly delivered data reaches the bound,
MLT receiver sends a stop signal to stop the sender-side
transmission. However, it is possible that the receiver may not
obtain enough data after the sender transmitted all the packets
for a round. To this end, after transmitting all the packets of a
tensor, the sender sends a probe signal to the receiver to query
the status. The receiver responds with a bitmap of received
packets, and then the sender will re-transmit all missing
packets. Such recovery process continues until the stop signal
is received by the sender. Note that control packets such as
stop and probe are transmitted over reliable channel.
Minimal rate control. In virtue of the loss-tolerance feature,
MLT only requires a minimal rate control to avoid congestion

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1427

Kernel TCPVMA Library

Bounded-Loss Transmission

Data packet Control signal

MLT

Socket

Packet Manipulation (Tx Path)

Packet
Tagging

Send(tensor) Recv(&tensor)

ML
Framework

Middleware BytePS/Horovod/Specific Adapter

Packet Manipulation (Rx Path)

VMA Library

Data packet

Data
Partitioning Rate ControlTransmission

Control
Tensor

Construction
Packet

Untagging

MXNetPyTorchTensorFlow

Figure 8: MLT end-host implementation overview
collapse. It uses the delay as the congestion signal and adopts
a TIMELY-like [76] algorithm:
• Initially, flow starts at line rate. The sender encodes a

timestamp in the data packet while the receiver periodically
echoes back the timestamp via ACK. In our setting, the
receiver sends one ACK for every ten arrival data packets.

• Every time the sender receives an ACK, it computes the
current RTT and RTT gradient, then update the sending
rate. The rule is: 1) if the current RTT is less than Tlow or
the RTT gradient is <0, it performs additive increase and
sets the rate to rate+α; 2) if the current RTT is larger than
Thigh, it performs multiplicative decrease and sets the rate
to rate ·(1−β ·(1− Thigh

current_rtt)). In our experiment, Tlow is
12.5µs, Thigh is 125µs, α is 40Mbps and β is 0.8.

5 Implementation
We build a MLT prototype with Mellanox LibVMA [73] and
commodity switches, and integrate it into popular ML frame-
works, e.g., Tensorflow [11], PyTorch [79] and MXNet [23].

5.1 End-host Network Stack
Overview. As shown in Figure 8, MLT is implemented as
a shim layer running in user space between ML framework
and socket interfaces. We provide a series of universal com-
munication interfaces that can be integrated into various ML
frameworks [11, 23, 79] and distributed training middleware
systems (e.g., Horovod [88] and BytePS [52]).
Universal interfaces. We design and implement basic
communication primitives for common application abstrac-
tions of ML frameworks [11, 23, 52, 79]. MLT provides an
asynchronous operation and completion programming model
which is similar to those used in high performance commu-
nication libraries such as libverbs and libfabric. It provides
two basic communication APIs dlcp_post_send(tensor,
prio_func) anddlcp_post_recv(tensor, loss_bound)
and an API dlcp_poll_cq (cq) for completion notification.
The tensor abstraction is widely used by almost all popular
DNN frameworks such as TensorFlow and PyTorch.
MLT sender. At the sender side, a tensor is first partitioned
into several MTU-sized (excluding header overhead) segments
of gradients. Then we run the priority function prio_func
to determine the per-segment priority. We use the DSCP field
in the IP header to carry the priority value. The MLT header
contained in UDP payload encodes the tensor identifier, length,
offset and a sequence number.

MLT receiver. At the receiver side, dlcp_post_recv takes
the tensor received and the loss-tolerant bound as input. Before
data transmission, the sender and receiver do a rendezvous
to allocate receiving buffer in advance. Upon receiving a new
packet, the receiver copies its gradients to the pre-allocated
memory according to its offset.

Data & signal transmission. We implement MLT using both
UDP and TCP. Inspired by [40], we separate data transfers
and control signals, and only provide full reliability for
control signals (flow start/finish, retransmisison request, stop
request/confirm) whose traffic size is much smaller. To ensure
reliability, we use TCP to carry control signals. To minimize
the loss of control signals, we reserve a separate priority for
them at the switch. We find that control packets are rarely
dropped in practice. To achieve high throughput, we adopt
UDP in Mellanox LibVMA [73] (instead of Linux kernel), a
high-performance user space network stack.

Retransmission. MLT implements selective acknowledge-
ment (SACK) to manage retransmission. The buffer of a
transmitting tensor is shared by both the application and
MLT library until the corresponding completion is generated.
Thus, there is no need to maintain an additional buffer for
retransmission of unacknowledged packets.

RDMA Implementation feasibility. Today, RDMA is widely
used to accelerate distributed ML training [52,106]. The reader
may wonder how to implement MLT in RDMA NIC. However,
we did a feasibility study and noticed that today’s RDMA
NIC hardware still cannot provide enough programmability
to implement complex transport functionalities efficiently. For
example, even on the state-of-the-art NVIDIA ConnectX-7
NIC [8] which supports programmable congestion control,
users still cannot modify packet retransmission logic inside
the NIC. If we onload MLT’s complex functionalities,
e.g., semi-reliable transmission, to user space like previous
work [53], we may lose the real benefits of hardware offloading.
Therefore, we leave a full hardware implementation of MLT
as future work.

5.2 Switch Configurations
We implement priority queueing and selective dropping using
built-in functions of commodity switches.

Priority queueing (with DSCP). We enable strict priority
queueing and classify packets into the corresponding priority
queues based on the DSCP field [19, 22].

Selective dropping (with ECN). Current switching chips can-
not push out packets that are already stored in the switch buffers.
Therefore, we can only selectively drop packets at the ingress.
To this end, inspired by Aeolus [45], we use RED/ECN func-
tion [18], which is supported by commodity switches. In cur-
rent implementations, when the switch queue size exceeds the
ECN marking threshold, the switch will mark the arrival ECN-
capable packets and drop non-ECN-capable packets. Hence,
to implement selective dropping, we tag the packets carrying

1428 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

large gradients with ECN-capable at the sender side. To imple-
ment layer-wise selective dropping, e.g., packets from the front
layers are easier to drop than that from the back layers, we set
smaller ECN marking thresholds for higher priority queues.

5.3 ML Framework Integration
MLT can be directly integrated with ML frameworks such
as TensorFlow [11], PyTorch [79], and MXNet [23] or indi-
rectly integrated with some distributed training middleware
systems such as Horovod [88] and BytePS [52]. Typically,
ML frameworks have their own distributed training imple-
mentations. They tend to choose a specific RPC or messaging
library and build an abstraction over it. For example, MXNet
uses PS-Lite [60] and builds a key-value store over it, while
PyTorch prefers collective communication API and can have
multiple backends such as Gloo [32], MPI [28] or NCCL [5].
These communication abstraction layers decide which nodes
are communicating with each other in one iteration and are
usually built on the top of point-to-point communication primi-
tives. To directly integrate MLT with ML frameworks, we only
need to re-implement their communication abstraction layers
using MLT’s interfaces. To indirectly integrate MLT with dis-
tributed training middleware systems, we have to replace the
point-to-point communication with MLT, and construct the
All-reduce scheme or PS topology when necessary. As BytePS
supports TensorFlow, PyTorch and MXNet, in our prototype,
we integrate MLT into BytePS [52].

6 Evaluation
We evaluate MLT with a combination of testbed experiments
and larger-scale simulations. The highlights include:
• In testbed experiments, we evaluate MLT across different

DNN models, ML frameworks and synchronization
paradigms (§6.1). Compared to the state-of-the-art work
BytePS [52] or PyTorch FSDP [115], MLT achieves up to
62.2% (PS), 10.2% (Ring) and 35.5% (FSDP, for LLMs)
training speedup without hurting the accuracy.

• In large-scale simulations, we compare MLT against various
advanced datacenter transport protocols with realistic DNN
training traffic (§6.2). MLT achieves 43.1%/91.8% lower
average/tail FCTs over DCTCP [14] and 6.7%/10.3% lower
average/tail FCTs over NDP [38] under ResNet50-induced
traffic, without modifying switch hardware.

• Deep-dive into MLT design (§6.3) shows that each of its de-
sign components contributes effectively to its performance.
We further quantify the impacts of loss-tolerant bounds and
microsecond-level RTOmin.

6.1 Testbed Experiments
6.1.1 Experimental Setup

Testbed: Our testbed (Figure 9) has 8 physical GPU servers,
each with 8 RTX3090 GPUs, 80 CPU cores (Intel Xeon
Gold 5218R), 256GB memory, 2 Mellanox ConnectX5
100Gbps NICs, and 4 Mellanox SN2100 switches running

Figure 9: Testbed Topology
Onyx 3.7.1134 OS. It forms a leaf-spine topology with one
spine switch and three leaf switches in physical. Each leaf
switch has two 100Gbps links connecting to the spine switch,
thus logically we have two spine switches. The three racks
contain 2, 3, 3 GPU servers, respectively. Each server has
two 100Gbps links connecting to the leaf switch. We further
divide one physical servers into 8 docker containers, each with
1x GPU, 10x CPU cores, 32GB memory and 25Gbps virtual
NIC6. Ultimately, we get a 64-node testbed with 2:1 to 3:1
over-subscription, a normal ratio in production [92].
Models and datasets: We use four models and two datasets
in our experiments. Our models include three image classifi-
cation tasks: VGG16 [91], ResNet50 [41] and GoogleNet [93]
training on the synthetic data with the same image size as
ImageNet [29], and one translation task: Transformer [98]
training on SQuAD [85]. We run experiments on three
ML frameworks: TensorFlow, PyTorch, MXNet with two
parameter synchronization paradigms: PS (colocated and
#servers = #workers) and Ring All-reduce.
Baselines and metrics: We mainly compare MLT with the
vanilla ML frameworks (baseline) and BytePS [52] with cross
global barrier enabled. Basically, BytePS incorporates tensor
partition and priority scheduling of ByteScheduler [81] and
has better code robustness, thus representing a state-of-the-art
in communication optimization of DNN training. For image
classification models, we use the # of images processed per
second as the speed metric, and for transformer we measure
the # of questions processed per second [85].
Parameter settings: The batch sizes of VGG16, ResNet50,
GoogleNet and Transformer are 32, 32, 32, and 10 samples
(images or questions) per GPU, referring to the settings in [81].
Switches have 4MB shared memory, and 8 queues per port.
We use DCTCP [14] as the transport protocol for baseline
and BytePS. To ensure a fair comparison between MLT and
BytePS, we open the multiple connections function [2] of
BytePS, i.e., two connections per 25Gbps, to make sure it can
saturate the bandwidth. RTOmin is 1ms and initial window
size is 20. With selective dropping, in our experiments, we
conservatively set loss-tolerant bound to 10% for MLT (see
§6.3 for deep-dive on impact of loss-tolerant bounds).
6.1.2 Results
Overall, across different DNN models, ML frameworks and
sync paradigms, MLT achieves remarkable training speedup
over state-of-the-art. Our measurement also shows that the

6We use SR-IOV to separate the physical NIC. SR-IOV can achieve
nearly the same performance as the non-virtualized environments [30].

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1429

Baseline
BytePS
MLT

1e3
Sp

ee
d

(im
ag

es
/s

ec
)

0

1

2

3

4

5

of Workers
8 16 32 64

(a) ResNet50

Baseline
BytePS
MLT

1e2

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

of Workers
8 16 32 64

(b) VGG16

Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

5

10

15

of Workers
8 16 32 64

(c) GoogleNet

Baseline
BytePS
MLT

1e1

Sp
ee

d
(q

ue
st

io
ns

/s
ec

)

0

1

2

3

of Workers
8 16 32 64

(d) Transformer
Figure 10: Speedup under different DNN models using TensorFlow under PS (all converge with the same epochs).

Baseline
BytePS
MLT

1e2

Sp
ee

d
(im

ag
es

/s
ec

)

0
1
2
3
4
5
6
7

of Workers
8 16 32 64

(a) MXNet, VGG16

Baseline
BytePS
MLT

1e2

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

of Workers
8 16 32 64

(b) PyTorch, VGG16

Baseline
BytePS
MLT

1e1

Sp
ee

d
(q

ue
st

io
ns

/s
ec

)

0

1

2

3

4

5

of Workers
8 16 32 64

(c) MXNet, Transformer

Baseline
BytePS
MLT

1e1

Sp
ee

d
(q

ue
st

io
ns

/s
ec

)

0

1

2

3

of Workers
8 16 32 64

(d) PyTorch, Transformer
Figure 11: Speedup under other frameworks: MXNet and PyTorch (results with ResNet50 and GoogleNet in Appendix).

Baseline
BytePS
MLT

1e2

Sp
ee

d (
im

ag
es

/se
c)

0
1
2
3
4
5
6
7
8
9

of Workers
8 16 32 64

(a) VGG16

Baseline
BytePS
MLT

1e1

Sp
ee

d
(q

ue
st

io
ns

/s
ec

)

0
1
2
3
4
5
6

of Workers
8 16 32 64

(b) Transformer
Figure 12: Speedup under Ring All-reduce.

FSDP
MLT

1e4

Sp
ee

d
(T

ok
en

s/
se

c)

0

1

2

3

4

of GPUs
16 32 64

(a) T5-3B

FSDP
MLT

1e3

Sp
ee

d
(T

ok
en

s/
se

c)

0
1
2
3
4
5
6
7
8

of GPUs
16 32 64

(b) T5-11B
Figure 13: Speedup under Large Language Models.

additional CPU cost introduced by MLT is <1%. Note that our
results below are all based on the condition that the models
converge to the same accuracy with the same iterations.
Speedup under different DNN models: Figure 10 shows
performance of MLT over baseline and BytePS on four DNN
models using TensorFlow under PS. From the figure, we
make the following three observations. First, MLT performs
the best of all on all models. Specifically, MLT outperforms
BytePS by 14.1%–62.2% and baseline by 34.5%–141%,
across the four models. The main reason is that the default
reliable transport is sensitive to packet losses, which may
trigger timeouts and cause millisecond-level delay. During the
training, we observed around 0.15% packet losses from the
buffer counting function provided by our switch [3]. Second,
the improvement of MLT becomes more significant as the # of
workers increases. As we can see, MLT outperforms BytePS
by 9.34% to 10.7% when the # of workers is 8, and by 14.1%
to 62.2% when it increases to 64. This is expected because
as the network pressure grows higher, packet losses become
more frequent. Third, MLT achieves more speedup in VGG16
than other models. As shown in Figure 10(a), MLT achieves up
to 62.2% speedup in VGG16, more than that in other models.

The reason is that VGG16 is communication-bound and it has
the largest communication-to-computation ratio.
Speedup under different ML frameworks: Figure 11 shows
the performance of MLT over the baseline and BytePS in
PyTorch and MXNet by training VGG16 and Transformer
under PS (ResNet50 and GoogleNet in Appendix-C, Fig-
ure 22). Note that the native PyTorch Distributed Data Parallel
does not support PS, so we use the modified version [6]
as the baseline for PyTorch. We observe similar trends as
above in TensorFlow. Overall, we find that MLT outperforms
BytePS by 12.0%–53.6% and 15.3%–56.6% in MXNet
and PyTorch respectively, and they both achieve the best
speedup with VGG16 due to the same reason explained
above. This experiment shows that MLT can deliver persistent
performance improvement across different ML frameworks.
Speedup under Ring All-reduce: The above experiments all
use PS, which is widely used in both academia and industry [50,
52, 60, 81], especially for the large and sparse models [61].
Here, we further evaluate the performance of MLT under Ring
All-reduce. Please note that BytePS [52] by default does not
support the Ring All-reduce communication, we adapt it to
support Ring. Figure 12 shows the results of VGG16 and Trans-
former (ResNet50 and GoogleNet in Appendix-C, Figure 23).
In all cases, we see clear performance improvement with MLT,
though not significant. Compared to BytePS, MLT achieves
6.89%–10.2% improvement; in comparison, BytePS achieves
5.97%–8.21% improvement over the baseline. As expected,
we observe less speedup in Ring All-reduce than that in PS, and
the key reason is that: packet loss is rare in Ring All-reduce,
thus it is immune from long tail latency caused by timeout. Nev-
ertheless, MLT still delivers better performance over BytePS
due to the fine-grained per-packet load balancing and reduction
of data volume in transmission with bounded loss tolerance.
Speedup under Large Language Models (LLMs): Recently,
LLMs like ChatGPT [10] have gained popularity and received
considerable attention from the community. To support
training or fine-tuning of LLMs, a popular approach is to
divide the parameters, gradients, and optimizer states equally

1430 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

into each GPU’s memory during the data parallelism. Before
computing a layer of a model, an all-reduce communication
is performed to ensure each GPU possesses a full copy of the
current layer. This approach reduces GPU memory footprint
through frequent communication. Notable implementations
of this approach include Zero Redundancy Optimizer
(ZeRO) [84] and Fully Sharded Data Parallel (FSDP) [115].

To evaluate MLT under LLMs, we replace the inter-server
communication module of the PyTorch FSDP [115] (using
NCCL [5]) with MLT. For the communication of optimizer
states that are used for gradient calculation, i.e., gradient
momentums and historical gradient values, we treat them the
same as gradients. Considering that each GPU does not store
the full copy of parameters, we cannot use the past parameters
to replace the missing new parameters. To handle this issue, we
mark all parameter packets as important packets. This does not
significantly alter the proportion of important packets, as the
optimizer states dominate the traffic volume in FSDP [84,115].
Given the limitation of compute power of our testbed, we chose
the HuggingFace T5 model [83], a popular transformer-based
open-source LLM, 3/11-billion versions and fine-tune them
on the WikiHow dataset [55] for the text summarization task.

Figure 13 shows the results. In our experiment, we find
that for the T5-11B model, 8 RTX3090s are insufficient
to accommodate it, so we show the results with 16, 32 and
64 GPUs respectively. Compared to the PyTorch FSDP,
MLT achieves an improvement of 22.1%-35.5% for T5-3B
and 18.5%-31.2% for T5-11B. We observe more speedup
compared to Figure 12 with the same Ring All-reduce setting,
this is because FSDP involves more frequent communication
and a larger volume of data transfer for LLMs. Moreover, we
monitor the model loss changes during the fine-tuning process
and find that MLT does not affect the model convergence.

6.2 Large-scale Simulations
6.2.1 Simulation Setup
Topology and traffic: As [15, 19], we choose a leaf-spine
topology with 4 core, 9 ToR switches and 144 hosts. Each ToR
switch is connected to 16 hosts using 100Gbps links and 4 core
switches using 4×100Gbps links. The base RTT between two
servers (4 hops) is 24µs. Each switch port has 512KB buffer.
For network traffic, we use the realistic workloads derived
from training ResNet50 and GoogleNet under PS. We evenly
distribute workers and parameter servers across all the racks,
with the ratio of 3:1. We also obtain the computation time and
tensor sizes from our testbed.
Schemes compared: We use DCTCP [14] as the baseline,
as it is widely used in production. We also compare MLT
with PIAS [19], pFabric [15], NDP [38] (simulated on htsim).
TCP initial window is 10, and ECN marking threshold is 65
packets [14]. RTOmin is set to 10ms by default [20, 97] (We
also ran simulations with 5ms and 1ms RTOmin, and observed
similar trends). DupACKs is 3 for DCTCP and PIAS, and
DelayAck is disabled. DCTCP and PIAS use per-flow ECMP

MLT
DCTCP
PIAS
NDP
pFabric

FC
T/

m
s

1

2

3

4

of Workers
36 72 108 144

(a) ResNet50, Average FCT

MLT
DCTCP
PIAS
NDP
pFabric

FC
T/

m
s

0
200

400
600

of Workers
36 72 108 144

(b) ResNet50, Tail FCT

MLT
DCTCP
PIAS
NDP
pFabric

FC
T/

m
s

1

2

3

4

of Workers
36 72 108 144

(c) GoogleNet, Average FCT

MLT
DCTCP
PIAS
NDP
pFabric

FC
T/

m
s

0
200

400
600

of Workers
36 72 108 144

(d) GoogleNet, Tail FCT
Figure 14: Large-scale simulations (network metrics).

while pFabric uses per-packet ECMP.
6.2.2 Results
Figure 14 shows the average and tail FCTs of MLT versus
other schemes for ResNet50 and GoogleNet induced traffic at
varying network scales. In general, MLT delivers the best per-
formance. For ResNet50, MLT achieves up to 43.1%, 44.8%,
35.5%, 6.7% lower average FCT and 91.8%, 91.8%, 88.6%,
10.3% lower tail FCT compared to DCTCP, PIAS, pFabric and
NDP, respectively. For GoogleNet, MLT delivers up to 35.1%,
38.0%, 43.5%, 7.7% lower average FCT and 91.7%, 91.9%,
91.7%, 8.7% lower tail FCT over these schemes, respectively.
From the above results, we make the following observations:

• MLT preforms the best in all settings. MLT achieves the
best performance in all workloads and network scales. The
main reason is that all the other algorithms suffer from
packet loss and retransmission to ensure reliability, while
MLT tolerates certain packet loss.

• MLT significantly reduces the tail FCT. Relative to average
FCT, MLT reduces the tail more significantly. The reason
is that retransmission timeout greatly increases the tail of
other algorithms, while MLT tolerates packet loss and is
free of retransmission timeout. We also note that NDP can
achieve similar performance as MLT. However, it requires
special switch hardware and is not readily deployable.

• The speedup of MLT is more notable as the network scale
increases. In general, MLT reduces FCT more significantly
at larger scale. The reason is that, as the scale increases, prior
solutions experience more packet loss, thus performance
degradation, whereas MLT is immune to overhead by
packet loss with the bounded-loss tolerance.

6.3 Deep Dive
MLT under gray failure of links [testbed]: Fault-tolerance
and reliability are crucial for distributed training, especially for
large models. We find that the loss tolerance feature of MLT can
be a good solution in the gray failure of network links, i.e., hard-
to-detect but persistent link random packet loss, which may
be caused by subtle hardware malfunctions, firmware bugs,
or environmental interference [48]. A measurement work in
Microsoft categorizes a network problem when the loss rate
is larger the 0.1% [37]. Here we evaluate the performance of

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1431

Baseline
BytePS
MLT

1e2
Sp

ee
d

(im
ag

es
/s

ec
)

0
1
2
3
4
5
6
7
8
9

Loss Rate (%)
0 0.01 0.1 1

(a) VGG16

Baseline
BytePS
MLT

1e1

Sp
ee

d
(q

ue
st

io
ns

/s
ec

)

0
1
2
3
4
5
6

Loss Rate (%)
0 0.01 0.1 1

(b) Transformer
Figure 15: Speedup under gray failure of links.

MLT under gray failure on our 64 GPUs testbed. We assume
that a worker-to-switch link has a gray failure, and emulate
packet loss by adding random packet dropping to the mapped
NICs by using the tc qdisc tool in linux. The loss rate is set to
0, 0.01%, 0.1% and 1% in the experiment and we use PyTorch
as the framework. Figure 15 shows the results of VGG16 and
Transformer. Figure 21 shows ResNet50 and GoogleNet in
Appendix-C. We can see that the baseline and BytePS start
to suffer from noticeable performance degradation (12.2%-
31.5% and 15%-28.3%) when the loss rate is 0.1% and the
degradation is significant (25.7%-61.7% and 31.2%-61.3%)
when the loss rate is 1%. As a comparison, MLT maintains its
performance in all the loss scenarios.
Design component effectiveness [testbed]: MLT consists of
three main components: A) bounded-loss tolerant data trans-
mission, B) gradient-aware queueing and dropping, and C)
order-free per-packet load balancing. We now look into the ef-
fectiveness of each component. To do so, we set BytePS [52] as
the baseline, and start MLT with component A and then gradu-
ally add B and C one by one (setting I). Then, we start with com-
ponent C (using UDP with the minimal rate control of MLT)
and gradually add B and A (setting II). We measure the speeds
of training ResNet50, Transformer, VGG16 and GoogleNet
under PyTorch with 64 GPUs, and we repeat the experiment
10 times and compute the mean and standard error. Corre-
spondingly, we also record the convergence curves (epoch-to-
accuracy, ETA). The results of VGG16 and Transformer are
shown in Figure 16 for setting I and Figure 17 for setting setting
II (ResNet50 and GoogleNet in Appendix-C, Figure 24 and
Figure 25). For CNN models, we use top-1 accuracy; for Trans-
former, we use exact match (EM) as the test accuracy metric.

From the results, we see that each component contributes
effectively to the overall performance. Specifically, in setting
I, compared to BytePS, MLT with component A only can
improve the training speed (left figures). While it requires a bit
more rounds to converge to the same accuracy (right figures,
due to the packet loss as we set the loss bound as 10%), we
find that the end-to-end training time still improves (decided
by both unit speed and # of epochs). Then, with component
B added, the ETA of MLT is significantly improved (almost
as good as BytePS) as the training speed increases. The main
reason is due to selective dropping which preserves important
gradients from being dropped. Finally, after incorporating
component C, MLT maintains its good ETA while improving
remarkably in training speed. This is because of the better
network utilization brought by perfect load balancing.

In setting II, spreading gradients out at packet granularity (C)

1e2

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

Component
BytePS A A+B A+B+C

(a) VGG16, Speed

BytePS
A
A+B
A+B+CTe

st
 A

cc
ur

ac
y

(%
)

0

50

100

Epoch50 100

(b) VGG16, ETA
1e1

Sp
ee

d
(q

ue
st

io
ns

/s
ec

)

0

1

2

3

4

5

Component
BytePS A A+B A+B+C

(c) Transformer, Speed

BytePS
A
A+B
A+B+CTe

st
 A

cc
ur

ac
y

(%
)

0

20

40

60

Epoch5 10

(d) Transformer, ETA
Figure 16: Effectiveness of design components (I).
1e2

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

Component
BytePS C C+B C+B+A

(a) VGG16, Speed

BytePS
C
C+B
C+B+ATe

st
 A

cc
ur

ac
y

(%
)

0

50

100

Epoch50 100

(b) VGG16, ETA
1e1

Sp
ee

d
(q

ue
st

io
ns

/s
ec

)

0

1

2

3

4

5

Component
BytePS C C+B C+B+A

(c) Transformer, Speed

BytePS
C
C+B
C+B+ATe

st
 A

cc
ur

ac
y

(%
)

0

20

40

60

Epoch5 10 15

(d) Transformer, ETA
Figure 17: Effectiveness of design components (II).

can effectively improve the training speed, but requiring more
epochs to converge and may reduce the accuracy. After adding
gradient-aware packet queueing and dropping (B), the speed is
sightly increased and convergence is significantly improved,
only needs a few more epochs than the baseline. The reason
is that priority queueing can speed up the communication-
computation pipeline and selective dropping can protect more
important gradients. Finally, with the bounded-loss tolerance
transmission (A), it can further speedup the training and achiev-
ing the same convergence speed and accuracy as the baseline.

Impact of loss-tolerant bounds [testbed]: We inspect the con-
vergence behaviors of MLT with different loss-tolerant bounds
by training VGG16 and Transformer in Figure 18 (ResNet50
and GoogleNet in Appendix-C, Figure 26). We set the bound
as 1%, 10%, 20% and 30%, respectively. Figure 18(a)(c) show
curves of ETA. We can see that with 1% and 10% loss-tolerant
bounds, the curves are all almost in line with BytePS; with
20% and 30% loss-tolerant bounds, it requires more epochs
to converge to the same accuracy. We also measured the
bounds of other widely-used models with MLT in Table 5 of
Appendix-C. The results indicate that, with the optimization
of gradient-aware dropping, MLT can tolerate more packet
loss than pure random loss shown in Table 1. This motivates us
to set the loss-tolerant bound as 10% in our testbed experiment
(§6.1). Figure 18(b)(d) show results of time-to-accuracy
(TTA). Compared to BytePS, MLT converges faster under all

1432 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

MLT-1%
MLT-10%
MLT-20%
MLT-30%
BytePSTe

st
 A

cc
ur

ac
y

(%
)

0

50

100

Epoch0 50 100

(a) VGG16, ETA

MLT-1%
MLT-10%
MLT-20%
MLT-30%
BytePSTe

st
 A

cc
ur

ac
y

(%
)

0

50

100

Time (s)
0 20000 40000

(b) VGG16, TTA

MLT-1%
MLT-10%
MLT-20%
MLT-30%
BytePSTe

st
 A

cc
ur

ac
y

(%
)

0

20

40

60

Epoch
0 5 10 15

(c) Transformer, ETA

MLT-1%
MLT-10%
MLT-20%
MLT-30%
BytePSTe

st
 A

cc
ur

ac
y

(%
)

0

20

40

60

Time (s)
2000 4000 6000 8000 10000

(d) Transformer, TTA
Figure 18: Impact of loss-tolerant bounds.

loss-tolerant bounds, except for MLT-30% under Transformer.
Meanwhile, we find that 1% and 10% loss-tolerant bounds
take almost the same time to converge. This implies that we
might not need to struggle with fine-tuning the loss-tolerant
bound in order to achieve satisfactory performance. However,
the relationship between the model architecture and its
loss-tolerant bounds remains an open question for future study.
Impact of microsecond RTOmin [simulation]: As a com-
plement to testbed, we measure the tail FCT when RTOmin is
<1ms using simulation. Specifically, we choose three RTOmins:
25µs which is close to our 24µs base RTT, and two intermediate
values: 100µs and 500µs. We conduct the simulations with
GoogleNet-induced traffic under different compression ratios,
and show the results in Figure 19. From the figure, we make
two observations. First, while the RTOmin is sub-ms level, the
tail FCT is still around 10ms or above (MLT can reduce it to
4.12ms). This is due to the same reason as explained in §2.2—
tail FCT is mainly decided by large actual RTO amplified by
consecutive packet losses and spurious retransmissions. For
example, we observe 4.2KB spurious retransmission from the
tail flow (the size is 127.4KB) and 0.97% packet loss under
25µs RTOmin and 32× compression. MLT can reduce the
tail to 4.12ms. Second, the curves turn to flat after a certain
compression ratio, which implies that further compressing the
gradient volume does not help to reduce the tail FCT. This is
also in line with our observation in §2.2. As a final remark,
while we showcase the µs-level RTOmin here, we remind
readers that in production RTOmin is typically set at ms-level.

7 Open Questions and Discussion
MLT is, by no means, a full stop to ML-specific transport. We
have left a series of open questions from theoretical aspects of
ML characteristics to practical implementation/deployment
throughout the paper. Here, we discuss a few more. Due to
the space limit, we move the discussion of "co-existing with
non-DNN traffic", "flexible selective dropping" and "MLT vs
SRD" to the Appendix-D.
MLT for other parallelism schemes. While MLT is mainly
designed for data parallelism, its core ideas may provide
insights for designing network transport for other schemes,
i.e., model/pipeline/tensor parallelism [51]. Some MLT
mechanisms can be directly used. For example, the order-free

MLT
MLT-25µs
MLT-100µs
MLT-500µs
MLT-1ms

FC
T/

m
s

1

10 1

10 2

Compression Ratio
1× 2× 4× 8× 16× 32×

Figure 19: Tail FCTs with microsecond-level RTOmin.
pre-packet load balancing remains effective for activations
and propagated gradients in model parallelism. Others may
need to be modified to adapt to the nature of model parallelism.
For example, packets in transmission for model parallelism
are primarily used for FP/BP computations, which makes their
priorities/loss-tolerance properties different from the model
synchronization/update phases in data parallelism. We leave
the theoretical analysis of this for future study.

Multi-tenant cloud environment. In multi-tenant cloud
environments, e.g., EC2 and Azure, we will not be able to
manipulate the underlying network protocols and switches.
For example, the traffic may be encapsulated inside a tunnel
(like VXLAN) and switches cannot access those fields to
perform priority queueing or dropping. Furthermore, the cloud
providers typically do not allow tenants to access the queues
of the underlying network for security reasons. Thus, we
acknowledge that MLT does not work for such scenarios.

8 Related Work
Besides the closely related works discussed in §2.2, there
exist some other solutions to improve the communication of
DNN training. For example, RDMA [17, 67] and NCCL [5]
provide higher bandwidth to speedup tensor transmission.
BlueConnect [27] and PLink [70] design novel communica-
tion patterns with network topology awareness for gradient
synchronization at each iteration for better performance
and robustness. GPipe [49] and PipeDream [78] overlap
communication with computation in model parallelism. More
recently, SwitchML [87] and ATP [58] leverages in-network
aggregation to reduce the communication overhead in the
network. Note that these works are orthogonal to MLT.

9 Conclusion
This paper presented MLT, a domain-specific network
transport exploiting the special properties of machine learning
to optimize distributed DNN training. MLT consists of
three key ideas: 1) order-free per-packet load balancing,
2) gradient-aware packet queueing and dropping, and 3)
bounded-loss tolerant data transmission. Extensive testbed
experiments and simulations have shown the promise of MLT.

Acknowledgement
We thank the anonymous NSDI reviewers and our shepherd
Costin Raiciu for their feedback and suggestions. This work
is supported in part by Hong Kong RGC TRS T41-603/20R,
GRF 16213621, ITF ACCESS, NSFC 62062005, Key-Area
Research and Development Program of Guangdong Province
(2021B0101400001), and the Turing AI Computing Cloud
(TACC) [105]. Kai Chen is the corresponding author.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1433

References
[1] Ieee. 802.11qbb. priority based flow control

https://1.ieee802.org/dcb/802-1qbb/, 2011.

[2] Byteps best practice: https://github.com/byted
ance/byteps/blob/master/docs/best-practic
e.md?plain=1#L26, 2020.

[3] Mellonax switch: https://www.mellanox.com/p
roducts/ethernet-switches, 2020.

[4] Mlperf training results resnet50: https:
//mlperf.org/training-results-0-6, 2020.

[5] Nvidia collective communications library: https://
www.nvidia.com/en-us/data-center/nvlink/,
2020.

[6] Pytorch distributed data parallel supporting ps:
https://github.com/bytedance/byteps/blob/m
aster/docs/DistributedDataParallel.md, 2020.

[7] Imagenet-100: https://www.kaggle.com/datas
ets/ambityga/imagenet100, 2022.

[8] Connectx-7: https://nvdam.widen.net/s/csf8r
mnqwl/infiniband-ethernet-datasheet-conne
ctx-7-ds-nv-us-2544471, 2023.

[9] Nvidia h100 tensor core gpu: https://www.nvidia
.com/en-us/data-center/h100/, 2023.

[10] Openai chatgpt: https://chat.openai.com, 2023.

[11] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In OSDI, 2016.

[12] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,
and Milan Vojnovic. Qsgd: Communication-efficient
sgd via gradient quantization and encoding. In NIPS,
2017.

[13] Mohammad Alizadeh, Tom Edsall, Sarang Dharma-
purikar, Ramanan Vaidyanathan, Kevin Chu, Andy
Fingerhut, Vinh The Lam, Francis Matus, Rong Pan,
Navindra Yadav, et al. Conga: Distributed congestion-
aware load balancing for datacenters. In Proceedings
of the 2014 ACM Conference on SIGCOMM, pages
503–514, 2014.

[14] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
tcp (dctcp). In SIGCOMM, 2010.

[15] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar,
and Scott Shenker. pfabric: Minimal near-optimal
datacenter transport. In SIGCOMM. ACM, 2013.

[16] Arnold O Allen. Probability, statistics, and queueing
theory. Academic press, 2014.

[17] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Kris-
han Kumar Attre, Paramvir Bahl, Ameya Bhagat, Gowri
Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,
et al. Empowering azure storage with rdma. In 20th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 49–67, 2023.

[18] Wei Bai, Kai Chen, Li Chen, Changhoon Kim, and
Haitao Wu. Enabling ecn over generic packet
scheduling. In Proceedings of the 12th International
on Conference on emerging Networking EXperiments
and Technologies, pages 191–204. ACM, 2016.

[19] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Hao Wang. Information-agnostic flow scheduling
for commodity data centers. In 12th {USENIX}
Symposium on Networked Systems Design and
Implementation ({NSDI} 15), pages 455–468, 2015.

[20] Wei Bai, Shuihai Hu, Kai Chen, Kun Tan, and
Yongqiang Xiong. One more config is enough: Saving
(dc) tcp for high-speed extremely shallow-buffered
datacenters. In IEEE INFOCOM 2020-IEEE Confer-
ence on Computer Communications, pages 2007–2016.
IEEE, 2020.

[21] Léon Bottou. Large-scale machine learning with
stochastic gradient descent. In COMPSTAT’2010.
Springer, 2010.

[22] Li Chen, Kai Chen, Wei Bai, and Mohammad Alizadeh.
Scheduling mix-flows in commodity datacenters with
karuna. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 174–187, 2016.

[23] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. Mxnet: A flexible and efficient
machine learning library for heterogeneous distributed
systems. arXiv preprint arXiv:1512.01274, 2015.

[24] Yanpei Chen, Rean Griffith, Junda Liu, Randy H
Katz, and Anthony D Joseph. Understanding tcp
incast throughput collapse in datacenter networks. In
Proceedings of the 1st ACM workshop on Research on
enterprise networking, pages 73–82, 2009.

[25] Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang
Lin. Catch the whole lot in an action: Rapid precise
packet loss notification in data center. In 11th

1434 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://1.ieee802.org/dcb/802-1qbb/
https://1.ieee802.org/dcb/802-1qbb/
https://github.com/bytedance/byteps/blob/master/docs/best-practice.md?plain=1#L26
https://github.com/bytedance/byteps/blob/master/docs/best-practice.md?plain=1#L26
https://github.com/bytedance/byteps/blob/master/docs/best-practice.md?plain=1#L26
https://www.mellanox.com/products/ethernet-switches
https://www.mellanox.com/products/ethernet-switches
https://mlperf.org/training-results-0-6
https://mlperf.org/training-results-0-6
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://github.com/bytedance/byteps/blob/master/docs/DistributedDataParallel.md
https://github.com/bytedance/byteps/blob/master/docs/DistributedDataParallel.md
https://github.com/bytedance/byteps/blob/master/docs/DistributedDataParallel.md
https://www.kaggle.com/datasets/ambityga/imagenet100
https://www.kaggle.com/datasets/ambityga/imagenet100
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/
https://chat.openai.com

{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 14), pages 17–28, 2014.

[26] Kyunghyun Cho, Bart van Merrienboer, Caglar
Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase
representations using rnn encoder–decoder for statis-
tical machine translation. Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2014.

[27] Minsik Cho, Ulrich Finkler, and David Kung. Blue-
connect: Novel hierarchical all-reduce on multi-tired
network for deep learning. In Proceedings of the Confer-
ence on Systems and Machine Learning (SysML), 2019.

[28] Lyndon Clarke, Ian Glendinning, and Rolf Hempel.
The mpi message passing interface standard. In
Programming environments for massively parallel
distributed systems, pages 213–218. Springer, 1994.

[29] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009.

[30] Yaozu Dong, Xiaowei Yang, Jianhui Li, Guangdeng
Liao, Kun Tian, and Haibing Guan. High performance
network virtualization with sr-iov. Journal of Parallel
and Distributed Computing, 72(11):1471–1480, 2012.

[31] Nikoli Dryden, Naoya Maruyama, Tim Moon, Tom
Benson, Andy Yoo, Marc Snir, and Brian Van Essen.
Aluminum: An asynchronous, gpu-aware communi-
cation library optimized for large-scale training of deep
neural networks on hpc systems. Technical report,
Lawrence Livermore National Lab.(LLNL), Livermore,
CA (United States), 2018.

[32] Facebook. Gloo: Collective communications library
with various primitives for multi-machine training.,
2020.

[33] Jiawei Fei, Chen-Yu Ho, Atal Narayan Sahu, Marco
Canini, and Amedeo Sapio. Efficient sparse collective
communication and its application to accelerate
distributed deep learning. In SIGCOMM, 2021.

[34] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning
generative visual models from few training examples:
An incremental bayesian approach tested on 101 object
categories. Computer Vision and Pattern Recognition
Workshop, 2004.

[35] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter
Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate,

large minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

[36] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav
Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn.
Rdma over commodity ethernet at scale. In Proceed-
ings of the 2016 ACM SIGCOMM Conference, pages
202–215. ACM, 2016.

[37] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin
Wang, Bin Pang, Hua Chen, et al. Pingmesh: A
large-scale system for data center network latency
measurement and analysis. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data
Communication, pages 139–152, 2015.

[38] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 29–42, 2017.

[39] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and
Roy H Campbell. Tictac: Accelerating distributed
deep learning with communication scheduling. arXiv
preprint arXiv:1803.03288, 2018.

[40] E. He, J. Leigh, O. Yu, and T. A. Defanti. Reliable blast
udp : predictable high performance bulk data transfer.
In Proceedings. IEEE International Conference on
Cluster Computing, pages 317–324, 2002.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016.

[42] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

[43] Christian Hopps et al. Analysis of an equal-cost
multi-path algorithm. Technical report, RFC 2992,
November, 2000.

[44] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar,
Dimitris Konomis, Gregory R Ganger, Phillip B Gib-
bons, and Onur Mutlu. Gaia: Geo-distributed machine
learning approaching lan speeds. In NSDI, 2017.

[45] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang,
Baochen Qiao, Kai Chen, Kun Tan, and Yi Wang.
Aeolus: A building block for proactive transport in
datacenters. In Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communi-
cation on the applications, technologies, architectures,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1435

and protocols for computer communication, pages
422–434, 2020.

[46] Shuihai Hu, Kai Chen, Haitao Wu, Wei Bai, Chang
Lan, Hao Wang, Hongze Zhao, and Chuanxiong Guo.
Explicit path control in commodity data centers: Design
and applications. In 12th {USENIX} Symposium
on Networked Systems Design and Implementation
({NSDI} 15), pages 15–28, 2015.

[47] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
4700–4708, 2017.

[48] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R
Lorch, Yingnong Dang, Murali Chintalapati, and
Randolph Yao. Gray failure: The achilles’ heel of cloud-
scale systems. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems, pages 150–155, 2017.

[49] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient
training of giant neural networks using pipeline
parallelism. In Advances in Neural Information
Processing Systems, pages 103–112, 2019.

[50] Anand Jayarajan, Jinliang Wei, Garth A. Gibson,
Alexandra Fedorova, and Gennady Pekhimenko.
Priority-based parameter propagation for distributed
dnn training. In Proceedings of Systems and Machine
Learning (SysML), 2019.

[51] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond
data and model parallelism for deep neural networks.
Proceedings of Machine Learning and Systems, 1:1–13,
2019.

[52] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed {DNN} training in heteroge-
neous gpu/cpu clusters. In 14th {USENIX} Symposium
on Operating Systems Design and Implementation
({OSDI} 20), pages 463–479, 2020.

[53] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In 16th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 19), pages 1–16, 2019.

[54] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[55] Mahnaz Koupaee and William Yang Wang. Wikihow:
A large scale text summarization dataset. arXiv preprint
arXiv:1810.09305, 2018.

[56] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
The cifar-10 dataset, 2014.

[57] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 25, pages 1097–1105.
Curran Associates, Inc., 2012.

[58] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi
Chen, Wenfei Wu, Aditya Akella, and Michael M Swift.
Atp: In-network aggregation for multi-tenant learning.
In NSDI, pages 741–761, 2021.

[59] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. nature, 521(7553):436, 2015.

[60] Mu Li, David G Andersen, Jun Woo Park, Alexander J
Smola, Amr Ahmed, Vanja Josifovski, James Long,
Eugene J Shekita, and Bor-Yiing Su. Scaling distributed
machine learning with the parameter server. In OSDI,
2014.

[61] Mu Li, David G Andersen, Alexander J Smola, and
Kai Yu. Communication efficient distributed machine
learning with the parameter server. Advances in Neural
Information Processing Systems, 27:19–27, 2014.

[62] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J
Smola. Efficient mini-batch training for stochastic
optimization. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 661–670, 2014.

[63] Y. Li, J. Park, M. Alian, Y. Yuan, Z. Qu, P. Pan, R. Wang,
A. Schwing, H. Esmaeilzadeh, and N. S. Kim. A
network-centric hardware/algorithm co-design to accel-
erate distributed training of deep neural networks. In
2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 175–188, 2018.

[64] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu.
Asynchronous parallel stochastic gradient for noncon-
vex optimization. In Advances in Neural Information
Processing Systems, pages 2737–2745, 2015.

[65] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh,
Wei Zhang, and Ji Liu. Can decentralized algorithms
outperform centralized algorithms? a case study for
decentralized parallel stochastic gradient descent. In
Advances in Neural Information Processing Systems,
pages 5330–5340, 2017.

[66] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and
William J Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training.
arXiv preprint arXiv:1712.01887, 2017.

1436 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[67] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K Panda.
High performance rdma-based mpi implementation
over infiniband. International Journal of Parallel
Programming, 32(3):167–198, 2004.

[68] Yuanwei Lu,Guo Chen,Larry Luo,Kun Tan,Yongqiang
Xiong, Xiaoliang Wang, and Enhong Chen. One more
queue is enough: Minimizing flow completion time
with explicit priority notification. In IEEE INFOCOM
2017-IEEE Conference on Computer Communications,
pages 1–9. IEEE, 2017.

[69] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phan-
ishayee, and Arvind Krishnamurthy. Parameter hub:
a rack-scale parameter server for distributed deep
neural network training. In Proceedings of the ACM
Symposium on Cloud Computing, pages 41–54, 2018.

[70] Liang Luo, Peter West, Jacob Nelson, Arvind Krish-
namurthy, and Luis Ceze. Plink: Efficient cloud-based
training with topology-aware dynamic hierarchical
aggregation. In Proceedings of the 3rd MLSys
Conference, 2020.

[71] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and
Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of
the European conference on computer vision (ECCV),
pages 116–131, 2018.

[72] Dominic Masters and Carlo Luschi. Revisiting small
batch training for deep neural networks. arXiv preprint
arXiv:1804.07612, 2018.

[73] Mellanox. Messaging accelerator (vma), 2019.

[74] Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. Regularizing and optimizing lstm language
models. arXiv preprint arXiv:1708.02182, 2017.

[75] Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models. arXiv
preprint arXiv:1609.07843, 2016.

[76] Radhika Mittal, Nandita Dukkipati, Emily Blem, Has-
san Wassel, Monia Ghobadi, Amin Vahdat, Yaogong
Wang, David Wetherall, David Zats, et al. Timely:
Rtt-based congestion control for the datacenter. In
SIGCOMM’15. ACM, 2015.

[77] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven
low-latency transport protocol using network priorities.
In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages
221–235, 2018.

[78] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream:
generalized pipeline parallelism for dnn training. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 1–15, 2019.

[79] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. 2017.

[80] Pitch Patarasuk and Xin Yuan. Bandwidth optimal
all-reduce algorithms for clusters of workstations.
Journal of Parallel and Distributed Computing,
69(2):117–124, 2009.

[81] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed dnn
training acceleration. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages
16–29. ACM, 2019.

[82] Ning Qian. On the momentum term in gradient descent
learning algorithms. Neural networks, 1999.

[83] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of
transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

[84] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
1–16. IEEE, 2020.

[85] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, 2016.

[86] Benjamin Recht, Christopher Re, Stephen Wright,
and Feng Niu. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In NIPS, 2011.

[87] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind
Krishnamurthy, Masoud Moshref, Dan RK Ports,
and Peter Richtárik. Scaling distributed machine
learning with in-network aggregation. arXiv preprint
arXiv:1903.06701, 2019.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1437

[88] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. arXiv
preprint arXiv:1802.05799, 2018.

[89] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sab-
bag. A cloud-optimized transport protocol for elastic
and scalable hpc. IEEE Micro, 40(6):67–73, 2020.

[90] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter
language models using model parallelism. arXiv
preprint arXiv:1909.08053, 2019.

[91] Karen Simonyan and Andrew Zisserman. Very
deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[92] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, et al. Jupiter
rising: A decade of clos topologies and centralized con-
trol in google’s datacenter network. ACM SIGCOMM
computer communication review, 45(4):183–197, 2015.

[93] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 1–9, 2015.

[94] Mingxing Tan and Quoc Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In
International Conference on Machine Learning, pages
6105–6114. PMLR, 2019.

[95] Leslie G Valiant. A bridging model for parallel com-
putation. Communications of the ACM, 33(8):103–111,
1990.

[96] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin
Taheri, and Tom Edsall. Let it flow: Resilient asym-
metric load balancing with flowlet switching. In 14th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 17), pages 407–420,
2017.

[97] Vijay Vasudevan, Amar Phanishayee, Hiral Shah,
Elie Krevat, David G Andersen, Gregory R Ganger,
Garth A Gibson, and Brian Mueller. Safe and effective
fine-grained tcp retransmissions for datacenter commu-
nication. ACM SIGCOMM computer communication
review, 39(4):303–314, 2009.

[98] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In

Advances in neural information processing systems,
pages 5998–6008, 2017.

[99] Subhashini Venugopalan, Marcus Rohrbach, Jeffrey
Donahue, Raymond Mooney, Trevor Darrell, and
Kate Saenko. Sequence to sequence-video to text. In
Proceedings of the IEEE international conference on
computer vision, pages 4534–4542, 2015.

[100] Xinchen Wan, Hong Zhang, Hao Wang, Shuihai
Hu, Junxue Zhang, and Kai Chen. Rat - resilient
allreduce tree for distributed machine learning. In
4th Asia-Pacific Workshop on Networking, APNet ’20,
page 52–57, New York, NY, USA, 2020. Association
for Computing Machinery.

[101] Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang.
Gradient sparsification for communication-efficient
distributed optimization. In NIPS, 2018.

[102] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[103] Wencong Xiao, Romil Bhardwaj, Ramachandran
Ramjee, Muthian Sivathanu, Nipun Kwatra, Zhenhua
Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, et al. Gandiva: Introspective cluster scheduling
for deep learning. In 13th {USENIX} Symposium
on Operating Systems Design and Implementation
({OSDI} 18), pages 595–610, 2018.

[104] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim,
Jinliang Wei, Seunghak Lee, Xun Zheng, Pengtao Xie,
Abhimanu Kumar, and Yaoliang Yu. Petuum: A new
platform for distributed machine learning on big data.
IEEE Transactions on Big Data, 2015.

[105] Kaiqiang Xu, Xinchen Wan, Hao Wang, Zhenghang
Ren, Xudong Liao, Decang Sun, Chaoliang Zeng,
and Kai Chen. Tacc: A full-stack cloud computing
infrastructure for machine learning tasks. arXiv
preprint arXiv:2110.01556, 2021.

[106] Jilong Xue, Youshan Miao, Cheng Chen, Ming Wu,
Lintao Zhang, and Lidong Zhou. Fast distributed deep
learning over rdma. In Proceedings of the Fourteenth
EuroSys Conference 2019, pages 1–14, 2019.

[107] Jason Yosinski, Jeff Clune, Yoshua Bengio, and
Hod Lipson. How transferable are features in deep
neural networks? In Advances in neural information
processing systems, pages 3320–3328, 2014.

1438 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[108] Chen Yu, Hanlin Tang, Cedric Renggli, Simon Kassing,
Ankit Singla, Dan Alistarh, Ce Zhang, and Ji Liu.
Distributed learning over unreliable networks. In
International Conference on Machine Learning, pages
7202–7212. PMLR, 2019.

[109] Sergey Zagoruyko and Nikos Komodakis. Wide resid-
ual networks. arXiv preprint arXiv:1605.07146, 2016.

[110] David Zats, Tathagata Das, Prashanth Mohan, Dhruba
Borthakur, and Randy Katz. Detail: reducing the
flow completion time tail in datacenter networks. In
SIGCOMM. ACM, 2012.

[111] Chiyuan Zhang, Samy Bengio, and Yoram Singer.
Are all layers created equal? arXiv preprint
arXiv:1902.01996, 2019.

[112] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai,
Qirong Ho, Xiaodan Liang, Zhiting Hu, Jinliang
Wei, Pengtao Xie, and Eric P Xing. Poseidon: An
efficient communication architecture for distributed
deep learning on {GPU} clusters. In 2017 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 17),
pages 181–193, 2017.

[113] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and
Mosharaf Chowdhury. Resilient datacenter load
balancing in the wild. In SIGCOMM. ACM, 2017.

[114] Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang,
Raman Arora, and Xin Jin. Is network the bottleneck
of distributed training? In Proceedings of the Workshop
on Network Meets AI & ML, pages 8–13, 2020.

[115] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo,
Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch
fsdp: experiences on scaling fully sharded data parallel.
arXiv preprint arXiv:2304.11277, 2023.

[116] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra
Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. Congestion control for large-scale rdma
deployments. In SIGCOMM. ACM, 2015.

Appendix

A Convergence Analysis of MLT
This section formally presents a convergence analysis for
MLT, essentially a distributed machine learning process
with priority/selective dropping on gradients. Note that prior
work [108] has already proven the comparable convergence
rate of distributed learning with random dropping (i.e.,

unreliable network with independent and equivalent packet
drop probability p for each message). Here, on top of [108], we
further extend the convergence proof from random dropping
to priority/selective dropping. The notations used here are
shown in Table 3.

‖·‖ l2 norm for vectors
‖·‖F the Frobenius norm of matrices
n number of workers
m number of servers
γ model learning rate
p packet dropping ratio

Table 3: Definitions and notations

The distributed optimization problem is defined as:

min
~x

f (~x)=
1
n

n

∑
i=1

fi(~x), (1)

where n is the number of workers, fi(~x) = Eξ DiFi(~x, ξ)
represents the expected loss function F over Di, the local
data distribution of worker i. At each iteration, every worker
performs SGD on a random chosen subset of dataset D(i)

t :

G(i)
t =∇Fi

(
X (i)

t ,D(i)
t

)
.

X (i)
t , G(i)

t and D(i)
t denotes the model weights, generated gra-

dients and training data of worker i at iteration t respectively.
Before sending the gradients, every worker i divides the

gradients into m equal blocks:

G(i)
t =

(
(G(i,1)

t)ᵀ,(G(i,2)
t)ᵀ,...,(G(i,m)

t)ᵀ
)
.

When sending gradients G(i)
t , some blocks may be dropped

because of the networking condition and priority dropping.
For each blocks, the gradients on every workers are collected
and averaged by parameter server:

G̃ j
t =

1

|N(j)
t |

∑
i∈N(j)

t

G(i, j)
t ,

where G̃ j
t denotes the averaged gradients of block j at iteration

t, and N(j)
t denotes the number of workers whose blocks j are

successfully averaged at iteration t.
After averaging gradients, the parameter server updates the

corresponding weight block using SGD algorithm and returns
them back to each workers for their local updates. For workers
that fail to receive the averaged block, they just use the original
gradients. Formally, the updated gradients on worker i is:

X (i)
t+1=

(
(X (i,1)

t+1)ᵀ,(X (i,2)
t+1)ᵀ,...,(X (i,m)

t+1)ᵀ
)
,

where

X (i, j)
t+1 =

{
X (i, j)

t −γG̃ j
t , i∈ Ñ(j)

t

X (i, j)
t −γG(i, j)

t , i /∈ Ñ(j)
t .

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1439

Ñ(j)
t denotes the set of workers to which the averaged block

j is successfully sent at iteration t.
For the algorithm, we make the following assumptions

commonly used for analyzing stochastic optimization
algorithms [64, 108].

Assumption 1. We make the following commonly used
assumptions:
1. Lipschitzian gradient: The gradient function ∇ fi(·) is

L-Lipschitian, which means

‖∇ fi(~x)−∇ fi(~y)‖≤L‖~x−~y‖

2. Bounded gradient: The variance of stochastic gradient is
bounded for every worker i and any~x.

Eξ Di‖∇Fi(~x;ξ)−∇ fi(~x)‖2≤σ
2,∀i,∀~x

1
n

n

∑
i=1
‖∇ fi(~x)−∇ f (~x)‖2≤ξ

2,∀i,∀~x,

3. Start from 0: For simplicity, we assume X1=0 w.l.o.g.

With arbitrary packet dropping policy, the updated gradients
on each worker can always be represented as the linear
combination of local gradients.

X (i, j)
t+1 −X (i, j)

t =G(·, j)
t W (j)

t ,

where

G(·, j)
t :=

(
(G(1, j)

t)ᵀ,(G(2, j)
t)ᵀ,...,(G(i, j)

t)ᵀ
)
.

W (j)
t is the coefficient matrix. And

[
W (j)

t

]
m,k

denotes the

coefficient of worker m’s gradients received by worker k after
one update step.

[
W (j)

t

]
m,k

= 0 means worker m’s gradient

block j is not received by worker k, which may be dropped
either before or after the averaging during the communication
with the parameter server.

[108] shows W (j)
t satisfies the following properties under

uniformly random dropping environment:

E[W]=α1In+(1−α1)An (2)

E[W (j)
t W (j)ᵀ

t]α1In+(1−α1)An (3)

E[W (j)
t AnW (j)ᵀ

t]=α2In+(1−α2)An (4)

for some constants α1 and α2 satisfying 0 < α2 < α1 < 1.
While [108] considers the algorithm where workers perform
the averaging operation, the properties also hold for dedicated
parameter server setting. Also, as MLT adopts priority
dropping mechanism, (α(j,t)

1 ,α
(j,t)
2) varies in different blocks

j and iterations t. To adopt the convergence proof in [108] for
MLT, we use α1max ,α2max instead, which denotes the maximum
value of max j,t α

(j,t)
1 and max j,t α

(j,t)
2 across all workers and

iterations and preserve the validity of the proof. Thus we can
get the following theorem:

Theorem 1. (Convergence of MLT). Under Assumption
1, choosing learning rate γ to be small enough satisfying
1− 6L2γ2

(1−
√

βmax)2
>0, MLT have the following convergence rate:

1
T

T

∑
t=1

(
E‖∇ f (~xt)‖2+(1−Lγ)E‖∇ f (Xt)‖2

)
≤ 2 f (~0)−2 f (~x∗)

γT
+

γLσ2

n
+4α2max Lγ(σ2+3ξ

2)

+
2α2max Lγ+L2γ2+12α2max L3γ3)σ2C1

(1−
√

βmax)2

+
3(2α2max Lγ+L2γ2+12α2max L3γ3)ξ2C1

(1−
√

βmax)2,

(5)

where

∇ f (~xt)=∇ f (
1
n

n

∑
i=1

~x(i)t)

∇ f (Xt)=
n

∑
i=1

∇ fi(~x
(i)
t)

βmax=max
j,t

(α
(j,t)
1 −α

(j,t)
2)

C1=

(
1− 6L2γ2

(1−
√

βmax)2

)−1

.

It can be inferred from the definitions that β=1 if and only
if the dropping probability of the gradient block is 1, which
may cause the bound to be infinity. In MLT we can make the
assumption that no gradient block has dropping probability
equal to 1, since the magnitude of gradients varies among
different iterations.

By choosing appropriate learning rate γ =
(1−
√

βmax)
2

6L+3(σ+ξ)
√

α2max T+ σ
√

T√
n

, we can get

1
T

T

∑
t=1

E‖∇ f (~xt)‖2≤ (2 f (~0)−2 f (~x∗)+L)σ
√

nT (1−
√

βmax)

+
(2 f (~0)−2 f (~x∗)+L)(σ+ξ)

1−
√

βmax

√
α2max

T

+
L2(σ2+ξ2)

(T
n +α2max T)σ2+α2max T ξ2

+
(2 f (~0)−2 f (~x∗)L

T

(6)

We can see from Equation 6 that the dominant term in the
convergence rate (O(1/

√
nT)) is consistent with prior works

for both centralized SGD and decentralized SGD [65, 108],
which theoretically prove that MLT will converge with the
same order of iterations as the previous vanilla SGD methods.

1440 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

B Thresholds Setting of Selective Dropping
This section presents the formulation to derive the optimal
thresholds for the selective dropping mechanism (RED/ECN
setting) in §4.2.2 by leveraging the queueing theory [16]. As
a guidance from the analysis, to find the thresholds, we need
to know the size of each layer of the model, and measure the
additional rounds to model convergence caused by the loss
of small/large gradients in each layer. Note that our analysis
does not yet provide optimal thresholds for specific models,
we leave the additional rounds measurement and optimal
thresholds calculation as the future work. The notations used
here are shown in Table 4.

N number of switch queues
B size of switch buffer
Si ECN/RED threshold of queue i
Li length of queue i
λ packet arrival rate
µ packer service rate
M number of model layers
Sm

i size of layer i in the model
θ ratio of small gradients in the model
f S
i (.)/ f L

i (.)additional convergence rounds cost by 1%
small/large gradient loss in layer i

Table 4: Definitions and notations

λ

S1

μ

S2

SN

L1

L2

LN

λ μ

S’1
L’1

S’2
L’2

S’N
L’N

Q1

Q2

QN

Q1

Q2

QN

Switch Model M/M/1/mModel

Figure 20: Problem formulation

Problem formulation: Figure 20 shows the mathematical
modeling of MLT switch. All flows come with the arrival rate
of λ, and enter the corresponding queues. For each queue, if
the sum of queueing packets’ size is larger than Si, all small
gradients packets come to this queue will be discarded. If the
sum is larger than LI , all packets will be discard. To simplify
the analysis and take the advantage of M/M/1/m Model in
queueing theory, we split each queue into two, the first is for
small gradients only and the second is for large gradients only.
The dropping thresholds for each one are S′i and L′i. We can
easily represent Si and Li with S′i and L′i: Si=S′i/θ,Li=S′i+L′i.

Then, we deduce the value of S′i and L′i. The arrival rate for
one queue depends on the corresponding layers’ packet arrival
rate, for simplicity, we assume the rate is proportional to the
size of the layer. Therefore, the arrival rate for queue i is λSm

i
S ,

and for the small gradients’ queue, the value is θ
λSm

i
S , for the

large one, is (1−θ)
λSm

i
S .

The service rate for one queue is determined on its priority,
it is serviced only when the higher priority queues are idle, for
the highest priority queue Q1, the service rate is µ1=µ, the idle
time is 1−ρ1, where ρ1=λ/µ, for queue Q2, the service rate is
µ2=(1−ρ1)µ. Generally, the idle time for queue Qi is 1−ρi,
where ρi=λi/µi and the service rate is µi=Π

i−1
k=0(1−ρk)µ.

Supposed the service rate for small/large gradients is propor-
tional to the size, thus, the service rate for small/large gradients
queue in queue Qi are µS

i =θµi and µL
i =(1−θ)µi respectively.

Therefore the idle time are ρS
i =λS

i /µS
i =λi/µi=ρi=ρL

i .
Suppose the losses of small and large gradients in each layer

affect the convergence rounds independently, our goal is to
minimize the impact of gradients’ loss to model convergence,
that is to find the optimal Si and Li to minimize the loss function
∑

N
i=1
(

f S
i (r

S
i)+ f L

i (r
L
i)
)
, where rS

i and rL
i are the loss ratio for

small/large gradients in queue Qi. There are a lot of existing so-
lutions to solve the optimization problem, e.g. gradient descent.
Here, we only need to calculate the value of rS

i and rL
i . In fact,

for each queue, we can treat it as a typical M/M/1/m model in
queueing theory, specially, one FIFO queue with finite capacity.
Previous work [16] has derived the calculation formula of
loss rate, that is ρm−ρm+1

1−ρm+1 , where ρ is the idle time of the queue.

Therefore, we have: rS
i =[(ρi)

θSi−(θρi)
Si+1]/[1−(ρi)

θSi+1],
rL

i = [(ρi)
Li−θSi − (ρi)

Li−θSi+1]/[1 − (ρi)
Li−θSi+1], then we

express the loss function in terms of known parameters and
thresholds (Si,Li), after solving this optimization problem, we
obtain the optimal thresholds.

C Supplemental Experiments
Due to the space limitation, in the main part of the paper, we
only show the results of VGG16 and Transformer in Figure 11,
12, 16, 17 and 18. Here, we append the results of ResNet50
and GoogleNet in Figure 21, 22, 23, 24, 25 and 26. Please
note that the results/trends embodied in these figures are
consistent with that in the main part of the paper.

Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

6

Loss Rate (%)
0 0.01 0.1 1

(a) ResNet50

Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

10

20

Loss Rate (%)
0 0.01 0.1 1

(b) GoogleNet

Figure 21: Speedup under gray failure of links.

D Open Questions and Discussion (Cont’d)
Co-existing with non-DNN traffic. This paper focuses on
AI-centric networking (AICN) dedicated to DNN training.
However, in datacenter with multi-purpose traffic, our imple-
mentation of MLT should mitigate its intrusion on non-DNN

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1441

GoogleNet [93] (13%) LSTM [42] (11%) ResNet34 [41] (14%) Wide ResNet50 [109] (17%)
Model AlexNet [57](18%) VGG16 [91] (17%) GRU [26] (12%) ResNet50 [41] (16%)

EfficientNetB0 [94] (17%) VGG19 [91] (18%) Wide ResNet101 [109] (16%) ShuffleNetV2 [71] (16%)
VGG13 [91] (16%) ResNet18 [41] (18%) DenseNet169 [47] (16%) ResNet101 [41] (17%)

Table 5: The loss-tolerant bounds measurement with MLT, under the condition that the models converge with the same iterations
to the same accuracy. We use the same models and settings with Table 1.

Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

of Workers
8 16 32 64

(a) MXNet, ResNet50

Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

of Workers
8 16 32 64

(b) PyTorch, ResNet50

Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

5

10

15

20

of Workers
8 16 32 64

(c) MXNet, GoogleNet

Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

5

10

15

of Workers
8 16 32 64

(d) PyTorch, GoogleNet

Figure 22: Speedup with MXNet and PyTorch.
Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

6

of Workers
8 16 32 64

(a) Ring All-reduce, ResNet50

Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

10

20

of Workers
8 16 32 64

(b) Ring All-reduce, GoogleNet

Figure 23: Speedup with Ring All-reduce

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

Component
BytePS A A+B A+B+C

(a) ResNet50, Speed

BytePS
A
A+B
A+B+C

Te
st

 A
cc

ur
ac

y
(%

)

0

50

100

Epoch
20 40 60 80

(b) ResNet50, ETA
1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

5

10

15

Component
BytePS A A+B A+B+C

(c) GoogleNet, Speed

BytePS
A
A+B
A+B+CTe

st
 A

cc
ur

ac
y

(%
)

0

50

100

Epoch
20 40 60

(d) GoogleNet, ETA
Figure 24: Effectiveness of design components (I).

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

Component
BytePS C C+B C+B+A

(a) ResNet50, Speed

BytePS
C
C+B
C+B+A

Te
st

 A
cc

ur
ac

y
(%

)

0

50

100

Epoch
20 40 60 80

(b) ResNet50, ETA
1e3

Sp
ee

d
(im

ag
es

/s
ec

)
0

5

10

15

Component
BytePS C C+B C+B+A

(c) GoogleNet, Speed

BytePS
C
C+B
C+B+ATe

st
 A

cc
ur

ac
y

(%
)

0

50

100

Epoch
20 40

(d) GoogleNet, ETA
Figure 25: Effectiveness of design components (II).

MLT-1%
MLT-10%
MLT-20%
MLT-30%
BytePS

Te
st

 A
cc

ur
ac

y
(%

)

0

50

100

Epoch
0 50 100 150

(a) ResNet50, ETA

MLT-1%
MLT-10%
MLT-20%
MLT-30%
BytePS

Te
st

 A
cc

ur
ac

y
(%

)

0

50

100

Time (s)
0 1000 2000

(b) ResNet50, TTA

MLT-1%
MLT-10%
MLT-20%
MLT-30%
BytePSTe

st
 A

cc
ur

ac
y

(%
)

0

50

100

Epoch
0 20 40 60 80

(c) GoogleNet, ETA

MLT-1%
MLT-10%
MLT-20%
MLT-30%
BytePSTe

st
 A

cc
ur

ac
y

(%
)

0

50

100

Time (s)
200 400

(d) GoogleNet, TTA
Figure 26: Impact of loss-tolerant bounds.

traffic and ensure bandwidth fair-sharing. A straightforward
idea is to separate DNN and non-DNN traffic into different
queues and perform fair-queueing between them. One issue
to consider is that current commodity switches only have a
limited # of queues (typically 8), so the # of queues dedicated
for MLT become even smaller. For priority queueing, it is
not a concern because the recent design [68] of using two
priority queues to emulate many fine-grained priorities can
be borrowed: the insight is that we only need to privilege
the highest priority flows; MLT can leverage such idea and

1442 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

only place the foremost layers into the highest priority queue
each time. On the other hand, it may reduce the granularity
of selective dropping of gradients across DNN layers, as this
relates to the # of physical queues available to MLT.
Flexible selective dropping. We consider the gradients
of back layers more important under the assumption of
pre-training (§3.3). As researchers in ML area are improving
the model architectures and training algorithms, the loss
tolerance across model parameters may vary in the future.
MLT allows a flexible selective dropping policy through
tagging. One can simply modify the gradient tagging policy
at end-hosts to fit new features in the training process.
MLT vs SRD. AWS SRD [89] is a hardware transport
protocol that also uses packet spraying to avoid hotpots. It
provides reliable but out-of-order delivery. To be used by
general-purpose applications, SRD still relies on a messaging
layer above it to restore orders. In contrast, MLT exploits
ML-specific properties to provide semi-reliable delivery
without the need of packet order restoration.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1443

Swing: Short-cutting Rings for Higher Bandwidth Allreduce

Daniele De Sensi
Sapienza University of Rome

Tommaso Bonato
ETH Zurich

David Saam
RWTH Aachen University

Torsten Hoefler
ETH Zurich

Abstract
The allreduce collective operation accounts for a significant
fraction of the runtime of workloads running on distributed
systems. One factor determining its performance is the num-
ber of hops between communicating nodes, especially on
networks like torus, where a higher number of hops implies
multiple messages being forwarded on the same link, thus
reducing the allreduce bandwidth. Torus networks are widely
used on systems optimized for machine learning workloads
(e.g., Google TPUs and Amazon Trainium devices), as well
as on some of the Top500 supercomputers. To improve allre-
duce performance on torus networks we introduce Swing, a
new algorithm that reduces the number of hops between com-
municating nodes by swinging between torus directions. Our
analysis and experimental evaluation show that Swing outper-
forms by up to 3x existing allreduce algorithms for vectors
ranging from 32B to 128MiB, on different types of torus and
torus-like topologies, regardless of their shape and size.

1 Introduction and Motivation

Allreduce is a collective operation used to aggregate vectors
among a set of nodes and to distribute the aggregated result
back to them. Allreduce is widely used to perform distributed
gradient aggregation when training deep learning models [10].
Studies have shown that it can account for up to 40% of the
total training time [32, 45, 51] and between 19% and 30%
of the total core hours in MPI jobs running on production
supercomputers [14].

In this work, we design a new allreduce algorithm opti-
mized for torus-like networks. Torus networks are widely
used, both on systems optimized for running machine learn-
ing (ML) workloads and on some of the top supercomput-
ers [2, 11] (e.g., Fugaku uses a 6D torus [4]). Although torus
networks are characterized by a lower bisection and global
bandwidth compared to other topologies (e.g., Clos), their
simplicity and lower cost allow running some workloads such
as ML training in a more cost-effective way, since their com-
munication is often arranged as a 3D logical torus [26].

Seen from a different perspective, torus networks trade off
a lower cost for a lower bisection bandwidth, which, however,
is enough to train most ML models efficiently [26]. This is
the reason why many systems optimized for ML training rely
on torus-like topologies. These include, for example, Google
TPUs [31] (a TPU v5p pod connects ∼ 9,000 chips on a 3D
torus [15]), Amazon Trainium devices [7] (16 chip on a 2D
torus), Graphcore IPU-POD [24] (connecting 64 chips on a
2D torus), Enflame [40] (2D torus).

Researchers proposed several allreduce algorithms [6, 29,
50], and the most performing one depends on a combination
of vector size, number of nodes, and physical topology [27,49].
Those algorithms perform a predefined number of steps and,
at each step, each node sends and receives data to and from
some predetermined nodes. Different trade-offs exist between
the number of steps to perform (more critical for allreduce
on small vectors) and the total number of bytes it transmits
(more relevant for larger allreduce). However, a third factor
that must be considered when designing a new collective
algorithm is the number of hops between communicating
nodes [38,44,49,50]. This is particularly relevant on networks
that do not provide full bisection bandwidth such as torus,
since the higher the number of hops, the higher the number
of flows sharing the same links.

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Recursive Doubling

Most congested links (2 msgs)

Most congested link (4 msgs)

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

Swing

Most congested links (2 msgs)

Step 0

Step 1

Step 2

0

n/2 bytes

n/4 bytes

n/8 bytes

n/2 bytes

n/4 bytes

n/8 bytes

7 15…

7 15…

7 15…

0

0

7 …

7 …

7 …

14 15

14 15

1514

Figure 1: First three steps of the recursive doubling and Swing
allreduce algorithms on a 1D torus with 16 nodes.

We show the importance of the number of hops in the allre-
duce through an example. In Fig. 1, we show a 16 node 1D
torus (we only show a subset of the nodes since the commu-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1445

nications are symmetric). We assume minimal (i.e., shortest
path) routing and we show the communications performed
by the bandwidth-optimal recursive doubling algorithm [50]
(also known as Rabenseifner algorithm [41], which we de-
scribe more in detail in Sec. 2.3.3), and by the Swing algorithm
(that we propose in this work).

Both algorithms perform the same number of steps (we
show only the first three for simplicity). We denote with n
the number of bytes of the allreduce vector. In the first step,
in both algorithms, each node r sends n/2 bytes to node q =
r XOR 1 (and receives n/2 bytes from it). In the second step,
however, in the recursive doubling, each node r sends n/4
bytes to node q = r XOR 2 (two hops distant), whereas in the
Swing algorithm, each node still sends n/4 bytes of data, but
with the other neighbor (one hop distant).

Although both algorithms transmit the same number of
bytes, two different messages cross the same link in the re-
cursive doubling. For example, two messages cross the link
between nodes 1 and 2 and that between nodes 5 and 6. As
a consequence, in the worst case all nodes transmit data at
most at half the bandwidth of the link between 1 and 2, thus
slowing down the entire allreduce operation. Instead, in the
Swing algorithm, each node can still transmit at full band-
width because, in this example, in the second step each link
is crossed at most by one message per direction. Something
similar also happens in the third step. Indeed, when using
Swing at most two messages cross each link instead of the
four messages crossing the link between nodes 3 and 4 in
recursive doubling.

It is thus clear how even if two different algorithms transmit
the same number of bytes and perform the same number of
steps, they might have different performance, depending on
the network characteristics and the distance between commu-
nicating nodes. In this example, we have shown an extreme
case using a 1D torus. However, similar effects can happen on
any topology that does not provide full bisection bandwidth.

Although some algorithms (i.e., ring [38,50] and bucket [9,
29,44]) avoid this problem by having each node communicate
with its neighbors only, they perform more steps (linear in the
number of nodes) and are thus not well-suited for small- and
medium-sized vectors. Those are the sizes that, however, are
practically used in most machine learning [35] and HPC [14]
workloads. Indeed, larger allreduce are split into smaller ones
to overlap better computation and communication, especially
more when using 3D parallelism in machine learning train-
ing [10].

This work makes the following contributions:

• We design a new allreduce algorithm called Swing, which
performs a logarithmic number of steps and transmits the
minimal number of bytes while reducing the distance be-
tween communicating nodes compared to other known al-
gorithms designed for small- and medium-sized vectors
(Sec. 3 and Sec. 4).

• We evaluate Swing on different torus and torus-like topolo-
gies (e.g., HammingMesh [26] and HyperX [3,20]), by com-
paring it with the best state-of-the-art algorithms (Sec. 5).
Our evaluation shows that Swing outperforms the other ex-
isting algorithms for allreduce on vectors ranging from 32B
to 128MiB on different torus-like topologies, and regardless
of their shape and size. We show that Swing outperforms
the best-known algorithm up to 2.2x on square torus with
4,096 to 16,384 nodes and up to 3x on rectangular tori and
HyperX with 4,096 nodes.

2 Background

2.1 Targeted Collectives
We briefly introduce the reduce-scatter and allgather collec-
tives since for medium and large vectors, Swing allreduce
algorithm executes a reduce-scatter followed by an allgather
(similarly to the Rabenseifner algorithm [41]). In the reduce-
scatter, the compute nodes reduce vectors (one per node) using
a reduction operation (e.g., addition) and shard the resulting
vector across all the nodes. In the allgather, each node pro-
vides a vector that they concatenate and distribute to all the
nodes.

If the vector contains a number of elements larger or equal
than p, the nodes can run the allreduce as a reduce-scatter
followed by an allgather [50]. I.e., they aggregate vectors com-
ing from all the nodes and distribute back the resulting vector.
Although for space reasons we mainly target the allreduce,
Swing can also be used for performing reduce-scatter and
allgather collectives, as well as any other collective operation
where recursive doubling or binomial tree can be used (e.g.,
broadcast and reduce) [49].

2.2 Notation and Model
We consider D-dimensional tori of size {d0,d1, . . . ,dD−1},
and we denote with p the number of nodes in the torus, i.e.,
p = d0 · d1 · . . . · dD−1. We assume the collectives run on p
nodes, that ranks are mapped to nodes linearly and, without
loss of generality, to have one process (or rank) per node. We
assume that each node in the network has 2 ·D ports, that
each link is bidirectional, and that each node can send 2 ·D
messages and receive 2 ·D messages concurrently (one send
and receive per port). We also assume the network forward
packets using minimal adaptive routing, and that does not
have any hardware support to accelerate collective operations
(e.g., in-network aggregation [6, 18, 23]).

To support the description of the different algorithms, we
model their performance with the commonly used latency and
bandwidth model [5, 16, 39]. We model the communication
time T (n) to send n bytes in a point-to-point communication
as T (n) = α+ nβ, where α represents the latency (i.e., the
time for the first byte to reach the destination), and β the time

1446 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NAME DESCRIPTION
D Number of torus dimensions

d0, . . . ,dD−1 Size of each dimension
n Size of the vector to reduce
p Number of nodes in the network
Λ Latency deficiency
Ψ Bandwidth deficiency
Ξ Congestion deficiency

δ(s) Number of hops between 2 communicating nodes at step s
ρ(s) ∑

s
i=0 −2i

π(r,s) The node with which node r communicates at step s

Table 1: Variables and functions used in our modeling.

to transmit a single byte (it can be seen as the inverse of the
bandwidth). When modeling collective operations involving
data reduction, researchers also consider an additional γ term
to model the aggregation cost. To avoid burdening the no-
tation, we do not model this term explicitly since Swing is
no worst than the other algorithms in that regard and most
implementations overlap the aggregation with the communi-
cation [37, 52].

Collective operations involve multiple communication
steps. Previous works proved that the allreduce requires at
least log2 p steps and the transmission of at least 2 p−1

p n ≈ 2n
bytes of data [9]. Hence, the optimal allreduce time can be
modeled as T (n) = α log2 p+β2n. However, because each
node has 2D ports, bandwidth-optimal algorithms distribute
the data equally across all the ports [9,26,29,44], and we can
model the allreduce time as T (n) = α log2 p+ β

n
D In prac-

tice, however, algorithms have some deficiency compared to
optimal, either in the latency or the bandwidth terms (or in
both).

We consider three different type of deficiencies: i) latency
deficiency (Λ) i.e., how much the latency is higher than the
optimal; ii) algorithmic bandwidth deficiency (Ψ), i.e., how
many more bytes does the algorithm transmit; iii) congestion
bandwidth deficiency (Ξ) i.e., what is the bandwidth slow-
down caused by multiple messages of the same collective
being forwarded on the same link (as discussed in Sec. 1).
We can see deficiencies as multiplicative factors that denote
how much an algorithm is distant from the optimal (e.g., a
latency deficiency of one means that the algorithm is latency
optimal), and we can thus model the allreduce time as:

T (n) = log2 p ·α ·Λ+
n
D

β ·Ψ ·Ξ (1)

For brevity, we refer to Ψ as bandwidth deficiency and to
Ξ as congestion deficiency. While Λ and Ψ only depend on
the algorithm, the congestion deficiency Ξ depends on the
network. To simplify the notation and the discussion, in the
following, we are only going to model the three deficiencies Λ,
Ψ, and Ξ. We summarize the variables we use in our modeling
in Table 1.

2.3 State-of-the Art Algorithms
In the following, we review and model the main allreduce
algorithms for multidimensional torus, and we summarize
in Table 2 their deficiencies, as well as those of the Swing
algorithm.

2.3.1 Hamiltonian Rings

Ring allreduce algorithm [38, 50] runs a reduce-scatter fol-
lowed by an allgather. Each node splits its data into p equally
sized blocks. For both the reduce-scatter and the allgather,
the algorithm performs p− 1 steps. Nodes are arranged in
a ring, and at each step, each node sends a block to its right
neighbor and receives a block from its left neighbor. Because
the algorithm performs 2(p−1)≈ 2p the latency deficiency
is Λ = 2p

log2 p .
The algorithm sends ≈ 2n bytes (n in the reduce-scatter

and n in the allgather). On multiport networks (assuming
2D ports), it splits the data into 2D parts (of n/2D bytes
each) and runs one ring algorithm on each part (each sending
and receiving to and from a different port). Since it sends a
minimal number of bytes and uses all the ports, the algorithm
has no bandwidth deficiency (Ψ = 1).

Moreover, because each node only communicates with
neighbors on a 1D torus, the algorithm does not have con-
gestion deficiency since each link is used by at most one
communication in each direction. In the version optimized for
the 2D torus, the four rings that run in parallel are mapped into
two edge-disjoint Hamiltonian cycles (one per direction) [26]
so that each link is still used by at most one communication
per direction (thus Ξ = 1). To our knowledge, this algorithm
does not work for D > 2. Moreover, the algorithm can build
the two edge-disjoint Hamiltonian cycles on an r×c 2D torus
only if r = c · k, k ≥ 1 and the greatest common divisor be-
tween r and c−1 is 1, which limits the applicability of the
algorithm.

2.3.2 Latency-Optimal Recursive Doubling

The latency-optimal recursive doubling algorithm [50] exe-
cutes log2 p steps (thus it has a latency deficiency Λ = 1). At
each step s (we denote steps starting from 0), each node r
sends its vector to node q = r XOR 2s (assuming p is a power
of 2) and receives q’s vector, which aggregates with its own
before moving to the next step. When running on a torus, if
the size of each dimension is a power of two, it can keep a
shorter distance between communicating nodes by commu-
nicating in a different dimension at each step, as shown in
Fig. 2.

Each node transmits n log2 p bytes of data. To our knowl-
edge, no multiport versions of this algorithm exist, and we
model its bandwidth deficiency as Ψ = D log2 p. Each node
communicates with D nodes at distance 2i (one per dimen-
sion), with 0 ≤ i < log2 p−1

D . For this algorithm, the number

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1447

Step 0 Step 1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Step 2 Step 3

Figure 2: Example of recursive doubling on a 4x4 torus. Wrap-
around links are not shown.

ALGORITHM LAT. DEF. (Λ) BAND. DEF. (Ψ) CONG. DEF. (Ξ)
D=2 D=3 D=4

RING 2p
log2 p 1 1

REC.DOUB. (L) 1 D log2 p 2D D√p
REC.DOUB. (B) 2 2D 2D−1

2D−2

BUCKET
2D D√p
log2 p 1 1

SWING (L) 1 D log2 p 4
3 D D√p

SWING (B) 2 1 1.19 1.03 1.008

Table 2: Algorithms deficiencies on D-dimensional torus with
D ≥ 2. (L) and (B) stands for latency-optimal and bandwidth-
optimal (-optimized for recursive doubling) respectively.

of messages forwarded on the most congested link is equal
to the distance between communicating nodes1. We can thus
estimate the congestion deficiency as the sum of the dis-
tance between communicating nodes over all the steps, i.e.,

Ξ = D∑

log2 p−1
D

i=0 2i ≤ 2D D
√

p.

Non-power-of-two If the size of a dimension is not a power
of two, some extra steps are needed. One possible solution
consists in reducing the number of nodes to the largest power-
of-two p′ < p [8,12]. Before starting the allreduce, each node
in the range (p′, p−1) sends its data to a node in the range
(0, p′ − 1). Then, the first p′ nodes run the allreduce and,
when completed, send the reduced data to the nodes in the
range (p′, p−1). This algorithm increases all the deficiencies
compared to the case where p is a power of two, but we do
not model this explicitly for brevity.

2.3.3 Bandwidth-Optimal Recursive Doubling

The classic bandwidth-optimal recursive doubling algo-
rithm (also known as Rabenseifner algorithm [50]) performs
an allreduce as a reduce-scatter followed by an allgather.
The reduce-scatter and the allgather use recursive doubling
(each performing log2 p steps). Differently from the latency-
optimal algorithm, each node divides the data into p blocks
{b0, . . . ,bp−1}, each of size n

p .

1The only exception to this is the last step in each dimension because
each node can reach its peer with two different minimal paths. For example,
in Fig. 2, in step 2 node 0 can send half of the packets directed to 2 to the
right and half to the left on the wrap-around link (not shown). However, this
is negligible for large enough networks.

At each step, the reduce-scatter halves the size of the trans-
mitted data and doubles the distance between communicat-
ing nodes. Thus, each node transmits n bytes of data in the
reduce-scatter. The allgather works similarly but reverses the
communication pattern, doubling the size of the transmitted
data at each step and halving the distance between communi-
cating nodes. The allreduce executes 2 log2 p steps (Λ = 2),
and transmits 2n bytes of data.

Sack et al. optimized the algorithm for torus networks [44],
similarly to what we described for the latency-optimal algo-
rithm, to reduce its congestion deficiency to Ξ = 2D−1

2D−2 for
D > 1 [44]. However, to our knowledge, no multiport ver-
sions of this algorithm exist, and its bandwidth deficiency is
Ψ= 2D. Hence, for torus networks we consider this algorithm
as bandwidth-optimized rather than bandwidth-optimal.

Non-power-of-2 If the number of nodes p is not a power
of 2, the algorithm performs some extra steps [42, 50] that in-
crease the latency and reduce the bandwidth (because transmit
extra data). Allreduce implementations can use either sim-
ilar techniques like those described for the latency-optimal
recursive doubling or more sophisticated ones like the 3-2
elimination technique [42] (which increases the bandwidth
deficiency to 3/2). However, we found no reference of adap-
tations to torus networks.

2.3.4 Bucket Algorithm

To simplify the exposition, we first describe the algorithm for
a a×a 2D torus (with a ·a = p) [9]. Each node runs a ring
reduce-scatter with the other a− 1 nodes on the same row.
This requires a−1 steps, and each node transfers n a−1

a bytes.
Then a ring reduce-scatter with the other a−1 nodes on the
same column, but only on the data already reduced at the
previous step (of size n

a). Then, each node runs an allgather
with all the nodes on the same column and then with all those
on the same row.

On a D−dimensional torus, the algorithm performs D
reduce-scatter followed by D allgather (each on D

√
p nodes

on a square torus). Because it runs 2D D
√

p steps, the latency

deficiency is Λ =
2D D√p
log2 p . To use all the 2 ·D ports, the algo-

rithm splits the data into 2 ·D parts and concurrently runs
2 ·D bucket algorithms (one for each part) [29, 44]. Since the
algorithm sends the minimal number of bytes and uses all the
ports evenly, the bandwidth deficiency is Ψ = 1. Each of the
2 ·D bucket algorithms starts from a different dimension and
direction so that, at each step, each link is used by at most one
ring per direction (i.e., the congestion deficiency is Ξ = 1).

2.3.5 Other Approaches

Topology-Specific Algorithms Researchers proposed sev-
eral allreduce algorithms [9,30,33,41,43,49], some of which
optimized for specific topologies [6, 22, 36]. In this work, we

1448 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

focus on those explicitly designed for torus networks, since
they are characterized by a lower congestion deficiency.

Automatic Generation of Collective Algorithms Some
approaches use linear programming formulations for finding
the best collective algorithm given a network specification
and the size of the collective [13, 48]. However, this requires
solving an NP-hard problem that grows exponentially with
scale. Finding a solution for 128 nodes requires up to 11
hours [48], and a new solution might need to be found when
changing the number of nodes or the size of the collective.
This makes generating collective algorithms for large systems
like the 9,000 nodes Google’s TPU v5p pod [15] challenging
or even impossible. On the contrary, Swing can seamlessly
run on any number of nodes. Moreover, unlike Swing, some
of these solutions do not explicitly model the congestion
deficiency.

Topology Reconfiguration and In-Network Compute
Other solutions improve allreduce performance by re-
configuring the network topology according to the specific
traffic pattern [51]. Swing is orthogonal to these approaches
and, by reducing the network congestion, can make the ex-
pensive network re-configurations less frequent. Last, some
algorithms exploit in-network compute capabilities of pro-
grammable switches [17, 21, 34, 46] to aggregate data directly
in the network, reducing network traffic and improving per-
formance. However, unlike Swing, these solutions require
specific switches to be deployed in the network, whereas
Swing can seamlessly run on any network.

3 Swing Design

By analyzing the algorithms we described, we observe dif-
ferent tradeoffs. The latency-optimal recursive doubling has
the lowest latency deficiency. It is thus more suited to small
allreduce, where the number of steps executed by the algo-
rithm, rather than the total number of transmitted bytes, dom-
inates the runtime. On the other hand, ring and bucket algo-
rithms are characterized by the lowest bandwidth and con-
gestion deficiency, and we expect them to perform better on
large allreduce. The bandwidth-optimized recursive doubling
lies somewhere in between since it has a higher bandwidth
and congestion deficiency but a lower latency deficiency and
would perform better for medium-sized vectors.

With the Swing algorithm, we aim at designing an al-
gorithm with a congestion deficiency Ξ lower than the
bandwidth-optimized recursive doubling algorithm by reduc-
ing the distance between communicating nodes. We also aim
to reduce bandwidth deficiency Ψ by using all the 2D avail-
able ports. To simplify the exposition, we first discuss the de-
sign of the bandwidth-optimal Swing algorithm on a 1D torus,
assuming the number of nodes p is a power of 2 (Sec. 3.1).

Then, we extend it to any number of nodes (Sec. 3.2), and
describe its design for tors with more than one dimension
(Sec. 4).

3.1 Algorithm Design
3.1.1 Bandwidth-optimal Algorithm

We describe in the following the design of the Swing algo-
rithm, and we formally prove its correctness in Appendix A.
The bandwidth-optimal Swing algorithm runs a reduce-scatter
followed by an allreduce. In the reduce scatter, at step s (start-
ing from 0), each node r communicates with a node π(r,s)
such that:

π(r,s) =

{
r+ρ(s) mod p, if r is even
r−ρ(s) mod p, if r is odd

(2)

Where ρ(s) = ∑
s
i=0(−2)i = 1−(−2)s+1

3 . This selection of
the communicating peer leads to a communication pattern
like the one shown in Figure 1 for a 16 nodes 1D torus. We
observe how, at each step, the communicating peer of each
node swings from left to right and vice versa (hence the al-
gorithm’s name). Intuitively, unlike recursive doubling, each
node reaches distant nodes in fewer hops by short-cutting the
ring.

More precisely, at each step, each node communicates with
a node at a distance δ(s), with:

δ(s) = |ρ(s)|=
∣∣∣ s

∑
i=0

−2i
∣∣∣= 2s+1 − (−1)s+1

3
≤

≤ 2s+1 +1
3

< 2s +
1
3

Because δ(s) is always a natural number, we have δ(s)≤ 2s

(it is strictly smaller for s > 1). Hence, Swing has a lower
congestion deficiency than recursive doubling because of the
lower distance between communicating nodes (we estimate
precisely the congestion deficiency in Sec. 4).

For simplicity, we first describe the reduce-scatter algo-
rithm using only one port and extend it to use all the 2D
ports. In the reduce-scatter each node splits data into p blocks
{b0,b1, . . . ,bp−1}, each of size n

p . Each node r runs log2 p
steps, communicating at each step s with the node π(r,s) and
halving the size of the transmitted data. At the end of the
reduce-scatter, we want each node r to have the fully aggre-
gated block br.

To do so, data transmitted from r to q includes the block
bq, plus all the blocks that q will transmit to other nodes in
the subsequent steps. The allgather works similarly, but each
node selects its peer in the reverse order, thus communicating
first with the more distant ones. In the first step, each node r
sends its block br, doubling the transmitted data’s size at each
step (data transmitted from r to q includes all the blocks that r

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1449

gathered until step s). Because the algorithm performs 2log2 p
steps, its latency deficiency is Λ=

log2 p
2 . Because it transmits

the minimal number of bytes and uses all the ports (as we
will show in Sec. 4), its bandwidth deficiency is Ψ = 1. We
estimate the congestion deficiency in Sec. 4 when describing
the algorithm for torus with more than one dimension.

We summarize the algorithm in Listing 1 for reduce-
scatter (the algorithm for allgather is analogous). The function
get_rs_idxs computes the indexes of the data blocks that
a given node r must send at step step, and relies on the
function pi we defined in Eq. 2. Then, the reduce_scatter
function executes log2 p steps, and at each step, computes the
bitmaps blocks_s and blocks_r denoting the blocks of data
that must be sent and received. Last, it sends and receives
those blocks.

def get_rs_idxs(r, step, p, blocks):
if step >= log2(p): return
for s in range(step, int(log2(p))):
peer = pi(r, s, p)
Set to 1 the node I directly reach
blocks[peer] = 1
and those that it will reach
get_rs_idxs(peer, s+1, p, blocks)

def reduce_scatter(r, p, data):
for s in range(0, int(log2(p))):
blocks_s = blocks_r = [0]*p
dest = pi(r, s)
get_rs_idxs(r, s, p, blocks_s)
get_rs_idxs(peer, s, p, blocks_r)
Send blocks where blocks_s[i]=1,
recv blocks where blocks_r[i]=1
sendrecv(dest, data, blocks_s, block_r)

Listing 1: Swing reduce-scatter pseudocode.

We can transmit non-contiguous data using, for example,
MPI indexed datatypes. However, because communicating
non-contiguous data can introduce overhead [25, 47], in the
allreduce, we logically remap the blocks (i.e., without any
actual memory movement) so that each node sends contiguous
data. Indeed, even if the algorithm shuffles the block in the
reduce-scatter, they are eventually placed again in the proper
order in the buffers by the allgather. Moreover, by sending
contiguous data, we also guarantee that the algorithm works
with non-commutative reduction operators [42, 49].

3.1.2 Latency-optimal Algorithm

The latency-optimal Swing algorithm uses the same commu-
nication pattern as the bandwidth-optimal one, but instead
of running a reduce-scatter followed by an allgather, at each
step each node exchanges its entire vector with that of its peer
(similarly to the latency-optimal recursive doubling). The
algorithm only requires log2 p steps (Λ = 1) but transmits
n · log2 p bytes (Ψ = D log2 p because the algorithm uses all

the ports). We estimate the congestion deficiency in Sec. 4
when describing the algorithm for torus with more than one
dimension.

3.2 Non-power-of-two Nodes

When p is even but not a power of 2, some nodes can receive
the same block of data twice (one of which in the last step,
see Appendix A.2). Thus, in that case, it is enough for each
node not to send the same data block twice. Because no extra
data is sent compared to the power of two cases, deficiencies
do not increase.

If p is odd, we run the algorithm on p− 1 nodes, while
node p−1 at each step sends (p−1)/2s of its blocks to the
corresponding (p−1)/2s nodes (and receiving from those its
block). We show this through an example in Fig. 3 for a 1D
torus with 7 nodes (we only show the first two steps). The
first 6 nodes run the algorithm for even nodes as usual. At
step 0 the last node sends (and receives) n

7 bytes to nodes 0, 1,
and 2. At step 1, the last node sends n

7 bytes to node 3 and 4,
and in the last step n

7 bytes to node 5. This slightly increases
the bandwidth deficiency (by a 1/p additive factor).

Step 0

Step 1

0 1 2 3 4 5 6

n/2 bytes

n/7 bytes

0 1 2 3 4 5 6

n/4 bytes

n/7 bytes

Figure 3: First 2 step of the Swing algorithm on a 1D torus
with 7 nodes.

4 Design for Multidimensional Tori

In Sec. 3.1, we described the design of the Swing algorithm
for 1D torus. We now discuss how to extend it to square
(Sec. 4.1) and non-square (Sec. 4.2) torus with more than one
dimension.

4.1 Square Tori

Like the recursive doubling algorithms optimized for tori (dis-
cussed in Sec. 2.3.2 and Sec. 2.3.3), in the Swing algorithm
(both the latency- and the bandwidth-optimal) each node com-
municates on one dimension at a time. Formally, at step s,
each node communicates on the dimension ω(s) = s mod D.
We define with σ(s) = ⌊ s

D⌋ the step of the algorithm rela-
tive to a specific dimension. For example, on a 2D torus, the
third step of the algorithm is the second step executed in the

1450 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

first dimension (i.e., because we count steps starting from 0,
σ(2) = ⌊3/2⌋= 1).

We denote the coordinates of a node with (a0,a1, . . . ,aD−1).
Then, at step s, each node communicates with a node with
the same coordinates, except for the coordinate aω(s). If aω(s)
is even, the coordinate aω(s) is then replaced with (aω(s) +
δ(σ(s))) mod dω(s) (if odd, we flip the sign before δ(σ(s))).

To use all the 2 ·D ports, Swing splits the data into 2 ·D
parts and runs one allreduce on each. To avoid increasing the
congestion deficiency, we must guarantee that, at each step,
each of these 2 ·D collectives use different links. Swing runs
D of these collectives (that we call plain collectives), each
starting from a different dimension, using the algorithm de-
scribed above. Swing runs the remaining D collectives (which
we call mirrored collectives) with the same approach but start-
ing from the opposite direction than that of the corresponding
plain collective. By doing so, each of the 2 ·D allreduce uses
a different port at each step.

Plain Collectives Mirrored Collectives

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 4: First step of the Swing algorithm on a 4x4 torus.

We show this through an example in Figure 4 on a 4×4
torus by showing the first step of the Swing algorithm. Node
0 runs a plain collective on the horizontal dimension exchang-
ing data with node 1, and one in the vertical dimension with
node 4. The two mirrored allreduce inverts the directions,
exchanging data with node 3 in the horizontal dimension and
node 12 in the vertical one.

Whereas both latency and bandwidth deficiencies are un-
affected by the number of dimensions, congestion deficiency
decreases with the number of dimensions due to increased
bisection bandwidth. Intuitively, the more dimensions the
torus has, the more communications the algorithm does with
nodes at a closer distance before moving to higher distances.
Because Swing halves the data size at each step, when a node
needs to communicate with a distant node, data size becomes
smaller and is thus less affected by congestion.

We can model the bandwidth term of the Swing allreduce
as:

n
2D

β

log2 (p)−1

∑
s=0

δ(σ(s))
2s+1

I.e., at each step s Swing halves the size of the data and,

because the distance between communicating nodes at step
s is δ(σ(s)), there is at least one link shared by δ(σ(s)), pro-
portionally increasing the time to transmit one byte.

We can estimate the congestion deficiency by dividing this
quantity by (nβ)/D. Instead of deriving a hardly readable
closed form, we report in Table 2 the values for different
dimensions and for p → ∞ (since the congestion deficiency
increases with p). If D ≥ 3, the Swing algorithm has a conges-
tion deficiency Ξ < 1.003 (i.e., lower than 3%). To estimate
the latency-optimal version’s congestion deficiency, we sum
the distances over all the steps, similar to what we did in
Sec. 2.3.2 for the latency-optimal recursive doubling algo-
rithm. I.e.:

Ξ = D

log2 (p)−1
D

∑
s=0

δ(s)≤ 4
3

D D
√

p

We want to remark that the state-of-the-art latency-optimal
and bandwidth-optimized recursive doubling algorithms de-
scribed in Sec. 2.3.2 and Sec. 2.3.3 only use one port. In
principle, we could extend them to use 2D ports by using the
same approach we used for Swing, running D plain and D mir-
rored collectives. However, as we show in Sec. 5.1, they will
perform strictly worse than Swing. Indeed, while mirroring
decreases their bandwidth deficiencies, their congestion defi-
ciencies are still higher than that of Swing due to the higher
distance between communicating nodes.

4.2 Non-Square Tori
If not all the dimensions have equal size, the algorithm com-
pletes all the steps in one dimension while there are still steps
to execute in other dimensions. If dmin is the smallest dimen-
sion, for the first D · log2(dmin) the algorithm behaves exactly
like in a dmin × . . .× dmin torus. After that, no data is sent
anymore on that dimension, and the algorithm proceeds on
the remaining ones. However, from that point on, it does not
use all the available ports.

Indeed, since data is not transmitted anymore into one of
the dimensions, the ports on that dimension are not used. If
dmin is large enough, this has a limited impact because the size
of the transmitted data decreases after each step. We show
this through an example in Fig. 5 on a 2×4 torus where to
not clutter the figure, we report only the communications per-
formed by node 0. In step 2 (the last step), all the 4 collectives
communicate on the horizontal dimension since each node
has already reached all the nodes in their column.

While there is no difference in latency and bandwidth de-
ficiency, the congestion deficiency increases compared to a
square torus. In practice, it will be somewhere between that
of an equivalent 1D torus (in the worst case) and of a per-
fectly square D-dimensional torus with the same number of
nodes. The actual congestion deficiency depends on the rela-
tive differences between the dimensions. We denote with dmin

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1451

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

Step 0 Step 1 Step 2

Figure 5: Multiport Swing collective on a 2x4 torus.

the smallest dimension and with dmax the largest one and we
consider, as a worst case, a dmin ×dmin × . . .×dmax torus.

The algorithm uses all the ports for the first D · log2(dmin)
steps and behaves as it runs on a D-dimensional torus with
dD

min nodes. After that, it used only two ports for the remaining
steps, behaving as it runs on a 1D torus, but starting from
step s = log2 dmin and on data of size n

2·2D log2 dmin
= n

2dD
min

. We
denote the congestion deficiency of this second phase as:

ΞQ =
1

2 ·dD
min

log2(dmax)−1

∑
s=log2 dmin

2s+1 − (−1)s+1

3 ·2s+1−log2 dmin
≈

≈ 1
6 ·dD

min

log2(dmax)−1

∑
s=log2 dmin

2log2 dmin =

=
(log2 (dmax/dmin))

6 ·dD−1
min

(3)

We can then approximate the congestion deficiency for
rectangular tori by summing the one for square tori to the
one in Eq.3 (that is 0 for square tori). Generally, the higher
the ratio between the largest and the smallest dimension, the
more steps the algorithm executes not using all the available
2D ports. Nevertheless, we show in Sec. 5.2 that Swing still
outperforms state-of-the-art algorithms by up to 3x, except
on very large allreduce (≥ 128MiB).

5 Experimental Evaluation

We evaluate the performance of the Swing algorithm on sev-
eral torus and torus-like networks by comparing it with the
best state-of-the-art algorithms described in Sec. 2.3. We im-
plemented all these algorithms in the Structural Simulation
Toolkit (SST [1]), a packet-level network simulator. We sim-
ulate networks with 400Gb/s links with 100ns latency and
300ns of per-hop packet processing latency [19, 28].

Since each node has 2D ports, the maximum injection band-
width of a node is 2 ·D ·400Gb/s. Also, in all the plots, we
show the goodput, i.e., how many bytes are reduced per time
unit. Because the allreduce needs to send at least twice the
number of bytes in the vector [9], the peak goodput is half the
injection bandwidth (i.e., D ·400Gb/s).

In the following, we analyze the performance on 2D square
(Sec. 5.1) and rectangular tori (Sec. 5.2), higher-dimensional
tori (Sec. 5.3), and other torus-like topologies (Sec. 5.4). Even-
tually, we summarize the results (Sec. 5.5).

5.1 Performance on 2D Square Torus
In Fig. 6, we show the performance evaluation on a 64x64 2D
torus with 4,096 nodes. In the main plot, we show the good-
put of the allreduce for different vector sizes, with each line
representing a different algorithm. For the Swing algorithm,
for each size we only report the best between the latency-
and bandwidth-optimal versions, and we annotate the point
where we switch from the latency-optimal to the bandwidth-
optimal algorithm with a large dot. We do something similar
for recursive doubling as well.

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

128
KiB

512
KiB

2
MiB

8
MiB

32
MiB

128
MiB

512
MiB

Allreduce size

0

100

200

300

400

500

600

700

800

G
o
o
d
p
u
t

(G
b
/s

)

Allreduce - 64x64 Torus (4,096 nodes)

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

0ns

100 s

200 s

300 s

R
u
n
ti
m

e

32
B

512
B

8
KiB

128
KiB

2
MiB

32
MiB

512
MiB

0%

100%

D D D D D
D

D D

D

B

B
B

B

Swing Goodput Gain vs. Best Known Algo.

Hamiltonian
Rings (H)

7ms (H)

230μs (B)

40μs (S)

57μs (D)
57μs (M) Rec. Doub.

(D)

Mirr. Rec.
Doub. (M)

Swing (S)

Bucket (B)

Figure 6: Goodput of allreduce algorithms on a 64x64 2D
Torus topology with 4,096 nodes. The small plot in the bottom
left reports runtime for small allreduce (ranging from 32B
to 32KiB). The runtime for 32B allreduce is annotated using
the same one-letter labels as in the main plot. The top left
inner plot shows the goodput gain of Swing compared to the
best-known state-of-the-art algorithm, and the letters on top of
each datapoint denote the name of the best-known algorithm.

The zoomed-in plot in the bottom left shows the runtime
of each algorithm for allreduce on small vectors (from 32B
to 32KiB). We also denote the runtime for 32B allreduce for
each algorithm, using the same one-letter labels used in the
main plot. Because the runtime of the ring algorithm for small
vectors is orders of magnitude larger than the other algorithms,
it is always out of scale (the time is nevertheless annotated on
the top of the small plot).

Last, the top left plot shows, for each allreduce size, the
goodput gain of Swing compared to the best-known algorithm
as a function of the allreduce size. For example, a 100%
gain denotes Swing is 2x faster than the best state-of-the-art
algorithm. The letter at each data point represents the name
of the best-known algorithm.

For completeness, in this plot, we also show our improved
version of recursive doubling, which uses all the ports (de-
noted as Mirrored Recursive Doubling) using the same plain
and mirrored allreduce technique used by Swing (and de-
scribed in Sec. 4). Swing consistently outperforms our mir-
rored recursive doubling at any size due to the lower conges-

1452 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tion deficiency, and we thus exclude it from the comparison
and from the subsequent results.

By analyzing the results, we observe that Swing outper-
forms all the other allreduce algorithms for vectors ranging
from 32B to 32MiB due to the lower latency deficiency com-
pared to the ring and bucket algorithms and the lower band-
width deficiency compared to the latency-optimal recursive
doubling algorithm. We observe more than 2x improvement
over the recursive doubling algorithm for 2MiB allreduce.

The bucket algorithm performs better than Swing starting
from 128MiB due to its lower congestion deficiency, which
compensates for the higher latency deficiency on large vec-
tors. This is instead not the case for the ring algorithm, char-
acterized by a higher latency deficiency than the bucket algo-
rithm. Moreover, we observe that on 512MiB, Swing achieves
around 77% of the peak goodput, which is what we would
expect from our modeling. Indeed, a congestion deficiency of
1.19 on a 2D torus (see Table 2) means Swing can reach at
most 81% of peak goodput.

By analyzing the two small inner plots, we observe up to
50% improvement for small vectors (≤ 32KiB) compared
to the latency-optimal recursive doubling algorithm. This is
partly due to the lower congestion deficiency, but mostly to
the shorter distance between communicating nodes, which
reduces the latency α (although we did not explicitly model
it so as not to burden the notation). We observe the highest
goodput gains (around 120%) for 2MiB vectors. This is in-
deed the sweet spot where the recursive doubling algorithm
performs poorly, and the performance of the bucket and ring
algorithms is still severely affected by their higher latency
deficiency.

5.1.1 Scaling

We then analyze the performance of Swing on 2D torus of
different sizes. We show in Fig. 7 the goodput gain of Swing
over the best-known algorithm at each allreduce size and for
networks ranging from 64 to 16,384 nodes. We observe that
Swing outperforms state-of-the-art algorithms regardless of
the network size, for up to 32MiB allreduce.

Moreover, we can see that the maximum Swing gain in-
creases when increasing the network size. Indeed, the larger
the network, the larger the impact of latency deficiency on
performance. As a consequence, both the bucket and ring al-
gorithm performance decreases when increasing the number
of nodes (and the Swing gain increases).

Nevertheless, the bucket algorithm outperforms Swing for
large vectors (≥ 128MiB). Indeed, when increasing the net-
work size, Swing congestion deficiency increases. However,
as estimated in Table 2 and as shown in the figure, on 2D
torus, we expect at most a negative gain of around 20% (i.e.,
a peak bandwidth of around 80%) regardless of network size.

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

128
KiB

512
KiB

2
MiB

8
MiB

32
MiB

128
MiB

512
MiB

Allreduce size

-20%

0%

20%

40%

60%

80%

100%

120%

140%

S
w

in
g
 G

o
o
d
p
u
t

G
a
in

 v
s.

 B
e
st

 K
n
o
w

n
 A

lg
o.

 (
%

)

Torus 8x8
(64 nodes)

Torus 16x16
(256 nodes)

Torus 32x32
(1,024 nodes)

Largest gain: 120%

Largest negative gain: -22%

Torus 64x64
(4,096 nodes)

Torus 128x128
(16,384 nodes)

Figure 7: Swing goodput gain on square torus networks rang-
ing from 64 to 16,384 nodes.

5.1.2 Bandwidth Impact

To analyze Swing performance for different network band-
widths, we show in Fig. 8 the goodput gain for 8x8 torus
networks with bandwidth ranging from 100 Gb/s to 3.2 Tb/s.
We observe consistent gains over the best-known state-of-the-
art algorithm regardless of the network bandwidth.

For low bandwidths, the relative impact of bandwidth and
congestion deficiencies on performance is higher, and the
gain of Swing over recursive doubling for small messages
increases. At higher bandwidth, the relative impact of conges-
tion deficiency is lower, and the maximum gain of Swing for
small allreduce decreases. At the same time, however, Swing
is not outperformed anymore by the bucket algorithm for large
allreduce. For example, on 3.2 Tb/s networks, Swing outper-
forms all the other algorithms even for 512MiB allreduce.

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

128
KiB

512
KiB

2
MiB

8
MiB

32
MiB

128
MiB

512
MiB

Allreduce size

0%

20%

40%

60%

80%

100%

120%

S
w

in
g
 G

o
o
d
p
u
t

G
a
in

 v
s.

 B
e
st

 K
n
o
w

n
 A

lg
o.

 (
%

)

100 Gb/s
200 Gb/s
400 Gb/s

800 Gb/s

1.6 Tb/s

3.2 Tb/s

Figure 8: Swing goodput gain on 8x8 torus networks with
network bandwidth ranging from 100 Gb/s to 3.2 Tb/s.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1453

5.2 Performance on Rectangular Tori

As discussed in Sec. 4.2, the congestion deficiency of the
Swing algorithm increases if the torus dimensions are not
all equal, proportionally to the ratio between the sizes of the
largest and smallest dimension. The ring algorithm is instead
unaffected by the shape of the torus, because the Hamilto-
nian rings span over all the nodes (as long as the conditions
discussed in Sec. 2.3.1 are satisfied).

On the other hand, the shape of the torus negatively im-
pacts the bucket algorithm’s latency deficiency. Indeed, if
some torus dimensions are larger than the others, some of the
2D concurrent collectives might move from dimension i to
dimension i+1, whereas there are still collectives running on
dimension i+1. We show this through an example in Fig. 9,
where at step 1, one bidirectional ring moves from the vertical
to the horizontal dimension while the other bidirectional ring
is still running.

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

Step 0 Step 1

Figure 9: First steps of the Bucket algorithm on a 2x4 torus.

This is usually detrimental to performance, and it is better
if all the collectives synchronously move from one dimen-
sion to the next one [44]. Thus, each step is completed only
after all the collectives running on the largest dimension are
completed. Hence, if dmax is the size of the largest dimension,
the latency deficiency becomes Λ = 2D·dmax

log2 p . Bandwidth and
congestion deficiencies are instead unaffected. In a nutshell,
this means that the latency deficiency of the bucket algorithm
is the same as that for a dmax ×dmax · · ·×dmax torus.

For these reasons, we show in Fig. 10 the goodput of the dif-
ferent algorithms for different torus networks, all with 1,024
nodes but with different rectangular shapes. First, we observe
that, as expected, the ring algorithm is unaffected by the shape
of the torus, and outperforms both the bucket and Swing algo-
rithms for allreduce larger than 512MiB. On the other hand,
the latency deficiency of the bucket algorithm increases pro-
portionally to the ratio between the largest and the smallest
dimensions, reducing its performance for small and medium
vectors. This is visible, for example, by analyzing how the
goodput for large allreduce decreases when moving from a
64x16 to a 256x4 torus.

Last, Swing performance decreases compared to a square
torus due to its higher congestion deficiency for rectangular
torus networks. Nevertheless, we observe that Swing still
outperforms the other algorithms up to 32MiB regardless of
the network shape (up to 3x on the 128x8 and 256x4 torus).

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

128
KiB

512
KiB

2
MiB

8
MiB

32
MiB

128
MiB

512
MiB

2
GiB

Allreduce size

0

100

200

300

400

500

600

700

800

G
o
o
d
p
u
t

(G
b
/s

)

Allreduce - 64x16 Torus (1,024 nodes)

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

0ns

100 s

200 s

300 s

R
u
n
ti
m

e

32
B

512
B

8
KiB

128
KiB

2
MiB

32
MiB

512
MiB

0%

100%

200%

D D D D D
D

D
D

D
B

B
B B H

Swing Goodput Gain vs. Best Known Algo. Bucket (B)

Hamiltonian
Rings (H)

Rec. Doub.
(D)

Swing (S)

2ms (H)

230μs (B)

26μs (S)
36μs (D)

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

128
KiB

512
KiB

2
MiB

8
MiB

32
MiB

128
MiB

512
MiB

2
GiB

Allreduce size

0

100

200

300

400

500

600

700

800

G
o
o
d
p
u
t

(G
b
/s

)

Allreduce - 128x8 Torus (1,024 nodes)

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

0ns

200 s

400 s

600 s

R
u
n
ti
m

e

32
B

512
B

8
KiB

128
KiB

2
MiB

32
MiB

512
MiB

0%

100%

200%

D D D D D
D

D D

D

B

B
B H

H

Swing Goodput Gain vs. Best Known Algo.

Bucket (B)

Hamiltonian
Rings (H)

Rec. Doub.
(D)

Swing (S)

2ms (H)

464μs (B)

41μs (S)
59μs (D)

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

128
KiB

512
KiB

2
MiB

8
MiB

32
MiB

128
MiB

512
MiB

2
GiB

Allreduce size

0

100

200

300

400

500

600

700

800

G
o
o
d
p
u
t

(G
b
/s

)

Allreduce - 256x4 Torus (1,024 nodes)

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

0ns

500 s

1ms

R
u
n
ti
m

e

32
B

512
B

8
KiB

128
KiB

2
MiB

32
MiB

512
MiB

-100%

0%

100%

200%

D D D D D
D

D D D

D

B

B
H

H

Swing Goodput Gain vs. Best Known Algo.

Bucket (B)

Hamiltonian
Rings (H)

Rec. Doub.
(D)

Swing (S)

2ms (H)

932μs (B)

74μs (S)
109μs (D)

Figure 10: Goodput on 2D torus with 1,024 nodes and differ-
ent rectangular shapes: 64x16, 32x8, and 256x4.

1454 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.3 Performance for 3D and 4D Torus
As discussed in Sec. 4 and summarized in Table 2, the perfor-
mance of the allreduce algorithm for multidimensional torus
also depends on the number of dimensions. Thus, we evaluate
the performance of the different allreduce algorithms on 82,
83, and 84 torus networks.

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

128
KiB

512
KiB

2
MiB

8
MiB

32
MiB

128
MiB

512
MiB

2
GiB

Allreduce size

0

100

200

300

400

500

600

700

800

G
o
o
d
p
u
t

(G
b
/s

)

Allreduce - 8x8 Torus (64 nodes)

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

0ns

10 s

20 s

30 s

40 s

R
u
n
ti
m

e

32
B

512
B

8
KiB

128
KiB

2
MiB

32
MiB

512
MiB

0%

50%

D D D D
D

D D
B

B

B
B B H H

Swing Goodput Gain vs. Best Known Algo.

Bucket (B)

Swing (S)

Hamiltonian
Rings (H)

Rec. Doub.
(D)

120μs (H)

25μs (B)

7μs (S)
8.7μs (D)

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

128
KiB

512
KiB

2
MiB

8
MiB

32
MiB

128
MiB

512
MiB

2
GiB

Allreduce size

0

200

400

600

800

1000

1200

G
o
o
d
p
u
t

(G
b
/s

)

Allreduce - 8x8x8 Torus (512 nodes)

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

0ns

20 s

40 s

R
u
n
ti
m

e

32
B

512
B

8
KiB

128
KiB

2
MiB

32
MiB

512
MiB

0%

50%

100%

D D D D
D

D
D

B
B

B B B B B

Swing Goodput Gain vs. Best Known Algo.

Swing (S)

Bucket (B)

38μs (B)

10μs (S)
13μs (D) Rec. Doub.

(D)

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

128
KiB

512
KiB

2
MiB

8
MiB

32
MiB

128
MiB

512
MiB

2
GiB

Allreduce size

0

200

400

600

800

1000

1200

1400

1600

G
o
o
d
p
u
t

(G
b
/s

)

Allreduce - 8x8x8x8 Torus (4,096 nodes)

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

0ns

20 s

40 s

60 s

R
u
n
ti
m

e

32
B

512
B

8
KiB

128
KiB

2
MiB

32
MiB

512
MiB

0%

50%

100%

D D D D
D

D
D

B
B

B
B B B B

Swing Goodput Gain vs. Best Known Algo.

Swing (S)

Bucket (B)

Rec. Doub.
(D)

14μs (S)
17μs (D)

51μs (B)

Figure 11: Goodput on higher-dimensional torus networks:
2D 8x8, 3D (8x8x8), and 4D (8x8x8x8).

We report the evaluation result in Fig. 11. We do not include
the Hamiltonian ring algorithm in the 3D and 4D torus results
since it only works for 2D torus networks. When increasing
the number of dimensions, the goodput gain of Swing in-

creases because, as shown in Table 2 and discussed in Sec. 4,
the congestion deficiency drops to 3% on 3D torus and to
0.8% on 4D torus. Consequently, for 3D and 4D torus net-
works, Swing outperforms by up to 2x all existing algorithms
on allreduce ranging from 32B to 2GB.

5.4 Performance on Torus-Like Topologies

Some topologies like HammingMesh [26] and HyperX [3,20]
extend torus by adding additional links, thus increasing the
network bisection bandwidth. Seen from a different perspec-
tive, those extra links allow distant nodes to communicate
crossing fewer hops, decreasing Swing congestion deficiency.

5.4.1 Performance on HammingMesh

HammingMesh [26] groups nodes into square boards. Each
board is a 2D mesh, and nodes on the same column (or row)
located at the edge of the boards are connected together using
fat trees. Due to its higher performance and flexibility com-
pared to a torus a similar topology is used, for example, to
interconnect TPUv4 devices [31]. Because of the extra links,
the congestion deficiency of Swing on a HammingMesh is
lower than that on a 2D torus. Moreover, for a fixed number
of nodes, having smaller boards increases the number of extra
(fat tree) links and, thus, decreases the congestion deficiency.

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

128
KiB

512
KiB

2
MiB

8
MiB

32
MiB

128
MiB

512
MiB

Allreduce size

0

100

200

300

400

500

600

700

800

G
o
o
d
p
u
t

(G
b
/s

)

Allreduce - 64x64 Hx2Mesh (4,096 nodes)

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

0ns

50 s

100 s

150 s

R
u
n
ti
m

e

32
B

512
B

8
KiB

128
KiB

2
MiB

32
MiB

512
MiB

0%

100%

200%

D D D D
D

D
D

D

D

B

B
B B

Swing Goodput Gain vs. Best Known Algo.

Swing (S)

Bucket (B)

Hamiltonian
Rings (H)

Rec. Doub.
(D)

4ms (H)

131μs (B)

8μs (S)
8μs (D)

Figure 12: Goodput on a 4,096 nodes Hx2Mesh.

We show in Fig. 12 the performance of the different algo-
rithms for a Hx2Mesh network with 4,096 nodes (2x2 boards
arranged in a 32x32 configuration). For such configuration,
Swing outperforms the state-of-the-art algorithms at any size,
up to 2.5x for 2MiB allreduce. Moreover, because of the lower
congestion deficiency, we observe how the peak Swing per-
formance is higher compared to a 2D torus with the same
number of nodes (Fig. 6). Last, we also observe a runtime
reduction for all the algorithms for small vectors, since nodes
on the same board on HammingMesh are connected through
PCB traces, with lower latency than optical network cables.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1455

In Fig. 13 we instead report the results for a HammingMesh
with the same number of nodes (4,096), but using 4x4 boards
(4x4 boards arranged in a 16x16 configuration). This con-
figuration is a middle point between the torus topology and
the Hx2Mesh since it has more extra links than a torus, but
fewer than a Hx2Mesh. Due to fewer extra links compared
to Hx2Mesh, on Hx4Mesh Swing has a higher congestion
deficiency, as we can see starting from 128MiB allreduce.

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

128
KiB

512
KiB

2
MiB

8
MiB

32
MiB

128
MiB

512
MiB

Allreduce size

0

100

200

300

400

500

600

700

800

G
o
o
d
p
u
t

(G
b
/s

)

Allreduce - 64x64 Hx4Mesh (4,096 nodes)

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

0ns

50 s

100 s

150 s

R
u
n
ti
m

e

32
B

512
B

8
KiB

128
KiB

2
MiB

32
MiB

512
MiB

0%

100%

200%

D D D D
D D D

D

D

B

B B B

Swing Goodput Gain vs. Best Known Algo.

Swing (S)

Bucket (B)

Hamiltonian
Rings (H)

Rec. Doub.
(D)

3ms (H)

105μs (B)

10μs (S)
10μs (D)

Figure 13: Goodput on a 4,096 nodes Hx4Mesh.

5.4.2 Performance on 2D HyperX

Last, we report in Fig. 14 the performance on a 4,096 2D
HyperX topology [3] (which can be seen as a HammingMesh
with 1x1 boards [26]). HyperX connects each node to every
node in the same row and column. Because in Swing each
node communicates only with nodes on the same row (or the
same column), on HyperX Swing does not experience any
congestion deficiency. We indeed observe from the plot that
Swing outperforms all the other algorithms at any allreduce
size. Moreover, the maximum goodput gain increases from
2.5x in Hx2Mesh and Hx4Mesh, to 3x in HyperX.

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

128
KiB

512
KiB

2
MiB

8
MiB

32
MiB

128
MiB

512
MiB

Allreduce size

0

100

200

300

400

500

600

700

800

G
o
o
d
p
u
t

(G
b
/s

)

Allreduce - 64x64 Hyperx (4,096 nodes)

32
B

128
B

512
B

2
KiB

8
KiB

32
KiB

0ns

100 s

200 s

R
u
n
ti
m

e

32
B

512
B

8
KiB

128
KiB

2
MiB

32
MiB

512
MiB

0%

100%

200%

D D D D D
D D

D

D

B

B
B B

Swing Goodput Gain vs. Best Known Algo.

Swing (S)

Bucket (B)

Hamiltonian
Rings (H)

Rec. Doub.
(D)

7ms (H)

230μs (B)

11μs (S)
11μs (D)

Figure 14: Goodput on a 4,096 nodes HyperX.

5.5 Summary

Last, we summarize all the presented results in Fig. 15, where
we report the distribution of Swing goodput gain over the best
algorithm at each message size for the different scenarios we
analyzed. We show data for allreduce sizes up to 512MiB
since these are the sizes practically used in existing HPC [14]
and machine learning workloads [35] and larger allreduce are
usually split into smaller ones to overlap communication and
computation better.

For each box, the triangle shows the median across the
allreduce sizes. The left and right sides of the box represent
the first (Q1) and third (Q3) quartile, respectively. The left
whisker denotes the smallest point larger than Q1−1.5 ·(Q3−
Q1), whereas the right whisker the biggest point smaller than
Q3+ 1.5 · (Q3−Q1). Empty dots outside the whiskers are
considered outliers.

-50% 0% 50% 100% 150% 200% 250%

HyperX
4k nodes

Hx4Mesh
4k nodes

Hx2Mesh
4k nodes

Torus
8x8x8x8

Torus
8x8x8

Torus
8x8

Torus 8x8
(3.2Tbit /s)

Torus 8x8
(1.6Tbit /s)

Torus 8x8
(800Gbit /s)

Torus 8x8
(200Gbit /s)

Torus 8x8
(100Gbit /s)

Torus
256x4

Torus
128x8

Torus
64x16

Torus
128x128

Torus
64x64

Torus
32x32

Torus
16x16

Goodput Gain vs. Best Known Algo. for Allreduce < = 512MiB

Square
Torus

Rectangular
Torus

Varying
Bandwidth

3D and 4D
Torus

Torus-like
Topologies

512MiB
Allreduce

Median

Largest Gain: 209%

Figure 15: Summary of Swing goodput gain on different
topologies.

First, by observing the performance on square torus net-
works, we see that Swing median and maximum goodput gain
increases with the network size (going from 8x8 to 128x128
torus). As discussed in Sec. 5.1, the maximum negative gain
also increases with network size, but is at most around 20%
and only occurs for large allreduce (≥ 128MiB).

For rectangular torus networks, Swing median and max-
imum goodput gain increase proportionally to the ratio be-
tween the maximum and minimum-sized dimension (i.e., go-

1456 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ing from 64x16 to 256x4 torus), up to 3x for 128x8 torus. For
256x4 torus, Swing performs around 60% worse than the ring
algorithm on 512MiB allreduce.

Increasing the network bandwidth has a positive effect on
Swing goodput gain. Although the maximum goodput gain
decreases, for higher bandwidths, Swing outperforms all the
state-of-the-art algorithms at any allreduce size. Regardless
of the bandwidth, the median Swing goodput gain across
different allreduce sizes stands around 25%.

Swing goodput gain also increases with the number of di-
mensions (moving from 8x8 to 8x8x8x8 torus) since each
node has additional one-hop distant nodes. Because in the
reduce-scatter nodes communicate first with their neighbors,
and halve the data size at each step, Swing can further reduce
the transmitted data size before nodes need to communicate
with more distant ones. On one side, this increases the maxi-
mum goodput gain up to 2x. On the other side, it outperforms
all the other algorithms at any size.

Last, Swing provides consistent performance gains even
on other torus-like topologies such as HammingMesh and
HyperX. When comparing HammingMesh with a torus with
the same number of nodes (i.e., 64x64), we observe higher
goodput gains on HammingMesh, due to the extra links com-
pared to the torus, which helps in reducing Swing congestion
deficiency. Also, on both Hx2Mesh and HyperX, Swing out-
performs the other algorithms regardless of the allreduce size.

Overall we observe a median goodput ranging between
20% and 50%, and a maximum goodput gain of 3x. This
underlines the advantages of using the Swing allreduce al-
gorithm on torus and torus-like networks of any shape and
number of dimensions and at any network bandwidth.

6 Discussion

Extension to Other Collectives Although in this work we
focus on allreduce (and, indirectly, on reduce-scatter and all-
gather), a similar approach can be adopted for other collective
operations. Namely, Swing can replace the recursive dou-
bling algorithm for all those collectives where it is used (e.g.,
broadcast and reduce).

Routing Impact In all our experiments, we used minimal
adaptive routing. I.e., packets are forwarded on the least
congested shortest path. Because in all the analyzed algo-
rithms, each node only communicates with others on the same
row/column, traffic is evenly distributed across links. Sending
packets on non-shortest paths would unnecessarily increase
network traffic and decrease performance.

Swing Performance on Full-Bandwidth Topology On
full-bandwidth topologies (e.g., non-blocking fat trees), both
Swing and recursive doubling will not have any congestion
deficiency, and we expect them to have the same performance.

7 Conclusions

Due to the relevance of torus networks in high-performance
machine learning systems, in this work, we presented Swing,
a new allreduce algorithm for torus networks. To motivate
Swing design, we modeled the latency, bandwidth, and con-
gestion deficiencies, of Swing and of the best state-of-the-art
algorithms. Our modeling highlights the shortcomings of ex-
isting allreduce algorithms for torus networks, especially for
small- and medium-sized allreduce.

We then presented the Swing design. Swing performs a
logarithmic number of steps and transmits a minimal num-
ber of bytes. To reduce the impact of the torus low bisection
bandwidth, Swing shortcuts the torus, reducing the distance
between communicating nodes and, thus, the congestion defi-
ciency. Last, we extensively evaluated Swing performance and
compared it against the best state-of-the-art algorithms, for
different node counts, network bandwidths, shapes, number of
dimensions, and topologies. Our evaluation shows improve-
ments up to 3x on all practically used allreduce sizes.

Acknowledgments

We thank the anonymous NSDI reviewers and our shepherd,
Philip Levis, for their constructive feedback. This work was
supported by Sapienza University under the SEED-2022 and
"Progetti Grandi 2023" funding schemes; by UrbanTwin, an
ETH Board Joint Initiatives project; and by EuroHPC-JU un-
der grant agreement RED-SEA, No 055776. Daniele De Sensi
is a member of the Gruppo Nazionale Calcolo Scientifico -
Istituto Nazionale di Alta Matematica (GNCS-INdAM).

References

[1] Helgi Adalsteinsson, Scott Cranford, David A. Evensky,
Joseph P. Kenny, Jackson Mayo, Ali Pinar, and Curtis L.
Janssen. A simulator for large-scale parallel computer
architectures. Int. J. Distrib. Syst. Technol., 1(2):5773,
apr 2010.

[2] N.R. Adiga, G. Almasi, G.S. Almasi, Y. Aridor, R. Barik,
D. Beece, R. Bellofatto, G. Bhanot, R. Bickford,
M. Blumrich, A.A. Bright, J. Brunheroto, C. Cascaval,
J. Castanos, W. Chan, L. Ceze, P. Coteus, S. Chat-
terjee, D. Chen, G. Chiu, T.M. Cipolla, P. Crumley,
K.M. Desai, A. Deutsch, T. Domany, M.B. Dom-
browa, W. Donath, M. Eleftheriou, C. Erway, J. Esch,
B. Fitch, J. Gagliano, A. Gara, R. Garg, R. Ger-
main, M.E. Giampapa, B. Gopalsamy, J. Gunnels,
M. Gupta, F. Gustavson, S. Hall, R.A. Haring, D. Hei-
del, P. Heidelberger, L.M. Herger, D. Hoenicke, R.D.
Jackson, T. Jamal-Eddine, G.V. Kopcsay, E. Krevat, M.P.
Kurhekar, A.P. Lanzetta, D. Lieber, L.K. Liu, M. Lu,
M. Mendell, A. Misra, Y. Moatti, L. Mok, J.E. Moreira,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1457

B.J. Nathanson, M. Newton, M. Ohmacht, A. Oliner,
V. Pandit, R.B. Pudota, R. Rand, R. Regan, B. Rubin,
A. Ruehli, S. Rus, R.K. Sahoo, A. Sanomiya, E. Schen-
feld, M. Sharma, E. Shmueli, S. Singh, P. Song, V. Srini-
vasan, B.D. Steinmacher-Burow, K. Strauss, C. Surovic,
R. Swetz, T. Takken, R.B. Tremaine, M. Tsao, A.R.
Umamaheshwaran, P. Verma, P. Vranas, T.J.C. Ward,
M. Wazlowski, W. Barrett, C. Engel, B. Drehmel,
B. Hilgart, D. Hill, F. Kasemkhani, D. Krolak, C.T. Li,
T. Liebsch, J. Marcella, A. Muff, A. Okomo, M. Rouse,
A. Schram, M. Tubbs, G. Ulsh, C. Wait, J. Wittrup,
M. Bae, K. Dockser, L. Kissel, M.K. Seager, J.S. Vetter,
and K. Yates. An overview of the bluegene/l supercom-
puter. In SC ’02: Proceedings of the 2002 ACM/IEEE
Conference on Supercomputing, pages 60–60, 2002.

[3] Jung Ho Ahn, Nathan Binkert, Al Davis, Moray
McLaren, and Robert S. Schreiber. Hyperx: Topology,
routing, and packaging of efficient large-scale networks.
In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09,
New York, NY, USA, 2009. Association for Computing
Machinery.

[4] Yuichiro Ajima, Takahiro Kawashima, Takayuki
Okamoto, Naoyuki Shida, Kouichi Hirai, Toshiyuki
Shimizu, Shinya Hiramoto, Yoshiro Ikeda, Takahide
Yoshikawa, Kenji Uchida, and Tomohiro Inoue. The
tofu interconnect d. In 2018 IEEE International
Conference on Cluster Computing (CLUSTER), pages
646–654, 2018.

[5] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser,
and Chris Scheiman. Loggp: Incorporating long mes-
sages into the logp model for parallel computation. Jour-
nal of Parallel and Distributed Computing, 44(1):71–79,
1997.

[6] George Almási, Philip Heidelberger, Charles J. Archer,
Xavier Martorell, C. Chris Erway, José E. Moreira,
B. Steinmacher-Burow, and Yili Zheng. Optimization
of mpi collective communication on bluegene/l systems.
In Proceedings of the 19th Annual International Confer-
ence on Supercomputing, ICS ’05, page 253–262, New
York, NY, USA, 2005. Association for Computing Ma-
chinery.

[7] Amazon. AWS Trn1 Architecture. https:
//awsdocs-neuron.readthedocs-hosted.com/
en/v2.3.0/general/arch/neuron-hardware/
trn1-arch.html, 2023. Accessed: 06-Mar-2023.

[8] AMOTZ BAR-NOY, SHLOMO KIPNIS, and BARUCH
SCHIEBER. An optimal algorithm for computing cen-
sus functions in message-passing systems. Parallel
Processing Letters, 03(01):19–23, 1993.

[9] M. Barnett, R. Littlefield, D.G. Payne, and R. Van-
degeijn. Global combine algorithms for 2-d meshes
with wormhole routing. Journal of Parallel and Dis-
tributed Computing, 24(2):191–201, 1995.

[10] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel
and distributed deep learning: An in-depth concurrency
analysis, 2018.

[11] Brett Bode, Michelle Butler, Thom Dunning, Torsten
Hoefler, William Kramer, William Gropp, and Wen-mei
Hwu. The Blue Waters Super-System for Super-Science,
pages 339–366. 11 2017.

[12] JEHOSHUA BRUCK and CHING-TIEN HO. Effi-
cient global combine operations in multi-port message-
passing systems. Parallel Processing Letters,
03(04):335–346, 1993.

[13] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal
Musuvathi, Todd Mytkowicz, Jacob Nelson, and Olli
Saarikivi. Synthesizing optimal collective algorithms.
In Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP ’21, page 62–75, New York, NY, USA, 2021.
Association for Computing Machinery.

[14] Sudheer Chunduri, Scott Parker, Pavan Balaji, Kevin
Harms, and Kalyan Kumaran. Characterization of mpi
usage on a production supercomputer. In SC18: In-
ternational Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pages 386–400,
2018.

[15] Google Cloud. Enabling next-generation ai workloads:
Announcing tpu v5p and ai hypercomputer, 2024.

[16] David Culler, Richard Karp, David Patterson, Abhijit
Sahay, Klaus Erik Schauser, Eunice Santos, Ramesh
Subramonian, and Thorsten von Eicken. Logp: Towards
a realistic model of parallel computation. SIGPLAN
Not., 28(7):1–12, jul 1993.

[17] Daniele De Sensi, Edgar Costa Molero, Salvatore Di
Girolamo, Laurent Vanbever, and Torsten Hoefler. Ca-
nary: Congestion-aware in-network allreduce using dy-
namic trees. Future Generation Computer Systems,
152:70–82, 2024.

[18] Daniele De Sensi, Salvatore Di Girolamo, Saleh Ashk-
boos, Shigang Li, and Torsten Hoefler. Flare: Flexible
in-network allreduce. In Proceedings of the Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’21, New York,
NY, USA, 2021. Association for Computing Machinery.

1458 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://awsdocs-neuron.readthedocs-hosted.com/en/v2.3.0/general/arch/neuron-hardware/trn1-arch.html
https://awsdocs-neuron.readthedocs-hosted.com/en/v2.3.0/general/arch/neuron-hardware/trn1-arch.html
https://awsdocs-neuron.readthedocs-hosted.com/en/v2.3.0/general/arch/neuron-hardware/trn1-arch.html
https://awsdocs-neuron.readthedocs-hosted.com/en/v2.3.0/general/arch/neuron-hardware/trn1-arch.html

[19] Daniele De Sensi, Salvatore Di Girolamo, Kim H.
McMahon, Duncan Roweth, and Torsten Hoefler. An
In-Depth Analysis of the Slingshot Interconnect. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis (SC20), Nov. 2020.

[20] Jens Domke, Satoshi Matsuoka, Ivan R. Ivanov, Yuki
Tsushima, Tomoya Yuki, Akihiro Nomura, Shin’ichi
Miura, Nie McDonald, Dennis L. Floyd, and Nicolas
Dubé. Hyperx topology: First at-scale implementation
and comparison to the fat-tree. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’19, New
York, NY, USA, 2019. Association for Computing Ma-
chinery.

[21] Jiawei Fei, Chen-Yu Ho, Atal N. Sahu, Marco Canini,
and Amedeo Sapio. Efficient sparse collective communi-
cation and its application to accelerate distributed deep
learning. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, SIGCOMM ’21, page 676–691, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[22] Guangnan Feng, Dezun Dong, and Yutong Lu. Opti-
mized mpi collective algorithms for dragonfly topology.
In Proceedings of the 36th ACM International Confer-
ence on Supercomputing, ICS ’22, New York, NY, USA,
2022. Association for Computing Machinery.

[23] Richard L. Graham, Lion Levi, Devendar Bureddy, Gil
Bloch, Gilad Shainer, David Cho, George Elias, Daniel
Klein, Joshua Ladd, Ophir Maor, Ami Marelli, Valentin
Petrov, Evyatar Romlet, Yong Qin, and Ido Zemah. Scal-
able hierarchical aggregation and reduction protocol
(sharp)tm streaming-aggregation hardware design and
evaluation. High Performance Computing, 12151:41 –
59, 2020.

[24] Graphcore. Graphcore ipu-pod system, 2024.

[25] William Gropp, Ewing Lusk, and Deborah Swider. Im-
proving the performance of mpi derived datatypes. In
Proceedings of the Third MPI Developer’s and User’s
Conference, pages 25–30. Citeseer, 1999.

[26] Torsten Hoefler, Tommaso Bonato, Daniele De Sensi,
Salvatore Di Girolamo, Shigang Li, Marco Heddes, Jon
Belk, Deepak Goel, Miguel Castro, and Steve Scott.
Hammingmesh: A network topology for large-scale
deep learning. In Proceedings of the International Con-
ference on High Performance Computing, Networking,
Storage and Analysis, SC ’22. IEEE Press, 2022.

[27] Torsten Hoefler and D. Moor. Energy, Memory, and Run-
time Tradeoffs for Implementing Collective Communi-

cation Operations. Journal of Supercomputing Frontiers
and Innovations, 1(2):58–75, Oct. 2014.

[28] Torsten Hoefler, Duncan Roweth, Keith Underwood,
Bob Alverson, Mark Griswold, Vahid Tabatabaee, Mo-
han Kalkunte, Surendra Anubolu, Siyan Shen, Abdul
Kabbani, Moray McLaren, and Steve Scott. Datacenter
ethernet and rdma: Issues at hyperscale, 2023.

[29] Nikhil Jain and Yogish Sabharwal. Optimal bucket algo-
rithms for large mpi collectives on torus interconnects.
In Proceedings of the 24th ACM International Confer-
ence on Supercomputing, ICS ’10, page 27–36, New
York, NY, USA, 2010. Association for Computing Ma-
chinery.

[30] Andreas Jocksch, Noé Ohana, Emmanuel Lanti, Eirini
Koutsaniti, Vasileios Karakasis, and Laurent Villard. An
optimisation of allreduce communication in message-
passing systems. Parallel Computing, 107:102812,
2021.

[31] Norman P. Jouppi, George Kurian, Sheng Li, Peter Ma,
Rahul Nagarajan, Lifeng Nai, Nishant Patil, Suvinay
Subramanian, Andy Swing, Brian Towles, Cliff Young,
Xiang Zhou, Zongwei Zhou, and David Patterson. Tpu
v4: An optically reconfigurable supercomputer for ma-
chine learning with hardware support for embeddings,
2023.

[32] Benjamin Klenk, Nan Jiang, Greg Thorson, and Larry
Dennison. An in-network architecture for accelerating
shared-memory multiprocessor collectives. In 2020
ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pages 996–1009, 2020.

[33] Dmitry Kolmakov and Xuecang Zhang. A generaliza-
tion of the allreduce operation, 2020.

[34] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi
Chen, Wenfei Wu, Aditya Akella, and Michael Swift.
ATP: In-network aggregation for multi-tenant learning.
In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), pages 741–761.
USENIX Association, April 2021.

[35] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,
Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,
Brian Vaughan, Pritam Damania, and Soumith Chin-
tala. Pytorch distributed: Experiences on acceler-
ating data parallel training. Proc. VLDB Endow.,
13(12):3005–3018, aug 2020.

[36] Junchao Ma, Dezun Dong, Cunlu Li, Ke Wu, and Li-
quan Xiao. Paard: Proximity-aware all-reduce commu-
nication for dragonfly networks. In 2021 IEEE Intl
Conf on Parallel & Distributed Processing with Ap-
plications, Big Data & Cloud Computing, Sustainable

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1459

Computing & Communications, Social Computing &
Networking (ISPA/BDCloud/SocialCom/SustainCom),
pages 255–262, 2021.

[37] Open MPI. Open MPI Allreduce. https:
//github.com/open-mpi/ompi/blob/main/ompi/
mca/coll/base/coll_base_allreduce.c, 2023.
Accessed: 06-Mar-2023.

[38] Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-
reduce algorithms for clusters of workstations. J. Paral-
lel Distrib. Comput., 69(2):117–124, feb 2009.

[39] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G.E. Fagg,
E. Gabriel, and J.J. Dongarra. Performance analysis of
mpi collective operations. In 19th IEEE International
Parallel and Distributed Processing Symposium, pages
8 pp.–, 2005.

[40] The Next Platform. The ai training chip tencent has an
eye on, 2021.

[41] Rolf Rabenseifner. Optimization of collective reduction
operations. In Marian Bubak, Geert Dick van Albada,
Peter M. A. Sloot, and Jack Dongarra, editors, Compu-
tational Science - ICCS 2004, pages 1–9, Berlin, Hei-
delberg, 2004. Springer Berlin Heidelberg.

[42] Rolf Rabenseifner and Jesper Larsson Träff. More effi-
cient reduction algorithms for non-power-of-two num-
ber of processors in message-passing parallel systems.
In Dieter Kranzlmüller, Péter Kacsuk, and Jack Don-
garra, editors, Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface, pages 36–46,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[43] Martin Ruefenacht, Mark Bull, and Stephen Booth. Gen-
eralisation of recursive doubling for allreduce: Now with
simulation. Parallel Computing, 69:24–44, 2017.

[44] Paul Sack and William Gropp. Collective algorithms
for multiported torus networks. ACM Trans. Parallel
Comput., 1(2), feb 2015.

[45] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with In-
Network aggregation. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 785–808. USENIX Association, April 2021.

[46] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nel-
son, Panos Kalnis, Changhoon Kim, Arvind Krishna-
murthy, Masoud Moshref, Dan R. K. Ports, and Peter
Richtárik. Scaling Distributed Machine Learning with
In-Network Aggregation. In Proceedings of the 18th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), Apr 2021.

[47] Timo Schneider, Fredrik Kjolstad, and Torsten Hoefler.
MPI datatype processing using runtime compilation. In
Jack J. Dongarra, Javier García Blas, and Jesús Car-
retero, editors, 20th European MPI Users’s Group Meet-
ing, EuroMPI ’13, Madrid, Spain - September 15 - 18,
2013, pages 19–24. ACM, 2013.

[48] Aashaka Shah, Vijay Chidambaram, Meghan Cowan,
Saeed Maleki, Madan Musuvathi, Todd Mytkowicz, Ja-
cob Nelson, Olli Saarikivi, and Rachee Singh. Taccl:
Guiding collective algorithm synthesis using communi-
cation sketches, 2022.

[49] Rajeev Thakur and William D. Gropp. Improving the
performance of collective operations in mpich. In Jack
Dongarra, Domenico Laforenza, and Salvatore Orlando,
editors, Recent Advances in Parallel Virtual Machine
and Message Passing Interface, pages 257–267, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

[50] Rajeev Thakur, Rolf Rabenseifner, and William Gropp.
Optimization of collective communication operations
in mpich. Int. J. High Perform. Comput. Appl.,
19(1):49–66, feb 2005.

[51] Weiyang Wang, Moein Khazraee, Zhizhen Zhong,
Manya Ghobadi, Zhihao Jia, Dheevatsa Mudigere, Ying
Zhang, and Anthony Kewitsch. TopoOpt: Co-optimizing
network topology and parallelization strategy for dis-
tributed training jobs. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
23), pages 739–767, Boston, MA, April 2023. USENIX
Association.

[52] J. Worringen. Pipelining and overlapping for mpi col-
lective operations. In 28th Annual IEEE International
Conference on Local Computer Networks, 2003. LCN
’03. Proceedings., pages 548–557, 2003.

A Correctness Proof

In this section we first prove the correctness of the Swing algo-
rithm when the number of nodes is a power of two (Sec. A.1)
and then extend it for an arbitrary number of nodes (Sec. A.2).

A.1 Power of Two Number of Nodes
For clarity reasons, we prove the correctness of the latency-
optimal algorithm (both the latency- and bandwidth-optimal
algorithms perform the same communication pattern, al-
though nodes transmit different data). To prove the algo-
rithm’s correctness, we need to prove that the data transmit-
ted by each node eventually reaches all the other nodes. For
example, on a 1D torus with p nodes, at step 0, node 0 com-
municates with node 1 (which aggregates the received data
with its own). At step 1, node 0 communicates with node

1460 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/open-mpi/ompi/blob/main/ompi/mca/coll/base/coll_base_allreduce.c
https://github.com/open-mpi/ompi/blob/main/ompi/mca/coll/base/coll_base_allreduce.c
https://github.com/open-mpi/ompi/blob/main/ompi/mca/coll/base/coll_base_allreduce.c

−1 mod p = p−1, whereas node 1 communicates with node
2. Thus, we can say that at step 1 the data sent from 0 reached
nodes {1,2, p− 1} (2 has been reached indirectly through
node 1).

Because the number of reached nodes doubles at each step,
and because we perform log2 p steps, the data sent from any
given node would eventually reach p− 1 nodes. We need,
however, to prove that those p−1 nodes are distinct (i.e., that
the data sent by each node reach every other node exactly
once and is thus never aggregated twice). To do so, we need
first to prove a few lemmas.

Lemma A.1. ρ(s) and δ(s) are odd ∀s ∈ N.

Proof. (−2)i is odd for i = 0, and even for i > 0. The sum of
even numbers with an odd number is odd.

Lemma A.2. If r is even, π(r,s) is odd, and vice versa.

Proof. An even node r communicates at step s with node
π(r,s) = r+ρ(s) mod p. Because p is a power of two (thus
even), and ρ(s) is odd (Lemma A.1), π(r,s) is odd. Vice versa,
odd nodes communicate with even nodes.

If a node r communicates at step s with a node q = π(r,s),
and q communicates with a node z = π(q,h) at step h > s, we
say that s indirectly reached node z. Because even nodes only
communicate with odd nodes (and vice versa), if r is even,
we can rewrite:

z =

q=π(r,s)︷ ︸︸ ︷
(r+ρ(s) mod p)−ρ(h) mod p︸ ︷︷ ︸

π(q,h)

= r+ρ(s)−ρ(h) mod p

I.e., the sign behind ρ(s) alternates between positive and neg-
ative, starting from positive. In general, an even node r can
reach through a sequence of k steps {s0 < s1 < s2 < .. . <
sk−1} a node q, with:

q = r+ρ(s0)−ρ(s1)+ρ(s2)− . . . mod p =

= (r+
k−1

∑
i=0

−1i
ρ(si)) mod p

The same applies if r is odd, by replacing −1i with −1i+1.

Lemma A.3. Even nodes reach (directly or indirectly) odd
nodes through an odd number of steps k. Odd nodes reach
(directly or indirectly) even nodes through an odd number of
steps k.

Proof. This stems from Lemma A.2. If r is even and k is odd,
then q = (r+∑

k−1
i=0 −1iρ(si)) mod p is odd because ρ(s) is

always odd. Similarly, if r is odd and k is odd, q is even.

Lemma A.4. Given k integers {e0 < e1 < .. . < ek−1}, with
ek−1 ≤ log2(p)−1, then −p < ∑

k−1
i=0 (−2)ei < p.

Proof. We have ∑
k−1
i=0 (−2)ei ≤ ∑

k−1
i=0 2ei < 2ek−1+1 ≤ p. Simi-

larly, ∑
k−1
i=0 (−2)ei ≥−∑

k−1
i=0 2ei >−(2ek−1+1)≥−p.

Theorem A.5. On a 1D torus, if a node r at step s communi-
cates with node π(r,s) (defined in Eq. 2), it will reach (directly
or indirectly) all the other p−1 nodes in log2(p) steps (with
p power of two).

Proof. We need to prove that, a unique sequence of k steps
{s0 < s1 < .. .sk−1} exists by which a given node r reaches
a node q. We prove this by contradiction, and we will prove
it by assuming that r is even and q is odd (the proof for
the other cases is analogous and only requires changing the
signs before the ρ terms). Assume that there are two different
sequences of steps {s0 < s1 < .. .sk−1 ≤ log2(p)− 1} and
{t0 < t1 < .. . th−1 ≤ log2(p)−1} of k and h steps respectively
(both k and h are odd from Lemma A.3), so that:

q = r+ρ(s0)−ρ(s1)+ρ(s2)− . . .+ρ(sk−1) mod p =

= r+ρ(t0)−ρ(t1)+ρ(t2)− . . .+ρ(th−1) mod p
(4)

By expanding the first of the two sequences we have:

q = r+
s0

∑
i=0

(−2)i −
s1

∑
i=0

(−2)i + . . .+
sk−1

∑
i=0

(−2)i mod p

= r+
s0

∑
i=0

(−2)i +
s2

∑
i=s1+1

(−2)i + . . .+
sk−1

∑
i=sk−2+1

(−2)i mod p

By expanding similarly the second assignment in Eq. 4, we
have that the two sequences exist if:

s0

∑
i=0

(−2)i + . . .+
sk−1

∑
i=sk−2+1

(−2)i ≡

≡
t0

∑
i=0

(−2)i + . . .+
th−1

∑
i=tk−2+1

(−2)i (mod p)

(5)

From Lemma A.4, we know that both sides are in the range
(−p, p). Thus, the two sides are congruent only if: i) they have
the same sign and are equal, or; ii) they have different signs,
and by summing p on the negative side, we get the positive
side. Since each side is the sum of distinct powers of −2, case
i) is only possible if the two sequences of steps are equal.
To prove that case ii) is impossible, let us consider the case
where the left side is negative (the other case is analogous).
Because p = 2a for some a ∈ N, and because 2a = (−2)a (if
a is even2), Eq. 5 becomes:

s0

∑
i=0

(−2)i + . . .+
sk−1

∑
i=sk−2+1

(−2)i +(−2)a =

=
t0

∑
i=0

(−2)i + . . .+
th−1

∑
i=tk−2+1

(−2)i

2If a is odd, p = 2a = (−2)a+1 +(−2)a, and the same considerations still
hold.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1461

However, because both sides are sums of distinct powers of
−2, they can be equal only if the two sequences of steps are
equal, which implies that there must be a ti such that ti = a.
This is impossible because the number of steps can be at most
equal to log2(p)−1 = a−1.

We thus proved by contradiction that there are no two se-
quences of steps leading to the same node and that, at each
step, each node reaches only nodes that it did not already
reach.

A.2 Non-Power of Two Number of Nodes
The correctness proof in Sec. A.1 assumes p is a power of 2
(needed by the last part of Theorem A.5). If p is not a power
of 2, the theorem only holds until the second-last step. If p′

is the largest power of 2 smaller than p, in the second last
step, the data sent by each node reached p′−1 nodes. Thus,
we need to guarantee that in the last step: i) no nodes receive
data it already received; ii) each node reaches the remaining
p− p′− 1 nodes. To guarantee property i), it is enough for
each node to pre-compute the blocks bi it will send at each
step and if it would send a block twice, send that only in the
last step.

To guarantee property ii), it is enough to prove that π(r,s) =
π(g,s)⇔ g = s. Indeed, if no two nodes reach the same node
in the last step, then each node has reached each other node
once. First, if r and g are both even, we need to prove that r+
ρ(s) ≡ g+ρ(s) (mod p). This implies r − g ≡ 0 (mod p).
However, because we have r < p and g < p, this is only
possible if r = g. The proof for odd r and g is analogous.
Then, if r is even and g is odd, we have r+ρ(s) ≡ g−ρ(s)
(mod p), which implies 2ρ(s) ≡ g− r (mod p). However,
we know from Lemma A.1 that ρ(s) is always odd, and thus
2ρ(s) is even. Because r is even and g is odd, g− r is odd.
Thus, if p is even, this can only hold for r = g.

When p is even but not a power of 2, it is enough for each
node not to send the same data block twice, thus not increasing
the deficiency compared to the power of two case.

Last, if p is odd, we might have π(r,s) = π(g,s) even if r ̸=
g, and also Lemma A.2 does not hold anymore. Consequently,
some nodes might not reach all the nodes and, at a given
step, might receive data from more nodes simultaneously,
thus decreasing the performance. For this reason, we run the
algorithm on p−1 nodes, with the "odd" node sending data
directly to each of the other nodes.

1462 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

LitePred: Transferable and Scalable Latency Prediction for Hardware-Aware
Neural Architecture Search

Chengquan Feng1∗ Li Lyna Zhang2‡ Yuanchi Liu1 Jiahang Xu2 Chengruidong Zhang2

Zhiyuan Wang1 Ting Cao2 Mao Yang2 Haisheng Tan1‡

1University of Science and Technology of China 2Microsoft Research

Abstract
Hardware-Aware Neural Architecture Search (NAS) has
demonstrated success in automating the design of affordable
deep neural networks (DNNs) for edge platforms by incor-
porating inference latency in the search process. However,
accurately and efficiently predicting DNN inference latency
on diverse edge platforms remains a significant challenge.
Current approaches require several days to construct new la-
tency predictors for each one platform, which is prohibitively
time-consuming and impractical.

In this paper, we propose LitePred, a lightweight approach
for accurately predicting DNN inference latency on new plat-
forms with minimal adaptation data by transferring exist-
ing predictors. LitePred builds on two key techniques: (i)
a Variational Autoencoder (VAE) data sampler to sample
high-quality training and adaptation data that conforms to the
model distributions in NAS search spaces, overcoming the
out-of-distribution challenge; and (ii) a latency distribution-
based similarity detection method to identify the most similar
pre-existing latency predictors for the new target platform,
reducing adaptation data required while achieving high pre-
diction accuracy. Extensive experiments on 85 edge platforms
and 6 NAS search spaces demonstrate the effectiveness of
our approach, achieving an average latency prediction ac-
curacy of 99.3% with less than an hour of adaptation cost.
Compared with SOTA platform-specific methods, LitePred
achieves up to 5.3% higher accuracy with a significant 50.6×
reduction in profiling cost. Code and predictors are available
at https://github.com/microsoft/Moonlit/tree/main/LitePred.

1 Introduction
Hardware-aware Neural Architecture Search (NAS) has
achieved remarkable success in automating the design of
hardware-friendly deep neural networks (DNNs) in many
tasks [8, 9, 22, 36, 51, 53, 56, 57]. This holds particular im-
portance for crafting models suited to resource-limited edge

∗Work was done during the internship at Microsoft Research
‡Corresponding authors, (lzhani@microsoft.com and hstan@ustc.edu.cn)

platforms, such as mobile phones. However, to design low-
latency models for diverse edge platforms, it remains of sig-
nificant challenge to estimate accurately the inference latency
of numerous models, which depends on multiple factors such
as hardware, inference frameworks, and data precision [52].

Direct on-device measurement is expensive and impractical
due to the very large search space of possible models. Conse-
quently, many works [6, 7, 9, 18, 31, 54] have been proposed
to predict the inference latency based on the given model
architecture. However, these methods face two limitations.
First, they typically rely on random sampling and require a
significant amount of training data to achieve accurate predic-
tions. This process is time-consuming, requiring several days
of data collection for a single platform [18,54]. Second, exist-
ing approaches focus on platform-specific prediction without
considering the latency change due to various dynamics such
as new hardware, various inference frameworks or new ver-
sions, and different data precision. We take nn-Meter [54], a
cutting-edge approach, as an example. By developing latency
predictors for the Xiaomi12 CPU platform using Onnxrun-
time (ORT) [35], it achieves an impressive 99.8% accuracy on
the MobileNetV3 search space [8,22]. However, the predictor
drops to 0 accuracy when the hardware is switched to a Xi-
aomi11 CPU. Thus, these approaches require rebuilding pre-
dictors for every new platform, which is prohibitively expen-
sive and limits the applicability of hardware-aware NAS. This
is especially challenging given the diverse edge platforms,
which include a large number of mobile devices (e.g., 8318
heterogeneous smartphones [17]) and various inference frame-
works (e.g., TFLite [20], ORT, OpenVINO [25], NCNN [60]).

Although a few platform-agnostic prediction works [30,
33] have attempted to address the high cost, they encounter
various limitations. HELP [30] trains a latency predictor with
meta learning [29, 47], but it conducts model-level prediction,
which requires expensive redesigning and retraining of the
meta predictor for new NAS search spaces. OneProxy [33]
trains a latency monotonicity model to predict model latency
rankings on different platforms. However, it only predicts
latency rankings on new platforms, rather than the actual

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1463

https://github.com/microsoft/Moonlit/tree/main/LitePred

values, which is often mandatory in practical deployments.
In this work, we propose LitePred, a lightweight approach

for accurately predicting inference latency in hardware-aware
NAS that eliminates the expensive rebuilding process required
for new platforms. To handle the diverse model graphs in
different NAS search spaces, LitePred performs kernel-level
prediction and computes the model latency as the sum of the
predicted latencies of all kernels ‡. The key idea of LitePred is
to identify the most similar pre-existing latency predictors for
each kernel on new platform, and then finetune them with just
a few adaptation samples to achieve high prediction accuracy.
This makes LitePred a cost-effective solution for predicting
latency, eliminating the bottleneck in hardware-aware NAS.

At the core of LitePred lies the principle that knowledge
from a pre-existing latency predictor for one platform can be
transferred to new platforms that share similarities. This is
based on the fact that latency depends on key factors and their
relationships, which can be learned by an accurate predictor.
When a new platform shares similarities with a previous one,
we can transfer the existing knowledge and adapt the predic-
tor to capture new dynamics. For example, when using the
same TFLite version 2.1, we can transfer a latency predictor
trained on a Xiaomi11 CPU to a Pixel 6 CPU. By reusing
the knowledge learned for TFLite 2.1, we only need a few
adaptation data to learn behaviors on the Pixel 6 CPU.

LitePred maintains a knowledge pool of existing latency
predictors, each being a 16-layer Multilayer Perceptron (MLP)
network. Initially, it constructs base predictors for warmup
platforms and stores them in the pool. When targeting a new
platform, LitePred detects its kernels and identifies the most
similar predictor for each kernel from the pool. These predic-
tors are then finetuned with a small amount of adaptation data
from the new platform to achieve accurate predictions.

LitePred faces two technical challenges. (1) First, construct-
ing initial latency predictors and finetuning existing predictors
require effective data collection. However, latency-dominant
kernels, such as Conv and DWConv kernels, exhibit a multi-
dimensional joint distribution in NAS search spaces, with
dimensions that are highly correlated. This makes random
and adaptive data sampling methods [54] ineffective due to
the out-of-distribution problem, resulting in a large amount
of useless training data and low accuracy. Direct sampling
from search spaces can cause data leakage and limit the gen-
eralization ability in new NAS search spaces. (2) Second,
the similarity between existing predictors and new platforms
greatly affects the number of adaptation samples and the final
prediction accuracy. However, the high diversity between dif-
ferent edge platforms, many of which are black boxes, poses
a challenge in effectively detecting the most similar predictor.

VAE data sampler. To address the first challenge, we lever-
age the concept of Variational AutoEncoder (VAE) [27] and

‡A kernel represents an execution unit, it may be either a single primitive
operator or a fusion of multiple fused operators, similar to nn-Meter [54].

introduce the VAE data sampler. It consists of an encoder-
decoder network, where the encoder compresses the multi-
dimensional joint distribution in the search spaces into a latent
space with a multivariate Gaussian distribution [19]. The de-
coder then reconstructs the Gaussian distribution back into
the original distribution. By sampling from this distribution
and decoding the data using the decoder, we can generate new
training data that conforms to the original multi-dimensional
distribution, addressing the out-of-distribution problem while
preserving generalizability in new model search spaces.
Similar predictor detection. To identify the most similar pre-
existing latency predictors for a target platform, we propose a
latency distribution-based similarity detection method. The
key idea is to compare the real latency distribution on the
target platform with the predicted latency distributions by pre-
existing latency predictors. For each kernel, we create a small
representative set reflecting platform-specific optimizations.
Then, we compute the distribution similarity by calculating
the Kullback-Leibler divergence [13] between the real and
predicted latencies for each latency predictor in the knowledge
pool. The predictor with the highest similarity is selected.

We extensively evaluate LitePred on 85 edge platforms,
including 10 hardware, 10 CPU frequencies, 5 commonly
used edge inference frameworks, and 2 data precisions (FP32
and INT8). Before LitePred, platform-specific approaches
take several days of data collection for a single platform,
limiting evaluations to only a few platforms. To the best of
our knowledge, we are the first to evaluate on such a wide
range of platforms, with requiring ∼1 hour of measurements
on each platform.

We summarize our key contributions as follows:

• We propose LitePred, the first to transfer pre-existing la-
tency predictors and achieve accurate latency prediction on
new edge platforms with a profiling cost of less than 1 hour.

• We introduce two key techniques: a VAE data sampler
to collect effective multi-dimensional data and a latency-
distribution similarity detector that identifies the most simi-
lar pre-existing latency predictors for black-box platforms.

• Extensive experiments on various platforms and 6 NAS
search spaces demonstrate LitePred’s effectiveness, achiev-
ing 99.3% accuracy and outperforming state-of-the-art la-
tency prediction baselines. LitePred significantly improves
accuracy on new edge platforms compared to platform-
agnostic baselines, with up to a 77.5% improvement, and
achieves up to +5.3% higher accuracy against platform-
specific baselines while reducing profiling cost by 50.6×.

• By integrating LitePred with NAS, we discover better mod-
els with superior accuracy and lower latency than Mo-
bileNets. Our models surpass MobileNetV2, achieving an
impressive up to 4.4% higher accuracy on ImageNet.

1464 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Same device equipped with various inference frameworks

Xiaomi11 TFLite 2.1 TFLite 2.7 ORT NCNN Mindspore
289.4ms 271.8ms 451.8ms 165.2ms 209.2ms

(b) Different devices under the same inference framework

TFLite2.1 Xiaomi11CPU Xiaomi11GPU Xiaomi12CPU Pixel5CPU Pixel5CPU∗

289.4ms 36.3ms 244.4ms 300.1ms 568.6ms
(c) Different data precision under the same platform

Xiaomi11 TFLite 2.1 TFLite 2.7
FP32 INT8 FP32 INT8

289.4ms 75.4 ms 271.8ms 77.8ms

Table 1: The vastly different inference latency of ResNet50
on diverse platforms. ∗: we set a lower CPU frequency.

2 Background and Motivations
2.1 Factors that impact the latency
To investigate factors impacting model latency on diverse
edge platforms, we start by conducting measurements. We
monitor different platforms, varying devices, CPU frequency,
inference frameworks, and data precision. Our sample model
is ResNet50, and we deploy it on each platform to measure
the inference latency. The results in Table 1 show that model
latency is heavily dependent on the following factors:
Devices. It has been widely observed that the same model can
exhibit varying inference latencies on different devices. As
shown in Table 1(b), ResNet50 runs 8.0× faster on a GPU
than a CPU on the Xiaomi 11. Surprisingly, even among
mobile phones with ARM CPUs, latency differences for the
same model can exceed 10%.
Inference frameworks: The effectiveness of framework op-
timizations and how well they align with the underlying hard-
ware can significantly impact the overall latency. As shown
in Table 1(a), on Xiaomi11 CPU, deploying ResNet50 with
NCNN yields a 1.7×, 1.6×, 2.7× and 1.3× faster speed than
TFLite 2.1, TFLite 2.7, ORT and Mindspore Lite [24], respec-
tively. Notably, even using the same TFLite framework, dif-
ferent versions can introduce significant latency differences.
CPU frequency. In addition to the device type and inference
frameworks, CPU frequency has a significant impact on in-
ference latency, as shown in Table 1(b). Our experiments on
the Pixel5 demonstrates that even minor changes in CPU fre-
quency (2.2 GHz to 1.9 GHz) can substantially affect latency.
Data precision. Finally, edge platforms support different data
precisions, which lead to different memory and computation
costs, thereby affecting inference latency. Our experiments
focus on the widely supported FP32 and INT8, as shown in
Table 1(c). When we switch the data precision of ResNet50
from FP32 to INT8, we observe a 3.8× and 3.5× reduction
in latency in TFLite 2.1 and TFLite 2.7, respectively.

In summary, these results indicate that any alteration in the
device, framework, CPU frequency, or data precision within
a platform can significantly affect model inference latency.

2.2 Challenges to platform-specific prediction
However, these findings pose a significant challenge to current
platform-specific latency prediction approaches [6, 7, 18, 31,
32, 54]. Trained predictors cannot be directly applied to new

Predicted Platform New Platforms

Xiaomi12 CPU, ORT Xiaomi11 CPU, ORT Xiaomi12 CPU, TFLite 2.1
Accuracy RMSE Accuracy RMSE Accuracy RMSE

99.84% 12.2 ms 0% 57.6 ms 0% 220.6 ms
Table 2: Directly apply nn-Meter’s predictors on new platform
results in a poor prediction accuracy of 0%.

Figure 1: (a) Under the same TFLite 2.1, mobile ARM CPUs
exhibit a similar staircase latency pattern; (b) On Xiaomi11,
various frameworks exhibit similar latency patterns. Config:
HW=56, Stride S=1, Input channel Cin=16.

platforms, requiring a costly rebuilding process for adaptation.
Poor prediction accuracy on new platforms. nn-Meter [54]
leads in device-specific latency prediction. By building pre-
dictors with 42k training data on Xiaomi12 CPU with ORT,
it achieves an impressive 99.8% accuracy in predicting Mo-
bileNetV3 search space [8]. However, such highly accurate
predictors perform poorly on new platforms. Table 2 shows
a significant drop in accuracy to 0 when transitioning to Xi-
aomi11 CPU or switching to TFLite 2.1 framework.

The reason is that the objective of device-specific latency
prediction is to minimize the regression errors between the
predicted latency, y′, and the actual latency, y. As a result,
when there are significant changes in the actual latency, y, on
a new platform, these device-specific predictors experience a
large regression error and become unreliable.
Expensive rebuilding cost. The accuracy drop to 0 mandates
an expensive rebuild of the platform-specific latency predic-
tion method, demanding substantial training data collection
on the new platform. Unfortunately, this data collection pro-
cess can be extremely time-consuming, taking several days to
complete for a single platform. For instance, nn-Meter usually
collects around 42k kernel data points, requiring 2.5 days on a
Google Pixel 4 CPU. Such high cost makes platform-specific
approaches unfeasible and unscalable for handling the vast
number of edge devices and various inference frameworks.

2.3 Opportunities
Observations and insights. Although numerous factors can
impact model latency, we observe that similar latency behav-
ior patterns persist across diverse platforms. This is primarily
because many inference frameworks share a common goal of

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1465

Figure 2: The overview of LitePred. (1) LitePred starts with building accurate base predictors for warmup platforms and stores
them in a knowledge pool. (2) For a new platform, we match the most similar latency predictors for each kernel from knowledge
pool through similarity detection. (3) We adapt identified latency predictors with a few samples from the new platform.

maximizing the utilization of underlying device resources to
minimize DNN inference latency. Consequently, some critical
optimization techniques are commonly applied across these
frameworks. An example is operator fusion, which combines
multiple operators into a single one without storing intermedi-
ate results in memory. Moreover, many frameworks leverage
Neon optimizations [3] specifically designed for ARM CPUs.
TFLite and Mindspore employ CPU kernels optimized for the
ARM Neon instruction set, while NCNN goes a step further
with assembly-level optimization for ARM Neon.

To showcase this, we conduct two experiments. In the first
experiment, we keep the inference framework fixed at TFLite
2.1 and measure the latency of Conv 3x3 on various mobile
phones. As shown in Fig. 1(a), despite significant absolute la-
tency differences among various mobile CPUs, they all exhibit
the same staircase latency pattern as output channels increases.
In the second experiment, we explore whether similar patterns
exist between various inference frameworks. Fig. 1(b) show
that TFLite 2.1, TFLite 2.7 and Mindspore Lite all exhibit a
very similar staircase latency pattern on CPU, while NCNN
CPU and NCNN GPU display a different step pattern.

We thus reveal two key observations: (i): mobile hardware
of the same type exhibit similar latency patterns; (ii) despite
varying optimizations and implementations, there exist infer-
ence frameworks display similar latency patterns.
Opportunities. These observations motivate us to develop
platform-transferable latency predictors that can eliminate the
need for a costly rebuilding process when introducing new
devices or frameworks in the target platform. Our insight is to
train latency predictors to well learn the latency patterns for
a specific platform and then transferring the shared common
knowledge to a new platform. By finetuning the latency pre-
dictor with a few training samples to adapt to any new factors
in the platform, we can achieve high prediction accuracy.

3 System Design
Overview. The observations in Section § 2 motivate LitePred,
a lightweight approach for predicting the latency of arbitrary
DNN models, through transferring pre-existing latency pre-
dictors with minimal adaptation cost across diverse edge plat-
forms. Fig. 2 illustrates the system overview.

To start, we select a few edge platforms (e.g., 5) as warmup
ones and build a set of precise kernel-level latency predic-
tors from scratch (§ 4). Utilizing a VAE data sampler for
high-quality training data collection, these predictors learn
accurate latency patterns for each warmup platform and are
stored in a "knowledge pool". When targeting a new platform,
we perform kernel detection [54] to identify all possible ker-
nels. Then, we identify the most similar latency predictor for
each kernel type from the knowledge pool and finetune them
swiftly using VAE data sampler with just a few adaptation
data (§ 5). We use these finetuned latency predictors to predict
kernel latencies, and sum them up as the final model latency.
Design choice. Our ultimate objective is to effectively serve
hardware-aware NAS on a wide range of diverse edge plat-
forms with LitePred. Specifically, LitePred aims to accurately
predict the inference latency of any DNN models on the target
platform within NAS search spaces. Guided by this goal, we
design the system based on the following principles.
• LitePred predicts latencies for DNN models in NAS search
spaces. In theory, DNN models could be arbitrary, resulting in
a vast number of possibilities that complicate latency predic-
tion. Yet, many models are inferior in accuracy and therefore
disregarded. In our work, we focus on top-tier model search
spaces in NAS, crafted by AI experts and known for their
success in finding accurate models. We collect 5 CNN NAS
search spaces and 1 vision transformer NAS search space for
our final evaluation of latency prediction. These search spaces
include a vast number of 1020 high-quality models.
• The accuracy of initial base latency predictors is crucial
for successful transfer across devices. Our approach starts by
training dedicated, accurate latency predictors for warmup
platforms, which learn the latency patterns resulting from
various inference optimizations. These predictors serve as
a source of knowledge for transferring to new platforms. If
the base predictor fails to achieve high accuracy, transferred
predictors will have inferior performance. For example, a
more accurate predictor (90% base accuracy) outperforms an
inferior one (67.1% base accuracy) with 1.6× less adaptation
data to achieve the same finetuned accuracy.
• LitePred detects the most similar pre-existing latency pre-
dictors. Instead of randomly selecting a predictor from the

1466 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

knowledge pool, LitePred uses a similarity-based approach to
identify the most similar predictor for a new platform. This
allows for the reuse of learned knowledge and leads to re-
duced adaptation data samples and lower measurement costs.
Intuitively, the most similar predictor needs the least amount
of adaptation data and delivers the best prediction accuracy.
• We predict latency at the kernel-level to simplify predic-
tors transfer to new platforms. While HELP [30] and One-
Proxy [33] use model graphs to predict latency, LitePred takes
a kernel-level latency approach. We divide a model into ker-
nels and sum up their predicted latencies as the model latency,
since kernels are sequentially executed on edge platforms.
This is advantageous as kernels are the basic scheduling units
in inference frameworks, covering framework optimizations
(e.g., operator fusion) and specific kernel algorithms (e.g.,
Winograd convolution [28]). Latency prediction at the ker-
nel level simplifies cross-platform predictor detection and
requires less adaptation data than model-level prediction.
Technical challenges. LitePred faces two major technical
challenges: (i) Given the exponentially large NAS search
spaces, how to efficiently collect high-quality data for training
base predictors and finetuning pre-existing predictors? (ii)
How to find most similar predictors and adapt them on new
platforms with minimal profiling costs?

4 Build Accurate Base Latency Predictors
In this section, we introduce our approach for training base
latency predictors on warmup platforms and propose VAE
data sampler to efficiently collect high-quality training data.

4.1 NAS search spaces and the challenges
We begin by studying model distributions in NAS search
spaces. Then, we discuss the challenges in data collection.

NAS search space collection. We collect 5 widely-used CNN
and 1 vision transformer NAS search space, including OFA-
MobileNetV3 [22], ProxylessNAS [9], OFA-ResNet [8], Big-
NAS [53], FBNetV3 [14] and AutoFormer [10]. These search
spaces are of high quality (i.e., models have the potential for
high accuracy) and specifically tailored to edge-regime DNNs.
In total, the 6 search spaces contain an impressive of 1020

different models, representing a vast prediction scope.
Multi-dimensional distribution of kernel configurations.
As elaborated in Section § 3, LitePred builds latency predic-
tors at kernel level. To construct these kernel latency pre-
dictors, we need to collect a large amount of training data
consisting of configuration and latency pairs for each ker-
nel type. However, this presents a practical challenge due to
the vast configuration space of common CNN model kernels,
such as Conv+bn+relu. This kernel has five primary configu-
ration dimensions (input height and width HW, kernel size K,
strides S, input channels Cin, and output channels Cout), re-
sulting in a large number of possible configurations. Profiling
on-device latency for every possible configuration on every
target platform can be prohibitively expensive.

Figure 3: The multi-dimensional distributions of Conv/DW-
Conv configurations in 5 widely-used NAS search spaces.
(AB): Cin vs. Cout exhibit different patterns under different
HW . (CD): The kernel size KS and Cin of DWConv also ex-
hibit different distributions under different HW . Larger circle
size indicates that the configurations have larger frequency.

Fortunately, we observe that each kernel configuration dis-
plays a unique and smaller multi-dimensional joint distribu-
tion in NAS search space. To illustrate this, we collect all the
configurations (HW,K,S,Ccin,Cout) for Conv and DWConv
kernels from 5 CNN search spaces. As shown in Fig. 3(AB),
the values of Cin and Cout of Conv kernels under different HW
display distinct distributions. Fig. 3(CD) demonstrates that
kernel size KS also has a different distribution under varying
channel numbers Cin and input size HW . This allows us to
gather training data conforming to the distribution, rather
than collecting data for all possible configurations.
Challenges in collecting high-quality training data.
However, gathering training data aligned with the multi-
dimensional distribution poses a challenge. Random sampling
can result in the collection of irrelevant data and lower ac-
curacy. nn-Meter introduces an adaptive data sampler that
constructs a probability distribution per dimension and per-
forms independent sampling. However, since the dimensions
are highly correlated (Fig. 3), independent sampling can still
trigger out-of-distribution issues. While uniform sampling
from search spaces resolves this, it introduces data leakage
problems by revealing evaluation data during training, lim-
iting the generalizability to new search spaces. Therefore,
we call for a new sampling approach. In next section, we
introduce VAE data sampler to address all these challenges.

4.2 Efficient VAE data sampler
To collect high-quality training and adaptation data, we di-
vide the process into two specific tasks: (i) learning the multi-
dimensional joint distribution of different kernels, and (ii)
generating new data based on the distribution. In this section,
we take inspiration from the concept of Variational Autoen-
coders (VAE) [27] and propose a VAE data sampler.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1467

Figure 4: Our VAE data sampler for collecting training data.

VAEs are a type of generative neural network, originally
popularized for their applications in image and text genera-
tion tasks [40, 41, 43]. They learn to represent complex data
distributions by encoding input data into a lower-dimensional
latent space and then decoding it back to the original space.
VAEs comprise two primary components: an encoder network
that maps input data to the latent space, and a decoder network
that reconstructs the input data from this latent space.

Inspired by the encoding and decoding process of VAEs,
we propose training an encoder-decoder VAE model to learn
the multi-dimensional distribution for each kernel. Then, we
utilize the trained decoder as our data sampler, generating
new samples that adhere to each kernel’s distribution within
the NAS search space. Next, we will discuss the application
of VAEs for sampling data to train kernel latency predictors.
VAE model design. Fig. 4 illustrates the design of our VAE
model, which consists of a 5-layer Linear encoder and a 5-
layer Linear decoder with a hidden dimension of 256. The
latent space dimension size is empirically set to 128. For each
kernel type (e.g., Conv+bn+relu), we carefully sample sev-
eral configurations as input x, representing its distribution in
search spaces. The encoder maps input x to the latent space z,
which is assumed to follow a multivariate Gaussian distribu-
tion [19]. The decoder then maps from the latent space back
to the input space, generating data x′ that adhere to the same
distribution as the original input x. Note that x and x′ follow
the same distribution, but with minimal values overlap.
Input data x. To train the VAE model, it is crucial to collect
representative configurations from search spaces, which char-
acterizes the distribution for each kernel and acts as the target
distribution for the input data x, which the VAE aims to learn.

However, collecting such data is non-trivial, as many
latency-dominated configurations have low frequencies in
NAS search spaces. For instance, Conv and DWConv kernels’
latency is significantly larger in the first 3 layers, contributing
up to 44% of model latency. Accurate prediction of these con-
figurations is crucial for precise latency prediction. However,
they represent only 1.52% in NAS search spaces, with most
configurations in the middle layers. Naive uniform sampling
can result in the omission of latency-dominating data.

We tackle this challenge by performing data normalization
on latency-dominated large kernels. We assign a larger weight
to Conv and DWConv related kernels. Also, since the number
of kernel configurations differs for each search space, we
collect the x proportionally based on their relative quantities.
Training the VAE model. After collecting the representative

distribution x for each kernel type, the next step is to train the
VAE model that learns the multi-dimensional distribution for
each kernel and generates new configurations x′ based on it.
The training objective aims to minimize the distance between
the decoder output x′ and the encoder input x.

We follow the original VAE work [27] and use two
loss functions: a Mean Squared Error (MSE) reconstruction
loss [2] and a Kullback-Leibler (KL) divergence [1]. The re-
construction loss measures the difference between the decoder
output x′ and the original input data x. The KL divergence
measures the difference between the encoder output distribu-
tion in the latent space and the standard normal distribution.
We train the VAE model to minimize the total loss function.
After the training is done, the decoder is able to map the latent
space z back to the original kernel configuration distribution.
Generating kernel configuration data via the decoder.
Once the VAE is trained, we can employ the decoder to gen-
erate new kernel configuration data x′ that closely aligns with
the distribution x in NAS search spaces. As illustrated in
Fig. 4, to generate N configuration data for Conv+bn+relu
kernel, we first sample N vectors from the latent space, which
follows a multivariate Gaussian distribution. We then pass
these N vectors through the decoder, resulting in the gener-
ation of N new configurations for Conv+bn+relu. Note that
the original decoded configuration data x′ are continuous val-
ues. We apply a straightforward round-to-nearest strategy,
mapping continuous values to the closest valid discrete value.

4.3 Build transferable base latency predictors
The above VAE data sampler efficiently samples high-quality
training data for each kernel. This section outlines designing
latency predictor models that accurately predict latency on
warmup platforms using the collected data. Moreover, these
predictors are designed for easy transfer to new platforms.

Conventional platform-specific prediction methods [6, 7,
11,54] typically rely on decision-tree-based machine learning
regressors to create latency predictors. For example, models
like RandomForest and XGBoost regression are often used,
which fit the training data by minimizing the difference be-
tween actual and predicted latency values. However, these
decision-tree-based regressors require a complete retraining
process, making it impossible to reuse fitted predictors for
transferring to new platforms.

To achieve accurate and transferable latency prediction, we
introduce a DNN model. DNN models have demonstrated
strong performance in transfer learning tasks [39, 59]. Specif-
ically, our latency model is a 16-layer Multilayer Perceptron
(MLP) network, a small model with ∼1 million parameters.

We now describe the training process. For each kernel,
we measure the latency of VAE sampled kernel configura-
tions on warmup platforms. The prediction features are kernel
configurations, FLOPs, and parameter size, while the corre-
sponding inference latency is the label. Our training objective
is to minimize the Mean Absolute Percentage Error (MAPE)

1468 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

loss between the predicted and actual latency values. We use
MAPE loss because we follow previous work [18, 54], which
uses ±10% accuracy as the evaluation metric. This metric
calculates the percentage of kernels with predicted latency
within ±10% error. Minimizing MAPE loss aligns with our
goal of maximizing ±10% accuracy.

LitePred trains base predictors for five randomly selected
warmup platforms listed in Table 3 and stores them in the
knowledge pool, as illustrated in Fig. 2. In the following sec-
tion, we will describe our method for reusing and transferring
these existing predictors to new platforms.

5 Transfer Predictors to New Platforms
For a new edge platform, LitePred addresses the challenge
of identifying the most similar kernel predictors from the
knowledge pool. It then transfers these pre-existing predictors
to the new platform using minimal adaptation data.

5.1 Similar predictor detection for each kernel
Identifying the most similar latency predictor for each ker-
nel on new platforms is challenging as most edge platforms
are black boxes. OneProxy [33] suggests using Spearman’s
Rank Correlation Coefficient (SRCC) to assess the statistical
dependence between latency rankings of models. However,
this method has limitations. First, the SRCC is based on the
total model latency, which might not accurately identify the
most similar platform. In contrast, our experiments shows
that the most similar platform predictor varies by the kernel
type. Second, it depends on random model sampling to evalu-
ate platform similarity, which is typically sparse and fails to
reflect specialized optimizations on the target platform.
Overview of our approach. In our work, we introduce a
lightweight latency-distribution based similarity detection ap-
proach. Instead of focusing on the similarity of the entire
model, we detect similarity at the kernel level since on-device
optimizations are usually implemented at this level. A pre-
existing kernel latency predictor is considered similar for
the target platform if its predicted latency displays a similar
distribution to the real latency. To achieve this, we design a
small set of representative kernel configurations that capture
both kernel distribution and platform-specific optimizations,
rather than randomly sampling or relying solely on the VAE
data sampler. This enables us to identify the most similar la-
tency predictors more effectively while keeping the approach
lightweight.

Fig. 5 illustrates the overall process. We design a small
set of representative configurations for each kernel, and mea-
sure the actual latency of under these configurations on the
platform, denoted as Yr. For each latency predictor in the
knowledge pool, we predict the latency of these configura-
tions as Yp. We then calculate the similarity score using KL
divergence between the actual latency Yr and predicted latency
Yp. Finally, we return the predictor with lowest KL divergence
(i.e., the highest similarity score).

Figure 5: Our proposed similarity detection to identify the
most similar predictor for each kernel type on new platforms.

Representative data for computing similarity. The effec-
tiveness and cost of our similarity detection technique heavily
rely on the quality of representative data. We now introduce
how we design it for computing predictor similarity between
diverse platforms. We consider two types of kernel configura-
tions: (i) configurations in the search spaces that reflect the
underlying distribution; and (ii) specifically designed configu-
rations that capture the latency patterns on the target platform.

Type (i) data collection employs our VAE data sampler. To
collect type (ii) data that reflects specific on-device optimiza-
tions, we adopt a simple but effective fine-grained approach.
This is inspired by Fig. 1, where it reveals that device-specific
staircase latency patterns necessitate dense profiling to un-
cover. In contrast, VAE and random samplers exhibit sparse
coverage, which can distort the profiled latency patterns.

Specifically, we select an initial configuration from search
spaces per kernel. We fix all dimensions except one, and per-
form fine-grained sampling on that dimension. We sample 16
continuous points in the channel number dimension and enu-
merate {1, 3, 5, 7} in the kernel size dimension. For example,
for Conv+bn+relu kernel with the configuration (56, 3, 2, 16,
16), we fix the HW , K, S and Cin dimensions, and generate
16 continuous points (e.g., 16 to 32) in the output channel
dimension. Then, we fix the HW , S, Cin, and Cout dimensions,
and enumerate {1, 3, 5, 7} in the kernel size dimension.
Similarity score. To compute the similarity of latency distri-
butions between each pre-existing predictor and a target plat-
form, we use the Kullback-Leibler (KL) divergence, a widely
used statistical metric for comparing probability distributions.
First, we obtain the real kernel latency for representative con-
figurations as Yr. Next, for each pre-existing predictor i that
is trained or finetuned for a different platform, we obtain its
predicted latencies Y i

p under the representative configurations.
Finally, we compute the KL divergence between the prob-
ability distributions P and Q that correspond to Y i

p and Yr,
respectively. The KL divergence is defined as follows:

DKL(P||Q) = ∑
yr∈Yr ,yp∈Yp

P(yp) log P(yp)
Q(yr)

For each kernel, the predictor with the lowest KL diver-
gence is chosen for adaptation to the new target platform.
Note that the cost of our similarity detection method comes
from the profiling overhead of the representative configura-
tions, which typically takes less than 10 minutes.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1469

5.2 New platform adaptation
After identifying the most similar latency predictors for all
kernels, we introduce the method for adapting these predictors
to the new platform through a finetuning process.

Our method, illustrated in Fig. 2, begins by sampling adap-
tation configurations on the target platform using a VAE data
sampler and measuring their latencies. We then finetune the
identified predictors using the sampled data, updating their
weights to improve accuracy on the new platform.

Increasing adaptation data typically improves prediction
accuracy but raises profiling costs. Our experimental results
indicate that a small number of samples (less than 500) can
achieve high accuracy when finetuning on a new platform.
This is because we identified very similar latency predictors,
which greatly reduces the required amount of adaptation data.
As a result, our approach is significantly more cost-effective
than traditional platform-specific prediction methods.

6 Implementation
Training the VAE. For large kernels such as Conv+bn+relu
and DWConv+bn+relu, we collect 2000 configurations to
train the VAE model as described in Sec.§ 4.2. For smaller ker-
nels such as Squeeze&Excitation (SE) [23] and bn+relu, we
collect 500 configurations. Our VAE model is implemented
based on the Pytorch implementation [44]. We train the model
for 2k epochs. During each training step, we randomly sample
a batch of 16 configurations based on their frequency. We use
the Adam optimizer [26] with a learning rate of 0.001 and
decay rates of (0.9, 0.999).
Build base latency predictors with VAE decoder. After
completing VAE training, we utilize the learned latent space
and the decoder to gather training data for constructing base
latency predictors for each kernel type. Specifically, to sample
N configurations, we generate N 128-dimensional vectors
from multivariate Gaussian distribution and feed them into
the decoder. The N decoder outputs are used as training data.
We sample up to N=10k configurations for Conv and DWConv
related kernels and N=1000 for small kernels.

For each kernel type, we generate the corresponding model
graph based on the sampled configurations. Then, we measure
the inference latency on 5 random warmup platforms to gather
training data for building base latency predictors. Each pre-
dictor is trained for 350 epochs using the AdamW optimizer
with a cosine learning rate scheduler, and the initial learning
rate is set to 0.001. The training cost is feasible. On an Nvidia
RTX 2080Ti, it takes 26 minutes to train latency predictors
for large kernels and only 6 minutes for small kernels.
Transfer to new platforms. For a new platform, we first
conduct kernel detection [54] to identify all possible kernels.
Then, we perform similarity detection for each kernel to find
the most similar predictor from the knowledge pool. Specifi-
cally, we identify similar predictors for Conv and DWConv
kernels using 400 representative data. For small kernels, we
reuse the detected platform for Conv kernels and use the

Device CPU GPU CPU Frequency
Pixel 4 Qualcomm Snapdragon 855 Adreno 640 2.4GHz, 2.1GHz
Pixel 5 Qualcomm Snapdragon 765G Adreno 620 2.2GHz, 1.9GHz
Pixel 6 Google Tensor SoC Mali-G78 2.5GHz, 2.2GHz

Xiaomi 11 Qualcomm Snapdragon 888 Adreno 660 2.4GHz, 2.1GHz
Xiaomi 12 Qualcomm Snapdragon 8 Gen 1 Adreno 730 2.4GHz, 2.1GHz
Inference
engines TFLite 2.1, TFLite 2.7, NCNN, Mindspore Lite, Onnxruntime

Precision FP32, INT8

Table 3: Our 85 evaluated platforms, including 10 different
hardware and CPU frequencies, 5 popular inference frame-
works on edge and 2 data precision.

corresponding predictor, as small kernels usually have same
platform detection results as Conv kernels.

To finetune predictors, we use our VAE data sampler to
generate a few configurations and measure their latency. We
sample 100 configurations for small kernels and 500 for large
kernels like Conv and DWConv. If accuracy is unsatisfactory,
we iteratively sample 500 more data points per round until
the desired accuracy is reached. During finetuning, we use
detected kernel weights as initial weights and finetune for
300 epochs. We follow the same training settings as the base
predictor, but with a smaller learning rate of 0.0005.

7 Evaluation
7.1 Experiment Setup
Platforms. We evaluate LitePred on a wide variety of edge
platforms, as detailed in Table 3. Our evaluation includes 10
mobile hardware (CPU and GPU), 5 popular inference en-
gines for edge devices, and 2 data precision options (FP32
and INT8 for CPU devices). Besides, we test each CPU de-
vice under two frequencies. In total, we evaluate 85 differ-
ent platforms, a significantly larger number than previous
works. This large-scale evaluation is achieved by our pro-
posed lightweight, scalable, and transferable latency predic-
tion paradigm. Without it, the cost of such an evaluation would
be extremely expensive.
Evaluation datasets. To evaluate the effectiveness of
LitePred in hardware-aware NAS, we build latency datasets
using the 6 high-quality NAS search spaces (ref Section 4.1).
We randomly sample 4k models from each search space and
measure their latency on our 85 platforms. In total, the dataset
contains 1.86 million model and latency pairs.

For each platform, we measure the model inference latency
by performing a warmup of 10 inference runs and then cal-
culating the average latency over 50 subsequent inference
runs. For CPU platforms, we set the CPU frequency to the
target value and measure the corresponding latency. For INT8
precision, we measure the INT8 latency on TFLite platforms,
as TFLite has good support for this precision. Specifically, we
use TFLite’s official tools [46] to quantize models to INT8
precision and follow the standard process to measure latency.
Comparison baselines. We compare LitePred with state-
of-the-art latency prediction methods by implementing two
strong baselines: (1) nn-Meter [38, 54], a platform-specific
method; and (2) HELP [30], a platform-agnostic method.

1470 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Metrics. We evaluate three metrics: Root Mean Square Er-
ror (RMSE), prediction accuracy, and profiling cost. RMSE
quantifies the errors between predicted and real latency. Since
RMSE can be highly influenced by the range of real latency
values, we also report prediction accuracy. Following related
works [18, 54] , we measure prediction accuracy as the per-
centage of models whose predicted latency error falls within
±5% and ±10% of the real measured latency. For profiling
cost, we report both the number of sampled kernels and the
total on-device measurement time cost.

7.2 Key findings
Before presenting detailed results, we summarize our valuable
findings and insights gained from extensive experimentation:
(i): Despite differences in hardware, software inference engine
implementations, data precision, and CPU frequencies among
edge platforms, LitePred successfully transfers pre-existing
latency predictors and achieves 99.3% accurate latency pre-
diction across diverse edge platforms.
(ii): On most edge platforms, LitePred requires <1 hour
of adaptation profiling cost. Compared to state-of-the-art
platform-specific baselines, it achieves up to 5.3% higher
accuracy and reduces profiling costs by 50.6×.
(iii): The detected most similar predictor’s corresponding plat-
form varies depending on the kernel type. (Table 5).
(iv): The data required for adaptation depends on the simi-
larity between the detected platform predictor and the target
platform. A highly similar predictor requires minimal data,
while less similar predictors demand more data for finetuning.
(v): By enabling hardware-aware NAS, LitePred facilitates
the development of efficient DNN models for various edge
platforms. Remarkably, our searched models outperform Mo-
bileNetV2 by up to 4.4% in accuracy on the ImageNet dataset.

7.3 Evaluation on diverse edge platforms
7.3.1 Comparison with baseline methods
We demonstrate the effectiveness of LitePred by comparing
with state-of-the-art latency prediction baselines.
Setup. We select 4 out of 85 platforms for comparison and use
the higher frequency of the CPU device. By default, we use
FP32 data precision unless stated otherwise. Since HELP per-
forms model-level latency prediction, a separate meta latency
predictor needs to be designed and trained for each search
space. For simplicity, we choose MobileNetV3 search space,
which HELP already supports, as the evaluation dataset.

For nn-Meter, we use the official code [38] to sample train-
ing data and train kernel latency predictors for each target
platform. For HELP, we initially adapt its meta predictor using
10 randomly sampled models from target platform. However,
the accuracy is poor. Therefore, we add two edge platforms
(i.e., Pixel5 CPU with MindSpore, and Xiaomi11 GPU with
NCNN) to retrain the meta latency predictor for better predic-
tion. During evaluation, we increase the number of adaptation
models and allow the profiling cost to be the same as ours.
We refer to this improved implementation as HELP∗.

Platform Method Train Data Cost RMSE Prediction Acc
±5% ±10%

Xiaomi11 CPU
Mindspore

HELP 10 models 12.44s 6.6 ms 11.5% 22.5%
HELP∗ 1030 models 0.35h 4.1 ms 39.3% 48.7%

nn-Meter 234997 kernels 16.23h 0.8 ms 78.0% 98.9%
Ours 4800 kernels 0.35h 0.4 ms 95.4% 100%

Xiaomi11 CPU
NCNN

HELP 10 models 10.87s 9.5 ms 15.4% 23.0%
HELP∗ 3000 models 0.88h 6.7 ms 37.1% 49.1%

nn-Meter 169305 kernels 20.17h 0.4 ms 96.4% 100%
Ours 11400 kernels 0.88h 0.3 ms 99.5% 100%

Pixel 5 GPU
TFLite 2.7

HELP 10 models 2.66s 1.2 ms 13.9% 28.0%
HELP∗ 2500 models 0.62h 0.8 ms 51.6% 61.1 %

nn-Meter 104996 kernels 7.94h 0.8 ms 37.7% 95.8%
Ours 11900 kernels 0.62h 0.3 ms 95.9% 99.9%

Pixel 5 GPU
NCNN

HELP 10 models 16.41s 12 ms 7.9% 16.8%
HELP∗ 2100 models 0.96h 7.5 ms 33.5% 50.8 %

nn-Meter 397384 kernels 48.60h 1.6 ms 52.2% 94.7%
Ours 17400 kernels 0.96h 0.9 ms 92.6% 100%

Table 4: LitePred outperforms both state-of-the-art platform-
specific and platform-agnostic baselines by achieving higher
prediction accuracy with significantly lower sampling costs.

Results and analysis. Table 4 summarizes the compari-
son results. LitePred consistently outperforms both platform-
specific and platform-agnostic prediction baselines by achiev-
ing higher prediction accuracy and lower RMSE, all while
requiring significantly lower sampling costs. Compared to
platform-agnostic methods, LitePred conducts much more
precise latency prediction on new platforms, with over 92%
of models whose predicted latency error falls within ±5% of
the real latency. In contrast, HELP achieves only 12% accu-
racy on average, and the improved HELP∗ achieves 40.4%.

Furthermore, LitePred achieves much higher ±5% predic-
tion accuracy than platform-specific baseline while reducing
prediction costs to within 1 hour. Compared to nn-Meter,
LitePred speedups the prediction cost by 46.4×, 22.9×, 12.8×
and 50.6× on the four platforms, respectively. These results
demonstrate the remarkable effectiveness of LitePred in terms
of both prediction accuracy and efficiency.
7.3.2 Transfer to diverse new platforms
We now evaluate the effectiveness of LitePred in latency pre-
diction on a wider range of new platforms by transferring
pre-existing predictors. Due to space limit, we select 14 dif-
ferent edge platforms, covering a variety of hardware types,
frequencies, data precisions, and inference frameworks.
Setup. We conduct two experiments to demonstrate that
LitePred can adapt well to any new edge platforms. (a): we
select the most similar kernel predictors from knowledge pool,
regardless of the hardware or inference engines for the de-
tected predictors. (b): To demonstrate that LitePred can trans-
fer latency predictors across different hardware and inference
engines, we exclude the predictors with the same inference
engines as target platform from the knowledge pool and select
the most similar predictors from the remaining ones.
Results and analysis. Table 5 summarizes the detailed results,
including the detected similar kernel predictors, the required
data and time cost for adaptation, and the prediction accuracy
over our benchmark dataset on each target platform.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1471

(a) Selecting most similar kernel predictors from the whole knowledge pool

Platform Similar Platforms #Adaptation Time Prediction Accuracy
Conv kernel DWConv kernel Data Cost ±5%Acc ±10%Acc

Xiaomi11CPU, ORT Xiaomi12 CPU, ORT Xiaomi12 CPU, ORT 1400 0.48h 90.5% 98.9%
Pixel5 GPU, NCNN Xiaomi11 GPU, NCNN Xiaomi11 GPU, NCNN 17400 0.96h 84.3% 99.1%

Xiaomi11 CPU, MindSpore Pixel5 CPU, MindSpore Xiaomi12 CPU, MindSpore 4800 0.35h 90.4% 99.9%
Xiaomi11 GPU, TFLite 2.7 Xiaomi12 GPU, TFLite 2.7 Xiaomi12 GPU, TFLite 2.7 11000 0.17h 83.7% 98.6%

Xiaomi11 CPU, NCNN Xiaomi11 CPU, MindSpore Pixel5 CPU, NCNN 11400 0.88h 80.3% 98.9%
Pixel6 CPU, TFLite 2.1 Xiaomi12 CPU, TFLite 2.1 Xiaomi12 CPU, TFLite 2.1 3500 0.16h 79.4% 100%
Pixel5 CPU, TFLite 2.7 Xiaomi11 CPU, TFLite 2.7 Xiaomi11 CPU, TFLite 2.7 3400 0.13h 79.6% 99.2%

Xiaomi12 CPU, TFLite 2.7, INT8 Xiaomi11 CPU, ORT Pixel5 GPU, TFLite 2.7 3100 0.05h 95.7% 100%

(b) Similarity detection of kernel predictors Excluding same inference frameworks
Xiaomi11 CPU, ORT Pixel5 CPU, MindSpore Pixel5 GPU, NCNN 2400 0.72h 84.2% 99.2%

Xiaomi12 GPU, TFLite 2.7 Pixel5 GPU, NCNN Xiaomi12 CPU, MindSpore 16100 0.22h 79.4% 98.7%
Xiaomi11 CPU, Mindspore Pixel5CPU, TFLite 2.7 Pixel5GPU, TFLite 2.7 9700 0.80h 98.1% 99.2%

Pixel5 GPU, NCNN Xiaomi12 CPU, TFLite 2.1 Xiaomi11 CPU, ORT 18500 1.73h 86.5% 99.3%
Xiaomi12 CPU, TFLite 2.1, low Freq Xiaomi11 GPU, NCNN Pixel5 CPU, MindSpore 1800 0.18h 94.7% 100%

Xiaomi12 CPU, TFLite 2.1 Pixel4 CPU, TFLite 2.7 Pixel5 CPU, MindSpore 1800 0.10h 97.6% 99.9%
Table 5: Transferable latency prediction of LitePred on diverse new platforms. LitePred accurately predicts the inference latency
of models across five different CNN NAS search spaces, with minimal adaptation cost (0.05 to 1.73 hours) on new platforms.

Table 5 demonstrates that LitePred achieves superior ac-
curacy in predicting latency on diverse new edge platforms
equipped with varying hardware, inference engines, data pre-
cision, and frequencies. Remarkably, we achieve an average
of 99.3% transfer accuracy, with 87.0% of models having
prediction errors within a negligible 5% margin.

Furthermore, not only does LitePred accurately predict in-
ference latency on unseen new platforms, but it also requires
only ∼4,000 adaptation data points for finetuning all kernel
predictors across most of the platforms we evaluated. This
leads to <1 hour of measurement overhead, which is a signif-
icant improvement over platform-specific methods that typi-
cally require 1-3 days of measurement for a single platform.

In Table 5, we observe that more adaptation data is needed
for finetuning kernel predictors on GPUs with NCNN/TFLite
2.7 and CPUs with NCNN. This is due to two main reasons.
First, models generate 4 new kernels in the NCNN framework:
Conv+bn+swish/hswish and DWConv+bn+swish/hswish, re-
quring the use of similar predictors and more adaption data
points. Second, edge GPU platforms typically require more
adaptation data for Conv and DWConv related kernels due
to specific optimizations on various GPUs, making it chal-
lenging to find a highly similar platform. Thus, more data is
needed for the predictor to learn these optimizations.

7.4 Ablation study
We now conduct ablation studies to assess the effectiveness
of each of our techniques.
The effectiveness of VAE data sampler. An effective data
sampler is crucial for improving prediction accuracy and
avoiding useless data. To evaluate the effectiveness of our
VAE data sampler, we compare it with the state-of-the-art
adaptive data sampler proposed in nn-Meter on 4 platforms.

Platform Method Conv Acc. DWConv Acc.
Xiaomi11 CPU

MindSpore
Adaptive data sampler 84.9% 52.8%

VAE data sampler 91.4% 93.6%
Xiaomi11 CPU

NCNN
Adaptive data sampler 81.5% 95.5%

VAE data sampler 88.8% 98.3%
Pixel5 GPU
TFLite 2.7

Adaptive data sampler 61.6% 86.7%
VAE data sampler 76.7% 89.1%

Pixel5 GPU
NCNN

Adaptive data sampler 65.6% 79.6%
VAE data sampler 87.1% 81.7%

Table 6: Under the same sampling budget of 10k data points,
VAE data sampler outperforms state-of-the-art methods with
achieving much higher latency prediction accuracy.

We sample 10k configurations using both data samplers to
train the latency predictor for Conv and DWConv kernels.

Table 6 presents a comparison of the achieved prediction
accuracy. Our VAE data sampler consistently outperforms
the adaptive data sampler, achieving much higher prediction
accuracy on all four platforms. This is because we can sample
configurations that conform to the multi-dimensional distri-
bution in NAS search spaces. In contrast, the adaptive data
sampler is constrained to align solely with individual dimen-
sions, leading to the out-of-distribution issue.

The effectiveness of our similarity detection technique. We
evaluate whether our method detects the most similar latency
predictor for target platform. We set up two baselines: (i)
OneProxy [33], choosing the predictor with the highest SRCC
metric by comparing predicted and real latency rankings for
random kernel configurations, and (ii) Random, selecting a
predictor from the knowledge pool randomly. For the selected
kernel predictor, we use VAE data sampler to generate the
same adaptation data for finetuning. A more similar predictor
is expected to have higher accuracy after finetuning on the

1472 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 6: Finetuned accuracy of Conv kernel on new plat-
forms. By our similarity detection, we achieve higher accu-
racy with 2.5× less adaptation data than baseline methods.

Figure 7: Prediction accuracy of Conv kernel. Finetuning
a similar pre-trained predictor yields higher accuracy than
training a new predictor from scratch on the same platform.

new platform and require less adaptation data.
Fig. 6 compares the finetuned accuracy of Conv kernel

predictor on two platforms. Our method consistently identify
the most similar predictors for the target platform, resulting
in significantly higher accuracy across varying amounts of
adaptation data. When achieving same accuracy, our detected
predictors require 2.5× and 3× less adaptation data than those
required by random selection and OneProxy, respectively.
The effectiveness of finetuning pre-existing predictors.
With sufficient time, it’s possible to train kernel latency predic-
tors from scratch for a new platform using VAE data sampler.
Our experiment shows that finetuning a similar pre-trained
predictor yields higher prediction accuracy with less training
data. As shown in Fig. 7, finetuning leads to faster conver-
gence and better accuracy. This finding is consistent with
the intuition of our work, as a similar predictor can already
capture some latency behaviors for the target platform.
Transfer cost analysis. We now analyze the transferring costs
in Table 5. Our results show that major adaptation costs come
from finetuning Conv and DWConv kernels. Conv finetuning
uses 51.1% of the adaptation data, and DWConv uses 32.5%.
Small kernels need only 100 points, while SE kernels need
slightly more, ranging from 300 to 700 points.

We further analyze the impact of varying amounts of adap-
tation data on prediction accuracy. We select two platforms:
Pixel5 GPU with NCNN, which required the largest amount
of data, and Xiaomi12 CPU with TFLite 2.1, which only re-
quired 1800 samples. The results, shown in Fig. 8, indicate

Figure 8: Model-level prediction Acc. vs. data amounts.

a large drop of ±5% accuracy when reducing the adaptation
data, followed by a more gradual decline at ±10% accuracy.
If we set a relaxed threshold of 90% ±10% accuracy as ac-
ceptable number, then we can reduce the amount of adaptation
data by 3.5× and 3.6× for the two platforms, respectively.

7.5 Hardware-aware NAS with LitePred
We now showcase how LitePred effectively supports
hardware-aware NAS in finding accurate, low-latency DNNs
for various edge platforms. We integrate LitePred with a state-
of-the-art NAS approach, called OFA [8], and conduct latency-
constrained search for 4 different edge platforms. It is worth
noting that we test 2 edge GPU platforms, which are rarely
evaluated in current hardware-aware NAS due to the chal-
lenges of accurately obtaining latency on them. Specifically,
we search 5k model architectures for each given latency con-
straint and select the model with highest validation accuracy
on ImageNet 2012 dataset [15]. We then evaluate the test ac-
curacy of the final model and measure the on-device latency.

Table 7 compares the best searched model accuracy with
MobileNetV2 [42] and MobileNetV3 [22], which are state-of-
the-art lighweight CNNs designed for edge platforms. Results
show that OFA with LitePred delivers better models than Mo-
bileNets, achieving higher accuracy on ImageNet and lower
latency on 4 diverse edge platforms. Our searched models sur-
pass MobileNetV2 by up to 4.4% higher ImageNet accuracy.
Our results proves LitePred’s value as a tool for hardware-
aware NAS in designing higher accuracy models that meet
specific latency constraints on diverse edge platforms.

7.6 LitePred on Transformer models
We demonstrate LitePred’s generalization ability on other
DNN architectures by assessing transfer latency prediction on
vision transformers [10,16,48]. We test on mobile CPUs with
TFLite platforms, which have good support for transformer
models. We build latency predictors for five vision trans-
former sub-modules: MultiHeadAttention, PatchEmbedding,
MLP, LayerNormalization, and Linear layers. Specifically,
TensorFlow’s optimizations for MultiHeadAttention remove
the need for fine-grained kernel detection.

Table 8 shows the latency prediction accuracy for Auto-
Former [10] search space. The high transferable prediction
accuracy showcases LitePred’s effectiveness in transferring la-
tency predictors for vision transformers across edge platforms
with varying devices, data precision, and CPU frequencies.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1473

Method Pixel6 CPU, TFLite 2.1 Xiaomi11 CPU, Mindspore Pixel5 GPU, NCNN Xiaomi11 GPU, TFLite 2.7
Top1 Acc. ↑ Latency ↓ Top1 Acc. ↑ Latency ↓ Top1 Acc. ↑ Latency ↓ Top1 Acc. ↑ Latency ↓

MobileNetV2 72.0 45.9ms 72.0 22.7ms 72.0 31.3ms 72.0 5.0 ms
OFA [8] + LitePred 76.4 44.4 ms 73.4 21.8 ms 75.3 31.1 ms 75.8 5.0 ms
MobileNetV3× 0.75 73.3 29.7ms 73.3 24.4ms 73.3 34.4ms 73.3 4.0 ms
OFA [8] + LitePred 74.8 29.6 ms 74.5 23.9 ms 76.0 34.3 ms 74.4 3.9 ms

MobileNetV3 75.2 37.2ms 75.2 33.4ms 75.2 30.3ms 75.2 4.7ms
OFA [8] + LitePred 75.5 36.8 ms 75.6 33.2 ms 75.6 29.8 ms 75.5 4.6 ms

Table 7: Hardware-aware NAS search results on ImageNet 2012 dataset [15]. By integrating LitePred into OFA, we achieve
superior accuracy compared to MobileNets across various edge platforms.

Platform Similar Platform Time Prediction Acc
Cost ±5% ±10%

Xiaomi11 CPU
TFLite 2.7

Xiaomi11 CPU
TFLite 2.1 0.05h 100% 100%

Xiaomi12 CPU
TFLite 2.1

Pixel5 CPU
TFLite 2.7, LowFreq 0.08h 83.9% 99.9%

Xiaomi12 CPU
TFLite 2.7, INT8

Pixel5 CPU
TFLite 2.7, LowFreq 0.02h 41.4% 99.9%

Table 8: Transferable latency prediction of LitePred on vision
transformer NAS search space [10].

8 Related Works
Platform-specific latency prediction. Most previous latency
prediction approaches [6, 7, 18, 31, 32, 54] are designed to
build platform-specific latency predictors. Notable examples
include BRP-NAS [18] and nn-Meter [54]. BRP-NAS [18]
uses graph convolutional networks (GCN) to train a GCN
latency predictor. However, it requires the entire model graph
as input, which makes it necessary to redesign and retrain the
model for new hardware-aware NAS search spaces, leading to
expensive and time-consuming processes. nn-Meter [54] tack-
les this challenge by building kernel-level predictors. How-
ever, all these approaches require significant time costs and
efforts to rebuild the predictors for new platforms, as they rely
on platform-specific data collection and predictor training.
Platform-adaptive latency prediction. Recently, a few
works propose to construct platform-agnostic latency pre-
dictors [30, 34, 37]. HELP [30] builds a meta latency predic-
tor that incorporates hardware embeddings. However, meta-
training requires numerous latency measurements on a wide
variety of heterogeneous platforms and faces challenges in
generalizing to new unseen devices. OneProxy [34] exploits
latency monotonicity across diverse devices to predict DNN
latency rankings on new unseen platforms. However, many
hardware-aware NAS approaches [8, 9, 45, 56, 57] require
actual latency values rather than rankings.
Hardware-aware NAS. Hardware-aware NAS approaches [8,
9, 49, 50, 53, 55, 57] aim to design efficient DNN models
that balance accuracy and latency. However, the vast model
search space makes latency measurement costly. Most NAS
works [21, 49, 50] use FLOPs as an efficiency metric, but
it’s an inaccurate proxy for latency. Recent works such as
ProxylessNAS [9] and OFA [8] employ a layer-wise latency
predictor, but ignore latency changes caused by graph opti-
mizations. Also, most of the evaluated platforms are limited to
cloud platforms. LitePred provides rapid and accurate latency
predictions on diverse edge platforms, facilitating the design

of more efficient DNN models for edge environments.

9 Discussion
Comparison with Cost Models in DNN Compilers. Many
deep learning compilers [4, 5, 11, 12, 58] build cost models to
predict the execution time of different code implementations
on a given hardware platform. They typically rely on complex
feature engineering to build decision-tree-based regression
models. For instance, TVM [11] employs XGBoost to make
predictions based on a diverse set of features, including mem-
ory access and data reuse ratio, along with embedded fea-
tures like AST. However, as many edge inference frameworks
are closed source, these code-based methods are infeasible.
LitePred differentiates itself from these approaches by predict-
ing model latency solely based on the model configurations.
Generalization Ability. Currently, LitePred focuses on pre-
dicting inference latency for CNNs and vision transformers on
commercial edge platforms. If a new edge platform is signifi-
cantly different from our knowledge pool, it may be necessary
to sample more adaptation data and train like starting from
scratch. Our approach can be easily extended to other model
types, such as language transformers. Generalization to cloud
platforms has not been validated due to potential concurrency
in kernel execution. We leave this as future work.

10 Conclusion
In this work, we propose LitePred, a lightweight latency pre-
diction approach that can accurately predict the inference
latency of DNN models on a new edge platform based on a
small amount of extra measurements. LitePred incorporates a
VAE data sampler to collect high-quality training and adap-
tation data. By transferring the most similar pre-existing la-
tency predictors, LitePred achieves accurate predictions with
an adaptation cost of less than 1 hour. Extensive experiments
on 85 edge platforms and 6 NAS search spaces demonstrate
the effectiveness of LitePred, achieving an impressive predic-
tion accuracy of 99.3% and a remarkable 50.6× reduction in
profiling cost compared with state-of-the-art baselines.

11 Acknowledgement
We are thankful to the anonymous NSDI reviewers and our
shepherd, Hong Xu, for their constructive feedback. The
work of Chengquan Feng, Yuanchi Liu, Zhiyuan Wang and
Haisheng Tan are supported by the National Science Founda-
tion of China under Grant No. 62132009.

1474 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Pytorch kl-divergence loss. https://pytorch.org/

docs/stable/generated/torch.nn.KLDivLoss.
html?highlight=kl+divergence.

[2] Pytorch mseloss. https://pytorch.org/docs/
stable/generated/torch.nn.MSELoss.html.

[3] ARM. An introduction to the armv8
instruction sets. https://developer.
arm.com/documentation/den0024/a/
An-Introduction-to-the-ARMv8-Instruction-Sets,
2019.

[4] Riyadh Baghdadi, Massinissa Merouani, Mohamed-
Hicham Leghettas, Kamel Abdous, Taha Arbaoui,
Karima Benatchba, et al. A deep learning based cost
model for automatic code optimization. Proceedings of
Machine Learning and Systems, 3:181–193, 2021.

[5] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane,
Emanuele Del Sozzo, Abdurrahman Akkas, Yunming
Zhang, Patricia Suriana, Shoaib Kamil, and Saman Ama-
rasinghe. Tiramisu: A polyhedral compiler for express-
ing fast and portable code. In Proceedings of the 2019
IEEE/ACM International Symposium on Code Genera-
tion and Optimization, 2019.

[6] Noureddine Bouhali, Hamza Ouarnoughi, Smail Niar,
and Abdessamad Ait El Cadi. Execution time modeling
for cnn inference on embedded gpus. Association for
Computing Machinery, 2021.

[7] Halima Bouzidi, Hamza Ouarnoughi, Smail Niar, and
Abdessamad Ait El Cadi. Performance prediction for
convolutional neural networks on edge gpus. In Pro-
ceedings of the 18th ACM International Conference on
Computing Frontiers, CF ’21, page 54–62. Association
for Computing Machinery, 2021.

[8] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang,
and Song Han. Once-for-all: Train one network and
specialize it for efficient deployment. In ICLR, 2020.

[9] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS:
Direct neural architecture search on target task and hard-
ware. In International Conference on Learning Repre-
sentations, 2019.

[10] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin
Ling. Autoformer: Searching transformers for visual
recognition. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 12270–
12280, 2021.

[11] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Meghan Cowan, Haichen Shen,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,

and Arvind Krishnamurthy. Tvm: An automated end-
to-end optimizing compiler for deep learning. In Pro-
ceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation, OSDI’18, 2018.

[12] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang,
Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. Learning to optimize tensor programs.
Advances in Neural Information Processing Systems, 31,
2018.

[13] THOMAS M. COVER and JOY A. THOMAS. Ele-
ments of Information Theory. 1991.

[14] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen
Wu, Zijian He, Zhen Wei, Kan Chen, Yuandong Tian,
Matthew Yu, Peter Vajda, and Joseph E. Gonzalez. Fb-
netv3: Joint architecture-recipe search using neural ac-
quisition function. CoRR, abs/2006.02049, 2020.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Fei-Fei Li. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition
(CVPR 2009), 20-25 June 2009, Miami, Florida, USA,
pages 248–255. IEEE Computer Society, 2009.

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In
International Conference on Learning Representations,
2021.

[17] DroidChart. You can currently find 8318 smartphones
from 238 brands, 2023.

[18] Lukasz Dudziak, Thomas Chau, Mohamed Abdelfat-
tah, Royson Lee, Hyeji Kim, and Nicholas Lane. Brp-
nas: Prediction-based nas using gcns. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, ed-
itors, Advances in Neural Information Processing Sys-
tems (Neurips), volume 33, pages 10480–10490. Curran
Associates, Inc., 2020.

[19] Nathaniel R Goodman. Statistical analysis based on a
certain multivariate complex gaussian distribution (an
introduction). The Annals of mathematical statistics,
34(1):152–177, 1963.

[20] Google. Tensorflow lite. https://tensorflow.
google.cn/lite/. Accessed 2022-12-14.

[21] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1475

https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html?highlight=kl+divergence
https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html?highlight=kl+divergence
https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html?highlight=kl+divergence
https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html
https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html
https://developer.arm.com/documentation/den0024/a/An-Introduction-to-the-ARMv8-Instruction-Sets
https://developer.arm.com/documentation/den0024/a/An-Introduction-to-the-ARMv8-Instruction-Sets
https://developer.arm.com/documentation/den0024/a/An-Introduction-to-the-ARMv8-Instruction-Sets
https://tensorflow.google.cn/lite/
https://tensorflow.google.cn/lite/

In Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XVI 16, pages 544–560. Springer, 2020.

[22] Andrew Howard, Mark Sandler, Grace Chu, Liang-
Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V.
Le, and Hartwig Adam. Searching for mobilenetv3. In
ICCV, 2019.

[23] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7132–
7141, 2018.

[24] Huawei. Mindspore. https://www.mindspore.cn/
lite/. Accessed 2022-12-14.

[25] Intel. Deploy high-performance deep learning inference,
openvino. https://software.intel.com/content/
www/us/en/develop/tools/openvino-toolkit.
html, 2019.

[26] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In Yoshua Bengio and Yann
LeCun, editors, 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

[27] Diederik P Kingma and Max Welling. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[28] Andrew Lavin and Scott Gray. Fast algorithms for con-
volutional neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 4013–4021, 2016.

[29] Hayeon Lee, Eunyoung Hyung, and Sung Ju Hwang.
Rapid neural architecture search by learning to generate
graphs from datasets. ArXiv, abs/2107.00860, 2021.

[30] Hayeon Lee, Sewoong Lee, Song Chong, and Sung Ju
Hwang. Hardware-adaptive efficient latency prediction
for nas via meta-learning. Advances in Neural Informa-
tion Processing Systems, 34:27016–27028, 2021.

[31] Zhuojin Li, Marco Paolieri, and Leana Golubchik. Pre-
dicting inference latency of neural architectures on mo-
bile devices. Association for Computing Machinery,
2023.

[32] Liang Liu, Mingzhu Shen, Ruihao Gong, Fengwei Yu,
and Hailong Yang. Nnlqp: A multi-platform neural
network latency query and prediction system with an
evolving database. 2022.

[33] Bingqian Lu, Jianyi Yang, Weiwen Jiang, Yiyu Shi, and
Shaolei Ren. One proxy device is enough for hardware-
aware neural architecture search. Proceedings of the
ACM on Measurement and Analysis of Computing Sys-
tems, 5(3):1–34, 2021.

[34] Bingqian Lu, Jianyi Yang, Weiwen Jiang, Yiyu Shi, and
Shaolei Ren. One proxy device is enough for hardware-
aware neural architecture search. Proceedings of the
ACM on Measurement and Analysis of Computing Sys-
tems, 5(3):1–34, 2021.

[35] Microsoft. onnxruntime, 2022.

[36] Bert Moons, Parham Noorzad, Andrii Skliar, Gio-
vanni Mariani, Dushyant Mehta, Chris Lott, and Tij-
men Blankevoort. Distilling optimal neural networks:
Rapid search in diverse spaces. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 12229–12238, 2021.

[37] Saeejith Nair, Saad Abbasi, Alexander Wong, and Mo-
hammad Javad Shafiee. Maple-edge: A runtime latency
predictor for edge devices. In CVPR EVW workshop,
pages 3660–3668, 2022.

[38] Microsoft Research nn Meter Team. nn-meter: Towards
accurate latency prediction of deep-learning model in-
ference on diverse edge devices, 2021.

[39] Sinno Jialin Pan and Qiang Yang. A survey on transfer
learning. IEEE Transactions on Knowledge and Data
Engineering, 22(10):1345–1359, 2010.

[40] Jialun Peng, Dong Liu, Songcen Xu, and Houqiang Li.
Generating diverse structure for image inpainting with
hierarchical vq-vae. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 10775–10784, 2021.

[41] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals.
Generating diverse high-fidelity images with vq-vae-2.
Advances in neural information processing systems, 32,
2019.

[42] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: In-
verted residuals and linear bottlenecks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[43] Stanislau Semeniuta, Aliaksei Severyn, and Erhardt
Barth. A hybrid convolutional variational autoencoder
for text generation. arXiv preprint arXiv:1702.02390,
2017.

[44] A.K Subramanian. Pytorch-vae. https://github.
com/AntixK/PyTorch-VAE, 2020.

1476 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.mindspore.cn/lite/
https://www.mindspore.cn/lite/
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://github.com/AntixK/PyTorch-VAE
https://github.com/AntixK/PyTorch-VAE

[45] Chen Tang, Li Lyna Zhang, Huiqiang Jiang, Jiahang Xu,
Ting Cao, Quanlu Zhang, Yuqing Yang, Zhi Wang, and
Mao Yang. Elasticvit: Conflict-aware supernet training
for deploying fast vision transformer on diverse mobile
devices. arXiv preprint arXiv:2303.09730, 2023.

[46] Tensorflow. Post-training integer quantiza-
tion. https://www.tensorflow.org/lite/
performance/post_training_integer_quant,
2023.

[47] Sebastian Thrun and Lorien Y. Pratt. Learning to learn:
Introduction and overview. In Sebastian Thrun and
Lorien Y. Pratt, editors, Learning to Learn, pages 3–17.
Springer, 1998.

[48] Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran-
cisco Massa, Alexandre Sablayrolles, and Herve Jegou.
Training data-efficient image transformers and distilla-
tion through attention. In International Conference on
Machine Learning, volume 139, pages 10347–10357,
July 2021.

[49] Dilin Wang, Chengyue Gong, Meng Li, Qiang Liu, and
Vikas Chandra. Alphanet: Improved training of supernet
with alpha-divergence. In ICML, 2021.

[50] Dilin Wang, Meng Li, Chengyue Gong, and Vikas Chan-
dra. Attentivenas: Improving neural architecture search
via attentive sampling. In Conference on Computer
Vision and Pattern Recognition, 2021.

[51] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai,
Ligeng Zhu, Chuang Gan, and Song Han. HAT:
hardware-aware transformers for efficient natural lan-
guage processing. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel R. Tetreault, editors, Proceedings of
the 58th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2020, Online, July 5-10, 2020,
pages 7675–7688. Association for Computational Lin-
guistics, 2020.

[52] Xudong Wang, Li Lyna Zhang, Yang Wang, and Mao
Yang. Towards efficient vision transformer inference:
A first study of transformers on mobile devices. In
Proceedings of the 23rd Annual International Workshop
on Mobile Computing Systems and Applications, 2022.

[53] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang,
Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas:
Scaling up neural architecture search with big single-
stage models. In ECCV, 2020.

[54] Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng,
Ting Cao, Yuqing Yang, and Yunxin Liu. nn-meter:
Towards accurate latency prediction of deep-learning
model inference on diverse edge devices. In Proceedings
of the 19th Annual International Conference on Mobile
Systems, Applications, and Services, page 81–93, New
York, NY, USA, 2021. ACM.

[55] Li Lyna Zhang, Youkow Homma, Yujing Wang, Min
Wu, Mao Yang, Ruofei Zhang, Ting Cao, and Wei Shen.
Swiftpruner: Reinforced evolutionary pruning for effi-
cient ad relevance. In Proceedings of the 31st ACM
International Conference on Information & Knowledge
Management, pages 3654–3663, 2022.

[56] Li Lyna Zhang, Xudong Wang, Jiahang Xu, Quanlu
Zhang, Yujing Wang, Yuqing Yang, Ningxin Zheng,
Ting Cao, and Mao Yang. Spaceevo: Hardware-friendly
search space design for efficient int8 inference. arXiv
preprint arXiv:2303.08308, 2023.

[57] Li Lyna Zhang, Yuqing Yang, Yuhang Jiang, Wenwu
Zhu, and Yunxin Liu. Fast hardware-aware neural archi-
tecture search. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR) Workshops, June 2020.

[58] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, et al. Ansor: Generating
{High-Performance} tensor programs for deep learn-
ing. In 14th USENIX symposium on operating systems
design and implementation (OSDI 20), pages 863–879,
2020.

[59] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi,
Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing He.
A comprehensive survey on transfer learning. Proceed-
ings of the IEEE, 109(1):43–76, 2020.

[60] Nihui Zuo Zhang. Tencent: Ncnn: a high-performance
neural network inference computing framework opti-
mized for mobile platforms. https://github.com/
Tencent/ncnn/, 2019.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1477

https://www.tensorflow.org/lite/performance/post_training_integer_quant
https://www.tensorflow.org/lite/performance/post_training_integer_quant
https://github.com/Tencent/ncnn/
https://github.com/Tencent/ncnn/

Harmonic: Hardware-assisted RDMA Performance Isolation for Public Clouds

Jiaqi Lou1∗ Xinhao Kong2∗ Jinghan Huang1 Wei Bai3† Nam Sung Kim1 Danyang Zhuo2

University of Illinois Urbana-Champaign1 Duke University2 Microsoft3

Abstract
Performance isolation is essential for sharing resources in
multi-tenant public clouds. Compared with traditional kernel-
based networking, RDMA presents unique challenges espe-
cially because RDMA NIC’s complex microarchitecture re-
sources are often hidden from users. Current RDMA isolation
methods overlook these microarchitecture resources, lead-
ing to insufficient performance isolation. Consequently, a
faulty/malicious tenant can exploit these microarchitecture re-
sources to compromise well-behaved tenants’ network perfor-
mance. In this paper, we introduce the first microarchitecture-
resource-aware RDMA performance isolation solution for
public clouds, Harmonic. It consists of two key components
designed to be conscious of the RDMA NIC’s microarchitec-
tural resources: (1) a programmable intelligent PCIe switch
(prototyped with FPGA) and (2) an RDMA-friendly rate lim-
iter. At runtime, these two components allow us to accurately
monitor and modulate the RDMA NIC resource usage per
tenant. We evaluate Harmonic with a state-of-the-art RDMA
performance isolation test suite (Husky) and a popular in-
memory database application (Redis). We demonstrate that
Harmonic can not only successfully pass Husky but also pro-
vide Redis with 1.4× higher throughput than the best alterna-
tive isolation solution.

1 Introduction
The Remote Direct Memory Access (RDMA) technology has
been widely deployed in modern clouds to improve network
performance. First-party workloads in clouds, such as stor-
age [11, 17], heavily rely on RDMA to achieve high through-
put, low latency, and high CPU efficiency. A natural next step
for cloud providers is to bring RDMA’s benefits to their pub-
lic cloud tenants. Unfortunately, this has not yet come true
because RDMA was initially designed for high-performance
computing, lacking adequate multi-tenancy support.

One of the key missing components for bringing RDMA to

∗Jiaqi Lou and Xinhao Kong contributed equally to this research.
†Wei Bai is now with NVIDIA.

public clouds is performance isolation. Without proper per-
formance isolation, a buggy or malicious tenant can affect the
RDMA performance of other tenants, and even conduct side-
channel attacks through the RDMA network [29, 52, 54, 55].
Although network performance isolation has been extensively
studied in the past decades [10, 12, 19, 20, 25, 32, 53], recent
work has highlighted that prior RDMA performance isolation
solutions are insufficient for public clouds [29]. An RDMA
NIC (RNIC) has microarchitecture resources, such as on-NIC
cache and on-NIC processing units that significantly affect
RDMA performance [26, 27, 29]. However, all existing per-
formance isolation solutions are agnostic to the contention of
these microarchitecture resources among tenants, providing
insufficient performance isolation when the microarchitec-
ture resources are exhausted. For example, RDMA traffic that
keeps generating expensive ATOMIC requests can exhaust
the on-NIC processing units and drastically reduce the RDMA
performance of other tenants [29, 46].

The goal of this paper is to explore the possibility of build-
ing a microarchitecture-resource-aware solution for RDMA
performance isolation. Our high-level approach is as follows:
we monitor the usage of RDMA resources (including mi-
croarchitecture resources) per tenant, and then modulate it
accordingly to provide isolation. Yet, realizing our approach
faces two challenges:
(C1) Accurately measuring per-tenant RNIC resource us-
age. RDMA traffic bypasses the kernel, which makes it hard
to intercept and monitor the RDMA traffic in system software.
Moreover, RNICs today only expose limited aggregate statis-
tics, such as RNIC cache miss rates and total PCIe bandwidth
consumption, without the capability of identifying the specific
tenant causing this resource usage.
(C2) Finding an appropriate rate limit enforcement entry
point. System software is not a viable rate limit enforcement
point because most RDMA operations bypass the control of
cloud providers. Commodity RNICs also do not provide rich
rate enforcement features. For example, no current RNIC pro-
vides a mechanism to limit a tenant’s rate of specific RDMA
operations (e.g., ATOMIC), and cloud providers cannot feasi-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1479

bly modify existing RNICs to incorporate these new features.
We also cannot simply drop excessive packets at the RNIC,
because packet losses can significantly degrade RDMA per-
formance [21, 31, 60, 64].

Our key approaches to address the above challenges are
outlined below. First, we make a PCIe switch serve as a sweet
spot for measuring the RDMA resource usage of tenants at
runtime. This choice is motivated by the following reasons.
All RDMA traffic goes through the PCIe bus, allowing us to in-
tercept all RDMA behaviors. More importantly, RDMA pins
all RDMA-related objects (e.g., payloads and other metadata)
in the host DRAM. Thus, the physical address to tenant/object
mapping is fixed. This enables us to correlate a PCIe transac-
tion with a specific tenant and associated RDMA behaviors
by mapping the transaction’s target physical memory address
to the RDMA objects.

To tackle the second challenge, we repurpose the rate lim-
iters in RNIC hardware for our performance isolation. Modern
commodity RNICs employ many rate limiters for congestion
control purposes. These rate limiters react to network con-
gestion feedback and reduce rates accordingly. We therefore
can proactively inject an appropriate amount of congestion
feedback to targeted tenants, to limit their rates when we need
to limit their RDMA resource usage.

Applying our insights above, we develop Harmonic, the
first hardware/software co-design solution for RDMA perfor-
mance isolation that takes RNIC microarchitecture resources
into account without requiring changes to applications. To
measure the RDMA resource usage of tenants at runtime, we
implement an FPGA-based Programmable Intelligent PCIe
Switch (PIPS) in Harmonic. We extend existing RNIC kernel
drivers to a Harmonic kernel driver to obtain the aforemen-
tioned physical memory address to tenant/object mappings.
PIPS connects the RNIC to the host, and monitors the RDMA
traffic of each tenant using the mappings provided by the Har-
monic kernel driver. We implement a Harmonic daemon to
repurpose the rate limiters in the RNIC hardware. Most, if not
all, commodity RNICs support DCQCN [64] as congestion
control algorithm [13, 24, 40]. The Harmonic daemon there-
fore can generate and send Congestion Notification Packet
(CNP), the congestion feedback in DCQCN, to rate-limit tar-
geted tenants for our performance isolation purpose. The
Harmonic daemon limits tenants’ rates based on PIPS’s mon-
itoring results. To make performance isolation more practical
for public RDMA clouds, we also extend the existing RDMA
performance abstraction to include a set of RDMA-specific
resources, such as the number of QPs and the RDMA request
rate.

We use Harmonic to enhance an NVIDIA ConnectX-6
Dx 25 Gbps NIC and evaluate Harmonic with the state-of-
the-art RDMA performance isolation test suite, Husky [29],
and a popular in-memory database application, Redis over
RDMA [63]. We compare Harmonic with other performance
isolation solutions, including hardware Single Root I/O Vir-

tualization (SR-IOV), separate hardware queues, and Justi-
tia [62]. Our evaluation results show that Harmonic success-
fully provides stronger performance isolation under various
types of resource contention. This results in improving the
throughput of Redis by up to 1.4×, compared to the state-
of-the-art isolation solutions. To the best of our knowledge,
Harmonic is the first RDMA performance isolation solution
that can pass the Husky test suite [29].

Lastly, current Harmonic supports 25 Gbps RNICs, limited
by the speed of the PCIe physical layer (PCIe PHY) in our
commodity FPGA development board1. A deployable solu-
tion for high-speed RNIC will require adopting our proposed
techniques in the future RNIC design. While Harmonic serves
as a prototype, it demonstrates the viability of RDMA perfor-
mance isolation for public clouds and can act as a benchmark
for future implementations. Our design presented in this pa-
per is currently being integrated into one leading technology
enterprise’s next-generation RNIC design.

2 Background
2.1 Remote Direct Memory Access

RDMA enables user applications to directly interface with
RNIC by offloading network stack processing to RNIC hard-
ware. RDMA enables low-latency, CPU-efficient networking
at high bandwidth, and it is increasingly deployed at datacen-
ters [11, 17, 21]. For example, Bai et al. [11] demonstrated
that more than 70% of traffic in Azure is RDMA.

Figure 1 shows the four key components (i.e., userspace li-
braries, kernel drivers, RNIC firmware, and RNIC ASIC) in a
modern commodity RDMA system from a top-down perspec-
tive. The first component that user applications interact with
is userspace libraries. Applications invoke APIs provided by
these libraries to issue data verb and control verb operations.
For example, applications call control verbs to allocate neces-
sary objects such as queue pair (QP), completion queue (CQ),
and memory region (MR). Applications thereby issue data
verbs to send RDMA network traffic, such as RDMA WRITE
requests to directly write remote host’s memory. In a typical
RDMA system, control verbs are first processed by RDMA
kernel drivers. Kernel drivers usually conduct a few checks
(e.g., parameter validation) and construct a command to send
to the RNICs. In the RNIC, a small piece of software or mi-
crocode embedded into hardware device memory will process
these commands and return results to the kernel drivers, such
as the newly created QP [42]. This software on the RNIC
is known as the RNIC firmware. When the RNIC firmware
processes control verbs, RNIC ASIC is also involved since
many hardware status may be updated. For example, RNIC

1We find that the state-of-the-art FPGA whose PCIe PHY can be con-
figured in PCIe switch upstream/downstream mode only has 8-lane edge
connector after several rounds of communication with our FPGA manufac-
turer, Xilinx. This is also confirmed by Xilinx’s public information [3, 4],
but it can support any RNICs with any speed offered by the PCIe PHY. We
discuss the scalability of our solution to higher speed in §7.

1480 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Kernel Drivers

RDMA
Libraries

Firmware
ASIC
Cache

PU PU…

App

(1)

(2)
(3)

(4)

(5) Userspace

Kernel

PCIe

RNIC
Control verbs Data verbs

Figure 1: RDMA workflow.

has on-NIC cache to store QP contexts [27], which can be
accessed and updated when the RNIC firmware handles QP
creation or destruction.

Data verbs are directly passed to RNIC hardware without
involving kernel drivers (or any system software), which is
known as kernel bypass. For example, when applications call
ibv_post_send to issue an RDMA SEND request, userspace
libraries prepare work queue entries (WQEs) in send/recv
queues. Each entry in the queues corresponds to a data verb.
The libraries then notify the RNIC hardware that there is a
WQE to process. Specifially, the libraries may ring the door-
bell of the corresponding QP (i.e., write a specific register)
on the RNIC, triggering RNIC hardware to DMA read those
WQEs from the host and start to process. When processing
data verbs, RNIC firmware may also be involved under some
scenarios, such as handling an error triggered by a data verb.

There are three types of resources in RNICs:
(R1) Traditional network resources. They include network
bandwidth and packet processing capacity, indicated by bits
per second (BPS) and packets per second (PPS), respectively.
(R2) RDMA-specific architectural resources. They com-
prise the number of QPs and request rates of different verbs
(e.g., ATOMIC, WRITE, and SEND) that applications can
directly operate on.
(R3) RDMA-specific microarchitecture resources. They
encompass the PCIe bandwidth, on-NIC cache and on-NIC
processing units that are vendor-specific. These resources are
not exposed to applications and can be neither monitored nor
controlled precisely [31].

2.2 RDMA Performance Isolation

RDMA has already been successfully adopted in accelerat-
ing first-party workloads such as storage [11, 17]. The next
question is whether these RDMA advantages can be extended
to third-party workloads in the public cloud. RDMA perfor-
mance isolation for public clouds is important, as customers
primarily choose RDMA for workloads with demanding per-
formance requirements. Without proper performance isola-
tion, a faulty or malicious tenant could detrimentally impact
the performance of other tenants [29].

To design a performance isolation solution, one key ques-
tion is: what’s the abstraction of network performance? The
conventional wisdom is that a cloud provider should guarantee
network bandwidth, measured by BPS, to a virtual machine
(VM) or container. For example, Amazon Web Service (AWS)
provides an 30 Gbps guarantee for its m7gd.16xlarge instance

and Azure offers a 40 Gbps guarantee for its D96as_v5 VM
series [7, 35]. This is done by limiting the available network
bandwidth to the remaining VMs co-located on the same host.

In this paper, we argue that this conventional wisdom does
not work for an RDMA network. The aforementioned mi-
croarchitecture resources make RDMA performance isola-
tion different from that on traditional TCP/IP networks. In
RDMA, most verb processing tasks are offloaded to the RNIC
firmware and RNIC hardware. RNICs leverage their inter-
nal resources to support these offloaded functionalities. Not
considering these resources results in performance isolation
designs that are insufficient to be used in public clouds. One
of the empirical evidences is that Husky [29], a prior work, has
already shown that no mature RDMA performance isolation
solution exists. Therefore, a comprehensive RDMA perfor-
mance isolation solution for the public cloud has to consider
various types of interference on RNIC’s microarchitecture
resources, which can occur when multiple tenants contend for
access to these resources.
Static partitioning versus dynamic resource usage modu-
lation. In general, there are two approaches to achieve perfor-
mance isolation when sharing resources. Our paper explores
the dynamic resource usage modulation approach, which is to
monitor and control each tenant’s resource usage. The other
approach is to statically partition every resource and assign
partitioned resources to each tenant. We did not explore the
static partitioning approach for two reasons. First, RNIC mi-
croarchitecture resources (e.g., NIC caches) are crucial for ap-
plications’ performance. We have observed many prior works
in RDMA application design to use these resources efficiently
in order to avoid resource exhaustion [15, 26, 27, 31]. Static
partitioning of these resources may cause catastrophic perfor-
mance penalties for RDMA applications. Second, commodity
RNICs currently do not support static resource partitioning,
and exploring this approach thus requires building an RNIC
from scratch, which is beyond the scope of our research. Our
goal is to design a prototype that shows feasibility for de-
ployment, and we thus choose to build our system around
commodity RNICs.

2.3 Design Space for Monitoring and Controlling Tenant
RDMA Resouce Usage

Two key questions arise for monitoring and controlling ten-
ants’ RDMA resource usage: (1) where should the cloud
provider monitor per-tenant resource usage, and (2) where
should the provider enforce resource usage?

The answers to these two questions depend on the deploy-
ment model of RDMA, i.e., how RDMA is virtualized. Fig-
ure 2 shows the ownership (i.e., owned by tenants or cloud
providers) of RDMA system components in typical RDMA
virtualization schemes. In the bare-metal scenario, tenants
own the entire physical host, including userspace libraries
and RDMA kernel drivers. They can even modify and up-
grade RNIC firmware as needed [41]. Cloud providers have

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1481

Tenant

Host

NIC

(1) Bare-metal (3) Guest Virtual Machine (4) Microkernel Approach

Control verbs
Data verbs

Control verbs
(SR-IOV)

PCIe

Drivers

Userspace
Libraries

Firmware ASIC

(2) Containerize Cloud

Privileged
DaemonDrivers

Firmware ASIC

Drivers Userspace
Libraries

Hypervisor
Drivers

Firmware ASIC

Drivers Userspace
Libraries

Drivers

Userspace
Libraries

Firmware ASIC

Software owned by tenants
Software owned by clouds
Hardware owned by clouds

Tenant instances

Figure 2: RDMA virtualization schemes.

limited observability and control over both data and control
verbs in this scenario. However, RNIC isolation is not a press-
ing concern as one tenant exclusively occupies the entire
machine.

In containerized clouds, each tenant owns a container, and
the host OS manages all containers. In this setup, a tenant
owns its container instance, including userspace libraries. The
tenant’s data verbs therefore fully bypass the cloud provider’s
control. However, drivers and hardware components are still
controlled by the cloud provider, allowing them to implement
management features. For instance, cloud providers can mon-
itor and regulate RDMA control verbs by incorporating the
necessary logic into kernel drivers.

In guest virtual machine (VM) clouds, each tenant owns a
VM, running on top of the hypervisor. There are several ap-
proaches to expose an RNIC to guest VM. A widely adopted
approach is to use Single Root Input/Output Virtualization
(SR-IOV). With SR-IOV, multiple virtual instances of the
RNIC, referred as Virtual Functions (VFs), are allocated on a
physical RNIC. These VFs can be attached to VMs, allowing
applications within the VM to directly interact with and utilize
the RNIC. The control verbs and data verbs generated by guest
VM applications bypass the hypervisor completely. HyV [49]
and MasQ [22] employ hybrid virtualization techniques to
expose RDMA to guest VMs. They introduce backend drivers
within the hypervisor, requiring guest VM drivers to com-
municate with these backend drivers for processing tenants’
control verbs. The hypervisor operates control verbs on the
RNICs on behalf of these tenants. Meanwhile, tenants within
the guest VMs have the capability to directly transmit data
verbs to the RNIC, bypassing the guest kernel and the hy-
pervisor. This ensures native RDMA performance for tenant
applications. In these guest VM scenarios, cloud providers
typically retain ownership of the hardware components, while
the ownership of kernel drivers may vary depending on the
specific scheme being employed.

Another virtualization scheme adopts a microkernel-like
approach. It forces all tenants to talk to a privileged daemon
to use RDMA, such as Freeflow [28] and mRPC [14]. In this
scenario, tenants send both control verbs and data verbs to
this privileged daemon. The daemon, in turn, initiates the
actual RDMA APIs to execute these verbs and subsequently
provides the results back to the tenants. This design grants
cloud providers comprehensive control over all aspects but

comes with the trade-off of additional performance overhead.
Existing solutions’ observability and enforcement entry
point. To summarize, except for bare-metal environment and
virtualization only using SR-IOV, control verbs can be mon-
itored and controlled by cloud providers in kernel drivers,
hypervisor backend or privileged daemon. However, data
verbs cannot be easily observed or regulated. In containerized
cloud (2) or guest VM (3) scenarios, data verbs completely
bypass cloud provider’s control. Justitia [62], an RDMA per-
formance isolation solution, requires tenants to use its cus-
tomized userspace libraries. However, a malicious tenant can
easily bypass or alter the libraries, circumventing the intended
isolation. For the microkernel approach, even if we add per-
formance isolation features into a microkernel service, it is
still challenging to accurately monitor and regulate data verbs,
especially for one-sided operations. For example, RDMA one-
sided operations (e.g., WRITE and READ) completely bypass
the responder’s CPU and therefore cannot be intercepted by
the privileged daemon easily.

3 Harmonic Overview
We develop Harmonic, the first RDMA performance isolation
solution for public clouds that considers RDMA microarchi-
tecture resources. Our design incorporates three key ideas.

We first introduce an RDMA-specific performance abstrac-
tion tailored for public clouds. Currently, cloud providers
provide tenants with network abstractions based on BPS or
PPS. Unfortunately, such metrics fall short of capturing the
varied sets of resources RDMA operations use. RDMA sup-
ports various verbs as its primitives, and these verbs demand
distinct resource usage. For example, let’s consider an 8-byte
RDMA ATOMIC compare-and-swap (CAS) request and an 8-
byte RDMA SEND request. Both generate identical network
traffic in terms of bits and packets, yet the ATOMIC request
consumes more NIC processing cycles [27, 29], thus incur-
ring a higher cost. Our performance abstraction considers the
RDMA-specific architectural resource capacities allocated to
each tenant, such as the number of QPs, CQs, MRs, and the
total MR size. It is worthwhile to note that our abstraction
does not include RDMA-specific microarchitecture resources,
because these resources are vendor-specific and cannot be
directly controlled by tenants.

The second pillar of our design ideas is to perform runtime
hardware-based measurements of per-tenant RDMA resource

1482 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

consumption. Since RDMA data verbs bypass the kernel, re-
source measurement requires direct hardware involvement. In
RDMA networks, a tenant’s resource consumption is tightly
coupled with its verb behaviors. Therefore, by intercepting
and analyzing these verbs, we can gain precise insights into
the resource consumption of that particular tenant. However,
we cannot directly observe verb behaviors on the inter-host
network, i.e., Ethernet (for standard RoCEv2 deployment).
This limitation arises because many RNIC resource usage be-
haviors would be opaque if we only monitor packets sent and
received by the RNIC. For instance, the RNIC initiates PCIe
transactions to retrieve entries from DRAM when its cache en-
tries are exhausted. This RNIC activity incurs both cache miss
and extra consumption of PCIe bandwidth—a crucial microar-
chitectural resource—but remains undetected on the Ethernet.
We argue that we need to observe this within the host. We find
PCIe switch as a sweet spot to enable this runtime measure-
ment feature for two reasons. First, all RDMA traffic goes
through PCIe bus, allowing us to capture all tenants’ verb
behaviors including the host memory address to be accessed
in the PCIe Transaction Layer Packet (TLP) header. Second,
RDMA requires all RDMA-related objects (e.g., payloads,
QPs, CQs) to be pinned in the host DRAM. This indicates
the physical address to objects/tenants mapping is fixed and
we can monitor tenant’s verb behaviors by monitoring which
addresses are accessed. Therefore, we can simply parse the
TLP header to extract the address field and match it with
the mapping, without looking into the large volume of PCIe
TLP payloads. There is no existing PCIe switch supporting
this functionality. We therefore build an FPGA-based Pro-
grammable Intelligent PCIe Switch to prototype this runtime
measurement feature. The analogy of this PCIe switch is a
programmable switch (e.g., P4-based Tofino switch) in the
traditional computer network. The difference is that we design
the switch to run on PCIe bus instead of Ethernet. Observ-
ing verb behaviors directly allows us to not only measure
the network resource consumption (e.g., BPS) but also gauge
the utilization of RDMA-specific microarchitecture resources,
including PCIe and RNIC processing capacities.

Our third idea is to repurpose the RNIC’s congestion con-
trol mechanism to facilitate RDMA-friendly rate limiting.
Given the kernel and CPU bypass characteristics of RDMA,
traditional software-based rate limiters are off the table due
to the CPU overheads and the additional latency. Software-
based rate limiters are also ineffective in limiting the data
receiver side when one-sided operations are used. Moreover,
RDMA deployment stems from a lossless network, and cur-
rent RNICs cannot consistently ensure optimal retransmission
performance across all scenarios [21, 31, 64]. Therefore, sim-
ply discarding excessive RDMA packets in hardware [16]
can cause RDMA performance degradation and is not an op-
tion. Our key observation is that we already have a native
hardware rate limiting mechanism implemented in modern
commodity RNICs for congestion control purposes (i.e., DC-

Programmable
Intelligent PCIe Switch

Harmonic
Kernel Driver

Harmonic
Daemon

Tenant
Data verbs

Control verbs

(1)

(3)
(2)

Tenant RNIC

Figure 3: Harmonic overview.

QCN [64]). These rate limiters react to network congestion
feedback, known as congestion notification packets (CNPs)
in DCQCN, to reduce the rate of RDMA connections. We
can re-purpose these rate limiters for performance isolation
purpose by proactively generating and sending CNPs to mod-
ulate the RDMA resource usage per tenant. While this method
does consume some processing cycles (CPU cycles in our
prototype), the overheads are considerably reduced compared
to software-based rate limiters (§6.5).
Harmonic’s deployment model and workflow. Harmonic
assumes that the cloud provider owns the RDMA kernel
drivers to intercept control verbs. This is standard for con-
tainerized RDMA clouds, para-virtualized VM clouds and mi-
crokernel virtualization clouds. We didn’t consider the RDMA
virtualization scheme that solely depends on SR-IOV, and we
show SR-IOV itself is not enough to provide performance
isolation (§6.3). In summary, Harmonic can handle the (2),
(3) and (4) scenarios in Figure 2. We do not consider the
virtualization scenario (1) because RNIC isolation is unneces-
sary on the bare-metal setting. We implement our prototype
with a temporary focus on scenario (2), but it should be easily
generalized to both (3) and (4) because we only rely on the
modification to the RDMA kernel drivers without touching
other system software components.

Figure 3 presents the system architecture of Harmonic.
Harmonic has two main components: the Harmonic daemon
and the Programmable Intelligent PCIe Switch (PIPS) with
Harmonic kernel driver. Harmonic kernel driver is a modi-
fied version of the standard RDMA kernel driver that keeps
track of control verbs issued per tenant and (1) generates the
address-to-tenant/object mappings to PIPS. PIPS not only
forwards RDMA traffic as a regular PCIe switch, but inter-
cepts PCIe traffic to keep track of data verbs issued per tenant
as well. Harmonic daemon is a privileged process that runs
on the host OS or hypervisor. It (2) polls tenant’s data verb
behavior statistics from the PIPS and (3) sends congestion
feedback packets to each tenant to modulate their RDMA
resource usage. All these components are trusted and will not
be tempered by the tenants.
Harmonic’s benefits. Harmonic has several key benefits
compared to existing RDMA performance isolation solutions.
First and most important, Harmonic takes microarchitecture
resource usage into account and thus provides stronger isola-
tion. Harmonic observes both data and control verbs, in the
meantime, restricts tenant resource usage correspondingly.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1483

Table 1: An example for RDMA performance abstraction.

Name # of QPs # of WQEs # of MRs # of CQs # of CQEs MR Size BPS DRPS CRPS Prio
Alice 128 16384 128 16 8192 2 GB 10 Gbps 30 Mrps 1 Krps 0

This is different from simply observing network bandwidth
usage. Second, Harmonic requires no modification of applica-
tions. There’s no need to adjust application libraries, allow-
ing for straightforward integration with application binaries.
Third, our approach delivers native RDMA performance for
public cloud usage. Applications’ data verbs continue to by-
pass system software entirely, and the only latency overhead
comes from the PCIe switch, which is minimal (§6.5).
Harmonic’s performance abstraction. Our performance
abstraction includes a set of metrics that enable tenants to
accurately describe their expected RDMA network perfor-
mance needs. At the same time, it allows us to design the
performance isolation mechanisms to guarantee the metrics
to tenants. In addition to the conventional BPS metric, our
performance abstraction considers per-tenant RDMA-specific
resources, including the number of QPs, CQs, MRs, and the
total MR size. Application developers have direct control over
these RDMA-specific architectural resources, because they di-
rectly interface these resources in the application source code.
The resources in our abstraction are also vendor-agnostic:
they are specified as part of the verb library [2], which work
across different vendors’ RNICs. It is important to note that
our performance abstraction intentionally excludes explicit
consideration of RNIC microarchitecture resources, such as
on-NIC cache and NIC processing units. These components
are vendor-specific and generally opaque to RDMA develop-
ers.

Moreover, our performance abstraction includes the typi-
cal resources other performance isolation solutions use, such
as Request Per Second (RPS). We categorize RPS into data
verbs RPS (DRPS) and control verbs RPS (CRPS) as they
serve different purposes. While a more granular categoriza-
tion of DRPS into sub-types such as ATOMIC RPS or SEND
RPS is conceivable, we have chosen to opt for a normalized
RPS, balancing precision with user-friendliness. The analogy
is that CPU vendors use cycles instead of instructions per
second as the performance metric because instructions can
have variable lengths. To illustrate, Table 1 presents an exam-
ple detailing the guaranteed metrics for a tenant within this
framework. Let us assume one ATOMIC request consumes
the resources equivalent to 3 SEND requests. Alice, with
30M DRPS, therefore can achieve up to either 10M ATOMIC
requests per second or 30M SEND requests per second. It
should be noted that DRPS and BPS guarantees are offered
in a mutually exclusive "OR" fashion. For instance, a ten-
ant consistently posting SEND requests with large message
sizes will encounter BPS throttling before reaching the DRPS
limit. Next, we present the design and implementation details
of Harmonic that uses the above performance abstraction to
provide RDMA performance isolation.

Fmt Type Payload Size
Last & First

DW BE
Address[63:32]

Byte 0

Byte 4

Byte 8

Byte 12 Address[31:2]

7-015-823-1631-24

Figure 4: TLP header format where the gray blocks represent unused
fields for PIPS. DW BE denotes dword byte enable.

FMC+ to PCIe RP

PCIe Switch (M2)

TL
P

 A
n

al
yz

er
 (
M
5

) Host

RNIC

FPGA

RNIC-to-Host

Host-PIPS
Statistics

Mapping Manager
(M4)

Host-PIPS Comm. Interface (M3)

Host-to-RNIC

PCIe PHY

1

2

3

Downstream Port

U
p

st
re

a
m

Po

rt

K
er

n
el

 D
ri

ve
r

(M
1

)

Figure 5: Programmable Intelligent PCIe Switch (PIPS) internal
architecture. The dash line indicates asynchronous TLP analysis,
decoupled with PCIe switch forwarding path.

4 Programmable Intelligent PCIe Switch
To monitor tenant’s verbs behavior through PCIe, we develop
a Programmable Intelligent PCIe Switch (PIPS) that can for-
ward PCIe Transaction Layer Packets (TLPs) at line rate and
perform real-time RDMA-centric inspections. Given address-
to-object/tenant mappings captured in kernel driver, we ex-
tract the physical address of the host memory from the RNIC-
issued DMA read/write TLP header (Address field in Figure 4)
and utilize it to identify both the object and the tenant associ-
ated with this TLP. This capability enables us to accurately
measure per-tenant RDMA resource utilization.

We build PIPS using AMD/Xilinx Versal VCK190 Eval-
uation FPGA board with 4K lines of RTL Verilog code and
various AMD/Xilinx IPs (Intellectual Property Core). PIPS
has five Modules (Figure 5): (M1) kernel driver, (M2) PCIe
switch, (M3) host-PIPS communication interface, (M4) map-
ping manager, and (M5) TLP analyzer. The kernel driver
maintains latest address-to-object/tenant mappings. The PCIe
switch routes TLPs to their corresponding destinations. Host-
PIPS communication interface and mapping manager handle
the synchronization of address-to-object/tenant mappings be-
tween host and PIPS while collecting RDMA traffic statistics.
The TLP analyzer inspects the TLP headers of RNIC-initiated
DMA read/write requests and matches them with the address-
to-object/tenant mappings.

1484 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.1 PCIe Configuration and Routing Logic

The PCIe switch (M2) is the key component of Harmonic. It
consists of routing logic and two instances of Xilinx Versal
ACAP Integrated Block for PCI Express IPs [8]. The PCIe
PHYs in the two instances are configured as PCIe switch’s
upstream port and downstream port, respectively. Figure 5
demonstrates Harmonic architecture: the upstream port is di-
rectly connected to the host using the PCIe edge connecter of
FPGA, and the downstream port leverages the FMC+ expan-
sion connector with a PCIe Root FMC+ plug-in module [23]
to be connected to RNIC.

4.2 Address-to-Object/Tenant Mappings

Maintaining real-time address-to-object/tenant mappings in
PIPS is essential for precisely monitoring RDMA resource
usage per tenant. These mappings can change when appli-
cations create, delete, or modify objects. The change of the
mappings is triggered by control verbs posted by RDMA ap-
plications, which are processed by the kernel driver (M1).
Therefore, we modify a legacy NVIDIA RNIC kernel driver
(e.g., mlx5_ib.ko and ib_uverbs.ko) to track address-to-
object/tenant mappings. We use container’s process ID as
tenant ID. When a tenant calls a control verb, the Harmonic
kernel driver first traverses the process tree in the kernel to find
the tenant ID. It then records a mapping entry for this control
verb behavior, including tenant ID, the type (e.g., QP creation),
the size and start physical address of the object. The RNIC
kernel has already translated the virtual addresses for these
RDMA objects to physical addresses for its DMA purpose,
and we can directly use these translated physical addresses
to populate our mapping entries. For application payloads,
we also record the payload registered flags (e.g., ATOMIC
enabled). This information helps us determine the type of pay-
load regions accessed by tenants in PIPS. The kernel driver is
responsible for updating address-to-object/tenant mappings
on PIPS by embedding an operation code in mapping entry to
signal insert or delete operations to PIPS. We show detailed
format and contents of both address-to-object/tenant mapping
and statistics entry in Appendix B.

4.3 Mapping Synchronization and Management

We obtain address-to-object/tenant mappings from the kernel
driver and then utilize the host-PIPS communication interface
(M3) and the mapping manager (M4) to continuously update
and manage the most up-to-date mappings in PIPS. This is
crucial for later use by the TLP analyzer.

The host-PIPS communication interface receives and
parses the MMIO write requests from host to update address-
to-object/tenant mappings in the PIPS mapping manager (1 ,
2). Out of performance (i.e., achieving real-time monitoring)
and implementation complexity considerations, the mapping
manager employs a hashing-based mechanism and maintains
a hierarchical mapping storage system, consisting of a first-
level (L1) direct-map scheme and a second-level (L2) linked-

list slot pool. The mapping manager utilizes a double-hash
strategy and leverages two distinct hash functions for calcu-
lating the hash values of the address field as the indexes to
L1 and L2, respectively. Note that L2 is only used when colli-
sion happens in L1. In this case, each mapping entry in L1 is
treated as the head of a linked list, with the remaining entries
being stored in L2 linked-list slot pool. In addition to map-
ping management, the host-PIPS communication interface
also generates completion TLPs with associated statistics as
payload, when the host polls RDMA traffic statistics through
MMIO read requests (3).

4.4 Efficient TLP Analyzer

The TLP analyzer (M5) is responsible for extracting the tar-
get physical address in TLP headers from RNIC-issued DMA
read/write requests (1). When a TLP arrives at PIPS, it du-
plicates the TLP and sends one copy to the TLP analyzer for
analysis, while simultaneously forwarding the original TLP
to its destination. In addition, the TLP analyzer implements
an efficient search engine to collaborate with the mapping
manager, which can perform search operation (2) in paral-
lel with insert and delete operations, taking the hash value
of physical address in TLP header as search key. Since the
hash collision rate is low, the average search time is only 7
cycles including the latency for interconnection and updat-
ing statistics.Upon a mapping search hit, the TLP analyzer
computes the statistics entry offset based on TID, flags, and
type found in retrieved mapping entry, along with the direc-
tion of current TLP (i.e., RNIC DMA read/write Host). Then
it updates the statistics entry at this determined offset (3).
With this approach, PIPS maintains an accurate record of both
the access count and the volume of bytes accessed for each
object and tenant, while simultaneously identifying the type
and flag associated with the accessed memory.

5 RDMA-friendly Rate Limiting
Harmonic daemon is responsible for modulating per tenant’s
resource usage. It achieves this by employing two distinct rate
limiting techniques for data verbs and control verbs.

5.1 Data Verbs Rate Limiting in Harmonic Daemon

The Harmonic daemon takes the proactive approach of creat-
ing and injecting Congestion Notification Packets (CNPs) to
control tenants’ rate. Because commodity RNICs automati-
cally generate CNPs within the ASIC without providing an
interface to users, the Harmonic daemon forges CNPs and
sends them to the data sender side of tenants. Forging CNP
needs the source and destination IP addresses as well as the
remote QP number (QPN). Harmonic daemon obtains this
information during the setup of connections. When tenants
create or modify QPs, these control verbs are intercepted
by Harmonic kernel driver. Subsequently, Harmonic kernel
driver sends an event to notify Harmonic daemon that a new
connection is set up, including both IP addresses and the QPN.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1485

Harmonic daemon decides which tenant should be paced
and at what specific rate. Harmonic daemon first keeps polling
statistics collected by the PCIe switch through MMIO reads.
These statistics include BPS and RPS of various types of
RNIC-initiated DMA requests, such as fetching WQEs, fetch-
ing QP context, and writing payload into host memory. Then,
Harmonic daemon calculates per tenant NIC BPS, PCIe BPS,
DRPS consumption, as well as cache miss frequency based
on the collected statistics. It sums up tenant’s DMA accesses
to various types of payloads (e.g., WRITE) to calculate NIC
BPS and DRPS, and sums up tenant’s DMA accesses to vari-
ous types of RDMA metadata (e.g., QP contexts) to calculate
cache miss frequency. For DRPS, we normalize different
types of RDMA requests into the same unit, based on an esti-
mated cost ratio for various types of data verbs. We conduct
an offline profiling to estimate this cost ratio by running a set
of micro-benchmarks. We run perftest [1] to send requests
of minimal sizes in a batch to measure the maximum rate of
different data verbs, and the 1/rate is the cost. In practice, we
normalized WRITE and SEND operations to 1 unit, READ
to 1.1 unit and ATOMIC to 3 units. Given the accurate re-
source usage per tenant, Harmonic daemon next compares
each tenant’s current usage and its allocation. Harmonic dae-
mon directly uses NIC BPS and DRPS from tenant’s profile
(e.g., Table 1), and calculates tenant’s PCIe allocation using
dominant resource fairness model [18]. Harmonic daemon
analyzes guarantee profiles of all tenants on the same host
and identifies the dominant resource among them. Then Har-
monic daemon distributes the PCIe bandwidth based on the
allocation of this dominant resource. For example, given a
network capacity as 25 Gbps bandwidth and 30M DRPS, let
us assume tenant A needs 15 Gbps bandwidth and 10M DRPS
and tenant B needs 5 Gbps and 15M DRPS. The dominant re-
source therefore is bandwidth for tenant A (2

3) and DRPS for
tenant B (1

2). We next allocate the available PCIe bandwidth
to tenants A and B following the proportion of 4:3 (i.e., 2

3/
1
2).

When a tenant uses more BPS/DRPS/PCIe bandwidth than
its allocation, we send CNPs to data sender ends of this ten-
ant’s connections. Harmonic daemon currently applies a sim-
ple strategy to compute the CNP rate. Harmonic sends 1-4
CNPs in a batch after Ti intervals (in microseconds) to man-
age tenants’ rate. Equation 1 shows how interval is updated
based on the measured rate and target rate. We use two heuris-
tic parameters Tmin and Tbasic in practice. Tmin is a minimal
interval threshold to avoid excessively frequent adjustments,
which could lead to unstable rate or even cause performance
anomaly. Tbasic serves as a multiplier, reflecting the intrinsic
response sensitivity to resource overuse. Tuning these values
can adjust the strictness of policy, as a small Tbasic punishes
tenants that overuse resources more strictly.

Ti = max(Tmin,Tbasic ∗ (1.0−
Rcurrent −Rtarget

Rtarget
) (1)

We specially handle on-NIC cache resources due to their

unique characteristics. While we can measure tenant’s cache
miss statistics by tracking the number of PCIe access to those
metadata (e.g., QP context), we do not set a cache miss thresh-
old for each tenant. This decision is because a higher cache
miss rate in one tenant does not necessarily indicate an ex-
cessive use of cache resources. Instead, we monitor overall
RNIC cache contention and slow down tenants accordingly.
When Harmonic daemon observes severe cache misses, Har-
monic starts to slow down tenants with the lowest priority.
For tenants with the same priority, we slow down them us-
ing the dominant resource fairness policy mentioned above.
We acknowledge that there are alternative policies, such as
monitoring a tenant’s active QPs/MRs as the basis for rate-
limiting decisions. However, we find that our straightforward
policy is already effective in providing isolation when cache
contention arises.

5.2 Control Verb Rate Limiting in Harmonic Drivers

Control verbs rate limiter first needs to limit the capacity
of control verbs (akin to in-flight packets) for each tenant,
including the maximum number of QPs and MRs allowed per
tenant. We record tenants’ control verbs guarantee profiles as
a linked list in Harmonic kernel driver. When a new tenant is
created, we invoke Harmonic kernel driver to register a new
control profile and insert it to the linked list. Whenever this
tenant calls a control verb, Harmonic driver checks its current
resource usage and the profile, determining if this control verb
should be rejected or not.

We also need to limit the rate for control verbs to prevent
tenants from excessively updating hardware status. Frequent
updates have the potential to induce RNIC cache thrashing, as
discussed in prior work [29]. We record timestamps for each
tenant in our defined structure when they issue control verbs.
When a tenant calls a control verb, we compare the current
timestamp and the previously recorded timestamps. If the
tenant is making control verb calls at a rate that exceeds their
allocated rate, we introduce a sleep delay. We choose to slow
down tenants through sleep instead of returning an explicit
error. This way, Harmonic remains transparent to tenants. If
we directly return errors to applications, it would necessitate
error code checks and retries in applications.

6 Evaluation
6.1 Testbed Setup

There are two servers in our testbed, each equipped with one
NVIDIA ConnectX-6 Dx (CX-6) 25 Gbps RNIC. Our FPGA-
based programmable PCIe switch supports up to PCIe Gen 4
with 8 lanes with up to 128 Gbps PCIe bandwidth. Neverthe-
less, there are no NVIDIA 100 Gbps RNICs that support PCIe
Gen 4 with 8 lanes. We therefore use Harmonic to enhance
our CX-6 25 Gbps RNIC. RNICs of two hosts are directly
connected without a network switch. The BPS capacity of
our RDMA endhost is 25 Gbps. We use the standard RDMA
benchmark tool, perftest [1], to measure the DRPS capacity,

1486 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 10 15
Time / second

0.0

2.5

5.0

7.5

10.0

DR
PS

 /
M

rp
s

WRITE (PIPS)
ATOMIC (PIPS)
READ (PIPS)

WRITE (App)
ATOMIC (App)
READ (App)

(a) Measurement of operation types

0 5 10 15
DRPS Cap / Mrps

0

5

10

15

20

M
ea

su
re

d
DR

PS
 /

M
rp

s

App
PIPS
Difference

(b) Measurement of RPS

0 5 10 15 20
BPS Cap / Gbps

0

10

20

30

BP
S

/ G
bp

s

Ideal
Harmonic
Difference

(c) Control of BPS

0 10 20 30
DRPS Cap / Mrps

0

10

20

30

40

DR
PS

 /
M

rp
s

Ideal
Harmonic
Difference

(d) Control of RPS

Figure 6: Measurement and control of RDMA traffic. App denotes the performance metrics as reported by perftest.

and the result is ∼30 M DRPS.
Both servers are running Ubuntu 20.04. Harmonic kernel

driver is built upon MLNX_OFED-5.8.1.1.2.1 [42], with a
total of 658 lines of C code modifications. Harmonic daemon
is implemented in C/C++ with a total of 2537 lines of code.

6.2 Measurement and Control of RDMA Resources

We first use microbenchmarks to demonstrate that Harmonic
can accurately measure tenants’ verbs behaviors and limit
their resource usage. We let a tenant run different data verbs
workload from perftest in three time periods. It generates
WRITE traffic, ATOMIC traffic, and READ traffic, each for 5
seconds. We record the DRPS measured by the perftest per
second and compare it with the request rate measured by PIPS.
As shown in Figure 6a, PIPS successfully identifies the types
of data verbs and measures the request rates of each workload
accurately. Figure 6b shows that Harmonic also accurately
measures tenants’ behaviors across different request rates.

Next, we evaluate our CNP-based RDMA-friendly rate lim-
iter. We use perftest to generate workloads that extensively
consume BPS and DRPS resources. We let Harmonic to set
different capacity for these two resources. We measure the
achieved BPS/DRPS and compare them with the capacity.
Figure 6c and Figure 6d show that our rate limiter can ac-
curately control a tenant’s BPS and DRPS. It is worthwhile
to note that we observe that Harmonic daemon can react to
resource overuse within one millisecond. As discussed in
Equation 1, a stricter Tbasic or Tmin leads to fast reaction (i.e., a
few hundreds of microseconds) while it may also hurt overall
performance. In practice, we set Tbasic to 500 us and Tmin to
200 us, which we find already sufficient to enforce isolation.

6.3 Harmonic End-to-end Evaluation

We use the state-of-the-art RDMA performance isolation test
suite, Husky [29], to perform end-to-end evaluation of Har-
monic. Husky includes a set of victim traffic patterns that are
sensitive to different types of resource contention, and four
sets of attacker traffic patterns that exhaust four types of re-
sources: RNIC BPS, RNIC processing capacity, RNIC cache,
and RNIC PCIe bandwidth. We observe that the reliable con-
nection retransmission attack described in Husky (Section
3.3) that exhausts RNIC processing capacity has already been
fixed in the latest NIC firmware, and the RNIC control verbs

cache attack only has a negligible effect on 25 Gbps RNIC.
Harmonic passes all other Husky’s tests with a tolerance level
α = 20%, indicating a tenant’s traffic will be no less than 80%
of its guarantee in the worst case, which is substantially better
than all existing solutions. For most tests, Harmonic effec-
tively safeguards tenants to achieve their guarantees (i.e., less
than 5% difference). We next use a set of typical workloads
from Husky as the case study to demonstrate why existing
solutions fail and how Harmonic satisfies tenants’ guarantee.

For each case study, we also compare our results with three
baselines: (1) SR-IOV, which allocates individual virtual func-
tion (VF) for each tenant to use [47]; (2) Separate hardware
traffic class (HW TC), which is supported by modern RNICs
to dedicate a RNIC traffic class to specific tenant for quality-
of-service (QoS) control and performance isolation [45]; (3)
Justitia, a recent software-based isolation solution for RDMA
networks [62]. Note that Justitia requires tenants to use spe-
cific userspace libraries, so a malicious tenant can circumvent
Justitia’s control by not using these Justitia’s libraries. How-
ever, we still want to evaluate Justitia’s isolation mechanism
(which includes its rate limiter design).

We allocate two tenants, named Alpha and Beta, on the
same pair of hosts. Our RDMA hosts support up to 25 Gbps
and ∼30 M DRPS. We thus set our isolation goal to be that
both Alpha and Beta are guaranteed with 12.5 Gbps and 15 M
DRPS. For each attack, we let Alpha run a Husky victim traf-
fic that is sensitive to a specific type of resource, and we let
Beta run an attacker traffic targeting the specified resource.
Results are shown in Figure 7 to Figure 10. No Interference
means running Alpha or Beta alone with no isolation enabled,
and No Protection means Alpha and Beta are running together
without any isolation. For a fair comparison, we configure
SR-IOV and HW TC to assign one virtual function or traf-
fic class to each tenant, respectively. Justitia currently only
supports fair share and does not provide any QoS guaran-
tee. SR-IOV and HW TC only support RNIC bandwidth (i.e.,
BPS) guarantee. We therefore configure each virtual func-
tion with 12.5 Gbps for SR-IOV. HW TC currently does not
support floating-point rate configuration, and we thus config-
ure both tenants with 12 Gbps guarantee and reserve 1 Gbps
for potential traffic burst. For each figure, we use a dashed
red line to denote the guarantee, a gray dashed line to de-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1487

No Interference
No Protection HW TC SR-IOV Justitia

Harmonic
0

5

10

15

20

25
Ba

nd
wi

dt
h

/ G
bp

s Alpha
Beta

Figure 7: NIC bandwidth contention.
No Interference

No Protection HW TC SR-IOV Justitia
Harmonic

0

10

20

30

DR
PS

 /
M

rp
s

Alpha
Beta

Figure 8: Processing capacity contention.

No Interference
No Protection HW TC SR-IOV Justitia

Harmonic
0

5

10

15

20

25

Ba
nd

wi
dt

h
/ G

bp
s Alpha

Beta

Figure 9: RNIC cache contention.

No Interference
No Protection HW TC SR-IOV Justitia

Harmonic
0

5

10

15

20

25

Ba
nd

wi
dt

h
/ G

bp
s Alpha

Beta

Figure 10: PCIe bandwidth contention.

note the tolerance bar (10 Gbps and 12 Mrps). We use a blue
dash line in Figure 8 to show the victim performance since
it is originally smaller than the guarantee and should not be
affected.
RNIC BPS contention. We first conduct BPS contention
experiment. Alpha sets up a single connection and keeps
sending 64KB WRITE verbs, and Beta sets up 16 connections
and keeps sending 4KB WRITE verbs in a batch. Both Alpha
and Beta consume almost all the RNIC BPS when running
alone. When running together without isolation, Beta occupies
more BPS since it has more connections. When isolation is
enabled, we observe that all existing solutions and Harmonic
successfully satisfy all tenant’s guarantees. This shows that
RNIC BPS is accurately monitored and controlled by all the
existing solutions and Harmonic.
Processing capacity contention. We let Alpha run a
throughput-sensitive Husky victim, which uses 36 connec-
tions and keeps issuing 64-byte messages. Beta uses 64
connections to keep generating expensive 8-byte ATOMIC
traffic to exhaust RNIC processing capacity. We normalize
DRPS based on our profiling results, which show that a single
ATOMIC operation costs roughly three times as WRITE op-
erations. Figure 8 shows the DRPS for Alpha and Beta. Note
that Alpha does not use all its traffic demand, so the isolation
goal is that Alpha’s performance should not be affected when
Beta joins (shown as the blue dashed line). When no isolation
is enabled, Beta’s ATOMIC workloads exhaust the RNIC pro-
cessing capacity and cause Alpha’s performance to drop by
38%. HW TC does not react to this attack effectively because
Beta only consumes a small amount of BPS (i.e., 6.7 Gbps),
which is substantially lower than the rate limit. Beta’s rate
therefore is not paced by HW TC, and Beta exhausts the RNIC
processing capacity. When SR-IOV is enabled, Beta’s rate is
not reduced as well, and we observe Alpha’s rate drops. Since

SR-IOV implementation details are not publicly available, our
best guess is that this workload may cause some scheduler
issues in SR-IOV implementation. Even though Justitia con-
siders processing capacity in its design, it is agnostic to the
type of verbs and thus performs even worse. It does reduce
Beta’s ATOMIC traffic, but Alpha’s performance is even more
severely degraded. This is because Justitia treats these verbs
equivalently without accounting for the actual resource con-
sumption of expensive ATOMIC verbs. Our observation of
existing solutions is aligned with Husky’s results. Harmonic
carefully considers the expensive costs of ATOMIC requests
and limits Beta’s rate accordingly, reserving adequate process-
ing capacities to achieve Alpha’s guarantee while satisfying
Beta’s requirement.
RNIC cache contention. We let Alpha run a Husky victim
that is sensitive to on-NIC cache contention, which keeps gen-
erating 8-byte WRITE requests in batches across 512 different
memory regions. Beta runs a Husky attacker that uses 4 con-
nections to repeatedly issue single 512-byte WRITE request
to 16K different memory regions to exhaust the on-NIC cache
resources. Figure 9 shows that when cache contention occurs,
the available RNIC BPS is less than 25 Gbps. Even though
both SR-IOV and HW TC reduce Beta’s BPS consumption
to less than 12 Gbps, Alpha’s performance is only improved
by a minimal extent. We suspect that under severe cache
contention, the effectiveness of SR-IOV and HW TC is also
affected. For example, the severe cache miss may also slow
down the SR-IOV and HW TC scheduling process. Though
the current design of Justitia is cache agnostic, it successfully
satisfies Alpha’s guarantee while leading to a drastic drop
in Beta’s performance, making it not satisfy the guarantee
even with a 20% tolerance level. This is probably because
Justitia identifies both applications as throughput-sensitive
applications and schedules them equivalently, while Alpha

1488 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

issues smaller messages in batch and therefore occupies more
Justitia’s tokens. Harmonic detects the cache contention and
measures the available BPS. It then allocates the reduced
available BPS to Alpha and Beta fairly. This makes both
Alpha and Beta achieve the guarantee within the tolerance
level. Note that the strict guarantee is impractical in this case
because the bottleneck is the RNIC cache.
PCIe contention. Though our testbed supports up to ∼ 64
Gbps PCIe bandwidth. We configure our FPGA-based PCIe
switch to only support 32 Gbps PCIe bandwidth for our
25 Gbps RNIC. This PCIe BW

RNIC BW = 32
25 ratio emulates scenar-

ios for higher speed RNICs (e.g., 128
100 and 256

200), where PCIe
bandwidth can be one of the bottlenecked microarchitecture
resources. We let Alpha run the same application as in the
Cache contention case. We let Beta run the PCIe attack in
Husky, which keeps sending 257-byte WRITE that triggers
several DMAs to maximize PCIe consumption. As shown in
Figure 10, the available RNIC BPS therefore is capped by
the PCIe bandwidth and is substantially smaller than 25 Gbps.
Both SR-IOV and HW TC successfully reduce Beta’s rate and
improve Alpha’s performance, but to a limited extent. The
key reason is that given the same amount of RNIC BPS con-
sumption, Beta consumes more PCIe bandwidth than Alpha
and should be paced more in this situation. Similar to what
is observed in the above cache contention scenario, Justitia
reduces Beta more because of its larger message size and only
satisfies Alpha’s guarantee. Harmonic’s hardware monitor
allows us to accurately track each tenant’s PCIe bandwidth
consumption and allocate PCIe bandwidth accordingly based
on tenants’ guarantee. For example, each tenant is allowed to
consume half of the PCIe bandwidth (i.e., roughly 16 Gbps)
in this situation.

6.4 Performance Isolation for End-to-End Applications

We evaluate how Harmonic provides performance isolation
for a real application. We use an RDMA-based Redis [63]
as our tenant workload. We use the same Husky attack work-
loads described in the previous section as attackers. Similarly,
our isolation goal is to enforce fair share resource allocation
between the Redis application and the attackers. We also en-
able both SR-IOV and HW TC as a comparison. We do not
evaluate Justitia’s performance for two reasons: (1) Jusitia
needs application modification to fully support its isolation
and is not secured for real cloud deployments; (2) Justitia
does not support READ operations in the latest drivers.

Redis over RDMA implements an RDMA backend trans-
port to accelerate Redis key-value store and has been large-
scale deployed in industry [63]. We use this redis-benchmark
application to generate 1KB get and set workloads, and mea-
sure its average application QPS. This benchmark can achieve
about 450K QPS, consuming 4.2 Gbps BPS and 1.2 Mrps
DRPS. This is less than its performance guarantee, so the
goal is that Redis’s performance should not be affected by
any attacker. We then run those four types of attacks without

No Attack BW Processing Cap Cache PCIe0
100
200
300
400
500

Pe
rfo

rm
an

ce
 (K

QP
S)

No Attack
No Isolation

SR-IOV+HW TC
Harmonic

Figure 11: Performance of Redis over RDMA across different attack
types and isolation schemes.

isolation, with SR-IOV + HW TC, and with Harmonic. As
shown in Figure 11, all four types of attack successfully ex-
haust specific types of RDMA resources and cause a drastic
Redis performance drop. When isolation is enabled, we ob-
serve that both SR-IOV + HW TC and Harmonic successfully
provide protection against an attacker that tries to exhaust
network bandwidth. Though SR-IOV + HW TC does not
consider processing capacity, Redis achieves its guarantee
under processing capacity contention with SR-IOV + HW
TC. This is probably because Redis workload is more robust
to the processing capacity contention. However, SR-IOV +
HW TC fails to provide sufficient isolation when cache or
PCIe bandwidth is contended. Harmonic proactively moni-
tors these microarchitecture resource contention and applies
rate limit according to per tenant’s usage. Harmonic therefore
successfully maintains Redis’s performance within the toler-
ance level when on-NIC cache or PCIe bandwidth is under
contention performing 1.3x∼1.4x better than the combination
of two state-of-the-art isolation solutions.

6.5 Overhead Analysis

Hardware and PCIe costs. Our hardware cost analysis based
on the implementation report from AMD Vivado [9] shows
that PIPS, with an internal reference clock frequency set at
250 MHz, consumes 8,571 LUTs (i.e., 0.95% of VCK190
FPGA LUT resources), and 554 BRAMs (i.e., 57.29% of
VCK190 FPGA BRAM resources) mainly used to store host
mapping entries.

We also measure the cost of PCIe bandwidth for updat-
ing mappings and collecting statistics between the host and
PIPS. RDMA application does not frequently invoke control
verbs during data transmission, the mapping updates con-
sumption is therefore negligible. During our evaluation of
various Husky’s attack workloads, we observe that the map-
ping updates only consume no more than 8 Mbps (0.025%)
extra PCIe bandwidth. The extra PCIe bandwidth consump-
tion caused by polling statistics is determined by the polling
frequency. In practice, we poll these statistics every 100 us
and we find it already sufficient to achieve an accurate rate
control and enforce performance isolation. The per tenant
PCIe bandwidth consumption is 64 Mbps for host-to-switch
direction and 76.8 Mbps for switch-to-host direction, which
can be comfortably accommodated by the bandwidth slack be-
tween PCIe and RNIC line rate. The detailed calculation and

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1489

Table 2: Network performance overhead.

Latency (us) Max. Bandwidth Max. Throughput
64B 64KB (Gbps) (Mrps)

Baseline 3.3 50.4 23.0 28.1
Harmonic 5.6 52.6 22.8 28.1

analysis is in Appendix C. Harmonic daemon currently only
consumes 33.5% of a single CPU core and scales with negli-
gible CPU usage increment. The CPU usage is determined by
the frequency of polling statistics.
Network performance overheads. We run microbenchmarks
using perftest to measure the latency, achieved bandwidth,
and request throughput with and without Harmonic to analyze
network overheads introduced by Harmonic. For brevity, we
show the results of RDMA READ in Table 2. We demonstrate
the latency penalty under different packet sizes in Figure 12.
While there is a marginal increase in latency overhead with
larger packet sizes, Harmonic adds less than 2 us to the round-
trip latency across all packet sizes. This is mainly because our
PCIe switch is implemented in FPGA, which is less perfor-
mant than traditional ASIC-based PCIe switches on the host
and SmartNICs. Furthermore, employing PCIe extender card
and FMC+ to PCIe root module for the purpose of full-system
operation can also incur additional latency. Note that our mon-
itoring feature is decoupled with the PCIe switch forwarding
functionality, so the monitoring feature does not contribute
to this overhead at all. Besides, Harmonic introduces only
negligible drops in network bandwidth or request throughput.

To summarize, Harmonic’s overhead is negligible for high-
speed RDMA networks. Additionally, we believe that the
monitoring and rate limiting functions inherently should
be integrated into future generations of RNICs. Overheads,
such as the extra PCIe consumption and the FPGA’s la-
tency, will be further eliminated when these functions are
implemented within RNIC’s ASIC. For example, NVIDIA
Bluefield-2 SmartNIC has an embedded PCIe switch that
routes RDMA traffic among RNIC ASIC, embedded ARM
CPUs, and host [44], and only introduces nanosecond-level
latency overhead [59]. We therefore believe Harmonic’s PIPS
overhead can also be mostly eliminated by implementation in
ASIC and being integrated into RNIC.

7 Discussion
Scaling to higher-speed network. We believe our solution
is scalable to 100/200 Gbps RNICs because the overhead of
Harmonic (i.e., FPGA resources usage, extra PCIe bandwidth
consumption) does not increase with higher network capacity.
The concerns may fall on whether TLP analyzer can keep up
with higher PCIe bandwidth and whether the mapping man-
ager scales to store more mapping entries. Our TLP analyzer
can handle higher PCIe bandwidth, as the average search and
update time of our design for one mapping entry is 7 cycles
at 250MHz frequency. This can be even further minimized
with increased parallelism. The architecture of the mapping
manager can easily be extended to a multi-hashing hierar-

101 103 105 107

Packet Size / B

0

2000

4000

6000

Ro
un

d
Tr

ip
 L

at
en

cy
 /

us

w/o Harmonic
Harmonic

1

2

3

4

Ro
un

d
Tr

ip

 L
at

en
cy

 O
ve

rh
ea

d
/ u

s

Overhead

Figure 12: Latency overhead across different packet sizes. The green
and orange lines present the absolute round trip latency with left
y-axis when packet size differs. The blue line demonstrates the round
trip latency overhead is less than 2 us using the right y-axis.

chy, thereby facilitating the storage of a greater number of
mappings with only a marginal increase in search time. Addi-
tionally, concepts from match-action table of P4 switch and
more advanced mapping management like binary search or
Cuckoo hashing can be implemented on top of PIPS to further
reduce memory overheads. In the meanwhile, the scalability
concerns are notably mitigated when considering an ASIC
implementation with optimized logic interconnections and
resource utilization while running at a higher frequency.

Is our performance abstraction easy for users to under-
stand? Our performance abstraction is more complex than
traditional performance abstraction which only considers net-
work bandwidth. We believe this is necessary because RDMA
network is indeed more complex and application develop-
ers are already interacting with this performance abstraction
when developing RDMA programs [26, 27]. We only extend
the abstraction to include more architectural resources that
users can directly control, such as the number of QPs. These
extended metrics are no difference from the number of vCPUs
or the size of memory in today’s cloud VMs specifications.
We believe developers should be aware of these resources
in order to write performant and predictable RDMA applica-
tions.

Deployability of Harmonic. Harmonic requires both hard-
ware and software modifications to existing clouds. From the
perspective of hardware, Harmonic uses PIPS as a prototype
to measure per-tenant RDMA resource consumption at run-
time. In practice, the best implementation entry point should
be within the RNIC regarding performance and hardware
costs. One leading technology enterprise is currently inte-
grating part of our designs into their next-generation RNIC.
In terms of software, Harmonic needs to have the full con-
trol of the RDMA kernel drivers to manage control verbs
for all tenants. Containerized clouds have already provided
such control since all tenants are sharing the same kernel
managed by cloud operators. Harmonic software therefore
can be deployed in containerized clouds without any barri-
ers. In VM-based clouds, native SR-IOV does not support to
manage control verbs for tenants since guest kernel drivers

1490 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

can directly communicate with RNICs. Extra modification to
both guest kernel drivers and hypervisors are required to de-
ploy Harmonic in these scenarios. Existing solutions such as
HyV [49] and MasQ [22] have already virtualized all control
verbs involving hypervisor in VM-based clouds. This pro-
vides feasible entry points to integrate Harmonic’s software
features into these solutions.
RDMA-friendly rate limiting. We currently repurpose
RNIC’s native rate limiters to modulate tenants’ RDMA re-
source usage by sending CNPs. This achieves efficiency and
is transparent to applications, but we acknowledge that send-
ing CNPs from software may not be the best approach in
the future. For example, a transient network congestion may
affect the accuracy of such rate limiting mechanism. Emerg-
ing RNIC features such as programmable congestion control
(PCC) [43] allow customized congestion control algorithms.
This potentially provides a more straightforward and accurate
way to leverage RNIC’s rate limiter for performance isolation
purposes. For example, a data receiver can send specialized
packets to specify the maximal sending rate that the data
sender can enforce, similar to TCP receive window.
Generality of Harmonic. Harmonic currently targets at
RDMA performance isolation, focusing on the bottlenecked
RNIC microarchitecture resources. We believe Harmonic can
also be leveraged for other scenarios besides RDMA networks.
For example, multiple I/O devices (e.g., GPU and NIC) may
be connected to the same PCIe switch and thereby contend
on PCIe and memory bus resources [30]. Harmonic can also
be adapted to isolate resources among different I/O devices
and hence manage the complex intra-host network.

8 Related Works
Understanding microarchitecture resources in RNICs. Re-
search community has already started to study the hardware
resources in RNICs. Existing works focus on how to avoid cer-
tain performance anomalies caused by NIC resources from the
application layer [15, 26, 27, 29, 38]. Husky [29] discusses the
definition of RNIC microarchitecture and conducts a holistic
study on how different RDMA operations make use of on-
NIC microarchitecture resources. Kalia et al. [27] provides
guidelines for writing efficient high-performance RDMA pro-
grams. These works target understanding or optimizing the
RDMA programs and the usage of some specific RNIC mi-
croarchitecture resources, but they do not provide RDMA
performance isolation.

RNIC design. Several works have been conducted to opti-
mize RNIC design [34, 37, 57, 58]. SRNIC [58] modifies both
protocols and RNIC architecture to improve on-NIC memory
efficiency and utilization for better scalability. IRN [37] pro-
poses to enable fast loss recovery on NIC to avoid reliance on
lossless fabrics. These works contribute to improving RDMA
performance. However, our work targets at provide perfor-
mance isolation for multi-tenant RDMA clouds.

Understanding intra-host communication. Intra-host com-
munication has received increasing attention in research com-
munities [5, 6, 30, 33, 39, 61]. Breaking Band [61] leverages
an expensive commercial PCIe analyzer to get a system-level
PCIe latency breakdown. Min [36] implements a simple soft
PCIe switch to obtain CPU-GPU communication patterns at
10 Gbps. Neugebauer et al. [39] analyze the PCIe theoreti-
cal model and study how PCIe affects network performance.
Harmonic targets a different angle. It sniffers intra-host com-
munication traffic to monitor RDMA network behaviors for
RDMA performance isolation.
Performance isolation and QoS. Previous research [12, 20,
25, 32, 50, 51] has already provided software-based solutions
implemented on the endpoints (hosts) and achieved perfor-
mance isolation and QoS, by ensuring VM-pair level band-
width guarantee. However, centering around the TCP/IP ker-
nel network stack, they mainly focus on the bandwidth con-
tention of the network fabric (e.g., switch, router, etc.) and
provide pure software solutions to the narrow problem. Pic-
NIC [32] uses the number of CPU cycles spent on the packet
processing as a criterion of NIC contention for TCP/IP net-
works. Harmonic is an orthogonal and complementary re-
search work, with a focus on performance isolation on the
RDMA-capable endhost. An end-to-end network performance
isolation solution requires isolation mechanisms in different
components of the network, including both inter-host net-
work bandwidth and RDMA NIC resources on the endhost.
Harmonic provides a microarchitecture-resource-aware so-
lution for the RDMA NIC resource isolation in addition to
traditional network bandwidth.

9 Conclusion
We propose the first RDMA performance isolation solution
for public clouds, Harmonic, that is aware of microarchitec-
ture resources. Harmonic consists of an FPGA-based pro-
grammable intelligent PCIe switch to measure per-tenant
RDMA resource usage and an RDMA-friendly rate limiter
to modulate RDMA resource per tenant. Harmonic requires
no application modification. We evaluate Harmonic using the
state-of-the-art test suite for RDMA performance isolation.
Our evaluation results show that Harmonic delivers strong
RDMA performance isolation in a multi-tenant public cloud
setting, compared to all the existing solutions.

Acknowledgement
We thank Xilinx for their technical support. We also thank
our shepherd Yizhou Shan and other anonymous reviewers
for their insightful feedback. Our work is supported in part by
grants from NSF (CNS-2238665 and CCRI-CISE 2213808)
and IBM IIDAI, and gifts from Adobe, Amazon, Meta, Intel,
and IBM.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1491

References
[1] OFED perftest. https://github.com/linux-rdma/

perftest.

[2] RDMA Core Userspace Libraries and Daemons. https:
//github.com/linux-rdma/rdma-core/.

[3] Advanced Micro Devices. How to
implement pcie switch on Ultrascale.
https://support.xilinx.com/s/question/
0D54U00006cnZ2rSAE/how-to-implement-pcie-
switch-on-ultrascale?language=en_US.

[4] Advanced Micro Devices. Use Ultrascale+ PCIe
Integrated block as an endpoint PCI to PCI Bridge
device. https://support.xilinx.com/s/question/
0D54U00006hwlreSAA/use-ultrascale-pcie-
integrated-block-as-an-endpoint-pci-to-pci-
bridge-device?language=en_US.

[5] Saksham Agarwal, Rachit Agarwal, Behnam Montaz-
eri, Masoud Moshref, Khaled Elmeleegy, Luigi Rizzo,
Marc Asher de Kruijf, Gautam Kumar, Sylvia Rat-
nasamy, David Culler, and Amin Vahdat. Understanding
Host Interconnect Congestion. In Proceedings of the
21st ACM Workshop on Hot Topics in Networks (Hot-
Nets), pages 198–204, 2022.

[6] Saksham Agarwal, Arvind Krishnamurthy, and Rachit
Agarwal. Host Congestion Control. In Proceedings of
the ACM Special Interest Group on Data Communica-
tion (SIGCOMM), pages 275–287, 2023.

[7] Amazon. Amazon EC2 Instance Types. https://
aws.amazon.com/ec2/instance-types/.

[8] AMD/Xilinx. Versal Adaptive SoC Integrated Block
for PCI Express LogiCORE IP Product Guide. https:
//docs.xilinx.com/r/en-US/pg343-pcie-versal.

[9] AMD/Xilinx. Vivado Design Suite. https:
//www.xilinx.com/products/design-tools/
vivado.html.

[10] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis,
Greg O’Shea, and Eno Thereska. End-to-end Perfor-
mance Isolation Through Virtual Datacenters. In Pro-
ceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 233–
248, 2014.

[11] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Kris-
han Kumar Attre, Paramvir Bahl, Ameya Bhagat, Gowri
Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,
Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad, Vivek
Ette, Igal Figlin, Daniel Firestone, Mathew George, Ilya
German, Lakhmeet Ghai, Eric Green, Albert Greenberg,

Manish Gupta, Randy Haagens, Matthew Hendel, Rid-
wan Howlader, Neetha John, Julia Johnstone, Tom Jolly,
Greg Kramer, David Kruse, Ankit Kumar, Erica Lan,
Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu, Chen
Liu, Guohan Lu, Yuemin Lu, Xiakun Lu, Vadim Makher-
vaks, Ulad Malashanka, David A. Maltz, Ilias Mari-
nos, Rohan Mehta, Sharda Murthi, Anup Namdhari,
Aaron Ogus, Jitendra Padhye, Madhav Pandya, Douglas
Phillips, Adrian Power, Suraj Puri, Shachar Raindel, Jor-
dan Rhee, Anthony Russo, Maneesh Sah, Ali Sheriff,
Chris Sparacino, Ashutosh Srivastava, Weixiang Sun,
Nick Swanson, Fuhou Tian, Lukasz Tomczyk, Vamsi
Vadlamuri, Alec Wolman, Ying Xie, Joyce Yom, Lihua
Yuan, Yanzhao Zhang, and Brian Zill. Empowering
Azure Storage with RDMA. In Proceedings of the 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 49–67, 2023.

[12] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and
Ant Rowstron. Towards Predictable Datacenter Net-
works. In Proceedings of the ACM Special Interest
Group on Data Communication (SIGCOMM), pages
242–253, 2011.

[13] Broadcom. Introduction to Thor Congestion Control
for RoCE. https://docs.broadcom.com/doc/NCC-
WP1XX.

[14] Jingrong Chen, Yongji Wu, Shihan Lin, Yechen Xu, Xin-
hao Kong, Thomas Anderson, Matthew Lentz, Xiaowei
Yang, and Danyang Zhuo. Remote Procedure Call as a
Managed System Service. In Proceedings of the 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 141–159, 2023.

[15] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable
RDMA RPC on Reliable Connection with Efficient Re-
source Sharing. In Proceedings of the 14th European
Conference on Computer Systems (EuroSys), pages 1–
14, 2019.

[16] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg.
Azure Accelerated Networking: SmartNICs in the Pub-
lic Cloud. In Proceedings of the 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), pages 51–66, 2018.

1492 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/rdma-core/
https://github.com/linux-rdma/rdma-core/
https://support.xilinx.com/s/question/0D54U00006cnZ2rSAE/how-to-implement-pcie-switch-on-ultrascale?language=en_US
https://support.xilinx.com/s/question/0D54U00006cnZ2rSAE/how-to-implement-pcie-switch-on-ultrascale?language=en_US
https://support.xilinx.com/s/question/0D54U00006cnZ2rSAE/how-to-implement-pcie-switch-on-ultrascale?language=en_US
https://support.xilinx.com/s/question/0D54U00006hwlreSAA/use-ultrascale-pcie-integrated-block-as-an-endpoint-pci-to-pci-bridge-device?language=en_US
https://support.xilinx.com/s/question/0D54U00006hwlreSAA/use-ultrascale-pcie-integrated-block-as-an-endpoint-pci-to-pci-bridge-device?language=en_US
https://support.xilinx.com/s/question/0D54U00006hwlreSAA/use-ultrascale-pcie-integrated-block-as-an-endpoint-pci-to-pci-bridge-device?language=en_US
https://support.xilinx.com/s/question/0D54U00006hwlreSAA/use-ultrascale-pcie-integrated-block-as-an-endpoint-pci-to-pci-bridge-device?language=en_US
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://docs.xilinx.com/r/en-US/pg343-pcie-versal
https://docs.xilinx.com/r/en-US/pg343-pcie-versal
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://docs.broadcom.com/doc/NCC-WP1XX
https://docs.broadcom.com/doc/NCC-WP1XX

[17] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan Liu,
Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng
Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang,
Dennis Cai, and Jiesheng Wu. When Cloud Storage
Meets RDMA. In Proceedings of the 18th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 519–533, 2021.

[18] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
Resource Fairness: Fair Allocation of Multiple Resource
Types. In Proceedings of the 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
pages 323–336, 2011.

[19] Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C
Snoeren. SmartNIC Performance Isolation with Fair-
NIC: Programmable Networking for the Cloud. In Pro-
ceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM), pages 681–693, 2020.

[20] Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang
Yang, Chao Kong, Peng Sun, Wenfei Wu, and Yong-
guang Zhang. SecondNet: A Data Center Network
Virtualization Architecture with Bandwidth Guarantees.
In Proceedings of the 6th International Conference on
emerging Networking EXperiments and Technologies
(CoNEXT), pages 1–12, 2010.

[21] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over Commodity Ethernet at Scale. In Proceedings of
the ACM Special Interest Group on Data Communica-
tion (SIGCOMM), pages 202–215, 2016.

[22] Zhiqiang He, Dongyang Wang, Binzhang Fu, Kun Tan,
Bei Hua, Zhi-Li Zhang, and Kai Zheng. MasQ: RDMA
for Virtual Private Cloud. In Proceedings of the ACM
Special Interest Group on Data Communication (SIG-
COMM), pages 1–14, 2020.

[23] HiTech Global. PCI Express Gen4 Root FMC+ Mod-
ule. https://hitechglobal.us/index.php?route=
product/product&path=18_85&product_id=273.

[24] Intel. Intel® Ethernet 800 Series Linux Flow
Control. https://edc.intel.com/content/www/
us/en/design/products/ethernet/800-series-
linux-flow-control-configuration-guide-for-
rdma-use-c/congestion-management-tuning-
parameters/.

[25] Vimalkumar Jeyakumar, Mohammad Alizadeh, David
Mazières, Balaji Prabhakar, Changhoon Kim, and Albert

Greenberg. EyeQ: Practical Network Performance Iso-
lation at the Edge. In Proceedings of the 10th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 297–311, 2013.

[26] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In Proceed-
ings of the 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), pages 1–16,
2019.

[27] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Design Guidelines for High Performance RDMA Sys-
tems. In Proceedings of the USENIX Annual Technical
Conference (USENIX ATC), pages 437–450, 2016.

[28] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu,
Yibo Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong
Guo, Vyas Sekar, and Srinivasan Seshan. FreeFlow:
Software-based Virtual RDMA Networking for Con-
tainerized Clouds. In Proceedings of the 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 113–126, 2019.

[29] Xinhao Kong, Jingrong Chen, Wei Bai, Yechen Xu,
Mahmoud Elhaddad, Shachar Raindel, Jitendra Padhye,
Alvin R Lebeck, and Danyang Zhuo. Understanding
RDMA Microarchitecture Resources for Performance
Isolation. In Proceedings of the 20th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), pages 31–48, 2023.

[30] Xinhao Kong, Jiaqi Lou, Wei Bai, Nan Sung Kim, and
Danyang Zhuo. Towards a Manageable Intra-Host Net-
work. In Proceedings of the 19th Workshop on Hot
Topics in Operating Systems (HotOS), pages 206–213,
2023.

[31] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding Performance Anomalies in RDMA Subsystems.
In Proceedings of the 19th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
pages 287–305, 2022.

[32] Praveen Kumar, Nandita Dukkipati, Nathan Lewis,
Yi Cui, Yaogong Wang, Chonggang Li, Valas Valancius,
Jake Adriaens, Steve Gribble, Nate Foster, and Amin
Vahdat. PicNIC: Predictable Virtualized NIC. In Pro-
ceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM), pages 351–366, 2019.

[33] Qiang Li, Qiao Xiang, Derui Liu, Yuxin Wang, Hao-
nan Qiu, Xiaoliang Wang, Jie Zhang, Ridi Wen, Haohao
Song, Gexiao Tian, Chenyang Huang, Lulu Chen, Shao-
zong Liu, Yaohui Wu, Zhiwu Wu, Zicheng Luo, Yuchao
Shao, Chao Han, Zhongjie Wu, Jianbo Dong, Zheng Cao,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1493

https://hitechglobal.us/index.php?route=product/product&path=18_85&product_id=273
https://hitechglobal.us/index.php?route=product/product&path=18_85&product_id=273
https://edc.intel.com/content/www/us/en/design/products/ethernet/800-series-linux-flow-control-configuration-guide-for-rdma-use-c/congestion-management-tuning-parameters/
https://edc.intel.com/content/www/us/en/design/products/ethernet/800-series-linux-flow-control-configuration-guide-for-rdma-use-c/congestion-management-tuning-parameters/
https://edc.intel.com/content/www/us/en/design/products/ethernet/800-series-linux-flow-control-configuration-guide-for-rdma-use-c/congestion-management-tuning-parameters/
https://edc.intel.com/content/www/us/en/design/products/ethernet/800-series-linux-flow-control-configuration-guide-for-rdma-use-c/congestion-management-tuning-parameters/
https://edc.intel.com/content/www/us/en/design/products/ethernet/800-series-linux-flow-control-configuration-guide-for-rdma-use-c/congestion-management-tuning-parameters/

Jinbo Wu, Jiwu Shu, and Jiesheng Wu. From RDMA to
RDCA: Toward High-Speed Last Mile of Data Center
Networks Using Remote Direct Cache Access. arXiv
preprint arXiv:2211.05975, 2023.

[34] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. HPCC: High Precision Congestion Control. In
Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM), pages 44–58. 2019.

[35] Microsoft. Azure Virtual Machine series.
https://azure.microsoft.com/en-us/pricing/
details/virtual-machines/series/.

[36] Seung Won Min. Fine-grained memory access over
I/O interconnect for efficient remote sparse data access.
PhD thesis, 2022.

[37] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Ei-
tan Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy,
and Scott Shenker. Revisiting Network Support for
RDMA. In Proceedings of the ACM Special Interest
Group on Data Communication (SIGCOMM), pages
313–326, 2018.

[38] Sumit Kumar Monga, Sanidhya Kashyap, and Chang-
woo Min. Birds of a Feather Flock Together: Scaling
RDMA RPCs with Flock. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Princi-
ples (SOSP), pages 212–227, 2021.

[39] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W
Moore. Understanding PCIe performance for end host
networking. In Proceedings of the ACM Special Interest
Group on Data Communication (SIGCOMM), pages
327–341, 2018.

[40] NVIDIA. DCQCN PARAMETERS. https:
//enterprise-support.nvidia.com/s/article/
dcqcn-parameters.

[41] NVIDIA. Firmware Burning Tools (MFT). https:
//docs.nvidia.com/networking/category/mft.

[42] NVIDIA. MLNX_OFED InfiniBand/VPI.
https://docs.nvidia.com/networking/category/
mlnxofedib.

[43] NVIDIA. NVIDIA ConnectX-6 DX Datasheet.
https://www.nvidia.com/content/dam/en-zz/
Solutions/networking/ethernet-adapters/
connectX-6-dx-datasheet.pdf.

[44] NVIDIA. NVIDIA MELLANOX BLUEFIELD-
2 Datasheet. https://network.nvidia.com/files/
doc-2020/pb-bluefield-2-smart-nic-eth.pdf.

[45] NVIDIA. Quality of Service (QoS).
https://docs.nvidia.com/networking/pages/
viewpage.action?pageId=107485812.

[46] NVIDIA. Security Bulletin: NVIDIA ConnectX
- April 2023. https://nvidia.custhelp.com/
app/answers/detail/a_id/5459/~/security-
bulletin%3A-nvidia-connectx---april-2023.

[47] NVIDIA. Single Root IO Virtualization (SR-IOV).
https://docs.nvidia.com/networking/pages/
viewpage.action?pageId=107485951.

[48] PCI-SIG. PCI Express® Base Specification Revision
4.0. https://pcisig.com/specifications.

[49] Jonas Pfefferle, Patrick Stuedi, Animesh Trivedi,
Bernard Metzler, Ionnis Koltsidas, and Thomas R. Gross.
A Hybrid I/O Virtualization Framework for RDMA-
Capable Network Interfaces. In Proceedings of the
11th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (VEE), page 17–30,
2015.

[50] Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jef-
frey C Mogul, Yoshio Turner, and Jose Renato Santos.
Elasticswitch: Practical Work-Conserving Bandwidth
Guarantees for Cloud Computing. In Proceedings of the
ACM Special Interest Group on Data Communication
(SIGCOMM), pages 351–362, 2013.

[51] Barath Raghavan, Kashi Vishwanath, Sriram Ramab-
hadran, Kenneth Yocum, and Alex C Snoeren. Cloud
Control with Distributed Rate Limiting. In Proceedings
of the ACM Special Interest Group on Data Communi-
cation (SIGCOMM), pages 337–348, 2007.

[52] Benjamin Rothenberger, Konstantin Taranov, Adrian
Perrig, and Torsten Hoefler. ReDMArk: Bypassing
RDMA Security Mechanisms. In Proceedings of the
30th USENIX Security Symposium (USENIX Security),
pages 4277–4292, 2021.

[53] Alan Shieh, Srikanth Kandula, Albert Greenberg,
Changhoon Kim, and Bikas Saha. Sharing the Data
Center Network. In Proceedings of the 8th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 309–322, 2011.

[54] Konstantin Taranov, Benjamin Rothenberger, Daniele
De Sensi, Adrian Perrig, and Torsten Hoefler. NeVer-
More: Exploiting RDMA Mistakes in NVMe-oF Stor-
age Applications. In Proceedings of the 29th ACM
SIGSAC Conference on Computer and Communications
Security (CCS), pages 2765–2778, 2022.

1494 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/
https://enterprise-support.nvidia.com/s/article/dcqcn-parameters
https://enterprise-support.nvidia.com/s/article/dcqcn-parameters
https://enterprise-support.nvidia.com/s/article/dcqcn-parameters
https://docs.nvidia.com/networking/category/mft
https://docs.nvidia.com/networking/category/mft
https://docs.nvidia.com/networking/category/mlnxofedib
https://docs.nvidia.com/networking/category/mlnxofedib
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectX-6-dx-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectX-6-dx-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectX-6-dx-datasheet.pdf
https://network.nvidia.com/files/doc-2020/pb-bluefield-2-smart-nic-eth.pdf
https://network.nvidia.com/files/doc-2020/pb-bluefield-2-smart-nic-eth.pdf
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=107485812
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=107485812
https://nvidia.custhelp.com/app/answers/detail/a_id/5459/~/security-bulletin%3A-nvidia-connectx---april-2023
https://nvidia.custhelp.com/app/answers/detail/a_id/5459/~/security-bulletin%3A-nvidia-connectx---april-2023
https://nvidia.custhelp.com/app/answers/detail/a_id/5459/~/security-bulletin%3A-nvidia-connectx---april-2023
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=107485951
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=107485951
https://pcisig.com/specifications

[55] Shin-Yeh Tsai, Mathias Payer, and Yiying Zhang.
Pythia: Remote Oracles for the Masses. In Proceed-
ings of the 28th USENIX Security Symposium (USENIX
Security), pages 693–710, 2019.

[56] VITA. FPGA Mezzanine Card Plus (FMC+) Standard.
https://www.vita.com/fmc.

[57] Xizheng Wang, Guo Chen, Xijin Yin, Huichen Dai, Bo-
jie Li, Binzhang Fu, and Kun Tan. StaR: Breaking the
Scalability Limit for RDMA. In Proceedings of the
IEEE 29th International Conference on Network Proto-
cols (ICNP), pages 1–11, 2021.

[58] Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang
Zeng, Wenxue Li, Xinchen Wan, Peng Xie, Tao Feng,
Ke Cheng, Xiongfei Geng, Tianhao Wang, Weicheng
Ling, Kejia Huo, Pingbo An, Kui Ji, Shideng Zhang, Bin
Xu, Ruiqing Feng, Tao Ding, Kai Chen, and Chuanxiong
Guo. SRNIC: A Scalable Architecture for RDMA NICs.
In Proceedings of the 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
pages 1–14, 2023.

[59] Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen,
and Haibo Chen. Characterizing Off-path SmartNIC for
Accelerating Distributed Systems. In Proceedings of the
17th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 987–1004, 2023.

[60] Zhuolong Yu, Bowen Su, Wei Bai, Shachar Raindel,
Vladimir Braverman, and Xin Jin. Understanding
the Micro-Behaviors of Hardware Offloaded Network
Stacks with Lumina. In Proceedings of the ACM Special
Interest Group on Data Communication (SIGCOMM),
pages 1074–1087, 2023.

[61] Rohit Zambre, Megan Grodowitz, Aparna Chan-
dramowlishwaran, and Pavel Shamis. Breaking Band:
A Breakdown of High-Performance Communication. In
Proceedings of the 48th International Conference on
Parallel Processing (ICPP), pages 1–10, 2019.

[62] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf
Chowdhury. Justitia: Software Multi-Tenancy in Hard-
ware Kernel-Bypass Networks. In Proceedings of the
19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 1307–1326, 2022.

[63] Zhenwei Pi. Redis Over RDMA Implementation.
https://github.com/redis/redis/pull/11182.

[64] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion Control for Large-Scale RDMA

Deployments. In Proceedings of the ACM Special Inter-
est Group on Data Communication (SIGCOMM), pages
523–536, 2015.

A Harmonic Prototype Setup
We present the prototype setup of Harmonic in Figure 14.
PIPS is implemented on an AMD Versal VCK190 FPGA
board, connecting to the host system with a PCIe extender
card. We connect RNIC with PIPS using an FMC+ expansion
connector because the FPGA board does not contain a PCIe
root connector interface. FMC+ is built upon FPGA Mezza-
nine Card (FMC) standard [56] which is a versatile and widely
adopted standard for high-performance interfacing FPGAs
with external devices.

B Entries for Mappings and Statistics
We illustrate the address-to-object/tenant mapping and statis-
tics entry format in Figure 13. We explain how each field is
derived to offer a comprehensive understanding of the map-
ping mechanism in Harmonic.

B.1 Address-to-Object/Tenant Mappings

There are mainly three types of objects (i.e., memory regions,
queue structures, and RDMA metadata) in RDMA. All these
objects will be pinned in the host physical memory after cre-
ation, and the RNIC will maintain virtual-to-physical address
mappings to DMA these objects.

The first type of object is application’s memory region
(MR). Applications register these MRs through ibv_reg_mr,
which is processed by mlx5_ib.ko drivers in our NVIDIA
testbed. We modify mlx5_ib.ko to record the starting phys-
ical address, the process ID (PID) of the caller, the size and
the memory flags (e.g., IBV_ACCESS_REMOTE_WRITE, which
allows remote write) of this region. Note that we use con-
tainer’s process ID as tenant ID (TID).

The second type of objects is queue structures, including
send/receive queues, completion queues, and the doorbell
(memory mapped registers) for these queues. When an appli-
cation initiates RDMA data verbs, the memory is accessed by
the RNIC to fetch WQEs from send/receive queues or write
completion queue entries (CQE) to completion queues. The
memory for these objects is allocated and pinned during the
allocation of these projects, such as mlx5_ib_create_qp in
mlx5_ib.ko. Similarly, we record the PID of the caller, and
the address and size of these objects.

The third type of object is RDMA metadata managed by
RNIC driver and firmware, including QP contexts and mem-
ory translation/protection tables. When other two types of
objects (e.g., a QP) are created, the firmware reserves a few
pinned pages and allocates metadata (e.g., a QP context) in
the pinned pages. We record the information on these pinned
pages in a similar fashion as described above.

Figure 13a shows our unified entry to update such address-
to-object/tenant mappings to our PCIe switch. Note that the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1495

https://www.vita.com/fmc
https://github.com/redis/redis/pull/11182

Opcode: 127-112 Rsvd: 111-96 Size: 95-65 Flags: 64-63 Addr: 62-15 TID: 14-3 Type: 2-0

(a) Address-to-Object/Tenant Mapping Entry Format.

Byte: 63-31 # Access: 30-1 Direction: 0

(b) Statistics Entry Format.

Figure 13: Address-to-Object/Tenant Mapping and Statistics Entry Formats.

Programmable
Intelligent

PCIe Switch
(PIPS)

RNIC

Server

FM
C

+
C

o
n

n
ec

to
r

Figure 14: Programmable Intelligent PICe Switch (PIPS) Prototype.

most significant 16 bits of address-to-object/tenant mapping
entry together serve as an operation code that notifies PIPS to
either insert or delete the entry in PIPS. We reserve the second
16-bit field considering the possibility of other customization
demands. Our modified drivers will fill in the remaining five
fields and expose these entries to Harmonic daemon through
system files.

B.2 Per-tenant RDMA Statistics

We store the monitored RDMA resource statistics in a 128-bit
structured entry as shown in Figure 13b. As discussed in §4,
the TLP analyzer leverages the physical address enclosed in
TLP headers to search and retrieve the corresponding address-
to-object/tenant mapping entry from which we identify the
object and tenant associated with the TLPs. Then we collect
and record PCIe bandwidth consumption, number of PCIe
transactions, direction of TLPs, accessed memory type, and
other information from TLP headers (Figure 4) in per-tenant
statistics entries.

C Harmonic PCIe Overhead Computation
PIPS maintains 40 statistic entries per tenant and each entry is
8-byte. We issue PCIe read request to read these statistics from
PIPS. For a PCIe read request, the minimum PCIe protocol
overhead is 20 bytes [48]. Upon receiving the read request,
PIPS responds with a completion packet (i.e., Completion
TLP), containing 8-byte payload and a 16-byte PCIe protocol
overhead. Therefore, for a single statistics read, it consumes
800-byte for host-to-PIPS direction 960-byte for PIPS-to-host
direction in total.

Assuming Harmonic daemon polls the statistics every N
milliseconds. The extra PCIe bandwidth consumed therefore
is 1000

N ∗ 8 ∗ 800 = 6.4
N Mbps for the host-to-PIPS direction

and 7.68
N Mbps for PIPS-to-host direction. Harmonic currently

poll statistics every 100 us, which consumes 64 Mbps and
76.8 Mbps for these two directions. This overhead is less than
0.25% of the total PCIe bandwidth. Together with the extra
PCIe bandwidth consumed by updating mappings, the overall
PCIe bandwidth overhead of Harmonic is below 0.31% which
can be comfortably accommodated by the existing 21.87%
bandwidth slack between PCIe and RNIC line rate. Note that
we assume our PCIe limit as 32 Gbps, which has the same
network-to-PCIe capacity ratio as higher speed networks (e.g.,
100 and 200 Gbps). This means that the PCIe overhead of
our solution remains negligible with a higher network speed.
Not to mention that this PCIe overhead only depends on the
number of tenants and the frequency of polling, independent
on network bandwidth.

1496 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

LDB: An Efficient Latency Profiling Tool for Multithreaded Applications

Inho Cho1 Seo Jin Park2 Ahmed Saeed3 Mohammad Alizadeh1 Adam Belay1

1 MIT CSAIL 2 University of Southern California 3 Georgia Tech

Abstract

Maintaining low tail latency is critical for the efficiency and
performance of large-scale datacenter systems. Software bugs
that cause tail latency problems, however, are notoriously dif-
ficult to debug. We present LDB, a new latency profiling tool
that aims to overcome this challenge by precisely identify-
ing the specific functions that are responsible for tail latency
anomalies. LDB observes the latency of all functions in a run-
ning program. It uses a novel, software-only technique called
stack sampling, where a busy-spinning stack scanner thread
polls lightweight metadata recorded in the call stack, shifting
tracing costs away from program threads. In addition, LDB
uses event tagging to record requests, inter-thread synchro-
nization, and context switching. This can be used, for example,
to generate per-request timelines and to find the root cause
of complex tail latency problems such as lock contention in
multi-threaded programs. We evaluate LDB with three dat-
acenter applications, finding latency problems in each. Our
results further show that LDB produces actionable insights,
has low overhead, and can rapidly analyze recordings, making
it feasible to use in production settings.

1 Introduction
Modern datacenter services like search, social networks, and
DNN training operate on huge datasets with complex com-
munication patterns and large numbers of servers [17, 28].
Tail latency is a key challenge in this setting because overall
performance is often limited by the slowest response [22]. De-
spite the tremendous effort that goes into optimizing latency-
sensitive programs, operators tend to treat high tail latency
as inevitable due to the complexity of deployed programs.
Therefore, the main method available to operators today is
to keep machine utilization low to control for tail latency,
wasting both power efficiency and money.

In this paper, our aim is to empower developers to tackle
tail latency problems head-on by answering the following
question: Can a debugging tool identify the precise source
of tail latency experienced by a request in a server (e.g., the

line of code that is responsible)? This is a significant chal-
lenge, as the effort needed to understand tail behaviors is
formidable with the tools that exist today. Statistical profilers
(e.g., Linux’s perf-tool), for example, have only limited util-
ity because their method of periodic sampling captures the
average runtime of functions, which may deviate significantly
from the tail runtime. Further, they don’t account for request
semantics, so they cannot differentiate between requests run-
ning on the critical path versus the background, making it
hard to identify bottlenecks. Instead, developers commonly
hand instrument code locations that they suspect are problem-
atic, but they can only try a few locations at a time due to
instrumentation overhead. Thus, a typical workflow involves
multiple iterations of instrumentation location adjustment,
deployment, and data collection.

One way to avoid this tedious process would be to use a
tool that can instrument all functions simultaneously (e.g.,
XRay [18]). However, this approach causes significant over-
head that can distort an application’s behavior. A less invasive
option would be to use hardware assistance. For example,
Intel recently introduced a hardware extension called Intel
Processor Trace (Intel PT) that records every control flow op-
eration (calls, branches, jumps, etc.) to an in-memory log for
analysis. NSight recently demonstrated that Intel PT can be
used to derive rich tail latency insights, such as a precise time-
line of how cycles are spent handling network requests [26].

Unfortunately, Intel PT has drawbacks that make it difficult
to use for profiling latency in practice. First, Intel PT is pro-
prietary and requires hardware support, so it is only available
on certain platforms. Second, Intel PT generates data at an
enormous rate, so it is only feasible to record a few seconds
of samples. Finally, Intel PT’s compression scheme requires
a software decoder that walks a program’s object code to
reconstruct its control flow. This requires several hours of
processing—even for a few seconds of data—prohibiting in-
teractive profiling.

We present LDB, a new latency debugging tool that pro-
vides unprecedented visibility into the latency behavior of
applications. LDB reports the distribution of the latency of all

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1497

1 std::mutex lock;
2 std::map<int, std::string> db;
3

4 void snapshot() {
5 std::ofstream out("snapshot.txt");
6 std::lock_guard<std::mutex> g(lock);
7 for (const auto& kv : db)
8 out << kv.first << "," << kv.second << std::endl;
9 out.close();

10 }
11

12 void background_thread() {
13 while (true) {
14 snapshot();
15 usleep(10000);
16 }
17 }
18

19 void request_handler(int key, std::string& value) {
20 std::lock_guard<std::mutex> g(lock);
21 db[key] = value;
22 }
23

24 int main() {
25 std::thread bg_thread(background_thread);
26 for (int i = 0; i < kRounds; i++) {
27 int key = std::rand() % dbSize;
28 std::string value = generate_random_string();
29 request_handler(key, value);
30 }
31 }

Figure 1: example.cc: a simple multithreaded program where
a foreground thread handles user requests and a background
thread snapshots program state every 10 ms.

functions in a process. Furthermore, it allows developers to
breakdown the latency faced by a specific request, even when
processed by multiple threads, allowing them to zoom in and
identify the code responsible for anomalous behavior. LDB
provides this information after only seconds of decoding its
own traces and without significantly harming the performance
of the profiled program, enabling monitoring in production
environments. In contrast to Intel PT, LDB is hardware ag-
nostic. In principle, it can be ported to any architecture, and
we demonstrate its use on Intel and AMD processors.

The efficiency and portability of LDB stem from a novel,
software-only technique, called stack sampling. Unlike prior
approaches, stack sampling doesn’t record per-function times-
tamps (e.g., the output of the RDTSC instruction [18, 35]). In-
stead, a separate stack scanner thread polls the call stack of
every application thread. During each polling cycle, the stack
scanner thread performs a backtrace on each call stack to in-
spect changes to stack frames. Intuitively, a function’s stack
frame will be resident on the call stack until the function re-
turns, so the higher its execution time, the longer its stack
frame will remain resident. LDB exploits this to capture the
runtime of all the functions that contribute meaningfully to
latency (i.e., those that last longer than its sub-us polling in-
terval).

While stack sampling is based on a simple premise, we had

to overcome several challenges to make it work in practice.
First, it is not possible for one core to access another core’s
stack pointer register, so we had to find an alternative way to
locate the deepest stack frame. Second, there is not enough
information available in stack frames to discern between re-
peated invocations of the same function so we had to find a
way to detect them. Third, the stack scanning thread could
race with application threads causing it to observe corrupted
stack frames, so we had to develop a mechanism to detect
and discard bad samples. Finally, backtracing can cause false
sharing with variables on the call stack, negatively impact-
ing application performance, so we needed a way to limit
this overhead without sacrificing resolution. We discuss our
solution to each of these problems in §3.2.

In addition to efficiency improvements, LDB provides bet-
ter visibility into latency problems through event tagging,
recording several types of events with timestamps and event-
specific metadata. Examples include the start and end of re-
quests; cross-thread interactions like locks; and the transfer of
request ownership among threads. This allows LDB to track
the timeline of each request and correlate this information
across multiple threads. For example, LDB can identify a slow
function running inside a critical section that is protected by
a lock, and then tie it back to a request that is blocked in
another thread waiting to acquire the same lock. LDB also
uses event tagging to track context switching, allowing it to
identify delays from the OS scheduler.

We demonstrate the value of LDB by profiling two latency-
sensitive applications (Memcached and Lucene) and a best-
effort application called Qperf, which is a benchmark for the
QUIC transport protocol. We show that LDB can detect com-
plex interactions between threads and identify which func-
tions are responsible for impacting performance (both latency
and throughput). Then, we provide an evaluation of the per-
formance overhead of LDB when used to profile these three
applications. In particular, we show that the overhead of LDB
is less than the overhead of Coz and Xray; and comparable to
Intel PT on recent Intel architectures. LDB maintains its low
overhead across Intel and AMD architectures. On the other
hand, the overhead of Intel PT is considerably higher when
used on older Intel architectures.

LDB has some limitations. First, it can’t yet capture hard-
ware interrupts and some other types of traps into the kernel,
which could contribute to tail latency. Second, LDB requires
programs or libraries to be recompiled to support stack sam-
pling, so it cannot trace latency inside unmodified binaries
or libraries. Finally, if one chooses not to annotate requests
in the source code (typically just a few lines), LDB cannot
capture information about request latency, but it can still de-
liver statistics about the latency of each line of code, which is
enough for debugging many tail latency problems.

LDB is available as open-source software at https://
inhocho89.github.io/ldb/.

1498 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://inhocho89.github.io/ldb/
https://inhocho89.github.io/ldb/

Figure 2: A timeline visualization of the time spent in each
function during the longest request. The longest request starts
at 0 ms and finishes at 12.75 ms. The thread on the top is the
mutex holder, while the thread on the bottom is the request
handler, which is blocked waiting to acquire the mutex.

2 Background and Motivation
2.1 Debugging a Tail Latency Problem
Consider the example shown in Figure 1, based on a pattern
found in many real programs. A request processing thread and
a background thread require synchronized access to the same
data. The request processing thread responds by executing
request_handler(), which inserts items into a std::map.
Concurrently, the background thread takes a snapshot of the
std::map every 10 ms. Access to the std::map is serialized
through a std::mutex. As a result, the 99.99th percentile
latency of the request_handler() function is 10 ms while
its median is 244 ns (a 40,000× increase)!

This is a challenging issue to debug because of the rare
interaction between the two threads. LDB, however, can eas-
ily identify the root cause. It captures everything that hap-
pened in the program and can generate a timeline visualiza-
tion for each request that includes all the involved threads. By
plotting the timeline of the longest request (Figure 2), it be-
comes clear that the snapshot thread (shown on top) delayed
request_handler() (shown on bottom) by holding the mu-
tex it was trying to acquire. This suggests that tail latency can
be improved by optimizing snapshot() or reducing the size
of its critical section.

However, existing profilers struggle to debug tail latency is-
sues like these. For example, Figure 3 shows the output of perf,
one of the widely used performance debugging tools. The ma-
jority of time is spent in generate_random_string() and
other functions under request_handler(). snapshot() ac-
counts for only 0.6% and was buried under other 13 functions.
This result reveals three interesting problems of using perf
for tail latency debugging. First, tail behavior is amortized, so
it gets buried down under average behaviors. Second, perf is
measuring where the CPU cycles go, not how long each func-
tion takes, so it is unable to show the time spent on blocking
I/O or synchronization. Figure 2 suggests that snapshot()
runs for over 10 ms and then sleeps for 10 ms, so it should
account for at least about 50% time on average. However,
much of the time spent on snapshot() is spent blocking on
I/O, so perf reports only 0.62%. Lastly, perf cannot capture
the interplay across threads caused by the mutex.

Function CPU Time ▽
generate_random_string 63.75%
request_handler 7.43%
std::_Rb_tree_increment 2.82%

...(13 more functions)...
snapshot 0.62%

Figure 3: Perf’s output with the example application.

2.2 Intuition and Challenges
We observe that the metadata in x86 stack frames (e.g., the
number of stack frames, return instruction pointers, saved
based pointers, etc.) remains unchanged as long as a thread
is executing a bottlenecked function. LDB takes an approach
in which a separate dedicated busy-running thread, called the
stack scanning thread, periodically scans these stack frames.
It then measures the latency of the function call by examining
whether the metadata in the stack frame metadata does not
change. If a change is detected in the metadata, it signifies
that a function has either returned or that a new function call
has been invoked.

The realization of this stack sampling idea entails the fol-
lowing challenges:

1. Finding the deepest stack frame. Stack frames form a singly
linked list data structure. Starting with the most recent (deep-
est) stack frame, one can traverse the entire call stack by
following the saved base pointers. This traversal is necessary
for LDB to ascertain whether the stack frame metadata has
been modified or not. The location of the deepest stack frame
can be retrieved from the RBP register. However, threads
other than the application thread itself cannot access this reg-
ister, making it challenging for the stack scanning thread to
determine where to start traversing the stack frames.

2. Differentiating stack frames for different function calls.
When the same function is repeatedly invoked from the same
line of code (such as within a loop), the metadata may remain
identical across samples of the stack frames. This can lead to
an overestimation of the function call latency measurement
performed by the stack scanning thread, as it may fail to detect
that there were separate invocations to the same function.
Therefore, to accurately measure the latency of individual
function calls, it is necessary to find a way to differentiate
between stack frames from distinct function calls, even if their
stack frame metadata appears to be the same.

3. Cache thrashing and false sharing. Stack frames are fre-
quently accessed by the application thread for local variables.
If the stack scanning thread accesses stack frames too often, it
may lead to performance degradation because of cache thrash-
ing and false sharing. Repeated access to stack frames by the
stack scanning thread can cause the data to be continually
invalidated from the application thread’s cache, harming the
performance of the monitored application.

4. Data race for the stack frames. While the stack scanning
thread is traversing the stack frame, the stack frame can be
concurrently modified by the application thread when a func-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1499

FUNCTION events

per-thread

event buffer
Disk

pthread MUTEXshim
layer

Stack Scanner

Application
Threads

REQ events

calls events
Event

Logger

event buffer

Figure 4: The flow of events that are recorded by LDB.

tion returns or a new function is called. This data race can
result in the stack scanning thread collecting incorrect data
(e.g., a half updated frame), which leads to inaccurate mea-
surement of function latencies. For precise latency measure-
ment, we need a way to detect and gracefully handle such
data races, ensuring the integrity of the data collected by the
stack scanning thread.

3 System Design
3.1 Overview
Our objective is to create a lightweight, portable latency pro-
filing tool that can capture fine-grained information about
the time spent in each function in a program. Thus, the per-
function cost has to be minimal. We achieve this through
two key ideas. First, we use a separate busy-polling core to
shift away the instrumentation cost that would normally be
incurred inside program threads, such as timestamping and
recording events to memory. Second, we reduce the trace data
generation rate by recording only functions with stack frames
that are resident on the call stack for longer than the polling
interval. Intuitively, very short functions do not contribute to
latency, so it is okay to not spend resources in capturing them.

Building upon these ideas, we propose a new technique,
called stack sampling, where a stack scanner thread repeatedly
scans the call stacks of application threads. By observing the
persistence of stack frames across multiple scans, the stack
scanner thread can estimate each function’s invocation latency.
These invocation latencies can then be integrated with other
event sources (e.g., acquiring a mutex, starting to process a
request, spawning a thread, etc.) that are tagged with metadata
and synchronized timestamps. This enables greater visibility,
such as capturing locking interactions across threads.
Event recording. Figure 4 shows how different types of
events are tagged and recorded by LDB. LDB has three main
components that generate events. First, a stack scanner, which
runs in a busy-polling thread, scans application threads’ call
stack and records invocation latencies each time a function
returns. Second, a shim layer intercepts common threading
operations (e.g., pthread_mutex_lock()) and records an
event before forwarding the operation to its underlying im-
plementation. Finally, application threads can generate events
directly when they are annotated by the programmer, such
as the start and end of a request. LDB records all events to
per-thread shared-memory queues to improve scalability. An
event logger, running in a separate thread, then gathers the
events and stores them to disk for later analysis. Separately,
the existing OS performance monitoring subsystem can be

Stack Scanner Thread

Per-thread scan record

Gen # latency RIP

… … …

thread ID fsbase

… …

Shared memory

event buffer

…

TLS

Generation #
Latest RBP

Application Thread

Gen # =13
canary

Gen # = 10
canary

Stack …
…

①

②
③

④
10 5 + 1 0x404aed

13 (new) 0 0x412fa3

⑤

⑥

To event buffer

12 3 0x411a02

FUNCTION event
(gen# = 12, latency = 3 us, RIP=0x411a02)

…Saved RBP

Saved RBP

High

Low

Saved RIP

Saved RIP

Figure 5: Stack Scanner Thread’s Stack Sampling.

used to record scheduling events (not shown in the figure)
like context switches and thread migrations [13]. Our design
is extensible, and we plan to add additional event sources in
the future, such as recording delays caused by interrupts.

3.2 Stack Sampling
Compiler instrumentation. Similar to many profiling
tools [18, 21, 30, 33], LDB relies on compiler instrumenta-
tion that inserts small, low-overhead changes to the function
calling conventions, which enables lightweight latency pro-
filing even without application modification. First, the com-
piler emits a frame pointer for each stack frame. Normally,
most compilers optimize away frame pointers, but they are
needed by the stack scanner to backtrace the call stack. While
functions can be identified using the return address saved on
the stack frame, this value doesn’t allow us to differentiate
between multiple invocations of the same function. This dif-
ference is critical for latency debugging, as we care about
the per-invocation latency on each function, not aggregate
measures like CPU time. To resolve this problem, LDB uses
generation numbers to differentiate different function invo-
cations. If a generation number is different in an otherwise
identical stack frame, LDB knows that it was a separate invo-
cation. The compiler appends a generation number to each
stack frame. The generation number is a monotonically in-
creasing number, derived by incrementing a word stored in
thread-local storage (TLS). Finally, the compiler records the
frame pointer of the deepest stack frame (i.e., RBP register
value), also placing it in TLS. The use of TLS avoids cache
contention between application threads, allowing LDB to
scale well across cores.
Sampling the stack. Figure 5 illustrates how the stack scan-
ner samples the call stacks of application threads. The stack
scanner runs as a separate thread in the same process as the
application, allowing it to share its address space. The stack
scanner maintains a table of the application threads that are
currently running (1). For each application thread, it fetches
the frame pointer of the deepest stack frame by reading from
its TLS region, (2) and starts scanning the call stack (3).

1500 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

It traverses all the stack frames up to the main function by
following the stack frame pointers (4). While traversing the
call stack, it collects each generation number, which is located
at a fixed offset from the current frame pointer, along with the
return address of the stack frame.
Latency calculations. When the stack scanner collects infor-
mation from the call stack, it updates its scan records, which
are a table of metadata for each stack frame (5). If the scan-
ner detects a new stack frame, it creates a new scan record
and records the current timestamp and generation number. If
an existing scan record’s stack frame is not found during the
new scan, LDB concludes that the function has returned and
generates the FUNCTION event with the generation num-
ber, latency, and return address (6). It then removes the scan
record. We now discuss the various enhancements we made
to this basic procedure to address validating stack frames,
avoiding race conditions, and minimizing probing effects.
Validating stack frames. Another challenge is in identifying
valid stack frames. For example, even a program compiled
using LDB’s compiler may still be linked against a library
that does not contain LDB instrumentation. Thus, some stack
frames may not have valid generation numbers. To detect this,
LDB reserves an eight bytes space in the stack frame, called
a canary. The canary contains a known magic value that the
stack scanner looks for before parsing the generation number.
If it is missing, latency is not reported for that function, but
any parent functions that have the canary will still be reported.
To avoid pursuing invalid stack frames, LDB stops traversing
when the canary in the current stack frame is invalid, or the
next base pointer is invalid. Thus, LDB is guaranteed to termi-
nate its stack traversal. Further, it avoids segmentation faults
by validating whether a certain memory address is between
the start of the call stack (base pointer of the very first stack
frame recorded at thread start) and the end of the call stack
(latest RBP value in the TLS) before reading it.
Preventing data races. The application thread could race
with stack scanning if it calls or returns from a function while
the stack scanner thread is traversing the call stack. To avoid
collecting invalid samples, the stack scanner uses TLS data as
a sequential lock, a form of optimistic concurrency control [6].
Because the frame pointer changes with each function call or
return, and the generation number changes with each function
call, TLS data can be used to verify that the collected genera-
tion numbers are valid. The stack scanner compares TLS data
before and after each stack scan, and if they don’t match, it
discards the collected sample and tries again.
Reducing probing effects. Another potential concern is that
reading the stack could impact an application’s performance.
For example, if an application thread frequently modifies a
variable stored on its stack frame, and it lands in the same
cache line as a stack frame, this could result in false sharing
between the stack scanner and the application.

To prevent this, LDB uses TLS data to detect function
calls and returns, and initiates stack sampling only when they

occur. This avoids all false sharing during function execution.
The stack scanner supports this by polling the most recent
generation number stored in each TLS region, and waiting for
it to increase before sampling the thread’s call stack. The stack
scanner then proceeds with the scan, retrying if there was a
race condition (which is rare). Once it gets a valid sample,
it stops scanning until the next time the generation number
increases. The generation number is placed in a dedicated
cache line, allowing it to remain in the shared cache state.
Therefore, no coherence traffic is generated while it is polled
(until it is modified). LDB also supports pausing the stack
scanner between probes (e.g., delaying for 1 µs). However, we
found that the above technique allows LDB to poll in a tight
loop with negligible probing effects and better resolution.
Security. As the stack scanner shares the address space with
the application thread, the application may be at threat if the
stack scanner is compromised. In this paper, we assume that
the LDB compiler and library are not compromised and will
undergo a thorough security review.

3.3 Tracing Cross-thread Request Handling
LDB analyzes cross-thread interaction with three types of
events: request events, synchronization events, and schedul-
ing events. Each event is timestamped and included in the
trace. The time duration between two events (e.g., waiting for
and acquiring a lock) along with other functions that happen
between the two events, help construct a rich timeline. To
minimize the extra latency required for event logging, each
event is recorded to a per-thread circular event buffer. Then,
the events in the event buffers are polled by the event logger
which persists the events to disk.
Request events. For multi-threaded applications, it is hard to
figure out which threads are responsible for high tail latency.
To enable per-request tracing with a multi-thread environ-
ment, LDB provides an API for developers to annotate when
a thread starts and finishes handling a request. Using request
annotations, LDB constructs the timeline for a specific re-
quest showing the interaction between the threads handling
the same request and revealing which threads contribute to a
long request processing time. In particular, all function invo-
cations in a thread that happen between a REQ_START and a
REQ_END are counted towards the timeline of the processing
of that request. Request tagging is optional, but the more the
application developers tag events including when a request is
temporarily placed in a queue (i.e., REQ_BLOCK), the more
accurate timeline LDB can construct.
Synchronization events. Contention for shared resources can
be a major source of latency. Visibility into synchronization
events (i.e., mutex wait, mutex acquire, and mutex release)
can play a key role in identifying performance bottlenecks in
the presence of cross-thread interactions. Mutex events reveal
not only which mutex is contended and how long it delays
a request but also which function the mutex holder thread is
executing while holding the mutex. For mutex events record-
ing, LDB interposes synchronization library functions (e.g.,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1501

pthread mutex) and generates the corresponding mutex events.
We discovered recording every mutex event can introduce
extra overhead, especially for mutex-intensive applications.
To minimize this overhead, LDB decides whether it should
record mutex events outside of the critical section after releas-
ing the mutex. If either mutex wait time or lock time exceeds
MUTEX_EVENT_THRESH (1 µs by default), it records the
mutex event in the event buffer.
Scheduling events. The operating system scheduler can con-
tribute to request latency through context switching between
applications or threads. Revealing the delay caused by context
switches can guide the developers to look at operating system
configurations, not the application, to improve latency. Un-
like other types of events, LDB collects the scheduling events
from an external source. In particular, we collect scheduling
information with perf-sched for Linux. LDB timestamps
the events with the same clock source as the external tool to
generate a unified timeline.

3.4 Analysis Script
LDB provides an analysis script to generate per-function
statistics for collected latency samples. Further, it provides
another analysis script that constructs a timeline of specific
requests with function names and line numbers if request tags
are given. It stitches together the events generated by appli-
cation threads (i.e., request and synchronization events), the
stack scanner, and the OS scheduler (i.e., scheduling events).

Constructing the timeline for a specific request, identified
by its request ID, requires stitching together all events that oc-
curred during the processing of that request. Such a timeline
can have multiple components, requiring the script to make
multiple passes over the data generated by the profiler. First,
the script looks through the event log until it observes the
REQ_START event with the request ID, indicating the arrival
of that request. The script tracks all FUNCTION events gen-
erated by the thread processing that request thereafter. Upon
reaching a MUTEX_WAIT event, if the thread experiences
non-negligible wait time (e.g., longer than 1 µs between the
MUTEX_WAIT and MUTEX_LOCK events), the script scans
the event log backward to identify the mutex holder thread by
searching for a MUTEX_LOCK event with the same mutex.
Once the thread holding the mutex is identified, the script logs
all FUNCTION events produced by that thread until it releases
the mutex. Then, the script continues logging FUNCTION
events by the original thread processing the request until it
finds a REQ_BLOCK, REQ_END, or REQ_END_ALL event.
The output of the script is a log of all events impacting the
processing time of the request, each event identified by (event
info, thread ID, start time, end time) tuple. Such information
can be easily visualized as shown in Figure 6.

4 Implementation
We implemented a prototype of LDB for the x86 architecture
and the Linux environment. Our implementation has three

components: 1) an extension to LLVM [32], called LLVM-
LDB, to instrument stack frames, 2) a stack scanner library
to poll the generation numbers and calculate latency values,
and 3) an API and bindings to pthread library to capture
request and synchronization events automatically. Our imple-
mentation integrates with the Linux performance monitoring
subsystem (perf-sched) to track context switches [13]. We
also developed scripts to parse and analyze the data recorded
by our tool. The core LDB tool is ≈900 lines of C code,
the scripts are ≈1,200 lines of Python code, and the changes
made to LLVM are ≈250 lines of C++ code. In this section,
we describe more implementation-specific details for LDB.

4.1 LLVM-LDB
Reserving TLS. We reserve two 8 B TLS variables (gener-
ation number and the latest RBP register value) at a fixed
offset from the TLS base address (FS base) with LLVM
ModulePass. We make sure that LDB TLS variables are in-
serted into the TBSS section after all the in-application TLS
variables are inserted so that LDB TLS variables are located
at a fixed offset from the FS base.
Stack frame instrumentation. We modified the sequence of
the function prologue and epilogue in the LLVM x86 backend.
In the function prologue, we reserve the 16 B space in a stack
frame by decrementing the RSP before the RBP is pushed
into the stack frame. After the RBP is updated to the current
RSP, we fill up the reserved stack space and update the TLS
variables. First, we increment the generation number in TLS
and copy it into the reserved space. Then, we set up the canary.
Finally, now that the stack frame is ready to be scanned, we
update the latest RBP in TLS to the current RBP register
value so that the stack scanner can start scanning from a
newly created stack frame.

In the function epilogue, we revert the instrumented oper-
ations in the prologue. First, before tearing down the stack
frame in the function epilogue, the compiler first updates the
latest RBP in TLS to avoid the current stack frame being
scanned while it is being destroyed by copying the saved
RBP in the current stack frame—which holds the RBP of
the parent stack frame—into the TLS region. After the saved
RBP is popped from the stack frame with a standard epilogue
sequence, RSP is incremented by 16 to destroy the reserved
space for LDB. In total, we add 9 instrumentation instructions
(7 in the prologue and 2 in the epilogue) which add less than
1 ns to each function call.
Thread instrumentation. We instrument the main function
to initialize LDB using LLVM ModulePass. The initializa-
tion allocates the shared memory and per-thread event buffer
before registering the main thread into the shared memory
with its thread ID, FS base address, and event buffer address.
Then, LDB launches the stack scanner thread and the logger
thread. To initialize a newly launched thread and clean up
the state before it exits, we interpose on pthread_create().
Before a newly created thread executes its original start rou-
tine, LDB allocates the per-thread event buffer and registers

1502 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the thread into the shared memory. After the original thread
start routine returns, it frees the event buffer and deregisters
from the shared memory so that the exited thread is no longer
scanned by the stack scanner.

4.2 The LDB API and Parameters
Request tagging API. LDB provides a way to annotate the
threads with the following C APIs:
void ldb_req_start(uint64_t req_id, void *queue=NULL);
void ldb_req_block(uint64_t req_id, void *queue);
void ldb_req_end(uint64_t req_id);
void ldb_req_end_all();

When a thread starts to handle a request, the thread can be
annotated with the request ID using ldb_req_start(). Op-
tionally, if a request is dequeued from a software queue, the
queue address can be specified. Multiple threads can be an-
notated with the same request ID with parallel processing,
and a single thread can be annotated with multiple request
IDs for batch processing. When a thread needs to enqueue a
partially executed request into the queue the thread can hand
off the responsibility of the request with ldb_req_block().
It indicates that the current thread is not responsible for the
request anymore, but the current thread or another thread will
resume processing the request later. If a thread finishes pro-
cessing a request, it can clear the annotated request ID with
ldb_req_end(). Alternatively, when a thread needs to clear
all the annotated request IDs to the current thread, it can use
ldb_req_end_all(). We decided to allow the programmer
to specify the request ID, so that it can be correlated at the
RPC level in coordination with other tools.

5 LDB Use Cases
To demonstrate the broad utility of LDB, we illustrates four
use scenarios: visualizing a timeline of a specific request, de-
bugging tail latency, debugging throughput, and studying the
latency of specific functions. We evaluate these use scenarios
with two latency-sensitive applications and one throughput-
oriented application:

1. Memcached is a multithreaded, latency-sensitive, in-
memory key-value store. We debug two different work-
loads: SET and GET. The SET workload exposes mutex
and memory-intensive code paths. Each SET request can
access a global lock, slabs_lock, multiple times to allo-
cate and free the memory and a hash table bucket lock,
items_lock, to update the hash table. Additionally, when
a Memcached memory is saturated, it may need to ac-
quire lru_lock to evict stale items. On the other hand, a
GET request only needs to acquire the items_lock before
fetching a value from the hash table.
We allocated 10GB of memory for Memcached and used
100 million keys, evenly distributing them across requests.
The value lengths are uniformly distributed between 4B
and 1024B. We use the default hash power, which auto-
matically grows based on the number of key-value pairs
inserted into the hash table.

0 285 us 571 us 856 us

(evcb_callback)(evcb_fd, evcb_res, evcb_arg) (event.c:1659:9)
c->try_read_command(c) (memcached.c:3135:17)
process_bin_update(c, extbuf) (proto_bin.c:992:17)
item_alloc(key, nkey, req->message.body.flags, (proto_bin.c:1121:10)
do_item_alloc_pull(ntotal, id) (items.c:306:14)

slabs_alloc(ntotal, id, 0) (items.c:189:14)

pthread_mutex_lock(&slabs_lock) (slabs.c:660:5)

t
i
d
:
3
0
7
2
3
7

memset(ptr, 0, (size_t)len) (slabs.c:396:5)

t
i
d
:
3
0
7
2
3
9

(
m
u
t
e
x

h
o
l
d
e
r
)

do_slabs_newslab(id) (slabs.c:423:9)
memset(ptr, 0, (size_t)len) (slabs.c:396:5)

0 285 us 571 us 856 us

do_slabs_newslab(id) (slabs.c:423:9)
...

Figure 6: Timeline of the request of the longest request process-
ing time in Memcached SET workload constructed by LDB.

2. Lucene is a multithreaded, latency-sensitive in-memory
search engine library [3]. Lucene’s processing time is
much longer than Memcached, helping us demonstrate
the value of LDB under a variety of conditions. We used
a dataset of 403,619 COVID-related tweets. Each client
generates single-term search queries based on the word
distribution in the dataset. For each search request, Lucene
first retrieves the list of document IDs from the Segments
data structure that maps a word to a list of document IDs.
Once the list of all relevant document IDs is retrieved, it
fetches the pre-computed score (relevance between the
document and the search query) for each document and
returns the top 100 documents with high scores. All shared
data structures are protected by a mutex, so multiple mu-
texes are acquired to serve each request.

3. Qperf [5] is a performance measurement tool for Quicly,
Fastly’s implementation of the QUIC protocol [31]. Unlike
the other two applications, it measures the highest possi-
ble throughput between a server and a client. To achieve
the highest throughput, we modified the original Qperf
implementation to busy-poll for incoming packets. This
application helps showcase the value of LDB when mea-
suring the average per-packet latency for each function,
by identifying functions that harm the average throughput
of the application. We use Reno as the congestion control
algorithm and enable generic segment offload (GSO).

To use LDB on the applications listed above, we compiled
the applications with LLVM-LDB. In addition, we inserted tag-
ging annotations at each code location where a thread starts
to handle a new request (Memcached and Lucene) or a new
packet (Qperf). These points were easy to identify, and only
required 2–4 LOC changes.

5.1 Reconstructing the Timeline of the Request
When the application tags each request with a unique request
ID, LDB can construct a timeline of any tagged request includ-
ing interactions with other threads, which has been expensive
with existing tools. Figure 6 shows an example timeline of
a request in the Memcached SET workload. We picked the
request with the longest request processing time we observed
during the initial slab allocation phase because it provides a
simple yet strong example of the value of LDB.

The detailed request timeline of LDB immediately shows
what slowed down the processing of the request, including

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1503

Function p50 p99 p9999 ▽
slabs_alloc()
ë pthread_mutex_lock(&slabs_lock)

< 1 13.57 22.00

do_item_unlink_nolock()
ë STATS_LOCK()

< 1 6.93 20.51

lru_pull_tail()
ë pthread_mutex_lock(&lru_locks[])

2.14 17.53 19.62

do_item_link()
ë STATS_LOCK()

< 1 14.64 19.50

item_unlink_q()
ë pthread_mutex_lock(&lru_locks[])

2.03 10.56 18.88

Figure 7: Latency statistics of top 5 functions (and its caller)
ranked by 99.99th percentile latency in Memcached SET work-
load. All numbers are in µs.

interactions with another request. When the request pro-
cessing thread starts to handle the request, it waits for the
slabs_lock mutex. LDB does not only tell the waiting time
for the slabs_lock but also helps identify the thread holding
the mutex and the function it’s executing. In this example, the
thread holding the mutex executes memset() while holding
slabs_lock. After the thread processing the request acquires
the lock, the dominant request processing time is spent execut-
ing memset() that took 645.7 µs. Such fine-grained tracing
helps identify the main culprit which is performing memset()
while holding the slabs_lock. This appears naturally in an
LDB trace but is nearly impossible to identify using any ex-
isting tool without considerable manual work.

5.2 Tail Latency Debugging
With Memcached and Lucene, we demonstrate that LDB can
list functions that contribute to high tail latency, giving an
insight as to how to improve their tail latencies. Note that
LDB can generate latency statistics per line of code (Figure 7-
9, 11) without request annotation.
For Memcached SET workload, Figure 7 lists the top five
tail-contributing functions of Memcached ranked by 99.99th
percentile latency. All five functions perform locking. Three
out of the five functions contend for global locks related to
memory management (slabs_lock) and statistics collection
(stats_lock). To fix the tail latency from the slabs_lock,
one could consider reducing contention by using a per-thread
cache [19] and by zeroing memory without holding the lock.
The stats_lock, on the other hand, could be fixed by either
not using a lock, which would reduce accuracy, or by main-
taining per-thread stats. Finally, the other two functions use
the per-slab class lock, which is required for updating the
LRU timestamp and evicting stale key-value pairs. To reduce
the latency, one could fine-tune the chunk size growth factor
(-f) based on the value length distribution.
For Memcached GET workload, Figure 8 shows that two
of the top five functions are from per-worker thread locks
(THR_STATS_LOCK). In Memcached, each network connec-
tion is assigned to one of the worker threads, but the re-
quests can be processed by any worker thread. While the
worker thread processes the request, it needs to acquire the
lock of the worker thread that owns the network connec-
tion to update the statistics counters. When there is a small

Function p50 p99 p9999 ▽
resp_finish()
ë THR_STATS_LOCK()

< 1 9.04 18.55

transmit()
ë THR_STATS_LOCK()

< 1 9.66 18.26

do_item_get()
ë assoc_find()

< 1 10.10 18.25

item_lock()
ë mutex_lock(&item_locks[])

< 1 10.12 17.19

resp_start()
ë memset()

1.00 10.28 17.00

Figure 8: Latency statistics of top 5 functions (and its caller)
ranked by 99.99th percentile latency in Memcached GET work-
load. All numbers are in µs.

Function p50 p99 p9999 ▽
IndexSearcher::search()
ë Scorer::score()

72.18 2,005 6,232

Norm::bytes()
ë IndexInput::readBytes()

657.7 1,690 4,899

boost::make_shared()
ë new()

30.59 61.60 78.61

SegmentReader::docFreq()
ë TermInfosReader::get()

< 1 57.05 61.59

TopDocsCollector::topDocs()
ë populateResults()

< 1 20.27 25.09

Figure 9: Latency statistics of top 5 functions (and its caller)
ranked by 99.99th percentile latency in Lucene workload. All
numbers are in µs.

number of connections compared to the number of worker
threads, or when the load is skewed to a subset of network
connections, the per-worker thread statistics lock can be con-
gested. The solutions mentioned above for stats_lock apply
here too. Another two of the top five functions are for the
hash table data structure (assoc_find() and per-bucket lock,
item_locks). When a hash collision happens in the hash
table, assoc_find() iterates over the bucket to find the item
with the same key while holding the item_lock. One should
consider initializing the Memcached with higher hashpower.

The last one is for memory operation to clear the allocated
memory for a response. Considering that a response buffer
will be overwritten with response data, one could consider
removing the memset() operation, but care must be taken to
avoid sending uninitialized data.
For Lucene workload, Figure 9 reports that the top two func-
tions dominate the tail request processing time. Once Lucene
receives a search query, it first fetches a list of document
IDs by binary searching Segments after reading Segments
in IndexInput::readBytes(). Once it has the list of doc-
ument IDs, it looks up the score (the relevance between the
query and the document) for each document and enqueues
the document ID with its score into the max heap tree in
Scorer::score(). In this case, a tail latency problem arises
because the most popular term in the dataset appears in 88,558
documents. Thus, Scorer::score() needs to iterate 88,558
times to look up the score and enqueue it into the max heap
tree, which can take 6.2 ms. To reduce this latency, one could
consider utilizing an increased level of parallelism [27]. That
is, if the length of fetched document ID is too long, the search

1504 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Memcached SET (b) Memcached GET (c) Lucene
Figure 10: Latency reduction in request processing and end-to-end after applying patches that fix latency problems identified by LDB.

Function Avg. Latency ▽
send_pending()
ë send_dgrams()

29.63 µs

allocate_ack_eliciting_frame()
ë do_allocate_frame()

2.79 µs

encrypt_packet()
ë ptls_aead__do_encrypt()

2.41 µs

Figure 11: Top 3 functions (and its caller) ranked by the highest
average latency in Qperf workload. The average processing time
for 32 packets is 38.11 µs.

application could use multiple threads where each thread
fetches the score of a subset of document IDs.

The other three functions are less significant. The memory
allocation for reading the Segments with new() takes up to
79 µs, fetching the score of a document with get() takes up
to 62 µs, and popping the top 100 documents from the max
heap tree in populateResults() takes up to 25 µs.
Actionable Insights. To demonstrate that LDB provides ac-
tionable insights that developers can use to improve the la-
tency behavior of real applications, we patch Memcached and
Lucene using the output of LDB. We show both the request
processing time, revealing the improvement to just the part
of the application that LDB can profile, and the end-to-end
processing time, which includes other sources of tail latency
like the kernel network stack and the network fabric.

We patched Memcached to (1) preallocate the slabs to avoid
memory allocation while serving the request, (2) fine-tune
the object size of each slab to avoid contention in slab classes
by specifying minimum object size and adjusting chunk size
growth factor, and (3) convert global and per-connection stats
into per-thread stats. Figure 10 (a) and (b) show the improve-
ment in the request processing time and end-to-end latency
after applying the patch. Because multiple responses can be
batched before written to the wire, the improvement of end-
to-end latencies is larger than the request processing times at
some tail percentiles. The patch reduces the 99th percentile re-
quest processing time by 15% and 99th percentile end-to-end
latency by 8% for SET workload; 99th percentile request pro-
cessing time by 16% and 99th percentile end-to-end latency
by 3% for GET workload.

For Lucene, we patched it to add inter-request parallelism,
using four concurrent threads to serve each request. Figure 10
(c) shows the improvement in request processing time and
end-to-end latency with the patch applied. The increased par-
allelism hurts performance for short requests due to the strag-
gler effect, synchronization, and scheduling overhead, but

Function CPU Time ▽
__libc_recvfrom 7.61%
send_pending 4.11%
quicly_send 2.56%

... (39 more functions) ...
do_allocate_frame 0.28%

... (10 more functions) ...
ptls_aead__do_encrypt 0.20%

... (152 more functions) ...
send_dgrams 0.04%

Figure 12: Top 5 functions ranked by the highest CPU time in
Qperf workload reported by Linux perf.

achieves our overall goal of reducing request latency in the
tail. This problem has been studied extensively in prior work,
which suggests a more sophisticated approach would be to
dynamically adjust parallelism based on the number of instan-
taneous requests in the system and the execution time [27].
The patch reduces 99th percentile request processing time by
34% and 99th percentile end-to-end latency by 13%.

5.3 Debugging Throughput of Qperf
We use LDB to debug the average performance of Qperf,
demonstrating its value beyond tail-latency debugging. In par-
ticular, we profile the egress path on a Qperf server, focusing
on the average per-packet latency, allowing us to determine
an upper bound on achievable throughput. We find that each
batch of 32 1500-byte packets takes 38.11 µs on average,
putting a cap on throughput at around 9.8 Gbps. Note that
actual throughput has to be lower because not all batches
nor packets are maximum sized. Further, the server performs
other functions beyond continuously transmitting data packets
(e.g., process and transmit acknowledgments).

We use LDB to identify which functions take the most
time on average for transmission handling, revealing through-
put bottlenecks. Figure 11 shows the top three functions
with the highest average latency. The biggest bottleneck, re-
sponsible for 77.7% of the processing time of a batch, is
send_dgrams() which transmits packets through the ker-
nel’s sendmsg(), showing that the biggest performance bot-
tleneck lies in the kernel. Other bottlenecks include mem-
ory allocation in (do_allocate_frame()) and encryption
(encrypt_packet()). The remaining processing time for a
batch of packets can be attributed to a collection of lower-
latency functions. Thus, to improve the throughput, one
should optimize the network stack (e.g., by using kernel-
bypass), memory operations, and cryptographic operations.

To highlight the value of the profile produced by LDB,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1505

Figure 13: Average latency measurement granularity and the
breakdown of stack scanning iterations with different call stack
refresh periods in the synthetic application.

we compare its output to the profile produced by Linux’s
perf. Figure 12 reports the list of function names ranked by
highest CPU time by perf. It shows that perf cannot pin-
point any of send_dgrams(), ptls_adad__do_encrypt(),
or do_allocate functions that are responsible for 91% of the
packet processing time, reporting that they consume 0.04%,
0.28%, and 0.2% of the CPU time, respectively. In particular,
perf’s focus on average CPU time provides very coarse grain
results, focusing on top-level functions like quicly_send
which encapsulate all egress path functionality. Furthermore,
it doesn’t differentiate between functions on the critical path
of egress traffic, and those happening periodically off the crit-
ical path, and it can’t tie kernel delays to functions. Thus, we
conclude that LDB can provide superior insights even when
average performance is the focus of the debugging process.

6 Performance Evaluation
Our evaluations answer the following key questions:
1. What is LDB’s latency measurement granularity?
2. Is LDB more portable than hardware-assisted latency de-

bugging systems?
3. Can LDB limit the overhead it places on applications?
4. Can the trace data from LDB be decoded quickly?
5. How much does each component contribute to overhead?
Testbed. We use two machines with eighteen-core Intel Xeon
Gold 6534 3.0GHz CPU (Ice Lake), 64GB RAM, and Mel-
lanox ConnectX-6 200GbE NIC. For the portability experi-
ment(§ 6.2), we compare its performance with Intel Broadwell
machines (Intel Xeon E5 2640 v4 2.4GHz CPU, 64GB RAM,
and Mellanox ConnectX-4 25GbE NIC) and AMD Zen3 Mi-
lan machines (AMD 7543 2.8GHz CPU, 256GB RAM, and
Mellanox ConnectX-5 25GbE NIC). The median network
RTT between two machines measured with ICMP packets is
30 µs. We use one machine as a server and the other as a client.
Memcached and Lucene clients generate the requests follow-
ing an open-loop Poisson arrival process, and Qperf clients
generate a stream of requests for a data packet to measure the
network bandwidth with TCP Reno as transport.
Applications. We use a synthetic application described in §6.1
for microbenchmark. To evaluate the performance of LDB,
we reuse the workloads used in §5; Memcached SET/GET
and Lucene are latency-sensitive workloads, and Qperf is a
throughput-oriented workload.

0
1
2
3
4
5
6

Intel Xeon Gold 6534
(Ice Lake)

Intel Xeon E5-2640
(Broadwell)

AMD 7543
(Zen3)

T
hr

ou
gh

pu
t (

G
bp

s)

CPU Model

Ref. Intel PT LDB

-4% -5%
-7%

-59%
-6%

Figure 14: Average throughput of reference (without any pro-
filing), Intel PT, and LDB with Qperf workload with different
CPU architectures.

Baseline. We compare LDB to Intel Processor Trace (Intel
PT) which backs state-of-the-art latency profilers [2, 4, 26],
Coz that profiles the causal relationship between the func-
tion speedup and program speedup, and Xray that profiles
the application’s latency behavior with static timestamping.
For Intel PT, we use perf-intel-pt provided by Linux to
record and decode the Intel PT packets. For a fair comparison,
we use a coarse-grained timing packet with tsc and decode
only function call and return events with command line ar-
gument --call-ret-trace. We disable return compression
(noretcomp) for more reliable decoding.
Evaluation Metrics. We report end-to-end latency (for
latency-sensitive applications), average throughput (for best-
effort application), raw trace size, and decoding time. End-
to-end latencies and the average throughput are measured at
the clients, and raw trace size and decoding time are mea-
sured at the server after the experiment finishes. Raw trace
size measures the output size of each system, and decoding
time measures the time required to parse the raw output to
function-level latencies and to calculate the statistics of the
function latencies. Because Intel PT takes too much time to
decode, we measure the latency for decoding 1 ms long Intel
PT trace. For LDB, we run the experiments for 4 seconds for
Memcached and Qperf, and 1 minute for Lucene.

6.1 Microbenchmark
We delve into a detailed analysis of LDB’s latency measure-
ment granularity using a synthetic application which repeat-
edly destroys and reconstructs 20 stack frames through recur-
sion, with a predefined refresh period. We experiment with
varying the call stack refresh period from 100 µs to 1 µs and
measure the average latency measurement granularity, de-
fined as the average time elapsed between two successive
valid stack scans. We further categorize the stack scanning
iterations into three groups: invalid scans resulting from se-
quential lock fails with data races, stack traversals, and fast
path iterations where no modification is detected in either the
most recent RBP or the generation number in the TLS region.

Figure 13 presents the results. As the call stack refresh pe-
riod decreases, the application thread interacts with the stack
frames more frequently to destroy existing stack frames with
function returns and to build new ones with new function
calls. This increased frequency leads to cache thrashing and

1506 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0
0.2
0.4
0.6
0.8

1

0 50 100 150 200

C
D

F

End-to-end Latency (us)

Ref. Intel PT Coz Xray LDB

(a) Memcached SET

0
0.2
0.4
0.6
0.8

1

0 100 200 300

C
D

F

End-to-end Latency (us)

(b) Memcached GET

0
0.2
0.4
0.6
0.8

1

0 1 2 3

C
D

F

End-to-end Latency (ms)

(c) Lucene
Figure 15: End-to-end latency distribution of reference (without any profiling), Intel PT, and LDB with Memcached SET, GET, and
Lucene workload at 20% load.

Workload Trace Size / s
(trace errors / s)

Decoding
Time / s

Memcached
SET

Intel PT
696.84 MB
(2k trace errors) 48.4 min

LDB 149.38 MB (-79%) 1.7 s

Memcached
GET

Intel PT
796.72 MB
(5k trace errors) 1.8 hr

LDB 237.46 MB (-70%) 2.7 s

Lucene Intel PT
1,066.29 MB
(6k trace errors) 3.1 min

LDB 2.12 MB (-99%) 0.7 s

Qperf Intel PT
944.03 MB
(559k trace errors) 3.7 hr

LDB 25.4 MB (-97%) 0.8 s

Figure 16: Trace size and decoding time of Intel PT and LDB
for four workloads. Trace size and decoding time are normalized
by execution time.

data races between the application thread and the stack scan-
ning thread more often, increasing the average granularity in
latency measurement with more invalid stack scans. In addi-
tion, with more frequent modifications in the stack frames,
the stack scanner requires more iterations of full stack frame
traversals, which further increases the average latency mea-
surement granularity. In an experiment with a function depth
of 20 and 1 µs call stack refresh period, the latency can be
measured with the granularity of 119 ns with 6% invalid stack
scans, 21% of full scans, and 73% of fast path scans.

When dealing with multiple application threads, the av-
erage granularity increases in proportion to the number of
application threads being profiled. For finer granularity in
latency measurement, multiple stack scanner threads can be
used, each profiling a subset of the application threads.

6.2 Portability of LDB
LDB is not designed for a specific platform. In principle, its
design can be used on most architectures such as x86, ARM,
and RISC-V. However, Intel-PT-based tools are tied to Intel’s
specific architectures and cannot be ported to other platforms.
Our LDB prototype is implemented for x86 architectures and
works well on any x86 architectures while Intel PT only works
with some Intel processors (later than Broadwell).

To illustrate the portability of LDB, we run the Qperf work-
load with different x86 CPU models and compare it against
the reference (i.e., no latency profiling) and Intel PT. Figure 14
shows the average throughput measured by Qperf on three
different CPU architectures. It shows that Intel PT’s perfor-
mance highly depends on the CPU architectures. Even though

Intel PT has only a 4% of throughput drop on the recent Ice
Lake Intel CPU, it experiences 59% of the throughput drop
on an Intel Broadwell CPU, and it cannot be used for AMD
processors. On the other hand, LDB has a more consistent
overhead of up to 7% thanks to its software-based approach.

6.3 Overheads of LDB

Application performance degradation. To get more confi-
dence in LDB’s low overhead, we measure the application per-
formance impact on three latency-sensitive workloads (Mem-
cached SET/GET and Lucene) and compare it to other profil-
ing mechanisms. For the benefit of Intel PT, benchmarks ran
on our testbed with Intel Xeon Gold 6534.

Figure 15 shows the end-to-end latency distribution mea-
sured at the client when the load is 20% of the system’s capac-
ity for Memcached and Lucene. We compare the performance
of the applications when no profiling is done (i.e., Ref.) to
when LDB, Intel PT, Coz, or XRay is used. For all workloads,
Coz has the largest overhead at tail because it intentionally de-
lays all the other threads than the thread being sampled, which
makes it impractical to use over live traffic. The overhead of
XRay is proportional to the number of function invocations as
it statically instruments every function entry / exit to measure
the latency. Due to its high overhead, the load exceeds the ca-
pacity, leading to extremely high latency with high queueing
delay. Intel PT and LDB have comparable overhead across the
workloads. LDB increases median(99th percentile) latency by
16%(1%), 22%(10%), and 18%(43%) for Memcached SET,
GET, and Lucene workloads while Intel PT increases 9%(2%),
45%(23%), and 27%(64%) in the same setting.
Trace size and decoding time. Figure 16 reports the trace
size and decoding time of Intel PT and LDB for the three
applications. Intel PT requires high memory / PCIe bandwidth
and disk space, especially for applications with more branches
and jump instructions. For example, in Qperf, Intel PT outputs
944 MB/s of trace data. In addition, because of the limited
memory bandwidth, it drops the event records and results in
up to 559 thousand trace errors per second, which makes its
visibility limited. To make matters worse, Intel PT takes up
to 3.7 hours to decode 1 second of trace data, converting raw
branch and jump information into function-level latencies. In
contrast, the size of LDB trace is up to 99% smaller than Intel
PT, typically requiring less than 250 MB/s, and it only takes
a few seconds to decode 1 second of trace data.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1507

0
0.2
0.4
0.6
0.8

1

0 1 2 3

C
D

F

End-to-end Latency (ms)

Ref. inst inst+scan
inst+scan+shim full

Figure 17: Performance Breakdown of LDB with Lucene work-
load at 20% load.

6.4 Breakdown of LDB’s overhead
We analyzed how much each component contributes to the
overhead for Lucene workload with the highest latency dis-
tortion under LDB whose median(99th percentile) latency is
increased by 35%(69%). We gradually activated four compo-
nents of LDB: application instrumentation (inst), the stack
scanning/logging thread (scan), the shim layer (shim), and
Linux scheduling event recording.

Figure 17 shows that instrumentation, the stack scanning,
the shim layer, and Linux scheduling event recording are re-
sponsible for 11% (23%), 7% (17%), 3% (14%), and 1% (0%)
of the median (99th percentile) latency increase, respectively.

7 Related Work
Sampling-based tools. Existing statistical sampling-based
tools, such as perf [13] and Coz [21], are unable to analyze
tail latency because they sample too slowly. Coz is designed
to identify performance bottlenecks by estimating an applica-
tion’s virtual speedups through dynamic experiments that mea-
sure thread interactions. By artificially delaying all but one
thread, Coz simulates the hypothetical performance improve-
ment of specific functions. Although Coz addresses some of
the limitations of perf, it is unsuitable for tail latency debug-
ging because its reliance on statistical sampling causes it to
miss tail behaviors. Moreover, when it identifies problematic
code lines, it doesn’t reveal the underlying reasons for the
bottleneck, like LDB can through its request timelines.
Trace-based latency profiling tools. Trace-based tools, like
XRay [18] and Intel PT, can capture the precise execution
times of every function call but come with their own chal-
lenges. XRay, through compile-time instrumentation, records
the execution times of individual functions. However, this
results in high instrumentation overhead, which limits its use
in microsecond-scale RPC applications. Intel PT, a hardware-
assisted approach, captures control flow information at every
branch. While systems like NSight [26] and MagicTrace [4]
leverage Intel PT to debug latency problems, Intel PT’s mas-
sive data rates, up to 1GB/s, necessitate substantial storage
and lengthy decoding times to convert control flow informa-
tion into latency information, which makes it impractical for
real-time debugging. Additionally, Intel PT’s overhead varies
across generations of Intel CPUs, as shown in §6.2.
Continous profiling. SHIM rapidly collects hardware perfor-
mance counters and software tags through busy polling [36]. It

shares LDB’s basic strategy of sampling with a busy-spinning
core, but it lacks the ability to measure invocation latency
without additional mechanisms, such as our proposed stack
sampling techniques. Moreover, one busy-spinning SHIM
profiler thread is needed for each hyperthread pair, resulting
in high overheads due to competition over shared functional
units. LDB, by contrast, can avoid this overhead through a
different design that enables one monitoring thread to profile
multiple threads running across multiple cores.
Limiting tracing to specific functions. As seen with the case
of Xray, timestamp instrumentation at each function’s en-
try and exit entails significant overhead. Thus, some tools
limit tracing to a few specific functions at a time. There
are various techniques and tools to enable dynamically en-
abling/disabling timestamp instrumentation: notably, dynamic
instruction patching [18, 20, 25], dynamic instrumentation via
eBPF [1, 10, 24], and instrumentation via JIT compiler [33].
However, because the scope of functions being profiled is lim-
ited, they require multiple iterations with the developer’s in-
tervention for latency debugging, and they sacrifice the ability
to capture complete timelines. There are efforts to streamline
these iterations [7, 29, 30]. AMD offers a suite of profiling
tools (e.g., Omnitrace [16] and uProf [15]). Both solutions
rely on sampling. Further, Omnitrace offers Coz-like function-
ality as well as specific function instrumentation. Omnitrace’s
instrumentation adds 1024 instructions per function compared
to LDB’s 9 instructions per function.
Distributed latency tracing. Envoy [11], Zipkin [14],
Jaeger [12], AWS X-Ray [9], and Apache SkyWalking [8]
provide tools to trace a request in a distributed computing en-
vironment at an RPC or microservice granularity. These tools
may find a service causing high end-to-end latency, but they
don’t have visibility inside the service. Distributed tracing sys-
tems and LDB are complimentary. Problematic services can
be found with distributed tracing, while problematic functions
in a specific service can be found with LDB.
Mutex bindings. Dynamic data race detectors, like
Eraser [34], often use similar mechanisms to interpose on
locking functions, but their goal is to instead verify if the
application follows a consistent locking protocol.

8 Conclusion
In this paper, we presented LDB, an efficient latency pro-
filing tool with low overhead, high visibility, fast decoding,
and portability. It utilizes a key technique, stack sampling,
where each function’s invocation latency is measured by sam-
pling a unique generation number assigned in the stack frame.
With optional request tagging by the developer, LDB can con-
struct the detailed timeline of a request, including cross-thread
interactions caused by synchronization, the time spent in func-
tions, and the contribution of the OS scheduler. Our evaluation
showed that LDB could profile the latency behavior of three
applications and reveal their main performance bottlenecks
effectively on multiple platforms with low overhead.

1508 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgments
We thank our shepherd Yongle Zhang, as well as to the anony-
mous reviewers for their invaluable feedback. We also thank
Kostis Kaffes, John Ousterhout, and David Culler for their
constructive feedback; and Cloudlab [23] for providing us
with machines of different architectures for portability ex-
periments. This work was funded in part by NSF grants
CNS-2104398, CNS-2212098, and CNS-2212099; DARPA
FastNICs (HR0011-20-C-0089); VMware; and a Google Re-
search Award.

References
[1] eBPF. https://ebpf.io/.

[2] Fix performance bottlenecks with intel vtune profiler.
https://www.intel.com/content/www/us/en/
developer/tools/oneapi/vtune-profiler.html.

[3] Lucene++: c++ port of lucene library. https://
github.com/luceneplusplus/LucenePlusPlus.

[4] magic-trace: Diagnosing tricky performance issues
easily with intel processor trace. https://blog.
janestreet.com/magic-trace/.

[5] qperf: performance measurement tool for QUIC. https:
//github.com/rbruenig/qperf/.

[6] Sequence counters and sequential locks. https://
docs.kernel.org/locking/seqlock.html.

[7] wachy: A new approach to performance debugging.
https://rubrikinc.github.io/wachy/.

[8] Apache SkyWalking, 2022. https://skywalking.
apache.org/.

[9] AWS X-Ray, 2022. https://aws.amazon.com/
xray/.

[10] bpftrace: High-level tracing language for Linux systems,
2022. https://bpftrace.org/.

[11] Envoy Proxy, 2022. https://www.envoyproxy.io/.

[12] Jaeger: open source, end-to-end distributed tracing,
2022. https://www.jaegertracing.io/.

[13] perf: Linux profiling with performance counters,
2022. https://perf.wiki.kernel.org/index.
php/Main_Page.

[14] Zipkin, 2022. https://zipkin.io/.

[15] AMD uProf, 2023. https://www.amd.com/en/
developer/uprof.html.

[16] Omnitrace: Application profiling, tracing, and anal-
ysis, 2023. https://github.com/AMDResearch/
omnitrace/.

[17] L. A. Barroso, J. Dean, and U. Hölzle. Web search for
a planet: The google cluster architecture. IEEE Micro,
23(2):22–28, 2003.

[18] D. M. Berris, A. Veitch, N. Heintze, E. Anderson, and
N. Wang. Xray: A function call tracing system. Techni-
cal report, 2016.

[19] J. Bonwick and J. Adams. Magazines and vmem:
Extending the slab allocator to many cpus and arbi-
trary resources. In Proceedings of the General Track:
2001 USENIX Annual Technical Conference, June 25-
30, 2001, Boston, Massachusetts, USA, pages 15–33.
USENIX, 2001.

[20] B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dy-
namic instrumentation of production systems. In ATC,
2004.

[21] C. Curtsinger and E. D. Berger. Coz: Finding code that
counts with causal profiling. In SOSP, 2015.

[22] J. Dean and L. A. Barroso. The tail at scale. Communi-
cations of the ACM, 2013.

[23] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig,
E. Eide, L. Stoller, M. Hibler, D. Johnson, K. Webb, et al.
The design and operation of cloudlab. In ATC, 2019.

[24] B. Gregg. Linux bpf superpowers. http:
//www.brendangregg.com/blog/2016-03-05/
linux-bpf-superpowers.html, 2016.

[25] B. Gregg and J. Mauro. DTrace: Dynamic Tracing in
Oracle Solaris, Mac OS X and FreeBSD. Prentice Hall
Professional, 2011.

[26] R. Haecki, R. N. Mysore, L. Suresh, G. Zellweger,
B. Gan, T. Merrifield, S. Banerjee, and T. Roscoe. How
to diagnose nanosecond network latencies in rich end-
host stacks. In NSDI, 2022.

[27] M. E. Haque, Y. H. Eom, Y. He, S. Elnikety, R. Bian-
chini, and K. S. McKinley. Few-to-many: Incremental
parallelism for reducing tail latency in interactive ser-
vices. In ASPLOS, 2015.

[28] K. M. Hazelwood, S. Bird, D. M. Brooks, S. Chin-
tala, U. Diril, D. Dzhulgakov, M. Fawzy, B. Jia,
Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang. Applied ma-
chine learning at facebook: A datacenter infrastructure
perspective. In IEEE International Symposium on High
Performance Computer Architecture, HPCA 2018, Vi-
enna, Austria, February 24-28, 2018, pages 620–629.
IEEE Computer Society, 2018.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1509

https://ebpf.io/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://github.com/luceneplusplus/LucenePlusPlus
https://github.com/luceneplusplus/LucenePlusPlus
https://blog.janestreet.com/magic-trace/
https://blog.janestreet.com/magic-trace/
https://github.com/rbruenig/qperf/
https://github.com/rbruenig/qperf/
https://docs.kernel.org/locking/seqlock.html
https://docs.kernel.org/locking/seqlock.html
https://rubrikinc.github.io/wachy/
https://skywalking.apache.org/
https://skywalking.apache.org/
https://aws.amazon.com/xray/
https://aws.amazon.com/xray/
https://bpftrace.org/
https://www.envoyproxy.io/
https://www.jaegertracing.io/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://zipkin.io/
https://www.amd.com/en/developer/uprof.html
https://www.amd.com/en/developer/uprof.html
https://github.com/AMDResearch/omnitrace/
https://github.com/AMDResearch/omnitrace/
http://www.brendangregg.com/blog/2016-03-05/linux-bpf-superpowers.html
http://www.brendangregg.com/blog/2016-03-05/linux-bpf-superpowers.html
http://www.brendangregg.com/blog/2016-03-05/linux-bpf-superpowers.html

[29] J. Huang, B. Mozafari, and T. F. Wenisch. Statistical
analysis of latency through semantic profiling. In Eu-
roSys, 2017.

[30] M. Jovic, A. Adamoli, and M. Hauswirth. Catch me if
you can: performance bug detection in the wild. In Pro-
ceedings of the 26th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2011, part of SPLASH 2011,
Portland, OR, USA, October 22 - 27, 2011, pages 155–
170. ACM, 2011.

[31] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, et al.
The quic transport protocol: Design and internet-scale
deployment. In SIGCOMM, 2017.

[32] C. Lattner and V. Adve. Llvm: A compilation framework
for lifelong program analysis & transformation. In CGO,
2004.

[33] Y. Luo, K. Rodrigues, C. Li, F. Zhang, L. Jiang, B. Xia,
D. Lion, and D. Yuan. Hubble: Performance debug-
ging with in-production, just-in-time method tracing on
android. In OSDI, 2022.

[34] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector for
multithreaded programs. TOCS, 1997.

[35] S. Yang, S. J. Park, and J. Ousterhout. NanoLog: A
nanosecond scale logging system. In ATC, 2018.

[36] X. Yang, S. M. Blackburn, and K. S. McKinley. Com-
puter performance microscopy with shim. ISCA, 2015.

1510 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

UFO: The Ultimate QoS-Aware CPU Core Management for Virtualized and

Oversubscribed Public Clouds

Yajuan Peng*1,3, Shuang Chen*2, Yi Zhao2, and Zhibin Yu2,3

1Southern University of Science and Technology, China
2Shuhai Lab, Huawei Cloud

3Shenzhen Institutes of Advanced Technology, Chinese Academy of Science

Abstract
Public clouds typically adopt (1) multi-tenancy to increase

server utilization; (2) virtualization to provide isolation be-

tween different tenants; (3) oversubscription of resources to

further increase resource efficiency. However, prior work all

focuses on optimizing one or two elements, and fails to con-

siderately bring QoS-aware multi-tenancy, virtualization and

resource oversubscription together.

We find three challenges when the three elements coexist.

First, the double scheduling symptoms are 10× worse with

latency-critical (LC) workloads which are comprised of nu-

merous sub-millisecond tasks and are significantly different

from conventional batch applications. Second, inner-VM re-

source contention also exists between threads of the same

VM when running LC applications, calling for inner-VM core

isolation. Third, no application-level performance metrics can

be obtained by the host to guide resource management in

realistic public clouds.

To address these challenges, we propose a QoS-aware core

manager dubbed UFO to specifically support co-location of

multiple LC workloads in virtualized and oversubscribed

public cloud environments. UFO solves the three above-

mentioned challenges, by (1) coordinating the guest and host

CPU cores (vCPU-pCPU coordination), and (2) doing fine-

grained inner-VM resource isolation, to push core manage-

ment in realistic public clouds to the extreme. Compared with

the state-of-the-art core manager, it saves up to 50% (aver-

age of 22%) of physical cores under the same co-location

scenario.

1 Introduction

Motivation. Most cloud data centers operate at very low

resource utilization[25, 26, 29, 44]. Other than users over-

provisioning their resources [19, 26, 46], resource is espe-

cially underutilized in public clouds due to two additional rea-

sons. First, most cloud providers, if not all, provide monthly or

yearly subscriptions, which are much cheaper than on-demand

pricing[1, 3, 15]. Most users therefore almost never release

their resources even when their virtual machines (VMs) are

completely idle. Second, there is no explicit label such as on-

line/offline, or high-/low-priority workloads for users’ VMs.

*Equal contribution.

This forms the black-box nature of public clouds: co-located

VMs on the same host machine are equally important, similar

to the co-location of multiple LC workloads studied in re-

cent years[22, 48, 51]. This leads to generally lower resource

utilization of public clouds than private clouds.

Resource isolation leverages software and hardware mech-

anisms to partition resources between co-located workloads,

and to increase the degree of workload co-location without

hurting application’s quality of service (QoS)[23, 37, 38]. Re-

source isolation is especially important for interactive LC

workloads such as web search and key-value stores[22, 26,

51]. However, when attempting to apply resource isolation

in real public clouds, we find that the state-of-the-art QoS-

aware resource managers are (1) sub-optimal due to lack of

consideration of the virtualization layer and resource over-

provisioning, and (2) inapplicable to public clouds due to lack

of labels, inputs, or feedback for dynamic resource manage-

ment.

Challenge 1. In virtualized environments, there are two layers

of resource management: one in the host OS (e.g., scheduling

physical CPU cores, pCPUs, for VMs), and another in the

guest OS (e.g., scheduling virtual CPU cores, vCPUs, for

users’ applications). This is a common problem known as

double scheduling, and prior work[36, 41, 55, 58, 62] has

proposed co-scheduling or guest-host coordination to improve

locks, interrupts, synchronization, preemption, load balancing,

etc.

However, we find previous studies are ineffective for LC ap-

plications that suffer uniquely from double scheduling. Specif-

ically, if the guest OS is oblivious of the allocated resources

on the host, the host OS (rather than guest OS) would expe-

rience extensive context switches and high scheduling delay,

leading to substantial QoS violations. This is intrinsically

related to the sub-millisecond nature of tasks in LC applica-

tions. In addition, resource contention also happens between

thread groups that belong to the same VM. Such inner-VM

contention is especially intense under LC applications.

Challenge 2. Prior work relies on application-level input

(such as real-time 99th percentile latency) to guide QoS-aware

resource management [22, 23, 43, 44]. This makes two as-

sumptions that do not hold for realistic public clouds. The

first assumption is that an application has to monitor its own

latency. In reality, many applications do not trace their own

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1511

latency, and it is impossible to ask users to provide tracing

points to probe their user-level QoS satisfaction degree. The

second assumption is that the monitored value can be lever-

aged by the host OS. This requires interfaces for users to

communicate with the cloud provider, to pass application-

level information down to components outside the user’s VM.

Opportunities. Major cloud providers all provide their own

guest OS images [2, 4]. With Cent OS Linux reaching its

end of life[5], an increasing number of users are migrating

to in-house guest OS images. This leads to a great opportu-

nity for cloud providers to explore guest-host coordination

in guest/host kernels, to tackle the two challenges above. By

transmitting host’s core isolation decision to the guest OS and

adjusting core management in the guest accordingly, we ob-

serve up to 4.3× throughput improvement under QoS require-

ments for LC workloads. By leveraging guest’s scheduling

frequency as a VM’s performance indicator, the host OS is

able to make QoS-aware core allocation decisions without

disturbing users’ applications inside the VMs. Furthermore,

we observe that core isolation between different thread groups

of the same VM leads to an additional 20% of improvement

under the same amount of hardware.

Our work. In this paper, we propose UFO, a practical QoS-

aware resource manager that targets virtualized public cloud

environments, and push core isolation to the next level. Lever-

aging guest-host coordination, it solves the above-mentioned

two challenges that prior work fails or misses to address, and

aims to accommodate as many VMs as possible without QoS

violations. We make the following contributions:

1. We find that the state-of-the-art QoS-aware core managers

neglected the virtualization layer, and made unrealistic as-

sumptions of the interactions between users and the cloud

platform. Therefore, they are sub-optimal and inapplicable

for virtualized public clouds.

2. We present a comprehensive characterization study to

showcase how guest-host coordination and inner-VM isola-

tion can greatly improve resource efficiency in virtualized

environments in a black-box manner.

3. We devise UFO, a practical QoS-aware core manager for

virtualized and oversubscribed public clouds. UFO does

not require user-level QoS input, and instead leverages

scheduling frequency from the guest OS as QoS indica-

tors; this makes UFO applicable for public clouds. UFO

dynamically adjusts core allocations for each VM on the

host and the guest OS concurrently; this makes UFO con-

siderate for virtualization overhead, especially when cores

are oversubscribed. Furthermore, UFO dynamically man-

ages an emulator pool to avoid core contention between

emulator and vCPU threads.

4. We evaluate UFO under constant and dynamic loads, and

show that UFO outperforms prior work by up to 50% (av-

erage of 22%) in core saving under the same co-location

scenario, and up to 60% (average of 27%) higher input load

Figure 1: Double scheduling in a typical cloud server. The host OS

schedules VMs’ vCPU threads to physical cores (pCPUs), while the

guest OS of each VM schedules users’ application threads to vCPUs.

under the same amount of cores, with negligible overhead.

2 Background and Related Work

2.1 QoS-Aware Resource Management

There are mainly two types of workloads in the public cloud.

Latency-critical (LC) workloads have strict quality-of-service

(QoS) requirements, usually defined in tail latency. Best-effort

(BE) applications are typically throughput-oriented, and are

at lower priority than LC applications. QoS-aware resource

management refers to techniques that can co-locate various

workloads on the same server node [26, 45] while meeting LC

workloads’ QoS requirement; BE applications can be slowed

down or even suspended when needed. Recent work is able

to co-locate multiple LC applications on the same node while

meeting each LC application’s QoS target [22, 43, 48, 51].

However, previous studies have two drawbacks. First, they

all rely on application-level performance metrics to guide

QoS-aware resource management, and claim this could be

achieved by monitoring on the client side, or relying on the

application itself to report latency[22, 43]. In public clouds,

there is no explicit QoS target defined for LC workloads,

and it is impossible to ask users to provide tracing points to

probe their user-level QoS satisfaction degree. Instead, cloud

providers should find server-side indicators that generally

correlate well with QoS, and the cloud providers can legally

obtain the indicators without user intervention. A series of

work like Arachne [53], Shinjuku [34] and Caladan [28] aim

to provide sub-millisecond QoS satisfaction. However, they

all rely on deep coordination with users’ applications and

make intrusive modifications to applications or their runtime

libraries. Second, the virtualization overhead is significantly

overlooked under (most if not) all QoS-aware resource man-

agers.

2.2 Virtualization and Double Scheduling

In public cloud, virtualization is prevalent to ensure user pri-

vacy and security. Virtual machines and hosts interact through

the hypervisor, and are independent and unaware of each other.

Figure 1 shows the current software stack in a typical public

cloud. The host OS scheduler schedules the logical CPUs

1512 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(vCPUs) of many virtual machines on the physical CPUs

(pCPUs) of a server. The users’ applications are scheduled

by a task-level scheduler (Guest OS scheduler) of VMs, and

most operations within the virtual machines are opaque to

the hypervisor. Due to the use of multi-core processors and

multi-threaded applications, this mutually unaware double-

scheduling [57] introduces a semantic gap between hosts

and VMs, which leads to problems including lock-holder pre-

emption (LHP) [35, 59], lock-waiter preemption (LWP) [59],

blocked-waiter wakeup (BWW) [27], etc. There are two types

of solutions to resolve the double scheduling symptom.

2.2.1 Pure-host Solutions

These solutions modify the hypervisor and the host OS to

reduce the overhead of virtualization and double scheduling.

Adjusting scheduling priority on the host OS is one of the

most common approaches, to alleviate LHP and LWP [27, 33],

achieve fairness between VMs or load balancing [40, 63], and

reduce CPU fragmentation [52, 54]. Advanced hardware sup-

ports, such as Intel’s Pause Loop Exit (PLE) [41, 56] and

AMD’s Pause Filter (PF) [47], are also leveraged by the hy-

pervisor and the host OS to detect excessive spinning in the

guest OS, to address various preemption problems.

2.2.2 Guest-Host Coordination

These solutions bridge the semantic gap by coordinating the

guest and the host OSes, and involves modifications to both

the guest and the host OSes.

vCPU ballooning [24, 57] is one of the pioneer works in

this line. It leverages CPU hot-(un)plugging to make #vCPUs

match #pCPUs, so it completely avoids the double scheduling

symptoms. The core allocation is static based on VM priority,

making vCPU ballooning fail to adapt to varying load, and

fail to handle co-location of LC applications. UFO inherits the

same philosophy of vCPU ballooning, to make #vCPUs match

#pCPUs. However, UFO targets LC applications, and features

in finding the right metric, designing a proper algorithm and

an effective controller to support dynamic core adjustment.

eCS [18, 36] annotates critical sections in the guest OS so

that the host OS can adjust scheduling priority accordingly.

The host states are further transmitted to the guest OS allevi-

ating LWP and BWW problems. PLE-KVM [32] annotates

vCPU status in the guest OS, and adjusts vCPU scheduling in

the host OS, to mitigate excessive pause-loop-existing (PLE)

events and excessive spinning. Similar to vCPU ballooning,

eCS and PLE-KVM do not study LC workloads. But since

they are open-sourced, we are able to conduct a quantitative

comparison with eCS and PLE-KVM in Section 3.6.

3 Characterization

In this section, we characterize three typical LC cloud appli-

cations and compare them with BE applications. We illustrate

the limitations of current CPU core isolation mechanisms,

and show the potential of core management in virtualized and

oversubscribed public clouds.

3.1 Methodology

We launch four 8-vCPU VMs on a 16-core host, i.e., 32 vC-

PUs on 16 pCPUs. This simulates an oversubscription ratio of

two.1 We enable hyper-threading because real public clouds

always enable it, so a pCPU is essentially a hyperthread of

a physical core. We avoid different VMs sharing the same

physical core. Therefore, an 8-vCPU VM can be allocated

on 2, 4, 6 or 8 pCPUs. We mainly experiment with three LC

applications, Memcached, NGINX, and MySQL. Section 5

includes more details on the evaluated applications, the test

bed, and the testing strategy. For simplicity, we run the same

workloads in the four VMs such that all the VMs perform

homogeneously. This makes core allocation decisions trivial:

all the VMs should be allocated with the same number of

cores. This allows us to focus on observing the performance

differences under various core allocation mechanisms. For

each LC application, we experiment with increasing amount

of load measured in request-per-second (RPS). Each RPS is

tested three times, each lasting for 60s. The geometric mean

of the 99th percentile of latency of the four VMs is reported

after each test. We then report the average result of the three

tests for any given RPS.

3.2 Guest OS Should Coordinate with Host OS

Conventional approaches [22, 44, 51] manage core allocation

completely on the host OS. The guest OS is unaware of the

host OS; it does not know how many physical cores are ac-

tually allocated to the VM. We show that this is insufficient;

guest being aware of the host allocations can achieve much

higher resource efficiency.

We compare three core allocation mechanisms:

• Default: We rely on the scheduling policy of OS to sched-

ule VMs. All the VMs share the same 16 pCPUs, and can

be freely scheduled on these pCPUs.

• Isolation: We isolate the four VMs, each assigned four

pCPUs on the host.

• Host-Aware Isolation: On top of Isolation, the guest OS

is aware that the VM is allocated with only four pCPUs ,

and schedules jobs to only four vCPUs. We implement this

by statically hot-unplugging four vCPUs in the guest OS.

Figure 2 shows how VMs perform when running different

workloads under the three mechanisms. We find that under

QoS targets (horizontal dotted lines in Figure 2), isolation

achieves up to 33% (average of 18%) higher load than default,

and host-aware isolation furthers increases the maximum load

under QoS by up to 25%-125% than isolation. This is because

under host-aware isolation:

• Host-side context switches are reduced by 92%. Fig-

ure 3a shows the number of context switches per second

(i.e., scheduling frequency) happening in the guest and the

host OS. Memcached, NGINX and MySQL run at RPS of

1 Higher oversubscription ratio usually signals higher resource efficiency,

e.g., VMware suggests an oversubscription ratio of at least three [10].

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1513

40 80 120 160 200
RPS (k)

0

0.5

1

1.5

9
9
th

 P
e
rc

e
n
ti
le

 (
m

s
) Memcached

20 40 60 80
RPS (k)

0

1

2

3

4

5

6
Nginx

8 16 24 32
RPS (k)

0

10

20

30

40

MySQL
Default

Isolation

Host-Aware Iso

PLE-KVM

eCS

(a) LC

B
L
A

C
K

B
O

D
Y

T
C

A
N

N
E

D
E

D
U

P
F
A

C
E

S
F
E

R
R

E
F
L
U

ID
F
R

E
Q

M
R

A
Y

T
R

S
T
R

E
A

V
IP

S
x2

6
4

S
P

A
R

K
A

V
G

0.0

0.5

1.0

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Default

PLE-KVM

Isolation

eCS

Host-Aware Iso

(b) BE

Figure 2: Performance under five core allocation mechanisms. For LC applications, we show the 99th percentile tail latency with increasing

input load (RPS). Horizontal dotted lines represent applications’ QoS targets. For BE applications, we show the execution time of each

benchmark normalized to that under the Default manager. Lower is better.

D I H D I H D I H
Memcached Nginx MySQL

0

20

40

60

80

100

S
c
h
e
d
u
lin

g
 F

re
q
u
e
n
c
y
 (

k
/s

)

(a) Scheduling Frequency

D I H D I H D I H
Memcached Nginx MySQL

0

1

2

3

S
c
h
e
d
u
le

 D
e
la

y
 (

s
) Host

Guest

(b) Scheduling Delay

Figure 3: Scheduling frequency and scheduling delay under default

(D), isolation (I), and host-aware isolation (H), decomposed into

host-side (blue bars) and guest-side (orange bars).

60k, 50k and 20k, respectively, which are the maximum

RPS under QoS with the default core manager (see the

cross points of gray curves and the horizontal dotted lines

in Figure 2a). Because host-aware isolation ensures #vC-

PUs=#pCPUs, the host OS rarely needs to schedule vCPU

threads off a physical core. Note that users’ applications

are unchanged and the number of application threads does

not decrease with fewer vCPUs, so context switches in

the guest OS are not reduced. Since a context switch of a

vCPU thread on the host involves additional switches of

the VMCS structure [55, 60], which is more expensive than

a normal context switch of an application thread, we can

obtain huge benefits from the reduction of only host-side

context switches in virtualized environments.

• Host-side scheduling delay is reduced by 99%. Schedul-

ing delay of a process is defined by the time between the

process wake-up and its actual running.2 Figure 3b shows

scheduling delay on the host and the guest. As a conse-

quence of reduced context switches, host-side scheduling

delay decreases to almost 0 under host-aware isolation.

Reduced scheduling delay is critical for LC applications

because scheduling delay significantly affects requests’ la-

tency. When a request comes in, the application threads

inside the guest OS are woken up, leading to schedule

2 We obtain scheduling delay of the guest/host OS by executing perf sched

record and then perf sched timehist, and reporting the sum of schedul-

ing delay of all the processes.

2pCPU 4pCPU 6pCPU 8pCPU

Figure 4: Memcached with increasing input load under various

#pCPUs. The top left figure shows Memcached’s tail latency, and

the horizontal line at y = 0.5ms represents the QoS target. The other

three figures show guest-side process runtime, scheduling frequency,

and runtime per schedule (division of the previous two metrics).

events on the guest OS, which may further lead to schedule

events on the host. Scheduling delay inside and outside the

VM both affect the degree of QoS satisfaction.

Appendix A.1 and A.2 include additional analysis on VM

exits and caches. In summary, for LC applications, the guest

should be aware of the actual physical core allocations on the

host, and dynamically adjust the number of runnable vCPUs.

3.3 Host OS Should Learn from Guest OS

In public clouds, VMs are black-box to the cloud provider,

and application-level performance metrics are hard to obtain.

It is therefore difficult to use application-level metrics as

indicators to guide resource management under a QoS target

in public cloud. This has been an open question in industry

for a long time. We successfully solve the open question by

identifying a set of great indicators from the guest OS.

• Guest-side scheduling frequency is a concave function

with input load. As the bottom left subfigure in Figure 4

shows, under a certain #pCPUs, guest-side scheduling fre-

1514 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

80 160 240 320
RPS (k)

0

0.5

1

1.5

9
9
th

 P
e
rc

e
n
ti
le

 (
m

s
) Memcached

20 40 60 80 100 120
RPS (k)

0

1

2

3

4

5

6
Nginx

8 16 24 32 40 48
RPS (k)

0

10

20

30

40

MySQL

Shared

Isolated

Figure 5: vCPU and emulator threads share 8 pCPUs (Shared), or are isolated

with 6 and 2 cores (Isolated, #vCPU is hot-unplugged to 6).

M
E

M
C

A
N

G
IN

X
M

Y
S

Q
L

B
L
A

C
K

B
O

D
Y

C
A

N
N

E
D

E
D

U
P

F
A

C
E

S
F
E

R
R

F
L
U

ID
F
R

E
Q

M
R

A
Y

T
R

S
T
R

E
A

V
IP

S
x2

6
4

S
P

A
R

K

0

20

40

60

80

100

S
c
h
e
d
u
lin

g
 F

re
q
u
e
n
c
y
 (

k
/s

)

Host Guest

Figure 6: LC applications experience orders of magni-

tude more scheduling frequency than BE applications.

100 200 300 400 500
RPS (k)

0

200

400

600

800

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Memcached

50 100 150 200
RPS (k)

Nginx

20 40 60
RPS (k)

MySQL

vCPU

Emulator

(a) LC

B
L
A

C
K

B
O

D
Y

C
A

N
N

E
D

E
D

U
P

F
A

C
E

S
F
E

R
R

F
L
U

ID
F
R

E
Q

M
R

A
Y

T
R

S
T
R

E
A

V
IP

S

x2
6
4

S
P

A
R

K

0
200
400
600
800

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

vCPU Emulator

(b) BE

Figure 7: CPU utilization of vCPU and emulator threads. BE applications barely use emulator threads.

quency first increases and then decreases along with input

load increasing. This is because at low input load (i.e., few

requests per second), request inter-arrival time is longer

than request processing time, meaning that the application

is idle in between requests. As input load increases to a cer-

tain extent, new requests come when the processing for old

requests has not been finished, and the application threads

are active for longer to process consecutive requests. This

leads to longer runtime per schedule and fewer context

switches. The right two figures in Figure 4 show the total

runtime, and the average runtime per schedule, i.e., we di-

vide the total runtime by scheduling count. We see the total

time scales linearly with input load. In contrast, the runtime

curve per schedule is flat at the beginning, and increases

super-linearly after a certain threshold.

• Guest-side scheduling frequency is a great indicator of

application’s tail latency. Comparing the left two fig-

ures in Figure 4, we find that the peak point of each curve

of scheduling frequency is also the point where applica-

tion’s tail latency starts to increase super linearly with input

load. This is because the peak point implies that requests’

queuing delay starts to accumulate, which will lead to in-

creased tail latency. Meeting QoS in public clouds essen-

tially means avoiding queuing delay to grow exponentially.

This means that we should try staying to the left, or around

the peak point of the scheduling frequency curve, and avoid

deviating too much to the right of the peak point.

• Guest-side scheduling frequency can help guide QoS-

aware core management decisions on the host OS. As

Figure 4 shows, when RPS is less than 100k, 2 pCPUs are

sufficient to meet QoS. We find that scheduling frequencies

under various #pCPUs all overlap. When RPS increases to

100k, 4 pCPUs are needed. Guest-side scheduling frequen-

cies under 2 and 4 pCPUs have a 40% difference, while

the difference between 4 and 6 pCPUs is only 5%. This

motivates us to compare scheduling frequencies between

adjacent pCPU counts to obtain the best core allocation.

We show the generality of the findings above to more LC

applications in Appendix A.3. It shows that by comparing

guest-side scheduling frequencies between adjacent pCPU

counts, we can find the best core management decisions.

3.4 A Single VM Needs Core Isolation Too

A QEMU-KVM process has two main thread groups, vCPU

and emulator threads [31]. Emulator threads are responsi-

ble for handling interrupt requests for VM hardware emula-

tion [17]. We find the two thread groups have different core

demands, and interfere with each other when sharing cores.

Figure 5 shows how each application in a VM performs

when its vCPU and emulator threads (1) share the 8 pCPUs

(Shared), or (2) partition the 8 pCPUs into 6 and 2 cores

(Isolated), and adopt host-aware isolation in the vCPU core

group. We find that:

• Compared with Shared, Isolated achieves 15%-50% higher

RPS under the same core count while meeting QoS.

• Emulator threads of LC applications are quite active. Fig-

ure 7 shows that CPU utilization of emulator threads is

15%-50% of that of vCPU threads. This is because LC

applications are naturally networked applications; requests

and responses are all transmitted through network, and

part of these network operations are handled by emulator

threads. Since request processing time is at the scale of

tens of microseconds to a few milliseconds, the network

interrupt processing time is a non-negligible part of the

end-to-end request latency of LC applications.

• CPU utilization of both vCPU and emulator threads in-

crease linearly with input load.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1515

The observations suggest that (1) CPU utilization of either

vCPU or emulator threads is a great indicator of application’s

input load, and (2) core allocation of both vCPU and emulator

threads should be dynamically adjusted based on input load.

3.5 How about BE applications?

We have clarified three needs for LC applications: (1) host-

aware isolation, (2) monitoring of guest-side scheduling fre-

quency, and (3) isolation between vCPU and emulator threads.

However, the three techniques are not necessary for BE appli-

cations. In this section, we reveal the fundamental differences

between LC and BE applications that lead to the differences

in the effectiveness of the three techniques.

We experiment with 12 BE applications from the PAR-

SEC benchmark suite [21] (each benchmark is abbreviated

by its first five characters), and 99 queries from TPC-DS [16]

deployed in Spark [20]. The spark cluster consists of three

8-vCPU VMs, one master VM and two slave VMs. We report

the total execution time of all the 99 queries in Figure 2b, and

the average statistics of the three VMs in Figure 6 and 7b.

First, LC applications are fundamentally different from BE

applications in that LC applications are comprised of a num-

ber of short requests. Request latency of LC applications is

at sub-millisecond to millisecond granularity (Figure 2a). A

thread only runs for tens of microseconds before being sched-

uled out (Figure 4). On the contrary, BE applications typically

consist of fewer and longer tasks. When scheduled, a thread

runs for the entire timeslice before being scheduled out. This

difference is reflected in context switches that have orders of

magnitude difference (Figure 6). Section 3.2 shows that host-

aware isolation mainly reduces host-side context switches,

which consequently reduces host-side scheduling delay and

HLT VM exit handled time. Since BE applications do not

suffer from host-side context switches like LC ones, they do

not benefit much from host-aware isolation. Figure 2b shows

that host-aware isolation reduces execution time by merely

0.7% on average compared with the default core manager.

Spark achieves the most reduction (i.e., 7%) because of its

relatively higher host-side scheduling frequency (Figure 6).

Second, BE applications have almost no usage of the emu-

lator threads. As shown in Figure 7b, for BE applications, the

average CPU utilization of emulator threads is less than 1%.

Utilization of each query in Spark is detailed in Appendix A.4.

As a result, it is not necessary to separate vCPU and emulator

threads for BE applications.

3.6 Comparison with Prior Work

Section 2.2.2 mentioned that prior work on guest-host coordi-

nation evaluates only BE workloads. We study the effective-

ness of PLE-KVM [32] and eCS [36] in Figure 2, and find

that they indeed perform well for BE applications. PLE-KVM

and eCS reduce execution time by up to 30% and 42% (av-

erage of 5% and 12%), respectively. However, they behave

similarly as the default mechanism for LC applications, and

significantly under-perform host-aware isolation. This is be-

cause PLE-KVM and eCS do not attempt to reduce host-side

context-switches or scheduling delay, a severe issue when

running LC applications. Also, we find that when prioritizing

certain vCPU thread, PLE-KVM and eCS sometimes intro-

duce significant unfairness between vCPUs and VMs.

3.7 Summary

In summary, we make the following key observations:

• Partitioning cores on the host OS is insufficient. The guest

OS should be aware of the core allocation decision made

by the host, and adjust core management in the guest OS

as well such that the number of usable vCPU count is no

more than the allocated pCPU count for the VM.

• Partitioning resources between different VMs is insuffi-

cient. Threads belonging to the same VM contend for re-

sources as well; vCPU and emulator threads should be

isolated within the same VM as well.

• Without application-level performance metrics, the guest

OS can still provide useful hints like scheduling frequency

and scheduling delay to guide core management on the

host (and the guest), meeting application-level QoS targets.

• Prior work considers only BE applications, and fails to

unlock the full potential of guest-coordination for LC ap-

plications.

4 UFO Design

UFO is a feedback-based controller that dynamically man-

ages core allocation for virtualized public clouds, aiming to

accommodate more VMs on a single host without violating

applications’ QoS. In this section, we describe UFO in detail.

4.1 Design Principles

UFO is designed with three design principles in mind:

• Prioritize for LC applications: Our primary goal is to

meet QoS for LC applications. In public clouds, there is no

user-specified QoS target. So our goal is to avoid LC appli-

cations suffering from extensive queuing delay. Since prior

works on guest-host coordination all focus on conventional

throughput-oriented batch jobs [32, 36, 57], UFO focuses

on LC applications. It simply lets all BE applications share

the idle pool, and does not explicitly handle core allocation

for each BE application.

• Optimize for virtualized and oversubscribed environ-

ments: Virtualization and oversubscription are ubiquitous

in public clouds. This means that double scheduling always

exists, and VMs usually do not get as many physical cores

as their vCPU size. We tackle the challenges brought by vir-

tualization and oversubscription by guest-host coordination

and vCPU-emulator isolation.

• Focus on core management: Despite many other shared

hardware resources, UFO is currently designed for only

1516 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1: UFO’s main function.

while TRUE do

monitor for 1s;

// Adjust the emulator pool first.

if emuUtil <50% then
remove cores from the emulator pool as long as

emuUtil is under 70%;

else

if emuUtil >70% then
assign more cores to the emulator pool to make

emuUtil under 50%;

continue;

// Adjust the vCPU pool for each VM

for i = 1..N do

// Record the sample; fit model upon sufficient

samples; adjust model upon inaccuracy detection

updateModel(i, pCPU[i], cpuUtil[i], schedFreq[i]);

// Find the best core count

p = predict(i, pCPU[i], cpuUtil[i]);

if p 6= pCPU[i] then

// Adjust core allocations on the guest& host

modify(i, p);

sleep 3s;

pCPU[i] = p;

core management. This is because other resources such

as last-level cache and memory bandwidth do not require

special treatment in virtualized and oversubscribed envi-

ronments, and there are many prior work that specifically

targets management of these resources [38, 50, 61, 64].

4.2 Resource Pool

UFO splits all the physical cores on each host into three pools:

• vCPU Pool consists of N core groups for N running VMs,

and one group is assigned for one VM’s vCPU threads. For

VM i, UFO dynamically expands or shrinks its pCPU cores

(pCPU [i]) based on UFO’s core predictor (Section 4.5).

• Emulator Pool consists of cores allocated for running

VMs’ emulator threads. All the VMs share the emulator

pool. The emulator pool dynamically expands or shrinks

based on its CPU utilization (Section 4.3).

• Idle Pool consists of all the leftover cores on the host. It

provides the source of free cores. An increasingly larger

idle pool signals capability to host more VMs, while a

shrinking pool signals system overload (Section B.4). The

vCPU and emulator pools interact with the idle pool con-

stantly. We introduce how cores flow between pools below.

Note that idle VMs (i.e., vCPU utilization is consistently

below 1%) are also placed in the Idle Pool. When UFO

detects an increase in vCPU utilization, it will move the

active VM to the vCPU pool.

4.3 UFO Controller

As shown in Algorithm 1, UFO consists of three stages:

1. Monitor: UFO monitors the CPU utilization of the em-

ulator pool on the host OS, and the CPU utilization and

scheduling frequency on each guest OS every second.

2. Adjust the emulator pool: UFO always makes sure the

emulator pool is large enough to satisfy the need of emula-

tor threads. This is achieved by keeping CPU utilization of

the emulator pool under 70%. Upon detection of low uti-

lization (i.e., emuUtil < 50%) of the emulator pool, more

cores will be moved from the emulator pool to the idle

pool. The thresholds can all be adjusted based on practical

needs. UFO checks and adjusts the emulator pool before

the vCPU pool. This is because the resource demand of

emulator threads is only a fraction of the demand of vCPU

threads. However, if emulator threads do not get enough

cores, vCPU threads will have to be assigned more cores to

meet application’s performance target (Section 3.4), lead-

ing to lower resource efficiency.

3. Adjust the vCPU pool: Figure 8 shows the system com-

ponents for vCPU adjustment in UFO. CPU utilization

and scheduling frequency are continuously monitored in-

side each guest OS, and are fed to the collector in the

host OS. The collector in the host OS is responsible for

collecting data samples and fitting models upon enough

samples (updateModel(), Section 4.4, detailed algorithm

in Appendix B.1). Then, UFO calculates the best core allo-

cation through the core predictor (predict(), Section 4.5,

detailed algorithm in Appendix B.2). If differing from the

current core allocation, UFO will adjust core allocations

through the enforcer components on the host and the guest

OS (modi f y(), Section 4.6).

UFO is monitored and scheduled at a fine-grained level of

seconds. Refer to Appendix B.3 for more details.

4.4 Modeling of Scheduling Frequency

As discussed in Section 3.3, guest-side scheduling frequency

is a great indicator of application’s QoS level, and can be

used to guide core management decisions. However, it is

impractical to obtain the entire curve of scheduling frequency

under any input load and any pCPU count. Therefore, UFO

leverages VM’s CPU utilization as a proxy of application’s

input load, and builds a model to predict guest-side scheduling

frequency under any CPU utilization given a number of (guest-

side CPU utilization, guest-side scheduling frequency) pairs.

Figure 10a shows an example of the fitted curves of

Nginx’s guest-side scheduling delay under eight pCPUs.

We find quadratic function fits the bests, represented by

f (u) = Au2 + Bu +C where u is CPU utilization ranging

from [0,100 ∗ #pCPU]. R2 [6] is a goodness-of-fit measure

for predictions. R2 closer to 1 represents higher accuracy.

The collector in the host OS continuously collects guest-

side scheduling frequency and CPU utilization. As each VM

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1517

Figure 8: Guest-host coordination in UFO.

Monitored events from the guest OSes are

fed to the host OS for core prediction. Core

adjustment is enforced in the guest and host

at the same time.

(a) Initial stage. (b) Collection stage. (c) Fitting stage. (d) Full profile.

Figure 9: Four stages in UFO’s vCPU adjustment. (a) and (b) are early stages with few samples,

so UFO has to try various core counts. (c) starts model fitting as long as three samples are

accumulated for a certain core count. (d) obtains more samples under each core count, fitting more

curves and adjusting previous fittings. The best core count can be directly predicted in this stage.

(a) Good samples: R2 = 0.962 (b) Bad samples: R2 =−0.029

Figure 10: Fitted curves of Nginx’s guest-side scheduling delay

under eight pCPUs. All the samples are marked blue, while the

samples used for the fitting are marked red. Both fitted curves use

three samples. The left figure has samples spanning both low and

high CPU utilization, while the right figure is fitted with samples

only from high CPU utilization.

2pCPU 4pCPU 6pCPU 8pCPU

3 7 11 15
Number of Fitting Points

0.5

0.6

0.7

0.8

0.9

1.0

R
-s

q
u
a
re

Memcached

3 7 11 15
Number of Fitting Points

Nginx

3 5 7 9
Number of Fitting Points

MySQL

Figure 11: Model accuracy (R2) of scheduling frequency with in-

creasing number of fitting points. Seven points are enough to reach

R2 > 0.95 in most cases.

runs, more samples under various core counts and various

CPU utilization are collected. For any given pCPU count,

when sufficient samples are collected (e.g., Figure 9c), the

curve of scheduling frequency with CPU utilization can be

fitted. Ideally, three points determine a quadratic function.

However, due to data instability, we find three may not be

enough generally. Figure 10 shows a good and a bad case us-

ing three fittings points. In Figure 10a, the three samples span

both sides of the concave function, and we can successfully

fit a model with R2 > 0.95. However, if the three samples all

fall into the same side of the curve as shown in Figure 10b,

the fitted model can be totally inaccurate. In general, more

samples lead to higher accuracy. Practically, we find eight

samples to be more than enough for a fitted model to achieve

R2 > 0.9, shown in Figure 11. Therefore, UFO maintains the

last eight samples under each core count for each VM.

For a given pCPU count, when three samples are recorded,

UFO starts fitting the model, though the model may be inac-

curate due to skewed samples. The inaccuracy will eventually

come to light as the VM continuously runs. Upon detection

of inaccuracy (i.e., the difference between the fitted value and

the true value is more than 5%), the model will be refitted

using the latest and more samples. Storing the latest eight

samples and refitting models upon detection of inaccuracy

allow UFO to adjust to workload churn inside the VM. For

instance, if a VM previously runs Memcached and later runs

Nginx, the models will all be updated with the latest samples.

4.5 Core Adjustment

The goal of UFO’s core predictor on the host OS is to find the

best core allocation for each VM. After the best core count is

predicted, the enforcer components on the host and the guest

OS will adjust pCPU count for the VM.

As discussed in Section 3.3, c pCPUs is the best core allo-

cation if and only if:

• Scheduling frequency (SF) does not increase much under

c+2 cores, i.e.,
SF [c+2]−SF [c]

SF [c+2] < x.

• Scheduling frequency drops significantly under c−2 cores,

i.e.,
SF [c]−SF [c−2]

SF [c] > x.

In this paper, we set the threshold x to 30%. Figure 4 shows

why. The vertical lines on the left pictures show the maxi-

mum RPS that each pCPU count can sustain while meeting

QoS, which are 98k/180k/260k under 2/4/6 pCPUs. The ver-

tical lines run through the figure of guest-side scheduling

frequency, such that we can compare scheduling frequency of

different #pCPUs under these input loads. We find the differ-

ence in scheduling frequency between 2&4/4&6/6&8 pCPUs

under 98k/180k/260k RPS is 30%/29%/27% (double-headed

arrows in Figure 4). Considering other applications (elabo-

rated in Appendix A.3), we find 30% to be a practically good

threshold that universally works for most LC applications.

In reality, UFO will go through four stages in the core pre-

dictor, shown in Figure 9. Initially, each VM is given #vCPU

pCPUs (8 in the example). Without any model fitting, UFO

1518 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

has to iteratively try fewer pCPUs, obtain and record SF, check

if SF decreases by more than 30%, and finally find the best

core count (2 in Figure 9a). When the input load increases

in Figure 9b, UFO has to iteratively try increasing #pCPUs

until SF increases by less than 30%, and reverts back to last

#pCPUs (2->4->6->4 in Figure 9b). To reduce these trials,

UFO adopts some heuristics based on CPU utilization when

models are not completely fitted, to keep per-core CPU utiliza-

tion (PCU) roughly within 40%-80%. Suppose current pCPU

count is p and current PCU is u. This means that UFO will

stop reducing cores if u∗ p
p−2

> 80%, and will stop increasing

cores if u∗ p
p+2

< 40%. As the VM runs, more samples are

collected, and UFO will start fitting curves when 3 samples

are accumulated under a certain pCPU count (Figure 9c), so

that UFO can directly infer SF under this pCPU count next

time. UFO fits more curves and continuously adjusts the fit-

ting with the latest samples. When the full profile is obtained

(Figure 9d), UFO can directly predict the best count without

any trial.

4.6 UFO Implementation

Sharing information between guests and the host. Simi-

lar to the kvm_steal_time implementation [14, 36], when

launching a new VM, the guest OS allocates a 32B read-write

memory segment that is shared between the guest and the

host OS. After the memory allocation, the guest OS sends

the memory address of the memory segment to the host OS

through a hypercall. The host OS handles the hypercall from

each guest OS, recording the memory address.

This segment consists of three 8B integers: two integers are

written by the guest-side kernel module, including the latest

guest-side CPU utilization and scheduling frequency; another

integer is written by the host-side kernel module, denoting

the number of pCPUs allocated for this VM.

Guest-side kernel module. A kernel module is installed on

each guest OS, recording the guest-side CPU utilization and

scheduling frequency to the shared memory every second. It

also monitors if #pCPUs in the shared memory changes. If

so, it will offline/online some vCPUs in the guest OS.

Host-side kernel module. A kernel module is also installed

on the host OS. It periodically does the following tasks: it

first reads all the guest-side CPU utilization and scheduling

frequency samples, and maintains the latest 8 samples under

each pCPU count for each VM. It then fits or adjusts the

model, and predicts the pCPU count for each VM. Finally, it

writes the prediction result to the shared memory, and adjusts

the core allocation of each VM on the host OS accordingly

by executing virsh vcpupin.

Host-side emulator management. There is another script

running continuously on the host OS. This script reads the

aggregate CPU utilization of emulator threads of all the VMs

every second, and adjusts the emulator pool using virsh

emulatorpin.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100L
o
a
d
 o

f
M

e
m

c
a
c
h
e
d
1
 (

%
)

8 10 12 14 14 16 16 X X X

10 14 14 16 X X X X X X

12 14 16 X X X X X X X

14 16 X X X X X X X X

14 X X X X X X X X X

16 X X X X X X X X X

16 X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

Load of Memcached2 (%)

(a) Default

10 20 30 40 50 60 70 80 90 100

8 10 12 12 X X X X X X

10 12 14 14 X X X X X X

12 14 16 16 X X X X X X

12 14 16 16 X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

Load of Memcached2 (%)

(b) DynIso

10 20 30 40 50 60 70 80 90 100

6 6 8 8 10 12 12 14 14 14

6 6 8 10 10 12 12 14 14 16

8 8 12 12 12 14 14 16 16 X

8 10 12 12 12 14 14 16 X X

10 10 12 12 12 14 14 X X X

12 12 14 14 14 16 X X X X

12 12 14 14 14 X X X X X

14 14 16 16 X X X X X X

14 14 16 X X X X X X X

14 16 X X X X X X X X

Load of Memcached2 (%)

(c) UFO

Figure 12: Colocation of 2 Memcached VMs. Each cell represents

the minimum required #pCPUs to meet QoS when each Memcached

run at the fraction of their max loads indicated in the x and y axes. A

brown cell with cross mark represents unreachable load combination,

meaning that 16 #pCPUs are still insufficient to meat QoS target of

both Memcached instances.

5 Experimental Setup

5.1 Hardware Platform

Table 1 shows the specifications of our experimented platform.

Both Hyperthreading and turbo boost are enabled to emulate

real cloud setups. Since UFO is an intra-node manager, we

only experiment with one server node. Clients (i.e., load gen-

erators) run on another Intel Xeon machine, with a 10Gbps

network link to the server node.

5.2 Applications

We follow testing strategies from prior work [22] to set up

our applications, load generators, constant and dynamic load

experiments. Table 2 shows the details of our experimented

LC applications and the testing strategy. These applications

are widely used in industry, and cover different application

domains. All the load generators use the default exponential

inter-arrival time distributions to simulate a Poisson process,

where requests are independent with each other [42]. This

means that even under a given constant request-per-second,

requests are not generated uniformly. Load still fluctuates at

sub-second granularity as shown in Figure 20.

We set the QoS target of each application as the 99th per-

centile latency of the knee of the latency-with-RPS curve, as

marked in Figure 2a and Figure 5, and listed in Table 2 [22].

We define max load of each application (also listed in Table 2)

as the maximum RPS under the QoS target when 8 vCPUs

exclusively run on 8 pCPUs, without emulator interference

(emulator threads are allocated on another 8 pCPUs). Note

that this means the actual resource need to reach 100% of

max load under QoS is more than 8 pCPUs.

We sweep the input load in 10% increments from 10% to

100% of the max load, and record the number of total pCPUs

allocated while meeting QoS targets.

5.3 Baselines

We compare UFO with two baselines:

• Default: We rely on the OS to schedule VMs. For a given

colocation scenario, we increase the number of pCPUs until

all the colocated VMs meet QoS target. This is an ideal

version of the default manager. Default does not isolate

between vCPU and emulator threads.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1519

Table 1: Platform Specification

Model Intel Xeon Platinum 8378

Microarchitecture Icelake

Cores/Socket 32 (2 sockets in total)

Threads/Core 2

Hyperthreading Enabled

Turbo Boost Enabled

Virtualization Technology QEMU-KVM

Host and Guest Kernel 5.10

VM Size 8 vCPU, 16 GB memory

Table 2: Latency-critical applications.

Application Memcached [11] Nginx [13] MySQL [12]

Domain Key-value store Web server Database

QoS Target 0.5ms 2ms 15ms

Max Load under QoS 350k 120k 50k

Load Generator Mutated [7] wrk2 [9] sysbench [8]

Dataset
One million

<key,value> pairs

10,000 html files

of 4KB each

20 tables, each with one

million entries

Request Type
100% GET

requests
Get file content

OLTP transactions, each with

18 select and 2 update queries

4 6 8 10 12 14 16
Number of pCPU

0

40

80

120

160

200

M
a
x
 A

g
g
 L

o
a
d
 (

%
)

(a) Mem$+Mem$

4 6 8 10 12 14 16
Number of pCPU

(b) Mem$+Nginx

4 6 8 10 12 14 16
Number of pCPU

(c) Mem$+MySQL

4 6 8 10 12 14 16
Number of pCPU

(d) Nginx+Nginx

4 6 8 10 12 14 16
Number of pCPU

(e) Nginx+MySQL

4 6 8 10 12 14 16
Number of pCPU

Default

DynIso

UFO

(f) MySQL+MySQL

Figure 13: Colocation of 2 VMs. A+B means that V M1 and V M2 run application A and B, respectively. The y-axis represents the maximum

aggregated load that each core manager is able to sustain while meeting QoS of both VMs under a certain #pCPU.

• DynIso: Similar to the Isolation mechanism in Section 3.2,

this mechanism does core isolation of vCPU threads be-

tween VMs. Since the input load may vary with time, we

leverage the feedback-control loop like PARTIES [22] to

dynamically decide #pCPUs for each VM, by comparing

the application’s tail latency with the QoS target. It is an

ideal version of the Isolation mechanism. DynIso does not

isolate between vCPU and emulator threads.

6 Results and Analysis

In this section, we first evaluate UFO with constant load, and

then with dynamic load. We also decompose UFO into vCPU

management only and isolation of emulator threads, to show

the effectiveness of each component in UFO. Finally, we

quantify the overhead of UFO.

6.1 Constant Load

Figure 12 shows colocations of 2 VMs, both running Mem-

cached, under the three core managers. The x and y axes

denote the load of Memcached run at the fraction of max

loads, and the values in the heatmap denote the minimum

number of pCPUs required to meet both VMs’ QoS targets.

Smaller values (or lighter colors) indicate higher resource

efficiency. The brown cells with "x" marked indicate that

16 pCPUs are still insufficient to meet QoS Target of both

Memcached instances under certain load combinations.We

find that:

• DynIso is superior to Default when both VMs run at

medium loads, e.g., 40% of max load. This is because

DynIso physically separates the two VMs, and is able to

eliminate interference at a higher extent.

• Default outperforms DynIso when VMs’ loads are imbal-

anced for two reasons. First, Default manages resources at

the granularity of timeslices (i.e., tens of milliseconds). It

allows a VM to utilize only a fraction of a pCPU under very

low load, and leave the rest of the pCPU to other colocated

VMs. Second, DynISO has the restriction to allocate at

most #vCPU pCPUs to a VM, while Default could poten-

tially assign more than this amount when any VM is under

very high load. For example, when the two Memcached

VMs run at 70% and 10% of their max loads, VM2 requires

only 2 pCPUs to meet QoS, so the remaining 14 pCPUs

cores are all used by VM1, including 8 pCPUs for VM1’s

vCPU threads, and 4 pCPUs for its emulator threads.

• UFO significantly outperforms Default and DynIso. The

number of blue cells is 64 under UFO, meaning that UFO is

able to meet QoS of both Memcached instances under 64%

of all the load combinations, while Default and DynIso can

only achieve 19% and 16%, respectively.

For easier quantitative comparison, for each pCPU count,

we record the maximum aggregated load (MAL) that each

core manager is able to sustain while meeting QoS of both

VMs. Figure 13 plots MAL of six 2-VM co-location mixes

(Appendix C.1 shows all the heatmaps). Comparing with

DynISO, UFO achieves up to 60% (average of 27%) higher

MAL under the same number of pCPUs. On the other hand,

under the same input load of each VM, UFO saves up to 50%

(average of 22%) cores than DynISO.

In summary, UFO is able to achieve higher MAL under the

same pCPU count, and save pCPUs under the same load.

6.2 Dynamic Load

In this section, we evaluate how UFO reacts to various load

fluctuation patterns. Figure 14 shows a 3-VM co-location

mix, each VM running a different application with a different

fluctuation pattern. We assume no prior samples and no previ-

ously fitted model in UFO in this experiment. In order to focus

1520 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 30 60 90 120 150 180 210 240 270
0

20

40

60

80

100
In

p
u
t

L
o
a
d
 (

%
)

Nginx MySQL Memcached

(a) Input load respect to each application’s max load

0 30 60 90 120 150 180 210 240 270
0

20

40

60

80

100

A
c
h
ie

v
e
d
 L

o
a
d
 (

%
)

(b) Achieved load respect to each application’s max load

0 30 60 90 120 150 180 210 240 270
0

40

80

120

S
c
h
e
d
.

F
re

q
.

(k
/s

)

(c) Guest-side scheduling frequency

0 30 60 90 120 150 180 210 240 270
0

200

400

600

800

C
P

U
 U

ti
li.

 (
%

)

(d) Guest-side CPU utilization

0 30 60 90 120 150 180 210 240 270
0

2

4

6

8

#
p
C

P
U

(e) Allocated core count for vCPU threads of each VM

0 30 60 90 120 150 180 210 240 270

N
o
rm

.
L
a
te

n
c
y

(f) Tail latency normalized to QoS target under UFO

0 30 60 90 120 150 180 210 240 270

N
o
rm

.
L
a
te

n
c
y

(g) Tail latency normalized to QoS target under Default

0 30 60 90 120 150 180 210 240 270
Time (s)

N
o
rm

.
L
a
te

n
c
y

(h) Tail latency normalized to QoS target under DynIso

Figure 14: UFO’s reactions to fluctuating load patterns. Horizontal

dotted lines in Figure 14f, 14g and 14h represent QoS targets.

on evaluating the effect of dynamic core adjustment for vCPU

threads among different core managers, we exclude the inter-

ference of emulator threads by also applying vCPU-emulator

isolation to Default and DynIso, and keep the emulator pool

large enough. To compare tail latency, we keep #pCPUs the

same on the host OS under all the core managers.

Initially, each VM is given 8 pCPUs. UFO detects low per-

core CPU utilization (PCU), and gradually reduces #pCPU.

After each adjustment, UFO checks (1) if PCU is higher than

80%, and (2) if guest-side scheduling frequency decreases by

more than 30%. Due to the super low load, UFO successfully

reduces #pCPU to 6, 4, and 2 at 2s, 6s, and 9s, respectively.

QoS is consistently satisfied in this phase. We notice that

every time vCPU offlining is performed, CPU utilization of

the corresponding VM suddenly drops to 0, then recovers in

1-3s (see the first 10s in Figure 14d).

We also compare UFO with Default and DynIso without

guest-host coordination. Default and DynIso are both unable

to meet QoS if allocating the same number of cores as UFO.

6.2.1 Diurnal Load Fluctuations

Cloud applications typically have diurnal load fluctua-

tions [30], i.e., load gradually increases during the day, and

decreases during the night. Nginx (red lines in Figure 14)

mimics such a pattern. The load gradually increases from

20% to 100% in units of 20%, and then drops back to 20%,

each step lasting for 30s, and the total duration is 270s.

At 30s, Nginx’s load increases and is reflected in an in-

crease in CPU utilization to 184% (PCU of 92%). UFO in-

creases its #pCPUs to 4 and waits for 3s. At 34s, UFO finds

that increasing #pCPUs to 6 will lead to PCU lower than 40%

(55%*4/6=37%), so it stops increasing #pCPUs further. In

this phase, QoS violation only lasts for 3s (Figure 14f) be-

cause it takes 1s for UFO to observe load surge and increase

#pCPUs, and it takes an additional 2s for system to stabilize

and for tail latency to recover. Note that every time vCPU is

hot-plugged, CPU utilization bursts and then recovers in 1-3s.

At 60s, UFO detects increase in CPU utilization, and in-

creases #pCPUs to 6. However, after waiting for 3s, UFO

finds that guest-side scheduling frequency increases by only

21%, less than the 30% threshold. This means that 6 #pCPUs

is too much. Therefore, UFO reverts #pCPUs back to 4 at 64s.

Similarly, UFO increases #pCPUs at 90s and 120s, and

successfully resolves the QoS violations of Nginx in 1-3s. At

150s, UFO detects load drop. Since UFO has experienced the

same load before, it quickly decreases #pCPUs to the right

count without any reversion of #pCPUs.

In summary, UFO is capable of handling diurnal load

changes. It reacts to one second after any load change is

detected, and performs better as more samples are collected.

On the contrary, Default and DynIso consistently violate QoS

under the same core count.

6.2.2 Sub-Second Load Bursts

Load bursts refer to a sudden load increase, followed by a

load drop. We test two types of bursts that last for varying

amounts of time, to test UFO’s responsiveness to bursty loads.

We follow testing strategy in Shenango [49] to test sub-

second load bursts. The load of MySQL (blue lines in Fig-

ure 14a) suddenly changes from the default 15% to 20%,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1521

40% and 80% at 45s, 100s and 160s, respectively. Each burst

lasts for only 1s. UFO is able to observe the load burst, and

it increases #pCPUs accordingly. However, soon after UFO

reacts, the burst has disappeared and application’s tail latency

recovers by itself. In fact, there is no need for UFO to take

reaction. Also, because MySQL is assigned 2 pCPUs initially,

if the load burst exceeds the processing capability of 2 pCPUs

(i.e., 30% in this case), requests would be dropped, showing

in the difference between input load and achieved load in

Figure 14a and 14b. Note that latency suffers more under

Default (Figure 14g) and DynIso (Figure 14h) despite the re-

action time. This shows the effectiveness of UFO’s guest-host

coordination.

UFO is designed to operate at second-granularity like prior

work [22, 44]. Recent studies [28, 34, 49, 53] show the ability

to resolve microsecond-scale QoS violations. However, as

discussed in Section 2.1, they have to intrude users’ applica-

tions, and are applicable only in private clouds. Achieving

sub-second QoS in public clouds remains an open problem.

6.2.3 Bursts with Increasing Duration

We then increase the burst duration to 5s and 15s. As the grey

lines in Figure 14a show, Memcached bursts from 10% to

80% at 130-135s, and 187-202s. Note that this vast degree of

load burst is not realistic; loads usually gradually increase or

decrease with small spikes [30]. This stress test aims to show

the boundary of UFO’s responsiveness.

When bursting to 80% of load, Memcached in fact needs 6

pCPUs to meet QoS. Since UFO adjusts 2 pCPUs at a time

(with no prior samples and model fitting), it takes two steps

to reach the desired core count. At 130s, UFO detects load

increase and increases #pCPUs to 4 and 6 at 131s and 134s,

respectively, reaching the desired core count in 4s. The second

spike lasts longer for 15s. UFO still reaches the desired core

count after two steps, and resolves the QoS violation in 4s.

This shows that the responsiveness of UFO depends on the

number of steps for UFO to adjust. Upon vast load increases,

the longer the burst, the better UFO handles.

6.3 Decomposition of UFO

Figure 15 shows the effectiveness of each component in UFO.

We experiment with 16-vCPU VMs to show more #pCPU

options. UFO-vCPU does not separate emulator and vCPU

threads, while UFO-emulator does not online/offline vCPUs

to match pCPU count. We find that:

• Compared with the max load under Default, UFO-vCPU

and UFO-combined are able to achieve an average of 19.8%

and 69.8% higher load under QoS, respectively.

• UFO-emulator sometimes even underperforms Default.

This is because after reserving some cores for emulator

threads, vCPUs are stacked onto fewer pCPUs, causing

severe double scheduling symptoms. This is especially

detrimental for VMs with high emulator activity. There-

fore, it is important to apply vCPU-emulator separation and

8 10 12 14 16
Number of pCPU

0

1

2

3

4

M
a
x
 R

P
S

 (
k
)

(a) MySQL

8 10 12 14 16
Number of pCPU

0

40

80

120

160

(b) Nginx

8 10 12 14 16
Number of pCPU

0

200

400

600

(c) Memcached

Figure 15: Decomposition of UFO’s effectiveness.

vCPU-pCPU coordination at the same time.

6.4 UFO Overhead

UFO mainly involves the following overhead:

• Guest-side monitoring: We compare CPU and memory

resource utilization, and application’s latency with and with-

out guest-side monitoring. The CPU and memory resource

consumption is barely observable, and application’s tail

latency remains the same.

• Host-side kernel module: The host OS is responsible for

data collection and core prediction. This kernel module

takes less than 5% of CPU utilization on average, since it

is only active for a few tens of milliseconds every second.

Memory consumption scales linearly with the number of

VMs and the total number of pCPUs on the host. Assum-

ing a maximum of 50 VMs and 200 pCPUs on the host,

memory usage is less than 2MB.

• Time to online or offline vCPUs in the guest OS: It takes

20-30ms to online or offline a single vCPU for LC applica-

tions. This overhead increases almost linearly (i.e., slightly

sublinear) with the number of vCPUs to online or offline

(more details in Appendix C.2). Prior work [24] shows

that the overhead can be reduced to tens of microseconds

per vCPU. We hope similar techniques could be merged to

mainline of Linux kernel in the future.

• Performance impact of onlining/offlining vCPUs in the

guest OS: As shown in Figure 14, onlining vCPUs cause

a sudden burst in guest-side CPU utilization, and offlining

vCPUs cause a sudden decrease in CPU utilization down

to 0. It takes up to 3s for CPU utilization to recover. This

explains why we wait for 3s after each vCPU adjustment.

7 Conclusion

We have presented UFO, a core manager for latency-critical

applications in virtualized and oversubscribed public clouds.

UFO leverages guest-host coordination and inner-VM core

isolation, to push core management to the extreme. UFO

outperforms state-of-the-art core managers by up to 50% in

core saving under the same colocation scenario. It also in-

creases the aggregate system load by up to 60% under the

same amount of core resources while still ensuring QoS.

1522 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Alibaba cloud elastic compute service. https://www.

alibabacloud.com/product/ecs.

[2] Alibaba cloud linux. https://alibaba.github.io/

cloud-kernel/os.html.

[3] Amazon ec2. https://aws.amazon.com/ec2/.

[4] Amazon linux. https://github.com/amazonlinux/

amazon-linux-2023.

[5] Centos end of life date. https://endoflife.date/

centos.

[6] Coefficient of determination. https://en.wikipedia.

org/wiki/Coefficient_of_determination.

[7] Github page of mutated load generator. https://

github.com/scslab/mutated.

[8] Github page of sysbench load generator. https://

github.com/akopytov/sysbench.

[9] Github page of wrk2 load generator. https://github.

com/sc2682cornell/wrk2.

[10] Guidelines for overcommitting vmware resources.

[11] Memcached official website. https://memcached.

org/.

[12] Mysql official website. https://www.mysql.com/.

[13] Nginx official website. https://www.nginx.com/.

[14] Steal time for kvm. https://lwn.net/Articles/

449657/.

[15] Tecent cloud virtual machine. https://cloud.

tencent.com/product/cvm.

[16] Tpc-ds homepage. https://www.tpc.org/tpcds/.

[17] Using virsh emulatorpin in virtual environ-

ments with nfv. https://access.redhat.com/

documentation/en-us/red_hat_openstack_

platform/10/html/ovs-dpdk_end_to_end_

troubleshooting_guide/using_virsh_

emulatorpin_in_virtual_environments_with_

nfv.

[18] Jeongseob Ahn, Chang Hyun Park, Taekyung Heo, and

Jaehyuk Huh. Accelerating critical os services in vir-

tualized systems with flexible micro-sliced cores. In

Proceedings of the Thirteenth EuroSys Conference, Eu-

roSys ’18, New York, NY, USA, 2018. Association for

Computing Machinery.

[19] Maryam Amiri and Leyli Mohammad-Khanli. Survey

on prediction models of applications for resources pro-

visioning in cloud. Journal of Network and Computer

Applications, 82:93–113, 2017.

[20] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin

Huai, Davies Liu, Joseph K Bradley, Xiangrui Meng,

Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al.

Spark sql: Relational data processing in spark. In Pro-

ceedings of the 2015 ACM SIGMOD international con-

ference on management of data, pages 1383–1394, 2015.

[21] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,

and Kai Li. The parsec benchmark suite: Characteriza-

tion and architectural implications. In Proceedings of

the 17th international conference on Parallel architec-

tures and compilation techniques, pages 72–81, 2008.

[22] Shuang Chen, Christina Delimitrou, and José F Martínez.

Parties: Qos-aware resource partitioning for multiple in-

teractive services. In Proceedings of the Twenty-Fourth

International Conference on Architectural Support for

Programming Languages and Operating Systems, pages

107–120, 2019.

[23] Shuang Chen, Angela Jin, Christina Delimitrou, and

José F Martínez. Retail: Opting for learning sim-

plicity to enable qos-aware power management in the

cloud. In 2022 IEEE International Symposium on High-

Performance Computer Architecture (HPCA), pages

155–168. IEEE, 2022.

[24] Luwei Cheng, Jia Rao, and Francis C. M. Lau. Vs-

cale: Automatic and efficient processor scaling for smp

virtual machines. In Proceedings of the Eleventh Euro-

pean Conference on Computer Systems, EuroSys ’16,

New York, NY, USA, 2016. Association for Computing

Machinery.

[25] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark

Russinovich, Marcus Fontoura, and Ricardo Bianchini.

Resource central: Understanding and predicting work-

loads for improved resource management in large cloud

platforms. In Proceedings of the 26th Symposium on

Operating Systems Principles, pages 153–167, 2017.

[26] Christina Delimitrou and Christos Kozyrakis. Quasar:

Resource-efficient and qos-aware cluster management.

ACM SIGPLAN Notices, 49(4):127–144, 2014.

[27] Xiaoning Ding, Phillip B. Gibbons, Michael A. Kozuch,

and Jianchen Shan. Gleaner: Mitigating the Blocked-

Waiter wakeup problem for virtualized multicore appli-

cations. In 2014 USENIX Annual Technical Conference

(USENIX ATC 14), pages 73–84, Philadelphia, PA, June

2014. USENIX Association.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1523

[28] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and

Adam Belay. Caladan: Mitigating interference at mi-

crosecond timescales. In 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

20), pages 281–297, 2020.

[29] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui

Feng, Liang Mao, and Yungang Bao. Who limits the

resource efficiency of my datacenter: An analysis of

alibaba datacenter traces. In Proceedings of the Inter-

national Symposium on Quality of Service, pages 1–10,

2019.

[30] Kim Hazelwood, Sarah Bird, David Brooks, Soumith

Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed

Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. Ap-

plied machine learning at facebook: A datacenter in-

frastructure perspective. In 2018 IEEE International

Symposium on High Performance Computer Architec-

ture (HPCA), pages 620–629. IEEE, 2018.

[31] SR Jiri Herrmann, Dayle Parker, and Scott Radvan. Red

hat enterprise linux 7 virtualization tuning and optimiza-

tion guide, 2015.

[32] Kenta Ishiguro, Naoki Yasuno, Pierre-Louis Aublin, and

Kenji Kono. Mitigating excessive vcpu spinning in

vm-agnostic kvm. In Proceedings of the 17th ACM

SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments, pages 139–152, 2021.

[33] Weiwei Jia, Jianchen Shan, Tsz On Li, Xiaowei Shang,

Heming Cui, and Xiaoning Ding. vSMT-IO: Improv-

ing I/O performance and efficiency on SMT processors

in virtualized clouds. In 2020 USENIX Annual Tech-

nical Conference (USENIX ATC 20), pages 449–463.

USENIX Association, July 2020.

[34] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,

Adam Belay, David Mazières, and Christos Kozyrakis.

Shinjuku: Preemptive scheduling for {µsecond-scale}
tail latency. In 16th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 19), pages

345–360, 2019.

[35] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim.

Opportunistic spinlocks: Achieving virtual machine scal-

ability in the clouds. ACM SIGOPS Operating Systems

Review, 50(1):9–16, 2016.

[36] Sanidhya Kashyap, Changwoo Min, and Taesoo

Kim. Scaling guest {OS} critical sections with

ecs. In 2018 {USENIX} Annual Technical Conference

({USENIX}{ATC} 18), pages 159–172, 2018.

[37] Harshad Kasture, Davide B Bartolini, Nathan Beck-

mann, and Daniel Sanchez. Rubik: Fast analytical power

management for latency-critical systems. In Proceed-

ings of the 48th International Symposium on Microar-

chitecture, pages 598–610, 2015.

[38] Harshad Kasture and Daniel Sanchez. Ubik: Efficient

cache sharing with strict qos for latency-critical work-

loads. ACM SIGPLAN Notices, 49(4):729–742, 2014.

[39] Harshad Kasture and Daniel Sanchez. Tailbench:

a benchmark suite and evaluation methodology for

latency-critical applications. In 2016 IEEE International

Symposium on Workload Characterization (IISWC),

pages 1–10. IEEE, 2016.

[40] Hwanju Kim, Sangwook Kim, Jinkyu Jeong, and Joon-

won Lee. Virtual asymmetric multiprocessor for inter-

active performance of consolidated desktops. SIGPLAN

Not., 49(7):29–40, mar 2014.

[41] Hwanju Kim, Sangwook Kim, Jinkyu Jeong, Joonwon

Lee, and Seungryoul Maeng. Demand-based coordi-

nated scheduling for smp vms. In Proceedings of the

eighteenth international conference on Architectural

support for programming languages and operating sys-

tems, pages 369–380, 2013.

[42] Jacob Leverich and Christos Kozyrakis. Reconciling

high server utilization and sub-millisecond quality-of-

service. In Proceedings of the Ninth European Confer-

ence on Computer Systems, pages 1–14, 2014.

[43] Yuhang Liu, Xin Deng, Jiapeng Zhou, Mingyu Chen,

and Yungang Bao. Ah-q: Quantifying and handling the

interference within a datacenter from a system perspec-

tive. pages 471–484, 2023.

[44] David Lo, Liqun Cheng, Rama Govindaraju,

Parthasarathy Ranganathan, and Christos Kozyrakis.

Heracles: Improving resource efficiency at scale.

In Proceedings of the 42nd Annual International

Symposium on Computer Architecture, pages 450–462,

2015.

[45] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron,

and Mary Lou Soffa. Bubble-up: Increasing utilization

in modern warehouse scale computers via sensible co-

locations. In Proceedings of the 44th annual IEEE/ACM

International Symposium on Microarchitecture, pages

248–259, 2011.

[46] Paul Marshall, Kate Keahey, and Tim Freeman. Improv-

ing utilization of infrastructure clouds. In 2011 11th

IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing, pages 205–214. IEEE, 2011.

1524 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[47] Aravind Menon, Jose Renato Santos, Yoshio Turner,

G. (John) Janakiraman, and Willy Zwaenepoel. Diag-

nosing performance overheads in the xen virtual ma-

chine environment. VEE ’05, page 13–23, New York,

NY, USA, 2005. Association for Computing Machinery.

[48] Rajiv Nishtala, Vinicius Petrucci, Paul Carpenter, and

Magnus Sjalander. Twig: Multi-agent task management

for colocated latency-critical cloud services. In 2020

IEEE International Symposium on High Performance

Computer Architecture (HPCA), pages 167–179. IEEE,

2020.

[49] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam

Belay, and Hari Balakrishnan. Shenango: Achieving

high {CPU} efficiency for latency-sensitive datacenter

workloads. In 16th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 19), pages

361–378, 2019.

[50] Jinsu Park, Seongbeom Park, Myeonggyun Han, Jihoon

Hyun, and Woongki Baek. Hypart: A hybrid technique

for practical memory bandwidth partitioning on com-

modity servers. In Proceedings of the 27th International

Conference on Parallel Architectures and Compilation

Techniques, pages 1–14, 2018.

[51] Tirthak Patel and Devesh Tiwari. Clite: Efficient and

qos-aware co-location of multiple latency-critical jobs

for warehouse scale computers. In 2020 IEEE Inter-

national Symposium on High Performance Computer

Architecture (HPCA), pages 193–206. IEEE, 2020.

[52] Yaqiong Peng, Song Wu, and Hai Jin. Robinhood:

Towards efficient work-stealing in virtualized environ-

ments. IEEE Transactions on Parallel and Distributed

Systems, 27(8):2363–2376, 2016.

[53] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and

John Ousterhout. Arachne:{Core-Aware} thread man-

agement. In 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 18), pages

145–160, 2018.

[54] Jia Rao and Xiaobo Zhou. Towards fair and efficient smp

virtual machine scheduling. In Proceedings of the 19th

ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPoPP ’14, page 273–286,

New York, NY, USA, 2014. Association for Computing

Machinery.

[55] Stijn Schildermans, Jianchen Shan, Kris Aerts, Jason

Jackrel, and Xiaoning Ding. Virtualization overhead of

multithreading in x86 state-of-the-art & remaining chal-

lenges. IEEE Transactions on Parallel and Distributed

Systems, 32(10):2557–2570, 2021.

[56] Jianchen Shan, Xiaoning Ding, and Narain Gehani. Ap-

ples: Efficiently handling spin-lock synchronization on

virtualized platforms. IEEE Transactions on Parallel

and Distributed Systems, 28(7):1811–1824, 2017.

[57] Xiang Song, Jicheng Shi, Haibo Chen, and Binyu Zang.

Schedule processes, not vcpus. In Proceedings of the

4th Asia-Pacific Workshop on Systems, pages 1–7, 2013.

[58] Orathai Sukwong and Hyong S Kim. Is co-scheduling

too expensive for smp vms? In Proceedings of the sixth

conference on Computer systems, pages 257–272, 2011.

[59] Boris Teabe, Vlad Nitu, Alain Tchana, and Daniel Hagi-

mont. The lock holder and the lock waiter pre-emption

problems: Nip them in the bud using informed spinlocks

(i-spinlock). In Proceedings of the Twelfth European

Conference on Computer Systems, pages 286–297, 2017.

[60] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni,

Fernando CM Martins, Andrew V Anderson, Steven M

Bennett, Alain Kagi, Felix H Leung, and Larry Smith.

Intel virtualization technology. Computer, 38(5):48–56,

2005.

[61] Xiaodong Wang, Shuang Chen, Jeff Setter, and José F

Martínez. Swap: Effective fine-grain management of

shared last-level caches with minimum hardware sup-

port. In 2017 IEEE International Symposium on High

Performance Computer Architecture (HPCA), pages

121–132. IEEE, 2017.

[62] Chuliang Weng, Zhigang Wang, Minglu Li, and Xinda

Lu. The hybrid scheduling framework for virtual ma-

chine systems. In Proceedings of the 2009 ACM SIG-

PLAN/SIGOPS international conference on Virtual exe-

cution environments, pages 111–120, 2009.

[63] Song Wu, Zhenjiang Xie, Haibao Chen, Sheng Di, Xinyu

Zhao, and Hai Jin. Dynamic acceleration of parallel

applications in cloud platforms by adaptive time-slice

control. In 2016 IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS), pages 343–

352, 2016.

[64] Ying Zhang, Jian Chen, Xiaowei Jiang, Qiang Liu, Ian M

Steiner, Andrew J Herdrich, Kevin Shu, Ripan Das, Long

Cui, and Litrin Jiang. Libra: Clearing the cloud through

dynamic memory bandwidth management. In 2021

IEEE International Symposium on High-Performance

Computer Architecture (HPCA), pages 815–826. IEEE,

2021.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1525

Appendix

A Extended Characterization

A.1 Impact on VM Exits under Host-Aware
Isolation

MSR_READ

PAUSE_INS

EX_INTERRUPT

HLT

MSR_WRITE

EPT_MISCONFIG

D I H D I H D I H
Memcached Nginx MySQL

0

100

200

300

V
M

 E
x
it
 F

re
q
u
e
n
c
y
 (

k
/s

)

(a) #VM Exits

D I H D I H D I H
Memcached Nginx MySQL

0

2

4

6
V

M
 E

x
it
 h

a
n
d
le

 t
im

e
 (

s
)

(b) VM Exit Handled Time

Figure 16: VM exit frequency and VM exit handled time under

default (D), isolation (I), and host-aware isolation (H), decomposed

by VM exit reason.

VM exits are handled 2x faster on the host under host-aware

isolation. Figure 16 shows the number of VM exits and the

handling time of VM exits per second under the three core

managers, decomposed by exit reason, collected and reported

by perf kvm. We find that the number of VM exits does not

vary much among the three mechanisms, but the handling

time is reduced by more than 60%.

For LC applications whose requests come and go, a HLT

VM exit is triggered every time when the application becomes

idle in between requests, and a VM entry is triggered every

time when a new request is received. HLT handling time

is the time between a HLT vm exit and the subsequent vm

entry. It signals how fast the system reacts to new requests.

Under host-aware isolation, running vCPU count never ex-

ceeds pCPU count, so that there are always free pCPUs to

handle VM entries as quickly as possible. However, under

other mechanisms, vCPU count is more than pCPU count,

and VM entries cannot be consumed immediately since there

may be no idle pCPU.

A.2 Impact on Caches under Host-Aware Iso-
lation

Caches are better utilized under host-aware isolation. Fig-

ure 17 shows misses-per-kilo-instructions (MPKI) of L1 in-

struction cache (L1I), L1 data cache (L1D), and last-level

cache (LLC). Compared with Default, Isolation reduces L1D

and L1I MPKI by up to 5% and 15% (average of 4.1% and

11%), respectively. This is because under Default, a vCPU can

freely move around between 16 pCPUs, while Isolation re-

stricts a vCPU to a fixed set of 4 pCPUs, eliminating cache pol-

lution and context switches with other VMs’ vCPUs. This ex-

plains why Isolation outperforms Default in Figure 2, despite

occasionally higher guest-side scheduling frequency. Host-

aware isolation further reduces L1D, L1I and LLC MPKI

by up to 12.5%, 7% and 10% (average of 8.5%, 2.7%, and

6%), respectively. This is because our host-aware isolation

can reduce the context switches and in turn decrease the times

of cache line evictions.

Default Isolation Host-Aware Iso

Memca Nginx MySQL
0

10

20

30

40

50

M
P

K
I

(a) L1 dcache

Memca Nginx MySQL
0

40

80

120

160

(b) L1 icache

Memca Nginx MySQL
0.0

0.2

0.4

0.6

(c) Last-level cache

Figure 17: Cache misses-per-kilo-instructions (MPKI) under three

core managers.

A.3 Indications of Guest-Side Scheduling Fre-
quency

To show the generality of guest-side scheduling frequency,

we experiment with three more LC applications from Tail-

bench [39], including ImgDNN, Xapian, and Moses. Adding

Nginx and MySQL, Figure 18 shows tail latency and guest-

side scheduling frequency with increasing RPS under various

pCPU count of the five LC applications (Memcached is al-

ready shown in Figure 4).

For all the evaluated applications except for MySQL, guest-

side scheduling frequency is a concave function with RPS.

Given a certain input load, we can compare guest-side schedul-

ing frequency between adjacent pCPUs, and check if the dif-

ference is above a certain threshold. 30% universally work for

these LC applications. For instance, for Nginx at RPS=80k,

scheduling frequency under 8 and 6 pCPUs are very simi-

lar. However, when reducing pCPU count to 4, guest-side

scheduling frequency is reduced by 43%. Therefore, we have

to assign 6 pCPUs for Nginx at RPS=80k.

MySQL is the only exception: scheduling frequency in-

creases with RPS and then reaches a short plateau. We find

that MySQL is fundamentally different from other applica-

tions in that a single MySQL request involves multiple appli-

cation threads and thus multiple guest-side context switches.

Suppose one MySQL request triggers X context switches and

the current RPS is R, there will be X ∗R context switches per

second regardless of how small or large R is. On the contrary,

a request of the other five LC applications is only processed by

a single application thread. At low load, the application thread

will be scheduled in upon request arrival, and scheduled out

after request processing. When load increases and there is

no free time between consecutive requests, the application

thread will not be immediately scheduled out after a single

1526 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2pCPU 4pCPU 6pCPU 8pCPU

(a) Nginx (b) MySQL (c) ImgDNN (d) Xapian (e) Moses

Figure 18: Relationship between application’s tail latency and guest-side scheduling frequency of five LC applications, apart from Memcached

which is already shown in Figure 4. The x-axis represents increasing input load. The horizontal dotted lines represent QoS targets. The vertical

purple lines represent the maximum RPS under QoS under each pCPU count. Purple arrows represent the difference in guest-scheduling

frequency between adjacent pCPUs.

q
1

q
2

q
3

q
4

q
5

q
6

q
7

q
8

q
9

q
1
0

q
1
1

q
1
2

q
1
3

q
1
4
a

q
1
4
b

q
1
5

q
1
6

q
1
7

q
1
8

q
1
9

q
2
0

q
2
1

q
2
2

q
2
3
a

q
2
3
b

q
2
4
a

q
2
4
b

q
2
5

q
2
6

q
2
7

q
2
8

q
2
9

q
3
0

q
3
1

q
3
2

q
3
3

q
3
4

q
3
5

q
3
6

q
3
7

q
3
8

q
3
9
a

q
3
9
b

q
4
0

q
4
1

q
4
2

q
4
3

q
4
4

q
4
5

q
4
6

q
4
7

q
4
8

q
4
9

q
5
0

q
5
1

q
5
2

q
5
3

q
5
4

q
5
5

q
5
6

q
5
7

q
5
8

q
5
9

q
6
0

q
6
1

q
6
2

q
6
3

q
6
4

q
6
5

q
6
6

q
6
7

q
6
8

q
6
9

q
7
0

q
7
1

q
7
2

q
7
3

q
7
4

q
7
5

q
7
6

q
7
7

q
7
8

q
7
9

q
8
0

q
8
1

q
8
2

q
8
3

q
8
4

q
8
5

q
8
6

q
8
7

q
8
8

q
8
9

q
9
0

q
9
1

q
9
2

q
9
3

q
9
4

q
9
4

q
9
6

q
9
7

q
9
8

q
9
90

200

400

600

800

C
P

U
 U

ti
li.

 (
%

)

(a) vCPU Threads

q
1

q
2

q
3

q
4

q
5

q
6

q
7

q
8

q
9

q
1
0

q
1
1

q
1
2

q
1
3

q
1
4
a

q
1
4
b

q
1
5

q
1
6

q
1
7

q
1
8

q
1
9

q
2
0

q
2
1

q
2
2

q
2
3
a

q
2
3
b

q
2
4
a

q
2
4
b

q
2
5

q
2
6

q
2
7

q
2
8

q
2
9

q
3
0

q
3
1

q
3
2

q
3
3

q
3
4

q
3
5

q
3
6

q
3
7

q
3
8

q
3
9
a

q
3
9
b

q
4
0

q
4
1

q
4
2

q
4
3

q
4
4

q
4
5

q
4
6

q
4
7

q
4
8

q
4
9

q
5
0

q
5
1

q
5
2

q
5
3

q
5
4

q
5
5

q
5
6

q
5
7

q
5
8

q
5
9

q
6
0

q
6
1

q
6
2

q
6
3

q
6
4

q
6
5

q
6
6

q
6
7

q
6
8

q
6
9

q
7
0

q
7
1

q
7
2

q
7
3

q
7
4

q
7
5

q
7
6

q
7
7

q
7
8

q
7
9

q
8
0

q
8
1

q
8
2

q
8
3

q
8
4

q
8
5

q
8
6

q
8
7

q
8
8

q
8
9

q
9
0

q
9
1

q
9
2

q
9
3

q
9
4

q
9
4

q
9
6

q
9
7

q
9
8

q
9
90

10

20

30

40

C
P

U
 U

ti
li.

 (
%

)

(b) Emulator Threads

Figure 19: CPU utilization of vCPU threads and emulator threads when running the 99 queries in Spark. The x-axis represent time, but is

marked by query index to differentiate different queries. Vertical dotted lines also split all the queries.

request, and will keep processing the next request, resulting

in reduced context switches at higher load.

This potentially means that we need to set a different thresh-

old for MySQL, e.g., 5%. Fortunately, we find that this is not

necessary. As introduced in Section 4.5, UFO also adopts

heuristics based on CPU utilization to guide core adjustment.

This is primarily to reduce trials when models are not fitted for

most applications. However, it also sets a bottom line for core

adjustment: when 30% is too relaxed for some applications,

UFO will not keep reducing pCPUs which may cause QoS

violations. UFO will ensure that per-core CPU utilization is

under 80%.

There are some alternative methods to handle cases like

MySQL. UFO does not adopt these methods currently, but we

leave more options for comprehensiveness. The first method

is to reduce the threshold from 30% to 5%. While this is con-

servative for the other five applications, it is a simple and uni-

versal approach, and we can achieve lower tail latency (at the

cost of more resources). For instance, as shown in Figure 18a,

if the threshold is set to 30%, Nginx at RPS=40k would re-

quest only 2 pCPUs to reach a tail latency of 2ms. If setting

the threshold to 5%, Nginx at RPS=40k would be assigned 4

pCPUs, reaching a tail latency of 0.5ms. The second approach

is to differentiate the two types of LC applications, and set

different thresholds for each category. As shown in Figure 18,

when the full profile of guest-side scheduling frequency is ob-

tained, it is very easy to distinguish MySQL-like applications

from other applications since scheduling frequency does not

drop at higher load. We set the threshold to 5% once identify-

ing these applications, and keep the threshold of 30% for all

other LC applications.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1527

Table 3: Symbols in UFO

N Number of virtual machines

vCPU [i] Requested vCPU count of V Mi

pCPU [i] Allocated pCPU count of V Mi

emuUtil Current CPU utilization of the emulator pool

cpuUtil[i] Current CPU utilization of V Mi

schedFreq[i] Current scheduling frequency of V Mi

SF [i][c] Recorded scheduling frequency of V Mi under c pCPUs

A dictionary of (u, f) pairs, where u and f are CPU

utilization and scheduling frequency, respectively.

Model[i][c] Fitted model of scheduling frequency of V Mi under c pCPUs

using SF [i][c], a quadratic function denoted by (Aic,Bic,Cic)

Default value is NULL if not fitted yet

Pred[i][c] Max CPU utilization that can be sustained for V Mi under

c pCPUs, predicted using Model[i][c] and Model[i][c+2]

Pred[i][0] = 0. If c > 0, default is −1 if not predicted yet.

A.4 CPU Utilization of Spark SQL

Figure 19 shows CPU utilization of vCPU and emulator

threads when running each query in Spark. vCPU threads

may run up to 800% of CPU utilization (8-vCPU VMs), while

emulator threads use at most 40% of CPU utilization. The

relative low usage of emulator threads makes isolation of

emulator threads ineffective for Spark.

B Extended UFO Design

In this section, we show the detailed algorithms in the UFO

design. The algorithms cover all the four stages in UFO’s

vCPU adjustment, shown in Figure 9. Table 3 includes all the

symbols used in the algorithms.

B.1 Update Modeling of Scheduling Frequency

Algorithm 2 shows how and when the modeling of scheduling

frequency is updated. For V Mi, when it just gets launched on

the host, no samples have been recorded (i.e., len(SF [i][c]) =
0 for any c — the number of cores), and no models have been

fitted yet (i.e., Model[i][c] = NULL is for any c).

As the VM runs, an increasing number of samples at vari-

ous CPU utilization and pCPUs are recorded, and we maintain

the last eight samples in SF [i][c] for each c. For a given pCPU

count, when three samples are recorded, we will start fitting

the model, though the model may be inaccurate due to skewed

samples. The inaccuracy will eventually come to light as the

VM runs and more samples are collected. Upon detection of

inaccuracy (i.e., the difference between the fitted value and

the true value is more than 5%), the model will be refitted

using the latest and more samples. Storing the latest eight

samples and refitting models upon detection of inaccuracy

allow UFO to adjust to workload churn inside the VM. For

instance, if a VM previously runs Memcached and later runs

Nginx, SF and Model will all shortly be updated with the

latest samples.

Algorithm 2: updateModel(i,c,u, f): Update sam-

ples and the fitted model of V Mi under c pCPUs.

V Mi’s current CPU utilization and scheduling fre-

quency are u and f , respectively.

if u is not in SF[i][c] then

// The first time for V Mi to reach util of u under c cores

add (u, f) to SF[i][c];

if len(SF[i][c]) > 8 then

// Too many samples. Maintain the latest 8 samples

for modeling

remove the eldest element in SF[i][c] ;

if Model[i][c] == NULL then

if len(SF [i][c]) == 3 then

// First time to collect enough samples for model

fitting

Fit Model[i][c];

if Model[i][c+2] 6= NULL then

// Record the maximum CPU utilization that c

pCPUS can sustain under QoS

Pred[i][c] = max
getSF(i,c,u)

getSF(i,c+2,u)≥0.7

u;

else
if | f −SF [i][c][u]|/ f > 5% or

| f − (Aic ∗u2 +Bic ∗u+Cic))|/ f > 5% then

// The current recorded value or the fitted value is

inaccurate

Fit Model[i][c];

if Model[i][c+2] 6= NULL then

// Update the max CPU utilization

Pred[i][c] = max
getSF(i,c,u)

getSF(i,c+2,u)≥0.7

u;

return;

When models of consecutive pCPUs are fitted, i.e., both

Model[i][c] and Model[i][c+2] are obtained, we start calcu-

lating Pred[i][c]. We clarify the reasoning behind Pred[i][c]
in Appendix B.2.

B.2 Core Predictor

The goal of UFO’s core predictor predict(i,c,u) is to output

the best core allocation for V Mi, given its current pCPU count

c and current CPU utilization u. Note that its scheduling fre-

quency is monitored and fed to the module of updateModel()
(see Algorithm 1), so we do not need to explicitly pass it as

an argument in the core predictor.

As discussed in Section 3.3, we can leverage guest-side

scheduling frequency to guide core allocation decisions on the

host OS. Comparing the relationship between scheduling fre-

quency and application’s tail latency, we find two conditions

to help determine the best core allocation.

Suppose V Mi current runs at CPU utilization u with

scheduling frequency f under c pCPUs, c is the best core

allocation if and only if:

1528 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 3: predict(i,c,u): Predict core allocation

for V Mi whose current pCPU count is c and CPU

utilization is u.

for p == 2, 4 .. vCPU[i] do

// Check if we can directly predict based on u

if Pred[i][p−2] ==−1 then

continue;

if Pred[i][p−2]< u and Pred[i][p]≥ u then

return p;

p = c;

if p+2 ≤ vCPU [i] and
getSF(i,p,u)

getSF(i,p+2,u)
< 0.7 then

// c pCPUs is not enough, check more pCPUs

while p+2 ≤ vCPU [i] and
getSF(i,p,u)

getSF(i,p+2,u)
< 0.7 do

p=p+2;

else

// c pCPUs is already enough, check fewer pCPUs

while p−2 > 0 and
getSF(i,p−2,u)

getSF(i,p,u)
> 0.7) do

p=p-2;

return p;

Algorithm 4: getSF(i,c,u): Get scheduling fre-

quency of V Mi under c pCPUs and u CPU utilization.

if u in SF[i][c] then

// A previously recorded pair

return SF[i][c][u];

if Model[i][c] 6= NULL then

// A previously fitted model

return Aic ∗u2 +Bic ∗u+Cic;

// Adjust pCPUs to collect scheduling frequency

modify(i, c);

sleep for 3s;

updateModel(i, c, cpuUtil[i], schedFreq[i]);

return schedFreq[i];

• c+ 2 is too much, i.e., scheduling frequency does not

increase much with more cores.

• c − 2 is not enough, i.e., scheduling frequency drops

significantly with fewer cores.

UFO checks the two conditions above by comparing f with

scheduling frequency f ′ under adjacent pCPU counts, and

checks if the difference between f and f ′ is within a certain

threshold.

B.3 Monitoring and Reaction Frequency

As discussed in Section 4.3, UFO operates at second granu-

larity, monitoring every second, and waiting for three seconds

after each core adjustment. This is because:

• As shown in Figure 20, monitoring at finer granularity

causes unstable results. As introduced in Section 5.2, even

0 1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

R
P

S
 (

k
)

10ms 100ms 1s

0 1 2 3 4 5 6 7 8 9 10

5

10

15

9
9
th

 P
e
rc

e
n
ti
le

 (
m

s
)

0 1 2 3 4 5 6 7 8 9 10
Time (s)

40

80

120

S
c
h
e
d
.

F
re

q
.

(k
/s

)

Figure 20: Data stability with increasing monitoring interval when

MySQL runs at RPS of 30000. Despite constant RPS, request inter-

arrival time follows an exponential distribution, causing significant

load and latency fluctuations at sub-second granularity.

under constant load, there are many load and latency fluc-

tuations due to the exponential request inter-arrival dis-

tribution. UFO is designed for black-box public clouds

and does not assume any application-level knowledge like

prior fine-grained approaches [28, 49]. It aims to meet

QoS in the long run (i.e., at least over tens of seconds like

Heracles [44] and PARTIES [22]).

• We find that after vCPU onlining/offlining in the guest

OS, it will be up to 3s for guest-side CPU utilization to

stabilize (more discussion in Section 6.4). We evaluate

how this affects UFO’s responsiveness to bursty loads in

Section 6.2.

B.4 Interaction with the Cluster Manager

UFO is an intra-node core management, and should interact

with the high-level cluster manager based on the size of the

idle pool. There are three cases of the idle pool size:

• If the idle pool consistently has more than a handful of idle

cores (e.g., #idle cores > 2), this signals system underload-

ing, and UFO will signal the cluster manager to schedule

more tasks to the node to make use of the idle pool.

• If the idle pool is constantly small (e.g., 0 ≤ #idle cores ≤
2), this means there is just the right amount of system load,

and the cluster manager should stop scheduling more tasks

to the node.

• If the idle pool consistently fails to supply the vCPU or the

emulator pool with more needed cores, UFO will signal the

cluster manager to migrate some tasks to other nodes.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1529

C Extended Evaluation

C.1 Heatmaps of 2-VM Colocation Mixes

We show heatmaps of all the 2-VM colocation mixes in Fig-

ure 21, 22, 23, 24 and 25. Heatmaps of colocation of Mem-

cached and Memcached is already shown in Figure 12.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

L
o
a
d
 o

f
N

g
in

x
 (

%
) 8 10 12 12 14 14 16 16 X X

10 12 14 14 14 16 X X X X

12 14 16 16 X X X X X X

14 16 X X X X X X X X

14 X X X X X X X X X

16 X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

Load of Memcached (%)

(a) Default

10 20 30 40 50 60 70 80 90 100

6 8 10 10 X X X X X X

8 10 12 12 X X X X X X

8 10 12 12 X X X X X X

10 12 14 14 X X X X X X

10 12 14 14 X X X X X X

10 12 14 14 X X X X X X

12 14 16 16 X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

Load of Memcached (%)

(b) DynIso

10 20 30 40 50 60 70 80 90 100

6 6 8 8 8 10 12 12 14 14

6 6 8 8 8 10 12 12 14 14

6 8 10 10 12 12 14 14 16 16

8 8 10 12 12 12 14 14 16 16

10 10 12 12 12 14 14 14 16 16

10 10 12 14 14 14 16 16 X X

12 12 14 14 14 14 16 X X X

12 12 14 16 16 16 X X X X

14 14 16 16 16 X X X X X

14 14 16 X X X X X X X

Load of Memcached (%)

(c) UFO

Figure 21: Colocation of Memcached and Nginx.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

L
o
a
d
 o

f
M

y
S

Q
L
 (

%
)

10 12 14 14 14 14 16 16 X X

12 14 16 16 16 X X X X X

12 16 X X X X X X X X

14 X X X X X X X X X

16 X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

Load of Memcached (%)

(a) Default

10 20 30 40 50 60 70 80 90 100

8 10 12 12 X X X X X X

8 10 12 12 X X X X X X

10 12 14 14 X X X X X X

12 14 16 16 X X X X X X

12 14 16 16 X X X X X X

12 14 16 16 X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

Load of Memcached (%)

(b) DynIso

10 20 30 40 50 60 70 80 90 100

6 6 6 8 8 10 12 12 14 14

6 8 8 8 10 10 12 12 14 14

8 8 10 10 12 12 14 14 16 16

8 8 10 10 12 12 14 14 16 16

8 8 10 12 12 12 14 16 X X

10 10 12 14 14 14 16 X X X

10 10 12 14 14 14 16 X X X

12 12 12 14 14 14 16 X X X

12 14 16 16 X X X X X X

14 16 16 X X X X X X X

Load of Memcached (%)

(c) UFO

Figure 22: Colocation of Memcached and MySQL.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

L
o
a
d
 o

f
N

g
in

x
1
 (

%
)

4 6 6 8 8 8 10 12 14 X

6 6 8 8 8 10 10 12 16 X

6 8 8 8 10 10 12 14 X X

8 8 8 10 10 12 14 16 X X

8 8 10 10 12 12 16 16 X X

8 10 10 12 12 14 16 X X X

10 10 12 14 16 16 X X X X

12 12 14 16 16 X X X X X

14 16 X X X X X X X X

X X X X X X X X X X

Load of Nginx2 (%)

(a) Default

10 20 30 40 50 60 70 80 90 100

4 6 6 8 8 8 10 X X X

6 8 8 10 10 10 12 X X X

6 8 8 10 10 10 12 X X X

8 10 10 12 12 12 14 X X X

8 10 10 12 12 12 14 X X X

8 10 10 12 12 12 14 X X X

10 12 12 14 14 14 16 X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

Load of Nginx2 (%)

(b) DynIso

10 20 30 40 50 60 70 80 90 100

6 6 6 8 8 8 8 10 10 14

6 6 6 8 8 8 8 12 12 14

6 6 6 8 8 8 8 12 14 14

8 8 8 10 10 10 10 14 14 16

8 8 8 10 10 10 12 14 14 16

8 8 8 10 10 12 14 14 16 16

8 8 8 10 12 14 16 16 16 X

10 12 12 14 14 14 16 16 16 X

10 12 14 14 14 16 16 16 16 X

14 14 14 16 16 16 X X X X

Load of Nginx2 (%)

(c) UFO

Figure 23: Colocation of Nginx and Nginx.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

L
o
a
d
 o

f
M

y
S

Q
L
 (

%
)

6 8 8 10 10 10 12 14 16 16

8 8 10 10 12 12 12 14 X X

8 10 10 12 12 12 14 16 X X

10 12 12 14 14 14 14 16 X X

10 12 14 14 16 16 16 X X X

12 14 14 16 16 X X X X X

12 16 16 X X X X X X X

14 16 X X X X X X X X

16 X X X X X X X X X

X X X X X X X X X X

Load of Nginx (%)

(a) Default

10 20 30 40 50 60 70 80 90 100

6 8 8 10 10 10 12 X X X

6 8 8 10 10 10 12 X X X

8 10 10 12 12 12 14 X X X

10 12 12 14 14 14 16 X X X

10 12 12 14 14 14 16 X X X

10 12 12 14 14 14 16 X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

Load of Nginx (%)

(b) DynIso

10 20 30 40 50 60 70 80 90 100

6 6 8 8 8 10 10 14 14 14

6 6 8 8 8 10 12 14 14 14

8 8 10 10 10 12 14 16 16 16

8 8 10 10 10 14 14 16 16 16

8 8 10 12 12 14 14 16 16 16

10 10 12 12 14 16 16 X X X

10 10 12 14 14 16 16 X X X

10 10 14 14 14 16 16 X X X

12 12 16 16 16 X X X X X

12 14 16 16 16 X X X X X

Load of Nginx (%)

(c) UFO

Figure 24: Colocation of Nginx and MySQL.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

L
o
a
d
 o

f
M

y
S

Q
L
1
 (

%
)

6 8 8 10 10 12 12 14 14 16

8 10 10 12 12 14 14 16 16 X

8 10 12 12 14 14 16 16 X X

10 12 12 14 14 16 X X X X

10 12 14 14 16 16 X X X X

12 14 14 16 16 X X X X X

12 14 16 X X X X X X X

14 16 16 X X X X X X X

14 16 X X X X X X X X

16 X X X X X X X X X

Load of MySQL2 (%)

(a) Default

10 20 30 40 50 60 70 80 90 100

8 8 10 12 12 12 X X X X

8 8 10 12 12 12 X X X X

10 10 12 14 14 14 X X X X

12 12 14 16 16 16 X X X X

12 12 14 16 16 16 X X X X

12 12 14 16 16 16 X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

Load of MySQL2 (%)

(b) DynIso

10 20 30 40 50 60 70 80 90 100

6 6 8 8 8 10 10 12 14 14

6 8 8 10 10 12 12 14 14 16

8 8 10 10 10 12 12 14 16 16

8 10 10 10 10 12 12 14 16 16

8 10 10 10 10 12 12 14 16 16

10 12 12 12 12 14 14 16 X X

10 12 12 12 12 14 14 16 X X

12 14 14 14 14 16 16 16 X X

14 14 16 16 16 X X X X X

14 16 16 16 16 X X X X X

Load of MySQL2 (%)

(c) UFO

Figure 25: Colocation of MySQL and MySQL.

C.2 UFO Overhead

Figure 26 shows the time required for onlining and offlining

increasing number of vCPUs in the guest OS under various

workloads. For each experiment, we consecutively online and

offline vCPUs for 1000 times, obtain the total overhead, and

report the average overhead per adjustment. For LC work-

loads, the overhead is about 20-30ms per vCPU. Overhead is

higher under BE workloads. This is because BE applications

tend to operate at very high CPU utilization (Figure 7). When

offlining a certain vCPU, application threads running on the

vCPU will all be migrated to other vCPUs. Therefore, higher

CPU utilization usually results in higher overhead.

M
Y

S
Q

L
N

G
IN

X
M

E
M

C
A

B
L
A

C
K

B
O

D
Y

T
C

A
N

N
E

D
E

D
U

P
F
A

C
E

S
F
E

R
R

E
F
L
U

ID
F
R

E
Q

M
R

A
Y

T
R

S
T
R

E
A

V
IP

S
x2

6
4

S
P

A
R

K

0

100

200

300

400

O
v
e
rh

e
a
d
 (

m
s
)

2vCPU 4vCPU 6vCPU

Figure 26: Average time spent on onlining or offlining 2, 4 and 6

vCPUs under various workloads. LC applications operate at their

max load.

1530 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Automatic Parallelization of Software Network Functions

Francisco Pereira Fernando M. V. Ramos Luis Pedrosa
INESC-ID, Instituto Superior Técnico, University of Lisbon

Abstract
Software network functions (NFs) trade-off flexibility and

ease of deployment for an increased challenge of performance.
The traditional way to increase NF performance is by distribut-
ing traffic to multiple CPU cores, but this poses a significant
challenge: how to parallelize an NF without breaking its se-
mantics? We propose Maestro, a tool that analyzes a sequen-
tial implementation of an NF and automatically generates an
enhanced parallel version that carefully configures the NIC’s
Receive Side Scaling mechanism to distribute traffic across
cores, while preserving semantics. When possible, Maestro
orchestrates a shared-nothing architecture, with each core op-
erating independently without shared memory coordination,
maximizing performance. Otherwise, Maestro choreographs a
fine-grained read-write locking mechanism that optimizes op-
eration for typical Internet traffic. We parallelized 8 software
NFs and show that they generally scale-up linearly until bot-
tlenecked by PCIe when using small packets or by 100 Gbps
line-rate with typical Internet traffic. Maestro further outper-
forms modern hardware-based transactional memory mecha-
nisms, even for challenging parallel-unfriendly workloads.

1 Introduction
With the transition of Network Functions (or NFs) from cus-
tom, fixed-function devices to software running on commod-
ity hardware came a well known performance challenge. As
line-rates kept increasing, the networking community kept
proposing new tools, techniques, and architectural enhance-
ments to overcome individual bottlenecks. User-mode frame-
works, like DPDK [38], bypass the kernel, avoiding costly
context switches; DDIO [41] places incoming packets directly
in the CPU cache as they arrive; and NICs implement Re-
ceive Side Scaling (RSS) [72] to consistently distribute traffic
across multiple CPU cores using a configurable hash-function.
Despite this wealth of tools, the challenge of developing per-
formant software at these time scales is considerable, typically
requiring parallelization [30] and, with it, a deep knowledge
of low-level architectural details such as cache-friendly al-
location, cache-coherence-aware coordination, and a deep
understanding of the RSS hashing mechanism.

Although parallelization is paramount to achieving high
performance, ensuring equivalence between parallel and se-
quential implementations is hard [22,35,50,63,67]. Thus, we
argue that developers need not shoulder the burden of fine-
grained parallelization themselves. Much like how developers
typically do not write entire code-bases in assembly language,
allowing a compiler to analyze their code, extract its function-

ality, and build an assembly implementation that is equivalent
in semantics, we argue that the fine-scaled parallelization of
NFs should follow a similar approach. Developers should
implement sequential versions of their NFs, benefiting from
the inherent simplicity of testing, debugging, and updating
such systems, and when deploying to production they can
“compile” the NF to obtain its parallelized version.

There are two key insights supporting the solution for this
challenge. Due to the increasingly pervasive use of NF frame-
works amenable to symbolic execution [1, 3, 10, 13, 17, 37, 45,
52, 68, 76], the first key insight is that this technique can be
used to not only analyze the NF and infer how it maintains
state, but also automatically generate modified versions of it.
The second key insight is that by knowing how the NF main-
tains its state, we can configure the RSS mechanism to send
packets accessing the same state to the same core, aiming to
minimize inter-core coordination in a parallel implementation,
thus maximizing performance.

With these key insights in mind, we propose Maestro, a
tool that automatically analyzes a software NF and generates
a new implementation that distributes the workload across
multiple cores while preserving the semantics of the sequen-
tial implementation. This analysis builds a comprehensive
symbolic model of how the NF stores and accesses state, and
how that state is structured around flows. Flows (also called
flowspace [50] and scope [22] by prior work) describe related
packets—identified through packet header fields—that the NF
logically tracks as an isolated unit. A firewall, for example,
often tracks TCP/UDP flows, identified by the packet 5-tuple
(source and destination IPs and ports and the IP protocol
number), whereas a traffic monitor may identify flows by des-
tination IP alone. As NFs typically store state on a per-flow
basis [50,69], Maestro learns how flows are defined in the NF
by extracting the constraints that define how packets access
state. We then use a solver to find an RSS configuration that
distributes traffic across multiple CPU cores, in such a way
as to minimize costly inter-core coordination. Our tool then
automatically generates a new implementation of the NF that
parallelizes its operation accordingly.

When possible, Maestro generates an implementation
based on a shared-nothing architecture, wherein RSS is con-
figured to forward packets of the same flow to the same
CPU core, completely eliminating any inter-core coordina-
tion. When the NF is not compatible with such a model,
Maestro can still generate a parallel implementation where
cores share state but accesses to that state are coordinated by
a read-write locking mechanism that, while not as performant

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1531

as a shared-nothing architecture, can still perform well under
typical (Zipfian) Internet traffic.

Maestro draws inspiration from prior work in NF analy-
sis [50] and verification [76, 77], as well as the wisdom of
a wide body of research on NF performance [25, 30, 45, 60].
We also use the lessons learned by many before us that ad-
dress the challenges of manually parallelizing NFs, including
NUMA considerations [29], configuring RSS for symmetric
flow handling [74], and rebalancing load with skew [8].

Maestro handles DPDK NFs which store state using the
Vigor API [76]. For these NFs to be amenable to ESE, they
are implemented under some constraints, which we describe
in §5. These limitations, however, pertain only to NFs given as
input to Maestro, and not to the generated parallel solutions.

We evaluate the performance of Maestro by parallelizing
8 DPDK NFs. Our experimental evaluation shows that NFs
that can be parallelized using the shared-nothing architecture
scale linearly with the number of cores used until bottlenecked
by PCIe when using small packets or by 100 Gbps line-rate
with typical Internet traffic [12]. The remaining NFs that re-
quire read-write locks to maintain their semantics vary their
performance with the workload. High-churn traffic–where
most packets establish a new flow–requires more writing to
shared state, degrading performance. Fortunately, the majority
of packets in typical Internet traffic belong to a minority of
flows [12], requiring less state writing and allowing more con-
currency. Under this read-heavy traffic, Maestro’s lock-based
parallel NFs perform comparably to a shared-nothing model.
Notably, when Maestro had to resort to locking, equivalent ver-
sions of the NFs that use hardware transactional memory [54]
(TM) to preserve semantics (via the Restricted Transactional
Memory interface [42]) were unable to outperform our op-
timized locks, as we show in §6.4. We also show that NFs
automatically parallelized by Maestro rival in performance
with ones manually parallelized using VPP [7].

In §2, we describe the inherent challenge of parallelizing
NFs, to better motivate our work. We subsequently present
the main contributions of our work, describing the Maestro
architecture in §3 and several key optimizations in §4. In §5
we discuss Maestro’s inherent limitations. In §6, we evaluate
Maestro and the performance of the parallel NFs it generates.
Finally, we describe related work in §7 and conclude with
final thoughts in §8.

2 Why Parallelization is Hard
Ideally, one would parallelize an NF by spinning up individual
instances per core, each running independently, and using the
NIC to evenly distributing traffic among them. NFs, however,
typically store state that persists across packets. Sharing this
state among cores requires coordinating access to it, but mini-
mizing this coordination is crucial to achieving high perfor-
mance. Parallel implementations that require no state sharing
among their instances (and therefore no synchronization) are
called shared-nothing. Implementing a shared-nothing imple-

mentation of a stateful NF requires carefully configuring the
NIC to distribute traffic to each core in a way that aligns with
how state is structured in the NF. With such a mechanism,
state is sharded across cores and packets accessing the same
state always find themselves on the same core.

The NIC can perform this traffic distribution in hardware
using the Receive-Side Scaling (RSS) mechanism [72]. This
mechanism hashes packet headers using a user-defined set
of fields and a hash key. The computed hash is subsequently
used to direct traffic to different queues which can deliver the
packets to different cores. To send, for example, packets of the
same TCP flow to the same core, one would configure RSS to
hash the source and destination IP addresses, and TCP/UDP
ports, and the IP protocol number (i.e. the 5-tuple), ensuring
that any two packets with the same 5-tuple will have the same
hash and will end up on the same core.

This leads us to the traditional method for building parallel
shared-nothing NFs: first, developers shard state in the NF,
building a full understanding of how state is accessed under
all circumstances. They then use this sharding solution to con-
struct an RSS configuration that distributes traffic accordingly.
This approach, however, poses three big challenges:

1. Finding the right sharding solutions is hard. Though
some NFs simply shard on the 5-tuple, many others require a
more careful approach. One common use case involves sym-
metrical access to state based on the 5-tuple so that incoming
traffic—that has the source and destination swapped—access
the same state as outgoing traffic [74]. Other NFs require a
more coarse-grained partitioning: some policers and traffic
monitors only use the destination addresses to index state,
connection limiters may only use source addresses, and net-
work address translators (NATs) will typically shard on the
WAN’s server address and port (as all the other addresses
and ports are translated). Simply sharding on the 5-tuple here
would require expensive coordination (e.g. locks), as cores
are unable to act independently.

Arriving at sharding solutions is harder than generically us-
ing locks each time state is accessed. The developer needs in-
tricate knowledge of the NF’s semantics and internals, partic-
ularly around how state is kept and manipulated. This thought
process must not only take place upon initial implementation,
but also as the NF code evolves over time. Augmenting a fire-
wall with a connection limiter feature renders the previously
configured 5-tuple sharding obsolete, requiring a complete
rethink of how it should be sharded.

2. Finding the right RSS configuration is hard. Even if
we take the sharding solution for granted, configuring RSS
accordingly is difficult. For trivial cases, this is just a matter of
selecting the right fields to hash but more complex scenarios
can require carefully crafting the RSS key. Such an approach
was used in [74] to handle symmetrical TCP/UDP flows, but
manually tracking the sharding constraints and finding inter-
nal symmetries in the hash key that pair with those constraints
quickly becomes unmanageable. For NFs with other sharding

1532 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ESE Constraints
Generator RS3 Code

Generator
NF model Constraints RSS config

Parallel NF.cNF.c

Figure 1: Maestro’s architecture

requirements, the problem becomes even harder. Not all sets
of fields are supported by NICs [39, 40], requiring a specific
RSS key that cancels out some bits to circumvents this limi-
tation. One might even require symmetry between different
interfaces (when incoming and outgoing traffic use different
NICs), which requires a separate but interrelated configura-
tion and key for each NIC. More complex NFs can shard
state in ways that do not neatly fit into any common case,
requiring a custom formulation which, as before, may need to
be completely rethought from scratch should the NF change
over time. Some cases are outright infeasible, due to inherent
NIC limitations, at which point a well-placed warning could
help guide developers towards better solutions.

3. Writing performant parallel code is hard. Even if a
developer correctly shards the NF and properly configures
RSS to achieve a valid shared-nothing solution, they can still
be leaving performance on the table. Though shared-nothing
goes a long way towards ensuring good performance, many
more minute details play a further role in parallel code. Packet
buffers and state must now be cache-aligned to avoid false
cache-line sharing. Memory allocation must be NUMA-aware
to avoid slower remote accesses across the QPI bus. Even ex-
ogenous factors like traffic skew must now be considered [8]
to fully realize the potential of a parallel implementation.

Getting any of these issues wrong can stand in the way of
performance, correctness, or both, but are ultimately amenable
to automation. Our tool—Maestro—tackles the first challenge
by analyzing how the NF keeps its state and finding the con-
straints that packets that need to be sent to the same core must
satisfy. It further tackles the second challenge by formulating
an SMT problem and using a solver to find the right RSS
keys that satisfy the sharding requirements. Finally, Maestro
addresses the third challenge by automatically generating a
parallel implementation that is semantically equivalent to its
sequential counterpart. The generated code fully handles NIC
initialization and RSS configuration, cache-alignment, load-
balancing, and NUMA considerations. Even when a shared-
nothing approach is not possible, Maestro can still help by
generating an optimized lock-based parallel implementation
that uses carefully crafted read-write locks to minimize inter-
core coordination with typical Internet power-law traffic.

3 Maestro Architecture
Maestro uses symbolic analysis to extract information on how
the NF maintains state, and with it infer possible dependen-
cies between parallel instances. This analysis is crucial to
achieve synchronization-free parallelization that shards state
by carefully splitting traffic among cores. How this careful
orchestration of packets can be used to avoid synchronization

among parallel instances is better explained via an example.

3.1 Parallelizing a firewall
Consider a firewall NF connecting a LAN and a WAN that
only forwards packets from the WAN that correspond to flows
started in the LAN. To keep track of ongoing flows, it stores
flow information in a map. Packets from the WAN lookup
flow information symmetrically relative to packets from the
LAN, naturally swapping source and destination fields.

Note that not all packets need access to all entries in the
map: only the ones belonging to the packet’s flow. As such,
in a parallel execution, making sure that packets of the same
flow are sent to the same core, conjoined with the fact that
packets of the same core are processed sequentially, allows
us to parallelize this firewall without any synchronization
between its instances—a shared-nothing architecture.

This orchestration of packets from the same flow to the
same core requires a specific RSS configuration. Not only
must we send LAN packets of the same flow to the same core,
but also their (symmetric) WAN responses. A configuration
partially fulfilling these requirements was already found by
Woo and Park [74]1. By adapting their configuration to the
firewalls’ needs, we ensure that every packet that needs access
to the same memory region is sent to the same core.

3.2 Generalizing NF parallelization
The above parallelization process is well tailored for our fire-
wall, but different NFs keep state in different ways, and thus
require different sharding solutions. Moreover, when access
to specific state precludes flow-sharding, synchronization is
necessary to maintain semantics.

Maestro deals with this parallelization process automati-
cally by using the architecture shown in Figure 1. Maestro
starts by analyzing the NF using Exhaustive Symbolic Execu-
tion (ESE) [18,45,76] to retrieve a sound and complete model
of its behavior. Then, it hands the model over to a three stage
pipeline: (1) the Constraints Generator, which uses this model
to analyze how the NF keeps its state and arrive at a sharding
solution; then (2) the RSS configuration generator stage—for
which we built a library called RS3—that uses a solver to
find an RSS configuration that steers packets following the
sharding rules found by the previous stage to the same core;
and finally (3) the Code Generator, that generates a parallel
implementation that configures the RSS accordingly and adds
additional synchronization mechanisms if needed.

1Woo and Park’s solution considers only a single RSS configuration,
whereas our firewall deals with two ports (LAN and WAN), each requiring
independent configurations. Although their findings are transposable to this
scenario, it still requires expertise from the developers.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1533

3.3 Extracting the NF’s model
Maestro uses ESE to extract the complete NF’s model. This
allows us to not only analyze how the NF maintains its state,
but also generate modified versions of its implementation.

The extracted model is an execution tree containing all
the possible code execution paths a packet can trigger. Each
node on this graph is either conditional (representing a branch
condition), a stateful operation (representing a call to a stateful
data structure, e.g. a map or a vector), or packet operation
(e.g. forwarding, dropping, etc.). Both the packet and stateful
data are traced as symbols, and every node contains a list of
constraints on these symbols that can be given to a solver to
query their possible values under any code path.

3.4 Finding the sharding solution
The NF model is passed to the Constraints Generator, which
is tasked with finding a sharding solution that allows shared-
nothing parallelization. The idea is to find the constraints
that hold true between packets that access the same state,
i.e. packets that must be processed on the same core. This is
intrinsically tied to how the NF maintains state. For example,
in a map for two operations to access the same state they must
use the same key. By symbolically tracking how such keys
are derived from packets, we reason about the constraints on
packets that access common state.
Building a stateful report. The Constraints Generator starts
by analyzing the NF’s model and builds a stateful report
(SR) of all the performed stateful operations. Each SR entry
specifies the operation’s name (e.g. map_put), object instance,
and other relevant arguments (e.g. the key used), and all the
possible constraints on both the received packet and other
stateful data when the operation was performed (e.g. map_put
was called when a UDP packet arrived from interface 0).
Filtering entries. After building the SR, the Constraints
Generator removes all entries related to read-only objects (e.g.
routing tables that are filled on start-up and never updated).
Such read-only accesses to shared state do not require coordi-
nation among cores and need not be reasoned about. Should
all accesses be read-only, the SR will be left empty and Mae-
stro asks the Code Generator to generate a parallel implemen-
tation that uses RSS with the sole purpose of load-balancing
traffic among cores (we explain the RSS mechanism in §3.5).
Analyzing the entries. The use of any data structure can
potentially preclude a shared-nothing approach, and therefore
we need to infer the conditions under which it is safe to per-
form stateful operations concurrently for each of them (or if
no such conditions exist). We present the analysis for one of
the most predominant data structures: the map [2, 50, 50, 76].

The map stores data indexed by a key. This data can be ac-
cessed via the function map_get, and modified with map_put.
Two map calls access the same memory region if and only if
they are given the same key. For a shared-nothing approach,
packets that trigger map calls to the same instance using the
same key need to be steered to the same core. This alone is,

LAN map_put(m0, flow_id, data)

LAN map_get(m0, flow_id, &data)
Constraints
Generator

Send to the same core LAN packets from the same TCP/UDP flow.

LAN map_put(m1, flow_id, data)
LAN map_put(m0, p.src_ip, data)

Same key1

Subsumption2

Disjunction3

Non-packet
dependency

4

Constraints
Generator

Send to the same core LAN packets with the same source IP.

LAN map_put(m0, p.src_ip, data)

LAN map_put(m1, p.dst_ip, data)
Constraints
Generator

Constraints
Generator

WAN if (ip == p.dst_ip) { ... }

WAN found = map_get(m0, p.dmac, &ip)

LAN map_put(m0, p.smac, p.src_ip)
Constraints
Generator

Send to the same core LAN and WAN
packets if the source IP of the former
matches the destination IP of the latter.

WARNING: packet field
disjunction detected

WARNING: non-packet
dependencies detected

m0, m1: map instancesp, p': packets flow_id: 5-tuple without the protocol

Interchangeable
constraints

5

map_put(m0, 42, data)LAN map_put(m0, 42, data)

WAN if (!found || ip != p.dst_ip) drop()

Figure 2: Example outputs of the Constraints Generator.

however, insufficient: we need to not only take into consid-
eration any RSS limitations, but also reason about the use
of multiple different map instances (or other data structures),
each independently tied to the previous requirement. With this
in mind, we designed a set of rules to guide Maestro towards
finding correct shared-nothing sharding solutions:

R1 Key equality. The most obvious case is when two packets
access the same map instance using the same key. In
this case, the Constraints Generator builds the constraint
from the formulas for the keys (1 in Figure 2).

R2 Subsumption. If a map instance is accessed using a subset
of the packet fields used to access a second instance, then
the subset takes precedence over its larger counterpart.
That is, the coarser-grained requirement wins over the
finer-grained one. This is exemplified in scenario 2 in
Figure 2: sending packets with the same source address
to the same core will also guarantee that packets with
the same 5-tuple are also sent to the same core. More
generally, we can always use a subset of the required
packet fields. As we will see later, this rule can act further
in concert with others to resolve incompatibilities.

R3 Disjoint dependencies. Accesses using disjoint sets of
packet fields are problematic. An NF that keeps a pair
of independent counters, one for source addresses and
another for destination addresses, requires packets with
the same source address or the same destination address
to be sent to the same core. Due to limitations in the
RSS mechanism, this is not possible: configuring it with

1534 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

both the source and destination fields will guarantee
that packets with the same source and destination will
be sent to the same core. Maestro warns the user and
provides the fundamental reason why the shared-nothing
approach cannot be applied (3 in Figure 2).

R4 Incompatible dependencies. RSS uses packet fields to
steer packets to cores. This means that using keys con-
taining (1) incompatible RSS packet fields or (2) no
packet fields at all will completely block our attempt at
correctly steering packets to cores. This is the case, for
example, of NFs which index data with constant keys,
as exemplified in case 4 of Figure 2. Again, in this
case, Maestro provides feedback to the user as to why
the shared-nothing approach is unfeasible2.

R5 Interchangeable constraints. We define a pair of con-
straints as interchangeable if they trigger the same NF be-
havior. This allows us to completely replace constraints
matching rules R3 or R4 with others that, if interchange-
able, do not prohibit shared-nothing parallelization.
Example 5 of Figure 2 showcases this scenario. In
this example, the packet is dropped when we fail to
find the MAC address entry on the map, or whenever
the incoming IP does not match with the stored ad-
dress. Although the NF stores source addresses using an
RSS-incompatible dependency on our NIC [39] (source
MAC), the Constraints Generator finds that the NF’s be-
havior is exactly the same whether we shard on the MAC
address or the destination address. In this case, these
constraints are interchangeable, which allows Maestro
to shard on either of them. Because the former uses an
incompatible RSS field, the Constraints Generator opts
for using the latter one for sharding.
By sharding with the IP address, changing solely this
field can cause the packet to be sent to a different core.
Although it may still find a matching entry of its MAC
address on the map, it will find a different IP address
stored on that same entry, and hence the packet will be
dropped. Both not finding the MAC entry and mismatch-
ing the IP value result in the same behavior from the NF.

These rules allow Maestro to correctly find sharding so-
lutions for a wide range of NFs (as we show in §6). Note
that only R1 is specific to data structures that use a key to
index state (e.g. maps, vectors, sketches). R2, R3, R4, and R5
are otherwise data structure agnostic, and Maestro employs
them to all entries, regardless of their specific data structure.
Though much of this analysis focuses on maps, it can be used
as building blocks for others. Moreover, we need only reason
about these details once per data-structure (or, at most, each
time a breaking change is made). Once data-structure devel-
opers encode such properties into Maestro, NF developers
can freely use these stateful data structures to build their NFs.

2Maestro behaves in a similar manner when finding global counters
updated by every packet, as it bars it from implementing a shared-nothing
parallel solution.

Name Description
map Stores integers indexed by arbitrary data.
vector Stores arbitrary data indexed by integers.
dchain Time-aware integer allocator.
sketch Count-min sketch [21].

Table 1: Stateful constructors currently supported by
Maestro.
Table 1 shows the stateful constructors currently supported
by Maestro.

Even when Maestro fails to find a shared-nothing solution,
it still provides the developer the fundamental reason why
(e.g. constant keys or non-packet dependencies). When met
with this result, the developer is faced with a decision: either
use this feedback to tweak the NF implementation so that it
becomes amenable to shared-nothing parallelism, or request
a lock-based implementation from Maestro.
Generating the constraints. The next step in the Maestro
pipeline is to generate the actual constraints, i.e., the condi-
tions that, if satisfied by a pair of packets, dictate that they
must be sent to the same core. Towards this end, Maestro
iterates over each pair of report entries of the same state in-
stances, creating SMT formulas stating that both keys must
be equal, and joining them all together with logical ORs.

Finally, we note that RSS must be independently config-
ured on each interface. As such, the constraints generated
by Maestro are interface-specific, reasoning about pairs of
packets which may arrive from separate interfaces. Case 5
from Figure 2 exemplifies this. It requires LAN packets to be
sent to the same core as packets from the WAN if the source
address of the former equals the destination address of the
latter.

Figure 3 shows the constraints found by the Constraint
Generator when analyzing our firewall example. It finds that
LAN packets with the same addresses and ports must be sent
to the same core, and similarly for WAN packets. It also finds
that WAN and LAN packets must be sent to the same core if
they have the same, but swapped, sources and destinations.

3.5 Finding the right RSS configuration
The previous stage tackled the challenge of finding a shared-
nothing sharding solution, producing constraints between
packets that when true require the packets to be processed
on the same core. We now focus on materializing this shard-
ing solution by automatically finding RSS configurations that
satisfy these constraints.

RSS is a hardware mechanism in the NIC that steers pack-
ets to core-specific queues. Once configured with an RSS key
and a set of packet fields, it extracts from incoming packets
the values of those fields and feeds them to a toeplitz-based
hash-function [56]. This function, depicted in Figure 4, works
by continuously left rotating the key k while iterating through
the selected packet fields bits d. The running 32-bit hash value
is XOR’ed with the current 32 least significant bits of the key
whenever the current bit di is 1. The resulting hash is used to

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1535

Constraints Generator

LAN map_put(m0, flow_id, data) WAN map_get(m1, flow_id, data)

LAN map_put(m1, symmetric_flow_id, data)

Figure 3: From the firewall’s SR to its sharding con-
straints.
index an indirection table containing queue identifiers, and
the packet is inserted in the corresponding queue.

Two packets with the same hash will be sent to the same
core. Given the configurability of the RSS hashing function,
we use it to ensure that packets that need to be processed on
the same core will have the same hash. For simple constraints
we can arrive at a satisfying RSS configuration solely by
correctly choosing the packet field set (e.g., hashing only
source and destination IPs and ports when requiring TCP
packets with the same 5-tuple to be sent to the same core).
However, what if (1) the NF requires a subset of packet fields
that can only be used as a group in the RSS mechanism
(e.g., a traffic monitor that shards solely the destination IP),
(2) it requires complex constraints between packets (e.g., a
Hierarchical Heavy Hitter sharding on multiple subnets of
the source IP and/or source ports), or (3) there are constraints
between packets arriving in different interfaces (which is the
case for many NFs requiring both LAN and WAN interfaces,
as in NATs, Firewalls, Connection Limiters, etc.)?

To address these scenarios in a generalized way, we built
RS3, a C library capable of taking constraints as inputs and
outputting RSS configurations that satisfy them. It uses the
Z3 solver [23] to find suitable configurations by encoding the
problem in a logical format. Maestro uses RS3 to generate
RSS configurations that satisfy the constraints given by the
Constraints Generator module.
Building the statement. The query given to the solver needs
to encode the following problem: given set of constraints, find
RSS keys that generate the same hash for every pair of packets
that satisfy them. To build this statement, we need to encode
both the hash function and the constraints into an SMT format.

Let k be a 52 byte3 RSS key, d and d′ hash inputs for each of
the packets (whose sizes depend on the extracted packet fields,
e.g. 12 bytes for source and destination IPs and ports), and
h(k,d) the 32 bit hash. Also, let |k| ≥ |d|+ |h|, H(k,k′,d,d′)
be true iff h(k,d) = h(k′,d′), and C(d,d′) be the constraint
between d and d′ provided by the constraint generator.
Hash function. As shown in Figure 4, H(k,k′,d,d′) can be
represented as:

|h|−1∧
b=0

 |d|⊕
x=0

(d[x]∧ k[x+b]) =
|d′|⊕
y=0

(d′[y]∧ k′[y+b])

 (1)

3Value for the Intel E810 100G NIC [39], but trivially adjustable in RS3.

Packet
Field

Selector

d0

d1

d2

...

dn

hash

Packet fields Key

Toeplitz
hash

...
Packet

kn-1kn kn+1 kn+2 ...

k0 k1 k2 ... km

k1 k2 k3 k0...

k2 k1...k3 k4

Figure 4: Toeplitz-based hash function.
Note that although the size of the key is lower bounded,

it should not have any influence on the feasibility of finding
a suitable hash configuration. Only a subset of its bits are
used on the hash function, and therefore constrained by our
requirements, with the other bits being free to take any value.
Base statement. Initially, let us encode the following query:
find a single key k such that, given any two hash inputs d and
d′ that obey the constraints C, their corresponding hashes
will always be equal. That is:

∀d,d′ . k 6= 0∧
[
(C(d,d′)∧d 6= d′)→ H(k,k,d,d′)

]
(2)

Having the key be 0 would always output 0 valued hashes,
steering all packets to a single core, so we prevent the key
from taking that value.
Compatibility with multiple keys. Each interface can have
its RSS mechanism individually configured. With that in mind,
let Ci j(d,d′) be the constraint between a pair of packets com-
ing from ports i and j, configured with the keys ki and k j
respectively. Note that Ci j = C ji, therefore it is enough to
consider, for example, all the constraints Ci j:{ j≤i}. For Equa-
tion (2) to be multi-key aware, we simply conjunct the con-
straints across all i and j, allowing the solver to manage each
key combination problem as a specific statement that must be
true. That is, for n ports:

∀d,d′ .
n∧

i=1

i∧
j=1

[
(Ci j(d,d′)∧d 6= d′)→ H(ki,k j,d,d′)

]
(3)

Compatibility with varying sets of RSS packet fields. Just
as different ports may need distinct RSS keys, we may also
need to configure RSS to use different sets of packet fields
depending on the interface. One way to address this would
be to consider hash inputs d0, ...,dn−1 for n interfaces. This,
however, highly increases the complexity of the query, making
it harder for the solver to find a solution4. Another way to
look at it would be to extend the hash inputs to include the
union of both field-sets and to deal with any unused bits.
To make the statement in Equation (3) consider constraints
between packets arriving at different ports with different RSS
packet field options, we again add more clauses to our large

4For n interfaces, and thus considering d0,d′0, ...,dn−1,d′n−1, with 96 bit
hash inputs we would have to deal with 2×96×n free bits.

1536 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

conjunction, now considering all relevant RSS field sets, all
while extracting for each one the required least significant
bits of d and d′ accordingly.

When given the constraints of our firewall, RS3 outputs two
RSS keys, one for each NIC interface. The symmetry between
the keys resembles the findings in [74], but generalized to two
interfaces, rather than just one.

3.6 Code Generator
This stage takes the generated RSS configuration, as well
as the NF’s model, and outputs a parallel implementation of
the original NF. Because the model is a sound and complete
representation of the original NF, it can be used to generate
an implementation identical in functionality to the original
one. More importantly, it can be modified to employ shared-
nothing parallelism by (1) configuring RSS, (2) allocating the
state independently for each core, (3) making sure that each
stateful call uses the data structures’ instances of that partic-
ular core, and (4) launching the NF in multiple cores. Ap-
pendix A.1 contains adapted code excerpts from our Firewall
example, showing both the sequential implementation used
as input to Maestro and the final generated parallel shared-
nothing implementation.
Parallel implementation with locking mechanisms.
When Maestro rules out a shared-nothing solution, it can fall
back to generating parallel implementations that use locking
mechanisms. In this scenario, it configures RSS with both
a random key and all the available RSS-compatible packet
fields, as now all cores share the same state.

Maestro also needs to carefully coordinate access to shared
data using read/write locks. As such, we distinguish read-
packets from write-packets: the former trigger only stateful
read operations, and the latter trigger at least one write. To
efficiently handle this scenario, we created a custom, highly
optimized read/write lock implementation that entirely avoids
cache-line sharing when acquiring read locks. We do this
with a series of per-core, cache-aligned, atomic spin-locks
that indicate whether the core has permission to proceed.
Acquiring a read lock requires just locking the current core’s
lock. To perform a write, however, one must lock all core-
specific locks (in order, to avoid deadlocks). With this in place,
we speculatively process all packets as read-only until they
attempt to perform a write operation, at which point we stop
processing, release the local lock, acquire all core-specific
locks, and restart processing the packet from the beginning.

The performance toll is minimized when an NF is subjected
to read-heavy workloads (see §6.4), as read-only packets need
only acquire a core-specific cache-aligned lock, and have no
need to atomically write to any shared variable, or write to
shared data. As all write-packets start out as read-packets
before backtracking, starvation is not an issue.

4 Implementation challenges
Finding good RSS keys. The first set of keys found by the
solver is often not ideal. If, for example, the solver finds a key

with all but the first bit set to zero, the hash, though semanti-
cally valid, will only ever be 0x0 or 0x80000000. This leads
to packets being sent to only two cores.

The solution employed by RS3 involves setting the value 1
to as many bits as possible in the keys, so long as they still sat-
isfy the given statement. This is known as a Partial MAXSAT
problem [19]. We give the solver a statement that its corre-
sponding solutions should always satisfy—Equation (3), hard
constraints—and also a set of clauses that they should try to
satisfy—soft constraints. The soft constraints correspond to a
chain of logical ANDs setting each key bit to 1. There is no
need for maximizing the number of satisfied soft constraints.
Most of the times, a randomly selected set of bits with the
value 1 is enough to avoid corner case problems like the one
mentioned above. As such, Maestro uses a slightly modified
version of the diagnosis-based approach introduced by Fu
and Malik [33]. It begins by seeding the key with random
bits. Then, if the combined hard and soft constraints are not
satisfiable, we get the UNSAT core from the solver and ran-
domly discard a subset of these soft constraints, repeating as
necessary until either a key is found or no further soft con-
straints are left, indicating that no such key exists. Due to the
randomized nature of this algorithm, we use multiple parallel
solvers to independently find keys until one is found with an
acceptable workload distribution.
NUMA considerations. In a NUMA environment, each pos-
sible combination of NIC, memory, and CPU pinning influ-
ences throughput. Our machines (see §6) have 100 Gbps NICs
with 2 interfaces, thus both interfaces are pinned to the same
NUMA node. Under these circumstances, pinning the packet
buffers to the same NUMA node as the NIC is optimal [29].

Another important consideration is that the dominant con-
tention factor in parallel packet processing applications is
the cache, specifically for Intel Data Direct I/O (DDIO) re-
sources [25, 55]. Using DDIO, the packets coming from the
NIC are directly placed in the last level cache (LLC) of the
NUMA node. Contention happens when the number of con-
current packets exceeds the available reserved space for I/O
in the LLC, at which point packets evict each other and per-
formance suffers. Maestro allocates packet buffers close to
the NIC, but keeps state local to each core’s NUMA node.
Deciding where to run each thread is, however, a deployment
challenge, not an implementation one, and therefore out of
scope for Maestro. Nevertheless, our experience has taught
us a simple rule of thumb: if the LLC is large enough to hold
all packet buffers at line-rate, then we should pin both the
CPU and memory to the same NUMA node as the NIC. If,
however, the LLC is too small, resulting in contention—as
occurs with older processors—then it’s better to distribute
cores evenly across NUMA nodes, thus increasing the total
available LLC. Though we have seen scenarios where us-
ing multiple NUMA nodes was best, in our testbed the LLC
proved sufficiently large to justify using a single NUMA node,
and all our experiments in this paper follow this guideline.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1537

Traffic skew. The expression "mice and elephants" is typi-
cally used to describe packet flow distributions on the Inter-
net [12, 36, 53]. These follow a Zipfian distribution, where
a large fraction of packets relate to but a few flows, and the
remaining ones share a small slice of traffic.

While traffic with a uniform distribution leads to packets
being uniformly distributed to cores, traffic following a Zip-
fian distribution can overload a subset of cores, causing skew.
This performance difference is shown in Figure 5, which
demonstrates how the parallel firewall throughput varies with
the traffic distribution. The Zipfian traffic was generated with
parameters from [60], which were found by analyzing a real-
world traffic sample from a University network in [12]. This
generated traffic has 50k packets and 1k flows, 48 of which
responsible for 80% of the traffic. RSS was configured with
five different random keys and the error bars represent the
min/max performance. Performance is influenced by both the
RSS key and the indirection table, as more hash collisions
cause more packets being sent to the same core. Under uni-
form traffic, the indirection table’s entries are expected to be
equally accessed, and thus uniformily filling it leads to evenly
spreading packets across cores. With Zipfian traffic, however,
the higher density of certain flows leads to more accesses to
some entries, overloading some cores. Note that when using
a single core we see better performance under Zipfian traffic
due to an increased cache hit-rate when accessing state [60],
though the effect is less prominent when more cores are used.

RSS++ [8] fixes the distribution problem imposed by Zip-
fian traffic by dynamically adjusting the indirection table
according to the traffic. It balances the indirection table by
swapping entries associated with overloaded cores for ones
associated with underloaded ones. It also provides us with
mechanisms for state migration across cores which avoid
both blocking and packet reordering. We implemented static
versions of these mechanisms in Maestro, but their dynamic
versions could be used to handle changes in skew over time.
State sharding. When applying shared-nothing paralleliza-
tion, Maestro not only allocates each data structure instance
on each core, but further adjusts each data-structure’s capacity,
keeping approximately constant the total amount of memory
used for all cores by reducing the per-core amount.

This raises an interesting question about the semantics
of filling up state in a shared-nothing parallel version of an
NF, which slightly differs from the sequential or lock-based
parallel versions. As each core now has a reduced capacity, it
is possible to exhaust the capacity of one core despite there
being spare room in others. Ultimately, when a core becomes
“full”, it will behave in the same way locally as the sequential
NF would globally (e.g. by dropping packets from new flows).
As the RSS++ mechanism redistributes flows across cores
to counteract traffic skew, this also affects state distribution,
making it harder to exhaust any one core.

This state sharding has the desirable side-effect of opti-
mizing the NF’s cache utilization. If each core has a smaller

 0
 20
 40
 60
 80

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
p

p
s

Number of cores

Uniform Zipf Zipf (balanced)

Figure 5: Shared-nothing firewall under uniform and
Zipfian traffic, with and without balanced tables.
working-set, more of it will fit in the local L1+L2 data caches.
This provides an extra performance advantage to the shared-
nothing approach on top of that of parallelization on its own.
Lock-based rejuvenation. When following a read-write
lock-based parallelization approach, flow rejuvenation can be
a challenge. As simply reading state requires updating the
flow entry aging data, a naive implementation would require
a write lock for all packets, with dire consequences for per-
formance. Maestro circumvents this issue by implementing
an optimized rejuvenation algorithm that operates locally in
each core for most cases. We first modify the data-structures
to hold multiple cache-aligned copies of the entry aging data,
one per core. Each core then manages state aging locally for
each entry, allowing the age of the entries to deviate from
core to core as packets from the same flow arrive at different
cores at different times. When eventually one core believes
it should expire an entry, only then does it acquire a write
lock. At this point, the core inspects the aging data for that
entry on all cores. If the flow indeed expired on all cores, it is
cleared out globally. If, however, another core is found where
the entry has not yet expired, the local timestamp is re-synced
with the newest one. Ultimately, if packets from the same flow
regularly hit all cores, no write-locks are ever needed.
Implementation. Maestro uses the KLEE symbolic execu-
tion engine, extending it with 14,859 lines of C++ code. We
also implemented RS3 in 3,964 lines of C code, independently
from Maestro 5.

5 Assumptions and limitations
NF limitations. To allow ESE, NFs must fit within some
limitations, much like the ones enumerated in [44]: i) there
must be a clean separation between stateful and stateless op-
erations, a constraint put in practice by only allowing state to
persist within a set of well-defined data structures; ii) loops
must be statically bounded; and iii) no pointer arithmetic is
allowed outside the data-structures. These constraints are al-
ready enforced for safety reasons in commonly used packet
processing framework like eBPF6 [3], a widely used frame-
work in both academia and industry7 [1, 10, 13, 17, 37, 52, 68].
RSS limitations. For Maestro to consider other hash func-
tion besides the standard toeplitz-based one, they would have
to be formulated as an SMT problem and added to RS3. This
requires having their implementation openly disclosed.

5Our code is openly available at [4].
6NFs developed in eBPF store their state in kernel-maintained maps [2].
7There is an ongoing effort in adapting Maestro to also accept eBPF NFs

as input (an effort already set in motion by PIX [44]).

1538 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

In practice, a more limiting factor is packet field selec-
tion: shared-nothing approaches can only be applied if state
is sharded using RSS-compatible packet fields. DPDK’s
API [43] reference includes all possible field combinations
that RSS can use (e.g. IPv4/IPv6 TCP/UDP flow tuples), but
each NIC only implements a subset of them [39, 40].
Attacking state sharding. We mentioned earlier that it
would be possible to “fill-up” a single core with fewer flows
in a shared-nothing parallel NF than would otherwise be
needed in the sequential or lock-based parallel versions. This
could potentially be used as a DoS attack vector, reducing the
cost for an attacker to block new flows from being admitted.
RSS++ flow redistribution addresses this for well-behaved
traffic, but an attacker can subvert this by specifically using
flows that induce exact RSS hash collisions. Colliding flows
end up on the same entry within the RSS indirection table and
thus cannot be split apart.

Though out-of-scope for this paper, Maestro provides some
defense from such attacks due to the randomization used to
generate RSS keys. Even assuming the attacker has access to
the NF source code and understands how it can be sharded
across cores, different random RSS keys that comply with the
sharding constraints will still distribute different flows in a dif-
ferent way. Without access to the actual key generated in RS3,
the attacker would have a harder time reverse-engineering a
set of co-located flows, mitigating their ability to induce the
kind of persistent skew needed in a successful attack.

6 Evaluation
In this section, we evaluate Maestro and the three different
types of parallel implementations it can generate: (1) shared-
nothing, (2) lock-based, and (3) parallel solutions using hard-
ware transactional memory [54] via the Intel’s Restricted
Transactional Memory interface [42]. We aim to answer four
questions: (i) how long does it take Maestro to parallelize
NFs? (ii) how well does the performance of these parallel
implementations scale with the number of cores? (iii) what
are the impacts on performance of the various paralleliza-
tion strategies that Maestro can use? and (iv) how do Mae-
stro’s automatic parallel implementations fare against highly-
optimized manually parallelized versions?

6.1 Target NFs and Microbenchmarks
To evaluate Maestro we analyzed 8 NFs—a simple forwarder
(NOP), a policer, a bridge, a firewall (FW), a port scan de-
tector (PSD), a NAT, a load-balancer (LB), and a connection
limiter (CL). These are open-source NFs, most are non-trivial
in complexity, and all have been used by a body of previous
work [44, 45, 76]8. In this section, we present a brief descrip-
tion of each, and show how Maestro parallelizes them9. For
each NF, we measured how much time Maestro took to gener-

8As mentioned in §5, the requirement that NFs be amenable to ESE can
prevent Maestro from analyzing many existing codebases.

9Every automatically generated parallel solution can be found on [4].

 0

 4

 8

 12

 16

NOP SBridgeDBridge Policer FW NAT CL PSD LB

T
im

e
 (

m
in

)

NFs

0.1 0.3 1.1
3.4

8.3

4.4
2.2 2.8

4.5

Figure 6: Time (in minutes) to generate parallel imple-
mentations for each NF (averaged over 10 runs).

ate a parallel implementation (shared-nothing when possible,
lock-based otherwise), summarizing the results in Figure 6.
NOP. This is a simple forwarding no-operation NF, i.e. a
stateless NF that simply forwards all packets that arrive from
one interface to the other. Maestro finds that this NF has no
state, and provides no constraints between packets arriving
at the same core. RSS is thus configured with all available
packets fields and a random key on both ports.
Policer. This NF aims to limit each user’s download rate,
identifying users by their IPv4 address. When Maestro ana-
lyzes this NF, it finds that state is indexed by the destination
IP address, implying that packets with the same destination
address must be sent to the same core. Because this constraint
uses the destination IP address, the chosen RSS packet field
options must contain this field. Although DPDK allows RSS
packet field options containing only IP addresses, our NICs
do not support this option. Maestro thus chooses a packet
field option that includes IP addresses and TCP/UDP ports.
This increases the complexity of the constraints on the key,
increasing the generation time in Figure 6.
Bridge. A bridge associates MAC addresses with interfaces,
and redirects packets accordingly. In a typical MAC learning
bridge, the association between source MAC addresses and in-
put interface is learned dynamically. When analyzing this NF,
Maestro detects that state is indexed by a MAC address, which
is a field not supported by RSS on our NIC. As such, Mae-
stro warns the user that it cannot generate a shared-nothing
implementation, opting for read/write locks instead.

By modifying the NF to disable dynamic MAC learning,
leaving only statically configured MAC-Port bindings, the
NF becomes more amenable to parallelization (as all state
is read-only), albeit with reduced functionality. This further
illustrates the ability of Maestro to inform developers and
help guide the development process by pointing out relevant
trade-offs between functionality and performance. With this
in mind, we created two versions of this NF: the standard
bridge with dynamic MAC learning (DBridge) and a static
one with fixed bindings (SBridge). When analyzing SBridge,
Maestro encounters only read-only data structures, requiring
no specific constraints on the RSS configuration. As with
NOP, Maestro generates a random RSS key and uses all the
available packet fields on all ports.
FW. This is the same firewall we have been using as
a running example throughout the paper (§3.1). It indexes
state with typical flow information on the LAN (source and
destination addresses and ports), and symmetrically on the
WAN. Maestro generates a shared-nothing implementation

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1539

DUT
NF

TG
PktgenTOR

#rx, #tx

Figure 7: Testbed for our experiments.
that shards state by the flow information, sending WAN pack-
ets corresponding to symmetric LAN sessions to the same
core as these (as shown in Figure 3).
PSD. A Port Scan Detector (PSD) counts how many distinct
destination TCP/UDP ports each host (source IP) has touched
within a given time frame. Above a threshold, connections
to new ports are blocked, preventing port scans. Maestro
analyzes the PSD and finds that it uses only the source IP to
access one map, but also the source IP and destination port to
access another. As such, the constraints for accessing the first
map subsume those of the second (R2) and Maestro finds an
RSS key that shards based only on source IPs.
NAT. A NAT translates addresses between a LAN and a
WAN, allowing multiple clients in the LAN to share a single
public IP in the WAN [70]. It keeps track of flows initiated
in the LAN, but to aid with translation it associates a unique
external port with each flow. Reply packets from the WAN
are checked to see if their address and port match those on
record before subsequently translating the destination address
and port to match those of the client.

Maestro notices that the NAT associates flows with external
ports using a map, fitting case R4 in §3.4. However, it also
finds an additional constraint fitting case R5: packets from the
WAN are only translated if they target the hosts that started the
session in the first place. This constraint allows for sharding
based on the external server’s IP address and port.

Much like its sequential implementation, the parallelized
NAT enforces unique ports inside each core. It does not, how-
ever, enforce this uniqueness across cores, a feature that does
not break semantic equivalence. Whereas on the sequential
implementation the allocated ports were used to distinguish
between sessions, now the sharding solution allows for pack-
ets sent to different cores (hence pertaining to different exter-
nal servers) to have the same allocated ports.
CL. A Connection Limiter (CL) aims to limit how many
connections any single client (source IP) can make to any
single server (destination IP) over a wider time frame (e.g.
several days). Given the longer time frames involved, this NF
uses a memory-efficient count-min sketch [21] to estimate
the connection count from each client to each server. For new
connections, the source and destination IPs are used to index
the sketch, indexing a configurable number of entries based
on different hashes (5 by default in our case). If all entries
surpass the connection limit, the packet is dropped, preventing
the new connection. Otherwise, each entry is incremented.

As with the PSD, Maestro finds two different access pat-
terns: the 5-tuple indexes a connection tracking map, while
the source and destination IPs index the sketch. Again, the lat-
ter constraint subsumes the former and Maestro shards based

on source and destination IPs.
LB. LB is a Maglev-like load balancer [27]. Its main goal
is to distribute traffic coming from the WAN to a series of
identical servers on the LAN. LB registers new servers when
it receives their packets coming from the LAN, and matches
packets coming from the WAN with previously registered
servers, keeping track of flows to ensure the same server
handles packets from the same flow.

In order to maintain semantic equivalency between a
shared-nothing parallel implementation and a sequential im-
plementation, packets that find an available server in the se-
quential implementation must also find it available in the
other. This ultimately means that all cores would need to have
all backends registered in their local state. That said, packets
coming in from the LAN in such a parallel implementation
would only be able to be registered in a single core, prevent-
ing packets that arrive at other cores from seeing it. With this
limitation in mind, it becomes impossible for multiple cores
to hold an identical set of backend servers without coordina-
tion, thus preventing the use of a shared-nothing model. The
Maestro analysis detects this issue when analyzing the LB
SR. Lacking a better alternative, Maestro issues a warning
and opts for a read/write lock based approach.

6.2 Performance Benchmarking Methodology
To benchmark the NFs, we use a standard testbed topol-
ogy [16], connecting a traffic generator (TG) and a device
under test (DUT), as shown in Figure 7. Both devices connect
through a top-of-rack (TOR) switch from which we collect
packet counters at the end of each experiment. Both TG and
DUT are equipped with dual socket Intel Xeon Gold 6226R @
2.90GHz, 96 GB of DRAM, and Intel E810 100 Gbps NICs.
Turbo Boost, Hyper-Threading, and power saving features
were disabled, as recommended by DPDK.

To measure throughput, the TG replays a given traffic sam-
ple (a PCAP file) in a loop at a given rate via the outbound
cable for 10s per experiment. The DUT receives this traffic,
processes it, and sends it back via the return cable, allowing
the TG to measure latency. We further use the TOR to in-
fer loss at the DUT, and—through comparison with the TG
report—to also detect when packets were lost within the TG
as well. We use DPDK-Pktgen [49] on the TG to find the
maximum rate with less than 0.1% loss. We exclude and re-
peat sporadic experiment runs where loss within the TG—as
opposed to the DUT—limited the results. When studying
scalability, we repeatedly reevaluate the NF, while varying the
number of cores it may use. We perform 10 measurements per
experiment for statistical relevance and show error bars with
min/max values. Our experiments properly handle NUMA
considerations and indirection table rebalancing (§4).

6.3 Picking the Workload
In this section we analyze how different workloads impact
performance, and ultimately establish the right workload con-

1540 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

64 128 256 512 Internet 1024 1500
 0

 20

 40

 60

 80

 100

G
b
p
s

M
p
p
s

Packet size (bytes)

Figure 8: Throughput in Gbps (blue) and Mpps (red) of
the parallel NOP running on 16 cores for different packet
sizes.
figuration to evaluate all Maestro’s parallelization solutions.

Packet size. To measure the impact of packet size on the
performance of NFs, we ran the NOP on all cores and gener-
ated traffic with fixed-sized packets (40k uniformly distributed
flows), varying the size on each iteration. The results (Fig-
ure 8) show that typical Internet traffic [12] and large packets
easily achieve line-rate (100G), but that smaller packets strug-
gle to keep up, reaching only ~45Gbps with 64B packets—
even with such a trivial NF. Prior work [6, 57, 65] has pointed
out that this bottleneck comes from PCIe 3.0 x16 and cannot
be overcome without improved hardware. Unless stated oth-
erwise, further experiments in this paper use 64B packets. As
we measure more complex NFs that limit throughput below
the 90Mpps shown in Figure 8, the bottleneck shifts from
PCIe to the CPU, illustrating the NF’s intrinsic performance.

Churn. The performance of parallel NFs can vary signifi-
cantly for read or write workloads. In networking terms, this
typically relates to churn, or the rate at which new flows are
added and expired. This is particularly important for lock and
TM based implementations, where creating new flows can
lead to costly aborted transactions or exclusive write locks.

We start by studying these churn effects on performance by
focusing on the read/write lock-based parallel firewall, and
comparing it to its shared-nothing counterpart. To conduct
churn experiments, ideally one would generate traffic live that
changes flows periodically in an online manner. We found
it challenging to generate such traffic programmatically at
line-rate so we followed an alternative solution: generating
PCAPs with different levels of relative churn—measured in
flows/Gbit. As Pktgen varies the replay rate of the PCAP
to probe the NF, the resulting absolute churn—measured in
flows/minute or fpm—changes in tandem. This guarantees
that our experiments converge to an equilibrium where the
highest rate is found for the given churn. Once we find this
rate, we can multiply the PCAP’s relative churn with the
experimental rate to compute the absolute churn.

With this in mind, we built PCAPs which (i) were small
enough to fit in memory; (ii) changed enough flows to produce
the desired relative churn; (iii) evenly spread these changes
throughout the traffic; and (iv) were cyclic (i.e. the flows that
expire at the start of the PCAP are created at the end). We then
replay these files in a loop for 10s as in all other experiments.

Figure 9 shows how the FW—parallelized with different
approaches—scales under varying amounts of churn. As abso-
lute churn is computed based on the achieved rate, note that it
too has error bars. Under low or no churn, the lock-based FW

 0

 20

 40

 60

 80

S
N

 0

 20

 40

 60

 80

M
p
p
s

L
o
c
k
s

 0

 20

 40

 60

 80

0 1k 10k 100k 1M 10M 100M

T
M

Churn (fpm)

1 core
2 cores
4 cores
6 cores
8 cores

10 cores
12 cores
14 cores
16 cores

Figure 9: Churn study of the shared-nothing (top), lock-
based (middle), and TM (bottom) parallel firewall.

scales well until bottlenecked by PCIe. At a churn of ~100k
fpm we start observing the collapse of performance as the
use of more cores just wastes more cycles busy-waiting under
exclusive write locks. Under heavy churn, performance is
abysmal as all cores end up contending for write locks. Note
that the churn limit of an NF depends on the size of packets—
Figure 9 uses 64B packets but for Internet traffic [12] the
lock-based FW handles churn up to 400k fpm.

The results also show just how badly the FW parallelized
with transactional memory handles churn. Although a useful
tool in other domains, it proves ineffective when dealing with
networked applications under churn.

The shared-nothing approach, unlike the lock-based one,
suffers almost no performance variation with churn up to
at least ~100M fpm, a great advantage over the lock-based
implementation. Benson et al. [12] tell us to expect up to 6M
fpm in typical data-center traffic—within the ability of our
shared-nothing FW, but not the lock-based one. University
networks—typically with less than 15k fpm—could easily be
handled even by our lock-based FW.

We focus the rest of this evaluation on studies without
churn, giving the lock and TM based approaches the benefit
of the doubt and illustrating their best-case performance.

6.4 Performance benchmarks
With parallel versions of each of the above 8 NFs generated,
we now evaluate their performance and scalability. By de-
fault, Maestro generates a shared-nothing implementation
when possible, falling back to read/write locks otherwise. This
choice can, however, be overriden, and Maestro can specifi-
cally generate parallel implementations using read/write locks
and TM for any of the NFs, upon request.

Parallelization technologies. We now study the perfor-
mance and scalability of each NF while being parallelized
for each of the three approaches. As per §6.3, the workload
used is composed of uniformly-distributed, read-heavy, small
packets10. Figure 10 shows throughput as a function of the

10Experimental results using Zipfian traffic are shown in Appendix A.2

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1541

 0
 20
 40
 60
 80

N
O

P

Shared-nothing Lock-based TM

 0
 20
 40
 60
 80

S
B

ri
d

g
e

 0
 20
 40
 60
 80

D
B

ri
d

g
e

 0
 20
 40
 60
 80

P
o
lic

e
r

 0
 20
 40
 60
 80

T
h

ro
u

g
h

p
u

t
(M

p
p

s)

F
W

 0
 20
 40
 60
 80

N
A

T

 0
 20
 40
 60
 80

C
L

 0
 20
 40
 60
 80

P
S

D

 0
 20
 40
 60
 80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 L
B

Number of cores

Figure 10: Parallel NF scalability with uniformly-
distributed, read-heavy, small packets, using a shared-
nothing approach when possible, read/write locks, and
TM. Maestro cannot do a shared-nothing DBridge or LB.

number of cores. Our raw performance is comparable to mea-
surements from other recent works [30], but we focus our
attention on scalability. Though most NFs top out their per-
formance before using all 16 cores due to bottlenecks in the
PCIe bus or the memory controller, the takeaway here is the
relative performance of the different approaches.

For all NFs where a shared-nothing approach was feasible,
this option scales linearly until bottlenecked by the PCIe
bus and then plateaus—an ideal outcome. The lock-based
implementations—though slower than their shared-nothing
counterparts when available—still scale fairly well but do not
always reach the PCIe bottleneck with 16 cores11. The Policer
shows what happens to these locks when writes are inevitable:
as every packet must update the token bucket state, every
packet requires an exclusive write lock, and performance
suffers catastrophically. Fortunately, this NF can be sharded
by IP address, so is amenable to the shared-nothing approach.

The benefits of state sharding (§4) become clear when we
compare the shared-nothing approaches with the lock-based
ones for the more state intensive NFs, i.e. the FW, NAT, CL,
and PSD. When each core holds less state due to sharding,
more of it fits in the core-local L1+L2 cache. In a shared-

11Eventually, all lock-based NFs except for the Policer and CL can reach
the PCIe bottleneck using extra cores from the remote NUMA node.

nothing approach where cores work independently on dif-
ferent working-sets this leads to an added performance im-
provement due to better caching, in addition to the benefits of
parallelization. As a result, performance for few (< 4) cores
can be worse than linear scalability would predict and using
many cores can have an added boost in comparison. Running
these experiments with a workload of only 256 flows—which
fits entirely in L1 cache—nullifies this effect.

A surprising takeaway is that TM does not work well with
the kinds of workloads found in more complex NFs, even
in the absence of churn. For simpler NFs it performs quite
well, scaling linearly with the number of cores, though still
operating more slowly than both shared-nothing and lock-
based alternatives. In these cases TM eventually catches up
with the other approaches, albeit needing more cores to do so.
However, for more complex NFs TM performs abysmally, as
the likelihood of a transaction aborting increases.

Ultimately, the clear winner is the shared-nothing approach,
with the best backup option consistently being our read/write
locks. The PSD—our most CPU intensive NF which stands
to gain the most from parallelization—performs 19× better
with 16 cores than a single-core version, due to the compound
effects of parallelization and improved cache efficiency.

Maestro does not deeply affect latency. We subjected all
NFs to a 1Gbps uniform background traffic of 64B packets
and collected 1000 latency probes within 10 seconds. We de-
tected no noticeable differences on the average and tail latency
values between the sequential NFs and their respective paral-
lel implementations, regardless of the adopted parallelization
strategy. Pktgen measured an average of 12±2µs for CL and
11±1µs for the remaining NFs.

VPP comparison. Finally, we compare Maestro with the
Vector Packet Processing framework (VPP) [7, 31], which
extends the concept of batch processing to the entire packet
processing pipeline with the purpose of increasing perfor-
mance by minimizing instruction cache misses. VPP follows
a converse approach to Maestro: packets are processed in
batches in a shared-memory parallel environment where pack-
ets can end-up on any core without regard to flows or locality.
Developers must then adapt the way they implement the NF to
those assumptions. This approach can require more expertise
and development effort, but once NFs are built in this way the
framework handles many of the low-level details.

To compare the performance of a Maestro parallelized NF
with an expertly developed one for VPP, we pitch our NAT
against the VPP nat44-ei with the DPDK plugin. These
two NFs are the most similar we found between the VPP
distribution and our corpus. We further removed a number of
features from the VPP NAT to bring their implementations
even closer together12.

Figure 11 shows the performance comparison between

12We removed statistical counters, disabled IPv4 checksum checking, com-
pletely removed the IPv4 reassembly feature, and finally replaced the IPv4
lookup with static forwarding.

1542 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0
 20
 40
 60
 80

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
p

p
s

Number of cores

Maestro (SN) Maestro (Locks) VPP

Figure 11: VPP and Maestro NAT comparison.

the parallel Maestro NAT (shared-nothing and lock-based)
and nat44-ei, all under uniformly distributed 64B packets.
Though all approaches scale well, Maestro’s shared-nothing
decisively outperforms VPP, reaching the PCIe bottleneck
with 10 cores. This is due to the shared-memory design that
VPP follows. A fairer comparison would be between VPP
and the lock-based Maestro NAT, as both use shared-memory.
Here both scale more slowly, never fully reaching the PCIe
bottleneck up to 16 cores. Maestro slightly outperforms VPP.
Further investigation with the perf [62] tool showed us that
although the Maestro lock-based NAT and the VPP one per-
form very similar numbers of memory reads and writes per
packet, the Maestro NAT more frequently finds the data on
L1 cache (Maestro’s 55% vs. VPP’s 46%) and has to access
RAM less frequently (Maestro’s 3% vs. VPP’s 4%). The key
takeaway though, is that Maestro’s automatically parallelized
NFs perform competitively with expertly developed, manually
parallelized NFs, without as much of a hassle.

7 Related Work
Fast packet processing. To address the performance chal-
lenges associated with software NFs, new packet I/O frame-
works were proposed [3, 15, 24, 64]. To achieve high packet
processing rates these solutions explore several types of opti-
mizations including zero-copy, kernel bypass, I/O batching,
and multi-queue support [9]. VPP [7] even expands batching
to the whole packet processing pipeline in order to reduce
instruction cache misses. Most implementations of network
functions today [28,71,75,77], including those from Maestro,
rely on Intel DPDK [38], a kernel-bypass packet process-
ing framework that provides a set of software libraries and
drivers for fast packet processing, providing multi-core and
NUMA-aware functionalities.
NF acceleration. PacketMill [30] accelerates NFs by care-
fully managing packet metadata and performing code-
optimizations across the whole network stack. Another ap-
proach to improve the performance of a software NF is to
leverage the platform hardware. Previous work [26, 46, 59,
71, 73] has explored multi-core CPU architectures, showing
the significant improvements they can achieve on an NF’s
performance, but also the challenges involved. Papadogian-
naki et al. [59], for instance, explored the advantages of a
shared-nothing model over a lock based implementation. The
goal of Maestro is to offer the advantages of parallelization
to NFs, for free. Although their work focused on the most
efficient utilization of available resources, we use their shared-
nothing model as guidance for automated generation of paral-
lel network functions. These solutions are manual, requiring

extensive expertise and painstaking effort from the developer.
De Carli et al. [22] proposed a concurrency model for soft-

ware IDSes that uses program analysis to infer the NF’s flow
semantics, feeding that information to a software scheduler
that steers packets to shared-nothing threads. Though the
concepts share similarities, Maestro’s approach differs from
theirs by (1) considering a wider class of NFs more generally,
rather than IDSes in particular; (2) using ESE to extract fine-
grained state access patterns, as opposed to their less granular
program-slicing approach; and (3) handling packet steering
entirely in hardware by generating RSS configurations for
NICs, avoiding the bottleneck of the software scheduler and
allowing Maestro parallelized NFs to scale better.
Flow steering. Although some NICs support rich flow-
steering configurable features [39, 58], these are orthogonal
to RSS and do not replace it. Using them to assure semantic
equivalence on a shared-nothing implementation may require
frequently adding/deleting a large amount of rules (specially
under high churn), which can heavily affect performance [47].
NF verification and synthesis. In recent years, verification
techniques have started to be applied to network functions.
Some of the most relevant work includes verification of net-
work properties [48,51], configurations [11,32], and NFs [76].
More recently, the research community has started exploring
synthesis approaches for SDN-based control [20], data plane
programs [34, 61, 78], and BGP configurations [14, 66]. Our
work fits into this line, by analyzing sequential NFs to auto-
matically generate accelerated versions.

8 Conclusions
In this paper we presented Maestro, a tool to automatically
parallelize sequential network functions. Maestro judiciously
configures the NIC’s RSS mechanism to distribute traffic
across cores, while preserving semantics, resorting to locking
mechanisms only when necessary. Maestro significantly im-
proved performance for all the NFs we analyzed—scaling-up
performance linearly until hitting fundamental bottlenecks
in PCIe, the memory controller, or line-rate—while reducing
developer effort to the push of a button.

Acknowledgments
We are grateful to our shepherd, Tom Barbette, and the anony-
mous NSDI’24 reviewers. We thank Hugo Sadok for his
comments on earlier drafts of the paper. We also thank
Paolo Romano and Daniel Castro for their help on han-
dling the TM approaches. This work was supported by
the European Union (ACES project, 101093126), INESC-
ID (via UIDB/50021/2020), and the SALAD-Nets CMU-
Portugal/FCT project (2022.15622.CMU). Francisco Pereira
was supported by the FCT scholarship PRT/BD/152195/2021.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1543

References
[1] Cilium project, 2023. https://cilium.io/.

[2] eBPF maps, 2023. https://prototype-
kernel.readthedocs.io/en/latest/bpf/
ebpf_maps.html.

[3] Express Data Path, 2023. https://en.wikipedia.org/
wiki/Express_Data_Path.

[4] Maestro source code, 2023. https://github.com/
snaplab-dpss/maestro/tree/nsdi24.

[5] Maestro’s test suit, 2023. https://github.com/
snaplab-dpss/maestro-eval/tree/nsdi24.

[6] Saksham Agarwal, Rachit Agarwal, Behnam Montaz-
eri, Masoud Moshref, Khaled Elmeleegy, Luigi Rizzo,
Marc Asher de Kruijf, Gautam Kumar, Sylvia Rat-
nasamy, David Culler, and Amin Vahdat. Understanding
host interconnect congestion. In Proceedings of the 21st
ACM Workshop on Hot Topics in Networks, HotNets ’22,
page 198–204, New York, NY, USA, 2022. Association
for Computing Machinery.

[7] David Barach, Leonardo Linguaglossa, Damjan Mar-
ion, Pierre Pfister, Salvatore Pontarelli, and Dario
Rossi. High-Speed Software Data Plane via Vectorized
Packet Processing. IEEE Communications Magazine,
56(12):97–103, 2018.

[8] Tom Barbette, Georgios P. Katsikas, Gerald Q. Maguire,
and Dejan Kostić. RSS++: Load and State-Aware Re-
ceive Side Scaling. In Proceedings of the 15th Inter-
national Conference on Emerging Networking Experi-
ments And Technologies, CoNEXT ’19, page 318–333,
New York, NY, USA, 2019. Association for Computing
Machinery.

[9] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast
Userspace Packet Processing. In Proceedings of the
Eleventh ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, ANCS ’15,
page 5–16, USA, 2015. IEEE Computer Society.

[10] David Beckett, Jaco Joubert, and Simon Horman. ACM
SIGCOMM 2018 Morning Tutorial on Host Data-
plane Acceleration (HDA). New York, NY, USA,
2018. https://conferences.sigcomm.org/sigcomm/
2018/tutorial-hda.html.

[11] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A General Approach to Network Configuration
Verification. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’17, page 155–168, New York, NY, USA,
2017. Association for Computing Machinery.

[12] Theophilus Benson, Aditya Akella, and David A. Maltz.
Network traffic characteristics of data centers in the wild.
In Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement, IMC ’10, page 267–280, New
York, NY, USA, 2010. Association for Computing Ma-
chinery.

[13] Gilberto Bertin. XDP in practice: integrating XDP into
our DDoS mitigation pipeline. In Technical Conference
on Linux Networking, Netdev, volume 2, pages 1–5. The
NetDev Society, 2017.

[14] Rudiger Birkner, Dana Drachsler-Cohen, Laurent Van-
bever, and Martin Vechev. Config2Spec: Mining net-
work specifications from network configurations. In
17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), pages 969–984, Santa
Clara, CA, February 2020. USENIX Association.

[15] Nicola Bonelli, Stefano Giordano, and Gregorio Procissi.
Network Traffic Processing With PFQ. IEEE Journal on
Selected Areas in Communications, 34(6):1819–1833,
2016.

[16] S. Bradner and J. McQuaid. Benchmarking Method-
ology for Network Interconnect Devices. RFC 2544,
RFC Editor, 03 1999. https://tools.ietf.org/rfc/
rfc2544.txt.

[17] Marco Spaziani Brunella, Giacomo Belocchi, Marco
Bonola, Salvatore Pontarelli, Giuseppe Siracusano,
Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. hXDP:
Efficient software packet processing on FPGA NICs.
In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 973–990.
USENIX Association, November 2020.

[18] Cristian Cadar, Daniel Dunbar, and Dawson Engler.
KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In
Proceedings of the 8th USENIX Conference on Operat-
ing Systems Design and Implementation, OSDI’08, page
209–224, USA, 2008. USENIX Association.

[19] Byungki Cha, Kazuo Iwama, Yahiko Kambayashi, and
Shuichi Miyazaki. Local search algorithms for par-
tial maxsat. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence and Ninth Con-
ference on Innovative Applications of Artificial Intelli-
gence, AAAI’97/IAAI’97, page 263–268. AAAI Press,
1997.

[20] Haoxian Chen, Anduo Wang, and Boon Thau Loo. To-
wards example-guided network synthesis. In Proceed-
ings of the 2nd Asia-Pacific Workshop on Networking,
APNet ’18, page 65–71, New York, NY, USA, 2018.
Association for Computing Machinery.

1544 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://cilium.io/
https://prototype-kernel.readthedocs.io/en/latest/bpf/ebpf_maps.html
https://prototype-kernel.readthedocs.io/en/latest/bpf/ebpf_maps.html
https://prototype-kernel.readthedocs.io/en/latest/bpf/ebpf_maps.html
https://en.wikipedia.org/wiki/Express_Data_Path
https://en.wikipedia.org/wiki/Express_Data_Path
https://github.com/snaplab-dpss/maestro/tree/nsdi24
https://github.com/snaplab-dpss/maestro/tree/nsdi24
https://github.com/snaplab-dpss/maestro-eval/tree/nsdi24
https://github.com/snaplab-dpss/maestro-eval/tree/nsdi24
https://conferences.sigcomm.org/sigcomm/2018/tutorial-hda.html
https://conferences.sigcomm.org/sigcomm/2018/tutorial-hda.html
https://tools.ietf.org/rfc/rfc2544.txt
https://tools.ietf.org/rfc/rfc2544.txt

[21] Graham Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its ap-
plications. Journal of Algorithms, 55(1):58–75, 2005.

[22] Lorenzo De Carli, Robin Sommer, and Somesh Jha. Be-
yond pattern matching: A concurrency model for state-
ful deep packet inspection. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’14, page 1378–1390, New York,
NY, USA, 2014. Association for Computing Machinery.

[23] Leonardo de Moura and Nikolaj Bjørner. Z3: An Effi-
cient SMT Solver. In C. R. Ramakrishnan and Jakob
Rehof, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 337–340, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[24] Luca Deri. Improving Passive Packet Capture : Beyond
Device Polling. Proceedings of SANE, 2004:85, 2004.

[25] Mihai Dobrescu, Katerina Argyraki, and Sylvia Rat-
nasamy. Toward Predictable Performance in Software
Packet-Processing Platforms. In Proceedings of the
9th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI’12, page 11, USA, 2012.
USENIX Association.

[26] Mihai Dobrescu, Norbert Egi, Katerina Argyraki,
Byung-Gon Chun, Kevin Fall, Gianluca Iannaccone,
Allan Knies, Maziar Manesh, and Sylvia Ratnasamy.
RouteBricks: Exploiting Parallelism to Scale Software
Routers. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP ’09,
page 15–28, New York, NY, USA, 2009. Association
for Computing Machinery.

[27] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A Fast and Reliable Soft-
ware Network Load Balancer. In Proceedings of the 13th
Usenix Conference on Networked Systems Design and
Implementation, NSDI’16, page 523–535, USA, 2016.
USENIX Association.

[28] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer,
Florian Wohlfart, and Georg Carle. MoonGen: A Script-
able High-Speed Packet Generator. In Proceedings of
the 2015 Internet Measurement Conference, IMC ’15,
page 275–287, New York, NY, USA, 2015. Association
for Computing Machinery.

[29] Paul Emmerich, Maximilian Pudelko, Simon Bauer, and
Georg Carle. User Space Network Drivers. In Pro-
ceedings of the Applied Networking Research Workshop,
ANRW ’18, page 91–93, New York, NY, USA, 2018.
Association for Computing Machinery.

[30] Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q.
Maguire Jr., and Dejan Kostić. PacketMill: Toward per-
Core 100-Gbps Networking. In Proceedings of the 26th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS ’21, page 1–17, New York, NY, USA, 2021.
Association for Computing Machinery.

[31] FD.io. Vector Packet Processing - One Terabit Soft-
ware Router on Intel Xeon Scalable Processor Family
Server. Technical report, 2017. https://fd.io/docs/
whitepapers/FDioVPPwhitepaperJuly2017.pdf.

[32] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-
Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd
Millstein. A General Approach to Network Configura-
tion Analysis. In Proceedings of the 12th USENIX Con-
ference on Networked Systems Design and Implemen-
tation, NSDI’15, page 469–483, USA, 2015. USENIX
Association.

[33] Zhaohui Fu and Sharad Malik. On Solving the Par-
tial MAX-SAT Problem. In Armin Biere and Carla P.
Gomes, editors, Theory and Applications of Satisfiability
Testing - SAT 2006, pages 252–265, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[34] Xiangyu Gao, Taegyun Kim, Michael D. Wong, Divya
Raghunathan, Aatish Kishan Varma, Pravein Govindan
Kannan, Anirudh Sivaraman, Srinivas Narayana, and
Aarti Gupta. Switch Code Generation Using Program
Synthesis. In Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Commu-
nication on the Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, SIG-
COMM ’20, page 44–61, New York, NY, USA, 2020.
Association for Computing Machinery.

[35] Aaron Gember-Jacobson, Raajay Viswanathan,
Chaithan Prakash, Robert Grandl, Junaid Khalid,
Sourav Das, and Aditya Akella. OpenNF: Enabling
Innovation in Network Function Control. In Proceed-
ings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, page 163–174, New York, NY, USA,
2014. Association for Computing Machinery.

[36] Liang Guo and I. Matta. The war between mice and
elephants. In Proceedings Ninth International Confer-
ence on Network Protocols. ICNP 2001, pages 180–188,
2001.

[37] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller. The EXpress Data Path: Fast
Programmable Packet Processing in the Operating Sys-
tem Kernel. In Proceedings of the 14th International
Conference on Emerging Networking EXperiments and

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1545

https://fd.io/docs/whitepapers/FDioVPPwhitepaperJuly2017.pdf
https://fd.io/docs/whitepapers/FDioVPPwhitepaperJuly2017.pdf

Technologies, CoNEXT ’18, page 54–66, New York, NY,
USA, 2018. Association for Computing Machinery.

[38] Intel. Data Plane Development Kit, 2010. https://
www.dpdk.org.

[39] Intel. Intel® Ethernet Controller E810 Datasheet, 10
2022. Version 2.4. https://www.intel.com/content/
www/us/en/content-details/613875/intel-
ethernet-controller-e810-datasheet.html.

[40] Intel. Intel® Ethernet Controller X710/XXV710/
XL710 Datasheet, 6 2022. Version 4.1. https:
//www.intel.com/content/www/us/en/content-
details/332464/intel-ethernet-controller-
x710-xxv710-xl710-datasheet.html.

[41] Intel. Intel data-direct I/O technology, 2023. https:
//www.intel.com/content/www/us/en/io/data-
direct-i-o-technology.html.

[42] Intel. Restricted Transactional Memory Overview,
2023. https://www.intel.com/content/www/
us/en/docs/cpp-compiler/developer-guide-
reference/2021-8/restricted-transactional-
memory-overview.html.

[43] Intel. RSS compatible packet fields on the DPDK RSS
API, 2023. https://github.com/DPDK/dpdk/blob/
4fceceed5b5e9fbf04acffd66239c79d81e79260/
lib/ethdev/rte_ethdev.h#L572.

[44] Rishabh Iyer, Katerina Argyraki, and George Candea.
Performance Interfaces for Network Functions. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 567–584, Renton, WA,
April 2022. USENIX Association.

[45] Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal
Pirelli, Katerina Argyraki, and George Candea. Perfor-
mance Contracts for Software Network Functions. In
Proceedings of the 16th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’19,
page 517–530, USA, 2019. USENIX Association.

[46] Muhammad Jamshed, Jihyung Lee, Sangwoo Moon, De-
okjin Kim, Sungryoul Lee, and Kyoungsoo Park. Kar-
gus: A Highly-scalable Software-based Intrusion Detec-
tion System Categories and Subject Descriptors. Pro-
ceedings of the 2012 ACM Conference on Computer and
Communications Security, pages 317–328, 2012.

[47] Georgios P. Katsikas, Tom Barbette, Marco Chiesa, De-
jan Kostić, and Gerald Q. Maguire. What You Need
to Know About (Smart) Network Interface Cards. In
Oliver Hohlfeld, Andra Lutu, and Dave Levin, editors,
Passive and Active Measurement, pages 319–336, Cham,
2021. Springer International Publishing.

[48] Peyman Kazemian, George Varghese, and Nick McK-
eown. Header Space Analysis: Static Checking for
Networks. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation,
NSDI’12, page 9, USA, 2012. USENIX Association.

[49] Keith Wiles. Pktgen - Traffic Generator powered by
DPDK, 2023. https://github.com/pktgen/Pktgen-
DPDK.

[50] Junaid Khalid, Aaron Gember-Jacobson, Roney
Michael, Anubhavnidhi Abhashkumar, and Aditya
Akella. Paving the Way for NFV: Simplifying Middle-
box Modifications Using StateAlyzr. In Proceedings
of the 13th Usenix Conference on Networked Systems
Design and Implementation, NSDI’16, page 239–253,
USA, 2016. USENIX Association.

[51] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and
P. Brighten Godfrey. Veriflow: Verifying Network-Wide
Invariants in Real Time. volume 42, page 467–472, New
York, NY, USA, sep 2012. Association for Computing
Machinery.

[52] Marios Kogias, Rishabh Iyer, and Edouard Bugnion. By-
passing the Load Balancer without Regrets. In Proceed-
ings of the 11th ACM Symposium on Cloud Computing,
SoCC ’20, page 193–207, New York, NY, USA, 2020.
Association for Computing Machinery.

[53] Kun-chan Lan and John Heidemann. A Measurement
Study of Correlations of Internet Flow Characteristics.
Comput. Netw., 50(1):46–62, jan 2006.

[54] James R Larus and Ravi Rajwar. Transactional memory.
Synthesis Lectures on Computer Architecture, 1(1):1–
226, 2007.

[55] Antonis Manousis, Rahul Anand Sharma, Vyas Sekar,
and Justine Sherry. Contention-Aware Performance Pre-
diction For Virtualized Network Functions. In Proceed-
ings of the Annual Conference of the ACM Special Inter-
est Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’20, page 270–282, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

[56] Microsoft Inc. RSS Hashing Functions, 2023.
https://learn.microsoft.com/en-us/windows-
hardware/drivers/network/rss-hashing-
functions.

[57] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W.
Moore. Understanding PCIe Performance for End Host
Networking. In Proceedings of the 2018 Conference

1546 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.dpdk.org
https://www.dpdk.org
https://www.intel.com/content/www/us/en/content-details/613875/intel-ethernet-controller-e810-datasheet.html
https://www.intel.com/content/www/us/en/content-details/613875/intel-ethernet-controller-e810-datasheet.html
https://www.intel.com/content/www/us/en/content-details/613875/intel-ethernet-controller-e810-datasheet.html
https://www.intel.com/content/www/us/en/content-details/332464/intel-ethernet-controller-x710-xxv710-xl710-datasheet.html
https://www.intel.com/content/www/us/en/content-details/332464/intel-ethernet-controller-x710-xxv710-xl710-datasheet.html
https://www.intel.com/content/www/us/en/content-details/332464/intel-ethernet-controller-x710-xxv710-xl710-datasheet.html
https://www.intel.com/content/www/us/en/content-details/332464/intel-ethernet-controller-x710-xxv710-xl710-datasheet.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/restricted-transactional-memory-overview.html
https://github.com/DPDK/dpdk/blob/4fceceed5b5e9fbf04acffd66239c79d81e79260/lib/ethdev/rte_ethdev.h#L572
https://github.com/DPDK/dpdk/blob/4fceceed5b5e9fbf04acffd66239c79d81e79260/lib/ethdev/rte_ethdev.h#L572
https://github.com/DPDK/dpdk/blob/4fceceed5b5e9fbf04acffd66239c79d81e79260/lib/ethdev/rte_ethdev.h#L572
https://github.com/pktgen/Pktgen-DPDK
https://github.com/pktgen/Pktgen-DPDK
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-functions
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-functions
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-functions

of the ACM Special Interest Group on Data Communi-
cation, SIGCOMM ’18, page 327–341, New York, NY,
USA, 2018. Association for Computing Machinery.

[58] NVIDIA. Mellanox ConnectX-5 Ethernet Adapter
Card, 2020. https://network.nvidia.com/files/
doc-2020/pb-connectx-5-en-card.pdf.

[59] Eva Papadogiannaki, Lazaros Koromilas, Giorgos Vasil-
iadis, and Sotiris Ioannidis. Efficient Software Packet
Processing on Heterogeneous and Asymmetric Hard-
ware Architectures. IEEE/ACM Transactions on Net-
working, 25(3):1593–1606, 2017.

[60] Luis Pedrosa, Rishabh Iyer, Arseniy Zaostrovnykh,
Jonas Fietz, and Katerina Argyraki. Automated Syn-
thesis of Adversarial Workloads for Network Functions.
In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, SIG-
COMM ’18, page 372–385, New York, NY, USA, 2018.
Association for Computing Machinery.

[61] Francisco Pereira, Gonçalo Matos, Hugo Sadok, Dae-
hyeok Kim, Ruben Martins, Justine Sherry, Fernando
M. V. Ramos, and Luis Pedrosa. Automatic Generation
of Network Function Accelerators Using Component-
Based Synthesis. In Proceedings of the Symposium on
SDN Research, SOSR ’22, page 89–97, New York, NY,
USA, 2022. Association for Computing Machinery.

[62] Perf. perf: Linux profiling with performance counters,
2023. https://perf.wiki.kernel.org.

[63] Shriram Rajagopalan, Dan Williams, Hani Jamjoom,
and Andrew Warfield. Split/Merge: System Support
for Elastic Execution in Virtual Middleboxes. In Pro-
ceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation, NSDI’13, page
227–240, USA, 2013. USENIX Association.

[64] Luigi Rizzo. Netmap: A Novel Framework for Fast
Packet I/O. In Proceedings of the 2012 USENIX
Conference on Annual Technical Conference, USENIX
ATC’12, page 9, USA, 2012. USENIX Association.

[65] Hugo Sadok, Nirav Atre, Zhipeng Zhao, Daniel S.
Berger, James C. Hoe, Aurojit Panda, Justine Sherry,
and Ren Wang. Ensō: A Streaming Interface for NIC-
Application Communication. In 17th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 23), pages 1005–1025, Boston, MA, July 2023.
USENIX Association.

[66] Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever.
Snowcap: Synthesizing Network-Wide Configuration
Updates. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, SIGCOMM ’21, page 33–49, New

York, NY, USA, 2021. Association for Computing Ma-
chinery.

[67] Justine Sherry, Peter Xiang Gao, Soumya Basu, Auro-
jit Panda, Arvind Krishnamurthy, Christian Maciocco,
Maziar Manesh, João Martins, Sylvia Ratnasamy, Luigi
Rizzo, and Scott Shenker. Rollback-recovery for mid-
dleboxes. volume 45, page 227–240, New York, NY,
USA, aug 2015. Association for Computing Machinery.

[68] Nikita Shirokov and Ranjeeth Dasineni. Open-sourcing
Katran, a scalable network load balancer, 2018.
https://engineering.fb.com/2018/05/22/open-
source/open-sourcing-katran-a-scalable-
network-load-balancer/.

[69] Vishal Shrivastav. Stateful Multi-Pipelined Pro-
grammable Switches. In Proceedings of the ACM
SIGCOMM 2022 Conference, SIGCOMM ’22, page
663–676, New York, NY, USA, 2022. Association for
Computing Machinery.

[70] P. Srisuresh and K. Egevang. Traditional IP Network
Address Translator (Traditional NAT). RFC 3022, RFC
Editor, 01 2001. https://www.rfc-editor.org/rfc/
rfc3022.

[71] Martino Trevisan, Alessandro Finamore, Marco Mellia,
Maurizio Munafo, and Dario Rossi. Traffic Analysis
with Off-the-Shelf Hardware: Challenges and Lessons
Learned. Comm. Mag., 55(3):163–169, mar 2017.

[72] Amy Viviano. Introduction to Receive Side Scal-
ing, 2023. https://docs.microsoft.com/en-
us/windows-hardware/drivers/network/
introduction-to-receive-side-scaling.

[73] Andreas Voellmy, Junchang Wang, Y Richard Yang,
Bryan Ford, and Paul Hudak. Maple: Simplifying SDN
Programming Using Algorithmic Policies. In Proceed-
ings of the ACM SIGCOMM 2013 Conference on SIG-
COMM, SIGCOMM ’13, page 87–98, New York, NY,
USA, 2013. Association for Computing Machinery.

[74] Shinae Woo and Kyoungsoo Park. Scalable TCP session
monitoring with symmetric receive-side scaling. KAIST,
Daejeon, Korea, Tech. Rep, 144, 2012.

[75] Xiaoban Wu, Peilong Li, Yongyi Ran, and Yan Luo.
Network measurement for 100 GbE network links using
multicore processors. Future Generation Computer
Systems, 79:180–189, 2018.

[76] Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Mat-
teo Rizzo, Luis Pedrosa, Katerina Argyraki, and George
Candea. Verifying Software Network Functions with No
Verification Expertise. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1547

https://network.nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://network.nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://perf.wiki.kernel.org
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://www.rfc-editor.org/rfc/rfc3022
https://www.rfc-editor.org/rfc/rfc3022
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling

page 275–290, New York, NY, USA, 2019. Association
for Computing Machinery.

[77] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Kate-
rina Argyraki, and George Candea. A Formally Verified
NAT. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, SIG-
COMM ’17, page 141–154, New York, NY, USA, 2017.
Association for Computing Machinery.

[78] Kaiyuan Zhang, Danyang Zhuo, and Arvind Krishna-
murthy. Gallium: Automated Software Middlebox Of-
floading to Programmable Switches. In Proceedings
of the Annual Conference of the ACM Special Inter-
est Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’20, page 283–295, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

1548 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Appendix
A.1 Code excerpts from Maestro
We present here the pseudo-code of the firewall NF used
throughout the paper, both its sequential and parallel shared-
nothing implementations. These serve to provide a sense of
what the Maestro pipeline both accepts as input (Figure 12)
and automatically generates as output (Figure 13). As such,
we reiterate that these are not complete examples, but only
pseudo-code, as they were shortened and simplified for clarity
purposes. The complete solutions can be found on our public
GitHub repository [4].

Notice the symmetry of the RSS hashes (lines 7 to 25 in Fig-
ure 13), as it is what ultimately enables its shared-nothing
approach. As explained in §6.1, this symmetry allows packets
coming from the WAN to be sent to the same core as their
corresponding symmetric packets from the LAN.

A.2 Macrobenchmarks with Zipfian traffic
While in Figure 10 we show how throughput varies for differ-
ent parallelization techniques under uniform traffic, here we
repeat the experiment with Zipfian traffic instead [12] (we de-
scribe this Zipfian traffic in §4). We balanced the indirection
table for each implementation to better handle the skew, as
described in §4. The results are shown in Figure 14.

Figure 12: Pseudo-code of the sequential firewall used as
an example throughout the paper.

Figure 13: Pseudo-code of the firewall, but now paral-
lelized by Maestro with a shared-nothing architecture
(and described in §6.1).

The key takeaways are the same as in Figure 10: when
available the shared-nothing approach is always preferred; the
lock-based solutions frequently do not scale as well as their

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1549

 0
 20
 40
 60
 80

N
O

P

Shared-nothing Lock-based TM

 0
 20
 40
 60
 80

S
B

ri
d

g
e

 0
 20
 40
 60
 80

D
B

ri
d

g
e

 0
 20
 40
 60
 80

P
o

lic
e

r

 0
 20
 40
 60
 80

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

F
W

 0
 20
 40
 60
 80

N
A

T

 0
 20
 40
 60
 80

C
L

 0
 20
 40
 60
 80

P
S

D

 0
 20
 40
 60
 80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 L
B

Number of cores
Figure 14: Parallel NF implementation scalability with
Zipfian, read-heavy, small packet traffic, using a shared-
nothing approach when possible, read/write locks, and
TM.

shared-nothing alternatives and suffer in more state-intensive
NFs; and TM-based approaches perform unreliably.

We do, however, find differences between these results and
their counterparts under uniform traffic. Although under uni-
form traffic it is rather clear that throughput scales up with
the number of cores when using the shared-nothing approach,
with Zipfian traffic this scaling is not always consistently
monotonic. This is to be expected, as the efficacy of balanc-
ing load across cores may not consistently improve when
more cores are added. Indeed, when many cores are used, a
single elephant flow can bottleneck a single core, limiting the
maximum throughput we will be able to achieve in our experi-
mental setup. This is particularly limiting for computationally
and state intensive NFs—such as the the Connection Limiter—
which are unable to perform as well with Zipfian traffic as
they do with uniform. These results nevertheless confirm that
Maestro generated NFs almost always perform as well with
Zipfian traffic as they do with uniform.

A.3 Reproducibility
We make Maestro’s code publicly available in [4]. In that
repository, one can find not only the source code for the entire
pipeline, but also the complete set of NFs we mention on this
paper, along with their corresponding parallel solutions found
by Maestro and described in §6.1.

We also make available our test suit in [5]. It contains all
the required scripts to generate Figures 5, 8 to 11 and 14.
They were tested on 2 machines with dual socket Intel Xeon
Gold 6226R @ 2.90GHz, 96 GB of DRAM, and e810 Intel
NICs [39], and running Ubuntu 22.04.

1550 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

AutoSketch: Automatic Sketch-Oriented Compiler for
Query-driven Network Telemetry

Haifeng Sun1 Qun Huang1 Jinbo Sun2 Wei Wang3 Jiaheng Li1

Fuliang Li3 Yungang Bao2 Xin Yao4 Gong Zhang4

1National Key Laboratory for Multimedia Information Processing,
School of Computer Science, Peking University

2Institute of Computing Technology, CAS 3Northeastern University, China 4Huawei Theory Department

Abstract
Recent network telemetry witnesses tremendous progress

in two directions: query-driven telemetry that targets expres-
siveness as the primary goal, and sketch-based algorithms
that address resource-accuracy trade-offs. In this paper, we
propose AutoSketch that aims to integrate the advantages of
both classes. In a nutshell, AutoSketch automatically com-
piles high-level operators into sketch instances that can be
readily deployed with low resource usage and incur limited
accuracy drop. However, there remains a gap between the
expressiveness of high-level operators and the underlying re-
alization of sketch algorithms. AutoSketch bridges this gap
in three aspects. First, AutoSketch extends its interface de-
rived from existing query-driven telemetry such that users can
specify the desired telemetry accuracy. The specified accu-
racy intent will be utilized to guide the compiling procedure.
Second, AutoSketch leverages various techniques, such as
syntax analysis and performance estimation, to construct ef-
ficient sketch instances. Finally, AutoSketch automatically
searches for the most suitable parameter configurations that
fulfill the accuracy intent with minimum resource usage. Our
experiments demonstrate that AutoSketch can achieve high
expressiveness, high accuracy, and low resource usage com-
pared to state-of-the-art telemetry solutions.

1 Introduction

The continuous growth of modern data centers inspires
tremendous progress on network telemetry, which forms the
basis of various network management tasks, such as anomaly
detection [32, 43, 99], performance analysis [74, 78, 92, 100],
and fault diagnosis [5, 13, 14, 33, 44, 93, 106]. Recent ad-
vances in network telemetry can be categorized into two
classes: query-driven telemetry and telemetry algorithms.
Query-driven telemetry [30, 66, 67, 97] considers expressive-
ness as the primary goal. They provide extensive operators
for users to build various telemetry tasks, and then automat-
ically deploy the operators into switches. Therefore, users

*Qun Huang is the corresponding author.

do not need to concern with the implementation details in
switch hardware. However, the resource-efficient realization
of operators is not well addressed in existing query-driven
telemetry solutions. In particular, many operators maintain
flow-level states. As the number of interested flows increases,
maintaining the states easily exhausts switch memory [30] or
network bandwidth [67].

The other class is telemetry algorithms. Their common idea
is to leverage approximate techniques (e.g., sampling [73, 76,
77], top-k counting [6,79], and sketch [1,34,36,54,55,94,103])
that sacrifice a small portion of accuracy to relax resource
requirements. Even though recent studies show that such ap-
proximate techniques can achieve both resource efficiency
and bounded errors, it remains non-trivial to utilize them. First,
each approximate technique is designed for several specific
telemetry applications and fails to support all tasks. Second,
an approximate technique needs careful parameter configu-
ration to simultaneously reach high accuracy and resource
efficiency. Thus, for each telemetry task, users need to select
the appropriate algorithms, carefully realize them, and tune
parameters in switches, which needs domain knowledge on
the programming models and hardware restrictions.

In this paper, we present AutoSketch that integrates the
advantages of both query-driven telemetry and sketch algo-
rithms. Its goal is to fully exploit the resource efficiency of
telemetry algorithms while hiding the complicated details
of implementing and configuring them in network devices.
This is extremely significant because (i) users lack the do-
main knowledge of underlying telemetry algorithms and ar-
chitecture; and (ii) the hardware resources of existing network
devices are limited. On the one hand, AutoSketch follows re-
cent operator-based telemetry languages. It defines extensive
interfaces for users to build telemetry applications with both
built-in operators and user-defined operators, which achieves
high expressiveness. On the other hand, AutoSketch automat-
ically converts these operators to sketch algorithms, which
achieves high accuracy and low resource usage.

However, it is challenging to bridge the gap between the
high-level operators and the sketch algorithms. First, sketch

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1551

algorithms incur errors due to their approximation nature (al-
though the errors are bounded). Users should be capable of
perceiving and controlling the incurred errors for telemetry
applications. Second, user-defined operators complicate the
conversion to sketch. In particular, many user-defined op-
erators maintain numerous states, which are hard to realize
as sketch. For some operators, there is even no ready-made
sketch algorithm to realize them. Finally, sketch algorithms
expose various parameters to configure, which needs to take
underlying hardware into account.

AutoSketch addresses the challenges in three aspects:
• First, AutoSketch extends its operator-based interface to

allow users to specify the desired accuracy as an accuracy
intent (§2). Then, AutoSketch employs a compiler that au-
tomatically generates sketch-based solutions that fulfill the
intent (§3). The compiler hides the details on switch hard-
ware and algorithm details. To this end, administrators can
control the extent of approximation without concerns with
underlying realization.

• Second, AutoSketch constructs efficient sketch instances
for the stateful operators (§4). For built-in operators, Au-
toSketch realizes them by classical sketch algorithms. For
user-defined operators, AutoSketch decomposes each of
them into several simple operators with the aid of syntax
analysis. Then, AutoSketch designs sketch-like structures
to instantiate the decomposed operators. Each sketch-like
structure follows the same idea of sketch that maps traf-
fic into different cells, but employs different methods to
aggregate cells (depending on the user-defined functions).
The sketch-like structures provide theoretical guarantees to
estimate the impact of hash conflicts like classical sketch.

• Finally, AutoSketch formulates the parameter tuning into
an optimization problem, which reveals the hardness of
parameter tuning (§5). We propose a searching algorithm to
find the most suitable configuration that fulfills the accuracy
intent and incurs minimum resource usage. The algorithm
employs various optimization techniques and eliminates
the user burdens of tuning sketch parameters.
We build a prototype of AutoSketch that targets PISA [10]

switches and compare AutoSketch with existing query-driven
telemetry systems and sketch-based telemetry algorithms. We
show that AutoSketch can implement telemetry applications
in less than 20 lines of code without extra efforts to tune
configurations. Under 200 K active flows per 100 ms, AutoS-
ketch still reaches 99% recall, 97% precision, and 2.8% errors
with only 0.84 MB switch memory and 84 KB/s bandwidth
on average for 11 applications. We release our source code at
https://github.com/N2-Sys/AutoSketch.

2 AutoSketch Interface

AutoSketch follows recent telemetry languages (e.g., Sonata
[30] and Marple [67])that provide operator-based interface. It
abstracts network traffic as a stream of tuples, each of which

Operator Description
filter(bool_expr) Check the boolean expression bool_expr for each

tuple and preserve tuples satisfying conditions.
map(f ields, [expr]) Transform each input tuple into an output tuple con-

sisting of f ields, whose values are set by expr.
distinct(f ields) Categorize input tuples based on f ields, and pre-

serve one tuple for each category (i.e., delete dupli-
cated tuples with the same field values).

reduce(f ields, val) Categorize tuples according to f ields and sum up
val for each category.

zip(s, f ield) Merge the input stream with tuples of another stream
s containing the same field values in f ields.

groupby(states, ud f) Invoke user-defined function ud f to update states.

Table 1: Operators of AutoSketch Interface

consists of a key and several fields. An operator performs
specific computations on each input tuple and then generates
some output tuples if needed. A telemetry application is de-
fined as an operator graph in which vertices are operators. A
(directed) edge indicates that the output tuples of the upstream
operator are consumed by the downstream operator.

Operators. Table 1 summarizes the operators supported by
AutoSketch. Currently, AutoSketch provides five built-in op-
erators: filter, distinct, map, reduce, and zip. Among
them, distinct and reduce are stateful, i.e., maintaining in-
ternal states for tuple processing. Here, an operator state refers
to a key-value pair associating with tuples that have the same
key. To achieve more expressiveness, AutoSketch further pro-
vides a groupby operator that allows users to customize the
processing logic in two aspects. First, a groupby operator can
maintain user-defined states. Second, each groupby operator
associates with a user-defined function (UDF) to define the pro-
cessing logics on the tuples and states. AutoSketch supports
three types of statements in a UDF: (1) assignment statements,
(2) arithmetic statements, and (3) conditional statements.

Accuracy intents. AutoSketch realizes stateful operators (i.e.,
distinct, reduce, and groupby with states) using sketch
techniques, which inevitably incurs errors. To characterize
the errors, AutoSketch provides users with accuracy intent
interface, which can specify user-desired accuracy. In the con-
text of operator-based processing, an accuracy intent consists
of four accuracy metrics:
• Recall: the ratio of true output tuples to all true tuples that

should be output.
• Precision: the ratio of true output tuples to all output tuples.
• Average relative error (ARE): the mean relative error of all

output tuples.
• Confidence: the probability that all other accuracy metrics

(e.g., recall, precision) are met.
Users can selectively use the accuracy metrics for a teleme-

try application. For a metric, users can specify the minimal/
maximal value or the desired range for it (e.g., ARE_max = 1%,
recall = 95%± 5%). If a metric is not specified, AutoSketch
considers that there is no requirement on it. Note that the
intents are set for the entire application instead of individual
operators. Thus, users do not need to concern with how to set

1552 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/N2-Sys/AutoSketch

1 def nonmt(tcp.seq):
2 if maxseq < tcp.seq or maxseq == 0:
3 maxseq = tcp.seq
4 else:
5 nm_count += 1
6
7 nm[precision_min=99%,ARE_max=1%,confidence =95%]=
8 PacketStream()
9 .filter(ipv4.protocol==TCP)

10 .groupby({5tuple:(maxseq , nm_count)}, nonmt)

Application 1: TCP non-monotonic detection

per-operator errors to form the application-level accuracy. Au-
toSketch automatically handles the application-level intents
by configuring operator-level parameters.

Example. Application 1 presents an example that monitors
non-monotonic sequence numbers of TCP flows. The appli-
cation first selects TCP packets by a filter operator (line
9). Then it uses the groupby operator to define a UDF, namely
nonmt (line 10). The groupby operator maintains two states.
The maxseq state tracks the maximal sequence number of
each flow (line 3). The nm_count state counts the number of
packets whose sequence numbers are lower than maxseq for
each flow (line 5). The intent requires that with a probabil-
ity of 95%, the monitored flows achieve 99% precision, and
per-flow ARE is below 1% (line 7).

Generality. The operators in AutoSketch come from recent
query-driven telemetry systems [30, 67, 105]. They cover a
rich set of telemetry applications according to these studies.
We do not claim the novelty of this design. However, to the
best of our knowledge, we are the first to define accuracy
intent interface that (1) empowers automatic control operator
errors introduced by sketch and (2) hides the underlying im-
plementation and configuration details of sketch. Some prior
works (e.g., BlinkDB [3]) also define accuracy intent but they
control sampling rate of input traffic instead of operator be-
haviors. On the other hand, some efforts [19, 45, 105] also
attempt to apply sketch algorithms to query-driven teleme-
try, but lack the accuracy intent interface, leaving the error
configuration to the users.

Limitations. The programming model has three limitations
due to the resource constraints of commodity devices. First,
AutoSketch cannot support complicated statements, such
as loops and floating-point arithmetic, because commodity
switch ASICs only allow limited recirculation and such state-
ments are too expensive [26]. Second, the states in an operator
must have limited dependency: users cannot define two states
whose processing depends on each other (details in §4.1). Fi-
nally, the accuracy intent should not consume more resources
than hardware capacity. When a telemetry application com-
promises any of these restrictions, AutoSketch throws an error
as existing data-plane compilers [70]. We will support more
compiling modes in future work, such as suggesting accuracy
intents and returning multiple configurations within accuracy
ranges for users to select from.

Sketch
Construction

Parameter
Configuration

AutoSketch Compiler

Data Plane
Program

AutoSketch
Application

P4

Code
Generation

UDF
Decomposition

Operator Extraction

UDF Mapping
Control Plane

Program
Stateful Operators

Stateless

Built-in

Operators

Figure 1: AutoSketch Compiler.

3 AutoSketch Compiler

AutoSketch designs a general compiler in order to bridge the
gap between our interface and the underlying hardware. The
compiler takes a telemetry application composed of several
operators and an accuracy intent as input. It converts the
application to a P4 program that runs in the data plane to
record per-packet information, and a control plane program
that retrieves telemetry results and reports the results to users.

Figure 1 depicts the compiler internals. For an input appli-
cation, the compiler first extracts its operators. Then it maps
the stateful operators into sketch instances. For built-in state-
ful operators, the compiler directly constructs corresponding
sketch instances. For groupby operators with complicated
UDFs, the compiler first decomposes each UDF into several
simple ones, and then performs the construction. After sketch
mapping, AutoSketch configures parameters for the sketch
instances to satisfy the accuracy intent. Finally, AutoSketch as-
sembles output programs by integrating the converted sketch
instances with the stateless operators.

Although sketch mapping and parameter configuration have
been studied in prior works (§3.1 and §3.2), it is non-trivial to
combine them because we need to fulfill the application-level
accuracy intent. Specifically, when an application is mapped
to numerous combinations of different sketch algorithms, it
remains an open issue to configure operator-level sketch pa-
rameters to satisfy application-level accuracy intent [58].

3.1 Mapping for Stateful Operators
AutoSketch constructs a sketch instance for each stateful op-
erator instead of using a single universal sketch for the en-
tire application. The reason is that existing universal sketch
algorithms are also composed of multiple basic structures
[36, 50, 55], whose overall resource usage is nontrivial and
hard to be optimized. In contrast, per-operator sketch mapping
allows more fine-grained sketch selection and tuning.

Specifically, the compiler employs different strategies for
built-in operators and groupby operators. For built-in stateful
operators, since their functionalities are common, the compiler
realizes them with well-known sketch algorithms, e.g., Count-
Min Sketch (CM) [20] and Bloom Filter (BF) [8].

For groupby operators, AutoSketch follows the idea of
sketch to construct sketch-like structures. As shown in Fig-
ure 2, a sketch-like structure comprises multiple rows of cells,
where each cell maintains the state values of the groupby
operator. To process a tuple, we hash its key to one cell in

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1553

tuple

hash functions h1
h2

h3 Invoke
UDF

Invoke
UDF

Invoke
UDF

Figure 2: Sketch-like structure in AutoSketch.

each row, and then invoke the UDF to update the states in the
hashed cells. When querying for the key, we mitigate the er-
rors caused by hash conflicts. Specifically, we use the same
hash functions to select cells, and aggregate the cells based
on the linearity or monotonicity of the state. We use the ag-
gregated results to estimate the state value. We also provide
theoretical analysis for the sketch-like structures. Thus, com-
pared to existing sketch algorithms, our sketch-like structures
support more types of states and user-defined processing log-
ics, while preserving bounded telemetry errors. Note that
we choose two-dimensional (2D) matrices for the sketch-like
structures because their parameters are simpler and fewer than
that of higher-dimensional matrices, which incur more switch
resources to handle the additional dimensions.

Challenges. The mapping is non-trivial for both built-in and
groupby operators. For each type of built-in operator, there
could be multiple possible sketch algorithms that can realize
its functionalities. (e.g., reduce operator can be mapped to
Count-Min Sketch [20] or Count Sketch [12].) The algorithms
achieve different levels of resource-accuracy trade-offs. We
need to choose suitable algorithms to meet application ac-
curacy intents. For groupby operators, the challenge comes
from the complexity of UDFs. If we map a complicated UDF to
a single sketch instance entirely, every cell includes all opera-
tor states. In this case, the incurred computational resources
are overwhelming. In particular, a UDF may contain multiple
state updates. However, existing switch ASICs only support
limited per-cell operations. For example, PISA switches only
allow one read-and-modify operation for each memory ad-
dress and a small number of conditional judgments (i.e., the
boolean expression in the if statement) [89].

Solutions (§4). For built-in operators, AutoSketch estimates
the efficiency of all combinations of candidate sketch algo-
rithms. Then it chooses the one incurring minimum resource
usage while reaching the desired accuracy. For UDFs, AutoS-
ketch decomposes every complicated UDF via abstract syntax
trees, a common technique for syntax analysis. Each decom-
posed UDF contains exactly one state. Thus, AutoSketch can
construct sketch instances for decomposed UDFs with limited
resource usage, and tune the parameters for each state indi-
vidually. Although Newton [105] also maps operators into
sketches, it does not allow UDFs. Note that AutoSketch is
not binding to several specific sketches or sketch-like struc-
tures. It is expected for AutoSketch to support newly proposed
sketches [87, 101], by (i) adding new sketch candidates for
existing stateful operators or (ii) introducing new operators
(e.g., top operator). Note that the actual errors are varying
depending on specific sketches used for operators.

3.2 Parameter Configuration
AutoSketch automatically tunes the parameters of the con-
structed sketch instances. The parameter configuration targets
both high accuracy and resource efficiency. That is, AutoS-
ketch aims to use minimum resources for achieving a specified
accuracy intent.

Challenges. Although existing sketch algorithms provide
theoretical analysis to characterize the relationship between
parameters and accuracy, it remains challenging to tune pa-
rameters for AutoSketch in two aspects. First, as in recent
studies [21, 36, 57], the theoretical analysis of existing sketch
algorithms typically addresses worst-case scenarios, thereby
providing limited guidelines for parameter tuning. Second, a
telemetry application usually comprises multiple sketch in-
stances. Existing works on merging sketch [2, 48] only apply
to multiple sketch instances of the same type. Thus, it remains
challenging to integrate the errors of multiple heterogeneous
sketch instances to form the overall accuracy of an application,
because the errors are quite different across sketch algorithms.
For example, some algorithms produce false positives [8],
while others introduce a relative error for each flow [20]. It is
hard to characterize the errors in a uniform method.

Solutions (§5). The difficulty of integrating the errors of indi-
vidual sketch instances motivates us to employ a benchmark-
based parameter tuning. Specifically, AutoSketch formulates
the parameter configuration into an optimization problem.
Then it searches all possible configurations to find out the
most efficient configuration. For each configuration, AutoS-
ketch estimates its overall accuracy via benchmark experi-
ments. AutoSketch proposes an efficient searching algorithm
with several techniques to reduce the searching overhead.
Note that our optimization tunes parameters of each operator
to satisfy application-level accuracy intent, while existing con-
figuration methods only focus on planning for placement and
refinement [30] or configuration for single data structure [31].
Thus, their optimization objectives are all different.

Discussion. AutoSketch adopts static configuration instead
of dynamic adjusting [63, 64] for two reasons. First, dynamic
approaches require precisely estimating the resulting accu-
racy after adjusting. This is infeasible since existing theoreti-
cal analysis typically works for worst scenarios [21, 36, 57].
Second, recent studies on dynamic reconfiguration are not
adopted by commodity switches yet [60,102]. Thus, we leave
this issue in future work.

4 Mapping to Sketch

4.1 Operator Decomposition
AutoSketch exploits Abstract Syntax Tree (AST) to decom-
pose a UDF. An AST is a tree that characterizes the syntax
structure of a specific function. AutoSketch utilizes AST to
perform decomposition in three steps as follows.

1554 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

maxseq < tcp.seq

state: maxseq parameter: tcp.seq

assign
op: =

variable
temp

state
maxseq

variable
temp

(d) subtree of maxseq by appending temp to (b)

branch

assign
op: =

maxseq < tcp.seq

state
maxseq

parameter
tcp.seq

state
nm_count

constant
1

maxseq >= tcp.seq

state
nm_count

constant
1

maxseq >= tcp.seqmaxseq < tcp.seq

state
maxseq

parameter
tcp.seq

(a) Original AST remove subtree

(c) subtree of nm_count (b) Residual AST
after removing (c)

residual

pass parameter

or maxseq == 0

or maxseq == 0

or maxseq == 0

branch branch

branch

block

return

assign
op: +=

assign
op: =

assign
op: +=

assign
op: =

Figure 3: Example of nonmt (Application 1) decomposition.

Step 1: build AST. We first build an AST for the UDF. In an
AST, a leaf node represents a state, a parameter, a constant,
or a temporary variable. Non-leaf nodes correspond to state-
ments that manipulate their child nodes. Recall that there are
three types of statements: assignment statements, arithmetic
statements, and conditional statements (§2). For an assign-
ment or arithmetic node, its children refer to the operands. A
branch node corresponds to a conditional statement. Its edges
to the child nodes are associated with the judgment expres-
sions. The first child refers to the If branch, while the second
child indicates the Else branch (if any). For better organiza-
tion, our AST further introduces a block node, which indicates
that its children are executed sequentially. Figure 3(a) shows
the AST of UDF nonmt in Application 1. The AST contains
a branch node as the root. The two children are the assign-
ment nodes for maxseq and nm_count derived from the If
and Else branches, respectively. Due to space limitations, we
omit the decomposition for maxseq < tcp.seq or maxseq
== 0 but the procedure is similar.

Step 2: partition AST. Next, AutoSketch partitions the AST
into several small ASTs, such that there is exactly one state be-
ing modified in each partitioned AST. Algorithm 1 illustrates
the partitioning of an AST. Our basic idea is to repeatedly
remove subtrees containing state modifications. Specifically,
we enumerate each state and travel the AST (line 3). For each
assignment node that modifies the state (lines 5-6), we build
a subtree st comprising nodes from the root to this assign-
ment node including its child nodes (line 7). Then, we remove
nodes in the subtree from the original AST. The removal
travels from the root to the assignment node (line 9). If a
node does not appear in other root-to-leaf paths (line 10), we
remove this node and all its descendant nodes (lines 11-12).
Otherwise, for a node appearing in other root-to-leaf paths,

Algorithm 1 AST Partition
Input : The original AST of UDF
1: function PARTITIONAST(ast)
2: partitioned_asts = []
3: for each state s maintained by UDF do
4: ST = []
5: for each assignment node u in ast do
6: if u modifies s then
7: Build a subtree st from root to u (with u’s children)
8: Add st to ST
9: for each node v from root to u do

10: if v does not appear in other root-to-leaf paths then
11: Remove v and its descendants from ast
12: break
13: Construct a new_ast by merging the subtrees in ST
14: Add new_ast to partitioned_asts
15: return partitioned_asts

we keep the node in the AST, such that the connectivity of
other paths is preserved. Note that there could be multiple
statements modifying a state. Thus, we can partition multiple
subtrees from the original AST for one state. In this case,
we form a larger AST for this state by merging the duplicate
nodes in the multiple subtrees (line 14).

Figure 3(b) and (c) illustrate the partitioning procedure for
the AST of nonmt. We start with partitioning modifications on
state nm_count. We identify the subtree modifying nm_count
as shown in Figure 3(c) (also marked in blue in Figure 3(a)).
In the residual AST in Figure 3(b), there is only one state
maxseq, and thereby we have no need to remove subtree.

Step 3: pass parameters. Finally, AutoSketch passes state
values among the partitioned ASTs because a partitioned AST
may need to read state values from another AST. Since there
exist multiple versions of the state values, we only pass the
needed versions with temporary variables. In Figure 3, up-
dating state nm_count depends on the value of state maxseq.
Thus, we extend the AST of maxseq in Figure 3(b) to a new
AST in Figure 3(d). Since the value of maxseq before up-
dating is actually needed, we add an assignment statement
that saves the value before updating in a variable temp. The
variable is returned and passed to AST of nm_count after all
statements are executed. We put more examples in Appendix.

Discussion. AutoSketch restricts the dependency among
states in a groupby operator. For two states A and B, if updat-
ing A needs to access B, we say that A depends on B. In this
case, the decomposition result must be unique: the stage that
deploys partitioned AST of B must be before that of A. Thus,
AutoSketch does not allow mutual dependency. By mutual
dependency, we mean that the two states depend on each other.
When mutual dependency occurs, AutoSketch cannot deter-
mine which state should be placed on the preceding stage.
Then, it throws an error during compilation time.

4.2 Sketch Construction for UDFs

AutoSketch constructs a sketch-like structure for each decom-
posed UDF. As shown in §3.1, it maps each key into one cell

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1555

Algorithm 2 Update procedure of sketch-like structure
Input : The packet tuple t
Variables: Sketch-like structures C = map()
Variables: Bloom filter b f , Keyarray = [], l = 0
Variables: Incflags = map(), Decflags = map() ▷ Initial value true
1: function UPDATE(t)
2: Extract key k from t
3: if k /∈ b f then
4: Insert k to b f
5: if Keyarray is not full then
6: Keyarray[l] = k
7: l += 1
8: else
9: Send k to controller

10: for each UDF in decomposed UDFs do
11: SL = C[UDF] ▷ SL is the sketch-like structure of UDF
12: for i = 1 to d do
13: j = hi(k)
14: old_value = value of SL[i][j]
15: Invoke UDF(SL[i][j], t)
16: new_value = value of SL[i][j]
17: if old_value > new_value then
18: Incflags[UDF]=false ▷ non-increasing
19: else if old_value < new_value then
20: Decflags[UDF]=false ▷ non-decreasing

with hash functions. Then, AutoSketch updates the mapped
cells with the UDF, or queries per-key information by aggregat-
ing the mapped cells. We elaborate on the detailed realizations
of the update and query procedures as follows.

Update procedure. Recall that a state in a groupby operator
is a collection of key-value pairs. Thus, in addition to updating
values in the sketch-like structures, it also needs to store
the keys. One possible solution is to store the keys within
each sketch-like structure. However, this incurs overwhelming
memory overheads, because there are duplicate keys in the
multiple decomposed UDFs. Thus, AutoSketch separates the
keys outside the sketch-like structures.

Algorithm 2 details the update procedure for the multiple
decomposed UDFs. To separate keys from sketch values, it
maintains an array Keyarray to store keys, a counter l indicat-
ing the length of Keyarray, and a Bloom Filter b f to check
the existence of keys. Upon the arrival of a tuple, we extract
its key k and check the occurrence of the key with b f (lines
2-3). If the key never appears, we insert the key into the b f
and append the new key to the end of Keyarray (lines 4-7).
If Keyarray is full, we send k to controllers (line 9). Then we
update the sketch-like structures. Specifically, for each UDF,
we hash the key to locate the cells containing the state of the
key (line 13). We invoke the function to update the state (line
15). We maintain Decflags and Incflags for each UDF. The
two variables indicate whether state values are monotonically
decreasing or increasing, respectively (lines 17-20). The two
variables will assist the query procedure in the next.

Query procedure. The query procedure is performed in
the control plane. The controller periodically collects data
plane information, including the sketch-like structures, the
Keyarray, and the two variables indicating the monotonic-
ity of the UDF. Then, the controller enumerates the keys in

Algorithm 3 Query procedure of sketch-like structure
Input: The key k, The monotonicity flag Decflag, Incflag
1: function QUERY(k, Decflag, Incflag)
2: rets = []
3: for i = 1 to d do
4: SL = C[UDF] ▷ SL is the sketch-like structure of UDF
5: j = hi(k)
6: r = SL[i][j]
7: Add value of r to rets
8: if Decflag then ▷ Monotonically decreasing
9: return the maximal value in rets
10: else if Incflag then ▷ Monotonically increasing
11: return the minimum value in rets
12: else ▷ No monotonicity
13: return the median value in rets

Keyarray to query their state values in the sketch-like struc-
tures (recall that a sketch-like structure corresponds to one
state in the original UDF). Specifically, AutoSketch hashes a
key to obtain the mapped cells in a sketch-like structure. Then
it aggregates the cells to estimate the state value.

AutoSketch mitigates the errors caused by hash conflicts
by leveraging the monotonicity of a UDF.
• Monotonically increasing: AutoSketch takes the minimum

value among the mapped cells as the estimate, since all cells
overestimate the true value of a key.

• Monotonically decreasing: AutoSketch takes the maximum
value among the cells, similarly.

• No monotonicity: AutoSketch uses the median of the cells.
The rationale comes from the Chernoff Bound [61]. Specif-
ically, for each flow, the occurrences of overestimates and
underestimates from the multiple cells are expected to be
the same. Thus, using the median yields an accurate result.

Algorithm 3 summarizes the query procedure. The function
takes key k and the monotonicity variables of the UDF as
input. It hashes k into SL[i][j] in the i-th row with j = hi(x)
and records the value of state SL[i][j] in rets (lines 2-7).
Then it uses the monotonicity flags Decflag and Incflag to
decide which value in rets to return (lines 8-13). We put the
theoretical analysis of sketch-like structures in Appendix C.

Control plane overheads. Although the decomposition in-
creases the number of stateful operators, it does not amplify
the query overheads in the control plane. The reason is that
the controller only needs to query the operators that form the
eventual results. For example, in many applications that follow
"Count-Distinct with Threshold" [18], only the last operator
is of interest. Since the actually queried operators are more
lightweight and much traffic is pruned in previous operators,
we do not introduce additional control plane overheads.

4.3 Sketch Selection for Built-in Operators
AutoSketch supports multiple types of sketch algorithms to
instantiate built-in operators, so as to adapt to diverse applica-
tions and accuracy intents. We leverage a sampling technique
to select the most efficient algorithms for a given application
and accuracy intent. Specifically, we evaluate different com-

1556 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

binations of sketch algorithms, and select the combination
that uses minimum resource usage to fulfill the accuracy. The
evaluation uses synthetic workloads to perform benchmark
analysis (see §5), so that we can estimate the actual resource-
accuracy trade-off of the sketch algorithms. For each built-in
operator, we generate several configurations for each potential
algorithm that can realize this operator. We not only calculate
the theoretical configuration suggested in the literature, but
also randomly sample some other configurations.

Note that the sampling only addresses a limited number of
configurations, which is acceptable for algorithm selection.
Thus, we still need comprehensive configurations in §5. We
put more optimizations for sketch mapping in Appendix D.

5 Searching for Configurations

5.1 Problem Formulation

AutoSketch aims to find out a configuration that satisfies input
accuracy intent but incurs minimum resource usage. We state
the problem as follows (the complete problem formulation is
in Appendix E).

Application configuration. We define an application config-
uration c as a vector of 3n variables, c = (d1,w1,s1,d2,w2,
s2, ...,dn,wn,sn), given that n is the number of mapped sketch
instances. Each variable in the vector is a parameter that needs
to be configured. For the i-th sketch instance, the two parame-
ters di and wi indicate the depth and width of the 2D sketch
structure, respectively. si is the number of stages occupied by
the i-th instance, which limits the maximal available resources
for each sketch. Here, we omit the size of each element, be-
cause it is a constant determined while sketch-based mapping.

Constraints. A configuration needs to satisfy two types of
constraints. The first type is about accuracy. It requires that
the accuracy of the telemetry application should reach the
user-specified accuracy intent. The other type of constraint
ensures that the resource usage (stage, ALU, and memory) of
a configuration should not exceed the available ones provided
by PISA switches. Further, since ALUs and memory are as-
sociated with each stage, we also require that a configuration
does not compromise per-stage resource restrictions.

Objective. The objective of parameter tuning is to find the
configuration that satisfies all the constraints (including ac-
curacy constraints and resource constraints) while incurring
minimal resource usage. Currently, AutoSketch considers two
types of resources: register memory and stateful ALU. The
resource usage of any configuration c is quantified as a score:
SC(c) = αnALU +βnmem, where nALU refers to the number of
needed ALUs for the configuration c and nmem refers to the
used register memory. Here, α and β are two user-specified pa-
rameters to weight ALUs and memory. Note that the number
of ALUs also relates to in-switch processing delay because it
determines how many match-action tables each packet needs

Algorithm 4 Searching Algorithm for Configuration
Input : Telemetry application T composed of n mapped sketch instances
Input : Accuracy intent EB specified by the user
Global variables : S = [], done = [], candidate = []
1: function SEARCH(T , EB)
2: candidate = LHS_INIT(n)
3: while candidate not empty do
4: Take a configuration c from candidate
5: Evaluate T by c
6: Add c to done
7: if c satisfys EB then
8: Add c to S
9: neighbors = CALCNEIGHBOR(c)

10: for x in neighbors do
11: if EXAMINE(x) then
12: add x to candidate
13: if S is not empty then
14: return the configuration whose SC is minimal in S
15: else ▷ no configuration satisfies EB
16: return the configuration whose accuracy is highest in done

to go through. Thus, if we aim to minimize the processing
delay instead of resource usage, we can simply set β = 0.

Hardness. It remains challenging to adopt classical optimiza-
tion techniques to solve it. As summarized in §3.2, (1) existing
theoretical analysis of sketches considers the worst case; (2)
it is challenging to integrate the errors of individual sketch
instances into application-level accuracy intent. Thus, we
cannot rely on theoretical analysis to estimate actual accu-
racy for practical workloads or configure parameters. On the
other hand, some studies [49, 51, 98] advocate learning the
configuration parameters by deep reinforcement learning [62].
However, as telemetry applications vary, it is unacceptable to
train a model for each application separately.

5.2 Benchmark-based Searching

AutoSketch performs benchmark analysis to evaluate con-
figuration accuracy and selects configurations accordingly.
Specifically, AutoSketch employs several representative work-
loads. For each configuration, AutoSketch evaluates its accu-
racy with the workloads. If the resulting accuracy meets the
accuracy intent in all workloads, we consider that this configu-
ration can fulfill the intent in practice. Currently, AutoSketch
provides several synthetic workloads for the benchmark. The
synthetic workloads follow typical distributions of network
traffic (e.g., power-law) and are generated with different pa-
rameters (e.g., different skewness for power-law distributions)
to mimic various scenarios. In addition, we randomly inject
additional network traffic in some intervals during the search-
ing to simulate traffic bursts. Users can select the workloads
based on their needs or use their own trace. Here, the pro-
grams required for the benchmark (including the decomposed
UDF) are automatically generated by AutoSketch.

Obviously, the benchmark searching is time-consuming
because the number of possible configurations is huge. Con-
sider an example in which a sketch instance runs in a switch
with four ALUs and 1 MB memory. Even in this simple ex-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1557

of

 A
LU 1

2
3

of Memory Page
1 2 4 8

Sample Points

Figure 4: Latin Hypercube Sampling for 2D-space.

ample, the number of possible configurations is above 5 K
(the detailed calculation is in Appendix F). Taking an ap-
plication containing two sketch instances, the time usage of
benchmark evaluation for one configuration takes 1-2 minutes
under a 4 Gb workload. AutoSketch optimizes the searching
procedure in the following paragraphs.

Searching procedure (Algorithm 4). The searching starts
with invoking LHS_INIT (see below) to initialize a list of
candidate configurations (line 2). Then AutoSketch iteratively
pops one configuration, and performs benchmark experiments
to evaluate its accuracy (lines 3-6). If this candidate fulfills
the intent, it is saved in a set S (lines 7-8). For each candidate,
AutoSketch also generates its neighboring configurations that
incur similar resource overheads (line 9). Among these neigh-
boring configurations, AutoSketch prunes useless ones and
adds the residual to the candidate list (lines 10-12). After all
the candidates are evaluated, if there exist configurations ful-
filling the intent, AutoSketch returns the one with minimum
resource usage (lines 13-14). Otherwise, AutoSketch returns
the configuration with the highest accuracy (lines 15-16).

LHS-based configuration initialization. AutoSketch con-
structs initial configurations based on Latin Hypercube Sam-
pling (LHS) [56]. LHS is a statistical method to generate
representative sampled configurations in multi-dimensional
spaces. It requires that the generated samples have distinct
sampled values in every dimension. Figure 4 shows an ex-
ample of 2D-space. In this case, LHS generates three sample
points. Each row has exactly one sample point. Each column
has at most one point. Note that the second column has no
sample point because adding any point in this column causes
conflicts with other points. In this way, LHS guarantees that
the sampled points are evenly distributed in the parameter
space. We leave the complete algorithm in Appendix G.

Hardware-aware configuration generation. After evalu-
ating a candidate c, AutoSketch generates the neighboring
configurations of c. Function CALCNEIGHBOR leverages the
hardware features to reduce the number of configurations.
First, existing switches allocate memory at the granularity of
16 KB pages. Thus, we require that the total size of a config-
uration aligns to the page size. Second, the range of a hash
value is a power of two. Thus, we only consider the config-
urations in which per-row cell count is also a power of two.
Specifically, the generation depends on whether c meets the
accuracy intent. If c satisfies the intent, AutoSketch generates
new configurations with fewer resources, by either decreasing
the number of hash functions by one or halving the number
of memory pages. Otherwise, if c does not fulfill the intent,

AutoSketch either adds one hash function or doubles memory
pages to generate configurations with more resources. We
leave the pseudo code of CALCNEIGHBOR in Appendix H.

Configuration pruning. AutoSketch applies several rules to
prune configurations. AutoSketch first examines unnecessary
configurations, including (1) configurations that have been
evaluated, (2) configurations whose resource usage exceeds
a limit, and (3) configurations that consume more resources
than a configuration already satisfying the intent.

In addition, AutoSketch stops when sufficiently good con-
figurations are found. Specifically, if the initial configuration
satisfies the intent, AutoSketch stops decreasing resources
when a configuration fails to meet the intent. Otherwise, if the
initial configuration does not satisfy the intent, AutoSketch
stops when a satisfying configuration is found. Therefore, Au-
toSketch guarantees that it can always find a feasible solution
that meets the accuracy intent if such configurations exist.
Otherwise, AutoSketch throws an error.

6 Implementation

Interface. We leverage the syntax sugar of Python to imple-
ment our interface as a domain-specific language embedded
in Python. Specifically, we define a PacketStream class and
realize all operators as its member functions. For each func-
tion, both the input and output have the type PacketStream.
This inherently realizes the chaining syntax as shown in §2.
We plan to integrate OmniWindow [83] with our interface to
support general window mechanisms in our future work.

Compiler. We provide two sketch algorithms for each state-
ful built-in operator. Specifically, a reduce operator can be
mapped to a Count-Min Sketch [20] or a Count Sketch [12],
while we use Bloom Filter [8] and Counting Bloom Filter [23]
for distinct. We leverage multi-threading techniques to par-
allelize the time-consuming benchmark experiments. Cur-
rently, AutoSketch supports two types of PISA-based target
backends, namely Tofino [89] and BMv2 [9]. Our implemen-
tation realizes the idea of this paper (i.e., constructing and
optimizing sketch instances). Other program optimization
(e.g., Chipmunk [26], BitSense [22]) is out of our scope.

Runtime. We realize a control plane runtime and a data plane
runtime to deploy AutoSketch. The data plane runtime installs
the output P4 programs of AutoSketch into switches and sends
sketch structures to the controller. The control plane runtime
invokes the query procedures and reports results to users.

Multiple applications and distributed deployment. To de-
ploy multiple applications over distributed devices, we merge
the DAGs of each application into a large application and ab-
stract the switch along the packet transmission path into a big
pipeline [16, 25]. We leave the searching for this large appli-
cation on the big pipeline abstraction with different accuracy
intents as our future work.

1558 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Telemetry Application Lines of Code
Sonata Marple AS AS-P4

Used in existing query-driven telemetry (see §7.2)
New TCP Conns.(NC) [97] 6 8 7 192
TCP Incomplete Flows (IF) [97] 12 16 15 237
Port Scan (PS) [40] 6 11 6 285
DDoS (DD) [96] 9 14 6 277
TCP timeouts (TO) [67] * - 6 7 567
TCP non-monotonic (NM) [67] * - 7 9 618
TCP out-of-sequence (OOS) [67] * - 6 7 618
TCP SYN Flood (SF) [97] * - 17 20 635

Used in existing sketch-based telemetry (see §7.3)
Superspreader (SP) [96] 6 11 6 271
Cardinality (CD) [34] 3 8 4 227
Heavy Hitter (HH) [20] 5 10 5 271

Table 2: (Exp#1) LoC of telemetry applications (* indicates
that the application contains UDF).

7 Evaluation

We conduct experiments that compare AutoSketch with state-
of-the-art telemetry solutions in various aspects. We summa-
rize our findings for AutoSketch: (1) It implements 11 teleme-
try applications in <20 lines of code without concerns with
parameter configurations (Exp#1 and Exp#5); (2) It satisfies
the accuracy intent of at least 95% precision, 97% recall, and
at most 2.8% ARE for all the applications with only less than
6 ALUs, 1.06 MB memory and 115 KB/s bandwidth on aver-
age (Exp#2, Exp#3 and Exp#4); (3) It consumes around 50%
switch resource usage to achieve the intent compared to most
classical sketch algorithms (Exp#6 and Exp#7); (4) It achieves
better effectiveness than query planning of Sonata and scale
to large-volume traffic (Exp#8); (5) It efficiently finds out
configurations with high accuracy (Exp#9 and Exp#10 in
Appendix I). We put the complete results in Appendix J.

7.1 Setup

Telemetry Applications. Our evaluation considers 11 repre-
sentative telemetry applications in Table 2. The applications
are commonly used to evaluate telemetry solutions, including
both query-driven telemetry [30, 67, 105] and sketch-based
telemetry. Among these applications, TO, NM, OOS and SFL
contain UDFs. We configure the applications as described in
the literature. We put their realizations in Appendix K.

Workloads. We use CAIDA traces from 2016 to 2019. For
stress testing, we simultaneously run PktGen [72] on eight
servers to replay the traffic at 40x speed: every 100 ms interval
in our result corresponds to 4 s traffic of the origin trace. Thus,
each interval contains around 200 K active flows and 6 Gb
traffic (60 Gbps). Further, we inject additional 20 K flows at
10% intervals to evaluate AutoSketch under traffic bursts.

Accuracy metrics. For all applications except for CD, we
measure both recall and precision. For TO, NM, and OOS
that measure per-flow packet count of interest, we additionally
evaluate their ARE. For CD, we measure the relative error

NC IF DD PS0
2
4
6
8

of

 S
ta

ge

Sonata Marple AS-1 AS-2

NM OOS TO SFL0
2
4
6
8

of

 S
ta

ge

EM Marple AS-1 AS-2

(a) Stage for APP. without UDF (b) Stage for APP. with UDF

NC IF DD PS0
2
4
6

of

 A
LU

Sonata Marple AS-1 AS-2

NM OOS TO SFL0

5

10

15

of

 A
LU

EM Marple AS-1 AS-2

(c) ALU for APP. without UDF (d) ALU for APP. with UDF

NC IF DD PS0.0

0.5

1.0

M
em

or
y

(M
B)

Sonata Marple AS-1 AS-2

NM OOS TO SFL0
1
2
3
4

M
em

or
y

(M
B)

EM Marple AS-1 AS-2

(e) Memory for APP. without UDF (f) Memory for APP. with UDF

Figure 5: (Exp#2) Switch resource usage against query-driven
telemetry.

(RE): n−n̂
n , where n and n̂ are the true and estimated number

of flows, respectively.
Resource metrics. We consider three types of switch re-
sources: (1) on-chip memory used to maintain the states of
stateful operators; (2) stateful ALU used to calculate hash
functions and update state values; and (3) stage in the PISA
switch associated with its own ALUs and memory. Note that
we do not report the results on PHV because the packet tu-
ples passing across stages mainly include the parsed fields in
packet headers, whose overheads are limited.
Accuracy intents. We use two accuracy intents for AutoS-
ketch: one aims to achieve 95% recall, 95% precision, and 3%
ARE, while the other requires 99% recall, 99% precision, and
1% ARE. Both intents set the confidence as 95%. Therefore,
we report the 95-th percentiles among the intervals, with the
minimum and maximum values as the error bars. For each
application, we apply the two intents to generate their P4
programs, denoted by AS-1 and AS-2, respectively.

7.2 Compare with Query-driven Telemetry

Methodology. We compare AutoSketch with two query-
driven telemetry systems, Sonata [30] and Marple [67]. For
Sonata, we configure each stateful operator with 216 counters
and utilize the refinement plan ∗ → 8 → 32 as in its open-
source prototype. For Marple, we implement its key-value
cache and evict old keys to handle hash collisions. We con-
figure 216 cache slots as in the paper [67]. For applications
with groupby operators, we also consider a naive approach,
namely entire mapping (EM), that converts each UDF operator
entirely into a sketch-like structure (see §3.1). Since EM does
not resolve hash collisions, we configure the structure with
256 K cells to handle the >200 K flows per interval.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1559

NC IF DD PS100
102
104
106

KB
/s

<1

Sonata Marple AS-1 AS-2

NM OOS TO SFL100
102
104
106

KB
/s

<1

EM Marple AS-1 AS-2

(a) Applications without UDF. (b) Applications with UDF.

Figure 6: (Exp#3) Bandwidth usage against query-driven
telemetry.

(Exp#1) Expressiveness. We first compare the expressiveness
of AutoSketch with Sonata and Marple, both of which regard
expressiveness as the "first-class citizens" in their designs.
Table 2 shows that AutoSketch needs similar lines of code
(LoC) to implement the eleven telemetry applications. On
the other hand, it needs hundreds of lines if we directly use
P4. Further, AutoSketch allows expressing accuracy intents,
while the Sonata and Marple do not have such features.
(Exp#2) Resource usage. This experiment evaluates the re-
source usage of AutoSketch in switches. We deploy each
solution atop a Barefoot Wedge 100B-32X (Tofino) PISA
switch [89], and then measure the incurred resource usage.
We consider eight telemetry applications in this experiment.
Recall that Sonata does not support UDFs, while EM only
applies to UDFs. Thus, we present the results of the eight
applications separately, according to the existence of UDFs.

Figure 5 presents the results. For applications without
UDFs, Sonata occupies much more stages than others due
to its refinement mechanism which reduces the traffic sent
to the stream processor. AutoSketch consumes less or the
same amount of ALUs and memory as Sonata and Marple
except for DD under AS-2, but achieves lower bandwidth
overhead (Exp#3) and higher accuracy than Sonata (Exp#4).
For example, the memory overheads of Sonata and Marple
for NC and IF are 8 times higher than AS-1. For applications
with UDFs, EM incurs six more stages, nine more ALUs, and
1.6 MB more memory than AS-1 over the total resources of
four applications and suffers from serious hash conflicts and
incurs low accuracy (see Exp#4). However, AutoSketch con-
sumes two to fine more stages, seven to nine more ALUs and
15%-175% more memory than Marple. The reason is that the
user-defined states in UDFs are complicated, thereby AutoS-
ketch enlarges the resource usage to mitigate hash conflicts.
However, Marple has to deal with hash conflicts by sending
excessive traffic to the control plane (see Exp#3).
(Exp#3) Bandwidth usage. Figure 6 presents the traffic sent
to the control plane of each approach. Although the cur-
rent bandwidth of the control plane is in the magnitude of
100 Gbps, it must hold numerous data plane devices. Thus,
it is critical to save control plane bandwidth [15, 30, 46, 67].
AutoSketch incurs 115 KB/s bandwidth for all the applica-
tions, while Sonata, EM and Marple consume 45.1 KB/s,
913.2 KB/s, and 485.2 MB/s, respectively. Here, Sonata re-
duces the bandwidth usage at the cost of higher switch re-
sources (see Exp#2). The reasons why EM and Marple incur

higher bandwidth consumption than AutoSketch are as fol-
lows. For Marple, it needs to evict conflicting packets to the
control plane. For EM, it suffers from severe hash conflicts,
so a large number of normal packets are wrongly identified
as anomalies and then sent to the control plane.

(Exp#4) Accuracy. This experiment compares the accuracy
of AutoSketch with Marple, Sonata, and EM. Figures 7(a)
and 7(b) present the results of the applications without UDFs.
Marple achieves zero error for all applications because they
completely handle hash conflicts. However, it incurs exces-
sive resource overheads and bandwidth consumption (see
Exp#2 and Exp#3). Sonata well ensures the precision of all
applications but fails at the recall metric. The reason is that
Sonata decreases the counting value during the refinement
process and many abnormal flows are not wrongly identified
as normals. AutoSketch achieves high accuracy. In particular,
it satisfies our two accuracy intents for all applications.

Figures 7(c) to 7(e) show the results on the applications
with UDFs. Marple achieves zero error for the four applica-
tions. Except for TO, all AutoSketch applications meet both
intents. Here, TO also achieves 95% precision and 97% recall,
which is close to the intent. However, the recall of TO for
EM is only 62% and the average precision for EM is even
much lower (only 36%). EM also incurs high ARE: the ARE
for NM even exceeds 186%. The reason is that some states
are extremely sensitive to hash conflicts. When binding all
states in one sketch-like structure, hash conflicts will seriously
compromise their accuracy.

7.3 Compare with Sketch-based Telemetry

Methodology. We compare AutoSketch with existing sketch
algorithms. In Table 2, we select three applications that
have been extensively studied by existing sketch algorithms.
We consider two general-purpose sketch-based solutions
FlowRadar (FR) [50] and OpenSketch (OS) [96] that can
support all three applications. FR proposes a general sketch
structure to support various applications. For OS, we build
the algorithms in P4 as suggested by the original paper [96].

In addition to FR and OS, we also select two state-of-the-
art sketch algorithms that are specifically designed for each
application: in heavy hitter detection (HH), we compare Au-
toSketch with MV-Sketch (MV) [87] and HashPipe (HP) [79];
in superspreader detection (SP), we compare AutoSketch with
SpreadSketch (SS) [86] and Vector Bloom Filter (VBF) [52];
in cardinality estimation, we compare AutoSketch with FM-
Sketch (FM) [24] and Linear Counting (LC) [91].

We realize these algorithms based on their published de-
signs except MV and SS that provide open-source implemen-
tation. We also apply AS-1 and AS-2 for AutoSketch and the
sketch algorithms. We follow the guidelines in the literature to
configure these sketches. Here, we present the results of AS-1.
The results of AS-2 are in Appendix J. We do not present the
bandwidth usage of sketch-based solutions because they only

1560 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NC IF DD PS0
25
50
75

100

Re
ca

ll
(%

)

Sonata Marple AS-1 AS-2

NC IF DD PS0
25
50
75

100

Pr
ec

isi
on

 (%
)

Sonata Marple AS-1 AS-2

NM OOS TO SFL0
25
50
75

100

Re
ca

ll
(%

)

EM Marple AS-1 AS-2

NM OOS TO SFL0
25
50
75

100

Pr
ec

isi
on

 (%
)

EM Marple AS-1 AS-2

NM OOS TO100

101

102

AR
E

(%
)

0 0 0<1 <1

EM Marple AS-1 AS-2

(a) Recall for APP. w/o UDF (b) Precision for APP. w/o UDF (c) Recall for APP. w/ UDF (d) Precision for APP. w/ UDF (e) ARE for APP. w/ UDF
Figure 7: (Exp#4) Accuracy against query-driven telemetry.

MV HP FR OS AS0
101

102

103

Lin
es

 o
f C

od
e

8001170780

45
6

SS VBF FR OS AS0
101

102

103

Lin
es

 o
f C

od
e

580 480 780

55
8

FM LC FR OS AS0
101

102

103

Lin
es

 o
f C

od
e

200 170
780

15
4

(a) Heavy Hitter (b) Superspreader (c) Cardinality
Figure 8: (Exp#5) Expressiveness against sketch-based
telemetry.

MV HP FR OS AS0
3
6
9

12

of

 S
ta

ge

6
9

11
7

3

SS VBF FR OS AS0
3
6
9

12

of

 S
ta

ge

6

12 11 10

3

FM LC FR OS AS0
3
6
9

12

of

 S
ta

ge

4
1

11

1 2

(a) Stage for HH (b) Stage for SP (c) Stage for CD

MV HP FR OS AS0

10

20

30

of

 A
LU

12
16

24

8
3

SS VBF FR OS AS0

10

20

30

of

 A
LU

6 5

24

8
4

FM LC FR OS AS0

10

20

30

of

 A
LU

1 1

24

1 2

(d) ALU for HH (e) ALU for SP (f) ALU for CD

MV HP FR OS AS100

102

104

M
em

or
y

(K
B)

384 576
6K

592
144

SS VBF FR OS AS100

102

104

M
em

or
y

(K
B)

384
2.6K 6K

1.2K384

FM LC FR OS AS100

102

104

M
em

or
y

(K
B)

32 32

6K

32
256

(g) Memory for HH (h) Memory for SP (i) Memory for CD
Figure 9: (Exp#6) Switch resource usage against sketch-based
telemetry.

transfer the sketch structures to the controller. Thus, we can
infer the bandwidth from their memory usage in Exp#6.

(Exp#5) Expressiveness. We first compare the expressiveness
of AutoSketch with the sketch algorithms. Figure 8 shows
that AutoSketch only needs less than ten LoC to express each
telemetry application. However, existing sketch algorithms
require hundreds of lines of P4 code. Note that OS provides
one library that includes some pre-built sketches. Therefore,
OS can express one telemetry application in dozens of con-
figuration LoC. Further, AutoSketch automatically generates
corresponding P4 programs with parameter configurations,
while sketch algorithms need many efforts to tune parameters.

(Exp#6) Resource usage. We compare the resource usage of
AutoSketch with the sketch algorithms. Figures 9(a) to 9(i)
show that AutoSketch only consumes 50% switch resources
compared to most existing sketch algorithms except for LC
and FM (OS utilizes LC to realize cardinality). The reason is
that existing sketch algorithms typically consider worst-case
scenarios, while AutoSketch selects the most suitable config-
uration via benchmarking-based searching. FM and LC use
very limited resources because they only support the simple

MV HP FR OS AS0
25
50
75

100

Ac
cu

ra
cy

 (%
) Recall Precision

SS VBF FR OS AS0
25
50
75

100

Ac
cu

ra
cy

 (%
) Recall Precision

FM LC FR OS AS0
5

10
15
20

RE
 (%

)

(a) Heavy Hitter (b) Superspreader (c) Cardinality
Figure 10: (Exp#7) Accuracy against sketch-based telemetry.

cardinality estimation at the cost of occasional unacceptable
error (Exp#7). FR incurs much higher resource usage since it
has complicated structures to support general telemetry tasks.
HP and VBF take the multi-level data structure that needs
more stages than other solutions. OS incurs more resources
than AutoSketch to detect heavy hitters and super spreaders,
since it adopts reversible sketch [75] to maintain flowkey.

(Exp#7) Accuracy. We compare the accuracy of AutoSketch
with the sketch algorithms (the red dotted line in the figure
indicates the accuracy intent). For the heavy hitter detection
(Figure 10(a)), all solutions can reach 95% precision. How-
ever, the recall of HP and FR is only 20% and 90%, respec-
tively. The reason is that their desired resources exceed the
hardware capacity. MV achieves similar accuracy as AutoS-
ketch, but needs more resources (see Exp#6). For the super-
spreader detection (Figure 10(b)), SS, VBF, and OS reach
high precision but cannot fulfill the recall goal, since they
are sensitive to hash conflicts. For the cardinality estimation
(Figure 10(c)), FM cannot satisfy the intent and its RE suffers
from terribly high error. AutoSketch meets the accuracy intent
in all the telemetry applications for two reasons. First, our
parameter configuration avoids worst-case parameters in tra-
ditional theoretical analysis. Second, our randomly injecting
additional traffic adapts to traffic bursts.

7.4 Micro Benchmarks

(Exp#8) Parameter tuning. We compare our benchmark-
based parameter tuning with the query planning of Sonata.
We consider two versions of Sonata, denoted by S1 and S2,
respectively. S1 is the default setup in Sonata’s open-source
prototype [69] that does not deal with hash collisions. S2
resolves hash conflicts by mapping each flow to d counters
and evicting a flow to the remote stream processor if hash
collisions occur (c.f. §3.1 of [30]). We follow the guidelines
in [30] to make the partition and refinement decision via the
ILP. We stress test all systems with different packet rates.

We present the DDoS detection under AS-1 due to space
limitations. Figure 11 shows the results. Even though S1 care-
fully tunes the data structure size and the refinement plan
(∗→ 16 → 32), it still fails to satisfy AS-1 (Figure 11(a) and

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1561

16 32 48 64
Throughput (Mpps)

0

50

100

Re
ca

ll
(%

)

S1 S2 AutoSketch

16 32 48 64
Throughput (Mpps)

0

50

100

Pr
ec

isi
on

 (%
)

 S1 S2 AutoSketch

16 32 48 64
Throughput (Mpps)

100
102
104
106

KB
/s

S1 S2 AutoSketch

(a) Recall (b) Precision (c) Bandwidth

16 32 48 64
Throughput (Mpps)

0
4
8

12

of

 S
ta

ge
 S1 S2 AutoSketch

16 32 48 64
Throughput (Mpps)

0
4
8

12

of
 A

LU
S1 S2 AutoSketch

16 32 48 64
Throughput (Mpps)

0
2
4
6

M
em

or
y

(M
B)

S1 S2 AutoSketch

(d) Stage (e) ALU (f) Memory
Figure 11: (Exp#8) Parameter tuning.

NC IF SFL SP PS DD CD HH TO NM OOS0
5

10
15

Ti
m

e
(m

in
)

10−10
10−8
10−6
10−4
10−2

Ra
tio

 (%
)

Figure 12: (Exp#9) Searching cost.

11(b)) because it does not resolve hash conflicts. In contrast,
S2 achieves zero error at the cost of higher switch resource
and bandwidth overhead. Compared to S1 and S2, AutoS-
ketch satisfies the accuracy intent with lower switch resource
and bandwidth overhead. The reason is that although Sonata
efficiently determines offloaded operators, it lacks the opti-
mization for individual operators. On the opposite, AutoS-
ketch targets parameter tuning for each operator. The two
approaches are orthogonal to each other, which can be com-
bined to realize both benefits.

(Exp#9) Searching costs. We evaluate the cost of the
benchmark-based configuration searching algorithm. Fig-
ure 12 presents the searching time (red bar) and the ratio
between the number of configurations actually evaluated and
the number of all possible configurations (blue bar). As in
§5.2, the number of possible configurations is extraordinarily
huge. Our algorithm greatly prunes the number of evaluated
configurations by three to nine magnitudes. In particular, our
searching algorithm leverages hardware features to prune
configurations (see §5), which decrease the candidate config-
urations by at most six magnitudes. Other techniques further
reduce by two magnitudes. All the applications converge a
configuration close to the best solution (see Exp#10 in Ap-
pendix I) within 15 minutes using a single core, with an aver-
age time of 6.5 minutes. It is acceptable because the searching
is performed once before an application is deployed.

8 Related Works

Query-driven telemetry. Existing studies on query-driven
telemetry can be categorized into two classes. The first class
is based on text-based expression [4, 66, 95, 97]. Specifi-
cally, PathQuery [66] focuses on the path-based traffic mon-
itoring. NetQRE [97] combines application-level aggrega-
tion operations with regular-expression-like pattern match-
ing. dShark [95] leverages the json-based telemetry lan-

guage to declare fields and then invoke callback functions
for further processing. The second class provisions a col-
lection of operators for users to form telemetry applications
[19, 29, 30, 38, 45, 47, 67, 105]. AutoSketch follows the line
of operator-based telemetry with two enhancements: the ac-
curacy intent in the language, and the automatic compiler to
generate sketch-based programs.

Telemetry algorithms. There are three classes of telemetry al-
gorithms. Sampling algorithms [11,41,73,76,77,82] consume
limited resources but suffer from high errors. Counter-based
approaches [6, 79] only address top-k flows, thereby failing
to support generic applications. Sketch algorithms maintain
compact data structures that allow multiple flows to share
counters [1, 28, 35, 50, 54, 55, 94, 96, 101, 103]. With proper
parameters, they achieve both high accuracy and resource
efficiency. However, they suffer from heavy implementation
and configuration burdens. AutoSketch hides such complexity
with its programmability.

Telemetry architectures. Host-based telemetry systems [27,
42,65,84] suffer from limited network visibility. Switch-based
systems [7, 17, 39, 59, 68, 71, 80, 81, 88, 90, 104] process traf-
fic with high-speed ASICs but suffer from the limited mem-
ory. Recent studies often combine different network entities.
SwitchPointer [85] utilizes the switch memory as a directory
that points to the telemetry data on end-hosts. Sonata [30]
abstracts the switch and end-host into a big streaming proces-
sor. Marple [67] treats the switch memory as the cache of the
key-value store on end-hosts. MOZART [53] coordinates the
switches and end-hosts to select and monitor traffic. Omni-
Mon [37] integrates the capabilities of end-hosts, switches,
and the controller. AutoSketch is orthogonal to these works.

9 Conclusion

This paper proposes AutoSketch, a network telemetry solu-
tion that bridges the gap between query-driven telemetry and
sketch-based telemetry algorithms. AutoSketch extends the
existing operator-based interface to allow users to specify the
accuracy intent. It designs a compiler to translate the stateful
operators in telemetry applications into sketch instances in the
data plane. AutoSketch automatically configures parameters
to fulfill the accuracy intent. Experiments demonstrate that
AutoSketch achieves high expressiveness and high accuracy
with limited hardware resources.

Acknowledgements

We thank our shepherd, Alan Zaoxing Liu, and the anony-
mous reviewers for their valuable comments. The work was
supported in part by National Key R&D Program of China
(2019YFB1802600), Joint Funds of the National Natural Sci-
ence Foundation of China (U20A20179), National Natural
Science Foundation of China (62172007).

1562 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Anup Agarwal, Zaoxing Liu, and Srini Seshan. Het-
eroSketch: Coordinating network-wide monitoring in
heterogeneous and dynamic networks. In Proc. of
USENIX NSDI, 2022.

[2] Pankaj K. Agarwal, Graham Cormode, Zengfeng
Huang, Jeff Phillips, Zhewei Wei, and Ke Yi. Merge-
able summaries. In Proc. of ACM PODS, 2012.

[3] Sameer Agarwal, Barzan Mozafari, Aurojit Panda,
Henry Milner, Samuel Madden, and Ion Stoica.
Blinkdb: queries with bounded errors and bounded
response times on very large data. In Proc. of ACM
EuroSys, 2013.

[4] Mina Tahmasbi Arashloo, Yaron Koral, Michael Green-
berg, Jennifer Rexford, and David Walker. Snap: State-
ful network-wide abstractions for packet processing.
In Proc. of ACM SIGCOMM, 2016.

[5] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf
Schuster, and Geoff Outhred. Taking the blame game
out of data centers operations with netpoirot. In Proc.
of ACM SIGCOMM, 2016.

[6] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo C
Luizelli, and Erez Waisbard. Constant Time Updates
in Hierarchical Heavy Hitters. In Proc. of ACM SIG-
COMM, 2017.

[7] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yu-
liang Li, Gianni Antichi, Minian Yu, and Michael
Mitzenmacher. Pint: Probabilistic in-band network
telemetry. In Proc. of ACM SIGCOMM, 2020.

[8] Burton H. Bloom. Space/Time Trade-offs in Hash
Coding with Allowable Errors. Communications of
ACM, 13, 1970.

[9] BMv2 PISA switch. https://github.com/p4lang/
behavioral-model.

[10] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George
Varghese, Nick McKeown, Martin Izzard, Fernando
Mujica, and Mark Horowitz. Forwarding metamor-
phosis: Fast programmable match-action processing in
hardware for sdn. In Proc. of ACM SIGCOMM, 2013.

[11] Marco Canini, Damien Fay, David J. Miller, Andrew W.
Moore, and Raffaele Bolla. Per Flow Packet Sampling
for High-Speed Network Monitoring. In Proc. of COM-
SNETS, 2009.

[12] Moses Charikar, Kevin Chen, and Martin Farach-
Colton. Finding frequent items in data streams. Theo-
retical Computer Science, 312:3–15, 2004.

[13] Ang Chen, Andreas Haeberlen, Wenchao Zhou, and
Boon Thau Loo. One primitive to diagnose them all:
Architectural support for internet diagnostics. In Proc.
of EuroSys, 2017.

[14] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao
Zhou, and Boon Thau Loo. The good, the bad, and
the differences: Better network diagnostics with dif-
ferential provenance. In Proc. of ACM SIGCOMM,
2016.

[15] Xiang Chen, Qun Huang, Peiqiao Wang, Hongyan Liu,
Yuxin Chen, Dong Zhang, Haifeng Zhou, and Chun-
ming Wu. Mtp: Avoiding control plane overload with
measurement task placement. In Proc. of IEEE INFO-
COM, 2021.

[16] Xiang Chen, Hongyan Liu, Qun Huang, Peiqiao Wang,
Dong Zhang, Haifeng Zhou, and Chunming Wu. Speed:
Resource-efficient and high-performance deployment
for data plane programs. In Proc. of IEEE ICNP, 2020.

[17] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jen-
nifer Rexford, Ori Rottenstreich, Steven A Monetti,
and Tzuu-Yi Wang. Fine-grained queue measurement
in the data plane. In Proc. of CoNEXT, 2019.

[18] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman,
and Jennifer Rexford. Beaucoup: Answering many
network traffic queries, one memory update at a time.
In Proc. of ACM SIGCOMM, 2020.

[19] Xin Cheng, Zhiliang Wang, Shize Zhang, Xin He, and
Jiahai Yang. Intstream: An intent-driven streaming
network telemetry framework. In Proc. of IEEE CNSM,
2021.

[20] Graham Cormode and S. Muthukrishnan. An Improved
Data Stream Summary: The Count-Min Sketch and its
Applications. Journal of Algorithms, pages 58–75,
2005.

[21] Xenofontas Dimitropoulos, Paul Hurley, and Andreas
Kind. Probabilistic lossy counting: an efficient algo-
rithm for finding heavy hitters. Proc. of ACM SIG-
COMM CCR, 38, 2008.

[22] Rui Ding, Shibo Yang, Xiang Chen, and Qun Huang.
Bitsense: Universal and nearly zero-error optimization
for sketch counters with compressive sensing. In Proc.
of ACM SIGCOMM, 2023.

[23] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder.
Summary cache: a scalable wide-area web cache shar-
ing protocol. IEEE/ACM Trans. on Networking, 8:281–
293, 2000.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1563

https://github.com/p4lang/behavioral-model.
https://github.com/p4lang/behavioral-model.

[24] Philippe Flajolet and G Nigel Martin. Probabilistic
counting algorithms for data base applications. Journal
of computer and system sciences, 31:182–209, 1985.

[25] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui
Miao, Yu Zhou, Bingchuan Tian, Chen Sun, Dennis
Cai, Ming Zhang, and Minlan Yu. Lyra: A cross-
platform language and compiler for data plane pro-
gramming on heterogeneous asics. In Proc. of ACM
SIGCOMM, 2020.

[26] Xiangyu Gao, Taegyun Kim, Michael D. Wong, Divya
Raghunathan, Aatish Kishan Varma, Pravein Govindan
Kannan, Anirudh Sivaraman, Srinivas Narayana, and
Aarti Gupta. Switch code generation using program
synthesis. In Proc. of ACM SIGCOMM, 2020.

[27] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Bal-
aji Prabhakar, Mendel Rosenblum, and Amin Vahdat.
SIMON: A simple and scalable method for sensing,
inference and measurement in data center networks. In
Proc. of USENIX NSDI, 2019.

[28] Junzhi Gong, Tong Yang, Haowei Zhang, Hao Li, Steve
Uhlig, Shigang Chen, Lorna Uden, and Xiaoming Li.
HeavyKeeper: An accurate algorithm for finding top-k
elephant flows. In Proc. of USENIX ATC, 2018.

[29] Arpit Gupta, Rüdiger Birkner, Marco Canini, Nick
Feamster, Chris Mac-Stoker, and Walter Willinger. Net-
work monitoring as a streaming analytics problem. In
Proc. of ACM HotNets, 2016.

[30] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Walter Willinger. Sonata:
Query-Driven Streaming Network Telemetry. In Proc.
of ACM SIGCOMM, 2018.

[31] Mary Hogan, Shir Landau-Feibish, Mina Tahmasbi
Arashloo, Jennifer Rexford, and David Walker. Modu-
lar switch programming under resource constraints. In
Proc. of USENIX NSDI, 2022.

[32] Chi-Yao Hong, Matthew Caesar, Nick Duffield, and
Jia Wang. Tiresias: Online anomaly detection for hi-
erarchical operational network data. In Proc. of IEEE
ICDCS, 2012.

[33] Ningning Hu, Li (Erran) Li, Zhuoqing Morley Mao,
Peter Steenkiste, and Jia Wang. Locating internet bot-
tlenecks: Algorithms, measurements, and implications.
In Proc. of ACM SIGCOMM, 2004.

[34] Qun Huang, Xin Jin, Patrick P C Lee, Runhui Li,
Lu Tang, Yi-Chao Chen, and Gong Zhang. SketchVi-
sor: Robust Network Measurement for Software Packet
Processing. In Proc. of ACM SIGCOMM, 2017.

[35] Qun Huang and Patrick P. C. Lee. A Hybrid Local and
Distributed Sketching Design for Accurate and Scal-
able Heavy Key Detection in Network Data Streams.
Computer Networks, 91:298–315, 2015.

[36] Qun Huang, Patrick P. C. Lee, and Yungang Bao.
SketchLearn: Relieving User Burdens in Approximate
Measurement with Automated Statistical Inference. In
Proc. of ACM SIGCOMM, 2018.

[37] Qun Huang, Haifeng Sun, Patrick P. C. Lee, Wei
Bai, Feng Zhu, and Yungang Bao. Omnimon: Re-
architecting network telemetry with resource efficiency
and full accuracy. In Proc. of ACM SIGCOMM, 2020.

[38] Arthur S. Jacobs, Ricardo J. Pfitscher, Rafael H.
Ribeiro, Ronaldo A. Ferreira, Lisandro Z. Granville,
Walter Willinger, and Sanjay G. Rao. Hey, lumi! using
natural language for Intent-Based network manage-
ment. In Proc. of USENIX ATC, 2021.

[39] Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong,
and Boon Thau Loo. Burstradar: Practical real-time
microburst monitoring for datacenter networks. In
Proc. of ACM ApSys, 2018.

[40] Jaeyeon Jung, V. Paxson, A. W. Berger, and H. Bal-
akrishnan. Fast portscan detection using sequential
hypothesis testing. In Proc. of IEEE Symposium on
Security and Privacy, 2004.

[41] Srikanth Kandula and Ratul Mahajan. Sampling Biases
in Network Path Measurements and What To Do About
It. In Proc. of ACM IMC, 2009.

[42] Khandelwal, Anurag and Agarwal, Rachit and Stoica,
Ion. Confluo: Distributed Monitoring and Diagnosis
Stack for High-Speed Networks. In Proc. of USENIX
NSDI, 2019.

[43] Daniel Kopp, Matthias Wichtlhuber, Ingmar Poese,
Jair Santanna, Oliver Hohlfeld, and Christoph Dietzel.
Ddos hide & seek: On the effectiveness of a booter
services takedown. In Proc. of ACM IMC, 2019.

[44] Jan Kučera, Ran Ben Basat, Mário Kuka, Gianni An-
tichi, Minlan Yu, and Michael Mitzenmacher. Detect-
ing routing loops in the data plane. In Proc. of ACM
CoNEXT, 2020.

[45] Paolo Laffranchini, Luis Rodrigues, Marco Canini, and
Balachander Krishnamurthy. Measurements as first-
class artifacts. In Proc. of IEEE INFOCOM, 2019.

[46] Jonatan Langlet, Ran Ben-Basat, Sivaramakrishnan
Ramanathan, Gabriele Oliaro, Michael Mitzenmacher,
Minlan Yu, and Gianni Antichi. Zero-cpu collection
with direct telemetry access. In Proc. of ACM HotNets,
2021.

1564 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[47] Christopher Leet, Robert Soulé, Yang Richard Yang,
and Ying Zhang. Flow algebra: Towards an efficient,
unifying framework for network management tasks. In
Proc. of IEEE INFOCOM, 2021.

[48] Jakub Lemiesz. On the algebra of data sketches. Proc.
VLDB Endowment, 14:1655–1667, 2021.

[49] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao.
Qtune: A query-aware database tuning system with
deep reinforcement learning. Proc. of VLDB Endow.,
2019.

[50] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan
Yu. FlowRadar: A Better NetFlow for Data Centers.
In Proc. of USENIX NSDI, 2016.

[51] Zhao Li, Haifeng Sun, Zheng Xiong, Qun Huang,
Zehong Hu, Ding Li, Shasha Ruan, Hai Hong, Jie
Gui, Jintao He, Zebin Xu, and Yang Fang. Noah:
Reinforcement-learning-based rate limiter for microser-
vices in large-scale e-commerce services. IEEE Trans-
actions on Neural Networks and Learning Systems,
34(9):5403–5417, 2023.

[52] W. Liu, W. Qu, J. Gong, and K. Li. Detection of su-
perpoints using a vector bloom filter. IEEE Trans. on
Information Forensics and Security, 11:514–527, 2016.

[53] Xuemei Liu, Meral Shirazipour, Minlan Yu, and Ying
Zhang. MOZART: Temporal Coordination of Mea-
surement. In Proc. of ACM SOSR, 2016.

[54] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kass-
ner, Vladimir Braverman, Roy Friedman, and Vyas
Sekar. Nitrosketch: Robust and General Sketch-Based
Monitoring in Software Switches. In Proc. of ACM
SIGCOMM, 2019.

[55] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One Sketch to
Rule Them All: Rethinking Network Flow Monitoring
with UnivMon. In Proc. of ACM SIGCOMM, 2016.

[56] Beckman RJ McKay MD and Conover WJ. A compar-
ison of the three methods for selecting values of input
variable in the analysis of output from a computer code.
Technometrics;(United States), 1979.

[57] Ahmed Metwally, Divyakant Agrawal, and Amr El
Abbadi. Efficient Computation of Frequent and Top-k
Elements in Data Streams. In Proc. of ICDT, 2005.

[58] Ruijie Miao, Fenghao Dong, Yikai Zhao, Yiming Zhao,
Yuhan Wu, Kaicheng Yang, Tong Yang, and Bin Cui.
Sketchconf: A framework for automatic sketch config-
uration. In Proc. of IEEE ICDE, 2023.

[59] Chris Misa, Ramakrishnan Durairajan, Reza Rejaie,
and Walter Willinger. Revisiting network telemetry
in coin: A case for runtime programmability. IEEE
Network, 35:14–20, 2021.

[60] Chris Misa, Walt O’Connor, Ramakrishnan Durairajan,
Reza Rejaie, and Walter Willinger. Dynamic schedul-
ing of approximate telemetry queries. In Proc. of
USENIX NSDI, 2022.

[61] Michael Mitzenmacher and Eli Upfal. Probability
and computing: Randomization and probabilistic tech-
niques in algorithms and data analysis. Cambridge
university press, 2017.

[62] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 2015.

[63] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. DREAM: Dynamic Resource Allocation
for Software-defined Measurement. In Proc. of ACM
SIGCOMM, 2014.

[64] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. SCREAM: Sketch Resource Allocation
for Software-defined Measurement. In Proc. of ACM
CoNEXT, 2015.

[65] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Trumpet: Timely and Precise Triggers
in Data Centers. In Proc. of ACM SIGCOMM, 2016.

[66] Srinivas Narayana, Mina Tashmasbi Arashloo, Jennifer
Rexford, and David Walker. Compiling Path Queries.
In Proc. of USENIX NSDI, 2016.

[67] Srinivas Narayana, Anirudh Sivaraman, Vikram
Nathan, Prateesh Goyal, Venkat Arun, Mohammad
Alizadeh, Vimalkumar Jeyakumar, and Changhoon
Kim. Language-Directed Hardware Design for
Network Performance Monitoring. In Proc. of ACM
SIGCOMM, 2017.

[68] Inband network telemetry. http://p4.
org/wp-content/uploads/fixed/INT/
INT-current-spec.pdf.

[69] Sonata open-source repository. https://github.
com/Sonata-Princeton/SONATA-DEV.

[70] p4c: P4 Compiler. https://github.com/p4lang/
p4c.

[71] Mengying Pan, Robert MacDavid, Shir Landau-
Feibish, and Jennifer Rexford. Memory-efficient mem-
bership encoding in switches. In Proc. of ACM SOSR,
2020.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1565

http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf
http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf
http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf
https://github.com/Sonata-Princeton/SONATA-DEV
https://github.com/Sonata-Princeton/SONATA-DEV
https://github.com/p4lang/p4c
https://github.com/p4lang/p4c

[72] PktGen. https://pktgen-dpdk.readthedocs.io.

[73] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner,
Wes Felter, Kanak Agarwal, John Carter, and Rodrigo
Fonseca. Planck: Millisecond-scale Monitoring and
Control for Commodity Networks. In Proc. of ACM
SIGCOMM, 2014.

[74] Arjun Roy, Deepak Bansal, David Brumley, Har-
ish Kumar Chandrappa, Parag Sharma, Rishabh Tewari,
Behnaz Arzani, and Alex C. Snoeren. Cloud datacenter
sdn monitoring: Experiences and challenges. In Proc.
of ACM IMC, 2018.

[75] Robert Schweller, Zhichun Li, Yan Chen, Yan Gao,
Ashish Gupta, Yin Zhang, Peter Dinda, Ming Yang
Kao, and Gokhan Memik. Reversible Sketches: En-
abling Monitoring and Analysis over High-Speed Data
Streams. Proc. of IEEE/ACM Trans. on Networking,
pages 1059–1072, 2007.

[76] Vyas Sekar, Michael K. Reiter, Walter Willinger, Hui
Zhang, Ramana Rao Kompella, and David G. Ander-
sen. cSAMP: A System for Network-Wide Flow Mon-
itoring. In Proc. of USENIX NSDI, 2008.

[77] Vyas Sekar, Michael K Reiter, and Hui Zhang. Revis-
iting the Case for a Minimalist Approach for Network
Flow Monitoring. In Proc. of ACM IMC, 2010.

[78] Rachee Singh, Sharad Agarwal, Matt Calder, and
Paramvir Bahl. Cost-effective cloud edge traffic en-
gineering with cascara. In Proc. of USENIX NSDI,
2021.

[79] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rot-
tenstreich, S. Muthukrishnan, and Jennifer Rexford.
Heavy-Hitter Detection Entirely in the Data Plane. In
Proc. of ACM SOSR, 2017.

[80] John Sonchack, Adam J Aviv, Eric Keller, and
Jonathan M Smith. Turboflow: Information rich flow
record generation on commodity switches. In Proc. of
ACM EuroSys, 2018.

[81] John Sonchack, Oliver Michel, Adam J Aviv, Eric
Keller, and Jonathan M Smith. Scaling hardware accel-
erated network monitoring to concurrent and dynamic
queries with *flow. In Proc. of USENIX ATC, 2018.

[82] Junho Suh, Ted Taekyoung Kwon, Colin Dixon, Wes
Felter, and John Carter. OpenSample: A Low-Latency,
Sampling-Based Measurement Platform for Commod-
ity SDN. In Proc. of ICDCS, 2014.

[83] Haifeng Sun, Jiaheng Li, Jintao He, Jie Gui, and Qun
Huang. Omniwindow: A general and efficient window
mechanism framework for network telemetry. In Proc.
of ACM SIGCOMM, 2023.

[84] Praveen Tammana, Rachit Agarwal, and Myungjin Lee.
Simplifying datacenter network debugging with path-
dump. In Proc. of USENIX OSDI, 2016.

[85] Praveen Tammana, Rachit Agarwal, and Myungjin Lee.
Distributed Network Monitoring and Debugging with
SwitchPointer. In Proc. of USENIX NSDI, 2018.

[86] Lu Tang, Qun Huang, and Patrick P. C. Lee. Spreads-
ketch: Toward invertible and network-wide detection
of superspreaders. In Proc. of IEEE INFOCOM, 2020.

[87] Lu Tang, Qun Huang, and Patrick PC Lee. Mv-sketch:
A fast and compact invertible sketch for heavy flow
detection in network data streams. In Proc. of IEEE
INFOCOM, 2019.

[88] Ross Teixeira, Rob Harrison, Arpit Gupta, and Jennifer
Rexford. Packetscope: Monitoring the packet lifecycle
inside a switch. In Proc. of ACM SOSR, 2020.

[89] Tofino. https://www.barefootnetworks.com/
products/brief-tofino/.

[90] Weitao Wang, Xinyu Crystal Wu, Praveen Tammana,
Ang Chen, and TS Eugene Ng. Closed-loop network
performance monitoring and diagnosis with Spider-
Mon. In Proc. of USENIX NSDI, 2022.

[91] Kyu-Young Whang, Brad T Vander-Zanden, and
Howard M Taylor. A linear-time probabilistic counting
algorithm for database applications. Proc. of ACM
TODS, 15:208–229, 1990.

[92] Yang Wu, Ang Chen, and Linh Thi Xuan Phan.
Zeno: Diagnosing performance problems with tem-
poral provenance. In Proc. of USENIX NSDI, 2019.

[93] Yang Wu, Mingchen Zhao, Andreas Haeberlen, Wen-
chao Zhou, and Boon Thau Loo. Diagnosing missing
events in distributed systems with negative provenance.
In Proc. of ACM SIGCOMM, 2014.

[94] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi
Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve
Uhlig. Elastic Sketch: Adaptive and Fast Network-
wide Measurements. In Proc. of ACM SIGCOMM,
2018.

[95] Da Yu, Yibo Zhu, Behnaz Arzani, Rodrigo Fonseca,
Tianrong Zhang, Karl Deng, and Lihua Yuan. dShark:
A General, Easy to Program and Scalable Framework
for Analyzing In-network Packet Traces. In Proc. of
USENIX NSDI, 2019.

[96] Minlan Yu, Lavanya Jose, and Rui Miao. Software
Defined Traffic Measurement with OpenSketch. In
Proc. of USENIX NSDI, 2013.

1566 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://pktgen-dpdk.readthedocs.io
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/

[97] Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha,
Rajeev Alur, and Boon Thau Loo. Quantitative Net-
work Monitoring with NetQRE. In Proc. of ACM
SIGCOMM, 2017.

[98] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao,
Bin Cheng, Jiashu Xing, Yangtao Wang, Tianheng
Cheng, Li Liu, Minwei Ran, and Zekang Li. An end-to-
end automatic cloud database tuning system using deep
reinforcement learning. In Proc. of ACM SIGMOD,
2019.

[99] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu,
G. Gu, Q. Li, M. Xu, and J. Wu. Poseidon: Mitigating
volumetric ddos attacks with programmable switches.
Proc. of NDSS, 2020.

[100] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind
Krishnamurthy. High-resolution measurement of data
center microbursts. In Proceedings of ACM IMC, 2017.

[101] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang,
Jizhou Li, Ruijie Miao, Peng Liu, Ruwen Zhang, and
Junchen Jiang. Cocosketch: High-performance sketch-
based measurement over arbitrary partial key query. In
Proc. of ACM SIGCOMM, 2021.

[102] Hao Zheng, Chen Tian, Tong Yang, Huiping Lin,
Chang Liu, Zhaochen Zhang, Wanchun Dou, and Gui-
hai Chen. Flymon: Enabling on-the-fly task reconfig-
uration for network measurement. In Proc. of ACM
SIGCOMM, 2022.

[103] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu,
Xiaoming Li, and Steve Uhlig. Cold filter: A meta-
framework for faster and more accurate stream pro-
cessing. In Proc. of ACM SIGMOD, 2018.

[104] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao,
Shi Bai, Bo Li, Zhilong Zheng, Lingjun Zhu, Zhen
Shen, Yongqing Xi, Pengcheng Zhang, Dennis Cai,
Ming Zhang, and Mingwei Xu. Flow event teleme-
try on programmable data plane. In Proc. of ACM
SIGCOMM, 2020.

[105] Yu Zhou, Dai Zhang, Kai Gao, Chen Sun, Jiamin Cao,
Yangyang Wang, Mingwei Xu, and Jianping Wu. New-
ton: Intent-driven network traffic monitoring. In Proc.
of CoNEXT, 2020.

[106] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-
Tycho Förster, Arvind Krishnamurthy, and Thomas An-
derson. Understanding and mitigating packet corrup-
tion in data center networks. In Proc. of ACM SIG-
COMM, 2017.

Appendix A Decomposed TCP non-monotonic

1 def nonmt_cf(tcp.seq):
2 temp = maxseq
3 if maxseq < tcp.seq:
4 maxseq = tcp.seq
5 return temp
6
7 def nonmt_uf(tcp.seq, maxseq):
8 if maxseq >= tcp.seq:
9 nm_count += 1

10
11 nm[precision_min=99%,ARE_max=1%,confidence =95%]=
12 PacketStream()
13 .filter(ipv4.protocol==TCP)
14 .groupby({5tuple: maxseq}, nonmt_cf)
15 .groupby({5tuple: nm_count}, nonmt_uf)

Application 2: Decomposed TCP non-monotonic

Appendix B Complex Decomposition Example

Figure 13 illustrates the partitioning procedure with a com-
plex example AST. The original AST in Figure 13(a) modifies
two states: state A and state B. We start with partitioning modi-
fications on state A. We identify a first subtree modifying A as
shown in Figure 13(b) (also marked in gray in Figure 13(a)).
Note that the root node appears in multiple paths. Thus, the
root remains in the residual AST in Figure 13(c), while the as-
signment node and its children are removed. Since there is still
a subtree modifying A (marked in gray in Figure 13(c)), we
continue to remove it. Figure 13(d) and Figure 13(e) present
the second removed subtree and the residual AST. In Fig-
ure 13(e), there is only one state B, and thereby we do not
remove subtrees further. Since there are two subtrees modify-
ing state A (in Figure 13(b) and Figure 13(d), respectively),
Figure 13(f) integrates them by merging the duplicated root.
In Figure 13, updating state A depends on the value of state
B. Thus, we extend the AST of B in Figure 13(e) to a new
AST in Figure 13(g). Since the value of B before updating is
actually needed, we add an assignment statement that saves
the value before updating in a variable temp. The variable
is returned and passed to AST of A after all statements are
executed.

Appendix C Theoretical analysis of Sketch-
like structure

We analyze theoretical error bounds according to the behavior
of states in sketch-like structures. One type is summable state
(i.e., counter), whose sketch-like structure is equivalent to
classical CM [20]. The other type is non-summable state (e.g.,
ingress port number, TCP sequence number).

For non-summable states, we analyze the probability that a
flow maintains inaccurate states. Specifically, a flow is accu-
rate if at least one of its hashed cells has no conflicts. Consider

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1567

branch
B > xB <= x

assign
op: =

assign
op: +=

state
B

parameter
y

constant
1

block assign
op: =

state
A

constant
0

state
A

branch
B <= x

assign
op: =

assign
op: +=

state
B

parameter
y

constant
1

block

state
A

branch
B <= x

assign
op: =

state
B

parameter
y

branch
B > x B <= x

assign
op: +=

constant
1

assign
op: =

state
A

constant
0

state
A

branch
B > x

assign
op: =

state
A

constant
0

branch
B <= x

assign
op: +=

constant
1

state
A

branch
B <= x

assign
op: =

state
B

parameter
y

block

assign
op: =

variable
temp

state
B

return

variable
temp

(a) Original AST (b) 1st subtree of A

(d) 2nd subtree of A (c) Residual AST after removing (b)

(e) Residual AST after removing (d) (f) Merging (b) and (d)

(g) Appending temporary variable to (e)

remove subtree

remove subtree

Figure 13: Example of UDF decomposition.

N flows in a sketch-like structure with w rows and d columns.
We assume that hash functions are perfectly random and in-
dependent. The probability that a flow does not collide with
others in one row is (1− 1

d)
N−1. For w rows, the probability

that the flow has at least one row without conflict P is:

P = 1− (1− (1− 1
d
)N−1)w ≈ 1− (1− e−

d
N)w. (1)

The users can utilize the above theoretical analysis to estimate
the accuracy of the search configuration.

We can further narrow the error bounds according to the
monotonicity-based query method of our sketch-like structure.
Take nonmt_cf in Application 2 as an example, its sketch-like
structure maintains the maximal sequence number of each
flow, which is monotonically increasing and thus return the
minimum value as the query result. In fact, not the conflicts
of all the flows will affect query results. We can first sort
the packets with the largest sequence number of each flow in

ascending order. Considering the ith largest flow, only N − i
flows that collide with it will affect the query result, referred
as interference flows. Here, Equation 1 is updated to P =
1− (1− (1− 1

d)
i−1)w. For our sketch-like structure, the query

results remain correct as long as one row does not conflict
with the interference flows. Therefore, the expectation of the
number of flows for which the query results are accurate is

E =
N

∑
i=1

1−(1−(1− 1
d
)i−1)w =N−

N−1

∑
i=1

(1−(1− 1
d
)i)w (2)

This is similar to the sketch-like structure of monotonically
decreasing. For the case without monotonicity, all the flows
can be interference flows.

Appendix D Optimization for sketch mapping

We optimize the sketch instances with several techniques.
First, we allow sketch instances to share hash functions: we
compute several hash values for each key, and use them to
locate cells in multiple sketch instances. This reduces compu-
tational units in switches, particularly the decomposition in
§4.1 produces numerous sketch instances. Second, we clear
the state values of terminated TCP connections to mitigate
hash conflicts. Third, since some applications are interested
in partial flows, we only record the keys addressed by the
applications instead of all flow keys.

Appendix E Formulation of Benchmark-
based parameter tuning

Goal min(SC(c))

Constraints
C0 T (c) satisfies EB

C1

n−1

∑
i=0

si ≤ S− sstateless

C2 si ≥ 1, i ∈ [1,2, ...,n]
C3 di ∈ [1,2, ...,siA], i ∈ [1,2, ...,n]

C4
wibi

8
≤ M, i ∈ [1,2, ...,n]

C5
diwibi

8
≤ siM, i ∈ [1,2, ...,n]

Table 3: Formulation for searching.

Table 3 formulates the optimization problem of our
benchmark-based parameter tuning. First, the accuracy of the
telemetry application T (c) should reach the user-specified ac-
curacy intent EB (C0). Second, the resource usage is bounded
by the hardware capability. C1 indicates the total stage re-
sources that can be used to deploy sketch instances. Here, S
refers to the number of stages in match-action pipeline and
Sstateless indicates the number of stages used for stateless oper-
ators, which can be determined before sketch-based mapping.
C2 indicates that each sketch instance should use at least one

1568 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

stage. C3 constraints the maximal number of stateful ALUs
cannot exceed sA, where A is the number of stateful ALUs
per stage. The register memory size allocated for one stateful
ALU cannot exceed the size of register memory (in bytes) per
stage M (C4). Meanwhile, the total register memory of one
sketch instance should be less than sM (C5).

Appendix F The number of Configurations

Consider an example in which we deploy a sketch with a two-
dimensional matrix structure in a switch with a single stage.
The stage contains four ALUs and 1 MB memory. Assume
that each cell occupies fours bytes. Since each hash function
needs one ALU, we can support at most four rows. When there
is only one single row, we have at most 220/4 = 262144 cells
in the row, resulting 2550 configurations. Similarly, when
the number of rows ranges from two to four, the number of
configurations is 1270, 840, and 630, respectively. Therefore,
there are 5290 possible configurations in total.

Appendix G LHS-based initialization for
searching

Algorithm 5 LHS-based initialization
Input : The number of mapped sketch instances n
1: function LHS_INIT(n)
2: m = min(ALUmax, Pagemax)
3: Initialize m empty application configurations c1,c2, ...,cm
4: for i = 0 to n do
5: alus = [1, 2, ..., ALUmax]
6: pages = [1, 2, 4, ..., Pagemax]
7: for j = 0 to m do
8: d = random sample in alus
9: Remove d from alus

10: w = random sample in pages
11: Remove w from pages
12: c j[2i] = d; c j[2i+1] = w

13: return the list of c1,c2, ...,cm

Algorithm 5 details the LHS-based initialization. It takes
the number of mapped sketch instances n as input and outputs
a list of initial configurations sampled by LHS. The algorithm
first initializes m empty configurations (line 3). Here, m de-
pends on the minimal value between the available maximal
stateful ALUs and memory pages (line 2), in that LHS has to
ensure the parameter values of all samples in each dimension
are different. As mentioned in §5.1, the application configura-
tion is a vector of 2n variables (c= (d1,w1,d2,w2, ...,dn,wn)).
Therefore, the algorithm fills in the d and w dimensions of all
samples one by one in the order of the sketch instance (lines
4-12). For each sketch instance, the algorithm prepares two
lists (alus and pages) of available resource values (lines 5,6).
Then, c1 to cm iteratively pops the values in alus and pages
randomly to fill in c j[2i] and c j[2i+ 1] (lines 7-12). In this
way, the configurations meet the requirement of LHS.

Algorithm 6 Pseudo Code of Function CALCNEIGHBOR
1: function CALCNEIGHBOR(c)
2: neighbors = []
3: for each parameter p in c do
4: c′ = copy of c
5: if c satisfys EB then ▷ decrease resource
6: if p is a row parameter then
7: p′ = p−1
8: else
9: p′ = p/2

10: else ▷ increase resource
11: if p is a row parameter then
12: p′ = p+1
13: else
14: p′ = p∗2
15: Replace p in c′ by p′

16: Add c′ to neighbors

17: return neighbors

Appendix H Hardware-aware configuration
generation

Algorithm6 details the hardware-aware configuration genera-
tion process. It generates neighbors for a given configuration
by changing one parameter in the configuration at a time (line
3). If the given configuration satisfies the accuracy intent, the
algorithm calculates its neighbors by decreasing the resource
usage (lines 5-9). Otherwise, it calculates its neighbors by
increasing the resource usage (lines 10-14). The algorithm
considers hardware characteristics. Specifically, when chang-
ing the number of rows, it uses 1 as the step size, and when
changing the number of columns, it ensures that the number
of columns is a power of 2.

Appendix I Additional Experiment

NC IF SFL SP PS DD CD HH TO NM OOS 0
 1
 2
 3
 4

M
em

or
y

(M
B)

 AutoSketch Optimimal Configuration

Figure 14: (Exp#10) Memory efficiency of searching results.

(Exp#10) Efficiency of searching results. We compare the
resource usage between the configuration searched by Au-
toSketch and the optimal configuration found by brute-force
searching. Figure 14 shows that the memory consumption
of AutoSketch is slightly more than the optimal configura-
tion: even the largest difference (DD) is only 0.25 MB. In
additional, the searched results consume the same number of
stages and at most one more ALU than the optimal ones (not
shown in the figure). Such additional costs are acceptable.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1569

Appendix J Complete Experiment Results

Table 4 and Table 5 list the complete experiment results of Exp#2 to Exp#4 in §7.2, including SSH Brute Force detection. Table
6 summarizes the complete switch resources and application accuracies of sketch-based solutions under two accuracy intents
(AS-1 and AS-2).

Telemetry Resources
Applications Memory (MB) Stage ALU Bandwidth (MB/s)

Marple | Sonata | EM | AutoSketch-1 | AutoSketch-2
New TCP Conns. 0.5 0.5 - 0.06 0.13 2 4 - 1 1 2 2 - 2 2 0.06 0.033 - 0.001 0.001
TCP Incomplete Flows 1.0 1.0 - 0.13 0.5 2 8 - 1 1 4 4 - 2 2 0.276 0.036 - 0.001 0.001
DDoS 1.0 1.0 - 0.63 0.75 3 8 - 2 2 3 4 - 4 6 44.24 0.037 - 0.0037 0.0036
Port Scan 0.88 1.0 - 0.5 1.0 3 8 - 2 2 4 4 - 3 4 23.56 0.07 - 0.0063 0.0063
SSH Brute Force 1.25 1.0 - 0.03 0.03 3 8 - 2 2 5 4 - 2 2 0.001 0.001 - 0.001 0.001
TCP non-monotonic 1.31 - 2.25 1.5 2.13 3 - 7 5 6 4 - 6 11 11 147.6 - 1.265 0.233 0.226
TCP out-of-sequence 1.31 - 2.25 2 2.88 3 - 7 5 7 4 - 6 13 12 167.3 - 1.692 0.526 0.517
TCP timeouts 1.31 - 2.25 3.63 3.63 3 - 7 8 8 4 - 6 12 12 34.4 - 0.609 0.136 0.136
SYN Flood 0.91 - 2.0 0.06 0.06 2 - 7 4 4 2 - 5 4 4 56.35 - 0.001 0.001 0.001
Total 10.47 4.5 8.75 8.54 11.11 24 36 28 30 33 32 18 23 53 55 473.8 0.177 3.57 0.909 0.893
Average 1.16 0.9 2.19 0.95 1.23 2.67 7.2 7 3.33 3.67 3.56 3.6 5.75 5.89 6.11 52.64 0.035 0.89 0.101 0.099

Table 4: Complete resource overheads of solutions in Exp#2 and Exp#3.

Telemetry Accuracy
Applications Precision Recall ARE

Marple | Sonata | EM | AutoSketch-1 | AutoSketch-2
New TCP Conns. 1.0 0.98 - 0.995 0.998 1.0 0.74 - 1.0 1.0 - - - - -
TCP Incomplete Flows 1.0 0.93 - 0.95 0.994 1.0 0.75 - 0.993 1.0 - - - - -
DDoS 1.0 0.92 - 0.976 0.996 1.0 0.34 - 0.996 0.996 - - - - -
Port Scan 1.0 0.93 - 0.956 0.981 1.0 0.41 - 0.982 1.0 - - - - -
SSH Brute Force 1.0 1.0 - 1.0 1.0 1.0 1.0 - 1.0 1.0 - - - - -
TCP non-monotonic 1.0 - 0.25 0.96 0.992 1.0 - 0.996 0.996 0.996 0.0 - 1.86 0.025 0.006
TCP out-of-sequence 1.0 - 0.37 0.98 0.99 1.0 - 0.99 0.998 0.999 0.0 - 1.39 0.016 0.005
TCP timeouts 1.0 - 0.66 0.95 0.95 1.0 - 0.62 0.972 0.972 0.0 - 0.38 0.028 0.028
SYN Flood 1.0 - 0.17 1.0 1.0 1.0 - 1.0 1.0 1.0 - - - - -

Table 5: Complete accuracy of solutions in Exp#4.

Solutions Accuracy Intent 1 Accuracy Intent 2
Memory (MB) Stage ALU Precision Recall RE Memory (MB) Stage ALU Precision Recall RE

HashPipe 0.563 9 16 0.99 0.195 - 0.63 12 18 0.989 0.464 -
MV-Sketch 0.375 6 12 0.958 0.995 - 0.63 8 20 0.989 1.0 -
FlowRadar-HH 5.91 11 24 0.989 0.903 - 5.91 11 24 0.989 0.903 -
OpenSketch-HH 0.578 7 8 0.976 1.0 - 0.95 8 8 0.986 1.0 -
AutoSketch-HH 0.14 3 3 0.98 0.999 - 0.27 3 3 0.997 1.0 -
SpreadSketch 0.375 6 6 0.972 0.659 - 0.63 7 10 0.99 0.695 -
Vector Bloom Filter 2.58 12 5 0.973 0.66 - 2.58 12 5 0.973 0.66 -
FlowRadar-SS 5.91 11 24 1.0 0.991 - 5.91 11 24 1.0 0.991 -
OpenSketch-SS 1.2 10 8 0.941 0.748 - 1.75 10 8 0.976 0.728 -
AutoSketch-SS 0.375 3 4 0.975 0.978 - 1.0 3 6 0.983 1.0 -
FM-Sketch 0.031 4 1 - - 0.044 0.046 4 1 - - 0.006
Linear Counting 0.031 1 1 - - 0.017 0.031 1 1 - - 0.004
FlowRadar-CD 5.91 11 24 - - 0.011 5.91 11 24 - - 0.011
OpenSketch-CD 0.031 1 1 - - 0.017 0.031 1 1 - - 0.004
AutoSketch-CD 0.25 2 2 - - 0.011 0.19 2 3 - - 0.009

Table 6: Complete experiment results of solutions in Exp#6 and Exp#7.

1570 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Appendix K Telemetry Applications

We show the function of each application in Table 7 and how
to realize these twelve telemetry applications.

Application Description

1 New TCP Connections Count the number of newly opened
TCP connections exceeds threshold.

2 TCP Incomplete Flows Count the number of incomplete TCP
connections exceeds threshold.

3 Port Scan Detect the end-hosts that send traffic
over more than threshold destination
ports.

4 DDoS Detect the end-hosts that receive traf-
fic from more than threshold unique
sources.

5 TCP timeouts Count the number of timeouts for
each TCP connection, by checking for
packet inter-arrival times around 300
ms (retransmission timer).

6 TCP non-monotonic Count the number of packets per con-
nection with sequence numbers lower
than the maximum so far.

7 TCP out-of-sequence Count the number of packets per con-
nection arriving with a sequence num-
ber that is non-consecutive with the
last packet.

8 Superspreader Detect the end-hosts that contact more
than threshold unique destinations.

9 Cardinality Count the number of flows in the net-
work.

10 Heavy Hitter Identify large flows that consume more
than threshold during a time interval.

11 SYN Flood Detect the end-hosts whose half-open
TCP connections exceeds threshold.

Table 7: Description of telemetry applications.

1 n_syn[precision_min=95%,recall_min=95%,confidence
=95%] = PacketStream()

2 .filter(ipv4.protocol==TCP)
3 .filter(tcp.flags==SYN)
4 .map((ipv4.dstIP , count), count=1)
5 .reduce((ipv4.dstIP), val=count)
6 .filter(count >=Thld)
7 .distinct((ipv4.dstIP))

Application 1: New TCP Connections

1 n_fin = PacketStream()
2 .filter(ipv4.protocol==TCP)
3 .filter(tcp.flags==FIN)
4 .map((ipv4.srcIP , fin_cnt), fin_cnt=1)
5 .reduce((ipv4.srcIP), val=fin_cnt)
6
7 diff[precision_min=95%,recall_min=95%,confidence

=95%] = PacketStream()
8 .filter(ipv4.protocol==TCP)
9 .filter(tcp.flags==SYN)

10 .map((ipv4.dstIP , syn_cnt), syn_cnt=1)
11 .reduce((ipv4.dstIP), val=syn_cnt)
12 .zip(stream=n_fin , (ipv4.srcIP))
13 .map((ipv4.dstIP , diff), diff=syn_cnt -fin_cnt)
14 .filter(diff >=Thld)
15 .distinct((ipv4.dstIP))

Application 2: TCP Incomplete Flows

1 port_scan[precision_min=95%,recall_min=95%,
confidence =95%] = PacketStream()

2 .distinct((ipv4.srcIP , tcp.dport))
3 .map((ipv4.srcIP , count), count=1)
4 .reduce((ipv4.srcIP), val=count)
5 .filter(count >=Thld)
6 .distinct((ipv4.srcIP))

Application 3: Port Scan

1 ddos[precision_min=95%,recall_min=95%,confidence
=95%] = PacketStream()

2 .distinct((ipv4.dstIP , ipv4.srcIP))
3 .map((ipv4.dstIP , count), count=1)
4 .reduce((ipv4.dstIP), val=count)
5 .filter(count >=Thld)
6 .distinct((ipv4.dstIP))

Application 4: DDoS

1 def to(tin):
2 if tin - last_ts > Thld:
3 to_count += 1
4 last_ts = tin
5 timeout[precision_min=95%,recall_min=95%,ARE_max

=3%,confidence =95%] = PacketStream()
6 .filter(ipv4.protocol==TCP)
7 .groupby({5tuple:(last_ts , to_count)}, to))

Application 5: TCP timeouts

1 def nonmt(tcp.seq):
2 if maxseq < tcp.seq:
3 maxseq = tcp.seq
4 else:
5 nm_count += 1
6 nm[precision_min=95%,recall_min=95%,ARE_max=3%,

confidence =95%] = PacketStream()
7 .filter(ipv4.protocol==TCP)
8 .groupby({5tuple:(maxseq , nm_count)}, nonmt)

Application 6: TCP non-monotonic detection

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1571

1 def oos(tcp.seq , payload_len):
2 if lastseq != tcp.seq:
3 oos_count += 1
4 lastseq = tcp.seq + payload_len
5 tcp_oos[precision_min=95%,recall_min=95%,ARE_max

=3%,confidence =95%] = PacketStream()
6 .filter(ipv4.protocol==TCP)
7 .groupby({5tuple:(lastseq , oos_count)}, oos)

Application 7: TCP out-of-sequence detection

1 super_spreader[precision_min=95%,recall_min=95%,
confidence =95%] = PacketStream()

2 .distinct((ipv4.dstIP , ipv4.srcIP))
3 .map((ipv4.srcIP , count), count=1)
4 .reduce((ipv4.srcIP), val=count)
5 .filter(count >=Thld)
6 .distinct((ipv4.srcIP))

Application 8: Superspreader

1 cardinality[ARE_max=3%,confidence =95%] =
PacketStream()

2 .distinct((5tuple))
3 .map((5tuple , count), count=1)
4 .reduce((), val=count)

Application 9: Cardinality

1 heavyhitter[precision_min=95%,recall_min=95%,
confidence =95%] = PacketStream()

2 .map((5tuple , count),count=ipv4.totalLen)
3 .reduce((5tuple), val=count)
4 .filter(count >=Thld)
5 .distinct((5tuple))

Application 10: Heavy Hitter

1 def remap_key(tcp.flag):
2 if tcp.flag == SYNACK:
3 nkey = ipv4.srcIP
4 else:
5 nkey = ipv4.dstIP
6 return nkey
7 def sf(tcp.flag , tcp.seq, tcp.ack):
8 if tcp.flag == SYNACK:
9 nextseq = tcp.seq + 1

10 cnt += 1
11 else if nextseq == tcp.ack
12 cnt -= 1
13 return cnt
14 syn_flood[precision_min=95%,recall_min=95%,

confidence =95%] = PacketStream()
15 .filter(ipv4.protocol==TCP)
16 .filter(tcp.flags contains ACK)
17 .groupby(null , remap_key)
18 .groupby({nkey:(nextseq , cnt)}, sf)
19 .filter(cnt > Thld)
20 .distinct((nkey))

Application 11: SYN Flood

1572 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Leo: Online ML-based Traffic Classification at Multi-Terabit Line Rate

Syed Usman Jafri
Purdue University

Sanjay Rao
Purdue University

Vishal Shrivastav
Purdue University

Mohit Tawarmalani
Purdue University

Abstract
Online traffic classification enables critical applications

such as network intrusion detection and prevention, provid-
ing Quality-of-Service, and real-time IoT analytics. However,
with increasing network speeds, it has become extremely chal-
lenging to analyze and classify traffic online. In this paper,
we present Leo, a system for online traffic classification at
multi-terabit line rates. At its core, Leo implements an on-
line machine learning (ML) model for traffic classification,
namely the decision tree, in the network switch’s data plane.
Leo’s design is fast (can classify packets at switch’s line rate),
scalable (can automatically select a resource-efficient design
for the class of decision tree models a user wants to support),
and runtime programmable (the model can be updated on-the-
fly without switch downtime), while achieving high model
accuracy. We implement Leo on top of Intel Tofino switches.
Our evaluations show that Leo is able to classify traffic at line
rate with nominal latency overhead, can scale to model sizes
more than twice as large as state-of-the-art data plane ML
classification systems, while achieving classification accuracy
on-par with an offline traffic classifier.

1 Introduction
In recent years, there have been increasing calls for a "self-
driving" network [10–12, 22] , i.e., a network driven by real-
time analytics performed on data at line-rate guided by pro-
grammatic control. Self-driving networks can help in tasks
such as anomaly detection (e.g., identifying and isolating ma-
licious traffic), and performance monitoring and repair (e.g.,
identifying flows that see sub-optimal traffic, and rerouting
them). A key component of such self-driving networks is the
need to run machine learning (ML) inferencing algorithms.
For example, network security applications rely on ML al-
gorithms for classifying applications and devices (e.g., IoT
device) [24], and detecting anomalous patterns [15, 19].

Traditionally, ML inference algorithms today are run off the
network path. For instance, Intrusion Detection Systems (IDS)
typically require exporting network data to an off-path IDS
device, which runs necessary ML models and flags anomalies.
On the one hand, the bandwidth [27] needed to export data
from routers is significant. On the other hand, reaction times
to take action to resolve security issues is slow and of the
order of minutes. Other systems such as Intrusion Prevention
require individual packets to be sent off-path and only packets
deemed safe are then forwarded. Doing so can incur signif-
icant latencies for all packets, which limits the wide-spread
adoption of such intrusion prevention devices.

The recent advent of programmable switches offers the
unique opportunity of running ML inference algorithms di-
rectly on the data plane [30]. For instance, a lighter weight
ML model run on a switch could let the vast majority of traffic
pass through the switch without delays, with only a smaller
portion of the traffic routed to the control plane, where the traf-
fic could be inspected with more sophisticated traffic models.
While programmable switches offer promise, there are several
challenges as well. First, switches are significantly resource
constrained in terms of computation (ALU resources), mem-
ory, and pipeline stages. Second, while ML models change
frequently, switches offer limited runtime programmability,
with runtime updates often requiring a switch reboot.

In this paper, we take a key step towards running ML in-
ference algorithms in the data plane. We focus on decision
trees given they are widely used in traffic classification, are
interpretable [9], and since they only require features (e.g.,
comparisons, conditions) that are already available on existing
programmable switches. Further, although there is ongoing
research on new hardware support for switches [25, 29, 31],
our focus is on realizing decision trees on existing switches
for ease of deployability considerations.

We make the following contributions:
• We analyze initial proposals [6,14,28,30,32], notably [6,30]
to support decision trees on programmable switch pipelines.
The majority of these approaches [6,14,28] follow the natural
dependencies of a decision tree, implying they are bottle-
necked by the number of stages in a switch for larger trees.
While [30, 32] decouples the number of switch stages from
tree dependencies, we show that its memory requirements are
prohibitive whether SRAM or TCAM is used (§3).
• We present Leo1, a system that provisions a programmable
switch pipeline to support an entire class of trees (e.g., all
trees with depth ≤ D and at most L leaves) in a runtime pro-
grammable manner. Leo exploits the fact that although the
decision tree itself could be large, any individual packet only
encounters a small subset of tree nodes. Further, Leo selec-
tively flattens portions of a decision tree to judiciously trade
off memory and ALU requirements on the one hand, and num-
ber of switch stages on the other. Leo achieves these goals us-
ing a sub-tree multiplexing mechanism which allows multiple
sub-trees in a decision tree to be multiplexed using a layer of
ALUs whose features and constraints can be programmed at
runtime. This simultaneously allows programmability across
trees, and reduces resource requirements for a given tree.

1Source code available at: https://github.com/Purdue-ISL/Leo

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1573

https://github.com/Purdue-ISL/Leo

• We present worst-case bounds on resource requirements
(e.g., table sizes) with Leo, to ensure it can sufficiently
provision for all trees in a class. We show that unlike
IIsy [30, 32] Leo achieves attractive worst-case bounds on
memory requirements, while requiring significantly fewer
stages than [6, 14, 28].
• Our evaluations on Intel Tofino [3] switches show (i) Leo
support much larger models than existing approaches –e.g.,
it supports complete trees of depth 10 with SRAM, while
existing approaches are limited to depth 5 trees; with TCAMs,
Leo supports trees of depth 22 with up to 1024 leaves; (ii)
on real IDS datasets, Leo achieves classification accuracies
comparable to a control plane solution, and significantly bet-
ter than accuracies achieved with prior work [6, 14, 32] and
(iii) evaluations on a real programmable switch testbed show
that classification latencies with Leo are 500X lower than
performing classification in the router control plane. Overall,
the results show Leo is a viable approach to support packet
classification in the data plane.

2 Background and Motivation
ML for traffic classification. Consider Intrusion Detection
and Prevention systems (IDS and IPS) systems, which match
network flows to patterns to identify potential anomalies.
IPS systems inspect individual data packets synchronously
and take necessary preventive action on malicious traffic
(e.g., block traffic). In contrast, IDS systems operate asyn-
chronously over traffic exported from the data plane. While
many IDS/IPS systems rely on rules based on packet payload,
the increasing trend towards encrypted traffic has spurred
interest in behavioral systems that do not rely on packet
payloads. Instead these systems only rely on models of net-
work flow statistics (e.g., packet size distributions, inter-arrival
times etc.). Behavioral models may also serve as an initial
coarse filter that flags potentially malicious traffic to a rule-
based systems that performs more detailed inspection. Al-
though we use intrusion detection and prevention as our pri-
mary motivating example, many other use cases such as IoT
device identification, application classification, buffer sharing
in switches, and QoE inference [1, 15, 19, 24] benefit from
ML classification models.
Why traffic classification in data plane? With increasing
network speeds, the amount of data that needs to be analyzed
per unit time has also increased. For example, a single state-
of-the-art switch can receive multi-terabits of data per second.
Unfortunately, implementing traffic classification in the con-
trol plane or remote servers incurs high response latency,
which might be unacceptable for synchronous systems such
as IPS that require packet processing on the critical path. Our
measurements on a real router testbed show that while it only
takes few hundreds of nanoseconds to process a packet in the
switch’s data plane, it could take hundreds of microseconds
to simply send a packet to the switch’s local control plane
and back. Further, the bandwidth of the data path between

a switch’s local control and the data plane is typically a few
10s of Gbps (implemented using PCIe bus). However, the
data plane of state-of-the-art switches runs at multi-Tbps [21].
Thus, even for an asynchronous system such as an IDS, it is
not possible to analyze and classify each packet going through
the network using the control plane. The alternative is to heav-
ily sample packets, or report digests over longer epochs, which
can reduce accuracies and responsiveness. Using a remote
server for analysis and classification suffers from the same
limitations, namely high latency for classification and server
bandwidth acting as bottleneck. These factors motivate us to
explore running traffic classification in the data plane.
Programmable switches. Network data plane support for
ML inference is facilitated by the recent emergence of pro-
grammable switches [5, 20, 31] which allow the architect to
deploy programs that are executed on each data packet. Many
programmable switches today follow the Protocol Indepen-
dent Switch Architecture (PISA) data plane model and com-
prise a parser, processing pipeline, and deparser, which are
each programmable [5]. The processing is done by a pipeline
of a fixed number of stages [7, 8] that execute on every clock
cycle. Each stage consists of:
• Match tables, which specify the packet header fields to
match against, and the corresponding action (e.g., rewrite a
packet header field). Match tables may be supported using
(i) SRAMs which only support exact matches; or (ii) TCAMs
which support wild card matches (e.g, all packets with source
port 80, and arbitrary destination port). TCAMs are more
flexible, but they are power hungry and more expensive.
• Registers and ALUs. Registers store small amounts of state
that persists across packets (e.g., to implement packet coun-
ters). Stateful ALUs involve registers and allow computations
across packets. Stateless ALUs only take other packet headers
as inputs. Computation is limited to fields within a packet.

In addition, each switch consists of a Packet Header Vector
(PHV) which contains packet header fields, and metadata used
to communicate intermediate results across stages.

3 Design goals and prior work limitations
In this paper, we focus on decision trees for ML classification
given that they are widely used, and are easy to interpret un-
like "black-box" approaches such as neural networks. Further,
the simplicity of a decision tree model (e.g., unlike neural net-
works, decision trees do not require complex ALU operations
such as multiplication) makes them amenable for implemen-
tation on existing high-speed data plane architectures. In the
rest of this section, we discuss our design goals in mapping
decision trees to programmable switch data planes, and why
prior attempts [6, 14, 28, 30, 32] fall short. Our goals are:

Support a class of models in a runtime programmable
fashion. ML policy changes over time as new data is available
and models are retrained. Unfortunately, existing switches
offer limited runtime programmability (i.e., ability to make
changes without rebooting a switch). For instance, while the

1574 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Runtime
Prog

Not limited
by tree

dependency

Implementable
in ASIC switch

Low
ALU
usage

Low
memory

usage
Infocom [28] ✗ ✗ ✓ ✗ ✓

pForest [6] ✓ ✗ ✗ ✓ ✓

SwitchTree [14] ✓ ✗ ✗ ✓ ✓

IIsy [30, 32] ✓ ✓ ✓ ✓ ✗

Leo ✓ ✓ ✓ ✓ ✓

Table 1: Comparing Leo to prior work. §3 presents analysis to
show the high memory requirements of IIsy, and we analyze
Leo’s resource requirements in §6.

entries of match tables can be modified at runtime by the con-
trol plane, the inputs of an ALU cannot. Ideally, any approach
must support an entire class of decision trees without requir-
ing a router reboot (e.g., all trees with a particular depth).

Support sufficiently large models for high accuracy. The
accuracy of classification depends on factors such as tree
depth and the number of leaves. Figure 1 shows for a real
IDS dataset (details in §7) that deeper trees achieve higher
accuracy despite using the same number of decision nodes.

32 64 128 256 512
Leaves

0.7

0.8

0.9

F1
sc

or
e Depth 8

Depth 10
Depth 12

Figure 1: Impact of increasing depth for the same number of
leaves using CICIDS-2017 dataset.

Resource efficient for all ML models in a class. The re-
sources required in programmable switches must be accept-
able in terms of resources such as ALUs, SRAM, TCAM,
and the number of stages. Further, since we are provision-
ing for a class of ML models (e.g., all decision trees with a
particular depth), the mapping must be such that the worst-
case bounds for mapping for all models within the class is
acceptable in terms of resource requirements. The worst-case
bounds must scale acceptably, e.g., with the number of leaf
nodes in a decision tree, or with tree depth.

Prior work and limitations. Unfortunately, existing ap-
proaches [6,14,28,30,32] to support decision trees in the data
plane fall short of the above goals. First, the majority of these
works [6, 14, 28] follow a natural strategy, which involves
mapping the hierarchical structure of decision trees to the
programmable switch pipeline. This requires at least one (and
possibly more) stages per tree level. Consequently, tree depth
is bottlenecked by the number of pipeline stages. The results
are further exacerbated given our analysis above which indi-

F1 < 7

F2 < 28 F3 < 3

F4 < 32 F5 < 12 F6 < 19 F1 < 28

L1 L2 L3 L4 L5 L6 L7 L8

True False

(a)

F1 Code 1

1 0

2 0

....

....

6 0

7 1

8 1

....

....

27 1

28 2

29 2

....

....
32 2

F6 Code 6

1 0

2 0

....

....

18 0

19 1

20 1
....

....

32 1

………………

Similar features
table for
F2 … F5

with 2 codes each

………………

TCAM
Code 1, Code 2, …, Code 6

SRAM
of entries Leaf

00*0** 23 L1

00*1** 23 L2

01**0* 23 L3

01**1* 23 L4

1*0**0
2*0**0

24
L5

1*0**1
2*0**1

24
L6

1*1*** 24 L7

2*1*** 24 L8

(b)

Figure 2: Illustrating IIsy’s approach for an example deci-
sion tree with 6 features each with a maximum value of 32.
Feature F1 appears twice and hence its values are mapped
to three code words, while other features are mapped to two
code words. The final table has entries for all code word com-
binations. The rules are shown for a TCAM, but the number
of entries needed with an SRAM is also shown.

cates that sparse and deeper trees are more important to im-
prove classification accuracy. Besides this central limitation,
some of these works are not runtime programmable (e.g., [28]
uses simple conditionals, and even a minor change would
require rebooting the switch to deploy recompiled code), and
have high ALU usage (e.g., [28] uses an ALU per decision
tree node), while others [6, 14] have only been implemented
on software BMv2 switches.

While IIsy [30, 32] addresses many of these short-
comings, we analyze it extensively below, and show that its
memory requirements can be prohibitive, whether SRAM
or TCAM is used. Table 1 summarizes existing schemes.
Leo addresses these limitations with a design that is runtime
programmable, not constrained by tree dependencies, has ac-
ceptable memory and ALU usage, and implemented on a
hardware switch. In the rest of the section, we show IIsy has
unacceptably high memory requirements.
Analyzing memory requirements with IIsy. IIsy [30,32]
seeks to break intrinsic tree dependencies by (i) a table per
feature which maps feature values into a smaller set of code
words. The mapping is such that the final classification result
is the same for all values of a feature that share the same code
word, no matter what the values of other features are. A final
classification table looks at every possible combination of
code words across features, and maps them to a classification
result. We present two results to show that IIsy’s memory
requirements grow exponentially with the number of features,
whether SRAM or TCAM is used.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1575

Proposition 1 Consider the requirement that IIsymust sup-
port all trees with a depth D or lower, involving any subset
of N pre-determined features with each feature taking values
in the range [0,K] in a runtime programmable fashion. Then,
the total SRAM that must be provisioned to achieve this goal
grows exponentially with N.

Proof sketch. To derive conservative bounds on the size of the
combination table, consider a complete decision tree of depth
D where each feature appears in the same number of deci-
sion tree nodes. Let I = 2D −1 denote the number of internal
nodes. The total number of decision nodes that involve each
feature is I

N , requiring I
N +1 codewords per feature. Since the

combination table includes combinations of all possible code-
words associated with each feature, the total size is (I

N +1)N

which is exponential in N. Further, each feature table requires
K entries since each table explicitly enumerates all values
of every feature. Thus, NK total entries is needed across the
tables. In practice, some savings is possible owing to default
rules (see §A.1). Accounting for this, we obtain the following
conservative bound on the the total number of SRAM entries,
where the first term is the requirement for feature tables, and
the second term the requirement for the combination table.

N ∗ (K −⌈ K
2D ⌉)+ 2D −1

2D ∗ (2D −1
N

+1)N (1)

We next show IIsy’s memory requirements grow exponen-
tially even with TCAMs, focusing on the combination table
since this is most crucial to the analysis.

Proposition 2 There exist a family of decision trees with
O(N2 +NK) leaves which require at least O(lgN−1(K −1))
TCAM rules with IIsy, where N is the number of features,
and each feature has values that could range from 1 . . .K

Proof sketch. The proof is based on a family of decision trees
shown in Figure 15 in the Appendix for the general case with
N features (F1 . . .FN) with each feature having values ranging
from 1 . . .K. To provide more intuition, Figure 3 shows a
geometric representation for the special case with N = 3, and
K = 4, where the highlighted cubes correspond to the leaves
of the corresponding decision tree.

The intuition behind the tree construction is as follows.
First, the decision tree nodes has leaves for each value of
a feature Fj when all other features are at their maximum
value K. This forces IIsy to use a distinct code word for
each value of every feature. Next, the decision tree has leaf
nodes which correspond to regions where some of the features
can take multiple possible values. These nodes will require
a large number of code word combinations with IIsy since
it is forced to use a distinct code word for each feature value.
For example, in Figure 3, IIsy requires K = 4 code words
for each feature (owing to the decision tree nodes shown by
the small cubes). While the inner cube (A2) which captures
the region where all features are < K corresponds to a single

Figure 3: Visualizing general decision tree with three features.

decision tree node, it would requires (K −1)3 combinations
with IIsy. Likewise, each of the regions A1,2, A1,1, and B1
(where exactly one feature is K) correspond to single decision
tree nodes but would each require (K − 1)2 different code
word combinations. Even if a default rule were used for the
inner cube, 3∗ (K−1)2 code word combinations must still be
explicitly covered, which would require at least 3m2 TCAM
entries where m = ⌈log(K −1)⌉. We defer the details of the
proof for the general case to §A.2 along with models for
estimating the size of the feature and combination tables that
must be provisioned for a TCAM implementation.
Implications. Using Equation 1, a complete tree of Depth 6
using 9 16-bit features requires over 108 SRAM entries with
IIsy. Using the analysis in §A.2. we can construct a tree with
only 200 leaves that needs over 106 TCAM entries.

4 Leo Design
In this section, we present the design of Leo, a resource-
efficient and runtime programmable system that enables data
plane traffic classification on PISA switch pipelines.

4.1 Abstraction
Having a well-defined abstraction for a decision tree model is
crucial to provide the right balance between flexibly switch-
ing between different decision trees at runtime and worst-case
resource and performance overhead. The two extreme abstrac-
tions of supporting a specific decision tree and supporting all
possible decision trees compromises either on flexibility or
on resource constraint respectively. To that end, Leo provides
the following abstraction for a decision tree model: to support
any tree from a "class" of decision trees specified by the
three tuple (D, L, F) where D is the maximum tree depth,
L is the maximum number of leaves, and F is the set of
features that the tree nodes can use, subject to the switch
resource constraints while allowing for switching between
trees of the same class at runtime without switch downtime.

1576 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

User

(D = 4, L = 16, F = {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, 15})

1. Chooses a representative tree structure

2. Provisions resources for the representative tree in the switch data plane

Switch Control Plane
Write

Leo Compiler

Pi
pe

lin
e

st
ag

es

Switch Data Plane

ALUf
c

ALUf
c

ALUf
c

MapPacket in

Figure 4: Workflow of Leo. Given a user specified (D,L,F)
class, Leo chooses a representative decision tree for that class
and maps it to the switch pipeline using multiplexed ALUs
and SRAM/TCAM tables (Figure 9). The table inputs are con-
figured at runtime by the switch control plane to implement
different decision trees in the class (D,L,F) (Figure 16).

The user can specify a decision tree model to map to the
switch pipeline using the tuple (D,L,F). Leo’s compiler will
try to find a mapping that can express any tree in the given
class, subject to the switch resource constraints. However, the
compiler will return a failed mapping if one or more trees
in the given class could not be mapped within the resource
constraints of the switch pipeline. If the mapping is successful,
the user can choose any tree from the given class to run on
the switch, and can switch between trees within the same
class at runtime. Note that at any given time, the switch runs
exactly one tree from the given class. The above abstraction is
general enough to also express other common abstractions for
a decision tree model. For example, (D,2D,F) can express
all decision trees with depth D or smaller.

4.2 Design Overview
The workflow for Leo’s design is shown in Figure 4.
Representative decision tree. Given a (D,L,F) specification,
Leo provisions for a single decision tree structure at compile
time that can be multiplexed at runtime to implement any
tree in the class. We refer to this tree as a representative
decision tree. A natural choice for a representative decision
tree structure would be a complete tree of depth D (and 2D

leaves), as any tree structure with depth ≤ D would simply
be a sub-tree of the complete tree. For example, in Figure 4,
for the (D = 4,L = 16,F) class, Leo’s compiler chooses a
complete decision tree of depth 4 as the representative tree
structure. However, for classes where L < 2D, this approach
over-provisions the resources. In §6, we discuss how Leo

reduces the resources to provision by also considering the
maximum number of leaves L within the (D,L,F) class.
Mapping Representative Tree to Switch. Next, the compiler
efficiently maps the tree structure to the switch pipeline. In
doing so, it addresses two key challenges.

Challenge 1. The ability to update the features and con-
straints of the representative decision tree nodes at runtime to
implement different trees in a (D,L,F) class.

Challenge 2. The ability to support decision tree classes
with large D (depth) and L (leaves), subject to the resource
constraints of the switch.
Leo solves these challenges with two novel techniques it

introduces called decision tree node multiplexing(§4.3) and
sub-tree flattening and multiplexing (§4.4)
Runtime reconfiguration. Finally, at runtime, the switch
control plane configures the feature and constraint values
in each node of the representative decision tree structure to
implement a specific decision tree in the class (D,L,F) (§4.5).

4.3 Decision Tree Node Multiplexing
An internal node of a decision tree is implemented using an
ALU whose inputs are a feature value f ∈F and a constraint c.
The output is the result of a comparison (e.g., f < c). The set
of features F are defined by the user as part of Leo’s abstrac-
tion (D,L,F), and are stored either in the packet header vec-
tor (for stateless features, e.g., TCP SYN flag) or inside the
switch registers (for stateful features, e.g., packet count).
The constraints are stored in the switch memory and are pop-
ulated (and updated at runtime) by the control plane.

ALU

M
U
X

M
U
X

Fe
at
ur
es

C
on

st
ra
in
ts

Feature
Multiplexer

Constraint
Multiplexer

ALU implementing
feature < constraint

select

Figure 5: An abstract multi-
plexed ALU.

To support different
decision trees in a given
(D,L,F) class, Leo al-
lows that any internal
node in the decision tree
can take any of the F
features and any con-
straint value as inputs
for the conditional state-
ments. To achieve this,
Leo implements an inter-
nal node of the represen-
tative decision tree using
a multiplexed ALU, an
abstraction of which is
shown in Figure 5. Con-
ceptually, this comprises a (i) feature multiplexer, that can
select any of the features at runtime from the set F; (ii) a
constraint multiplexer, that can select any of the stored con-
straints; and (iii) an ALU that operates on the selected feature
and constraint. We discuss concrete implementation in §5.

Supporting all conditional statements. At compile time,
each node in the representative decision tree implements a
statement of the form f < c. However, a decision tree can
have other conditionals (e.g., f > c or f ≤ c). Unfortunately,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1577

F1 ≥ 5

L1 L2

True False
F1 > 4

L1 L2

F1 < 4

L2 L1

5, 6, … …, 3, 4 5, 6, … …, 3, 4 5, 6, ……, 3, 4

Figure 6: Transforming a ≥ node to an equivalent < node.

f2 < 2

f3 < 3 f4 < 4

C3 C4

0

0 0

1

11

C1 C2

f4 < 5

f5 < 5 f6 < 6

C7 C8

0

0 0

1

11

C5 C6

f1 < 1

0 1

ALUf1
1

ALU

f3
f4
f5
f6

M
U
X

3
4
5
6

Prev ID

ID: 0 ID: 1

ID: 00 ID: 01 ID: 10 ID: 11

M
U
X

ALU

f2

f4

M
U
X

2

5

M
U
X

M
U
X

C1

C8

Prev ID

Depth 0

Depth 1

Depth 2

Depth 3

Figure 7: Mapping a decision tree to the switch pipeline using
only one multiplexed ALU per tree depth.

the ALU operations in PISA pipelines cannot be changed at
runtime. Instead, Leo transforms a more general decision tree
into an equivalent version with only f < c conditions offline
(Figure 6). Specifically, (i) An x ≤C condition is converted
into x <C+1 while an x ≥C is converted into x >C−1. (ii)
x >C is transformed into x <C by simply swapping the left
and right sub-trees of the node. Both these transformations
maintain the behavior of the original conditions.

4.4 Sub-Tree Flattening and Multiplexing
A naive mapping of a representative decision tree structure to
the switch pipeline would require a multiplexed ALU for each
tree node implementing the conditional decision at that node.
This can be as high as 2D − 1 ALUs to support a complete
representative decision tree of depth D. However, we observe
that at runtime a given packet would access exactly one tree
node at a given tree depth. The tree node that the packet
accesses at depth d would be decided by the path the packet
takes through the tree, which, in turn, can be decided by the
combination of the {ID, decision output} of the decision tree
node accessed at depth d −1. For example, in Figure 7, if the
ID of the node accessed at depth 1 was 0 and the decision
output of that node was 1, then the node that will be accessed

f4 < 5

f5 < 3 f6 < 6
0

0 0

1

11
A B C D

1 D11
C1 01

01 1 D
0 C1 0

1 1 B0
1 B0 0

1 A0 0
0

O2 O3
0

O1 ID
A0

O1 = f4 < 5 O2 = f5 < 3 O3 = f6 < 6

11 D
0

1

ID
0

O2
0

1

A
0

C

O3

B

O1

Boolean SRAM Table

Boolean TCAM Table

Figure 8: Encoding a decision sub-tree using a boolean table.
The boolean table could be stored either in SRAM or TCAM.

at depth 2 will have ID 01. To implement this (Figure 7), Leo
only needs to provision one multiplexed ALU per tree depth
d. The combination of the node output and node ID at depth
d − 1 (shown as Prev ID in Figure 7) is used as the select
value for the MUX at depth d to configure the ALU with the
correct decision tree node parameters (feature and constraint).
Hence, for a D depth tree, only D ALUs are needed.

While the above design requires significantly fewer ALUs
compared to the naive design, unfortunately, it does not scale
to trees with larger depths. This is because we require one
ALU for each tree depth, and the ALU at a given depth could
be configured only once we have the outputs of the ALUs
from the lower tree depths. This inherent dependency means
that ALU at each depth must be mapped to a different switch
pipeline stage, thus requiring D+1 pipeline stages to imple-
ment a tree of depth D (Figure 7). In programmable switches,
the number of pipeline stages can be as few as ∼10. To over-
come this bottleneck, Leo uses two key insights.

First, Leo generalizes the unit of mapping from a single
decision tree node as above to a sub-tree of size k nodes.
Further, Leo notes that a sub-tree of size k within a decision
tree can be represented using a boolean table by encoding
all possible combinations of the outputs of the decision nodes
within the sub-tree. This is illustrated in Figure 8. Hence,
assuming sufficient resources per switch pipeline stage, one
could implement an entire sub-tree of size k by calculating
the output of each decision node in the sub-tree in parallel
(using k multiplexed ALUs), and next matching those outputs
against the boolean table(s) to figure the output of the entire
decision sub-tree. We call this sub-tree flattening.

Figure 9 illustrates the idea where the representative tree is
partitioned into layers, each layer comprised of similar sub-
trees. Using similar insights as earlier, we observe that for any
layer, exactly one sub-tree is executed at runtime as decided
by the path the packet takes through the tree. For example,
in Figure 9, exactly one of the four sub-trees (of size k = 3)
in layer 2 will be executed. Leo generalizes the idea of node
multiplexing to sub-tree multiplexing, by provisioning for
exactly one sub-tree per layer. Given a sub-tree multiplexing
unit of size k nodes (which is always a complete binary tree

1578 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

f4 < 5

f8 < 2 f9 < 3

C3 C4

0

0 0

1

11

C1 C2

f5 < 6

C7 C8

0

0 0

1

11

C5 C6

f2 < 7

0 1

f6 < 7

C11 C12

0

0 0

1

11

C9 C10

f7 < 8

C16

0

0 0

1

11

C13 C14

f3 < 8

0 1

f1 < 10 1

f10 < 4 f11 < 5 f12 < 6 f13 < 7 f14 < 8 f15 < 9

C15

ALU

M
U
X

f4
f5
f6
f7

M
U
X

5
6
7
8

ALU

M
U
X

f8
f10
f12
f14

M
U
X

2
4
6
8

ALU

M
U
X

f9
f11
f13
f15

M
U
X

3
5
7
9

00

1

O3

1

0

0

0

O1

1

0

1

11

01

O2

10

ID

ALU ALU ALUf1
1

f2
7

f3
8

00

0

Prev
ID

C1

C2

E3 ID

C4

E2

100

00

000

E1

0

C3

1

01

1

Stage 1

Stage 2

Stage 3

ID: 00 ID: 01 ID: 10 ID: 11

Layer 1

Layer 2

O1 O2 O3

E1 E2 E3

01

0

Prev
ID

C5

C6

E3 ID

C8

E2

101

01

001

E1

0

C7

1

01

1

10

0

Prev
ID

C9

C10

E3 ID

C12

E2

110

10

010

E1

0

C11

1

01

1

11

0

Prev
ID

C13

C14

E3 ID

C16

E2

111

11

011

E1

0

C15

1

01

1

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*Layer 3

Figure 9: Illustrating sub-tree flattening and multiplexing (with sub-tree size k = 3) for a representative (complete) decision tree
of depth D = 4 from Figure 4. As mentioned in §4.4, it requires ⌈D/⌈log2(k)⌉⌉+1 = 3 switch pipeline stages to map the tree.

in Leo) and n such blocks of sub-trees at layer i, Leo only
provisions for one sub-tree of size k (i.e., k multiplexed ALUs).
In Figure 9, there are n = 4 blocks of sub-trees of size k = 3
in layer i = 2. Hence, Leo only provisions k = 3 multiplexed
ALUs for i = 2. While the figure shows all layers having
k = 3, Leo allows for different layers to be associated with
different sized sub-trees (and hence k may vary across layers).

Finally, similar to Figure 7, to decide which sub-tree (or leaf
node) at layer i to choose, Leo requires the ID and the outputs
of the sub-tree at layer i− 1. The combination of the {ID,
decision outputs} from layer i−1 is fed to the feature and
constraint multiplexers at layer i to choose the right feature
and constraint value for each multiplexed ALU. Note that
in Figure 9, we don’t need the ID of the node at layer 1 to
configure the multiplexers at layer 2; only the decision outputs
of the sub-tree at layer 1 (shown as O1, O2, O3 in the figure)
are needed. This is because there is only one sub-tree at layer
1. However, at layer 2, we have 4 sub-trees, and hence in
Figure 9, the leaf node at layer 3 is selected using both the ID
of the sub-tree accessed at layer 2 (shown as Prev ID in the
figure) plus the decision outputs from that sub-tree.

Using complete sub-trees of size k > 1 nodes as the unit of
flattening in every layer, Leo only requires ⌈D/⌈log2(k)⌉⌉+1
pipeline stages to implement a complete decision tree of depth
D, as illustrated in Figure 9.

4.5 Runtime Programmability
The inputs to the building blocks of a representative decision
tree in Leo, namely the feature and constraint multiplexers and
the boolean table, can be configured and updated at runtime
via the switch control plane without any switch downtime.
Thus, by changing the inputs to these building blocks appro-
priately at runtime, one could implement any decision tree

within a given (D,L,F) class. (Figure 16 in the Appendix
presents an example of a different tree mapped to the same
representative structure in Figure 9).

Handling transient state during runtime tree updates.
One key issue with using the control plane for runtime tree
updates is that it can take several clock cycles to update all
the tree nodes while transitioning from one decision tree
to another. Hence, packets arriving during the update might
encounter an inconsistent tree state. To handle this, Leo main-
tains two copies of the representative decision tree. At any
given time, exactly one of those trees is marked as active, and
all incoming packets are directed through the active tree. In
order to transition to a new decision tree, the control plane
configures the nodes of the inactive decision tree, and once
the new tree is configured, it is marked as active, while the
previously active tree is marked inactive. Switching the status
of a tree from active to inactive and vice-versa is an atomic
operation, as it only requires writing to a single register entry
storing the tree ID of the active tree. Thus, future incoming
packets smoothly transition to the new decision tree without
encountering any inconsistent state. The approach doubles the
switch resources required to support a representative decision
tree, but we show in §7 that the costs are acceptable.

5 Leo Implementation
We present details of our implementation in PISA ASICs.
Implementing Multiplexed ALUs. Figure 9 shows the fea-
ture and constraint multiplexers, and the Boolean SRAM/T-
CAM table as distinct components. We however implemented
all of them using the same Match/Action table (MAT), with
the comparison performed using the stateless ALU in the ac-
tion field. For concreteness, layer 2 of Figure 9 is implemented
as 3 MATs, one per Multiplexed ALU, which respectively pro-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1579

duce the results E1, E2, and E3. The MAT which outputs E1
has F +2 possible actions. F of the actions (one per feature)
involve (i) executing a condition of the form E1 = f < c,
where f is an appropriate feature in the packet’s header or
metadata, and c is the relevant constraint loaded in the ta-
ble memory as an action parameter; and (ii) assigning the
ID field for the next layer based on another action parame-
ter. The other two actions include a (i) NoOp, which simply
disables the multiplexed ALU when a tree of smaller depth
is installed; and (ii) SetLeaf, which terminates a path in
the tree by writing the class label to the packet header. The
MATs that compute E2 and E3 are similar, except that they
do not compute the ID field (it suffices one MAT in each layer
computes the ID field for the next layer).

Ideally, the operation E1 = f < c is realizable in the state-
less ALU. However, we were unable to compare a memory-
read parameter (i.e. the constraint) with a header/metadata
(i.e. a feature) in a single processing stage. We instead imple-
mented the comparison as E1 = f − c in a single stage. The
condition is met if E1 is negative which involves checking
that the Most Significant Bit (MSB) of E1 is 1. We achieve
this with TCAMs using wildcard matching (of the form 1∗∗∗)
for E1 in the next layer Boolean Table, realizing each layer in
a single switch stage. With SRAMs, we used an extra stage
to extract the MSB of E1, needing two stages per layer.
Choice of k. While larger k can reduce the number of stages,
we typically used k = 3. Increasing k beyond 3 is constrained
by the limit that PISA switches place on the number of header
fields within each container group. Two header fields can be
used together in an ALU operation only if they are in the
same group (e.g., in Figure 9, the different features, and the
outputs O and E of each layer are part of the same group). We
reuse output headers with k = 1. When k > 1, neighboring
layers must use different output headers as multiple MATs
in a layer rely on the output headers of the previous layer.
Hence, we reuse across alternate layers (odd layers use inputs
E and outputs O, with the opposite for even layers), and our
implementation requires |F |+2k header fields where |F | is
the number of features. An increase in k reduces the number
of features possible. A potential trade-off that we defer for
future investigation is to implement each layer in two stages:
(i) a first that determines an ID; and (ii) a second that uses the
ID for the multiplexed ALUs. This would reduce the number
of header fields in each container group to |F |+ k and allow
more features, at the expense of more stages per layer.
Handling stateful features. Stateful features requires allo-
cating per-flow memory. We augment the Leo abstraction to
include a target on the number of flows M that are to be sup-
ported. Leo maps stateful features to 8-bit or 16-bit registers
based on the feature. Features may be discretized to fit the
desired budget – e.g., packet lengths are divided by 64 (using
bit shifts) which allows lengths ranging from 64 bytes to 16
KB to be represented in 64 byte units using a 8-bit budget.
We discuss how other features are discretized in §A.3.3).

Ingress

Egress

Stage 1 Stage 2 Stage 3 Stage 4

Flow
State

Decision
Tree
Node

Root

Le
av

es

Figure 10: Illustration of how Leo maximally utilizes the
resources in each physical stage by mapping the feature tables
to the ingress pipeline and decision tree to the egress pipeline.

We store stateful features in separate SRAM register tables
indexed by flow IDs. The flow ID is calculated as a hash
over its 5-tuple. In PISA switches, each packet first traverses
through an ingress pipeline followed by an egress pipeline.
Each physical pipeline stage serves as both an ingress and an
egress stage, with its resources shared between the ingress
and egress. In Leo, we map the tables containing flow state
to the ingress pipeline and the decision tree to the egress
pipeline (Figure 10) to maximally utilize pipeline resources.
This is motivated by the fact that when mapping the decision
tree, many stages consume minimal memory resource (espe-
cially the first few stages corresponding to the top tree levels
with fewer internal nodes). Thus Leo could use the remaining
resources in those physical stages to store flow state in the
ingress. Alternatively, if we had mapped both the flow state
and the decision tree to the ingress pipeline, then the inherent
dependency that the flow state must be accessed before the
decision tree logic would mean that Leo could not use the
resources left in each stage after mapping the decision tree
nodes. This optimization is useful in scaling Leo to a large
number of flows with stateful features (§7).

6 Leo Analysis
We next discuss how to provision a representative tree in Leo
that can support all trees in the (D,L,F) class. This requires
getting an upper bound on the requirements for every resource
across all possible trees in that class.

The number of rules in each Leo table depends on the
number of tree states that are multiplexed. For example, in
Figure 9, each MUX in layer 2 (resp. layer 3) would multiplex
across 4 (resp. 16) possible states. Let ki denote the sub-
tree multiplexing unit size in layer i (generalizing the above
discussion which assumed ki = k for all layers). Then, each
execution layer produces ki +1 possible outcomes for each
of the states multiplexed by the layer. Thus, the maximum
number of states multiplexed in layer i (which we denote by
Ri) is at most Ri−1 ∗ (ki +1). Given a (D,L,F) specification,
the total number of leaves, and hence the number of internal
nodes at each tree level does not exceed L. Thus, the number
of states multiplexed by any layer is at most L, reducing the

1580 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

entries to be provisioned. We now have:

Ri =

{
1 if i ≤ 1
min(L, Ri−1 ∗ (ki +1)) otherwise

If TCAM is used, the number of entries needed in each MUX
in layer i is simply Ri, the number of multiplexed states. If
an SRAM is used, the number of entries is Ri−1 ∗2ki−1 as it
depends on the multiplexed states in the previous layer, and
the possible combinations of the ki−1 outputs of layer i−1.
Since k values are typically small, this is just a small constant
factor of the TCAM rules.
Total memory requirement. When ki = k in each layer, and
we provision for complete trees, the total entries to provision
for all tables across all layers (there are k tables per layer)
is (k+1)I +1 with TCAM and 2kI +1 with SRAM. Here, I
is the number of internal nodes = 2D −1. When k = 3 as in
Figure 9, the total entries are 4I +3 with TCAM and 8I +3
with SRAM. In contrast, Equation 1 shows for IIsy, the
SRAM entries goes as (I/N +1)N , where N is the number of
features, while TCAM entries are also exponential in N when
I is polynomial. Further, when given a limit L on the number
of leaves, and for k = 3, a comfortable upper bound in memory
requirements is 1+DL/2 with TCAM, and 1+ 4DL with
SRAM, with the more general expression being 1+ DL

log(K+1)

with TCAM, and 1+ 2kDL
log(k+1) with SRAM.

7 Evaluation
Our evaluations address several questions: (i) What classes
of decision trees can be supported by Leo, and how does this
compare to other approaches in terms of tree size, the number
of stages and rules? (§7.1). (ii) What classification accuracies
are achievable on real traffic data-sets using decision trees
that Leo can support? (§7.2). (iii) How does the decision tree
accuracy vary with the number of flows and stateful features?
(§7.3). (iv) What are the benefits of implementing decision
trees in the data plane? (§7.4).

To answer these questions, we implement Leo, and other
schemes using P4 [4], and analyze resource requirements on
a Tofino switch. We also evaluate Leo with a control plane
solution in a real tested involving a Tofino switch. We evaluate
accuracies on publicly available intrusion detection datasets.

7.1 Leo vs. Other Data plane Tree Schemes
Schemes compared. We compare Leo with tree-based ap-
proaches [6, 14, 28] and IIsy [30, 32]. Unfortunately, as dis-
cussed in §3, existing tree-based approaches are either not
runtime programmable [28], or have only been implemented
on software switches. For instance, we experimented with the
publicly available code of SwitchTree [14] (an extension of
pForest [6]) and found it does not compile on the TNA [3]
hardware switch. Instead, we modify Leo to mimic these ap-
proaches. Our implementation contains several optimizations

not present in [6, 14] and is an optimistic bound on the per-
formance of these approaches. Unlike Leo, none of the prior
works guarantee correct decision tree execution during a tran-
sient period when a tree update is in progress. Hence, we refer
to them as pFor/SwTree-NT and IIsy-NT. We also imple-
ment a variant of Leo where we disable the mechanisms to
ensure correct transient performance, which we call Leo-NT.

Methodology and metrics. We compare schemes with re-
spect to their ability to support all trees within a given class
(D,L,F) that constrains the maximum depth D, maximum
number of leaves L, and feature set F . We vary the class spec-
ifications across our experiments. For any given class, and for
all schemes, we must estimate the memory to be provisioned
at compile time for each table used in the scheme. This is
needed since the goal is to support all trees within a class in a
runtime programmable manner and since table sizes cannot
be dynamically changed. This requires estimating the worst-
case requirement across all decision trees within a class for
each table with every scheme. For Leo and pFor/SwTree, we
obtain these requirements using the analysis in §6. IIsy does
not discuss how to assign sizes to its tables. Thus to guarantee
programmability within each class, we utilize the analysis
that we presented in §3 (and detailed in §A.1 and §A.2).

Our main metrics include (i) whether a given specification
can be realized on an actual hardware switch (we focus on the
Tofino Native Architecture (TNA) [3] used in Intel’s Tofino
line of switch ASICs); (ii) when the specification can be re-
alized, the total number of SRAM or TCAM entries and the
number of stages that the scheme requires. We implement all
schemes using P416 targeting TNA and consider a specifica-
tion met on successful compilation. All P4 code was compiled
using version 9.11.1 of the Intel Barefoot SDK.

We focus on the resource requirements of the decision tree
alone, and explore per-flow state requirements in §7.3. For
Leo and pFor/SwTree-NT, the number of features is limited
by the number of headers within each container group (§5).
pFor/SwTree-NT can support a maximum of 15 features,
while Leo can support upto 10 features for k = 3, and 15 fea-
tures for k = 1. With Leo and pFor/SwTree-NT, the memory
requirements for the decision tree logic does not grow with
the number of features (§6). In contrast, the memory require-
ments of IIsy-NT grows exponentially with the number of
features (§3). In the rest of this section, we compare resource
requirements by keeping the number of features fixed with
all schemes. §A.3.1 analyzes the maximum tree depth that
can be supported as the number of features change. Finally,
our classification accuracy experiments (§7.2) explore differ-
ent combinations of features and depth for each scheme, and
report the best operating point for that scheme.

Results with SRAM. Figure 11(a) presents results for classes
of the form (D,2D,F), which indicates that all trees of depth
D or lower must be supported. We varied D while keeping the
number of features fixed at 10. All schemes were constrained

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1581

101 102 103 104 105 106 107

SRAM entries required

2

4

6

8

10

12

14

16

St
ag

es
re

qu
ir

ed

D4

D6

D8

D10

D12

D4

D6

D8

D10

D12

D1
D2

D3

D4

D5

D6
(truncated)

D3

D4

D5

D6

Infeasible

Leo Leo-NT IIsy-NT pFor/SwTree-NT

(a)

102 103 104 105

TCAM entries required

2

4

6

8

10

12

14

16

St
ag

es
re

qu
ir

ed

D4
D6

D8

D10
D12

D14
(Leo-NT)

D15

D4
D6

D8
D10

D12

D13
(Leo)

D14

D4 D6

D8

D10

D11

D4

D6

D8

D10

D12

Infeasible

Leo Leo-NT IIsy-NT pFor/SwTree-NT

(b)

Figure 11: Table entries required to support a programmable class of complete decision trees using SRAM and TCAM. Designs
needing more than 12 stages are infeasible on a Tofino switch [8]. Note the logarithm scale on x-axis.

to only using SRAM. First, pFor/SwTree-NT can only meet
the specification upto D = 5, and it is unable to support depth
6 trees. This is because the approach is constrained by the
number of switch stages. Second, Leo is able to support trees
twice as deep as those supported by pFor/SwTree-NT, and
can support all depth 10 trees. Further it requires half as many
stages for the same depth. While the total memory require-
ment is higher, it is modest in an absolute sense, and this is
an acceptable trade-off. Third, the memory requirements with
IIsy-NT [30, 32] are several orders of magnitude more than
Leo. Supporting all depth 5 trees requires over 1.9M entries,
which is 10000× more than Leo (which requires 182 entries).
IIsy is unable to support trees greater than depth 5 owing to
the memory requirement. Finally, although Leo uses twice as
much SRAM than Leo-NT, the table sizes are still small, and
there is no impact on the classes of trees supported.

Results with TCAM. Figure 11(b) presents similar results
as above but now implementing all tables in all schemes
with TCAM. First, all schemes can support larger trees with
TCAM, but Leo still outperforms – pFor/SwTree and IIsy
can support depth 10 trees, but Leo can support any depth
13 tree. Second, for the same specification, Leo requires half
as many stages as pFor/SwTree, and an order of magnitude
fewer TCAM entries (for depth 10, the requirement with IIsy
is 18× that of Leo). Third, the higher memory requirements
of Leo limit it to depth 13 trees (versus depth 14 for Leo-NT),
owing to both lower TCAM memory available per stage, and
the larger memory requirements at higher tree depth. However,
Leo can still support larger trees with a bound on the number
of leaves with negligible impact on classification accuracy as
we will see later. Finally, Leo and pFor/SwTree-NT require
fewer stages for the same depth with TCAM relative to SRAM.
This is because of our optimizations with TCAMs to avoid an
extra computation stage for each layer (§5).

Exploiting bounds on the number of leaves. While the
earlier results indicate Leo (resp. Leo-NT) can support all
complete trees up to depth 13 (resp. 14), we next explore
specifications that bound both the number of leaves and tree
depth. This is beneficial given our analysis in Figure 1, which
shows that accuracy greatly improves with tree depth but
is less sensitive to the number of leaves for a given depth.
Figure 13 shows the maximum number of leaves that can
be supported for different tree depths, and indicates that Leo
(and Leo-NT) can support deeper trees given a constraint on
the number of leaves. For instance, Leo can support depth
22 trees given a specification that the tree has at most 1024
leaves. This is because Leo provisions fewer TCAM entries
in each layer exploiting knowledge of the leaf constraint. The
maximum number of leaves reduces with tree depth because
for larger depths there are fewer available stages (and hence
TCAM table space). In contrast, IIsy, and pFor/SwTree can
support at most depth 10 trees as discussed earlier. While
Leo allows fewer leaves than Leo-NT (see Appendix for more
discussion), the number of leaves is still high and there is
practically no impact on classification accuracy (§7.2).

7.2 Classification Accuracy on Real Datasets
Intrusion detection datasets. We used two publicly available
and widely used intrusion detection datasets: (i) CICIDS-2017
(CICIDS): The dataset [19] consists of multiple attack classes
along with a single benign class. Since some attack classes
have very little data, we merge the 9 least populated attack
classes into a single class resulting in a total of 7 classes. The
dataset consists of 78 flow and packet level features. How-
ever, not all of these can be deployed on the hardware (e.g.
means and percentiles that require division, etc.). Thus, we
only select 42 switch-compatible features for our evaluation;
and (ii) UNSW-NB15 (NB15): This dataset [15] also consists

1582 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

pFor/SwTree-NT IIsy-NT Leo Leo-NT Control Plane
0.4

0.6

0.8

1.0

A
vg

.F
1

sc
or

e

(a)

pFor/SwTree-NT IIsy-NT Leo Leo-NT Control Plane
0.90

0.92

0.94

0.96

0.98

1.00

A
vg

.F
1

sc
or

e

CICIDS-2017
UNSW-NB15

(b)

Figure 12: Classification accuracy of the best performing, hardware-supported tree class for each scheme when implemented
using (a) SRAM and (b) TCAM. We assume all switch stages are available for the decision tree logic, and do not account for
memory requirements of stateful flow features for all schemes (we explore impact of flow state in §7.3.) The control plane
implementation is independent of SRAM and TCAM, and hence the accuracy is the same across figures (a) and (b) – Note the
y-axis has different scale in figures (a) and (b).

14 15 16 17 18 19 20 21 22
Depth

0

5000

10000

15000

L
ea

ve
s

L16384

L12288

L6144

L2048 L2048 L2048

L6144

L3072
L2048

L1024 L1024 L1024

Leo
Leo-NT

Figure 13: Leo can support tree classes beyond depth 13 with
a bound on the number of leaves.

of real user traffic interspersed with generated attacks. We
use this dataset to classify traffic as malicious or benign. It
contains 49 flow and packet level features, out of which we
use 22 switch-compatible features.
Training. We use Python3’s scikitlearn library to train the
decision trees. The CART algorithm was used along with the
Shannon entropy loss function. We enabled class weighting
to alleviate issues due to imbalance. To find the best set of
features for an experiment, we use the Mean Decrease in
Impurity (MDI) score and eliminate one least-scored feature
recursively until we arrive at the target number of features
for an experiment. We experimented with Permutation Impor-
tance score and found no difference in accuracy compared to
MDI. 75% of the dataset was used for training, and 25% for
testing. All results are reported on the test set.
Metrics. We report the average of the per class F1 scores
which ensures the accuracy for all classes including those
with relatively low samples is considered. Given the highly
imbalanced nature of the dataset (most samples are benign),
alternative metrics that weigh by the number of samples pro-
vide a highly optimistic view of accuracy for all schemes. For
each scheme, we evaluated a range of (D,L,F) tree classes
that are supported on the switch, we then selected the best per-

forming class for each scheme and present them in Figure 12.
Our comparisons include an idealized scheme (Control Plane)
which gives an upper bound on the accuracy of the decision
tree model for each dataset (by allowing large trees that use
all dataset features).
Results. For CICIDS and SRAM, Leo outperforms both
IIsy-NT and pFor/SwTree-NT achieving an average F1
score of 0.94 which is much higher than the 0.75 of IIsy-NT
and 0.67 of pFor/SwTree-NT. With TCAM, IIsy-NT and
pFor/SwTree-NT support depth 10 trees and thus improve to
a 0.94 F1 score, while Leo outperforms both by managing a
0.98, due to its ability to support a depth 22 tree.

For the NB15 dataset, using SRAM Leo, outperforms both
pFor/SwTree-NT and IIsy-NT by achieving an average F1
score of 0.92 (versus 0.88). Using TCAM, Leo continues to
outperform the others while managing to achieve identical
accuracy as the control plane. Notice, that all schemes perform
better with the NB15 dataset because of the smaller number of
classes. The Appendix presents a breakdown of the F1 score
per class for all schemes. We also show results for the NB15
dataset with multiple classes. Our results show similar trends
– Leo outperforms IIsy-NT and pFor/SwTree-NT for each
class while performing close to the control plane solution.

7.3 Number of Concurrent Flows Supported
Stateful per-flow features must fit into the memory budget of
the switch (§5). Supporting more flows reduces the bits per
flow (and which features can be supported), thereby impacting
classification accuracy. We explore these issues next.
Methodology and metrics. We experimentally determine the
maximum switch memory that can be configured as registers.
Given a target M on the number of flows, we determine the
budget for per-flow state, and then find different configura-
tions of stateful features that can meet the budget. E.g., a
24-bit budget can be configured as 16-bit * 1 + 8-bit * 1 or as

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1583

262K
(144)

524K
(112)

1.04M
(56)

2.1M
(24)

Num. flows // Max. bits per flow

0.6

0.7

0.8

0.9

1.0

F1
sc

or
e

CICIDS-2017
UNSW-NB15

(a)

262K
(144)

524K
(112)

1.04M
(56)

2.1M
(24)

Num. flows // Max. bits per flow

0.6

0.7

0.8

0.9

1.0

F1
sc

or
e

CICIDS-2017
UNSW-NB15

(b)

Figure 14: Impact of per-flow state on Leo classification ac-
curacy using (a) SRAM and (b) TCAM.

16-bit * 0 + 8-bit * 3. For each valid configuration, we rank
features by their MDI feature importance, and greedily select
the top features that fit the configuration. We compute the F1
score achieved for each valid configuration and report the F1
score of the best performing configuration.
Results. Figure 14 summarizes how classification accuracy
varies with the number of flows for SRAM and TCAM re-
spectively. The X-Axis corresponds to the number of flows to
be supported, and the corresponding budget on per-flow state
(e.g., supporting 1.04 M flows imposes a budget of 56 bits
per flow). The leftmost points match accuracy levels shown
in Figure 12. Leo can support 1.04M concurrent flows with
modest degradation, with average F1 score decreasing from
0.94 to 0.86 for SRAM, and decreasing from 0.98 to 0.92 for
TCAM and CICIDS. For NB15, F1 scores decrease from 0.92
to 0.91 for SRAM, and are practically unchanged for TCAM.
This is because we use the dataset for binary classification of
traffic as benign or malicious, an easier classification problem.
Table 2 in the Appendix summarizes the features used when
supporting 1.04M flows for all 4 configurations.

7.4 Leo vs. Control Plane ML
To evaluate the benefits of implementing decision trees in
the data plane versus control plane, we deploy Leo on an
Intel Tofino [3] EdgeCore Wedge-100BF-32x [17] switch.
We train decision trees of varying depths using the CICIDS
dataset allowing the control plane to utilize the complete set
of 78 features while restricting Leo to 10. We use tcpreplay
to replay packets from select flows from the dataset to ensure
similar characteristics of the original traffic are maintained.
Besides classification, the switch also implements L2 forward-
ing. We capture timestamps at the switch ingress and egress
to accurately measure the processing delay.

The control plane experiment involves forwarding the
packet to the switch CPU for inference with no other function-
ality in the data plane (besides IPv4 match-based forwarding)
while the data plane experiment uses Leo.

We find (see Figure 23 in the Appendix) that Leo is on
average 500× faster than the control plane implementation of
the same decision tree class. Leo takes about 500 nanoseconds

to completely apply a 1024-leaf tree for inference to every
packet. This re-asserts the point that a control plane inference
scheme is not capable of per-packet classification at multi-
terabit line rates. On the other hand, Leo can not only do per-
packet classification, but also achieve accuracy comparable
to an idealized control plane scheme for real datasets (§7.2).

8 Related Work
Beyond [6,14,28,32]. N3IC [23] implements a binary neural
network in the NICs with the goal of accelerating traffic anal-
ysis at the edge rather than per-packet in-network traffic anal-
ysis. Taurus [25] extends PISA pipelines with a new hardware
module implementing a map-reduce abstraction to run neural
networks. Unlike Taurus, Leo focuses on efficiently map-
ping ML inference to existing PISA pipelines, thus enabling
data plane ML inference on commercially available hardware.
Given training data, a recent work, Homonculus [26], trains
an ML model that achieves a given accuracy while meeting
the constraints of a switch. Neither Taurus nor Homoncu-
lus support runtime programmability. In contrast, our focus
is on runtime programmability, and provisioning sufficient
resources so all models in a given class can be supported. Re-
cent work [29] explores support for runtime programmability
for a general class of packet processing programs. In contrast,
we only focus on providing runtime programmability for ML
inference programs, without hardware changes.

ATP [13] and SwitchML [18] do in-network aggregation
in the data plane to accelerate ML training. In contrast, Leo
focuses only on ML inference in the data plane, and assumes
that ML training is done offline using standard techniques.
Finally, there have also been recent works that use a hybrid
of control and data plane for traffic analysis. FastFE [2] and
DAD [16] both implement ML inference in the control plane
and extract feature values in the data plane. As shown in §7.4,
such an approach cannot do per-packet traffic analysis.

9 Conclusion
We have presented Leo, a system for online decision tree clas-
sification in the data plane. Given a specification of a class
of trees, Leo supports any tree in that class at runtime. Leo
reduces resource requirements for a given tree through sub-
tree multiplexing, and supports decision trees to be changed
at runtime by allowing features and constraints to be re-
programmed. Leo support trees with 2× the depth of prior
data plane solutions, resulting in much better classification ac-
curacies comparable to a control plane solution. Evaluations
on a real programmable switch testbed show classification
latencies with Leo are 500× lower than a control plane ap-
proach. Overall, the results show Leo is a viable approach to
support packet classification in the data plane.

Acknowledgments. This work was supported in part by
NSF CAREER 2239829, NSF Awards 2331111 and 1837023,
and research awards from Google and Cisco (23089533).

1584 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Vamsi Addanki, Maciej Pacut, and Stefan Schmid. Cre-

dence: Augmenting datacenter switch buffer sharing
with ml predictions. In 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI
24), 2024.

[2] Jiasong Bai, Menghao Zhang, Guanyu Li, Chang Liu,
Mingwei Xu, and Hongxin Hu. FastFE: Accelerat-
ing ML-Based Traffic Analysis with Programmable
Switches. In Proceedings of the Workshop on Secure
Programmable Network Infrastructure (SPIN), 2020.

[3] Intel Barefoot Networks. P4-16 Intel Tofino
Native Architecture. https://github.com/
barefootnetworks/Open-Tofino/blob/master/
PUBLIC_Tofino-Native-Arch.pdf. Accessed:
05/04/2023.

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard,
Nick McKeown, Jennifer Rexford, Cole Schlesinger,
Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: Programming Protocol-Independent
Packet Processors. SIGCOMM Comput. Commun. Rev.,
44(3):87–95, jul 2014.

[5] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding Metamorphosis:
Fast Programmable Match-Action Processing in Hard-
ware for SDN. SIGCOMM Comput. Commun. Rev.,
43(4):99–110, aug 2013.

[6] Coralie Busse-Grawitz, Roland Meier, Alexander Diet-
müller, Tobias Bühler, and Laurent Vanbever. pForest:
In-Network Inference with Random Forests. https:
//arxiv.org/abs/1909.05680, 2019.

[7] The P4 Language Consortium. P4-16 Language Specifi-
cation. https://p4.org/p4-spec/docs/P4-16-v1.
2.2.pdf. Accessed: 05/04/2023.

[8] Vladimir Gurevich and Andy Fingerhut. P4-16
Programming for Intel® Tofino™ using Intel P4
Studio™. Open Network Foundation. https://
opennetworking.org/wp-content/uploads/2021/
05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf.
Accessed: 05/04/2023.

[9] Arthur S. Jacobs, Roman Beltiukov, Walter Willinger,
Ronaldo A. Ferreira, Arpit Gupta, and Lisandro Z.
Granville. AI/ML for Network Security: The Emperor
has no Clothes. CCS ’22, page 1537–1551, New York,
NY, USA, 2022. Association for Computing Machinery.

[10] Arthur Selle Jacobs, Ricardo José Pfitscher,
Ronaldo Alves Ferreira, and Lisandro Zambenedetti

Granville. Refining Network Intents for Self-Driving
Networks. In Proceedings of the Afternoon Workshop
on Self-Driving Networks, SelfDN 2018, page 15–21,
New York, NY, USA, 2018. Association for Computing
Machinery.

[11] Patrick Kalmbach, Johannes Zerwas, Péter Babarczi,
Andreas Blenk, Wolfgang Kellerer, and Stefan Schmid.
Empowering Self-Driving Networks. In Proceedings
of the Afternoon Workshop on Self-Driving Networks,
SelfDN 2018, page 8–14, New York, NY, USA, 2018.
Association for Computing Machinery.

[12] Wolfgang Kellerer, Patrick Kalmbach, Andreas Blenk,
Arsany Basta, Martin Reisslein, and Stefan Schmid.
Adaptable and Data-Driven Softwarized Networks: Re-
view, Opportunities, and Challenges. Proceedings of the
IEEE, 107(4):711–731, 2019.

[13] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi
Chen, Wenfei Wu, Aditya Akella, and Michael Swift.
ATP: In-network Aggregation for Multi-tenant Learn-
ing. In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21), pages 741–761.
USENIX Association, April 2021.

[14] Jong-Hyouk Lee and Kamal Singh. SwitchTree: In-
network Computing and Traffic Analyses with Random
Forests. Neural Computing and Applications, 11 2020.

[15] Nour Moustafa and Jill Slay. UNSW-NB15: a com-
prehensive data set for network intrusion detection sys-
tems (UNSW-NB15 network data set). In 2015 Military
Communications and Information Systems Conference
(MilCIS), pages 1–6, 2015.

[16] Francesco Musumeci, Valentina Ionata, Francesco
Paolucci, Filippo Cugini, and Massimo Tornatore.
Machine-learning-assisted DDoS attack detection with
P4 language. In ICC 2020 - 2020 IEEE International
Conference on Communications (ICC), 2020.

[17] EdgeCore Networks. EdgeCore Wedge 100BF-
32X. https://www.edge-core.com/productsInfo.
php?cls=1&cls2=5&cls3=181&id=335. Accessed:
05/04/2023.

[18] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling Distributed Machine Learning with
In-Network Aggregation. In 18th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 21), pages 785–808. USENIX Association, April
2021.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1585

https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://arxiv.org/abs/1909.05680
https://arxiv.org/abs/1909.05680
https://p4.org/p4-spec/docs/P4-16-v1.2.2.pdf
https://p4.org/p4-spec/docs/P4-16-v1.2.2.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335

[19] Iman Sharafaldin, Arash Habibi Lashkari, and Ali Ghor-
bani. Toward Generating a New Intrusion Detection
Dataset and Intrusion Traffic Characterization. pages
108–116, 01 2018.

[20] Vishal Shrivastav. Programmable multi-dimensional ta-
ble filters for line rate network functions. In Proceedings
of the ACM SIGCOMM 2022 Conference, SIGCOMM
’22, 2022.

[21] Vishal Shrivastav. Stateful multi-pipelined pro-
grammable switches. In Proceedings of the ACM SIG-
COMM 2022 Conference, SIGCOMM ’22, 2022.

[22] Vishal Shrivastav, Dimitrios Koutsonikolas, and Saurabh
Bagchi. Ramps: Next generation platform for real
time and resilient iot analytics using mmwave and pro-
grammable switches. In Proceedings of the Fifth Work-
shop on Distributed Infrastructures for Deep Learning
(DIDL) 2021, DIDL ’21, 2022.

[23] Giuseppe Siracusano, Salvator Galea, Davide Sanvito,
Mohammad Malekzadeh, Gianni Antichi, Paolo Costa,
Hamed Haddadi, and Roberto Bifulco. Re-architecting
Traffic Analysis with Neural Network Interface Cards.
In 19th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 22), 2022.

[24] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco
Loi, Adam Radford, Chamith Wijenayake, Arun Vish-
wanath, and Vijay Sivaraman. Classifying IoT Devices
in Smart Environments Using Network Traffic Char-
acteristics. IEEE Transactions on Mobile Computing,
18(8):1745–1759, 2019.

[25] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz,
Ishan Gaur, and Kunle Olukotun. Taurus: A Data Plane
Architecture for per-Packet ML. In Proceedings of the
27th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’22, page 1099–1114, New York, NY,
USA, 2022. Association for Computing Machinery.

[26] Tushar Swamy, Annus Zulfiqar, Luigi Nardi, Muham-
mad Shahbaz, and Kunle Olukotun. Homunculus: Auto-
Generating Efficient Data-Plane ML Pipelines for Dat-
acenter Networks. In Proceedings of the 28th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Vol-
ume 3, ASPLOS 2023, page 329–342, New York, NY,
USA, 2023. Association for Computing Machinery.

[27] Shivam Trivedi, Lauren Featherstun, Nathan DeMien,
Callum Gunlach, Sagar Narayan, Jacob Sharp, Brian
Werts, Lipu Wu, Carolyn Ellis, Lev Gorenstein, Erik
Gough, Alex Younts, and Xiao Zhu. PULSAR: Deploy-
ing Network Monitoring and Intrusion Detection for the

Science DMZ. In Proceedings of the Practice and Ex-
perience in Advanced Research Computing on Rise of
the Machines (Learning), PEARC ’19, New York, NY,
USA, 2019. Association for Computing Machinery.

[28] Bruno Missi Xavier, Rafael Silva Guimarães, Giovanni
Comarela, and Magnos Martinello. Programmable
Switches for in-Networking Classification. In IEEE
INFOCOM 2021 - IEEE Conference on Computer Com-
munications, pages 1–10, 2021.

[29] Jiarong Xing, Kuo-Feng Hsu, Matty Kadosh, Alan Lo,
Yonatan Piasetzky, Arvind Krishnamurthy, and Ang
Chen. Runtime Programmable Switches. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 651–665, Renton, WA,
April 2022. USENIX Association.

[30] Zhaoqi Xiong and Noa Zilberman. Do Switches Dream
of Machine Learning? Toward In-Network Classifica-
tion. In Proceedings of the 18th ACM Workshop on Hot
Topics in Networks, HotNets ’19, page 25–33, New York,
NY, USA, 2019. Association for Computing Machinery.

[31] Yifan Yuan, Omar Alama, Jiawei Fei, Jacob Nelson,
Dan R. K. Ports, Amedeo Sapio, Marco Canini, and
Nam Sung Kim. Unlocking the Power of Inline Floating-
Point Operations on Programmable Switches. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 683–700, Renton, WA,
April 2022. USENIX Association.

[32] Changgang Zheng, Zhaoqi Xiong, Thanh T Bui, Siim
Kaupmees, Riyad Bensoussane, Antoine Bernabeu,
Shay Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman.
IIsy: Practical In-Network Classification. https://
arxiv.org/abs/2205.08243, 2022.

A Appendix
A.1 IIsy with SRAM.
We present a detailed explanation of Equation 1 elaborating
on how default rules are handled. We obtain conservative
lower bounds on the size of feature tables and combination
tables. To obtain a lower bound on requirements, it suffices
to construct a single tree in the class of trees that are to be
supported that needs a given amount of memory. Since the
combination table, and each of the feature tables are provi-
sioned independently, we present below separate example
trees that trigger a minimum memory requirement for each of
the tables.

Feature Table. Consider a decision tree of depth D based
on only one of the N features, which could take values in the
range [0,K]. For an SRAM, IIsy must explicitly enumerate
every value, and map the value to a code word which requires
a table of size K. Some savings could be obtained with a

1586 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://arxiv.org/abs/2205.08243
https://arxiv.org/abs/2205.08243

F1 < K

F2 < K

F3 < K

AN-1

F3 < K

F1 < K

F1 < K - 1

F1 ≤ 2

Recursively
repeat for

F2…FN

FalseTrue

FN-1 < K

FN < K

F1..N < K - 1

FN-1 < K

FN < K

All F2..N == K
except F1

At least 1
but not all at
F2..N == K

Figure 15: A decision tree that requires exponential TCAM
entries with IIsy.

default rule since the values in the largest interval need not
be explicitly enumerated. A complete tree with depth D has
I = 2D −1 internal nodes, and partitions the possible feature
values into I +1 intervals. Consider a tree where all intervals
have the same length ⌈ K

I+1⌉. The number of SRAM rules re-
quired in the feature table for this tree is K−⌈ K

I+1⌉ indicating
at least so much memory is required.

Combination Table. To derive conservative bounds on the
size of the combination table, consider a complete decision
tree of depth D where each feature appears in the same number
of decision tree nodes. Let I = 2D − 1 denote the number
of internal nodes. The total number of decision nodes that
involve each feature is I

N , requiring I
N + 1 codewords per

feature. Since the combination table includes combinations of
all possible codewords associated with each feature, the total
size is (I

N + 1)N which is exponential in N. A default rule
could take away entries corresponding to one leaf. Since there
are 2D leaves in a depth D tree, taking away combinations
corresponding to one of the leaves will still require at least a
fraction 2D−1

2D of the remaining combinations. Thus, the total
number of entries in the combination table is at least:

2D −1
2D ∗ (2D −1

N
+1)N (2)

Equation 1 follows by combining the two terms.

A.2 IIsy with TCAM
A.2.1 Proof sketch of Proposition 2

We complete the discussion of the proof sketch for the general
case. The proof is based on a family of decision trees shown
in Figure 15 for the general case with N features (F1 . . .FN)
with each feature having values ranging from 1 . . .K.

As discussed earlier, the intuition behind the tree construc-
tion is as follows. First, the decision tree nodes has leaves for
each value of a feature Fj when all other features are at their
maximum value K. This forces IIsy to use a distinct code

word for each value of every feature. Next, the decision tree
has leaf nodes which correspond to regions where some of
the features can take multiple possible values. These nodes
will require a large number of code word combinations with
IIsy since it is forced to use a distinct code word for each
feature value.

In more detail, consider the left sub-tree of the root (feature
F1 < K). We have three cases based on other features:

(i) All other features are K (Blue sub-cloud). Here, a dif-
ferent action is chosen depending on the value of F1, forcing
IIsy to pick a different codeword for each value of F1.

(ii) All other features are < K (left most node AN−1). Al-
though a single decision tree node, IIsy is forced to represent
this using (K −1)N distinct combinations because each value
of each feature is associated with a different codeword.

(iii) All other nodes which together capture the case that at
least one, but not all of F2,F3 . . .FN are K. An action distinct
from the above is chosen for these nodes. Consider one such
node where FN = K and all other features are < K. Encoding
this alone will require (K −1)N−1 combinations.

While a default rule can be used to cover the combinations
in either Case (ii) or Case (iii), both cases cannot be covered.
Thus, IIsy requires at least (K−1)N−1 distinct combinations.
With a TCAM, this would require at least mN−1 rules, where
m = log(K −1), which again grows exponentially with N.

It remains to estimate the total number of leaves in the tree.
The left sub-tree has K +2(N −2) leaf nodes (the three cases
above are associated with K − 1 leaves, 1 leaf, and N − 2 +
N − 2 leaves respectively), The right sub-tree expands in a
recursive fashion with the same structure on (N −1) features
[i.e., the features F2 . . .FN]. Setting and solving a recurrence,
the total number of leaf nodes is N2 +N ∗ (K −3)+2. This
leads to the proposition.

A.2.2 Estimating TCAM memory requirements

We present models to obtain conservative lower bounds on
the size of feature tables and combination tables when TCAM
is used with IIsy. To obtain a lower bound on requirements,
it suffices to construct a single tree in the class of trees that
are to be supported that needs a given amount of memory.
Since the combination table, and each of the feature tables
are provisioned independently, we present below separate
example trees that trigger a minimum memory requirement
for each of the tables.

Estimating feature table size. Consider again a decision
tree where all nodes correspond to the same feature which
takes values in the range [0,K]. With a TCAM, the feature
table need not explicitly enumerate all possible feature val-
ues. For instance, an interval [1,15] can be represented with
4 TCAM entries. In general, any interval requires at most
log(K) entries, and there are I + 1 intervals, where I is the
number of internal tree nodes. While (I +1)∗ log(K) serves
as an upper bound on the entries needed by the feature table,
this is not a conservative lower bound since not all intervals

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1587

may need log(K) entries (e.g., the interval [0,15] requires 1
TCAM rule, while [1,15] requires 4). We have devised a sim-
ple algorithmic procedure, which partitions the space [0,K]
into I + 1 intervals so the total number of TCAM rules to
encode all intervals is maximized. The algorithm works by
iteratively partitioning each interval into two such that the
total rules across the two intervals is maximized. The itera-
tions proceed until the number of internal nodes matches the
desired target or when no further splits are possible. While
we do not have a simple closed form expression for this es-
timate, we denote the total feature table rules required using
this procedure as TCAMFT Rules(K, I). This is a minimum
size IIsy needs to provision.

For example, for the numeric range [0,31] using 4 internal
decision nodes, the recursive split is as follows:

[0,31]
[0,0], [1,31]

[0,0], [1,16], [17,31]
[0,0], [1,8], [9,16], [17,31]

[0,0], [1,8], [9,16], [17,24], [24,31]

This example would allocate 1+4+4+4+3 = 16 TCAM
rules per feature table.

Combination table rules estimation. We use the number
of table rules that IIsy requires for the special tree construc-
tion (Figure 15) as a conservative lower bound on the size of
the combination table. Below, we analyze the rules required
for this tree.

Let TN denote the total number of combinations that IIsy
must handle in its combination table for this tree. Then, we
set up the following recursion. Let K1 denote K −1. Then,

TN =

{
∑

N
n=2(K1)n +∑

N−1
n=2 (K1)2 +K1+TN−1 N > 1

K1 N = 1
(3)

The first term models leaves including (i) the leftmost AN−1
node where all features are < K; and the right child of Fn < K
nodes in the pink cloud. These nodes correspond to the case
the first n features are ≤ K − 1, and the feature n+ 1 is K.
The second term models leaves which are left sub-children of
nodes of the form Fn < K in the pink cloud. These correspond
to the case F1 < K, F2 . . .Fn−1 == K, and Fn < K. The third
term models leaves where all features except F1 are K, with
one leaf for F1 taking each of the values in 1 . . .K −1.

Note, that this expression represents the total number of
combinations i.e. the resource requirement for this example
under SRAM. With TCAM, the combinations correspond-
ing to the same leaf are collapsed using wildcards. Thus we
rewrite the expression as:

TN =

{
∑

N
n=2 lgn(K1)+∑

N−1
n=2 lg2(K1)+K1+TN−1 N > 1

K1 N = 1
(4)

ALU

M
U
X

f3
f2
f7

M
U
X

5
2
5

ALU

M
U
X

f8
f4

M
U
X

4
3

ALU

M
U
X

f9

f3

M
U
X

6

7

00

1

O3

1

0

0

0

O1

1

0

1

11

01

O2

10

ID

ALU ALU ALUf1
1

f4
7

f6
3

Prev
ID

C1

E3 IDE2

00

E1

Stage 1

Stage 2

Stage 3

O1 O2 O3

E1 E2 E3

01

0

Prev
ID

C2

C3

E3 ID

C5

E2

101

01

001

E1

0

C4

1

01

1

10

0

Prev
ID

C6

C7

E3 IDE2

10

010

E1

0

C8

1

1 11

0

Prev
ID

C9

C10

E3 IDE2

11

111

E1

0

C1111

*
*

*
*

* *
*

*
*

*
*

*

*
*
*

f3 < 5

f8 < 4 f9 < 6

C4 C5

0

0 0

1

11

C2 C3

f4 < 7

0

1

f2 < 2

f4 < 3

0

0
1

1

C6 C7

f7 < 5

f3 < 7

C10 C11

0

0

1

1

f6 < 30 1

f1 < 1
0 1

C1 C8 C9

ID: 11ID: 10ID: 01

**

*

*

Figure 16: Illustrating the inputs of the mapped representative
decision tree from Figure 9 can be configured by the control
plane at runtime to implement a different decision tree within
the same class.

Solving the recurrence gives the total number of rules that
must be provisioned.

A.3 Evaluation
A.3.1 Impact of number of features

Figure 11 had shown the resource usage for different schemes
with 10 features. We next vary the number of features, and
show the maximum tree depth that can be supported with
different schemes. Results are presented in Figure 17 for both
SRAM and TCAM.

We make several points. First, Leo can support up to 10
features for k = 3, and 15 features for k = 1 (§5). Since the
memory requirements for implementing the decision tree
logic do not grow with the number of features supported, the
choice of k determines the maximum depth. While we have
not explored, other optimizations are possible with Leo– e.g.,
by alternating layers with k = 1 and k = 3, there is potential
to achieve lower depth when the number of features is higher
than 10. pFor/SwTree-NT can support up to 15 features, and
the maximum depth is the same across features. In contrast,
while IIsy-NT is not subject to the constraint on header fields
(§5) as it does not perform ALU operations, its memory re-
quirements do grow exponentially with the number of fea-
tures. Consequently, the tree depth that it can support becomes
smaller as the number of features is increased. Leo typically

1588 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Features
3

Features
4

Features
6

Features
8

Features
10

Features
14

0

2

4

6

8

10
D

ep
th

Leo IIsy-NT pFor/SwTree-NT

(a)

Features
2

Features
4

Features
5

Features
8

Features
10

Features
14

0

2

4

6

8

10

12

14

D
ep

th

Leo IIsy-NT pFor/SwTree-NT

(b)

Figure 17: Maximum tree depth with different schemes as number of features is varied using (a) SRAM and (b) TCAM.

D8
F3

D7
F4

D6
F6

D5
F10

D4
F14

Depth // Num. Features

0.55

0.60

0.65

0.70

0.75

F1
sc

or
e

(a)

D14
F2

D13
F4

D12
F5

D11
F8

D10
F14

Depth // Num. Features

0.5

0.6

0.7

0.8

0.9

F1
sc

or
e

(b)

Figure 18: F1 accuracies for different settings with IIsy-NT
for (a) SRAM; and (b) TCAM for CICIDS. The best result is
shown in Figure 12.

supports higher depth trees than IIsy-NT with SRAM, and
comparable or higher depth trees with TCAM up to about
15 features. Beyond 15 features, and if TCAMs were used,
IIsy-NT may be viable, while Leo and pFor/SwTree-NT are
not – however, in our accuracy experiments, Leo already per-
forms very well with TCAM. Further, per-flow state require-
ments are the likely bottleneck (§7.3) before hitting 15 fea-
tures. Finally, IIsy-NT does not handle transients, and the
additional memory overheads if transients were addressed
may further limit its performance.

Figure 18 presents a sweep of classification accuracy
with IIsy-NT for different combinations of (|F |,D) for the
CICIDS dataset for SRAM and TCAM respectively. Here |F |
is the number of features supported, and D is the maximum
depth achievable for |F |. For SRAM, the best accuracy is
obtained with 6 features (depth 6), while with TCAM, the
best accuracy is obtained with 14 features (depth 10). These
values are reported in Figure 12 in the main text.

A.3.2 Breakdown of F1 scores per class

CICIDS dataset. Figure 19(a) presents a breakdown of F1
score per class for different schemes for the CICIDS dataset
for SRAM. For all classes, Leo outperforms IIsy-NT and

pFor/SwTree-NT. While Leo sees an F1 score higher than
0.95 for all classes besides OtherMalicious, IIsy-NT sees
F1 scores falling to 0.24 and 0.28 for two classes while
pFor/SwTree-NT sees even lower minimum F1 scores. The
performance is particularly poor for the OtherMalicious class
– this is because the tree depths supported by IIsy-NT and
pFor/SwTree-NT are too small to allow effective categoriza-
tion of traffic into this class. Leo is close to the Control Plane
solution for all but the OtherMalicious class which tends to
be challenging because of a mix of different attack patterns –
but even here, Leo significantly outperforms other schemes.

Figure 19(b) presents a similar breakdown with TCAM
implementations, and Figure 22 presents a zoomed in version.
Although all schemes perform much better with TCAM (as
the trees supported are larger), Leo still performs better than
IIsy-NT and pFor/SwTree-NT, while performing close to
Control Plane. The benefits are particularly strong for the
OtherMalicious category.
NB15 dataset (binary classification) Figure 20 shows a sim-
ilar breakdown for UNSW-NB15 for both SRAM and TCAM.
All schemes perform better since this experiment focuses on
a binary classification (and much better with TCAM since
they all achieve larger tree depths) – however, Leo continues
to perform better than pFor/SwTree-NT and IIsy-NT, while
performing close to Control Plane.
NB15 dataset (multi-class classification) We have also taken
the UNSW-NB15 dataset, and trained all approaches for a
classification problem involving multiple classes. Figure 21
present a breakdown of the F1 scores per class. Once again,
Leo performs better than IIsy-NT and pFor/SwTree-NT
(with the benefits stronger in the SRAM case), and performs
close to Control Plane.

A.3.3 Other Results/Discussion

Features used in classification. Table 2 presents a set of
features used in classification. To implement stateful features,
and fit them into 8 and 16 bit budgets. we employed discretiza-
tion. Packet length metrics were divided by 64 (using bit

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1589

pFor/SwTree-NT IIsy-NT Leo Control Plane
0.0

0.2

0.4

0.6

0.8

1.0

F1
sc

or
e

Benign
DDoS

DoS GoldenEye
DoS Hulk

FTPPatator
OtherMalicious

PortScan

(a)

pFor/SwTree-NT IIsy-NT Leo Control Plane
0.0

0.2

0.4

0.6

0.8

1.0

F1
sc

or
e

Benign
DDoS

DoS GoldenEye
DoS Hulk

FTPPatator
OtherMalicious

PortScan

(b)

Figure 19: CICIDS-2017 classification accuracy broken down per class for (a) SRAM and (b) TCAM.

pFor/SwTree-NT IIsy-NT Leo Control Plane
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

F1
sc

or
e

Benign Malicious

(a)

pFor/SwTree-NT IIsy-NT Leo Control Plane
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000
F1

sc
or

e

Benign Malicious

(b)

Figure 20: UNSW-NB15 classification accuracy broken down per class in a benign vs malicious scenario with (a) SRAM and (b)
TCAM.

pFor/SwTree-NT IIsy-NT Leo Control Plane

0.0

0.2

0.4

0.6

0.8

1.0

F1
sc

or
e

DoS
Exploits

Fuzzers
Generic

Benign
OtherMalicious

Reconnaissance

(a)

pFor/SwTree-NT IIsy-NT Leo Control Plane

0.0

0.2

0.4

0.6

0.8

1.0

F1
sc

or
e

DoS
Exploits

Fuzzers
Generic

Benign
OtherMalicious

Reconnaissance

(b)

Figure 21: UNSW-NB15 classification accuracy broken down per class (for 7 classes) with (a) SRAM and (b) TCAM.

1590 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

pFor/SwTree-NT IIsy-NT Leo Control Plane
0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

F1
sc

or
e

Benign
DDoS

DoS GoldenEye
DoS Hulk

FTPPatator
PortScan

Figure 22: Zooming into the top 6 classes in Figure 19(b).

shifts) which allowed for sizes between 64 bytes and 16K to
be represented with 8 bits. Flow size metrics were also divided
by 64. Using 16 bits, this lets us represent flow sizes between
64 bytes and 4 MB. Inter-Arrival Time is represented as two
8 bit values per flow, one to track the last timestamp, and the
other to keep track of the running minimum. The timestamp
itself involves extracting an appropriate 8 bits based on the
granularity of measurements. Taking the last 8 bits (bits 0 to
7) would capture timestamps up to 255 nanonseconds (ns)
in 1 ns granularity. However, extracting a different set of 8
bits allows a different granularity – e.g., extracting bits 2 to
9 would capture timestamps from 4 ns to 1024 ns in 4 ns
granularities.

Comparing the number of leaves with Leo and Leo-NT
in Figure 13. The impact on the number of leaves is initially
more than a factor of 2 before converging to exactly 2. This
is because, where the leaf constraint is higher, the tables han-
dling the deeper levels span multiple stages (Leo-NT). Dou-
bling these tables for Leo would require more stages than
what are available. However, as the leaf constraint reduces,
the tables shrink, freeing up more stages and thus allowing
the double-sized tables to grow.

Depth 2
Leaves 4

Depth 4
Leaves 16

Depth 6
Leaves 64

Depth 8
Leaves 256

Depth 10
Leaves 1024

103

104

105

Pr
oc

es
si

ng
tim

e
(n

s)

Data plane
Control plane

Figure 23: Average time to classify packets when routed
through the data plane versus via the control plane.

Feature Name CICIDS-2017 UNSW-NB15
SRAM TCAM SRAM TCAM

Stateless
Destination Port ✓ ✓

Forward TTL ✓ ✓
Backward TTL ✓ ✓

Stateful
8-bit

Backward packet
length min. ✓ ✓

Backward packet
length max. ✓

Forward segment
size min. ✓

Forward initial.
window advertisement ✓ ✓

Stateful
16-bit

Forward flow size ✓ ✓ ✓
Forward initial bytes ✓

Backward initial bytes ✓
Flow IAT min. ✓

Backward IAT min. ✓
(Dst. IP, Src. Port)

count ✓ ✓

(Src. IP, Dst. Port)
count ✓ ✓

Total (stateful) 56

Table 2: A breakdown of the features used for the 1.04M
flows data points in Figure 14.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1591

Sequence Abstractions for Flexible, Line-Rate Network Monitoring

Andrew Johnson
Princeton University

Ryan Beckett
Microsoft Research

Xiaoqi Chen
Princeton University

Ratul Mahajan
University of Washington

David Walker
Princeton University

Abstract
We develop FLM, a high-level language that enables network
operators to write programs that recognize and react to spe-
cific packet sequences. To be able to examine every packet,
our compilation procedure can transform FLM programs into
P4 code that can run on programmable switch ASICs. It first
splits FLM programs into a state management component
and a classical regular expression, then generates an efficient
implementation of the regular expression using SMT-based
program synthesis. Our experiments find that FLM can ex-
press 15 sequence monitoring tasks drawn from prior litera-
ture. Our compiler can convert all of these programs to run
on switch hardware in way that fit within available pipeline
stages and consume less than 15% additional header fields
and instruction words when run alongside switch programs.

1 Introduction

Many network management tasks involve recognizing and
reacting to a user-defined sequence of packets. Such sequence
monitors can enforce security policies, prioritize traffic, miti-
gate attacks, ensure protocol compliance, and more. For ex-
ample, they can identify and de-prioritize video flows using
a fingerprint based on successive packets to improve the net-
work for other traffic [23, 24] or verify that network clients
faithfully implement protocols such as the Dynamic Host
Configuration Protocol (DHCP) by observing the protocol
exchange [28].

Ideal sequence monitors are i) flexible: can express a broad
range of monitoring tasks; and ii) line-rate: can perform all
processing directly in the data plane (hardware). Being line-
rate allows sequence monitors to analyze all traffic passing
through the switch, without needing the switch CPU or a
remote server. Switch CPUs cannot process all packets at line
rate, and using remote servers incurs high network overhead
and reaction delays.

Existing sequence monitors sacrifice either flexibility or
line-rate processing. Systems such as Aragog [28] can express

most sequence monitoring tasks, but they run entirely in soft-
ware (i.e., are not line rate). Programmable switches based on
Protocol Independent Switch Architecture (PISA) [5] enable
hardware-based sequence monitoring, but are programmed in
languages such as P4 [4, 26] that are too low level, making
it hard to express and debug sophisticated tasks [15, 29, 32].
Hybrid systems like Marple and Sonata [11, 21] run only
partially on switches. Their core abstractions focus on data
transformations such as filter, map, and fold operations rather
than packet sequences. They are line-rate only if strong re-
strictions are placed on the allowed functions or if hardware
could be redesigned [21].

In this paper, we present an abstraction of a packet se-
quence pattern that is both flexible and compiled directly to
PISA-based hardware. It enables line-rate sequence monitor-
ing without mirroring traffic to the switch CPU or a central
controller. Recognizing patterns for sequence monitors di-
rectly in hardware is difficult due to stringent data access
constraints in current programmable switches. PISA-based
switches process packets using a series of stages. Each stage
contains its own local memory and a number of arithmetic
and logic units (ALUs) to perform computation. While some
sequence monitors such as packet counting fit this architecture
naturally, others that require tracking state across multiple
packets are significantly more challenging to realize.

Our system, called FLM, allows programmers to write se-
quence monitors using a high-level, pattern-based language.
Patterns are specified as regular expressions over packets,
with the added ability to record packet parameters for later
use. FLM programs can trigger local switch actions immedi-
ately upon matching a pattern, and they can monitor packets
at any desired granularity (e.g., flow, host).

We convert FLM programs into imperative code using a
novel core data structure, which represents a state machine
maintaining a variable environment. We transform operations
on this data structure into operations on PISA switch registers
by carefully dividing them into variable update and transition
code for a deterministic finite automaton (DFA), reflecting
the pattern’s match progress. Our implementation prioritizes

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1593

line rate execution on existing network hardware like the
Intel Tofino [13], for any accepted packet sequence. We have
formally proven that our compilation process from patterns
to pipeline stages preserves the original pattern semantics.

We evaluated FLM by encoding 15 monitoring tasks drawn
from prior work [10, 15, 18, 21, 24, 25, 28, 29, 31, 32]. We find
that we can express all of these tasks in 10-41 lines of FLM
code, which demonstrates the flexibility of FLM. We also
find that we can compile all of these tasks to the Intel Tofino
switch, which demonstrates FLM’s ability to provide line-
rate monitoring. All of these tasks fit within the number of
stages on the switch and consume less than 15% of additional
metadata memory or instruction words when run alongside
switch programs.

In summary, this work makes three main contributions:

• FLM, a language to express sequence monitors that can run
at line-rate on a switch with a novel definition of a pattern
syntax and semantics.

• Provably correct compilation from an FLM program to a
state machine representation that runs on PISA hardware
using a minimal number of stages.

• Evaluation that shows that FLM can express a wide variety
of sequence monitoring tasks and compile them to existing
network hardware.

2 Background

Our programming abstractions are broadly applicable to con-
texts where real-time recognition of event sequences is useful,
(programmable ASICs, FPGAs, NICs, or software switches).
Our implementation is designed for the PISA model. PISA
architectures rely on a series of stages. To achieve a high
processing rate and avoid memory access hazards such as
contention, each stage has its own nearby memory region.
Due to this memory layout, data can only be accessed by a
single stage, and can only flow forward in the pipeline by
changing the packet being processed. Within each stage, the
switch is able to perform a Read-Modify-Write instruction
on a value stored in its memory, where the modify step is
specified by a micro-program called a Register Action. A
core problem we tackled is writing a DFA transition function
in such a way that it fits into one Register Action in order to
be applied to packets at line rate. In this work, we consider
a monitor recognizing patterns in packets passing through a
single switch pipeline. A switch containing multiple pipelines
operating in parallel could contain multiple monitors.

To simplify our implementation, we build on Lucid [25],
an event-driven programming language for PISA switches.
Lucid programs declare events (i.e., notifications of data plane
packet arrival or network control signals) and corresponding
handlers (i.e., code to react to events). Lucid programs are
compiled to P4 code that runs on PISA switches. Both P4 and

Lucid are useful intermediate languages simplify our imple-
mentation, but are not critical for FLM’s key abstractions.

3 Example walk through

In this section, we walk through an example monitoring task
for the DHCP protocol step-by-step to show how FLM enables
network programmers to more easily build flexible, line-rate
packet sequence monitors.

3.1 DHCP Anomaly Detection
Suppose a network operator wants to verify that DHCP,

which enables clients to lease IP addresses from a server, is
not being misused. DHCP begins with the client broadcasting
a "Discover" message, to which the server responds with an
"Offer" message with available IP addresses. The client sends
a "Request" message for an address, which is confirmed with
an "Acknowledge" from the server. The client is then expected
to use the acknowledged IP until the end of its lease.

The operator wants to ensure that clients only use their
assigned IP. This monitoring task can be performed on the
access switch that processes all client communication, includ-
ing that with the DHCP server. Misuse would appear as a
packet sequence belonging to a client, identified by its MAC
(link-layer address), of some number of packets (the DHCP
protocol), a DHCP "Acknowledge," and then a packet whose
source IP does not match the acknowledged one. Below, we
show how FLM’s core abstractions help achieve this goal.

Events. FLM programs are written in terms of events. For
our task, we can define these two events:

event DHCP_Ack(int cip, int cmac);
event IP_Pkt(int sip, int smac);

Events are detected by parsing packets that arrive at the
switch. From the DHCP_Ack packet, the system parses the
DHCP message payload and extracts the client’s MAC and
new IP. Other packets are parsed as generic IP_Pkts, from
which the source IP (sip) and MAC (smac) are extracted.

Patterns. FLM patterns are regular expressions over events,
including concatenation (.) and closure (∗). To begin to tackle
the problem DHCP misuse, a programmer might create the
following pattern, which identifies the presence of a DHCP_Ack
amongst any number of other IP packets:

IP_Pkt∗ . DHCP_Ack . IP_Pkt∗

Recording parameters. The pattern above would match
any use of the DHCP server. It recognizes an event sequence,
but not the event parameters. Including one character for every
possible IP address in the regular expression alphabet would
make it too large. Instead, FLM patterns allow for the binding

1594 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

FLM Program
1 entry event DHCP_Ack(int cip, int cmac);
2 entry event IP_Pkt(int sip, int smac);
3 spec<2048> dhcp_misuse =
4 IDX = {
5 | DHCP_Ack −> {hash(cmac)}
6 | IP_Pkt −> {hash(smac)}
7 }
8 DETECT {
9 IP_Pkt∗

10 .DHCP_Ack(@int assigned = cip)
11 .(IP_Pkt(sip == assigned))∗
12 .IP_Pkt(sip != assigned)
13 } => {
14 (...Some user response here...);
15 };

FLM Intermediate Representation
1 re<2048> dhcp_misuse =
2 IP_Pkt∗
3 .DHCP_Ack(@int assigned = cip)
4 .(IP_Pkt(sip == assigned))∗
5 .IP_Pkt(sip != assigned);
6 entry event DHCP_Ack(int cip, int cmac) {
7 idx = hash(cmac);
8 if (transition(dhcp_misuse, idx, this)) {
9 (...user−defined response...);

10 }}
11 entry event IP_Pkt(int sip, int smac) {
12 idx = hash(smac);
13 if (transition(dhcp_misuse, idx, this)) {
14 (...user−defined response...);
15 }}

Figure 1: An FLM program that monitors for DHCP misuse, and its translation with explicit state machine transitions.

of parameters to recognize patterns over very large alphabets
(e.g., all IP addresses). The operator can record the value of
the client’s assigned IP in the DHCP_Ack messsage by writing:

DHCP_Ack(@int assigned = cip)

This pattern will match any DHCP_Ack packet, and record the
value of its cip parameter in the new variable assigned. To
check whether future packets use this IP, the operator can add
a predicate over the parameters of an IP_Pkt by writing:

IP_Pkt(sip == assigned)

This pattern will match any IP_Pkt event whose sip param-
eter equals assigned. In our application, we also need the
negation (IP_Pkt(sip != assigned)). Hence, using binding
and predicates, the operator can now construct the following
FLM pattern to detect DHCP misuse from a client:

IP_Pkt∗
.DHCP_Ack(@int assigned = cip)
.IP_Pkt(sip == assigned)∗
.IP_Pkt(sip != assigned)

Arrays of patterns. The above pattern characterizes an
anomaly in the communications with a single client. In reality,
an operator wants to monitor many clients. To track multiple
clients, one specifies an array of patterns (in this case of size
2048), which will all be active simultaneously:

spec<2048> dhcp_misuse = ...

Next, one must specify a mapping of events to patterns, so
all clients with the same MAC are identified and applied to
the same pattern. The operator provides an indexing function,
which computes an array index from the values carried by
each event. For DHCP_Ack events, the index is the hash of
the client MAC. For IP_Pkt events (to catch the outgoing
packets), the index is the hash of the source MAC.

IDX = {
| DHCP_Ack −> {hash(cmac)}
| IP_Pkt −> {hash(smac)}

}

The expressions for each index calculation are user-defined.
If the operator wishes to prevent hash collisions, they can
implement algorithms such as probabilistic data structures or
detect collisions by storing keys and siphoning overflows to a
software controller, as in Sonata and Aragog [11, 28].

Responses. Finally, the operator will want to react to de-
tected misuse somehow—perhaps by blocking the client or
logging the anomaly. FLM allows users to react however they
choose by invoking an arbitrary Lucid subroutine.

Putting it all together. The left side of Figure 1 shows the
combination of all the features above in an FLM program
implementing the DHCP specification. The spec declaration
generates an array of size 2048, where each index represents
one copy of the FLM pattern. The IDX block identifies the
flows, the DETECT block contains the pattern, and the block
after "=>" contains the response.

3.2 Compilation Overview
We compile FLM programs to Lucid and use the Lucid com-
piler to generate P4. While Lucid frees us from defining event
parsers in P4, we must still map our pattern-based programs
to PISA stages. This presents two key challenges:

1. To match a pattern, the program must both update the
register holding the values of the variables stored in the
pattern (for example, storing a particular client IP in the
assigned variable in the DHCP example) and update the
register holding the position in the pattern. However, this
requires too much memory and computation to fit into a
single stage and register, as it must in order to keep the
state of the pattern up-to-date.

2. It is not even clear how to implement an arbitrary pattern
that does not contain variable bindings. For example,
consider a state machine representing a pattern without

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1595

1 //Compute the character using the old variables
2 if (event.type == DHCP_Ack) {
3 c = ACK;
4 //On ack, update the store value
5 assigned := event.cip;}
6 if (event.type == IP_Pkt and sip != assigned) {
7 c = IP0;}
8 if (event.type == IP_Pkt and sip == assigned) {
9 c = IP1;}

10 //Synthesized mapping f from character to value
11 f(c){ if (c == ACK) {return 12;}
12 if (c == IP0) {return 0;}
13 if (c == IP1) {return 12;}}
14 //Synthesized mapping g from character to value
15 g(c){ if (c == ACK) {return 2;}
16 if (c == IP0) {return 8;}
17 if (c == IP1) {return 9;}}
18 //Synthesized update function to do transition
19 update_state(curr, x, y) {
20 if(curr + y < 3){
21 return x ⊕ 5;}
22 else{
23 return curr & 3;}}
24 //Update the stored state using the f and g maps
25 state := update_state(state, f(c), g(c));

0 : Start

9 : Acked

1 : Re j

5 : Acc

Ack

IP0, IP1

Ack

IP0

IP1

∗

∗

Figure 2: A DFA representation of the translated DHCP FLM pattern the memop for its transition function, and preamble code
to compute the input character and variable updates. All integers are 4 bits, and the update function uses addition overflow to
model the transitions correctly.

any variable bindings. A simple implementation of its
transitions would take the form of:

transition (state, input):
if(state == s1 and input == i1):

return s2;
else if (state == s1 and input == i2):

return s3;
...

This will contain more branches than are allowed in a
single stage for most machines. However, the transition
must fit into a single stage in order to read and write
at line rate. The reason for this is that the transition de-
pends on the current state of the machine, which is only
available after reading a register. In PISA, registers can
only be accessed once per pipeline pass, so the transition
must occur at the same time as the read.

Solution overview. We solve these challenges by carefully
compiling an FLM program in a series of steps. In a pre-
processing step, we transform the FLM program to an inter-
mediate representation. This step inserts explicit "transition"
statements into each event handler that will be compiled away
later, and keeps the FLM pattern definition as a global def-
inition. In the first step, we break a pattern into a series of
variable updates and predicate computations that computes
an input character from a finite set determined by the event
type and predicate evaluations. This solves the first challenge
above, as we can move all of the variable storage and predi-
cate computation into earlier stages. In the second step, we
transform a pattern without bindings into a classical regular

expression over the input characters from the first step, and
synthesize an implementation of the corresponding DFA in a
single stage. Condensing the transition function into a single
stage solves problem 2, but is difficult as it requires searching
through all possible state numberings and bit-wise ALU op-
erations for one that satisfies all transitions. We offload this
hard work to an automated SMT solver.

Preprocessing on DHCP. We translate the DHCP FLM
program into an intermediate representation that allows for
more control of the inputs to an underlying state machine.
The core data structure is re<size>, which defines an array
of state machines with size indices that match an FLM pat-
tern. The pattern is copied from the high-level program. To
interact with it, the expression transition(name, idx, ev)
applies the event ev to the state machine at index idx, and
evaluates to a boolean indicating whether or not the sequence
of events applied to it so far matches the FLM pattern name.
For the DHCP example, in the handler of each event, we
compute the index using the expressions provided in the high-
level program (hashing the MAC address). Then, we add
transition(dhcp_misuse, idx, this), where this repre-
sents the event for the current handler. If that returns true, we
run the user-defined response code. The right side of Figure 1
shows the intermediate representation with explicit transition
statements in event handlers.

Step 1 for DHCP. The next two steps compile the remain-
ing FLM pattern and transition statements from the inter-

1596 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

mediate representation into simple assignments and register
operations. We will refer to the pseudocode in Figure 2, which
represents the implementation of one transition statement.
First, we separate out the variable bindings. For the DHCP ex-
ample, it is enough to store the parameter of the first DHCP_Ack
event in the variable assigned. Furthermore, we wish to com-
pute an input character c from a finite alphabet by evaluating
the predicates in the FLM pattern. This alphabet is composed
of all of the event types of the original, followed by bit strings
representing the values of the predicates. Because IP_Pkt
appears with a predicate, it is expanded to the letters IP_Pkt1
and IP_Pkt0. DHCP_Ack does not appear with one, so it stays
as is. These translations are shown in Lines 1–9 of Figure 2.

Step 2 for DHCP. In this step, we will translate the FLM
pattern into a classical regex over the alphabet described
above, and then implement its transition in a single stage.
To translate the pattern, events that appear with a predicate
become unions of any event with the same type where that
predicate is true; similarly, events without a predicate are
unions of any event of their respective type. Other constructs
such as concatenation and closure remain as they are. For
this example, the translated alphabet is the set {DHCP_Ack,
IP_Pkt0, IP_Pkt1} and the classical regex is:

(IP_Pkt0 + IP_Pkt1)∗
.DHCP_Ack
.IP_Pkt1∗
.(IP_Pkt0)

Next, we translate this classical regex into a DFA and syn-
thesize its implementation in a single pipeline stage. This is re-
quired as a naive implementation of the transitions would not
fit in the limited computation available in one stage. Instead,
we search through all of the state numberings and bit-wise op-
erations to find ALU operations that complete all transitions
correctly. On the right side of Figure 2, we show a picture of
the DFA representing the above regex. To implement it, we
take advantage of the fact that a single register read-modify-
write action can take up to two arguments computed in prior
stages. Given a DFA, we search for the following:

• A mapping from states to integers, as shown by numbers
preceding each state in Figure 2 (e.g. Start is numbered 0).

• Two mappings (f and g) from the alphabet to integers that
will be used as inputs to the read-modify-write instruction.
These are shown on lines 11 and 15 of Figure 2. Because
they can be computed in earlier stages, we can use lookup
tables to implement them, which are not available when
updating the DFA state.

• A read-modify-write instruction that implements the tran-
sition function of the DFA using operations available on
the switch and results from the f and g mappings. This is
shown on line 19 of Figure 2.

The code in Figure 2 is laid out on the switch to compute c, f,
and g. In Figure 1, the re definition is replaced with a register

definition, and each transition statement is replaced with
the code in Figure 2: it first reads and updates the variables
at the current index, then computes the input character and
its corresponding mapping values, and finally applies the
transition function to the state register with those values. It
outputs whether the result represents an accepting state in the
DFA (in this example, result was 5 for "Acc").

4 FLM Language Definitions

In this section, we describe the FLM language, provide its
regular-expression-like syntax, and define the language’s se-
mantics over packet traces. In section 6, we prove that our
compiler translations are correct: the low-level switch pro-
gram correctly implements the high-level pattern semantics.

4.1 FLM Language
The FLM language is a wrapper to provide access to the
expressive FLM patterns. An FLM program consists of:

1. A name and size, written spec<i> myname = ... where i
is the number of replicated state machines.

2. An IDX = {...} block which determines which index to
use for each event.

3. Optionally, a DATA {...} block that declares one or more
registers to be used for a stateful response to a sequence
match (for example, counting matches).

4. A DETECT{pat} => {response} block, where pat is an
FLM pattern and response is Lucid code indicating what
to do when the pattern is recognized.

Finally, to recognize properties such as liveness or timeouts,
such as detecting half-open TCP queries [21], we provide a
special event called maintenance. This event is guaranteed
to eventually visit every state machine in a spec, so it acts
as a final event to match a pattern that might never observe
any more packets arriving. More about maintenance events is
included in the Appendix.

4.2 Syntax and Semantics of Patterns
In each FLM program, there is a finite set A of event types,
such as DHCP_Ack and IP_Pkt. An event is a pair of an event
type a ∈ A and an integer z, written a⟨z⟩. While this only
includes events with a single parameter, it generalizes easily
to any number of parameters. The top of Figure 3 shows
the syntax of an FLM pattern. We allow predicates over the
parameters of events (a⟨p⟩) to denote events of type a whose
parameter satisfies p. We also allow binding parameters in
events (a⟨@y; p⟩) for use in predicates.

Patterns (and their contained predicates) are evaluated un-
der an environment. An environment E is a mapping from
variables to integers, with its domain denoted by Dom(E).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1597

FLM pattern R

p predicate

r ::= /0 empty set
| ε empty string
| a⟨p⟩ event
| a⟨@y; p⟩.r1 binding event
| r1.r2 concatenation
| (r1)

∗ closure
| r1 + r2 union
| r1 & r2 intersection

Denotational Semantics JrKE : Set of strings

J /0KE = /0

JεKE = {ε}
Ja⟨p⟩KE =

⋃
z∈Z
{a⟨z⟩|Jp(z)KE}

Ja⟨@y; p⟩.rKE =
⋃
z∈Z

({a⟨z⟩|Jp(z)KE}◦ JrKE,y←z)

Jr+ sKE = JrKE
⋃

JsKE
Jr&sKE = JrKE

⋂
JsKE

Jr.sKE = JrKE ◦ JsKE

Jr∗KE =
⋃

n∈N
JrnKE

Auxillary definitions

R◦S = {r.s | r ∈ R∧ s ∈ S}
r0 = ε

ri+1 = r.ri

Figure 3: Technical cheat sheet. Definitions for FLM patterns
and their derivatives.

The empty environment is denoted by ".". A predicate p is a
function from integer to boolean that may contain one or more
free variables, and is closed under an environment E if the
free variables of p are contained in Dom(E). The evaluation
of a predicate p applied to an integer z under an environment
E is denoted by Jp(z)KE , and exists if p is closed under E.

In this section (except for the DHCP pattern, for continuity),
we use lambda notation to define predicates. For example,
λx.(x ≥ 10) is a predicate that returns true if the given inte-
ger is at least 10. We use the standard semantics of lambda
functions. Finally, an FLM pattern r is closed under an envi-
ronment E if all of its free variables appear in E.

On the bottom of Figure 3, we show the semantics of an
FLM pattern. Each FLM pattern defines a set of strings of
events that belong to its language. A binding has a scope for
its variable. Predicates within the scope can use the variable.
For example, Ja⟨@y;λx.true⟩.(b⟨λx.(x == y)⟩)K. is the set
of any event of type a (the predicate is always true) followed
by one of type b with the same parameter (e.g. a⟨12⟩.b⟨12⟩).
Constructors of FLM patterns are defined similarly to those of
classical regular expressions; Jr+ sKE and Jr &sKE represent
union and intersection of the sets JrKE and JsKE , respectively,
and Jr∗KE represents zero or more copies of JrKE .

4.3 FLM Intermediate Representation
The FLM intermediate representation simplifies the higher-
level language features to leave just the patterns. It includes
two new features not present in Lucid:

1. re<i> myname = pat is a statement that defines an array
of i finite state machines named myname, which each
recognize the FLM pattern pat.

2. transition(myname, idx, ev) is an expression that ap-
plies a transition with the event ev to the state machine
at index idx of myname. It evaluates to true if the state
machine is in an accepting state (the pattern has been
recognized), and false otherwise.

An FLM program is transformed into the definition of a
state machine with the same pattern, size and name. Then, at
the beginning of each event handler, the compiler adds the
following code:

if (transition(myname, idx, this)) {
response;

}

myname is the name of the state machine, this is the event
to transitioned with (the current event for the handler), idx
is computed using the IDX block, and response is the user-
defined response.

5 From FLM patterns to Regular Expressions

We showed in section 3 how to build a DFA and some pream-
ble code for the DHCP example. Here, we describe more
generally how to translate an FLM pattern into a regular ex-
pression, which we translate to a DFA in section 7. Due to
hardware restrictions, we cannot complete all of the actions
necessary to store variables, evaluate predicates, and transi-
tion pattern state machines in one stage, so our plan is to
carefully separate those operations into a series of stages.
First, we lift variable bindings out of patterns, then remove
predicates to reduce the problem to implementing a finite
state machine over a finite alphabet where events are paired
with bits representing the predicates in a pattern.

5.1 Lifting out variable bindings
A binding FLM pattern has the form b⟨@y; p⟩.r. These may
occur deep within a pattern, posing a problem for implement-
ing the variable bindings in a pipeline stage before the pattern
state. In order to place bindings in an earlier stage, binding
occurrences must depend only on the incoming event and en-
vironment, not the state of the pattern. We move the bindings
to the top-level of a pattern while preserving its semantics by
introducing a new form of patterns:

b⟨@y⟩▷ r

1598 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Intuitively, this construct binds the first occurrence of an event
with type b’s value to the variable y, and then proceeds with
matching r. The key aspect of the ▷ syntax is that it separates
the binding out from the rest of the pattern. Our goal is to
move these bindings all the way to the top-level using rewrite
rules, to get a pattern that is written as a series of bindings,
followed by a pattern without any variable changes at all. We
show how this works on the DHCP example:

IP_Pkt∗
.DHCP_Ack(@int assigned = cip)
.(IP_Pkt(sip == assigned))∗
.IP_Pkt(sip != assigned)

The first rule converts an "@" binding into a "▷" one in place.
IP_Pkt∗
.DHCP_Ack(@int assigned = cip)▷

(DHCP_Ack
.IP_Pkt(sip == assigned)∗
.IP_Pkt(sip != assigned))

The second rule moves the binding up by one level.
DHCP_Ack(@int assigned = cip)▷

(IP_Pkt∗
.DHCP_Ack
.IP_Pkt(sip == assigned)∗
.IP_Pkt(sip != assigned))

This pattern has the same semantics as the original, but is
in prefix form: a binding followed by a binding-free pattern.

Definition 1. An FLM pattern s is binding-free if it contains
neither ▷ nor @.

In the last DHCP example above, the binding-free pattern
is the portion after the ▷.

Definition 2. An FLM pattern r is in prefix form if it is
written as B ▷ s, where B is a series of bindings (b1⟨@y1⟩ ▷
b2⟨@y2⟩ . . .), and s is binding-free.

The last version of the DHCP pattern above is in prefix
form. FLM patterns in prefix form cannot contain @ bindings,
as they are all converted to the ▷ syntax. The semantics of the
▷ operator is the union of two sets. The first covers cases when
the binding is required. In this case, the binding b⟨@y⟩ ▷ r
should bind the value of the first occurrence of event b to the
variable y. The second covers cases when the variable y is not
used to match the pattern. For example, the pattern:

b⟨@y⟩▷ (a⟨λx.true⟩+(b⟨λx.true⟩.a⟨λx.x == y⟩))

is meant to define either any string with a single event of type
a, or a sequence of an event of type b followed by a where
their parameters match. However, in the case of a single a
event, the binding is not needed. For this case, we quantify
over all possible values for y when defining it, which ensures
the value of y does not matter for matching.

Definition 3.

Jb⟨@y⟩▷ rKE = {w1.b⟨z⟩.w2 ∈ JrKE,y←z | b ̸∈ w1}
∪ {w | b ̸∈ w and ∀z.w ∈ JrKE,y←z}

In section 6, we show that if the rewrite rules can transform
a regular expression into a new one that is in prefix form, it
can always be implemented in a pipeline. A full list of rewrite
rules is contained in the Appendix. For all of these rules, we
show that if r is rewritten to r′, then for all environments E
under which r is closed, JrKE = Jr′KE .

Unimplementable patterns The rewrite rules are not com-
plete. Some patterns cannot be easily rewritten into prefix
form to be recognized in a pipeline. For example, the follow-
ing pattern fails to reach prefix form:

a⟨λx.true⟩.a⟨@y⟩.a⟨λx.x == y⟩

This is meant to define a sequence of three events of type a,
where the parameters of the second and third events match.
This is semantically well defined, but it cannot be imple-
mented easily because the variable updates happen before
accessing the pattern state. When an a event arrives, the deci-
sion to record y must be made without knowledge of previous
events. Our rewrite rules would reject this pattern. This could
arise in some compound monitors: for example, extending
the DHCP example to bind the unassigned sip and check that
it is subsequently used as part of another pattern, such as one
for a generic TCP handshake. This would fail because the
binding would not be with the first IP_Pkt. We included some
explicit rejected patterns in the Appendix.

5.2 Translating events
Now, we will focus on recognizing a binding-free pattern by
translating it into a DFA over a new alphabet.

Alphabet. The alphabet is formed by combining all of the
event types of the pattern with all possible combinations of
values of the predicates. As shown in subsection 3.2, the alpha-
bet for the DHCP example is {DHCP_Ack, IP_Pkt0, IP_Pkt1}.
IP_Pkt appears with a bit representing the value of the associ-
ated predicate, and DHCP_Ack remains as it is because it does
not appear with a predicate.

In general, the alphabet for the translation of an FLM pat-
tern r is defined as follows, where bin(n) is the binary repre-
sentation of a natural n, P(a) is the list of all of the predicates
in r for event type a, and A is all of the event types:

{a.bin(n) | a ∈ A∧n < 2len(P(a))}

Events. We need to take a single concrete event a⟨z⟩ and
output a character in the new alphabet. To do this, we de-
fine the letter translation Tl , which keeps the event type and
appends each predicate’s evaluation under the given envi-
ronment. In our example, consider an IP_Pkt event where
sip = 10.0.0.1. If the environment contains the mapping
from assigned to 10.0.0.1, then the translated letter is
IP_Pkt1. Otherwise, it is IP_Pkt0.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1599

Definition 4. The event translation

Tl(a⟨z⟩,E,P) = aJp1(z)KE ...Jpn(z)KE

5.3 Eliminating predicates from patterns

Now, we translate a binding-free pattern into a classic
regular expression over a finite alphabet by eliminating
all remaining predicates. The translation, called Tre, maps
events with predicates to unions of characters with the
same event and the corresponding predicate being true.
The formal definition is in the Appendix. For exam-
ple, IP_Pkt(sip == assigned) is translated to the pattern
IP_Pkt1. Because IP_Pkt alone specifies no predicates, it is
translated to the pattern (IP_Pkt0 + IP_Pkt1). Union, inter-
section, concatenation, and closure all just apply the trans-
lation recursively. The full translation of the DHCP pattern
is:

(IP_Pkt0 + IP_Pkt1)∗
.DHCP_Ack
.IP_Pkt1∗
.IP_Pkt0

6 Translation Correctness

In this section, we present the theorem of correctness for our
translations. Intuitively, this means that a translated string of
events is accepted by a translated regular expression exactly
when the original string of events is in the language of the
original pattern, assuming that the variable updates are per-
formed correctly. We first introduce the concept of derivatives,
which formalize what should happen when a single event is
processed. Then, we state our main theorem, which relates a
series of derivatives to processing using our translations.

6.1 FLM Pattern Derivatives

Derivatives of FLM patterns formalize what happens when
one event arrives. We will define one for binding-free FLM
patterns and one for lists of bindings. A derivative of a pattern,
Dre, is taken with an event and an environment. It outputs
a new pattern, which represents the remaining pattern to be
matched. We illustrate this by example with the DHCP pattern
matching a string of events on the left of Figure 4. The last
pattern is ε, which means that the original DHCP pattern
accepts the string of events. The full derivative rules used are
shown on the right of Figure 4. This also shows the binding
derivative, which takes a series of bindings, an event, and
an environment, and outputs a new binding and environment
with the correct variable updates.

Formally, we show that the outputted pattern of a derivative
contains all the strings that would form word in the language
of the input pattern when concatenated to the input event:

Theorem 1. For all a,z,s,E where s is binding-free and
closed under E:

JDre(a⟨z⟩;s;E)KE = {w | a⟨z⟩.w ∈ JsKE}

6.2 Correctness Theorem
Our translations are correct if, after we translate an FLM
pattern into a DFA with Tre, and feed it a string of events
translated with Tl , the DFA accepts only when the original
string of events is in the language of the original pattern.

We show that the relation between a pattern s and its trans-
lated DFA via Tre is preserved when transitioning the DFA
using characters translated with Tl . In particular, taking the
FLM pattern derivative of s with an event and then translating
it to a DFA is the same as transitioning Tre(s) with a trans-
lated event. At the end of a string of events, we test whether
the translated DFA is accepting, which is equivalent to string
being in the language of the original pattern.

To state this formally, we define the translation of a word
(a string of events), which repeatedly applies Tl and Dbind to
transform the word into a string of finite-alphabet characters,
given a list of bindings, an inital environment, and a list of
predicates. The translated example word from Figure 4 would
be DHCP_Ack.IP_Pkt1.IP_Pkt0.

Definition 5. The word translation

Tw(a1⟨z1⟩ . . .an⟨zn⟩,B,E,P) =

Tl(a1⟨z1⟩,E,P).Tw(a2⟨z2⟩ . . .an⟨zn⟩,B′,E ′,P)

Where B′,E ′ = Dbind(a⟨z⟩;B;E)

The word translation of ε is ε. The rewrite rules described
in subsection 5.1 preserve the semantics of patterns. They also
preserve a property we call implementability, which means
that the derivative of a pattern with events that are not bind-
ing is semantically equivalent no matter the assignments to
unbound variables. This property holds if input patterns bind
variables using the first occurrence of an event type, and al-
ways use variables after they are bound. We show an unim-
plementable pattern in section 5. For the technical definition,
see the Appendix. Finally, we have our correctness theorem,
which states we can check whether a translated word is in the
language of a translated regular expression to determine if a
word matches a pattern. Asgn0(B) simply assigns 0 to each
variable of B, so that there are never undefined variables. The
proof is by induction on the length of a word and is contained
in the Appendix.

Theorem 2. For any word w, binding list B, pattern s, envi-
ronment E, and predicates P, if B▷ s is in prefix form, closed
under E, and implementable, then:

Tw(w,B,(E,Asgn0(B)),P) ∈ L(Tre(s,P)) ⇐⇒ w ∈ JB▷ sKE

1600 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

IP_Pkt*
.DHCP_Ack
.IP_Pkt(sip == assigned)*
.IP_Pkt(sip != assigned)

IP_Pkt(sip == assigned)*
.IP_Pkt(sip != assigned)

IP_Pkt(sip == assigned)*
.IP_Pkt(sip != assigned)

ε

assigned=empty

assigned=10.0.0.1

assigned=10.0.0.1

assigned=10.0.0.1

DHCP_Ack(cip=10.0.0.1)

IP_Pkt(sip=10.0.0.1)

IP_Pkt(sip=255.255.0.0)

FLM pattern Derivative Dre : Event→ R→ E→ (R,E)

Dre(a⟨z⟩; /0;E) = /0

Dre(a⟨z⟩;ε;E) = /0

Dre(a⟨z⟩;b⟨p⟩;E) =

{
ε if a == b and Jp(z)KE

/0 otherwise
Dre(a⟨z⟩;r.s;E) = Dre(a⟨z⟩;r;E).s+ v(r).Dre(a⟨z⟩;s;E)
Dre(a⟨z⟩;r+ s;E) = Dre(a⟨z⟩;r;E)+Dre(a⟨z⟩;s;E)
Dre(a⟨z⟩;r &s;E) = Dre(a⟨z⟩;r;E)&Dre(a⟨z⟩;s;E)
Dre(a⟨z⟩;r∗;E) = Dre(a⟨z⟩;r;E).r∗

Nullability v : R→ R

v(ε) = ε

v(/0) = /0

v(a⟨p⟩ = /0

v(r.s) = v(r).v(s)
v(r+ s) = v(r)+ v(s)
v(r&s) = v(r)&v(s)
v(r∗) = ε

Binding update Dbind : Event→ B→ E→ (B,E) Let

B′,E ′ = Dbind(a⟨z⟩,B,E) in the following definitions:

Dbind(a⟨z⟩,ε,E) = ε,E no bindings
Dbind(a⟨z⟩,b⟨@y⟩▷B,E) = b⟨@y⟩▷B′,E ′ i f a ̸= b
Dbind(a⟨z⟩,a⟨@y⟩▷B,E) = B′,(E ′,y← z) i f a = b

Figure 4: The progress of matching a string with the DHCP example. The left column contains the binding-free patterns, and
the right tracks the environment. The arrows indicate the pattern derivative with the incoming event and current environment.
Acceptance is indicated by the empty string, ε.

1 memop template (st, f, g):
2 b1 = [st,0] + [f,g,0] [==, !=, <, >] c1;
3 b2 = [st,0] + [f,g,0] [==, !=, <, >] c2;
4 if (b1 [||, &&] b2):
5 return [st,c3] [|,&,+,⊕] [f,g,c4] ;
6 else:
7 return [st,c5] [|,&,+,⊕] [f,g,c6] ;

Figure 5: A syntax template for a single register action to
be synthesized. Blue-bubbled brackets represent choices be-
tween the expressions in the brackets. Red-bubbled brackets
represent choices between the operators in the brackets. Each
ci represents a constant chosen by the synthesizer.

7 DFA Synthesis

The previous section reduced the problem of matching FLM
patterns to matching specially constructed regular expressions,
but it is still not clear how to do this at line rate. In this section,
we show how to synthesize code to perform the classical regex
derivative (a DFA transition) in order to use theorem 2. We use
SMT-based synthesis to fit a transition function into at most
four register actions, the maximum allowed on the Tofino.

7.1 Synthesis goal

To implement a DFA’s transition function within the allowed
register actions, the synthesizer will attempt to cleverly assign
numbers to the DFA states and alphabet while generating
a short function composed of a fixed number of simple in-
structions like bitwise operations, arithmetic operations, and
conditional branches. The function will calculate the next
state given the current state and input event without the need
to enumerate DFA transitions.

We take as input a DFA and a bitvector length l. A DFA
is a five-tuple (Q,Σ,δ,q0,F), where: Q = {q0,q1, · · ·} is a
finite set of states with initial state q0, Σ = {σ0,σ1 · · ·} is a
finite set of alphabet symbols, δ : Q×Σ→ Q is the transi-
tion function, and F ⊆ Q is the set of accepting states. For
the DHCP example from subsection 3.1, the DFA has Q =
{Start,Acked,Acc,Re j}, Σ = {Ack, IP0, IP1}, F = {Acc},
and δ as shown in Figure 2.

We output a function to implement the state machine’s
transition on the Tofino or any other hardware whose memory
update is at least as expressive. Specifically, we output:

• A mapping R from Q to {0, . . . ,2l−1} that uniquely num-
bers the states, and by convention we fix R(q0) = 0.

• Two mappings f and g from Σ to {0, . . . ,2l−1}. These are
passed as arguments to the register actions.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1601

• A mapping whichop from Σ to {0,1,2,3} that indicates
which register action each character will use.

• Up to four register actions that take the values of the maps
R, f , and g on the current state q and input character σ,
and output R(δ(q,σ)) for all the letters in Σ that use them.
Furthermore, the functions must follow the syntax from
Figure 5 in order to fit into a single register action.

An example of correct outputs for the DHCP example is also
shown in Figure 2 (all characters use the same function).

7.2 Synthesis implementation
To come up with these outputs, we use an SMT solver to do
syntax-guided synthesis [1]. We make one bitvector variable
for each state (the values of R), two bitvectors for each letter
(f and g), and booleans to determine whichop. To make the
templates, we make boolean indicator variables for which
operations, comparisons, and boolean comparisons are used.
Then, we encode the templates as constraints over the state
variables. If a satisfying assignment is found, we read it to get
the output. An interesting problem is to find the best template
for synthesis. This is discussed more in subsection 9.3.

8 Implementation

We implement the FLM compiler atop the Lucid frame-
work [19,25] using approximately 1500 lines of OCaml avail-
able on GitHub1. We implemented DFA synthesis code in
the compiler in OCaml using the z3 SMT solver [30]. It first
transforms each FLM pattern into prefix form and translates
it to a classical regular expression. Then, it converts the pat-
tern into a DFA and runs syntax-guided synthesis to generate
the corresponding mappings and memops, expressed as an
intermediate representation Lucid program. This program is
subsequently compiled using the existing Lucid framework’s
backend and vendor-provided P4 compiler (bf-p4c) to gen-
erate the final data plane program binary. We use ocamlc
4.14.0, z3 4.11.2, and bf-p4c 9.13.0.

9 Evaluation

We evaluate FLM by using it to implement a diverse set of
sequence monitoring tasks of interest to network operators.
We identified 15 such tasks from prior work, and implemented
them alongside a Lucid program that used the same events.
All of the monitored patterns are listed in the Appendix.

Figure 6a shows these programs and summarizes our re-
sults, including the lines of code needed to express the exam-
ples, the synthesized DFA complexity and synthesis time, and
the stages used. We are able to express each of the 15 tasks in
the FLM language, pointing to its flexibility. The table shows

1https://github.com/PrincetonUniversity/lucid/tree/SpecRegex

lines of code as a proxy for ease of use. We see that FLM
programs are short and all tasks are expressed in a few 10s
of lines. In contrast, when translated to Lucid these programs
are 5-10x bigger, which is a proxy for implementation effort
of expressing these tasks directly in P4.

Our compiler is able to compile each of the programs to
the Intel Tofino, which demonstrate the line-rate monitoring
capabilities of FLM.

9.1 Compilation time
Figure 6b shows the compilation time for each program on an
AWS EC2 t3.medium server with 4GB memory and 2 vCPU
(unlimited burst). We break the total compilation time into
the frontend (Lucid compiling) and backend (P4 compiling).
Note that the Lucid time includes the synthesis time from
Figure 6a. We see that most programs need little time (sec-
onds) to complete our compilation steps. Although the DFA
synthesis step depends on the complexity of the pattern and
is theoretically NP-Hard, all tasks finish in a few minutes.

Programs decorated with FLM have slower compilation
time for both the Lucid compiler backend and the vendor P4
compiler. This is caused by the additional statements added to
the IR and the resulting overhead for optimizing the pipeline
layout, and mostly depends on the complexity of the original
program. The complexity of the pattern (aside from additional
variables) does not affect the backend’s and vendor compiler’s
compiling time. All implementations take roughly the same
time to compile once synthesized.

9.2 Hardware Resource Utilization
Figure 6c shows the hardware resource usage of the Tofino
binaries for each program. The three most relevant metrics
for FLM are the number of pipeline stages used (Figure 6a),
the percentage of metadata fields (PHV) allocated, and the
percentage of instruction words (VLIW) allocated.

Depending on the complexity of pre-processing involved in
translating events (packets) to letters in the pattern, FLM com-
piles programs into 6-10 stages, all comfortably fitting within
the Intel Tofino v1 (12 stages). The DFA itself always uses a
single stage, regardless of the complexity of the pattern. The
additional stages take care of the Lucid event handling and
control flow, as well as predicate computation. Because there
are data dependencies between stages arising from control
flow, these stages are not always "full;" additional unrelated
programs can fit alongside them without using more stages,
as the preprocessing steps are parallelized with existing logic.

Meanwhile, FLM programs use reasonable resources:
adding FLM to an existing Lucid program only consumes
1-15% additional PHV and VLIW, much of which is for setup
(parsing and pre-processing). Interestingly, the resourge usage
for some tasks goes down with added FLM monitoring due
to the additional stage usage.

1602 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Lines of code DFA FLM StagesLucid IR P4 (Q,Σ) Time(s)
A: Cuckoo Firewall [25] 171 388 1795 - - 10

A1: Cuckoo Insertion +14 +268 +616 (9,5) 7.6 +0
B: Stateful Firewall [25] 34 91 578 - - 6

B1: Firewall Correctness +10 +100 +308 (4,4) .8 +4
C: SipHash [29] 185 260 2072 - - 8

C1: SipHash Rounds +30 +125 +981 (17,3) 19.9 +0
D: Chain Replication [31] 126 223 1319 - - 10

D1: Sequence Numbers +10 +75 +299 (4,2) .5 +0
D2: Double Write +11 +85 +336 (5,2) 1.3 +0

E: Simple RIP [25] 121 219 1158 - - 8
E1: DHCP Anomaly [3] +24 +160 +1184 (4,3) .6 +0
E2: Fingerprint [24] +41 +224 +2264 (10,8) 14.2 +2
E3: Port Knocking [10] +19 +168 +1548 (6,16) 114.4 -1
E4: DNS TTL [21] +15 +118 +830 (4,2) .4 +2
E4: DNS Tunneling [21] +18 +191 +1382 (13,5) 10.7 +1
E6: SwiSh Local [32] +13 +147 +1123 (7,3) 1.0 +0
E7: NetChain [15] +13 +89 +521 (4,2) .4 +0
E8: Paxos Recovery [28] +25 +279 +1048 (5,32) 15.7 +0
E9: ATP Sequence [18] +23 +147 +668 (6,8) 6.0 +0
E10: ATP JobID [18] +35 +140 +662 (19,3) 11.4 +0

(a) The results from compilation of our 15 example monitors. The gray
rows show the base programs. The following white rows show one
or more monitors that we added to the base programs. For the base
programs, we show the lines of code of the source program (Lucid),
the intermediate representation before compiling to P4 (IR), and the
resulting P4 program (P4), as well as the number of stages used. For
the monitoring tasks, we show the additional lines of code and stages
added by FLM as well as the size of the DFA in terms of states (Q) and
the alphabet (Σ) as well as the time required to compile FLM to Lucid.

A A1 B B1 C C1 D D1 D2 E E1 E2 E3 E4 E5 E6 E7 E8 E9 E1
0

0

200

400

600

800

Ti
m

e
(s

ec
)

 1
04 1

91

 1
8 2
7 1

01 2
03

 5
1 6
5

 7
1

 3
2 9

5 1
42

 4
67

 6
6 1

06
 7

3
 5

4
 7

79
 6

8
 7

4

Compiling Time Comparison
Base program
Added FLM
Lucid compiling
P4 compiling

(b) The compilation time of each example, with the base programs
in blue and the monitors in orange.

A A1 B B1 C C1 D D1 D2 E E1 E2 E3 E4 E5 E6 E7 E8 E9 E1
0

0
5

10
15
20
25
30
35
40

Ut
iliz

at
io

n
%

Hardware Resource Utilization
Base program
Added FLM

PHV Util.
VLIW Util.

(c) The PHV and VLIW utilization of each compiled program, with
the base programs in vlue and the monitors in orange.

9.3 DFA Synthesis

We measured the size of each DFA in our examples, noted in
the "DFA" column of Figure 6a as a pair (|Q|, |Σ|) to show
the number of states and the size of the alphabet. These varied
from small automata with only a few states and symbols to
ones with dozens of states and alphabet characters. The step
of synthesizing an implementation, included in the "FLM
Time", was relatively quick for all of them. In prior work [6],
we further evaluated the difficulty of state machine synthesis.

We found that it was possible to generate implementations
for state machines representing simple networking tasks such
as tracking a TCP handshake. We also tested combinations
of state machines via union (tracking multiple at once) or
concatenation (tracking one after another) via video finger-
printing examples. While union was usually easier than con-
catenation, there were many examples of the same size DFA
(as measured by states and alphabet) where some worked and
some did not. There are other qualities of DFA complexity
that show up only in some fingerprinting patterns. For exam-
ple, states with many incoming or outgoing edges place many
constraints on the same variables and make a solution more
difficult to find.

Finally, we tried five different synthesis templates of vary-
ing complexity, ranging from simple assignment to using
Tofino-specific tricks such as representing states with two in-
tegers in a paired array and updating both simultaneously. We

also varied the choices of bitwise operators available in each
template. We found that the template shown in Figure 5 was
the best balance between expressiveness (ability to represent
a wide variety of DFAs) and synthesis time.

10 Related Work

The syntax for FLM programs is inspired by Aragog [28],
a system that focused on recognizing issues in distributed
systems by specifying regex-like patterns. The patterns were
checked by a global verifier that had specific events forwarded
to it by all the systems. Aragog operates entirely in the con-
trol plane, whereas our work focuses on recognizing packet
sequences appearing on a single data plane switch at line rate.

Many works use data plane switches to recognize reg-
ular expressions appearing in packets for the purposes of
content inspection. Some early work appeared before P4
was released [20, 22]. More recent work has built on fur-
ther hardware advances, and includes frameworks specialized
for matching strings in a packet [14, 27]. DBVal [17] fo-
cuses on verifying the data plane execution of a single packet.
DeepMatch [12] focuses on searching for regular expressions
within the payload of packets, and developed some techniques
to hold state between payloads for a single flow. Our work
differs in that it focuses on patterns of sequences of packets,
where all the computation happens in a single stage used once

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1603

per packet, rather than a series of stages that can search for
patterns within packet content. We also allow more expressive
patterns with the binding of event values and predicates.

Our patterns draw inspiration from previous work on para-
metric verification [3], as well as studies of various forms of
automata for wide-ranging applications. Timed automata [2]
can record the timing of events and place time constraints on
transitions. Symbolic automata [8, 9] permit a very wide va-
riety of predicates on transitions without memory other than
their state, while register automata [16] can record charac-
ters in registers, and check only equality. Recently, symbolic
register automata [7] were proposed, which combines the two.

Our preliminary paper [6] presented an algorithm for syn-
thesizing DFA transitions using SMT solvers. FLM extends
that core with a new pattern-based language and compiler
that separates bindings and predicates from classical regular
expressions which are turned into DFAs.

11 Discussion

Limitations. One limitation for recognizing FLM patterns,
and the reason for the rewrite rules, is the difficulty of cor-
rectly updating variables under the constraints on PISA
switches. Other hardware or computation models might pro-
vide an easier path to computing the environment derivative
(on a general purpose CPU with unlimited memory, it could
just be computed directly), which would increase the num-
ber of FLM patterns that are recognizable. Still, we show in
our evaluations that the subset of implementable patterns is
expressive enough for many applications. An interesting re-
search question for the future is to characterize which FLM
patterns can be implemented under which computation mod-
els, and how best to do so while minimizing resource use.

Another limitation comes from the amount of computa-
tion available in a single stage, which dictates the size of im-
plementable DFAs. Very long or complicated patterns could
translate to DFAs that are too large to fit into one read-modify-
write action. For more details, see the paragraph on synthesis
hardness above. Our work is only platform-specific in that the
template defined in Figure 5 is tailored to compilation on the
Intel Tofino. Other hardware that has different computation
available in a single stage would likely permit a more or less
expressive template. A solution to this that applies for some
DFAs is to carefully use more than one stage to implement it.
For preliminary details about this approach, see the Appendix.
As hardware improves, we hope to see both more computa-
tion available within a stage and more stages, alleviating this
restriction from two angles.

Scalability and flexibility. In our examples, we used a
variety of indexing functions to represent individual state
machines, including per-flow, per-port, and per-MAC. How-
ever, in some networks, there is not enough memory available

on current hardware to store this many values, risking index
collisions. Other works [21] have dealt with this problem
using complex data structures, sampling, or grouping flows
to be considered together. While FLM does not employ any
of these by default, it is flexible enough that a programmer
could implement any of these techniques to compute an index
before applying transitions to the FLM state machine array.
Furthermore, if the high-level language is too restricting, a
programmer can write code directly in the FLM intermediate
representation, allowing them to intersperse arbitrary code for
how the index is computed, which event is used to transition
the state machine, and where in the control flow to transition.

Monitoring scope. We built our FLM compiler to target
the Intel Tofino, but the core ideas are not reliant on any
particular piece of hardware. The main requirement for an
FLM program is a single pipeline with atomic updates and
persistent memory that is updated per-packet. This applies to
any switch implementing the PISA architecture.

We did not solve the problem of recognizing patterns in a
distributed system of switches, instead focusing on how to
properly compile to a single pipeline. A switch with multiple
pipelines would implement multiple FLM monitors indepen-
dently. For most monitoring tasks, properly configuring how
ports map to pipelines (essentially slicing the index space
across monitors) should preserve the monitor’s reliability by
sending packets intended for the same state machine through
the same pipeline. We consider distributed monitoring an
interesting task for future research.

12 Conclusion

We introduce FLM, a programming language that uses new
abstractions to recognize and react to user-defined packet
and event sequences at a switch. We develop a compilation
procedure that transforms FLM programs into a series of
match-action tables and register update functions, using a
combination of rewrite rules and SMT-based program synthe-
sis. Our evaluation using 15 sequence monitoring finds that
FLM is flexible and supports line-rate processing on current
networking hardware. This work raises no ethical concerns.

Acknowledgments

We would like to thank our shepherd, Macro Chiesa, and all
of the anonymous reviewers for their insightful comments.
This material is based upon work supported by the National
Science Foundation Grants CNS-2007073, FMiTF-2219862,
and FMiTF-2219863. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
author and do not necessarily reflect the views of the National
Science Foundation.

1604 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo
M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia,
Rishabh Singh, Armando Solar-Lezama, Emina Torlak,
and Abhishek Udupa. Syntax-guided synthesis. In 2013
Formal Methods in Computer-Aided Design, pages 1–8,
2013.

[2] Rajeev Alur and David L. Dill. A theory of timed au-
tomata. Theoretical Computer Science, 126(2):183–235,
1994.

[3] Étienne André, Michał Knapik, Didier Lime, Wojciech
Penczek, and Laure Petrucci. Parametric Verification:
An Introduction, pages 64–100. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2019.

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard,
Nick McKeown, Jennifer Rexford, Cole Schlesinger,
Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: Programming protocol-independent
packet processors. SIGCOMM Comput. Commun. Rev.,
44(3):87–95, jul 2014.

[5] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
SDN. In ACM SIGCOMM 2013, pages 99–110, 2013.

[6] Xiaoqi Chen, Andrew Johnson, Mengying Pan, and
David Walker. Synthesizing state machines for data
planes. In Proceedings of the Symposium on SDN Re-
search, SOSR ’22, page 81–88, New York, NY, USA,
2022. Association for Computing Machinery.

[7] Loris D’Antoni, Tiago Ferreira, Matteo Sammartino,
and Alexandra Silva. Symbolic register automata. In
Isil Dillig and Serdar Tasiran, editors, Computer Aided
Verification, pages 3–21, Cham, 2019. Springer Interna-
tional Publishing.

[8] Loris D’Antoni, Zachary Kincaid, and Fang Wang. A
symbolic decision procedure for symbolic alternating
finite automata. Electronic Notes in Theoretical Com-
puter Science, 336, 10 2016.

[9] Loris D’Antoni and Margus Veanes. The power of sym-
bolic automata and transducers. In Rupak Majumdar
and Viktor Kunčak, editors, Computer Aided Verifica-
tion, pages 47–67, Cham, 2017. Springer International
Publishing.

[10] Rennie Degraaf, John Aycock, and Michael Jacobson.
Improved port knocking with strong authentication. In
21st Annual Computer Security Applications Conference
(ACSAC’05), pages 10–pp. IEEE, 2005.

[11] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Walter Willinger. Sonata:
Query-driven streaming network telemetry. In Proceed-
ings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’18, page
357–371, New York, NY, USA, 2018. Association for
Computing Machinery.

[12] Joel Hypolite, John Sonchack, Shlomo Hershkop,
Nathan Dautenhahn, André DeHon, and Jonathan M.
Smith. Deepmatch: Practical deep packet inspection in
the data plane using network processors. In Proceedings
of the 16th International Conference on Emerging Net-
working EXperiments and Technologies, CoNEXT ’20,
page 336–350, New York, NY, USA, 2020. Association
for Computing Machinery.

[13] Intel. Intel tofino series programmable
ethernet switch asic. https://www.
intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/
tofino-series/tofino.html, 2022.

[14] Theo Jepsen, Daniel Alvarez, Nate Foster, Changhoon
Kim, Jeongkeun Lee, Masoud Moshref, and Robert
Soulé. Fast string searching on PISA. In Proceedings
of the 2019 ACM Symposium on SDN Research (SOSR
19), pages 21–28, 2019.

[15] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. Netchain: Scale-free sub-rtt coordination. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 35–49, 2018.

[16] Michael Kaminski and Nissim Francez. Finite-memory
automata. Theoretical Computer Science, 134(2):329–
363, 1994.

[17] K Shiv Kumar, Ranjitha K, P S Prashanth, Mina Tah-
masbi Arashloo, Venkanna U., and Praveen Tammana.
Dbval: Validating p4 data plane runtime behavior. In
Proceedings of the ACM SIGCOMM Symposium on
SDN Research (SOSR), SOSR ’21, page 122–134, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[18] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi
Chen, Wenfei Wu, Aditya Akella, and Michael Swift.
Atp: In-network aggregation for multi-tenant learning.
In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), pages 741–761,
2021.

[19] Devon Loehr and David Walker. Safe, modular packet
pipeline programming. Proc. ACM Program. Lang.,
6(POPL), jan 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1605

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html

[20] Chad R. Meiners, Jignesh Patel, Eric Norige, Eric Torng,
and Alex X. Liu. Fast regular expression matching
using small tcams for network intrusion detection and
prevention systems. In Proceedings of the 19th USENIX
Conference on Security, USENIX Security’10, page 8,
USA, 2010. USENIX Association.

[21] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,
Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-
malkumar Jeyakumar, and Changhoon Kim. Language-
directed hardware design for network performance mon-
itoring. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, SIG-
COMM ’17, page 85–98, New York, NY, USA, 2017.
Association for Computing Machinery.

[22] Derek Chi-Wai Pao and Xing Wang. Multi-stride string
searching for high-speed content inspection. Comput.
J., 55:1216–1231, 2012.

[23] Julien Piet, Dubem Nwoji, and Vern Paxson. Ggfast:
Automating generation of flexible network traffic clas-
sifiers. In Proceedings of the ACM SIGCOMM 2023
Conference, ACM SIGCOMM ’23, page 850–866, New
York, NY, USA, 2023. Association for Computing Ma-
chinery.

[24] Roei Schuster, Vitaly Shmatikov, and Eran Tromer.
Beauty and the burst: Remote identification of encrypted
video streams. In USENIX Security Symposium, pages
1357–1374, 2017.

[25] John Sonchack, Devon Loehr, Jennifer Rexford, and
David Walker. Lucid: A language for control in the data
plane. In ACM SIGCOMM 2021, pages 731–747, 2021.

[26] The P4 Language Consortium. P416 language specifica-
tion. https://p4.org/p4-spec/docs/P4-16-v1.1.
0-spec.html, November 2018.

[27] Shicheng Wang, Menghao Zhang, Guanyu Li, Chang
Liu, Zhiliang Wang, Ying Liu, and Mingwei Xu. Bolt:
Scalable and cost-efficient multistring pattern matching
with programmable switches. IEEE/ACM Transactions
on Networking, pages 1–16, 2022.

[28] Nofel Yaseen, Behnaz Arzani, Ryan Beckett, Selim
Ciraci, and Vincent Liu. Aragog: Scalable runtime veri-
fication of shardable networked systems. In Operating
systems and implementations (OSDI), October 2020.

[29] Sophia Yoo and Xiaoqi Chen. Secure keyed hashing on
programmable switches. In Proceedings of the ACM
SIGCOMM 2021 Workshop on Secure Programmable
network INfrastructure, pages 16–22, 2021.

[30] z3. z3 solver, publisher = GitHub, howpublished =
https://github.com/z3prover/z3/, urldate=2022-
06-28, year=2022.

[31] Lior Zeno, Dan R. K. Ports, Jacob Nelson, and Mark
Silberstein. Swishmem: Distributed shared state abstrac-
tions for programmable switches. In Proceedings of
the 19th ACM Workshop on Hot Topics in Networks,
HotNets ’20, page 160–167, New York, NY, USA, 2020.
Association for Computing Machinery.

[32] Lior Zeno, Dan RK Ports, Jacob Nelson, Daehyeok
Kim, Shir Landau-Feibish, Idit Keidar, Arik Rinberg,
Alon Rashelbach, Igor De-Paula, and Mark Silberstein.
{SwiSh}: Distributed shared state abstractions for pro-
grammable switches. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), pages 171–191, 2022.

1606 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://github.com/z3prover/z3/

13 Appendix

13.1 Translating patterns

The full definition of translating patterns uses BigOr, which translates an individual event and predicate.

Definition 6. BigOr(b⟨p⟩,P) =∨
({b}◦{bin(i) | i < 2len(P) and the bit representing p is 1})

BigOr(b⟨p1⟩, [p1, p2]) = (b10+b11), as above. Similarly, BigOr(b⟨p2⟩, [p1, p2]) = (b01+b11). The other pattern translations
are defined recursively. All of the constructors (+,&,∗, .) stay the same, as they have similar semantics for classical regular
expressions and patterns, and we translate all of the event patterns with BigOr.

Definition 7. The FLM pattern translation Tre(r,P):

Tre(ε,P) = ε

Tre(/0,P) = /0

Tre(a⟨pi⟩,P) = BigOr(a⟨pi⟩,P)
Tre(s1.s2) = Tre(s1,P).Tre(s2,P)

Tre(s1 + s2) = Tre(s1,P)+Tre(s2,P)
Tre(s1 &s2) = Tre(s1,P)&Tre(s2,P)

Tre(s∗) = (Tre(s,P))∗

13.2 Implementability

The following is a list of the rewrite rules we use:

• b⟨@y; p⟩.r rw−→ b⟨@y⟩▷b⟨p⟩.r. This rule always applies, and is how we introduce the ▷ operator. It splits a binding into two
parts, and removes it from the expression.

• r.(b⟨@y⟩▷ s) rw−→ b⟨@y⟩▷ (r.s). This rule only applies if b and y do not appear in r. This ensures that no word in r contains an
event b, mirroring the semantics of ▷.

• (b⟨@y1⟩▷ s1)+(b⟨@y2⟩▷ s2)
rw−→ b⟨@y1⟩▷ (s1 +[y1/y2]s2). Here [y1/y2]s2 denotes the capture-avoiding substitution of y1 for

y2 in s2. This rule only applies when s2 contains no references to y1. An equivalent rule applies for &.

• (a⟨@y1⟩▷s1)+(b⟨@y2⟩▷s2)
rw−→ a⟨@y1⟩▷b⟨@y2⟩▷(s1+s2). This rule applies if s1 contains no occurrences of y2, s2 contains

no occurrences of y1, and a ̸= b. An equivalent rule applies for &.

• (b⟨@y⟩▷ s1)+ s2
rw−→ b⟨@y⟩▷ (s1 + s2). This rule applies if s2 contains no occurrences of y. An equivalent rule applies for &.

These contain side conditions that ensure rewritten expressions have the same semantics after rewriting. For example, we check
that variables are not contained in out-of-scope expressions before hoisting bindings to an outer scope. However, they also
preserve a key property of FLM patterns that can be written without the new binding form that uses ▷. We call this property
implementability. First, we define a shorthand for an environment defined over the variables in a list of bindings.

Definition 8. An environment G is compatible with a binding list B if Dom(G) = Range(B). That is, G contains one assignment
for each variable in B. We will use the metavariable G for compatible environments to differentiate from general environments
denoted by E.

For example, the environment (y1← 1,y2← 15) is compatible with b1⟨@y1⟩▷b2⟨@y2⟩. We will write Asgn0(B) to mean the
environment that assigns every variable in B to 0. Next, we define implementability, which intuitively means that the pattern
derivatives are not affected by assignments to variables in a binding list for event types that do not appear in the bindings.

Definition 9. An FLM pattern in prefix form B▷ s is implementable if and only if for any event type a ̸∈ B, any integer z, any
environment E where B▷ s is closed under E, and any two environments G1 and G2 which are compatible with B:

JDre(a⟨z⟩;s;E,G1)KE,G2 = JDre(a⟨z⟩;s;E,G2)KE,G2

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1607

All of the patterns we introduce in the main paper are implementable. An example pattern which does not have this property is:

b⟨@y⟩▷a⟨λx.(x == y)⟩.b⟨λx.true⟩

This pattern is semantically well-defined: it is the set of events of type a followed by b with equal parameters. However, the value
of y is not known when the event a appears, and so it cannot be implemented at line-rate (in general, this type of pattern would
require some look-back capability). This fails the implementability property because the assignment to y will change the result of
Dre for events of type a. We show that our rewrite rules preserve this property: if r rw−→ r′ and r is implementable, then so is r′.

Now, we define a theorem that captures the semantic meaning of both the binding and pattern derivatives. Intuitively, it is
similar to theorem 1, but uses an environment produced by Dbind instead of a constant one.

Theorem 3. ∀B,s,a,z,E : if B▷ s is in prefix form, closed under E, and implementable, then:

JDre(a⟨z⟩;s;E ′,Asgn0(B′))KE ′,Asgn0(B′) = {w|a⟨z⟩.w ∈ JB▷ sKE}

Where B′,E ′ = Dbind(a⟨z⟩;B;E)

As an example, consider the one from section 5, where p1 = λx.x≥ 10 and p2 = λx.x == y:

b⟨@y⟩▷ (b⟨p1⟩.b⟨p2⟩)

Starting with an empty environment and an event b⟨12⟩, Dbind(b⟨12⟩;b⟨@y⟩; .) = (.;(y← 12)). Taking the pattern derivative
using the new environment:

Dre(b⟨12⟩;b⟨λx.x≥ 10⟩.b⟨p1⟩;y← 12) = b⟨p2⟩

The semantics of this remaining pattern when y← 12 contains just b⟨12⟩, which is correct according to the theorem: the only
string starting with b⟨12⟩ in Jb⟨p1⟩.b⟨p2⟩Ky←12 is b⟨12⟩b⟨12⟩.

13.3 Example patterns
Below is a full list of the example patterns that were used for evaluation. They range from simple checks to more complicated
patterns about high-level protocols.

A1 Cuckoo Firewall [25]
(ip_pkt(@int saved_src=src, @int saved_dst=dst)

.(((cuckoo_insert(fst_src==saved_src) && cuckoo_insert(fst_dst==saved_dst))∗
.(cuckoo_insert(!(fst_src==saved_src)) || cuckoo_insert(!(fst_dst==saved_dst)))

)||((cuckoo_insert(fst_src==saved_src) && cuckoo_insert(fst_dst==saved_dst))
.(cuckoo_insert(fst_src==saved_src) && cuckoo_insert(fst_dst==saved_dst))
.(cuckoo_insert(fst_src==saved_src) && cuckoo_insert(fst_dst==saved_dst))
.(cuckoo_insert(fst_src==saved_src) && cuckoo_insert(fst_dst==saved_dst)))))

This checks whether the cuckoo firewall insertion algorithm is working properly.

B1 Stateful FW Timeout [25]
ip_pkt (@int start_time = Sys.time(); ip#tos == TOS_TRUSTED)

.(ip_pkt(ip#tos == TOS_TRUSTED)
|| ((ip_pkt(!(ip#tos == TOS_TRUSTED))

&& ip_pkt(Sys.time() − start_time < 10000))))∗
.((ip_pkt(!(ip#tos == TOS_TRUSTED))

&& ip_pkt(!(Sys.time() − start_time < 10000))))

This is a general specification of firewall correctness. It checks that packets from inside (TOS_TRUSTED) are allowed out, and
that return packets are not allowed back in past the timeout threshold.

C1 SipHash [29]
iptcp_to_server_syn
.siphash_intermediate
.siphash_intermediate
.siphash_intermediate
.siphash_intermediate

1608 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

.siphash_intermediate

.siphash_intermediate

.siphash_intermediate

.siphash_intermediate

.siphash_intermediate

.siphash_intermediate

.siphash_intermediate

.siphash_intermediate

.siphash_intermediate

.iptcp_craft_out_dummy

This checks whether or not the siphash implementation is completing the proper number of hashing rounds.

D1 Chain replication 1 [31]

write(@int saved_seq=seq)
.write(seq<saved_seq)

This checks whether there are write events with sequence numbers out of order.

D2 Chain replication 2 [31]

write()
.write()
.ack()

This checks whether there are two write events to the same index before the first one is ACKed.

E1 DHCP Anomaly (section 3)

IP_Pkt∗
.DHCP_Ack(@int assigned = cip)
.(IP_Pkt(sip == assigned))∗
.IP_Pkt(sip != assigned)

This is the example from the paper.

E2 Fingerprint ([24])

S1.S5.S1.S4.S7.S8.S1.S2

This represents one example video fingerprint. S1 - S8 denote different packet sizes. The fingerprint is 8 packets in sequence,
with the denoted sizes.

E3 Port Knocking (len=4) [10]

ip_in(dport==1234)
.ip_in(dport==5678)
.ip_in(dport==9012)
.ip_in(dport==3456)

This pattern represents an example port knocking sequence. dport is the destination port of a packet.

E4 DNS TTL Change Count [21]

DNS_packet_fwd(@int<<32>> fst_ttl = ttl)
.(DNS_packet_fwd(fst_ttl != ttl))

This checks whether the ttl of packets changes when using DNS by recording the first in a flow and checking the second.
The intent is to count the number of TTL changes.

E5 DNS Tunneling [21]

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1609

DNS_resp(@int d1=dip, @int d2=dip2)
.((ip_packet(dip!=d1) && ip_packet(dip!=d2))

.(ip_packet(dip!=d1) && ip_packet(dip!=d2))

.(ip_packet(dip!=d1) && ip_packet(dip!=d2))

.(ip_packet(dip!=d1) && ip_packet(dip!=d2))

.(ip_packet(dip!=d1) && ip_packet(dip!=d2))

.(ip_packet(dip!=d1) && ip_packet(dip!=d2))

.(ip_packet(dip!=d1) && ip_packet(dip!=d2))

.(ip_packet(dip!=d1) && ip_packet(dip!=d2))

.(ip_packet(dip!=d1) && ip_packet(dip!=d2))

.(ip_packet(dip!=d1) && ip_packet(dip!=d2))

This checks that, upon receiving a DNS response, the receiver goes on to contact the requested IP. Tunneling is suspected if
the receiver of a DNS response never uses the information.

E6 SwiSh Local View [32]
(S1||S2||S3)∗
.((S2.S1)||

(S3.S2)||
(S1.S3))

This denotes any of the switches in a chain of 3 SwiShMem switches forwarding an update to the wrong neighbor.

E7 NetChain [15]
NetChainUpdate(@int v=version)
.NetChainUpdate(version < v)

This shows an algorithm running improperly, as detected by having an earlier version after a newer one.

E8 Paxos Recovery [28]
Paxos(@int a=l1,@int c=l2,@int e=l3; ty==RECOVER).
(

(Paxos(l1<a) && Paxos(ty==RECOVER)) ||
(Paxos(l2<c) && Paxos(ty==RECOVER)) ||
(Paxos(l3<e) && Paxos(ty==RECOVER))

).
Paxos(ty==RECOVERED)

This shows the sequence of exchanges of a Paxos recovery.

E9 ATP sequence [18]
ATP_add(@int x = cnt)
.ATP_add(cnt==x+1)
.ATP_add(cnt==x+2)
.ATP_add(cnt==x+3)

This shows a sequence of 4 consecutive add events with an increasing count variable.

E10 ATP JobID [18]
ATP_add(@int saved_jobid=jobid)
.(ATP_add(jobid==saved_jobid)
.ATP_add(jobid==saved_jobid)
.ATP_add(jobid==saved_jobid)
.ATP_add(jobid==saved_jobid)
.ATP_add(jobid==saved_jobid)
.ATP_add(jobid==saved_jobid)
.ATP_add(jobid==saved_jobid)
.ATP_add(jobid==saved_jobid)
.ATP_add(jobid==saved_jobid)
.ATP_add(jobid==saved_jobid)

1610 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

.ATP_add(jobid==saved_jobid)

.ATP_add(jobid==saved_jobid)

.ATP_add(jobid==saved_jobid)

.ATP_add(jobid==saved_jobid)

.ATP_add(jobid==saved_jobid)

.ATP_release(jobid==saved_jobid))

This shows a sequence of 16 consecutive add events with the same job ID.

Unimplementable patterns Below are a few patterns that are rejected:

R1 DHCP Example Reject

IP_Pkt∗
.DHCP_Ack(@int assigned = cip)
.(IP_Pkt(sip == assigned))∗
.IP_Pkt(@int unassigned = sip; sip != assigned)
.IP_Pkt(sip == unassigned)
.IP_Pkt(sip == unassigned)

This pattern is rejected because the binding of the variable unassigned will not be on the first occurrence of the event
IP_Pkt. A similar limitation applies to any compound, related patterns. It is meant to represent a device that uses the same
wrong IP three times.

R2 ATP Sequence Version 2

(ATP_add(@int x = cnt; cnt == x+1))∗

This pattern has two problems. First, the variable x is used before it is defined (the predicate cnt == x+1 does not have the
variable x in scope). Second, bindings can never occur under a closure. It is meant to loosely specify a similar pattern to E9,
but of any length.

R3 Chain Replication Reject

write(@int saved_seq=seq)
write(@int saved_seq2=seq; seq > saved_seq)
.write(seq<saved_seq2)

This pattern is rejected for a reason similar to R1: the binding of variable saved_seq2 will not occur on the first write event
(even though the first write event does bind a variable). This does not apply when binding two variables with the same
event (see E5).

13.4 Extensions
In this section, we go over various extensions to FLM to improve its expressiveness and usability.

13.4.1 Maintenance events

Some patterns, such as those that wait for a timeout, can be difficult to express as a sequence. Consider a sequence to check that
received requests are replied to with decisions in a timely manner:

request(@t1 = Sys.time())
.request∗
.decision(Sys.time() − t1 > Threshold)

Here, we are ignoring the indexing and response code to focus on the pattern. This pattern seems reasonable to detect late
decisions, but what if a decision never comes? Intuitively, that should be a violation as well, but if there is never another packet
for this flow, one will never be reported. The problem is that examples such as timeouts are examining a liveness property. Our
solution to this is to add maintenance events, which do not represent incoming network events. Instead, they are guaranteed to
visit every index of an array of FLM patterns eventually. To fix the above example, we can write the following, using maintenance
for the new events.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1611

maintenance∗
.request(@t1 = Sys.time())
.(maintenance(Sys.time() − t1 <= Threshold) + request)∗
.(decision(Sys.time() − t1 > Threshold) +
(maintenance(Sys.time() − t1 > Threshold)))

The placement of maintenance events will not interfere with detecting late decisions, but it will now also detect decisions that
never arrive because the maintenance event will eventually come along and match the last disjunction. These can be implemented
easily with a packet that repeatedly circulates through the array one index at a time, perhaps with a delay to reduce overhead.

13.4.2 Longer patterns

Some sequence monitors are too complicated to be expressed using the original syntax, causing the compiler to reject them. This
could be for one of two reasons:

1. The pattern is unable to be rewritten into prefix form, usually because the programmer desires to bind variables using the
same event type in two places. This would violate the rewrite rule for concatenation.

2. The pattern is able to be rewritten successfully, but an implementation of the transition function for the translated DFA
cannot be found. The synthesis algorithm might either time out, or return "unsat."

The solution to both of these is to pay more stages for the ability to implement a pattern. To do so, we introduce unambiguous
concatenation, which allows a pattern to be split into two parts that can be implemented sequentially.

Unambiguous concatenation We say that two FLM patterns in prefix form are unambiguously concatenated with a semantic
condition that allows us to split it across stages. First, we define the prefixes of a pattern, which are all the prefixes of any accepted
word:

Definition 10. The prefixes of an FLM pattern r, denoted prefix(r), is the set:

{u| ∃E,v such that u.v ∈ JrKE}

Next, we define the continuations of a pattern, which are all the words which can be appended to an accepted word to get
another accepted word:

Definition 11. The Continuations of an FLM pattern r, denoted continuation(r) is the set:

{v| ∃E,u,w such that u ∈ JrKE and u.v.w ∈ JrKE}

As a simple example with the pattern a.b∗, the prefixes and continutations can be defined with the languages of the following
patterns:

pre f ix(a.b∗) = ε+a.b∗

continuation(a.b∗) = b∗

Finally, we say that two patterns r1 and r2 are unambiguously concatenated, denoted r1!!r2, if the prefixes of r1 and the
continuations of r2 only intresect with ε, or more formally:

r1!!r2 ⇐⇒ (pre f ix(r1)∩ continuation(r2))\{ε}= /0

Using the above example, a.b∗!!a.b∗ is a valid unambiguous concatenation. ε is excluded because it is always both a prefix and
continuation of any non-empty language.

Implementation The unambiguous concatenation condition lets us compile a single pattern into multiple stages, which will
either allow a programmer to reuse events for variable bindings or compile a larger pattern to switch actions. In principle, there
could be many patterns connected with !!. We assume that this is at the top level, and call each concatenated pattern a section.
We compile a series of sections in three steps, after compiling each section individually:

1. For each DFA except the last section, add one new state, called "done." Add a self-loop for every character to "done." For
each transition from any accepting state to the rejecting state, replace it with a transition to "done."

1612 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2. For each section’s code except the first, add a clause to only run it if the previous section’s state was "done."

3. In each section’s DFA, if any later sections are not nullable, change all of its accepting states to non-accepting ones. The
transition statement returns whether or not the last section run ended in an accepting state.

Step one allows us to track when each section has finished matching characters. This is the step where the unambiguous
concatenation condition is important. The transitions from accepting states to non-reject states correspond to the continuations of
a section, while the transitions from the initial state correspond to its prefixes. The condition guarantees that the prefixes of a later
section do not coincide with the continuations of an earlier one, so we never miss a transition.

Step two ensures that we are running the patterns in sequence, not in parallel. Note that if there are new variables to be bound,
they are only bound after previous sections are "done."

Step three ensures that the series of sections only accepts when the current string matches the unambiguously concatenated
pattern. We leave accepting states if all later states are nullable because otherwise, we would miss some strings that only match
the earlier sections.

13.5 Proofs of Theorems
Theorem 4. "Derivatives commute":
∀a,z,s,E,P where s is binding free, both s and each predicate in P is closed under E, and preds(s)⊆ P:

Dclas(Tl(a⟨z⟩,E,P);Tre(s,P)) = Tre(Dre(a⟨z⟩;s;E),P)

Proof. By induction on the structure of s

Theorem 5. For all a,z,s,E where s is binding-free and s is closed under E:

JDre(a⟨z⟩;s;E)KE = {w′|a⟨z⟩.w′ ∈ JsKE}

Proof. Proof by induction on the structure of s. Base cases:

1. /0:
JDre(a⟨z⟩; /0;E)KE

= J /0KE = /0 = {w|a⟨z⟩.w ∈ /0}

2. ε:
JDre(a⟨z⟩;ε;E)KE

= J /0KE = /0 = {w|a⟨z⟩.w ∈ {ε}}

3. a⟨p⟩ : a⟨z⟩ ∈ Ja⟨p⟩KE iff Jp(z)KE . So, {w|a⟨z⟩.w ∈ [a⟨z⟩]E}= {ε} if Jp(z)KE and /0 else, which is the derivative.

Induction cases:

1. r + s:

JDre(a⟨z⟩;r+ s;E)KE

= JDre(a⟨z⟩;r;E)KE ∪ JDre(a⟨z⟩;s;E)KE

By induction:
= {w|a⟨z⟩.w ∈ JrKE} ∪ {w|a⟨z⟩.w ∈ JsKE}

= {w|a⟨z⟩.w ∈ JrKE ∪ JsKE}

= {w|a⟨z⟩.w ∈ Jr+ sKE}

2. r & s: Very similar to above, substituting & and ∩ for + and ∪.

3. s∗:
The following together show that JDre(a⟨z⟩;s∗;E)KE = {w|a⟨z⟩.w ∈ Js∗KE}

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1613

(a) {w|a⟨z⟩.w ∈ Js∗KE} ⊆ JDre(a⟨z⟩;s∗;E)KE :
If a⟨z⟩.w ∈ Js∗KE , then a⟨z⟩.w ∈ JsiKE for some smallest natural i. i cannot be 0. Since a⟨z⟩.w ∈ JsiKE = Js.si−1KE ,
a⟨z⟩.w = w1.w2 s.t. w1 ∈ JsKE ∧w2 ∈ Jsi−1KE . s1 cannot be ε, otherwise i could be smaller. So, w1 = a⟨z⟩.w′1 and
w = w′1.w2.
By induction,

JDre(a⟨z⟩;s;E)KE = {w|a⟨z⟩.w ∈ JsKE}
So, w′1 ∈ JDre(a⟨z⟩;s;E)KE . w2 ∈ Js∗KE , so w ∈ JDre(a⟨z⟩;s;E).s∗KE = JDre(a⟨z⟩;s∗;E)KE

(b) JDre(a⟨z⟩;s∗;E)KE ⊆ {w|a⟨z⟩.w ∈ Js∗KE}:
If w ∈ JDre(a⟨z⟩;s∗;E)KE , then: w = s1.s2, where:

s1 ∈ JDre(a⟨z⟩;s;E)KE and s2 ∈ Js∗KE

By induction, a⟨z⟩.s1 ∈ JsKE . So, s1.s2 ∈ Js∗KE

4. r.s:
The following together show that JDre(a⟨z⟩;r.s;E)KE = {w|a⟨z⟩.w ∈ Jr.sKE}

(a) {w|a⟨z⟩.w ∈ Jr.sKE} ⊆ JDre(a⟨z⟩;r.s;E)KE :
If a word a⟨z⟩.w ∈ Jr.sKE , then by definition a⟨z⟩.w = w1.w2 s.t. w1 ∈ JrKE ∧ w2 ∈ JsKE . By definition,
JDre(a⟨z⟩;r.s;E)KE = JDre(a⟨z⟩;r;E).sKE ∪ Jv(r).Dre(a⟨z⟩;s;E)KE . There are two cases

i. w1 = a⟨z⟩.w′1. Then by induction, w′1 ∈ JDre(a⟨z⟩;r;E)KE , so w′1.w2 ∈ JDre(a⟨z⟩;r;E).sKE

ii. w1 = ε, and w2 = a⟨z⟩.w′2. Since w1 = ε ∈ JrKE , v(r) = ε. By induction, w′2 ∈ JDre(a⟨z⟩;s;E)KE , so w ∈
Jv(r).Dre(a⟨z⟩;s;E)KE

This includes all possibilities for any word in {w|a⟨z⟩.w ∈ Jr.sKE}.

(b) JDre(a⟨z⟩;r.s;E)KE ⊆ {w|a⟨z⟩.w ∈ Jr.sKE}:
If w ∈ JDre(a⟨z⟩;r.s;E)KDbind(a⟨z⟩;r.s;E), then either:

i. w ∈ JDre(a⟨z⟩;r;E).sKE . By induction, w = w′1.w2 such that a⟨z⟩.w′1 ∈ JrKE and w2 ∈ JsKE . So, a⟨z⟩.w ∈ Jr.sKE .
ii. w ∈ Jv(r).Dre(a⟨z⟩;s;E)KE .Then either v(r) = /0 and there are no such w, or v(r) = ε and by induction, a⟨z⟩.w ∈

JsKE . Since r is nullable, JsKE ⊆ Jr.sKE .
This includes all possibilities for any word in JDre(a⟨z⟩;r.s;E)KE

Lemma 1. For any B▷b1⟨@y1⟩▷b2⟨@y2⟩▷B′ ▷ s in prefix form and any E it is closed under:

JB▷b1⟨@y1⟩▷b2⟨@y2⟩▷B′ ▷ sKE = JB▷b2⟨@y2⟩▷b1⟨@y1⟩▷B′ ▷ sKE

Proof. By induction on the length of B preceding the two to be exchanged. In the base case, expand the definitions twice. In the
induction case, just exchange the smaller list.

Lemma 2. If b⟨@y⟩▷B▷ s is implementable, then so is B▷ s.

Proof. By expanding the semantics to get some value for y, and then using impl property on the compatible environments with
B.

Lemma 3. If B ▷ s is implementable, then for any a ̸∈ B,z, E where B ▷ s is closed, and compatible environment G,
B▷Dre(a⟨z⟩;s;(E,G)) is implementable as well.

Proof. By induction on the structure of s.

Theorem 6. Restatement of Theorem 3: For all a,z,B,s,E where B▷ s is in prefix form (B is a non-redundant list of bindings
and s is binding-free) and implementable:

JB′ ▷Dre(a⟨z⟩;s;E ′,Asgn0(B′))KE ′,Asgn0(B′) = {w′|a⟨z⟩.w′ ∈ JB▷ sKE}

where B′,E ′ = Dbind(a⟨z⟩,B,E)

1614 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Proof. By induction on the number of bindings in B. When B has no bindings, just use 1. When B has a binding with event b,
proceed by cases on whether a ∈ B.

1. If a ∈ B, then by 1, we can assume without loss of generality that it is the first binding in B (i.e. B = a⟨@y⟩▷B′ ▷ s. Also,
since B is not redundant, Dbind(a⟨z⟩;B′;E,y← z) = (B′,E,y← z). Then Dbind(a⟨z⟩;B;E) = (B′,(E,y← z)). Next, we can
expand the definition of JB▷ sKE :

Ja⟨@y⟩▷B′ ▷ sKE = {w1.a⟨z′⟩.w2 ∈ JB′ ▷ sKE,y←z′ and a ̸∈ w1}︸ ︷︷ ︸
S1

∪{w|∀z′.w ∈ JB′ ▷ sKE,y←z′ and a ̸∈ w}︸ ︷︷ ︸
S2

There are clearly no a⟨z⟩.w ∈ S2, since they cannot contain the event a. Furthermore, if any word a⟨z⟩.w = w1.a⟨z⟩.w2 ∈ S1,
w1 must be ε. So:

{w′|a⟨z⟩.w′ ∈ Ja⟨@y⟩▷B′ ▷ sKE}
= {w′|a⟨z⟩.w′ ∈ S1}

= {w′|a⟨z⟩.w′ ∈ JB′ ▷ sKE,y←z}

We now want to show that this set is equal to JB′ ▷Dre(a⟨z⟩;s;E,y← z,Asgn0(B′))KE,y←z,Asgn0(B′), which is true directly by
the induction hypothesis. :

JB′ ▷Dre(a⟨z⟩;s;E,y← z,Asgn0(B′))KE,y←z,Asgn0(B′)
= {w′|a⟨z⟩.w′ ∈ JB′ ▷ sKE,y←z} By induction

2. If a ̸∈ B, then B = b⟨@y⟩▷B′ ▷ s. Dbind(a⟨z⟩;B;E) = (B,E), since a doesn’t appear in the bindings. So, we can expand the
definition of JB▷ sKE ::

Jb⟨@y⟩▷B′ ▷ sKE = {w1.b⟨z′⟩.w2 ∈ JB′ ▷ sKE,y←z′ and b ̸∈ w1}︸ ︷︷ ︸
S1

∪{w|∀z′.w ∈ JB′ ▷ sKE,y←z′ and b ̸∈ w}︸ ︷︷ ︸
S2

Next, we can expand the definition of Jb⟨@y⟩▷B′ ▷Dre(a⟨z⟩;s;E,Asgn0(b⟨@y⟩▷B′))KE,Asgn0(b⟨@y⟩▷B′):

Jb⟨@y⟩▷B′ ▷Dre(a⟨z⟩;s;E,Asgn0(b⟨@y⟩▷B′))KE,Asgn0(b⟨@y⟩▷B′)
= Jb⟨@y⟩▷B′ ▷Dre(a⟨z⟩;s;E,y← 0,Asgn0(B′))KE,y←0,Asgn0(B′)

= {w1.b⟨z′⟩.w2 ∈ JB′ ▷Dre(a⟨z⟩;s;E,y← 0,Asgn0(B′))KE,y←z′,Asgn0(B′) and b ̸∈ w1}︸ ︷︷ ︸
S3

∪{w|∀z′.w ∈ JB′ ▷Dre(a⟨z⟩;s;E,y← 0,Asgn0(B′))KE,y←z′,Asgn0(B′)}︸ ︷︷ ︸
S4

Because b⟨@y⟩▷B′ ▷ s is implementable, so is B′ ▷Dre(a⟨z⟩;s;E,y← 0,Asgn0(B′)) by using 2 and 3. Using this, we have
the following in both S3 and S4:

JB′ ▷Dre(a⟨z⟩;s;E,y← 0,Asgn0(B′))KE,y←z′,Asgn0(B′)

= JB′ ▷Dre(a⟨z⟩;s;E,y← z′,Asgn0(B′))KE,y←z′,Asgn0(B′)

This lets us use the induction hypothesis on S3 and S4, since B′ ▷Dre(a⟨z⟩;s;E,y← 0,Asgn0(B′)) is implementable by 2
and 3:

JB′ ▷Dre(a⟨z⟩;s;E,y← z′,Asgn0(B′))KE,y←z′,Asgn0(B′) = {w|a⟨z⟩.w ∈ JB′ ▷ sKE,y←z′}
Plugging this into the definitions above gives the following:

Jb⟨@y⟩▷B′ ▷Dre(a⟨z⟩;s;E,Asgn0(b⟨@y⟩▷B′))KE,Asgn0(b⟨@y⟩▷B′)
= {w′ = w1.b⟨z⟩.w2|a⟨z⟩.w′ ∈ JB′ ▷ sKE,y←z′ and b ̸∈ w1}︸ ︷︷ ︸

S3’
∪{w′|∀z′.a⟨z⟩.w′ ∈ JB′ ▷ sKE,y←z′ and b ̸∈ w}︸ ︷︷ ︸

S4’

This concludes the proof, since these two sets are the same as S1 and S2, except for the requirement that the words start
with a⟨z⟩. Finally, it is clear that b is not in a word a⟨z⟩.w if b is not in w.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1615

Lemma 4. For all a, z, E, and B:
Dbind(a⟨z⟩;B;E,Asgn0(B)) = B′,(E ′,Asgn0(B′)

Where B′,E ′ = Dbind(a⟨z⟩;B;E)

Proof. Observe that the initial values in E do not matter for Dbind . If a ∈ B, then afterwards it is not in B, and each variable that
was paired with a now has a value in E ′. These values would have overwritten the 0 added from Asgn0(B). The values of all
other variables do not change. If a ̸∈ B, then neither B nor E change.

Lemma 5. For all a, z, E, B, s where B▷ s is closed under E:

JB▷ sKE = JB▷ sKE,Asgn0(B)

Proof. By induction on the length of B.
Base case: When B is empty, Asgn0(B) adds no variables, so they are the same.
Induction step: B = b⟨@y⟩▷B′:

JB▷ sKE,Asgn0(B) = {w1.b⟨z⟩.w2 ∈ JB′ ▷ sKE,Asgn0(B),y←z|b ̸∈ w1}∪{w|b ̸∈ w and ∀z.w ∈ JB′ ▷ sKE,Asgn0(B),y←z}
= {w1.b⟨z⟩.w2 ∈ JB′ ▷ sKE,y←z,Asgn0(B′)|b ̸∈ w1}∪{w|b ̸∈ w and ∀z.w ∈ JB′ ▷ sKE,y←z,Asgn0(B′)}

By induction: = {w1.b⟨z⟩.w2 ∈ JB′ ▷ sKE,y←z|b ̸∈ w1}∪{w|b ̸∈ w and ∀z.w ∈ JB′ ▷ sKE,y←z}
= JB▷ sKE

Theorem 7. Restatement of Theorem 2: For any word w, bindings B, environment E, and predicates P, if an FLM pattern B▷ s is
in prefix form, B▷ s is closed under E, and B▷ s is implementable, then: Tw(w,B,(E,Asgn0(B)),P) ∈ L(Tre(s,P)) if and only if
w ∈ JB▷ sKE .

Proof. By induction on the length of w.

For the base case, Tre does not change the length of accepted words. So, ε ∈ Tre(s,P) ⇐⇒ ε ∈ JB▷ sKE (ε is the only word of
length 0).

For the induction step: w = a⟨z⟩.w′; s′ = Dre(a⟨z⟩;s;E,Asgn0(B)); and B′;E ′ = Dre(a⟨z⟩;B;E).
Starting with:

Tw(a⟨z⟩.w′,B,(E,Asgn0(B)),P) ∈ L(Tre(s,P))

By the definition of Tw and applying 4, This is equivalent to:

Tl(a⟨z⟩,(E ′,Asgn0(B′)),P).Tw(w′,B′,(E ′,Asgn0(B′),P) ∈ L(Tre(s,P))

Where B′,(E ′,Asgn0(B′) = Dbind(a⟨z⟩,B,(E,Asgn0(B))). By the definition of the classic derivative, this is equivalent to:

Tw(w′,B′,(E ′,Asgn0(B′),P) ∈ L(Dclas(Tl(a⟨z⟩,(E ′,Asgn0(B′),P);Tre(s,P)))

By 4, this is equivalent to:
w′ ∈ JB′ ▷Dre(a⟨z⟩,s,(E ′,Asgn0(B′))K(E ′,Asgn0(B′)

By 6, this is true if and only if:
a⟨z⟩.w′ ∈ JB▷ sKE,Asgn0(B)

Finally, we can use 5 to get the result:
w ∈ JB▷ sKE

1616 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Lemma 6. If r rw−→ r′ and r is implementable, then for all E such that r and r′ are closed under E, JrKE = Jr′KE .

Proof. By cases on which rewrite rule is used.

1. r = b⟨@y; p⟩.s rw−→ b⟨@y⟩▷b⟨p⟩.s

Jb⟨@y⟩▷b⟨p⟩.sKE

= {w1.b⟨z⟩.w2 ∈ Jb⟨p⟩.sKE,y←z|b ̸∈ w1}∪{w|∀z.w ∈ Jb⟨p⟩.sKE,y←z∧b ̸∈ w}

The right-hand set is empty, since any word in it must start with a b event.Similarly, w1 must be ε for any word in the
left-hand set.

= {b⟨z⟩.w2 ∈ Jb⟨p⟩.sKE,y←z}

=
⋃
z∈Z

({b⟨z⟩|Jp(z)KE}◦ JrKE,y←z)

= Jb⟨@y; p⟩.sKE

2. r = B1 ▷ (s1.(b⟨@y⟩▷ s2)
rw−→ (B1 ▷b⟨@y⟩▷ s1.s2)

In this case, we know that b⟨@y⟩▷ s2 and B1 ▷ s1 are implementable, that b ̸∈ B1 ▷ s1, and that y ̸∈ B1. We can now show the
two are equivalent by induction on the length of B1. In the base case, we use the fact that y is out of scope in s1:

Js1.(b⟨@y⟩▷ s2)KE

= {w1.w2|w1 ∈ Js1KE ∧w2 ∈ J(b⟨@y⟩▷ s2)KE}

= {w1.w2|(∀z.w1 ∈ Js1KE,y←z)∧w2 ∈ J(b⟨@y⟩▷ s2)KE}

= {w1.w2|(∀z.w1 ∈ Js1KE,y←z)∧ (w2 ∈ {w′1.b⟨z⟩.w′2 ∈ Js2KE,y←z|b ̸∈ w′1}∪{w|∀z.w ∈ Js2KE,y←z∧b ̸∈ w})}

Because we are quantifying over z for w1, it is clear that any w1.w2 in this set must also be in Jb⟨@y⟩▷ s1.s2KE , depending
on which set w′2 is in:

Jb⟨@y⟩▷ s1.s2KE

= {w′′1 .b⟨z⟩.w′′2 ∈ Js1.s2KE,y←z|b ̸∈ w′′1}∪{w′|∀z.w′ ∈ Js1.s2KE,y←z∧b ̸∈ w′}

If w′2 is in the right-hand set, then w′′1 = w1.w′1 and w′′2 = w′2. Otherwise, w′ = w1.w. The same expansions show membership
the other way; if a word w′′1 .b⟨z⟩.w′′2 ∈ Js1.s2KE,y←z, then a prefix of w′′1 ∈ Js1KE,y←z = Js1KE , and the rest is in the right-hand
set above. Otherwise, a prefix of w′ is in s1 and the rest is in the left-hand set above.

The induction case follows directly from expanding the definition:

Jb1⟨@y1⟩▷B′1 ▷ (s1.(b⟨@y⟩▷ s2)KE

= {w1.b⟨z⟩.w2 ∈ JB′1 ▷ (s1.(b⟨@y⟩▷ s2)KE,y1←z|b ̸∈ w1}∪{w|∀z.w ∈ JB′1 ▷ (s1.(b⟨@y⟩▷ s2)KE,y1←z∧b ̸∈ w}

Using induction:

= {w1.b⟨z⟩.w2 ∈ JB′1 ▷b⟨@y⟩▷ (s1.s2)KE,y1←z|b ̸∈ w1}∪{w|∀z.w ∈ JB′1 ▷b⟨@y⟩▷ (s1.s2)KE,y1←z∧b ̸∈ w}

3.
(b⟨@y1⟩▷ s1)+(b⟨@y2⟩▷ s2)

rw−→ b⟨y1⟩▷ (s1 +[y1/y2]s2)

Here, we assume both b⟨@y1⟩▷ s1 and b⟨@y2⟩▷ s2 are implementable. The proof follows directly from expanding the two
▷ expressions, and substituting the variables in s2.

Jb⟨@y1⟩▷ (s1 +[y1/y2]s2)KE

= {w1.b⟨z⟩.w2 ∈ Js1 +[y1/y2]s2KE,y1←z|b ̸∈ w1}∪{w|∀z.w ∈ Js1 +[y1/y2]s2KE,y1←z∧b ̸∈ w}

= {w1.b⟨z⟩.w2 ∈ Js1KE,y1←z∪ J[y1/y2]s2KE,y1←z|b ̸∈ w1}∪{w|∀z.w ∈ Js1KE,y1←z∪ J[y1/y2]s2KE,y1←z∧b ̸∈ w}

= {w1.b⟨z⟩.w2 ∈ Js1KE,y1←z∪ Js2KE,y2←z|b ̸∈ w1}∪{w|∀z.w ∈ Js1KE,y1←z∪ Js2KE,y2←z∧b ̸∈ w}

= J(b⟨@y1⟩▷ s1)+(b⟨@y2⟩▷ s2)KE

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1617

4.
(b⟨@y1⟩▷ s1)+(c⟨@y2⟩▷ s2)

rw−→ b⟨@y1⟩▷ c⟨@y2⟩▷ (s1 + s2)

We assume that b⟨@y1⟩▷ s1 and c⟨@y2⟩▷ s2 are implementable. The proof follows directly from expanding the definitions
of the two ▷ expressions.

J(b⟨@y1⟩▷ s1)+(c⟨@y2⟩▷ s2)KE

= Jb⟨@y1⟩▷ s1KE ∪ Jc⟨@y2⟩▷ s2KE

= S1 : {w|w = w1.b⟨z1⟩.w2 ∈ Js1KE,y1←z1 ∧b ̸∈ w1}∪S2 : {w|∀z.w ∈ Js1KE,y1←z∧b ̸∈ w}

∪S3 : {w|w = w1.c⟨z2⟩.w2 ∈ Js2KE,y2←z2 ∧ c ̸∈ w1}∪S4 : {w|∀z.w ∈ Js2KE,y2←z∧ c ̸∈ w}

Expanding the other definition:
Jb⟨@y1⟩▷ c⟨@y2⟩▷ (s1 + s2)KE

= {w|w = w1.b⟨z1⟩.w2 ∈ Jc⟨@y2⟩▷ (s1 + s2)KE,y1←z1 ∧b ̸∈ w1}∪{w|∀z.w ∈ Jc⟨@y2⟩▷ (s1 + s2)KE,y1←z1 ∧b ̸∈ w}

After expanding this to another 4 sets, it is clear that J(b⟨@y1⟩▷ s1)+(c⟨@y2⟩▷ s2)KE ⊆ Jb⟨@y1⟩▷c⟨@y2⟩▷ (s1 + s2)KE by
cases on which set (S1,S2,S3,S4) a word is in, and similarly in the reverse direction.

5.
(b⟨@y⟩▷ s1)+ s2

rw−→ b⟨@y⟩▷ (s1 + s2)

This proof is very similar to the above with one fewer expansion, because the binding-free s2 is always implementable.

The rules (equivalent to 3,4, and 5) for & have similar proof structure, but are simplified by using intersection rather than
union.

Lemma 7. If r rw−→ r′ and r is implementable, then so is r′.

Proof. By cases on which rewrite rule is used.

1. r = b⟨@y; p⟩.s rw−→ b⟨@y⟩▷b⟨p⟩.s
We assume that s is binding free, so that b⟨@y⟩▷b⟨p⟩.s is in prefix form. Now, we show that it is implementable, for any
a ̸= b, the derivative of s is the same no matter the environment, since the following does not depend on z1 at all:

Dre(a⟨z⟩;b⟨p⟩.s;E,y← z1)

= Dre(a⟨z⟩;b⟨p⟩;E,y← z1).s+ v(b⟨p⟩.Dre(a⟨z⟩;s;E,y← z1)

= /0.s+ /0.Dre(a⟨z⟩;s;E,y← z1)

= /0

2. r = (B1 ▷ s1).(b⟨@y⟩▷ s2)
rw−→ (B1 ▷b⟨@y⟩▷ s1.s)

In this case, we know that b⟨@y⟩▷ s2 and B1 ▷ s1 are implementable, that b ̸∈ B1 ▷ s1, and that y ̸∈ B1. Now, we can expand
the expression, for some a⟨z⟩ ̸∈ B1 ▷b and compatible environments G1,G2 to B1 ▷b. We will write these as G′1,y← z1 and
G′2,y← z2, separating out the compatible environments to B1 and B2, and expand definitions:

JDre(a⟨z⟩;s1.s2;(E,G1))KE,G2

= JDre(a⟨z⟩;s1;(E,G1)).s2 + v(s1).Dre(a⟨z⟩;s2;(E,G1))KE,G2

= JDre(a⟨z⟩;s1;(E,G1)).s2KE,G2 ∪ Jv(s1).Dre(a⟨z⟩;s2;(E,G1))KE,G2

= JDre(a⟨z⟩;s1;((E,y← z1),G′1)).s2K(E,y←z2),G′2
∪ Jv(s1).Dre(a⟨z⟩;s2;((E,G′1),y← z1))K(E,G′2),y←z2

On the left, because y is not in scope in s1, its value does not change the semantics of its derivative, so we can replace z1
with z2. Similarly, on the right we can replace G′1 with G′2 because those variables are out of scope in s2:

= JDre(a⟨z⟩;s1;((E,y← z2),G′1)).s2K(E,y←z2),G′2
∪ Jv(s1).Dre(a⟨z⟩;s2;((E,G′2),y← z1))K(E,G′2),y←z2

1618 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

= JDre(a⟨z⟩;s1;((E,y← z2),G′1))K(E,y←z2),G′2
◦Js2K(E,y←z2),G′2

∪Jv(s1K(E,G′2),y←z2
◦JDre(a⟨z⟩;s2;((E,G′2),y← z1))K(E,G′2),y←z2

Finally, we can apply the inductive hypothesis for s1 and s2 and roll back up the definitions to get the desired result:

= JDre(a⟨z⟩;s1;((E,y← z2),G′2))K(E,y←z2),G′2
◦Js2K(E,y←z2),G′2

∪Jv(s1K(E,G′2),y←z2
◦JDre(a⟨z⟩;s2;((E,G′2),y← z2))K(E,G′2),y←z2

= JDre(a⟨z⟩;s1;((E,y← z2),G′1)).s2K(E,y←z2),G′2
∪ Jv(s2).Dre(a⟨z⟩;s2;((E,G′2),y← z2))K(E,G′2),y←z2

= JDre(a⟨z⟩;s1;((E,y← z2),G′1)).s2 + v(s2).Dre(a⟨z⟩;s2;((E,G′2),y← z2))K(E,G′2),y←z2

= JDre(a⟨z⟩;s1.s2;E,G2)KE,G2

3.
(b⟨@y1⟩▷ s1)+(b⟨@y2⟩▷ s2)

rw−→ b⟨y1⟩▷ (s1 +[y1/y2]s2)

Here, we assume both b⟨@y1⟩▷ s1 and b⟨@y2⟩▷ s2 are implementable. Then, we can expand definitions, writing G1as(y1←
z1) and G2 as (y1← z2):

JDre(a⟨z⟩;s1 +[y1/y2]s2;E,y1← z1)KE,y1←z2

= JDre(a⟨z⟩;s1;E,y1← z1)+Dre(a⟨z⟩; [y1/y2]s2;E,y1← z1)KE,y1←z2

= JDre(a⟨z⟩;s1;E,y1← z1)KE,y1←z2 ∪ JDre(a⟨z⟩; [y1/y2]s2;E,y1← z1)KE,y1←z2

On the left, we can apply the induction hypothesis directly. On the right, we undo the substitution and use it, then roll back
up the definition.

= JDre(a⟨z⟩;s1;E,y1← z1)KE,y1←z2 ∪ JDre(a⟨z⟩;s2;E,y2← z1)KE,y2←z2

= JDre(a⟨z⟩;s1;E,y1← z2)KE,y1←z2 ∪ JDre(a⟨z⟩;s2;E,y2← z2)KE,y2←z2

= JDre(a⟨z⟩;s1;E,y1← z2)KE,y1←z2 ∪ JDre(a⟨z⟩; [y1/y2]s2;E,y1← z2)KE,y1←z2

= JDre(a⟨z⟩;s1 + s2;E,G2)KG2

4.
(b⟨@y1⟩▷ s1)+(c⟨@y2⟩▷ s2)

rw−→ b⟨@y1⟩▷ c⟨@y2⟩▷ (s1 + s2)

We assume that b⟨@y1⟩▷ s1 and c⟨@y2⟩▷ s2 are implementable, and expand definitions, writing G1 as y1← z1,y2← z2 and
G2 as y1← z′1,y2← z′2:

JDre(a⟨z⟩;s1 + s2;E,y1← z1,y2← z2)KE,y1←z′1,y2←z′2

= JDre(a⟨z⟩;s1;E,y1← z1,y2← z2)+Dre(a⟨z⟩;s2;E,y1← z1,y2← z2)KE,y1←z′1,y2←z′2

= JDre(a⟨z⟩;s1;E,y1← z1,y2← z2)KE,y1←z′1,y2←z′2
∪ JDre(a⟨z⟩;s2;E,y1← z1,y2← z2)KE,y1←z′1,y2←z′2

y1 is out of scope in s2, and y2 is out of scope in s1. So, we can assign any value to them without changing the derivative:

= JDre(a⟨z⟩;s1;E,y1← z1,y2← z′2)KE,y1←z′1,y2←z′2
∪ JDre(a⟨z⟩;s2;E,y1← z′1,y2← z2)KE,y1←z′1,y2←z′2

Finally, we can apply the induction hypothesis for the other variables, using the implementability property. Then, we roll
back up the definitions.

= JDre(a⟨z⟩;s1;E,y1← z′1,y2← z′2)KE,y1←z′1,y2←z′2
∪ JDre(a⟨z⟩;s2;E,y1← z′1,y2← z′2)KE,y1←z′1,y2←z′2

= JDre(a⟨z⟩;s1 + s2;E,y1← z′1,y2← z′2)KE,y1←z′1,y2←z′2

5.
(b⟨@y⟩▷ s1)+ s2

rw−→ b⟨@y⟩▷ (s1 + s2)

This proof is very similar to the above, because the binding-free s2 is always implementable.

JDre(a⟨z⟩;s1 + s2;E,y← z1)KE,y←z2

= JDre(a⟨z⟩;s1;E,y← z1)KE,y←z2 ∪ JDre(a⟨z⟩;s2;E,y← z1)KE,y←z2

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1619

y is out of scope in s2, so we can replace its value with anything without changing the derivative.

= JDre(a⟨z⟩;s1;E,y← z1)KE,y←z2 ∪ JDre(a⟨z⟩;s2;E,y← z2)KE,y←z2

Now, we apply the induction hypothesis for s1, and get the require result:

= JDre(a⟨z⟩;s1;E,y← z2)KE,y←z2 ∪ JDre(a⟨z⟩;s2;E,y← z2)KE,y←z2

= JDre(a⟨z⟩;s1 + s2;E,y← z2)KE,y←z2

The & forms of rules 3, 4, and 5 above have very similar proofs, replacing + and ∪ with & and ∩.

1620 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

OctoSketch: Enabling Real-Time, Continuous Network Monitoring
over Multiple Cores

Yinda Zhang†, Peiqing Chen⋆, Zaoxing Liu⋆
⋆University of Maryland, †University of Pennsylvania

Abstract
Sketching algorithms (sketches) have emerged as a resource-
efficient and accurate solution for software-based network
monitoring. However, existing sketch-based monitoring
makes sacrifices in online accuracy (query time accuracy)
and performance (handling line rate traffic with low latency)
when dealing with distributed traffic across multiple cores.
In this work, we present OctoSketch, a software monitoring
framework that can scale a wide spectrum of sketches to
many cores with high online accuracy and performance. In
contrast to previous systems that adopt straightforward sketch
merges from individual cores to obtain the aggregated result,
we devise a continuous, change-based mechanism that can
generally be applied to sketches to perform the aggregation.
This design ensures high online accuracy of the aggregated
result at any query time and reduces computation costs to
achieve high throughput. We apply OctoSketch to nine repre-
sentative sketches on three software platforms (CPU, DPDK,
and eBPF XDP). Our results demonstrate that OctoSketch
achieves about 15.6× lower errors and up to 4.5× higher
throughput than the state-of-the-art.

1 Introduction
While telemetry on dedicated switching hardware continues
to be important, the deployment of monitoring capabilities in
software platforms is increasing with the transition towards
virtualized deployments and “white-box” capabilities [1–3].
The ability to monitor network traffic within software plat-
forms has become a key enabler for many network manage-
ment applications, including load balancing, anomaly detec-
tion, and performance diagnosis [4, 5]. Over the years, the
volume of traffic processed by each server has seen a sub-
stantial increase (e.g., 10G to 100G). As a result, efficient
monitoring of traffic across multiple cores emerges as a press-
ing demand.

When monitoring traffic distributed across cores, down-
stream applications often entail high-fidelity aggregated
measurement results. For instance, in-network caching sys-
tems [6, 7] require real-time measurement of the hot objects
to determine what to cache. Similarly, a load balancer needs
aggregated flow statistics (e.g., heavy hitters, top-k flows) to
decide where to assign flows (to cores or nodes) [7, 8]. In this

scenario, sketch algorithms naturally emerge as a promising
solution. This is because recent theoretical advances [9] have
shown that many sketches, such as Count-Min [10], Count
Sketch [11], and UnivMon [12], have intrinsic mergeability:
Independent sketches monitoring different traffic partitions
can be merged in a way such as sum and max to obtain ag-
gregated results without losing accuracy guarantee. With this
property, a natural design for sketch-based multicore monitor-
ing is to run an independent sketch per core and periodically
merge the entire sketches from all cores for aggregation.

While we have seen significant recent progress in sketch al-
gorithms [12–17] and their implementations [18,19], we argue
that sketch-based multicore monitoring systems remain im-
practical. Many existing systems, such as Elastic Sketch [13],
NitroSketch [14], and HeteroSketch [20], adopt the above
“sketch-merge” design to scale their systems to distributed
settings. However, these solutions raise two significant issues
in practice. First, this approach does not retain accuracy at
any given time – if the aggregator responsible for answering
the query has not yet obtained the most recent sketches from
cores, the aggregated result is stale, missing the measurement
over the current traffic. A recent study [21] shows that an
inaccurate and stale result can lead to a significant load imbal-
ance in a load balancer. Second, if we consider an undesirable
extreme to frequently merge sketches for fresh results, the
packet performance will be significantly reduced, and it is
difficult for each core to achieve high line rates (§2.2).

Ideally, we want a multicore monitoring system to meet
three requirements. First, we need high accuracy whenever
applications query a measurement result. This is essentially
online accuracy, which enables real-time telemetry support
for applications. Second, we expect resource efficiency to
achieve line rates with low resource overhead since CPU
and memory resources are shared among other services [22].
Finally, we need generality, covering a broad range of traffic
metrics for various application requirements [12, 13, 23].

In this paper, we present OctoSketch, a software frame-
work to perform high-performance and real-time monitoring
on multiple CPU cores that meets the above three require-
ments. In OctoSketch, we argue for a continuous, change-
based design to aggregate the sketch results among multiple
cores. In contrast to periodically merging entire sketches,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1621

OctoSketch keeps track of individual counter changes in the
sketch for every packet and sends the counter difference-∆
(from the last update) when the change is sufficiently large
(e.g., over a threshold to meet the accuracy requirement). By
this simple-yet-effective design, each worker still maintains a
sketch but intends to send the ∆ that could affect the overall
accuracy of the aggregated result. In this way, communication
between the worker and the aggregator becomes a “continu-
ous” stream of worker-aggregator messages, which are tiny in
space but carry the most critical and timely information. Com-
pared to previous efforts [9,12,13,20], OctoSketch eliminates
potentially wasted counter updates when merging the sketches
(e.g., many counters do not change significantly since the last
update) to improve online accuracy and optimize resource
footprints.

With the continuous, change-based message passing
scheme, OctoSketch is able to realize dynamic resource allo-
cation policies toward different systems and user objectives.
For example, within a CPU resource budget, OctoSketch can
be configured to achieve the best (possible) online accuracy;
or if the accuracy requirement is loose (e.g., ≪ than best
possible accuracy), OctoSketch can be configured to save
CPU cycles instead of using all the aggregator CPU trying
to reach an unnecessary accuracy. OctoSketch realizes these
policies by (1) maintaining a shared buffer between workers
and the aggregator, (2) adjusting worker message frequency
via dynamic counter update thresholds, and (3) letting the
aggregator learn the sending rate of the workers via the queue
occupancy in the shared buffer, as detailed in §4.3.

To the best of our knowledge, OctoSketch is the first work
to: (a) propose the integration of a continuous, change-based
update mechanism with various sketches to enable the practi-
cal adoption of sketches in the multi-core scenario. Our goal
is to improve the accuracy and performance of distributed
sketches across cores to meet various measurement objec-
tives; (b) analytically prove that OctoSketch can retain the
same asymptotic error bounds as in the ideal case in which
traffic is not distributed. That is, when querying OctoSketch,
the aggregator can provide a result that represents the aggrega-
tion of traffic from all cores (by a bounded error) at any given
time; and (c) provide practical end-to-end design and imple-
mentation of this idea on three popular software platforms.
We further show that, compared to existing sketch-merge ap-
proaches, OctoSketch reduces message passing overhead by
up to four orders of magnitude for the same accuracy.

We apply OctoSketch to a wide range of state-of-the-art
sketches (e.g., Count-Min Sketch [10], UnivMon [12], Elastic
Sketch [13], and CocoSketch [16]) and demonstrate its per-
formance on the CPU, Intel DPDK library [24], and eBPF
XDP [25]. Our experiments show that OctoSketch achieves
around 15.6× smaller errors than previous sketch-merge tech-
niques at query time. Moreover, OctoSketch also reaches up to
4.5× higher throughput and up to 1.9× reduction in CPU uti-
lization in DPDK. We apply OctoSketch to two common use

Driver
(e.g., DPDK PMD)

Application
(e.g., load balancer)

Monitoring

NIC

Core 1
Aggregator

Core 2 Core 3

poll queues
in NIC

Figure 1: Multicore monitoring problem in a server

cases: load balancer and key-value cache. Our results show
that OctoSketch achieves a 3.15× lower imbalance rate and a
13% higher cache hit rate than the sketch-merge baseline. We
have open-sourced OctoSketch and other baseline algorithms
on https://github.com/Froot-NetSys/OctoSketch.
Ethics: This work does not raise ethical issues.

2 Background and Motivation
In this section, we first describe how distributed traffic over
multiple cores brings new challenges to online monitoring.
We then discuss existing efforts and their limitations in scaling
monitoring capabilities to distributed settings.

2.1 Multicore monitoring problem
Since the latest NIC designs [26] for data centers have already
reached 100Gbps/port, network applications supporting such
a high speed require multiple CPU cores. For instance, a
DPDK-enabled Open vSwitch [27] requires 6 to 10 CPU cores
to reach 100Gbps. Hence, we call such a network application
using multiple cores a multicore application.

Multicore applications often require timely and accurate
traffic measurement results, such as heavy hitters, distinct
flows, and entropy [4, 5]. Figure 1 shows a typical workflow
for monitoring traffic distributed over multiple cores. The
NIC will distribute the incoming packets into multiple Rx
queues, and each CPU core will poll packets from one or more
queues via driver (e.g., DPDK polling mode driver [24]). The
resource in each core is shared between drivers, applications,
and monitoring programs.

In contrast to a non-distributed monitoring setting, this
multicore workflow for a single server poses three significant
challenges:
• Online accuracy: Many applications need to obtain accu-

rate aggregated statistics in an online fashion. For example,
cache-based load balancers rely on real-time large flow
measurements to determine hot items to cache [6, 7]. We
define the online accuracy according to the statistics com-
puted over the traffic from the end of the last measurement
to the current query time. Due to the distributed nature of
the traffic, there can be a significant error or delay to query
aggregated statistics at any given time for two reasons: (1)
the current aggregated result is stale, and (2) frequent ag-

1622 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/Froot-NetSys/OctoSketch

Packet
+1

+1

+1

Count-Min Sketch
with # = 3 arrays

hashes
ℎ!, … , ℎ"

(*+,, -./+) Flow Key
Storage

(e.g., heap)

Figure 2: Example of the Count-Min sketch

gregation from all the cores is expensive to compute.
• Resource efficiency: The resources (e.g., CPU and memory

space) used by monitoring should keep up with line-rate
requirements and leave ample room for applications.
• Generality in metrics of interest: Similar to other network

monitoring systems [12,13], a multicore monitoring system
shall measure multiple traffic metrics to support a range of
applications (e.g., DDoS detection [5], load balancing [4],
and traffic engineering [28]).

2.2 Prior Solutions and Limitations
Background of Sketches. Sketches have emerged as a
promising network monitoring solution due to their high re-
source efficiency and accuracy guarantees. At a high level,
sketches are a kind of approximate data structure that can
estimate various statistics online. For example, there are (1)
Count-Min sketch [10] and Count sketch [11] for detecting
heavy hitters (flows with large sizes), (2) Locher sketch [29]
for detecting superspreaders (Source IPs that connect to many
Destination IPs), (3) CocoSketch [16] for querying flow size
on multiple keys, and (4) UnivMon [12] and Elastic sketch
[13] for supporting a range of these tasks instead of a special-
ized sketch per task. As shown in prior work [12–14, 30–32],
these sketches can often provide better accuracy-memory
tradeoffs than traditional sampling-based techniques [33, 34].

To illustrate the insertion process of sketches, we use the
Count-Min sketch for heavy-hitter detection as an example.
As shown in Figure 2, the Count-Min sketch typically con-
sists of multiple arrays of counters. For the insertion of each
packet, it computes a set of independent hash values based on
the flow key (e.g., Source IP) of the packet and updates the
corresponding counter in each array. Moreover, Count-Min
Sketch needs additional data structures (e.g., heap) to store
flow keys whose estimated sizes are large. We further discuss
the background of sketches and their applications in §A.
Key-based partition. One way to apply sketches in the mul-
ticore scenario is to divide different keys to different cores
based on hashing. For each core, we can maintain a sketch
for tracking the keys hashed to it and the keys in different
sketches never overlap. However, strictly pinning a key to a
core can lead to degraded packet performance. For example,
when the skewness of the network traffic varies, key-based
partition often leads to high load imbalance among cores.

Worker 1
Mergeable Sketch

with Flow Keys

…
…

Entire
sketch

Step 1: Insert packets
into each worker

Step 2: Send
entire sketches to

the aggregator

Step 3: Merge
received sketches

Low throughput due to
slow flow key storage

Worker 5
Mergeable Sketch

with Flow Keys

Aggregator

Mergeable Sketch
with Flow Keys

Low online accuracy
due to slow merging

Figure 3: Merging sketches from multiple cores to an
aggregator (sketch-merge)

Splitting large flows into multiple cores will help balance the
load, as shown in existing load-balancing algorithms [35].
Moreover, depending on the definition of the key, it is some-
times infeasible to pin a key to a core. For instance, a NIC may
distribute packets based on the 5-tuple while the application
may want to measure the keys based on user-level information
(e.g., the key-value pair). In this case, it is hard to guarantee all
packets associated with a key will reach the same core. More-
over, some multiple applications require measuring results
based on multiple key definitions, and we cannot guarantee
key distribution across different keys, as shown in [16]. As
a result, OctoSketch does not make any assumptions about
the way of distributing keys to accommodate various network
applications.
Merging sketches from multiple cores (sketch-merge). An-
other natural solution is to merge multiple sketches from dif-
ferent cores into one for query periodically, where the merged
sketch preserves the same accuracy guarantee [9]. For in-
stance, Sketch 1 measuring flow set A can be merged with
Sketch 2 measuring flow set B (e.g., sum or max of the two
counter arrays) to obtain statistics about a combined flow set
A∪B, as long as Sketches 1 and 2 share the same configu-
ration. Most existing solutions leverage this mergeability to
scale to multi-site (e.g., multiple cores or servers) in diverse
domains, including UnivMon [12], HeteroSketch [20], and
FetchSGD [36].

However, periodically merging entire sketches from multi-
ple cores brings large penalties on online accuracy and overall
throughput. We use Figure 3 as an example to illustrate the
workflow and its issues: Given k workers, each worker main-
tains one sketch to handle its own traffic. If one worker has
received enough packets or a certain time interval is reached,
it will send its sketch with heavy flow keys to the aggregator
and recreate a new one. Once the aggregator receives a new
sketch from a worker, the aggregator merges the sketch to
its own (aggregated) sketch, and reports aggregated results
such as heavy hitters and distinct counts. Unfortunately, the
merging process can bring significant overheads to both the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1623

Maximum Frequency
aggregator can support

Figure 4: Frequency of sketch-merge vs. Error

aggregator and the workers as follows:
• Bottleneck in the aggregator: In practice, the aggregator

is stuck in a fundamental dilemma: To achieve high online
accuracy, the aggregator has to frequently merge multiple
sketches (e.g., merging at every millisecond), which can
be prohibitively expensive to compute; otherwise, while in-
frequent and fixed-time merges save resources, the queried
result at the aggregator may be stale by up to a fixed time
window. To understand this problem, we consider a hypo-
thetical non-merging design where all packets are processed
by a single core with unlimited CPU cycles and cache, and
use its accuracy as a reference of the ideal accuracy. As
depicted in Figure 4, the aggregator needs to merge around
3×104 sketches per second to achieve comparable accu-
racy to the ideal case under 150 million packets per second
throughput. However, a 2.35GHz CPU core can only sup-
port up to 3×103 merges per second. 1

• Bottleneck in the worker: Each worker core keeps an en-
tire sketch instance, including its counter structure and flow
key storage. Prior efforts (e.g., [13, 14]) have demonstrated
that flow key storage is one of the performance bottlenecks
in sketches. Maintaining such flow key storage per core is
computation-heavy considering the high-volume traffic.

3 System Overview
We now describe the high-level design of OctoSketch and
highlight the key ideas to achieve the multicore requirements.

3.1 OctoSketch Workflow
As illustrated in Figure 5, OctoSketch has two main compo-
nents: multiple monitoring workers for ingesting the traffic

1The setting is the same as in §6 and §7. We use Count-Min sketch and
CAIDA dataset [37], and show the absolute errors of heavy hitter detection.
In this experiment, we have 16 workers and 1 aggregator. The frequency
of merging is set at each worker. Since the aggregator is receiving and
aggregating sketches from all workers, the aggregator is the bottleneck and
can only accommodate 3×103 merges per second, while each worker can
still send more merges. When increasing the merge frequency beyond the
maximum rate the aggregator can support, we use a buffer to store sketches
and aggregate the results later for evaluating the errors.

Worker 1

Aggregator

+!

(!!,)

Flow Key
Storage

+!

……

+1

+1

Worker 5

+1

+1

Shared buffer

Larger than
threshold

push Δ

polling
update

+#

Figure 5: Workflow of OctoSketch

Query Type Sketch Acc. Thp.

Flow Size
Count-Min [10] 9.32× 3.85×

Count Sketch [11] 9.04× 3.22×

Cardinality
LogLog [38] 54.93× 1.29×

HyperLogLog [39] 38.97× 1.29×
Super-Spreader Locher Sketch [29] 4.06× 4.51×

Quantile DDSketch [40] 4.29× 0.92×
Multi-Key CocoSketch [16] 37.25× 1.01×

General
UnivMon [12] 13.55× 2.63×

ElasticSketch [13] 14.03× 0.93×

Table 1: Applicability of the OctoSketch on latest sketches

and one aggregator for answering queries and overall control.
By default, we allocate each worker and aggregator a separate
core/thread. Thanks to the lightweight design of OctoSketch,
one aggregator is sufficient to achieve online accuracy (§7).
There is also a shared buffer for workers and aggregators to
prevent inter-thread message losses from bursts.
Data ingestion in the workers: Each worker is a monitoring
program running in a CPU core that is responsible for process-
ing its own portion of the traffic from a NIC Rx queue and
maintaining relevant sketch data structures (e.g., hash-indexed
counter arrays) for later aggregation. In OctoSketch, the goal
of the workers is to provide timely and accurate counter up-
dates to the aggregator to answer queries, while minimizing
the CPU and memory footprints. When the worker sends an
update to the aggregator, it will insert the update into a shared
buffer. Unlike prior work that sends the entire sketch as an
update, OctoSketch adapts to actual workloads and sends only
lightweight, change-based counter updates (∆s). We describe
this distributed update mechanism in detail in §4.1.
Query estimation in the aggregator: The aggregator fetches
updates from all workers via the shared buffer and updates
its own aggregated data structures to compute the statistics
of interest. We describe the aggregation procedure in detail

1624 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Ideal Accuracy

Line Rate
Better

Merge

Ours

Figure 6: Online accuracy vs. throughput

in §4.2. The query results will then be shared with other
software processing libraries or online applications for their
management purposes.
Supported sketches (Table 1): OctoSketch is a general
framework that support all linearly mergeable sketches and
thus can answer a broad spectrum of sketch-based queries. To
demonstrate the performance of OctoSketch, we apply OctoS-
ketch to 9 popular sketches as shown in Table 1. We note that
OctoSketch cannot make sketches that are fundamentally not
mergeable (e.g., RAP [41] for detecting heavy hitters) work
in the multicore scenario.

3.2 Key Ideas
To realize the OctoSketch workflow, we have three key ideas.
By leveraging these ideas, OctoSketch can achieve near-ideal
online accuracy and line-rate throughput, outperforming the
baseline solution as summarized in Figure 6.

Idea 1: Adopting a continuous, change-based mechanism
where each worker only sends “sufficiently changed”
counters to the aggregator.

This idea achieves significantly better online accuracy com-
pared to merging sketches (e.g., all the sketch counters and the
corresponding flow key storage). The fundamental reason be-
hind the inefficiency of sketch-merge is that if we look at the
value of each counter, not all counters are equally important
to query accuracy. Due to the skewness of the network work-
load, the counter values in the sketch are also heavy-tailed.
As shown in Figure 7, if we use the Count-Min sketch to find
heavy hitters, more than 80% of the counter values do not
change in the aggregator, while there are also counters whose
changes are larger than 103. In other words, the aggregator
and the workers waste most computations to merge counters
which are not important and delay the updates from important
counters.

Inspired by prior change-based solutions [42–45], OctoS-
ketch essentially “amortizes” a large sketch merging opera-
tion into a series of individual counter change notifications
to achieve online accuracy. Each notification only contains
the counters that changed above a threshold. In this way, we
can save the computation of merging small counters and use
the resources for merging large counters more frequently. In

other words, we only send counters with the most critical
informational value for online accuracy. Our analysis in §5
shows that estimation accuracy is bounded by a certain range
from ideal accuracy.

Compared to prior change-based designs with hash tables
or other deterministic structures, OctoSketch aims to enable
the use of diverse sketches for efficient multicore monitoring
by addressing several additional challenges. First, sketches
introduce extra errors on top of the errors caused by the
change-based updates. The change thresholds must be de-
termined based on the unified error bounds. Second, there are
several key parameters regarding the sketch data structures
and communication between different parties. We need to
dynamically fine-tune the parameters to allocate the resources
among workers and aggregators for various objectives. Third,
for different sketches, we need to analyze and reconstruct the
data structures for better performance.

Idea 2: Adaptive resource allocation between workers and
aggregator under various objectives.

With Idea 1, OctoSketch provides an improved tradeoff
between communication and online accuracy. As a multi-
core system, a key question is how OctoSketch can allocate
resources among workers and aggregator to meet various
system objectives. For instance, an example objective is to
achieve the best possible online accuracy with a fixed CPU
budget (e.g., 50%). Users can also specify an accuracy require-
ment (e.g., 95%) while the objective is to minimize total CPU
utilization. To meet these objectives, we adaptively allocate
resources using dynamic counter change thresholds based on
traffic rates. In particular, we set a universal threshold for all
workers to adjust the resources: (1) When the packet arrival
rate on a worker is high, the counter changes are significant,
and the worker needs to send updates via the work-aggregator
channel. (2) When the packet arrival rate is low, the worker
does not send updates until sufficient counter changes are
made, saving worker/aggregator resources for other worker-
aggregator channels.

Therefore, to achieve the best possible online accuracy, the
aggregator just needs to poll counter updates from workers
(via concurrent queues) as much as possible within a CPU
limit. When the queue length is small, the aggregator will
decrease the threshold to receive more frequent counter up-
dates. If we only want to fulfill an accuracy requirement that
is lower than the best possible accuracy, we can derive a fixed
threshold to meet the error bound based on the analysis in §5.

Idea 3: Reconstructing workers and aggregator to remove
redundant data structures.

To scale to multiple cores, prior solutions need to main-
tain flow key storage in each worker and aggregator, which
is compute-heavy (as shown in §2.2). We observe that Idea
1 and 2 enable the opportunity to reconstruct sketches and
remove flow key storage in the workers. Specifically, since

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1625

0 1~10 11~100 101~1000 >1000
Counter Value

10
−3

10
−2

10
−1

10
0

P
ro

ba
bi

lit
y

0.82

Figure 7: Counter value distribution when sketch-merge

Symbol Description
k the number of workers
τ the threshold shared by all workers
e the flow key of a packet

f (e) the real size of flow e
f̂ (e) the estimated size of flow e
d the number of arrays in the sketch
l the number of counters in each array

hi(.) the hash function for the ith array
Ci[j] the jth counter in the ith array

q j the shared queue between worker j
and aggregator

Table 2: Symbols and notations

the traffic statistics are calculated based on aggregated flows,
only the aggregator needs to keep a flow key storage and the
workers can remove their flow key storage. Therefore, each
worker eliminates the performance bottleneck of maintaining
complex data structures (e.g., heap) and only sends potential
heavy flow keys to the aggregator. Due to the efficient contin-
uous, change-based mechanism, the counter and key updates
will not create additional burdens on the aggregator.

4 Detailed Design
In this section, we first use the Count-Min sketch [10] as an
example to describe how OctoSketch works in both workers
(§4.1) and the aggregator (§4.2). Then, we extend the design
of OctoSketch to other sketches. We summarize the frequently
used symbols and notations in Table 2.

4.1 Worker
Data structure: In each worker, OctoSketch maintains a
Count-Min sketch with d arrays of l counters without flow
key storage. Since OctoSketch guarantees that all counters
in every worker are always smaller than a given threshold τ

(e.g., 128), we only need ⌈logτ⌉ bits (e.g., 8) for each counter
instead of using 32-bit counters. Thus, we can effectively
save 4×memory without losing accuracy. In our experiments,
we find that setting τ to 128 is often sufficient to handle the
highest achievable throughput (≈ 1400Mpps) for 16 workers.
Sketch insertion: Algorithm 1 describes how to insert a
packet into each worker. The original operations of the Count-

Algorithm 1: Sketch insertions on worker j.
Input: A packet with flow key e

1 foreach i (1 ⩽ i ⩽ d) do
2 Ci[hi(e)]←Ci[hi(e)]+1;
3 if Ci[hi(e)]⩾ τ then
4 q j.enqueue(e, i,hi(e),Ci[hi(e)]);
5 Ci[hi(e)]← 0;
6 end

Min sketch are shown in black color, while the newly added
operations by OctoSketch are shown in green color. In Line
3-5, when the Count-Min sketch updates a counter in each
of its arrays, the worker will check whether the counter is
larger than the threshold τ. If the counter value is above τ in a
packet insertion, the worker generates a message containing
a vector of <the flow key of the packet, the row and column
indices of the counter, and the counter value> and pushes
it into a concurrent queue between worker and aggregator.
Each worker has a corresponding queue to avoid competition
among workers, and the counter will be cleared out.

Figure 8 illustrates an example of the insertion step. To in-
sert packet e1, the worker first updates a counter in each array.
Because the accessed counter in the second array is larger
than the threshold 10, OctoSketch pushes the tuple <the flow
key (e1), the 2D counter index (the 2nd array, the 4th counter),
counter value (10)> into the shared buffer and sets the counter
to 0. While the aggregator can get the counter index via hash-
ing the flow key, we choose to send the index directly to
reduce the hash computation cost for the aggregator.

4.2 Aggregator
Data structure: The aggregator needs to maintain a d× l
Count-Min sketch that is same-sized as other sketches in the
workers, and a min-heap to record heavy flow keys.

Algorithm 2: Sketch insertions on the aggregator.

1 foreach i (1 ⩽ i ⩽ k) do
2 (e, j, p,V)← qi.dequeue();
3 C j[p]←C j[p]+V ;
4 if C j[p]> heap.min then
5 f̂ (e)←mink∈[d]Ck[hk(e)];

6 heap.insert
(

e, f̂ (e)
)

;

7 end

Insertion to the aggregated sketch: As shown in Algorithm
2, the aggregator keeps polling the items (the 4-tuple) from
the k shared (concurrent) queues. For each item from the
queue, the aggregator first updates the corresponding counter
based on the index and value, and then updates the flow key
heap. If the new counter is larger than the minimum value
recorded in the heap, the aggregator will obtain the estimated

1626 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

! → #
Packet

$ +&

One of Workers

3 hashes
ℎ!, ℎ$, ℎ#

+!

' +&

! + & ≥) = &#

Shared queue Aggregator

+! , 2, 4 , 10

flow key counter value

counter index
Min-Heap

Update heap
with (+!, 96)

+, -! = !.

push
/.

&#'

!$

fetch
+&#

Figure 8: The insertion step in OctoSketch

Threshold

Shared queues

……

Read Write =%&! = =% + 1

Aggregator

Q
ue

ue
 le

ng
th

Time window
0 − 1 0

3"#$4
Worker 1

Workers

……

Send counters which are
larger than the threshold

Target queue
length

Increase threshold to decrease
sending rate and queue length

Worker 2

Worker k

1 + 5 ⋅ 3

1 − 5 ⋅ 3
0 + 1

3"

+3"%$

Figure 9: Adaptive thresholds

flow size e based on the query method of the Count-Min
sketch (minimum counter value in the d accessed counters)
and insert e into the heap. For example, as shown in Figure 8,
if a tuple < e1,2,4,10> is in the shared queue, the aggregator
will increase the 4th counter in the 2nd array by 10. Note if
the counter after updating is larger than the minimum value
record in the heap, the aggregator will update the heap with
the tuple (e1,96), where 96 is the estimated size of e1.

4.3 Resource Allocation
We conceptually consolidate k workers as a single worker
and k shared queues as a single queue to address the resource
allocation problem. All k workers share the same threshold
τ. The threshold is an atomic value. Ideally, the aggregator
should adjust the threshold τ to match its receive rate with the
total sending rate of k workers. Different from a distributed
system where servers are interconnected by the network, the
aggregator in a single server can quickly access the variables
of other cores and obtain a global view to adjust the threshold.

The aggregator periodically modifies the threshold (e.g.,
every 100µs). To ensure that the total queue length is small, the
aggregator should set a target queue length Q (e.g., 10). 2 For
each time window t, the aggregator measures the total queue
length Qt as a reference mark for adjusting the threshold. We
assume the sending rate is stable in that short period, so we
can predict the queue length for the next time window based
on the previous one. Specifically, as shown in Equation 1,
according to Qt−1 and Qt , we calculate the expected queue

2The target queue length should be larger than 0. Otherwise, the aggrega-
tor tends to keep increasing the threshold to ensure that the sending rate is
always lower than the receiving rate.

length Q̂t+1 for the next time window t +1 corresponding to
the threshold τ.

Q̂t+1 = Qt +(Qt −Qt−1) (1)

As shown in Equation 2, if the expected queue length Q̂t+1
is too small, the aggregator will decrease the threshold to
increase the send rate and the queue length; if Q̂t+1 is too
large, the aggregator will increase the threshold to decrease
the queue length.

τt+1 =

τt −1, Q̂t+1 < (1−α) ·Q
τt +1, Q̂t+1 > (1+α) ·Q
τt , Otherwise

(2)

Policies for resource allocation:
• Best possible accuracy: The policy we describe above can

make OctoSketch quickly adapt to dynamic packet arrival
rates. However, it will use up 100% of CPU resources in
the aggregator to improve accuracy as much as possible,
which may not be ideal. Alternatively, we can consider two
additional policies to reduce the aggregator CPU utilization.
• Optimizing CPU usage for an accuracy target: As we will

prove in §5, the error bound of OctoSketch depends on the
threshold τ. Based on an accuracy target, we can calculate
the corresponding threshold τ′ based on Equation 3 and
set it as the lower bound of the threshold. In particular, the
threshold will not decrease if it is smaller than τ′. In this
policy, we can free up some extra computation resources
when there is not much traffic.
• Setting CPU usage limit: We can also add a scheduling

policy that forces the aggregator to use at most p% (e.g.,
50%) of the CPU. We leverage the Linux program CPU
limit [46] to monitor and control CPU usage within p%.

4.4 Extension to Other Sketches
With some additional considerations, we can apply OctoS-
ketch to a broad spectrum of sketches. In this work, we con-
sider 8 additional sketches and scale them into multiple cores
with OctoSketch. We summarize the key point of applying
OctoSketch to these sketches and defer the details of each
sketch to Appendix C.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1627

Supporting sketches for estimating Cardinality: The
merging process of cardinality-related sketches (e.g., Hyper-
LogLog [39], Locher sketch [29]) is different from the Count-
Min sketch. Given the received counter A and the correspond-
ing counter B in the aggregator, instead of summing up the
counters, these sketches should set B = Max(A,B). To apply
OctoSketch to these kinds of sketches, every time the counter
is updated, the worker never zeros it out but only sends the
counter whose value change is large enough to the aggregator.
Take HyperLogLog as an example. If the counter before up-
dating is C and is C′ after updating, the worker will send the
counter if

∣∣∣2C−2C′
∣∣∣ ⩾ 2τ. We use 2C instead of C, because

the estimation provided by the HyperLogLog is based on the
2C, which is the same as that of LogLog and Locher sketch.
In Appendix B, we prove that, after applying OctoSketch, the
cardinality-related sketches can achieve the same accuracy as
the ideal one if the cardinality is sufficiently large.
Handling counters with flow keys: Unlike Count-Min sketch
where the sketch structure only contains counters, some com-
plex sketches (e.g., CocoSketch [16] and Elastic sketch [13])
has a flow key corresponding to every counter. For these
sketches, OctoSketch will send both the key and the counter
to the aggregator and set the counter to zero if the counter is
large enough. For each <key, counter> pair, the aggregator
inserts the key into the sketch using the same insertion logic
as the original sketch.
Handling negative counter values: For sketches such as the
Count Sketch [11] and UnivMon [12], each counter value
can be positive or negative. For these sketches, when OctoS-
ketch checks whether the counter is large enough, we use the
absolute value instead.
Benefits of applying OctoSketch (Table 1): The actual bene-
fits vary among sketches as shown in Table 1. The throughput
benefit of OctoSketch often comes from the heavy key storage.
Because some sketches (e.g., ElasticSketch [13]) proposed
their own heavy key storage to speed up, OctoSketch cannot
further optimize their throughput. The throughput may de-
crease due to the additional overhead of the concurrent queue.
However, such a gap is often small (< 10%), and OctoSketch
can still improve their accuracy.

5 Analysis
In this section, we first show that, after applying OctoSketch,
sketches can still achieve the same error bounds as that of
the ideal accuracy after receiving enough packets. Then, we
analyze the tradeoff between online accuracy and commu-
nication cost. We prove that OctoSketch requires up to four
orders of magnitude fewer worker-aggregator messages than
prior sketch-merge approach for the same accuracy.

5.1 Error Bound
We show the error bound of OctoSketch for the Count-Min
sketch in this section. The detailed proofs and analysis of Oc-

toSketch for Count sketch and HyperLogLog are deferred to
Appendix B. These three sketches provide three typical kinds
of accuracy guarantees which are also used by other sketches
(e.g., Elastic sketch, Locher sketch, and UnivMon). To ana-
lyze the worst-case guarantee, we assume that the threshold
is always τmax and denote τ≡ τmax.

Let f̂ (e) be the estimated flow size of flow e for OctoSketch,
f (e) be the real flow size of flow e, k′ be the maximum number
of workers that a flow may pass by, and L1 = ∑e f (e) which
is the total number of packets in the traffic.
Theorem 1. For OctoSketch for Count-Min sketch, let d =
log2 δ−1 and l = 2ε−1. For any flow e and any traffics whose
L1 > ε−1k′τ,

Pr
[∣∣∣ f̂ (e)− f (e)

∣∣∣> εL1

]
< δ (3)

Proof sketch: Suppose that f̂ ′(e) is the estimated size of
the Count-Min sketch working in a single core. Note that∣∣∣ f̂ (e)− f (e)

∣∣∣ ⩽ ∣∣∣ f̂ ′(e)− f (e)
∣∣∣ + ∣∣∣ f̂ (e)− f̂ ′(e)

∣∣∣, where the

first part
∣∣∣ f̂ ′(e)− f (e)

∣∣∣ is the original error from the Count-

Min, while the second part
∣∣∣ f̂ (e)− f̂ ′(e)

∣∣∣ is the additional
error brought by OctoSketch. For the first part, we can reuse
the result in the paper of Count-Min sketch [10]. The analy-
sis of the additional error caused by OctoSketch is shown in
Appendix B. We show that such an additional error is finally
marginal compared with that of the Count-Min sketch.
Interpretation: This theorem shows that OctoSketch can
still achieve the same asymptotic error bounds as perform
sketches in a single location after receiving enough packets.
The number of packets depends on the maximum number of
workers a flow may pass by (k′) and the threshold of each
worker (τ). In our experiments, setting τ to 27 is enough to
achieve around 1400Mpps for 16 workers. In that case, after
receiving 1M packets, OctoSketch can guarantee the same
asymptotic error bounds for ε > 2−9 ≈ 0.2%. Note that flows
may not appear on all 16 workers. If each flow is distributed to
most two workers (i.e., k′ = 2), after 1M packets, OctoSketch
can guarantee the same error bounds of ε > 2−12 ≈ 0.024%.
Moreover, using this theorem, we can also compute the re-
quired threshold τ based on the accuracy requirement ε, trace
length L1, and k′. Specifically, we can set the threshold as
τ = εL1

k′ (4).

5.2 Communication and Accuracy tradeoff
We want to guarantee that the accuracy of the aggregated
result over multiple cores is close to the ideal accuracy. We
first formally define this accuracy goal in the following.
Definition 1 (Accuracy Goal). Given a sketch S1 which works
in a single core and a sketch S2 which is the aggregated result
over multiple cores, suppose that f̂i(e) is the estimated flow
size of e for sketch Si. We want to ensure that, at any time,

1628 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

for any flow e,
∣∣∣ f̂1(e)− f̂2(e)

∣∣∣ < ∆, where ∆ is a predefined
parameter.

Note that the cost to achieve the accuracy goal varies for
different sketches. In this section, we use the Count-Min
sketch [10] and Count sketch [11] as a case study to show
the superiority of OctoSketch over sketch-merge. To calculate
the cost, we consider the number of counters the aggregator
should process to achieve the accuracy goal. Suppose that for
the Count-Min/Count sketch in each worker and the aggrega-
tor, there are d arrays, each with l counters.
Theorem 2. To achieve the accuracy goal, sketch-merge
needs to send O

(
∆−1k ·N ·dl

)
counters, while OctoSketch

needs to send O
(
∆−1k ·N ·d

)
counters.

Interpretation: We can see that OctoSketch needs to send l
times fewer counters to achieve the accuracy goal compared to
sketch-merge. In prior work [12,13], there are often more than
thousands of counters in each array, i.e., l > 103. Therefore,
OctoSketch can send much fewer counters to achieve the same
accuracy guarantee. Note that the computation cost needed in
the aggregator is proportional to the number of counters sent.
It also validates our experimental results that sketch-merge
needs too much computation to achieve the similar accuracy.
In experiments, we set d = 3 and l = 216. If we set ∆ to 100,
for 16 workers (k = 16), OctoSketch needs to send at most
0.48N counters to achieve the accuracy goal, i.e., OctoSketch
only needs to send at most 1 counter to the aggregator per
2 packets. Meanwhile, sketch-merge needs around 3× 104

counters per packet to achieve the same accuracy.

6 Implementation
We implement OctoSketch using C++ and use xxHash [47] as
the hashing library. All experiments are run on CloudLab [48].
We have open-sourced the artifact on GitHub [49].
Shared buffer: We use the concurrent queue [50] to be
the shared buffers between workers and the aggregator. The
queue is lock-free and uses atomic operations to achieve high
throughput. In addition, it can dynamically allocate memory
according to the number of items in the queue.
CPU: We implement OctoSketch on a machine with an AMD
EPYC 7452 32-Core Processor at 2.35GHz and 128 GB ECC
memory. We pre-process the input traces and distribute them
to different workers. Each worker only needs to read the
flow keys in memory and insert them into the sketch. In that
way, we can focus on measuring the performance of sketches
without the impacts from other applications.
DPDK: We also integrate OctoSketch with DPDK (version
21.11) [24]. Each OctoSketch worker is integrated with the
polling mode thread in DPDK. Our testbed has two servers
that are the same as the CPU implementation. Each server is
equipped with a Mellanox ConnectX-5 Ex 100G NIC [26].
One server generates high-speed TCP traffic using pktgen-
dpdk, while another server runs DPDK to receive packets and
process them using OctoSketch. We use multiple cores to

receive packets. Each worker corresponds to one core and one
Rx queue, and it should extract packets from the Rx queue
and insert them into the sketch. Thus, we can measure the
overhead of sketches compared with DPDK.
eBPF XDP: We also integrate OctoSketch with XDP [25]
in Linux kernel 5.15.0 using SKB mode. Our testbed has
two servers that are the same as the DPDK implementation.
We load the OctoSketch worker into the kernel to process
packets, and the aggregator works in the user space. We use
the bpf_ringbuf provided in the XDP library to send data
from kernel space to user space. Note that in our setting, we
cannot implement sketch-merge as it needs to send too much
data (the whole sketch and heavy flow keys) at a time.

7 Evaluation
Our experiments compare the OctoSketch to the baseline
sketch-merge approach and demonstrate that:
• OctoSketch can always maintain high online accuracy at

any query time.
• OctoSketch can achieve high throughputs on all tested plat-

forms, and it scales linearly with the number of workers.
• OctoSketch can achieve high resource efficiency on a repre-

sentative high-performance packet processing library (Intel
DPDK).

7.1 Experimental Methodology
Traces: We mainly use two datasets:
• We use CAIDA traces [37] collected in the Equinix-

Chicago monitor in 2018 in for our experiments by default.
We use <Source IP, Destination IP> as the flow key.
• We generated 11 datasets that follows the Zipf [51] distri-

bution with various skewness using Web Polygraph [52].
Metrics: We evaluate the following six performance metrics.

• Absolute Error: 1
|Q| ∑e∈Q

∣∣∣ f (e)− f̂ (e)
∣∣∣, where f (e) is the

real size, f̂ (e) is the estimated size, and Q is the query set.

• Relative Error: 1
|Q| ∑e∈Q

| f (e)− f̂ (e)|
f (e) , where f (e) is the real

value, f̂ (e) is the estimated value, and Q is the query set.
• Recall Rate: The ratio of the number of correctly reported

flows to the number of correct flows.3

• Miss Rate: The ratio of the number of missing correct flows
to the number of correct flows, which is 1−RR.
• Precision Rate: The ratio of the number of correctly re-

ported flows to the number of reported flows.
• F1 Score: F1 Score is 2 · (RR ·PR)/(RR+PR), where RR

is the recall rate, and PR is the precision rate.
• Throughput: For CPU, we use million insertions per second

(Mips). For DPDK and XDP, we use million packets per
second (Mpps). The throughput numbers are the average
value among 100 trials.

3Correct flows are the real heavy hitters in the traffic, and correctly re-
ported flows are the real heavy hitters in the reported ones.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1629

5 10 15 20 25
Number of Packets (×106)

0.2

0.4

0.6

0.8

1.0

R
ec

al
l R

at
e

Ideal
Merge

OctoSketch
Iceberg

(a) Recall Rate

5 10 15 20 25
Number of Packets (×106)

0.90

0.92

0.94

0.96

0.98

1.00

Pr
ec

is
io

n
R

at
e

Ideal
Merge

OctoSketch
Iceberg

(b) Precision Rate

5 10 15 20 25
Number of Packets (×106)

0

500

1000

1500

A
bs

ol
ut

e
Er

ro
r

Ideal
Merge

OctoSketch
Iceberg

(c) Absolute Error

5 10 15 20 25
Number of Packets (×106)

0.0

0.1

0.2

R
el

at
iv

e
Er

ro
r

Ideal
Merge

OctoSketch
Iceberg

(d) Relative Error

Figure 10: Accuracy of Count-Min Sketch at different query time.

Sketches: We apply OctoSketch to all 9 sketches in Table 1.
Due to space limitations, we show 4 representative sketches
in this section: Count-Min Sketch [10] for detecting heavy
hitters, Locher Sketch [29] for measuring super-spreaders,
CocoSketch [16] for arbitrary partial key queries, and Univ-
Mon [12] for generic flow monitoring.
Baselines: (1) Ideal accuracy is the accuracy of the sketch
that works in a single core and measures the whole traffic. (2)
Sketch-merge is merging the entire sketches as shown in §2.2.
(3) Iceberg [53] uses the Count-Min sketch to find global
heavy hitters. Instead of utilizing the sketch mergeability, Ice-
berg only uses the Count-Min sketch as a local heavy hitter
estimator. Each worker in the Iceberg only sends the local
heavy flow keys to the aggregator. The aggregator will ask
every other worker for the statistics of these flow keys and
aggregate the result. Once all worker answers, the aggrega-
tor can decide on the global heavy hitters. As shown in its
paper [53], such a multi-round communication can reduce
communication overhead.
Parameters: We refer to the individual paper to configure the
sketch parameters [10, 12, 13, 16, 29]. For instance, in Count-
Min sketch and Locher sketch, we use 3 arrays of 216 counters
per array. For CocoSketch, we use 2 arrays as suggested in
their paper, and there are 216 buckets per array. We describe
the detailed parameters and configurations in Appendix D.1.

7.2 Online Accuracy
F1 scores at different query times (Figure 10a-10b&20):
The F1 Score of OctoSketch is often close to the ideal ac-
curacy and is 36.5% higher than sketch-merge. The sketch-
merge needs to wait longer to get the sketches from all work-
ers and converge to a relatively accurate result. Therefore, its
F1 score is often lower than 0.5 before processing 5 million
packets. Then we look at the recall (Figure 10a) and precision
(Figure 10b) of the F1 score, respectively. The recall of Oc-
toSketch is usually lower than the ideal accuracy, while the
precision is often higher. It is because the counter in the ag-
gregator is often smaller than that of the ideal accuracy since
there is some information left in each worker. As a result,
OctoSketch tends to underestimate compared to the ideal ac-
curacy, resulting in a higher precision but a lower recall. The

2 4 6 8 10 12 14 16
Number of Workers

0.0

0.2

0.4

0.6

M
is

s
R

at
e

Ideal
Merge

OctoSketch
Iceberg

(a) Accuracy vs. # of workers

0.6 1.2 1.8 2.4 3.0
Skewness

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

at
e

Ideal
Merge

OctoSketch
Iceberg

(b) Accuracy vs. Skewness

Figure 11: Accuracy with different parameters

10 20 30 40
Number of Packets (×106)

0.0

0.1

0.2

0.3

0.4

R
el

at
iv

e
Er

ro
r

Skew
0.3

Skew
3.0

Skew
1.5

Skew
0.9

Skew
2.4

Ideal Merge OctoSketch

Figure 12: Dynamically changing workloads

recall rate of Iceberg is around 54% lower than OctoSketch.
Its recall rate is low because the multi-round communication
to all workers increases the delay (staleness) in the aggregator,
which makes the aggregator miss many heavy flows.
Errors at different query times (Figure 10c-10d&21): Oc-
toSketch can keep low errors in any query time. The gap be-
tween the relative error of OctoSketch and the ideal accuracy
is often less than 0.05 and continues to decrease with more
packets received, which matches our theoretical analysis in
§5.1. The relative error of sketch-merge is 15.6× larger than
OctoSketch, and its absolute error is 41.9× larger than Oc-
toSketch. In addition, the accuracy of sketch-merge changes
significantly over time: error drops abruptly once the aggrega-
tor merges a sketch, and keeps increasing until the aggregator
merges another one. In contrast, OctoSketch’s continuous
mechanism maintains stable accuracy. The relative error of
Iceberg is 2.6× larger than OctoSketch.

1630 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 4 6 8 10 12 14 16
Number of Workers

0

400

800

1200

Th
ro

ug
hp

ut
 (M

ip
s)

Merge
Iceberg

OctoSketch

(a) Count-Min Sketch

2 4 6 8 10 12 14 16
Number of Workers

0

200

400

600

Th
ro

ug
hp

ut
 (M

ip
s)

Merge OctoSketch

(b) Locher Sketch

2 4 6 8 10 12 14 16
Number of Workers

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 (M

pp
s)

Merge OctoSketch

(c) CocoSketch

2 4 6 8 10 12 14 16
Number of Workers

0

100

200

300

400

Th
ro

ug
hp

ut
 (M

ip
s)

Merge OctoSketch

(d) UnivMon
Figure 13: Throughput on CPU

Accuracy with different numbers of workers (Figure 11a):
The miss rate of sketch-merge on the Count-Min sketch in-
creases when scaling to more workers. It is because the time
it takes to merge sketches in the aggregator has to increase
as the number of workers increases. With 16 workers, the
miss rate of sketch-merge for the Count-Min sketch is around
14.7× larger than that of OctoSketch, while the difference
between the miss rate of OctoSketch and the ideal one is less
than 2%. The Iceberg algorithm uses multi-round communica-
tion, which further increases the complexity and waiting time
of the aggregator. As a result, its miss rate is around 12.0×
larger than sketch-merge and 70.3× larger than OctoSketch.
Accuracy with different skewness (Figure 11b): OctoS-
ketch for the Count-Min sketch achieves low miss rates on dif-
ferent skewnesses, while the error of sketch-merge increases
with increasing skewness. It also verifies our statement shown
in §3.2 that sketch-merge is not friendly to heavy-tailed work-
loads. The miss rate of sketch-merge is around 9.1× larger
than OctoSketch, while the miss rate of Iceberg is around
21.0× larger.
Dynamically changing workloads (Figure 12): We simulate
dynamic workloads by combing five datasets with different
skewness (0.3→ 3.0→ 1.5→ 0.9→ 2.4). We find that Oc-
toSketch for the Count-Min sketch is robust to dynamically
changing workloads and maintains similar accuracy to the
ideal. However, we note that OctoSketch does not address
the inherent accuracy issues of the sketches. If the original
sketch used is not capable of handling dynamically changing
workloads, OctoSketch does not mitigate this limitation, but
does not worsen the accuracy. Nevertheless, we observe that
many sketches [10, 11, 13, 39] tend to exhibit a certain level
of robustness to such dynamic workloads.

7.3 Throughput
CPU Throughput (Figure 13): OctoSketch achieves high
CPU throughput and scales well with more workers. In the
Count-Min sketch, with 16 workers, OctoSketch can achieve
around 1400Mips. The multi-round communication in Iceberg
increases the computation overhead of each worker and thus
decreases the throughput. The throughput of Iceberg is around
1.4× lower than sketch-merge and 5.3× lower than OctoS-
ketch. Compared to sketch-merge, OctoSketch can achieve

3.85×, 4.5×, and 2.63× higher throughput for Count-Min
sketch, Locher sketch, and UnivMon, respectively. It is worth
noting that the throughput of OctoSketch can sometimes in-
crease faster than linear scaling with more workers. This is
because the counter update threshold may also increase with
more workers. Therefore, each worker costs less to send coun-
ters and the total throughput increases faster. For CocoSketch,
due to the extra overhead of OctoSketch to send counters, the
throughput sometimes is slightly lower than sketch merge,
but the gap between them is less than 10%.
DPDK Throughput (Figure 14): OctoSketch achieves high
throughput in DPDK. For the six tested sketches, OctoSketch
can often reach ≈100Mpps with 10 workers. Sketch-merge
often needs at least 2 more workers to achieve similar through-
put as OctoSketch for Count-Min sketch, Locher sketch, and
UnivMon. Specifically, OctoSketch accelerates the Locher
sketch to achieve 97.0Mpps in 8 workers, while sketch-merge
only achieves 61.3Mpps using 10 workers. One exception
is CocoSketch: the throughput of OctoSketch is similar to
that of the sketch-merge. This is because CocoSketch does
not need additional heavy key storage, and thus OctoSketch
does not further optimize throughput. Iceberg reaches only
32.9Mpps with 10 workers, because Iceberg needs multiround
communication between the aggregator and all workers and
additional workers can bring communication overheads.
eBPF XDP Throughput (Figure 15): As we cannot imple-
ment sketch-merge in XDP as shown in §6, we compare the
throughput of OctoSketch to that of the XDP with sketches.
The throughput of OctoSketch scales linearly with the number
of workers. The throughput of OctoSketch with the Count-
Min sketch is about 85% of the XDP, and the throughput of
OctoSketch with the CocoSketch achieves 92% of the XDP.

7.4 CPU Utilization and Stability
In this experiment, we show how OctoSketch can quickly
adapt to varying packet arrival rates in DPDK.
CPU usage (Figure 16): The sketch CPU utilization is often
reduced after applying OctoSketch. For the Count-Min sketch,
the CPU usage of OctoSketch is around 1.75 and 3.34 times
lower than sketch-merge and Iceberg, respectively. As shown
in §7.3, OctoSketch incurs more CPU cycles when applied
to CocoSketch due to the cost of sending counters. But the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1631

2 4 6 8 10
Number of Workers

0

25

50

75

100

Th
ro

ug
hp

ut
 (M

pp
s)

DPDK
Merge

OctoSketch
Iceberg

(a) Count-Min Sketch

2 4 6 8 10
Number of Workers

0

25

50

75

100

Th
ro

ug
hp

ut
 (M

pp
s)

DPDK
Merge

OctoSketch

(b) Locher Sketch

2 4 6 8 10
Number of Workers

0

25

50

75

100

Th
ro

ug
hp

ut
 (M

pp
s)

DPDK
Merge

OctoSketch

(c) CocoSketch

2 4 6 8 10
Number of Workers

0

25

50

75

100

Th
ro

ug
hp

ut
 (M

pp
s)

DPDK
Merge

OctoSketch

(d) UnivMon

Figure 14: Throughput on DPDK

2 4 6 8 10
Number of Workers

5

10

15

20

Th
ro

ug
hp

ut
 (M

pp
s)

XDP OctoSketch

(a) Count-Min Sketch

2 4 6 8 10
Number of Workers

5

10

15

20

Th
ro

ug
hp

ut
 (M

pp
s)

XDP OctoSketch

(b) CocoSketch

Figure 15: Throughput on XDP

2 4 6 8 10 12 14
Number of Workers

0.2

0.4

0.6

0.8

1.0

C
PU

 U
sa

ge

Merge
Iceberg

OctoSketch

(a) Count-Min Sketch

2 4 6 8 10 12 14
Number of Workers

0.1

0.3

0.5

0.7

C
PU

 U
sa

ge

Merge OctoSketch

(b) CocoSketch

Figure 16: CPU usage on DPDK

difference in CPU usage is usually less than 7%. Note that the
CPU usage of sketches often decreases with more workers
because the overhead of performing packet processing under
DPDK will be increased when dealing with large volumes
of traffic. The CPU usage of Iceberg increases with more
workers due to the extra multi-round communication between
workers and the aggregator.
Packet processing latency (Figure 17): We measure the
latency needed for the Count-Min sketch in mini-batches (32
packets). We do not show per-packet latency as it is too fine-
grained (≈ 10ns) for servers to measure. As shown in Figure
17a, for OctoSketch, more than 65% of the batches can be
finished in 0.5µs, and over 98% of batches can be finished in
1µs. Moreover, the median latency of sketch-merge is around
3 times larger than that of the OctoSketch. Figure 17b shows
that sketch-merge has larger jitters than OctoSketch. Every
time sketch-merge creates a new sketch, there will be frequent

0.5 1.0 1.5 2.0 2.5
Latency per Batch (μs)

0.00

0.25

0.50

0.75

1.00

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Merge OctoSketch

(a) CDF of Latency

0 1000 2000 3000
Batch ID

1

2

La
te

nc
y

(μ
s)

Merge OctoSketch

(b) Mini-batch Latency

Figure 17: Latency on DPDK

sketch and flow key operations in the next few batches, leading
to large latency. The jitters in OctoSketch are mainly caused
by the atomic operations in the concurrent queue. Overall, the
latencies and jitters in OctoSketch are significantly smaller
than those of sketch-merge.
Adaptive thresholds (Figure 18): To illustrate the adaptive-
ness of OctoSketch, we use 10 workers to run Count-Min
sketches with DPDK, set the lower bound of the thresholds
to 8, and dynamically change the packet arrival rate. The up-
per figure shows that OctoSketch can quickly adapt to the
varying arrival rates of packets. Moreover, we notice that the
highest threshold used is still smaller than 20, i.e., 8-bit is
enough for each counter. The bottom figure shows the total
queue length of the 10 shared queues. We find that the large
queue length is often caused by the threshold decrease. Even
if the packet arrival rate is stable, OctoSketch will still dy-
namically adjust the threshold. Sometimes, the threshold is
too low, leading to a longer queue. However, OctoSketch can
quickly adjust the threshold to decrease the queue length. We
can see the queue length is relatively stable around the target
length and is usually well below 400. Therefore, the size of
the shared buffer needed by OctoSketch is often smaller than
10KB. Such a size is much smaller than that of the sketch-
merge. For sketch-merge, we need at least 768KB (the size of
a Count-Min sketch) more memory for merging.

7.5 Case Study: Load balancer
In this section, we show the benefit of OctoSketch for the Intel
dynamic load balancer [35]. We also conduct a case study on
the key-value cache and defer the results to Appendix §D.3.

1632 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Target length

Figure 18: Adaptive thresholds

0 5 10 15 20 25
Number of Packets (×106)

0

100

200

Lo
ad

 im
ba

la
nc

e
(%

)

Merge OctoSketch

(a) Over time

0 1 2 3
Dataset skewness

0

5

10

15

20

Lo
ad

 im
ba

la
nc

e
(%

)

Merge OctoSketch

(b) Over skewness

Figure 19: Load balancer with different monitoring tools.

Initially, all traffic is distributed through RSS (based on hash).
The aggregator aggregates the statistics over multiple cores
and detects large flows. Once a flow is detected as a large flow,
the aggregator sets a flow director rule for this flow in the
network adaptor. Then, the large flow will be redirected and
redistributed to multiple cores with the help of Intel DLB [54]
which maintains the order of packets. In this experiment, we
run simulations on the CPU due to the lack of Intel DLB
hardware support in our testbed and measure load imbalance
rate as the ratio of the number of packets processed by the
most loaded worker relative to the least loaded worker [55].
The ideal imbalance rate should be 0.
Load balance over time (Figure 19a): OctoSketch helps In-
tel load balancer to achieve low imbalance rates. With fewer
than 1M packets, the imbalance rate from OctoSketch is lower
than 10%. However, sketch-merge needs more than 10M pack-
ets to reach a low imbalance rate and its imbalance rate can
be large (> 100%) before that. This is because sketch-merge
spends more time detecting new large flows than OctoSketch,
resulting in more packet losses. Moreover, after processing
more than 20M packets, the imbalance rate of OctoSketch is
still 3.15× lower than that of sketch-merge.
Load balance over skewness (Figure 19b): We also show
the imbalance rates on processing different packet traces with
varying skewness. OctoSketch maintains low imbalance rates
regardless of the skewness, while sketch-merge’s imbalance
rate is about 8.89× larger when the skewness is larger than
1.2. Note that larger skewness does not always lead to larger
imbalances. The imbalance rate also depends on how fast the
algorithm can detect large flows and redistribute them.

8 Other Related work
Mergeability of sketches: As discussed in §2.2, most exist-
ing solutions (e.g., CocoSketch [56], Beaucoup [15], HeteroS-
ketch [20], and FetchSGD [36]) leverage the mergeability to
apply sketches to distributed systems. These works often send
the whole sketch to the aggregator, and the aggregator can get
the aggregated result based on the merged sketch. There are
also some works [57] that try to explore the operations that
can be supported by merge. Specifically, prior works mainly
use merge to get the statistics over union (A∪B), while [57]
discusses how to use merge to support other operations like
intersection, Jaccard similarity, and relative complement.
Continuous monitoring model: In addition to the linear
mergeability [9] discussed in §2.2, there are also theoretical
works about continuous monitoring for distributed systems.
However, some of these efforts [58] assume that every worker
has a lot of resources to record all flow sizes, while some
of them [59, 60] only focus on a specific sketch of a task.
In addition, these works [53] all aim to minimize the total
communication cost, and failed to consider the computation
cost. As shown in §2.2, the main bottleneck in the multicore
scenario is the computation cost.
Real-time telemetry: Timeliness is an important property in
distributed monitoring. Trumpet [61] is an event monitoring
system in which users define network-wide events. There is
a centralized controller which installs triggers at end-hosts
where triggers test for local conditions, and the controller
aggregates these signals and tests for the presence of specified
network-wide events. They use a hash table in each end-host
and assume that the end-host can process all packets with full
accuracy. However, in our high-volume, multicore context,
each core in a server does not have enough computation and
memory resources to do so.

9 Conclusions
Today’s networked applications require multicore packet pro-
cessing and distributed flow monitoring. While sketches have
emerged as a resource-efficient and highly accurate measure-
ment primitive, fundamental limitations remain. Prior dis-
tributed solutions merge sketches from all cores and bring
significant accuracy degradation and resource overhead. In
this paper, we propose OctoSketch to scale sketches to mul-
ticore scenarios using a continuous, change-based mecha-
nism to aggregate multicore measurements. OctoSketch can
be applied to a broad range of sketches and answer various
sketch-based queries. Our evaluation shows that OctoSketch
can achieve significantly higher accuracy and throughput than
prior sketch-merge techniques.
Acknowledgments: We thank the anonymous reviewers and
our shepherd Behnaz Arzani for their thorough comments and
feedback. This work was supported in part by NSF grants
CNS-2107086, SaTC-2132643, CNS-2106946, and the Red
Hat Collaboratory award.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1633

References
[1] Georgios P. Katsikas, Tom Barbette, Dejan Kostic, Re-

becca Steinert, and Gerald Q. Maguire Jr. Metron: NFV
service chains at the true speed of the underlying hard-
ware. In NSDI 2018, pages 171–186. USENIX Associa-
tion, 2018.

[2] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang,
Aurojit Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott
Shenker. E2: a framework for NFV applications. In
SOSP 2015, pages 121–136. ACM, 2015.

[3] Brocade vyatta 5400 vrouter. http:
//www.brocade.com/products/all/
networkfunctions-virtualization/
product-details/5400-vrouter/index.page.

[4] DPDK-Based Load Balancer. https://
dpdksummitapac2021.sched.com/event/hdLm.

[5] Seyed Kaveh Fayaz, Yoshiaki Tobioka, Vyas Sekar, and
Michael Bailey. Bohatei: Flexible and elastic ddos
defense. In USENIX Security 2015, pages 817–832.
USENIX Association, 2015.

[6] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In SOSP 2017, pages 121–136.
ACM, 2017.

[7] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion
Stoica. Distcache: Provable load balancing for large-
scale storage systems with distributed caching. In FAST
2019, pages 143–157. USENIX Association, 2019.

[8] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making stateful layer-4
load balancing fast and cheap using switching asics. In
Proc. of SIGCOMM, 2017.

[9] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang,
Jeff M. Phillips, Zhewei Wei, and Ke Yi. Mergeable
summaries. In PODS 2012, pages 23–34. ACM, 2012.

[10] Graham Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its ap-
plications. J. Algorithms, 2005.

[11] Moses Charikar, Kevin C. Chen, and Martin Farach-
Colton. Finding frequent items in data streams. Theor.
Comput. Sci., 2004.

[12] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring with
univmon. In ACM SIGCOMM, 2016.

[13] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi
Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve
Uhlig. Elastic sketch: adaptive and fast network-wide
measurements. In SIGCOMM 2018, pages 561–575.
ACM, 2018.

[14] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kass-
ner, Vladimir Braverman, Roy Friedman, and Vyas
Sekar. Nitrosketch: robust and general sketch-based
monitoring in software switches. In SIGCOMM 2019.
ACM, 2019.

[15] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman,
and Jennifer Rexford. Beaucoup: Answering many net-
work traffic queries, one memory update at a time. In
Proceedings of the Annual conference of the ACM Spe-
cial Interest Group on Data Communication on the ap-
plications, technologies, architectures, and protocols for
computer communication, pages 226–239, 2020.

[16] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang,
Jizhou Li, Ruijie Miao, Peng Liu, Ruwen Zhang, and
Junchen Jiang. Cocosketch: high-performance sketch-
based measurement over arbitrary partial key query. In
SIGCOMM 2021, pages 207–222. ACM, 2021.

[17] Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and Ori Rot-
tenstreich. Efficient measurement on programmable
switches using probabilistic recirculation. In ICNP 2018,
pages 313–323. IEEE Computer Society, 2018.

[18] Mary Hogan, Shir Landau-Feibish, Mina Tah-
masbi Arashloo, Jennifer Rexford, David Walker, and
Rob Harrison. Elastic switch programming with p4all.
In Proceedings of the 19th ACM Workshop on Hot
Topics in Networks, pages 168–174, 2020.

[19] Hun Namkung, Zaoxing Liu, Daehyeok Kim, Vyas
Sekar, and Peter Steenkiste. SketchLib: Enabling
efficient sketch-based monitoring on programmable
switches. In USENIX NSDI, 2022.

[20] Anup Agarwal, Zaoxing Liu, and Srinivasan Seshan.
{HeteroSketch}: Coordinating network-wide monitor-
ing in heterogeneous and dynamic networks. In In
USENIX NSDI), pages 719–741, 2022.

[21] Peiqing Chen, Yuhan Wu, Tong Yang, Junchen Jiang,
and Zaoxing Liu. Precise error estimation for sketch-
based flow measurement. In ACM Internet Measurement
Conference (IMC), 2021.

[22] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. SCREAM: sketch resource allocation
for software-defined measurement. In CoNEXT 2015,
pages 14:1–14:13. ACM, 2015.

1634 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.brocade.com/products/all/networkfunctions-virtualization/product-details/5400-vrouter/index.page
http://www.brocade.com/products/all/networkfunctions-virtualization/product-details/5400-vrouter/index.page
http://www.brocade.com/products/all/networkfunctions-virtualization/product-details/5400-vrouter/index.page
http://www.brocade.com/products/all/networkfunctions-virtualization/product-details/5400-vrouter/index.page
https://dpdksummitapac2021.sched.com/event/hdLm
https://dpdksummitapac2021.sched.com/event/hdLm

[23] Hao Zheng, Chen Tian, Tong Yang, Huiping Lin, Chang
Liu, Zhaochen Zhang, Wanchun Dou, and Guihai Chen.
Flymon: enabling on-the-fly task reconfiguration for
network measurement. In Proceedings of the ACM SIG-
COMM 2022 Conference, pages 486–502, 2022.

[24] Data plane development kit. https://www.dpdk.
org/.

[25] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller. The express data path: fast pro-
grammable packet processing in the operating system
kernel. In CoNEXT 2018, pages 54–66. ACM, 2018.

[26] ConnectX-5 Ex. https://www.mellanox.com/
related-docs/oem/dell/PB_ConnectX-5_Ex_
Card_dell.pdf.

[27] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jack-
son, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex
Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and
Martín Casado. The design and implementation of open
vswitch. In NSDI 15, pages 117–130. USENIX Associ-
ation, 2015.

[28] Theophilus Benson, Ashok Anand, Aditya Akella, and
Ming Zhang. Microte: fine grained traffic engineering
for data centers. In Co-NEXT ’11. ACM, 2011.

[29] Thomas Locher. Finding heavy distinct hitters in data
streams. In SPAA 2011, pages 299–308. ACM, 2011.

[30] Qun Huang, Patrick P. C. Lee, and Yungang Bao. Sketch-
learn: relieving user burdens in approximate measure-
ment with automated statistical inference. In SIGCOMM
2018, pages 576–590. ACM, 2018.

[31] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li,
Lu Tang, Yi-Chao Chen, and Gong Zhang. Sketchvi-
sor: Robust network measurement for software packet
processing. In SIGCOMM 2017, pages 113–126. ACM,
2017.

[32] Minlan Yu, Lavanya Jose, and Rui Miao. Software
defined traffic measurement with opensketch. In NSDI
2013. USENIX Association, 2013.

[33] Inmon corporation’s sflow: A method for monitoring
traffic in switched and routed networks. https://
tools.ietf.org/html/rfc3176.

[34] Sajad Shirali-Shahreza and Yashar Ganjali. Flexam:
flexible sampling extension for monitoring and security
applications in openflow. In HotSDN 2013, 2013.

[35] Intel dynamic load balancer (in-
tel dlb) - accelerating elephant flow.

https://builders.intel.com/docs/networkbuilders/intel-
dynamic-load-balancer-intel-dlb-accelerating-
elephant-flow-technology-guide-1677672283.pdf.

[36] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita
Ivkin, Ion Stoica, Vladimir Braverman, Joseph Gonzalez,
and Raman Arora. Fetchsgd: Communication-efficient
federated learning with sketching. In ICML 2020, vol-
ume 119, pages 8253–8265. PMLR, 2020.

[37] The CAIDA UCSD Anonymized Internet Traces.
http://www.caida.org/data/passive/passive_
dataset.xml.

[38] Marianne Durand and Philippe Flajolet. Loglog count-
ing of large cardinalities (extended abstract). In ESA
2003, volume 2832 of Lecture Notes in Computer Sci-
ence, pages 605–617. Springer, 2003.

[39] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and
Frédéric Meunier. Hyperloglog: the analysis of a near-
optimal cardinality estimation algorithm. In Discrete
Mathematics and Theoretical Computer Science, pages
137–156, 2007.

[40] Charles Masson, Jee E. Rim, and Homin K. Lee.
Ddsketch: A fast and fully-mergeable quantile sketch
with relative-error guarantees. Proc. VLDB Endow.,
12(12):2195–2205, 2019.

[41] Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron
Kassner. Randomized admission policy for efficient
top-k and frequency estimation. In INFOCOM 2017,
pages 1–9. IEEE, 2017.

[42] Abhinandan Das, Sumit Ganguly, Minos N. Garofalakis,
and Rajeev Rastogi. Distributed set expression cardinal-
ity estimation. In VLDB 2004, pages 312–323. Morgan
Kaufmann, 2004.

[43] Minos N. Garofalakis. Distributed data streams. In
Ling Liu and M. Tamer Özsu, editors, Encyclopedia of
Database Systems, pages 883–890. Springer US, 2009.

[44] Brian Babcock and Chris Olston. Distributed top-k
monitoring. In SIGMOD 2003, pages 28–39. ACM,
2003.

[45] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rex-
ford. Network-wide heavy hitter detection with com-
modity switches. In SOSR 2018, pages 8:1–8:7. ACM,
2018.

[46] cpulimit. https://github.com/opsengine/
cpulimit.

[47] xxHash Library. http://www.xxhash.com/.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1635

https://www.dpdk.org/
https://www.dpdk.org/
https://www.mellanox.com/related-docs/oem/dell/PB_ConnectX-5_Ex_Card_dell.pdf
https://www.mellanox.com/related-docs/oem/dell/PB_ConnectX-5_Ex_Card_dell.pdf
https://www.mellanox.com/related-docs/oem/dell/PB_ConnectX-5_Ex_Card_dell.pdf
https://tools.ietf.org/html/rfc3176
https://tools.ietf.org/html/rfc3176
http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml
https://github.com/opsengine/cpulimit
https://github.com/opsengine/cpulimit
http://www.xxhash.com/

[48] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design
and operation of CloudLab. In ATC, pages 1–14, July
2019.

[49] Source code related to OctoSketch. https://github.
com/Froot-NetSys/OctoSketch.

[50] Fast Concurrent Queue. https://github.com/
cameron314/readerwriterqueue.

[51] David MW Powers. Applications and explanations of
Zipf’s law. In Proc. EMNLP-CoNLL. Association for
Computational Linguistics, 1998.

[52] Alex Rousskov and Duane Wessels. High-performance
benchmarking with web polygraph. Software: Practice
and Experience, 34(2):187–211, 2004.

[53] Emmanuelle Anceaume, Yann Busnel, Nicolo Rivetti,
and Bruno Sericola. Identifying global icebergs in dis-
tributed streams. In SRDS 2015, pages 266–275. IEEE
Computer Society, 2015.

[54] Queue management and load bal-
ancing on intel architecture.
https://builders.intel.com/docs/networkbuilders/SKU-
343247-001US-queue-management-and-load-
balancing-on-intel-architecture.pdf.

[55] Tom Barbette, Georgios P. Katsikas, Gerald Q. Maguire
Jr., and Dejan Kostic. RSS++: load and state-aware
receive side scaling. In CoNEXT 2019, pages 318–333.
ACM, 2019.

[56] Ruijie Miao, Yinda Zhang, Zihao Zheng, Ruixin Wang,
Ruwen Zhang, Tong Yang, Zaoxing Liu, and Junchen
Jiang. High-performance sketch-based measurement
over arbitrary partial key query. IEEE/ACM Transac-
tions on Networking, 2023.

[57] Jakub Lemiesz. On the algebra of data sketches. Proc.
VLDB Endow., 14(9):1655–1667, 2021.

[58] Ram Keralapura, Graham Cormode, and Jeyashankher
Ramamirtham. Communication-efficient distributed
monitoring of thresholded counts. In SIGMOD 2006,
pages 289–300. ACM, 2006.

[59] Ke Yi and Qin Zhang. Optimal tracking of distributed
heavy hitters and quantiles. In PODS 2009, pages 167–
174. ACM, 2009.

[60] Zengfeng Huang, Ke Yi, and Qin Zhang. Randomized
algorithms for tracking distributed count, frequencies,
and ranks. In PODS 2012, pages 295–306. ACM, 2012.

[61] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Trumpet: Timely and precise triggers in
data centers. In ACM SIGCOMM 2016, pages 129–143.
ACM, 2016.

[62] Sketch in DPDK. https://
github.com/DPDK/dpdk/commit/
db354bd2e1f82294ddeb667a1dbca27a325d1eb4.

A Background of sketches
Here we give a background of sketching algorithms and the
applications of sketches on software platforms.
Sketch example: Count-Min sketch. The Count-Min
sketch [10] maintains d arrays of counters, with w counters
in each array. When a packet arrives, the Count-Min sketch
calculates d independent hash values from the flow identity of
the packet (e.g., 5-tuple, source IP, and destination IP). Each
hash function offers an independent counter position in each
array, and the Count-Min sketch subsequently increases the
associated counter per array. When querying the size of a
flow, its estimation is given by the minimum value among the
associated counters for that flow.
Applications of sketches: Performing telemetry under high-
performance packet processing is an important application for
sketches. As an example, DPDK has included sketching al-
gorithms in their library to provide an efficient way to profile
the traffic for heavy hitters [62]. In addition, prior works [4]
apply sketches to a DPDK-based Load Balancer. Specifically,
they use sketches to detect heavy hitters and distribute them
to multiple idle worker cores for parallel packet processing.
Moreover, prior system work also applies sketches to super-
spreader/DDoS detection [32] and key-value cache [7, 21].

B Analysis
Theorem 1. For OctoSketch for Count-Min sketch, let d =
log2 δ−1 and l = 2ε−1. For any flow e and any traffic whose
L1 > ε−1k′τ,

Pr
[∣∣∣ f̂ (e)− f (e)

∣∣∣> εL1

]
< δ (4)

Proof. Suppose that f̂ ′(e) is the estimated size of the
Count-Min sketch that works in a single core. Note that∣∣∣ f̂ (e)− f (e)

∣∣∣ ⩽ ∣∣∣ f̂ ′(e)− f (e)
∣∣∣ + ∣∣∣ f̂ (e)− f̂ ′(e)

∣∣∣, where the

first part
∣∣∣ f̂ ′(e)− f (e)

∣∣∣ is the original error from the Count-

Min sketch, while the second part
∣∣∣ f̂ (e)− f̂ ′(e)

∣∣∣ is the addi-
tional error brought by the OctoSketch.

For the first part, given d = log2 δ−1 and l = 2ε−1, the error
bound of the Count-Min sketch [10] as shown in its paper is
that

Pr
[∣∣∣ f̂ ′(e)− f (e)

∣∣∣> εL1

]
< δ. (5)

1636 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/Froot-NetSys/OctoSketch
https://github.com/Froot-NetSys/OctoSketch
https://github.com/cameron314/readerwriterqueue
https://github.com/cameron314/readerwriterqueue
https://github.com/DPDK/dpdk/commit/db354bd2e1f82294ddeb667a1dbca27a325d1eb4
https://github.com/DPDK/dpdk/commit/db354bd2e1f82294ddeb667a1dbca27a325d1eb4
https://github.com/DPDK/dpdk/commit/db354bd2e1f82294ddeb667a1dbca27a325d1eb4

Then, we consider the second part, i.e., the gap of estimated
flow size between OctoSketch for Count-Min sketch and the
Count-Min sketch that works in a single core. Note that for
each worker, there is at most τ flow size information left in
the worker’s sketch at any time. The total gap between each
counter in the aggregator’s sketch and the single core baseline
is at most k′ · τ. Because the gap between the estimation is
not larger than the gap between each counter, we can get that∣∣∣ f̂ ′(e)− f̂ (e)

∣∣∣< k′τ. Given L1 > ε−1k′τ, we can ensure that∣∣∣ f̂ ′(e)− f̂ (e)
∣∣∣< εL1.

Because the Count-Min sketch only overestimates the flow
size, we can get that f̂ ′(e)⩾ f (e). Because OctoSketch will
always have some flow size information in the worker not
updated to the aggregator, we have the query result from the
aggregator f̂ (e) ⩽ f̂ ′(e). Based on 5 and f̂ (e) ⩽ f̂ ′(e), we
have

Pr
[

f̂ (e)− f (e)> εL1

]
< δ. (6)

Based on f̂ ′(e) ⩾ f (e), f̂ ′(e) ⩾ f̂ (e), and
∣∣∣ f̂ ′(e)− f̂ (e)

∣∣∣ <
εL1, we have f (e)− f̂ (e) < εL1. Based on 6 and f (e)−
f̂ (e)< εL1, we can get the result.

Theorem 2. To achieve the accuracy goal, sketch-merge
needs to send O

(
∆−1k ·N ·dl

)
counters, while OctoSketch

needs to send O
(
∆−1k ·N ·d

)
counters.

Proof. We first consider the number of counters needed by
the sketch-merge technique. There are d · l counters for each
sketch. To guarantee that the gap of estimated size is smaller
than ∆, sketch-merge needs to send the whole sketch (d · l
counters) to the aggregator for every ∆

k packets. Therefore,
sketch-merge needs to send the sketch at least k·N

∆
times. As a

result, sketch-merge needs to send O
(k·N

∆
·d · l

)
counters.

For OctoSketch, to guarantee the error, OctoSketch needs
to set the threshold as ∆

k . Note that each packet only accesses
one counter in the array. Because there are N packets in the
traffic, each array sends at most k·N

∆
counters. As a result,

OctoSketch needs to send O
(k·N

∆
·d
)

counters.

Let Lk = k
√

∑e f k(e) be the k-th norm of the frequency
vector of the traffic. Then, we show the error bound of the
OctoSketch for the Count sketch.
Theorem 3. For OctoSketch for the Count sketch, let d =
O(log2 δ−1) and l = 8ε−2. For any flow e and any traffics
whose L2 > 2ε−1k′τ,

Pr
[∣∣∣ f̂ (e)− f (e)

∣∣∣> εL2

]
< δ (7)

Proof. Similar to that of the Count-Min sketch, we first
analyze the error brought by the Count sketch. Suppose
that f̂ ′(e) is the estimated size of the Count sketch that
works in a single core. Given d = O(log2 δ−1) and l = 8ε−2,
based on the error bound of the Count sketch [11], we have
Pr
[∣∣∣ f̂ ′(e)− f (e)

∣∣∣> ε

2 L2

]
< δ. Then we analyze the error

brought by OctoSketch. Given the threshold τ of each worker
and L2 > 2ε−1k′τ, we can make sure that∣∣∣ f̂ ′(e)− f̂ (e)

∣∣∣< k′τ <
ε

2
L2

Based on the triangle inequality, we have

Pr
[∣∣∣ f̂ (e)− f (e)

∣∣∣> εL2

]
< δ

Then, we show the error bound of the OctoSketch for Hy-
perLogLog. Because HyperLogLog works for different query
tasks from the Count-Min sketch and the Count sketch, we
define different symbols for HyperLogLog. Let Ẑ be the esti-
mated cardinality of HyperLogLog, Ẑ′ be the estimated cardi-
nality of the OctoSketch for HyperLogLog, m be the number
of counters used in the HyperLogLog, αm is the constant
used by HyperLogLog given m, C[i] be the ith counter in the
HyperLogLog, and C′[i] be the ith counter in the OctoSketch
for HyperLogLog. As shown in the paper [39], αm is always
smaller than 0.73 regardless of m, and

Ẑ = αmm2

(
m

∑
i=1

2−C[i]

)−1

Theorem 4. If Ẑ > 2αmm22τ−2, we have

Ẑ = Ẑ′

Proof. OctoSketch can guarantee that, for any i,∣∣∣2C[i]−2C′[i]
∣∣∣ < 2τ, and C′[i] = τ − 1 by default. As all

counters are integers, we can get that

C′[i] =
{

0, C[i]< τ−1
C[i], C[i]⩾ τ−1

Therefore, if all C[i]⩾ τ−1, we can guarantee that Ẑ = Ẑ′. If
there is any C[i]< τ−1,

Ẑ ⩽ αmm2
(

2−(τ−2)
)−1

= 2αmm22τ−2

Different from the Count-Min sketch, not all packets can
change the value of the accessed HyperLogLog. As the prop-
erty of HyperLogLog, if there are N distinct flow keys mapped
to the counter, the counter will only be updated O(logN)
times. In other words, the number of updates is much smaller
than the number of packets in the workloads. For example,
there are about 30 million packets in 1 minute in CAIDA
traces [37], while there are only around 1 million distinct flow
keys, and only part of them can update the accessed counter.
Therefore, in our experiments, the threshold τ = 2 is often
enough for the aggregator to process all updates.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1637

5 10 15 20 25
Number of Packets (×106)

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Ideal
Merge

OctoSketch

(a) CocoSketch

5 10 15 20 25
Number of Packets (×106)

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Ideal
Merge

OctoSketch

(b) Locher Sketch

5 10 15 20 25
Number of Packets (×106)

0.4

0.6

0.8

1.0

F1
 S

co
re

Ideal
Merge

OctoSketch

(c) Elastic Sketch

5 10 15 20 25
Number of Packets (×106)

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Ideal
Merge

OctoSketch

(d) UnivMon

Figure 20: F1 scores on other sketches

5 10 15 20 25
Number of Packets (×106)

0.0

0.1

0.2

0.3

R
el

at
iv

e
Er

ro
r

Ideal
Merge

OctoSketch

(a) CocoSketch

5 10 15 20 25
Number of Packets (×106)

0.2

0.4

0.6

0.8

R
el

at
iv

e
Er

ro
r

Ideal
Merge

OctoSketch

(b) Locher Sketch

5 10 15 20 25
Number of Packets (×106)

0.0

0.1

0.2

R
el

at
iv

e
Er

ro
r

Ideal
Merge

OctoSketch

(c) Elastic Sketch

5 10 15 20 25
Number of Packets (×106)

0.0

0.1

0.2

R
el

at
iv

e
Er

ro
r

Ideal
Merge

OctoSketch

(d) UnivMon

Figure 21: Relative errors on other sketches

C Extensions to other sketches
In this section, we show how we apply OctoSketch to the
other eight sketches in detail.
Count sketch [11] and UnivMon [12]: There are also mul-
tiple arrays of counters in the Count sketch. Count sketch
offers unbiased size estimation to each flow and thus each
counter value in the Count sketch can be positive or negative.
Therefore, as discussed in §4.4, OctoSketch uses the absolute
value to check whether the counter is large enough. Moreover,
UnivMon is composed of multiple Count sketches, and the
insertion process is the same for each Count sketch.
LogLog [38], HyperLogLog [39], and Locher sketch [29]:
There is only one array of small counters (e.g., 4-bit counter)
for LogLog and HyperLogLog. Note that the insertion logics
of LogLog and HyperLogLog are the same, and they mainly
differ in the query method. Therefore, we apply OctoSketch
to both of them in the same way. The details of applying
OctoSketch to HyperLogLog are discussed in §4.4. Locher
sketch is comprised of multiple arrays of HyperLogLog [39]
estimators, and the insertion process is the same for each
HyperLogLog.
DDSketch [40]: There is one array of counters in the DDS-
ketch. As the insertion logic of the DDSketch is similar to
that of the Count-Min sketch, we apply OctoSketch to the
DDSketch in the same way.
CocoSketch [16]: CocoSketch is composed of a number of
(e.g., 2) arrays of buckets, and each bucket stores a key and
a counter. CocoSketch does not need an additional heap to
record flow keys. Therefore, OctoSketch for CocoSketch also

does not need the heap in the aggregator. As discussed in §4.4,
OctoSketch will send the whole bucket (key and counter) to
the aggregator, if the counter is large enough. In the aggrega-
tor, OctoSketch uses the same insertion logic as CocoSketch
to update its own aggregated sketch.
Elastic sketch [13]: There are two parts in the Elastic sketch:
a heavy part and a light part. The light part is a Count-Min
sketch. The heavy part is an array of buckets to record heavy
flow keys, where each bucket also contains a key and a counter
similar to that of the CocoSketch. Elastic sketch also does
not need an additional heap to record heavy flow keys. Oc-
toSketch for Elastic sketch should keep both the heavy part
and the light part in both workers and aggregator and does not
need the heap in the aggregator. To apply OctoSketch, the light
part’s insertion logic is the same as that of the OctoSketch-
optimized Count-Min sketch. For the heavy part, OctoSketch
will send the flow key and the counter to the aggregator if the
counter in the bucket is sufficiently large as shown in §4.4. In
the aggregator, OctoSketch uses the same insertion logic as
Elastic sketch to update its own aggregated sketch.

D Evaluation
D.1 Parameters
Sketch parameters: For Count-Min sketch and Locher
sketch, we use 3 arrays of 216 counters per array. For Co-
coSketch, we use 2 arrays as suggested in their paper, and
there are 216 buckets per array. For Elastic sketch, only one
Count-Min sketch array is used (3×216 counters) based on

1638 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 5 10 15 20 25
Number of Packets (×106)

0

10

20

30

40

C
ac

he
 h

it
ra

tio
 (%

)

Merge OctoSketch

(a) Over time

0.0 0.6 1.2 1.8 2.4 3.0
Dataset skewness

0

20

40

60

80

C
ac

he
 h

it
ra

tio
 (%

)

Merge OctoSketch

(b) Over skewness

Figure 22: Cache hit ratio

the paper. For UnivMon, we use 6 Count sketches. We ensure
that sketch-merge and OctoSketch use the same configuration
(and memory) in the aggregator. As shown in §4, for OctoS-
ketch, the sketch in each worker can use a smaller counter
size without accuracy loss. In experiments, each counter in
the worker of OctoSketch is 8-bit, while each counter in the
worker of sketch-merge is 32-bit. Specifically, the Count-Min
sketch for sketch-merge in workers needs 768KB memory,
while it only needs 192KB memory for the workers of OctoS-
ketch. For the resource allocation policy in OctoSketch, we
set α = 0.25. We set the cycle of sketch-merge based on the
maximum frequency the aggregator can support.

D.2 Figures
Due to space limitations, we move the Figure 20 and 21 for
§7.2 to the appendix.

D.3 Case Study: Key-Value Cache
In this section, we show the benefit of OctoSketch for a key-
value cache. Similar to the [21], we run experiments on the
simulator of DistCache [7]. Specifically, the traffic is dis-
tributed over multiple workers, and the aggregator aggregates
the statistics over multiple workers. Once an object is detected
as a hot object on the aggregator, it is cached. If an object
is no longer recognized as a hot object, it will be offloaded
from the cache. We calculate the cache hit ratio while using
OctoSketch and sketch-merge for hot object detection.
Cache hit ratio over time (Figure 22a): OctoSketch can
achieve fast detection and a high cache hit ratio. With less
than 2M packets, the cache hit ratio of OctoSketch is higher
than 40%. However, sketch-merge needs more than 10M
packets to converge. It indicates that sketch-merge spends
much time detecting new hot objects which may lead to many
cache misses. In addition, due to the different detection rates
on hot objects, the cache hit ratio of OctoSketch is still 13%
higher than sketch-merge after 20M packets.
Cache hit ratio over skewness (Figure 22b): We also show
the final cache hit ratio on datasets with different skewness.
The cache hit rate is higher with larger skewness. The cache
hit ratio of OctoSketch is around 9% higher than that of the
sketch-merge when the skewness is larger than 1.5.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1639

NR-Surface: NextG-ready µW-reconfigurable mmWave Metasurface

Minseok Kim† Namjo Ahn†

KAIST

Song Min Kim∗

Abstract
Metasurface has recently emerged as an economic solution

to expand mmWave coverage. However, their pervasive de-
ployment remains a challenge, mainly due to the difficulty in
reaching the tight 260ns NR synchronization requirement and
real-time wireless reconfiguration while maintaining multi-
year battery life. This paper presents NR-Surface, the first
real-time reconfigurable metasurface fully compliant with
the NR standard, operating at 242.7 µW for a 2.1-year life-
time on an AA battery. NR-Surface incorporates (i) a new
extremely low-power (14KHz sampling) reconfiguration inter-
face, NarrowBand Packet Unit (NBPU), for synchronization
and real-time reconfiguration, and (ii) a highly responsive and
low-leakage metasurface designed for low-duty cycled opera-
tion, by carefully leveraging the structure and the periodicity
of the NR beam management procedure in the NR standard.
NR-Surface is prototyped and evaluated end-to-end with NR
BS built on srsRAN to demonstrate diverse usage scenar-
ios including multiple NR-Surface per BS, multiple UE per
NR-Surface, and 3D beamforming. Around-the-corner UE
evaluations showcase NR-Surface efficacy under different
user mobility patterns (20.3dB gain) and dynamic blockage
(22.2dB gain).

1 Introduction
With the rich bandwidth spanning multi-GHz, millimeter-
wave (mmWave) is a key technology to breakthrough spec-
trum shortage in the sub-6GHz, towards enhanced mobile
broadband (eMBB) under the exponential growth of mobile
data in the 5G and 6G cellular services. However, the benefit
of mmWave communication comes at the cost of the tech-
nical hurdle of substantial path loss – limiting the coverage,
especially under complex indoor scenarios with significant
obstructions, and hindering reliability for mobile users. To
address this, various approaches have been introduced, in-
cluding dense deployment of base stations (BS) [39, 60], re-
lays [21, 58, 62], and distributed antennas [48, 57, 59, 72].

†Co-primary student authors.
∗Corresponding author. (songmin@kaist.ac.kr)

While simple and straightforward, installing a large body of
costly transceivers is a hurdle to pervasive deployment and
widespread of mmWave technology.

More recently, metasurface has emerged as an economic
solution to expand mmWave coverage. Diverse designs were
introduced including reconfigurable metasurfaces that adapt
to varying channel and user mobility [22, 23], and low-cost
3D printed metasurface [64], where they are commonly de-
signed to operate by passively reflecting the BS signal without
RF chain for signal generation. This significantly simplifies
the metasurfaces’ RF structure compared to the full-fledged
mmWave transceiver for lower manufacturing costs. However,
pervasive deployment of the metasurfaces still remains a chal-
lenge, mainly due to the lack of a metasurface synchronization
mechanism (to NR infrastructure BS) and real-time wireless
reconfiguration interface, especially with multi-year battery
lifetime to minimize deployment and maintenance costs.

This paper presents NR-Surface, the first real-time recon-
figurable metasurface fully compliant with the NR standard
operating at µW regime for a 2.1-year battery lifetime. For this
NR-Surface tackles the challenges imposed by the NR stan-
dard at only 242.7µW power: (i) 260ns timing synchroniza-
tion with the BS [10,13] and (ii) in-time metasurface reconfig-
uration following the beam management procedure [11, 12].
NR-Surface co-designs extremely low-power (15KHz sam-
pling rate) wireless reconfiguration interface and highly re-
sponsive and low-leakage varactor-based metasurface. The
reconfiguration interface is overlayed on top of NB-IoT (on
the NR guard band). This imposes no hardware change on
the BS while minimizing disruption to the cellular traffic.
NR-Surface’s metasurface achieves low-latency reconfigura-
tion within the NR cyclic prefix (preventing communication
error) with 10% low-duty cycling. NR-Surface performance
is evaluated end-to-end with NR BS built on USRP X300
with srsRAN [70], where it offers 20.3dB and 22.2dB gain for
around-the-corner UEs under mobility and dynamic block-
age, respectively. Support for multiple NR-Surface per BS
and multiple-UE per NR-Surface were also evaluated for
diversified practical scenarios.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1641

Figure 1: (a) NR beam management procedure and (b) the corresponding NR-Surface operation, offering NR-compliance. (c)
Illustrative view of NR-Surface operation in the beam management procedure.

NR-Surface presents a reconfiguration interface of Nar-
rowBand Packet Unit (NBPU), embedded on NR NB-IoT.
NBPU is an asymmetric communication having NB-IoT
with 180KHz bandwidth as the transmitter (BS side) and
custom-built NBPU Rx with 15KHz bandwidth as the receiver
(NR-Surface side). BS carefully selects the NB-IoT symbol
to be interpreted as an OOK NBPU symbol at the NBPU
Rx, via aliasing and harmonics from the envelope detector.
Equivalent time sampling is applied to achieve 260ns synchro-
nization accuracy meeting the NR requirement, by leveraging
the insight that the arrival timing of the NBPU symbol is easily
inferable from the periodic nature of the NR beam manage-
ment procedure (repeated every 20ms). NBPU also delivers
timing and phase for metasurface reconfiguration. The beam
management procedure offers another energy-saving oppor-
tunity, where the metasurface reconfiguration takes merely
3.8% of the time. The metasurface simply holds the same con-
figuration during the rest of the period. With varactor-based
cells and GPIO-controlled control, NR-Surface metasurface
is designed for efficient low-duty cycling with 3ps low-latency
reconfiguration and a negligible 280nW power leakage when
the configuration is maintained.

As the first NR-controlled real-time reconfigurable
mmWave metasurface, NR-Surface co-designs a new low-
duty-cycled metasurface and BS-controlled wireless interface
to collaboratively achieve NR-compliance at µW power dissi-
pation. We believe NR-Surface is a practical step towards the
pervasive deployment of mmWave technology in our everyday
lives. Our contributions are as follows:

• To the best of our knowledge, NR-Surface is the first
real-time reconfigurable, NR-compliant, and low-power
mmWave metasurface towards pervasive deployment.

• NR-Surface is immediately deployable and incurs a
minimum cost, as it does not require any hardware
change on the NR BS.

• We prototype NR-Surface on PCB (metasurface on
Rogers RO4003C substrate) and perform diverse real-
world evaluations under diversified usage settings, in-
cluding multiple NR-Surface, mobile users, and under
dynamic blockages.

2 Background
NR beam management procedure. NR mmWave commu-
nication follows the beam management procedure depicted in
Figure 1(a) that incorporates the entire communication cycle
– beam sweep, report, and alignment (i.e., data communica-
tion). During beam sweep in the first 5ms of the period, the
BS transmits up to 64 Synchronization Signal Blocks (SSB)
with different beam patterns, one of which is selected by each
UE and fed back to the BS via beam report. Finally, the uplink
and downlink data is exchanged during data beam alignment
through the selected beam patterns. We note that the beam
management procedure iterates exactly every 20ms and beam
sweep, report, and alignment timings are known in advance.
This offers the opportunity to integrate NR-Surface into the
procedure in low-power, saving energy by being active only
at known duration in the beam management procedure.

While mmWave in NR is known for its high data rate, the
link frequently suffers from low reliability due to beam mis-
alignments and blockages, especially in dynamic and mobile
scenarios. To alleviate this, NR features inter-band Carrier Ag-
gregation (CA) that integrates the high-rate FR2 (mmWave)
data plane with a robust FR1 control plane [8], as in existing
5G platforms including Qualcomm [65–67] and MediaTek
modems [53]. This is used to integrate NR-Surface control
into the NR standard, where NR-Surface is controlled via
the robust FR1 (sub-6GHz) in an energy-efficient manner.
NB-IoT. NB-IoT is an NR protocol for massive Machine
Type Communication (mMTC) use cases, designed to serve
IoT devices. To enable lightweight communication, NB-IoT
uses the FR1 band and occupies only 180KHz bandwidth
which is narrower than the minimum bandwidth of the under-
lying NR. This narrowband property allows NB-IoT to utilize
the guardband of the FR1 band. Furthermore, NB-IoT only
encodes data via 4QAM OFDM with 12 subcarriers, consider-
ing the limited performance of low-end devices. NR-Surface
leverages the NB-IoT guardband mode to integrate the control
plane of NR-Surface into the existing NR control plane.

3 Design Overview
Figure 2 illustrates NR-Surface prototype, comprising
900MHz antenna, reconfiguration interface, low-power MCU,
and 24GHz metasurface. The 900MHz antenna captures the
NR-Surface’s control channel, named NarrowBand Packet
Unit (NBPU), embedded in the NR FR1. NBPU Rx syn-

1642 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: NR-Surface prototype implementation consisting
of low-power reconfiguration interface with antenna, FR2
metasurface, and MCU.

chronizes with the NBPU and decodes the reconfigura-
tion info at µW-regime. The low-power MCU reconfigures
the 24GHz metasurface via GPIO to steer the received
beam based on the decoded info. Figure 1(b) provides an
overview of NR-Surface operation aligned with the NR beam
management procedure, explaining the illustrative view of
NR-Surface operation in Figure 1(c). During the beam sweep
(Figure 1(c) left), the 24GHz metasurface is reconfigured at
the allocated SSBs, sweeping the beams beyond the blockages.
In the beam alignment (Figure 1(c) middle), the metasurface
steers the beam toward UE’s direction as reported in the pre-
vious procedure. NBPU Rx acquires reconfiguration info and
timing for the next beam management procedure, based on
the UE’s beam report (Figure 1(c) right). During this whole
procedure, our MCU enters idle mode to save energy when
neither receiving NBPU nor reconfiguring the metasurface
(Figure 1(b)).

NR-Surface design consists of two main parts enabling
NR-compliant operation while at µW-consumption. The first
part, discussed in Section 4, is the NBPU design for tight
ns-synchronization with NR BS. To achieve this, the channel
is co-designed with the µW-regime Rx to maximize the SNR
and hence the synchronization accuracy, with signals selected
to constructively add when passing through the low-end Rx.
Section 5 presents a low-power metasurface design, tailored
for real-time reconfigurations with short delays. NR-Surface
implements duty-cycling to further save energy down to
242.7µW, by hardware components designed to consume only
6.4µW during the idle mode, maintaining configurations ef-
ficiently until known wake-up timings derived from the NR
periodicity.

4 µW Synchronization with NR Base Station

Per the NR standard [10, 13], a tight time synchroniza-
tion of under ±260ns between BS and NR-Surface is re-
quired to prevent FR2 communication errors. Doing so lets
NR-Surface reconfiguration fall within FR2 cyclic prefix
(CP) of 585ns (i.e., 260×2 with 65ns margin for multipath),
thereby preventing error. For this NR-Surface establishes an
FR1 control channel with the BS for a tight and reliable syn-

chronization and reconfiguration. To minimize the disruption
on the ongoing NR traffic and maintain compatibility, this
channel is built on NB-IoT on the FR1 guardband and readily
available on NR BS.

The control is a downlink-only (BS→ NR-Surface) chan-
nel carrying the synchronization (i.e., preamble) and recon-
figuration info, where BS uses NB-IoT for Tx. Meanwhile,
NR-Surface aims at µW-regime and is unable to equip NB-
IoT Rx that consumes 75mW [41] to limit the battery life to
only two days on a single AA [4]. For this we present Nar-
rowBand Packet Unit (NBPU), an asymmetric control chan-
nel overlayed on NB-IoT. In particular, by emulating with
NB-IoT, NBPU is designed as a single-carrier 15KHz OOK.
NR-Surface uniquely leverages aliasing from the bandwidth
asymmetry between the 180KHz NBPU Tx (i.e., NB-IoT in
the BS) and 15KHz NBPU Rx, to achieve 234ns synchroniza-
tion (therefore meeting that NR requirement) and decoding
with only 119.3µW for 2.1-year battery lifetime with a single
AA.

Figure 3: NBPU Rx to yield NBPU symbol from NB-IoT,
comprising a filter for NR guardband operation, envelop de-
tector for zero-power downconversion, and µW amplifiers to
boost SNR.

Figure 4: (a) The selected NBPU symbol with the maxi-
mum SNR and the corresponding (b) NB-IoT symbol (4QAM
OFDM with 12 subcarriers).

4.1 NBPU Embedding in NB-IoT
NBPU Symbol. Here we discuss generating an NBPU sym-
bol from an NB-IoT symbol – 12 subcarrier 4QAM OFDM
with 15KHz spacing (from 15KHz to 180KHz). NBPU
Rx in Figure 3 leverages the envelope detector for zero-
power downconversion. The envelope comprises multiple
harmonics, where the 1st order harmonics dominate over
higher order harmonics (∼37.3dB in our experiments). From
this, the envelope is modeled entirely as the set of 1st-
order harmonics – Each component has the frequency and
phase from the difference between a pair of NB-IoT sub-
carriers, where the envelope detector yields the summa-
tion of all harmonic components from all subcarriers pairs.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1643

Letting ∆ f denote 15KHz subcarrier spacing and φ repre-
sent one of 4QAM phases,

{
π

4 ,
3π

4 , 5π

4 , 7π

4

}
, the envelope be-

comes ∑
11
k=1 ∑

12
i=k+1 cos(2πk∆ f t + φi−φi−k) where k∆ f and

(φi−φi−k) denote the frequency and phase difference between
ith and i− kth subcarriers. This indicates that the phase of
the envelope is determined solely by the combinations of the
NB-IoT subcarrier phases.

Figure 4 depicts the NBPU symbol and the corresponding
NB-IoT symbol. Among all possible NB-IoT envelopes, we
use the one with the maximum power as the NBPU symbol
for the maximum SNR and thus, the best synchronization
performance. This is achieved by selecting an NB-IoT symbol
such that its 1st harmonics (i.e., subcarrier difference from
the envelope detector) with equal frequencies align in phase;
All 1st harmonics are constructively added in the frequency
domain (and in the time domain from the Parseval’s theorem)
to yield the maximum power. To see why, without loss of
generality, let all odd number subcarriers have phases π/4
and the other subcarriers have phases 5π/4 (as shown in
Figure 4(b)). This makes harmonics’ phases kπ for 2πk∆ f
frequency component. These harmonics yield an envelope of
∑

11
k=1(12− k)cos(2πk∆ f t + kπ). Here, the amplitude of each

frequency component, k∆ f , is maximized to (12−k), the sum
of all harmonics. Figure 4(a) illustrates the NBPU symbol and
its NB-IoT symbol whose 12 subcarrier phases are carefully
chosen.1 As shown in Figure 3, the NBPU symbol is extracted
with the implemented NBPU Rx board, which consists of the
filter for extracting NB-IoT band, the envelope detector for
downconversion, and 34µW consuming amplifier.

Figure 5: An NBPU Frame fits into one NB-IoT subframe. It
has sync and reconfiguration info. (i.e., timing and phase).

NBPU Frame. As depicted in Figure 5 an NBPU frame is
fit into a single NB-IoT subframe. An NBPU frame involves
5 NBPU symbols for synchronization and another 5 for the
reconfiguration info, where two columns following the syn-
chronization and reconfiguration info are unused as they are
preoccupied with the mandatory Narrowband Reference Sig-
nal (NRS) for channel sounding. We note that one NBPU
frame is inserted every 20 NB-IoT subframes to align with
the periodic NR beam management procedure repeating every
20ms (Details in Section 5).

1Implementing the target NB-IoT subcarrier phases requires careful pay-
load selection and reverse engineering of the channel coding. Details are in
Appendix A.

Figure 6: (a) Equivalent time sampling utilizes the accumu-
lated sampling time offset T where t is common offset for all
five symbols. (b) The windowed symbol makes the computa-
tionally complex matched-filtering light.

4.2 ns-synchronization
Meeting the NR requirement of ±260ns synchronization
accuracy requires the corresponding sampling rate of
3.84Msps [63]. However, running the ADC at this rate con-
sumes mW-level power in low-power SAR ADCs [17, 73],
which is unaffordable for NR-Surface. Instead, NR-Surface
leverages repeated symbols from which offset (T in Fig-
ure 6) samples mimic the higher sampling rate, or equiva-
lently, obtain fine-grained samples – a technique known as
the Equivalent-Time Sampling [61]. Specifically, as in Fig-
ure 6(a), five NBPU symbols are repeated back-to-back with
a single sample per symbol (14Ksps sampling rate); By en-
forcing an offset of T = 260ns between consecutive samples
(using MCU clock), the five samples collectively mimic a
3.84Msps sampling with only 14Ksps ADC – cutting down
the ADC power consumption by 274× compared to using
3.84Msps ADC.
NR-Surface runs matched filtering on the samples for op-

timal detection and synchronization [63]. In particular, as in
Figure 6(b), matched filtering is performed only on a central
780ns window out of 66.7µs symbol. This (i) significantly re-
duces the computation and energy consumption, and (ii) main-
tains the synchronization performance as the signal power
is concentrated in the central portion of the symbol. This re-
quires first finding the center of the symbol so as to sample
within the window – Upon system bootup, NR-Surface sim-
ply runs Equivalent-Time Sampling across the entire symbol
from which the center is found by matched filtering. This
takes 1.2s to complete (derivation in Appendix B) and is a
one-time task as the NBPU Time Sync repeats exactly every
20ms following the beam management protocol in NR stan-
dard. NR-Surface achieves 234ns average synchronization
error under 0dB SNR (>30m [15]), as evaluated in Section 7.5.

Figure 7: Interoperation overview to control FR2. BS trans-
mits NBPU to synchronize t0 and inform reconfiguration such
as (ti,φi),(t j,φ j),(tk,φk). Then, NR-Surface reconfigures in
the right time and beam.

1644 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 8: (a) Two NBPU symbols indicating 0 and 1. (b) They
are OOK symbol pairs within the synchronization accuracy
(red box).

5 µW Real-time Reconfiguration

NR-Surface needs to be tightly coupled with the NR beam
management procedure for interoperability. As shown in Fig-
ure 7, upon receiving the NBPU frame, NR-Surface performs
synchronization to obtain t0 and extracts reconfiguration info,
(ti,φi),(t j,φ j),(tk,φk). Including one NBPU symbol used for
synchronization, We design two NBPU symbols (illustrated
in Figure 8(a)), enabling low-power and robust communica-
tion of reconfiguration info. Specifically, two NBPU symbols
are interpreted as 15KHz OOK symbol pairs by NBPU Rx,
and our synchronization accuracy allows us to sample only
the central part (red box in Figure 8(b)).2 This asymmetric
communication (180KHz → 15KHz) allows NBPU Rx to
focus on only the constructively/destructively added portion
of each NBPU symbol. This offers an additional 13dB SNR
gain, which helps robust communication even with the passive
envelope detector.

Figure 9: (a) GPIO-controlled metasurface structure and (b)
example beam patterns. The main lobes are marked with
triangles.

5.1 ns-reconfigurable Metasurface

Figure 9(a) illustrates the metasurface consisting of a
16x16 array of unit-cells, reconfigured in real-time at NR-
synchronized timings derived from NBPU. In satisfying the
NR synchronization requirement, the reconfiguration should
finish within the margin between the NR requirement and
NR-Surface accuracy. NR-Surface achieves this with the
varactor-based unit-cell design and 1-bit digital output (GPIO)
control, whose short response time allows NR-Surface to re-
configure beam patterns in less than 10ns while consuming
only negligible energy (∼ 12pJ in our implementation). From

2Since NB-IoT can be turned on/off in the subframe scale, the NBPU
symbol is needed to represent OFF state, whose NB-IoT subcarrier phase is
[π/4,π/4,5π/4,5π/4,5π/4,5π/4,π/4,π/4,π/4,π/4,5π/4,5π/4].

this, NR-Surface forms narrow beam patterns towards vari-
ous directions to cover a wide area. Figure 9(b) plots example
beam patterns that NR-Surface provides with 16 columns,
whose half-power beam width is 6.3°. Moreover, < 260ns NR
synchronization requirement is still satisfied at a low SNR of
+0dB, including both the synchronization error from NBPU
and reconfiguration delay.

Figure 10: NR-Surface (a) unit-cell design and equivalent
circuit models for (b) unit-cell and (c) varactor diode. Dimen-
sions are in mm.

Figure 10(a) illustrates NR-Surface unit-cell design
achieving 1-bit phase shift in 10ns while consuming only
∼ 12pJ. Unit-cell consists of two metal plates and a single
varactor diode (Figure 10(b)), whose rectangular structure
has been shown to be effective as a phase shifter [69, 75].
Specifically, the MAVR-011020-1411 varactor diode [5] is
placed, consisting of a varying capacitance from C j = 0.22pF
to C j = 0.04pF at 0V to 15V bias, respectively, with a series
resistance of Rs = 13Ω (Figure 10(c)). The GPIO interface is
directly connected to provide bias voltage across the diode,
allowing fast reconfigurations within 10ns owing to short
rise/fall times of the GPIO interface (< 7ns in our imple-
mentation) and the small time constant RsC j = 3ps of the
diode. Furthermore, the unit-cell only consumes ∼ 12pJ dur-
ing reconfiguration, mainly due to small energy stored and
dissipated at the varactor diode. However, the reduced voltage
range of GPIO limits the minimum capacitance of the diode
to C j = 0.08pF at 3.3V . Hence, the key design parameters
such as length, width, and gap of metal plates are chosen, such
that the varactor diode in parallel still shifts the phase by 180°
over the reduced capacitance range.

Figure 11: (a) Amplitude and (b) phase of the reflection coef-
ficient when 0V and 3.3V are applied.

Figure 10(a) shows the fine-tuned dimensions aimed at
1-bit phase shift, from simulations conducted with Ansys
HFSS [1] on the RO4003C substrate with εr = 3.55. The
amplitude and phase of the reflection coefficient are plotted

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1645

Figure 12: Overall operation of NR-Surface. (a) NB-IoT containing the NBPU frame, (b) NR-Surface duty-cycled operation
synchronized with NR BS, (c) Measured power consumption, and (d) FR2 signal with improved SNR from aligned beams.

in Figure 11(a) and (b), respectively, showing NR-Surface
unit-cell design achieves ∼ 180° phase shift with 0.6 ampli-
tude across the entire 200MHz channel. We note the simula-
tion and the implementation are carried out on 24GHz ISM
band which shares similar RF properties with 28GHz NR
mmWave, for the prototype evaluation. Figure 9(b) plots the
example beam patterns simulated with HFSS, whose main
lobe is steered towards different directions from 10° to 70°
from the normal direction. The beam width in the example is
6.3°, however, this can be as narrow as 1.3° for 80-column
metasurface, leveraging large availability of GPIO (up to 80
interfaces in typical low-power MCUs [54, 71, 74]). We note
NR-Surface can also be extended to provide 3D beam pat-
terns as evaluated in Section 7.9 with separately controlled
unit-cells. To this end, NR-Surface reconfigures beam pat-
terns towards a wide range of ±70°, where 256 unit-cells
consume only a negligible amount of ∼ 3nJ. While these
energy-efficient reconfigurations facilitate low-power opera-
tion, the rest of the period should also be made low-power as
well since ns-reconfigurations occupy a small portion of the
period.

5.2 Duty-cycling NR-Surface

The final piece to µW operation is NR-synchronized low duty-
cycling, by leveraging the two opportunities from the beam
management procedure: (i) The synchronization and recon-
figuration only take 10% and NR-Surface is kept idle with
the beam pattern maintained for the rest of the time. Also, (ii)
the idle/wakeup times are known a priori, as beam manage-
ment procedure repeats every 20ms. This makes in-time mode
switch possible even in NR-Surface’s low-end hardware with
slow wake up (e.g., 10µs for MCU). In particular, all hard-
ware components (i.e., NBPU Rx, MCU, and metasurface) are
carefully designed to collaboratively achieve idle power con-
sumption of 6.4µW. Specifically, the varactor-based unit-cell
maintains the phase at an extremely low 72nW leakage. In
the meantime, the bias voltage via GPIO is kept stable under
low power modes supported by typical MCUs at hundreds of
nW range [54, 71, 74] and NBPU Rx is turned off. The MCU
and NBPU Rx wakes up only at the time when the NBPU
frame is expected.

5.3 Putting It All Together
With duty-cycling, µW synchronization, and reconfiguration
NR-Surface achieves 242.7µW consumption for a 2.1-year
lifetime on a single AA battery. Figure 12 plots the over-
all operation from the experiment results encompassing syn-
chronization, reconfiguration, and beam alignment, as well as
the corresponding power consumption. In Figure 12(a), (b)
NR-Surface synchronizes with NBPU and decodes reconfig-
uration info. As shown in Figure 12(c) this step involves the
heaviest computation to consume near half of the entire power
(119.3µW). Metasurface reconfiguration and the correspond-
ing short power bursts in Figure 12(b) and (c), respectively,
take place in accordance with beam sweep and alignment in
Figure 12(d). The short bursts sum up to 117µW. NR-Surface
then keeps the beam towards the UE for the rest of the pe-
riod. This is when the duty-cycling is in effect, consuming
only 6.4µW to maintain the metasurface configuration. We
note NR-Surface is reconfigured only at half-subframes for
non-colocated scenarios (i.e., NB-IoT and FR2 BS in separate
devices) which increments synchronization error by 260ns,
leveraging longer CPs of 1106ns at half-subframe boundaries
to avoid signal losses. Collectively, battery-powered opera-
tion facilitates pervasive deployment without wall plugs, in
dynamic indoor scenarios as well as outdoors. NR-Surface
real-time operations in dynamic environments are evaluated
in Section 7.1.

5.4 Multi NR-Surface
Multiple NR-Surface for a single BS may be necessary under
complex environments with a large number of blockages and
blind spots. For this, a separate set of SSBs is allocated to each
NR-Surface and the same NR-compliant operation is applied.
The BS tracks which SSB (i.e., beam pattern) corresponds
to which NR-Surface, and transmits multiple NBPUs for
independent reconfiguration. In particular, they are embedded
in different frames of a single NB-IoT spectrum, or extended
to multiple NB-IoT spectrums in other NR guardbands for a
large number of deployments. Beam patterns of up to 64 limit
the number of NR-Surface that can cooperate with a single
BS, however, exceeding beam patterns can be leveraged by
other BS to benefit from dense NR-Surface deployment. We
evaluated the real-time multiple operations in Section 7.3.

1646 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 13: Metasurface and a unit-cell.

6 Prototype Implementation

We fabricate a prototype of NR-Surface and implement the
real-time reconfiguration inside the NR deployment setup.

6.1 Hardware Configuration
Metasurface. Figure 13 shows the fabricated metasurface
with the RO4003C substrate [6] of 32mil thickness, consisting
of 16x16 unit-cells. Each column is connected to a single bias
line and configured by a GPIO interface of the MCU. The
unit-cell is magnified in the red box, showing the MAVR-
011020-1411 [5] varactor mounted on the center.

NBPU Rx. NR-Surface employs a fully operational NBPU
Rx aiming at a high SNR for reliable synchronization and de-
coding while minimizing the power consumption down to µW
regime. Figure 3 shows the NBPU Rx consisting of a filter,
envelope detector, and two amplifiers. NBPU Rx first filters
out signals in passband using the TFR915X [56] Surface-
Acoustic-Wave filter, whose center frequency is 915MHz with
the 3dB-bandwidth 320KHz suitable for the NBPU’s guard-
band operation of the NB spectrum. We note the passband
filter is particularly important for the NBPU, as the envelope
detector down-converts all signals into the same baseband.

NBPU Rx employs a MA4E2200 [46] Schottky diode to
yield the envelope of the filtered NBPU signal. The diode
is matched to the antenna with an L-matching network con-
sisting of two inductors, 22nH in parallel and 48nH in series,
reducing the impedance mismatch loss to -4dB. To boost SNR,
NBPU Rx employs 2-stage µW-consuming MCP6G03 [55]
amplifiers to boost the signal strength by +68dB in total,
which can be controlled from +68dB to +40dB to avoid dis-
tortions at large signal strengths. We note the amplifier yields
+14dB SNR on the typical operating scenario [15], suitable for
tight synchronization which we demonstrated in Section 7.5.

Power consumption. NR-Surface consume the most energy
during the tight synchronization and decoding of NBPU, up
to 2.4mW consisting of 655µW for amplifier, 294µW for
ADC, 111µW for the synchronization timer, and 1.36mW for
the synchronization and decoding logics. Leveraging duty-
cycling, the power-hungry components are only active during
a duration of NBPU which is much shorter than the entire
20ms period. This allows NR-Surface to significantly reduce

power consumption to 119.3µW by 20.4x. Meanwhile, recon-
figurations consume 1.67mW from the synchronization timer
and reconfiguration logic which converts beam patterns into
GPIO states. This is also reduced with duty-cycling, down to
117µW by 13.9x when 8 SSBs are assigned to NR-Surface
beam patterns. During the low-power mode, NR-Surface con-
sumes only 6.4µW to hold configurations, which consists of
5.9µW for the low-power mode standby current, 0.5µW for a
timer for reconfiguration timings, and 0.072µW for power dis-
sipated at unit-cells. NR-Surface power consumption during
the 20ms period sums up to a total 242.7µW, which provides
a 2.1-year lifetime from a single AA battery.

6.2 NR Evaluation Setup

We consider a general NR FR2 scenario. The BS is configured
to transmit NB-IoT frames in FR1 containing the NBPU, and
data packets in FR2 of large bandwidth.

FR2 transmissions. The BS employs USRP X300 series [29]
software-defined radio platform, transmitting NR-compatible
signals generated from the MATLAB 5G Toolbox [49]. The
baseband signal is configured with 50MHz channel band-
width, which consists of 64 SSBs for the beam sweeping fol-
lowed by 15ms of data. The signal is continuously generated
with a period of 20ms. For FR2 communication, the base-
band signal is upconverted by ADMV1013 [19] to mmWave
ISM band centered at 24.125GHz for the prototype evaluation,
with +5dBm transmit power. The FR2 signal is transmitted by
the 24GHz microstrip patch array antenna [27] with a fixed
beam direction and +22dBi directivity.

The UE is also equipped with the same microstrip patch
array antenna to receive the FR2 signal, which is downcon-
verted by ADMV1014 [18]. The UE employs USRP X300
series to process the baseband frame of bandwidth 50MHz,
running a custom GNURadio [28] block. The UE measures
SNRs of SSBs in the beam sweeping, which is reported to
the BS using the 905MHz spectrum within the ISM band. We
note the RF characteristics of 900MHz ISM spectrum are also
similar to NR low-band spectrum.

FR1 transmissions. The BS employs the same USRP run-
ning srsRAN [70], an open-source software implementation
of an O-RAN compliant base station. The BS is configured
to 900MHz ISM band centered at 915MHz for the prototype
evaluation, with 180KHz bandwidth for the NB-IoT signal.
We provide NB-IoT payload bits such that the generated NB-
IoT signal contains the NBPU. On the other hand, the BS
receives the beam report from the UE and extracts the best
SSB index, whose center frequency is configured to 905MHz
within the ISM band. This SSB index is immediately reflected
to the next NBPU transmission. For the transmission, the BS
is equipped with a VERT900 [30] antenna of +3dBi gain.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1647

Figure 14: NR-Surface’s real-time reconfiguration performance under mobile UE scenario. (a) In the indoor experiment setting,
NR-Surface can increase coverage with multiple beams. Under various UE movements (e.g., linear & S-curve), the best beam is
changed by the location (b,c) and NR-Surface reflects it in real time (d,e).

Figure 15: (a) Experiment setting for the mobile environment
in the corridor and (b) the two tracks of mobile UE moved
where the detailed scale is in (c).

7 Evaluation

In this section, we perform experiments under a dynamic
environment to show that NR-Surface is ready to be deployed
in practice. Specifically, we demonstrate the practicality of
NR-Surface system by deploying NR-Surface in mobile
and rapidly changing environments such as human movement
scenarios. We measure various performances required for
practicality such as SNR gain, latency, coverage, robustness
of NBPU, and power consumption.

7.1 Dynamic Environment
NR-Surface is ready for practical deployment in NR scenario,
achieving both the high average SNR gain (max 22.2dB) with
fast beam tracking performance (< 20ms reconfiguration de-
lay). In order to utilize NR-Surface in real life, NR-Surface
must be able to quickly change the best beam direction in
the dynamic environment that the mobile UE can experience.
Since the environment around the handheld device is rapidly
changed due to human movement, such as irregular movement
or blockage by the human body, we evaluate the performance
of NR-Surface reconfiguration in both scenarios.

SNR gain in mobile UE environment. We evaluate the SNR
gain in real-time reconfiguration of NR-Surface with re-
spect to the UE mobility. The evaluation setup is shown
in Figure 15 (a) where the BS cannot support UE without
NR-Surface since the LoS path is blocked by the corridor.
NR-Surface is placed at the intersection to improve coverage
of such UEs in the blind spot, which is tightly synchronized to

the FR2 frame and sweeps beam configurations during the SS
burst. The FR2 UE moves around the corridor following two
paths in Figure 15 (b), namely "linear" in which UE moves
at a typical human walking speed of 1m/s with constant dis-
tances to NR-Surface, and "S-curve" which UE pass through
multiple points with different distance to NR-Surface. The
detailed scale of our deployment is shown in Figure 15 (c).

As a reference, the region in Figure 14 (a) is colored de-
pending on which beam configuration provides maximum
SNR. Figure 14(b) and Figure 14(c) plot the dynamic SNR
variation of 4 SSBs for the movement path "linear" and "S-
curve", respectively, smoothed with window 10 over mea-
surements taken once every 20ms. Specifically, UE with the
linear movement passes through from SSB1 to SSB4 in se-
quence, and UE with the S-curve movement passes through
in sequence as SSB1→ SSB2→ SSB3→ SSB2→ SSB3
→ SSB4. The SNR variation plots confirm that the best SSB
changes as the UE passes through regions.

Figure 14 (d) and Figure 14 (e) illustrate the SNR of data,
measured every 20ms for the movement path "linear" and
"S-shape" respectively. In response to the change of optimal
beam configuration when the UE crosses the virtual bound-
ary, the UE reports the best SSB to NR BS every 20ms as
a single fixed beam would quickly deteriorate. The colored
backgrounds in these figures indicate the timing boundary of
the best SSB changes. This is applied to NR-Surface for real-
time reconfiguration, such that the data SNR always follows
the largest SNR among SSBs. NR-Surface achieves high
average SNR gain of 18.3dB and 20.3dB in each UE move-
ment, respectively, without significant SNR drop at crossing
boundaries.

SNR gain in blockage changing environment. Considering
the human body can suddenly block the established beam di-
rection, NR-Surface should be able to rapidly update the best
beam to cope with complex environments due to dynamically
changing blockages. In the NR beam management proce-
dure, the UE experiences serious SNR drop when the LoS
path is blocked by the dynamic environment. NR-Surface
deployment can recover the SNR drop by reconfiguring beam
patterns in real time.

1648 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 16: Real-world measurements of transmitted signals at the moment of blockage change. (1)-(3) Due to the dynamic
blockage, the data SNR drops and the best SSB changes during the beam sweep. (4) The best SSB is determined and reported to
the BS, which is also delivered to NR-Surface within 20ms. (5) NR-Surface is reconfigured to recover data SNR gain.

Figure 17: (a) outline of both blockage and UE design and (b)
its implementation.

We setup the UE and blockage as in Figure 17(a)-(b), which
has three microstrip patch antennas for Rx and movable metal-
lic sheets via servo motor. Each three Rx antenna of UE is
directed in different directions to check the best beam be-
tween multiple Rx beams, where each antenna is correlated to
one Rx beam of digital beamforming. For an accurate evalua-
tion, the movement of blockage is mechanically controlled to
minimize errors from manual manipulation. By rotating the
servo motor accurately, the metallic sheets always block two
antennas and allow only one antenna can receive the signal
from NR-Surface. Thus, after the blockage environment is
changed, UE finds the best SSB during the beam sweep step
among multiple Rx beamforming. Then, UE reports the best
SSB index to BS, which reconfigures NR-Surface in real
time.

Figure 18 (a) - (c) shows our evaluation setup, where the
line-of-sight between BS and UE is blocked by the corridor.
Each figure shows that only one antenna is allowed to receive
a signal while the other is blocked by metallic sheets. We
control the servo motor to change blockage quickly within
60ms, in (a)→ (b)→ (c)→ (b)→ (a) sequence where the
servo motor is paused for 400ms in each state. Figure 18(d)
plots the SNR gain of data every 20ms, where colored regions
show the beam index in NBPU. SNR drops slightly between
regions due to fast servo movements, and a stable SNR at
paused durations. NR-Surface can establish a high SNR path
with 22.2dB average SNR by fast recovery.

Figure 18: (a) - (c) show a scenario that only one antenna
among 3 is not blocked. (d) shows the achieved SNR by the
blockage environment change.

Time domain analysis for beam establishment. To get a
closer look at what control sequence actually exists at the mo-
ment of blockage change, Figure 16 shows what the received
signals by UE, BS, and NR-Surface look like by zooming in
on the moment of blockage change from Figure 18 (c) to (b).
The FR2 SNR plot demonstrates the strongest SSB is changed
during (1)-(3) due to the new blockage setting. Thus, the SNR
gain of the data at (2) is lower than the previous data at (1).
Then, during the next beam sweep step at (3), UE newly deter-
mines the best SSB among 3 Rx antennas. After UE’s beam
determination, UE reports the best SSB index to BS via the
FR1 channel in (4), where a few milliseconds (25 ms - 29 ms
in our implementation) delay occurs due to UE’s processing
time and allocated UL time. Note that this UE-driven delay
can be shorter when UE has a powerful signal processing
unit or BS allocates resources more frequently to UE. After
BS gets a report from UE, BS transmits NBPU to control,
shown as the blue solid line in (1). The fixed time of NBPU
causes a max 20 ms delay, which is short enough to recover
the blocked path by human movement. Finally, NR-Surface
is reconfigured to the new SSB index in (5).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1649

Figure 19: SNR of three beam patterns when NR-Surface is
reconfigured in real-time. NR-Surface continuously receives
NBPU and reconfigures beam patterns every 20ms.

Figure 20: (a) NR-Surface operation scenario with multiple
UEs (b) SNR fluctuation of the received FR2 per each UE.

Real-time configuration analysis. NR-Surface real-time
reconfiguration can support highly dynamic environments
where the best beam pattern changes every 20ms period of the
NR beam management procedure. We employ the same metal-
sheet blockage and a fast servo that changes blockage within
20ms, such that the UE reports different beam patterns in
each NR beam management procedure. This is also delivered
to NR-Surface via NBPU every 20ms. Figure 19 plots the
SNR of three antennas placed at the main lobe of beam pat-
terns, which demonstrates NR-Surface being continuously
reconfigured every 20ms to support dynamic environments in
real-time.

7.2 Multi UE Operation

To demonstrate multi-UE operation, we place two UEs at dif-
ferent locations such that each UE can select different SSBs
for its data transmission (Figure 20(a)). UE1 and UE2 are
scheduled to receive data from 5ms to 12.5ms, and 12.5ms to
20ms, respectively. NR-Surface receives the schedule info
along with SSB indices. Figure 20(b) illustrates the SNR of
the received FR2 signal at each UE. During the beam sweep-
ing, UEs report different SSBs as their best SSB index, which
are SSB1 and SSB3 for UE1 and UE2 (triangles in Figure 20),
respectively. NR-Surface is reconfigured to SSB1 at 5ms
for the UE1, such that the UE1 achieves +21.4dB SNR dur-
ing its data transmission. Then NR-Surface is reconfigured
at 12.5ms such that the UE2 achieves +20.6dB SNR from
12.5ms to 20ms. These SNRs are +17.3dB and +12.9dB bet-
ter when compared to NR-Surface is reconfigured to only
a single beam pattern of the other UE, for UE1 and UE2,
respectively.

Figure 21: (a) Multiple NR-Surface scenario with multiple
moving UEs (b) SNR fluctuation of the received FR2 per each
UE (c) Received SNR of each UE, while both users moved
during 5 sec.

7.3 Multi NR-Surface
NR-Surface supports deployment scenarios where one BS
controls multiple NR-Surface. Figure 21(a) illustrates the
evaluation setup where two NR-Surface are placed and two
UEs move around NR-Surface. Note the NR BS reconfigures
its beam towards multiple NR-Surface, where the evaluation
setup comprises two fixed antennas at the BS for demonstra-
tion purposes. Two NBPUs are placed in the same NB-IoT
guardband at different subframes, with different IDs in the
reconfiguration info to control two NR-Surface separately.
Figure 21(b) plots the data SNR of each UE, showing each
NR-Surface is concurrently reconfigured in real-time to track
each UE, respectively, with an average 22.5dB SNR gain. Fig-
ure 21(c) plots the example 20ms period during the movement,
showing each UE experiences different SSB as their best beam
pattern. This is separately reflected to two NR-Surface such
that both UE achieve high data SNR. The evaluation demon-
strates the capability of multiple NR-Surface deployment in
complex environments, providing a large number of SSBs to
cover multiple blind spots.

Figure 22: Comparison of SNR at various Rx locations (dots)
between (a) NR-Surface placed at red rectangle (b) metal
mirror of the same size with NR-Surface (c) no reflector
placed. The Tx is placed at orange triangle steered towards
NR-Surface.

1650 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

7.4 Coverage Extension

We evaluate SNR improvements of NR-Surface in various
UE locations, compared to a naive metal reflector and no
reflector being placed. Figure 22(a) illustrates the measure-
ment setup, a typical around-the-corner scenario with a strong
blockage between Tx and Rx. Tx to reflector distance is fixed
at 13m, and the transmit power is configured to 10dB less than
previous experiments to emulate more practical attenuation.
The SNR is measured at 4x5 UE locations on a rectangular
grid of 1m spacing, with a maximum Rx to reflector distance
is 7.3m. NR-Surface and metal mirror are placed at the inter-
section facing the Tx, where NR-Surface is reconfigured to
steer the best beam possible while the metal mirror is fixed.
Figure 22(a)-(c) show NR-Surface can achieve on average
7.6dB gain than the SNR with a metal mirror, and 8.8dB gain
than the SNR without reflectors. Note the SNR improvement
diminishes at UE locations whose steering angle exceeds 70°
from the normal direction, showing NR-Surface can support
wide range of steering angles up to 140° in practice.

Figure 23: NBPU Synchro-
nization error versus SNR.

Figure 24: NR-Surface BER
versus distance to the BS.

7.5 µW Synchronization Accuracy
We evaluate NR-Surface synchronization accuracy which is
necessary to ensure compliance with NR standards. Figure 23
plots the average synchronization error with respect to the
SNR over 400 NBPUs, measured as the difference between
the boundary of the NBPU transmission and the rising edge
of the GPIO interface in NR-Surface. Specifically, we con-
nect a high sampling rate (∼ 1Gsps) oscilloscope to both
NR-Surface Rx and GPIO interface. NR-Surface success-
fully achieves 234ns synchronization error at low SNR of
+0dB, which is much lower than SNR in typical operation
scenarios [15]. From this, reconfigurations satisfy the NR
requirements of < 260ns including < 10ns reconfiguration
delay, even under the typical clock drift < 20ns [3, 7] quartz
crystal occurring every 20ms period. NR-Surface achieves
this high accuracy in low-power by the equivalent time sam-
pling, which mimics 3.84MHz ADC with a low-end 14KHz
ADC.

7.6 NBPU BER Measurements
We evaluate NR-Surface demodulation performance and cor-
responding reliability of NR-Surface reconfigurations. Fig-
ure 24 plots the average BER of NR-Surface with respect

to the distance to the NR BS, averaged over 200,000 sym-
bols. Specifically, NR BS is placed in the indoor corridor
and transmits NBPU at +16dBm, the maximum transmit
power of NB-IoT in small cell BS. NR-Surface is equipped
with the +11dBi Yagi antenna towards the BS, assuming an-
tenna direction is known during the installation. NR-Surface
achieves < 2×10−5 BER up to 50m distance, which corre-
sponds to 99.99% satisfying high data-rate applications by
NR KPIs [14], assuming 5 bits are used for reconfiguration
info. NR-Surface achieves this in low-power by asymmetric
NBPU OOK symbol design maximizing SNR while reducing
bandwidth for low-power NR-Surface Rx.

(a) Coexistence of NBPU and in-
band FR1.

(b) BER versus SINR in
NR guardband

Figure 25: Evaluation setup and BER performance against
NR interference.

7.7 Interference Robustness
We evaluate NR-Surface robustness against the NR inter-
ference. NBPU is implemented on top of NB-IoT, which is
placed at guardbands of the NR spectrum. Figure 25(a) plots
the fully utilized 5MHz NR spectrum consisting of heavy
NR traffic (blue) and NBPU (red) in the guardband, placed
with only a 70KHz gap between the NR traffic. Note the
NB-IoT in the guardband is allowed to boost transmit power
by +6dB compared to the NR spectrum. Figure 25(b) plots
the BER with respect to the SINR. The SINR drops down
to −8dB when the NR spectrum is fully utilized. However,
NR-Surface successfully achieves < 2×10−5 BER even at
maximum interference (up to −10dB). NR-Surface achieves
this by a narrow passband filter of 320KHz bandwidth to
suppress the interference by −18dB, such that NR-Surface
still achieves low BER and high reliability in practical NR
deployments.

(a) Simulated beam pattern (b) Measured beam pattern
Figure 26: Beam patterns with desired main-lobe angles from
10° to 70°.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1651

7.8 Beam Pattern Validation
Figure 26(a) and (b) illustrate the simulated and measured
beam patterns generated from NR-Surface using 1-bit GPIO
outputs, respectively. Power simulation and measurement re-
sults are arranged such that each row represents a single beam
pattern desired to be steered towards +10° to +70°. Note that
the measurement resolution is 2°. The power measurement
matrix has a similar appearance to the simulation, having a
strong diagonal demonstrating each beam pattern is success-
fully steered to the desired angle. NR-Surface successfully
covers up to 140° from −70° to +70° using symmetric pat-
terns, where side-lobes of the beam pattern are suppressed.

Figure 27: (a) Fabricated 3D metasurface and (b) measured
3D Beam pattern of NR-Surface steered towards different
azimuth angles and (c) different elevation angles direction
(smoothed with window=10°).

7.9 Extension to 3D Beamforming
To demonstrate the 3D beamforming capability, we fabricate
a 4x4 metasurface whose unit-cells are separately controlled.
Figure 27(a) shows the fabricated metasurface, whose bias
lines are separately connected to different bias terminals. Fig-
ure 27(b),(c) illustrates measured beam patterns steered to-
ward different azimuth angles and different elevation angles.
We note the valid beam patterns with strong main-lobe are
drawn in Figure 27(b),(c). NR-Surface successfully steers
beam towards azimuth angles from +10° to +60°, covering
120° from −60° to +60° using symmetric patterns. With the
same 3D metasurface, NR-Surface can also steer beams to-
ward elevation directions from +10° to +40°, covering 90°
from −45° to +45° using symmetric patterns. We note the
slightly narrower elevation coverage can be compensated
with multiple NR-Surface deployments. NR-Surface suc-
cessfully steers the beam to different directions in 3D, which
can be further extended to narrower and stronger beam pat-
terns when implemented with larger metasurfaces.

8 Related Works
mmWave communication is considered to be the future of mo-
bile communications, on which extensive research has been
conducted [16,26,32,36,51]. However, mmWave communica-
tion suffers from high attenuation, such that antenna arrays for
effective beamforming are necessary [20,31,34,35,37,47,50].
In efforts to increase the coverage and reliability of mmWave
systems, approaches such as dense deployment of base sta-
tions (BS) [39, 60], dual-band wireless network architecture

with sub-6GHz [77], relays [21, 58, 62], and distributed an-
tennas [48, 57, 59, 72] has been proposed. While simple and
straightforward, these solutions require installing a large body
of costly transceivers, hindering pervasive applicability and
widespread of mmWave technology.

Metasurface [79, 80] has emerged as an economic solution
for aiding mmWave beamforming for reliable communication
with extended coverage. Specifically, NR-Surface cost (i.e.,
∼ $600) is much cheaper than COTS repeater solutions pric-
ing∼ $3000 [2]. Furthermore, NR-Surface still has a similar
cost to the existing mmWave metasurface with the same or
smaller size [33,76,78] which cost $500−$800. They support
dynamic channel [22, 23], MIMO [81], or even utilize low-
cost 3D printing [64]. A recent metasurface, mmWall [24],
integrates link layer discovery protocol of mmWave networks
into the design. Nevertheless, real-time, NR-compliant MAC
layer design still remains a challenge. In the given context,
NR-Surface prioritizes seamless integration with NR stan-
dards, presenting distinct challenges such as achieving tight
synchronization in low-power consumption.

Another line of research [25, 40, 43–45, 52, 68] focuses low
power communication for sustainable deployment. Recent
works [38, 42] are capable of demodulating network symbols
with mW level power consumption. NR-Surface uniquely
implements the low power Rx for metasurface control, to
operate with 247 µW end-to-end for practical deployment.

9 Conclusion
We present NR-Surface, an NR-compliant metasurface re-
configured in real-time within the NR standard. NR-Surface
operates at µW-regime achieving a 2.1-year lifetime on an
AA battery, consisting of the metasurface and NR-compliant
Rx, which are duty-cycled leveraging the unique features of
the NR standards. NR-Surface end-to-end system is imple-
mented on srsRAN and evaluated on diverse scenarios from
dynamic environments, multiple UEs to 3D beamforming
achieving up to 22.2dB gain.

Acknowledgements

We thank our shepherd, Prof. Haitham Hassanieh, and the
anonymous reviewers for their constructive comments. This
research was supported in part by the MSIT(Ministry of Sci-
ence and ICT), Korea, under the ITRC(Information Technol-
ogy Research Center) support program(IITP-2024-2020-0-
01787) supervised by the IITP(Institute of Information &
Communications Technology Planning & Evaluation), the
IITP grant funded by the Korea government (MSIT) (No.2021-
000269, Development of sub-THz band wireless transmis-
sion and access core technology for 6G Tbps data rate, %33),
and the National Research Foundation of Korea(NRF) grant
funded by the Korea government (MSIT) (No. RS-2023-
00213816). We would like to acknowledge the technical sup-
port from ANSYS Korea.

1652 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Ansoft high frequency structure simulator.
https://www.ansys.com/Products/Electronics/
ANSYS-HFSS.

[2] Debunking the myth that millimeter wavelengths aren’t
viable for 5g. https://movandi.com/debunking-
the-myth-that-millimeter-wavelengths-
arent-viable-for-5g/.

[3] Ecx-31b smd crystal datasheet. https:
//www.mouser.kr/datasheet/2/122/ecx_31b-
15952.pdf.

[4] Energizer max aa. https://energizer.com/wp-
content/uploads/2023/12/e91_max_na.pdf.

[5] Mavr-011020-1411. https://www.macom.com/
products/product-detail/MAVR-011020-1411.

[6] Rogers ro4003c. https://www.rogerscorp.com/
advanced-electronics-solutions/ro4000-
series-laminates/ro4003c-laminates.

[7] Quartz crystal technology overview. Technical report,
Diodes, November 2018.

[8] 5G mmWave Deployment Best Practices. Technical
report, GSMA, November 2022.

[9] 3GPP. Evolved Universal Terrestrial Radio Access (E-
UTRA); Physical layer procedures. Technical Specifi-
cation (TS) 36.213, 3rd Generation Partnership Project
(3GPP), 03 2023. Version 17.5.0.

[10] 3GPP. NR; Base Station (BS) radio transmission and
reception. Technical Specification (TS) 38.104, 3rd Gen-
eration Partnership Project (3GPP), 06 2023. Version
18.2.0.

[11] 3GPP. NR; Multiplexing and channel coding. Technical
Specification (TS) 38.212, 3rd Generation Partnership
Project (3GPP), 09 2023. Version 18.0.0.

[12] 3GPP. NR; Physical channels and modulation. Techni-
cal Specification (TS) 38.211, 3rd Generation Partner-
ship Project (3GPP), 06 2023. Version 17.5.0.

[13] 3GPP. NR; Requirements for support of radio resource
management. Technical Specification (TS) 38.133, 3rd
Generation Partnership Project (3GPP), 06 2023. Ver-
sion 18.2.0.

[14] 3GPP. Service requirements for the 5G system. Techni-
cal Specification (TS) 22.261, 3rd Generation Partner-
ship Project (3GPP), 06 2023. Version 19.3.0.

[15] 3GPP. Study on channel model for frequencies from
0.5 to 100 GHz. Technical report (TR) 38.901, 3rd Gen-
eration Partnership Project (3GPP), 01 2024. Version
17.1.0.

[16] Talal Ahmad, Ramón Agüero, and Lakshminarayanan
Subramanian. Learning congestion state for mmwave
channels. In Proceedings of the 3rd ACM Workshop on
Millimeter-wave Networks and Sensing Systems, pages
19–25, 2019.

[17] Analog Devices. A/D Converters (ADC).
https://www.analog.com/en/product-category/analog-
to-digital-converters.html.

[18] Analog Devices. 24 GHz to 44 GHz, Wideband, Mi-
crowave Downconverter, ADMV1014, 2018. Available
at https://www.analog.com/media/en/technical-
documentation/data-sheets/ADMV1014.pdf, Rev.
A.

[19] Analog Devices. 24 GHz to 44 GHz, Wideband,
Microwave Upconverter, ADMV1013, 2018. Available
at https://www.analog.com/media/en/technical-
documentation/data-sheets/ADMV1013.pdf, Rev.
B.

[20] Kang Min Bae, Hankyeol Moon, Sung-Min Sohn, and
Song Min Kim. Hawkeye: Hectometer-range subcen-
timeter localization for large-scale mmwave backscatter.
In Proceedings of the 21st Annual International Con-
ference on Mobile Systems, Applications and Services,
MobiSys ’23, 2023.

[21] Qi Bi. The proximity radio access network for 5g and 6g.
IEEE Communications Magazine, 60(1):67–73, 2022.

[22] Kun Woo Cho, Yasaman Ghasempour, and Kyle
Jamieson. Towards dual-band reconfigurable metasur-
faces for satellite networking. In Proceedings of the
21st ACM Workshop on Hot Topics in Networks, pages
17–23, 2022.

[23] Kun Woo Cho, Mohammad H Mazaheri, Jeremy
Gummeson, Omid Abari, and Kyle Jamieson. mmwall:
A reconfigurable metamaterial surface for mmwave net-
works. In Proceedings of the 22nd International Work-
shop on Mobile Computing Systems and Applications,
pages 119–125, 2021.

[24] Kun Woo Cho, Mohammad H Mazaheri, Jeremy
Gummeson, Omid Abari, and Kyle Jamieson.
{mmWall}: A steerable, transflective metamaterial
surface for {NextG}{mmWave} networks. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 1647–1665, 2023.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1653

https://www.ansys.com/Products/Electronics/ANSYS-HFSS
https://www.ansys.com/Products/Electronics/ANSYS-HFSS
https://movandi.com/debunking-the-myth-that-millimeter-wavelengths-arent-viable-for-5g/
https://movandi.com/debunking-the-myth-that-millimeter-wavelengths-arent-viable-for-5g/
https://movandi.com/debunking-the-myth-that-millimeter-wavelengths-arent-viable-for-5g/
https://www.mouser.kr/datasheet/2/122/ecx_31b-15952.pdf
https://www.mouser.kr/datasheet/2/122/ecx_31b-15952.pdf
https://www.mouser.kr/datasheet/2/122/ecx_31b-15952.pdf
https://energizer.com/wp-content/uploads/2023/12/e91_max_na.pdf
https://energizer.com/wp-content/uploads/2023/12/e91_max_na.pdf
https://www.macom.com/products/product-detail/MAVR-011020-1411
https://www.macom.com/products/product-detail/MAVR-011020-1411
https://www.rogerscorp.com/advanced-electronics-solutions/ro4000-series-laminates/ro4003c-laminates
https://www.rogerscorp.com/advanced-electronics-solutions/ro4000-series-laminates/ro4003c-laminates
https://www.rogerscorp.com/advanced-electronics-solutions/ro4000-series-laminates/ro4003c-laminates
https://www.analog.com/media/en/technical-documentation/data-sheets/ADMV1014.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADMV1014.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADMV1013.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADMV1013.pdf

[25] A Eid, J Hester, and M Tentzeris. mm-wave tunnel
diode-based rectifier for perpetual iot. In 2020 IEEE
International Symposium on Antennas and Propaga-
tion and North American Radio Science Meeting, pages
1495–1496. IEEE, 2020.

[26] Aline Eid, Jimmy Hester, and Manos M Tentzeris. A
scalable high-gain and large-beamwidth mm-wave har-
vesting approach for 5g-powered iot. In 2019 IEEE MTT-
S International Microwave Symposium (IMS), pages
1309–1312. IEEE, 2019.

[27] Eravant. K-Band Microstrip Patch Array Antenna, 12°
x 12°, SAM-2432432212-KF-L1, 2022. Rev 1.4.

[28] Ettus Research. GNURadio. https://www.gnuradio.org/.

[29] Ettus Research. USRP™ X300 and X310, X Series.
Available at https://www.ettus.com/wp-content/
uploads/2019/01/X300_X310_Spec_Sheet.pdf.

[30] Ettus Research. WSS016 Antenna
With SMA(M), VERT900. Available at
https://kb.ettus.com/images/2/2b/
ettus_research_vert900_datasheet.pdf.

[31] Yasaman Ghasempour, Muhammad K Haider, Car-
los Cordeiro, Dimitrios Koutsonikolas, and Edward
Knightly. Multi-stream beam-training for mmwave
mimo networks. In Proceedings of the 24th Annual
International Conference on Mobile Computing and
Networking, pages 225–239, 2018.

[32] Moinak Ghoshal, Z Jonny Kong, Qiang Xu, Zixiao Lu,
Shivang Aggarwal, Imran Khan, Yuanjie Li, Y Charlie
Hu, and Dimitrios Koutsonikolas. An in-depth study
of uplink performance of 5g mmwave networks. In
Proceedings of the ACM SIGCOMM Workshop, pages
29–35, 2022.

[33] Jean-Baptiste Gros, Vladislav Popov, Mikhail A. Odit,
Vladimir Lenets, and Geoffroy Lerosey. A reconfig-
urable intelligent surface at mmwave based on a binary
phase tunable metasurface. IEEE Open Journal of the
Communications Society, 2:1055–1064, 2021.

[34] Muhammad Kumail Haider, Yasaman Ghasempour,
Dimitrios Koutsonikolas, and Edward W Knightly. Lis-
teer: Mmwave beam acquisition and steering by tracking
indicator leds on wireless aps. In Proceedings of the
24th Annual International Conference on Mobile Com-
puting and Networking, pages 273–288, 2018.

[35] Haitham Hassanieh, Omid Abari, Michael Rodriguez,
Mohammed Abdelghany, Dina Katabi, and Piotr Indyk.
Fast millimeter wave beam alignment. In Proceedings of
the 2018 Conference of the ACM Special Interest Group
on Data Communication, pages 432–445, 2018.

[36] Suraj Jog, Zikun Liu, Antonio Franques, Vimuth Fer-
nando, Haitham Hassanieh, Sergi Abadal, and Josep
Torrellas. Millimeter wave wireless network on chip us-
ing deep reinforcement learning. In Proceedings of the
SIGCOMM’20 Poster and Demo Sessions, pages 70–72.
2020.

[37] Suraj Jog, Jiaming Wang, Junfeng Guan, Thomas Moon,
Haitham Hassanieh, and Romit Roy Choudhury. {Many-
to-Many} beam alignment in millimeter wave networks.
In 16th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 19), pages 783–800,
2019.

[38] Zerina Kapetanovic, Ali Saffari, Ranveer Chandra, and
Joshua R Smith. Glaze: Overlaying occupied spectrum
with downlink iot transmissions. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 3(4):1–21, 2019.

[39] Mirza Golam Kibria, Kien Nguyen, Gabriel Porto Vil-
lardi, Kentaro Ishizu, and Fumihide Kojima. Next gen-
eration new radio small cell enhancement: Architectural
options, functionality and performance aspects. IEEE
Wireless Communications, 25(4):120–128, 2018.

[40] Atsutse Kludze and Yasaman Ghasempour.
{LeakyScatter}: A {Frequency-Agile} directional
backscatter network above 100 {GHz}. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 375–388, 2023.

[41] Lauridsen. An empirical nb-iot power consumption
model for battery lifetime estimation. In 2018 IEEE
87th Vehicular Technology Conference (VTC Spring),
pages 1–5, 2018.

[42] Haofan Lu, Mohammad Mazaheri, Reza Rezvani, and
Omid Abari. A millimeter wave backscatter network for
two-way communication and localization. In Proceed-
ings of the ACM SIGCOMM 2023 Conference, pages
49–61, 2023.

[43] Charles Lynch, Ajibayo O Adeyeye, Aline Eid,
Jimmy GD Hester, and Manos M Tentzeris. 5g/mm-
wave fully-passive dual rotman lens-based harmonic
mmid for long range microlocalization over wide angu-
lar ranges. IEEE Transactions on Microwave Theory
and Techniques, 71(1):330–338, 2023.

[44] Charles A Lynch, Ajibayo O Adeyeye, Aline Eid, JGD
Hester, and Manos M Tentzeris. 5g/mm-wave next gen-
eration rfid systems for future iot applications. In 2021
IEEE International Conference on RFID Technology
and Applications (RFID-TA), pages 77–80. IEEE, 2021.

1654 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.ettus.com/wp-content/uploads/2019/01/X300_X310_Spec_Sheet.pdf
https://www.ettus.com/wp-content/uploads/2019/01/X300_X310_Spec_Sheet.pdf
https://kb.ettus.com/images/2/2b/ettus_research_vert900_datasheet.pdf
https://kb.ettus.com/images/2/2b/ettus_research_vert900_datasheet.pdf

[45] Charles A Lynch, Ajibayo O Adeyeye, Aline Eid, Jimmy
Hester, and Manos M Tentzeris. Ultra-long-range dual
rotman lenses-based harmonic mmld’s for 5g/mm-wave
lot applications. In 2022 IEEE/MTT-S International
Microwave Symposium-IMS 2022, pages 32–35. IEEE,
2022.

[46] MACOM. Surface Mount Zero Bias Schottky Diodes,
MA4E2200. Available at https://cdn.macom.com/
datasheets/MA4E2200%20Series.pdf, Rev. V10.

[47] Sohrab Madani, Suraj Jog, Jesus O Lacruz, Joerg Wid-
mer, and Haitham Hassanieh. Practical null steering
in millimeter wave networks. In 18th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 21), pages 903–921, 2021.

[48] Saad Mahboob and Rodney G Vaughan. Fiber-fed dis-
tributed antenna system in an fpga software defined
radio for 5g demonstration. IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, 67(2):280–284,
2019.

[49] MathWorks. Matlab 5g toolbox, 2023.

[50] Mohamamd Mazaheri, MohammadSadegh
Vafaeinezhad, Mostafa Alizadeh, Mohammad
Fakharzadeh, and Safieddin Safavi-Naeini. A low-cost
and low-power single bit phased array at ka-band for
5g applications. In 2019 49th European Microwave
Conference (EuMC), pages 622–625. IEEE, 2019.

[51] Mohammad H Mazaheri, Soroush Ameli, Ali Abedi, and
Omid Abari. A millimeter wave network for billions
of things. In Proceedings of the ACM Special Interest
Group on Data Communication, pages 174–186. 2019.

[52] Mohammad Hossein Mazaheri, Alex Chen, and Omid
Abari. Mmtag: A millimeter wave backscatter network.
In Proceedings of the 2021 ACM SIGCOMM 2021 Con-
ference, pages 463–474, 2021.

[53] MediaTek. MediaTek M80 5G Modem, 2021.

[54] Microchip. 8-bit PCI and AVR Micro-
controllers. https://www.microchip.com/en-
us/products/microcontrollers-and-microprocessors/8-
bit-mcus.

[55] Microchip Technology. 110 μA Selectable Gain
Amplifier, MCP6G03, 2006. Available at https:
//ww1.microchip.com/downloads/aemDocuments/
documents/OTH/ProductDocuments/DataSheets/
22004b.pdf.

[56] Microchip Technology. Signal Conditioning 915.0
MHz SAW resonator, TFR915X, 2017. Avail-
able at https://www.mouser.kr/datasheet/2/268/
TFR915X-1665563.pdf, V1.2.

[57] Arno Moerman, Joris Van Kerrebrouck, Olivier Caytan,
Igor Lima de Paula, Laurens Bogaert, Guy Torfs, Piet
Demeester, Hendrik Rogier, and Sam Lemey. Beyond
5g without obstacles: mmwave-over-fiber distributed
antenna systems. IEEE Communications Magazine,
60(1):27–33, 2022.

[58] Syed Hassan Raza Naqvi and Pin-Han Ho. Achieving
5g nr mmwave indoor coverage under integrated access
backhaul. IEEE Systems Journal, 15(4):5429–5439,
2021.

[59] Syed Hassan Raza Naqvi, Pin Han Ho, and Limei Peng.
5g nr mmwave indoor coverage with massive antenna
system. Journal of Communications and Networks,
23(1):1–11, 2021.

[60] Kien Nguyen, Mirza Golam Kibria, Jing Hui, Kentaro
Ishizu, and Fumihide Kojima. Minimum latency and
optimal traffic partition in 5g small cell networks. In
2018 IEEE 87th Vehicular Technology Conference (VTC
Spring), pages 1–5, 2018.

[61] NI. NI-SCOPE, 2023.

[62] Konstantinos Ntontin and Christos Verikoukis. Relay-
aided outdoor-to-indoor communication in millimeter-
wave cellular networks. IEEE Systems Journal,
14(2):2473–2484, 2019.

[63] J.G. Proakis and M. Salehi. Fundamentals of Communi-
cation Systems. Pearson Education, 2013.

[64] Kun Qian, Lulu Yao, Xinyu Zhang, and Tse Nga Ng.
Millimirror: 3d printed reflecting surface for millimeter-
wave coverage expansion. In Proceedings of the 28th
Annual International Conference on Mobile Computing
And Networking, MobiCom ’22, page 15–28, New York,
NY, USA, 2022. Association for Computing Machinery.

[65] Qualcomm. Snapdragon X65 5G Modem-RF System
Product Brief, 2021.

[66] Qualcomm. Snapdragon X70 5G Modem-RF System
Product Brief, 2022.

[67] Qualcomm. Snapdragon X75 5G Modem-RF System
Product Brief, 2023.

[68] Elahe Soltanaghaei, Adwait Dongare, Akarsh Prab-
hakara, Swarun Kumar, Anthony Rowe, and Kamin
Whitehouse. Tagfi: Locating ultra-low power wifi tags
using unmodified wifi infrastructure. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 5(1):1–29, 2021.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1655

https://cdn.macom.com/datasheets/MA4E2200%20Series.pdf
https://cdn.macom.com/datasheets/MA4E2200%20Series.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/22004b.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/22004b.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/22004b.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/22004b.pdf
https://www.mouser.kr/datasheet/2/268/TFR915X-1665563.pdf
https://www.mouser.kr/datasheet/2/268/TFR915X-1665563.pdf

[69] Xinyun Song, Xudong Bai, and Weiren Zhu. Recon-
figurable metasurface for nearly full-range and continu-
ous modulation of reflection, transmission, and absorp-
tion. ACS Applied Electronic Materials, 4(3):1225–
1231, 2022.

[70] srsRAN PROJECT. srsRAN. https://www.srslte.com/.

[71] STMicroelectronics. STM8 8-bit MCUs.
https://www.st.com/en/microcontrollers-
microprocessors/stm8-8-bit-mcus.html.

[72] Minkyu Sung, Joonyoung Kim, Eon-Sang Kim, Seung-
Hyun Cho, Young-Jun Won, Byoung-Chul Lim, Sung-
Yeop Pyun, Joon Ki Lee, and Jong Hyun Lee. 5g trial
services demonstration: Ifof-based distributed antenna
system in 28 ghz millimeter-wave supporting gigabit
mobile services. Journal of Lightwave Technology,
37(14):3592–3601, 2019.

[73] Texas Instruments. Analog-to-Digital Convert-
ers. https://www.ti.com/ko-kr/data-converters/adc-
circuit/products.html.

[74] TEXAS INSTRUMENTS. MSP430 microcon-
trollers. https://www.ti.com/microcontrollers-mcus-
processors/msp430-microcontrollers/overview.html.

[75] Shuncheng Tian, Haixia Liu, and Long Li. Design of
1-bit digital reconfigurable reflective metasurface for
beam-scanning. Applied Sciences, 7(9):882, 2017.

[76] Alexander Wolff, Lars Franke, Steffen Klingel, Janis
Krieger, Lukas Mueller, Ralf Stemler, and Marco Rahm.
Continuous beam steering with a varactor-based recon-
figurable intelligent surface in the Ka-band at 31GHz.
Journal of Applied Physics, 134(11):114502, 09 2023.

[77] Li Yan, Xuming Fang, Yuguang Fang, Li Hao, Qing
Xue, and Chenren Xu. Kf-lstm based beam tracking
for uav-assisted mmwave hsr wireless networks. IEEE
Transactions on Vehicular Technology, 71(10):10796–
10807, 2022.

[78] Fei Yang, Fan Xu, Chenxi Liu, Xinyu Yang, Ziqiang
Wang, Junwei Wu, and Xiaojian Fu. Two-dimensional
beam steering based on compact programmable coding
metasurface. Applied Sciences, 12(22), 2022.

[79] Haobo Zhang, Hongliang Zhang, Boya Di, Kaigui Bian,
Zhu Han, Chenren Xu, Daqing Zhang, and Lingyang
Song. Rss fingerprinting based multi-user outdoor local-
ization using reconfigurable intelligent surfaces. In 2021
15th International Symposium on Medical Information
and Communication Technology (ISMICT), pages 167–
172. IEEE, 2021.

[80] Yongzhao Zhang, Yezhou Wang, Lanqing Yang, Mei
Wang, Yi-Chao Chen, Lili Qiu, Yihong Liu, Guangtao
Xue, and Jiadi Yu. Acoustic sensing and communication
using metasurface. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
23), pages 1359–1374, 2023.

[81] Yutong Zhang, Boya Di, Hongliang Zhang, Jinlong Lin,
Chenren Xu, Daqing Zhang, Yonghui Li, and Lingyang
Song. Beyond cell-free mimo: Energy efficient recon-
figurable intelligent surface aided cell-free mimo com-
munications. IEEE Transactions on Cognitive Commu-
nications and Networking, 7(2):412–426, 2021.

1656 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) NB-IoT downlink frame structure in guardband mode

(b) NB-IoT PHY block diagram
Figure 28: Emulating NBPU with NB-IoT

Appendix A. Emulating NBPU
As shown in Figure 28, NBPU is embedded in the NB-IoT
downlink data channel, which constitutes an NB-IoT down-
link frame. NBPU should be embedded avoiding Narrow-
band Reference Signal (NRS), subcarriers with fixed phases,
in the 5, 6, 12, and 13th symbols of one subframe. By two
NRSs in one symbol, only

(10
2

)
= 45 out of a total

(12
2

)
= 66

harmonics can be controlled, reducing the number of control-
lable by 68%. NBPU frame with 10 symbols is embedded in
the blue box of Figure 28 while the Rx will ignore the 5 and
6th symbols.

The payload bits that can embed NBPU should be found
through reverse engineering of the PHY block diagram in Fig-
ure 28. In this figure, coded bits Y and modulated bits Y′ are
one-to-one mapping, so its reverse engineering is straightfor-
ward. On the other hand, in the 1/3 code rate channel coding,
payload bits X cannot generate arbitrary Y since the length
of X is shorter than Y which induces a reduced degree of
freedom. To solve this problem, the 240 bits of NBPU can be
completely reverse-engineered by adding redundancy bits to
Y such that X becomes greater than 240 bits. Since the length
of payload bits is pre-defined in TS 36.213 [9], we utilize a
256-bit payload, the shortest length among candidates, whose
result of PHY block diagram is allocated in 3 subframes.

Appendix B. Sweeping NBPU Symbol
For equivalent time sampling, NR-Surface samples with
260ns shifted sampling offset every NB-IoT symbol where
symbol length is 66.67µs ' 256×260ns. Since the number
of symbols transmitted in 20ms is 280 symbols, the accu-
mulated sampling offset after 20ms is (280− 256− 1)×
260ns where −1 is for the overflowed sampling offset than
symbol length. Thus, after NBPU is transmitted N times
(i.e., N×20ms), NR-Surface samples NBPU with (13×N
mod 256)× 260ns sampling offset. Then, the minimum N
is 256 to sweep NBPU with 260ns fully. Considering that
NR-Surface transmits 5 NBPU symbols every 20ms, we can
achieve a fully swept symbol 5 times faster (i.e., N becomes
60). Then, the corresponding time is 1.2s (= 60×20ms).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1657

Cyclops: A Nanomaterial-based, Battery-Free Intraocular Pressure (IOP)
Monitoring System inside Contact Lens

Liyao Li12⇤, Bozhao Shang24, Yun Wu24, Jie Xiong3, Xiaojiang Chen24, Yaxiong Xie1.†

1. University at Buffalo SUNY, 2. Northwest University (China)
3. University of Massachusetts Amherst and Microsoft Research Asia,

4.Shaanxi International Joint Research Centre for the Battery-Free Internet of Things

Abstract
Intraocular pressure (IOP), commonly known as eye pressure,
is a critical physiological parameter related to health. Contact
lens-based IOP sensing has garnered significant attention in
research. Existing research has been focusing on developing
the sensor itself, so the techniques used to read sensing data
only support a reading range of several centimeters, becom-
ing the main obstacle for real-world deployment. This paper
presents Cyclops, the first battery-free IOP sensing system
integrated into a contact lens, which overcomes the proximity
constraints of traditional reading methods. Cyclops features
a three-layer antenna comprising two metallic layers and a
nanomaterial-based sensing layer in between. This innovative
antenna serves a dual purpose, functioning as both a pressure
sensor and a communication antenna simultaneously. The
antenna is connected to an RFID chip, which utilizes a low-
power self-tuning circuit to achieve high-precision pressure
sensing, akin to a 9-bit ADC. Extensive experimental results
demonstrate that Cyclops supports communication at meter-
level distances, and its IOP measurement accuracy surpasses
that of commercial portable IOP measurement devices.

1 Introduction

Intraocular pressure (IOP) is a critical human vital sign of hu-
man health, and thus monitoring IOP is crucial for assessing
and managing various diseases, especially glaucoma, the sec-
ond leading cause of irreversible blindness worldwide [1–4].
Elevated IOP causes permanent damage to the optic nerve in-
side eyes, ultimately resulting in glaucoma and gradual vision
loss. Glaucoma has no cure yet but if we detect Glaucoma in
its early stage, we could prevent it from causing permanent
vision by lowering the IOP via medicine or surgery. We em-
phasize that early-stage Glaucoma has no obvious symptoms,
making accurate IOP measurement the only feasible solution
for timely diagnosis of early-stage Glaucoma.

⇤Work conducted during academic visiting at the University at Buffalo.
†Corresponding author

Reader
Antenna

Query command

Digitized Sensing Data

Contact lensBackscatter
communication

(b)
RFID chipAntenna

VNA

Wire

Mutual Coupling

Contact lens
(a)

Sensor

Reading
Coil

Figure 1. Reading data from contact lens via mutual cou-
pling only supports centimeter level reading range (a), while
backscatter based communication extends it to meter level(b).

Furthermore, continuous and long-term tracking of IOP is
necessary for accurate disease diagnosis and effective disease
management, since IOP naturally fluctuates in response to
various physiological and psychological factors [5, 6], such
as sleeping or dramatic emotional fluctuations. Accumulating
long-term monitoring data helps eliminate the influence of
unrelated factors, enabling accurate diagnosis. Additionally,
timely tracking of IOP variations allows for precise and timely
interventions, such as initiating medication immediately upon
detecting elevated IOP to control the progress of Glaucoma.

Due to the significant impact of IOP on human health, ac-
curate measurement has attracted a large amount of attention,
particularly in biomedical engineering. Contact lens-based
wearable techniques have emerged as the leading solution
because of their lightweight nature, potential for mobility, and
high accuracy resulting from direct contact with the eye balls.
Two types of pressure sensors that fit in the contact lens have
been the main focus of prior works: the piezoresistive sen-
sors [4, 7–15], and the inductively coupled structure based
sensors [16–24]. These sensors incorporate a ring structure
made of conductive material that conforms to the shape of
the contact lens, as depicted in Figure 1. In piezoresistive sen-
sors, the ring structure’s resistance is carefully designed to be
pressure sensitive, while in coupled structure based sensors,
the reactance is pressure sensitive. As a result, pressure can
be inferred by measuring the impedance of both sensor types.

Optimizing the sensor to make it more sensitive, biosafe,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1659

transparent, and easy to manufacture has been the main focus,
so in most current solutions, the contact lens only contains
pressure sensors. To read the sensing data from the sensors
embedded inside the contact lens, a reading coil connected to a
vector network analyzer (VNA) is positioned atop the sensors
to measure the impedance, just as shown in Figure 1(a). How-
ever, this method only supports a very limited data reading
range of a few centimeters. Our survey of 20 related works
reveals that the maximum reading range reaches only five
centimeters. Putting a bulky reader in close proximity to eye
balls poses a significant hindrance to practicality and emerges
as the primary obstacle for real-world deployment.

This paper presents, Cyclops, a battery-free contact lens
based IOP sensing system that supports long-range data read-
ing, eliminating the requirement for a bulky data reader to be
in close proximity to the user. We achieve long-range commu-
nication by integrating a backscatter communication system
with the pressure sensor, all within the small contact lens. A
backscatter communication system requires a sizable metallic
antenna. The current pressure sensor features a conductive
ring structure. Embedding both the antenna and the ring struc-
ture in the contact lens with limited size and a thickness below
200 µm results in mutual coupling and thus interference, im-
pacting both communication and sensing performance.

Instead of directly integrating a backscatter antenna and
an existing pressure sensor together, we introduce a novel
approach: a dual-purpose antenna that serves as a pressure
sensor and a communication antenna concurrently. Our de-
sign involves a three-layer sandwich-like antenna structure
comprising two metallic antenna layers and a central sensing
layer. The sensing capability arises from the nanomaterial uti-
lized in the middle layer, which exhibits significant variations
in intrinsic properties such as conductivity and permittivity
in response to pressure changes. Simultaneously, the sens-
ing layer, integrated into the antenna assembly, influences
the overall impedance of the complete three-layer structure,
rendering the entire system sensitive to applied pressure and
effectively functioning as a pressure sensor. Additionally,
through meticulous optimization of the two metallic layers’
structure, we can align the antenna’s impedance with that of
the backscatter chip, enabling long-range communication.

To design a sensing layer that works robustly on a battery-
free, purely energy-harvesting powered system, we have the
following design goals:
• Ultra-Low Power Consumption. Our sensing layer’s power

consumption must be maintained at an absolute minimum
to align harmoniously with the overall power profile of the
integrated system.

• Superior Sensitivity. The ability of the sensing layer to detect
subtle changes in IOP is utmost significance, necessitating
an exceptionally high sensitivity level.

• Thickness, Curvature and Transparency. The sensing layer’s
dimensions, including thickness and curvature, must seam-
lessly match the contact lens. The sensing layer should be

transparent to minimize interference to human view.
• Biocompatibility and Biosafety. The sensor must exhibit a

rigorous level of biocompatibility.
To meet the design goals, we leverage a nanocomposite to
fabricate our sensing layer. The nanocomposite consists of
hollow carbon spheres (HCS) nanoparticles blended in the
polydimethylsiloxane (PDMS)—the most widely used mate-
rial for fabricating contact lens. Specifically, we fabricate a
flexible HCS-PDMS sensing film with a thickness of tens of
micrometers. This nanocomposite’s flexibility enables it to
conform to the curvature of the contact lens. Moreover, all the
materials utilized, including HCS and PDMS, have already
demonstrated their biocompatibility.

The two metallic antenna layers create an electric field
across the HCS-PDMS sensing film, inducing the quantum
tunneling effect between the HCS nanoparticles, resulting
in a tunneling current. Pressure affects the film’s thickness,
changing the nanometer-level spacing between HCS, which,
in turn, influences the strength of the tunneling current. The
variations in tunneling current effectively change the con-
ductivity of the sensing film, which consequently affects the
permittivity of the nanomaterial [25]. We further enhance our
HCS-PDMS sensing film’s sensitivity to pressure through
three optimizations: replacing normal UHCS with Urchin-
like HCS (UHCS) for enhanced tunneling current, fine-tuning
UHCS density to strike a balance between sensitivity and
transparency, and adding microstructures to the surface of
UHCS-PDMS sensing film to further boost the sensitivity.

Our dual-purpose three-layer antenna is connected to an
RFID chip for backscatter communication. Matching the
impedance of the antenna with that of the chip is crucial
to maximize communication efficiency. It is, however, chal-
lenging to match the chip’s impedance with our three-layer
antenna whose impedance varies with the applied pressure. To
tackle this problem, we propose to make the chip’s impedance
variable as well, allowing for dynamic real-time matching.
We leverage the commercial Magnus S3 RFID chip that has a
self-tuning circuit to adjust the chip impedance by modifying
a 9-bit register. However, the self-tuning circuit has a limited
range of impedance tunability. To ensure consistent matching,
we have optimized the structure of the two metallic antenna
layers to align the antenna’s impedance tunability with the
range of impedance variations induced by pressure, ensuring
long-range communication.

To achieve high-resolution IOP sensing, precise measure-
ment of the impedance variations in the three-layer antenna is
essential. Traditionally, various methods have been employed
to measure antenna impedance variations by analyzing the
backscattered signal, such as tracking phase variations to in-
fer impedance changes [26, 27]. It’s worth noting that these
methods are susceptible to channel dynamics and become in-
effective when the human that wears the contact lens moves.

To mitigate the impact of human motion, we choose a dif-
ferent path: directly sampling and digitizing the impedance

1660 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of the antenna within the RFID chip. However, this requires a
high-resolution analog-to-digital converter (ADC). To tackle
this problem, instead of directly measuring the antenna’s
impedance, we opt to measure the impedance of the chip
itself, which can be obtained from the 9-bit register of the
self-tuning circuit. Consequently, this 9-bit register effectively
serves as a 9-bit ADC, enabling high-resolution sampling and
digitization. After data digitization, the reader then directly
queries the Cyclops lens to fetch the digitized impedance.

We have developed cost-effective methods to fabricate the
UHCS nanoparticles, the UHCS-PDMS nanocomposite sens-
ing film, the three-layer antenna, and the Cyclops-lens. A sub-
stantial number of Cyclops lenses have been manufactured,
and their IOP measurement performance has been tested in
various environments. Extensive experimental results demon-
strate that Cyclops achieves a communication distance of 1
meter, significantly surpassing the centimeter-level range of
existing solutions. The IOP accuracy, when tested on artifi-
cial eyes and real pig eyes, achieves a median accuracy of
0.51 mmHg and 0.5 mmHg, respectively, surpassing that of
commercial portable IOP measurement devices. We have also
investigated the impact of tears and eyelids. Results show
that Cyclops works robustly, achieving median accuracy of
0.55 mmHg, 0.54 mmHg, and 0.6 mmHg, with tears, eyelids,
and both of them, respectively.

2 Related Work

IOP Tonometry. Clinical IOP measurement relies on var-
ious techniques, including Goldmann applanation tonome-
try [28], Dynamic contour tonometry [29], Tonopen tonom-
etry [30], and Pneumatonometer [31]. However, these tech-
nologies lack the capability of continuous sensing and require
trained medical personnel for operation. Implantable IOP
biosensors [32–35] inside the anterior chamber, are the most
accurate but also probably the most invasive techniques for
IOP measurement.
Contact-lens Based IOP Sensor. Contact-lens based tech-
niques are the dominant solution for the wearable IOP sensing
design. Diverse types of pressure sensors that fit in the contact
lens have been proposed. Piezoresistive sensors [4, 7–15, 36]
are one type of sensor whose resistance changes in response
to the applied pressure. The main focus of research in this di-
rection has been designing diverse conductive material whose
resistance is sensitive to applied pressure, Some examples of
the material are Ag nanowires (AgNWs) [37], gold hollow
nanowires(AuHNW) [8], self-assembly graphene [36] and
Graphene-AgNWs [18]. Inductively coupled sensors [16–24],
are sensors whose reactance changes with the applied pres-
sure, so finding the structure whose capacitance or inductance
is sensitive to pressure has been the main focus of research in
this direction. The dominant data reading technique for both
piezoresistive sensors and inductively coupled sensors are
the mutual coupling based method as shown in Figure 1(a),

which only supports a reading range of several centimeters.
Microfluidic sensor [38–43] is a special type of sensing tech-
nique that integrates microfluidic channels inside the contact
lens. The pressure affects the distribution of liquid inside
those microfluidic. However, observing the distribution of
liquid requires a high-end camera placed in proximity of the
contact lens and many other complicated, bulky, and costly
optic infrastructures.
Contact-lens Based Sensing Systems. Besides measuring
eye pressure, contact lens based devices are also used for
blood glucose monitoring [44–46], integrated pixel display
functions [47–51], eye movement sensing [52] and drug de-
livery [53–56]. The well-known contact lens system Google
contact lens [44] utilize sensors to measure blood glucose
levels through tears. Two commercial contact lens systems
MoJo [47] and InWith [48] support displaying information
on the contact lens. All three contact lens system require
on-lens batteries. A recent work [53] design a contact lens
capable of detecting glucose levels in tears, and drugs can
be released from the self-regulated pulsatile drug delivery
system through remote communication. Work [52] makes a
solid step towards battery-free contact lens-based computing
by embedding an RFID chip inside the contact lens. Another
work [49] develops a contact lens equipped with the capability
to continuously monitor glucose levels in tears. This contact
lens allows for tracking of diabetic conditions through and
LED pixel display. Although these studies develop the new
functionalities on contact lens, most works typically rely on
on-lens batteries for power. Cyclops is a battery-free system
that utilizes a commercial ThingMagic RFID reader to access
the measurement data.

3 Nanomaterial-based Pressure Sensor
Our design of a pressure sensor with low power consumption
and high sensitivity is rooted in the quantum tunneling ef-
fect occurring between nanoparticles. We expound upon this
concept and present our design in the forthcoming sections.

3.1 Primer of Nanoparticles
In this section, we introduce the background of nanoparticles
and the quantum tunneling effect between nanoparticles.
Nanoparticles: Hallow Carbon Sphere. We use hollow car-
bon sphere (HCS) in our system, which are spherical assem-
blies composed of carbon atoms, uniformly dispersed across
the surface to encase an empty interior, as illustrated in Fig-
ure 2(a). These structures boast diameters in the range of
hundreds of nanometers, with sphere thicknesses measured
around 10 nm. This unique architecture imparts exceptional
attributes to HCS, including robust electrical conductivity,
chemical stability, thermal resilience, and mechanical dura-
bility. Furthermore, HCS exhibits great biocompatibility and
biosafety [57], making it suitable for bio-related applications.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1661

Electric Field !

Tunnelling
Current

PDMS HCS
(Conductor)

HCS
(Conductor)

distance
(nm)

Electric Field !
PDMS

Stronger
Tunnelling
Current

Applied pressure

(a)

(b) (c) (d)

Empty core

Thickness
10s nm

Insulator
Conductor

Conductor

Electrons

Electric Field !

Hollow Carbon Spheres

(Insulator)

distance
(nm)

Figure 2. The model of the hollow carbon spheres is shown in (a).The
model of the tunneling junction is shown in (b). The quantum tunneling
effect between hollow carbon spheres is depicted in (c). Applied imposition
of pressure on the construct is illustrated in (d).

3

Upper
Antenna

Bottom
Antenna

HCS-
PDMS

El
ec
tr
ic
Fi
el
d
!

Bottom
antenna layer

PDMS mixed
with HCS

Pure PDMS

Pure PDMS

Upper
antenna layer

Th
re

e-
la

ye
r s

an
dw

ich
-li

ke

an
te

nn
a

st
ru

ct
ur

e

(b)

RFID chip

(a)

Figure 3. Two metallic antenna layers with different
structures are used to power the pressure sensor as
illustrated in (a). The complete five-layer contact
lens antenna structure is shown in (b).

Quantum Tunneling Effect. We leverage a quantum tunnel
junction to illustrate the phenomenon of quantum tunneling.
A typical tunnel junction consists of two electrically conduct-
ing layers separated by a thin insulating layer, as depicted
in Figure 2(b). Ordinarily, electrons within each conductive
layer are unable to traverse the insulating layer and access
the adjacent conductive layer. However, the introduction of
an external electric field helps electrons overcome this bar-
rier, thereby giving rise to a quantum tunneling current. As
per quantum theory, the magnitude of this tunneling current
hinges on two primary factors: the thickness of the insulating
layer and the intensity of the applied electric field.
Quantum Tunneling Effect between HCS. Resembling the
tunnel junction, when we embed two electrically conductive
HCS inside any insulating material and apply an external elec-
tric field, we will observe quantum tunneling current between
two HCS particles, just as shown in Figure 2(c). The magni-
tude of the tunneling current depends on the distance between
HCS particles and the intensity of the applied electric field.

3.2 Nanomaterial-based Pressure Sensing
We introduce the design of our nanomaterial-based pressure
sensor that leverages the quantum tunneling effect.

3.2.1 Sensing Structure and Sensing Mechanism.

Adhering to the tunneling junction structure, we embed HCS
that function as conductors inside the polydimethylsiloxane
(PDMS), which serves as the insulator, as depicted in Fig-
ure 2(c). The HCS particles are dispersed in the PDMS matrix,
forming a multilayer structure. The spacing between individ-
ual particles is on the nanometer scale. This configuration
yields what we term an HCS-PDMS nanocomposite material.
Notably, we select PDMS as it is the most widely employed
material for manufacturing contact lenses, being both an effi-
cient insulator and showcasing remarkable biocompatibility
and biosafety characteristics.

Application of an external electric field to the HCS-PDMS
initiates the emergence of a quantum tunneling current be-

tween adjacent HCSs, akin to the portrayal in Figure 2(c)(d).
An increase in IOP increases the corneal radius of curva-
ture which results in a bi-axial lateral expansion of the HCS-
PDMS construct film within the lens. The entire layer un-
dergoes thinning, leading to a proportional reduction in the
spacing between the HCSs. As elaborated in previous sec-
tions, a decrease in the gap between the conductors amplifies
the potency of the quantum tunneling effect, ultimately giving
rise to an escalated tunneling current. Consequently, pressure
can be measured by assessing the intensity of the resultant
tunneling current.

3.2.2 Powering the Pressure Sensor

The proper functioning of our pressure sensor relies on the
presence of an external electric field. Conventionally, the pre-
dominant method for generating an electric field involves em-
ploying electrodes connected to a power source. This potential
difference between the electrodes establishes the electric field.
However, our contact lens operates without a traditional power
source, being driven solely by energy-harvesting mechanisms.
As a result, creating such an electric field within a battery-free
device poses a significant challenge.
Three-layer Sandwich-like Antenna Structure. In order to
energize the sensor on our battery-free device, we introduce a
3-layer sandwich-like antenna structure. This configuration
involves two distinct metallic antenna layers, flanking a cen-
tral HCS-PDMS film (i.e., the pressure sensor) as depicted
in Figure 3(a). Notably, the two metallic antenna layers are
designed to have different structures. Consequently, when the
interrogation signal from the reader interacts with the tag,
distinct surface currents are induced on the two antenna lay-
ers, resulting in disparate current distributions. This, in turn,
naturally engenders a potential difference and establishes an
electric field between the two antenna layers. This process suc-
cessfully applies an external electric field to the HCS-PDMS
film, thus powering the sensor.
Complete Five-layer Contact Lens Design. Direct inter-
action between the metallic antennas and human tissue is

1662 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

900 #$

Spikes
UHCS

(a)

Electric Field EElectric Field E

Concentration

Strong
internal

electric field

(b) (c)
Figure 4. The urchin-like HCS (UHCS) has uniformly dis-
tributed spikes on its surface, creating a much stronger internal
electric field compared to HCS without spikes.

considered biologically unsafe. In response, we encapsulate
both the sensor and the tag antenna with two additional lay-
ers of biosafe PDMS. Following this enhancement, a 5-layer
contact lens configuration is achieved, as depicted in Fig-
ure 3(b). Among those layers, the two pure PDMS layers
and two metallic antenna layers have a thickness of 30 µm
and 10 µm, respectively. The thickness of the HCS-PMDS
sensing film is 60 µm. Consequently, the overall thickness of
the complete contact lens amounts to 140 µm.

3.2.3 Maximizing the Sensitivity.

We have made three optimizations to our nanomaterial-based
pressure sensor to maximize its sensitivity.
Urchin-like HCS. To generate a stronger tunneling current
under the same external electric field, we make a structural
modification to the carbon sphere. Specifically, we replace the
normal HCS with urchin-like hollow carbon sphere (UHCS)
whose structure is depicted in Figure 4(a). The surface of the
urchin-like carbon sphere features long, sharp, and uniformly
distributed spikes. When subjected to an external electric field,
a substantial concentration of free electrons accumulates on
these spikes, engendering a markedly intensified internal elec-
tric field in contrast to the smooth-surfaced normal HCS, as
shown in Figure 4(b) and (c). This augmented internal elec-
tric field significantly facilitates electron traversal across the
insulating space between the carbon spheres, resulting in an
amplified tunneling current. Moreover, the presence of spikes
on the carbon sphere serves to diminish the gap between
neighboring carbon spheres, particularly at low filling con-
centrations, thereby further augmenting the tunneling current.

St
re

ng
th

of
tu

nn
el

lin
g

cu
rr

en
t

Density of HCS

Quantum tunneling
disappears in this area

Slope
Density

sensitive
interval

Selected density

Figure 5. The relationship between the strength of tunneling
current and the density of UHCS inside of the PDMS.

Optimizing the UHCS Density. The distance between the
carbon spheres, which corresponds to the density or concentra-
tion of carbon spheres within the PDMS, holds notable influ-

PDMS

Metallic Antenna

Microstructure

!" #$

(b)

SEM of the fabricated micrones
on the UHCS- PDMS film

(c)(a)

%! #$

UHCS-PDMS

Metallic Antenna

Metallic Antenna

(d)

CconeCcone

Rcone

Rcone

Ccone pressure

S d

pressure
S d

unload

Calathea
Zebrine

RconeRcone

SEM of the
leaves surface

………

Rc Rc Rc
……

Cc Cc

…………

Cc Cc……

!" #$

…

…

Rc

…

… …

……

Figure 6. The microstructure of the UHCS-PDMS film is
depicted in (a). The scanning electron microscopy (SEM)
imaged microstructure is illustrated in (b). The schematic of
the pressure sensing is illustrated in (c). Circuit schematic
diagram of pressure sensing is depicted in (d).

ence over the resultant tunneling current. We have constructed
a model and subsequently conducted simulations to discern
the connection between the intensity of the quantum tunneling
current and the density of UHCS. The simulated outcomes,
graphically presented in Figure 5, yield two key observations.
Firstly, the quantum tunneling phenomenon disappears when
the distance between carbon spheres decreases too much (den-
sity surpassing 2.06 wt.%). Secondly, a density-sensitive inter-
val (ranging from 1.72 wt.% to 2.06 wt.%) emerges, within
which even minor fluctuations in density yield substantial
variations in the generated tunneling current’s strength.

To optimize sensitivity, we configure the density of UHCS
at the start of this density-sensitive interval, just as illustrated
in Figure 5. This strategic selection ensures that minute fluctu-
ations in pressure yield significant deviations in the magnitude
of the resulted tunneling current.
Bio-inspired Microstructures. To further improve the sen-
sitivity, we introduce microstructures of the UHCS-PDMS
sensing film. Specifically, we create a large number of micro-
cones on the surface of the sensing film, each with an average
diameter of 50 µm and height of 45 µm, just as shown in Fig-
ure 6. The apex of each microcone connects to the antenna
layer, while the base of the cone interfaces with the surface of
the sensing film, as depicted in Figure 6(a). For the purpose
of structural stability, the residual space between the antenna
and the microcones is filled with pure PDMS.

Each microcone serves as a connection point between two
antenna layers, effectively functioning as a resistor. The resis-
tance Rc of such a resistor is given as:

Rc =
1

sS
(1)

where s represents the conductivity of the material, namely
the UHCS-PDMS nanocomposite and S denotes the area of
the plate, which is the contact area between the cone and
the upper antenna layer. As per our empirical observations
outlined in §6.1, an increase in applied pressure not only
expands the contact area S, but also increases the conductivity
of the material, primarily due to a more pronounced tunneling

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1663

Upper
Antenna

!!"#$

"!"#$ "%

"&"'!%
#%

#(
#& !&

RFID Chip

!'

Sensing Layer Bottom
Antenna

Figure 7. The equivalent circuit of the Cyclops lens antenna,
where Cu and Ru represents a variable capacitor and resistor.

effect, consequently resulting in decreased resistance Rc.
The combination of the two metallic antenna layers and

the cone in between also forms a parallel plate capacitor, as
shown in Figure 6(c), whose capacitance Ccone is:

Cc =
eS

4pd
(2)

where e represents the permittivity of the UHCS-PDMS
nanocomposite, and d is the distance between two plates,
i.e., two antenna layers. When pressure is applied, the entire
three-layer antenna gets thinner, leading to an expansion in
the contact area S between the cone and the antenna and a re-
duction in the distance d between the two antenna layers. As
per our empirical findings in §6.1, this process also results in
increased permittivity e of the nanocomposite. Consequently,
an increase in pressure leads to a corresponding increase in
capacitance Cc of each microcone-antenna capacitor.

In summary, the incorporation of microcone introduces
an array of pressure-sensitive capacitors and resistors con-
nected in parallel, just as shown in Figure 6(d). Consequently,
the overall impedance of the entire sandwich-like structure
becomes responsive to pressure, whose resistance can be rep-
resented as:

Ru =
1

ÂK
k=1

1
Rck

(3)

and capacitance is given as:

Cu =
K

Â
k=1

Cck (4)

assuming there are K microcones added to the film.

Fabrication of microcones. The fabrication of a microcone
structure demands advanced MEMS technology, involving
costly equipment and skilled operators. In response, we pro-
pose a bio-inspired microcone fabrication technique that no-
tably mitigates fabrication complexity and cost. Our approach
stems from the observation that Calathea Zebrine [58] leaves
possess a remarkably uniform microcone surface structure, as
evidenced in Figure 6(b). Leveraging this natural inspiration,
we propose to produce a microcone template utilizing Ca-
lathea Zebrine leaves1. Subsequently, we replicate the surface
pattern from this microcone template onto the sensing film,
effectively generating uniform microcone structures.

1The detailed microcone template fabrication process using Calathea
Zebrine leaf can be found in Appendix §A.1.

3.2.4 Integrated Sensing System

We connect an RFID chip to our three-layer antenna for
backscatter communication, just as shown in Figure 3(b). The
RFID chip we use is Magnus S3 [59] with a known and fixed
chip impedance Zchip = Re(3.99 W) + Im(91.05 W)j. The
equivalent circuit diagram of our sensing system is shown in
Figure 7. In such an integrated sensing and communication
system, the three-layer antenna functions as both a pressure
sensor and a communication antenna. The impedance of the
three-layer antenna depends on two categories of factors:
• Antenna-dependent static components. All these compo-

nents are fixed if the structures of those two metallic antenna
layers are known. Specifically, C1 and C2 represent the par-
asitic capacitance associated with the two antenna layers;
R1 and R2 denote the parasitic resistance of the respec-
tive antenna layers; L1 and L2 correspond to the parasitic
self-inductance of two antenna layers; Lm is the mutual-
inductance between two antenna layers.

• Pressure-dependent variable components. The impedance
of the sandwich-like three-layer structure Cu and Ru varies
when the applied pressure varies.

Antenna Impedance. Based on the equivalent circuit shown
in Figure 7(b), we derive the overall impedance of the whole
three-layer antenna as:

Zant =� 1
jwC1

+R1 +
jwL1(Zs+Zb)
jwL1+Zs+Zb

(5)

where Zs and Zb are:

Zs =� 1
jwCu

+Ru + jwLm, (6)

Zb =
w2R2L2C2 + jwL2

1+w2C2L2 � jwR2C2
. (7)

The detailed process of deriving the antenna impedance is
presented in Appedix B. According to Eqn. 5, we know that
any variations in pressure change the value of the pressure-
sensitive resistor Ru and capacitor Cu, which in turn affects
Zs, ultimately changing the impedance Zant of the entire three-
layer antenna. Therefore, our three-layer antenna effectively
functions as a pressure sensor whose impedance value is
directly associated with the applied pressure.

4 Concurrent Sensing and Communication

In this section, we present our system design that integrates
the dual three-layer and the RFID chip into one battery-free
IOP sensing system that simultaneously achieves high sensing
accuracy and supports long range communication.

4.1 Long-Range Backscatter Tag Design
To support long-range backscatter communication, it is im-
perative to match the impedance of the commercial RFID
chip with the impedance of our three-layer antenna. Since
the impedance of an antenna changes with the operating fre-
quency, our objective is to design an antenna that matches its

1664 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Impedance matching at fc

fc

0

fr1 Frequency

0

fr2

R(f)

X(f)

p1 p2 Pressure
change

Z = R1 + X1 * jp1

Z = R2 + X2 * jp2

Pressure induced
impedance change

R1

R2
X1

X2

(b) Impedance varies with pressure
Frequencyfr

Impedance
match

fc

R(f)
X(f)

Self-resonant
frequency fr

Im
pe

da
nc

e
(R

ea
l ,

 Im
ag

)

0

Zchip = Zant(fc)*

Zant(fc)=
R(fc)+X(fc)*j

R(fr)

X(fr)

Im
pe

da
nc

e
(R

ea
l ,

 Im
ag

)

Figure 8. The antenna impedance fluctuates with both
frequency and applied pressure. We focus on achieving
impedance matching at the operating frequency.

0

10

Re
al

5

Pressure (mmHg)
0

100

Im
ag

50

0

10

Re
al

5

Register Value
0

100

Im
ag

50

Antenna

!!"#(#)

%!"#(#)

&!"#

Self-tuning Circuit

%$(')%%&'(

!%&'(

RFID Chip Register Controlled Chip
Impedance Change

Pressure Induced antenna
Impedance Change

!$(')

!!

!!"#(#$)

%!"#(#$)

!%&'((&$)

%%&'((&$)

"!

Figure 9. The equivalent circuit of the Cyclops with the self-
tuning circuit, where Cs and Rs represents a variable capacitor
and resistor values that vary based on the register value.

impedance Zant with the chip impedance Zchip at its operating
frequency fc, i.e., Zchip=Zant(fc) just as shown in Figure 8(a).
It is essential to emphasize that the operating frequency fc
of our system differs from the self-resonant frequency2 fr
of the antenna because our chip has close-to-zero resistance
(Rc=3.99 W) and high reactance (Xc=91.05 W).
Challenge: Antenna Impedance Fluctuations. When the
applied pressure changes, the antenna impedance distribu-
tion across frequencies Zant(f) changes accordingly, as de-
picted in Figure 8(b). In contrast, the chip impedance Zchip is
pressure-oblivious and thus remains constant. As a result, the
impedance of the antenna and the chip cannot maintain match-
ing as applied pressures fluctuate, which could significantly
impact the communication efficiency of our system.
Solution: Self-tuning Circuit. We leverage the self-tuning
circuit inside the commercial Magnus S3 RFID chip to dynam-
ically adjust the impedance of the chip to match the variable
antenna impedance, just as shown in Figure 9. The self-tuning
circuit effectively functions as a variable capacitor Cs(r) and
resistor Rs(r), with r representing the value of a 9-bit self-
tuning register. The RFID chip fine-tunes its impedance by
adjusting the self-tuning register’s value, making the chip
impedance also variable, denoted as Zant(r).

Each time the chip powers on, it initiates a search for the
optimal rm value that achieves impedance matching with the
connected antenna. The key insight the chip leverages is that

2Self-resonant frequency is defined as the frequency where the antenna
resistance is maximized and at the same time reactance is zero.

antenna efficiency is at its peak when impedance is well-
matched. Consequently, the RFID chip attempts to discover
the ideal rm value that maximizes the RSSI of the received
signal, as detailed in [59]. Once this optimal rm is identified,
the chip locks its register value to rm to ensure continuous
impedance matching between the chip and the antenna.

4.2 High-Resolution Pressure Sensing
To obtain precise digital pressure measurements, we need to
accurately measure the impedance of the three-layer antenna
and subsequently digitize the measured impedance using a
high-resolution analog-to-digital converter (ADC). However,
several challenges emerge. First, impedance measurement typ-
ically relies on a vector network analyzer, a sophisticated and
costly equipment unsuitable for integration within a contact
lens. Furthermore, even if the contact lens possessed adequate
space for housing a high-resolution ADC, the energy con-
straints of a battery-free device present significant hurdles in
powering such a component.
Solution: Effective 9-bit ADC via Impedance Matching.
We rely on the real-time impedance matching scheme to
achieve simultaneous antenna impedance measurement and
digitization. The underlying concept hinges on the fact that
the applied pressure, which can be denoted as p, governs the
overall impedance of the three-layer antenna, which can be
denoted as Zant(p). In parallel, the RFID chip adjusts its reg-
ister value r, thus modifying its own impedance Zchip(r), as
illustrated in Figure 10(a). To maximize the communication
efficiency, the chip searches for rm that guarantees the state
of the impedance matching between the chip and antenna:

Zant(p) = Zchip(rm). (8)
Eqn. 8 effectively establishes a mapping between the applied
pressure p and the chip register value rm. For instance, Fig-
ure 10(b) plots the relationship between the pressure p and
register value rM we collected from our fabricated contact
lens, based on which, we can derive the applied pressure
p from the chip register value rm that achieves impedance
matching. Moreover, the 9-bit chip register inherently func-
tions as a 9-bit ADC that digitizes the sensing value, granting
exceptionally high pressure-sensing resolution.

The chip stores the 9-bit register value at a specific loca-
tion (from 0xC7 to 0xCF for Magnus S3) inside its memory
bank. The reader sends a standard C1G2 command, i.e., the
read command that contains the exact location of the register
inside the memory bank, to fetch the value rm from the chip,
based on which, the reader derives the pressure according to
the pressure-register mapping in Figure 10(b). Specifically,
we employ polynomial curve fitting to establish an average
trend line, which forms our test curve for calibration.

4.3 Dual-Purpose Antenna Deisgn
Our three-layer antenna serves a dual purpose, functioning
as both a communication antenna and a pressure sensor with

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1665

Register
value

0 r1 r2

Zchip1

Chip
Impedance

Zchip2

0

Antenna
Impedance

Pressure
(mmHg)

p2 p1

Zant1

Zant2

Impedance match

(a) Theoretic mapping.

190 200 210 220

27

25

22

29

Max
Min

(b) Mapping in practice.

Figure 10. The impedance matching naturally cre-
ates a mapping between the register value rm and
the applied pressure p.

C
hi

p
tu

na
bi

lit
y

ra
ng

e

Z1
Z1 = 1 - j*59

Zn = 4 - j*91

Z2

Z3

Z4

Z…

Zn-3

Zn-2

Zn-1

Zn

∆Z

Antenna
im

pedance
variance range

P1 = 0 mmHg

Pn = 50 mmHg

∆P = 10 ∆P = 5

Pn = 50 mmHg

P1 = 0 mmHg

Waste of
resolution

Figure 11. Aligning the
antenna impedance vari-
ation range with chip’s
impedance tunability.

Im
pe

da
nc

e
(R

ea
l ,

 Im
ag

)

Frequencyfr2fr1 fc

0

0

Resonant
frequency 2

Resonant
frequency 1

0

100

R
ea

l

50
P1

Pn

Slope

R(f)

X(f)

Pn

Frequency
50

150

Im
ag 100

fc
P1

(a) (b)

(c)

Resisitance
insensitve
to pressure

Rectance
sensitive
to pressure

Figure 12. A dual-frequency antenna results
in significant pressure-induced reactance vari-
ations but minimal resistance variations at the
operating frequency.

a sensing range spanning from 0 mmHg to 40 mmHg. To
concurrently optimize communication and sensing perfor-
mance, the antenna’s impedance variations under various pres-
sures within the sensing range should align with the chip’s
impedance tunability, i.e., the range of impedance achievable
by the chip via modifying the value of the 9-bit register. First,
it is crucial to ensure that all potential antenna impedances fall
within the tunability range of the chip. Any outlier leads to
impedance mismatches, thereby adversely affecting commu-
nication efficiency. Furthermore, to make the most of the 9-bit
ADC’s resolution, the antenna’s impedance variance range
should occupy the chip’s tunability to the greatest extent pos-
sible, as visually represented in Figure 11.

The Magnus S3 chip exhibits substantial tunability in re-
actance, ranging from 59 W to 91 W, while its resistance
tunability is negligible, spanning from 1 W to 4 W. Hence,
our antenna design should prioritize sensitivity to pressure-
induced reactance variations while remaining less responsive
to changes in resistance. Except for the requirement on the
antenna impedance variance, our antenna design must meet
two additional criteria. Firstly, it should be sized, shaped, and
curved to seamlessly integrate with the contact lens. Secondly,
the two metallic antenna layers must exhibit distinct structures
to enable the generation of an electric field between them,
thus powering the sensor, as illustrated in Figure 3(a).
Dual Resonant Frequency Antenna Structure. We lever-
age a dual resonant frequency antenna structure to effectively
align the antenna impedance variations with the chip’s tun-
ability. Just as shown in Figure 12(a), we create two resonant
frequencies fr1 and fr2 on both sides of the working frequency
fc through antenna structural design. We could see that, com-
pared to the single resonant frequency antenna in Figure 8(a),
the resistance variations near the operating frequency fc ex-
hibit a flat slope while the reactance variations have a sharp
slope. As shown in Figure 8(b), the applied pressure induces
a shift in the impedance distribution of one antenna across
frequencies. Such a shift in impedance distribution for our
dual-frequency antenna leads to substantial variations in re-
actance while keeping resistance changes to a minimum just
as shown in Figure 12(b) and (c). Such a trend in impedance
variations aligns with the chip’s tunability.

1 4 60 2 3 5

Im
pe
da
nc
e

Rotating the
bottom ring

Fine-tuning the
bottom antenna

Symmetric single self-
resonant frequency antenna

f1 =1.8 GHz 0.56 GHz
5 GHz

Asymmetric dual self-
resonant frequency antenna

Antenna with adjusted
resonant frequencies

0.48 GHz
2 GHz0.4 GHz 1.7 GHz

Dual frequency antenna with
impedance matched

upper

bottom

upper

bottom

upper

bottom

upper

bottom

Adjusting the bottom
 ring

structure

(a) (b)

(c)(d)

fc

Im
pe
da
nc
e

Im
pe
da
nc
e

Im
pe
da
nc
e

0.5 1 1.5 20 0.5 1 1.5 20

Frequency (GHz)Frequency (GHz)
2 4 60

Frequency (GHz) Frequency (GHz)

fcfc

fc

Figure 13. The workflow of creating a dual-frequency an-
tenna structure and confining the antenna’s impedance varia-
tions within the chip’s tunability.

We follow the steps depicted in Figure 13 to create such a
dual-frequency antenna and confine its impedance variations
within the chip’s tunability. Our three-layer antenna consists
of two conductive layers separated by an intermediate dielec-
tric layer. We initially start with a completely symmetrical
antenna structure, just as shown in Figure 13(a), which ex-
hibits only a single resonant frequency near the operating
frequency (0-3 GHz). After experimenting with various meth-
ods to create a second resonant frequency on such a small
antenna, we surprisingly find out that, the easiest way to break
the symmetry is by rotating the bottom layer as shown in
Figure 13(b). This asymmetry results in a significant shift in
the original self-resonant frequency, moving it from 1.8 GHz
to 0.5 GHz, while concurrently inducing the emergence of
another self-resonant frequency at 5 GHz.

We also observe that increasing the electric length of the
bottom layer significantly lowers the frequency of the second
resonant frequency while keeping the first frequency less af-
fected. Therefore, we gradually increased the length of the
bottom layer antenna and shifted two resonant frequencies to
0.48 GHz and 2 GHz respectively, as shown in Figure 13(c).
Finally, by making fine adjustments to the bottom layer’s di-
mensions, such as the ring width and the gap between adjacent

1666 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Create the core

Mix with
Aniline

PS core adsorbed
with Aniline

Create a shell atop of
the core

Polymerization

PS core adsorbed
with Polyaniline

Create an urchin-like
shell atop of the core

Polyaniline Sphere

Remove the PS core

Heatin
g at

350°C
 Heating

at 900°C

!"" #$

PS nanospheres (b)

(c)

!"" #$

UHCS

Carbonization to
obtain the UHCS

UHCS-PDMS film

SEM of the UHCS
(a)

Figure 14. The fabrication process of UHCS is depicted in
(a). The scanning electron microscopy (SEM) imaged UHCS
that we fabricated is illustrated in (b). The fabricated UHCS-
PDMS nanocomposite film is shown in (c).

PDMS Coating the conductive film Laser Ablation Bottom layer structure Coating the UHCS-
PDMS film

Coating the top
layer structure

Connect the RF ChipEncapsulationSurface MoldingFabricated Tag

RFID Chip

Copper film Laser Microstructure

Figure 15. Cyclops contact lens fabrication workflow.

rings3, we were able to finely tune the impedance distribution
to ensure that pressure-induced variations remain within the
chip’s tunability as shown in Figure 13(d).

5 Implementation and Fabrication

Synthesis of UHCS. We employ the seeded swelling poly-
merization method [60] to synthesize polystyrene (PS)
nanospheres. We then mix the fabricated PS nanospheres
with aniline and add iron(III) nitrate to initiate the polymer-
ization of aniline. This procedure results in the formation of
an urchin-like polyaniline shell atop the PS nanospheres, as
shown in Figure 14(a). After the washing and drying, we sub-
ject the spiky polyaniline to a temperature of 350°C within
an argon atmosphere, effectively eliminating the PS core and
leaving behind the shell structure. The final step involves sub-
jecting the urchin-like polyaniline shell to a temperature of
900°C to initiate the carbonization of the shell, yielding the
UHCS material. A detailed quantitative description of the syn-
thesis process can be found in Appendix §A.2. Figure 14(b)
depicts the scanning electron microscope (SEM) images of
the fabricated UHCS whose mean sphere diameter is 900 nm.
Fabrication of UHCS-PDMS with Microstructure. We dis-
perse the UHCS powder inside the PDMS solution with a
mass fraction of 1.75 wt.%. Subsequently, we employ a spin
coating process to apply the blended solution onto the Ca-
lathea Zebrine template with microstructures. The solution

3The detailed antenna fine-tuning process is in Appendix C.

Syringe Pump Absolute
Pressure Meter

Vector Network Analyzer

Cyclops Lens

Pump Controller
Cyclops contact lens

Eyes

Pressure MeterLaptop

RFID Reader

Syringe pumpAntenna

Cyclops or UHCS-PDMS with microstructure film

Pressure Meter

Syringe pump
RF out RF In

Vector Network Analyzer

Impedance Analyzer
OR

Eyes

(c) Impedance measurement Setup

(a) Wired configuration

(b) Wireless configuration

Figure 16. IOP measurement and material characteristic mea-
surement platform for controlled experiments.

and template are then heated at 80�C for an hour to produce
the UHCS-PDMS film. A detailed UHCS-PDMS film fabri-
cation process can be found in Appendix §A.3. Figure 14(c)
shows a circular film of the UHCS-PDMS with a radius of
3 cm, showcasing exceptional transparency.
Fabrication of Contact Lens. Figure 15 details the workflow
for crafting our contact lens. We start by shaping a copper
film using laser engraving machine to match the proposed
antenna structure and place it on a pure PDMS film. We then
put the UHCS-PDMS film with microstructures atop the first
antenna layer. Then, we etch the copper film using a laser
engraving machine to create the upper layer antenna, which
is connected directly to the RFID chip. We then place the
upper layer antenna on the UHCS-PDMS film. To ensure bio-
safety, we encase the upper layer antenna in an additional pure
PDMS film. After a preliminary shaping step of subjecting it
at 80°C for 10 minutes, we transfer the structure to a contact
lens mold and thermally cure it at 80°C for one hour.

6 Evaluation
Measurement Setup. We fabricate a plastic prosthetic eye,
which is a curved 3D eye model featuring an inlet connected
to the syringe pump for precise pressure control and an outlet
connected to a testo 510 pressure meter [61] to establish the
accurate ground truth for applied pressure. We program the sy-
ringe pump controller to regulate the inflation speed and thus
the applied pressure, as shown in Figure 16(c). We wirelessly
collected real-time pressure from the pressure meter.

This platform serves as the basis for a variety of measure-
ments. To assess the impedance, conductivity, or permittivity
of materials or antennas, we position the fabricated sensing
film or antenna atop the eyes and connect the material or an-
tenna to an impedance analyzer (HIOKI IM7587 [62]) or a
vector network analyzer (R&S ZNB8 [63]) using wire, just
as shown in Figure 16(a) and (c). For evaluating the perfor-
mance of the developed contact lens, we use a ThingMagic
M6 reader [64] to query the chip, as shown in Figure 16(b).

6.1 Hardware Verification

Verification of the Fabricated Nanocomposite. To validate
the characteristics of the nanocomposite, we place the UHCS-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1667

10 20 30 40 50
Pressure (mmHg)

0.4

0.6

0.8

C
on

du
ct

iv
ity

(a) Conductivity.

10 20 30 40 50
Pressure (mmHg)

0.1

0.2

0.3

Pe
rm

iti
vi

ty
(p

F/
m

m
)

(b) Permittivity.
Figure 17. The properties of intermediate
film under varying applied pressure.

0 10 20 30 40
Pressure(mmHg)

0
4
8
12
16
20

UHCS-PDMS PDMS
UHCS-PDMS+Microstructure

Chip’s resistance tunability

(a) Resistance.

0 10 20 30 40
Pressure(mmHg)

0
20
40
60
80
100

UHCS-PDMS PDMS
UHCS-PDMS+Microstructure

Chip’s reactance tunability

(b) Reactance.
Figure 18. The pressure-induced impedance varia-
tions of different materials.

20 40 60 80 100
Distance (cm)

0
6

12
18
24

R
ea

di
ng

 R
at

e
(q

ue
rie

s/
se

co
nd

)

-80

-70

-60

-50

R
SS

 (d
Bm

)

Reading Rate
RSS

Figure 19. The measured RSS
and reading rate at varying
reader-chip distances.

PDMS film, containing microstructures with a thickness of
60 µm, between two conductive copper films. We cut the
dimensions of the film slightly larger than those of the cop-
per layers to prevent short-circuiting between the upper and
lower copper layers. Subsequently, we connect the copper
films to an impedance analyzer and measure the conductiv-
ity and permittivity under varying pressure conditions. The
results are presented in Figure 17, clearly demonstrating that
applied pressure influences the conductivity and permittivity
of the UHCS-PDMS film. Specifically, higher applied pres-
sure corresponds to greater conductivity or permittivity, thus
corroborating the theory outlined in §3.2.3.
Validating the Alignment with Chip’s Tunability. We con-
duct an investigation into the range of pressure-induced
impedance variations in our three-layer antenna. Specifically,
we connect the antenna to a vector network analyzer and ap-
ply varying levels of pressure. For comparison, we replace
the pure PDMS film with UHCS-PDMS film without mi-
crostructures and UHCS-PDMS with microstructures. We
maintain same thickness across all the three films. The mea-
sured impedance, along with the chip’s impedance tunability,
is presented in Figure 18(a) and (b), yielding two notable
observations. First, the impedance of both types of UHCS-
PDMS film falls within the chip’s tunability range, while the
resistance of the pure PDMS falls outside of this range. Sec-
ond, the impedance variation range of the UHCS-PDMS with
microstructures covers a significantly wider span of the chip’s
reactance tunability, indicating higher sensitivity when com-
pared with the pure UHCS-PDMS without microstructures.
Communication Range. In this section, we explore the com-
munication range of our three-layer antenna. We employ our
reader to interrogate the RFID chip embedded in the con-
tact lens and record two key parameters: the received signal
strength (RSS) and the reading rate, which represents the
number of successful pressure queries per second. We con-
duct these measurements at various distances ranging from
20 cm to 1 m and present the findings in Figure 19. It is
evident from the results that as the communication distance
increases, the RSS decreases, eventually reaching -80 dBm
at a distance of 1 m. Similarly, the reading rate maintains
at 22 queries/second within the communication rate and
slightly decreases to 19 queries/second when approaching
the 1-meter communication range. Beyond this boundary,
a stable connection between the reader and the RFID chip
becomes unattainable. To our knowledge, achieving a commu-

nication range of 1 m is a significant advancement compared
to existing contact lens-based IOP measurement systems.

6.2 IOP Measurement Performance
We begin with an end-to-end experiment to gain an insight
into how Cyclops works, followed by the verification of IOP
measurement performance from various angles.
End-to-end Performance. We use the experimental setup
illustrated in Figure 16 to control the applied pressure and
also record the ground truth using pressure meter. We use the
reader to query the tag for the register value and derive the
pressure according to the mapping. We repeat the experiments
at various locations, including an office (5m⇥7m) with sev-
eral tables, an activity room (10m⇥8m) full of furniture, and
a corridor (20m⇥8m) with several billboard sets, as shown in
Figure 20. At each location, we vary the chip-reader distance
from 20 cm to 1 m with a step size of 10 cm.

We plot the CDF of the IOP measurement error in Figure 21,
from which we see that the median error is around 0.51 mmHg
and the 70% error is around 0.8 mmHg. We also compared our
system with commercial portable intraocular pressure (IOP)
measurement devices, e.g., the Fa-800 Vet, FUAN [65] and
the iCare IC 200 [66] with a respective measurement accuracy
of ±1.5 mmHg and ±1.2 mmHg (20 mmHg). Furthermore,
we plot the estimation errors across various IOP ranges in Fig-
ure 22. Within the normal human IOP range of 11-20 mmHg,
the median error is approximately 0.5581 mmHg, and the
75 % error is about 0.9123 mmHg. Our system demonstrates
an even higher accuracy compared to commercial portable
IOP measurement devices.
Tracking the IOP Variations. We explore Cyclops’s capa-
bility to continuously monitor human IOP, which exhibits
diurnal fluctuations, typically being lowest in the morning
upon waking up and gradually peaking around noon [67].
In our investigation, we utilize a syringe pump to systemat-
ically manipulate pressure applied to the tag. The pressure
is incrementally increased from 5 mmHg to 28 mmHg and
then continuously reduced back to 5 mmHg. This loading
and unloading procedure is repeated for 24 hours. To provide
a benchmark, we also employ a stepwise pressure variation
pattern. Here, we apply a specific pressure to the contact lens,
maintain it for 30 seconds, and then gradually increase or de-
crease it to reach another specified pressure level. We also test
the stepwise pattern for 24 hours to test Cyclops’s robustness.

1668 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Antenna
Syringe Pump

RFID Reader

RFID Reader

Absolute Pressure MeterEye Model

(a) Office room.

Antenna

Syringe Pump

Cyclops Lens Absolute
Pressure Meter

Eye Model Cyclops Lens

(b) Activity room.

Cyclops Lens
Syringe Pump

Antenna
Absolute Pressure Meter

(c) Corridor.

Antenna

Paper board

Wooden boardFoam board
Absolute Pressure

Meter

Cyclops Lens

(d) NLoS scenario.

Antenna

Syringe Pump

Cyclops Lens

Venous Infusion
Tube

Cyclops Lens
Wear On Pig Eyes

Absolute
Pressure Meter

(e) Biological scenario.

Figure 20. The experiment settings. To understand the impact of multipath, we conduct experiments inside the office, an activity
room, and a corridor. To understand the NLoS, we block the LoS using various materials. We also conduct our experiments on
pig eyes to investigate the biological impact.

0 2 4 6 8
IOP measurement error (mmHg)

0

0.25

0.5

0.75

1

C
D

F

1 2 3
0.2
0.4
0.6
0.8

0.51

Figure 21. The estima-
tion error for IOP mea-
surement.

0-10 11-20 21-30 31-40
Pressure range (mmHg)

0

1

2

3

IO
P

m
ea

su
re

m
en

t
 e

rro
r (

m
m

H
g)

Figure 22. The estima-
tion error for different
IOP ranges.

0 500 1000 1500
Time(s)

0

10

20

30

Pr
es

su
re

 (m
m

H
g) Measure Ground truth

(a) Continuous changes.

0 50 100 150 200
Time(s)

0

10

20

30

40

Pr
es

su
re

 (m
m

H
g)

Measure
Ground truth

(b) Stepwise changes.

0 1 2 3 4
IOP measurement error (mmHg)

0

0.25

0.5

0.75

1

C
D

F

Continuous changes
Stepwise changes

(c) IOP measurement error.
Figure 23. Performance on tracking the IOP variations. We conduct contin-
uous and stepwise IOP measurement patterns and generate the cumulative
distribution function of measurements.

The results depicted in Figure 23(a) and (b) showcase Cy-
clops’s remarkable IOP tracking performance under both con-
tinuous and stepwise patterns, exhibiting only minor devia-
tions from the ground truth. Figure 23(c) illustrates the CDF
of IOP estimation errors during the 24-hour test. The median
IOP tracking errors for the continuous and stepwise patterns
are 0.53 mmHg and 0.54 mmHg, respectively. These find-
ings demonstrate Cyclops’s precision and robustness in IOP
monitoring, particularly during prolonged tracking sessions,
highlighting its potential in clinical applications where accu-
rate and continuous IOP measurement is crucial.

Impact of Environment and Distance. We plot the cumula-
tive distribution function of Cyclops’s IOP measurement error
measured with different reader-chip distances in Figure 24
lower, and the median error of each distance in Figure 24 up-
per. We plot the results obtained from the office, the activity
room, and the corridor in Figure 24(a), (b) and (c).

The median error in IOP measurements varies between [0.3,
0.75] mmHg, [0.35, 1.02] mmHg, and [0.37, 1.1] mmHg for
the office, activity room, and corridor, respectively. Remark-
ably, there is no significant disparity in IOP measurement
performance across these diverse testing environments, de-
spite variations in their multipath profiles. This consistency
arises from the inherent separation of the sensing and com-
munication processes within our system. Sensing is primarily
achieved through impedance matching, while the reader em-
ploys backscatter communication to query the sensing data,
specifically the 9-bit register value. In contrast to techniques
that rely on analyzing the backscattered signal, such as phase
variation calculations, our sensing quality remains largely

independent of the received signal quality.
Nonetheless, it is worth noting that our sensing perfor-

mance is influenced by signal quality to some extent, for
example, the median error is smaller when the reader-chip
distance is less than 50 centimeters, as shown in Figure 24.
This improvement is attributed to enhance the accuracy of
impedance matching when the received signal strength is sub-
stantially higher. Beyond this range, we do not see a clear
trend between the reader-chip distance and the IOP measure-
ment error, demonstrating the decoupling of sensing perfor-
mance and the communication signal strength.
Impact of NLoS. We introduce various obstructing objects
between the tag and the reader antenna to create NLoS sce-
narios, just as shown in Figure 20(d). The objects include a
paper board, a foam board and a wooden board,. The distance
between the antenna and the contact lens remains at 70 cm.
We plot the IOP error in Figure 25. We see that the median er-
rors are 0.562 mmHg, 0.589 mmHg, 0.505 mmHg, when the
obstructing objects are a wooden board, a paper board, and a
foam, respectively. This experiment further demonstrates that
our sensing performance is decoupled with the signal quality.

6.3 Biological Impact on the Performance
We use pig eyes to assess the biological impact on our sys-
tem’s performance, since the structure of pig eyes closely
resembles that of human eyes, including intraocular pressure
regulation and eye size. We examine Cyclops’s performance
in various bio-environments4, to explore the effects of differ-
ent eye shapes, tear compositions, and the eyelid.

4With the approval of university’s institutional review board (IRB).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1669

0
0.5
1

1.5

0
1

Median error

20 30 40 50 60 70 80 90100(m
m
Hg

)

(cm)

20 cm

100 cm

60cm

(a) Office room.

0
0.5
1

1.5

0
1 Median error

(m
m
Hg

)

20 30 40 50 60 70 80 90100 (cm)

20 cm

100 cm

60cm

(b) Activity room.

0
1 Median error

0
0.5
1

1.5

20 30 40 50 60 70 80 90100(cm)(m
m
Hg

)

20 cm

100 cm

60cm

(c) Corridor.

Figure 24. The measurement error of IOP varies with the distance between
the reader and the contact lens in three different environments.

(m
m
Hg

)

Paper Foam Wooden
0

0.5
1

0
1

Median error

0 1 2 3 4
IOP measurement error (mmHg)

0
0.25

0.5
0.75

1

C
D

F

Paper board
Foam board
Wooden board

Figure 25. The IOP mea-
surement error in non
line-of-sight scenario.

0 1.5 3 4.5 6
IOP measurement error (mmHg)

0
0.2
0.4
0.6
0.8

1

C
D

F

0
1

Median error

20 30 40 50 60 70 80 (cm)(m
m
Hg

)

0

0.5

1

1.5

20 cm

80 cm

50cm

Figure 26. The IOP
measurement error on
pig eyes.

0 1.5 3 4.5 6
IoP measurement error (mmHg)

0
0.2
0.4
0.6
0.8

1

C
D

F

Tears
Eyelid
Eye

0 2 4 6
Estimation error for IOP detect (mmHg)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 1 2 3 4
Estimation error for IOP detect (mmHg)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 1 2 3 4
Estimation error for IOP detect (mmHg)

0

0.2

0.4

0.6

0.8

1

C
D

F

20 40 60 80
Distance (cm)

-80

-60

-40

R
SS

 (d
Bm

)

20 40 60 80
Distance (cm)

-80

-60

-40

R
SS

 (d
Bm

)

0 1.5 3 4.5 6
IoP measurement error (mmHg)

0
0.2
0.4
0.6
0.8

1
C

D
F

Tears
Eyelid
Eye

0 2 4 6
Estimation error for IOP detect (mmHg)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 1 2 3 4
Estimation error for IOP detect (mmHg)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 1 2 3 4
Estimation error for IOP detect (mmHg)

0

0.2

0.4

0.6

0.8

1

C
D

F

20 40 60 80
Distance (cm)

-80

-60

-40

R
SS

 (d
Bm

)

Figure 27. The measured
RSS on pig eyes.

0 1 2 3 4
IOP measurement error (mmHg)

0
0.2
0.4
0.6
0.8

1

C
D

F Eye
Tears
Eyelid
Eyelid + Tears

Figure 28. Impact of various
biological tissues.

End-to-end Performance on Pig Eyes. To measure IOP on
pig eyes, we put the contact lens on the eyes as shown in
Figure 20(e). We use two venous infusion tubes to create two
channels in the pig’s eyes, as shown in Figure 20(e). One tube
connects to a syringe pump for pressure control, and another
connects to a pressure meter to obtain ground truth. The
CDF of the estimation error is shown in the Figure 26. Even
though the communication range slightly decreases to 80 cm,
Cyclops still achieves high accuracy on pig eyes. The median
error varies within the range of [0.33, 0.85] mmHg across
distances, which is lower than that of commercial portable
IOP measurement devices. The performance in the biological
environment validates the efficacy of our approach.
Impact of Eyeball Shapes. Different individuals have vary-
ing eyeball shapes. To validate the robustness of our system
across different organisms, we place the contact lens on ten
different pig eyes and measure the RSS of the backscatter
signal. The measurement results are shown in Figure 27. The
communication distance ranges are similar for all 10 pig eyes,
i.e., 80 cm. Despite the shape variations between pig eyes,
the average RSS deviation remains around 3.29 dBm over
distance. These results demonstrate that the performance of
the Cyclops is consistent across pig eyes of different shapes.
The Impact of Tears and Eyelids. In order to make our user
scenario closer to the real biological environment, we also
investigate the impact of tears and eyelids. To evaluate the
effect of the tears, we drip around 0.05 mL of artificial tear
fluid onto the pig eyes and measure the IOP under varying
reader-chip distances. We also add eyelids on pig eyes and
test its impact. We plot the IOP error measured from the con-
tact lens worn on pure pig eyes, pig eyes with tears, pig eyes
with eyelids and pig eyes with both eyelids and tears, in Fig-
ure 28, from which we see that the median error is 0.5 mmHg,
0.55 mmHg, 0.54 mmHg and 0.6 mmHg, respectively. With

Syringe Pump
Pig Head

Venous
Infusion Tube

Cyclops Lens
Absolute

Pressure Meter

(a) Pig head.

0 1 2 3 4 5
IOP measurement error (mmHg)

0
0.25

0.5
0.75

1

C
D

F

(b) IOP measurement error.
Figure 29. IOP measurement performance on pig head.

the pig eyelid and tears, we observe that our system achieves
nearly the same performance as pure pig eyes, which meets
the requirements of real-world IOP measurement.
Performance Evaluation on Pig Head. To evaluate the per-
formance of our system more authentically, we attach the con-
tact lens to the eyes of a pig. We attempt to change the IOP of
the pig eyes by inserting a venous infusion tube from the edge
of the eyes into the interior, as depicted in Figure 29(a). We
also employed a pressure meter to monitor the real-time IOP
changes in the pig eye. We display the cumulative distribution
function of IOP measurement error from the contact lens un-
der this scenario. As shown in Figure 29(b), the median error
is 0.97 mmHg which still demonstrates good performance
compared to commodity portable IOP measurement devices.

7 Conclusion
In this work, we introduce Cyclops, a wearable contact lens
that can continuously measure intraocular pressure changes
over a long distance. Through comprehensive introduction
and experimental evaluation, we demonstrate the effectiveness
of the system in measuring IOP changes in real-world settings
and biological environments.

Acknowledgments
This work is supported by the NSFC A3 Foresight Program
Grant 62061146001, and the National Natural Science Foun-
dation of China (62272388, 62372374), the Shaanxi Sci-
ence and Technology Innovation Team Program under Grant
(2024RS-CXTD-05), the Shaanxi Qinchuangyuan Program
under Grant (QCYRCXM-2023-103), and the International
Cooperation Project of Shaanxi Province (2020KWZ-013).
This Work is also supported by Yaxiong Xie’s startup fund-
ing. We thank our reviewers and shepherd for their insightful
feedback which helped improve this paper.

1670 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Jaimie D Steinmetz, Rupert RA Bourne, Paul Svitil Briant, Seth R

Flaxman, Hugh RB Taylor, Jost B Jonas, Amir Aberhe Abdoli,
Woldu Aberhe Abrha, Ahmed Abualhasan, Eman Girum Abu-Gharbieh,
et al. Causes of blindness and vision impairment in 2020 and trends
over 30 years, and prevalence of avoidable blindness in relation to
vision 2020: the right to sight: an analysis for the global burden of
disease study. The Lancet Global Health, 9(2):e144–e160, 2021.

[2] Yih-Chung Tham, Xiang Li, Tien Y Wong, Harry A Quigley, Tin Aung,
and Ching-Yu Cheng. Global prevalence of glaucoma and projections of
glaucoma burden through 2040: a systematic review and meta-analysis.
Ophthalmology, 121(11):2081–2090, 2014.

[3] Matthew J Burton, Jacqueline Ramke, Ana Patricia Marques, Ru-
pert RA Bourne, Nathan Congdon, Iain Jones, Brandon AM Ah Tong,
Simon Arunga, Damodar Bachani, Covadonga Bascaran, et al. The
lancet global health commission on global eye health: vision beyond
2020. The Lancet Global Health, 9(4):e489–e551, 2021.

[4] Joohee Kim, Jihun Park, Young-Geun Park, Eunkyung Cha, Minjae
Ku, Hyeon Seok An, Kyoung-Pil Lee, Man-Il Huh, Junmo Kim, Taek-
Soo Kim, et al. A soft and transparent contact lens for the wireless
quantitative monitoring of intraocular pressure. Nature Biomedical
Engineering, 5(7):772–782, 2021.

[5] Kevin Gillmann, Robert N Weinreb, and Kaweh Mansouri. The effect
of daily life activities on intraocular pressure related variations in open-
angle glaucoma. Scientific reports, 11(1):6598, 2021.

[6] Da Young Shin, Kyoung In Jung, Hae Young Lopilly Park, and
Chan Kee Park. The effect of anxiety and depression on progression of
glaucoma. Scientific Reports, 11(1):1769, 2021.

[7] Guo-Zhen Chen, Ion-Seng Chan, Leo KK Leung, and David CC Lam.
Soft wearable contact lens sensor for continuous intraocular pressure
monitoring. Medical engineering & physics, 36(9):1134–1139, 2014.

[8] Tae Yeon Kim, Jee Won Mok, Sang Hoon Hong, Sang Hoon Jeong,
Hyunsik Choi, Sangbaie Shin, Choun-Ki Joo, and Sei Kwang Hahn.
Wireless theranostic smart contact lens for monitoring and control of
intraocular pressure in glaucoma. Nature Communications, 13(1):6801,
2022.

[9] Tae Yeon Kim, Sangbaie Shin, Hyunsik Choi, Sang Hoon Jeong, David
Myung, and Sei Kwang Hahn. Smart contact lenses with a transpar-
ent silver nanowire strain sensor for continuous intraocular pressure
monitoring. ACS Applied Bio Materials, 4(5):4532–4541, 2021.

[10] Yushi Zhang, Yufeng Chen, Tianxing Man, Dong Huang, Xiao Li,
Hongwei Zhu, and Zhihong Li. High resolution non-invasive intraocu-
lar pressure monitoring by use of graphene woven fabrics on contact
lens. Microsystems & nanoengineering, 5(1):1–8, 2019.

[11] Yu Pang, Yuxing Li, Xuefeng Wang, Chenjie Qi, Yi Yang, and Tian-
Ling Ren. A contact lens promising for non-invasive continuous in-
traocular pressure monitoring. RSC advances, 9(9):5076–5082, 2019.

[12] Jiandong Xu, Tianrui Cui, Thomas Hirtz, Yancong Qiao, Xiaoshi Li,
Fanhui Zhong, Xiaolin Han, Yi Yang, Sheng Zhang, and Tian-Ling Ren.
Highly transparent and sensitive graphene sensors for continuous and
non-invasive intraocular pressure monitoring. ACS applied materials
& interfaces, 12(16):18375–18384, 2020.

[13] Vladimir Laukhin, Irene Sánchez, Ana Moya, Elena Laukhina, Raul
Martin, Fernando Ussa, Concepció Rovira, Antón Guimera, Rosa Villa,
Jordi Aguiló, et al. Non-invasive intraocular pressure monitoring with
a contact lens engineered with a nanostructured polymeric sensing film.
Sensors and Actuators A: Physical, 170(1-2):36–43, 2011.

[14] Matteo Leonardi, Peter Leuenberger, Daniel Bertrand, Arnaud Bertsch,
and Philippe Renaud. First steps toward noninvasive intraocular pres-
sure monitoring with a sensing contact lens. Investigative ophthalmol-
ogy & visual science, 45(9):3113–3117, 2004.

[15] Yanyan Fan, Hailing Tu, Hongbin Zhao, Feng Wei, Yi Yang, and Tian-
ling Ren. A wearable contact lens sensor for noninvasive in-situ moni-
toring of intraocular pressure. Nanotechnology, 32(9):095106, 2020.

[16] Guo-Zhen Chen, Ion-Seng Chan, and David CC Lam. Capacitive
contact lens sensor for continuous non-invasive intraocular pressure
monitoring. Sensors and Actuators A: Physical, 203:112–118, 2013.

[17] Joohee Kim, Jaeyoon Kim, Minjae Ku, Eunkyung Cha, Seoyoung Ju,
Won Yeong Park, Ki Hean Kim, Dai Woo Kim, Per-Olof Berggren, and
Jang-Ung Park. Intraocular pressure monitoring following islet trans-
plantation to the anterior chamber of the eye. Nano letters, 20(3):1517–
1525, 2019.

[18] Joohee Kim, Minji Kim, Mi-Sun Lee, Kukjoo Kim, Sangyoon Ji, Yun-
Tae Kim, Jihun Park, Kyungmin Na, Kwi-Hyun Bae, Hong Kyun Kim,
et al. Wearable smart sensor systems integrated on soft contact lenses
for wireless ocular diagnostics. Nature communications, 8(1):1–8,
2017.

[19] Cheng Yang, Qianni Wu, Junqing Liu, Jingshan Mo, Xiangling Li,
Chengduan Yang, Ziqi Liu, Jingbo Yang, Lelun Jiang, Weirong Chen,
et al. Intelligent wireless theranostic contact lens for electrical sensing
and regulation of intraocular pressure. Nature communications, 13(1):1–
15, 2022.

[20] Jinyuan Zhang, Kyunghun Kim, Ho Joong Kim, Dawn Meyer,
Woohyun Park, Seul Ah Lee, Yumin Dai, Bongjoong Kim, Haesoo
Moon, Jay V Shah, et al. Smart soft contact lenses for continuous
24-hour monitoring of intraocular pressure in glaucoma care. Nature
communications, 13(1):1–15, 2022.

[21] M Hossein M Kouhani, Jiajia Wu, Arman Tavakoli, Arthur J Weber,
and Wen Li. Wireless, passive strain sensor in a doughnut-shaped
contact lens for continuous non-invasive self-monitoring of intraocular
pressure. Lab on a Chip, 20(2):332–342, 2020.

[22] Matteo Leonardi, Elie M Pitchon, Arnaud Bertsch, Philippe Renaud,
and Andre Mermoud. Wireless contact lens sensor for intraocular
pressure monitoring: assessment on enucleated pig eyes. Acta ophthal-
mologica, 87(4):433–437, 2009.

[23] Mohammad Hossein Mazaheri Kouhani, Arthur Weber, and Wen Li.
Wireless intraocular pressure sensor using stretchable variable induc-
tor. In 2017 IEEE 30th International Conference on Micro Electro
Mechanical Systems (MEMS), pages 557–560. IEEE, 2017.

[24] Chien-Kai Tseng, Yu-Chieh Huang, Shang-Wei Tsai, Guan-Ting Yeh,
Chung-Hao Chang, and Jin-Chern Chiou. Design and fabricate a
contact lens sensor with a micro-inductor embedded for intraocular
pressure monitoring. In SENSORS, 2012 IEEE, pages 1–4. IEEE, 2012.

[25] Martin Dressel and George Grüner. Electrodynamics of solids: optical
properties of electrons in matter, 2002.

[26] Anandghan Waghmare, Youssef Ben Taleb, Ishan Chatterjee, Arjun
Narendra, and Shwetak Patel. Z-Ring: Single-Point Bio-Impedance
Sensing for Gesture, Touch, Object and User Recognition. In Proceed-
ings of the 2023 CHI Conference on Human Factors in Computing
Systems, pages 1–18, 2023.

[27] Wei Sun, Yuwen Chen, Yanjun Chen, Xiaopeng Zhang, Simon Zhan,
Yixin Li, Jiecheng Wu, Teng Han, Haipeng Mi, Jingxian Wang, et al.
MicroFluID: A Multi-Chip RFID Tag for Interaction Sensing Based on
Microfluidic Switches. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 6(3):1–23, 2022.

[28] Goldmann applanation tonometry. https://en.wikipedia.org/w
iki/Goldmann_Applanation_Tonometer.

[29] Omar S Punjabi, Christoph Kniestedt, Robert L Stamper, and Shan C
Lin. Dynamic contour tonometry: principle and use. Clinical & experi-
mental ophthalmology, 34(9):837–840, 2006.

[30] SY Hsu, MM Sheu, AH Hsu, KY Wu, JI Yeh, JN Tien, and RK Tsai.
Comparisons of intraocular pressure measurements: Goldmann ap-
planation tonometry, noncontact tonometry, tono-pen tonometry, and
dynamic contour tonometry. Eye, 23(7):1582–1588, 2009.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1671

https://en.wikipedia.org/wiki/Goldmann_Applanation_Tonometer
https://en.wikipedia.org/wiki/Goldmann_Applanation_Tonometer

[31] Tanner J Ferguson, Catherine G Knier, Uttio Roy Chowdhury, Kjer-
seten J Monson, Michael Greenwood, Russell J Swan, Richard Gorham,
John P Berdahl, and Michael P Fautsch. Intraocular pressure measure-
ment with pneumatonometry and a tonometer tip cover. Ophthalmology
and therapy, 9:127–137, 2020.

[32] Po-Jui Chen, Saloomeh Saati, Rohit Varma, Mark S Humayun, and
Yu-Chong Tai. Implantable flexible-coiled wireless intraocular pressure
sensor. In 2009 IEEE 22nd International Conference on Micro Electro
Mechanical Systems, pages 244–247. IEEE, 2009.

[33] Jeong Oen Lee, Haeri Park, Juan Du, Ashwin Balakrishna, Oliver Chen,
David Sretavan, and Hyuck Choo. A microscale optical implant for
continuous in vivo monitoring of intraocular pressure. Microsystems &
nanoengineering, 3(1):1–9, 2017.

[34] Jeong Oen Lee, Vinayak Narasimhan, Juan Du, Blaise Ndjamen, David
Sretavan, and Hyuck Choo. Biocompatible multifunctional black-
silicon for implantable intraocular sensor. Advanced healthcare materi-
als, 6(4):1601356, 2017.

[35] Amit Todani, Irmgard Behlau, Mark A Fava, Fabiano Cade, Daniel G
Cherfan, Fouad R Zakka, Frederick A Jakobiec, Yuqing Gao, Claes H
Dohlman, and Samir A Melki. Intraocular pressure measurement by
radio wave telemetry. Investigative ophthalmology & visual science,
52(13):9573–9580, 2011.

[36] Zhiduo Liu, Gang Wang, Chen Ye, Hongyan Sun, Weihua Pei, Chun-
rong Wei, Wen Dai, Zhiqiang Dou, Qingyu Sun, Cheng-Te Lin, et al.
An ultrasensitive contact lens sensor based on self-assembly graphene
for continuous intraocular pressure monitoring. Advanced Functional
Materials, 31(29):2010991, 2021.

[37] Yuxuan Liu, Michael Zheng, Brendan O’Connor, Jingyan Dong, and
Yong Zhu. Curvilinear soft electronics by micromolding of metal
nanowires in capillaries. Science Advances, 8(46):eadd6996, 2022.

[38] Jin-Chern Chiou, Yu-Chieh Huang, and Guan-Ting Yeh. A capacitor-
based sensor and a contact lens sensing system for intraocular pres-
sure monitoring. Journal of Micromechanics and Microengineering,
26(1):015001, 2015.

[39] Ismail E Araci, Baolong Su, Stephen R Quake, and Yossi Mandel.
An implantable microfluidic device for self-monitoring of intraocular
pressure. Nature medicine, 20(9):1074–1078, 2014.

[40] John Yan. An unpowered, wireless contact lens pressure sensor for
point-of-care glaucoma diagnosis. In 2011 Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society,
pages 2522–2525. IEEE, 2011.

[41] Bohee Maeng, Hyung-kwan Chang, and Jungyul Park. Photonic crystal-
based smart contact lens for continuous intraocular pressure monitoring.
Lab on a Chip, 20(10):1740–1750, 2020.

[42] Hongbin An, Liangzhou Chen, Xiaojun Liu, Bin Zhao, Hong Zhang,
and Zhigang Wu. Microfluidic contact lenses for unpowered, contin-
uous and non-invasive intraocular pressure monitoring. Sensors and
Actuators A: Physical, 295:177–187, 2019.

[43] Sevda Agaoglu, Priscilla Diep, Matthew Martini, KT Samudhyatha,
Murat Baday, and I Emre Araci. Ultra-sensitive microfluidic wear-
able strain sensor for intraocular pressure monitoring. Lab on a Chip,
18(22):3471–3483, 2018.

[44] Google lens. https://blog.google/alphabet/introducing-o
ur-smart-contact-lens/.

[45] Nicholas M Farandos, Ali K Yetisen, Michael J Monteiro, Christo-
pher R Lowe, and Seok Hyun Yun. Contact lens sensors in ocular
diagnostics. Advanced healthcare materials, 4(6):792–810, 2015.

[46] Huanfen Yao, Angela J Shum, Melissa Cowan, Ilkka Lähdesmäki, and
Babak A Parviz. A contact lens with embedded sensor for monitoring
tear glucose level. Biosensors and Bioelectronics, 26(7):3290–3296,
2011.

[47] Mojo. https://www.mojo.vision/technology.

[48] Inwith. https://inwithcorp.com/envisioning-reality/.

[49] Jihun Park, Joohee Kim, So-Yun Kim, Woon Hyung Cheong, Jiuk
Jang, Young-Geun Park, Kyungmin Na, Yun-Tae Kim, Jun Hyuk Heo,
Chang Young Lee, et al. Soft, smart contact lenses with integrations
of wireless circuits, glucose sensors, and displays. Science advances,
4(1):eaap9841, 2018.

[50] Andrew R Lingley, Muhammad Ali, Y Liao, Ramin Mirjalili, Maria
Klonner, M Sopanen, Sami Suihkonen, Tueng Shen, Brian P Otis, H Lip-
sanen, et al. A single-pixel wireless contact lens display. Journal of
Micromechanics and Microengineering, 21(12):125014, 2011.

[51] Jagdish Pandey, Yu-Te Liao, Andrew Lingley, Ramin Mirjalili, Babak
Parviz, and Brian P Otis. A fully integrated rf-powered contact lens with
a single element display. IEEE Transactions on Biomedical Circuits
and Systems, 4(6):454–461, 2010.

[52] Liyao Li, Yaxiong Xie, Jie Xiong, Ziyu Hou, Yingchun Zhang, Qing
We, Fuwei Wang, Dingyi Fang, and Xiaojiang Chen. Smartlens: sens-
ing eye activities using zero-power contact lens. In Proceedings of
the 28th Annual International Conference on Mobile Computing And
Networking, pages 473–486, 2022.

[53] Do Hee Keum, Su-Kyoung Kim, Jahyun Koo, Geon-Hui Lee, Cheonhoo
Jeon, Jee Won Mok, Beom Ho Mun, Keon Jae Lee, Ehsan Kamrani,
Choun-Ki Joo, et al. Wireless smart contact lens for diabetic diagnosis
and therapy. Science advances, 6(17):eaba3252, 2020.

[54] Carolin Tetyczka, Kira Brisberger, Martin Reiser, Manuel Zettl, Ra-
mona Jeitler, Christina Winter, Dagmar Kolb, Gerd Leitinger, Martin
Spoerk, and Eva Roblegg. Itraconazole nanocrystals on hydrogel con-
tact lenses via inkjet printing: implications for ophthalmic drug delivery.
ACS Applied Nano Materials, 5(7):9435–9446, 2022.

[55] Meysam Habibi, Saleh Mobasseri, Azam Zare, and Vahid Souriaee.
Drug delivery with therapeutic lens for the glaucoma treatment in the
anterior eye chamber: a numerical simulation. Biomedical Engineering
Advances, 3:100032, 2022.

[56] Woohyun Park, Van Phuc Nguyen, Yale Jeon, Bongjoong Kim, Yanxiu
Li, Jonghun Yi, Hyungjun Kim, Jung Woo Leem, Young L Kim,
Dong Rip Kim, et al. Biodegradable silicon nanoneedles for ocular
drug delivery. Science Advances, 8(13):eabn1772, 2022.

[57] Sijin Li, Andreea Pasc, Vanessa Fierro, and Alain Celzard. Hollow car-
bon spheres, synthesis and applications–a review. Journal of Materials
Chemistry A, 4(33):12686–12713, 2016.

[58] Zhiguang Qiu, Yongbiao Wan, Wohua Zhou, Jingyi Yang, Junlong Yang,
Jun Huang, Jianming Zhang, Qingxian Liu, Siya Huang, and Ningning
Bai. Ionic skin with biomimetic dielectric layer templated from ca-
lathea zebrine leaf. Advanced Functional Materials, 28(37):1802343.1–
1802343.9, 2018.

[59] Magnus s3. https://www.axzon.com/packagedQFN.html.

[60] Jin-Woong Kim and Kyung-Do Suh. Monodisperse micron-sized
polystyrene particles by seeded polymerization: effect of seed crosslink-
ing on monomer swelling and particle morphology. Polymer,
41(16):6181–6188, 2000.

[61] teato 510i. https://www.testo.com/en-US/testo-510i/p
/0560-1510.

[62] Hioki im7587. https://www.hioki.com/in-en/products/lcr
-meters/3-ghz/id_6618.

[63] R&s znb8 vector network analyzer. https://www.rohde-schwarz
.com/us/products/test-and-measurement/network-analyze
rs/rs-znb-vector-network-analyzer_63493-11648.html.

[64] Thingmagic mercury6 rfid reader. https://www.barcodediscoun
t.com/catalog/thingmagic/part-m6-na-poe.htm.

[65] Portable ophthalmic equipment. https://sh-fuan.en.made-in-c
hina.com/product/FOQtBMexCNYn/China-Portable-Ophthalmi
c-Equipment-Veterinary-Tonometer-Cat-Dog-Fa-800vet-P
et-Hospital-Animal-Tonometer.html.

1672 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://blog.google/alphabet/introducing-our-smart-contact-lens/
https://blog.google/alphabet/introducing-our-smart-contact-lens/
https://www.mojo.vision/technology
https://inwithcorp.com/envisioning-reality/
https://www.axzon.com/packagedQFN.html
https://www.testo.com/en-US/testo-510i/p/0560-1510
https://www.testo.com/en-US/testo-510i/p/0560-1510
https://www.hioki.com/in-en/products/lcr-meters/3-ghz/id_6618
https://www.hioki.com/in-en/products/lcr-meters/3-ghz/id_6618
https://www.rohde-schwarz.com/us/products/test-and-measurement/network-analyzers/rs-znb-vector-network-analyzer_63493-11648.html
https://www.rohde-schwarz.com/us/products/test-and-measurement/network-analyzers/rs-znb-vector-network-analyzer_63493-11648.html
https://www.rohde-schwarz.com/us/products/test-and-measurement/network-analyzers/rs-znb-vector-network-analyzer_63493-11648.html
https://www.barcodediscount.com/catalog/thingmagic/part-m6-na-poe.htm
https://www.barcodediscount.com/catalog/thingmagic/part-m6-na-poe.htm
https://sh-fuan.en.made-in-china.com/product/FOQtBMexCNYn/China-Portable-Ophthalmic-Equipment-Veterinary-Tonometer-Cat-Dog-Fa-800vet-Pet-Hospital-Animal-Tonometer.html
https://sh-fuan.en.made-in-china.com/product/FOQtBMexCNYn/China-Portable-Ophthalmic-Equipment-Veterinary-Tonometer-Cat-Dog-Fa-800vet-Pet-Hospital-Animal-Tonometer.html
https://sh-fuan.en.made-in-china.com/product/FOQtBMexCNYn/China-Portable-Ophthalmic-Equipment-Veterinary-Tonometer-Cat-Dog-Fa-800vet-Pet-Hospital-Animal-Tonometer.html
https://sh-fuan.en.made-in-china.com/product/FOQtBMexCNYn/China-Portable-Ophthalmic-Equipment-Veterinary-Tonometer-Cat-Dog-Fa-800vet-Pet-Hospital-Animal-Tonometer.html

[66] icare ic200. https://www.icare-world.com/us/product/icar
e-ic200-tonometer/.

[67] Edward Hughes, Paul Spry, and Jeremy Diamond. 24-hour monitoring
of intraocular pressure in glaucoma management: a retrospective review.
Journal of glaucoma, 12(3):232–236, 2003.

[68] Shubin Ma, Toni Björninen, Lauri Sydänheimo, Merja H Voutilainen,
and Leena Ukkonen. Double split rings as extremely small and tuneable
antennas for brain implantable wireless medical microsystems. IEEE
Transactions on Antennas and Propagation, 69(2):760–768, 2020.

A Tag fabcication workflow

The manufacturing process of our tag mainly consists of three
steps: synthesis of UHCS, Calathea zebrine mold casting, and
tag production. The specific details are as follows:

A.1 Calathea Zebrine Template.
Step 1: Preparing Leaves. Take the fresh Calathea zebrine
leaves and cut them into suitable rectangular shapes (5 cm ⇥
5 cm) from the center of the whole leaves, removing the leaf
edges to ensure a consistent microstructure on the surface.
Then washed them at least five times with deionized water to
remove surface impurities. Afterward, place the leaves in a
drying oven to remove surface moisture.
Step 2: Casting the Template. Multiple vent holes are man-
ually created on the back of the prepared Calathea zebrine
leaves, and the leaves are fixed with the front side up on a
glass substrate. We prepared a PDMS solution by mixing
PDMS base and curing agent in a ratio of 5:1 and poured
onto the Calathea zebrine leaves. The assembly is placed in a
vacuum chamber at 20 �C until the bubbles disappear. After
the bubbles disappear, the temperature is raised to 80 �C for
curing for two hours.
Step 3: Plasma Oxygen Treatment. After peeling off the
Calathea zebrine leaves, we obtain a template with the sunken
structure. Then we expose the formed template to air plasma
treatment for one minute. This step involves a hydrophobic
treatment process that prevents materials from sticking to
the template. The sunken structure template can be reused
multiple times.

A.2 Synthesis of UHCS.
Step 1: Synthesis the Polystyrene (PS) Nanoparticle. We
use the seeded swelling polymerization method to synthesis
the polystyrene nanoparticle. Specifically, we added 20 g
of styrene, 0.2 g of 2,2-azo-bisisobutyronitrile, and 1.8 g of
polyvinyl pyrrolidone into a mixture of 60.4 g of ethanol and
7.6 g of deionized water. The mixture is then stirred under a
nitrogen atmosphere at 900 rpm for one hour. Then heated to
70 �C for 24 hours. After vacuum filtration and drying, we
obtained the powdered PS nanoparticles.
Step 2: Synthesis the PS Polyaniline Core-shell Spheres.
We take 0.3 g of the PS nanospheres and wash them using

Cut out a 5cm X 5cm
square from the leaves

Pour the PDMS solution
onto the substrate

Remove the leaves

Calathea
zebrine

Plasma oxygen cleanerTemplate

Perform plasma oxygen treatmentCreate a template with
microstructure

Figure 30. The template fabrication workflow.

deionized for five times. Then, we disperse them into 20 mL of
deionized water. Subsequently, we add 0.6519 g of aniline and
stir it at 100 rpm for 5 hours to initiate the polymerization of
aniline. Following this step, we add 84 mL of 0.5 M Fe(NO3)3
aqueous solution into the reaction and stir it at 300 rpm for
24 hours at room temperature. The 0.5 M Fe(NO3)3 can help
to form the aniline spines on the PS surface.
Step 3: Synthesis the UHCS. During the last step, the PS
polyaniline core-shell spheres are obtained. These spheres
need to be washed at least five times to remove the Fe(NO3)3.
Subsequently, the core-shell spheres are placed in a vacuum
oven at 40 �C for 48 hours to facilitate drying and remove any
remaining moisture. Then, the core-shell spheres are placed
into the tube furnace and heated at 350 �C under an Ar atmo-
sphere for one hour to eliminate the PS cores. In this step,
we need to control the heating speed, gradually heating to
350 �C at a rate of 1 �C/min. If the temperature increase too
fast, the gaseous PS cores will suddenly explode from inside
the carbon sphere. The carbon sphere will broken due to the
explosion, just as shown in Figure 32. After remove the PS
core, the temperature is then increased to 900 �C at a rate of
2 �C per minute for carbonization in order to obtain UHCS.

A.3 UHCS-PDMS Film
Take 3 g of PDMS solution and 53.5 mg of UHCS powder,
string in a 20 �C for one hour to mix them thoroughly. Then
pour the mixture onto the Calathea zebrine template and
spin-coated the solution to obtain a UHCS-PDMS film with
a thickness of 60 µm. Next, heat it to 80 �C for one hour to
thermal curing. After peeling off the film from the template,
the UHCS-PDMS film is formed with array of micocones.

We stack the top layer of the antenna and the UHCS-PDMS
film with the bottom layer of the antenna. The chip is con-
nected to the top layer of the antenna using the conductive
silver paste. Then we coated the structure with the PDMS
and heated at 80 �C for 10 min, allowing the PDMS to par-
tially solidify. While in this semi-solidified state, the PDMS

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1673

https://www.icare-world.com/us/product/icare-ic200-tonometer/
https://www.icare-world.com/us/product/icare-ic200-tonometer/

Disperse PS nanospheres into
20mL deionized water

Add 0.6519 g of aniline and stir at
100 rpm for 5 hours

Centrifuge wash at least five
times to remove the Fe(NO3)3

Add 84 mL of 0.5 M Fe(NO3)3
aqueous solution and stir at 300 rpm

Dry the mixture for 48 hours in a
vacuum drying oven at 40°C

Place in the tube furnace and
heat under Ar atmosphere

Centrifugal
machine

Tube furnace

Vacuum oven

Magnetic
stirrer

Carbonized
UHCS

Dried UHCS

Figure 31. The UHCS synthesis workflow.

Exploded
UHCS

Figure 32. The scanning electron microscopy (SEM) image
of the exploded UHCS.

is transferred to a contact lens mold for thermal curing at
80 �C for one hour. Finally, we meticulously detach the cured
antenna from the mold, remove the excess edges, and obtain
the contact lens tag.

B Impedance of the Cyclops lens Antenna

The equivalent circuit of the Cyclops lens antenna is shown in
Figure 34(a). Where R1 and R2 denote the parasitic resistance
of the upper layer and the bottom layer antenna. L1 and L2 rep-
resent parasitic capacitance, and C1 and C2 represent parasitic
inductance of two antenna layers. Lm is the mutual-inductance
between two antenna layers. Cu and Ru are variable capacitor
and resistor, changing as the applied pressure varies.

From the equivalent circuit, we can observe that the C1,
L1 and R1 are connected in series. Lm and Ru are in series
and they are parallel connected with Cu. On the right side of
the equivalent circuit, R2 and C2 are connected in series and
the L2 is connected parallel to them. In order to simplify the
entire circuit, we use Zb to represent the impedance of the

Use the Laser curving machine to
curve the antenna structure

Prepare a PDMS solution

Combine the UHCS powder with the
PDMS solution.

Use the template to create the
UHCS film with microstructures

Apply the UHCS-microstructure
film to the bottom layer

Attach the top antenna layer and
connect the RFID chip

Produce curved contact lenses
using contact lens molds

Encapsulate the labels using pure PDMS

laser curving
machine

Electronic
physical balance

UHCS-PDMS with
microstructure film

Contact
lens model

Spin coater Vacuum oven

UHCS-
PDMS film

Figure 33. The Cyclops contact lens fabrication workflow.

Upper
Antenna

!!"#$

"!"#$ "%

"&"'!%
#%

#(
#& !&

RFID Chip

!' !% "%

#%
$)
$*

!!"#$

"!"#$

3-layer
AntennaRFID Chip

(a) (b)

Sensing
Layer

Bottom
Antenna

Figure 34. The equivalent circuit of the Cyclops lens antenna.

bottom layer, which can be represented as:

Zb = (� 1
jwC2

+R2)//jwL2

= (
R2 · jwC2 �1

jwC2
)//jwL2,

(9)

where // represents the parallel relationship between the left-
hand and right-hand sides of the formula. To calculate the
total impedance of the bottom layer, we need to calculate the
reciprocal of each individual branch impedance. Then we sum
the reciprocals together. Finally, the total impedance of the
parallel circuit Zb is determine by taking the reciprocal of the
resulting sum. The derivation process is as follows:

Zb =
1

jwC2
R2·jwC2�1 +

1
jwL2

=
1

jwC2·jwL2+(R2·jwC2�1)
(R2·jwC2�1)(jwL2)

=
j2w2R2L2C2 � jwL2

j2w2L2C2 + jwR2C2 �1

=
w2R2L2C2 + jwL2

1+w2C2L2 � jwR2C2
.

(10)

As shown in Figure 34(b), we use Zb represent R2, L2 and C2
in the equivalent circuit. So the Zb is connected in series with

1674 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Theoretical Modeling
Initial Antenna structure

HFSS Structure
parameter

Fabrication

Simulation
Differential evolution

(DE) algorithm

Antenna Structure

Measured
Antenna impedance

Target impedance

Simulated
Impedance

Figure 35. The workflow of fine-tuning the antenna
impedance to match the target impedance.

Lm, Ru and Cu. Then we utilize Zs represent the impedance of
the sensing layer, which can be expressed as follows:

Zs =� 1
jwCu

+Ru + jwLm. (11)

We substitute Zs and Zb into the circuit, resulting in an equiv-
alent circuit as shown in Figure 34(b). Zs and Zb are con-
nected in series. Both of them are connected parallel with L1.
Then the parallel part is connected series with R1 and C1. The
impedance of the tag antenna can be represented as:

Zant =� 1
jwC1

+R1 + jwL1//(Zs +Zb)

=� 1
jwC1

+R1 +
1

1
jwL1

+ 1
Zs+Zb

=� 1
jwC1

+R1 +
jwL1(Zs +Zb)

jwL1 +Zs +Zb
.

(12)

C Fine-Tuning Antenna Impedance

Theoretical Modeling. Considering the limited space of the
human eyes, we first determine the basic ring shape for our an-

tenna. Taking inspiration from inductively coupled loops [68],
we design the antenna as a double rings with a split for con-
necting the RFID chip. Based on the basic antenna structure,
we establish a theoretical model using microstrip transmis-
sion line theory. Then we estimate the antenna geometry by
building an equivalent transmission line model. Calculate
the transmission line resistance, inductance and capacitance
based on the estimated antenna dimensions. Through conju-
gate impedance matching with the chip, we obtain the initial
antenna structure just as shown in Fig.35.

Simulation. In practical implementation, our tag antenna re-
quires curvature to fit the contours of the human eye. However,
assessing the impact of this curving operation on the antenna’s
impedance is a challenge. Therefore, we rely on simulation
software to replicate the effects of 3D curving and refine our
design. We input the initial antenna structure into the sim-
ulation software to obtain a simulated antenna impedance.
Subsequently, we employ the differential evolution algorithm
to guide our parameter search process. After completing the
simulation with a series of structure parameters, we obtain the
simulated antenna impedance. This impedance data is subse-
quently utilized within our optimization algorithms, with the
objective of achieving the target impedance.

Iterative Fabrication and Simulation. The final step in-
volves fabricating the tag antenna based on the refined an-
tenna structure and evaluate its actual impedance. Real-world
manufacturing often introduces engineering errors leading to
impedance deviations from the target value. To effectively
minimize these deviations, we employ an iterative approach.
We first update the simulation objective based on the dif-
ference between simulated and measured impedance values.
This process iterates until we identify the antenna structure
that optimally matches the target impedance, ensuring the
best performance.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1675

Habitus: Boosting Mobile Immersive Content Delivery through
Full-body Pose Tracking and Multipath Networking

Anlan Zhang†∗, Chendong Wang◇, Yuming Hu††, Ahmad Hassan†∗,
Zejun Zhang†∗, Bo Han‡, Feng Qian†∗, Shichang Xu○

†University of Southern California, ††University of Minnesota – Twin Cities,
‡George Mason University,◇University of Wisconsin – Madison, ○Google

Abstract
Delivering immersive content such as volumetric videos and
virtual/mixed reality requires tremendous network bandwidth.
Millimeter Wave (mmWave) radios such as 802.11ad/ay and
mmWave 5G can provide multi-Gbps peak bandwidth, mak-
ing them good candidates. However, mmWave is vulnerable
to blockage/mobility and its signal attenuates very fast, pos-
ing a major challenge to mobile immersive content delivery
systems where viewers are in constant motion and the human
body may easily block the line-of-sight.

To overcome this challenge, in this paper, we investigate
two under-explored dimensions. First, we use the combina-
tion of a viewer’s full-body pose and the network information
to predict mmWave performance as the viewer exercises six-
degree-of-freedom (6-DoF) motion. We apply both offline
and online transfer learning to enable the prediction models
to react to unseen changes. Second, we jointly use the omni-
directional radio and mmWave radio available on commodity
mobile devices to deliver immersive data. We integrate the
above two features into a user-space software framework
called Habitus, and demonstrate how it can be easily inte-
grated into existing immersive content delivery systems to
boost their network performance, which leads to up to 72%
of quality-of-experience (QoE) improvement.

1 Introduction

Immersive content, such as virtual/mixed reality (VR/MR)
and volumetric videos, allows viewers wearing VR/MR
headsets to exercise six-degree-of-freedom (6-DoF) motion
(yaw, pitch, roll, X, Y, Z), offering a truly engaging expe-
rience [12, 47, 56, 62]. Networked immersive content de-
livery systems require tremendous network resources (e.g.,
hundreds Mbps or even Gpbs for high-quality volumetric
videos [47, 55, 88]). This poses a major challenge for mobile
immersive content delivery systems, which use wireless radios
instead of HDMI/USB cables [20, 21] for content delivery.

Recent advances in millimeter wave (mmWave) radio
technologies make it feasible to transmit immersive con-
tent at a multi-Gbps data rate. mmWave protocols such as
802.11ad [65] (802.11ay [43] in the future) and mmWave
5G [49] have been commercialized on commodity mobile
devices. Despite its high data rate, compared to omnidirec-
tional radio, mmWave radio is much more vulnerable to block-

∗Work done while at University of Minnesota – Twin Cities.

age/mobility and its signal attenuates much faster [65]. This
creates a major issue for immersive applications where view-
ers are in constant motion and the human body may easily
block the line-of-sight. To overcome this issue, existing sys-
tems take three categories of approaches.● Improving the PHY layer. Numerous studies have been con-
ducted on the mmWave radio in general, such as improving
MIMO [42] and beamforming [79, 81].● Enhancing line-of-sight (LoS). Some off-the-shelf commer-
cial products [23] mount the mmWave radio on top of a VR
headset to avoid blockages.● Using specialized equipment. Some prior research [27] pro-
poses to deploy multiple reflectors paired with a custom PHY
protocol design to improve VR performance over mmWave.

The above approaches help but all have limitations. En-
gineering the PHY layer alone is inadequate to handle, e.g.,
the throughput fluctuation incurred by viewers’ fast motion.
Mounting the radio overhead may still incur frequent non-
line-of-sight (NLoS) blockages (e.g., when the viewer looks
up/down, raises arms, or passes through an obstacle). Adding
reflectors to combat NLoS raises the deployment bar and is in-
compatible with commodity mmWave protocols. Even in the
absence of blockage, highly dynamic user mobility can still
cause significant performance drops of mmWave [28, 71, 74].

In this paper, we investigate two complementary, under-
explored dimensions to improve the performance of mmWave-
based immersive content delivery systems: (1) full-body-pose
guided mmWave throughput prediction and (2) joint use of
mmWave and omnidirectional radios. We then integrate them
into a holistic middleware framework called Habitus. At a
high level, Habitus features a judicious cross-layer design
that considers the interplay among viewers’ motion, wire-
less networks, and immersive applications. It creatively lever-
ages features on cheap commodity mobile devices (e.g., dual
802.11ac/ad radios and multi-lens cameras capable of produc-
ing stereo images) for affordable high-quality immersive con-
tent delivery. Habitus is readily deployable without requiring
any change to the existing wireless protocol stack, hardware,
or driver. It is orthogonal to and can co-exist with the three
categories of solutions described above. The key challenges
we face include: (1) the dynamics of viewers’ motion and
mmWave channel incur complex interplay, making accurate
throughput prediction difficult; (2) diverse locations and hu-
man viewers add more complexity in developing a robust
prediction model; even at the same location, the environment

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1677

may change (e.g., a moved chair or a walking spectator); (3)
the heterogeneous characteristics of mmWave and omnidirec-
tional radios make their duet difficult.

Full-body-pose Guided mmWave Throughput Predic-
tion (§4). Over a mmWave link, although the throughput fluc-
tuations cannot be completely avoided, they can potentially
be predicted to improve the quality-of-experience (QoE) of
immersive applications. Habitus utilizes not only the network
information, but also viewers’ motion to predict mmWave
performance. The rationale is that by continuously tracking
the 6-DoF motion, an immersive content delivery system can
estimate the viewer’s future motion trajectory [47, 66, 86],
which can then be mapped to the future mmWave perfor-
mance given the sensitivity of mmWave signal to the physical
environment. In particular, we make a new discovery that
using the viewer’s full-body pose (how a person stands, sits,
or moves as represented by a set of key points associated with
body parts/joints) as features can significantly improve the
throughput prediction accuracy, due to the spatial correla-
tion among body parts during typical human motion [30].
Motivated by the above, we develop a first-of-its-kind frame-
work that predicts mmWave throughput by jointly leveraging
a headset’s 6-DoF motion, the viewer’s body pose, and net-
work information, through a unified machine learning model.
The full-body pose can be captured by a commodity stereo
camera conveniently placed, e.g., next to the WiFi AP.

Reacting to Unseen Changes (§5). Using a pre-trained
model to predict throughput suffers from a key limitation: it
cannot adapt to changes deviating from the training data. We
systematically investigate how various types of changes in
the immersive streaming context impact the prediction accu-
racy of a pre-trained model. Based on the insights, we design
three orthogonal mechanisms for reacting to different types
of unseen changes: (1) offline transfer learning handles large
changes such as switching to a new location/user; (2) on-
line transfer learning updates the model at runtime to tackle
smaller changes such as new motion patterns and environmen-
tal perturbations; (3) we also leverage the stereo camera to
proactively detect/respond to moving objects (e.g., a passing
person) that affect the mmWave performance.

Joint Use of mmWave and Omnidirectional Radios (§6).
Multi-band radio access is a common feature on both mobile
devices and WiFi APs. For example, the Asus ROG Phone
Series [16] support both 802.11ac and ad. Strategically com-
bining them can boost the network performance for metaverse.
We design a lightweight yet effective multipath scheduler for
immersive content delivery over mmWave and omnidirec-
tional radios (802.11ad and ac in our prototype). It employs
two core design ideas. First, it prioritizes the (low-bandwidth
but stable) ac path to guarantee the basic user experience,
and opportunistically leverages (high-bandwidth but fluctuat-
ing) ad whenever possible. Second, it enhances the mmWave
throughput prediction through robust statistical trend analy-
sis [39] to facilitate longer-term throughput forecast.

Implementation (§7). Instead of building a monolithic
application, we develop the above features as a generic, user-
space middleware framework called Habitus. It offers simple
interfaces and data-handling paradigms that are compatible
with a wide range of existing immersive applications. It also
addresses practical system-level challenges, such as accurate
throughput measurement of the highly bursty traffic of immer-
sive content delivery. Habitus consists of 3,541 lines of code
(LoC). To demonstrate its efficacy, we develop two immersive
apps using its API: one is built from scratch in 5.2K LoC; the
other is adapted from a state-of-the-art volumetric streaming
system [47] by only modifying 47 LoC.

Datasets (§4, §5) and Evaluation (§8). We thoroughly
evaluate Habitus through real-world data and deployment.● We conduct IRB-approved data collection involving 10
representative motion patterns at 4 representative indoor loca-
tions from 3 users. This results in a 21-hour dataset that was
used to evaluate Habitus’s prediction framework.●We enhance the above dataset with both static and dynamic
environmental changes in a reproducible manner (e.g., using
a robotic arm to programmatically inject NLoS, see our demo
video [2]), to evaluate Habitus’s reaction to changes.● Using full-body poses reduces 802.11ad throughput predic-
tion error by up to 29% (25%) in MAE (RMSE), compared to
using only 6-DoF head motions. This translates to an average
QoE improvement of 29% for volumetric content delivery.● Habitus effectively responds to unseen changes. The of-
fline transfer learning reduces the model training time by
36% to 55% compared to building the model from scratch
when switching to a new location or user. The online transfer
learning can adapt to a new motion pattern or a typical static
environmental change in 32 secs and 15 secs, respectively.
By proactively detecting and responding to moving objects,
Habitus reduces the volumetric streaming stall by 7%.● Our multipath solution boosts the average volumetric video
quality by 67%, reduces the stall by 64%, and improves the
QoE by 72%, compared to using 802.11ad alone. Compared
to a recent multipath solution for 802.11ac/ad [71], Habitus

reduces the stall by 58% and boosts the quality by 19%.●We conduct another IRB-approved user trial where we col-
lect 12 viewers’ subjective feedback when watching volu-
metric content. The average ratings for 802.11ad only (basic
prediction), 802.11ac+ad (no ad prediction), 802.11ad+ac (ba-
sic ad performance prediction), and the full Habitus system
(with multipath and full-fledged ad prediction) are 2.67, 2.75,
3.08, and 3.50, respectively (in a 1–5 scale).

Habitus represents to our knowledge a first software frame-
work aiming at optimizing the upper-layer network protocol
stack for immersive content delivery (and metaverse applica-
tions in general). This paper makes three-fold contributions:
the design of the Habitus framework; its implementation, eval-
uation, and integration into two volumetric content delivery
systems; and the release of data [6] (802.11ac/ad performance
correlated with full-body motion) and source code [5].

1678 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: Spatial heatmap of 802.11ac/ad throughput in a room.

2 Background and Motivation
Despite their great potentials on boosting immersive content
delivery [47, 55], mmWave signals suffer from increased at-
tenuation, mobility, and blockages [65]. In contrast, 802.11ac
operates at the 5GHz band with omnidirectional signal prop-
agation, providing lower but more stable throughput than
802.11ad. In a case study conducted in a personal office (Fig-
ure 3), we investigate how the PHY properties of ac and
ad affect the QoE of immersive content delivery. Using a
smartphone [16] mounted on the user’s head and a volumet-
ric video streaming application [47], we measure the QoE
while the user walks around the room. Results show that us-
ing 802.11ad greatly improves the content quality by 113%,
but also hugely increases the video stall by 502% due to its
fluctuating throughput under user mobility (Figure 1). Our
case study reveals that ac and ad have distinct network per-
formance due to their complementary PHY properties, and
motivates us to strategically combine them to enhance the
QoE of immersive content delivery.

Many studies focus on improving the communication qual-
ity of mmWave on the PHY layer [42, 79, 81], while ignoring
contextual information for immersive content delivery where
a viewer’s full body is constantly in motion. On the other
side, although solutions with application domain knowledge
(e.g., [23, 27]) have shown some effectiveness, they are ei-
ther incompatible with existing PHY-layer protocols [27] or
still suffer from significant LoS blockages [23]. Such a gap
motivates us to propose solutions that judiciously leverage
viewer’s full-body motion to facilitate mmWave performance
forecast, while being compatible to commercial mmWave pro-
tocols (802.11ad, mmWave 5G/6G, etc.) and easily integrable
into diverse immersive applications.

3 Habitus Overview
Habitus is a software framework enabling immersive content
delivery applications to better interact with heterogeneous
off-the-shelf wireless networks. It offers two essential fea-
tures: accurate runtime mmWave throughput prediction and
multipath networking over mmWave (e.g., 802.11 ad) and
omnidirectional radio (e.g., 802.11 ac). We assume that the
bottleneck is the last-mile radio link(s). Figure 2 shows the
workflow of Habitus. As the viewer is watching immersive
content, Habitus collects various features in real-time and
sends them to an edge node. The edge employs a machine
learning model to perform accurate mmWave throughput pre-
dictions. The prediction results are then utilized by the ap-

Pre-training,
Offline Transfer

Learning

ClientEdge

Throughput Predictor
Online Transfer

Learning

Full-body Pose
Estimator

Multipath
Scheduler

Client-side
Feature Collector

Frame
Buffer

headset’s 6-DoF,
Network Info

Pre-trained
Model

Control Data

Content Data
802.11ad
802.11ac

Content
Server

Figure 2: The system architecture of Habitus.

plication and Habitus’s multipath scheduler to determine the
appropriate content quality level and how to distribute the
content over diverse radio links, respectively. Habitus works
on top of the transport layer as a middleware. It is ready for
deployment without requiring any changes to the existing
wireless protocol stack, hardware, or drivers.

Developing Habitus brings us several challenges: (1) How
to accurately predict mmWave throughput at runtime?
Due to its sensitivity to blockage and mobility, mmWave
throughput is difficult to predict, especially under user mobil-
ity. (2) How to ensure the robustness of the prediction mod-
els? A pre-trained model may not be able to handle various
unseen changes such as moving to a new location, switching
to a different user, or even smaller environmental perturba-
tions. (3) How to make multipath scheduling efficient and
intelligent? mmWave and omnidirectional radios have their
unique natures. How to strategically use these properties to
facilitate multipath scheduling is another critical problem.

Habitus tackles the above challenges with 3 core designs.● Full-body-pose Guided mmWave Throughput Predic-
tion (§4). Habitus enhances mmWave throughput prediction
by exploiting the viewer’s full-body pose, along with the head-
set’s 6-DoF motion and network information, as the features.
It employs a cheap stereo camera with off-the-shelf computer
vision techniques to capture viewers’ poses. We systemati-
cally demonstrate the benefit of leveraging body pose through
a 21-hour dataset collected at 4 diverse locations.●Reacting to Unseen Changes (§5). Habitus reacts to unseen
changes in training data via three orthogonal approaches: of-
fline transfer learning for location/user changes, online trans-
fer learning for new motion patterns and small environmental
changes, and proactively detecting/responding to moving ob-
jects (e.g., a passing person) affecting mmWave performance.● Joint Use of mmWave and Omnidirectional Radio (§6).
Habitus employs the omnidirectional radio that provides sta-
ble throughput as a basis. It then opportunistically takes ad-
vantage of the fluctuating mmWave radio. It exposes simple,
generic interfaces to a wide range of immersive applications.

4 Full-body-pose Guided mmWave
Throughput Prediction

Habitus utilizes not only the network information, but also
viewers’ motion as features for mmWave throughput predic-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1679

tion. It is based on our two observations. (1) The fast signal at-
tenuation and vulnerability to LoS blockages make mmWave
throughput highly correlated with the headset’s physical posi-
tion and orientation [65, 83]. Both of them can be predicted
from the viewer’s historical 6-DoF motion trajectory [47]. (2)
Various body parts exhibit spatial correlation [30]. It provides
opportunities to enhance the headset motion prediction, which
can facilitate mmWave throughput prediction.

4.1 Full-body Pose Estimation
Full-body Pose Representation and Retrieval. Typically, a
full-body pose can be represented by a set of key points where
each key point corresponds to a joint/part of the human body.
We represent the viewer’s full-body pose with 15 key points,
covering the nose, neck, shoulders, elbows, wrists, hips, knees,
and ankles. More details can be found in Appendix A.1.

Some commercial products (e.g., smart suit [17] and body-
mounted sensors [22]) allow tracking the full-body pose, but
they are expensive and uncomfortable to wear. Habitus instead
employs a cheap and easy-to-deploy approach to capture/track
the viewer’s full-body pose through a stereo camera. It first
applies a machine learning model [29, 31, 33, 34, 60, 68] to
the RGB frame to estimate the 2D key points of the full-body
pose, each comprised of a 2D coordinate and a confidence
value F (0 ≤ F ≤ 1). Habitus then maps the 2D key points to
3D space using the depth map [45] that is generated from
stereo images, and keeps their confidence values unchanged.

Estimating Missing Key Points. In some cases, for ex-
ample, when some parts of the body are outside the stereo
camera’s viewport, we are not able to capture their key points.
We observe from our dataset in §4.2 that for 86% of time, the
ML model can retrieve at least 10 (out of 15) key points. The
90-th percentile, mean, and median duration of a key point’s
missing time are 1s, 0.43s, and 0.07s, respectively. This indi-
cates that in most cases, a key point misses for a very short
duration. We estimate a missing key point’s 3D coordinate on
the fly using a combination two approaches: reusing its most
recently captured 3D coordinate (when the missing period
is short), and linearly extrapolating its coordinate using its
historical trajectory (when the missing period is long). The
detailed design and evaluation can be found in Appendix A.2.

4.2 Data Collection
We perform a first-of-its-kind study on full-body-pose assisted
throughput prediction in real-world settings. We conduct an
IRB-approved data collection involving 10 motion patterns at
4 indoor locations from 3 users, resulting in a 21-hour dataset
consisting of both the network data and viewers’ motion data.
This unique dataset is used to evaluate mmWave throughput
prediction (§4.3), techniques for tackling unseen changes (§5),
and the Habitus system (§8).

4 Indoor Locations. We investigate 4 representative indoor
locations with diverse environments (Figure 3). More details
can be found in Appendix A.3. 3 Users. We recruit 3 users

Patterns Description

S1
The user stands in the center of the room, turning
around in a clockwise direction.

S2
The user stands in the center of the room, turning
around in a counterclockwise direction.

S3 The user walks around in a clockwise direction.

S4
The user walks around in a counterclockwise
direction in a normal speed.

S5 The same as S4, but in a slow speed.
S6 The same as S4, but in a fast speed.

S7
A chair occupies the front place of the access point.
The user walks around in a counterclockwise direction.

S8
The same as S3, but the user does not change the
orientation of his/her head.

S9
The same as S4, but the user does not change the
orientation of his/her head.

S10
The user walks around following the walking trace
in S7, but there is no chair.

Table 1: User motion patterns.

with different heights (1.6m, 1.7m, and 1.8m) and genders (1
female and 2 males) to collect data in all the four locations.
10 Motion Patterns. We consider 10 representative motion
patterns when watching immersive contents [47] and summa-
rize them in Table 1. For each motion pattern, we repeat data
collection three times.

Dataset Overview. Our dataset consists of 12 {Location,
User}-specific sub-datasets, each having 30 (10 motion pat-
terns×3 repeats) data traces. The duration of each data trace
is 120 secs and the time granularity of each data point is 1/60
secs. Our dataset consists of not only the network informa-
tion (throughput and signal strength of both 802.11ac and
802.11ad), but also users’ motion information (i.e., 6-DoF
motion of users’ headsets and users’ full-body pose, see §4.1).
Across all data traces, the average 802.11ad throughput varies
from 275 to 886 Mbps, with the standard deviation rang-
ing from 85 to 358 Mbps. Meanwhile, the average 802.11ac
throughput varies from 175 to 378 Mbps, with the standard
deviation ranging from 26 to 86 Mbps. The highest through-
put of 802.11ad only achieves 2.34× of 802.11ac due to the
limitation of our hardware setup.

Hardware Setup. We take Personal Office in Figure 3 as
an example. For the edge, we set up a desktop PC with two
network interfaces (NICs) at the corner of the room. It has an
Intel Core i9-10900X CPU @ 3.70GHz, an NVIDIA 2080Ti
GPU, and 32GB memory. Each NIC is connected to an access
point by a 1-Gbps Ethernet cable, one [19] for 802.11ac and
the other [13] for 802.11ad. The two1 APs reside on the floor
side-by-side. A stereo camera [24] is installed on the wall and
connected to the PC via a USB 3.0 cable. It captures users’
motion as RGB-D videos at up to 100 FPS. For the client
device, users wear a headset [11] for collecting 6-DoF motion
of their heads. We mount a smartphone [16] that supports both
802.11ac/ad on the headset to collect network information.

1Ideally one access point is able to handle both ac and ad. We use two
access points due to the 1-Gbps speed limitation of our Ethernet cables.

1680 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

AP

Camera is outside
the viewport.

AP
Camera Camera + AP AP

Camera

Figure 3: Data collection locations (from left to right: Personal Office, Living Room, University Office, and Meeting Room).

We use the same hardware setup for all four locations.
Data Collection Methodology. On the client side, the

smartphone establishes two TCP connections with the edge
over 802.11ac and 802.11ad, respectively. It performs bulk
download from the edge through both paths, and measures
the throughput and signal strength (in terms of RSSI). The
headset keeps sending the 6-DoF to the smartphone by UDP
over 802.11ac. Meanwhile, on the edge side, the desktop
PC keeps sending the most recent RGB-D frame ID captured
by the stereo camera to the smartphone through UDP over
802.11ac for data synchronization purpose (see next).

Data Synchronization and Post-processing. During data
collection, the smartphone logs all the information (generated
by itself or received from the headset/edge) except the RGB-D
video that is recorded at the edge. Since all the devices are in
close proximity, the UDP one-way delay is negligible (≤ 2ms)
so different pieces of data are properly synchronized. We use
zed-openpose [26] (which consumes the RGB-D video) to es-
timate the user’s body pose offline. The pose is synchronized
with other information through the RGB-D frame ID, which
is recorded by the client at runtime. For key point extraction,
we set the input resolution to 320×240 and keep it consistent
in our implementation (§7).

4.3 Prediction Methodology and Evaluation
We first formulate our prediction task. Let GC denote the
feature vector at time C, HC denote the predicted through-
put at time C, ΔC denote the time granularity, and M de-
note the prediction model. Assuming that we perform pre-
diction at time C0, we have .C0 ,< = M(-C0 ,=) where where
-C0 ,= = [GC0−(=−1)×ΔC ,GC0−(=−2)×ΔC , ...,GC0−1×ΔC ,GC0] is the fea-
ture sequence within a history window (hw) =, and

.C0 ,< =

(
[HC0+<×ΔC] or
[HC0+1×ΔC , HC0+2×ΔC , ..., HC0+(<−1)×ΔC , HC0+<×ΔC]

can be either a single predicted value after a prediction
window (pw) < or a predicted sequence within the pw <

where HC0+8×ΔC (1 ≤ 8 ≤ <) corresponds to a future timestamp
C0+ 8×ΔC. The hw (pw) in secs is computed as =×ΔC (<×ΔC).

Habitus uses the full-body pose by taking the coordinates
and confidence values (§4.1) of its key points as important
features to the mmWave throughput prediction models. We in-
vestigate 5 different models from recent studies on mmWave
throughput prediction [28,63]. We customize them to our pre-
diction task by tuning the model architecture and the parame-
ters. We list them as follows. (1) Gradient Boosting Decision
Tree (GBDT) [63]. Our GBDT model has 100 estimators,
bounded by a depth of size 3. It takes -C0 ,1 as the input and

predicts a single throughput value .C0 ,<. (2) Fully-connected
Neural Network (BP) and Recurrent Neural Network
(RNN) [28]. BP8 is a fully-connected neural network with
3 hidden layers, each with 40 neurons. It takes -C0 ,8 as the
input and predicts a single throughput value .C0 ,1. RNN8 and
RNN20 have the same network architecture, i.e., a recurrent
neural network with 3 hidden layers, each with 8 or 20 neu-
rons. They take -C0 ,8 and -C0 ,20 as the input, respectively, and
both predict a single throughput value .C0 ,1. (3) Sequence-to-
sequence Learning (Seq2Seq) [37, 63, 75, 77]. Our Seq2Seq
model has a single-layer LSTM encoder-decoder architecture
with 128 hidden units. It takes -C0 ,= as the input and predicts
future throughput sequence .C0 ,< where < = 2×=.

We use our dataset (§4.2) to train/evaluate the above models
{w/, w/o} the full-body pose as extra features. We perform
10-fold cross-validation for each model on each {Location,
User}’s dataset, and quantify their prediction errors by mean
absolute error (MAE) and root mean square error (RMSE).
For Seq2Seq, to fairly compare it with the other models, we
only use the value HC0+?F in its predicted sequence. We use
three prediction windows (pw) of {0.5, 1, 2} secs.

Figure 4 shows the average MSE and RMSE for different
models across all {Location, User}’s datasets when ?F=1 sec.
The model trained with (without) full-body pose is denoted
as Model w/ Pose (Model) in Figure 4. We also normalize
the prediction error by the average 802.11ad throughput (493
Mbps) of our dataset. We have four observations here. (1)
Seq2Seq w/ Pose achieves the lowest prediction error: 31 (47)
Mbps in MAE (RMSE). (2) Leveraging full-body pose as
extra features effectively reduces the prediction error for all
the models. The reduction ranges from 5% (GBDT) to 29%
(RNN20) in MAE and 5% (GBDT) to 25% (RNN20) in RMSE.
This quantitatively confirms that leveraging spatial correla-
tion among body parts helps boost the throughput prediction
accuracy under viewers’ constant motion. (3) Although not
shown, the benefit of leveraging full-body pose is similar in
both simple (i.e., Personal Office and Living Room) and com-
plex (i.e., University Office and Meeting Room) environments.
(4) Deep learning models of prior work [28] (RNN20, RNN8,
BP8) do not necessarily outperform the non-deep-learning
model (GBDT). This is likely because those in [28] are de-
signed for limited motion (2-DoF) as opposed to the complex
6-DoF motion in real-world settings. We confirm that the
above findings also hold for pw=0.5s and pw=2.0s.

5 Reacting to Unseen Changes
In this section, we investigate how the throughput prediction

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1681

RNN20 RNN20
w/ Pose

RNN8 RNN8
w/ Pose

BP8 BP8
w/ Pose

GBDT GBDT
w/ Pose

Seq2Seq Seq2Seq
w/ Pose

50

100

150

200

P
re
di
ct
io
n
E
rr
or

(M
bp
s)

MAE
RMSE

10

20

30

40

N
or
m
al
iz
ed

V
al
ue

(%
)

Figure 4: Prediction error of different models {w/, w/o} full-body
pose as extra features, ?F = 1 sec.

models developed in §4 react to changes unseen in the training
data. This is an important aspect we must consider since the
changes are common in practice (e.g., new motion patterns, a
chair being moved in the room, another person passing by).
We then develop solutions to tackle these changes.

5.1 Measurement Methodology
Recall from §4.3 that we train a model for a particular user’s
motion patterns in the environment of a particular location.
Therefore, a change to any of the above factors may degrade
the model’s prediction accuracy. We first define these changes.
C1: New Location. The dimensions, interior design, and fur-
nishings of locations differ vastly, as do the locations of the
AP and camera. These variations can significantly impact the
behavior of mmWave signal propagation [67, 72, 81, 91]. C2:
New User. Users differ in their shape and height, resulting in
variations of their body poses used by the model. C3: New
Motion Patterns. Even for the same user at the same location,
a new motion pattern may lead to unseen trajectories of the
head’s motion or the body’s pose. C4: Static Environmen-
tal Changes such as furniture being moved and even small
objects being manipulated can affect the mmWave signal
propagation [81,91]. C5: Dynamic Environmental Changes
are similar to C4 except that the object(s) that perturb the
environment are in motion. A representative scenario is that,
people as passerby(s) or spectator(s) can temporarily block
the LoS and henceforth cause a throughput drop.

We next describe how to measure the impact of the above
changes. For a given change⇠, we construct three datasets T⌫,
T𝐴, and E𝐴. T⌫ and T𝐴 contain the training data before and
after ⇠, respectively; E𝐴 contains the testing data collected
after ⇠ for evaluating the impact. We use T⌫ and T𝐴 to train
two modelsM⌫ andM𝐴, respectively, using Seq2seq w/ Pose
with the same hyper-parameters. Next, we testM⌫ andM𝐴

using E𝐴, and calculate the corresponding MAE as MAE𝐴
⌫

and MAE𝐴
𝐴 respectively. Then the impact of ⇠ on the through-

put prediction accuracy is calculated as MAE𝐴
⌫−MAE𝐴

𝐴. The
tradeoff here is accuracy vs. training overhead: MAE𝐴

𝐴 gives
the best accuracy but requires retraining the model; MAE𝐴

⌫
reuses the old model at the cost of degraded accuracy.

We now describe how to construct T⌫, T𝐴, and E𝐴 for C1
to C5. Recall from §4.2 that our dataset is divided into (3
users) × (4 locations) = 12 groups (i.e., sub-datasets), and
each group contains traces of 10 motion patterns. Also, each

group’s traces are randomly split into training (70%) and
testing (30%). Since a model is created for a given (user D,
location ;) pair, we measure the impact on a per-group basis,
and then average the impact across all groups. For C1, for a
given group (D, ;), T⌫ consists of the training data of (D, ;);
T𝐴 and E𝐴 contain the training and testing data of ∪;′<; (D, ;′),
respectively. For C2, it is similar to C1 except that T𝐴 and E𝐴

belonging to ∪D′<D (D′, ;). For C3, the three sets all belong to
the same (D, ;) pair but they contain different motion patterns:
T𝐴 contains all 10 motion patterns; we remove one motion
pattern 4 from T⌫, and only keep 4 in E𝐴. We repeat the
above measurement 10 times, each time using one of the
10 motion patterns as 4. For C4 and C5, the three sets all
belong to the same (D, ;) pair, but we physically introduce the
environmental changes and then recollect data for T𝐴 and E𝐴,
as elaborated next.

We inject two static environmental changes (C4) and study
them separately: (1) move four chairs in the room to fixed
places (Figure 6 Left), and (2) put four large packages on
designated spots. Then we ask the same users to exercise
the same motion patterns (as those in T⌫) as if there were
no environmental change (we ensure that the changes do not
block any motion pattern). Injecting a dynamic change (C5)
in a reproducible manner requires a more sophisticated setup.
We use a robotic arm to move a box covered by aluminum foil
back and forth between two designated spots to periodically
introduce NLoS (Figure 6 Right). The box size and aluminum
foil thickness are determined through a separate controlled
experiment (details in Appendix §B) to mimic real humans
in terms of NLoS-incurred throughput degradation. In this
way, we programmatically emulate a passerby intermittently
causing NLoS (demo video [2]). We study C4 and C5 only at
University Office due to setup complexity.

5.2 Measurement Results and Insights
Figure 5 plots the impact of C1 to C5 on the mmWave
throughput prediction accuracy. The two Y axes show both
the absolute MAE growth (MAE𝐴

⌫−MAE𝐴
𝐴) and the relative

growth (normalized by the average 802.11ad throughput in
our dataset). We highlight our findings next.

A new location incurs the highest impact. C1 degrades
the model’s accuracy by 19% (93 Mbps) on average. It reveals
that the physical property of mmWave and its throughput dis-
tribution in a location is the fundamental knowledge learned
by our model. Since the indoor location, characterized by
its room layout, surface materials, furniture arrangement, etc.
plays a dominant role in determining the mmWave propa-
gation, changing the location will reshape the throughput
distribution at different 3D coordinates.

A new user incurs a moderate impact. C2 increases the
average MAE by 8% (38 Mbps). The impact is lower than
that of C1, but still non-negligible. This suggests that our
model also learns how a user’s motion affects the throughput
received by the headset. Changing the user alters the relative

1682 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Robotic Arm

ChangeChange

Figure 5: Impact of changes on the model pre-
diction accuracy (Seq2seq w/ Pose, ?F = 1 sec).

Figure 6: Static (left) and dynamic (right)
environmental changes, from AP’s view.

Figure 7: mmWave throughput drop caused
by dynamic changes (C5) in our demo [2].

positions among the key points used by our model; it also
changes the trajectory that the headset can reach even with the
same motion pattern. Both degrade the model’s accuracy. Nev-
ertheless, the impact is lower than C1 because the throughput
distribution, mostly shaped by the surrounding environment,
largely remains consistent.

New motion patterns and static/dynamic environmental
changes may incur a small impact. Upon C3, C4, and C5,
our model’s prediction accuracy only drops marginally, by
4%, 3%, 4% (20, 17, 19 Mbps) on average, respectively. The
primary reason is that the changes are spatially small (C3
and C4) or temporarily short (C5). For C3, a new motion
pattern oftentimes has positions overlapped with old ones,
making the previously learned knowledge relevant. For our
C4 instances, the moved chairs and packages usually do not
incur additional NLoS. Our C5 instance does incur NLoS, but
the overall impact is small due to its short duration (Figure 7).
Note that, however, an environmental change may cause a
big mmWave performance impact (e.g., there are apparent
blockages near the mmWave AP). Users of Habitus (and any
mmWave system in general) should avoid such scenarios.

5.3 Methods of Handling Changes
The results in §5.2 suggest that besides taking the time-
consuming approach of retraining a model from scratch,
Habitus may adopt different strategies to tackle changes. We
next introduce three orthogonal mechanisms. The first two
(offline/online transfer learning) adopt the concept of homo-
geneous transfer learning [51,59,93] that transfers the knowl-
edge learned from a past experience to a new setting. The
two properties below make transfer learning a desirable so-
lution. (1) Before and after the change, the feature space
(i.e., mmWave signal strength and throughput, 6-DoF mo-
tion, full-body pose) remains the same but their distributions
(or domains) may differ [93]; (2) before and after a change,
there is invariant knowledge (e.g., the physical property of
mmWave and the throughput distribution in certain positions)
that can be reused. The third mechanism promptly handles
C5 by fusing real-time computer vision into Habitus.

Offline Transfer Learning. For C1 and C2, given their
infrequency and non-negligible impact on the model’s perfor-
mance, collecting data under the new setting to update old the
model before using it helps mitigate large prediction accuracy
drops. Specifically, when switching to a new location or a new
user, Habitus asks the (new) user to exercise motion patterns

(e.g., those in Table 1) in the (new) location while measur-
ing the mmWave bandwidth and collecting input features. A
typical data collection only needs 1 to 2 minutes (see §8.5).
Habitus then uses the collected training data to update the old
model before starting streaming for the new user or location.

Online Transfer Learning. To handle C3 to C5 (and also
C1, C2), since they occur much more frequently with usually
a much smaller accuracy impact, Habitus can collect data
under the new setting and update the model on-the-fly. Unlike
offline transfer learning, online transfer learning does not
incur additional data collection overhead and is transparent
to users. Specifically, during a streaming session, Habitus

updates the model in consecutive epochs. Epoch 8 produces
a new model "8 and a set of training data samples ⇡8 (input
features and the measured ground truth mmWave throughput).
Habitus also maintains a global training dataset ⇡⌧ . At the
beginning of Epoch 8, Habitus (1) sets the current model for
throughput prediction to "8−1; (2) appends ⇡8−1 to ⇡⌧ , and
start using ⇡⌧ to update "8−1; (3) start collecting ⇡8 that
will be used to update "8 in Epoch 8 + 1. To bootstrap the
above process, Epoch 0 only collects ⇡0 for a fixed period
of 10 secs. To avoid ⇡⌧ becoming too large, Habitus limits
⇡⌧ to contain only data collected in the recent 5 minutes. We
tune the batch size (64) to balance each epoch’s convergence
speed and the total model copy overhead after epochs. We
also apply a small learning rate (0.001) given that we are
fine-tuning the model rather than training it from scratch.

Vision-based Dynamic Change Handling. We find that
even online transfer learning is too slow to react to C5. We
thus devise a heuristic-based design to improve the respon-
siveness. The idea is to leverage the stereo camera, which
already belongs to Habitus’s infrastructure, to visually cap-
ture dynamic changes and penalize the predicted mmWave
throughput accordingly. Specifically, we focus on the most
common dynamic change: a person temporarily blocks the
LoS between the viewer and mmWave AP. During a stream-
ing session, the edge performs continuous human detec-
tion [25, 32, 78]. If a passerby is detected (we know the
viewer’s position so the viewer will not be confused with
the passerby), Habitus uses the detected 3D bounding box,
the known position of the mmWave AP, and 6-DoF motion re-
ported by the headset, to determine if the passerby is causing
NLoS or may cause NLoS in the near future by examining
the distance from the bounding box center to the LoS be-
tween the viewer and AP. If so, Habitus adds an empirical

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1683

penalty to the mmWave throughput ⌫03 predicted by the
model: ⌫′03 = − B<0G−B

B<0G−B<8=
×⌫03 where B is the observed sig-

nal strength; B<8= and B<0G denote the typical indoor signal
strength range (empirically set to -70 and -30 dBm, respec-
tively). We evaluate the above three methods in §8.6.

6 System Design of Habitus

We now detail the system design of Habitus that leverages the
functionalities introduced in §4 and §5 as building blocks.

As shown in Figure 2, except the client-side feature collec-
tor, all the other components of Habitus reside on the edge.
This helps minimize the energy consumption and heat dissi-
pation on client devices.2 The choice of the edge is flexible.
It can be either a user’s own desktop PC, or an edge node
co-located with a mmWave 5G base station (e.g., AWS wave-
length [1]). The edge also acts as a proxy by forwarding the
client’s requests to the server and the server’s streamed con-
tent to the client. Habitus supports both client request and
server push. Our prototype uses the former.

6.1 Application Interface
Habitus jointly utilizes mmWave and omnidirectional radios
(802.11ad and 802.11ac in our prototype) to deliver immersive
content. It exposes simple interfaces to applications.● Through a callback, Habitus keeps informing the application
of the two radio links’ aggregated bandwidth. The application
should ensure that its actual streaming bitrate does not over-
shoot the aggregated bandwidth. The bandwidth update is at
a fast pace (e.g., 30 FPS) to match the viewer’s fast motion.● The application streams immersive contents on a per data
block basis, which can be flexibly defined by the application
based on its semantics. Each block can be independently de-
coded. We use examples in 6.4 to show that our block-based
paradigm is aligned with the design of many existing im-
mersive apps (e.g., 360° videos, volumetric videos, and VR).
When the client requests for (or the server pushes) a block, it
uses Habitus API to attach two parameters: the block’s prior-
ity and playback deadline. Habitus forwards the blocks based
on their playback deadline in a FIFO manner, and distributes
high-priority and low-priority blocks over the omnidirectional
and mmWave radios, respectively. The rationale is that the
omnidirectional radio is more reliable, so high-priority blocks
get a higher chance of being delivered (and hence decoded
and rendered) before its deadline than low-priority blocks.

6.2 Utilizing mmWave Throughput Prediction
Habitus exercises multipath content delivery in two steps. It
first estimates the aggregated network bandwidth by treating
the multipath ac/ad connections as one logical connection.
Second, it splits the block stream over ac and ad paths. We
now detail the first step, and describe the second step in §6.3.

2For example, in our experiment, running our Seq2Seq model (§4.3) on
the ROG phone II [16] for only two minutes will trigger an overheating issue.

Recall that the predicted throughput of 802.11ad, denoted
as ⌫03 , can be obtained from our mmWave throughput predic-
tion model (§4, §5). The 802.11ac throughput, ⌫02, is much
more stable and largely not affected by the environment. We
therefore simply use the harmonic mean of a past window of
5 secs to predict ⌫02. Then Habitus predicts the aggregated
capacity as ⌫02 + 2×⌫03 . We use 2, which we call the trend-
aware coefficient, to further enhance the 802.11ad throughput
prediction by considering the trend of a finite horizon in the
future as produced by our model (§4.3). The idea is to analyze
the monotonic trend of the predicted throughput sequence. If
the trend is increasing (decreasing), we can use the 802.11ad
link aggressively (conservatively).

To derive 2, Habitus first uses Cox-Stuart Test [39, 70], a
lightweight, non-parametric approach, to determine the trend
(increase, decrease, or neither). Its details are in Appendix C.

2 =

8>>>>>>>>>><
>>>>>>>>>>:

1+ avg©≠
´

=
2’

8=1
â
⇣
I8 < I8+ =

2

⌘ ×
����
I8+ =

2
− I8

I8

����™Æ¨
, if increase trend

1− avg©≠
´

=
2’

8=1
â
⇣
I8 > I8+ =

2

⌘ ×
����
I8+ =

2
− I8

I8

����™Æ¨
, if decrease trend

1, otherwise

Next, Habitus uses the above formula to compute 2 by averag-
ing the future changes in the predicted throughput sequence
{I8}. â(G) = 1 iff G is true (otherwise 0), and = is the length
of the predicted throughput sequence. The formula splits the
sequence into two sub-sequences in the middle, and com-
putes the normalized increase (decrease) of the second sub-
sequence compared to the first one, on a per-element basis.
The normalized changes are then averaged. We empirically set
the lower and upper bound of 2 to 0.5 and 1.25, respectively.

6.3 Multipath Scheduling
Upon receiving the block stream from the server, Habitus

splits it over 802.11ac and ad paths. Regarding the splitting
mechanism, a straightforward solution is MPTCP [41] or its
variants for wireless networks [48, 71, 82]. We reject this
design due to three reasons. First, MPTCP exposes to the
upper layer a single logical connection whose byte stream is
delivered in-order; Habitus instead decouples the two paths
that independently deliver blocks. Second, adapting MPTCP’s
scheduler to Habitus requires kernel modifications. Third,
MPTCP is known to cause issues on ad/ac (e.g., throughput
drops over ad due to periodical network scans on ac [71]).

To avoid the above issues, Habitus establishes two single-
path connections3 and performs scheduling in the user space.
The scheduling logic is straightforward: transmitting high-
priority and low-priority blocks over 802.11ac and ad, respec-
tively, with the reason explained in §6.1. Specifically, the
server sends to Habitus’s edge node the metadata (headers)

3Our prototype uses TCP. A better design would be using QUIC [54] to
avoid head-of-line blocking across blocks within a path under packet losses.

1684 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of multiple blocks with the same playback deadline in a sin-
gle bundle, followed by parallel streams of individual blocks’
content. As the blocks’ content arrives, the edge distributes
them over the two paths according to their priority fields in
the metadata and each path’s estimated bandwidth. A block
only usually uses one path, but a small number of blocks
may be split over both paths if one path’s bandwidth budget
is insufficient. Once a block arrives at the client, it will be
immediately passed to the application for decoding and ren-
dering. The server-side transmission, edge-side forwarding,
and client-side reception are pipelined.

6.4 Example Use Cases of Immersive Apps
Habitus can be easily integrated with a wide range of immer-
sive applications and content formats as exemplified below.

360° Videos. State-of-the-art 360° video systems [46, 80,
90] spatially segment each panoramic video chunk into tiles.
Tiles are selectively transmitted based on the viewport. Each
tile naturally maps to a block in Habitus, and its priority can be
set to the probability that it will appear in the viewport. Many
existing systems already have this metric calculated [35, 66].

Volumetric Videos. The above viewport adaptation tech-
nique and henceforth the block/priority assignment also ap-
plies to volumetric videos, where a 2D tile becomes a 3D cube
consisting of 3D points. Alternatively, since each volumetric
frame consists of unstructured points, it can be arbitrarily split
into multiple layers each constituting a block in Habitus. A
“base layer” with a low-density point cloud can be assigned a
high priority; one or more “enhancement layers” each encom-
passing additional details can be assigned lower priorities.4

Generic VR. Networked VR systems either stream raw
3D models [55, 57, 88, 89] or rendered 2D scenes [36, 58].
Depending on the content format, a block can be either a 3D
model (or part of it) or a rendered 2D patch. The are several
studies/systems on determining the priority of VR content,
such as those based on foreground/background [53, 57, 85],
the viewing distance [44, 61], and user gaze behaviors [36].

7 Implementation
Our implementation consists of three parts: (1) the main
Habitus middleware in 3.5K LoC; (2) a 802.11 throughput
measurement module plugged into Habitus; (3) two sample
applications using the Habitus API (5.2K LoC, 4.4K LoC).

The Main Habitus System is implemented in C++ and
Python. We use ROG Phone II [16] and plug it into a low-end
VR headset [7] (costs $26) as the client-side device and the
same server used in §4.2 as the edge node. On the client side,
we use Linux iw [10] to monitor 802.11 signal strength; we
use ARCore [3] for 6-DoF motion tracking (based on IMU
and camera data [4]). On the edge side, we use PyTorch-
1.10.0 [15] for training and transferring our models. For in-
ference, we save the models in TorchScript [18] for C++ ex-

4A similar concept called Scalable Video Encoding (SVC [73]) can be
applied to 2D content, albeit at a higher encoding overhead.

ecution. We implement the body pose estimator over zed-
openpose [26], using a pre-trained model [14, 34] to detect
2D poses. We pipeline the body pose estimation stages (cap-
ture, 2D detection, 2D-to-3D mapping). We use the object
detection module in ZED SDK 3.8.2 [25] to detect passersby.

802.11 Throughput Measurement Module. Compared to
traditional 2D video traffic, immersive content traffic is highly
bursty [36, 47, 55]. This poses several challenges for 802.11
(in particular, mmWave) throughput measurement. We thus
implement an 802.11 throughput measurement module using
Libpcap-1.10.1 [8]. We detail its design in Appendix D.1.

Two Volumetric Streaming Applications using Habitus.
To demonstrate how Habitus can benefit real immersive ap-
plications, we build two volumetric (point cloud) streaming
systems with different logic and complexity using the Habitus

API. The first app (App1) employs layered encoding of point
clouds (§6.4) so each data block corresponds to a (frame,
layer) pair. The second app (App2) performs viewport adap-
tation (§6.4) by spatially segmenting each frame (i.e., point
cloud) into cubical cells, so each data block constitutes a
(frame, cell) pair. We build the first app from scratch in 5.2K
LoC, and the second app replicating ViVo [47], a state-of-the-
art, visibility-aware volumetric streaming system. For ViVo,
we only change 47 LoC for Habitus integration. Both apps are
equipped with the same bitrate adaptation algorithm whose
details can be found in Appendix D.2.

8 Evaluation
8.1 Experimental Setup
Dataset, Devices, and Models. We use the dataset collected
in §4.2 for our controlled experiments. The devices are the
same as those used in §7 and §4.2. In §8.2, we use {GBDT,
BP8, RNN8, RNN20, Seq2Seq} {w/, w/o} Pose models, and
three prediction windows (pw): {0.5, 1, 2} secs. Experiments
in other sections use Seq2Seq {w/, w/o} Pose with pw=1 sec.

Controlled Experiments. To ensure the reproducibility,
during our controlled experiments, we replay the headset’s 6-
DoF motion traces and the signal strength traces on the smart-
phone, which is connected to the edge via real 802.11ac/ad
links. On the edge side, we replay the RGB-D videos for
online full-body pose estimation. We emulate ac/ad through-
put traces by Linux tc [9]. We fix the smartphone static in
LoS to the 802.11ad AP to keep a good mmWave signal for
throughput emulation. We do not add additional RTT since
the client already connects to the edge via real wireless links.

Volumetric Videos. We use three point-cloud-based vol-
umetric videos (denoted as V1, V2, and V3, respectively)
throughout our evaluation. {V1, V2, V3} has {2612, 2700,
3000} frames ({∼87, 90, 100} secs), respectively. Each frame
of them is split into 64 data blocks (§6.1) and details can
be found in §7 and Appendix D.2. All the videos are at 30
FPS, encoded into ten quality levels. The highest bitrates are
{570, 687, 738} Mbps for {V1, V2, V3}, respectively. Unless
otherwise mentioned, the results reported in the remainder of

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1685

Figure 8: Per motion pattern QoE im-
provement of Seq2Seq w/ Pose over
Seq2Seq w/o Pose.

Figure 9: Per location QoE im-
provement of Seq2Seq w/ Pose
over Seq2Seq w/o Pose.

Figure 10: Quality vs. Stall of
Habitus variants.

Figure 11: Subjective
ratings of 12 users.

this section are generated using all three videos.
Roadmap and Metrics. §8.2 evaluates 802.11ad through-

put prediction error reduction brought by full-body pose. §8.3
focuses on the QoE improvement brought by full-body pose.
We assess the QoE using the QoE model for point cloud
from [88]. It is a linear combination of frame quality, inter-
frame & intra-frame quality switch, and stall. §8.4 and §8.7
evaluate the end-to-end performance (quality and stall) of
Habitus. §8.5 conducts a user study to examine real users’
QoE. §8.6 evaluates how our design handles unseen changes.
§8.8 provides additional micro benchmarks. Except for §8.7,
we use App1 in §7 (details in Appendix D.2) for evaluation.

8.2 802.11ad Throughput Prediction Error
Recall that in §4.3, we perform 10-fold cross validation for
{GBDT, BP8, RNN8, RNN20, Seq2Seq} {w/, w/o} Pose models
on each {Location, User}’s dataset, with three pws {0.5, 1, 2}
secs. As Figure 4 shows, leveraging full-body pose effectively
reduces mmWave throughput prediction error for all these
models, ranging from 5% (GBDT) to 29% (RNN20) in MAE
and 5% (GBDT) to 25% (RNN20) in RMSE, respectively.

8.3 QoE over 802.11ad Network
We evaluate how full-body pose guided mmWave throughput
prediction improves App1’s QoE through controlled experi-
ments. First, for each {Location, User}, we train a Seq2Seq
w/ Pose and a Seq2Seq w/o Pose model, respectively. We
then run App1 over a single-path 802.11ad network. For each
data trace, we run the experiment twice, using Seq2Seq {w/,
w/o} Pose model, respectively. We log the quality for each
data block (§8.1) and the stall for each frame to assess the
QoE. Figure 8 shows the QoE improvement by leveraging
full-body pose for each motion pattern across all data traces.
We have two findings. First, leveraging full-body pose ef-
fectively improves the QoE by 29% on average for all our
motion patterns. Second, the QoE improvement varies across
different motion patterns, from 13.30% (S1) to 45.82% (S6).
The full-body pose does not help much for S1, S2, S8, and
S9. This is due to two reasons. First, in S1 and S2, the user
does not make translational movement; this reduces the effec-
tiveness of the pose. Second, in S8 and S9, the LoS between
the smartphone and the 802.11ad AP is well maintained; this
makes the throughput prediction easier compared to other
motion patterns. Figure 9 presents the QoE improvement for
each location in Figure 3. The QoE improvement remains

Variant Predict ad? trend-aware? Scheduler
ac No N/A single-path ac
ad No N/A single-path ad

Simple No N/A ours in §6.3
Pro Seq2Seq w/o Pose Yes ours in §6.3
Full Seq2Seq w/ Pose Yes ours in §6.3

Table 2: Habitus variants.
similar between simple (Personal Office and Living Room)
and complex locations (University Office and Meeting Room).

8.4 End-to-end Performance of Habitus
We evaluate the end-to-end performance, including the con-
tent quality and stall, of diverse Habitus variants using all
{Location, User}’s data and App1 in §7.

Habitus Variants. Table 2 summarizes 5 Habitus variants.
We consider two single-path variants, ac and ad, that only
schedule data to ac and ad, respectively, without ad through-
put prediction. We also consider three multipath variants, all
using the multipath scheduler from §6.3: the Simple variant
does not utilize 802.11ad throughput prediction; the Pro and
Full variant apply the Seq2Seq w/o Pose and Seq2Seq w/ Pose
model, respectively, for ad throughput prediction. Both Pro
and Full enable the trend-aware feature (§6.2). As shown in
Figure 10, compared to ac and ad, Simple boosts the quality
(normalized by the highest quality level) by 127.88% and
40.36%, respectively. Simple incurs a much higher stall com-
pared to ac because the ad network is highly fluctuating and
Simple blindly uses it without predicting its future condition.
Compared to Simple, Pro boosts the quality by 7.75% and
reduces the stall by 44.25%, thanks to the ad throughput pre-
diction and the trend-aware multipath scheduler. Compared
to Pro, Full enhances the ad throughput prediction accuracy
by using full-body poses, leading to a further stall reduction
of 20.55% and video quality improvement of 10.58%.

Habitus vs. Existing Approaches. We compare Habitus

with MuSher [71], a recently proposed MPTCP scheduler
for ac/ad networks. Musher periodically probes the ratio be-
tween the current ad and ac throughput, and splits the traffic
accordingly. In each probe, it tries to increase and decrease
the radio, and greedily selects the direction to move based on
the aggregated ac/ad throughput measurement. It also has a
SCAN component to mitigate the negative impact of network
scanning and a BLOCKAGE component to accelerate TCP
congestion window recovery after an ad blockage event.

We implement MuSher’s scheduling algorithm in the appli-

1686 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

cation layer. We plug it into Habitus and denote it as MuSher-
VR. We do not implement the SCAN component because we
use establish separate TCP connections over ac/ad links so
network scans on one interface do not affect the other one.
We repeat the same experiment on MuSher-VR.As shown in
Figure 10, compared to MuSher-VR, Habitus (Full) signifi-
cantly reduces the stall by 58.24% and boosts the quality by
18.52%. Habitus outperforms MuSher-VR due to two reasons.
First, MuSher-VR incurs stalls when it aggressively probes
the scheduling ratio by scheduling more data to one path than
its actual capacity. Habitus instead takes a prediction-based
approach to avoid the stall caused by aggressive probing. Sec-
ond, Habitus prioritizes using the ac path and opportunisti-
cally uses the ad path if possible. In contrast, MuSher-VR
lacks such prioritization. It schedules the data to the ac/ad
paths based on a calculated ratio that ideally should converge
to the ratio between ac/ad throughput. However, under the
constant movement of the viewer, the actual instantaneous ra-
tio may significantly deviate from the calculated ratio, leading
to stalls or under-utilizing the ad path.

8.5 User Study
We conduct an IRB-approved user study at University Office
(Figure 3) to assess real users’ QoE when using App1 (§7).
We recruit 12 users with various demographics.5 We let each
user watch a video randomly selected from our test videos
and then subjectively rate the watching experience through 5
choices {1=very bad, 2=bad, 3=fair, 4=good, 5=very good}.
Each user performs the above assessment four times. Each
time, we randomly plug a Habitus variant into App1. We
consider four variants: ad, Simple, Pro, and Full as listed in
Table 2. Before each user’s trial begins, we collect 2 minutes’
worth of data from the user to transfer a pre-trained model to
the user. We let the user wear a low-end VR headset [7] with
a ROG Phone II plugged into it. The user can freely make
6-DoF motions in the room during the study. As shown
in Figure 11, compared to {ad, Simple, Pro}, Full improves
the average subjective rating by {0.83, 0.67, 0.42} (in the
scale of 1 to 5), respectively. Note that the best scheme (Full)
has an average rating of 3.50 (between fair and good), likely
because of the hardware limitation of the VR headset (costs
$26) compared to a full-fledged VR headset.

8.6 Handling Unseen Changes
We evaluate the three techniques introduced in §5.3 for han-
dling unseen changes. We reuse the datasets {T⌫, T𝐴, E𝐴}
and models {M⌫,M𝐴} introduced in §5.1. The experiments
use the Seq2Seq w/ Pose model on an NVIDIA 1660Ti GPU.

Offline Transfer Learning. For C1 and C2, we compare
the training time between (1) transferring fromM⌫ to eM⌫→𝐴

and (2) training a new model eM𝐴 from scratch after the

5Gender: Male: 7, Female: 5; Height: <1.65m: 3, 1.65-1.75m: 5, >1.75m:
4. The subjects’ ages vary between 20 and 30. 8 out of them do not have
prior experience on watching volumetric videos.

100 80 60 40 20
0

500

1000

C
on
su
m
ed

T
im
e
(s
) C1

MBA
MA

100 80 60 40 20

Training Time of
MA (p = 100)

C2

p% of TA Used to Update MBA and Train MA

Figure 12: Time consumption for (1) transferring from M⌫ toeM⌫→𝐴 and (2) training a new model eM𝐴 from scratch after the
change, using ?% of T𝐴. (Left: C1; Right: C2).

0 10 33
Time (s)

31

50

M
A
E
on

EA
(M

bp
s)

Training Start

MAEA
A

w/ Online Trans. Learning

0 10 13
Time (s)

31

49

Training Start

MAEA
A

w/o Online TL

Figure 13: Online training cases (Left: C3; Right: C4).

change. eM⌫→𝐴 and eM𝐴 denote the transferred model and
the built-from-scratch model, respectively. For both eM⌫→𝐴

and eM𝐴, we use ?% ∈ {100,80,60,40,20}% of the samples in
T𝐴 to transfer (train) them. Their training stops when the pre-
diction accuracy evaluated on E𝐴 reaches MAE𝐴

𝐴 (i.e.,M𝐴’s
prediction accuracy on E𝐴). We find that the training always
converges even when ? is as low as 20%. We show the mea-
sured training time in Figure 12, where the dashed red line
marks the training time of eM𝐴 with ? = 100%. As shown,
to achieve the same evaluation accuracy, eM⌫→𝐴 significantly
reduces the training time by 36% to 41% (48% to 55%) for
C1 (C2) across all five ? values, compared to eM𝐴. In partic-
ular, training eM⌫→𝐴 using only 40% (20%) of the samples
in T𝐴 is still faster than training eM𝐴 using all the samples
in T𝐴 for C1 (C2). The reason, as explained in §5.3, is thateM⌫→𝐴 effectively reuses the invariant knowledge (e.g., the
physical property of mmWave and the throughput distribution
in certain positions) that is already present inM⌫.

Online Transfer Learning. For C3 and C4, we measure
the time consumption when eM⌫→𝐴 first converges to the tar-
get prediction accuracy MAE𝐴

𝐴 on E𝐴. To accurately emulate
the online setting in a reproducible manner, when trainingeM⌫→𝐴, we feed T𝐴’s data at the same pace as the real-world
training data collection rate. The results indicate that it takes
on average 32 (15) secs for the training (i.e., online transfer
learning) to converge on C3 (C4), with a standard deviation
of 11 (12) secs. The convergence time includes the initial
10-sec bootstrapping (§5.3). Figure 13 shows case studies for
C3 and C4. Note that without online transfer learning, the
prediction error on E𝐴 will never decrease.

Dynamic Change Handling. For C5, we evaluate the
end-to-end performance of the Habitus-supported volumet-
ric streaming app (App1) with and without vision-based dy-
namic change handling (§5.3). The controlled experiment is
conducted over a single-path 802.11ad network at University

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1687

Figure 14: Quality vs. Stall of
H0 to H3.

H0
Vanilla ViVo [47] w/
single-path 802.11ad

H1
H0 and multipath
802.11ac and 802.11ad

H2
H1 and ad throughput
prediction w/o Pose

H3
H2 and ad throughput
prediction w/ Pose

Table 3: Apply our solution to
ViVo [47] (cumulative).

Office with the robotic arm. We pre-train the vision-based
object detection model in a separate experiment so the model
can reliably detect the aluminum-foil-covered box manipu-
lated by the robotic arm (§5.1). We useM⌫ as the throughput
prediction model. The results indicate that vision-based dy-
namic change handling reduces the stall by 7% with a video
quality reduction of only 2.2%.

8.7 Applying Habitus to Existing Systems
We integrate Habitus into App2 (ViVo [47], an existing volu-
metric streaming system) by changing only 47 LoC (details
in Appendix D.2). ViVo adopts visibility-aware streaming
by only fetching content that will appear in the future view-
port. As listed in Table 3, H0 is our comparison baseline:
the vanilla ViVo over single-path ad. H1 to H3 involve key
components of Habitus. Figure 14 shows the quality and stall
of H0 to H3 across our dataset. As shown, by cumulatively
enabling Habitus’s components from H1 to H3, both the aver-
age video quality and stall improve accordingly. Compared
to H0, H3 reduces the stall by 61% and improves the average
quality by 46%. In addition, compared to not using pose (H2),
full-fledged Habitus (H3) reduces the stall by 15.75% while
slightly boosting the quality by 2.44%. The absolute stall rate
of H3 is 1.67%, meaning that the user encounters less than
0.9 secs of stall per minute on average.

8.8 Micro Benchmarks and Resource Usage
We run experiments to show: (1) The GPU memory usage
(∼4.7G out of 11G on 2080Ti) of Habitus is acceptable. The
average processing time of pose estimation and throughput
prediction is 27ms and 3.5ms on 2080Ti, respectively. (2)
Compared to single-path ac, the additional energy usage and
heat increase of App1 using Habitus are only 1% and 1.3○⇠
respectively. The details can be found in Appendix E.

9 Related Work
Immersive Content Delivery. We elaborate on some immer-
sive content delivery systems mentioned in §6.4 (more can
be found in [76]). Flare [66] and ViVo [47] apply viewport
adaptation to optimize mobile 360° and volumetric videos
streaming, respectively. M5 [89] investigates volumetric video
streaming using adaptive mmWave beamforming. InstantRe-
ality [36] introduces a perceptual-aware approach to enhance
VR media streaming. As a middleware framework, Habitus

can be integrated into most of the above systems to enhance

the application QoE (we have conducted a case study for ViVo
in §8.7). Also note that Habitus is orthogonal to some VR
systems (e.g., MoVR [27]) that enhances the PHY layer (§1).

mmWave Throughput Prediction. Recent measurement
studies have explored the feasibility of predicting mmWave
throughput for various radios, such as commercial mmWave
5G [63], 802.11ad [28], and 802.11ay [83]. Lumos5G [63]
establishes a composable machine learning framework to
predict mmWave 5G throughput. Wu et al. uses Markov chain
to predict the link quality of 802.11ay, based on the headset’s
motion data [83]. Aggarwal et al. conducts a measurement
study on using a smartphone’s motion sensor data to predict
802.11ad throughput [28]. They only consider 2-DoF (with
a radio mounted on a guided rail) and LoS scenarios. None
of the above studies employs the full-body pose, which we
found to be an important feature for improving the prediction
accuracy. Also, none of them conducts in-depth investigations
on how to handle unseen changes as we do.

Multipath TCP Support for 802.11ac/ad. Despite a
plethora of works on WiFi/cellular multipath [48,82,92], there
are only a few studies on dual-band 802.11ac/ad multipath
networking. MUST [74] predicts the best 60GHz beam and
PHY rate setting, and switches between ac/ad links accord-
ingly. We discussed MuSher [71], an MPTCP scheduler for
802.11ac/ad and compared it with Habitus in §8.4. Compared
to the above works, Habitus is an application-layer solution
designed specifically for immersive content delivery.

Improving mmWave Network Performance at PHY
layer. There is rich literature on improving mmWave per-
formance at the PHY layer, such as efficient beam selec-
tion [79], LiDAR-assisted beam management [81], and beam
relay through smart metasurface [38], to name a few. Unlike
the above, Habitus aims at optimizing the upper-layer net-
work protocol stack for immersive content delivery without
requiring modifying PHY-layer protocols.

10 Limitations and Concluding Remarks
Limitations. First, our prototype and experiments only use
802.11ac+ad. We expect Habitus’s high-level design to also
work with other radio technologies such as 4G + mmWave
5G, but field tests are needed to verify this claim. Second,
Habitus’s reaction to unseen changes could be further im-
proved. We plan to employ more advanced techniques such
as parameter sharing [93] to speed up transfer learning. Third,
we focus on the single-user use case. Extending Habitus to
multiple viewers will involve additional challenges such as
dealing with the interplay among the viewers.

Despite the limitations, we have demonstrated through
a working system and rich real-world data that, full-body-
pose guided throughput prediction and joint use of omnidirec-
tional+mmWave radio can significantly improve the QoE (up
to 72%) for immersive applications. Furthermore, by fusing
transfer learning and vision-based object recognition, Habitus

can smoothly adapt to unseen changes.

1688 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgments

We thank the anonymous reviewers and our shepherd Ravi
Netravali for their insightful comments. This work was sup-
ported in part by NSF CNS-2212296 and CNS-2235049.

References

[1] AWS Wavelength. https://aws.amazon.com/wavel
ength/.

[2] Demo Video for Dynamic Change Injection.
https://docs.google.com/presentation/d/e
/2PACX-1vTokmujVFURIX6YBgyYz9aAjHUV9Ajr1a6
dKqYHLmRbrcnI92flVA0O4TLOD338YXXUwyZOjIsSc
0Hh/pub?start=false&loop=false&delayms=300
0&slide=id.p.

[3] Google ARCore. https://developers.google.co
m/ar.

[4] Google ARCore Motion Tracking. https://develo
pers.google.com/ar/develop/fundamentals.

[5] Habitus Code. https://github.com/zhan6841/Ha
bitus-open-sourced-code.git.

[6] Habitus Data. https://drive.google.com/drive/f
olders/1B7rlIQG6ycg2OFML3CHxoPNge56xPhq4.

[7] KCXGHYI VR Headset. https://bit.ly/41UMh19.

[8] Libpcap. https://www.tcpdump.org.

[9] Linux TC Man Page. https://linux.die.net/man/
8/tc.

[10] Linux Wireless. https://wireless.wiki.kernel.o
rg/en/users/documentation/iw.

[11] Magic Leap. https://www.magicleap.com/device.

[12] Metaverse. https://about.facebook.com/metaver
se/.

[13] Netgear Nighthawk X10. https://www.netgear.co
m/support/product/r9000.aspx.

[14] OpenPose Codebase. https://github.com/CMU-Per
ceptual-Computing-Lab/openpose.

[15] Pytorch. https://pytorch.org.

[16] ROG Phone II. https://rog.asus.com/phones/ro
g-phone-ii-model.

[17] Rokoko Smartsuit Pro II. https://www.rokoko.com
/products/smartsuit-pro.

[18] TorchScript. https://pytorch.org/docs/stable/
jit.html.

[19] Tp-link Archer A7. https://www.tp-link.com/us
/home-networking/wifi-router/archer-a7.

[20] VIVE Cosmos Series. https://www.vive.com/us/
product/#cosmos%20series.

[21] VIVE Pro Series. https://www.vive.com/us/prod
uct/#pro%20series.

[22] VIVE Tracker 3.0. https://www.vive.com/us/acce
ssory/tracker3.

[23] VIVE Wireless Adapter. https://www.vive.com/u
s/accessory/wireless-adapter.

[24] ZED 2i Camera. https://www.stereolabs.com/z
ed-2i.

[25] ZED 3D Object Detection. https://www.stereola
bs.com/docs/object-detection/.

[26] zed-openpose Codebase. https://github.com/ste
reolabs/zed-openpose.

[27] O. Abari, D. Bharadia, A. Duffield, and D. Katabi. En-
abling {High-Quality} untethered virtual reality. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 531–544, 2017.

[28] S. Aggarwal, Z. Kong, M. Ghoshal, Y. C. Hu, and
D. Koutsonikolas. Throughput prediction on 60 ghz
mobile devices for high-bandwidth, latency-sensitive ap-
plications. In International Conference on Passive and
Active Network Measurement, pages 513–528. Springer,
2021.

[29] B. Artacho and A. Savakis. Unipose: Unified human
pose estimation in single images and videos. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 7035–7044, 2020.

[30] S. Bak, E. Corvee, F. Bremond, and M. Thonnat. Person
re-identification using spatial covariance regions of hu-
man body parts. In 2010 7th IEEE International Confer-
ence on Advanced Video and Signal Based Surveillance,
pages 435–440. IEEE, 2010.

[31] V. Bazarevsky and I. Grishchenko. On-device, real-time
body pose tracking with mediapipe blazepose. Google
AI Blog, 2020.

[32] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao.
Yolov4: Optimal speed and accuracy of object detec-
tion. arXiv preprint arXiv:2004.10934, 2020.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1689

[33] J. Butepage, M. J. Black, D. Kragic, and H. Kjellstrom.
Deep representation learning for human motion predic-
tion and classification. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 6158–6166, 2017.

[34] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime
multi-person 2d pose estimation using part affinity fields.
In CVPR, 2017.

[35] J. Chen, X. Qin, G. Zhu, B. Ji, and B. Li. Motion-
prediction-based wireless scheduling for multi-user
panoramic video streaming. In IEEE INFOCOM 2021-
IEEE Conference on Computer Communications, pages
1–10. IEEE, 2021.

[36] S. Chen, B. Duinkharjav, X. Sun, L.-Y. Wei, S. Pe-
trangeli, J. Echevarria, C. Silva, and Q. Sun. Instant
reality: Gaze-contingent perceptual optimization for 3d
virtual reality streaming. IEEE Transactions on Vi-
sualization and Computer Graphics, 28(5):2157–2167,
2022.

[37] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar,
P. Nguyen, Z. Chen, A. Kannan, R. J. Weiss, K. Rao,
E. Gonina, et al. State-of-the-art speech recognition
with sequence-to-sequence models. In 2018 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4774–4778. IEEE, 2018.

[38] K. W. Cho, M. H. Mazaheri, J. Gummeson, O. Abari,
and K. Jamieson. mmwall: A reconfigurable metamate-
rial surface for mmwave networks. In Proceedings of
the 22nd International Workshop on Mobile Computing
Systems and Applications, pages 119–125, 2021.

[39] D. R. Cox and A. Stuart. Some quick sign tests for trend
in location and dispersion. Biometrika, 42(1/2):80–95,
1955.

[40] Q. Cui, H. Sun, Y. Kong, and X. Sun. Deep human
dynamics prior. In Proceedings of the 29th ACM Inter-
national Conference on Multimedia, pages 4371–4379,
2021.

[41] A. Ford, C. Raiciu, M. J. Handley, O. Bonaventure, and
C. Paasch. TCP Extensions for Multipath Operation
with Multiple Addresses. RFC 8684, Mar. 2020.

[42] X. Gao, L. Dai, S. Han, I. Chih-Lin, and R. W. Heath.
Energy-efficient hybrid analog and digital precoding
for mmwave mimo systems with large antenna arrays.
IEEE Journal on Selected Areas in Communications,
34(4):998–1009, 2016.

[43] Y. Ghasempour, C. R. Da Silva, C. Cordeiro, and E. W.
Knightly. Ieee 802.11 ay: Next-generation 60 ghz com-
munication for 100 gb/s wi-fi. IEEE Communications
Magazine, 55(12):186–192, 2017.

[44] E. Gobbetti and F. Marton. Far voxels: a multiresolution
framework for interactive rendering of huge complex
3d models on commodity graphics platforms. In ACM
SIGGRAPH 2005 Papers, pages 878–885. 2005.

[45] Y. Guan, X. Hou, N. Wu, B. Han, and T. Han. Deepmix:
mobility-aware, lightweight, and hybrid 3d object detec-
tion for headsets. In Proceedings of the 20th Annual
International Conference on Mobile Systems, Applica-
tions and Services, pages 28–41, 2022.

[46] Y. Guan, C. Zheng, X. Zhang, Z. Guo, and J. Jiang. Pano:
Optimizing 360 video streaming with a better under-
standing of quality perception. In Proceedings of the
ACM Special Interest Group on Data Communication,
pages 394–407. 2019.

[47] B. Han, Y. Liu, and F. Qian. Vivo: Visibility-aware
mobile volumetric video streaming. In Proceedings of
the 26th Annual International Conference on Mobile
Computing and Networking, pages 1–13, 2020.

[48] B. Han, F. Qian, L. Ji, and V. Gopalakrishnan. Mp-
dash: Adaptive video streaming over preference-aware
multipath. In Proceedings of the 12th International on
Conference on emerging Networking EXperiments and
Technologies, pages 129–143, 2016.

[49] A. Hassan, A. Narayanan, A. Zhang, W. Ye, R. Zhu,
S. Jin, J. Carpenter, Z. M. Mao, F. Qian, and Z.-L. Zhang.
Vivisecting mobility management in 5g cellular net-
works. In Proceedings of the ACM SIGCOMM 2022
Conference, pages 86–100, 2022.

[50] J. Jiang, V. Sekar, and H. Zhang. Improving fairness, effi-
ciency, and stability in http-based adaptive video stream-
ing with festive. In Proceedings of the 8th international
conference on Emerging networking experiments and
technologies, pages 97–108, 2012.

[51] W. M. Kouw and M. Loog. An introduction to do-
main adaptation and transfer learning. arXiv preprint
arXiv:1812.11806, 2018.

[52] T. Kucherenko, J. Beskow, and H. Kjellström. A
neural network approach to missing marker recon-
struction in human motion capture. arXiv preprint
arXiv:1803.02665, 2018.

[53] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, N. Dai, and H.-S. Lee.
Furion: Engineering high-quality immersive virtual re-
ality on today’s mobile devices. IEEE Transactions on
Mobile Computing, 19(7):1586–1602, 2019.

[54] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar,
et al. The quic transport protocol: Design and internet-
scale deployment. In Proceedings of the conference of

1690 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the ACM special interest group on data communication,
pages 183–196, 2017.

[55] K. Lee, J. Yi, Y. Lee, S. Choi, and Y. M. Kim. Groot: a
real-time streaming system of high-fidelity volumetric
videos. In Proceedings of the 26th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, pages 1–14, 2020.

[56] L.-H. Lee, T. Braud, P. Zhou, L. Wang, D. Xu, Z. Lin,
A. Kumar, C. Bermejo, and P. Hui. All one needs to
know about metaverse: A complete survey on technolog-
ical singularity, virtual ecosystem, and research agenda.
arXiv preprint arXiv:2110.05352, 2021.

[57] X. Liu, C. Vlachou, F. Qian, C. Wang, and K.-H. Kim.
Firefly: Untethered multi-user vr for commodity mobile
devices. In Proceedings of the 2020 USENIX Confer-
ence on Usenix Annual Technical Conference, pages
943–657, 2020.

[58] Y. Liu, B. Han, F. Qian, A. Narayanan, and Z.-L. Zhang.
Vues: Practical mobile volumetric video streaming
through multiview transcoding. ACM MobiCom 2022,
2022.

[59] Y. Ma, H. Tian, X. Liao, J. Zhang, W. Wang, K. Chen,
and X. Jin. Multi-objective congestion control. In
Proceedings of the Seventeenth European Conference
on Computer Systems, pages 218–235, 2022.

[60] J. Martinez, M. J. Black, and J. Romero. On human
motion prediction using recurrent neural networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2891–2900, 2017.

[61] S. R. Musse, C. Babski, T. Capin, and D. Thalmann.
Crowd modelling in collaborative virtual environments.
In Proceedings of the ACM symposium on Virtual reality
software and technology, pages 115–123, 1998.

[62] S. Mystakidis. Metaverse. Encyclopedia, 2(1):486–497,
2022.

[63] A. Narayanan, E. Ramadan, R. Mehta, X. Hu, Q. Liu,
R. A. Fezeu, U. K. Dayalan, S. Verma, P. Ji, T. Li,
et al. Lumos5g: Mapping and predicting commercial
mmwave 5g throughput. In Proceedings of the ACM In-
ternet Measurement Conference, pages 176–193, 2020.

[64] J. Navratil and R. L. Cottrell. Abwe: A practical ap-
proach to available bandwidth estimation. In Proceed-
ings of the 4th Passive and Active Measurement Work-
shop PAM 2003. Citeseer, 2003.

[65] T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly,
E. Perahia, and J. C. Widmer. Ieee 802.11 ad: directional

60 ghz communication for multi-gigabit-per-second wi-
fi. IEEE Communications Magazine, 52(12):132–141,
2014.

[66] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan. Flare:
Practical viewport-adaptive 360-degree video streaming
for mobile devices. In Proceedings of the 24th Annual
International Conference on Mobile Computing and
Networking, pages 99–114, 2018.

[67] V. Raghavan, A. Partyka, L. Akhoondzadeh-Asl, M. A.
Tassoudji, O. H. Koymen, and J. Sanelli. Millimeter
wave channel measurements and implications for phy
layer design. IEEE Transactions on Antennas and Prop-
agation, 65(12):6521–6533, 2017.

[68] D. Rempe, T. Birdal, A. Hertzmann, J. Yang, S. Sridhar,
and L. J. Guibas. Humor: 3d human motion model for
robust pose estimation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
11488–11499, 2021.

[69] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil,
and L. Cottrell. pathchirp: Efficient available bandwidth
estimation for network paths. In Passive and active
measurement workshop, 2003.

[70] A. Rutkowska. Properties of the cox–stuart test for
trend in application to hydrological series: the simula-
tion study. Communications in Statistics-Simulation and
Computation, 44(3):565–579, 2015.

[71] S. K. Saha, S. Aggarwal, R. Pathak, D. Koutsonikolas,
and J. Widmer. Musher: An agile multipath-tcp sched-
uler for dual-band 802.11 ad/ac wireless lans. In The
25th Annual International Conference on Mobile Com-
puting and Networking, pages 1–16, 2019.

[72] K. Sato, T. Manabe, T. Ihara, H. Saito, S. Ito, T. Tanaka,
K. Sugai, N. Ohmi, Y. Murakami, M. Shibayama, et al.
Measurements of reflection and transmission charac-
teristics of interior structures of office building in the
60-ghz band. IEEE transactions on antennas and prop-
agation, 45(12):1783–1792, 1997.

[73] H. Schwarz, D. Marpe, and T. Wiegand. Overview of
the scalable video coding extension of the h. 264/avc
standard. IEEE Transactions on circuits and systems for
video technology, 17(9):1103–1120, 2007.

[74] S. Sur, I. Pefkianakis, X. Zhang, and K.-H. Kim. Wifi-
assisted 60 ghz wireless networks. In Proceedings of
the 23rd Annual International Conference on Mobile
Computing and Networking, pages 28–41, 2017.

[75] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to
sequence learning with neural networks. Advances in
neural information processing systems, 27, 2014.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1691

[76] J. van der Hooft, H. Amirpour, M. T. Vega, Y. Sanchez,
R. Schatz, T. Schierl, and C. Timmerer. A tutorial on im-
mersive video delivery: From omnidirectional video to
holography. IEEE Communications Surveys & Tutorials,
2023.

[77] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney,
T. Darrell, and K. Saenko. Sequence to sequence-video
to text. In Proceedings of the IEEE international con-
ference on computer vision, pages 4534–4542, 2015.

[78] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao. Scaled-
YOLOv4: Scaling cross stage partial network. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 13029–
13038, June 2021.

[79] S. Wang, J. Huang, and X. Zhang. Demystifying
millimeter-wave v2x: Towards robust and efficient direc-
tional connectivity under high mobility. In Proceedings
of the 26th Annual International Conference on Mobile
Computing and Networking, 2020.

[80] S. Wang, S. Yang, H. Li, X. Zhang, C. Zhou, C. Xu,
F. Qian, N. Wang, and Z. Xu. Salientvr: saliency-driven
mobile 360-degree video streaming with gaze infor-
mation. In Proceedings of the 28th Annual Interna-
tional Conference on Mobile Computing And Network-
ing, pages 542–555, 2022.

[81] T. Woodford, X. Zhang, E. Chai, K. Sundaresan, and
A. Khojastepour. Spacebeam: Lidar-driven one-shot
mmwave beam management. In Proceedings of the 19th
Annual International Conference on Mobile Systems,
Applications, and Services, pages 389–401, 2021.

[82] J. Wu, C. Yuen, B. Cheng, M. Wang, and J. Chen.
Streaming high-quality mobile video with multipath tcp
in heterogeneous wireless networks. IEEE Transactions
on Mobile Computing, 15(9):2345–2361, 2015.

[83] Z. Wu, C.-Y. Huang, and P. Ramanathan. Measuring
millimeter wave based link bandwidth fluctuations dur-
ing indoor immersive experience. IEEE Networking
Letters, 2022.

[84] G. Xia, H. Sun, B. Chen, Q. Liu, L. Feng, G. Zhang,
and R. Hang. Nonlinear low-rank matrix completion for
human motion recovery. IEEE Transactions on Image
Processing, 27(6):3011–3024, 2018.

[85] C. Xie, X. Li, Y. Hu, H. Peng, M. Taylor, and S. L. Song.
Q-vr: system-level design for future mobile collabora-
tive virtual reality. In Proceedings of the 26th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
587–599, 2021.

[86] T. Xu, B. Han, and F. Qian. Analyzing viewport pre-
diction under different vr interactions. In Proceedings
of the 15th International Conference on Emerging Net-
working Experiments And Technologies, pages 165–171,
2019.

[87] Z. Yuan, H. Venkataraman, and G.-M. Muntean. ibe:
A novel bandwidth estimation algorithm for multime-
dia services over ieee 802.11 wireless networks. In
IFIP/IEEE International Conference on Management
of Multimedia Networks and Services, pages 69–80.
Springer, 2009.

[88] A. Zhang, C. Wang, B. Han, and F. Qian.
{YuZu}:{Neural-Enhanced} volumetric video
streaming. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
137–154, 2022.

[89] D. Zhang, P. Zhou, B. Han, and P. Pathak. M5: Fa-
cilitating multi-user volumetric content delivery with
multi-lobe multicast over mmwave. 2022.

[90] W. Zhang, F. Qian, B. Han, and P. Hui. Deepvista: 16k
panoramic cinema on your mobile device. In Proceed-
ings of the Web Conference 2021, pages 2232–2244,
2021.

[91] P. Zhao, C. X. Lu, J. Wang, C. Chen, W. Wang,
N. Trigoni, and A. Markham. mid: Tracking and identi-
fying people with millimeter wave radar. In 2019 15th
International Conference on Distributed Computing in
Sensor Systems (DCOSS), pages 33–40. IEEE, 2019.

[92] X. Zhu, J. Sun, X. Zhang, Y. E. Guo, F. Qian, and Z. M.
Mao. Mpbond: efficient network-level collaboration
among personal mobile devices. In Proceedings of the
18th International Conference on Mobile Systems, Ap-
plications, and Services, pages 364–376, 2020.

[93] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu,
H. Xiong, and Q. He. A comprehensive survey on trans-
fer learning. Proceedings of the IEEE, 109(1):43–76,
2020.

Appendices

A Additional Details of mmWave Throughput
Prediction Study

A.1 The OpenPose Format
Typically, a full-body pose can be represented by a set of key
points where each key point corresponds to a joint/part of the
human body. We customize the OpenPose [34] BODY_25
format – a popular format used in the computer vision commu-
nity – to represent the full-body pose, as shown in Figure 15.

1692 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Location Moving Area (<2) Room Space (<3)
Personal Office 2.5×2.5 3.3×2.5×2.5

Living Room 3.0×2.7 6.6×5.4×2.5
University Office 4.0×2.0 9.0×7.0×3.0
Meeting Room 4.0×3.0 6.5×6.5×2.8

Table 4: The moving area and room space of the four locations.

We discard some key points (i.e., eyes, ears, toes, and heels)
that have little contribution to the full-body pose.

A.2 Missing Key Point Estimation
To estimate a missing key point’s 3D coordinate on the fly, we
consider two baseline approaches: simply reusing its most re-
cently captured 3D coordinate (Method 1), and linearly extrap-
olating its coordinate using its historical trajectory (Method
2 [40,52,84]). To assess them, we select a subset of our dataset
with no missing key point (as the ground truth, referred to
as ⇡6). From ⇡6, we create a dataset ⇡0 where key points
are removed for : consecutive frames where : is exercised
from 1 to 60. We apply the above two approaches to ⇡0, and
find that when the missing duration is short (long), Method 1
(Method 2) gives a lower average estimation error (RMSE).
This finding leads to our solution where we switch between
the two baselines based on the missing duration. The switch-
ing threshold is empirically set to 7 or 14 frames for 30 and
60 FPS respectively, based on the data.

To evaluate our solution, we construct another dataset ⇡1

from ⇡6. In ⇡1, key points are removed in such a way that
their missing time follows the same distribution as that in our
entire dataset. Compared to using the two baselines alone,
our solution reduces the average RMSE by 21% and 15%,
respectively.

Recall from §4.1 that a key point contains a confidence
value F. We gradually decay F as a key point remains ab-
sent, because as the missing time C increases, its 3D co-
ordinate estimation becomes less reliable. We let F(C) =
F0 ×<0G(0,1− C

)) where F0 is the most recently captured
confidence value of this key point and) is a threshold control-
ling the decay speed. We empirically set) to 1 sec, i.e., the
90-th percentile missing time for a key point in our dataset.
The confidence value will be used in §4.3 as an input to the
prediction model.

A.3 Details of Data collection Locations
As shown in Figure 3, the four data collection locations we se-
lect (Personal Office, Living Room, University Office, Meeting
Room) have diverse environments in terms of the layout, floor
materials, furniture types, and spatial openness, etc. The data
collection area of Personal Office covers almost the entire
room. While Living Room also has a similarly simple setup,
its data collection area only covers one-third of the room and
appears more open, as shown in the floor plan. University
Office is a large room with a complex layout. Meeting Room
has a long table in the center of the data collection area. The

Used Discarded
0: Nose 15: Right Eye
1: Neck 16: Left Eye
2: Right Shoulder 17: Right Ear
3: Right Elbow 18: Left Ear
4: Right Wrist 19: Left Big Toe
5: Left Shoulder 20: Left Small Toe
6: Left Elbow 21: Left Heel
7: Left Wrist 22: Right Big Toe
8: Mid Hip 23: Right Small Toe
9: Right Hip 24: Right Heel
10: Right Knee
11: Right Ankle
12: Left Hip
13: Left Knee
14: Left Ankle

Figure 15: OpenPose BODY_25 Format.
relative positions between the camera and the WiFi AP also
differ across the four locations. Table 4 summarizes the mov-
ing area and room space of the four locations. The moving
area is the area for data collection. The room space refers to
the total space of the entire room.

B Details of Injecting Dynamic Change
We provide details on how to use a robotic arm to mimic real
humans in terms of NLoS-incurred throughput degradation
(§5.1). The idea is to find a material/object that can incur a
similar throughput drop to that caused by a real human and is
also lightweight enough for the robotic arm to carry.

To achieve the above, we perform the following experiment
consisting of three steps. (1) We install the smartphone on
a tripod and fix it in LoS to the 802.11ad access point. We
measure the mmWave throughput when there is no blockage
between the smartphone and AP. (2) We ask a real human
(height: 1.75 m) to stand between the smartphone and the
AP to introduce NLoS and measure the mmWave throughput,
which now drops. (3) We ask our volunteer to walk away,
and use the robotic arm to hold an object at the same posi-
tion where the real human stands. We make sure the object
blocks the LoS between the AP and the smartphone. We then
measure the mmWave throughput and compare it with the
measured throughput in Step (2). We want their difference to
be small. We try three objects: a paper box, a box covered by
an outwear, and a box covered by aluminum foil. We find that
a box covered by aluminum foil has the most similar impact
on mmWave throughput as a real human (with an average
throughput difference of 5%, or 28 Mbps). We therefore use
it in our dynamic change experiments in §5.1.

C Trend Test For Throughput Sequence
The Cox-Stuart test starts with two statistical hypotheses: (1)
𝐻0: No monotonic trend exists in the series, and (2) 𝐻𝐴: The
series is characterized by a monotonic trend, which is further
considered as three cases, i.e., (a) an increase or decrease trend
exists, (b) an increase trend exists, and (c) a decrease trend
exists. Mathematically, in the testing procedure, a throughput

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1693

sequence / = {I1, I2, ..., I=} (we suppose = is an even number
for simplicity) is divided into two parts {I1, I2, ..., I =

2
} and

{I =
2 +1, I =

2 +2, ..., I=}. The test statistic) (+) and) (−) is then

calculated as) (+) =Õ =
2
8=1 â(I8 < I8+ =

2
) and) (−) =Õ =

2
8=1 â(I8 >

I8+ =
2
), respectively, where â ∈ {0,1} is an indicator function.

If the null hypothesis 𝐻0 is true, the statistic) (+) and) (−)
should obey the binomial distribution with parameters =

2 and
1
2 , i.e.,) (+),) (−) ∼ ⌫(=2 , 1

2). Otherwise if) (+) >) (−) (or
) (−) >) (+)) and the ?-value is less than a threshold (e.g.,
0.05 in our case), the hypothesis 𝐻𝐴 case (b) (or 𝐻𝐴 case (c))
is true.

D Additional Implementation Details
D.1 802.11ad Throughput Measurement
Compared to traditional 2D video traffic, immersive content
traffic is highly bursty. Take volumetric content as an exam-
ple. First, different from the traditional 2D videos that are
encoded at a group of pictures (GOP) level, volumetric videos
are typically encoded on a per-frame basis due to the difficulty
of inter-frame encoding. Second, volumetric content players
often apply visibility-aware techniques [36, 47, 55, 66, 88]
per frame to only download the content inside the viewer’s
predicted viewport. To maintain accurate viewport predic-
tion results, the client player has to maintain a shallow buffer
(e.g., 5 frames in ViVo [47]). Both factors above lead to an
extremely frequent request/reply pattern, which renders tra-
ditional throughput measurement methods used by 2D video
players (simply calculating the ratio between the video chunk
size and the chunk download time) very inaccurate. Over
mmWave that offers Gbps throughput, the inaccuracy is fur-
ther deteriorated.

To address the above challenge, we adopt a cross-layer
design to measure the throughput by passively examining
incoming packets containing immersive content on the client
side. Our approach works for both single-path and multipath
cases. Specifically, at the application layer, the edge explicitly
informs the client how much data will be transmitted over
each path before sending data blocks belonging to each frame
back-to-back. At the transport layer, the client tracks the ar-
rival time and TCP sequence numbers of the incoming packets.
The TCP sequence numbers indicate how much data has been
received. Utilizing these information, the client-side through-
put measurement module is able to group the back-to-back
packets in each “burst” as a packet train [64, 69, 83, 87] and
use their sizes and timing for throughput measurement. Our
approach disregards the ordering and duplicate of packets, and
is therefore robust to packet out-of-order and retransmission.

D.2 Development of Two Sample Volumetric
Streaming Applications

To demonstrate how Habitus can benefit real immersive ap-
plications, we implement two sample volumetric content de-
livery applications with different logic and complexity.

App 1: Simple Volumetric Streaming. We build a simple
volumetric streaming system using the Habitus API from
scratch in 5,208 LoC. It delivers the volumetric content stored
on a Linux server to an Android client over the Internet. The
client player uses a shallow buffer of 5 frames (consistent with
App 2) for streaming. The content format uses the layered
encoding scheme described in §6.4: each volumetric frame
(point cloud) is split into 64 layers each consisting of non-
overlapped points through uniform sampling. Each (frame,
layer) pair corresponds to a data block in Habitus’s term. The
priority of each block is inverse proportional to the number
of points in the block. The intuition is to prioritize streaming
blocks with sparse points so that the viewer can see the partial
content as early as possible.

App 2: Visibility-aware Volumetric Streaming. We also
replicate ViVo [47], a state-of-the-art networked volumet-
ric video streaming system. ViVo performs visibility-aware
streaming where it only fetches content falling into the
viewer’s predicted viewport. In ViVo, each volumetric frame
(point cloud) is spatially segmented into 64 cubical cells. Each
(frame, cell) thus constitutes to a data block in Habitus. The
priority of a block is calculated at runtime, i.e., inverse pro-
portional to the Euclidean distance from the center of its cu-
bical cell to the center of the predicted viewport. To integrate
Habitus into ViVo, we only change 47 LoC that is mainly for
library initialization and blocks transmission/reception.

For both applications, each data block is encoded into 10
quality levels with different point density levels. Both applica-
tions use the same throughput-based adaptive bitrate (ABR)
algorithm [50] to determine the quality level of each data
block. The bitrate selection logic works as follows. Initially,
all the to-be-fetched blocks are set to the highest quality level.
The ABR algorithm then greedily picks the block with the
lowest priority and reduces its quality level by 1. The above
process is repeated until the total calculated bandwidth usage
does not exceed the aggregated network capacity reported by
Habitus, or all the blocks reach the lowest quality level.

E Micro Benchmarks and Resource Usage
Resource Usage and Processing Time For a Habitus-
enhanced volumetric content delivery system, the average
CPU utilization is 36% on the client side (i.e., ROG Phone II)
and 169% (i.e., equivalent to 1.69 cores being fully utilized)
on the edge side. The peak GPU memory usage on the edge
side is 4721MiB (out of 11GB on 2080Ti) in total, including
2101MiB for video capturing and pose estimation, 1017MiB
for 802.11ad throughput prediction, and 1603MiB for object
detection. The average processing time on an NVIDIA 2080Ti
GPU is 27ms and 3.5ms for pose estimation and throughput
prediction using a Seq2Seq with Pose model, respectively. The
processing time meets the system’s requirements.

Energy and Heat To profile the energy consumption and
heat increase of the client device, we run our control exper-
iment using V2 and {Personal Office, User 1}’s data traces

1694 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

repeatedly on a ROG Phone II for 30 minutes. We use App1
(§7) and three Habitus variants {ac, Full, MuSher-VR} in §8.4.
We start each experiment on a fully-charged phone. After 30-
minute running, the battery level drops from 100% to 93%
for ac, 92% for Full, and 92% for MuSher-VR, while the de-

vice temperature rises from 30.0○⇠ to 36.2○⇠ for ac, from
30.5○⇠ to 38.0○⇠ for Full, and 30.2○⇠ to 38.0○⇠ for MuSher-
VR. Compared to ac, the additional energy consumption and
heat increase of Full is 1% and 1.3○⇠, respectively. Overall,
we believe the resource usage of Habitus is acceptable.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1695

BFMSense: WiFi Sensing Using Beamforming Feedback Matrix

Enze Yi 1, Dan Wu 1, Jie Xiong 2, Fusang Zhang 3,4, Kai Niu 5, Wenwei Li 1, Daqing Zhang 1,6

1Peking University, 2University of Massachusetts Amherst,
3 Institute of Software, Chinese Academy of Sciences, 4 University of Chinese Academy of Sciences,

5 Beijing Xiaomi Mobile Software Company Ltd., 6 Institut Polytechnique de Paris

Abstract
WiFi-based contactless sensing has attracted a tremendous
amount of attention due to its pervasiveness, low-cost, and
non-intrusiveness to users. Existing systems mainly leverage
channel state information (CSI) for sensing. However, CSI
can only be extracted from very few commodity WiFi devices
through driver hacking, severely limiting the adoption of WiFi
sensing in real life. We observe a new opportunity that a large
range of new-generation WiFi cards can report another piece
of information, i.e., beamforming feedback matrix (BFM). In
this paper, we propose to leverage this new BFM informa-
tion for WiFi sensing. Through establishing the relationship
between BFM and CSI, we lay the theoretical foundations
for BFM-based WiFi sensing for the first time. We show that
through careful signal processing, BFM can be utilized for
fine-grained sensing. We showcase the sensing capability of
BFM using two representative sensing applications, i.e., respi-
ration sensing and human trajectory tracking. Comprehensive
experiments show that BFM-based WiFi sensing can achieve
highly accurate sensing performance on a large range of new-
generation WiFi devices from various manufacturers, moving
WiFi sensing one big step towards real-life adoption.

1 Introduction
In recent years, WiFi-based contactless sensing has at-

tracted lots of attention from both academia and industry
owing to the pervasive deployment of WiFi infrastructure in
indoor environments. A large number of sensing applications
have been successfully demonstrated with WiFi sensing such
as passive localization [25,36], fall detection [42,46], gesture
recognition [38,40], activity recognition [33,45,56], and vital
sign monitoring [61, 67]. The basic principle of WiFi sensing
is that WiFi signals vary with target movement and we can
thus extract target movement information through analyzing
the induced signal variations.

Early research on wireless sensing was mostly based on
software-defined radio (SDR) platforms such as WARP [31]
and USRP [4, 35]. On these platforms, raw WiFi signal sam-
ples can be obtained at very high rates for sensing purposes.

Though promising, there is actually a huge gap between SDR
platform and commodity hardware. Commodity WiFi hard-
ware can only report the processed low-frequency received-
signal-strength-indicator (RSSI) samples. While RSSI can
still be utilized for sensing [48, 59], it is relatively coarse and
only contains signal amplitude information. Researchers fur-
ther proposed to use channel state information (CSI) which
contains both signal amplitude and phase information for
sensing [44, 50, 57, 61]. Although CSI contains finer-grained
information, one critical issue hindering the wide adoption of
CSI-based sensing is that CSI can only be extracted from few
commodity WiFi cards such as Intel 5300 [17] and Atheros
WiFi cards [55] through driver hacking.

In the last few years, we observed an exciting trend which
may be leveraged to address the above issue, i.e., with the pop-
ularity of IEEE 802.11ac standard [47], more and more com-
modity WiFi devices now adopt MU-MIMO (multi-user mul-
tiple input and multiple output) technology [8, 23]. New gen-
eration WiFi cards from Qualcomm, Broadcom, MediaTek,
and others supporting MU-MIMO have become increasingly
dominant on the market. For example, Broadcom BCM4366
and BCM43684 chips are used in ASUS RT-AC86U [22] and
TP-LINK XDR6060 WiFi routers [9]. Qualcomm QCA9886
and QCA9984 are used in Linksys EA8300 and Netgear X4S
R7800 [6].

The key feature of MU-MIMO is enabling a single access
point (AP) to simultaneously transmit to multiple stations. To
enable MU-MIMO, each WiFi station needs to measure the
channel and send the channel measurement, i.e., beamforming
feedback matrix (BFM) to the access point (AP). As BFM
also contains channel information, BFM may also be utilized
for sensing like CSI. There are two obvious advantages of
leveraging BFM for sensing.

• BFM is transmitted without encryption.
• BFM is protocol-compliant, and it can be extracted from

all new-generation MU-MIMO-enabled WiFi devices
without a need of special firmware or driver.

Though promising, we quickly realize the key challenge of

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1697

CSI

I

Q

I

Q
BFM

 Transmitter

Receiver

Target

(a) (b)
Figure 1: (a) The trajectory (i.e., a circle) of ideal CSI on the
complex plane. (b) For BFM, the signal variation does not
form a circle on the complex plane.

utilizing BFM for sensing. To reduce the transmission over-
head, BFM does not contain raw channel amplitude/phase
information like CSI. Instead, BFM only contains the SVD-
decomposed component of the channel required for beam-
forming. That is to say, BFM only contains partial information
of CSI. Hence, to utilize BFM for sensing, the key questions
we need to answer are:

• As BFM only contains partial information of the chan-
nel (i.e., CSI), can BFM still be used for sensing?

• Even if BFM can be utilized for sensing, will BFM be
able to achieve comparable performance to that achieved
with CSI?

• A large number of sensing models based on CSI have
been developed. Are those sensing models and algo-
rithms designed for CSI still applicable to BFM sensing?

This paper aims to answer these questions. Specifically,
this paper targets to reveal the relationship between CSI and
BFM and understand the basic principle of BFM sensing.
These theoretical analyses lay a foundation for WiFi sensing
on new-generation cards. Also, we aim to explore the sensing
capability of BFM in real-world environments.

After some initial studies, we find that BFM does change
with target movement. However, different from CSI, the quan-
titative relationship between BFM and target motions does
not exist. One key property utilized to obtain quantitative
measurement (e.g., target movement distance) in CSI-based
sensing is that for small displacements, target motions only
induce a signal phase change and the signal amplitude re-
mains a constant [41, 44]. Thus, the signal variation on the
complex I-Q plane forms a circle as shown in Figure 1(a).
We can therefore use the amount of phase rotation to calcu-
late fine-grained target displacement. However, for BFM, the
signal variation does not form a circle anymore as shown in
Figure 1(b), and that quantitative relationship disappears.

Upon deeper investigation, we find that this is because each
time when BFM is calculated, the BFM is scaled by a time-
varying coefficient. To address this issue, we leverage one
key observation, i.e., although the BFM is scaled by a time-
varying coefficient, the same coefficient is applied to all the
BFM elements. Based on this observation, we define a new
measurement, i.e., BFM-ratio by taking the ratio between two
BFM elements1 for sensing. We demonstrate that theoreti-

1The number of elements equals to the number of antennas at the WiFi

cally, the sensing performance using BFM-ratio can approach
that using CSI. We show that BFM-ratio can be used to not
just detect target motions but also quantitatively sense the tar-
get movement distance. The main contributions of this paper
are summarized below.

• Through theoretically deriving the mathematical relation-
ship between BFM and CSI, we propose a BFM-ratio
model to make fine-grained BFM sensing possible for
the first time. We believe the widely available BFM data
can move WiFi sensing one big step forward towards
wider adoption compared to traditional CSI sensing.

• We explore the sensing capability of BFM both theoret-
ically and experimentally to lay a foundation for WiFi
sensing with new-generation cards.

• We showcase BFM sensing using two representative
sensing applications, i.e., respiration monitoring and hu-
man trajectory tracking. The extensive evaluation demon-
strates the feasibility of BFM sensing on a large range
of new-generation WiFi cards.

2 Background
Before introducing BFM-based sensing, we briefly intro-

duce the background of WiFi CSI and BFM.

2.1 CSI Primer
In a communication system, the channel state describes

how a signal propagates through a wireless channel. For a
signal X to be transmitted and Y to be received, the signal
propagation characteristics are represented by CSI h as Y =
hX + n, where n is the channel-induced noise. In an indoor
environment as shown in Figure 2(a), WiFi signals travel from
a transmitter (Tx) to a receiver (Rx) through multiple paths.
As the signal received by the receiver is a superposition of
signals propagated along multiple paths, mathematically the
CSI with frequency f for a pair of transmitter-receiver at time
t can be expressed as:

h(f , t) =
K

∑
i=1

Aie− j 2π f di(t)
c , (1)

where Ai and di(t) are the signal amplitude attenuation and
the i-th signal path length, respectively. K is the total number
of propagation paths and c is the speed of light.

Among the propagation paths, some are static and do not
change within a short period of time, such as the paths re-
flected from static objects in the environment. Other paths
affected by moving objects (e.g., human motions) are dy-
namic, and the lengths of these paths change with human
motions. CSI can then be denoted as the summation of the
static component and the dynamic component:

h(f , t) = hs(f)+hd(f , t) = hs(f)+Ade− j 2π f d(t)
c , (2)

AP. For example, when there are four antennas at the AP side, there are four
BFM elements.

1698 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Tx

RxWall

LoS

(a)

C0

I

Q

O

(b)

Figure 2: (a) The human motion causes variation of the re-
flection path. (b) The ideal CSI on the complex I-Q plane. C0
indicates the initial point of CSI.

where hs(f) and hd(f , t) are the static component and the
dynamic component, respectively. d(t) is the length of the
dynamic path. According to Equation (2), when the change
of dynamic path length is one wavelength, the dynamic com-
ponent vector hd(f , t) rotates 360 degrees on the I-Q plane as
shown in Figure 2(b).

We denote a(f , t) and θ(f , t) as the amplitude and phase
of CSI h(f , t), i.e., h(f , t) = a(f , t)e jθ(f ,t). For an ideal CSI,
its amplitude and phase can be calculated as [41, 61]:

a(f , t)2= |hs(f)|2+A2
d+2Ad |hs(f)|cos

(
2π f ∆d(t)

c
+ϕ(f)

)
,

(3)

θ(f , t)≈ ∠hs(f)−
Ad sin

(
2π f ∆d(t)

c +ϕ(f)
)

a(f , t)
, (4)

respectively, where ∆d(t) is the path length change. ϕ(f) =
π+∠hs(f) + 2π f d0

c represents the supplementary angle of
the initial phase difference between the dynamic component
and the static component, where d0 is the initial dynamic
path length. Equation (3) and Equation (4) show that for one
wavelength change of ∆d, both signal amplitude and phase
change for one cycle.

Given M antennas at the transmitter and N antennas at
the receiver, CSI is a N ×M dimensional complex-valued
matrix H(f , t) for one subcarrier at time t. hp,q(f , t) denotes
the channel state from the q-th antenna of the transmitter to
the p-th antenna of the receiver. Specifically, hp,q(f , t) can be
expressed as ap,q(f , t)e jθp,q(f ,t), where the expression of ap,q
and θp,q(f , t) are presented in Equation (3) and Equation (4)
respectively.

Due to unsynchronized clocks between the WiFi transmitter
and receiver, the phase of actual CSI (denoted as Ĥ(f , t))
contains a time-varying random phase offset ε(f , t). The (p,q)
element of Ĥ(f , t) can then be expressed as:

[Ĥ(f , t)]p,q = ap,q(f , t)e j(θp,q(f ,t)+ε(f ,t)), (5)

where [·]p,q represents the element of the p-th row and q-th
column of a matrix. For the sake of brevity, f and t will be
omitted in the rest of formulas.

① Send NDP Announcement

② Send NDP packet

③ Estimate CSI

④ Decompose CSI by SVD

⑤ Compress V to CBF

⑥ Send CBF V matrix

CSI matrix

AP

STA

Sniffer

Figure 3: The sounding procedure for MU-MIMO transmis-
sions (IEEE 802.11ac).

CSI

N×M

=

N×N

N×M M×M

× ×

V
First Ns
columns

Phase
adjustment

Given
rotationsCBFCBF

M×NsM×Ns

M: number of AP’s antennas
 N: number of STA’s antennas

H

(BFM)

Figure 4: The data flow from CSI to CBF.

2.2 BFM primer
Beamforming feedback matrix (BFM) is another type of

information in WiFi that is capable of depicting wireless chan-
nels. BFM is mainly used to enable MU-MIMO transmission,
which is one key feature of the 802.11ac WiFi standard.

To support MU-MIMO, WiFi AP needs to know the chan-
nel information between AP and all the stations (STAs). The
channel information (BFM) is sent from STAs to AP in a com-
pressed form, i.e., compressed beamforming feedback (CBF).
With the BFM information, AP can then steer the beams to-
wards the desired directions by adjusting the weight of each
antenna’s transmitted signal.

Although BFM also depicts wireless channel, it is different
from CSI. This is because the AP only requires information
to calculate the antenna weights for beamforming, as opposed
to the entire channel state information. In order to reduce
the high transmission overhead of sending the entire chan-
nel state, STA decomposes the measured CSI using singular
value decomposition (SVD). BFM is then extracted from the
right singular matrix and further compressed as CBF, which
is subsequently sent back to AP.

Taking an AP and a STA as an example, the detailed proce-
dure is shown in Figure 3. It contains the following steps:

• Step 1: AP broadcasts a Null Data Packet Announcement
(NDPA) frame to inform STAs in the same WLAN that
the sounding procedure starts.

• Step 2: AP broadcasts a NDP packet to STAs for CSI
estimation.

• Step 3: STA estimates CSI as a N ×M matrix (Ĥ) for
each subcarrier, where M and N are the numbers of trans-
mitting and receiving antennas, respectively.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1699

• Step 4: STA decomposes Ĥ using SVD operation:

Ĥ = USVH , (6)

where S is a diagonal matrix whose diagonal elements σk
(k = 1, · · · ,min(N,M)) are real singular values. U and
V are left and right singular matrices which are unitary
matrices containing complex-valued elements with a
size of N ×N and M×M, respectively. VH indicates the
Hermitian transpose of V. Mathematically, we have

M

∑
p=1

b2
p,q = 1, (7)

where bp,q is the amplitude of the (p,q) element in V,
and q = 1, · · · ,M.

• Step 5: STA extracts the first Ns singular vectors out of V
to construct a new matrix V for beamforming, where Ns
is the number of spatial streams which is no more than
min(N,M). Before compression, a phase adjustment step
is applied to each column. Specifically, the phase of
each column element of V is subtracted by the phase
of the last element in the column of V , and a phase-
adjusted matrix Ṽ is obtained, which is equivalent to V
for beamforming [23, 34]. Ṽ is known as beamforming
feedback matrix (BFM). Then, Ṽ is further compressed
by applying Givens Rotation to obtain CBF. Figure 4
shows the detailed conversion procedure from CSI to
CBF. For the detailed compression algorithm, please
refer to IEEE 802.11-2016 [14].

• Step 6: STA sends the CBF back to AP. Based on IEEE
standard [14], CBF is transmitted without encryption.

When there are multiple STAs, they send CBF to AP one
by one. CBF is transmitted without encryption and can be
overheard by any third party in the environment.

3 Understanding the relationship between
BFM and human motion

As BFM is partial information of CSI, we proceed in Sub-
section 3.1 to establish the mathematical connection between
BFM and CSI. Based on the established connection, we de-
rive the relationship between BFM and human motion, and
analyze the properties of BFM for sensing in Subsection 3.2.

3.1 The mathematical connection between CSI
and BFM

The data processing procedure from CSI to BFM involves
the decomposition of CSI using SVD to obtain the matrix
V . Subsequently, BFM is derived by applying simple phase
adjustment to the column vector of V . In light of this, our
effort is directed towards understanding the mathematical
relationship between V and CSI, following which we deduce
the relationship between BFM and CSI, utilizing V as an
intermediary.

3.1.1 Relationship between CSI and V
In this section, we study the mathematical relationship

between V and CSI. We construct the following equation:

ĤHĤ = VSHUHUSVH = VSHSVH . (8)

Due to the fact that U is a unitary matrix, we have UHU= E,
where E is an identity matrix. Thus the impact of U can be
eliminated by Equation (8).

We assume that AP has M antennas, STA has N antennas,
and M ≥ N. We first substitute Equation (5) into the left side
of Equation (8) and obtain a M × M matrix and the (p,q)
element can be written as:

[ĤHĤ]p,q =
N

∑
k=1

ak,pak,qe j(θk,q−θk,p), (9)

where p,q = 1,2, · · · ,M. p and q are the antenna index at the
AP while k is the antenna index at the STA. As two antennas
at the AP share the same phase offset, the offset is canceled
out in θk,q −θk,p.

For the right side of Equation (8), if the diagonal matrix S
is marked as diag(σ1, · · · ,σN), and the amplitude and phase
of (p,q) element in V are denoted as bp,q and βp,q respectively,
the (p,q) element of VSHSVH can be expressed as:

[VSHSVH]p,q =
N

∑
k=1

σ
2
kbp,kbq,ke j(βp,k−βq,k). (10)

According to Equation (8), the items represented by Equa-
tion (9) and Equation (10) are equal. Without loss of general-
ity, we assume there is only one antenna at the STA, that is,
N = Ns = 1, and V is generated using the first singular vector
of the V matrix. We thus have:

σ
2
1bp,1bq,1e j(βp,1−βq,1) = a1,pa1,qe j(θ1,q−θ1,p). (11)

Next, we discuss the relationship between the amplitude and
phase of V and the CSI amplitude and phase.

Amplitude of V . We let p = q and Equation (11) is simpli-
fied as σ2

1b2
p,1 = a2

1,p. Then, the amplitude of elements in V
can be obtained as:

bp,1 =
a1,p

σ1
. (12)

The amplitude of the p-th element in V is equal to a scaled
amplitude of CSI between the p-th antenna of AP and STA,
where the scaling factor is the singular value. Based on Equa-
tion (7), we can further derive the singular value σ2

1 as follows:

σ
2
1 =

M

∑
p=1

a2
1,p. (13)

Equation (13) indicates that σ2
1 is the sum of squares of

the CSI amplitudes between all the AP’s antennas and STA’s

1700 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

antenna. It should be noted that, under target motions, CSI
amplitude varies and σ1 is thus time varying.

Phase of V . If p ̸= q in Equation (11), we can obtain the
relationship between the phase difference of V and phase
difference of CSI as follows:

βp,1 −βq,1 = θ1,q −θ1,p. (14)

Equation (14) shows that the phase difference between the
p-th and q-th elements in V is equal to the phase difference
between the CSIs of AP’s q-th, p-th antenna and STA.

3.1.2 From V to BFM Ṽ
As AP adjusts the phase of multiple transmitted signals on

multiple antennas simultaneously based on the feedback, the
phase difference matters rather than the absolute phase. To
effectively compress V and reduce the amount of feedback, a
phase adjustment is made first. Specifically, the phase of each
element in V is subtracted by the phase of the last element in
V to obtain BFM Ṽ . The element in Ṽ can be expressed as
follows:

[Ṽ]p,1 = bp,1e j(βp,1−βM,1) =
a1,p

σ1
e j(θ1,M−θ1,p). (15)

The amplitude of Ṽ is the same as that of V . Since the
amount of phase adjustment is not fed back to AP, we are
unable to reconstruct V but can only reconstruct BFM Ṽ .

To sum up, we establish the mathematical relationship be-
tween BFM and CSI as follows:

• The amplitude of the p-th element in BFM is equal to
the amplitude of CSI between the p-th antenna of AP
and STA scaled by the singular value.

• The phase of the p-th element in the BFM is equal to the
CSI phase difference between AP-last antenna-STA and
AP-p-th antenna-STA.

Noted that in the above derivation, the AP is considered to
have multiple antennas, and the STA is considered to have one
antenna. So the BFM in this case is actually a 1-D vector but
not a 2-D matrix. Therefore, the “element" in the derivation
indicates a single element of a vector.

3.2 Sensing Target Motion using BFM
In the previous section, we establish the mathematical ex-

pression of BFM amplitude and phase. Based on it, we can
analyze the characteristics when we use BFM amplitude and
phase for sensing. We take respiration sensing as an example
to illustrate the concept.

3.2.1 Sensing motion using BFM amplitude
Based on the mathematical relationship between the ampli-

tude (|Ṽ |) of BFM and that of CSI presented in Equation (12)
and the relationship between the CSI amplitude and length
change of the dynamic path (∆d) given in Equation (3), the

0 100 200 300 400 500
BFM samples

0.3

0.4

0.5

0.6

-0.6
-0.4
-0.2
0
0.2
0.4BFM amplitude BFM phase

Figure 5: The simulated variation of BFM amplitude (|Ṽ |)
and phase (∠Ṽ) when dynamic path length changes by 5
wavelengths.

mathematical relationship between |Ṽ | and ∆d can be ob-
tained as follows:

|[Ṽ]p,1|2 =
a2

1,p

σ2
1

=
Fp +Gp cos

(
2π f ∆d1,p

c +ϕ1,p

)
∑

M
m=1

(
Fm +Gm cos

(
2π f ∆d1,m

c +ϕ1,m

)) ,
(16)

where Fp = |hs1,p |2 +A2
d1,p

, and Gp = 2Ad1,p |hs1,p |. Since the
target is usually far away from the transceiver, we can as-
sume that the dynamic path changes (∆d) at different an-
tennas are equal, i.e., ∆d1,1 = ∆d1,2 = · · · = ∆d1,M . In this
case, we can regard |[Ṽ]p,1| as a function |[Ṽ]p,1|(∆d1,p)
with ∆d1,p as the variable because other parameters in Equa-
tion (16) are constants. Then we can obtain |[Ṽ]p,1|(∆d1,p) =

|[Ṽ]p,1|(∆d1,p + nλ), where n is an integer. Therefore, each
time the dynamic path length changes by one wavelength, the
BFM amplitude varies by one cycle as shown in Figure 5.

3.2.2 Sensing motion using BFM phase
Based on the mathematical relationship between the

phase (∠Ṽ) of BFM and that of CSI given in Equation (15)
and the relationship between CSI phase and length change
of dynamic path ∆d given in Equation (4), the mathematical
expression between ∠Ṽ and ∆d can be obtained as follows:

∠[Ṽ]p,1 =θ1,M −θ1,p = ∠hs1,M −∠hs1p (17)

+
Ad1,p sin

(
2π∆d1,p

λ
+ϕ1,p(f)

)
a1,p

−
Ad1,M sin

(
2π∆d1,M

λ
+ϕ1,M(f)

)
a1,M

.

Similar to BFM amplitude, BFM phase ∠Ṽp,1 can be re-
garded as a function ∠Ṽp,1(∆d1,p) with ∆d1,p as the variable.
Then we can obtain ∠[Ṽ]p,1(∆d1,p) = ∠[Ṽ]p,1(∆d1,p + nλ),
where n is an integer. Therefore, each time the dynamic path
length changes by one wavelength, the BFM phase varies by
one cycle as shown in Figure 5.

3.2.3 Sensing using both BFM amplitude and phase
We compare the differences between BFM and CSI patterns

on the complex plane using simulation. By setting the change
of dynamic reflection path length to one wavelength in all the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1701

(a) (b) (c)

Figure 6: Three examples of one single element of BFM on
the complex plane when the dynamic path length increases
by a wavelength (the blue color indicates the starting point).

simulations, we obtain various BFM patterns on the complex
plane under different settings as shown in Figure 6. Different
from the trajectory of CSI which is a circle, the trajectory
of BFM is not a circle but there exist a variety of patterns.
This difference is due to varying BFM amplitude and phase
detailed as below:

• Compared to CSI, the amplitude of BFM is multiplied by
a scaling factor. Since this factor is affected by the signal
amplitude of all antennas, it is a time-varying variable,
causing the BFM amplitude to vary.

• The phase of BFM element is the phase difference of
two antennas. It varies with target movement and the
coupling between phase difference and signal amplitude
is much weaker than that between CSI phase and signal
amplitude.

Due to the clear difference between BFM and CSI patterns
on the complex plane, many existing CSI-based sensing mod-
els and methods cannot be directly applied for BFM sensing.

3.2.4 Case study
We take respiration monitoring as an example to analyze

the characteristics of BFM sensing. Respiration induces repet-
itive small motions. During natural breath, the movement of
the chest is about 5mm [29], and the corresponding dynamic
path length varies by about one-sixth of a wavelength for
5 GHz WiFi signals. When the reflection path length changes
by one wavelength, the BFM amplitude varies for one com-
plete cycle. As respiration causes a change smaller than a
complete wavelength, the BFM amplitude change induced by
respiration is a fragment of the complete curve. The curve
fragments differ when a subject is at different positions, result-
ing in different amounts of amplitude variations as shown in
Figure 7(b). At some positions, the BFM amplitude variations
caused by respiration are large and can be easily detected.
We call such positions ‘good positions’ for sensing. Those
positions with small amplitude variations can be buried by
noise and they are called ‘bad positions’.

Through the above example, we can see that the sensing
performance using BFM amplitude varies across locations.
Similarly, using the BFM phase alone also faces the same
problem. This problem was also studied in a recent work [61].
In this work, the complementary property of CSI amplitude
and phase on sensing capability is utilized to remove those

BFM amplitude variation BFM phase variation

Good
position

Bad
position

time time

(a) (b) (c)

Figure 7: (a) At different initial positions, signal variations in-
duced by respiration correspond to different BFM fragments.

‘bad positions’. This is because a ‘bad position’ for CSI am-
plitude is a ‘good position’ for CSI phase, and vice versa.

Unfortunately, such an idea is not applicable in BFM-based
sensing. Taking the BFM trajectory on the complex plane in
Figure 7 as an example, we can see that at the ‘bad’ positions,
both BFM amplitude and phase perform badly with small sig-
nal fluctuation. This is because the complementary property
relies on the circular trajectory. As the BFM trajectory on the
complex plane is no longer a circle, its amplitude and phase
lose the complementary sensing capability.

In summary, the ‘bad position’ problem still exists when
we employ BFM for sensing. Furthermore, conventional so-
lutions such as employing the complementary property of
phase and amplitude can not be applied on BFM sensing. In
addition, because the quantitative relationship between BFM
and target displacement is lost, BFM cannot be used to sense
target displacement.

4 Motion Sensing with BFM-Ratio Metric
To address the ‘bad position’ issue and enable quantitative

target displacement sensing, we propose a new metric named
BFM-ratio and validate its benefits for sensing in this section.

4.1 BFM-Ratio Metric
As demonstrated in Section 3.2, the time-varying scaling

factor in BFM amplitude and uncertain phase offset are the
key reasons corrupting the mapping between BFM and target
motion. To obtain the mapping, we need to eliminate the effect
of the scaling factor on BFM amplitude and the phase offset
on BFM phase. Fortunately, although the scaling factors keep
changing over time, they are identical at different elements of
the BFM matrix, as shown in Equation (12). We thus propose
to leverage the ratio of two BFM elements to eliminate the
effect of the scaling factor. Specifically, we call it BFM-ratio
which can be expressed as:

Ṽ1,p

Ṽ1,q
=

a1,p
σ1

e j(θ1,M−θ1,p)

a1,q
σ1

e j(θ1,M−θ1,q)
=

a1,pe− jθ1,p

a1,qe− jθ1,q
(18)

=
hs1,p +A1,pe j(

2π∆d1,p
λ

+ϕ1,p)

hs1,q +A1,qe j(
2π∆d1,q

λ
+ϕ1,q)

,

where hs1,p is the conjugate of hs1,p . For simplicity, we let
Ap = hs1,p , Aq = hs1,q , Bp = A1,pe jϕ1,p , and Bq = A1,qe jϕ1,q .

1702 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

When the person is far away from the transceivers, the dif-
ference between the two reflection path length variations can
be regarded to be the same at two close-by antennas, that

is ∆d1,p ≈ ∆d1,q. Therefore, we let Z present e j
2π∆d1,p

λ and

e j
2π∆d1,q

λ . Then Equation (18) can be simplified as:

Ṽ1,p

Ṽ1,q
=

Ap +BpZ
Aq +BqZ

, (19)

where Ap, Aq, Bp and Bq can be regarded as complex con-
stants when the target moves a small distance (e.g., chest
displacement during respiration). Z represents a unit circle
rotating counterclockwise when ∆d1,p is increased by one
wavelength. From Equation 19, we can see that the ratio of
two BFM elements is in the form of the Möbius transforma-
tion [37] as long as ApBq ̸= AqBp. One property of Möbius
transformation is that it maps circles to circles [24]. For the
unit circle of Z, the BFM ratio keeps the shape of a circle on
the complex plane [7]. That is to say, when the path length of
the dynamic signal is changed by one wavelength, the BFM-
ratio vector also experiences a phase rotation of 360 degrees
on the I-Q plane. Based on this property, we can obtain the
following properties of the BFM ratio for sensing:

1. BFM-ratio rotates a circle on the complex plane if the
reflection path length is changed by one wavelength. The
BFM-ratio rotates an arc on the complex plane if the re-
flection path length is changed by less than a wavelength.

2. When the magnitude of the static component of CSI is
larger than that of the dynamic component of CSI (|Aq|>
|Bq|), BFM ratio rotates counterclockwise as the length
of the reflection path increases. Otherwise, it rotates
clockwise. In most cases, the static path component (i.e.,
LoS path and reflection from static objects) is stronger
than the reflection from the human body.

With the above properties, we successfully construct a map-
ping between BFM-ratio and the change in signal path length
induced by motion, laying the foundation for BFM sensing.

4.2 Experiment Verification
We verify the above properties via benchmark experiments.

We utilize a Netgear Nighthawk X4S R7800 WiFi AP as the
transmitter and a Tenda U10 WiFi Dongle as the receiver.
They are placed with a LoS distance of 2.4 m. The central
frequency is set as 5.765 GHz, corresponding to a signal
wavelength of 5.2 cm. To mimic a moving target, an iron
plate was placed on a sliding track in the direction of the
perpendicular bisector of the LoS path, as shown in Figure 8.
We moved the iron plate to vary the reflection path length.
When the dynamic path length changes by one wavelength,
while the trajectory of BFM on the I-Q plane is not circular,
the BFM ratio trajectory is a complete circle as shown in
Figure 9(a). Notably, the BFM ratio rotated counterclockwise
when the plate was moved away from the LoS path, and

AP

Sniffer

STA

Iron plate

Figure 8: Experiment setting for model verification.

(a) (b)

0 0.5 1
I

-0.2
0

0.2
0.4
0.6
0.8

Q

BFM ratio samples
smoothed BFM ratio

(c)

Figure 9: Trajectory of smoothed BFM ratio when the dy-
namic path length (a) increases by one wavelength (the blue
color indicates the starting point), (b) decreases by one wave-
length, and (c) changes by one-sixth of a wavelength.

clockwise when it approached the LoS path. We also control
the starting position of the iron plate to make the length of the
dynamic reflection path change by one-sixth of a wavelength,
and the trajectory of the BFM ratio is shown in Figure 9(c).
The radian of the BFM ratio trajectory is roughly 60 degrees,
which well matches the theoretical value.

5 Case Study
As BFM ratio restores the quantitative mapping between

signal variation and target motion, various sensing applica-
tions can be realized based on the BFM ratio. In this sec-
tion, we employ two applications, i.e., micro-motion breath
monitoring and macro-motion human walking tracking to
demonstrate the sensing capability of BFM ratio.

5.1 Respiration Monitoring
BFM ratio can be used for reliable respiration monitoring

without incurring the ‘bad position’ problem. We calculate
the BFM ratio of each pair of elements in BFM and perform
this operation on all the subcarriers. For example, when AP
and STA have 4 antennas and 1 antenna respectively with 234
subcarriers, 234×C2

4 streams of BFM ratios can be obtained.
Each BFM ratio stream can be further divided into amplitude
and phase streams, and we can obtain a total of 2808 streams.
We can now extract the respiration information by applying
the principal component analysis (PCA) method. We further
apply the Savitzky-Golay filter on the respiration waveform
to smoothen it. The respiration rate is finally calculated by
performing an auto-correlation operation on the respiration
waveform with a window size of 30 s.

5.2 Human Trajectory Tracking
The proposed BFM ratio can also be used to sense macro-

motions, such as the trajectory of human walking. The key

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1703

(a) Asus RT-AC86U (b) Netgear R7800 (c) Linksys EA8100

(d) Linksys MR9000X (e) TP-LINK WDR7660 (f) TP-LINK WDR7661

Figure 10: All tested routers support MU-MIMO technology.

information we use for human trajectory tracking is the move-
ment speed of the target. Recall that the BFM ratio model has
established a quantitative relationship between the BFM-ratio
phase change and the dynamic path length change in Sec-
tion 4.1. By leveraging the geometric relationship between
the target and transceivers, we can convert the path length
change speed into the radial speed of the target with respect
to the transceivers [32]. With another pair of transceivers, we
obtain a second radial speed. By fusing the two speeds, we
obtain the true target velocity. Note that we assume the initial
location of the target is known. Within a short period of time
window such as 0.2 s, we can safely assume the target velocity
is a constant. We can then calculate the target location after
the small time window and iteratively compute the following
locations to enable continuous tracking.

6 Evaluation
In this section, we conduct experiments to evaluate the

performance of applying the proposed BFM ratio metric to
realize two typical sensing applications, i.e., micro-motion
respiration monitoring and macro-motion human tracking.

6.1 BFM collection.
We first test the feasibility of BFM data collection on di-

verse devices and evaluate the performance of sensing using
real communication traffic.
BFM data collection on various devices. To demonstrate
the generality of our approach, we test six different WiFi
routers including Asus RT-AC86U, Netgear R7800, Linksys
EA8100, Linksys MR9000X, TP-LINK WDR7660, and TP-
LINK WDR7661 as shown in Figure 10. We denote the above
routers as R1 ∼ R6. Although these routers are of various
brands and equipped with different WiFi chips, we are able to
successfully collect BFM during the communication process
of these routers without changing any firmware or driver. This
is because BFM is protocol-compliant feedback information
that is available on all the devices that support MU-MIMO.
Sensing under real communication traffic. We also eval-
uate the performance of respiration monitoring under real

Respiration belt

AP STA
Sniffer

Markers

(a) empty room

Respiration belt

STA
Sniffer

AP

(b) living room

Respiration belt

AP STA

Sniffer

(c) office

Figure 11: Three typical environments with different levels of
multipath and experiment setup for human respiration sensing.

communication traffic between WiFi AP and STAs. Specifi-
cally, we watch live webcasts, listen to music, and browse the
web to generate different real-world traffic patterns. In this
experiment, we use Asus RT-AC86U as AP and two Tenda
U10 cards as the STAs. For different activities, the packet
rate varies significantly. When watching live webcasts, the
mean sample rate of BFM always exceeds 10 Hz, which is
high enough for respiration monitoring. When listening to
music and browsing the Web, the BFM comes intermittently
and the mean sample rate of BFM is 3 ∼ 6 Hz and 3 ∼ 4 Hz
respectively. For human trajectory tracking, usually a sample
rate higher than 20 Hz is required. To trigger more frequent
beamforming feedback packets, we use the iperf3 tool [30] to
generate UDP traffic from AP to STAs.

6.2 Respiration Monitoring using BFM Ratio
Devices. We employ a Netgear R7800 router equipped with
Qualcomm WiFi QCA9984 chipset as the AP and two Tenda
U10 as the STAs to collect BFM samples. Our system operates
at a central frequency of 5.75 GHz, and the channel bandwidth
is 80 MHz. We use a Netgear A6210 as a sniffer to collect
feedback packets from the STAs.

Environment. We conduct experiments in an empty room
(9.5 m × 9.8 m), a living room (3.4 m × 6.1 m) and an
office (4.4 m × 4 m), as shown in Figure 11. In the living
room and the office, there are a lot of furniture and electrical
appliances which create rich multipath. In the living room,
our transceivers are placed at one side of the room, as shown
in Figure 11(b). In the office, our transceivers are placed at
two sides of the room as shown in Figure 11(c).

Participants. We recruit six volunteers including four males
and two females for our experiment, aged between 23 and
57. Throughout the experiment, the user wears a commercial
sensor (Neulog Respiration Monitor Belt logger sensor NUL-
236 [19]) to obtain ground truth. Their respiration rates range
from 12 to 18 bpm (beats per minute).

6.2.1 BFM vs. BFM ratio.

In this section, we compare the performance of respiration
monitoring based on BFM and BFM ratio. We let the target
breathe naturally at different positions. The positions in the
environment are marked with red dots in Figure 11(a).

1704 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 2 4 6 8 10 12
Respiration rate error (bpm)

0

0.2

0.4

0.6

0.8

1

C
D

F

BFM amplitude
BFM phase
BFM amplitude+phase
BFM ratio (amplitude+phase)

Figure 12: The CDF of respiration sensing error with different
signals as input.

Experiment Results. We show the overall respiration rate
error and also snapshots of the signal patterns.

• Respiration rate error. Figure 12 presents the overall
respiration rate errors of different signals. The median
errors are 1.61 bpm, 1.76 bpm, 1.17 bpm, and 0.44 bpm
for BFM amplitude, BFM phase, BFM amplitude+phase,
and BFM ratio, respectively. The errors of using only
BFM amplitude or phase are the largest, while using
both can only slightly improve the accuracy since the
complementary property does not exist. Due to the com-
plementarity of BFM ratio amplitude and phase in respi-
ration monitoring, significantly better performance can
be achieved.

• Breathing induced signal pattern. Figure 13 presents
the detailed patterns of the amplitude and phase of BFM
and those of BFM ratio. These signals are filtered by a
Savitzky-Golay filter. We can see that while BFM am-
plitude or phase can be used for respiration monitoring
at position 1 and position 2, both of them are too weak
to be used at position 3. In comparison, at all three posi-
tions, at least one of the BFM ratio amplitude and phase
can be utilized for respiration monitoring, outperforming
BFM-based method.

6.2.2 Ideal CSI vs. BFM ratio.
To compare the performance with ideal CSI, we use WARP

V3 platform [39] to collect CSI data. We deploy the AP and
STA with a LoS distance of 2.4 m as shown in Figure 14. We
ask a target to sit in the chair located on the perpendicular
bisector of the LoS path of the transceivers. We record CSI and
BFM data simultaneously when a target breathes naturally.
We vary the distance between the target and the LoS path
from 2 m to 5 m at a step size of 1 m. Since the sample
rates of WARP CSI and BFM are different, we first align the
sample rates of these two signals. In addition, the number of
subcarriers provided by BFM (234 subcarriers) is larger than
that of CSI (56 subcarriers). Here we select the same number
of subcarriers (56) for BFM with equal intervals. Then, we
feed the amplitude and phase of CSI, and the amplitude and
phase of BFM ratio into the method described in Section 5.1
while keeping the other parameters the same.

We plot the mean absolute error (MAE) of respiration rate

0 5 10 15 20-0.04
-0.02

0
0.02
0.04

Po
si

tio
n

1

BFM amplitude
BFM phase

0 5 10 15 20
-0.05

0

0.05

BFM ratio amplitude
BFM ratio phase

5 10 15 20-0.04
-0.02

0
0.02
0.04

Po
si

tio
n

2

0 5 10 15 20
-0.05

0

0.05

0 5 15 2010
time (s)

-0.04
-0.02

0
0.02
0.04

Po
si

tio
n

3

0 5 15 2010
time (s)

-0.05

0

0.05

_ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _

Figure 13: Phase and amplitude patterns of the BFM and BFM
ratio when the subject breathes six cycles at three different
positions. While BFM amplitude or phase can be used for
sensing at Position 1 and 2, neither can be used for sensing at
Position 3. In contrast, at least one of the BFM ratio’s phase
and amplitude can be used for sensing at all locations.

AP
STA

Sniffer

WARP Tx WARP Rx

Respiration belt

perpendicular
bisector

Figure 14: The experiment setup for respiration monitoring.
A WARP SDR is used to collect CSI readings for comparison
with the BFM-ratio-based method.

with respect to the distance from 2 m to 5 m in Figure 15. The
experiment results show that the MAE of respiration monitor-
ing based on BFM ratio is slightly higher than that of CSI. We
believe this is mainly because WARP is a high-end software-
defined radio platform which allows us to extract cleaner CSI
signal. On the other hand, BFM samples extracted from com-
modity hardware have more noise. Furthermore, since BFM
is obtained from CSI through a series of steps including sin-
gular value decomposition and compression, there can be a
precision loss during the process. Despite that, BFM ratio can
still achieve reliable human respiration sensing. We believe
that the sensing accuracy can be further improved through
signal enhancement algorithms leveraging data from multiple
subcarriers [27].

6.2.3 Impact of device and environment diversity
Device diversity. We keep the same environment setting and
collect BFM with different routers placed at the same loca-
tion one by one as shown in Figure 10. We compare the
archived MAE for respiration rate monitoring. Despite differ-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1705

2m 3m 4m 5m
0

0.5

1
M

A
E

(b
pm

) BFM ratio based approach
CSI based approach

Figure 15: The respiration rate error of CSI-based and BFM-
ratio-based approaches at different distances.

R1 R2 R3 R4 R5 R6
0

0.2

0.4

0.6

M
A

E
(b

pm
)

Figure 16: The respiration rate error of different devices.

ent numbers of antennas equipped, similar MAEs are achieved
at different devices as illustrated in Figure 16. The results
demonstrate that the proposed BFM sensing can be realized
on a large range of WiFi devices.

Environment diversity. We deploy AP and STAs in two
other rooms with rich multipath as shown in Figure 11(b)
and Figure 11(c). The achieved MAEs for respiration rate
sensing are 0.43 bpm and 0.46 bpm respectively, which are
comparable to that in the empty room.

Through-wall deployment. We further conduct experiments
under the following through-wall deployments. AP and sniffer
are in the same room while STAs and the target are in another
room. The MAE of respiration rate is 0.76 bpm. Compared
to the previous experiment where all devices are in the same
room, the dynamic path is now attenuated, which leads to a
decrease of the signal fluctuation caused by respiration. The
error is now larger but still below 1 bpm. Note that the location
of the sniffer does not matter as long as it can overhear the
CBF packets containing BFM information.

Multi-target scenario. In this subsection, we test the capabil-
ity of multi-target respiration monitoring. We consider three
typical cases as shown in Figure 18. For MU-MIMO trans-
mission, at least two WiFi stations need to be involved so we
consider two WiFi stations in these cases.

• Case 1: Two targets are in the same room and the two
targets are close to each other.

• Case 2: Two targets are in the same room but are sepa-
rated from each other with an 8 m distance in between.

• Case 3: Two targets are in different rooms.

In multi-target scenarios, signals reflected from multiple
targets are superimposed. When the distance between targets
is close (Case 1), signals from multiple targets can not be
easily separated in the time domain or spatial domain. We
exploit the independence of breathing patterns between targets
and apply the blind source separation method [60] to obtain

STA

Sniffer
AP

STA

Sniffer
AP

Figure 17: A through-wall deployment for respiration sensing.

AP
STA
AP
STA

Person A

Person B

(a) Case 1

Person A

Person B

(b) Case 2

Person A

Person B

(c) Case 3

Figure 18: Experiment environments and setup for multi-
target respiration sensing.

each target’s breathing information. In our experiment, with
BFM ratio as the input, a low MAE of 0.53 bpm can be
achieved. For Cases 2 and 3, the targets are separated by a
large distance or a wall. Each STA’s signal variation is more
affected by the nearer target. The respiration rate of each target
can thus be directly estimated from the BFM ratio variation
of each STA. The MAEs of the estimated respiration rates
in the two cases are 0.44 bpm and 0.38 bpm, respectively.
These achieved low MAEs show that BFM ratio can support
accurate multi-target respiration monitoring.

6.3 Human Tracking using BFM ratio
In this section, we evaluate the performance of applying

BFM-ratio for velocity estimation to support human tracking.

6.3.1 Experiment setup
We conduct experiments in two typical indoor environ-

ments, i.e., an empty room (9.5 m × 9.8 m), as shown in
Figure 19(a), and a meeting room (6.4 m × 6.4 m), as shown
in Figure 19(b). One WiFi AP (Netgear R7800) and two
STAs (Tenda U10) are mounted on tripods at a height of one
meter. We place two STAs at different locations to make the
two AP-STA lines perpendicular to each other. The LoS dis-
tance between the transmitter and receivers is set as 4.2 m.
Three volunteers (2 men and 1 woman) are recruited to partic-
ipate in the experiments. The participants are asked to walk
naturally along ten trajectories of various shapes, including
straight line, diamond, rectangle, triangle and ‘N’ path. Each
volunteer walks along each trajectory 20 times.

6.3.2 Performance of human tracking
We plot the recovered human walking trajectories and the

ground truth trajectories (GTT) in Figure 20. We can see

1706 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

STA STAAP

Sniffer

STA STAAP

Sniffer

(a) empty room

Sniffer

STA STA
AP

(b) meeting room

Figure 19: The experiment setup for human trajectory tracking
in two different environments.

(a) (b)

(c) (d)

Figure 20: Human trajectory tracking results with BFM ratio.

that with just two STAs, we can achieve accurate human
trajectory tracking with commodity WiFi. We present the
tracking error in Figure 21. The median localization error is
0.43 m and 0.72 m in the empty room and in the meeting
room, respectively. This result shows that BFM ratio can be
used to not just detect motion but also quantitatively measure
the motion displacement.

6.3.3 Performance in the challenging real-life scenario
In order to demonstrate the performance of BFM ratio

tracking in real environments with rich multipath and NLoS,
we conduct additional experiments in a living room as shown
in Figure 22(a). The size of the room is 3.4 m×6.1 m, and
most of the space is filled with furniture, including sofas,
coffee table, and TV cabinet. AP and one STA are placed near
the wall. The other STA is placed in the adjacent room with a
wall of 30 cm thickness. The straight-line distances between
two STAs and AP are 4 m. The target starts walking from a
corner near the coffee table and stops at the TV cabinet. We
ask the participant to walk along this trajectory 20 times. An
example of the trajectory estimate is shown in Figure 22(b)
which matches the ground truth. The median localization error
is 0.98 m as shown in Figure 21. Due to richer multipaths,
the tracking error in the living room is larger than those in the
empty room and meeting room.

0.5 1 1.5 2
Location error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F

Empty room
Meeting room
Living room

Figure 21: CDF plot of the localization error.

AP

STA
Sniffer

STA in the
 adjacent room

Trajectory

(a) Living room with rich multipath

STA
AP

GTT

(b) The estimated trajectory

Figure 22: Human trajectory tracking in a multipath-rich and
NLoS environment.

7 Related work
In this section, we briefly review the most related work.

7.1 WiFi based contactless sensing
Due to easy access of RSSI at most WiFi devices, in the

early years, human sensing was mainly based on RSSI read-
ings. RSSI was used for human respiration monitoring [1]
and also for fingerprinting-based localization [59]. However,
as RSSI only contains signal strength information, the perfor-
mance is relatively coarse.

In 2010, some open source CSI tools [17] were developed
to support extracting CSI from several 802.11n WiFi chips.
Since then, CSI-based sensing has drawn widespread atten-
tion in both academia and industry. Promising progress has
been achieved from coarse-grained fall detection [42, 46],
gesture recognition [15, 38, 40], activity recognition [33, 56],
indoor tracking [25, 36, 51] to fine-grained vital sign moni-
toring [61, 67]. Compared to RSSI, CSI contains both am-
plitude and phase information. Richer target context such as
speed and angle can be obtained from CSI data. A lot of mod-
els were developed based on CSI input including CSI-speed
model [44], Fresnel zone model [41, 52], Angle-of-Arrival
model [26] and CSI-ratio model [62]. CSI-based sensing
requires specially tailored WiFi firmware and CSI tools to
extract CSI samples. It thus only works with very few WiFi
cards such as Intel 5300 and Atheros 9x series cards.

On the other hand, BFM can be extracted from a large range
of WiFi devices without the need of hacking WiFi firmware or
drivers. It is thus promising to utilize BFM for WiFi sensing.
There has been some initial exploration of BFM sensing. In a
recent work [20], the authors observed that BFM amplitude is

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1707

affected by human respiration and respiration rate can be mon-
itored using BFM. Another recent work [21] further showed
that the number of repetitive activities can be counted using
BFM phase information. However, these initial studies are
empirical research based on experiment observations. There
is no theoretical analysis to help people fully understand the
underlying mechanism and also the relationship between CSI
and BFM. In this work, we lay the theoretical foundation for
BFM sensing and analyze the sensing capabilities of BFM. A
recent work (BeamSense [49]) proposed to recover CSI from
BFM for sensing. To recover BFM from CSI, BeamSense re-
quired to extract both downlink BFM and uplink BFM. While
downlink BFM can be easily extracted, uplink BFM can only
be extracted from 1% WiFi stations, which is acknowledged
in BeamSense. In contrast, downlink CBF alone is enough
for our proposed system to work.

7.2 Other RF-based sensing
In addition to WiFi signals, a wide range of wireless tech-

nologies such as RFID, LoRa, FMCW radar, and IR-UWB
radar, have been used for sensing. RFID is a technology that
locates and identifies tags attached to items using radio waves.
RFID has been utilized to realize sensing applications in-
cluding localization [28], authentication [12], human activity
recognition [58], gesture recognition [70] and material sens-
ing [43, 53]. LoRa is a low-power, long-distance wireless
technology designed for connections between IoT devices.
LoRa is also utilized for contactless sensing applications such
as localization [18], human detection [11], respiration moni-
toring [63] and human tracking [54,63]. Recent works further
applied LoRa signals for multi-target sensing [65] and soil
moisture monitoring [10]. FMCW and IR-UWB radars are
two commonly used radars for contactless sensing. They have
been used for vital sign monitoring [5,16,64,66], human track-
ing [2, 3, 13, 69], and even emotion recognition [68]. While
the above technologies showed promising results in various
sensing applications, they still require dedicated devices that
are not yet widely used in our daily life.

8 Discussion
Privacy concern. Since BFM is not encrypted, anyone in-

cluding attackers can eavesdrop on the BFM transmissions
and use the captured BFM readings to sniff human contexts
such as location and activities. One potential solution is to
apply random offsets (both amplitude and phase offsets) to
each element of the BFM readings to corrupt the quantitative
relationship between BFM ratio and target motion. However,
this method does affect the communication function of BFM.
We thus need to embed the random offsets in the encrypted
WiFi packets to compensate the applied offsets at legitimate
nodes. This will unavoidably lead to more complicated proto-
col design and higher computational load which eventually
may degrade the throughput performance. We believe protect-

ing targets from being sensed by BFM readings is an exciting
topic worth more effort.

AoA and ToF estimation from BFM. The key informa-
tion to enable AoA estimation is the signal phase readings,
more precisely, the phase difference between antennas. Since
BFM preserves the phase difference between antennas dur-
ing the compression process, the steering vector can still be
constructed for AoA estimation. BFM may have difficulties
being used for ToF estimation. This is because the phase re-
lationship between sub-carriers is the key information for
ToF estimates. During the compression process, the phase
readings subtracted at different subcarriers are different, cor-
rupting the phase relationship between subcarriers which is
critical for ToF estimation.

CSI vs. BFM. We believe few manufacturers are willing
to release the raw CSI readings to the public and we do not
expect a change in the near future. There are two main reasons
for this. The first reason is that due to the high sampling rate
and detailed information on each subcarrier, the high transmis-
sion cost of CSI (i.e., a large amount of data) can degrade the
communication throughput. Second, detailed CSI information
can also leak confidential chip performance information to
the public. This is why BFM adopts a lower sampling rate
and only transmits compressed partial data. Therefore, com-
pared to CSI, we believe BFM is the choice for real-world
adoption of WiFi sensing. We believe building the theoretical
foundation for BFM-based sensing moves a big step towards
real-world adoption of WiFi sensing.

9 Conclusion
While WiFi CSI sensing has been popular in the past

decade, CSI can only be extracted from very few WiFi cards,
greatly hindering the adoption of CSI-based WiFi sensing.
We observe an exciting opportunity brought by the new-
generation WiFi devices supporting 802.11ac MU-MIMO
technology, i.e., a new channel information called BFM can be
extracted from a large range of WiFi cards for sensing. In this
paper, we studied the underlying principle of BFM sensing by
revealing the relationship between BFM and CSI. We propose
to take the ratio of two BFM elements to avoid the inherent
issues associated with BFM for sensing. The theoretical anal-
ysis lays a foundation for WiFi sensing on new-generation
WiFi devices. Comprehensive experiments demonstrated the
effectiveness of applying BFM for fine-grained sensing.

Acknowledgments
This research is supported by NSFC A3 Project (No.

62061146001), PKU-NTU Collaboration Project, China Post-
doctoral Science Foundation (No. 2021TQ0048), Beijing
Nova Program (20220484138), Beijing Natural Science Foun-
dation (L223034), National Natural Science Foundation of
China (No. 62172394), and Youth Innovation Promotion As-
sociation, Chinese Academy of Sciences (No. 2020109).

1708 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Heba Abdelnasser, Khaled A Harras, and Moustafa

Youssef. UbiBreathe: A ubiquitous non-invasive WiFi-
based breathing estimator. In Proceedings of the 16th
ACM International Symposium on Mobile Ad Hoc Net-
working and Computing, pages 277–286, 2015.

[2] Fadel Adib, Zach Kabelac, Dina Katabi, and Robert C
Miller. 3d tracking via body radio reflections. In 11th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), pages 317–329, 2014.

[3] Fadel Adib, Zachary Kabelac, and Dina Katabi. Multi-
person localization via rf body reflections. In 12th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pages 279–292, 2015.

[4] Fadel Adib and Dina Katabi. See through walls with
WiFi! In Proceedings of the ACM SIGCOMM 2013
conference on SIGCOMM, pages 75–86, 2013.

[5] Fadel Adib, Hongzi Mao, Zachary Kabelac, Dina Katabi,
and Robert C Miller. Smart homes that monitor breath-
ing and heart rate. In Proceedings of the 33rd annual
ACM conference on human factors in computing sys-
tems, pages 837–846, 2015.

[6] Andreas Anderhub and Zac Wilson. Centrifi: A central-
izedwireless access point management platform. 2020.

[7] Douglas N Arnold and Jonathan P Rogness. Möbius
transformations revealed. Notices of the American Math-
ematical Society, 55(10):1226–1231, 2008.

[8] Apurv Bhartia, Bo Chen, Feng Wang, Derrick Pallas,
Raluca Musaloiu-E, Ted Tsung-Te Lai, and Hao Ma.
Measurement-based, practical techniques to improve
802.11ac performance. In Proceedings of the 2017 Inter-
net Measurement Conference, IMC ’17, page 205–219,
New York, NY, USA, 2017. Association for Computing
Machinery.

[9] Wireless CAT. "TP-LINK TL-XDR6060", [on-
line]. https://wikidevi.wi-cat.ru/TP-LINK_
TL-XDR6060.

[10] Zhaoxin Chang, Fusang Zhang, Jie Xiong, Junqi Ma,
Beihong Jin, and Daqing Zhang. Sensor-free soil mois-
ture sensing using lora signals. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Tech-
nologies, 6(2):1–27, 2022.

[11] Lili Chen, Jie Xiong, Xiaojiang Chen, Sunghoon Ivan
Lee, Kai Chen, Dianhe Han, Dingyi Fang, Zhanyong
Tang, and Zheng Wang. Widesee: Towards wide-area
contactless wireless sensing. In Proceedings of the 17th
Conference on Embedded Networked Sensor Systems,
pages 258–270, 2019.

[12] Xingyu Chen, Jia Liu, Xia Wang, Haisong Liu, Dong
Jiang, and Lijun Chen. Eingerprint: Robust energy-
related fingerprinting for passive RFID tags. In 17th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20), pages 1101–1113, Santa
Clara, CA, February 2020. USENIX Association.

[13] Zhe Chen, Chao Cai, Tianyue Zheng, Jun Luo, Jie Xiong,
and Xin Wang. Rf-based human activity recognition us-
ing signal adapted convolutional neural network. IEEE
Transactions on Mobile Computing, 22(1):487–499,
2021.

[14] IEEE Computer Society LAN/MAN Standards Com-
mittee et al. Ieee standard for information technol-
ogy—telecommunications and information exchange
between systems local and metropolitan area net-
works—specific requirements - part 11: Wireless lan
medium access control (mac) and physical layer (phy)
specifications. IEEE Std 802.11-2016 (Revision of IEEE
Std 802.11-2012), pages 1–3534, 2016.

[15] Ruiyang Gao, Wenwei Li, Yaxiong Xie, Enze Yi, Leye
Wang, Dan Wu, and Daqing Zhang. Towards robust
gesture recognition by characterizing the sensing quality
of wifi signals. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 6(1):1–
26, 2022.

[16] Unsoo Ha, Salah Assana, and Fadel Adib. Contactless
seismocardiography via deep learning radars. In Pro-
ceedings of the 26th Annual International Conference on
Mobile Computing and Networking, pages 1–14, 2020.

[17] Daniel Halperin, Wenjun Hu, Anmol Sheth, and David
Wetherall. Tool release: Gathering 802.11n traces with
channel state information. ACM SIGCOMM CCR,
41(1):53, Jan. 2011.

[18] Bashima Islam, Md Tamzeed Islam, and Shahriar Nirjon.
Feasibility of lora for indoor localization. Appl. Sci,
2017:8565550, 2017.

[19] Wern Kam, Waleed Soliman Mohammed, Gabriel Leen,
Mary O’Keeffe, Kieran O’Sullivan, Sinead O’Keeffe,
and Elfed Lewis. Compact and low-cost optical fiber
respiratory monitoring sensor based on intensity interro-
gation. Journal of Lightwave Technology, 35(20):4567–
4573, 2017.

[20] Takamochi Kanda, Takashi Sato, Hiromitsu Awano, Sota
Kondo, and Koji Yamamoto. Respiratory rate estimation
based on wifi frame capture. In 2022 IEEE 19th Annual
Consumer Communications & Networking Conference
(CCNC), pages 881–884. IEEE, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1709

https://wikidevi.wi-cat.ru/TP-LINK_TL-XDR6060
https://wikidevi.wi-cat.ru/TP-LINK_TL-XDR6060

[21] Sorachi Kato, Tomoki Murakami, Takuya Fujihashi,
Takashi Watanabe, and Shunsuke Saruwatari. Cbr-ace:
Counting human exercise using wi-fi beamforming re-
ports. Journal of Information Processing, 30:66–74,
2022.

[22] Simon Kaufmann. Sharing is caring: Throughput fair-
ness in virtual wireless lans.

[23] Joonsuk Kim and Inkyu Lee. 802.11 wlan: history and
new enabling mimo techniques for next generation stan-
dards. IEEE Communications Magazine, 53(3):134–
140, 2015.

[24] Vladimir V Kisil. Geometry of Möbius Transformations.
IMPERIAL COLLEGE PRESS, 2012.

[25] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and
Sachin Katti. Spotfi: Decimeter level localization using
wifi. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, pages
269–282, 2015.

[26] Xiang Li, Shengjie Li, Daqing Zhang, Jie Xiong, Yasha
Wang, and Hong Mei. Dynamic-music: accurate device-
free indoor localization. In Proceedings of the 2016
ACM international joint conference on pervasive and
ubiquitous computing, pages 196–207, 2016.

[27] Yang Li, Dan Wu, Jie Zhang, Xuhai Xu, Yaxiong Xie,
Tao Gu, and Daqing Zhang. Diversense: Maximizing
wi-fi sensing range leveraging signal diversity. Proceed-
ings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 6(2):1–28, 2022.

[28] Bo Liang, Purui Wang, Renjie Zhao, Heyu Guo, Pengyu
Zhang, Junchen Guo, Shunmin Zhu, Hongqiang Harry
Liu, Xinyu Zhang, and Chenren Xu. RF-Chord: To-
wards deployable RFID localization system for logistic
networks. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
1783–1799, Boston, MA, April 2023. USENIX Associ-
ation.

[29] C Lowanichkiattikul, M Dhanachai, C Sitathanee, S Kha-
chonkham, and P Khaothong. Impact of chest wall mo-
tion caused by respiration in adjuvant radiotherapy for
postoperative breast cancer patients. SpringerPlus, 5:1–
8, 2016.

[30] Bruce Mah, Jon Dugan, Brian Tierney, Jef Poskanzer,
and Seth Elliot. iperf, version 3, [online]. https://
iperf.fr.

[31] Pedro Melgarejo, Xinyu Zhang, Parameswaran Ra-
manathan, and David Chu. Leveraging directional an-
tenna capabilities for fine-grained gesture recognition.
In Proceedings of the 2014 ACM International Joint

Conference on pervasive and ubiquitous computing,
pages 541–551, 2014.

[32] Kai Niu, Xuanzhi Wang, Fusang Zhang, Rong Zheng,
Zhiyun Yao, and Daqing Zhang. Rethinking doppler
effect for accurate velocity estimation with commod-
ity wifi devices. IEEE Journal on Selected Areas in
Communications, 2022.

[33] Sameera Palipana, David Rojas, Piyush Agrawal, and
Dirk Pesch. FallDeFi: Ubiquitous fall detection using
commodity Wi-Fi devices. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technolo-
gies, 1(4):1–25, 2018.

[34] Eldad Perahia and Robert Stacey. Next Generation Wire-
less LANs: Throughput, Robustness, and Reliability in
802. Cambridge Univ. Press, 2008.

[35] Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and
Shwetak Patel. Whole-home gesture recognition using
wireless signals. In Proceedings of the 19th annual inter-
national conference on Mobile computing & networking,
pages 27–38, 2013.

[36] Kun Qian, Chenshu Wu, Yi Zhang, Guidong Zhang,
Zheng Yang, and Yunhao Liu. Widar2. 0: Passive human
tracking with a single wi-fi link. In Proceedings of the
16th Annual International Conference on Mobile Sys-
tems, Applications, and Services, pages 350–361, 2018.

[37] H Schwerdtfeger. Geometry of complex numbers: Circle
geometry moebius transformation. 1979.

[38] Sheng Tan and Jie Yang. Wifinger: Leveraging com-
modity wifi for fine-grained finger gesture recognition.
In Proceedings of the 17th ACM international sympo-
sium on mobile ad hoc networking and computing, pages
201–210, 2016.

[39] Rice University. "warp project", [Online]. http://
warp.rice.edu.

[40] Raghav H Venkatnarayan, Griffin Page, and Muham-
mad Shahzad. Multi-user gesture recognition using wifi.
In Proceedings of the 16th Annual International Con-
ference on Mobile Systems, Applications, and Services,
pages 401–413, 2018.

[41] Hao Wang, Daqing Zhang, Junyi Ma, Yasha Wang, Yux-
iang Wang, Dan Wu, Tao Gu, and Bing Xie. Human
respiration detection with commodity wifi devices: do
user location and body orientation matter? In Proceed-
ings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, pages 25–36,
2016.

1710 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://iperf.fr
https://iperf.fr
http://warp.rice.edu
http://warp.rice.edu

[42] Hao Wang, Daqing Zhang, Yasha Wang, Junyi Ma, Yux-
iang Wang, and Shengjie Li. Rt-fall: A real-time and
contactless fall detection system with commodity wifi
devices. IEEE Transactions on Mobile Computing,
16(2):511–526, 2017.

[43] Ju Wang, Jie Xiong, Xiaojiang Chen, Hongbo Jiang,
Rajesh Krishna Balan, and Dingyi Fang. Tagscan: Si-
multaneous target imaging and material identification
with commodity rfid devices. In Proceedings of the 23rd
Annual International Conference on Mobile Computing
and Networking, pages 288–300, 2017.

[44] Wei Wang, Alex X Liu, Muhammad Shahzad, Kang
Ling, and Sanglu Lu. Understanding and modeling of
wifi signal based human activity recognition. In Pro-
ceedings of the 21st annual international conference on
mobile computing and networking, pages 65–76, 2015.

[45] Yan Wang, Jian Liu, Yingying Chen, Marco Gruteser,
Jie Yang, and Hongbo Liu. E-eyes: device-free location-
oriented activity identification using fine-grained wifi
signatures. In Proceedings of the 20th annual interna-
tional conference on Mobile computing and networking,
pages 617–628, 2014.

[46] Yuxi Wang, Kaishun Wu, and Lionel M. Ni. Wifall:
Device-free fall detection by wireless networks. IEEE
Transactions on Mobile Computing, 16(2):581–594,
2017.

[47] Wikipedia. "ieee_802.11ac-2013", [online]. https:
//en.wikipedia.org/wiki/IEEE_802.11ac-2013.

[48] Joey Wilson and Neal Patwari. See-through walls: Mo-
tion tracking using variance-based radio tomography
networks. IEEE Transactions on Mobile Computing,
10(5):612–621, 2010.

[49] Chenhao Wu, Xuan Huang, Jun Huang, and Guoliang
Xing. Enabling ubiquitous wifi sensing with beamform-
ing reports. In Proceedings of the ACM SIGCOMM
2023 Conference, ACM SIGCOMM ’23, page 20–32,
New York, NY, USA, 2023. Association for Computing
Machinery.

[50] Dan Wu, Ruiyang Gao, Youwei Zeng, Jinyi Liu, Leye
Wang, Tao Gu, and Daqing Zhang. Fingerdraw: Sub-
wavelength level finger motion tracking with wifi signals.
Proceedings of the ACM on Interactive, Mobile, Wear-
able and Ubiquitous Technologies, 4(1):1–27, 2020.

[51] Dan Wu, Youwei Zeng, Ruiyang Gao, Shengjie Li, Yang
Li, Rahul C Shah, Hong Lu, and Daqing Zhang. Witraj:
robust indoor motion tracking with wifi signals. IEEE
Transactions on Mobile Computing, 2021.

[52] Dan Wu, Daqing Zhang, Chenren Xu, Yasha Wang, and
Hao Wang. Widir: Walking direction estimation using
wireless signals. In Proceedings of the 2016 ACM Inter-
national Joint Conference on Pervasive and Ubiquitous
Computing, UbiComp ’16, page 351–362, New York,
NY, USA, 2016. Association for Computing Machinery.

[53] Binbin Xie, Jie Xiong, Xiaojiang Chen, Eugene Chai,
Liyao Li, Zhanyong Tang, and Dingyi Fang. Tagtag:
material sensing with commodity rfid. In Proceedings
of the 17th conference on embedded networked sensor
systems, pages 338–350, 2019.

[54] Binbin Xie, Yuqing Yin, and Jie Xiong. Pushing the
limits of long range wireless sensing with lora. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol., 5(3),
sep 2021.

[55] Yaxiong Xie, Zhenjiang Li, and Mo Li. Precise power
delay profiling with commodity wifi. In Proceedings
of the 21st Annual International Conference on Mobile
Computing and Networking, MobiCom ’15, page 53–64,
New York, NY, USA, 2015. ACM.

[56] Yang Xu, Wei Yang, Jianxin Wang, Xing Zhou, Hong Li,
and Liusheng Huang. Wistep: Device-free step counting
with wifi signals. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 1(4):1–
23, 2018.

[57] Zheng Yang, Zimu Zhou, and Yunhao Liu. From RSSI
to CSI: Indoor localization via channel response. ACM
Computing Surveys (CSUR), 46(2):1–32, 2013.

[58] Lina Yao, Quan Z. Sheng, Xue Li, Tao Gu, Mingkui Tan,
Xianzhi Wang, Sen Wang, and Wenjie Ruan. Compres-
sive representation for device-free activity recognition
with passive rfid signal strength. IEEE Transactions on
Mobile Computing, 17(2):293–306, 2018.

[59] Moustafa Youssef, Matthew Mah, and Ashok Agrawala.
Challenges: device-free passive localization for wire-
less environments. In Proceedings of the 13th annual
ACM international conference on Mobile computing and
networking, pages 222–229, 2007.

[60] Vicente Zarzoso and Pierre Comon. Robust independent
component analysis by iterative maximization of the
kurtosis contrast with algebraic optimal step size. IEEE
Transactions on neural networks, 21(2):248–261, 2009.

[61] Youwei Zeng, Dan Wu, Ruiyang Gao, Tao Gu, and
Daqing Zhang. FullBreathe: Full human respiration
detection exploiting complementarity of CSI phase and
amplitude of WiFi signals. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technolo-
gies, 2(3):1–19, 2018.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1711

https://en.wikipedia.org/wiki/IEEE_802.11ac-2013
https://en.wikipedia.org/wiki/IEEE_802.11ac-2013

[62] Youwei Zeng, Dan Wu, Jie Xiong, Enze Yi, Ruiyang
Gao, and Daqing Zhang. Farsense: Pushing the range
limit of wifi-based respiration sensing with csi ratio of
two antennas. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 3(3):1–
26, 2019.

[63] Fusang Zhang, Zhaoxin Chang, Kai Niu, Jie Xiong, Bei-
hong Jin, Qin Lv, and Daqing Zhang. Exploring lora for
long-range through-wall sensing. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol., 4(2), jun 2020.

[64] Fusang Zhang, Zhaoxin Chang, Jie Xiong, Junqi Ma, Ji-
azhi Ni, Wenbo Zhang, Beihong Jin, and Daqing Zhang.
Embracing consumer-level uwb-equipped devices for
fine-grained wireless sensing. 6(4), jan 2023.

[65] Fusang Zhang, Zhaoxin Chang, Jie Xiong, Rong Zheng,
Junqi Ma, Kai Niu, Beihong Jin, and Daqing Zhang. Un-
locking the beamforming potential of lora for long-range
multi-target respiration sensing. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol., 5(2), jun 2021.

[66] Fusang Zhang, Jie Xiong, Zhaoxin Chang, Junqi Ma,
and Daqing Zhang. Mobi2sense: Empowering wireless
sensing with mobility. In Proceedings of the 28th Annual
International Conference on Mobile Computing And
Networking, MobiCom ’22, page 268–281, New York,
NY, USA, 2022. Association for Computing Machinery.

[67] Fusang Zhang, Daqing Zhang, Jie Xiong, Hao Wang,
Kai Niu, Beihong Jin, and Yuxiang Wang. From Fresnel
Diffraction Model to Fine-grained Human Respiration
Sensing with Commodity Wi-Fi Devices. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiq-
uitous Technologies, 2(1):1–23, 2018.

[68] Mingmin Zhao, Fadel Adib, and Dina Katabi. Emotion
recognition using wireless signals. In Proceedings of
the 22nd annual international conference on mobile
computing and networking, pages 95–108, 2016.

[69] Mingmin Zhao, Yonglong Tian, Hang Zhao, Moham-
mad Abu Alsheikh, Tianhong Li, Rumen Hristov,
Zachary Kabelac, Dina Katabi, and Antonio Torralba.
Rf-based 3d skeletons. In Proceedings of the 2018 Con-
ference of the ACM Special Interest Group on Data
Communication, pages 267–281, 2018.

[70] Yongpan Zou, Jiang Xiao, Jinsong Han, Kaishun Wu,
Yun Li, and Lionel M. Ni. Grfid: A device-free rfid-
based gesture recognition system. IEEE Transactions
on Mobile Computing, 16(2):381–393, 2017.

1712 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

mmComb: High-speed mmWave Commodity WiFi Backscatter

Yoon Chae†, Zhenzhe Lin†, Kang Min Bae§, Song Min Kim§, and Parth Pathak†

†George Mason University, §Korea Advanced Institute of Science and Technology

Abstract
High-speed connectivity is key to enabling a range of novel
IoT applications. Millimeter-wave (mmWave) backscatter
has emerged as a possible solution to create high-speed,
low-power IoT networks. However, state-of-the-art mmWave
backscatter systems are costly due to the need for dedicated
mmWave reader devices. This paper presents mmComb, a
mmWave backscatter system that is built to operate on com-
modity mmWave WiFi. mmComb is developed with the aim
that mmWave backscatter tags can be directly integrated into
802.11ad/ay mmWave WiFi networks. mmComb makes two
key contributions. First, We propose a technique to communi-
cate with backscatter tags using existing beamforming proto-
col frames from mmWave WiFi devices, without any protocol
modification. Second, we develop a self-interference sup-
pression solution that intelligently uses receive beamforming
to extract weak mmWave backscatter signal even in indoor
multipath-rich channels. We implement our solution with a
tag prototype and 60 GHz commodity WiFi devices. Our re-
sults show that mmComb can achieve a maximum data rate of
55 Mbps just by leveraging 802.11ad/ay control frames while
consuming 87.3 µW with BER lower than 10−3 up to 5.5 m
range.
1 Introduction
The number of Internet-of-Things (IoT) devices is anticipated
to grow close to 30 billion by 2030 [1], creating a wide range
of novel applications enabled through high-speed edge and
cloud connectivity. Examples of such applications include
immersive computing and mixed reality, AI-assisted cyber-
physical systems like autonomous vehicles, smart homes, and
many more. Millimeter-wave (mmWave) wireless is at the
forefront of designing 6G and beyond networks that can en-
able high-speed connectivity to IoT devices. However, today’s
mmWave devices consume a significant amount of energy
(several watts in 802.11ad and 5G NR devices [39]). Hence,
the majority of IoT devices (e.g., RFID, WiFi backscatter)
operate in the sub-6 GHz spectrum. While the power con-
sumption of such devices can be in tens of microwatts, their
data rates are limited to a few kilobits per second [3, 17, 25]
or even bits per second [8, 46, 56] in some cases. mmWave
backscatter has emerged as a potential solution to bridge
this gap and to enable high-speed, ultra-low-power IoT con-
nectivity using the large bandwidths available in mmWave
bands. A key limitation of prior work on mmWave backscat-
ter [6, 23, 28, 41] is that they are not compliant with exist-

ing mmWave networks. This means that their adaptation re-
quires either deploying dedicated readers in the network or
non-trivial hardware and protocol modifications, increasing
the overall cost and reducing their adaptability. For example,
Millimetro [41] and OmniScatter [6] use mmWave FMCW
radars as mmWave backscatter readers. While the objectives
of these works are high-precision localization and massive-
scale IoT deployment, deployment of dedicated radars not
only increases the cost but also creates non-trivial interfer-
ence to existing mmWave networks [50]. mmTag [28], on the
other hand, aims at high-speed mmWave backscatter but can-
not achieve truly commodity operations. mmTag requires
additional dedicated hardware (polarized antenna) on the
transceiver to receive the polarized backscatter signal. It also
requires a custom antenna with separate polarization on the
AP and tags for self-interference suppression. Furthermore,
the impact of integrating mmTag in mmWave networks is not
clear given that it is not designed to be protocol compliant
where specific frames are used for piggybacking the backscat-
ter data. These limitations call for a new mmWave backscatter
solution that is high-speed, ultra-low-power, and truly com-
patible with mmWave commodity networks by design.

In this paper, we present mmComb, a high-speed mmWave
commodity WiFi backscatter system. mmComb is developed
with the aim that mmWave backscatter tags can be seam-
lessly integrated into 802.11ad/ay mmWave WiFi networks.
mmComb tags embed backscatter data bits by exploiting
beamforming training frames that are frequently exchanged
between 802.11ad/ay APs and clients. mmComb does not
require any changes to mmWave WiFi APs or clients in
terms of their hardware (no additional RF chains or cus-
tom antenna) or protocol stack, making it possible to di-
rectly accommodate mmWave backscatter tags into existing
mmWave WiFi networks. mmComb can achieve a maximum
data rate of 55 Mbps when leveraging 802.11ad beamform-
ing frames for backscattering which is orders of magnitude
higher than state-of-the-art sub-6 GHz WiFi backscatter sys-
tems [3, 17, 25, 53–55]. Our observed BER is lower than
10−3 for a range up to 5.5 m, enabling many practical ap-
plications within WLANs. Furthermore, the tag consumes
87.3 µW (10.5 µW only for modulation) including frame
detection and modulation. We demonstrate an end-to-end
backscatter system using a tag prototype and commercial off-
the-shelf 802.11ad AP and clients acting as readers. mmComb
addresses the following important challenges:

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1713

Systems Frequency band Commodity WiFi compatible? Data rate Power consumption (µW)

sub-6 GHz

WiFi backscatter [17] 2.4 GHz Yes 1 Kbps 24
WiTAG [3] 2.4, 5 GHz Yes 4 Kbps 10

MOXcatter [55] 2.4 GHz Yes 50 Kbps 33
Freerider [54] 2.4 GHz Yes 60 Kbps 30
Hitchhike [53] 2.4 GHz Yes 300 Kbps 33

mmWave

MilliMetro [41] 24 GHz No (FMCW) 300 bps 2.36
OmniScatter [6] 24, 60 GHz No (FMCW) 150 Kbps 7

mmX [27] 24 GHz No (Dedicated reader) 100 Mbps 1.1×104

mmTag [28] 24 GHz No (Dedicated reader) 100 Mbps 0.2×104

mmComb 60 GHz Yes 55 Mbps 87.3

Table 1: Comparison with state-of-the-art systems.
(1) Embedding backscatter bits in mmWave WiFi frames.
There are three key questions here: (i) which mmWave WiFi
frames to use for backscatter communication?, (ii) how to
detect the ongoing transmission of these frames?, and (iii)
how to modulate and demodulate the backscatter data onto
the frame? To answer the first question, mmComb selects
802.11ad/ay control frames, specifically beamforming frames,
for backscatter communication. These frames are regularly
transmitted (beacons, sector-level sweep, beam refinement,
etc.) for beamforming and their reuse for backscattering cre-
ates no additional network overhead. Furthermore, they have
relatively static structures and are transmitted in all directions
(i.e., sectors) which improves demodulation and tag cover-
age. mmComb introduces an ultra-light detection technique
for beamforming frames in tags by intelligently utilizing the
unique differences between data and beamforming frames.
The tags then perform symbol inversion on incoming symbols
using phase shifting to modulate the backscatter data. The
backscatter bits are then extracted by determining the change
in the channel (estimated vs. measured) at the receiver.

(2) Suppressing self-interference. Another key challenge
in mmWave backscatter is that due to high attenuation at
mmWave frequencies, the backscattered mmWave signal is
weak, making it very difficult to isolate the backscatter sym-
bols from self-interference (i.e., the signal traveling directly
from a transmitter to a receiver over LoS or reflected paths).
Prior WiFi backscatter systems operating at sub-6 GHz such
as HitchHike [53–55] address this issue by shifting the fre-
quency of the backscattered signal to the adjacent WiFi chan-
nel. However, mmWave WiFi channels are 2.16 GHz wide,
and switching such a channel would require a high-speed os-
cillator consuming as much as 0.5 mW which is clearly infeasi-
ble for a low-power tag [21]. Changing the polarization of the
incoming and outgoing signal is another approach presented
in [28]. However, such a solution requires non-trivial modifi-
cations to WiFi APs to equip them with differently polarized
antennas and multiple switches on the tag (increased power
consumption). Such solutions cannot be readily adapted to
work with commodity mmWave WiFi networks.

mmComb addresses this challenge by exploiting the direc-
tionality of mmWave beams to create high-gain receive beams

at the receiver towards the desired tag while creating nulls
in the direction of self-interference. Using the unique char-
acteristics of beamforming antennas, mmComb eliminates
the self-interference without shifting the center frequency. A
salient benefit of this approach is that it requires no specialized
hardware or protocol modifications in mmWave WiFi devices.
Table 1 compares mmComb with state-of-the-art sub-6 GHz
WiFi and mmWave backscatter systems.

(3) Tag prototyping, implementation and evaluation. We
develop a custom prototype of mmComb tag with high switch-
ing speed (up to 100 MHz), capable of modulating the
802.11ad/ay frames at 55 MHz speed. We use off-the-shelf
802.11ad devices and software radios equipped with phased
arrays as readers. We evaluate mmComb in diverse scenarios
with extensive experiments. Our experiments show that mm-
Comb can achieve a data rate of 55 Mbps using 802.11ad con-
trol frames with BER lower than 10−3 up to the 5.5m range.
We also demonstrate that the control frames with backscatter
data embedded in them can be received on an unmodified
802.11ad receiver. We find that our self-interference suppres-
sion technique, which beamforms towards a tag while creating
nulls towards self-interference directions, provides over 19
dB increase in backscatter SINR compared to beams used in
commodity 802.11ad/ay devices. mmComb’s self-interference
suppression is extensively evaluated (i.e., the impact of phase
resolution, spatial smoothing, multiple self-interference paths,
and different types of receiver devices). Our results show that
even in environments with severe multi-path (3-5 reflected
mmWave paths), the average BER remains low (6.5×10−3)
due to our self-interference suppression solution. We demon-
strate that practical deployments of mmComb are feasible as
they can support not only Line-of-Sight (LoS) but also Non-
Line-of-Sight (NLoS) paths (tag behind a cardboard box or in
an office cubicle). mmComb can scale to multiple tags densely
deployed in the environment with very low inter-tag interfer-
ence. Lastly, we verify that backscattering from the tag does
not negatively impact standards-compliant beamforming.

Contributions. Our main technical contributions are:

• mmComb is the first mmWave commodity WiFi backscat-
ter system where the tags can seamlessly integrate into
mmWave WiFi networks without any hardware or protocol

1714 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

modifications.
• We present a self-interference suppression technique that

can use beamforming and nulling to significantly improve
SINR otherwise weak mmWave backscatter signal recep-
tion.

• mmComb is implemented with a custom tag prototype and
commodity off-the-shelf 802.11ad devices as readers. We
extensively evaluate mmComb in a diverse set of scenar-
ios demonstrating the feasibility of high-speed, low-power
mmWave commodity WiFi backscatter.

2 Background
A typical backscatter system consists of a reader and a tag
where the reader sends an excitation query signal which is
then reflected back by a tag. A tag can switch between dif-
ferent impedances to modulate the amplitude, phase, or fre-
quency [9, 11] of the backscattered signal. In the case of
commodity WiFi backscatter, an existing commodity device
(e.g., a WiFi AP or client [53, 54]) in the wireless network
operates as the reader, thus eliminating the need to deploy
dedicated readers and reducing cost. Existing protocol frames
transmitted from the commodity readers can also be retrofitted
to create the query signal. In mmComb, mmWave WiFi 802.11
ad/ay devices and protocol frames are used for enabling high-
speed mmWave backscatter communication. To this end, we
now provide a brief background on mmWave WiFi.
802.11ad/ay DMG beamforming. The 60 GHz Directional
Multi-Gigabit (DMG) mmWave 802.11ad/ay WiFi provides
multi-gigabit-per-second data rate. Due to the high attenua-
tion experienced at mmWave frequencies, directional beams
created through phased antenna arrays are commonly utilized.
Fig. 1 shows the beamforming training process [32, 35] that
is used to determine the best transmit sector (i.e., beam pat-
tern) pair between an AP and a station (STA). The procedure

BF
frame

Feedback

ACK

Quasi-omni RX Directional TX

A
P

/S
TA

S
TA

/A
P BF

frame
BF

frame

BF
frame

BF
frame

BF
frame

Figure 1: 802.11ad/ay beamforming training process.
involves sending beamforming (BF) frames from the AP in
different sectors, and the station measures the received SNR
for each. Then, the station sends the BF frames back to the
AP, which measures the SNR. The feedback conveys the Tx
sector with the highest SNR measurement from both AP to
station and vice versa, followed by an acknowledgment.
BF frames. The beamforming training is carried out using
BF frames which is a type of control frame. The BF frame
consists of a preamble, a header, and a payload as shown in
Fig. 2. Both beacons and sector level sweep (SLS) frames
are referred to as BF frames because they are sent out in all
sectors by the AP, and can be used for backscatter in mm-
Comb. The preamble consists of 59 repeated Golay sequences
(Ga128, Gb128, −Ga128, and −Gb128), while the header and

Preamble Header Payload

Frame Control Duration BSSID

Time
stamp

Sector
Sweep

Beacon
Interval

FCS

Beacon Interval
Control

DMG
Parameters

Clustering
Control

Vendor
Specific

Frame Body

B
ea

co
n

S
L

S

Frame Control Duration RA TA SSW SSW Feedback FCS

OR

F
ra

m
e

S
tr

uc
tu

re

Figure 2: 802.11ad beamforming (BF) frame.

payload are spread with Ga32 where the subscript represents
the length of sequence. Most of the fields in the BF frame are
predetermined and remain constant, except for the timestamp,
sector sweep field, and FCS (frame check sequence) marked
in red in Fig. 2. The BF frames are transmitted in different
sectors during the BF training. The BF frame’s data rate is
27.5 megabits per second, coded with an LDPC code at a
1/2 coding rate, and each coded bit is then spread using a
32-point length Golay sequence, producing symbols at a rate
of 55 MSym/s at a chip rate of 1760 MHz.

3 mmWave WiFi Backscatter
This section explains how the mmComb tag inserts backscat-
ter bits into ongoing mmWave WiFi frames and how a com-
modity mmWave WiFi device retrieves these bits through
demodulation.
3.1 Modulation and demodulation
Modulation. Our objective in mmComb is to reuse the exist-
ing mmWave WiFi frames as a query signal for the backscatter
tag. However, reusing any arbitrary frame makes it difficult
to isolate backscatter bits from the original frame’s bits, as
both are unknown to the receiver. Prior work on sub-6 GHz
commodity WiFi backscatter [53, 54] relies on separating the
two in the frequency domain by shifting the backscatter signal
to an adjacent WiFi channel. Albeit effective, this process is
not feasible in mmWave WiFi where each 802.11ad/ay chan-
nel is 2.16 GHz wide, and shifting to adjacent frequency will
require a power-hungry high-speed oscillator on the tag.

In order to address this challenge, mmComb utilizes 802.11
ad/ay BF frames. As described in Sec. 2, most bits of 802.11
ad/ay BF frame are fixed. Since 802.11ad/ay BF frames
adopt DBPSK modulation, mmComb embeds backscatter bits
onto the BF frames by changing the symbol phase accord-
ing to them. This is demonstrated in Fig. 3. A mmComb tag

Backscatter BIT 0 Backscatter BIT 1

Golay Symbol (ଵଶ଼) Golay Symbol (ଵଶ଼)

E
xp

ec
te

d
I/

Q
R

ec
ei

ve
d

I/
Q

Figure 3: mmComb backscatter modulation.

backscatters the incoming WiFi signal with an offset of either

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1715

0◦ (backscatter bit 0) or 180◦ (backscatter bit 1). Here, the
reflected symbol Sreflected = Soriginal × e jπbback where Soriginal
is the original incoming symbol and bback is the backscatter
bit to be embedded. This means that if the backscatter bit is 0,
the signal has no change, and if the backscatter bit is 1, the
original signal is phase-shifted by π before backscattering.
Our backscatter data rate of 55 Mbps is achievable due to a
symbol rate of BF frames (55 MSym/s).

To create a phase shift, we develop a tag that uses a Single
Pole, Double Throw (SPDT) switch with one input port and
two output ports as shown in Fig. 4. The WiFi signal enters

Switch Board

Reflected
Signal 1

Reflected
Signal 2

Input
signal

Figure 4: mmComb tag schematic: by switching between the
output ports, the tag can reflect with different phases.

the input port and bounces back through one of the output
ports. The output ports create different phase shifts due to the
different lengths of lines, resulting in a quarter wavelength
discrepancy between them. This leads to a half wavelength
difference, or a phase shift of π, during a complete round trip.
By switching between the output ports, the reflected signal
can be modulated with two different phases. mmComb uses a
high-speed SPDT switch with 100 MHz of switching speed
and 1ns rise and fall times (more details of the prototype in
Sec. 5).
Demodulation. An 802.11ad/ay receiver can now demodu-
late the backscatter bits by comparing expected and received
signals. The received signal y(t) is a linear combination of
the transmitted signals from K different paths as

y(t) = A(θb) ·hb(θb) · e jπb(t) · s(t)+
K−1

∑
i=1,i ̸=b

A(θi) ·hi(θi) · s(t)

(1)
where A(θi) and h(θi) are the complex antenna weight vec-
tor and channel gain in direction θi, respectively. s(t) is the
transmitted signal, and θb and b(t) represent the angle of the
backscatter path and backscatter bits, respectively.

Typically when a frame is transmitted, the receiver first
estimates the channel using the channel estimation field (CEF)
and uses the estimated channel to demodulate the transmitted
signal. In the case of mmComb, with the use of BF frames,
s(t) is already known to the receiver, enabling us to solve for
b(t) to extract the backscatter bits.

To achieve this, mmComb tag creates no phase change (i.e.,
backscatter bit b(t) = 0) during the CEF of the BF frame,
resulting in the receiver being able to estimate H = A(θb) ·
hb(θb)+∑

K−1
i=1,i ̸=b A(θi) ·hi(θi). This channel estimation and

known s(t) can be used to estimate the expected received
signal y′e(t) at the receiver. That is, y′e(t) represents the case
of a signal received by the receiver without being changed
by the tag. The backscatter bit b(t) can then be extracted by
comparing the received signal y(t) and the estimated signal

y′e(t). If the different y− y′e is zero, the backscatter bit b(t) =
0. On the other hand, if the difference becomes 2 ·A(θb) ·
hb(θb) · s(t), the backscatter bit b(t) = 1. Fig. 5 shows an
example of expected and received signals and corresponding
backscatter bits. In practice, the difference might vary from 2 ·

Time

S
ig

n
al

TAG Bit 0 TAG Bit 0TAG Bit 1

(a) Raw signal of 802.11 ad golay symbol.

2 4 6 8 10 12 14 16
Golay symbol index

0

0.5

1

P
h

as
e

(r
ad

)

Received phase

Expected phase

TAG Bit1 TAG Bit0TAG Bit0

1.5

(b) Phase shift due to tag operation.
Figure 5: Embedded backscatter bit on the Golay symbol.

A(θb) ·hb(θb) · s(t) and we use a threshold which is the mean
difference over the frame for determining the backscatter bit.
Embedding backscatter frame. Fig. 6 shows our mmComb
backscatter frame is embedded inside the 802.11ad/ay frame.
Since the length of the BF frame is fixed, the backscatter
frame size can also be predetermined including the size of the
preamble and data. The B-preamble provides synchroniza-

Preamble Header Payload

Time
Stamp

B-Preamble B-CRCB-Payload

Preamble Header Payload

Time
Stamp

B-Preamble B-Payload

Figure 6: The backscatter frame (B-preamble & B-payload)
can be embedded inside the 802.11ad/ay frame.

tion to indicate the start of the backscatter frame. We note
that the B-preamble must be inserted after the timestamp of
the BF frame body at 11.58 µs (4.30 µs of preamble, 4.67 µs
of header, 1.45 µs of frame control, duration, and BSSID, and
1.16 µs for timestamp). Since our tag demodulation is based
on comparing the original bit sequence with the changed one,
it is essential that the tag bit flips occur only after the times-
tamp. Although it is possible to embed backscatter data even
before the timestamp, 802.11ad/ay frames scramble the bits,
and any modification to the timestamp because of backscatter
data can result in incorrect descrambling. Since mmComb
relies on fixed data of the BF frame, proper descrambling is
essential to extract the backscatter bits. The backscatter frame
can be of length (L− 11.58) µs where L is a length of the
original BF frame, leading to ⌊ (L−11.58)∗1000

55 ⌋ backscatter bits
per BF frame.
3.2 Ultralight DMG control frame detection
A natural challenge that arises in using a DMG BF control
frame is that a tag needs to respond only to a control frame.

1716 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

In order to determine the type of 802.11ad packet, it is neces-
sary to demodulate the packet from the tag. However, this is
not possible under a limited power budget, as demodulation
requires a mixer and a high-speed oscillator. Instead, there are
two distinctive aspects to the control frame: 1) the preamble
sequence (repeated Gb128 symbols) remains highly correlated
after passing through a narrow bandwidth filter; 2) the control
frame (48 Gb128 symbols) has a longer preamble than the data
frame (16 Gb128 symbols), and this observation allows the tag
to detect the type of frame without adding complex hardware.
The type of frame is detected using a power detector. A power
detector is a powerless device that simply converts received
RF signals into voltages without consuming power.

3500

V
ol

ta
ge

 (m
V

)

1 2 3 4 5 6 7 8 9

Preamble (4.36 us)
1750

0
Time (us)

(a) Control frame.

Time (us)
1 2 3 4 5 6 7 8 9

Preamble (1.89 us)
0

1750

3500

V
ol

ta
ge

 (m
V

)

(b) Data frame.

Figure 7: A control frame and a data frame captured by a
power detector with a sampling rate of 55 MHz.

Interestingly, a narrow 10MHz bandwidth (about 0.4% of
2.17 GHz) still shows a high correlation for the power de-
tector’s output voltage during the preamble due to the redun-
dancy of the repeated Gb128 symbols. Although the detector’s
narrow bandwidth causes signal distortion, we observe high
similarity between successive distorted Golay symbols. Using
this, it is possible to detect a control frame in a tag efficiently
without a complicated demodulation process and hardware.
Fig. 7(a) and Fig. 7(b) show the output voltage of the power
detector for a control frame and a data frame, separately. It’s
worth noting that there is a clear difference between control
frames and data frames. This is due to the fact that a control
frame utilizes a Golay sequence that spreads both the pream-
ble and the payload, whereas only the preamble field in a data
frame uses a Golay sequence. Leveraging its unique prop-
erty, mmComb tag calculates the auto-correlation of output
voltage on distorted Golay symbols using a sliding window.
The correlation output can detect both the start and type of a
frame.

As shown in Fig. 8, a high correlation is observed through-
out the entire control frame, while the correlation drops after
the preamble in the data frame. Using a threshold-based cut-
off, we can detect the type of frame with 98.5% sensitivity
(T P

T P+FN) and 99.1% accuracy. The detection can be com-
pleted in ≈ 2µs as the length of the data frame preamble is
only 1.89µs.

1

0.5

0N
or

m
al

iz
ed

 C
or

re
la

tio
n

Time (us)
1 2 3 4 5 6 7 8 9

Preamble
(4.36 us)0.25

0.75

(a) Control frame.

1

0.5

0N
or

m
al

iz
ed

 C
or

re
la

tio
n

Time (us)
1 2 3 4 5 6 7 8 9

Preamble
(1.89 us)

0.25

0.75

(b) Data frame.
Figure 8: The correlation outputs differ between a control
frame and a data frame.

4 Suppressing Self-interference
While the mmWave commodity backscatter techniques de-
scribed in the previous section ensure proper modulation,
demodulation, and embedding of the backscatter bits, high
self-interference can result in low backscatter SINR. Here,
the self-interference refers to all incoming signals received
directly from the AP to the client, including LoS and NLoS
paths, but not the backscatter path.

As mentioned earlier, shifting the center frequency of the
backscattered signal is not feasible for wide 802.11ad/ay
WLAN channels due to a limited power budget. Instead, we
exploit the directionality of mmWave communication to sepa-
rate the backscatter and self-interference signals in the spatial
domain through careful beamforming and nulling. Our main
objective here is to identify a receiver beam antenna weight
vector that maximizes the gain towards the backscatter tag
while creating the nulls in the direction of self-interference.
This is demonstrated in Fig. 9. Apart from improving SINR, a

TAG

Self-interference Backscatter

Self-interference Backscatter

(a) Before receive beamforming

(b) After receive beamforming

TAG

AP

AP

Client

Client

Figure 9: Our receive beamforming creates a custom beam
with high gain towards the tag and nulls towards the self-
interference to improve backscatter SINR.

key advantage of this design is that it offloads the responsibil-
ity of self-interference mitigation on the receiver (a commod-
ity device) without adding any complexity to the tag design.

Such beamforming and nulling require us to address the
following questions: (i) how can we determine the backscat-
ter path in a composite signal received at the receiver, which
also includes self-interference signals? (ii) how can we esti-
mate the angle of arrival (AoA) for the backscatter and self-
interference paths? (iii) how can we create a beam towards
the tag direction and nulls towards self-interference direc-
tions using the AoA information when both signals are highly
correlated? and lastly, (iv) how can we develop a backscat-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1717

ter protocol that is compatible with commodity mmWave
devices?
4.1 Backscatter beamforming with nulling
In this section, we first address how to create a high-gain
beam towards the tag while nulling the self-interference.
Beamforming primer. Beamforming is achieved through
a weight vector applied to antenna elements in mmWave’s
phased antenna array. This creates varying phases and am-
plitudes in incoming or outgoing signals. Fig. 10 shows the
receive beamforming. Each antenna element receives the sig-

Figure 10: Illustration of beamforming.
nal with a different phase value, also known as the steering
vector, depending on the angle of arrival (AoA). This can
result in a decrease in signal strength due to destructive in-
terference between received signals from each antenna ele-
ment. To address this concern, each element is assigned a
weight based on the AoA to enhance signal strength and im-
prove performance, ensuring that signals are received with
high SNR. If the transmitted signal s(t) arrives at the receiver
with an incident angle of θk for the kth path, the received sig-
nal becomes x(t) = s(t) ∗ a(θk) where a(θk) is the steering
vector for p antenna elements. a(θk) is essentially a vector
of phase shifts τk introduced by different travel lengths for
different antenna elements and can be written as a(θk) =

{1,eτk , · · ·,e(p−1)τk}, τk =
− j2π fcdcosθk

c where d, c, and fc
are the spacing between adjacent antenna elements, the speed
of the light, and the center frequency, respectively. When there
is only a single path (k = 1), the weight vector can be cal-
culated by compensating for the additional phase shifts for
that path, i.e., w(θk) = {1,e−τk , · · ·,e−(p−1)τk}. When there is
more than one path, the weight vector should depend on the
steering vector matrix A = [∑k

j=1 a1(θ j), . . . ,∑
k
j=1 ap(θ j)] for

all incoming paths, i.e., w = [∑k
j=1 w1(θ j), . . . ,∑

k
j=1 wp(θ j)].

However, when the incoming signal contains both the desired
signal and the self-interference as in mmComb, it is non-trivial
to find the weight vector that maximizes only the backscatter
signal while nulling the self-interference.
Beamforming for backscatter only. mmComb creates the
optimal weight vector by calculating a covariance matrix us-
ing the AoA information. This method provides an approach
that can be readily implemented without any protocol mod-
ifications or additional measurements. Existing works such
as [13, 26] propose to use evolutionary algorithms or neural
networks for estimating the optimal weight vector. They then
use multiple SNR measurements to evaluate the fitness of the
estimated solution. However, in our case, both the backscatter
and self-interference signals are strongly correlated (they are

simply a phase-shifted copy of each other) which makes it dif-
ficult to use the SNR measurements for the fitness evaluation.
mmComb utilizes spatial smoothing technique to decorre-
late incoming signals to find the optimal weight vector. We
now describe the optimal weight vector calculation process
adopted for our scenario.

For ease of exploration, let us consider a linear antenna
array with p elements receiving signals. The received signal
y is then represented by y = ∑

p
i=1 w∗

i xi = w∗x where x and
w are the received signals and weight vectors, respectively,
and ∗ indicates complex conjugate transpose of vectors like
in Fig. 10. As we described in Sec. 4.2, we can differentiate
between backscatter and self-interference paths and calcu-
late their AoA. This can enable us to calculate the optimal
weight vector. Specifically, if the ideal received signal (i.e.,
only the backscatter signal) from the backscatter path is yb,
we can nullify the self-interference by minimizing the error
ε = y− yb = w∗x− yb between the received signal and the
ideal backscatter signal. The mean squared error E[εε∗] can
be calculated as

E[εε
∗] = E[(w∗x− yb)(w∗x− yb)

∗]

= w∗Rw−2w∗r+ yb ∗ yb
(2)

where R = E[xx∗] is the auto-correlation of the signal arriv-
ing at each antenna element and r = E[ybx∗] is the cross-
correlation between the ideal backscatter signal and arrived
signal. By finding the minimum using differentiation dE[εε∗]

dw =

2Rw− 2r, we can get the optimal weight vector w = R−1r.
Intuitively, R−1 cancels the self-interference signals and r
creates a high-gain beam towards the backscatter direction.
We calculate the yb and x by replacing the desired signal and
interference signal with the steering vectors from their AoA.
Therefore, yb can be the steering vector of a tag direction
while x is the steering vector of the combined signal. We then
use them to calculate the optimal weight vector.

There is, however, a critical challenge in simply adapt-
ing the correlation matrix to determine the optimal vector.
The matrix calculation assumes that the incoming signals of
backscatter and self-interference are mutually not correlated.
If the signals are coherent, there will be a rank loss in the
covariance matrix [10], resulting in the creation of wrong
weight vectors.
Spatial smoothing for phased arrays. To address the chal-
lenge, we leverage a unique characteristic of mmWave WiFi
that has a large number of antenna elements to decorrelate the
incoming signals. Using this redundancy of these antenna ele-
ments, mmComb applies the spatial smoothing technique by
splitting the array into several subarrays [40]. This is shown
in Fig. 11. Spatial smoothing has been used for decorrelating
signals in the context of AoA estimation [20, 48]. In order
to accurately estimate the Angle of Arrival (AoA), it is im-
portant to identify the Eigenvector of the steering vectors for
incoming signals. These vectors need to be orthogonal to each

1718 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ᇱ
ఏഀ ଶఏഀ

ᇱ
ఏഁ ଶఏഁ

ଶగఏ

1st Subarray
2nd Subarray

3rd Subarray

Figure 11: Spatial smoothing: The correlated incoming signal
α and β become decorrelated signal α’ and β’.

other. However, if the incoming signals are correlated, they
lose their orthogonality even if they have different AoAs. To
overcome the issue of correlated signals, as shown in Fig. 11,
the incoming signals are averaged over the subarrays to decor-
relate them.

Let us assume that L subarrays are created from the p an-
tenna elements where each subarray size is M. This yields
L = p−M + 1. Let xi(t) = ADi−1s(t) denote the received
signal at the ith subarray where A is the steering vector for
the subarray. A is M × K Vandermonde matrix with rank
K (number of paths). D is K dimensional diagonal matrix
of K paths’ AoA (D = diag{e− jω0τ1 , . . . ,e− j fcτk}). Then the
correlation matrix of the ith subarray is represented by Xi =
E[xx∗] = E[(AMDi−1)S)(AMDi−1)S)∗] = AMDi−1SD∗(i−1)A∗

M
where S is the correlation matrix of the transmitted signal
(S = E[s(t)s(t)∗]). If there are L subarrays, the smoothed co-
variance matrix becomes the mean of the subarray covariances
which can be presented as

X =
1
L

L

∑
i=1

Xi = A(
1
L

L

∑
i=1

D(i−1)SD∗(i−1))A∗ = ASA∗ (3)

where S is the modified signal source and is non-singular even
with coherence signals given that L ≥ K. As an example, with
our commercial mmWave WiFi hardware, the 6×6 phased
array can be configured as 4 subarrays of 5×5 as shown in
Fig. 12(a). We then average the measured power delay profile
over the subarrays of the antenna so that the signals from
different directions become decorrelated signals. Figs. 12(c)-
12(e) show the impact of spatial smoothing on an example
beam pattern with and without nulling.
4.2 Extracting the backscatter path
To achieve the above-mentioned beamforming with nulls, we
need to identify the backscatter path(s) and self-interference
path(s) along with their AoA. Although mmWave channel
sparsity (3-4 paths in typical indoor environment [49]) reduces
the complexity of the problem, It is difficult to distinguish
between the backscatter signal and the self-interference signal
as they are the same signal but with different channels. We
adopt a power delay profile (PDP) based solution for estimat-
ing AoA. Specifically, we leverage the approach proposed
in [43] for beam alignment and [34] for localization. A de-
tailed description of the AoA estimation method can be found
in Appendix A1.

Subarray1
Subarray2

Subarray3
Subarray4

802.11ad phase array

(a)

Subarray1
Subarray2

Subarray3
Subarray4

802.11ad phase array

(b)

0 100
Angle (degree)

-60

-40

-20

0

A
n

te
n

n
a

g
ai

n
 (

d
B

)

Self-interference
Signal

(c)

0 100
Angle (degree)

-40

-20

0

A
n

te
n

n
a

g
ai

n
 (

d
B

)

(d)

0 100
Angle (degree)

-60

-40

-20

0

A
n

te
n

n
a

g
ai

n
 (

d
B

)

(e)

Figure 12: (a) 6× 6 phased array used in 802.11ad devices
and (b) spatial smoothing with L=4; Example beam patterns
of (c) without both nulling and smoothing, (d) with nulling
and without smoothing, (e) with both nulling and smoothing

Path3

TAG

Reflector

Path1

Path2

(a)
N

o
rm

al
iz

ed
 P

D
P

 a
m

p
li

tu
d

e

Path3

Path2

Path1

Time

(b)

N
o

rm
al

iz
ed

 P
D

P
 a

m
p

li
tu

d
e

Path3

Path1 Path2

Time

(c)
Figure 13: The tag operation changes the PDP peak of Path2.

Identifying the backscatter path. After determining the
AoA of different paths, we need to classify them as either
backscatter paths or self-interference paths. We leverage a
simple observation: during the tag operation, only the ampli-
tude of the backscatter path changes, not the self-interference
(LoS and ambient reflections) paths. Fig. 13 shows measured
PDP for one backscatter path and two self-interference paths.
4.3 mmComb backscatter protocol
We now discuss how mmComb can operate with 802.11ad/ay
protocol without any protocol modification. Our system oper-
ates as shown in Fig. 14(a).

The AP periodically exchanges BF frames with a client
(STA) to maintain the link between the AP and the STA. Note
that while we refer to this as beam training here which is
typically accomplished through SLS frames, a round of bea-
cons sent out by the AP can also be used for the purpose as
mentioned in Sec. 2. During the initial phase, the tag operates
as ON (bit 1) for the first beam training and as OFF (bit 0) for
the second beam training. The initial phase helps the client
receiver extract all paths, identify the backscatter path, and es-
timate the AoA for the backscatter and self-interference paths.
Although AoA estimation requires 2 beamforming training,
only one measurement is needed for starting backscatter-
ing communication. This is followed by a procedure at the
client where quantized steering vectors are calculated, spatial

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1719

BFs BFs BF

Beam Training #1

TAG

Time

TAG ON (bit1) TAG OFF (bit0) Modulation

Path (AOA)
Extraction

Backscatter Path
Identification

Demodulation
with nulling

AP

STA

Initial Phase Operation Phase

Beam Training #2 Beam Training #3

BFs BFs

(a) mmComb over 802.11ad/ay.

AOA
measurement

Quantized
steering
vectors

ଵ

P
D

P

ଵ

Calculate
weight
vector

ିଵ

Spatial
smoothing

Quantize
weight
vector

Evaluate the
SINR for

different size
of subarray

௨

(b) Steps in beamforming vector calculation with nulling
Figure 14: mmComb framework.

smoothing is applied, and the weight vector that provides the
best SINR is selected, as shown in Fig. 14(b). Through this
process, the client receiver determines a custom beam that
can provide high SINR for backscatter communication. The
AP sends out BF frames in different Tx sectors, modulating
them with tags. The receiver then demodulates the backscat-
ter data using a custom receive beam. In case of a channel
change (for example, human mobility nearby), the AoAs can
be recalculated. Fortunately, the channel change is also likely
to trigger beamforming for the STAs in the network. This can
be leveraged for quickly recalculating the AoAs to maintain a
continuous backscatter connection. Therefore, there is a high
chance that more than two beamforming opportunities are
available within one beacon interval under frequent beam-
forming. This results in the initial phase being completed
within one beacon interval, including path extraction which
takes less than 300µs [43, 45]. We note that mmComb can
leverage any control frame for piggybacking the backscatter
data. Also, beamforming can occur multiple times within one
beacon interval especially when multiple clients are connected
to the AP. Both these factors greatly increase the opportunity
to perform backscatter communications. Furthermore, the
idea of mmComb is to integrate mmWave backscatter tags
in the mmWave WLANs (just like conventional mmWave
clients). So, it is possible that the AP uses additional beam-
forming frames to enable communication with the tags.

This protocol also holds for multiple tag cases. Due to the
channel sparsity of mmWave, only a few tags respond in each
sector (i.e., have high gain for incoming signal). Additionally,
due to the different traveling distances, different tags can be
differentiated as separate peaks in PDP (Fig. 13), allowing the
receiver to determine the AoA for each tag. With this given
AoA information, a receiver can perform Rx beamforming
for a specific tag while nulling other tags that can respond to
the same Tx sector. We further demonstrate this in Sec. 6.4.

TAGTAG

Beamforming for STA 1
& Backscattering for STA 2

TX beam training RX tag beamforming

STA 1

STA 2

RX Quasi-omni

Beamforming
process

(AP-STA1)

Beamforming
process

(AP-STA2)

Backscatter communication
(TAG-STA2)

Backscatter communication
(TAG-STA1)

STA 2
STA 1

1

2
3

4
5

6

7 1

2
3

4
5

6

7

Beamforming for STA 2
& Backscattering for STA 1

Figure 15: Illustration of mmComb protocol
One potential issue is that when a station (STA) acts as a re-

ceiver (Rx) for backscatter and changes its receive beam from
quasi-omni to a new customized beam, it may provide the AP
with an inaccurate sector (the highest SNR sector from the
AP to the STA) during the process of beamforming (Fig. 1).
We have observed that this problem does not arise in our sys-
tem. The reason behind this is that when an STA performs
beamforming with the AP, it doesn’t allow backscatter com-
munication to prevent any interference with its beamforming
process. Instead, the STA acts as the Rx for a backscatter
when the AP is performing beamforming with other STAs.
This is demonstrated in Fig. 15 using one AP and two STAs.
During beamforming training with STA1, the AP can utilize
STA2 as a receiver for a backscatter tag. In this process, the
tag uses BF frames from the AP to backscatter data to STA2,
received over a custom beam with self-interference nulling.
The STA1 receives AP’s BF frames in quasi-omni mode as
per protocol while maintaining unaffected communication
with the AP. The beamforming training for different stations
is conducted by the AP in separate time slots. Hence, the same
is true when the AP performs beamforming with STA2 and
STA1 receives the backscatter signals.

5 Implementation
5.1 mmComb Tag Prototype
Our tag prototype is shown in Fig. 16. We fabricated four
prototype tags with a GotMIC gSSD0011 SPDT switch that
is attached to the housing using a conductive epoxy and pack-
aged with gold-plated aluminum. The switch can support
switching speeds up to 100 MHz with rise and fall times of
up to 1ns. The return loss (S11) of the tag is measured and
shown in Fig. 16(c).

0.
7

in
ch

0.98 inch

0.
98

in
ch

0

-25

-10

-5

-15

-20

ଶ
(d

B
)

Frequency (GHz)
50 60 70

(a)

0.
7

in
ch

0.98 inch

0.
98

in
ch

0

-25

-10

-5

-15

-20

ଶ
(d

B
)

Frequency (GHz)
50 60 70

(b)

0.
7

in
ch

0.98 inch

0.
98

in
ch

0

-25

-10

-5

-15

-20

(dB)

Frequency (GHz)
50 60 70

(c)

Figure 16: (a-b) Our mmWave tag prototype, (c) S(11) return
loss measurements of our tag.

1720 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 3 5 7 9 11
Distance (m)

5

10

15

20

25

S
N

R
 (

d
B

)

TX moving case

fitted curve

RX moving case

(a) SNR

1 3 5 7 9 11
Distance (m)

10
-4

10
-2

10
0

B
E

R

TX moving case

RX moving case

(b) BER

1 3 5 7 9
Distance (m)

0

10

20

30

40

50

D
at

a
ra

te
 (

M
b

p
s)

TX moving case

RX moving case

(c) Data rate
Figure 17: Backscatter SNR, BER, and data rate at different distances.

mmComb tag attaches a tag antenna (15 dBi V-band an-
tenna SAR-1532-15-S2 with a half-power beamwidth of 41
degrees) to absorb or reradiate a backscatter signal. The tag
output ports are attached to reflective ends where one of them
reradiates the received signal without any change and the
other introduces a phase shift of π using an additional round-
trip of quarter wavelength. The switch is controlled through a
TerasIC FPGA board with a microcontroller (SAM4SD32C).
5.2 mmComb Commodity WiFi Readers
Commodity 802.11ad devices from Airfide [4] and Mikrotik
[2] are used as commodity readers in mmComb, as they use
the same 802.11ad Qualcomm QCA6310 chipset and 6×6
antenna array. To enable desired modifications, we implement
various changes to the 802.11ad Wil6210 driver and firmware
to (i) send BF frames to selected sectors as desired, (ii) set
selected Tx and Rx beams, (iii) extract per-element CSI (am-
plitude and phase), and (iv) create and apply new codebook
to firmware with desired weight vectors.

IF-bridge board

WiFi AP

(a) (b) (c)

Figure 18: mmComb uses 802.11ad APs as Tx with two types
of Rx: (a) 802.11ad MikroTik AP TX, (b) Airfide AP RX
with IF bridge board, and (c) SiversIMA 60 GHz RF SDR
RX.

We consider two types of setup: (i) both Tx and Rx are
commodity 802.11ad devices, and (ii) the Tx is a commod-
ity 802.11ad device while the Rx is a 60 GHz SDR. In both
setups, the Tx transmits 802.11ad BF frames. The first setup
includes two types of commodity receivers: an unmodified
commodity 802.11ad device and a commodity 802.11ad de-
vice equipped with an IF bridge board [57] to extract raw
I/Q data as shown in Fig.18. The unmodified 802.11ad re-
ceiver allows for commodity compatibility, demonstrating
that backscattered beamforming frames can be received with-
out any modifications to hardware, software, or protocol. In
contrast to the prior work such as [53] where the checksum
errors are ignored (through driver/firmware modification in

sub-6 GHz WiFi), we note that the current and only publicly
available 802.11ad firmware (wil6210) internally drops the
frames with a checksum error. To avoid it, mmComb tags
further modulate the checksum (Sec. 2) based on the modified
data so that the frame can be correctly received on an unmodi-
fied 802.11ad Rx. However, it only evaluates frames correctly
received at the Rx and does not allow accurate calculation
of BER. In order to evaluate it even on low SNR scenarios
where the frame cannot be correctly received by the firmware,
we use the IF bridge board on 802.11ad Rx to extract the
raw I/Q data. The raw bits are decoded and analyzed with
Keysight’s 81199A Wideband Waveform Analyzer. We note
that the IF bridge board is only used on the Rx for detailed
bit-level analysis of backscatter BF frames. Our proposed
design works with an unmodified 802.11ad Rx without the IF
bridge board as we show in Fig. 21.

In the second setup, we use SiversIMA 60 GHz RF frontend
with a 16-element phased array on the Rx. Compared to the
phased array found in commodity 802.11ad devices which
provides 2-bit phase control, the SiversIMA array provides
6-bit phase control, enabling us to better analyze the impact
of beamforming and nulling on backscatter BER. Since most
antenna arrays used COTS 802.11ad devices do not provide
per-element amplitude control, we also focus only on phase
control in this work.

6 Evaluation
We perform exhaustive experiments to evaluate the perfor-
mance of mmComb under diverse scenarios. They include
(i) benchmarking read range and angles, (ii) commercial de-
vice FRR, (iii) nulling performance and impact on BER, (iv)
NLoS situations in practical deployments, (v) impact of tag
on mmWave WiFi, (vi) multiple simultaneous tags, and (vii)
power consumption.
6.1 mmComb read range and angle
Backscatter range. We first perform a micro-benchmark
for mmComb read range in a 12m× 12m office room. The
setup is shown in Fig. 19(a) where 802.11ad devices are used
as Tx and Rx. The tag and one endpoint (either Tx or Rx)
are stationary while the other endpoint gradually moves to
increase distance. This is a common scenario in mmWave
WLANs, where an AP (Tx) is fixed and a client (Rx) is lo-
cated at varying distances from the tag. The Rx captures the
modulated 802.11ad BF frames sent by the Tx AP. These

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1721

frames are then analyzed to determine the backscatter SNR
and BER. Figs. 17(a) and 17(b) show the mean SNR and
BER for different distances. We find that even up to 5.5m
distance, the BER remains below 10−3. Even for a range of
7m, the BER remains lower than 10−2. Fig. 17(c) shows that
mmComb achieves a data rate of 54.4 Mbps up to 7m (out of
the maximum possible data rate of 55 Mbps).
Impact of angle. Unlike legacy WiFi, mmWave WiFi is
highly susceptible to angular changes due to directionality.
As shown in Fig. 19(a), we set a tag at 2m distance from the

TAG Angle ()

AP

Client

2) RX-Tag Distance

1) TX-Tag Distance

(a) Setting for tag angle & distance evaluation.

0 4 8 12 16 20 24 28 32 36
0

10

20

B
a
c
k
sc

a
tt

e
r

S
N

R
 (

d
B

)

Backscatter SNR

(b) SNR

0 4 8
1
2

1
6

2
0

2
4

2
8

3
2

3
6

10
-4

10
-2

B
E

R

(c) BER

Figure 19: Backscatter SNR and BER over angle.

802.11ad devices and increase the angle from 0◦ to 38◦. Here,
the Rx position is fixed as it utilizes a beam pattern to receive
the signal from the tag, while the Tx position is changed to
vary the angle. As observed in Fig. 19(b), the backscatter SNR
remains higher than 7.9 dB even for 38◦ which is close to the
antenna beamwidth of 41◦. Fig. 19(c) shows that the mean
BER remains lower than 1.3×10−2 over all angles within the
tag antenna beamwidth.
Tag at different locations. We conduct an experiment by
varying the incident angle of the backscattered signal to Rx.
Fig. 20 shows a 10m× 10m room where we perform over
200 measurements at 20 different locations. These locations

0 1
3

4

-1

-4

BER (%)

10

10

10

10

10

10

Classroom

mmComb

Tag

Figure 20: Backscatter BER for 20 different tag positions

are randomly chosen to create different incident angles and
distances. The position of Tx and Rx devices are fixed while
the Rx performs beamforming towards the tag (as well as

nulling for self-interference) depending on its position. The
incident angle is varied from −45◦ to +45◦. As we can see
in Fig. 20, we can achieve consistently low BER over the 90◦

span and up to 4m distance.
Frame reception ratio. We now use the 802.11ad MikroTik
devices as both Tx (AP) and Rx (client). We deploy the two
in a 12m×12m classroom along with a tag that backscatters
by modulating the BF frames sent by the AP. As mentioned
earlier in Sec. 5.2, the tag not only modulates the BF frame
body part but also the checksum, making it possible for the
unmodified commodity Rx to receive the frame. Since the
received frame is processed through the (closed source, pro-
prietary Wil6210) firmware, we directly measure the frame
reception ratio (FRR) at the Rx along with SNR. To collect
the SNR from commercial devices, we utilize the SNR report
from feedback frames. In the BF process, the SSW feedback
frames report the client’s observed SNR back to the AP. The
measured SNR is reported as 8-bit two’s complement value of
4×(SNR−19)). The Rx extracts backscatter data by compar-
ing known/expected BF frame bits with received ones. Fig. 21

0 5 10 15 20 25 30
SNR (dB)

0

50

100

F
R

R
 (

%
)

Figure 21: Frame Reception Ratio

shows the FRR for different SNR values. Similar to previ-
ous results, when Rx performs beamforming toward the tag
to achieve a high gain (SNR ≥ 10 dB), the average FRR is
observed to be 91.4%.
6.2 Nulling backscatter self-interference
In this section, we evaluate how mmComb’s beamforming
with self-interference nulling performs. To do so, we perform
extensive experiments to analyze: (i) the creation of custom
beams with nulls, (ii) the impact of phase resolution, (iii) the
subarray size in spatial smoothing, (iv) nulling with multi-
ple nulls, (v) performance comparison with state-of-the-art
nulling techniques, and (vi) different mmWave WiFi devices.
Creating beam patterns with nulls. To understand the
nulling performance, we place the tag at arbitrary locations.
The identification of the path and estimation of AoA are per-
formed for backscatter and self-interference paths. We then
compare two types of beams - one that is chosen directly from
the codebook without any self-interference nulling and an-
other one that uses mmComb nulling. Fig. 30 in Appendix A2
shows examples of six beam patterns before and after nulling
with 4-bit phase resolution. The receiver was mechanically
rotated while the transmitter sent signals over the LoS path to
measure beam patterns. As shown in Fig. 22(a), the nulling
performance can be calculated by subtracting the gain of the
main lobe in the backscatter direction from the gain of the

1722 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

null in the self-interference direction. The results indicate an
average nulling performance of 27.6 dB, with a maximum of
33.4 dB. Compared to the default beam pattern in the code-
book, our nulling results in an average gain of 19 dB, but it
reduces the gain of the main lobe to an average of 1.95 dB.

1 2 3 4 5 6

Beam pattern index

0

10

20

30

N
u

ll
in

g
 i

n
 d

B

w/o Nulling
w/ Nulling

(a)

10 20 30 40

Nulling in dB

0

0.5

1

C
D

F

6 bits

4 bits

2 bits

(b)

Figure 22: Nulling performance for (a) 6 beam patterns shown
in Fig. 30 and (b) 25 beams with different phase resolution.

Impact of phase resolution. Given that today’s mmWave
WiFi antenna arrays offer low phase resolution, we compare
nulling performance at 25 different tag locations (different
directions of backscatter and self-interference) for 2-bit, 4-bit,
and 6-bit phase resolution. The results are shown in Fig. 22(b).
We find that over 50% of measurements achieve nulling per-
formance of 27.2 dB or higher with a 6-bit resolution. The
performance degrades with a coarser resolution of phase con-
trol as we expected. However, the mean nulling performance
is still 20.1 dB and 20.9 dB for 2-bit and 4-bit resolution,
respectively. Additional evaluations for nulling (different de-
vices, number and size of subarray in spatial smoothing, and
multiple self-interference paths) can be found in Appendix
A2.

TX

Office scenario

Pile of books

Tag

Tag

Cardboard box

Glass

Tag

4

5

1

2

3

6
78

9
10

4

5

6-10

(a) Evaluation for LoS (1-3) and NLoS (4-10).

1 2 3 4 5 6 7 8 9 10
Tag Position

10
-4

10
-2

10
0

B
E

R

(b) BER at different positions
Figure 23: mmComb performance in LOS and NLOS cases

6.3 Practical deployment
We now evaluate a practical scenario where the tags are de-
ployed in an office environment (a 10m×10m room) as shown
in Fig. 23(a). We deploy an Airfide 802.11ad AP in the corner
of the room. The AP transmits BF frames across 36 different
sectors. The 802.11ad clients are receivers placed in various

cubicles. The Fig 23(a) shows ten different tag positions. Po-
sitions (1-3) have a LoS path with the AP. The remaining
positions (4-10) have blockage (cardboard boxes, books, etc.)
and the signal either is received after penetration or reflection
(NLoS) from nearby objects.

Fig. 23(b) shows the BER for 10 tag locations. We find that
BER for positions 1-3 is less than 10−3 due to LoS (similar to
Sec. 6.1). For NLoS cases, position 4 achieves low BER due to
low penetration loss from the cardboard. The BER increases
in positions 5-10 with books and glass blockages. Given that
glass has a relative permittivity (ε) of 3.7 to 10 [19], the
backscatter SNR drops. However, the corresponding average
BER is still 2.1×10−1. This is primarily due to the received
beamforming towards the tag and self-interference nulling for
other reflections in the room which significantly improves the
SINR even when the incoming signal to the tag is weak.
6.4 Scalability of mmComb
We evaluate the scalability of mmComb with multiple tags
and simultaneous operations. We create a scenario where we
place tags at 7 positions in a 10m×10m classroom as shown
in Fig. 24(a). We first operate the tags individually (with no
other tag interference). Fig. 24(b) shows 10 Tx sectors (5 each

RX TX

1
3 4

5 6
7

2

(a) Experiment setting for multiple tags.

Two tags responseSingle tag response

Null for
other tags

RX
beamforming

Tag
Response

TX
sector

Null for
other tags

RX
beamforming

Tag
Response

TX
sector

Tag 4/1Tag 1/4Tag1 & Tag4TX3-Tag3Tag3TX1

Tag3/2Tag 2/3Tag2 & Tag3TX6-Tag2Tag2TX2

Tag 5/3Tag 3/5Tag3 & Tag5TX8-Tag5Tag5TX4

Tag 7/6Tag 6/7Tag6 & Tag7TX9-Tag2Tag2TX5

Tag 3/1Tag 1/3Tag1 & Tag3TX10-Tag1Tag1TX7

(b) Tag response corresponding to a TX sector.

Figure 24: Multitag experiment.
for one and two tag responses) and the corresponding tags
that can respond when a BF frame is sent in that Tx sector.
We note that this setup uses a COTS 802.11ad AP as the Tx
where the phased array antenna has non-uniform beam pat-
terns with non-trivial sidelobes. This represents a real-world
scenario and we anticipate the performance to be better (i.e.,
less inter-tag interference) when antenna arrays achieve a
better directionality in the future. We observe that due to
the directionality of Tx sectors, at most one tag responds in
the majority (82.8%) of Tx sectors (not all Tx sectors are
shown in Fig. 24(b)) even when they are densely deployed.
In such cases, the Rx can beamform to the responding tag
in each Tx sector to receive data from it in a time-divided
manner (i.e., TDMA). We also observe that in a few Tx sec-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1723

tors (17.2%), two tags respond. This is primarily attributed to
the non-uniformity of Tx beams in today’s phased arrays. As
shown in Fig. 24(b), the Rx can beamform to one of the two
tags and null to the other to reduce interference. Even with
various randomly generated deployments in the presented
scenario, we find that at most two tags respond in one Tx
sector, requiring nulling interference from at most one tag
at any time. We note that interference nulling through Rx
beamforming is required only when two tags respond in the
same Tx sector. It is not required if only one tag responds in a
given Tx sector. When two tags respond in the same sector,
the Rx can beamform to one and null to the other one by one
in different beamforming rounds to receive data from both
of them in a TDMA manner. To further validate this, we

1 2 3 4 5 6 7

Position Index

0

5

10

15

S
N

R
 (

d
B

)

Single tag operation

Concurrent tag operation

Figure 25: Single tag vs. concurrent multi-tag SNR.
operate all seven tags in Fig. 24(a) simultaneously and use
the TDMA-based tag communication for different Tx sectors
and corresponding Rx sectors as shown in Fig. 24(b). Fig. 25
shows the difference between tags operating separately versus
all tags operating concurrently. We find that even when the
Rx does not perform nulling for other tags (e.g., TX1 or TX2)
because only one tag responds in the Tx sector, concurrent
operation of the other tags does not affect the SNR (an aver-
age SNR difference of only 0.2 dB). Similarly, when the Rx
performs nulling (e.g., TX3 or TX6) in the case when two
tags respond, the SNR difference between separate and con-
current operations is still very small (average 0.2 dB). Overall,
these results show that mmComb can scale to multiple tags
with backscatter communication happening in a time-divided
manner (different tags readable in different AP sectors).
6.5 Power consumption
mmComb tag consists of four main components: clock, modu-
lator, frame detector, and SPDT switch. We analyze the power
consumption of the components using Libero SoC Smart-
Power [24]. Serial inverters are used to generate a 55 MHz
clock which is then input to the modulator and frame detector.
The clock consumes 7.5µW . The modulator provides con-
trol input to the switch for embedding backscatter bits in the
signal and consumes only 2µW . The frame detector module
consumes 76.8µW and our GotMIC gSSD0011 SPDT switch
only needs less than 1µW [14]. This results in total power con-
sumption of 87.3µW . This means that the tag can operate with
a 1000mAh coin cell battery for over 4 years. Furthermore, it
can operate battery-free using a solar cell which can harvest
100µW in a typically illuminated office environment [33].
7 Related Work
Conventional and sub-6 GHz WiFi backscatter systems.

Conventional backscatter systems such as UHF RFID have
been studied for over two decades [11, 16, 30]. Compared
to mmComb which can provide megabits per second data
rates, these systems are primarily designed for low-power,
low-rate reader-tag communication. High cost [12] of de-
ploying dedicated readers has given rise to commodity WiFi
backscatter systems. Such systems include WiFi backscat-
ter [17], BackFi [7], Passive WiFi [18], Hitchhike [53] and
WiTAG [3]. These systems are primarily designed for WiFi
in sub-6 GHz bands.

mmWave WiFi and backscatter. mmWave backscat-
ter systems have been recently proposed in [6, 28, 41]. Both
[41] and [6] do not use WiFi commodity devices as readers
but instead use FMCW radars. Apart from that, both works
achieve limited data rates compared to mmComb. A high-
speed mmWave backscatter system was proposed in [28]
achieving a data rate of 100 Mbps. However, the proposed
system requires additional hardware for a reader and a special-
ized antenna that can isolate backscatter signals using polar-
ization. Extensive measurement studies have been conducted
to understand 60 GHz links [36–38, 44, 49, 58] and interfer-
ence [5, 31, 42, 52]. Creating nulls in the direction of interfer-
ence has been studied in prior works including [15,26,29,51].
Various novel types of algorithms including genetic algo-
rithm [15, 26], BAT algorithm [47], Neural Network [13, 22]
have been used to create antenna patterns with desired null
behavior. The application of these algorithms poses several
limitations in our case as the backscatter and self-interference
signals are strongly correlated.

8 Conclusion and Discussion

In this paper, we introduced a 60 GHz mmWave WiFi com-
modity backscatter system. We believe that our work can be
improved in three following aspects: (1) Tx beamforming:
mmComb currently uses Rx beamforming at the client to re-
ceive data from the tag, while the AP utilizes unmodified
codebook beams for BF frames. Incorporating TX beamform-
ing along with RX beamforming can further reduce the self-
interference and improve backscatter SINR and BER. The
Tx beamforming will also improve multi-tag operations by
reducing inter-tag interference (i.e., improve TDMA) as Tx
beamforming naturally assigns specific tags to different TX
sectors under densely deployed multi-tag cases. Guaranteeing
protocol compatibility with AP beamforming to the tags is a
challenging issue that needs to be addressed in this context.
(2) Tag antenna: An improved antenna design on the tag with
a higher gain and wider field of view can help us further im-
prove the backscatter SNR and BER. (3) Data rates: We note
that our work only scratches the surface in terms of mmWave
commodity backscatter. With an ample amount of available
bandwidth, our work can be extended even further to achieve
higher data rates while being commodity-compliant to realize
the full potential of mmWave backscatter.

1724 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] GLOBAL IOT CONNECTIONS TO HIT 29.4 BILLION IN

2030. https://transformainsights.com/news/
global-iot-connections-294.

[2] Mikrotik 60 GHz 802.11ad AP. https://mikrotik.
com/product/wap_60g_ap.

[3] Ali Abedi, Farzan Dehbashi, Mohammad Hossein Maza-
heri, Omid Abari, and Tim Brecht. Witag: Seamless wifi
backscatter communication. In Proceedings of the An-
nual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,
architectures, and protocols for computer communica-
tion, pages 240–252, 2020.

[4] Airfide AFN2200. https://airfidenet.com/.

[5] H. Assasa, S. Kumar Saha, A. Loch, D. Koutsonikolas,
and J. Widmer. Medium access and transport protocol
aspects in practical 802.11 ad networks. In 2018 IEEE
19th International Symposium on "A World of Wireless,
Mobile and Multimedia Networks" (WoWMoM), pages
1–11, 2018.

[6] Kang Min Bae, Namjo Ahn, Yoon Chae, Parth Pathak,
Sung-Min Sohn, and Song Min Kim. Omniscatter: ex-
treme sensitivity mmwave backscattering using com-
modity fmcw radar. In Proceedings of the 20th Annual
International Conference on Mobile Systems, Applica-
tions and Services, pages 316–329, 2022.

[7] Dinesh Bharadia, Kiran Raj Joshi, Manikanta Kotaru,
and Sachin Katti. Backfi: High throughput wifi backscat-
ter. ACM SIGCOMM Computer Communication Review,
45(4):283–296, 2015.

[8] Spyridon-Nektarios Daskalakis, John Kimionis, Ana
Collado, Manos M Tentzeris, and Apostolos Georgiadis.
Ambient fm backscattering for smart agricultural moni-
toring. In 2017 IEEE MTT-S International Microwave
Symposium (IMS), pages 1339–1341. IEEE, 2017.

[9] Daniel Dobkin. The rf in RFID: uhf RFID in practice.
Newnes, 2012.

[10] Weixiu Du and Rodney Lynn Kirlin. Improved spa-
tial smoothing techniques for doa estimation of coher-
ent signals. IEEE Transactions on signal processing,
39(5):1208–1210, 1991.

[11] Klaus Finkenzeller. RFID handbook: fundamentals and
applications in contactless smart cards, radio frequency
identification and near-field communication. John wiley
& sons, 2010.

[12] Gary M Gaukler and Ralf W Seifert. Applications of
rfid in supply chains. Trends in supply chain design and
management, pages 29–48, 2007.

[13] R Ghayoula, N Fadlallah, A Gharsallah, and M Rammal.
Phase-only adaptive nulling with neural networks for
antenna array synthesis. IET microwaves, antennas &
propagation, 3(1):154–163, 2009.

[14] Gotmic AB. gssd0011. https://gotmic.se/
switches.html.

[15] Randy L Haupt. Phase-only adaptive nulling with a
genetic algorithm. IEEE Transactions on Antennas and
Propagation, 45(6):1009–1015, 1997.

[16] Elisabeth Ilie-Zudor, Zsolt Kemény, Fred
Van Blommestein, László Monostori, and André
Van Der Meulen. A survey of applications and
requirements of unique identification systems and rfid
techniques. Computers in Industry, 62(3):227–252,
2011.

[17] Bryce Kellogg, Aaron Parks, Shyamnath Gollakota,
Joshua R Smith, and David Wetherall. Wi-fi backscatter:
Internet connectivity for rf-powered devices. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM,
pages 607–618, 2014.

[18] Bryce Kellogg, Vamsi Talla, Shyamnath Gollakota, and
Joshua R Smith. Passive {Wi-Fi}: Bringing low power
to {Wi-Fi} transmissions. In 13th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 16), pages 151–164, 2016.

[19] Ghenadii Korotcenkov. Handbook of humidity mea-
surement, volume 2: Electronic and electrical humidity
sensors. CRC Press, 2019.

[20] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and
Sachin Katti. Spotfi: Decimeter level localization using
wifi. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, pages
269–282, 2015.

[21] Han-il Lee, Tae-young Choi, Saeed Mohammadi, and
Linda PB Katehi. An extremely low power 2 ghz cmos
lc vco for wireless communication applications. In The
European Conference on Wireless Technology, 2005.,
pages 31–34. IEEE, 2005.

[22] Bo Li, Tara N Sainath, Ron J Weiss, Kevin W Wil-
son, and Michiel Bacchiani. Neural network adaptive
beamforming for robust multichannel speech recogni-
tion. 2016.

[23] Zhengxiong Li, Baicheng Chen, Zhuolin Yang, Huining
Li, Chenhan Xu, Xingyu Chen, Kun Wang, and Wenyao
Xu. Ferrotag: A paper-based mmwave-scannable tag-
ging infrastructure. In Proceedings of the 17th Confer-
ence on Embedded Networked Sensor Systems, pages
324–337, 2019.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1725

https://transformainsights.com/news/global-iot-connections-294
https://transformainsights.com/news/global-iot-connections-294
https://mikrotik.com/product/wap_60g_ap
https://mikrotik.com/product/wap_60g_ap
https://airfidenet.com/
https://gotmic.se/switches.html
https://gotmic.se/switches.html

[24] Libero. Soc v11.8 archive. https://www.
microsemi.com/product-directory/root/
5485-libero-soc-v11-8-archive.

[25] Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gol-
lakota, David Wetherall, and Joshua R Smith. Ambi-
ent backscatter: Wireless communication out of thin
air. ACM SIGCOMM computer communication review,
43(4):39–50, 2013.

[26] Sohrab Madani, Suraj Jog, Jesus O Lacruz, Joerg Wid-
mer, and Haitham Hassanieh. Practical null steering
in millimeter wave networks. In 18th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 21), pages 903–921, 2021.

[27] Mohammad H. Mazaheri, Soroush Ameli, Ali Abedi,
and Omid Abari. A millimeter wave network for billions
of things. SIGCOMM ’19, 2019.

[28] Mohammad Hossein Mazaheri, Alex Chen, and Omid
Abari. mmtag: a millimeter wave backscatter network.
In Proceedings of the 2021 ACM SIGCOMM 2021 Con-
ference, pages 463–474, 2021.

[29] Moctar Mouhamadou, Patrick Vaudon, and Mohammed
Rammal. Smart antenna array patterns synthesis: Null
steering and multi-user beamforming by phase con-
trol. Progress In Electromagnetics Research, 60:95–106,
2006.

[30] Pavel V Nikitin and KV Seshagiri Rao. Theory and
measurement of backscattering from rfid tags. IEEE
Antennas and Propagation Magazine, 48(6):212–218,
2006.

[31] Thomas Nitsche, Guillermo Bielsa, Irene Tejado, Adrian
Loch, and Joerg Widmer. Boon and bane of 60 ghz net-
works: Practical insights into beamforming, interference,
and frame level operation. In Proceedings of the 11th
ACM Conference on Emerging Networking Experiments
and Technologies, CoNEXT ’15, New York, NY, USA,
2015. Association for Computing Machinery.

[32] Thomas Nitsche, Carlos Cordeiro, Adriana B Flores,
Edward W Knightly, Eldad Perahia, and Joerg C Widmer.
Ieee 802.11 ad: directional 60 ghz communication for
multi-gigabit-per-second wi-fi. IEEE Communications
Magazine, 52(12):132–141, 2014.

[33] Joseph A Paradiso and Thad Starner. Energy scavenging
for mobile and wireless electronics. IEEE Pervasive
computing, 4(1):18–27, 2005.

[34] Ioannis Pefkianakis and Kyu-Han Kim. Accurate 3d
localization for 60 ghz networks. In Proceedings of the
16th ACM Conference on Embedded Networked Sensor
Systems, pages 120–131, 2018.

[35] Eldad Perahia, Carlos Cordeiro, Minyoung Park, and
L Lily Yang. Ieee 802.11 ad: Defining the next gen-
eration multi-gbps wi-fi. In 2010 7th IEEE consumer
communications and networking conference, pages 1–5.
IEEE, 2010.

[36] S. K. Saha, H. Assasa, A. Loch, N. M. Prakash,
R. Shyamsunder, S. Aggarwal, D. Steinmetzer, D. Kout-
sonikolas, J. Widmer, and M. Hollick. Fast and infuriat-
ing: Performance and pitfalls of 60 ghz wlans based on
consumer-grade hardware. In 2018 15th Annual IEEE
International Conference on Sensing, Communication,
and Networking (SECON), pages 1–9, 2018.

[37] S. K. Saha, V. V. Vira, A. Garg, and D. Koutsonikolas.
A feasibility study of 60 ghz indoor wlans. In 2016 25th
International Conference on Computer Communication
and Networks (ICCCN), pages 1–9, Aug 2016.

[38] Swetank Kumar Saha, Yasaman Ghasempour, Muham-
mad Kumail Haider, Tariq Siddiqui, Paulo De Melo,
Neerad Somanchi, Luke Zakrajsek, Arjun Singh, Owen
Torres, Daniel Uvaydov, Josep Miquel Jornet, Edward
Knightly, Dimitrios Koutsonikolas, Dimitris Pados, and
Zhi Sun. X60: A programmable testbed for wideband
60 ghz wlans with phased arrays. In Proceedings of the
11th Workshop on Wireless Network Testbeds, Experi-
mental Evaluation and CHaracterization, WiNTECH
’17, page 75–82, New York, NY, USA, 2017. Associa-
tion for Computing Machinery.

[39] Swetank Kumar Saha, Tariq Siddiqui, Dimitrios Kout-
sonikolas, Adrian Loch, Joerg Widmer, and Ramalingam
Sridhar. A detailed look into power consumption of
commodity 60 ghz devices. In 2017 IEEE 18th Interna-
tional Symposium on A World of Wireless, Mobile and
Multimedia Networks (WoWMoM), pages 1–10. IEEE,
2017.

[40] Tie-Jun Shan and Thomas Kailath. Adaptive beamform-
ing for coherent signals and interference. IEEE Trans-
actions on Acoustics, Speech, and Signal Processing,
33(3):527–536, 1985.

[41] Elahe Soltanaghaei, Akarsh Prabhakara, Artur Balanuta,
Matthew Anderson, Jan M Rabaey, Swarun Kumar, and
Anthony Rowe. Millimetro: mmwave retro-reflective
tags for accurate, long range localization. In Proceed-
ings of the 27th Annual International Conference on
Mobile Computing and Networking, pages 69–82, 2021.

[42] Daniel Steinmetzer, Daniel Wegemer, Matthias Schulz,
Joerg Widmer, and Matthias Hollick. Compressive
millimeter-wave sector selection in off-the-shelf ieee
802.11ad devices. In Proceedings of the 13th Inter-
national Conference on Emerging Networking EXperi-
ments and Technologies, CoNEXT ’17, page 414–425,

1726 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.microsemi.com/product-directory/root/5485-libero-soc-v11-8-archive
https://www.microsemi.com/product-directory/root/5485-libero-soc-v11-8-archive
https://www.microsemi.com/product-directory/root/5485-libero-soc-v11-8-archive

New York, NY, USA, 2017. Association for Computing
Machinery.

[43] Sanjib Sur, Ioannis Pefkianakis, Xinyu Zhang, and Kyu-
Han Kim. Towards scalable and ubiquitous millimeter-
wave wireless networks. In Proceedings of the 24th
Annual International Conference on Mobile Computing
and Networking, pages 257–271, 2018.

[44] Sanjib Sur, Vignesh Venkateswaran, Xinyu Zhang, and
Parmesh Ramanathan. 60 ghz indoor networking
through flexible beams: A link-level profiling. In Pro-
ceedings of the 2015 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’15, page 71–84, New York, NY,
USA, 2015. Association for Computing Machinery.

[45] Sanjib Sur, Xinyu Zhang, Parmesh Ramanathan, and
Ranveer Chandra. Beamspy: enabling robust 60 ghz
links under blockage. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
16), pages 193–206. USENIX Association, 2016.

[46] Vamsi Talla, Mehrdad Hessar, Bryce Kellogg, Ali Na-
jafi, Joshua R Smith, and Shyamnath Gollakota. Lora
backscatter: Enabling the vision of ubiquitous connec-
tivity. Proceedings of the ACM on interactive, mobile,
wearable and ubiquitous technologies, 1(3):1–24, 2017.

[47] Tong Van Luyen and Truong Vu Bang Giang. Interfer-
ence suppression of ula antennas by phase-only control
using bat algorithm. IEEE Antennas and Wireless Prop-
agation Letters, 16:3038–3042, 2017.

[48] Jie Xiong and Kyle Jamieson. {ArrayTrack}: A {Fine-
Grained} indoor location system. In 10th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI 13), pages 71–84, 2013.

[49] Hao Xu, Vikas Kukshya, and Theodore S Rappaport.
Spatial and temporal characteristics of 60-ghz indoor
channels. IEEE Journal on selected areas in communi-
cations, 20(3):620–630, 2002.

[50] Y Xu and Q Zhaojun. Research on interference test
of 24ghz millimeter wave radar to 5g equipment. In
Journal of Physics: Conference Series, volume 1584,
page 012028. IOP Publishing, 2020.

[51] Shiwen Yang, Yeow Beng Gan, and Anyong Qing.
Antenna-array pattern nulling using a differential evo-
lution algorithm. International Journal of RF and Mi-
crowave Computer-Aided Engineering: Co-sponsored
by the Center for Advanced Manufacturing and Pack-
aging of Microwave, Optical, and Digital Electronics
(CAMPmode) at the University of Colorado at Boulder,
14(1):57–63, 2004.

[52] D. Zhang, P. S. Santhalingam, P. Pathak, and Z. Zheng.
Characterizing interference mitigation techniques in
dense 60 ghz mmwave wlans. In 2019 28th Interna-
tional Conference on Computer Communication and
Networks (ICCCN), pages 1–9, 2019.

[53] Pengyu Zhang, Dinesh Bharadia, Kiran Joshi, and
Sachin Katti. Hitchhike: Practical backscatter using
commodity wifi. SenSys ’16, 2016.

[54] Pengyu Zhang, Colleen Josephson, Dinesh Bharadia,
and Sachin Katti. Freerider: Backscatter communica-
tion using commodity radios. In Proceedings of the
13th International Conference on emerging Networking
EXperiments and Technologies, pages 389–401, 2017.

[55] Jia Zhao, Wei Gong, and Jiangchuan Liu. Spatial stream
backscatter using commodity wifi. In Proceedings of the
16th Annual International Conference on Mobile Sys-
tems, Applications, and Services, pages 191–203, 2018.

[56] Jia Zhao, Wei Gong, and Jiangchuan Liu. X-tandem: To-
wards multi-hop backscatter communication with com-
modity wifi. In Proceedings of the 24th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, pages 497–511, 2018.

[57] Renjie Zhao, Timothy Woodford, Teng Wei, Kun Qian,
and Xinyu Zhang. M-cube: A millimeter-wave massive
mimo software radio. In Proceedings of the 26th Annual
International Conference on Mobile Computing and
Networking, MobiCom ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

[58] Yibo Zhu, Zengbin Zhang, Zhinus Marzi, Chris Nelson,
Upamanyu Madhow, Ben Y. Zhao, and Haitao Zheng.
Demystifying 60ghz outdoor picocells. In Proceedings
of the 20th Annual International Conference on Mobile
Computing and Networking, MobiCom ’14, page 5–16,
New York, NY, USA, 2014. Association for Computing
Machinery.

Appendix A1
Estimating the AoA of incoming signals. We adopt a
power delay profile-based solution (used for beam alignment
in [43] and localization in [34]) for the purpose. As shown
in Fig. 26, each peak in power delay profile corresponds to a
path taken by the transmitted signal and arriving at different
times at the receiver. The amplitude of each peak depends on

A
m

pl
itu

de

Signal Arrival Time (ns)

Path1

Path2

Figure 26: A power delay profile of incoming signals.
the gain of the antenna beam pattern toward the path direction.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1727

Even for different beam patterns, the relative time difference
between the peaks remains unchanged and only the amplitude
is affected. With K paths and different time delay ∆td for each
path and angle of arrival θi, the received signal with the mth

beam pattern can be expressed as:

y(t) =
K

∑
i=1

∑
θ

Am(θ
az
i ,θel

i) ·hi(θ
az
i ,θel

i) · x(t −∆tdi) (4)

where Am(θ
az
i ,θel

i) and hi(θ
az
i ,θel

i) is the gain of mth beam
and the complex channel gain, respectively. If we measure
the power delay profile with different receive beams m =
1, ...,M, each measurement provides a set of peaks Ampm =
{am,1,am,2, ...,am,k}. Hence, we can collect the amplitude set
Ampm,k = {a1,k,a2,k, ...,aM,k} with M beam patterns for kth

path. Due to the different gain of mth beam for different AoA,
the peaks will have different amplitudes for the same physical
paths. Hence, we can utilize this to estimate the AoA by com-
paring the normalized amplitude set Amp′m,k =

Ampm,k
min(Ampm,k)

and beam pattern gain G′
m,θ =

Gm,θ

min(Gm,θ)
where Gm,θ denotes

the gain of mth beam pattern toward θ. Hence, the angle of
arrival θk of kth path can be determined by solving following
optimization:

θk = argmin
θ

|Amp′m,k −G′
m,θ|2 (5)

Equ. 5 searches for a discrete angle θk that provides a min-
imum error between the measured CIR and beam pattern.
Given this is a non-linear error curve fitting problem, we
use the least mean square algorithm to find an approximate
solution.
Appendix A2
Different Rx devices. As discussed in Sec. 5, we use two
types of Rx devices: commodity 802.11ad AP from Airfide
and the one with SiversIMA RF frontend. Since both have dif-
ferent types of antenna arrays, we compare their performance
in terms of SINR when nulling is performed. We create cus-
tom beam patterns based on different tag positions (different
backscatter and self-interference angles). For a fair compari-
son, we use 2-bit phase resolution (maximum for Airfide) on
both. Fig. 27 shows a comparison of the two devices for an ex-
ample beam pattern as well as SINR for three cases: (i) beam
without nulling, (ii) custom beam on Airfide with nulling, and
(iii) custom beam on SiversIMA with nulling. We find that
our nulling and backscatter beamforming improves the SINR
on both Rx devices. SiversIMA achieves a higher SINR due
to the greater number of elements compared to Airfide.
Number and size of subarrays in spatial smoothing. Fig-
ure 28(a) illustrates the impact of different numbers and sizes
of subarrays used for spatial smoothing in decorrelating in-
coming signals. We use the SiversIMA RF frontend with 16
antenna elements and form different combinations of subar-
rays. Initially, we evaluate the performance without spatial
smoothing, i.e., using correlated signals for beam creation. We
find that the average SINR nulling performance for a given

(a) Airfide (b) SiversIMA

1 2 3 4 5
Beam index

0

10

20

S
IN

R
 (

d
B

)

w/o Null

Airfide

SiversIMA

(c) SINR

Figure 27: Backscatter SINR for different Rx devices.

0 4 5 6 7 6 9 10
of Subarray

-10

0

10

20

30

N
u
ll

in
g
 i

n
 d

B

(a)

1 2 3 4
Number of Nulls

2

4

6

8
10

B
E

R

10
-3

(b)

Figure 28: Nulling performance and backscatter BER for
different (a) number of subarrays and (b) number of nulls.

tag direction and self-interference is -1.4 dB. Next, we create
different numbers and sizes of subarrays where the size of
each subarray is determined as L−N + 1, where L and N
are the total numbers of antenna elements and the number
of subarrays, respectively. For instance, four subarrays imply
that the size of each subarray is 13 elements. As demonstrated
in Figure 28(a), average nulling performance improves by
6.5 dB as the number of subarrays increases from 4 to 10.
Theoretically, n antenna elements provide a gain of 10, log,n
dB. Therefore, the gain reduction from using 7 elements in-
stead of 16 elements is 3.5 dB. However, spatial smoothing
enhances the nulling performance by 18.5 dB due to better
beam design after decorrelating the signals.
Multiple self-interference paths. In indoor scenarios, there
can be multiple paths between a Tx and Rx position, even
though not all paths are active simultaneously due to the di-
rectionality of Tx and Rx. To handle this, mmComb needs to
generate Rx beams that can create nulls in multiple directions
while still maintaining high gain towards the tag. To evaluate
this, we set up an indoor environment where the tag’s direc-
tion can be one of nine possible angles (depending on tag
position), while the self-interference comes from 1, 2, 3, or 4
paths simultaneously out of 8 possible angles. Based on the
number and angle of paths, we calculate the Rx beam pattern
with multiple nulls. Fig. 28(b) shows the backscatter BER for
different numbers of nulls. As expected, the BER increases as
the number of nulls increases, but even with four nulls, the av-
erage BER remains 6.5×10−3. This indicates that mmComb

1728 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

can improve the SINR by suppressing self-interference, even
in situations with severe multipath propagation.
Appendix A3
Impact on existing mmWave WiFi. As mmComb is de-
signed to integrate tags into existing mmWave WiFi networks
by reusing existing signals, we need to evaluate the potential
impact of a tag’s operation on other devices in the network.
Since the tag responds to beamforming frames from the AP, a
potential issue could arise where the tag’s operations affect the
beamforming between the AP and a client device (a receiver
not intended to receive from the tag). As shown in Fig. 1 ear-
lier, such a client device operates in quasi-omni mode when
the AP sends out the beamforming frames, making it more
susceptible to receiving backscatter data from surrounding
tags.

①

⑥
⑦ ⑫

TX

Tag RX

Office

(a)

1 2 3 4 5 6 7 8 9101112

Position Index

0

0.1

0.2

0.3

S
N

R
 d

if
fe

re
n
c
e
 (

d
B

)

(b)

Figure 29: Impact of mmComb on mmWave WiFi: (a) experi-
ment setting and (b) SNR different in beamforming

To evaluate the impact of tag operation on other devices
in the mmWave WiFi network, we created a scenario where
the AP and a client (not a tag receiver) were interested in
performing beamforming, and the tag’s operation could result
in incorrect SNR measurements at the client. The client uses
quasi-omni patterns and faces the tag to evaluate the worst-
case impact of the tag operation. As shown in Fig. 29(a), the

AP (Tx) is located close to position 1. The tag is located at a
2.5m distance from the Tx. The Rx is moved from positions 1
through 12.

Fig. 29(b) shows the difference in SNR observed by the Rx
from the AP with and without tag operation. We find that the
SNR difference introduced by the tag operation is on aver-
age 0.18 dB for locations 1-3 and 0.06 dB for locations 4-10.
The mean difference is no more than 0.19 dB. Therefore, we
concluded that the tag operations do not negatively impact
the beamforming between WLAN devices because when the
client operates in the quasi-omni beam, the backscattered sig-
nal from the tag to the client is much weaker compared to
the direct signal from the AP. Consequently, tags can coex-
ist in a mmWave WiFi network without causing significant
interference.
Appendix A4
Fig. 30 shows examples of six beam patterns before
and after nulling with 4-bit phase resolution. The tag
directions are {−45◦,−30◦,−15◦,0◦,15◦,45◦} for each
patterns, while having a self-interference direction at
{−15◦,30◦,15◦,15◦,60◦,20◦} accordingly.

0°

30°

60°

90°

120°

150°

180°
0 10 20 30 40

Gain (dB)

w/o Null
w/ Null

(a) Pattern 1.

0°

30°

60°

90°

120°

150°

180°
0 10 20 30 40

Gain (dB)

(b) Pattern 2.

0°

30°

60°

90°

120°

150°

180°
0 10 20 30 40

Gain (dB)

(c) Pattern 3.

0°

30°

60°

90°

120°

150°

180°
0 10 20 30 40

Gain (dB)

(d) Pattern 4.

0°

30°

60°

90°

120°

150°

180°
0 10 20 30 40

Gain (dB)

(e) Pattern 5.

0°

30°

60°

90°

120°

150°

180°
0 10 20 30 40

Gain (dB)

(f) Pattern 6.

Figure 30: Beam patterns with and without nulling.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1729

Where The Wild Things Are:
Brute-Force SSH Attacks In The Wild And How To Stop Them

Sachin Kumar Singh
University of Utah

Shreeman Gautam
University of Utah

Cameron Cartier
University of Utah

Black Hills Information Security

Sameer Patil
University of Utah

Robert Ricci
University of Utah

Abstract
SSH (Secure Shell) is widely used for remote access to

systems and cloud services. This access comes with the per-
sistent threat of SSH password-guessing brute-force attacks
(BFAs) directed at sshd-enabled devices connected to the
Internet. In this work, we present a comprehensive study of
such attacks on a production facility (CloudLab), offering
previously unreported insight. Our study provides a detailed
analysis of SSH BFAs occurring on the Internet today through
an in-depth analysis of sshd logs collected over a period of
four years from over 500 servers. We report several patterns in
attacker behavior, present insight on the targets of the attacks,
and devise a method for tracking individual attacks over time
across sources. Leveraging our insight, we develop a defense
mechanism against SSH BFAs that blocks 99.5% of such
attacks, significantly outperforming the 66.1% coverage of
current state-of-the-art rate-based blocking while also cutting
false positives by 83%. We have deployed our defense in
production on CloudLab, where it catches four-fifths of SSH
BFAs missed by other defense strategies.

1 Introduction

The Secure Shell [72] is widely used for remote administra-
tion and command execution. Due to this popularity, it is com-
mon for SSH servers to be targeted for password-guessing
Brute-Force Attacks (BFAs). In such attacks, a malicious
party attempts to connect to an SSH server using one or
more {username,password} pairs, guessing values for both
fields. Attempting to brute-force SSH may seem like an “out-
dated” attack: best practices recommend key-based authen-
tication [29], many IPv4 devices are behind NAT [28], and
scanning for hosts on IPv6 is notoriously difficult [36]. Yet,
our experience shows that BFAs are still prevalent– in fact,
increasing—on the IPv4 Internet. Such attacks are leveraged
to exploit poorly configured and poorly secured SSH servers
to build botnets [56]. If the attack against a machine succeeds,
the attackers can use the machine to carry out further attacks

Oct
- 2

01
7

Feb
 - 2

01
8

May
 - 2

01
8

Aug
 - 2

01
8

Nov
 - 2

01
8

Mar
- 2

01
9

Jul
 - 2

01
9

Oct
- 2

01
9

Jan
 - 2

02
0

Apr
- 2

02
0

Jul
 - 2

02
0

Oct
- 2

02
0

Jan
 - 2

02
1

May
 - 2

02
1

Aug
 - 2

02
1

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Fa
ile

d
at

te
m

pt
s i

n
m

illi
on

s Daily attacks
90-day average

Figure 1: Failed SSH attempts on CloudLab (in millions).

as part of the botnet [11, 13, 19, 43, 46] or steal its computing
resources (e.g., for cryptomining [24, 59]).

While others have studied SSH attacks, existing studies
involve smaller timescales [10, 30, 58, 71], examine fewer
hosts [10, 58], use honeypots that do not include legitimate
users [10, 30, 58, 71], or cover periods that are not recent [10,
58]. In contrast, we captured real-world BFAs mixed with
the activities of legitimate users in a live production facility
by capturing sshd logs for four years across ≈500 servers in
CloudLab [27]. Due to this unique characteristic, our dataset
provides a rare opportunity to understand changing attacker
behavior over a longitudinal span and to compare it with the
practices of legitimate users. Our analysis shows that SSH
BFAs are evolving. As Figure 1 illustrates, BFA attackers are
becoming more aggressive, with daily attempts increasing,
particularly in recent years.

By “fingerprinting” usernames, we were able to track many
attackers over time and across IP addresses. Our analysis
revealed a wide range of attacker behaviors. Many attack
quickly and then disappear, while others persist in their at-
tacks for months or years; some focus on one username,
while others attempt thousands. We found that attackers tar-
get a wide variety of devices (e.g., servers, Internet of Things
[IoT] devices, routers) and software (e.g., databases, games,
chat servers), shifting from typical administrator usernames

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1731

(root and admin) to those associated with cloud images,
network and IoT devices, and specific software. Based on
observing that username fingerprints are a strong differen-
tiator between attackers and legitimate users, we designed
Dictionary-Based Blocking (DBB)—a novel technique
for blocking SSH BFAs with high effectiveness. DBB blocks
traffic based on dictionaries of usernames attempted by attack-
ers. The low false positive rates of DBB ensure that legitimate
users retain reliable access.

With our research, we make the following contributions:
• We present an analysis of the properties of the SSH

brute-force attacks going on today, including insights
about their methodology, inferences about their targets,
investigations into their network sources, and analysis
of attackers’ persistence. (Sections 4, 5, 6)

• We develop a method for creating username dictionaries
that allow us to track attacks across IP addresses and over
time, even when data is incomplete or attackers make
small adjustments to their username lists. (Section 7)

• We present a new method, Dictionary Based Blocking
(DBB), for blocking SSH brute-force attacks using these
dictionaries. (Section 8)

• We evaluate DBB using real-world data, showing it to
be highly effective at blocking attackers while allowing
legitimate users access. (Section 8.3)

• We present results from a production deployment of
DBB, showing that it performs exceptionally well in
practice. (Section 8.5)

We begin with an overview of related literature in Section 2
and data collection setting and method in Section 3.

2 Related Work

The literature most relevant to our work analyzes SSH BFAs
and examines approaches to block them.

Analyzing SSH BFAs: An analysis of 103K login attempts
from 271 IPs on three honeypots over 11 weeks revealed
that the attacks target administrator as well as user accounts
and can be thwarted with strong passwords and key-based
logins [58]. More recently, researchers found that such attacks
employ root and admin as popular usernames (95% and 3%
of attempts, respectively) [10]. Complimentary research has
focused on the use of stolen credentials and botnets when
carrying out SSH BFAs [17, 71].

SSH BFAs have been captured by honeypots deployed via
IoT hardware and software as well and demonstrated that
attackers who gain access engage in diverse activities, such
as bitcoin mining, UDP/TCP flooding, SSH scans, and SSH
port forwarding [24]. In a larger-scale deployment via 102
medium-interaction honeypots across three continents, re-
searchers monitored 12 million connections originating from
38K unique IPs and examined how attacker behavior is in-
fluenced by the location of the honeypot, the difficulty of

compromise, and the variety of files available on the hon-
eypot [15]. Use of cipher suites and SSH version strings to
fingerprint the mechanisms used in the attacks has identified
that attackers use popular tools off-the-shelf software, such
as Ncrack [6] and Hydra [4], as well as custom tools [30].

A recent deployment of medium-interaction honeypots for
five protocols captured 73K IP addresses, noting an increasing
frequency of SSH attacks throughout the period. More lon-
gitudinal honeypot deployments have observed a significant
number of IP addresses engaged in multiple activities over
15 months [47] and two years [40]. The data covered various
attacks, including SSH BFAs and non-standard port accesses,
and the researchers observed that attacker preferences were
relatively stable [40]. The studies mentioned above mostly
use honeypots that collect only attacks. In contrast, we exam-
ined data from a production system, enabling us to compare
attackers and legitimate users accessing the same system.

Blocking SSH BFAs: Researchers have proposed various
approaches to detect and block BFAs, including network flow
analysis [26, 32–35, 42, 67] and machine learning/deep learn-
ing techniques [31,37,38,45,48,49,62]. However, employing
network flow data to detect SSH BFAs can result in a high
number of false positives.

Alternately, defenses against SSH BFAs can employ
host-based approaches to track user/IP characteristics, such
as failed attempts and interarrival time. Tools such as
Fail2ban [3], denyhosts [1], and sshguard [9] use host-based
blocking of suspicious traffic. They analyze authentication
logs to compute relevant features, such as the number of failed
login attempts, and block corresponding IP addresses with
host-based firewalls such as iptables [7]. Fail2ban is one
of the most widely used tools for stopping BFAs: it blocks
IP addresses exceeding a threshold number of failed attempts
within a specified period. Tuned time- and rate-based block-
ing mechanisms have been used to improve blocking strate-
gies [63]. A simulation with synthetic data showed that a dis-
tributed active-response architecture can enable the sharing
of relevant information—particularly attacking IP addresses—
among trusted hosts [44]. However, such an approach is not
privacy-preserving and requires a set of trusted hosts. By ana-
lyzing data from a production system, we were able to design
and deploy a novel defense and compare its effectiveness
(including false positives) with rate-based designs.

3 Data Collection

Our research is based on an analysis of sshd logs from Cloud-
Lab [27], a public facility used by academic researchers at
institutions around the world. CloudLab has a cloud-like user
model: the users are “tenants” who access servers temporar-
ily assigned to them. Although CloudLab has some policy
control, such as initial sshd and logging configurations, the
users are not under direct control of CloudLab. Once users
acquire control of their assigned nodes, they may, and occa-

1732 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

sionally do, alter the SSH settings without any supervision
or regulation from CloudLab. Therefore, an additional layer
of SSH security, beyond the defaults permitting only key-
based authentication and prohibiting username,password
authentication, is needed.

We used two sets of log files collected by CloudLab. The
first (Log1) was collected on a single cluster over four years
(October 2017 – August 2021) and contains a large number
of attacks that enabled us to study general trends in SSH
BFAs. The second (Log2) was collected at three different
CloudLab sites over ten weeks (November 2022 – January
2023) to evaluate our proposed blocking mechanism. The
three CloudLab sites are geographically dispersed and use
unrelated IP addresses owned by different networks.

SSH Logs: Each host (also called a “node” or “server”)
in CloudLab has a persistent public IPv4 address and runs
sshd for remote access—the primary way legitimate users
interact with the host. By default, CloudLab hosts do not run
other public-facing services, though users are permitted to
start their own services if they wish. All CloudLab hosts are
configured to log SSH login attempts to a central syslog
server from which we obtained our datasets. We parsed the
logs to extract various relevant features, such as source IP ad-
dresses, attempted usernames, authentication responses, etc.
The log files did not contain passwords. To get a view ap-
proximating the network boundary (e.g., firewall or bastion
host), we first removed any SSH attempts originating from
within CloudLab itself. After removing the internal attempts,
Log1 included ≈ 840K unique source IP addresses attempt-
ing ≈ 277K unique usernames and making ≈ 427M login
attempts Log2 contained≈ 91K unique source IPs attempting
≈ 98K unique usernames and ≈ 213M login attempts.

When analyzing the logs, we took into account that log
messages can be lost due to central server overload, network
congestion, misconfigurations on the hosts or the server, or
intentional configuration changes by users. We further consid-
ered that CloudLab hosts are responsive to SSH requests only
when in use, with usage periods of varying lengths distributed
unevenly. As a result, log data pertaining to any given host can
exhibit short-term gaps corresponding to periods in which it is
not in use. To avoid incorrect conclusions on account of such
short-term gaps, we used methods that support “fuzzy” match-
ing and looked at long-term trends. Of the hosts included in
Log1, 352 logged SSH connections every day of the logged
period, and the three sites in Log2 averaged connections from
1,322 hosts daily (616, 384, and 322 each).

Distinguishing Legitimate Users From Attackers: We
considered an IP address as belonging to a legitimate user if it
had at least one successful login. In other words, we assumed
that IP addresses associated only with failed logins belonged
to attackers. CloudLab’s default sshd configuration allows
only public-key authentication, and the CloudLab staff know
of no attacks using stolen private keys. Therefore, we assumed
that only legitimate users logged in successfully. On the other

hand, attackers typically attempt to log in using passwords.
Even though CloudLab is set to accept only key-based authen-
tication, password-based login attempts are logged despite
being disallowed. Although legitimate users may attempt (and
fail) to log in with passwords, nearly all failed login attempts
in our logs appear to be part of attacks rather than erroneous
password-based attempts from legitimate users.

Advantages of Production Facility over Honeypots: Un-
like honeypot logs that exclusively contain attacks, the Cloud-
Lab logs we analyzed contain actions of attackers along with
those of legitimate users. As a result, analyzing the data al-
lowed us to explore the practices of legitimate users in ad-
dition to those of attackers, thus facilitating comparisons be-
tween the two. One of the main challenges of honeypot logs is
the inability to test blocking strategies because of the absence
of legitimate users, resulting in a lack of false positives for the
assessment. In contrast, our data can serve the dual purpose of
aiding the development of blocking strategies and providing
a means to assess their effectiveness.

Metadata Limitations: In parts of our analysis, we used
data regarding network owners and geographic locations of
the attacker IP addresses [5,14]. Since we fetched this data in
Summer 2022, after collecting Log1, it is possible that some
IP addresses changed ownership after we had logged attacks
from them. In addition, the use of NAT and dynamic address
assignment on source networks may obscure the true number
of attacking devices captured in the logs.

Ethical Considerations: Collecting logs is a routine op-
eration in facilities like CloudLab. We have reported results
using large aggregates without identifying individual users. In
cases where mentioning specific users can provide illustrative
value, we have anonymized the usernames. At the same time,
we have assumed that attackers do not have a legitimate expec-
tation of privacy. Still, we have not mentioned IP addresses
since the devices may be compromised unbeknownst to their
owners, who may have no malicious intent.

4 The Anatomy of SSH BFAs

In this section, we cover the basic features of SSH BFAs,
attaching specific numbers and concrete behaviors from Log1
to illustrate the concepts in the general descriptions.

Source IP Addresses: An SSH BFA originates from a
source to a set of targets using a guessing vector of credentials.
Such attacks can come from a large number of IP addresses.
For instance, Log1 contains attacks from over 800,000 IP ad-
dresses, with at least one attack from 90% of the 249 countries
with ISO country codes [39]. However, few conclusions about
the individual or entity controlling an attack can be drawn
from source IP addresses alone. In many cases, the attacking
devices do not belong to malicious actors themselves but to
botnets composed of compromised machines [13, 46, 56] in-
fected with self-replicating worms [25] or used to mask the
locations of the actual attackers.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1733

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Ratio

0

10000

20000

30000

40000

Fr
eq

ue
nc
y

Figure 2: Histogram of sequence bias.

Target Host(s): Attackers may select hosts to target with
several methods: scanning sequentially or randomly, checking
for specific vulnerabilities on a host, etc. In practice, nearly all
BFAs in Log1 seemed to be based on random scanning of the
IPv4 address space as seen in Figure 2, which is a histogram
of the sequence bias for the sources in Log1 that attacked at
least 50 hosts. For each source IP address, we calculated the
sequence bias as the fraction of successive target IP addresses
higher than the one previously attacked. The sequence bias
for a given sequence of IP addresses, S1, . . .SN is:

SB = 1
N−1 ∑

N−2
i=1

0 if Si+1 = Si

1 if Si+1 > Si

−1 if Si+1 < Si
A sequence bias of 1 indicates that the source moves from
lower-numbered addresses to higher ones 100% of the time,
with -1 indicating the reverse movement order. A sequence
bias of 0 means that each successive target is equally likely
to be ‘up’ or ‘down’ in the IP space. The density of sources
around zero—82% of the sources depicted in Figure 2 are
in the range [-0.25,0.25]—indicates that most traverse the IP
address space in random order.

Guessing Vectors: A BFA attacker attempts SSH login
with a set of usernames and passwords. A username can
be associated with multiple passwords and vice-versa. Each
{username, password} combination is called a credential
vector. Multiple such credential vectors are combined to con-
struct a guessing vector. A study published in 2015 found that
over 98% of BFAs contain the usernames root or admin [10].
Our more recent data shows that these usernames have be-
come less dominant over time (see Figure 3). As seen in Fig-
ure 3, root has fallen dramatically, and admin is used only in
a small fraction of attack attempts. Instead, as we present in
more detail in Section 5, attackers are switching to usernames
associated with cloud services and network devices.

5 Properties of SSH BFAs In Practice

After looking at the general structure of SSH BFAs, we used
Log1 to analyze specific aspects in more depth. We guided
our analysis with a series of questions that arose from the

Oct
- 2

01
7

Feb
 - 2

01
8

May
 - 2

01
8

Aug
 - 2

01
8

Nov
 - 2

01
8

Mar
- 2

01
9

Jul
 - 2

01
9

Oct
- 2

01
9

Jan
 - 2

02
0

Apr
- 2

02
0

Jul
 - 2

02
0

Oct
- 2

02
0

Jan
 - 2

02
1

May
 - 2

02
1

Aug
 - 2

02
1

0

20

40

60

80

100

Pe
rc

en
ta

ge

root
admin
90-day
avg.

Figure 3: Percentage of BFAs with usernames root and
admin.

Oct
- 2

01
7

Feb
 - 2

01
8

May
 - 2

01
8

Aug
 - 2

01
8

Nov
 - 2

01
8

Mar
- 2

01
9

Jul
 - 2

01
9

Oct
- 2

01
9

Jan
 - 2

02
0

Apr
- 2

02
0

Jul
 - 2

02
0

Oct
- 2

02
0

Jan
 - 2

02
1

May
 - 2

02
1

Aug
 - 2

02
1

Date

0

20

40

60

80

100

%
 o

f L
eg

iti
m

at
e

At
te

m
pt

s Daily %
90-day average %

Figure 4: Percentage of accepted attempts at CloudLab.

general observations in the preceding section.
How aggressive are individual attackers? A core reason

behind blocking attacking IP addresses is that attackers at-
tempt far more logins than real users. Log1 shows that Cloud-
Lab is no exception, with only 10% of the login attempts being
successful. On average, CloudLab experiences 25 successful
SSH logins per minute as opposed to 211 failed ones.

Our data contains exceptions where the number of failed
logins on a particular day did not outnumber successful ones.
For instance, on a specific day, accepted attempts reached
621K—2.2 times the number of failed attempts. This case
was mostly because of a single legitimate user, river,1 who
allocated numerous nodes and established thousands of SSH
connections to each allocated node. Figure 4 shows the per-
centage of accepted attempts in the data: accepted SSH at-
tempts were greater than failed ones on only 13 days in the
four-year period covered by Log1. We speculate that the dis-
crepant days may have resulted from the use of DevOps tools,
such as Chef or Ansible [60], that make heavy use of SSH.

A majority of the failed attempts belonged to a small frac-
tion of attacking IP addresses, with 1% accounting for 78%,

1Username changed for privacy.

1734 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

100 101 102 103 104 105

Unique usernames

100

101

102

103

104

105

106

At
ta

ck
er

s

Figure 5: The number of usernames attempted vs. the number
of attacking IP addresses using that many usernames. Both
axes use a log scale to depict the extreme ranges.

2% for 85%, 4% for 90%, 8% for 95%, and 22% for 99% of
all failed attempts. Over the four years represented in Log1,
each attacking IP address performed 458 attempts on average.
On the one hand, these numbers demonstrate that blocking
by IP address is an attractive approach since blocking only a
modest fraction of active attackers can greatly reduce attack
volume. On the other hand, the numbers show that achieving
perfect coverage by blocking specific IP addresses is difficult—
moving from 99% to 100% coverage requires identifying and
blocking nearly five times as many offending IP addresses.

Can we assume that all login failures are attacks? Of
the ≈277K unique usernames in Log1, ≈99.995% were as-
sociated only with failed login attempts, but the remaining
≈0.005% had at least one accepted connection. For every
legitimate username in Log1, there were about 199 associated
only with failed attempts. Importantly, we found that every
legitimate username logged at least one failure. We suspect
failures associated with legitimate users are because of errors
such as forgetting to add SSH keys to their agent, typos in
hostnames, configuration errors on the servers, etc. The up-
shot is that administrators cannot deem an IP address to be
malicious solely because of one, or even a few, failed login
attempts. Since all legitimate users are likely to make the oc-
casional error, effective identification of SSH attacks requires
strategies more complex than simple failure-based blocking.

Do attackers try many usernames or focus on a small,
high-value set? We uncovered numerous strategies regarding
the number of usernames attackers tried. The number of user-
names employed by each source IP address varied from one to
≈14K. More than half (54%) of the attacking IP addresses at-
tempted only a single username in their guessing vectors. On
average, attackers attempted 28 usernames, with 75% of the
attackers using fewer than seven usernames and 90% using
fewer than 39. A high variance (≈15170) in the distribution
of usernames per source IP address shows that the number of
usernames attempted by attackers is highly dispersed.

Figure 5 shows the number of usernames attempted against
the number of attackers who attempted that many usernames.

It can be seen in Figure 5 that a large number of attackers
tried relatively few usernames (from one up to a few hundred).
Only a small number of attaackers attempted a large number
of usernames (in thousands). Those who tried the smallest
number of usernames (i.e., 1 or 2) tended to go after admin-
istrator access with the usernames root and admin. The sets
of usernames attempted in BFAs form the basis for our novel
blocking strategy (described in Sections 7 and 8).

Are attackers successful at guessing legitimate user-
names? We found a significant overlap between the user-
names in guessing vectors used by attackers and those of
CloudLabusers, indicating that attackers are somewhat suc-
cessful at guessing legitimate usernames. Overall, 609 user-
names belonging to legitimate CloudLab users appeared in the
attacks. Although small, this is a non-trivial fraction (3%) of
the ≈20,000 CloudLab users.2 However, we saw no evidence
that the guessing vectors targeted CloudLab specifically (e.g.,
via a leak of CloudLab’s user database) since guessing vec-
tors of substantial size were composed mostly of usernames
not used by CloudLab’s userbase. Instead, the presence of
real usernames in the guessing vectors seems to be because
of attackers attempting common names that are likely to be
present in any sizable user base. Regardless, the overlap with
legitimate usernames underscores the need to enforce good se-
curity practices (e.g., key-based login and/or strong passwords
or passphrases).

What types of devices or software are targeted for at-
tacks? Some Internet-connected devices have specific, known
usernames, allowing us to infer that attackers trying those
usernames were targeting devices of that type (regardless
of whether such devices are present in CloudLab). Simi-
larly, some usernames are commonly associated with spe-
cific software or operating system images intended for cloud
platforms. Therefore, we split the usernames in Log1 into
three groups: non-administrator usernames, generic adminis-
trator usernames, and device- or software-specific usernames.
We then manually classified the top 100 usernames, which
collectively represented 83% of the failed logins. Of the top
100 usernames, 17% were non-administrator usernames, 67%
were generic administrator usernames, and 16% targeted spe-
cific devices or software. Appendix E provides the full detail
of these usernames and their classifications.

Non-administrator usernames consisted mostly of
generic roles or common personal names containing no in-
formation about a specific targeted device or software. Most
non-administrator usernames (66% of attacks in this user-
name category) were based on specific user roles, such as
support, user1, profile1, and demo. The rest were either
personal names (e.g., john, vivek, zhang) or unattributable
to particular attacker intentions (e.g., default, ts, etc.).

Generic administrator usernames were dominated by the
username root, which accounted for 86% of all attacks in

2Not all CloudLab users logged in during the logged period.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1735

this category of usernames, with admin being a distant sec-
ond with 7%. Other generic administrator usernames included
administrator, admin1, and sysadmin. Such generic ad-
ministrator usernames are used broadly by UNIX-like sys-
tems, including servers, desktops, and even IoT devices, thus
providing little information about specific targets.

Device- or software-specific usernames can be used for
devices and software with default usernames (and sometimes
default passwords). The largest set of such usernames (37%)
targeted devices or software associated with network ven-
dors Ubiquiti, Mikrotik, and Huawei. The nature of these
attacks suggests that attackers attempt to gain access to entire
networks by compromising routers and switches. Such an
approach is particularly concerning because these vendors
run the gamut from home to enterprise and from telecommu-
nications to backbone networks. Another large set of attacks
(30% of attacks in the category of device- or software-specific
usernames) seemed to be leveraging usernames that match
well-known software packages to target hosts with that soft-
ware installed. While most of these usernames corresponded
to typical server software such as oracle, mysql, hadoop,
and nagios, there was a significant subset targeting gaming-
related software, such as minecraft, csgoserver (Counter-
Strike), and teamspeak3 (used for in-game voice chat). Ad-
ditionally, 23% of attacks employing device- or software-
specific usernames tried usernames associated with common
server services (but not necessarily specific implementations
of those services), such as web, ftp, and git.

Finally, 10% of attacks with device- or software-specific
usernames appeared to target specific Linux distributions with
usernames such as ubuntu, debian, and centos. Such user-
names are often used by default in the disk images produced
by these distributions for cloud use. Interestingly, the second-
most-popular distribution-based username was pi, the default
username for Raspberry Pi OS (formerly known as Raspbian),
likely because, until 2022, this account had a well-known
default username/password pair if sshd was enabled [61].

Do usernames become more popular when vulnerabili-
ties are publicized? We noted that certain usernames in guess-
ing vectors rose in volume with the release of corresponding
Common Vulnerabilities and Exposures (CVEs) or breaking
news about specific vulnerabilities. For instance, after a public
disclosure that particular devices are affected by vulnerabili-
ties, we found that a set of usernames associated with those
devices surged among the attacks. Specifically, in mid and
late 2019, it became known that vulnerabilities in products
from video-centric IoT manufacturer Dahua [20] could be
exploited for unauthorized remote access, device restart, or
arbitrary code execution [21,22,52]. As Figure 6 shows, right
after the public disclosure, there was a sharp spike in SSH
attempts with two of Dahua’s default usernames, 888888 and
666666 [23]. The two usernames follow a similar pattern,
suggesting they belong to the same guessing vector. Notably,
attacker interest in these usernames dwindled after the initial

Jan
-20

18

Apr-
20

18

Jul
-20

18

Oct-
20

18

Jan
-20

19

Apr-
20

19

Jul
-20

19

Oct-
20

19

Jan
-20

20

Apr-
20

20

Jul
-20

20

Oct-
20

20

Jan
-20

21

Apr-
20

21

Jul
-20

21
0
2
4
6
8

10
12
14
16

Fa
ile

d
At

te
m

pt
s i

n
th

ou
sa

nd
s 666666

888888
acer
bamboo
ceph

Figure 6: Spikes in usernames associated with CVEs.

spike, possibly because of lower-than- expected exploitability
or the ban on these devices imposed by the US government
due to security concerns [66]. Figure 6 also shows similar
spikes in attacks for three other usernames acer, bamboo and
ceph, when corresponding CVEs [51,54,55] were announced.
Interestingly, none of these CVEs are directly related to SSH.

Sometimes, there was a direct or potential indirect connec-
tion between vulnerabilities and SSH access. In other cases,
no such connection was obvious. It does appear that CVEs
increase attacker use of related usernames, but it is not al-
ways clear why. Overall, however, attacker behavior shows
the need to react relatively quickly when new usernames be-
come more prevalent. An effective blocking strategy must be
able to discover and block new usernames quickly.

6 Attacker Distribution and Persistence

SSH BFAs are highly distributed, but the persistence of attack-
ers varies greatly. We examined trends in attacker distribution
across countries and networks, along with their persistence
across time. It is important to note that attackers often use
compromised machines [24], so we cannot draw strong con-
clusions that the entity controlling an attack is based in the
same country/network as the device launching the attack.

How widely are the attackers and legitimate users dis-
tributed? Only 1% of the IP addresses in Log1 were used
by legitimate users, with the other 99% (831K) used exclu-
sively by attackers. These addresses were associated with 223
country codes and 18.5K network providers.

Most attacking IP addresses were from China (23%), fol-
lowed by the United States (14.2%), Russia (5.8%), and
Brazil (5.2%). Conversely, most legitimate IP addresses were
from the United States (64%), followed by Indonesia (7.3%),
Pakistan (5.2%), China (2.8%), and Brazil (2.8%). A majority
of attacking IP addresses captured by honeypots have sim-
ilarly been reported as originating from the United States
and China [47, 64]. IP addresses from 21% of the country
codes had at least one legitimate user, while those from the
remaining 79% of the country codes were only sources of

1736 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

attacks. The number of IP addresses from a country was not
always correlated with the number of attacks from that coun-
try. For instance, IP addresses from China were responsible
for 44.7% of failed SSH login attempts, followed by those
from the United States with 8.4%. IP addresses from China
and the United States made up more than half of all failed
login attempts. The distribution fell off quickly, with 99% of
the failed logins coming from just 5.2% of all countries.

The number of attacks per network provider was similarly
skewed. About half of the failed attempts were associated
with just six network providers: China Telecom (26.8%),
China Unicom (6.1%), DigitalOcean Cloud (6.0%), Tencent
Cloud (5.5%), OVH Cloud (2.9%), and the Vietnam Posts and
Telecommunications Group (2.7%). IP addresses from the top
100 network providers contributed 79.9% of the failed login
attempts, with the top 13% contributing 99% of the failed
attempts. Among the network providers seen in our data, 99
were used only by legitimate users, 431 by legitimate users as
well as attackers, and the remaining 18,067 only by attackers.
Such a distribution indicates that flagging entire networks as
malicious is a poor strategy because most legitimate users are
on networks that are also the sources of attacks.

Similar to prior research [16,64], we observed a significant
number of attacking IP addresses (at least 15.3%, responsible
for 20% of the failed attempts) hosted by cloud providers. Of
the top ten network providers based on the number of failed
attempts, three were cloud providers. Six among the top 15
networks—and ten among the top 25—were cloud providers.

Further detail on the network providers and countries for
IP addresses in Log1 is included in Appendix F.

Are there instances of concentrated attacks from spe-
cific networks? The growth in the attacking IP addresses in
CloudLab was generally steady over time. About 1–2% of the
attacking IP addresses were new each month. At the high end,
CloudLab experienced 4–6% new attackers in some months.

However; there were period during which there were large
spikes in new addresses from specific networks or countries.
To quantify this aspect, we calculated the month-to-month
growth ratio for IP addresses from each country and network
provider. We defined the growth ratio for a month as the num-
ber of new IP addresses seen that month divided by the aver-
age number of new IP addresses per month over the four-year
logging period. The growth ratio enabled us to examine those
network providers whose IP addresses exhibited high growth
ratios at some point. Figure 7 shows growth ratios for four net-
work service providers with Comcast (a large US ISP) as the
baseline compared with Lumen/CenturyLink [69] (another
large US ISP), Selectel [70] (a Russian cloud company that
others have identified as an attack source [18]), and LG Up-
lus [68] (a South Korean mobile network operator). While
there were many attackers from Comcast, they appeared at a
fairly constant rate, with the growth ratio staying close to 1.0
as seen in Figure 7 In stark contrast, the IP addresses from
the other three network providers exhibited large spikes, i.e.,

Nov
 - 2

01
7

Apr
- 2

01
8

Se
p -

 20
18

Feb
 - 2

01
9

Jul
 - 2

01
9

Dec
- 2

01
9

May
 - 2

02
0

Oct
- 2

02
0

Mar
- 2

02
1

Aug
 - 2

02
1

0

10

20

30

40

Gr
ow

th
 R

at
io

comcast.com
selectel.ru
lguplus.co.kr
centurylink.com

Figure 7: Growth ratios for four networks with Comcast as
the baseline.

months during which there were far more new attackers from
these networks than typical. We typically observed 82 new
attacking IP addresses from Comcast per month, with a max-
imum of 170 new IP addresses in a month. In comparison,
there were an average of 657 new attacking IP addresses per
month from Lumen/CenturyLink, but the spike in January
2021 was composed of 28,640 new Lumen/CenturyLink IP
addresses involved in attacks. Such concentrated attacks from
a single network can have diverse causes, such as attackers
forming botnets from vulnerable routers or cable modems
specific to an ISP [50, 53], or gaining legal or illicit access to
cloud or hosting services [12, 57]. Regardless of the reason,
detecting spikes can help uncover and investigate anomalies.

How long do individual IP addresses persist? The IP
addresses of most attackers and legitimate users had an active
duration of less than one day, vanishing on the same day they
first appeared. Figure 8 compares the IP addresses of attackers
and legitimate users in terms of the active durations, i.e., the
differences between the last and the first days on which the
respective IP addresses were seen, in days. Although there
were more IP addresses of legitimate users with short drua-
tions, the overall shapes of the distribution curves for the two
groups are remarkably similar.

What metrics distinguish attackers and legitimate
users? The ability to block attacks based on metrics, such
as the number of attempts, relies mainly on finding metrics
that clearly distinguish attackers from legitimate users. Fig-
ures 9 and 10 are scatter plots for three pairs of quantitative
metrics, with each point in the plots representing one source
IP address. Since there are far more attacking IP addresses
than legitimate ones, the plots depicting the latter are sparser.

In all cases, legitimate users were “embedded” within the
portions of the space covered by attackers. This can be clearly
seen in Figure 9, which is a plot of the length of time between
observing an IP address for the first and last times vs. the frac-
tion of days within that span that the IP address was active.
While legitimate users are clustered more around the axes
of the plot, there are enough outliers such that few regions

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1737

100 101 102 103

Duration in Days

60

70

80

90

100

Pe
rc

en
ta

ge

% of Attackers
% of Legitimate Users

Figure 8: Cumulative Distribution Function (CDF) of the ac-
tive durations of IP addresses used by attackers and legitimate
users. The X axis is on a log scale.

0

25
0

50
0

75
0

10
00

12
50

Duration in days
(a)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tiv

ity

Attackers

0

25
0

50
0

75
0

10
00

12
50

Duration in days
(b)

0.0

0.2

0.4

0.6

0.8

1.0
Legitimate Users

Figure 9: Duration (i.e., the span between the first and last
connection) vs. activity ratio (i.e., the fraction of days in the
span with connections) for IP addresses used by attackers and
legitimate users.

of the plot are occupied exclusively by attackers. Practically
speaking, using these metrics to mark IP addresses as attack-
ers can catch a significant number of them, but at the expense
of falsely flagging a number of legitimate users as attackers.

Plots (a) and (b) in Figure 10 show the total number of login
attempts from each IP address vs. the number of usernames
attempted. There is a clear region in each plot (above 100 user-
names) containing a substantial number of attackers but only
a single legitimate user. Still, these plots highlight the diffi-
culty of trying to identify attackers with either metric because,
like most attackers, a substantial number of IP addresses of
legitimate users appear to use tens of usernames (likely due to
NAT). In terms of the number of attempts, there is complete
overlap on the X axis. Plots (c) and (d) in Figure 10 show
similar observations for the number of hosts attacked by each
source IP address vs. the number of usernames attempted.

7 Tracking Attacks With Dictionaries

As we saw in previous sections, BFAs come from a variety of
locations, with attackers exhibiting a wide range of behavior.
In addition, we showed that quantitative metrics alone cannot

101 103 105 107

Attempts
(a)

100

101

102

103

104

105

Us
er

na
m

es

Attackers

101 103 105 107

Attempts
(b)

100

101

102

103

104

105 Legitimate Users

100 101 102 103

Nodes
(c)

100

101

102

103

104

105

Us
er

na
m

es

Attackers

100 101 102 103

Nodes
(d)

100

101

102

103

104

105 Legitimate Users

Figure 10: Plots (a) and (b) show the number of attempts vs.
the number of usernames. Plots (c) and (d) show the number
of hosts vs. the number of usernames for IP addresses used
by attackers and legitimate users.

easily differentiate attackers from legitimate users. Therefore,
we turned to identifying attacks by using the sets of usernames
attempted by each source IP address as its fingerprint.

Constructing dictionaries and dictionary groups: We
found that many individual source IP addresses had the same—
or similar—fingerprints. We therefore compiled dictionaries
of usernames, with each dictionary being a set of usernames
used by a set of (more than one) source IP addresses. These
dictionaries served two purposes. First, they enabled us to
find the sets of usernames prevalent among attackers, form-
ing the basis of DBB. Second, they helped us infer potential
relationships between attacking IP addresses.

For an accurate count, we needed to find fingerprints that
were not only identical but also similar. Such matching was
required for two reasons. First, the data from production sys-
tems can be incomplete (as discussed in Section 3) so we
needed a mechanism that can tolerate some amounts of miss-
ing data. Second, we hypothesized that attacker dictionaries
would drift over time, with small additions of new usernames
and/or removal of unfruitful ones, similar to dynamic cre-
dential fetching seen in recent malware [13]. Therefore, we
developed a method for grouping similar dictionaries by de-
termining the Jaccard Similarity (JS) [41] between username
sets. The JS for two sets X and Y is defined as the ratio of
length|X ∩Y | to length|X ∪Y |. JS ranges from 0 to 1, being
0 when there is a null intersection between sets and 1 when
the intersection and the union are the same.

Our method captures the transitive similarity between dif-
ferent dictionaries in two steps. First, we constructed an undi-
rected graph G = (V, E) where each dictionary is repre-

1738 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

sented as a vertex in V. An edge is added to E for every pair
of vertices (v, v’) if JS(v,v′)≥ ĵ, where JS(. . .) is the Jac-
card similarity of the pair of dictionaries and ĵ is a selected
threshold. Second, we determined all connected components
in G. i.e., groups of vertices Ṽ ⊂V for which every v ∈ Ṽ can
be reached from every other v′ ∈ Ṽ via the (undirected) edges.
Note that individual dictionaries may form their own con-
nected singleton components if they have no edges (i.e., they
are not similar to any other dictionaries), and groups of dictio-
naries can become transitively included in larger components
(e.g., if a dictionary A is similar to B, and B is in turn similar
to C, the three dictionaries form one connected component).
We selected a threshold value for ĵ of 0.88 by considering
a range of values and selecting the one that maximized the
number of non-trivial (i.e., larger than size one) connected
components. Intuitively, our choice of the threshold value is
reasonable because it is large enough to group together only
those dictionaries that are similar yet small enough for modes-
sized dictionaries (e.g., with ten usernames) to pass the bar
despite differing by one or two usernames.

Attacker Use of Dictionaries: Our construction of indi-
vidual dictionaries from Log1 resulted in 829 dictionaries
covering 64% of the attacking IP addresses. After applying
the similarity determination method above, we ended up with
48 non-trivial connected components, reducing the initial set
of 829 dictionaries to a set of 682 Dictionaries Groups (DGs).
As the numbers indicate, most DGs are singletons. A list of
the most frequently encountered usernames in the DGs is
included in Appendix D. Across the 682 DGs, the number of
usernames per DG varied from one to ≈ 4.6K, with a median
of four, and the number of attackers using the same DG varied
from two3 to ≈ 158K, with a median of 27.5. The numbers
show that several DGs were large enough to make it highly un-
likely that multiple sets of attackers independently stumbled
upon them by coincidence. For dictionaries of non-trivial size,
the use of the same dictionary intuitively suggests a potential
connection between the attacking IPs—those employing the
same set of usernames may be controlled by the same entity,
using the same tool, following the same strategies, or sourcing
the username lists from a common origin.

The DGs with a smaller number of usernames included
mainly generic administrator or device/software-specific user-
names as described in Section 5, while those with a larger
number of usernames tended to contain guesses for usernames
of regular users. Figure 11 depicts the number of IP addresses
using a DG and the number of usernames in the DG. The
pattern in Figure 11 shows that a large number of attackers
use small DGs and vice versa. For instance, only two attackers
used the largest DG with 4.6K usernames.

Attackers differed in the sequences in which they try user-
names. The username sequences were random in some DGs,
such as one with 18 usernames used by 3,447 attackers at-

3The definition of a dictionary precludes the creation of dictionaries used
by a single source.

100 101 102 103 104

Usernames in DGs

101

102

103

104

105

106

At
ta

ck
er

s u
til

izi
ng

 D
Gs

Figure 11: Usernames in a DG vs. attacking IP addresses
using that DG. Both axes are on log scales.

tempted in 3,342 unique sequences. The sequences were
mostly the same in some other cases, such as a DG with just
41 unique sequences of 16 usernames used by 31,249 attack-
ers. Such sequencing information can be used to fingerprint
specific tools or scripts used by the attackers.

Can dictionary-based blocking stop attacks? As we
noted earlier, a small set of usernames dominated the BFAs in
Log1. Most attackers used at least one username from a dictio-
nary. We identified 9,819 unique usernames in the dictionaries.
Blocking source IPs that used one of these usernames caught
100% of the attackers who used a complete dictionary and
84% of those who did not. We noted that a blocklist of around
10K usernames (fewer than 4% of all usernames) effectively
captured 94% of the attackers (the 64% of using a dictionary,
plus 84% of the remaining 36%). Based on this observation,
we designed a blocking approach called Dictionary-Based
Blocking (DBB). As we describe in Section 8, we found the
actual effectiveness of DBB to be even higher than expected:
at timescales smaller than four years, only a few hundred user-
names are needed at a time, and attackers employing these
username lists are more active than average.

8 Dictionary-Based Blocking (DBB)

As we have shown in the previous sections, the usernames at-
tempted by attackers are fundamental to BFAs. We leveraged
this observation to devise DBB as an easy-to-apply technique
to identify and block attackers and prevent SSH BFAs. We
first evaluated DBB on Log2, which has no intersection with
Log1, and later deployed it in production on a distinct cluster.
By demonstrating the effectiveness of DBB over various sets
of nodes, we highlight its general-purpose applicability for
deployment on diverse machines over the Internet.

8.1 Threat Model

DBB is intended to counter attacks such as BFAs that target
a large number of hosts and/or username/password sets. The
threat model further assumes that an attacker may be aware

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1739

of the presence of DBB and the dictionaries shared among
the cooperating parties. Although we have described the use
of DBB to protect individual hosts, it can be applied network-
wide by using log files from individual hosts to generate
rules for a border firewall. That said, DBB is not intended to
defend against targeted attacks in which only a single facility
is attacked for a short period. Further, DBB cannot defend
against stolen credentials, which allow attackers to succeed at
logging in on the first attempt. Defending against such attacks
would require additional protective mechanisms [65, 71, 73].

8.2 Design of DBB

DBB involves a set of collectors that observe SSH login at-
tempts. In the simplest cases, the collectors can be production
machines that harvest their logs for usernames and source
IP addresses associated with failed logins. Alternately, SSH
honeypots or machines can be set up specifically as collec-
tors. As described in Section 7, the collectors create a set
of dictionaries by formulating a union of all usernames in
their dictionaries. A Username Block List (UBL) is created by
removing any locally valid usernames from the union. Each
collector sends its UBL to a central coordinator that com-
bines them with those received from other collections and
distributes the union to any defending hosts, i.e., hosts that
wish to defend themselves against SSH BFAs. DBB involves
employing UBL to identify attacker IP addresses and blocking
them at the defending host and/or at a network-wide firewall.
When a defending host receives a failed login attempt for any
username in the UBL that is not a local user4, it blocks all
further traffic from that source (e.g., by adding a local fire-
wall rule [7]). We envision a deployment of DBB in which
volunteers worldwide contribute UBLs from collectors on
their networks to a trusted central coordinator that publishes
a global UBL that any host can use for defense.

It is crucial to note a couple of important properties of
DBB. First, no IP addresses are exchanged. As a result, unlike
IP-based blocklists, DBB preserves the privacy of users and
facilities and prevents “false accusations” against specific
IP addresses. Second, DBB removes legitimate usernames
when creating and applying UBLs since legitimate usernames
can end up in dictionaries (as we showed in our analysis).
Removal of legitimate usernames avoids information leakage
from the collectors and prevents defending hosts from locking
out unlucky users whose usernames end up in the UBL.

8.3 Effectiveness of DBB

We evaluated DBB using Log2, which was collected for nearly
ten weeks—from November 2022 to January 2023—on three
CloudLab sites: Site-A, Site-B, and Site-C. While Site-B and

4We recommend root be deemed an invalid username even if a facility
permits its use.

Site-C have characteristics similar to Site-A, they are geo-
graphically distributed and use distinct IP addresses on differ-
ent networks. We simulated DBB on the data from these sites
to derive and distribute new UBLs once a day using their log
files as traces. In addition, we deployed DBB in production
for three weeks at the Emulab [2] cluster in CloudLab.

Evaluating DBB: We simulated DBB at each site inde-
pendently to determine its effectiveness by measuring the
fraction of attack attempts blocked and the number of false
positives (i.e., the number of blocked IP addresses of legiti-
mate users).5 We have reported false positives using absolute
numbers rather than percentages because each false positive
corresponds roughly to a single blocked user and/or one sup-
port ticket for the staff to resolve. For the same reason, we
have reported false positives with respect to the number of
blocked source IP addresses belonging to legitimate users.

We identified legitimate user IP addresses in Log2 with the
same method used for Log1, finding that Site-A, Site-B and
Site-C had 2,952, 1,733, and 1,504 IP addresses of legitimate
users, respectively. At Site-A, Site-B and Site-C DBB blocked
99.58%, 99.59%, and 99.39% of the BFAs with 17, 18, and
5 false positives, respectively. As we showed earlier, most
attacks use a dictionary. Therefore, DBB achieved uniformly
high block rates, with only 0.5% of BFAs going unblocked.
The false positive rates for all sites were remarkably low, with
an average of one false positive every five days.

Comparing DBB to Fail2ban: We ran simulations us-
ing Log2 to compare DBB with Fail2ban [3], a widely de-
ployed state-of-the-art tool for blocking SSH BFAs at the
host. Fail2ban has three adjustable parameters: Maxretry—
the number of failed attempts from the same IP address that
activate blocking; Findtime—the period during which failed
attempts are counted; and Bantime—the duration of the block.
In comparison, DBB employs a single parameter equivalent
to maxretry. Since we recommend blocking with DBB at the
first failed login attempt, i.e. maxretry = 1, this can serve as
the default configuration.

Trying every one of the numerous possible combinations of
Fail2ban parameters is practically infeasible. Therefore, we
tuned the parameters to conduct a fair comparison between
Fail2ban and DBB without favoring either technique.We com-
pared the performance of Fail2ban with DBB with three differ-
ent settings variations: S1: Default settings for DBB (maxretry
= 1) and Fail2ban (maxretry = 5, findtime = 10 minutes, ban-
time = 10 minutes); S2: Default settings for DBB (maxretry
= 1) with Fail2ban adjusted to use the same maxretry value
(maxretry = 1, findtime = 10 minutes bantime = 10 minutes);
and S3: No unblocking in Fail2ban (bantime = ∞) and vary-
ing values of maxretry from [1,45] for both techniques. All
variations used the default Fail2ban findtime of 10 minutes.

5Even though defending hosts remove local usernames from the UBL,
false positives can occur if a legitimate user tries to log in using a wrong
username that happens to be in the UBL or shares an IP address with an
attacker (e.g.. due to NAT).

1740 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 10 20 30 40 50
maxretry
(a) Site-A

40

50

60

70

80

90

100

%
 o

f A
tta

ck
s b

lo
ck

ed

DBB
F2B

0 10 20 30 40 50
maxretry
(b) Site-B

40

50

60

70

80

90

100

DBB
F2B

0 10 20 30 40 50
maxretry
(c) Site-C

40

50

60

70

80

90

100

DBB
F2B

0 10 20 30 40
maxretry
(d) Site-A

0

100

200

300

400

500

Fa
lse

 P
os

iti
ve

DBB
F2B

0 10 20 30 40
maxretry
(e) Site-B

0

100

200

300

400

500 DBB
F2B

0 10 20 30 40
maxretry
(f) Site-C

0

100

200

300

400

500 DBB
F2B

Figure 12: S3: DBB and Fail2ban for maxretry ∈ [1, 45].

With default settings, DBB outperformed Fail2ban by a
large margin. Across all sites, DBB blocked an average of
99.5% of the attacks, while Fail2ban blocked only 66.1%.
One reason for this difference was the more aggressive default
setting of DBB, with a lower value for maxretry compared to
Fail2ban. Moreover, DBB generated only one-fifth as many
false positives as Fail2ban (DBBFP=40, F2BFP=217). In other
words, DBB locked far fewer legitimate users out of their
accounts. When maxretry for Fail2ban was set to the DBB
default of 1, the attacks blocked by Fail2ban increased from
66.1% to 85.20%. Appendix B illustrates site performance for
expirement S1 and S2 . The tradeoff is in the number of false
positives: the increase in blocked attacks was accompanied
by a corresponding increase in false positives for Fail2ban
from 217 to 1051, which was 26 times the rate for DBB.

To check if there is any setting for Fail2ban in which
it meets or exceeds the performance of DBB, we varied
maxretry for both from 1 to 45. In addition, we configured
Fail2ban to mimic DBB by permanently blocking IP ad-
dresses. As Figure 12 shows, DBB achieved a better blocking
rate than Fail2ban for all values of maxretry except 1, i.e.,
when Fail2ban was set to block an IP address on the first
failed attempt and never unblock it. Moreover, DBB gener-
ated fewer false positives across all values of maxretry for all
three sites. With increasing maxretry, the false positive rate
of Fail2ban did progressively reduce to converge with that
of DBB. However, the improvement came at the expense of
reduced blocking effectiveness.

Overall, DBB’s dictionary-based approach outperformed
Fail2ban’s rate-based approach. DBB can thwart nearly all
incoming BFAs by blocking more aggressively without incur-
ring many false positives because the approach is based on
specific attacker behavior.

8.4 Number of Collectors

To examine the effect of the number of collectors on block-
ing performance, we computed dictionaries from Cn number
of collectors Cn ∈ {[1,10]∪{20,30,40,50}} at each site in
Log2. We then performed simulations using these reduced
dictionaries as the UBLs of the hosts at the respective sites.

For each Cn, we ran the simulation nine times with
randomly-selected collectors from all available nodes. Across
these runs, the minimum and maximum blocked BFAs for
Site-A, Site-B, Site-C were (98.2%, 99.5%), (97.7%, 99.5%)
and (97.6%, 99.3%), respectively. All minima occurred at Cn
= 1 and maxima at Cn = 50. DBB achieved most of its benefit
with just one collector, with results within 1-2% of the perfor-
mance when using all nodes as collectors. While there were
slight increases in blocking with an increase in the number of
collectors (full graphs are in Appendix C), the overall results
show that DBB does not need a large number of collectors to
achieve high performance. Over ten weeks, the UBL grew by
only a few usernames per day, starting at≈200 usernames per
site and ending with 460 at the conclusion of the experiment.

Next, we checked whether UBLs created at one site are
effective at other sites by testing all combinations in which
each of the three sites was either a collector or deployment
site. In all cases, DBB blocked at least 99.41% of the BFAs
with at most 19 false positives (full details are provided in
Appendix A). These results demonstrate that defending sites
can implement DBB by simply using UBLs obtained from a
trusted third party.

8.5 Deployment of DBB

We deployed DBB for three weeks on the Emulab [2] clus-
ter of CloudLab (which consists of ≈400 nodes) with the
three sites Site-A, Site-B, and Site-C as collectors. A single de-
fending host removed locally valid usernames from the UBL
and collected SSH logs from the other hosts in the cluster.
Upon receiving a login attempt with any username in the local
sanitized UBL, the defending host added the corresponding
IP address to the blocklist. The blocklist was copied to the
Emulab-wide firewall to block all further traffic from that IP
address. For practicality, we updated the firewall blocklist
on an hourly basis. The consequent gap between identifying
attackers and subsequently blocking their access at the fire-
wall can result in allowing attackers to keep trying SSH BFAs
without restrictions for up to an hour in the worst case.

Before deploying DBB, we recorded the SSH traffic on Em-
ulab for three weeks. Defense mechanisms already in place
during this period consisted of two strategies: lazy-fail2ban
and a firewall subscribing to a variety of public IP-address
blocklists recommended by pfSense [8]. lazy-fail2ban adds
an IP address to the blocklist at the firewall if the number
of failed SSH login attempts from it crosses a threshold (i.e.,
maxretry=10). Unlike Fail2ban in standard configuration, lazy-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1741

fail2ban operates without a finite findtime, instead using find-
time=∞ and bantime=24 hours. When an IP address success-
fully logs in, the maxretry counter is reset to zero. Emulab’s
firewall blocks all access from any IP address contained in
the IP-address blocklists; this proactive measure is taken not
only to counter SSH BFA but also to defend against attacks
attempting to exploit other protocols and vulnerabilities.

Operational Effectiveness: It was possible to compute the
precise percentage of BFAs blocked when assessing DBB per-
formance in the simulation because we knew the total number
of failed SSH attempts. However, blocking IP addresses in
an operational system prevents subsequent failed attempts
from that source, making it challenging to count the precise
number of attack attempts that would have been logged with-
out DBB. We therefore relied on the three-week record of
failed attempts from Emulab to establish a baseline for esti-
mating the proportion of attacks blocked. Importantly, these
constraints mean that measurements of DBB performance
blocking BFAs in operation provide lower bounds.

We found that DBB is significantly more effective than the
existing blocking mechanism at Emulab during DBB deploy-
ment. DBB reduced failed SSH login attempts by 79.5%—
from 80.6K to 16.5K per day—suggesting that it blocked
four-fifths of the attacks not caught by the other defenses
at Emulab. During the DBB deployment period, no legiti-
mate user contacted the administrators about being blocked
by DBB while two users contacted them because of blocking
by lazy-fail2ban. One of the two blocked by lazy-fail2ban had
mistakenly attempted to log in with a username resembling a
university identification number, surpassing the lazy-fail2ban
threshold and getting blocked. However, DBB did not block
the user because the identification number used as the user-
name was not in the UBL. The incident illustrates that the
design of DBB has the advantage of minimizing the chances
of blocking legitimate users because of inadvertent errors
such as usernames with typos or those from other services.

8.6 Practical Considerations

DBB is a lightweight mechanism that involves negligible
overhead for collectors or coordinators. The only requirement
for DBB is that defending hosts have the ability to check
username membership in a relatively small set. Moreover,
the compact size of the UBL makes it well-suited for deploy-
ment on resource-constrained devices such as IoT devices.
As a result, DBB can be easily deployed at larger scales by
appropriately considering several practical factors.

Dictionaries Distribution: We propose hashing usernames
before sharing with the coordinator. The approach permits
easily testing membership in the UBL but avoids leaking valid
usernames, thus making it difficult to use public UBLs to
target high-value usernames. Moreover, hashed usernames
prevent broader dissemination of newly discovered vulnerabil-
ities pertaining to a username known only to a few attackers.

Dictionary Collection: Since dictionaries do not include
IP addresses and locally valid usernames are removed before
sharing, collectors can be set up anywhere on the Internet
without raising privacy concerns. A collector need not reveal
its own IP address and can be easily moved elsewhere to pre-
vent adversaries from discovering it. However, DBB functions
well even if the adversaries know the identities of some, or
even most, collectors as long as there are a few collectors that
are not known to the attackers. Since DBB does not place a
high degree of trust in dictionary providers, attempting to deny
service by inducing false inclusion of a username in a dictio-
nary is ineffective. Therefore, a large network of volunteer
collectors can operate with fairly light oversight.

Block Evasion: To evade DBB, an attacker must avoid
high-value usernames in the public UBL, likely reducing the
effectiveness of the attack. Attacking with a username not in
the UBL requires that the username not be present in any dic-
tionary. In other words, evading DBB requires avoiding every
collector or avoiding using the same set of usernames from
any source. The safest strategy for attempting to evade blocks
is to mix high-value new usernames with unique “chaff” user-
names in every attempt. Such an approach would slow the
attacker down. Moreover, it would not help to have multiple at-
tacking sources. In fact, it would require greater coordination
or increased chaff to avoid reusing username sets.

9 Conclusion

While new cyberthreats emerge daily, attackers across the
world continue to rely on simple, traditional approaches such
as SSH BFAs. Yet, existing approaches face challenges in
blocking such attacks with high accuracy without also block-
ing sizable numbers of legitimate users. The observed trends
indicate an evolution of attacks on various accounts, software
and devices, with attackers shifting from traditional generic at-
tacks. Analyzing multi-year login attempt logs enables the ef-
fective identification of malicious activity by discerning differ-
ences in attacker and legitimate user behavior. We have shown
that such insight can be applied for designing a lightweight
blocking mechanism that can be deployed at scale with little
overhead. Our approach outperforms the state-of-the-art in
host-based SSH blocking, pointing the way to a new class of
more effective defenses against BFAs.

Acknowledgements

We extend our sincere gratitude to the anonymous reviewers,
our shepherd Bruce Davie, and the CloudLab administrators
for their invaluable contributions and dedicated efforts in re-
viewing and supporting our research. Their insightful feed-
back have enriched the quality of our work. This material is
based upon work supported by the National Science Founda-
tion under Award Nos. 1743363, 1801446, and 2027208.

1742 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Denyhosts. https://denyhosts.sourceforge.net/.
Accessed 2024-03-03.

[2] Emulab. https://www.emulab.net/. Accessed 2024-03-03.

[3] Fail2ban. https://github.com/fail2ban/fail2ban.
Accessed 2024-03-03.

[4] Hydra. https://www.kali.org/tools/hydra/. Accessed
2024-03-03.

[5] IPinfo. https://ipinfo.io/. Accessed 2024-03-03.

[6] Ncrack. https://nmap.org/ncrack/. Accessed 2024-03-
03.

[7] The Netfilter.org “iptables” project. https://www.netfilte
r.org/projects/iptables/index.html.

[8] pfsense. https://www.pfsense.org/. Accessed 2024-03-
03.

[9] SSH Guard. https://www.sshguard.net/. Accessed
2024-03-03.

[10] A. Abdou, D. Barrera, and P. C. van Oorschot. What lies be-
neath? Analyzing automated SSH bruteforce attacks. In F. Sta-
jano, S. F. Mjølsnes, G. Jenkinson, and P. Thorsheim, editors,
Technology and Practice of Passwords, pages 72–91, Cham,
2016. Springer International Publishing. DOI: 10.1007/978-3-
319-29938_6.

[11] Akamai Security Research. Panchan’s mining rig: New Golang
peer-to-peer botnet says “Hi!”. https://www.akamai.com
/blog/security/new-p2p-botnet-panchan, Jun 2022.
Accessed 2024-03-03.

[12] S. Alrwais, X. Liao, X. Mi, P. Wang, X. Wang, F. Qian,
R. Beyah, and D. McCoy. Under the shadow of sunshine:
Understanding and detecting bulletproof hosting on legitimate
service provider networks. In 2017 IEEE Symposium on Secu-
rity and Privacy, IEEE S&P 2017, pages 805–823, 2017. DOI:
10.1109/SP.2017.32.

[13] M. Antonakakis, T. April, M. Bailey, M. Bernhard,
E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halder-
man, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma,
J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas,
and Y. Zhou. Understanding the Mirai botnet. In 26th
USENIX Security Symposium, USENIX Security 17, pages
1093–1110, Vancouver, BC, Aug 2017. USENIX Association.
https://www.usenix.org/conference/usenixsecurity
17/technical-sessions/presentation/antonakakis.

[14] ARIN. American Registry for Internet Numbers. https:
//www.arin.net/. Accessed 2024-03-03.

[15] T. Barron and N. Nikiforakis. Picky attackers: Quantify-
ing the role of system properties on intruder behavior. In
Proceedings of the 33rd Annual Computer Security Applica-
tions Conference, ACSAC ’17, pages 387–398, New York,
NY, USA, 2017. Association for Computing Machinery. DOI:
10.1145/3134600.3134614.

[16] M. S. Bohuk, M. Islam, S. Ahmad, M. Swift, T. Ristenpart, and
R. Chatterjee. Gossamer: Securely measuring password-based

logins. In 31st USENIX Security Symposium, USENIX Secu-
rity 22, pages 1867–1884, Boston, MA, Aug. 2022. USENIX
Association. https://www.usenix.org/conference/usen
ixsecurity22/presentation/sanusi-bohuk.

[17] P. M. Cao, Y. Wu, S. S. Banerjee, J. Azoff, A. Withers, Z. T.
Kalbarczyk, and R. K. Iyer. CAUDIT: Continuous auditing of
SSH servers to mitigate Brute-Force attacks. In 16th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 19), pages 667–682, Boston, MA, Feb. 2019. USENIX
Association. https://www.usenix.org/conference/nsdi
19/presentation/cao.

[18] Check Point Research. Stopping serial killer: Catching the
next strike. https://research.checkpoint.com/2021/s
topping-serial-killer-catching-the-next-strike/,
Jan 2021. Accessed 2024-03-03.

[19] P. J. Criscuolo. Distributed denial of service: Trin00, tribe
flood network, tribe flood network 2000, and stacheldraht. De-
partment of Energy Computer Incident Advisory Capability
(CIAC), UCRLID-136939, Rev. 1, Feb 2000.

[20] Dahua Technology. Dahua Intelligent Solutions. https:
//www.dahuasecurity.com/. Accessed 2024-03-03.

[21] Dahua Technology. Security advisory — Buffer overflow
vulnerability found in some Dahua IP camera devices. https:
//www.dahuasecurity.com/support/cybersecurity/de
tails/617, 2019. Accessed 2022-03-01.

[22] Dahua Technology. Security advisory — Some products of
Dahua have security risks. https://www.dahuasecurit
y.com/support/cybersecurity/details/637, 2019.
Accessed 2022-03-01.

[23] Dahua Wiki. Dahua default usernames and passwords. https:
//dahuawiki.com/UsernameandPassword. Accessed 2022-
03-01.

[24] F. Dang, Z. Li, Y. Liu, E. Zhai, Q. A. Chen, T. Xu, Y. Chen,
and J. Yang. Understanding fileless attacks on Linux-based
IoT devices with HoneyCloud. In Proceedings of the 17th
Annual International Conference on Mobile Systems, Applica-
tions, and Services, MobiSys ’19, pages 482–493, New York,
NY, USA, 2019. Association for Computing Machinery. DOI:
10.1145/3307334.3326083.

[25] Dr. Web. Linux.muldrop.14. https://vms.drweb.com/vi
rus/?i=15391790, 2017. Accessed 2024-03-03.

[26] M. Drašar. Protocol-independent detection of dictionary at-
tacks. In T. Bauschert, editor, Advances in Communication Net-
working, pages 304–309, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg. DOI: 10.1007/978-3-642-40552-5_30.

[27] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar,
and P. Mishra. The design and operation of CloudLab. In Pro-
ceedings of the USENIX Annual Technical Conference (ATC),
July 2019.

[28] K. Egevang and P. Francis. The IP Network Address Translator
(NAT). RFC 1631, 1994. https://www.rfc-editor.org/r
fc/rfc1631 Accessed 2024-03-03.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1743

https://denyhosts.sourceforge.net/
https://www.emulab.net/
https://github.com/fail2ban/fail2ban
https://www.kali.org/tools/hydra/
https://ipinfo.io/
https://nmap.org/ncrack/
https://www.netfilter.org/projects/iptables/index.html
https://www.netfilter.org/projects/iptables/index.html
https://www.pfsense.org/
https://www.sshguard.net/
https://doi.org/10.1007/978-3-319-29938-9_6
https://doi.org/10.1007/978-3-319-29938-9_6
https://www.akamai.com/blog/security/new-p2p-botnet-panchan
https://www.akamai.com/blog/security/new-p2p-botnet-panchan
https://doi.org/10.1109/SP.2017.32
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.arin.net/
https://www.arin.net/
https://doi.org/10.1145/3134600.3134614
https://www.usenix.org/conference/usenixsecurity22/presentation/sanusi-bohuk
https://www.usenix.org/conference/usenixsecurity22/presentation/sanusi-bohuk
https://www.usenix.org/conference/nsdi19/presentation/cao
https://www.usenix.org/conference/nsdi19/presentation/cao
https://research.checkpoint.com/2021/stopping-serial-killer-catching-the-next-strike/
https://research.checkpoint.com/2021/stopping-serial-killer-catching-the-next-strike/
https://www.dahuasecurity.com/
https://www.dahuasecurity.com/
https://www.dahuasecurity.com/support/cybersecurity/details/617
https://www.dahuasecurity.com/support/cybersecurity/details/617
https://www.dahuasecurity.com/support/cybersecurity/details/617
https://www.dahuasecurity.com/support/cybersecurity/details/637
https://www.dahuasecurity.com/support/cybersecurity/details/637
https://dahuawiki.com/UsernameandPassword
https://dahuawiki.com/UsernameandPassword
https://doi.org/10.1145/3307334.3326083
https://vms.drweb.com/virus/?i=15391790
https://vms.drweb.com/virus/?i=15391790
https://doi.org/10.1007/978-3-642-40552-5_30
https://www.rfc-editor.org/rfc/rfc1631
https://www.rfc-editor.org/rfc/rfc1631

[29] D. Garn. Eight ways to protect SSH access on your system.
https://www.redhat.com/sysadmin/eight-ways-sec
ure-ssh, Oct 2020. Accessed 2024-03-03.

[30] V. Ghiette, H. Griffioen, and C. Doerr. Fingerprinting tooling
used for SSH compromisation attempts. In 22nd International
Symposium on Research in Attacks, Intrusions and Defenses,
RAID 2019, pages 61–71, Chaoyang District, Beijing, Sept.
2019. USENIX Association. https://www.usenix.org/c
onference/raid2019/presentation/ghiette.

[31] J. Hancock, T. M. Khoshgoftaar, and J. L. Leevy. Detect-
ing SSH and FTP brute force attacks in big data. In 20th
IEEE International Conference on Machine Learning and
Applications, ICMLA 2021, pages 760–765, 2021. DOI:
10.1109/ICMLA52953.2021.00126.

[32] L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto, R. Sadre,
and A. Pras. SSHCure: A flow-based SSH intrusion detection
system. In R. Sadre, J. Novotný, P. Čeleda, M. Waldburger, and
B. Stiller, editors, Dependable Networks and Services, pages
86–97, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
DOI: 10.1007/978-3-642-30633-4_11.

[33] R. Hofstede, L. Hendriks, A. Sperotto, and A. Pras. SSH
compromise detection using NetFlow/IPFIX. SIGCOMM
Comput. Commun. Rev., 44(5):20–26, Oct 2014. DOI:
10.1145/2677046.2677050.

[34] R. Hofstede, M. Jonker, A. Sperotto, and A. Pras. Flow-based
Web application brute-force attack and compromise detection.
Journal of Network and Systems Management, 25(4):735–758,
2017. DOI: 10.1007/s10922-017-9421-4.

[35] R. Hofstede, A. Pras, A. Sperotto, and G. D. Ro-
dosek. Flow-based compromise detection: Lessons learned.
IEEE Security & Privacy, 16(1):82–89, 2018. DOI:
10.1109/MSP.2018.1331021.

[36] S. Hogg. IPv6 security vulnerability scanning. https://bl
ogs.infoblox.com/ipv6-coe/ipv6-security-vulner
ability-scanning/, Sep 2016. Accessed 2024-03-03.

[37] M. D. Hossain, H. Ochiai, F. Doudou, and Y. Kadobayashi.
SSH and FTP brute-force attacks detection in computer net-
works: LSTM and machine learning approaches. In 5th Inter-
national Conference on Computer and Communication Sys-
tems, ICCCS 2020, pages 491–497, 2020. DOI: 10.1109/IC-
CCS49078.2020.9118459.

[38] K. Hynek, T. Beneš, T. Čejka, and H. Kubátová. Refined detec-
tion of SSH brute-force attackers using machine learning. In
M. Hölbl, K. Rannenberg, and T. Welzer, editors, ICT Systems
Security and Privacy Protection, pages 49–63, Cham, 2020.
Springer International Publishing. DOI: 10.1007/978-3-030-
58201-2_4.

[39] International Standards Organization. ISO 3166-1:2020: Codes
for the representation of names of countries and their subdivi-
sions — Part 1: Country codes. https://www.iso.org/is
o-3166-country-codes.html, 2020.

[40] L. Izhikevich, M. Tran, M. Kallitsis, A. Fass, and Z. Durumeric.
Cloud watching: Understanding attacks against cloud-hosted
services. In Proceedings of the 2023 ACM on Internet Mea-
surement Conference, IMC ’23, pages 313–327, New York,

NY, USA, 2023. Association for Computing Machinery. DOI:
10.1145/3618257.3624818.

[41] P. Jaccard. The distribution of the flora in the Alpine zone.
New Phytologist, 11(2):37–50, 1912. DOI: 10.1111/j.1469-
8137.1912.tb05611.x.

[42] M. Jonker, R. Hofstede, A. Sperotto, and A. Pras. Unveil-
ing flat traffic on the Internet: An SSH attack case study. In
2015 IFIP/IEEE International Symposium on Integrated Net-
work Management, IM 2015, pages 270–278, 2015. DOI:
10.1109/INM.2015.7140301.

[43] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas. DDos in
the IoT: Mirai and other botnets. Computer, 50(07):80–84, Jul
2017. DOI: 10.1109/MC.2017.201.

[44] J. Lane Thames, R. Abler, and D. Keeling. A distributed ac-
tive response architecture for preventing SSH dictionary at-
tacks. In IEEE SoutheastCon 2008, pages 84–89, 2008. DOI:
10.1109/SECON.2008.4494264.

[45] T.-H. Lee, L.-H. Chang, and C.-W. Syu. Deep learning enabled
intrusion detection and prevention system over SDN networks.
In 2020 IEEE International Conference on Communications
Workshops, ICC 2020 Workshops, pages 1–6, 2020. DOI:
10.1109/ICCWorkshops49005.2020.9145085.

[46] P. Muncaster. Massive Qbot botnet strikes 500,000 machines
through WordPress. Infosecurity Magazine, Oct 2014. https:
//www.infosecurity-magazine.com/news/massive-qbo
t-strikes-500000-pcs/.

[47] C. Munteanu, S. J. Saidi, O. Gasser, G. Smaragdakis, and
A. Feldmann. Fifteen months in the life of a honey-
farm. In Proceedings of the 2023 ACM on Internet Mea-
surement Conference, IMC ’23, pages 282–296, New York,
NY, USA, 2023. Association for Computing Machinery. DOI:
10.1145/3618257.3624826.

[48] M. M. Najafabadi, T. M. Khoshgoftaar, C. Calvert, and
C. Kemp. Detection of SSH brute force attacks using ag-
gregated netflow data. In IEEE 14th International Conference
on Machine Learning and Applications, ICMLA 2015, pages
283–288, 2015. DOI: 10.1109/ICMLA.2015.20.

[49] M. M. Najafabadi, T. M. Khoshgoftaar, C. Kemp, N. Seliya,
and R. Zuech. Machine learning for detecting brute force
attacks at the network level. In 2014 IEEE International Con-
ference on Bioinformatics and Bioengineering, pages 379–385,
2014. DOI: 10.1109/BIBE.2014.73.

[50] National Vulnerability Database. CVE-2014-8423 detail. Nov
2014. https://nvd.nist.gov/vuln/detail/CVE-2014-
8423.

[51] National Vulnerability Database. CVE-2019-18670 detail. Dec
2019. https://nvd.nist.gov/vuln/detail/CVE-2019-
18670.

[52] National Vulnerability Database. CVE-2019-9676 detail. June
2019. https://nvd.nist.gov/vuln/detail/CVE-2019-
9676.

[53] National Vulnerability Database. CVE-2019-19494 detail. Jan
2020. https://nvd.nist.gov/vuln/detail/CVE-2019-
19494.

1744 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.redhat.com/sysadmin/eight-ways-secure-ssh
https://www.redhat.com/sysadmin/eight-ways-secure-ssh
https://www.usenix.org/conference/raid2019/presentation/ghiette
https://www.usenix.org/conference/raid2019/presentation/ghiette
https://doi.org/10.1109/ICMLA52953.2021.00126
https://doi.org/10.1007/978-3-642-30633-4_11
https://doi.org/10.1145/2677046.2677050
https://doi.org/10.1007/s10922-017-9421-4
https://doi.org/10.1109/MSP.2018.1331021
https://blogs.infoblox.com/ipv6-coe/ipv6-security-vulnerability-scanning/
https://blogs.infoblox.com/ipv6-coe/ipv6-security-vulnerability-scanning/
https://blogs.infoblox.com/ipv6-coe/ipv6-security-vulnerability-scanning/
https://doi.org/10.1109/ICCCS49078.2020.9118459
https://doi.org/10.1109/ICCCS49078.2020.9118459
https://doi.org/10.1007/978-3-030-58201-2_4
https://doi.org/10.1007/978-3-030-58201-2_4
https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/iso-3166-country-codes.html
https://doi.org/10.1145/3618257.3624818
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1109/INM.2015.7140301
https://doi.org/10.1109/MC.2017.201
https://doi.org/10.1109/SECON.2008.4494264
https://doi.org/10.1109/ICCWorkshops49005.2020.9145085
https://www.infosecurity-magazine.com/news/massive-qbot-strikes-500000-pcs/
https://www.infosecurity-magazine.com/news/massive-qbot-strikes-500000-pcs/
https://www.infosecurity-magazine.com/news/massive-qbot-strikes-500000-pcs/
https://doi.org/10.1145/3618257.3624826
https://doi.org/10.1109/ICMLA.2015.20
https://doi.org/10.1109/BIBE.2014.73
https://nvd.nist.gov/vuln/detail/CVE-2014-8423
https://nvd.nist.gov/vuln/detail/CVE-2014-8423
https://nvd.nist.gov/vuln/detail/CVE-2019-18670
https://nvd.nist.gov/vuln/detail/CVE-2019-18670
https://nvd.nist.gov/vuln/detail/CVE-2019-9676
https://nvd.nist.gov/vuln/detail/CVE-2019-9676
https://nvd.nist.gov/vuln/detail/CVE-2019-19494
https://nvd.nist.gov/vuln/detail/CVE-2019-19494

[54] National Vulnerability Database. CVE-2020-8566 detail. Dec
2020. https://nvd.nist.gov/vuln/detail/CVE-2020-
8566.

[55] National Vulnerability Database. CVE-2021-26067 detail. Jan
2021. https://nvd.nist.gov/vuln/detail/CVE-2021-
26067.

[56] S. News. Poorly secured SSH servers targeted by Chalubo
botnet. https://news.sophos.com/en-us/2018/10/24/p
oorly-secured-ssh-servers-targeted-by-chalubo-
botnet/, Oct 2018. Accessed 2024-03-03.

[57] A. Noroozian, J. Koenders, E. van Veldhuizen, C. H. Ganan,
S. Alrwais, D. McCoy, and M. van Eeten. Platforms in ev-
erything: Analyzing ground-truth data on the anatomy and
economics of bullet-proof hosting. In 28th USENIX Se-
curity Symposium, USENIX Security 19, pages 1341–1356,
Santa Clara, CA, Aug. 2019. USENIX Association. https:
//www.usenix.org/conference/usenixsecurity19/pre
sentation/noroozian.

[58] J. Owens and J. Matthews. A study of passwords and methods
used in brute-force SSH attacks. In USENIX Workshop on
Large-Scale Exploits and Emergent Threats, LEET, 2008.

[59] S. Pastrana and G. Suarez-Tangil. A first look at the crypto-
mining malware ecosystem: A decade of unrestricted wealth.
In Proceedings of the Internet Measurement Conference, IMC
’19, pages 73–86, New York, NY, USA, 2019. Association for
Computing Machinery. DOI: 10.1145/3355369.3355576.

[60] A. Rahman, M. R. Rahman, C. Parnin, and L. Williams. Se-
curity smells in Ansible and Chef scripts: A replication study.
ACM Trans. Softw. Eng. Methodol., 30(1), Jan 2021. DOI:
10.1145/3408897.

[61] Raspberry Pi Documentation. Configure a user manually. ht
tps://www.raspberrypi.com/documentation/computer
s/configuration.html#configuring-a-user. Accessed
2024-03-03.

[62] G. K. Sadasivam, C. Hota, and B. Anand. Classification of SSH
attacks using machine learning algorithms. In 6th International
Conference on IT Convergence and Security, ICITCS 2016,
pages 1–6, 2016. DOI: 10.1109/ICITCS.2016.7740316.

[63] S. Schechter, Y. Tian, and C. Herley. StopGuessing: Using
guessed passwords to thwart online guessing. In 2019 IEEE
European Symposium on Security and Privacy, EuroS&P 2019,
pages 576–589, 2019. DOI: 10.1109/EuroSP.2019.00048.

[64] Z. Shamsi, D. Zhang, D. Kyoung, and A. Liu. Measuring
and clustering network attackers using medium-interaction
honeypots. In 2022 IEEE European Symposium on Security
and Privacy Workshops, EuroS&PW 2022, pages 294–306,
2022. DOI: 10.1109/EuroSPW55150.2022.00036.

[65] A. Sharma, A. Z. Kalbarczyk, Sharma, R. Iyer, and J. Barlow.
Analysis of credential stealing attacks in an open networked
environment. In 2010 Fourth International Conference on
Network and System Security, pages 144–151, 2010. DOI:
10.1109/NSS.2010.56.

[66] B. Toulas. Unpatched Dahua cams vulnerable to unauthen-
ticated remote access. https://www.bleepingcomputer
.com/news/security/unpatched-dahua-cams-vulner

able-to-unauthenticated-remote-access/, Oct 2021.
Accessed 2024-03-03.

[67] J. Vykopal, T. Plesnik, and P. Minarik. Network-based
dictionary attack detection. In 2009 International Con-
ference on Future Networks, pages 23–27, 2009. DOI:
10.1109/ICFN.2009.36.

[68] Wikipedia. LG Uplus. https://en.wikipedia.org/wiki/
LG_Uplus. Accessed 2024-03-03.

[69] Wikipedia. Lumen Technologies. https://en.wikipedia
.org/wiki/Lumen_Technologies. Accessed 2024-03-03.

[70] Wikipedia. Selectel. https://en.wikipedia.org/wiki/
Selectel. Accessed 2024-03-03.

[71] Y. Wu, P. M. Cao, A. Withers, Z. T. Kalbarczyk, and R. K.
Iyer. Mining threat intelligence from billion-scale SSH brute-
force attacks. In Workshop on Decentralized IoT Systems and
Security (DISS), 2020.

[72] T. Ylönen. SSH—Secure login connections over the Inter-
net. In Proceedings of the Sixth USENIX Security Symposium,
pages 37–42.

[73] W. Yurcik and C. Liu. A first step toward detecting ssh identity
theft in hpc cluster environments: discriminating masqueraders
based on command behavior. In IEEE International Sym-
posium on Cluster Computing and the Grid, 2005, volume 1
of CCGrid 2005, pages 111–120, 2005. DOI: 10.1109/CC-
GRID.2005.1558542.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1745

https://nvd.nist.gov/vuln/detail/CVE-2020-8566
https://nvd.nist.gov/vuln/detail/CVE-2020-8566
https://nvd.nist.gov/vuln/detail/CVE-2021-26067
https://nvd.nist.gov/vuln/detail/CVE-2021-26067
https://news.sophos.com/en-us/2018/10/24/poorly-secured-ssh-servers-targeted-by-chalubo-botnet/
https://news.sophos.com/en-us/2018/10/24/poorly-secured-ssh-servers-targeted-by-chalubo-botnet/
https://news.sophos.com/en-us/2018/10/24/poorly-secured-ssh-servers-targeted-by-chalubo-botnet/
https://www.usenix.org/conference/usenixsecurity19/presentation/noroozian
https://www.usenix.org/conference/usenixsecurity19/presentation/noroozian
https://www.usenix.org/conference/usenixsecurity19/presentation/noroozian
https://doi.org/10.1145/3355369.3355576
https://doi.org/10.1145/3408897
https://www.raspberrypi.com/documentation/computers/configuration.html#configuring-a-user
https://www.raspberrypi.com/documentation/computers/configuration.html#configuring-a-user
https://www.raspberrypi.com/documentation/computers/configuration.html#configuring-a-user
https://doi.org/10.1109/ICITCS.2016.7740316
https://doi.org/10.1109/EuroSP.2019.00048
https://doi.org/10.1109/EuroSPW55150.2022.00036
https://doi.org/10.1109/NSS.2010.56
https://www.bleepingcomputer.com/news/security/unpatched-dahua-cams-vulnerable-to-unauthenticated-remote-access/
https://www.bleepingcomputer.com/news/security/unpatched-dahua-cams-vulnerable-to-unauthenticated-remote-access/
https://www.bleepingcomputer.com/news/security/unpatched-dahua-cams-vulnerable-to-unauthenticated-remote-access/
https://doi.org/10.1109/ICFN.2009.36
https://en.wikipedia.org/wiki/LG_Uplus
https://en.wikipedia.org/wiki/LG_Uplus
https://en.wikipedia.org/wiki/Lumen_Technologies
https://en.wikipedia.org/wiki/Lumen_Technologies
https://en.wikipedia.org/wiki/Selectel
https://en.wikipedia.org/wiki/Selectel
https://doi.org/10.1109/CCGRID.2005.1558542
https://doi.org/10.1109/CCGRID.2005.1558542

A Cross collector performance

Table A.1 shows the performance of DBB when the collector
is not at the deployed site. We conducted simulations for all
possible combinations of our sites.

Table A.1: Performance of DBB when collector and deployed
site are different.

Deployed Collector % Attacks False
Site Site Blocked Positive

C A 99.45 4
C B 99.41 4
A C 99.55 17
A B 99.56 19
B C 99.58 17
B A 99.61 18

B Individual site performance in experiments
S1 and S2

Figure B.1 presents the performance of DBB and F2B in
experiments S1 and S2.

Site-A Site-B Site-C
(a) Percentage of Attacks blocked in

experiment S₁

0

20

40

60

80

100

%
 A

tta
ck

s b
lo

ck
ed

DBB
F2B

Site-A Site-B Site-C
(b) False Positives in

experiment S₁

0

20

40

60

80

100

Fa
lse

 p
os

iti
ve

DBB
F2B

Site-A Site-B Site-C
(c) Percentage of Attacks blocked in

experiment S₂

0

20

40

60

80

100

%
 A

tta
ck

s b
lo

ck
ed

DBB
F2B

Site-A Site-B Site-C
(d) False Positives in

experiment S₂

0

100

200

300

400

500

Fa
lse

 p
os

iti
ve

DBB
F2B

Figure B.1: DBB and F2B using settings S1 and S2.

C Cn : Number of Collectors

Figure C.1 depicts how the performance of DBB varies based
on the number of collectors (Cn).

1
Co

lle
ct

or

2
Co

lle
ct

or

3
Co

lle
ct

or

4
Co

lle
ct

or

5
Co

lle
ct

or

6
Co

lle
ct

or

7
Co

lle
ct

or

8
Co

lle
ct

or

9
Co

lle
ct

or

10
 C

ol
le

ct
or

20
 C

ol
le

ct
or

30
 C

ol
le

ct
or

40
 C

ol
le

ct
or

50
 C

ol
le

ct
or

Number of Collector

97.0

97.5

98.0

98.5

99.0

99.5

100.0

%
 o

f A
tta

ck
s b

lo
ck

ed

Site-A Max
Site-A Min
Site-B Max
Site-B Min
Site-C Max
Site-C Min

Figure C.1: Performance of DBB as the number of collectors
increases.

1746 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

D Top usernames in DG

Table D.1 shows the usernames present in at least 5% of the DGs.

Table D.1: Usernames in ≥ 5% of all DGs.
Username Percentage of DGs Username Percentage of DGs

root 69.94 debian 8.65
admin 55.87 centos 8.65
user 36.07 demo 8.65
test 30.21 minecraft 8.36
support 26.83 zabbix 7.92
ubnt 24.93 odoo 7.92
oracle 23.02 server 7.92
ubuntu 22.87 ts3 7.92
postgres 20.38 apache 7.77
ftp 20.09 teamspeak 7.77
pi 19.21 dev 7.62
guest 18.48 vagrant 7.33
git 16.42 web 7.33
service 15.54 mother 7.33
usuario 14.96 test1 7.04
mysql 14.22 administrator 6.89
nagios 13.49 system 6.74
hadoop 12.76 weblogic 6.30
tomcat 11.88 steam 6.16
jenkins 11.29 svn 5.43
user1 10.12 ansible 5.28
www 9.82 test2 5.28
student 9.38 kafka 5.13
supervisor 9.24 alex 5.13
deploy 8.80 webmaster 5.13

E Username Classification

Table E.1 contains our manual classification of the 100 most-attempted usernames. (Usernames colliding with real CloudLab
usernames have been omitted for privacy.)

Username Percentage of Attempts Cumulative Percentage Category Sub-category

root 47.81 47.81 admin –
admin 3.97 51.78 admin –

support 2.66 54.44 non-admin role
ubnt 1.82 56.26 specific network
user1 1.79 58.06 non-admin role

default 1.78 59.83 non-admin misc
MikroTik 1.72 61.56 specific network

administrator 1.71 63.26 admin –
admin1 1.70 64.97 admin –
profile1 1.70 66.67 non-admin role
demo 1.70 68.37 non-admin role

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1747

Username Percentage of Attempts Cumulative Percentage Category Sub-category

web 1.70 70.07 specific service
tech 1.59 71.66 non-admin role

telecomadmin 1.54 73.20 specific network
oracle 0.78 73.98 specific software
ubuntu 0.64 74.62 specific distribution

ftp 0.58 75.20 specific service
postgres 0.50 75.70 specific software

pi 0.40 76.10 specific distribution
git 0.35 76.45 specific service

guest 0.31 76.75 non-admin role
test1 0.29 77.05 non-admin role

export 0.28 77.33 non-admin role
usuario 0.28 77.61 non-admin role

test2 0.26 77.86 non-admin role
mysql 0.21 78.07 specific software
hadoop 0.20 78.28 specific software
deploy 0.18 78.45 non-admin role
nagios 0.17 78.62 specific software
jenkins 0.16 78.78 specific software

dev 0.15 78.93 non-admin role
www 0.14 79.07 specific service
debian 0.13 79.20 specific distribution

minecraft 0.12 79.32 specific software
odoo 0.11 79.44 specific software

ansible 0.11 79.55 specific software
teamspeak 0.11 79.66 specific software

student 0.11 79.76 non-admin role
tomcat 0.10 79.87 specific software

ts3 0.10 79.97 specific software
server 0.10 80.07 non-admin role
centos 0.09 80.16 specific distribution

es 0.09 80.24 specific software
zabbix 0.08 80.32 specific software

weblogic 0.08 80.40 specific software
steam 0.07 80.47 specific software

vagrant 0.06 80.54 specific software
elasticsearch 0.06 80.60 specific software

elastic 0.06 80.66 specific software
webadmin 0.06 80.72 specific service

kafka 0.06 80.78 specific software
ftpadmin 0.06 80.84 specific service

webmaster 0.06 80.90 specific service
vnc 0.06 80.96 specific software

system 0.06 81.01 admin –
contador 0.06 81.07 non-admin role
ftptest 0.06 81.13 specific service
service 0.06 81.18 non-admin role
baikal 0.06 81.24 specific software

ts 0.05 81.29 non-admin misc
duni 0.05 81.34 non-admin misc
temp 0.05 81.40 non-admin misc
spark 0.05 81.45 specific software

1748 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Username Percentage of Attempts Cumulative Percentage Category Sub-category

svn 0.05 81.50 specific service
docker 0.05 81.55 specific software

developer 0.05 81.60 non-admin role
jira 0.05 81.66 specific software
app 0.05 81.70 non-admin misc

sinusbot 0.05 81.75 specific software
apache 0.05 81.80 specific software

sysadmin 0.05 81.84 admin –
nexus 0.05 81.89 specific software
uftp 0.04 81.93 specific service
ec2- 0.04 81.98 non-admin misc
bot 0.04 82.02 non-admin misc

butter 0.04 82.06 specific software
mcserver 0.04 82.10 specific software

teamspeak3 0.04 82.14 specific software
nginx 0.04 82.18 specific software
csgo 0.04 82.22 specific software

backup 0.04 82.25 non-admin role
vbox 0.04 82.29 specific software

csgoserver 0.04 82.33 specific software
gpadmin 0.04 82.36 specific software

info 0.03 82.40 non-admin misc
hd 0.03 82.43 non-admin misc
a 0.03 82.46 non-admin misc

db 0.03 82.50 specific service
teste 0.03 82.53 non-admin misc
user2 0.03 82.56 non-admin role

deployer 0.03 82.59 non-admin role
daniel 0.03 82.63 non-admin name
nvidia 0.03 82.66 specific software

db2inst1 0.03 82.69 specific software
ethos 0.03 82.72 specific distribution

manager 0.03 82.75 non-admin role
www-data 0.03 82.78 specific service

wp 0.03 82.81 specific software
redis 0.03 82.84 specific software

testing 0.03 82.87 non-admin role
Table E.1: Username classification

F Top 50 Countries And Network Providers

Figure F shows the top 50 countries and network providers based on the percentage of attackers and attempts.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1749

Ch
in

a
Un

ite
d

St
at

es
Ru

ss
ia

Br
az

il
Vi

et
na

m
Ge

rm
an

y
Ar

ge
nt

in
a

In
di

a
Eg

yp
t

Fr
an

ce
So

ut
h

Ko
re

a
Th

ai
la

nd
Ita

ly
Si

ng
ap

or
e0

10

20

30

40

Pe
rc

en
ta

ge
% Attempts
% Attackers

Un
ite

d
Ki

ng
do

m
Ho

ng
 K

on
g

Ec
ua

do
r

In
do

ne
sia

Ca
na

da
Ja

pa
n

Ira
n

Ne
th

er
la

nd
s

M
ex

ico
Ta

iw
an

Sp
ai

n
Uk

ra
in

e
Po

la
nd

Co
lo

m
bi

a
M

al
ay

sia
Au

st
ra

lia

0.0

0.5

1.0

1.5

2.0

2.5

3.0
% Attempts
% Attackers

So
ut

h
Af

ric
a

Tu
rk

ey
Sw

ed
en

Az
er

ba
ija

n
Om

an
Pe

ru
Hu

ng
ar

y
Pa

ki
st

an
Be

la
ru

s
Ch

ile
Do

m
in

ica
n

Re
pu

bl
ic

Ire
la

nd
Be

lg
iu

m
Gh

an
a

Ro
m

an
ia

Au
st

ria
M

or
oc

co
Cz

ec
hi

a
Ve

ne
zu

el
a

Bu
lg

ar
ia

0.0

0.1

0.2

0.3

0.4

0.5

0.6
% Attempts
% Attackers

Ch
in

a
Un

ite
d

St
at

es
Vi

et
na

m
In

di
a

Fr
an

ce
In

do
ne

sia
Th

ai
la

nd
Br

az
il

Ge
rm

an
y

Ru
ss

ia
So

ut
h

Ko
re

a
Ne

th
er

la
nd

s
Si

ng
ap

or
e

Un
ite

d
Ki

ng
do

m

0

10

20

30

40

Pe
rc

en
ta

ge

% Attempts
% Attackers

Ca
na

da
Ita

ly
Pa

ki
st

an
Ph

ilip
pi

ne
s

M
ex

ico
Ar

ge
nt

in
a

Uk
ra

in
e

M
al

ay
sia

Ho
ng

 K
on

g
Ba

ng
la

de
sh

Ja
pa

n
Po

la
nd

Sw
ed

en
Eg

yp
t

Co
lo

m
bi

a
Sp

ai
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
% Attempts
% Attackers

Ve
ne

zu
el

a
M

or
oc

co
Tu

rk
ey

Pe
ru

Tu
ni

sia
Sa

ud
i A

ra
bi

a
So

ut
h

Af
ric

a
Re

pu
bl

ic
of

 L
ith

ua
ni

a
Au

st
ria Ira

n
Ta

iw
an

Ne
pa

l
Po

rtu
ga

l
Re

pu
bl

ic
of

 M
ol

do
va

Ch
ile

Ro
m

an
ia

Ke
ny

a
Ka

za
kh

st
an

Et
hi

op
ia

Ni
ge

ria

0.0

0.2

0.4

0.6

0.8
% Attempts
% Attackers

ch
in

at
el

ec
om

.c
n

ch
in

au
ni

co
m

.c
n

te
le

fo
ni

ca
.c

om
di

gi
ta

lo
ce

an
.c

om
ce

nt
ur

yl
in

k.
co

m
vn

pt
.v

n
rt.

ru
te

nc
en

t.c
om

am
az

on
aw

s.c
om

te
da

ta
.n

et
go

og
le

.c
om

ov
h.

ne
t

te
le

ko
m

.d
e

m
icr

os
of

t.c
om

0

5

10

15

20

25

Pe
rc

en
ta

ge

% Attempts
% Attackers

vi
et

te
l.c

om
.v

n
vo

da
fo

ne
.c

om
gm

ai
l.c

om
cn

t.g
ob

.e
c

kt
.c

om
bs

nl
.c

o.
in

ch
in

am
ob

ile
.c

om
or

an
ge

.c
om

ba
id

u.
co

m
ni

c.
ad

.jp
te

lko
m

.c
o.

id
al

ib
ab

ac
lo

ud
.c

om
hi

ne
t.n

et
he

tz
ne

r.c
om

ch
ar

te
r.c

om
co

m
ca

st
.c

om

0.0

0.5

1.0

1.5

2.0

2.5
% Attempts
% Attackers

tc
i.i

r
te

le
co

m
ita

lia
.it

lg
up

lu
s.c

o.
kr

al
ga

rte
le

co
m

.c
om

.b
r

ja
st

el
.c

o.
th

te
lm

ex
.c

om
ai

rte
l.c

om
az

qt
el

.c
om

tm
.c

om
.m

y
om

an
te

l.o
m

lin
od

e.
co

m
im

sb
iz.

co
m

ve
rs

at
el

.d
e

co
nt

ab
o.

de
clo

ud
in

no
va

tio
n.

or
g

sc
al

ew
ay

.c
om

ca
tte

le
co

m
.c

om
uc

lo
ud

.c
n

tru
ei

nt
er

ne
t.c

o.
th

wi
nd

.it

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 % Attempts
% Attackers

ch
in

at
el

ec
om

.c
n

ch
in

au
ni

co
m

.c
n

di
gi

ta
lo

ce
an

.c
om

te
nc

en
t.c

om
ov

h.
ne

t
vn

pt
.v

n
ch

in
am

ob
ile

.c
om

vi
et

te
l.c

om
.v

n
te

lko
m

.c
o.

id
ce

nt
ur

yl
in

k.
co

m
fra

nt
ec

h.
ca

ba
id

u.
co

m
nt

pl
c.

co
.th

co
nt

ab
o.

de

0

5

10

15

20

25

Pe
rc

en
ta

ge

% Attempts
% Attackers

fp
t.v

n
kt

.c
om

gm
ai

l.c
om

ja
st

el
.c

o.
th

or
ac

le
.c

om
te

le
fo

ni
ca

.c
om

sc
al

ew
ay

.c
om

m
icr

os
of

t.c
om

pl
dt

.c
om

.p
h

lg
up

lu
s.c

o.
kr

rt.
ru

ar
ub

a.
it

cla
ro

.c
om

.b
r

tm
.c

om
.m

y
ril

.c
om

te
da

ta
.n

et

0

1

2

3

4

% Attempts
% Attackers

pt
cl.

co
m

.p
k

go
og

le
.c

om
ac

tc
or

p.
in

ia
m

.m
a

cn
isp

gr
ou

p.
co

m
ai

rte
l.c

om
vo

da
fo

ne
.c

om
icm

en
et

.c
om

se
rv

er
of

fe
r.l

t
bs

nl
.c

o.
in

uc
lo

ud
.c

n
ca

nt
v.c

om
.v

e
ta

ta
te

l.c
o.

in
tru

ei
nt

er
ne

t.c
o.

th
te

lm
ex

.c
om

ne
ta

co
ltd

.c
om

ni
c.

ad
.jp

pp
te

ch
no

lo
gy

.c
c

co
m

ca
st

.c
om

bi
z.n

et
.id

0.0

0.2

0.4

0.6

0.8

1.0

1.2
% Attempts
% Attackers

(a) Top 50 Country sorted by percentage of attackers

(b) Top 50 Country sorted by percentage of attempts

(c) Top 50 Network Providers sorted by percentage of attackers

(d) Top 50 Network Providers sorted by percentage of attempts

1750 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A System to Detect Forged-Origin BGP Hijacks

Thomas Holterbach∗, Thomas Alfroy∗, Amreesh Phokeer†, Alberto Dainotti‡, Cristel Pelsser§

∗University of Strasbourg, †Internet Society, ‡Georgia Tech, §UCLouvain

Abstract

Despite global efforts to secure Internet routing, attack-

ers still successfully exploit the lack of strong BGP security

mechanisms. This paper focuses on an attack vector that is

frequently used: Forged-origin hijacks, a type of BGP hijack

where the attacker manipulates the AS path to make it im-

mune to RPKI-ROV filters and appear as legitimate routing

updates from a BGP monitoring standpoint. Our contribution

is DFOH, a system that quickly and consistently detects forged-

origin hijacks in the whole Internet. Detecting forged-origin

hijacks boils down to inferring whether the AS path in a BGP

route is legitimate or has been manipulated. We demonstrate

that current state-of-art approaches to detect BGP anomalies

are insufficient to deal with forged-origin hijacks. We identify

the key properties that make the inference of forged AS paths

challenging, and design DFOH to be robust against real-world

factors (e.g., data biases). Our inference pipeline includes two

key ingredients: (i) a set of strategically selected features, and

(ii) a training scheme adapted to topological biases. DFOH

detects 90.9% of the forged-origin hijacks within only ≈5min.

In addition, it only reports ≈17.5 suspicious cases every day

for the whole Internet, a small number that allows operators

to investigate the reported cases and take countermeasures.

1 Introduction

On 3 February 2022, the cryptocurrency platform KLAYswap

was targeted by hackers who stole $1.9 million worth of digi-

tal assets [59]. More recently, on 17 August 2022, an attack

to cBridge—a crypto-asset bridge—affected 32 victims, who

lost $235,000 [4]. Both attacks were the result of a forged-

origin BGP hijack, a type of routing hijack where the attack-

ers announce forged AS paths towards a victim prefix by

prepending the victim’s origin AS number in order to make

them appear legitimate. Clearly, BGP hijacking attacks are not

a surprise anymore. They repeatedly make the headlines [1,2]

and are known as attack vectors to steal cryptocurrency [8],

obtain bogus certificates [15], or deanonymize Tor users [62].

The vulnerability they exploit is simply the result of BGP

being designed without security in mind: An attacker can ma-

nipulate every attribute in a BGP message (including the AS

path and its origin AS) and illegitimately announce a prefix

owned by its victim so as to divert the traffic to its network.

Proactive solutions against BGP hijacks are being grad-

ually deployed. However, forged-origin hijacks have been

left uncovered by such solutions—despite these attacks being

actively used in the wild. In fact, network operators attempt to

proactively thwart BGP hijacks by configuring their routers to

filter hijacked routes [46] using (i) RPKI-based Route Origin

Validation (ROV) and (ii) data from Internet Routing Reg-

istries (IRR). Unfortunately, RPKI-ROV filters do not help

to detect forged-origin hijacks, since the forged origin in the

AS path is actually valid, while IRR-based filters are known

to be inaccurate, incomplete [25], and far too often missing

given the increasing number of observed BGP hijacks [7].

Today, network operators do not have many options left other

than waiting for the deployment of new security extensions to

BGP to consistently prevent forged-origin hijacks [44]. Such

deployment—if it will happen at all—might take more than a

decade, as in the case of RPKI-ROV [21].

In this paper, we present DFOH, the first locally-deployable

system that widely, quickly, and accurately Detects Forged-

Origin Hijacks on the Internet. With a single deployment

of DFOH on a commodity server, any attacker performing a

forged-origin hijack is likely to be quickly detected, the hijack

publicly reported, and the victim immediately notified. Being

aware of the attack, the victim can apply countermeasures

and the community can take actions to prevent similar attacks

from happening again. Additionally, DFOH can detect past

attacks, allowing the community to measure the frequency of

such attacks or profile forged-origin hijackers.

DFOH is a passive system that processes the AS paths

observed in publicly collected BGP routes to detect forged-

origin hijacks. The problem of detecting forged-origin hijacks

can be reduced to identifying whether a link between two

ASes is real or fake. Unfortunately, there are multiple reasons

why two ASes might connect, whereas there is no simple

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1751

1752 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the attacker’s AS. The attack is successful because the origin

of the hijacked route is valid. Consequently, the RPKI-based

filters miss the hijacked route, which also remains invisible

from all the hijack detection systems that solely look at the

origin AS. For instance, AS4 in Fig. 1 receives a route for

9.0.0.0/8with AS path AS6-AS9 and accepts it given that its

origin (AS9) is valid. Observe that AS1 and the CDN receive

the two routes for 9.0.0.0/8 with the same AS path length,

in which case their local preferences determine whether they

use the legitimate route or the hijacked one.

Definition: A forged-origin hijack is a BGP hijack where an

attacker AS announces a route for an IP prefix that it is not

authorized to originate and with an AS path that the attacker

purposely manipulates so that the origin AS is valid.

The flip side of a forged-origin hijack is that it makes the AS

path longer, which results in fewer ASes using the hijacked

route compared to a misorigin (Type-0) hijack.

More specific prefixes are not better off. Despite RPKI,

forged-origin hijacks can also succeed towards more spe-

cific prefixes. Operators oftentimes set a loose RPKI

MaxLength [31] (sometimes confusingly [21]), allowing the

attacker to launch successful forged-origin hijacks on more

specific prefixes—a particularly harmful attack, since all traf-

fic from all ASes is directed to the attacker [30, 32].

More advanced path manipulations are possible. An at-

tacker can prepend more than one AS number. For instance,

the attacker AS6 in Fig. 1 could prepend 5 9, in which case the

origin is valid but the attacker AS appears in the third position

from the origin. In this paper, we align with the state-of-art

taxonomy [56] and define a Type-X hijack as follows:

Definition: A Type-X hijack is a forged-origin hijack where

X ≥ 1 indicates the position of the attacker’s AS in the forged

AS path, with the first AS (the origin) being at position zero.

In the (most common) cases where each AS number appears

once in the AS path, X indicates the number of prepended

ASes. Prepending 5 9 thus results in a Type-2 hijack. Intu-

itively, the higher is the number of prepended ASes, the lower

is the impact of the attack (since the hijacked route reaches

fewer ASes, as its AS path is longer).

4 The Case for DFOH

In this section, we highlight why DFOH is practically relevant

(§4.1), and identify its key challenges and requirements (§4.2).

4.1 Lack of Defenses

DFOH is practically relevant because there is currently no

effective mechanism to detect forged-origin hijacks.

Existing proactive defenses are not bulletproof. Because

RPKI-ROV does not prevent forged-origin hijacks, the main

proactive defense for network operators is to check whether

the announcements of their customers are correct, i.e., each

customer legitimately holds the AS numbers and IP address

space they announce. This is achieved using route filters. In

theory, these filters, recommended by MANRS [46], prevent

an AS to propagate incorrect routing information when they

are properly configured. Yet, in practice, they are often miss-

ing, inaccurate, or controllable by an attacker.

Missing filters: In April 2020, ROSTELECOM hijacked sev-

eral prefixes, which impacted at least Amazon and Akamai.

After investigation, it appears that at least two ASes, namely

Rascom amd Cogent Co, did not configure proper filters that

would have reduced the spread of the hijack [47]. Although an

increasing—but still rather low—number of operators agree

to follow routing security norms [26], we still observe many

hijacks that widely propagate through the Internet, which

indicates that these filters are often missing [48].

Inaccurate filters: Network operators often rely on peering in-

formation from the IRRs [39] to infer their customer cone, i.e.,

the set of ASes that can be reached only using customer links—

a necessary information to build accurate filters. However,

IRRs are known to contain inaccurate information [24,25,53],

which inevitably results in inaccurate filters.

Controllable filters: Because the data from the IRRs is

not verified [49], an attacker can intentionally pollute it to

take control over which filters are added or removed in its

provider’s routers. More precisely, an attacker could pollute

its as-set object, which is the IRR object that specifies a set

of ASNs through which traffic can be routed, and is the object

often used to automatically generate route filters [12]. This

is supposedly what happened no later than in August 2022:

An attacker (AS209243) added an Amazon’s AS number into

its as-set object before it started to announce an Amazon’s

prefix with an Amazon’s AS number purposely prepended at

the origin of the AS path [5].

Existing reactive defenses are narrowly focused. ARTEMIS

is a system that detects forged-origin hijacks [56]. However,

it is narrowly focused since it only detects hijacks that pertain

to the AS deploying it. The key mechanism that ARTEMIS

relies on to detect forged-origin hijacks consists in classifying

new AS links as legitimate when observed in both directions,

whereas it reports all the others as possible fake links. The

problem is that ARTEMIS’ approach cannot be directly ex-

tended to monitor all prefixes. Link bidirectionality can rule

out a significant fraction of AS paths with new links when they

pertain to prefixes originated by the AS running ARTEMIS. In

fact, ARTEMIS likely observes both directions of the neigh-

boring links as it combines BGP views from public collectors

with local BGP views. However, when targeting attacks to-

ward any prefix on the Internet, and using only public router

collectors as vantage points, we find that bidirectionality is

observable for only a small fraction of new links (see §6.2.4).

Therefore, in the practical scenario that DFOH targets, solely

relying on link bidirectionality results in a poor accuracy, as

we show in §E.1.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1753

4.2 Requirements

We now highlight four key challenges and requirements that

DFOH must address to be effective and practical.

Requirement 1: A forged-origin hijack detection system

must be fast and accept real-time and historical queries.

A fast detection (within a few minutes) enables mitigating the

hijacks swiftly to limit their impact. Additionally, detecting

past events is useful to e.g., lay hands on serial hijackers [64].

Requirement 2: A forged-origin hijack detection system

must be accurate, both for pinpointing actual hijacks and

avoiding triggering false alarms.

Accuracy matters because every detected hijack is likely to be

manually investigated by the victim AS to confirm the attack

and apply the appropriate mitigation scheme. A high number

of false alarms would thus overwhelm network operators and

limit the practicality of the system. Besides, the detection

system should not miss actual hijacks.

Requirement 3: A forged-origin hijack detection system

must be robust against missing, inaccurate and polluted data.

A forged-origin hijacks detection system must rely on a prob-

abilistic inference as cryptographic-based AS paths verifica-

tion is still missing today (BGPsec is not deployed at all [44]).

The inferences are made using the data collected in various

datasets including public peering information (PeeringDB

and the IRR [39, 52]), which are known to often be inaccu-

rate and incomplete [25, 53]. Worse, these datasets can be

polluted by attackers, as they depend on voluntary and un-

verified contributions [49]. Consequently, care must be taken

when designing the system to ensure robustness against any

possible adversarial inputs or missing data.

Requirement 4: A forged-origin hijack detection system

must be accurate in all attack and peering scenarios.

Internet routing involves various sort of players (e.g., ASes,

CDNs, IXPs, as summarized in Fig. 1). Thus, there are many

possible attack scenarios. Each induces a different fingerprint

on the collected data and may require a different detection

scheme. Typically, a densely-connected Tier1 AS that an-

nounces many prefixes (among which some on behalf of its

customers) and hijacks a prefix owned by a stub AS might be

harder to detect than a single-homed stub AS hijacking the

prefix owned by another stub AS. Similarly, there are many

legitimate peering scenarios (e.g., a remote peering session

between two ASes located in different regions of the world)

and none should exhibit a high level of false alarms.

5 Overview

We describe DFOH’s workflow (§5.1) as well as the functions

that it provides (§5.2) and how users can leverage them (§5.3).

5.1 Workflow

DFOH’s workflow comprises the following three main com-

ponents that are executed on a daily basis.

Zooming on the new AS link (§6.1). DFOH processes the

publicly available BGP routes and pinpoints AS links that

appear for the first time in their AS paths. DFOH zooms on

those links because a forged-origin hijack is likely to trigger

the appearance of a new AS link—typically the forged AS link

that connects the attacker and the victim in case of a Type-1

hijack (we discuss the corner cases in §6.1). While a new AS

link is an indicator to detect forged-origin hijacks, triggering

an alert whenever a new link appears would result in a high

number of inopportune alarms. In fact, legitimate factors such

as new peering agreements or backup path activation can

result in new AS links being visible too.

Unfortunately, we demonstrate in §7.4 that link prediction

algorithms such as SEAL [68] do not translate well to dis-

criminating the malicious new AS links from the real ones.

These algorithms fail because they are generic whereas reveal-

ing malicious AS links is a problem with specific properties.

Thus, DFOH includes the following components that aim to

discriminate the fake new AS links from the legitimate ones.

Computing features (§6.2). DFOH uses a set of features that

we carefully selected based on the key requirements identified

in §4.2 and that are computed with security in mind: They

remain correct even with adversarial input. We divide these

features into the following four categories:

Topological features allow to quantify the change induced

by a new link on the AS topology (following the reasoning

in [63]) and pinpoint the suspicious ones (e.g., that do not

follow the typical hierarchical structure of the AS topology).

Peering features are peering characteristics such as points

of presence within a logical or geographical region that are

computed on a per-AS basis. Intuitively, two ASes that exhibit

similar peering characteristics have a higher chance to peer.

AS-Path-pattern features indicate whether the AS paths ob-

served from vantage points and that include a new link are

relevant based on the supposedly configured routing policies.

Bidirectionality features indicate whether an AS link is ob-

served in both directions, which is a sign of legitimacy.

DFOH uses these features for the following two reasons.

First, they enable to consistently (i.e., in all attack scenarios)

discriminate whether a new AS link is a legitimate intercon-

nection or caused by a forged-origin hijack (see §7.1). Second,

to ensure that DFOH works even when some data is missing

and some feature values cannot be precisely computed. We

evaluate the relevance of the different categories of features in

§7.4, and confirm that when one category is not relevant for a

particular attack scenario or missing, the others compensate.

Inferring forged-origin hijacks (§6.3). Finally, DFOH builds

an inference model that takes as input an AS link and its com-

puted features and infers whether this AS link is the result of a

1754 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

forged-origin hijack. DFOH builds the model using the typical

training pipeline used for link prediction in a graph [45, 68].

A set of existing (legitimate cases) and nonexistent (mali-

cious cases) links are sampled from the AS topology and used

as ground truth to train the inference model. Unfortunately,

naively using the training pipeline of existing link prediction

frameworks falls short for detecting forged-origin hijacks in

all attack scenarios (we confirm this in §7.4). The problem is

that they sample the AS links without taking into considera-

tion the biases observed in the AS topology caused by its hier-

archical structure. In fact, they sample the links uniformly at

random, which returns samples in which stub-to-stub links are

overrepresented and links connecting the highly-connected

ASes are underrepresented. This skewed effect is particularly

critical when generating the negative sample, i.e., a set of

nonexistent links labeled as malicious and used in the train-

ing pipeline. Following the recommendation in [66], DFOH

builds a balanced negative sample, representative of all possi-

ble malicious AS links, to ensure that all the attack scenarios

are covered.

5.2 Software functionalities

Ease of deployment and usage. DFOH is open source and

can run on a commodity server or a VM. Once installed,

DFOH first downloads the different datasets and saves the

parsed data in a database, which we make publicly available at

https://dfoh.uclouvain.be/. It then processes the data

and builds inference models on a daily basis.

Real-time and historical detection. DFOH uses the precom-

puted inference models to detect past and real-time forged-

origin hijacks. Upon detection of a new AS link, DFOH only

needs to compute a few features before running the infer-

ence, which is swift because it relies on a simple model (a

random forest). The most time-consuming operation is boot-

strapping DFOH, because it needs to build the database and

the inference models for many days (for historical detection).

Wide and public detection at no cost for users. DFOH

detects and reports forged-origin hijacks for all possible at-

tackers and victims on the Internet, and for any time period.

Users can examine the list of suspicious cases and apply filters

on them (e.g., to focus on one AS number) at no cost as we

publicly disclose them at https://dfoh.uclouvain.be/.

We describe a few interesting cases in §A.

5.3 Planned usages

Leveraging DFOH locally. Network operators can use

DFOH to detect forged-origin hijacks targeting their prefixes.

Our evaluation (§7.3) shows that in the median case, a given

AS is only involved in zero or one suspicious case in a month,

given network operators to ability to manually check each

reported case and take the proper countermeasures if neces-

sary. This usage is similar to how users use ARTEMIS [56].

However, unlike ARTEMIS which relies on a list of neigh-

boring ASes provided by the user as well as feeds from local

routers, DFOH does not require users to install any software

and configure it.

Leveraging DFOH globally. DFOH enables a global detec-

tion of forged-origin hijacks, which is useful for the scientific

and operational community. For instance, DFOH can help

researchers to characterize forged-origin hijacks (e.g., their

frequency, scope, or to profile serial hijackers [64]). Addi-

tionnally, DFOH helps to globally monitor Internet routing

and is complementary to global BGP monitoring systems that

detect misorigin (Type-0) hijacks (e.g., [35]), traffic delays,

and disconnections (e.g., [37, 38]). Finally, we envision the

output of DFOH to be used in the BGP decision process as

an alternative to BGPSec and ASPA [9, 44], which may take

years to be deployed. Network operators could deprioritize

(or drop) suspicious routes over legitimate ones to prevent

them from propagating to other networks.

6 Design

In this section, we motivate and explain the design of the

DFOH’s internal components and algorithms.

Terminology. Throughout this section, we consider the undi-

rected graph Gd,k = (Vd,k,Ed,k) as the AS topology inferred

at a given day d from the AS paths collected during the k days

prior day d. Vd,k is the set of ASes, and Ed,k ⊆Vd,k ∗Vd,k are

the links between the ASes. We also consider that a new link

(v1,v2) appears at day d, and is visible in a set A of AS paths.

Datasets. We collect BGP routes using BGPKIT [11] from

287 RIS [55] and RouteViews [51] vantage points that we

carefully select using MVP [6]. We collect the AS paths that

CAIDA uses to build its AS relationship dataset [3]. For now,

we collect the data from one IRR (RADb) as it is the only one

that makes available archives of its database. We collect daily

snapshots of PeeringDB from the CAIDA website [17]. We

explain how we clean and combine these datasets in §B.

6.1 Zoom on new AS links

We start by explaining how DFOH detects new AS links.

6.1.1 Under ideal conditions

Consider that an attacker controlling AS a launches a Type-1

hijack on a prefix owned by the victim AS v, with a,v ∈Vd,k.

Rapidly after, the BGP vantage points start to observe the

hijacked routes and record their AS path. They likely observe

different AS paths because they are scattered everywhere on

the Internet. Yet, they all observe an AS path that ends with the

attacker-to-victim link, here (a− v), which is a new AS link,

i.e., (a− v) /∈ Ed,k. This is the case in Fig. 1, where the BGP

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1755

routes induced by the forged-origin hijack launched by AS6

all have an AS path that ends with AS6-AS9. DFOH follows

ARTEMIS’ approach to detect new AS links: It considers the

AS topology Gd,k, with k = 300, i.e., sufficiently high to avoid

missing existing links, and classifies an observed link (x,y) as

new if (x,y) /∈ Ed,k. We detail how DFOH builds Gd,k in §B.

6.1.2 In the real world

DFOH has to deal with real world factors, e.g., attackers could

advertise carefully manipulated BGP updates to thwart DFOH.

We now list the scenarios in which a forged-origin hijack does

not create a new AS link, and show that either DFOH includes

mechanisms to avoid them or that they occur only when the

impact of the attack is greatly limited.

Scenario 1: The attacker hijacks the prefix owned by an AS

with which it legitimately peers.

This attack scenario is akin to a route leak. For instance, an

attacker announcing a route learned from one provider to

another provider is defined as Type-1 route leak according to

RFC 7908 [60]. Route leaks are outside the scope of DFOH

because there already exists tools that aim to detect them in

the wild [10,23,61]. Besides, thwarting DFOH by legitimately

peering with its victim makes the attack harder to perform as

it requires (i) additional resources for the attacker (e.g., being

present in a peering facility where its victim is present too)

and (ii) to convince the victim to peer with it (unless if the

victim peers with the route server of an IXP [54]).

Scenario 2: The attacker pollutes DFOH’s database by ad-

vertising legitimate routes but with fake AS paths.

Past AS path manipulations carried in legitimate routes could

pollute the graph Gd,k by adding fake AS links, preventing

DFOH to classify them as new AS links any longer. DFOH

thwarts this scenario by filtering out links that it inferred as

fake from past inferences, i.e., these links are not in Gd,k. Ob-

serve that a link incorrectly inferred as supicious can be recur-

rently inferred as supicious over time, polluting DFOH’s out-

put. To prevent incorrect inferences from piling up over time,

DFOH only considers past inferences for up to one month,

after which fake links are added in Gd,k and not considered

as new link anymore. This one-month delay gives enough

time for operators to examine the suspicious cases and protect

their network against a potential future attack. Additionally,

DFOH’s website provides filters for users to omit these recur-

rent cases so as to prevent them from polluting the output.

Scenario 3: The attacker announces a fake path that com-

prises an existing path between the victim and the attacker.

The attacker could prepend a path (ideally the shortest one)

from the victim AS to its own AS that exists in the AS topol-

ogy inferred from the routes collected by the BGP vantage

points. For instance, in Fig. 1, the attacker could prepend AS7

AS5 AS9 to avoid triggering a new link. However, prepending

more ASes increases the length of the AS path, inducing a

trade-off between visibility and impact of the attack (which

we highlight in §C) and compelling the attacker to signifi-

cantly reduce the impact of its attack. In fact, Type-1 hijacks

are impactful (31.3% of the ASes are polluted in the median

case) but also visible by DFOH (100% induce a new link in the

median case) whereas Type-2 are slightly less visible (98.8%

induce a new link in the median case) but also less impactful

(1.3% of the ASes are polluted in the median case).

Scenario 4: The attacker ensures that its fake announce-

ments bypass the public BGP route collectors.

Previous works show that this is possible (unless DFOH relies

on some private collectors) [50]. However, the attacker must

prepend additional AS numbers in the AS paths. As shown

in previous works [50, 56] (and confirmed in §C), this signifi-

cantly reduces the impact of the attack by diverting less traffic

to the attacker. For instance, the impact of hijack types larger

than Type-1 is very limited or negligible (e.g., less than 10%

of the ASes see the hijacked route for Type-2 hijacks [56]).

6.2 Features computation

Upon detection of a new link or an explicit user query, DFOH

computes feature values. DFOH uses as input the new link and

a set of AS paths that include this new link. These AS paths

are inferred from the public BGP routes or directly provided

by the user. We now explain how DFOH computes the feature

values for the four types of features.

6.2.1 Topological features

The topological features aim to quantify how the new link

changes the AS topology [63]. Table 2 (Appendix) lists the

topological features that DFOH uses to capture different di-

mensions of the topological changes. The topological features

are either relative to a node (node-based) or a pair of nodes

(pair-based). DFOH uses seven node-based features that we

classify into three categories. The first one quantifies how

central and connected a node is in the graph; the second quan-

tifies how connected are the neighboring nodes; and the third

quantifies the topological patterns (e.g., triangles) that include

the node. We classify the four pair-based features into two

categories. The first one measures how close are two nodes

based on their neighboring nodes whereas the second mea-

sures how close they are using their shortest distance. We

omit other topological features as they are either redundant

with the selected ones or too slow to compute.

Computing the feature values. DFOH computes the differ-

ence induced by the new link on the feature scores. More

formally, assume a set Fn of node-based features and a set

Fp of pair-based features. The feature values computation

1756 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

differs depending on the feature type. Note that for each type

of feature, DFOH uses k = 300 to build the AS topology Gd,k.

Node-based features: Consider feature fi ∈ Fn and fi(x,Gd,k)
its score for node x on Gd,k, with i the feature index in Table 2.

The feature value v(fi,d,v1) is the difference induced by the

new link (v1,v2) on the score of feature fi for node v1 on day

d, and DFOH computes it using the following equation.

v(fi,d,v1) = fi(v1,Gd,k)− fi(v1,G
′
d,k)

G′
d,k = (E ′

d,k,V
′
d,k) is the graph Gd,k that includes link (v1,v2),

that is E ′
d,k = Ed,k ∪ (v1,v2). DFOH computes the feature val-

ues for both nodes v1 and v2. Given that there are seven node-

based features, the resulting 14-dimensional feature vector

Tnode_based(d,v1,v2) is the following:

Tnode_based(d,v1,v2) = [v(f0,d,v1),v(f0,d,v2),

. . . ,v(f6,d,v1),v(f6,d,v2)]

Pair-based features: Consider feature fi ∈ Fp where

fi(x,y,Gd,k) is its score for the pair of nodes x,y, with i the

feature index in Table 2. The feature value v(fi,d,v1,v2)
is the difference induced by the new link (v1,v2) on the

feature score fi for the pair of node v1,v2 at day d, and DFOH

computes it using the following equation.

v(fi,d,v1,v2) = fi(v1,v2,Gd,k)− fi(v1,v2,G
′
d,k)

Given that there are four pair-based features, the resulting

4-dimensional feature vector Tpair_based(d,v1,v2) is:

Tpair_based(d,v1,v2) = [v(f7,d,v1,v2), . . . ,v(f10,d,v1,v2)]

6.2.2 Peering features

The peering features evaluate the likelihood that two ASes

peer based on peering information collected from Peer-

ingDB [52] and BGPView [13]. DFOH considers the five

peering information listed in Table 1. The first three features

stem from the fact that two ASes registered in the same coun-

try, connected to the same IXP, or present in the same facility

are more likely to peer. The last two features stem from the

fact that ASes that are not present in the same facilities but

that have point of presence that are geographically close (e.g.,

same city) are more likely to peer. Of course, these intuitions

are not always true and an obvious counterexample is remote

peering. Fortunately, the different categories of features com-

pensate between each other so that DFOH remains accurate

even when one is less relevant (see §7).

Dealing with adversarial inputs and polluted data. The

peeringDB data is sometimes missing because participation is

voluntary. Besides, the integrity of the data is unverified and an

attacker could populate deceitful peering information. DFOH

addresses those two problems with the following strategy.

Instead of computing the feature scores for a hypothetical

Index Description

1 The countries where ASX’s neighbors are registered

2 The IXPs to which ASX’s neighbors are connected to

3 The facilities to which ASX’s neighbors are present

4 The cities of the facilities to which ASX’s neighbors are present

5 The countries of the facilities to which ASX’s neighbors are present

Table 1: List of peering features used by DFOH along with

their description. We consider features computation for ASX.

attacker ASX, it computes the scores for the neighboring ASes,

for which ASX has no control over the peering information.

In fact, an operator can only update the peering information

relative to its own organization. Besides, as ASes often have

several neighbors (the average node degree of the AS topology

is 12 and the median is 2), focusing on the neighboring ASes

helps find relevant peering information even if a few of them

do not add peering information into peeringDB.

Computing the feature values. Consider the vector fv,i,d that

contains information about feature i for node v at day d. For

each feature i, DFOH builds two vectors fv1,i,d and fv2,i,d based

on peering information collected at day d. On September 19,

2022, for features 1 and 5, the vectors have 271 dimensions

and each dimension corresponds to one of the 271 countries

found in peeringDB. Similarly, for feature 2, the vectors have

944 (number of IXPs) dimensions, whereas for feature 3 they

have 3558 (number of facilities) dimensions, and for feature

4 they have 1482 (number of cities) dimensions. The value of

fv,i,d at index j is the number of v’s neighbors that are in the

country/IXP/facility/city that corresponds to index j.

DFOH then normalizes the two vectors fv1,i,d and fv2,i,d

such that they become comparable even if v1 and v2 have a

different number of neighbors (normalization operation ∇),

and removes indexes for which the values in both vectors

are zero (feature reduction operation ⊖). Finally, DFOH com-

putes the feature value for the link (v1,v2) and a feature i

by computing the cosine distance between the two vectors,

which quantifies how similar the two vectors are (operation

α). We use the cosine distance because we are interested in

the direction of these vectors, not in their actual values, which

depend on the number of neighbors, an irrelevant informa-

tion for DFOH. For a given link (v1,v2) and a day d, DFOH

computes the following 5-dimensional feature vector.

P(d,v1,v2) = [α(⊖(∇(fv1,1,d),∇(fv2,1,d))),

. . . ,α(⊖(∇(fv1,5,d),∇(fv2,5,d)))]

6.2.3 AS-path-pattern feature

DFOH uses the AS paths of the hypothetically observed hi-

jacked routes to compute the AS-path-pattern features. More

precisely, DFOH checks whether the sequence of AS degree

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1757

and customer cone size in an observed AS path p ∈ A is rel-

evant given the following two assumptions. First, as the AS

topology exhibits a hierarchical pattern with Tier1 ASes at

the top, we expect that ASes higher in the hierarchy exhibit a

higher AS degree and customer cone size. Second, because

the majority of the inter-domain routing policies follow the

Gao-Rexford model [33], we expect the AS paths to have a

valley-free pattern. When these two assumptions are valid, the

sequence of AS degree and customer cone size in an AS path

follows a strong and identifiable up-and-down pattern. For in-

stance, between two stub ASes, we expect the AS degree and

customer cone size to increase until the path reaches the Tier1

ASes, and then to decrease until it reaches the destination AS.

Inferring the suspicious AS paths. Unsurprisingly, these

two assumptions do not always hold. For instance, a CDN

may have a higher node degree than some of its providers.

DFOH thus trains an inference model that computes the prob-

ability that a sequence of AS degree or customer cone size

is legitimate or caused by a forged-origin hijack, based on

historical (for the legitimate cases) and artificial (for the hi-

jack cases) data used as ground truth. More precisely, we

select a set of existing and nonexistent AS links. The existing

links are selected randomly whereas the nonexistent links are

selected following the sampling scheme described in §6.3,

which ensures that the distribution of the nonexistent links

follows the distribution of the existing links. Then, for each

existing link, we randomly pick an AS path that includes this

AS link and where one end of the link is at the origin. For the

nonexistent links, we randomly define the attacker and the

victim and pick an existing AS path for which the origin is

the hijacker AS and add the victim as a new origin.

Computing the feature values. DFOH trains a random forest

on sequences of AS degree and customer cone size inferred

from the created AS paths. DFOH finds the best parameters of

the random forest using a cross-validated grid search over a

parameter grid. The degree of an AS is computed from the AS

topology that DFOH builds on a daily basis, and the customer

cone size is obtained from ASRank [18]. DFOH computes the

following 3-dimensional feature vector.

J(d,v1,v2, p) = [ρ(d,v1,v2, p),σ(d,v1,v2, p),τ(d,v1,v2, p)]

where ρ is the result of the fake AS path inference considering

the AS degree for link (v1,v2), AS path p∈ A and day d. Simi-

larly, σ is the result of the inference for the customer cone size,

and τ is the result of the inference when AS degree and cus-

tomer cone size are combined. We find that combining both

AS degree and customer cone size improves the inference

on some scenarios where, e.g., CDNs are involved. Note that

each feature value is computed using its own independently-

trained inference model that DFOH updates every day.

6.2.4 The bidirectionality feature

Identifying an AS link in both directions is a strong sign that it

is legitimate [56]. However, checking for link bidirectionality

is more challenging for DFOH compared to local detection

systems such as ARTEMIS [56]. This is because the routes

collected by the public BGP vantage points only allow to

observe a small fraction of the new AS links as bidirectional.

DFOH improves state-of-the-art techniques by combining the

information from the public BGP data and the IRR to observe

more AS links in both directions. We explain our method-

ology and demonstrate its safety against adversarial inputs

and benefits in §D.2 due to space constraints. Computing the

bidirectionality feature results in the following 1-dimensional

feature vector.

B(d,v1,v2) = [bidir(d,v1,v2)]

Where bidir(d,v1,v2) = 1 if the link (v1,v2) is bidirectional

at day d, else it is equal to zero.

6.3 Inference

We now explain how DFOH runs (§6.3.1) and trains (§6.3.2)

its inference model using balanced samples (§6.3.3).

6.3.1 Detecting forged-origin hijacks

After computing the feature values for a new link (v1,v2)
and the observed AS path p ∈ A that includes the new link,

DFOH concatenates the resulting feature vectors and obtains

the following 27-dimensional feature vector.

F(d,v1,v2, p) = Tnode_based(d,v1,v2)⊕Tpair_based(d,v1,v2)

⊕P(d,v1,v2)⊕ J(d,v1,v2, p)⊕B(d,v1,v2)

Where ⊕ is the concatenation operation. DFOH uses this

feature vector as input to its inference model, which is a

supervised binary classifier. The classifier relies on a random

forest as this algorithm returns a slightly better performance

compared to others (e.g., neural networks, decision tree or

SVM), is easier to understand, and is fast to train and query.

DFOH refines its inference using many vantage points. A

new AS link is often visible from different BGP vantage

points, and the AS paths that include this new link may be

different. DFOH computes the AS-path-pattern features for

all these AS paths, runs inferences for this new link and for

every observed AS path using the computed AS-path-pattern

features, and triggers an alarm if half or more of the inferences

detect a forged-origin hijack. Observe that DFOH performs

well even if only one AS path is used (|A|= 1), which is what

we use to evaluate DFOH in §7.1.

6.3.2 Training the classifier

DFOH trains its classifier following a supervised training ap-

proach used in state-of-the-art link prediction frameworks [36,

1758 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1759

1760 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1761

1762 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

our balanced sampling scheme is a key ingredient to obtain

high accuracy in every attack scenario.

DFOH outperforms state-of-the-art link prediction algo-

rithms. We compared DFOH to SEAL, a state-of-the-art

link prediction framework that could be an alternative to infer

whether a new AS link is legitimate or fake [68]. We run SEAL

on the AS topology inferred on August 1, 2022, and configure

it to use 20000 existing and nonexistent links for the training.

We then evaluate it on 10000 other existing and nonexistent

links that are selected using our balanced sampling scheme.

SEAL returns a TPR of 19.3%, and an FPR of 5.5%, a better

accuracy than a random classifier that would return ≈50% of

TPR and FPR, but a significantly lower accuracy than DFOH.

The accuracy of SEAL turns out to be very skewed (as we

show in §E.2) because it uses a random sampling scheme

for the training. In fact, the attack scenarios for which SEAL

poorly performs are the ones involving the highly-connected

ASes, i.e., the ones that are underrepresented in a random

sample. We thus implemented b-SEAL, a modified version of

SEAL that uses our balanced sampling scheme for the training

instead. With a TPR of 80.6% and a FPR of 30.8%, b-SEAL is

still significantly less accurate that DFOH. Yet, we find that its

accuracy is more consistent across all attack scenarios. Thus,

we conclude that (i) the balanced sampling is necessary for a

consistent accuracy, regardless of the inference model used,

and (ii) our selection of features based on domain-specific

properties is relevant. We give more details in §E.2.

8 Related work

Misorigin (Type-0) hijacks detection. Prior works that an-

alyze control-plane information to detect MOAS hijacks

[19, 35, 42, 58, 65] can detect accidental hijacks but not the

malicious ones induced by forged-origin hijacks. Prior works

that detect hijacks from data-plane information [16,70,71] of-

ten can only be deployed per AS, precluding global analysis.

Forged-origin hijacks detection. ARTEMIS detects forged-

origin hijacks involving the AS deploying the tool, but can-

not be extended for global detection (see §4.1). Cho et al.

introduce algorithms based on the AS hegemony [27] to clas-

sify reported hijacks as forged-origin hijacks [20]. The pro-

posed global hegemony feature is similar in essence to our

AS-path-pattern feature. Yet, without our key ingredients, this

technique alone results in a low and skewed accuracy when

used for globally detecting forged-origin hijacks (see §7.4).

This is confirmed by the authors themselves, who acknowl-

edge that their algorithm fails to classify hijacks that involve

highly-connected ASes such as in the KlaySwap incident [59].

Kruegel et al. propose to detect anomalous BGP updates by

combining geographical and topological information about

the ASes in the path [40]. However, little is known about how

this technique would work to detect forged-origin hijacks.

Link prediction applied to the AS topology. SEAL is a

framework for link prediction in a graph but it does not apply

well to detect fake AS links (see §7.4) [68]. Giakatos et al.

compare link prediction algorithms based on graph-based pre-

diction models on Internet routing data [29]. More precisely,

they compute a set of features for every AS and feed them

either into a GNN model or a graph embedding model such

as bgp2vec [57]. The authors acknowledge that the AS topol-

ogy and its hierarchical structure is challenging for a GNN

or a graph embedding model, and their inference models do

not translate well to detecting fake AS links. Finally, Shapira

et al. proposed a deep-learning approach with a recurrent

neural network based on node embedding computed using

bgp2vec [57]. Yet, the performance of the proposed solution

is evaluated on the small and biased dataset used in [20].

New protocols and architectures. BGPSec is an extension to

BGP where routers cryptographically verify the validity of the

AS path [44]. However, it is not deployed at all, as it requires

expensive cryptographical operations in the routers. ASPA is

a proposal to extend RPKI and use it for AS path validation

but it is not extensively deployed [9]. Finally, new secure

inter-domain protocols and architectures such as SCION [69]

are challenging to widely deploy.

9 Conclusion

We present DFOH, the first system that consistently detects

forged-origin hijacks on the Internet. DFOH only reports

≈17.5 cases every day, a small number that allows operators

to manually investigate each case and take the proper coun-

termeasures. We believe DFOH triggers interesting follow-up

works, such as measuring the frequency of these events, pro-

filing the forged-origin hijackers, or analyzing how often the

data traffic is diverted to the supposed attacker.

10 Acknowledgments

We are grateful to the NSDI anonymous reviewers for their

insightful comments. We are also grateful to our shepherd,

Italo Cunha, for its detailed feedback which helped us to im-

prove the quality of the paper. We thank the InetLab platform

from the ICube laboratory for providing us a VM which we

used to run DFOH.

Thomas Holterbach is partially funded by the Internet So-

ciety (through the MANRS Initiative) and by Région Grand

Est. Thomas Alfroy is funded by ArtIC project "Artificial

Intelligence for Care" (grant ANR-20-THIA-0006-01) and

co funded by Région Grand Est, Inria Nancy - Grand Est,

IHU of Strasbourg, University of Strasbourg and University

of Haute-Alsace. This project has been made possible in part

by a grant from the Cisco University Research Program Fund,

an advised fund of Silicon Valley Foundation.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1763

References

[1] Amazon once again lost control (for 3 hours) over

the IP pool in a BGP Hijacking attack. https:

//research.securitum.com/amazon-once-again-lost-
control-for-3-hours-over-the-ip-pool-in-a-bgp-

hijacking-attack.

[2] BGP Hijack of Amazon DNS to Steal Crypto Currency. https:

//medium.com/oracledevs/bgp-hijack-of-amazon-
dns-to-steal-crypto-currency-a90dd29cb3ab.

[3] CAIDA AS relationships. https://catalog.caida.org/
dataset/as_relationships_serial_2. 2022-12-1.

[4] Celer Bridge incident analysis. https://www.coinbase.com/
blog/celer-bridge-incident-analysis.

[5] Yet another BGP hijacking towards AS16509.

https://mailman.nanog.org/pipermail/nanog/2022-
August/220320.html.

[6] Thomas Alfroy, Thomas Holterbach, and Cristel Pelsser. MVP:

Measuring internet routing from the most valuable points. In

IMC’22.

[7] BGP, RPKI, and MANRS: 2020 in review. https:

//blog.apnic.net/2021/02/05/bgp-rpki-and-manrs-
2020-in-review/.

[8] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijack-

ing bitcoin: Routing attacks on cryptocurrencies. In Security

and Privacy, 2017.

[9] Alexander Azimov, Eugene Bogomazov, Randy Bush, Keyur

Patel, Job Snijders, and Kotikalapudi Sriram. BGP AS_PATH

Verification Based on Autonomous System Provider Autho-

rization (ASPA) Objects. Internet-draft, 2023.

[10] Marcelo Bagnulo, Alberto García-Martínez, Stefano Angieri,

Andra Lutu, and Jinze Yang. Practicable route leak detection

and protection with ASIRIA. Computer Networks, 2022.

[11] Fast, Extensible, On-premise Global BGP Monitoring. https:

//bgpkit.com/.

[12] bgpq4 - BGP filtering automation tool. https://github.com/
bgp/bgpq4.

[13] BGPview. https://bgpview.io/".

[14] Bias in Internet Measurement Infrastructure. https://

ripe84.ripe.net/archives/video/768/.

[15] Henry Birge-Lee, Yixin Sun, Anne Edmundson, Jennifer Rex-

ford, and Prateek Mittal. Bamboozling certificate authorities

with BGP. In USENIX Sec, 2018.

[16] Tobias Bühler, Alexandros Milolidakis, Romain Jacob, Marco

Chiesa, Stefano Vissicchio, and Laurent Vanbever. Oscillo-

scope: Detecting BGP Hijacks in the Data Plane, 2023.

[17] Daily snapshots of historic PeeringDB data. https://

publicdata.caida.org/datasets/peeringdb/.

[18] CAIDA AS Rank. http://as-rank.caida.org/.

[19] Massimo Candela. BGPAlerter, 2019.

[20] Shinyoung Cho, Romain Fontugne, Kenjiro Cho, Alberto Dain-

otti, and Phillipa Gill. BGP hijacking classification. In TMA,

2019.

[21] Taejoong Chung, Emile Aben, Tim Bruijnzeels, Balakrish-

nan Chandrasekaran, David Choffnes, Dave Levin, Bruce M.

Maggs, Alan Mislove, Roland van Rijswijk-Deij, John Rula,

and Nick Sullivan. RPKI is Coming of Age: A Longitudinal

Study of RPKI Deployment and Invalid Route Origins. In IMC,

2019.

[22] CIDR REPORT for 12 Oct 22. https://www.cidr-
report.org/as2.0/".

[23] How we detect route leaks and our new Cloudflare Radar route

leak service. https://blog.cloudflare.com/route-leak-
detection-with-cloudflare-radar/.

[24] B Du, G Akiwate, C Testart, A Snoeren, k claffy, K Izhikevich,

and S Rao. IRRegularities in the Internet Routing Registry. In

IMC’23.

[25] Ben Du, Gautam Akiwate, Thomas Krenc, Cecilia Testart,

Alexander Marder, Bradley Huffaker, Alex C. Snoeren, and

KC Claffy. IRR Hygiene in the RPKI Era. In PAM, 2022.

[26] Ben Du, Cecilia Testart, Romain Fontugne, Gautam Akiwate,

Alex C. Snoeren, and kc claffy. Mind Your MANRS: Measur-

ing the MANRS Ecosystem. In IMC, 2022.

[27] Romain Fontugne, Anant Shah, and Emile Aben. "The (Thin)

Bridges of AS Connectivity: Measuring Dependency Using

AS Hegemony". In PAM, 2018.

[28] Lixin Gao and Jennifer Rexford. Stable Internet Routing with-

out Global Coordination. ACM SIGMETRICS, 2000.

[29] Dimitrios Panteleimon Giakatos, Sofia Kostoglou, Pavlos

Sermpezis, and Athena Vakali. Benchmarking Graph Neu-

ral Networks for Internet Routing Data, 2022.

[30] Yossi Gilad, Avichai Cohen, Amir Herzberg, Michael Schapira,

and Haya Shulman. Are We There Yet? On RPKI’s Deploy-

ment and Security. In NDSS, 2017.

[31] Yossi Gilad, Sharon Goldberg, Kotikalapudi Sriram, Job Sni-

jders, and Ben Maddison. The Use of maxLength in the Re-

source Public Key Infrastructure (RPKI). RFC 9319, October

2022.

[32] Yossi Gilad, Omar Sagga, and Sharon Goldberg. MaxLength

Considered Harmful to the RPKI. In CoNEXT, 2017.

[33] Phillipa Gill, Michael Schapira, and Sharon Goldberg. A Sur-

vey of Interdomain Routing Policies. ACM SIGCOMM CCR,

2014.

[34] Vasileios Giotsas, George Nomikos, Vasileios Kotronis, Pav-

los Sermpezis, Petros Gigis, Lefteris Manassakis, Christoph

Dietzel, Stavros Konstantaras, and Xenofontas Dimitropou-

los. O Peer, Where Art Thou? Uncovering Remote Peering

Interconnections at IXPs. IEEE/ACM ToN, 2021.

[35] GRIP. https://grip.inetintel.cc.gatech.edu/.

[36] Aditya Grover and Jure Leskovec. node2vec: Scalable Feature

Learning for Networks, 2016.

[37] Internet Health Report. https://ihr.iijlab.net/ihr/en-
us.

[38] IODA. https://ioda.inetintel.cc.gatech.edu/.

[39] Internet Routing Registry. https://www.irr.net/.

1764 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://research.securitum.com/amazon-once-again-lost-control-for-3-hours-over-the-ip-pool-in-a-bgp-hijacking-attack
https://research.securitum.com/amazon-once-again-lost-control-for-3-hours-over-the-ip-pool-in-a-bgp-hijacking-attack
https://research.securitum.com/amazon-once-again-lost-control-for-3-hours-over-the-ip-pool-in-a-bgp-hijacking-attack
https://research.securitum.com/amazon-once-again-lost-control-for-3-hours-over-the-ip-pool-in-a-bgp-hijacking-attack
https://medium.com/oracledevs/bgp-hijack-of-amazon-dns-to-steal-crypto-currency-a90dd29cb3ab
https://medium.com/oracledevs/bgp-hijack-of-amazon-dns-to-steal-crypto-currency-a90dd29cb3ab
https://medium.com/oracledevs/bgp-hijack-of-amazon-dns-to-steal-crypto-currency-a90dd29cb3ab
https://catalog.caida.org/dataset/as_relationships_serial_2
https://catalog.caida.org/dataset/as_relationships_serial_2
https://www.coinbase.com/blog/celer-bridge-incident-analysis
https://www.coinbase.com/blog/celer-bridge-incident-analysis
https://mailman.nanog.org/pipermail/nanog/2022-August/220320.html
https://mailman.nanog.org/pipermail/nanog/2022-August/220320.html
https://blog.apnic.net/2021/02/05/bgp-rpki-and-manrs-2020-in-review/
https://blog.apnic.net/2021/02/05/bgp-rpki-and-manrs-2020-in-review/
https://blog.apnic.net/2021/02/05/bgp-rpki-and-manrs-2020-in-review/
https://bgpkit.com/
https://bgpkit.com/
https://github.com/bgp/bgpq4
https://github.com/bgp/bgpq4
https://bgpview.io/"
https://ripe84.ripe.net/archives/video/768/
https://ripe84.ripe.net/archives/video/768/
https://publicdata.caida.org/datasets/peeringdb/
https://publicdata.caida.org/datasets/peeringdb/
http://as-rank.caida.org/
https://www.cidr-report.org/as2.0/"
https://www.cidr-report.org/as2.0/"
https://blog.cloudflare.com/route-leak-detection-with-cloudflare-radar/
https://blog.cloudflare.com/route-leak-detection-with-cloudflare-radar/
https://grip.inetintel.cc.gatech.edu/
https://ihr.iijlab.net/ihr/en-us
https://ihr.iijlab.net/ihr/en-us
https://ioda.inetintel.cc.gatech.edu/
https://www.irr.net/

[40] Christopher Kruegel, Darren Mutz, William Robertson, and

Fredrik Valeur. Topology-Based Detection of Anomalous BGP

Messages. In Recent Advances in Intrusion Detection, 2003.

[41] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jaha-

nian. Delayed internet routing convergence. ACM SIGCOMM

CCR, 2000.

[42] Mohit Lad, Daniel Massey, Dan Pei, Yiguo Wu, Beichuan

Zhang, and Lixia Zhang. PHAS: A Prefix Hijack Alert System.

In USENIX Sec, 2006.

[43] Matt Lepinski and Stephen Kent. An Infrastructure to Support

Secure Internet Routing. RFC 6480, February 2012.

[44] Matt Lepinski and Kotikalapudi Sriram. BGPsec Protocol

Specification. RFC 8205.

[45] David Liben-Nowell and Jon Kleinberg. The link prediction

problem for social networks. In CIKM, 2003.

[46] Mutually Agreed Norms for Routing Security (MANRS).

https://www.manrs.org/about/.

[47] Not just another BGP Hijack. https://www.manrs.org/
2020/04/not-just-another-bgp-hijack/.

[48] MANRS blogpost: BGP security in 2021. https://

www.manrs.org/2022/02/bgp-security-in-2021/.

[49] Do we still need the IRR? An analysis and comparison of

IRR data across databases. https://ripe85.ripe.net/
wp-content/uploads/presentations/71-10-RIPE85-

IRRAnalysis.pdf.

[50] Alexandros Milolidakis, Tobias Bühler, Kunyu Wang, Marco

Chiesa, Laurent Vanbever, and Stefano Vissicchio. On the

Effectiveness of BGP Hijackers That Evade Public Route Col-

lectors. IEEE Access, 2023.

[51] University of Oregon. Route Views Project, 2016.

www.routeviews.org/.

[52] The Interconnection Database. https://

www.peeringdb.com/.

[53] Richard Steenbergen. Examining the validity of IRR

data. https://archive.nanog.org/meetings/nanog44/
presentations/Tuesday/RAS_irrdata_N44.pdf.

[54] Philipp Richter, Georgios Smaragdakis, Anja Feldmann, Niko-

laos Chatzis, Jan Boettger, and Walter Willinger. Peering at

Peerings: On the Role of IXP Route Servers. In IMC’14.

[55] RIPE RIS Raw Data, 2016. https://www.ripe.net/data-
tools/stats/ris/.

[56] Pavlos Sermpezis, Vasileios Kotronis, Petros Gigis, Xenofontas

Dimitropoulos, Danilo Cicalese, Alistair King, and Alberto

Dainotti. ARTEMIS: Neutralizing BGP Hijacking Within a

Minute. IEEE/ACM ToN, 2018.

[57] Tal Shapira and Yuval Shavitt. BGP2Vec: Unveiling the Latent

Characteristics of Autonomous Systems. IEEE TNSM, 2022.

[58] Xingang Shi, Yang Xiang, Zhiliang Wang, Xia Yin, and Jian-

ping Wu. Detecting Prefix Hijackings in the Internet with

Argus. In IMC’22, 2012.

[59] Aftab Siddiqui. KlaySwap – Another BGP Hijack Target-

ing Crypto Wallets. https://www.manrs.org/2022/02/
klayswap-another-bgp-hijack-targeting-crypto-

wallets/.

[60] Kotikalapudi Sriram, Doug Montgomery, Danny R. McPher-

son, Eric Osterweil, and Brian Dickson. Problem Definition

and Classification of BGP Route Leaks. RFC 7908, June 2016.

[61] Shen Su, Beichuan Zhang, Lin Ye, Hongli Zhang, and Nathan

Yee. Towards real-time route leak events detection. In IEEE

ICC, 2015.

[62] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li,

Jennifer Rexford, Mung Chiang, and Prateek Mittal. RAPTOR:

Routing Attacks on Privacy in Tor. In USENIX Sec, 2015.

[63] Mattia Tantardini, Francesca Ieva, Lucia Tajoli, and Carlo Pic-

cardi. Comparing methods for comparing networks. Scientific

Reports, 2019.

[64] Cecilia Testart, Philipp Richter, Alistair King, Alberto Dainotti,

and David Clark. Profiling BGP Serial Hijackers: Capturing

Persistent Misbehavior in the Global Routing Table. In IMC,

2019.

[65] He Yan, Ricardo Oliveira, Kevin Burnett, Dave Matthews,

Lixia Zhang, and Dan Massey. BGPmon: A Real-Time, Scal-

able, Extensible Monitoring System. In Cybersecurity Appli-

cations Technology Conference for Homeland Security, 2009.

[66] Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren

Zhou, and Jie Tang. Understanding Negative Sampling in

Graph Representation Learning, 2020.

[67] Muhan Zhang and Yixin Chen. Weisfeiler-Lehman Neural

Machine for Link Prediction. In KDD ’17, 2017.

[68] Muhan Zhang and Yixin Chen. Link prediction based on

graph neural networks. In Advances in Neural Information

Processing Systems, 2018.

[69] Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan,

Adrian Perrig, and David G. Andersen. SCION: Scalability,

Control, and Isolation on Next-Generation Networks. In S&P,

2011.

[70] Zheng Zhang, Ying Zhang, Y. Charlie Hu, Z. Morley Mao, and

Randy Bush. ISPY: Detecting IP Prefix Hijacking on My Own.

IEEE/ACM Trans. Netw., 2010.

[71] Changxi Zheng, Lusheng Ji, Dan Pei, Jia Wang, and Paul Fran-

cis. A Light-Weight Distributed Scheme for Detecting IP Prefix

Hijacks in Real-Time. In ACM SIGCOMM, 2007.

Appendix

A A sample of the most suspicious cases

We now describe three suspicious cases that DFOH detected

in 2022. These cases illustrate that DFOH is exploitable, and

that reporting the suspicious cases and notifying the operators

is beneficial. Note that we did not manually inspect all the

reported cases in 2022. Thus, even more suspicious cases

might exist.

January 1, 2022:3 AS267548, a small Peruvian AS, appears

between Sprint (AS1239), a Tier1 AS, and AS199524, a large

content provider. However, AS267548 is not supposed to

3https://dfoh.uclouvain.be/cases/2022-01-01_1239_267548

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1765

https://www.manrs.org/about/
https://www.manrs.org/2020/04/not-just-another-bgp-hijack/
https://www.manrs.org/2020/04/not-just-another-bgp-hijack/
https://www.manrs.org/2022/02/bgp-security-in-2021/
https://www.manrs.org/2022/02/bgp-security-in-2021/
https://ripe85.ripe.net/wp-content/uploads/presentations/71-10-RIPE85-IRRAnalysis.pdf
https://ripe85.ripe.net/wp-content/uploads/presentations/71-10-RIPE85-IRRAnalysis.pdf
https://ripe85.ripe.net/wp-content/uploads/presentations/71-10-RIPE85-IRRAnalysis.pdf
www.routeviews.org/
https://www.peeringdb.com/
https://www.peeringdb.com/
https://archive.nanog.org/meetings/nanog44/presentations/Tuesday/RAS_irrdata_N44.pdf
https://archive.nanog.org/meetings/nanog44/presentations/Tuesday/RAS_irrdata_N44.pdf
https://www.ripe.net/data-tools/stats/ris/
https://www.ripe.net/data-tools/stats/ris/
https://www.manrs.org/2022/02/klayswap-another-bgp-hijack-targeting-crypto-wallets/
https://www.manrs.org/2022/02/klayswap-another-bgp-hijack-targeting-crypto-wallets/
https://www.manrs.org/2022/02/klayswap-another-bgp-hijack-targeting-crypto-wallets/

1766 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Type Categorie Name Index Description

N
o
d

e-
b

a
se

d
Centrality Metrics

Degree centrality 0 Fraction of nodes connected to v

Closeness centrality 1 Average length of the shortest path between v and all other nodes

Harmonic centrality 2 Sum of the reciprocal of the shortest path distances from all nodes to v

Neighborhood Richness
Average neighbor degree 3 Average degree of all the neighbors of v

Eccentricity 4 Max distance from v to all other nodes

Topological Pattern
Number of Triangles 5 Number of triangles that include v

Clustering 6 Fraction of possible triangles including v that exist

P
a
ir

-b
a
se

d

Closeness Metrics

Jaccard 7 Similarity between the neighbors of v1 and v2

Adamic Adar 8 Closeness of v1 and v2 based on their shared neighbors

Preferential attachment 9 Likelihood of v1 and v2 to be connected based on their degree

Distance Shortest Path 10 Length of the shortest path between v1 and v2

Table 2: List of topological features used by DFOH along with their description. In the description, we consider for the

node-based features a node v in the AS topology whereas we consider two nodes v1 and v2 for the pair-based features.

are aggregated in the box plots. Clearly, there is no sweet spot

where an attack has high impact and low visibility. For Type-1

and 2, impact is high but visibility is high too, and vice versa

for Type-3, 4 and 5. An attacker launching a forged-origin

hijack thus often cannot prevent the AS path of the hijacked

route to include a new AS link—giving DFOH the ability to

detect it.

D Features computation (extension)

D.1 Topological features

Table 2 describes the ten topological features that DFOH uses

in its inference model. We explain how DFOH computes the

feature values in §6.2.

D.2 Bidirectionality feature

Observing an AS link in each direction is a strong sign that it

is legitimate. In fact, consider the forged-origin-hijacked route

with the AS path x1, . . . ,xn,v1,v2 where v1 is the attacker and

v2 the forged origin. v1 can only forge the upstream part

of the AS path (i.e., the part on the right side of v1), and

has no control over the downstream part. Note that v1 could

prepend v2,v1 on a route to another prefix that it owns to fake

a bidirectional link. However, the AS path would contain a

loop and would be either denied by BGP routers or easily

detectable by BGP monitoring systems. A challenge when

assessing the bidirectionality of the AS links is that the AS

topology derived from the AS paths in the BGP routes is

incomplete (e.g., backup links can be missing). Thus, only

a small fraction of the links (≈25000 , i.e., ≈4.8% of the

visible links) are visible in both directions.

Using the IRR data to supplement the BGP routes. DFOH

parses the IRR data to infer more peering links that are not

visible from the collected BGP routes. More precisely, DFOH

parses the aut-num objects of every AS in the routing reg-

istries. For now, DFOH only uses RADb as it is the only one

that makes available archive of its database. However, we

envision to use all the registries listed in [39] for real-time

detection. An aut-num object related to ASX may include

(partial) information about the export and import policies of

ASX. These policies generally indicate the AS number or an

as-set objects to/from which ASX is exporting/importing

routes. In the case of an as-set object, DFOH recursively

parses the object (an as-set object can include other as-set

objects) until it finds all the ASes in this as-set. With the IRR

data, DFOH infers peering information that when combined

with BGP data, allows identifying ≈10000 more bidirectional

links compared to with BGP data only.

The bidirectionality feature is beneficial. Even after pars-

ing the IRR data, the number of bidirectional links remains

small compared to the total number of AS links. Yet, they are

worth the effort because they help DFOH to correctly classify

new links as legitimate in some particular peering scenar-

ios. In fact, as the location of BGP collectors is typically

skewed with many of them located in the core of the Inter-

net [14], many bidirectional links pertain to highly-connected

ASes. We observe the same effect on the bidirectional links

inferred from the IRR data, as network operators of the highly-

connected ASes tend to populate their IRR data more fre-

quently than others. The bidirectional feature thus improves

the accuracy of DFOH upon peering scenarios that involve the

highly-connected ASes—scenarios that are hard to accurately

classify with the other features (see §E.1).

The bidirectionality feature is safe. The IRR data has two

drawbacks: It can be inaccurate and it is unverified. This is

not an issue for DFOH for two reasons. First, the number of

possible attacker and victim pairs is C2
74000 ≈ 2.74 billions

(74000 is the number of ASes [22]) whereas the number of

inconsistencies in the IRR is by far lower [25]. Consequently,

the bidirectional links incorrectly inferred because of these in-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1767

w/o AS-Path-based w/o Bidirectionality w/o Topological w/o PeeringDB All Features

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

Stubs -
85.0 % 4.2 % 97.0 % 4.2 % 95.0 % 4.2 % 87.0 % 2.8 % 97.0 % 4.2 %

Stubs

Stubs -
74.0 % 3.1 % 82.0 % 4.1 % 83.0 % 3.1 % 76.0 % 6.2 % 83.0 % 3.1 %

Tier1

Transit/IXP/CDN-2 -
82.0 % 1.0 % 95.0 % 1.0 % 94.0 % 1.0 % 92.0 % 2.0 % 95.0 % 1.0 %

Transit/IXP/CDN-3

Transit/IXP/CDN-3 -
96.2 % 1.0 % 98.1 % 1.0 % 98.1 % 2.0 % 98.1 % 1.0 % 98.1 % 1.0 %

Highly Connected

Transit/IXP/CDN-4 -
58.0 % 15.6 % 83.0 % 6.2 % 83.0 % 12.5 % 82.0 % 12.5 % 84.0 % 6.2 %

Tier1

Large Customer Cone -
35.0 % 13.3 % 89.0 % 13.3 % 88.0 % 6.7 % 94.0 % 13.3 % 89.0 % 6.7 %

Tier1

All types of Links 74.0 % 2.1 % 90.9 % 2.0 % 90.6 % 2.3 % 86.2 % 2.9 % 90.9 % 1.9 %

Table 3: Accuracy of DFOH for a few selected attack scenarios when all the features but one

are used in the inference pipeline.

consistencies only have very little impact on the performance

of DFOH. Second, as an attacker can only change the IRR data

for its own organization, she can only fake one direction of

an AS link (attacker → victim)—the same direction as when

prepending the victim’s AS number in a BGP announcement.

Computing the feature values. Upon a historical request

for a day d, DFOH infers link bidirectionality from the AS

topology computed on day d (i.e., Gd,k) combined with the

BGP and IRR data collected during the days following d (up

to 30 days). Considering the following days allows DFOH to

find more bidirectional links that only appear e.g., once BGP

converges. Upon a real-time query on day d, DFOH considers

the graph Gd,k, and the IRR data collected on day d. Observe

that for the bidirectionality feature, Gd,k is a directed graph.

Computing the bidirectionality feature results in the following

1-dimensional feature vector.

B(d,v1,v2) = [bidir(d,v1,v2)]

Where bidir(d,v1,v2) = 1 if the link (v1,v2) is bidirectional

at day d, else it is equal to zero.

E Detection speed

DFOH automatically downloads all the data and trains the in-

ference model on a daily basis. Upon launching an inference,

DFOH uses the inference model trained the day before. Thus,

the detection speed depends on (i) the time to compute the

feature values for the link and AS paths given as input, and

(ii) the time to run the inference. The inference is fast (<1s)

because it relies on a simple random forest. However, the time

to compute the feature values depends on whether DFOH is

used for real-time detection or to detect past forged-origin

hijacks. We now differentiate the two cases.

DFOH detects past forged-origin hijacks in a few seconds.

We measured the time needed by DFOH to compute the fea-

ture values for all the 18000 synthetic cases used to evaluate

the overall performance of DFOH in 7.1. We use an Ubuntu

20.04 LTS version server with 16 cores and 64 GB of memory.

DFOH needs 7510 seconds to compute the feature values (i.e.,

≤ 1s for a single case). The topological features are the most

time consuming to compute (7155 seconds). Observe that

the AS-path-pattern features are fast to compute, thus DFOH

remains fast even when it must compute these features for

many different AS paths.

DFOH detects new forged-origin hijacks in a few minutes.

The only difference when running DFOH in real time per-

tains to the bidirectionality feature. In fact, a new peering

interconnection may be visible in both directions from the

BGP routes only when BGP has converged. As the BGP con-

vergence typically takes a few minutes [41], DFOH waits a

few minutes (five, identically to ARTEMIS [56]) to let BGP

converge before computing the bidirectionality feature.

E.1 Discriminate power

of classification features

In this section, we examine the discriminatory power of the

classification features used in DFOH. We show that our se-

lection is sound: Every feature is useful in at least one attack

scenario. Besides, none of the features alone is able to detect

forged-origin hijack consistently and for all attack scenarios.

Every feature category is useful. Table 3 shows the perfor-

mance of DFOH when one feature category is deactivated

1768 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1769

1770 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NetVigil: Robust and Low-Cost Anomaly Detection for
East-West Data Center Security

Kevin Hsieh∗1 Mike Wong∗2,1 Santiago Segarra1,3 Sathiya Kumaran Mani1

Trevor Eberl1 Anatoliy Panasyuk1 Ravi Netravali2 Ranveer Chandra1 Srikanth Kandula1

1Microsoft 2Princeton University 3Rice University

Abstract– The growing number of breaches in data centers
underscores an urgent need for more effective security. Tra-
ditional perimeter defense measures and static zero-trust ap-
proaches are unable to address the unique challenges that arise
from the scale, complexity, and evolving nature of today’s
data center networks. To tackle these issues, we introduce
NetVigil, a robust and cost-efficient anomaly detection system
specifically designed for east-west traffic within data center
networks. NetVigil adeptly extracts security-focused, graph-
based features from network flow logs and employs domain-
specific graph neural networks (GNNs) and contrastive learn-
ing techniques to strengthen its resilience against normal
traffic variations and adversarial evasion strategies. Our evalu-
ation, over various attack scenarios and traces from real-world
production clusters, shows that NetVigil delivers significant
improvements in accuracy, cost, and detection latency com-
pared to state-of-the-art anomaly detection systems, providing
a practical, supplementary security mechanism to protect the
east-west traffic within data center networks.

1 Introduction

The modern era of digitalization has brought about unprece-
dented growth in data center networks, ushering in a period
where the need for robust security measures is more critical
than ever before. Recent high-profile breaches, such as the
Equifax breach [1] and the SolarWinds attack [3, 82] have
exposed vulnerabilities in data center network security and
demonstrate catastrophic consequences that can arise from
a lack of adequate protection. As cyber threats continue to
evolve and grow in sophistication, there is an urgent need to
develop innovative solutions to safeguard sensitive informa-
tion and ensure the integrity of data center networks.

One such area that warrants particular attention is the se-
curity of east-west traffic within data centers. Traditional
security measures have focused primarily on securing north-
south traffic at the network perimeter, which has left inter-
nal systems susceptible to lateral movements and persistent
threats from compromised nodes, SSH keys, or other creden-
tials [73, 75]. Zero-trust architecture [44, 66] aims to mitigate
these risks by securing east-west communication and data

* Equal contribution.

flows. However, current zero-trust solutions, such as micro-
segmentation [40,59,70,77], rely only on static access control
rules and are ill-equipped to detect dynamic and unusual be-
haviors, leaving networks exposed to potential attacks and
lateral movement.

Addressing the critical gap in data center network security
necessitates the development of an effective and always-on
network anomaly detector specifically tailored for east-west
traffic. Although existing network anomaly detection solu-
tions have achieved significant progress in handling north-
south traffic [32, 47], they struggle to overcome the unique
challenges associated with east-west traffic. First, the majority
of these solutions require capturing and analyzing network
packets, leading to a cost that becomes prohibitively high
when implemented across all nodes. For example, a recent
high-throughput malicious traffic detection system [31] de-
mands at least 17 cores and 10 GB of memory per node to
secure a 10 Gb NIC, resulting in an annual cost of six million
dollars for an application comprising 1,000 nodes. Second, ex-
isting solutions are known for generating false alarms [43,57],
an issue further amplified by the dynamic nature of east-west
traffic. Even a marginal false alarm rate can significantly es-
calate operational overhead at scale, causing security teams
to inadvertently neglect genuine threats. Third, a multitude of
solutions depend on labeled malicious datasets or signatures
for training their detectors [22,46,51,53], a strategy that is not
only impractical at scale but also renders systems susceptible
to novel zero-day attacks [23, 55].
Objectives and Techniques. We introduce NetVigil, a novel
anomaly detection system explicitly designed for securing
east-west traffic in large-scale networks. In light of the chal-
lenges and limitations associated with existing solutions,
NetVigil is designed to fulfill three primary objectives: (a)
guaranteeing cost-effectiveness when monitoring numerous
nodes, (b) precisely identifying anomalous behaviors while
emphasizing the reduction of false alarms, and (c) demonstrat-
ing robustness to normal traffic changes without depending
on prior knowledge of malicious attacks.

NetVigil achieves these objectives with three core ideas:
(1) Deriving security-focused graph features from flow sum-

maries. To ensure cost-efficiency, NetVigil leverages low-cost
flow summaries, available at both network level (e.g., VPC
Flow Logs [21] and NSG Flow Logs [54]) and service level

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1771

(e.g., Calico flow logs [6] and Cilium/Hubble [9]). These
loggers offer substantial cost savings over packet traces by
logging only aggregated statistics. NetVigil adeptly extracts
security-oriented graph features from these summaries, ef-
fectively compensating for the absence of packet-level infor-
mation. This approach enables scalable monitoring of large
networks without sacrificing anomaly detection accuracy.

(2) Leveraging graph neural networks (GNNs) and domain-
specialized contrastive learning for context-aware robust
anomaly detection. NetVigil employs GNNs to model com-
plex relationships between nodes in the network. The key
insight is that different nodes within a network (e.g., microser-
vices) carry diverse contextual information. By integrating
contextual information from adjacent nodes, GNNs can detect
anomalous behaviors that might be overlooked by traditional
solutions focusing on individual flows [31, 56]. To further
strengthen the model’s resilience against normal traffic fluc-
tuations, NetVigil adopts graph contrastive learning [85] with
domain-specialized data augmentation. This approach guides
the model toward capturing meaningful representations of
standard traffic patterns, enabling it to distinguish between
benign and malicious behaviors with greater precision.

(3) Adapting to temporal dynamics via smoothing and con-
tinuous retraining. NetVigil addresses the evolving nature of
network traffic by integrating a temporal loss that encourages
similarity between embeddings of temporally-adjacent graphs.
Moreover, NetVigil continuously retrains its model using re-
cent clean logs by excluding anomalous flows. This approach
keeps the model updated with network behavior, maintaining
high detection accuracy over time.
Implementation and Evaluation. We build NetVigil as an
end-to-end streaming data pipeline, continuously analyzing
network flow summaries and dynamically updating its model.
To evaluate its effectiveness, we design a new east-west se-
curity benchmark, Yatesbury, using a microservice demo ap-
plication [11], generating a diverse array of live traces and
simulating evasive attack scenarios. Our extensive evaluation,
including the benchmark and week-long to month-long traces
from production clusters, demonstrates that NetVigil signifi-
cantly outperforms existing malicious traffic detectors [31,56].
We achieve an average AUC (area under the ROC Curve) im-
provement of 0.22 (up to 0.62) and reduce operational costs
by 2.7 – 16.7× for our 16-VM deployment. We release our
benchmark Yatesbury 1 to enable researchers to explore novel
attack scenarios in a cloud environment and contribute inno-
vative solutions in this crucial domain.
Contributions. We make the following contributions:

• We introduce a novel network anomaly detection architec-
ture designed to secure east-west traffic within data cen-
ters. This architecture utilizes low-cost network flow logs,
security-oriented graph features, and graph neural networks
(GNNs) to achieve cost-effectiveness and robustness.

1https://github.com/microsoft/Yatesbury

Permissible
micro-segmented

paths

Perimeter defense

Static micro-segmentation

Figure 1: Difference between perimeter defense and static micro-
segmentation

• We propose an innovative end-to-end training mechanism
that combines graph representation learning, graph con-
trastive learning, and temporal smoothing. This approach
enables the learning of east-west traffic dynamics for accu-
rate anomaly detection.

• We build our solution alongside an east-west security bench-
mark tailored for cloud deployment, validating the perfor-
mance of our proposed solution through various attack sce-
narios and long-term traces from two production clusters.

2 Background and Motivation

We briefly discuss key concepts and challenges in securing
east-west traffic in data center networks. We focus on the im-
portance of this task and the limitations of traditional security
measures, and we provide an overview of network anomaly
detection techniques specific to east-west traffic.

2.1 Securing East-West Traffic with Zero-
Trust Solutions

Traditional security measures, such as firewalls [69] and intru-
sion detection systems (IDSes) [43], have primarily focused
on securing north-south traffic (interactions between data cen-
ter nodes and external systems) at the network perimeter, as
illustrated in Figure 1. While these measures are essential,
they often do not protect east-west traffic (communication
between nodes within a data center). Traditional security
measures tend to rely on static access control rules or attack
signatures, which can be easily bypassed by attackers using
compromised credentials or exploiting network vulnerabili-
ties. Once inside the network, an attacker can perform lateral
movement with relative ease. The limited visibility into the
communication between nodes within the data center renders
traditional security measures less effective in detecting and
responding to emerging threats.

The zero-trust security model [44, 66] represents a
paradigm shift in network security, aiming to address the
limitations of traditional security measures and improve the
protection of east-west traffic within data center networks.

1772 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/microsoft/Yatesbury

IDS Low compute
overhead

Low network
overhead

Easy
management

Zero-day attack
protection

Computation cost (CPU
cores/100Gbps) or Licens-
ing cost (US dollars)

Zeek (formerly Bro) [61] ✗ ✗ ✓ ✗ 400 [2]
Snort [65] ✗ ✗ ✗ ✗ 250 [88]
Pigasus [88] ✓ ✗ ✗ ✗ 5 + 1 FPGA [88]
Suricata [15] ✗ ✗ ✗ ✗ 53 + 1 SmartNIC [14]
Whisper [31] ✗ ✓ ✓ ✓ 170
VMware NSX [17] ✗ ✓ ✓ ✗ $4,495/processor/yr [18]
Aviatrix DCF [5] ✗ ✗ ✓ ✗ [4] ∼$3,000/gateway/yr

Table 1: Characteristics of popular IDSes. The characteristics of commercial options are obtained from their websites, which are
subject to changes. The licensing costs associated with commercial solutions may not directly correspond to their computation costs.

The main principles of zero-trust include: (a) least privilege
access [68], where users and devices are granted the mini-
mum access rights necessary to perform their tasks; (b) micro-
segmentation [70,77], which divides the network into smaller
segments or zones to limit lateral movement (see Figure 1);
and (c) continuous monitoring and validation of user and
device behavior to ensure compliance with security policies.

Existing solutions [40, 59] primarily focus on micro-
segmentation to limit the attack surface and the potential
impact of a breach while preventing lateral movement of at-
tackers. However, continuous monitoring and validation of
user and device behavior remain a challenge due to the mas-
sive scale and dynamic nature of east-west traffic, requiring
advanced techniques and tools to effectively detect and re-
spond to anomalies in real time. Without this missing piece,
an attack can still find a way to propagate from one node to
another through permissible, micro-segmented paths, caus-
ing significant damage to critical infrastructure, data loss, or
unauthorized access to sensitive information.

2.2 Challenges of Network Intrusion Detection
Systems on East-West Traffic

A significant body of research [43, 48, 53] has been dedi-
cated to the study of network intrusion detection systems (ID-
Ses), which are tactically positioned at network choke points
(e.g., routers or gateways) to safeguard network perimeters.
Contemporary IDSes can be classified into signature-based
and anomaly-based systems, each offering unique advantages.
Signature-based systems efficiently detect known attack pat-
terns using their distinct signatures, while anomaly-based
systems focus on recognizing normal patterns to identify
novel attacks. Although signature-based systems are effective
for known attacks, the rise of zero-day attacks [23, 55] has
highlighted the importance of anomaly-based systems. By
employing deep learning techniques [32, 47], anomaly-based
systems serve as a valuable complement to signature-based
systems. Both systems have their merits, and a combination
of the two can offer a more robust security solution. Table 1
summarizes key attributes of popular IDSes. Although these
solutions work well for north-south traffic, their application
to east-west traffic presents fundamental challenges.

Challenge 1: Excessive Compute Overhead in Network
Packet Analysis. Past studies [16, 67] showed that only 17%
of data center traffic was attributed to north-south traffic. The
increasing adoption of micro-service architectures, cloud stor-
age, and software-defined networks has since exacerbated
the disparity between north-south and east-west traffic. Con-
sequently, applying existing security solutions to east-west
traffic would result in an unsustainable increase of already
considerable costs. For example, Pigasus [88] employs Field-
Programmable Gate Arrays (FPGAs) to substantially reduce
operational expenses for rule-based IDSes. Nevertheless, it
still requires five CPU cores and one FPGA to secure a 100
Gbps network. Commercial solutions like VMware NSX [17]
tackle this problem by operating IDSes on every hypervisor.
Although this method handles east-west traffic better, it re-
sults in substantial computational expenses for all data center
nodes. The situation is no better for anomaly-based IDSes.
Whisper [31], an efficient malicious traffic detection system,
surpasses its predecessor Kitsune [56] by achieving a 100-
fold increase in throughput. Despite this, securing a single 10
Gbps network necessitates 17 processing cores, potentially
doubling or even tripling the application’s operational costs.

The primary reason for the high overhead in existing solu-
tions is their dependence on capturing and analyzing network
packets, which offer rich and fine-grained information on net-
work traffic. Nevertheless, as Table 1 shows, this approach is
expensive and not scalable for large data center networks. A
cost-effective alternative involves using network or service
flow logs [6, 9, 21, 54], which utilize aggregation intervals to
condense network packet telemetry into periodic 5-tuples and
statistics. While service flow logs offer valuable application-
level data, such as service names and request types, they often
necessitate an agent in guest VMs or specialized environments
like Kubernetes [24]. In this study, we focus on network flow
logs due to their widespread availability in a cloud environ-
ment and consider integrating service flow logs in future work.

To evaluate this approach, we compare the effectiveness of
two contemporary solutions, Whisper [31] and Kitsune [56],
on network packet traces and network flow logs for similar
set of attacks. As Figures 2 and 3 illustrate, applying existing
solutions to network flow logs significantly compromises their
accuracy due to the absence of packet-level information.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1773

Fuzzing OS Scan SSL DoS SSDP Flood0.0
0.2
0.4
0.6
0.8
1.0

AU
C

Kitsune
Whisper

Figure 2: AUC scores with packet traces

UDP Scan SYN Scan UDP DDoS SYN Flood0.0
0.2
0.4
0.6
0.8
1.0

AU
C

Kitsune
Whisper

Figure 3: AUC scores with flow traces

Challenge 2: Complexity and Congestion in Networking.
Numerous popular IDSes [15, 65, 88] are implemented by
redirecting (or hair-pinning) traffic to IDS appliances. How-
ever, for east-west traffic, this method generates excessive
network overheads, as traffic between VMs on the same ma-
chine or within the same rack must be rerouted to another
cluster, potentially causing significant congestion in the net-
work. Moreover, this approach adds complexity to network
management, as hair-pinning must be executed for all commu-
nication paths within a data center, making routing substan-
tially more complicated. Thus, commercial offerings [5] that
adopt this approach primarily focus on egress traffic rather
than encompassing all east-west traffic.
Challenge 3: Elevated False Alarms During Prolonged
Deployment. Applying existing solutions to secure east-west
traffic presents another challenge: an increased false alarm
rate over extended deployment periods. As network traffic pat-
terns evolve, security solutions must adapt to these changes to
maintain high detection accuracy. However, many current net-
work security systems struggle to keep up with the dynamic
nature of network traffic, such as load variation and workload
migration. This results in a high rate of false alarms.

We conduct an evaluation of Whisper [31] using two long-
term traces from our first-party production clusters (see Sec-
tion 6.5 for more detailed information). We find that there is a
substantial increase in false alarms over time, while the contin-
uous daily retraining of these solutions yields only marginal
improvements (not shown in plot). These false alarms not
only utilize significant resources for investigation but also
undermine trust in the system, potentially resulting in the
disregard of authentic threats.
Summary. The absence of a cost-efficient, robust and effec-
tive intrusion detection solution is a crucial impediment in

securing east-west traffic. A comprehensive solution must: (a)
ensure processing efficiency by eliminating dependence on
all network packets, (b) avoid incurring network congestion
or routing complexity, (c) proactively adapt to normal traffic
fluctuations and (d) demonstrate high efficacy on previously
unknown but malicious occurrences. These considerations
are the foundation of our design requirements for NetVigil.

3 Overview of NetVigil

We present a novel anomaly-based intrusion detection sys-
tem, NetVigil, that is explicitly designed to secure east-west
data center networks with cost efficiency and robustness
against normal traffic fluctuations. NetVigil achieves low op-
erational costs by extracting security-oriented graph features
from network flow logs, effectively eliminating the need for
fine-grained yet costly network packet traces. The insight
of NetVigil lies in the fact that network nodes within a data
center typically provide specific functionalities (e.g., micro-
services, storage, databases, etc.), and by employing graph
neural networks (GNNs), we can learn contextual informa-
tion to enhance anomaly detection accuracy. Furthermore, our
system incorporates graph contrastive learning and tempo-
ral smoothing techniques to achieve high detection accuracy
while maintaining low false alarm rates. Figure 4 provides an
overview of the NetVigil architecture.
Inference Time. During the inference phase (depicted on the
left side of Figure 4), cloud resources such as virtual machines
(VMs) and compute clusters continuously generate network
flow logs [6, 9, 21, 54] at intervals ranging from tens of sec-
onds to minutes. These data streams are processed by our
security graph feature extractor (I1 in Figure 4, more details
in Section 4.1), which groups network flow logs based on
their IP addresses, extracts crucial features, and transforms
the results into a featurized communication graph. In this
graph, each node represents an IP address, and each edge
summarizes all flows between respective IP pairs. NetVigil
subsequently feeds this featurized communication graph into
the continuously trained GNN autoencoder (I2 in Figure 4) to
compute anomaly scores for each edge. Edges identified as
potentially anomalous, along with the corresponding commu-
nication graphs and network flow logs, are then forwarded to
the security team for further investigation.
Training Time. At each retraining interval, which typically
spans hours or days based on network dynamics, NetVigil
gathers clean communication graphs from the inference phase
(i.e., excluding anomalous nodes and edges detected by the
model) to retrain the GNN autoencoder (depicted on the right
side of Figure 4). The GNN encoder (T1 in Figure 4) learns to
compress the features of each edge and its incident nodes into
an embedding space, allowing the GNN decoder (T2 in Figure
4) to reconstruct these features with minimal reconstruction
loss (L1 in Figure 4). Section 4.2 provides more details.

1774 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Cloud Resources

Network Flow Logs
Security

Graph Feature
Extractor

I1

Featurized
Communication
Graph

GNN
Autoencoder

Inference

I2

Security Team

Anomalies

Inference Training

Clean Featurized
Graphs

Graph Data
Augmentation

T3

GNN
Encoder

T1

Edge
embeddings

GNN
Decoder

Temporal Loss

L1

T2

Contrastive Loss

Reconstruction
Loss

L3L2

Figure 4: Overview of NetVigil

To enhance robustness, we design a graph data augmenta-
tion module (T3 in Figure 4) and train the system to encourage
similarity between the embeddings of original and augmented
graphs by minimizing the contrastive loss (L2, more details in
Section 4.3). Furthermore, we introduce a temporal loss (L3,
more details in Section 4.4) to promote embedding similarity
between temporally-adjacent graphs. The entire training pro-
cess is conducted end-to-end, resulting in an up-to-date GNN
autoencoder for the subsequent inference phase.

4 Design Details of NetVigil

We provide a comprehensive discussion of the key modules
within NetVigil and explain how these components collabo-
rate to fulfill our design objectives. We discuss the security-
oriented graph feature extractor (Section 4.1), graph repre-
sentation learning (Section 4.2), domain-specialized graph
contrastive learning (Section 4.3), and temporal smoothing
techniques (Section 4.4) employed by NetVigil to ensure a
cost-effective, accurate, and robust anomaly detection system
for east-west data center networks.

4.1 Security Graph Feature Extractor

Our security graph feature extractor aims to gather security-
oriented features from network flow logs, prioritizing cost
efficiency while maintaining essential information for down-
stream anomaly detection. Within each aggregation interval
(e.g., one minute), network flow logs typically contain the
following information: (a) 5-tuple data, encompassing pro-
tocol, source and destination IP addresses, and source and
destination ports, (b) the number of transmitted and received
packets, and (c) the volume of transmitted and received bytes.

Our graph feature extractor operates at the IP address level
instead of the network flow (IP and port) level for two primary
reasons. First, operating at the network flow level leads to
much larger graphs and increases the burden on both inference
and training processes. For instance, we observe orders of

Feature Statistics
Number of transmitted packets

min, max, mean, sum, std
Number of received packets
Total received bytes
Total transmitted bytes
Number of TCP flows

count
Number of UDP flows
Number of local unseen ports
Number of global unseen ports
Number of ports

Table 2: Features obtained for each distinct IP pair

magnitude increases in the number of nodes and edges in our
production traces when constructing communication graphs at
the network flow level (139k nodes and 115k edges) compared
to the IP level (300 nodes and 10-20k edges). Furthermore,
aggregating at the IP address level facilitates the identification
of correlations between flows associated with the same IP
address (e.g., a notable increase in the number of flows or
usage of different ports). This, in turn, simplifies the detection
of anomalous attacks, such as port scanning.

Our graph feature extractor offers additional operational
cost reductions through a tunable detection window (e.g., two
or three minutes). By generating a single communication
graph per detection window, the feature extractor effectively
balances detection latency with cost efficiency. Although a
larger detection window might marginally impact detection
accuracy for evasive attacks, this approach enables network
operators to harmonize the requirement for prompt detection
with limited resource constraints. Consequently, it becomes
a suitable solution for large-scale network monitoring and
security applications.

Table 2 summarizes the features we obtain for each distinct
IP pair. We exclude ephemeral ports from the port-related fea-
tures, as they do not provide learnable information. In addition
to common features like the number of packets and bytes, we
monitor critical security-oriented features such as the number
of flows and unseen ports, which strongly indicate unusual
occurrences. We maintain a record of globally observed ports

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1775

across all flows, as well as the locally observed ports for each
IP pair within the training dataset. By maintaining port in-
formation as statistics, our feature extractor can function at
the IP address level without sacrificing essential information.
This approach allows us to capture crucial correlations among
distinct flows associated with the same IP address while main-
taining scalability and facilitating the detection of anomalous
attacks involving multiple flows.

4.2 Graph Representation Learning

In order to discover relationships within the communication
graph, NetVigil employs Graph Neural Networks (GNNs).
These advanced machine learning models are specifically
designed to analyze and extract patterns from complex graph-
structured data. The key insight is that nodes within our com-
munication graph correspond to various roles in an appli-
cation and, as a result, each node and its neighbors exhibit
a particular pattern over time. This contextual information
enables NetVigil to identify anomalous behaviors that may
seem normal if analyzed individually (e.g., C&C communi-
cation patterns or DNS amplification) without requiring the
costly processing of granular packet-level information such as
packet sizes, arrival times, and payloads. The ability to forego
detailed packet-level data stems from the sufficiency of flow-
level information for communication graph construction, cap-
turing many key characteristics that distinguish a malicious
flow from a normal one, including traffic volume, flow count,
and interactions with various ports and IPs. Similar to prior
work, E-GraphSage [51], we first aggregate edge features on
each node as contextual information, and then concatenate the
original edge features with this contextual information as the
input to our edge encoder. Since E-GraphSage relies on su-
pervised training, which is not practical at scale, we build our
solution using an autoencoder by mapping each concatenated
edge feature into a compressed embedding space.

Algorithm 1 presents the pseudocode for our GNN autoen-
coder. Lines 1–3 aggregate edge features using an AGG func-
tion, which can be mean, median, or element-wise pooling.
Line 5 concatenates the aggregated contextual information
with the original edge features, and Lines 6–8 encode the
concatenated edge features into edge embeddings (Line 9).
Lines 11-19 decode the embeddings back to the original edge
features, and the reconstruction loss between euv and ẽuv cor-
responds to the L1 in Figure 4. Formally, for a (mini)batch
B(G) of graphs, we have that

L1 =
1

∑i|Gi∈B(G) |Ei| ∑
i|Gi∈B(G)

∑
(u,v)∈Ei

∥euv− ẽuv∥2, (1)

where Ei corresponds to the edge set of Gi.
It is worth noting that although we employ simple graph

convolutional networks (GCNs) [45] in Algorithm 1, the GNN
architecture can be interchangeable, provided that the encoder

Algorithm 1 GNN Autoencoder for Edge Embedding

Input: Graph G(V,E)
Input: Edge features euv,∀uv ∈ E
Input: Number of autoencoder layers L
Input: Encoder/decoder weights W l

E ,W
l
D,∀l ∈ 1, ...,L

1: for v ∈ V do ▷ Aggregate neighboring edge features
2: hv← AGG(euv,∀u ∈ N(v),(u,v) ∈ E)
3: end for
4: for (u,v) ∈ E do
5: h0

uv← CONCAT(hu,euv)
6: for l ∈ 1, ...,L do ▷ Edge Encoder
7: hl

uv← σ(W l
E ·hl−1

uv)
8: end for
9: zuv = hL

uv ▷ Edge embedding
10: end for
11: for v ∈ V do ▷ Broadcast edge embedding
12: hv← AGG(zuv,∀u ∈ N(v),(u,v) ∈ E)
13: end for
14: for (u,v) ∈ E do
15: h0

euv
← CONCAT(hu,euv)

16: for l ∈ 1, ...,L do ▷ Edge Decoder
17: hl

uv← σ(W l
D ·hl−1

uv)
18: end for
19: ẽuv = hL

uv ▷ Reconstructed edge features
20: end for

takes into account both original edge features and aggregated
neighboring features. While our experiments do not show a
significant accuracy gain from using additional convolutional
layers or alternate GNN architectures, some domain-specific
GNN architectures may still perform better. We leave the
exploration of domain-specific architectures for future work.

4.3 Domain-Specific Contrastive Learning
One of the primary challenges faced by existing network
anomaly detectors is the generation of numerous false alarms
for normal changes that were not encountered during the
training process. A common approach to address this issue
involves curating an extensive long-term dataset for training,
with the expectation that all normal behaviors will be en-
compassed within this dataset. However, this approach is not
scalable for east-west traffic, as they frequently experience
normal changes, such as configuration updates, load varia-
tions, and node failures. To tackle this challenge, we employ
graph contrastive learning [50], which augments the training
data with general and domain-specific perturbations to en-
hance the model’s generality. This approach allows the model
to better accommodate and adapt to the dynamic nature of
network traffic, thereby reducing the incidence of false alarms
while accurately detecting genuine anomalies.

We find that most normal traffic fluctuations arise from (1)
not all edges appearing consistently, (2) traffic volume varying
over time, and (3) noisy behavior from non-application edges.
Based on these observations, we employ the following data

1776 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

augmentation strategies to enhance the model performance:
• Randomly removing edges and nodes: By presenting sub-

graphs to the model, the system gains the ability to more
effectively analyze network communication patterns, at-
tributable to the simplified structure and reduced noise.

• Adding noise to edge features: Edge features, such as the
number of packets and the volume of transmitted/received
bytes, are perturbed to test the model’s robustness against
variations in feature values.

• Removing non-application edges: It has been observed that
application traffic within the network exhibits greater pre-
dictability compared to inter-service communications. Con-
sequently, by removing nodes and edges unrelated to the
application running within the network, the model can bet-
ter learn and recognize application-level communication
patterns, thereby enhancing its robustness and reducing the
occurrence of false positives.
Formally, during training, a minibatch B(G) of graphs is

randomly sampled. For every graph G ∈ B(G), we generate
two augmented versions G (1) and G (2) by randomly selecting
two of the data augmentation strategies mentioned above. We
denote the corresponding embeddings of an edge uv ∈ E by
z(1)uv and z(2)uv ; see Line 9 in Algorithm 1. Recalling that the
cosine similarity between two vectors x and y is given by
cos(x,y) = x⊤y/(∥x∥∥y∥), we define the contrastive loss of a
given edge uv as [85]

ℓuv =− log

(
exp(2cos(z(1)uv ,z

(2)
uv))

∑u′v′ exp(2cos(z(1)uv ,z
(2)
u′v′))

)
, (2)

where the negative edges u′v′ are randomly selected from aug-
mented versions of other graphs in the minibatch. Notice that
minimizing ℓuv promotes z(1)uv and z(2)uv to be similar, i.e., the
embeddings corresponding to the same edge for two different
augmented versions should be close to each other. Moreover,
minimizing ℓuv also promotes z(1)uv and z(2)u′v′ (the embeddings
of different edges in augmented versions of different graphs)
to be different from each other. In this way, we avoid the col-
lapse of different embeddings into a common representation
and encourage the full utilization of the embedding space.
Our contrastive loss (L2 in Figure 4) is given by the average
value of ℓuv over all edges in the minibatch

L2 =
1

∑i|Gi∈B(G) |Ei| ∑
i|Gi∈B(G)

∑
uv∈Ei

ℓuv, (3)

where Ei corresponds to the edge set of Gi. As defined, the
loss L2 depends on the randomly selected augmentation strate-
gies to compute the contrastive pairs of every graph. During
training, we randomly choose new augmentation strategies
for each minibatch, ensuring every gradient step is based on
new contrastive pairs, thereby promoting generalization.

4.4 Temporal Smoothing and Continuous Re-
training

Another crucial aspect that our model seeks to capture is tem-
poral dynamics. Through our analysis of several traces from
production clusters, we observe that network traffic within a
short time window (e.g., minutes) tends to exhibit similarity,
while patterns can undergo significant changes over longer
periods (e.g., hours or days). This observation aligns with the
understanding that major network traffic changes are typically
driven by rare events (e.g., failures), periodicity (e.g., time of
day), or application changes (e.g., code updates), which do
not generally occur within short time frames.

We incorporate these temporal dynamics with a two-fold
strategy. First, we define a temporal loss (L3 in Figure 4)
during training to encourage embedding similarity between
temporal adjacent graphs. For every pair of temporally ad-
jacent graphs G t and G t+1, we minimize the norm of the
difference between consecutive embeddings of the same edge.
More precisely, we have that

L3 =
1

∑t |Et ∩Et+1| ∑t
∑

uv |uv∈Et∩Et+1

∥zt
uv− zt+1

uv ∥2, (4)

where Et denotes the edge set of G t . By minimizing L3, we
promote the embeddings of the same edge in two consecutive
time steps to be close to each other. Notice that, as a result of
the dynamic nature of our graph, it might be that an edge uv
that exists at time t is no longer present at time t +1. Hence,
in (4), we account for this by only considering edges that
belong to the intersection of two consecutive edge sets.

Second, we employ a periodic training procedure (e.g.,
hours or days) to update the model with the most recent traffic
patterns. In each retraining window, we compile clean com-
munication graphs (i.e., nodes and edges without any potential
anomalies) from the inference phase (left side of Figure 4),
as well as the false alarms cleared by the security team, to
form the training set. Subsequently, we retrain the model by
minimizing the composite loss, L , which combines the recon-
struction loss L1, contrastive loss L2, and temporal loss L3.
The composite loss is defined as L = L1 +αL2 +βL3, where
α and β are hyperparameters that trade off the relative impor-
tance of the different losses. This approach helps the model
stay up-to-date and can effectively detect genuine anomalies
and adapt to fluctuations in network traffic patterns.

5 Benchmarks and datasets

Datasets and network traces for intrusion and anomaly detec-
tion are available, but they primarily consist of packet traces.
As stated in Section 2.2, conducting inference for each packet
leads to considerable computational burdens, particularly in
east-west traffic where there is a larger volume of network traf-
fic. In light of this, we collect flow-level logs that summarize

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1777

network traffic. We deploy a 16-VM scale set on Microsoft
Azure, activate Azure Network Watcher, and enable network
security group (NSG) flow logging [54]. NSG logs record
essential flow-level information such as 5-tuple, timestamp,
number of bytes and packets transmitted, similar to other com-
mercial flow logging offerings (e.g., [21]). For our 16-VM
scale set, we deploy a web-based e-commerce app [11] that
allows users to browse clothing items, add them to the cart,
and complete purchases. Our application consists of 11 mi-
croservices for components such as ad generation, product
catalog, payment, and product cart, as well as a load generator
to send GET and POST requests, simulating user behavior
like viewing items, setting currency, adding items to the cart,
and submitting payment information.

On top of this setup, we develop and introduce a new bench-
mark, Yatesbury 1, designed to evaluate the performance and
efficiency of anomaly detectors in east-west network traffic.
We evaluate NetVigil with 13 distinct attacks that accurately
represent a variety of malicious behaviors. Table 3 enumerates
these attacks, each of which involves one or more compro-
mised malicious nodes. Each trace lasts for 1-2 hours, and we
label each trace for each 2-minute window and mark a connec-
tion as anomalous if any malicious traffic is sent or received
between the two nodes. Malicious nodes communicate with
each other and send malicious network traffic to the benign
nodes. We utilize traditional network attacks that encompass
various port scan methods, including traditional exhaustive
port scanning, distributed scanning of multiple targets, stealth
scanning using SYN packets to bypass firewalls, and acceler-
ated scanning using UDP packets. Other traditional attacks
we implement are DoS attacks, such as SYN flooding, which
inundate victims with SYN requests, DDoS attacks involving
multiple attackers, and DDoS attacks using UDP packets.

Furthermore, we incorporate attacks featuring more intri-
cate communication patterns, which better represent mali-
cious activity in east-west traffic. For these attacks, analyzing
each flow in isolation (as done in traditional IDSes) is less
effective, as it does not provide a holistic and comprehensive
view of the network. We first employ Infection Monkey [8], an
open-source breach and attack simulator for evaluating data
center resiliency to perimeter breaches and internal host infec-
tion. It supports a wide range of different features such as port
scanning, credential exploitation, and lateral movement to in-
fect hosts. We also incorporate C&C communication patterns,
which consist of a C&C server sending file updates, periodic
heartbeat messages, and commands to control compromised
hosts. These patterns are indicative of the communication ob-
served in high-profile data breaches [1,3]. Further, we employ
DNS amplification attacks, where multiple attackers send
DNS requests to a DNS server and direct the responses to the
victims. The DNS requests are crafted so that the responses
are much larger in size to overwhelm the target machine.

6 Evaluation

6.1 Methodology

Benchmarks and datasets. We evaluate NetVigil on Yates-
bury with our demo microservice application along with live
production traces from our two first-party compute clusters.

Implementation. We implement NetVigil as an end-to-end
data streaming pipeline using 1,400 lines of Python code. The
inference pipeline extracts featurized communication graphs
utilizing NetworkX [10] and pandas [12] libraries, while the
training pipeline is built on PyTorch [13] and the Deep Graph
Library (DGL) [7].

Baselines. We compare NetVigil against two state-of-the-art
anomaly-based IDSes: Kitsune [56] and Whisper [31]. To
evaluate Kitsune on our datasets, we modify its autoencoders
to ingest flow-level features. Due to Kitsune’s slow runtime,
we implement several optimizations to reduce unnecessary
computation that improves inference time by 5–10×; we refer
to this optimized version of Kitsune as Kitsune+. Whisper’s
frequency domain analysis necessitates packet-level traces.
Modifying it to utilize connection-level traces is challeng-
ing, as it performs frequency domain analysis on individual
packets within each flow. Using only a single data point (ag-
gregated flow-level statistics) would render it ineffective. To
make Whisper compatible with flow logs, we utilize aggre-
gated flow-level statistics to convert flow logs into packet
traces. To understand the difference between flow and packet
traces, we also carry out additional evaluations using packet
traces for both Kitsune+ and Whisper.

Metrics. To evaluate NetVigil, we use the area under the ROC
curve (AUC) as our primary metric, along with the true pos-
itive rate (TPR) and false positive rate (FPR). Importantly,
AUC provides a measure of how well the detector can dis-
tinguish between the positive and negative classes, across all
possible threshold settings. TPR and FPR are also crucial
because the goal is to detect as many anomalies as possible
while minimizing false alarms, which, as mentioned in Sec-
tion 2, can significantly lower trust in an anomaly detector
and is a fundamental challenge due to the dynamism of net-
work traffic. To get these numbers, we select the threshold that
maximizes (T PR−FPR). Additionally, we compare latencies
in running each anomaly detector. All latency experiments
were run on a single 36-core, 72-hyperthread, 256-GB RAM
machine (Intel(R) Xeon(R) Gold 5220).

6.2 Overall Results
We first compare the detection accuracy of NetVigil with our
baselines, Kitsune+ and Whisper. For all attacks except one,
NetVigil yields significantly higher performance over the base-
lines with AUC scores ranging from 0.6400 to 1.000, resulting
in AUC improvements of up to 0.6591 over Kitsune+ and up

1778 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Attack Description # flows Ratio malicious
Vertical Port Scan Run an exhaustive scan of open ports 1429 0.0265

SYN Flood DoS attack where connections are rapidly initialized but not completed 2817 0.0184
SYN Flood DDoS DoS attack where connections are rapidly initialized but not completed (multiple attackers) 2437 0.0439

UDP DDoS DoS attack with UDP packets (multiple attackers) 1473 0.0081
Distributed Stealth Port Scan Run a targeted stealth scan of several key ports across many nodes with SYN packets 4069 0.0058

Distributed Port Scan Run a targeted scan of several key ports across many nodes 4054 0.0051
Distributed UDP Port Scan Run a targeted stealth scan of several key across many nodes with UDP packets 4319 0.0050

Infection Monkey 1 Scans key ports and launches network exploits 2768 0.0122
Infection Monkey 2 Scans key ports and launches network exploits (target limited number of hosts) 1490 0.0107
Infection Monkey 3 Scans key ports and launches network exploits (mount limited number of exploits) 4677 0.0027

C&C communication Compromised nodes receive commands, heartbeats, and file updates from C&C server 2163 0.0254
DNS amplification Attackers send DNS requests and direct responses to victim 4410 0.0825

Table 3: Attack datasets

Kitsune+ Whisper NetVigil

AUC TPR FPR AUC TPR FPR AUC TPR FPR
Moderate
Vertical Port Scan 0.9300 0.8684 0.0057 0.9049 0.9736 0.1315 0.9843 0.9473 0.0000
SYN Flood 0.9322 0.8653 0.0014 0.7609 0.7307 0.1414 1.0000 1.0000 0.0000
Medium
SYN Flood DDoS 0.9455 0.8971 0.0141 0.9148 0.9719 0.1283 1.0000 1.0000 0.0000
UDP DDoS 0.9455 0.8971 0.0141 0.6403 0.4166 0.1457 0.9998 1.0000 0.0000
Distributed Port Scan 0.4059 0.0952 0.0300 0.3961 0.0476 0.0329 0.9968 0.9523 0.0000
Distributed Stealth Port Scan 0.7542 0.6666 0.0758 0.6186 0.4166 0.1070 0.9892 0.8333 0.0000
Distributed UDP Port Scan 0.3367 0.0000 0.0281 0.3732 0.0000 0.4449 0.9958 0.9545 0.0183
Difficult
Infection Monkey 1 0.5586 0.1176 0.0003 0.4395 0.0588 0.0190 0.9997 1.0000 0.0029

Infection Monkey 2 0.7497 0.5000 0.0006 0.4396 - - 0.9997 1.0000 0.0033

Infection Monkey 3 0.5000 - - 0.5000 - - 0.9998 1.0000 0.0006
C&C communication 0.6347 0.4727 0.1480 0.5000 - - 0.9301 0.7636 0.0896
DNS amplification 0.3962 0.0000 0.0244 0.8149 0.8928 0.2913 0.8915 0.3736 0.0692

SQL injection 0.8531 1.0000 0.2237 0.0900 - - 0.6400 0.6428 0.2648

Unauthorized DB access 0.5976 0.7500 0.4720 0.7214 0.5833 0.0275 0.8000 0.7083 0.1732

Table 4: Comparison of Kitsune+, Whisper, and NetVigil for various attacks.

Attack Kitsune+ Whisper NetVigil

Vertical Port Scan 0.9817 0.9876 0.9843
UDP DDoS 0.9974 0.6414 0.9998
Dist. Stealth Port Scan 0.7267 0.6487 0.9892
Infection Monkey 1 0.8100 0.6188 0.9997
DNS Amplification 0.6759 0.8247 0.8915

Table 5: AUC scores of Kitsune+ and Whisper using packet-level
traces and NetVigil with flow-level logs for various attacks.

to 0.6226 over Whisper. Table 4 presents the overall results for
AUC, TPR, and FPR. Crucially, we observe that NetVigil out-
performs the baselines because of two factors: (1) our novel
security-centric feature extractor that effectively identifies
lower-level malicious traffic characteristics in each connec-
tion that adversaries employ to fly under the radar, and (2) our
use of graphs and a GNN architecture to obtain a holistic and

comprehensive view of network behavioral patterns across
many nodes.

Illustrating the efficacy of our feature selection approach,
NetVigil exhibits strong performance in identifying DDoS at-
tacks and vertical port scanning, achieving an AUC greater
than 0.98 and an FPR approaching 0.0 for SYN Flood, SYN
Flood DDoS, UDP DDoS, and Vertical Port Scanning. The
extraction of packet- and connection-level statistics facili-
tates the detection of abnormal communications, such as sub-
stantial quantity of initiated connections in the SYN Flood
scenario and the packet volume in other DDoS attacks.

Our GNN architecture excels in detecting reconnaissance
patterns that span multiple nodes, an area where Kitsune+
and Whisper baselines demonstrate subpar performance. For
Distributed Port Scan, Distributed Stealth Port Scan, and Dis-
tributed UDP Port Scan, Kitsune+ and Whisper yield AUC
scores of 0.4059, 0.7542, 0.3367 and 0.3961, 0.6186, 0.3732,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1779

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NetVigil (AUC = 1.00)
Kitsune (AUC = 0.87)
Whisper (AUC = 0.64)

(a) UDP DDoS

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NetVigil (AUC = 1.00)
Kitsune (AUC = 0.56)
Whisper (AUC = 0.44)

(b) Infection Monkey 1

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NetVigil (AUC = 0.98)
Kitsune (AUC = 0.75)
Whisper (AUC = 0.62)

(c) Distributed Stealth Port Scan

Figure 5: Area under the ROC curve for 3 sample attack traces.

respectively. These scans involve an adversary probing a se-
lected number of ports across various victim machines. The
low traffic volume and variation from these network patterns
enable them to evade detection. Similarly, our baselines ex-
hibit inadequate performance in detecting infection monkey
attacks due to similar reasons.

In contrast to these efforts, NetVigil uses its feature extractor
in tandem with a graphical view of the network to success-
fully identify these scans and attacks. The features include
previously unseen ports, a key characteristic in many scans
and attacks. NetVigil also analyzes the number of ports as
well as statistics on the number of bytes and packets that are
sent/received. A large number of different ports with a com-
paratively small amount of traffic volume can be indicative of
port scanning or of an adversary attempting multiple differ-
ent exploits that target different ports/services. Furthermore,
our GNN architecture detects higher-level behavioral patterns
and relationships, rather than just relying on detecting each
connection in isolation, as traditional host-based IDSes do.
This is useful for detecting distributed port scanning and infec-
tion monkey attacks since, contrary to vertical port scanning
and DoS attacks, each individual connection exhibits little
abnormality in volume and variation, but each malicious actor
makes connections to many different hosts, deviating from
their typical communication patterns.

Although NetVigil performs well on detecting C&C com-
munication and DNS amplification, it struggles to achieve the
same performance as the other attacks. In addition to these
scenarios encompassing behavioral patterns of many different
nodes, each communication is more similar to traditional net-
work traffic due to the file transfers and DNS queries, making
them more difficult for our feature extractor to pick up.

Table 5 shows the results on several selected attacks in
which we evaluated Kitsune+ and Whisper in their intended
environment using packet-level traces. Overall, their AUC
scores are significantly higher when using packet-level traces
compared to flow-level traces, with Kitsune+ achieving near-

perfect AUC scores for vertical port scanning and UDP DDoS.
However, these approaches still fall short in matching NetVigil
for other attacks due to the limitations of their extracted fea-
tures and host-based detection models.

6.3 Efficiency Results
Figure 6 illustrate the wall clock and CPU times of NetVigil
compared to Kitsune+ [56] and Whisper [31] for five dif-
ferent attacks. Each experiment involved feature extraction,
training, and inference. NetVigil achieves key performance
improvements through the following features:

1. Using flow-based features instead of packet-level data,
reducing the amount of data significantly since only the
aggregated statistics for each flow need to be processed.

2. Using a graph representation that aggregates features
across multiple instances of the same connection.

3. An efficient GNN architecture with an autoencoder of two
fully-connected layers.

Due to these components, the majority of time is spent
during feature extraction. GNN inference takes only 2-3 sec-
onds on average for a network trace with 16 VMs. Across 5
different attack traces, NetVigil achieves significantly lower
execution times, yielding speedups of >= 37.59× and 2.87×
– 7.38× over Kitsune+ and Whisper, respectively, for wall
clock time, and speedups of >= 29.67× and 2.04× – 6.93×
for CPU time. Further latency experiments where we varied
the number of VMs and cores can be found in Appendix A.1.

6.4 System cost
When evaluating the system costs for Kitsune+ and Whis-
per, it is important to note that both of these tools necessitate
packet traces, which can result in significant CPU and storage
overheads to acquire. In addition, both baselines also incur
considerable compute overheads during inference, requiring

1780 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Vertical
Port Scan

UDP DDoS Dist Stealth
Port Scan

Infection
Monkey 1

DNS Amplif.

102

103

El
ap

se
d

Ti
m

e
(s

) Kitsune+
Whisper
NetVigil

Vertical
Port Scan

UDP DDoS Dist Stealth
Port Scan

Infection
Monkey 1

DNS Amplif.
102

103

CP
U

Ti
m

e
(s

)

Kitsune+
Whisper
NetVigil

Figure 6: Comparing detection latencies of Kitsune+, Whisper, and NetVigil in elapsed seconds and CPU time across several attacks.
The y-axes use a logarithmic scale.

Kitsune+
w/ Flow Logs

Kitsune+ w/
Packet Traces

Whisper w/
Flow Logs

Whisper w/
Packet Traces

NetVigil
0

10000

20000

30000

40000

50000

Co
st

 p
er

 y
ea

r (
$)

Logger
Compute
Storage

Figure 7: System cost breakdown for Kitsune+, Whisper, and
NetVigil for our 16-VM deployment

an 8 vCPU VM for Whisper and a 56 vCPU VM for Kitsune+
to match the performance of NetVigil. Thus, we estimate, for
our 16-VM deployment, a total system cost of $49159/year
with packet traces and $48428/year with flow traces for Kit-
sune+ and a cost of $8602/year with packet traces and $7871
with flow traces for Whisper. To put these costs into perspec-
tive, we also analyze NetVigil. Because of the low cost of
NetVigil, using a 2 vCPU VM is sufficient for performing all
inference with flow logs, resulting in a total system cost of
$2939/year. Figure 7 shows the system cost breakdown.

We perform a cost assessment of the system at larger
scales by analyzing the trace data from our production clus-
ter (see Section 6.5), which consists of 400 virtual machines
(VMs). The outcomes are depicted in Figure 8. In comparison
with Figure 7, it is clear that NetVigil exhibits superior cost-
efficiency than Whisper under this scenario. This observation
is primarily attributable to two factors. First, the network
throughput in this setting exceeds that of our 16-VM deploy-
ment. As a result, Whisper’s processing overhead, which is
directly proportional to the number of packets, is substan-
tially larger, while NetVigil’s overhead remains independent
of network throughput. Second, the production cluster pri-
marily utilizes TCP connections, leading to a significantly
reduced quantity of network flow records in contrast to the
predominantly employed UDP connections in our 16-VM
deployment.

0 50 100 150 200 250 300 350 400
Number of VMs

100

200

300

400

Co
st

 p
er

 y
ea

r
(in

 te
ns

 o
f t

ho
us

an
ds

 $
)

Whisper
NetVigil

Figure 8: Estimated monetary system cost for Whisper and
NetVigil for production cluster of 400 VMs.

6.5 Production Traces

We collect network flow records from two first-party com-
pute clusters. The first cluster, Service-Cluster, contains
approximately 400 VMs, and we gather traces for a week.
The second cluster, Compute-Cluster, consists of around
200 VMs, and we acquire traces for two months. We confirm
that no known attacks are present in these traces and use them
to evaluate the false alarm rate of NetVigil.

We assess the number of false alarms without model re-
training. For Service-Cluster, there are 4,356 false alarms
on the last day of the week if the model isn’t retrained,
while model retraining reduces false alarms to 10. For
Compute-Cluster, there are 1,231 false alarms without
model retraining at the end of the week, and the number in-
creases to 2,315 on the last day of the month. This cluster has
less activity than Service-Cluster, explaining the lower
dynamics. Model retraining reduces false alarms to fewer
than 5 per day. The results from both product traces validate
the importance of continuous retraining (Section 4.4).

Additionally, we inject attack traces into these production
records to examine the performance of NetVigil. We incorpo-
rate Infection Monkey 1, 2, and 3, and replace the IP addresses
and timestamps to blend the injected attack traces with nor-
mal ones. We observe that the detection accuracy of NetVigil
remains consistent (similar to Table 4).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1781

Vertical
Port Scan

UDP DDoS Dist Stealth
Port Scan

Infection
Monkey 1

DNS Amplif.0.0

0.2

0.4

0.6

0.8

1.0

AU
C

NetVigil no mods
NetVigil

Figure 9: AUC on several attack traces with and without tempo-
ral smoothing and data augmentation

Vertical
Port Scan

UDP DDoS Dist Stealth
Port Scan

Infection
Monkey 1

DNS Amplif.0.0

0.2

0.4

0.6

0.8

1.0

AU
C NetVigil-FC

NetVigil-Conv1
NetVigil-Conv2
NetVigil-Conv3
NetVigil-Agg1
NetVigil-Agg2

Figure 10: AUC on several attack traces with different model
modifications

6.6 Ablation Study

We perform experiments to determine the importance of tem-
poral smoothing and data augmentation. Figure 9 shows the
AUC for NetVigil both with and without data augmentation and
temporal smoothing. Using both techniques yields 1-2% AUC
improvement for most baselines and 10% improvement for
DNS amplification. Crucially, data augmentations add more
heterogeneity to the dataset allowing it to become more robust
to the dynamism in network traffic patterns. Temporal smooth-
ing helps by ensuring that temporally similar graphs should
be similar in structure and composition. Further, NetVigil
no mods still performs highly, yielding over 0.95 AUC for
all but 1 attack trace showing the efficacy of our approach on
new network patterns even without any modifications.

We experiment further with different architectural modi-
fications. Figure 10 shows the AUC results across 5 differ-
ent attack traces with different model modifications. First
we use a simple GNN architecture with fully-connected lay-
ers that operate on the graph’s node and edge features (de-
noted by NetVigil-FC). We also used 3 different graph
convolutional architectures (denoted by NetVigil-Conv1,
NetVigil-Conv2, NetVigil-Conv3) that use graph atten-
tion layers [78], GraphSAGE layers [34], and EdgeConv
layers [81]. We also try different aggregations for our mes-
sage passing function using min() and max() instead of
mean(), denoted by NetVigil-Agg1 and NetVigil-Agg2,

respectively. In summary, while NetVigil-FC performs the
best overall due to its simpler architecture (and lower likeli-
hood of overfitting) compared to the other architectures that
use convolutional layers, all model variants perform similarly.
We highlight that our approach is not tied to a particular model
or architecture and that NetVigil is still able to reap significant
performance gains on many different model variants.

7 Related Work

Related work on data center network security is discussed in
Sections 1 and 2, and the advantages of NetVigil compared
with the most relevant baselines are demonstrated and dis-
cussed in detail in Section 6. In this section, we focus on work
related to GNNs, graph contrastive learning, and anomaly
detection in graphs.

Graph Neural Networks. GNNs have gained significant at-
tention in recent years as powerful tools for analyzing and
modeling structured data represented as graphs. A consider-
able amount of research has been conducted in this field, and
a variety of GNN architectures have been proposed. The most
common ones include graph convolutional networks [45],
graph attention networks [78], and GraphSAGE [34]. We
refer the reader to relevant surveys [83, 87, 91] for further
details on these and other related architectures. GNNs have
achieved state-of-the-art performance in a series of problems
in (wired and wireless) communication networks [28, 36, 41].
The NetVigil framework is agnostic to the specific GNN cho-
sen for the encoder and the decoder. Thus, practitioners can
seamlessly experiment with different architectures that might
better accommodate their data.

Graph Contrastive Learning. Graph contrastive learning has
emerged as a potential solution to several challenges faced by
GNNs, such as heavy label reliance and weak robustness [50].
The core idea behind graph contrastive learning is to em-
bed augmented versions of the same sample (node, edge, or
graph) close to each other while trying to push away embed-
dings from different samples. Generating these augmented
versions of a given sample can be challenging in a graph set-
ting. Unlike images for which different augmented versions
(contrastive pairs) can be generated by imposing different
color filters or rotation operations, designing contrastive pairs
can be challenging in graph settings. Some works use differ-
ent parts of a graph to build these contrastive pairs [62,71,79]
by comparing, e.g., nodes with subgraphs [38, 42]. Other
works adopt graph data augmentations to generate contrastive
pairs [35, 63, 72, 84, 86, 92]. Instead of relying on a generic
set of augmentations, in NetVigil we leverage domain-specific
knowledge to determine graph transformations that constitute
valid contrastive pairs.

Anomaly Detection in Graphs. Anomaly detection is the
data mining process that aims to identify patterns in data that
do not conform to expected behavior [26]. If we focus on

1782 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the graph context, the objective is to find the graph objects
(nodes, edges, or substructures) that are rare and that differ
significantly from the majority of the reference objects in
the given graph [20]. Graph anomaly detection has been ap-
plied to myriad settings, including telecom fraud [29], opinion
spam [30], and malware detection [64]. Graphs bring specific
challenges to the anomaly detection problem related to the
inter-dependency of objects (a node being anomalous is not
only a function of itself but also of its neighborhood) and the
size of the search space (the search space of complex anoma-
lies such as graph substructures is huge). Methods have been
derived for the unsupervised [33] and (semi-)supervised [27]
settings, for static [25] and dynamic [39] graphs, and for at-
tributed [58] and plain (no attributes) [19] graphs. Notice that
our problem falls in the most challenging category of unsu-
pervised learning for dynamic and attributed graphs. Over the
last five years, there has been an increasing interest in apply-
ing deep learning techniques to graph anomaly detection [52].
The idea is to depart from non-deep learning techniques with
limited (linear) representation power [60] and use deep graph
representation learning and GNNs to extract expressive repre-
sentations such that graph anomalies and normal objects can
be easily separated. Several methods have been developed for
the simpler cases of static or plain graphs [37, 49, 80]. For
the dynamic and attributed case, the existing techniques are
limited [74,89,90]. Moreover, real-world networks (including
our application) usually exhibit changes in both the network
structure and node attributes. However, most existing works
only consider changes in one of these aspects [74, 90]. To
the best of our knowledge, we are the first to consider an au-
toencoder architecture enhanced by contrastive learning and
temporal smoothing to tackle the challenging dynamic setting
where both the network structure and attributes are changing.

8 Discussion

Privacy Consideration. Network flow logs may contain per-
sonally identifiable information (PII), such as user IP ad-
dresses, which are subject to data privacy compliance require-
ments [22, 76]. To address these privacy concerns, NetVigil
employs two strategies. First, our model can be deployed
using the Software as a Service (SaaS) model, where users
continuously stream anonymized network flow logs to a server
running our system. Anonymization can be achieved through
encrypted IP addresses, as our model does not require plain-
text IP addresses for anomaly detection, and users can inter-
pret the encrypted results accordingly. Second, our model can
be deployed within a user’s cloud subscription as a standalone
service, ensuring that all network flow logs remain entirely
under the user’s control. By implementing these strategies, we
maintain a high level of privacy while still providing effective
anomaly detection in network traffic patterns.
Initial Clean Training Set. NetVigil requires at least one clean
dataset to train the initial model, with subsequent models ob-

tained as discussed in Section 4.4. As with all anomaly-based
intrusion detection systems, if a cloud deployment is already
compromised from the outset, some anomalous behaviors
might contaminate the model. Therefore, it is much safer to
obtain the initial training set in a secure environment (e.g., a
sandbox). This precautionary measure helps ensure that the
model’s foundation is built upon clean and reliable data, al-
lowing it to effectively detect and adapt to genuine anomalies
and fluctuations in network traffic patterns.
Applying to North-South Traffic. Although our primary
focus in this study is on east-west traffic, the principles of
NetVigil, such as employing GNNs for intrusion detection us-
ing flow-level logs, can potentially be extended to north-south
traffic. This method could further decrease the significant
computational costs of existing IDSes or create a compre-
hensive security solution for both east-west and north-south
traffic simultaneously. North-south traffic typically exhibits
increased node and contextual information variability, which
may necessitate specialized learning techniques. Exploring
this design would be an interesting future direction.

9 Conclusion

We present NetVigil, a novel network anomaly detection sys-
tem specifically designed for securing east-west traffic in
large-scale data center networks. Addressing the limitations
of existing solutions, our approach focuses on three key objec-
tives: (a) ensuring cost-effectiveness in monitoring numerous
nodes, (b) accurately identifying anomalous behaviors while
minimizing false alarms, and (c) exhibiting robustness against
normal traffic fluctuations without reliance on prior knowl-
edge of malicious attacks. By employing low-cost network
flow logs, security-oriented graph features, graph neural net-
works, and a novel end-to-end training mechanism, our system
achieves substantial improvements over existing malicious
traffic detectors. We hope that the insights gained from our
solution, along with the new east-west security benchmark,
Yatesbury, will facilitate the validation of our proposed archi-
tecture and foster future research and innovation in this vital
area of study.

Acknowledgments

We extend our gratitude to our shepherd, Bruce Davie, and
the anonymous reviewers for providing invaluable and con-
structive feedback. Our thanks also go to our engineering and
product collaborators, including Narayan Annamalai, Umair
Aftab, Eliran Azulai, Wyman Chong, Jamie Lee, Kiran Mutha-
batulla, Mariana Alanis Tamez, and Roger Wong, for their
contributions to production traces, data processing pipelines,
and system requirements.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1783

References

[1] 2017 Equifax data breach. https://en.wikipedia.
org/wiki/2017_Equifax_data_breach, Retrieved
on 2023-04.

[2] 2019 Zeek specs needed for 10gbps. http:
//mailman.icsi.berkeley.edu/pipermail/
zeek/2019-September/014574.html, Retrieved on
2023-09.

[3] 2020 United States federal government data breach.
https://en.wikipedia.org/wiki/2020_United_
States_federal_government_data_breach, Re-
trieved on 2023-04.

[4] A Deeper Look at the Distributed Cloud Firewall: A
Firewall for the Cloud Era. https://aviatrix.com/blog/a-
deeper-look-at-the-distributed-cloud-firewall-a-
firewall-for-the-cloud-era/, Retrieved on 2023-09.

[5] Aviatrix Distributed Cloud Firewall. https:
//aviatrix.com/distributed-cloud-firewall/,
Retrieved on 2023-09.

[6] Calico flow logs. https://docs.tigera.io/
calico-cloud/visibility/elastic/flow/, Re-
trieved on 2023-10.

[7] Deep Graph Library. https://www.dgl.ai/, Re-
trieved on 2022-11.

[8] Infection monkey. https://www.akamai.com/
infectionmonkey, Retrieved on 2023-03.

[9] Introduction to Cilium & Hubble. https:
//docs.cilium.io/en/stable/overview/intro/,
Retrieved on 2023-10.

[10] NetworkX: network analysis in python. https://
networkx.org/, Retrieved on 2023-01.

[11] Online boutique. https://github.com/
GoogleCloudPlatform/microservices-demo,
Retrieved on 2022-07.

[12] pandas - python data analysis library. https://pandas.
pydata.org/, Retrieved on 2023-01.

[13] PyTorch. https://pytorch.org/, Retrieved on 2022-
11.

[14] Scaling Suricata performance to
100 Gbps with Napatech SmartNICs.
https://www.napatech.com/support/resources/solution-
descriptions/scaling-suricata-performance-to-100-
gbps-with-napatech-smartnics/, Retrieved on 2023-09.

[15] Suricata. https://suricata.io/, Retrieved on 2023-
09.

[16] Trends in data center security: Part 1 – traffic
trends. https://blogs.cisco.com/security/trends-in-data-
center-security-part-1-traffic-trends, Retrieved on 2023-
09.

[17] VMware NSX. https://www.vmware.com/
products/nsx.html, Retrieved on 2023-09.

[18] VMware NSX: The platform for network virtual-
ization. https://www.virtualizationworks.com/
NSX.asp, Retrieved on 2023-09.

[19] Leman Akoglu, Mary McGlohon, and Christos Falout-
sos. Oddball: Spotting anomalies in weighted graphs.
In Advances in Knowledge Discovery and Data Mining:
14th Pacific-Asia Conference, PAKDD 2010, Hyderabad,
India, June 21-24, 2010. Proceedings. Part II 14, pages
410–421. Springer, 2010.

[20] Leman Akoglu, Hanghang Tong, and Danai Koutra.
Graph based anomaly detection and description: a sur-
vey. Data mining and knowledge discovery, 29:626–688,
2015.

[21] Amazon. Logging IP traffic using VPC Flow Logs.
https://docs.aws.amazon.com/vpc/latest/
userguide/flow-logs.html, Retrieved on 2023-04.

[22] Behnaz Arzani, Selim Ciraci, Stefan Saroiu, Alec Wol-
man, Jack W Stokes, Geoff Outhred, and Lechao Diwu.
PrivateEye: Scalable and privacy-preserving compro-
mise detection in the cloud. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2020.

[23] Leyla Bilge and Tudor Dumitraş. Before we knew it: an
empirical study of zero-day attacks in the real world. In
Proceedings of the ACM conference on Computer and
communications security (CCS), 2012.

[24] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, Omega, and Kubernetes.
Communications of the ACM, 59(5), 2016.

[25] Deepayan Chakrabarti. Autopart: Parameter-free graph
partitioning and outlier detection. In Knowledge Dis-
covery in Databases: PKDD 2004: 8th European Con-
ference on Principles and Practice of Knowledge Dis-
covery in Databases, Pisa, Italy, September 20-24, 2004.
Proceedings 8, pages 112–124. Springer, 2004.

[26] Varun Chandola, Arindam Banerjee, and Vipin Kumar.
Anomaly detection: A survey. ACM Comput. Surv.,
41(3), jul 2009.

[27] Duen Horng Chau, Shashank Pandit, and Christos
Faloutsos. Detecting fraudulent personalities in net-
works of online auctioneers. In Knowledge Discovery

1784 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://en.wikipedia.org/wiki/2017_Equifax_data_breach
https://en.wikipedia.org/wiki/2017_Equifax_data_breach
http://mailman.icsi.berkeley.edu/pipermail/zeek/2019-September/014574.html
http://mailman.icsi.berkeley.edu/pipermail/zeek/2019-September/014574.html
http://mailman.icsi.berkeley.edu/pipermail/zeek/2019-September/014574.html
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach
https://aviatrix.com/distributed-cloud-firewall/
https://aviatrix.com/distributed-cloud-firewall/
https://docs.tigera.io/calico-cloud/visibility/elastic/flow/
https://docs.tigera.io/calico-cloud/visibility/elastic/flow/
https://www.dgl.ai/
https://www.akamai.com/infectionmonkey
https://www.akamai.com/infectionmonkey
https://docs.cilium.io/en/stable/overview/intro/
https://docs.cilium.io/en/stable/overview/intro/
https://networkx.org/
https://networkx.org/
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pytorch.org/
https://suricata.io/
https://www.vmware.com/products/nsx.html
https://www.vmware.com/products/nsx.html
https://www.virtualizationworks.com/NSX.asp
https://www.virtualizationworks.com/NSX.asp
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html

in Databases: PKDD 2006: 10th European Conference
on Principles and Practice of Knowledge Discovery
in Databases Berlin, Germany, September 18-22, 2006
Proceedings 10, pages 103–114. Springer, 2006.

[28] Arindam Chowdhury, Gunjan Verma, Chirag Rao, Anan-
thram Swami, and Santiago Segarra. Unfolding
WMMSE using graph neural networks for efficient
power allocation. IEEE Transactions on Wireless Com-
munications, 20(9):6004–6017, 2021.

[29] Corinna Cortes, Daryl Pregibon, and Chris Volinsky.
Communities of interest. In Advances in Intelligent
Data Analysis: 4th International Conference, IDA 2001
Cascais, Portugal, September 13–15, 2001 Proceedings
4, pages 105–114. Springer, 2001.

[30] Hanbo Dai, Feida Zhu, Ee-Peng Lim, and HweeHwa
Pang. Detecting anomalies in bipartite graphs with
mutual dependency principles. In 2012 IEEE 12th Inter-
national Conference on Data Mining, pages 171–180,
2012.

[31] Chuanpu Fu, Qi Li, Meng Shen, and Ke Xu. Realtime
robust malicious traffic detection via frequency domain
analysis. In Proceedings of the ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS),
2021.

[32] Sunanda Gamage and Jagath Samarabandu. Deep learn-
ing methods in network intrusion detection: A survey
and an objective comparison. Journal of Network and
Computer Applications, 169, 2020.

[33] Jing Gao, Feng Liang, Wei Fan, Chi Wang, Yizhou Sun,
and Jiawei Han. On community outliers and their effi-
cient detection in information networks. In Proceedings
of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 813–822,
2010.

[34] Will Hamilton, Zhitao Ying, and Jure Leskovec. Induc-
tive representation learning on large graphs. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017.

[35] Kaveh Hassani and Amir Hosein Khasahmadi. Con-
trastive multi-view representation learning on graphs.
In Hal Daumé III and Aarti Singh, editors, 37th Inter-
national Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pages
4116–4126. PMLR, 13–18 Jul 2020.

[36] Shiwen He, Shaowen Xiong, Yeyu Ou, Jian Zhang, Jia-
heng Wang, Yongming Huang, and Yaoxue Zhang. An

overview on the application of graph neural networks in
wireless networks. IEEE Open Journal of the Commu-
nications Society, 2:2547–2565, 2021.

[37] Renjun Hu, Charu C. Aggarwal, Shuai Ma, and Jinpeng
Huai. An embedding approach to anomaly detection. In
IEEE 32nd International Conference on Data Engineer-
ing (ICDE), pages 385–396, 2016.

[38] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik,
Percy Liang, Vijay Pande, and Jure Leskovec. Strategies
for pre-training graph neural networks. In International
Conference on Learning Representations, 2020.

[39] Tsuyoshi Idé and Hisashi Kashima. Eigenspace-based
anomaly detection in computer systems. In Proceedings
of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 440–449,
2004.

[40] Illumio. Zero trust: the security paradigm for the
modern organization. https://www.illumio.com/
solutions/zero-trust, Retrieved on 2023-04.

[41] Weiwei Jiang. Graph-based deep learning for communi-
cation networks: A survey. Computer Communications,
185:40–54, 2022.

[42] Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi
Zhang, and Yangyong Zhu. Sub-graph contrast for
scalable self-supervised graph representation learning.
In IEEE International Conference on Data Mining
(ICDM), pages 222–231, 2020.

[43] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and
Joarder Kamruzzaman. Survey of intrusion detection
systems: techniques, datasets and challenges. Cyberse-
curity, 2(1), 2019.

[44] John Kindervag, Stephanie Balaouras, and Lindsey Coit.
Build security into your network’s DNA: The zero trust
network architecture. Forrester Research Inc, 27, 2010.

[45] Thomas N. Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. In
International Conference on Learning Representations,
2017.

[46] Vinod Kumar and Om Prakash Sangwan. Signature
based intrusion detection system using SNORT. Interna-
tional Journal of Computer Applications & Information
Technology, 1(3), 2012.

[47] Donghwoon Kwon, Hyunjoo Kim, Jinoh Kim, Sang C
Suh, Ikkyun Kim, and Kuinam J Kim. A survey of
deep learning-based network anomaly detection. Cluster
Computing, 22, 2019.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1785

https://www.illumio.com/solutions/zero-trust
https://www.illumio.com/solutions/zero-trust

[48] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin,
and Kuang-Yuan Tung. Intrusion detection system: A
comprehensive review. Journal of Network and Com-
puter Applications, 36(1), 2013.

[49] Ninghao Liu, Xiao Huang, and Xia Hu. Accelerated lo-
cal anomaly detection via resolving attributed networks.
In 26th International Joint Conference on Artificial Intel-
ligence, IJCAI’17, page 2337–2343. AAAI Press, 2017.

[50] Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng,
Feng Xia, and Philip S. Yu. Graph self-supervised learn-
ing: A survey. IEEE Transactions on Knowledge and
Data Engineering, 35(6):5879–5900, 2023.

[51] Wai Weng Lo, Siamak Layeghy, Mohanad Sarhan, Mar-
cus Gallagher, and Marius Portmann. E-graphsage: A
graph neural network based intrusion detection system
for IOT. In IEEE/IFIP Network Operations and Man-
agement Symposium (NOMS), 2022.

[52] Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou,
Quan Z. Sheng, Hui Xiong, and Leman Akoglu. A
comprehensive survey on graph anomaly detection with
deep learning. IEEE Transactions on Knowledge and
Data Engineering, pages 1–1, 2021.

[53] Mohammad Masdari and Hemn Khezri. A survey and
taxonomy of the fuzzy signature-based intrusion detec-
tion systems. Applied Soft Computing, 92, 2020.

[54] Microsoft. Flow logs for network secu-
rity groups. https://learn.microsoft.
com/en-us/azure/network-watcher/
network-watcher-nsg-flow-logging-overview,
Retrieved on 2023-04.

[55] Microsoft. Microsoft digital de-
fense report 2022. https://www.
microsoft.com/en-us/security/business/
microsoft-digital-defense-report-2022,
Retrieved on 2023-04.

[56] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and
Asaf Shabtai. Kitsune: An ensemble of autoencoders
for online network intrusion detection. In 25th Annual
Network and Distributed System Security Symposium
(NDSS), 2018.

[57] Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Hiren
Patel, Avi Patel, and Muttukrishnan Rajarajan. A survey
of intrusion detection techniques in cloud. Journal of
network and computer applications, 36(1), 2013.

[58] Caleb C Noble and Diane J Cook. Graph-based anomaly
detection. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 631–636, 2003.

[59] Palo Alto Networks. Prisma cloud: Cloud net-
work security. https://www.paloaltonetworks.
com/prisma/cloud/cloud-network-security, Re-
trieved on 2023-04.

[60] Guansong Pang, Chunhua Shen, Longbing Cao, and An-
ton Van Den Hengel. Deep learning for anomaly detec-
tion: A review. ACM Comput. Surv., 54(2), mar 2021.

[61] Vern Paxson. Bro: A system for detecting net-
work intruders in real-time. Comput. Netw.,
31(23–24):2435–2463, dec 1999.

[62] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua
Zheng, Yu Rong, Tingyang Xu, and Junzhou Huang.
Graph representation learning via graphical mutual in-
formation maximization. In Proceedings of The Web
Conference 2020, WWW ’20, page 259–270. Associa-
tion for Computing Machinery, 2020.

[63] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang,
Hongxia Yang, Ming Ding, Kuansan Wang, and Jie Tang.
GCC: Graph contrastive coding for graph neural net-
work pre-training. In 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
KDD ’20, page 1150–1160. Association for Computing
Machinery, 2020.

[64] Md Sazzadur Rahman, Ting-Kai Huang, Harsha V Mad-
hyastha, and Michalis Faloutsos. Efficient and scalable
socware detection in online social networks. In USENIX
Security Symposium, pages 663–678, 2012.

[65] Martin Roesch. Snort - lightweight intrusion detec-
tion for networks. In Proceedings of the 13th USENIX
Conference on System Administration, LISA ’99, page
229–238, USA, 1999. USENIX Association.

[66] Scott Rose, Oliver Borchert, Stu Mitchell, and Sean Con-
nelly. Zero trust architecture. Technical report, National
Institute of Standards and Technology, 2020.

[67] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C. Snoeren. Inside the social network’s (data-
center) network. In Proceedings of the ACM Conference
on Special Interest Group on Data Communication (SIG-
COMM), 2015.

[68] Fred B Schneider. Least privilege and more computer
security. IEEE Security & Privacy, 1(5), 2003.

[69] Rupam Kumar Sharma, Hemanta Kumar Kalita, and
Biju Issac. Different firewall techniques: A survey. In
Fifth International Conference on Computing, Communi-
cations and Networking Technologies (ICCCNT), 2014.

[70] Nitin Singh Sikarwar and Dinesh Verma. Micro segmen-
tation: today’s success formulae. International Journal
of Operations Management and Services, 2(1), 2012.

1786 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://learn.microsoft.com/en-us/azure/network-watcher/network-watcher-nsg-flow-logging-overview
https://learn.microsoft.com/en-us/azure/network-watcher/network-watcher-nsg-flow-logging-overview
https://learn.microsoft.com/en-us/azure/network-watcher/network-watcher-nsg-flow-logging-overview
https://www.microsoft.com/en-us/security/business/microsoft-digital-defense-report-2022
https://www.microsoft.com/en-us/security/business/microsoft-digital-defense-report-2022
https://www.microsoft.com/en-us/security/business/microsoft-digital-defense-report-2022
https://www.paloaltonetworks.com/prisma/cloud/cloud-network-security
https://www.paloaltonetworks.com/prisma/cloud/cloud-network-security

[71] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian
Tang. InfoGraph: Unsupervised and semi-supervised
graph-level representation learning via mutual infor-
mation maximization. In International Conference on
Learning Representations, 2020.

[72] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville.
Adversarial graph augmentation to improve graph con-
trastive learning. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, edi-
tors, Advances in Neural Information Processing Sys-
tems, volume 34, pages 15920–15933, 2021.

[73] Colin Tankard. Advanced persistent threats and how
to monitor and deter them. Network security, 2011(8),
2011.

[74] Xian Teng, Yu-Ru Lin, and Xidao Wen. Anomaly detec-
tion in dynamic networks using multi-view time-series
hypersphere learning. In 2017 ACM on Conference on
Information and Knowledge Management, pages 827–
836, 2017.

[75] Zhihong Tian, Wei Shi, Yuhang Wang, Chunsheng Zhu,
Xiaojiang Du, Shen Su, Yanbin Sun, and Nadra Guizani.
Real-time lateral movement detection based on evi-
dence reasoning network for edge computing environ-
ment. IEEE Transactions on Industrial Informatics,
15(7), 2019.

[76] European Union. General data protection regula-
tion (GDPR). https://commission.europa.eu/
law/law-topic/data-protection_en, Retrieved on
2023-04.

[77] Romans Vanickis, Paul Jacob, Sohelia Dehghanzadeh,
and Brian Lee. Access control policy enforcement for
zero-trust-networking. In 29th Irish Signals and Systems
Conference (ISSC), 2018.

[78] Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
attention networks. In International Conference on
Learning Representations, 2018.

[79] Petar Velickovic, William Fedus, William L. Hamilton,
Pietro Liò, Yoshua Bengio, and R Devon Hjelm. Deep
graph infomax. In International Conference on Learn-
ing Representations, 2019.

[80] Yanling Wang, Jing Zhang, Shasha Guo, Hongzhi Yin,
Cuiping Li, and Hong Chen. Decoupling representation
learning and classification for GNN-based anomaly de-
tection. In 44th international ACM SIGIR conference
on research and development in information retrieval,
pages 1239–1248, 2021.

[81] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dy-
namic graph cnn for learning on point clouds. ACM
Trans. Graph., 38(5), oct 2019.

[82] Marcus Willett. Lessons of the SolarWinds hack. Sur-
vival, 63(2), 2021.

[83] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and Philip S. Yu. A compre-
hensive survey on graph neural networks. IEEE Trans-
actions on Neural Networks and Learning Systems,
32(1):4–24, 2021.

[84] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang
Wang. Graph contrastive learning automated. In Ma-
rina Meila and Tong Zhang, editors, 38th International
Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pages 12121–
12132. PMLR, 18–24 Jul 2021.

[85] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen,
Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. Advances in neural infor-
mation processing systems (NeurIPS), 33, 2020.

[86] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen,
Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. In H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, vol-
ume 33, pages 5812–5823, 2020.

[87] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning
on graphs: A survey. IEEE Transactions on Knowledge
and Data Engineering, 34(1):249–270, 2022.

[88] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C Hoe,
Vyas Sekar, and Justine Sherry. Achieving 100gbps
intrusion prevention on a single server. In Proceedings
of the 14th USENIX Conference on Operating Systems
Design and Implementation (OSDI), 2020.

[89] Li Zheng, Zhenpeng Li, Jian Li, Zhao Li, and Jun Gao.
Addgraph: Anomaly detection in dynamic graph using
attention-based temporal gcn. In 28th International
Joint Conference on Artificial Intelligence, IJCAI’19,
page 4419–4425, 2019.

[90] Panpan Zheng, Shuhan Yuan, Xintao Wu, Jun Li, and
Aidong Lu. One-class adversarial nets for fraud de-
tection. In AAAI Conference on Artificial Intelligence,
volume 33, pages 1286–1293, 2019.

[91] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang,
Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review
of methods and applications. AI Open, 1:57–81, 2020.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1787

https://commission.europa.eu/law/law-topic/data-protection_en
https://commission.europa.eu/law/law-topic/data-protection_en

[92] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu,
and Liang Wang. Graph contrastive learning with adap-
tive augmentation. In Proceedings of the Web Confer-
ence, WWW ’21, page 2069–2080, 2021.

A Appendix

A.1 Additional efficiency results
We demonstrate the scalability of our approach to larger net-
work log sizes. With a trace of 4 VMs, it takes 123 seconds
for Whisper and 96 seconds for NetVigil. As the trace size
increases, the execution time of Whisper also increases, re-
sulting in 373 seconds to process a trace with 16 VMs. Mean-
while, the execution time of NetVigil only increases slightly to
140 seconds. Furthermore, as Whisper is allocated more cores,
the CPU time increases from 508 seconds for 4 cores to 1520
seconds for 16 cores, while the wall clock time decreases
marginally from 173 seconds with 4 cores to 164 seconds
with 8 cores. In contrast, the runtime of NetVigil remains rel-
atively stable when changing the number of allocated cores
since it does not rely on parallelism for efficiency.

1788 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4 VMs 8 VMs 12 VMs 16 VMs1

10

Ti
m

e
(s

)

Kitsune
Whisper
NetVigil

4 cores 8 cores 12 cores 16 cores

101

Ti
m

e
(s

)

Kitsune
Whisper
NetVigil

Figure 11: Comparing detection latencies of Kitsune+, Whisper, and NetVigil in elapsed seconds while varying number of VMs in the
network trace (left), number of cores used for processing each trace (middle), and attack traces (right).

4 VMs 8 VMs 12 VMs 16 VMs1

10

CP
U

Ti
m

e
(s

)

Kitsune
Whisper
NetVigil

4 cores 8 cores 12 cores 16 cores

101

102

CP
U

Ti
m

e
(s

)

Kitsune
Whisper
NetVigil

Figure 12: Comparing detection latencies of Kitsune+, Whisper, and NetVigil in CPU seconds while varying number of VMs in the
network trace (left), number of cores used for processing each trace (middle), and attack traces (right).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1789

TANGO: Secure Collaborative Route Control across the Public Internet

Henry Birge-Lee
Princeton University

birgelee@princeton.edu

Sophia Yoo
Princeton University

sophiayoo@princeton.edu

Benjamin Herber
Princeton University

bherber@alumni.princeton.edu

Jennifer Rexford
Princeton University

jrex@cs.princeton.edu

Maria Apostolaki
Princeton University

apostolaki@princeton.edu

Abstract
As the demands of modern latency-critical applications grow,
major service providers are seeking to meet those demands by
expanding their infrastructure to the edge and offering global
connectivity through private WANs or Network-as-a-Service so-
lutions. Unfortunately, these approaches are costly for smaller
edge networks and lead to Internet consolidation. Worse, since
the public Internet suffers from limited visibility and control over
interdomain routing, smaller edges today are left with poor alter-
natives outside of joining the hypergiants. As a new alternative,
we introduce TANGO, which enables smaller edges to expose
paths and exert route control over the public Internet without
relying on third parties or cooperation from the Internet core, to
dynamically meet the performance needs of their customers. We
show that, using collaboration, TANGO edges can jointly (i) ex-
pose more BGP-compliant wide-area paths via coordinated BGP
advertisements; (ii) collect fine-grained, trustworthy telemetry us-
ing cryptographically-protected custom headers; and (iii) dynam-
ically reroute traffic in the data plane. TANGO innovates in both
the control and data planes, and runs on a programmable switch
or in eBPF. Our Internet-scale experiments uncover rich path
diversity, exposing paths that outperform the default BGP path
75-100% of the time for 20 edge pairs across multiple continents,
while reducing latency by up to 39% compared to the default.

1 Introduction

Modern networked applications, from self-driving cars to online
gaming and video conferencing, have strict requirements of
high reliability and low latency [11,34,41,54]. To satisfy these
needs, hypergiants continually expand their private network
infrastructure closer to the edge, effectively optimizing client
experience. For instance, Google not only operates multiple
Points of Presence (PoPs) globally, connecting data centers to
the rest of the Internet via peering, but also partners with ISPs
to deploy Google-supplied servers inside the ISP networks [37].
Similarly, Azure proposed deploying physical infrastructure
inside enterprise premises to optimize ingress traffic [43]. Edge

networks such as enterprises and small clouds, however, are
unable to continuously expand their infrastructure and are forced
to resort to alternatives such as Network-as-a-Service (NaaS) [7]
from global cloud providers, outsourcing their traffic manage-
ment while inheriting third-party practices and security/privacy
policies. This private-WAN trend leads to increased industry con-
solidation, benefiting larger companies and well-served regions
while leaving smaller edge networks with limited negotiation
power, reduced growth opportunities, and increased vulnerability
to outages [40, 75]. The natural question arises: Is moving to
private infrastructure the only way to meet growing application
requirements, or can the public Internet rise to the challenge?

To answer this, we must first understand the obstacles preventing
an edge network from extracting more performance and route
control in today’s public Internet. Edge networks have very
limited available path diversity. BGP (i.e., the default Internet
routing protocol) selects a single path per destination prefix based
on crude (often performance-unaware) criteria [82]. While multi-
homed ASes can optimize the first hop of their path [9,10,33],
they are unable to tap into the Internet’s full path diversity without
collaboration from the Internet core. SD-WAN solutions [1,2,7]
that combine multi-homing, overlay routing, and multicast
techniques are still limited to BGP-default paths. Even assuming
an edge network could forward traffic via adequately distinct
paths, identifying performance opportunities requires accurate
and trustworthy monitoring, which is impossible in practice
for a single edge. Indeed, measurements at the hosts [53,55] or
even at the border of a stub network [15,35] are affected by the
performance of both the forward and reverse path and are inflated
by the load on the receiver’s access network, their hardware,
and even the application itself, hiding performance differences
between paths. Active probing might avoid some of this noise,
but probes can be preferentially treated, hence unreliable [18].
Worse yet, some ASes might attempt to fool any measurement
infrastructure to attract more traffic or hide their outages.

To overcome these obstacles, we present TANGO, an edge-to-
edge route-control scheme that relies on cooperation between
pairs of edge networks (e.g., enterprises and data centers). We ob-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1791

serve that collaboration between edge networks occurs naturally
in today’s Internet, either among sites of the same organization
or between pairs of enterprises, creating many real-world
opportunities for TANGO. TANGO exploits this collaboration to
expose multiple routes per destination that are already installed in
core routing tables (but not used by BGP) by advertising multiple
prefixes for the same destination. While TANGO edges cannot
explicitly change how on-path routers forward traffic, they can
remotely guide the propagation of BGP advertisements for each
prefix via surgical use of BGP communities and path poisoning,
in an automated manner and with no prior topology knowledge.

TANGO also performs accurate and trustworthy wide-area
monitoring between two edges, another building block towards
reliable and real-time route control. Edges can operate TANGO
nodes at their border gateways to piggyback telemetry infor-
mation (metadata) on every packet at the sending edge [42].
This metadata is then stripped away at the receiving edge,
before the packet is forwarded to its destination. In this manner,
TANGO edges obtain accurate wide-area, one-way measurements
unpolluted by reverse path metrics, noisy access networks, or
application glitches. Further, relying on metadata makes TANGO
protocol-agnostic (does not rely on TCP semantics) and scalable
(does not keep per-flow or packet state [47, 79]). Most impor-
tantly, since TANGO operates over the untrusted public Internet,
it provides trustworthy telemetry using shared book ciphers and
secure OTP-protected route updates directly in the data plane.

TANGO has potential for many modern use cases. For example,
a cloud provider without its own private WAN can run TANGO
across the Internet between its data centers for dynamic
route control. Emerging online gaming services can establish
agreements with remote edge networks to optimize latency and
jitter for their customers over the Internet, without investing in
on-premise infrastructure or pairing with a cloud provider [80].
Edge networks leveraging federated learning to train models
without sharing data with each other or with a cloud provider [19]
can use TANGO to optimize communication between each
participating network and the parameter server, which is often a
bottleneck [46] or even security hazard [63]. Finally, datacenters
running miners, validators, or decentralized exchanges can use
TANGO to improve their pair latency and path diversity (hence
their performance and security [13,14,29,48,60,71]), without
sacrificing their decentralized nature by moving to a single cloud.

As an end-to-end system, TANGO allows edges to optimize in-
terdomain traffic according to their desired objectives, providing
them with the means to (i) forward their traffic through paths they
did not know existed; (ii) accurately measure relative loss and de-
lay even in the presence of adversaries; and (iii) securely reroute
traffic in real-time. This work does not seek to innovate on the
path-selection algorithm, nor does it make claims on its stability
and optimality. In fact, we find that TANGO can yield non-trivial
benefits for TANGO edges in the wild even with a simple control
loop, e.g., selecting the path that maintains significantly lower la-
tency for over 100ms. While, in theory, greedily optimizing routes

based on local preferences might impact path conditions, we be-
lieve that in practice, independent edge pairs are less likely to
affect other traffic by congesting links, especially compared to al-
ternative large cloud systems with heavier traffic loads [43,61,76].

To reap all these benefits, two cooperative edges only need to (i)
deploy lightweight TANGO logic at their border gateway, which
controls routing between the cooperative edges and (ii) have
access to a BGP speaker which can advertise a set of prefixes.
While TANGO is highly deployable, since it can run on either a
programmable switch or with eBPF, its modular design further
eases adoption. In fact, each or a subset of the components can be
independently deployed and directly benefit adopters. For exam-
ple, TANGO’s trustworthy telemetry scheme can be independently
used to reliably measure loss and delay, verify service level agree-
ments (SLAs), or detect violations of network neutrality. Simi-
larly, clouds and distributed enterprises can use our TANGO’s path-
finding algorithm alone to expose paths they did not know existed.

In our ethically-conducted Internet-scale experiment between
23 pairs of TANGO nodes in globally-distributed Vultr data
centers [5], TANGO’s automated path discovery tool exposed
3-12 distinct paths beyond the BGP default. Interestingly, for
20 pairs, one or more TANGO-uncovered paths outperformed the
default for 75-100% of the time, with some improving one-way
latency by up to 39% (§6.1). Meanwhile for 6 pairs, an alternative
path improved latency by at least 20% or more for over 10
hours on average. We also estimated with large-scale simulations
across 999,000 randomly chosen pairs in the Internet topology
that TANGO can expose at least two new paths for 98.6% of
tested pairs, without collaboration from the Internet core (§6.2).
Finally, we ran TANGO end-to-end between a switch and eBPF
deployment on two continents, showing the practicality and
performance of our real-time routing control in the wild (§7).

Contributions Beyond a Preliminary Workshop Paper: This
work builds on our previous position paper that outlined the press-
ing need for edge networks to control their Internet routing and
presented the high-level idea of cooperative routing [21]. This pa-
per extends our earlier work by (i) developing an automated mech-
anism for identifying and exposing paths with no topology infor-
mation; (ii) designing and implementing a data-plane mechanism
for reliable monitoring that malicious on-path attackers cannot de-
ceive; (iii) conducting an Internet-scale measurement study show-
casing the benefits of real-time route control, in addition to a large-
scale simulation showing the route diversity TANGO can expose.

2 TANGO Problem Setting

In this section, we explore important challenges of optimizing
routing in today’s Internet and highlight key requirements for
a secure and practical interdomain route-control system.

1792 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2.1 Challenges of Today’s Internet

Lack of Route Control: Despite the rich path diversity of the
Internet (§6.2), the default interdomain routing choices of an edge
network are limited to its direct neighbors. With standard BGP,
each AS only exposes one path to each neighbor independently
of performance, and so a single-homed network has no choice
beyond the single BGP route its direct provider offers for each
destination IP prefix. Meanwhile, a multi-homed network might
only select among very few providers, which can have common
bottlenecks, making such solutions limited [10,15]. Any source
routing protocol or multipath extension to BGP requires the
participation of multiple ASes, making deployment difficult.
Similarly, MPTCP only operates once paths are exposed, and
it is protocol-specific.

Inaccurate Measurements: Collecting accurate performance
measurements that are suitable for comparing wide-area paths is
challenging. First, end-to-end measurements are often dominated
by issues in the edge network (e.g., wireless interference or local
congestion) or on the end hosts themselves (e.g., an overloaded
machine) which, in essence, add noise to the wide-area path per-
formance. Second, bidirectional metrics such as round-trip time
(RTT)—whether collected by end-hosts or by network devices—
are hard to decompose into separate metrics for the two one-way
paths. Instead, separate measurements are required for path selec-
tion which is naturally one-way. Finally, measurement strategies
often rely on protocol semantics (e.g., TCP sequence and ac-
knowledgment numbers), which do not generalize to all traffic,
e.g., QUIC [44], thus reducing the chances of reliable passive mea-
surements or even ignoring the performance of certain protocols.

Untrusted Network: Route control over the public Internet
(i.e., an untrusted network) requires consideration of on-path
adversaries. On-path adversaries may try to fool the monitoring
infrastructure (or any data-driven system [49]) for monetary gains
(e.g., to attract more traffic to their path to generate higher rev-
enue, perform traffic analysis, or hide poor performance to avoid
SLA violations) [18]. Secure monitoring using cryptography at
scale is very challenging in today’s networking hardware.

Poor Deployability: The many proposals for optimizing Internet
routing are notoriously hard to deploy in practice, creating a
pressing need for low-cost and readily deployable solutions.
Existing approaches often require core networks to run a new
variant of BGP [26], deploy additional overlays [8], or run an
entirely new routing protocol [56]. For instance, public overlay
networks (e.g., RON [12]) and future Internet architectures (e.g.,
SCION [56]) require worldwide deployment, extra infrastructure
(with associated costs), end-to-end coordination, and overheads
for software processing on end-hosts.

2.2 TANGO Design Requirements
To overcome these challenges in the wide-area setting, we
propose TANGO, a platform allowing edge networks (e.g., small

data centers and enterprises) to optimize interdomain routes. The
following constraints drive TANGO’s design.

Incentive Compatibility (§4, §5.1): TANGO should only expect
cooperation from edge networks that actively benefit from
routing optimizations (i.e., source and destination networks of
exchanged traffic). Thus, it should be transparent and should not
rely on support from ISPs or intermediate ASes in the Internet
core. In addition, the entry-level investment for individual
networks to use TANGO should be minimal.

Plug-and-Play Control (§4): TANGO should enable edge
networks to leverage Internet path diversity without requiring
them to have multiple providers/peers, knowledge of the
wide-area topology or expertise in advanced routing techniques.
Observe that private-WAN approaches typically rely on highly
connected PoPs and knowledge of the intermediate topology
to control routing over available paths [43]. This is impractical
for smaller edge networks connected over the Internet, where
only incomplete topology approximations are available [6,38].
Moreover, TANGO must automatically discover and expose
paths without requiring manual input from the operator.

Accuracy & Timeliness (§5.1, §5.3): TANGO should allow
participating networks to accurately measure paths and react in a
timely manner to changes, dynamically choosing different routes
based on collected performance measurements.

Trustworthiness (§5.2): TANGO should be robust against
adversaries attempting to influence routing decisions by making
a path appear more performant than it is. Concretely, we assume
adversaries can intercept (and thus modify) packets on at most
n−1 of n paths, and they can observe (eavesdrop) on any path.
For more details on manipulation and replay attacks possible
under our threat model, we refer readers to §A.

3 TANGO Overview

Using an intuitive example, we describe key insights and
innovations TANGO employs to satisfy the above requirements.

Example: Consider an enterprise network ASX in Fig. 1 that
wants to temporarily offload real-time computing of user infor-
mation to a small cloud in ASY. This cloud is particularly reliable
and meets ASX’s computing needs, but does not operate an edge
close to ASX. Despite the existence of alternative low-latency
paths from ASX to ASY, the BGP default path via AS1-AS2-AS3
incurs prohibitively high tail latency for ASX’s real-time needs.
ASX could benefit from using the cloud in ASY, if only it could
forward its traffic via one of the alternative paths (e.g., via AS5).
Unfortunately, under BGP, ASX cannot use an alternative path,
and relying on an SD-WAN raises concerns with privacy and cost.

TANGO edges discover new paths and tunnel traffic over
them: TANGO exposes path diversity by treating IP prefixes
as routes (as opposed to distinct destinations), and using unique
prefixes to reach the same destination via distinct paths. To

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1793

AS4

AS
1

AS2

AS5 AS6

AS3O
pe

ra
to

r’
s

si
te

O
pe

ra
to

r’
s

si
te

PoP

ASX
discovered path

Default BGP path

PoP

ASY

AS
1

AS2

AS5 AS6

AS3

ASX

Default BGP path

ASY
ASY-AS3-AS2-AS1-ASX

ASY-AS6-AS5-AS1-ASX

ASY-AS6-AS2-AS1-X

ASY-AS3-AS5-AS1-ASX

+Sup(AS3)

P(5)

P(1)

Defa
ult

path

No path

No path

No path

P(3)

ASY-AS6-AS5-AS1-ASXDiscovered
Paths

Tango
Paths

Tango Tango
Cloud

+Sup(AS2)

+Sup(AS6)

+Sup(AS5)

+Sup(AS3)

+Sup(AS1)

+Sup(AS1)

Figure 1: ASX (enterprise) and ASY (cloud) communicate over the
BGP default (gray) path via AS2-AS3. TANGO exploits collaboration
between ASX and ASY to expose additional paths (orange).

expose distinct paths, TANGO edges collaboratively use advanced
BGP routing techniques available in today’s networks (e.g.,
path poisoning and BGP communities). Note that TANGO
automatically constructs BGP advertisements to discover paths
making TANGO plug-and-play (§4). It also does not require
the cooperation of any networks on the path other than the
collaborative edges, and is thus incentive compatible.

As illustrated in Fig. 1, TANGO exposes three distinct paths from
ASX to ASY by advertising three distinct prefixes from ASY,
which are already installed in core BGP routing tables, but unused
by BGP. The TANGO receiver (ASY) controls propagation of
these advertisements through the Internet with BGP communities
(§4). As a result, the TANGO sender (ASX), can control which
path it uses to send traffic to ASY by tunneling application
traffic over the preferred path (§5.1). ASY decapsulates tunneled
packets and forwards them toward their final destination. Even
though the TANGO sender can select a different path for each
packet, the BGP announcements made by the TANGO receiver
are stable and each statically represent a distinct path. Thus, there
are no BGP updates when the TANGO sender chooses to change
paths (preventing BGP route flapping). In practice, TANGO is
symmetric, and both edges can optimize bidirectional traffic.

TANGO edges collaboratively measure delay and loss:
Exposing path diversity is only the first step toward intelligent
route control. ASX would need to monitor the performance of
the four exposed paths to decide how to route traffic. TANGO
provides highly accurate monitoring, as it operates at the edge of
each network, avoiding access-network noise, e.g., from wireless
links. This gives TANGO an advantage over traditional end-host
measurements that are notoriously inaccurate due to variable
loss and delay within each network or probing techniques that
can be deceived by ASes preferentially treating probes [18]. To
passively measure delay and loss, TANGO adds the timestamp
of when a packet left the sending edge network to every packet,
along with a unique sequence number. Upon receipt, the
receiving edge determines (i) relative latency between paths by
calculating the difference between the time of packet receipt
and the timestamp carried by the packet and comparing this with
measurements from other paths; and (ii) loss by checking for
missed segments (out-of-order TANGO sequence numbers).

TANGO offers trustworthy loss and delay measurements: A

rational (or malicious) AS, say AS2 in Fig. 1, might try to fool
TANGO into routing traffic through her infrastructure, not by im-
proving the performance of her network but by compromising
the monitoring or rerouting infrastructure. Since she cannot pref-
erentially treat monitoring packets, as all packets are used for
monitoring, she will try to fake lower delay by modifying the
timestamps carried in the packets. Although adopting typical se-
curity primitives (e.g., signatures, encryption) is challenging due
to memory and computation constraints of modern high-speed
hardware (e.g., programmable switches), TANGO protects both
timestamps and sequence numbers of each packet from tamper-
ing. To do so, TANGO leverage multiple insights. First, observe
that timestamps and sequence numbers progress predictably. This
allows TANGO to precompute and prepopulate signatures with
more flexible, memory-rich software. Additionally, observe that
adversaries want to make their path look superior and thus have
nothing to gain from replaying old signatures (e.g., from old times-
tamps). This enables TANGO to be resilient against replay attacks.

TANGO supports fast and secure route updates: While
one-way measurements are collected at the TANGO receiver
(ASY in Fig 1), the TANGO sender (ASX) decides which path
packets will take e.g., based on per-class performance objectives.
Instead of sending raw or summarized measurements back to
the TANGO sender (ASX), the receiver node ASY computes the
best path for each traffic class according to ASX objectives and
freshly collected measurements. If the newly computed best path
is different from the current one, ASY issues a separate route
update to the sender in the data plane, broadcasting the update
packet over all paths to the sender, for increased update reliability.
To prevent an on-path adversary from tampering with the reroute
updates, we use one-time-pads directly in the dataplane.

We stress that the need for secure data-plane measurements is
not particular to TANGO. In fact, many data-driven systems have
been shown to be vulnerable to on-path adversaries [49]. Still,
existing solutions focus solely on making monitoring scalable
and accurate rather than secure [15, 35, 47, 79], effectively
overlooking trustworthiness.

4 Unveiling Path Diversity with PATHFINDER

TANGO surpasses the limited path diversity offered with BGP
by employing a novel recursive algorithm, PATHFINDER, which
exposes BGP-compliant paths via static BGP announcements for
different IP prefixes. Adhering to TANGO’s design requirements
(§2.2), PATHFINDER does not assume collaboration of the Inter-
net core or knowledge of the wide-area topology. PATHFINDER
runs on two TANGO edges with the minimum capability of
announcing a single BGP prefix from one edge, and observing
the AS path(s) for that prefix from the other edge. Increasing
the test prefixes reduces the time it takes for PATHFINDER to
expose all paths, but a typical duration using a single test prefix
is ≈ 30 min. PATHFINDER will run at bootstrap of TANGO to
expose paths and rerun on rare occasions e.g., if the TANGO

1794 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: Finding paths via iterative advertisement suppression.

sender receives a BGP update regarding a route exposed by
PATHFINDER. Rerunning TANGO does not require TANGO to
go offline as long there is at least one unused BGP prefix.

PATHFINDER exposes previously unknown paths through the
Internet by advertising prefixes to the TANGO sender edge
while strategically blocking (suppressing) export of the BGP
best-path. PATHFINDER leverages two commonly supported
route suppression methods: (i) BGP communities and (ii) BGP
path poisoning. Community-based filtering involves attaching
BGP communities supported by major transit providers (e.g.,
those discussed in [24]) to suppress route exports (via no-export
communities) or to lower route preferences so certain ASes do
not use previously preferred routes. To support community-based
filtering, PATHFINDER needs to be keyed with specific values of
action communities supported by its upstreams and major transit
providers. This can be obtained from publicly available routing
guides. BGP path poisoning exploits BGP loop detection to
prevent select ASes on the original path from importing the BGP
announcements [22,57]. While these techniques have different
topology-dependent trade-offs1, they are largely interchangeable
from PATHFINDER’s perspective, both accomplishing the
algorithmic objective of suppressing a given BGP route.

PATHFINDER recursively updates the BGP advertisements
announced by one edge (the destination) based on real-time feed-
back from the other edge (sender). Specifically, PATHFINDER
finds unidirectional paths between two nodes: a traffic source
and destination. PATHFINDER starts by making a “default” BGP
announcement from theTANGO destination. This announcement
reaches the TANGO source, which records the AS-path associated
with this announcement. Note that without PATHFINDER, this
would be the default and only BGP path available to the sender.
Next, PATHFINDER suppresses the propagation of this route
(using communities or path poisoning) to every AS on the
recorded AS-path, effectively forcing the advertisement to find
a different path to the source. For each path it finds, it recursively
applies this algorithm.

1BGP communities can suppress individual links but are not honored over
provider-customer or peer-peer links while AS-path-poisoning only suppresses
at the AS granularity but affects the entire path.

Tango Packet

Tango

Header

Encapsulated

Packet

Metrics Header

IP Header

UDP Header

Metrics Header

IP Header

Transport Protocol Header

Payload

Path Identifier

Timestamp

Timestamp Signature

Sequence Number

Sequence Number Signature

Figure 3: TANGO tunnels application packets in an IP header
specifying an interdomain path, a static UDP header to ensure
consistent ECMP behavior, & a metrics header with signatures for
integrity protection.

As an illustration, to discover the paths in Fig. 1, ASX and ASY
would need to jointly construct a graph like that in Fig. 2. In
this graph, nodes contain BGP paths between ASX and ASY.
The root node represents the default path, while leaves capture
paths discovered by PATHFINDER by supressing ASes in the
edges of the path to the node. Red dots represent advertisement
attempts that did not result in a path (i.e., the advertisement
did not reach the sender)2. Recall from Fig. 1 that the default
path from ASX to ASY is via ASX-AS1-AS2-AS3-ASY
(advertisements are propagated via ASY-AS3-AS2-AS1-ASX).
To discover additional paths, ASY will propagate multiple
routes starting from one that suppresses the propagation to AS3.
By poisoning AS3, the advertisement will follow the path via
ASY-AS6-AS5-AS1-ASX, and thus this will be the route that
ASX hears. Next, ASY suppresses AS6 in addition to AS3
which results in no available path to ASX (ASX will hear no
route), as all paths traverse either AS3 or AS6. Having fully
investigated routes that suppress AS3, PATHFINDER backtracks
to advertising a new route suppressing AS2 and then AS1.

The algorithm described above finds paths between senders and
receivers that are distinct at an AS level. Thus, PATHFINDER
does not leverage path diversity within each AS, or the existence
of multiple peering locations for an AS pair. These paths could
be found by combining PATHFINDER with Paris Traceroute [16])
and could be used by TANGO by applying the source and
destination port combos found by Paris Traceroute in the outer
UDP header of the TANGO packets (the outer headers on TANGO
packets are ignored by the receiving switch). However, the use
and exploration of additional intra-domain paths is out of scope.

5 Secure, Metrics-Informed Dynamic Routing

With newly-exposed path diversity, TANGO can dynamically
route traffic along paths best suited for given performance
objectives, while being informed by fine-grained metrics. There
are several challenges to accurate and trustworthy monitoring
and rerouting. TANGO overcomes them with custom monitoring

2The graph is for illustrative purpose only and is constructed based on the
information that PATHFINDER extracts (i.e., is not part of its input).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1795

Path Mapper Metrics Engine Signer

Check
Correct

Path

Verifier Monitor

OTP

Encryptor

Update
Route Tables

Route Updater

OTP

Decryptor

Path_B :
SeqNo,
TS
Path A:

SeqNo.
TS.

Data Plane

Optimize
Route

Mapping

Path B:
SeqNo; Sig
TS; Sig
Path A:
SeqNo→Sig.

TS→Sig.

Route Optimizer

Path B:
SeqNo; Sig
TS; Sig

Path Verifier

…

Path A
Path B
Path C

Web
Zoom

Games

→
→
→

✓
X

✓
X

Calculate:
- Loss
- Delay

- OR -

✓
X

- OR -

- OR - Path A:
SeqNo→Sig.

TS→Sig. Traffic

M
et
a
d
a
ta

Public
Internet

Precomputed
OTPs

Precomputed
Signatures

Precomputed
Signatures

Sender’s
Objectives

Sender’s
Objectives

BGP
Pathfinder

Control Plane

Traffic

Reroute

Monitor

Precomputed
OTPs

Tunneled
Packet

Route
Update
Packet

Update Needed ✓

0 1 2 3 4 5

6789

Figure 4: TANGO is a hybrid control and data-plane approach to performant routing over the public Internet, informed by fine-grained, trustworthy
telemetry. TANGO relies on cooperation: both edge networks share secret keys and per-class performance objectives.

of one-way metrics (§5.1), trustworthy telemetry (§5.2), and
real-time, tamper-proof route updates (§5.3). Fig. 4 illustrates
the life cycle of a packet through each of these modules from
a TANGO sender (left) to a TANGO receiver (right). We assume
that TANGO routes traffic at the granularity of traffic classes to
satisfy application-specific requirements.

5.1 Multi-Path Monitoring

Tunneling for Multi-Path Routing 0 : TANGO tunnels packets
through different physical paths by encapsulating them in a
distinct per-path header (IPv4 or IPv6 headers) as shown in
Fig. 3.3 To route traffic according to its operator-designated
traffic class objectives, TANGO maintains a mapping from
class to path identifier (PID), which uniquely designates a path,
specified by an IP header.

Custom Per-Path Monitoring 1 5 : In addition to the tunnel
header, TANGO adds custom header fields to enable per-path
performance monitoring [42]. Unlike prior works that rely on
TCP semantics to measure performance [15,28,51,62], TANGO
adds a custom Metrics Header which contains a 3-bit PID,
12-bit timestamp, 32-bit PID and timestamp signature, 8-bit
TANGO sequence number, and 1-bit sequence number signature.
The Metrics Header is lightweight (7 bytes overall) and used
to identify packet routes, calculate loss and delay, and facilitate
trustworthy telemetry.4 The timestamps and sequence numbers
are defined as follows:

1. Timestamps: The TANGO sender tags a packet with
its local time (t1) in ms before tunneling it to its peer.

3The TANGO header adds several bytes to each packet, which could
potentially cause MTU issues. TANGO can resolve this in a similar way to other
router-based encapsulation protocols by implementing Path MTU Discovery and
responding with appropriate ICMP “fragmentation needed and DF set” packets,
as specified in RFC 1191 [50].

4We developed these header sizes based on the parameters of the testbed we
used. Even under more demanding production conditions, the anticipated header
size will still be quite small compared to overall packet sizes.

Upon receipt, the peer node records its local time (t2) and
calculates the per-packet delay as t2− t1. The timestamp
carried by packets is at the ms granularity. Since Internet
path latencies are on the order of tens of ms, more
fine-grained measurements would not yield increased
benefits. Also, since TANGO measures relative latency
across paths, clock skew between nodes is irrelevant.

2. Sequence Numbers: The TANGO sender also tags packets
with a monotonically increasing sequence number (s_curr)
before tunneling. The receiver tracks the highest sequence
number seen (s_seen), calculating loss as s_curr−s_seen.
As TANGO sequences are not re-transmitted if dropped
(unlike TCP sequence numbers), each dropped packet is
only counted once. Out-of-order packets increase loss but
should be rare among packets with a fixed header traveling
edge-to-edge.

Aggregated Monitoring 5 6 : TANGO calculates per-path
loss and delay metrics over an aggregation window of size i, by
adding measurements to an aggregate sum. Upon the arrival of
the i-th packet, the current sum will be persisted for later use in
issuing reroutes, and the value will be reset. The operator may
configure the window size, weighing tradeoffs in noise-resilience,
network event response time, and security.

5.2 Secure Telemetry

Trustworthy Telemetry 2 3 4 : To protect against tampering,
the TANGO sender cryptographically signs all timestamps, PIDs,
and sequence numbers, ensuring integrity and authenticity. Upon
receipt, the TANGO receiver verifies each value to ensure they
are untouched after transit over the public Internet. Signatures are
path-specific, and hence secure against replay attacks: an on-path
attacker cannot replace signatures with those they overhear from
faster paths, as the signature is specific to the path (PID). Finally,
any mapping (i.e., pair of timestamps, sequence number, or PID
to signature) that the adversary learns cannot be reused. The

1796 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

sequence number changes per packet. The timestamp changes
every ms and older timestamps are not useful as the attacker only
tries to make her path appear faster.

Practical Challenges for Scalability: Cryptographically protect-
ing metrics at packet line rate is nontrivial. Cryptographic prim-
itives are resource-intensive to implement at scale. First, signing
packets in the control plane requires laborious per-packet process-
ing in software, while signing packets in the data plane would
require multiple recirculations [27,77,78]—both too compute-
intensive. Second, storing precomputed signatures directly on
switch SRAM is too memory-intensive. Further, populating the
data plane with precomputed signatures from the control plane
creates read-write synchronization concerns between the data and
control planes, as well as between TANGO sender and receiver.

The TANGO Signature Book 2 4 : To avoid online signature
computation while still being memory-friendly, TANGO creates
a signature book of precomputed signatures, and periodically
populates smaller precomputed signature blocks from the
signature book to the data plane. The signature book is used for
two operations: signing (on the TANGO sender) and verifying
(on the TANGO receiver). The following insights help us deal
with the memory challenge. First, we observe that both sequence
numbers and timestamps are predictable (monotonically
increasing) over time, enabling efficient pre-computation and
storage. Second, we observe that to reduce delay the adversary
would only need to guess one timestamp per ms, while to
hide a single packet drop she would need to correctly guess
many consecutive signatures. Further, sequence numbers will
eventually wrap around, thus making old mappings irrelevant to
the adversary. Hence, TANGO uses 32-bit timestamp signatures
and 1-bit sequence number signatures.
To deal with synchronization challenges, TANGO employs two
strategies. First, it uses data-plane packets triggered by the
control plane to quickly write signatures, instead of relying
on control-plane write calls (e.g., with gRPC). The control
plane marshals precomputed signatures into large packets,
which trigger block writes when processed in the data plane.
Switch-specific constraints do not allow writing multiple indexes
of the same register array, so signatures are sliced off packets in
the data plane, which are recirculated until a null token is reached.
This approach allows the control plane to update signatures faster
than they are consumed by the data plane.
Second, TANGO splits its signature book into two blocks, where
at any given time, one block is being written and one is being
read, avoiding a race condition between reads and writes (see
Fig. 5). This approach makes the sequence-to-signature mappings
time-dependent and thus deterministic. Critically, however, se-
quence numbers are not reset for every new interval. While reset-
ting would be more economical from the memory perspective, it
would also allow the attacker to silently drop all packets at the end
of each interval. Instead, TANGO stores the maximum signatures
that can be consumed in each interval and ignores unused signa-
tures. In other words, through every interval change, the sequence

Signature Book

Block 0 Block 10 216 - 1 0 216 - 1

Write Read

Used

Figure 5: To deal with synchronization issues between reads and
writes, TANGO splits the signature book into two blocks, for reading
and writing. The control plane writes fresh signatures to one block,
while the data plane consumes the other for signing packets.

number continues to increase from its last value (Fig. 14 in §B).

5.3 On-Demand Reroutes in the Data Plane

Dynamic Route Updates 6 9 : The receiving TANGO node
issues route updates to the sender based on aggregated path
metrics and the sender’s objectives for each traffic class. As
reroutes should be infrequent, TANGO does not include these
updates in the default TANGO header, rather opting for a custom
packet containing the route update (i.e., the new PID for the
corresponding traffic class).

Trustworthy Route Updates 7 8 : Naturally, a route update
could be the target of an on-path adversary that (i) tampers with
route updates to direct traffic to desired paths; (ii) injects route
updates to move traffic from a path; or even (iii) drops route
updates to cause a denial-of-service to the reroute mechanism.
Observe that the first two attacks are catastrophic for TANGO,
since they have a direct effect on routing. Thus, to prevent
tampering, the TANGO receiver (which issues the updates)
encrypts route updates before transmission, while the original
sender decrypts and verifies the update before applying. To also
protect against dropping of route updates, TANGO broadcasts
reroute packets over all available paths to ensure that at least one
update will reach the sending node.5

OTP and Encoding Scheme: There are several challenges to
encrypting updates: (i) limited compute and memory in the data-
plane; and (ii) susceptibility of small ciphertexts to brute-force
attacks. TANGO solves these problems by using precomputed
OTPs with extension encoding scheme. This is a natural solution
as route updates are relatively infrequent yet unpredictable. How-
ever, since the number of possible reroutes increases with both the
number of paths and the number of traffic classes, storing route-
update signatures could be memory inefficient. Most importantly,
compromised security of route updates would be catastrophic
even for a single packet, necessitating the perfect secrecy of OTP.

Concretely, a route update consists of an index that selects the
OTP to XOR with the concatenated traffic class and PID (see
Fig. 15 in §B). The control plane periodically updates OTPs, such
that they are only used once. While OTP offers perfect secrecy,
it is vulnerable to bit flips, meaning the attacker can change a
few random bits in the traversed route update to change TANGO

5Threat model assumes at least one path with no on-path adversary (§2.2).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1797

66%
20%

14%

Bangalore-Stockholm

53%
22%

BGP Default
12%

10%
3%

Melbourne-Stockholm
Figure 6: Breakdown over 32 hours of how often a path had lowest
relative latency. Here, the BGP default is beaten by alternative paths
100% of the time (Bangalore) and 88% of the time (Melbourne).

behavior. To protect against this, TANGO independently encodes
the traffic class and PID into 32-bit, sparse strings. The value
to encode (e.g., traffic class) selects a static, sparse-bit string and
appends it to form a single, 32-bit string. The concatenation of
the encoded bit strings are XOR’d with the OTP, and sent to the
peer TANGO node alongside the update number. If an adversary
tampers with the update number, traffic class bits, or the PID
bits, the decrypted update or the encodings will be incorrect,
and the update can be safely ignored. If the adversary were to
now try and brute-force the update, they must now brute-force
all encoding bits, which are tied to encoded values.

6 Internet-Scale Measurements

We showcase TANGO in the wild by deploying it with
eBPF [17](§7) on 25 nodes in globally-distributed data centers
of the cloud provider Vultr [5] (see Fig. 26 in §C). Through our
Internet-scale measurement study (§6.1), we prove that TANGO
uncovers path diversity even in a single-homed environment,
where conventional BGP only offers a single path. We also show
that TANGO uncovers performance diversity in these alternate
paths, which often outperform the default BGP path by up to
100% of the time with up to 39% lower latency. To further
validate and generalize these results, we also perform an Internet-
scale simulation that confirms the rich path diversity available in
the public Internet (§6.2). Together, these experiments showcase
the benefit, practicality, and incremental deployability of TANGO.

Ethics Statement: We note that all testbed infrastructure in
edge networks of our Internet-scale study are operated by the
authors, and that traffic sent from TANGO nodes across the
public Internet are transparent to intermediate ASes and can
be processed as normal application traffic at reasonable sending
rates (up to 1Mbps), raising no ethical issues.

6.1 Operational Deployment
Choice of Edge Network. We perform our measurement
study with Vultr as a deployment convenience, however, many
other types of edge networks can easily benefit from TANGO.
Characteristics that would make an edge network particularly
amenable to TANGO include having available prefix space

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Chicago-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

London-Stockholm

Co
un

ts

Figure 7: Number of times different paths emerged as the best for
a given congestion condition, per node pair. "no", "low", and "high"
congestion conditions correspond to the lowest, middle, and upper
tertiles, respectively, of one-way-delay experienced by the best path.
While one path might dominantly be best under no/low congestion,
during high congestion more paths emerged as the best path.

(either IPv4 or IPv6) and either BGP communities or path
poisoning capabilities. Note that the edge network does not
require a provider that actively engages in BGP community
announcements, as long as they are able to transit communities.
This is often the default behavior in ISPs [68,69].

Methodology: To measure available path diversity, we ran
PATHFINDER on all bidirectional paths between 24 of the Vultr
data centers (552 pairs in total)6. Vultr allows customers to make
BGP announcements, supports several action communities (to
control its own BGP behavior), and transits BGP communities
(to potentially impact the behavior at remote ASes) [3, 4], but
does not allow customers to do path-poisoning. Thus, we ran
PATHFINDER using community-based suppression, inputting
BGP suppression communities supported by Vultr as well as by
several major transit providers (specifically ASes 3257, 6453,
4755, 3356, 1299, and 174).7 While Vultr does export a full BGP
route table to customers participating in its BGP services, it only
provides a single next-hop at each datacenter: the Vultr upstream
router. Thus, by default, each source-destination pair would only
have a single path, without TANGO.

We also used TANGO to measure performance diversity between
23 Vultr pairs, with Vultr Stockholm fixed as the receiver.
Specifically, we generated 1Mbps iperf UDP flows across
7 different TANGO-exposed interdomain paths for all 23 pairs,
passively measuring latency and loss at 10 ms measurement
intervals over a period of roughly 32 hours. We also repeated
measurements with an additional 23 node pairs, using Vultr LA
as the fixed receiver, and found similar results (§C). We present
results for Stockholm measurements below.

6.1.1 Path Diversity over the Public Internet

How much path diversity can TANGO expose? Of the 552
node pairs explored, PATHFINDER exposed alternative paths for
503 pairs (91%), unveiling opportunities to benefit from multi-
path routing. The median number of paths available between two

6During PATHFINDER exploration, only 24 of 25 nodes were available.
7As there are no standard values for many BGP route suppression

communities [24] these values had to be found by hand from routing guidelines.

1798 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

101 102 103 104 105 106 107

Window Length (ms)
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Amsterdam
Atlanta
Bangalore
Chicago
Dallas
Johannesburg
Los Angeles
London
Madrid
Melbourne
Mexico City
Miami
Mumbai
New Jersey
Paris
Sao Paulo
Seattle
Seoul
Silicon Valley
Singapore
Sydney
Tokyo
Toronto

Figure 8: On average across all 23 pairs, best paths lasted from
5-541s, with median durations of 10ms-105s. TANGO only chooses to
perform dynamic rerouting for windows longer than 100ms.

nodes was 3, and the average was 3.3. PATHFINDER also uncov-
ered a sizeable long tail, as 84 different pairs had 6 or more paths
and 3 pairs had 12 different paths between them (see Fig. 16 in
§C). The average run time for PATHFINDER was quite low (<1h)
as each pair only required 6.8 BGP announcements on average
(with 5-min separations to account for propagation). While
already encouraging, the number of paths can be significantly
increased if Vultr were to allow BGP path-poisoning. Unlike
community-based suppression which is only supported by some
ASes and varies in implementation from AS to AS, AS-path
poisoning is mandated by the BGP RFC [59], although some
networks filter announcements with certain ASes poisoned [66].

6.1.2 Performance Diversity across Exposed Paths

How often are TANGO-discovered paths better than the
default? We define the best path to be the one with lower relative
one-way-delay compared to all other paths. Of the 23 pairs in our
Vultr Stockholm measurements, 20 pairs had an alternative path
that outperformed the default BGP path for a significant amount
of time: 100% of the time for 15 pairs, and 75-88% of the time for
5 pairs. This clearly shows the benefit of deploying TANGO. Of
the remaining three pairs (Atlanta-Stockholm, Paris-Stockholm,
Tokyo-Stockholm), the default path was dominantly best for
only two pairs and was best only 55% of the time for the last
pair. We also note that there were many pairs with more than
one alternative path which outperformed the default, providing
further path diversity and potential performance resilience: 7
pairs had two or more alternatives and 4 pairs had three or more
alternatives. In Figs. 6 and 7, we visualize results for two node
pairs, showing alternative paths outperforming the default. We
include distribution charts for all 23 pairs in §C, Figs. 23 and 25.

How long is one path the best? We measured the window
of time one path remained the best for each of the 23 Vultr
pairs (Fig. 8). Path longevity varied across paths, likely due
to performance variations from changing network conditions

0 5% 10% 15% 20% 25% 30% 35% 40%
Latency Improvement

0

5

10

15

20

25

Fr
eq

ue
nc

y
(h

ou
rs

)

Amsterdam
Atlanta
Bangalore
Chicago
Dallas
Johannesburg
Los Angeles
London
Madrid
Melbourne
Mexico City
Miami
Mumbai
New Jersey
Paris
Sao Paulo
Seattle
Seoul
Silicon Valley
Singapore
Sydney
Tokyo
Toronto

Figure 9: Best paths that TANGO exposed outperform the BGP default
by up to 22% on average, and up to 39% for some pairs.

(e.g., congestion). For 9 pairs, the median window duration
was 350-925ms showing that dynamically updating the used
path would be beneficial for forwarded traffic. For 11 pairs,
the median duration was shorter at 10-30ms, most likely due
to ECMP behavior between the nodes. The average duration
for these 11 pairs ranged between 95-99s (from New Jersey,
Mumbai), 121-221s (from Toronto, Tokyo), and 105-107s for the
7 other pairs. For the last 3 pairs, the median was much longer,
lasting for 23-105s, while the average duration for each pair was
107s (from Johannesburg, Madrid, Chicago).

TANGO performs dynamic reroutes when a new best path
emerges for longer than a given window threshold. The exact
threshold can be configured per pair using such measurements.
For instance, with this threshold, 10-30ms windows would
not trigger a route update. Network operators can increase this
threshold to provide more static long-term path optimizations,
or further lower it for even faster dynamic updates.

By how much does the best path beat the BGP default? We
measured the latency difference between the best and default
paths, for each of the 23 Vultr pairs (Fig. 9). We found that for five
pairs, the best path had at least 20% lower latency than the default
for more than 6 hours within the 32-hour experiment. To better
grasp the expected benefit of TANGO, consider that these nodes
are in different sites of the same cloud. While as noted previously,
there were two pairs for which the default path was best (Atlanta-
Stockholm and Paris-Stockholm), for the remaining 21 pairs, the
non-default best path outperformed the default by an average of 1-
22% for durations of 0.9-24.54 hours. Further, the 75th percentile
delay improvement was 24% for Chicago-Stockholm and 26%
for London-Stockholm, lasting for 4.07h and 0.85h, respectively.

6.1.3 Event Analysis

While Fig. 9 demonstrates the benefit of running TANGO for the
average-case, another major advantage of TANGO is to rapidly
avoid problematic performance events by moving to other
paths during disruptions. To quantify this benefit, we searched
our measurements for significant performance degradation

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1799

103 104 105

Event Duration MS

0

1

2

3

4

5

6

Fr
eq

ue
nc

y
(E

ve
nt

s P
er

 W
ee

k)

Events on Default Paths
Events on Default Paths Unavoidable

Figure 10: Occurrence frequency vs. duration of high-loss perfor-
mance degradation events on default BGP paths paths. TANGO could
protect edges from four high-loss events on average per week.

events by filtering for 10 consecutive measurements (i.e., a
100ms window, with data points taken every 10ms apart) which
were 20ms higher than the baseline one-way-delay on that
path. We determined an event to be over once 10 consecutive
measurements were below our event threshold. For each event,
we computed the relative average one-way-delay and loss during
the event. We also marked each event as avoidable if we saw
there was another path between the same pair of nodes that was
not experiencing a performance degradation event. We computed
the frequency of events on paths by dividing the total number
of events by the total duration of measurement collection.

From there, we further selected events with more significant
performance degradation in loss or delay, potentially compro-
mising real-time applications. We do expect that such events
would cause customers to complain even if the average network
performance is good. Concretely, we selected events with greater
than 20% loss or 100% one-way-delay increase (latency events
are discussed in §C.2). Fig. 10 presents a graph of event duration
vs. frequency for loss events on default BGP paths (TANGO-
discovered paths experienced similar events). In the absence of
TANGO, events with 20% loss for longer than 8 seconds occurred
over 5 times a week. Meanwhile, with TANGO-exposed paths
and adaptive routing, such loss events can be reduced to less
than once a week on average. It should also be noted that in our
dataset, all unavoidable events occurred at a single sending node:
Vultr Brazil (which may have seen a higher number of correlated
events due to potentially less path diversity in developing
regions like Brazil). For all other nodes, every high-loss event
encountered could have been avoided with TANGO.

6.2 Internet-Wide Simulation
To understand potential path diversity across the Internet
topology in an even more generalized setting, we counted
Gao-Rexford-compliant [31] paths between randomly-chosen
ASes in the March 2020 CAIDA Internet Topology Dataset [6].
To optimize the counting process, we separated a Gao-Rexford
path into two sections: an initial part consisting of zero or more
customer-provider links joined (optionally by a peer-peer link) to
zero or more provider-customer links. With this in mind, for each
BGP destination considered, we divided the topology into two

101 103 105 107

Paths Per Node Pair
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Figure 11: The number of Gao-Rexford-compliant paths between
999k random topology node pairs. PATHFINDER exposed more than
2 unused BGP-compliant paths for 98.6% of pairs.

sections: a “provider cone” that was reachable only traversing
customer-provider links, and all other ASes outside the provider
cone. We counted paths to all ASes in the provider cone via only
customer-provider links by treating this as a Directed Acyclic
Graph (DAG) based on the Gao-Rexford premise that there are
no customer-provider loops [31]. We similarly counted paths
from all other ASes to the source AS by treating the region out-
side the provider cone as a DAG but traversing provider-customer
links (instead of customer-provider links). This gave us a path
count to all ASes in the topology using either customer-provider
or provider-customer links depending on whether the ASes were
inside or outside the provider cone. Finally, we joined these two
counts to form full paths by traversing each AS A in the provider
cone and counting the potential paths that contained A in the last
customer-provider link (the sum of the paths through ASes not
in the provider cone of the peers and customers of A multiplied
by the number of paths through the provider cone to reach A).
This algorithm is scalabe and ensures counting distinctness, it is
actually a lower bound on the number of paths in a given topol-
ogy, as ASes in the provider cone can potentially be reached over
peer-peer or provider-customer paths as well, which our counting
methodology does not permit. Our counting is also limited by the
accuracy of the CAIDA AS-Relationship dataset as is standard
with many other Internet-scale simulation work [22–24,70].

We ran our counting algorithm to count Gao-Rexford-compliant
paths between 1000 randomly-chosen ASes producing 999,000
distinct source-destination pairs. We found today’s Internet topol-
ogy offers rich path diversity, as the median AS pair had 5,323
Gao-Rexford-compliant paths (Fig. 11). We largely attribute this
richness to the high degree of certain vertices, including large
IXPs, on the Internet graph; indeed, in a richly-connected topol-
ogy paths grow exponentially. We, of course, do not advocate
for TANGO to use more than a couple of them, yet this result
shows high potential for multi-path routing across the wide area.

7 Internet-Scale Route Control

We showcase TANGO’s real-time route control with an end-to-end
experiment spanning two continents (North America and Europe),
illustrating how TANGO leverages collected measurements to per-
form dynamic route control and avoid performance degradation

1800 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

events (§7.1). We also present microbenchmarks that highlight
the operational feasibility and efficiency of performing line-rate
integrity protection with TANGO’s switch prototype (§7.2).

Implementation: We implemented TANGO’s data plane logic
on modern switch hardware and with eBPF on standard Linux
servers. Our switch prototype was implemented in 199 lines
of Lucid code [67] and compiled to 1279 lines of P4 [25]
targeted for an Intel Tofino programmable switch [36]. Our
interchangeable eBPF version was written in 401 lines of code.
Meanwhile, TANGO’s control plane component and eBPF
loading program was written in 524 lines. We have released
TANGO’s source code on GitHub8.

Testbed: Our hardware testbed consisted of an Intel Tofino
Wedge32X-BF programmable switch and several servers, each
with a 20-core Intel Xeon Silver 4114 CPU and a Mellanox
ConnectX-5 2×100Gbps NIC. Our sending edge network was
based on Princeton University’s campus in North America,
with a server (running Ubuntu 20.04 and kernel version 5.4.0)
sending main application traffic and generating background
traffic flows, and the switch running TANGO data plane logic.
Meanwhile, TANGO’s receiving edge was deployed with eBPF
on a standard Linux server at a Vultr data center in Stockholm,
Sweden running Ubuntu 22.10 with kernel v5.19.0. The eBPF
programs were built with Libbpf and Clang 15.0.6.

7.1 Dynamic Reroutes
To evaluate TANGO’s end-to-end dynamic route control, we
announced seven distinct IP prefixes from Vultr Stockholm
via BGP, using community sets that we previously found were
optimal for finding paths between Stockholm and other locations
(§6.1). We did not have access to a BGP feed from our institution
so we could not rerun our PATHFINDER algorithm specifically
for this pair of nodes. We also noticed ECMP being used for
outbound traffic from our institution. To benefit from this we
explored the round-trip-time when sending traffic to different des-
tination IPs within the same BGP prefix. We found two available
ECMP paths for every announced BGP path. After enumerating
these 14 paths, we observed some paths had seemingly-identical
performance9. Ignoring redundant paths we had 12 distinct paths.

We generated keep-alive flows along all exposed paths while
continually collecting per-path metrics. We also had one active
flow, which we monitored for potential benefits from dynamic
routing. We developed a simple control algorithm based on rela-
tive one-way-delay that would move the active flow to a different
path if that path outperformed the current path for 10 consecutive
measurements (i.e., 100ms for measurements taken every 10ms).
We found this algorithm to be stable across the wide area, only
rerouting during significant network degradation events. Once the
control algorithm determined a route change was necessary, it pro-

8https://github.com/PrincetonUniversity/tango-routing
9This is because we could not see the BGP path used by our institution so

some BGP community combinations produced identical paths.

0 250 500 750 1000 1250 1500 1750
Time (ms)

40

45

50

55

60

65

La
te

nc
y

(m
s)

0
1
2
3
4
5
6
10
11
12
14
Active Flow

Figure 12: One-way-delays of different paths and an active flow
during our simulated performance degradation event10.

duced a reroute data packet which was sent back to the TANGO
switch node at our institution. This caused a register update on
the switch, which rerouted the active flow to a different path.

To observe TANGO’s potential to dynamically avoid events
like those discussed in § 6.1.3, we utilized another Intel Tofino
switch running between our TANGO switch and the Internet to
inject delay (with packet recirculations) on specific paths. To
make our experiment more realistic, we replayed delay events
that we had observed in the wild on paths that (1) had a similar
one-way-delay as that of our institution to Stockholm and (2)
had the largest number of disruptive events.

When we ran this experiment, our control algorithm started
by moving the active flow from the BGP default path (path 0)
to the optimally performing path (path 5). As the experiment
continued, our delay mechanism began simulating a performance
degradation event, causing path 5 to have its one-way-delay spike.
Within 650ms after the first sign of performance degradation,
the observed active flow was moved back to path 0 (see Fig. 12).
Even with a simple control loop, TANGO can reduce the duration
of 90% of the high-loss events observed in §6.1.3, offering more
than a 10-fold reduction in the median length (12s) of high-loss
events. This response time could potentially be even faster if our
prototype eBPF module generated reroute packets in the kernel
as opposed to utilizing a separate user-space process (written
in Python and taking approximately 400ms to initialize and
execute), or if a more aggressive control algorithm was used.11

7.2 Data Plane Microbenchmarks
To demonstrate the operational efficiency of our integrity-
protection scheme, we analyzed theoretical sizes for TANGO’s
signature book (§5.2), experimentally evaluating required control
plane write speeds for book population. Our results prove that,
for reasonable packet sizes, required block sizes refreshed
every 5–15ms can comfortably be stored in the data plane and
populated from the control plane (Fig. 13).

Book Block Hybrid Write Speed: We experimentally confirmed
that the control plane can write an entire signature block across all

10It is likely a congestion-induced single-packet spike around 1500 ms.
11Our test flows ran UDP so reordering was not a prominent concern. If this

rerouting algorithm is used on TCP traffic, flowlet boundaries can be taken into
account to minimize overhead due to packet ordering changes.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1801

https://github.com/PrincetonUniversity/tango-routing

0 20 40 60 80 100
Traffic In (Gb/s)

28
210
212
214
216

Bl
oc

k
Si

ze
 (b

its
)

Refresh Period
2ms
4ms

8ms
16ms

28 212 216 220 224 228 232

Signatures Written
0

10
20
30
40
50
60
70
80
90

Wr
ite

 Ti
me

 (n
s) Without Traffic

With Traffic

Figure 13: Required signature block size (left) and write speed (right) reveal the practicality of a precomputed data plane signature scheme.

books at speeds well below the refresh period, ensuring all signa-
tures are refreshed before the data plane moves to the next block.
Our first server issued control plane writes, the second generated
background traffic at 100Gbps with DPDK [30], and the switch
ran our slice-and-recirculate write behavior (§5.2) while tunneling
out background traffic. We gathered write-time measurements by
taking the time difference between the arrival of the first and last
signature written to the block. As shown in Fig. 13, at a refresh
period of 8ms at maximum port speed, the control plane can write
216 signatures in less than 10ns over the data channel. Meanwhile,
the required 220 signatures for all blocks across all books can be
written in approximately 20ns without background traffic and
40ns with it, while being well below the 8ms refresh limit.

8 Related Work
Performance-Driven Routing: Many prior works have
explored performance routing; however, they suffer from poor
deployability. Traffic engineering works such as TEXCP [39],
EDGE FABRIC [61], and ESPRESSO [76] assume that the
edge network is multi-homed. While EDGE FABRIC and
ESPRESSO show the promise of SDN-based performance-driven
routing, they can select between multiple already-existing BGP
routes, thanks to global PoPs and peerings from Meta and
Google. Such infrastructure is infeasible for smaller network
operators and cloud providers. Other data-driven routing
solutions such as BLINK [35] and SHORTCUT [64] allow fast
failover in the data plane but do not improve performance.
ROUTESCOUT [15] provides metric-driven dynamic routing
in the data plane, but struggles to provide accurate metrics and
also assumes multi-homed networks. AnyOpt [81] optimizes
anycast catchment but does not advertise multiple prefixes for
the same destination. PECAN [72] does advertise different
routes to the same destination but only steers between them with
DNS, preventing the fine-grained route control TANGO offers.

PAINTER [43] similarly uses multiple IP prefixes to advertise
different routes for inbound traffic, but is designed for a cloud en-
vironment, which significantly changes the design space. First, as
PAINTER runs in a highly-peered cloud, it can simply advertise
distinct prefixes to different immediate neighbors, and does not at-
tempt to find distinct paths after the initial hop (making it useless
to single-homed networks). Second, PAINTER does not perform
data-plane telemetry and leverages application-layer telemetry
enabled by proxies running in edge networks. TANGO innovates
on data-plane telemetry and does not require application proxies,
while being protocol-agnostic and robust against malicious inter-
mediate networks. Finally, TANGO is designed to be deployed

in programmable data planes like P4 switches and smartNICs.
PAINTER utilizes proxies running on traditional CPUs that do
not have the scaling and cost benefits of data-plane hardware.

Secure Telemetry: Multiple solutions for real-time data-plane
telemetry exist [45, 52, 58, 62], yet they are not designed with
security in mind i.e., their results could be compromised by
an adversary. Moreover, they often require collaboration of
all switches/routers in the path. For instance, INT (and later
versions) [42, 65] collect fine-grained performance metrics at
each hop, enabling informative network monitoring to operators,
but require each switch to implement the protocol, which is
not a reasonable assumption in the wide-area setting. A few
secure telemetry solutions exist, such as Stealth Probing [18]
and path-quality monitoring [32], but they do not provide the
necessary fine-grained metrics for real-time, dynamic routing,
and are not implementable in today’s hardware.

Data-Plane Encyption: There are several general-purpose
encryption schemes ported to the data plane; however, they are
too resource-intensive. For example, the Advanced Encryption
Standard i.e., the de facto cipher for most Internet applications
AES-TOFINO [27], utilizes the majority of Tofino memory
resources and would need, optimally, 5 pipeline passes for
each 16-byte block to encrypt. Even more lightweight cipher
deployable on an ASIC such as SIMON AND SPECK [20],
CHACHA [78], and HALFSIPHASH [77] are still too resource
intensive. Beyond memory, they require several recirculations
for every plaintext block to be encrypted. Other solutions, such
as RAVEN [74] and PINOT [73], are application-specific and not
easily extensible to other use-cases.

9 Conclusion
TANGO is the first route-control scheme to expose multiple
wide-area paths without the cooperation of the Internet core,
while offering accurate and trustworthy edge-to-edge measure-
ments. Our Internet-wide experiments show there are significant
benefits from optimizing routing on the public Internet, using
TANGO-exposed paths not available with BGP. We show TANGO
can run on a hardware switch or with eBPF, making it practical
even for small networks.

Acknowledgments. We thank John Sonchack for his support
with Lucid development. We are grateful to Ethan Katz-Bassett
and Thomas Koch for their valuable feedback, and to our
shepherd Italo Cunha and the anonymous reviewers for their
insightful comments. This work was supported in part by
Protocol Labs and by NSF GRFP Grant DGE-2039656.

1802 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Managed sd-wan solutions for the cloud era.

https://www.aryaka.com/managed-wan-services/.

[2] Versa networks. https://versa-networks.com/sd-wan/cloud-wan/.

[3] Announce your IP space with BGP and Vultr - Vultr.com.
https://www.vultr.com/features/bgp/, 2022.

[4] AS20473 BGP customer guide. https://www.vultr.com/docs/
as20473-bgp-customer-guide, 2022.

[5] SSD VPS servers, cloud servers and cloud hosting. https:
//www.vultr.com/, 2022.

[6] The CAIDA AS relationships dataset. https://www.caida.org/
catalog/datasets/as-relationships/, 2023.

[7] HPE greenlake for aruba (NaaS). https://www.arubanetworks.com/
solutions/naas/, 2023.

[8] Akamai. SureRoute. https://developer.akamai.com/article/
sureroute, 2022.

[9] A. Akella, B. Maggs, S. Seshan, and A. Shaikh. On the performance
benefits of multihoming route control. IEEE/ACM Transactions on
Networking (TON), 16(1):91–104, 2008.

[10] A. Akella, S. Seshan, and A. Shaikh. Multihoming Performance Benefits:
An Experimental Evaluation of Practical Enterprise Strategies. In USENIX
Annual Technical Conference, General Track, 2004.

[11] A. Alhilal, T. Braud, B. Han, and P. Hui. Nebula: Reliable Low-latency
Video Transmission for Mobile Cloud Gaming. pages 3407–3417, 04 2022.

[12] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient
overlay networks. In ACM Symposium on Operating Systems Principles,
SOSP ’01, page 131–145, 2001.

[13] M. Apostolaki, C. Maire, and L. Vanbever. Perimeter: A network-layer
attack on the anonymity of cryptocurrencies. In Financial Cryptography
and Data Security: 25th International Conference, FC 2021, Virtual Event,
March 1–5, 2021, Revised Selected Papers, Part I 25, pages 147–166.
Springer, 2021.

[14] M. Apostolaki, G. Marti, J. Müller, and L. Vanbever. SABRE: Protecting
Bitcoin against Routing Attacks. In Network and Distributed System
Security Symposium (NDSS), 2019.

[15] M. Apostolaki, A. Singla, and L. Vanbever. Performance-driven internet
path selection. In ACM SIGCOMM Symposium on SDN Research (SOSR),
page 41–53, 2021.

[16] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Latapy,
C. Magnien, and R. Teixeira. Avoiding traceroute anomalies with paris
traceroute. In Proceedings of the 6th ACM SIGCOMM Conference on
Internet Measurement, IMC ’06, page 153–158, New York, NY, USA,
2006. Association for Computing Machinery.

[17] S. authors. Suricata - eBPF and XDP. https://suricata.readthedocs.
io/en/latest/capture-hardware/ebpf-xdp.html, 2018.

[18] I. Avramopoulos and J. Rexford. Stealth probing: Efficient Data-Plane
security for IP routing. In USENIX Annual Technical Conference, Boston,
MA, May 2006. USENIX Association.

[19] G. Bao and P. Guo. Federated learning in cloud-edge collaborative
architecture: key technologies, applications and challenges. Journal of
Cloud Computing, 11, 12 2022.

[20] R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, and
L. Wingers. The simon and speck lightweight block ciphers. In 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, 2015.

[21] H. Birge-Lee, M. Apostolaki, and J. Rexford. It takes two to tango:
cooperative edge-to-edge routing. In Proceedings of the 21st ACM
Workshop on Hot Topics in Networks, pages 174–180, 2022.

[22] H. Birge-Lee, Y. Sun, A. Edmundson, J. Rexford, and P. Mittal. Bamboo-
zling Certificate Authorities with BGP. In USENIX Security Symposium,
2018.

[23] H. Birge-Lee, L. Wang, D. McCarney, R. Shoemaker, J. Rexford, and
P. Mittal. Experiences deploying Multi-Vantage-Point domain validation
at let’s encrypt. In 30th USENIX Security Symposium (USENIX Security
21), pages 4311–4327. USENIX Association, Aug. 2021.

[24] H. Birge-Lee, L. Wang, J. Rexford, and P. Mittal. SICO: Surgical
Interception Attacks by Manipulating BGP Communities. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2019.

[25] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.
P4: Programming protocol-independent packet processors. In ACM
SIGCOMM Computer Communication Review, 2014.

[26] J. M. Camacho, A. García-Martínez, M. Bagnulo, and F. Valera. BGP-XM:
BGP Extended Multipath for Transit Autonomous Systems. Computer
Networks, 57(4):954–975, 2013.

[27] X. Chen. Implementing AES encryption on programmable switches via
scrambled lookup tables. In Proceedings of the Workshop on Secure
Programmable Network Infrastructure, SPIN ’20, page 8–14, New York,
NY, USA, 2020. Association for Computing Machinery.

[28] X. Chen, H. Kim, J. M. Aman, W. Chang, M. Lee, and J. Rexford.
Measuring tcp round-trip time in the data plane. In Proceedings of the
Workshop on Secure Programmable Network Infrastructure, SPIN ’20, page
35–41, New York, NY, USA, 2020. Association for Computing Machinery.

[29] C. Decker and R. Wattenhofer. Information propagation in the bitcoin
network. In IEEE P2P 2013 Proceedings, pages 1–10. IEEE, 2013.

[30] L. Foundation. Data plane development kit (DPDK), 2015.

[31] L. Gao and J. Rexford. Stable Internet Routing without Global Coordination.
IEEE/ACM Transactions on Networking, 9(6):681–692, 2001.

[32] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford. Path-quality
monitoring in the presence of adversaries. In ACM SIGMETRICS,
page 193–204, New York, NY, USA, 2008. Association for Computing
Machinery.

[33] D. K. Goldenberg, L. Qiu, H. Xie, Y. R. Yang, and Y. Zhang. Optimizing
cost and performance for multihoming. In ACM SIGCOMM, volume 34,
pages 79–92. ACM, August/September 2004.

[34] F. Han, M. Wang, Y. Cui, Q. Li, R. Liang, Y. Liu, and Y. Jiang. Future
Data Center Networking: From Low Latency to Deterministic Latency.
IEEE Network, 36(1):52–58, 2022.

[35] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,
and L. Vanbever. Blink: Fast connectivity recovery entirely in the data
plane. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 161–176, Boston, MA, Feb. 2019.
USENIX Association.

[36] Intel. Barefoot Tofino. https://www.intel.com/content/www/us/
en/products/network-io/programmable-ethernet-switch.html.

[37] S. Jain. What’s in a name? Understanding the Google Cloud network
“edge”. https://cloud.google.com/blog/products/networking/
understanding-google-cloud-network-edge-points, 2021.

[38] J. Juen, A. Johnson, A. Das, N. Borisov, and M. Caesar. Defending Tor
from Network Adversaries: A Case Study of Network Path Prediction.
Proceedings on Privacy Enhancing Technologies, 2015(2):171–187, 2015.

[39] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the tightrope:
Responsive yet stable traffic engineering. In ACM SIGCOMM, SIGCOMM
’05, page 253–264, New York, NY, USA, 2005. Association for Computing
Machinery.

[40] A. Kashaf, V. Sekar, and Y. Agarwal. Analyzing third party service
dependencies in modern web services: Have we learned from the mirai-dyn
incident? In Proceedings of the ACM Internet Measurement Conference,
pages 634–647, 2020.

[41] M. A. Khan, E. Baccour, Z. Chkirbene, A. Erbad, R. Hamila, M. Hamdi, and
M. Gabbouj. A Survey on Mobile Edge Computing for Video Streaming:
Opportunities and Challenges. IEEE Access, 10:120514–120550, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1803

https://www.vultr.com/features/bgp/
https://www.vultr.com/docs/as20473-bgp-customer-guide
https://www.vultr.com/docs/as20473-bgp-customer-guide
https://www.vultr.com/
https://www.vultr.com/
https://www.caida.org/catalog/datasets/as-relationships/
https://www.caida.org/catalog/datasets/as-relationships/
https://www.arubanetworks.com/solutions/naas/
https://www.arubanetworks.com/solutions/naas/
https://developer.akamai.com/article/sureroute
https://developer.akamai.com/article/sureroute
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://cloud.google.com/blog/products/networking/understanding-google-cloud-network-edge-points
https://cloud.google.com/blog/products/networking/understanding-google-cloud-network-edge-points

[42] C. Kim, A. Sivaraman, N. P. Katta, A. Bas, A. Dixit, and L. J. Wobker.
In-band network telemetry via programmable dataplanes. Industrial demo,
ACM SIGCOMM ’15, 2015.

[43] T. Koch, S. Yu, S. Agarwal, E. Katz-Bassett, and R. Beckett. Painter:
Ingress traffic engineering and routing for enterprise cloud networks. In
Proceedings of the ACM SIGCOMM 2023 Conference, ACM SIGCOMM
’23, page 360–377, New York, NY, USA, 2023. Association for Computing
Machinery.

[44] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. B. Krasic, C. Shi,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. C.
Dorfman, J. Roskind, J. Kulik, P. G. Westin, R. Tenneti, R. Shade,
R. Hamilton, V. Vasiliev, and W.-T. Chang. The quic transport protocol:
Design and internet-scale deployment. 2017.

[45] M. Lee, S. Goldberg, R. R. Kompella, and G. Varghese. Finecomb:
Measuring microscopic latency and loss in the presence of reordering.
IEEE/ACM Transactions on Networking, 22(4):1136–1149, 2014.

[46] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning:
Challenges, methods, and future directions. IEEE signal processing
magazine, 37(3):50–60, 2020.

[47] Y. Li, R. Miao, C. Kim, and M. Yu. FlowRadar: A better NetFlow for data
centers. In 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), pages 311–324, Santa Clara, CA, Mar. 2016.
USENIX Association.

[48] A. Maria, Z. Aviv, and V. Laurent. Hijacking Bitcoin: Routing Attacks
on Cryptocurrencies. In IEEE Symposium on Security and Privacy (S&P),
2017.

[49] R. Meier, T. Holterbach, S. Keck, M. Stähli, V. Lenders, A. Singla, and
L. Vanbever. (self) driving under the influence: Intoxicating adversarial
network inputs. In Proceedings of the 18th ACM Workshop on Hot Topics
in Networks, pages 34–42, 2019.

[50] J. Mogul and S. Deering. Path mtu discovery. RFC 1191, RFC Editor,
November 1990. http://www.rfc-editor.org/rfc/rfc1191.txt.

[51] G. C. M. Moura, J. Heidemann, W. Hardaker, P. Charnsethikul, J. Bulten,
J. M. Ceron, and C. Hesselman. Old but gold: Prospecting TCP to engineer
and live monitor DNS anycast. In Proceedings of the Passive and Active
Measurement Workshop, page to appear, virtual, Mar. 2022. Springer.

[52] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim. Language-directed hardware design for network
performance monitoring. In ACM SIGCOMM, SIGCOMM ’17, page
85–98, New York, NY, USA, 2017. Association for Computing Machinery.

[53] K. Nichols. pping (pollere passive ping), 2017.

[54] M. Osama, A. A. Ateya, S. Ahmed Elsaid, and A. Muthanna. Ultra-Reliable
Low-Latency Communications: Unmanned Aerial Vehicles Assisted
Systems. Advances in Wireless Communications Systems, Information,
13, 2022.

[55] S. Ostermann. tcptrace homepage. http://www. tcptrace. org/, 2007.

[56] A. Perrig, P. Szalachowski, R. M. Reischuk, and L. Chuat. SCION: A
Secure Internet Architecture. Springer Verlag, 2017.

[57] A. Pilosov and T. Kapela. Stealing the Internet: An Internet-scale Man
in the Middle Attack. NANOG 44, 2008.

[58] T. Qiu, J. Ni, H. Wang, N. Hua, Y. R. Yang, and J. J. Xu. Packet doppler:
Network monitoring using packet shift detection. In Proceedings of the
2008 ACM CoNEXT Conference, CoNEXT ’08, New York, NY, USA,
2008. Association for Computing Machinery.

[59] Y. Rekhter, T. Li, and S. Hares. A border gateway pro-
tocol 4 (bgp-4). RFC 4271, RFC Editor, January 2006.
http://www.rfc-editor.org/rfc/rfc4271.txt.

[60] M. Saad, V. Cook, L. Nguyen, M. T. Thai, and A. Mohaisen. Partitioning
attacks on bitcoin: Colliding space, time, and logic. In 2019 IEEE 39th
international conference on distributed computing systems (ICDCS), pages
1175–1187. IEEE, 2019.

[61] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Madhyastha, I. Cunha,
J. Quinn, S. Hasan, P. Lapukhov, and H. Zeng. Engineering Egress
with Edge Fabric: Steering Oceans of Content to the World. In ACM
SIGCOMM, 2017.

[62] S. Sengupta, H. Kim, and J. Rexford. Continuous in-network round-trip
time monitoring. In ACM SIGCOMM, SIGCOMM ’22, page 473–485,
New York, NY, USA, 2022. Association for Computing Machinery.

[63] G. Severi, M. Jagielski, G. Yar, Y. Wang, A. Oprea, and C. Nita-Rotaru.
Network-level adversaries in federated learning. In 2022 IEEE Conference
on Communications and Network Security (CNS), pages 19–27. IEEE, 2022.

[64] A. Shukla and K.-T. Foerster. Shortcutting fast failover routes in the data
plane. In Proceedings of the Symposium on Architectures for Networking
and Communications Systems, ANCS ’21, page 15–22, New York, NY,
USA, 2022. Association for Computing Machinery.

[65] G. Simsek, D. Ergenç, and E. Onur. Efficient network monitoring via
in-band telemetry. In 2021 17th International Conference on the Design
of Reliable Communication Networks (DRCN), pages 1–6, 2021.

[66] J. Snijders. Practical everyday BGP filtering with AS_PATH filters: Peer
locking. NANOG-67, 2016.

[67] J. Sonchack, D. Loehr, J. Rexford, and D. Walker. Lucid: a Language for
Control in the Data Plane. In Proceedings of the 2021 ACM SIGCOMM
Conference. ACM, 2021.

[68] F. Streibelt, F. Lichtblau, R. Beverly, A. Feldmann, C. Pelsser, G. Smarag-
dakis, and R. Bush. Bgp communities: Even more worms in the routing
can. In Proceedings of the Internet Measurement Conference 2018, IMC
’18, page 279–292, New York, NY, USA, 2018. Association for Computing
Machinery.

[69] F. Streibelt, F. Lichtblau, R. Beverly, A. Feldmann, C. Pelsser, G. Smarag-
dakis, and R. Bush. Bgp communities: Even more worms in the routing
can. In Proceedings of the Internet Measurement Conference 2018, IMC
’18, page 279–292, New York, NY, USA, 2018. Association for Computing
Machinery.

[70] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang, and
P. Mittal. RAPTOR: Routing Attacks on Privacy in Tor. In USENIX
Security Symposium, 2015.

[71] W. Tang, L. Kiffer, G. Fanti, and A. Juels. Strategic latency reduction
in blockchain peer-to-peer networks. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 7(2):1–33, 2023.

[72] V. Valancius, B. Ravi, N. Feamster, and A. C. Snoeren. Quantifying the
benefits of joint content and network routing. 41(1):243–254, jun 2013.

[73] L. Wang, H. Kim, P. Mittal, and J. Rexford. Programmable in-network
obfuscation of traffic. CoRR, abs/2006.00097, 2020.

[74] L. Wang, H. Kim, P. Mittal, and J. Rexford. Raven: Stateless rapid
ip address variation for enterprise networks. Proceedings on Privacy
Enhancing Technologies, 2023, Jul 2023.

[75] Z. Yang, Z. Wu, M. Luo, W.-L. Chiang, R. Bhardwaj, W. Kwon, S. Zhuang,
F. S. Luan, G. Mittal, S. Shenker, et al. {SkyPilot}: An intercloud broker
for sky computing. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pages 437–455, 2023.

[76] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus,
M. Hines, T. Kim, A. Narayanan, A. Jain, V. Lin, C. Rice, B. Rogan,
A. Singh, B. Tanaka, M. Verma, P. Sood, M. Tariq, M. Tierney, D. Trumic,
V. Valancius, C. Ying, M. Kallahalla, B. Koley, and A. Vahdat. Taking the
edge off with espresso: Scale, reliability and programmability for global
internet peering. SIGCOMM ’17, page 432–445, New York, NY, USA,
2017. Association for Computing Machinery.

[77] S. Yoo and X. Chen. Secure keyed hashing on programmable switches.
In Proceedings of the ACM SIGCOMM 2021 Workshop on Secure
Programmable Network INfrastructure, SPIN ’21, page 16–22, New York,
NY, USA, 2021. Association for Computing Machinery.

1804 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.rfc-editor.org/rfc/rfc1191.txt
http://www.rfc-editor.org/rfc/rfc4271.txt

[78] Y. Yoshinaka, J. Takemasa, Y. Koizumi, and T. Hasegawa. On implementing
chacha on a programmable switch. In Proceedings of the 5th International
Workshop on P4 in Europe, EuroP4 ’22, page 15–18, New York, NY, USA,
2022. Association for Computing Machinery.

[79] L. Yuliang, M. Rui, K. Changhoon, and Y. Minlan. LossRadar: Fast
Detection of Lost Packets in Data Center Networks. In CoNEXT, New
York, NY, USA, December 2016. ACM.

[80] X. Zhang, H. Chen, Y. Zhao, Z. Ma, Y. Xu, H. Huang, H. Yin, and
D. O. Wu. Improving Cloud Gaming Experience through Mobile Edge
Computing. IEEE Wireless Communications, 26(4):178–183, 2019.

[81] X. Zhang, T. Sen, Z. Zhang, T. April, B. Chandrasekaran, D. Choffnes,
B. M. Maggs, H. Shen, R. K. Sitaraman, and X. Yang. Anyopt: Predicting
and optimizing ip anycast performance. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, SIGCOMM ’21, page 447–462, New York,
NY, USA, 2021. Association for Computing Machinery.

[82] Z. Zhang, M. Zhang, A. Greenberg, Y. C. Hu, R. Mahajan, and B. Christian.
Optimizing cost and performance in online service provider networks. In
USENIX Networked Systems Design and Implementation, 2010.

Appendix

A Adversarial Model

We describe in more detail a few concrete attacks that can be
launched within the threat model outlined in §2.1.

1. Manipulation Attacks: An adversary on path P wants
to make the one-way-delay of path P look smaller. The
adversary launches the attack by modifying a timestamp
t to timestamp t + d which will make its one-way-delay
appear to be reduced by d. Similarly, the adversary could
modify the sequence numbers to hide loss and cover-up
that some packets were dropped in her network.

2. Replay Attacks: An adversary is on paths P and Q. The
latency from the sender to the adversary along P is shorter
than the latency from the sender to the adversary along
path Q. Latency from the adversary to the receiver is the
same on path P and Q (P and Q may even share all hops
after the adversary). At an instant t in time, the adversary
sees packets with timestamp t− p on path P and t−q on
path q. Since path P is faster, t−p> t−q. The adversary
wants to improve the one-way-delay on path q and rewrites
the timestamps for path Q to be t− p, reducing the delay
on Q to the delay of P. Alternatively, the adversary could
have a passive tap on path P.

B Additional TANGO Design Details

As shown in the pseudocode above (Alg. 1), TANGO senders
perform the mapping from operator-provided objectives to
routing traffic classes, add latency and loss metrics in custom
headers, apply integrity-protecting signatures over the collected
metrics, and tunnel the resulting packet over the public Internet
to the destination edge.

Meanwhile, TANGO receivers decapsulate received metrics and
verify signatures over the metrics, ensuring only tamper-free mea-

Algorithm 1 TANGO tunneling send behavior

1: // Send an application packet to peer node
2: function SEND(AppPacket)
3: // Map packet to tunnel information
4: TrafficClass← GETCLASS(AppPacket)
5: PathID← GETPATH(TrafficClass)
6:
7: // Collect metrics at time of processing packet
8: Ts← GETTIMENOWMS()
9: Seq← GETANDINCREMENTSEQNUM()

10:
11: // Sign using books indexed by PathId and metrics
12: TsSig← TSBOOK[PathId][Ts]
13: SeqSig← SEQNUMBOOK[PathId][Seq]
14:
15: // Form headers and send encapsulated packet
16: { IpHdr, UdpHdr }← GETTUNNELHEADERS(PathId)
17: Metrics← { PathId, Ts, TsSig, Seq, SeqSig }
18: FORWARD(IpHdr, UdpHdr, Metrics, AppPacket)
19: end function

Signature Book

Block 0 Block 10 216 - 1 0 216 - 1

0
0

24-1
0

24
0

29-1
0

29
0

216-1
0B ,…,B , B ,…,B , B ,…,B

Incoming
Packet
Stream

Time

Timestamp

Sequence
Number

Signature

132ms 132ms 133ms 133ms 134ms 134ms

0 24-1 24 29-1 29 216-1

B. B. B. B. B. B..0
0

24-1
0

24

1
29-1
1

29

0
216-1
0BSeq Num

Time % 2

Signature

B ,…,B , B ,…,B , B ,…,B0
0

24-1
0

24
0

29-1
0

29
0

216-1
0

Figure 14: TANGO ensures sequence numbers monotonically increase,
even during block transitions, and only reset once all are expended. For
example, assume block 0 is used on even timestamps and block 1 on
odd. If, as the last sequence number of an even timestamp, the sequence
number is 24−1, the next sequence number, now with an odd timestamp
and therefore accessing block 1, is 24.

surements are included in new optimization calculations (Alg. 2).
After removing metadata, the receiver forwards the application
traffic along to its final destination. It also issues route updates to
the TANGO sender, if a better path has emerged and meets spec-
ified update thresholds (e.g., the new path improves latency by
at least 20% for more than 10 measurement cycles over 100 ms).

C Supplementary Internet-Scale Results

C.1 Path Diversity: CDF
As described in §6.1.1, TANGO’s PATHFINDER algorithm (de-
tailed in §4) uncovered alternative paths between 503 globally-
distributed Vultr pairs. The CDF of number of paths exposed per
Vultr pair is included in Fig. 16. In some cases our BGP announce-
ments appeared to be filtered as the source node used did not hear
the BGP announcement made from the destination node. These

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1805

Algorithm 2 TANGO tunneling receive behavior

1: // Verify tunneled packet and finish forwarding and reroute
2: function RECEIVE(IpHdr, UdpHdr, Metrics, AppPacket)
3: // Map packet to tunnel information
4: TrafficClass← GETCLASS(AppPacket)
5: PathID←Metrics.PathId
6:
7: // Verify signatures
8: ValidTsSig← TSBOOK[PathId][Metrics.Ts]
9: ValidSeqSig← SEQNUMBOOK[PathId][Metrics.Seq]

10: IsValidTs←Metrics.TsSig == ValidTsSig
11: IsValidSeq←Metrics.SeqSig == ValidSeqSig
12: if not IsValidTs or not IsValidSeq then
13: return // Bail early if invalid
14: end if
15:
16: // Update metrics and finish forwarding packet
17: { Delay, BestDelayId }← UPDATEDELAY(Metrics.Ts)
18: { Loss, BestLossId } ← UP-

DATELOSS(Metrics.SeqNum)
19: FORWARD(AppPacket)
20:
21: // Issue reroute request if path is not performant enough
22: DoReroute← CHECK(TrafficClass, Delay, Loss)
23: if DoReroute then
24: // Choose the best path for traffic class
25: Id← BEST(TrafficClass, BestDelayId, BestLossId)
26: Update← ENCRYPT(TrafficClass, BestPath)
27:
28: // Request route update over all paths
29: for { IpHdr, UdpHdr } in AllPaths do
30: FORWARD(IpHdr, UdpHdr, Update)
31: end for
32: end if
33: end function

cases are recorded in the CDF as having a single available path
because TANGO can still function by using the Vultr-provided IP
address of instances to tunnel traffic. We also explored how many
of these paths were found using only communities supported by
our immediate transit provider Vultr and how many were found
because of BGP community support at ASes further down the
path (shown as separate traces in Fig. 16). If only Vultr-supported
communities are used, the median pair of nodes only has two
paths, but using transitive communities raises this by 50% to 3
paths. The maximum number of paths found between any two
pairs of nodes increases from 6 to 12 showing the importance of
community support at various nodes in the topology.

C.2 High-Latency Performance Degradation
Events

In addition to looking for events with high loss we searched for
events with high latency (i.e., a 100% latency increase over the

1 14 Route Update2

Traffic
Class

Path
Identifier

Update
Number

One-Time Pad

0x1A…F2

0x23…FA

…

0x56…91

0x03…B4

Class Encoding

0x48…C3

0x72…99

…

0x2E…EF

0x47…03

Path Encoding

0x43…76

0x13…98

0xAA…42

…

0x19…00

ConcatenateXOR

1 0x1A…2

Ciphertext

^

^
^

Figure 15: Integrity-protected route updates. The encodings, if
sufficiently sparse, prevent adversaries from brute-forcing the few bits
encoding class/path, since overall encodings can easily be verified.

Figure 16: Available paths identified with PATHFINDER, per Vultr
pair using only communities supported by Vultr and communities
supported by Vultr as well as ASes further down the path.

102 103 104 105 106

Event Duration MS

0

25

50

75

100

125

150

Fr
eq

ue
nc

y
(E

ve
nt

s P
er

 W
ee

k)

Figure 17: Frequency vs duration of events with high latency.

baseline). We found these happened more frequently than high
loss events. Fig. 17 shows these events. For high latency events,
we found all events were avoidable with TANGO.

C.3 Performance Diversity: Vultr LA
We include results from our additional measurement study of
23 node pairs with Vultr LA as TANGO’s fixed receiver.

How often are TANGO-discovered paths better than the de-

1806 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

101 102 103 104 105 106

Window Length (ms)
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Amsterdam
Atlanta
Bangalore
Chicago
Dallas
Frankfurt
Johannesburg
London
Madrid
Melbourne
Mexico City
Miami
Mumbai
New Jersey
Paris
Sao Paulo
Seattle
Seoul
Singapore
Stockholm
Sydney
Tokyo
Toronto

Figure 18: Vultr LA Results: On average across all 23 pairs, best
paths lasted from 1.8-107s, with median durations of 20ms-106s.
TANGO only chooses to perform dynamic rerouting for best paths
that last longer than 100ms.

0 5% 10% 15% 20% 25% 30% 35% 40%
Latency Improvement

0

5

10

15

20

25

Fr
eq

ue
nc

y
(h

ou
rs

)

Amsterdam
Atlanta
Bangalore
Chicago
Dallas
Frankfurt
Johannesburg
London
Madrid
Melbourne
Mexico City
Miami
Mumbai
New Jersey
Paris
Sao Paulo
Seattle
Seoul
Singapore
Stockholm
Sydney
Tokyo
Toronto

Figure 19: Vultr LA Results: TANGO-exposed best paths
outperform the BGP default by up to 29% on average, and up to
32% for some pairs.

74%

16%

9%

Mumbai-LA

41%

21%

19%

BGP Default

19%

Sao Paulo-LA
Figure 20: Vultr LA Results: The BGP default path is often beaten
by one or more alternative paths.

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Johannesburg-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Melbourne-LA

Co
un

ts

Figure 21: Vultr LA Results: Number of times different paths
contributed to being "best path" for a given congestion condition, per
node pair. While one path might dominantly be best under no/low
congestion, during high congestion more paths emerge as the best.

fault? Of the 23 pairs in our Vultr Los Angeles (LA) measure-
ments, all 23 pairs had at least one alternative path that outper-
formed the default BGP path for a significant amount of time:
100% of the time for 20 pairs, and 58-81% of the time for the
remaining 3 pairs (Amsterdam-LA, Sao Paulo-LA, Singapore-
LA). We also note that there were many pairs with more than one
alternative path which outperformed the default, providing further
path diversity and potential performance resilience: 18 pairs had
two or more alternatives and 4 pairs had three or more alternatives.
In Figs. 20 and 21, we visualize how often other paths emerged as
best for a subset of pairs, chosen for their interesting breakdown.

Distribution charts for all 23 pairs are included in Figs. 22 and 24.

How long is one path the best? We measured the window of
time one path remained the best for each of the 23 Vultr pairs
(Fig. 18). Many pairs showed path longevity, and for 17 pairs, the
median window duration was 235ms-15s, with average durations
of 1.8-10.8s (from Singapore, Sao Paulo, Dallas, Sydney, Atlanta,
Miami, Chicago, Toronto), 20.1-59s (from Madrid, Seattle), and
100-107s (from Mumbai, Amsterdam, Mexico City, Frankfurt,
London, Stockholm). For 3 pairs, the median duration was shorter
at 20 ms, most likely due to ECMP behavior between the nodes.
The average duration for these 3 pairs ranged between 105-106s
(from Bangalore, Johannesburg, and Paris to LA). For the last
3 pairs out of all 23, the median and average duration were both
much longer: 31s median and 104s average from New Jersey and
105s median with 106-107s average from both Seoul and Tokyo.

TANGO performs dynamic reroutes when a new path emerges as
the best for longer than a given window threshold (e.g., 100ms),
and it remains on the old best path for shorter windows. Thus,
windows in the range of 20ms would not trigger a dynamic
route update, while longer window lengths on the order of
minutes would benefit from static path optimizations, instead
of on-demand route updates. TANGO’s on-demand reroutes
would be most beneficial for the 17 pairs with median window
durations between 235ms-15s.

By how much does the best path beat the BGP default? We
measured the difference in latency between the best path and
the default path, for each of the 23 Vultr pairs (Fig. 19). Of all
23 pairs, the non-default best path outperformed the default by
an average of 1-29% per pair, for durations of 1.03-26.3 hours.
The median improvement values also ranged from 0-22%. We
saw even more opportunity for optimizing routing performance
at the 95th percentile, where the TANGO-discovered best path
improved latency over the BGP default by 25-32% for a duration
of over half an hour (from Toronto) and between 1.3-1.6 hours
(from New Jersey, Melbourne).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1807

71%

BGP Default
28%

1%

Amsterdam-LA

68%

32%

Atlanta-LA

100%

Bangalore-LA

51%
28%

16%

5%

Chicago-LA

57%
43%

Dallas-LA

97%

3%

Frankfurt-LA

97%

3%

Johannesburg-LA

100%

London-LA

53% 47%

Madrid-LA

56%
44%

Melbourne-LA

83%

17%

Mexico City-LA

73%

27%

Miami-LA

74%

16%

9%

Mumbai-LA

85%

15%

New Jersey-LA

55% 45%

Paris-LA

41%

21%
19%

BGP Default

19%

Sao Paulo-LA

90%

8%2%

Seattle-LA

100%

Seoul-LA

51% BGP Default42%

6%

Singapore-LA

100%

Stockholm-LA

88%

12%

Sydney-LA

100%

Tokyo-LA

57%
43%

Toronto-LA

Figure 22: Vultr LA Results: The BGP default path is beaten by one or more TANGO-exposed paths for all 23 node pairs, and for 4 out of 23 pairs
it is beaten by 3 or more paths. On average, measurements from Vultr LA exposed richer path diversity across more nodes.

100%

Amsterdam-Stockholm
BGP Default

100%

Atlanta-Stockholm

66%
20%

14%

Bangalore-Stockholm

100%

Chicago-Stockholm

100%

Dallas-Stockholm

57%
43%

Johannesburg-Stockholm

100%

Los Angeles-Stockholm

80%

16%

4%

London-Stockholm

100%

Madrid-Stockholm

53%
22%

BGP Default
12%

10%3%

Melbourne-Stockholm

80%

BGP Default

20%

Mexico City-Stockholm

100%

Miami-Stockholm

100%

Mumbai-Stockholm

100%

New Jersey-Stockholm
BGP Default

100%

Paris-Stockholm

82%

18%

Sao Paulo-Stockholm

100%

Seattle-Stockholm

100%

Seoul-Stockholm

100%

Silicon Valley-Stockholm

25%

23% 22%

BGP Default17%
14%

Singapore-Stockholm

46%

29%

BGP Default
25%

Sydney-Stockholm

BGP Default 55% 45%

Tokyo-Stockholm

80%

BGP Default

20%

Toronto-Stockholm

Figure 23: Vultr Stockholm Results: The BGP default path is beaten by one or more TANGO-exposed paths for 20 out of 23 node pairs, for 4 out of
23 pairs it is beaten by 3 or more paths, while for 2 out of 23 pairs it is beaten by 4 alternative paths. On average, measurements from Vultr Stockholm
exposed less path diversity across all nodes as compared to results from Vultr LA measurements.

1808 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Amsterdam-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Dallas-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Madrid-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Mumbai-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Seattle-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Sydney-LA

Co
un

ts
2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Atlanta-LA

Co
un

ts
2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Frankfurt-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Melbourne-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

New Jersey-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Seoul-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Tokyo-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Bangalore-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Johannesburg-LA

Co
un

ts
2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Mexico City-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Paris-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Singapore-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Toronto-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Chicago-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

London-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Miami-LA

Co
un

ts
2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Sao Paulo-LA

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Stockholm-LA

Co
un

ts

Figure 24: Vultr LA Results: Number of times different paths contributed to being "best path" for a given congestion condition, per node pair. While
one path might dominantly be best under no/low congestion, during high congestion more paths emerge as the best path.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1809

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Amsterdam-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Dallas-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Madrid-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Mumbai-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Seattle-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Sydney-Stockholm

Co
un

ts
2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Atlanta-Stockholm

Co
un

ts
2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Johannesburg-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Melbourne-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

New Jersey-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Seoul-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Tokyo-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Bangalore-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Los Angeles-Stockholm

Co
un

ts
2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Mexico City-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Paris-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Silicon Valley-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Toronto-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Chicago-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

London-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Miami-Stockholm

Co
un

ts
2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Sao Paulo-Stockholm

Co
un

ts

2

4
1e6

no
congestion

low
congestion

high
congestion

0

5

10

Singapore-Stockholm

Co
un

ts

Figure 25: Vultr Stockholm Results: Number of times different paths contributed to being "best path" for a given congestion condition, per node
pair. While one path might dominantly be best under no/low congestion, during high congestion more paths emerge as the best path.

1810 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Seattle

Atlanta

Bangalore

Chicago

Dallas

Johannesburg

Los Angeles

London

Madrid

Melbourne

Mexico City

Miami Mumbai

New Jersey

Paris

Sao Paulo

SeoulSilicon Valley

Stockholm

Singapore

Sydney

Tokyo

Toronto

Amsterdam

Frankfurt

Figure 26: Geomap of 25 Vultr data centers running TANGO globally.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1811

Sidekick: In-Network Assistance for Secure End-to-End Transport Protocols

Gina Yuan
Stanford University

Matthew Sotoudeh
Stanford University

David K. Zhang
Stanford University

Michael Welzl
University of Oslo

David Mazières
Stanford University

Keith Winstein
Stanford University

Abstract
In response to concerns about protocol ossification and pri-
vacy, post-TCP transport protocols such as QUIC and Web-
RTC include end-to-end encryption and authentication at the
transport layer. This makes their packets opaque to middle-
boxes, freeing the transport protocol to evolve but preventing
some in-network innovations and performance improvements.
This paper describes sidekick protocols: an approach to in-
network assistance for opaque transport protocols where in-
network intermediaries help endpoints by sending information
adjacent to the underlying connection, which remains opaque
and unmodified on the wire.

A key technical challenge is how the sidekick connection
can efficiently refer to ranges of packets of the underlying
connection without the ability to observe cleartext sequence
numbers. We present a mathematical tool called a quACK that
concisely represents a selective acknowledgment of opaque
packets, without access to cleartext sequence numbers.

In real-world and emulation-based evaluations, the sidekick
improved performance in several scenarios: early retransmis-
sion over lossy Wi-Fi paths, proxy acknowledgments to save
energy, and a path-aware congestion-control mechanism we
call PACUBIC that emulates a “split” connection.

1 Introduction
In the Internet’s canonical model, transport is end-to-end and
implemented only in hosts. Traditionally, routers and other
network components forwarded IP datagrams without regard
to their payloads or flow membership [12, 58]; only hosts
thought about connections, reliable delivery, or flow-by-flow
congestion control.

In practice, however, the best behavior for a transport pro-
tocol depends on the particulars of the network path. An
appropriate retransmission or congestion-control scheme for
a heavily-multiplexed wired network wouldn’t be ideal for
paths that include a high-delay satellite link, Wi-Fi with bulk
ACKs and frequent reordering, or a cellular WWAN [25, 42].

By the 1990s, many networks had broken from the canon-
ical model by deploying in-network TCP accelerators, also
known as “performance-enhancing proxies” (PEPs) [26]. TCP
PEPs can split an end-to-end connection into multiple con-
catenated connections [10, 17, 23, 28, 34], buffer and retrans-
mit packets over a lossy link [2, 55], virtualize congestion

control [14, 29, 49], resegment the byte stream, and enable
forward error correction, explicit congestion notification, or
other segment-specific enhancements. Because TCP isn’t en-
crypted or authenticated, PEPs can achieve this transparently,
without the knowledge or cooperation of end hosts. Roughly
20–40% of Internet paths cross at least one TCP PEP [21,30].

While many flows benefit from PEPs, their use carries a
cost: protocol ossification [21, 53]. When a middlebox inserts
itself in a connection and enforces its preconceptions about
the transport protocol, it can thwart the protocol’s evolution,
dropping traffic that uses an upgraded version or new options.
TCP PEPs have hindered or complicated the deployment of
many TCP improvements, such as ECN++, tcpcrypt, TCP
extended options, and multipath TCP [30, 46, 56].

In response to this ossification, and to an increased empha-
sis on privacy and security, post-TCP transport protocols have
been designed to be impervious to meddling middleboxes, by
encrypting and authenticating the transport header. We call
these newer transport protocols “opaque.” The most prevalent
is QUIC [32], found in billions of installed Web browsers and
millions of servers [68]; other opaque transport protocols are
used in WebRTC/SRTP [54], Zoom [69], BitTorrent [4], and
Mosh/SSP [63].

This opacity means that middleboxes can’t interpose them-
selves on a connection or understand the sequence numbers
of packets in transit. This prevents PEPs from providing as-
sistance, reducing—in some situations—the performance of
opaque transport protocols [6, 7, 38, 42, 47]. It’s possible to
co-design protocols and PEPs to preserve security and pri-
vacy while permitting assistance from credentialed middle-
boxes [19, 24, 33, 59], but challenging to do so without tightly
coupling these components, risking ossification and fragility.

In this paper, we propose a method for in-network assis-
tance of opaque transport protocols that tries to resolve this
tension. Our approach leaves the transport protocol unchanged
on the wire: a secure end-to-end connection between hosts,
opaque to middleboxes and free to evolve. No PEPs are cre-
dentialed to decrypt the transport protocol’s headers.

Instead, we propose a second protocol to be spoken on an
adjacent connection between an end host and a PEP. We call
this the sidekick protocol, and its contents are about the pack-
ets of the underlying, or “base,” connection. Sidekick PEPs
assist end hosts by reporting what they’ve observed about the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1813

packets of the opaque base connection, without coupling their
assistance to the details of the base protocol. End hosts use
this information to influence decisions about how and when
to send or resend packets on the base connection, approximat-
ing some of the performance benefits of traditional PEPs. A
similar functional separation was first proposed by [67], but
this paper presents the first concrete realization of the idea
and its nuanced interactions with real transport protocols.

One key technical challenge with this approach is how the
sidekick can efficiently refer to ranges of packets in an opaque
base connection. These packets appear random to the middle-
box, and referring to a range of, e.g., 100 opaque packets in
the presence of loss and reordering is not as simple as saying
“up to 100” when there are cleartext sequence numbers. In
Section 3, we present and evaluate a mathematical tool called
a quACK that concisely represents a selective acknowledg-
ment of opaque, randomly identified packets. The quACK is
based on the insight that we can model the problem as a sys-
tem of power sum polynomial equations if there is a practical
bound on the maximum number of “holes” among the packets
being ACKed. We created an optimized implementation [65],
building on related theoretical work [22, 35, 50].

A second challenge is how the end host should use infor-
mation from a sidekick connection to obtain a performance
benefit for its base connection. Since the performance benefit
comes from changing behavior at the end host rather than the
middlebox, transport protocols need to incorporate this infor-
mation into their existing algorithms for, e.g., loss detection
and retransmission, which have gotten increasingly complex
over time. To explore this, we designed a sidekick protocol
we call Robin, and implemented it in three scenarios:

• A low-latency audio stream over an Internet path that in-
cludes a Wi-Fi path segment (low latency with loss), fol-
lowed by a WAN path segment (higher latency with low
loss). Can the sidekick PEP reduce the de-jitter buffer
delay by triggering earlier retransmissions on loss?

• An upload over the same path. Can an opaque transport
protocol like QUIC, aided by a sidekick PEP at the point
between these two path segments, match the throughput
of TCP over a connection-splitting PEP?

• A battery-powered receiver, downloading data from the
Internet over Wi-Fi. If the Wi-Fi access point sends side-
kick quACKs on behalf of the receiver, can it reduce the
number of times the receiver’s radio needs to wake up to
send an end-to-end ACK?

A third technical challenge is how knowledge about where
loss occurs along a path should influence a congestion-control
scheme. The challenge in any such scheme is how to maxi-
mize the congestion window while sharing the network fairly
with competing flows. We present a path-aware modification
to the CUBIC congestion-control algorithm [27], which we
call PACUBIC, that approximates the congestion-control be-
havior of a PEP-assisted split TCP CUBIC connection while

making its decisions entirely on the host.

Summary of results. Concretely realized, the quACK ex-
presses the equivalent of TCP’s cumulative + selective ACK
over opaque (randomly identified) packets in 48 bytes, tolerat-
ing up to 10 missing packets before the last “selective ACK.”
On a recent x86-64 CPU, it takes 33 ns/packet for a sidekick
PEP to encode a quACK, and 3 µs for an end host to decode
it. These overheads compared well with several alternatives
(Section 3.5).

We implemented Robin in a low-latency media client
based on the WebRTC standard, and an HTTP/3 client us-
ing the Cloudflare implementation of QUIC [13] and the
libcurl [45] implementation of HTTP/3. We evaluated the
three scenarios in real-world and emulation experiments. In
real-world experiments using an unmodified local Wi-Fi net-
work to access our nearest AWS datacenter, the sidekick was
able to trigger early retransmissions to fill in gaps in the audio
of a latency-sensitive audio stream, reducing the receiver’s
de-jitter delay from 2.3 seconds to 204 ms—about a 91%
reduction (Figure 8). The sidekick was also able to improve
the speed of an HTTP/3 (QUIC) upload by about 50%.

In emulation experiments of the “battery-powered receiver”
scenario, the sidekick PEP was able to reduce the need for the
receiver to send ACKs by sending proxy acknowledgments on
its behalf—ACKs the sender used to advance its flow-control
and congestion-control windows. The receiver only needed to
wake up its radio to send occasional end-to-end ACKs, which
the sender used to discard data from its buffer (Figure 4c).

Also in an emulation experiment, we confirmed that PACU-
BIC’s performance approximates a split CUBIC connection
(two TCP CUBIC connections separated by a PEP), respond-
ing to loss events on the different path segments similarly
to how the individual CUBIC flows would (Figure 6). The
results indicate that the sidekick protocol’s gains do not come
at the expense of congestion-control fairness relative to a split
CUBIC connection.

The rest of this paper describes the sidekick’s motivating
scenarios (Section 2), explores the quACK’s design and im-
plementation (Section 3), discusses the concrete sidekick pro-
tocol we built around quACKs (Section 4) and its implementa-
tion in two base protocols (Section 5), and then evaluates the
protocol in real-world and emulation experiments (Section 6).

2 Motivating Scenarios
We focus on three scenarios where end hosts benefit from
in-network assistance. In each one, a proxy server provides
feedback, called a quACK, to an end host: the data sender
(Figure 1). Recall that a quACK is a “cumulative ACK +
selective ACK” over encrypted sequence numbers. The data
sender uses this feedback to influence its behavior on the base
connection, without altering the wire format.

To be clear: the sidekick protocol is not tied to a specific
base protocol nor to how the end hosts use the quACK infor-

1814 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Base connection Sidekick connection

Sidekick

Proxy Server

Packet
Data

Sender
(Client)

End Host End Host

Data
Receiver
(Server)

QuACK

Figure 1: The proxy generates quACKs, in-network acknowl-
edgments, based on the opaque packets it observes in the base
protocol. It quACKs to an end host, the data sender, which
sends or resends packets on the base protocol as a result. Al-
though we only show one side of the connection, the sidekick
could assist either end host of a bidirectional flow.

mation. The base protocol does not need to be reliable, nor
to have unique datagrams—we implemented and evaluated
the same sidekick protocol and the same middlebox behavior
across the different scenarios in this paper.

2.1 Low-Latency Media
Consider a train passenger using on-board Wi-Fi to have a
low-latency audio conversation, using WebRTC/SRTP [54],
with a friend. The end-to-end network path contains a low-
latency, high-loss “near” path segment (the Wi-Fi hop) fol-
lowed by a high-latency, low-loss “far” path segment (the
cellular and wired path over the Internet). The friend probably
suffers from poor connection quality, experiencing drops in
the audio stream or high de-jitter buffer delays from waiting
for retransmitted packets to be played in order (Figure 4a in
emulation, Figure 8a in real world).

In the sidekick approach, a sidekick on the Wi-Fi access
point sends quACKs to the audio application on the user’s
laptop, assisting the base connection’s data sender. The sender
uses quACKs to retransmit packets sooner than they would
have using negative acknowledgments (NACKs) from the
receiver. The end result is similar to the effect of prior PEPs,
such as Snoop [2] and Milliproxy [55], that leverage TCP’s
cleartext sequence numbers to trigger early retransmission on
lossy wireless paths.

2.2 Connection-Splitting PEP Emulation
Consider the same train passenger as before but uploading a
large file over the Internet with a reliable transport protocol.
If the protocol were TCP, the train could deploy a split TCP
PEP at the access point. The split connection allows quick
detection and retransmission of dropped packets on the lossy
Wi-Fi segment, while opening up the congestion window on
the high-latency cellular segment.

However, opaque transport protocols like QUIC can’t ben-
efit from (nor be harmed by) connection-splitting PEPs. With-
out a PEP, QUIC relies on end-to-end mechanisms over the
entire path to detect losses, recover from them, and adjust the

congestion-control behavior. This leads to reduced upload
speeds (Figure 4b in emulation, Figure 8b in real world).

With help from the same sidekick PEP, the QUIC sender
combines information from quACKs and end-to-end ACKs to
emulate the congestion-control behavior of a split TCP con-
nection (Section 4.3.2). The application considers whether
packets are lost on the near or far path segments, and adjusts
the congestion window accordingly while respecting the opac-
ity of the end-to-end base connection. The application also
retransmits the packet as soon as the loss has been detected.

The only guarantee the proxy makes to the sender via the
quACK is that it has received some packets. To respect the
end-to-end reliability contract with the receiver, the sender
does not delete packets that may need to be transmitted until
it receives an ACK, even if the packet has been quACKed.

2.3 ACK Reduction
Now consider a battery-powered device downloading a large
file from the Internet. To reduce how often the receiver’s
radio needs to wake up, saving energy, the base connection
can reduce the frequency of end-to-end ACKs the device
sends. ACK reduction has also been shown to improve perfor-
mance by reducing collisions and contention over half-duplex
links [16, 43]. The ACK frequency can be configured with a
TCP kernel setting or proposed QUIC extension [31].

However, ACK reduction can also degrade throughput [15,
16] (Figure 4c in emulation). The sender receives more de-
layed feedback about loss, and has to carefully pace pack-
ets to avoid bursts in the large delay between ACKs. One
proposal has the PEP acknowledge packets on behalf of the
receiver [36], leveraging cleartext TCP sequence numbers,
but it does not apply to opaque transport protocols.

In this case, a sidekick at the Wi-Fi access point (or a
cellular base station) quACKs to the sender on behalf of the
receiver. The receiver still occasionally wakes up its radio to
send ACKs, but the sender uses the more frequent quACKs
to advance its flow-control and congestion-control windows.

The sender respects the end-to-end reliability contract by
only deleting packets in response to ACKs, but disregards the
receiver’s flow control by using quACKs to advance the flow-
control window. If the sender only used ACKs to advance
the window, it would waste time waiting between ACKs to
send packets with too small a window, and need to pace sent
packets on receiving a large ACK with too large a window.

3 QuACK
As previously illustrated, a sidekick needs to be able to refer
to and efficiently acknowledge a set of opaque packets seen by
a network intermediary. But this problem is technically chal-
lenging for middleboxes without access to cleartext sequence
numbers or the ossification of other fields.

We start by mathematically defining the quACK problem.
We discuss how to select an identifier to refer to a packet,
and analyze strawman solutions to the quACK problem that

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1815

use too much space or computation. Finally, we present an
efficient construction of a quACK based on the insight that we
can model the problem as a system of power sum polynomial
equations when we have a bound on the maximum number of
missing elements, a threshold t. This solution is most similar
to the deterministic solution to the straggler identification
problem [22], and also builds on related theoretical work in set
reconciliation [50], and coding theory and graph theory [35].

3.1 The QuACK Problem
We first describe the quACK problem. A data sender transmits
a multiset1 of elements S (these correspond to packets). At any
given time, a receiver (such as a proxy server) has received a
subset R⊆ S of the sent elements. We would like the receiver
to communicate a small amount of information to the sender,
who then efficiently decodes the missing elements—the set
difference S \R—knowing S. We call this small amount of
information the “quACK”, and the problem is: what is in a
quACK and how do we decode it?

3.2 Packet Identifiers
In a networking context, how exactly do we refer to the ele-
ments in the quACK problem that have been sent or received?
Traditional TCP middleboxes have been able to interpose
their own concise, cumulative acknowledgments using clear-
text sequence numbers, but this is not possible with modern,
secure transport protocols. Even if a connection did expose
an unencrypted numerical field, we would not want to refer
to that field at risk of ossifying that protocol.

Instead, we need a function that deterministically maps a
packet to a random b-byte identifier. The most trivial solution
that applies to all base protocols is to hash the entire payload.
Another option if the payload is already pseudorandom (e.g.,
QUIC) is to take the first b bytes from a fixed offset of that
payload. Although the latter option would rely on those bytes
to remain pseudorandom, it is computationally more efficient
because it does not require reading the entire payload.

Collisions. The main considerations when selecting the
number of bytes, b, in an identifier is the tolerance for colli-
sions compared with the extra data needed to refer to these
packets on the link. The larger b is, the lower the collision
probability but the greater the link overhead.

Define the collision probability to be the probability that
a randomly-chosen b-byte identifier in a list of n packets
maps to more than one packet in that list. If we assume that
identifiers are uniformly distributed, this probability is equal
to 1−(1−1/256b)n−1. When n = 25, using 4 bytes results in
an almost negligible chance of collision while using 2 bytes
results in a 0.04% chance (Table 1).

When handling collisions, a sender who is decoding a
quACK has a list of n packets it is trying to classify as re-
ceived or missing (Section 3.5). Note that collisions are also

1A “multiset” means the same element can be transmitted more than once.

Identifier Bytes 1 2 4 8
Collision Prob. 0.090 0.0004 5.6e-09 ≈0

Table 1: Collision probabilities for n = 25.

known to the sender beforehand. If there is a collision be-
tween a packet that is received and a packet that is missing,
the fate of that identifier is considered indeterminate. In our
scenarios (Section 2), either the protocol can still function
with approximate statistics (e.g., congestion control) or it can
fall back to an end-to-end mechanism (e.g., retransmission).

3.3 Strawman Solutions
A problem that is simple with cumulative and selective ac-
knowledgments of plaintext sequence numbers is deceivingly
challenging for pseudorandom packet identifiers. Consider
the following strawman solutions to the quACK problem:

Strawman 1: Echo every identifier. Strawman 1a, similar
to [41, 44], echoes the identifier of every received packet in a
new UDP packet to the data sender. Decoding is trivial given
the identifiers are unmodified. This strawman adds significant
link overhead in terms of additional packets. Additionally,
since the strawman is not cumulative, losing a quACK means
the end host could falsely consider a packet to be lost, creating
a congestion event or spurious retransmission.

Strawman 1b echoes a sliding window of identifiers over
UDP such that there is overlap in the identifiers referred to by
consecutive quACKs. This solution is slightly more resilient
to loss, but uses more bytes and is still not guaranteed to
be reliable. Another variant batches identifiers to reduce the
number of packets, but this solution is even less resilient to
loss.

We also consider a Strawman 1c that echoes every identifier
over TCP with TCP_NODELAY to send every identifier in its
own packet. This ensures there are no false positives when
detecting lost packets, but adds even more link overhead in
terms of TCP headers and additional ACKs from the data
sender (every other packet by default in the Linux kernel).

Strawman 2: Cumulative hash of every identifier. Straw-
man 2 sends a SHA-256 hash of a sorted concatenation of all
the received packets in a UDP packet, and the sender hashes
every subset of the same size of sent packets until it finds
the subset with the same hash (assuming collision resistance).
The strawman includes a count of the packets received to
determine the size of the subset to hash. As the number of
missing packets exceeds even a moderate amount, the num-
ber of subsets to calculate explodes, making the strawman
impractical to decode.

One might also suggest the receiver send negative acknowl-
edgments of the packets it has not received. However, unlike
sequence numbers where one can determine a gap in received
packets, there is no way to tell with random identifiers what
packet is missing or should be expected next.

1816 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Num Additional Packet Payload Cumu-
Per-Packet Encode Time Decode Time Proxy Packets Size (bytes) lative?

Strawman 1a Parse identifier N/A n b No
Strawman 1b Parse identifier, move sliding N/A n b ·window No

window
Strawman 1c Parse identifier N/A n (TCP headers) b No
Strawman 2 Parse identifier, Concatenate and hash 1 32+4 Yes

concatenate and hash
(n

m
)

subsets (hash and count)
Power Sums Parse identifier, t modular Plug n candidate roots into a 1 4+b+b · t Yes

multiplications and additions degree-m polynomial OR solve (count, last value,
system of m polynomial equations t power sums)

Table 2: Strawmen compared to the power sum quACK representing n packets sent by the data sender, m missing packets, and
b-byte identifiers. The power sum quACK uses the threshold t. The total data overhead of each quACK must consider the packet
payload size along with transport headers. We evaluate the overheads in practice in Section 6.4.

3.4 The Power Sum Solution
Now we describe a solution to the quACK problem based
on the insight that we can model the problem as a system
of power sum polynomial equations when we have a bound
on the maximum number of missing elements, a threshold t.
Unlike the previous strawmen, this construction is efficient to
decode, and its size is proportional only to t.

Consider the simplest case, when the receiver is only miss-
ing a single element. The receiver maps packet identifiers to
a finite field, i.e. modulo the largest prime that fits in b bytes,
and communicates the sum ∑x∈R x of the received elements
to the sender. The sender computes the sum ∑x∈S x of the sent
elements and subtracts the sum from the receiver, calculating:

∑
x∈S

x−∑
x∈R

x = ∑
x∈S\R

x,

which is the sum of elements in the set difference. In this case,
the sum is exactly the value of the missing element.

In fact, we can generalize this scheme to any number of
missing elements m. Instead of transmitting only a single
sum, the receiver communicates the first m power sums to the
sender, where the i-th power sum of a multiset R is defined
as ∑x∈R xi. The sender then computes the first m power sums
of S and calculates the respective differences di for i ∈ [1,m],
producing the following system of m equations:{

∑
x∈S\R

xi = di | i ∈ [1,m]

}
.

Instead of transmitting an unbounded number of power
sums, the receiver only maintains and sends the first t power
sums. Efficiently solving these t power sum polynomial equa-
tions in t variables in a finite field is a well-understood algebra
problem [22]. The solutions are exactly x ∈ S\R.

Efficiency. The power sum quACK is efficient to decode,
adds reasonable link overhead, and is a cumulative represen-
tation of the packets seen by the receiver (Table 2). Compared
to Strawman 2, the power sum quACK can be decoded with
simple algebraic techniques. Its link overhead is proportional

only to the number of missing packets between consecutive
quACKs, up to a configurable threshold. In comparison, the
link overhead of Strawman 1 is necessarily proportional to
the number of received packets. The power sum quACK is
also resilient to mis-identifying a received packet as dropped,
in the case a quACK is lost in transmission.

Interface. The actual format of the power sum quACK in-
cludes three fields: (i) t b-byte power sums, (ii) a 4-byte count
of received elements, and (iii) the b-byte identifier of the last
element received. We assume power sum quACKs to be sent
over UDP, though the actual mechanism is not tied to the
design. Since the decoder does not know m ahead of time, the
decoder takes the difference between the number of packets it
has sent and the count in the quACK to calculate m. Sending
the last element received is an optimization that allows m to
represent just the “holes” among the packets being selectively
ACKed, excluding the possibly many consecutive elements
that are in-flight (Section 4.3.1).

3.5 Microbenchmarks
We benchmark our optimized implementation of the power
sum quACK [65] to demonstrate its practicality for in-line
packet processing. Our microbenchmarks used an m4.xlarge
AWS instance with a 4-CPU Intel Xeon E5 processor @ 2.30
GHz and 16 GB memory.

Encode Time Decode Time

Strawman 1a/1c 1 ns/pkt 0
Strawman 1b 51 ns/pkt 0
Strawman 2 27 ns/pkt 830 ms
Power Sum 33 ns/pkt 2.82 µs

Table 3: The CPU overheads of power sums are comparable
to those of the strawmen, while being more efficient in space
and computation. The encode time includes constructing and
serializing the quACK(s), given n identifiers. The decode time
includes finding the identifiers of either R or S\R, given the
quACK(s) and S. Parameters: n = 25, t = 10, b = 4.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1817

0 100 200 300
Num Sent Packets

0

10

20

30

De
co

de
 T

im
e

(μ
s)

b=2 b=4 b=8

(a) Evaluate a degree-
m = t = 10 polynomial
at n candidate roots.

0 100 200 300
Num Missing Packets

0

500

1000

De
co

de
 T

im
e

(μ
s)

b=2 b=4 b=8

(b) Plug n = 300 candi-
date roots into a degree-
m polynomial.

0 100 200 300
Threshold (pkts)

0

500

1000

1500

En
co

de
 T

im
e

(n
s/

pk
t) b=2 b=4 b=8

(c) Update t power sum
equations. Average of
1000 packets.

Figure 2: How power sum quACK performance depends on
various parameters: bit width, threshold, number of sent and
missing packets. Average of 100 trials.

A power sum quACK that represents n = 25 outstanding
packets (packets in consideration on that path segment not
yet known to be received or lost) and up to t = 10 missing
packets with b = 4-byte identifiers adds 33 ns of encoding
time per packet and takes 2.82 µs to decode (Table 3).

Decoding. The decode time must be comparable to the time
it takes to process a typical ACK and modify the logic in the
transport protocol. Decoding typically occurs on end hosts,
compared to encoding which occurs in the middle of the path.

Finding the solution to the system of power sum polyno-
mial equations boils down to applying Newton’s identities
(a linear algorithm) and finding the roots of a polynomial
equation in a modular field [22]. Factoring a polynomial
is asymptotically fast in theory, but the implementation is
branch-heavy and complicated [3]. We found that plugging in
and evaluating which of n candidate roots evaluated to zero
was faster in practice for n < 40,000 roots. This is the method
we use to decode the power sum quACK.

The decode time of this method is directly proportional to n
(Figure 2a) and the number of missing packets m (Figure 2b).
Decoding takes 2820/10/25≈ 11 ns/candidate/missing. Both
n and m are typically a few hundred at most.

Encoding. The encode time per-packet is directly propor-
tional to the threshold number of missing packets t (Figure 2c)
at 33/10≈ 3 ns/power sum. Each power sum can be updated
in a constant number of operations based on the previous
power sum, so encoding an identifier requires t modular addi-
tions and multiplications for the t power sums.

Bit widths. Different bit widths have different implications
for which instructions the CPU can use. Modular operations
are efficient for 16- and 32-bit integers, fitting within the 64-
bit word size (the number of bits that can be processed in one
instruction) of most modern CPUs. For example, to multiply
two 32-bit integers, we cast them to 64-bit integers, multiply,
then take the modulus.

Figure 2 shows the best performance we achieved at dif-
ferent bit widths. For 16-bit identifiers only, we precomputed
power tables that fit in the L3 cache. For 64-bit identifiers,
we implemented Montgomery modular multiplication [51]
to avoid an expensive hardware division for 128-bit integers.
In the remainder of the paper, we use b = 4 as the preferred

tradeoff between space and collision probability.

4 Sidekick Protocol
This section describes Robin, our design for a sidekick proto-
col built around quACKs. This includes the setup and config-
uration of a Robin sidekick connection, how a sender detects
loss from a quACK, and a path-aware modification to CUBIC
called PACUBIC, for congestion-controlled base protocols.

4.1 PEP Discovery Mechanism
Sidekick connections can be configured explicitly or implic-
itly. In systems that explicitly configure proxies, such as Ap-
ple’s iCloud Private Relay [1] based on MASQUE [39, 40],
proxies can simply negotiate sending quACKs during ses-
sion establishment. In most other settings, such as 4G/5G
cellular networks, PEPs have traditionally been deployed as
transparent proxies, silently interposing on end-to-end con-
nections. Senders therefore need a way to detect transparent
sidekick proxies and inform them of where to send quACKs.
Because of network address translation, all communication
to the proxy must be initiated by the sender or use the same
IP addresses and port numbers of the base connection.

Our current design has senders signal quACK support
by sending a distinguished packet containing a 128-byte
sidekick-request marker. Such inline signaling could confuse
receivers, but sidekicks target protocols such as QUIC that
discard cryptographically unauthenticated data anyway. It
would be cleaner to signal support through out-of-band UDP
options [61], which we hope to do once they are standardized.

The proxy replies to a sidekick-request packet by sending
a special packet from the receiver’s IP address and port num-
ber back to the sender. This packet contains a sidekick-reply
marker, an opaque session ID, and an IP address and port
number for communicating with the proxy. Upon receiving
the sidekick-reply packet, the sender begins communicating
directly with the proxy from a different UDP port. It initially
sends back the session ID and configuration parameters to
start receiving quACKs.

Security. A malicious third-party could execute a reflection
amplification attack that generates a large amount of traffic
while hiding its source. This is possible because the sender re-
quests quACKs to a different port and (for some carrier-grade
NATs) IP address from the underlying session. To mitigate
this, each quACK contains a quota, initially 1, of remaining
quACKs the proxy will send as well as an updated session ID.
The quota and session ID ensure only the sender can increase
the quota or otherwise reconfigure the session.

An adversarial PEP could send misleading information to
the sender. Note that only on-path PEPs can send credible
information, since they refer to unique packet identifiers. To
mitigate this, the sender can consider PEP feedback along
with end-to-end metrics to determine whether to keep using
the PEP. The sender can always opt out of the PEP, and the

1818 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

PEP cannot actively manipulate traffic any more than outside
a sidekick setting.

4.2 Configuration Messages
The data sender can send various other messages to the proxy
to configure the connection or reset bad state.

Protocol parameters. The sender configures (i) the quACK
interval of the PEP and (ii) the threshold number of missing
packets t, or otherwise selects sidekick-specific settings such
as how an identifier is computed.

The quACK interval is expressed in terms of time or num-
ber of packets, e.g., every N milliseconds or every N packets,
as in a TCP delayed ACK. The sender determines the desired
interval based on its estimated RTT of the base connection and
its application objectives, e.g., more frequently for latency-
sensitive applications or lower-RTT paths.

The threshold represents the bound on the number of miss-
ing packets between quACKs, in practice the number of
“holes” among the packets that are selectively ACKed. The
threshold depends on the quACK interval, and should be set
based on how precise loss detection needs to be and other
qualities of the link. For example, the threshold is larger to
detect congestive loss in the queue of a bottleneck link, or
smaller to still detect transmission error on a lossy link.

Resets. Robin allows the sender to tell the PEP to reinitial-
ize the quACK. This is helpful if the quACK becomes invalid,
e.g., if m exceeds the threshold t. It is always safe to reset the
quACK, or even to ignore the sidekick entirely and fall back
to the base protocol’s end-to-end mechanisms.

4.3 Sender Behavior
In this section, we discuss two particular sender-side behav-
iors that are enabled by the sidekick protocol and which are
helpful across several scenarios: detecting packet loss from a
decoded quACK and congestion control.

4.3.1 Detecting Loss

The sender knows definitively which packets have been re-
ceived by the proxy from a decoded quACK. Next, it must
determine from the remaining packets which ones have been
dropped and which are still in-flight, including if there has
been a reordering of packets. In-flight packets are later classi-
fied as received or dropped based on future quACKs.

When there is no reordering, the packets that are dropped
are just the “holes” among the packets that are selectively
ACKed by the quACK. In particular, these are the holes when
considering sent packets in the order they were sent up to
the last element received, which represents the last selective
ACK. To identify these dropped packets, the sender encodes
t cumulative power sums of its sent packets up to the last
element received. The difference between these power sums
and the power sums in the quACK represents the dropped
packets. The sender “removes” the identifiers of dropped
packets from its cumulative power sums, ensuring that the

only packets that contribute to the threshold limit are those
that went missing since decoding the last quACK.

To account for reordering in loss detection, Robin imple-
ments an algorithm similar to the 3-duplicate ACK rule in
TCP [5, 60]. In TCP, if three or more duplicate ACKs are
received in a row, it is a strong indication that a segment
has been lost. Robin considers a packet lost only if three or
more packets sent after the missing packet have been received.
Other mechanisms could involve timeouts for individual pack-
ets similar to the RACK-TLP loss detection algorithm for
TCP [11].

4.3.2 Path-Aware CUBIC Congestion Control

Congestion-controlled base protocols must have a congestion
response to lost packets that they retransmit due to quACKs,
similar to if the loss were discovered by the end-to-end ACK.
This ensures friendliness with end-to-end congestion control
algorithms that do consider the loss, such as CUBIC [27] in
the presence of a connection-splitting TCP PEP. Here, we
propose PACUBIC, an algorithm that emulates this “split
CUBIC” behavior. PACUBIC uses knowledge of where loss
occurs to improve connection throughput compared to end-
to-end CUBIC, while remaining fair to competing flows.

Recall that CUBIC [27] reduces its congestion window by a
multiplicative decrease factor, β = β∗ = 0.7, when observing
loss (a congestion event), and otherwise increases its window
based on a real-time dependent cubic function with scaling
factor C =C∗ = 0.4:

cwnd =C(T −K)3 +wmax where K =
3

√
wmax(1−β)

C
.

Here, cwnd is the current congestion window, wmax is the
window size just before the last reduction, and T is the time
elapsed since the last window reduction.

While a split CUBIC connection has two congestion win-
dows, end-to-end PACUBIC only has one window represent-
ing the in-flight bytes of the end-to-end connection. Concep-
tually, we want an algorithm that enables PACUBIC’s single
congestion window to match the sum of the split connection’s
two congestion windows.

PACUBIC effectively makes it so that we reduce and grow
cwnd proportionally to the number of in-flight bytes on the
path segment of where the last congestion event occurred. Let
r be the estimated ratio of the RTT of the near path segment
(between the data sender and the proxy) to the RTT of the
entire connection (between end hosts). We use r as a proxy
for the ratio of the number of in-flight bytes. If the last con-
gestion event came from a quACK, we use the same real-time
dependent cubic function but with the following constants2

β = 1− r(1−β
∗) and C =

C∗

r3 .

2See Appendix A for more intuition behind β′ and C′.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1819

If the last congestion event came from an end-to-end ACK,
then we use the original β and C as above.

While this algorithm resembles the congestion behavior of
split CUBIC, it is simply an approximation. PACUBIC does
not know the exact number of bytes in-flight on each path seg-
ment, and the sum of the two congestion windows is simply
a heuristic for an inherently different split connection. The
main takeaway is that knowing where loss occurs can inform
congestion control. We generally hope that quACKs can lead
to the development of smarter, path-aware algorithms.

5 Implementation

Module Language LOC
QuACK library (Section 3.5) Rust 1772
Media server/client + integration Rust 478
quiche client integration Rust 1821
libcurl client integration C 1459
Proxy sidekick binary Rust 833

Table 4: Lines of code.

We now describe our implementation of Robin [66] for sev-
eral applications. We integrated sidekick functionality with a
simple media client for low-latency streaming and an HTTP/3
(QUIC) client. The total implementation of the quACK library,
and proxy and client integrations used 6363 LOC (Table 4).

5.1 Baselines and Applications
The baselines we evaluated against were the performance of
two opaque transport protocols without proxy assistance, and
the fairness of a split CUBIC connection.

Low-latency media application. We implemented a simple
server and client in Rust for streaming low-latency media. The
client sends a numbered packet containing 240 bytes of data
every 20 milliseconds, representing an audio stream at 96
kbit/s. The sequence number is encrypted on the wire.

The server receives packets. If it receives a nonconsecutive
sequence number, it sends a NACK back to the client that
contains the sequence number of each missing packet. The
client’s behavior on NACK is to retransmit the packet. The
server retransmits NACKs, up to one per RTT, until it has
received the packet.

The server’s application behavior is to store incoming pack-
ets in a buffer and play them as soon as the next packet in the
sequence is available. The de-jitter buffer delay is the length
of time between when the packet is stored to when it can be
played in-order. Some packets can be played immediately.

HTTP/3 file upload application. We used the popular
libcurl [45] file transfer library as the basis for our
HTTP client, and an nginx webserver. The client makes an
HTTP POST request to the server. Both are patched with
quiche [13], a production implementation of the QUIC pro-
tocol from Cloudflare, to provide support for HTTP/3.

For our TCP baselines, we used the same file upload appli-
cation with the default HTTP/1.1 server and client. We used a
split-connection TCP PEP [10] that intercepts the TCP SYN
packet in the three-way handshake, pretends to be the other
side of that connection, and initiates a new connection to the
real endpoint. Both clients use CUBIC congestion control.

5.2 Client Integration
In each application, we modified only the client to speak
Robin and respond to in-network feedback. The server re-
mained unchanged. The modifications were in two parts: fol-
lowing the discovery mechanism to establish bi-directional
communication with the proxy, and using the information in
the quACK to modify transport layer behavior.

Low-latency media client. The media client has two open
UDP sockets: one for the base connection and one for the
sidekick connection. When it receives a quACK, it detects lost
packets without reordering and immediately retransmits them.
The protocol does not have a congestion window nor a flow-
control window. The client also sends reset and configuration
messages over the sidekick connection.

HTTP/3 file upload client. The HTTP/3 client similarly
has an adjacent UDP socket for the sidekick connection on
which it receives quACKs and sends reset and configura-
tion messages. The client passes the quACK to our modified
quiche library, which interprets the quACK and makes trans-
port layer decisions. From the client’s perspective, quiche
tells libcurl exactly what bytes to send over the wire.

Our modified quiche library uses the quACK to inform
the retransmission behavior, congestion window, and flow-
control window. The library immediately retransmits lost
frames in a newly-numbered packet, as opposed to the lost
packet, similar to QUIC’s original retransmission mechanism.
We implement PACUBIC, described in Section 4.3.2. We also
move the flow-control window (without forgetting packets
in the retransmission buffer), but only in the ACK reduction
scenario, when the congestion window is nearly representative
of that of the sidekick connection’s path segment.

5.3 Proxy Integration
Our proxy sniffs incoming packets of a network interface
using the recvfrom system call on a raw socket. It stores a
hash table using Rust’s standard library HashMap that maps
socket pairs to their respective quACKs, and incrementally
updates the quACKs for flows that have requested sidekick as-
sistance. It also sends quACKs at their configured frequencies
and listens for configuration messages.

6 Evaluation
We evaluated Robin to answer the following questions:

1. Can sidekicks improve the performance of opaque trans-
port protocols in a variety of scenarios while preserving
the opaque behavior of the base protocols?

1820 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

QuACK Thre- Emu- Real-
Scenario Link 1 Link 2 Interval shold Success Metric lated? World?

#1 Low- 1 ms delay, 3.6% 25 ms delay, 0% 2 pkts 8 Reduce tail latency of how long Yes Yes
latency loss, 100 Mbit/s loss, 10 Mbit/s packets are queued in the data
media receiver’s de-jitter buffer.
#2 Connec- 1 ms delay, 1.0% 25 ms delay, 0% 30 ms 10 Achieve high throughput; match Yes Yes
tion- split- loss, 100 Mbit/s loss, 10 Mbit/s the performance, congestion con-
ting PEP trol behavior, and fairness of
emulation connection-splitting TCP PEPs.
#3 ACK 25 ms delay, 0% 1 ms delay, 0% 15 ms 50 Reduce ACK frequency of data re- Yes No
reduction loss, 10 Mbit/s loss, 100 Mbit/s ceiver; achieve high throughput.

Table 5: Experimental scenarios. Link 1 connects the data sender (client) to the proxy, while Link 2 connects the proxy to the
data receiver (server). The quACK interval and threshold represent our sidekick configuration.

AWS Server

Lossy
Wi-Fi
Link

High-Latency
Cellular Path

Cellular Modem
Wi-Fi AP + SidekickLaptop Client

Figure 3: Real-world experimental setup.

2. Can a path-aware congestion control algorithm match
the fairness of split TCP PEPs using CUBIC?

3. How do the CPU overheads of encoding quACKs impact
the maximum capacity of a proxy with a sidekick?

4. What link overheads does the power sum quACK add
and how does it compare to the strawmen?

5. Is Robin robust in a real-world environment?

6.1 Experimental Setup
We modeled the scenarios from Section 2 in both emulated
and real-world environments. We answer questions 1-4 in
emulation and question 5 in the real world. We use the same
m4.xlarge AWS instance as before for the emulated experi-
ments, and as the server in the real-world experiments.

Emulated environment. We emulated a two-hop network
topology (Figure 1) in mininet, configuring the link properties
using tc. In emulation, we represented each link by a constant
delay (with variability induced by the queue), a random loss
percentage, and a maximum bandwidth. Table 5 describes
the parameters for each link to model—e.g., lossy Wi-Fi or a
high-latency cellular path—as well as the metrics for success
in that scenario. Link 1 connects the data sender (client) to the
proxy, while Link 2 connects the proxy to the data receiver
(server). On the proxy, we either run a sidekick, a connection-
splitting TCP PEP [10], or nothing at all.

Real-world environment. To test its robustness, we also
evaluated Robin over a real-world environment that resembled
the scenario on the train (Figure 3). In this setup, a Lenovo
ThinkPad laptop, running Ubuntu 22.04.3 with a 4-Core Intel

i7 CPU @ 2.60 GHz and 16 GB memory, acted as a client
to an AWS instance in the nearest geographical region. The
ThinkPad used as an access point (AP) a Lenovo Yoga laptop,
running Ubuntu 20.04.6 with a 4-Core Intel i5 CPU @ 1.60
GHz and 4 GB memory, with a 2.4 GHz Wi-Fi hotspot. The
AP was connected to the Internet via a JEXtream cellular
modem with a 5G data plan. The AP ran sidekick software.

We measured the link properties of each path segment to
compare to our emulation parameters. We measured delay and
loss using 1000 pings over a 100 second period, and band-
width using an iperf3 test. On the near segment between the
ThinkPad client and the AP, the min/avg/max/stdev RTT was
1.249/37.194/272.168/54.660 ms at 49.8 Mbit/s bandwidth.
We observed that loss increased the further away the AP. In
our experiments, the client was located roughly 200 feet away
in a different room, with 3.6% loss. The far segment between
the AP and the AWS server was 48.546/64.381/92.374/6.806
ms with 0.0% loss at 30.9 Mbit/s. In both environments, the
cellular link was the bottleneck link in terms of bandwidth,
and the corresponding path segments in emulation had similar
minimum RTTs and average loss percentages.

6.2 Performance Comparison to Baseline
We first evaluate Robin’s main performance goal: In each of
the motivating scenarios, we show that Robin can improve per-
formance compared to the base protocol alone, which would
not be able to benefit from existing PEPs. Each scenario has
a different metric for success—tail latency, throughput, or
number of packets sent by the data receiver (corresponding to
energy usage or chance of Wi-Fi collisions)—demonstrating
the versatility of the sidekick protocol.

Low-Latency Media. The sidekick can reduce tail laten-
cies in a low-latency media stream, representing fewer drops
and better quality of experience. The early retransmissions
induced by the sidekick reduced the 99th percentile latency
of the de-jitter buffer delay from 48.6 ms to 2.2 ms—a 95%
reduction (Figure 4a). As long as the quACK interval is less
than the end-to-end RTT, the connection benefits from the
sidekick.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1821

0 50 100 150
De-Jitter Latency (ms)

86%
88%
90%
92%
94%
96%
98%

100%

Pe
rc

en
til

e

Simple E2E
Sidekick

Sidekick(2x)
Sidekick(4x)

(a) Scenario #1: Low-latency media. Reduced
tail latency of de-jitter delay with earlier retrans-
mission. 5 minute trials.

0 20 40
Upload Data Size (MByte)

0

2

4

6

8

Go
od

pu
t (

M
bi

t/s
)

QUIC E2E
Sidekick

Sidekick(2x)
Sidekick(4x)

(b) Scenario #2: Connection-splitting PEP
emulation. Improved goodput. 20 trials me-
dian. Error bars are 1st and 3rd quartiles.

0 250 500 750 1000
Num ACKs from Data Receiver

0

2

4

6

8

Go
od

pu
t (

M
bi

t/s
)

QUIC E2E
Sidekick

Sidekick(2x)
Sidekick(4x)

(c) Scenario #3: ACK reduction. High good-
put independent of end-to-end ACK frequency.
10 MB upload.

Figure 4: Comparing the end-to-end baseline protocol to the same protocol with a sidekick connection, using the success metrics
for the three scenarios described in Table 5. The Sidekick (Nx) data points show the performance at Nx the quACK interval (sent
less frequently) and threshold of the default configurations specified in Table 5.

The sidekick is beneficial in this scenario because it enables
the client to sooner detect and retransmit lost packets, and
the server to sooner play packets from its de-jitter buffer. The
end-to-end mechanism takes one additional received packet
to notify of the loss and one end-to-end RTT to retransmit
and play the packet (20+52=72ms), resulting in three delayed
packets (the three “steps" in Figure 4a) in most cases. The
sidekick takes up to two additional packets and one near
path segment RTT (20+2=22ms or 20×2+2=42ms), delaying
either one or two packets in comparison. Dropped ACKs and
quACKs account for the < 2% of packets with even greater
de-jitter latencies.

Connection-Splitting PEP Emulation. The sidekick im-
proves upload speeds when there is a lossy, low-latency link
by using quACKs to inform the sender’s congestion control.
In a scenario with 1% random loss on the link between the
proxy and the data sender, the HTTP/3 (QUIC) client achieves
3.6× the goodput for a 10 MB upload with a sidekick com-
pared to end-to-end QUIC (Figure 4b).

When there is no random loss, the sidekick does not impact
the performance of QUIC. There are no logical changes to
the base protocol in this case because all loss is on the bottle-
neck link on the far path segment, and the CPU overheads of
processing quACKs are negligible.

Knowing where congestion occurs is an opportunity for
creating smarter congestion control. In PACUBIC, identify-
ing where the loss occured let the data sender reduce the
congestion window proportionally to how many packets were
in-flight on each path segment. In Section 6.3, we will show
that our path-aware congestion control algorithm still matches
the fairness of connection-splitting TCP PEPs.

ACK Reduction. Using quACKs in lieu of end-to-end
ACKs allows the data receiver to significantly reduce its ACK
frequency while maintaining high goodput. In our experiment,

QUIC with a sidekick sent 96% fewer packets (mainly ACKs)
than end-to-end QUIC before the goodput dropped below 8.5
Mbit/s (Figure 4c). The quACK enables the data sender to
promptly move the flow-control window forward, as long as
the last hop is reliable.

The goodput significantly degrades when reducing the end-
to-end ACK frequency without a sidekick. When end-to-end
QUIC reduces the ACK frequency to every 80 ms, the data re-
ceiver sends 247/138 = 1.8× the packets at 4.5/8.4 = 0.5×
the goodput, worse than QUIC with the sidekick in both di-
mensions (Figure 4c). With a sidekick, the data sender also
does not need to change packet pacing to avoid bursts in re-
sponse to infrequent ACKs, which is why end-to-end QUIC
cannot send fewer than ≈ 240 packets.

6.2.1 Configuring the Sidekick Connection

Table 5 shows the quACK interval and threshold we elected
for each scenario based on the considerations in Sec-
tion 4.2. In each experiment in Figure 4, we also show
how with less frequent quACKs (2× and 4× the interval)
and proportionally-adjusted thresholds, the protocol performs
worse, or more variably. Less frequent quACKs means the
client reacts later to feedback about the near path segment,
and more often has to rely on the end-to-end mechanism. The
performance particularly degrades when the quACK interval
exceeds the end-to-end RTT. However, even in this case, the
base protocol with any sidekick at all performs better than the
base protocol alone.

6.3 Fairness Evaluation
It is easy to improve performance without regard to competing
flows; however, we demonstrate that PACUBIC can match
the fairness of split CUBIC in a TCP PEP connection. We
evaluate fairness using Scenario #2 with varying amounts of
loss on the near path segment.

1822 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1MB
Upload Data Size (MByte)

0

2

4

6

8

10

Go
od

pu
t (

M
bi

t/s
)

QUIC E2E QUIC+Sidekick TCP E2E TCP+PEP

1MB 10MB 50MB
Upload Data Size (MByte)

0

2

4

6

8

10

Go
od

pu
t (

M
bi

t/s
)

(a) 0% loss.

1MB 10MB 50MB
Upload Data Size (MByte)

0

2

4

6

8

10

Go
od

pu
t (

M
bi

t/s
)

(b) 1% loss.

Figure 5: Median goodput for three upload data sizes with 0%
and 1% loss on Link 1. 20 trials. Error bars are 1st and 3rd
quartiles. With proxy assistance at 1% loss, both QUIC and
TCP match the performance of when there is no loss at all.

0 1 2 3 4 5 6 7 8
Loss % (Link 1 Delay = 1 ms, Link 2 Delay = 25 ms)

0

2

4

6

8

Go
od

pu
t (

M
bi

t/s
)

QUIC E2E QUIC+Sidekick TCP E2E TCP+PEP

0 1 2 3 4 5 6 7 8
Loss % (Link 1 Delay = 1 ms, Link 2 Delay = 25 ms)

0

2

4

6

8

Go
od

pu
t (

M
bi

t/s
)

Figure 6: Connection-splitting PEP emulation as a func-
tion of near-segment loss rate. In this emulation experiment,
QUIC+Sidekick (running PACUBIC) performs similarly to
TCP+PEP (each connection running CUBIC) and improves
goodput compared with end-to-end protocols. The graph
shows median goodput of a 10 MByte upload. QuACK inter-
val is 30 ms, threshold is 10. Error bars show IQR of 10 trials.

QUIC vs. TCP. We first compare QUIC to TCP without
either PEP. As both connections use CUBIC, they exhibit
similar congestion control behavior and achieve nearly max-
imum throughput in the emulated network with no random
loss (Figure 5a). We attribute the differences to the slightly
different retranmission and loss recovery behaviors of QUIC
and TCP. The PEPs do not affect the performance.

With even a little loss on the near path segment, both QUIC
and TCP dramatically worsen, respectively achieving 28%
and 42% of the goodput at 0% loss, for a 10 MB upload (Fig-
ure 5b). In both protocols, CUBIC treats every transmission
error as a congestion event, even though no amount of reduc-
ing the congestion window affects the error rate. QUIC and
TCP perform similarly to each other with proxy assistance
and 1% loss on the near path segment.

Sidekick vs. TCP PEP. Figure 6 shows that QUIC with
a sidekick roughly matches—as intended—the behavior of
TCP with a PEP-assisted split connection. At higher loss rates,
the near path segment becomes the bottleneck link even with
earlier feedback about loss, causing the performance of TCP
with proxy assistance to drop. QUIC with a sidekick follows

a similar pattern because of its path-aware congestion-control
scheme (Section 4.3.2). The results indicate that the sidekick
protocol’s gains do not come at the expense of congestion-
control fairness relative to the split TCP connection.

6.4 Proxy CPU Overheads

25-Byte Payload 1468-Byte Payload
Cycles % Cycles %

Sniff Packet 22417 97.6 22408 97.5
Table Lookup 247 1.1 251 1.1
Parse ID 23 0.1 22 0.1
Encode ID 74 0.3 69 0.3
Other 213 0.9 225 1.0

Total 22974 100.0 22975 100.0

Table 6: Breakdown of the CPU cycles spent processing each
packet at the proxy. Most cycles are spent on general per-
packet overheads as opposed to quACK-specific processing.

The main bottleneck of Robin on a proxy is the CPU. Ta-
ble 6 shows a breakdown of the number of CPU cycles in each
step. The largest overhead was reading the packet contents
from the network interface (97.5% of the CPU cycles).

Encoding an identifier in a power sum quACK with t = 10
used 74 CPU cycles (0.9%). As a calculation of the theoretical
maximum on a 2.30 GHz CPU, the proxy would be able to
process 31 million packets/second on a single core. The hash
table lookup used 251 cycles and parsing the pseudorandom
payload as an identifier used 22 cycles.

In practice, we measured the maximum throughput of
Robin to be 464k packets/s with 25-byte payloads and 5.5
Gbit/s (458k packets/s) with 1468-byte packet payloads on
a single core (assuming 1500-byte MTUs). This experiment
used multiple iperf3 clients to simulate high load until Robin
was unable to keep up with the load on a single core. The
packet payload size did not seem to affect results.

We find these achieved throughputs acceptable for edge
routers such as Wi-Fi APs and base stations. To deploy Robin
on core routers, we would need to reduce the overhead of
reading packets from the NIC, such as by bypassing the
kernel/user-space protection boundary3 [20, 48, 62] or using
native hardware [8]. We could also scale on multiple cores
using symmetric RSS hashing [64].

6.5 Link Overheads
The other cost in terms of using sidekick protocols is the
additional data sent by the proxy to the data sender. Too many

3A kernel-bypass system like Retina [62] can achieve 25 Gbps on 2 cores
while processing raw packets with a 1000-cycle callback (Figure 5(a) in [62]).
The Sidekick equivalent would be a 500-cycle callback, and assuming all
traffic has requested sidekick help. Throughput scales almost linearly with
the number of cores using symmetric RSS hashing. Thus we don’t expect
proxy overheads to be an issue with modern 100 Gbps network speeds and
an optimized implementation even on commodity hardware.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1823

Data Sender→ ←Proxy ←Data Receiver
Pkts Bytes Pkts Bytes Pkts Bytes Goodput

QUIC E2E 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
Strawman 1a 0.96× 1.01× 2.02× 1.56× 1.01× 1.03× 3.33×
Strawman 1b 0.94× 1.00× 2.00× 1.78× 1.00× 1.03× 3.53×
Strawman 1c 1.83× 1.06× 2.01× 1.83× 1.00× 1.03× 3.46×
Power Sum 0.94× 1.00× 1.03× 1.07× 1.00× 1.03× 3.55×

(a) Scenario #2: Connection-splitting PEP emulation.

Data Sender→ ←Proxy ←Data Receiver
Pkts Bytes Pkts Bytes Pkts Bytes Goodput

QUIC E2E 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
Strawman 1a 0.96× 1.00× 9.94× 4.99× 0.04× 0.08× 1.02×
Strawman 1b 0.96× 1.00× 9.95× 7.13× 0.04× 0.08× 1.02×
Strawman 1c 1.91× 1.05× 9.73× 7.41× 0.04× 0.08× 0.97×
Power Sum 0.96× 1.00× 1.09× 2.56× 0.04× 0.08× 0.98×

(b) Scenario #3: ACK reduction.

Figure 7: Link overheads for a 10 MB upload. The cells rep-
resent the multiplier relative to the end-to-end QUIC baseline
for each type of quACK. Lower is better for number of pack-
ets and bytes sent on a link. Higher goodput is better. Robin’s
power sum quACK achieves the success metric for each sce-
nario without incurring the link overheads of the strawmen.
We did not evaluate the contrived protocol in Scenario #1.

additional bytes use up bandwidth, and additional packets use
up CPU. Figure 7 shows the number of packets and bytes sent
at each node comparing the strawmen and power sum quACK
to no sidekick connection at all.

Using power sum quACKs increases the packets sent from
the proxy to the data sender by 3-9%. These packets either
consist mostly of end-to-end ACKs which are sent every
packet in quiche, or end-to-end ACKs that have been re-
placed by quACKs in the ACK reduction scenario. We did
not evaluate Scenario #1 because it is based on a contrived
protocol that lacks many of these features, and the link over-
heads would not really make sense.

This overhead is representative of the CPU overhead at
the client, since quACKs and ACKs take a similar number of
cycles to process. In an experiment with Scenario #2 during
a period of ≈ 90k incoming packets, ACKs took on average
26065 cycles to process while the quACKs took 26369 cycles,
1% more. These cycles come from, i.e., the complex recovery
and loss detection algorithms implemented at the end host.

The strawmen have significantly higher link overheads com-
pared to the power sum quACK. The proxy sends up to 10×
more packets using Strawman 1a, and also slightly harms the
goodput in the congestion control scenario. The reduced good-
put is due to the sender mis-identifying received packets as
dropped due to dropped quACKs. The proxy achieves higher
goodput with Strawman 1b but sends more bytes. Strawman
1c increases the link overheads at both the proxy and the data
sender due to larger TCP headers and TCP ACKs. We did not
evaluate Strawman 2 due to its impractical decode time.

0 2000 4000
De-Jitter Latency (ms)

86%
88%
90%
92%
94%
96%
98%

100%

Pe
rc

en
til

e

Simple E2E Sidekick

(a) Low-latency media. CDF of per-
packet de-jitter latencies over 10 one-
minute trials per protocol.

1MB 10MB 50MB
Upload Data Size (MByte)

0

1

2

3

Go
od

pu
t (

M
bi

t/s
)

QUIC E2E Sidekick

(b) Path-aware congestion control.
Median of 20 trials. Error bars are
1st and 3rd quartiles.

Figure 8: Real-world results. Experiments were run in a mod-
erately well-attended office environment over a Friday after-
noon. Trials alternate between the baseline and the sidekick
to account for variability in time of day.

6.6 End-to-End Real World Experiments

We discuss the results of our experiments replicating two of
our scenarios in the real world, using as context these main
differences between emulation and the real-world:

• The RTT is more variable as it depends on interactions
in the wireless medium and the shared cellular path.

• Wireless loss can be more variable as nearby 2.4 GHz
devices and physical barriers may interfere with the link.
Wireless loss also tends to be more clustered in practice.

• The available bandwidth on the shared cellular path is
more variable, and depends on the time of day.

Figure 8 shows the results of running the low-latency media
and connection-splitting PEP emulation experiments in the
real-world. The baseline protocol with a sidekick is able to
reduce the 99th percentile de-jitter latency of an audio stream
from 2.3 seconds to 204 ms—about a 91% reduction—and
improve the goodput of a 50 MB HTTP/3 upload by about
50%. Although the improvements are more conservative com-
pared to emulation in Figure 4a and Figure 4b, each case still
benefits the base protocol under all circumstances, compared
to end-to-end mechanisms alone.

Part of the difference can be attributed to the network set-
ting. When there is no loss on the near path segment, as can
occasionally happen in a real Wi-Fi link, we do not expect to
see a difference with a sidekick. When there is more loss on
the far path segment, which is variable and depends on the
time, we expect the benefit of the sidekick to be less since
this equally affects the performance of the base protocol.

The other part of the difference could be made up by future
work that better adapts a sidekick connection to real-world
variability: The client could improve path segment RTT es-
timation based on when the proxy receives packets, and use
this dynamic estimate in the calculation of r used in β and C.
The client could also use this estimate to dynamically adjust
the quACK interval. Finally, we could analyze theoretically
how PACUBIC responds to traffic patterns in the real world.

1824 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

7 Limitations
The sidekick approach, and our experiments, are subject to
some limitations, which we describe briefly here.

Multipath scenarios. We have only considered sidekick
proxies along a single path, and not thought extensively
about how quACKs would interact with protocols such as
TCPLS [57] that use multiple paths or streams, or even mul-
tipath QUIC [18]. To begin thinking about this question, we
would have a more complex model of the network: multiple
PEPs along a single path, multiple paths each with varying
numbers of PEPs, and so on. The proxy can include additional
information in the sidekick-reply packet to indicate which
path the PEP assistance is on, and the sender can infer from
the RTT how far along a path each PEP is relative to others.
New sidekick algorithms that come from this model could di-
agnose troublesome paths, or better allocate network traffic in
a multipath connection. Existing algorithms could be applied
to individual paths as if they were single-path connections.

Even more diverse network scenarios. The three scenar-
ios we explored all consisted of a lossy Wi-Fi link and a
high-latency WAN link. Not all scenarios will be favorable to
the sidekick protocol we designed. If the “lossy” section of a
network path were on the far path segment from the sender,
the sender would not have any more information about the
problematic link. To accomodate scenarios like this, sidekick
protocols will need more features. For example, the proxy
would need some way to receive quACKs from the data re-
ceiver, as well as a mechanism to buffer and retransmit pack-
ets [2, 10].

There are likely other scenarios that could benefit from side-
kick protocols as described, but we did not evaluate them. For
example, if we replaced the lossy Wi-Fi link with a modern
wireless link that has a fluctuating physical capacity [9,37,52],
the sender may be able to more quickly adapt and make data
available for transmission whenever capacity intermittently
becomes available.

Practical deployment. The implementation of Robin exists
as a research system that has been evaluated in emulation and
a limited set of real-world scenarios. Since sidekick protocols
require the cooperation of middleboxes and client applica-
tions, more work will be needed to standardize the discovery
protocol and wire format of sidekick messages described in
Section 4, ideally with interest from the IETF. The standards
will need to establish several design choices such as how iden-
tifiers are computed, how quACKs are transmitted, and the
exact mechanisms for security and backwards compatibility.
We may also want to standardize sender behavior for specific
base protocols, though this could be opaque except to the
sender.

The deployment of sidekick protocols can be gradual and
backwards-compatible with parties that are either unaware of
or do not want to participate in sidekick protocols. To migrate

existing client applications, one needs to modify the code to
discover a PEP and use information in a quACK to inform
the base protocol. To migrate middleboxes, they would need
to be modified to listen for sidekick-request markers, then
accumulate and send quACKs for participating connections.

Deeper analysis of path-aware congestion control. The
correspondence between endpoint-driven PACUBIC and
“split CUBIC” is good, and both are better than end-to-end
CUBIC in Figure 6), but not exact. The appropriateness of
the PACUBIC heuristic, and in general the idea of path-aware
congestion control, needs to be further explored. We discuss
this more in Appendix A.

8 Conclusion
We presented sidekick protocols: an alternate approach to
PEPs that leaves the underlying protocol opaque and unmod-
ified on the wire. We described a mathematical technique
called a quACK that enables middleboxes to refer to packets
of the underlying connection without the ability to observe
cleartext sequence numbers. We augmented a streaming pro-
tocol and a production QUIC implementation (Cloudflare
quiche) to make use of information arriving from a proxy
on a sidekick connection, including a path-aware congestion-
control mechanism called PACUBIC. In emulation and a real-
world evaluation, the sidekick protocol was able to improve
the performance—tail latency, throughput, or energy usage—
of these end-to-end base protocols without modifying the wire
format or security properties.

Quacknowledgments
We thank Mary Wootters for identifying the relevance of error-
correcting codes to the challenging quACK problem, Gerry
Wan for his insights in high-speed packet processing that
helped improve the proxy performance, and Deepti Raghavan,
Matei Zaharia, our shepherd Akshay Narayan, and the anony-
mous reviewers for other invaluable feedback and discussion.
This work was supported in part by NSF grants 2045714,
2039070, 2028733, 1931750, 1918056, 1763256, and DGE-
1656518, DARPA contract HR001120C0107, a Stanford Grad-
uate Fellowship, a Sloan Research Fellowship, and by Google,
VMware, Dropbox, Amazon, and Meta Platforms.

References
[1] Apple Inc. iCloud Private Relay Overview.

https://www.apple.com/icloud/docs/iCloud_
Private_Relay_Overview_Dec2021.pdf, Dec.
2021.

[2] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz.
Improving TCP/IP performance over wireless networks.
In Proceedings of the 1st Annual International Confer-
ence on Mobile Computing and Networking, MobiCom
’95, page 2–11, New York, NY, USA, 1995. Association
for Computing Machinery.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1825

https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf

[3] C. Batut, K. Belabas, D. Bernardi, H. Cohen, and
M. Olivier. User’s Guide to PARI-GP. Université de
Bordeaux I, 2000.

[4] BitTorrent Foundation. BitTorrent (BTT) White
Paper v0.8.7. https://www.bittorrent.com/btt/
btt-docs/BitTorrent_(BTT)_White_Paper_v0.8.
7_Feb_2019.pdf, Feb. 2019.

[5] E. Blanton, D. V. Paxson, and M. Allman. TCP Conges-
tion Control. RFC 5681, Sept. 2009.

[6] J. Border. Google QUIC over satellite links. Presenta-
tion, IETF PANRG interim, June 2020.

[7] J. Border, B. Shah, C.-J. Su, and R. Torres. Evaluating
QUIC’s performance against performance enhancing
proxy over satellite link. In 2020 IFIP Networking
Conference (Networking), pages 755–760, 2020.

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: programming protocol-
independent packet processors. SIGCOMM Comput.
Commun. Rev., 44(3):87–95, July 2014.

[9] H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and
H. Haas. VLC: Beyond point-to-point communication.
IEEE Communications Magazine, 52(7):98–105, 2014.

[10] C. Caini, R. Firrincieli, and D. Lacamera. PEPsal: a
performance enhancing proxy designed for TCP satellite
connections. In 2006 IEEE 63rd Vehicular Technology
Conference, volume 6, pages 2607–2611, 2006.

[11] Y. Cheng, N. Cardwell, N. Dukkipati, and P. Jha. The
RACK-TLP Loss Detection Algorithm for TCP. RFC
8985, Feb. 2021.

[12] D. Clark. The design philosophy of the DARPA internet
protocols. In Symposium Proceedings on Communica-
tions Architectures and Protocols, SIGCOMM ’88, page
106–114, New York, NY, USA, 1988. Association for
Computing Machinery.

[13] Cloudflare, Inc. Quiche. https://github.com/
cloudflare/quiche, Feb. 2024.

[14] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi,
N. McKeown, I. Abraham, and I. Keslassy. Virtualized
congestion control. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, page 230–243,
New York, NY, USA, 2016. Association for Computing
Machinery.

[15] A. Custura, T. Jones, and G. Fairhurst. Impact of ac-
knowledgements using IETF QUIC on satellite perfor-
mance. In 2020 10th Advanced Satellite Multimedia

Systems Conference and the 16th Signal Processing for
Space Communications Workshop (ASMS/SPSC), pages
1–8, 2020.

[16] A. Custura, T. Jones, R. Secchi, and G. Fairhurst. Re-
ducing the acknowledgement frequency in IETF QUIC.
International Journal of Satellite Communications and
Networking, 41(4):315–330, 2023.

[17] P. Davern, N. Nashid, C. J. Sreenan, and A. H. Zahran.
HTTPEP: a HTTP performance enhancing proxy for
satellite systems. Int. J. Next Gener. Comput., 2(3),
2011.

[18] Q. De Coninck and O. Bonaventure. Multipath QUIC:
Design and evaluation. In Proceedings of the 13th Inter-
national Conference on Emerging Networking EXperi-
ments and Technologies, CoNEXT ’17, page 160–166,
New York, NY, USA, 2017. Association for Computing
Machinery.

[19] F. R. Dogar and P. Steenkiste. Architecting for edge
diversity: supporting rich services over an unbundled
transport. In Proceedings of the 8th International Con-
ference on Emerging Networking Experiments and Tech-
nologies, CoNEXT ’12, page 13–24, New York, NY,
USA, 2012. Association for Computing Machinery.

[20] DPDK: Data Plane Development Kit. https://www.
dpdk.org/, Sept. 2023.

[21] K. Edeline and B. Donnet. A bottom-up investigation of
the transport-layer ossification. In 2019 Network Traffic
Measurement and Analysis Conference (TMA), pages
169–176, 2019.

[22] D. Eppstein and M. T. Goodrich. Straggler identification
in round-trip data streams via Newton’s identities and
invertible Bloom filters. IEEE Trans. on Knowl. and
Data Eng., 23(2):297–306, Feb. 2011.

[23] V. Farkas, B. Héder, and S. Nováczki. A split connec-
tion TCP proxy in LTE networks. In R. Szabó and
A. Vidács, editors, 18th European Conference on Infor-
mation and Communications Technologies (EUNICE),
volume LNCS-7479, Budapest, Hungary, Aug. 2012.
Springer.

[24] B. Ford and J. R. Iyengar. Breaking up the transport
logjam. In Proceedings of the 7th ACM Workshop on
Hot Topics in Networks, HotNets ’08, pages 85–90, New
York, NY, USA, 2008. Association for Computing Ma-
chinery.

[25] P. Goyal, M. Alizadeh, and H. Balakrishnan. Rethinking
congestion control for cellular networks. In Proceedings
of the 16th ACM Workshop on Hot Topics in Networks,
HotNets ’17, page 29–35, New York, NY, USA, 2017.
Association for Computing Machinery.

1826 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.bittorrent.com/btt/btt-docs/BitTorrent_(BTT)_White_Paper_v0.8.7_Feb_2019.pdf
https://www.bittorrent.com/btt/btt-docs/BitTorrent_(BTT)_White_Paper_v0.8.7_Feb_2019.pdf
https://www.bittorrent.com/btt/btt-docs/BitTorrent_(BTT)_White_Paper_v0.8.7_Feb_2019.pdf
https://github.com/cloudflare/quiche
https://github.com/cloudflare/quiche
https://www.dpdk.org/
https://www.dpdk.org/

[26] J. Griner, J. Border, M. Kojo, Z. D. Shelby, and G. Mon-
tenegro. Performance Enhancing Proxies Intended to
Mitigate Link-Related Degradations. RFC 3135, June
2001.

[27] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly
high-speed TCP variant. SIGOPS Oper. Syst. Rev.,
42(5):64–74, July 2008.

[28] D. A. Hayes, D. Ros, and O. Alay. On the importance of
TCP splitting proxies for future 5G mmWave communi-
cations. In 2019 IEEE 44th LCN Symposium on Emerg-
ing Topics in Networking (LCN Symposium), pages 108–
116, 2019.

[29] K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter,
J. Carter, and A. Akella. AC/DC TCP: Virtual con-
gestion control enforcement for datacenter networks. In
Proceedings of the 2016 ACM SIGCOMM Conference,
SIGCOMM ’16, page 244–257, New York, NY, USA,
2016. Association for Computing Machinery.

[30] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda. Is it still possible to extend
TCP? In Proceedings of the 2011 ACM SIGCOMM Con-
ference on Internet Measurement Conference, IMC ’11,
page 181–194, New York, NY, USA, 2011. Association
for Computing Machinery.

[31] J. Iyengar, I. Swett, and M. Kühlewind. QUIC Ac-
knowledgement Frequency. Internet-Draft draft-ietf-
quic-ack-frequency-07, Internet Engineering Task Force,
Oct. 2023. Work in Progress.

[32] J. Iyengar and M. Thomson. QUIC: A UDP-Based
Multiplexed and Secure Transport. RFC 9000, May
2021.

[33] J. R. Iyengar and B. Ford. Flow splitting with fate shar-
ing in a next generation transport services architecture.
CoRR, abs/0912.0921, 2009.

[34] A. Kapoor, A. Falk, T. Faber, and Y. Pryadkin. Achiev-
ing faster access to satellite link bandwidth. In Proceed-
ings IEEE INFOCOM 2006. 25TH IEEE International
Conference on Computer Communications, pages 1–6,
2006.

[35] M. G. Karpovsky, L. B. Levitin, and A. Trachtenberg.
Data verification and reconciliation with generalized
error-control codes. IEEE Transactions on Information
Theory, 49(7):1788–1793, 2003.

[36] D. Kliazovich, S. Redana, and F. Granelli. Cross-layer
error recovery in wireless access networks: The ARQ
proxy approach. Int. J. Commun. Syst., 25(4):461–477,
Apr. 2012.

[37] S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Hen-
neberger, A. Leuther, A. Tessmann, R. Schmogrow,
D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude,
O. Ambacher, J. Leuthold, and I. Kallfass. Wireless sub-
THz communication system with high data rate. Nature
Photonics, 7:977–981, Oct. 2013.

[38] M. Kosek, H. Cech, V. Bajpai, and J. Ott. Exploring
proxying QUIC and HTTP/3 for satellite communica-
tion. In 2022 IFIP Networking Conference (IFIP Net-
working), pages 1–9, 2022.

[39] M. Kosek, T. Shreedhar, and V. Bajpai. Beyond QUIC
v1: A first look at recent transport layer IETF stan-
dardization efforts. IEEE Communications Magazine,
59(4):24–29, 2021.

[40] Z. Krämer, M. Kühlewind, M. Ihlar, and A. Mihály. Co-
operative performance enhancement using QUIC tun-
neling in 5G cellular networks. In Proceedings of the
Applied Networking Research Workshop, ANRW ’21,
page 49–51, New York, NY, USA, 2021. Association
for Computing Machinery.

[41] Z. Krämer, S. Molnár, M. Pieskä, and A. Mihály. A
lightweight performance enhancing proxy for evolved
protocols and networks. In 2020 IEEE 25th Interna-
tional Workshop on Computer Aided Modeling and De-
sign of Communication Links and Networks (CAMAD),
pages 1–6, 2020.

[42] N. Kuhn, F. Michel, L. Thomas, E. Dubois, and
E. Lochin. QUIC: Opportunities and threats in SAT-
COM. In 2020 10th Advanced Satellite Multimedia
Systems Conference and the 16th Signal Processing for
Space Communications Workshop (ASMS/SPSC), pages
1–7, 2020.

[43] T. Li, K. Zheng, K. Xu, R. A. Jadhav, T. Xiong, K. Win-
stein, and K. Tan. Tack: Improving wireless transport
performance by taming acknowledgments. In Proceed-
ings of the Annual Conference of the ACM Special In-
terest Group on Data Communication on the Appli-
cations, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’20, page 15–30,
New York, NY, USA, 2020. Association for Computing
Machinery.

[44] Y. Li, X. Zhou, M. Boucadair, J. Wang, and F. Qin.
LOOPS (Localized Optimizations on Path Segments)
Problem Statement and Opportunities for Network-
Assisted Performance Enhancement. Internet-Draft
draft-li-tsvwg-loops-problem-opportunities-06, Internet
Engineering Task Force, July 2020. Work in Progress.

[45] libcurl - the multiprotocol file transfer library. https:
//curl.se/libcurl/, Sept. 2023.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1827

https://curl.se/libcurl/
https://curl.se/libcurl/

[46] A. M. Mandalari, A. Lutu, B. Briscoe, M. Bagnulo, and
O. Alay. Measuring ECN++: Good news for ++, bad
news for ECN over mobile. IEEE Communications
Magazine, 56(3):180–186, 2018.

[47] A. Martin and N. Khademi. On the suitability of BBR
congestion control for QUIC over GEO SATCOM net-
works. In Proceedings of the Workshop on Applied Net-
working Research, ANRW ’22, New York, NY, USA,
2022. Association for Computing Machinery.

[48] S. McCanne and V. Jacobson. The BSD packet filter:
a new architecture for user-level packet capture. In
Proceedings of the USENIX Winter 1993 Technical Con-
ference, USENIX ’93, page 2, USA, 1993. USENIX
Association.

[49] A. Mihály, S. Nádas, S. Molnár, Z. Krämer, R. Skog, and
M. Ihlar. Supporting multi-domain congestion control
by a lightweight PEP. In 2017 International Conference
on Internet of Things, Embedded Systems and Commu-
nications (IINTEC), pages 105–110, 2017.

[50] Y. Minsky, A. Trachtenberg, and R. Zippel. Set reconcil-
iation with nearly optimal communication complexity.
IEEE Transactions on Information Theory, 49(9):2213–
2218, 2003.

[51] P. L. Montgomery. Modular multiplication without trial
division. Mathematics of Computation, 44(170):519–
521, 1985.

[52] Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos. A
survey of millimeter wave communications (mmWave)
for 5G: opportunities and challenges. Wireless Networks,
21:2657–2676, 2015.

[53] G. Papastergiou, G. Fairhurst, D. Ros, A. Brunstrom,
K.-J. Grinnemo, P. Hurtig, N. Khademi, M. Tüxen,
M. Welzl, D. Damjanovic, and S. Mangiante. De-
ossifying the internet transport layer: A survey and fu-
ture perspectives. IEEE Communications Surveys &
Tutorials, 19(1):619–639, 2017.

[54] C. Perkins, M. Westerlund, and J. Ott. Media Transport
and Use of RTP in WebRTC. RFC 8834, Jan. 2021.

[55] M. Polese, M. Mezzavilla, M. Zhang, J. Zhu, S. Rangan,
S. Panwar, and M. Zorzi. milliProxy: A TCP proxy
architecture for 5G mmWave cellular systems. In 2017
51st Asilomar Conference on Signals, Systems, and Com-
puters, pages 951–957, 2017.

[56] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda,
F. Duchene, O. Bonaventure, and M. Handley. How
hard can it be? Designing and implementing a deploy-
able multipath TCP. In Proceedings of the 9th USENIX

Conference on Networked Systems Design and Imple-
mentation, NSDI ’12, page 29, USA, 2012. USENIX
Association.

[57] F. Rochet, E. Assogba, and O. Bonaventure. TCPLS:
Closely integrating TCP and TLS. In Proceedings of
the 19th ACM Workshop on Hot Topics in Networks,
HotNets ’20, page 45–52, New York, NY, USA, 2020.
Association for Computing Machinery.

[58] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
arguments in system design. ACM Trans. Comput. Syst.,
2(4):277–288, Nov. 1984.

[59] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. Blind-
box: Deep packet inspection over encrypted traffic. In
Proceedings of the 2015 ACM Conference on Special In-
terest Group on Data Communication, SIGCOMM ’15,
page 213–226, New York, NY, USA, 2015. Association
for Computing Machinery.

[60] W. R. Stevens. TCP Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery Algorithms. RFC
2001, Jan. 1997.

[61] D. J. D. Touch. Transport Options for UDP. Internet-
Draft draft-ietf-tsvwg-udp-options-28, Internet Engi-
neering Task Force, Nov. 2023. Work in Progress.

[62] G. Wan, F. Gong, T. Barbette, and Z. Durumeric. Retina:
analyzing 100GbE traffic on commodity hardware. In
Proceedings of the ACM SIGCOMM 2022 Conference,
SIGCOMM ’22, page 530–544, New York, NY, USA,
2022. Association for Computing Machinery.

[63] K. Winstein and H. Balakrishnan. Mosh: An interactive
remote shell for mobile clients. In 2012 USENIX Annual
Technical Conference, USENIX ATC ’12, pages 177–
182. USENIX Association, June 2012.

[64] S. Woo and K. Park. Scalable TCP session monitoring
with symmetric receive-side scaling. KAIST, Daejeon,
Korea, Tech. Rep, 144, 2012.

[65] G. Yuan. Quack. https://github.com/ygina/
quack, Feb. 2024.

[66] G. Yuan. Sidekick. https://github.com/ygina/
sidekick, Feb. 2024.

[67] G. Yuan, D. K. Zhang, M. Sotoudeh, M. Welzl, and
K. Winstein. Sidecar: in-network performance enhance-
ments in the age of paranoid transport protocols. In
Proceedings of the 21st ACM Workshop on Hot Topics
in Networks, HotNets ’22, page 221–227, New York,
NY, USA, 2022. Association for Computing Machinery.

1828 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/ygina/quack
https://github.com/ygina/quack
https://github.com/ygina/sidekick
https://github.com/ygina/sidekick

[68] J. Zirngibl, P. Buschmann, P. Sattler, B. Jaeger,
J. Aulbach, and G. Carle. It’s over 9000: analyzing
early QUIC deployments with the standardization on
the horizon. In Proceedings of the 21st ACM Inter-
net Measurement Conference, IMC ’21, page 261–275,
New York, NY, USA, 2021. Association for Computing
Machinery.

[69] Zoom Video Communications, Inc. Zoom Encryp-
tion White Paper. https://explore.zoom.us/docs/
doc/Zoom%20Encryption%20Whitepaper.pdf, Aug.
2021.

A Intuitive Analysis of PACUBIC
Here, we dive deeper into the intuition behind the PACUBIC
constants (Section 4.3.2), including how they were derived
and why the PACUBIC algorithm achieves similar congestion
behavior to the CUBIC algorithm in a split connection—we
call this behavior “split CUBIC”.

Consider the same network topology as Figure 1 in which
a data sender uploads a large file to a data receiver, with help
from a sidekick proxy in the middle of the connection. The
near path segment connects the sender to the proxy, and the
far path segment connects the proxy to the receiver. The near
segment is low-delay with varying random loss, and the far
segment is high-delay with no random loss. The far segment
is the bottleneck link in terms of bandwidth. The actual link
parameters are the same as in Scenario #2 of Table 5.

We first discuss how split CUBIC would behave in this
setting to conceptually motivate PACUBIC. Consider the con-
gestion windows of each half of the split connection, one taken
at the data sender and one at the proxy (Figures 9a and 9d).
The far path segment experiences only congestive loss, lead-
ing the window at the proxy to fluctuate around the segment’s
BDP regardless of the loss on the near path segment. The
window at the data sender independently determines whether
the packets that reach the proxy will be able to fully utilize
the window set at the far path segment. The data sender is
able to achieve this at low random loss rates, but becomes the
bottleneck as loss rates increase (Figure 6).

While split CUBIC has two windows, PACUBIC only has
one window representing the in-flight bytes of the end-to-
end connection. PACUBIC considers loss detected from both
quACKs and end-to-end ACKs. Conceptually, we want an
algorithm that would enable PACUBIC’s single congestion
window to match the sum of CUBIC’s two congestion win-
dows, or the total number of in-flight bytes.

With no random loss on the near path segment, PACUBIC
(Figure 9b) behaves the same as normal CUBIC (Figure 9c).
The congestion window is entirely governed by end-to-end
ACKs since the far path segment is the bottleneck link. Note
that while the sender may be able to deduce that a loss oc-
curred on the far path segment by combining info from the
quACK with the end-to-end ACK, PACUBIC conservatively
treats the loss as occurring anywhere on the path.

With some random loss on the near path segment, PACU-
BIC grows and reduces cwnd based on where the last con-
gestion event occurs (Figure 9e). Note that if the congestion
window cwnd represents the bytes in-flight in the end-to-end
connection, then r · cwnd represents the proportion of bytes
in-flight on the near path segment. At a high level, if the data
sender discovers loss on the near path segment via the quACK,
it holds the (1− r) · cwnd portion of the “far window” con-
stant while applying the CUBIC algorithm to the remaining
r ·wmax of the “near window,” representing the bottleneck
link.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1829

https://explore.zoom.us/docs/doc/Zoom%20Encryption%20Whitepaper.pdf
https://explore.zoom.us/docs/doc/Zoom%20Encryption%20Whitepaper.pdf

0 5 10 15 20
Time Since Start (s)

0
20
40
60
80

100
120

cw
nd

 (p
ac

ke
ts

)

CUBIC PACUBIC Split CUBIC Split CUBIC (Proxy)

0 5 10 15 20
Time Since Start (s)

0
20
40
60
80

100
120

cw
nd

 (p
ac

ke
ts

)

(a) Split CUBIC, 0% loss.

0 5 10 15 20
Time Since Start (s)

0
20
40
60
80

100
120

cw
nd

 (p
ac

ke
ts

)

(b) PACUBIC, 0% loss.

0 5 10 15 20
Time Since Start (s)

0
20
40
60
80

100
120

cw
nd

 (p
ac

ke
ts

)

(c) CUBIC, 0% loss.

0 5 10 15 20
Time Since Start (s)

0
20
40
60
80

100
120

cw
nd

 (p
ac

ke
ts

)

(d) Split CUBIC, 1% loss.

0 5 10 15 20
Time Since Start (s)

0
20
40
60
80

100
120

cw
nd

 (p
ac

ke
ts

)

(e) PACUBIC, 1% loss.

0 5 10 15 20
Time Since Start (s)

0
20
40
60
80

100
120

cw
nd

 (p
ac

ke
ts

)

(f) CUBIC, 1% loss.

Figure 9: Congestion window of a long-running upload in Scenario #2 (Table 5) with 0% and 1% loss on the near path segmenet.
The cwnd is measured at the data sender, except for split CUBIC whose split connection also has a cwnd at the proxy. PACUBIC
reacts to every congestion event while keeping the cwnd high. CUBIC performs poorly when there is loss on the near path
segment. CUBIC and PACUBIC are implemented in QUIC, while split CUBIC is implemented in TCP using a PEP.

Mathematically, instead of reducing wmax, the window size
just before the last reduction, by (1−β∗) ·wmax, PACUBIC
reduces it by only [1− (1− r(1−β∗))] ·wmax = r(1−β∗) ·
wmax. That is r times the original reduction, a smaller amount.
We use the RTT ratio r (near path segment to end-to-end) as
a proxy for the ratio of the number of in-flight bytes.

Similarly, instead of using a cubic growth function
with scaling factor C∗ and inflection point K = K∗ =

3
√

wmax(1−β∗)/C∗, we use a larger scaling factor C =C∗/r3

and thus a shorter inflection point

K =
3

√
wmax(1−β)

C
= 3

√
r ·wmax(1−β∗)

C∗/r3 = r4/3 ·K∗.

The shorter inflection point leads the congestion window to
grow more quickly since the sender also reacts to feedback
about loss more quickly over the low-delay link.

At times, there can be loss detected both in quACKs and
in end-to-end ACKs. The end-to-end ACKs have a greater
effect since they reduce the congestion window by a larger
proportion, until the remaining path segment with loss is the
bottleneck link. In this scenario with loss, the bottleneck link
at equilibrium is the near path segment. At this point, the
quACK primarily determines the congestion window updates.
If the far path segment were to become the bottleneck again,
the data sender would detect a congestion event via the end-
to-end ACK.

PACUBIC has several limitations. Although it beats end-
to-end CUBIC, it still performs worse than split CUBIC, es-
pecially at high loss rates (Figure 6). Also, it doesn’t consider
loss on the far path segment any differently than original
CUBIC, unlike split CUBIC which treats the two split con-
nections independently. PACUBIC emulates the congestion
control behavior and fairness of split CUBIC fairly well as a
heuristic, but would benefit from an analysis in a wider variety
of network scenarios. It would also benefit from a side-by-
side fairness comparison against other congestion control
algorithms that perform well in the same scenarios. We’d like
the primary takeaway of PACUBIC to be that knowing where
loss occurs can cleverly inform congestion control.

1830 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

VILAM: Infrastructure-assisted 3D Visual Localization and Mapping for
Autonomous Driving

Jiahe Cui123, Shuyao Shi2, Yuze He2, Jianwei Niu∗1, Guoliang Xing2 and Zhenchao Ouyang34

1Beihang University 2The Chinese University of Hong Kong
3Tianmushan Laboratory 4International Innovation Institute of Beihang University

Abstract
Visual Simultaneous Localization and Mapping (SLAM)

presents a promising avenue for fulfilling the essential per-
ception and localization tasks in autonomous driving sys-
tems using cost-effective visual sensors. Nevertheless, exist-
ing visual SLAM frameworks often suffer from substantial
cumulative errors and performance degradation in compli-
cated driving scenarios. In this paper, we propose VILAM,
a novel framework that leverages intelligent roadside infras-
tructures to realize high-precision and globally consistent
localization and mapping on autonomous vehicles. The key
idea of VILAM is to utilize the precise scene measurement
from the infrastructure as global references to correct errors
in the local map constructed by the vehicle. To overcome the
unique deformation in the 3D local map to align it with the
infrastructure measurement, VILAM proposes a novel elas-
tic point cloud registration method that enables independent
optimization of different parts of the local map. Moreover,
VILAM adopts a lightweight factor graph construction and
optimization to first correct the vehicle trajectory, and thus
reconstruct the consistent global map efficiently. We imple-
ment the VILAM end-to-end on a real-world smart lamppost
testbed in multiple road scenarios. Extensive experiment re-
sults show that VILAM can achieve decimeter-level local-
ization and mapping accuracy with consumer-level onboard
cameras and is robust under diverse road scenarios. A video
demo of VILAM on our real-world testbed is available at
https://youtu.be/lTlqDNipDVE.

1 Introduction

Visual SLAM utilizes video streams from cameras as input,
reconstructs the 3D map of the unknown environment, and
simultaneously determines the position and orientation of
cameras with respect to their surroundings [5, 10, 13, 38]. It
holds the potential to enable the critical perception and local-
ization tasks required in autonomous driving systems [6, 44],

∗Corresponding author.

especially in challenging environments characterized by the
absence of traffic semantics, the lack of high-precision local-
ization and prior driving maps, or where the road surroundings
undergoes frequent structural changes. However, as an online
localization and mapping paradigm, visual SLAM systems
are vulnerable to cumulative drift caused by inherent sensor
noises of commodity cameras as well as errors from the fea-
ture point extraction and matching algorithms [23]. A recent
study [45] shows that current visual SLAM systems can yield
up to 75m of cumulative drift after mapping 2.6km on real
roads. A similar result is also shown in our real-world case
study where a state-of-the-art visual SLAM algorithm [4]
exhibits a drift of over 10m in map construction after a 400m
drive on a campus road. Such drift not only leads to significant
deviations in vehicle localization but also causes inconsisten-
cies in the constructed 3D map, posing a substantial challenge
to the reliability of autonomous driving systems.

To address these challenges, existing studies propose to em-
ploy loop-closures [4, 46] or integrate high-precision GNSS
locations [5, 7] as global references for error correction. How-
ever, loop-closure methods require the presence of looped
paths in vehicle trajectories, which is uncommon in au-
tonomous driving situations. GNSS-based methods rely on
centimeter-level accuracy GNSS-RTK equipment that can
cost up to $4,000 per suite [1] and the availability of GPS sig-
nals. Such limitations present significant barriers for adoption
in a variety of application scenarios, such as self-parking in un-
derground garages or autonomous driving in urban canyons.

In this work, we exploit intelligent roadside infrastructure
as a promising solution for enhancing vehicular SLAM. In-
telligent roadside infrastructures, equipped with LiDARs and
compute units, are increasingly available not only on public
roads [8] but also in places like campuses [20] and parking
lots [11, 35]. In particular, LiDARs are being progressively
deployed on roadside infrastructures due to their decreasing
prices in recent years [2]. Thanks to their stationary nature,
infrastructures can obtain accurate localization and measure-
ments of the environmental structure, which can serve as
reliable references to correct the cumulative drift in vehic-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1831

https://youtu.be/lTlqDNipDVE

ular SLAM. By opportunistically exploiting the references
from infrastructure nodes along the road, vehicles can achieve
high-performance visual SLAM over long-distance driving
without looped paths or GNSS devices.

This paper proposes VILAM, the first infrastructure-
assisted vehicular SLAM system that harnesses LiDAR mea-
surements from distributed roadside infrastructure in real time.
In designing VILAM, we address several key challenges. First,
due to the cumulative drift in visual SLAM, the local map con-
structed by the vehicle suffers irregular deformation, making
its alignment with global references challenging. We address
this challenge by devising a novel elastic alignment approach,
which optimizes each part of the local map independently to
maximum overlap with global references. Second, roadside
infrastructures may be installed sporadically on roadways.
Therefore, merely aligning the local map with the global ref-
erences is insufficient for obtaining a consistent global map.
VILAM adopts a novel factor graph optimization method to
infer the global map efficiently based on the local map and the
alignment results. Third, the vast volume of raw LiDAR point
clouds makes it challenging to share with passing vehicles.
Meanwhile, dynamic objects such as vehicles and pedestri-
ans can significantly deteriorate the scene measurements on
the infrastructure. VILAM proposes a lightweight solution,
which removes the low-occupancy segments of the accumu-
lated point cloud based on the mobility of objects and reduces
the redundancy and amount of 3D points to be shared while
ensuring the accuracy of the static scene measurement. Lastly,
VILAM does not require high-end sensors or localization de-
vices on vehicles. This facilitates a new mapping paradigm
for autonomous driving, especially beneficial in environments
lacking pre-loaded HD maps.

We have implemented VILAM end-to-end on a smart lamp-
post testbed, spanning multiple real-world road scenarios. We
collect a new dataset that covers a total of 17.6km of driving
trajectories with 44 infrastructure nodes in five typical road
scenarios. Our extensive evaluation shows that VILAM ex-
hibits a localization error within 0.5m and a mapping error
within 0.7m, which are less than 15% and 40% of the er-
rors of state-of-the-art baselines, respectively, even when the
coverage of roadside infrastructure is as low as 20%. More-
over, VILAM only transmits compact scene measurements at
around 236KB per frame, which reduces the data volume by
about 90× and 17× compared with raw and down-sampled
point clouds, respectively. Lastly, VILAM achieves an end-to-
end system latency within 350ms for global map correction
while updating the local map and vehicle localization at 15Hz.
A demo video of VILAM on our real-world testbed is avail-
able at https://youtu.be/lTlqDNipDVE.

2 Related Work

Visual SLAM. Visual SLAM is a specialized branch of
SLAM that utilizes visual sensor data, typically from one

or multiple cameras, to perform simultaneous mapping and
localization. Existing visual SLAM methods [3, 7, 27, 49]
build visual maps of 3D distinctive points by aggregating the
extracted features from the input images. However, due to the
noisy sensor measurements and the errors of feature match-
ing, such methods suffer from cumulative errors over a period
of exploration. Some works [4, 28, 38] utilize loop closure
detection to eliminate such errors, which is not reliable in au-
tonomous driving scenarios as vehicles rarely revisit the exact
same locations in a short time. Some studies [17, 29, 48] con-
struct globally consistent maps by merging the SLAM maps
from multiple agents. However, they require the agents to fre-
quently communicate with others and create overlapped maps
actively. This requirement complicates the deployment of
such methods in autonomous driving, where latency and com-
putational efficiency are paramount. Other works [7, 25, 37]
eliminate the cumulative errors by incorporating global con-
straints, such as global positioning from GNSS sensors. How-
ever, high-precision RTK-GNSS units are highly expensive,
while the consumer-grade GNSS measurement is insufficient
to effectively correct cumulative errors in SLAM. Further-
more, these methods tend to fail in environments where GNSS
signals are not available, such as underground parking lots
and urban canyons.
Camera-LiDAR Fusion. Previous research [32, 34, 42, 52]
explore the fusion of camera images and LiDAR point clouds,
with a focus on leveraging the strengths of these two sensors
to enhance the perception abilities of autonomous vehicles
across diverse scenarios. However, these fusion approaches
assume that the camera and LiDAR are mounted together
on the vehicle and are precisely calibrated. Therefore, they
cannot cope with the unique fusion problem in infrastructure
vehicle cooperative systems, where the LiDAR and cameras
are typically separated, and the relative positions constantly
change as the vehicle moves. Some studies [30, 39] can re-
solve the relative offset between the camera and LiDAR by
registering camera images to LiDAR point clouds, thereby
accomplishing sensor data fusion. However, the applicability
of these methods is often challenged as their performance
relies on the number of feature correspondences between the
image and point cloud pair. Due to the significant difference
in sensor perspectives between vehicles and infrastructure,
there are generally fewer corresponding features.
Infrastructure-assisted Localization and Mapping. The uti-
lization of smart roadside infrastructure to assist autonomous
vehicles is an emerging paradigm [33, 47]. Previous works
have utilized wireless communication devices like WiFi [19]
and UWB [15] on the infrastructures to achieve vehicle local-
ization. However, roadside devices can only provide vehicles
with approximate single-point location information, making
it challenging to aid vehicles in map construction tasks. Some
studies [22, 31] utilize pre-installed visual indicators, such as
QR code markers, as references for vehicle localization. How-
ever, their effectiveness diminishes as the distance between

1832 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://youtu.be/lTlqDNipDVE

(a) The real-world test scene and the test vehicle.

(b) Trajectory estimated by visual SLAM.

Figure 1: A motivational case study. (a) An example scenario
where the test vehicle drives through a long road. (b) The
errors of the vehicle’s trajectory estimated by visual SLAM
without correction and the GPS localization samples.

the vehicle and the marker increases, making them unreli-
able for practical driving scenarios. Some studies [16, 18, 43]
achieve vehicle localization by aligning the semantic cor-
respondences observed collectively by both infrastructure
and vehicles, thereby accomplishing perception fusion. These
studies predominantly focus on localization within the per-
ception range of a single infrastructure and the construction
of local maps. Moreover, to ensure alignment accuracy, these
studies usually require the equipping of high-precision Li-
DAR on both vehicle and infrastructure sides.

3 Background and Motivation

3.1 Preliminaries of SLAM Systems
SLAM technology constructs a 3D feature point map of an
unknown environment while simultaneously determining the
vehicle’s localization within the map using onboard visual-
inertial sensors, such as cameras and IMUs. Practical SLAM
systems exhibit considerable diversity in their implementa-
tions, yet most systems typically consist of the following three
modules:

Tracking. The tracking module goes through several key
steps. First, it detects 2D feature points within the current
image frame. Each point corresponds to a 3D map point m
in the environment and has a feature descriptor f. Then, these
feature points are matched with those in a previous keyframe
[50] according to the similarity of f, establishing associations
between the current frame and the keyframes. By combin-
ing information on the feature associations and IMU mea-
surements, this tracking module computes the relative pose
between the current frame and the keyframe. This process
constantly updates the vehicle’s localization w.r.t the starting
position.

Local Mapping. This module continuously collects track-
ing results from each individual image frame within a local
sliding window. It then leverages Bundle Adjustment [4] to
construct a 3D feature point map and estimate the vehicle’s
trajectory within that window. The feature point map is repre-
sented as a set of 3D map points and their feature descriptors:
M =

{
(m j ∈ R3, f j)

∣∣ j < N
}

, where m j is the 3D coordinates
of the jth map point, and f j is the corresponding feature de-
scriptor. N denotes the total number of landmarks in the map.
The estimated vehicle trajectory is a sequence of transforma-
tion matrices T = {T0,T1, · · · ,Ti, · · ·}. Ti = (Ri, ti) ∈ SE3
is the estimation of the vehicle’s pose at time i, where Ri
and ti denote the rotation and translation components of the
pose, respectively. Note that M and T are generated in the
local coordinate frame, whose origin is the starting point of
the SLAM. In practical driving scenarios, M and T are typi-
cally approximated to the global coordinate frame using the
vehicle’s initial localization as the starting point.

Error Minimization. This module rectifies the accumu-
lated errors in the estimated map and constructs a consistent
global map. These errors mainly stem from factors like the
sensor noises as well as feature mismatching during tracking
and are integrated into the map frame-by-frame, eventually
leading to an offset in the map. Most methods employ Loop
Correction [23] to minimize such errors. When vehicles re-
visit a previously traversed area, the module identifies key
features in the current frame, matches them with those stored
in the map from previous visits, and then detects if a loop path
exists. It then performs adjustments on the map points and the
estimated trajectory to ensure consistency on the loop path,
thereby mitigating accumulated errors. Some methods also
utilize periodic global positional information, such as GNSS
locations [5,25,37], to limit the growth of accumulated errors.

3.2 Limitations of SLAM

SLAM technologies can encounter unique challenges in au-
tonomous driving scenarios. To illustrate these challenges, we
present a motivating case study highlighting the limitations
of SLAM in the context of autonomous driving.

We conducted a test drive using a vehicle along a campus
road of around 450m, as depicted in Fig. 1(a). The test vehicle
is equipped with a RealSense camera, a consumer-level GPS
receiver, and a high-precision RTK unit. We employ ORB-
SLAM3 [4], a state-of-the-art visual SLAM algorithm widely
adopted in both research and industry, to process vehicle cam-
era images. Fig. 1(b) presents a comparison between the
vehicle trajectory estimated by ORB-SLAM3 and the ground
truth trajectory recorded by the high-precision RTK unit. Ini-
tially (e.g., within the first 100m), the estimated trajectory
closely aligns with the ground truth. However, as the vehicle
continues to drive, a noticeable offset occurs. As discussed in
Sec. 3.1, this offset is attributed to accumulated errors from
the tracking module. In driving scenarios, due to the pres-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1833

Vehicle localization

`̀

Infra. kInfra. k

……

Visibility constraint V-I geometric constraint

Elastic registration

mju'ij
uij

u'kj
ukj mju'ij

uij
u'kj

ukj
 (nI, qI)

mjmj
 (nI, qI)

mj
 (nI, qI)

mj
 (nI, qI)

mj

V-I AlignmentV-I Alignment

+

Map correction
CameraCamera

IMUIMU

Global Map
Correction
Global Map
Correction

Visual
SLAM

Factor graph
optimization

Local Map ConstructionLocal Map Construction
...

Corrected vehicle trajectory Corrected map

Vehicle trajectory

Visibility
relationship

Initial local map

Vehicle trajectory

Visibility
relationship

Initial local map

Consistent global map
Infra. k-1

LiDAR point clouds

Static scene
representation
Localization

I-
V

tr

an
sm

is
sio

n
I-

V

tr
an

sm
is

sio
nMeasurement

extraction

LiDAR point clouds

Static scene
representation
Localization

I-
V

tr

an
sm

is
sio

nMeasurement
extraction

Infra. Measurement ExtractionInfra. Measurement Extraction

Figure 2: The architecture of VILAM. The orange and blue boxes denote infrastructure and vehicle operations, respectively.

ence of dynamic objects and the rapid perspective changes
caused by high driving speed, incorrect feature associations
between consecutive frames can lead to more severe pose
estimation errors than in robotic applications. Lacking exter-
nal supervision, these errors accumulate over time, leading to
increasingly significant deviations in the vehicle’s trajectory.
For example, as shown in Fig. 1(b), when the trajectory length
exceeds 400m, the offset can exceed 10m.

While Loop Correction can minimize the cumulative er-
rors, it requires the vehicle to revisit previously traversed
locations frequently to establish loop constraints. Such an
approach might be practical in small-scale indoor localization
scenarios. However, autonomous vehicles often travel long
distances, and their trajectory planners aim to minimize re-
dundant routes. Consequently, the commonly seen trajectory
of the vehicles is as shown in Fig. 1(a). This characteristic
reduces the frequency of loop closure opportunities compared
to other SLAM applications like indoor robotics. Additionally,
road and traffic conditions can change rapidly in autonomous
driving scenarios. Conventional loop closure methods may
struggle to handle dynamic objects and changing environ-
ments. For those methods that utilize global positioning to
mitigate accumulated errors, Fig. 1(b) shows that consumer-
level GPS cannot consistently provide accurate localization
(with an average error exceeding 5m). In certain scenarios
(such as underground parking garages), vehicles can even fail
to obtain GNSS signals for extended periods. Therefore, a
significant gap remains between existing visual SLAM tech-
nologies and the vision of applying SLAM in autonomous
driving.

4 System Design

4.1 System Overview
As discussed in Sec. 3.2, visual SLAM technology faces sub-
stantial challenges in driving scenarios due to significant map-
ping errors in complex traffic environments and the unrelia-

bility of error correction methods. This work addresses these
challenges by utilizing intelligent roadside infrastructure to
enhance vehicle SLAM. The stationary nature of the roadside
infrastructure enables it to obtain accurate measurements of
the environmental structure and global localization, which
serve as reliable references to correct the accumulative errors
in visual SLAM. By receiving and exploiting such references
when continuously passing infrastructure nodes, vehicles can
achieve high-performance SLAM over extensive distances in
the absence of looped paths or precise global localization.

We propose VILAM, the first infrastructure-assisted vehi-
cle SLAM system that harnesses LiDAR measurements from
distributed roadside infrastructures as global references to en-
hance visual SLAM on the vehicle in real time. Fig. 2 shows
the overview of VILAM. Specifically, VILAM consists of one
module on infrastructure and three modules on the vehicle.

On the infrastructure side, the infrastructure measure-
ment extraction module (Sec. 4.3) periodically extracts a
lightweight scene representation from the accumulated infras-
tructure LiDAR point clouds. By filtering out dynamic objects
and merging redundant points, it obtains a high-quality yet
compact measurement of the environmental structure. This
refined measurement, along with the infrastructure’s location,
are utilized as global references and broadcast to all nearby
vehicles.

On the vehicle side, the local map construction (Sec. 4.2)
module employs existing visual SLAM modules based on
the onboard sensor to keep constructing an initial 3D local
map. To be compatible with diverse visual SLAM frame-
works, it extracts three types of data that are common to most
of the existing approaches: the feature point map, the his-
torical vehicle localization (i.e., the vehicle trajectory), and
the visibility relationship between them, for the following
processing with the infrastructure measurement. Once the ve-
hicle receives the global reference from the infrastructure, the
vehicle-infrastructure alignment (Sec. 4.4) module aligns the
local feature point map with the infrastructure measurement
to correct the overlapped part of the local map and the latest

1834 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

vehicle trajectory. In particular, we devise a novel elastic align-
ment approach to address the deformation in local 3D maps
that renders conventional rigid-oriented point cloud registra-
tion methods ineffective. Finally, the global map correction
(Sec. 4.5) module leverages the corrected part of the vehicle
trajectory to amend the historical vehicle trajectory and the
entire feature point map. This module adopts a novel factor
graph-based representation to encode only the lightweight
vehicle trajectory and the alignment results. By optimizing
the factor graph to iteratively correct the historical trajectory,
it can infer a consistent global map efficiently based on the
visibility relationship between the vehicle trajectory and the
initial feature point map. To minimize compute overhead, the
local map construction module runs continuously to update
the local map and vehicle trajectory. Concurrently, the vehicle-
infrastructure alignment and global map correction modules,
triggered by global references from the infrastructure, oper-
ate in parallel. This parallel processing strategy guarantees
efficient computation and timely updates for the map and
localization.

4.2 Local Map Construction
We employ the tracking and the local mapping modules from
visual SLAM frameworks (see Sec. 3.1) on the vehicle to
continuously estimate the vehicle localization and construct
an initial local map based on the camera image sequences.
However, existing visual SLAM frameworks exhibit diverse
designs due to varying sensor configurations and feature ex-
traction methods [4, 38, 53], resulting in a multitude of map
representations and data formats. To ensure robust compatibil-
ity across these visual SLAM frameworks, VILAM carefully
extracts three data types: (i) The initial 3D feature point map
M . (ii) The estimated vehicle trajectory T . (iii) The visibility
relationship C between M and T . This visibility relationship
indicates that a feature point in M can be observed by the
vehicle at different positions along T , denoted by a set of
tuples as

C =
{
(i, j,u,v)

∣∣Ti ∈ T ,m j ∈ M , u,v ∈ Z
}

(1)

where the tuple (i, j,u,v) indicates that the map point m j
can be observed by vehicle at pose Ti, and this observation
corresponds to a 2D feature point (u,v) on the camera image
captured at Ti. These three types of data are common to most
existing visual SLAM pipelines, depicting all the map point
information in the initial local map and the spatial-temporal
relationships between them.

4.3 Infrastructure Measurement Extraction
This module runs on each roadside infrastructure node to
generate an accurate 3D measurement of the surrounding en-
vironment with precise localization, utilizing the data from
the LiDAR on the infrastructure. This measurement is a set of

points processed from LiDAR point clouds over a period of
time. Thanks to the precise nature of LiDAR and the immov-
able location of the infrastructure, these points have global
coordinates with errors within millimeters. Therefore, mea-
surements from infrastructure distributed along the vehicle
trajectory can serve as ideal global references to assist visual
SLAM.
Measurement Extraction. LiDAR point clouds can be highly
dynamic in traffic scenarios due to moving objects such as
vehicles and pedestrians. Points belonging to moving ob-
jects may not have correspondences in the 3D local map
constructed by the vehicle and thus cannot be used as global
references for visual SLAM. Existing methods [14] for filter-
ing moving objects, which typically use deep neural networks,
can cause substantial computation overhead. Inspired by [24],
we design a lightweight approach to eliminate the dynamic
points, utilizing the accumulated point cloud over a period of
time. Moreover, such accumulated point clouds have higher
resolution to achieve a more accurate measurement of the en-
vironment structure. Specifically, we accumulate the LiDAR
frames over a time period (e.g., 5 seconds) as a dense point
cloud. We then voxelize this point cloud into voxel grids and
calculate the occupancy of each grid (i.e., the number of points
located in that grid). Static objects are present at consistent
positions across all the LiDAR frames so the corresponding
voxels have higher occupancy, and vice versa. Therefore, we
filter out the points in voxels with low occupancy and merge
the rest of the points to the center of each voxel, thus obtaining
an accurate but extremely compact measurement of the static
scene. Finally, we estimate the planar feature (i.e., the param-
eter of the tangent plane) for each point in the remaining point
cloud and combine it as the feature of this point. Note that
planar features not only are presented in the structures like
roads and walls, but also can be extracted by differentiation
from curved surfaces such as tree trunks. We denote the final
point set from the kth infrastructure node as Pk.
I-V Transmission. Given that Pk comprises only informa-
tion regarding static scenes around the infrastructure, it can
maintain consistency over a period of time. This allows for
low-frequency measurement extraction on the infrastructure
and a one-shot operation to transmit the measurement from
the infrastructure to each vehicle. This approach substantially
diminishes the computational and communication overhead
on the infrastructure. Moreover, the measurement of an in-
frastructure node can be broadcast to all passing vehicles, en-
hancing the scalability of this infrastructure-assisted SLAM
framework.

4.4 Vehicle-Infrastructure Alignment

When the vehicle passes an infrastructure node, there is usu-
ally a significant overlap between the field of views of the
sensors on the vehicle and the infrastructure, which means
that the LiDAR measurement from the infrastructure (i.e., Pk)

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1835

ma
dgeo

(b)Planar feature(a)

T1

T1

mb

ma
mb

 (n, q)

T2

Vehicle trajectory

Visibility relationship

SLAM map point

2D Map point projection

T1 T2
Image plane

rvis1

(u,v)1

T2

(u,v)2

rvis2π(T2 ,mb)
π(T1 ,mb)

Figure 3: Illustration of (a) geometry constraint and (b) visi-
bility constraint in the vehicle-infrastructure alignment. The
red point cloud is the global reference from the infrastructure,
and the green one is the constructed local map.

and the corresponding part of the vehicle’s local map (i.e., M)
depict the same scene. Since Pk and M are both represented
by 3D point sets with real-world coordinates, by aligning M
to the global reference Pk, the vehicle can correct the errors
in the overlapped part of M and the corresponding part of
vehicle trajectory T . We denoted these local map and vehicle
trajectory segments as M̃ and T̃ , respectively.

Conventional point cloud alignment algorithms, also known
as point cloud registration, are predicated on the rigid-body
assumption of point clouds, making them ill-suited for this
alignment task. These algorithms assume a rigid-body trans-
formation relationship between M̃ and Pk, suggesting that
the misalignment for each map point m j in M̃ is uniform.
However, as discussed in Sec. 3.1, M is accumulated frame-
by-frame during the visual SLAM process on the vehicle,
with errors from both feature point extraction and vehicle
pose estimation being integrated and compounded in M . As
a result, the misalignment distribution between each segment
of M̃ and the corresponding segment in Pk is not uniform.

To address this issue, we design an elastic point cloud
registration approach. Our key idea is to optimize each part of
M̃ independently to achieve maximum overlap with Pk after
alignment. This optimization is conducted based on two types
of constraint: geometry constraint and visibility constraint.
As illustrated in Fig. 3, the geometric constraint restricts the
points in M̃ to their closest planes in Pk, while the visibility
constraint further optimizes the position of each point in the
plane using its coordinates from different viewpoints on the
trajectory.
Geometry Constraint. We first associate each map point
m j with a plane in Pk by searching its nearest plane feature
(n j,q j) estimated during infrastructure measurement extrac-
tion (see Sec. 4.3), where n j represents the plane’s normal
vector and q j denotes the plane’s center. The distance from
m j to the plane can be calculated by:

dgeo(m j) = (m j −q j)
T ·n j (2)

which denotes the misalignment between m j and its cor-
responding object in Pk. Therefore, we aim to minimize
dgeo(m j) across the map segment M̃ to constrain all the map
points closer to Pk.
Visibility Constraint. The geometry constraint can locate
m j to a plane but cannot determine its position within the
plane. We propose to utilize the vehicle’s visibility of m j at
different positions on T̃ to further constrain its coordinate.
As discussed in Sec. 3.1, a map point m j can be observed by
the vehicle from different locations on the trajectory, which
is represented by the visibility relationship C . We project
m j back to the images captured at these locations. If m j is
accurate, its projection point should be consistent with the
corresponding 2D feature point. We calculate the distance
between them by:

rvis(m j, T̃) = ∑
i

∥∥∥π
(
(Ti)

−1m j
)
− (u,v)T

∥∥∥ (3)

where π(·) denotes the projection function and (i, j,u,v) ∈
C . Therefore, minimizing rvis(m j, T̃) provides another con-
straint on the map points to ensure their consistency from
different viewpoints on the vehicle trajectory.

By combining the two types of constraints across all map
points, we formulate the point cloud alignment of M̃ and T̃
as an optimization problem:

T̃ ∗,M̃ ∗ = arg min
T̃ ,M̃

∑
j

∥∥∥[dgeo
rvis

]∥∥∥2

2
(4)

where we leverage 2-norm to combine dgeo and rvis as they
can be approximated as the normal and radial distances be-
tween m j and the groundtruth, since dgeo are usually parallel
to the direction of the vehicle due to the depth estimation error,
while the rvis are within the image plane, which is usually per-
pendicular to the vehicle direction. Given the high dimension
of the optimization variables (there can be thousands of map
points in M̃), we employ the sparse Levenberg-Marquardt
algorithm [40] to solve this optimization problem.

4.5 Global Map Correction
After the alignment, we have the latest part of the initial lo-
cal map and the vehicle trajectory corrected (i.e., M̃ ∗ and
T̃ ∗) based on the global references from the infrastructure.
Ideally, if the roadside infrastructure nodes are densely dis-
tributed with their field of view covering the entire road, an
accurate global map can be simply obtained by stitching all
the corrected map segments. However, given the complexity
of real-world road environments and the varied density of
roadside infrastructure distribution, it is challenging for road-
side sensors to achieve comprehensive coverage of roadways.
Therefore, we need to utilize M̃ ∗ and T̃ ∗ to correct the his-
torical part of M and T and obtain a consistent global map.
However, directly conducting the correction on M may incur

1836 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

V-I alignment at infrastructure k

...
Current

localization

V-I alignment at
infrastructure k-1

Vehicle
localization

Relative pose
transformation

V-I alignment
factor

... ...
iT 1iT wiT

Propagating
correction

*
iT *

1iT
*

wiT

1i
iB

Figure 4: Illustration of the factor graph construction and optimization. The nodes and factors denote the poses along the original
vehicle trajectory and the trajectory corrected with global references, respectively. By optimizing this factor graph, VILAM can
efficiently correct historical and upcoming vehicle poses.

significant compute overhead since numerous map points in
M have to be adjusted one by one based on M̃ ∗. To address
this challenge, we adopt a factor graphed-based representation
to encode only the original vehicle trajectory T and its cor-
rected part T̃ ∗. By optimizing this lightweight factor graph,
we can obtain the corrected historical trajectory and then infer
the entire feature point map efficiently based on it.

Specifically, Fig. 4 shows the construction and optimization
of the factor graph. The nodes in the graph denote the 3D
poses along the original vehicle trajectory T , and the binary
edge Bi+1

i between two neighbor nodes represents the relative
pose transformation between them. For the trajectory segment
T̃ corrected by the global references from the infrastructure,
the corrected coordinate T∗

i acts as the factor of the node Ti.
We aim to optimize the value of nodes without factors based
on all the binary edges and the factors. It can be described by
the following optimization problem:

T ∗ = argmin
T

∑
Ti∈T

∥∥∥E
(

Ti+1,TiBi+1
i

)∥∥∥2
+ ∑

T∗
i ∈ ˜T ∗

∥∥∥E
(

Ti,T∗
i

)∥∥∥2

,

(5)
where E(·, ·) calculates the errors between two poses. This
problem can be efficiently solved by the incremental factor
graph optimization method [21], which iteratively corrects
each node value under the constraints of its connected edges
in a propagation manner. After such optimization processing
over the entire graph, we obtain the entire corrected trajectory
T ∗. Utilizing the visibility relationship C between the trajec-
tory and the feature points in M , we can infer the map points
based on T ∗ and finally reconstruct a consistent global map.

5 Testbed and Dataset

Testbed. Fig. 5 (a) and (b) show the setups of the roadside
infrastructure and the test vehicle in the real-world. Each
roadside infrastructure is equipped with two Livox Horizon
LiDARs installed at a height of 3.5m, covering both sides of
the facility in a rear-facing configuration. It should be viable
to apply VILAM’s idea to 3D cameras on the infrastructure,
and we have left this to future work. Additionally, it has an
Nvidia Jetson TX2 computing module with Wi-Fi, capable
of simple local information processing and communicating

LiDARLiDAR

WiFiWiFi
TX2TX2

LiDAR
LiDAR

WiFi
TX2

LiDAR

Camera

LiDARRTK

(a) Roadside infrastructure. (b) Test vehicle.

(c) Test scenarios.

InfrastructureInfrastructureInfrastructure

Figure 5: A real-world smart infrastructure testbed deployed
in diverse scenarios for data collection and system evaluation.

with the vehicle. The vehicle is equipped with a Realsense
D455 camera (with built-in IMU). The camera is only used to
collect raw images and IMU measurements, without depth in-
formation. The on-vehicle computing/communication unit is
a laptop with an AMD Ryzen 2.90GHz CPU and an NVIDIA
RTX 2060 GPU. Additionally, the test vehicle is equipped
with a Livox HAP LiDAR and an Asense ins570d RTK-GNSS
receiver for ground truth collection. Specifically, we repeat-
edly scan the roads with LiDAR and merge the point clouds
offline using an existing mapping system [41] to create the
ground-truth map. The vehicle’s ground-truth trajectory is
obtained by aligning the point cloud frames captured by the
LiDAR with the ground-truth map.
Real-world Dataset. We collect an extensive real-world
dataset across five typical scenarios using our infrastructure
and vehicle testbeds, as shown in Fig. 5(c). Table 1 details
the data collected in each scenario. Each of these scenarios
poses challenges for existing visual SLAM systems: (i) In
the open roads and campus scenarios, there are few closed
loops in the vehicle trajectories. (ii) The industrial park and
underpasses have limited GNSS signal coverage (∼ 60%),
which is completely absent in the underground parking facil-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1837

Table 1: Summary of the test scenarios, where "Traj." repre-
sents the vehicle trajectories, "GPS" represents the coverage
of GNSS signals in the scenario, "Infra." represents infras-
tructure.

Scenario Traj. length Images GPS Infra. nodes
Open Road 6.6 km 45.1 k ~90% 13

Campus 1.3 km 15.4 k ~80% 8
Industrial park 5.9 km 40.2 k ~60% 9
Underpasses 0.4 km 3.6 k ~60% 4

Underground parking 3.4 km 33.0 k 0% 10

ity. The average infrastructure coverage across all scenarios
is around 60%. We quantify the infrastructure coverage by
calculating the proportion of the vehicle’s ground-truth trajec-
tory positions that fall within the infrastructure’s point cloud.
The inter-infrastructure node distance lies between 20m and
170m. The vehicle’s average speed is 5m/s (up to 10m/s)
due to the speed limits in most test scenarios. In summary,
our dataset covers a total of 17.6km in driving trajectories, in-
cluding 137.3k image frames captured by vehicles and 55.2k
point cloud frames from 44 infrastructure nodes. This research
has been granted IRB approval.

6 Evaluation

6.1 Evaluation Setup and Metrics

6.1.1 Experiment Setup

On the infrastructure side, the data rate of the LiDAR point
cloud is 10 fps. We utilize a 5-second point cloud sequence for
measurement extraction and set the voxel grid size to 0.5m.
On the vehicle side, for the local map construction task, we
configure the vehicle camera to capture images at a data rate
of 15 fps and IMU measurements at 200 fps. We set the image
resolution to 768x480. For the V-I alignment task, we set the
length of the local map segment to 30m.

6.1.2 Evaluation Metrics

APE, ARE and RTE. We employ Average Positioning
Error (APE) and Average Rotation Error (ARE) [36] to
evaluate the absolute accuracy of the trajectory estimated
by the SLAM algorithm. Specifically, APE quantifies the
translational discrepancies between the estimated trajec-
tory and the ground truth trajectory at each frame: APE =
1
n ∑

n
i

∥∥∥Et

(
trans(Test

i), trans(Tgt
i)

)∥∥∥, where n denotes the
frame number. Similarly, ARE measures the rotational dis-
crepancies between the estimated and the ground truth trajec-
tory: ARE = 1

n ∑
n
i

∥∥∥Er

(
rot(Test

i),rot(Tgt
i)

)∥∥∥. Furthermore,
we leverage the Relative Trajectory Error (RTE) from the
KITTI Benchmark [12] to compute the degree of trajectory
drift over time.
Chamfer Distance. We adopt the Chamfer Distance (CD)
to assess the difference between the point cloud map X con-

 Vehicle Trajectory Infrastructure

1 2 3

4 5 6

78

0 1 2 3 4
Driving Time (min)

0.2
0.4
0.6
0.8

AP
E

(m
) APE Average APE

1 2 3 4 5 6 7 8

−100 −50 0 50 100 150 200
x (m)

−25

0

25

y
(m

) Map Quality Infrastructure

0.2 0.4Error
(m)

 Vehicle Trajectory Infrastructure

1 2 3

4 5 6

78

0 1 2 3 4
Driving Time (min)

0.2
0.4
0.6
0.8

AP
E

(m
) APE Average APE

1 2 3 4 5 6 7 8

−100 −50 0 50 100 150 200
x (m)

−25

0

25

y
(m

) Map Quality Infrastructure

0.2 0.4Error
(m)

 Vehicle Trajectory Infrastructure

1 2 3

4 5 6

78

0 1 2 3 4
Driving Time (min)

0.2
0.4
0.6
0.8

AP
E

(m
) APE Average APE

1 2 3 4 5 6 7 8

−100 −50 0 50 100 150 200
x (m)

−25

0

25

y
(m

) Map Quality Infrastructure

0.2 0.4Error
(m)

Figure 6: An end-to-end evaluation in the underground park-
ing scenario. Above: the vehicle trajectory and infrastructure
locations in the test scene. Middle: the error of the estimated
vehicle localization during the driving trace. Bottom: the final
map quality along the vehicle trajectory.

structed by the SLAM algorithm and the ground truth map
Y . CD is computed by summing the squared distances be-
tween nearest neighbor correspondences of two point clouds:
CD(X ,Y) = ∑x∈X miny∈Y ||x− y||22 +∑y∈Y minx∈X ||x− y||22.

6.1.3 Baselines.

We implement three state-of-the-art visual SLAM algorithms
as baselines. OpenVINS [13] is a conventional local mapping
framework without error minimization. ORB-SLAM3 [4]
and GVINS [5] employ loop-closures and GNSS locations,
respectively, as global constraints to correct the cumulative
drift. VILAM can incorporate all these algorithms within the
local map construction module. However, due to the diverse
GNSS coverage across different test scenarios, we adopt ORB-
SLAM3 in VILAM’s implementation for evaluation unless
otherwise noted.

6.2 End-to-end System Evaluation
We evaluate the end-to-end system performance of VILAM
in real-world scenarios described in Table 1. Fig. 6 illus-
trates the performance of VILAM in the Underground Park-
ing scenario. A video clip of the complete localization and
mapping result of the test vehicle is available at https:
//youtu.be/lTlqDNipDVE. In the upper subfigure, the grey
background represents the floorplan of the parking lot ex-
tracted from the ground truth map, the red line depicts the
driving trajectory, and the yellow dots represent the locations
of the infrastructure nodes. The node is numbered in the

1838 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://youtu.be/lTlqDNipDVE
https://youtu.be/lTlqDNipDVE

Table 2: Trajectory accuracy comparison of VILAM with existing SLAM methods across various scenarios. The unit of the APE
metric is meters.

Method Open roads Campus Industrial park Underpasses UDG parking All Scenarios
APE RTE APE RTE APE RTE APE RTE APE RTE APE RTE

OpenVINS [13] 8.170 3.54% 10.406 9.92% 4.772 1.48% 11.30 6.71% 6.144 3.37% 8.158 5.01%
OpenVINS + VILAM 0.355 1.46% 0.493 3.93% 0.380 0.60% 0.347 3.04% 0.294 0.71% 0.373 1.94%

ORB-SLAM3 [4] 5.745 2.91% 2.646 2.45% 2.556 1.60% 3.568 3.85% 3.278 2.06% 3.558 2.58%
ORB-SLAM3 + VILAM 0.351 1.87% 0.427 1.75% 0.296 1.16% 0.359 2.63% 0.219 0.76% 0.330 1.63%

GVINS [5] 2.456 3.37% 1.710 3.52% 3.505 2.41% 4.219 3.69% 4.059 2.78% 3.190 3.15%
GVINS + VILAM 0.403 2.30% 0.354 2.38% 0.325 0.65% 0.340 3.13% 0.249 0.42% 0.335 1.77%

order the vehicle passes by. The middle subfigure shows
the real-time localization accuracy (APE) of VILAM. The
numbered vertical lines represent the moment the vehicle
encounters an infrastructure node. We observe that, in the
areas between infrastructures, there is a slight upward trend
in the localization error. The error is corrected once the ve-
hicle passes an infrastructure and optimizes its local map
through V-I alignment. The lower subfigure shows the trajec-
tory estimated by VILAM and the accuracy of the constructed
map. We color-code the vehicle trajectory using the map-
construction error (Chamfer Distance) of the corresponding
region. It can be seen that, with global map correction, the
error distribution of the map maintains consistent uniformity
in both infrastructure-covered and uncovered regions. We
further evaluate the impact of the coverage of infrastructure
deployment on VILAM’s performance in Sec. 6.6.

6.3 Performance of VILAM
6.3.1 Trajectory Estimation

As mentioned in Sec. 4, VILAM tracks the vehicle by
associating image frames to derive the vehicle trajectory.
Therefore, the accuracy of the estimated trajectory indicates
VILAM’s continuous real-time localization performance. Ta-
ble 2 presents a comparison of trajectory accuracy between the
baselines and VILAM implementations based on them across
five testing scenarios. The results show that all VILAM imple-
mentations outperform the corresponding baseline algorithms.
Specifically, OpenVINS exhibits substantial errors (i.e., over
8.1m on average) in all scenarios. ORB-SLAM3 and GVINS
enhance accuracy by introducing global constraints but still
have significant errors, especially in scenarios that lack loop
paths (e.g., open roads and underpasses) and GNSS coverage
(e.g., underground parking), respectively. In contrast, VILAM
achieves an APE within 0.4m and an RTE within 2% on av-
erage across all scenarios while demonstrating robustness to
the algorithms used in the local map construction module.

Fig. 7 shows a further evaluation of the benefits of the
VILAM framework exploiting global references from road-
side infrastructure. "Baseline" and "VILAM " refer to the
original baseline algorithms and the VILAM implementa-
tions using these algorithms in the local map construction
module, respectively. "w/ Landmark" and "w/ Infra." indi-

OV ORB3 GVINS0

1

2

3

4

5

AP
E

(m
)

Baseline
w/ Landmark
w/ Infra.
w/ VILAM

Figure 7: Performance im-
provement of VILAM using
different SLAM methods for
local map construction.

Road Off-road Overall0

1

2

3

4

5

6

Ch
am

fe
r D

ist
an

ce
 (m

) ORB3
OV

GVINS
VILAM

Figure 8: The Chamfer Dis-
tance between the constructed
map and the ground truth
map.

cates the modified baseline algorithms. "w/ Landmark" cor-
rect SLAM by utilizing the detected infrastructure positions
from vehicle-side images as reference landmarks. "w/ Infra."
correct the SLAM results by directly integrating the point
clouds from the infrastructure through a conventional point
cloud registration method [26]. We can find that simply uti-
lizing information from the infrastructure can improve the
performance of the baseline algorithms. However, such im-
provements are minor for ORB-SLAM3 and GVINS, as they
utilize loop detection and GNSS to correct some errors, re-
spectively. In contrast, VILAM significantly outperforms "w/
Infra." and "w/ Landmark" across all three basic algorithm
implementations, achieving over an 80% reduction in APE.
This is because VILAM’s elastic alignment approach over-
comes the deformation in the local map, thereby significantly
improving alignment accuracy. Moreover, the global map cor-
rection module of VILAM utilizes the alignment results to
optimize both the historical map and the real-time localization
results. We delve further into the performance of these two
modules in Section 6.5.

6.3.2 Map Quality Evaluation

In this section, we evaluate the quality of the map constructed
by VILAM. Like mainstream SLAM methods, VILAM builds
a 3D feature point map, primarily used for vehicle relocaliza-
tion by reusing the map. Therefore, we mainly focus on the
accuracy of the reconstructed map points’ coordinates and the
overall consistency of the map.

Fig. 8 compares the CD between the estimated map of

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1839

0 50 100 150 200 250
x (m)

−25

0

25

50

y
(m

)

 VILAM Trajectory Infrastructure

0.2 0.4 0.6 0.8Error
(m)

0 50 100 150 200 250
x (m)

40

0

-50

y
(m

)

Figure 9: Visualization of the trajectory and the 3D feature
point map estimated by VILAM. Above: the infrastructure
locations and the estimated vehicle trajectory by VILAM.
Bellow: the bird-eye view of the 3D map built by VILAM,
where colors(blue to red) indicate different point heights.

VILAM / baseline SLAM and the ground-truth map. The
higher the CD, the greater the error of the estimated map. As
autonomous driving perception tasks primarily focus on road
information and relocalization tasks mainly concern off-road
three-dimensional structure and texture features, we divide
the map points into two main categories: road and Off-road
structure. Consistent with the trajectory evaluation results,
baseline methods incorporating global constraints such as
loop-closing or GNSS (ORB-SLAM and GVINS) exhibit an
improvement over approaches relying solely on Local Map-
ping. However, the overall map accuracy of these methods
still falls short when compared to the ground truth. VILAM
addresses this limitation through its global map correction
module. By effectively integrating corrections from multi-
ple infrastructure-based VI-Alignment with the factor graph,
VILAM enhances global consistency and improves map accu-
racy. We visualize the point cloud map constructed by VILAM
in Fig. 9. Due to the high accuracy and consistency of the
map, the structures of buildings around the road are clearly
discernible.

6.4 System Overhead
System Latency. In Fig. 10, we present the end-to-end la-
tency distribution of VILAM throughout a driving trace. Here,
"Local Map" represents local map construction, and "Global
Map" represents global map correction . The infrastructure-
related tasks, namely I-V Transmission, V-I alignment, and
global map correction, are only triggered when the vehicle
encounters an infrastructure. VILAM operates with minimal
computational overhead during intervals without infrastruc-
ture coverage, as only the local map construction task re-

0 1 2 3 4 5
Driving Time (min)

0.0

0.1

0.2

0.3

0.4

0.5

La
te

nc
y

(s
)

Local Map
V-I Alignment

I-V Transmission
Global Map

Figure 10: End-to-end latency
of VLIAM on the vehicle
side.

0.0 0.2 0.4 0.6 0.8
Runtime (s)

In
fra

Ve
hi

cle

...

...

Measurement
Extraction

Local Map
V-I Alignment

I-V Transmission
Global Map

Figure 11: The detailed run-
time of each module.

Table 3: The average size and transmission time of the shared
data measured on an 802.11ac network. PC denotes "Point
Cloud", and SSR denotes "Static Scene Representation."

Data type Trans mode Sync Size Time
Raw PC Continuous Required 21.1 MB 3.93s

Downsampled PC Continuous Required 4.1 MB 0.78s
VILAM SSR Single-shot – 236.3 KB 0.04s

mains active. A detailed timeline as the vehicle passes through
one of the infrastructures is illustrated in Fig. 11. Thanks to
VILAM’s concurrent design, local map construction is not
blacked by the infrastructure-related tasks. This ensures it
outputs continuous vehicle localization based on previously
corrected maps, maintaining real-time system performance.
It is critical for downstream tasks that require real-time lo-
calization, such as trajectory planning. The average latency
for infrastructure-related tasks is about 0.35s, ensuring a near
real-time correction of both the map and localization after the
vehicle passes through an infrastructure.
I-V Transmission. We further evaluated the data transmis-
sion overhead associated with the vehicle’s acquisition of
point clouds from infrastructure. The results are presented in
Table. 3. When directly streaming a raw point cloud sequence
(about 100 frames) to the vehicle, the data transfer volume
exceeds 20MB, and it is also burdened by a considerable
transmission latency. After performing voxel downsampling
on each point cloud frame, the number of points is reduced,
yet the final data volume still surpasses 4MB. This can be
attributed to the fact that points in each frame contain redun-
dant measurements of static structures within the scene. As
discussed in Sec. 4.3, VILAM addresses this by merging the
points of static structures across multiple frames, effectively
eliminating redundancy. Consequently, the final transmitted
Static Scene Representation requires a mere 236KB of data.
Influence of Infrastructure Measurement Precision. In
Sec. 4.3, the voxel grid size influences the size and precision
of the extracted representation, which in turn affects the la-
tency of I-V transmission and the subsequent performance of
the V-I alignment. As illustrated in Fig. 12, when the voxel
size is increased, more redundant points occupying the same
spatial location are merged, leading to a consistent reduc-

1840 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.1 0.5 0.9 1.3 1.7
Voxel Size (m)

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(s
)

I-V Transmission
V-I Alignment

0.2

0.4

0.6

0.8

AP
E

(m
)

Figure 12: The impact of
voxel size on the system over-
head and the performance of
VILAM.

0 2 4 6
Driving Time (min)

0

2

4

6

8

AP
E

(m
)

ORB3
w/o Global Map
w/ Global Map

Figure 13: The influence of
the global map correction
module on the performance of
VILAM.

tion in the size of the representation and thereby significantly
decreasing the transmission latency. Meanwhile, the latency
of V-I alignment only reduces at first. This reduction is due
to the decreased point number after the voxel grid partition,
resulting in faster neighboring searches during alignment.
However, when the voxel size exceeds about 0.7m, this la-
tency reduction plateaus because the reduced precision of
the representation at larger voxel sizes means that the joint
optimization process requires more time to converge. The
green bars in Fig. 12 depict the influence of voxel size on the
accuracy of the V-I alignment. There is a slight degradation
in the accuracy with the voxel size increases. In our practical
implementation, we set the voxel size to 0.5m, which strikes
a balance by ensuring lower latency without compromising
accuracy.

6.5 Micro Benchmarks
Performance of V-I Alignment. The result of the V-I align-
ment directly influences the accuracy of the global constraints
that VILAM derives from the infrastructure. In this section,
we provide a detailed evaluation of the performance of V-I
alignment. We compare the following two registration ap-
proaches with the proposed V-I alignment method. 1) image-
to-point (I2P): The continuous frame images acquired by the
vehicle near an infrastructure are sequentially registered with
the infrastructure point cloud. 2) Point-to-point (P2P): Align
the vehicle’s local map with the infrastructure point cloud
using 3D point cloud registration algorithms.

As shown in Table. 4, CorrI2P [39] exhibits large overall
error. This is mainly attributed to the significant perspective
difference between the vehicle’s camera and the infrastruc-
ture’s LiDAR. Consequently, few feature correspondences are
matched between the vehicle camera images and the infras-
tructure point cloud, leading to lower registration accuracy
and poor robustness. P2P approaches, on the other hand, uti-
lize the entire local point cloud map from the vehicle side,
efficiently improving the number of corresponding features
and enhancing the completeness of the perception perspec-
tive compared to the I2P method. However, as described in
Sec. 4.4, the local map exhibits deformations due to cumula-

(a) Infrastructure PC (b) SLAM Local Map

(c) Fast-GICP Result (d) V-I Alignment Result

Figure 14: Visualization of the registration between the vehi-
cle local map and the infrastructure measurements.

Table 4: Performance of the proposed elastic alignment
method and conventional registration algorithms. "VILAM
VIA" denotes the V-I Alignemnt module of VILAM, "I2P"
represents image-to-point cloud registration algorithm, and
"P2P" represents point cloud-to-point cloud registration algo-
rithm.

Method Type APE (m) ARE (◦) Time (s)
CorrI2P [39] I2P 1.74 ± 0.65 10.31 ± 2.29 2.98
MAC [51]

P2P

1.57 ± 0.27 8.71 ± 2.36 0.65
Fast-GICP [26] 1.36 ± 0.34 9.07 ± 2.19 0.13

S-ICP [9] 1.07 ± 0.39 7.39 ± 1.85 0.61
VILAM 0.31 ± 0.08 2.29 ± 0.52 0.24

tive errors. Rigid body-based registration methods, such as
MAC [51] and Fast-GICP [26], struggle to accurately align
most regions of the local map to the infrastructure measure-
ment. Taking Fast-GICP as an example, as depicted in Fig.
14 (c), only the starting region of the local map matches well
with the infrastructure point cloud. Yet, there is a significant
deviation towards the end of the local map (highlighted by
the grey rectangle).

S-ICP [9] introduces a scale factor into the rigid-body reg-
istration model, which helps alleviate errors caused by the
rigid-body assumption and achieve lower APE. The proposed
V-I alignment further divides the local map into fine-grained
fragments, allowing each region of the local map to align
better with the infrastructure measurement, as shown in Fig.
14 (d). This significantly reduces APE and ARE, with only
a slight increase in calculation delay. Furthermore, the con-
current design of VILAM ensures that it does not impact
the real-time performance of the overall system, making this
latency negligible.
Performance of Global Map Correction. In this section, we
evaluate the influence of the global map correction module
on mapping consistency. We perform ORB-SLAM3, VILAM
without global map correction, and the full VILAM setup on
the data trace and assessed the resultant trajectory accuracy.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1841

0% 20% 40% 60% 80% 100%
Infrastructure Coverage

0

1

2

3
AP

E
(m

)

real-world average

baseline

Figure 15: Performance of VILAM un-
der different infrastructure density.

Light
Medium Heavy0.0

0.5

1.0

1.5

CD
 (m

)

w/o Static Extraction
w/ Static Extraction

Figure 16: Performance of VILAM un-
der different traffic conditions.

0 5 10
Delayed Time (s)

0.30

0.35

0.40

0.45

0.50

0.55

AP
E

(m
)

miss

V-I Alignment
VILAM Trajectory

Figure 17: Performance of VILAM un-
der different I-V Transmission latency.

The result is presented in Fig. 13. As the vehicle’s driving time
increases, the trajectory error of ORB-SLAM3 demonstrates
a continuous growth trend due to the absence of global con-
straints. In the case of VILAM without global map correction,
only the trajectories near the infrastructure are corrected by
V-I alignment. The trajectory errors persistently escalate for
the gap areas between the infrastructures, resulting in abrupt
error shifts at the subsequent infrastructure points (e.g., the
APE at the 2nd minute in Fig. 13). Although the APE without
global map correction is substantially reduced compared to
the baseline SLAM methods, such inconsistencies seriously
degrade the map quality. Upon integrating the global map
correction module, the overall APE remains within a low
range.

6.6 Robustness Analysis

Infrastructure Coverage. As observed in Sec. 6.2, the accu-
racy of VILAM can be affected by the coverage of infrastruc-
ture, i.e., the proportion of the area that infrastructure LiDARs
can perceive. We evaluate VILAM under varying infrastruc-
ture coverage in an underground parking garage. Specifically,
we place mobile poles equipped with LiDARs at different in-
tervals to simulate varied infrastructure coverage. The results
are depicted in Fig. 15. Although the error escalates as the
coverage diminishes, VILAM significantly outperforms the
baseline even with extremely low infrastructure coverage (i.e.,
the average APE is kept around 0.5m at 20% infrastructure
coverage). This demonstrates VILAM’s robustness to diverse
infrastructure setups in the real world.
Environmental Dynamics. We compare the performance of
VILAM with and without static scene extraction under differ-
ent traffic conditions. The results in Fig. 16 show that the error
of VILAM without static scene extraction increases signifi-
cantly under heavier traffic, while the CD of VILAM remains
under 1m across all the traffic conditions. This evaluation
confirms VILAM’s robustness to environmental dynamics.
Delayed I-V Transmission. During the transmission of the
extracted Static Scene Representation from the infrastructure
to the vehicle, connectivity issues or transmission errors may
delay VILAM from timely accessing the infrastructure’s in-

formation for map correction. To evaluate the influence of the
delayed time on VILAM’s performance, we manually set la-
tency at the infrastructure side to simulate transmission delays.
The result is shown in Fig. 17. The delay time is measured
from the moment when the vehicle is closest to the infrastruc-
ture. Interestingly, for V-I alignment, moderate transmission
delays can actually enhance alignment accuracy. This benefit
arises as the vehicle constructs a more extensive local map
during the delayed time, leading to a larger overlap with the
infrastructure point cloud. However, as the delay time further
increases, the cumulative error of the local map intensifies,
leading to a reduction in V-I alignment accuracy. Meanwhile,
the overall trajectory precision of VILAM is relatively imper-
vious to delayed times. A noticeable trajectory error increase
occurs only when the vehicle entirely misses the current in-
frastructure’s measurement. The global map correction V-I
alignment can leverage this information to maintain a consis-
tent trajectory as long as the vehicle eventually receives the
infrastructure measurement and undergoes V-I alignment.

7 Conclusion

In this paper, we present VILAM, the first system that lever-
ages distributed roadside infrastructures to accomplish high-
precision and globally consistent localization and mapping for
autonomous vehicles. We implement VILAM end-to-end and
evaluate its performance across various challenging driving
scenarios. The experiment results show that VILAM effec-
tively enhances the performance of existing SLAM methods
in terms of localization accuracy, map consistency, and system
robustness.

Acknowledgements. We would like to thank our shepherd
Dongsu Han and the anonymous reviewers for their valuable
feedback. This work was supported in part by National Key
R&D Program of China under Grant No. 2023YFB4503700,
Research Grants Council (RGC) of Hong Kong under General
Research Fund under Grant 14222222, the Centre for Percep-
tual and Interactive Intelligence (CPII) under Grant EW01610
(RP4-3), NSFC under Grant No. LY23F020026, 62303036,
62372027, 62372028 and U23B2025.

1842 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Pwrpak7-e1, [2023] url=https://novatel.com/products/gnss-
inertial-navigation-systems/combined-
systems/pwrpak7d-e1, journal=Novatel.

[2] Lidar market size, [2023]
url=https://www.mordorintelligence.com/industry-
reports/global-lidar-market, journal=LiDAR Market
Size, Overview.

[3] Fawad Ahmad, Hang Qiu, Ray Eells, Fan Bai, and
Ramesh Govindan. CarMap: Fast 3d feature map up-
dates for automobiles. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 1063–1081, Santa Clara, CA, February 2020.
USENIX Association.

[4] Carlos Campos, Richard Elvira, Juan J Gómez Ro-
dríguez, José MM Montiel, and Juan D Tardós. Orb-
slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam. IEEE Transactions
on Robotics, 37(6):1874–1890, 2021.

[5] Shaozu Cao, Xiuyuan Lu, and Shaojie Shen. Gvins:
Tightly coupled gnss–visual–inertial fusion for smooth
and consistent state estimation. IEEE Transactions on
Robotics, 38(4):2004–2021, 2022.

[6] Jun Cheng, Liyan Zhang, Qihong Chen, Xinrong Hu,
and Jingcao Cai. A review of visual slam methods for
autonomous driving vehicles. Engineering Applications
of Artificial Intelligence, 114:104992, 2022.

[7] Kai-Wei Chiang, Guang-Je Tsai, Hone-Jay Chu, and
Naser El-Sheimy. Performance enhancement of
ins/gnss/refreshed-slam integration for acceptable lane-
level navigation accuracy. IEEE Transactions on Vehic-
ular Technology, 69(3):2463–2476, 2020.

[8] Christian Creß, Zhenshan Bing, and Alois C Knoll.
Intelligent transportation systems using external in-
frastructure: A literature survey. arXiv preprint
arXiv:2112.05615, 2021.

[9] Shaoyi Du, Nanning Zheng, Shihui Ying, Qubo You, and
Yang Wu. An extension of the icp algorithm considering
scale factor. In 2007 IEEE International Conference on
Image Processing, volume 5, pages V–193. IEEE, 2007.

[10] Richard Elvira, Juan D Tardós, and Jose MM Montiel.
Orbslam-atlas: a robust and accurate multi-map system.
In 2019 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 6253–6259.
IEEE, 2019.

[11] Abrar Fahim, Mehedi Hasan, and Muhtasim Alam
Chowdhury. Smart parking systems: comprehensive
review based on various aspects. Heliyon, 7(5), 2021.

[12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are
we ready for autonomous driving? the kitti vision bench-
mark suite. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pages 3354–3361, 2012.

[13] Patrick Geneva, Kevin Eckenhoff, Woosik Lee, Yulin
Yang, and Guoquan Huang. Openvins: A research plat-
form for visual-inertial estimation. In 2020 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 4666–4672. IEEE, 2020.

[14] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu,
Li Liu, and Mohammed Bennamoun. Deep learning
for 3d point clouds: A survey. IEEE transactions on
pattern analysis and machine intelligence, 43(12):4338–
4364, 2020.

[15] O Hassan, I Adly, and KA Shehata. Vehicle localization
system based on ir-uwb for v2i applications. In 2013
8th International Conference on Computer Engineering
& Systems (ICCES), pages 133–137. IEEE, 2013.

[16] Yuze He, Li Ma, Zhehao Jiang, Yi Tang, and Guoliang
Xing. Vi-eye: semantic-based 3d point cloud registration
for infrastructure-assisted autonomous driving. In Pro-
ceedings of the 27th Annual International Conference
on Mobile Computing and Networking, pages 573–586,
2021.

[17] F Hidayat, BR Trilaksono, and H Hindersah. Distributed
multi robot simultaneous localization and mapping with
consensus particle filtering. In Journal of physics: con-
ference series, volume 801, page 012003. IOP Publish-
ing, 2017.

[18] Md Hossain, Ibrahim Elshafiey, Abdulhameed Al-Sanie,
et al. Cooperative vehicle positioning with multi-sensor
data fusion and vehicular communications. Wireless
Networks, 25(3):1403–1413, 2019.

[19] Mohamed Ibrahim, Ali Rostami, Bo Yu, Hansi Liu,
Minitha Jawahar, Viet Nguyen, Marco Gruteser, Fan
Bai, and Richard Howard. Wi-go: accurate and scalable
vehicle positioning using wifi fine timing measurement.
In Proceedings of the 18th International Conference
on Mobile Systems, Applications, and Services, pages
312–324, 2020.

[20] Zhehao Jiang, Neiwen Ling, Xuan Huang, Shuyao Shi,
Chenhao Wu, Xiaoguang Zhao, Zhenyu Yan, and Guo-
liang Xing. Coedge: A cooperative edge system for dis-
tributed real-time deep learning tasks. In Proceedings
of the 22nd International Conference on Information
Processing in Sensor Networks, pages 53–66, 2023.

[21] Michael Kaess, Hordur Johannsson, Richard Roberts,
Viorela Ila, John J Leonard, and Frank Dellaert. isam2:

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1843

Incremental smoothing and mapping using the bayes
tree. The International Journal of Robotics Research,
31(2):216–235, 2012.

[22] Jan Kallwies, Bianca Forkel, and Hans-Joachim Wuen-
sche. Determining and improving the localization accu-
racy of apriltag detection. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages
8288–8294. IEEE, 2020.

[23] Iman Abaspur Kazerouni, Luke Fitzgerald, Gerard
Dooly, and Daniel Toal. A survey of state-of-the-art
on visual slam. Expert Systems with Applications,
205:117734, 2022.

[24] Giseop Kim and Ayoung Kim. Remove, then revert:
Static point cloud map construction using multiresolu-
tion range images. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 10758–10765. IEEE, 2020.

[25] Dániel Kiss-Illés, Cristina Barrado, and Esther Salamí.
Gps-slam: an augmentation of the orb-slam algorithm.
Sensors, 19(22):4973, 2019.

[26] Kenji Koide, Masashi Yokozuka, Shuji Oishi, and At-
suhiko Banno. Voxelized gicp for fast and accurate 3d
point cloud registration. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages
11054–11059. IEEE, 2021.

[27] Juichung Kuo, Manasi Muglikar, Zichao Zhang, and Da-
vide Scaramuzza. Redesigning slam for arbitrary multi-
camera systems. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 2116–2122.
IEEE, 2020.

[28] Mathieu Labbé and François Michaud. Rtab-map as an
open-source lidar and visual simultaneous localization
and mapping library for large-scale and long-term online
operation. Journal of Field Robotics, 36(2):416–446,
2019.

[29] Pierre-Yves Lajoie, Benjamin Ramtoula, Yun Chang,
Luca Carlone, and Giovanni Beltrame. Door-slam: Dis-
tributed, online, and outlier resilient slam for robotic
teams. IEEE Robotics and Automation Letters,
5(2):1656–1663, 2020.

[30] Jiaxin Li and Gim Hee Lee. Deepi2p: Image-to-point
cloud registration via deep classification. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 15960–15969, 2021.

[31] Zheqi Li and Jidong Huang. Study on the use of qr codes
as landmarks for indoor positioning: Preliminary results.
In 2018 IEEE/ION position, location and navigation
symposium (PLANS), pages 1270–1276. IEEE, 2018.

[32] Jiarong Lin, Chunran Zheng, Wei Xu, and Fu Zhang.
R 2 live: A robust, real-time, lidar-inertial-visual tightly-
coupled state estimator and mapping. IEEE Robotics
and Automation Letters, 6(4):7469–7476, 2021.

[33] Zongwei Liu, Hao Jiang, Hong Tan, and Fuquan Zhao.
An overview of the latest progress and core challenge
of autonomous vehicle technologies. In MATEC Web of
Conferences, volume 308, page 06002. EDP Sciences,
2020.

[34] Zhenchao Ouyang, Jiahe Cui, Xiaoyun Dong, Yanqi Li,
and Jianwei Niu. Saccadefork: A lightweight multi-
sensor fusion-based target detector. Information Fusion,
77:172–183, 2022.

[35] T Perković, P Šolić, H Zargariasl, D Čoko, and Joel JPC
Rodrigues. Smart parking sensors: State of the art and
performance evaluation. Journal of Cleaner Production,
262:121181, 2020.

[36] David Prokhorov, Dmitry Zhukov, Olga Barinova,
Konushin Anton, and Anna Vorontsova. Measuring ro-
bustness of visual slam. In 2019 16th International Con-
ference on Machine Vision Applications (MVA), pages
1–6. IEEE, 2019.

[37] Tong Qin, Shaozu Cao, Jie Pan, and Shaojie Shen.
A general optimization-based framework for global
pose estimation with multiple sensors. arXiv preprint
arXiv:1901.03642, 2019.

[38] Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono:
A robust and versatile monocular visual-inertial state
estimator. IEEE Transactions on Robotics, 34(4):1004–
1020, 2018.

[39] Siyu Ren, Yiming Zeng, Junhui Hou, and Xiaodong
Chen. Corri2p: Deep image-to-point cloud registration
via dense correspondence. IEEE Transactions on Cir-
cuits and Systems for Video Technology, 2022.

[40] Jose Jesus De Rubio. Stability analysis of the modified
levenberg-marquardt algorithm for the artificial neural
network training. IEEE Transactions on Neural Net-
works and Learning Systems, PP(99):1–15, 2021.

[41] Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang,
Carlo Ratti, and Daniela Rus. Lio-sam: Tightly-coupled
lidar inertial odometry via smoothing and mapping. In
2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5135–5142. IEEE,
2020.

[42] Tixiao Shan, Brendan Englot, Carlo Ratti, and Daniela
Rus. Lvi-sam: Tightly-coupled lidar-visual-inertial
odometry via smoothing and mapping. In 2021 IEEE
International Conference on Robotics and Automation
(ICRA), pages 5692–5698. IEEE, 2021.

1844 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[43] Shuyao Shi, Jiahe Cui, Zhehao Jiang, Zhenyu Yan, Guo-
liang Xing, Jianwei Niu, and Zhenchao Ouyang. Vips:
Real-time perception fusion for infrastructure-assisted
autonomous driving. In Proceedings of the 28th Annual
International Conference on Mobile Computing And
Networking, pages 133–146, 2022.

[44] Ashutosh Singandhupe and Hung Manh La. A review
of slam techniques and security in autonomous driving.
In 2019 third IEEE international conference on robotic
computing (IRC), pages 602–607. IEEE, 2019.

[45] Lukas von Stumberg and Daniel Cremers. Dm-
vio: Delayed marginalization visual-inertial odometry.
IEEE Robotics and Automation Letters, 7(2):1408–1415,
2022.

[46] Konstantinos A Tsintotas, Loukas Bampis, and Antonios
Gasteratos. The revisiting problem in simultaneous lo-
calization and mapping: A survey on visual loop closure
detection. IEEE Transactions on Intelligent Transporta-
tion Systems, 23(11):19929–19953, 2022.

[47] Jessica Van Brummelen, Marie O’Brien, Dominique
Gruyer, and Homayoun Najjaran. Autonomous vehi-
cle perception: The technology of today and tomorrow.
Transportation research part C: emerging technologies,
89:384–406, 2018.

[48] Srihaarika Vijjappu. Distributed decentralised visual
slam for multi-agent systems, 2020.

[49] Jingao Xu, Hao Cao, Zheng Yang, Longfei Shangguan,
Jialin Zhang, Xiaowu He, and Yunhao Liu. SwarmMap:
Scaling up real-time collaborative visual SLAM at the
edge. In 19th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 22), pages 977–
993, Renton, WA, April 2022. USENIX Association.

[50] Georges Younes, Daniel Asmar, Elie Shammas, and John
Zelek. Keyframe-based monocular slam: design, sur-
vey, and future directions. Robotics and Autonomous
Systems, 98:67–88, 2017.

[51] Xiyu Zhang, Jiaqi Yang, Shikun Zhang, and Yanning
Zhang. 3d registration with maximal cliques. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 17745–17754,
2023.

[52] Shibo Zhao, Hengrui Zhang, Peng Wang, Lucas
Nogueira, and Sebastian Scherer. Super odometry: Imu-
centric lidar-visual-inertial estimator for challenging en-
vironments. In 2021 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages
8729–8736. IEEE, 2021.

[53] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu,
Hujun Bao, Zhaopeng Cui, Martin R Oswald, and Marc
Pollefeys. Nice-slam: Neural implicit scalable encod-
ing for slam. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 12786–12796, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1845

Catch Me If You Can: Laser Tethering with Highly Mobile Targets
Charles J. Carver†1, Hadleigh Schwartz†1, Qijia Shao1, Nicholas Shade2, Joseph Lazzaro2,

Xiaoxin Wang2, Jifeng Liu2, Eric Fossum2, and Xia Zhou1

†Co-primary authors
1Department of Computer Science, Columbia University, 2Thayer School of Engineering, Dartmouth College

{cjc, hadleigh, qijia, xia}@cs.columbia.edu,
{nicholas.r.shade.th, joseph.p.lazzaro.th, xiaoxin.wang, jifeng.liu, eric.r.fossum}@dartmouth.edu

Abstract
Conventional wisdom holds that laser-based systems cannot
handle high mobility due to the strong directionality of
laser light. We challenge this belief by presenting Lasertag,
a generic framework that tightly integrates laser steering
with optical tracking to maintain laser connectivity with
high-velocity targets. Lasertag creates a constantly connected,
laser-based tether between the Lasertag core unit and a remote
target, irrespective of the target’s movement. Key elements of
Lasertag include (1) a novel optical design that superimposes
the optical paths of a steerable laser beam and image sensor,
(2) a lightweight optical tracking mechanism for passive
retroreflective markers, (3) an automated mapping method to
translate scene points to laser steering commands, and (4) a pre-
dictive steering algorithm that overcomes limited image sensor
frame rates and laser steering delays to quadruple the steering
rate up to 151 Hz. Experiments with the Lasertag prototype
demonstrate that, on average, Lasertag transmits a median 0.97
of laser energy with a median alignment offset of only 1.03 cm
for mobile targets accelerating up to 49 m/s2, with speeds
up to 6.5 m/s, and distances up to 6 m (≈47°/s). Additional
experiments translate the above performance to a 10−8 median
bit error rate across trials when transmitting a 1 Gbps, on-off
keying signal. Lasertag paves the way for various laser applica-
tions (e.g., communication, sensing, power delivery) in mobile
settings. A demonstration video of Lasertag is available at:

mobilex.cs.columbia.edu/lasertag

1 Introduction
The physical properties of laser light make it an excellent
medium for numerous applications. Examples include
high-bandwidth communication due to its fast modulation
speeds [25, 39, 53], efficient power delivery thanks to its high
energy density [27, 54, 55, 58], and fine-grained sensing given
its nanometer-level spectral widths [19, 43, 112, 149].

Despite its potential, the inherent directionality of laser
light has precluded its use in highly-mobile settings. Although
existing free-space optics (FSO) systems can track and steer
to fast-moving objects with predetermined trajectories (e.g.,
satellites) at kilometer-level distances, these systems are
unsuitable for emerging mobile applications – such as virtual
reality (VR) streaming and mobile power delivery – that
exhibit arbitrary trajectories at meter-level distances. Funda-
mentally, this discrepancy is due to the higher angular tracking
rate required for near-range targets. For example, a target 1m
away traveling at 5m/s requires an angular tracking rate of

Lasertag core unit
(353g)

11cm

4.
5c

m

9.5cm

Flying
drone

Retroreflective
marker (1.8g)

Photodiode

Ø7cm

Laser light

Figure 1: Lasertag maintains constant laser alignment with a flying
drone equipped with a passive retroreflective marker.
approximately 79°/s, in contrast with the 1.5°/s [141] rate
required to maintain laser connectivity with a low earth orbit
satellite moving at 7.8 km/s [96]. Compounding FSO’s insuf-
ficient tracking rate for emerging applications, these systems
are often bulky and unsuitable for mobile environments.

In this work, we bridge the gap between traditional FSO
systems and emerging mobile applications by enabling fast
tracking and laser steering using portable, off-the-shelf hard-
ware. To accomplish this task, we first consider various optical
designs and their corresponding characteristics. While diffus-
ing the beam can mitigate the alignment issue, it inevitably sac-
rifices supporting range and requires high-power laser diodes,
resulting in low energy efficiency. An alternative is to scan the
narrow laser beam in search of the target [16, 69, 114], which
entails delays of hundreds of milliseconds [18]. Such delays are
problematic for tracking fast motions such as consumer drone
and human head movements (both multiple m/s [28, 118]).
Additionally, once the target is acquired, additional scans may
be required to maintain tracking [16, 59, 83, 86, 116] resulting
in breaks in the laser link, which is unsuitable for applications
requiring constant connections (e.g., data transmission).

A more efficient approach is to separately track the target’s
movement and then steer the laser beam directly to the tar-
get’s location. While object tracking and laser steering are
well-explored endeavours on their own, their integration is
nontrivial on multiple fronts. First, the narrow-beam nature of
laser light leads to a low tolerance for positioning errors, render-
ing existing localization technologies insufficient for accurate
laser steering. Second, even if the target is perfectly positioned,
it is challenging to translate the object’s 3D location to the 2D
reference frame used by the laser-steering device: any offset
between the positioning and laser-steering device causes depth

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1847

https://mobilex.cs.columbia.edu/lasertag

ambiguity (i.e., different object depths necessitate different
steering angles). This offset often cannot be measured due to
the unknown origin points within the positioning and steering
devices. Finally, mapping the steering device’s input to an out-
going beam angle requires exhaustive measurements which
are susceptible to human errors. This is further complicated
by additional optics (e.g., wide-angle lenses) used in portable
laser-steering systems [16–18, 75, 84], which affects both the
tracking unit’s perception of the scene and outgoing laser angle.

We present Lasertag to address the above practical issues.
Lasertag is a reconfigurable, application-agnostic platform
that tightly integrates laser steering and optical tracking in
support of numerous high mobility applications. As shown
in Figure 1, Lasertag provides a laser-based tether between
a laser diode and an arbitrary object, irrespective of the
object’s movement. Leveraging a novel optical design that
superimposes the optical paths of a steerable laser beam and
single image sensor, we efficiently fuse the power of computer
vision with the communication and sensing benefits of laser
light. The optical path sharing addresses the issue of depth
ambiguity and optical-element complications. Furthermore,
we exploit the physics of fluorescence to enable an automated,
precise mapping between any point in the scene and the laser
steering’s input drive signal. Finally, to overcome the limited
frame rate of low-cost image sensors and non-negligible
delays of laser steering devices, we propose a predictive
steering algorithm that forecasts the target’s future location,
interpolates its intermediate locations, and proactively steers
to the interpolated points until a new sensor reading is ready.

We fabricate a Lasertag prototype using off-the-shelf
hardware, and evaluate its performance in the context of
three applications where unidirectional,1 high-mobility laser
tethering is a necessity: ground-to-drone communication,
laser-based streaming of VR content, and mobile power de-
livery. Since application-specific performance fundamentally
relies on the ability to maintain a laser connection with a mov-
ing target, we focus on evaluating Lasertag’s tethering efficacy
by measuring the offset between the laser beam’s center and
the marker, as well as the received laser power at the target. We
then provide additional experiments and analyses to translate
the measured tethering performance to application-specific
performance. Finally, we examine Lasertag’s individual com-
ponents, its robustness, and power consumption. In summary:

• Lasertag, on average, tethers a laser beam to a mobile target’s
light sensor with a median offset of only 1.03 cm, delivering
a median normalized laser power of 0.97 for targets accel-
erating up to 49 m/s2, traveling with speeds up to 6.5 m/s,
and at distances up to 6 m (≈47°/s).

• The predictive steering algorithm boosts the tracking and
steering rate from 36 Hz to 151 Hz, delivering 15% higher
laser power and reducing alignment offset by 12% on

1Bidirectional applications can be supported with either a second Lasertag
unit on the mobile node or alternative communication techniques.

β1 β2 β3

Steering
device

Positioning
mechanism

d

Z

X

Z
z2

LR1 LR2 LR3

z3z1
Figure 2: Challenge of depth ambiguity,where changes in an object’s
depth (z1,z2,z3) require different steering angles (β1,β2,β3).

average across all velocity and trajectory patterns.
• Translating tethering efficacy to communication perfor-

mance, Lasertag maintains a median 10−8 bit error rate
(BER) for a 1 Gbps on-off keying (OOK) signal using predic-
tive steering, a 54 times smaller BER than baseline steering.

• Lasertag’s optical tracking reliably detects a passive retrore-
flective marker up to 6 m in the presence of confounding
background objects (e.g., LEDs, reflective objects) and
strong ambient light (up to 200 kLx).

• Lasertag supports a±95° steering range with≤3 dB loss.

2 System Challenges
The integration of laser steering and object tracking faces the
following challenges.
Small Beam Divergence. Laser-based systems typically
utilize narrowly collimated beams with small divergences
(0.0005◦ – 0.005◦) [66] for enhanced range and energy ef-
ficiency. This results in low tolerance of localization/tracking
errors. Existing localization methodologies using radio fre-
quencies (e.g., GPS [8], Wi-Fi [68, 120], and Bluetooth [3,
148]) have localization errors ranging from tens of centime-
ters [3, 68, 120, 148] to multiple meters (outdoor GPS [135]).
Similarly, for systems relying on inertial measurement units,
positioning errors can accumulate to meters in only a short
duration [36, 72]. These localization errors can easily cause a
laser beam to miss a target at meter-level distances, even with
perfect steering control. Diffused laser beams may mitigate this
issue, but at the cost of significantly reduced energy efficiency.
Depth Ambiguity. Even with perfect localization, it is chal-
lenging to translate the localization’s 3D reference frame to
the 2D reference frame of the outgoing laser beam. All com-
mon laser-steering devices, from bulky mechanical gimbals
to micro-electromechanical (MEMS) mirrors, convert an in-
put signal to a mechanical deflection around a mirror’s center
point. This 2D mechanical deflection steers the laser beam in
3D space so that it reaches the first object lying in its path.

As shown in Figure 2, the offset d between the positioning
mechanism and laser-steering device can cause depth ambigu-
ity when determining the 2D angle for steering the laser. This
offset leads to different views for the two units. Hence, even
locations that differ only in their depths (i.e., z0,z1,z2) require
different steering angles (β0,β1,β2) for the laser beam to reach
them. Therefore, to calculate the correct outgoing 2D angle
that will reach a target object in 3D space, an accurate mea-
surement of the offset d is crucial. Obtaining this measurement

1848 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

is often impractical, as the positioning and steering devices
typically have unknown origin points somewhere within their
packaging, and even mm-level measurement inaccuracies
would cause the steered laser beam to miss its target.
Mapping Overhead. Compounding the above challenges,
the laser steering mechanism must be precisely characterized
to map input drive signals to outgoing steering angles, which
becomes even more difficult when using additional lenses.

Traditional free-space optics systems utilize bulky, slow,
and expensive gimbals to steer laser light to the target [115]. A
major benefit of these systems is their simple mapping between
input signal and output angle [132], often characterized
by the manufacturer during fabrication. High mobility
applications require smaller and faster steering devices,
typically in the form of MEMS mirrors. Unfortunately, MEMS
mirrors exhibit model-dependent nonlinear relationships
between input signal and output signal [89]. Mapping MEMS
mirror drive signals to deflection angles thus requires an
independent characterization, which is prone to human error,
time-consuming, and reduces the accuracy of the system.

Worsening the above issue, fast-steering MEMS mirrors
have an extremely limited steering range (e.g.,±7° mechanical
tilt) and therefore require additional optics to expand the
steering range to a desirable field-of-view (FOV) [16, 18].
These secondary optics not only increase the mapping
complexity and introduce more opportunities for error, but also
change the outgoing ray geometry so they no longer exit the
optical system from a single point. Instead, these rays exit the
optical system at different spatial positions along the exit lens
depending on steering angle, such that the offset d (Figure 2)
between the laser steering system and object positioning
system becomes angle-dependent. This significantly increases
the colocation complexity and requires an additional mapping.

3 Lasertag Design
To address the above challenges, we present Lasertag, a generic
framework that fuses laser steering with optical tracking. We
choose optical tracking because it provides the most flexibility
and ease of colocation compared to alternatives. We now
elaborate on the four key design elements of Lasertag.

3.1 Efficient Optical Path Sharing
The first design element tackles the issue of translating the
localization reference frame to the laser steering reference
frame. We propose a novel optical design that intrinsically
fuses the two together, efficiently sharing the optical path be-
tween the outgoing laser light and a single image sensor. This
optical arrangement eliminates manual and time-consuming
measurements to enable 2D laser steering in 3D space.

The proposed optical design requires only a single image
sensor for tracking. To understand the rationale, we envision a
hypothetical optical circuit consisting of an image sensor and
single focusing lens. The lens focuses light from the scene onto
the image sensor, creating a 2D projection of the 3D world. For
each patch of focused light, a chief ray (CR) exists, originating

Aspheric lens

LD
Steered

MEMS mirror

Triplet lens

Fisheye lens
Beamsplitter

Imaging lens

Image sensor

Scene point

Pixel

CR
LR

Figure 3: The optical design of Lasertag, enabling outgoing laser
light (red) to be mapped 1:1 with incoming scene light (purple).
from a 3D scene point and passing through the lens to project
onto a 2D pixel patch. With this optical circuit in mind, we can
then consider adding an imaginary laser steering mechanism
that is perfectly colocated with the image sensor. This laser
steering device is capable of steering a narrow laser beam (LR)
out through the same focusing lens, retracing the steps of the
incoming CR to reach the same object as imaged by the sensor.
In this way, a 2D pixel is mapped to a 2D angle relative to the
image sensor, thereby eliminating depth ambiguity.

To realize this optical design, we exploit two intrinsic
properties of laser light: strong linear polarization and narrow
emission wavelength. Specifically, we overlay the laser’s
outgoing optical path with an image sensor’s incoming optical
path (CR+LR) using a beamsplitter, which reflects laser light
out of the system and transmits incoming scene light onto
the image sensor. Our methodology – inspired by the field of
microscopy [97, 109] – maximizes the steered laser energy
without sacrificing imaging quality, thus enabling efficient
laser tethering. Figure 3 illustrates Lasertag’s optical design,
where additional lenses (e.g., triplet lens) create the proper
ray orientation for the optical circuit. The final fisheye lens
enables full-hemisphere steering and imaging of the scene.

To support our goal, we consider beamsplitters that redirect
light using either fixed ratios, wavelength (i.e., dichroic
beamsplitters), or polarization. Fixed-ratio beamsplitters
allow only a fixed ratio of transmission to reflection (e.g.,
10:90, 50:50), sacrificing transmitted laser power for imaging
brightness (or vice versa). Given the narrow spectral width
of laser light, dichroic beamsplitters, which reflect light
above/below a certain wavelength and transmit the remaining,
seem an obvious choice. Unfortunately, dichroic beamsplitters
cause the imaged scene to be extremely skewed in color (since
only light above or below the beamsplitter threshold would
reach the image sensor), and are often manufactured on thin
plates resulting in poor image quality due to ghosting [127].

To solve these challenges, we design our system around a
laser-line polarizing beamsplitter. These beamsplitters reflect
linearly polarized light lying within a narrow wavelength
range, and transmit light that is either (a) polarized in the other
direction, or (b) at a wavelength above the polarizing range.
This design leverages the fact that laser light is intrinsically
highly polarized and narrow in wavelength [108]. As a result,
our design can operate in two modes: one in which true

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1849

Passive marker
Interfering LED

(a) Captured scene image.

Passive marker
Interfering LED

(b) Otsu binarization [9].

B̅/Bc = 1/0.1 = 10
R = 0.99

B̅/Bc = 1/1 = 1
R = 0.7

(c) Computing blob statistics.

x

y

Steer(vx vy)

vx = mx(x y)
vy = my(x y)

(d) Steering to optimal blob.
Figure 4: Workflow for isolating the passive marker from cluttered backgrounds and steering the laser to the marker’s center.

scene color is desired, and one in which maximum scene
brightness is required. In the first case, since ambient light is
typically unpolarized, the image sensor sees all wavelengths
with approximately 50% attenuation in overall brightness. In
the second case, artificial light is injected into the scene at a
wavelength above the beamsplitter’s polarizing wavelength
range, at which it transmits all light, regardless of polarization
orientation. This enables the bulk of sensing light to be
transmitted back to the image sensor. Our prototype (§4)
implements the second mode. Notably, this requires the use of
separate laser and sensing wavelengths: a laser wavelength in-
side the beamsplitter’s specified polarizing wavelength range,
and a sensing wavelength outside it. Lasertag can be deployed
with any pair of wavelengths that satisfy this basic constraint.2

Since commercial beamsplitters are available in a variety of
polarizing ranges, the appropriate choice of laser and sensing
wavelengths primarily depends on application requirements
and channel characteristics. For instance, Lasertag should be
equipped with blue-green light sources for underwater scenar-
ios, given the lower attenuation of these wavelengths in water.
In contrast, for aerial power delivery applications, it would
be favorable to use an IR laser to match the responsitivity of
typical solar cells. Additionally, our design imposes no restric-
tions on the light sources’ optical powers, so that safety, power
consumption, and signal-to-noise ratio (SNR) requirements
can also be considered. Finally, since the outgoing light is
completely separable from the incoming light, the input laser
parameters have no impact on Lasertag’s sensing performance.

While several elements of the design are explored in existing
works (e.g., MEMS mirrors for laser beam steering [16, 75],
beamsplitting optics for colocation of laser steering and
detection components [6, 23, 32], fisheye lenses for expanding
laser steering range [16, 18, 22, 151]), the integration of
these elements for tracking and steering is nontrivial. The
optical characteristics must be carefully designed to create
the appropriate ray geometry for imaging and steering.

3.2 Fast Tracking with Retroreflective Imaging
The second design element identifies the target object from
each image frame. Object detection is well studied in computer
vision (CV). The proposed marker design and algorithm are
built upon prior CV techniques and inspired by existing works
leveraging retroreflectors for tracking [83, 137, 147]. The
algorithm incorporates simple heuristics that differentiate

2Advanced Lasertag designs can consider multispectral beam splitters to
support multiple input laser wavelengths.

the passive marker from interfering scene objects and run
real-time tracking on resource-constrained hardware.
Retroreflective Marker. The target object is equipped with a
passive marker made of retroreflective tape, cut into a circle,
with a small hole in the center to host a light sensor. After
adding a wide-angle LED to Lasertag, the scene is illuminated
with a specific wavelength that retroreflects off the marker and
back to the image sensor. In general, these retroreflections will
be significantly brighter than other objects in the scene, so
the target will appear as a blob that can be segmented from
background objects. The laser light is then steered to the center
of the blob, so that it can pass through the hole to the sensor
(e.g., photodiode for receiving data, solar-cell for harvesting
energy). Lasertag’s optical design ensures that the laser beam
is sufficiently narrow so the majority of light passes through.

Although retroreflections are generally brighter than
arbitrary scene objects, active luminaries emitting at the same
wavelength have the potential to be brighter. To overcome
this challenge, we leverage the fact that since light is not
retroreflected by the center of the marker (due to the cutout),
the marker’s center pixels will be dimmer than the remainder
of the marker. Confounding luminaries in the scene, however,
will have a roughly uniform illumination within the blob
(e.g., LEDs will emit light from the center of their package).
Consequently, we identify the marker by taking the ratio of
the blob’s overall brightness to the blob’s center brightness,
favoring blobs with higher ratios. We add an additional
weight for the roundness of the blob, since the circular marker
will remain elliptical even under rotation. The entire image
processing algorithm is described in the following section.
Marker Detection and Tracking. To achieve high marker
tracking rates, we develop a lightweight marker detection al-
gorithm based on traditional CV blob detection [26, 45] and
implement trajectory-based region of interest (ROI) window-
ing to increase both frame capture and detection speeds. The
key insight of our detection algorithm is that the passive marker
registers in the image as a distinctly bright region with a known
shape. Based on these characteristics, we isolate the marker
in each frame and determine the pixel corresponding to its
center. This process is visually described in Figure 4. We note
that regardless of the marker’s angular orientation, its center
remains constant in the 2D frames. In addition to localizing
the marker, the output of our detection algorithm informs our
trajectory-based ROI windowing algorithm (Algorithm 1) to
increase Lasertag’s tracking rate. ROI windowing is a camera

1850 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Optical
circuit

Fisheye lens

Cap

6.8cm

Top view
 850 1700

px

 7
0
0

 1
4
0
0

p
y

−0.2

 0

 0.2

v
x

Figure 5: (Left) Fluorescent cap design enabling automatic pixel-to-
voltage mapping. (Right) After steering the laser to each white dot,
we fit a polynomial surface to obtain our mapping functions.

feature that enables reading a smaller window of pixel values,
effectively zooming in to a region of interest. This reduces the
number of pixel values the camera must process and thus de-
creases image capture time [92], which can facilitate real-time
tracking of objects moving at high speeds [111]. We set an ROI
window that hones in on the marker and follows its trajectory.

As shown in Figure 4, after capturing each frame, we
binarize the image using a threshold automatically determined
with Otsu’s method [9]. The retroreflective marker and any
confounding luminaries then appear in the image as clusters
of connected white pixels (i.e., blobs). We run blob detection
on the image to determine the center pixel, bounding box,
and roundness for each region. To isolate our passive marker,
we assign each blob a score based on our marker heuristics
(favoring round regions with high ratio of overall brightness
to center brightness). We then save the blob with the highest
score and return its center pixel coordinate. Finally, we update
the image sensor registers to move the ROI window based on
the updated marker location. If no marker is detected, the ROI
is expanded to encompass the whole image sensor so that the
target can be re-acquired. Our algorithm’s simplicity, afforded
by its tight coupling with the physical design of our passive
marker, enables localization and tracking within milliseconds.

Notably, Lasertag’s framework is inherently flexible and
works with any conventional CV detection technique. While
we demonstrate our system with a passive circular retroreflec-
tive marker, Lasertag is compatible with markers of any shape
and size (e.g., a 3D sphere). Furthermore, Lasertag can support
markerless tracking and active feedback as detailed in §6.

3.3 Fluorescence-based Optical Mapping
The third design element maps the marker’s position on the
image sensor to the steering command required to steer the
laser to the object. Lasertag performs beam steering with
a MEMS mirror – a compact, electromagnetically driven
device in which deflection angles are determined by input
voltages. We enable automatic pixel-to-voltage mapping via
a short, one-time calibration process that is independent of the
environment. The calibration process leverages fluorescence
– a physical phenomenon in which a substance is stimulated by
the light it absorbs, causing it to emit light of a different color
– to shift the outgoing laser’s wavelength to one always visible
to the image sensor. With our optical design, this wavelength
shift allows us to leverage the embedded image sensor to
automatically map all pixel locations to steering voltages,

Input: µ: Sensor mode, α or τ .
Output: (x,y): Absolute center pixel of the marker.

1 Function Track(µ):
2 while True do
3 I←Capture new image
4 (x′,y′)←Detect(I)
5 if (x′,y′)=None then
6 µ← α

7 Set sensor resolution to Wα×Hα

8 Set sensor readout offset to (0,0)
9 Set sensor readout area to (W,H)

10 Skip to next iteration
11 if µ = α then
12 µ← τ

13 tx←(x′−Wα/2)∗W/Wα

14 ty←(y′−Hα/2)∗H/Hα

15 Set sensor resolution to Wτ×Hτ

16 Set sensor readout offset to (tx,ty)
17 Set sensor readout area to (W/z,H/z)
18 else
19 ox←(x′−Wτ/2)∗(W/z)/Wτ

20 oy←(y′−Hτ/2)∗(H/z)/Hτ

21 (tx,ty)←Updated sensor readout offset
22 (x,y)←(ox+tx,oy+ty)
23 Set sensor readout offset to (tx+ox,ty+oy)
24 return (x,y)
Algorithm 1: Marker tracking algorithm for an image sensor
with a W×H active area. After marker acquisition (µ =α), the
Wα×Hα resolution is scaled to Wτ×Hτ for tracking (µ =τ) and
the active pixel readout window is reduced to W/z×H/z.

bypassing the requirement of accurate angular measurements.
Specifically, we borrow from the field of fluorescence

microscopy [97, 109] and use fluorescent powder to shift the
laser wavelength after it has been steered to one visible to the
image sensor. We design a small plastic cap that is placed over
the optical circuit’s exit lens during the calibration process
(Figure 5). It is coated with either an up-converting [40]
or down-converting phosphor [82]3. The cap is a hollow
hemisphere whose interior is a minimum distance of 2 cm
from the fisheye lens at all points. This design enforces the
minimum required distance between the fluorescent surface
and fisheye lens to mitigate comatic aberrations (which result
in comet-like tails around the fluorescing spot, leading to map-
ping errors) [56]. We empirically determine this distance in our
system to be 2 cm. To do so, we fix the steering unit’s outgoing
laser angle and place a fluorescent surface in the beam’s path
in the far field. We then shift the surface towards the unit along
the beam until the center coordinate of the fluorescent spot’s
blob changes, indicating the minimum distance.

Finally, to generalize the mapping to any pixel on the image,
we fit two 3D surfaces with a subset of laser steering voltages
and pixel positions. With the fluorescent cap installed, we
steer the laser to the center of the fisheye lens, then scan

3For up-converting phosphors, higher wavelength photons are absorbed
causing lower wavelength photons to be emitted. Down-converting phosphors
absorb lower wavelength photons and emit higher wavelengths.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1851

the beam in an Archimedian spiral [81] to cover N spots on
the cap (Figure 5). Steering via the MEMS mirror requires
applying two voltages, vx, and vy, corresponding to the two
orthogonal scanning axes. Given the fisheye lens’s large
distortion on its edges, we decrease the step size between
adjacent steering voltages at larger spiral radii, enabling an
accurate mapping despite the spatial compression. Since
the sensed pixel position is influenced by both vx and vy, we
feed (x,y,vx) and (x,y,vy) through a multivariate, polynomial
regression algorithm to obtain our mapping functions:

mx(x,y)=
3

∑
i=0

3

∑
j=0

ai jxiy j, my(x,y)=
3

∑
i=0

3

∑
j=0

bi jxiy j,

where the coefficients ai j and bi j are determined by the re-
spective regressions. We choose a third-degree polynomial to
account for the nonlinear relationship between steering voltage
and outgoing beam angle. Overall the calibration takes roughly
ten minutes, creating the functions later used by Lasertag to
map an identified marker to a steering command in real time.
Notably, this streamlined calibration can be automatically run
across environments and can be repeated at any point through-
out deployment to maintain steering accuracy. This makes
it highly flexible compared to alternative systems requiring
hard-coded system parameters [4, 126], gimbal positions [20],
uplink feedback [1, 64], or complex learning strategies [39].

3.4 Predictive Steering for High Mobility
The fourth design element overcomes the low frame rate of
conventional image sensors and delays associated with laser
steering devices. Conventional image sensors have a low
frame rate (30-60 FPS), which results in a considerable delay
between consecutive frames. Additionally, laser steering takes
a non-negligible amount of time (on the order of milliseconds).
These delays can cause a steering gap between the current
and subsequent target locations, particularly when tracking
fast-moving objects (e.g., flying drones which accelerate to
over 20 m/s2 when making sharp turns). As a consequence,
laser alignment continuity can easily be disrupted.

To address this problem, we exploit movement continuity
on a micro timescale and propose predictive steering, wherein
we (1) predict the target’s expected location in the next frame,
(2) interpolate locations from now to the next frame, and (3)
steer to interpolated locations until a new frame is ready. This
upsampling strategy achieves smoother laser steering and
handles fast movement more effectively. While upsampling
techniques are common in the domain of audio and image
processing [34, 71, 140], they are usually performed offline,
requiring the signal to be captured in advance. In the scenario
of real-time laser tracking and steering, we must predict the
next steering location using only historical data.

The rationale of mobility prediction stems from the
continuous nature of motion at micro timescales. Although
motion is typically non-deterministic, it is still subject to
certain constraints. For example, speed and acceleration are
bounded and cannot be changed instantaneously. Therefore, by

Input: M: Prediction buffer size, ε̄: Nominal steering delay.
Output: None.

1 Function Steer(M,ε̄):
2 Let B,s,b be an empty array of length M
3 while True do
4 T← Time since last iteration
5 if first iteration then
6 (x0,y0)←Track(α)
7 else
8 (x0,y0)←Track(τ)
9 Append (x0,y0) to B

10 Skip to next iteration if length(B) ̸=M
11 (sx,sy)

(0)←B[0]
12 (bx,by)

(0)←B[1]−B[0]
13 for i←1 to M−1 do
14 (sx,sy)

(i)← Smooth B[i] with Eq. (1)
15 (bx,by)

(i)← Estimate trend with Eq. (2)
16 (xT ,yT)←(sx+bx,sy+by)

(M−1)

17 ∆← Time since call to Track(. . .)
18 t←∆+ε̄

19 while t≤T−ε̄ do
20 δ =(yT−y0)/(xT−x0)
21 xt =x0+t∗(xT−x0)/T
22 yt =δ ∗(xT−x0)+y0
23 (vx,vy)←(mx(xt ,yt),my(xt ,yt))
24 Set mirror voltage to (vx,vy)
25 εi← Time since previous nested iteration
26 t← t+εi

27 Delete B[0]
Algorithm 2: Predictive steering algorithm to continuously
steer the laser light to pixels (xt ,yt) lying between the captured
marker position (x0,y0) and predicted final location (xT ,yT) ex-
pected at time T . The ith iteration of the double exponential
prediction is denoted by a superscript (i).

utilizing historical data, it is feasible to learn motion dynamics
and predict the object’s next location. Numerous techniques
for motion prediction have been proposed, including double
exponential filters [48, 74], Kalman filters [7, 78, 143], and
neural networks [44, 113]. In our implementation (§4), we
utilize a double exponential predictor due to its low compu-
tational overhead. Our framework is generic, however, and
can work with any motion prediction model as outlined in §6.

The double exponential predictor is a time-series forecasting
method that utilizes a double exponential filter to smooth the
input data and estimate future trends [48]. At a high level, the
predictor first applies a double exponential filter to the time
series data and obtains a smoothed estimate of the underlying
trend [98]. Then, it predicts future values by adding the
estimated slope of the trend to the current smoothed value. We
define the smoothing and trend estimation at iteration i as:

s(i)=αr(i)+(1−α)
(

s(i−1)+b(i−1)
)
, (1)

b(i)=β

(
s(i)−s(i−1)

)
+(1−β)b(i−1), (2)

where the raw input is represented by r(i), the smoothed value
is s(i), and b(i) is the best estimate of the trend. The parameters

1852 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

t0 t2

Predict
(xT,yT)

Steer
(x2,y2)

Steer
(x3,y3)

Steer
(xT,yT)

tn

…

t3≈t2+ε̅ T≈tn+ε̅t2≈t1+ε̅
(x2,y2) (x3,y3) (xT,yT)(x0,y0)

x pixel

y
pi

xe
l

… Repeat

t1

ε2…n-1ε1Δ
T

εn

Marker position

Figure 6: Predictive steering methodology that maximizes the num-
ber of steers within a time period T , taking into account the estimated
initial steering time ε̄ , image processing and prediction overhead ∆,
and subsequent steering overheads ε{1...n−1}.

α,β ∈ [0,1] are the smoothing parameters that control the
weight given to current and past values. In general, α and
β values can be chosen with empirical guidance4, where
larger values assign stronger weights to recent inputs and
are suitable for faster motions. Given the smoothed value
s(i) and estimated trend b(i), the next prediction is defined as
s(i+1)=s(i)+b(i) occurring at iteration i+1.

Figure 6 and Algorithm 2 describe the detailed steps. Once
an image frame is captured at time t0, the system predicts the tar-
get location (xT ,yT) at the next frame. The predicted location
is produced at time t1 after image processing delay ∆. The sys-
tem then utilizes linear interpolation to infer locations between
the captured pixel coordinate (x0,y0) and predicted coordinate
(xT ,yT). It consecutively steers laser beam to these locations,
taking into account the steering delay. Specifically, a steering
command sent at ti steers the laser beam to the interpolated
location expected at time ti+εi. Since εi is not known before
the command at ti completes, we steer to the expected location
based on the average steering delay ε̄ ≈ εi. Since Lasertag’s
mirror moves only a small amount between subsequent steers,
ε̄ is a suitable approximation for ε (see §5.3).

4 Prototype Implementation
The Lasertag prototype consists of the core unit, containing the
imaging and laser-steering subsystems, and a separate marker.
The marker is a 7 cm diameter circle made of retroreflective
tape [107]. We cut a 2 cm diameter hole in the center to place
a photodiode (PD) [50] for performance evaluation.
Imaging Subsystem. The imaging subsystem images the
scene to identify the marker’s location. Two 520 nm LEDs [93]
are placed next to the system’s fisheye lens to flood the scene
with green light. The green light reflects off the retroreflective
marker and passes through the fisheye lens. The light then
traverses the optical beamsplitter [130] and a 633 nm notch
filter [105], which removes any stray reflections from the laser
steering subsystem. Next, light passes through a 520 nm band-
pass filter [125] with a 55 nm pass region bandwidth. The
monochrome light is focused using an f =16mm focal length
lens [106], before finally arriving at a 5 MP image sensor [102].
The processing pipeline is built upon the OpenMV H7 Plus

4Other prediction algorithms (see §5.3) can eliminate parameter tuning.

Beamsplitter

1.6° x 1.2°
full div.

1m

3m

6m

LED
driver

Imaging
optics

OpenMV
H7 Plus

638nm beam

MEMS mirror + driver

520nm
LEDs

Fisheye lens

LD

Triplet

Beam profile

Figure 7: The Lasertag prototype and resulting beam profile mea-
sured at different distances.

platform. We perform adaptive windowing by sending IOCTL
commands directly to the image sensor.
Laser-Steering Subsystem. The laser steering subsystem
takes the marker location from the imaging subsystem and
feeds the appropriate steering voltages to a digital-input
MEMS driver [91] operating with an SPI bus frequency of
25 MHz. We utilize a 638 nm laser diode [129] with the driving
current capped to 120 mA, resulting in 50 mW of optical power.
The outgoing laser light is focused using an f = 2.75mm as-
pheric lens [128]. After the aspheric lens, the laser light reflects
off a 2.4 mm MEMS mirror [88] with a steering bandwidth of
300 Hz. Finally, the laser light passes through an f = 20mm
triplet lens [133]. The laser light then reflects off the beam-
splitter and through the fisheye lens [103], achieving a 3 dB
half-angle (x, y) divergence of (0.6, 0.8) degrees.

5 Evaluation
We evaluate Lasertag’s tethering efficacy in the context of three
practical applications, followed by micro-benchmarks and the
impact of practical factors. A demonstration is available at [15].

5.1 Experimental Setup
Since application-specific performance (e.g., communication,
power delivery) fundamentally relies on the ability to maintain
a constant laser connection, we primarily focus on evaluating
Lasertag’s tethering efficacy. We then translate these results to
application specific performance with additional experiments.
Ground Truth. We assemble a separate optical unit to collect
ground truth marker and laser beam positions (Figure 8a). We
combine two 2.4 MP cameras [138] with a 50:50 beamsplitter
and place a fisheye lens [104] on the beamsplitter’s output for
imaging. Each camera has a 520 nm or 633 nm bandpass filter
for isolating the marker or laser spot. We add two 520 nm LEDs
to generate retroreflective light. Each camera streams images
to a host computer, in parallel, at an average 315 FPS. Frames
from both cameras are synced by minimizing the difference
between frame timestamps, and aligned by applying a homo-
graphic transform. We perform binarization, blob detection,
and ellipse contouring to localize the laser spot and marker in
each frame. The marker velocity is then estimated by taking
the Euclidean distance between the marker’s center in adjacent
frames and dividing by the frame interval. Notably, we mea-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1853

Lasertag

Optical ground truth0.9m

Fisheye
lens

2x
LEDs

2x Image
sensors

(a) Lasertag and ground truth.

Accelerometer

Marker PD

3m5m

5m

Lasertag and
optical ground truth

(b) Drone communication.

1.8m

5m5m

(c) Laser VR.

1.8m

5m5m

(d) Power delivery.
Figure 8: Experimental setup for evaluating Lasertag in the context of three different practical scenarios.

sure pixel velocity instead of physical velocity since Lasertag’s
performance is only dependent on pixel changes. Since pixel
velocities scale with distance (e.g., a fast-moving object close
to Lasertag has a large pixel velocity, and a slower pixel velocity
when it is farther away), we can generalize Lasertag’s perfor-
mance to any distance. We also add an accelerometer [99] to
the target to complement the velocity data.
Evaluation Metrics. We measure tethering efficacy via: (1)
the physical offset between the center of the laser beam and
marker; (2) the normalized laser power received by a PD colo-
cated with the marker.

We compute the first metric from ground-truth videos.
For each ground truth frame, we compute the pixel offset as
the Euclidean distance between the laser and marker blobs
in the image. To convert pixel offset to physical offset, we
approximate the focal length f of the optical ground-truth
camera using the MATLAB and a conventional checkerboard
calibration pattern. Assuming minimal lens distortion and a
fixed marker depth d relative to the image plane, the physical
offset o (in meters) corresponding to a pixel offset p (in pixels)
is o = p∗d ∗1/ f [79], where f is experimentally measured
to be 322.5 pixels. Notably, this equation can also be used
to relate pixel velocity to physical velocity, where o is in m/s
and p is in px/s. Since transient marker occlusions and image
processing noise impact our measurements, we extract the
most likely offset by applying a rolling median window of
width 100 px/s over the velocity-offset pairs. We also ignore
velocities higher than the 98th percentile (710 px/s) and lower
than the 2nd percentile (13 px/s) due to lack of samples.

The second metric is measured by a PD placed at the
center of the marker on the target. Throughout target motion,
accelerometer data and PD voltage are sampled at 1 ksps by
a micro-controller [5]. PD voltage and velocity data are then
synced together to associate each PD reading with a velocity.
We then perform a series of signal processing techniques to
remove the confounding factors of depth, angular response,
laser power, and occlusion – all of which detrimentally
affect the PD’s response but do not indicate poor tethering
performance. First, we observe that signal fluctuations due to
target motion occur with a frequency between 3 Hz and 500 Hz.
Thus we perform a 0.5 Hz rolling average of the signal’s 99th

percentile, removing signal spikes caused by PD/ADC noise.
We then rescale the readings between the 99th percentile
rolling average and the PD’s noise floor (83 mV), partially
removing the impact of the PD’s angular response, experiment

depth, and laser power. To account for temporary PD occlusion,
we apply a rolling median window of width 100 px/s, and
ignore velocities above 710 px/s and below 13 px/s.
Evaluation Procedure. We evaluate Lasertag in an enclosed
indoor space. To understand the contribution of predictive steer-
ing, we also evaluate Lasertag without predictive steering as
our baseline. First, we place the Lasertag core unit and ground
truth measurement device on a 0.9 m height table (Figure 8a).
Second, we place the marker and sensing components on the
target (Figure 8). Third, we turn on a 1100 lx floor lamp (mea-
sured 1 m away) to provide ambient light and guidance for the
drone’s optical positioning. Finally, we place the target at a
fixed depth 5 of either 0.8 m, 2.4 m, or 4 m from the Lasertag
core unit, and record 3-8 minute trials for both steering meth-
ods at each depth. We synthesize over 1.6 million velocity
measurements with associated PD readings. Laser safety re-
quirements are maintained for all experiments, and since the
laser’s reflections are mainly retroreflective, authors were only
exposed to diffuse, eye-safe reflections.
Translating Tethering Efficacy. We translate tethering re-
sults to communication performance by mapping the marker
PD’s voltage to the BER of a 1 Gbps stationary link between
Lasertag and an avalanche photodiode (APD) [124]. First, we
generate a random 1024-bit OOK, non-return-to-zero packet
with an arbitrary waveform generator [62] connected to the
Lasertag laser diode. Second, we colocate the APD and marker
PD using a 50:50 beamsplitter, ensuring both sensors receive
an identical copy of the modulated laser light. Third, we simul-
taneously capture the APD’s received signals using an oscil-
loscope [63] and the corresponding voltage of the marker PD.
For each packet, we decode the signal in MATLAB, compute
the BER, and measure the marker PD’s voltage. We then vary
the link’s SNR by programmatically decreasing laser power.
To extrapolate to all possible voltages, we fit all recorded sam-
ples with a sigmoid function (R2 of 0.992). We then apply
this function to our experimental PD values to obtain a BER
over time. This methodology avoids placing the wired APD
on our experimental targets which would restrict their motion.
Translating tethering results to power-delivery performance
is straightforward, as harvested power is directly proportional
to connection time. We avoid reporting charging efficacy as it
highly depends on the specific laser and solar cell.

5The max distance is greater than this depth, since path length increases at
extreme steering angles. This is accounted for with our adaptive normalization.

1854 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 0.6 0.8 1

F
re

q
u
en

cy

Normalized power

Predictive w/o Predictive

 0

 0.2

 0.4

 0.6

 0.8

 1 1.5 2
F

re
q
u
en

cy

Offset (cm)

(a) Combined power/offset distribution.

0.2

0.4

0.6

0.8

1.0

 200 400 600

N
o
rm

al
iz

ed
 p

o
w

er

Velocity (px/s)

Predictive w/o Predictive

0.4

0.8

1.2

1.6

2.0

 200 400 600

O
ff

se
t

(c
m

)

Velocity (px/s)

(b) Combined velocity performance.

 0
 0.04
 0.08

Drone

 0
 0.04
 0.08

F
re

q
u
en

cy

VR

 0
 0.04
 0.08

 100 200 300 400 500 600 700

Pixel velocity (px/s)

Pow. Del.

(c) Velocity distribution per trial.

0.2

0.4

0.6

0.8

1.0

 200 400 600

N
o
rm

al
iz

ed
 p

o
w

er

Velocity (px/s)

Predictive w/o Predictive

0.4

0.8

1.2

1.6

2.0

 200 400 600

O
ff

se
t

(c
m

)

Velocity (px/s)

(d) Drone communication.

0.2

0.4

0.6

0.8

1.0

 200 400 600

N
o
rm

al
iz

ed
 p

o
w

er

Velocity (px/s)

Predictive w/o Predictive

0.4

0.8

1.2

1.6

2.0

 200 400 600

O
ff

se
t

(c
m

)

Velocity (px/s)

(e) Laser VR.

0.2

0.4

0.6

0.8

1.0

 200 400 600

N
o
rm

al
iz

ed
 p

o
w

er

Velocity (px/s)

Predictive w/o Predictive

0.4

0.8

1.2

1.6

2.0

 200 400 600

O
ff

se
t

(c
m

)

Velocity (px/s)

(f) Power delivery.

Figure 9: (a-b) Distribution and velocity trends of received normalized power and physical offset across all scenarios. (c) Velocity distribution
from individual scenarios. (d-f) Velocity breakdowns for each scenario.

5.2 Tethering Efficacy
To examine tethering efficacy, we consider object motions in
three applications well-primed for the benefits of laser light: (1)
ground-to-drone laser communication, (2) laser communica-
tion for VR, and (3) mobile power delivery using lasers. Across
scenarios, our targets underwent realistic motions including
unpredictable movements, jitter, velocity swings, and rotations.
Performance Overview. Across all applications, predictive
steering consistently aligns the laser beam center with the
PD on the target, delivering a median normalized laser power
of 0.97 on average, compared to only 0.85 without predictive
steering. Similarly, the median offset seen with predictive steer-
ing is 1.03 cm on average, compared to 1.17 cm for without
predictive steering. To maintain the laser tether in the face of
steering errors, the laser beam divergence could be expanded to
increase the beam spot size and compensate for steering offsets,
at the expense of energy efficiency. The required half-angle
beam divergence to maintain the link in the face of a 1.17 cm
offset is≈0.67° for a marker depth of 1 m. This low beam di-
vergence corresponds to a relatively well-collimated beam, and
thus Lasertag can efficiently deliver the majority of outputted
laser energy to the marker’s receiver. Histograms of received
normalized power and offsets across all scenarios are shown
in Figure 9a, demonstrating predictive steering’s performance
gain. We attribute this gain to the boosted steering rate of our
predictive steering algorithm, achieving average rates up to
151 Hz from the baseline 36 Hz. As shown in Figure 9b, while
predictive steering maintains relatively constant performance
across velocities, baseline steering performance considerably
declines. At the maximum observed marker speed of 710 px/s,
corresponding to a physical speed of 8.8 m/s at a depth of 4 m,
predictive steering achieves, on average, a 32% higher median
power and 26% lower median offset than baseline steering.

In the context of power delivery, these results indicate that

Lasertag is able to deliver 97% of its laser power to mobile de-
vice,compared to 85% with baseline steering. Translating these
results to communication performance, we observe a median
BER of 1.15×10−8 (p25 = 8.19×10−9, p75 = 7.97×10−5) for
predictive steering and 6.25×10−7 (p25 = 9.26×10−9, p75 =
3.97×10−4) for baseline steering. Notably, this corresponds to
a 54-fold improvement in BER utilizing predictive steering. In-
cluding periods when the link was fully occluded, we observe
mean BERs of 2.62× 10−2 and 5.03× 10−2 for predictive
and baseline steering, respectively. To improve these results,
the laser power can be increased to improve the overall SNR
(thereby decreasing BER), or lower throughputs (e.g., 100s
of Mbps) can be considered to relax the SNR requirements.

Diving into each application, we observe that Lasertag’s
performance is highly dependent on not only the target’s
velocity, but also its trajectory. We identify two broad classes
of object motion: (1) continuous linear movement; (2) short
periods of linear or angular movement, which register as bursts
of small, seemingly random displacements (later referred
to as micro-movements). Importantly, both continuous and
micro-movements can occur at all velocities. For instance,
although the drone predominately flies in a continuous, linear
fashion at a variety of speeds, VR games generate a combi-
nation of slow and rapid angular head movements, generating
micro-movements of varying velocities. The presence of
continuous, linear motion vs. micro-movements affects the
received power and offset achieved by both steering methods.

Lastly, we observe that the distribution of velocities across
applications is heavily positively skewed (Figure 9c). Since
there are fewer samples recorded at higher velocities, we
observe a larger variance in received power and offset at
higher velocities. Despite this, predictive steering maintains
a tighter confidence interval around the median than baseline
steering. Additionally, a slightly lower PD reading and higher

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1855

offset exists at the lowest pixel velocities which we attribute
to occlusion not accounted for by our adaptive normalization.
Below we break down our results by application and examine
the impact of specific motions on Lasertag’s tethering efficacy.
Drone Communication. We consider maintaining a commu-
nication link with a moving aerial drone for our first application
scenario. We track, in real-time, a DJI Mini 2 drone flying with
a maximum acceleration of 29 m/s2 in the z-direction and
19 m/s2 in the x-y plane. At each starting depth, the drone flew
left-to-right in repeated sweeps across the room, each measur-
ing roughly 5 m horizontally. With the exception of take-off
and landing, the drone maintained a relatively constant ver-
tical position. As shown in Figure 9c, a significant number
of samples at low velocities were collected, corresponding
to instances in which the drone was changing direction, such
that the gradient of pixel movement was close to zero. The
second peak and tail of the distribution correspond to samples
collected while the drone cruised across the room.

On average across all measured velocities, predictive steer-
ing delivers 27% higher median-normalized laser power than
baseline steering and maintains a 22% smaller median offset.
As the marker velocity increases beyond 230 px/s, predictive
steering maintains median normalized powers above 0.86 and
median offsets less than 1.11 cm. In contrast, baseline steering
performance significantly declines, such that at the maximum
recorded velocity of 710 px/s it achieves a median normalized
power of 0.71 and median 1.61 cm offset. Translating these
results to communication performance, we observe a median
BER of 9.26×10−9 for predictive steering and 2.73×10−6

for baseline steering. Notably, a large portion of the drone’s
motion consists of continuous, linear motion, which is ideal for
double exponential prediction. As such, we observe increased
tethering performance with predictive steering enabled.
Laser VR. For our second scenario, we consider laser com-
munication to a VR headset for high-quality content streaming.
We track a Pico4 VR headset while the participant plays a
game, moving left/right up to 5 m, up/down up to 1.8 m, and
back/forth up to 5 m. Throughout all trials, the VR headset expe-
rienced a maximum acceleration of 37 m/s2 in the z-direction
and 15 m/s2 in the x-y plane.

As shown in Figure 9e, predictive steering and baseline
steering achieve median normalized laser powers of 0.99 and
0.98 and offsets of 0.81 cm and 0.89 cm, respectively, with rel-
atively constant performance across velocities. The noticeably
smaller performance gain of predictive steering is due to the
prominence of micro-movements throughout VR gameplay.
While such movements are typically not amenable to predictive
steering, here they correspond to small (albeit fast) physical dis-
placements of the marker such that the PD remains within the
laser beam’s diameter at all times. Steering without prediction
similarly benefits from this motion pattern. Translating these
results to communication performance, we observe a median
BER of 1.11×10−8 for predictive steering and 1.18×10−8 for
baseline steering. For high-resolution VR requiring multiple

Gbps of throughput, the laser power can be increased to
improve the overall SNR and decrease the resulting BER.
Mobile Power Delivery. For our final scenario, we consider
the potential of continuously delivering power to mobile de-
vices. We track the back of a smartphone while a participant
performs various actions, including (1) talking on the phone
while walking, (2) pausing to answer a video call, and (3) bend-
ing over while on the phone. Throughout trials, the participant
moved left/right up to 5 m, up/down up to 1.8 m, and back/forth
up to 5 m. The phone experienced a maximum acceleration of
49 m/s2 in the z-direction and 27 m/s2 in the x-y plane.

As shown in Figure 9f, predictive steering on average de-
livers 19% higher median normalized laser power. Predictive
steering consistently achieves median normalized laser powers
above 0.90. In the context of power delivery, this translates to a
mobile device receiving over 90% of laser energy from the core
unit. The median offset achieved by baseline steering on aver-
age is 1.33 cm, compared to 1.25 cm with predictive steering.
As in the case of drone motion, higher velocities see increased
performance differences between predictive and baseline steer-
ing. Additionally, during slower motions, the user occasionally
occluded the PD, causing a consistent decline in power at ve-
locities below 300 px/s that negatively skewed the median.

5.3 Tethering Micro-benchmarks
Motion Prediction. To assess the accuracy of motion pre-
diction, we compare the predicted marker pixel locations with
ground truth values. We first downsample the ground truth
values (recorded at 315 FPS) to the average frame rate of
Lasertag’s image sensor (36 FPS). We then compare our pre-
diction algorithm to two reference points: (1) baseline without
prediction, which treats the target’s current location as its next
location; (2) optimal case, which uses a brute-force search to
find the optimal hyperparameters α,β of the double exponen-
tial filter for each application. Although the optimal case is not
practical for real-time applications due to the time-consuming
brute-force search, we include it as an upper bound for compar-
ison. We quantify prediction error as the Euclidean distance
between the predicted and ground truth marker pixel locations
and report the mean/STDV of prediction error.

As shown in Figure 10a, compared to the baseline, our
predictive steering algorithm reduces prediction error by
roughly half in all applications, achieving an average error of
1.67 px, corresponding to a 1.04 cm error at a distance of 2 m.
The difference between our prediction algorithm to the optimal
case is, on average, only 0.3 px (1.8 mm at 2 m). Across predic-
tion methods, we observe that applications with higher marker
velocities (i.e., drone motion) see higher mean prediction er-
rors. This relationship arises because higher marker velocities
correspond to larger displacements of the marker between
consecutive frames. Inaccurate predicted locations are then
increasingly far from the actual location. Tuning of the double
exponential parameters or more sophisticated motion predic-
tion models (§6) could improve accuracy at higher speeds.
Angular Range. Next we measure the angular range of the

1856 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 2

 4

 6

 8

Drone VR P.D.M
ea

n
 p

re
d

ic
ti

o
n

 e
rr

o
r

(p
x

)

Scenario

Baseline
Predictive

Optimal

(a) Prediction accuracy.

 0

 0.5

 1

−90 −45 0 45 90

N
o
rm

al
iz

ed
 p

o
w

er
Outgoing angle (°)

Steering
Imaging

(b) Angular range.

Target tracking
7.9ms 1…n-1Steer0

2.1ms
Steern
2.1ms

Map
0.05ms

Interp
0.02ms

Prediction
0.1ms
Time

…Capture = 1/FPS
27.8ms

(c) Timing breakdown.

 0

 60

 120

 180

 240

 1 2 3 4 5 6

M
ea

n
 b

ri
g

h
tn

es
s

Blob distance (m)

14cm Marker
7cm Marker

3.5cm Marker

Fishtank
Smartphone
Whiteboard

300mW LED
100mW LED

(d) Background noise.

Figure 10: Lasertag micro-benchmarks and practical considerations including (a) prediction accuracy, (b) angular range of the steering and
imaging subsystems, (c) the timing breakdown, and (d) impact of background noise.

laser subsystem and the imaging subsystem. To quantify the
imaging range, we place a power meter [131] at the center of
the retroreflective marker to measure optical power. We then
rotate the marker in 10° increments when 18 cm away from
Lasertag and measure the power at each angle. To measure the
laser subsystem’s range, we measure the maximum received
power at each angle, indicating how efficient the optical circuit
is at delivering laser light to any angle. In both scenarios, we
measure the received power relative to the maximum power.

As shown in Figure 10b, the laser subsystem is capable of
delivering over 56% of its laser power up to±95°, covering 10°
more than a full hemisphere before dropping below its−3 dB
point. Notably, the steering is slightly asymmetrical around
the 0° mark. We hypothesize this is due to reduced MEMS
mirror area at extreme positive angles, which lowers reflection
efficiency [90]. The imaging subsystem delivers≥66% of its
power to the marker center over a±81° range. This is because
at extreme angles, the circular retroreflective marker becomes
distorted, resulting in an incorrect center measurement.

System Speed. Finally we evaluate the delay of each step in
Lasertag and plot the timing breakdown in Figure 10c. Overall,
image capture takes the most time (27.8 ms), limited by the
frame rate (36 FPS). Lasertag runs other steps in parallel with
image capture, including target tracking (7.9 ms), motion pre-
diction and interpolation (≈ 0.1 ms), and consecutive steering
(2.1 ms each on average). On average, these timing constraints
support up to four predictive steers before the next frame is
requested. For a tag moving with an angular speed of 1 °/s
(roughly corresponding to 10 px/s), the MEMS mirror takes
approximately 0.6 ms to rotate to its updated physical deflec-
tion angle. The angular response is nonlinear, maxing out at
≈6 ms for angles above 30°. Notably, all these durations are
extremely variable and dependent on hardware characteristics,
image sensor configuration, and marker movement. Conse-
quently, we observe a variable frame rate from 238 FPS (when
the marker is stationary) to 14 FPS (when the marker is caus-
ing frequent ROI window updates). As a result, the number
of predictive steers varies from an observed minimum of one
to a maximum of eighteen. Faster MCUs and a streamlined
MEMS communication protocol would decrease the overall
time spent in image processing and communicating with the
mirror, thereby enabling more steering between frames.

5.4 Practical Considerations
Finally, we investigate practical aspects of Lasertag.
Power Consumption. Using a Monsoon FTA22D power me-
ter, we measure the power consumption of Lasertag (Table 1).
Overall, the power consumption of the MCU, image sensor,
and MEMS mirror is less than 1.5 W, 70% smaller than the
minimum power consumption of common computer vision
processors, e.g., the 5 W Jetson Nano. Notably, our chosen
laser consumes 353 mW of input power to generate 50 mW of
optical power. Higher efficiency/lower-power diodes can fit
seamlessly within the system to lower the power consumption.
Noisy Environments. To examine Lasertag’s robustness
against confounding scene objects, we directly measure the
perceived brightness of the retoreflective marker (cut to three
diameters) and common scene objects (e.g. reflective screens,
glass, whiteboards). Figure 10d plots the mean brightness of
the marker as function of distance. In general, larger mark-
ers retroreflect more light than smaller markers, resulting in
brighter blobs on the image sensor.6. In general, fairly low-
power LEDs have comparable brightness to the retroreflective
markers, supporting our claim that active markers would im-
prove Lasertag’s overall power efficiency at the cost of sys-
tem complexity. Additionally, these results validate the impor-
tance of the marker detection algorithm in §3.2 which enables
Lasertag to operate with bright light sources in the scene.
Ambient Light. Similar to supported imaging range, ambient
light rejection is tightly coupled with the chosen optical filters.
To reject more ambient light, a narrow bandpass filter can be
utilized to only pass a small subset of wavelengths. In our
implementation, we opted for a wider bandwidth (55 nm) filter
to match the broad emission spectrum of the 520 nm LEDs.
Despite the wide bandwidth, it still required over 200.000 lx
of light to saturate the image sensor using a white LED.

6 Discussion
Additional Tracking Modes. Our framework is compat-
ible with any image-based detection technique and is thus
application-agnostic. The tracking system may be configured
to support two additional modes: (1) tracking active markers,
and (2) markerless object tracking. An active marker can be

6We observe a decrease in blob brightness within 1 m of Lasertag due to the
majority of retroreflective light returning to their source instead of overlapping
with the colocated fisheye lens.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1857

Table 1: Average Lasertag power consumption breakdown.

Imaging Power (mW) Steering Power (mW)

MCU 596 50mW LD 353
Image sensor 692 MEMS mirror 159
2x LEDs 305

Subtotal 1593 mW Subtotal 512 mW

realized by adding an active light emitter (e.g., IR LED) to the
target, potentially enabling alignment feedback or uplink com-
munication (e.g., using frequency modulation). This would
also increase sensing ranges and robustness to background ob-
jects or targeted attacks (e.g., use of "spoofing" markers to fool
Lasertag). The second mode requires no marker on the object,
and relies fully on either standard feature detection algorithms
or machine learning models to identify the target. Prior work
has examined the tracking of people [10], traffic [24], and ar-
bitrary objects [122], which can be plugged into the Lasertag
framework. We leave these explorations to future work.
Motion Prediction. More sophisticated prediction models
can predict the target’s next position with higher accuracy. Re-
cent work has proposed learning models that can be trained to
learn complex patterns and relationships between an object’s
motion and its surrounding environment [13, 38, 117]. To test
the potential benefits of deep learning prediction for Lasertag,
we apply the N-euro Predictor [117] to the data collected during
our experiments without further fine-tuning. This model re-
duced the prediction error from an average of 1.67 px to 0.8 px,
a 52% decrease. This performance boost requires more power-
ful hardware for neural network inference, which Lasertag can
support depending on the application requirements.
Path Blockage. Lasertag can support non-line of sight appli-
cations by leveraging its image sensor to find reflections in the
scene and peer around obstructions. For example, imagine a
scenario where the Lasertag core unit and a target are separated
by a wall, but to one end of the wall is a mirror that is visible by
both. The core unit will see the target’s reflection in the mirror,
and can steer the laser beam to the reflection. Because of path
symmetry between the image sensor and laser, the beam will
reflect off the mirror and onto the target.

7 Related Work
Colocating Tracking/Positioning with Laser Steering.
Prior work has studied the integration of object acquisition,
tracking, and laser steering to maintain connection of a laser
beam with a target object. To the best of our knowledge, no
existing systems integrate target-agnostic computer vision
based tracking with laser steering. Existing systems often equip
the target with retroreflectors [14, 59, 77, 83, 86, 87], photo-
diodes [87], or active emitters like LEDs [83, 87, 95, 134] or
laser beacons [12,20,61,119,123,139,144]. Lasertag imposes
no restrictions on the target’s design, as it can be reconfig-
ured to support tracking and steering to any object visible to
the embedded camera. [4, 126] require a multi-camera sys-
tem to determine the mirror tilt needed to steer to a 3D po-

sition. These systems must be carefully calibrated by hard-
coding the camera system’s parameters [4, 126]. Lasertag
requires no a priori knowledge of camera characteristics, in-
stead automatically determining the correct steering parame-
ters during the mapping stage. [59,83,86,87] perform iterative
scans to track and steer to a passive mobile target. In contrast,
Lasertag continuously steers directly to the target and thus
does not suffer from tether downtime resulting from scanning.
While [59, 83, 86, 87] perform several demonstrations of their
system and describe its design, quantified performance results
are not provided. [1, 2, 14, 39, 51, 64] rely on uplink feedback
between the transmitter and receiver, either to enable initial
beam alignment [1, 64, 141], continuously communicate link
quality [39, 51] or receive GPS locations [2, 14]. We employ a
purely optical approach that does not require uplink feedback.
Laser Steering. Laser beam steering mechanisms fall into
two categories: non-mechanical and mechanical. Mechanical
beam steering mechanisms involving rotating mirrors have
large steering ranges but tend to be bulky, sensitive to me-
chanical stress, and limited in steering resolution [60, 142].
Non-mechanical beam steering mechanisms include acousto-
optic deflectors [121,136], optical gratings [11,41,67,80,100],
tunable liquid lenses [22, 101, 150], phased arrays [29, 30, 35],
and MEMS mirrors [33, 47, 85, 146]. Overall, MEMS mirror
are the most appealing due to their small size, low cost, and
robustness. Other solutions lead to significant loss of optical
power during steering [121, 136], suffer from limited FoVs
and switching speeds [11,22,41,67,80,100,101,150], or have
limited commercial availability [29, 30, 35].
3D Object Positioning and Tracking. [94] and [37] explore
the use of feature matching combined with reprojection to
perform 3D tracking. A large body of work explores light-
based positioning and tracking techniques that do not employ
cameras [42, 65, 76], including those requiring [46, 70, 110]
active emitters or photodiodes [31,52,145] on the target. Other
3D object localization methodologies include ultrasonic [21],
LiDAR [49], MEMS [73, 87], IMU [36, 72], and RF [3, 8, 57,
68,120,148] sensing. As discussed in §2, these methodologies
are nontrivial to integrate with laser steering devices.
8 Conclusion
We present Lasertag, a reconfigurable framework for laser
tethering with highly mobile targets. Extensive evaluation
shows that Lasertag can maintain laser alignment with rapidly
moving targets equipped with retroreflective markers. Lasertag
paves the way for a myriad of laser-based mobile applications,
including laser communication and wireless power delivery.

9 Acknowledgements
We sincerely thank our reviewers and shepherd for their
insightful feedback. This work is supported in part by the Na-
tional Science Foundation (GRFP-1840344, CNS-1552924).
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect those of the funding agencies or others.

1858 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Mojtaba Mansour Abadi, Mitchell A Cox, Rakan E

Alsaigh, Shaun Viola, Andrew Forbes, and Martin PJ
Lavery. A space division multiplexed free-space-
optical communication system that can auto-locate and
fully self align with a remote transceiver. Scientific
Reports, 9(1):1–8, 2019.

[2] Mouhammad Al Akkoumi, Robert Huck, and James
Sluss. High-speed communications enabling real-time
video for battlefield commanders using tracked FSO.
Proc. of SPIE - The International Society for Optical
Engineering, 2007.

[3] Marco Altini, Davide Brunelli, Elisabetta Farella,
and Luca Benini. Bluetooth indoor localization with
multiple neural networks. In IEEE 5th International
Symposium on Wireless Pervasive Computing, pages
295–300, 2010.

[4] Nicolas Andreff, Brahim Tamadazte, Sounkalo
Dembélé, and Zill E Hussnain. Preliminary variation
on multiview geometry for vision-guided laser surgery.
In Workshop on Multi-View Geometry in Robotics,
pages 1–10, 2013.

[5] Arduino. Arduino MKR1000 WiFi. https:
//store-usa.arduino.cc/products/arduino-
mkr1000-wifi, 2023.

[6] Charles K Asawa. Boresighting system for infrared
optical receiver and transmitter, May 2 1978. US Patent
4,087,689.

[7] Ronald Azuma and Gary Bishop. Improving static
and dynamic registration in an optical see-through
HMD. In Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, pages
197–204, 1994.

[8] R. Bajaj, S.L. Ranaweera, and D.P. Agrawal. Gps:
location-tracking technology. Computer, 35(4):92–94,
2002.

[9] Sunil L Bangare, Amruta Dubal, Pallavi S Bangare,
and Suhas Patil. Reviewing otsu’s method for image
thresholding. International Journal of Applied
Engineering Research, 10(9):21777–21783, 2015.

[10] Antonio Brunetti, Domenico Buongiorno, Gian-
paolo Francesco Trotta, and Vitoantonio Bevilacqua.
Computer vision and deep learning techniques
for pedestrian detection and tracking: A survey.
Neurocomputing, 300:17–33, 2018.

[11] J Buck, S Serati, R Serati, H Masterson, M Escuti,
J Kim, and M Miskiewicz. Polarization gratings
for non-mechanical beam steering applications. In

Acquisition, Tracking, Pointing, and Laser Systems
Technologies XXVI, volume 8395, page 83950F, 2012.

[12] Jamie W Burnside, Stephen D Conrad, Allen D Pills-
bury, and Catherine E DeVoe. Design of an inertially
stabilized telescope for the llcd. In Free-Space Laser
Communication Technologies XXIII, volume 7923,
pages 133–140, 2011.

[13] Judith Butepage, Michael J Black, Danica Kragic,
and Hedvig Kjellstrom. Deep representation learning
for human motion prediction and classification. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 6158–6166, 2017.

[14] Alberto Carrasco-Casado, Ricardo Vergaz, José M
Sánchez-Pena, Eva Otón, Morten A Geday, and José M
Otén. Low-impact air-to-ground free-space optical
communication system design and first results. In 2011
International Conference on Space Optical Systems
and Applications (ICSOS), pages 109–112, 2011.

[15] Charles J Carver, Hadleigh Schwartz, Qijia Shao,
Nicholas Shade, Joseph P Lazzaro, Xiaoxin Wang,
Jifeng Liu, Eric R Fossum, and Xia Zhou. Catch me
if you can: Demonstrating laser tethering with highly
mobile targets. In Proceedings of the 29th Annual
International Conference on Mobile Computing and
Networking, pages 1–3, 2023.

[16] Charles J Carver, Qijia Shao, Samuel Lensgraf, Amy
Sniffen, Maxine Perroni-Scharf, Hunter Gallant,
Alberto Quattrini Li, and Xia Zhou. Sunflower:
Locating underwater robots from the air. In Proc. of
MobiSys, page 14–27, 2022.

[17] Charles J Carver, Zhao Tian, Qijia Shao, Hongyong
Zhang, Kofi M Odame, Alberto Quattrini Li, and
Xia Zhou. Air-water communication and sensing
with light. In 2022 14th International Conference on
COMmunication Systems & NETworkS (COMSNETS),
pages 371–374, 2022.

[18] Charles J Carver, Zhao Tian, Hongyong Zhang,
Kofi M. Odame, Alberto Quattrini Li, and Xia Zhou.
AmphiLight: Direct air-water communication with
laser light. In Proc. of NSDI, pages 373–388, 2020.

[19] Justin Chan, Ananditha Raghunath, Kelly E.
Michaelsen, and Shyamnath Gollakota. Testing
a drop of liquid using smartphone lidar. Proc. ACM In-
teract. Mob. Wearable Ubiquitous Technol., 6(1), 2022.

[20] C Chen, A Grier, M Malfa, E Booen, H Harding, C Xia,
M Hunwardsen, J Demers, K Kudinov, G Mak, B Smith,
A Sahasrabudhe, F Patawaran, T Wang, A Wang,
C Zhao, D Leang, J Gin, M Lewis, B Zhang, D Nguyen,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1859

https://store-usa.arduino.cc/products/arduino-mkr1000-wifi
https://store-usa.arduino.cc/products/arduino-mkr1000-wifi
https://store-usa.arduino.cc/products/arduino-mkr1000-wifi

D Jandrain, F Haque, and K Quirk. Demonstration of
a bidirectional coherent air-to-ground optical link. In
Free-Space Laser Communication and Atmospheric
Propagation, volume 10524, page 105240G, 2018.

[21] Moi Tin Chew, Fakhrul Alam, Mathew Legg, and
Gourab Sen Gupta. Accurate ultrasound indoor local-
ization using spring-relaxation technique. Electronics,
10(11):1290, 2021.

[22] Hyun Choi and Wan-Chin Kim. Design of mechaless
LiDAR optical system with large FOV using liquid lens
and fisheye lens. In ASME-JSME 2018 Joint Interna-
tional Conference on Information Storage and Process-
ing Systems and Micromechatronics for Information
and Precision Equipment, page V001T10A001, 2018.

[23] Hyun Choi, No-Cheol Park, and Wan-Chin Kim.
Optical system design for light detection and ranging
with ultra-wide field-of-view using liquid lenses.
Microsystem Technologies, 26(1):121–131, 2020.

[24] Benjamin Coifman, David Beymer, Philip McLauchlan,
and Jitendra Malik. A real-time computer vision system
for vehicle tracking and traffic surveillance. Trans-
portation Research Part C: Emerging Technologies,
6(4):271–288, 1998.

[25] Max Curran, Md Shaifur Rahman, Himanshu Gupta,
Kai Zheng, Jon Longtin, Samir R. Das, and Thanvir
Mohamed. FSONet: A wireless backhaul for multi-
gigabit picocells using steerable free space optics. In
Proc. of MobiCom, page 154–166, 2017.

[26] Alan J. Danker and Azriel Rosenfeld. Blob detection
by relaxation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-3(1):79–92, 1981.

[27] Carlo De Santi, Matteo Meneghini, Alessandro Caria,
Ezgi Dogmus, Malek Zegaoui, Farid Medjdoub, Boris
Kalinic, Tiziana Cesca, Gaudenzio Meneghesso, and
Enrico Zanoni. Gan-based laser wireless power transfer
system. Materials, 11(1):153, 2018.

[28] DJI. DJI Mini 3 Specs. https://www.dji.com/mini-
3/specs, 2023.

[29] Jonathan Doylend, Martijn R Heck, Jock Bovington,
Jon Peters, Larry Coldren, and John Bowers. Free-space
beam steering in two dimensions using a silicon optical
phased array. In Optical Fiber Communication
Conference, pages OM2J–1, 2012.

[30] Jonathan K. Doylend, M.J.R. Heck, Jock T. Bovington,
Jonathan D Peters, L.A. Coldren, and J.E. Bowers.
Two-dimensional free-space beam steering with an
optical phased array on silicon-on-insulator. Optics
Express, 19(22):21595–21604, 2011.

[31] Minzhen Du. Assessment of a Low Cost IR Laser Local
Tracking Solution for Robotic Operations. PhD thesis,
Virginia Tech, 2021.

[32] Josef Eisenring, Klaus W Hildebrand, and Jakob
Tanner. Coaxial transmitting and receiving optics for
an electro-optic range finder, August 28 1979. US
Patent 4,165,936.

[33] Yusuf Said Eroglu, Ismail Guvenc, Alphan Sahin,
Nezih Pala, and Murat Yuksel. Diversity combining and
piezoelectric beam steering for multi-element VLC net-
works. In Proceedings of the 3rd Workshop on Visible
Light Communication Systems, pages 25–30, 2016.

[34] Zhufeng Fan, Jinyu Zhan, and Wei Jiang. Detecting
deepfake videos by visual-audio synchronism: work-
in-progress. In Proceedings of the 2021 International
Conference on Embedded Software, pages 31–32, 2021.

[35] Reza Fatemi, Aroutin Khachaturian, and Ali Hajimiri.
A low power PWM optical phased array transmitter
with 16° field-of-view and 0.8° beamwidth. In 2018
IEEE Radio Frequency Integrated Circuits Symposium
(RFIC), pages 28–31, 2018.

[36] Ling feng Shi, Yu-Le Zhao, Gong xu Liu, Sen Chen,
Yue Wang, and Yi-Fan Shi. A robust pedestrian dead
reckoning system using low-cost magnetic and inertial
sensors. IEEE Transactions on Instrumentation and
Measurement, 68:2996–3003, 2019.

[37] Dmitry Gorodnichy, S Malik, and Gerhard Roth. Afford-
able 3D face tracking using projective vision. In Proc.
of Int. Conf. on Vision Interface, pages 383–390, 2002.

[38] Mahir Gulzar, Yar Muhammad, and Naveed Muham-
mad. A survey on motion prediction of pedestrians
and vehicles for autonomous driving. IEEE Access,
9:137957–137969, 2021.

[39] Himanshu Gupta, Max Curran, Jon Longtin, Torin
Rockwell, Kai Zheng, and Mallesham Dasari. Cyclops:
An FSO-Based Wireless Link for VR Headsets. In
Proc. of SIGCOMM, page 601–614, 2022.

[40] Markus Haase and Helmut Schäfer. Upconverting
nanoparticles. Angewandte Chemie International
Edition, 50(26):5808–5829, 2011.

[41] Michael Hall, Qing Chao, Byron Taylor, and Xinqiao
Liu. Non-mechanical beam steering for depth sensing,
February 25 2020. US Patent 10,574,973.

[42] Anum Hameed and Hafiza Anisa Ahmed. Survey
on indoor positioning applications based on different
technologies. In 2018 12th International Conference
on Mathematics, Actuarial Science, Computer Science
and Statistics (MACS), pages 1–5, 2018.

1860 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.dji.com/mini-3/specs
https://www.dji.com/mini-3/specs

[43] Yuze He, Li Ma, Zhehao Jiang, Yi Tang, and Guoliang
Xing. Vi-eye: Semantic-based 3D point cloud
registration for infrastructure-assisted autonomous
driving. In Proc. of MobiCom, page 573–586, 2021.

[44] Niels Henze, Sven Mayer, Huy Viet Le, and Valentin
Schwind. Improving software-reduced touchscreen
latency. In Proceedings of the 19th International
Conference on Human-Computer Interaction with
Mobile Devices and Services, 2017.

[45] S Hinz. Fast and subpixel precise blob detection and
attribution. In IEEE International Conference on
Image Processing, volume 3, pages III–457, 2005.

[46] Andrew Hogue, Matt Robinson, MR Jenkin, and
Robert S Allison. A vision-based head tracking system
for fully immersive displays. In Proceedings of the
workshop on Virtual environments, pages 179–187,
2003.

[47] Sven TS Holmstrom, Utku Baran, and Hakan Urey.
MEMS laser scanners: a review. Journal of Microelec-
tromechanical Systems, 23(2):259–275, 2014.

[48] Jinhui Huang, Chunlin Li, and Jie Yu. Resource
prediction based on double exponential smoothing
in cloud computing. In 2012 2nd International
Conference on Consumer Electronics, Communications
and Networks, pages 2056–2060, 2012.

[49] Rui Huang, Wanyue Zhang, Abhijit Kundu, Car-
oline Rebecca Pantofaru, David Alexander Ross,
Thomas Funkhouser, and Alireza Fathi. An LSTM
approach to temporal 3d object detection in lidar point
clouds. In ECCV, pages 266–282, 2020.

[50] Texas Instruments. OPT101. https:
//www.ti.com/lit/ds/symlink/opt101.pdf, 2023.

[51] Femi Ishola and Mengu Cho. Experimental study
on photodiode array sensor aided mems fine steering
mirror control for laser communication platforms.
IEEE Access, 9:100197–100207, 2021.

[52] Shahidul Islam, Bogdan Ionescu, Cristian Gadea, and
Dan Ionescu. Indoor positional tracking using dual-axis
rotating laser sweeps. In IEEE International Instru-
mentation and Measurement Technology Conference
Proceedings, pages 1–6, 2016.

[53] David J Israel, Bernard L Edwards, Richard L Butler,
John D Moores, Sabino Piazzolla, Nic du Toit, and
Lena Braatz. Early results from NASA’s laser com-
munications relay demonstration (LCRD) experiment
program. In Free-Space Laser Communications XXXV,
volume 12413, page 1241303, 2023.

[54] Vikram Iyer, Elyas Bayati, Rajalakshmi Nandakumar,
Arka Majumdar, and Shyamnath Gollakota. Charging
a smartphone across a room using lasers. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol., 1(4),
January 2018.

[55] Johannes James, Vikram Iyer, Yogesh Chukewad,
Shyamnath Gollakota, and Sawyer B. Fuller. Liftoff
of a 190 mg laser-powered aerial vehicle: The lightest
wireless robot to fly. In Proc. of ICRA, 2018.

[56] Tim P Johnson and Jose Sasian. Image distortion,
pupil coma, and relative illumination. Appl. Opt.,
59(22):G19–G23, 2020.

[57] Kiran Joshi, Dinesh Bharadia, Manikanta Kotaru, and
Sachin Katti. WiDeo: Fine-grained Device-free Motion
Tracing using RF Backscatter. In Proc. of NSDI, page
189–204, 2015.

[58] Jordin Kare and Thomas Nugent. Laser power
beaming on a shoestring. AIP Conference Proceedings,
997:97–108, 04 2008.

[59] Abhishek Kasturi, Veljko Milanovic, Bryan H Atwood,
and James Yang. UAV-borne lidar with mems
mirror-based scanning capability. In Laser Radar
Technology and Applications XXI, volume 9832, pages
206–215, 2016.

[60] Yagiz Kaymak, Roberto Rojas-Cessa, Jianghua
Feng, Nirwan Ansari, MengChu Zhou, and Tairan
Zhang. A survey on acquisition, tracking, and
pointing mechanisms for mobile free-space optical
communications. IEEE Communications Surveys and
Tutorials, 20(2):1104–1123, 2018.

[61] Kamugisha Kazaura, Kazunori Omae, Toshiji Suzuki,
Mitsuji Matsumoto, Edward Mutafungwa, Tadaaki
Murakami, Koichi Takahashi, Hideki Matsumoto,
Kazuhiko Wakamori, and Yoshinori Arimoto. Per-
formance evaluation of next generation free-space
optical communication system. IEICE Transactions
on Electronics, E90-C, 2007.

[62] Keysight. M8190A. https://www.keysight.com/
us/en/product/M8190A/12-gsa-s-arbitrary-
waveform-generator.html, 2023.

[63] Keysight. MSOS254A. https://www.keysight.com/
us/en/product/MSOS254A/high-definition-
oscilloscope-2-5ghz-4-analog-16-digital-
channels.html, 2023.

[64] Mahmudur Khan and Murat Yuksel. Autonomous
alignment of free-space-optical links between UAVs.
In Proc. of HotWireless, 2015.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1861

https://www.ti.com/lit/ds/symlink/opt101.pdf
https://www.ti.com/lit/ds/symlink/opt101.pdf
https://www.keysight.com/us/en/product/M8190A/12-gsa-s-arbitrary-waveform-generator.html
https://www.keysight.com/us/en/product/M8190A/12-gsa-s-arbitrary-waveform-generator.html
https://www.keysight.com/us/en/product/M8190A/12-gsa-s-arbitrary-waveform-generator.html
https://www.keysight.com/us/en/product/MSOS254A/high-definition-oscilloscope-2-5ghz-4-analog-16-digital-channels.html
https://www.keysight.com/us/en/product/MSOS254A/high-definition-oscilloscope-2-5ghz-4-analog-16-digital-channels.html
https://www.keysight.com/us/en/product/MSOS254A/high-definition-oscilloscope-2-5ghz-4-analog-16-digital-channels.html
https://www.keysight.com/us/en/product/MSOS254A/high-definition-oscilloscope-2-5ghz-4-analog-16-digital-channels.html

[65] Hiam M Khoury and Vineet R Kamat. Evaluation of
position tracking technologies for user localization
in indoor construction environments. Automation in
construction, 18(4):444–457, 2009.

[66] Dennis K. Killinger. Free space optics for laser
communication through the air. Optics & Photonics
News, 13:36–42, 2002.

[67] AMJ Koonen, CW Oh, and E Tangdiongga. Reconfig-
urable free-space optical indoor network using multiple
pencil beam steering. In 2014 OptoElectronics and
Communication Conference and Australian Conference
on Optical Fibre Technology, pages 204–206, 2014.

[68] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and
Sachin Katti. Spotfi: Decimeter level localization using
wifi. Proc. of SIGCOMM, 45(4):269–282, 2015.

[69] A. Kotsopoulos, Pantazi A., and Antonakopoulos T.
Control for high-speed archimedean spiral nanoposi-
tioning. In 2010 17th IEEE International Conference
on Electronics, Circuits and Systems, page 3, 2010.

[70] Anil Kumar and Pinhas Ben-Tzvi. Spatial object
tracking system based on linear optical sensor arrays.
IEEE Sensors Journal, 16(22):7933–7940, 2016.

[71] Nina Siu-Ngan Lam. Spatial interpolation methods:
a review. The American Cartographer, 10(2):129–150,
1983.

[72] Ariel Larey, Eliel Aknin, and Itzik Klein. Multiple
inertial measurement units–an empirical study. IEEE
Access, PP:1–1, 04 2020.

[73] Steven M LaValle, Anna Yershova, Max Katsev, and
Michael Antonov. Head tracking for the Oculus Rift.
In Proc. of ICRA, pages 187–194, 2014.

[74] Joseph J. LaViola. Double Exponential Smoothing:
An Alternative to Kalman Filter-Based Predictive
Tracking. In Proceedings of the workshop on Virtual
environments, page 199–206, 2003.

[75] Xiaobao Lee and Chunhui Wang. Optical design for
uniform scanning in MEMS-based 3D imaging LiDAR.
Appl. Opt., 54(9):2219–2223, 2015.

[76] Angus Leigh, Joelle Pineau, Nicolas Olmedo, and
Hong Zhang. Person tracking and following with 2D
laser scanners. In Proc. of ICRA, pages 726–733, 2015.

[77] Long Li, Runzhou Zhang, Zhe Zhao, Guodong Xie,
Peicheng Liao, Kai Pang, Haoqian Song, Cong Liu,
Yongxiong Ren, Guillaume Labroille, Pu Jian, Dmitry
Starodubov, Brittany Lynn, Robert Bock, Moshe Tur,
and Alan E. Willner. High-capacity free-space optical

communications between a ground transmitter and
a ground receiver via a uav using multiplexing of
multiple orbital-angular-momentum beams. Scientific
Reports, 7(1):17427, 2017.

[78] Jiandong Liang, Chris Shaw, and Mark Green.
On temporal-spatial realism in the virtual reality
environment. In Proc. of UIST, page 19–25, 1991.

[79] Kuan-Ying Lin, Yi-Hsing Tseng, and Kai-Wei Chiang.
Interpretation and transformation of intrinsic camera
parameters used in photogrammetry and computer
vision. Sensors, 22(24), 2022.

[80] Yu-Hua Lin, Milind Mahajan, Donald Taber, Bing
Wen, and Bruce Winker. Compact 4 cm aperture
transmissive liquid crystal optical phased array for free-
space optical communications. In Free-Space Laser
Communications V, volume 5892, page 58920C, 2005.

[81] Wolfram MathWorld. Archimedes’ spiral. https://
mathworld.wolfram.com/ArchimedesSpiral.html,
2021.

[82] Joanna McKittrick and Lauren E Shea-Rohwer. Down
conversion materials for solid-state lighting. Journal of
the American Ceramic Society, 97(5):1327–1352, 2014.

[83] V Milanović, N Siu, A Kasturi, M Radojičić, and Y Su.
MEMSEye for optical 3D position and orientation
measurement. In MOEMS and Miniaturized Systems
X, volume 7930, page 79300U, 2011.

[84] Veljko Milanovic, Kenneth Castelino, and Daniel T.
McCormick. Highly adaptable MEMS-based display
with wide projection angle. In IEEE 20th International
Conference on Micro Electro Mechanical Systems
(MEMS), pages 143–146, 2007.

[85] Veljko Milanovic, Kenneth Castelino, and Daniel T.
McCormick. Highly adaptable MEMS-based display
with wide projection angle. In IEEE 20th International
Conference on Micro Electro Mechanical Systems,
pages 143–146, 2007.

[86] Veljko Milanović, Abhishek Kasturi, James Yang, and
Frank Hu. A fast single-pixel laser imager for vr/ar
headset tracking. In MOEMS and Miniaturized Systems
XVI, volume 10116, page 101160E, 2017.

[87] Veljko Milanovic and Wing Kin Lo. Fast and high-
precision 3D tracking and position measurement with
mems micromirrors. In IEEE/LEOS International
Conference on Optical MEMs and Nanophotonics,
pages 72–73, 2008.

[88] MirrorcleTech. A5M24.3-2400AL. https:
//www.mirrorcletech.com/pdf/DSI/

1862 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://mathworld.wolfram.com/ArchimedesSpiral.html
https://mathworld.wolfram.com/ArchimedesSpiral.html
https://www.mirrorcletech.com/pdf/DSI/MirrorcleTech_Datasheet_A5M24.3-2400AL.pdf
https://www.mirrorcletech.com/pdf/DSI/MirrorcleTech_Datasheet_A5M24.3-2400AL.pdf

MirrorcleTech_Datasheet_A5M24.3-2400AL.pdf,
2023.

[89] MirrorcleTech. AN002 - approximate linear models for
mems mirrors. https://www.mirrorcletech.com/
pdf/AN/AN002_-_Approximate_Linear_Models_
for_MEMS_Mirrors.pdf, 2023.

[90] MirrorcleTech. Angle of incidence and field dis-
tortions. https://www.mirrorcletech.com/pdf/
AN/AN004_-_Angle_of_Incidence_and_Field_
Distortions.pdf, 2023.

[91] MirrorcleTech. DR-10-056-00. https:
//www.mirrorcletech.com/wp/products/
hardware/drivers/digital/, 2023.

[92] Steve P Monacos, Angel A Portillo, William Liu,
James W Alexander, and Gerardo G Ortiz. A high frame
rate CCD camera with region-of-interest capability. In
2001 IEEE Aerospace Conference Proceedings (Cat.
No. 01TH8542), volume 3, pages 3–1513, 2001.

[93] Mouser. LST1-01H06-GRN1-01. https:
//mou.sr/45Lh6r1, 2023.

[94] Jurriaan D Mulder, Jack Jansen, and Arjen Van Rhijn.
An affordable optical head tracking system for desktop
vr/ar systems. In Proceedings of the workshop on
Virtual environments, pages 215–223, 2003.

[95] Kazuki Nakamura, Shingo Nakagawa, Hiroshi Mat-
subara, Daisuke Tatsui, Kiyotaka Seki, Shinichiro
Haruyama, and Fumio Teraoka. Development of
broadband telecommunications system for railways
using laser technology. Electrical Engineering in
Japan, 190(3):45–56, 2015.

[96] S Narayana,R V Prasad,V Rao,L Mottola, and TV Prab-
hakar. Hummingbird: Energy efficient gps receiver for
small satellites. In Proc. of MobiCom, pages 1–13, 2020.

[97] T Nielsen, M Fricke, D Hellweg, and P Andresen. High
efficiency beam splitter for multifocal multiphoton
microscopy. Journal of microscopy, 201(3):368–376,
2001.

[98] NIST. Single exponential smoothing. https:
//www.itl.nist.gov/div89x8/handbook/pmc/
section4/pmc431.html, 2023.

[99] NXP. MMA8452Q. https://www.nxp.com/docs/
en/data-sheet/MMA8452Q.pdf, 2023.

[100] Chin Wan Oh, Zizheng Cao, Eduward Tangdiongga,
and Ton Koonen. Free-space transmission with
passive 2D beam steering for multi-gigabit-per-second
per-beam indoor optical wireless networks. Optics
Express, 24(17):19211–19227, 2016.

[101] Hiromasa Oku and Masatoshi Ishikawa. High-speed
liquid lens with 2 ms response and 80.3 nm root-
mean-square wavefront error. Applied Physics Letters,
94(22):221108, 2009.

[102] OpenMV. OV5640. https://openmv.io/products/
ov5640-fpc-camera-module, 2023.

[103] Edmund Optics. 22-827. https://
www.edmundoptics.com/p/132mm-fl-m12-mount-
180-deg-fisheye-lens/49590/, 2023.

[104] Edmund Optics. 62-274. https://
www.edmundoptics.com/p/23quot-format-c-
mount-fisheye-lens-18mm-fl/16922/, 2023.

[105] Edmund Optics. 67-119. https://
www.edmundoptics.com/p/532nm-25mm-diameter-
od-4-notch-filter/21656/, 2023.

[106] Edmund Optics. 83-107. https://
www.edmundoptics.com/p/160mm-fl-no-ir-cut-
filter-f4-micro-video-lens/26288/, 2023.

[107] Oralite. M82. https://www.orafol.com/en/
americas/products/oralite-m82-aids-to-
navigation-tape, 2023.

[108] Dr. Rüdiger Paschotta. Polarization of laser emission,
Oct 2018.

[109] JA Picazo-Bueno, M Trusiak, and V Micó. Single-shot
slightly off-axis digital holographic microscopy with
add-on module based on beamsplitter cube. Optics
Express, 27(4):5655–5669, 2019.

[110] Ling Qin, Ben Niu, Bao-Shan Li, Xiao-Li Hu, and
Yong-Xing Du. High precision indoor positioning
algorithm of single led lamp based on a-bayes. Optik,
241:167190, 2021.

[111] Bharath Ramesh, Hong Yang, Garrick Orchard,
Ngoc Anh Le Thi, Shihao Zhang, and Cheng Xiang.
DART: distribution aware retinal transform for event-
based cameras. IEEE transactions on pattern analysis
and machine intelligence, 42(11):2767–2780, 2019.

[112] Hamada Rizk, Yuma Okochi, and Hirozumi Yamaguchi.
Demonstrating hitonavi-µ: A novel wearable lidar for
human activity recognition. In Proc. of MobiCom, 2022.

[113] Miguel Fabián Romero Rondón, Lucile Sassatelli,
Ramón Aparicio Pardo, and Frédéric Precioso. Track:
a multi-modal deep architecture for head motion predic-
tion in 360° videos. In IEEE International Conference
on Image Processing, pages 2586–2590, 2020.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1863

https://www.mirrorcletech.com/pdf/DSI/MirrorcleTech_Datasheet_A5M24.3-2400AL.pdf
https://www.mirrorcletech.com/pdf/AN/AN002_-_Approximate_Linear_Models_for_MEMS_Mirrors.pdf
https://www.mirrorcletech.com/pdf/AN/AN002_-_Approximate_Linear_Models_for_MEMS_Mirrors.pdf
https://www.mirrorcletech.com/pdf/AN/AN002_-_Approximate_Linear_Models_for_MEMS_Mirrors.pdf
https://www.mirrorcletech.com/pdf/AN/AN004_-_Angle_of_Incidence_and_Field_Distortions.pdf
https://www.mirrorcletech.com/pdf/AN/AN004_-_Angle_of_Incidence_and_Field_Distortions.pdf
https://www.mirrorcletech.com/pdf/AN/AN004_-_Angle_of_Incidence_and_Field_Distortions.pdf
https://www.mirrorcletech.com/wp/products/hardware/drivers/digital/
https://www.mirrorcletech.com/wp/products/hardware/drivers/digital/
https://www.mirrorcletech.com/wp/products/hardware/drivers/digital/
https://mou.sr/45Lh6r1
https://mou.sr/45Lh6r1
https://www.itl.nist.gov/div89x8/handbook/pmc/section4/pmc431.html
https://www.itl.nist.gov/div89x8/handbook/pmc/section4/pmc431.html
https://www.itl.nist.gov/div89x8/handbook/pmc/section4/pmc431.html
https://www.nxp.com/docs/en/data-sheet/MMA8452Q.pdf
https://www.nxp.com/docs/en/data-sheet/MMA8452Q.pdf
https://openmv.io/products/ov5640-fpc-camera-module
https://openmv.io/products/ov5640-fpc-camera-module
https://www.edmundoptics.com/p/132mm-fl-m12-mount-180-deg-fisheye-lens/49590/
https://www.edmundoptics.com/p/132mm-fl-m12-mount-180-deg-fisheye-lens/49590/
https://www.edmundoptics.com/p/132mm-fl-m12-mount-180-deg-fisheye-lens/49590/
https://www.edmundoptics.com/p/23quot-format-c-mount-fisheye-lens-18mm-fl/16922/
https://www.edmundoptics.com/p/23quot-format-c-mount-fisheye-lens-18mm-fl/16922/
https://www.edmundoptics.com/p/23quot-format-c-mount-fisheye-lens-18mm-fl/16922/
https://www.edmundoptics.com/p/532nm-25mm-diameter-od-4-notch-filter/21656/
https://www.edmundoptics.com/p/532nm-25mm-diameter-od-4-notch-filter/21656/
https://www.edmundoptics.com/p/532nm-25mm-diameter-od-4-notch-filter/21656/
https://www.edmundoptics.com/p/160mm-fl-no-ir-cut-filter-f4-micro-video-lens/26288/
https://www.edmundoptics.com/p/160mm-fl-no-ir-cut-filter-f4-micro-video-lens/26288/
https://www.edmundoptics.com/p/160mm-fl-no-ir-cut-filter-f4-micro-video-lens/26288/
https://www.orafol.com/en/americas/products/oralite-m82-aids-to-navigation-tape
https://www.orafol.com/en/americas/products/oralite-m82-aids-to-navigation-tape
https://www.orafol.com/en/americas/products/oralite-m82-aids-to-navigation-tape

[114] John Rzasa. Pointing, acquisition, and tracking for
directional wireless communications networks. PhD
thesis, The University of Maryland, 2012.

[115] Wee-Leong Saw, Hazem H Refai, and James J Sluss Jr.
Free space optical alignment system using gps. In
Free-Space Laser Communication Technologies XVII,
volume 5712, pages 101–109, 2005.

[116] Qijia Shao, Amy Sniffen, Julien Blanchet, Megan E.
Hillis, Xinyu Shi, Themistoklis K. Haris, Jason Liu,
Jason Lamberton, Melissa Malzkuhn, Lorna C. Quandt,
James Mahoney, David J. M. Kraemer, Xia Zhou, and
Devin Balkcom. Teaching american sign language in
mixed reality. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol., 4(4), dec 2020.

[117] Qijia Shao, Jian Wang, Bing Zhou, Vu An Tran,
Gurunandan Krishnan, and Shree Nayar. N-euro
predictor: A neural network approach for smoothing
and predicting motion trajectory. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol., 7(3), 2023.

[118] K P Shaw and S Y Hsu. Horizontal distance and
height determining falling pattern. Journal of Forensic
Sciences, 43(4):765–771, July 1998.

[119] Josef Sofka, Vladimir V Nikulin, Victor A Skormin,
David H Hughes, and David J Legare. Laser commu-
nication between mobile platforms. IEEE transactions
on Aerospace and Electronic Systems, 45(1):336–346,
2009.

[120] Elahe Soltanaghaei, Avinash Kalyanaraman, and
Kamin Whitehouse. Multipath Triangulation:
Decimeter-Level WiFi Localization and Orientation
with a Single Unaided Receiver. In Proc. of MobiSys,
page 376–388, 2018.

[121] In Keun Son and Shiwen Mao. A survey of free
space optical networks. Digital communications and
networks, 3(2):67–77, 2017.

[122] Thad Starner, Bastian Leibe, David Minnen, Tracy
Westyn, Amy Hurst, and Justin Weeks. The perceptive
workbench: Computer-vision-based gesture tracking,
object tracking, and 3D reconstruction for augmented
desks. Machine Vision and Applications, 14:59–71,
2003.

[123] Daria Stepanova, Valentin Pryanichnikov, Sergey
Khandorin, Andrey Kulchitsky, and Alexey Kuznetsov.
Developing a highly accurate pointing system for
free space optical communications. Journal of
Communications, 14(12), 2019.

[124] Menlo Systems. APD210. https:
//www.menlosystems.com/products/
photodetectors/apd210/, 2023.

[125] Midwest Optical Systems. BN520. https:
//midopt.com/filters/bn520/, 2023.

[126] Brahim Tamadazte, Rupert Renevier, Jean-Antoine
Séon, Andrey V. Kudryavtsev, and Nicolas Andr-
eff. Laser beam steering along three-dimensional
paths. IEEE/ASME Transactions on Mechatronics,
23(3):1148–1158, 2018.

[127] Thorlabs. Beamsplitter guide.
https://www.thorlabs.com/
newgrouppage9.cfm?objectgroup_id=9028, 2023.

[128] Thorlabs. C392TME-A.
https://www.thorlabs.com/
thorproduct.cfm?partnumber=C392TME-A, 2023.

[129] Thorlabs. L638P. https://www.thorlabs.com/
thorproduct.cfm?partnumber=L638P200, 2023.

[130] Thorlabs. PBS25-633-HP.
https://www.thorlabs.com/
thorproduct.cfm?partnumber=PBS25-633-HP,
2023.

[131] Thorlabs. S121C. https://www.thorlabs.com/
thorproduct.cfm?partnumber=S121C, 2023.

[132] Thorlabs. Small beam diameter scanning galvo
mirror systems. https://www.thorlabs.com/
newgrouppage9.cfm?objectgroup_id=3770, 2023.

[133] Thorlabs. TRS127-020-
A. https://www.thorlabs.com/
thorproduct.cfm?partnumber=TRS127-020-A,
2023.

[134] Hideki Urabe, Shinichiro Haruyama, Tomohiro
Shogenji, Shoichi Ishikawa, Masato Hiruta, Fumio
Teraoka, Tetsuya Arita, Hiroshi Matsubara, and Shingo
Nakagawa. High data rate ground-to-train free-space
optical communication system. Optical Engineering,
51(3):031204, 2012.

[135] Frank Van Diggelen and Per Enge. The world’s
first GPS MOOC and worldwide laboratory using
smartphones. In Proceedings of the 28th International
Technical Meeting of the Satellite division of the
Institute of Navigation, pages 361–369, 2015.

[136] D Yu Velikovskiy, VE Pozhar, and MM Mazur.
Acousto-optics devices for high-power laser beam. In
WDS, volume 12, pages 65–68, 2012.

[137] Vicon. Vicon documentation.
https://docs.vicon.com/pages/
viewpage.action?pageId=107483982, 2023.

1864 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.menlosystems.com/products/photodetectors/apd210/
https://www.menlosystems.com/products/photodetectors/apd210/
https://www.menlosystems.com/products/photodetectors/apd210/
https://midopt.com/filters/bn520/
https://midopt.com/filters/bn520/
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=9028
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=9028
https://www.thorlabs.com/thorproduct.cfm?partnumber=C392TME-A
https://www.thorlabs.com/thorproduct.cfm?partnumber=C392TME-A
https://www.thorlabs.com/thorproduct.cfm?partnumber=L638P200
https://www.thorlabs.com/thorproduct.cfm?partnumber=L638P200
https://www.thorlabs.com/thorproduct.cfm?partnumber=PBS25-633-HP
https://www.thorlabs.com/thorproduct.cfm?partnumber=PBS25-633-HP
https://www.thorlabs.com/thorproduct.cfm?partnumber=S121C
https://www.thorlabs.com/thorproduct.cfm?partnumber=S121C
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3770
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3770
https://www.thorlabs.com/thorproduct.cfm?partnumber=TRS127-020-A
https://www.thorlabs.com/thorproduct.cfm?partnumber=TRS127-020-A
https://docs.vicon.com/pages/viewpage.action?pageId=107483982
https://docs.vicon.com/pages/viewpage.action?pageId=107483982

[138] Allied Vision. Alvium 1800 U240. https:
//www.alliedvision.com/en/products/alvium-
configurator/alvium-1800-u/240/, 2023.

[139] Anjitha Viswanath, Shailesh Singh, Vk Jain, and
Subrat Kar. Design and implementation of MOEMS
based ground to satellite free space optical link under
turbulence condition. Procedia Computer Science,
46:1216–1222, 12 2015.

[140] Michele Volpi and Devis Tuia. Dense semantic labeling
of subdecimeter resolution images with convolutional
neural networks. IEEE Transactions on Geoscience
and Remote Sensing, 55(2):881–893, 2017.

[141] Shane M. Walsh, Skevos F. E. Karpathakis, Ayden S.
McCann, Benjamin P. Dix-Matthews, Alex M. Frost,
David R. Gozzard, Charles T. Gravestock, and
Sascha W. Schediwy. Demonstration of 100 Gbps
coherent free-space optical communications at LEO
tracking rates. Scientific Reports, 12(1):18345, 2022.

[142] Dingkang Wang, Connor Watkins, and Huikai Xie.
MEMS Mirrors for LiDAR: A Review. Micromachines,
11(5), 2020.

[143] Greg Welch and Gary Bishop. An introduction to the
kalman filter. Proc. Siggraph Course, 8, 01 2006.

[144] Thomas Weyrauch and Mikhail Vorontsov. Free-space
laser communications with adaptive optics: Atmo-
spheric compensation experiments. Journal of Optical
and Fiber Communications Reports, 1:355–379, 05
2010.

[145] Linghui Yang, Yuanlin Pan, Jiarui Lin, Yang Liu, Yue
Shang, Shuo Yang, and Hanwen Cao. Automatic guid-
ance method for laser tracker based on rotary-laser scan-
ning angle measurement. Sensors, 20(15):4168, 2020.

[146] Liangchen Ye, Gaofei Zhang, Zhen You, and Chi Zhang.
A 2D resonant MEMS scanner with an ultra-compact
wedge-like multiplied angle amplification for miniature
LIDAR application. In Sensors, 2016 IEEE, pages 1–3,
2016.

[147] Lin Yongbing, Zhang Guoxiong, and Li Zhen. An
improved cat’s-eye retroreflector used in a laser
tracking interferometer system. Measurement Science
and Technology, 14(6):N36, May 2003.

[148] Yuan Zhuang, Jun Yang, You Li, Longning Qi, and
Naser El-Sheimy. Smartphone-based indoor localiza-
tion with bluetooth low energy beacons. Sensors, 16(5),
2016.

[149] Jan Zizka, Alex Olwal, and Ramesh Raskar. Speckle-
Sense: Fast, Precise, Low-Cost and Compact Motion

Sensing Using Laser Speckle. In Proc. of UIST, page
489–498, 2011.

[150] Mo Zohrabi, Robert H Cormack, and Juliet T Gopinath.
Nonmechanical beam steering using tunable lenses.
In 2017 Conference on Lasers and Electro-Optics
(CLEO), pages 1–2, 2017.

[151] Mo Zohrabi, Wei Yang Lim, Robert H Cormack,
Omkar D Supekar, Victor M Bright, and Juliet T
Gopinath. Lidar system with nonmechanical
electrowetting-based wide-angle beam steering. Optics
Express, 27(4):4404–4415, 2019.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1865

https://www.alliedvision.com/en/products/alvium-configurator/alvium-1800-u/240/
https://www.alliedvision.com/en/products/alvium-configurator/alvium-1800-u/240/
https://www.alliedvision.com/en/products/alvium-configurator/alvium-1800-u/240/

MobileConfig: Remote Configuration Management for Mobile Apps at Hyperscale

Matt Guo1, Soteris Demetriou2, Joey Yang1, Michael Leighton1, Diedi Hu1, Tong Bao1,

Amit Adhikari1, Thawan Kooburat1, Annie Kim1, and Chunqiang Tang1

1 Meta Platforms
2 Imperial College London

Abstract

While software configuration management is a ubiquitous

practice in the industry and has been extensively studied,

prior research has focused solely on desktop or server

applications. This paper presents MobileConfig, perhaps the

world’s largest configuration management system for mobile

apps. It has been in production since 2015 and manages apps

running on billions of devices, including Facebook, Instagram,

Messenger, and AR/VR/glasses apps. Every day, Meta’s

developers make a staggering number of live configuration

changes, often in the thousands, to remotely control mobile

apps, driving them to change runtime behaviors without

requiring app code updates. These configuration changes

serve diverse purposes such as A/B testing, feature rollout,

and app personalization. We discuss how MobileConfig

addresses several challenges unique to mobile environments,

including (1) the lack of data consistency models that can

simultaneously ensure both fast app startup and configuration

data freshness; (2) the risk of misconfiguration impacting

billions of app users; and (3) the proliferation of mobile

client SDKs needed to support diverse mobile platforms,

programming languages, and configuration use cases.

1 Introduction

At Meta, we develop tens of mobile apps used by billions of

people. Each year, more than 1,000 developers contribute to

the codebase of our most popular app. Each week, the app

is updated with over 300 code changes, and a new version is

released to the app store. This fast-paced development and

release of the app, especially when it is collectively done by a

large number of developers, pose significant challenges to the

reliability of the app. Unlike server-side software, where bug

fixes can be deployed instantly under our control, mobile apps

lack a transparent method to upgrade from a buggy version to

a newer one without user involvement.

Contributions: Chunqiang and Thawan initiated the MobileConfig project in

2014. In terms of paper writing, Chunqiang and Soteris drafted the paper and

contributed equally. In terms of coding, Thawan led the project’s development

from 2014 to 2017, succeeded by Matt until 2023. All other co-authors also

made major contributions to the project’s development.

We work around the constraint of having no control over

app upgrades by providing the ability to remotely modify an

app’s configuration (config for short) and trigger it to change

behaviors without a code upgrade. Consider the example of

an experimental app feature. Initially, it is gated by a remote

config that is enabled for only 0.01% of users. If a bug is

detected, the feature can be instantly disabled via a remote

config change without user involvement, ensuring that the bug

will not be exposed to any user. Besides feature gating, remote

configs enable rich functions (§2.1), such as A/B testing [20–

22, 39] and personalized user experiences.

Remote configs are extensively used in all our apps, as

evidenced by the fact that the frequency of config commits

is about 15 times that of code commits. In this paper, we

present MobileConfig, our configuration management system

for mobile apps, and share our experience in addressing sev-

eral challenges unique to mobile environments.

Slow app startup. When a developer modifies the value of

a remote config on the server side, she typically wants app

devices to fetch and apply the new config value soon. For

instance, if the config is used to run an A/B test, the developer

can obtain useful A/B test results only after a sufficient num-

ber of devices have applied the new value. For this reason,

Google’s Firebase RemoteConfig [16], one of the most widely

used mobile configuration systems, suggests that,

“If you are loading values for an A/B testing experiment,

this strategy (of showing a loading screen to block the

app startup until it finishes fetching all the latest configs

from the server side) is very strongly recommended [17].”

Unfortunately, this simple strategy of blocking app startup

increases startup time, an important app quality metric [4, 11,

19, 27, 30, 37, 41]. Our evaluation shows that this approach

would unacceptably add 2,499 ms to the startup time of our

largest app. To put this into perspective, our app performance

team often invests months in optimizing an app to reduce

its startup time by just tens of milliseconds, and the effort

is considered worthwhile as it impacts the engagement of

billions of users.

Slow startup plays an outsized role in users’ negative per-

ception of an app and discourages users from opening the app,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1867

especially for short interactions such as typing a brief mes-

sage on a social-network app. In the industry, AppDynamics

reported that 60% of users abandon an app after their first

usage if they encounter performance problems [5]. At Meta,

based on extensive user studies, the product teams set the

priority that “startup is the single most important factor for

app performance, and anything not absolutely necessary will

be ruthlessly removed from the startup path.”

At startup, an app wants the latest configs, but fetching

them from the server delays startup. This tension has not been

addressed by existing data consistency models, as they do

not take advantage of the unique characteristics of configs,

specifically the timing and granularity of config consumption.

To resolve this tension, we propose progressive consistency.

Our key insight is that, out of our app’s as many as 4,300

configs, only a small fraction is accessed during the app’s

early startup phase. App startup can proceed by consuming

those configs’ locally cached values, even if they are stale.

In parallel, the app asynchronously fetches updates for all

configs from the server. Once the updates arrive, it switches

to using the new values for the vast majority of configs that

have not yet been accessed. Our production data shows that

progressive consistency achieves 99.7% config data freshness

across billions of devices without slowing down app startups.

Despite mixed consumption of old and new configs, pro-

gressive consistency ensures app correctness by guaranteeing

repeatable reads [7], monotonic reads [40], and intra-config

consistency. Note that, due to the nature of config usage, it

is unnecessary to enforce cross-config consistency (§3.3). To

mitigate the downside of consuming some stale configs, Mo-

bileConfig offers an emergency-push mechanism that can

swiftly purge harmful stale configs from app devices. Finally,

it can cap config staleness below an app-specified threshold.

Config error prevention. Every day, our app developers

make thousands of live config changes in production, with

each change carrying the risk of causing app malfunctions.

Moreover, recovering from a config error on mobile devices

is much harder than that on servers because unlike servers,

we have no access to users’ mobile devices to directly rectify

the error. MobileConfig uses a defense-in-depth approach to

prevent config errors. This includes enforcing compile-time

validation, conducting multi-stage canary tests [15], and con-

tinuously comparing configs on billions of devices with their

values on the server to catch inconsistency.

One surprising finding is that traditional small-scale canary

tests are ineffective for mobile apps. This differs from not only

the general industry practice [12] but also our own experience

in datacenter environments where small-scale canary tests

are effective. We find that one cause of this difference is the

heterogeneity of mobile environments, including many wild

device types and legacy OS versions. As a result, many bugs

appear only on a small fraction of user devices, making them

hard to detect through small-scale canary tests. Another cause

is that, out of a large app’s many features, only a small fraction

of users may use a specific feature during the canary time

window and trigger the bug. Because of these difficulties,

MobileConfig uses unconventionally large canary tests.

Proliferation of mobile SDK. MobileConfig supports apps

on various platforms (Android, iOS, Windows, Linux, Ma-

cOS, and custom OSes for AR/VR/glasses/display) and multi-

ple programming languages (Java, Objective-C, Kotlin, Swift,

C++, JavaScript, and ReactNative). The expansion of plat-

forms and languages would naturally lead to an increase in

the number of mobile Software Development Kits (SDKs).

Moreover, historically, different config use cases such as A/B

testing and personalization were supported by separate SDKs

and backend systems, leading to further SDK proliferation.

Two key insights help eliminate SDK proliferation. First,

to support diverse config use cases at the scale of billions of

devices, it is far easier to implement sophisticated capabilities

and deploy code changes on the server side than on the mo-

bile client side. On the client side, we simplify the SDK by

offering a uniform config API and data schema, agnostic of

various config use cases. On the server side, we use a trans-

lation layer to dynamically map mobile config parameters to

various backends that support different use cases. By intro-

ducing this one level of remapping on the server side, a single

client SDK can seamlessly work with various backends.

Second, to support diverse platforms and languages, we

use a proper mix of cross-platform C++ code and platform-

specific code. While C++ is known for cross-platform devel-

opment, we have discovered that the overhead of using Java

Native Interface (JNI) to bridge C++ is too high for latency-

sensitive config-read operations. Consequently, on Android,

we employ native Java code for these operations, while em-

ploying cross-platform C++ code for all other operations.

Contributions. We summarize our contributions below.

• To our knowledge, this is the first systematic study on con-

figuration management for mobile apps. We compare de-

sign alternatives and identify pitfalls in some widely used

mobile config systems. We also report lessons learned from

operating MobileConfig on billions of devices in the wild.

• We demonstrate the practicality of employing remote con-

figs to push the limits of agile app development—our de-

velopers make thousands of live config changes daily. We

hope that our experience will inspire others.

• We propose progressive consistency to meet mobile apps’

requirements for both fast app startup and fresh config data.

This is not possible with existing consistency models.

• We prevent config errors using a defense-in-depth approach.

In particular, we demonstrate that traditional small-scale

canary tests are ineffective for mobile apps.

• We avoid SDK proliferation by using cross-platform code

and server-side config parameter remapping.

1868 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 Config Usage

In this section, we use production data and examples to

demonstrate the usage of configs and the challenges that Mo-

bileConfig needs to address. Figure 1 shows an example of

how an app uses MobileConfig. In this example, ButtonCfg is

a config, and ButtonCfg.color is a parameter. The new code

path for the experimental “Button” feature is gated behind the

ButtonCfg.isEnabled parameter, which is personalized and

can return different values for different users.

class ButtonCfg {bool isEnabled; String color; int size;}

class MusicCfg {int volume; String list; bool shuffle;}

if(MobileConfig.getBool(ButtonCfg.isEnabled /* Personalized */)){

// New code path for the experimental "Button" feature.

color = MobileConfig.getString(ButtonCfg.color);

...

} else {

// Old code path without the experimental "Button" feature.

...

}

Figure 1: An app uses a simple API to access remote configs.

2.1 Config Use Cases

Remote configs enable many powerful use cases, as illustrated

in the examples below.

• Developers can update a config to incrementally enable an

experimental app feature, starting with our employees and

gradually expanding to the general population.

• Developers can use a config to set up an A/B test on differ-

ent users to assess the impact of a new product feature on

key business metrics.

• Configs can be used along with machine learning (ML) to

personalize user experience. For example, when a user lo-

gin fails, if ML predicts that the user is unlikely to succeed

with password retries, it sends a one-time passcode via SMS

to the user. We use a config to store the ML-personalized

per-user login retry setting.

• Some parameters that control an app’s behavior, such as

the amount of data to prefetch from the server, depend on

the execution context, such as battery level and network

performance. We apply contextual Bayesian optimization

to tune these parameters and manage them via a config.

• When datacenters face capacity shortages, specific config

changes can be promptly distributed to mobile devices to

disable less-essential app features, accordingly alleviating

the load they impose on datacenter backend services [25].

Backend
Feature

Rollout

A/B

Testing

Mutable

Parameters

700+ Custom

Functions
Dev

Parameters% 26.0% 40.8% 23.0% 2.7% 7.4%

Table 1: Breakdown of config parameters by backends.

To support diverse use cases, many different config backend

systems have been developed, as summarized in Table 1. The

feature rollout backend allows hundreds of teams to indepen-

dently enable or disable different features for users without

interfering with one another. The A/B testing backend enables

developers to study the effectiveness of product features via

A/B testing [21]. With the mutable parameters backend, in-

stead of hardcoding constants in code, developers can set them

as parameters that can be updated remotely without upgrad-

ing the installed app. The custom-function framework allows

developers to easily introduce a new config backend. More

than 700 custom backends have been implemented, mostly

for personalization and ML model automation. Finally, the

Dev backend is for local testing only.

Historically, the team that developed a new config backend

for a new config use case must also develop a corresponding

mobile SDK. Now, different config backends are all supported

by a single mobile SDK provided by MobileConfig. This

SDK exposes a uniform config API and data schema that are

agnostic to different config backends and use cases. On the

server side, we use a translation layer to dynamically map

mobile config parameters to different backends (§4.1.2).

2.2 Statistics of Mobile Environments

Next, we report some statistics to motivate the problem.

Very old app versions. Users’ infrequent app updates neces-

sitate the reliance on remote configs to change app behavior.

Table 2 shows the cumulative age distribution of our largest

Android app. The (56, 14%) column means that 14% of the

app’s installations were released in the past 56 days. Notably,

some extremely old app versions remain in active use. For

instance, 1% of the app’s installations are older than 987 days,

with the oldest one dating back almost 7 years (2,499 days).

App age (days) 49 56 63 70 77 217 504 987 2,499

Cumulative distribution 1% 14% 34% 56% 73% 90% 95% 99% 100%

Table 2: Very old versions of our Android app are still in use.

Very old OS versions. Our apps run on thousands of differ-

ent Android device types, with OS versions spanning over a

decade (Table 3). This complex environment makes it hard to

prevent config errors just by development-time testing. Hence,

MobileConfig relies on large-scale multi-stage canary tests in

live production as the last line of defense (§5).

Android Version 4 5 6 7 8 9 10 11 12

Release year 2011 2014 2015 2016 2017 2018 2019 2020 2021

Percent of devices 0.1% 1.2% 2.3% 2.8% 9% 12% 26% 38% 8%

Table 3: Very old versions of Android are still in active use.

Low-end mobile devices. The majority of our app users are

on low-end devices. We categorized the Android devices on

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1869

which our apps run based on the year-class metric, which cor-

responds to the year when the device would have been consid-

ered as a flagship device. For example, Samsung Galaxy S6

was released in 2015 as a flagship smartphone. If a low-end

device was released in 2023 but its performance is comparable

to Galaxy S6, it would be classified as the 2015 class. Table 4

shows that 75% of the devices are comparable to 2015 or older

flagship devices. The combination of low-end devices and

many configs require us to heavily optimize MobileConfig

for performance and efficiency (§6).

Year Class 2010 2011 2012 2013 2014 2015 2016-2023

Percentage 0.04% 0.32% 3.53% 18% 20% 33% 25%

Table 4: Breakdown of Android devices by Year Class.

Many configs. We measured the number of config parameters

in our most popular apps, MM and V H (Table 5). They are

available on both Android (MMa, V Ha) and iOS (MMi, V Hi).

The largest app uses more than 4,300 configs and 26,000

parameters. The existence of a large number of independent

configs has made progressive consistency possible.

App Name MMa MMi V Ha V Hi

Configs 4,344 3,546 3,178 3,050

Parameters 26,770 18,057 8,563 7,828

Table 5: Config usage for our most popular apps.

Frequent config changes. Configs are updated frequently by

many authors. The configs of our largest app are edited by

more than 3,000 different authors over the app’s lifetime. On

an average workday, our developers make more than 2,700

config parameter value changes in production, and introduce

more than 110 config schema changes. MobileConfig relies

on defense in depth to mitigate the risk of config errors intro-

duced by frequent config changes (§5).

Many languages. To show the usage of languages in our apps,

we counted the number of static call sites in each language’s

source code that read remote configs (Table 6). As expected,

Java for Android and Objective-C for iOS are most popular,

but call sites in other languages still account for 37%. To sup-

port multiple languages and OSes while avoiding the devel-

opment costs of multiple client SDKs, we have implemented

MobileConfig’s core functions in a portable cross-platform

C++ runtime and exposed them to different languages through

language-specific bindings (§4.1.1).

Language Java Objective-C Java Script Kotlin React Native Swift C++

Call site% 35% 28% 18% 11% 6% 0.6% 0.6%

Table 6: Usage of MobileConfig by different languages.

Parameter types. Table 7 shows the breakdown of config

parameter types for MMa and MMi. As Boolean dominates,

MobileConfig implements special optimizations for it (§6.3).

Boolean Integer String Double Other

MMa 69% 23% 4.9% 2.4% 1.3%

MMi 66% 22% 4.8% 5.1% 1.5%

Table 7: Breakdown of config parameter types.

3 Agile Development with MobileConfig

This section describes how developers use MobileConfig in an

agile development process and how it ensures app correctness

while enabling both fast app startup and fresh configs.

3.1 Agile Development Process

To illustrate how MobileConfig enables agile development,

we describe the workflow of a developer named Alice working

on the experimental “Button” feature shown in Figure 1.

After sufficient local testing, Alice includes the code for

the Button feature in the app’s new release and uploads it

to the app store. Although some users quickly install the

new release, the new feature is not yet exposed to anyone, as

ButtonCfg.isEnabled is still set to false for all users.

Alice initiates testing for the new feature, initially enabling

ButtonCfg.isEnabled for only 0.01% of users. Uncertain

about the ideal ButtonCfg.color and ButtonCfg.size values

for the best user experience, she sets up an A/B test and di-

vides the test population into multiple groups, each receiving

distinct parameter values. By comparing metrics, like user

engagement, across the test groups, Alice identifies optimal

parameter values. Importantly, the entire A/B test process

is driven by Alice making config changes on the server side

using a web interface. These config changes are automatically

fetched by mobile devices, determining which users will par-

ticipate in the A/B test and what parameter values they will

get for ButtonCfg. As Alice makes remote config changes, it

does not require participating users to upgrade their installed

app or perform any manual operations.

If the app crashes on an old Android version when using the

new feature, Alice remotely disables ButtonCfg.isEnabled

for those users, without requiring an app upgrade. After fixing

the bug, she releases a new version of the app to the app

store. While still keeping ButtonCfg.isEnabled disabled for

the affected users on the old version, Alice enables it for a

subset of users on the new version to continue testing.

After months of A/B testing and numerous releases, Alice

determines that the new feature consistently harms business

metrics rather than enhancing them. She abandons the feature,

removing the experimental code and releasing a new version

to the app store. Notably, the majority of users were never

exposed to the feature from its introduction to its removal.

3.2 Stale Configs Hinder Agile Development

While remote configs are supposed to enable agile develop-

ment, straightforward solutions are ineffective. To highlight

the challenges, we analyze the three solutions provided by

Google’s Firebase [16], which are summarized in Table 8.

1870 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Fast

app

startup

Repeatable

reads

Intra-config

consistency

Fresh

configs in

normal state

Bound

staleness

if required

Purge

misconfig

quickly

Firebase (1) ✗ ✓ ✓ ✓ ✓ ✗

Firebase (2) ✓ ✗ ✗ Vast majority ✗ ✗

Firebase (3) ✓ ✓ ✓ ✗ ✗ ✗

MobileConfig ✓ ✓ ✓ Vast majority ✓ ✓

Table 8: Comparison of config frameworks. Firebase [16]

supports three config consistency models [17].

In the table, Firebase (1) is Firebase’s default approach as

described in §1, which blocks app startup to fetch configs.

This approach would unacceptably increase our largest app’s

startup time by 2,499 ms.

Firebase (2) uses cached configs to boot the app while

asynchronously fetching the latest configs from the server.

Once the new configs arrive, the app immediately switches

to using them, without ensuring repeatable reads [7] or intra-

config consistency. This approach is unacceptable as altering

an app’s configs during its live execution can result in user-

visible anomalies, such as a sudden change in a button’s color.

Firebase (3) also uses cached configs to boot the app and

asynchronously fetches the latest configs from the server.

However, when the new configs arrive, the app saves them

to storage and will not utilize them until the next cold start

of the app. This approach increases the staleness of configs

and slows down the agile development process described

in §3.1. Suppose Alice updates an A/B test parameter in

the morning with the intention of collecting and analyzing

the testing results in the afternoon; she faces a challenge.

Despite many user devices fetching the updated parameter

in the morning, they will not apply it until the next cold app

restart, which may not occur soon. Even if the user switches

out of the app, it may remain paused in the background for

hours or even days without termination, preventing the new

parameter from taking effect when the app is brought to the

foreground again. Consequently, Alice cannot gather enough

A/B test results in the afternoon or even the following day,

significantly hindering agile development.

At Meta, for mobile apps, config commits occur about 15

times more frequently than code commits. This indicates a

highly iterative development process where developers invest

a significant portion of their time making config changes,

collecting and analyzing test results to inform their next steps.

Delays in collecting test results caused by stale configs would

thus greatly hinder developer productivity.

Rather than delaying the use of new configs until the next

cold restart, a potential improvement for Firebase (3) is to

apply new configs when the user switches to other apps and

puts the app in the background. However, this may still lead

to user-visible anomalies. For instance, if a user is midway

through reading a news article in the app and switches to other

apps, altering the app’s configs in the background could lead

to the article’s text appearing in a different color upon the

user’s return, as the color is controlled by a config.

Between Firebase (1)’s drawback of slow app startup and

Firebase (3)’s drawback of config staleness, Firebase consid-

ers the latter to be a bigger problem and hence “very strongly

recommends” Firebase (1) for apps using A/B testing [17].

In the literature, while the importance of fast app startup is

widely recognized [4, 19, 27, 30, 37, 41], the importance of

config freshness is often overlooked. Firebase’s recognition

of this issue based on its experiences with mobile developers

is commendable.

3.3 Progressive Consistency

To enable agile development, progressive consistency solves

both the problems of slow app startup and stale configs. Dur-

ing an app’s startup, it uses cached configs to unblock the app

while asynchronously fetching updates for all configs from

the server. Once the updates arrive, the app switches to using

the new values for the configs that it has not read yet but will

stick to the old values for the configs that it has already read.

Our production data shows that progressive consistency

achieves 99.7% config data freshness across billions of de-

vices without slowing down app startup. A key reason for the

high config freshness is that most configs are not accessed

during an app’s early startup phase. To aggressively minimize

startup time, any code that is not absolutely necessary during

startup, such as the initialization of app features that will not

be shown on the first user interaction screen, is postponed to

later stages. Since the vast majority of app features will not

be initialized on the startup path, the configs used by those

features will not be accessed during startup either.

Below, we describe how progressive consistency ensures

app correctness and discuss the ease of use of its API.

App correctness. Despite mixed consumption of old and new

configs, progressive consistency ensures app correctness by

guaranteeing intra-config consistency, monotonic reads [40]

across app restarts, and repeatable reads [7] within a user ses-

sion. A session is the time duration between two cold restarts

of the app, or it ends early if the user explicitly logs out of the

app. A key difference between MobileConfig and Firebase (2),

as summarized in Table 8, lies in MobileConfig’s support for

intra-config consistency and repeatable reads. If the app con-

sumes a parameter value during a session, subsequent reads

of that parameter will retrieve the same value, even if it has

already been updated on the server. This prevents unexpected

app behavior, such as sudden UI button color changes due

to parameter updates. Moreover, MobileConfig guarantees

intra-config consistency—if the app reads two parameters of

the same config in one user session, such as ButtonCfg.color

and ButtonCfg.size, those parameters’ values always come

from a single atomic update on the server side.

MobileConfig does not guarantee cross-config consistency

as configs are intended to be independent, serving different

code modules. If dependencies arise among configs, they

should be merged into a single config. While merging could

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1871

theoretically result in an excessively large config, this has

never occurred in the nine years of MobileConfig’s production

usage. On average, a config contains only 4.3 parameters.

Although we have a design for MobileConfig to support cross-

config consistency by maintaining metadata about matching

versions of interdependent configs, it remains unimplemented

due to the absence of a genuine need for such complexity.

Moreover, the lack of support for cross-config consistency

is not merely a workaround to expedite startup in mobile en-

vironments but extends to datacenter (DC) environments as

well, where startup time is not an important consideration. In

contrast to MobileConfig’s progressive consistency, our DC

configuration management system, Configerator [38], adopts

Firebase (1)’s approach, blocking a DC application’s startup

to fetch configs synchronously, as startup time is less impor-

tant in DCs. However, Configerator still does not guarantee

cross-config consistency. It may push real-time updates for dif-

ferent configs to a DC application’s running instances in differ-

ent orders, as configs are independent. Finally, despite config

errors being a primary cause of production outages [38], we

do not recall that either Configerator or MobileConfig, with 12

and 9 years of production usage respectively, has experienced

outages due to the lack of cross-config consistency.

API simplicity. While implementing progressive consis-

tency, ensuring advanced features do not complicate the de-

veloper API is a challenge. A transaction-like API to en-

sure config consistency seems straightforward but could hin-

der usability and adoption. Instead, MobileConfig offers a

straightforward API to apps (see Figure 1) while handling

advanced features internally. For example, when the app calls

MobileConfig.getString(ButtonCfg.color), MobileConfig

must detect if ButtonCfg.isEnabled was already read and re-

turn the corresponding version of ButtonCfg.color for intra-

config consistency. This streamlined API has successfully

facilitated the migration of about a dozen legacy config frame-

works at Meta to MobileConfig.

4 MobileConfig Design

In this section, we describe the design of MobileConfig and

compare it to Firebase [16] and Configerator [38].

4.1 MobileConfig Architecture

MobileConfig’s architecture is depicted in Figure 2, which en-

compasses the client library and the server-side components.

4.1.1 Client-side Library

MobileConfig’s client-side runtime library (runtime for short)

needs to support various platforms and languages. To avoid

the development costs of multiple client SDKs, the runtime is

implemented in portable cross-platform C++. The API layer

exposes the C++ runtime to multiple languages.

The Java API uses JNI to bridge to C++, incurring higher

RN

Manager

Java RN Obj-C

Android

App

ReactNative

App
iOS App

Storage LoggingNetworkStorage Files

(ctables)

Parameter to

backend map

Feature

Rollout

A/B

Testing

Mutable

Parameters

…

CLIENT

SERVER
Emergency

Push

Java

Manager

MOBILE

APPS

MINI

MANAGERS

API

LIBRARY

FUNCTIONS

CONFIG

BACKENDS

Consistency

Logging
Canary

Translation

Service

Figure 2: MobileConfig high-level architecture.

overhead. Due to the aggressive optimizations described in

§6.2, the C++ API only needs two memory accesses to read a

parameter value, which makes the JNI overhead prohibitively

high in comparison, especially because config reads can be on

the critical path of app execution. Reimplementing the entire

runtime in Java would alleviate the problem but at the expense

of additional development costs. To strike a balance between

code reuse and performance, MobileConfig introduces a Mini

Manager that implements a minimal read path in Java to

efficiently read cached configs. This read path is on the critical

path of app performance. All other functions that are not on

the critical path, such as fetching configs from the server and

updating the cache, are bridged through JNI to C++.

The support for other languages is simpler. The Objective-

C API natively interfaces with C++. As ReactNative can

cross-compile JavaScript to either Java or Objective-C, Mo-

bileConfig offers a JavaScript API that bridges JavaScript

functions to either Java or Objective-C functions.

The runtime provides networking, storage, exposure log-

ging and other functions. For networking, it efficiently syn-

chronizes config values between client and server (§6.3). For

storage, it stores configs in a highly optimized read-only bi-

nary format for fast access (§6.2). For exposure logging, the

events of an app’s exposure to config parameter values are

logged, queued locally, and at opportune moments sent to the

server in batches. Finally, the runtime supports operations

related to config testing, debugging, canary, monitoring, and

quick rectification of erroneous configs (§5).

4.1.2 Server-side Components

On the server side, different backend services support diverse

config use cases, such as A/B testing and feature rollout. The

translation service consults the parameter-to-backend map

stored in a key-value store to map each config parameter

requested by the client to its corresponding backend. This

server-side translation drastically simplifies the client runtime,

as the client can use a uniform config API and data schema

that are agnostic to different config backends and use cases.

1872 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The translation service provides an extension point that al-

lows developers to easily add a new custom-function backend,

by implementing the following interface: “generateParam-

Value (requestContext, userID).” Based on the userID and

requestContext, a custom backend can personalize parameter

values. More than 700 custom backends have been imple-

mented, mostly for different kinds of personalization.

MobileConfig also encompasses tools for detecting, pre-

venting and rectifying config errors. Consistency logging sam-

ples client and server parameter values to detect config di-

vergence. To prevent config errors, MobileConfig performs

multi-stage canary tests when rolling out a config parameter

change. Finally, MobileConfig’s emergency push mechanism

can quickly push a corrected config to billions of devices.

4.1.3 Client-server Protocol

Push vs. pull is an important design decision in the client-

server protocol. With a push model, the server immediately

pushes new data to clients. With a pull model, the client

periodically pulls new data from the server in batches.

Table 9 compares push and pull for different systems. Con-

figerator [38], our configuration system for datacenter appli-

cations, uses a push model (column 2 in Table 9). Our mobile

messaging app uses a push model to deliver chat messages

(column 3 in Table 9). No known system uses a push model

for mobile configs (column 4 in Table 9). Firebase Remote-

Config [16] uses a pull model for mobile configs (column

5 in Table 9). MobileConfig (column 6 in Table 9) uses a

pull model complemented by emergency push, which only

happens several times per year to rectify severe config errors.

In datacenter environments, many config use cases require

instant delivery for real-time automation, like global load

balancing [32]. In contrast, mobile config use cases rarely

need instant updates of configs because apps often do not

consume them immediately. Apps may not be running or

prefer to stick with the old config until the next restart to

prevent abrupt user experience changes, such as UI alterations.

To minimize resource consumption, we opt for a pull model.

However, in emergency situations such as rectifying config

errors, it is necessary to push a config update to mobile de-

vices quickly and restart the app to consume it. Hence, we

complement our pull model with occasional emergency push.

4.2 Support for Progressive Consistency

In this section, we present how progressive consistency works

during the app lifecycle, and describe the implementation of

repeatable reads and intra-config consistency.

4.2.1 Config Consistency during App Lifecycle

When a user installs a new app and logs in for the first time,

MobileConfig blocks app startup to fetch the latest config val-

ues from the server. This is done to ensure a better user expe-

rience than using up to 26,000 unoptimized default parameter

Config

Mgmt in

Datacenters

(push)

Mobile

Messaging

App

(push)

Config mgmt in mobile environ.

Push

(no real use)

Pull

(Firebase)

Pull +

Emergency Push

(MobileConfig)

Endpoints millions billions billions

Endpoint availability high low low

Message fanout millions <100 billions

Message rate high low medium

Push notif. reliability high medium medium

Hardware resources abundant scarce scarce

Outcome: infra cost

relative to requirements
low low high ✗ low low

Reliability
Requirement high medium high

Outcome high medium medium ✗ high high

Delivery

Speed

Requirement fast fast usually slow but fast in emergency

Outcome fast fast fast

always

slow

✗

usually slow

but fast in

emergency

Table 9: Comparison of push vs. pull.

values. It is important to note that this blocking does not occur

on subsequent app restarts. Moreover, MobileConfig can use

partial fetch (§6.3) to retrieve only the essential configs and

reduce blocking time. If the initial synchronous config fetch

fails or times out (e.g., due to no network connectivity), the

app proceeds with startup using the default parameter values

statically compiled into the app’s executable.

During the app’s steady-state execution, whenever it enters

the foreground, it checks whether H hours have passed since

the previous config fetch. If so, it asynchronously fetches

configs from the server, and caches configs on disk. We em-

pirically found that H=4 hours strike a good balance between

resource consumption and config freshness.

When the app cold-starts next time, it mmap() cached

binary-format configs into memory, and can immediately

read individual config parameters without loading or pars-

ing configs (§6.2). While the app boots normally with cached

configs, it immediately issues an asynchronous config-fetch

request to the server. Suppose the response comes back with

new config values in S seconds (e.g., S=2). The app’s future

reads to configs that are not read yet will consume the newly

fetched config values. Overall, during the first S seconds of

app startup, it consumes cached configs; after that, it con-

sumes newly fetched configs. This approach strikes a balance

between app start time and config freshness.

To bound config staleness, an app can block its startup to

fetch configs if and only if the cached configs are fetched

more than T hours ago, where T is configurable per app. If

T =48 hours, a person who uses the app daily would never

experience the blocking. If T =0, the app always blocks on

startup, which is the Firebase-recommended approach. By

default, our apps use T =∞ (i.e., never block) because 1) it

already provides our apps with the latest version of the vast

majority of configs, and 2) our apps can quickly recover from

harmful stale configs via emergency push, and hence there is

no need to be overly conservative.

After an app executable upgrade (not config update), the

app consumes cached configs just like a normal cold start.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1873

Some new config parameters might be added to the app’s new

version and hence do not exist in the local cache. The app

can boot using those parameters’ default values until the first

asynchronous config fetch finishes. Alternatively, the app can

block on a partial fetch (§6.3) to retrieve a minimal subset of

those missing parameters that are important to the app startup.

4.2.2 Repeatable Reads and Intra-config Consistency

Progressive consistency guarantees that 1) during a user ses-

sion, an app’s multiple reads to the same parameter always

return the same value, and 2) parameters in the same config

are consistent with each other when consumed by the app.

Once every H hours, the MobileConfig runtime fetches

the latest config values from the server, and saves configs in

a so-called ctable file, resulting in a sequence of ctables

over time: 0.ctable, 1.ctable, 2.ctable, and so on. Old

versions are garbage collected when they are no longer used.

On app startup, suppose 0.ctable exists and it contains the

configs in Figure 1. When the app reads ButtonCfg.color,

the runtime will retrieve it from 0.ctable. Later, after

the runtime fetches new configs and creates a new ver-

sion, 1.ctable, the app reads ButtonCfg.color again and

the runtime will still retrieve it from 0.ctable (instead of

1.ctable) in order to ensure repeatable reads. Later, when

the app reads parameter ButtonCfg.size, the runtime will

also retrieve it from 0.ctable in order to ensure that the app

reads ButtonCfg’s parameters from the same version.

Later, the app reads MusicCfg.volume and the runtime

will retrieve it from 1.ctable since that is the latest cached

version. Note that the app reads ButtonCfg and MusicCfg

from different versions of ctables. Treating each config

independently allows the app to consume each config’s latest

cached version on its first access to the config.

5 Config Reliability

Multiple factors make it challenging to prevent config errors

at scale. First, at Meta, hundreds of developers modify one

app’s code concurrently and release a new version every week.

Second, they also make config changes in live production

thousands of times per day. Finally, our apps run on billions

of devices in the wild—various OSes and unmaintained old

versions, plus thousands of wild Android device types. Hence,

we have to rely on defense in depth for reliability.

MobileConfig automatically runs multi-stage canary tests

on config changes. As soon as a config change is code-

reviewed and accepted, MobileConfig tests the change in

production by randomly selecting 0.5% of users as the canary

group and another 0.5% as the control group. The canary test

spans 30 minutes, during which the MobileConfig runtime

uses exposure logging to report the app’s consumption of the

new parameter values. Once the canary time expires, our tool

checks whether the canary parameters are associated with

regressions in key metrics. If so, the change is reverted.

After the first-stage canary, MobileConfig initiates a more

thorough second-stage canary to catch harder-to-detect config

errors. It partitions the entire population into a 50% canary

group and a 50% control group. This longer, four-hour canary

primarily monitors key metrics such as app crashes.

The second-stage canary (50% of users) is much larger than

the common practice [12]. For datacenter applications, we

also do not run canary tests at this large scale. However, the

mobile environment is diverse, with various device types and

older OS versions. Consequently, bugs may only manifest on

a small subset of devices, making them hard to detect in small-

scale canary tests. Moreover, in a large app, only a fraction, or

even a very small fraction, of users may use a specific feature

during the canary window, potentially triggering a bug. Due

to these challenges, MobileConfig employs unusually large

and unusually long canary tests in the second stage.

While more intermediate stages could be added to Mobile-

Config’s multi-stage canary, doing so would further extend

the rollout time for config changes, already at 4.5 hours, sig-

nificantly longer than in datacenter environments. Given the

noisy mobile environments, it requires a longer canary time

compared to datacenter environments. To reduce the rollout

time, we opt for the minimum of two stages. The first stage

promptly identifies obvious problems within a small user pop-

ulation, preventing widespread impact, while the second stage,

with a large population, catches difficult-to-detect issues, serv-

ing as a robust last line of defense.

Emergency push. Severe config errors have to be fixed

quickly by emergency push, as the normal process of up-

dating a config can take a long time to reach most devices and

even longer for apps to restart and consume the new config.

Emergency push works as follows. When a severe config

error is either detected by multi-stage canary or manually

reported, the developer can start an emergency push by speci-

fying the target devices to be notified, e.g., based on device

model, app version, country, user’s spoken language, etc. The

server maintains for each config an emergency version number

(EVN), which is incremented whenever an emergency push

happens to the config. The config’s name and latest EVN are

pushed to the target devices via our own implementation of

an MQTT-based push notification mechanism.

The device compares the received EVN with its local EVN.

If the former is higher, the device requests the latest parame-

ter values and an action from the server. The action options

are: do nothing (new values take effect after next app restart),

force refresh (the next parameter read will consume the new

value), background restart (the app will restart when switched

to background), and foreground restart (the app restarts im-

mediately, even if in foreground). Foreground restart is the

most disruptive to users and is reserved for severe issues.

Config consistency checking. MobileConfig continuously

monitors config consistency between clients and the server.

The MobileConfig runtime periodically captures snapshots

1874 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of a device’s local configs and transmits them to the server.

The server retrieves parameter values from config backends,

compares them to the client-reported values, and logs results

in a database. Numerous health monitoring tools scan the

database to detect issues promptly.

6 Performance Optimizations

In this section, we elaborate on several optimizations that

allow MobileConfig to operate at scale efficiently.

6.1 Optimizing Strongly Typed Parameters

MobileConfig uses a strongly typed config API to prevent

type errors. Given a config schema, our tool generates strongly

typed parameter definitions for multiple languages. Apps use

the strongly typed API to access parameters, for example,

MobileConfig.getString(ButtonCfg.color). By contrast, apps

using Firebase [16] access parameters through untyped string

identifiers, which can result in runtime type errors.

Unfortunately, the benefits of strong types come with a

high cost. The symbols of thousands of Java config classes

and parameters would inflate an Android app’s binary size

and slow down app startup. To mitigate this, our compilation

tool transparently replaces all Java config class and parameter

symbols with encoded integer IDs, which serve as indices to

efficiently locate parameter values in ctable files at runtime.

6.2 Optimizing Config Storage

Config storage also affects the app startup time. Our evalu-

ation shows that using Firebase [16]’s approach of storing

configs in JSON files on Android would unacceptably prolong

our largest app’s cold start time by 558ms. Hence we heavily

optimize config storage for high performance.

Config storage format. To enable fast config reads, Mobile-

Config uses flatbuffers [18] to encode hierarchical config data

into an efficient byte-array representation. For each param-

eter type, it creates a byte array that contains two sections:

1) the values of parameters of the given type, and 2) metadata

for each parameter, e.g., a loggingEnabled field indicating

whether an exposure event should be logged. The per data-

type byte arrays are then concatenated, with header and tail

sections added. The header contains the offsets of the per-type

subarrays. The tail contains the LoggingIDs for each param-

eter. Finally, the entire byte array is persisted on disk as the

so-called ctable file.

Fast parameter read. On app startup, the MobileConfig run-

time mmap() the ctable file so that the app can immediately

read specific parameters without loading all configs into mem-

ory or parsing configs. On a parameter read operation, the

runtime extracts from the encoded 64-bit parameter ID the

following metadata: the config’s rank among all configs, the

parameter’s rank, and the parameter’s type. Then it uses them

as indices to efficiently locate the parameter’s value, metadata,

and LoggingID in the ctable file.

6.3 Optimizing Client-Server Protocol

A straightforward implementation of the protocol described

in §4.1.3 would be inefficient. This section describes the

optimizations we have made to the baseline protocol.

Partial fetch. Usually, an app asynchronously fetches configs

from the server without blocking app startup. However, there

are two exceptions: the first login after app installation and

the first startup after an app upgrade (§4.2.1). One important

insight is that even if occasional synchronous config fetches

are necessary, it is unnecessary to fetch all config in a single

batch because most configs are not used in the first few sec-

onds of app startup. Hence, it is likely that an asynchronous

fetch can finish before those parameters are used.

To minimize the delay, MobileConfig uses partial fetch,

which only retrieves the minimum subset of configs needed in

the early phase of app startup. These parameters are identified

through tests in our lab environment by tracing the parameters

read during app startup until it is ready for user interaction.

Config schema hash. Apps of different versions use different

config schemas and the server does not know the exact list

of configs and parameters that a client wants to fetch. Since

each app version is associated with a fixed set of configs and

parameters, the server only needs to know the client’s app

version. At compilation time, our tool generates a SHA-256

hash of the list of configs and parameters, and stores it along

with the app binary. At runtime, the client sends to the server

the SHA-256 hash, and the server consults a key-value store

to map the hash back to a list of configs and parameters.

Parameter value hash. Sometimes the server may wastefully

send a parameter’s latest value to the client while the client’s

cached version is already up-to-date. To avoid this overhead,

the client partitions its configs into sets, and produces a hash

for parameter values in each set. The client includes these

hashes in its request to the server, which are used by the server

to identify and skip unchanged config sets.

Boolean encoding. Most parameters are booleans (Table 7).

We reduce the server response size by using two bits to repre-

sent a boolean (null/valid and true/false) and then concatenat-

ing all boolean bits into an efficient byte array.

7 Evaluation

Unless otherwise noted, all experiments described in this

section are conducted in production at hyperscale.

7.1 Usage and Adoption

MobileConfig has been in production since 2015 and has

become the only mobile config solution at Meta after consoli-

dating about a dozen different legacy solutions. Currently, it

manages tens of apps running on billions of devices. Table 10

summarizes the usage statistics for several apps.

The largest app, MMa, uses more than 26,000 config pa-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1875

App MMa MMa,L MMi V Ha V Hi T Ha T Hi BAa BAi WPa WPi

Configs 4344 46 3546 3178 3050 2780 1177 4680 3254 4381 2864

Parameters 26770 362 18057 8563 7828 17662 4793 28189 17223 27192 15885

Projects 5797 92 2437 1607 1642 4650 645 6727 2644 6596 2385

Teams 754 19 607 336 315 532 185 725 539 718 505

Config fetches

per week (billion)
64 8 26 52 38 34 46 0.15 0.2 0.02 0.02

Table 10: Config usage statistics. Projects are makefile-like compilation targets. The subscripts a and i mean Android and iOS,

respectively, e.g., MMa and MMi. The business apps (BA and WP) have less users than the other consumer apps.

rameters and is jointly developed by more than 700 teams.

The smallest app, MMa,L, is a lightweight version of the MM

app, optimized for minimal resource consumption on low-end

Android devices. MMa,L uses 362 config parameters, which

is about two orders of magnitude smaller than that of MMa.

Overall, Table 10 shows that MobileConfig is capable of

supporting both small and large apps. Moreover, the large

number of teams and projects in Table 10 highlights that the

agile development process (§3.1) enabled by remote configs

can scale to many people jointly working on one large app.

7.2 Impact on App Startup Time

Both our apps and MobileConfig are aggressively optimized

for fast startup because it directly impacts user engagement.

7.2.1 Consistency Model’s Impact on App Startup Time

Figure 3 shows the average config-fetch time measured in pro-

duction for different apps. Blocking app startup while fetching

configs, as Firebase does [17], would significantly prolong

the startup times of our apps by anywhere from 1091ms to

2866ms, causing a detrimental impact on user engagement.

To put this into perspective, our app performance team often

invests months in optimizing an app to reduce its start time by

just tens of milliseconds. The config-fetch time is longer than

the network round-trip time because it includes time for the

config backends to generate personalized values for as many

as 27,000 config parameters. Overall, the long config-fetch

times emphasize the importance of progressive consistency’s

approach of using cached configs to unblock app startup.

MobileConfig performs synchronous config fetches in two

cases: the first login after app installation and the initial startup

following an app upgrade. In these cases, it employs partial

fetch (§6.3) to retrieve only the most important configs. For

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12

Apps

C
o

n
fi

g
 F

e
tc

h
 T

im
e

 (
m

s)

Figure 3: Config-fetch time for different apps.

our popular app, MMa, compared to a full fetch, partial fetch

reduces fetch time from 2,499ms to 1,571ms and decreases

transferred data from 401KB to 31KB. The smaller reduction

in fetch time is due to the non-linear relationship between

config size and config-fetch time. The fetch time includes

computation time for the config backends to generate person-

alized values for many parameters in parallel, which does not

decrease linearly as the config data size reduces.

7.2.2 Config Storage’s Impact on App Startup Time

On app startup, the MobileConfig runtime directly mmap()

a binary-format ctable file into memory and immediately

read individual config parameters, without the delay of pars-

ing configs or loading all configs into memory. By contrast,

Firebase [16] on Android stores configs in JSON files. To do a

direct comparison, we modified our V Ha app to use a similar

approach to store configs in JSON, and we call it V Ha, json. On

startup, both V Ha and V Ha, json use cached configs, and hence

the impact of config fetch is excluded from the comparison.

We measured app startup time in production. On average,

V Ha boots 558ms faster than V Ha, json. This significant win

underscores the importance of optimizing storage format and

access method. Unlike V Ha, json, which parses the JSON file

to extract all parameters before accessing even a single one,

MobileConfig utilizes mmap() to access configs in an opti-

mized binary format. This enables it to selectively page in

the specific page containing the needed parameter and read it

directly, without being concerned about other parameters.

Figure 4: Config freshness for the MMa and MMi apps.

1876 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

7.3 Config Data Freshness

Progressive consistency not only enables fast app startup but

also provides apps with highly fresh configs. We use Mo-

bileConfig’s config consistency checker (§5) to measure con-

fig freshness in production. Config read freshness measures

whether a parameter value consumed by an app is identical

to the parameter’s value on the server side. Config storage

freshness measures whether a parameter’s value stored in a

device’s cache is identical to the parameter’s value on the

server side. Read freshness and storage freshness may diverge

because even if a client has fetched and stored a parameter’s

latest value in cache, the app may keep using an older cached

version in order to guarantee repeatable reads.

Figure 4 shows config freshness reported by billions of

devices for our biggest app MM. The P50 values of config

read freshness are 99.70% and 99.84% for MMa and MMi, re-

spectively. These demonstrate that progressive consistency is

able to provide apps with highly fresh configs while enabling

fast app startup.

The config storage freshness is close to 100% but never

reaches 100% due to how it is calculated. A config storage

sample is taken at time T0 right after a MobileConfig client

fetches configs from the server. Later, the sample is compared

with the config data on the server side at time T1. Between

T0 and T1, some parameter values might have changed on the

server side, causing the sample to be considered “not fresh.”

7.4 Emergency Push

Emergency push (§5) accelerates the process of purging harm-

ful stale config data from app devices to rectify config er-

rors. We designed an experiment to measure in production

how quickly an update on a specific parameter is dissem-

inated and consumed by app devices. We compare differ-

ent setups: 1) baseline—no use of emergency push, 2) EP

w/o restart—emergency push without app restart, 3) EP w/

restart—emergency push plus forced app foreground restart.

The results are shown in Figure 5. The x-axis is the time

since the parameter value is updated. The freshness coverage

metric on the y axis measures the percentage of parameter

reads that return the new parameter value out of all app de-

vices’ reads to the parameter. The app is set up to read the

specific parameter immediately after it boots. Freshness cov-

erage is calculated in a 30-minute moving time window.

By design, “EP w/ restart” guarantees near 100% freshness

coverage. If a device’s app is running at time 0 when the

parameter value is updated, soon the app will receive the new

parameter value via emergency push and then immediately

restart to consume it. If the app is not running at time 0, when

it is opened later, it will boot with the cached old parameter

value, but will quickly receive the asynchronously fetched

new configs and notice that an emergency push has happened.

It will immediately restart the app to consume the new param-

eter value. If we exclude the old parameter value temporarily

consumed by the app during the very short period of time

between the app’s first startup and its immediate restart, by

design “EP w/ restart” guarantees near 100% freshness cov-

erage. This is shown as the top curve in Figure 5. Note that in

this experiment, the top curve is inferred instead of measured

in production because we cannot afford to force-restart the

app in production just for an experiment, which would cause

a disruptive experience to many real users. Local tests on our

devices confirm that “EP w/ restart” indeed restarts the app

in seconds to consume the new parameter value.

The “baseline” curve in Figure 5 shows that without emer-

gency push, it takes a long time for freshness coverage to

reach a high value. Specifically, after 4 hours, the coverage

reaches 26%; after 24 hours, it reaches 85%. The long tail is

caused by users who do not use the app for a long time.

“EP w/o restart” improves freshness coverage. Specifically,

after 4 hours, the coverage reaches 40% (vs. 26% in “base-

line”); after 24 hours, it reaches 92% (vs. 85% in “baseline”).

However, the wide gap in freshness coverage between “EP

w/o restart” and the ideal setup of “EP w/ restart” shows that

it is insufficient to just quickly push the new parameter value

to devices because the app will not consume it until the app’s

next restart. Therefore, forced app restart, though disruptive,

is a necessary step to quickly purge stale configs.

In production, EP is used approximately once per quarter

to rectify config errors and almost all those cases use “EP w/

restart.” In addition, “EP w/o restart” is frequently used for

Defcon drills [25], as explained in §8.1, for disaster readiness

drills rather than handling real production outages.

7.5 Multi-stage Canary Tests

Multi-stage canary tests help catch code or config bugs early.

Over a one-month period, MobileConfig conducted 81,014

canaries and caught 15 bugs, all in the second-stage canary.

All these bugs slipped through the small-scale first-stage ca-

nary, because the regression in app health metrics was too

subtle to be reliably detected in very noisy mobile environ-

ments. This highlights the difficulty of config error prevention

in mobile environments. Despite a large body of research on

config error prevention [9, 14, 24, 29, 44, 46, 47, 49], we found

that large-scale canary tests in production are still the most

robust and widely applicable method.

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14 16 18 20 22 24

F
re

sh
n

e
ss

 c
o

v
e

ra
g

e

Time since the parameter was changed (hours)

(Inferred) Emergency push with forced app restart

Emergency push

without app

restart Baseline without

emergency push

Figure 5: Impact of emergency push on freshness coverage.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1877

App All OFF QH OFF VH OFF BE OFF VH+BE OFF All ON (production version) Boolean

Count

(%)

Request

(KB)

Response

(KB)

Request

(KB)

Response

(KB)

Request

(KB)

Response

(KB)

Request

(KB)

Response

(KB)

Request

(KB)

Response

(KB)

Request

(KB)

Response

(KB)

Total savings

(%)

MM_a 148 880 181 6.4 0.85 698 33 802 0.85 880 33 5.7 96 70

WP_a 145 808 175 6.3 0.82 642 31 738 0.82 808 31 6.7 96 69

MM_i 102 473 125 3.4 0.74 354 24 533 0.75 476 24 3.9 95 66

WP_i 84 374 101 1.5 0.64 287 19 417 0.64 374 19 4.7 95 65

Table 11: Impact of client-server protocol optimizations: Value Hashing (VH), Boolean Encodings (BE) and Query Hashing (QH).

We describe two prevented bugs below to give some in-

tuition on why the second-stage canary caught the bugs but

not the first-stage canary. In the first example, a developer

used remote config to drive an A/B test that targeted a very

small population P of Android users. Because MobileCon-

fig’s first-stage canary only samples 0.5% of those P users,

i.e., an even smaller population, it did not catch any problem.

The second-stage canary was conducted on 100x more users

and identified about 3,000 app crashes that only happened to

users exposed to the A/B test. It turned out that a bad config

parameter value used for one of the A/B test groups caused

IndexOutOfBoundsException. The spike and recovery of

the app crash is shown in Figure 6.

0

500

1000

1500

3/19 3/20 3/21 3/22 3/23 3/24 3/25

A
p

p
 C

ra
sh

e
s

Figure 6: A canary test caught app crashes.

In the second example, a developer set up an A/B test to en-

able a new code path in an Android app, which increased mem-

ory consumption. Because the increase in memory consump-

tion was quite moderate, it caused out-of-memory crashes on

only a small fraction of very low-end devices with limited

memory. The second-stage canary caught this subtle problem

and prevented a silent regression in memory consumption.

7.6 Client-server Protocol Optimization

§6.3 describes MobileConfig’s various network optimizations:

query hashing (QH), value hashing (VH), and boolean encod-

ing (BE). To evaluate their effectiveness, we measured the

request and response size when fetching all configs for several

apps under different settings. The results are summarized in

Table 11, where “All ON” means enabling all optimizations,

which is the setting used in production. Other settings mean

disabling certain optimizations from the production baseline.

These experiments are performed in a local testbed because

disabling optimizations in production would cause a poor

experience to real users.

Compared with “All OFF”, “All ON” reduces the total size

of request and response by ≈96%. Value hashing and boolean

encoding reduce the response size by about two orders of

magnitude, while query hashing reduces the request size by

≈80%. The effectiveness of these optimizations is an impor-

tant reason why we prefer the simple soft-state client-server

protocol over a more complex hard-state protocol.

8 Operational Experiences

We use several production incidents to highlight the chal-

lenges and then share the lessons learned.

8.1 Production Incidents

Incident 1: lack of emergency push (EP). In 2016, a devel-

oper mistakenly changed the config parameter that controls

the maximum number of comments to fetch in the MM app

from 25 to 0, causing users to see no comments. The param-

eter value was quickly fixed on the server side, but as EP

was not implemented in MobileConfig at the time, we had to

painfully wait for over a day for most devices to gradually

restart the app and apply the corrected parameter value. This

incident expedited our development of EP.

Incident 2: EP malfunction. Early on, we observed that

some devices had corrupted storage, leading to incorrect ap-

pearances of many config files. Initially, each use of EP fixed

a single broken config parameter, and it was never the case

that many configs needed simultaneous correction through

EP. Given this, we adjusted the MobileConfig runtime to treat

the situation of too many EP-delivered configs on storage as a

sign of storage corruption, causing it to revert to default values

for all configs. This precaution served us well for years until

we began conducting large-scale Defcon drills [25]. These

drills involved using EP to instruct apps to rapidly disable

less-essential features to reduce the load on backend systems.

In 2021, as Defcon drills expanded to disable more app fea-

tures simultaneously, the number of configs pushed out by EP

exceeded a threshold, triggering the MobileConfig runtime to

mistakenly conclude that the storage was corrupted on many

devices and fall back to default values for all configs. This

incident demonstrates that as the operating environment shifts

over time, an initial defensive mechanism can unexpectedly

transform into a destructive force. Therefore, a robust solution

needs to stand the test of time.

Incident 3: mishandling of file names. We once noticed

network connection anomalies from about 0.1% of users due

1878 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

to MobileConfig randomly flipping some config parameters.

As the problem was not reproducible in our lab, initially, we

made no progress after 27 days of laborious investigation.

Eventually, a breakthrough occurred when the problem mani-

fested on an employee’s device, allowing us to directly attach

a debugger. It turned out that when the app starts, if the latest

config file’s sequence number happens to end with 0, such as

10.ctable or 20.ctable, the MobileConfig runtime code,

“if (latestConfigFile.endsWith(“0.ctable”)),” mistakenly treated

it as 0.ctable. The fix was simple—just changing the code

to “if (latestConfigFile.endsWith(“/0.ctable”))”—yet the in-

vestigation process was extremely difficult. This incident

underscores the difficulty of developing low-level mobile sys-

tems like MobileConfig, exacerbated by the lack of direct

access to user devices.

Incident 4: configs on VR devices. On our VR products,

since we own the operating system, we run the MobileConfig

runtime in a daemon to manage configs for all apps, which is

more efficient than each app managing its own configs. When

an app starts, it subscribes to the daemon for certain configs.

While the solution overall worked well, it was reported that

the daemon occasionally returned incorrect parameter values.

As the problem was not reproducible in our lab, much of the

investigation involved reading source code, changing code

through trial and error, and waiting for logging data from user

devices for confirmation. The whole process lasted 60 days.

Eventually, it was discovered that when two apps concurrently

subscribe to two sets of overlapping configs, the ordering of

configs on storage depends on the timing of the subscrip-

tion calls. This ordering issue was overlooked in some cases,

resulting in retrieving wrong parameter values. This inci-

dent, once again, underscores the difficulties of developing

low-level mobile systems.

8.2 Lessons Learned

We draw several lessons from our experience above.

• Following from Incident 1, we recommend every config

framework to support emergency push. Although it is not

supported by existing solutions in the public domain [1, 16,

28, 42] and the dozen legacy config frameworks predating

MobileConfig at Meta, we found it important for enabling

a safe and agile development process.

• Incidents 2, 3, and 4 all demonstrate the difficulty of devel-

oping a robust and feature-rich mobile config framework.

Therefore, it should be done only once and then reused

across all platforms, programming languages, and config

use cases. This principle drives our design of the single,

universal SDK, as opposed to Firebase’s approach of using

different implementations for different platforms.

• Incidents 3 and 4 also demonstrate that debugging sub-

tle issues in the wild for low-level mobile systems like

MobileConfig is very difficult due to a lack of access to

user devices. Over time, we have enhanced consistency

checking to detect various issues early (§5) and also upload

snapshots of devices’ config files to help us more easily

reproduce problems.

• Finally, as shown in §7.5, traditional small-scale canary

tests fall short for mobile apps due to noisy mobile envi-

ronments. Consequently, MobileConfig employs unusually

large and unusually long canary tests.

9 Related Work

Configuration management for mobile apps. Out of the

few existing mobile config systems [1, 16, 28, 42], Google’s

Firebase RemoteConfig [16] is the closest to MobileConfig.

A detailed comparison is shown in Table 8.

Configuration management for datacenter applications.

Past studies on configuration management [10, 33–36, 38,

45, 50] have been mostly focused on datacenter applications.

Configerator [38] is a representative system in the industry

and a comparison is shown in Table 9.

Configuration error prevention. A large body of work stud-

ies misconfiguration [6, 9, 14, 24, 29, 43, 44, 46, 47, 49]. Like

Configerator [38], MobileConfig primarily uses large-scale

canary tests in production to prevent misconfiguration due to

its robustness in complex environments, but MobileConfig

has to address additional challenges in mobile environments

such as ineffectiveness of small-scale canaries.

Consistency models. Out of many consistency models [2, 3,

23, 26, 31, 48], TACT [48] is most related to MobileConfig’s

progressive consistency. Both MobileConfig and TACT allow

consumption of stale data and can bound the level of staleness.

Config consumption on mobile devices can be viewed as read-

only transactions, but neither related database work [8, 13]

nor config consumption in datacenters [38] is optimized for

accessing up-to-date data without blocking on remote reads.

10 Conclusion

We presented MobileConfig, a configuration management

framework that manages tens of mobile apps on billions of

devices. Its progressive consistency balances fast app startup

with fresh config data. To prevent config errors, it uses a

defense-in-depth approach that employs multi-stage canary

tests at scale, compile-time validation, and config consistency

checking. Its novel use of cross-platform code and server-side

config parameter remapping prevents the proliferation of mo-

bile SDKs while supporting diverse platforms, programming

languages, and config use cases. Additionally, we reported

our lessons learned from operating MobileConfig at hyper-

scale. Finally, we hope that our experience—for example, our

developers making thousands of config changes daily in live

production—will inspire others to also employ remote configs

to push the limits of agile app development.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1879

References

[1] Adobe Target: A/B Test, Personalize & Automate, 2024.

https://business.adobe.com/products/target

/adobe-target.html.

[2] Sarita V Adve and Kourosh Gharachorloo. Shared Mem-

ory Consistency Models: A Tutorial. IEEE Computer,

29(12):66–76, 1996.

[3] Atul Adya. Weak consistency: a generalized theory and

optimistic implementations for distributed transactions.

PhD thesis, Massachusetts Institute of Technology, Dept.

of Electrical Engineering and Computer Science, 1999.

[4] App startup time, 2024. https://developer.androi

d.com/topic/performance/vitals/launch-time.

[5] AppDynamics. Mobile app performance explained,

2014. https://www.appdynamics.com/media/

uploaded-files/mobileapp.pdf.

[6] Mona Attariyan and Jason Flinn. Automating configu-

ration troubleshooting with dynamic information flow

analysis. In Proceedings of the Ninth USENIX Sympo-

sium on Operating Systems Design and Implementation,

2010.

[7] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton,

Elizabeth O’Neil, and Patrick O’Neil. A critique of

ANSI SQL isolation levels. ACM SIGMOD Record,

24(2):1–10, 1995.

[8] Arvola Chan and Robert Gray. Implementing distributed

read-only transactions. IEEE Transactions on Software

Engineering, (2):205–212, 1985.

[9] Runxiang Cheng, Lingming Zhang, Darko Marinov, and

Tianyin Xu. Test-case prioritization for configuration

testing. In Proceedings of the 30th ACM SIGSOFT Inter-

national Symposium on Software Testing and Analysis,

pages 452–465, 2021.

[10] Azure App Config, 2024. https://docs.microsoft

.com/en-us/azure/azure-app-configuration/o

verview.

[11] Colin Contreary. Why should you care about your mo-

bile app’s startup time?, 2023. https://blog.embra

ce.io/why-should-you-care-about-your-mobil

e-apps-startup-time/.

[12] Feature toggle, 2024. https://en.wikipedia.org/w

iki/Feature_toggle.

[13] Hector Garcia-Molina and Gio Wiederhold. Read-only

transactions in a distributed database. ACM Trans-

actions on Database Systems (TODS), 7(2):209–234,

1982.

[14] Peng Huang, William J Bolosky, Abhishek Singh, and

Yuanyuan Zhou. ConfValley: A systematic configura-

tion validation framework for cloud services. In Pro-

ceedings of the 10th European Conference on Computer

Systems, page 19, 2015.

[15] Jez Humble and David Farley. Continuous delivery:

reliable software releases through build, test, and de-

ployment automation. Pearson Education, 2010.

[16] Google Inc. Firebase Remote Config, 2024. https:

//firebase.google.com/docs/remote-config.

[17] Google Inc. Firebase Remote Config Loading Strategies,

2024. https://firebase.google.com/docs/remot

e-config/loading.

[18] Google Inc. Flatbuffers, 2024. https://google.git

hub.io/flatbuffers/.

[19] Tyler Kieft. Building a better Instagram app for Android,

2014. https://instagram-engineering.com/bui

lding-a-better-instagram-app-for-android-c

08f973662b.

[20] Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker,

Ya Xu, and Nils Pohlmann. Online controlled experi-

ments at large scale. In Proceedings of the 19th ACM

SIGKDD international conference on knowledge discov-

ery and data mining, pages 1168–1176, 2013.

[21] Ron Kohavi, Diane Tang, and Ya Xu. Trustworthy online

controlled experiments: A practical guide to A/B testing.

Cambridge University Press, 2020.

[22] Ronny Kohavi, Thomas Crook, Roger Longbotham,

Brian Frasca, Randy Henne, Juan Lavista Ferres, and

Tamir Melamed. Online experimentation at Microsoft.

Data Mining Case Studies, 11(2009):39, 2009.

[23] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky,

and David G Andersen. Don’t settle for eventual: Scal-

able causal consistency for wide-area storage with cops.

In Proceedings of the Twenty-Third ACM Symposium on

Operating Systems Principles, pages 401–416, 2011.

[24] Ratul Mahajan, David Wetherall, and Tom Anderson.

Understanding BGP misconfiguration. In Proceedings

of the ACM SIGCOMM 2002 Conference on Applica-

tions, Technologies, Architectures, and Protocols for

Computer Communication, pages 3–16, 2002.

[25] Justin J Meza, Thote Gowda, Ahmed Eid, Tomiwa

Ijaware, Dmitry Chernyshev, Yi Yu, Md Nazim Uddin,

Rohan Das, Chad Nachiappan, Sari Tran, et al. Defcon:

Preventing Overload with Graceful Feature Degrada-

tion. In Proceedings of the 17th USENIX Symposium on

Operating Systems Design and Implementation, pages

607–622, 2023.

1880 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://business.adobe.com/products/target/adobe-target.html
https://business.adobe.com/products/target/adobe-target.html
https://developer.android.com/topic/performance/vitals/launch-time
https://developer.android.com/topic/performance/vitals/launch-time
https://www.appdynamics.com/media/uploaded-files/mobileapp.pdf
https://www.appdynamics.com/media/uploaded-files/mobileapp.pdf
https://docs.microsoft.com/en-us/azure/azure-app-configuration/overview
https://docs.microsoft.com/en-us/azure/azure-app-configuration/overview
https://docs.microsoft.com/en-us/azure/azure-app-configuration/overview
https://blog.embrace.io/why-should-you-care-about-your-mobile-apps-startup-time/
https://blog.embrace.io/why-should-you-care-about-your-mobile-apps-startup-time/
https://blog.embrace.io/why-should-you-care-about-your-mobile-apps-startup-time/
https://en.wikipedia.org/wiki/Feature_toggle
https://en.wikipedia.org/wiki/Feature_toggle
https://firebase.google.com/docs/remote-config
https://firebase.google.com/docs/remote-config
https://firebase.google.com/docs/remote-config/loading
https://firebase.google.com/docs/remote-config/loading
https://google.github.io/flatbuffers/
https://google.github.io/flatbuffers/
https://instagram-engineering.com/building-a-better-instagram-app-for-android-c08f973662b
https://instagram-engineering.com/building-a-better-instagram-app-for-android-c08f973662b
https://instagram-engineering.com/building-a-better-instagram-app-for-android-c08f973662b

[26] Athicha Muthitacharoen, Benjie Chen, and David

Mazieres. A low-bandwidth network file system. In

Proceedings of the eighteenth ACM symposium on Op-

erating systems principles, pages 174–187, 2001.

[27] Mike Nakhimovich. Improving Startup Time in the

NYTimes Android App, 2016. https://archive.ny

times.com/open.blogs.nytimes.com/2016/02/1

1/improving-startup-time-in-the-nytimes-a

ndroid-app/.

[28] Optimizely, 2024. https://www.optimizely.com/.

[29] Vasileios Pappas, Zhiguo Xu, Songwu Lu, Daniel

Massey, Andreas Terzis, and Lixia Zhang. Impact of

configuration errors on DNS robustness. In Proceed-

ings of the ACM SIGCOMM 2004 Conference on Appli-

cations, Technologies, Architectures, and Protocols for

Computer Communication, pages 319–330, 2004.

[30] Anshu Rustagi. How We Improved Our Android App

“Cold Start” Time by 28%, 2018. https://redfin.e

ngineering/how-we-improved-our-android-app

-cold-start-time-by-28-a722e231314a.

[31] Yasushi Saito and Marc Shapiro. Optimistic replication.

ACM Computing Surveys (CSUR), 37(1):42–81, 2005.

[32] Harshit Saokar, Soteris Demetriou, Nick Magerko, Max

Kontorovich, Josh Kirstein, Margot Leibold, Dimitrios

Skarlatos, Hitesh Khandelwal, and Chunqiang Tang.

ServiceRouter: a Scalable and Minimal Cost Service

Mesh. In Proceedings of the 17th USENIX Sympo-

sium on Operating Systems Design and Implementation,

2023.

[33] Gerald Schermann, Jürgen Cito, and Philipp Leitner.

Continuous experimentation: challenges, implementa-

tion techniques, and current research. IEEE Software,

35(2):26–31, 2018.

[34] Gerald Schermann, Dominik Schöni, Philipp Leitner,

and Harald C Gall. Bifrost: Supporting continuous de-

ployment with automated enactment of multi-phase live

testing strategies. In Proceedings of the 17th Interna-

tional Middleware Conference, pages 1–14, 2016.

[35] Rian Shambaugh, Aaron Weiss, and Arjun Guha. Re-

hearsal: A configuration verification tool for puppet. In

Proceedings of the 37th ACM SIGPLAN Conference on

Programming Language Design and Implementation,

pages 416–430, 2016.

[36] Alex Sherman, Philip A Lisiecki, Andy Berkheimer,

and Joel Wein. ACMS: The Akamai Configuration

Management System. In Proceedings of the Second

USENIX Symposium on Networked Systems Design and

Implementation, pages 245–258, 2005.

[37] Snap Inc. Measuring ‘Time to Camera ready’, 2021.

https://eng.snap.com/time_to_camera_ready.

[38] Chunqiang Tang, Thawan Kooburat, Pradeep Venkat-

achalam, Akshay Chander, Zhe Wen, Aravind

Narayanan, Patrick Dowell, and Robert Karl. Holistic

Configuration Management at Facebook. In Proceed-

ings of the 25th Symposium on Operating Systems

Principles, 2015.

[39] Diane Tang, Ashish Agarwal, Deirdre O’Brien, and

Mike Meyer. Overlapping experiment infrastructure:

More, better, faster experimentation. In Proceedings

of the 16th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 17–26,

2010.

[40] Douglas B Terry, Alan J Demers, Karin Petersen, Mike J

Spreitzer, Marvin M Theimer, and Brent B Welch. Ses-

sion guarantees for weakly consistent replicated data. In

Proceedings of 3rd International Conference on Parallel

and Distributed Information Systems, pages 140–149.

IEEE, 1994.

[41] Natansh Verma. Optimizing Facebook for iOS start time,

2015. https://engineering.fb.com/2015/11/20/

ios/optimizing-facebook-for-ios-start-tim

e/.

[42] VWO, 2024. https://vwo.com/.

[43] Helen J Wang, John C Platt, Yu Chen, Ruyun Zhang,

and Yi-Min Wang. Automatic Misconfiguration Trou-

bleshooting with PeerPressure. In Proceedings of the

Sixth Symposium on Operating Systems Design and Im-

plementation, pages 245–257, 2004.

[44] Avishai Wool. A quantitative study of firewall configu-

ration errors. IEEE Computer, 37(6):62–67, 2004.

[45] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou,

Shan Lu, Long Jin, and Shankar Pasupathy. Early detec-

tion of configuration errors to reduce failure damage. In

Proceedings of the 12th USENIX Symposium on Operat-

ing Systems Design and Implementation, pages 619–634,

2016.

[46] Tianyin Xu and Yuanyuan Zhou. Systems Approaches

to Tackling Configuration Errors: A Survey. ACM Com-

puting Surveys, 47(4):70, 2015.

[47] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou,

Lakshmi N Bairavasundaram, and Shankar Pasupathy.

An empirical study on configuration errors in commer-

cial and open source systems. In Proceedings of the

23rd ACM Symposium on Operating Systems Principles,

pages 159–172, 2011.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1881

https://archive.nytimes.com/open.blogs.nytimes.com/2016/02/11/improving-startup-time-in-the-nytimes-android-app/
https://archive.nytimes.com/open.blogs.nytimes.com/2016/02/11/improving-startup-time-in-the-nytimes-android-app/
https://archive.nytimes.com/open.blogs.nytimes.com/2016/02/11/improving-startup-time-in-the-nytimes-android-app/
https://archive.nytimes.com/open.blogs.nytimes.com/2016/02/11/improving-startup-time-in-the-nytimes-android-app/
https://www.optimizely.com/
https://redfin.engineering/how-we-improved-our-android-app-cold-start-time-by-28-a722e231314a
https://redfin.engineering/how-we-improved-our-android-app-cold-start-time-by-28-a722e231314a
https://redfin.engineering/how-we-improved-our-android-app-cold-start-time-by-28-a722e231314a
https://eng.snap.com/time_to_camera_ready
https://engineering.fb.com/2015/11/20/ios/optimizing-facebook-for-ios-start-time/
https://engineering.fb.com/2015/11/20/ios/optimizing-facebook-for-ios-start-time/
https://engineering.fb.com/2015/11/20/ios/optimizing-facebook-for-ios-start-time/
https://vwo.com/

[48] Haifeng Yu. Design and evaluation of a continuous con-

sistency model for replicated services. In Proceedings

of the Fourth Symposium on Operating Systems Design

and Implementation, 2000.

[49] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xi-

aolan Zhang, Niyu Ge, Vasanth Bala, Tianyin Xu, and

Yuanyuan Zhou. EnCore: Exploiting system environ-

ment and correlation information for misconfiguration

detection. In Proceedings of the 19th Architectural

Support for Programming Languages and Operating

Systems, pages 687–700, 2014.

[50] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang

Bao, Wenlong Ma, Zhuoyue Liu, Kunpeng Song, and

Yingchun Yang. BestConfig: Tapping the Performance

Potential of Systems via Automatic Configuration Tun-

ing. In Proceedings of the 2017 Symposium on Cloud

Computing, pages 338–350, 2017.

1882 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Passengers’ Safety Matters: Experiences of Deploying a Large-Scale Indoor
Delivery Monitoring System

Xiubin Fan1, Zhongming Lin2, Yuming Hu3, Tianrui Jiang2, Feng Qian4,

Zhimeng Yin1
∗
, S.-H. Gary Chan2

∗
, Dapeng Wu1

1City University of Hong Kong 2The Hong Kong University of Science and Technology 3University of Minnesota – Twin Cities
4University of Southern California

Abstract
Delivering goods to many indoor stores poses significant

safety issues, as heavy, high-stacked packages carried on de-

livery trolleys may fall and hurt passersby. This paper re-

ports our experiences of developing and operating DeMo, a

practical system for real-time monitoring of indoor delivery.

DeMo attaches sensors to trolleys and analyzes the Inertial

Measurement Unit (IMU) and Bluetooth Low Energy (BLE)

readings to detect delivery violations such as speeding and

using non-designated delivery paths. Differing from typical

indoor localization applications, DeMo overcomes unique

challenges such as unique sensor placement and complex

electromagnetic characteristics underground. In particular,

DeMo adapts the classical logarithmic radio signal model to

support fingerprint-free localization, drastically lowering the

deployment and maintenance cost. DeMo has been operating

since May 2020, covering more than 200 shops with 42,248

deliveries (3521.4 km) across 12 subway stations in Hong

Kong. DeMo’s 3-year operation witnessed a significant viola-

tion rate drop, from 19% (May 2020) to 2.7% (Mar 2023).

1 Introduction
Indoor localization has been extensively studied by the re-

search community [4, 5, 19, 39, 41, 43, 64, 66]. Very recently,

there emerged commercial, large-scale indoor localization

systems that leverage the two-decade research to benefit end

customers (e.g., mall navigation [30, 43] and presence detec-

tion [18, 19]) and even offer monetization opportunities [46].

In this paper, we investigate a unique and important appli-

cation that falls into the broad topic of indoor localization:

indoor delivery monitoring. Many public places such as air-

ports, subway stations, malls, and office buildings feature

dense retail stores and crowded visitors. Delivering goods to

the stores (Fig. 1) poses significant safety issues, as heavy,

high-stacked packages carried on delivery trolleys may fall

and hurt passersby. The particular indoor environments may

exacerbate such a risk: there are usually no corridors reserved

exclusively for delivery; the uneven road surfaces such as

slopes, tactile pavings, and contraction joints make packages

less stable; delivery personnel may even use passenger lifts,

whose acceleration and deceleration may make packages fall.

Reckless indoor delivery has resulted in severe injury or even

∗Zhimeng Yin and S.-H. Gary Chan are co-corresponding authors.

Fig. 1: Indoor delivery in an MTR station.

deaths [1, 14, 21, 45, 57, 62]. For example, in a recent acci-

dent, multiple packages fell and paralyzed a nearby passenger

when a delivery worker was using a passenger lift to transport

a trolley full of goods [45]. When indoor environments are

crowded, delivery accidents may be more severe compared to

their outdoor counterparts [6, 38], and they may trigger cas-

cading accidents such as crowd collapse and even stampedes

where the death toll can reach hundreds.

As an advocator of indoor delivery safety, Hong Kong Elec-

trical and Mechanical Services Department (HK EMSD) has

been strictly monitoring delivery violations in Mass Transit

Railway (MTR) stations in HK. MTR has a daily ridership of

more than 5 million (Feb 2023). Henceforth, its stations are

dense with passengers, stores, and indoor deliveries. EMSD

has established four delivery violations in MTR stations: (1)

speeding (trolley moving speed ≥ 1.5 m/s), (2) using non-

designated delivery paths, (3) using passenger lifts without

prior permission, and (4) performing delivery in peak hours.

To ensure the rules are being properly followed, since 2010,

MTR has been hiring safety staff to manually monitor the

delivery behavior. The staff needs to physically follow the

delivery worker and manually document observed violations.

Clearly, this approach is inaccurate (in particular for speed

estimation), unscalable, and labor-intense.

To address the disadvantages of the manual efforts, we

collaborated with HK EMSD and MTR on devising a fully

automated indoor delivery monitoring solution, referred to as

DeMo. In this paper, we report our multi-year experiences of

developing, deploying, and maintaining DeMo. Our system

was commercially deployed in 12 MTR stations for monitor-

ing 40K+ deliveries to 200+ stores since May 2020.

At a first glance, it appears that we can trivially apply an

existing indoor localization solution (Table 1) as is: by track-

ing the delivery worker’s location, ideally one can find out

the speed and path of the delivery in real time. However, we

face several unique challenges and practical constraints that

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1883

Table 1: Large-scale indoor operational systems. “B+G”

means BLE and geomagnetic fields; “det.” represents detec-

tion; “prop.” is for propagation; “mon.” means monitoring.

System Technique Signal Application

MLoc [30] Fingerprinting B+G, IMU Navigation

Tencent [43] Fingerprinting WiFi, IMU Navigation

myCoex [27] Fingerprinting WiFi Navigation

aBeacon [18] Proximity det. BLE Presence det.

VALID [19] Proximity det. BLE Presence det.

DeMo Prop. model BLE, IMU Delivery mon.

render off-the-shelf indoor localization solutions not appli-

cable. First, the sensor placement is different. Unlike prior

solutions that assume users carry hand-held smartphones for

localization, for indoor delivery, workers usually attach sen-

sors to the trolley. Therefore, motion sensor readings do not

exhibit periodical footstep-incurred patterns that are widely

leveraged for online location tracking [34, 53]. Again due to

the sensor placement, sensor readings are significantly dis-

turbed when the trolley moves over special ground surfaces

such as tactile pavings and contraction joints. Second, com-

pared to prior localization systems’ target environments (e.g.,
shopping malls), HK’s MTR stations are usually underground
and bear much more complex electromagnetic characteristics
due to operating trains, as demonstrated in Appendix A.1.

Consequently, we cannot adopt commonly used features, e.g.,
geomagnetic field (GMF) strength. Due to the same reason,

we are not even able to obtain the accurate moving direction

that is essential for position tracking. Third, due to privacy
concern and loud noises in MTR stations, we cannot use

vision-based or acoustic-based localization; due to constraints
of device form factor and energy usage, we are not allowed

to adopt WiFi-based localization either, which was heavily

researched [13, 50, 65] and commercially deployed [27, 43].

Fourth, HK EMSD and MTR also hope to minimize the prepa-
ration and maintenance overhead. We thus decide to not use

a fingerprint-based approach that was adopted by almost all

prior commercial indoor navigation solutions [27,30], because

training and maintaining the fingerprint database requires sig-

nificant labor in crowded MTR stations.

To tackle the above challenges, DeMo only uses cheap,

lightweight Bluetooth Low Energy (BLE) beacons as the in-

frastructure. To further lower the deployment bar, instead of

using BLE beacons’ RSSI readings as location fingerprints,

we adopt a simple RSSI-distance model as the core localiza-

tion mechanism. The model is generic across all MTR sta-

tions; it thus eliminates the need for training and updating the

per-site fingerprint database. While RSSI propagation model-

ing has been extensively studied [5, 7, 13, 31, 42], our contri-

bution lies in adapting the classical logarithmic model [42]
to complex indoor environments, and for the first time, demon-
strate its efficacy in supporting fingerprint-free localization
through large-scale commercial deployment. Specifically, we

note that in MTR stations where occlusion, interference, and

dynamic crowds are common, abrupt RSSI change and weak

RSSI values can cause significant ranging errors and fluc-

tuations. Therefore, we adjust the classical free-space prop-

agation model to accommodate these unique challenges in

complex MTR environments. Meanwhile, we properly cali-

brate our model through one-time training and then adopt it

across MTR stations. Experiments indicate that our adjusted

model significantly outperforms the literature [5,7,13,31,42],

many requiring sophisticated tuning such as ray tracing.

On the trolley side, we engineer a lightweight sensor with

an inertial measurement unit (IMU) and a BLE RSSI receiver.

Our sensing algorithm can work with diverse sensor place-

ment: hand-holding, in-pocket, and most importantly, sensor

attaching to the trolley. For trolley-attached placement, we

develop robust algorithms that identify three types of road sur-

faces appearing in MTR stations: normal road, tactile paving,

and contraction joints (Fig. 7). The detected surface type is

then utilized to improve the speed estimation. To overcome

the aforementioned challenge of missing moving direction,

we design a customized particle filter (PF) that leverages the

RSSI-distance model and estimated speed to accurately local-

ize the trolley, without requiring explicit direction reading.

Last but not least, we integrate the above components (RSSI

model, speed measurement, surface detection, PF-based lo-

calization), together with other essential modules (floor plan

processing, violation detection/alarming, store classification,

delivery recording, etc.), into the holistic system of DeMo.

The overall development/testing took 6 months. We then

worked with HK EMSD and MTR to commercially deploy

DeMo in 12 MTR stations in May 2020. We conduct thor-

ough evaluations using two complementary sources: (1) data

collected from our 3-year deployment (42K+ deliveries to

200+ shops, with 3521.4 km total travel distance), and (2) 15-

day controlled experiments (900 deliveries with 54 km travel

distance, with ground truth). Our key results are as follows.

• DeMo’s 3-year operation witnessed a significant violation

rate drop, from 19% (May 2020) to 2.7% (Mar 2023). This

demonstrates DeMo’s influence on delivery behaviors.

• We conducted an A/B test to confirm that the improve-

ment of delivery behaviors is indeed due to DeMo’s violation

detection/warning capability instead of delivery workers’ per-

ception of our sensing devices.

• In contrast to the common belief that a propagation model

suffers from large errors, our integrated design yields a mean

positioning error of 2.17 m in MTR stations without the need

for labor-intensive site surveys.

• DeMo achieves accurate road surface detection, which fur-

ther facilitates trolley speed estimation (mean error 0.31 m/s).

Both only use IMU sensors.

• Compared to manual delivery monitoring used before 2020,

DeMo improved the monitoring coverage (i.e., the fraction of

detected delivery events) from 53% to 88%, and meanwhile

reduced the operational cost by 8X.

• DeMo achieves perfect detection for all violation types with

1884 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

speeding being the only exception. For speeding violations,

DeMo reported 9.3% FP and 2.4% FN 1; the real-time warn-

ing is even less accurate. Therefore, DeMo is not intended for

law enforcement actions, similar to prior systems (e.g., detect-

ing reckless driving [69]). Despite this limitation, DeMo was

endorsed by MTR safety staff: we invited 20 staff to partici-

pate in a questionnaire survey; 95% of the participants agree

or strongly agree that DeMo can improve delivery safety.

To summarize, our contribution consists of the following.

(1) We develop DeMo, a first commercially deployed indoor

delivery monitoring system. (2) Through the 3-year deploy-

ment of DeMo, we learn several key lessons and operational

experiences. (3) Most importantly, DeMo indeed makes HK

MTR safer, benefiting millions of riders every day. Note that

DeMo can be potentially extended to broader indoor services

such as property management [73] for monitoring shuttle

vehicles in shopping malls and luggage carts in airports.

Ethical Consideration. Our IRB-approved study complies

with the agreement between us and HK MTR. We did not col-

lect any personally identifiable information (PII) of delivery

workers or passengers. Neither was MTR willing to release

data for the actual incidents because of privacy concerns.

Data Release. To facilitate further research, we have re-

leased our collected IMU and BLE readings on GitHub [15].

2 Motivation
Delivery Violations. The MTR is a major public transporta-

tion network that transports around 5 million daily passengers

in HK. To facilitate commuter needs, MTR stations offer di-

verse shops (including food/beverage, health/beauty, books,

banking, and convenience stores), similar to typical small

malls in many countries. Because of the crowded MTR sta-

tions, indoor delivery has a potential risk and EMSD in HK

requires strict monitoring of delivery behaviors in MTR sta-

tions. Targeting the specific scenario of delivery in MTR

stations, the EMSD defines the violations as follows.

• Violation 1: speeding (trolley moving speed ≥ 1.5 m/s for

more than 3 seconds).

• Violation 2: non-designated delivery path (entry/exit/path).

• Violation 3: usage of passenger lift without prior permission

from the station.

• Violation 4: deliver during peak hours (07:00-10:00 am and

4:00-8:00 pm).

Manual Monitoring and Limitations. To ensure safe de-

liveries following government guidelines, MTR stations hire

additional safety staff for manual monitoring. These safety

staff need to follow each delivery, warn delivery workers once

they observe a violation, and file delivery reports for future

action. These delivery reports include the delivery time, path,

and violation type (if there exists a violation) 2.

1FP is less of a concern since MTR stations hope to slow down delivery

speeds for passenger safety.
2One delivery record example: station code KXX, entry/exit A, start time

5/10/21 10:05, shop ID K001, violation type 2.

Not surprisingly, the current manual system has substantial

limitations. (1) It is difficult to visually monitor delivery work-

ers’ moving speed, which leads to potential violations and

safety risks. (2) Manual recording requires substantial human

resources - a safety staff is required for each delivery. It is

impossible for one safety staff to monitor multiple deliveries

concurrently, leading to monitoring failures. (3) High labor

cost. Each station requires multiple safety staff depending on

its scale, which directly adds up to a high expense.

The above limitations motivate us to design a fully auto-

mated system with reliable monitoring services and reduced

costs - DeMo. During DeMo’s design and prototyping, we

discovered a few unique challenges, such as IMU readings’

large fluctuation due to special road surfaces and the severe

electromagnetic environment, which need to be addressed in

practice for reliable monitoring.

3 System Design

3.1 An Overview of System
DeMo consists of two phases: offline preparatory phase and

online operational phase.

Offline Preparatory Phase. In this phase, we design cus-

tomized sensors that will be attached to trolleys for delivery

monitoring. Then we strategically deploy BLE beacons in

MTR stations to balance the monitoring reliability and deploy-

ment/maintenance cost. To completely remove the intensive

radio fingerprinting cost in many wireless localization sys-

tems, we adopt a Received Signal Strength Indication (RSSI)

to distance model that is quickly applied across different sce-

narios with reliable accuracy. In addition, we further process

the MTR station floor maps. The preparatory phase’s details

are discussed in Sec. 3.2.

Online Operational Phase. Fig. 2 shows the operational

DeMo. When reaching an MTR station entrance, delivery

workers receive DeMo’s sensors from MTR staff and then

attach sensors to workers’ own trolleys that satisfy different

shops’ specific supply requirements.

During delivery, workers manually drive trolleys that carry

supply goods while DeMo monitors the whole procedure.

Specifically, DeMo calculates the moving speed (Sec. 3.3)

using IMU readings. For the trolley trajectory generation

(Sec. 3.4), DeMo adopts a particle filter to leverage received

BLE packets and estimated speed. Although the idea seems

straightforward, DeMo needs to address a few unique chal-

lenges in MTR stations, e.g., large errors due to MTR’s special

road surfaces and missing directions in a severe electromag-

netic environment. Based on the estimated speed and trajec-

tory, DeMo analyzes them for violation detection (Sec. 3.5).

When arriving at the target store, delivery workers unload

their goods which usually lasts 5-20 minutes. DeMo utilizes

this opportunity to identify the specific store and alleviates the

possible false alarms by analyzing the historical IMU+BLE

readings. Then, DeMo uploads the delivery record to the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1885

TrajectoryOnline
Positioning

Road Surface
Detection

RSSI

Speed

Speed
Calculation

Violation
Detection

Speed

IMU
Reading

Alarm
Notification

2. During Delivery1. At Entrance

Attach a Sensor
to the Trolley

3. Supply Unloading

Store
Classification

4. At Exit

Remove a Sensor
from the Trolley

Daily Report

Delivery Behavior
Change

ServerDelivery Personnel MTR

Delivery Record

Fig. 2: DeMo system overview (operational phase).

server which analyzes the daily violation rate to identify ab-

normally high violations. When delivery workers reach an

MTR exit, they return DeMo’s sensors to MTR staff.

3.2 Offline Preparatory Phase
Our offline phase includes signal choice, sensor design, floor

plan processing, BLE beacon deployment, and RSSI-distance

model verification.

Signal Choice. Various signals, such as acoustics, WiFi,

camera images, and visible light, have been used for indoor

localization. DeMo leverages the RSSI of BLE packets and

IMU readings because of the following reasons:

• The privacy issue restricts us from installing privacy-

intrusive devices, such as cameras or depth cameras.

• As required by MTR stations, we are only allowed to install

small-sized battery-powered devices and cannot place power

cables. As a result, it is infeasible to install power-hungry

devices such as WiFi access points, while MTR stations have

limited WiFi coverage and require dedicated WiFi access

points for WiFi-based localization.

• Acoustic and light-based indoor localization systems are

not practical due to challenges such as noise, reverberation,

limited visibility, and complexity.

• Our DeMo achieves desired violation detection based on

BLE and IMU with low deployment and maintenance costs.

Sensor Design. In addition to commodity BLE beacons

deployed in MTR stations, we customize on-trolley sensors

with two major components, Raspberry PI 4B and customized

hardware attached on top (HAT) in Fig. 4. Our HAT contains

an inertial measurement unit (IMU) MPU9250, a speaker for

alarm, 6 indicator lights to indicate the operation statuses and

a fan for cooling.

Fig. 3: Sender: a beacon de-

ployed on the skirting board.

Fig. 4: Receiver: Raspberry

PI 4B and customized HAT.

Our sensor captures BLE packets via a Bluetooth chipset

and detects violations in real-time. Once detecting a violation,

it alarms through a speaker and also reports to the server

through a 4G dongle. Since this report contains only essential

information (e.g., sensor id, station, entry/exit, delivery time,

destination shop, and violation type), it requires moderate

energy consumption. The overall energy consumption for

DeMo’s sensing, computation, and uploading is around 400

mW. We chose the Raspberry PI to reduce our hardware

design workload, while its operating system accounts for the

majority of the energy consumption (2000 mW). Our sensor

is connected to a small-capacity portable power bank that is

charged roughly every 2 days.

BLE Beacon Deployment. MTR stations impose strict

aesthetic constraints on BLE beacon deployment. We adopt

small-size, battery-powered, and black-coated beacons and de-

ploy them at skirting board locations (Fig. 3) near the ground.

The beacon distance is 6 to 8 meters in the majority of areas.

During DeMo’s initial trial, we noticed several areas that often

lead to large errors or are critical in DeMo’s operation. This

inspires us to adopt dedicated deployment strategies for these

areas. For large pillars, we deploy beacons on all four sides to

alleviate signal obstruction. For in-station stores, we deploy 3

beacons (two outside and one inside the store) to improve the

store classification accuracy.

During DeMo’s operation, we also recognize the beacon

types affect our maintenance. Table 2 shows two types of

beacons primarily used for DeMo. In our initial few stations,

we deployed beacon type 1 but noticed a significant loss rate,

reaching 9% after 5 months (Sec. 4.4). This loss is caused by

the high chances of collisions with passengers. To alleviate

maintenance costs, we turned to beacon type 2, which is more

expensive with a card shape. This card shape offers larger

contact areas for gluing and reduces the chances of colliding

with walking passengers with better reliability, around 2.3%

after 5 months. This motivates us to only deploy beacon type 2

in later deployment/maintenance. Overall, we have deployed

DeMo in 12 MTR stations with more than 1,500 beacons.

RSSI-Distance Model Verification. Many localization

systems [11, 23, 24, 30, 63] rely on radio fingerprinting for

accurate localization and require intensive deployment costs.

Although RSSI-distance models have been extensively dis-

cussed in the literature for localization in small-scale indoor

scenarios for alleviating deployment efforts [5, 7, 13, 31, 42],

its verification is fundamentally missing in large-scale set-

tings. In contrast, DeMo adopts a low-cost and accurate RSSI-

1886 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Comparison Type 1 Type 2

Appearance

Size 39x39x15mm 86x54x6mm

Cost 6.3 USD 9 USD

Table 2: Beacon type comparison. Fig. 5: Abrupt RSSI change with

time at a static sensor.
Fig. 6: Pre-processed floor plan. Yellow re-

gions represent designated delivery areas.

distance model for large-scale operation.

We started with classic free-space propagation models, e.g.,
the well-known logarithmic model r = r0 + 10N logd +Xσ
[42]. Our initial trials brought up multiple unique challenges

in complex MTR stations. (1) Crowd obstruction and reflec-

tion. These factors lead to signal losses that deviate from the

logarithmic model, which is especially inaccurate under weak

RSSI. (2) Highly dynamic crowd movement. The complex

MTR environment results in abrupt RSSI changes even when

our sensor is static. Fig. 5 shows an example of the RSSI

change with time at a static sensor - directly adopting a prop-

agation model will lead to significant localization errors. In

addition to the logarithmic model, we also tried multiple fine-

tuned RSSI-distance models (e.g., [5, 7, 13]) but noticed more

severe localization errors caused by the complex and dynamic

MTR environment.

These preliminary tests motivate us with the following re-

liable model applicable to complex and dynamic settings.

First, we transfer the logarithmic model to a probability

distribution model to be used in a particle filter: p(r|d) =
1

σ
√

2π
exp(− 1

2σ2 (r − r̂)2), which represents the conditional

probability of receiving an RSSI value r given a distance

d, where r̂ = r0 +10N logd. This probability follows a Gaus-

sian distribution with mean r̂ and variance σ2. Next, to

combat crowd reflection and obstruction, we ignore weak

RSSI values under a threshold Rth (empirically set to -80

dBm) to only leverage strong signals with good reliability.

We also modify the probability model as follows: p(r|d) =
k exp(− 1

2σ2 (r−L(r̂))2), where L(r̂) = γ0 + γ1r̂+ γ2r̂2 + γ3r̂3

is a cubic polynomial function to model crowds’ impacts and

k is adjusted normalization. We have tried multiple polyno-

mial functions and observed that our current cubic function

provides good accuracy while maintaining reliable generaliza-

tion. Higher or lower-order polynomials commonly encounter

larger errors when applied across different MTR stations. A

detailed comparison is included in the Appendix A.2. Coef-

ficients (e.g., γ0, γ1, γ2, and γ3) are determined through sim-

ulation experiments, and our detailed training procedure is

open-sourced at [16]. To mitigate the highly dynamic crowds,

DeMo adopts a sliding window tsw of 4 seconds and leverages

the maximum RSSI within this period, which outperforms

other statistics, e.g., the average, median, or the most recent

RSSI value. This sliding window enhances DeMo’s reliability

against lost BLE beacons while its duration is empirically set

to 4 seconds to ensure the balance between reliability and

delay. A short window might suffer from insufficient BLE

packets, while a long window leads to a larger delay.

Our training data is collected in three representative areas

(e.g., MTR’s entrance, store area, and corridors) and con-

sists of RSSI values collected at different distances from our

beacons to sensors. There is no significant accuracy differ-

ence between these areas. The overall mean localization error

solely based on BLE without IMU (Sec. 5.3) is 2.81 m. Then,

we further validate our model across the remaining stations

without parameter retraining. Detailed results are included in

Appendix A.3. In most stations, the positioning error is similar

to our initial station used for model training, ranging between

2.42 m and 3.39 m. Nevertheless, two subway stations suffer

from more significant positioning errors at 3.68 m and 3.83

m. These two stations boast unique layouts featuring larger

open spaces, unlike most subway stations that have long, nar-

row delivery areas. In addition, we observed more severe

beacon damages in these two stations. These factors result

in diminished positioning accuracy. These experiments ver-

ify the feasibility of low-cost and accurate localization based

on a simple RSSI propagation model - one-time training is

adequate for accurate localization in complex environments

like HK’s MTR stations. Transferring our model to other sce-

narios (e.g., subway stations located in other cities) involves

parameter reconfiguration, while we have open-sourced our

parameter configuration procedures at [16].

� Finding 1 Without labor-intensive site surveys, a good
RSSI model with necessary customization offers accurate
localization in complex and dynamic indoor environments
like MTR stations. The deployment cost could be reduced by
one-time parameter tuning and adoption to all stations with
similar accuracy.

Floor Plan Processing. We enhance the floor plans of

MTR stations with detailed information, including geo-

fencing [51] and surface statuses. Geo-fencing involves

adding polygons to the floor map to demarcate the delivery

area in compliance with MTR regulations. These polygons are

then utilized during the online phase for violation detection.

We also examine MTR stations’ ground surface conditions.

During our preliminary deployment, we noticed that certain

road surfaces (tactile paving and contraction joints) lead to

special patterns on the IMU readings, which could be lever-

aged for improving detection performance (further details in

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1887

Sec. 3.3). Note that DeMo avoids tedious examination of each

station since MTR stations’ surfaces follow specific construc-

tion regulations and exhibit very similar IMU patterns. Fig. 6

shows an example of the pre-processed floor plan.

3.3 Online Speed Detection
DeMo estimates the trolley’s real-time speed by analyzing

IMU readings with two major components: road surface de-

tection and speed calculation. Special road surfaces cause

substantial IMU fluctuations, resulting in significant integral

errors. Consequently, in the speed calculation process, we

exclude IMU readings caused by these surfaces to maintain

speed accuracy.

Road Surface Detection. Special road surfaces (tactile

paving [48] and contraction joints [33]) lead to large IMU

fluctuations and speed estimation errors when a trolley passes

these surfaces. Specifically, tactile pavings (Fig. 7(a)) consist

of 4 parallel bars and are widely used to assist pedestrians

with vision impairment. Contraction joints (Fig. 7(b)) have

a narrow width and are often used to avoid cracking damage

caused by thermal expansion. This motivates us to detect

these special surfaces to improve speed detection accuracy.

(a) Tactile paving (b) Contraction joints (c) Normal road

Fig. 7: Examples of tactile paving, contraction joints, and a

normal road.

Fig. 8 compares the IMU readings when a trolley passes

different surfaces. These large IMU fluctuations inspire us to

adopt peak detection [47] to recognize road surfaces. Specifi-

cally, we calculate the standard deviation of the IMU denoted

as astd and extract peak values that are at least 4 times the stan-

dard deviation. The time interval between sequential peaks is

denoted as t1. . . tn, with n number of peaks. Considering that

tactile paving contains 4 parallel bars and a trolley’s typical

movement speed, DeMo’s tries to detect n = 8 peaks within a

short interval threshold (e.g., 0.04 s to 0.2 s). If the above two

conditions hold, the current surface is recognized as tactile

paving. DeMo adopts a similar strategy to detect a contraction

joint, if n is 2 and each of t1. . . tn is between 0.2 and 1 second.

The value of n considers the characteristics of the specific

road surface (e.g., 4 parallel bars) and the number of times

the delivery wheel has passed.

Speed Calculation. DeMo analyzes IMU readings for ac-

curate speed estimation with the following procedures.

• Sensor status detection. When the astd is under 0.01 g [50],

the sensor is considered to be static; it is moving otherwise.

• Sensor placement detection. In practice, delivery workers

adopt the following placement: 1) Our sensor is in a pocket or

hand. Traditional pedestrian dead reckoning [25,34,50] meth-

Fig. 8: IMU readings at different surfaces.

ods could be adopted to recognize human walking patterns

like step detection for speed inference, as widely discussed

in literature [30, 49, 55]. 2) Our sensor is placed on a trol-

ley. DeMo recognizes this placement if IMU readings lack

human walking patterns [8]. Based on DeMo’s operational

results (Sec. 4.3), our sensor is placed on trolleys for 95% of

deliveries.

• Adaptive integral of IMU readings. For a on-trolley sen-

sor3, DeMo estimates this trolley’s speed by analyzing IMU

readings. First, DeMo removes noises and outliers through

a low pass filter, excluding IMU readings that resulted from

special road surfaces. Second, DeMo detects acceleration and

deceleration by analyzing the IMU distribution. According

to our practical experience, the accelerometer readings are

dominated (>80%) by either positive or negative values when

the trolley accelerates or decelerates. Once identifying these

phenomena, DeMo integrates IMU readings with the previous

speed to re-estimate the current speed. Otherwise, when a

sensor is considered to have uniform movement, DeMo does

not re-estimate the current speed.

� Finding 2 Identification of road surfaces (e.g., tactile
paving and contraction joints) via IMU processing benefits
speed estimation accuracy.

3.4 Online Positioning
DeMo leverages a particle filter (PF) [20] to recursively up-

date the probability distribution for tracking the trolley posi-

tion in real-time. We choose PF DeMo because it is good at

fusing diverse signal sources (e.g., BLE, IMU) and also offers

good reliability with less training data in dynamic situations.

For initialization, DeMo generates N particles that have

the same weight and are evenly distributed over the delivery

area. In each iteration, DeMo moves its particles through the

transition model and updates particle weights accordingly. To

tackle the missing movement direction, DeMo leverages IMU

readings and the trolley’s historical trajectory to estimate the

moving direction. Specifically, we combine the accelerometer

and gyroscope reading to calculate the Euler angle [17] and

move each particle to a new position based on the variance

of the yaw angle and the speed produced from Sec. 3.3. In

practice, we observe a high variance of the yaw angle when

3For in-hand or in-pocket sensor, DeMo leverages existing techniques for

speed estimation [34].

1888 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the trolley turns, while the variance is small when moving in

a straight line. As a result, when the yaw angle’s variance is

small, most particles maintain the previous motion direction,

while a small number of particles follow a uniform distribu-

tion to simulate random movement. Otherwise, the number of

particles with random movement increases to estimate the new

movement direction. When receiving a BLE packet, DeMo

updates its particle weights via our RSSI-distance model (Sec.

3.2). After the above updates, DeMo finds a center point of

the top pw weighted particles and repeats this iteration with

new BLE+IMU readings. pw is empirically set to 60%.

3.5 Operational Model
Targeting violation detection and safe delivery, DeMo has the

following designs.

Real-Time Violation Detection. To satisfy the require-

ment of real-time operation, DeMo’s computation is placed

on the sensor (Raspberry PI) side. This also avoids significant

delay and energy consumption for data uploaded to the cloud

server. For speed violations, DeMo compares the speed calcu-

lated in Sec. 3.3 with the regulation (1.5 m/s) to detect if there

is a speed violation. Then DeMo leverages the positioning

results calculated in Sec. 3.4 for delivery trajectory genera-

tion. By checking allowed delivery areas, DeMo is able to

detect delivery involving non-designated path/entrance/exit.

For passenger lift violation, DeMo first utilizes IMU and BLE

readings to recognize the floor change via lifts and then checks

the current position with the map to identify passenger lifts.

As for the detection of peak-hour delivery, our on-trolley sen-

sors record the delivery start time and end time for checking

with peak hours (7:00-10:00 am and 4:00-8:00 pm). If a vio-

lation is detected, DeMo alarms the delivery worker through

its speaker immediately to correct his/her delivery behavior.

Daily Report. When a delivery worker arrives at the tar-

get shop, this delivery worker stops his/her trolley for supply

unloading, which will usually last 5-20 minutes. DeMo lever-

ages this opportunity to process historical IMU+BLE data to

mitigate false alarms and identify the destination shop based

on positioning results and IMU patterns. Then DeMo gener-

ates the current delivery record that logs the DeMo sensor ID,

entry/exit, destination shop, delivery time, and the delivery

violation type. After this, DeMo uploads the current delivery

record to our cloud server via a 4G dongle. Due to a delivery

record’s limited size, this record uploading requires tiny en-

ergy consumption. DeMo’s server processes these records to

generate daily reports for MTR.

4 Large-Scale Operation
This section offers DeMo’s large-scale in-the-wild operation

results. DeMo covers more than 200 shops at 12 MTR stations

with a delivery area of 19,433 m2. Since its debut in May

2020, DeMo has monitored 42,248 deliveries with a 3521.4

km delivery length. By default, the beacons have a broadcast

interval of 200 ms, and the sample rate of IMU is 500 Hz.

4.1 Violation Behavior Analysis
Violation Reduction. For each violation type, its violation

rate is calculated as the number of violations divided by the

total number of deliveries for all stations. According to DeMo,

the violation rate for wrong delivery path, delivery in peak

hours, and using passenger lifts was 1% in 2020 and dropped

to 0.5% in 2023. Fig. 9 shows DeMo’s detection results of

speeding violations4. At first, DeMo detected a high violation

rate of around 19%, meaning that almost one-fifth of the de-

livery is speeding with potential safety risks to commuters.

Targeting safe delivery, DeMo offers accurate violation detec-

tion (more details in Sec. 5.2) and generates alarm warnings

in real time. These real-time alarms effectively correct work-

ers’ delivery behaviors, e.g., slowing down the movement

speed. By doing so, DeMo gradually reduced the violation

rate with time, which reached 2.7% in March 2023.

Prior to DeMo, MTR stations also adopted a manual moni-

toring system for many years without such an achievement.

Given that DeMo effectively monitors more than 88% of the

total delivery events 5, DeMo offers effective correction on

delivery behaviors with enhanced safety protection.

A/B Testing. To exclude the placebo effect, we launched

additional A/B testing to analyze DeMo’s influence on deliv-

ery behaviors. This test was conducted in two MTR stations

for two months. Version A was the operational DeMo dis-

cussed in Sec. 3.1 and was tested in the first month. In the

second month, we tested Version B, which had all the same

components (e.g., speeding violation threshold and daily re-

port generation) as Version A, while the only exception was

that the real-time alarm notification was disabled. Delivery

workers were not informed of this change. This also rules out

delivery workers’ perception of our devices since the alarm-
ing function is the only difference between Version A and B.

Table 3 shows the comparison of violation rates. Note that

we have only detected the speeding violations, and no other

types of violations were detected during these two months.

The violation rate increased in both of these two stations,

demonstrating the critical role of real-time alarms in notify-

ing delivery workers of behavior changes.

Table 3: A/B testing.

Station
Version A

Violation Rate

Version B

Violation Rate

Station 1 3.61% 9.22%

Station 2 5.19% 11.51%

4Due to the COVID-19 outbreak, DeMo was suspended at MTR stations

from July 2021 to November 2021.
5MTR corporation has a record of all delivery activities since shops are

mandatory to submit their delivery applications. This record is used as the

ground truth to evaluate DeMo’s monitoring efficiency. 88% is the number of

deliveries detected by DeMo divided by the total number of delivery records

according to MTR. The previous manual monitoring only covers 53% of all

deliveries due to its intensive human resource requirement and limited staff.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1889

Fig. 9: Violation (speeding) rate. Fig. 10: Distribution of violation

shops.

Fig. 11: A field study of the speed-

ing area.

� Lesson 1 DeMo’s 3-year large-scale operation effectively
reduces the violation rate from 19% to 2.7%. As indicated by
our A/B test, accurate violation detection and real-time warn-
ing are necessary prerequisites for such a positive delivery
behavior change.

Shop Category’s Impacts. We classify more than 200 shops

in MTR stations as convenience goods (CG), food and bever-

age (F&B), fashion and accessories (F&A), health and beauty

(H&B), home living (HL), and passenger services (PS). For

each shop category, the violation ratio is counted as the num-

ber of violations divided by the total delivery, as demonstrated

in Fig. 10. Overall, the CG category has the highest violation

rate, followed by the F&B category. This is likely because

these stores have a high demand for replenishment that natu-

rally leads to more incentives for delivery workers to expedite

deliveries.

Geographic Distribution. We observed that certain areas,

such as long (more than 20 m) and wide (5 m or more) cor-

ridors, exhibit much higher chances of speeding. Generally,

speeding violations often occur in the middle of straight roads

to the shops. This suggests MTR stations take specific coun-

termeasures to improve safety. Fig. 11 shows one example of

the clustered violation distribution, where each dot represents

a speeding violation.

4.2 DeMo vs. Manual Monitoring
Compared with manual monitoring/recording via hired MTR

staff6, DeMo has the following unique advantages.

• Full coverage of violation detection. DeMo reliably de-

tects 4 types of violations, while manual monitoring is not

well suited for speeding detection.

• Delivery behavior change. DeMo regulates delivery be-

haviors with corrections and reduces the violation rate from

19% to 2.7% as demonstrated in Sec. 4.1, which is fundamen-

tally missing in the manual system.

• Efficiency. Manual monitoring requires a safety staff for

each delivery with intensive human resource requirements.

In contrast, DeMo successfully monitors 42,248 deliveries,

covering 88% of the total delivery activities on average (veri-

fied with the total number of delivery activities), much better

6Manual records include violation type, start time, station code, entry/exit,

and the destination shop. Note that the records are taken for both violation

and non-violation deliveries.

than the 53% monitoring rate offered in manual monitoring.

The missing cases are largely the result of insufficient sensors

at some subway stations and sensor hardware failures due to

rough handling.

• Cost saving. DeMo’s cost consists of one-time deployment

and maintenance costs. Its deployment cost includes hard-

ware cost, floor plan processing, beacon installation, and pro-

gram development. For the hardware cost, DeMo requires

Raspberry PI with HAT (90 USD each) and beacons (9 USD

each)7. Each station needs 5-15 Raspberry PI and 50-250

beacons, depending on delivery area size. Overall, the one-

time deployment cost is about 15K-20K USD per station.

DeMo’s maintenance cost to replace failed beacons is about

40 USD per station/month, thanks to DeMo’s low mainte-

nance requirement. As for manual monitoring, each station

hires multiple safety staff (e.g., 2) depending on the station

size. Due to privacy issues, we do not know the exact wage

and use the median monthly wage (2,383 USD) in the statisti-

cal reports [44]. After DeMo’s 3-year operation, the cost of

manual monitoring is at least 8X higher than DeMo.

� Finding 3 DeMo outperforms manual services in terms of
violation detection coverage (especially speeding detection),
delivery behavior change (violation rate drops from 19%
to 2.7%), monitoring efficiency (DeMo detects 88% of the
total delivery events in contrast to the prior 53%), and cost
reduction (> 8X).

4.3 System Performance
Approximated Positioning Accuracy. In DeMo’s large-

scale operation, we lack the trolley’s ground-truth position.

To alleviate this limitation, we utilize the events when trolleys

pass tactile pavings to approximately evaluate the position-

ing accuracy since these events could be reliably detected.

We adopt the following methodology. IMU reading analy-

sis offers the time T when a trolley reaches tactile paving.

We compute the shortest distance from DeMo’s current posi-

tioning result to the nearest segment of tactile paving. This

shortest distance is leveraged as an approximated error, not

the exact localization error.

Fig. 12 plots the approximated positioning error distribu-

tion in March 2022, with a median error of 1.45 m. Further-

more, we evaluate DeMo’s stability with time by comparing

7The prices were in 2020.

1890 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the approximated error in March and July 2022. After four

months, the median positioning error slightly increases to 1.49

m. Note that this approximated error differs from the actual

localization error offered from our controlled experiments in

Sec. 5.3.

Fig. 12: Approximated posi-

tioning error in 2022.

Fig. 13: Beacon failure rate

with time in 2020.

Statistics of Sensor Placement. We observe that a small

percentage of delivery personnel (5%) hold the sensor in their

hands or pockets, while the other 95% place sensors on trol-

leys. DeMo is compatible with both placements.

4.4 System Maintenance
This section analyzes DeMo’s maintenance cost.

Impact of Beacon Types. Our initial deployment adopted

beacon type 1 but noticed a high loss rate caused by various

reasons, such as natural falls and collisions with passengers.

This high loss rate motivated us to switch to beacon type 2

in our latter deployment or maintenance, as discussed in Sec.

3.2. Fig. 13 shows the beacon failure rate with time. After 5

months, the loss rate of type 1 reached 9%, while type 2 was

only around 2.3%. This experiment validates that appropriate

beacon selection could effectively reduce maintenance costs.

Failed Beacon Location. Table 4 offers the beacon loss

rate at different locations. These statistics only include beacon

type 2 and were collected 5 months after the deployment.

Areas such as stores and entry/exit have the highest beacon

loss rates, which is likely to be caused by the dense crowd.

For locations with high loss rates, we increase the beacon

broadcast frequency (e.g., 100 ms) to compensate for lost

beacons and leverage the deployed beacons before they fail.

Table 4: Beacon failure with the location.

Location Store Entry/Exit Corridor Others

Failure rate (%) 5.3 3 1 0.6

� Finding 4 Strategic beacon deployment could alleviate
system maintenance costs. For example, card shape beacon
(type 2) significantly reduces the beacon failure rate compared
with common box-shaped beacons. As a result, beacon shape
and deployment areas should be thoroughly considered, while
beacon broadcast frequency in high loss-rate areas could be
increased for better utilization before device failures.

Fig. 14: Feedback from 20 MTR staff.

4.5 MTR Feedback
We designed a questionnaire to evaluate DeMo’s performance

and Fig. 14 depicts the feedback from 20 safety staff in 12

MTR stations. Our survey contains six questions, each em-

ploying a 5-point Likert scale ranging from 5 (strongly agree)

to 1 (strongly disagree). The six questions are: 1. satisfac-

tion with our system, 2. low complexity of device usage, 3.

effect on violation reduction, 4. speed detection accuracy, 5.

decrease of workload, and 6. frequency of sensor damage.

The detailed questionnaire is included in the Appendix A.5.

We summarize these questions with 4 takeaway messages.

Overall, DeMo receives positive feedback from the major-

ity of MTR staff. Taking question 1 (satisfaction with our sys-

tem) for example, more than 95% of the interviewees highly

rate DeMo with a score of 4 (agree) or 5 (strongly agree). The

major takeaway messages are as follows.

(1) User friendly. The operation of DeMo is easy and conve-

nient without complicated knowledge.

(2) Violation rate decrease. DeMo effectively decreases the

violation rate by correcting delivery behaviors.

(3) Workload reduction. DeMo effectively reduces MTR

staff’s workload.

(4) Sensor failure. Some interviewees complained about sen-

sor failure caused by delivery workers’ rough handling (about

one device/month in some stations). Our device was not de-

signed with industry-level reliability and could be damaged

by collision, which needs to be improved in the future.

� Finding 5 DeMo is highly rated by the majority (95%) of
MTR operators. Its positive feedback covers various aspects,
such as easy accessibility, effective delivery behavior change,
and workload reduction. On the other hand, we plan to ad-
dress device failures by designing more reliable hardware.

5 Evaluation via Controlled Experiments
This section evaluates DeMo via controlled experiments with

collected ground truths, in contrast to our large-scale in-the-

wild evaluation in Sec. 4. Our controlled experiments last

15 days and cover 0.9k delivery cases with a total length of

approximately 54 km.

5.1 Evaluation Methodology
Without loss of generality, we chose three stations of different

scales (552, 1105, and 3,003 m2 respectively) to represent

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1891

small, medium, and large stations for our controlled experi-

ments. We hired several delivery personnel to perform test

deliveries in each station, while DeMo operated in real-time

to monitor all the delivery procedures. To evaluate DeMo,

we adopt the following ground truth collection mechanisms

instead of leveraging in-the-wild deployment data. In this

evaluation, our testing device has an embedded screen that

displays the MTR floor map with special checkpoints that

could be easily found (e.g., pavement contraction joint, pillar,

lift). The distance between the two checkpoints is about 5 m.

When passing through a checkpoint, hired delivery personnel

will click on the screen to record the ground-truth location

and time. The ground-truth speed of two adjacent checkpoints

can be calculated accordingly.

For violation behaviors, hired delivery personnel purpose-

fully violate the delivery rules, such as speeding, delivering

during peak hours, using non-designated paths, and using pas-

senger lifts. We have obtained approval from MTR stations

and adopted additional safety measures for passenger safety.

5.2 Violation Detection Reliability
We evaluate DeMo’s detection reliability for four violations

mentioned in Sec. 2. Overall, our data set contains 900 de-

liveries. Among them, the number of violations for speeding,

wrong delivery paths, taking passenger lifts, and delivery in

peak hours is 41, 16, 18, and 11 respectively, with a total num-

ber of 86 violations. Each delivery only includes one violation.

To ensure a balanced data set, we randomly selected a subset

of normal deliveries (without any violation), with the number

of 43, 18, 19, and 12, respectively. Table 5 demonstrates the

detection performance with the following metrics. True Posi-

tive (TP) represents that DeMo correctly identifies a delivery

violation. True Negative (TN) indicates the accurate detection

of a normal delivery. False Positive (FP) shows DeMo falsely

recognizes a normal delivery as a violation. False Negative

(FN) means DeMo recognizes a violation as non-violation.

Note that only speeding (daily report) in Table 5 is based on

the historical IMU+BLE data during the delivery procedure,

while all other evaluations are real-time.

For real-time speeding detection, DeMo achieves a TP rate

of 95.1% and TN rate of 83.7%, while it suffers from 16.3%

FP errors and 4.9% FN errors. When the current speed ex-

ceeds 1.5 m/s, the speeding criteria defined by MTR stations,

DeMo could reliably detect it as a speeding violation. How-

ever, when the current speed is smaller than but close to 1.5

m/s, DeMo might classify this case as speeding, leading to

FP results. This is the reason that DeMo’s FP is significantly

worse than FN, which is deliberately adjusted by us since

MTR stations hope to slow down delivery workers to ensure

safety. Leveraging historical IMU+BLE data, DeMo manages

to further reduce the FP and FN performance.

Besides speeding detection, DeMo offers reliable perfor-

mance for the remaining 3 violations. Thanks to DeMo’s

accurate localization performance (a median positioning error

of 1.89 m), it is able to generate accurate delivery trajectory

by connecting individual positioning results. By checking the

current trajectory with allowed areas, DeMo can identify non-

designated delivery paths. Since freight lifts and passenger

lifts are far away from each other (more than 6 m), DeMo

can accurately detect the use of passenger lifts. For each de-

livery, our on-trolley sensors record the delivery start and

end times for checking with peak hours (7:00-10:00 am and

4:00-8:00 pm). Given a long delivery duration, e.g., 20 min-

utes, DeMo ensures accurate detection of peak-hour delivery.

Overall, DeMo offers accurate detection for different types of

violations in Table 5, demonstrating its reliability in practice.

Table 5: Violation detection accuracy.

Violation Type TP (%) TN (%) FP (%) FN (%)

Speeding (real-time) 95.1 83.7 16.3 4.9

Speeding (daily report) 97.6 90.7 9.3 2.4

Wrong delivery path 100 100 0 0

Using passenger lift 100 100 0 0

In peak hour 100 100 0 0

� Lesson 2 A monitoring system based on low-cost hard-
ware (BLE and IMU) is adequate for reliable (TP > 95%
for all required scenarios) and real-time violation detection
toward safe delivery.

5.3 System Performance
Speed Detection Accuracy. We compare three speed cal-

culation methods: the algorithm used in DeMo, traditional

integral without road surface detection, and positioning-based

approach (the speed is calculated from the localization results).

The ground truth speed is calculated from the hired delivery

personnel’s ground-truth locations and the time passing them.

Fig. 15 shows the overall speed detection error. Not sur-

prisingly, the position-based approach leads to the highest

mean speed error of 0.52 m/s. This is because the localization

includes multiple sources of errors, such as wireless fading,

failed BLE beacons, and IMU fluctuations. In contrast, di-

rectly calculating speed via IMU readings is only affected

by the IMU errors. For the speed detection based on direct

integral, the mean error is 0.43 m/s. For DeMo, it detects the

special road surfaces and further excludes them to improve

its speed detection accuracy, leading to a mean error of 0.31

m/s. The tail improvement is much more significant: the third

quartile error decreases from 0.62 m/s to 0.44 m/s, meaning

that the speeding violation detection is much more reliable.

Impact of Delivery Path Length. Table 6 shows the dis-

tribution of the delivery length from the station entry to the

destination shop. Fig. 16 demonstrates trolley speed estima-

tion errors under the different path lengths of 50m, 100m,

200m. In general, we observe a smaller error (median error

of 0.18 m/s) for short paths (<50 m), while long paths (100-

200 m) exhibit larger errors (median error of 0.23 m/s). This

difference is because the integral error accumulates with time.

1892 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Fig. 15: Trolley speed esti-

mation accuracy.

Fig. 16: Delivery path length

with speed estimation error.

Table 6: Delivery path length distribution.

Delivery Path < 50 m 50 - 100 m 100 - 200 m

Fraction (%) 10 75 15

� Finding 6 DeMo detects special road surfaces (e.g., tac-
tile paving and contraction joints) solely based on IMU read-
ings for accurate speed estimation, which reduces 28% of
the average speed error compared with conventional integral
computation.

Positioning Accuracy. Fig. 17 compares positioning ac-

curacy of using traditional logarithmic model [42], DeMo,

DeMo which only relies on BLE without IMU (denoted as

DeMo: BLE only), and the ideal localization based on BLE

and ground-truth velocity calculated from passing two check-

points (denoted as BLE+GTV). When only using BLE with

the traditional logarithmic model, the mean positioning error

is 3.22 m, while our new RSSI-distance model effectively

reduces the mean positioning error to 2.86 m. By combining

the IMU data analysis, DeMo significantly reduces the local-

ization error to 2.17 m, demonstrating the effectiveness of

utilizing IMU data for improving tracking accuracy. The 90th

and 99th positioning errors are 4.29 m and 6.44 m, respec-

tively. Additionally, we notice that for 2% of the checkpoints,

DeMo’s positioning error exceeds 6 m. This large error is pri-

marily due to failures in receiving the broadcast BLE beacon

packets and does not affect DeMo’s operation in practice. Not

surprisingly, BLE+GTV offers the best accuracy with a 1.70

m mean error, while GTV is not available in practice.

Fig. 17: Positioning accuracy.

� Lesson 3 Without labor-intensive radio fingerprinting, an
RSSI-distance model with customization is feasible to achieve
accurate localization in complex environments. DeMo’s inte-
grated analysis of BLE and IMU readings yields an average

positioning error of 2.17 m in dynamic and highly crowded
MTR stations. This accuracy is adequate for common indoor
applications [30, 43].

BLE Beacon Density. The beacon density affects the po-

sitioning accuracy. (1) For the evaluation of beacon density

in typical areas, we randomly select one station that has a

beacon density of 6m and adjust the beacon density to 12 m

by temporarily disabling some beacons. As in Fig. 18, the

mean error increases from 2.17 m to 3.23 m. This is because a

higher beacon density leads to more BLE packets received by

DeMo and thus better positioning accuracy. A higher beacon

density with an interval smaller than 6 m will further improve

the localization accuracy, which is more than enough since

the existing system already satisfies the violation detection

required by MTR stations. At the same time, a higher den-

sity significantly increases the deployment and maintenance

costs, so it is not adopted in DeMo. (2) In addition to typi-

cal areas, several key areas are critical for DeMo’s operation.

For example, beacons deployed in shops (details in Sec. 3.2)

are leveraged in DeMo’s shop classification. The identified

shop is essential in DeMo’s delivery record and used to find

shops with abnormally high violations. With three beacons,

DeMo’s store classification accuracy is 97%, which drops

to 86% when there is one beacon. The classification errors

largely result from trolleys’ parking positions, which could

be very close to nearby shops. To ensure reliable operation,

DeMo adopts three beacons for shop classification.

BLE Beacon Broadcast Frequency. Another factor to af-

fect localization accuracy is beacon broadcast frequency. Fig.

19 compares the positioning error with beacon broadcast in-

tervals of 200 ms and 500 ms at the same station, while all

other parameters are the same. The mean localization error in-

creases from 2.17 m to 2.78 m, since DeMo’s sensor receives

more BLE packets with a smaller broadcast interval. Based on

our 3-year operational experience, the average battery life of

a BLE beacon with a 200 ms setting is 22 months. This leads

to a maintenance cost (replacing failed beacons) of around 40

USD for each station per month.

IMU Sample Rate. In this experiment, we set the IMU

sample rate to 500 Hz for data collection and then down-

sampled it to generate the IMU data at different frequencies.

Fig. 20 shows the detection accuracy of road bump events,

including tactile paving and contraction joints. Generally,

DeMo’s detection rate increases with the IMU sample rate and

offers a stable performance at 200 Hz. Similarly in Fig. 21, the

speed estimation error is significant when the IMU sample rate

is less than 100 Hz. As for energy consumption, increasing

the sampling rate from 50 Hz to 500 Hz contributes to less

than 3% of the total energy consumption (including sensing

and computation). This experiment suggests that a relatively

high IMU sample rate is desirable for reliable monitoring.

� Lesson 4 DeMo aims at reliable monitoring under practi-
cal costs. It deploys sparse beacons for localization in most

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1893

Fig. 18: BLE beacon density

vs. positioning accuracy.

Fig. 19: BLE beacon broad-

cast frequency vs. positioning

accuracy.

Fig. 20: IMU sample rate vs.

road bump detection rate.

Fig. 21: IMU sample rate vs.

speed error.

areas but adopts dense beacons for accurate store classifica-
tion and reliable operation. Additional considerations such
as maintenance cost and energy consumption also contribute
to DeMo’s trade-off.

6 Related Work
Prior Deployment Experiences. A few BLE-based [22, 30,

40, 70] and WiFi-based [27] localization systems were de-

ployed in public indoor sites to offer localization and navi-

gation services for clients. Recent studies [18, 19] reported

deploying arrival detection for efficient delivery in large-scale

instant delivery systems. In contrast, DeMo provides fine-

grained monitoring of delivery violations toward better safety.

A prior study [30] integrates BLE beacons and geomagnetic

fields as fingerprints to offer localization services for shopping

malls, while DeMo utilizes a labor-free RSSI-distance model

to achieve similar localization accuracy. Other real-world ex-

isting BLE systems conducted presence detection [59,60]. To

our knowledge, there is very limited work on indoor delivery

violation detection and regulation. During the operation of

DeMo, we have learned valuable lessons that will contribute

to future safety delivery.

Wireless Indoor Localization. Researchers have pro-

posed various wireless indoor localization techniques for navi-

gation [4,54], positioning [56,65], and assets tracking [35,72].

Their design principles could be classified as RSSI propaga-

tion model [10, 13, 26, 29, 31], fingerprinting [5, 11, 23, 28,

43, 55, 61], Angle-of-Arrival model [3, 12, 36, 37, 67], and

Time-of-Flight [4, 58]. Although existing studies offer good

positioning accuracy, they are commonly evaluated in small-

scale environments. For example, Spotfi [37], ArrayTrack [67]

and ToneTrack [68] achieve sub-meter localization accuracy

by leveraging WiFi Channel State Information (CSI). Never-

theless, these systems are not applicable in real-world appli-

cations due to the lack of CSI support in most commercial

WiFi Access points and limited WiFi coverage in MTR sta-

tions. In contrast, DeMo’s in-the-wild operation validates the

possibility of accurate localization via simple RSSI models

with low deployment and maintenance costs, in addition to

several unique lessons and insights.

IMU-Assisted Sensing System. These works [9, 71] ana-

lyze IMU’s signal characteristics and extract the motion fea-

ture of humans to infer their posture, especially for Pedestrian

Dead Reckoning [32]. This study [52] extracts step events

from various types of periodic human behaviors by carrying

a smartphone with IMU through CNN. Another study [2]

improves positioning accuracy by inferring the posture direc-

tion of IMU readings. DeMo leverages IMU reading to detect

special road surfaces and further improves speed accuracy,

and provides reliable positioning service.

7 Discussion
Limitations. (1) On-trolley sensor failure. We plan to design

more reliable hardware with additional protection methods to

ensure good device reliability. (2) Bypassing DeMo. DeMo

covers 88% of the total deliveries. We will analyze delivery

behaviors to understand possible ways of bypassing DeMo

and further adopt corresponding mitigation to offer seam-

less monitoring coverage. (3) Delivery worker dissatisfaction.

Although DeMo offers accurate violation detection as demon-

strated by controlled experiments and feedback from MTR

staff (Sec. 4.5), our small-scale interviews suggest that deliv-

ery workers perceived DeMo as a surveillance system, and so

it was not received favorably.

Future Improvement and Deployment. We plan to im-

prove DeMo with the following aspects. (1) Automatic pa-

rameter tuning. Delivery trolleys are generally still in front

of the destination shops for 5 to 20 minutes when offloading

products. This opportunity could be leveraged for fine-tuning

our RSSI-distance model. (2) Future hardware design and

deployment. We will improve our hardware reliability under

rough handling and deploy DeMo in 10 more MTR stations.

8 Conclusion
Our experiences with DeMo demonstrate the feasibility of

monitoring indoor delivery. Dedicated designs are essential

to combat unique challenges and ensure reliable violation

detection. DeMo outperforms the prior manual system for

better coverage, effective change of human behaviors, better

efficiency, and cost reduction. We hope that these lessons will

contribute to future delivery monitoring systems.

9 Acknowledgements
We thank our shepherd and the anonymous reviewers for their

insightful comments. This work was substantially supported

by NSF China 62102332, CityU 21216822, CityU APRC

9610491, and CityU 11206023.

1894 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] P. accident on escalator. Here’s why you really

shouldn’t wheel strollers and trolleys onto escalators.

https://forums.hardwarezone.com.sg/threads
/heres-why-you-really-shouldnt-wheel-str
ollers-trolleys-onto-escalators.6745840/,

2022.

[2] M. Atashi, P. Malekzadeh, M. Salimibeni,

Z. Hajiakhondi-Meybodi, K. N. Plataniotis, and

A. Mohammadi. Orientation-matched multiple model-

ing for rssi-based indoor localization via ble sensors.

In 2020 28th European Signal Processing Conference
(EUSIPCO), pages 1702–1706. IEEE, 2021.

[3] R. Ayyalasomayajula, A. Arun, C. Wu, A. Shaikh, S. Ra-

jagopalan, Y. Hu, S. Ganesaraman, C. J. Rossbach,

A. Seetharaman, E. Witchel, et al. LocAP: Autonomous

millimeter accurate mapping of WiFi infrastructure. In

17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), pages 1115–1129, 2020.

[4] R. Ayyalasomayajula, A. Arun, C. Wu, S. Sharma, A. R.

Sethi, D. Vasisht, and D. Bharadia. Deep learning based

wireless localization for indoor navigation. In Proceed-
ings of the 26th Annual International Conference on
Mobile Computing and Networking, pages 1–14, 2020.

[5] P. Bahl and V. N. Padmanabhan. Radar: An in-building

rf-based user location and tracking system. In Proceed-
ings IEEE INFOCOM 2000. Conference on computer
communications. Nineteenth annual joint conference of
the IEEE computer and communications societies (Cat.
No. 00CH37064), volume 2, pages 775–784. Ieee, 2000.

[6] T. A. Bentley. Slip, trip and fall accidents occurring

during the delivery of mail. Ergonomics, 41(12):1859–

1872, 1998.

[7] A. Bose and C. H. Foh. A practical path loss model for

indoor wifi positioning enhancement. In 2007 6th Inter-
national Conference on Information, Communications
& Signal Processing, pages 1–5. IEEE, 2007.

[8] A. Brajdic and R. Harle. Walk detection and step count-

ing on unconstrained smartphones. In Proceedings of
the 2013 ACM international joint conference on Perva-
sive and ubiquitous computing, pages 225–234, 2013.

[9] V. Chandel, N. Ahmed, S. Arora, and A. Ghose. Inloc:

An end-to-end robust indoor localization and routing

solution using mobile phones and ble beacons. In 2016
International Conference on Indoor Positioning and In-
door Navigation (IPIN), pages 1–8. IEEE, 2016.

[10] D. Chen, K. G. Shin, Y. Jiang, and K.-H. Kim. Lo-

cating and tracking ble beacons with smartphones. In

Proceedings of the 13th International Conference on
emerging Networking EXperiments and Technologies,

pages 263–275, 2017.

[11] Y. Chen, D. Lymberopoulos, J. Liu, and B. Priyantha.

Fm-based indoor localization. In Proceedings of the
10th international conference on Mobile systems, appli-
cations, and services, pages 169–182, 2012.

[12] Z. Chen, Z. Li, X. Zhang, G. Zhu, Y. Xu, J. Xiong, and

X. Wang. Awl: Turning spatial aliasing from foe to

friend for accurate wifi localization. In Proceedings
of the 13th International Conference on emerging Net-
working EXperiments and Technologies, pages 238–250,

2017.

[13] K. Chintalapudi, A. Padmanabha Iyer, and V. N. Pad-

manabhan. Indoor localization without the pain. In

Proceedings of the sixteenth annual international con-
ference on Mobile computing and networking, pages

173–184, 2010.

[14] I. delivery accident. Courier smashes passerby into

paraplegia with escalator delivery. https://www.sohu
.com/a/524951955_120823584, 2022.

[15] DeMo. IMU and BLE readings. https://github.c
om/Starry102/DeMo, 2023.

[16] DeMo. Parameters configuration. https://github.c
om/Starry102/DeMo/tree/main/train, 2023.

[17] J. Diebel. Representing attitude: Euler angles, unit

quaternions, and rotation vectors. Matrix, 58(15-16):1–

35, 2006.

[18] Y. Ding, L. Liu, Y. Yang, Y. Liu, D. Zhang, and T. He.

From conception to retirement: a lifetime story of a 3-

year-old wireless beacon system in the wild. IEEE/ACM
Transactions on Networking, 30(1):47–61, 2021.

[19] Y. Ding, Y. Yang, W. Jiang, Y. Liu, T. He, and D. Zhang.

Nationwide deployment and operation of a virtual arrival

detection system in the wild. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, pages 705–

717, 2021.

[20] P. M. Djuric, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghir-

mai, M. F. Bugallo, and J. Miguez. Particle filtering.

IEEE signal processing magazine, 20(5):19–38, 2003.

[21] L. D. Driver. Liquor delivery driver recovers $ 445,000

for fall on strip mall macadam. https://www.clarkl
awnj.com/liquor-delivery-driver-recovers-4
45000-for-fall-on-strip-mall-macadam/, 2020.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1895

[22] F. T. Experience. Gatwick’s beacon installation

provides augmented reality wayfinding. https:
//www.futuretravelexperience.com/on-the-g
round/wayfinding-and-passenger-services/,

2017.

[23] R. Faragher and R. Harle. Location fingerprinting with

bluetooth low energy beacons. IEEE journal on Selected
Areas in Communications, 33(11):2418–2428, 2015.

[24] C. Feng, W. S. A. Au, S. Valaee, and Z. Tan. Received-

signal-strength-based indoor positioning using compres-

sive sensing. IEEE Transactions on mobile computing,

11(12):1983–1993, 2011.

[25] Y. Gao, Q. Yang, G. Li, E. Y. Chang, D. Wang, C. Wang,

H. Qu, P. Dong, and F. Zhang. Xins: The anatomy of

an indoor positioning and navigation architecture. In

Proceedings of the 1st international workshop on Mobile
location-based service, pages 41–50, 2011.

[26] Y. Gu and F. Ren. Energy-efficient indoor localization of

smart hand-held devices using bluetooth. IEEE Access,

3:1450–1461, 2015.

[27] D. Han, S. Jung, M. Lee, and G. Yoon. Building a

practical wi-fi-based indoor navigation system. IEEE
Pervasive Computing, 13(2):72–79, 2014.

[28] A. M. Hossain and W.-S. Soh. Cramer-rao bound anal-

ysis of localization using signal strength difference as

location fingerprint. In 2010 Proceedings IEEE INFO-
COM, pages 1–9. IEEE, 2010.

[29] A. M. Hossain and W.-S. Soh. A survey of calibration-

free indoor positioning systems. Computer Communi-
cations, 66:1–13, 2015.

[30] Y. Hu, F. Qian, Z. Yin, Z. Li, Z. Ji, Y. Han, Q. Xu,

and W. Jiang. Experience: Practical indoor localization

for malls. In Proceedings of the 28th Annual Interna-
tional Conference on Mobile Computing And Network-
ing, pages 82–93, 2022.

[31] Y. Ji, S. Biaz, S. Pandey, and P. Agrawal. Ariadne: A dy-

namic indoor signal map construction and localization

system. In Proceedings of the 4th international con-
ference on Mobile systems, applications and services,

pages 151–164, 2006.

[32] A. R. Jimenez, F. Seco, C. Prieto, and J. Guevara. A

comparison of pedestrian dead-reckoning algorithms

using a low-cost mems imu. In 2009 IEEE International
Symposium on Intelligent Signal Processing, pages 37–

42. IEEE, 2009.

[33] C. joints. Guidance notes on panelling design and joint

construction of concrete slabs. https://www.hyd.go

v.hk/en/technical_references/technical_doc
ument/guidance_notes/pdf/gn020a.pdf, 2021.

[34] W. Kang and Y. Han. Smartpdr: Smartphone-based

pedestrian dead reckoning for indoor localization. IEEE
Sensors journal, 15(5):2906–2916, 2014.

[35] C.-H. Kao, R.-S. Hsiao, T.-X. Chen, P.-S. Chen, and M.-

J. Pan. A hybrid indoor positioning for asset tracking

using bluetooth low energy and wi-fi. In 2017 IEEE in-
ternational conference on consumer electronics-Taiwan
(ICCE-TW), pages 63–64. IEEE, 2017.

[36] A. Kludze, R. Shrestha, C. Miftah, E. Knightly, D. Mit-

tleman, and Y. Ghasempour. Quasi-optical 3d localiza-

tion using asymmetric signatures above 100 ghz. In Pro-
ceedings of the 28th Annual International Conference
on Mobile Computing And Networking, pages 120–132,

2022.

[37] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti. Spotfi:

Decimeter level localization using wifi. In Proceedings
of the 2015 ACM Conference on Special Interest Group
on Data Communication, pages 269–282, 2015.

[38] C. Li, M. Mirosa, and P. Bremer. Review of online food

delivery platforms and their impacts on sustainability.

Sustainability, 12(14):5528, 2020.

[39] M. Li, N. Liu, Q. Niu, C. Liu, S.-H. G. Chan, and C. Gao.

Sweeploc: Automatic video-based indoor localization

by camera sweeping. Proceedings of the ACM on Inter-
active, Mobile, Wearable and Ubiquitous Technologies,

2(3):1–25, 2018.

[40] Locatify. Intuitively designed beacon based museum

audio guide. https://locatify.com/blog/eldhei
mar-museum/, 2020.

[41] A. Mackey, P. Spachos, L. Song, and K. N. Plataniotis.

Improving ble beacon proximity estimation accuracy

through bayesian filtering. IEEE Internet of Things
Journal, 7(4):3160–3169, 2020.

[42] H. A. Nguyen, H. Guo, and K.-S. Low. Real-time estima-

tion of sensor node’s position using particle swarm opti-

mization with log-barrier constraint. IEEE Transactions
on Instrumentation and Measurement, 60(11):3619–

3628, 2011.

[43] J. Ni, F. Zhang, J. Xiong, Q. Huang, Z. Chang, J. Ma,

B. Xie, P. Wang, G. Bian, X. Li, et al. Experience:

pushing indoor localization from laboratory to the wild.

In Proceedings of the 28th Annual International Con-
ference on Mobile Computing And Networking, pages

147–157, 2022.

1896 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[44] T. G. of the Hong Kong Special Administrative Region.

Wages and labour earnings. https://www.censtatd
.gov.hk/tc/scode210.html, 2022.

[45] A. on escalator. Transport goods by escala-

tor. https://orientaldaily.on.cc/cnt/news/201
60223/00176_125.html, 2022.

[46] A. Opher, A. Chou, A. Onda, and K. Sounderrajan. The

rise of the data economy: driving value through internet

of things data monetization. IBM Corporation: Somers,
NY, USA, 2016.

[47] G. Palshikar et al. Simple algorithms for peak detection

in time-series. In Proc. 1st Int. Conf. Advanced Data
Analysis, Business Analytics and Intelligence, volume

122, 2009.

[48] T. paving. Design manual:barrier free access.

https://www.bd.gov.hk/doc/en/resources/cod
es-and-references/code-and-design-manuals
/BFA2008_e.pdf, 2021.

[49] J. Racko, P. Brida, A. Perttula, J. Parviainen, and

J. Collin. Pedestrian dead reckoning with particle filter

for handheld smartphone. In 2016 International Con-
ference on Indoor Positioning and Indoor Navigation
(IPIN), pages 1–7. IEEE, 2016.

[50] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and

R. Sen. Zee: Zero-effort crowdsourcing for indoor local-

ization. In Proceedings of the 18th annual international
conference on Mobile computing and networking, pages

293–304, 2012.

[51] S. Rodriguez Garzon and B. Deva. Geofencing 2.0:

taking location-based notifications to the next level. In

Proceedings of the 2014 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing, pages

921–932, 2014.

[52] W. Shao, H. Luo, F. Zhao, C. Wang, A. Crivello, and

M. Z. Tunio. Depedo: Anti periodic negative-step

movement pedometer with deep convolutional neural

networks. In 2018 IEEE international conference on
communications (ICC), pages 1–6. IEEE, 2018.

[53] G. Shen, Z. Chen, P. Zhang, T. Moscibroda, and

Y. Zhang. Walkie-markie: Indoor pathway mapping

made easy. In NSDI, volume 13, pages 85–98, 2013.

[54] S. Shen, N. Michael, and V. Kumar. Autonomous multi-

floor indoor navigation with a computationally con-

strained mav. In 2011 IEEE International Conference
on Robotics and Automation, pages 20–25. IEEE, 2011.

[55] Y. Shu, K. G. Shin, T. He, and J. Chen. Last-mile nav-

igation using smartphones. In Proceedings of the 21st

annual international conference on mobile computing
and networking, pages 512–524, 2015.

[56] M. L. Sichitiu and V. Ramadurai. Localization of wire-

less sensor networks with a mobile beacon. In 2004
IEEE international conference on mobile Ad-hoc and
sensor systems (IEEE Cat. No. 04EX975), pages 174–

183. IEEE, 2004.

[57] SINGAPORE. Death of delivery man who

fell from platform at century square mall

ruled a workplace misadventure. https:
//www.straitstimes.com/singapore/court
s-crime/death-of-delivery-man-at-century-s
quare-mall-ruled-a-workplace-misadventure,

2022.

[58] E. Soltanaghaei, A. Kalyanaraman, and K. Whitehouse.

Multipath triangulation: Decimeter-level wifi localiza-

tion and orientation with a single unaided receiver. In

Proceedings of the 16th annual international conference
on mobile systems, applications, and services, pages

376–388, 2018.

[59] F. Technologies. Eddystone beacon installation at indian

railway stations by google. https://www.fabliant
echnologies.com/eddystone-beacon-installat
ion-at-indian-railway-stations-by-google/,

2018.

[60] THINKPROXI. Thinkproxi announces famous

beale street implemented beacon technology.

https://www.thinkproxi.com/thinkproxi-a
nnounces-famous-beale-street-implemented-b
eacon-technology/, 2017.

[61] X. Tian, R. Shen, D. Liu, Y. Wen, and X. Wang. Per-

formance analysis of rss fingerprinting based indoor

localization. IEEE Transactions on Mobile Computing,

16(10):2847–2861, 2016.

[62] R. v. Department of Water and Power. Making a delivery

via a service elevator. https://caselaw.findlaw.co
m/ca-court-of-appeal/1764404.html, 1962.

[63] X. Wang, L. Gao, S. Mao, and S. Pandey. Csi-based

fingerprinting for indoor localization: A deep learning

approach. IEEE transactions on vehicular technology,

66(1):763–776, 2016.

[64] M. Werner, M. Kessel, and C. Marouane. Indoor posi-

tioning using smartphone camera. In 2011 international
conference on indoor positioning and indoor navigation,

pages 1–6. IEEE, 2011.

[65] C. Wu, Z. Yang, Y. Liu, and W. Xi. Will: Wireless indoor

localization without site survey. IEEE Transactions on
Parallel and Distributed systems, 24(4):839–848, 2012.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1897

[66] H. Wu, S. He, and S.-H. G. Chan. Efficient sequence

matching and path construction for geomagnetic indoor

localization. In Proceedings of the 2017 International
Conference on Embedded Wireless Systems and Net-
works, pages 156–167, 2017.

[67] J. Xiong and K. Jamieson. ArrayTrack: A fine-grained

indoor location system. In 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
13), pages 71–84, 2013.

[68] J. Xiong, K. Sundaresan, and K. Jamieson. Tonetrack:

Leveraging frequency-agile radios for time-based indoor

wireless localization. In Proceedings of the 21st Annual
International Conference on Mobile Computing and
Networking, pages 537–549, 2015.

[69] J. Yang, S. Sidhom, G. Chandrasekaran, T. Vu, H. Liu,

N. Cecan, Y. Chen, M. Gruteser, and R. P. Martin. De-

tecting driver phone use leveraging car speakers. In

Proceedings of the 17th annual international conference
on Mobile computing and networking, pages 97–108,

2011.

[70] Y. Yang, Y. Ding, D. Yuan, G. Wang, X. Xie, Y. Liu,

T. He, and D. Zhang. Transloc: transparent indoor local-

ization with uncertain human participation for instant

delivery. In Proceedings of the 26th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, pages 1–14, 2020.

[71] P. K. Yoon, S. Zihajehzadeh, B.-S. Kang, and E. J. Park.

Adaptive kalman filter for indoor localization using blue-

tooth low energy and inertial measurement unit. In 2015
37th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC), pages

825–828. IEEE, 2015.

[72] J.-H. Youn, H. Ali, H. Sharif, J. Deogun, J. Uher, and

S. H. Hinrichs. Wlan-based real-time asset tracking

system in healthcare environments. In Third IEEE Inter-
national Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob 2007), pages

71–71. IEEE, 2007.

[73] M. Zhao, T. Chang, A. Arun, R. Ayyalasomayajula,

C. Zhang, and D. Bharadia. Uloc: Low-power, scalable

and cm-accurate uwb-tag localization and tracking for

indoor applications. Proceedings of the ACM on Inter-
active, Mobile, Wearable and Ubiquitous Technologies,

5(3):1–31, 2021.

1898 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Appendix

A.1 Geomagnetic Field

When designing DeMo, we collected geomagnetic field

(GMF) strength at different locations, including entry, exit,

and open areas, within three stations. Our preliminary experi-

ments validated significant GMF strength changes caused by

operating trains. These changes are difficult to predict and

eliminate. In normal indoor settings, e.g., shopping malls, the

geomagnetic field values are relatively stable without signifi-

cant disruptions. Fig. 22 compares the collected GMF strength

values at a fixed location (e.g., entrance) in an MTR station

and a shopping mall, respectively. As a result, we decided not

to leverage geomagnetic field sensing in DeMo.

Fig. 22: Examples of GMF strength change with time at a

shopping mall and MTR station.

A.2 RSSI-distance Models Comparison

Crowd obstruction and reflection cause severe signal strength

degradation (or even signal loss), deviating from the tradi-

tional logarithmic model. Therefore, we instead use a polyno-

mial function to model the effect of crowds on signal strength.

Table 7 lists the average positioning accuracy of 4 different

polynomial models with degrees ranging from 1 to 4. The

parameters of the RSSI-distance model were trained using

data from one station and applied to other stations without

retraining. Models with a higher polynomial degree are prone

to overfitting, while those with a lower polynomial degree ex-

hibit unstable accuracy due to the influence of subway crowds.

Consequently, we have opted for a cubic polynomial function

as it delivers superior accuracy compared to other polynomial

orders.

Table 7: Mean localization accuracy under different polyno-

mial orders at two MTR stations.

Polynomial Orders 1 2 3 4

Station 1 3.16 m 3.09 m 2.81 m 3.22 m

Station 2 3.61 m 3.38 m 2.93 m 3.97 m

A.3 Positioning Accuracy Validation
DeMo’s training data for its RSSI-distance model is collected

in one MTR station, followed by a one-time parameter tuning

process. Then we validate this RSSI-distance model across

the remaining stations. To demonstrate the robustness of our

model, we present the overall mean localization errors (solely

relying on BLE without IMU integration) in Table 8. The val-

idation process is conducted via control experiments, follow-

ing Sec. 5.1. In most stations, the positioning accuracy closely

matches the initial station used for model training. However,

two subway stations exhibit poorer positioning accuracy (3.68

m and 3.83 m). Compared to most subway stations, which typ-

ically feature long, narrow delivery areas, these two stations

have unique layouts with larger open spaces. This distinct

layout can result in reduced positioning accuracy within those

open areas. Besides, we noticed more severe beacon losses

in these two stations which inevitably affect the positioning

accuracy.

Table 8: Positioning accuracy in 12 stations.

Stations Mean Accuracy (m)

Station 1 2.81

Station 2 2.55

Station 3 2.93

Station 4 2.62

Station 5 2.99

Station 6 3.39

Station 7 2.82

Station 8 2.42

Station 9 3.68

Station 10 3.83

Station 11 2.45

Station 12 2.51

A.4 Glossary of Main Parameters
Table 9 lists DeMo’s main parameters, which are crucial for

the system’s functionality. tsw, Rth, n and pw are empirical pa-

rameters. Coefficients γ0 through γ3 are trained via simulation

experiments, with the detailed training method available at

the link [16]. Besides, astd refers to the study [50].

A.5 Questionnaire
The questionnaire consists of six multiple-choice questions,

each utilizing a 5-point scale ranging from 5 (strongly agree)

to 1 (strongly disagree). The detailed questions are: 1. please

select the option that best represents your level of satisfaction

with the DeMo system, 2. please select the option that best

describes your perception of the ease of use of the DeMo

device, 3. please select the option that best represents your

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1899

Table 9: Glossary of main parameters.

Parameters Values Description

tsw 4 s A sliding window

Rth -80 dBm RSSI threshold

γ0 94.8951 Coefficient of the cubic function

γ1 5.8301 Coefficient of the cubic function

γ2 0.0811 Coefficient of the cubic function

γ3 0.0005 Coefficient of the cubic function

n 2, 8 # of IMU reading peaks

astd 0.01 g Standard deviation of the IMU

pw 60% # of weighted particles

assessment of the DeMo system’s effectiveness in reducing

safety violations, 4. please select the option that best reflects

your perception of the DeMo system’s accuracy in detecting

speeds, 5. please select the option that best describes the extent

to which the DeMo system has reduced your workload, and 6.

please select the option that best represents how frequently

you have encountered sensor damage issues with the DeMo

system. The feedback from 20 safety staff in 12 MTR stations

is demonstrated in Fig. 14.

1900 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

AUGUR: Practical Mobile Multipath Transport Service for
Low Tail Latency in Real-Time Streaming

Yuhan Zhou∗PT, Tingfeng Wang∗T, Liying WangP, Nian WenT, Rui HanT, Jing WangT

Chenglei WuT, Jiafeng ChenT, Longwei JiangT, Shibo WangXT, Honghao LiuT†, Chenren XuPZK†
PSchool of Computer Science, Peking University

TTencent Inc. X Xi’an Jiaotong University ZZhongguancun Laboratory
KKey Laboratory of High Confidence Software Technologies, Ministry of Education (PKU)

Abstract – Real-time streaming applications like cloud
gaming require consistently low latency, even at the tail. Our
large-scale measurement based on a major cloud gaming ser-
vice provider reveals that in Wi-Fi networks, the delay of the
wireless hop can inflate due to its fluctuating nature, making
it difficult to achieve consistently low tail latency. While cel-
lular paths can be leveraged to alleviate the impact of wire-
less fluctuation of Wi-Fi paths, our user study reveals that it
is crucial to constrain cellular data usage while using mul-
tipath transport. In this paper, we present AUGUR, a mul-
tipath transport service designed to reduce long tail latency
and video frame stall rates in mobile real-time streaming. To
address the challenge of reducing long tail latency by utiliz-
ing cellular paths while minimizing cellular data usage, AU-
GUR captures user characteristics by deriving state probabil-
ity models and formulates the equilibrium into Integer Linear
Programming (ILP) problems for each user session to deter-
mine the opportunity of frame retransmission and path selec-
tion. Our trace-driven emulation and large-scale real-world
deployment in Tencent Start cloud gaming platform demon-
strate that AUGUR achieves up to 66.0% reduction in tail la-
tency and 99.5% reduction in frame stall rate with 88.1%
decrease in cellular data usage compared to other multipath
transport schemes.

1 Introduction
Emerging real-time streaming applications like cloud gam-
ing [1, 2], video conferencing [3, 4], and AR/VR [5, 6] pro-
vide users with interactive experiences for both entertain-
ment and business. Such applications have grown rapidly
worldwide and made a large market (e.g., The global cloud
gaming market reached $1.28 billion in 2022 and expects to
reach $13.6 billion by 2028 [7]). However, to provide users
with a seamless interactive experience, service providers
must achieve consistently low tail latency [8]. Based on
experience and statistics from our real-time streaming ser-
vice platform, we observe that a tail latency (i.e., 99.9th per-
centile) of 200 ms can lead to frequent video frame stalls,
and even a 0.5% increase in stall rate results in a 33% drop

∗equal contribution.
†corresponding authors.

B: coreyliu@tencent.com B: chenren@pku.edu.cn

in user retention time (§2.2). Therefore, it is essential to re-
duce long tail latency to improve user experience.

However, for mobile devices that access wireless net-
works, existing solutions for latency-intensive applications
fail to meet the consistently low tail latency requirements
imposed by interactive real-time streaming or are imprac-
tical to be widely deployed. The most intuitive and practi-
cal method to eliminate high network latency is to deploy
a dedicated congestion control algorithm (CCA). However,
we observe that with Wi-Fi networks, path RTT inflation
caused by random wireless fluctuations can occur. There-
fore, while existing CCAs designed for real-time streaming
[9, 10, 11, 12] and wireless networks [13, 14] can provide
sufficient bandwidth and low median latency, they fail to
consistently achieve low tail latency (§2.2). Even with a low
sending bitrate (i.e., 512 Kbps), the tail latency can dramat-
ically exceed 200 ms. Besides, RTT inflation is intrinsic in
wireless links. Thus, it is difficult to achieve low tail latency
with only one network path. Therefore, leveraging multipath
is a straightforward approach to alleviate the impact of an
RTT-fluctuating path.

Although many works on mobile multipath transport have
been proposed to reduce latency by leveraging both Wi-Fi
and cellular paths, they are not practical to be widely de-
ployed to reduce long tail latency for real-time streaming ap-
plications in terms of performance, cellular cost, and deploy-
ability: i) Most multipath schedulers only make decisions on
packet departure, leaving packet retransmission to the un-
derlying loss recovery mechanism, thus the packets would
be inevitably delayed in the presence of random RTT in-
flation [15, 16, 17, 18, 19, 20, 21]. Therefore they cannot
meet the performance requirement of consistently low tail
latency; ii) While most multipath transport schemes only fo-
cus on the performance heterogeneity of multiple paths, they
ignore the data budget heterogeneity of Wi-Fi and cellular
paths [17, 22]. Since Internet service providers (ISPs) pro-
vide cellular connections with limited data budget [23], we
find that users of our mobile real-time applications express
strong concerns about cellular data usage (§2.3). Therefore,
a multipath transport system that consumes a large amount of
cellular data is not practical to be widely deployed; iii) Many
existing multipath transport systems require modification to

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1901

Data PacketsFrame Generator Encoder

DecoderVideo Player User Device

Interaction

User

Network

Client
Side

Edge
Server

Figure 1: Overview of the real-time streaming pipeline.

the kernel of user devices [16, 17, 18, 19] or rely on values
that do not exist in real-time streaming (e.g., volume video
size [21] and playback buffer occupancy [24]) for decision-
making. Consequently, they are infeasible to be widely de-
ployed for real-time streaming applications.

In this work, we propose a multipath transport service AU-
GUR in mobile real-time streaming that meet the requirement
of reducing long tail latency, minimizing cellular data usage,
and enabling large-scale deployment. AUGUR uses the Wi-
Fi path as the primary path for frame transmission and lever-
ages the cellular path by introducing application-level frame
retransmission and primary path switch scheduling. It tack-
les two challenges when leveraging multipath to deal with an
RTT-fluctuating path: i) the RTT inflation caused by wireless
fluctuation of the Wi-Fi path is highly unpredictable and ii)
the usage of cellular paths is strictly limited and should be
minimized as much as possible. These two challenges make
it difficult to determine when to use the cellular path to alle-
viate the impact of RTT inflation.

To address these challenges, we observe that while user
characteristics such as frame stall rate and the impact of pro-
longed latency vary greatly among different users, they re-
main stable for an individual user over a certain period of
time (§2.4). Based on this observation, AUGUR divides the
statistics of a user session into states and creates per-session
probability models for each user to quantify the various user
characteristics. It then formulates the equilibrium of reduc-
ing tail latency by leveraging cellular path and constrain-
ing cellular data usage as Integer Linear Programming (ILP)
problems and uses the state probability models as inputs. By
solving the ILP problems, AUGUR determines the appropri-
ate moments to utilize cellular paths to achieve both the per-
formance requirement of consistently low latency and the
cost requirement of minimizing cellular usage. To achieve
the deployability requirement, AUGUR is fully implemented
in edge servers and requires no modification to user devices,
customed hardware, or network middleboxes, making it im-
mediately deployable.

We have deployed AUGUR in Tencent Start [25] cloud
gaming platform for over six months with a wide range of
millions of users, resulting in tens of millions of hours of

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
D

F
 (

%
)

Time (ms)

Frame Delay (2.4GHz)
RTT (2.4GHz)

Frame Delay (5GHz)
RTT (5GHz)

 99.9

 99.95

 100

 0 100
 200

 300

Figure 2: Long tail latency in
real-time streaming.

 10

 20

 30

 40

 50

 0 10 20 30 40 50

P
la

yi
ng

 T
im

e
(m

in
)

Frame Stall Rate (‱)

Figure 3: Correlation be-
tween video frame stall rate
and user retention time.

user retention time. Our trace-driven emulation and large-
scale production experiments show that AUGUR can reduce
up to 66.0% tail latency and 99.5% frame stall rate with 2.7%
average data usage on the cellular path, compared to other
multipath transport schemes.
Contributions.
• We conduct a large-scale and in-depth statistical analysis

to demonstrate the characteristics of long tail latency in
mobile real-time streaming applications within a produc-
tion environment;

• We propose AUGUR, a multipath transport service de-
signed to reduce the long tail latency and frame stall
while maintaining a strictly limited cellular data usage;

• We deploy AUGUR in Tencent Start cloud gaming plat-
form and demonstrate that it can significantly reduce tail
latency and stall rate while incurring negligible cellular
costs.

Ethical claim. All user feedback and data statistics collected
in this work are obtained with explicit permission from the
users and are anonymized to protect their privacy. This work
does not raise any ethical concerns and conforms to the IRB
policies of the authors’ institutions.

2 Background and Motivation
In this section, we introduce the background of interactive
real-time streaming (§2.1). We then collect real-world statis-
tics to present the long tail latency caused by RTT inflation
in Wi-Fi path transmission (§2.2) and the limitation of ex-
isting mobile multipath transport schemes (§2.3). Finally,
we discuss the user characteristics observed from our online
measurement (§2.4).

2.1 Interactive Real-Time Streaming
An interactive real-time streaming service like cloud gam-
ing provides users with an interactive video experience. As
shown in Fig. 1, a typical real-time streaming pipeline con-
sists of four components: frame generator, codec (encoder
and decoder), transport system, and video player. The en-
coder encodes the video frames produced by the frame gen-
erator, and each frame is typically partitioned into multi-
ple data packets for network transport. After being deliv-
ered to the user devices through the network transport sys-
tem, the frame is immediately decoded and displayed by

1902 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

 0 100 200 300

C
D

F
 (

%
)

Delay (ms)

Eth. Wi-Fi 2.4G Wi-Fi 5G

 99.9

 99.95

 100

 0 100
 200

 300

Figure 4: Frame delivery la-
tency of wired and wireless
networks.

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500

C
D

F
 (

%
)

Delay (ms)

Eth.
Wi-Fi 2.4GHz

Wi-Fi 5GHz

(a) 512 Kbps.

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500

C
D

F
 (

%
)

Delay (ms)

Ethernet
Wi-Fi 2.4GHz

Wi-Fi 5GHz

(b) 1 Mbps.

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500

C
D

F
 (

%
)

Delay (ms)

Ethernet
Wi-Fi 2.4GHz

Wi-Fi 5GHz

(c) 2 Mbps.

Figure 5: Frame delivery latency over 99th percentile under low sending bitrate.

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000

C
D

F
 (

%
)

RTT (ms)

2.4GHz 5GHz

Figure 6: RTT inflation of
Wi-Fi link before frame stall
occurs.

 0

 20

 40

 60

 80

 100

2.4GHz 5GHz

P
ro

po
rt

io
n

(%
)

0 1 2 ≥3

 0

 20

 40

 60

 80

 100

2.4GHz 5GHz

P
ro

po
rt

io
n

(%
)

0 1 2 ≥3

Figure 7: Packet loss rate on
frame stalls with Wi-Fi link.

the video player without buffering. According to the inter-
dependencies of video frames [26], all packets in a frame
should be sent to the decoder to prevent video quality degra-
dation. Furthermore, the user continuously interacts with
the server, providing instructions or feedback to generate
new video frames. This pipeline contrasts with buffer-based
streaming applications such as video-on-demand (VoD),
where the entire video content is pre-recorded, and a play-
back buffer in the video player can be utilized to absorb
frame delivery latency [27] or improve user Quality of Ex-
perience (QoE) [24]. Therefore, to ensure a smooth and
seamless interactive experience, it is crucial for the network
transport system to guarantee consistently low latency for the
timely delivery of all video frames, especially under fluctu-
ating wireless network environments.

2.2 Long Tail Latency in Real-time Streaming

Long tail latency severely degrades user experience. The
low latency requirement for frame delivery in real-time
streaming means that even a slight increase in tail latency can
have a significant impact on user experience. To investigate
the impact of long tail latency, we conduct a measurement on
our online cloud gaming service. As shown in Fig. 2, while
the median RTT and frame delivery latency is kept below
30 ms, the tail latency (i.e., 99.9th percentile) can reach over
200 ms, and such a severely delayed frame is highly likely
to cause a video stall [8]. Moreover, as shown in Fig. 3, we
observe that an increased video frame stall rate results in a
significant decrease in user retention time, even an 0.5% in-
creased stall rate would result in 33% drop in retention time,
and there still exists an increase of user churn even the stall
rate is kept below 0.1%, indicating user dissatisfaction with

the service. Therefore, long tail latency severely degrades
user experience, and achieving consistently low latency ne-
cessitates the attainment of at least a 99.9% in-time delivery
of frames.

RTT inflation contributes to long tail latency instead of
network congestion. Intuitively, packet loss and retransmis-
sion caused by network congestion significantly contribute
to packet delivery latency [28]. However, with our private
CCA designed for real-time streaming and edge servers de-
ployed, we find that long tail latency is mainly induced by
inflated path RTT due to wireless fluctuation for mobile de-
vices. As shown in Fig. 4, compared to the wired network
environment, when streaming through the wireless network
connection from a Wi-Fi access point (AP) to mobile de-
vices, the frame delivery latency at the 99th percentile is in-
creased by up to 290%. Additionally, we plot the RTT of the
wireless path before a frame stall occurs, Fig. 6 shows that
the path RTT is already inflated to more than 200 ms for 65%
of stalled frames on Wi-Fi 2.4G networks and 50% of stalled
frames on Wi-Fi 5G, respectively. Furthermore, we observe
that packet loss is infrequent on frame stalls. To demonstrate
this, we plot the packet loss rate when frame stall happens
and show the result in Fig. 7, nearly 60% of packets are de-
livered without loss during a frame stall. This indicates that
the long tail latency is induced by the fluctuating intrinsic of
the wireless path instead of network congestion.

CCAs fail to reduce latency at the tail. The most widely
used method to reduce frame delivery latency in real-time
streaming is to employ sophisticated CCAs. However, with
inflated RTT caused by wireless fluctuation, while state-of-
the-art CCAs designed for real-time streaming [9, 10, 11,
12] or wireless networks [13, 14] can reach a low median
latency, they fail to ensure a consistently low tail latency. The
primary goal of CCAs is to adapt to link capacity variations
and promptly reduce the sending rate to eliminate queuing
delay or packet loss to maintain low transport latency [29,
30, 31, 32]. Nonetheless, due to RTT inflation caused by Wi-
Fi link fluctuation, the link is unable to deliver data in time.
Consequently, the long tail latency cannot be addressed by
deploying CCAs.

To demonstrate the limitations of CCAs under wireless
link fluctuations, we conduct an experiment by enforcing

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1903

 0

 20

 40

 60

 80

 100

10-4 10-3 10-2 10-1 100

C
D

F
 (

%
)

KS Distance

2.4GHz, T = 2.5
2.4GHz, T = 5

2.4GHz, T = 10
5GHz, T = 2.5

5GHz, T = 5
5GHz, T = 10

(a) P (frame stall) KS distance.

 0

 20

 40

 60

 80

 100

10-4 10-3 10-2 10-1 100

C
D

F
 (

%
)

KS Distance

2.4GHz, T = 2.5
2.4GHz, T = 5

2.4GHz, T = 10
5GHz, T = 2.5

5GHz, T = 5
5GHz, T = 10

(b) P (frame stall | RTT > X) KS
distance

 80

 85

 90

 95

 100

10-4 10-3 10-2 10-1 100

C
D

F
 (

%
)

KL Divergence

2.4GHz, T = 2.5
2.4GHz, T = 5

2.4GHz, T = 10
5GHz, T = 2.5

5GHz, T = 5
5GHz, T = 10

(c) P (frame stall) KL divergence.

 80

 85

 90

 95

 100

10-4 10-3 10-2 10-1 100

C
D

F
 (

%
)

KL Divergence

2.4GHz, T = 2.5
2.4GHz, T = 5

2.4GHz, T = 10
5GHz, T = 2.5

5GHz, T = 5
5GHz, T = 10

(d) P (frame stall | RTT > X) KL
divergence.

Figure 8: Kolmogorov-Smirnov distance and Kullback-Leibler divergence between the characteristics probability distributions
of the current minute and the past T minutes during each individual user’s playing time.

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

Fr
am

e
St

al
l R

at
e

(%
)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: Overlayed curves of the relationship between
frame stall rate and path RTT. Each point in each curve con-
tributes to a point in the heatmap and the color indicates the
number of points normalized by maximum.

our CCA to maintain extremely low sending bitrates that
are below our video quality requirement of service (i.e., 2
Mbps) and access our platform from both wired and wire-
less networks. As shown in Fig. 5, even with low sending
bitrates, frame delivery latency at the tail remains high, and
the latency distributions remain consistent across all low bi-
trates. This highlights that under fluctuating wireless net-
works, CCAs are insufficient to reduce latency at the tail for
real-time streaming applications. Therefore, it is valuable
to leverage cellular paths to alleviate the impact of wireless
fluctuation of the Wi-Fi path.

2.3 Limitation of Existing Multipath Transport in Real-
time Streaming

Multipath transport is a promising and practical solution to
reduce long tail latency in mobile real-time streaming be-
cause: i) Wireless fluctuations are hardly correlated between
heterogeneous wireless networks like Wi-Fi and cellular net-
works, indicating that prolonged latency induced by one path
could be eliminated by another [17]; ii) Contemporary mo-
bile devices are typically equipped with multiple network in-
terfaces, enabling the large-scale deployment of a multipath
transport service [24]. However, existing multipath transport
schemes are not practical to be widely deployed to reduce
tail latency for mobile real-time streaming in terms of per-

formance, cellular cost, and deployability.

Multipath schedulers fail to achieve low tail latency. Al-
though many works on multipath transport have been pro-
posed, they mainly focus on maximizing throughput [15]
or minimizing request completion time (RCT) [19, 20, 24].
Some multipath transport systems designed for latency-
sensitive applications like BLEST [18] and RAVEN [17]
schedule packet transmission on multiple paths but leave
retransmission to the underlying loss recovery mechanism.
However, packets scheduled on the Wi-Fi path could already
be severely delayed before retransmission timeout (RTO)
due to highly unpredictable RTT inflation, thus they can-
not meet the performance requirement of low tail latency.
XLINK [24] uses packet re-injection to reduce frame deliv-
ery latency, but it assumes a known video chunk size and re-
quires playback buffer occupancy level as QoE signal, which
cannot be used in real-time streaming.

Minimizing cellular data usage is crucial for practical de-
ployment. Multipath schedulers designed for interactive ap-
plications like RAVEN [17] and ReMP [33] utilize cellular
paths for redundant frame transmission but are unaware of
cellular data cost. However, video frame delivery consumes
a large amount of bandwidth and can lead to significant cel-
lular data usage. To investigate users’ concerns about cel-
lular data cost, we explicitly deliver a questionnaire within
our cloud gaming application to 1,251,420 users. All user
feedback and data statistics collected are obtained with ex-
plicit permission and are anonymized to protect their privacy.
Our analysis of online users’ feedback reveals: i) While ac-
cessing our gaming platform with mobile devices, 89.8% of
users prefer Wi-Fi connection due to the lower cost com-
pared to cellular networks; ii) 57.0% of users are not willing
to consume cellular data for streaming service; iii) For the
remaining 43.0% of users willing to use cellular networks
for better performance, 62.9% of them express a strong de-
sire to reduce cellular data costs Therefore, we argue that
for a practical multipath transport service, the cellular cost
constraint should not be an incidental concern, but rather
a primary design consideration. Although some multipath
transport schemes like MP-DASH [21] and COM [34] re-
duce cellular data usage for VoD applications, they require
the size of the pre-recorded video content, thus cannot be

1904 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

used in real-time streaming.

Kernel-based multipath transport schemes are infeasi-
ble to widely deploy. Many existing multipath transport
schemes require modifications to the kernel of user devices
[16, 17, 18, 19, 21]. As a cloud gaming service provider,
it is not feasible to make modifications to user devices, net-
work middleboxes, or customed hardware. Therefore, they
are impractical to be widely deployed.

2.4 User Characteristics in Real-time Streaming

Network characteristics vary among different users. Our
real-time streaming platform is utilized by millions of users
across a wide range of regions with different user de-
vice models and network environments. According to our
measurements, there is a significant characteristics varia-
tion among users. We study the correlation between the
frame stall rate and path RTT from different user sessions
in our measurement. We plot the conditional probability
P (frame stall | RTT > X) curves and overlay all curves to
formulate a heatmap. As shown in Fig. 9, while higher la-
tency does increase the severely-tail rate overall, the corre-
lation between them varies among different users. For ex-
ample, when path RTT reaches 100 ms, the probability of a
frame stall can range from 0% to 100% for different users.
This indicates that RTT inflation has different impacts on dif-
ferent users and such variation in user characteristics should
be considered for a widely deployed system.

Network characteristics remain stable for individual
users. Although there is significant variation among user
characteristics, we observe that there is some stability of
statistics for an individual user over a certain period of
time. While characteristics such as frame stall rate and net-
work latency pattern can vary significantly among different
users, they tend to remain relatively stable for an individ-
ual user over a time window. To demonstrate the stabil-
ity, we computed the Kolmogorov-Smirnov (KS) distance
[35] and Kullback-Leibler (KL) divergence [36] between
the probability distributions of two characteristics, namely
P (frame stall) and P (frame stall | RTT > X), for both the
current minute and the previous T minutes of each individ-
ual user’s playing time and plot the CDFs of both the KS
distance and KL divergence values for over 3000 users in
Fig. 8. The results indicate that nearly 99% of the current
minute’s characteristics probability distributions are similar
to those of the previous time window (i.e., KS distance and
KL divergence values are less than 0.1), suggesting a strong
correlation between statistics calculated from a previous time
window and the current minute. We leverage such stability
to capture each user’s characteristics in our design.

3 AUGUR Design
In this section, we propose a multipath transport service AU-
GUR to reduce the long tail latency induced by wireless link
RTT inflation while minimizing cellular data usage. We first

st
an
da
rd
so
ck
et
A
PI

CCA

CCA

In-flight Frames

𝑇! ∈ 𝑋!

Primary Path Switch
Strategy 𝑋"

ILP Solver
𝑆! → 𝑥! ∈ 0, 1 		𝑋 = 𝑆!	 	𝑥! = 1}

Time Window Approximation

𝑀-" = 𝑃/ ⋅ , 𝑈" 𝑀-# = 𝑃/ ⋅ , 𝑈#
State Probability Model

State Space 𝑈!
in-flight times of
all frames

Multipath Agent

State Manager

Frame Retransmission
Strategy 𝑋!

𝑇" ∈ 𝑋! 𝑇# ∉ 𝑋! 𝑇$ ∉ 𝑋!

retrans.
frame

= 𝑇! =
unacked frame
in-flight time

State Space 𝑈"
in-flight time of

earliest unacked frame

𝑇! ∈ 𝑋"? no

yes

Figure 10: System overview of AUGUR.

present the design goals of AUGUR.

3.1 Design Goals

The main idea behind AUGUR is to use the Wi-Fi path as the
primary path to stream video frames and leverage the cellular
network as a backup path when the Wi-Fi connection suffers
wireless fluctuations. In light of the observation presented in
§2, we design AUGUR to achieve three goals.

G1: Reduce long tail latency induced by wireless fluctu-
ation. As presented in §2.2, the long tail latency resulting
from Wi-Fi wireless fluctuation like RTT inflation is an in-
herent issue of the Wi-Fi path, thus it is valuable to also uti-
lize the cellular path for data streaming. However, it is chal-
lenging to determine the opportunity of using another path
because the RTT inflation of the Wi-Fi path is highly unpre-
dictable.

G2: Constrain cellular data usage. One straightforward
approach to leveraging a redundant path would be to repli-
cate all frames on cellular paths, but this would incur a sig-
nificant consumption of cellular data and violates the user
concerns in §2.3. Moreover, with the significant imbalance
in link capacity [37], the cellular link may be unable to han-
dle the additional traffic from replicating all frames (e.g.,
cellular bufferbloat [38]). Therefore AUGUR must carefully
constrain the usage of the cellular path.

G3: Enable large-scale deployment. Our real-time stream-
ing platform provides service to millions of users with var-
ious device models, operating systems, and Wi-Fi AP mod-
els. As a streaming service provider, it is not feasible to
make modifications to user device kernels, network middle-
boxes, or customized hardware. To be practically deployed
on a large scale, AUGUR should only require modifications
to game servers and user applications.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1905

3.2 System Overview
To address the challenge of reducing long tail latency by uti-
lizing cellular paths while adhering to a strict cellular data
usage constraint, AUGUR first leverages our observation on
user characteristics (§2.4) and derives per-session probabil-
ity models to capture the characteristics of each user. It
then formulates the equilibrium of tail latency reduction and
cellular cost minimization into Integer Linear Programming
(ILP) problems. Using the measured probability models as
inputs, AUGUR solves ILP problems to determine the op-
portunity to use the cellular path. As a multipath transport
service, AUGUR leverages the cellular path through two ap-
proaches: i) application-level frame retransmission. AU-
GUR monitors in-flight frames sent on the Wi-Fi path and
promptly retransmits frames that are likely to be severely de-
layed on the cellular path; ii) primary path switch schedul-
ing. AUGUR transiently switches the primary path to cellular
and streams all newly generated video frames through it in
the presence of severe Wi-Fi path capacity degradation. As
illustrated in Fig. 10, AUGUR consists of two main compo-
nents: the state manager (§3.5) monitors the capacity of the
Wi-Fi and cellular path and approximates probability mod-
els for each user. Based on the models provided by the state
manager, the multipath agent (§3.6) continuously solves the
formulated ILP problems to obtain cellular path utilization
strategies, and performs frame retransmission and primary
path switch.

In the rest of this section, we first introduce our state prob-
ability model for real-time streaming in §3.3 and our strategy
for utilizing the backup path in §3.4. We then demonstrate
how we apply our theoretical analysis into practice to derive
the model (§3.5) and make decisions on frame retransmis-
sion and primary path switch(§3.6).

3.3 State Probability Model
In a real-time streaming session, a sender and a receiver com-
municate over a network path along a timeline. The sender
continuously sends data, such as video frames, to the re-
ceiver. Concurrently, the receiver provides feedback (ACKs)
to the sender regarding the data’s arrival or at specific time
intervals. The sender can then derive some statistics based
on this feedback (e.g., RTT, acknowledged bytes). To ef-
fectively utilize these statistics and extract vital information
for the sender to determine the transmission pattern, we di-
vide them into several states. We let U =

⋃
i{Si},∀i ̸=

j,Si ∩ Sj = ∅ donate all possible states. For example, if
the sender chooses to use (RTT, Bandwidth) as states,
U would be a two-dimensional space and each point in the
space represents a state. For each session, the probability
distribution of states P (Si) could be significantly different
due to the great variety of user characteristics.

When the receiver experiences a frame stall, the next feed-
back can carry information about the stall event, allowing the
sender to record it. If we define stall to be the stall events

across all states of a session, the overall frame stall probabil-
ity for a user session would be:

P (stall) = P (stall,U) =
∑

Si∈U

P (stall,Si)

=
∑

Si∈U

P (stall | Si)P (Si) (1)

The distributions of P (stall), P (stall | Si), and P (Si)
can provide insight into the condition of the receiver and the
network for a given user session. We define the state proba-
bility model for a user session as M = {P (stall), P (stall |
Si), P (Si)}, Si ∈ U , and the relationship between these dis-
tributions is given in equation Eqn. 1. By obtaining M , we
can capture and quantify the user characteristics of a session.

3.4 Backup Path Utilization Strategy

To reduce long tail latency and frame stalls of the primary
path, the sender can utilize a backup path for frame trans-
mission. A backup path utilization strategy decides when the
backup path should be used. Ideally, a backup path should
only be used when frames are likely to be delayed on the
primary path. However, it is difficult to accurately predict if
a frame would be delayed and cause a stall before it is ac-
knowledged. To effectively use the backup path, we break
down the problem of deriving an optimal utilization strategy
into two tasks:

T1: Covering delayed frames caused by wireless fluctua-
tion. The backup path utilization strategy should minimize
the false negative (FN) rate of the decisions by ensuring that
it utilizes the backup path to cover delayed frames to the
greatest extent possible.

T2: Reducing the utilization of backup paths. The backup
path should only be used when necessary, as excessive uti-
lization of the backup path can result in additional data usage
and negative impacts (e.g., increased cellular data charges in
our case). The strategy should aim to minimize the false pos-
itive (FP) rate of the decisions.

As explained in §3.3, we divide the sender statistics of a
real-time streaming process into states. We use these states
as decision points. For each state Si, we employ xi to in-
dicate whether the backup path should be utilized for frame
transmission to mitigate delivery delay, where xi = 1 denotes
a positive decision and xi = 0 denotes a negative decision. A
strategy refers to a selection of several states from U , where
the chosen states are represented as X = {Si ∈ U | xi = 1},
and the remaining states are represented as X̄ = {Si ∈ U |
xi = 0}. We next derive the optimal backup path utilization
strategy based on the state probability model M .

To achieve T1, we present the false negative rate of strat-

1906 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

egy X to be:

P (FN) = P (X̄ | stall) = P (stall, X̄)
P (stall)

= P (stall)−P (stall,X)
P (stall)

=
P (stall)−

∑
Si∈X P (stall,Si)

P (stall)

=
P (stall)−

∑
Si∈X P (stall | Si)P (Si)
P (stall) (2)

As discussed in §2.4, the stall rate of a single user session
tends to remain stable in a time window. Therefore, we
assume that in a certain period of time, the overall frame
stall probability P (stall) is a constant value. In this case,
the minimization of P (FN) turns into the maximization of
function:

f(X) =
∑

Si∈X

P (stall | Si)P (Si) (3)

This maximization function implicitly assumes that the ca-
pacity of the backup path is adequate for mitigating pro-
longed latency, which may not always be the case. There-
fore, we introduce Pbackup(Si) to represent the probability
that the backup path is sufficient to perform frame transmis-
sion at state Si. The maximization function in Eqn. 3 is mod-
ified as follows:

F (X) =
∑

Si∈X

P (stall | Si)P (Si)Pbackup(Si) (4)

To achieve T2, we present the false positive rate of strat-
egy X to be:

P (FP) = P (X |!stall) = P (X, !stall)
P (!stall)

= P (X)−P (X,stall)
1−P (stall)

= P (X)−f(X)
1−P (stall) (5)

Given that the primary objective of T1 is to maximize f(X)
while assuming a constant value of P (stall), our aim is to
minimize P (FP) by restricting the value of P (X) below a
specific threshold. The threshold represents the data usage
limit of the backup path and should be adaptable to different
specified budgets. Thus, we limit the backup path utilization
rate to be less than or equal to the frame stall rate multiplied
by a parameter δ:

P (X) =
∑

Si∈X

P (Si) ≤
∑

Si∈U

P (stall | Si)P (Si) · δ (6)

With the maximization target (Eqn. 4), the constraint
(Eqn. 6), and the probability model M , we can formulate

the backup path utilization strategy derivation as an Integer
Linear Programming problem:

Maximize
∑

Si∈U

P (stall | Si)P (Si)Pbackup(Si) ·xi

xi = 0,1 (7)

Subject to
∑

Si∈U

P (Si) ·xi ≤
∑

Si∈U

P (stall | Si)P (Si) · δ

In Eqn. 7, the maximization term aims to achieve objective
T1, which is to cover delayed frames, and the constraint term
aims to achieve objective T2, which is to minimize the data
usage of the backup path. By solving the ILP problem, the
sender can obtain a strategy X and determine when to use
the backup path.

3.5 State Manager
The state manager continuously monitors the capacity of the
Wi-Fi and cellular path for each user session. It creates
and manages two state probability models for the multipath
agent, one for the decision on frame retransmission and the
other for the primary path switch. Nonetheless, we encounter
two challenges in practice: i) What information should be
extracted from sender statistics to form a state space; ii)
While the overall frame stall rate is assumed to be a constant
value, how can we obtain the distribution of P (stall | Si)
and P (Si).

3.5.1 State space formulation.
In principle, it is possible to extract all available information
from sender statistics to form a high-dimensional state space.
However, we take two factors into consideration when decid-
ing on the state space formulation: i) A multi-dimensional
state space increases the difficulty and complexity of main-
taining a probability model and deriving a backup path uti-
lization strategy based on it; ii) Some information, such as
RTT and acknowledged bytes, is already utilized by CCAs
to maintain low median latency, making it unnecessary to in-
clude them in the state space. Therefore, we choose to use a
single-dimension state space for both probability models.
Frame retransmission state space. We utilize the in-flight
time of all frames to create a state space U1 for deciding
when to retransmit frames on the cellular path. Specifically,
we calculate the in-flight time of a video frame once it is
acknowledged, and this value is used to represent a point in
the state space. We choose to use the per-frame in-flight time
as the input state because it allows us to derive a probability
model that can indicate the correlation between the stall rate
and the frame in-flight time. This, in turn, provides us with
the necessary information to promptly retransmit frames on
the backup path.
Primary path switch state space. To derive the state proba-
bility model for the primary path switch decision, we use the
in-flight time of the earliest unacknowledged frame to form a
state space U2. This choice reflects the frame delivery delay

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1907

of the primary path, providing clues on the degradation of
the primary path’s capacity and the chance for a switch. In
practice, the state manager periodically inspects the in-flight
time of all unacknowledged frames and sets the in-flight time
of the earliest dispatched frame as the current state.
Cellular path capacity monitoring. Since AUGUR uses the
cellular as the backup path, which can also be susceptible
to fluctuations [39, 40, 41] and lead to prolonged latency,
the state manager needs to monitor the characteristics of the
cellular path to estimate its capacity and determine whether
it is sufficient to perform frame transmission. As we use
the in-flight time of frames as input states, at state Si, the
frame has been sent for Si time. Therefore, to perform ef-
fective retransmission or primary path switch to reduce long
tail latency, the RTT of the cellular path should not exceed
Tthresh −Si. Since a frame delivery latency greater than 200
ms is highly likely to cause a video stall [8], we set Tthresh

to be 200 ms. Hence, we evaluate the RTT as a metric of the
backup path capacity using the following equation:

Pbackup(Si) = P (RTTcell ≤ Tthresh −Si) (8)

However, we cannot obtain P (RTTcell ≤ Tthresh −Si) pas-
sively from receiver feedback because the cellular path acts
as a backup, and the feedback is intermittent. Therefore, the
state manager actively probes the cellular path by periodi-
cally sending an 8-byte PING message (with an interval of
50 ms) to monitor the RTT. Since the backup cellular path
is infrequently used and other applications using cellular in-
terfaces (e.g., voice call, video conferencing) are typically
inactive during cloud gaming sessions, small-sized packets
are efficient for probing the path RTT. The overhead of the
probe messages is less than 0.06% in theory, compared to the
high frame rate at which large-sized video frames (typically
over 4KB) are transmitted (e.g., 60 fps).

3.5.2 Probability distribution derivation
The state probability model M contains the distributions of
P (stall | Si) and P (Si). However, they are difficult to accu-
rately describe. Firstly, these distributions could be arbitrary
over time for different users. Secondly, the state manager
cannot predict future states or stalls, and can only deduce an
approximate distribution based on recorded states. To ad-
dress this challenge, we leverage our observation discussed
in §2.4 that the user characteristics remain stable for an indi-
vidual user over a period of time. Based on this, we assume
that the probability distributions of states remain fixed for a
time window. Within a time window ∆, we can obtain the
frequency of each state Si and the corresponding stall event,
denoted as P̂ (Si) and P̂ (stall | Si). We use these frequen-
cies to approximate the probability distribution of the states
in this time window. The approximated stall rate P̂ (stall)
can be derived by Eqn. 1.

In this way, the state manager continuously updates the
states explained in §3.5.1. For each time window ∆, it cre-

 0

 300

 600

 900

 1200

 1500

 1800

 15 15.5 16 16.5 17 17.5 18

D
el

ay
 (

m
s)

Time (s)

Frame Delay
RTT

Figure 11: Wi-Fi capacity degradation causes bursty frame
stalls lasting for hundreds of milliseconds.

ates and maintains two approximated state probability mod-
els M̂1,2 = {P̂ (stall), P̂ (stall | Si), P̂ (Si)}, Si ∈ U1,2 with
two different state spaces. The value of ∆ reflects the level
of fluctuation in a single user’s characteristics, and its effect
on AUGUR is evaluated in §5.4.

3.6 Multipath Agent
The multipath agent plays a critical role in deciding whether
to retransmit in-flight frames on the cellular path and whether
to switch the primary path from Wi-Fi to cellular. To make
these decisions, it utilizes the state probability models M̂1
and M̂2 provided by the state manager and plugs them into
the ILP problem described in Eqn. 7. It is typically time-
consuming and computation-intensive to solve an ILP prob-
lem. Nevertheless, when considering our single-dimensional
state spaces U1,2, and utilizing RTT-based backup path ca-
pacity specified in Eqn. 8, instead of looping each combina-
tion of states, we only need to determine a threshold in the
continuous state space to find an optimal strategy. Therefore,
the ILP problem in Eqn. 7 transforms into a linear-time so-
lution, facilitating quick resolution. Based on the output of
the simplified ILP problems, the multipath agent obtains the
necessary decisions to reduce long tail latency and minimize
cellular cost.

3.6.1 Application Level Frame Retransmission
Existing multipath schedulers usually only decide which
path to use for delivering incoming new data at packet depar-
ture time. As presented in §2.2, unpredictable RTT inflation
of wireless links could severely delay the scheduled packets.
Therefore, to reduce long tail latency, it is important to track
the in-flight data and actively retransmit it when it is at risk
of being delayed.

In order to eliminate as much tail latency as possible, AU-
GUR introduces application-level frame retransmission by
promptly retransmitting in-flight frames on the cellular path
to prevent delays. We choose to retransmit the entire frame
instead of individual data packets because: i) An RTT infla-
tion at the wireless last hop would typically result in delays
for the majority of packets within a frame (e.g., we observe
that when the frame delivery delay surpasses 200 ms, the de-
lay of the initial packet in the frame exceeds 200 ms in 71.8%
of cases), making it reasonable to actively retransmit the

1908 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

entire frame through an alternative path; ii) Implementing
frame retransmission in userspace is straightforward, render-
ing it a portable and easily deployable solution across a wide
range of scenarios.

Naturally, there is a strong relationship between the in-
flight time of an unacknowledged frame and the possibility
the frame would be severely delayed, and such a relation-
ship is quantified by our state probability model M̂1, which
uses frame in-flight time as its state space. Consequently,
as shown in Fig. 10, while the state manager keeps updating
the probability model M̂1 during the streaming process, the
multipath agent continuously solves the simplified ILP prob-
lem using M̂1 as input and obtains a decision X1. It con-
stantly monitors all unacknowledged frames and retransmits
those whose in-flight time T matches with a state in X1 (i.e.,
T = Si ∈ X1). By doing so, AUGUR can proactively rescue
frames that are at risk of stalling while also adhering to lim-
ited usage of the backup path. We evaluate the effectiveness
of application-level frame retransmission in §5.4.

3.6.2 Primary Path Switch Scheduling
Unlike existing multipath schedulers that schedule paths for
each data packet, AUGUR chooses the Wi-Fi path as the pri-
mary path and schedules frames on it by default, while the
cellular path should only be when necessary to rescue de-
layed frames. However, in practice, we observe that se-
vere Wi-Fi capacity degradation can occur occasionally. As
demonstrated in Fig. 11, such degradation results in bursty
frame stalls that last for hundreds of milliseconds, which can
have a significant impact on user experience.

To address this issue, the multipath agent can temporar-
ily switch the primary path to cellular and stop sending new
frames on the degraded Wi-Fi path. Similar to the frame re-
transmission decision procedure, the multipath agent contin-
uously solves the simplified ILP problem using M̂2 provided
by the state manager and obtains a decision X2. It initiates a
primary path switch when two conditions are met: i) the in-
flight time of the earliest unacknowledged frame T1 matches
with a state in X2 (i.e., T1 = Si ∈ X2) and ii) the RTT of
the cellular path is lower than that of the Wi-Fi path. In this
scenario, AUGUR sends all newly generated frames through
the cellular path and stops deriving backup path utilization
strategies. In addition, the multipath agent promptly retrans-
mits all in-flight frames of the Wi-Fi path through the cellu-
lar path since they are likely to experience prolonged delays
upon detection of capacity degradation. However, directly
using the cellular path as the primary path violates our cel-
lular data limit rule, and since the capacity degradations of
the Wi-Fi path are transient, it is necessary to switch back
to Wi-Fi as soon as possible. While new frames are being
sent through the cellular path, the sending queue of the Wi-
Fi path can be drained, and we start sending probe frames on
the Wi-Fi path when there are fewer than two in-flight frames
on the Wi-Fi path to detect any capacity improvements. Once
the capacity of the Wi-Fi path recovers (i.e., the Wi-Fi path

RTT is not in X2), the multipath agent switches the primary
path back to Wi-Fi and restores the simplified ILP problem-
solving process. The effectiveness of primary path transition
is evaluated in §5.4.

4 Trace-driven Emulation
In this section, we evaluate AUGUR in an emulation environ-
ment with real-world traces to compare it with other mul-
tipath transport schemes. Based on the results of our em-
ulation, we further conduct large-scale experiments on our
cloud gaming platform (§5).

4.1 Evaluation Methodology

Testbed. We use mpshell [42], a multipath extension of
Mahimahi [43] for network emulation. We develop a testbed
framework to implement the streaming pipeline in Fig. 1
with approximately 6000 lines of Python code. To demon-
strate the cooperation between AUGUR and CCAs, we also
implement two CCAs designed for real-time streaming in-
cluding Salsify [11] and SQP [12].
Trace collection. We collect Wi-Fi and cellular link traces
based on the running logs of our user sessions. The logs
contain the user-perceived wireless network bandwidth, and
RTT inflation caused by wireless fluctuation would lead to
a sudden decrease in user-perceived bandwidth. To evaluate
the effectiveness of AUGUR in the presence of wireless fluc-
tuations, we filter out traces that were either too brief (less
than 10 minutes) or too consistent (with no RTT inflation).
Each trace is replayed for more than 10 minutes.
Baseline. We compare AUGUR with the following multipath
transport schemes as baselines:
• Single Path (SP): all video frames are streamed exclu-

sively through the Wi-Fi path;
• minRTT [16]: the default multipath scheduler of

MPTCP, which schedules packets through the path with
the lowest estimated RTT;

• ECF [19]: it utilizes some relevant information (e.g.,
cwnd value) of a path besides RTT to provide avail-
able aggregate bandwidth of all paths. It assumes that
the underlying CCAs are congestion-window-based and
require cwnd values for decision-making. For the rate-
based CCAs we use, we derive cwnd value by multiply-
ing the sending rate and the estimated RTT.

• BLEST [18]: it aims to avoid HoL-blocking and spuri-
ous retransmissions by controlling the buffer blocking.
We provide it with the cwnd value in the same way as
described above.

• RAVEN [17]: it replicates packets on multiple paths
when confidence about network latency predictions is
low to reduce latency.

4.2 Performance

Frame delivery delay and stall rate. We measured the
frame delivery delay for all multipath transport schemes with

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1909

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

C
D

F
 (

%
)

Delay (ms)

SP
minRTT

ECF
BLEST

RAVEN
AUGUR

 99.9
 99.92
 99.94
 99.96
 99.98

 100

 0 100
 200

 300
 400

 500

(a) Frame delivery delay.

 0.01

 0.1

 1

 10

 100

 1000

SP

m
in

RT
T

EC
F

BLE
ST

RA
VEN

AUGUR

S
ta

ll
R

a
te

 (
‰

)

 0.01

 0.1

 1

 10

 100

 1000

SP

m
in

RT
T

EC
F

BLE
ST

RA
VEN

AUGUR

S
ta

ll
R

a
te

 (
‰

)

(b) Frame stall rate.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

SP

m
in

RT
T

EC
F

BLE
ST

RA
VEN

AUGUR

C
e
llu

la
r

D
a
ta

 U
sa

g
e
 (

%
)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

SP

m
in

RT
T

EC
F

BLE
ST

RA
VEN

AUGUR

C
e
llu

la
r

D
a
ta

 U
sa

g
e
 (

%
)

(c) Cellular data usage.

Figure 12: AUGUR performance cooperating with Salsify.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

C
D

F
 (

%
)

Delay (ms)

SP
minRTT

ECF
BLEST

RAVEN
AUGUR

 99.9
 99.92
 99.94
 99.96
 99.98

 100

 0 100
 200

 300
 400

 500

(a) Frame delivery delay.

 0.01

 0.1

 1

 10

 100

 1000

SP

m
in

RT
T

EC
F

BLE
ST

RA
VEN

AUGUR

S
ta

ll
R

a
te

 (
‰

)

 0.01

 0.1

 1

 10

 100

 1000

SP

m
in

RT
T

EC
F

BLE
ST

RA
VEN

AUGUR

S
ta

ll
R

a
te

 (
‰

)

(b) Frame stall rate.

 0

 10

 20

 30

 40

 50

 60

 70

SP

m
in

RT
T

EC
F

BLE
ST

RA
VEN

AUGUR

C
e
llu

la
r

D
a
ta

 U
sa

g
e
 (

%
)

 0

 10

 20

 30

 40

 50

 60

 70

SP

m
in

RT
T

EC
F

BLE
ST

RA
VEN

AUGUR

C
e
llu

la
r

D
a
ta

 U
sa

g
e
 (

%
)

(c) Cellular data usage.

Figure 13: AUGUR performance cooperating with SQP.

different CCAs. As shown in Fig. 12a and Fig. 13a, while
the median frame delivery delays are similar for all multi-
path schemes, AUGUR effectively reduces tail latency and
outperforms other multipath schemes for both CCAs. Com-
pared to only using Wi-Fi for frame transmission, AUGUR
reduces the 99.9th percentile latency by 66.0% and 35.4%
for Salsify and SQP, respectively. As a result, AUGUR effec-
tively reduces the frame stall rate, as shown in Fig. 12b and
Fig. 13b. Among all multipath schemes, AUGUR achieves
the lowest average frame stall rate, and compared to using
only the Wi-Fi path, AUGUR reduces the stall rate by 99.5%
and 91.5% for Salsify and SQP, respectively. This demon-
strates that AUGUR cooperates with different CCAs and ef-
fectively reduces long tail latency in real-time streaming.

Cellular data usage. To evaluate AUGUR’s ability to reduce
cellular data usage, we calculate the ratio of bytes transmit-
ted on the cellular path to the total transmitted bytes for all
multipath schemes. Our results, as shown in Fig. 12c and
Fig. 13c, indicate that AUGUR achieves the lowest cellular
data usage among all multipath schemes, with only 2.7% and
2.3% cellular data usage for Salsify and SQP, respectively. It
is worth noting that compared to minRTT, which can also
effectively reduce the frame stall rate, AUGUR reduces cel-
lular data usage by 88.1% and 96.4% for Salsify and SQP,
respectively. These findings demonstrate that AUGUR can
effectively reduce cellular data usage without compromising
performance, making it a viable option for deployment in
commercial platforms.

Multipath scheme SP minRTT AUGUR

Num. of user sessions 3974 4167 3699
Total 11840

Table 1: Large-scale experiment setup.

5 Large-scale Deployment in the Wild
We further deploy AUGUR in Tencent Start cloud gaming
server clusters to evaluate its effectiveness in reducing long
tail latency and constraining cellular data usage.

5.1 Implementation and Deployment
We implement AUGUR in our cloud gaming platform fully
in the userspace. The streaming application on user devices
initiates separate connections to our servers with two sockets
to leverage the Wi-Fi and the cellular path. Regarding the
cellular budget, users are required to set a per-month limit
in MB, and AUGUR calculates the corresponding value of δ
based on the average stall rate and playing time of all users.
For instance, a limit of 500 MB per month would result in a δ
value of 3.5. We set the default value for the time window ∆
to be 5 min. We have deployed AUGUR for over six months
and served millions of users with over ten million hours of
playing time.

5.2 Experiment Setup
We conduct large-scale A/B tests to evaluate AUGUR in our
platform. In addition to AUGUR and single-path Wi-Fi (SP),
we also deployed minRTT [16] based on our emulation re-
sults in §4.2. We initiate SP, minRTT, and AUGUR for all
users who are willing to use cellular interfaces for better per-
formance, and each user is served by each with equal possi-

1910 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
D

F
 (

%
)

Frame Delay (ms)

SP minRTT AUGUR

 99

 99.5

 100

 0 100
 200

 300

(a) Frame delivery delay.

 0

 3

 6

 9

 12

 15

SP
minRTT

AUGUR
 0

 1

 2

 3

 4

 5

C
el

lu
la

r
D

at
a

U
sa

ge
 (

%
)

F
ra

m
e

 S
ta

ll
R

at
e

(‰
)

cell cost stall rate

 0

 3

 6

 9

 12

 15

SP
minRTT

AUGUR
 0

 1

 2

 3

 4

 5

C
el

lu
la

r
D

at
a

U
sa

ge
 (

%
)

F
ra

m
e

 S
ta

ll
R

at
e

(‰
)

cell cost stall rate

(b) Average frame stall rate and
cellular data usage.

 0.001

 0.01

 0.1

 1

 10

 100

SP
minRTT

AUGUR

F
ra

m
e

 S
ta

ll
R

at
e

(‰
)

(c) Frame stall rate.

 0

 10

 20

 30

 40

 50

minRTT AUGUR

C
el

lu
la

r
D

at
a

U
sa

ge
 (

%
)

(d) Cellular data usage.

Figure 14: Online performance of multipath transport schemes.

 0

 50

 100

 150

 200

 250

SP
minRTT

AUGUR

N
or

m
a

liz
e

d
U

se
r

 R
et

en
tio

n
T

im
e

(%
)

100.0 104.2
118.5

 0

 50

 100

 150

 200

 250

SP
minRTT

AUGUR

N
or

m
a

liz
e

d
U

se
r

 R
et

en
tio

n
T

im
e

(%
)

100.0 104.2
118.5

(a) User retention time.

 0

 20

 40

 60

 80

 100

SP
minRTT

AUGUR

N
or

m
a

liz
e

d
B

itr
at

e
(%

) 100.0 97.6 94.6

 0

 20

 40

 60

 80

 100

SP
minRTT

AUGUR

N
or

m
a

liz
e

d
B

itr
at

e
(%

) 100.0 97.6 94.6

(b) Average bitrate.

Figure 15: Online user QoE of multipath transport schemes.

bility. All other settings and implementations, such as CCA,
remain the same. The A/B tests are conducted for two weeks
and result in a total of 11840 user sessions. The numbers of
user sessions for each scheme are shown in Tab. 1.

5.3 Performance

Frame delivery delay and stall rate. Achieving consistent
low latency is a key requirement for real-time services that
require interactivity. To evaluate the performance of frame
transport delay in AUGUR, we plot the CDFs of frame de-
livery delays and frame stall rate for all user sessions using
three multipath schemes in Fig. 14a, Fig. 14b, and Fig. 14c.
While the median delay is similar across all schemes, AU-
GUR outperforms SP and minRTT in reducing long tail de-
lay at the 99th percentile, achieving reductions of 14.2% and
7.7% respectively. More importantly, for severely prolonged
tail delays (i.e., frame delay ≥ 200 ms) that significantly im-
pact user experience, AUGUR is capable of maintaining the
99.9th percentile latency below 200 ms, while SP and min-
RTT leave the 99.9th percentile latency over 300 ms.

Consequently, AUGUR reduces the average stall rate of
all user sessions to below 0.1%, improving by 78.0% and
73.5% compared to SP and minRTT, respectively. In addi-
tion, AUGUR reduces the median stall rate of all user ses-
sions to only 0.02%, and reduces the median stall rate by
90.0% and 85.7% compared to SP and minRTT, respectively.
These results demonstrate that in the presence of RTT infla-
tion caused by wireless fluctuation, AUGUR is able to reduce
the long tail latency and frame stall rate to enhance the ser-
vice experience for the majority of mobile users.

Cellular cost. In order to compare the cellular data usage of
AUGUR and the baseline minRTT multipath scheduler, we

calculate the ratio of bytes transmitted on the cellular path to
the total transmitted bytes for each user session. As shown
in Fig. 14b and Fig. 14d, on average, AUGUR sends 7.3%
of the video data streaming through the cellular path, which
is 2× less than minRTT. Additionally, for all user sessions,
AUGUR incurs 0.65% median cellular data usage, which is
8.9× less than minRTT. This reduction in cellular data usage
can be attributed to two factors. First, AUGUR retransmits
only those frames that are likely to be delayed, instead of
scheduling all frames on the path with a lower RTT. Second,
AUGUR strictly constrains the cellular budget according to
Eqn. 6, resulting in a controlled cellular usage pattern. Note
that this constraint allows AUGUR to bound the maximum
cellular cost and reduce it by 4.7× compared to minRTT
scheduler.

User QoE. We use user retention time and average video
bitrate as our QoE metrics. As discussed in §2.1, a higher
frame stall rate leads to a decrease in user retention time,
which represents a degradation in the user experience of our
service. To illustrate the effect of AUGUR on user experi-
ence, we show the normalized average user retention time of
three transport schemes in Fig. 15a, which demonstrates that
with AUGUR deployed, user retention time can be improved
by 18.5% and 13.7% on average compared to SP and min-
RTT, respectively. Note that user retention time has a large
deviation because it is also affected by other factors that are
uncorrelated to network performance, such as personal pref-
erence.

As AUGUR actively retransmits frames on other paths
and switches the primary path, it may interfere with the
bandwidth estimation mechanism of the underlying trans-
port (e.g., CCA), thus affects the user QoE. We show the nor-
malized average video bitrate of three transport schemes in
Fig. 15b, which demonstrates that AUGUR has little impact
on video bitrate, with 5.4% and 3.1% decrease compared to
SP and minRTT, respectively.

5.4 Micro-benchmark

We further perform some micro-benchmarks to investigate
the impact of different design choices made in the develop-
ment of AUGUR, including parameter settings and cellular
utilization approaches.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1911

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
D

F
 (

%
)

Frame Delay (ms)

2.5 min 5 min 10 min

 99.9

 99.95

 100

 0 100
 200

 300

(a) Frame delivery delay.

 0

 4

 8

 12

 16

 20

2.5 min
5 min

10 min
 0

 0.2

 0.4

 0.6

 0.8

 1

C
el

lu
la

r
D

at
a

U
sa

ge
 (

‰
)

F
ra

m
e

 S
ta

ll
R

at
e

(‰
)

cell cost stall rate

 0

 4

 8

 12

 16

 20

2.5 min
5 min

10 min
 0

 0.2

 0.4

 0.6

 0.8

 1

C
el

lu
la

r
D

at
a

U
sa

ge
 (

‰
)

F
ra

m
e

 S
ta

ll
R

at
e

(‰
)

cell cost stall rate

(b) Stall rate and cellular cost.

Figure 16: Impact of time window value ∆.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
D

F
 (

%
)

Frame Delay (ms)

δ = 1.75 δ = 3.5

 99.9

 99.95

 100

 0 100
 200

 300

(a) Frame delivery delay.

 0

 4

 8

 12

 16

 20

δ = 1.75
δ = 3.5

 0

 0.2

 0.4

 0.6

 0.8

 1

C
el

lu
la

r
D

at
a

U
sa

ge
 (

‰
)

F
ra

m
e

 S
ta

ll
R

at
e

(‰
)

cell cost stall rate

 0

 4

 8

 12

 16

 20

δ = 1.75
δ = 3.5

 0

 0.2

 0.4

 0.6

 0.8

 1

C
el

lu
la

r
D

at
a

U
sa

ge
 (

‰
)

F
ra

m
e

 S
ta

ll
R

at
e

(‰
)

cell cost stall rate

(b) Stall rate and cellular cost.

Figure 17: Impact of cellular constraint factor δ.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
D

F
 (

%
)

Frame Delay (ms)

AUGUR w/o retrans. w/o switch

 99.9

 99.95

 100

 0 100
 200

 300

(a) Frame delivery delay.

 0

 4

 8

 12

 16

 20

AUGUR

w/o retrans.

w/o switch
 0

 0.2

 0.4

 0.6

 0.8

 1

C
el

lu
la

r
D

at
a

U
sa

ge
 (

‰
)

F
ra

m
e

 S
ta

ll
R

at
e

(‰
)

cell cost stall rate

 0

 4

 8

 12

 16

 20

AUGUR

w/o retrans.

w/o switch
 0

 0.2

 0.4

 0.6

 0.8

 1

C
el

lu
la

r
D

at
a

U
sa

ge
 (

‰
)

F
ra

m
e

 S
ta

ll
R

at
e

(‰
)

cell cost stall rate

(b) Stall rate and cellular cost.

Figure 18: Impact of frame retransmission and primary path
switch.

5.4.1 Parameter Setting

Time window value. AUGUR uses a time window ∆ to ap-
proximate the state probability models. The value of ∆ re-
flects the fluctuation level of a single user’s characteristics.
To investigate the impact of ∆, we conduct an experiment
involving 2,186 users, with ∆ set to 2.5 min, 5 min, and 10
min. As illustrated in Fig. 16, we observe that AUGUR is
not sensitive to the choice of ∆, and the frame delivery de-
lays remain similar across all three settings. Additionally, a
larger time window results in slightly higher cellular costs
and a lower frame stall rate. This is because a larger time
window can detect more stall events and adopt a more ag-
gressive backup path utilization strategy. In practice, we set
∆ to 5 min based on our deployment experience to reach a
balance between stall rate and cellular cost.

Cellular constraint factor. AUGUR uses a factor δ to con-
strain the cellular cost in Eqn. 6 and its value adapts to the
cellular budget specified by the user. To demonstrate the ef-
fect of different δ values, we show the performance of AU-
GUR with two most frequently specified settings: δ = 1.75
corresponding to 250 MB per month and δ = 3.5 correspond-
ing to 500 MB per month. As shown in Fig. 17, a larger con-
straint factor results in a more effective reduction of long tail
latency and stall rate with higher cellular data usage. This
demonstrates that δ controls the trade-off between better net-
work performance and lower cellular data cost. We leave
the decision of choosing δ to each user based on their data
budget.

5.4.2 Cellular Path Utilization

AUGUR utilizes the cellular path in two approaches: frame
retransmission and primary path switch. To investigate the

effectiveness of both approaches, we conduct an experiment
with 7,266 invited users accessing our real-time streaming
platform. We randomly assign one-third of users with frame
retransmission disabled, one-third of users with primary path
switch disabled, and the rest with full AUGUR functionality.

Frame retransmission. AUGUR uses application-level
frame retransmission to rescue delayed frames on the Wi-Fi
path to reduce long tail latency. As shown in Fig. 18, com-
pared to only performing the primary path switch, enabling
frame retransmission reduced the 99th percentile latency
and stall rate by 45.8% and 55.5%, respectively, with 0.2%
higher cellular data usage. This demonstrates that leveraging
the cellular path to perform application-level frame retrans-
mission is necessary to reduce long tail latency caused by
RTT inflation.

Primary path switch. To cope with bursty frame stalls
caused by severe Wi-Fi capacity degradation, AUGUR sched-
ules the primary path to cellular. As depicted in Fig. 18, the
decision to switch the primary path avoids streaming frames
on a degraded path and can significantly reduce long tail la-
tency. Compared to only retransmitting frames, AUGUR re-
duces the 99th percentile latency and stall rate by 25% and
31.7%, respectively, with only a 0.4% increase in cellular
cost.

6 Discussion
In this section, we discuss some potential limitations and fu-
ture work of AUGUR.

Deployment scenario. As a cloud gaming service provider,
we primarily evaluated the performance of AUGUR in our
cloud gaming clusters and demonstrated its ability to reduce
long tail latency. Meanwhile, the scenario of using both Wi-
Fi and cellular paths for real-time streaming can be applied
to many other applications with consistently low latency re-
quirements, such as video conferencing and live streaming.
With the development of Wi-Fi 7 [44] and 5G [41], which
provide higher network bandwidth, AUGUR can also be de-
ployed for AR/VR applications across a wide range.

Multiple cellular paths. AUGUR currently leverages only
one cellular path. However, as multi-carrier phones become
increasingly popular and the benefits of a multipath system
design that supports more than two paths are being acknowl-
edged [45], AUGUR can be extended to support multiple cel-

1912 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

lular paths. This would allow AUGUR to enable multiple cel-
lular backup paths and constrain their usage by introducing
different δ values for each path. We leave the extension of
AUGUR to support multiple cellular paths as our future work.

Cross-layer optimization. Recent years have seen the pro-
posal of various approaches to improve the performance
and user QoE of mobile real-time streaming. These ap-
proaches include deploying dedicated CCAs [9, 11, 12], us-
ing the adaptive bitrate (ABR) to meet network conditions
[46, 47, 48, 49], leveraging forward error correction (FEC)
to recover lost frames [50, 51, 28], encoding video frames in
a QoE-aware manner [52, 53, 54], allocating and scheduling
streaming resources [55, 56, 57], utilizing timely feedback
from Wi-Fi APs [58], and adjusting frame rate based on net-
work conditions [8, 59]. As a multipath transport service,
AUGUR is orthogonal to these approaches and can be used
jointly with them. Furthermore, AUGUR can be extended
to perform cross-layer optimization with these approaches
(e.g., retransmit frames with FEC). We leave cross-layer op-
timization of AUGUR as our future work.

7 Related Work

Multipath transport. Multipath transport utilizes multiple
paths simultaneously for data delivery in a single connec-
tion. MPTCP [60] and MPUDP [61] integrate multipath
transport into the OS kernel and provide a single-connection
abstraction to applications. Based on this framework, many
multipath schedulers have been proposed, such as ECF [19],
BLEST [18], RAVEN [17], and DEMS [20]. However, the
large-scale deployment of such a framework has been slow
due to its modification of user device kernels [16] and net-
work middleboxes [62]. Therefore, some multipath trans-
port systems based on QUIC have been proposed, such as
MPQUIC [63], PQUIC [64], and XLINK [24]. Addition-
ally, there are some multipath transport schemes using TCP
splitting (POLYCORN [65]) or implemented in the applica-
tion layer (MP-H2 [66], MSPlayer [67], MP-DASH [21],
mHTTP [68]). Like these approaches, AUGUR can be de-
ployed on a large scale and is specifically designed for real-
time streaming with low tail latency requirements.

Cellular cost reduction. Several approaches have been pro-
posed to reduce the cellular data cost for network traffics.
By leveraging the delay-tolerant nature of VoD applications,
MP-DASH [21] schedules the cellular path based on a user-
specified preference and a known video chunk size, and
Obilgir et al. schedules data transmissions to reduce cel-
lular data usage. TrafficGuard [69] adopts a proxy-based
method to reduce cellular traffic using a network-layer VPN.
Yanyuan et al. [70] uses a chunk filter and a rate adapta-
tion algorithm to reduce cellular usage in video streaming.
In contrast to all approaches above, AUGUR is designed for
real-time streaming applications and reduces cellular cost by
directly avoiding unnecessary data transmission.

8 Conclusion
In this paper, we demonstrate that long tail latency can
severely degrade the user experience in real-time streaming.
We further find that in wireless networks like Wi-Fi, long
tail latency is induced by RTT inflation caused by wireless
fluctuation, and thus cannot be reduced by deploying dedi-
cated CCAs. While it is straightforward to leverage cellular
paths to alleviate the impact of Wi-Fi RTT inflation, we re-
veal that users express strong concern about cellular cost,
thus it is crucial to minimize cellular data usage for a widely
deployed multipath transport service. We design AUGUR,
a practical multipath transport service for mobile real-time
streaming that meets the requirement of reducing long tail
latency, minimizing cellular data usage, and enabling large-
scale deployment. We deploy AUGUR on our cloud gam-
ing platform with millions of users across a wide area and
demonstrate its effectiveness in reducing long tail latency
and frame stall rate with minimal cellular data usage. We
believe that AUGUR can be widely deployed at any scale to
provide universal low-latency mobile streaming access.

Acknowledgements
We are grateful to the NSDI reviewers for their construc-
tive critique, and to our shepherd Akshay Narayan in partic-
ular, for his valuable comments, all of which have helped us
greatly improve this paper. This work is supported by Na-
tional Key Research and Development Plan, China (Grant
No. 2020YFB1710900), National Natural Science Founda-
tion of China (Grant No. 62022005 and 62172008).

References
[1] Samsung gaming hub. https://www.samsung.

com/us/televisions-home-theater/tvs
/gaming-hub/, 2022.

[2] Google cloud gaming. https://cloud.google
.com/solutions/games, 2023.

[3] Zoom: One platform to connect. https://zoom.u
s, 2023.

[4] Microsoft teams. https://www.microsoft.co
m/en-us/microsoft-teams/group-chat-s
oftware, 2023.

[5] Google map live view support. https:
//support.google.com/maps/answer/9
332056?hl=en&co=GENIE.Platform%3DiOS,
2023.

[6] Youtube vr - home. https://vr.youtube.com/,
2023.

[7] Cloud gaming market: Global industry trends, share,
size, growth, opportunity and forecast 2023-2028. Mar-
ket report 5732901, IMARC Group, 2023.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1913

https://www.samsung.com/us/televisions-home-theater/tvs/gaming-hub/
https://www.samsung.com/us/televisions-home-theater/tvs/gaming-hub/
https://www.samsung.com/us/televisions-home-theater/tvs/gaming-hub/
https://cloud.google.com/solutions/games
https://cloud.google.com/solutions/games
https://zoom.us
https://zoom.us
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://support.google.com/maps/answer/9332056?hl=en&co=GENIE.Platform%3DiOS
https://support.google.com/maps/answer/9332056?hl=en&co=GENIE.Platform%3DiOS
https://support.google.com/maps/answer/9332056?hl=en&co=GENIE.Platform%3DiOS
https://vr.youtube.com/

[8] Zili Meng, Tingfeng Wang, Yixin Shen, Bo Wang,
Mingwei Xu, Rui Han, Honghao Liu, Venkat Arun,
Hongxin Hu, and Xue Wei. Enabling high quality Real-
Time communications with adaptive Frame-Rate. In
USENIX NSDI, 2023.

[9] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and
Saverio Mascolo. Analysis and design of the google
congestion control for web real-time communication
(webrtc). In ACM MMSys, 2016.

[10] Xiaoqing Zhu and Rong Pan. Nada: A unified conges-
tion control scheme for low-latency interactive video.
In 20th IEEE International Packet Video Workshop,
2013.

[11] Sadjad Fouladi, John Emmons, Emre Orbay, Cather-
ine Wu, Riad S. Wahby, and Keith Winstein. Salsify:
Low-latency network video through tighter integration
between a video codec and a transport protocol. In
USENIX NSDI, 2018.

[12] Devdeep Ray, Connor Smith, Teng Wei, David Chu,
and Srinivasan Seshan. Sqp: Congestion control for
low-latency interactive video streaming. arXiv preprint
arXiv:2207.11857, 2022.

[13] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshmi-
narayanan Subramanian, and Carmelita Görg. Adap-
tive congestion control for unpredictable cellular net-
works. In ACM SIGCOMM, 2015.

[14] Keith Winstein, Anirudh Sivaraman, and Hari Balakr-
ishnan. Stochastic forecasts achieve high throughput
and low delay over cellular networks. In USENIX
NSDI, April 2013.

[15] Christoph Paasch, Simone Ferlin, Ozgu Alay, and
Olivier Bonaventure. Experimental evaluation of mul-
tipath tcp schedulers. In ACM CSWS, 2014.

[16] Costin Raiciu, Christoph Paasch, Sebastien Barre,
Alan Ford, Michio Honda, Fabien Duchene, Olivier
Bonaventure, and Mark Handley. How hard can it
be? designing and implementing a deployable multi-
path tcp. In USENIX NSDI, 2012.

[17] HyunJong Lee, Jason Flinn, and Basavaraj Tonshal.
Raven: Improving interactive latency for the connected
car. In ACM MobiCom, 2018.

[18] Per Hurtig, Karl-Johan Grinnemo, Anna Brunstrom,
Simone Ferlin, Özgü Alay, and Nicolas Kuhn. Low-
latency scheduling in mptcp. IEEE/ACM Transactions
on Networking, 2019.

[19] Yeon-sup Lim, Erich M. Nahum, Don Towsley, and
Richard J. Gibbens. Ecf: An mptcp path scheduler to
manage heterogeneous paths. In ACM CoNEXT, 2017.

[20] Yihua Ethan Guo, Ashkan Nikravesh, Z. Morley Mao,
Feng Qian, and Subhabrata Sen. Accelerating multi-
path transport through balanced subflow completion. In
ACM MobiCom, 2017.

[21] Bo Han, Feng Qian, Lusheng Ji, and Vijay Gopalakr-
ishnan. Mp-dash: Adaptive video streaming over
preference-aware multipath. In ACM CoNEXT, 2016.

[22] Cheng-Lin Tsao and Raghupathy Sivakumar. On effec-
tively exploiting multiple wireless interfaces in mobile
hosts. In ACM CoNEXT, 2009.

[23] Onjeinika Brooks. Best cell phone plans of 2022. ht
tps://www.reviews.org/internet-servi
ce/best-internet-service-providers/,
2022.

[24] Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong
Yang, Zhenyu Li, Yuanbo Zhang, Jiuhai Zhang, Wei
Shi, Wentao Chen, Ding Li, Qing An, Hai Hong,
Hongqiang Harry Liu, and Ming Zhang. Xlink: Qoe-
driven multi-path quic transport in large-scale video
services. In ACM SIGCOMM, 2021.

[25] Start cloud gaming. https://start.qq.com/,
2023.

[26] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard,
and Ajay Luthra. Overview of the h. 264/avc video
coding standard. IEEE Transactions on circuits and
systems for video technology, 2003.

[27] Taehyun Kim, Niranjan Avadhanam, and Sridharan
Subramanian. Dimensioning receiver buffer require-
ment for unidirectional vbr video streaming over tcp.
In IEEE International Conference on Image Process-
ing, 2006.

[28] Michael Rudow, Francis Y. Yan, Abhishek Kumar,
Ganesh Ananthanarayanan, Martin Ellis, and K.V.
Rashmi. Tambur: Efficient loss recovery for video-
conferencing via streaming codes. In USENIX NSDI,
2023.

[29] Serhat Arslan, Yuliang Li, Gautam Kumar, and Nan-
dita Dukkipati. Bolt: Sub-RTT congestion control for
Ultra-Low latency. In USENIX NSDI, 2023.

[30] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. Hpcc: High precision congestion control. In
ACM SIGCOMM, 2019.

[31] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yu-
liang Li, Gianni Antichi, Minian Yu, and Michael
Mitzenmacher. Pint: Probabilistic in-band network
telemetry. In ACM SIGCOMM, 2020.

1914 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.reviews.org/internet-service/best-internet-service-providers/
https://www.reviews.org/internet-service/best-internet-service-providers/
https://www.reviews.org/internet-service/best-internet-service-providers/
https://start.qq.com/

[32] Dina Katabi, Mark Handley, and Charlie Rohrs. Con-
gestion control for high bandwidth-delay product net-
works. ACM SIGCOMM Computer Communication
Review, 2002.

[33] Alexander Frommgen, Tobias Erbshäußer, Alejandro
Buchmann, Torsten Zimmermann, and Klaus Wehrle.
Remp tcp: Low latency multipath tcp. In IEEE ICC,
2016.

[34] Markus Amend, Veselin Rakocevic, and Joachim
Habermann. Cost optimized multipath scheduling in
5g for video-on-demand traffic. In IEEE WCNC, 2021.

[35] Frank J Massey Jr. The kolmogorov-smirnov test for
goodness of fit. Journal of the American statistical As-
sociation, 1951.

[36] Solomon Kullback and Richard A Leibler. On infor-
mation and sufficiency. The annals of mathematical
statistics, 1951.

[37] Xinlei Yang, Hao Lin, Zhenhua Li, Feng Qian,
Xingyao Li, Zhiming He, Xudong Wu, Xianlong
Wang, Yunhao Liu, Zhi Liao, Daqiang Hu, and Tianyin
Xu. Mobile access bandwidth in practice: Measure-
ment, analysis, and implications. In ACM SIGCOMM,
2022.

[38] Haiqing Jiang, Zeyu Liu, Yaogong Wang, Kyunghan
Lee, and Injong Rhee. Understanding bufferbloat in
cellular networks. In ACM SIGCOMM CellNet, 2012.

[39] Jing Wang, Yufan Zheng, Yunzhe Ni, Chenren Xu,
Feng Qian, Wangyang Li, Wantong Jiang, Yihua
Cheng, Zhuo Cheng, Yuanjie Li, Xiufeng Xie, Yi Sun,
and Zhongfeng Wang. An active-passive measurement
study of tcp performance over lte on high-speed rails.
In ACM MobiCom, 2019.

[40] Junxian Huang, Feng Qian, Alexandre Gerber, Z. Mor-
ley Mao, Subhabrata Sen, and Oliver Spatscheck. A
close examination of performance and power charac-
teristics of 4g lte networks. In ACM MobiSys, 2012.

[41] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ah-
mad Hassan, Shuowei Jin, Xiao Zhu, Xiaoxuan Zhang,
Denis Rybkin, Zhengxuan Yang, Zhuoqing Morley
Mao, Feng Qian, and Zhi-Li Zhang. A variegated look
at 5g in the wild: Performance, power, and qoe impli-
cations. In ACM SIGCOMM, 2021.

[42] R. Netravali A. Sivaraman and K. J. Winstein. Mpshell.
https://github.com/ravinet/mahimahi/
releases/tag/old%2Fmpshell_scripted,
2020.

[43] Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens, and
Hari Balakrishnan. Mahimahi: Accurate record-and-
replay for http. In USENIX ATC, 2015.

[44] Cailian Deng, Xuming Fang, Xiao Han, Xianbin Wang,
Li Yan, Rong He, Yan Long, and Yuchen Guo. Ieee
802.11be wi-fi 7: New challenges and opportunities.
IEEE Communications Surveys & Tutorials, 2020.

[45] Xiao Zhu, Jiachen Sun, Xumiao Zhang, Y. Ethan Guo,
Feng Qian, and Z. Morley Mao. Mpbond: Efficient
network-level collaboration among personal mobile de-
vices. In ACM MobiCom, 2020.

[46] Hongzi Mao, Ravi Netravali, and Mohammad Al-
izadeh. Neural adaptive video streaming with pensieve.
In ACM SIGCOMM, 2017.

[47] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan,
Sanjay Rao, Jessica Chen, Ethan Katz-Bassett, Bruno
Ribeiro, Jibin Zhan, and Hui Zhang. Oboe: Auto-
tuning video abr algorithms to network conditions. In
ACM SIGCOMM, 2018.

[48] Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha
Chowdhery, Qizheng Zhang, Henry Hoffmann, and
Junchen Jiang. Server-driven video streaming for deep
learning inference. In ACM SIGCOMM, 2020.

[49] Xianshang Lin, Yunfei Ma, Junshao Zhang, Yao
Cui, Jing Li, Shi Bai, Ziyue Zhang, Dennis Cai,
Hongqiang Harry Liu, and Ming Zhang. Gso-
simulcast: Global stream orchestration in simulcast
video conferencing systems. In ACM SIGCOMM,
2022.

[50] C. Perkins, O. Hodson, and V. Hardman. A survey of
packet loss recovery techniques for streaming audio.
IEEE Network, 1998.

[51] Justin Uberti. Webrtc forward error correction require-
ments. draft-ietf-rtcweb-fec-01 (work in progress),
2015.

[52] Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zong-
ming Guo, and Junchen Jiang. Pano: Optimizing 360°
video streaming with a better understanding of quality
perception. In ACM SIGCOMM, 2019.

[53] Devdeep Ray, Jack Kosaian, K. V. Rashmi, and Srini-
vasan Seshan. Vantage: Optimizing video upload for
time-shifted viewing of social live streams. In ACM
SIGCOMM, 2019.

[54] Mallesham Dasari, Kumara Kahatapitiya, Samir R.
Das, Aruna Balasubramanian, and Dimitris Samaras.
Swift: Adaptive video streaming with layered neural
codecs. In USENIX NSDI, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1915

https://github.com/ravinet/mahimahi/releases/tag/old%2Fmpshell_scripted
https://github.com/ravinet/mahimahi/releases/tag/old%2Fmpshell_scripted

[55] Jinyang Li, Zhenyu Li, Ri Lu, Kai Xiao, Songlin
Li, Jufeng Chen, Jingyu Yang, Chunli Zong, Aiyun
Chen, Qinghua Wu, Chen Sun, Gareth Tyson, and
Hongqiang Harry Liu. Livenet: A low-latency video
transport network for large-scale live streaming. In
ACM SIGCOMM, 2022.

[56] Tan Zhang, Aakanksha Chowdhery, Paramvir (Victor)
Bahl, Kyle Jamieson, and Suman Banerjee. The de-
sign and implementation of a wireless video surveil-
lance system. In ACM MobiCom, 2015.

[57] Le Xu, Shivaram Venkataraman, Indranil Gupta, Luo
Mai, and Rahul Potharaju. Move fast and meet dead-
lines: Fine-grained real-time stream processing with
cameo. In USENIX NSDI, 2021.

[58] Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Jus-
tine Sherry, Hongqiang Harry Liu, and Mingwei Xu.
Achieving consistent low latency for wireless real-time
communications with the shortest control loop. In ACM
SIGCOMM, 2022.

[59] Tingfeng Wang, Zili Meng, Mingwei Xu, Rui Han, and
Honghao Liu. Enabling high frame-rate uhd real-time
communication with frame-skipping. In ACM Hot-
EdgeVideo, 2021.

[60] Alan Ford, Costin Raiciu, Mark Handley, and Olivier
Bonaventure. Tcp extensions for multipath operation
with multiple addresses. Technical report, 2013.

[61] Daniel Lukaszewski and Geoffrey Xie. Multipath
transport for virtual private networks. In 10th USENIX
Workshop on Cyber Security Experimentation and Test,
2017.

[62] Ashkan Nikravesh, Yihua Guo, Feng Qian, Z. Morley
Mao, and Subhabrata Sen. An in-depth understanding
of multipath tcp on mobile devices: Measurement and
system design. In ACM MobiCom, 2016.

[63] Quentin De Coninck and Olivier Bonaventure. Multi-
path quic: Design and evaluation. In ACM CoNEXT,
2017.

[64] Quentin De Coninck, François Michel, Maxime Piraux,
Florentin Rochet, Thomas Given-Wilson, Axel Legay,
Olivier Pereira, and Olivier Bonaventure. Pluginizing
quic. In ACM SIGCOMM, 2019.

[65] Yunzhe Ni, Feng Qian, Taide Liu, Yihua Cheng, Zhiyao
Ma, Jing Wang, Zhongfeng Wang, Gang Huang, Xu-
anzhe Liu, and Chenren Xu. POLYCORN: Data-driven
cross-layer multipath networking for high-speed rail-
way through composable schedulerlets. In USENIX
NSDI, 2023.

[66] Ashkan Nikravesh, Yihua Guo, Xiao Zhu, Feng Qian,
and Z. Morley Mao. Mp-h2: A client-only multipath
solution for http/2. In ACM MobiCom, 2019.

[67] Yung-Chih Chen, Don Towsley, and Ramin Khalili.
Msplayer: Multi-source and multi-path video stream-
ing. IEEE Journal on Selected Areas in Communica-
tions, 2016.

[68] Juhoon Kim, Yung-Chih Chen, Ramin Khalili, Don
Towsley, and Anja Feldmann. Multi-source multipath
http (mhttp): A proposal. In ACM SIGMETRICS, 2014.

[69] Zhenhua Li, Weiwei Wang, Tianyin Xu, Xin Zhong,
Xiang-Yang Li, Yunhao Liu, Christo Wilson, and
Ben Y. Zhao. Exploring Cross-Application cellu-
lar traffic optimization with baidu TrafficGuard. In
USENIX NSDI, 2016.

[70] Yanyuan Qin, Shuai Hao, Krishna R. Pattipati, Feng
Qian, Subhabrata Sen, Bing Wang, and Chaoqun
Yue. Quality-aware strategies for optimizing abr video
streaming qoe and reducing data usage. In ACM MM-
Sys, 2019.

1916 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Zombie: Middleboxes that Don’t Snoop

Collin Zhang,† Zachary DeStefano,∗ Arasu Arun,∗ Joseph Bonneau,∗ Paul Grubbs,‡ Michael Walfish∗

∗NYU †Cornell (work done mostly at NYU) ‡University of Michigan

Abstract. Zero-knowledge middleboxes (ZKMBs) are a re-
cent paradigm in which clients get privacy while middleboxes
enforce policy: clients prove in zero knowledge that the plain-
text underlying their encrypted traffic complies with network
policies, such as DNS filtering. However, prior work had im-
practically poor performance and was limited in functionality.

This work presents Zombie, the first system built using the
ZKMB paradigm. Zombie introduces techniques that push
ZKMBs to the verge of practicality: preprocessing (to move
the bulk of proof generation to idle times between requests),
asynchrony (to remove proving and verifying costs from the
critical path), and batching (to amortize some of the veri-
fication work). Zombie’s choices, together with these tech-
niques, reduce client and middlebox overhead by ≈ 3.5×,
lowering the critical path overhead for a DNS filtering appli-
cation on commodity hardware to less than 300ms or, in the
asynchronous configuration, to 0.

As an additional contribution that is likely of indepen-
dent interest, Zombie introduces a portfolio of techniques
to encode regular expressions in probabilistic (and zero-
knowledge) proofs. These techniques significantly improve
performance over a standard baseline, asymptotically and con-
cretely. Zombie builds on this portfolio to support policies
based on regular expressions, such as data loss prevention.

1 Introduction
A fundamental conflict frequently arises in network security:
administrators’ policy enforcement vs. users’ privacy. Orga-
nizations want, or in some cases need (by legal obligation),
to enforce network usage policies. Users want end-to-end
encrypted protocols like TLS to provide privacy against net-
work observers, including administrators. Traditionally, policy
enforcement requires a middlebox to scan traffic and block
policy-violating use. End-to-end encryption is in direct con-
flict with middleboxes, which can’t see plaintext and therefore
can’t assess policy compliance. This conflict has led some
administrators to take draconian steps, like inserting them-
selves as an all-seeing middleperson (MITM) proxying TLS
connections (“split TLS”), or even blocking the use of TLS.

Resolving this conflict has been a goal of the network secu-
rity research community for some time. Existing approaches
have fallen into two categories. First are protocols that use
novel cryptography to enable policy checks on encrypted
data, but require server support and/or changes to standard
protocols like TLS [63, 79, 98] (§7). Changing TLS is a huge
task though: it took ten years of extensive design effort to

go from TLS 1.2 [30] to TLS 1.3 [90]. Deploying server-side
changes is also slow: five years after the standardization of
TLS 1.3, only 60% of HTTPS servers on the web support
it [60]. Furthermore, implementing TLS securely is notori-
ously complex and subtle [24], meaning that protocol changes
are risky. Second, by contrast, are middleboxes designed to
work with standard TLS-encrypted traffic but rely on trusted
hardware enclaves (TEEs) to enforce policy [31, 44]. Our
perspective is that, although it promises good performance,
trusted hardware has a wide attack surface (§7), as demon-
strated by many attacks [47, 77, 92, 102, 109–112].

Our goal is to support policy enforcement on standard TLS
1.3 traffic, inheriting its existing security guarantees and avoid-
ing any changes to existing TLS code bases. We eschew any
trusted hardware assumptions. We do, however, accept modi-
fications to clients, observing that modern browser vendors
can update the vast majority of users within months [114].

Zero-knowledge middleboxes. We build on top of the
recently-proposed ZKMB paradigm [49]. With ZKMBs,
clients prove in zero knowledge [43] to the middlebox that
the plaintext underlying their encrypted traffic is policy-
compliant. The middlebox verifies these proofs, allowing
only policy-compliant traffic to pass. Because the proof is
zero knowledge, the middlebox learns nothing about the un-
derlying plaintext, except that it is policy-compliant. ZKMBs
require no changes to existing encryption protocols and no
trusted hardware; they promise an elegant solution to the pol-
icy vs. privacy conflict. However, the initial ZKMB prototype
offered implausible performance for most network applica-
tions, adding several seconds of latency to traffic even under
optimistic assumptions and with a relatively simple policy.

The key question remains: Can ZKMBs perform well
enough, and express a wide-enough range of policies, for real-
world use? This paper gives a cautious affirmative answer,
with the design, implementation, and experimental evaluation
of a system called Zombie.

Contributions and results. Zombie applies three techniques
to reduce end-to-end delay (both client proving costs and mid-
dlebox verifying costs on the critical path). First, Zombie pre-
computes and pre-proves part of the encryption step in TLS,
moving it off the critical path to periods when the client is
idle (§3.1). This part includes legacy cryptographic primitives
like ChaCha20 encryption, which, for reasons we explain
later (§2, §3.1), are expensive to represent in proof frame-
works. Such a split is perhaps surprising: how could a client

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1917

precompute an encryption before the plaintext is known?
Zombie’s next two performance enhancements are condi-

tional on assumptions about client and middlebox behavior.
For these, our contribution is primarily analyzing and evaluat-
ing the techniques in this context, rather than the mechanics
of the techniques. One of these is optimistic approval (§3.2),
via asynchronous verification. We make the simple but conse-
quential observation that, in many applications, administrators
may be willing to allow client traffic to proceed as normal,
on the condition that clients supply valid proofs in short or-
der. A similar approach, near real-time verification, is already
taken by some real-world middleboxes [18, 23, 38]. The other
is batch proof verification by the middlebox, reducing the
overall verification burden by amortizing it across proofs for
multiple packets (§3.3).

Another set of contributions enables Zombie to handle poli-
cies based on regular expression matching, a crucial building
block in various middleboxes, including intrusion detection
systems (IDS), network traffic classification, and data loss
prevention (DLP). The core challenge derives from proba-
bilistic proofs themselves: using these frameworks requires
representing the target computation in arithmetic circuits or
constraints. Meanwhile, as with ChaCha20 mentioned earlier,
circuits and constraints are inefficient and inhospitable for
many computations (§2), including (at first glance) regular ex-
pressions. Zombie tackles this challenge with a collection of
techniques (§4), including a new encoding of substring match-
ing in arithmetic constraints, a new encoding of Boolean al-
gebra in arithmetic constraints, and a new finite automaton
formalism. Some of these techniques are likely to be of inde-
pendent interest for other applications of probabilistic proofs,
even beyond regular-expression matching.

We implement Zombie for TLS 1.3 with the ChaCha20
cipher (§5). The result of all this work is near-practicality for
some ZKMB uses (§6). In the precomputation regime, Zom-
bie adds less than 300 ms of delay to DNS queries, which may
be tolerable (§8). In the asynchronous regime, this number
drops to 0. Proofs are large (30KB) but never leave the local
network. Memory requirements for prover and verifier can
be substantial, but small packet sizes mitigate this issue. The
sticking point is middlebox resources: although throughput
improves almost 5× from batching, even this improvement
(380 255-byte packets/second in our experiments) is too low
to imagine proof verification on every packet. Similarly, Zom-
bie’s regular expression techniques reduce the overhead of
encoding real-world DLP policies in zero knowledge by over
an order of magnitude; however, the resulting overhead, 1–
2 ms processing delay per byte, is uncomfortably large for
networking applications.

Thus, although Zombie is designed to be extensible to any
read-based public policy, it is most practical for multi-packet
flows, with small packets, that represent a fraction of traffic,
for example enforcing a domain blocklist on a long-running
connection with a DNS server or enforcing a keyword or

regexp blocklist on search engine queries. Our work has other
limitations (§8). Most notably, our implementation requires
that policies be public, per-packet, read-only, and stateless,
though these restrictions are not fundamental.

2 Background

Zero-knowledge proofs. At a high level, a ZKP is a crypto-
graphic protocol between two parties: a prover and a verifier.
The protocol pertains to a computation S (we also call this
the “statement”), which we formulate as having two inputs X
and W, each a vector of variables, and producing an output Y.
We call X the public input and Y the output, respectively.

In this paper, we consider non-interactive ZKPs, which
work as follows. Both the verifier and the prover agree on a
computation S. To convince the verifier that a particular (X,Y)
pair known to both parties is valid, the prover sends the verifier
a proof π. Validity here is defined as the existence of a witness
W such that S(X;W) = Y for a particular (X,Y). Following
convention, we use a semicolon to separate public and private
variables in statements. The proof also convinces the verifier
that the prover knows this witness—this guarantee is called
knowledge soundness. Moreover, it hides the witness from the
verifier—this is the zero-knowledge guarantee. The notions
of soundness and zero-knowledge have precise cryptographic
definitions that we elide here; Zombie inherits these properties
directly from the underlying cryptographic tools.

In general, there is a deep cryptographic literature on ZKPs;
for a survey, we refer the reader to Thaler [103].

A concrete example. Consider using ZKPs to prove that an
encrypted packet does not contain a DNS query for a blocked
domain [49, §7]. The output Y is true/false, the input X is the
encrypted packet, and the witness W includes the decryption
key. The computation S asserts that the packet, after decrypt-
ing to plaintext using the decryption key and extracting the
domain name, does not contain a domain in the blocklist. Un-
der standard cryptographic assumptions, knowing X and Y,
without knowing W, is insufficient to verify the correctness
of (X,Y) with respect to S. A ZKP, by contrast, convinces a
verifier, who has no access to W, of the correctness of (X,Y).

Zero-knowledge proof pipelines. Most generic ZKP
schemes decompose into a front-end and a back-end. The
front-end takes S, a high-level specification of a program, for
example in C code or a domain-specific language (DSL). The
front-end compiles this program into an intermediate repre-
sentation, often called a circuit (see below). This circuit acts
as a blueprint for provers to show that a program produces
specific outputs, given specific inputs.

The back-end then enables the prover to take the circuit
representation of the program, along with X, Y, and W, and
output a proof π. The verifier also has access to a circuit
representation of the program and uses the back-end, X, and
Y to verify a proof π, outputting a true/false value.

1918 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

R1CS instances. Most modern ZKP front-ends compile
programs to a generalization of arithmetic circuits called
rank-one constraint systems (R1CS). An R1CS instance is a
collection of algebraic constraints. The instance is parameter-
ized by a finite field F, a number of constraints m, a number
of variables n, and three m× n matrices A,B,C. An input-
output pair (X,Y) satisfies the R1CS instance if there exists
a W such that for the vector z = (X,Y,1,W), Az ◦Bz = Cz,
where the operation ◦ is entry-wise multiplication. Notice
that an R1CS instance consists of m constraints in n variables,
where each constraint i ∈ {1, . . . ,m} restricts any satisfying
z = (z1, . . . ,zn) as follows:

(Ai,1z1 + . . .+Ai,nzn) · (Bi,1z1 + · · ·+Bi,nzn)

= (Ci,1z1 + · · ·+Ci,nzn).

Following convention, we sometimes refer to an R1CS repre-
sentation as a set of constraints or loosely as a circuit.

Efficiently expressing a computation as a circuit is chal-
lenging. First, the primary efficiency metric of a circuit rep-
resentation is the number of constraints, as the back-end’s
costs—specifically, the prover’s costs—scale linearly or super-
linearly in this quantity. Second, circuits are frequently ver-
bose, as they are algebraic constructs, not hardware circuits
or a general-purpose processor.

Among other limitations, circuits do not support loop-
ing, conditionality, order comparisons, bitwise operations, or
random-access memory. Compiling a high-level computation
to a circuit requires the front-end to unroll all loops to their
maximum iteration count, inline all function calls, represent
all branches of conditionals explicitly, and then arithmetize
each statement (translating it into constraints), often introduc-
ing additional variables [16, 17, 85, 94, 96, 115, 124].

As a simple example, consider this line of C code:
y = (x == 0);

where the mathematical variable x (representing the program
variable x) is in X and y (likewise representing y) is in Y. To
compile this to constraints, one introduces a variable W in W
and writes the following, called EQUALS-ZERO [96, Appx D]:{

y · x = 0
W · x = 1− y

}

The constraints can be satisfied if and only if y is 1 when x is
0 and y is 0 otherwise, thus enforcing the desired computation.
These constraints can be expressed in the form of an R1CS
instance as the following A, B, and C matrices:

x y 1 W[]
0 1 0 0

0 0 0 1

A

x y 1 W[]
1 0 0 0

1 0 0 0

B

x y 1 W[]
0 0 0 0

0 −1 1 0

C

Spartan ZKP. As its back-end, Zombie uses Spartan [93],
specifically the SpartanNIZK variant (which we refer to as
just Spartan for simplicity). By contrast, prior work [49] used
Groth16 [48]. Spartan is a non-interactive ZKP protocol that
strikes an attractive balance among prover time (lower than in
Groth16), verifier time (higher than Groth16 but sufficient for
our purposes, §6), and proof size (again, higher than Groth16
but sufficient). Like many ZKP protocols, Spartan has a setup
phase to generate parameters that are used in the proof proto-
col; in Spartan, (unlike Groth16), this phase does not require
trusting any party, only a source of public randomness. Con-
sequently, provers (clients) can use the generated parameters
across different verifiers (networks).

3 Zombie’s protocol

We start with the existing ZKMB paradigm [49], though our
notation differs from the original. A middlebox begins with
encryption protocol E (such as TLS 1.3), content type F, and
policy P, with the goal of enforcing P on traffic of type F that
is sent via E. The middlebox—or a third-party—defines the
following subcomputations, which are composed into state-
ments (§2) that the client proves and the middlebox verifies:

(1) A channel-opening subcomputation SE takes as input
a packet and the information required to re-derive a
session key. This subcomputation outputs the decrypted
packet, in the sense of delivering that decrypted packet
to the next composed subcomputation; for clarity, we
note that the decrypted packet itself is never available to
the middlebox, which has no access to the values of the
circuit wires used in the client’s proof. We follow the
amortized ZKMB model, which, for TLS 1.3, reuses the
expensive work of this phase over multiple per-packet
proofs. Specifically, SE is split into SE.1 (derive-and-
commit) and SE.2 (decrypt).

(2) A parse-and-extract subcomputation SF takes as input
the decrypted packet and outputs (in the sense above) a
snippet of policy-relevant data from the packet.

(3) A policy-check subcomputation SP takes as input the
snippet of policy-relevant data and outputs whether or
not the policy is satisfied (for example if a domain being
queried is part of a blocklist or not).

Figure 1 depicts the high-level protocol. The middlebox
sends SP to each client when it joins the network [49]. (We
discuss other deployment possibilities in Section 8.) When a
client wants to communicate with a particular server, it first
negotiates the shared key K using a handshake protocol, the
transcript of which is public but the generation of which in-
volves secrets shared between the client and the server. SE.1
re-derives this session key K by taking the handshake tran-
script as public input and the client’s secrets as witness, and
then hashes the session key to produce hK . The client sends
to the middlebox hK and the proof πK of SE.1. This proof

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1919

Client Middlebox Server

policy SP

handshake to establish K

hK , πK

Ci, πi Ci

Policy Setup

Key Setup

Enforcement

Figure 1: The ZKMB paradigm with amortized key setup [49] di-
vided into 3 phases. The policy setup step occurs once when the
client connects to the middlebox; the middlebox sends the policy SP
to the client. The key setup step occurs once per session; it involves
a handshake between the client and the server, a commitment hK
to a session key K, and a proof of this commitment πK . Finally, in
per-packet enforcement, the client sends the middlebox ciphertext
Ci and a proof πi of the policy-compliance of the plaintext corre-
sponding to Ci and to the key commitment; πi is with reference to
the composition of the SE.2, SF, and SP subcomputations.

convinces the middlebox that hK is indeed the commitment
to some key that is consistent with the handshake.

Then, for each packet, SE.2 takes the ciphertext C and the
key commitment hK as public inputs, and the session key K
as witness. After ensuring that K hashes to hK , SE.2 outputs
(again, in the sense above) the decrypted packet. Finally, the
client needs to convince the middlebox that C is valid with
respect to hK and the composition of SE.2, SF, and SP. It does
so with a proof πi. When the middlebox receives (C,hK ,πi),
it verifies πi, and only then forwards C.

Zombie’s enhancements. Zombie introduces three changes
to the ZKMB paradigm. Precomputation (§3.1) allows Zom-
bie to generate and verify the most expensive part of the
proof during idle times, before the ciphertext is known to
the client, reducing proving times in the critical latency path.
Asynchronous verification (§3.2) relaxes the requirement that
proofs about traffic are verified before each packet leaves
the network. This moves the main ZKP-related costs out of
the critical path entirely, greatly reducing delay but changing
Zombie’s security model. Batching (§3.3) lets Zombie mid-
dleboxes reuse the results of expensive computations when
verifying a batch of proofs created by the client. Figure 2
comprehensively classifies when these techniques should be
used and combined.

3.1 Precomputation

Precomputation in Zombie changes both the statement being
proved and the protocol flow (adding an extra message). At a
high level, precomputation splits the per-packet computation
SE.2 (decrypt) into two subcomputations SE.2a (pad-commit)
and SE.2b (decrypt-from-pad), the first of which can be com-
puted before the plaintext is known. As noted in the intro-
duction, it may be surprising that it is possible to prove SE.2a

Is unsafe
traffic

allowed?

Does the
client have
idle time?

Does the
client have
idle time?

Is the client
bursty?

Is the
middlebox

idle?

Precomp,
Async, and
Batching

Async and
Batching

Precomp and
BatchingOnly Precomp

Standard
Protocol

Only Batching

YESNO

YES

NO

YES

NO

YESNO

YESNO

Figure 2: Appropriate combinations of protocol enhancements. The
goal is to minimize client latency while respecting security. Unsafe
traffic means that some non-compliant traffic is allowed to exit the
network. To summarize the logic: (1) If unsafe traffic is allowed,
then asynchronous mode is appropriate; (2) If clients have idle time,
precomputation is appropriate; (3) If {(a) unsafe traffic is allowed,
or (b) neither the client nor the middlebox has idle time, or (c) the
client workload is bursty and the client has idle time} then batching
is appropriate.

before any plaintext is known, but when using stream ciphers
the keystream can be generated (and proved) independently
of the plaintext. We explain how this works for TLS 1.3 below.
The technique may be more broadly relevant; it is orthogonal
(and complementary) to the split between SE.1 and SE.2.

We will simplify by omitting some operations. Let K be
the session key output by the handshake. TLS 1.3 encrypts
session data using a stream cipher, which can be thought of
as a pseudorandom one-time pad. This pad is derived via a
function PadGen that takes K, a packet number SN, and a
length Lpad, and outputs an Lpad-byte pseudorandom padSN.
For an Lpad-byte message M, its ciphertext is padSN⊕M.

We make two key observations. First, the inputs to PadGen
are independent of the message, so padSN can be computed
by the client before M is known. Second, computing PadGen
is the most expensive part of the channel-opening subcompu-
tation SE. This is because PadGen involves the legacy stream
cipher ChaCha20, which is difficult to represent in the con-
straint formalism used for ZKPs (§2). In our evaluation of a
DNS filtering application [49] (§6), we find that PadGen ac-
counts for nearly two-thirds of the total constraint size (§6.3).

Zombie uses these observations to move PadGen into the
subcomputation SE.2a (pad-commit in Figure 3). This in-
volves running PadGen and then hashing its output to produce
hpadSN . Also, K is hashed to ensure that it corresponds to the
hash hK provided as a public input. The client computes the

1920 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

pad-commit(hK ,SN,Lpad ; K):

padSN← PadGen(K,SN,Lpad)

hpadSN ← H(padSN)

Return (hK = H(K)) ? hpadSN : ⊥

decrypt-from-pad(C,hpadSN ,SN ;pad):

M← pad⊕C
Return (hpadSN = H(pad)) ? M : ⊥

Figure 3: Pseudocode for the statements SE.2a (pad-commit) and
SE.2b (decrypt-from-pad) used in Zombie’s precomputation.

proof πE.2a for this subcomputation and sends it, along with
the pad hash hpadSN , to the middlebox. The middlebox ver-
ifies this proof and stores the hash with the corresponding
sequence number.

In the second part of the protocol, run once the Zom-
bie client receives the plaintext M, the client encrypts M
with padSN for sequence number SN to get the ciphertext
C. Then, it generates the proof for the statement SE.2b (see
decrypt-from-pad in Figure 3). This statement takes a pad
pad as the witness, which is purportedly padSN; ensures that
this witness hashes to the stored hash hpadSN ; and passes the
decrypted M = pad⊕C to the SF subcomputation.

Roughly, the security of Zombie’s precomputation follows
from the zero-knowledge and soundness properties of the
proof protocol, and the hiding and binding properties of the
hash function H. Specifically, neither the hash hpadSN nor
πE.2a reveal padSN—thus, the middlebox cannot learn any-
thing about the client’s traffic. The collision-resistance of H
and the soundness of the proof system prevent the client from
lying about padSN, or the key used to derive it—thus, the
client cannot equivocate about the sent message M.

3.2 Optimistic approval via asynchronous verification
While precomputation can greatly reduce the per-packet delay
incurred by proof generation (down to under 300 ms, §6.1),
some applications (for example, web browsing) require even
less delay. This section describes how Zombie can perform
the ZKP-related parts of its protocol asynchronously, that
is, without blocking the flow of normal traffic. Client traf-
fic passes optimistically while the middlebox detects policy
violations retroactively.

In more detail, after the client encrypts its packet, it imme-
diately sends the ciphertext C. The middlebox forwards this
packet to the server and sets a timer. Then the client generates
π and sends it to the middlebox. If the timer has not expired
and π is valid, the middlebox does nothing. If the proof is
invalid, or the timer fires, the middlebox takes some action,
for example, blocking the client (§8).

Asynchronous verification requires the middlebox to keep
track of unverified ciphertexts until the client sends the corre-
sponding proofs. Done naively, this could require high mem-

ory usage at the middlebox. This memory usage can be re-
duced by storing a hash of the ciphertexts instead of the ci-
phertexts themselves. The client would re-send the ciphertext
along with the proof, and the middlebox would use the hash to
validate the ciphertext. This increases bandwidth usage, since
a single ciphertext must traverse the client-middlebox link
twice. Since bandwidth usage was not the bottleneck in any
of our experiments, we did not implement this optimization.

Security. The middlebox cannot prevent non-compliant
packets from leaving the network, nor can it prevent clients
from receiving responses to such packets. Zombie will only
eventually learn if this has occurred. We claim, though, that
this relaxed security is sufficient for many applications. For
DNS filtering, the policy goal is to prevent users from brows-
ing blocked sites. Even if the user learns the IP address of a
blocked site by sending a non-compliant DNS query, as long
as the middlebox can detect this reasonably quickly, further
browsing can be blocked. As another example, if Zombie is
used to stop users from uploading sensitive data to external
sites, it may be sufficient to detect and shut down uploads in
time to prevent too much sensitive data from being uploaded,
even if (say) the beginning of a file is successfully uploaded.
Other context-specific policies may be appropriate, for exam-
ple a middlebox might optimistically send packets to servers
but hold the response packets pending proof verification.

3.3 Batching in Zombie
The final protocol improvement Zombie makes is batch proof
generation and verification. Concretely, given ciphertexts
C1, . . . ,Cb, Zombie can generate one proof π that verifies only
if all b underlying plaintexts are policy-compliant. This single
proof is much more efficient for the middlebox to verify than
b separate ones. The batch size does not need to be fixed by
the middlebox; it can be dynamically chosen by clients based
on their current workloads. Figure 2 depicts the conditions
under which batching is useful. The combination of batching
and asynchronous verification is potent: clients can gather
larger batches because they can wait longer to send proofs.
Batching is also complementary to precomputation: the client
can batch together multiple πE.2a proofs.

At a high level, batching works by modifying Zombie’s
underlying ZKP protocol, Spartan [93], to allow for paral-
lel runs of proof generation to share randomness. Sharing
randomness to batch proofs is a known technique, and has
been used in other modern proof systems [95, 113]; how-
ever, its application to Spartan in this work is novel. We use
“SpartanBatch” to refer to our variant of Spartan that supports
batching. Appendix A gives details and security analysis.

4 Regular expressions in Zombie

This section describes how Zombie supports middlebox func-
tionality based on regular expressions, which we sometimes
call regexps. Regexps feature in real-world policies for data

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1921

loss prevention (DLP) [71], intrusion detection (IDS) [22,39],
and traffic classification [119, 120]. For example, a DLP sys-
tem might use a regexp to specify that all outgoing packets
containing a social security number should be blocked.

The high-level picture is as follows. Zombie begins with
a policy P that uses regexps. This policy (§3) is a restriction
on the plaintext payloads (which this section calls simply
payloads) allowed to pass through the middlebox, and is ex-
pressed as a computation SP that takes the payload as input
and returns 1 or 0 depending on whether the payload adheres
to the policy. The policy can be as simple as whether any
substring of the payload matches the given regular expression.
Or it could include more sophisticated combinations, for ex-
ample, whether two regexps match within close proximity, or
whether there are more than four matches to a given regexp.

Zombie produces both a constraint representation of the
computation SP and a prover recipe for executing this compu-
tation and satisfying those constraints. The constraints CP are
constructed to be satisfiable if and only if the prover correctly
reports whether the payload adheres to P.

As we have described (§1–§2), constraints are an inefficient
way to represent general-purpose computations. The same
holds for regular expressions: one cannot simply take SP to be
a regexp library parameterized by a specific regexp, because
that would involve compiling, say, C code that uses program
constructs that are prohibitive when expressed in constraints.

For this reason, we depart from prior work on regular ex-
pressions [119, 120], which aims to make matching fast. In
our context, matching is the step where the prover executes
its recipe to identify a satisfying assignment, and this step
is swamped by the costs of proving. Instead, we focus on
the driver of those costs: number of constraints (§2). Specifi-
cally, our metric of interest is constraints per character in the
payload, which we want to be small.

The rest of this section describes how Zombie lowers this
metric versus a naive approach. Zombie introduces a series
of techniques that achieve substantial improvements in both
constants and asymptotics (§6).

4.1 Setup and framework
A given policy P comprises one or more regexps, Boolean
combinations of them, and proximity checks. So SP has one
or more subcomputations, which we denote SR, referring to a
specified regular expression R.

The input to one such SR is the payload T (of length LT);
typically, LT is in the thousands (the number of bytes in a
plaintext network packet). The output of a given SR is an
array of LT Boolean variables; slot ℓ is True if there is a
match to R ending at position ℓ and False otherwise; notice
that SR thus captures not only whether the given R matches
any substring(s) of T but also the (ending) position of the
match(es).

SP processes the output array produced by SR, or multiple
such arrays if there are multiple regexps. Section 4.7 describes

that process in detail; until then, we focus on a given SR.
Zombie encodes SR in constraints via several translation

phases: R→ FA→ IR→ CR, where CR is the constraint rep-
resentation of SR, FA is a finite automaton, and IR is an in-
termediate representation that has Boolean logic (AND, OR,
NOT), augmented with equality and inequality tests (==, !=,
<=, etc.).

Sections 4.2–4.6 describe the main ideas in this translation:
a new string matching primitive (§4.2), Zombie’s translation
from NFAs to constraints (§4.3), a new arithmetization of
Boolean logic to substantially lower the cost of encoding
Boolean OR (at the expense of Boolean NOT) (§4.4), tech-
niques for rewriting the regular expression to admit a more
efficient translation (§4.5), a new FA formalism that memo-
izes the results of character class matching (§4.6), and finally
exploiting structure in character classes (§4.6).

4.2 Efficient string matching in constraints
Suppose R represents a fixed string, say a{k} (a repeated
k times), so SR must determine for each ℓ ∈ {0, . . . ,LT −1}
whether the pattern appears in the payload, ending at position
ℓ. If so, a Boolean b(ℓ) is 1 and otherwise 0. For illustration,
we skip FA, so the translations are R→ IR→ CR. The IR is:

b(ℓ) := (T [ℓ]==a)∧ (T [ℓ−1]==a)∧·· ·∧ (T [ℓ− k+1]==a).

To encode this in R1CS constraints (§2), one expresses ∧
using field multiplication and == using EQUALS-ZERO (§2,
see also [96, Appx D]):

b(ℓ)k−1 := EQUALS-ZERO(T [ℓ− k+1]−a)

b(ℓ)k−2 := b(ℓ)k−1 ·EQUALS-ZERO(T [ℓ− k+2]−a)
. . .

b(ℓ)1 := b(ℓ)2 ·EQUALS-ZERO(T [ℓ−1]−a)

b(ℓ) := b(ℓ)1 ·EQUALS-ZERO(T [ℓ]−a) (1)

Notice that b(ℓ) equals 1 iff there is a match, and 0 otherwise.
Of course, expression (1) is not literal constraints. To

produce those, one expands lines of the form b(ℓ)i = b(ℓ)i+1 ·
EQUALS-ZERO(T [ℓ− i]−a), as follows:

b(ℓ)i = b(ℓ)i+1 ·Mi,

Mi · (T [ℓ− i]−a) = 0,

Zi · (T [ℓ− i]−a) = 1−Mi

The variable Mi represents the outcome of
EQUALS-ZERO(T [ℓ− i]−a), and Zi is non-deterministically
supplied. Altogether, SR for this pattern requires roughly 3 · k
constraints per character position, so 3 · k ·LT in all.

As a more efficient alternative, Zombie introduces a prim-
itive: STRING-MATCH. STRING-MATCH exploits the observa-
tion that, in constraints, the indivisible unit (akin to a bit on a

1922 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CPU) is a finite field element, which holds many bits, and thus
conceptually “has room” for packing the information about
whether many characters matched. Letting Λ be the alphabet,
|Λ| be its size (256 for ASCII), and S1,S2 be two strings:

STRING-MATCH(S1[0] . . .S1[k−1], S2[0] . . .S2[k−1])

≜ EQUALS-ZERO

(
k−1

∑
i=0
|Λ|i · (S1[i]−S2[i])

)
.

Zombie replaces expression (1) with
STRING-MATCH(T [ℓ−k+1] . . .T [ℓ], a....a), which (as-
suming loose limits on k; see below) is 2 constraints per input
character, down from 3 ·k. To see why, note that the argument
to EQUALS-ZERO is a weighted sum of the variables T [i] plus
a constant term, with the weights and constant term known
at compile time. Plugging that argument into EQUALS-ZERO
keeps the constraints in R1CS format (§2).

The loose limits are determined by the size of the alphabet
and the size of the field that the constraints are expressed
over. Assuming a field of size q, the maximum length of a
pattern that can be compiled into a single STRING-MATCH is
⌊log|Λ|(q)⌋. For our application, we consider the alphabet of
ASCII characters (|Λ| = 28) and a 255-bit prime field (the
base field of curve25519 [11]); thus, patterns of at most 31
characters can be compiled into a single STRING-MATCH.

If these loose limits do not hold, the pattern compiles into
several STRING-MATCHs, connected by AND (∧).

4.3 From regular expressions to constraints
Real-world systems [25, 58, 67] translate regular expressions
to executable code in two steps. First, they produce a non-
deterministic finite automaton (NFA), via Thompson’s al-
gorithm [104]. Second, they determinize the NFA to get a
DFA [101, Ch. 1]. This step represents the DFA’s state tran-
sition function as a table: an entry for every state and ev-
ery character. This representation makes execution very fast.
However, in our context, the entire exponentially-sized table
would turn into constraints, exploding proving costs.

Thus, Zombie stops after the Thompson step. Because of
its packing technique, Zombie produces FAs that have string
transitions instead of the usual character transitions. As an
example, consider the regular expression: aa(b|cc). Here is
the NFA (ε refers to the empty string; s and a are the start and
accepting states):

sstart 0
1 2

3 4
aaa

ε

ε

b
ε

cc
ε

Zombie’s IR representation of this FA uses functions, one
for the final state and each intermediate state that has non-
epsilon incoming transitions. Each function encodes, for each

character position ℓ, whether the FA could be in the given
state at character position ℓ.

f0(ℓ) := STRING-MATCH(T [ℓ−1]T [ℓ], aa)
f2(ℓ) := f0(ℓ−1)∧ (T [ℓ]==b)
f4(ℓ) := f0(ℓ−2)∧STRING-MATCH(T [ℓ−1]T [ℓ], cc)
fa(ℓ) := f2(ℓ)∨ f4(ℓ) (2)

Translating a function f (·) to constraints means that each
evaluation f (0), . . . , f (LT − 1) is separately translated and
possibly assigned to a constraint variable. For example,
f2(ℓ)∨ f4(ℓ) translates to f2[ℓ] + f4[ℓ]− f2[ℓ] · f4[ℓ], where
f2[ℓ] is a constraint variable that represents f2(ℓ). Notice that
the translation of ∨ requires a constraint, because of the mul-
tiplication. Also, each AND (∧) translates to a constraint that
multiplies (·) its terms. So, expression (2) is 9 constraints for
each position ℓ (2 for ==, 2 for each of two STRING-MATCH,
and 1 for each of the three multiplications). Notice from the
definition of STRING-MATCH earlier that the cost is relatively
insensitive to the length of the substrings. For example, if
the pattern were a{k}(b{k}|c{k}) (a k-length run of a fol-
lowed by a k-length run of b or c), then the number of con-
straints is unchanged (assuming the aforementioned loose
limits on k).

4.4 A new arithmetization of Boolean logic
Traditionally, when arithmetized—that is, translated to
constraints—Boolean logic maps True to 1 and False to 0.
Letting p,q,r be Boolean variables [8, 85, 94–97]:

r := p∧q customarily translates to: r = p ·q
r := p∨q customarily translates to: r = p+q− p ·q
q := ¬p customarily translates to: q = 1− p

Above, multiplication (·) and addition (+,−) are over the
underlying finite field F (§2).

Zombie introduces an alternate arithmetization: False still
maps to 0 but any non-zero value in the underlying finite field
functions as True:

r := p∧q now translates to: r = p ·q, as above
r := p∨q now translates to: r = p+q (assuming no over-

flow; see below)
q := ¬p now translates to: q = EQUALS-ZERO(p)

For example, in (2), fa(ℓ) translates to f2[ℓ]+ f4[ℓ], shed-
ding the term f2[ℓ] · f4[ℓ]. This concretely goes from 9 to 8
constraints.The source of the savings is that fa(ℓ) no longer
needs a constraint itself: any other constraint that uses fa(ℓ)
can substitute in the sum f2[ℓ]+ f4[ℓ]. Notice that any such
substitution retains R1CS format (§2), whether the substitu-
tion happens in the “A”-part of the constraint, the “B”-part,
the “C”-part, or combinations thereof. That is, f2[ℓ] and f4[ℓ]

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1923

are components of the z vector from Section 2, and their in-
clusion in a constraint simply adds 1 to the corresponding
coefficients. More generally, arithmetizations that are linear
combinations (that is, no degree-2 terms, meaning no multi-
plications of two or more variables) cost no constraints. We
will use this fact over and over again.

Consequently, OR has become mostly free: addition of
degree-1 terms, being a linear combination, doesn’t require
constraints. We say mostly because, for this to work, p+ q
must not overflow, that is, wrap around the finite field mod-
ulus and become 0 when at least one of the summands is
non-zero. Our implementation of Zombie (§5) handles this
issue at compile time. The compiler tracks the maximum
possible value of variables and, if overflow is possible, in-
serts constraints to reduce a summand to a 0-1 term before
it has the chance to overflow. The specific constraints are
NOT-EQUALS-ZERO [96, Appx D], which maps 0 to 0 and
non-zero values to 1.

By contrast, NOT (¬) has gone from free (because it
was a linear combination) to requiring two constraints, for
EQUALS-ZERO (see §2). Finally, AND (∧) costs one constraint
in both arithmetizations. The overall trade, then, is to make
NOTs more expensive in exchange for free ORs.

This trade not only is a dramatic improvement but also
carries broader significance. In our context, the 9-to-8 sav-
ings in the earlier example is a restricted case; in fact, this
arithmetization has a quadratic-to-linear improvement. To
see why, consider a state that has s− 1 inbound paths, one
for each of the other states in an s-state FA. For example:
fa(ℓ) = f1(ℓ)∨ f2(ℓ)∨ ·· · ∨ fs−1(ℓ). In the traditional arith-
metization, each disjunct requires a constraint with a field
multiplication, each of which costs one constraint; the total for
fa(ℓ) in this example is s constraints. In the worst case, then,
O(s) states can each require O(s) constraints, for a total of
O(s2) constraints for each ℓ ∈ {1, . . .LT}. In Zombie, by con-
trast, fa would be translated into f1[ℓ]+ f2[ℓ]+ · · ·+ fs−1[ℓ].
This costs 0 constraints because it is a linear combination.

Qualitatively, this arithmetization means that Zombie gains
enormously from devising IR representations that use mainly
OR, with AND entering only when necessary. Beyond Zombie,
this point applies to the constraint translation of any problem
naturally expressed with many conjunctions and disjunctions,
such as 3-SAT.

4.5 Preprocessing regular expressions
Another technique in Zombie is rewriting regular expressions
at compile time to favor longer substring matches. Doing so
exploits packing (§4.2) to reduce the number of ANDs and
the number of states in the IR. For example, Zombie rewrites
aa(b|cc) as (aab|aacc), yielding the following IR, which
should be compared to (2):

f0(ℓ) := STRING-MATCH(T [ℓ−2]T [ℓ−1]T [ℓ],aab)
f1(ℓ) := STRING-MATCH(T [ℓ−3]T [ℓ−2]T [ℓ−1]T [ℓ],aacc)

fa(ℓ) := f0(ℓ)∨ f1(ℓ) (3)

Whereas we saw in the previous section that the formulation
in (2) costs 8 constraints for each character position ℓ, the one
in (3) costs 4 constraints (two for each STRING-MATCH).

4.6 Character classes and a new FA formalism
A common and convenient feature of regular expressions is
character classes, for example, [0-9] or [A-Za-z], which
respectively match any digit and any ASCII alphabet charac-
ter. Naively treating a character class as a union (using the |
operator) would be expensive. Although real-world regexp
frameworks have special optimizations for character classes,
these would not contribute to efficient constraint representa-
tions, for the reasons discussed at the beginning of this section.
Instead, Zombie applies several of its own optimizations.

First, Zombie deduplicates so that the costs associated with
matching to a class are paid once, even if there are multiple
instances of the class in the regular expression. To do so,
Zombie constructs a new kind of FA, one that uses “sub-FAs”
to write to separate tapes (FAs are not typically modeled
as writing to a tape) and then reads the tapes in the “main”
FA. The sub-FAs are each supposed to produce an array of
Booleans. As an example, consider the regexp [0-9]a[0-9].
Zombie produces the following IR:

t0[ℓ] := MATCH-CLASS(T [ℓ],[0-9])
fa(ℓ) := STRING-MATCH(t0[ℓ−2]T [ℓ−1]t0[ℓ],1Fa1F)

1F is 1 in the finite field and is used to encode the Boolean
result of MATCH-CLASS. Think of t0 as memoizing the sites
of matches found by a sub-FA; notice how the values in t0 are
reused in fa(·).

Outside of the present context, the requirement for an ad-
ditional tape would seemingly require more memory for the
prover. In our context (constraints), each extra tape saves
memory, by reducing the number of variables necessary to
represent a match to the character class.

Besides deduplication, another benefit of Zombie’s FA for-
malism is that it enables longer substring matches. The idea
is similar to the example in Section 4.5. Here, the packing
technique (§4.2), this time applied to the results of other tapes,
lets fa consist of a single STRING-MATCH. Conversely, can
we use deduplication on that earlier example? No, because
the union components were different lengths.

As another optimization, Zombie exploits structure in the
character class. For example, Zombie encodes [A-Za-z]with
only 25 constraints (fewer than the 52 characters in the class!):

MATCH-CLASS(T [ℓ],[A-Za-z]) =

(T [ℓ] >= A)∧ (T [ℓ] <= z)∧·· ·

The elided terms check that T [ℓ] is not one of the few ASCII
characters between Z and a. This approach relies on the IR
primitives <= and >=, which translate to log2 |Λ| + 1 con-
straints [96], which is 9 if Λ is the 8-bit ASCII characters.

1924 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Zombie’s compiler tries to optimize the encoding of a class;
for example, treating the class [0-9] as a range with <= and
>= operators is not worthwhile. Larger classes see greater
benefit from being treated as a range.

4.7 Applying regexp-based policies in ZK
In this section, we move from considering a single SR to a
higher-level policy P, expressed as SP.

One-shot expressions. Consider a basic case: P is simply
whether there is a match to some R somewhere in the pay-
load. Recall that SR is already encoded as constraints for
{ fa(ℓ)}ℓ=0,...,LT−1. SP, then, is NOT-EQUALS-ZERO(fa(0)∨
fa(1)∨ ·· ·∨ fa(LT−1)). Assuming no overflow (so the ORs
are free; §4.4), the overhead of SP beyond SR is two con-
straints, stemming from NOT-EQUALS-ZERO (§4.4). Zombie’s
compiler handles possible overflow as described earlier (§4.4).

Proximity. In network security, simple regexp searches can
have too many false positives. Thus, the policy P is sometimes
concerned with context: individually two patterns are not
sensitive, but close together they are. For example, a DLP
policy might disallow a pattern matching a driver’s license
number within 100 characters of strings like “driving license,”
“driver’s license,” “DL,” etc. (§6.3).

Perhaps surprisingly, Zombie can handle such policies with
very little overhead beyond the cost of matching the individual
regexps. Consider a computation SP that returns 1 if there
are respective matches to two regular expressions R1 and R2
within d characters of each other. Notice that, for correctness,
all possible combinations of occurrences of the two patterns
have to result in SP returning 1. To capture these possibilities,
SP performs two steps. First, it takes the fa array of R1, call it
fr1 , and produces a new array f d

r1
, which for each position ℓ

holds a Boolean indicating whether there is a match within d
characters of ℓ. Concretely,

f d
r1
[ℓ] =

d−1

∑
k=1−d

fr1 [ℓ+ k].

Because each f d
r1
[ℓ] is a linear combination of existing vari-

ables, there is no cost in constraints to produce it (§4.4). Sec-
ond, SP checks whether the entrywise product of f d

r1
and the

fa array of R2, call it fr2 , has any non-zero entries. This check
requires LT +2 constraints: one for each product, and two for
a NOT-EQUALS-ZERO applied to the sum of these products.

Thus, in total, the requirement for proximity costs an
amortized 1 constraint per character in the payload. In
contrast, naively encoding proximity as a single regexp,
(R1(.{0,d})R2) |(R2(.{0,d})R1), would introduce an extra
O(LT · logd) constraints.

5 Implementation
Our implementation of Zombie has two main components: a
client and a middlebox. We currently support two classes of

applications. The first is DNS filtering [49] (see also §2), as ap-
plied to the DNS-over-TLS and DNS-over-HTTPS protocols.
The second is arbitrary policies involving regular expressions,
for example DLP policies for files sent by clients via HTTPS,
applied to text files (as opposed to formats such as PDF).

5.1 ZKP implementation

Circuits. The circuits used for Zombie’s ZKPs are speci-
fied in the ZoKrates domain-specific language (DSL) [34]
and compiled to R1CS using CirC [84], a ZKP compiler
framework. The circuits comprise 1832 handwritten lines
of ZoKrates code and 630 lines automatically generated by
our own regexp compiler (which is a standalone component
that could be integrated with other projects). The handwritten
code was optimized and features a large improvement in the
encoding of SF (§3).

The regexp compiler takes as input (a) a list of regexps
and (b) a list of proximity restrictions between pairs of reg-
exps. Using built-in knowledge of the constraint-level costs
of ZoKrates’ semantics, the compiler applies the techniques
in Section 4. The compiler is 5425 lines of C++, 463 lines of
yacc, and 50 lines of lex code on top of the BNFC library [1].

ZKP improvements. In implementing Zombie, we made
several improvements to CirC and the existing Spartan im-
plementation. First, we created an adapter that integrates
CirC with Spartan. We have also configured Spartan to use
curve25519 [11] as its underlying cryptographic group, a
standard choice believed to offer ≈128 bits of security.

Our CirC improvements make witness generation more
efficient; in early experiments, witness generation was slower
than proof generation. We modified internal CirC data struc-
tures to prevent unnecessary memory copying, which greatly
improves performance.

We improved the Spartan prover and verifier to take full
advantage of parallelism, resulting in better performance for
generating multiple proofs even in the non-batch setting.

5.2 Client implementation
The client implementation comprises 1976 lines of Python.
When performing DNS filtering, the Zombie client acts as a
local DNS proxy. It accepts UDP DNS requests then sends
them to a recursive DNS resolver (we use Google’s 8.8.8.8
resolver [46]) over TLS (DoT [53]) or HTTPS (DoH [52]).
The web browser is configured to point to the local proxy for
DNS resolution. The client performs the channel-opening (§3)
with the Zombie middlebox on startup to set up a session.
It uses this session for as long as the recursive resolver will
allow (up to five minutes in our testing). It generates and sends
proofs, and forwards traffic to the middlebox; we ensure this
via routing tables.

Precomputation. In our implementation, the client has a
child process for precomputation (§3.1) that has lower prior-
ity than the main proxy process, constantly generating pad-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1925

0100200300400

Zombie-Async

Zombie-Precomp

Zombie-Standard

ZKMB (est.)

Non-Critical Overhead (ms/packet)

100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

Critical Overhead (ms/packet)

Client

Middlebox
Client

Middlebox

Figure 4: Per-Packet critical and non-critical overheads (relative to a no-policy baseline) for enforcing a blocklist on DNS requests over TLS in
zero-knowledge with ZKMB [49] and with Zombie-Standard, Zombie-Precomputation, and Zombie-Asynchronous configurations.

commit proofs when the proxy is idle. When generating these
proofs (πE.2a) (§3.1), the client has two parameters to balance.
First is the length of the pad, Lpad, which, for each proof,
must match or exceed the size of each packet to be encrypted.
Choosing a larger Lpad will result in more proving work, but
will allow the client to send larger packets. The second pa-
rameter, m, is the number of pad-commit proofs to batch to
amortize prover and verifier work. A higher m is less likely
to be exhausted by a burst of traffic, but it risks performing
excess precomputation that might not be used. In our imple-
mentation, for DNS-over-TLS we set Lpad = 255 (the size of
DNS request payloads) and m = 16.

5.3 Middlebox implementation
The middlebox is implemented in 1595 lines of Rust. The
middlebox configures IP packet filter rules using iptables.
When packets arrive at the middlebox, they are put on a queue
implemented via libnetfilter_queue in Linux. The mid-
dlebox dequeues packets and performs the following steps.
First, it determines whether they are policy-relevant. If so, the
middlebox increments the TLS sequence number; it needs
to have an accurate count of the sequence number to verify
proofs. Then, it buffers the received packet for verification.
When the middlebox receives the proof from the client, it
links the proof to the packet by sequence number, verifies the
proof, and forwards it.

6 Evaluation

We evaluate Zombie with these questions:

(1) What are the overheads added by different configura-
tions of Zombie?

(2) How does batching improve middlebox throughput?
(3) What are the costs of different components of Zombie?
(4) How effective are Zombie’s regexp techniques?

Method, applications, and baselines. Our experiments mea-
sure client, server, and overall end-to-end delay introduced by

Zombie, and we compare these overheads against those intro-
duced by the original ZKMB work [49]. We evaluate Zombie
for DNS filtering and DLP policies applied to traffic over
TLS 1.3. The DNS filtering benchmarks use a representative
adult-content domain blocklist from prior work [49, §8.2] [69]
(with 2 million domains). The DLP benchmarks use policies
from Microsoft DLP Purview [71].

Our experiments that require networking run on Cloud-
Lab [33] while those that do not are run on Amazon Web
Services (AWS). On CloudLab, we use c6525-25g instances.
Each has a 16-core 3GHz AMD 7302P CPU, with 128GB
RAM, SSDs, and two Mellanox 25Gb/s NICs. On AWS, we
use an instance with a 16-core 2.90GHz Intel 8375C CPU
with 128GB RAM and SSDs. This instance has similar com-
putation resources to that of CloudLab c6525-25g.

6.1 Computational overhead and delay, no batching
We measure the overhead introduced by Zombie with respect
to a no-policy setup, in which the middlebox forwards the traf-
fic without enforcing any policy. We also compare this over-
head to ZKMB [49], via conservative estimates of ZKMB’s
performance extrapolated from microbenchmarks on the same
hardware; this is labeled “ZKMB (est.)”.

We run three configurations of Zombie, with the following
settings of precomputation and synchrony:

(1) Zombie-Standard: No precomputation, no asynchrony.
(2) Zombie-Precomputation: Precomputation, no asyn-

chrony.
(3) Zombie-Asynchronous: No precomputation, asynchrony.

We do not evaluate precomputation combined with asyn-
chrony here; asynchrony moves all overheads to the non-
critical path, so precomputation does not affect latency in this
case. Batching can be applied to all of the above; we evaluate
it separately (§6.2). We run this experiment on CloudLab and
report the average of 20 255-byte DNS requests.

Figure 4 depicts the results. Zombie-Standard incurs ap-
proximately 3× lower latency than ZKMB. A major differ-
ence in client and middlebox work comes from the transition

1926 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

from the Groth16 [48] proof system to Spartan [93] (§2). We
see additional gains from the enhancements detailed in Sec-
tion 5. The average additional latency is about 400 ms for
Zombie-Standard: approximately 350 ms for proof generation
and 50 ms for verification.

With precomputation, the average latency is lower, about
250 ms. While much worse than the average latency for a
DNS request, which is about 20 ms [86], it may still be toler-
able (§8). With optimistic approval via asynchronous verifica-
tion, Zombie introduces no additional latency. Of course, asyn-
chronous mode requires (in addition to assumptions about
policy enforcement; §3.2) additional storage requirements
for the middlebox, for buffering packets. We return to these
storage requirements when evaluating batching, as the effects
on storage are more pronounced there.

Observe that Zombie-Standard and Zombie-Asynchronous
introduce the same total per-packet overhead. This is ex-
pected: they involve proving and verifying the exact same
statements. Surprisingly, Zombie-Precomputation requires
slightly less overall per-packet overhead despite the need to
produce and verify more proofs than Zombie-Standard. This
decreased overhead is because the work to generate multiple
pad-commit proofs is parallelized in our implementation.

Turning to the communication overhead of sending proofs:
in the synchronous setting with precomputation, each online
proof is approximately 30 KB. As we will argue (§8), the
overall increase in required bandwidth is expected to be small.

6.2 Effect of batching
We investigate the effect of batching (§3.3) on the throughput
(number of (proof, packet) pairs processed per second) and the
storage requirements of the middlebox. We do not separately
evaluate batch proof size; a batch of proofs is the same size
as the sum of the non-batched proofs.

We run the DNS benchmark in a new Zombie-Async-Batch
configuration. We model each client as a Poisson process,
whose parameter is scaled by the batch size. For example, if
the batch size is 8, then we set the average interarrival time
to be 8× longer than when the batch size is 1, and when an
arrival event happens, the client sends 8 packets. For each
batch size, as offered load increases, throughput does not col-
lapse, but instead it approaches a maximum. We interpret this
maximum throughput as the middlebox’s empirical capacity
for that particular batch size.

We measure this quantity under four batch sizes; for each
size, we average three experiments. We also create a model to
predict maximum throughput: we measure the time to verify
a single Zombie DNS proof on one thread on CloudLab, and
individually measure the execution time of the fixed cost code
block and the marginal cost code block, obtaining 121 ms per
batch and 38 ms per proof, respectively.

Figure 5 compares the empirical measurements and the
model; the divergence is around 5%. This discrepancy owes
to lower-order middlebox costs related to packet forwarding,

1 4 16 64
0

80
160
240
320
400
480

Batch Size (packets)

T
hr

ou
gh

pu
t(

pa
ck

et
s/

se
c)

Empirical
Model

Figure 5: Middlebox throughput vs batch size.

listening, and proof parsing. The maximum throughput we
observe is 380 packets per second, at a batch size of 64. Al-
though larger batches would further increase throughput, the
possible improvement levels off (even in theory); besides,
larger batches are impractical.

Batching brings additional storage requirements (to accu-
mulate ciphertexts). However, storage capacity is not a limit-
ing factor here, owing to the small size of DNS requests and
the throughput of 380 packets per second. Even if we assume
that the middlebox is exactly at capacity, never falls behind,
always has a proof to check (even if it might be waiting on
other proofs), and has a generous window of 60 seconds for
proofs to arrive after the first corresponding ciphertext in the
batch, then the middlebox would still need to store less than
6 MB of ciphertexts at any given time. This is well within the
capacity of even the smallest of middleboxes [83].

6.3 Circuit benchmarks
To pinpoint the costs of individual components, we run the
prover and verifier in isolation on AWS, taking the average of
5 executions, for various circuits. Figure 6 shows the results.

DNS-related circuits. The first five rows are related to the
DNS blocklist policy. The first and second rows serve to com-
pare Zombie and ZKMB, using the same circuit as the one for
the Zombie-Standard and Zombie-Asynchronous benchmarks
in Figure 4. We see a significant reduction in the number of
constraints in Zombie, which owes to the optimizations men-
tioned in Section 5; thus, the performance gain in Figure 4
for Zombie results not only from the Spartan back-end but
also our optimizations. The total number of constraints for the
third row is less than one-third of the number of constraints
in the second row, indicating that the dominant cost in our
implementation of Zombie-Standard is SE.2. The sum of the
constraints in the fourth and fifth rows (measuring offline
and online cost with precomputation) is slightly larger than
the number of constraints in the second row; this is expected
because there is extra work to commit to padSN (Figure 3).

Regexp circuits. The last four rows of Figure 6 include
costs for a DLP benchmark. This benchmark combines five
Microsoft Purview policies for detecting sensitive information
in the US locale: bank account number [72], driver’s license

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1927

Benchmark: Circuit description and size

SE SF SP Payload Size Constraints Prover Time Verifier Time Memory Proof Size
E.2 DNS Blocklist 255 B 176000 1200 ms 2 ms - 128 B

E.2 DNS Blocklist 255 B 128702 365.4 ms 39.8 ms 531.8 MB 30.2 KB

DNS Blocklist 255 B 40295 191.2 ms 29.8 ms 212.3 MB 21.3 KB

E.2a 255 B 86568 278.0 ms 36.4 ms 377.2 MB 30.2 KB

E.2b DNS Blocklist 255 B 48562 221.4 ms 31.2 ms 258.5 MB 21.3 KB

E.2 HTTP Microsoft DLP 100 B 64438 207.0 ms 29.0 ms 225.7 MB 21.3 KB

E.2 HTTP Microsoft DLP 2000 B 1186241 6363.8 ms 319.6 ms 10114.6 MB 49.1 KB

HTTP Microsoft DLP 100 B 20080 112.2 ms 23.2 ms 89.2 MB 20.5 KB

HTTP Microsoft DLP 2000 B 490966 4909.0 ms 245.4 ms 8402.9 MB 48.0 KB

Figure 6: Costs of various circuits in Zombie. The first row shows estimated overheads for the prior work, ZKMB [49], using the Groth16 [48]
back-end (§2). Memory is a single column because the prover and verifier have the same memory requirements with the Spartan back-end.
Blank cells indicate that a subcomputation of that type is not included in that row’s benchmarked circuit.

number [73], taxpayer number (ITIN) [74], social security
number [75], and passport number [76]. These policies use
substring matches, regular expressions, and proximity checks.
A message must pass all five to pass; for brevity, we refer to
the overall policy simply as “Microsoft DLP”. We encode this
policy using Zombie’s regexp pipeline (§4–§5) and bench-
mark it on HTTP POST messages of varying sizes.

Per byte, the cost of this policy is 25–50% more expensive
than the DNS blocklist benchmark. This can be seen by com-
paring the DNS blocklist (no SE.2) and HTTP Microsoft DLP
(no SE.2) rows, and dividing the metrics by the payload size.
The result is approximately 200–245 constraints per byte for
DLP and 160 constraints per byte for the blocklist.

Packet size brings a complication. However, this is not
because of latency, which scales linearly with packet size, so
overall latency is driven by total bytes (in a policy-relevant
flow), rather than the distribution of bytes over packets. The
main issue with packet size is in memory consumption, which
scales linearly with circuit size, and reaches into the GB in
our experiments (Figure 6). The mitigant is that the memory
cost is paid once per circuit, and circuits are reusable, creating
benefit from small packets. Concretely, using a circuit for
a 100-byte packet 20 times is much better for middlebox
memory than using a circuit for a 2000-byte packet once.

Regexp circuit techniques. Figure 7 depicts the results of
each of our regexp techniques in more detail. We show the
decrease in per-byte overheads from incrementally applying
the optimizations discussed in Section 4. We use the Microsoft
DLP policy for these benchmarks and exclusively consider
the SP subcomputation.

For this policy, our optimizations reduce the per-byte over-
head by almost an order of magnitude, from over 20 ms per
byte to under 2 ms per byte. The most substantive improve-
ments come from STRING-MATCH (§4.2) and from creating
multiple tapes (§4.6).

To contextualize these costs, we compare them to the per-

Techniques # Constraints Prover time Verifier time

Baseline 1566 / B 19000 ms 1400 ms

+ STRING-MATCH 996 / B 11000 ms 860 ms

+ Alt Arithmetization 901 / B 10000 ms 760 ms

+ Regexp Preprocessing 873 / B 9800 ms 740 ms

+ Additional Tapes 288 / B 2300 ms 160 ms

+ Optimized Classes 242 / B 1705 ms 38 ms

Italicized entries indicate estimates.

Figure 7: Effect of techniques, in the order they are introduced in
Section 4, on the Microsoft DLP policy (1 KB payload). The final
line is the result of running CirC on the zok file produced from all
optimizations. The times in the other lines are estimates from the
compiler with all prior optimizations enabled and all subsequent
optimizations still disabled.

byte overhead of decryption, approximated by fixing a pay-
load size, subtracting the costs for a given row without SE.2
from the corresponding cost with SE.2 (or by looking at the
SE.2a row), and dividing by the payload size. The result is 348
constraints per byte, which should be compared to the 242
constraints per byte at the bottom of Figure 7 (down from
1566, at the top of the figure). That is, after the techniques in
Section 4, the dominant cost is no longer regular expression
handling but rather representing decryption in the circuit.

7 Related work

Systems built using probabilistic proofs. Probabilistic
proofs are a foundational concept in complexity theory with a
deep and rich literature [6,7,9,42,43]; for a survey, we recom-
mend Goldreich [41]. The last decade has seen rapidly grow-
ing interest from the applied cryptography community, with a
particular emphasis on zero-knowledge proofs. For a survey,
we recommend Walfish and Blumberg [117] or Thaler [103].

Zombie is part of a growing line of work applying proba-

1928 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

bilistic proofs to solve practical problems, such as privacy-
preserving payments [28, 91] private smart contracts [15,
19, 57], proofs of solvency [4, 27], verifiable delay func-
tions [14, 55], proofs of software vulnerability [26] and cryp-
tographic transparency logs [21, 107, 108]. Of particular rele-
vance to our work are DECO [123] and Reclaim [100], which
employ probabilistic proofs about TLS plaintext. However,
both systems aim to prove statements about a TLS session
(e.g. “My bank account balance is greater than $X”) to an out-
of-band third party, rather than an in-band middlebox. This
makes the proof more challenging, as the verifier needs to
be convinced that the claimed ciphertext really came from a
session with the claimed server. To solve this, DECO relies
on multiparty computation between the client and a third-
party notary. However, these applications do not face tight
latency constraints, as ZKMBs do, enabling much different
performance tradeoffs.

Regular expressions in zero knowledge. Zombie intro-
duces a portfolio of techniques for encoding regular expres-
sions in probabilistic proofs. Previous to Zombie, the ap-
proach taken [3] was direct translation of a DFA, with ex-
ponential costs. We are aware of only two other works, both
concurrent with Zombie, that improve on the exponential base-
line; like Zombie, both target network security applications.

Exciting work by Luo et al. [68] transforms a regular ex-
pression to a Thompson NFA [104], like Zombie does (§4.3).
Unlike Zombie, Luo et al. transform the NFA to a Boolean cir-
cuit and then use MPC-in-the-head [29,54]. In addition to the
setting where the client knows the policy, Luo et al. also con-
sider the setting where the middlebox wants to keep the policy
private but still apply it to the client’s traffic. This part of their
application thus has a significantly different performance pro-
file than ours (an extra logarithmic term is introduced in the
size of the regexp, and extra overheads are incurred to pre-
serve the privacy of the policy itself.) Additionally, because
most of our optimizations rely on constraints over large finite
fields while theirs are tailored Boolean circuits, the respective
techniques do not seem to be applicable to each other. While
a detailed comparison has yet to be done, Zombie appears to
have an order of magnitude lower communication cost (proof
size) and computation (prover time) in the public policy case.

The other concurrent work, zkreg [89], compiles a large
collection of regular expressions (mostly string matches) into
an Aho-Corasick automaton [2], encodes this automaton as an
arithmetic circuit, and then uses a custom Commit-and-Prove
scheme [20] to prove membership and non-membership in
zero knowledge on extremely large dictionaries of strings. For
example, they consider proofs involving an automaton with
19 million states and over 300 million transitions. To handle
an automaton this large, they represent it as a multiset of
transitions and handle transition checking partially using set
membership. This incurs a significantly higher computational
overhead than our transition checking, but it scales far better

for large automata (for which it is explicitly designed). Future
work is to investigate ways of combining relevant techniques
in zkreg with Zombie to efficiently support larger policies.

Middlebox architectures. Many proposed middlebox ar-
chitectures aim to enforce policies on encrypted traffic. For
helpful surveys, we refer the reader to Sherry [99] and Naylor
et al. [78]. Work prior to ZKMB [49] largely falls into two
broad categories:

Trusted hardware. ETTM [31] first proposed shifting pol-
icy enforcement logic from middleboxes to network users
(end hosts) themselves. This requires trusted hardware to as-
sert that a virtual machine run by the end host is faithfully
checking that the plaintext is policy-compliant. Endbox [44]
refined this vision using the then-emerging trusted execution
environment (TEE) abstraction, specifically using Intel’s SGX
implementation. An obvious limitation is that all users must
have a TEE to take advantage of this approach.

mbTLS [78] proposes relying on a TEE at the middlebox
itself, acting as a middleperson (MITM) between a TLS ses-
sion established with the client machine and one with the
server (which can also be extended to multiple hops). This
undermines the typical end-to-end nature of TLS, but if the
TEE remains secure users can trust that their plaintext will
only be used by the TEE for policy checks. Another approach
is to shift policy enforcement from a local middlebox to a
TEE run on a cloud server [51,87,105]. Other works, too, rely
on trusted hardware [32, 45, 50, 59, 118].

We wish to avoid trusted hardware, given the cavalcade of
exploits demonstrated against real-world TEE implementa-
tions [36, 47, 77, 80, 92, 102, 109–112], using information like
power consumption or electromagnetic emanations to extract
secrets from an enclave non-invasively. One might note that
zero-knowledge prover implementations can also be subject to
side-channel attacks [40, 106]. However, there is a subtle but
essential difference: TEE-based middleboxes inherently re-
quire running code with access to secrets in an enclave that is
placed under the direct control of an adversary, for example a
policy-enforcing enclave hosted by a client machine (where a
TEE break undermines integrity) or an enclave with access to
decryption keys hosted by the middlebox (where a TEE break
undermines privacy). Either setup makes side-channel attacks
considerably easier to mount, versus the ZKMB paradigm,
in which the relevant adversary (for example, the network
administrator) is remote from the party executing the relevant
algorithm (for example, the ZK prover).

TLS modifications. Several proposals to reconcile
widespread TLS adoption with network policy enforcement
envision modifying TLS to make it “middlebox-aware,” with
middleboxes gaining the ability to read and/or modify some
(but not necessarily all) of the plaintext data sent in a TLS
connection and users typically getting some visibility into
the process [10, 12, 64, 65, 78, 79, 121]. An example is “multi-
context TLS” or mcTLS [79], with different middleboxes on

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1929

the network path receiving context-specific keys based on the
permissions the client and server are willing to grant. In the
case of DNS filtering, a middlebox might require read-only ac-
cess to the request body of a DNS query. While this approach
enables finer-grained tradeoffs than disabling encryption com-
pletely, it is still a blunt instrument that sacrifices user privacy
considerably; in the DNS example users fully give up privacy
of their query history. It also requires server-side changes.

Blindbox [98] proposed modifying TLS to support policy
enforcement by middleboxes. Specifically, Blindbox supple-
ments the standard, semantically-secure symmetric encryp-
tion used in TLS with searchable encryption. This second
ciphertext, along with techniques from circuit garbling and
oblivious transfer, allows middleboxes to obliviously execute
policy checks on ciphertext, specifically tailored to searching
for keywords in text. A rich line of follow-up work extends
this basic model [35, 56, 61–64, 66, 81, 82, 88, 122].

All of these works use some variant of functional encryp-
tion, which allows middleboxes to compute a limited function
of the underlying plaintext, with different proposals tailored
to different functionality. These works all face the challenging
requirement of changing TLS servers, as well as relying on
servers to check consistency of the TLS plaintext and that of
the supplemental functional encryption (without this check,
clients might send policy-violating traffic over TLS but ap-
pend a functional encryption of benign traffic to satisfy the
middlebox). A key goal in our work is not to require changes
to, or participation of, existing TLS servers (§1).

8 Discussion

Zombie is 3× cheaper than its progenitor ZKMB [49], with
an overhead of 406 ms for enforcing a blocklist on DNS re-
quests over TLS (§6.1). Assuming client idle time, this drops
to 256 ms, via precomputation. This number may be tolerable
for DNS filtering; by comparison, traditionally satellite Inter-
net connections have added at least 600 ms of latency [13]
(though, to be fair, modern low-earth-orbit satellite Internet
service offer significantly lower latency, as low as 25 ms [70]).
Regardless, under optimistic approval, there is zero online
overhead (§6.1). Zombie is thus plausibly practical for clients.
Also, our regular expression techniques allow for new poli-
cies in the ZKMB paradigm, reducing the cost of enforcing
complex policies to the point where the dominant cost is
decryption (§6.3).

Although the communication overhead of 30 KB per
proof (§6.1) is 120× larger than 255-byte DNS requests, the
proof size is small when compared to the average website size
of 2–3 MB [5]. Furthermore, these proofs are transmitted only
from client to middlebox, which are typically on the same
local network. Moreover, Zombie is best geared to settings
where most packets do not need proofs (see below), so the
overall increase in bandwidth is expected to be small. Mem-
ory requirements at prover and verifier are an issue but are

mitigated by small packets (§6.3).
The real snag is the middlebox’s resource requirements,

independent of configuration. Despite batching, which can
experimentally increase throughput by almost 5×, the mid-
dlebox still requires at least 38 ms per packet on a single
thread (§6.2), which is too high for most applications.

Consequently, Zombie is not truly practical outside of a few
specific use cases: policy-relevant traffic must be a small frac-
tion of all traffic, with small packets, and ideally occurs over
multi-packet flows, to amortize channel opening (§3). Two
promising examples are enforcing policy over DNS requests
and over search engine queries.

Apart from performance, a number of concerns remain for
real-world deployment. Zombie only supports public, state-
less, read-only policies. Although confidential policies with
zero-knowledge middleboxes are possible in principle [49],
they require extra round-trips, and composing them with
batching and asynchrony is an open challenge. Supporting
stateful and write-based policies in the ZKMB framework is
also conceptually possible, but we leave this to future work.

To deploy and update Zombie, clients need to learn the
setup, such as the proving algorithm and the subcomputa-
tions (§3), when they first connect to the network. This ma-
terial can be supplied or stored in browsers or as a required
download to use the network.

To avoid barring honest clients from the network, the mid-
dlebox needs to handle dropped packets and proofs gracefully.
One option is for the middlebox to send an acknowledgment
when it receives a proof. If the client does not receive a timely
acknowledgment, it will know to resend the proof. Another
concern is soundness under load: the middlebox cannot sim-
ply skip verification, say if it runs out of storage (§6.2). Instead
it must drop proofs and packets, and expect clients to resend.
In the asynchronous setting, the middlebox can go so far as
to request batch proofs from specific clients when it has freed
up space for them.

Finally, the middlebox needs a way to identify, and deal
with, clients who violate policy. This concern is not specific
to the ZKMB paradigm, and is left to network administrators.

Ultimately, despite the sometimes equivocal performance
results, Zombie has taken a substantial step forward in demon-
strating the possible practicality of the ZKMB paradigm.

Acknowledgments

We thank the anonymous reviewers for constructive com-
ments that improved this work. This research was supported
by DARPA under Agreement No. HR00112020022. Any opin-
ions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the United States Government or DARPA.

The code for Zombie is available at
https://github.com/PepperSieve/Zombie

1930 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/PepperSieve/Zombie

A Details of SpartanBatch

A.1 Spartan protocol details

This section provides a sketch of the Spartan algorithm, fo-
cusing on the parts relevant to our extension of it to support
batching.

For an R1CS instance C with matrices (A,B,C) and public
input X, public output Y, and witness W, Spartan works by
transforming the validity check for (X,Y) into a polynomial
that equals zero at every point if (and only if) (X,Y) satisfies
the constraints C . This polynomial is large, and some of its
coefficients are elements of W, so the verifier cannot do this
check itself; instead, the prover and verifier engage in a sub-
protocol that lets the verifier check whether the polynomial is
zero efficiently, by evaluating it at a random point. The details
of this process are unimportant for us, save for one: in the
last step of the subprotocol, the verifier must evaluate spe-
cial polynomial encodings (a multilinear extension) Ã, B̃,C̃
of each R1CS matrices A,B,C at a random point. These eval-
uations are the most expensive part of the protocol for the
verifier; in fact, they are asymptotically as expensive as re-
running the entire computation. The random point that the
polynomial encodings are to be evaluated on is of the form
(rx,ry) where rx,ry ∈ Flogn and each element of the rx and ry
is a random value provided by the verifier in some step of the
protocol.

In the non-interactive version of Spartan, these are chosen
by hashing prefixes of the proof as the prover generates it (that
is, via the Fiat-Shamir transform [37]). We observe that, since
these expensive evaluations: Ã(rx,ry), B̃(rx,ry), and C̃(rx,ry),
depend only on the R1CS statement and not the input (in our
setting, the ciphertext), they can be done just once for a batch
of proofs as long as each of their respective subprotocols
“coordinate”, that is, use the same rx,ry values. We ensure this
by having the prover hash the prefixes of each proof in the
batch together, instead of separately. (Some hashing steps in
Spartan generate randomness that is not part of rx or ry; we
do not batch generate randomness for these steps.) We call
the resulting protocol SpartanBatch.

Below, we show SpartanBatch retains the security guaran-
tees of Spartan; in particular, we show that a malicious client
has about the same (very low) probability of proving a false
statement with SpartanBatch as it does with Spartan. Our
analysis is based on analogous results for AND-composition
in Σ-protocols and related results [95, 113].

A.2 SpartanBatch and its security proof

We can define (interactive) SpartanBatch from (interactive)
Spartan below. Applying the standard Fiat-Shamir heuristic
results in the non-interactive version described above. (Inter-
active) SpartanBatch is b parallel instances of (interactive)
Spartan with the verifier following two different methods
depending on the step involved:

• Coordinated steps are those where the verifier provides
a random value that is an element of rx or ry (which
are each in Flogn), and thus part of the evaluation point
(rx,ry) for the polynomials Ã, B̃,C̃ in the final step of
Spartan’s verification algorithm. In these steps, the Spar-
tanBatch Verifier provides a single random value that is
taken to be the response to all b parallel instances.

• All other steps are uncoordinated. Here, the verifier
provides a b-tuple of independent responses, one for
each parallel proof.

The analysis below is based on that of similar techniques
applied in other proof systems [95, 113].

Theorem 1 SpartanBatch is a succinct non-interactive argu-
ment of knowledge for the language Lb, where b is the batch
size.

Proof:

We analyze the interactive version of SpartanBatch, noting
that all the properties proven below are retained when using
the standard Fiat-Shamir heuristic to obtain non-interactivity.

Completeness: The verifier for SpartanBatch can be seen as
performing the checks of b separate Spartan verifiers. Com-
pleteness is thus immediate from the completeness of Spartan.

Soundness: Using an argument similar to standard AND-
composition analysis in Σ-protocols, we show that the sound-
ness error of SpartanBatch is at most the soundness error (ε)
of Spartan. The proof proceeds by contradiction. Assume that
there exists a false instance x∗ /∈ L and a SpartanBatch prover
PB that produces a convincing proof of a batch of statements
X∗ = {x∗,x2, . . . ,xb} with probability ≥ 1− ε (we place the
false instance in the first position without loss of generality).
We use PB to construct a Spartan prover P that convinces a
Spartan verifier V of the same false statement x∗ with the
same probability.

In this reduction, P doubles as the SpartanBatch verifier when
interacting with PB: that is, ⟨P,V ⟩ run an instance of Spartan
on input x∗ while ⟨PB,P⟩ run an instance of SpartanBatch on
input X∗. The reduction proceeds as follows:

• When PB provides a tuple of values, P forwards the value
corresponding to the false instance (here, the first one)
to V .

• When V sends randomness r, P forwards the following
to PB based on the step:

– In coordinated steps: P forwards r.

– In uncoordinated steps: P sample randomness
r2, . . . ,rb and forwards (r,r2, . . . ,rb).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1931

Thus, if PB passes the SpartanBatch verification checks, P
must pass the Spartan verification checks. This is a contradic-
tion as PB was assumed to pass with probability ≥ 1− ε.

Zero-knowledge: Like Spartan, SpartanBatch being a public-
coin interactive protocol allows us to leverage existing com-
pilers to satisfy zero-knowledge [116].

Knowledge soundness: We prove the stronger notion of
witness-extended emulation. As this property is satisfied by
Spartan, we have an emulator E that interacts with any Spar-
tan prover P as an oracle and is allowed to rewind P to any
step and resume with new verifier randomness. Using E, we
construct EPB

B that runs on input X = {x1, . . . ,xb} interacting
with a SpartanBatch prover PB as follows:

For i ∈ 0 . . .b:

• EB runs emulator E on input xi.

• When E sends randomness r to its oracle, EB sends the
following values to its oracle PB based on the step:

– In coordinated steps, EB forwards value r.

– In uncoordinated steps, EB forwards a b-tuple with
value r in position i and freshly sampled random-
ness in all other positions.

• When PB responds with a tuple of values, EB forwards
the value at position i to E as a response to E’s oracle
query.

• When E rewinds its prover P to a step, EB rewinds PB
(and thus rewinding all parallel instances in the batch)
to that step, as well.

This way, EB accurately simulates the required oracle for
E and thus has it extract witness wi for all inputs xi in the
batch. As EB sequentially runs E on b inputs, EB also runs in
expected polynomial time when b is a constant.

References
[1] BNF converter. http://bnfc.digitalgrammars.com/.
[2] Efficient string matching: an aid to bibliographic search. Com-

munications of The ACM, 18(6):333–340, 1975.
[3] zk-regex. https://github.com/zkemail/zk-regex,

2023.
[4] Shashank Agrawal, Chaya Ganesh, and Payman Mohassel.

Non-Interactive Zero-Knowledge Proofs for Composite State-
ments. In CRYPTO, 2018.

[5] HTTP Archive. Web almanac HTTP archive’s annual state of
the web report. https://almanac.httparchive.org/en/
2022/page-weight#request-bytes.

[6] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan,
and Mario Szegedy. Proof Verification and the Hardness of
Approximation Problems. Journal of the ACM, 45(3), May
1998.

[7] Sanjeev Arora and Shmuel Safra. Probabilistic Checking of
Proofs: A New Characterization of NP. Journal of the ACM,
45(1), January 1998.

[8] László Babai and Lance Fortnow. Arithmetization: A new
method in structural complexity theory. Computational Com-
plexity, 1:41–66, March 1991.

[9] László Babai, Lance Fortnow, Leonid A Levin, and Mario
Szegedy. Checking Computations in Polylogarithmic Time.
In ACM STOC, 1991.

[10] Joonsang Baek, Jongkil Kim, and Willy Susilo. Inspecting
TLS anytime anywhere: a new approach to TLS interception.
In Asia CCS, 2020.

[11] Daniel J. Bernstein. Curve25519: new diffie-hellman
speed records. https://cr.yp.to/ecdh/curve25519-
20060209.pdf, 2006.

[12] Karthikeyan Bhargavan, Ioana Boureanu, Antoine Delignat-
Lavaud, Pierre-Alain Fouque, and Cristina Onete. A formal
treatment of accountable proxying over TLS. In IEEE Sym-
posium on Security and Privacy, 2018.

[13] Anas A Bisu, Alan Purvis, Katharine Brigham, and Hongjian
Sun. A framework for end-to-end latency measurements
in a satellite network environment. In 2018 IEEE Inter-
national Conference on Communications (ICC), pages 1–6.
IEEE, 2018.

[14] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch.
Verifiable Delay Functions. In CRYPTO, 2018.

[15] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers,
Pratyush Mishra, and Howard Wu. Zexe: Enabling decentral-
ized private computation. In IEEE Symposium on Security
and Privacy, pages 947–964. IEEE, 2020.

[16] Benjamin Braun. Compiling computations to constraints for
verified computation. UT Austin Honors thesis HR-12-10,
December 2012.

[17] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath
Setty, Andrew J. Blumberg, and Michael Walfish. Verifying
computations with state. In ACM SOSP, 2013.

[18] Broadcom Near Real-Time Scan. https://
techdocs.broadcom.com/us/en/symantec-security-
software/endpoint-security-and-management/
cloud-workload-protection-for-storage/1-0/
Scan_Configuration_7/about-near-real-time-
scan-v123769597-d4995e65807.html, 2023.

[19] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan
Boneh. Zether: Towards privacy in a smart contract world. In
Financial Crypto, 2020.

[20] Matteo Campanelli, Dario Fiore, and Anaïs Querol. LegoS-
NARK: Modular design and composition of succinct zero-
knowledge proofs. In ACM CCS, page 2075–2092, 2019.

[21] Weikeng Chen, Alessandro Chiesa, Emma Dauterman, and
Nicholas P. Ward. Reducing Participation Costs via Incre-
mental Verification for Ledger Systems. Cryptology ePrint
Archive, Paper 2020/1522, 2020.

[22] Cisco. Snort intrusion detection system. https://
www.snort.org/.

[23] Cisco Umbrella. https://umbrella.cisco.com/, 2023.
[24] Jeremy Clark and Paul C Van Oorschot. SoK: SSL and

HTTPS: Revisiting past challenges and evaluating certificate
trust model enhancements. In IEEE Symposium on Security
and Privacy, 2013.

1932 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://bnfc.digitalgrammars.com/
https://github.com/zkemail/zk-regex
https://almanac.httparchive.org/en/2022/page-weight#request-bytes
https://almanac.httparchive.org/en/2022/page-weight#request-bytes
https://cr.yp.to/ecdh/curve25519-20060209.pdf
https://cr.yp.to/ecdh/curve25519-20060209.pdf
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/cloud-workload-protection-for-storage/1-0/Scan_Configuration_7/about-near-real-time-scan-v123769597-d4995e65807.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/cloud-workload-protection-for-storage/1-0/Scan_Configuration_7/about-near-real-time-scan-v123769597-d4995e65807.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/cloud-workload-protection-for-storage/1-0/Scan_Configuration_7/about-near-real-time-scan-v123769597-d4995e65807.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/cloud-workload-protection-for-storage/1-0/Scan_Configuration_7/about-near-real-time-scan-v123769597-d4995e65807.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/cloud-workload-protection-for-storage/1-0/Scan_Configuration_7/about-near-real-time-scan-v123769597-d4995e65807.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/cloud-workload-protection-for-storage/1-0/Scan_Configuration_7/about-near-real-time-scan-v123769597-d4995e65807.html
https://www.snort.org/
https://www.snort.org/
https://umbrella.cisco.com/

[25] Russ Cox. Regular expression matching can be simple and
fast. https://swtch.com/ rsc/regexp/regexp1.html, 2007.

[26] Santiago Cuéllar, Bill Harris, James Parker, Stuart Pernsteiner,
and Eran Tromer. Cheesecloth: Zero-Knowledge Proofs of
Real-World Vulnerabilities. arXiv preprint arXiv:2301.01321,
2023.

[27] Gaby G Dagher, Benedikt Bünz, Joseph Bonneau, Jeremy
Clark, and Dan Boneh. Provisions: Privacy-preserving Proofs
of Solvency for Bitcoin Exchanges. In ACM CCS.

[28] George Danezis, Cedric Fournet, Markulf Kohlweiss, and
Bryan Parno. Pinocchio Coin: building Zerocoin from a suc-
cinct pairing-based proof system. In ACM workshop on Lan-
guage Support for Privacy-Enhancing Technologies, 2013.

[29] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and
Titouan Tanguy. Limbo: Efficient zero-knowledge MPCitH-
based arguments. In ACM CCS, CCS ’21, page 3022–3036,
New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[30] Tim Dierks and Eric Rescorla. RFC 5246: The transport layer
security (TLS) protocol version 1.2. RFC 5246, 2008.

[31] Colin Dixon, Hardeep Uppal, Vjekoslav Brajkovic, Dane
Brandon, Thomas Anderson, and Arvind Krishnamurthy.
ETTM: A scalable fault tolerant network manager. In
USENIX NSDI, 2011.

[32] Huayi Duan, Xingliang Yuan, and Cong Wang. Lightbox:
SGX-assisted secure network functions at near-native speed.
arXiv preprint arXiv:1706.06261, 2017.

[33] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary
Wong, Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler,
David Johnson, Kirk Webb, Aditya Akella, Kuangching Wang,
Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink,
Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra.
The design and operation of CloudLab. In Proceedings of the
USENIX Annual Technical Conference (ATC), pages 1–14,
July 2019.

[34] Jacob Eberhardt and Stefan Tai. ZoKrates - Scalable Privacy-
Preserving Off-Chain Computations. In IEEE Conference on
Internet of Things (iThings), 2018.

[35] Jingyuan Fan, Chaowen Guan, Kui Ren, Yong Cui, and Chun-
ming Qiao. Spabox: Safeguarding privacy during deep packet
inspection at a middlebox. IEEE/ACM Transactions on Net-
working, 25(6), 2017.

[36] Shufan Fei, Zheng Yan, Wenxiu Ding, and Haomeng Xie. Se-
curity vulnerabilities of SGX and countermeasures: A survey.
ACM Computing Surveys, 54(6), 2021.

[37] Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems. In
CRYPTO, 1986.

[38] Fortra Digital Guardian. https://
www.digitalguardian.com/, 2023.

[39] Open Information Security Foundation. Suricata intrusion
detection system. https://suricata.io/.

[40] Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage-
Resilient Zero Knowledge. In CRYPTO, 2011.

[41] Oded Goldreich. Probabilistic proof systems – a primer. Foun-
dations and Trends in Theoretical Computer Science, 3(1),
2008.

[42] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum.
Delegating computation: interactive proofs for muggles. Jour-

nal of the ACM, 62(4), 2015.
[43] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The

knowledge complexity of interactive proof systems. SIAM
Journal on Computing, 18(1), 1989.

[44] David Goltzsche, Signe Rüsch, Manuel Nieke, Sébastien
Vaucher, Nico Weichbrodt, Valerio Schiavoni, Pierre-Louis
Aublin, Paolo Cosa, Christof Fetzer, Pascal Felber, et al. End-
box: Scalable middlebox functions using client-side trusted
execution. In IEEE/IFIP DSN, 2018.

[45] Deli Gong, Muoi Tran, Shweta Shinde, Hao Jin, Vyas Sekar,
Prateek Saxena, and Min Suk Kang. Practical verifiable in-
network filtering for DDoS defense. In IEEE ICDCS, 2019.

[46] Google. Google public DNS. https://
developers.google.com/speed/public-dns.

[47] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and
Tilo Müller. Cache attacks on Intel SGX. In Proceedings of
the 10th European Workshop on Systems Security, pages 1–6,
2017.

[48] Jens Groth. On the size of pairing-based non-interactive
arguments. In IACR Eurocrypt, 2016.

[49] Paul Grubbs, Arasu Arun, Ye Zhang, Joseph Bonneau, and
Michael Walfish. Zero-Knowledge Middleboxes. In USENIX
Security, 2022.

[50] Juhyeng Han, Seongmin Kim, Daeyang Cho, Byungkwon
Choi, Jaehyeong Ha, and Dongsu Han. A Secure Middlebox
Framework for Enabling Visibility Over Multiple Encryption
Protocols. IEEE/ACM Transactions on Networking, 28(6),
2020.

[51] Juhyeng Han, Seongmin Kim, Jaehyeong Ha, and Dongsu
Han. SGX-Box: Enabling visibility on encrypted traffic using
a secure middlebox module. In Asia-Pacific Workshop on
Networking, 2017.

[52] Paul E. Hoffman and Patrick McManus. DNS Queries over
HTTPS (DoH). RFC 8484, 2018.

[53] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane
Wessels, and Paul E. Hoffman. Specification for DNS over
Transport Layer Security (TLS). RFC 7858, 2016.

[54] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit
Sahai. Zero-knowledge from secure multiparty computation.
In ACM STOC, STOC ’07, page 21–30, New York, NY, USA,
2007. Association for Computing Machinery.

[55] Dmitry Khovratovich, Mary Maller, and Pratyush Ranjan Ti-
wari. MinRoot: Candidate Sequential Function for Ethereum
VDF. Cryptology ePrint Archive, Paper 2022/1626, 2022.

[56] Jongkil Kim, Seyit Camtepe, Joonsang Baek, Willy Susilo,
Josef Pieprzyk, and Surya Nepal. P2DPI: Practical and
Privacy-Preserving Deep Packet Inspection. AsiaCCS, 2021.

[57] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and
Charalampos Papamanthou. Hawk: The Blockchain Model
of Cryptography and Privacy-Preserving Smart Contracts. In
IEEE Symposium on Security and Privacy, 2016.

[58] Feodor Kulishov. DFA-based and SIMD NFA-based regular
expression matching on cell BE for fast network traffic filter-
ing. In 2nd Intl. Conference on Security of Information and
Networks (SIN). ACM Press, 2009.

[59] Dmitrii Kuvaiskii, Somnath Chakrabarti, and Mona Vij. Snort
intrusion detection system with Intel software guard extension
(Intel SGX). arXiv preprint arXiv:1802.00508, 2018.

[60] SSL Labs. SSL Pulse. https://www.ssllabs.com/ssl-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1933

https://www.digitalguardian.com/
https://www.digitalguardian.com/
https://suricata.io/
https://developers.google.com/speed/public-dns
https://developers.google.com/speed/public-dns
https://www.ssllabs.com/ssl-pulse/

pulse/.
[61] Shangqi Lai, Xingliang Yuan, Joseph K Liu, Xun Yi, Qi Li,

Dongxi Liu, and Surya Nepal. OblivSketch: Oblivious Net-
work Measurement as a Cloud Service. In Network and
Distributed System Security Symposium, 2021.

[62] Shangqi Lai, Xingliang Yuan, Shifeng Sun, Joseph K. Liu,
Ron Steinfeld, Amin Sakzad, and Dongxi Liu. Practical En-
crypted Network Traffic Pattern Matching for Secure Middle-
boxes. IEEE TDSC, 2021.

[63] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia Rat-
nasamy, and Zhi Liu. Embark: Securely outsourcing middle-
boxes to the cloud. In USENIX NSDI, 2016.

[64] Hyunwoo Lee, Zach Smith, Junghwan Lim, Gyeongjae Choi,
Selin Chun, Taejoong Chung, and Ted Taekyoung Kwon.
maTLS: How to make TLS middlebox-aware? In Network
and Distributed System Security Symposium, 2019.

[65] Jie Li, Rongmao Chen, Jinshu Su, Xinyi Huang, and Xiaofeng
Wang. ME-TLS: Middlebox-enhanced TLS for Internet-
of-Things devices. IEEE Internet of Things Journal, 7(2),
November 2019.

[66] Cong Liu, Yong Cui, Kun Tan, Quan Fan, Kui Ren, and Jian-
ping Wu. Building generic scalable middlebox services over
encrypted protocols. In IEEE INFOCOM, 2018.

[67] Yanbing Liu, Li Guo, Ping Liu, and Jianlong Tan. Compress-
ing regular expressions’ dfa table by matrix decomposition.
In Michael Domaratzki and Kai Salomaa, editors, Implemen-
tation and Application of Automata, pages 282–289, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[68] Ning Luo, Chenkai Weng, Jaspal Singh, Gefei Tan, Ruzica
Piskac, and Mariana Raykova. Privacy-preserving regular
expression matching using nondeterministic finite automata.
Cryptology ePrint Archive, Paper 2023/643, 2023. https:
//eprint.iacr.org/2023/643.

[69] Chad Mayfield. my-pihole-
blocklists/pi_blocklist_porn_all.list. https://github.com/
chadmayfield/my-pihole-blocklists, 2021.

[70] François Michel, Martino Trevisan, Danilo Giordano, and
Olivier Bonaventure. A First Look at Starlink Performance. In
Proceedings of the Internet Measurement Conference, 2022.

[71] Microsoft. Data loss prevention. learn.microsoft.com/
en-us/microsoft-365/compliance/dlp-learn-
about-dlp.

[72] Microsoft. U.S. bank account number. https:
//learn.microsoft.com/en-us/microsoft-365/
compliance/sit-defn-us-bank-account-number.

[73] Microsoft. U.S. drivers license number. https:
//learn.microsoft.com/en-us/microsoft-365/
compliance/sit-defn-us-drivers-license-
number.

[74] Microsoft. U.S. individual taxpayer identification number.
https://learn.microsoft.com/en-us/microsoft-
365/compliance/sit-defn-us-individual-
taxpayer-identification-number.

[75] Microsoft. U.S. social security number. https:
//learn.microsoft.com/en-us/microsoft-365/
compliance/sit-defn-us-social-security-
number.

[76] Microsoft. U.S./U.K. passport number. https:
//learn.microsoft.com/en-us/microsoft-365/

compliance/sit-defn-us-uk-passport-number.
[77] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck,

Daniel Gruss, and Frank Piessens. Plundervolt: Software-
based fault injection attacks against Intel SGX. In IEEE
Symposium on Security and Privacy, 2020.

[78] David Naylor, Richard Li, Christos Gkantsidis, Thomas Kara-
giannis, and Peter Steenkiste. And Then There Were More:
Secure Communication for More Than Two Parties. In ACM
CoNEXT, 2017.

[79] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leon-
tiadis, Jeremy Blackburn, Diego R. López, Konstantina Papa-
giannaki, Pablo Rodriguez Rodriguez, and Peter Steenkiste.
Multi-context TLS (McTLS): Enabling secure in-network
functionality in TLS. In ACM SIGCOMM, 2015.

[80] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brors-
son. A survey of published attacks on Intel SGX. arXiv
preprint arXiv:2006.13598, 2020.

[81] Jianting Ning, Xinyi Huang, Geong Sen Poh, Shengmin Xu,
Jia-Chng Loh, Jian Weng, and Robert H Deng. Pine: Enabling
privacy-preserving deep packet inspection on TLS with rule-
hiding and fast connection establishment. In ESORICS, 2020.

[82] Jianting Ning, Geong Sen Poh, Jia-Ch’ng Loh, Jason Chia,
and Ee-Chien Chang. PrivDPI: privacy-preserving encrypted
traffic inspection with reusable obfuscated rules. In ACM
CCS, 2019.

[83] OpenWrt. OpenWrt table of hardware. https://
openwrt.org/toh/views/toh_extended_all.

[84] Alex Ozdemir, Fraser Brown, and Riad S. Wahby. CirC: com-
piler infrastructure for proof systems, software verification,
and more. In IEEE Symposium on Security and Privacy,
2022.

[85] Bryan Parno, Craig Gentry, Jon Howell, and Mariana
Raykova. Pinocchio: Nearly practical verifiable computa-
tion. In IEEE Symposium on Security and Privacy, 2013.

[86] PerfOps. Dns performance analytics and comparison. https:
//www.dnsperf.com/#!dns-resolvers.

[87] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia
Ratnasamy. Safebricks: Shielding network functions in the
cloud. In USENIX NSDI, 2018.

[88] Geong Sen Poh, Dinil Mon Divakaran, Hoon Wei Lim,
Jianting Ning, and Achintya Desai. A Survey of Privacy-
Preserving Techniques for Encrypted Traffic Inspection over
Network Middleboxes. arXiv preprint arXiv:2101.04338,
2021.

[89] Michael Raymond, Gillian Evers, Jan Ponti, Diya Krishnan,
and Xiang Fu. Efficient zero knowledge for regular language.
Cryptology ePrint Archive, Paper 2023/907, 2023. https:
//eprint.iacr.org/2023/907.

[90] Eric Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.3. RFC 8446, 2018.

[91] Eli Ben Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars Virza.
Zerocash: Decentralized anonymous payments from Bitcoin.
In IEEE Symposium on Security and Privacy, 2014.

[92] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine
Maurice, and Stefan Mangard. Malware guard extension:
Using SGX to conceal cache attacks. In DIMVA, 2017.

[93] Srinath Setty. Spartan: Efficient and general-purpose zk-
SNARKs without trusted setup. In IACR CRYPTO, 2020.

1934 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.ssllabs.com/ssl-pulse/
https://eprint.iacr.org/2023/643
https://eprint.iacr.org/2023/643
https://github.com/chadmayfield/my-pihole-blocklists
https://github.com/chadmayfield/my-pihole-blocklists
learn.microsoft.com/en-us/microsoft-365/compliance/dlp-learn-about-dlp
learn.microsoft.com/en-us/microsoft-365/compliance/dlp-learn-about-dlp
learn.microsoft.com/en-us/microsoft-365/compliance/dlp-learn-about-dlp
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-bank-account-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-bank-account-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-bank-account-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-drivers-license-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-drivers-license-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-drivers-license-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-drivers-license-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-individual-taxpayer-identification-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-individual-taxpayer-identification-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-individual-taxpayer-identification-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-social-security-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-social-security-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-social-security-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-social-security-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-uk-passport-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-uk-passport-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-uk-passport-number
https://openwrt.org/toh/views/toh_extended_all
https://openwrt.org/toh/views/toh_extended_all
https://www.dnsperf.com/#!dns-resolvers
https://www.dnsperf.com/#!dns-resolvers
https://eprint.iacr.org/2023/907
https://eprint.iacr.org/2023/907

[94] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blum-
berg, Bryan Parno, and Michael Walfish. Resolving the con-
flict between generality and plausibility in verified computa-
tion. In Eurosys, 2013.

[95] Srinath Setty, Richard McPherson, Andrew Blumberg, and
Michael Walfish. Making argument systems for outsourced
computation practical (sometimes). 2012.

[96] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun,
Andrew J. Blumberg, and Michael Walfish. Taking proof-
based verified computation a few steps closer to practicality.
In USENIX Security, 2012.

[97] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, oct 1992.
[98] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia

Ratnasamy. BlindBox: Deep packet inspection over encrypted
traffic. In ACM SIGCOMM, 2015.

[99] Justine M. Sherry. Middleboxes as a Cloud Service. PhD
thesis, University of California, Berkeley, 2016.

[100] Adhiraj Singh, Madhavan Malolan, and Abhilash Inu-
mella. Reclaim Protocol: Privacy preserving consen-
sus to export reputation from webservers. https://
www.reclaimprotocol.org/, 2022.

[101] Michael Sipser. Introduction to the Theory of Computation.
Boston, MA, third edition, 2013.

[102] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read
Sprabery, Josep Torrellas, and Christopher W Fletcher. Micro-
scope: Enabling microarchitectural replay attacks. In ISCA,
2019.

[103] Justin Thaler. Proofs, Arguments, and Zero-Knowledge.
http://people.cs.georgetown.edu/jthaler/
ProofsArgsAndZK.html, 2020.

[104] Ken Thompson. Programming techniques: Regular ex-
pression search algorithm. Communications of The ACM,
11(6):419–422, June 1968.

[105] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnau-
tov, Pramod Bhatotia, and Christof Fetzer. Shieldbox: Secure
middleboxes using shielded execution. In Symposium on SDN
Research, 2018.

[106] Florian Tramèr, Dan Boneh, and Kenny Paterson. Remote
side-channel attacks on anonymous transactions. In USENIX
Security, 2020.

[107] Nirvan Tyagi, Ben Fisch, Andrew Zitek, Joseph Bonneau, and
Stefano Tessaro. VeRSA: Verifiable Registries with Efficient
Client Audits from RSA Authenticated Dictionaries. In ACM
CCS, 2022.

[108] Ioanna Tzialla, Abhiram Kothapalli, Bryan Parno, and Sri-
nath Setty. Transparency Dictionaries with Succinct Proofs
of Correct Operation. In Network and Distributed System
Security Symposium, 2022.

[109] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin,
Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F
Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Ex-
tracting the keys to the Intel SGX kingdom with transient
out-of-order execution. In USENIX Security, 2018.

[110] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz
Lippi, Marina Minkin, Daniel Genkin, Yuval Yarom, Berk
Sunar, Daniel Gruss, and Frank Piessens. LVI: Hijacking
transient execution through microarchitectural load value in-
jection. In IEEE Symposium on Security and Privacy, 2020.

[111] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and

Yuval Yarom. SGAxe: How SGX fails in practice. https:
//sgaxeattack.com/, 2020.

[112] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel
Genkin, and Yuval Yarom. CacheOut: Leaking Data on Intel
CPUs via Cache Evictions. In IEEE Symposium on Security
and Privacy, 2021.

[113] Victor Vu, Srinath Setty, Andrew J. Blumberg, and Michael
Walfish. A hybrid architecture for interactive verifiable com-
putation. In IEEE Symposium on Security and Privacy, 2013.

[114] W3Schools. Chrome statistics. https://
www.w3schools.com/browsers/browsers_chrome.asp.

[115] Riad S. Wahby, Srinath Setty, Zuocheng Ren, Andrew J.
Blumberg, and Michael Walfish. Efficient RAM and con-
trol flow in verifiable outsourced computation. In Network
and Distributed System Security Symposium, 2015.

[116] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler,
and Michael Walfish. Doubly-efficient zkSNARKs without
trusted setup. In IEEE Symposium on Security and Privacy,
2018.

[117] Michael Walfish and Andrew J. Blumberg. Verifying compu-
tations without reexecuting them: from theoretical possibility
to near practicality. Communications of the ACM, 58(2),
February 2015.

[118] Juan Wang, Shirong Hao, Yi Li, Zhi Hong, Fei Yan, Bo Zhao,
Jing Ma, and Huanguo Zhang. TVIDS: Trusted virtual IDS
with SGX. China Communications, 16(10), 2019.

[119] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Ge-
off Langdale, Jiayu Hu, and Heqing Zhu. Hyperscan: A fast
multi-pattern regex matcher for modern CPUs. In USENIX
NSDI, 2019.

[120] Yu Wang, Yang Xiang, Wanlei Zhou, and Shunzheng Yu. Gen-
erating regular expression signatures for network traffic classi-
fication in trusted network management. Journal of Network
and Computer Applications, 35(3):992–1000, 2012. Special
Issue on Trusted Computing and Communications.

[121] Florian Wilkens, Steffen Haas, Johanna Amann, and Mathias
Fischer. Passive, transparent, and selective TLS decryption for
network security monitoring. In IFIP International Confer-
ence on ICT Systems Security and Privacy Protection, 2022.

[122] Xingliang Yuan, Huayi Duan, and Cong Wang. Assur-
ing string pattern matching in outsourced middleboxes.
IEEE/ACM Transactions on Networking, 26(3), 2018.

[123] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven
Goldfeder, and Ari Juels. DECO: Liberating web data using
decentralized oracles for TLS. In ACM CCS, 2020.

[124] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Pa-
padopoulos, and Charalampos Papamanthou. vSQL: Verify-
ing arbitrary SQL queries over dynamic outsourced databases.
In IEEE Symposium on Security and Privacy, 2017.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1935

https://www.reclaimprotocol.org/
https://www.reclaimprotocol.org/
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://sgaxeattack.com/
https://sgaxeattack.com/
https://www.w3schools.com/browsers/browsers_chrome.asp
https://www.w3schools.com/browsers/browsers_chrome.asp

Solving Max-Min Fair Resource Allocations Quickly on Large Graphs

Pooria Namyar†‡, Behnaz Arzani†, Srikanth Kandula†, Santiago Segarra†⋆,
Daniel Crankshaw†∗, Umesh Krishnaswamy†, Ramesh Govindan‡, Himanshu Raj†

†Microsoft, ‡University of Southern California, ⋆Rice University

Abstract– We consider the max-min fair resource allocation
problem. The best-known solutions use either a sequence of
optimizations or waterfilling, which only applies to a narrow
set of cases. These solutions have become a practical bottle-
neck in WAN traffic engineering and cluster scheduling, espe-
cially at larger problem sizes. We improve both approaches:
(1) we show how to convert the optimization sequence into a
single fast optimization, and (2) we generalize waterfilling to
the multi-path case. We empirically show our new algorithms
Pareto-dominate prior techniques: they produce faster, fairer,
and more efficient allocations. Some of our allocators also
have theoretical guarantees: they trade off a bounded amount
of unfairness for faster allocation. We have deployed our allo-
cators in Azure’s WAN traffic engineering pipeline, where we
preserve solution quality and achieve a roughly 3× speedup.

1 Introduction
Multi-resource fair allocators have become essential for cloud
operators as multi-tenancy, availability, and efficiency grow
in importance. These allocators divide the resources fairly
among different requests (applications, users, or network
flows). Operators use them to meet customer expectations,
especially during congestion and for network neutrality.

Recent works present fair allocators in settings such as
WAN traffic engineering [17, 30, 34, 38] and GPU schedul-
ing [14, 42, 56]. We show these allocators achieve fairness at
the cost of speed (crucial for maintaining high utilization as
loads change [4]) and efficiency1 (essential for profit).

We aim to achieve a better balance between fairness, effi-
ciency, and speed, and our novel algorithms offer operators
greater flexibility to control the trade-off between them. We
focus on max-min fairness — where we cannot allocate more
to one request without reducing the allocation of another with
an equal or smaller value — because it is simple, commonly
used in practice [30, 34, 39, 56], and can promote efficiency.2

The definition of max-min fairness naturally leads to itera-
tive solutions that prioritize smaller requests over larger ones
and assign rates in order from smallest to largest. In multi-
resource settings, these solutions solve either mixed-integer
or linear optimizations [52, 59] at each step. Their scalability
depends on the size of each individual optimization and the
number of iterations – typically a function of the number of

∗The author contributed to this work while at Microsoft.
1In this paper, we use efficiency and utilization interchangeably.
2We defer extending to other notions of fairness to future work.

Soroush (heuristics)
Soroush (α-approx)

k-waterfilling

Exact Methods
(Gavel, Danna)

Faster with
same guarantee

run time (log scale)

m
ax

-m
in

 fa
ir

n
es

s Soroush
Waterfillers

SWAN
α-approx

Soroush
α-approx

Previous schemes

fairer

faster

FIGURE 1: Comparing the new allocators with state-of-the-
art. Soroush offers parameterizable max-min fair allocators. The
axes are fairness and speed; the marker size corresponds to effi-
ciency (larger is more efficient). Our new allocators empirically
Pareto-dominate other schemes, and some of them have theoreti-
cal guarantees on fairness (§4).

resources and requests.
Operators need to invoke resource allocators when work-

loads change or failures occur. However, today’s exact [17,56]
or approximate solutions (e.g., that trade-off fairness for
speed [30]) are too slow in reacting to these events at the
production scale. They take tens of minutes to hours (§4) on
WANs with 100s of routers that serve millions of flows or
clusters with 1000s of jobs.

We ask: are iterative optimizations necessary for max-min
fair resource allocation? Max-min fair algorithms must max-
imize smaller allocations before assigning more capacity to
larger ones. Current solutions iterate because they do not
know the sorted order of these rate allocations apriori. One
of our ideas is to (1) use sorting networks [7] to discover the
sorted order of max-min fair allocations dynamically within
the optimization and (2) use a linear weighted objective that
explicitly incentivizes the optimization to allocate more rates
to requests with smaller indices in the sorted order. The result
is a single-shot optimization for max-min fair allocation.

The above single-shot optimization is not always practical
as modeling sorting networks within an optimization can sig-
nificantly increase its size, and the linear weighted objective
can cause double-precision issues when there are many re-
quests. To develop a practical solution, we combine this idea
with an approximate max-min fair allocator from SWAN [30].
This combination results in a new allocator, GeometricBinner
(or GB), which is fundamentally faster than SWAN, does not
need sorting networks, has no double precision issues, and
provides the same fairness guarantees as SWAN.

Waterfilling-based algorithms [8] can be faster than black-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1937

Allocator Properties Parameters
Geometric (T) α-approx fairness guarantee α
Binner (E) Faster than other α-approx methods ϵ

Adaptive (T) Solution in a small set containing optimal #iterations
Waterfiller (E) Fastest

Equi-depth (T) Better than Adaptive Waterfiller #iterations
Binner (E) Fairest and fast #bins, ϵ

TABLE 1: The Soroush allocators, their properties (Theoretical
and Empirical), and their parameters. These allocators provide
different trade-offs among fairness, efficiency, and speed.

box optimizations, but they are specialized for cases where
each request seeks rates on a single path. In a broad class of
problems [14,17,30,34,38,42,56], requests ask for allocation
from multiple paths. In these cases, the global fair share is not
locally fair along each path, and waterfilling does not apply.
Our solution, AdaptiveWaterfiller (or AW), extends waterfilling
to multi-path settings. AW is faster than GB but does not have
a worst-case fairness guarantee. We prove AW can converge
to a small set of allocations that contain the optimal.

Our third algorithm, which is empirically the fairest, com-
bines the above approaches. We apply GB with one change:
use the allocations from AW to spread requests more uni-
formly among bins (instead of the fixed geometrically increas-
ing bin sizes in GB). This allocator, EquidepthBinner (or EB),
is slower than both AW and GB (executes each once) but intu-
itively improves fairness for the same reason that equi-depth
binning reduces histogram approximation error [32].

Soroush3 is the collection of these algorithms, each provid-
ing a different trade-off among fairness, efficiency, and speed.
Operators can use our simple decision process to choose the
allocator (and its hyper-parameters) that achieves their de-
sired trade-off. Table 1 lists our allocators, their theoretical
and empirical properties, and their parameters.

To show Soroush is general, we introduce a graph model for
multi-resource, max-min fair resource allocation problems
where edges model resources and paths capture groups of
resources the allocator must assign together. Requests (de-
mands) can then ask for resources on any choice of multiple
paths. This compact and general model subsumes problems
from at least two domains: traffic engineering (TE) and cluster
scheduling (CS). Soroush can solve any future max-min fair
allocation problem if the user can specify it in this model.

Our extensive evaluation in both TE and CS (which we
summarize in Fig. 1) show the new allocators Pareto-dominate
the state-of-the-art in fairness, speed, and efficiency.

We deployed GeometricBinner in the production TE
pipeline at Azure where it provides a 2.4× average speedup
(up to 5.4× in some cases) without any impact on fairness
and efficiency compared to the previous allocator.

2 Motivation and Overall Approach
Faster workload dynamics [4] and higher availability require-
ments [45] have made fast resource allocation a necessity.

3Our code is available at https://github.com/microsoft/Soroush

50 100 150 200 250 300
0.2

0.4

no
rm

 c
ha

ng
e

 in
 tr

af
fic

50 100 150 200 250 3000.2

0.4

0.6

0.8

1.0

fa
irn

es
s

 w
rt

in
st
an

t s
ol
ve

r

50 100 150 200 250 300
Time (minutes)

0.6

0.7

0.8

0.9

1.0

ef
fic
ie
nc
y
(to
ta
l r
at
e)

 w
rt
in
st
an
t s
ol
ve
r

lagged solver (2 windows per TM)

FIGURE 2: Slow max-min fair resource allocators cause
under-utilization and unfairness. We compare two instances of
the SWAN solver – one computes the allocations instantly while
the other needs two windows – on a 5-hour trace from Azure’s
WAN. The results indicate a large gap between the two solutions
in fairness and efficiency.

Operators of multi-tenant clouds further require solutions that
ensure fairness and maintain high efficiency [30, 34]. Prior
work ([4, 45, 55, 66] in TE or [56] in CS) fails to meet one or
more of these requirements.

Efficient and fair solvers [17, 30, 56] cannot adapt quickly
to conditions that frequently change. Some production envi-
ronments [4] use the most recent previous allocation when the
solver cannot allocate resources within a fixed time window.
This is sub-optimal: nodes that increase their demands in the
new window do not get enough resources, and others who
request less may receive more than they need.

We quantify the impact of this strategy in the TE setting
using a 5-hour trace from Azure’s production WAN (Fig. 2),
which uses a 5-minute window. We observe a solver that
needs two windows (10 minutes) to allocate resources reduces
fairness by 20% – 60% and efficiency by 10% – 30% relative
to a solver that completes within one window.

How often do solvers miss their deadline? We use traces
from [4] to show the distribution of the number of windows
an exact solver (Danna et al. [17]) and Microsoft’s approx-
imate solver (SWAN [30]) need to compute max-min fair
allocations. For nearly half of the traffic trace, these solvers
exceed the 5-minute window and often need 2 to 3 windows
to finish (Fig. 3, left). This is because these approaches invoke
expensive optimizations multiple times (Fig. 3, right).

Soroush invokes at most one optimization and always com-
pletes within a single window. Whether a one-shot optimiza-
tion is faster than an iterative approach that solves multiple
optimizations depends on two factors: (a) the number of op-
timizations in the iterative approach, and (b) the size of the
optimization in the one-shot approach compared to those in

1938 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/microsoft/Soroush

Danna SWAN Soroush
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac
tio

n
of
 S
ce
na

rio
s

>4
4

3
2

1

Danna SWAN Soroush
100

101

102

#i
te
ra
tio

ns

40

8

1

FIGURE 3: State-of-the-art methods can not keep up with fre-
quently changing demands. We capture the number of windows
(left) and the number of iterations (right) each approach needs. To
keep up with demands, they must finish within a single 5-minute
window. However, SWAN [30] and Danna et al. [17] often need
more than one window and miss their deadline. The results are
on a topology with ∼200 nodes and ∼500 edges. Left captures
160 different scenarios. Right is a highly loaded scenario [4] – the
results hold across all the algorithms in Soroush.

the iterative solution4. Our one-shot optimizations are faster
than previous solutions [17, 30, 56] because we only add a
small number of variables to convert the problem into one
that can be solved in one shot, and we avoid the overhead in
solving multiple optimizations. See §F for a detailed analysis.

While examples here are from TE, CS resource allocators
are similar [56]. We omit the details for brevity.

2.1 Our model
We model the max-min fair resource allocation problem as a
capacitated graph5. Each edge represents a different resource,
and edge capacities show the amount of available resources.
Paths in the graph encode a collection of resources we must
allocate together (e.g., GPU and memory), and demands can
request resources on a subset of these paths. Our model also
supports other affine constraints over graph variables (e.g.,
text in maroon below). Soroush solves any max-min fair re-
source allocation problem we can specify in this model.

Our model takes as input:

• A set of resources E , each with capacities ce,e ∈ E .
• A set of paths P where each path is a group of dependent

resources that we must allocate together.
• A set of demands D where each demand k ∈ D:

– Requests some rate dk.
– Has weight wk (for weighted max-min fairness).
– Can be routed over a set of multiple paths Pk ∈ P .
– Consumes re

k of the capacity on edge e for each
unit rate we assign.

– Has utility qp
k on path p for each unit rate.

A max-min fair allocator assigns rates to demands such that
the weighted ratios { fk

wk
} are max-min fair: to increase the

4LP solver latency is polynomial in the problem size [13, 15].
5We present the formulation of this model in §A

Term Interpretation
E,D,P sets of resources, demands and paths
ce capacity of resource e ∈ E
f ,fp

k
rate allocation vector and rate for demand k on path p

dk,wk requested rate and weight for demand k ∈ D
re

k, qp
k

scaling resource consumption and rate utility for demand k

TABLE 2: Notation for our max-min fair resource allocation
model. (more details in Table A.1)

Cross
validation

 Adapt Water

Geo Binner

Equi BinnerDesired Method with
tuned parameters

Demands

Offline Algorithm Suite

Online

Allocations

Objectives

Problem

FIGURE 4: Choosing allocators (and their parameters).

allocation of any demand, we have to reduce the allocation of
another demand with a smaller ratio.

We can use this model to specify max-min fair alloca-
tion problems in traffic engineering (TE) [30, 34] and cluster
scheduling (CS) [22, 25, 56].

TE. The actual links in the network are the resources, and
demands are services that require a specific rate between
nodes in the network. The TE scheme picks the paths for each
demand. Weights describe how the operator wants to divide
the rates (e.g., split rate between search and ads services).

CS. Each path corresponds to a server and contains multiple
edges. Each edge models a different type of resource on each
server (e.g., CPU, memory, or GPU). Demands are jobs that
require a number of workers. We model heterogeneity (work-
ers may progress at different rates on different servers) with
the utility term qp

k and scale how much of each resource the
worker uses with re

k.6 We also support extensions, such as
jobs with varying resource requirements [22, 25].

We are unaware of any model as general as ours for max-
min fair allocation. However, solving this general model is
hard: when we must allocate resources along multiple paths
(groups of resources), local fairness does not imply global fair-
ness, so single-path solutions [36] are ineffective. In Soroush,
we focus on this model and leave the extension to problems
that we cannot model as graphs [21] for future work.

2.2 Soroush Overview
Soroush offers a suite of allocators that produce approximate
solutions for graph-based max-min fair allocation problems.
An allocator is either an algorithm or optimization (or a com-
bination of both) that assigns max-min fair rates that meet the
demand and capacity constraints.

Table 1 lists our allocators, their key properties, and salient
parameters that let the user trade-off between fairness, speed,

6We can also use these terms to model similar aspects in TE.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1939

Fairness +
Efficiency

Fairness
Guarantee

Yes

No
Prioritizes

Adaptive Waterfiller,
#iterations

GB, high α or
EB, low #bins

Fairness +
Speed

Speed +
Efficiency

EB, #bins

GB, α

FIGURE 5: An example of how to pick the right allocator.

and efficiency (see §3 for more details). We have many
choices here and naïvely running multiple allocators in paral-
lel can waste computational resources. We suggest a simple
decision process along with a hyperparameter search to help
practitioners choose a suitable allocator (Fig. 4 and 5). A sen-
sitivity analysis in §4 indicates that this decision process is
robust. We do not claim any credit for it but use it as evidence
that we have effective mechanisms to make the choice.

The GeometricBinner (§3.1) is the only allocator in Soroush
with worst-case fairness guarantees: for a given α > 1, it prov-
ably assigns rates to each demand within [α−1,α] times its
optimal max-min fair rate. EquidepthBinner (§3.3) is the best
choice for users who prefer fairness and efficiency but do not
need formal worst-case guarantees. AdaptiveWaterfiller (§3.2)
is suitable for users who prefer speed over efficiency.

3 Max-Min Fair Resource Allocators
We present two novel kinds of multi-resource max-min fair
resource allocation algorithms.

3.1 One-shot Optimizations
Overview. We can think of max-min fair resource allocation
as an optimization with a prioritized list of objectives: first,
we maximize the smallest allocation, then the second smallest,
and so on. This intuition naturally leads to a sequence of linear
optimization problems (LPs) [17, 30].

Prior exact methods are slow since they solve nearly as
many LPs as the number of unique resources [17] (number of
edges in a network or machines in a cluster).

We will show how to linearize a prioritized list of objectives
such that we can solve one optimization instead of a (long)
sequence. The optimization we arrive at is analytically inter-
esting but can encounter double-precision errors, requires a
sorting network to sort allocations, and is consequently slower
in practice — we instead linearize an approximate version.

SWAN [30] uses an approximate solution that needs to
solve fewer LPs. It gradually and geometrically increases
the maximum possible rate for each demand and guarantees
the final allocations are within α× their optimal fair rates.
Users pick an α based on their requirements for fairness and
speed (e.g., α = 2 in SWAN). A larger α requires fewer LPs
but results in less fair allocations.7 Microsoft has been using
SWAN in production for many years [39].

7The number of LPs is logα Z where Z is the ratio between the largest
and the smallest request.

Term Meaning

t, ti sorted rate vector and the ith smallest rate

Nβ ,Db number of bins and set of demands in bin b

ℓb, sb boundary and slackness of bin b

fb, fkb bin allocation vector and rate of demand k in bin b

TABLE 3: Additional notation for Soroush.

We develop an approximate one-shot optimization by lin-
earizing SWAN’s approximate geometric method. Our idea
is to define “bins” that capture the geometric rate increase
at each iteration and introduce new variables to model each
flow’s allocation from each bin instead of the cumulative total.
This combination of techniques is novel and has the same
worst-case fairness guarantees as SWAN. By linearizing at
the granularity of bins, we no longer encounter double pre-
cision issues, do not need a sorting network, and achieve an
empirically faster solution.

We flesh out the details next (Tables 2 and 3 show our
notations). We discuss why this one-shot optimization is fun-
damentally smaller and faster than SWAN’s sequence of op-
timizations. We present results from our production deploy-
ment in §4.2.

Max-min fair allocation as a sequence of LPs. If we have n
demands, we can use n LPs to compute max-min fair alloca-
tions — the ith LP in the sequence maximizes the ith smallest
rate. Let ti be the ith smallest rate, then:

MaxMini(E ,D,P) ≜ argmax ti (1)

s.t. (t1, . . . , ti−1) ∈ MaxMini−1(E ,D,P),
fk ≥ ti, ∀k whose rate is not yet frozen

f ∈ FeasibleAlloc(E ,D,P).

Note that the algorithm freezes demands that can not re-
ceive more than ti in each iteration. These demands will not
receive any allocations in later iterations.

Our one-shot optimal max-min fair solution. We
change Eqn. 1 (changes are in color) to a single optimiza-
tion by (1) using a sorting network [7, 35, 45] to sort the
rates as part of the optimization (Fig. A.1), and (2) using a
linear weighted objective where the weight of a demand de-
creases based on its rank in the sorted order — these weights
incentivize the optimization to increase the smaller rates.

Eqn. 1 does not need sorting because each LP maximizes
the next smallest rate. The one-shot optimization, however,
must explicitly sort the allocations in order to weight them
appropriately in the objective. Let ϵ < 1, then:

OneShotOpt(E ,D,P) ≜ argmax
f

n∑
i=1

ϵi−1ti (2)

s.t. (t1, . . . , tn) = sorted rates(f),
f ∈ FeasibleAlloc(E ,D,P).

We prove OneShotOpt leads to max-min fair rates:

1940 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Theorem 1. There exist values of ϵ for which the optimization
in Eqn. 2 yields the same max-min fair rate allocations as the
sequence of optimizations shown in Eqn. 1.

Proof Sketch. Let t† be the rate vector solution from Eqn. 2.
Notice that the optimal max-min fair rate vector, say t∗, is
a feasible solution to Eqn. 2. Thus,

∑
i ϵi−1t†

i ≥
∑

i ϵi−1t∗
i

(otherwise t† is not the optimal solution to Eqn. 2). We can re-
arrange and get t∗

1 − t†
1 ≤ ϵ

(∑
i>1 ϵi−1t†

i −
∑

i>1 ϵi−1t∗
i

)
.

By definition of max-min fairness, we have t∗
1 ≥ t†

1 since t∗
1

is the smallest allocation in the optimal max-min fair solution.
If we can find a feasible assignment where the smallest rate t†

1
is higher, then t∗ cannot be max-min fair — we can increase
the smallest rate without hurting any other demand with an
smaller allocation (because no such demand exists). These
statements together imply the smallest rates must match as
ϵ → 0. The rest follows by induction.

OneShotOpt is not practical. We need a small ϵ to find an
optimal solution (see proof), but we will encounter double pre-
cision errors if the smallest weight (ϵn−1) is too small. In this
case, the formulation may have to sacrifice optimality and use
a large ϵ to solve the one-shot optimization (especially when
there are many demands). Even with a large ϵ, we find that
solving LPs with a full sorting network is slow [35, 45] since
sorting networks add O(nlog2(n)) additional constraints.

Our one-shot GeometricBinner (or GB) linearizes the fol-
lowing approximate max-min fair technique. Compared
to Eqn. 1, Eqn. 3 shows a shorter sequence of LPs inspired by
SWAN [30] (changes in color) but also differs from SWAN 8

in one crucial way (it introduces new variables to track the
increase in the allocation of each demand in each iteration):

ApproxMaxMinb(E ,D,P) ≜ argmax
∑
k∈D

fk (3)

s.t. fk =
∑

bins j≤b

fkj , ∀k ∈ D

fk1 ≤ U, ∀k ∈ D

fkb ≤ U(αb−1−αb−2), ∀b > 1,∀k ∈ D

fkb = 0 if
∑
j<b

fkj < Uαb−2, ∀b > 1,∀k ∈ D

(f1, . . . , fb−1) ∈ ApproxMaxMinb−1,

f ∈ FeasibleAlloc(E ,D,P).

The changes cause the bth LP, where index b begins at 1, to
allocate only up to U(αb−1 − αb−2) for b > 1 and up to U
for b = 1. The algorithm also freezes any demand that does
not receive the full rate from the previous iteration. α and
U are input parameters that control the fairness guarantee
and the minimum rate, respectively. Observe that each LP
in the sequence allocates rates unfairly, but the unfairness is
bounded as each LP allocates rates only within a small range.

8Eqn. 9 in §C shows SWAN’s formulation for comparison.

(⍺ - 1)U (⍺2 - ⍺1)UU
0 U ⍺U ⍺2U

Bin 1 Bin 2 Bin 3

fk = fk1 fk2 fk3+ + +

Weight in
objective

1 ϵ ϵ2≥ ≥
✖ϵ ✖ϵ

FIGURE 6: Geometric Binning: Approximate one-shot max-
min fair allocations. We can model the problem in one shot be-
cause we add a new variable to track the allocation to each demand
from each bin. With this idea, we can then change the objective to
incentivize the optimization to make sure its allocation saturates
smaller bins before allocating from subsequent bins.

Fig. 6 shows the key idea behind our one-shot geometric
binner. If we consider each allocation as the sum of contri-
butions from different, geometrically-sized bins, we can use
ϵ-weighting per bin to incentivize the optimization to allocate
more from the smaller bins. The resulting formulation is:

GeoBinning(E ,D,P) ≜ argmax
f

∑
k∈D

∑
bins b

ϵb−1fkb (4)

s.t. fk =
∑

bins b

fkb, ∀k ∈ D

fk1 ≤ U, ∀k ∈ D

fkb ≤ U(αb−1−αb−2), ∀b > 1,∀k ∈ D
f ∈ FeasibleAlloc(E ,D,P).

The geometric binner (Eqn. 4):

• Applies to various bin choices beyond the geometric
ones we used here. We use a similar intuition from equi-
depth binning in databases [32] to show in §3.3 that we
can choose bin boundaries to improve fairness.

• Offers the same fairness guarantee as SWAN [30] when
using the same (geometric) bins. GeoBinning allocates
rates within an α ratio of the optimal max-min fair rates
for any demand.

Theorem 2. Eqn. 4 assigns resources to a demand k in
bin b only if it has assigned demand k the full rate from
all of the larger-weighted bins.

Proof Sketch. Assume otherwise: Eqn. 4 has assigned a
non-zero rate to some demand k in some bin b without
assigning the full rate from some other bin j < b. Then,
we can move some δ rate from bin b to j and not violate
any constraints yet improve the objective value.9
We can combine Theorem 2 with the proof technique of
Theorem 1 to prove Eqn. 4 will allocate the same rates
as Eqn. 3, so the approximation ratio proof from [30]
applies directly.

• Lets users adjust α to balance the trade-off between
fairness approximation guarantee and the solver time.

9Smaller indexed bins have larger weights because ϵ < 1.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1941

Algorithm 1: Waterfilling algorithm to compute
single-path weighted max-min fair rates.

Input: Γ where Γ [e,k] is the weight of single-path demand
k on link e.

Input: c: link capacity vector.
Output: f : max-min rate allocation vector.

1 Da← [0, . . . ,K−1] initial list of active demands
2 f ← 0 initial rate vector
3 while |Da|> 0 do
4 n← Γ1 total weight per link
5 ζ← c

n vector division, fairshare per link
6 e← argmin ζ link with minimum fair share
7 De←{k : Γ [e,k] > 0} active demands on link e

8 foreach k ∈ De do
9 f [Da[k]]← ζ[e]Γ [e,k] fix to weighted fair share

10 foreach l : Γ [l,k] > 0 do
11 c[l]← c[l]− f [Da[k]] deduct allocations
12 end
13 end
14 c← c[\{e}] remove link e

15 Γ ← Γ [\{e};\De] remove link e and its demands
16 Da←Da \De update set of active demands
17 end
18 return f

• Is less likely to run into precision issues compared
to Eqn. 2 since there are fewer bins than demands.

• Requires no sorting constraints unlike Eqn. 2.
• Is only slightly larger in size compared to each of the

optimizations in Eqn. 3 (see §F for more details). The
key difference is that we can now run one LP instead of
many. The one-shot optimization is empirically faster,
likely due to redundant computation between the LPs in
the sequence of optimizations in Eqn. 3.

3.2 Multi-path Waterfilling
We also generalize the classical waterfilling algorithm for
max-min fair allocation over multiple resources. We present
parallelizable combinatorial algorithms (and not optimiza-
tions) with better empirical performance compared to §3.1
but weaker fairness guarantees.

Waterfilling is a well-known method that applies to sce-
narios where all the demands are unconstrained and require
resources on exactly one path [36]. Under these conditions,
we can achieve max-min fairness by visiting resources in the
ascending order of their fair share and splitting their capacities
fairly among the demands [67] (see Alg. 110)

We extend this approach to constrained demands by adding
a virtual edge with a capacity equal to the requested rate for
each demand. This augmented topology ensures that demands
receive at most what they asked for. For small requests, the
virtual edge becomes the bottleneck and limits the allocation.

It is harder to generalize waterfilling to multi-path settings

10Notice weighted max-min fair allocation is roughly the same with one
minor change: we relatively weigh the rate we allocate to each flow.

0.5

0.5 1

Topology Demands and Paths

0.5

Global max-min fair

0.5

0.25

0.75

sub-flow lvl max-min fair

0.5

0.5

0.5

sub-flow lvl weighted max-min fair
0.25

0.75

(a) Global and Local (per-link) max-min fairness are different.

iteration t−→
θ1

1
1
2

3
5

7
11

15
23

31
47

63
95 . . . 2

3
θ2

1
1
2

2
5

4
11

8
23

16
47

32
95 . . . 1

3
θ1

2 1 1 1 1 1 1 . . . 1
f1

1
1
2

1
2

1
2

1
2

1
2

1
2 . . . 1

2
f2

1
1
3

2
7

4
15

8
31

16
63

32
127 . . . 1

4
f1

2
2
3

5
7

11
15

23
31

47
63

95
127 . . . 3

4
(b) AW’s weight multipliers and allocations converge to global
max-min fair allocation.

FIGURE 7: An example to illustrate the difficulty in extending
waterfilling to multi-path settings and how our AdaptiveWaterfiller
effectively tackles the issue. Waterfilling (single-path) computes
local fair shares and is ineffective in multi-path settings as it ignore
the dependencies between different paths of a single demand.

because the local max-min fair allocation at individual re-
sources is not globally fair. Fig. 7 shows a simple example
where the blue demand — which has access to more paths —
must receive a locally unfair share on the common link in
order to produce a globally max-min fair solution. We next
modify waterfilling to produce approximate, globally max-
min fair rates in the general multi-resource setting.

ApproxWaterfiller (or aW): For each demand, aW creates
several “subdemands”, each going through one of the de-
mand’s paths. Subdemands of each demand pass through a
shared virtual edge to ensure the algorithm does not allocate
more than the requested rate. We then use waterfilling to
assign rates to these subdemands. This algorithm simply ig-
nores the coupling between multiple paths and does not reach
global max-min fair rates, but we use it as the starting point
to generalize waterfilling. As a solution, it is fast, and we also
use a variant of Alg. 1 to speed it up further (Alg. 2).

The new algorithm simplifies Alg. 1 by retaining the initial
order of the links in subsequent iterations. In each iteration, it
only recomputes the fair share for the link under consideration
and fixes the rates for the demands bottlenecked by that link.
It is approximate (even in the one-path case [5, 54]) but is
faster and more parallelizable.

Global max-min fairness assigns lower rates to subdemands
that are on congested paths but their corresponding demand
can get enough allocation from its other paths. For example,
the blue demand in Fig. 7(a) should receive a lower allocation
on the path through the congested link. Intuitively, the allo-

1942 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 2: Our Approx. Waterfilling algorithm to
compute single-path weighted max-min fair rates.

Input: Γ where Γ [e,k] is the weight of single-path demand
k on link e.

Input: c: link capacity vector.
Output: f : max-min rate allocation vector.

1 f ←∞ initial max-min rate set to ∞
2 n← Γ1 total weight per link
3 L← argsort c

n vector division, sort links in ascending order
4 foreach e ∈ L do
5 De←{k : Γ [e,k] > 0} demands on link e

6 while De ̸= ∅ do
7 ζ← c[e]∑

k∈De
Γ[e,k]

fair share of link e

8 B ← {k ∈ De : f [k] < ζΓ [e,k]}
9 if B = ∅ then if no flows bottlenecked elsewhere,

10 f [De]← ζΓ [e,De] fix rate to weighted share.
11 break
12 else otherwise, remove those bottlenecked elsewhere.
13 c[e]← c[e]−

∑
k∈B f [k]

14 De←De \B
15 end
16 end
17 end
18 return f

cator can get closer to global max-min fair assignments by
moving each demand’s allocation from more congested paths
to less congested ones. We can achieve this by iteratively seek-
ing more rates from subdemands that have received higher
rates (i.e., on less-contended paths) in previous iterations.

AdaptiveWaterfiller (or AW): Motivated by this intuition,
AW uses a weighted version of aW (using Alg. 1 or Alg. 2)
and adjusts the input weights (Γ) to seek more rate from
subdemands on less congested paths.

Let θp
k be the weight multiplier for the subdemand of

demand k on path p. AW initializes these multipliers as
θp

k = 1
∥{p∈Pk}∥ . In each iteration, AW first computes Γ di-

rectly from θ. Γ [e,kp] is the weight of the subdemand kp

(demand k on path p) on link e11. Following the definition,
Γ [e,kp] = θp

k 1 [e ∈ p]. AW then invokes one of the waterfill-
ing algorithms12 with these weights Γ . For iteration t+1, AW

sets θp
k(t+1) = f

p
k

(t)∑
p

f
p
k

(t) where fp
k (t) is the rate demand k

obtains from path p in iteration t. We show how multipliers
and rates evolve in our example in Fig. 7(b).

AW converges when θp
k(t+1) = θp

k(t). We can prove that
adapting weight multipliers gets close to global max-min
fairness: we say a rate assignment in the multi-path setting
is bandwidth-bottlenecked if for all demands k, (i) each of
its subdemands fp

k is bottlenecked on some link l, and (ii)

11Note that waterfilling requires each demand to be on a single path. We
use the notation kp to show the single-path subdemands.

12We use Alg. 2 for our experiments since it is an order of magnitude faster
with only a slight decrease in fairness (Fig. 8).

fk ≥ fj , for all demands j that have any subdemand on any
such link l. We prove in §D.1 that:

Theorem 3. If the adaptive waterfiller converges, it converges
to a bandwidth bottlenecked assignment.

We prove the global max-min fair allocation is bandwidth-
bottlenecked (see §D.2). The converse is not true — not all
bandwidth-bottlenecked allocations are max-min fair. How-
ever, the set of bandwidth-bottlenecked allocations is signifi-
cantly smaller than the set of all feasible allocations. We also
prove that AW converges when its assignment is bandwidth-
bottlenecked (i.e., it stops iterating). Empirically, AW’s allo-
cations stabilize within 5 – 10 iterations on average (§4.4).

Adaptive waterfiller produces allocations that belong to
a constrained set containing the optimal max-min fair rates.
It is slower than approximate waterfiller because it iterates
and updates weight multipliers. It is faster than the Geometric
Binner as it does not solve an LP. Users can tune the maximum
number of iterations to trade-off between fairness and speed.

3.3 Combinations and Extensions
Empirically, we find that the geometric binner (§3.1) is fairer
than what its worst-case guarantee suggests (recall, we prove
the rates will be within [α−1,α] times the optimal max-min
fair rate). We can attribute most of the unfairness to bins that
happen to contain many demands (Fig. A.5): can we set the
bin boundaries differently to improve fairness?

We use the generalized waterfillers (§3.2) — which are fast
but lack worst-case guarantees — to set bin boundaries in a
way that spreads demands more uniformly across bins:

Equi-depth Binner (or EB) applies GeoBinning (Eqn. 4) with
a few changes: it uses the rate allocation from AdaptiveWa-
terfiller to approximate the order across demands; distributes
demands more uniformly over bins; and finds the bin bound-
aries as part of the optimization. Specifically, EB divides de-
mands D into Nβ equi-sized sets (D1 . . .Dn) based on their
increasing order of rates from AW. In EB, the demands in a set
Db only receive rates from one bin with index b. EB dynami-
cally chooses bin boundaries: ∀k ∈ Db, ℓb−1 ≤ fk < ℓb +s(b)
where s(b) is a small constant that helps reducing the impact
of inaccuracies from AW. We provide a more formal definition
of EB in §E.

EB is slower than GB and AW because it executes both but
we expect it to be fairer than GB — it spreads demands more
uniformly across bins. We empirically confirm this hypothesis.
It is hard to formally analyze EB but we suspect it also offers
tighter worst-case guarantees. This is subject for future work.

Extensions: We did not explicitly account for weighted max-
min fairness (e.g., wk in §2.1) when describing our one-shot
optimization. This extension is straightforward. For example,
we can replace the first constraint in the geometric binner (GB)
in Eqn. 4 with fk/wk =

∑
bins b fkb. Algorithm 2, which we

use in our generalized waterfillers in §3.2, already supports

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1943

weights. We compute the per-edge per-subdemand weighted
routing matrix as Γ [e,kp] = wkθp

k1 [e ∈ p].
We have also omitted the heterogeneous utilities, different

resource consumption scales, and other affine functions in our
model (§2.1) when describing the solutions. These extensions
are also straightforward and we show them in §A. The key
is to appropriately manipulate the constraints that determine
when an allocation is feasible (FeasibleAlloc, Eqn. 5).

4 Evaluation
Implementation. We implemented Soroush in Python and C#
using Gurobi 9.1.1 [27] as the solver.

Summary of results. We apply Soroush to traffic engineering
(TE) and cluster scheduling (CS). We show Soroush captures
the trade-off between speed, fairness, and efficiency. We also
show the results from integrating Soroush with Azure’s pro-
duction TE system where it reduces the run-times by up to
5.4× without any impact on efficiency and fairness.

In TE, all the allocators in Soroush are faster than both the
optimal algorithm by Danna et al. [17] (referred to as Danna)
and the more practical α-approximate SWAN [30]. Soroush
contains algorithms that match or exceed the efficiency or
fairness of these methods while running orders of magnitude
faster. Soroush can also trade-off (a little) fairness and effi-
ciency for up to 3 orders of magnitude speed up.

Our solution scales to one of the largest WAN topologies
(over 1000 nodes and 1000 edges), which is significantly
larger than those in [10,17,30,34,75] and matches the size of
topologies in [4]. We also analyze the sensitivity of Soroush
to demand variations and other relevant inputs.

In CS, we show Soroush outperforms two variants of
Gavel [56]. Our Equi-depth binner (EB) has the same fairness
and efficiency as the optimal variant of Gavel (the one with
waterfilling), but is 2 orders of magnitude faster.

4.1 Benchmarks and Metrics
Benchmarks. We use state-of-the-art solutions in both WAN-
TE and CS as benchmarks to evaluate Soroush:

WAN-TEs. We use Danna [17], SWAN [30], and a modified
version of the k-waterfilling algorithm [36] as benchmarks.
We also provide limited comparisons with B4 [34] for com-
pleteness (see §4.2). The k-waterfilling algorithm only applies
to single-path, infinite-demand scenarios — we extend it to
multi-path, demand-constrained cases. We tune each bench-
mark for maximum speed (see §G.1). Following [30], we set
α = 2 for SWAN and GB unless mentioned otherwise.

CS. We compare with two variants of Gavel [56], the state-
of-the-art max-min fair allocator in CS (with and without
waterfilling). We use Gavel’s public implementation.

Metrics. We use the following metrics for comparisons:

Fairness. We report fairness of a particular allocation (f) as

Topology # Nodes # Edges

WANLarge ∼1000s ∼1000s
WANSmall ∼100s ∼1000s
Cogentco 197 486
UsCarrier 158 378
GtsCe 149 386
TataNld 145 372

TABLE 4: Topologies used for the evaluation of Soroush.

its distance from the optimal max-min fair allocation (f∗)13.
For fairness distance, we use the qϑ metric [46, 47]. This
metric is resilient to numerical instability and is computed as
min

(max(fk,ϑ)
max(f∗

k
,ϑ) ,

max(f∗
k ,ϑ)

max(fk,ϑ)
)

for a given demand k. We report
the geometric mean of qϑ across all the demands as the overall
fairness measure (the geometric mean is less sensitive than
the arithmetic mean to outliers). For our evaluations, we use
ϑ = 0.01% of the resource (link or GPU) capacities.

Efficiency. We measure efficiency in TE as the total rate
allocated to flows relative to Danna (i.e., e

edanna
). For CS, we

measure the effective throughput which is the progress rate
of a job given an allocation. We report CS efficiency relative
to Gavel (i.e., e

egavel
).

Runtime. In most cases, we report speed up (i.e., relative
runtime compared to a baseline sbaseline

s). Our runtimes con-
sist of the time each algorithm needs to compute the alloca-
tions. We measure runtimes on an AMD Operaton 2.4GHz
CPU (6234) with 24 cores and 64GB of memory.

4.2 WAN Traffic Engineering
Experiment Setup. Table 4 summarizes the topologies in our
evaluation. We show the results for both Azure’s production
WAN topology and the topologies from the Topology Zoo [1].
We use K-shortest paths [73] to find the paths between node
pairs (K=16 unless mentioned otherwise).

For topologies from Topology Zoo, we generate traffic
using Poisson [6], Uniform, Bimodal, and Gravity [6, 62]
distributions. We follow [4] and generate traffic at different
scale factors. Our traffic spans a range of loads: light (scale
factors {1, 2, 4, 8}), medium ({16, 32}), and high ({64, 128}).
At higher loads, more flows compete for traffic than at medium
or light loads. We report results of over 640 experiments,
which capture different traffic and topology combinations.

Comparison to benchmarks (Fig. 8 and 9). All algorithms
in Soroush are faster than SWAN and Danna (Fig. 8). Each
approach is in a different color in this figure, and each point
corresponds to a single traffic demand on a single topology.
The plot also shows the mean and standard deviations along
the fairness and speedup axes.

We see the trade-off across these different max-min fair
resource allocators: (a) Danna is optimal but also by far the

13Danna and Gavel (w waterfilling) compute the optimal max-min fair
allocations in TE and CS respectively. They are too slow for practice but we
can run them to completion outside of a production environment.

1944 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.topology-zoo.org/maps/Cogentco.jpg
http://www.topology-zoo.org/maps/UsCarrier.jpg
http://www.topology-zoo.org/maps/GtsCe.jpg
http://www.topology-zoo.org/maps/TataNld.jpg

1-waterfilling SWAN Danna Approx Water Adapt Water(10) EB GB

10−1 100 101 102 103
speed up w.r.t SWAN

0.6

0.7

0.8

0.9

1.0

fa
irn

es
s Be

tte
r

(a) High Load (scale factor ∈ {64, 128})

10−1 100 101 102 103
speed up w.r.t SWAN

0.6

0.7

0.8

0.9

1.0

fa
irn

es
s Be

tte
r

(b) Medium Load (scale factor ∈ {16, 32})

10−1 100 101 102 103
speed up w.r.t SWAN

0.97

0.98

0.99

1.00

fa
irn

es
s Be

tte
r

(c) Light Load (scale factor ∈ {1, 2, 4, 8})

FIGURE 8: The fairness vs speed trade-off across different approaches. As in [4], we use the scale-factor to denote the level of load. We
observe even the slowest algorithm in Soroush is faster than SWAN and Danna. While 1-waterfilling is faster than most of the algorithms in
Soroush, it has to sacrifice much more in terms of fairness (it is 30% less fair than Danna in the high load case).

1-waterfilling
Danna

SWAN Approx
Adapt(10)

EB GB
0.00
0.25
0.50
0.75
1.00

to
ta
l f
lo
w

 w
.r.
t.
Da

nn
a

(a) High Load (scale factor ∈ {64, 128})

1-waterfilling
Danna

SWAN Approx
Adapt(10)

EB GB
0.00
0.25
0.50
0.75
1.00

to
ta
l f
lo
w

 w
.r.
t.
Da

nn
a

(b) Medium Load (scale factor ∈ {16, 32})

1-waterfilling
Danna

SWAN Approx
Adapt(10)

EB GB
0.00
0.25
0.50
0.75
1.00

to
ta
l f
lo
w

 w
.r.
t.
Da

nn
a

(c) Light Load (scale factor ∈ {1, 2, 4, 8})

FIGURE 9: The efficiency of Soroush’s algorithms and our benchmarks. We report numbers relative to Danna. Empirically, Soroush
Pareto-dominates SWAN, 1-waterfilling, and Danna on the efficiency, agility, and fairness. In (c), the error bar is small because of light
load — most solutions can satisfy all the demands (fairness is also close to one for most algorithms in these cases.)

slowest (on average taking 4.3× longer than the second slow-
est algorithm, SWAN, under high-load); (b) 1-waterfilling is
the fastest of the baselines but does not consider flow-level
fairness (30% less fair than Danna on average but 4 orders of
magnitude faster); (c) SWAN sits somewhere in between. It
is faster than Danna (solves fewer optimizations), but slower
than 1-waterfilling (1-waterfilling does not solve any optimiza-
tion). It is fairer than 1-waterfilling but unlike Danna does not
achieve optimal max-min fairness; (d) Soroush empirically
Pareto-dominates these baselines as each of its algorithms
provide a different point on the trade-off space.

Our algorithms are most effective under high loads (ar-
guably, speed and fairness matter most). Soroush’s Geometric
Binner (GB) is faster than SWAN by 4.5× on average (6× in
the 90th percentile) because it only solves a single optimiza-
tion. GB also has worst-case fairness guarantees. The Equi-
depth Binner (EB) is faster than SWAN, slightly slower than
GB, and fairer than both. Soroush’s Approximate Waterfiller
is even faster than 1-waterfilling (by an order of magnitude)
with the same flow-level fairness. Soroush’s Adaptive Water-
filler improves fairness (19% higher on average) at a slight
speed reduction (still 21.4× faster than SWAN on average).

Fig. 9 compares the efficiency of different methods. Under
low loads, all schemes are comparable. The differences be-
come evident at higher loads, where EB is approximately as

efficient as Danna. GB and SWAN are more efficient, likely
because they sacrifice fairness.

We can see these differences more clearly when we focus
on a single topology and workload in Fig. 10. Soroush’s allo-
cators Pareto-dominate other approaches. The Approximate
Waterfiller, Adaptive Waterfiller (number of iterations = 3 and
10), and EB are faster than SWAN and Danna. Adaptive Water-
filler and EB are also fairer than SWAN while having compara-
ble efficiency. Operators can use GB to get strong worst-case
guarantees (at the cost of reduced fairness). B4 [34]’s TE
algorithm is just as fast and fair as GB (albeit slightly less
efficient) but does not have fairness guarantees. Note that
we can control the fairness and runtime of GB by tuning α,
whereas we can not control either in B4.

In summary, in settings where Danna is impractical, Soroush
outperforms other TE algorithms (SWAN, 1-waterfilling, B4).
Depending on the requirements, users can opt for Adaptive or
Approximate Waterfillers, or EB (or GB if fairness guarantees
are important). They can also customize the parameters in
each allocator to further tune the balance.

Production deployment (Fig. 11). We have successfully
deployed Soroush in the production TE pipeline of Azure. Mi-
crosoft opted for GB as it has the same fairness guarantees as
their existing TE solver. Fig. 11(a) shows cumulative density

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1945

100 101 102 103 104

run time (s)

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

fa
irn

es
s

Approx Water

Adapt Water(10)

EB

Danna

SWAN

1-waterfilling
GBB4

Adapt Water(3)
Fairer

Faster
our methods
baseline

(a) Fairness vs Run-time

1-waterfilling
B4 Danna SWAN Approx Adapt(3)

Adapt(10)
EB GB

0.00

0.25

0.50

0.75

1.00

to
ta
l r
at
e

 w
.r.
t D
an
na

(b) Efficiency wrt Danna

FIGURE 10: The empirical Pareto-dominance of Soroush over
all of our baselines on an example topology (Cogentco) and
an example workload with 64× scale factor. The size of the
markers in (a) are in proportion to the efficiency of each algorithm
— we report exact comparisons in (b).

function (CDF) of the relative speed up of Soroush compared
to the provider’s previous allocator. These measurements are
over a month-long deployment in a WAN with thousands of
nodes. Soroush reduces the run-time on average by 2.4× (up
to 5.4×) without impacting fairness or efficiency.

We compare Soroush with the previous allocator on pro-
duction demands at different loads (Fig. 11(b)). Soroush’s
speedup increases with the load because the previous iterative
solver invokes more optimizations at higher loads. Soroush’s
efficiency also increases because its ϵ-trick can exploit minor
fairness violations to improve efficiency. In all cases, Soroush
is within 1% of the previous solver’s fairness.

Tracking Changing Demands (Fig. 12). We evaluated each
method on a sequence of traffic, arriving every five minutes
(a window), starting from a medium load traffic demand. Our
methodology is the same as NCFlow [4]. In this scenario,
SWAN needs two windows to compute each allocation – it
only computes allocations for half of the demands. This re-
sults in up to 10% reduction in fairness compared to an instant
SWAN (a hypothetical scheme that computes the allocation
instantly). However, EB14 reacts to changes quickly and meets
all the deadlines. In general, SWAN’s inability to keep track
of demands leads to even higher unfairness than EB (rela-
tive to what we reported in Fig. 8). Also, as we move from
medium to high load, we expect the difference to be more as
SWAN is even slower and needs to solve more optimizations.

4.3 Cluster Scheduling
Experiment Setup. We generate job requests from Gavel’s
job generator: we consider 3 types of GPUs (V100, P100,

14GB is faster than EB. If the latter can keep up, so can GB. We have
omitted an evaluation based on GB for this reason.

1 2 3 4 5
speed up wrt Production Cloud

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct
io
n
of
 sc

en
ar
io
s

speedup

(a) Speedup

20 21 22 23 24 25

load factor
0

1

2

3

4

sp
ee

d
up

 w

rt
Pr
od

uc
tio

n
Cl
ou

d

Speed up

0.98

1.00

1.02

1.04

1.06

to
ta
l f
lo
w

 w
rt
Pr
od

uc
tio

n
Cl
ou

d

total flow

(b) Impact of load

FIGURE 11: Results from deploying Soroush in production.
(a) Month-long measurements show substantial speedup with
no impact on efficiency or fairness compared to the provider’s
previous max-min fair allocator. (b) Using production traces, we
show the benefit of Soroush improves as loads [4] increase.

20 40 60 80 100 120
Time (minutes)

0.6

0.7

0.8

0.9

1.0
Fa
irn

es
s

EB SWAN Instant SWAN

FIGURE 12: Impact of solver runtimes on fairness when de-
mands change. SWAN can not react to the new demands quickly
and faces another 10% reduction in fairness whereas EB can keep
track of the changes. These results are on Cogentco following
NCFlow’s change distribution [4] on medium load traffics.

K80) and uniformly sample jobs from the 26 different job
types available in Gavel (see §G.2). Jobs are heterogeneous:
they require a different number of workers (which we derive
from the Microsoft public trace [3]) and have different priori-
ties (which we sample uniformly from the set {1,2,4,8}).

Comparison to benchmarks. We report results on over 40
different scenarios, which capture different number of avail-
able GPUs and competing jobs (see §G.2 for more details).
Our results match our observations from WAN-TE; Soroush
Pareto-dominates both Gavel and Gavel with waterfilling. We
present these results in Fig. A.2 in §G.2 for space.

We provide further insight into Soroush’s performance
through an example scenario where 8192 jobs compete for
resources (Fig. 13). Adaptive Waterfiller outperforms stan-
dard Gavel in fairness, efficiency, and speed. For CS, GB
is slower than Gavel but fairer (more than 10%) and more
efficient (more than 30%). We can augment Gavel with water-
filling [56] to improve it, but with a substantial slowdown. In
contrast, EB provides comparable fairness and efficiency as
Gavel with waterfilling and is ∼ 2 orders of magnitude faster.

1946 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

100 101 102 103
run time (s)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

fa
irn

es
s

Gavel
 w-waterfilling

Approx

Approx
 prio-thru-aware

Adapt(4) EB

Gavel
GB

Fairer
Faster
our methods
baseline

(a) Fairness vs Run-time

Gavel Gavel
 w-waterfilling

Approx Approx
 prio-thru-aware

Adapt(4) EB GB0.00
0.25
0.50
0.75
1.00

to
ta
l r
at
e
w.
r.t

 G
av

el
 w

 w
at
er

(b) Efficiency wrt Gavel w-waterfilling

FIGURE 13: Trade-off between efficiency, fairness, and speed
in CS on an example scenario (with 8192 jobs). (a) shows
the fairness vs run-time behavior of the different approaches; (b)
shows the efficiency relative to the Gavel w waterfilling. Empiri-
cally, Soroush Pareto-dominates both variants of Gavel.

4.4 Convergence and Sensitivity Analysis
Convergence. We empirically evaluate the convergence of
the Adaptive Waterfiller. In §D, we proved the algorithm
in §3.2 only converges to and stops if it finds a bandwidth-
bottlenecked allocation but may not converge if it does not
find one. We empirically find that Adaptive Waterfiller always
converges. Fig. 14(a) shows how its weights and fairness
properties change with the number of iterations: the weights
stabilize after 5 iterations.

Impact of number of bins. Fig. 14(b) and 14(c) show fairness
and efficiency of binners (GB/EB) for different number of bins.
Soroush uses this parameter to tune the trade-off between
efficiency, fairness, and run-time. Using more bins increases
fairness because the number of demands within each bin
decreases but at the cost of higher run-time (more variables
in the optimization). EB is fairer than GB for up to 16 bins
because GB suffers from bin-imbalance. However, GB does
not incur bin-imbalance for ≥ 32 bins and both methods have
roughly the same fairness. The slightly lower fairness of EB
is due to Adaptive Waterfiller making small mistakes when
estimating the order of rates and influencing EB’s binning.

4.5 Other Experiments
Impact of number of paths. We explore how sensitive our
solutions are to the number of paths by varying this parameter
and comparing our fairest methods (i.e., Adaptive Waterfill-
ing and EB) to SWAN (Fig. 15). Increasing the number of
paths improves the benefit of Soroush in both speedup and
fairness. With more paths, each optimization of SWAN be-
comes more expensive, while Adaptive Waterfiller as well as
EB can exploit path diversity better to achieve higher fairness.

Impact of topology size. The benefit of Soroush’s allocators
increases with the topology size (Fig. 16): SWAN needs to

0 20 40 60 80 100
#iterations

0.75

0.80

0.85

0.90

fa
irn

es
s

fairness

0
2000
4000
6000
8000
10000
12000
14000

L1
 c
ha

ng
e

 in
 w
ei
gh

ts

change in weights

(a) Convergence of the Adaptive Waterfiller

20 21 22 23 24 25 26
#bins

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

fa
irn

es
s

EB
GB

(b) Impact of the number of bins on the fairness

20 21 22 23 24 25 26
#bins

1.0
1.1
1.2
1.3
1.4

Ef
fic

ie
nc

y
 w
.r.
t D

an
na

EB
GB

(c) Impact of the number of bins on the efficiency

FIGURE 14: Convergence and sensitivity analysis. (a) Adaptive
Waterfiller empirically converges within 5 – 10 iterations. (b, c)
The number of bins controls the trade-off between fairness and
efficiency in EB and GB (fewer bins lead to higher efficiency and
lower fairness). Results are on the Cogentco topology and Gravity
traffic distribution (scale factor = 64). (see Fig. A.3 for Poisson)

solve more optimizations for larger topologies while Soroush
solves a fixed number of optimizations (=1 for EB/GB and =0
for adaptive waterfilling).

Comparison to NCFlow and POP. NCFlow [4] and
POP [55] decompose the resource allocation problem to scale
but do not directly address max-min fairness [65]. NCFlow
only maximizes the total flow, and the authors mention in the
paper that it is hard to extend it to max-min fairness objec-
tive [4]. Similarly, POP maximizes total flow and maximum
concurrent flow (i.e., the smallest fractional allocation) but
does not provide any results on max-min fairness. To under-
stand how POP compares to Soroush, we adapt both SWAN
and Soroush to use it. We randomly divide demands (with
client splitting as needed per POP’s guidelines) among differ-
ent partitions and run SWAN or Soroush in parallel on each
partition (Fig. 17, extended evaluation in §G.3).

We use GB to ensure a fair comparison to SWAN: it has
the same theoretical guarantees, is more than 10× faster, and
maintains the same level of fairness. When we apply POP
to SWAN, we lose the worst-case guarantee [53] and have
to sacrifice over 10% in fairness to achieve the same speed
as Soroush. We also observe that applying POP to Soroush
results in the same fairness as SWAN for the same number of
partitions (but is also substantially faster).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1947

4 8 12 16 20 24 28
#paths

1.00
1.05
1.10
1.15
1.20

fa
irn

es
s

 w
rt
SW

AN
Adapt Water EB SWAN

4 8 12 16 20 24 28
#paths

100

101

102

sp
ee
d
up

 w
rt
SW

AN

FIGURE 15: Increasing the number of paths improves the
fairness and speedup of Soroush compared to SWAN. Results
are on the Cogentco topology and Gravity traffic distribution
(scale factor = 64). (see Fig. A.4 for Poisson)

Adapt Water(10) EB GB
100

101

102

sp
ee
d
up

 w
rt
SW

AN

#nodes
145 158 197

FIGURE 16: Impact of topology size. Soroush’s speed up rela-
tive to SWAN improves with the size of the topology.

5 Discussion
Soroush allows operators to adjust the trade-off between fair-
ness, speed, and efficiency. We focus on multi-path alloca-
tions but our solutions apply to single-path settings too [5,54].
Under this setting, our experiments show the Approximate
Waterfiller is an order of magnitude faster than the fastest
single-path allocator with only a slight decrease in efficiency.
We defer the following to future work:

Other fairness metrics. Soroush does not apply to other, less
commonly used, fairness metrics [11, 12, 33].

Other problem domainss. Soroush applies to any graph-
based resource allocation problem which seeks to achieve
max-min fairness. We demonstrate significant benefit of
Soroush using examples from CS and WAN-TE. To use
Soroush in other domains [5, 24, 36, 43, 50, 54, 64, 71], users
need to model the additional constraints in our graph model.
We aim to provide tools to simplify this in future work.

Distributed extension. Soroush applies to centralized re-
source allocation problems. Our future work aims to extend it
to distributed settings [36, 61, 70, 74].

6 Related Work
TE and CS resource allocation. Prior approaches to both
TE and CS aim to produce fast and efficient allocations [14,
16, 17, 23, 30, 34, 36, 37, 42, 56, 59]. In §4, we show Soroush
outperforms the sate-of-the-art in multi-resource max-min
fair allocation (SWAN, Danna, B4, waterfilling, and Gavel).

8
8

16

48

X
X

Fairer

Faster

4
2

4
2

FIGURE 17: Impact of POP [55]. The results are on 3 randomly
generated traffic, following Poisson distribution with a scale factor
64, on the Cogentco topology. Consistent with POP, we use client
splitting (ratio= 0.75) for this traffic distribution. ["X" indicates
that POP is not used, and "Numbers" = number of POP partitions.]

Prior work employs ML in TE [58, 68, 72] to optimize
objectives that are already solved using a single LP (e.g., max
flow). These objectives are either convex or quasi-convex [58].
However, the exact from of max-min fairness is sequential and
we are unaware of any work that considers end-to-end training
on a sequence of LPs. In fact, it may be more tractable for ML
methods to learn our GB which is a single LP. Applying ML
to further speed up Soroush is an interesting future direction.

Recent work [4,55] uses decomposition techniques to scale
resource allocation problems. However, they focus on sim-
pler objectives such as max flow or max concurrent flow that
require single LPs and do not explicitly support max-min
fairness. Extending NCFlow to max-min fairness is non-
trivial as the authors mentioned [4]. We have extended POP
to support max-min fairness and empirically compare it with
Soroush. Our results show POP’s performance depends on the
traffic distribution, whereas Soroush works consistently well.
POP also does not have worst-case fairness guarantees [53],
whereas Soroush has allocators that do (GB).

Algorithms for computing max-min fair rates. Prior work
has expanded our understanding of max-min fair resource al-
location [57, 60]. These are largely theoretical and do not pro-
vide a practical and fast solution. Bandit-based solutions [9]
lack worst-case guarantees and do not allow users to control
the trade-off between fairness, efficiency and speed.

7 Conclusion
Soroush enables fast max-min fair resource allocation for
graph-based problems such as traffic engineering and clus-
ter scheduling. It provides a suite of allocators that Pareto-
dominate state-of-the-art in both of these domains. Some of
the allocators in Soroush have theoretical guarantees, and all
of them have parameters for users to control the trade-offs.
We have deployed Soroush in Azure’s WAN traffic engineer-
ing pipeline. Future work can explore other applications and
other notions of fairness.

Acknowledgements: We thank Ymir Vigfusson and the
anonymous reviewers for their feedback on this paper. We
also thank Luis Irun-Briz for his support of this work. This ma-
terial is based upon work supported by Microsoft and the U.S.
National Science Foundation under grant No. CNS-1901523.

1948 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Internet topology zoo. http://www.topology-

zoo.org/.

[2] Imagenet training in pytorch. https://github.com/
pytorch/examples/tree/main/imagenet, 2020.

[3] Microsoft philly trace. https://github.com/msr-
fiddle/philly-traces, 2022.

[4] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai
Menache, Matei Zaharia, and Peter Bailis. Contracting
wide-area network topologies to solve flow problems
quickly. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21), pages
175–200. USENIX Association, April 2021.

[5] Omid Alipourfard, Jiaqi Gao, Jeremie Koenig, Chris
Harshaw, Amin Vahdat, and Minlan Yu. Risk based
planning of network changes in evolving data centers. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, page 414–429, New York,
NY, USA, 2019. Association for Computing Machinery.

[6] David Applegate and Edith Cohen. Making intra-
domain routing robust to changing and uncertain traf-
fic demands: Understanding fundamental tradeoffs. In
Proceedings of the 2003 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’03, page 313–324, New
York, NY, USA, 2003. Association for Computing Ma-
chinery.

[7] K. E. Batcher. Sorting networks and their applications.
In Proceedings of the April 30–May 2, 1968, Spring
Joint Computer Conference, AFIPS ’68 (Spring), page
307–314, New York, NY, USA, 1968. Association for
Computing Machinery.

[8] Dimitri Bertsekas and Robert Gallager. Data Networks.
Prentice-Hall, Inc., USA, 1987.

[9] Ilai Bistritz, Tavor Baharav, Amir Leshem, and Nicholas
Bambos. My fair bandit: Distributed learning of max-
min fairness with multi-player bandits. In Interna-
tional Conference on Machine Learning, pages 930–940.
PMLR, 2020.

[10] Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai
Menache, Nikolaj Bjørner, Asaf Valadarsky, and
Michael Schapira. Teavar: striking the right utilization-
availability balance in wan traffic engineering. In
Proceedings of the ACM Special Interest Group on
Data Communication, pages 29–43. Association for
Computing Machinery, 2019.

[11] Thomas Bonald, Laurent Massoulié, Alexandre
Proutiere, and Jorma Virtamo. A queueing analysis of
max-min fairness, proportional fairness and balanced
fairness. Queueing systems, 53(1):65–84, 2006.

[12] Thomas Bonald and Alexandre Proutiere. On perfor-
mance bounds for balanced fairness. Performance Eval-
uation, 55(1-2):25–50, 2004.

[13] Stephen Boyd, Stephen P Boyd, and Lieven Vanden-
berghe. Convex optimization. Cambridge university
press, 2004.

[14] Shubham Chaudhary, Ramachandran Ramjee, Muthian
Sivathanu, Nipun Kwatra, and Srinidhi Viswanatha. Bal-
ancing efficiency and fairness in heterogeneous gpu clus-
ters for deep learning. In Proceedings of the Fifteenth
European Conference on Computer Systems, EuroSys
’20, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[15] Michael B. Cohen, Yin Tat Lee, and Zhao Song. Solving
linear programs in the current matrix multiplication time.
Journal of the ACM, 2021.

[16] Emilie Danna, Avinatan Hassidim, Haim Kaplan, Alok
Kumar, Yishay Mansour, Danny Raz, and Michal
Segalov. Upward max-min fairness. J. ACM, 64(1),
mar 2017.

[17] Emilie Danna, Subhasree Mandal, and Arjun Singh. A
practical algorithm for balancing the max-min fairness
and throughput objectives in traffic engineering. In 2012
Proceedings IEEE INFOCOM, pages 846–854, 2012.

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255, 2009.

[19] Steven Diamond and Stephen Boyd. Cvxpy: A python-
embedded modeling language for convex optimization.
J. Mach. Learn. Res., 17(1):2909–2913, jan 2016.

[20] Desmond Elliott, Stella Frank, Khalil Sima’an, and Lu-
cia Specia. Multi30K: Multilingual English-German
image descriptions. In Proceedings of the 5th Workshop
on Vision and Language, pages 70–74, Berlin, Germany,
August 2016. Association for Computational Linguis-
tics.

[21] Alexander Gersht and Robert Weihmayer. Joint opti-
mization of data network design and facility selection.
IEEE Journal on Selected Areas in Communications,
8(9):1667–1681, 1990.

[22] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1949

http://www.topology-zoo.org/
http://www.topology-zoo.org/
https://github.com/pytorch/examples/tree/main/imagenet
https://github.com/pytorch/examples/tree/main/imagenet
https://github.com/msr-fiddle/philly-traces
https://github.com/msr-fiddle/philly-traces

resource fairness: Fair allocation of multiple resource
types. In NSDI. USENIX, 2011.

[23] Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica.
Choosy: Max-min fair sharing for datacenter jobs with
constraints. In Proceedings of the 8th ACM European
Conference on Computer Systems, pages 365–378, 2013.

[24] Ada Gogu, Dritan Nace, Supriyo Chatterjea, and Arta
Dilo. Max-min fair link quality in wsn based on sinr.
Journal of applied mathematics, 2014, 2014.

[25] Robert Grandl, Ganesh Ananthanarayanan, Srikanth
Kandula, Sriram Rao, and Aditya Akella. Multi-
resource packing for cluster schedulers. In SIGCOMM,
2014.

[26] David Griffis. Rl a3c pytorch. https://github.com/
dgriff777/rl_a3c_pytorch, 2020.

[27] Gurobi Optimization, LLC. Gurobi Optimizer Refer-
ence Manual, 2022.

[28] F. Maxwell Harper and Joseph A. Konstan. The movie-
lens datasets: History and context. ACM Trans. Interact.
Intell. Syst., 5(4), dec 2015.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[30] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
wan. In Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM, SIGCOMM ’13, page 15–26,
New York, NY, USA, 2013. Association for Computing
Machinery.

[31] Yu-Hsiang Huang. Attention is all you
need: A pytorch implementation. https:
//github.com/jadore801120/attention-is-
all-you-need-pytorch, 2020.

[32] Hosagrahar Visvesvaraya Jagadish, Nick Koudas,
S Muthukrishnan, Viswanath Poosala, Kenneth C Sev-
cik, and Torsten Suel. Optimal histograms with quality
guarantees. In VLDB, 1998.

[33] Raj Jain, Arjan Durresi, and Gojko Babic. Throughput
fairness index: An explanation. In ATM Forum contri-
bution, volume 99, 1999.

[34] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Hölzle, Stephen Stuart, and Amin Vahdat. B4: Experi-
ence with a globally-deployed software defined wan. In

Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, SIGCOMM ’13, page 3–14, New York,
NY, USA, 2013. Association for Computing Machinery.

[35] Virajith Jalaparti, Ivan Bliznets, Srikanth Kandula, Bren-
dan Lucier, and Ishai Menache. Dynamic pricing and
traffic engineering for timely inter-datacenter transfers.
SIGCOMM ’16, page 73–86, New York, NY, USA, 2016.
Association for Computing Machinery.

[36] Lavanya Jose, Stephen Ibanez, Mohammad Alizadeh,
and Nick McKeown. A distributed algorithm to cal-
culate max-min fair rates without per-flow state. Proc.
ACM Meas. Anal. Comput. Syst., 3(2), jun 2019.

[37] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna
Charny. Walking the tightrope: Responsive yet stable
traffic engineering. SIGCOMM Comput. Commun. Rev.,
35(4):253–264, aug 2005.

[38] Umesh Krishnaswamy, Rachee Singh, Nikolaj Bjørner,
and Himanshu Raj. Decentralized cloud wide-area net-
work traffic engineering with BLASTSHIELD. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 325–338, Renton, WA,
April 2022. USENIX Association.

[39] Umesh Krishnaswamy, Rachee Singh, Paul Mattes, Paul-
Andre C Bissonnette, Nikolaj Bjørner, Zahira Nasrin,
Sonal Kothari, Prabhakar Reddy, John Abeln, Srikanth
Kandula, Himanshu Raj, Luis Irun-Briz, Jamie Gaudette,
and Erica Lan. OneWAN is better than two: Unifying a
split WAN architecture. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
23), pages 515–529, Boston, MA, April 2023. USENIX
Association.

[40] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The
cifar-10 dataset. http://www.cs.toronto.edu/kriz/
cifar.html, 2014.

[41] kuang liu. Train cifar10 with pytorch. https://
github.com/kuangliu/pytorch-cifar, 2020.

[42] Tan N. Le, Xiao Sun, Mosharaf Chowdhury, and Zhen-
hua Liu. Allox: Compute allocation in hybrid clusters.
In Proceedings of the Fifteenth European Conference on
Computer Systems, EuroSys ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[43] Rui Li and Paul Patras. Max-min fair resource allocation
in millimetre-wave backhauls. IEEE Transactions on
Mobile Computing, 19(8):1879–1895, 2019.

[44] Erik Linder-Nore̊n. Pytorch-gan. https:
//github.com/eriklindernoren/PyTorch-
GAN#cyclegan, 2020.

1950 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/dgriff777/rl_a3c_pytorch
https://github.com/dgriff777/rl_a3c_pytorch
https://github.com/jadore801120/attention-is-all-you-need-pytorch
https://github.com/jadore801120/attention-is-all-you-need-pytorch
https://github.com/jadore801120/attention-is-all-you-need-pytorch
http://www.cs.toronto.edu/kriz/cifar.html
http://www.cs.toronto.edu/kriz/cifar.html
https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
https://github.com/eriklindernoren/PyTorch-GAN#cyclegan
https://github.com/eriklindernoren/PyTorch-GAN#cyclegan
https://github.com/eriklindernoren/PyTorch-GAN#cyclegan

[45] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, and David Gelernter. Traffic engineering
with forward fault correction. In Proceedings of the
2014 ACM Conference on SIGCOMM, SIGCOMM ’14,
page 527–538, New York, NY, USA, 2014. Association
for Computing Machinery.

[46] Yao Lu, Srikanth Kandula, Arnd Christian König, and
Surajit Chaudhuri. Pre-training summarization mod-
els of structured datasets for cardinality estimation.
Proceedings of the VLDB Endowment, 15(3):414–426,
2021.

[47] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi
Zhang, Mohammad Alizadeh, Tim Kraska, Olga Pa-
paemmanouil, and Nesime Tatbul. Neo: A learned query
optimizer. arXiv preprint arXiv:1904.03711, 2019.

[48] Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models. 2016.

[49] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In Maria Flo-
rina Balcan and Kilian Q. Weinberger, editors, Proceed-
ings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learn-
ing Research, pages 1928–1937, New York, New York,
USA, 20–22 Jun 2016. PMLR.

[50] Sourav Mondal and Marco Ruffini. A min-max fair
resource allocation framework for optical x-haul and
du/cu in multi-tenant o-rans. In ICC 2022-IEEE Inter-
national Conference on Communications, pages 3016–
3021. IEEE, 2022.

[51] Abdallah Moussawi. Towards large scale training
of autoencoders for collaborative filtering. ArXiv,
abs/1809.00999, 2018.

[52] Dritan Nace, Linh Nhat Doan, Olivier Klopfenstein, and
Alfred Bashllari. Max-min fairness in multi-commodity
flows. Comput. Oper. Res., 35(2):557–573, feb 2008.

[53] Pooria Namyar, Behnaz Arzani, Ryan Beckett, Santiago
Segarra, Himanshu Raj, and Srikanth Kandula. Minding
the gap between fast heuristics and their optimal coun-
terparts. In Proceedings of the 21st ACM Workshop on
Hot Topics in Networks, HotNets ’22, page 138–144,
2022.

[54] Pooria Namyar, Behnaz Arzani, Daniel Crankshaw,
Daniel S. Berger, Kevin Hsieh, Srikanth Kandula, and
Ramesh Govindan. Mitigating the performance impact
of network failures in public clouds, 2023.

[55] Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid,
Peter Kraft, Akshay Agrawal, Srikanth Kandula,
Stephen Boyd, and Matei Zaharia. Solving large-scale
granular resource allocation problems efficiently
with pop. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21,
page 521–537, New York, NY, USA, 2021. Association
for Computing Machinery.

[56] Deepak Narayanan, Keshav Santhanam, Fiodar
Kazhamiaka, Amar Phanishayee, and Matei Zaharia.
Heterogeneity-Aware cluster scheduling policies for
deep learning workloads. In 14th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 20), pages 481–498. USENIX Association,
November 2020.

[57] Nhan-Tam Nguyen, Trung Thanh Nguyen, and Jörg
Rothe. Approximate solutions to max-min fair and
proportionally fair allocations of indivisible goods. In
Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, pages 262–271, 2017.

[58] Yarin Perry, Felipe Vieira Frujeri, Chaim Hoch, Srikanth
Kandula, Ishai Menache, Michael Schapira, and Aviv
Tamar. DOTE: Rethinking (predictive) WAN traffic
engineering. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
1557–1581. USENIX Association, 2023.

[59] Michal Pióro, Gábor Fodor, Pål Nilsson, and Eligijus Ku-
bilinskas. On efficient max-min fair routing algorithms.
In Proceedings of the Eighth IEEE Symposium on Com-
puters and Communications. ISCC 2003, ISCC’03, page
365, USA, 2003. IEEE Computer Society.

[60] Bozidar Radunovic and Jean-Yves Le Boudec. A uni-
fied framework for max-min and min-max fairness with
applications. IEEE/ACM Transactions on networking,
15(5):1073–1083, 2007.

[61] Jordi Ros-Giralt and Wei Kang Tsai. A theory of con-
vergence order of maxmin rate allocation and an opti-
mal protocol. In Proceedings IEEE INFOCOM 2001.
Conference on Computer Communications. Twentieth
Annual Joint Conference of the IEEE Computer and
Communications Society (Cat. No. 01CH37213), vol-
ume 2, pages 717–726. IEEE, 2001.

[62] Matthew Roughan, Albert Greenberg, Charles
Kalmanek, Michael Rumsewicz, Jennifer Yates, and
Yin Zhang. Experience in measuring backbone
traffic variability: Models, metrics, measurements and
meaning. In Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet Measurment, IMW ’02, page
91–92, New York, NY, USA, 2002. Association for
Computing Machinery.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1951

[63] Mark Saroufim. Word-level language modeling using
rnn and transformer. https://github.com/pytorch/
examples/tree/main/word_language_model,
2020.

[64] Adrian Schad and Marius Pesavento. Max-min fair
transmit beamforming for multi-group multicasting. In
2012 International ITG Workshop on Smart Antennas
(WSA), pages 115–118. IEEE, 2012.

[65] Rachee Singh, Nikolaj Bjørner, and Umesh Krish-
naswamy. Traffic engineering: From isp to cloud wide
area networks. In Proceedings of the Symposium on
SDN Research, SOSR ’22, page 50–58, 2022.

[66] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster,
Mark Filer, and Phillipa Gill. Radwan: Rate adaptive
wide area network. In Proceedings of the 2018 Confer-
ence of the ACM Special Interest Group on Data Com-
munication, SIGCOMM ’18, page 547–560, New York,
NY, USA, 2018. Association for Computing Machinery.

[67] Ion Stoica, Scott Shenker, and Hui Zhang. Core-
Stateless Fair Queueing: A Scalable Architecture to Ap-
proximate Fair Bandwidth Allocations in High Speed
Networks. In SIGCOMM, 1998.

[68] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and
Aviv Tamar. Learning to route. In Proceedings of
the 16th ACM Workshop on Hot Topics in Networks,
HotNets-XVI, page 185–191, New York, NY, USA,
2017. Association for Computing Machinery.

[69] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

[70] Weitao Wang, Masoud Moshref, Yuliang Li, Gautam
Kumar, T. S. Eugene Ng, Neal Cardwell, and Nandita
Dukkipati. Poseidon: Efficient, robust, and practical dat-
acenter CC via deployable INT. In 20th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 23), pages 255–274, Boston, MA, April 2023.
USENIX Association.

[71] Yiting Xia, Ying Zhang, Zhizhen Zhong, Guanqing
Yan, Chiun Lin Lim, Satyajeet Singh Ahuja, Soshant
Bali, Alexander Nikolaidis, Kimia Ghobadi, and Manya
Ghobadi. A social network under social distancing:
Risk-Driven backbone management during COVID-19
and beyond. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21), pages
217–231. USENIX Association, April 2021.

[72] Zhiying Xu, Francis Y. Yan, Rachee Singh, Justin T.
Chiu, Alexander M. Rush, and Minlan Yu. Teal:
Learning-accelerated optimization of wan traffic engi-
neering, 2023.

[73] Jin Y. Yen. Finding the K Shortest Loopless Paths in a
Network. Management Science, 17(11):712–716, 1971.

[74] Liangcheng Yu, John Sonchack, and Vincent Liu. Ce-
binae: Scalable in-network fairness augmentation. In
Proceedings of the ACM SIGCOMM 2022 Conference,
SIGCOMM ’22, page 219–232, New York, NY, USA,
2022. Association for Computing Machinery.

[75] Zhizhen Zhong, Manya Ghobadi, Alaa Khaddaj,
Jonathan Leach, Yiting Xia, and Ying Zhang. Arrow:
restoration-aware traffic engineering. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, pages
560–579, 2021.

[76] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV), pages
2242–2251, 2017.

1952 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/pytorch/examples/tree/main/word_language_model
https://github.com/pytorch/examples/tree/main/word_language_model

Inputs Outputs

f1

f2

f3

f4

6

9

4

8

4

9

6

8

4

8

6

9

4

6

8

9

9

6

4

8

t1

t2

t3

t4

Comparator

x1

x2

min(x1, x2)

max(x1, x2)

FIGURE A.1: Sorting Network Example.

A Max-min fair allocation optimization
Soroush offers a range of general algorithms that can solve any
max-min fair resource allocation problem expressed using
the model described in §2.1. In this section, we present the
formulation behind this model. Table A.1 describes all the
notations, their meanings, and their mappings to WAN Traffic
Engineering (WAN-TE) and Cluster Scheduling (CS).

Feasible Allocation. Given a set of demands and a set of
paths over a group of resources, an allocation is feasible if
it satisfies demand and capacity constraints. We define the
feasible allocation as:

FeasibleAlloc(E ,D,P,Q,R) ≜
{

f | (5)

fk =
∑

p∈Pk

qp
kfp

k , ∀k ∈ D(allocation for demand k)

∑
p∈Pk

fp
k ≤ dk, ∀k ∈ D(allocation below volume)

∑
k,p|p∈Pk,e∈p

re
kfp

k ≤ Ce ∀e ∈ E(allocation below capacity)

fp
k ≥ 0 ∀p ∈ Pk,k ∈ D(non-negative allocation)

}
Max-Min Fairness. Among all the feasible allocations, the
optimal max-min fair solution seeks:

OptFair(E ,D,P,Q,R) ≜ argmax
f

fair(f/w) (6)

s.t. f ∈ FeasibleAlloc(E ,D,P,Q,R)

where the function fair(x) encodes the max-min fairness
objective. To our knowledge, prior works do not present a
closed form of this function. In §B, we introduce two potential
candidates (one exact and one that converges in the limit).

B Closed-form max-min fair objective
We present two closed form representations of the max-min
fair objective: one exact, and one that converges to the max-
min fair objective in the limit. The exact form is the following:

fair(f) = argmax
f

⋃
{FA|FA⊆f}

min({fk | fk ∈ FA}) (7)

Intuitively, this is a collection of maximization problems,
where each maximizes the smallest flow in a given subset
of f (a total of 2|f | maximizations). We next prove that this
objective, in the instance that f are bounded, results in max-
min fair allocations.

Proof. Without loss of generality, we assume if i < j then
fi ≤ fj for all fi,fj ∈ f .

Suppose the theorem is not true: there exists an allocation
f∗ which is optimum as measured by the objective in 7 but is
not max-min fair. Three scenarios might have caused this;

Case 1. A flow i exists with unbounded f∗
i , which can not

be true as we assume all the flows are bounded.
Case 2. A flow i exists that we can improve its rate with-

out hurting other flows with ≤ rate. One of the constraints
in Eqn. 7 is to maximize fi as a result such i can not exist.

Case 3. Two flows i and j exist (i < j) with optimal max-
min fair rates of f̂i and f̂j such that f̂j < f∗

j and f∗
i < f̂i. This

means that in the solution from Eqn. 7, flow j is receiving
more than its share and is hurting flow i. This also can not
happen since it violates one of the constraints in Eqn. 7 that
maximizes the minimum of i and j. (Note that this holds
even if f̂i = f̂j since maximizing the minimum of these two
ensures they get equal rates.)

As a result, each flow is guaranteed to be bounded, achieve
its maximum possible rate, and can not hurt any other flow
with less than or equal rate. This is the definition of max-min
fairness (f∗ is max-min fair).

An alternate closed form representation of max-min fair is
the following:

fair(f) = argmax
f

∑
i

ϵ

∑
j ̸=i

I(fi≤fj)
fi (8)

We can prove this converges to the max-min fair rate allo-
cations as ϵ → 0 similar to the proof of Theorem 1.

C SWAN as a sequence of LPs
The original formulation of the bth iteration of SWAN [30] is
the following:

SWANMaxMinb(E ,D,P) ≜ argmax
∑
k∈D

fkb (9)

s.t. fkb ≤ Uαb−1, ∀k ∈ D

fkb

{
= fk(b−1) if fk(b−1) < Uαb−2

≥ fk(b−1) otherwise
, ∀b > 1

(f1, . . . , fb−1) ∈ SWANMaxMinb−1,

f ∈ FeasibleAlloc(E ,D,P).

where fkb is the total allocated rate to demand k up to itera-
tion b.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1953

Term Meaning CS WAN-TE

w inverse of coefficient vector in the objective of fair(.)
where wk indicates the weight for the k-th demand and
encodes the desired proportional max-min fair allocations.

priority of job k (In [56] = user specified prior-
ity × effective average throughput / number
of workers)

priority of different services
(e.g., search and ads)

qp
k

the utility obtained by demand k when assigned 1 unit on
path p.

progress rate of the k-th job when assigned 1
unit on server p

= 1

re
k capacity consumed on resource e (i.e., link or GPU) when

allocating 1 unit to demand k
capacity consumed by job k from resource e
(CPU, GPU or memory)

= 1

ce capacity of resource e ∈ E capacity of CPU, GPU or any other resources
on a server

capacity of link e

dk the resource requested by the k-th demand job k’s requested duration of time (= 1 in
[56])

flow k’s requested rate

fk,fp
k

fk : demand k’s total utility
fp

k
: demand k’s obtained allocation from path p

fk : job k’s total progress rate
fp

k
: fraction of time server p is assigned to job

k

fk: flow k’s total rate
fp

k
: flow k’s rate on path p

TABLE A.1: Additional notation for the general multi-resource max-min fair formulation in §A.

D Proofs of results for AdaptiveWaterfiller
We present the proofs of the various results mentioned in §3.2
for Adaptive Waterfiller.

D.1 Proof of Theorem 3
If we denote by f(θ), the solution of solving the weighted
waterfilling sub-flow problem with weights θ = {θp

k}, then
convergence implies that

θp
k =

fp
k (θ)

fk(θ) , (10)

so that θp
k(t + 1) = θp

k(t) for all p,k. From the definition
of single-path weighted waterfilling, it must be that if fp

k is

bottlenecked at link l, then
f

p
k

θ
p
k

≥
f

p̂
j

θ
p̂
j

for all non-zero f p̂
j going

through that link. Using Eqn. 10 to replace the weights in
this inequality, it immediately follows that fk ≥ fj . Since
this must hold for every j such that there exists a non-zero
subflow f p̂

j going through link l, it must be that f is bandwidth-
bottlenecked (see definition before Theorem 3).

D.2 Other results
In the discussion after Theorem 3, two results are stated
without proof: the max-min fair rate allocation is bandwidth-
bottlenecked and the adaptive waterfiller converges when it
finds a bandwidth-bottlenecked rate allocation. Here, we pro-
vide their proofs in the form of the two following lemmas:

Lemma 1. If f is a max-min fair rate allocation then it must
be bandwidth-bottlenecked.

Proof. Suppose that this is not true and a max-min rate alloca-
tion is not bandwidth-bottlenecked. This must mean that for
some subflow fp

k bottlenecked on link l, there is another non-
zero subflow f p̂

j going through that link and fj > fk. This

implies that we can increase the subflow fp
k at the expense

of f p̂
j . Ultimately, this increases the allocation of fk without

reducing the allocation of any other equal or smaller alloca-
tion (only reducing the allocation of fj , which was larger to
start with). We arrived at a contradiction since this violates
the definition of max-min fair allocation.

Lemma 2. Every bandwidth-bottlenecked rate allocation f
is a fixed point of the adaptive waterfiller algorithm.

Proof. Assume that f is bandwidth-bottlenecked and we use
these flows (and subflows) to construct weights θp

k = fp
k /fk.

Let us denote by f̃ the solution of solving the weighted water-
filling with those weights. We want to show that f = f̃ . Notice
that the following must hold for a subflow fp

k bottlenecked at
link l:

fp
k

θp
k

=
fp

k

fp
k

fk = fk ≥ fj = fj

f p̂
j

f p̂
j

=
f p̂

j

θp̂
j

, (11)

where the inequality follows from the definition of bandwidth
bottleneck (prior to Theorem 3) and the equality after that one
assumes that f p̂

j is a non-zero subflow also going through link
l. Hence, we have established that for every fp

k bottlenecked

at link l, it must hold that
f

p
k

θ
p
k

≥
f

p̂
j

θ
p̂
j

for all non-zero flows f p̂
j

going through that link. This implies that f is a solution to the
weighted waterfilling problem. However, we denoted by f̃ the
solution to this problem. From uniqueness of the weighted
waterfilling solution, it must be that f = f̃ .

E Equi-depth binner formulation
In this section, we present two variants of Equi-depth bin-
ner — one where boundaries are elastic but the demands
get allocation from exactly one bin, and the other where the

1954 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

bin boundaries are fixed but the demands are allowed to get
allocation from multiple bins.

Equi-depth binner with elastic bin boundaries. In this vari-
ant, we use the output of AdaptiveWaterfiller to sort demands
by their estimated max-min fair rates. We then divide the
demands from smallest to largest into equal-sized bins (Db),
each assigned to one specific bin. The order of bins is main-
tained using bin boundaries ℓb, which are determined by the
optimization. During the allocation process, we prioritize
bins with smaller demands, following a similar linearization
technique described in §3.1:

ElasticBoundaryEquiBinning(E ,D,P) ≜ (12)

argmax
f ,ℓ

∑
bins b

∑
k∈Db

ϵb−1fk

s.t. fk < ℓb + sb, ∀b < Nβ ,∀k ∈ Db

fk ≥ ℓb−1, ∀b > 1,∀k ∈ Db

ℓb ≥ 0, ∀b
f ∈ FeasibleAlloc(E ,D,P).

where Nβ is the number of bins, Db denotes the set of de-
mands in bin b, ℓb shows the boundary of bin b (determined by
the optimization), and sb is the slack in quantization boundary
of bin b (input to the optimization).

Equi-depth binner with multi-bin allocations. In this vari-
ant, we use the output of AdaptiveWaterfiller to compute the
bin boundaries ℓb that result in roughly the same number of
demands per bin. Then, we reuse the Geometric Binner’s for-
mulation from Eqn. 4 but with the estimated bin boundaries
instead of geometrically increasing sizes:

MultiBinEquiBinning(E ,D,P,{ℓb}) ≜ (13)

argmax
f

∑
k∈D

∑
bins b

ϵb−1fkb

s.t. fk =
∑

bins b

fkb, ∀k ∈ D

fk1 ≤ ℓ1, ∀k ∈ D
fkb ≤ ℓb− ℓb−1, ∀b > 1,∀k ∈ D
f ∈ FeasibleAlloc(E ,D,P).

F Expected Run-time Benefit of GB and EB
Solving a linear program (with #constraints = Ω(#variables) –
holds for resource allocation problems such as TE and CS) has
worst-case time complexity of O(νa) where a ≈ 2.373 [15]
and ν is the number of variables in the optimization.

One can argue that simply solving a single optimization (as
in the case of EB and GB) does not guarantee lower run-times
compared to solving multiple optimizations (e.g., SWAN).
Solving multiple optimizations adds a multiplicative term to

the time complexity. However, a naive single-shot optimiza-
tion may use too many additional variables and ends up being
slower. In this part, we theoretically analyze the expected
run-time benefit of GB and EB. We show that the speed up
of Soroush’s optimization-based methods is due to their care-
fully designed approaches that only require a small number
of additional variables compared to each optimization in the
multi-shot variant.

SWAN uses 1 variable per demand per path to demonstrate
the allocation from an specific path (ν = PK where P is the
number of paths and K is the number of demands). Therefore,
if SWAN needs NS

β iterations, its worst-case complexity is
O(NS

β P aKa).

GB needs 1 extra variable per demand per bin to measure
the allocation from each bin (ν = (NG

β + P)K – note that
the number of bins in GB (NG

β) is the same as the number
of iterations in SWAN (NS

β)). This leads to a worst-case
complexity of O((NG

β +P)aKa). Compared to SWAN, the

run-time saving of GB is proportional to Nβ

[
1+ Nβ

P

]−a. For
P = 16 paths and Nβ = 8 bins, we expect GB to be ∼ 3.06×
faster.

Our analysis of GB is only valid when the number of bins
is small. When there are many bins, GB’s allocation may have
too many zero variables. For example, if we have 128 bins,
and a demand only needs allocation from the first bin, the
remaining 127 bin variables will be zero. Existing solvers
such as Gurobi [27] exploit this sparsity to improve their
runtime.

EB15 only uses 1 extra variable per bin to show the bin bound-
aries (ν = NE

β +PK). Therefore, its worst-case complexity
is O((NE

β +PK)a). Compared to SWAN, EB has a run-time

saving proportional to NS
β

[
1+ NE

β

P K

]−a. Since the number of
demands is usually substantially larger than the number of
bins NE

β , we can approximate the run-time saving by NS
β .

For NS
β = 8, we expect EB to be ∼ 8× faster.

Although theoretical analysis can help us understand the
speedup of Soroush, solvers can typically perform better than
their worst-case and can take advantage of the structure of the
optimization (e.g., sparsity). In §4, we empirically show that
the speedup of GB compared to SWAN is larger than what
our theoretical analysis predicted. In fact, it is even faster than
EB. Similarly, we found that the speed up of EB compared to
SWAN is only slightly less than the theoretical analysis.

G Extended Evaluation
In this section, we provide both additional experiment details
as well as an extended evaluation of Soroush.

15We analyze the variant with elastic bin boundaries. The other multi-bin
variant has the same complexity as GB since it uses the same optimization.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1955

Model Task App/Dataset #Batch sizes

ResNet-18 Image CIFAR-10 [40] 16, 32, 64,
[29, 41] Classification 128, 256
ResNet-50 Image ImageNet [18] 16, 32,
[2, 29] Classification 64, 128
CycleGAN Image-to-Image monet2photo [76] 1
[44, 76] Translation
LSTM Language Wikitext2 [48] 5, 10, 20,
[63] Modeling 40, 80
Transformer Language Multi30k [20] 16, 32, 64,
[31, 69] Translation (de-en) 128, 256
A3C [26, 49] Deep RL Pong 4

512, 1024,
Autoencoder Recommendation ML-20M [28] 2048, 4096,
[51] 8192

TABLE A.2: Type of jobs used for the evaluation of Soroush. We
use Gavel’s job generator [56].

G.1 Tuning benchmarks for performance
• We warm start SWAN’s and Danna’s optimizations for

iterations > 1 to reduce the run-times. We further tune
Gurobi’s solver parameters using 5% of the traffic demands
to achieve the best run-time.

• Our Danna’s implementation is that of Figure 2 in [17] (i.e.,
binary and linear search): we found this algorithm is faster
than the other proposed by the same work (i.e., binary then
linear search in Figure 4) as it can find and eliminate more
demand-constrained flows.

• Our modified K-waterfilling algorithm uses K=1 which
is the fastest and most parallelizable version of the K-
waterfilling [36].

• For cluster scheduling (CS), we changed Soroush’s imple-
mentation to use CVXPY [19] to match Gavel’s implemen-
tation and ensure fair run-time comparisons.

G.2 Evaluation on CS

Experiment details. We consider 3 different types of GPUs
(V100, P100, K80) and base the number of GPUs on the
number of jobs. We randomly select jobs from a set of 26
different job types available in Gavel (see Table A.2). Each
job has a specific priority and requires a certain number of
workers. We determine the number of workers by randomly
sampling from the distribution obtained from the Microsoft
public trace [3] – 70% of jobs need a single worker, 25%
need between 2 and 4, and the remaining 5% need 8. We also
sample job priorities uniformly from {1,2,4,8}. To compute
the weights in the weighted max-min fair objective, we use
the job throughput estimations from Gavel.

Results. In Fig. A.2, we compare Soroush to two variants of
Gavel (with and without waterfilling) in 40 different scenarios.
The number of competing jobs in each scenario is selected
from the set {1024,2048,4096,8192} – 10 scenarios from
each. Following Gavel, we set the number of each type of
GPU to one-fourth of the total number of jobs and generate
each job using the methodology explained above.

100 101 102 103
speed up w.r.t Gavel w waterfilling

0.4

0.6

0.8

1.0

fa
irn

es
s

ApproxW
ApproxW-prio-thru-aware
AdaptW

Gavel w-waterfilling
EB

Gavel
GB

(a) Fairness vs Speed up.

Gavel Gavel
 w-waterfilling

ApproxW ApproxW
 prio-thru-aware

AdaptW EB GB0.00
0.25
0.50
0.75
1.00

to
ta
l r
at
e
w.
r.t
.

 G
av

el
 w
 w
at
er

(b) Efficiency (total effective rate)

FIGURE A.2: Soroush empirically Pareto-dominates Gavel.
These results are on 40 different scenarios with varying number
of jobs and GPUs.

The results are in line with our observations from WAN-
TE; (a) Gavel with waterfilling is an optimal max-min fair
algorithm, but it is more than 20× slower than other methods,
(b) Gavel is ∼ 100× faster than the Gavel w waterfilling but
at the cost of ∼ 40% drop in fairness and ∼ 15% drop in
efficiency, and (c) Soroush’s algorithms empirically Pareto-
dominate both Gavel and Gavel w waterfilling.

We also observe that GB is slower than the rest of the meth-
ods except (Gavel with waterfilling), but it provides worst-
case per-demand fairness guarantees.

G.3 Evaluation of POP
POP [55] is a decomposition technique used to scale granular
resource allocations. It involves dividing demands uniformly
at random into partitions, assigning an equal share of each
resource to each partition, and then, solving the resource allo-
cation for each partition in parallel. This procedure is called
resource splitting.

For large demands, POP incorporates an additional method
called client splitting, where demands are divided among mul-
tiple partitions. [55] recommends using client splitting for
Poission traffic distribution, as this can improve resource uti-
lization. However, it is unnecessary for the other distributions
such as Gravity.

POP focuses on objectives such as maximizing utilization
or maximizing the minimum allocation, a different objective
than max-min fairness. To assess the impact of POP on max-
min fairness, we adapt POP to work with both Soroush and
SWAN; We use the same procedure for partitioning the prob-
lem (resource splitting and client splitting as needed). We
then allocate resources in each partition using a max-min fair

1956 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

20 21 22 23 24 25 26
#bins

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

fa
irn

es
s

EB
GB

(a) Impact of the number of bins on the fairness

20 21 22 23 24 25 26
#bins

1.0
1.1
1.2
1.3
1.4

Ef
fic

ie
nc

y
 w
.r.
t D

an
na

EB
GB

(b) Impact of the number of bins on the efficiency

FIGURE A.3: Impact of number of bins on fairness and effi-
ciency of GB and EB. These results are on the Cogentco topology
and Poisson traffic distribution (scale factor = 64).

4 8 12 16 20 24 28
#paths

1.00
1.05
1.10
1.15
1.20

fa
irn

es
s

 w
rt
SW

AN

Adapt Water EB SWAN

4 8 12 16 20 24 28
#paths

100

101

102

sp
ee
d
up

 w
rt
SW

AN

FIGURE A.4: Impact of number of paths in TE. These results
are on the Cogentco topology and Poisson Traffic distribution
(scale factor = 64).

solver such as SWAN or Soroush.

Theoretical Guarantee. POP results in losing all the theo-
retical guarantees (α-approximation for Soroush and SWAN).
In fact, [53] shows a substantial worst-case optimality gap
for POP. However, Soroush is faster than SWAN because of
its single optimization reformulation, while maintaining the
same theoretical guarantees.

Empirical Evaluation. In Fig. A.6, we evaluate the perfor-
mance of POP when applied to Soroush (specifically, GB) and
SWAN for two different topologies, two load factors and two
traffic distributions.

We find that the performance of POP depends on the traf-
fic distribution whereas Soroush maintains the same level
of fairness in all cases while being up to 15× faster than
SWAN. For distributions with granular demands such as Grav-
ity, POP speeds up both SWAN and Soroush with only a minor
drop in fairness. However, using POP causes significant fair-

FIGURE A.5: Example of imbalanced bins in GB for the TE
usecase.

ness degradation – more than 10% to match the run-time of
Soroush– for traffic distributions such as Poisson that are not
granular and require client splitting to avoid resource under-
utilization. This unfairness is a result of per-partition max-min
fairness in POP, which differs from global max-min fairness
in Soroush or SWAN.

We also observe that applying POP to Soroush results in
the same fairness level as SWAN for the same number of
partitions. In each partition, Soroush is guaranteed to produce
an allocation similar to SWAN (see §3.1), and therefore, the
aggregated allocation is guaranteed to be the same. Since
Soroush is faster in each partition, the overall run-time of
Soroush + POP is substantially lower.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1957

8

8

16

48

X
X

Fairer

Faster

4 2
4 2

(a) Topo: Cogentco, Traffic: Poisson, Scale factor=16, w client splitting

8
8

16

48

X
X

Fairer

Faster

4
2

4
2

(b) Topo: Cogentco, Traffic: Poisson, Scale factor=64, w client splitting

8
4 2

24
8

16

48

X

X

Fairer

Faster

(c) Topo: Cogentco, Traffic: Gravity, Scale factor=16, no client splitting

8 4 2 24816
48

X
X

Fairer

Faster

(d) Topo: Cogentco, Traffic: Gravity, Scale factor=64, no client splitting

8
8

16

48

X

X

Fairer

Faster

4 2

4 2

(e) Topo: GtsCe, Traffic: Poisson, Scale factor=16, with client splitting

8
8

16

48

X
X

Fairer

Faster

4
2

4
2

(f) Topo: GtsCe, Traffic: Poisson, Scale factor=64, with client splitting

8
4 2

4 28
16

48

X

X

Fairer

Faster

(g) Topo: GtsCe, Traffic: Gravity, Scale factor=16, no client splitting

8 4 2
24816

48

X
X

Fairer

Faster

(h) Topo: GtsCe, Traffic: Gravity, Scale factor=64, no client splitting

FIGURE A.6: Impact of POP [55]. POP is not designed for max-min fair allocation and can cause drop in fairness depending on the traffic
distribution (both on Soroush and SWAN). In contrast, Soroush achieves lower runtime compared to SWAN while maintaining the same
level of fairness and theoretical guarantees. The figure reports the average over 3 randomly generated demands. "X" indicates that POP is
not used, and the "Numbers" represent the number of POP partitions.

1958 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Cloud-LoRa: Enabling Cloud Radio Access LoRa Networks Using
Reinforcement Learning Based Bandwidth-Adaptive Compression

Muhammad Osama Shahid*1 Daniel Koch*1 Jayaram Raghuram1

Bhuvana Krishnaswamy1 Krishna Chintalapudi2 Suman Banerjee1

1University of Wisconsin-Madison 2Microsoft Research *Co-Primary authors

Abstract
The Cloud Radio Access Network (CRAN) architecture has
been proposed as a way of addressing the network through-
put and scalability challenges of large-scale LoRa networks.
CRANs can improve network throughput by coherently com-
bining signals, and scale to multiple channels by implement-
ing the receivers in the cloud. However, in remote LoRa de-
ployments, a CRAN’s demand for high-backhaul bandwidths
can be challenging to meet. Therefore, bandwidth-aware com-
pression of LoRa samples is needed to reap the benefits of
CRANs. We introduce Cloud-LoRa, the first practical CRAN
for LoRa, that can detect sub-noise LoRa signals and per-
form bandwidth-adaptive compression. To the best of our
knowledge, this is the first demonstration of CRAN for LoRa
operating in real-time. We deploy Cloud-LoRa in an agri-
cultural field over multiple days with USRP as the gateway.
A cellular backhaul hotspot is then used to stream the com-
pressed samples to a Microsoft Azure server. We demonstrate
SNR gains of over 6 dB using joint multi-gateway decoding
and over 2x throughput improvement using state-of-the-art
receivers, enabled by CRAN in real-world deployments.

1 Introduction

LoRa [1] is one of the most popular long-range, low-power
wide area network (LPWAN) technology for IoT applications
such as smart city [2, 3], smart agriculture [4, 5]. Operating in
the license-free ISM band, anyone can independently deploy
a LoRa LPWAN, where IoT devices make use of off-the-
shelf LoRa radios to transmit messages to a gateway. Like
most common wireless systems, a LoRa gateway performs
all physical layer processing such as receiving and decoding
transmissions. Often, gateways relay these decoded packets
to the cloud to enable cloud-based IoT applications.

The last decade has seen the emergence of a new wireless
architecture – a Cloud Radio Access Network (CRAN), where
the gateway continuously streams the raw received digitized
radio signals (I/Q samples) to a virtual gateway in the cloud

over a back-haul link for physical-layer processing (Fig. 1).
CRANs, applied to LoRa, offer three disruptive advantages.
• Joint Multi-Gateway Packet Decoding: Economic viability

of a LoRa deployment is often dictated by its range – a
long range necessitates fewer base-stations thereby reduc-
ing capital and operating costs. Weak signals from multiple
gateways, when combined constructively, boost the signal-
to-noise ratio (SNR) [6, 7], and in turn, extend the range.
These approaches require centralization to jointly process
the raw radio signals from multiple base-stations.

• Rapid Physical-Layer Innovation to Boost Capacity: A
major challenge in dense areas is capacity scaling, as
mushrooming uncoordinated LoRa deployments lead to
increased collisions [8]. Recently, several promising PHY-
layer demodulation techniques [9–16] have shown an order
of magnitude improvement in capacity. CRAN enables their
rapid deployment and A/B testing in the field, as virtual
software receivers can be deployed in the cloud.

• Elastic Scaling to Multiple Channels: As capacity needs
increase, traditional LoRa gateways need to be physically
upgraded to high-end gateways with parallel receiver chains
baked into their ASIC. CRAN gateways capture a wide
spectrum and allow for the potential to dynamically scale
the number of channels in the cloud depending on demand.

While researchers have demonstrated the potential of CRANs
to enable the deployment of new physical layer techniques [6,
17–19], to the best of our knowledge, there is no end-to-end
implementation of a LoRa CRAN till date where gateways
continuously stream radio samples to virtual receivers in the
cloud to be decoded in real-time. The key contribution of
this paper is Cloud-LoRa, the first end-to-end practically-
deployable LoRa CRAN for urban and rural deployments.
We demonstrate that Cloud-LoRa allows for the practical
deployment of real-time joint multi-gateway packet decoding
in the cloud with techniques such as Charm [6] and achieves
an SNR gain of over 6 dB. This gain could translate to a
doubling of the range. We also show that rapid deployment
of novel decoding techniques such as [9, 10, 12] offer a 2X
improvement in throughput as well as scaling to multiple

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1959

Fig. 1: An Illustration of CRAN and Cloud-LoRa

channels using per-channel virtual receivers in the cloud.
Cloud-LoRa comprises three key components: i) a CRAN

gateway that can be deployed on software-defined radios
(e.g., USRP and a NUC), ii) ACCIO, an online reinforce-
ment learning-based adaptive compression algorithm, and
iii) a cloud gateway with user-defined receivers. Cloud-LoRa
allows researchers to deploy their own physical layer demod-
ulators as containers at the cloud gateway (Figure 1).
Extreme Back-Haul Bandwidth Gap in a LoRa CRAN
A common challenge to every CRAN is the need to stream
a high volume of raw signals (I/Q samples) to the cloud.
Each 1 MHz of radio spectrum generates a continuous data
stream at 64 Mbps1 to the cloud. However, LoRa LPWANs
are intended for low-cost deployments and often, the only
backhaul available in several rural and remote deployments is
a cellular link offering as low as 500 kbps [20–22]. Therefore,
a viable LoRa CRAN must be capable of streaming samples
even on such low-bandwidth links to the cloud.
Detecting Sub-Noise LoRa signals buried in noise. At such
low backhaul bandwidths, channel activity detection to avoid
streaming noise signals to a cloud server is an integral compo-
nent of a CRAN gateway. A majority of the existing activity
detection methods rely on observing signal strength above a
fixed threshold [23]. Due to its spread-spectrum technology,
LoRa signals are received at sub-zero dB SNR, i.e., they are
buried in noise and hence signal strength-based thresholding
fails. Even recent works, such as SparSDR [24] that uses time-
frequency analysis for activity detection cannot distinguish
sub-noise LoRa from noise in real-time. SparSDR can detect
sub-noise signals at the cost of significantly higher false posi-
tives, a tradeoff that defeats the purpose of activity detection.
In this work, we develop an activity detection approach that
detects sub-noise LoRa signals in real-time across multiple
channels with relatively low false positives.
Adaptive Lossy Compression and Streaming. A key com-
ponent for any CRAN is compressing real-time streaming of
radio samples to the cloud. CRANs typically employ lossless
compression techniques since lossy compression degrades
the quality of the signal and adversely affects its decodability.
Further, it is hard to predict in advance at the gateway how

1Two 32-bits for each complex-valued sample at 1 Msamples/s

much “lossiness” will allow a specific part of the signal to be
decoded, since decodability of the signal depends on several
dynamic factors such as SNR of the received wireless signal,
the specific demodulation being used in the cloud etc.

As we evaluate in Section 5, state-of-the-art lossless com-
pression techniques provide up to 70% compression for LoRa
signals, depending on the SNR. At this compression, a single
500 kHz wide LoRa channel with 10% channel activity will
generate a 960 kbps stream – about twice greater than the
capacity of a rural cellular backhaul link of 500 kbps.

To address this challenge, we propose ACCIO, an online re-
inforcement learning (RL)-based wavelet compression that is
lossy and adaptive, to compress sub-noise LoRa transmissions.
ACCIO receives rewards (feedback) from a cloud receiver for
decoding successfully, and learns to employ the right level
of compression based on the available backhaul bandwidth
and SNR at the gateway. ACCIO uses TCP BBR [25] to reli-
ably deliver the lossy-compressed radio signals to the cloud.
The bandwidth estimates from BBR, signal SNR estimates,
and application buffer levels are then used by ACCIO’s RL
agent to dynamically set the appropriate level of compression.
The motivation behind using RL for adaptive compression is
discussed in detail in Section 3.2.
Open Source, Deployable Implementation. Our implemen-
tation of the Cloud-LoRa gateway performs channelization,
activity detection, and runs ACCIO in real-time. Its cloud
gateway runs on Azure and implements several recent LoRa
demodulators including CIC [12] and Charm [6]. To demon-
strate its practical viability, we deploy and test Cloud-LoRa
in an 8-channel CRAN in two scenarios: 1) a rural outdoor
setting with cellular backhaul, and 2) an urban outdoor set-
ting. We have open-sourced our framework2 with well-defined
APIs to plug-in new physical-layer demodulators, and allow
scalability with the number of channels. We hope that Cloud-
LoRa will encourage and enable future researchers to deploy
and compare novel physical-layer demodulators. The major
contributions of this paper are:
• We present Cloud-LoRa, the first practically-deployable end-

to-end LoRa CRAN solution. Our current implementation
streams and processes signals from up to 8 LoRa channels
in real-time to the cloud. We hope that researchers will be

2 https://github.com/UW-CONNECT/cloud-lora.git

1960 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/UW-CONNECT/cloud-lora.git

Fig. 2: Components of Cloud-LoRa : CRAN gateway (USRP) performs channelization, followed by activity detection at the
NUC. ACCIO then compresses active periods using the RL agent and streams to the cloud server. The cloud server decodes the
received packets and provides reward feedback to the ACCIO RL agent.

able to use Cloud-LoRa to deploy, test, and compare new
physical layer demodulators in the field.

• We propose a novel LoRa activity detection approach that
detects even sub-noise LoRa signals across multiple chan-
nels in real-time, without demodulating them.

• We propose ACCIO, a reinforcement learning-based adap-
tive compression technique that aims to maximize packet
decodability in the cloud CRAN receiver. ACCIO also com-
presses the active LoRa signals to meet the available back-
haul bandwidth and desired latency requirements.

• We provide an open-sourced implementation of Cloud-
LoRa including CRAN gateway (on USRP), ACCIO, and
several LoRa receivers as Dockerized containers.

• We demonstrate Cloud-LoRa through rural field deploy-
ments and by testing other recently published techniques [6,
12]. We show an SNR gain of over 6dB when signals from
multiple gateways were jointly decoded in the cloud. We
see a 2X boost in network throughput using novel physical-
layer innovations deployed in the cloud. We process up to 8
LoRa channels in real-time, further improving throughput.

We attest that this work complies with the applicable ethical
standards of our home institution.

2 Background and Motivation

LoRa Modulation-DeModulation: LoRa uses Chirp Spread
Spectrum (CSS) modulation, a spread-spectrum technology
that enables LoRa to operate at sub-zero dB SNR due to
its resilience to noise and interference. The spreading factor
(SF), which defines the number of bits per symbol, along with
the RF bandwidth of a LoRa channel (BW) determine the
symbol duration, datarate, energy consumption, and range
of communication. As the SF increases, the range will also
increase, but at the cost of reduced datarate. As SF and BW
are predetermined for a transmitter, a LoRa receiver searches
for preambles of a single SF and BW to detect the start of a
packet. LoRa demodulates by dechirping the received signal,
which enables it to receive sub-noise signals [26].
Variable Backhaul Bandwidths: While access to broadband
connectivity has been expanding, available bandwidths still

vary vastly across the country [22, 27]. FCC 2020 reports on
broadband access determined that potentially over 50% of
rural Americans lack broadband access [20, 28] of 25 Mbps
download/3 Mbps upload speeds. Broadband speeds lower
than 1 Mbps have been identified as a bottleneck for the adop-
tion of precision agriculture [21, 29, 30]. Additionally, signif-
icant variability in data-rates can be expected over wireless
links even in urban areas due to changes in load, environment,
service providers, among other factors [31, 32].
Recent works on CRAN-based LoRa: The benefits of
CRAN-based LoRa have been identified in recent works such
as Charm [6], Nephalai [19], and OPR [7]. Charm and OPR
demonstrate that the range of communication can be improved
by coherently combining signals using CRANs. Nephalai
proposes a static compression technique using compressed
sensing [33] to stream multiple LoRa channels to the cloud
to improve the network throughput. More generally, physical-
layer-agnostic CRAN for IoT has been proposed in works
such as SparSDR [24] and CharIoT [34]. While these existing
works have identified and demonstrated the benefits of CRAN,
dynamic compression that adapts to the signal characteristics
and meets the variable backhaul bandwidths of LoRa gate-
ways remains an open challenge. We propose an RL-based
adaptive compression to address this challenge.

3 Proposed System - Cloud LoRa

Towards a practical, real-time LoRa CRAN, our Cloud-LoRa
framework consists of three components, illustrated in Fig. 2:

1. CRAN gateway : a software defined radio (SDR) gateway
that continuously streams samples from a wideband spec-
trum. The gateway performs channelization to filter LoRa
channels and detects activity in each individual channel.
The activity detection module at the gateway is designed
to detect even sub-noise LoRa signals, and stream only
those signals corresponding to active LoRa transmissions.

2. ACCIO (green blocks in Figure 2) : the active LoRa trans-
missions need further compression. We propose ACCIO,
an online RL-based compression algorithm that adaptively

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1961

predicts the compression threshold for each active period.
ACCIO’s goal is to maximize the total packets decoded in
the cloud gateway, while meeting the backhaul-bandwidth
and latency constraints.

3. Cloud Server : we implement standard LoRa as well as
user-defined LoRa receivers in a Microsoft Azure cloud
server as Docker containers. The cloud server reconstructs
the compressed samples, which are then demodulated and
decoded. The number of packets decoded per active period
is sent as reward feedback to ACCIO’s RL agent.

3.1 CRAN Gateway
LoRa transmitters typically have a low duty-cycle to conserve
their battery. As a result, a majority of the samples captured
at a CRAN gateway are noise. Since it is wasteful to transport
noise to the cloud, activity detection is critical in CRAN.
Multi-Channel Filter. The gateway performs channelization
to filter an individual channel from the wideband spectrum
before detecting activity. We first convert each channel to
baseband and then apply a 4th-order IIR Elliptical filter (Fig-
ure. 2) [35]. This light-weight filter both suppresses other
channels by 100 dB and offers a small transition band, ensur-
ing minimal cross-channel leakage and real-time operation.
Sub-Noise LoRa Activity Detection. Activity detection is
typically performed using energy-based approaches such as
carrier sensing, which fail to distinguish low-SNR LoRa sig-
nals from noise [24]. At received SNRs below 0dB, the energy
of LoRa samples becomes comparable to that of noise.

A standard LoRa receiver performs dechirping followed
by Fast Fourier Transform (FFT) to accumulate energy in
a single frequency, in-turn distinguishing noise from LoRa
samples [26, 36]. However, dechirping is specific to a spread-
ing factor (SF). Current multi-channel LoRa gateways have a
dedicated RF front-end for each SF. A naive sub-noise LoRa
activity detection is to dechirp the received samples with each
possible SF (7 through 12), and then perform energy-based
detection. This is computationally intensive and requires 6×
more multiplications than a single demodulator. Therefore, an
SF-agnostic activity detection is desirable for LoRa CRAN.

We propose an SF-agnostic LoRa activity detection algo-
rithm to detect sub-noise LoRa signals at the CRAN gateway.
Our activity detection leverages two properties of LoRa: 1).
Two LoRa signals of different SFs are Pseudo-orthogonal
(more in Appendix.A.1). e.g., dechirping an SF7 signal with
SF8 downchirp would result in pseudo-random noise. 2) For
a given bandwidth, the downchirp of one SF is a time-scaled
function of the downchirp of another SF. Based on these prop-
erties, we design superDC, a custom downchirp, that can
dechirp and hence detect the activity of more than one SF by
superimposing downchirps of multiple SFs.

The CRAN gateway continuously dechirps an array of
samples with the superDC, followed by an FFT. An active
LoRa transmission results in a sharp peak above the noise

Fig. 3: FFT of signal dechirped with superDC

floor in the FFT, triggering activity detection at the gateway.
For instance, a superDC that superimposes SF7, SF8, and SF9
downchirps detects an activity only if the active signals are in
SF7 through SF9. Since an SF9 downchirp is 4× as long as
that of SF7, and 2× as that of SF8, we construct the superDC
by superposing one SF9 downchirp with two consecutive SF8
and four consecutive SF7 downchirps (more in Appendix.A).

Figure 3 shows the FFT of a signal containing SF7 and SF9
chirps, each with 10 dB SNR, dechirped with this superDC.
We observe four SF7 peaks and one SF9 peak since the su-
perDC includes four SF7 and one SF9 downchirps.

The active LoRa signals that can be detected by the
superDC are determined by the superposed downchirps,
which in turn determine the length of the superDC. A su-
perDC to detect all SFs (7 to 12) must accommodate at least
one SF12, two SF11, four SF10, eight SF9, sixteen SF8, and
thirty-two SF7 downchirps. In this case, the FFT peak-gain
(ratio of the maximum peak in an FFT window to its noise
floor 3) of an SF7 symbol is 32 times lesser than that of an
SF12 symbol. Hence, low-SNR SF7 symbols could go un-
detected. On the other hand, using narrower windows would
lead to missing higher SF symbols. To combat this challenge,
we design two superDCs: superDClow to detect symbols with
SF 7 through 9 and superDChigh to detect symbols with SF
10 through 12. The former can be defined in time domain as

superDClow(t) =
3

∑
m=0

C(t −mTSF7, 7)

+
1

∑
m=0

C(t −mTSF8, 8) + C(t, 9), 0 ≤ t ≤ TSF9, (1)

where TSF =
2SF

BW
and C(t, i) is the downchirp of SFi. We can

similarly define superDChigh. By choosing two groups of SF,
we minimize the impact of excessive window sizes, while still
maintaining SF-agnostic detection. The received samples are
dechirped using both superDClow and superDChigh to detect
activity. As we demonstrate in our evaluation, the two groups
of superDC signals can detect all LoRa activity in real-time.

As the SNR of the received samples decreases, the peak-
gain of the received signal dechirped with a superDC signal

3We maintain a running estimate of the noise floor to confer resilience
against temporal variations.

1962 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

also decreases. This could result in spurious samples trig-
gering activity detection. To reduce such false positives, the
gateway signals activity in the channel whenever a minimum
of 3 consecutive peak-gains, which correspond to 12 symbols
of the smallest SF (i.e., SF7 or SF10), are observed to be
higher than a threshold (average peak gain for noise signal).
We push such an active period’s I/Q samples to the Packet
Queue for compression and transport to the cloud server.

In summary, dechirping received samples using our custom-
designed superDCs (superDClow and superDChigh) provides
the processing gain needed to detect LoRa activity even when
the received signals are much below zero dB SNR. The pro-
posed activity detection is agnostic to the SF of the transmitter,
making it a general-purpose front-end, with only 2× multi-
plications of a single LoRa demodulator, as opposed to the
state-of-the-art gateways that incur 6× multiplications.

3.2 ACCIO : Reinforcement Learning-based
Adaptive Compression

While activity detection reduces the volume of noise samples
streamed, when the network traffic increases, even active pe-
riod samples can be too high for some backhaul bandwidths
to support. Even with perfect activity detection, the required
bandwidths for 64 channels with ≈ 10% channel occupancy
is over 200 Mbps. Nephalai [19], a recent work on LoRa
CRAN, utilizes downsampling and compressive sensing for
compression. But, novel demodulators leverage oversampling
to resolve packet collisions [9, 11–13], and hence compres-
sion without downsampling is necessary. Moreover, LoRa’s
chirp spread-spectrum (CSS) modulation renders dictionary-
based lossless compression methods ineffective. We propose
ACCIO , a light-weight RL-based adaptive compression al-
gorithm that works on top of a Discrete Wavelet Transform
(DWT)-based lossy compression scheme in order to maximize
the number of packets decoded at the cloud server, without
exceeding the backhaul bandwidth and latency constraints.
Lossy Active-Period Compression. We propose to utilize
the Discrete Wavelet Transform (DWT) [37] as our lossy com-
pression scheme for oversampled active LoRa signals. DWT,
being a multi-resolution time-frequency analysis, is a suit-
able compression tool for CSS modulation which uses both
time and frequency for modulation. Each DWT coefficient
represents the energy of the received signal corresponding to
a particular frequency (level) and time (shift). Also, DWT’s
linear complexity (O(N), where N is the length of the signal)
makes it light-weight, allowing it to compress in real-time.
More background on DWT is presented in Appendix B.

We compress active LoRa signals by first applying DWT
to the signals, and then retaining only those DWT coeffi-
cients with magnitude greater than a threshold Cthresh. The
compressed signals can be reconstructed if sufficient energy
is retained in the DWT coefficients. As we increase Cthresh,
we retain fewer coefficients and compress more; but the en-

Policy Network

Network and

Signal
characteristics

(State)

Reward
(feedback from Server)

Sample
action
from

policy

DWT
threshold

Fig. 4: Overview of the RL algorithm of ACCIO

ergy of the signal (coefficients) retained will decrease, leading
to lossy compression. Determining the optimum threshold
that ensures reliable reconstruction of signals at the receiver
(cloud server), while maintaining a compression to match the
network bandwidth is a challenging problem.
Bandwidth-Adaptive Compression. The optimal compres-
sion threshold of DWT coefficients has a non-linear depen-
dence on three factors: i) the SNR of samples at the gateway,
ii) the backhaul network conditions, and iii) the LoRa de-
modulator at the cloud. Current compression approaches are
static [19, 24] and do not adapt to these factors. Therefore,
an adaptive compression that can learn this dependence is
required. While DWT provides an effective way to compress
based on the time-frequency characteristics of the signals,
we still need a method to determine the appropriate amount
of compression based on the backhaul network conditions
(which are usually non-stationary). To address this, we pro-
pose an RL-based (DWT) threshold prediction algorithm that
adaptively selects the level of compression for any given ac-
tive period, with the goal of maximizing the cumulative num-
ber of packets decoded at the cloud server.
Choice of RL.

While supervised learning methods (particularly DNNs)
are effective at modeling non-linear dependencies between the
input and the target, they are designed for an offline scenario
where the data distribution is not changing over time [38].
This makes them less effective when the network traffic and
conditions (e.g., duty cycle, SNR, and the number of channels)
are non-stationary, and also when there is lack of visibility into
demodulator design used at the cloud receiver. Reinforcement
learning is particularly well suited for this scenario since by
design it learns an agent or policy in an unknown, dynamic
environment such that the agent can perform a sequence of
actions with the goal of maximizing its cumulative reward
feedback [39]. In our setting, the agent performs the task of
adaptively selecting the DWT threshold for each active period
(based on various signal and network characteristics), with
the goal of maximizing the total number of packets decoded
at the cloud receiver over a transmission interval. Moreover,
our choice of an online policy gradient-based RL algorithm
does not require pretraining on a large collection of offline
data from the target (or a similar) environment. It can start
learning the compression policy from scratch based on data

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1963

(a) Reward for packet decoding (b) Penalty for bandwidth ratio (c) Penalty for latency

Scaled by inverse
true positive rate

Fig. 5: Components of the reward function : (a) udec(s,a), (b) uband(s,a), (c) ulat(s,a).

from the target environment, and still learn a good stable
policy (see § 5.6). Hence, it can be applied to a wide variety
of applications and deployments.

An RL agent at the gateway learns to take sequential ac-
tions based on the current state of the environment such that
its cumulative-discounted rewards received from the environ-
ment over multiple time-episodes is maximized (more back-
ground in Appen. D). Crucial to the success of an RL agent
are the design of the state variables and the reward function.
Based on a careful study and evaluation, we propose suitable
state variables and a reward function that enable the agent
to adaptively predict the (DWT) threshold in order to achieve
high decodability under varying signal and backhaul condi-
tions. A unique challenge to the design of the reward function
in this setting is the lack of perfect ground truth for providing
the reward signal. In a typical RL system, the environment
would have ground truth for providing the reward. This occurs
because some of the transmitted active periods could be false
positives (without actual packets), and it is unknown to the
server whether a received active period is a false positive or
not. We address this in the design of our reward function.

We focus on the Policy Gradient class of RL methods [40,
41], whose goal is to directly learn an optimal policy function
that is parameterized by a neural network. Specifically, we
use the Proximal Policy Optimization (PPO) method with
clipped objective [42] for online training of the RL agent.
PPO is widely adopted as a state-of-the-art online policy-
gradient method due to its better computational and sample
efficiency, and stable policy function updates. We next discuss
the components of our RL algorithm.
Action. The action of the RL agent a corresponds to select-
ing the DWT threshold Cthresh. In principle, the threshold
is continuous-valued. However, we simplify the design by
choosing a discrete set of eight threshold levels. Specifically,
if a ∈ {0,1, · · · ,7} is the action taken, then Cthresh = 5davg a ,
where davg is the average DWT coefficient value over the
current active period. (The factor 5 is chosen to cover a wider
range of thresholds.). Our action space is discrete and the pol-
icy function πθθθ(a |s) will be a conditional probability mass
function that sums to 1 over all the actions.
States. We provide the RL agent with a state vector s that
broadly consists of the network (pipeline) characteristics and
the signal characteristics from the recent active periods. The
state variables based on the network are functions of the

State variable Description

norm_pkt_len (AP size in samples) / (sampling rate); AP - Active period
mag_time (AP magnitude in the time domain) / (noise magnitude)
dcmp_avg Average value of the first-level decomposition DWT coefficients
PG_hist A 4-bin histogram of the peak gain values
BW_obs log(BW_btl / 50,000,000); BW_btl - estimated bottleneck bandwidth
BW_ratio (#bits sent to cloud in the last 10s) /

∫
BW_btl over the last 10s

BW_ratio_5 (#bits sent to cloud over last 5 AP) /
∫

BW_btl over last 5 AP
BW_ratio_10 (#bits sent to cloud over last 10 AP) /

∫
BW_btl over last 5 AP

buffer_size Fraction of the packet queue filled with AP

Table 1: State variables used by ACCIO . The first four states
capture LoRa characteristics and the rest capture the network.∫

BW_btl is computed as a Riemann sum over time period.

estimated bandwidth and the current fraction of the packet
buffer that is filled. The state variables based on the signal
characteristics include the normalized packet length, the ratio
of signal-to-noise magnitude in the time domain, and a his-
togram of the peak-gain values of the active period. The full
list of states with a description is given in Table 1.
Reward Function. A well-designed reward function is a cru-
cial part of the RL design. As discussed earlier, the goal of
ACCIO is to compress the LoRa signals in the active peri-
ods such that it maximizes the number of packets correctly
decoded, while also meeting the bandwidth and latency con-
straints. We design the reward function as a sum of four terms:
i) a positive reward term udec(s,a) that is a weighted count
of the number of packets decoded correctly (Fig. 5 a); ii) a
negative penalty term uband(s,a) that strongly discourages the
bandwidth utilized from getting very close to the available
bandwidth (Fig. 5 b); iii) a negative penalty term ulat(s,a)
that strongly discourages the overall latency (from client-side
processing and network delays) from getting very close to
a preset limit (e.g., 2 seconds) (Fig. 5 c); and iv) a strong
negative penalty uover(s,a) (equal to −10) that prevents the
packet queue from filling up close to its limit (dictated by the
hardware). The last penalty term uover(s,a) is applied preemp-
tively at the client side whenever an action of the RL agent
could potentially lead to a transmission that will cause buffer
overflow and/or exceed the acceptable transmission time. The
overall reward function is given by,

r(s,a) = udec(s,a) − uband(s,a) − ulat(s,a) − uover(s,a),

The reward terms are discussed formally in Appen. C. De-
tails of our PPO implementation is given in Sec. 4, and more
background on the PPO algorithm is given in Appen. D.
False Positives & Reward Feedback. The cloud server does

1964 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

not know the ground truth about LoRa packets, i.e., a trans-
mitted active period could just be noise (false positive). More-
over, in a low-duty-cycle network, the cloud receiver may
decode only a small number of packets relative to the total
number of active periods. Therefore, the RL agent could learn
to compress more since there is a higher chance of incurring
penalties from overshooting BW and/or latency limits, while
the positive rewards for decoding the occasional packets are
small. This could drastically increase the overall learning time
necessary for the RL to reach an optimal policy. To address
this, in the reward term udec(s,a), we weight the number of
packets decoded by the inverse of the true positive rate, which
is estimated as the fraction of LoRa packets decoded correctly
over the last 100 detected active periods.

3.3 CRAN Cloud Server
The active LoRa signals compressed using ACCIO are
streamed to the cloud server using a reliable TCP connec-
tion. Each compressed active period is packetized with meta-
data such as gateway ID, time-stamp at the gateway, length
of the active period, sampling rate, channel number, number
of DWT levels, among others. The cloud server in our archi-
tecture receives the packet, reads the metadata, and performs
inverse DWT to reconstruct the signal. It is then input to user-
defined LoRa receivers, implemented as Docker containers in
the cloud. We separate the LoRa demodulator and decoder so
that a custom LoRa demodulator can be deployed by simply
updating the demodulator, while retaining the rest of the cloud
implementation. The number of decoded packets is sent back
to the CRAN gateway as a reward (component) to ACCIO ,
which then uses the reward to update its RL policy.

Two key objectives of our cloud-server design are i) scal-
ability and ii) ease of deployment of user-defined LoRa re-
ceivers. To address scalability, we deploy parallel Docker
containers per consumer. As the network scales, the cloud
server increases the number of consumers to keep up. To
facilitate user-defined LoRa receivers, we include a multi-
plexer that receives compressed signals and routes them to
consumer containers based on their metadata. The link be-
tween the multiplexer and the consumers is simply a set of
sockets, where each consumer listens on a unique port. The
consumer is unaware of the compression and reconstruction.
A configuration file maintains the global mappings of the
(base-station, channel) pairs to ports. Note that users can map
multiple base stations to the same ports to easily apply coher-
ent combining such as Charm [6] atop our implementation.
Each Cloud-LoRa packet contains time-stamps for coarse
time synchronization between the base stations.

4 Implementation

We describe in detail our end-to-end implementation of the
three components of Cloud-LoRa : 1) SDR as CRAN gateway

2) ACCIO , the RL-based compression, 3) the cloud server.
CRAN Gateway - Activity Detection. We use a USRP
B200 [43] as the CRAN gateway to capture a 2 MHz spec-
trum that includes 8 LoRa channels (125 kHz bandwidth and
75 kHz guard band, as per LoRaWAN specs). Channelization
is performed using eight parallel 4th-order elliptical low-pass
filters. Each filtered channel is input to the activity detection
module implemented using Python. We use superDClow and
superDChigh to detect active periods of SF7 to SF9 and SF10
to SF12 respectively. We advance the superDC windows ev-
ery 1/3-rd of the lengths of respective window samples, to
ensure alignment with higher SFs.
CRAN Gateway - ACCIO The adaptive compression of
ACCIO is implemented on a client laptop. On detecting ac-
tive periods in each channel, the corresponding I/Q samples
are pushed to the Application Packet Queue. The RL agent
pops the oldest active period and extracts the state variables
from the current network and the active period’s coefficients.
Table 1 lists the state variables used by the RL agent.

The RL agent was trained using the PPO algorithm [42],
whose implementation is provided in the Keras and Tensor-
Flow libraries [44]. Both the policy function and the value (or
advantage) function in our PPO-based agent are realized using
a fully-connected neural network with two hidden layers of
sizes 48 and 32 respectively. This small network enables light-
weight training and action determination, while maintaining
sufficient complexity for complex approximations. The out-
put layer of the policy network uses the Softmax activation
to return probabilities over the set of actions. We set the dis-
count factor of the cumulative rewards to γ = 0.9. We use
the variant of PPO with a clipped objective, and set the clip
ratio ε to 0.2. Optimization is based on the stochastic gradient
descent method Adam [45], whose learning rate for the policy
network and value-estimation network are set respectively
to 0.00025 and 0.009. The episode length was defined as 50
active periods, i.e., the agent performs online training, and
after every 50 active periods, rewards are returned from the
server. To maintain strict reward ordering, each active period
(once popped from the application packet queue) is given an
ID counter. The active period statistics are then cached and
re-ordered after the decoding information is returned. As our
implementation is run online, this re-ordering and training
process runs in a background daemon.

The RL agent chooses an action that determines the com-
pression threshold Cthresh, and DWT coefficients with mag-
nitude < Cthresh are set to zero. We further compress the
DWT coefficients using Lz4 (preferred over Gzip due to its
faster compression). The compressed coefficients are packe-
tized with metadata and sent through TCP to the cloud server.
Packet metadata includes the SDR gateway’s ID, the active
period’s ID, the channel it was received on, sampling rate,
time the active period was received at the client, as well as
other useful information such as the data-section size and its

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1965

(a) (b)
Fig. 6: (a) RURAL : Outdoor rural deployment where LoRa Tx (yellow circles) transmit to a USRP B200 (red triangle), which is

then connected to a client running ACCIO that streams to Azure server through cellular hotspot in real-time.
(b) URBAN : LoRa Tx transmit to a USRP which stores the received samples in a local file.

DWT level sizes (needed for Inverse DWT).
We utilize BBR as the TCP variant; it provides the esti-

mated network bandwidth to the client. We use the socket
statistics tool to obtain the bottleneck bandwidth, delivery
rate estimated by BBR, and the link’s average round-trip time.
The bottleneck bandwidth is a key state used by the RL agent
to determine a compression threshold.
LoRa receiver at the Cloud Server. The cloud server is im-
plemented in Microsoft Azure as Docker Containers [46],
demodulating packets and sending rewards back in real-
time(Cloud-LoRa is amenable to deployment on other cloud
providers as well.) Our server utilized 8 Docker containers,
each reading on unique ports corresponding to each LoRa
channel. The Docker containers were booted using Docker
Compose [47] and each container was running on an Azure
VM. The first module of the cloud server is a multiplexer that
decompresses the received samples: it first performs the in-
verse of Lz4, reads the metadata, and then decompresses using
Inverse DWT. Using the metadata, the multiplexer routes the
decompressed DWT coefficients to the corresponding user-
defined consumer (demodulator). In other words, the multi-
plexer is responsible for reconstructing the active periods and
placing them in the queue of the appropriate consumer based
on the metadata of the received TCP packets. The consumers
are Docker containers that take the reconstructed active period
samples as input, and run the user-defined LoRa demodulator
algorithm that outputs symbols, followed by the LoRa de-
coder that outputs bits. The number of packets decoded per
active period, weighted by the inverse-true-positive-rate is
used by the RL agent as a reward component in the feedback
channel back to the corresponding CRAN gateway.

5 Evaluation

We have deployed the first LoRa CRAN operating in real-
time, in two practical outdoor deployments/scenarios. In RU-
RAL(Fig 6(a)), we deployed eight LoRa transmitters in an
agricultural farm. Here, we use a cellular backhaul, whose
bandwidth varies with time; the backhaul bandwidth is the
bottleneck in the network. We show the real-time operation
of Cloud-LoRa in this scenario averaged across multiple days.

URBAN(Fig 6(b)) shows an urban deployment where the
backhaul does not pose a limitation in bandwidth. We leverage
this scenario to perform controlled experiments, evaluate the
micro-benchmarks and perform an ablation study. Towards
evaluating Cloud-LoRa , we answer the following questions.

1. How well does Cloud-LoRa perform in rural settings with
impoverished cellular backhaul?

2. Can Cloud-LoRa enable real-time joint decoding of LoRa
packets from multiple gateways in the cloud to improve
coverage or capacity?

3. Can Cloud-LoRa enable rapid deployment of recently de-
veloped state-of-the-art LoRa demodulators?

4. Can Cloud-LoRa scale elastically to provision for network
capacity by increasing the number of channels?

5. How does ACCIO adapt in real-time to changing backhaul
bandwidth, network latency, and channel quality?

6. How does ACCIO’s adaptive compression respond to vary-
ing backhaul network latency, and how well does it adapt
to bandwidth variations?

5.1 Real-world Deployment Settings
We describe our rural and urban deployments in detail below.
RURAL : Rural deployment scenario. As shown in
Fig. 6(a), our deployment includes 8 LoRa transmitters (yel-
low circles) that broadcast data from humidity sensors to
a CRAN gateway (red triangle). Each transmitter operates
in a dedicated 125 kHz BW LoRa channel and chooses a
random SF and packet length to emulate rate adaptation in
LoRaWAN networks while actively transmits 10% of the time.
Our CRAN gateway receives over 902.2 MHz to 904.2 MHz
and receives samples over 8 different LoRa channels one for
each transmitter. It uses a Netgear cellular mobile hotspot
as backhaul to a CRAN cloud server in Microsoft Azure
(Fig. 6(a)). The backhaul bandwidths achieved by the cellu-
lar hotspot varied over a wide range: 1 Mbps to 15 Mbps at
different locations and times. As shown in Fig. 6(a), Cloud-
LoRa streams samples to the cloud server in real-time, using
ACCIO to learn and adapt to the varying available bandwidth.
The transmitters were left in the field over 2 days with a total
of ≈470000 packets transmitted. The CRAN gateway did not

1966 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Fig. 7: (a) : Cloud-LoRa throughput performance across 8 parallel LoRa channels, averaged over multiple days in RURAL
scenario. (b) Corresponding compression performance. (c) Ablation study on Compression.

have any pre-trained model for ACCIO to use; instead, the
RL agent learned from scratch and adapted in real-time.
URBAN: Urban deployment used for Ablation Study. We
deploy 9 off-the-shelf LoRa transmitters, each operating in a
different channel in an urban, outdoor setting (Figure 6(b)).
The transmitters were deployed over an area of 2.5 km x 1 km.
The CRAN gateway receives the samples from all the trans-
mitter over a wide bandwidth and stores them locally with
time stamps to enable replay. The stored samples are then
replayed in real-time to the cloud server to emulate real-time
streaming. We connect the USRP to the cloud server via a
router. This activity is to ensure consistency across multiple
microbenchmark experiments that run with different param-
eters. This setup allows us to simulate different backhaul
bandwidths and latencies to the cloud by using Linux Traffic
Control (TC) [48] at the router, a tool for shaping traffic. We
perform controlled, comparative, and ablation studies using
this deployment by varying various factors such as backhaul
bandwidths(Sec. 5.6), LoRa channel quality(Sec. 5.7), net-
work load(Sec. 5.5), backhaul latency(Sec. 5.7), and others.
Backhaul Compression Baselines compared. We imple-
ment and compare the compression and throughput perfor-
mance of Cloud-LoRa against five baselines: 1) Standard
LoRa – a LoRa gateway that demodulates each packet at the
gateway i.e., without CRAN; 2) CRAN with No compres-
sion; 3) Nephalai [19], which proposes a compressed-sensing-
based static compression; 4) SparSDR [24] – a sparsity-aware
compression which is agnostic to the PHY-layer technology;
and 5) Rate-limiting Oracle. This oracle provides a theoreti-
cal upper bound on the throughput and compression perfor-
mance. We assume that the oracle has a global view of the
incoming traffic and bottleneck bandwidth, is not limited by
computational resources, performs perfect activity detection
with zero false positives and, is able to compress the active
periods exactly to meet the available bandwidth.

5.2 Performance in a Rural, Bandwidth-
Constrained Deployment

In RURAL we repeated the deployment over three separate
8hr sessions. In each session, the cellular hotspot was placed at

roughly the same location (within a 2m radius). Despite using
roughly the same location for the hotspot, we found signifi-
cant variation in the backhaul bandwidth ranges in these three
sessions. Arranging the sessions in increasing average back-
haul bandwidth, the ranges were 1.7-2.7Mbps, 5-6Mbps and
10-16Mbps. The distribution of the received SNR collected
over all 24hrs from all the transmitters (≈470000 packets)
are shown in Fig. 8. As seen from Fig. 8, there is a wide vari-
ation in received SNRs at the gateway from -15dB to 30dB.
ACCIO continuously learns and adapts its compression to
meet the available cellular backhaul bandwidths (Fig. 6(a))
and simultaneously streams 8 channels. We plot the average
LoRa throughput over all 8 channels (bits/second) achieved
by Cloud-LoRa in Fig. 7(a) for the three different sessions.
We also compare the achieved average network throughput of
Cloud-LoRa with Nephalai, SparSDR, and Rate-limiting Ora-
cle. The maximum achievable throughput with compression
is upper bounded by the rate-limiting oracle. We observe that
the throughput of Cloud-LoRa approaches that of the oracle
at higher backhaul bandwidths of 10-16 Mbps, while achiev-
ing ≈ 96% of that of the Oracle even at 2Mbps backhaul
badwidths. Further, Cloud-LoRa is able to use its adaptive
compression effectively and significantly outperforms other
LoRa compression solutions such as Nephalai by 7x and 6.2x,
and SparSDR by 2.3x and 1.9x (on average).

In Fig. 7(b), we plot the compression score, defined as (#
samples streamed to the cloud) / (# samples captured by
the CRAN gateway), for the same backhaul bandwidths. We
observe that Cloud-LoRa has a higher compression score of
98.4% at 1.7 to 2.7 Mbps, while a lower compression of 94%
at 10 to 16 Mbps, i.e., it compresses more at low backhaul
bandwidths. On the other hand, Nephalai and SparSDR adopt
static compression and hence face packet losses when the
compression does not meet the backhaul bandwidth. The
most appropriate compression necessary using CRAN is that
of the Oracle, as it has a global view; Cloud-LoRa is within
98.5% of the oracle’s comrpession score on average.

Two key reasons for the improved throughput performance
of Cloud-LoRa over existing approaches are i) sub-noise activ-
ity detection and ii) adaptive compression. The contribution
of each of these modules to the overall compression is shown
in Fig. 7(c). On average, the activity detection achieves a

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1967

Fig. 8: Distribution of the received SNR
at the Gateway in RURAL

Fig. 9: SNR Gains from Joint
Multi-Gateway Packet Decoding

Fig. 10: Throughput Improvements due
to Rapid Deployment of state-of-the-art

compression score of 63% in our setting by distinguishing
active LoRa transmission from noise samples. The remaining
compression is achieved by ACCIO , which varies the com-
pression threshold of the active period to meet the backhaul
bandwidth. While the compression score achieved by the ac-
tivity detection block does not change with backhaul or LoRa
signal characteristics, that of ACCIO changes with backhaul
bandwidth, as evident in Fig. 7(c).

5.3 Joint Multi-Gateway Packet Decoding
Cloud-LoRa offers centralization, which is key to jointly pro-
cess raw radio signals across multiple gateways such that the
SNR of weak LoRa links could be enhanced through coherent
combining with relatively stronger links. In this section, we
deploy Charm [6] using Cloud-LoRa using 3 Cloud-LoRa
gateways deployed on the floor of a large building spanning
over 100m × 50m along with a LoRa transmitter transmitting
packets. On detecting activity, the gateways would attach a
time stamp, gateway ID and relay the samples to the cloud.
In the cloud, we deploy Charm which coherently combines
samples from the 3 gateways based on time stamps and pack-
et/gateway IDs and decodes 100% packets. In Fig. 9, we plot
the CDF of packet SNR received across 3 USRP gateways
streaming samples. Jointly decoded packets achieve a mean
SNR of 16dB, a 6dB improvement from even the stronger
links, i.e. Gateways 1 and 3. This SNR boost almost doubles
the coverage area. At each gateway, ACCIO achieves 93%
compression. We also plot the network throughput achieved
by joint decoding when each gateway faces varying backhaul
bandwidths. These results are in Appendix E.

5.4 Rapid Deployment of state-of-the-art
Another key advantage of LoRa CRAN is the rapid deploy-
ment of novel PHY techniques to practice. In this section, we
evaluate a state-of-the-art LoRa receiver in the cloud server,
i.e. Concurrent Interference Cancellation (CIC) [12] pub-
lished as recently as 2021 using Cloud-LoRa . CIC improves
LoRa network throughput by decoding multi-packet colli-
sions. In Fig. 10, we plot the network throughput with CIC
as the demodulator in the cloud and compare it against Std.

LoRa in the cloud. We increase the number of concurrent
nodes (same SF and BW) in a single channel in the x-axis
and stream the samples to the cloud, where CIC is used as
the demodulator. Cloud-LoRa was capable of transporting the
samples in real-time for CIC to demodulate. Hence, the net-
work throughput shows an improvement of 1.9x over standard
LoRa when 7 nodes are colliding. The throughput begins to
drop beyond 7, the maximum collisions CIC can resolve.

5.5 Elastic Scaling to Multiple Channels
Cloud-LoRa allows for scaling to provision for higher ca-

pacity by increasing the number of channels from single to
multiple channels without any hardware change. However, as
the number of channels increases, the volume of samples in-
creases. With limited backhaul bandwidths, such an increase
in samples demands higher compression. In this section, we
answer the question of how well ACCIO adapts to an increas-
ing number of channels for a given bottleneck bandwidth. We
plot the number of packets decoded in the cloud at 10 Mbps
bottleneck bandwidth for increasing number of channels in
Fig. 11. When only one channel has active LoRa signals,
a 10Mbps backhaul can support low compression. As the
number of active channels increases, the load and hence the
number of samples increases. At 10 Mbps bandwidth, a static
compression of 50% for Nephalai is best suited for up to 2
channels since packet losses due to compression would be the
bottleneck in this case. With 4 or more channels, Nephalai-75
is better suited since packet losses due to network congestion
would dominate. ACCIO on the other hand adapts its com-
pression to meet the bandwidth, despite the increase in traffic
load. Cloud-LoRa ’s network throughput increases linearly
by an order of magnitude as the number of channels increases
from 1 to 8. Cloud-LoRa decodes about 2X and 4X more
packets than Nephalai-75 and Nephalai-50 respectively for 4
channels, and 12X and 20X for 8 channels.

5.6 Varying Backhaul Conditions
Bandwidth-Aware ACCIO In the practical deployment, we
have witnessed the adaptation of Cloud-LoRa ’s compression
performance to different backhaul conditions. However, due

1968 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Fig. 11: Elastic Scaling to Multiple
Channels - Throughput Vs # of channels

Fig. 12: ACCIO Adaption to Varying
Backhaul Bandwidths

Fig. 13: ACCIO Adaption to Varying
Backhaul Latency

(a) (b) (c)
Fig. 14: ACCIO adaptation to varying LoRa Channel Quality

(a) Low SNR (-20 to -5 dB) (b) Medium SNR (-5 to 10 dB) (c) High SNR (10 to 25 dB) LoRa signals.

to the uncontrolled cellular backhaul, it is challenging to ob-
serve its time to learn and adapt. In this section, we study the
adaptation of Cloud-LoRa to varying backhaul bandwidths
in a controlled setting. Using the I/Q samples collected and
stored at the CRAN gateway in the outdoor RURAL, we re-
play the real-time streaming of samples to a cloud server
i.e., the gateway streams samples stored in a file to the cloud
server, where the samples are decoded, which are then used
as rewards by ACCIO at the gateway. During this replay, we
control the backhaul bandwidths using Linux-TC. We vary
the backhaul bandwidths every 0.5 hours, as shown by the
dotted orange line in Fig. 12, from 5 Mbps down to 1 Mbps,
and back to 5 Mbps, and then 1 Mbps in steps of 2 Mbps
every 0.5 hours. During the first ramp down, LoRa through-
put drops and then ramps up every time backhaul bandwidth
changes. This is because, in the first 1.5 hours, the ACCIO
module at the gateway is untrained i.e., it has not faced the
new backhaul conditions before, and hence takes time to learn
a new policy at the gateway. Once it learns the policy, the
throughput flattens. This is evident from the dip in throughput
(blue curve) at 0, 0.5, and 1 hour mark in Fig. 12. The RL
agent takes approximately 10 minutes to learn a new policy
when it faces a new backhaul bandwidth. After the 1.5 hour
mark, when the backhaul bandwidth ramps up to 5 Mbps,
LoRa throughput approaches the steady state quickly at 1.5,
2, 2.3, and 3 hour marks as the RL agent has learned a policy
for these backhaul bandwidths in the first 1.5 hours. The adap-
tation time of Cloud-LoRa to varying backhaul conditions
therefore depends on the historical data.

Latency-Aware ACCIO Figure 13 plots the queueing delay
at the SDR gateway for three networks with different network
latencies. In each of these networks, the application latency
requirement is designed to be 2 seconds. Therefore, the RL
agent learns to drop packets at the client and/or compress
more when the network latency is high such that the overall
latency is below 2 seconds. In the case of networks with low
latency, the RL agent tolerates more queueing delay at the
client, allowing it to send more packets.

5.7 Varying LoRa Channel Quality
Compression depends on the SNR of the LoRa samples at

CRAN gateway. We evaluate the throughput and compres-
sion performance of ACCIO as a function of SNR at different
backhaul bandwidths in Figure 14. The corresponding com-
pression performance are presented in Appen. E. Figure 14
(a), (b), (c) correspond to SNR : low (-20 to -5 dB), medium
(-5 to 10 dB), and high (10 to 25 dB) respectively. At SNR <
0 dB, Nephalai decodes less than 5% of the packets even at
50% compression (Nephalai-50). This is due to its inability
to differentiate between noise and active LoRa signal. Cloud-
LoRa improves network throughput by over 20X compared to
Nephalai at low backhaul bandwidths. Cloud-LoRa’s through-
put performance is limited by the false positive rate of the
activity detection, which results in a higher volume of active
LoRa samples to be transported. At a backhaul bandwidth of 1
Mbps, the RL agent chooses compression scores of over 99%
to meet the backhaul constraints (see Fig. 19 in Appendix),

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1969

Fig. 15: Activity detection performance

resulting in poor reconstruction in the cloud. As the backhaul
bandwidth increases, the achievable throughput improves to
over 70% of that of a standard gateway. The network through-
put of Cloud-LoRa for Medium SNR signals (green bars in
Fig. 14(b)) is about 90% at 1 Mbps backhaul with a compres-
sion score of approximately 91%. Nephalai fails to decode
more than 10% at 1 Mbps; this can be attributed to the lack
of activity detection in Nephalai which leads to redundant
samples taking up available bandwidth.

Lossless compression such as Lz4-0 and Gzip9 offers bet-
ter decodability than ACCIO at bandwidths >= 5Mbps. As
the bandwidth decreases, Lz4-0 faces over 50% packet loss
due to network losses, similar to Nephalai-50. While Gzip9
achieves 75% compression and has lower packet loss even at
low bandwidths, it is too slow to use for real time compression.
Even at a backhaul bandwidth of over 5 Mbps, Nephalai-50%
compression decodes only about 50% of the packets, while
Cloud-LoRa decodes more than 95% of the packets with an
impressive compression of over 91%. For high SNRs ACCIO
transports over 95% of packets (Fig. 14(c)) to the cloud with
an average compression score of 98%.

5.8 Activity Detection of Cloud-LoRa
We evaluate the tradeoff between the sensitivity to low SNR
and false positive rate in detecting active LoRa packets of our
proposed activity detection algorithm. The proposed multi-
channel, sub-noise LoRa activity detection is agnostic to the
transmitters’ SF. Therefore, the sensitivity of the module de-
termines the minimum SNR that can be detected. We plot the
percentage of true active periods and false positives as a func-
tion of SNR in Figure 15. The two y-axes presented are true
positives, the percentage of active periods correctly detected,
normalized to that of a standard LoRa gateway (blue bars),
and the percentage of active periods that were detected but did
not contain a packet (false positives), normalized to the total
samples received (red bars). Each bar represents a different
sensitivity used by the activity detection module. A higher
sensitivity results in detecting more packets even at lower
SNRs at the cost of higher false positives. As SNR increases,
the true positive does not vary with the threshold, as the sig-
nal energy is high. However, false positives increase with

increased sensitivity, even at high SNR. Therefore, the right
choice of the threshold is particularly critical in detecting the
most active period at low SNRs, without trading off too many
false positives. Cloud-LoRa settings that detect over 80% of
the packets (Cloud-LoRa -2.25x) only result in 40% false pos-
itives, which is further compressed by RL. We observe that,
combined with the RL compression, the volume of non-active
samples transported to the cloud by Cloud-LoRa is minimal.
In contrast, SparSDR incurs more than 90% overheads to
accommodate near-zero dB SNR.

6 Discussions and Future Work

To the best of our knowledge, Cloud-LoRa is the first end-
to-end practically deployable LoRa CRAN. There are plenty
of promising future research directions emerging from this
framework. In Cloud-LoRa , we spawn a new process for
each channel and stream upto 9 channels in real-time. We can
scale to the maximum 64 channels using a NUC with more
cores, and a more efficient software implementation. Beyond
standard LoRa, recent research such as CurvingLoRa [49] and
Falcon [16] that changes the transmitter requires further study
to understand the impact of compression on packet decod-
ability. Further research is needed to incorporate performance
guarantees such as throughput fairness across channels.

7 Conclusions

We proposed, designed, and implemented Cloud-LoRa , the
first practical CRAN for LoRa networks. Cloud-LoRa streams
LoRa signals to a cloud server that performs baseband signal
processing, in turn providing opportunities for dynamic net-
work scaling and rapid deployment of novel LoRa receivers in
the cloud. Towards realizing this end-to-end framework, we
developed an activity detection algorithm that can detect sub-
noise active LoRa signals and reduce signals being streamed
to the cloud. We also developed ACCIO, an RL-based adap-
tive compression technique, whose compression threshold
adapts to variations in backhaul bandwidth, latency require-
ments, and input-signal characteristics at the gateway in real-
time. We implement and deploy Cloud-LoRa as a Docker
container in an Azure server, and experimentally show the
feasibility of CRAN for real-world LoRa deployments.

8 Acknowledgements

We would like to thank our shepherd Kate Lin and the anony-
mous reviewers for the valuable comments and for helping
us improve the paper. The authors are partially supported
through the following NSF grants : CCSS-2034415, CNS-
2142978, 2213688, 1838733, 2112562, 1719336, 1647152,
1629833, 2107060, 2212688, and 2003129 and the US De-
partment of Commerce award 70NANB21H043.

1970 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] LoRa. https://www.semtech.com/lora.

[2] E. Asimakopoulou and N. Bessis. Buildings and crowds:
Forming smart cities for more effective disaster man-
agement. In 2011 Fifth International Conference on
Innovative Mobile and Internet Services in Ubiquitous
Computing, pages 229–234, 2011.

[3] María V Moreno, Miguel A Zamora, and Antonio F
Skarmeta. User-centric smart buildings for energy sus-
tainable smart cities. Transactions on emerging telecom-
munications technologies, 25(1):41–55, 2014.

[4] Achim Walter, Robert Finger, Robert Huber, and Nina
Buchmann. Opinion: Smart farming is key to developing
sustainable agriculture. Proceedings of the National
Academy of Sciences, 114(24):6148–6150, 2017.

[5] Climate Smart Agriculture. https://www.worldbank.
org/en/topic/climate-smart-agriculture.

[6] Adwait Dongare, Revathy Narayanan, Akshay Gadre,
Anh Luong, Artur Balanuta, Swarun Kumar, Bob Ian-
nucci, and Anthony Rowe. Charm: exploiting geograph-
ical diversity through coherent combining in low-power
wide-area networks. In 2018 17th ACM/IEEE Interna-
tional Conference on Information Processing in Sensor
Networks (IPSN), pages 60–71. IEEE, 2018.

[7] Artur Balanuta, Nuno Pereira, Swarun Kumar, and An-
thony Rowe. A cloud-optimized link layer for low-
power wide-area networks. In Proceedings of the 18th
International Conference on Mobile Systems, Applica-
tions, and Services, pages 247–259, 2020.

[8] Branden Ghena, Joshua Adkins, Longfei Shangguan,
Kyle Jamieson, Philip Levis, and Prabal Dutta. Chal-
lenge: Unlicensed lpwans are not yet the path to ubiqui-
tous connectivity. In The 25th Annual International Con-
ference on Mobile Computing and Networking, pages
1–12, 2019.

[9] Xianjin Xia, Yuanqing Zheng, and Tao Gu. Ftrack: Par-
allel decoding for lora transmissions. In Proceedings of
the 17th Conference on Embedded Networked Sensor
Systems, pages 192–204, 2019.

[10] Shuai Tong, Jiliang Wang, and Yunhao Liu. Combating
packet collisions using non-stationary signal scaling in
lpwans. In Proceedings of the 18th International Con-
ference on Mobile Systems, Applications, and Services,
pages 234–246, 2020.

[11] Rashad Eletreby, Diana Zhang, Swarun Kumar, and Os-
man Yağan. Empowering low-power wide area networks
in urban settings. In Proceedings of the Conference of

the ACM Special Interest Group on Data Communica-
tion, pages 309–321, 2017.

[12] Muhammad Osama Shahid, Millan Philipose, Krishna
Chintalapudi, Suman Banerjee, and Bhuvana Krish-
naswamy. Concurrent interference cancellation: decod-
ing multi-packet collisions in lora. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference, pages 503–
515, 2021.

[13] Chenning Li, Hanqing Guo, Shuai Tong, Xiao Zeng,
Zhichao Cao, Mi Zhang, Qiben Yan, Li Xiao, Jiliang
Wang, and Yunhao Liu. Nelora: Towards ultra-low snr
lora communication with neural-enhanced demodula-
tion. In Proceedings of the 19th ACM Conference on Em-
bedded Networked Sensor Systems, pages 56–68, 2021.

[14] Qian Chen and Jiliang Wang. Aligntrack: Push the
limit of lora collision decoding. In 2021 IEEE 29th
International Conference on Network Protocols (ICNP),
pages 1–11. IEEE, 2021.

[15] Zhenqiang Xu, Pengjin Xie, and Jiliang Wang. Pyramid:
Real-time lora collision decoding with peak tracking. In
IEEE INFOCOM 2021-IEEE Conference on Computer
Communications, pages 1–9. IEEE, 2021.

[16] Shuai Tong, Zilin Shen, Yunhao Liu, and Jiliang Wang.
Combating link dynamics for reliable lora connection
in urban settings. In Proceedings of the 27th Annual
International Conference on Mobile Computing and
Networking, pages 642–655, 2021.

[17] Christophe Delacourt, Patrick Savelli, and Vincent
Savaux. A cloud ran architecture for lora. In Radio
Science Letters, 2020.

[18] Eryk Schiller, Silas Weber, and Burkhard Stiller. De-
sign and evaluation of an sdr-based lora cloud radio
access network. In 2020 16th International Conference
on Wireless and Mobile Computing, Networking and
Communications (WiMob), pages 1–7. IEEE, 2020.

[19] Jun Liu, Weitao Xu, Sanjay Jha, and Wen Hu. Nephalai:
towards lpwan c-ran with physical layer compression.
In Proceedings of the 26th Annual International Con-
ference on Mobile Computing and Networking, pages
1–12, 2020.

[20] FCC Report on Broadband Aceess. https:
//www.fcc.gov/reports-research/
reports/broadband-progress-reports/
2020-broadband-deployment-report.

[21] Tyler B Mark, Terry W Griffin, and Brian E Whitacre.
The role of wireless broadband connectivity on ‘big
data’and the agricultural industry in the united states
and australia. International Food and Agribusiness Man-
agement Review, 19(1030-2016-83150):43–56, 2016.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1971

https://www.semtech.com/lora
https://www.worldbank.org/en/topic/climate-smart-agriculture
https://www.worldbank.org/en/topic/climate-smart-agriculture
https://www.fcc.gov/reports-research/reports/broadband-progress-reports/2020-broadband-deployment-report
https://www.fcc.gov/reports-research/reports/broadband-progress-reports/2020-broadband-deployment-report
https://www.fcc.gov/reports-research/reports/broadband-progress-reports/2020-broadband-deployment-report
https://www.fcc.gov/reports-research/reports/broadband-progress-reports/2020-broadband-deployment-report

[22] FCC Working Paper on Digital Divide . https://www.
fcc.gov/reports-research/working-papers/
digital-divide-us-mobile-technology-and-speeds.

[23] Amalinda Gamage, Jansen Christian Liando, Chaojie
Gu, Rui Tan, and Mo Li. Lmac: Efficient carrier-sense
multiple access for lora. In Proceedings of the 26th
Annual International Conference on Mobile Computing
and Networking, pages 1–13, 2020.

[24] Moein Khazraee, Yeswanth Guddeti, Sam Crow, Alex C
Snoeren, Kirill Levchenko, Dinesh Bharadia, and Aaron
Schulman. Sparsdr: Sparsity-proportional backhaul and
compute for sdrs. In Proceedings of the 17th Annual In-
ternational Conference on Mobile Systems, Applications,
and Services, pages 391–403, 2019.

[25] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
Congestion-based congestion control. ACM Queue, 14,
September-October:20 – 53, 2016.

[26] LoRa and LoRaWAN. https://
lora-developers.semtech.com/documentation/
tech-papers-and-guides/lora-and-lorawan//.

[27] James E Prieger. The broadband digital divide and the
economic benefits of mobile broadband for rural areas.
Telecommunications Policy, 37(6-7):483–502, 2013.

[28] Christopher Ali. The politics of good enough: Rural
broadband and policy failure in the united states. Inter-
national Journal of Communication, 14:23, 2020.

[29] John Lai and Nicole O Widmar. Revisiting the digital di-
vide in the covid-19 era. Applied economic perspectives
and policy, 43(1):458–464, 2021.

[30] FCC Task Force. www.fcc.gov/
task-force-reviewing-connectivity-and-technology-needs-precision-agriculture-united-states.

[31] Muhammad Iqbal Rochman, Vanlin Sathya, Norlen
Nunez, Damian Fernandez, Monisha Ghosh, Ahmed S
Ibrahim, and William Payne. A comparison study of cel-
lular deployments in chicago and miami using apps on
smartphones. In Proceedings of the 15th ACM Workshop
on Wireless Network Testbeds, Experimental evaluation
& CHaracterization, pages 61–68, 2022.

[32] Yuanjie Li, Chunyi Peng, Zhehui Zhang, Zhaowei Tan,
Haotian Deng, Jinghao Zhao, Qianru Li, Yunqi Guo, Kai
Ling, Boyan Ding, et al. Experience: a five-year retro-
spective of mobileinsight. In Proceedings of the 27th
Annual International Conference on Mobile Computing
and Networking, pages 28–41, 2021.

[33] David L Donoho. Compressed sensing. IEEE Transac-
tions on Information Theory, 52(4):1289–1306, 2006.

[34] Revathy Narayanan, Swarun Kumar, and Siva Ram
Murthy. Cross technology distributed mimo for low
power iot. IEEE Transactions on Mobile Computing,
2020.

[35] Alan V. Oppenheim and Ronald W. Schafer. Discrete-
Time Signal Processing. Prentice Hall Press, USA, 3rd
edition, 2009.

[36] LoRa Modulation Basics. https://www.
frugalprototype.com/wp-content/uploads/
2016/08/an1200.22.pdf.

[37] Stéphane Mallat. A wavelet tour of signal processing.
Elsevier, 1999.

[38] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016.

[39] Richard S Sutton and Andrew G Barto. Reinforcement
Learning: An Introduction. MIT Press, 2018.

[40] Richard S. Sutton, David A. McAllester, Satinder P.
Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation.
In Advances in Neural Information Processing Systems,
pages 1057–1063. The MIT Press, 1999.

[41] John Schulman, Sergey Levine, Pieter Abbeel, Michael
Jordan, and Philipp Moritz. Trust region policy optimiza-
tion. In International Conference on Machine Learning,
pages 1889–1897. PMLR, 2015.

[42] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. CoRR, abs/1707.06347, 2017.

[43] USRP B200. https://www.ettus.com/
all-products/ub200-kit/.

[44] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-
ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan-
delion Mané, Rajat Monga, Sherry Moore, Derek Mur-
ray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[45] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

1972 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 https://www.fcc.gov/reports-research/working-papers/digital-divide-us-mobile-technology-and-speeds
 https://www.fcc.gov/reports-research/working-papers/digital-divide-us-mobile-technology-and-speeds
 https://www.fcc.gov/reports-research/working-papers/digital-divide-us-mobile-technology-and-speeds
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan//
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan//
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan//
www.fcc.gov/task-force-reviewing-connectivity-and-technology-needs-precision-agriculture-united-states
www.fcc.gov/task-force-reviewing-connectivity-and-technology-needs-precision-agriculture-united-states
https://www.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf
https://www.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf
https://www.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf
https://www.ettus.com/all-products/ub200-kit/
https://www.ettus.com/all-products/ub200-kit/

[46] Docker containers on Azure. https://docs.docker.
com/cloud/aci-integration/.

[47] Docker Compose. https://docs.docker.com/
compose/.

[48] Linux Traffic Control. https://man7.org/linux/
man-pages/man8/tc.8.html.

[49] Chenning Li, Xiuzhen Guo, Longfei Shangguan,
Zhichao Cao, and Kyle Jamieson. {CurvingLoRa} to
boost {LoRa} network throughput via concurrent trans-
mission. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
879–895, 2022.

[50] Richard S. Sutton and Andrew G. Barto. Reinforcement
learning: An introduction. IEEE Transactions on Neural
Networks, 9(5):1054–1054, 1998.

[51] Kai Arulkumaran, Marc Peter Deisenroth, Miles
Brundage, and Anil Anthony Bharath. Deep reinforce-
ment learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26–38, 2017.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1973

https://docs.docker.com/cloud/aci-integration/
https://docs.docker.com/cloud/aci-integration/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html

Appendix

A LoRa Modulation and Demodulation

LoRa uses Chirp Spread Spectrum (CSS) as its PHY layer
modulation. In CSS, the instantaneous frequency of the signal
increases linearly with time within a predefined Bandwidth
BW over a symbol duration of Ts as shown by chirp equa-
tion 2. The start frequency fsym of the data chirp S(t, fsym)
encodes the data to be transmitted. The slope of the datachirp
in frequency-time plot as shown in Fig.16 denotes the Spread-
ing Factor SF which in turn determines the symbol duration
Ts =

2SF

BW , Data Rate and range of operation. Higher SF offers
longer range at the cost of reduced data rate. SF can take
values ∈ {7,8,9,10,11,12} and for increasing SF , symbol
duration doubles. That means an SF8 chirp is twice the length
of an SF7 chirp and an SF12 chirp is 32 times the length of
an SF7 chirp.

C(t) = e
j2π(BW2

2×2SF t− BW
2)t

, 0 ≤ t ≤ Ts (2)

S(t, fsym) =C(t) · e j2π fsymt (3)

Fig. 16: LoRa Demodulation

At the receiver, LoRa demodulation starts by correlating
the received buffer with a preamble (8 base upchirps C(t)) to
determine the start of LoRa packet. The receiver correlates
the buffer with preambles of all possible SFs to reveal the
spreading factor SFx of received packet. It then demodulates
the data by multiplying the data symbols with downchirp of
same SFx as shown in Fig.16. Downchirp is a conjugate of
base upchirp whose frequency decreases linearly with time.
This multiplication is called dechirping and it concentrates
the signal energy into a single frequency which is equal to the
start frequency of the data symbol. Index of the peak in the
FFT of the dechirped signal gives us the demodulated data.

A.1 Chirps of different SF are Pseudo-
orthogonal.

As discussed above, to detect the presence and thus start of
a LoRa packet, receiver correlates the incoming I/Q sam-
ples with base upchirps of all SFs. Once a packet of specific
SF = x is detected, datachirps are then demodulated using
a downchirp of SF = y : x = y. Two chirps (a datachirp and
a downchirp) for which x ̸= y cannot concentrate energy of
the datachirp through dechirping since chirps of unequal SFs

Fig. 17: Pseudo-Orthogonal LoRa chirps

are pseudo-orthogonal. For such cases, dechirping only re-
moves the linear increase in frequency-time trend of the chirps
when the magnitude of frequency-time slope of both chirps
is equal as shown in top plot of Fig.17. It therefore results
in clear peak in the FFT of the dechirped signal. In contrast,
if the two chirps have unequal SF, and therefore different
magnitude of slopes as shown in the middle plot of Fig.17,
dechirping followed by FFT will not concentrate signal en-
ergy into a single peak. Instead, the energy is spread over
multiple frequencies (hence the term pseudo) depending upon
the difference in x and y. Therefore, pseuso-orthogonality of
SF means that chirps of similar SF can only dechirp signals
to a single frequency whereas chirps of unequal SF do not
show this behaviour.

Based on this observation, if we design a downchirp which
is superposition of two downcirps of SF = x & y respectively
and use it to dechirp a datachirp of SF = x, we will obtain
energy concentration due to downchirp of SF = x and will
obtain an increased noise floor due to downchirp of SF = y
as shown in bottom plot of Fig.17.

B Primer on the Discrete Wavelet Transform

Fig. 18: Filter Bank Implementation of DWT

DWT is a multi-resolution time-frequency analysis tool that

1974 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

is widely used in image signal processing. It decomposes the
input signal into a set of mutually orthogonal wavelet basis
functions, that are shifted and scaled versions of a mother
wavelet. With the appropriate choice of the mother wavelet,
DWT provides high time and frequency resolution. Hence,
it is an efficient tool to de-noise and compress signals with
varying frequency content, such as chirp spread spectrum used
by LoRa.

Figure 18(top) shows a k-stage DWT that uses a series of
high-pass (h[n]) and low-pass (g[n]) filter banks to decompose
the signal into coefficients at multiple levels. This filter-bank
implementation of DWT of an input signal of length N has a
complexity of O(N), making it computationally a minimally
intensive operation, and hence enabling compression in real-
time. The DWT coefficients from higher levels of decomposi-
tion provide detailed time information. The coefficients from
lower levels of the DWT provide the more detailed frequency
information. Each DWT coefficient represents the energy of
the received signal corresponding to the frequency (level) and
time (shift).

C Reward Function Shaping

We discuss the specific choice of the reward function used in
our RL algorithm. Recall that the reward function is designed
as follows:

r(s,a) = udec(s,a) − uband(s,a) − ulat(s,a) − uover(s,a).
(4)

The first reward term encourages the RL algorithm to max-
imize the total number of LoRa packets decoded correctly
over an episode of compression, consisting of (potentially)
multiple APs. As discussed in Section 3.2, we would like to
weight the number of packets decoded by the estimated true
positive rate (TPR) in order to account for the false positives
included in the count. Since, the TPR cannot be estimated
exactly due to absence of ground truth about when an ac-
tual LoRa transmission occurs, we estimate the TPR as the
fraction of LoRa packets decoded correctly over the last 100
detected active periods. Suppose Ndec is the number of packets
decoded correctly and P̂t pr is the estimated TPR, then

udec(s,a) =
Ndec

P̂t pr
. (5)

The second term in the reward function uband(s,a) penal-
izes the bandwidth utilized B from getting very close to the
available bandwidth Bmax and is defined as follows:

uband(s,a) =

0, if B

Bmax
∈ [0,α]

0.5α

1−α2 (
B

Bmax
− α), if B

Bmax
∈ [α, 1

α
]

0.5, if B
Bmax

> 1
α
.

(6)

Here α ∈ (0,1) is a constant that determines how close to
the maximum bandwidth we want to start penalizing the RL

algorithm. We set α = 0.9 in our experiments. As shown in
Fig. 5, the graph of uband(s,a) as a function of the bandwidth
ratio (BWR) B/Bmax would be a constant 0 for BWR values
less than α; a straight line ranging from 0 to 0.5 for BWR
values in the interval [α,1/α]; and a constant value of 0.5 for
BWR values larger than 1/α. The idea is that we start giving
as negative reward (penalty) as the BWR approaches 1 and
the penalty increases until the BWR exceeds a value slightly
larger than 1.

The third term in the reward function ulat(s,a) is very sim-
ilar to the second term. We simply replace the BWR with the
ratio of the overall latency Tlat to the maximum latency Tmax,
and it is given below for completeness

ulat(s,a) =

0, if Tlat ∈ [0,α]
0.5α

1−α2 (
Tlat
Tmax

− α), if Tlat
Tmax

∈ [α, 1
α
]

0.5, if Tlat
Tmax

> 1
α
.

(7)

We set Tmax = 0.2 in our experiments. The factor 0.5 is in-
cluded in both the penalty terms in order to balance out the
rewards due to correct packet decoding and the two penalty
terms. We want to avoid giving a higher overall weight to the
penalty terms in order to encourage the RL to focus on its
main goal of accurate packet decoding.

As discussed in Section 3.2, the final penalty term
uover(s,a) is included to preemptively avoid packet buffer
overflow, which could result in dropped packets. It is set to a
constant −10 whenever an action of the RL agent could result
in a packet buffer overflow.

D Background on Reinforcement Learning

Reinforcement learning (RL) is a machine learning paradigm
of sequential decision making where an agent acting in an un-
certain (stochastic) environment learns to perform actions by
interacting with the environment using trial and error (rather
than direct supervision) in a way that it maximizes its cumu-
lative reward [39, 50]. This is a popular setting for learning
when it is hard to obtain supervised data (e.g., labeled inputs)
and the data distribution is non-stationary.

The main component of RL is an agent (e.g., a self-driving
car), which is the decision-making center that acts in an uncer-
tain environment (e.g., a street). At any time step t, the agent
senses the environment and obtains a signal or reading known
as the state st ∈ S ⊆ Rds (e.g., processed sensor inputs from
cameras, Radar, LIDAR etc), which is typically a vector de-
noted in bold. Given the state st , the agent performs an action
at ∈ A (e.g., the steering angle, brake position etc.) that has an
effect on the environment. Here S and A are the state space
and action space respectively. The environment transitions
to a new state st+1 according to its (usually unknown) state-
transition function P(st+1 |st ,at) that governs its dynamics.
This is a conditional probability distribution of the state at
time t+1 given the state and action at time t. The environment

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1975

(a) (b) (c)
Fig. 19: (a-c): Compression performance of Cloud-LoRa in a single channel (a) Low SNR (-20 to -5 dB) (b) Medium SNR (-5

to 10 dB) and (c) High SNR (10 to 25 dB) LoRa signals.

Fig. 20: Throughput performance of Charm with and w/o
Cloud-LoRa

provides feedback to the agent in the form of a reward signal
rt := r(st ,at) ∈ R that informs the agent of how good or bad
its action at was in the state st . Starting from an initial state s0,
this sequence of state observation, action, reward, and state
transition is repeated for a number of time steps, known as an
epsiode or trajectory τ := (s0,a0,r0,s1,a1,r1, · · · ,sT ,aT ,rT).

The agent learns a strategy or policy to perform actions in
different states by repeatedly interacting with the environment
over several episodes, with the goal of maximizing its total
rewards. Formally, the policy π : S ×A 7→ [0,1] of the agent
is a conditional probability distribution over the set of actions
given the state, i.e., π(a |s) := P(At = a |St = s). We define
the discounted return Ut at time t as the discounted cumu-
lative future reward, with a discount factor γ ∈ [0,1], given
by Ut = Rt + γRt+1 + · · · + γT−t RT

4. The discount factor
γ determines the relative importance of the current reward
over future rewards. For a given policy π, the state-value func-
tion Vπ(st) and action-value function Qπ(st ,at) are important
quantities that define the value of a given state or a state-action
pair in terms of the (discounted) cumulative future rewards.
The action-value function captures how good an action at is
while being in state st , and is defined as

Qπ(st ,at) = E[Ut |St = st ,At = at],

where the expectation is over all the future states and actions,
and defined by the policy and the state transition function.
The state-value function (or simply value function) captures

4The state, action, and reward random variables are denoted in uppercase,
taking on specific values denoted in lowercase.

how good a given state is under the policy π, and defined as

Vπ(st) = E[Ut |St = st] = EA∼π(· |st)[Qπ(st ,A)].

The goal of an RL agent is to find an optimal policy that max-
imizes the expected value function ES[Vπ(S)]. It is common
to use the advantage function Aπ(st ,at) = Qπ(st ,at)−Vπ(st),
which captures the excess return (in a state st) obtained by per-
forming action at , compared to the expected return obtained
over all possible actions.

There are many classes of RL methods, and recently deep
learning methods have been adopted to solve the tradition-
ally challenging setting of large and continuous state/action
spaces [51]. We focus on a particular type of on-policy RL
known as Policy Gradient methods [40, 41], whose goal is to
directly learn an optimal policy function that is parameterized
by a neural network. Specifically, we use the Proximal Pol-
icy Optimization (PPO) method with clipped objective [42]
for online training of the RL agent. PPO is widely adopted
as a state-of-the-art online policy-gradient method due to its
better computational and sample efficiency, and stable policy
function updates.

E Supplementary Results

The amount of compression by ACCIO depends on the SNR
of the LoRa samples at CRAN gateway. The compression
performance of ACCIO for varying LoRa channel quality are
presented in Figure 19. Figure 19 (a), (b), (c) correspond to
low SNR (-20 to -5 dB), medium SNR (-5 to 10 dB), and high
SNR (10 to 25 dB) respectively.

In Fig. 20, we plot the network throughput of Charm with
3 USRP gateways streaming samples to the cloud. Charm
coherently combines samples from the 3 gateways and de-
codes the packets. We compare Charm with Cloud-LoRa ,
against Charm on a local machine without any compression
(i.e., Charm without a bottleneck backhaul). It can be noted
that the throughput is unaffected by Cloud-LoRa even at band-
widths as low as 500 kbps, indicating that the compression
did not affect the quality of the LoRa signals, and still allows
Charm to coherently combine signals in the cloud.

1976 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Cloudy with a Chance of Cyberattacks:

Dangling Resources Abuse on Cloud Platforms

Jens Frieß§‡, Tobias Gattermayer§*, Nethanel Gelernter⋆, Haya Schulmann§†, and Michael Waidner§‡*

§National Research Center for Applied Cybersecurity ATHENE
*Fraunhofer Institute for Secure Information Technology SIT

‡Technische Universität Darmstadt ⋆IONIX †Goethe-Universität Frankfurt

Abstract

Recent works showed that it is feasible to hijack resources

on cloud platforms. In such hijacks, attackers can take over

released resources that belong to legitimate organizations. It

was proposed that adversaries could abuse these resources

to carry out attacks against customers of the hijacked ser-

vices, e.g., through malware distribution. However, to date,

no research has confirmed the existence of these attacks.

We identify, for the first time, real-life hijacks of cloud

resources. This yields a number of surprising and important

insights. First, contrary to previous assumption that attackers

primarily target IP addresses, our findings reveal that the type

of resource is not the main consideration in a hijack. Attack-

ers focus on hijacking records that allow them to determine

the resource by entering freetext. The costs and overhead of

hijacking such records are much lower than those of hijacking

IP addresses, which are randomly selected from a large pool.

Second, identifying hijacks poses a substantial challenge.

Monitoring resource changes, e.g., changes in content, is in-

sufficient, since such changes could also be legitimate. Ret-

rospective analysis of digital assets to identify hijacks is also

arduous due to the immense volume of data involved and the

absence of indicators to search for. To address this challenge,

we develop a novel approach that involves analyzing data

from diverse sources to effectively differentiate between mali-

cious and legitimate modifications. Our analysis has revealed

20,904 instances of hijacked resources on popular cloud plat-

forms. While some hijacks are short-lived (up to 15 days), 1
3

persist for more than 65 days.

We study how attackers abuse the hijacked resources and

find that, in contrast to the threats considered in previous work,

the majority of the abuse (75%) is blackhat search engine

optimization. We also find fraudulent certificates and stolen

cookies. We cluster the abuse resources and abuse content to

identify about 1,800 individual attacking infrastructures.

1 Introduction

Digital resources form the fabric of modern societies. They

provide the fundamental platform for digital services and

assets, e.g., for financial services, critical infrastructure, gov-

ernment services. Due to their importance, digital resources

pose a lucrative target for attackers. Therefore securing these

resources and correctly managing them is crucial for the se-

curity of the Internet. Managing resources requires not only

creating and configuring them, but also releasing them cor-

rectly after they are no longer required. Previous work [12]

showed that when organizations release resources of services

that are no longer needed, they often do not purge the infras-

tructure that was set up for them, creating dangling resources.

Dangling records. Previous work [1, 3, 12, 16, 18] stud-

ied the threat introduced by dangling records, i.e., Domain

Name System (DNS) records that point to resources that

were released. The concept of dangling records is related to

dangling pointers in programming, which occur when a vari-

able’s memory is deallocated. Similarly, DNS records become

dangling when domain owners forget to purge the records.

For example: a domain owner does not remove a mapping

foo.com A 1.2.3.4 of service foo.com to a cloud IP address

1.2.3.4 from the authoritative DNS server after the resource

at 1.2.3.4 is discontinued and released. Adversaries, which

succeed in taking over the released resources that are pointed

to by the existing DNS record, can launch attacks against

clients that attempt to access the domain. In our example, if

an adversary can take over 1.2.3.4 it can obtain control over

all the records that point to that IP address, since all requests

to foo.com are sent to the adversary. The attack does not re-

quire any extensive capabilities. All that it requires is some

way of collecting domain names (e.g., via passiveDNS or Cer-

tificate Transparency), checking if the resource is hosted in

the cloud and is reachable, and if not, registering the resource

through an account with the cloud provider.

Research finds multiple dangling records. In 2016 [12]

analyzed dangling records on cloud and other platforms and

the threat that they create for hijacking domains. [12] found

467 dangling records in top 10K Alexa domains and 52 .edu

domains. A follow-up study [3] extended the methodology

of [12] for identifying dangling records on cloud platforms

and identified over 700,000 dangling DNS records. [16] im-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1977

proved the subdomain enumeration of [12] and discovered

exploitable vulnerabilities in 887 domains. [1] studied the

risk of stale NS records finding 628 hijackable domains. Re-

cently [18] developed a hostingChecker, eventually finding

10K vulnerable subdomains. Although dangling records and

their threat have been extensively studied in previous work,

no research has provided evidence that dangling records are

abused for attacks and demonstrated real-life abuses.

We study real-life abuse of dangling records. The most

remarkable result of our work is the first evidence and analysis

of actual, real-life attacks that abuse dangling DNS records.

Detecting real-life abuses is hard. The fundamental challenge

is detecting malicious vs. legitimate changes in resources. We

find that the hijacked resources often do not stand out and

even have valid (yet fraudulent) certificates. Approaches that

look for changes in the infrastructure or in the content do

not work, since changes are often legitimate and happen not

only in abused resources. In addition, the huge data volumes

involved and lack of known indicators make finding abuses

equivalent to looking for a needle in a haystack. We show

that the key to finding real-life abuses is a combination of

longitudinal data analysis from multiple sources with cluster-

ing of changes according to similarities and manual keyword

derivation. Applying this approach we derive indicators which

enable detection of real-life hijacks. Our longitudinal study

of abuses in 12 cloud platforms identified 20904 hijacks that

hosted malicious content. We detect hijacked domains in 219

Top Level Domains (TLDs) and abuses on popular clouds.

Selection of hijacked resources is financially motivated.

Previous work measuring dangling records on cloud plat-

forms looked for released IP addresses that were still pointed

to by DNS records. In our study we surprisingly find no IP

takeovers among real-life abuses of dangling records. The

analysis of the abuse cases in our longitudinal dataset shows

that the selection of resources by attackers is financially moti-

vated: attackers target dangling resources which can be easily

and cost-effectively taken over. These requirements do not

apply to IP addresses on popular cloud platforms. There-

fore, although the threat of IP address take-over considered

in previous work is real, we find that attackers target differ-

ent resources than previously assumed. We characterize the

resources abused by real-life adversaries and explain which

factors make them lucrative targets.

We also show that, surprisingly, the most popular abuse

of the hijacked resources (75%) is blackhat Search Engine

Optimization (SEO), rather than, e.g., malware distribution,

as suggested previously [16].

Definition: hijacks & abuse. We use the term "hijack"

to refer to the appropriation of a (sub)domain name through

the re-registration of a released cloud resource pointed to by

a dangling DNS record. We use the term “abuse" to refer

to the subsequent use of such a resource for malicious pur-

poses, such as blackhat SEO, clickjacking, phishing, etc. Our

definition therefore falls into the type 2 and 3 categories of

DNS abuse, defined by [4], and subsumes their definitions

of “malicious conduct", “abusive activity", “DNS abuse" and

“DNS misuse". We refer to “blackhat SEO” as “SEO", unless

being specifically discussed in the context of regular SEO.

Ethics and notifications. We initiated a notification cam-

paign and already notified more than 300 organizations of the

abuse we found in their resources, which already confirmed

the hijacks. Large-scale vulnerability studies pose risks and

therefore such research, e.g., [2, 5–8, 10, 13, 17], explicitly

takes ethics of scans and collected data into account. Due to

the sensitive nature of our findings we also take extensive

measures to ensure the security of the organizations studied

in this work. In our study and data collection we follow the

ethical guidelines for network measurements [7, 14], which

were also approved by the ethics committee (IRB) in our

organization. By following these guidelines we ensure that

the equipment of target organizations and cloud platforms is

not affected or overloaded, and that the organizations’ private

data is not compromised. In addition, we conducted a privacy

impact assessment with our legal department, which allowed

us to conduct the study. For each organization in our dataset

we send at most two HTTP requests per Fully Qualified Do-

main Name (FQDN) to check an abuse: the first request is for

the page itself, and if we cannot establish an abuse with con-

fidence, we send another request for the sitemap. We repeat

this data collection on a weekly basis.

Contributions. We develop a methodology and use it to

find and analyze real-life abuse of dangling records.

▷ Longitudinal comprehensive dataset. We collect a longi-

tudinal dataset of (sub)domains pointing to deallocated cloud

assets, which started with 1,508,273 records and after three

years grew to 3,101,992 records.

▷ Methodology to detect abuses. We develop the first

methodology that identifies abuse of dangling records. Key to

finding abuses are longitudinal data collection from multiple

sources and a novel analysis methodology. In our dataset we

find 20,904 cases of abused dangling records that belong to

organizations in multiple sectors.

▷ Attackers prefer cheap and easy hijacks. [3] showed it

was possible to take over cloud IP addresses pointed to by

dangling DNS records. We find that adversaries avoid IP ad-

dresses, which are typically randomly allocated from a large

pool, and instead target cheap and easy-to-take-over resources.

▷ Attacker capabilities. We show that the abuse that the

attacker can launch against the clients of the victim domains

is a function of the dangling resource that the attacker takes

over. We develop a model of the attacker capabilities as a

function of the dangling resource, extending [16] which only

focused on the configuration in the legitimate service.

▷ Characterization of abuses. We find that the main abuse

(75%) is SEO. The attackers mostly target domains with es-

tablished reputation to increase the ranking of their malicious

content by search engines. We also identify cookie stealing

attacks, fraudulent certificates and malware distribution - and

1978 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

we analyze these attacks. Overall, we find that the hacking

groups successfully attacked 31% of the Fortune 500 com-

panies and 25.4% of the Global 500 companies, some over

long periods of time. Many of the victim organizations were

abused more than once, with one even suffering abuse across

more than 100 different subdomains.

▷ Methodology to detect vulnerability to cookie theft. We

develop the first method which enables IT staff to automati-

cally and easily check their own (sub)domain setup for vulner-

ability to cookie theft, should one of them be hijacked. Using

this method we perform a large-scale study of top 10K Alexa

domains, finding 65% of domains to be vulnerable to cookie

theft and 23% to theft of authentication cookies.

▷ Characterization of attackers. We develop a methodology

for clustering attackers into groups, using content and meta-

data on the abuse sites and the infrastructure of the attackers.

We identify 1,800 individual attackers infrastructures.

Organization. We review related work in Section 2. In

Section 3.1 we develop a methodology for collecting hijacks.

In Section 4 we characterize hijacked resources and in Sec-

tion 5 analyze the abuse deployed on hijacked resources. In

Section 6 we develop methods to cluster the abuse by attacker

infrastructure and conclude in Section 7.

2 Related Work

The threat of hijacking domains by taking over released

resources, pointed to by dangling (stale) DNS records, was

considered in previous work [3, 12, 16, 18]. The idea is that

the attacker attempts to get assigned a recently released re-

source, therefore taking over the domain which points to that

resource. [12] showed that it was practical for an attacker

to obtain the desired IP address from the cloud pool by re-

peatedly allocating and releasing IP addresses. The authors

scanned cloud IP addresses to find dangling DNS records

from their dataset of domains using Zmap [7] and found hun-

dreds of dangling records on cloud platforms and on top

10K Alexa domains. [3] extended the dataset of [12] and

collected 130M domains that point to IP addresses in cloud

platforms. [3] found that over 700,000 domains point to cloud

IP addresses that were free and hence vulnerable to domain

takeover attacks. [3] also estimated that it would be economi-

cally practical for attackers to obtain a target IP address from

the cloud pool. [16] further improved the subdomain enu-

meration and their analysis of deprovisioned cloud instances

yielded 13,532 potentially vulnerable domains with dangling

records. [1] analyzed dangling NS records and found 628

hijackable domains. Recently, [18] developed an automated

framework for detecting dangling records by reconstructing

DNS resolution chains and found 10K subdomains among the

top 1M Tranco domains with dangling records. Our research

augments the previous work in the following aspects:

Targeted dangling records. While [16] suggested that the

likelihood of a domain being vulnerable is directly related to

the number of subdomains it has, we show that the ease of

taking over the dangling DNS record and the reputation of

the target domain define the likelihood of an attack.

Analysis of the attack surface. To measure the prevalence of

the dangling records previous work sent liveness probes to IP

addresses in cloud IP ranges to determine if the IP addresses

were allocated and in use. [12] checked TCP ports 80 and 443

and TCP/UDP port 53, [3] sent ICMP pings and TCP/UDP

requests to 36 common TCP/UDP ports, and [16] scanned

148 TCP/UDP ports. Records that pointed to IP addresses that

did not respond on any ports were classified as dangling.

Due to virtual hosting, TCP/UDP and ICMP pings do not

accurately reflect the availability of a (web)service. Reaching

a virtually hosted service requires connecting on the applica-

tion layer, rather than the transport layer, in order to traverse

the forwarding logic in the webserver. To illustrate this we

compare ICMP, TCP and HTTP requests using our dataset

of cloud-hosted, hijacked domains. Using ICMP pings we

receive responses from 72% of the domains in the cloud. On

TCP ports 80/443 we receive responses from 93% of the

domains. An HTTP request to the respective FQDN results

in 89% responsive domains. The results indicate that ICMP

pings tend to overestimate unresponsiveness, and therefore

vulnerability of services by around 20%, whereas TCP pings

tend to underestimate by around 4%, compared to HTTP re-

quests to the actual FQDNs. Therefore, to accurately check

domain liveness we download HTML files via HTTP/S from

the services rather than simply probing the ports on the target

servers, therefore capturing the availability of each individual

FQDN, regardless of virtual hosting.

Abuse of dangling records. In contrast to previous work

that measured the prevalence of dangling records, in our work

we identify and analyze real-life abuse of the dangling records.

We analyze the resources that the attackers take over, char-

acterize the target domains and the abuses of the dangling

resources for attacks. Previous work proposed that dangling

records could be exploited for stealing cookies, issuing fraud-

ulent certificates, loading malware or authentication bypass.

In our work we show that the most common abuse of dangling

records is for SEO, which was not considered in prior work.

3 Collection of Abused Resources

In January 2020 we started monitoring 1.5 million cloud

assets in use by large organizations. After a couple of months

we noticed that, after a time period of being inactive, do-

mains of large organizations became active again. However,

all those pages that became active after a period of inactivity,

shared something in common: they had similar error pages,

in different languages, reporting that the website was under

maintenance; an interested reader is referred to Figure 23 in

the Appendix for one such example in English on a Fortune

500 company domain. Further analysis of these domains re-

vealed that behind the web pages with the error messages

were thousands of other pages. In all those cases the hackers

gained control over the domains by taking over abandoned re-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1979

Algorithm 1 Collection of Cloud-pointing FQDNs.

1: function COLLECT_FQDNS(f qdns, cloud_su f f ixes, cloud_IPs)

2: f qdns_to_analyze←{ }

3: for f qdn in f qdns do

4: A_results, CNAME_results← DNS_A_query(f qdn)

5: for CNAME in CNAME_results do

6: if CNAME.ends_with_any(cloud_su f f ixes) then

7: f qdns_to_analyze.add(f qdn)

8: end if

9: end for

10: for IP in A_results do

11: if IP in cloud_IPs then

12: f qdns_to_analyze.add(f qdn)

13: end if

14: end for

15: end for

16: return f qdns_to_analyze

17: end function

sources on cloud platforms. We identified such abuse patterns

in hundreds of domains, belonging to governments, univer-

sities and enterprises worldwide. Periodically adding more

organizations to our list, we were identifying more hijacked

domains. In June 2020 we were already tracking more than

two million domains, over multiple cloud assets, most of them

in Azure and AWS (see Table 2 for full list of asset types). In

this section we describe our three-year data collection method-

ology and the resulting dataset of assets. An overview of this

collection process is shown in the top left (blue) of Figure 25.

This data forms the basis for the analyses, shown in the top

right (green), which are covered in Sections 4, 5 and 6.

3.1 Dataset

Our initial search space contains domains across a number

of sectors: a list of 2M government domains1, Fortune 10002

and Global 500 enterprise domains3, and 1M-top Alexa do-

mains4. We also use a list of 9,933 university domains5. These

domains serve as candidates for finding potential hijacks. We

do not sanitize these further, as inaccessible domains are auto-

matically removed as part of our search methodology. Using

the FarSight passive DNS service, with global sources across

all continents, we also discover all subdomains observed for

these domains. From this initial list of known high-profile

(sub)domains we determine the subset that points to cloud

assets, resulting in a list of 1,508,273 (sub)domains, which

constitutes the dataset we study in this work.

The pseudocode of our methodology is described in

Algorithm 1. We select domains and subdomains that

have a CNAME DNS record referencing an FQDN

with a known cloud suffix (e.g., *.azurewebsites.net,

*.amazonaws.com); we provide a list of the known cloud suf-

fixes relevant for our research in Appendix A.1. For domains

without CNAMEs we check if one of its IPs falls within a sub-

net used for cloud hosting. This is often the case with domains

1.gov filtered from https://domainsproject.org/
2https://fortune.com/analytics/fortune-1000
3https://fortune.com/ranking/global500/
4https://www.kaggle.com/datasets/cheedcheed/top1m
5https://github.com/Hipo/university-domains-list

2020-06
2020-09

2021-01
2021-05

2021-09
2022-01

2022-05
2022-09

2023-01
2023-05

0

1

2

3

m

on
ito

re
d

fq
dn

s

1e6
monitored
hijacked

0

10000

20000

30000

hi

ja
ck

ed
 fq

dn
s

Figure 1: Monitored vs. hijacked cloud-hosted domains over time.

hosted on AWS S3 buckets or dedicated VM servers, which

refer to these servers using A records rather than CNAME.

Subnet information is published by the cloud providers (see

Appendix A.1). By downloading these regulary we ensure

that we are using up-to-date information.

Over the 3 year period, we kept updating the list by con-

suming a commercial feed of FQDNs for the enterprises in

our dataset (in Section 3.1). Within that time, we filtered

through more than 87,000,000 non-NXDOMAIN (i.e., with

at least one DNS record) domains and subdomains, result-

ing in a doubling of our initial list to 3,101,992 monitored

FQDNs. Figure 1 shows this monthly increase of monitored

cloud-hosted FQDNs, overlayed with the cumulative number

of abuses seen until that time. We collected the data and moni-

tored the changes in DNS records and in HTML files for over

3 years.

3.2 Detection of Abused Domains

Finding abuses is hard, hence it is not surprising that so far

no analysis of dangling records has found actual abuses. The

main problem is that changes in DNS records and websites

are often legitimate, and without knowing what malicious

content to look for, finding abuse is virtually impossible. To

determine whether assets were abused, we track changes of

site content. To accomplish this we take regular samples of

each site, downloading the index HTML as well as the sitemap

stored in a database. By comparing these snapshots, including

changes to DNS, HTTP response, sitemap (e.g., size changes

of 100KB), language changes, and keywords, differences can

be detected. The components in our analysis are illustrated in

Appendix, Figure 25).

Signatures. Having identified content changes in groups of

assets within a short time frame, we manually inspect the new

content to ensure no false positives when notifying affected

organizations. We then create signatures by automatically

extracting keywords from the index page and other pages,

as well as sitemap features, JavaScript and other loaded ob-

jects. We validate that these are shared across multiple abuse

pages and finally test these against a large dataset of benign

assets to ensure they do not yield false positives; those that

do are discarded. The benign assets are also assembled from

Alexa websites, Fortune 500 sites and university sites, ensur-

ing cross-sector representation, and verified to not contain

malicious content. Once created, these signatures can be used

1980 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

to detect similar malicious changes on other domains we mon-

itor. Examples of the signatures we create include:

(1) index page includes "Comming soon ..."

//"Comming" is written with a typo instead of "Coming".

(2) index page refers to 3 other pages in a specific

structure; the referred pages are written to create a

new window on each click.

(3) loading a particular "popunder.js" script

(4) sitemap with several thousand pages (> 5 MB);

each page is structured similarly; consistent random name

generation

(5) New sitemap or 100KB increase in sitemap size.

(6) Language change.

(7) Keywords related to content uploaded by the attackers

We validated the changes manually on the abused assets.

Figure 2 shows what percentage of domains in our dataset

match different types of indicators or combinations thereof.

For example, some domains (30.2%) can be identified with

just keywords (such as those shown in Table 5), whereas

others (10.1%) require using keywords as well as attacker

infrastructure-related indicators, such as hyperlinks or scripts

and images loaded from other domains, as differentiating

features. If the required features are present on the site, the

signature matches and the domain is classified as abused.

In our analysis we find that the page contents, i.e., key-

words, are the most telling indicators of abused assets,

whereas infrastructure-related indicators are only useful in

combination with keywords or sitemap features. Looking at

the sitemap and keywords in combination is the most effec-

tive, identifying an additional 36.1% of abused assets in our

dataset, compared to just keywords.

30.2

0
10.3

11.9

36.1
10.1

Keywords

Infrastructure

Sitemap

Figure 2: % of detected hijacks with

extracted signatures by type.

Gambling
 66.7%

Finance
 0.5% Temp Page

 16.0%

Adult
 6.9%

Other
 9.0%

Japanese
 0.8%

Content Classification on Hijacked Domains

Figure 3: Content classification on

hijacked domains.

Keywords. We extracted 56,946 keywords with an average

keyword count of 2.72 to classify index HTML files as abused.

Table 1 shows the top keywords found, with gambling and

adult content as the major sources. Figure 3 shows the full

distribution of topics found based on keywords. We list the

most popular keywords in the Appendix, Figure 29.

Keyword Count # Keyword Count
1 HTML Snippet 4615 2 HTML Snippet 4288
3 HTML Snippet 4199 4 sex 3257
5 daftar (list) 2930 6 porn 2786
7 situs judi (gambling sites) 2611 8 HTML Snippet 2193
9 gacor (hot streak) 2048 10 [j]udi slot online (gambling online) 1892
11 situs slot (slot/gambling sites) 1880 12 slot gacor (hot slot machine) 1564

Table 1: Top 12 keywords for index.html classification.

Abuse dataset. After 3 years of monitoring, we detect

17,698 unique, abused FQDNs (where 1,565 are Second-

Level Domains (SLDs), Figure 5) across 11,924 unique SLDs

1-5000
5001-10000

10001-15000
15001-20000

20001-25000
25001-30000

30001-35000
35001-40000

40001-45000
45001-50000> 50000

HTML file Upload Count

0
1000
2000
3000

Fr
eq

ue
nc

y

Figure 6: HTML Files uploaded to each abused site

and 218 affected TLDs (see Appendix Table 6 for top 12).

These abused domain names point to 15,248 unique CNAMEs

(11,654 unique IP addresses). This dataset forms the basis for

our subsequent analyses. We notified > 300 affected organi-

zations, which confirmed the abuse.

The Tranco list is a research-focused ranking of the top

websites based on their popularity and stability over time [11].

We find 7,049 of 17,698 (39.8%) unique hijacked FQDNs on

SLDs included in the Tranco domain list. On average, every

tranco-ranked SLD has 2 (1.89) hijacked subdomains. The

rank and corresponding unique hijacked subdomain count are

illustrated in Figure 4.

0.0 0.2 0.4 0.6 0.8 1.0
Second Level Domain Popularity Rank (Tranco) 1e6

0

20

40
Un

iq
ue

 H
ija

ck
ed

Su
bd

om
ai

n
Co

un
t

Figure 4: Rank of SLDs and associated hijacked subdomain counts.

0 2500 5000 7500 10000 12500 15000 17500
Count

Hijacked SLDs vs Hijacked Subdomains SLDs Subdomains

Figure 5: Abused second level domains and sub-domains.

Abuse data volume. We collected 54,325 index HTML

files classified as abused content with an average file size

of 52.4kB, some of them for the same assets (with changes

made by the hackers). We also collected 15,482 sitemaps

and analyzed them for the quantity of total malicious HTML

content uploaded. Figure 6 shows a histogram of the number

of HTML files uploaded, grouped into bins of 5,000. The

number of files ranges from 2 to 144,349 HTML files per site,

with the clear majority of sites containing many thousands of

pages. Abusers uploaded a total of nearly 500M (492,489,492)

files with an estimated size of 24TB (25,806,449,380.8kB)

and an average of 31,810 HTML files per site.

Ruling out benign changes. There are cases in which

changes in content can be legitimate, e.g., changes in parked

domains, that display commercial HTML content that changes

collectively over time. To rule out legitimate changes applied

by registrars that manage multiple domains, we analyze in-

formation of the registrars and the owners of the domains.

Specifically, we check that clusters of domains with identical

changes in content, have different owners and registrars.

To do this we aggregate domains into clusters based on the

keywords extracted from their web pages. Identical keyword

lists indicate the same page content. By matching the second-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1981

0 5 10 15 20 25
unique hijacked subdomains

Top 25 Abuses of Tranco Domains
Fortune 500 Technology (5)
F500 Consumer Goods (23)

Online Services (42)
Fortune 1000 Technology (44)

Fortune 500 Technology (70)
Online Services (89)

Global Organization (93)
Fortune 500 Technology (103)
Fortune 500 Technology (108)

Fortune 500 Telecom (134)
Fortune 500 E-Commerce (136)

Global Organization (192)
Fortune 500 Technology (111)

Fortune 500 Media (242)
US University (274)

Global Organization (289)
Fortune 500 Media (329)

US News (338)
Government (363)
EU Telecom (376)

Japanese Internet Services (404)
Fortune 500 Technology (418)
Fortune 500 Technology (437)

EU Publishing (450)
US University (472)

Figure 7: Abuse in top 1M Tranco Domains.

0 10 20 30 40 50
unique hijacked subdomains

Top 25 Abuses of Fortune 500 Domains
 Technology (14)
 Energy (16)
 Energy (19)
 Motor Vehicles & Parts (22)
 Financials (33)
 Health Care (37)
Food, Beverages & Tobacco (38)
 Transportation (39)
 Health Care (40)
 Health Care (43)
 Technology (46)
 Industrials (48)
 Food & Drug Stores (52)
 Aerospace & Defense (58)
 Technology (59)
 Chemicals(64)
 Retailing (75)
 Food & Drug Stores (76)
 Financials (80)
Food, Beverages & Tobacco (81)
 Health Care (83)
 Industrials (102)
 Industrials (105)
 Transportation (113)
 Health Care (122)

Figure 8: Abuse in Fortune 500 companies.

0 2 4 6 8 10 12
unique hijacked subdomains

Top 25 Abuses of University Domains
United States (3)

United Kingdom (4)
United States (10)
United States (13)
United States (18)
United States (20)
United States (22)
United States (32)

 Canada (34)
 United States (39)
United States (44)
United States (50)
United States (52)

 Hong Kong (54)
United States (57)

 Argentina (67)
United States (72)
United States (80)
United States (85)

Sweden (89)
 United States (102)
 United States (108)

 Canada (110)
 United Kingdom (114)

United States (129)

Figure 9: Abuse in QS-ranked universities.

level domains to their respective registrars, we determine the

set of unique registrars for each cluster of domains with the

same content-changes. We then plot the percentage of these

clusters, with at least two domains, by the number of unique

registrars observed. This is shown in Figure 10.

Our analysis yielded that in 89% of the cases, where the

same change is detected on at least 2 domains, these changes

span 2 or more different registrars and owners. In 33% of

cases, the changes occur across domains owned by 4 or more

registrars; see distribution in Figure 10. This result demon-

strates that identical changes in clusters of domains are not

made by the registrars, since the domains typically have dif-

ferent registrars.

1 3 5 7 9 11 13 15 17 19
unique registrars

0

25

50

75

100

%
 a

bu
se

 g
ro

up
s

Figure 10: % abuse clusters (grouped by keywords) spanning ≥ X registrars.

4 Analysis of Abused Resources

We describe resources of organizations that were abused

and identify which cloud platforms host abused resources. To

confirm a hijack we have downloaded and manually examined

malicious content on hijacked domains. The fact that the same

content is seen across unrelated, independent domains and that

the content is unrelated to the topics of these domains provides

an evidence of abuse by a third party. We also analyzed abuse

showing that the content hosted on those hijacked resources

are malicious in Section 5.

4.1 Abused Organisations

Popular domains. Among the abused domains we find

8,432 popular websites from the Tranco list [15] (top 25

shown in Figure 7).

Enterprises. We find abuse in 31% of the Fortune 500

companies2 and 25.4% of the Global 500 companies. Com-

paring these two lists suggests that the attackers focused on

Western countries. The 25 highest-ranking Fortune 500 enter-

prises abused are shown in Figure 8. Many of the companies

were abused more than once, hosting fraudulent content on

more than one subdomain at some point in time. Figure 12

shows that the Industrial, Energy and Motor Vehicle sectors

have the highest volume of hijacks, but overall the abuse is

widespread rather than localized to any one sector.

Universities. We find hijacks of university domains

worldwide5 (top 25 shown in Figure 9). Between May 2020

and 2023 we found 264 abused subdomains in universities

globally. University domains have good reputations and are

therefore a desirable target for promoting fraudulent content.

Azure web application

40%

AWS S3
28%

Azure load balancer

14%

Azure cloudapp

5%
Azure VM

5% AWS Elastic Beanstalk
3% Other
3% Azure CDN2%

Hijacked Cloud Resources

Figure 11: Cloud resources.

Health Care

Industrials
Motor Vehicles & Parts

Financials

Transportation
Food, Bev. &

Tobacco
Food &

Drug Stores

Energy
Aerospace &
Defense

Materials
Household Products

Technology
Telecomms
Wholesalers
Chemicals
Retailing

Hijacked Cloud Resources

Figure 12: Abused content by sector.

4.2 Abused Providers & Resource Types

Hackers exploit a variety of cloud platforms to claim dan-

gling records. The different services provided by each plat-

form can be determined by the respective cloud domain suffix.

Figure 11 and Table 2 show, that Microsoft Azure Cloud ser-

vices are hosting more than half of the content, followed by

AWS S3 static hosting and AWS Elastic Beanstalk, which

together make up 1
3
. All other cloud providers only account

for small fractions. A 2016 study showed substantially fewer

dangling records pointing to Azure than AWS [12].

Cloud Resource # Monitored # Abuses % Abuses
Azure Web Application 690,779 8,347 1.21
Azure VM 565,684 983 0.17
Azure Blob 20,389 - -
AWS Elasticbeanstalk 138,523 668 0.48
Azure Traffic Manager 140,183 2,980 0.21
Azure Cloud Service 299,494 1,060 0.35
Azure API 17,100 - -
Azure FrontDoor 14,183 - -
Heroku App 30,532 146 0.48
Azure CDN 37,360 461 1.23
Azure Service Bus 10,152 - -
AWS S3 1,137,613 5,876 0.52

Table 2: Abused cloud services among domains monitored.

4.3 The Problem of User-Nameable Resources

We find that the common denominator among the hijacks is

user-nameable resources. As shown in Table 3, all hijacks we

discovered exploited cloud resources that allow free choice

of a text-based identifier (blue in Figure 13), enabling easy

1982 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 hijack.hosting.com A 5.6.7.8

 hijack.com CNAME hijack.hosting.com

 hijack.com NS ns1234.hosting.com

 hijack.com CNAME sites.hosting.com

 sites.hosting.com A 1.2.3.4
resource

sites.hosting.com

VHOST: other.com

VHOST: hijack.com

VHOST: ...

resource

ns1234.hosting.com

DNSZONE: hijack.com

hosting.com

resource

DNSZONE: other.com

DNSZONE: ...

= random = user-chosen

hijackable.com

 hijack.hosting.com CNAME
 sites.hosting.com

Figure 13: Hijack types: dashed lines are released resources an attacker could

re-register to take over the routing and/or content of hijackable.com.

re-registration by an attacker.

CNAMEs & internal routing. Such user-chosen names

are found at the DNS-level and the virtual hosting-level to

route requests to the appropriate resource. At the DNS-level,

these names are used in resource’s domain, auto-generated by

the cloud provider to resolve to the resource’s IP address. For

example, choosing the name example for an Azure website

results in the subdomain example.azurewebsites.net be-

ing generated, resolving to the IP of one of the Azure servers.

The server also configures its virtual hosting layer to route

incoming requests for example.azurewebsites.net to the

example resource (Figure 14).

Cloud providers typically also allow configuration of cus-

tom domains as aliases, so that incoming requests for, e.g.,

example.com, are also directed to the example resource. The

customer can then conveniently set up a CNAME record

directing example.com to example.azurewebsites.net,

allowing the example resource to be resolved through

example.com at the DNS level.

Deterministic re-registration. However, this system poses

two problems. First, the resource name chosen by the legiti-

mate user is publicly visible through the DNS record of the

auto-generated CNAME. Second, this resource name can be

re-registered by an attacker. An attacker who has found a

DNS record pointing at example.azurewebsites.net can

check if the example resource still exists and, if not, regis-

ter this specific resource. As long as the CNAME record

linking example.com to example.azurewebsites.net is

never purged, requests for example.com (and any other do-

main in a CNAME chain to example.azurewebsites.net)

will be hijacked by the attacker.

Randomized identifiers. One effective mitigation of these

hijacks is to randomly generate the resource names, because

then an attacker is not able to deterministically replicate a tar-

get resource. This would maintain the convenience of linking

custom domains to the resource through a CNAME record,

but provide comparable security to the random IP assignment

used for cloud servers with dedicated public IPs.

Cloud resources with dedicated IP addresses are assigned

informs internal request routing
Server Resource 1Server Resource 1Server Resource 1Server Resource 1Server Resource

[User-nameable] resource

[CNAME].azurewebsites.net > A > 51.141.12.112a
d

d
s

C
N

A
M

E

Figure 14: User-nameable resource informs CNAME and internal routing.

Provider Configurable Sub domain name Function Record Abuses
Azure [freetext].azurewebsites.net Web App CNAME 6,288
Azure [freetext].trafficmanager.net Traffic Router CNAME 1,468
Azure [freetext].cloudapp.net (legacy naming) VM CNAME 1,037
Azure [freetext].azureedge.net CDN CNAME 830
Azure [freetext].REGION.cloudapp.azure.com VM CNAME 928
Azure [freetext].sip.azurewebsites.windows.net Web App CNAME 223
AWS [freetext].s3-website.REGION.amazonaws.com Static Hosting CNAME 2,227
AWS [freetext].REGION.elasticbeanstalk.com Orchestration CNAME 555

Heroku [freetext].herokuapp.com Web App CNAME 139
Pantheon [test- | dev- | live-][freetext].pantheonsite.io CMS CNAME 50
Netlify [freetext].netlify.app Web App CNAME 14

Table 3: Abused resources on cloud platforms with free text entry.

their IP at random from a pool available to the cloud provider

(red in Figure 13). Similarly, cloud providers who offer DNS

hosting distribute user-created DNS zones randomly across

a range of nameservers (purple in Figure 13). When a dan-

gling A or NS record, respectively, points at the IP of such a

resource, attackers must register a similar resource repeatedly

in the hope of being assigned the desired IP.

Previous work [3, 12] showed strategies to do this effec-

tively, but it is still a probabilistic technique, which, according

to our data, attackers do not pursue. Since our collection

methodology (see Algorithm 1) also takes A records pointing

to cloud IPs into account, such takeovers of specific IPs would

also be captured in our dataset. However, we find no instances

of such takeovers in our dataset, suggesting that it is not worth

the effort compared to the deterministic approach possible

with user-nameable resources. This is further underlined by

the absence of abused Google Cloud-hosted domains, which

are assigned a random subdomain, allowing no user input.

4.4 Abuse Duration

We calculate the approximate lifespan of the abused do-

mains as the difference between the timestamp of the first

HTML sample that is recognized as abused and the timestamp

of the DNS record that is eventually created by the domain

owner to correct the dangling vulnerability. Figure 15 shows

the lifespan distribution of the domains in our dataset. A large

number of abused domain names are removed within 15 days.

At the same time, more than 1
3

of the domains last longer

than 65 days, some more than a year. This gives the attacker

time to monetize content by exploiting the reputation of the

abused domains. Figure 16 illustrates for each domain the

time frame that it was hijacked as a horizontal line from start

to end date. The domains are sorted by start date. We see

an initial period of hijacks in 2020, followed by a period of

relative inactivity in early 2021, and finally a ramping up of

activity throughout late 2021, 2022 and 2023. The number of

concurrently hijacked domains continuously increases in this

period, indicating a growing problem.

5 Characterization of Abuse

In this section we first explain how the attacks with hi-

jacked resources depend on the type of dangling resource that

the attacker took over. We then report on different types of

attacks we identified that have been launched from the hi-

jacked domains in our dataset. These include SEO, malware

distribution, cookie theft and fraudulent certificates.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1983

0 200 400 600
days in operation

0

20

40

60

80

100

%
 h

ija
ck

ed
 d

om
ai

ns
 a

ct
iv

e

sld
sub
all

Figure 15: Hijack duration in days.

2020-05
2020-09

2021-01
2021-05

2021-09
2022-01

2022-05
2022-09

2023-01
2023-05

time

0

5000

10000

15000

20000

do
m

ai
n

(in
de

x)

Hijack Time Frames

Figure 16: Hijack time frames.

5.1 Abuse Depends on Hijacked Resource

The capabilities of the adversary are dictated by the type

of cloud resource used in the hijack (Table 4).

webserver

other.com
read

another.com

other.html
static resources

attacker.html

another.html

attacker.js
GET

hijacked.com
GET

hijacked.com

webapp

attacker.html
attacker.js

proc. headers

hijacked.com

webserver STORAGE
CMS

LOAD & CDN
WEBAPP

SERVER

attacker.html
attacker.js

proc. headers

webserver

other.com

another.com

hijacked.com
GET

hijacked.com
GET

hijacked.com

Figure 17: Attacker capabilities based on cloud resource - red indicates

attacker-controlled resources, blue indicates hosting-provided resources.

With a dedicated server resource the attacker can host a

full webserver (shown in Figure 17 on the right). With other

resources the hosting provider may host multiple domains on

a single logical webserver through virtual hosting and route to

the appropriate resource by domain name. Storage resources

such as AWS S3 or Content Management Systems (CMS)

such as Pantheon allow control only of static content, which

is read and returned by the provider’s webserver (Figure 17,

left), whereas with traffic management and web applications

the provider’s server forwards requests to a specified endpoint,

where the requests can be processed in full (Figure 17, center).

In the context of cookie stealing, control of the webserver

(Figure 17, center & right) affords the attacker both access

to cookies in headers and those available via javascript,

thus allowing access to all cookies, whereas control of just

the content (Figure 17, left) only enables access to cookies

accessible via javascript6, in other words, cookies without

the HttpOnly flag. The former also affords the https capabil-

ity, required to access cookies with the Secure flag enabled,

whereas the latter scenario does not necessarily afford this

capability for the hijacked domain. [16] characterized the lim-

itations that configurations on the victim webserver impose

on attacks, e.g., the impact of HttpOnly and Secure flags in

cookies or that bypassing CSP requires only file and html

capabilities, while abuse of CORS, postMessage and domain

relaxation also requires the javascript capability. In our

model we show that all of these are possible from static host-

ing resources. However, depending on the configuration of

the target, https may be necessary, which generally requires

full webserver access to configure a certificate7. In addition to

the configuration of related domains (shown by [16]), the type

6In the case of CMS, the use of JS may require the installation of ad-

ditional plugins. However, since the attacker controls the resource, this is

straightforward.
7Hosting providers may offer a dashboard option to configure a certificate,

but this is not the default.

Resource Function Access Capabilities

AWS S3 Storage
Static Content

file, content,

html, javascript2Pantheon Site CMS

Netlify

Web App

Full Webserver

file, content,
html, javascript,

headers, https

Heroku

AWS Elastic Beanstalk

Azure Web Application

Azure CDN
CDN &

Load BalancingAzure Load Balancer

Cloudflare

Azure VM Server

Table 4: Attacker capabilities based on cloud resource

of attacks that can be launched with a hijacked domain are

also a function of the cloud resource that the attacker controls.

5.2 Generating Traffic

We find that the main abuse of hijacked, dangling resources

is to generate traffic to adversarial services. The attackers

exploit the reputation of the hijacked domains to generate

page impressions to the content they control to earn money.

Once they control the content, sources of income are either

advertisements displayed directly on the websites hosted on

the hijacked domains or referral (click-through) to another

site, where they earn a small amount for each page impres-

sion, a higher amount for account registration (Figure 24 in

Appendix) and even more for money spent.

Attackers use different techniques to generate traffic and

increase the click-through rate to the target site that pays for

the traffic. Next we describe the two techniques (SEO and

clickjacking) for which we find evidence in our dataset.

5.2.1 Blackhat Search Engine Optimization (SEO)

Search Engine Optimization (SEO) is the process of im-

proving a website’s visibility in search engine results. Black-

hat SEO or spamdexing8 involves ethically questionable tech-

niques or violates search engine guidelines. We found that

75% of HTML samples we collected contain some form of

(blackhat) SEO. We determine this by manually examining

a sample of 100 HTMLs in a sandboxed environment and

then checking which of the other sites contain similar con-

tent based on keyword features. Specifically, we found the

following techniques:

Cloaking. The Japanese Keyword hack9 is one example

of cloaking, a technique where content presented to search

engine spiders is different from what is presented to the user.

About 1% of the sites (Figure 3) featured a large number

of randomly generated Japanese pages, which we catego-

rize as the Japanese Keyword Hack. If hackers have the

ability to add content to a site, they upload a large number

of randomly named HTML pages (see Figure 6) with auto-

generated Japanese content. These cloaked pages are served

in parallel to the original site content, but shown only to

crawlers, not regular users. Search engines then associate the

site and its reputation with the parasitic content. Additional

modifications of the .htaccess and robots.txt files in the

8https://en.wikipedia.org/wiki/Spamdexing
9https://web.dev/fixing-the-japanese-keyword-hack/

1984 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://en.wikipedia.org/wiki/Spamdexing
https://web.dev/fixing-the-japanese-keyword-hack/

website’s root directory point the crawlers to the generated

spam pages and away from the legitimate content. We find

that 7.17% of SEO creates private link networks and utilizes

the Japanese Keyword Hack.

Private link networks. Some websites host a large number

of files with the sole purpose of linking to other pages and

domains , without any valuable content of their own. The

reputation of incoming links contributes to the reputation

of the target, so hackers create 2-way link networks across

pages on hijacked subdomains, exploiting their reputation;

we explain this in Section 5.2.3. In our dataset the abusers

uploaded a total of about 500M files with an estimated size

of 25.8TB, with an average of 31,810 HTML files per site;

statistics are visualized in Figure 6.

Doorway pages. These are low-quality web pages created

to rank highly in search results, but link or redirect visitors to

a target page that enables monetization. Most of these door-

way pages we observed were gambling-related and featured

gambling content from Wikipedia. We find that 62.13% of

the SEO uses doorway pages.

Keyword stuffing. This technique optimizes keywords,

placing them in the content and keyword meta tag: 41% of

58353 HTML pages we analyzed contain the keyword meta

tag to help make them more discoverable. Table 5 shows the

top 12 keywords used.

Keyword Count # Keyword Count
1 slot 144,108 2 online 77,669
3 judi (gambling) 60,521 4 situs (website) 35,265
5 joker123 23,630 6 terpercaya (trusted) 19,407
7 gacor (hot streak) 18,006 8 agen (agent) 16,939
9 daftar (register) 12,881 10 game 12,113
11 bola (football) 11,688 12 pulsa (credit) 10,467

Table 5: Top 12 meta tag keywords on content hosted on hijacked domains.

5.2.2 Click-Jacking

With this technique an onClick event is inserted early

in the event bubbling pipeline to intercept a user’s mouse

click on a legitimate looking hyperlink and redirect it to a

malicious JavaScript function. Through our manual inspection

we found this method was used on adult-related pages. Instead

of navigating to the indicated page, the user is redirected to

another server where ads are served.

5.2.3 Reputation of Abused Domains

We find that hijacked subdomains are valuable for hackers

due to their reputation (or that of the parent domain), which

often takes years to establish. Injecting fraudulent content on

hijacked subdomains exploits the historic reputation of the

parent domain, ranking high in search engine results. Google

is the primary source of traffic to websites and accounts for 85-

92% of all search engine traffic for the past 8 years 10. As such

both legitimate and fraudulent content is optimized to rank as

high as possible in search results. Details of Google’s ranking

algorithm and weights of ranking signals are proprietary and

10https://www.statista.com/statistics/216573/worldwide-

market-share-of-search-engines/

change over time. Nevertheless, domain age, as well as other

parameters discussed below, play a role in the ranking.

Domain age. Nearly all (98.51%) of the hijacked second-

level domains are older than one year and the vast majority is

older than a decade. This is clearly seen in Figure 18, which

shows the distribution of creation dates obtained through

WHOIS for second-level domains in our dataset. Since sub-

domains inherit their reputation from the parent, we look at

the second-level domain for each subdomain.

<1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 >3
8

Domain Age (years)

0

100

200

300

Co
un

t

Domain Age of Second Level Domains

Figure 18: Domain age based on WHOIS creation date of SLDs.

Secure transport. Google also gives preference to sites

that are secure. We find that 18.2% of the (sub)domains in

our dataset had valid certificates.

Backlinks. Backlinks play an important role in domain

selection by attackers. When other reputable websites link to

a domain, Google sees this as a sign of trust and authority.

This is especially true if the linking sites are themselves high-

reputation domains.

5.3 More Page Views Mean More Profit

In summary, scammers leverage the reputation inherited

from the parent domain to drive search traffic to fraudulent

content on the hijacked subdomain. Since search engines are

the primary source of traffic, scammers optimize SEO signals

to boost their pages’ rankings.

In Appendix, Figure 24 we show a screenshot of the traffic

accounting infrastructure of a gambling site that receives

traffic from the hijacked domains. The resources behind the

hijacked domains are used to relay traffic to the sign-up screen

in Figure 24. In this infrastructure a referral code is passed

from the content hosted on a hijacked domain to the gambling

website. The website pays for traffic based on the referral ID

attached to incoming requests, thereby paying the hijackers

for each page view, each account sign-up, and money spent

on the site. The presence of the referral ID also suggests that

website owners and domain hijackers are two different entities.

In this abuse we witness an ecosystem, involving multiple

entities creating revenue from the hijacked resources.

In summary, we find referral links, a large focus on SEO,

ads and gambling, hijacking of cloud resources exclusively

with user-chosen names requiring particularly low effort to

hijack, and a lack of differentiation of abuse content across a

wide range of SLDs (see Section 6). We view this to be strong

evidence for a financial motive as the driver for these hijacks.

5.4 Malware Distribution & Flagged Sites

We find almost no evidence of malware distribution, which

was considered to be one of the main threats of dangling

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1985

https://www.statista.com/statistics/216573/worldwide-market-share-of-search-engines/
https://www.statista.com/statistics/216573/worldwide-market-share-of-search-engines/

records in previous work [16]. Since this is the first work to

find exploitation of dangling domains, there is no comparable

dataset in previous work. We scanned 58,353 samples of

HTML index pages for downloadable executable files for

all operating systems, to determine, if hijacked domains are

directly used for the distribution of malware or other software

and which operating systems are targeted.

VirusTotal executables analysis. We retrieved 2628 bina-

ries using cURL. Among these were 181 unique Android apps

(.apk) and a single Windows executable (.exe). Only 2 EXEs

were labeled as Trojans by VirusTotal11. The vast majority

of APKs were gambling apps corresponding to the gambling

sites. Our data suggests that the hijacked domains are not

predominantly used for large-scale malware distribution.

VirusTotal domains analysis. VirusTotal also allows

checking if domains are flagged by various antivirus vendors.

We queried VirusTotal for our dataset of hijacked domains:

only 135 were flagged by at least one vendor, only 18 by two

or more. Figure 19 plots these values over time (based on the

earliest certificate issuance found for that domain), suggesting

that widespread blacklisting takes at least 2 years. Whether

due to lack of traffic to these domains, the slow inclusion of

domains in blacklists or a general disinterest of AV vendors

to include hijacked domains, the small percentage of blocked

domains suggests that blacklisting does not effectively protect

clients from being served content from hijacked domains.

Figure 19: VirusTotal blacklist counts for hijacked domains by date of first

certificate issuance.

5.5 Stolen (Authentication) Cookies

As pointed out by [12,16], one of the threats of gaining con-

trol of a subdomain’s content (e.g., access to a CMS) and/or

an entire webserver, is access to cookies. Cookies are used

for tracking users across pages via a session identifier, as well

as storing authentication tokens which tell the server that a

user has previously logged in. As a consequence, stealing

authentication cookies enables full access to the website as a

logged-in user. This sensitive data can be stolen as they visit

the legitimate-looking, but adversary-controlled content or

webserver on a hijacked subdomain.

Cookie policies implemented by browsers are such that

a cookie is only sent back to the domain that created it, or

a subdomain thereof. Cookie access depends on the degree

of control an adversary has of a hijacked domain. With full

11https://www.virustotal.com

server access, they can read all cookies (including authentica-

tion), but if they are only able to inject content onto a running

webserver (of a CMS), they are only able to read a subset

of browser-accessible cookies: cookies with the HttpOnly

attribute set to “false" or not set at all (the default).

Stolen cookies of abused domains. Since there is no way

to tell if cookies are being actively exfiltrated from HTTP

headers on the server, we look for stolen authentication cook-

ies for sale. In a collaboration with a threat intelligence organi-

zation we identify 83 unique authentication cookies detected

in darknet leaks in the timeframe in which the correspond-

ing dangling domains were detected by us as hijacked. These

cookies are linked to 3 different hijacked subdomains originat-

ing from 53 unique IP addresses. The low number of leaked

authentication cookies we found is not surprising, due to their

relatively short expiration time.

5.6 Fraudulent Certificates

In this section we describe our analysis of the fraudulent

certificates we found on hijacked domains. Due to availability

of HTTP-based Domain Validation, hijackers are in a posi-

tion to obtain a valid certificate, simply by having access to

the webserver root. In fact, many hosting providers, such as

Azure, integrate functionality within their dashboards to issue

certificates for custom domains that point to the hosting re-

source. Once a hijacked subdomain is taken over, obtaining a

valid certificate is trivial. We can therefore expect hijackers

to use certificates, as it allows the use of HTTPS, increas-

ing the efficacy of various attacks. One of the more critical

possible abuses for domain hijacks is access to cookies. As

detailed in Section 5.5, subdomains will typically receive not

just cookies set for that subdomain, but those for the parent

domains as well. However, if a cookie has the "Secure" flag

set, it will only be sent via HTTPS. So attackers looking to

steal, e.g., secure authentication cookies would need to setup

HTTPS with a valid certificate for the hijacked subdomain.

An interested reader is referred to Section A.2 in Appendix

for explanation on different motivations for obtaining a valid

but fraudulent certificate for abused resources.

5.6.1 Analysis of Certificates on Abused Domains

Certificate Transparency (CT) logs publicly list all cer-

tificates issued by CAs. We use CT to analyze the entire

timeline of certificates for all domains in our dataset, look-

ing for anomalies. Across CT history for our dataset we find

24239 single-SAN (single-Subject Alternative Name) cer-

tificates and 41877 multi-SAN/wildcard certificates. Since

during domain validation hijackers can typically only success-

fully prove control of a single subdomain that they control, we

search the CT history of hijacked subdomains for certificates

that contain only a single, non-wildcard subdomain name.

We contrast this set with the certificates issued for these

subdomains (Figure 20). We see two distinct time frames

(2017-07-31 to 2017-08-14 and 2022-09-09 to 2022-12-16)

where a significant number of certificates were individually

1986 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.virustotal.com

Figure 20: Multi-SAN vs. single-SAN certs issued for hijacked subdomains.

issued across our set of hijacked subdomains. Particularly the

former shows a clear anomaly, covering a significant number

of "www." subdomains. Taking a closer look at these time

frames, we find that the majority of the single-subdomain

certificates (95% and 53%, respectively, for each time frame)

were issued by Let’sEncrypt, suggesting that these were in-

tentionally issued, as opposed to automatically by a hosting

provider. A correlation with our dataset of the abused domains

shows that the time frames correspond to campaigns to gather

vulnerable subdomains. Based on the dates, we trace this kind

of activity back to mid 2017, about a year after the first paper

on dangling DNS records was published [12].

5.6.2 CAA Records are not Effective

Hijackers have many options for obtaining a certificate.

Cloud providers, such as Azure and AWS, often run their own

CAs and provide certificate issuance built into their hosting

products, free of charge, which can be leveraged by anyone

in control of the hosted resource. Let’s Encrypt and ZeroSSL

are two additional CAs that provide certificates via domain

validation and at no cost.

It has been suggested that domain owners could configure

CAA records to allow certificate issuance only by an autho-

rized set of CAs, in order to prevent unauthorized issuance.

This is unlikely to be effective, however, since an attacker can

simply register an account with one of the authorized CAs

and still issue a certificate. This kind of restriction would only

be protective if certificate issuance is restricted to a specific

account with a specific CA ("domain locking"12).

In can be argued that, in the case of cyber-criminals gath-

ering large numbers of domains to use for SEO and traffic

generation, authorizing only CAs who charge for certificates

(i.e., unauthorizing all CAs with free certificates) might disin-

centivize attackers from issuing certificates at scale, due to an

increase in cost. This would, however, necessitate the major-

ity of domain owners switching to a paid CA and setting the

appropriate CAA records, in order to function as a deterrent.

This is unlikely to happen due to cost to the legitimate

owners. Hence, we find that only 2% of parent domains (and

only 0.2% of subdomains) have a CAA record set and only

0.4% (0.01%) specify a CA without free certificate issuance.

We also find that half of these domains still had hijacked

12https://docs.digicert.com/en/certcentral/manage-

certificates/organization-and-domain-management/domain-

locking.html#locking-a-domain

Figure 21: Geo-distribution of phone numbers based on country code.

subdomains with valid certificates. This suggests that CAA

records are not a suitable countermeasure for such attacks.

5.6.3 Certificate Transparency as Countermeasure

CT can be leveraged as a much more effective countermea-

sure than CAA records. Though reactive, rather than preventa-

tive, CT monitoring of one’s domain via third-party services

is a low-to-zero cost, set-and-forget measure to ensure one

is notified whenever a certificate is issued for the domain or

one of its subdomains. Should an attacker take over even a

long-forgotten subdomain and issue a certificate, an alert is

triggered and the domain owner is made aware of the hijack,

typically within a few hours. However, the effectiveness of

detection rests on the attacker’s choice to obtain a certificate.

6 Characterization of Attacker Infrastructure

In this section we characterize the infrastructure used in

the hijacks in our abuse dataset. We look for indicators from

the infrastructure and the user-facing content side. Due to the

large number of hijacks we combine manual analysis of a sub-

set of examples with automated keyword-based approaches.

Hijacked webserver software. Using the Generator Meta

tag, we identified that about 22% of the 54,325 collected

HTML samples were homepages of WordPress blogs. These

are custom WordPress installations on cloud.

Static identifiers. Next we considered other backend links

present in the HTML samples. We analyzed the href at-

tributes of <a> and <link> tags contained in the HTML doc-

uments served by the hijacked domains. We discovered 792

unique phone numbers through WhatsApp links. Based on the

country code, we can see that all of them are based in Asia,

primarily Indonesia and Cambodia; see Figure 21. We also

discovered 1,884 unique contacts in the form of Telegram,

Twitter, Instagram and Facebook accounts/channels/groups

and direct chat IDs, as well as 2,671 unique forwarding links

provided by URL shortening services. We also discovered

3,553 unique references to IP addresses. Based on WHOIS

data, we find that the majority of these IPs belong to vari-

ous hosting providers (Figure 26 (a) in Appendix). This also

matches the concentration of IPs in the US, France and Singa-

pore, based on GeoIP information (Figure 26 (b) in Appendix).

The use of cloud hosting does not allow identification of the

countries where attackers are operating.

Clustering attacking infrastructure. All of the above

data points serve as identifiers. If two identifiers appear on

the same HTML page, it is reasonable to assume that they are

associated with the same operation. Thus, we cluster these

data points based on how many HTML pages of hijacked

domains each pair appears on. The resulting relationships

between identifiers are visualized as a network graph in Fig-

ure 27 in the Appendix. The network graph provides a broad

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1987

10 20 30 40 50
group (index)

0

200

400

600

800

1000

1200

1400

1600

co
un

t

backend identifiers
hijacked (sub)domains

Figure 22: Top 50 clusters sorted by number of hijacked domains.

overview. To delineate concrete groupings we find all nodes

that are connected through some path in the network graph.

This is accomplished by successive hierarchical clustering,

plotted in Figure 28 in Appendix.

Each tick on the x-axis represents an identifier, while the

y-axis indicates the distance (on a scale of 0 to 1) at which

identifiers are grouped. The minimum distance of 0 indicates

that a pair of identifiers are associated with an identical set of

hijacked domains and the maximum distance of 1 indicates

that two identifiers share no domains at all. The dendrogram

displays all groupings up to a cutoff point at a distance of

0.95 (since at the end of the hierarchical clustering process all

nodes are merged into one). The cutoff is chosen to achieve

the maximal degree of grouping. This is warranted, since the

probability of an identifier appearing on two domains by co-

incidence is very small. Groupings are delineated by color, so

all adjacent vertical lines of the same color point to identifiers

that have been grouped; the largest grouping is displayed in

gray on the right side of the dendrogram. Long, single-color

vertical lines indicate identifiers that do not share any domains

with other identifiers and thus cannot be grouped.

The hierarchical clustering results in 1,798 clusters, with

the vast majority consisting of 1 or 2 identifiers which could

not be linked to any others. For the largest grouping, however,

it was possible to tie together 1,609 identifiers, associated

with 743 hijacked domains. The four next-largest clusters

contain 414, 222, 179 and 112 domains, respectively. Figure

22 shows this long-tailed clustering result for the top 50 clus-

ters, sorted by the number of hijacked domains in each cluster.

The identifiers cover 8,489 (~ 1
3
) of the hijacked domains and

all are associated with Indonesian gambling.

While the clustering still leaves the possibility for a large

number of actors involved, it ties large sets of domains to-

gether, showing that at least some actors collect a wide range

of diverse domains in a coordinated effort. These are then

homogeneously used for the same purpose of referring traffic

or manipulating search rankings. The lack of differentiation

in how the hijacked domains are abused suggests an attempt

at maximizing profit by maximizing the number of domains

recruited for a campaign, as opposed to specific targeting of

individual domains, e.g., for political reasons.

Our analyses do not yet allow conclusions as to the no-

ticeable bias of observed page content, linked infrastructure,

discovered APKs and phone numbers toward Indonesia. How-

ever, because our discovery of hijacks begins with a set of do-

mains based on global organizations (e.g., Alexa 1M, Fortune

1000, etc.), there is little reason to assume a biased dataset.

Instead, we see a possible explanation in the population size

(4th largest in the world) and strict illegality of gambling in

Indonesia, leading to a prevalence of online gambling and a

need to advertise it through illicit means.

7 Conclusions

Although the threat of take-over of dangling resources in

the cloud was explored, there was no evidence in research

of real-life abuse. We explore this question empirically with

a longitudinal three-year analysis of cloud-hosted resources.

Our two key contributions are a methodology for detecting

abuse and a longitudinal dataset of abused resources at scale.

Our research shows that the abuse of dangling resources on

cloud platforms is a real problem that affects a large number

of victims in popular and established organizations across

different sectors. Our methodology and the findings provide

a feasibility proof for identifying abused resources without

assuming control over the cloud platform.

Based on our analysis we derive lessons for improving vis-

ibility of abuse and developing countermeasures. The hijacks

we found show that the attackers target released resources that

(1) are cheap and (2) can be directly determined by entering

freetext, while avoiding resources that are expensive and re-

quire effort to obtain, such as the lottery-based IP assignment

from a pool of IP addresses. Therefore, as an easy-to-deploy

mitigation we recommend that cloud platforms either do not

allow user-created resource names to be publicly visible (e.g.,

through DNS records) and/or disallow the re-registration of

recently released resource names. We also recommend, simi-

larly to previous work, to purge stale DNS records. In addition,

cloud platforms should keep track of released resources us-

ing our methodology and alert owners of registered domains

about changes to the content or sitemap. Since we observe that

attackers issue certificates for hijacked domains, we recom-

mend that cloud providers also monitor CT logs for unusual

patterns across domains hosted on their platforms to help

detect potential large-scale abuse campaigns.

Finally, we point out that although our work focuses on

resources on cloud platforms, our results can be used to iden-

tify abuse in other third-party services. For instance, while

Content Management Systems (CMS) like Wordpress are not

included in our dataset, we expect a large number of hijacks of

[freetext].wordpress.com subdomains, since Wordpress

also implements freetext subdomain registration for its blogs.

Acknowledgements

This work has been co-funded by the German Federal Min-

istry of Education and Research and the Hessen State Min-

istry for Higher Education, Research and Arts within their

joint support of the National Research Center for Applied

Cybersecurity ATHENE and by the Deutsche Forschungsge-

meinschaft (DFG, German Research Foundation) SFB 1119.

1988 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Eihal Alowaisheq, Siyuan Tang, Zhihao Wang, Fatemah

Alharbi, Xiaojing Liao, and XiaoFeng Wang. Zom-

bie awakening: Stealthy hijacking of active domains

through dns hosting referral. In Proceedings of the 2020

ACM SIGSAC Conference on Computer and Communi-

cations Security, pages 1307–1322, 2020.

[2] Omar Alrawi, Charles Lever, Kevin Valakuzhy, Ryan

Court, Kevin Z Snow, Fabian Monrose, and Manos An-

tonakakis. The circle of life: A large-scale study of the

iot malware lifecycle. In USENIX Security Symposium,

pages 3505–3522, 2021.

[3] Kevin Borgolte, Tobias Fiebig, Shuang Hao, Christopher

Kruegel, and Giovanni Vigna. Cloud strife: Mitigating

the security risks of domain-validated certificates. In

Internet Society Symposium on Network and Distributed

System Security (NDSS), 2018.

[4] European Commission, Content Directorate-General for

Communications Networks, Technology, I Paulovics,

A Duda, and M Korczynski. Study on Domain Name

System (DNS) abuse. Publications Office of the Euro-

pean Union, 2022.

[5] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and

Davide Balzarotti. A large-scale analysis of the secu-

rity of embedded firmwares. In 23rd USENIX Security

Symposium (USENIX Security 14), pages 95–110, 2014.

[6] Zakir Durumeric, Michael Bailey, and J Alex Halderman.

An internet-wide view of internet-wide scanning. In

23rd USENIX Security Symposium (USENIX Security

14), pages 65–78, 2014.

[7] Zakir Durumeric, Eric Wustrow, and J Alex Halderman.

Zmap: Fast internet-wide scanning and its security ap-

plications. In Usenix Security, volume 2013, 2013.

[8] Liz Izhikevich, Renata Teixeira, and Zakir Durumeric.

Lzr: Identifying unexpected internet services. In

USENIX Security Symposium, pages 3111–3128, 2021.

[9] Doowon Kim, Haehyun Cho, Yonghwi Kwon, Adam

Doupé, Sooel Son, Gail-Joon Ahn, and Tudor Dumitras.

Security analysis on practices of certificate authorities in

the https phishing ecosystem. ASIA CCS ’21: Proceed-

ings of the 2021 ACM Asia Conference on Computer and

Communications Security, pages 407–420, May 2021.

[10] Deepak Kumar, Kelly Shen, Benton Case, Deepali

Garg, Galina Alperovich, Dmitry Kuznetsov, Dmitry

Kuznetsov, Rajarshi Gupta, and Zakir Durumeric. All

things considered: an analysis of iot devices on home

networks. In Proceedings of the 28th USENIX Confer-

ence on Security Symposium, pages 1169–1185, 2019.

[11] Victor Le Pochat, Tom Van Goethem, Samaneh Tajal-

izadehkhoob, Maciej Korczyński, and Wouter Joosen.

Tranco: A research-oriented top sites ranking hardened

against manipulation. In Proceedings of the 26th Annual

Network and Distributed System Security Symposium,

NDSS 2019, February 2019.

[12] Daiping Liu, Shuai Hao, and Haining Wang. All your

dns records point to us: Understanding the security

threats of dangling dns records. In Proceedings of the

2016 ACM SIGSAC Conference on Computer and Com-

munications Security, pages 1414–1425, 2016.

[13] Yang Liu, Armin Sarabi, Jing Zhang, Parinaz

Naghizadeh, Manish Karir, Michael Bailey, and

Mingyan Liu. Cloudy with a chance of breach:

Forecasting cyber security incidents. In 24th USENIX

security symposium (USENIX Security 15), pages

1009–1024, 2015.

[14] Craig Partridge and Mark Allman. Ethical considera-

tions in network measurement papers. Communications

of the ACM, 59(10):58–64, 2016.

[15] Victor Le Pochat, Tom Van Goethem, Samaneh Tajal-

izadehkhoob, Maciej Korczyński, and Wouter Joosen.

Tranco: A research-oriented top sites ranking hardened

against manipulation. arXiv preprint arXiv:1806.01156,

2018.

[16] Marco Squarcina, Mauro Tempesta, Lorenzo Veronese,

Stefano Calzavara, and Matteo Maffei. Can i take your

subdomain? exploring same-site attacks in the modern

web. In USENIX Security Symposium, pages 2917–2934,

2021.

[17] Benjamin VanderSloot, Johanna Amann, Matthew Bern-

hard, Zakir Durumeric, Michael Bailey, and J Alex Hal-

derman. Towards a complete view of the certificate

ecosystem. In Proceedings of the 2016 Internet Mea-

surement Conference, pages 543–549, 2016.

[18] Mingming Zhang, Xiang Li, Baojun Liu, Jianyu Lu,

Yiming Zhang, Jianjun Chen, Haixin Duan, Shuang Hao,

and Xiaofeng Zheng. Detecting and measuring security

risks of hosting-based dangling domains. Proceedings

of the ACM on Measurement and Analysis of Computing

Systems, 7(1):1–28, 2023.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1989

TLD Count TLD Count
1. com 12942 7. de 758
2. org 1069 8. edu 414
3. net 996 9. ca 398
4. uk 758 10. nl 207
5. au 414 11. jp 183
6. br 398 12. co 156

Table 6: Top 12 Top Level Domains (from a total of 218) and their counts.

A Appendix

A.1 Cloud Suffixes

We compiled the list of cloud suffixes using the following

sources:

https://docs.aws.amazon.com/general/latest/gr/rande.html

https://learn.microsoft.com/en-us/azure/security/

fundamentals/azure-domains

https://docs.netlify.com/domains-https/custom-domains/

https://docs.pantheon.io/guides/domains/platform-domains

https://devcenter.heroku.com/articles/custom-domains

https://infogalactic.com/info/List_of_Google_domains.

Cloud IP ranges were obtained from these provider

published sources:

https://ip-ranges.amazonaws.com/ip-ranges.json

https://www.microsoft.com/en-us/download/

details.aspx?id=56519

https://www.gstatic.com/ipranges/cloud.json

Based on recent market share data, the AWS, Azure and

Google clouds cover 65% of the hosting market, with the rest

split across a long tail of providers. Our cloud identification

is therefore not 100% complete, but covers a large majority

share of the cloud market.

A.2 Motivations for Obtaining a Certificate for

a Hijacked Domain

Browser Warnings. Most popular browsers display a warn-

ing when attempting to connect to a domain with a self-signed,

expired or otherwise invalid certificate. Some end-users might

ignore this warning, but many won’t. Obtaining and using a

valid certificate would remove this barrier and thus increase

traffic to the site.

Similarly, browser UI indicators (i.e. green lock icon) in-

crease the users’ trust in the legitimacy of the site. It has been

shown that phishing sites using HTTPS are more effective [9].

Thus, a certificate for the hijacked site likely serves to increase

user interaction.

SEO. The primary type of abuse seen on hijacked domains

is SEO spam. A key parameter in search engine rankings is

the use of HTTPS. Sites that don’t use HTTPS are typically

ranked lower. Thus, a certificate would help boost the efficacy

of SEO spam.

HSTS. If a hijacked subdomain (or its parent) has previ-

ously added the domain to the HSTS list of visiting clients,

these clients will only connect to this domain via HTTPS in

the future (until expiration of the HSTS setting). Hijackers

wishing to capture this traffic, will need to serve HTTPS con-

nections and will thus require a certificate. We queried 1,323

parent domains from our hijacked dataset and found over 16%

of non-error responses contained an HSTS header.

Secure Cookies. One of the more critical possible abuses

for domain hijacks is access to cookies. As detailed in Section
5.5, subdomains will typically receive not just cookies set for

that subdomain, but those for the parent domains as well.

However, if a cookie has the "Secure" flag set, it will only be

sent via HTTPS. So attackers looking to steal, e.g., secure

authentication cookies would need to setup HTTPS with a

valid certificate for the hijacked subdomain.

Furthermore, the SameSite flag differentiates HTTPS and

HTTP origins. In particular, SameSite=None requires Se-

cure=True, increasing the likelihood that a domain uses secure

authentication cookies13.

Figure 23: Main page for a Fortune 500’s abused site with an error message

(May 2020).

13https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-

Cookie/SameSite

1990 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 24: Referral code is passed for traffic accounting.

FQDNspassiveDNS

FQDNscommercial
domains lists

IPs & CNAMEsDNS

cloud FQDNs

collector

abused FQDNs HTMLs
DNS

monitor

HTMLs
certificatescloud domains

suffixescloud suffix
lists

DB

certificates
certificatescrt.sh

URLs

org namesWhoIs

GeoIP

countriesphone codes

countries

executablesscoresVirusTotal

rankingsQS world
ranking

rankingsFortune 500

rankingsTranco

rankings

keywords

DATA SOURCES COLLECTION
A

N
A

LYSES

CAADNS
revocation

Figure 25: Overview of data collection and analysis process.

Figure 26: (a) Organizations associated with extracted IPs based on WHOIS

data. (b) Geographical distribution of extracted IPs based on GeoIP data.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1991

Figure 27: Clustering of extracted identifiers - IPs (red), contact information such as phone numbers, social media channels and chat links (green), and URL

shortener links (blue). Node size indicates the number of hijacked domains associated with the identifier, edge thickness indicates the number of shared domains

between a pair of identifiers.

Figure 28: Dendrogram of identifier clustering.

1992 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 29: List of extracted keywords and code fragments.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1993

CAPA: An Architecture For Operating Cluster Networks With High Availability

Bingzhe Liu∗ Colin Scott† Mukarram Tariq† Andrew Ferguson† Phillipa Gill† Richard Alimi†

Omid Alipourfard† Deepak Arulkannan† Virginia Jean Beauregard† Patrick Conner†

P. Brighten Godfrey∗ Xander Lin† Joon Ong† Mayur Patel† Amr Sabaa† Arjun Singh†

Alex Smirnov† Manish Verma† Prerepa V Viswanadham† Amin Vahdat†

{capa-nsdi-paper@google.com}

†Google ∗UIUC

Abstract
Management operations are a major source of outages for
networks. A number of best practices designed to reduce
and mitigate such outages are well known, but their enforce-
ment has been challenging, leaving the network vulnerable
to inadvertent mistakes and gaps which repeatedly result in
outages. We present our experiences with CAPA, Google’s
“containment and prevention architecture” for regulating man-
agement operations on our cluster networking fleet. Our goal
with CAPA is to limit the systems where strict adherence to
best practices is required, so that availability of the network
is not dependent on the good intentions of every engineer and
operator. We enumerate the features of CAPA which we have
found to be necessary to effectively enforce best practices
within a thin “regulation“ layer. We evaluate CAPA based on
case studies of outages prevented, counter-factual analysis of
past incidents, and known limitations. Management-plane-
related outages have substantially reduced both in frequency
and severity, with a 82% reduction in cumulative duration of
incidents normalized to fleet size over five years.

1 Introduction

Cloud applications require high availability from cloud in-
frastructure. Application deployment patterns vary from non-
replicated (single-zone) services to multi-regional replicated
services designed for 24/7 global availability [7]. To accom-
modate this range of deployment patterns, cloud infrastructure
must ensure high baseline availability within a zone, and fail-
ure domain independence across zones. Networking, as a
baseline dependency for other infrastructure and services, is
particularly critical for availability.

Despite the criticality of networking, single-zone and cor-
related multi-zone network failures take place frequently (e.g.,
[6, 46, 71] in March 2022 alone). At Google, we find that
≥ 58% of cluster (datacenter) network outages since 2018
result from management operations. Previous research has
recommended a number of best practices for executing op-
erations in order to improve availability [1, 8, 25]. These

recommendations include defining failure domain boundaries,
ensuring progressive and supervised change rollout, defense-
in-depth, consistency across planes, invariant monitoring, etc.
While these best practices are well understood, major cloud
providers continue to suffer outages that in hindsight could
have been prevented by application of these practices.

In our experience managing Google’s fleet of cluster net-
works, several challenges make it difficult for engineers and
operators to consistently follow best practices: (C1) Com-
plexity and diversity of system interactions. Cluster net-
working has evolved into a complex distributed system of
many interdependent subsystems. The cross product of the
system’s behavioral axes, the variety of operations it supports,
and the range of services that perform operations result in
a huge surface area where best practices might need to be
adhered to. (C2) Difficulty isolating failure domains. Fail-
ure domain isolation reduces correlated failures. But cluster
networks are fundamentally coupled as they must connect to
each other and exchange routing messages through a wide
area network (WAN) [29, 30]. Additionally, centralized oper-
ational teams and systems with global responsibilities create
coupling through their day-to-day operations. (C3) Need to
balance safety vs. operational velocity. Aggressive rate lim-
iting can create a logjam of business-critical network updates.
In practice, operators must resort to some degree of concur-
rency to keep up. Moreover, certain issues might only be
triggered in later stages such that progressive rollout alone
is not sufficient. (C4) Software development velocity over-
head. Strict adherence to best practices comes with high de-
velopment costs, particularly for a foundational service like
cluster networking that cannot always make use of common
implementations of convenient abstractions (e.g., distributed
storage). Mandating a high-level of rigor for best practice ad-
herence across the dozens of teams and hundreds of engineers
that maintain individual subcomponents is at odds with the
desire to maintain high software development velocity.

In this paper, we ask: is it feasible to limit the systems
where strict adherence to best practices is required, so that
availability of the network is not dependent on the best in-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1995

tentions of every engineer and operator? We describe our
experiences with CAPA, the “containment and prevention
architecture” we have designed and implemented with the
goal of systematically enforcing best practices while avoiding
the need for all subsystems to be encumbered by enforcement.
We enumerate all of the features we have found through expe-
rience to be necessary in order to achieve our goal.

Following [33], CAPA introduces a new regulation layer
which separates the (preexisting) production critical layer
below from the (preexisting) operations workflow layer above.
CAPA defines and enforces rules for each layer.

• The production critical layer encompasses the network
control and data planes responsible for handling appli-
cation payload. The components in this layer adhere to
strict failure domain containment.

• The operations workflow layer contains capacity plan-
ning, modeling, and rollout workflows that produce be-
havioral intents for the production layer based on busi-
ness needs. The services in this layer make no changes
to the production critical layer directly, and instead proxy
intended changes via the regulation layer.

• The regulation layer initiates behavioral changes to com-
ponents in the production critical layer, and modulates
changes by providing rate limiting, health supervision,
and fast rollback of certain operations.

Going well beyond [33], we describe in detail throughout
the paper how CAPA engages with challenges C1-C4. To
address the complexity of system interactions (C1) CAPA’s
regulation layer (i) ensures that management operations first
‘drain’ (move traffic away from) the data plane entities they
are about to mutate as a mitigation against unexpected side
effects, and (ii) enforces protected cross-section bandwidth,
a novel invariant that ensures ‘drain’ requests (and therefore
operations per (i)) are blocked until there is enough available
capacity to safely accommodate the operation (§3.1, §4.1).

To prevent correlated failures across zones (C2), the regula-
tion layer rate-limits management operations across the fleet
to prevent them from concurrently affecting too many zones,
and the production critical layer ensures via ACL enforce-
ment that outbound control messages originating from within
a zone are disallowed thereby limiting blast radius and ensur-
ing “low-dependency” bootstrap capability (§4.1, §4.2). One
of the few unavoidable exceptions for outgoing ACL enforce-
ment are BGP routing updates, which are needed because
cluster networks must maintain connectivity via the WAN. To
mitigate correlated failures that propagate through BGP, we
have developed fail-static fallback routing that allows clus-
ter networks to maintain WAN connectivity even when dy-
namic BGP routing fails (§4.3). When dynamic BGP routing
fails, our border routers continue forwarding packets through
pre-programmed static routes to existing traffic engineering
tunnels in the data plane. Although these backup routes may

be less optimal, many packets will continue arriving at their
destination thanks to end-host repathing mechanisms [52, 65]
as long as a working path exists in the data plane.

Although CAPA does not directly change the parameters of
the safety vs. operational velocity tradeoff (C3), its regulation
layer provides a central place where policies such as protected
cross-section bandwidth and maximum concurrency can be
adjusted (§4.1). Centralized policy definition reduces fric-
tion in the ongoing tussle between safety stakeholders and
operational velocity stakeholders within the company [12].

In CAPA, only systems in the production critical layer have
strict failure domain isolation requirements. Developers at
the operations workflow layer are unhindered by these re-
quirements (C4), e.g., they can rely on high-level abstractions
and build globally scoped systems which are easier to build
and reason about [43]. Since all outputs from the workflow
layer are filtered through the regulation layer before propagat-
ing to the production critical layer, we largely avoid coupling
between globally scoped workflow layer systems and the care-
fully contained failure domains in the production layer.

CAPA has helped us make considerable progress towards
systematic enforcement of production best practices, which
improves both baseline availability and failure domain inde-
pendence. We perform a qualitative retrospective analysis
of relevant outages (including before CAPA’s deployment)
to show that 84% could have been prevented or mitigated
by CAPA. Moreover, our fleet’s annual incident rate has
decreased by more than 73% from pre- to post-deployment.
As CAPA was our primary investment in reliability improve-
ments, given the substantial improvements and a number of
“near-miss” success stories, it is fair to attribute most of this
improvement to the design and deployment of CAPA. At the
same time, our work is not complete; we characterize inci-
dents where CAPA did not help, highlighting key limitations.

2 Background

2.1 Cloud deployment patterns

The grouping of servers connected by a datacenter fabric
is called a cluster, and we therefore refer to the datacen-
ter network fabric as a cluster network. Compute resources
are presented as zones (≥ 1 co-located clusters) and regions
(≥ 3 zones) to customers. Cloud customers use these build-
ing blocks for a range of deployment patterns, from non-
replicated services to multi-region replication [7, 15, 23].

In order to provide 99.9% zonal availability, each zone can
only tolerate ~4 minutes per month of downtime. This implies
that any failure event that requires human intervention will
almost certainly render a zone as out of service-level-objective
(SLO). Correlated failures (those that simultaneously affect
multiple zones) are particularly problematic as they negate
the customer’s replication efforts.

1996 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2.2 Cluster networking

As described in [18, 49, 56], Google’s software-defined net-
work (SDN), a.k.a. “cluster network service”, includes:

• The data plane switches of a Jupiter [49, 56] fabric, in-
cluding their operating system and firmware stack.

• SDN applications, responsible for programming
switches, tracking link state, traffic matrices, etc.

• The dedicated machines called network control servers
(NCS) that run the SDN applications. These machines
are completely independent from normal machines.

• The dedicated instance of the Borg [63] cluster scheduler
that manages the NCS.

• A separate control plane network (CPN) that provides
out-of-band connectivity between the NCS machines
and data plane switches.

Figure 5 depicts the relationship between these components.
Steady state behavior refers to how—in the absence of on-

going management operations—the cluster network service
treats the user payload (network packets) while responding
to changes in the runtime environment (e.g., shifts in traffic,
links failures). The primary expectation from users is reach-
ability from cluster machines to destinations both inside the
cluster and outside (through the WAN) with expected latency,
packet loss rates, and bandwidth.

We define an outage as an event where the network service
behavior fails to meet user expectations, defined precisely
as active prober packet loss or latency exceeding predefined
thresholds. Examples include blackholes, capacity loss that
leads to congestion, or suboptimal pathing.

2.3 Best practices for operations and their im-
plementation challenges

Since management operations are a common cause of outages,
several studies have analyzed outage incidents [1, 8, 25, 44]
and proposed best practices for operating networks with high
availability. We recap the most relevant practices, as well as
challenges we have faced in enforcing them.

Failure domain containment. System designers should
identify failure domains (e.g., groupings of physical entities
which share power supply, cooling, software control, etc.) and
enforce as much as isolation as possible between domains in
order to minimize the risk that a failure’s “blast radius” will
extend beyond domain boundaries.1 Failure domain isolation
also reduces the risk of lockout during disaster recovery, since

1Failure domains are hierarchical. For example, top-of-rack (ToR)
switches reside in the same physical failure domain as the machines on the
rack; each ToR connects to multiple middleblocks (another failure domain);
the middleblocks reside within an aggregation block which are designed
to be both physically independent from other blocks (separate power and
cooling supplies) and logically independent (separate software control) [18].

proper isolation requires systems to avoid cyclic dependen-
cies involved in bootstrapping the failure domain (e.g., the
cluster network service cannot depend on a distributed storage
service which in turn depends on the cluster network service).

In practice system designers need to strike a balance be-
tween minimizing blast radius and minimizing system com-
plexity and cost (C1, C2). For example, some exceptions need
to be made in practice for communication (e.g., BGP routing
messages) that is allowed to cross failure domain boundaries.

Progressive, supervised change rollout. Faulty operations
can lead to service disruptions or violations of failure do-
main containment. To mitigate these risks, changes should
be rolled out gradually. Progressive rollout alone does not
improve safety; the health of the system needs to be closely
supervised throughout the rollout, otherwise the network re-
mains vulnerable to “slow wrecks” where service behavior
gradually but continuously degrades. To keep up with the vol-
ume of operations needed to sustain the business, the system
must strike a good balance between safety and velocity (e.g.,
level of concurrency) of operations (C3).

Monitoring and upholding invariants. Safety invariants
should be monitored during change rollout to maintain sys-
tem health [25]. Black-box metrics (those that do not assume
any knowledge of the internal implementation details of the
network, and therefore capture the user’s perspective), such
as remote procedure call (RPC) latency or success rates, are
effective at detecting failures regardless of root cause as soon
as the service behavior begins degrading [1] since they cap-
ture the exact conditions that the user experiences, but they
are not effective at detecting the degradation before it occurs.
Subject matter experts can also identify white-box invariants,
i.e. those that leverage implementation details of their sub-
systems (e.g., “at least 2 replicas should be responsive”), but
white-box invariants that generalize to a diversity of system
interactions have remained elusive (C1).

Provisioning capacity headroom. Provisioning more ca-
pacity than strictly needed to accommodate traffic improves
safety. For example, headroom ensures that when a man-
agement operation (especially those that require involvement
from human technicians) becomes stuck, the operation can
remain in a paused state without risking congestion on the
unaffected portions of the network. The costs of deploying
extra capacity can be amortized by serving low priority (QoS)
traffic during periods without ongoing operations.

Fast recovery. Fast recovery limits outage duration. In prac-
tice, recovery often requires humans to understand the situ-
ation and determine a recovery strategy. In a system with
many ongoing changes, it is not always obvious what needs
to be rolled back. Systems can also fail in ways that cannot
be recovered by rollback, e.g., if the outage wipes out data, or
prevents access to the system itself – a real concern for net-
working. Automated recovery that rolls back too aggressively
can also be at odds with operational velocity (C3).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1997

Operations Workflows

 Management
Interfaces

Dependencies on
systems in other layers

are not allowed.

Dependencies scoped to the system’s failure domain are allowed, and their
interactions are unregulated. All other dependencies are disallowed.

Production Critical Systems
(The Cluster Network Service)

Cluster …

Dataplane
health
signals

Choke
Point

Cluster Cluster

Only regulation
systems can
access the

production critical
layer to make
management

plane changes.

Regulation
Systems

Behavioral changes

Behavioral changes

Figure 1: CAPA’s layering and enforcement architecture.

3 CAPA architecture Overview

Following [33], CAPA imposes layering onto our existing
software and hardware systems so that we can systematically
enforce best practices. As shown in Figure 1, these layers
consist of: (a) the production critical layer, comprising the
components (control plane and data plane) that are respon-
sible for delivery of application payload. We must ensure
failure independence (§4.2, §4.3) and high baseline availabil-
ity in this layer to meet service expectations (SLOs). (b) the
regulation layer, a small number of centrally maintained ser-
vices with exclusive access to the management interfaces in
the production critical layer. It upholds best practices by ap-
plying changes progressively (§4.1) while monitoring system
health and invoking automatic rollback of operations (“be-
havioral changes”) if needed (§3.1). The regulation layer
maintains the key invariant of ensuring sufficient bandwidth
at all cross-sections of the network (§3.1), and enforces global
rate-limiting to reduce the risk of correlated failures triggered
by faulty operations concurrently executing in different zones
(§4.1). (c) the operations workflow layer contains all other
systems responsible for carrying out network management
operations. This layer generates the intended behavior (con-
figuration) of the production critical layer, and realizes that
intent by invoking operations via the regulation layer.

3.1 Life cycle of an operation

Before detailing the mechanisms introduced by CAPA (§4),
we will walk through the life cycle of a management operation
as it progresses through CAPA’s layers.2 We choose a capacity
expansion as our example. Table 1 lists other operations.

Capacity expansion starting in the workflow layer. Based
on projected traffic demands, a forecasting service in the
workflow layer predicts that capacity will be needed on the

2§6 gives an overview of network management at Google prior to CAPA.

Category of Operation Frequency
Capacity expansion/contraction 1 per 3.6 months

Switch software upgrade 1 per 4 weeks
Controller software upgrade 1 per 2 weeks

Hardware repairs 1 per 35 minutes

Table 1: Categories of behavioral changes (“operations”) that our
networks undergo. Frequencies are computed as averages per cluster
network across all clusters over one year.

Dataplane and
CPN switches

SDN
ControllersNCS

NCS Cluster
Scheduler

(s1)

D
ataplane

health signals

Regulation Proxies

Behavioral
Changes

Switch
Proxy

SDN
Proxy

NCS
Proxy

Access Control

Rate Control

Health Checks

Rollback Monitor

(s2)

(s3)

(s4)
(s5)

Management Interfaces Production Critical Layer

Operations Workflow Layer
Capacity

Expansion
Hardware
Repairs

Software
Upgrade

…

Figure 2: Detailed view of the regulation layer.

WAN-facing links of the fabric border router (FBR) of a clus-
ter network. A capacity expansion workflow is initiated. It
begins by retrieving a model of which entities (e.g., fibers,
transceivers) will need to be added to the network [43]. The
workflow dispatches purchase orders (after human approval)
and waits for delivery of the new materials to the datacenter
floor. Once the materials arrive at the datacenter floor, the
capacity expansion workflow dispatches instructions to tech-
nicians on how to wire and qualify (e.g., verify that bit error
rate is sufficiently low for) new physical links. The physi-
cal changes needed for the capacity expansion are “append-
only,” meaning that technicians do not need to mutate any
pre-existing links carrying live traffic. We reserve spare ports
on both the FBR side and the WAN side to make this possible.

Capacity expansion processed by the regulation layer.
For scalability of routing updates, we maintain link aggre-
gation (“trunks”) at the WAN boundary: we split all WAN-
facing physical links into four trunks (each with distinct power
and cooling failure domains), and assign a single SDN control
domain responsible for routing over each trunk. Trunks are
the level of abstraction that the SDN routing stack operates
on; BGP sessions, next-hops, metric computations, etc. are
maintained on a per-trunk basis.

To bring the physical capacity into service, the capacity
expansion workflow needs to reconfigure each of the SDN
control domain’s configuration for the trunk it routes over.
The workflow first drains traffic from the links under the con-
trol domain’s purview before initiating any reconfiguration,
primarily to protect against any unexpected side-effects of the
operation; as discussed in §5, unexpected side-effects have
historically been a prevalent cause of outages. The regulation

1998 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

While FBR SDN control domains remain

Orchestrate
purchase

orders

Orchestrate
installation
instructions

Drain() single
FBR SDN

control domain

Config() single
FBR SDN

control domain

Undrain() single
FBR SDN control

domain

Request
network
model

Invoke Qual()
on newly

connected links

Figure 3: The capacity augment workflow’s state machine. The
workflow repeatedly invokes APIs in the regulation layer, which are
enumerated in Table 2.

layer refuses to process operations that do not already have
drains covering the entities they affect.

The capacity expansion workflow invokes the Drain()
API on the SDN proxy in the regulation layer (Figure 3). The
SDN Proxy (Figure 2) validates the workflow’s permission
to perform Drain() (s1), and checks fleetwide rate limits
for FBR Drain() (s2). Concurrency control and rate limits
reduce the scope of temporally correlated failures by limiting
the number of domains that may be affected (§4.1).

Enforcing cross-section capacity. The regulation layer en-
forces that all target elements should be drained before pro-
ceeding with the operation: besides protecting against inadver-
tent impact on live traffic, this invariant allows the Drain()
API to double as a semaphore that guards the network’s band-
width while allowing concurrent operations.

Figure 4 depicts how Drain() doubles as a semaphore.
Multiple operations, each requesting drains, can proceed con-
currently so long as the effective (“residual”) capacity in all
relevant cross-sections of the network are above a threshold
(see §4.1 for details). Example network cross-sections on a
per cluster network basis include: all WAN-facing links, inter-
aggregation-block links, intra-aggregation-block links, top-of-
rack (ToR) to middleblock links, and control plane network
links between SDN controllers and data plane switches [56].
Cross-sections can be overlapping and hierarchical, e.g., we
seek to prevent partitions of any particular aggregation block,
but we also protect aggregate interblock bandwidth.

Operations are blocked when the threshold is reached, but
they can proceed as soon as the previously in-progress opera-
tions conclude and restore capacity by issuing an Undrain().
The semaphore also gracefully accounts for unplanned main-
tenance (hardware failures/repairs): failures reduce effective
capacity, thus blocking subsequent planned operations.3

From a workflow’s perspective, Drain() is atomic, i.e.,
if it succeeds, the residual network is in a safe state and
the drained entities are safe to operate on. The SDN proxy
processes Drain() requests in a serial order within each clus-
ter network, which prevents deadlock so long as each work-
flow requests a single Drain() at a time. In the case that
there is insufficient effective bandwidth (or some other health

3Drain thresholds are chosen to minimize the probability that unplanned
failures cause the system to be unable to service customer traffic without
congestion. Humans are alerted in the rare event that this occurs.

Time

Av
ai

la
bl

e
C

ro
ss

-S
ec

tio
n

 C
ap

ac
ity

Maximum Capacity

Minimum Capacity Threshold
Op1
start

Op2
start

Op3
start

Op2
end

Op3
end

Op1
end

Capacity Headroom

Op3
blocked

Figure 4: Example of drain thresholds (“ensure minimum cross-
section bandwidth”) acting as a semaphore for regulating concurrent
operations. Op3 is blocked until capacity is released by Op1/Op2.

Interface Description
SDN Controllers
Config() Configuration used by SDN apps. Includes fabric

topology, routing policies, etc.
Drain/
Undrain()

Deprefer the targeted elements from the routing so-
lution. May require coordination across domains.

Dataplane and CPN Switches
Install() Updates software running on the switch.
Config() Modifies non-routing behavior, e.g., port speeds.
Qual() Initiates disruptive bit-error-rate test on a port.
NCS Cluster Scheduler
Add/Remove
Machine()

Modify set of servers running NCS jobs.

Create/Update/
DeleteJob()

Create, update or delete the jobs to run in the cluster.

Config() Updates resource management policies.
NCS
Install/Update() Install or update the firmware and OS of the server.
Restart/
Shutdown()

Reboot or shutdown the server.

Table 2: List of RPC interfaces for management plane operations
on various components in the cluster networking service (non-
exhaustive).

check fails, as we describe below), the Drain() invocation is
blocked and leaves no side effects until it is unblocked.

Applying the drain and configuration changes. The SDN
Proxy actuates the Drain() by invoking management inter-
faces on the production critical layer (s4). Once the Drain()
completes, the workflow may proceed with reconfiguration
of trunks by invoking a Config() API4 on the SDN Proxy
within the regulation layer. Table 2 describes other manage-
ment APIs provided by the regulation layer.

The proxies execute the same steps (s1-s4) to actuate the
reconfiguration. Once reconfiguration is complete, the work-
flow will issue an Undrain() and repeat starting from the
Drain() for the next FBR SDN control domain.

Continuous health checks. Network health can change
rapidly and unexpectedly, e.g., from hardware failures, sud-
den traffic shifts, or unexpected side-effects of operations.

The regulation layer continuously checks two types of
health signals—black-box and white-box signals (introduced

4The format of the Config() change is arbitrarily defined by applica-
tion developers; in this case it describes which physical links the routing
controllers should aggregate together as a trunk.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1999

in §2.3)—both before (s3) and during (s4) the execution of
operations. While black-box signals are a lagging indicator of
problems (e.g., discards occur only after congestion reaches
unsafe levels), some white-box signals can act as preventive
leading signals. Protected cross-section bandwidth is an ex-
ample of a white-box invariant, and is the only invariant we
have found so far that generalizes to all operations. Other
examples include ensuring a minimum number of SDN ap-
plication replicas are live, checks on whether any parts of
the cluster networks have entered fail-static [18], and bans on
certain orderings of operations that are known to cause issues.
Automated drain rollbacks. When servicing a Drain() in-
vocation, the SDN Proxy actuates the request incrementally
by repeatedly invoking management interfaces in the produc-
tion critical layer for a subset of the entities referenced in the
Drain(). If health checks ever fail (e.g., we detect packet
discards, or effective capacity drops below safe thresholds)
and only a subset of the entities in the Drain() have com-
pleted, the SDN Proxy can automatically roll back (s5) the
partially executed Drain(). If a Drain() has already been
acknowledged as completed to the workflow, we cannot cur-
rently rollback those drains. As part of our future work (§6),
we are exploring automated rollback of the operations that
proceed after the Drain() has been acknowledged.

4 Detailed Design

4.1 Rate-Limiting & Concurrency Control
As described in §3.1, the regulation layer performs rate-
limiting and concurrency control. Rate-limiting helps main-
tain failure independence by limiting temporally correlated
outages that arise from concurrent operations. Rate-limiting
also maintains baseline availability by increasing the proba-
bility that issues are caught early in low-risk cluster networks.
Rate-limiting enforcement. Google uses MALT [43] to
represent the elements in our network, their attributes, and
their relationships with each other. Using this representation,
a global service in the regulation layer builds a fleet-wide
model of cluster level failure domains and sub-cluster fail-
ure domains (e.g., aggregation blocks) within each cluster.
The global service also provides a rate-limiting policy con-
figuration to set the maximum concurrency allowed across
(hierarchical) failure domains to balance velocity and pro-
duction risk. Policies are jointly decided by stakeholders in
engineering and operations teams on a per use-case basis.

Equipped with modeling and policy, the global rate-limiting
system ensures that only the desired number of entities are
operated on concurrently or within a time epoch. For example,
we can set policies to limit concurrent capacity expansions
to only N clusters globally, or require 15 minutes between
successive operations on each of all 4 FBR domains within
each cluster such that at most N clusters can lose at most 25%
of FBR capacity within a 15-minute window.

The rate-limiting system accounts for the full hierarchy of
failure domains in making its decisions, e.g., to perform an
operation such as a Drain() upon a middleblock in a partic-
ular cluster, all rate-limiting policies that apply to Drain()
operations will be checked. Any ongoing operations in that
middleblock will be checked against policies that apply to
middleblocks; then, ongoing operations in the aggregation
block that the middlebock resides in will be checked against
policies that apply to aggregation blocks, and so on through
the cluster, zone, region, and global levels [56]. The oper-
ation will be allowed to proceed only if all policies defined
at all levels of the hierarchy deem that the operation is in
compliance with rate-limiting.
Concurrency control and capacity headroom. Rate-
limiting policies are defined according to the scope of entities
that operations intend to mutate. In some cases, operations
affect a larger set of entities than intended. Protected cross-
section bandwidth and Drain() as a semaphore further pro-
tect against unintended side-effects and “slow wrecks” where
rollout supervision fails to detect degradation.

The threshold for protected cross-section bandwidth (capac-
ity headroom) is largely determined by the level of redundancy
designed into the network. Across most dataplane cross-
sections (exceptions in §4.4) we employ 4 independently
operable (sub-cluster) failure domains; only 3 are needed
to maintain sufficient capacity to avoid outages, leading to
25% capacity headroom. In our example (§3.1), there are 4
independent FBR domains. Similarly, within an aggregation
block, we have 4 middleblocks, and we have 4 interblock
routing domains [49]. In the control plane network, we gener-
ally have 2-way redundancy of switches and paths, so CAPA
does not allow draining either unless both are healthy.

4.2 Failure Domain Containment
Separating the operations workflow layer from the produc-
tion critical layer, and rate-limiting operations through the
regulation layer helps prevent temporally correlated failures.
However, this protection is only effective if the failure do-
mains themselves are well contained.

Appropriately defined failure domain boundaries should
align physical points of failure (e.g., power and cooling) with
software control. Once failure domain boundaries are defined,
we must audit dependencies between software components to
ensure that there is no unintentional communication across
boundaries. Most interactions among our system components
take place over RPCs.5 For containment, cluster network ser-
vice components within one datacenter network are not al-
lowed outbound or inbound modify6 RPCs to other cluster net-
works or other layers (depicted in Fig. 1). To enforce this rule
we use a combination of (1) token-based authentication [26],
e.g., ACLs to prevent all outbound RPCs, (2) locking down

5Exceptions include BGP (§4.3), NTP (§4.4), and DHCP.
6We allow read-only inbound RPCs to facilitate monitoring.

2000 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

WAN(s)

CPN

NCS Cluster

Middle Block
Switches

ToR Switch

CPN Links
Data Plane Links
WAN Peering Links
Low-dep Boundary
CPN Router

NCS Machine Rack

Machine Rack

Aggregation Blocks

OOB (out-of-band) CPN Links to Dataplane Switches

Fabric Border
Router Block

…

Figure 5: The low-dependency boundary encompasses all elements
of the data plane, control plane network (CPN), network control
servers (NCS), and their software. RPCs to any services running in
normal machine racks or across the WAN are disallowed. (Interblock
connectivity and certain other elements not shown for legibility.)

all inbound management interfaces in the production critical
layer to the proxies in the regulation layer,7 and (3) monitor-
ing cross-domain RPCs to/from system components to detect
any interfaces that may inadvertently remained unprotected.

Failure domain containment enforcement extends to the
transitive closure of all the dependencies of the components
in the production critical layer, creating a foundational failure
domain containment structure that is robust to erosion as
the system evolves. We encourage but do not enforce the
same failure domain enforcement rules for sub-cluster failure
domains (e.g., individual aggregation blocks) in the cluster.

Low-Dependency Requirements. Our restriction on out-
bound RPCs implies that all components within the produc-
tion critical layer must be “low-dependency”, meaning that
dependencies outside the cluster network service are disal-
lowed. Figure 5 presents all the elements within the low-
dependency boundary. All cluster network service software
on switches and SDN control applications on NCS machines
must be designed without any outside dependencies on soft-
ware services that run in the normal machine racks either in
the same cluster or another cluster. Low-dependency is an ex-
pensive requirement to meet as it precludes use of convenient,
broadly understood, high-level infrastructure services, such
as multi-zonal replicated storage systems, work queues, load
balancers, authentication mechanisms, etc.

Ultimately this burden is required considering (i) avoid-
ing circular dependencies on network connectivity simplifies
bootstrap and disaster recovery (further discussion in §6), and

7We are further strengthening these boundaries using separate crypto-
graphic scopes for each failure domain. This reduces the principals that may
act across failure domains even in the face of security incidents.

(ii) the requirement encourages a minimal “trusted comput-
ing base” of services that are absolutely needed to maintain
steady state behavior. Minimalism reduces the components in
the production critical layer and therefore reduces the number
of subsystems that can cause an outage.

4.3 Static routes for WAN interconnects

Inter-domain BGP routing updates are one of the few un-
avoidable exceptions to RPC boundary containment. WAN
connectivity requirements are in tension with failure domain
isolation as BGP messages themselves are a vector for cor-
related failures. BGP has multiple properties that make it
source of historical outages at Google, including:

1. BGP speakers disseminate information rapidly, which
can cause multi-zonal outages from a bad update.

2. BGP speakers lack a global view and make uncoordi-
nated best-path decisions; this can result in replicated
speakers creating loops (each peer believing the other has
the preferred next-hop) and unintended route withdraws
(e.g., when loops are detected, or when each speaker
deprefers its own next-hops).

3. In default configurations, BGP ties together liveness of
the data plane and the control plane through keep-alive
messages. Upon three missed keep-alive messages, the
peer is assumed to have failed and routes are withdrawn,
even if the data plane is healthy. This is particularly
problematic for SDN where the BGP speaker is separate
from the dataplane switches.

To achieve failure domain isolation we require additional
defense-in-depth for BGP. We rely on BGP message filter-
ing [13] for defending against (1) and (2), and implement a
static route fallback policy for the WAN and CPN routes for
(3). Conceptually, fail-static routing splits BGP-based connec-
tivity into two parallel routing systems: traditional, dynamic
(optimal) routing via BGP, and a simpler, rarely changing,
safe but suboptimal set of “static” routes. The fail-static policy
makes traffic fall back to the static routes whenever dynamic
routes become unavailable, thus substantially reducing corre-
lated failures that are triggered by unavailability of the BGP
control plane without complete loss of the data plane.8

From the perspective of the fabric border routers within the
cluster network, static routes are configured as a virtual output
port that switches can send traffic out in the event of dropped
dynamic BGP messages. We implement static routes in the
WAN as either traffic-engineering tunnels that fail-static (for
B4 [30]), or redistribution of cached routes even when BGP
keep-alive timers have expired.

8In the event of complete data plane partition, packet loss will still occur
once the packets reach the partition.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2001

Static routes can be updated progressively in accordance
with best practices, at the cost of temporary mismatch with pri-
mary (BGP) routes. In an application of the end-to-end prin-
ciple [53], these periods of mismatch are generally acceptable
thanks to an end-host mechanism that repaths onto healthy
paths [52]. Since cluster networks represent leaf nodes of the
WAN, we have so far been able to prevent loops while rolling
out updates to static routes (see 4.5 for discussion).

4.4 Exceptions
We allow a few exceptions to the Drain()-before-operate rule
when we conclude that the benefits of simplification outweigh
the risks. For example, except for decommission operations,
we do not require Drain() for changes to ToR switches as
their failure domain is a handful of machines; further, many
racks do not have redundant ToRs, so draining the ToRs would
require vacating the underlying machines. Similarly, although
we require Drain() before config changes to (sharded) FBR
control domains, we have concluded that sharding of SDN
control domains is not worth the complexity cost for our
aggregation blocks. We therefore allow config changes to
those control domains without requiring the data plane entities
under their purview to be drained.

We also allow a few exceptions to the “low-dependency”
restriction, which we permit either to ease the transition from
a historical dependency, e.g., Network Time Protocol (NTP)
from another cluster during bootup, or as an optimization,
e.g., host level telemetry to drive optimal traffic engineering.
These exceptions create a lockout risk, but we require the
teams to have well-tested fallback mechanisms so that the
cluster service can recover in absence of these dependencies.

4.5 Known Limitations
No Progress Guarantees. It is possible for workflows to be
blocked indefinitely by CAPA’s safety policies. In such cases
a human operator must intervene. For example, although
CAPA prevents workflows from deadlocking on each other
(by serializing drains on a per-workflow basis), a single work-
flow can still deadlock on itself by inadvertently requesting
concurrent drains and assuming they will be processed atomi-
cally. A deadlocked workflow blocks other workflows.
Drains Can Degrade Application Performance. Our de-
mand forecasting systems seek to provision capacity so that
high priority customer traffic can be serviced without conges-
tion. We allow customers to send extra low priority (‘BE’)
traffic in order to amortize the cost of capacity headroom,
but we reserve the right to drop BE traffic when maintenance
needs to perform drains. That said, CAPA does not formally
enforce these contracts with customers; in practice we have
found that some customers complain when small percentages
of BE traffic is dropped, and applications can also send high
priority traffic in excess of planned capacity.

No Provable Guarantee of BGP Loop-Freeness. Although
we have never experienced loops introduced by BGP static
routes (e.g. a loop introduced when one peer continues to use
dynamic routes while the other falls back to static routes), we
have no proof that they are impossible.

5 Evaluation

We evaluate CAPA with three methodologies:9

1. We enumerate examples of real production incidents
where CAPA successfully prevented or mitigated out-
ages, to examine CAPA’s mechanisms in practice.

2. We conduct a comprehensive retrospective analysis of
outages affecting our cluster networks from 2018 - 2022
that had behavioral change as their root cause to un-
derstand where CAPA would have been beneficial and
where CAPA still has safety gaps. Some of these outages
pre-dated CAPA, due to the fact that we incrementally
rolled out CAPA’s features over multiple years. That
said we verify that CAPA’s (current) safety mechanisms
do in fact mitigate/prevent outages where CAPA would
have been applicable by requiring as part of our outage
postmortem process that engineers eventually reproduce
the outage conditions in an automated test environment
to verify that (new) CAPA features work as intended.

3. We examine quantitative data (active network probes)
to show incidence trend and severity of management
plane related outages. Although this does not establish
causality, CAPA was our primary investment in relia-
bility improvements; given quantitative correlation and
the first two qualitative evaluations, we can reasonably
attribute these gains to CAPA.

For both the qualitative analysis and the quantitative analy-
sis, we only consider outages which exceeded ≥ 5% packet
loss across all active probers (§5.4) in at least one cluster net-
work, and lasted for ≥ 5 minutes. We refer to such incidents
as “bad fabric incidents.” A single outage may cause multiple
bad fabric incidents if it affects multiple cluster networks.

5.1 Methodology Discussion
We must cope with three challenges in evaluating CAPA:

1. Our customers will not tolerate us running randomized
control trials (“A/B tests”) on our deployed reliability
mechanisms. Moreover, even if we were able to do so,
there is strong evidence that the underlying distribution
of outage severity is memoryless (“long-tailed”), imply-
ing that we would need to run A/B tests over a multi-year
period for statistical soundness.

9Since CAPA does not directly change the parameters of the safety vs.
operational velocity tradeoff, we consider it out of scope.

2002 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2. Cluster networking, operational workflows, fleet size and
CAPA’s capabilities are constantly evolving; we have in-
crementally rolled out its features over several years, and
continuously make modifications to our safety policies.
Hence, there is no single system to be evaluated.

3. We cannot gather a comprehensive list of all “near-miss”
success stories where CAPA prevented outages because
it is infeasible to precisely define those circumstances.

While we cannot establish causality, we believe our eval-
uation methodology effectively illuminates CAPA’s impact,
particularly given that CAPA was our only investment into
hardening against faulty management operations. We em-
ploy the same qualitative analyses internally to evaluate new
investments into availability improvements.

5.2 Success stories
We first describe a selection of incidents where CAPA suc-
cessfully prevented or mitigated outages.
Layer separation, rate limiting, health monitoring and
fail stop. As noted, Google uses a network model [43] to
express intended state of our networks. Operational systems
continuously monitor differences in the current and intended
state of the network, and initiate operations to apply the in-
tended state. A bug in the modeling system mistakenly up-
dated the models for all the clusters globally. Automation,
unaware of the buggy nature of the change, detected the dif-
ferences and initiated a huge number of concurrent operations
to apply new configuration to all dataplane switches.

CAPA limited the concurrency and rate of changes, moni-
tored the health of cluster networks, and raised alerts about an
unusual backlog of operations. The Drain()-before-operate
rule prevented the few operations that were allowed within the
rate limits from causing congestion. Separation between the
operations workflow layer and the production critical layer
prevented a buggy global intent from propagating unabated
to the fleet, and rate limiting created temporal separation
between operations that—if allowed to execute immediately—
would have created correlated failures across multiple zones.
Ensuring disruptive operations are covered by drain. A
workflow responsible for decommissioning ToR switches had
a bug resulting an intent to decommission ToRs across multi-
ple aggregation blocks instead of the single originally planned
block. The bad intent propagated through several planning
systems, but the “ensure operations are covered by drain” val-
idation at the regulation layer rejected the downstream intent
after detecting that some ToRs were still serving traffic. If the
intent had been allowed to propagate to routing systems, the
machines under those ToRs would have become partitioned.
Protected cross-section bandwidth. Our switch config roll-
out workflow first checks if a switch is drained for repairs,
and if so skips pushing configs to that switch until the repair
case is resolved (since the switch is likely unresponsive). The

database that tracks switches under repairs was undergoing
a migration to a new format; to reduce human toil during
the migration, the config rollout workflow was modified to
query either the old or new format. The rollout workflow
misinterpreted the new format, causing it to skip pushing
configs to switches that were not under repairs. At a later
point, another workflow started to upgrade the software of
the switches. The upgraded software on the skipped switches
was unable to interpret the stale config, causing the switches
to crash and consequently be excluded by routing. The result
was capacity imbalance at the WAN boundary. The regulation
layer detected that cross-section bandwidth had dropped be-
low safe thresholds, and stopped the switch software upgrade
workflow from breaking additional switches.

BGP fail static. Maglev [14] is a datacenter-scale load bal-
ancing service. It relies on virtual IP addresses (VIPs) which
map to machines in the datacenter. Jupiter’s traffic engi-
neering system [49] relies on telemetry about traffic volume
to program optimal paths to IP prefixes. A bug in Maglev
software created telemetry reports with invalid VIP prefixes,
which were duly discarded by Jupiter’s traffic engineering
system. However, without telemetry data, routing entered a
fall-back mode using equal-cost-multi-path (ECMP) instead
of the more efficient weighted-cost-multi-path (WCMP). As
a result, several equal-cost prefixes were aggregated to a sin-
gle, larger IP prefix that was not present in the export list for
the WAN, causing the BGP prefix to be withdrawn. When
the WAN stopped receiving dynamic advertisements, CAPA’
static routes kicked in, successfully keeping WAN traffic flow-
ing when it otherwise would have started blackholing.

5.3 Retrospective analysis of outages

We retrospectively analyze all outages triggered by manage-
ment operations that resulted in at least one bad fabric incident
between 2018 - 2022. Many incidents pre-dated CAPA. We
analyze which of CAPA’s mechanisms either were, would
have been, or still are not applicable. Our retrospective analy-
sis does not establish statistical significance since the size of
the dataset is insufficient; our goal is instead to gain qualita-
tive insights into CAPA in the context of real incidents.

As Table 3 shows, CAPA’s mechanisms either were or
would have been applicable to 84% of outages. Table 3
demonstrates that no single ‘magic-bullet’ prevention mech-
anism exists, due to our systems’ wide diversity of fail-
ure modes. Some level of rate limiting was in place dur-
ing most outages, but without additional mechanisms (e.g.,
protected capacity), management workflows caused “slow
wrecks” where the network gradually degraded until an out-
age occurred. Similarly, gaps in failure domain containment
allowed a few operations to affect many failure domains.
5.3.1 Retrospective case studies

GCP Incident 19009. A significant outage [24] affected
Google services globally due to misalignment of job schedul-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2003

Mechanism Prevent or Mitigate

Rate limiting, monitoring, and fail stop 74%
Protected cross-section bandwidth 47%
Failure domain containment 11%
Fail-static for WAN interconnects 21%

At least one applicable mechanism 84%
No applicable mechanism* 16%

Table 3: Counterfactual analysis of which CAPA mechanisms ei-
ther were applicable or would have been applicable in mitigating
or preventing all outages which resulted in at least one bad fabric
incident and which had an operation as root cause trigger from 2018
- 2022. Multiple mechanisms could be applicable for any particular
outage. *See §5.3.2.

ing and SDN controller (Orion) failure domains, where a
single job controller managed multiple Orion domains. A
reconfiguration intended for a single job scheduler triggered
cascading failures that brought down all Orion jobs for a
large number of zones. This outage underscored the need for
considering the transitive closure of dependencies for failure
containment: although the SDN controllers, NCS machines,
dataplane switches were all in separate failure domains, the
job scheduler was not considered as part of the containment.

This outage could have been limited to a single cluster with
proper failure domain containment. BGP fail-static would
have further mitigated the outage since WAN dataplane con-
nectivity was functional despite failed Orion jobs.
IncidentB. Dataplane switches require a reboot after cer-
tain operations, and are expected to signal to regulation layer
proxies to trigger reboot. For a new management operation,
the switch failed to signal the reboot requirement. A switch
configuration rollout exercising this new operation gradually
caused a large number of switches to enter an unhealthy state.
Orion misinterpreted the lack of responsiveness from these
switches as being due to CPN connectivity issues, and then
entered massive fail-open (MFO) where it refused to program
new routes [18].10 MFO complicated recovery, since engi-
neers had to find an emergency override to reboot undrained
switches rather than typical drain APIs.

If CAPA had required drains before pushing configs to
fabric switches (as it does now), impact could have been
avoided. Even if drained switches still broke upon receiving
the new config, not all switches would have been affected
since protected cross-section bandwidth would have halted
drain requests (and therefore config pushes) once the affected
entities in the cross-section exceeded a threshold.
IncidentC. The workflow responsible for choosing locations
of new machine racks on the datacenter floor relies on human

10MFO is a feature in Orion wherein routing apps halt upon unresponsive-
ness from a large number of dataplane switches. The premise is that switches
may become disconnected from the routing apps, but may be serving the
dataplane just fine, so it is better to keep the current forwarding state instead
of routing around unresponsive switches and steering traffic towards a small
number of responsive switches thereby creating congestion.

provided layout. An error caused racks to be targeted to the
wrong datacenter. A ToR turnup workflow concluded that
rather than adding new ToRs, it needed to update locations of
existing ToRs. To do this, the workflow deletes entities in the
model and adds them back with updated locations. A different
workflow designed to monitor new intents and push configs
detected the difference between the delete step and the add-
back step and inadvertently decommissioned a large number
of live ToRs. Black-box monitoring did not detect packet loss,
since the monitoring system itself decommissioned probing
jobs running under those deleted ToRs.

The impact could have been avoided if CAPA had checked
whether drains were in place before instructing the SDN to
remove ToRs.11 Rate limiting configuration pushes to the
controllers of the aggregation blocks would not have stopped
the operations since the health signal was also affected.
5.3.2 Retrospective and other known safety gaps.

We share experiences with a selection of outages where
CAPA’s mechanisms did not fully prevent an outage. We also
list other known safety gaps. These highlight that as much as
CAPA has improved reliability, there is still work to do.

IncidentD. During a capacity augment, operators inad-
vertently disconnected undrained physical links. CAPA’s
Drain()-before-operate works well to prevent software from
making such mistakes, but not humans in the physical world.
We have invested in user experience improvements (e.g.,
pagers, real-time feedback) to reduce these risks, but actions
in the physical world cannot be programmatically stopped.

IncidentE. A bug in interaction between Drain() and rout-
ing applications caused BGP announcements to be revoked
before intra-fabric routing finished moving outbound traffic
away from WAN-facing links. This resulted in an abrupt
loss of forwarding state and packet loss blips for 7 minutes
until the intra-fabric routing converged. We have drawn two
lessons from this incident: (i) Unsurprisingly, CAPA’s own
mechanisms can have bugs and hence it is important to have a
multi-layer defense. Draining traffic (even if buggy), together
with rate limiting as a second layer of defense, contained the
duration and the blast radius. (ii) It is important to monitor
that each layer is working as intended, so that multiple layers
are not simultaneously impaired thereby increasing risk.

IncidentF. A workflow made a modeling change that affected
both switch and Orion configs. Later, an unrelated workflow
inadvertently pushed those configs to Orion but not switches.
This resulted in a version mismatch, causing switches to
fall back to ECMP rather than WCMP. ECMP resulted in
higher utilization on links with slower speeds. The issue went
undetected until the workflow pushed config to enough do-
mains to cause congestion and packet loss. Although CAPA’s
cross-section capacity monitoring was in place, the imple-

11We except ToRs from Drain()-before operate for config pushes direct
to a single ToR (§ 4.4), but we still require drains for configuration changes
whenever a large multiple ToRs are affected simultaneously.

2004 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Metric 2018 2019 2020 2021 2022

Bad Fabric Incidents 1.0x 2.36x 0.28x 0.23x 0.27x
Cumulative Duration 1.0x 5.96x 0.44x 0.10x 0.18x

Table 4: Counts and cumulative duration of “bad fabric incidents”
across the fleet (cluster networks with ≥5% loss for ≥5 minutes)
that had an operation as their trigger, normalized to the number of
switches in the fleet at the beginning of the year, relative to the
normalized count for 2018. A single cluster network may undergo
≥1 bad fabric incident. See 5.1 for interpretation of this data.

mentation at the time (now fixed) failed to account for ECMP
behavior over heterogeneous link speeds. This outage illus-
trates a broader challenge: although cross-section capacity is
a remarkably effective health signal, we must continuously
update our interpretation of capacity signals to keep astride
with advancements in routing.
Other known safety gaps: Beyond these three cases, we are
aware of a number of other safety gaps:
Organic failures: CAPA is designed to mitigate impact from
planned changes rather than organic failures such as link cuts
(though it does protect capacity headroom, thereby increasing
the chance that the network can accommodate traffic despite
failures). Similarly, CAPA does not address outages triggered
by coincidental or malicious user behavior (e.g., DDoS at-
tacks, or packets of death). We consider protection against
such problems as part of the baseline functionality of the
cluster network service which should be addressed through
multi-path routing, testing, packet filtering, etc.
Infrequently used disaster recovery tools: In CAPA we have
allowed both the workflow and regulation layers to be high
dependency, i.e., the services in this layer can depend on
higher layer services such as distributed storage that poten-
tially depend on multiple cluster networks. This allows cre-
ation of cyclic dependencies which create lockout risk during
large-scale outages (e.g., GCP Incident 19009 [24]), where
sufficient clusters are degraded to render the higher level ser-
vices unavailable. To address this gap, we provide separate
“breakglass” management tools that can be used when low-
dependency recovery is required. Fortunately these tools
are infrequently used; but infrequency of use increases the
chances of encountering bugs when the tools are actually
needed. We address this by regular testing at smaller scale
and maximizing the shared libraries between the breakglass
tools and systems used on a day-to-day basis.

5.4 Quantitative data
Application-perceived availability is determined by the source,
destination, and service class (priority) the application uses to
send messages. We employ active probing where a subset of
machines continuously send packets of various QoS classes
to each other in order to monitor network availability.

Table 4 demonstrates trends in total bad fabric incidents
caused by management operations in a five-year period (2018

- 2022). We normalize these counts to the size of our fleet
(measured in terms of # of fabric switches across all cluster
networks) since the number of behavioral changes (and there-
fore potential # of outages) we execute is proportional to the
size of the fleet. Table 4 shows a 73% reduction in normalized
bad fabric incidents over the period.

Table 4 also shows cumulative duration of bad fabric inci-
dents caused by management operations. We observe a 82%
reduction in normalized duration. A single large outage in
2019 [24] accounts for 73% of cumulative bad fabric duration.

6 Discussion

Does CAPA apply beyond cluster networking? Failure
domain containment enforced via RPC ACLs is a generic
mechanism that is already used by other systems (e.g., cluster
schedulers). Layered enforcement and regulation (Fig. 1) is
also applicable to other production services, but it requires
clear separation of management plane interfaces from data-
plane interfaces, something that not all services do consis-
tently. Lastly, the idea of defense-in-depth through progres-
sive and supervised rollout is applicable to other services, but
it needs to be adapted to the specific context. For example, for
cluster scheduling it could mean that the resources allocated
to a service should be reduced progressively and should never
go below a configured threshold.

Is CAPA provably safe? CAPA’s architecture is based on
principled reasoning about failure domain containment and
separation of operational systems from the cluster network
service, but we cannot claim that it is provably safe, espe-
cially given reliance on domain specific heuristics, exceptions
(§4.4), and known safety gaps (§5.3.2). It is unclear whether
provably safe systems for continuously evolving and com-
plex systems like cluster networking are feasible, but the data
(§5.2, §5.4) clearly demonstrate that CAPA is effective for
real-world large-scale systems, while also providing motiva-
tion to continue to invest into improvements.

Should we use progressive updates in the production crit-
ical layer itself? In §5, we see a number of incidents that are
caused by rapidly propagating updates (e.g., route program-
ming) within the production critical layer. We have pondered
whether to rate-limit route programming in the production
critical layer itself. To date, we have decided against it, as
fast responses to organic events—such as switch/link failures,
changes in traffic conditions, or route availability from adja-
cent domains—are critical for predictable performance and
low packet loss in the steady state. While rapid route pro-
gramming undoubtedly increases risk of failures, we believe
the tradeoff is worthwhile so long as failures are rare and
contained to one cluster (ideally sub-cluster failure domains).

How has CAPA evolved? What’s next? CAPA’s design
is informed by experience accumulated since Google built
its first datacenter network. The datacenters were built with

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2005

failure domain separation at physical, data and control plane
levels, but this separation was not enforced. We relied on
manual management operations (scripts invoked by humans)
in the early days, and then factored out management plane
functionality into dedicated services to reduce duplication
across scripts. Security and reliability concerns led to ac-
cess controls for these services. Datacenters becoming the
basis for Google Cloud accelerated both capacity and feature
growth, and underscored the need for more reliable opera-
tions. We invested in more advanced network modeling [43],
automation in operations, and principles of layering for pro-
duction operations. Large-scale outages like GCP incident
19009 [24] brought additional emphasis on considering the
full transitive closure of dependencies in failure domain con-
tainment, BGP fail-static, and low dependency recovery. Our
ongoing focus is on preventing erosion of enforcement over
time and driving new directions that will further improve the
safety and velocity of operations.

Automated rollback of operations beyond Drain(): An inter-
esting side-effect of 82% reduction in elapsed outage duration
is that newer outages are almost always unique and difficult
to prevent with simple principles, even with the benefit of
hindsight. This elevates the need for faster recovery. We are
working towards fully intent-driven network management that
will allow us to quickly roll back to known good state upon
failures. For this, we are extending rollback support beyond
in-flight Drain() operations, as well as uplevelling the reg-
ulation layer APIs to more directly express intent instead of
using the current imperative APIs (Table 2).

Upleveling SDN’s management interface: Today, workflows
reach their intended state by sequencing low-level imperative
APIs. Workflows are not aware of each other’s existence or
intent. CAPA has created safe guards that prevent outages,
but workflows are still vulnerable to data races and indefinite
blockages. We are working on up-leveling APIs and increased
awareness of concurrent workflows within the regulation and
production critical layers to prevent these outcomes.

7 Related Work

Layering for network management. In a keynote lecture,
Koley describes ZTN, a three-layered architecture that regu-
lates network management operations applied to Google’s
B2 and B4 wide area networks [33]. At the operational
layer, ZTN describes the importance of device-agnostic mod-
eling with MALT [43] and ‘what-if’ change planning with
TopoPlan [2] in advance of realizing those changes through
lower layers. ZTN introduces the concept of isolating op-
eration workflows from data/control planes by interposing
a regulation layer which can enforce best practices. CAPA
adopts the same principle of interposing regulation.

ZTN only briefly touches on other topics such as rate lim-
iting and invariant monitoring. We go well beyond ZTN by

describing the mechanisms we have built into CAPA which
we have found to all be necessary to ensure safety, includ-
ing drain-before-operate, protected cross section bandwidth,
fleet-wide rate limiting, ACL enforcement and auditing, low-
dependency requirements, and BGP static routes.
Production best practices. Several papers [1, 8, 25, 40, 44]
describe reliability best practices for distributed systems. We
do not propose novel best practices; we describe our expe-
rience in what mechanisms are necessary to systematically
enforce them within a thin “regulation” layer.
Network management. The literature on network analysis
and testing [28, 55, 67], simulation and emulation [35, 38, 69],
verification [10, 16, 19, 20, 31, 32, 50, 57] and synthe-
sis [37, 39, 42, 45, 59, 64] can be applied to change man-
agement. These mechanisms test or verify if changes are
safe to proceed before releasing them, or automatically gen-
erate correct configurations from intent. WAN failure do-
main containment [34], network update and change plan-
ning [2, 3, 36, 51, 54, 58, 68], drain operations [62], impact
analysis [21, 60, 68] and failure mitigation [17, 66] are also
applicable. These mechanisms allow network operators to
manage changes safely and effectively. This paper describes
our experience piecing together such mechanisms into a co-
hesive architecture. While existing literature describes sin-
gular aspects of systemically enforcing best practices, we
are unaware of any work describing experiences holistically
enforcing all best practices.
Failure studies. Prior studies [5, 27, 48, 48] have shown the
network to be among the major causes of cloud service out-
ages. Along that line, many failure studies particularly focus
on data center networks [4, 9, 11, 22, 25, 37, 38, 41, 47, 48,
61, 66, 70]. Among them, some studies [25, 40, 41] have
conclusions that motivate our paper or align with our obser-
vations: (1) planned changes and maintenance contribute to
a majority of the outages; (2) failures are inevitable in large
scale complex systems, and we need to proactively prepare for
failure (e.g., with failure domain isolation and fast recovery).
Though our paper examines outage case studies as a qualita-
tive evaluation of CAPA, our goal is not to comprehensively
analyze the characteristics of observed outages.

8 Conclusion

Production best practices are only effective if they can be reli-
ably enforced. CAPA demonstrates an approach for providing
enforcement of best practices without relying on the good in-
tent of every engineer and operator. CAPA has allowed us to
maintain availability while facing the practical realities of a
continually evolving and large scale production environment.

Even with a 73% reduction in incident rate and 82% re-
duction in outage duration, the pressure to deliver higher
availability, higher operational and feature development ve-
locity, and increased complexity in cluster networking means
that this area remains ripe for further innovation.

2006 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Heather Adkins, Betsy Beyer, Paul Blankinship, Pi-
otr Lewandowski, Ana Oprea, and Adam Stubblefield.
Building Secure and Reliable Systems: Best Practices
for Designing, Implementing, and Maintaining Systems.
O’Reilly Media, 2020.

[2] Mohammad Al-Fares, Virginia Beauregard, Kevin
Grant, Angus Griffith, Jahangir Hasan, Chen Huang,
Quan Leng, Jiayao Li, Alexander Lin, Zhuotao Liu,
et al. Change management in physical network life-
cycle automation. In 2023 USENIX Annual Technical
Conference (USENIX ATC 23), pages 635–653, 2023.

[3] Omid Alipourfard, Jiaqi Gao, Jérémie Koenig, Chris
Harshaw, Amin Vahdat, and Minlan Yu. Risk based
planning of network changes in evolving data centers. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP 2019. ACM, 2019.

[4] Peter Bailis and Kyle Kingsbury. The network is reliable.
Commun. ACM, 2014.

[5] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle.
The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines, Second Ed. Syn-
thesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2013.

[6] Tom Bedford. Internet outages: Spotify, Discord
and more are finally back up. In TechRadar, 2022.
https://www.techradar.com/news/live/internet-down-
spotify-discord-facebook-and-more-are-all-suffering-
outages.

[7] Anna Berenberg and Brad Calder. Deployment
Archetypes for Cloud Applications. ACM Computing
Surveys, 2022.

[8] Betsy Beyer, Chris Jones, Jennifer Petoff, and
Niall Richard Murphy. Site Reliability Engineering:
How Google Runs Production Systems. O’Reilly Media,
Inc., 1st edition, 2016.

[9] Ayush Bhardwaj, Zhenyu Zhou, and Theophilus A. Ben-
son. A Comprehensive Study of Bugs in Software
Defined Networks. In 51st Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Net-
works, DSN 2021. IEEE.

[10] Yiyang Chang, Sanjay G. Rao, and Mohit Tawarmalani.
Robust Validation of Network Designs under Uncertain
Demands and Failures. In 14th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2017. USENIX Association.

[11] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang,
Saman Kazemkhani, Rob Sherwood, Ying Zhang, and
Hongyi Zeng. FBOSS: building switch software at
scale. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM 2018. ACM.

[12] David D Clark, John Wroclawski, Karen R Sollins, and
Robert Braden. Tussle in cyberspace: defining tomor-
row’s internet. In Applications, technologies, archi-
tectures, and protocols for computer communications,
2002.

[13] Jérome Durand, Ivan Pepelnjak, and Gert Doering. BGP
operations and security. RFC, 7454:1–26, 2015.

[14] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A Fast and Reliable Soft-
ware Network Load Balancer. In 13th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 16).

[15] Google Compute Engine. Designing resilient sys-
tems. https://cloud.google.com/compute/docs/
tutorials/robustsystems.

[16] Seyed Kaveh Fayaz, Tushar Sharma, Ari Fogel, Ratul
Mahajan, Todd D. Millstein, Vyas Sekar, and George
Varghese. Efficient Network Reachability Analysis
Using a Succinct Control Plane Representation. In 12th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016. USENIX Association.

[17] Sifat Ferdousi, Massimo Tornatore, Ferhat Dikbiyik,
Charles U. Martel, Sugang Xu, Yusuke Hirota, Yoshi-
nari Awaji, and Biswanath Mukherjee. Joint Progressive
Network and Datacenter Recovery After Large-Scale
Disasters. IEEE Trans. Netw. Serv. Manag., 2020.

[18] Andrew D. Ferguson, Steve Gribble, Chi-Yao Hong,
Charles Killian, Waqar Mohsin, Henrik Muehe, Joon
Ong, Leon Poutievski, Arjun Singh, Lorenzo Vicisano,
Richard Alimi, Shawn Shuoshuo Chen, Mike Conley,
Subhasree Mandal, Karthik Nagaraj, Kondapa Naidu
Bollineni, Amr Sabaa, Shidong Zhang, Min Zhu, and
Amin Vahdat. Orion: Google’s Software-Defined net-
working control plane. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21). USENIX Association, 2021.

[19] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-
Sullivan, Ramesh Govindan, Ratul Mahajan, and
Todd D. Millstein. A General Approach to Network
Configuration Analysis. In 12th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
15. USENIX Association.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2007

https://cloud.google.com/compute/docs/tutorials/robustsystems
https://cloud.google.com/compute/docs/tutorials/robustsystems

[20] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya
Akella, and Ratul Mahajan. Fast Control Plane Analysis
Using an Abstract Representation. In Proceedings of
the ACM SIGCOMM 2016 Conference. ACM.

[21] Aaron Gember-Jacobson, Wenfei Wu, Xiujun Li, Aditya
Akella, and Ratul Mahajan. Management Plane Analyt-
ics. In Proceedings of the 2015 ACM Internet Measure-
ment Conference, IMC 2015. ACM.

[22] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan.
Understanding network failures in data centers: mea-
surement, analysis, and implications. In Proceedings
of the ACM SIGCOMM 2011 Conference on Applica-
tions, Technologies, Architectures, and Protocols for
Computer Communications.

[23] Google. Google Cloud Basics: Geography
and regions. https://cloud.google.com/docs/
geography-and-regions.

[24] Google. Google Cloud Networking Incident
19009. https://status.cloud.google.com/
incident/cloud-networking/19009.

[25] Ramesh Govindan, Ina Minei, Mahesh Kallahalla,
Bikash Koley, and Amin Vahdat. Evolve or Die: High-
Availability Design Principles Drawn from Googles Net-
work Infrastructure. In Proceedings of the ACM SIG-
COMM 2016 Conference. ACM.

[26] gRPC Authors. gRPC: Authentication. https://grpc.
io/docs/guides/auth/.

[27] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto,
Agung Laksono, Anang D. Satria, Jeffry Adityatama,
and Kurnia J. Eliazar. Why Does the Cloud Stop Com-
puting? Lessons from Hundreds of Service Outages. In
Proceedings of the Seventh ACM Symposium on Cloud
Computing, 2016. ACM.

[28] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyaku-
mar, David Mazières, and Nick McKeown. I know
what your packet did last hop: Using packet histories
to troubleshoot networks. In Proceedings of the 11th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2014. USENIX Association.

[29] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
WAN. In Proceedings of the ACM SIGCOMM 2013
conference on SIGCOMM, 2013.

[30] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,

Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Ex-
perience with a Globally Deployed Software Defined
WAN. In Proceedings of the ACM SIGCOMM Confer-
ence, Hong Kong, China, 2013.

[31] Peyman Kazemian, George Varghese, and Nick McK-
eown. Header Space Analysis: Static Checking for
Networks. In Proceedings of the 9th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI 2012. USENIX Association.

[32] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew
Caesar, and Philip Brighten Godfrey. VeriFlow: Verify-
ing Network-Wide Invariants in Real Time. In Proceed-
ings of the 10th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI 2013. USENIX
Association.

[33] Bikash Koley. Keynote lecture: The Zero Touch Net-
work. In International Conference on Network and
Service Management, 2016.

[34] Umesh Krishnaswamy, Rachee Singh, Nikolaj S.
Bjørner, and Himanshu Raj. Decentralized cloud wide-
area network traffic engineering with BLASTSHIELD.
In 19th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2022. USENIX Associ-
ation.

[35] Bob Lantz, Brandon Heller, and Nick McKeown. A net-
work in a laptop: rapid prototyping for software-defined
networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, 2010.

[36] Bingzhe Liu, Kuan-Yen Chou, Pramod Jamkhedkar, Bi-
lal Anwer, Rakesh K. Sinha, Kostas N. Oikonomou,
Matthew Caesar, and Brighten Godfrey. Practical Au-
tomation for Management Planes of Service Provider
Infrastructure. In FlexNets ’21: Proceedings of the
4th FlexNets Workshop on Flexible Networks Artificial
Intelligence Supported Network Flexibility and Agility,
2021. ACM.

[37] Hongqiang Harry Liu, Xin Wu, Wei Zhou, Weiguo
Chen, Tao Wang, Hui Xu, Lei Zhou, Qing Ma, and Ming
Zhang. Automatic Life Cycle Management of Network
Configurations. In Proceedings of the Afternoon Work-
shop on Self-Driving Networks, SelfDN@SIGCOMM
2018. ACM.

[38] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin
Cao, Sri Tallapragada, Nuno P. Lopes, Andrey Ry-
balchenko, Guohan Lu, and Lihua Yuan. CrystalNet:
Faithfully Emulating Large Production Networks. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, 2017. ACM.

2008 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://cloud.google.com/docs/geography-and-regions
https://cloud.google.com/docs/geography-and-regions
https://status.cloud.google.com/incident/cloud-networking/19009
https://status.cloud.google.com/incident/cloud-networking/19009
https://grpc.io/docs/guides/auth/
https://grpc.io/docs/guides/auth/

[39] Ajay Mahimkar, Carlos Eduardo de Andrade, Rakesh K.
Sinha, and Giritharan Rana. A composition framework
for change management. In ACM SIGCOMM 2021
Conference. ACM.

[40] Ben Maurer. Fail at scale: Reliability in the face of
rapid change. Queue, 13(8):30–46, sep 2015.

[41] Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and
Onur Mutlu. A Large Scale Study of Data Center Net-
work Reliability. In Proceedings of the Internet Mea-
surement Conference 2018, IMC 2018. ACM.

[42] Jeffrey C. Mogul, Alvin AuYoung, Sujata Banerjee, Lu-
cian Popa, Jeongkeun Lee, Jayaram Mudigonda, Puneet
Sharma, and Yoshio Turner. Corybantic: towards the
modular composition of SDN control programs. In
Twelfth ACM Workshop on Hot Topics in Networks,
HotNets-XII, 2013. ACM.

[43] Jeffrey C. Mogul, Drago Goricanec, Martin Pool, Anees
Shaikh, Douglas Turk, Bikash Koley, and Xiaoxue Zhao.
Experiences with Modeling Network Topologies at Mul-
tiple Levels of Abstraction. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 403–418, Santa Clara, CA, February
2020. USENIX Association.

[44] Jeffrey C. Mogul, Rebecca Isaacs, and Brent Welch.
Thinking about Availability in Large Service Infrastruc-
tures. In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems, HotOS 2017. ACM.

[45] Christopher Monsanto, Joshua Reich, Nate Foster, Jen-
nifer Rexford, and David Walker. Composing software
defined networks. In Proceedings of the 10th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2013. USENIX Association.

[46] Jay Peters. Apple has resolved the outage
affecting iMessage, Apple Music, the App
Store, and other services. In The Verge, 2022.
https://www.theverge.com/2022/3/21/22989393/apple-
is-down-outage-music-imessage-maps-icloud-app-
store.

[47] Rahul Potharaju and Navendu Jain. Demystifying the
dark side of the middle: a field study of middlebox
failures in datacenters. In Proceedings of the 2013
Internet Measurement Conference, IMC. ACM.

[48] Rahul Potharaju and Navendu Jain. When the network
crumbles: an empirical study of cloud network failures
and their impact on services. In ACM Symposium on
Cloud Computing, SOCC ’13, 2013. ACM.

[49] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun
Singh, Mukarram Tariq, Rui Wang, Jianan Zhang, Vir-
ginia Beauregard, Patrick Conner, Steve D. Gribble,
Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu,
Karthik Nagaraj, Jason Ornstein, Samir Sawhney, Ry-
ohei Urata, Lorenzo Vicisano, Kevin Yasumura, Shi-
dong Zhang, Junlan Zhou, and Amin Vahdat. Jupiter
evolving: transforming Google’s datacenter network
via optical circuit switches and software-defined net-
working. In SIGCOMM ’22: ACM SIGCOMM 2022
Conference. ACM.

[50] Santhosh Prabhu, Kuan-Yen Chou, Ali Kheradmand,
Brighten Godfrey, and Matthew Caesar. Plankton:
Scalable network configuration verification through
model checking. In 17th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2020. USENIX Association.

[51] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-
Myung Kang, Aditya Akella, Sujata Banerjee, Charles
Clark, Yadi Ma, Puneet Sharma, and Ying Zhang. PGA:
Using Graphs to Express and Automatically Reconcile
Network Policies. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Commu-
nication, SIGCOMM 2015. ACM.

[52] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen
Yin, Qiaobin Fu, Gautam Kumar, Masoud Moshref, Jun-
hua Yan, Van Jacobson, David Wetherall, and Abdul
Kabbani. PLB: congestion signals are simple and effec-
tive for network load balancing. In Proceedings of the
ACM SIGCOMM 2022 Conference, 2022.

[53] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End
Arguments in System Design. ACM Trans. Comput.
Syst., 1984.

[54] Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever.
Snowcap: synthesizing network-wide configuration up-
dates. In ACM SIGCOMM 2021 Conference. ACM.

[55] Colin Scott, Andreas Wundsam, Barath Raghavan,
Aurojit Panda, Andrew Or, Jefferson Lai, Eugene
Huang, Zhi Liu, Ahmed El-Hassany, Sam Whitlock,
Hrishikesh B. Acharya, Kyriakos Zarifis, and Scott
Shenker. Troubleshooting blackbox SDN control soft-
ware with minimal causal sequences. In ACM SIG-
COMM 2014 Conference. ACM.

[56] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, Anand Kana-
gala, Hanying Liu, Jeff Provost, Jason Simmons, Eiichi
Tanda, Jim Wanderer, Urs Hölzle, Stephen Stuart, and

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2009

Amin Vahdat. Jupiter Rising: A Decade of Clos Topolo-
gies and Centralized Control in Google’s Datacenter
Network. In SIGCOMM ’15, 2015.

[57] Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent
Vanbever, and Martin T. Vechev. Probabilistic Verifi-
cation of Network Configurations. In SIGCOMM ’20:
Proceedings of the 2020 Annual conference of the ACM
Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols
for computer communication. ACM.

[58] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan,
Ming Zhang, and Ahsan Arefin. A network-state man-
agement service. In ACM SIGCOMM 2014 Conference.

[59] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky H. Y. Wong,
and Hongyi Zeng. Robotron: Top-down Network Man-
agement at Facebook Scale. In Proceedings of the ACM
SIGCOMM 2016 Conference.

[60] Aisha Syed, Bilal Anwer, Vijay Gopalakrishnan, and
Jacobus E. van der Merwe. DEPO: A platform for safe
deployment of policy in a software defined infrastruc-
ture. In Proceedings of the 2019 ACM Symposium on
SDN Research, SOSR.

[61] Daniel Turner, Kirill Levchenko, Alex C Snoeren, and
Stefan Savage. California fault lines: understanding the
causes and impact of network failures. In Proceedings
of the ACM SIGCOMM 2010 Conference, 2010.

[62] Kaushik Veeraraghavan, Justin Meza, Scott Michel-
son, Sankaralingam Panneerselvam, Alex Gyori, David
Chou, Sonia Margulis, Daniel Obenshain, Shruti Pad-
manabha, Ashish Shah, Yee Jiun Song, and Tianyin Xu.
Maelstrom: Mitigating Datacenter-level Disasters by
Draining Interdependent Traffic Safely and Efficiently.
In 13th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2018. USENIX Associ-
ation.

[63] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In
Proceedings of the European Conference on Computer
Systems (EuroSys), Bordeaux, France, 2015.

[64] Andreas Voellmy, Junchang Wang, Yang Richard Yang,
Bryan Ford, and Paul Hudak. Maple: simplifying SDN
programming using algorithmic policies. In ACM SIG-
COMM 2013 Conference.

[65] David Wetherall, Abdul Kabbani, Van Jacobson, Jim
Winget, Yuchung Cheng, Brad Morrey, Uma Parthavi
Moravapalle, Phillipa Gill, Steven Knight, and Amin
Vahdat. Improving network availability with protective
reroute. In SIGCOMM 2023.

[66] Xin Wu, Daniel Turner, Chao-Chih Chen, David A.
Maltz, Xiaowei Yang, Lihua Yuan, and Ming Zhang.
Netpilot: automating datacenter network failure mitiga-
tion. In ACM SIGCOMM 2012 Conference.

[67] Hongyi Zeng, Peyman Kazemian, George Varghese, and
Nick McKeown. Automatic test packet generation. In
Conference on emerging Networking Experiments and
Technologies, CoNEXT ’12, 2012. ACM.

[68] Ennan Zhai, Ang Chen, Ruzica Piskac, Mahesh Balakr-
ishnan, Bingchuan Tian, Bo Song, and Haoliang Zhang.
Check before You Change: Preventing Correlated Fail-
ures in Service Updates. In 17th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2020. USENIX Association.

[69] Qizhen Zhang, Kelvin K. W. Ng, Charles W. Kazer,
Shen Yan, João Sedoc, and Vincent Liu. MimicNet: fast
performance estimates for data center networks with ma-
chine learning. In ACM SIGCOMM 2021 Conference.

[70] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-
Tycho Förster, Arvind Krishnamurthy, and Thomas An-
derson. Understanding and mitigating packet corrup-
tion in data center networks. In Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication, 2017.

[71] Ariel Zilber. PlayStation network goes down, spark-
ing panic among gamers. In The New York Post,
2022. https://nypost.com/2022/03/23/playstation-
network-goes-down-sparking-panic-among-gamers/.

2010 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NetAssistant: Dialogue Based Network Diagnosis in Data Center Networks

Haopei Wang, Anubhavnidhi Abhashkumar, Changyu Lin,
Tianrong Zhang, Xiaoming Gu, Ning Ma, Chang Wu, Songlin Liu,

Wei Zhou, Yongbin Dong, Weirong Jiang, Yi Wang
ByteDance

Abstract
In large-scale data center networks, answering network di-
agnosis queries from users still heavily rely on manual on-
call services. A widespread scenario is when network users
query whether any network issue is causing problems with
their services/applications. However, this approach requires
extensive experience and considerable efforts from network
engineers who must repeatedly go through lots of monitoring
dashboards and logs. It is notoriously slow, error-prone, and
costly. We ask: is this the right solution, given the state of the
art in network intelligence?

To answer, we first extensively study thousands of real
network diagnosis cases and provide insights into how to
address these issues more efficiently. Then we propose an
AI enabled diagnosis framework and instantiate it in a task-
oriented dialogue based diagnosis system, or colloquially, a
chatbot, called NETASSISTANT. It accepts questions in nat-
ural language and performs proper diagnosis workflows in
a timely manner. NETASSISTANT has been deployed and
running in the data centers of our company for more than
three years with hundreds of usages every day. We show it
significantly decreases the number and duration of human
involved oncalls. We share our experience on how to make it
reliable and trustworthy and showcase how it helps solve real
production issues efficiently.

1 Introduction

Providing high visibility is increasingly challenging in mod-
ern hyper-scale and heterogeneous data center networks. One
fundamental and essential service is handling network di-
agnosis queries from network users. As networks continue
to grow in scale, speed, and link utilization, it has become
increasingly challenging for human operators to manually
monitor and diagnose network issues. Traditional approaches
to network management, which rely on human operators look-
ing at a screen of data to understand the network state, are
no longer sufficient. Instead, network management solutions

have become more automated than before, with a shift towards
software-defined networking (SDN) and automated processes
that dynamically drill down based on current conditions and
even automatically react to network events. These queries
normally come from cloud applications/services generating
anomalies which are likely caused by network incidents. For
instance, colleagues from the advertisement recommendation
team observe network timeout exceptions that lead to the
crash of their machine learning jobs. They are eager to ascer-
tain whether it is a network issue and the scope and severity
of the issue so that they can make business decisions such as
waiting for auto-recover, changing to another backup comput-
ing cluster, or temporarily downgrading the recommendation
algorithms (e.g., using a simple client side algorithm instead
of the server side one).

However, handling these network diagnosis queries has
always been time consuming and labor intensive work in large
data center networks. The reason behind this comes from both
the network user side and the network engineer side. From the
perspective of network users, limited by the network domain
knowledge and necessary permissions, they normally lack a
network-wide view and are not able to access a variety of
network monitoring primitives. As a result, network users
often need to turn to network engineers for manual assistance.
We have a user behavior study to investigate what exactly
the needs of network users are in their daily work (Section
2.1). From the perspective of network engineers, they have a
variety of network monitoring primitives to monitor, a large
amount of monitoring data to process, and too many small
but not negligible network incidents to investigate (Section
2.2). As a consequence, extracting useful information from
the enormous data and replying to network users becomes
highly tedious and time consuming work, and highly relies on
the expertise of each network engineer. Therefore, we argue
that there is a gap between the network diagnosis needs of
network users and network monitoring primitives in big
data center networks. Network engineers are working hard
to bridge the gap with their extensive experience and expertise.
And big cloud companies have a considerable number of

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2011

Figure 1: Level of Abstraction in NETASSISTANT

network engineers [11] who take turns to undertake the oncall
services.

Researchers have built several querying [13, 15, 19] and
diagnosis [12, 16, 17, 20, 23, 25, 28] tools to bridge part of the
gap. However, building such automation tools has limited ef-
fectiveness since they are ad-hoc, not scalable, and introduce
an extra learning curve to network users. Network users may
not know these tools, or are not able/willing to learn them.
Consequently, we believe a comprehensive solution should
be general-purpose, query format independent, easy to lever-
age the O&M (operation and maintenance) experience from
network engineers, and comply with performance and data
scale requirements.

Inspired by the technique of task-oriented dialogue sys-
tems in the NLP (natural language processing) domain and
the top-down idea in network telemetry [24], we come up
with an idea to build a virtual assistant (chatbot) to take the
networking related queries in natural language and leverage
the experience from network engineers to perform proper di-
agnosis functions. While building a dialogue system/chatbot
to help users/customers is already a common practice in many
companies ([1, 3, 4, 10]), it is not trivial in the data center
networking domain due to the requirement of high accuracy,
scalability and efficiency. As shown in Figure 1, we divide the
objectives into three levels of needs. Network users have the
chat needs from the chat layer. Then the chat layer requires
appropriate diagnosis functions from the workflow layer. The
workflow layer needs efficient data retrieval from the network
monitoring primitives. Conversely, each layer provides a cor-
responding abstraction to its upper layer. We notice that each
layer encounters unique challenges as follows:

• First, networking diagnosis requires precise description
and input, while a considerable proportion of queries
from network users are not clear enough (Section 2.1).
Therefore, it is hard to build a natural language under-
standing module since any misunderstanding or miscon-
figuration may cause immeasurable losses.

• Second, building suitable and high-quality methodolo-
gies for different diagnosis cases is challenging. We

argue that network engineers have the most say on how
to select and customize the diagnosis functions based
on their experience and expertise. How to automatically
leverage the know-how from network engineers and con-
vert it to executable workflows is not trivial.

• Third, the performance bottleneck of a chat system for
network questions mainly comes from the retrieval of un-
derlying data. Considering the various types of network
monitoring primitives and the huge volume of moni-
toring data, we need a comprehensive solution for data
storage and data retrieval.

We propose our solution, NETASSISTANT, which leverages
the technique of task-oriented dialogue systems to provide
virtual assistant services to network users. NETASSISTANT
takes the queries from network users in natural language, se-
lects appropriate processing workflows that are created by
network engineers, and responds to the users in a timely man-
ner. NETASSISTANT contains three novel functional modules
to achieve the three layers of abstraction and address the chal-
lenges. NETASSISTANT is deployed on top of a large scale
distributed network monitoring infrastructure and deals with
terabyte level of monitoring data every day.

In summary, we make the following contributions:
• We provide a user study of network users, a quantitative

study of network incidents, and monitoring primitives in
our production network.

• We propose an end-to-end distributed system, NETAS-
SISTANT, which can make use of the O&M experience
of network engineers to answer network diagnosis ques-
tions from network users. NETASSISTANT has been de-
ployed and iterated in our production network for over
three years and has tens of thousands of usage.

• We share our experience and lessons learned in customer
service on the front line for network users.

We construct our paper as follows. Section 2 provides a
network user behavior study, a quantitative study of network
incidents and monitoring primitives, and motivates this paper.
Section 3 describes the system design of NETASSISTANT.
Section 4 provides deployment details, case studies, and eval-
uation results. In Section 5, We share interesting lessons we
have learned from our experience of providing network diag-
nosis and troubleshooting functions. Section 6 and 7 describe
related work and conclude the paper.

2 Measurement Study and Motivation

A typical interaction between a network user and a network
engineer is that the network user raises oncall questions while
the network engineer on duty answers them. The oncall pro-
cess is time consuming and labor intensive work, and this
paper aims to provide a comprehensive solution to help both
network users and engineers. Thus, the first step is to under-
stand the needs of network users and the challenges faced
by network engineers. In order to accurately grasp the most

2012 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

real and urgent needs of network users, we leverage years of
network oncall history and propose a network user behavior
study. To better understand the difficulties and challenges of
network diagnosis from the perspective of network engineers,
we conduct quantitative analysis of network incidents and
monitoring primitives collected from our data centers.

2.1 Network User Behavior Study
We believe grasping the most real and urgent needs of network
users is the first step to design a good network diagnosis
tool. To achieve this, we leverage the daily network oncall
records1 in our cloud networks, and conduct a user behavior
study. These oncall records include network related questions
(containing both underlay and overlay network) raised by
network users and processing dialogues between network
users and engineers.

By Type By Objectives
Configuration Request 2196 DC/AZ Related 1867

Host Network Issue 837 Host(S) Related 4557
Network Consultation 3073 Link Related 462
Others / Void Oncall 1083 Device Related 113

Total Count 7189 Others 190

Table 1: Network User Behavior Study

Table 1 shows the statistics about the collected oncall
records. We collect about 7000 network oncall records from
our oncall system and try to categorize them by question
types and objectives. We observe that, by question types, most
questions can be categorized into Configuration Request,
Network Issue, and Network Consultation types. Configu-
ration requests are to seek manual assistance in network re-
lated configurations such as BGP, firewalls, gateways, and vir-
tual switches. For example, frequent requests include virtual
IP/public IP assignment, firewall allow-list setup, and BGP
configuration setup. Host (physical server, virtual machine,
etc.) network issue questions are raised when users observe
obvious network issues with their host and seek quick fixes.
Network consultation questions ask about network health sta-
tus, which is the category with the highest proportion. The
most commonly asked question is "Is there any problem with
the network in xxx". We believe that answering most of these
three types of questions can be automated, while some dan-
gerous operations should be manually confirmed before being
taken into action.

We also analyze the oncall questions from their objectives.
As summarized in Table 1, most questions are in the dimen-
sion of host level, including physical hosts, virtual machines,
IP pairs, subnets, and clusters. Besides, questions related to
DC (data center) and AZ (available zone) also occupy a cer-
tain proportion. The reason behind this is that questions from

1This user behavior study only includes data center network oncall ques-
tions. But our tool also supports other types of networks, e.g., IT/office
networks, edge/CDN networks, etc.

network users usually originate from the servers they use or
the data centers they are aware of.

We also conclude that network users have the following
behavioral characteristics when submitting an oncall question.

• First, the questions from network users are normally very
broad, e.g., the network health status of a large cluster
with thousands of servers or an entire data center.

• Second, the objectives of the questions are sometimes
very vague. While data center networks have a strict and
accurate naming specification, most network users are
unaware of that. For instance, one user may ask about
the network health in Santa Clara, which refers to an AZ
named US-WEST-1 in the specification2.

• Third, some questions are even missing a clear intent.
Sometimes, users are very anxious to seek manual ser-
vices and may ask questions like "Any network incident
right now?" or "US Redis service is lagging." It is hard
to understand directly from their questions which part of
the network they are asking.

Our tool is designed to take, understand, and respond to
network users who will ask similar questions as in oncalls.
In Section 2.3, we will discuss the corresponding research
challenges in terms of question understanding and processing.

2.2 Network Incidents and Monitoring Primi-
tives Study

Handling network diagnosis requests is challenging for net-
work engineers since the volume of monitoring data and the
detected network incidents is huge. Network engineers need
to go through a large amount of data to find the possible root
causes. Therefore, network diagnosis becomes a time con-
suming and label intensive work. In order to better understand
the difficulties and challenges, we leverage our detected net-
work incidents and collected network monitoring data in our
production network to provide a measurement study.

First of all, we aim to know how frequently network inci-
dents happen in daily operations. We define network incidents
as any network abnormal behaviors that could violate the
service-level agreement (SLA) of the network. More specif-
ically, network incidents include abnormalities of the metrics
(e.g., packet drop, latency, bandwidth) that can be perceived
by the end users and abnormalities monitored from the net-
work components. Network components can be hardware
(e.g., switch, circuit, optical module, and network card) or
software (e.g., operating system, virtual switch, and configu-
ration). The number of daily network incidents can illustrate
the complexity and effort of diagnosing network failures.

In order to avoid bias caused by subjective factors like
threshold, we choose the switch running errors/exceptions,
which are detected by switch syslog to represent network in-
cidents for the quantitative study. Syslog [8, 9] is collected

2We use our venue city name to represent a data center.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2013

Figure 2: Sample Syslogs Indicating Switch Exceptions

from switch logging services and contains crucial running
information of switches. Sample syslogs are shown in Fig-
ure 2, which indicates switch hardware abnormalities like
board/port/link failure or software abnormalities like protocol
(e.g., BGP, ISIS) down/flapping3. We choose one of our data
centers containing about 14,000 physical switches and count
all syslog errors/exceptions for the entire month of June in
2023. The statistics are shown in Table 2.

Error Type Error Type
Total Count 118,123,984 Linecard Issue 20,690
Queue Issue 57,036,587 Process Exception 83,465

Interface Issue 44,662,097 Frame Issue 2,280,956
Protocol Issue 8,360,567 Others 5,679,622

Table 2: Syslog Statistics for One Month

We can observe that even for just one data center, we en-
counter around 4 million different kinds of switch abnormali-
ties per day. While most abnormalities will auto-recover very
soon and most are in the packet/frame level, it is still annoy-
ing for network engineers since it is hard to tell whether the
abnormalities are user-insensitive or not. Correspondingly,
when network users experience network anomalies, they also
need network engineers to help them diagnose and demarcate
within such a huge number of switch abnormalities.

Other than the switch syslog, there are also several other
types of primitives that monitor the status of different com-
ponents of the network. For example, we track the packet
drop and latency metrics by using the connectivity monitor-
ing primitives and network traffic volume and composition by
using the traffic monitoring primitives. We conduct another
measurement study for the daily data volume of each type of
monitoring primitives for the same data center. The results
are shown in Table 3.

From the statistics shown in Table 3, almost every category
of monitoring primitives has a huge amount of data every day.
Meanwhile, most diagnosis requests from network users often
require a combination of different types of data to analyze.
For example, we may use connectivity monitoring data (e.g.,
PingMesh [18]) to check whether there is any connectivity
issue and locate the IP pairs of abnormal traffic and then use
traffic monitoring data (e.g., sFlow) to further troubleshoot the

3While different vendors have different syslog formats, we parse and
normalize the syslog according to their specifications.

Monitoring Primitive Category Data Volume per Day
Connectivity (e.g., PingMesh [18], 65GB

EverFlow [27], etc.)
Traffic (sFlow, SNMP, etc.) 12TB

Switch Syslog 35GB
Host Monitoring 4.3GB

Routing Configuration 425G
Optical Module (DDM or DOM) 5.5GB

Other Monitoring Primitives 27GB

Table 3: Data Volume of Monitoring Primitives per Day

packer headers to find the root cause. This puts a huge burden
on network engineers to retrieve the data reactively. There-
fore, an automated tool that can perform various diagnosis
procedures will be helpful and unleash network engineers.

2.3 Motivation and Research Challenges

We aim to automatically answer questions from network users.
An existing idea is the text-to-SQL [22] parsing solution,
where the natural language question could be converted into a
SQL query. However, this solution is limited in our scenario
since data retrieval is just one step in the overall diagnosis
process and our network monitoring infrastructure involves
variety of data sources in addition to relational databases, for
example, non-SQL database, file system, message queue, SSH
agent, etc. Therefore, our idea is to leverage NLP technique
to map user queries to pre-defined workflows. As illustrated
in Figure 1, we model the whole system into three abstraction
layers with their unique challenges.

The chat layer is responsible for providing a typical task-
oriented dialogue service for network users. However, it is
challenging since network diagnosis requires precise input
while the questions from users are arbitrary (as shown in Sec-
tion 2.1). This places three requirements on the NLU (Natural
Language Understanding) module. First, it should be able to
cover various granularity of data center networks, from global
regions to small network components. Second, besides the
standard terminologies that are strictly defined in the specifica-
tions, the NLU module should also understand most common
expressions that people might use to describe data center net-
working in everyday conversations at work. Third, when word
slots or the intent is not clear, the chatbot should leverage the
dialogue function to guide users to provide more information
or ask more precise questions.

Figure 3 illustrates the ideal dialogue service we aim to
provide to network users. Our chatbot performs corresponding
diagnosis functions to answer user questions if both objectives
and the intent are clear. If not, our chatbot will use dialogue
to guide network users to provide more information

The workflow layer is responsible for providing and per-
forming diagnosis functions for the chat layer. We argue that
network engineers have the most say on how to diagnose and
troubleshoot network questions as they have extensive expe-

2014 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 3: Sample Dialogues between Users and Chatbot

rience in diagnosing and dealing with network problems on
the front line and have a deep understanding of the specific
network situation, e.g., hardware vendors and models, net-
work architecture, common issues, and user traffic patterns.
Inspired by this, our tool introduces a novel functional module
to collect and convert the experience from network engineers
into a considerable number of executable workflows.

The data layer is responsible for providing the abstraction
of underlying monitoring data. The performance bottleneck
of our chatbot mainly comes from the retrieval of distributed
and large volume underlying monitoring data. Reactively
analyzing the data takes a long time and is unacceptable for
a chatbot. We come up with a solution that combines on-
demand querying and proactive alerting to achieve a good
trade-off between the response latency and the timeliness of
diagnosis results.

3 System Design

In this paper, we propose a virtual assistant tool, named NE-
TASSISTANT, to answer the network diagnosis questions in
natural language from network users. The key idea behind
is that NETASSISTANT aims to understand what intent and
objects network users are asking about and makes responses
using corresponding predefined workflows, which are learned
from network engineers. To this end, NETASSISTANT is de-
signed as three-fold. First, in offline, NETASSISTANT au-
tomatically converted the O&M knowledge and experience
from network engineers into multiple executable workflow
functions. Second, in runtime, NETASSISTANT analyzes the

Figure 4: System Design of NETASSISTANT

intent and word slots of user queries, forwards this informa-
tion as parameters into corresponding workflow functions,
and responds to the users with the outputs of the function.
Third, NETASSISTANT applies several optimization and trade-
offs of the underlying monitoring data storage and retrieval
component to meet the performance needs as a real-time chat
assistant. In this section, we describe the design and imple-
mentation details of NETASSISTANT.

3.1 System Architecture

NETASSISTANT works as an always-on service for the data
center networking environment. As shown in Figure 4, NE-
TASSISTANT consists of three main functional modules: 1)
Dialogue Engine, which provides a dialogue environment
for users and understands the intent and word slots from the
user queries; 2) Workflow Engine, which converts the knowl-
edge and experience from network engineers into workflows
and processes proper workflows for each user query; 3) Data
Engine, which manages all underlying distributed network
monitoring data storage and provides high-performance data
retrieval. In the following subsections, we describe the design
details of each functional module.

3.2 Dialogue Engine

Dialogue Engine module provides network users with a dia-
logue environment that presents a conversational experience
with multiple rounds of question and answer. The input from
the user is plain text in natural language. The output form
is relatively rich, which can be rich text, pictures, interac-
tive components, and hyperlinks. We leverage the typical
framework of a task-oriented dialogue system, and the key
challenge is to build the Natural Language Understanding

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2015

Figure 5: Dialogue Engine Module

(NLU) component. The key target of the NLU component is
to understand the word slots and intent. The intent of each
question will decide which diagnosis function (workflow) that
we will use, and the word slots will be the input parameters.
Figure 5 shows the detailed processing steps for language
understanding, which will be explained in the following.

The Dialogue Engine provides session based dialogue man-
agement to manage user questions. All user questions belong-
ing to the same session will be converted into a question list
for understanding. The first step for understanding is to un-
derstand and parse the word slots from the questions. The
word slot here could be the name of any component in the
data center networks. Therefore, we collect nouns from our
production network and categorize them into different types
according to their role in the networks, e.g., region, country,
state/province, AZ, office, building, pod, subnet/cluster, server,
switch, circuit, and optical module.

We put the words into two word sets. The first word set
contains terminologies strictly defined in our datacenter net-
work specification, which we call the Specification Naming
Set. The second word set contains the terminologies and
their oral expressions, which we call the Oral Naming Set.
The Specification Naming Set is a subset of the Oral Nam-
ing Set. We build a multi-to-multi mapping between the two
sets. It is because one terminology may have multiple oral
expressions (both "Santa Clara" and "US West" refer to "US-
WEST-1"), and sometimes there may have multiple AZs in
the same place (both "US-WEST-1" and "US-WEST-2" locate
in "Santa Clara").

We build these two sets for the word slots parsing, stan-
dardizing, and encoding. We first use the Oral Naming Set to
parse the word slots from the user questions. Then, we use the
mapping between the two sets and the Specification Naming
Set to standardize each word. After that, we encode each word
by using its category name. For example, we encode the word
"Santa Clara" with "available_zone_#14" from the original
sentence for further intent understanding and parse a parame-
ter {"az_1": ["US-WEST-1"]} for workflow processing.

Then, we process the encoded questions for intent under-
standing (i.e., text classification). We iterate through two tech-

nical solutions for text classification. The first one is based
on word-level Convolutional Neural Network (or ConvNet,
CNN) [26]. Motivated by the technological breakthrough
in the area of Large Language Model (LLM), our second
solution is an LLM-based solution. We will detail the two
technical solutions in the following.

Word-Level CNN-Based Solution. Our idea is to leverage
a training based classifier to classify the category/intent of the
given questions. To achieve this, we collect a considerable
number of questions for each intent as the training dataset
for a word-level CNN classifier offline. In the runtime after
the encoding process, the classifier generates a classification
score of the text for each intent and selects matched intent(s)
based on a predefined threshold.

LLM-Based Solution. Our idea is to leverage the power-
ful comprehension skills of the LLM to do multiple-choice
questions. We use the technique of few-shot prompting to add
in-context learning where we demonstrate different intents in
the prompt and let the language model make selections. One
sample of the prompt is:

Intent check_switch_traffic is to check the traffic indica-
tors of a switch. Intent check_host_network is to ... Please
select corresponding intents for the following questions: "My
devbox is unreachable. VM host_ip_#19."

Since we already have >100 intents, which will make the
generated prompt sentence too long, we would like to select
a relatively smaller set of intents (around 10) to shorten the
prompt. To achieve this, we apply vector embedding to both
the user questions and the description of intents and utilize a
similarity based searching method to select the intents.

Based on the classification results of the user questions,
there could be four different cases. 1. If both the intent and
words (parameters) are clear, the chatbot will proceed with
the selected diagnosis function. 2. If the intent is clear, but
some words are missing or have more than one possibility, the
chatbot will indicate the user to supplement this part of the
information. 3. If the classifier selects more than one intent,
the chatbot will indicate the user to select one. 4. If no intent
is selected, the chatbot will respond with the manual page
containing how to use the chatbot and popular examples.

3.3 Workflow Engine
The Workflow Engine module provides network engineers
with the framework to create multiple workflows based on
their expertise. The module consists of three primary compo-
nents: atomic functions, workflow converter, and workflow
library, which work seamlessly together to enable efficient
workflow creation and execution. The expressive atomic func-
tions allow network engineers to create simple, flexible, and
interactive diagnosis logic. The workflow converter converts
the logic into executable workflows, and the workflow library
supports triggering and executing the workflows at runtime.

Atomic functions: The atomic functions form the build-

2016 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 6: Example of TSG for Switch Reachability Check

ing blocks of our workflow system, with each encapsulat-
ing a particular method unique to a specific network entity
and its metrics data. Entities could include switches, links,
interfaces, available zones, and more. The decision-making
method checks the metrics data of the entity over a time
range and determines if there is any abnormality. Addition-
ally, atomic functions may include an optional action process
to analyze specific scenarios within the workflow, such as
pausing a service on a switch to check if it caused overload
or triggering a traceroute to display possible routing paths.

For all common network components, we tailor a set of
atomic functions based on the monitoring primitives to meet
various diagnosis requirements. For example, based on the
sFlow data of a link, we can check if the overall utilization is
high, or if there is any kind of traffic violating the QoS rules, or
if there is any service traffic experiencing a sudden increase or
decrease. There may be multiple algorithm implementations
for the same function. The threshold details can be customized
based on the experience and expertise of network engineers.

Workflow converter: Network engineers can configure a
set of atomic functions to become a Troubleshooting Guide
(TSG). A TSG comprises multiple atomic functions that al-
low specifying the data entity to be analyzed within a given
time range using decision-making logic. The TSG operates
like a state machine, existing at any given point at a specific
stage (atomic function). The outcome of each atomic function
determines the transitions between stages.

Network engineers can configure these TSGs through a
visual interface. The configuration includes the selection and
threshold of atomic functions, arranging them in to a flowchart
and specifying the input such as switch names or time peri-
ods. It is possible to customize different versions of a TSG
with the same name depending on the input value. For ex-
ample, switches from different vendors may have different
check_switch_hardware TSGs. TSGs can be updated and ad-
justed dynamically with the change of network architecture.

Workflow Engine then converts the TSGs to executable
workflow logic and adds essential exception handling, supple-

Figure 7: Example of TSG for Storage Service Check

mentary background knowledge, associated network events,
and common help entries. For instance, all workflows will
be added the logic to check if there are any known/ongoing
network issues or changes and recommend other tools for
non-network issues. Executable workflows are stored in the
workflow library.

Workflow library: The workflow library is responsible
for selecting and executing proper workflows based on the
extracted intents and parameters. Some diagnostic workflows
are only available to specific people (e.g., specific network
engineers). Thus, we apply role-based access control before
executing the workflows. We list the most commonly used
workflows in Section 4.2. All monitoring data access will go
through the Data Engine which we will describe in Section
3.4.

Figure 6 and 7 presents two simplified examples of TSGs
designed to check switch reachability and storage service
health (e.g., a SQL cluster). Respectively, upon receiving the
switch name or service name as input, the workflows consists
of multiple atomic functions, including getting metadata, re-
trieving monitoring data, detecting abnormalities and making
judgments. Finally, if all checks pass and no abnormality is
found, the entity is appropriately marked as healthy.

3.4 Data Engine
In order to track various aspects of the network, we utilize
multiple monitoring primitives, as outlined in Section 2.2.
The Data Engine is responsible for providing the abstraction
and query entry of network monitoring data. However, as
shown in Table 3, extensive analysis of large data sources is
impractical, such as analyzing the last X minutes of sFlow
data across multiple links. This is the performance bottleneck
of the entire system.

The Data Engine utilizes two strategies to ensure efficient
data retrieval. Firstly, data sources that are relatively low in
volume, such as switch configurations, can be stored and an-
alyzed in their current form. These sources do not change

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2017

frequently, so analyzing them in real time is feasible.
However, high volume data sources are more challenging

to manage. While the data generated may contain a significant
amount of normal, expected behavior, only a small fraction
of it is valuable for diagnosis. As such, we use a proactive ap-
proach to monitor the data for anomalies, which are flagged as
alerts. We move the execution of some atomic functions that
use high volume data sources to become always-on operators
generating alerts. The alerts are then tracked, and when we
need to query high volume data sources, we retrieve the alerts
instead of the full data. For example, only a small portion
of syslog data, namely BGP flapping or line card errors, can
actually help diagnose underlying network issues. For con-
nectivity monitoring data, normally, only jitters that violate
the SLAs will get the attention of network engineers.

Trade-off: Leveraging the proactive alerts achieves a trade-
off. We reduce the response time for generating diagnosis
results but sacrifice some timeliness since generating alerts is
not real-time but periodic and increases some computational
burden. We have set the following criteria to determine which
data sources are suitable for proactive alerts. First, the data
sources should have high volume and only the abnormality
is valuable for diagnosis. Second, the quality of data sources
should be high enough that the network team may directly get
involved in the discovered alerts. Third, the latency increased
by the alerts should not violate the service level objectives
of incident discovery and incident diagnosis promised by the
network team. For instance, the network team promises to
detect network issues within 2 minutes, consisting of a delay
from monitoring data and a delay from generating alerts.

Implementation of Alerting System: We implement and
deploy the alerting system as a standalone distributed sys-
tem which consumes real time monitoring data and generates
alerts such as batch BGP peers down, interface flapping, etc.
The alerting system is responsible for generating, aggregat-
ing, prioritizing and publishing alerts, and managing the life
cycle of each alert. The Data Engine of NETASSISTANT is
one of the consumers and it subscribes to a subset of the gen-
erated alerts. The alert generating processes are implemented
as streaming tasks in the monitoring data collection pipeline
before the data storage. This design reduces the overhead
of heavy data I/O compared with frequent database queries.
The streaming tasks subscribe to the monitoring data from
message queues (e.g., Kafka [2]) and utilize a sliding window
for periodic detection. The period is usually set to a minute
level due to our promises about the service level objectives.
Some high priority alerts will directly engage the network
team and trigger a fix, which we will discuss this situation in
Section 5.1.

4 Evaluation

In this section, we first provide the implementation and de-
ployment details of NETASSISTANT. Then, we share several

interesting case studies. At last, we present the evaluation re-
sults of our tool in terms of usage, accuracy, and performance.

4.1 Implementation and Deployment
We describe the implementation and deployment details of
NETASSISTANT, including Dialogue Engine, Workflow En-
gine and Data Engine. The Dialogue Engine consists of client-
side and server-side. The client-side is built on top of a com-
mercial business chat and collaboration tool as a chatbot ap-
plication. The chatbot application is able to access content,
collect information, conduct operations, and support interac-
tion through messages in both private chat and group chat.
The server-side implements NLU and is deployed in a clus-
ter of three server machines. For the NLU component, we
collect around 1,000 data entries for each workflow to train
the CNN-based classifier and leverage a 13-billion-parameter
large language model. The Workflow Engine is deployed in a
computing cluster with 14 instances in different data centers
for the consideration of disaster tolerance and high throughput.
It also contains a front end for the network engineers to create
and configure TSGs. The Data Engine is deployed using a
server alongside the monitoring data storage in every avail-
able zone of our network. The whole system was launched
in April 2020 as an always-on company wide service. And
it has been continuously iterated in terms of techniques and
supported workflows.

4.2 Case Study
We share several diagnosis cases, including user side behav-
ior, diagnosis workflow, and follow-up actions. We also sum-
marise the most commonly used workflows in daily work.

4.2.1 Case 1: Host Network Issue

User Question: A user queried an IP address as her SQL
cluster encountered a connection exception to this instance.
Diagnosis Workflow: The bot identified it as an IP of a virtual
machine and performed the check_iaas_ip_network workflow.
After conducting a multi-dimensional diagnosis on this vir-
tual machine, the workflow found that the link between its
physical machine and the ToR (Top-of-Rack) switch started
to have considerable CRC errors from the SNMP monitor-
ing data, and the ToR switch also reported CRC errors from
syslog. Thus, the bot responded with an unhealthy diagnosis
conclusion and informed the current oncall network engineer
about this issue.
Follow-up Actions: The CRC issue was fixed right after
cleaning up the port on the switch.

4.2.2 Case 2: Data Center Network Issue

User Question: A user reported a suspicious network issue
in a data center at around 2 AM since her managed service

2018 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

had a wave of failures, and the log showed many connection
errors.
Diagnosis Workflow: The bot performed the
check_idc_network workflow and found that there was a
spike of packet drop and latency increase, which lasted for
around 2min according to the connectivity monitoring results.
Involved IP pairs can be aggregated into a /48 IPv6 subnet.
The workflow further noticed that there were several BGP
withdrawn events whose peers pointed to the same switch and
several ECMP imbalance exceptions from nearby switches
syslog. Thus, the bot made a conclusion that there was a
short-lived network issue and the root cause was due to a
switch down event.
Follow-up Actions: The bot responded with the diagnosis
results, estimated impact and suggestions to the user. Network
engineers further confirmed the switch was down and isolated
the switch. However, the bot did not see switch unreachable
alert from the switch reachability monitoring results the
first time, and then the alert was 2 hours late. The network
engineers further found that the switch reachability checker
only checked the switch management port, which in this case
was not down immediately, but the loopback port was down.
So, they learned from this case and updated the corresponding
TSGs with new switch reachability checking logic.

4.2.3 Case 3: Large Scale Network Failure

User Question: To investigate the cause of performance
degradation in a core service, a user queried the network
status of her service.
Diagnosis Workflow: The check_computing_service work-
flow discovered multiple ping drops and high latency alerts
between regions, along with configuration changes that were
made to bring up a plane. The workflow also found the net-
work team had already noticed and engaged in this issue in
advance and had an initial conclusion that the configuration
change might be the root cause. Therefore, the bot responded
with the conclusion from the network team and suggested a
downgrade to the service algorithm.
Follow-up Actions: Further investigation by the network en-
gineers revealed that the misconfiguration causing the issue
was not on the recently updated devices but rather in previ-
ously misconfigured route maps on a Point of Presence (PoP)
device. This misconfiguration increased the priority of routes
advertised by the PoP, leading to congestion and packet drop.
To prevent such issues in the future, they plan to add a veri-
fication module (e.g., control plane and data plane verifiers)
that will detect control and data plane issues.

4.2.4 Most Commonly Used Workflows

We list the most commonly used workflows in Table 4. Similar
workflows are categorized together. Most DC level and IP
level workflows support checking a single target or a pair

Workflows Explanation

check_pod_network
check_az_network
check_idc_network

check_region_network

Data center level network status workflows,
including connectivity (internal, external,
overlay, underlay, v4, v6, subnets and etc.),
bandwidth & utilization (different types of
links, different granularity), switches
and existing network incidents & changes.

check_phy_ip_network
check_iaas_ip_network

check_vip_network
check_rdma_network

check_p4_network

IP level network status workflows,
including software stack check, hardware
status check, network environment
(nearby switches) check

.

check_switch_reachable
check_switch_hardware

check_switch_traffic
check_switch_config

Switch health status check, including
metrics from switch OS (syslog), protocol
(e.g., SNMP, BMP), hardware (e.g.,
linecard, OTN) and external monitors.

check_direct_connect
check_bbone_link

check_isp_link

Physical link level status workflows, mainly
used by network team, including physical
metrics, traffic and protocol status checking.

check_storage_service
check_computing_service

Network service level workflow, checking
network status of involved servers, upstream
and downstream network traffic, QoS
management and etc.

Table 4: Most Commonly Used Workflows

(source and destination), and a time point or period is optional.

4.3 Usage Evaluation
We count the daily usage and the number of distinct users
to evaluate the impact of our tool. We collect the usage data
for two whole months of July and August 2023. A complete
dialogue session counts as one use of our tool. The daily usage
distribution results are shown in Figure 8. We can observe
that there are approximately 100 to 200 uses per day on most
days. The distribution by day of the week is interesting. We
find that the average usage on weekends is much less than
on workdays. This is due to big changes (including software
changes and network changes) are not allowed on weekends
so that the entire data center network is running relatively
stable. We also count and analyze what kinds of users are
using our chatbot services. For July and August 2023, there
are a total of 476 individual users. Most of them are from the
engineering team, e.g., site reliability engineers, computing
or storage infrastructure engineers, and network engineers.
When there is a big network outage, there will be a wave
of heavy usage (normally 20-50) of our chatbot since many
people get affected, and they would like to know the situation
and impact.

Next, we will measure how our tool reduces the oncall
workload for network engineers. Basically, there are three
different cases. The first case is that a user does not raise any
oncall after using the chatbot. The second case is that a user
brings the diagnosis results from the chatbot to an oncall for
further operations4. The third case is that a user directly raises

4Users can raise oncalls either from the oncall platform or through the
chatbot, which will directly share the diagnosis results to the oncall.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2019

(a) Daily Oncall Usage for July
and August in 2023 (CDF)

(b) The 50th Percentile Usage by
Day of the Week

Figure 8: Daily Usage Results of NETASSISTANT

an oncall without using the chatbot, maybe because she does
not know the tool.

We name the first case as an effective use of our tool.
We consider the situation where an individual user makes
several effective uses within a short time (e.g., an hour) as a
successful oncall interception. Based on our statistics, the
number of intercepted oncalls is about one-third of the total
number of effective uses of our tool. The insight behind is
that one user may continuously make several queries for just
one issue. We further define the oncall interception rate
as the number of intercepted oncalls divided by the sum of
the number of raised oncalls and the number of intercepted
oncalls. For the second and third cases, we will compare the
oncall time with and without using the chatbot to measure
whether the chatbot can benefit the oncall process.

Besides the NETASSISTANT usage data, we also collect
our data center network oncall records for July and August
2023 and calculate the daily oncall interception rate and aver-
age processing time. The results are shown in Figure 9. We
can observe that NETASSISTANT can reduce around 50% -
90% of daily oncalls. In most reduced cases, the user gets a
response of health network status from the chatbot and does
not continue to raise the oncall service. For the results of
oncall time with and without the diagnosis from our tool, we
can find that the information provided by NETASSISTANT
can shorten the average oncall time. Figure 9(b) shows that
NETASSISTANT can save around 20% - 25% of an oncall
time in most cases. The saved time should have been spent
by network engineers going through various monitoring data.
With our tool, network engineers can focus more on the issue
fix and communication with the network users.

4.4 Accuracy Evaluation
As a diagnosis tool, NETASSISTANT must achieve high accu-
racy to gain user trust. In this subsection, we will show our
evaluation results of the false positives and false negatives of
the diagnosis results. False positive is a non-network issue,
but the chatbot diagnoses it as a network issue. To calculate
the false positive ratio, we perform manual verification of
results that are diagnosed as network issues over a period of

(a) Daily Oncall Interception
Rate

(b) Oncall Duration Time Com-
parison (CDF)

Figure 9: How NETASSISTANT Benefits Daily Oncall

Mar Apr May Jun Jul Aug
FP 9.48% 12.33% 11.6% 10.63% 9.62% 8.45%
FN 0% 0% 0% 0.43% 1.25% 0%

Table 5: Accuracy Evaluation Results of NETASSISTANT

time. We find that the false positives are normally due to noise
from the monitoring data. False negative is a network issue
that is not detected by the chatbot. For every user-perceived
network incident, we have the postmortem session that will
check whether it has been (or can be) detected by our chatbot.
Based on our experience, false negatives are much more harm-
ful since the results may mislead network users and engineers
and delay the progress in fixing issues.

We collect the false positives and false negatives data for
half a year (March 2023 - August 2023), as shown in Table
5. We can observe that the false positive ratio is around 10%.
We also find that the majority of false positives come from
sampling based monitoring data (due to the nonrepresenta-
tive data as a result of chance) and switch monitoring data
(especially when the switch is under high CPU utilization
or software upgrade). Based on our experience, false posi-
tives are hard to avoid. Thus, we take a hierarchical approach
to the network issues we detect. The chatbot will make an
"unhealthy" result only for severe and wide-ranging network
issues. For other detected small issues, the chatbot will make
a "warning" result to inform the user that there could be a
network issue. Compared with false positives, false negatives
basically rarely happen. They are mostly due to problems oc-
curring in places not covered by monitoring infrastructure. So,
after every false negative happens, we will quickly improve
the monitoring items and related diagnostic workflows. For
example, in the second case in Section 4.2, we found a false
negative generated by the switch reachability monitoring data
since the switch loopback port had not been covered, and we
fixed this flaw after the postmortem.

4.5 Performance Evaluation

As a dialogue system, the response latency is an important
part of the user experience. To address the performance bot-

2020 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 10: The 99th Percentile Running Time of Workflows

tleneck introduced by monitoring data retrieval, we design
and implement the Data Engine module as shown in Section
3.4. To verify the performance improvement, we measure the
response latency of the commonly used workflows listed in
Table 4 with and without using the proactively generated alerts
in Data Engine. We count the 99th percentile response latency
for different categories of workflows. As shown in Figure 10,
compared with retrieving monitoring data on the fly, lever-
aging proactively generated alerts can save significant time.
The Data Engine reduces the overhead of big data query and
transmission. After the optimization, most commonly used
workflows take 5-10s for execution. Based on user experience
feedback, the 5-10s response delay is acceptable but almost
at the limit for a dialogue system. Considering we are still de-
veloping and adding new monitoring items to the diagnostic
logic, performance optimization will be a continuous work in
the future.

5 Experience Learned

NETASSISTANT is designed to help both network users who
use the data center networks and network engineers who are
engaged in front-line network O&M work. The user expe-
rience is the key to the success of our tool. Therefore, in
addition to the iteration of the tool itself, we also provide
thorough customer services including seminars, office hours,
and surveys. We would like to share several lessons we have
learned during the development and operation of our tool.

5.1 Can we proactively find alerts, engage the
network team, and inform users?

As described in Section 3.4, Data Engine will set up operators
to proactively generate alerts for high volume monitoring data.
The straightforward question is, can we directly leverage the
alerts to engage the network team and inform impacted net-
work users in advance before they ask? The answer is partially

yes. We only cover a small portion of high-priority alerts with
severe influence. There are a few reasons. Firstly, as explained
in Section 2.2, network incidents will flood the network team
and users, which is impractical to manage. Secondly, the cov-
erage and granularity of some monitoring techniques are lim-
ited by old models, device performance, and vendor support,
which affects their quality. Finally, the resource budget is in-
sufficient to proactively run all workflows, so we reserve them
only for the high-priority ones.

5.2 Quality user experience
We prioritize ensuring a positive user experience and high
engagement with our tool during network diagnosis and trou-
bleshooting. To achieve this, we strongly emphasize the ac-
curacy of our tool, which is achieved through the release of
new workflows only after extensive testing. In addition, in our
experience, we recognized that users often require further de-
tails beyond the initial technical diagnostic report, including
information about the network issue, its service impact, and
where to turn for help. To address this need, the chatbot pro-
vides users with additional details and resources. For instance,
the chatbot will provide a brief explanation of the monitoring
metrics and why it is (not) a network issue. Moreover, the
chatbot can recommend relevant technical documents and
similar problem operations and even enter an oncall or ticket
request based on the question and diagnosis results.

5.3 Empowering our users
Our natural language understanding component is trained or
tuned by user queries. On the contrary, our chatbot can also
influence how users ask questions. We observe that after using
our chatbot, user questions become more and more accurate
and concise, and the communication between network users
and network engineers has been dramatically simplified. For
example, users get to know more network knowledge and ter-
minologies and better descriptions of their questions. Further,
the feedback and suggestions from users can help us polish
our tool better. We are happy to see such an effect and think
it is a virtuous circle.

5.4 Limitations and Future Work
We understand that our tool, while a crucial advancement in
automated network diagnosis and troubleshooting, presents
several areas for further research.

First, the state-of-the-art Large Language Model (LLM)
has shown significant improvement in natural language un-
derstanding and generation, and has great potential to help au-
tomate network diagnosis and troubleshooting as a new tech-
nology. Our experience shows that LLM is good at learning,
extracting and paraphrasing static information from diverse
sources. For example, it can accurately and helpfully answer

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2021

questions like "How does our QoS system work" and "What is
the standard operating procedure for a network change". How-
ever, we find it challenging to use LLMs to answer network
diagnosis questions due to their limitations in understanding
and learning diagnostic logic, as well as processing real-time
monitoring data. Therefore, in this project, we leverage LLM
for intent understanding but still rely on pre-defined diagnosis
workflows.

Secondly, the manual effort involved in building workflows
hinders the complete automation of network incident detec-
tion and mitigation. Achieving full automation remains a non-
trivial task. We plan to fully automate the ability to convert
workflows from natural language and past incident cases/tick-
ets. Furthermore, we expect the workflows to be self-adjusting
based on feedback from users and network engineers.

Finally, network monitoring primitives form the foundation
of our tool, and the quality of the diagnoses is highly depen-
dent on the input monitoring data. The diversity of data center
network monitoring data and the different implementations
from numerous hardware vendors make data screening and
pre-processing very arduous. In the future, we plan to enhance
our tool’s capabilities with selective data source selection and
noise filtering to improve the quality of the results.

6 Related Work

Natural Language Processing: Our work has been heavily
inspired by the dialogue systems in the NLP domain [14,
21]. A dialogue system can be categorized into task-oriented
or non-task-oriented (also known as open-domain). There
have been several task-oriented dialogue system products in
industry [1, 3, 4, 10]. Our work attempts to leverage the task-
oriented dialogue technique into the data center networking
domain and addresses several unique challenges. Besides, a
significant breakthrough has recently been made in the field of
LLM. Products like ChatGPT [5], LLaMa [6], and PaLM [7]
demonstrate strong ability in language understanding and
generation. Our work leverages the understanding ability of
LLM, and we are still exploring its generation ability.

Querying: Many works have improved the efficiency and
effectiveness of querying and summarizing network traffic.
Sonata [19] partitions each query across the stream processor
and the data plane and dynamically refines each query to en-
sure it focuses only on traffic satisfying it. BeauCoup [15] is
another programmable switch-based system. Using a coupon
collector approach, it supports multiple distinct counting
queries simultaneously while making only a small constant
number of memory accesses per packet. Net2Text [13] uses
NLP to format natural language operator queries to database
SQL-like queries, executes the query, summarizes the results,
and translates the summary back to natural language. We are
inspired a lot from Net2Text and further leverage the dialogue
system to build a general-purpose querying framework.

Diagnosis: There have been numerous efforts to develop

tools that can automate fault localization. One such tool is
OmegaGen [20], which combines static and dynamic analy-
sis to track the control and data flow through a program to
localize partial software failures at runtime. Another focus
of automated fault localization tools is identifying the cause
of packet drops. For instance, 007 [12] ranks links based on
their relative drop rates using the path of TCP connections
suffering from one or more retransmissions. On the other
hand, Drift-Bottle [28] takes a more distributed approach,
with each switch using the status of flows to infer suspicious
links and add lightweight inference headers to packets sent
to the operator. VTrace [16] focuses on detecting persistent
packet loss over the cloud-scale overlay network. It utilizes
the "fast path-slow path" structure of virtual forwarding de-
vices to track and inspect the packets of interest in depth
selectively. Zeno [23] generates a causal graph to capture
the temporal dependencies between events in a system, such
as requests and their corresponding responses, to diagnose
performance problems. CloudCanary [25], on the other hand,
uses fault graphs to perform real-time audits on service up-
dates to identify the root causes of correlated failure risks and
generate improvement plans with increased reliability. Tools
like Scouts [17] use machine learning to analyze complex
relationships and route incidents to the most likely responsi-
ble team. We benefit from these works by allowing network
engineers to autonomously select and customize diagnostic
algorithms to build workflows.

7 Conclusion

We propose NETASSISTANT, a virtual assistant tool to an-
swer network diagnosis questions and help both data center
network users and network engineers. The tool is motivated
by our measurement study about network user daily queries
and the network monitoring primitives used by network engi-
neers in our production network. NETASSISTANT abstracts
the whole diagnosis process into the dialogue layer, workflow
layer, and data layer. Accordingly, we design three functional
modules to realize these layers and provide dialogue-based
network diagnosis to our users. NETASSISTANT has been de-
ployed and used in our company for over three years and the
evaluation results show that this tool can significantly reduce
the workload of both network users and network engineers
and provide excellent user experience and performance.

Acknowledgments

We would like to thank many ByteDance colleagues who have
contributed to this work. These include Jiale Feng, He Zhang,
Anjian Chen, Dong Zhao, Chengcai Yao, Jing He, Chenxingyu
Zhao, Shravan Jagadish Kumar, Chuanxiong Guo, and many
others. We also thank our anonymous reviewers and shepherd
Arpit Gupta for their valuable comments.

2022 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Amazon alexa/echo. https://alexa.amazon.com/.

[2] Apache kafka. https://kafka.apache.org/.

[3] Apple siri. https://www.apple.com/siri/.

[4] Google Now. https://assistant.google.com/.

[5] Introducing chatgpt. https://openai.com/blog/chatgpt.

[6] Introducing llama: A foundational, 65-billion-parameter
large language model. https://ai.meta.com/blog/
large-language-model-llama-meta-ai/.

[7] Introducing palm 2. https://blog.google/technology/ai/
google-palm-2-ai-large-language-model/.

[8] Introduction to syslog in cisco routers and
switches. https://www.omnisecu.com/ccna-security/
introduction-to-syslog-in-cisco-routers-and-switches.
php.

[9] Logging - basic syslog and beyond. https:
//arista.my.site.com/AristaCommunity/s/article/
logging-basic-syslog-and-beyond.

[10] Microsoft cortana. https://www.microsoft.com/en-us/
cortana.

[11] Network switches, past, present – and an ex-
citing future. https://gblogs.cisco.com/uki/
network-switches-past-present-and-an-exciting-future/.

[12] B. Arzani, S. Ciraci, L. Chamon, Y. Zhu, H. Liu, J. Pad-
hye, B. T. Loo, and G. Outhred. 007: Democratically
finding the cause of packet drops. In USENIX NSDI,
pages 419–435, 2018.

[13] R. Birkner, D. Drachlser-Cohen, L. Vanbever, and
M. Vechev. Net2text: Query-guided summarization of
network forwarding behaviors. In USENIX NSDI, pages
609–623, 2018.

[14] H. Chen, X. Liu, D. Yin, and J. Tang. A survey on
dialogue systems: Recent advances and new frontiers.
ACM SIGKDD Explorations Newsletter, 2017.

[15] X. Chen, S. Landau-Feibish, M. Braverman, and J. Rex-
ford. Beaucoup: Answering many network traffic
queries, one memory update at a time. In ACM SIG-
COMM, pages 226–239, 2020.

[16] C. Fang, H. Liu, M. Miao, J. Ye, L. Wang, W. Zhang,
D. Kang, B. Lyv, P. Cheng, and J. Chen. Vtrace: Au-
tomatic diagnostic system for persistent packet loss in
cloud-scale overlay network. In ACM SIGCOMM, pages
31–43, 2020.

[17] J. Gao, N. Yaseen, R. MacDavid, F. Vieira Frujeri, V. Liu,
R. Bianchini, R. Aditya, X. Wang, H. Lee, D. Maltz,
M. Yu, and B. Arzani. Scouts: Improving the diagnosis
process through domain-customized incident routing. In
ACM SIGCOMM, pages 253–269, 2020.

[18] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz,
Z. Liu, V. Wang, B. Pang, H. Chen, Z.-W. Lin, and
V. Kurien. Pingmesh: A large-scale system for data
center network latency measurement and analysis. In
SIGCOMM, pages 139–152, 2015.

[19] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rex-
ford, and W. Willinger. Sonata: Query-driven streaming
network telemetry. In ACM SIGCOMM, pages 357–371,
2018.

[20] C. Lou, P. Huang, and S. Smith. Understanding, de-
tecting and localizing partial failures in large system
software. In USENIX NSDI, pages 559–574, 2020.

[21] J. Ni, T. Young, V. Pandelea, F. Xue, and E. Cambria. Re-
cent advances in deep learning based dialogue systems:
a systematic survey. In Artificial Intelligence Review,
pages 3055–3155, 2022.

[22] B. Qin, B. Hui, L. Wang, M. Yang, J. Li, B. Li, R. Geng,
R. Cao, J. Sun, L. Si, F. Huang, and Y. Li. A survey
on text-to-sql parsing: Concepts, methods, and future
directions. In arxiv.org/abs/2208.13629, 2022.

[23] Y. Wu, A. Chen, and L. T. X. Phan. Zeno: Diagnosing
performance problems with temporal provenance. In
USENIX NSDI, pages 395–420, 2019.

[24] M. Yu. Network telemetry: Towards a top-down ap-
proach. ACM SIGCOMM CCR, pages 11–17, 2019.

[25] E. Zhai, A. Chen, R. Piskac, M. Balakrishnan, B. Tian,
B. Song, and H. Zhang. Check before you change:
Preventing correlated failures in service updates. In
USENIX NSDI, pages 575–589, 2020.

[26] X. Zhang, J. Zhao, and Y. LeCun. Character-level con-
volutional networks for text classification. In Advances
in Neural Information Processing Systems, 2015.

[27] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Ma-
hajan, D. Maltz, L. Yuan, M. Zhang, B. Y. Zhao, and
H. Zheng. Packet-level telemetry in large datacenter
networks. In SIGCOMM, pages 479–491, 2015.

[28] X. Zuo, Q. Li, J. Xiao, D. Zhao, and J. Yong. Drift-
bottle: A lightweight and distributed approach to failure
localization in general networks. In CoNEXT, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2023

https://alexa.amazon.com/
https://kafka.apache.org/
https://www.apple.com/siri/
https://assistant.google.com/
https://openai.com/blog/chatgpt
https://ai.meta.com/blog/large-language-model-llama-meta-ai/
https://ai.meta.com/blog/large-language-model-llama-meta-ai/
https://blog.google/technology/ai/google-palm-2-ai-large-language-model/
https://blog.google/technology/ai/google-palm-2-ai-large-language-model/
https://www.omnisecu.com/ccna-security/introduction-to-syslog-in-cisco-routers-and-switches.php
https://www.omnisecu.com/ccna-security/introduction-to-syslog-in-cisco-routers-and-switches.php
https://www.omnisecu.com/ccna-security/introduction-to-syslog-in-cisco-routers-and-switches.php
https://arista.my.site.com/AristaCommunity/s/article/logging-basic-syslog-and-beyond
https://arista.my.site.com/AristaCommunity/s/article/logging-basic-syslog-and-beyond
https://arista.my.site.com/AristaCommunity/s/article/logging-basic-syslog-and-beyond
https://www.microsoft.com/en-us/cortana
https://www.microsoft.com/en-us/cortana
https://gblogs.cisco.com/uki/network-switches-past-present-and-an-exciting-future/
https://gblogs.cisco.com/uki/network-switches-past-present-and-an-exciting-future/

Klonet: an Easy-to-Use and Scalable Platform for Computer Networks Education
Tie Ma†, Long Luo†, Hongfang Yu†, Xi Chen‡, Jingzhao Xie†, Chongxi Ma†,

Yunhan Xie†, Gang Sun†, Tianxi Wei†, Li Chen⋄, Yanwei Xu¶, Nicholas Zhang¶

†University of Electronic Science and Technology of China
‡Southwest Minzu University ⋄Zhongguancun Laboratory

¶Theory Lab, Central Research Institute, 2012 Labs, Huawei Technologies Co., Ltd.

Abstract
Currently, one of the simplest and most effective ways for
people to gain an in-depth understanding of computer net-
works is through hands-on practice and experimentation on
software platforms. While education is important for the field
of computer networks, existing platforms are inadequate in
usability and scalability, failing to fully meet all the teaching
needs of computer networking education.

This paper describes our experiences in designing and us-
ing Klonet, an emulation platform for computer networking
education. Klonet is easy-to-use for both students and tu-
tors, which has been carefully designed to lower the barrier
to use, thus making the practice more efficient. Klonet also
demonstrates good scalability. It adopts a container-based
distributed architecture and a virtual network embedding al-
gorithm customized for this platform. Evaluation experiments
show that Klonet exhibits better scalability, such as supporting
more students with fewer hardware resources (i.e., servers)
and deploying virtual network topologies more quickly. Fur-
thermore, to ensure stability during teaching, Klonet enhances
the robustness of its upper orchestrator and underlying virtual
networks. So far, Klonet has been adopted in 3 universities
and 4 courses, serving more than 800 students. We showcase
Klonet’s usefulness in networking education with real use
cases, including a scenario with ∼10,000 emulated routers.
We also share our lessons learned from the 4 years of Klonet
development and 2 years of operations.

1 Introduction

Practice and experimentation are central to the education of
computer networks. Through practice, students are able to
obtain hands-on experience with the complicated concepts
in their computer network textbooks, thus gaining a deeper
understanding of computer networks.

The educational practice of computer networks relies heav-
ily on the field of network experiments which has been the
focus of many existing works. Prior work has made great
progress in three aspects: testbed [1–5], simulator [6–11], and
emulator [12–37]. Testbed offers real hardware for students to
manipulate, providing realistic interaction but at a higher cost.

Co-primary authors: Tie Ma and Long Luo. Hongfang Yu is the corre-
sponding author. (Email: yuhf@uestc.edu.cn)

Simulator, on the other hand, uses numerical calculations to
mimic hardware behavior, offering a cheaper alternative but
lacking realistic interaction. Emulator is a compromise be-
tween the previous two. It uses software to simulate hardware
behavior and is the most promising in education. However,
as college educators ourselves, based on years of teaching
experience, we found that existing emulators cannot meet our
actual needs. We argue that the ideal emulator for computer
network education should meet the following goals.

R1. Easy-to-use. A user-friendly educational platform
should be easy to use, including getting started, mastering
basic operations, etc., especially for students. We know that
the first step is always the hardest. If a lot of additional learn-
ing or manual configuration is required to perform relevant
experiments, students may feel confused and intimidated, es-
pecially those with weak background knowledge. For tutors,
an ideal platform should also be easy to use in aspects in-
cluding designing, directing, correcting, and managing ex-
periments, which can increase teaching efficiency instead of
being a burden.

R2. Scalable. It also must be scalable, supporting: (1) A
large number of concurrent experiments. Since students in a
course usually do experiments during the same period, the
platform must be able to provide services to all the students
in at least one course. The more users use it, the higher the
scalability requirements. Scalability requirements increase
along with growing student enrollment on the platform. (2)
Large-scale emulated network. To cover experiments in as
many scenarios as possible, the scale of the emulated/virtual
network of each experiment could be small or large. For ex-
ample, a MAC address learning experiment may require less
than 4 nodes, whereas routing learning in a modern datacenter
network may require thousands of nodes.

To the best of our knowledge, existing network emulators
are insufficient to meet the above two goals. Regarding R1,
most emulators [12,14–35,37] require students to perform in-
stallation and complex software configurations. Considering
that most undergraduate students even have not been exposed
to the Linux system, this can be challenging for them and dis-
suade them from the computer network community. Moreover,
most emulators [12,13,15,16,20–34] are initially provided for
scientific research and lack consideration for graphical user
interface (GUI), auxiliary experimental tools, auxiliary teach-
ing tools, etc., making students and tutors spend a lot of effort

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2025

to use them. For R2, some emulators [12,14,16,17,20,37] can
only run on a single server, which limits the scale of the virtual
network it can emulate and limits the experimental scenarios
it can support. Besides, some emulators [15, 35] that can be
deployed on multiple servers cannot properly map the virtual
networks to underlying servers, causing server overloads.

To address this gap, we built Klonet, a network emulation
platform to meet these educational goals. Klonet employs sev-
eral technologies to make it easy-to-use. To minimize the diffi-
culty of getting started, Klonet adopts a Browser/Server (B/S)
architecture, allowing students and tutors to access and use it
without installing any software. Klonet also provides several
useful experimental tools such as traffic generator and traffic
monitor for students to facilitate their experiments. In order
to stimulate students’ interest in learning, Klonet carefully
provides a GUI that is very important for teaching. Klonet ac-
celerates virtual network creation time, improving user experi-
ence and efficiency. For tutors, Klonet implements a container
image repository that can easily add various types of nodes,
making it possible to build diverse educational scenarios flex-
ibly. Klonet includes a scene repository where students can
share experiments and learn from each other, and tutors can
quickly automate the creation of experiment environments.
Klonet also provides experiment APIs to advanced users such
as tutors to improve usability and efficiency.

To achieve scalability, Klonet uses light-weight containers
as virtual nodes and a novel virtual network embedding algo-
rithm to respectively reduce node overhead and link commu-
nication overhead to support more and larger virtual networks.
By using container technology, Klonet increases the number
of nodes that can be created on a single machine. To support
large-scale virtual networks, Klonet employs a distributed
orchestration architecture to create overlay virtual networks
on a cluster, which enables the size of the virtual networks to
scale with the cluster size. The goal of Klonet’s virtual net-
work embedding algorithm is to use as few servers as possible
without overloading the servers. Klonet also implements a
user management model to support multi-users.

As an open educational network emulation platform for stu-
dents and tutors, robustness is critical. Klonet adopts methods
such as periodic checks, redundant backups, and monitoring
alarms to ensure the stability of its distributed orchestrator,
user management model, virtual networks, and cluster.

In our evaluation, we show that Klonet can better utilize
fewer physical servers to support more students’ experiments
faithfully. Klonet has been in development for 4 years, and we
have been using it steadily in courses for 2 years. To this day,
Klonet has served more than 800 students. To demonstrate
Klonet’s usage and benefits, we introduce the two selected
use cases. The first is a course project about the Software-
Defined Network (SDN) [38] and P4 [39], we use this case to
showcase Klonet’s usability. In the second use case, students
collaborate on a routing experiment that contains up to about
10,000 nodes, demonstrating the scalability of Klonet. The

lessons we have learned from developing, operating, and using
Klonet in education are also presented, as a reference for
building a future education platform.

In summary, our main contributions are:

• We design and implement (§4) Klonet, an easy-to-use
and scalable network emulation platform for education.

• We evaluate the system performance (§5) and present use
cases (§6) to demonstrate its educational applications.

• We summarize lessons (§7) learned from years of expe-
rience developing, operating, and using Klonet.

2 Related Work

Here, we discuss existing network emulation platforms used
in education, categorizing them as general-purpose and
education-purpose. General-purpose emulators may offer less
tailored features for education, whereas education-purpose
emulators prioritize educational needs. We focus on platform-
level related works rather than individual components such as
the Kubernetes [40] scheduler.
General-purpose network emulators. Most general em-
ulators are not specifically designed for education but are
nonetheless widely adopted in education [41].

Mininet [12] is well-known for its convenience in run-
ning small networks on laptops. However, when used in ed-
ucation, several challenges arise: (1) Students often strug-
gle with the installation process. This places performance
requirements on student laptops. Since the operating sys-
tem of most student laptops is Windows, students need to go
through the installation and use of virtual machines (VMs).
This poses a significant challenge for undergraduate students
who lack experience, potentially diminishing their enthusi-
asm for computer networks. (2) We also consider installing
and configuring Mininet on servers provided by the teaching
team and let students remote access. However, the original
Mininet has a file isolation and scalability issue, making it
unable to support multi-student. Though several follow-up
variants [14–16, 20–22, 42] have been proposed to enhance
Mininet with different capabilities such as scalability [15,42],
ease of use [16], fidelity [20] and additional network sce-
nario [22], none of the variants combining all the advantages,
making it not feasible to offer an ideal network emulation
service on cluster. (3) Mininet and its variants are primarily
developed for research purposes and lack a student-friendly
GUI, which is crucial for education.

Emulab [13] is another famous emulator that operates a
dedicated cluster and provides users with network emulation
service via its website, allowing users to use it without local
installation. Emulab has been operated for decades and is
robust. Emulab has three issues when used for education: (1)
Emulab primarily focus on providing users with bare-mental
servers and VMs, while has poor support for light-weight
virtualization technologies like container. This makes it costly
and inflexible to support courses. (2) Emulab’s scalability is

2026 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: Comparison of related network emulators.
Easy-to-use

Platform Name No Installation
Required

GUI and
Experiment API

Teaching
Tools1

Experiment
Tools2

Rich Node
Types Scalability

Mininet [12] ✗ Humble GUI ✗ Limited ✗ ✗
Mininet-Hifi [20] ✗ Humble GUI ✗ Limited ✗ ✗

Distrinet [15] ✗ No GUI ✗ ✗ Limited ✓
Containernet [16] ✗ No GUI ✓ ✗ Limited ✗

Vt-Mininet [21] ✗ No GUI ✗ ✗ ✗ ✓
Mininet-Wifi [22] ✗ Humble GUI ✓ ✓ ✓ ✗

Emulab [13] ✓ ✓ Limited ✗ Limited Limited
Netkit [37] ✗ No GUI ✓ ✗ ✓ ✗

Kathará [17] ✗ Humble GUI ✓ ✓ ✓ ✗
Megalos [18] ✗ Humble GUI ✓ ✓ ✓ ✓

GNS3 [19] ✗ ✓ ✓ ✓ ✓ ✓
SEED [35] ✗ ✓ ✓ ✗ ✓ ✓

Mini-Internet [36] ✓ No GUI ✓ Limited ✗ ✗
IPMininet [14] ✗ No GUI ✓ ✓ ✗ ✗

Klonet (this work) ✓ ✓ ✓ ✓ ✓ ✓
1 Teaching tools are those designed to facilitate education, e.g., Klonet’s scene repository and Mini-Internet’s connectivity matrix.
2 Experiment tools are those designed to make experiments easier, e.g., Klonet’s traffic generator and IPMininet’s IP configuration tools.

limited by its cluster size, and it’s hard to deploy on private
clusters [37]. (3) Due to the operating mode of Emulab, the
physical server needs to start before creating a virtual network,
resulting in a long establishment time (as shown in §5.1),
which reduces the efficiency of experiments.

There are various emulators [23–27] that focus on eval-
uating network end-to-end properties by simplifying or ab-
stracting network elements. However, these emulators cannot
emulate all types of devices (e.g., switches, routers, firewalls),
limiting their ability to provide realistic interactions and serve
as ideal emulators for education. Some emulators [21, 28–32]
prioritize scalability at the expense of real-world performance,
making it unsuitable for education. Some emulators [33, 34]
are designed for specific scenarios such as enterprise networks
and integrated space and terrestrial networks (ISTNs), lacking
support for other network scenarios and are not easy to use
for students.

Education-purpose Network emulators. Klonet is not the
only network emulator proposed specifically for education.
Netkit [37] exploits User-Mode Linux (UML) VM to sup-
port networking courses, the container technology chosen by
Klonet is light-weight compared to the virtualization technol-
ogy of Netkit. Kathará [17] is a variation of NetKit which
uses Docker container instead of UML VM, but its single
host network emulation architecture may cause scalability
issues. Megalos [18] improves the scalability of Kathará by
leveraging Kubernetes [40]. Kathará and Megalos have been
used in many courses [43]. GNS3 [19] is also widely used in
education and requires local software installation. Owing to
reliance on VMs, GNS3 is a more resource-intensive solution
compared to Klonet which employs light-weight container
technology. Mini-Internet [36] is an open network emula-
tion platform that emulates a mini version of the internet
infrastructure, but it focuses on routing experiments and lacks

support for other experiments. Besides, Mini-Internet does
not support multi-server deployment, which may make it fail
to support a large number of students. SEED emulator [35]
was initially developed to support teaching network security
education and can scale up the emulation across multi-server
deployment. Unfortunately, it needs to embed the network
manually, which may overload servers and prevent the courses
from proceeding properly. IPMininet [14] enhances the IP
configuration and management of the well-known emulator
Mininet [12], however, it needs to be installed on the personal
computers of students.

In summary, as shown in Table 1, no existing work can
achieve the two educational goals of easy-to-use and scalable
simultaneously except Klonet.

3 Klonet in a Nutshell

This section gives a macro view of Klonet covering its operat-
ing mode, applicable scenarios, and experiment workflow.

Operating mode. Klonet is an open platform that main-
tains a dedicated private or cloud cluster to offer network
emulation services for courses. Its cluster is resilient, allow-
ing operators to adjust its scale as needed. Leveraging light-
weight virtualization technologies, Klonet can create (overlay)
virtual networks on top of the cluster, enabling the creation
of several large-scale or lots of small-scale virtual networks.
Students and tutors can conveniently access Klonet via its
website. Klonet stays constantly available within the campus
network, serving courses during the semester and also serv-
ing self-learners. Thanks to Klonet’s extensive experiment
capabilities, students and tutors can efficiently conduct the
majority of their experiments on a single platform.

Applicable scenarios. Klonet supports network experi-
ments with layer 2 and above, allowing network properties

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2027

Students
& Tutors
Students
& Tutors
Students
& Tutors

...
Control
Layer ...

Control
Layer

User
Management

Model

Klonet Orchestrator
Klonet Controller

Klonet Agent Klonet Agent...
Control
Layer

User
Management

Model

Klonet Orchestrator
Klonet Controller

Klonet Agent Klonet Agent

Experiment
Layer

Software-Defined
Network Routing ···

Klonet InterfaceKlonet Interface

Experiments

Experiment
Layer

Software-Defined
Network Routing ···

Klonet Interface

Experiments
Network
Security

GUI Experiment API

Experiment
Layer

Software-Defined
Network Routing ···

Klonet Interface

Experiments
Network
Security

GUI Experiment API

Virtual
Network

Layer ...

Virtual
Network

Layer ...

Infra-
structure

Layer

Infra-
structure

Layer
...

Infra-
structure

Layer
...

Control Flow
Data Flow

Physical Servers

Figure 1: The overall framework of Klonet.

like latency and bandwidth on links to be configured. This
versatility makes Klonet suitable for a wide range of network
scenarios required in education. It can emulate data center net-
works, wide-area networks, large-scale enterprise networks,
campus networks, etc. The topology of these networks can
be customized, and end-to-end network experiments can also
be conducted. Klonet’s virtual network includes virtual Eth-
ernet interfaces that can seamlessly connect with hardware
Ethernet interfaces, supporting networks with a mixture of
real and virtual devices. Klonet supports rich node types, such
as (programmable) switches, routers, controllers, and hosts,
enabling experiments in both data plane and control plane.
Klonet supports both IPv4 and IPv6.

Experiment workflow. Conducting an experiment on
Klonet involves the following steps: (1) Experiment creation.
Students create experiments by dragging and dropping node
icons onto the canvas, connecting nodes, and configuring basic
network properties such as IP addresses. Optionally, students
can choose to load pre-configured experiment templates pro-
vided by tutors. (2) Development, execution, and observation.
Students develop their programs using the terminal on the
Klonet web page or via Secure Shell (SSH) connections. They
then run their programs and observe the resulting effects. Ex-
periment tools such as traffic generators and monitors are
available to assist students during the process. (3) Experiment
completion. Once the experiment is finished, students upload
their experiments to the Klonet scene repository. Tutors can
use these uploaded experiments for grading purposes or allow
other students to review and learn from them.

4 Design and Implementation

We first overview the framework and then describe the design
adopted by Klonet to meet the educational goals.

Tutors

topo.addlink topo.addnode ...Experiment API

Web GUI

Management Interface
User ManagementCluster MonitorImage & Scene Repository

Management Interface
User ManagementCluster MonitorImage & Scene Repository

Experiment Interface

Topo Design Topo Instantiation Topo Configuration

Terminal ...Traffic Generator Traffic Monitor

Experiment Interface

Topo Design Topo Instantiation Topo Configuration

Terminal ...Traffic Generator Traffic Monitor

Klonet Interface

External Service InterfaceKlonet Controller External Service InterfaceKlonet Controller

StudentsStudentsStudents

Figure 2: Klonet interface.

4.1 System Overview
As Figure 1 shows, Klonet adopts a four-layer architecture.
(1) Experiment layer: The direct-to-user front end provides
students and tutors with many easy-to-use tools via Klonet’s
GUI and experiment API, which include virtual network de-
sign and emulation, image repository, scene repository, traffic
generator, traffic monitor, cluster monitor, etc. It receives user
requests and communicates with the underlying layers to
complete related services. (2) Control layer: The back end
controls and manages user data, virtual networks, and clusters.
This layer consists of an orchestrator distributed on each phys-
ical server and a user management model for storing user data,
which together support multi-user network experiments on
multi-server. (3) Virtual network layer: It uses light-weight
virtualization technology and cross-server link technology
to ensure that the virtual network can be distributed across
servers. (4) Infrastructure layer: A cluster can provide the
storage, computing, and network resources required by Klonet.
It can easily remove or add new physical servers for purposes
such as cost savings and launching more experiments.

4.2 Achieving Easy-to-use
Unlike research-oriented platforms, easy-to-use is particularly
important for education-oriented platforms. We describe how
Klonet improves ease of use with designs in terms of software
architecture, user interface, reproducibility, experiment tools,
and accelerating creation of virtual networks.

Browser/Server (B/S) architecture. To minimize the bur-
den on students and reduce the difficulty in getting started,
Klonet adopts a Browser/Server (B/S) architecture that allows
students to use it via their browsers. To this end, Klonet is de-
signed with two parts: front-end and back-end. The front-end
is implemented in JavaScript, HTML, and CSS containing
16k lines of code. Flask [44], a web development framework
is used to implement the back-end containing 45k lines of
code. The front-end and back-end interact via HTTP.

Rich Interfaces. As shown in Figure 2, Klonet provides
two kinds of interfaces. (1) The GUI is intuitive and is suitable
for beginners such as bachelor students to perform simple
operations. (2) The experiment API focuses on efficiency and

2028 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

is more suitable for users with some basic network knowledge,
such as master students and tutors, to conveniently and rapidly
complete some repetitive and cumbersome operations.

GUI. One web page is designed for experimentation and
several for management. The experiment page provides five
primary features: (1) Topology design by drag-and-drop of
device icons and mouse-based link connection. (2) Virtual
network instantiation. (3) Configuration of network proper-
ties such as IP addresses and link bandwidths. (4) Interactive
access to virtual nodes through SSH or web terminal, offer-
ing students an experience similar to real devices. Klonet
helps install and configure the SSH service in the nodes. With
powerful SSH-based tools (e.g., VScode remote SSH exten-
sion [45]), students can efficiently complete more complex
tasks. Students can also use the web terminal to conveniently
perform simple tasks like running a ping command. Based
on the Docker daemon [46], Klonet ensures real-time com-
munication of the web terminal through websockets [47]. (5)
Traffic generator and monitor tools to assist in experimen-
tal implementation. A screenshot of the experiment page is
provided in Appendix A.

The management pages add much more support for experi-
mentation. An experiment management page is designed for
viewing and accessing experiments. An image/scene repos-
itory page is offered for sharing images/scenes, with tutors
authorized to manage it. A user management page is designed
for tutors to audit and delete student accounts conveniently.
To help operators (usually tutors or TAs) quickly locate faulty
servers, Klonet provides a cluster monitoring page based on
Grafana [48] to view the cluster status (e.g., CPU utilization).

Experiment API. This is designed to enhance the pro-
grammability. For simplicity of use, the API is implemented
by encapsulating HTTP requests via Python. Listing 1 shows
a simple example of using this API. Detailed API documenta-
tion is also provided to help users get started quickly.

Image repository and scene repository. Image reposi-
tory and scene repository are the keys to realizing the repro-
ducibility, including node-level and scene-level, of network
experiments.

Node-level reproducibility relies on an image repository
containing node images (i.e., snapshots). Users can upload
images to this repository and later instantiate them as nodes.
Since the software dependencies have been packaged into the
image, the applications in a node can be reproduced easily.
For better usability, Klonet offers three upload methods: com-
mit for saving nodes as images, build images via scripts, and
compressed file for external image inclusion. Images are pub-
licly/privately shared and indexed separately via a MySQL
database [49], with entities stored in a Docker registry [50]
for access across servers.

Scene-level reproducibility relies on a scene repository. We
argue that a reproducible scene is a collection of code, soft-
ware environment, network topology, and code execution flow.
This scene repository converts all nodes of an experiment to

1 from klonet_api import *
2 # Get the available images of current student.
3 images = get_images()
4 # Select the host(ubuntu) and switch(ovs) image.
5 ubuntu_image = images["ubuntu"]
6 ovs_image = images["ovs"]
7 # Design our topology: h1---s1---h2.
8 topo = Topo()
9 h1 = topo.add_node(ubuntu_image , node_name="h1")

10 h2 = topo.add_node(ubuntu_image , node_name="h2")
11 s1 = topo.add_node(ovs_image , node_name="s1")
12 topo.add_link(h1, s1, src_IP="192.168.1.1/24")
13 topo.add_link(s1, h2, dst_IP="192.168.1.2/24")
14 # Let Klonet emulate the topology.
15 deploy(topo)
16 # Create file in h1 and h2.
17 exec_cmds_in_nodes(
18 {"h1":["touch /log1"], "h2":["touch /log2"]})

Listing 1: Simple Experiment API Example.

a set of images via commit provided by the image reposi-
tory, assigning each image a unique ID to help reestablish the
corresponding node. The topology description is also saved
for rebuilding virtual networks. To facilitate the scene-level
reproducibility, Klonet asks users to upload a replay script
(i.e., written via experiment API) describing code execution
flow. This script is optional as manual recreation is possible.
MySQL is used to store image indexes, topology descriptions,
and replay scripts to provide users with a reproducible scene.

Auxiliary useful tools. To help students focus on the net-
work experiments themselves, Klonet provides useful tools
such as traffic generator, traffic monitor, and typical topology
generator. Tutors and TAs can also use these tools to complete
tasks such as experimental demonstrations easily.

Traffic generator. Traffic enables the validation of diverse
network scenarios. The traffic generator sources three traffic
types: (1) Client-server pattern [51] traffic. (2) ON-OFF [52]
characteristic traffic. (3) Customizable interval-distributed
traffic, e.g., Gaussian. We encapsulate an open source code
from GitHub [53] to implement the first traffic type, and im-
plement the latter two based on the Scapy library [54].

Traffic monitor. Feedback helps with experimental debug-
ging, tuning, etc. Klonet develops this monitor upon libp-
cap [55] and reports key performance metrics, throughput,
latency, and loss rate, to capture and help analyze traffic be-
tween source and destination nodes. It also provides an intu-
itive GUI for visualizing experimental outcomes.

Typical topology generator. Repeatedly designing some
common topologies is tedious. Thus, Klonet features a gen-
erator for structures like Star, Fattree, Linear, and Tree, pa-
rameterized by variable fields. Custom topologies can also be
saved as reusable templates. The typical topology generator
is implemented based on the FNSS library [56].

Accelerating virtual network creation. Shortening the
virtual network creation time can reduce the waiting time
for users to retry experiments, improving experience and effi-
ciency. Klonet applies two parallelization techniques: using

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2029

Internal Service InterfaceKlonet WorkerInternal Service InterfaceKlonet Worker

External Service Interface

User Register/Login

Local Task Executor

Internal Service Interface
Control Flow

Data Flow

Klonet Controller

Klonet Agent

Scene Uploading

Get Scene List

Cluster Task Dispatcher

Scene LoadingNetwork Embedding

Data
Inter-
face

Get User List

Get Node List ...

Node/Link Configuration

Cluster Monitor

Terminal Relay Traffic Generator ...

Figure 3: Klonet Controller.

a light-weight concurrency technique called Coroutines [57]
to spawn virtual nodes and links concurrently within a server
and permitting the orchestrator to distribute virtual network
creation across physical machines for additional parallelism.

4.3 Achieving Scalability

Klonet first designs a distributed orchestrator which enables
it to scale on a cluster. This poses a challenge in mapping
virtual networks, which is addressed by an efficient algorithm
design. For effective multi-user support, Klonet implements
a user management model for data organization. To support
large-scale experiments with fewer physical resources, Klonet
leverages light-weight emulation technology to host as many
virtual networks as possible on per physical machine.

Klonet orchestrator. Developed based on the Flask [44]
framework, the orchestrator consists of a controller and sev-
eral agents. The controller is installed on one server, while
agents are installed on each server. Notably, the orchestrator
supports single-server deployment. The controller and agents
communicate with each other via HTTP. Most back-end func-
tions of Klonet are implemented in this orchestrator.

Klonet controller. As the orchestrator’s core (Figure 3), the
controller receives user requests via external service inter-
faces and interacts with the user management model through
data interfaces. It contains a local task executor for authenti-
cation and database queries, and a cluster task dispatcher for
assigning cluster tasks, such as virtual network embedding
and link configuration, to appropriate agents for execution.

Klonet agent. As shown in Figure 4, the agent receives in-
structions from the controller via the internal service interface.
It handles on-server tasks including creating virtual networks,
collecting server status, monitoring traffic, etc.

Virtual Network Embedding Algorithm. The Klonet con-
troller uses a virtual network embedding (VNE) algorithm to
map the virtual networks (VNs) to the substrate network (SN).
For fidelity performance and efficient resource utilization, the
algorithm carefully provides sufficient resources for each VN
without overwhelming server capacity in the SN.

Network models and problem formulation. Each VN is

Internal Service InterfaceKlonet Agent

Control Flow Data FlowControl Flow Data Flow

Configuration

Link/Node Emulation

Virtual Network Emulation

Terminal

Server Monitor

...

Image/Scene Manager
Image/Scene Uploading

Image/Scene Loading

Experiment Tools
Traffic Generator

Traffic Monitor

Status Collector

Figure 4: Klonet Agent.

modeled as an undirected graph G = (V,E), with each virtual
node v ∈ V having a CPU demand nw(v) and each virtual
link e ∈ E having a bandwidth demand lw(e). To support
cross-server deployment of large-scale VNs and efficiently
use resources, Klonet partitions a VN into a set of small
sub-virtual networks (sub-VNs) subs = {s1,s2, ...,sk}, where
1≤ k ≤ |Sserver|. Cut-links represent inter-sub-VN links, and
cut(s) = {cs

1,c
s
2, ...,c

s
| j|},∀c

s
i ∈ E, 0≤ | j| ≤ |E| denotes that

connecting sub-VN s.
Let binary variable xs,n denote whether sub-VN s is embed-

ded on server pn. When embedding G to a cluster with a set
Sserver of servers, with scalability in mind, we expect to mini-
mize the impact of the mapping of every current VN on the
capabilities (potential) of the SN to deploy future large-scale
VNs under resource constraints, which can be formulated as

Minimize ∑
p∈Sserver

Ip(x) (1)

s.t. ∑
s∈subs

∑
u∈V s

nw(u)xs,n ≤C(pn),∀pn ∈ Sserver (2)

∑
s∈subs

∑
c∈cut(s)

lw(c)xs,n ≤ B(pn),∀pn ∈ Sserver (3)

xs,n ∈ {0,1},∀s ∈ subs, pn ∈ Sserver (4)

Eq. (1) expresses that the cluster potential is equal to the sum
of all server potentials. I(�) is an Inefficiency Index (IDX)
whose value starts from 0 and grows as the use of CPU re-
sources increases and then slowly decreases to 0 when the
resources are exhausted. Besides, it increases as the use of
NIC bandwidth grows. To prevent CPU overload, Ineq. (2)
constrains the CPU demands of the sub-VNs deployed on
server pn to be less than its remaining CPU quota1 C(pn).
As the SN of Klonet is a local cluster where all the servers
are connected by a powerful switch and each server commu-
nicates with the others through the same network interface
(NIC), all substrate links connected to a server share its NIC
bandwidth capacity for communication. To meet bandwidth
constraints, the total bandwidth demands of the cut-links of
all subnets deployed on server pn should be less than its avail-
able NIC bandwidth B(p), as expressed in (3). This differs
significantly from most existing VNE efforts, which assume
exclusive bandwidth capacity per substrate link.

1CPU quota is a feature of Linux Control Groups (cgroup), which controls
how much CPU time a process in a container can use.

2030 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Efficient network embedding algorithm. This VNE prob-
lem is NP-Hard even with a known value of I(�) and the VN
partition solution. A heuristic is thus employed. Through
extensive experimentation, we observed that sparsely used
servers often outperformed heavily used ones in hosting large
VNs, given equal CPU quotas. Therefore, our algorithm is
designed to minimize fragmentation by preferentially exhaust-
ing resources on previously used servers. See pseudocode in
Appendix C for details.

User management model. To appropriately organize ex-
perimental information for multi-students, we build a user
management model with an easily extensible architecture. We
leverage the Redis database [58] to implement the manage-
ment model. For advanced user and VN information, we use
several tables to record them. For the low-level virtual net-
work devices, we model them as several classes with device
attributes and relationships, and instantiate devices as objects
in the user management model when creating virtual networks.
The detailed design can be found in Appendix B.

Virtual network emulation. Another key to scalability is
the VN emulation solution. Klonet adopts Docker [59] con-
tainer technology for node emulation. The reasons are (1)
Container light-weight nature versus VM and better file isola-
tion feature than the namespace technology used by emulators
like Mininet [12], in line with our goal to design Klonet as a
scalable and shared platform; (2) Docker container provides
feature-rich node images to facilitate flexible experiment de-
sign. Default images in Klonet include: OVS [60] switch, P4
software switch [61], FRR [62] router, quagga [63] router,
Ubuntu host [64], Ryu [65] controller, etc.

Emulated links are classified as intra-server or inter-server
based on their location. Intra-server links adopt virtual Ether-
net pair technology, creating virtual NICs in containers and
connecting them. The virtual NICs can also be connected to
real NICs for mixed virtual/realistic emulation. Inter-server
links use VXLAN [66] protocol for Layer 2 connectivity
across servers. Users are presented with a transparent view,
unaware of distinctions between intra- and inter-server links.

To support more scenarios, Klonet uses Linux traffic
control [67] to apply queuing disciplines on links, emulating
properties, e.g., bandwidth, latency, and packet loss.

4.4 Achieving Robustness
For a shared platform like Klonet, robustness plays a signif-
icant role in guaranteeing a smooth education process. We
use a variety of technologies to ensure the robustness of each
component of Klonet from top to bottom: Klonet orchestrator,
user management model, virtual networks, and the cluster.

Robustness of the Klonet orchestrator. Klonet imple-
ments two mechanisms to ensure the availability of the or-
chestrator: regular requests and redundant backups.

Regular requests. Given that the Klonet controller and the
Klonet agents are implemented by the web server technology,

Table 2: Major Anomalies of Klonet.
Anomalies Times

Cluster power outage for regular maintenance. 4
Inter-server link fails due to the firewall. 1
CPU overloaded due to broadcast storm. 1
Node boot failed due to the wrong image. 2
Node boot failed due to no startup command. 2
Lost user management model connection. 1
Image upload failed due to configuration error. 2
Inconsistent MTU among cluster servers leads
to communication failures. 1

Klonet confirms that they are alive by periodically sending
requests to them and getting corresponding responses. To pre-
vent misjudgments, Klonet sends an odd number of requests
at a time and uses the result of the majority of them. Once a
controller or agent failure is detected, Klonet restarts it.

Redundant backups. During the process of Klonet restart-
ing the controller or agent, the services they provide may
temporarily fail. Therefore, Klonet designs redundant back-
ups for them to provide services during the restart process to
ensure uninterrupted services.

Robustness of the user management model. The meth-
ods of ensuring the robustness of the user management model
are similar to those of the Klonet orchestrator. First, Klonet
leverages an odd number of processes to monitor the status
of the model. Second, if a failure is detected, Klonet switches
to a backup. The difference is that since the user manage-
ment model is a storage module, it broadcasts the received
instructions to each backup to achieve data synchronization.

Robustness of the virtual networks. The virtual networks
can be divided into two parts: nodes and links, and Klonet
ensures their robustness respectively.

Nodes. Klonet periodically obtains the running status of
each node through the docker-py [68] library. If a node is
found to have stopped unexpectedly, Klonet alerts the user
and tries to restart the node.

Links. For the intra-server links, they fail when one of their
end nodes fails, so Klonet re-establishes the corresponding
intra-server links after the nodes are restored. For the inter-
server links, Klonet verifies their health through connectivity
checks. As inter-server links provide layer 2 communication
without requiring IP addresses for end nodes, the traditional
ping tool does not work. Thus, we design a simple Layer 2
ping: Each node periodically sends data frames to the opposite
end and gets a response. If the peer does not respond several
times, an alert is sent to the corresponding user and operator,
indicating an invalid inter-server link.

Robustness of the cluster. The large number of virtual
nodes and physical servers that Klonet manages need to be
monitored in a unified manner for the convenience of the
operator. We use the open-source software Prometheus [69]
to monitor and alert the state (CPU, memory, etc.) of physical
servers and virtual nodes, and visualize the data centrally on
the cluster monitoring page (as in §4.2) of GUI.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2031

20 40 60 80 100 120
Number of students

0
200
400
600
800

1000
1200

Th
ro

ug
hp

ut
(G

bp
s) Mininet

Klonet
Ideal

(a) Total throughput.

20 40 60 80 100 120
Number of students

2.5
3.0
3.5
4.0
4.5
5.0
5.5

Th
ro

ug
hp

ut
(G

bp
s)

f1(Mininet)
f2(Mininet)
f1(Klonet)
f2(Klonet)

(b) Throughput distribution.
Figure 5: Evaluation of multi-student concurrent experiments.

Effectiveness. Thanks to efforts in robustness, Klonet en-
sured the smooth running of the course for two years. During
the operation, The major anomalies are shown in Table 2, and
most of them were solved quickly due to Klonet’s alarm and
recovery mechanism.

5 System Performance

5.1 Testbed Evaluation

In this part, we first evaluate Klonet’s ability to support simul-
taneous experiments with varying numbers of students. We
also evaluate the speed of Klonet to create a virtual network,
which is essential for ease of use and efficiency.

Klonet can support more students to conduct exper-
iments simultaneously. To evaluate how many students
Klonet can support to conduct experiments at the same time,
we assume that at the same moment, each student is assigned
a dumbbell [70] virtual network with 4 hosts and 2 switches,
and runs 2 TCP flows (f1 and f2) with bottleneck link band-
widths of 5Gbps and 6Gbps respectively using iperf3 [71]
for 15 seconds. Then we vary the number of students and
record the throughput of all flows. Ideally, in a high-fidelity
platform, individual flow throughput should remain constant
irrespective of student count, while the total throughput scales
linearly with student numbers. We believe that a platform
cannot support a certain number of students if the experimen-
tal results are not faithful. The evaluation is conducted on a
Ubuntu 22.04 server with 2 Intel Xeon Gold 5220R CPUs and
32G RAM. To obtain comparable results, we exclude plat-
forms that rely on heavy-weight virtualization technologies
such as VM, focusing instead on comparisons with emulators
that, like Klonet, use light-weight container-like virtualiza-
tion techniques. With this aim, we choose the well-known
emulator Mininet [12] as the benchmark.

Figure 5(a) shows the total throughput of all f1 and f2 flows,
where Mininet has a significant performance drop once the
number of students reaches 50, and the total throughput of
all students falls short of expectations. In contrast, Klonet
demonstrates nearly ideal performance. Figure 5(b) shows
the throughput distribution of all flows, where each flow in
Klonet maintains the expected throughput while Mininet does

10 50 100 200 300
Virtual network size

0

500

1000

1500

Ti
m

e(
s)

Emulab
Distrinet
Klonet

Figure 6: Virtual network creation speed.

40
00

48
00

56
00

64
00

72
00

80
00

88
00

96
00

Number of nodes

0

20

40

60

80

100

De
pl

oy
m

en
t

su
cc

es
s r

at
e(

%
)

Mininet-RR
Mininet-Ra
Distrinet-KBa
Distrinet-DS
Distrinet-GP
Klonet-SNP

(a) Success rate.

Minin
et-

RR

Minin
et-

Ra

Distr
ine

t-K
Ba

Distr
ine

t-D
S

Distr
ine

t-G
P

Klo
ne

t-S
NP

0
5

10
15
20
25
30
35

Nu
m

be
r o

f
ac

co
m

m
od

at
ed

 V
Ns

(b) Success number.

Figure 7: Performance of Klonet’s VNE algortihm(SwapNo-
desPartition). Compared with Mininet(RoundRobin, Ran-
dom), and Distrinet(KBalance, DivideSwap, GreedyPartition)

not. Klonet can support more students’ experiments simul-
taneously because the node emulation technology used by
Klonet has better performance isolation than that of Mininet.

Klonet has a faster speed to deploy VNs. We contrast
Klonet’s virtual networks creation time with Emulab [13] and
Distrinet [15], which are representatives of the two platform
operating modes: website access and local installation. To en-
sure consistency of the experimental environment, We request
10 Emulab d430 bare-metal servers from Emulab and conduct
the evaluation on them. We create container virtual networks
of different sizes and collect the virtual networks creation
time. The virtual network topology is Star, i.e., multiple hosts
connected to a central switch.

Figure 6 shows that the creation time for Distrinet experi-
ences the most rapid increase as the network size escalates,
mainly attributed to the utilization of LXC containers [72].
Conversely, Emulab necessitates the initiation of bare-metal
servers before creating the virtual network, making it the
slowest option when the network scale is below 150. In com-
parison, Klonet consistently exhibits the shortest deployment
time up to 300 nodes. Note that the virtual node number in
one student’s experiment is rarely larger than 300.

5.2 Large-scale Simulation
Our VNE algorithm is one of the keys to Klonet’s scalability,
we use large-scale simulation to see how large and how many
virtual networks it can support. We compare the proposed
VNE algorithm with a range of standard algorithms employed
by Mininet (cluster edition) [42] and Distrinet [73], which are
two leading platforms capable of deploying large-scale virtual
networks. We simulate a cluster of 10 servers, each server has

2032 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

80 CPU cores with 100 CPU quota per core, and 1000Mb
bandwidth capacity. To simulate network load, we randomly
generate two types of topologies, FatTree and Random. The
node and link resource requirements are 10 CPU quota and
10Mb, respectively. If the node or link resource requirements
of a virtual network cannot be met, the its deployment is
considered a failure. Note that the results of all compared
VNE algorithms depend on numerical calculations, so the
results are consistent in both simulation and practice.

Figure 7(a) reports the average success rate of VN deploy-
ment with varying sizes over 20 runs, decreasing as nodes
increase. Mininet and Distrinet fail above 4400 nodes, while
Klonet succeeds up to 8800 nodes. Figure 7(b) shows the
average number of VNs accommodated over 100 runs. Klonet
supports the largest number of VNs with less fluctuation in
results. Distrinet ranks second, while Mininet performs worst,
only one-third of Klonet. Klonet’s better scalability perfor-
mance benefits from its strategies of reducing cut-link weights
and maximizing the potential deployment capacity of the clus-
ter, while Distrinet only considers the former.

6 Use Cases

We have been using Klonet in our teaching practices for 2
years, and Table 3 shows the successful usages facilitated by
the technical designs of Klonet.

In the following, we describe how Klonet is used in
our university courses. We use two examples, one from an
undergraduate-level course (Network Algorithms), and the
other graduate-level (Enterprise Networks).

• Project 1: Playing with algorithms in programmable
networks: In this project, students will learn how to
implement classic shortest-path computation algorithms
and compare their performance in networks with the pro-
grammable control plane or programmable data plane.

• Project 2: Intra-domain routing: In this graduate-level
project, students will learn how to build and operate their
slice of the intra-domain network. They will interconnect
networks together and investigate the performance of the
OSPF protocol in networks of different sizes.

6.1 Project 1: Playing with algorithms
Project Overview. Students are required to understand the
basic principles of path computation algorithms in our lec-
tures. This project helps them to gain hands-on experience
with the actual performances of these algorithms in a real pro-
grammable network. We ask students to use OpenFlow [38]
or P4 [39], which is widely recognized as the control plane
programming protocol and data plane programming language,
respectively, for implementing path computation algorithms.
We request students to evaluate and compare the performance
of these algorithms. Moreover, with the increasingly wide

h1

h2s1 s2

s3

host-2-switch link
switch-2-switch link

host node
switch node

1000
Mbps

1000Mbps28Mbps

32Mbps
3ms

6ms

h3R

Ryu node

8ms

Ryu-2-switch link

1000Mbps18Mbps

Figure 8: Topology of “Play with Alg.” project.

application of programmable networks in academia and in-
dustry, exposure to programmable networks itself can help
students learn advanced topics in the network and engage in
related research efforts. Therefore, another goal of this project
is to teach basic concepts of programmable networks.

To help students focus on algorithm-related matters rather
than network configuration and operation, we use Klonet to
pre-create a programmable network, then ask students just to
write algorithms and feed the algorithm result into pre-written
OpenFlow or P4 program templates. Specifically, since P4 is
difficult for undergraduates to get started with, we only let
interested students leverage the source routing [74] based on
P4 to implement the result of the algorithms.

By the end, we expect the learning outcomes to be:

• Understand how OpenFlow works and master the basic
operations of the OpenFlow flow table;

• Write classic path computation algorithms in OpenFlow
controllers;

• Identify the effectiveness or limitations of different path
computation algorithms;

• (Optional) Appreciate the difference between control
plane programming and data plane programming.

To this end, we design three sub-projects in this project.
Each sub-project asks students to implement one of the fol-
lowing classic shortest-path algorithms.
Sub-project #1: Use the Depth-First Search (DFS) algorithm
to find a path with the minimum latency between two hosts.
Sub-project #2: Use the Dijkstra algorithm to find the short-
est path between two hosts.
Sub-project #3: Use the Ford–Fulkerson algorithm to find the
maximum network flow and the relative augmenting paths.

Figure 8 depicts the topology used, sub-project #1-2 sets
links with different latencies, and sub-project #3 has different
link bandwidth. Note that the switch can be an OpenFlow-
enabled OpenvSwitch [60] or a P4-enabled BMv2 [61], and
the controller is implemented by Ryu [65].

Using Klonet. Klonet helps students, tutors, and teaching
assistants (TA) in the entire process of this 5-week project.
• Tutors use Klonet’s image repository to pull new types of
nodes to design new experiments quickly. Klonet gives tutors
the simplicity and flexibility to update their experiments as
network technology changes rapidly.
• Students use Klonet’s scene repository to obtain the correct
and tested version of network scenes. Compared to previous

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2033

Table 3: Klonet usages.

Grade Use Cases Scale Servers1

2nd year undergraduate Implement algorithm in programmable networks. ∼150stu/yr. S1*3

3rd year undergraduate Networking virtual devices with Raspberry Pi. ∼40stu/yr. S1*1

1st year graduate Implement network configuration such as NAT. ∼80stu/yr. S2*19

1st year graduate Collaborate to achieve routing. ∼30stu/yr. ①S1*3, S4*14, S5*1, ②S3*1402

Self learners Verify basic knowledge from textbooks, etc. ∼100stu/yr. S5*2
1 Server types: S1 (40-core 2.10GHz CPU, 256GB RAM), S2 (2-core 2.40GHz CPU, 4GB RAM), S3 (8-core 2.49GHz CPU, 32GB RAM), S4 (8-core

1.70GHz CPU, 32GB RAM), S5 (32-core 2.30GHz CPU, 128GB RAM)
2 For this course project, we use different servers and virtual network size in each year. §6.2 describes the second-year course project.

courses without using Klonet, this dramatically reduces con-
figuration problems for students, thus the workload of TAs.
• Klonet helps students focus on learning outcomes. TAs
pre-build the VN and share it with students via the scene
repository of Klonet before the start of each sub-project.
• Klonet allows students to interact with the elements in the
networking scenario easily. It is recommended that students
establish an SSH connection with the controller node to im-
prove programming efficiency, at the same time use the web
terminal for simple tasks, such as running the ping command
in the host or getting the flow table of a switch. Students are
also asked to write a replay script (which is just a few lines of
code) and upload their sub-project into the scene repository.
• Klonet makes it easy for tutors and TAs to help with specific
problems from students. In previous years without Klonet,
tutors and TAs must deal with students’ individual environ-
ments on their personal computers. Klonet standardizes the
experimentation environment, thus significantly lessening the
workload for teaching staff. They can directly recreate the stu-
dent’s networking scene and help the student solve problems.
• Klonet facilitates testing and grading of the project. After
students complete a sub-project, the tutor or TA can replay
the sub-project uploaded by them in the scene repository and
grade them. Outstanding sub-projects are selected and shared
in scene repository for students to replay and self-correct.

6.2 Project 2: Intra-domain Routing
Project overview. This graduate-level project is a hands-on
experiment that involves realistic network operations. We in-
tend to let students understand how the real network works
and how network professionals operate their networks. Stu-
dents are asked to build and operate an intra-domain network
themselves cooperatively. To make this project realistic, we
collaborated with an Internet service company to design the
project. We chose the OSPF routing protocol as it is widely
deployed in production networks. The students are expected
to achieve the following learning outcomes:

• Build and operate their own enterprise network to have
a deeper understanding of OSPF.

• Understand the importance of splitting areas.

AS2

Backbone Area

The Operation Scope of Group 1
BR ABR TNSSAR ASBR ER

Totally NSSA

…
…

… …
The Operation Scope of Group N

AS1
Totally NSSA

Figure 9: Topology of “Intra-domain Routing” project.

• Observe and learn the benefits of route aggregation.

Our industry collaboration partner provides the setting and
configuration skeletons. Figure 9 shows the topology used in
this project, with a backbone area and several Totally Not-So-
Stubby-Areas (NSSA) [75]. The backbone area is the core, a
mesh structure formed by routers randomly connected to each
other. Some routers are called Area Border Routers (ABRs),
and others are called Backbone Routers (BRs). Every two
ABRs are connected to a Totally NSSA, whose topology is
similar to the backbone area. Each Totally NSSA consists
of Autonomous System Border Routers and Totally NSSA
Routers (TNSSARs), in which every two Autonomous Sys-
tem Border Routers (ASBRs) connect to a number of Edge
Routers (ERs) of another AS.

Using Klonet. Klonet helps students, tutors, and teaching
assistants (TA) throughout this course project. We divide
students into groups and let each group operate a set of routers
(See Figure 9). The tutor configures BRs. Given the difficulty
of this project, it is divided into three stages and each lasts
for 6 weeks to configure a single area, multiple areas, and
multiple areas with route aggregation, respectively.
• Klonet provides standardized and reproducible experimen-
tal settings for students and the teaching staff. The routers are
implemented by the FRRouting [62] in the image repository
of Klonet. At the outset of each stage, TAs pre-build a small
VN with a total of about 500 nodes for students. Students
are required to configure the routers to satisfy the stage goal
and achieve network-wide connectivity. Then, students are
required to modify the FRRouting configuration files by using
Klonet’s experiment APIs. The students are told to have scal-

2034 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2000 4000 6000 8000 10000
Number of Nodes

0

100

101
Co

nv
er

ge
nc

e
Ti

m
e

(s
)

Single Area
Multiple Areas with Route Aggregation

Multiple AreasSingle Area
Multiple Areas with Route Aggregation

Multiple Areas

Figure 10: Convergence time of OSPF.

ability in mind, that is, when the number of routers increases
or decreases, their codes should still work well.

• Klonet enables easy access to the emulated network devices.
Students are mainly required to configure Router ID, Unnum-
bered interface, Areas and ASes, and Route aggregation to
meet the goal of each stage. We have students configure the
IP address of the loopback interface as the OSPF router id.
The unnumbered interface can directly use the IP address
of the loopback interface, thus simplifying the configuration.
Students configure the NSSAs and ASes (different OSPF in-
stances) for each router and configure route redistribution
on ASBRs. Also, students configure route aggregation on
the ABRs and ASBRs to aggregate routes and eliminate the
communication overhead.

• Klonet makes it easy for tutors to create failure scenes
in a live emulated network. At the end of each stage, the
tutor creates a series of topologies of increasing size (up to
∼10,000 routers) and asks students to rerun and debug their
code to build network-wide connectivity again. The tutor
then takes down one link in the backbone area randomly
and measures the convergence time. Finally, the tutor plots
the data from the students’ joint effort to show them how
different network configurations affect network performance,
especially convergence time.

• Klonet enables the teaching staff to develop and deploy
project-specific tools. We provide a measurement tool for
students to obtain the convergence time of OSPF. This tool
collects logs from all routers located on each server, and by
analyzing the logs, gets the start time (i.e., the time that the
breakdown is detected among routers) and the end time (i.e.,
the latest time that the routing table update is completed
among all routers) of the OSPF convergence process. The
time synchronization scheme between servers is chrony [76].
Besides, we developed a script called PingAll to test the
connectivity between routers. The TAs can directly update the
image in the repository to distribute these tools to all students.

• The scalability of Klonet makes it possible for students to
experience networks running at a realistic and modern scale.
Figure 10 shows the convergence performance of different
operational strategies at different network scales. Klonet is
able to emulate an intra-domain network of 10,000 nodes on
our cluster. The result also teaches students the importance of
splitting areas and route aggregation for OSPF networks.

6.3 Feedback

To understand the reception of Klonet by students and the
teaching staff, we conduct a user survey collected from more
than 300 participants (67% bachelor students, 25% master
students, 8% tutors and TAs). According to this survey, we
have received positive feedback from most students and tutors.
Most students give positive comments such as: “It helps me
know the algorithms better” and “I definitely can not imagine
how these algorithms work in a real network without con-
ducting this project”. The comments from teaching staff are
also positive, such as: “this platform really helps quickly get
started and build the experimental topology”; “it also helps
save time on tedious operations and gain real experience”;
“using this platform, it is easier for us to realize the experimen-
tal design of various scenarios.” As mentioned in §7, there
is also some negative feedback from students, and the full
survey can be found in Appendix D.

The feedback confirms the need for a scalable and easy-to-
use network education platform like Klonet.

7 Lessons Learnt

In this section, we introduce several lessons we have learned
from developing (L1), operating (L2, L3), and using (L4, L5)
Klonet in education. We believe these lessons are valuable to
those seeking to establish and operate an educational network
emulation platform like Klonet or use Klonet in education.

L1. Connecting to the Internet is important but has
side effects. Initially, Klonet nodes had essential tools like
iperf pre-installed, and none were connected to the Internet.
However, during the teaching process, students said that they
occasionally need to access the Internet for purposes like
downloading Python packages. Therefore, we have all nodes
connected to the Internet, which introduces a new issue: While
conducting the experiment, network traffic between the two
nodes did not follow the expected path specified and was
routed to the bridge for the Internet connection.

To address this challenge, Klonet implemented a unique
design featuring an on-off button for on-demand Internet con-
nectivity. During the programming phase, students can toggle
the button on to enable Internet connection for software in-
stallation. In contrast, they should toggle it off during exper-
imentation to preemptively disable the Internet connection,
thereby circumventing potential routing interference. It’s
worth noting that students can still control the node using
the web terminal connected to the Docker daemon, not the
Internet bridge, even when the Internet connection is offline.

L2. Resources between students need careful isolation.
In our first year using Klonet for Project 1, we unexpect-
edly observed the broadcast storm problem, which exhausts
CPU and memory resources, crashing the platform. This was
caused by some students inadvertently flooding ARP requests
to the switch with the Ryu controller. Rather than simply in-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2035

forming students not to use ARP in ring topologies, we saw
an opportunity for them to appreciate the importance of path
computation algorithms. From the perspective of design, this
failure highlights poor resource isolation between students.
The root cause is that the container technology is not perfect
in resource isolation, with all containers sharing server re-
sources. To observe the effects of broadcast storms without
crashing Klonet, we bound each container to a CPU core,
limiting the impact of excessive resource usage by a single
student and preventing the disruption of other experiments.

L3. Be careful when deploying Klonet or similar plat-
forms in the public cloud. During the COVID-19 pandemic,
to facilitate remote education, we deployed Klonet on the
public cloud since the campus network is not accessible from
the outside. However, we encountered an issue in that initially
Klonet was available for a few minutes, but subsequently,
broken links between its components were reported.

Upon inspection, the load balancer of the public cloud was
found to terminate links between components they do not
communicate within a specified period. To remedy this, we
adjusted heartbeat intervals between Klonet’s components
to keep the link alive. Notably, unlike private clusters, these
implicit mechanisms in public clouds may bring unexpected
challenges.

L4. Knowledge not closely related to computer network-
ing requires effort. Many students expressed their love for
designs such as graphic design topology and web terminals,
rating them as necessary, interesting and intuitive because they
simplify operations and improve efficiency. However, accord-
ing to student feedback, in addition to networking knowledge
itself, any knowledge that is new to them (especially Linux)
makes them struggle. This is overlooked in the first year.
Therefore, we have supplemented and improved the introduc-
tion of relevant background knowledge in lecture notes.

L5. API access should be differentiated for students
with different backgrounds. Klonet’s rich APIs facilitate
customizable experiments, but unrestricted access could po-
tentially overwhelm students. For example, in our algorithm
project (§6.1), all APIs are available to students initially in the
first year of teaching. Due to the lack of background knowl-
edge, students have no clear boundaries about the task they
need to complete (i.e., network algorithm implementation),
wasting a lot of time on the preliminary work (i.e., building
topology and configuring link properties). We then restricted
the APIs available to students in this course and let them
use the built and configured topologies we provided in the
scene library. With this restriction, we found that students
spend significantly more time on algorithm implementation
and verification, aligning better with our teaching purposes.

8 Discussion

Applications in research and even industry. The use of
Klonet in research or even industry is also very encouraging.

Indeed, several researchers have already adopted Klonet to
carry out research works, like optimizing clock synchroniza-
tion in large-scale clusters [77]. However, the research and
industry field demands greater fidelity than education. For
example, with our evaluation, inter-server links inevitably in-
troduce a ms-level tail latency. While acceptable in education,
such latency proves unacceptable where deterministic latency
is required. Driven by the requirement from our cooperation
projects with large networking companies, we are exploring
techniques such as hardware offloading and latency compen-
sation to alleviate this issue. In the future, we will make more
optimizations to improve Klonet’s fidelity.

Promoting Klonet’s use to more courses and universi-
ties. Supported by college policy, several other courses are
scheduled to use Klonet next semester. We may face more
problems with large-scale use, and we will continue to main-
tain and optimize Klonet. Additionally, several other universi-
ties are also planning to introduce Klonet into some courses
next year. However, due to many non-technical reasons, they
require Klonet to be deployed on their own private cluster.
This requires Klonet to be easily installed. Klonet simplifies
deployment with a one-click installation script, improving
ease of setup compared to Emulab [37]. In the future, we plan
to offer a more convenient way for installation, using a VM
image that contains Klonet and its dependencies. Technically
it is easy, and popularization is more of a non-technical issue.

Limitations of applicable scenarios. While supporting
a variety of scenarios, it must be acknowledged that Klonet
still has limitations. For example, Klonet can only support
terrestrial networks and cannot support emulating the ISTN
now. In addition, Klonet uses Docker technology, which does
not facilitate the modification of some Linux kernel options.
For example, it cannot support experimental scenarios of ad-
justing the congestion control scheme in the kernel. We plan
to introduce support for VMs next year to meet the different
levels of configuration requirements in more scenarios.

Continuous optimizing ease of use. To ease the burden
on students, we are constantly working hard to improve the
ease of use of Klonet. For instance, within the laboratory, we
have integrated generative AI to enhance its capabilities (e.g.
automating topology deployment through natural language),
which is currently being refined.

9 Conclusion

This paper presents Klonet, an easy-to-use and scalable net-
work emulation platform for education. We introduce the de-
sign and implementation of Klonet. Besides, we give real use
cases by using Klonet in our teaching courses which shows it
has a great benefit in education. We also introduce our lessons
learned from the 4 years of developing and 2 years of using
Klonet in education. We plan to make Klonet available as an
educational infrastructure, and we hope that Klonet can help
the development of computer network education.

2036 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgements

We would like to thank the anonymous reviewers and our
shepherd Eric Eide for their constructive comments and feed-
back. Special thanks to Emulab for making our performance
evaluation possible. We also thank Yi Gao of Linklab 2.0 for
his help. We thank all members in Klonet team for their con-
tributions, including but not limited to: Jingshan Duan, Jian
Sun, Xiaoyu Yu, Chen Wang, Xunpei Hu, Yifan Su, Chang
Xiao, Wei Shan, Bo Tao, Shiman Mei, Yichen He, Dongxu
Wu, Jiahao Guo, Kecheng Gong, and Yifan Feng. This work is
supported in part by National Key Research and Development
Program of China (2021YFB3101001, 2023YFB2904600),
National Natural Science Foundation of China (62102066,
62394324), Young Elite Scientists Sponsorship Program by
CAST (2022QNRC001).

References

[1] Brent Chun, David Culler, Timothy Roscoe, Andy
Bavier, Larry Peterson, Mike Wawrzoniak, and Mic
Bowman. Planetlab: an overlay testbed for broad-
coverage services. ACM SIGCOMM Computer Commu-
nication Review, 33(3):3–12, 2003.

[2] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, et al. The
design and operation of cloudlab. In USENIX Annual
Technical Conference, pages 1–14, 2019.

[3] Mark Berman, Jeffrey S Chase, Lawrence Landwe-
ber, Akihiro Nakao, Max Ott, Dipankar Raychaudhuri,
Robert Ricci, and Ivan Seskar. Geni: A federated testbed
for innovative network experiments. Computer Net-
works, 61:5–23, 2014.

[4] Wei Dong, Borui Li, Haoyu Li, Hao Wu, Kaijie Gong,
Wenzhao Zhang, and Yi Gao. {LinkLab} 2.0: A multi-
tenant programmable {IoT} testbed for experimentation
with {Edge-Cloud} integration. In 20th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 23), pages 1683–1699, 2023.

[5] Jeongyoon Eo, Zhixiong Niu, Wenxue Cheng, Francis Y
Yan, Rui Gao, Jorina Kardhashi, Scott Inglis, Michael
Revow, Byung-Gon Chun, Peng Cheng, et al. Opennet-
lab: Open platform for rl-based congestion control for
real-time communications. Proc. of APNet, 2022.

[6] The University of Washington NS-3 Consortium. Ns3
official website. https://www.nsnam.org/, 2023.

[7] András Varga and Rudolf Hornig. An overview of the
omnet++ simulation environment. In 1st International
ICST Conference on Simulation Tools and Techniques
for Communications, Networks and Systems, 2010.

[8] Jozef Janitor, František Jakab, and Karol Kniewald. Vi-
sual learning tools for teaching/learning computer net-
works: Cisco networking academy and packet tracer. In
2010 Sixth international conference on networking and
services, pages 351–355. IEEE, 2010.

[9] Qingqing Yang, Xi Peng, Li Chen, Libin Liu, Jingze
Zhang, Hong Xu, Baochun Li, and Gong Zhang. Deep-
queuenet: towards scalable and generalized network per-
formance estimation with packet-level visibility. In
Proceedings of the ACM SIGCOMM 2022 Conference,
pages 441–457, 2022.

[10] Kaihui Gao, Li Chen, Dan Li, Vincent Liu, Xizheng
Wang, Ran Zhang, and Lu Lu. Dons: Fast and afford-
able discrete event network simulation with automatic
parallelization. In Proceedings of the ACM SIGCOMM
2023 Conference, pages 167–181, 2023.

[11] Qizhen Zhang, Kelvin KW Ng, Charles Kazer, Shen
Yan, João Sedoc, and Vincent Liu. Mimicnet: fast perfor-
mance estimates for data center networks with machine
learning. In Proceedings of the ACM SIGCOMM 2021
Conference, pages 287–304, 2021.

[12] Bob Lantz, Brandon Heller, and Nick McKeown. A net-
work in a laptop: rapid prototyping for software-defined
networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, pages 1–6, 2010.

[13] Mike Hibler, Robert Ricci, Leigh Stoller, Jonathon
Duerig, Shashi Guruprasad, Tim Stack, Kirk Webb, and
Jay Lepreau. Large-scale virtualization in the emulab
network testbed. In USENIX Annual Technical Confer-
ence, 2008.

[14] Mathieu Jadin, Olivier Tilmans, Maxime Mawait, and
Olivier Bonaventure. Educational virtual routing labs
with ipmininet. In ACM SIGCOMM Education Work-
shop, 2020.

[15] Giuseppe Di Lena, Andrea Tomassilli, Damien Saucez,
Frédéric Giroire, Thierry Turletti, and Chidung Lac. Dis-
trinet: A mininet implementation for the cloud. ACM
SIGCOMM Computer Communication Review, 51(1):2–
9, 2021.

[16] Manuel Peuster, Johannes Kampmeyer, and Holger Karl.
Containernet 2.0: A rapid prototyping platform for hy-
brid service function chains. In 2018 4th IEEE Confer-
ence on Network Softwarization and Workshops (Net-
Soft), pages 335–337. IEEE, 2018.

[17] Gaetano Bonofiglio, Veronica Iovinella, Gabriele
Lospoto, and Giuseppe Di Battista. Kathará: A
container-based framework for implementing network
function virtualization and software defined networks.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2037

https://www.nsnam.org/

In NOMS 2018-2018 IEEE/IFIP Network Operations
and Management Symposium, pages 1–9. IEEE, 2018.

[18] Mariano Scazzariello, Lorenzo Ariemma, Giuseppe
Di Battista, and Maurizio Patrignani. Megalos: A scal-
able architecture for the virtualization of network sce-
narios. In NOMS 2020-2020 IEEE/IFIP Network Oper-
ations and Management Symposium, pages 1–7. IEEE,
2020.

[19] Jeremy Grossman, et al. Graphical network simulator-3
(gns3). https://www.gns3.com/, 2023.

[20] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyaku-
mar, Bob Lantz, and Nick McKeown. Reproducible
network experiments using container-based emulation.
In Proceedings of the 8th international conference on
Emerging networking experiments and technologies,
pages 253–264, 2012.

[21] Jiaqi Yan and Dong Jin. Vt-mininet: Virtual-time-
enabled mininet for scalable and accurate software-
define network emulation. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Net-
working Research, pages 1–7, 2015.

[22] Ramon R Fontes, Samira Afzal, Samuel HB Brito,
Mateus AS Santos, and Christian Esteve Rothenberg.
Mininet-wifi: Emulating software-defined wireless net-
works. In 2015 11th International Conference on Net-
work and Service Management (CNSM), pages 384–389.
IEEE, 2015.

[23] Mark Carson and Darrin Santay. Nist net: a linux-based
network emulation tool. ACM SIGCOMM Computer
Communication Review, 33(3):111–126, 2003.

[24] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahade-
van, Dejan Kostić, Jeff Chase, and David Becker. Scal-
ability and accuracy in a large-scale network emulator.
ACM SIGOPS Operating Systems Review, 36(SI):271–
284, 2002.

[25] Valerio Schiavoni, Etienne Rivière, and Pascal Felber.
Splaynet: Distributed user-space topology emulation. In
ACM/IFIP/USENIX International Conference on Dis-
tributed Systems Platforms and Open Distributed Pro-
cessing, pages 62–81. Springer, 2013.

[26] Paulo Gouveia, João Neves, Carlos Segarra, Luca
Liechti, Shady Issa, Valerio Schiavoni, and Miguel
Matos. Kollaps: decentralized and dynamic topology
emulation. In Proceedings of the Fifteenth European
Conference on Computer Systems, pages 1–16, 2020.

[27] Jiamin Cao, Ying Liu, Yu Zhou, Lin He, and Mingwei
Xu. Turbonet: Faithfully emulating networks with pro-
grammable switches. IEEE/ACM Transactions on Net-
working, 2022.

[28] Dimosthenis Pediaditakis, Charalampos Rotsos, and An-
drew William Moore. Faithful reproduction of network
experiments. In Proceedings of the tenth ACM/IEEE
symposium on Architectures for networking and commu-
nications systems, pages 41–52, 2014.

[29] Andreas Grau, Klaus Herrmann, and Kurt Rothermel.
Netplace: Efficient runtime minimization of network em-
ulation experiments. In Proceedings of the 2010 Interna-
tional Symposium on Performance Evaluation of Com-
puter and Telecommunication Systems (SPECTS’10),
pages 265–272. IEEE, 2010.

[30] Andreas Grau, Klaus Herrmann, and Kurt Rothermel.
Netbalance: Reducing the runtime of network emulation
using live migration. In 2011 Proceedings of 20th Inter-
national Conference on Computer Communications and
Networks (ICCCN), pages 1–6. IEEE, 2011.

[31] Philip Wette, Martin Dräxler, Arne Schwabe, Felix Wal-
laschek, Mohammad Hassan Zahraee, and Holger Karl.
Maxinet: Distributed emulation of software-defined net-
works. In 2014 IFIP Networking Conference, pages 1–9.
IEEE, 2014.

[32] Elias Weingärtner, Florian Schmidt, Hendrik Vom Lehn,
Tobias Heer, and Klaus Wehrle. Slicetime: A platform
for scalable and accurate network emulation. In Proceed-
ings of the 8th USENIX conference on Networked sys-
tems design and implementation, pages 253–266, 2011.

[33] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin
Cao, Sri Tallapragada, Nuno P Lopes, Andrey Ry-
balchenko, Guohan Lu, and Lihua Yuan. Crystalnet:
Faithfully emulating large production networks. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, pages 599–613, 2017.

[34] Zeqi Lai, Hewu Li, Yangtao Deng, Qian Wu, Jun Liu,
Yuanjie Li, Jihao Li, Lixin Liu, Weisen Liu, and Jianping
Wu. StarryNet: Empowering researchers to evaluate
futuristic integrated space and terrestrial networks. In
20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 1309–1324, 2023.

[35] Wenliang Du, Honghao Zeng, and Kyungrok Won. Seed
emulator: an internet emulator for research and educa-
tion. In Proceedings of the 21st ACM Workshop on Hot
Topics in Networks, pages 101–107, 2022.

[36] Thomas Holterbach, Tobias Bü, Tino Rellstab, and Lau-
rent Vanbever. An open platform to teach how the in-
ternet practically works. ACM SIGCOMM Computer
Communication Review, 50(2):45–52, 2020.

[37] Maurizio Pizzonia and Massimo Rimondini. Netkit:
network emulation for education. Software: Practice
and Experience, 46(2):133–165, 2016.

2038 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.gns3.com/

[38] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. Openflow: Enabling inno-
vation in campus networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, mar 2008.

[39] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review,
44(3):87–95, 2014.

[40] The Kubernetes Authors. Kubernetes official web site.
https://kubernetes.io/, 2023.

[41] Marina Prvan and Julije Ožegović. Methods in teaching
computer networks: a literature review. ACM Trans-
actions on Computing Education (TOCE), 20(3):1–35,
2020.

[42] The Mininet Project. Cluster edition proto-
type. https://github.com/mininet/mininet/
wiki/Cluster-Edition-Prototype, 2024.

[43] Kathará. kathara success stories. https://www.
kathara.org/stories.html, 2024.

[44] Flask. Flask document. https://flask.
palletsprojects.com/en/2.2.x/, 2023.

[45] Microsoft. Vscode remote ssh plugin. https://code.
visualstudio.com/docs/remote/ssh, 2023.

[46] Docker Inc. Docker low-level api. https:
//docker-py.readthedocs.io/en/stable/api.
html#docker.api.exec_api.ExecApiMixin.exec_
start, 2023.

[47] Ian Fette and Alexey Melnikov. Rfc 6455: The web-
socket protocol, 2011.

[48] Grafana Labs. Grafana official web site. https://
grafana.com/, 2023.

[49] Oracle. Mysql official web site. https://www.mysql.
com/, 2023.

[50] Docker Inc. Docker registry document. https://docs.
docker.com/registry/, 2023.

[51] Wei Bai, Li Chen, Kai Chen, and Haitao Wu. Enabling
ecn in multi-service multi-queue data centers. In 13th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), pages 537–549, Santa Clara,
CA, March 2016. USENIX Association.

[52] Theophilus Benson, Ashok Anand, Aditya Akella, and
Ming Zhang. Understanding data center traffic charac-
teristics. ACM SIGCOMM Computer Communication
Review, 40(1):92–99, 2010.

[53] Wei Bai, Li Chen, Kai Chen, and Haitao Wu. Traf-
ficgenerator. https://github.com/HKUST-SING/
TrafficGenerator, 2023.

[54] Scapy Community. Scapy. https://scapy.net/,
2023.

[55] The Tcpdump Group. Home | tcpdump & libpcap.
https://www.tcpdump.org/, 2023.

[56] FNSS. Fnss official web site. https://fnss.github.
io/, 2023.

[57] Python Software Foundation. Coroutines and
tasks. https://docs.python.org/3/library/
asyncio-task.html#coroutines-and-tasks,
2023.

[58] Redis Ltd. Redis official website. https://redis.io/,
2023.

[59] Docker Inc. Docker official web site. https://www.
docker.com/, 2023.

[60] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jack-
son, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex
Wang, Joe Stringer, Pravin Shelar, et al. The design and
implementation of open {vSwitch}. In 12th USENIX
symposium on networked systems design and implemen-
tation (NSDI 15), pages 117–130, 2015.

[61] Bas Antonin and Fingerhut Andy and Sivaraman
Anirudh and Arora Dushyant. Behavioral model (bmv2).
https://github.com/p4lang/behavioral-model,
2023.

[62] FRRouting Project. Frrouting. https://frrouting.
org/, 2023.

[63] Paul Jakma and David Lamparter. Introduction to the
quagga routing suite. IEEE Network, 28(2):42–48, 2014.

[64] Docker Inc. Ubuntu image. https://hub.docker.
com/_/ubuntu/, 2023.

[65] Ryu SDN Framework Community. Ryu controller.
https://github.com/faucetsdn/ryu, 2023.

[66] Mallik Mahalingam, Dinesh Dutt, Kenneth Duda, Puneet
Agarwal, Lawrence Kreeger, T Sridhar, Mike Bursell,
and Chris Wright. Virtual extensible local area network
(vxlan): A framework for overlaying virtualized layer 2
networks over layer 3 networks. Technical report, 2014.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2039

https://kubernetes.io/
https://github.com/mininet/mininet/wiki/Cluster-Edition-Prototype
https://github.com/mininet/mininet/wiki/Cluster-Edition-Prototype
https://www.kathara.org/stories.html
https://www.kathara.org/stories.html
https://flask.palletsprojects.com/en/2.2.x/
https://flask.palletsprojects.com/en/2.2.x/
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh
https://docker-py.readthedocs.io/en/stable/api.html#docker.api.exec_api.ExecApiMixin.exec_start
https://docker-py.readthedocs.io/en/stable/api.html#docker.api.exec_api.ExecApiMixin.exec_start
https://docker-py.readthedocs.io/en/stable/api.html#docker.api.exec_api.ExecApiMixin.exec_start
https://docker-py.readthedocs.io/en/stable/api.html#docker.api.exec_api.ExecApiMixin.exec_start
https://grafana.com/
https://grafana.com/
https://www.mysql.com/
https://www.mysql.com/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://github.com/HKUST-SING/TrafficGenerator
https://github.com/HKUST-SING/TrafficGenerator
https://scapy.net/
https://www.tcpdump.org/
https://fnss.github.io/
https://fnss.github.io/
https://docs.python.org/3/library/asyncio-task.html#coroutines-and-tasks
https://docs.python.org/3/library/asyncio-task.html#coroutines-and-tasks
https://redis.io/
https://www.docker.com/
https://www.docker.com/
https://github.com/p4lang/behavioral-model
https://frrouting.org/
https://frrouting.org/
https://hub.docker.com/_/ubuntu/
https://hub.docker.com/_/ubuntu/
https://github.com/faucetsdn/ryu

[67] Linux Foundation. tc(8) - linux manual page. https:
//man7.org/linux/man-pages/man8/tc.8.html,
2023.

[68] Docker Inc. Docker sdk for python. https://github.
com/docker/docker-py, 2023.

[69] Prometheus Authors. Prometheus. https://
prometheus.io/, 2023.

[70] P Subramanya, KS Vinayaka, HL Gururaj, and
B Ramesh. Performance evaluation of high speed tcp
variants in dumbbell network. IOSR Journal of Com-
puter Engineering, 16(2):49–53, 2014.

[71] iPerf Group. iperf - the ultimate speed test tool for tcp,
udp and sctp. https://iperf.fr/, 2023.

[72] Canonical Ltd. Linux containers. https://
linuxcontainers.org, 2023.

[73] Giuseppe Di Lena, Andrea Tomassilli, Damien Saucez,
Frédéric Giroire, Thierry Turletti, and Chidung Lac. Dis-
trinet: A mininet implementation for the cloud. ACM
SIGCOMM Computer Communication Review, 51(1):2–
9, 2021.

[74] Networked Systems Group (NSG). P4-learning.
https://github.com/nsg-ethz/p4-learning/
tree/master/examples/source_routing, 2023.

[75] Pat Murphy. The ospf not-so-stubby area (nssa) option.
Technical report, 2003.

[76] Chrony. Chrony. https://chrony.tuxfamily.org/
index.html, 2023.

[77] Zhuochen Fan, Xiaodong Li, Yanwei Xu, Yuqing Li,
Tong Yang, and Steve Uhlig. Work-in-progress: A novel
clock synchronization system for large-scale clusters.
In 2022 IEEE Real-Time Systems Symposium (RTSS),
pages 519–522. IEEE, 2022.

[78] George Karypis and Vipin Kumar. A fast and high qual-
ity multilevel scheme for partitioning irregular graphs.
SIAM Journal on scientific Computing, 20(1):359–392,
1998.

2040 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://prometheus.io/
https://prometheus.io/
https://iperf.fr/
https://linuxcontainers.org
https://linuxcontainers.org
https://github.com/nsg-ethz/p4-learning/tree/master/examples/source_routing
https://github.com/nsg-ethz/p4-learning/tree/master/examples/source_routing
https://chrony.tuxfamily.org/index.html
https://chrony.tuxfamily.org/index.html

Appendices

A Experiment Page

Figure 11 shows the screenshot of the experiment page of
Klonet’s GUI. Here is a description of the various elements
visible in the screenshot:
• Klonet Dashboard. The header at the top left indicates that
this is the “Klonet Dashboard”, suggesting that the platform
is named “Klonet”.
• User and Experiment Information. In the top right corner,
there are details like “demo_user” and “demo_experiment”,
suggesting the current user’s username and the name of the
experiment or project they are working on, along with a “Log
out” option.
• Navigation and Action Buttons. On the top left, there are
buttons labeled “Return” and “Save”, which are likely used
to navigate back to a previous page and to save the current
configuration, respectively.
• Typical Topologies. On the left sidebar, there are icons rep-
resenting different network topologies such as “Tree”, “Star”,
“Fattree”, and “Linear”. These could be templates for quickly
setting up network structures.
• Image Repository. Below the Typical Topologies, there is
an “Images” section with icons representing different node
images. Users can upload images to this repository and later
instantiate them as nodes.
•Main Workspace. The central area of the experiment page
shows a visual representation of a network topology. Users
can instantiate nodes by dragging and dropping icons from the
image repository and are able to create links between nodes by
connecting wires between icons. In addition, Klonet provides
a control menu for each node, which can be expanded by
right-clicking on the icon.
• Control Menu of a Node. After right-clicking the node, a
contextual menu is open with options such as “Configure”,
“Terminal”, “Delete”, “File Upload”, and “File Download”.
Users can interact with each node in the workspace to config-
ure settings, access the web terminal, remove the element, or
upload and download files.
• Experiment Management Panel. On the right, there is
an “Experiment Management” panel where users can control
the creation and destruction of the experiment, as well as
“Traffic Generation” and “Traffic Measurement” sub-options
to generate network traffic and monitor performance metrics
such as throughput and latency of network traffic.
• Entities Section. Below the management panel, there’s an
“Entities” section with options to select “Node” or “Link”,
followed by a “Search” bar, which is used to filter or find
specific nodes or links within the network topology. Here,
users can interact with nodes (as in the “Control Menu”),
delete links, and configure link properties like bandwidth.

B The Design of User Management Model

As shown in Figure 12, We assign each student a student
space to record the experiment information. In the student
space, there are several important components:

• The agent_list records the IP address of every agent.
• The VN_list records the name and corresponding descrip-

tion (i.e., the information of nodes and links) of VNs of
students.

• The VN2subVN, subVN2agent and subVN_service de-
scribe the information of the sub-VNs derived from
virtual network embedding algorithm for all VNs. The
VN2subVN records the list of sub-VN names, and users
can query additional information about a sub-VN using
its name. The subVN2agent records the IP of the server
where each sub-VN is deployed. The subVN_service
records nodes that need to start some necessary initial-
ization programs when a VN is created.

• <VN>_<node>, <VN>_<link> and <VN>_<vxlan>
are the objects of virtual devices. We use the names of
VN, link, and node to index an object.

C Details of VNE Algorithm

Algorithm 1: Virtual network embedding algorithm
Input: Virtual network G, Cluster Sserver

Output: An embedding strategy: G
mapping−→ Sserver

1 Compute wG← the sum of the node weights of G
2 Compute the IDX of each server in Sserver
3 if ∃pn ∈ Sserver : C(pn)≥ wG then
4 Embed G on the server p with the largest IDX and

has a CPU capacity close to but larger than wG;
5 else
6 Invoke strict_partition (Sserver, G)
7 end
8 Procedure strict_partition(Sserver, G)
9 Sort Sserver by CPU capacity in descending order

10 Select the first k′ servers whose sum of CPU
capacity is just greater than wG;

/* k′ is also the number of sub-VNs */
11 Compute the target weights www taken by the

partitioning operation for sub-VNs:
www = [w1, ...,wk′−1,wk′]←

[C(p1)
wG

, ...,
C(pk′−1)

wG
,

wG−∑
k′−1
n=1 C(pn)
wG

];
12 Obtain sub-VNs: sss← Partition(G,k′,www);
13 Embed sss to the selected k′ servers;
14 Adjust the mapping of virtual nodes to satisfy

resource constraints and reduce the IDX of
servers if necessary.

15 return Embedding strategy of sub-VNs

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2041

Figure 11: The Experiment Page.

VN2subVN
VN_name subVN_list

... ...

subVN2agent
subVN_name agent_ip

... ...

subVN_service
subVN_name node_list

... ...

VN_list
VN_name VN_description

... ...

agent_list
agent ip

... Student Space

student2space
student_name space_id

... ...

<topo>_<link>
src_node
dst_node
src_type
dst_type

src_nic_name
dst_nic_name

src_ip
dst_ip

<topo>_<vxlan>
VNI

remote_server_ip
src_node

src_node_ip
dst_ovs_name
src_nic_name
dst_nic_name
affiliated_link

<topo>_<node>
image_name
node_type
coordinate

affiliated_subtopo
container_id

links
configuration

<topo>_<node>
image_name
node_type
coordinate

affiliated_subtopo
container_id

links
configuration

<VN>_<node>
image_name
node_type
coordinate

affiliated_subVN
container_id

links
configuration

<topo>_<link>
src_node
dst_node
src_type
dst_type

src_nic_name
dst_nic_name

src_ip
dst_ip

<VN>_<link>
src_node
dst_node
src_type
dst_type

src_nic_name
dst_nic_name

src_ip
dst_ip

<topo>_<vxlan>
VNI

remote_server_ip
src_node

src_node_ip
dst_ovs_name
src_nic_name
dst_nic_name
affiliated_link

<VN>_<vxlan>
VNI

remote_server_ip
src_node

src_node_ip
dst_ovs_name
src_nic_name
dst_nic_name
affiliated_link

Figure 12: The User Management Model.

As shown in Algorithm 1, If a small VN can be deployed
on a single server, we map it to the server with the largest
IDX that satisfies the CPU capacity requirement. Otherwise,
we will call the strict_partition function (described later) to
partition this VN into a series of sub-VNs and then map these
sub-VNs. To improve resource utilization, strict_partition
first determines the number k′ of sub-VNs and finds a suitable
subset of candidate servers for mapping. Then, it calculates
the weights www = [w1, · · · ,wk′−1,wk′] of sub-VNs proportional
to the capacity of candidate servers. Taking k′ and www as inputs,
strict_partition adapts a near-optimal graph partition method,
METIS [78] to partition the VN into satisfied sub-VNs and
then embed these sub-VNs. Finally, we adjust the mapping
to meet resource constraints if it does not satisfy resource

constraints and to reduce the IDX of servers if possible.

D The User Survey

We conducted an open-ended survey with the question, “What
are your thoughts on the course and/or Klonet?” The survey
involves 305 participants with three roles (204 bachelor stu-
dents, 76 master students, 25 tutors and teaching assistants).
We analyzed the questionnaire results of the three roles sepa-
rately. Specifically, we conduct a coarse-grained classification
of participants’ answers and count the number of people with
each type of answer, and then calculate the proportion of this
number to the total number of people in that type of role.
The results of the survey are shown in Table 4, Table 5, and
Table 6.

Ethical Considerations.

• All participants in our survey gave informed and volun-
tary consent to the use of these data.

• Our institution’s ethics review commission also consent
to the conduct of this survey and its use. This work
complies with all applicable ethical standards of our
institution.

• We blur personal information(e.g. name) and group it
into statistics to ensure maximizing the benefits to an
individual.

• All individuals are anonymously hidden in our survey,
so individual risk is minimized.

• Our survey has only one open question, so the privacy is
respected.

• Also since our question is open, users cannot be induced.

2042 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Ta
bl

e
4:

Su
rv

ey
re

su
lt

fr
om

un
de

rg
ra

du
at

e
st

ud
en

ts
.

C
om

m
en

ts
N

um
be

r
Pe

rc
en

ta
ge

(%
)

U
nd

er
gr

ad
ua

te

St
ud

en
t(

20
4)

Po
si

tiv
e

K
lo

ne
ti

s
ea

sy
to

ge
ts

ta
rt

ed
.

43
21

.0
8

C
an

lo
g

in
di

re
ct

ly
an

d
us

e
it

ve
ry

co
nv

en
ie

nt
ly

.
12

5.
88

SS
H

is
he

lp
fu

l.
30

14
.7

1
Tr

af
fic

ge
ne

ra
to

ro
rt

ra
ffi

c
m

on
ito

ri
s

he
lp

fu
l.

33
16

.1
8

V
is

ua
liz

at
io

n
is

in
tu

iti
ve

.
53

25
.9

8
L

ea
rn

m
or

e
kn

ow
le

dg
e

(s
uc

h
as

Py
th

on
)a

ft
er

th
e

co
ur

se
.

89
43

.6
3

H
av

e
de

ep
er

un
de

rs
ta

nd
in

g
of

co
ur

se
kn

ow
le

dg
e.

15
7

76
.9

6
A

cq
ui

re
d

ex
em

pl
ar

y
qu

al
iti

es
(s

uc
h

as
fe

ar
le

ss
in

ta
ck

lin
g

di
ffi

cu
lti

es
,u

nd
er

st
an

d
th

e
im

po
rt

an
ce

of
te

am
w

or
k)

.
27

13
.2

4

E
nh

an
ce

d
en

th
us

ia
sm

fo
rl

ea
rn

in
g.

30
14

.7
1

T
he

co
ur

se
ex

pe
ri

m
en

ts
ar

e
w

el
ld

es
ig

ne
d.

6
2.

94
Fe

el
in

g
go

od
ab

ou
tg

ra
ph

ic
al

te
rm

in
al

s.
28

13
.7

3
B

ei
ng

ab
le

to
re

al
is

tic
al

ly
in

te
ra

ct
w

ith
ne

tw
or

k
de

vi
ce

s
is

fu
n.

14
6.

86

T
he

TA
s

ar
e

ve
ry

ni
ce

.
22

10
.7

8

N
eg

at
iv

e

Fe
w

er
do

cu
m

en
ts

,v
id

eo
s,

et
c.

ar
e

av
ai

la
bl

e.
15

7.
35

A
cc

es
s

is
lim

ite
d

to
th

e
ca

m
pu

s
ne

tw
or

k;
of

f-
ca

m
pu

s
ac

ce
ss

is
no

ta
va

ila
bl

e.
3

1.
47

C
an

no
td

is
pl

ay
tr

af
fic

pa
th

s
in

re
al

-t
im

e.
11

5.
39

Fr
on

t-
en

d
di

sp
la

y
of

pl
at

fo
rm

to
po

lo
gy

ca
nn

ot
be

zo
om

ed
in

an
d

ou
t.

2
0.

98

T
he

fir
st

pr
oj

ec
ti

s
ov

er
ly

ch
al

le
ng

in
g

as
it

de
m

an
ds

a
si

gn
ifi

ca
nt

am
ou

nt
of

tim
e

fo
rc

om
pr

eh
en

si
on

of
un

re
la

te
d

co
m

po
ne

nt
s

(P
yt

ho
n,

R
yu

,X
sh

el
l,

A
R

P
pr

ot
oc

ol
,L

L
D

P
pr

ot
oc

ol
).

D
es

pi
te

th
e

pr
ov

is
io

n
of

a
R

yu
te

m
pl

at
e,

a
su

bs
ta

nt
ia

la
m

ou
nt

of
tim

e
w

as
st

ill
sp

en
to

n
co

m
pr

eh
en

di
ng

th
e

co
de

w
ith

in
th

e
te

m
pl

at
e.

17
8

87
.2

5

T
he

cu
rr

ic
ul

a
an

d
co

ur
se

de
si

gn
ar

e
to

o
si

m
pl

e.
28

13
.7

3
T

he
re

is
lit

tle
co

rr
el

at
io

n
be

tw
ee

n
cl

as
s

co
nt

en
ta

nd
pr

ac
tic

al
co

nt
en

t.
6

2.
94

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2043

Ta
bl

e
5:

Su
rv

ey
re

su
lt

fr
om

gr
ad

ua
te

st
ud

en
ts

.
C

om
m

en
ts

N
um

be
r

Pe
rc

en
ta

ge
(%

)

G
ra

du
at

e
St

ud
en

ts
(7

6)

Po
si

tiv
e

G
ai

ne
d

a
de

ep
er

un
de

rs
ta

nd
in

g
of

O
SP

F
or

ne
tw

or
ki

ng
.

58
76

.3
2

H
ap

py
te

am
w

or
k.

24
31

.5
8

K
lo

ne
ti

s
ea

sy
to

ge
ts

ta
rt

ed
.

10
13

.1
6

A
cq

ui
re

d
ex

em
pl

ar
y

qu
al

iti
es

.
9

11
.8

4
SS

H
is

he
lp

fu
l.

21
27

.6
3

E
nh

an
ce

d
en

th
us

ia
sm

fo
rl

ea
rn

in
g.

6
7.

89
C

an
lo

g
in

di
re

ct
ly

an
d

us
e

it
ve

ry
co

nv
en

ie
nt

ly
.

5
6.

58

N
eg

at
iv

e

C
on

fig
ur

in
g

ro
ut

in
g

is
di

ffi
cu

lt.
60

78
.9

5
U

nh
ap

py
te

am
w

or
k.

4
5.

26
Fe

w
er

do
cu

m
en

ts
,v

id
eo

s,
et

c.
ar

e
av

ai
la

bl
e.

3
3.

95
C

an
no

tu
se

fr
on

t-
en

d
fo

rt
op

ol
og

y
vi

su
al

iz
at

io
n.

11
14

.4
7

E
xp

er
im

en
ts

ar
e

to
o

tim
e-

co
ns

um
in

g
an

d
af

fe
ct

th
e

re
se

ar
ch

pr
og

re
ss

of
th

em
se

lv
es

.
14

18
.4

2

T
he

re
is

lit
tle

co
rr

el
at

io
n

be
tw

ee
n

cl
as

s
co

nt
en

ta
nd

pr
ac

tic
al

co
nt

en
t.

3
3.

95

A
w

eb
ID

E
is

re
qu

ir
ed

.
1

1.
32

2044 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Ta
bl

e
6:

Su
rv

ey
re

su
lt

fr
om

tu
to

rs
an

d
TA

s.
C

om
m

en
ts

N
um

be
r

Pe
rc

en
ta

ge
(%

)

Tu
to

rs
an

d
TA

s(
25

)

Po
si

tiv
e

C
on

so
lid

at
ed

co
ur

se
kn

ow
le

dg
e.

20
80

.0
0

Fo
st

er
ed

re
la

tio
ns

hi
ps

w
ith

st
ud

en
ts

.
5

20
.0

0
D

es
ig

ni
ng

ex
pe

ri
m

en
ts

is
ea

sy
.

19
76

.0
0

L
ik

e
th

e
im

ag
e

re
po

si
to

ry
or

sc
en

e
re

po
si

to
ry

fe
at

ur
e.

22
88

.0
0

It
’s

ni
ce

to
be

ab
le

to
au

to
m

at
ic

al
ly

sc
al

e
on

a
cl

us
te

r
3

12
.0

0

N
eg

at
iv

e

E
xp

er
im

en
ta

ld
es

ig
n

is
tim

e-
co

ns
um

in
g.

6
24

.0
0

Ta
ke

s
so

m
e

tim
e

to
de

bu
g

th
e

so
ft

w
ar

e
en

vi
ro

nm
en

t.
7

28
.0

0
D

ue
to

ca
m

pu
s

ne
tw

or
k

lim
ita

tio
ns

,c
lo

ud
se

rv
er

re
nt

al
m

ay
be

re
qu

ir
ed

.
5

20
.0

0

A
ve

ra
ge

le
ve

lo
fs

tu
de

nt
kn

ow
le

dg
e

is
lo

w
er

th
an

ex
pe

ct
ed

.
20

80
.0

0

N
ee

d
to

sp
en

d
so

m
e

tim
e

on
of

fli
ne

Q
&

A
.

8
32

.0
0

L
ac

k
of

do
cu

m
en

ta
tio

n.
2

8.
00

C
on

fig
ur

at
io

n
on

th
e

cl
ou

d
is

m
or

e
cu

m
be

rs
om

e.
1

4.
00

So
m

et
im

es
ne

w
fe

at
ur

es
ne

ed
to

be
de

ve
lo

pe
d

ba
se

d
on

ex
pe

ri
m

en
ta

lr
eq

ui
re

m
en

ts
.

2
8.

00

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2045

EXCHAIN: Exception Dependency Analysis for Root Cause Diagnosis

Ao Li1, Shan Lu23, Suman Nath2, Rohan Padhye1, Vyas Sekar1

1Carnegie Mellon University, 2Microsoft Research, 3University of Chicago

Abstract
Many failures in large-scale online services stem from

incorrect handling of exceptions. We focus on exception-
handling failures characterized by three features that make
them difficult to diagnose using classical techniques: (1) im-
plicit dependencies across multiple exceptions due to state
changes; (2) silent code handling without logging; and (3)
separation (in code and in time) between the root cause excep-
tion and the failure manifestation. In this paper, we present
the design and implementation of ExChain, a framework
that helps developers diagnose such exception-dependent
failures in test/canary deployment environments. ExChain
constructs causal links between exceptions even in the pres-
ence of the aforementioned factors. Our key observation is
that mishandled exceptions invariably modify critical system
states, which impact downstream functions. A key challenge
in tracking these states is balancing the tradeoff between
performance overhead and accuracy. To this end, ExChain
uses state-impact analysis to establish potential causal links
between exceptions and uses a novel hybrid taint tracking
approach for tracking state propagation. Using ExChain, we
were able to successfully identify the root cause for 8 out of
11 reported subtle exception-dependent failures in 10 pop-
ular applications. ExChain significantly outperforms state-
of-art approaches, while producing several orders of magni-
tude fewer false positives. ExChain also offers significantly
better accuracy-performance tradeoffs relative to baseline
static/dynamic analysis alternatives.

1 Introduction
Failures in large-scale production systems continue to be a
significant source of frustration for developers and loss of
customer satisfaction and revenues for service providers. A
common root cause of system failures is incorrect handling
of exceptions or errors.

Developers today can check whether a failure occurred
during the handling of an exception and whether that excep-
tion was thrown during another exception handler, etc; i.e.,
track exception chains. Unfortunately, existing workflows are
not useful for diagnosing failures whose root causes are out-
side the current exception chain, a type of failures that we
refer to as exception-dependent failure (EDFs). Exception-

dependent failures involve multiple exceptions whose han-
dling periods do not overlap (i.e., they do not belong to the
same exception chain) and yet the (mis)handling of one root
cause exception triggers a downstream exception which even-
tually leads to a failure.

In the context of large systems, diagnosing failures often ne-
cessitates an in-depth understanding of EDF. As highlighted
by Yuan et al., "Almost all catastrophic failures (92%) stem
from the incorrect management of non-fatal errors that are
explicitly signaled in software" [59]. Complementing this,
our manual analysis of 150 failures across multiple Apache
Foundation projects affirms that 85% of these failures orig-
inate from exceptions. Unfortunately, existing solutions for
root cause diagnosis of EDFs are insufficient; in our evalua-
tion with 11 EDFs, state of the art slicing, log analysis, and
statistical debugging techniques could identify the root causes
of only three of fewer EDFs.

EDFs differ from simple exception-chains [25] in three key
aspects that make them especially challenging to diagnose:

• Implicit stateful dependencies: In an explicit exception
chain, the final failure-inducing exception is part of a
cascaded chain of exceptions triggered by the root cause.
In EDFs, however, the root cause exception can lead to
a failure not only by just modifying the control flow of a
program, but also by subtly changing the state.

• Silent handling: Due to the common practice of silent ex-
ception handling [59], the root cause exception may not
be logged. This makes it difficult to diagnose exception-
handling failures that may occur later on.

• Spatial/temporal separation: Finally, the root cause and
the failure may be spatially and temporally distant from
each other. For instance, the root cause exception may
be triggered by one user request and the failure may
be triggered by a different request that has some data
dependency with the root cause.

For these reasons, we argue that it is critical to complement
exception chain information, which is commonly produced
and visualized by standard libraries in languages like Java and
Python, with exception dependency information for effective
failure diagnosis.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2047

In this paper, we present EXCHAIN, a tool that enables
developers to diagnose EDFs by automatically inferring ex-
ception dependency. EXCHAIN works by instrumenting the
production system binary. At run time (e.g., during integra-
tion testing or canary deployment), EXCHAIN routines, which
were instrumented into the production binary, automatically
log all exceptions and their contexts, and perform a dynamic-
static hybrid analysis to identify causal dependencies among
all exceptions; i.e., an exception e2 causally depends on an
exception e1 if e1 is responsible for e2, either explicitly (e.g.,
throw e2 inside a catch block of e1) or implicitly (e.g., e1
changes application states that causes e2). Whenever a failure
occurs, developers can query the exception-dependency graph
produced by EXCHAIN to see whether the failure was caused
by the mishandling of an exception.

EXCHAIN employs a set of novel state-impact analyses
to establish potential causal links between exceptions. First,
EXCHAIN analyzes how exception-handling code changes
program state—we call this affected state analysis—by iden-
tifying memory locations whose values are impacted by the
change in control flow when compared to non-exceptional
execution. Second, EXCHAIN analyzes immediate causes for
exceptions by tracking control flow backwards from the pro-
gram locations where exceptions are raised and identifying
memory locations whose values are responsible in triggering
the exception—we call this responsible state analysis. Third,
EXCHAIN incorporates taint analysis to monitor the state
affected by code addressing one exception as it influences
values which activate other exceptions. Notably, EXCHAIN in-
troduces a hybrid algorithm, blending dynamic taint tracking
for heap objects with static taint tracking for local primitives.
This strategic approach positions EXCHAIN uniquely in the
taint-tracking arena, offering accuracy akin to dynamic taint
analysis while achieving the overhead benefits of static taint
tracking. Collectively, these methods enable EXCHAIN to
determine causality between exceptions, proving invaluable
for EDF diagnosis.

We evaluated EXCHAIN using 10 diverse applications from
the Apache Foundation, spanning various domains and av-
eraging 6K stars. Out of 11 reproducible EDFs instances,
EXCHAIN identified root causes for 8, outperforming the
state-of-the-art statistical debugging, slicing, and log analy-
sis tools, which pinpointed only 3 or fewer issues.1 In per-
formance metrics, EXCHAIN introduced an average latency
overhead of 8%, half attributable to its techniques and half to
underlying JVM tools – tools we aim to optimize in future
versions. When juxtaposed with an alternative design employ-
ing static taint tracking, EXCHAIN was a mere 2% costlier but
detected 5 more root causes. In contrast, while dynamic taint
tracking identified the root cause for all failures, it was found
to introduce a substantial performance overhead, reaching up
to 50 times. This suggests that while accuracy is crucial, the

1EXCHAIN could have identified the root causes of two additional failures
with a better static taint tracking tool than what our current prototype uses.

1 class PageProvider {
2 int counter;
3 Page[] cache;
4 void processRequest(Request req) {
5 Page page = cache[req.pageIndex];
6 try {
7 if (page.isAttached()) {
8 logAndThrow(
9 "attached page.");

10 }
11 page.resolve(req.sessionId);
12 counter++;
13 // render page
14 } catch (StalePageException e1) {
15 // StalePageException is
16 // swallowed and not logged.
17 page.refresh(counter);
18 } catch (InitError e2) {
19 throw new FatalError(e2);
20 }
21 }
22 void logAndThrow(String msg) {
23 logger.info(msg);
24 throw new InitError(msg);
25 }
26 }
27 class Page {
28 int sessionId;
29 void resolve(int sessionId) {
30 attach();
31 if (sessionId != this.sessionId) {
32 throw new StalePageException();
33 }
34 ...
35 detach();
36 }
37 }

Req. 1
1

2

3
4
5

6
HTTP 200

Req. 2
1

2

3

4
HTTP 500

The method does not detach the page
when a StalePageException is thrown.

Figure 1: Wicket [7] fails to detach page when exception
occurs [56]. Green circles represents the first request that
triggers a StalePageException and leaves the page
attached. Red squares represents the second request which
triggers the InitError and causes the system to fail.

accompanying performance trade-off can be significant. The
results show that EXCHAIN’s hybrid taint-tracking presents
a useful accuracy-overhead trade-off: an accuracy closer to
dynamic taint tracking with an overhead closer to static taint
tracking. This makes EXCHAIN suitable for test or canary
deployments where the modest overhead is acceptable for the
ease of failure diagnosis.

The source code of EXCHAIN is available at:
https://github.com/aoli-al/exchain.

2 Motivation
In this section, we present an example to illustrate the notion
of exception-dependent failures and discuss why they are
an important class of problems that do not yet have good
solutions in practice.

2.1 A Motivating Example
We present a simplified real-world example to illustrate

2048 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/aoli-al/exchain

exception-dependent failures (EDFs) and the unique chal-
lenges in diagnosing their root causes. To keep the discussion
short, we pick a simple application and keep details to a min-
imum, noting that similar problems also manifest in more
complex and popular applications such as Hadoop, HDFS,
and Tomcat (as we show in §6).

Figure 1 shows a simplified code snippet from the Apache
Wicket web server [7], a popular choice for dynamic web
applications. When a user requests a page, Wicket returns the
cached version of the page for better performance (Line 5).
Next, Wicket resolves the page based on the req.sessionId

(Line 11). This sessionId allows Wicket to differentiate
between requests from various users. Specifically, if the ses-
sionId associated with a rendered page differs from a new
request, Wicket initiates re-rendering for the page. This pro-
cess is implemented in the resolve method. It begins by
attaching the page object to the current context (Line 30),
ensuring it remains exclusive to the current requester and
safeguarded against accidental modifications by concurrent
requests. Upon completion, the method detaches the page
object. The resolve compares the sessionId of the page
object with that of the requester. In cases of mismatch, it
throws a StalePageException (Line 32) so that the Page-
Provider will refresh the page (Line 17).

Unfortunately, the resolve method in Wicket 9.4.0 has a
bug that can result in an HTTP 500 error response. Figure 2
illustrates the sequence of requests that trigger this bug. The
issue involves two requests. The first request asks for a stale
page, i.e., the req.sessionId does not match the current
page.sessionId, which causes a StalePageException at
Line 31. Due to this exception, the resolve method fails
to detach the page object, leaving it attached to the current
context. The exception is later swallowed and the page is
silently refreshed in Line 17. The second request asks for
the same page requested by the previous request, and the
cache array returns correctly. However, since page is still
attached, processRequest throws an InitError exception
that eventually causes the HTTP 500 error response. The
reporter of the above Wicket issue spent significant time to
identify the root cause and to understand how it is causally
related to the failure [56].

Note that the final failure (HTTP response 500) causally
depends on one or more exceptions. The dependency can be
explicit or implicit. An exception e j explicitly depends on
another exception ei if ei’s catch block explicitly throws e j. In
the Wicket example above, FatalError explicitly depends
on InitError. On the other hand, e j implicitly depends on
ei if ei changes application state in a way that causes e j; i.e.,
there is a data-flow between the effect of ei and the cause of
e j. In the Wicket example, InitError implicitly depends on
StalePageException since the latter leaves the page in the
attached state, causing the former.

We observe that diagnosing this exception-handling failure
is challenging due to three key factors:

Req 1
p1.html

1. Get Cached Page 2. Check Page Attached

5. Throw StalePageException
HTTP 200 4. Check Stale Page

User

3. Attach Page

6. Refresh Page

Req 2
p1.html

1. Get Cached Page 2. Check Page Attached

3. Throw InitError
HTTP 500 Rethrow

4. Throw FatalError

Figure 2: The request flow that triggers the HTTP 500
error when a user requests the same page twice. The labels
correspond to the execution flow shown in Figure 1.

F1: Implicit state changes. Exceptions can have unexpected
consequences beyond just modifying the control flow of a
program. In the case of the FatalError exception shown in
Figure 2, the presence of a StalePageException implicitly
modifies the state of the page object. Specifically, the detach
method is not called, leaving the object in an un-detached
state that later triggers the FatalError exception. Impor-
tantly, there is no direct control-flow relationship between the
StalePageException and the FatalError, meaning that
simply tracing the execution path of the second request does
not reveal the root cause of the failure.

F2: Silent exception handling. The root cause exception
StalePageException is silently swallowed and not logged
(Line 15). This allows the first request to continue normally
despite encountering errors, improving overall system reli-
ability and user experience. Such silent exception handling
is a common practice among practitioners[59]; however, the
fact that the exceptions are not logged or reported to external
systems makes it difficult to diagnose failures that may occur
later on (e.g., in the second request in this example).

F3: Spatially and temporally distant root cause. The error
only surfaces in the second request, which can be temporally
distant from when the root cause was triggered by the first
request. Many unrelated error messages appear between the
temporally-distant root cause and failure, and identifying if
an error message is causally related to the failure can be
challenging.

These key factors are not specific to the motivating ex-
ample alone. For example, in a study of 10 Java libraries,
Fetzer et al. found that 40% of exceptions caused implicit
state changes [23], where both the control- and data-flow
of the program are changed. Such state changes can cause
implicit EDFs that are difficult to diagnosis. Moreover, an em-
pirical study by Fu and Ryder found that approximately 40%
of the exceptions caught by the analyzed applications were
completely ignored by the program [25]. Existing empirical
evidence shows the ubiquitous of the above factors in diag-
nosing EDF. Our experiments in §6 sampled 11 reproducible
EDFs from ten popular apps (Table 2); six of the EDFs turned
out to involve multiple requests/operations, and the root cause
exceptions were missing in the logs for five EDFs.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2049

2.2 Prior Work and Limitations
We now briefly discuss why closely related work is not appli-
cable in identifying the root cause of an EDF.

Failure diagnosis. Statistical debugging [39] and backward
slicing are two classic approaches to failure diagnosis. The
former requires comparing many successful runs and failure
runs to identify the failure root cause, a very different usage
scenario from EXCHAIN. In our evaluation, even when pro-
vided with both types of runs, the leading statistical debugging
tool, GZolta, detected 6 fewer root causes than EXCHAIN.

Backward slicing has struggled to balance accuracy and
run-time overhead: static slicing [44, 49] cannot scale to ana-
lyze large-scale systems precisely. On the other, dynamic slic-
ing techniques, like [5], can drastically slow down program
execution—by up to 15 times in our evaluation, rendering
them unsuitable for consistent use during routine testing or
canary deployments.

Additionally, Sinha et al. suggested an integration of ex-
ception semantics with backward tracing, specifically to ad-
dress null pointer exceptions. However, this technique’s scope
remains limited as it primarily tracks NULL propagation,
making it non-generalizable for other exceptions [49].

Failure monitoring. Existing failure monitoring techniques
primarily focus on identifying the failure of distributed sys-
tems [4, 13, 14, 17, 22, 26, 27, 28, 37, 38, 54]. However, iden-
tifying the failure service does not reveal the root cause of the
failure. Panorama [31] and OmegaGen [40] improve the ob-
servability of large systems by monitoring grey-failures [30].
Such techniques are not sufficient to identify the root cause
for EDFs as not all exceptions are triggered by grey failures;
i.e, they do not work for silent exception handling (F2).

Log enhancement and analysis. These techniques focus on
improving the log quality [58, 63], like logging more variable
values at more selected program locations, and identifying
failure-related logs [19] during post-mortem analysis. They
are orthogonal to EXCHAIN. EXCHAIN conducts its analysis
at run time, without relying on logs. Furthermore, no matter
how many variables are logged at how many program loca-
tions, exception dependency cannot be figured out without
the dependency analysis that we will present later. Notably,
in our evaluations, only 3 failures benefitted from analyzing
the first exception thrown by the application and the closest
exception to the final failure.

2.3 Our Goal
Our goal is to build a tool that can automatically identify, at
run time, the causal relationship between root cause excep-
tions and an EDF, even when the root causes are far from the
failure, exceptions are silently swallowed, and dependencies
are implicit. More precisely, given an EDF e f , we aim to pro-
duce a DAG such that (1) there is a single sink node e f , (2)
source nodes represent root cause exceptions, and (3) an edge
ei → e j indicates that e j implicitly or explicitly depends on

Figure 3: A high-level overview of EXCHAIN.

ei. In the most common case, the output is a chain of excep-
tions, starting from the root cause exception and ending at e f .
For example, for the aforementioned Wicket failure in Fig-
ure 1, we produce the chain StalePageException@32 →
InitError@9 → FatalError@19 (while this notation only
shows line numbers, the actual dependencies are between the
objects corresponding to the exceptions thrown at run-time).
Such dependencies can better explain to developers how root
cause exceptions lead to the failure.

We aim to make our tool easy to use: a developer should be
able to use the tool with low manual effort. The tool should
be accurate: it should be able to find root causes of most
EDFs, without generating many false positives. Finally, it
should be efficient: its run time overhead would be modest.
We envision EXCHAIN being deployed in a test, a canary, or a
reproduction environment where a modest run time overhead
is acceptable for the advantage of an easy-to-use and effective
failure diagnosis tool.

3 EXCHAIN Overview
We begin with a high level overview of its workflow and
how we envision EXCHAIN being used before diving into the
technical challenges.

3.1 A High Level View
EXCHAIN consists of three components as shown in Figure 3:
the instrumenter, the runtime, and the analyzer.

To use EXCHAIN, a developer proactively uses the auto-
mated instrumenter to instrument the target application bi-
naries. The instrumenter does not require application source
code or any application-specific configuration. The instru-
mented binaries are then deployed in the same way as the
original binaries (e.g., in an integration testing environment
or in a canary deployment).

As the instrumented application executes, EXCHAIN’s run-
time intercepts all exceptions that are raised and saves all ex-
ceptions as well as the critical runtime information required
to determine their dependencies in the EXCHAIN log file.
After a failure, the developer uses EXCHAIN analyzer to di-
agnose the failure. We assume that the developer charged
with this incident troubleshooting and remediation knows
the final symptom exception of the failure (potentially from
the application’s own log file). For instance, in our example
from earlier, the developer knows that the HTTP 500 error
occurred with the FatalError exception inside the Page-

2050 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Provider class. The analyzer takes this symptom exception
as an input, and uses EXCHAIN logs to output an exception
DAG (or, most commonly, an exception chain) that has the
given symptom exception as the sink. For instance, apply-
ing EXCHAIN to the incident from Section 2, it produces
StalePageException@32 → InitError@9 → FatalEr-
ror@19. The source nodes in the analyzer output represent
potential root cause exceptions.

3.2 Technical Challenges
EXCHAIN proactively monitors all exceptions and collects
runtime information every time an exception is thrown, treat-
ing every exception as a potential threat to the system. This
is because predicting whether an exception will eventually
cause a failure is impossible in general, and hence a selective
interception may miss exceptions that are causally related to
the failure. Similarly, a reactive strategy can miss important
information if an exception and its information is not available
when the failure happens.

The key challenge EXCHAIN addresses is determining
possible dependencies between two intercepted exceptions.
There are many existing solutions to track explicit dependen-
cies across exceptions, i.e., when one exception is thrown
from the catch block of another. In this case, simply log-
ging both the caught and the thrown exceptions can trivially
capture their explicit dependency. There also exist program
analysis tools to automatically construct such explicit depen-
dencies across exceptions [24, 25, 33, 48]. However, these
solutions cannot identify implicit dependencies of two excep-
tions where one exception causes state changes, which later
causes the second exception.

The core contribution of EXCHAIN is the ability to in-
fer implicit dependencies of exceptions by tracking how an
exception changes application states and how the changes
cause subsequent exceptions. EXCHAIN needs to address two
challenges to achieve this.

First, EXCHAIN needs to identify a set of application states
to track. The set should be minimal in order to reduce the
tracking overhead. To this end, EXCHAIN uses two novel pro-
gram analysis techniques to identify a small set of program
memory locations to track. In particular, for each exception
ei, it identifies a set Aei of affected memory locations whose
values are impacted by ei and a set Rei of responsible mem-
ory locations whose values may cause ei. For example, if an
exception e1 causes null values of the variables v1 and v2,
and accessing v1 later leads to a null pointer exception e2,
then Ae1 = {v1,v2} and Re2 = {v1}. The fact that Ae1 and Re2

overlaps readily implies that e2 (implicitly) depends on e1.
Note that our abstraction of affected and responsible mem-
ory locations captures explicit dependencies as well: if e2 is
thrown in the catch block of e1, Ae1 and Re2 both include e1
and hence e2 depends on e1.

Second, an exception e2 may depend on another exception
e1 only indirectly. For instance, suppose e1 causes v1 =−1,

Cause

Affect
(4.1)

Catch
E1

Throw
E2

State

Responsible
(4.2)Propagate

(4.3) State'

Figure 4: EXCHAIN identifies the affected state of each
exception and tracks its propagation. A causal link is es-
tablished if the state causes another exception directly or
indirectly.

which causes v2 = −1 (e.g., via the copy v2 = v1), which
causes the array index out of bounds exception e2 (e.g., when
executing arr[v2]). In this case, e1’s affected memory loca-
tions {v1} do not overlap with e2’s responsible memory loca-
tions {v2,arr}, rather they are related to each other through
data- and control-flow. Taint tracking can accurately capture
such indirect dependencies or variables; however, it can be
prohibitively expensive (up to 50× overhead for some ap-
plications in our evaluation in §6). EXCHAIN uses a novel
technique that combines static and dynamic taint tracking of
a subset of memory locations that is significantly lightweight
compared to dynamic taint tracking (although it can miss
a small fraction of dependencies). Given the affected mem-
ory locations Ae1 of exception e1, the techniques computes
Prop(Ae1), the set of all memory locations that are tainted by
Ae1 . Using the information, EXCHAIN decides that an excep-
tion e2 with responsible memory location Re2 depends on e1 if
the intersection of Prop(Ae1) and Re2 is not empty. Intuitively,
a nonempty intersection means e1 affects at least one memory
location that, through data- and control-flow, affects at least
one memory location that is responsible for e2, and hence e2
depends on e1.

3.3 Scope and Limitations
EXCHAIN has several sources of false negatives. First, EX-
CHAIN cannot identify affected and responsible memory lo-
cations that are not initialized when the exception is thrown.
Second, EXCHAIN cannot track the state propagation if the
exception is thrown or caught by native code or if the state
propagates to other systems (e.g. an exception causes a cor-
rupted file or disrupts API functionalities).

The EXCHAIN is specifically tailored for programming
languages that utilize exceptions for error handling, such as
C# and Java. Its algorithms analyze throw and try/catch state-
ments to track where exceptions are raised and handled. How-
ever, EXCHAIN is less effective for languages like C and
Rust, which predominantly use return values for error han-
dling, without raising and handling failures explicitly.

4 Detailed Design
Next, we describe the detailed design of EXCHAIN to realize
the workflow from the previous section. We start by describ-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2051

Statement Variable Memory Location
StalePageException:resolve

detach(); this Page

StalePageException:processRequest

counter++; counter PageProvider.counter

page.refresh(); page Page

Table 1: Affected state analysis for the Wicket example.

ing the main analyses in EXCHAIN (ref. Figure 4). Note that
all analyses are dynamic unless specified otherwise, and they
track memory locations, which are either local variables on
the stack, objects in the heap, or fields of objects in the heap.

4.1 Affected State Analysis
First, given an exception, our goal is to identify all memory
locations whose values may be affected by the exception,
i.e., their values will differ depending on whether the excep-
tion is thrown or not. For example, in Figure 1, let us con-
sider the control-flow of the program if the resolve method
does not throw the StalePageException@32. Firstly, the
resolve method calls the detach method (Line 11), which
modifies the internal state of the Page object. Next, the
processRequest method increments the counter variable
(Line 12). Finally, the page.refresh() call (Line 17) is not
executed because it is inside the catch block. Therefore, the
StalePageException@32 affects the memory locations cor-
responding to the Page object referenced by this variable at
line 35, the counter field, and the Page object referenced by
page variable at line 17.

However, obtaining this information at runtime can be chal-
lenging. Simply removing the throw statement and rerunning
the request may not yield the correct result, particularly if the
system is stateful.

To enable EXCHAIN to identify memory locations affected
by an exception at run-time, we develop a novel a static data-
flow analysis that resembles liveness analysis [47]. Given
an exception e and its corresponding stack trace ST from
the current execution as input, EXCHAIN generates a set of
memory locations whose value will be altered by the excep-
tion. We represent a stack trace as a sequence of k ≥ 1 tuples
⟨method, loc,vars⟩ corresponding to stack frames when the
exception was thrown, where loc is the program location of
the call site (for the first k−1 frames) or the throw statement
(for the k-th frame), and vars is a mapping of variables to their
values. Our algorithm for computing the affected locations A
is as follows:
1. Add thrown exception e to A.

2. For each stack frame ⟨method, loc,vars⟩ ∈ ST:

(a) Identify all instructions Iaff that are control depen-
dent on the throw instruction or the corresponding
invocation site loc.

(b) For each instruction i ∈ Iaff which is of the form x = y
or x. f = y or x. f oo(), determine (respectively) the as-

signed local variable, the assigned object field, or the
object on which a method was invoked, and add these
locations to A. Intuitively, this is because their value
may be impacted by the change in control flow due to
the exception. Note that concrete memory locations
are obtained by resolving object references and fields
via vars.

3. Return all affected locations A.
Table 1 shows the analysis result of the StalePageExcep-

tion. When the StalePageException@32 is thrown, the
detach() statement is control dependent of the throw state-
ment. The detach() statement is a method invocation of the
object referenced by this. Therefore, EXCHAIN identifies the
memory location pointed by this as affected. The stack trace
of this exception also contains the method processRequest

which is at the invocation site page.resolve(req.sessionId)

(Line 11); as this call is aborted, the control-dependent state-
ments counter++ and page.refresh() are marked as affected.
Correspondingly, the affected state analysis returns two mem-
ory locations: (1) the Page object referenced by this in
the resolve method and by page in the processRequest
method, and (2) the class field counter.

4.2 Responsible State Analysis
Given an exception, we also need to identify all memory lo-
cations whose specific values can cause the exception. Note
that exceptions broadly have two types of causes: (a) excep-
tions originating at a throw statement are usually caused by
some program condition that is checked by an enclosing if;
and (b) run-time exceptions can be triggered while executing
expressions because of the value in some memory location
(e.g., if a reference is null or if a divisor is zero).

As an example, consider the processRequest method
shown in Figure 1. This method can throw an ArrayIndex-
OutOfBoundsException at Line 5 if cache.length <= req. ⌋

pageIndex. The memory location referenced by cache and req
are responsible for the exception. Next if page is attached,
the method throws an InitError exception (Line 9). In this
case, the Page object referenced by page is the responsible
memory location, since it is part of the closest enclosing if

condition. Note that the InitError is thrown indirectly by
a wrapper method called logAndThrow. Therefore, simply
analyzing the method that directly throws the exception is not
sufficient to identify the responsible location. To address this,
we implement several heuristics based on the semantics of
the exceptions and the structure of the code.

Exception rethrown. Many exceptions are thrown explicitly
in the catch block (e.g. the FatalError in Figure 1). The mem-
ory location referenced by the caught exception (e.g. e2 at
Line 18) is responsible for the new exception.

Run-time exceptions without an explicit throw statement.
We maintain a list of exceptions that are thrown directly by the
runtime while executing individual instructions, and handle

2052 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

them specially to identify the memory locations responsible
for these exceptions. For instance, if a NullPointerExcep-
tion is triggered by a method invocation instruction or an
object field access, then EXCHAIN identifies the correspond-
ing object reference as the culprit.
Exceptions thrown by throw statements. When an excep-
tion is thrown by a throw statement, EXCHAIN employs a
backward control-flow analysis to identify the memory lo-
cations responsible for the exception. The algorithm takes
an exception e and its corresponding stack trace ST as input
and returns a set of memory locations R that are responsible
for the input exception. The stack trace is again represented
as a sequence of tuples ⟨method, loc,vars⟩ as before. The
algorithm is as follows:
1. For each frame ⟨method, loc,vars⟩ ∈ ST starting from the

top of the stack:

(a) Find the closest branch statement of the current frame
location loc based on the control-flow graph of the
method.

(b) If no such branch is identified in this method, go to
step 1.

(c) Collect all variables or object fields that are refer-
enced by the condition expression of the branch state-
ment. Use vars to resolve variables to memory loca-
tions, and add these to R. Break and go to step 2.

2. Return the set R.
For example, in the InitError shown in Figure 1, EX-

CHAIN first analyzes the logAndThrow method at line 24, and
then the processRequest method at line 9. Since the throw
statement in question is not dominated by any branch condi-
tion in the logAndThrow method, the analysis continues up
the call stack to the processRequest method, where it iden-
tifies the closest branch condition as page.isAttached(). EX-
CHAIN then resolves the local variable reference and returns
a singelton set containing the memory location referenced by
value as R. Since this value is the same object included in
the affected set for StalePageException (ref. Section 4.1),
EXCHAIN can establish causality between StalePageEx-
ception and InitError.

4.3 Hybrid Taint Flow Analysis
In general, EXCHAIN needs to consider how the values af-
fected by some exception ei propagate to other values before
they become responsible for some other exception e j (§3.2).
This is done using taint analysis. The main idea behind taint
analysis is to associate some information with program values
(e.g., that they are affected by exception ei) and propagate this
to other values that are derived from the former.

Traditional dynamic taint analysis works by instrumenting
program code to propagate taint information at every instruc-
tion, such as copying local variables, performing arithmetic
computation, or invoking method calls. This instrumentation
introduces excessive overhead to the application [11, 15, 20],

1 class Foo {
2 int value = 0;
3 Taint valueT = new Taint("const:0");
4 Taint thisT = new Taint("obj:Foo");
5 }
6 void m() {
7 int i1 = 10;
8 // create a new taint because i1 is created

from a constant.↪→

9 Taint i1T = new Taint("const:10");
10 int i2 = i1;
11 // Passing the taint information from i1 to

i2.↪→

12 Taint i2T = i1T;
13 Foo e1 = new Foo();
14 Foo e2 = e1;
15 int i3 = e1.value;
16 // Passing the taint information from

e1.value to i3.↪→

17 Taint i3T = e1.valueT;
18 }

Passing the taint information
from e1 to e2 is not necessary!

Figure 5: A simple program to demonstrate how dynamic
taint analysis tools tracks the taint tag for heap objects
and local variables. The original code is not highlighted.

making it difficult to apply dynamic taint analysis techniques
to large, complex enterprise-level applications even in an in-
tegration/canary test environment. Alternatively, static taint
analysis reconstructs the dynamic behavior of a program us-
ing only static code analysis [8, 41], which introduces zero
overhead to the application while trading off precision.

Hybrid taint analysis. Neither static nor dynamic taint analy-
sis alone can achieve both accurate and efficient taint tracking.
Therefore, it is natural to ask if it is possible to combine these
two approaches to achieve a high precision and a low over-
head. EXCHAIN implements a novel hybrid taint analysis that
leverages the following two observations.

First, the main overhead introduced by dynamic taint anal-
ysis comes from maintaining the taint information for local
primitives, such as integers and booleans. In contrast, tracking
heap objects can be done more efficiently and accurately by
adding only taint information to the heap object itself.

For example, Figure 5 illustrates an instrumented Java pro-
gram that tracks taint information using dynamic taint anal-
ysis. The fields valueT and thisT of the class Foo are used
to track the taint information of Foo.value and Foo respec-
tively. The dynamic taint analysis tool creates a taint reference
for each local primitive and updates the taint information ac-
cordingly (Line 9, 12, and 17). For object references, the tool
does not create taint references if they point to heap objects
whose taint information is already being maintained by cor-
responding fields (Line 3-4). When the thisT field of an
object is updated, all references pointing to that object are au-
tomatically updated as well. In our evaluation, tracking local
primitives introduces 87-5005% overhead but tracking heap
objects only introduces 1-10% to the system.

Second, local primitives can be efficiently tracked using

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2053

HADOOP NIFI WICKET JENA FINERACT HIVE TOMCAT SOLR
Application

0

2

4

6

8

R
at

io
(%

)

assign call return

Figure 6: Analysis result of the percentage of data-flows
between heap and local objects using CodeQL.

static taint analysis offline and static taint analysis produces
more accurate result for local primitives compared to heap
objects [29]. Heap objects can be manipulated in various ways
by the program, such as being passed between functions or
being dynamically allocated and deallocated. This makes it
harder to track the flow of data through the program and to
accurately determine which inputs have tainted a particular
object. On the other hand, local primitives are typically only
modified within a single function or block of code, making it
easier to trace their flow of data.

EXCHAIN utilizes these observations and dynamically in-
struments heap objects and adds taint information at run time,
introducing only a constant overhead per exception. For lo-
cal primitives, EXCHAIN uses static taint analysis to track
data-flow offline, introducing no overhead at run time.

One limitation of tracking different types of variables dif-
ferently is that it may miss data flow between heap objects and
local primitives. For example, in Figure 5, taint information
will be lost between e1.value and i3 because EXCHAIN main-
tains the taint information of e1.value dynamically and the
taint information of i3 statically. This limitation may affect
the accuracy of EXCHAIN’s analysis.

To better understand the impact, we used CodeQL [16] to
statically analyze multiple popular cloud services. Specifi-
cally, we focused on three types of statements: assignments,
method calls, and method returns. Figure 6 presents the re-
sults of our analysis. Across all applications, we found that
less than 8.5% of assignment statements, less than 4% of
method call statements, and less than 8.4% of method return
statements had data flow from heap objects to local primitives.
Our findings confirmed that the majority of data flow occurs
between heap-to-heap and local-to-local, which can be effec-
tively handled by hybrid taint analysis. In our evaluation of
11 reproduced failures, we found that EXCHAIN can identify
the root cause of 6 issues by only tracking heap objects, while
four issues require only tracking local primitives. Only one
failure requires tracing the data-flow between heap objects
and local primitives. Besides, tracking local primitives intro-
duces 17x overhead to the target system compared to only
tracking heap objects. Overall, by selectively tracing heap

objects and local primitives, EXCHAIN can identify the root
cause of most failures with minimal overhead.

4.4 Putting it Together
We now describe how different pieces fit together in the work-
flow of EXCHAIN as shown in Figure 3. At runtime, EX-
CHAIN intercepts every exception that is thrown by the appli-
cation. On each exception, EXCHAIN performs both affected
and responsible state analysis and logs the results in the EX-
CHAIN logs (the results are cached and reused when the same
exception is thrown multiple times). It also performs the dy-
namic part of its hybrid taint analysis. For affected states that
are heap objects, EXCHAIN marks them with a unique ID
of the exception. For affected states that are local primitives,
EXCHAIN logs the stack slot number and the correspond-
ing exception. When analyzing responsible states, EXCHAIN
checks if the memory location is a heap object that contains
any labels of previous exceptions. If a label is found, EX-
CHAIN records in its logs the causal link between the current
exception and the exception represented by the label. If the
memory location is a local primitive, EXCHAIN logs the stack
slot number and the corresponding exception.

To diagnose a failure, the user uses the EXCHAIN analyzer
offline with the target symptom exception of the failure. The
analyzer first performs the static part of its hybrid taint analy-
sis with the stack slots of affected states as sources and the
stack slots of responsible states (the states are retrieved from
EXCHAIN logs). If the static taint analysis reports a flow from
a source to a sink, EXCHAIN reports the causal link between
the corresponding exceptions. Finally, the analyzer returns
a DAG (or most commonly, a chain) that has the symptom
exception as the sink node. The source nodes in the returned
DAG represents the root cause exceptions.

5 Implementation
Our EXCHAIN implementation consists of 9,000 lines of code
written in Kotlin, Java, and C++. It instruments the compiled
bytecode of the target system and attaches dynamic monitors
to the runtime. We use JVM Tool Interface (JVMTi) [35]
to capture all exceptions thrown by the target application
and map local variables and heap fields to memory locations.
The affected and responsible state analyzer are developed
on top of ASM [9]. Our dynamic taint analysis is based on
Phosphor [11], and the static taint analysis is implemented
using Soot [53] and FlowDroid [8]. Although our algorithm
is not tied to a specific implementation of JDK and JVM, we
only execute target applications using OpenJDK 16 because
the underlying dynamic taint analysis tool requires APIs that
are only available after OpenJDK 16.

Dynamic Entry Point Inference. We have also implemented
a dynamic entry point inferring technique that allows the static
taint analysis to provide more accurate results.

Client-server architecture for cloud services typically in-
volves multiple public interfaces, each serving as an entry

2054 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 int main() {
2 while (true) {
3 Request r = waitForNewRequest();
4 dispatchRequest(r);
5 }
6 }
7 class Server {
8 @Endpoint("create")
9 Response createUser(Request r) {

10 method1(); // may throw Exception1
11 }
12 @Endpoint("remove")
13 Response removeUser(Request r) {
14 method2(); // may throw Exception2
15 }
16 }

Figure 7: A simple web server with two endpoints.

Exception1 ->
Server.method1,
Server.createUser,
Thread.run

Exception2 ->
Server.method2:24,
Server.removeUser,
Thread.run

Exception1 ->
Server.method1,
Server.createUser,
Thread.run

void main() {
createUser(SYM);
removeUser(SYM);
createUser(SYM);

}

Figure 8: EXCHAIN constructs a main method based on
the exception trace collected at runtime.

point to the application. Figure 7 illustrates a simple web
server with two public interfaces: create and remove. The
main function of the server is a hot loop that waits for incom-
ing requests and dispatches them to respective endpoints.

The dynamic design of modern web frameworks such as
Spring [51] and Wicket [7], which dispatch requests to differ-
ent worker threads through reflection and dependency injec-
tion, makes it difficult for the static taint analyzer to construct
an accurate call graph [6]. This design significantly limits the
completeness of the static analysis.

To address this problem, EXCHAIN leverages the exception
traces collected at runtime. For each exception, EXCHAIN
identifies the deepest stack frame that contains application
code based on the package name of the caller. It then con-
structs a main method that invokes the corresponding ap-
plication code in sequential order. For example, Figure 8
demonstrates an exception trace of Figure 7. EXCHAIN finds
the deepest method that contains application code for each
exception and creates a new main method that invokes the
identified methods sequentially. By doing so, EXCHAIN is
able to generate a new main method for the application that
starts with the identified application code.

In our evaluation, dynamic entry point inference helps EX-
CHAIN to identify the root cause for two more issues com-
pared to using the original main method of the application.

Issue Multi-Run
Cause # Excp

Logged Dist Total
WICKET-6908 ✓ ✓ 5 8
JENA-324 ✓ ✓ 792 796
FINERACT-1211 ✗ ✓ 1 58
MAPREDUCE-6654 ✗ ✓ 11 117
HADOOP-17812 ✗ ✗ 1 24
WICKET-6249 ✓ ✗ 7 11
HDFS-4128 ✓ ✗ 7 115
HIVE-13410 ✓ ✓ 15 51
NIFI-8249 ✓ ✓ 1 47
SOLR-16363 ✗ ✗ 1 171
TOMCAT-65131 ✗ ✗ 1 13

Table 2: Basic information of EDFs. ‘Multi-Run’ indicates
if the root cause and the final exception occur in different
operations. ‘Cause Logged’ shows if the root cause excep-
tion is logged by the application. ‘Dist’ shows the number
of exceptions thrown between the root cause and the final
exception. ‘Total’ shows the total number of exceptions
thrown by the application during the reproduction.

6 Evaluation
We evaluate EXCHAIN to answer the following questions:
(1) How does EXCHAIN compare to state-of-the-art failure
diagnosis techniques in identifying the root cause for EDFs?
(2) How do our analysis techniques help improve the accuracy-
performance tradeoffs of EXCHAIN? We conduct all experi-
ments on an Ubuntu server with an Intel Xeon 1290P proces-
sor and 128 GB of memory. We set an 8-hour time limit for
static taint analysis, with a maximum heap size of 32 GB.

6.1 Methodology
For our evaluation, we looked at popular open source appli-
cations maintained by the Apache Foundation. We query the
Jira issue tracking system [32] with a list of keywords such
as "exception handling". From the result of our query (run on
11-15-2022), we closely examined the latest 30 issues return
that are indeed software bugs related to exception handling
and have clearly described failure symptoms, and were able
to reproduce 11 of them (the remaining ones do not provide
an instruction to reproduce the failure).

As such, these 11 reproducible incidents spanning 10 open
source applications form the core of our evaluation setup.
Table 2 shows the basic information of the reproduced 11
issues. We reproduce all failures by running the service in
production configuration except for NIFI-8249, which uses
a customized class loading mechanism that is not supported
by the underlying taint analysis framework. As a result, we
reproduced this issue using unit tests. We manually analyze
the issue report summary and developer conversations in the
ticket to identify the root cause to serve as the ground truth.
Note that our system does not need or have access to this issue
report.

As shown in Table 2, many of the failures are non-trivial:

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2055

Issue EXCHAIN
Statistical SL4J Log

Ochiai Taran. First Nearst
WI-6908 ✓ ✗ ✗ N/A ✗ ✗
JE-324 ✓ ✗ ✗ ✗ ✓ ✓
FI-1211 ✓ N/A N/A N/A ✗ ✗
MA-6654 ✓ ✗ ✗ N/A ✗ ✗
HA-17812 ✓ ✗ ✓ N/A ✗ ✗
WI-6249 ✓ ✗ ✗ N/A ✗ ✗
HD-4128 ✓ ✓ ✓ N/A ✗ ✗
HI-13410 ✓ ✗ ✗ N/A ✓ ✗
NI-8249 ✗ ✗ ✗ N/A ✓ ✓
SO-16363 ✗ N/A N/A N/A ✗ ✗
TO-65131 ✗ N/A N/A N/A ✗ ✗

Table 3: The analysis result of each issue. Ochiai and
Tarantula are two statistical debugging techniques imple-
mented by GZoltar. N/A means GZoltar and Slicer4J are
not applicable to the target application. First and Nearest
are two debugging techniques that focus on examining the
initial exception thrown by the application and the closest
exception to the final failure from logs.

their root causes and failures happen in different executions,
root causes are not logged, and many (unrelated) exceptions
separate the failures from their the root causes.

6.2 End-to-End Evaluation
For the end-to-end evaluation of accuracy, we compare EX-
CHAIN with three state-of-the-art fault localization tech-
niques: statistical debugging (GZoltar [12] with two different
ranking algorithms Ochiai [3] and Tarantula [34]), slicing
(Slicer4J [5]) and Log analysis. GZoltar requires workloads
that contains both pass and fail cases and we use the unit
tests associate with the application. If the existing unit test
does not cover the reproduced failure, we manually imple-
ment one. GZoltar return a ranked list of statements that may
be related to the failure based on their relevance to the failure
and Slicer4J returns a ranked list of statements that are data
dependent of the failure. If the containing method of a state-
ment reported by the tool that throws the root cause is ranked
top 200 of the list, we report a true positive. In our analysis of
application logs, we utilized two strategies: "First" represent-
ing the initial exception thrown and "Nearest" representing
the closest exception to the final failure.

Note that, as discussed in Section 2.2, it is much more costly
to use GZoltar and Slicer4J: GZoltar requires many successful
runs and failure runs, and Slicer4J requires re-executing a
failed run. In contrast, EXCHAIN allows diagnosis right after
a failure run.

Table 3 presents the analysis result. EXCHAIN successfully
identified the root cause for most issues (8 out of 11). GZoltar
only identified the root cause for 2 issues among the 8 on
which we could run it. GZoltar was unable to analyze Fineract,
Tomcat, and Solr due to incompatibilities with the building
system used by these applications. For HDFS-4128, Ochiai
identified the root cause in the top 2 predicted statements.
However, for HADOOP-17812 and WICKET-6249, Ochiai

failed to predict the root cause within the top 200 statements.
For Tarantula, it predicted the root cause statements within the
top 30 statements for HADOOP-17812 and HDFS-4128. For
5 issues, GZoltar cannot report any root cause statements due
to insufficient pass/fail executions. Our experimental results
highlight that EXCHAIN is more capable than GZoltar in
identifying the root cause for EDFs.

To gain insight into the challenges of diagnosing failures
using dynamic variable dependency tracking, we performed a
backward slicing for all failures using Slicer4J [5]. However,
we were able to use the tool to reproduce only one issue:
JENA-324; Slicer4J could not used with the other issues due
to incompatible Java versions. For JENA-324, Slicer4J re-
ported 3741 statements related to the final failure, with the
root cause identified at the 3628th statement. This suggests
that relying on variable dependency for failure diagnosis can
lead to information overload, potentially overwhelming de-
velopers. Slicer4J can introduce significant performance over-
head (up to 15×) Ahmed et al. [5]).

Finally, for the log based approaches, the "First" strategy
identified the root cause for three out of the total failures. The
"Nearest" strategy pinpointed the root cause for only two dis-
tinct failures. It’s crucial to note that even in our experiments
with smaller workloads, numerous exceptions can occur be-
fore and after the root cause, particularly in long-running
services.

6.3 Accuracy vs. Performance Tradeoff
To put the accuracy-performance tradeoff of EXCHAIN in con-
text and explain the value of our optimizations, we consider
two other hypothetical designs SI+Static and SI+Dynamic (SI
stands for affected/responsible state identification). Similar
to EXCHAIN, both log exceptions at runtime and identify af-
fected and responsible states using the algorithms mentioned
in §4.1 and §4.2. They differ in how they analyze taint flow
between affected to responsible states: SI+Static uses fully
static taint analysis and SI+Dynamic uses fully dynamic taint
analysis. In contrast, EXCHAIN uses a hybrid taint analysis:
dynamic analysis of heap objects and static analysis of local
primitives. Note, that SI+Static logs all exceptions as well as
the corresponding stack traces and runs affected and respon-
sible state analysis offline. SI+Static is expected to offer low
run-time overhead but least accurate diagnosis results. Con-
versely, SI+Dynamic is expected to offer the highest overhead
but also the highest diagnosis accuracy.

To evaluate the performance impact of EXCHAIN, we iden-
tify benchmarks for 7 out of the 10 applications. For Hadoop,
Solr, MapReduce, and HDFS, we used the built-in bench-
marks to generate workloads [18, 45, 50, 52]. For Fineract,
Wicket, and Tomcat, we use the Apache HTTP benchmarking
tool [1] to measure their performance. For each benchmark,
we measure both throughput and latency. We encountered is-
sues when attempting to benchmark NIFI in production mode
due to dynamic class loading as described earlier. We were

2056 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Issue EXCHAIN SI+Static SI+Dynamic
TP FP TP FP TP FP

WICKET-6908 ✓ 1 ✓ 1 ✓ 0
JENA-324 ✓ 0 ✗ 0 ✓ 0
FINERACT-1211 ✓ 0 ✓ 0 ✓ 0
MAPREDUCE-6654 ✓ 0 ✗ 0 ✓ 0
HADOOP-17812 ✓ 0 ✗ 0 ✓ 0
WICKET-6249 ✓ 0 ✓ 0 ✓ 0
HDFS-4128 ✓ 0 ✗ 0 ✓ 0
HIVE-13410 ✓ 0 ✗ 0 ✓ 0
NIFI-8249 ✗ 0 ✗ 0 ✓ 0
SOLR-16363 ✗ 0 ✗ 0 ✓ 0
TOMCAT-65131 ✗ 0 ✗ 0 ✓ 0
Sum 8/11 1 3/11 1 11/11 0

Table 4: Analysis result of each issue. EXCHAIN cannot
identify the root cause for NIFI-8249 and SOLR-16363
because of the imprecise analysis result returned by the
underlying static taint analysis tool. EXCHAIN cannot
identify the root cause for TOMCAT-65131 because of the
data-flow between heap objects and local primitives.

also unable to find a representative benchmark workload for
Jena and Hive.2 Solr only reports throughput and MapReduce
only reports latency. All remaining benchmarks report both
latency and throughput.

Accuracy Results. Table 4 presents the accuracy results for
EXCHAIN and two baselines including the number of true
positives (TP) and false positives (FP). A true positive for a
technique means that it successfully identifies the root cause
exception and correctly reported causal relationship between
the root cause exception and the final failure described in the
issue. A false positive means that the technique reports an
exception that is not mentioned by the reporter and fixing the
exception does not prevent the final failure.

The result shows that EXCHAIN successfully identified
the root cause for most issues (8 out of 11) with only 1 false
positive. SI+Dynamic successfully identified all root causes
without any false positive (at the cost of huge run-time over-
head that we discuss later). On the other hand, SI+Static could
identify root causes for only 3 issues with 1 false positive.

Recall that SI+Dynamic is based on the affected and re-
sponsible variables identified by our analysis described in §4.
The fact that it can successfully identify all root causes shows
the effectiveness of the analysis algorithms.

We also investigated the three failures for which EXCHAIN
failed to report the true root cause. For two of the cases (NIFI-
8249 and SOLR-16363), EXCHAIN failed because of the
imprecise analysis result returned by the underlying static
taint analysis while tracking local variables. Only for one case
(TOMCAT-65131), EXCHAIN failed because of its design
limitation of not being able to track data-flow between heap
and local objects.

Performance Result. Figure 9 shows the latency results re-

2A third-party benchmark for an old version of Hive was available, but our
dynamic taint analysis tool could not instrument the benchmark application.

FINERACT
17.8(ms)

HADOOP
1.7(ms)

WICKET
11.2(ms)

MAPREDUCE
24.3(ms)

TOMCAT
5.9(ms)

HDFS
34.7(s)

Application

10−1

100

101

102

103

L
at

en
cy

O
ve

rh
ea

d
(%

)

SI+Static SI+Dynamic ExChain

Figure 9: The latency overhead for different applications
in log scale. Lower is better.

FINERACT
1125.0
(ops/s)

HADOOP
1176.4
(ops/s)

WICKET
13459.4
(ops/s)

SOLR
16591.2
(ops/s)

TOMCAT
25403.7
(ops/s)

HDFS
1556.6
(mb/s)

Application

0

20

40

60

80

100

T
hr

ou
gh

pu
t

D
eg

ra
da

ti
on

(%
)

SI+Static SI+Dynamic ExChain

Figure 10: The throughput degradation for different ap-
plications. Lower is better.

ported by 6 applications. On average, EXCHAIN incurred
1%-12% overhead on latency, only 2% more than SI+Static.
In contrast, SI+Dynamic incurred 87%-5015% overhead. The
throughput result in Figure 10 shows a similar trend: EX-
CHAIN incurred 1%-11% degradation on throughput, while
SI+Static also incurred 1%-11% degradation. In contrast,
SI+Dynamic incurred 48%-99% degradation.

Our evaluation shows that EXCHAIN achieves a better bal-
ance between performance and accuracy than SI+Dynamic
and SI+Static. Specifically, it achieves an accuracy closer
to SI+Dynamic, with a cost closer to SI+Static. In fact,
EXCHAIN successfully identified the root cause of all fail-
ures whose affected and responsible states are heap objects,
whereas SI+Static only identified the root cause for 3 such
failures. Moreover, EXCHAIN reported only one false positive
out of 11 issues, demonstrating its high accuracy. In terms of
performance, EXCHAIN introduces an average overhead of
only 8%, making it feasible to deploy in an integration test or
canary environment.

7 Discussion
Our current focus was on using EXCHAIN was in a test/canary
environment where a moderate performance overhead (≈ 8%)
may be acceptable. One natural question is if our approach
may eventually be amenable to be run in production with a
lower overhead.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2057

FINERACT HADOOP HDFS MAPREDUCETOMCAT WICKET
Application

0

2

4

6

8

10

12

L
at

en
cy

O
ve

rh
ea

d
B

re
ak

do
w

n
(%

)

JVMTi ExChain

Figure 11: Latency overhead break down for different
applications.

FINERACT HADOOP HDFS SOLR TOMCAT WICKET
Application

0

2

4

6

8

10

T
hr

ou
gh

pu
t

D
eg

ra
da

ti
on

B
re

ak
do

w
n

(%
)

JVMTi ExChain

Figure 12: Throughput degradation break down for dif-
ferent applications.

To understand the future feasibility of extending EXCHAIN
we investigate the sources of the overhead. We divide the sys-
tem into two components: JVMTi and EXCHAIN. Figure 11
and Figure 12 show the breakdown of overhead introduced
by each component. JVMTi represents the aforementioned
overhead due to JVMTi. EXCHAIN represents the overhead
introduced by the central design, including logging all ex-
ceptions and their corresponding stack traces, computing the
affected and responsible states, and storing taint information
of heap objects.

From our observations, less than half of the total overhead
is attributed to the core components of EXCHAIN, while the
rest originates from JVMTi. JVMTi can disable several JIT
optimizations when attached to the JVM, which affects the
overhead. An alternative way to intercepting exceptions (e.g.,
through instrumentation or a better JVM mechanism similar
to .NET’s first-chance-exception[21]) could reduce this over-
head substantially to enable closer-to-production acceptable
overhead (≤ 5%).

8 Other Related Work
We discussed some key related efforts and their limitations in
§2.2. Here, we discuss other related work.

Statistical debugging technique. There is a rich body of
work focusing on statistical debugging [2, 12, 34, 43, 55, 57,
61]. Such techniques are effective if the developer provides

both failing and passing executions. Unfortunately, such data
is not always available. In our evaluation, we show that with
existing test suit, GZoltar can only identify the root cause for
one EDF. Moreover, statistical debugging aims to identify
events (e.g., exceptions) that are correlated to failures, rather
than finding the causal dependencies among multiple events.

Failure reproducing. Kasikci et al. showed that it is possible
to reproduce failures with low overhead instrumentation using
hardware features [36]. Pensieve reconstructs failing execu-
tions using dependency analysis of runtime events [62]. EX-
CHAIN is complementary to failure reproducing techniques
and help developers to pinpoint the root cause efficiently.

Failure handling testing. ChaosMachine [60] and Fili-
buster [42] use chaos engineering to test failure handling logic
of the application. Such techniques are useful in identifying
bugs in failure handling logic.

Speeding up dynamic taint analysis. JetStream uses paral-
lel execution and record and replay techniques to improve
the performance of dynamic information flow tracking [46].
Iodine uses static analysis to remote runtime monitors if the
data-flow can be determined statically [10]. Both tool show
that taint analysis is useful in debugging and failure diagnosis.
EXCHAIN uses exception-focused hybrid taint analysis and
focuses on identifying the root cause for EDFs.

9 Conclusions
In some sense, EXCHAIN solves a particularly hard problem —
the very practices of good software engineering at scale (e.g.,
throwing exceptions, silent handling) also end up creating
subtle exception-dependent failure modes that are incredibly
hard to debug! Our key observation is that unlike basic ex-
ception chains, EDFs can entail subtle stateful dependencies
between the root cause and the eventual failure mode.

In designing EXCHAIN, we addressed fundamental chal-
lenges in applying program analysis techniques to balance
the performance and overhead in tracking such stateful de-
pendencies in exception handling failures. EXCHAIN helps
developers diagnose EDFs using a famililar exception-trace
like abstraction akin to traditional debugging workflows. Our
evaluation showed that EXCHAIN is able to successfully diag-
nose subtle issues that stumped expert developers in popular
applications with little to no manual effort and that it signifi-
cantly outperforms state-of-art techniques. While our current
implementation offers sufficient performance for test and ca-
nary deployments, our core design contributions are amenable
to production deployments at scale as well.

10 Acknowledgments
We would like to thank the anonymous reviewers for their
insightful comments and constructive feedback. This research
was supported in part by seed funding from CMU’s CyLab
and by the NSF grant CCF-2119184. A portion of this work
was carried out during an internship at Microsoft Research.

2058 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] ab. ab - apache http server benchmarking tool.

https://httpd.apache.org/docs/2.4/programs/
ab.html. Accessed: 2023-02-23.

[2] Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund.
On the accuracy of spectrum-based fault localization. In
Testing: Academic and Industrial Conference Practice
and Research Techniques - MUTATION (TAICPART-
MUTATION 2007), pages 89–98, 2007. doi: 10.1109/
TAIC.PART.2007.13.

[3] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan
J. C. van Gemund. A practical evaluation of spectrum-
based fault localization. J. Syst. Softw., 82:1780–1792,
2009.

[4] Marcos K. Aguilera and Michael Walfish. No time for
asynchrony. In Proceedings of the 12th Conference on
Hot Topics in Operating Systems, HotOS’09, page 3,
USA, 2009. USENIX Association.

[5] Khaled Ahmed, Mieszko Lis, and Julia Rubin. Slicer4J:
A Dynamic Slicer for Java. In The ACM Joint European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE),
2021.

[6] Anastasios Antoniadis, Nikos Filippakis, Paddy Krish-
nan, Raghavendra Ramesh, Nicholas Allen, and Yannis
Smaragdakis. Static analysis of java enterprise applica-
tions: Frameworks and caches, the elephants in the room.
In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, PLDI 2020, page 794–807, New York, NY, USA,
2020. Association for Computing Machinery. ISBN
9781450376136. doi: 10.1145/3385412.3386026. URL
https://doi.org/10.1145/3385412.3386026.

[7] Apache Wicket. Apache wicket. https://wicket.
apache.org/. Accessed: 2023-02-23.

[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz,
Eric Bodden, Alexandre Bartel, Jacques Klein, Yves
Le Traon, Damien Octeau, and Patrick McDaniel. Flow-
droid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In
Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, PLDI ’14, page 259–269, New York, NY, USA,
2014. Association for Computing Machinery. ISBN
9781450327848. doi: 10.1145/2594291.2594299. URL
https://doi.org/10.1145/2594291.2594299.

[9] asm. Asm: A java bytecode engineering library. https:
//asm.ow2.io/index.html. Accessed: 2023-02-23.

[10] Subarno Banerjee, David Devecsery, Peter M. Chen,
and Satish Narayanasamy. Iodine: Fast dynamic taint
tracking using rollback-free optimistic hybrid analysis.
In 2019 IEEE Symposium on Security and Privacy (SP),
pages 490–504, 2019. doi: 10.1109/SP.2019.00043.

[11] Jonathan Bell and Gail Kaiser. Phosphor: Illuminating
dynamic data flow in commodity jvms. In Proceedings
of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages and Applica-
tions, OOPSLA ’14, page 83–101, New York, NY, USA,
2014. Association for Computing Machinery. ISBN
9781450325851. doi: 10.1145/2660193.2660212. URL
https://doi.org/10.1145/2660193.2660212.

[12] José Campos, André Riboira, Alexandre Perez, and Rui
Abreu. Gzoltar: an eclipse plug-in for testing and de-
bugging. In 2012 Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engi-
neering, pages 378–381, 2012. doi: 10.1145/2351676.
2351752.

[13] Tushar Deepak Chandra and Sam Toueg. Unreliable
failure detectors for reliable distributed systems. J.
ACM, 43(2):225–267, mar 1996. ISSN 0004-5411. doi:
10.1145/226643.226647. URL https://doi.org/10.
1145/226643.226647.

[14] Wei Chen, S. Toueg, and M.K. Aguilera. On the qual-
ity of service of failure detectors. IEEE Transactions
on Computers, 51(1):13–32, 2002. doi: 10.1109/12.
980014.

[15] James Clause, Wanchun Li, and Alessandro Orso. Dytan:
A generic dynamic taint analysis framework. In Pro-
ceedings of the 2007 International Symposium on Soft-
ware Testing and Analysis, ISSTA ’07, page 196–206,
New York, NY, USA, 2007. Association for Comput-
ing Machinery. ISBN 9781595937346. doi: 10.1145/
1273463.1273490. URL https://doi.org/10.1145/
1273463.1273490.

[16] Codeql. Codeql. https://codeql.github.com/. Ac-
cessed: 2023-02-23.

[17] A. Das, I. Gupta, and A. Motivala. Swim: scalable
weakly-consistent infection-style process group mem-
bership protocol. In Proceedings International Con-
ference on Dependable Systems and Networks, pages
303–312, 2002. doi: 10.1109/DSN.2002.1028914.

[18] dfsio. Hadoop hdfs dfsio. https:
//github.com/c9n/hadoop/blob/
master/hadoop-mapreduce-project/
hadoop-mapreduce-client/
hadoop-mapreduce-client-jobclient/src/
test/java/org/apache/hadoop/fs/TestDFSIO.
java. Accessed: 2023-02-23.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2059

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://doi.org/10.1145/3385412.3386026
https://wicket.apache.org/
https://wicket.apache.org/
https://doi.org/10.1145/2594291.2594299
https://asm.ow2.io/index.html
https://asm.ow2.io/index.html
https://doi.org/10.1145/2660193.2660212
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/1273463.1273490
https://doi.org/10.1145/1273463.1273490
https://codeql.github.com/
https://github.com/c9n/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java
https://github.com/c9n/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java
https://github.com/c9n/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java
https://github.com/c9n/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java
https://github.com/c9n/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java
https://github.com/c9n/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java
https://github.com/c9n/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java

[19] Pradeep Dogga, Karthik Narasimhan, Anirudh Sivara-
man, Shiv Kumar Saini, George Varghese, and Ravi Ne-
travali. Revelio: Ml-generated debugging queries for
finding root causes in distributed systems. In Conference
on Machine Learning and Systems, 2022.

[20] William Enck, Peter Gilbert, Seungyeop Han, Vasant
Tendulkar, Byung-Gon Chun, Landon P. Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N. Sheth. Taint-
droid: An information-flow tracking system for real-
time privacy monitoring on smartphones. ACM Trans.
Comput. Syst., 32(2), jun 2014. ISSN 0734-2071. doi:
10.1145/2619091. URL https://doi.org/10.1145/
2619091.

[21] fce. Appdomain.firstchanceexception event.
https://learn.microsoft.com/en-us/dotnet/
api/system.appdomain.firstchanceexception?
view=net-8.0. Accessed: 2023-02-23.

[22] C. Fetzer. Perfect failure detection in timed asyn-
chronous systems. IEEE Transactions on Computers,
52(2):99–112, 2003. doi: 10.1109/TC.2003.1176979.

[23] C. Fetzer, K. Hogstedt, and P. Felber. Automatic de-
tection and masking of non-atomic exception handling.
In 2003 International Conference on Dependable Sys-
tems and Networks, 2003. Proceedings., pages 445–454,
2003. doi: 10.1109/DSN.2003.1209955.

[24] C. Fu, A. Milanova, B.G. Ryder, and D.G. Wonnacott.
Robustness testing of java server applications. IEEE
Transactions on Software Engineering, 31(4):292–311,
2005. doi: 10.1109/TSE.2005.51.

[25] Chen Fu and Barbara G. Ryder. Exception-chain anal-
ysis: Revealing exception handling architecture in java
server applications. In 29th International Conference on
Software Engineering (ICSE’07), pages 230–239, 2007.
doi: 10.1109/ICSE.2007.35.

[26] Trinabh Gupta, Joshua B. Leners, Marcos K. Aguil-
era, and Michael Walfish. Improving availability
in distributed systems with failure informers. In
10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13), pages
427–441, Lombard, IL, April 2013. USENIX
Association. ISBN 978-1-931971-00-3. URL
https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/leners.

[27] Andreas Haeberlen and Petr Kuznetsov. The fault detec-
tion problem. In Tarek Abdelzaher, Michel Raynal, and
Nicola Santoro, editors, Principles of Distributed Sys-
tems, pages 99–114, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg. ISBN 978-3-642-10877-8.

[28] Andreas Haeberlen, Petr Kouznetsov, and Peter Dr-
uschel. Peerreview: Practical accountability for dis-
tributed systems. In Proceedings of Twenty-First ACM
SIGOPS Symposium on Operating Systems Princi-
ples, SOSP ’07, page 175–188, New York, NY, USA,
2007. Association for Computing Machinery. ISBN
9781595935915. doi: 10.1145/1294261.1294279. URL
https://doi.org/10.1145/1294261.1294279.

[29] Michael Hind. Pointer analysis: Haven’t we solved
this problem yet? In Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, PASTE ’01, page
54–61, New York, NY, USA, 2001. Association for
Computing Machinery. ISBN 1581134134. doi:
10.1145/379605.379665. URL https://doi.org/10.
1145/379605.379665.

[30] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R.
Lorch, Yingnong Dang, Murali Chintalapati, and Ran-
dolph Yao. Gray failure: The achilles’ heel of cloud-
scale systems. In Proceedings of the 16th Workshop
on Hot Topics in Operating Systems, HotOS ’17, page
150–155, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450350686. doi:
10.1145/3102980.3103005. URL https://doi.org/
10.1145/3102980.3103005.

[31] Peng Huang, Chuanxiong Guo, Jacob R. Lorch, Lidong
Zhou, and Yingnong Dang. Capturing and enhancing
in situ system observability for failure detection. In
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 1–16, Carlsbad,
CA, October 2018. USENIX Association. ISBN 978-
1-939133-08-3. URL https://www.usenix.org/
conference/osdi18/presentation/huang.

[32] jira. Asf jira. https://issues.apache.org/jira/
secure/Dashboard.jspa. Accessed: 2023-02-23.

[33] Jang-Wu Jo, Byeong-Mo Chang, Kwangkeun Yi, and
Kwang-Moo Choe. An uncaught exception analysis for
java. J. Syst. Softw., 72(1):59–69, jun 2004. ISSN
0164-1212. doi: 10.1016/S0164-1212(03)00057-8.
URL https://doi.org/10.1016/S0164-1212(03)
00057-8.

[34] James A. Jones, Mary Jean Harrold, and John Stasko.
Visualization of test information to assist fault localiza-
tion. In Proceedings of the 24th International Confer-
ence on Software Engineering, ICSE ’02, page 467–477,
New York, NY, USA, 2002. Association for Computing
Machinery. ISBN 158113472X. doi: 10.1145/581339.
581397. URL https://doi.org/10.1145/581339.
581397.

2060 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://doi.org/10.1145/2619091
https://doi.org/10.1145/2619091
https://learn.microsoft.com/en-us/dotnet/api/system.appdomain.firstchanceexception?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.appdomain.firstchanceexception?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.appdomain.firstchanceexception?view=net-8.0
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/leners
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/leners
https://doi.org/10.1145/1294261.1294279
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/3102980.3103005
https://doi.org/10.1145/3102980.3103005
https://www.usenix.org/conference/osdi18/presentation/huang
https://www.usenix.org/conference/osdi18/presentation/huang
https://issues.apache.org/jira/secure/Dashboard.jspa
https://issues.apache.org/jira/secure/Dashboard.jspa
https://doi.org/10.1016/S0164-1212(03)00057-8
https://doi.org/10.1016/S0164-1212(03)00057-8
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/581339.581397

[35] JVMTI. Jvm(tm) tool interface. https:
//docs.oracle.com/javase/8/docs/platform/
jvmti/jvmti.html. Accessed: 2023-02-23.

[36] Baris Kasikci, Benjamin Schubert, Cristiano Pereira,
Gilles Pokam, and George Candea. Failure sketching:
A technique for automated root cause diagnosis of in-
production failures. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles, SOSP ’15, page
344–360, New York, NY, USA, 2015. Association for
Computing Machinery. ISBN 9781450338349. doi:
10.1145/2815400.2815412. URL https://doi.org/
10.1145/2815400.2815412.

[37] Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos K.
Aguilera, and Michael Walfish. Detecting failures in
distributed systems with the falcon spy network. In
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, page 279–294,
New York, NY, USA, 2011. Association for Comput-
ing Machinery. ISBN 9781450309776. doi: 10.1145/
2043556.2043583. URL https://doi.org/10.1145/
2043556.2043583.

[38] Joshua B. Leners, Trinabh Gupta, Marcos K. Aguilera,
and Michael Walfish. Taming uncertainty in distributed
systems with help from the network. In Proceedings of
the Tenth European Conference on Computer Systems,
EuroSys ’15, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450332385. doi:
10.1145/2741948.2741976. URL https://doi.org/
10.1145/2741948.2741976.

[39] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and
Samuel P Midkiff. Statistical debugging: A hypothesis
testing-based approach. IEEE Transactions on software
engineering, 32(10):831–848, 2006.

[40] Chang Lou, Peng Huang, and Scott Smith. Under-
standing, detecting and localizing partial failures in
large system software. In 17th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 20), pages 559–574, Santa Clara, CA, Febru-
ary 2020. USENIX Association. ISBN 978-1-939133-
13-7. URL https://www.usenix.org/conference/
nsdi20/presentation/lou.

[41] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and
Guofei Jiang. Chex: Statically vetting android apps
for component hijacking vulnerabilities. In Proceed-
ings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, page 229–240,
New York, NY, USA, 2012. Association for Comput-
ing Machinery. ISBN 9781450316514. doi: 10.1145/
2382196.2382223. URL https://doi.org/10.1145/
2382196.2382223.

[42] Christopher S. Meiklejohn, Andrea Estrada, Yiwen
Song, Heather Miller, and Rohan Padhye. Service-
level fault injection testing. In Proceedings of the
ACM Symposium on Cloud Computing, SoCC ’21, page
388–402, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450386388. doi:
10.1145/3472883.3487005. URL https://doi.org/
10.1145/3472883.3487005.

[43] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao.
A model for spectra-based software diagnosis. ACM
Trans. Softw. Eng. Methodol., 20(3), aug 2011. ISSN
1049-331X. doi: 10.1145/2000791.2000795. URL
https://doi.org/10.1145/2000791.2000795.

[44] Mangala Gowri Nanda and Saurabh Sinha. Accurate
interprocedural null-dereference analysis for java. In
2009 IEEE 31st International Conference on Software
Engineering, pages 133–143, 2009. doi: 10.1109/ICSE.
2009.5070515.

[45] nnbench. Hadoop benchmarking. https://hadoop.
apache.org/docs/stable/hadoop-project-dist/
hadoop-common/Benchmarking.html. Accessed:
2023-02-23.

[46] Andrew Quinn, David Devecsery, Peter M. Chen, and Ja-
son Flinn. JetStream: Cluster-Scale parallelization of in-
formation flow queries. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), pages 451–466, Savannah, GA, November 2016.
USENIX Association. ISBN 978-1-931971-33-1. URL
https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/quinn.

[47] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise
interprocedural dataflow analysis via graph reachability.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 49–61, 1995.

[48] Martin P. Robillard and Gail C. Murphy. Static analysis
to support the evolution of exception structure in object-
oriented systems. ACM Trans. Softw. Eng. Methodol., 12
(2):191–221, apr 2003. ISSN 1049-331X. doi: 10.1145/
941566.941569. URL https://doi.org/10.1145/
941566.941569.

[49] Saurabh Sinha, Hina Shah, Carsten Görg, Shujuan Jiang,
Mijung Kim, and Mary Jean Harrold. Fault localiza-
tion and repair for java runtime exceptions. In Pro-
ceedings of the Eighteenth International Symposium
on Software Testing and Analysis, ISSTA ’09, page
153–164, New York, NY, USA, 2009. Association for
Computing Machinery. ISBN 9781605583389. doi:
10.1145/1572272.1572291. URL https://doi.org/
10.1145/1572272.1572291.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 2061

https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://doi.org/10.1145/2815400.2815412
https://doi.org/10.1145/2815400.2815412
https://doi.org/10.1145/2043556.2043583
https://doi.org/10.1145/2043556.2043583
https://doi.org/10.1145/2741948.2741976
https://doi.org/10.1145/2741948.2741976
https://www.usenix.org/conference/nsdi20/presentation/lou
https://www.usenix.org/conference/nsdi20/presentation/lou
https://doi.org/10.1145/2382196.2382223
https://doi.org/10.1145/2382196.2382223
https://doi.org/10.1145/3472883.3487005
https://doi.org/10.1145/3472883.3487005
https://doi.org/10.1145/2000791.2000795
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/Benchmarking.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/Benchmarking.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/Benchmarking.html
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/quinn
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/quinn
https://doi.org/10.1145/941566.941569
https://doi.org/10.1145/941566.941569
https://doi.org/10.1145/1572272.1572291
https://doi.org/10.1145/1572272.1572291

[50] solr. Solr jmh-benchmarks module. https://github.
com/apache/solr/tree/main/solr/benchmark.
Accessed: 2023-02-23.

[51] spring. Spring | home. https://spring.io/. Ac-
cessed: 2023-02-23.

[52] terasort. Package org.apache.hadoop.examples.terasort.
https://hadoop.apache.org/docs/r3.0.0/
api/org/apache/hadoop/examples/terasort/
package-summary.html. Accessed: 2023-02-23.

[53] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vijay Sundaresan. Soot - a
java bytecode optimization framework. In Proceedings
of the 1999 Conference of the Centre for Advanced Stud-
ies on Collaborative Research, CASCON ’99, page 13.
IBM Press, 1999.

[54] Robbert van Renesse, Yaron Minsky, and Mark Hay-
den. A gossip-style failure detection service. In Nigel
Davies, Seitz Jochen, and Kerry Raymond, editors, Mid-
dleware’98, pages 55–70, London, 1998. Springer Lon-
don. ISBN 978-1-4471-1283-9.

[55] Westley Weimer, ThanhVu Nguyen, Claire Le Goues,
and Stephanie Forrest. Automatically finding patches
using genetic programming. In 2009 IEEE 31st Inter-
national Conference on Software Engineering, pages
364–374, 2009. doi: 10.1109/ICSE.2009.5070536.

[56] WICKET-6908. Wicket-6908. https://issues.
apache.org/jira/browse/WICKET-6908. Accessed:
2023-02-23.

[57] W. Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yi-
hao Li. The dstar method for effective software fault
localization. IEEE Transactions on Reliability, 63(1):
290–308, 2014. doi: 10.1109/TR.2013.2285319.

[58] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu,
Michael M. Lee, Xiaoming Tang, Yuanyuan Zhou, and
Stefan Savage. Be conservative: Enhancing failure diag-
nosis with proactive logging. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, page 293–306, USA, 2012.
USENIX Association. ISBN 9781931971966.

[59] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Ro-
drigues, Xu Zhao, Yongle Zhang, Pranay U. Jain, and
Michael Stumm. Simple testing can prevent most critical
failures: An analysis of production failures in distributed
data-intensive systems. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, page 249–265, USA, 2014.
USENIX Association. ISBN 9781931971164.

[60] Long Zhang, Brice Morin, Philipp Haller, Benoit Baudry,
and Martin Monperrus. A chaos engineering system
for live analysis and falsification of exception-handling
in the jvm. IEEE Transactions on Software Engineer-
ing, 47(11):2534–2548, 2021. doi: 10.1109/TSE.2019.
2954871.

[61] Mengshi Zhang, Xia Li, Lingming Zhang, and Sar-
fraz Khurshid. Boosting spectrum-based fault lo-
calization using pagerank. In Proceedings of the
26th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, ISSTA 2017, page 261–272,
New York, NY, USA, 2017. Association for Comput-
ing Machinery. ISBN 9781450350761. doi: 10.1145/
3092703.3092731. URL https://doi.org/10.1145/
3092703.3092731.

[62] Yongle Zhang, Serguei Makarov, Xiang Ren, David
Lion, and Ding Yuan. Pensieve: Non-intrusive fail-
ure reproduction for distributed systems using the event
chaining approach. In Proceedings of the 26th Sym-
posium on Operating Systems Principles, SOSP ’17,
page 19–33, New York, NY, USA, 2017. Association
for Computing Machinery. ISBN 9781450350853. doi:
10.1145/3132747.3132768. URL https://doi.org/
10.1145/3132747.3132768.

[63] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm,
Ding Yuan, and Yuanyuan Zhou. Log20: Fully au-
tomated optimal placement of log printing statements
under specified overhead threshold. In Proceedings
of the 26th Symposium on Operating Systems Princi-
ples, SOSP ’17, page 565–581, New York, NY, USA,
2017. Association for Computing Machinery. ISBN
9781450350853. doi: 10.1145/3132747.3132778. URL
https://doi.org/10.1145/3132747.3132778.

2062 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/apache/solr/tree/main/solr/benchmark
https://github.com/apache/solr/tree/main/solr/benchmark
https://spring.io/
https://hadoop.apache.org/docs/r3.0.0/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/r3.0.0/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/r3.0.0/api/org/apache/hadoop/examples/terasort/package-summary.html
https://issues.apache.org/jira/browse/WICKET-6908
https://issues.apache.org/jira/browse/WICKET-6908
https://doi.org/10.1145/3092703.3092731
https://doi.org/10.1145/3092703.3092731
https://doi.org/10.1145/3132747.3132768
https://doi.org/10.1145/3132747.3132768
https://doi.org/10.1145/3132747.3132778

	nsdi24_front_matter
	nsdi24-full_proceedings_interior
	nsdi24-yassini
	Introduction
	Background and Related Work
	Task Scheduling in Datacenters
	Related Work

	Proposed In-Network Scheduling
	Design Principles
	Overview and Workflow
	Scheduling Tasks in the Network
	Distributing State Among Schedulers
	Horus Deployment Options

	Evaluation in a Testbed
	Experimental Setup
	Comparison against State-of-the-Art
	Responsiveness and Overheads of Horus

	Evaluation using Simulation
	Simulation Setup
	Comparison against the State-of-Art
	Analysis of Horus

	Conclusions
	More Details of Horus
	Example: Lazy State Update
	Realizing Average Queue Length
	Handling Failures and Packet Losses
	Handling Multi-packet Tasks
	Horus Overheads
	Pseudo Code and P4 Implementation

	More Results from Testbed
	More Results from Simulation

	nsdi24-zhang
	Introduction
	Background and Motivation
	Vector Query Processing
	GPU Acceleration
	Challenges

	Rummy Overview
	Rummy Design
	Cluster-based Retrofitting
	Dynamic Kernel Padding with Cluster Balancing
	Pipelining Scheduler
	Profiler
	Reordering
	Grouping

	GPU Memory Management

	Implementation
	Evaluation
	End-to-End Experiments
	Deep Dive of Rummy
	Dynamic Kernel Padding with Cluster Balancing
	Profiler
	Pipelining Scheduler & Cluster-based Retrofitting
	Memory Management

	Discussion
	Related Work
	Conclusion
	Appendix
	Proof of Theorem§ 4.1
	Comparison between GPU and CPU
	Cluster Balancing Algorithm

	nsdi24-alquraan
	Introduction
	Background and Related Work
	Remote Direct Memory Access
	RDMA-based Consensus

	LoLKV Design
	Segment Store
	Segment Metadata
	Owning a Segment
	Sealing and Releasing a Segment

	Hash Table
	Replication Protocol
	Worker Thread Metadata
	Put Requests
	Concurrent Put Requests to the Same Key
	Get Requests
	Delete Requests

	Leader Election
	Fault Tolerance

	Implementation Details
	Garbage Collection
	Reusing Tombstones

	Correctness
	Correctness of the Hash Table

	Evaluation
	Performance Evaluation
	Latency Evaluation
	Workload Skewness
	Read-to-Write Ratio
	LoLKV Failover
	Scalability

	Additional Related Work
	Conclusion

	nsdi24-fried
	Introduction
	Background & Motivation
	Junction Overview
	Security
	Threat Model
	Host Kernel Isolation

	Optimizing for Density
	Minimizing Buffer Memory Consumption
	Scalable Queue Polling

	Linux Compatibility
	Adapting OS Features to Kernel Bypass
	Performance Optimizations

	Implementation
	Evaluation
	Methodology
	Comparison to other kernel bypass systems
	Density
	Compatibility
	Attack Surface
	Performance Analysis

	Discussion
	Conclusion
	UIPI Support
	Buffer Management
	Additional Benchmarks
	Threading & Networking
	FaaS Benchmark

	nsdi24-gao
	nsdi24-li
	Introduction
	Background and Motivation
	Limitations of Existing Approaches
	Imprecise Flow Information
	Motivation: Lower Bound on Flow Size
	Application Examples
	Experimental Observations

	QCLIMB Design
	Lower-bound-based scheduling
	Out-of-Order Handling
	Loss detection
	Packet reordering
	Packet retransmission

	Implementation
	Sender
	Receiver

	Evaluation
	Testbed Experiments
	QCLIMB Deep Dive
	Effectiveness of the design components
	Never-seen-before flow handling
	Sensitivity to parameter settings

	Large-scale Simulations

	Conclusion
	The Performance of pFabric under Imprecise Knowledge
	Obtaining Prediction Intervals
	QCLIMB's Scheduling Algorithm
	Supplementary Experiment Results
	Discussion
	Other Related Work

	nsdi24-wang
	Introduction
	Background and Related Work
	Congestion Control for Cloud Gaming
	Network Measurement in Real Gaming Systems
	Control Goals through Real-World Case Studies
	Existing CC Solutions and Their Limitations

	Challenges and Rationale
	Network Probing and Estimation
	Bitrate Adaptation based on BUR Estimations

	Pudica Design
	BUR Probing and Estimation
	Bitrate Adaptation over the Smoothed BUR
	Bitrate Adaptation over the Short-Term BUR

	Evaluation
	Methodology for Large-Scale Algorithm Evaluation
	System-Level Performance at Scale
	In-the-Wild Evaluation for Efficiency and Fairness
	Pudica Deep Dive over Emulation
	Microbenchmark

	Discussion
	Other Related Work
	Conclusion
	Validation Methodology for BUR Estimation Methods
	Sample Weights for Smoothed BUR Computation
	Fairness Convergence Trajectory for Different AI-and-MD Schemes
	Preliminary Evaluation for Various CC Algorithms through Emulation
	A Large-Scale Dummy Client Platform
	Pudica Robustness to Network Jitters
	Additional Microbenchmark Results
	Competitiveness with Buffer-Filling Flows
	Difference Between Our BUR Estimation and Traditional Packet-Train Methods

	nsdi24-zhang
	Introduction
	Design Space
	Desirable Properties
	Ternary Flow States in Lossless Ethernet

	Principles
	Experiment Setup
	The Power of ACK-Driven
	Handling HoL Blocking

	ACK-Driven Congestion Control
	State Machine Overview
	Halting Congested Flows
	Throttling Congested Flows
	Adapting Undetermined Flows
	Rate Increase for Uncongested Flows
	Theoretical Analysis

	Implementation
	Evaluation
	Evaluation Setup
	Testbed
	Microbenchmarks
	Large-Scale Simulations

	Related Work
	Conclusion

	nsdi24-wang
	Introduction
	Background and Motivation
	Implications of microservices
	Service execution dependencies
	Delayed end-to-end performance feedback

	A practical approach

	The Autothrottle Framework
	Overview
	Per-service controllers—Captains
	Resource metrics and knobs
	Multiplicative scale-up
	Instantaneous scale-down
	Rollback mechanism after scaling down

	Application-level controller—Tower
	Primer on contextual bandits
	Realizing contextual bandits in Tower

	Implementation
	Evaluation
	Methodology
	Application SLO and resource saving
	Microbenchmarks
	Long-term evaluation
	Large-scale evaluation

	Related Work
	Conclusion
	Appendices
	Application workload details
	Vowpal Wabbit usage
	Microservice clustering
	Microservice replicas
	RPS range of workload traces
	CPU utilization thresholds in K8s-CPU and K8s-CPU-Fast
	Evaluation methodology details
	Captain performance

	nsdi24-zhang_zili
	Introduction
	Background and Motivation
	Serverless Workflows
	Existing Work and Challenges

	Jolteon Overview
	Jolteon Design
	Performance Profiler
	Bound Guaranteed Sampler
	Convex Optimizer

	Implementation
	Evaluation
	Overall Performance
	Performance Guarantees
	Effectiveness of the Performance Model
	Time analysis for Jolteon

	Discussion
	Related Work
	Conclusion
	Appendix
	Lower bound of sample size
	Convexity Analysis
	Sensitivity of Jolteon

	nsdi24-wu
	Introduction
	Characterization of Spot Instances
	Methodology of Spot Trace Collection
	High Variance in Spot Availability
	Relative Stability in Spot Pricing
	Correlation of Multi-Instance Availability

	Using Spot for Deadline-Sensitive Jobs
	Problem Setup
	Scheduling Policy
	Rules for Policy Design
	Greedy Policy

	Theoretical Analysis
	Worst Case with Competitive Analysis
	Average Case with Stochastic Model

	Methodology
	Time Sliced
	Uniform Progress
	Pushing the Slices to the Extreme
	Uniform Progress Policy

	Omniscient
	Omniscient Policy
	Partial Lookahead Omniscient Policy

	Next Spot Lifetime Oracle
	Extending to Multiple Instances
	Relaxing Computation Time and Changeover Delay

	Evaluation
	Datasets and Setup
	Time Spent on On-demand and Spot Instances
	Various Deadlines
	Impact of Spot Fraction and Deadline
	Different Changeover Delays
	Multiple Instances
	Relaxed Computation Time and Changeover Delay

	Practical Usage
	Implementation
	Real Workloads

	Related Work
	Conclusion
	Appendix
	Spot Availability and Preemption Traces
	Proofs for Theoretical Analysis
	Worst Case with Competitive Analysis
	Average Case with Stochastic Model

	Partial Lookahead Omniscient Formulation
	Deadline for Changeover Delay Extension
	Performance on 2-month Availability Traces
	Setup of Real Workloads
	Extending to Multiple Instances
	Omniscient policy
	Omniscient with homogeneous clusters.
	Omniscient with heterogeneous clusters.
	Cost Savings on 16 Instances

	Loose Deadline
	Various Job Computation Time

	nsdi24-jiang
	Introduction
	Background and Related Work
	The Development of In-Car Virtualization
	Microkernel + Hypervisor
	Limitations of In-Vehicle Microhypervisor
	Linux Container for In-Car Virtualization
	Android Container Framework

	AutoVP Overview
	In-Vehicle Container Implementation
	Device Virtualization Methods
	Isolation Mechanisms
	Monitoring Mechanisms

	Evaluation
	Experiment Setup
	Methodology
	Performance Measurements
	MPAM Measurements

	Discussion & Conclusion

	nsdi24-zhang_haoran
	1 Introduction
	2 Background
	3 Goals and Overview
	3.1 Overview of MuCache

	4 MuCache Protocol
	5 Protocol Correctness
	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 Applications, Method, and Baselines
	7.3 (Q1) Throughput and Latency Benefits
	7.3.1 Real-world applications
	7.3.2 Comparison with TTL baselines
	7.3.3 Sharding Scalability
	7.3.4 Cache size effect
	7.3.5 Application call-graph effect on performance

	7.4 (Q2) MuCache costs and overheads
	7.4.1 Memory / CPU / Network costs
	7.4.2 MuCache latency overhead
	7.4.3 MuCache's throughput

	7.5 (Q3) Invalidation time

	8 Related Work
	9 Discussion and Limitations
	A Detailed Protocol Correctness
	B MuCache protocol design details
	B.1 Waiting for events to be added in the queue

	nsdi24-dhamija
	Introduction
	Background
	Enablement
	Enabling DCTCP for only in-region flows
	Potential knobs for changing congestion control
	TCP socket hook eBPF
	Enablement plan
	cgroup-v2 and 4.11+ kernels
	cgroup-v1 and older kernels

	Long-lived connections

	Switches and buffers
	Switch queues are a scarce resource
	ToR switches were sufficient for ECN
	How to set a mark and drop threshold
	The multi-host NIC
	Database clients in particular

	Experience with different switch ASICs

	Visibility for Operations
	eBPF for monitoring
	The puzzle of more retransmissions
	Metrics we monitored for sanity checks
	Metrics that helped us troubleshoot issues

	Kernel and driver trouble
	Delayed ACKs
	GRO creates unfairness
	New eBPF

	Ongoing Work, Limitations, Enhancements
	ECN marking on other hotspots
	Limitations of DCTCP
	DCTCP implemented in BPF

	Takeaways and Conclusion

	nsdi24-zhang
	Introduction
	Background
	MASQUE overview
	The potential issues of MASQUE

	A deep dive into MASQUE
	The performance of MASQUE
	The necessity of CC in the tunnel
	The impact of nested CC
	Summary and implication

	TECC design and implementation
	Overview
	Collaborative transmission control
	Inaccurate CC in the server
	Tunnel feedback
	Server's pacing rate updating rule
	Penalty for building up queue
	Retransmission trigger on the server
	Fairness

	Implementation

	Evaluation
	Experiment setup
	End-to-end performance
	Tunnel overhead
	Fairness
	Real-world A/B tests

	Discussion
	Related work
	Conclusion

	nsdi24-li
	nsdi24-wooders
	Introduction
	Problem Setup
	Egress Costs
	Bandwidth Variability Across Endpoints
	Elasticity of Resources
	Illustrated Example

	Cost Optimization in Cloudcast
	Egress Cost Minimization Algorithms
	Profiling Cross-region Bandwidth
	Optimizing Cost with Time Constraints
	Decision variables
	Objective: minimizing price under a deadline
	Constraints
	Solver feasibility

	Reducing Optimizer Runtime
	Example Topology

	Architecture of Cloudcast
	Control Plane
	Data Plane

	Evaluation
	Comparison to Multicast Algorithms
	Cloud Provider and P2P Systems
	AWS S3 Multi-Region bucket replication
	P2P BitTorrent and Bullet

	Ablations of Cloudcast's Optimizer
	Varying region selection
	Impact of approximations on solutions
	Accuracy of replication time model

	When to Use Cloudcast for Multicast?

	Related Work
	Conclusion
	Optimizer Parameters
	Stripe Granularity
	Node Sub-Selection

	Formulation Details
	Ensuring Valid Paths
	Full Formulation

	How does Cheaper Egress Affect Cloudcast's Optimizations?

	nsdi24-hou
	Introduction
	Background
	PCIe Non-Transparent Bridge and Routable PCIe
	Composable Infrastructures

	rPCIeBench Framework
	Design Principles
	Overview
	System APIs
	Software Components
	Command Data Path
	Workflow

	Basic Performance of Routable PCIe
	Experimental Methodology
	Latency
	Bandwidth
	Latency v.s. Throughput
	Bandwidth Partition
	Asymmetric Communication Path

	In-Fabric Traffic Orchestration
	Max-Min Fair Bandwidth Allocation
	Fast End-to-End BW Synchronization
	Interference-free Orthogonal Paths

	Performance Model of the Routable PCIe Fabric: An Optimization Guide
	Problem Formalization
	Edge Constraints Relaxing Algorithm
	A Walkthrough Example
	Validation and Discussion

	Related Work
	Conclusion
	HBM Performance Characterization
	BlockRAM MMIO Performance

	nsdi24-antunes
	Introduction
	Related Work
	Basics
	System model
	Specification
	Building blocks
	Verifiable Consistent Broadcast Protocol
	Asynchronous Binary Agreement

	Alea-BFT
	Overview
	Detailed description
	Priority queues
	Broadcast Component
	Agreement Component

	Optimizations
	Analysis
	Time Complexity
	Message Complexity
	Communication Complexity
	Estimating

	Correctness
	Implementations
	Evaluation
	Experimental environment
	Performance under different parameters
	Performance under faults
	Real-world implementations

	Conclusion

	nsdi24-agarwal
	Introduction
	Congestion-free Datacenters: Motivation
	Harmony
	Harmony Protocol
	Harmony Design Details
	Harmony Theoretical Properties

	Harmony Implementation
	Harmony Evaluation
	Harmony Testbed Evaluation
	Harmony Large-Scale Simulation

	Harmony benefits
	Related Work
	Conclusion

	nsdi24-ryabinin
	Introduction
	System Model
	Core Concepts and Protocol Overview
	Ballots
	Dependencies and Key Invariants
	Agreeing on Dependencies
	Ensuring Low Tail Latency
	Faster Responses at Non-Collocated Clients

	SwiftPaxos in Detail
	Normal Operation
	Recovery from Leader Failures
	Recovery from Client and Follower Failures
	Optimistic Execution

	Evaluation
	Impact of the Conflict Rate
	Tail Latency
	Metadata Usage
	Scalability
	Performance under Asynchrony
	Applications

	Related Work
	Conclusion
	Appendices
	Correctness
	Validity
	Integrity
	Ordering
	Liveness
	Nontriviality
	Latency

	CURP for Geo-Replication
	Configuration of the Experiments from §5

	nsdi24-amiri
	Introduction
	Bedrock Overview
	Design Space
	Protocol Structure
	Environmental Settings
	Quality of Service

	Design Choices Landscape
	Expanding the Design Choices of PBFT
	Deriving and Evolving Protocols

	Bedrock Implementation
	Experimental Evaluation
	Fault Tolerance and Scalability
	Performance with Faulty Backups
	Impact of Request Batching
	Evaluation Summary

	Related Work
	Conclusion
	Performance Optimization Dimensions
	Case Studies on Protocol Evolution
	Discovering New Protocol Using Bedrock
	Impact of a Geo-distributed Setup
	PBFT DSL Specification in Bedrock

	nsdi24-zhou
	Introduction
	Background
	Distributed Transactions
	eBPF in Kernel Networking Stack

	Dint Design
	Dint Lock Manager
	Dint Key-Value Store
	Write-Back Key-Value Store in eBPF
	Handling GETs for Non-Existing Keys

	Dint Log Manager

	Dint Implementation
	Evaluation
	Microbenchmarks
	Transaction Benchmarks
	CPU Utilization
	Comparison to Raw DPDK
	Comparison to More Baselines
	Design Drill-Down
	Impact of Write-Back and Bloom Filter
	Impact of Rare-Path Ratio
	Impact of Lock Sharing
	Impact of Interrupt Collocation with Applications

	Discussion and Future Work
	Related Work
	Conclusion

	nsdi24-yan
	Introduction
	Background and Motivation
	 Design Overview
	Data Plane Friendly RNN Architecture
	Raw Packet Sequences as Input Features
	Binary RNN Architecture
	Data Plane Native Model Inference
	Analysis Escalation
	Integrated Analysis Logic

	Model Realization on the Data Plane
	Embedding Vector Storage and Retrieval
	Intermediate Results Aggregation

	 Implementation
	Evaluation
	Experiment Setup
	End-to-end Performance
	BoS Deep Dive

	Discussion and Related Work
	Conclusion
	Appendix
	Model Realization on the Data Plane
	Intuitive Number Comparison
	Ternary-Matching Based Design
	Packet Counters
	Flow Management
	Per-packet Fallback Model
	The Pre-analysis Issue

	Prototype Implementation
	On-Switch RNN Inference
	Implementation of IMIS

	Additional Details about Testbed
	Additional Details about Datasets
	Reproducing netbeacon and N3IC
	Binary RNN Model Complexity

	nsdi24-wei
	Introduction
	Background and Motivation
	IPFS Fundamentals
	Challenges of Decentralization in IPFS

	Design and Implementation
	InterPlanetary Network Indexers
	Hydra Boosters
	HTTP Gateways

	Evaluation Methodology & Data
	InterPlanetary Network Indexer Data
	Hydra Boosters Data
	HTTP Gateway Data

	Evaluation
	Challenge 1: Massive Content Publication
	Challenge 2: Content Retrieval Performance
	Challenge 3: Adoption

	Discussion
	Security
	Robustness
	Privacy
	Incentives

	Related Work
	Conclusion
	Ethics
	Additional Experiments
	Hydra Heads in 20-Proximity
	Active Retrieval Ignoring Hydra Boosters

	nsdi24-atre
	Introduction
	Background and Motivation
	Lack of Support for Emerging Use-Cases
	Line-Rate Switches
	SmartNICs in the Public Cloud

	Exploring a Different Tradeoff

	BBQ Overview
	Data Structure
	The BBQ Primitive
	Goals and Challenges
	Scalability
	Performance
	Logical Partitioning

	BBQ Architecture
	Hardware Pipeline
	A Fully-Pipelined Architecture

	 : A Latency-Free BBQ
	Evaluation
	Setup and Methodology
	FPGA
	Throughput Scalability
	Resource Scalability
	BBQ Sensitivity Analysis

	ASIC

	Applications
	Packet Scheduling on Switches
	Packet Scheduling on Cloud SmartNICs

	Related Work
	Discussion
	Conclusion
	Logical Partitioning in Practice
	Existing Designs
	Logical Partitioning in BBQ

	Using StOCs in Practice
	Sizing
	Waterlevel Bit Optimization

	 : A Latency-Free BBQ
	Motivating Example
	 Design
	Proof of Theorem 1

	Dynamic Priority Ranges

	nsdi24-gao
	Introduction
	Background
	Sirius Overview
	Traffic Identification
	Traffic Identification Database
	Synthesis of Traffic Identification Tables

	Finding Pipelining Candidates
	Modeling Pipelining Process
	Generating Pipelining Candidates

	Partitioning
	Partitioning Encoding
	Finding the Partitioning Result

	Experience
	Deployment Experience
	Real Cases Addressed by Sirius
	Lessons and Discussions

	Evaluation
	Related Work
	Conclusion

	nsdi24-feng
	Introduction
	Background
	Motivating Stateful Functions
	Architecture Considerations
	Traffic Trace Analysis

	Related Work
	RAPID Architecture
	Overview
	Stale State Safeguard
	Fast State Writeback
	Speculative Execution
	Multi-level Consistency
	Handling High State Update Rate

	Programming Language and Compiler
	P4 Language Enhancement
	Data Renaming

	Implementation
	Hardware Prototypes
	Software ASIC Emulator
	Compiler and Controller
	Implemented Use Cases

	Evaluation
	FPGA Resource Consumption
	ASIC Implementation Cost
	Parameter Setting
	Influence of Stateful Function Stages
	Influence of State Update Rate
	Influence of Intra-flow Packet Gap
	Influence of Consistency Level

	Discussion
	Conclusion
	Trace Statistics
	Hash collision in dTable
	Writeback Rate Calculation
	Parameter Setting
	Different used stages on Trace 1 and 3
	Different State Update Rates on Trace 1 and Trace 3
	Influence of Consistency Level under 54-cycle and 72-cycle
	Simple Example with muTable

	nsdi24-cheng
	Introduction
	Background
	Real-time video coding
	Related work
	Neural video codec background

	Training Grace's neural video codec
	Real-time video framework
	Entropy encoding the encoder's output
	Streaming protocol
	Fast coding and bitrate control
	Implementation of Grace

	Evaluation
	Setup
	Compression efficiency and loss resilience
	Video quality vs. realtimeness/smoothness
	Microbenchmarking

	Limitation
	Conclusion
	Acknowledgement
	Details of NVC architecture and training
	More details on Grace's NVC model
	Making Grace trainable

	Realtime video framework for Grace
	Fast re-encoding and re-decoding under loss
	How Grace handles I-frames
	Working with congestion control
	Integration in WebRTC

	Supportive details for Grace's evaluation experiments
	VP9 and H265 Comparison
	Baseline and testbed implementation details
	Simulator validation
	Distribution of video content complexity
	Illustration example where Grace performs poorly
	Screenshot of videos we used for user study
	Working with other congestion control
	Working with super resolution
	Encoding/decoding time on CPU
	Simulation results and visualization examples for Grace-Lite, Grace-P and Grace-D

	nsdi24-chen
	Introduction
	Background and Motivation
	Advantages of Learned Codecs
	Learned Codecs Are Slow In Decoding
	Preliminary Analysis of Learned Codecs
	Intuition and Challenges

	LiFteR Overview
	LFR Video Dispatcher
	Dependency Graph
	Frame Iterator

	LFR Learned Codec
	Highly-parallelized Motion Estimation
	Elastic Compression Component

	Streaming Supports
	Bitrate-adaptative Training
	Frame Rate Configuration
	Enhanced ABR Algorithm

	Implementation
	Evaluation
	Methodology
	End-to-end performance
	Design Analysis
	Micro Benchmark

	Related Work
	Discussion
	Conclusion
	H.264 and H.265 Commands

	nsdi24-wong
	Introduction
	Background and Motivation
	Overview of Live Video Analytics
	Opportunities with Tuning Camera Orientations
	Challenges

	Design
	Designing Approximation Models
	Continually Training Approximation Models
	Exploring and Ranking Orientations
	Query Support and Deployment Discussion

	Implementation
	Evaluation
	Methodology
	Overall Results
	Comparisons with State-of-the-Art
	Deep Dive Results
	On-Camera Evaluation

	Related Work
	Conclusion
	Appendix
	Additional objects and tasks
	Workloads

	nsdi24-sivaraman
	nsdi24-tashtarian
	Introduction
	Related Work
	Problem Description and Motivation
	System Design
	Design Principles
	ARTEMIS Overview
	OTL Selection
	Algorithm Details

	Performance Evaluation
	ARTEMIS Implementation
	Evaluation Methodology
	Results and Analysis

	Conclusion
	QoE Model
	Correlation between PSNR and VMAF
	Notation in the OTL Selection
	Experimental Settings
	Additional Results for Scenario I
	Sensitivity to the ABR Algorithm
	Influence of the Content Type
	Impact of Weight
	Impact of Maximum OTL Length
	Impact of Time-Slot Duration
	Extra Results for Scenario II

	nsdi24-addanki_credence
	Introduction
	Motivation
	Buffer Sharing from Online Perspective
	Drawbacks of Traditional Approaches
	Predictions: A Hope for Competitiveness
	Prediction Model
	Common Pitfalls

	Prediction-Augmented Buffer Sharing
	Overview
	Credence
	Properties of Credence
	Practicality of Credence

	Evaluation
	Setup
	Results

	Related Work
	Future Research Directions
	Systems for In-Network Predictions
	Theory for Performance Guarantees

	Conclusion
	Model and Definitions
	FollowLQD: A Deterministic Algorithm
	Buffer Sharing Algorithms with Predictions
	Additional Results

	nsdi24-lei
	Introduction
	Seer: Overview and Insights
	Design
	Future Packet Notification Protocol
	Cache Manager
	Limits of Seer

	Implementation
	Prototype
	Resource Usage
	Prototype Experiments

	Simulations
	Related Work
	Conclusion

	nsdi24-addanki_reverie
	Introduction
	Motivation
	Buffer Issues in Datacenters
	Buffer Sharing Practices
	Journey of a Packet in the Switch MMU
	Buffer Management

	Root Causes of the Buffer Issues

	Reverie
	Single Buffer Pool for Isolation
	Low-Pass Filter for Burst Absorption
	 The Workings of Reverie
	The Properties of Reverie
	Implementation Feasibility

	Evaluation
	Setup
	Results

	Related Work
	Conclusion
	Analysis of SONiC
	Analysis of Reverie

	nsdi24-chen
	Introduction
	Background
	Traffic engineering in data center networks
	Spine-free data center networks

	TE precision loss challenges
	Design
	Shared heuristics
	Direct mixed-integer reduction
	Iterative greedy reduction

	Evaluation
	FabricEval evaluation framework
	Experimental setup
	Spread and path diversity
	Heterogeneous fabrics
	Traffic pattern
	Execution speed
	Impact on flow completion time
	Group Pruning's impact on path diversity
	Ablation study
	Recommendation

	Related work
	Conclusion
	Formulations
	Data center TE formulation
	Multi-group monolithic reduction

	Example snippet of TEIntent
	Time complexity of IGR
	Extra evaluation
	Quantization error
	Table usage
	Spread in TE solution
	Flow completion time
	Reduced path diversity

	nsdi24-khashab
	Introduction
	Motivation
	Challenges
	Packet Filters for Switches
	Target Switch Architectures

	Design
	Programming Model
	SwitchVM Design
	Filtering and Permissions
	Program Loading and Initialization
	Epilog and Steering
	Execution Unit
	Memory Access
	Control Flow

	P4 Extensions
	Control Plane
	Security

	Applications
	Key-Value Store Cache
	Load Balancer
	Paxos

	Implementation
	Resource Usage
	Limitations

	Evaluation
	Methodology
	End-to-End Applications
	Load-Aware Load Balancer
	In-Switch Cache for Key-Value Stores

	Microbenchmarks

	Related Work
	Conclusion
	The Paxos dpfs
	Resource Usage
	Additional Applications
	Control Unit Implementation

	nsdi24-day2.pdf
	nsdi24-hu
	Introduction
	Background
	LLM Development Pipeline
	Acme Overview
	Traces from Acme

	Datacenter Characterization
	LLMs versus Prior DL Workloads
	Workload Categories
	Infrastructure
	Environmental Impact

	Workload Profiling
	Pretraining Workload
	Evaluation Workload

	Failure Analysis
	Failure Category
	Failure Characterization
	Failure Recovery

	Deployed LLM Systems
	Fault-tolerant Pretraining
	Decoupled Scheduling for Evaluation

	Discussion
	Conclusion
	Supplementary Characterization
	Job Final Statuses
	Host Memory
	Carbon Emission
	Pretraining under Different Scale
	GPU Temperature
	MoE Model

	Related Work
	Resource Links

	nsdi24-matam
	Introduction
	Background
	Deep Learning Recommendation Models (DLRM)
	Training DLRM
	Serving DLRM

	Online versus Offline Training
	Optimizer State as Feature Importance Measure
	Inference Pruning

	Motivation
	System Overview
	What to Update
	UpdateSelector
	UpdatePatcher
	Workflow

	Design
	Accuracy Metrics
	Selection Criteria
	Baseline for Delta Selection
	Real-time Inference Pruning
	Granularity
	Intermittent Full Model Update
	Relaxed Model Update Consistency

	Evaluation
	Accuracy
	NE gain compared to a stale model
	NE loss compared to a fully fresh model
	NE loss over short time periods
	Conclusion

	Analyzing Long Term Row Convergence
	Bandwidth Usage
	Relaxed Consistency

	Related Work
	Conclusion

	nsdi24-jiang
	Introduction
	Background
	Efficient Training at Scale
	Algorithmic Optimizations
	Communication Overlapping in 3D Parallelism
	Efficient Operators
	Data Pipeline
	Collective Communication Group Initialization
	Network Performance Tuning

	Fault Tolerance
	Robust Training Workflow
	Data Collection and Analysis
	Diagnostic Tests
	Fast Checkpointing and Recovery

	Training Troubleshooting
	Performance Diagnosis with CUDA Event Monitor
	3D Parallel Training Visualization

	Experience
	Training Performance
	Model Convergence and Stability
	Problems Discovered and Fixed

	Related Work
	Conclusion

	nsdi24-zu
	Introduction
	The Reconfigurable ML Supercomputer System Architecture
	Lessons from Static Pod Architectures
	TPUv4: OCS-based Reconfigurability
	Programmable ICI Protocol

	Automating Supercomputer Management
	Overview
	Supercomputer Modeling
	Cluster Scheduling
	Pod Manager
	Torus xconnect
	Twisted-torus xconnect

	libtpunet
	Hardware Maintenance and Recovery
	healthd
	Preflight Check
	Online ICI Link Repair

	ICI Routing
	Fault-free Routing
	Fault-tolerant Routing
	Offline Route Optimization

	Fleet Statistics
	Cube Reconfigurations
	Hardware Maintenance Automation
	Fault-tolerant Jobs

	Related Work
	Future Work
	Conclusion
	Acknowledgements

	nsdi24-wang
	Introduction
	Motivation
	Problem Statement
	Opportunities
	Challenges

	Template of NN-defined Modulator
	Mathematical Foundation of Digital Modulation
	Modulator Template via Neural Network
	Discrete-time Modulation Model
	Basics of Transposed Convolutional Layer
	NN-defined Modulator Template

	Instances of NN-defined Modulator Template
	Common NN-defined Modulators
	Single Carrier Amplitude/Phase Modulation
	Multicarrier Modulation

	Protocol-specified NN-defined Modulators

	Modulator Kernel Configuration
	Manual Setting with Expert Knowledge
	Learning from Dataset
	Fine-tuning for Better Performance

	Modulator with Portability
	Framework-Independent NN-defined Modulators
	Seamless Acceleration

	Evaluation
	Implementation
	Framework and hardware
	Modulation schemes

	Signal Quality of NN-defined Modulator
	Trained kernels in NN-defined modulators
	Transmission performance in AWGN channel

	Efficiency and Portability
	Efficiency improvement
	Portability

	Application in IoT Technologies
	ZigBee-compliant Signals
	WiFi-compliant Signals

	Related Works
	Discussion
	Conclusion

	nsdi24-liu
	Introduction
	Why Multi-Tenant LEO Mobile Satellites?
	The Need for Direct-to-Cell LEO Satellites
	Incentives for LEO Satellite Multi-Tenancy

	Challenges for Multi-Tenant LEO Satellites
	Transparent Satellite Pipe as a Service?
	In-Orbit Cellular Function as a Service?

	Overview
	Design of MOSAIC
	Self-Serve Multi-Tenant Orbital Functions
	Pay-as-you-go Satellite Access Tokens
	 Local Self-Service via In-Band Control

	Practical Deployment
	Evaluation
	Qualitative Advantages over SOTAs
	Self-Serve Multi-Tenant Orbital Functions
	Pay-as-you-go Satellite Access Tokens
	Local Self-Service via In-Band Control

	Limitations
	Related Work
	Conclusion
	Security Analysis
	Acronyms in This Work

	nsdi24-tao
	Introduction
	Background
	Serval's Design
	Problem Setup
	Distributing Compute Across Earth and Space
	Incorporating Auxiliary Information Sources
	Serval's Execution Engine
	The Satellites
	The Ground Stations
	The Cloud

	Experimental Setup
	Applications
	Real-world Dataset
	Hardware-benchmarking and Simulator Design

	Microbenchmarks
	Number of Final Images Number of Collected Images
	Preemptive Compute at Ground Station
	Hardware Emulation

	End-to-End Results
	End-to-end Performance
	Satellite Power Usage

	Related Work
	Concluding Discussion

	nsdi24-singh
	Introduction
	Motivation from Real-world Experience
	Satellite as the Global IoT Gateway
	Ground Stations
	Communication
	Our Experience and Challenges

	Spectrumize's Algorithm
	Packet Detection
	Hardware Imperfections
	Collision Resolution for Packet Decoding

	Evaluation
	Real-world Testbed
	Simulator and Benchtop Emulator Setup
	Packet Detection
	Micro-benchmark
	Real-world evaluation

	Collision Resolution
	Simulation
	Real-world evaluation

	Related Work
	Packet detection
	Collision resolution

	Conclusion
	Acknowledgement
	Simulation of Orbital Dynamics
	Proof of Lemma 3.1

	nsdi24-balasingam
	Introduction
	Related Work
	Problem Setup and Challenges
	Problem formulation
	Challenge: state space complexity
	Challenge: determining RAN resource availability

	Design
	Model predictive control
	Tuning slice bandwidths efficiently
	Forecasting RAN resource availability

	Implementation
	Evaluation
	Evaluation setup
	End-to-end evaluation
	SLA compliance
	Forecasting RAN resource availability
	Microbenchmarks

	Discussion
	Conclusion
	Allocating Slice Bandwidth in Zipper
	Forecasting the wireless channel with an RNN
	Monotonicity of throughput and latency
	Algorithm

	Estimating resource availability in Zipper
	DNN architecture

	nsdi24-kumar
	Introduction
	Chisel Design
	Optical spectrum in long-haul fiber
	Spectrum translates to network capacity
	Spectrum usage in the wild
	Available spectrum

	Bandwidth slices in optical WANs
	Switching in the optical domain
	Optimal slice allocation

	Slice allocation with Chisel
	Efficiency of slice allocations
	Scalability of the algorithm
	Bounded sub-optimality for fast runtime
	Spectral fragmentation

	Hardware Evaluation
	Adding optical channels on fiber spans
	Effect on existing data channels
	Latency of provisioning channels

	Chisel vs. wide-area traffic engineering
	Giving tenants access to optical slices
	Sub-rate optical slices with OTN switching

	Related Work
	Conclusions
	Optical vs. Electrical paths
	Chisel algorithm evaluation
	Modulation formats of slices
	Comparison with TE

	Hardware Evaluation
	Vendor-A hardware testbed
	Vendor-B hardware testbed
	Fully loading the spectrum

	nsdi24-pan
	nsdi24-goel
	Introduction
	Background and Motivation
	Target workloads
	Shortcomings of static crawling
	Compute overheads of browser-based crawling
	Minimizing browser's computation delays

	Overview
	Observations and approach
	Challenges

	Design
	Memoizing JavaScript execution
	Statically crawling pages
	Scheduling page crawls

	Implementation
	Evaluation
	Evaluation setup
	Throughput and Fidelity
	Comparison with baselines
	Throughput in each phase
	Contribution of techniques

	Sensitivity to crawling parameters
	Number of pages per site
	Repeated crawling
	Preserving static fetches

	Maintainability

	Related work
	Conclusion

	nsdi24-meng
	Introduction
	Background and Motivations
	Interactive Video Streaming
	Packet Losses in Edge-based Interactive Streaming
	Why Existing Solutions Fail?
	Motivations

	Hairpin Optimizer
	Basic Idea and Strawman Solution
	Design Challenges
	Model Formulation and Optimization
	Deployment Discussions

	Evaluation
	Hairpin Implementation
	Experiment Setup
	Trace-driven Simulations
	Performance Breakdown
	Parameter Sensitivity
	Hairpin Deep Dive
	Real-World Experiments

	Related Work
	Conclusion
	Measurements in Production
	Optimization Model
	Optimization of the Redundancy Rate
	Optimization of Block Size

	Implementation Details
	Supplementary Experiments
	Limitations

	nsdi24-namyar
	Introduction
	Heuristic Analysis at a Glance
	Heuristics and their Importance
	MetaOpt, a Heuristic Analyzer
	Using MetaOpt to Analyze Heuristics

	MetaOpt Design
	MetaOpt Approach
	MetaOpt: The User View
	Automatic Rewrites
	The Quantized Primal-Dual Rewrite
	Partitioning to Scale MetaOpt

	Evaluation
	Heuristics for WAN Traffic Engineering
	Heuristics for Vector Bin Packing
	Heuristics for Packet Scheduling
	Evaluating MetaOpt

	Discussion
	Extending MetaOpt's scope
	Related Work
	Conclusion
	Details of Traffic Engineering
	Multi-commodity flow problem
	More details on DP and POP heuristics
	Formulation of DP and POP
	POP Client Splitting

	Details of Vector Bin Packing
	Formulation of FFD (First-Fit-Decreasing)
	Proof of Theorem 1

	Details of Packet Scheduling Heuristics
	Formulation of SP-PIFO
	Formulation of AIFO
	Proof of Theorem 2

	List of MetaOpt Helper Function
	Black-box search methods

	nsdi24-agarwal_anup
	Introduction
	Motivation
	Network models
	Belief framework
	CCmatic: Synthesizing CCAs
	Belief-based CCA Template
	Computing belief bounds
	Handling stale beliefs

	Transition system based properties

	Results
	Synthesis queries
	Loss vs. convergence tradeoff
	cc_probe_slow shows Theorem 6.1 is tight

	Proofs of performance
	Empirical evaluation

	Related work
	Discussion, limitations, and future work
	Beliefs are sufficient
	Computing beliefs
	Propagation delay and jitter
	Bandwidth

	Synthesis details
	Loss vs. convergence tradeoffs
	Proof details

	Synthesizing cc_probe_slow
	Proofs of performance
	Implementation issues in the Linux kernel
	Supplementary empirical evaluation

	nsdi24-zhao
	Introduction
	Problem Definition
	Architecture and Workflow
	Example
	Network Model
	Partition

	Design Detail
	Switch-based Partition
	Updating EP-model
	Verification

	Evaluation
	Setup
	Overall Performance
	Performance of EP-model
	Performance of Switch-based Partition
	Deployment in the Wild

	Discussion and Future Work
	Related Work
	Conclusion

	nsdi24-sherwood
	nsdi24-singha
	Introduction
	Background & Motivation
	Route Filtering and Regular Expressions
	BGP Dynamics
	Route Map Semantics

	Model Based Testing for BGP
	Overview
	Decision Process
	Route Filtering
	Zen Model
	Generating Regular Expressions
	Regex Testing

	Route Aggregation
	Testing BGP Dynamics
	Vendor-specific Translators
	Implementation Testing

	Results
	System Overview
	Experiments
	Example Bugs

	Limitations
	Related Work
	Future Work and Conclusion

	nsdi24-blach
	INTRODUCTION
	NETWORK MODEL & TOPOLOGIES
	FIRST AT-SCALE SF INSTALLATION
	Deployed Hardware Equipment
	Topology Structure and Construction
	Deployment Efficiency and Ease
	Correctness Verification

	HIGH-PERFORMANCE MULTIPATHING
	Original FatPaths Routing in Slim Fly
	Proposed Multipath Routing: Summary
	Generating Routing Layers

	IMPLEMENTATION OF MULTIPATHING
	Routing
	Deadlock-Freedom
	Load Balancing
	Path Diversity vs. Network Size

	THEORETICAL ANALYSIS
	Path Lengths
	Path Distribution
	Path Diversity
	Maximum Achievable Throughput
	Insights & Takeaways - Theoretical Results

	EVALUATION
	2-Level Non-Blocking Fat-Tree
	Workloads & Configurations
	Execution Environment
	Microbenchmarks
	Scientific Workloads & HPC Benchmarks
	Deep Learning Workloads
	Insights & Takeaways - Empirical Results
	Scalability & Cost Analysis

	RELATED WORK
	CONCLUSION
	Details of Slim Fly Construction
	Selecting Topology Size, Parametrizing Input
	Finding Needed Algebraic Structures
	Labeling and Connecting Switches
	Topology Structure & Physical Layout
	Constructing Slim Fly with N nodes

	Routing Details
	Details of Layer Generation
	Finding Almost-Minimal Paths
	Node Pair Priority Queue
	Path Weighting
	Potential Invalidity of Paths
	Specification of Forwarding Tables

	Additional Results
	Changes for Custom Alltoall
	Scientific Workloads & HPC Benchmarks
	Deep Learning Workloads

	Pricing details

	nsdi24-gao
	Introduction
	Background and Motivation
	ByteDance's Network
	Incidents Analysis
	Incidents Examples
	Statistical Analysis

	Cost v.s. Coverage
	Scalability over Multiple Hosts

	Crescent Design Overview
	Multi-Host Canary Testbed
	Connect DUTs to Canary Testbed
	Proactive Verification and Monitoring

	Building Canary Testbed
	Network Emulation
	Multi-Vendor Config Adaptation
	Multi-Host Partitioning

	Connecting DUTs to Canary
	Topology Expansion
	Dynamic Connection

	Proactive Verification and Monitoring
	Evaluation
	Connection Time
	Bootup Time
	Network Convergence Time
	Verification Time

	Beyond Network Change
	Catching Regression Under Failures
	Self-Service Platform
	SDN Testing

	Discussion
	Lessons Learned
	Incidents Missed
	Future Work

	Related Work
	Conclusion
	Network Emulation
	Emulating Network Devices
	Emulating Network Links
	Emulating Edges
	Emulating Control Plane Network

	Multi-Host Partitioning Algorithm
	Topology Expansion

	nsdi24-li
	Introduction
	Background and Motivation
	Background: Our Production WAN
	Motivations and Goals
	Related Work

	Jingubang Overview
	Jingubang Workflow
	Important Terminologies
	Jingubang Checking Task's Specification

	Traffic Simulation Using TDG
	Traffic Distribution Graph
	Simulating A Single Traffic Snapshot
	Simulating Multiple Traffic Snapshots
	Flow Number Reduction Optimization

	Real-Time Failure-Tolerance Analysis
	Incremental TDG Construction
	Incremental Traffic Simulation

	Deployment and Use Cases
	Validating Network Changes
	Validating Failure Tolerance

	Evaluation
	Discussions and Lessons
	Conclusion
	Traffic Sampling
	Algorithm
	Error Bound

	Traffic Distribution Graph
	Formal Definition
	TDG Construction

	Traffic Equivalence Class
	Formal Definition
	TEC Generation

	Incremental TDG Construction and Traffic Simulation
	Algorithm for Incremental TDG Construction
	Detailed Description of Incremental Traffic Simulation Algorithm

	nsdi24-lyu
	Introduction
	Background and Challenges
	Background
	Challenges
	Insufficient Performance for Growing Workloads
	High Cost of Managing Separate Controllers

	Design
	Design Overview
	Consolidation of Separate Controllers
	Problems with full consolidation of controllers
	Poseidon's choice: partial consolidation

	Service-independent Abstraction
	Goals of designing abstraction
	Poseidon's abstraction

	Poseidon's Trident tree
	Building Trident tree
	Handling API calls with Trident tree

	Tree-based Config Changes Calculation
	Basic procedure
	Fast finding descendant changes for a Group
	Fast finding updates for a Conf.
	A tree-based config changes calculation example

	Cloud-Scale Performance Optimizations

	Evaluation
	Performance improvement
	OpEx and development cost optimization
	Benefit and cost of unified agent

	Experiences of deploying Poseidon
	Related work
	Conclusion
	Appendices
	Additional Figures
	Supplementary Materials
	Design goal achievement analysis of abstraction
	Trident operations of cloud control API
	Computational complexity analysis of OR-based calculation
	Computational complexity analysis of SUM-based calculation
	Case study of Poseidon
	Redis failover detection and data recovery

	Additional Experiences
	How to choose pushing and pulling when configuring devices?
	How to deploy Poseidon to a small-scale virtual network?

	nsdi24-somashekar
	Introduction
	OPPerTune Overview
	Configuration Tuning in Hybrid Spaces
	Problem Definition and Terminology
	Hybrid Configuration Space
	Proposed Algorithm: blackHybridBandits

	Automatic Scoping of Tuning Instances
	Joint Scoping and Configuration Tuning
	Proposed Algorithm: black AutoScope

	Configuration Selection
	OPPerTune Implementation
	Evaluation
	Evaluated Applications
	Social Networking Application
	ML-Experimentation Pipeline

	Improving Application Performance
	Mitigating Cost Of Tuning In-Deployment
	Scalability

	Related Work
	Conclusion
	Acknowledgment
	black AutoScope Algorithm
	blackHybridBandits Convergence
	Experiment Details
	Social Network + AMStraces
	MLExp

	Microbenchmarking: Top-50 Parameters

	nsdi24-duan
	Introduction
	Background
	Distributed DNN Training
	Spot-Instance Training

	Liveput
	Definition of Liveput
	Comparing Liveput and Throughput

	Parcae Overview
	Availability Predictor
	Instance-wise Availability Unpredictability
	Statistical Availability Prediction

	Live Migration
	Pipeline-aware Preemption Mapping
	Migration Strategies

	Liveput Optimizer
	Problem Definition
	Parallelization Advisor
	Preemption Mapping Sampler

	Exception Handling
	Parcae's Design and Implementation
	ParcaeScheduler
	ParcaeAgent
	ParcaePS
	Cost Estimator

	Evaluation
	Experimental Setup
	End-to-End Evaluation
	Breakdown Analysis
	Proactive v.s. Reactive
	Convergence Preservation

	Related Work
	Conclusion
	Addition Details of Migration Costs
	Additional Details of ARIMA
	Additional Experimental Details
	End-to-End Evaluation Setting
	Parcae Components Evaluation

	nsdi24-zeng
	Introduction
	Background & Motivation
	Deep Learning Recommendation
	Embedding Communication Matters

	Embedding Scheduling
	Rationales
	Opportunities
	Model Consistency Analysis

	Design
	Challenges
	Overview
	Location-aware Inputs Allocation
	Communication Plan Generation

	Implementation
	Evaluation
	Evaluation Settings
	Micro-benchmarks
	Cache Performance
	Scheduler Performance

	End-to-end Training

	Discussions
	Related Work
	Conclusion
	The Problem Definition of Embedding Scheduling
	Point-to-point Embedding Synchronization
	Herald vs. Brute-force Scheduling

	nsdi24-huang
	Introduction
	Background
	Unimodal and Multimodal Models
	Multimodal Model Training

	Motivation
	Multimodal Model Characteristics.
	System Challenges.

	DistMM Overview
	DistMM Design
	Modality-aware Partitioner
	Data Load Balancer
	Heterogeneity-aware placement manager
	Intra-submodule placements
	Inter-submodule placements

	Pipeline Executor

	Implementation
	Evaluation
	End-to-End Performance
	Effectiveness of Individual Components
	Effectiveness of Modality-aware Partitioner
	Effectiveness of Data Load Balancer
	Effectiveness of Heterogeneity-aware Placement Manager

	Related Work
	Conclusion
	Acknowledgments

	nsdi24-agarwal_shubham
	Introduction
	Background
	Diffusion Models (DMs)
	Dynamics of Image Generation

	Understanding User Prompts
	Nirvana Overview
	Approximate Caching
	System Components

	Nirvana Design Details
	Embedding Generator
	Match Predictor
	Cache Retrieval
	Cache Selector

	Cache Maintenance: LCBFU Policy

	Implementation
	Evaluation
	Methodology
	Overall Performance on Quality
	System Efficiency of Nirvana
	LCBFU Performance
	Sensitivity Analysis

	Related Works
	Conclusion
	Nirvana Algorithm
	Implementation Details
	Discussions
	Additional Results from Sensitivity Analysis
	Match-Predictor Settings
	Decomposition of End-to-End Latency in Nirvana
	Image Quality across Long vs. Short Prompts
	Quality with different Caching Policy

	Concept Development in Image Generation

	nsdi24-li
	Introduction
	Background and Motivation
	Compression Cost and Tradeoffs
	In-network Aggregation

	THC Overview
	 .921!Tensor Homomorphic Compression
	Background on Stochastic Quantization
	The Uniform THC Algorithm
	The Non-uniform THC Algorithm

	Optimizing THC
	Pre- and Post-processing Using the Randomized Hadamard Transform
	Constructing the Optimal Lookup Table
	Accelerating the Preliminary Stage
	Putting It All Together

	THC with Other System Opportunities
	Implementation
	Evaluation
	End-to-End Training Performance
	Breakdown of Network and Compute Time
	THC Performance on AWS EC2
	THC Simulation Results

	Related Work and Discussions
	Conclusion
	Acknowledgment
	Uniform THC Preliminaries
	Uniform Homomorphic Compression
	Uniform Stochastic Quantization

	Optimally Solving the Lookup Table Optimization Problem
	Additional Parameter Server Details
	Pseudocode of Parameter Server (PS)
	Switch Resources Usage

	Evaluation Figures
	Computational-intensive Model Training with THC
	AWS EC2 Large Language Models Training Results
	Optimizations of THC
	NMSE for Different Granularities
	Test Accuracies for Resiliency Results

	nsdi24-lam
	Introduction
	Background and Motivation
	Distributed Databases
	The Challenge of Skewed Workloads

	Design Overview
	A Hybrid Architecture
	Transaction Life Cycle

	Hybrid Concurrency Control
	HCC Insight
	The Execute Phase
	The Commit Phase
	Correctness of HCC

	Phalanx Replication
	Phalanx Insight
	Protocol Basics
	Timestamp Challenges & Frontline

	Evaluation
	Experimental Setup
	Result Overview
	Latency & Throughput
	Scalability
	Additional Experiments

	Related Work
	Conclusion

	nsdi24-zhang
	Introduction
	Background and Related Work
	Web caches
	Cache eviction policies
	Lazy promotion and quick demotion

	Design and Implementation
	Sieve Design
	Implementation

	Evaluation
	Experimental setup
	Efficiency results
	Throughput performance
	Simplicity

	Distilling Sieve's Effectiveness
	Visualizing the sifting process
	Analyzing the sifting process
	Deeper study with synthetic workloads

	Sieve as a Turn-key Cache Primitive
	Cache primitives
	Turn-key cache eviction with Sieve

	Discussion
	Byte miss ratio
	Sieve is not scan-resistant
	TTL-friendliness

	Conclusion

	nsdi24-qiao
	Introduction
	Motivation
	Midas Overview
	Design
	Soft Memory Abstraction
	Soft Memory Pointer
	Soft Data Structures

	Application-Integrated Runtime
	Log-structured Soft Memory Allocator
	Soft Memory Evacuator
	Page-Fault-Resilient Functions

	Global Soft Memory Coordinator
	Soft Memory Management Mechanism
	Coordination Policy

	Discussion

	Implementation
	Programming with Midas
	Guidelines
	Application Case Studies

	Evaluation
	Coordinating Soft Memory
	Harvesting Available Idle Memory
	Reacting to Memory Pressure
	Design Drill-Down

	Related Work
	Conclusion
	Harvesting Available Idle Memory
	Reacting to Memory Pressure
	SocialNet Microservices Memory Usage
	Soft Pointer Dereference Cost

	nsdi24-wu
	Introduction
	Overview of Legolas
	Identify and Instrument Injection Points
	Abstract State Guided Fault Injection
	State Representation Choices
	Infer Abstract State Variables
	Injection Decision Algorithm

	Testing Experiment
	Injection Trial
	Workload Driver
	Failure Checkers

	Implementation
	Evaluation
	Injection Points and Abstract States
	Finding New Bugs
	Impact of Abstract States and BSRR
	Comparing with Other Solutions
	Exposing Known Bugs
	Performance
	Effort and False Positive

	Discussion and Limitations
	Related Work
	Conclusion
	Evaluation Details

	nsdi24-wydrowski
	Introduction
	Environment and motivation
	Evaluation of deployment in YouTube
	System design
	Testbed evaluation
	Robustness to variable antagonist load
	Replica selection rule
	Tunable parameters

	Related work
	Linear combinations of latency and RIF

	nsdi24-du
	Introduction
	Motivation and Design Overview
	What makes Orthcatter outstanding?
	What is Orthcatter?

	Design
	Encoding: Over-the-air code division
	Decoding: Quasi-orthogonal interference cancellation

	Orthcatter Implementation
	Orthcatter Evaluation
	Experiment Setup
	End-to-End Performance
	Micro Benchmarks
	Coexist with ambient WiFi

	Discussion
	Related work
	Conclusion
	Acknowledgements

	nsdi24-ko
	Introduction
	Motivation for Real-Time RIC
	Related Work
	EdgeRIC Concept Architecture
	Disaggregated EdgeRIC Architecture
	EdgeRIC Functional Components
	EdgeRIC Emulator Module

	EdgeRIC Implementation
	EdgeRIC Execution Module
	Real-time Connectivity to RAN and messaging
	Cross-Layer Connectivity and Logging
	Integration with OpenAIGym

	EdgeRIC Emulator Module

	Case Study: An RL based scheduling App
	Training RL on emulator
	Evaluations on emulator
	Scalability Study

	EdgeRIC Evaluation
	Experimental Setup
	User Devices and Channel Traces
	Evaluation Scenarios

	Micro-benchmarks: Edge vs. Cloud
	Impact of RL on Micro-benchmarks
	Cross-Layer Optimization: Case Study

	Limitations and Future Work
	Appendix

	nsdi24-yin
	Introduction
	Background and Related Work
	Channel Measurements
	Existing ADR Techniques

	Packet Losses in Gaming
	Gaming Traffic Patterns
	Packet Losses During Gaming
	Effect of Consecutive Packet Losses
	Conclusions

	ADR-X
	Overview of ADR-X
	Feature Engineering
	Online Training of ADR-X
	Packet Re-transmission Strategy
	Federated Learning for Initialization
	Implementation of ADR-X

	Evaluation of ADR-X
	Experimental Setup
	Performance of ADR-X
	Convergence of ADR-X
	Sudden Changes in Interference Levels
	Benefits of Feature Engineering
	Architecture exploration

	Conclusions
	Deep Reinforcement Learning Design
	Proximal Policy Optimization (PPO)
	PPO Design
	PPO Network Architecture Exploration.

	nsdi24-dai
	Introduction
	Magnetically-Driven UHF RFID
	Background
	Inductive Coupling via Matching Loops
	Communication Immutability
	Experimental Verification

	Overview
	Spreading Magnetic Fields
	Necessity of a Novel Coil Antenna
	Capacitor-Segmented Coil Antenna
	Spiral Coil Antenna
	Directional Coil Antenna
	Coil Antenna Array

	Fast Inventory
	Dual-Coupling Systems
	Acceleration via Perfected Bloom Filter

	Implementation
	Fabrication
	Microbenchmark

	Evaluation
	Inventory Accuracy
	Inventory Efficiency
	Spatial Controllability
	Penetrability
	Impact Analysis

	Pilot Study: Logistic Network Evaluation
	Warehouse Management
	Supply Chain Planing

	Related Work
	Conclusion
	Magnetically-driven UHF RFID Systems
	High-Impedance Surface
	Fundamentals of Bloom Filter
	Architecture of Near-Field Reader
	Compared with Related Systems

	nsdi24-wang
	Introduction
	Background and Motivation
	Wi-Fi Direct and Its Packet Life-Cycle
	Practical Line Rate Transmission of Wi-Fi Direct
	Limitations of Existing Transport Schemes

	Smuff Design
	Design Goals
	System Overview
	Buffer Management Analysis
	Single Buffer Management
	Multiple Buffer Management

	Buffer Orchestrator
	Transport Manager
	Other Design Considerations
	Packet Aggregation
	Flow Prioritization

	Implementation
	Evaluation
	Transport Performance
	Compatibility
	Microbenchmark
	System Overhead

	Discussion
	Related Work
	Conclusion

	nsdi24-day3.pdf
	nsdi24-zhang
	Introduction
	Background and Motivation
	Processing Live ML Queries
	Motivating Examples

	System Overview
	Vulcan: Profiler Design
	Defining Utility of Query Plans
	Determining the Query Pipeline
	Constructing the Initial Pipeline
	Selecting the Ordering of Filters

	Determining Placement Choices
	Reusing Pipeline Results
	Pruning Unpromising Placement Choices

	Determining Query Configuration
	Why Do We Choose BO?
	Applying BO to Query Configuration

	Online Adaptation
	Detecting and Handling Runtime Dynamics
	Enabling Online Adaptation

	Evaluation
	Experiment Setup
	End-to-End Improvement
	Selecting Better Query Configurations
	Selecting Better Placement
	Selecting Better Pipelines
	Handling Runtime Dynamics
	Sensitivity Analysis

	Related Work
	Conclusion
	Additional Evaluation Results
	Datasets and Query Configuration
	End-to-End Improvement
	Selecting Better Placement

	nsdi24-rajasekaran
	Introduction
	Background and Motivation
	black Distributed DNN Training Traffic Pattern
	black Interleaving the Up and Down Phases

	Geometric Abstraction
	Augmenting ML Schedulers with Cassini
	Cassini Affinity Graph
	Putting It All Together

	Evaluations
	Methodology and Setup
	Performance Gains
	Cassini Reduces Congestion
	black Impact of Model Parallelism
	Impact of Partial Compatibility
	black Impact of Multiple GPUs per Server
	Adjusting Time-Shifts and Overhead

	Discussion and Limitations
	Related Work
	Conclusion
	Proof of Theorem 1
	DNN Models
	Number of ECN Marked Packets

	nsdi24-wang
	Introduction
	Distributed DNN Training
	Communication Overhead
	Existing Solutions and Problems

	Observations and Opportunities
	Packets Are Order-Independent
	Packet Losses Are Bound-Tolerant
	Packets/Gradients Differ in Importance

	The MLT Design
	Key Ideas
	Mechanisms
	Order-free Per-packet Load Balancing
	Gradient-aware Packet Queueing & Dropping
	Bounded-loss Tolerant Data Transmission

	Implementation
	End-host Network Stack
	Switch Configurations
	ML Framework Integration

	Evaluation
	Testbed Experiments
	Experimental Setup
	Results

	Large-scale Simulations
	Simulation Setup
	Results

	Deep Dive

	Open Questions and Discussion
	Related Work
	Conclusion
	Convergence Analysis of MLT
	Thresholds Setting of Selective Dropping
	Supplemental Experiments
	Open Questions and Discussion (Cont'd)

	nsdi24-de_sensi
	Introduction and Motivation
	Background
	Targeted Collectives
	Notation and Model
	State-of-the Art Algorithms
	Hamiltonian Rings
	Latency-Optimal Recursive Doubling
	Bandwidth-Optimal Recursive Doubling
	Bucket Algorithm
	Other Approaches

	Swing Design
	Algorithm Design
	Bandwidth-optimal Algorithm
	Latency-optimal Algorithm

	Non-power-of-two Nodes

	Design for Multidimensional Tori
	Square Tori
	Non-Square Tori

	Experimental Evaluation
	Performance on 2D Square Torus
	Scaling
	Bandwidth Impact

	Performance on Rectangular Tori
	Performance for 3D and 4D Torus
	Performance on Torus-Like Topologies
	Performance on HammingMesh
	Performance on 2D HyperX

	Summary

	Discussion
	Conclusions
	Correctness Proof
	Power of Two Number of Nodes
	Non-Power of Two Number of Nodes

	nsdi24-feng
	Introduction
	Background and Motivations
	Factors that impact the latency
	Challenges to platform-specific prediction
	Opportunities

	System Design
	Build Accurate Base Latency Predictors
	NAS search spaces and the challenges
	Efficient VAE data sampler
	Build transferable base latency predictors

	Transfer Predictors to New Platforms
	Similar predictor detection for each kernel
	New platform adaptation

	Implementation
	Evaluation
	Experiment Setup
	Key findings
	Evaluation on diverse edge platforms
	Comparison with baseline methods
	Transfer to diverse new platforms

	Ablation study
	Hardware-aware NAS with LitePred
	LitePred on Transformer models

	Related Works
	Discussion
	Conclusion
	Acknowledgement

	nsdi24-lou
	Introduction
	Background
	Remote Direct Memory Access
	RDMA Performance Isolation
	Design Space for Monitoring and Controlling Tenant RDMA Resouce Usage

	Harmonic Overview
	Programmable Intelligent PCIe Switch
	PCIe Configuration and Routing Logic
	Address-to-Object/Tenant Mappings
	Mapping Synchronization and Management
	Efficient TLP Analyzer

	RDMA-friendly Rate Limiting
	Data Verbs Rate Limiting in Harmonic Daemon
	Control Verb Rate Limiting in Harmonic Drivers

	Evaluation
	Testbed Setup
	Measurement and Control of RDMA Resources
	Harmonic End-to-end Evaluation
	Performance Isolation for End-to-End Applications
	Overhead Analysis

	Discussion
	Related Works
	Conclusion
	Harmonic Prototype Setup
	Entries for Mappings and Statistics
	Address-to-Object/Tenant Mappings
	Per-tenant RDMA Statistics

	Harmonic PCIe Overhead Computation

	nsdi24-cho
	Introduction
	Background and Motivation
	Debugging a Tail Latency Problem
	Intuition and Challenges

	System Design
	Overview
	Stack Sampling
	Tracing Cross-thread Request Handling
	Analysis Script

	Implementation
	LLVM-LDB
	The LDB API and Parameters

	LDB Use Cases
	Reconstructing the Timeline of the Request
	Tail Latency Debugging
	Debugging Throughput of Qperf

	Performance Evaluation
	Microbenchmark
	Portability of LDB
	Overheads of LDB
	Breakdown of LDB's overhead

	Related Work
	Conclusion

	nsdi24-peng
	nsdi24-pereira
	Introduction
	Why Parallelization is Hard
	Maestro Architecture
	Parallelizing a firewall
	Generalizing NF parallelization
	Extracting the NF's model
	Finding the sharding solution
	Finding the right RSS configuration
	Code Generator

	Implementation challenges
	Assumptions and limitations
	Evaluation
	Target NFs and Microbenchmarks
	Performance Benchmarking Methodology
	Picking the Workload
	Performance benchmarks

	Related Work
	Conclusions
	Appendix
	Code excerpts from Maestro
	Macrobenchmarks with Zipfian traffic
	Reproducibility

	nsdi24-sun
	Introduction
	AutoSketch Interface
	AutoSketch Compiler
	Mapping for Stateful Operators
	Parameter Configuration

	Mapping to Sketch
	Operator Decomposition
	Sketch Construction for UDFs
	Sketch Selection for Built-in Operators

	Searching for Configurations
	Problem Formulation
	Benchmark-based Searching

	Implementation
	Evaluation
	Setup
	Compare with Query-driven Telemetry
	Compare with Sketch-based Telemetry
	Micro Benchmarks

	Related Works
	Conclusion
	Decomposed TCP non-monotonic
	Complex Decomposition Example
	Theoretical analysis of Sketch-like structure
	Optimization for sketch mapping
	Formulation of Benchmark-based parameter tuning
	The number of Configurations
	LHS-based initialization for searching
	Hardware-aware configuration generation
	Additional Experiment
	Complete Experiment Results
	Telemetry Applications

	nsdi24-jafri
	Introduction
	Background and Motivation
	Design goals and prior work limitations
	Leo Design
	Abstraction
	Design Overview
	Decision Tree Node Multiplexing
	Sub-Tree Flattening and Multiplexing
	Runtime Programmability

	Leo Implementation
	Leo Analysis
	Evaluation
	Leo vs. Other Data plane Tree Schemes
	Classification Accuracy on Real Datasets
	Number of Concurrent Flows Supported
	Leo vs. Control Plane ML

	Related Work
	Conclusion
	Appendix
	IIsy with SRAM.
	IIsy with TCAM
	Proof sketch of Proposition 2
	Estimating TCAM memory requirements

	Evaluation
	Impact of number of features
	Breakdown of F1 scores per class
	Other Results/Discussion

	nsdi24-johnson
	Introduction
	Background
	Example walk through
	DHCP Anomaly Detection
	Compilation Overview

	FLM Language Definitions
	FLM Language
	Syntax and Semantics of Patterns
	FLM Intermediate Representation

	From FLM patterns to Regular Expressions
	Lifting out variable bindings
	Translating events
	Eliminating predicates from patterns

	Translation Correctness
	FLM Pattern Derivatives
	Correctness Theorem

	DFA Synthesis
	Synthesis goal
	Synthesis implementation

	Implementation
	Evaluation
	Compilation time
	Hardware Resource Utilization
	DFA Synthesis

	Related Work
	Discussion
	Conclusion
	Appendix
	Translating patterns
	Implementability
	Example patterns
	Extensions
	Maintenance events
	Longer patterns

	Proofs of Theorems

	nsdi24-zhang
	Introduction
	Background and Motivation
	Multicore monitoring problem
	Prior Solutions and Limitations

	System Overview
	OctoSketch Workflow
	Key Ideas

	Detailed Design
	Worker
	Aggregator
	Resource Allocation
	Extension to Other Sketches

	Analysis
	Error Bound
	Communication and Accuracy tradeoff

	Implementation
	Evaluation
	Experimental Methodology
	Online Accuracy
	Throughput
	CPU Utilization and Stability
	Case Study: Load balancer

	Other Related work
	Conclusions
	Background of sketches
	Analysis
	Extensions to other sketches
	Evaluation
	Parameters
	Figures
	Case Study: Key-Value Cache

	nsdi24-kim
	Introduction
	Background
	Design Overview
	µW Synchronization with NR Base Station
	NBPU Embedding in NB-IoT
	ns-synchronization

	µW Real-time Reconfiguration
	ns-reconfigurable Metasurface
	Duty-cycling NR-Surface
	Putting It All Together
	Multi NR-Surface

	Prototype Implementation
	Hardware Configuration
	NR Evaluation Setup

	Evaluation
	Dynamic Environment
	Multi UE Operation
	Multi NR-Surface
	Coverage Extension
	µW Synchronization Accuracy
	NBPU BER Measurements
	Interference Robustness
	Beam Pattern Validation
	Extension to 3D Beamforming

	Related Works
	Conclusion

	nsdi24-li
	nsdi24-zhang
	nsdi24-yi
	Introduction
	Background
	CSI Primer
	BFM primer

	Understanding the relationship between BFM and human motion
	The mathematical connection between CSI and BFM
	Relationship between CSI and V
	From V to BFM V"0365V

	Sensing Target Motion using BFM
	Sensing motion using BFM amplitude
	Sensing motion using BFM phase
	Sensing using both BFM amplitude and phase
	Case study

	Motion Sensing with BFM-Ratio Metric
	BFM-Ratio Metric
	Experiment Verification

	Case Study
	Respiration Monitoring
	Human Trajectory Tracking

	Evaluation
	BFM collection.
	Respiration Monitoring using BFM Ratio
	BFM vs. BFM ratio.
	Ideal CSI vs. BFM ratio.
	Impact of device and environment diversity

	Human Tracking using BFM ratio
	Experiment setup
	Performance of human tracking
	Performance in the challenging real-life scenario

	Related work
	WiFi based contactless sensing
	Other RF-based sensing

	Discussion
	Conclusion

	nsdi24-chae
	Introduction
	Background
	mmWave WiFi Backscatter
	Modulation and demodulation
	Ultralight DMG control frame detection

	Suppressing Self-interference
	Backscatter beamforming with nulling
	Extracting the backscatter path
	mmComb backscatter protocol

	Implementation
	mmCombTag Prototype
	mmCombCommodity WiFi Readers

	Evaluation
	mmComb read range and angle
	Nulling backscatter self-interference
	Practical deployment
	Scalability of mmComb
	Power consumption

	Related Work
	Conclusion and Discussion

	nsdi24-singh
	Introduction
	Related Work
	Data Collection
	The Anatomy of SSH BFAs
	Properties of SSH BFAs In Practice
	Attacker Distribution and Persistence
	Tracking Attacks With Dictionaries
	Dictionary-Based Blocking (DBB)
	Threat Model
	Design of DBB
	Effectiveness of DBB
	Number of Collectors
	Deployment of DBB
	Practical Considerations

	Conclusion
	Cross collector performance
	Individual site performance in experiments S1 and S2
	Cn: Number of Collectors
	Top usernames in DG
	Username Classification
	Top 50 Countries And Network Providers

	nsdi24-holterbach
	Introduction
	Background
	Attack Model
	The Case for DFOH
	Lack of Defenses
	Requirements

	Overview
	Workflow
	Software functionalities
	Planned usages

	Design
	Zoom on new AS links
	Under ideal conditions
	In the real world

	Features computation
	Topological features
	Peering features
	AS-path-pattern feature
	The bidirectionality feature

	Inference
	Detecting forged-origin hijacks
	Training the classifier
	Sampling all attack scenarios

	Evaluation
	Accuracy
	Robustness
	Remote peering sessions
	Fake peering sessions at IXPs

	Practical use
	Relevance of the design choices

	Related work
	Conclusion
	Acknowledgments
	A sample of the most suspicious cases
	Datasets
	Tradeoff between visibility and impact
	Features computation (extension)
	Topological features
	Bidirectionality feature

	Detection speed
	Discriminate power of classification features
	Performance of SEAL for revealing forged-origin hijacks

	nsdi24-hsieh
	Introduction
	Background and Motivation
	Securing East-West Traffic with Zero-Trust Solutions
	Challenges of Network Intrusion Detection Systems on East-West Traffic

	Overview of NetVigil
	Design Details of NetVigil
	Security Graph Feature Extractor
	Graph Representation Learning
	Domain-Specific Contrastive Learning
	Temporal Smoothing and Continuous Retraining

	Benchmarks and datasets
	Evaluation
	Methodology
	Overall Results
	Efficiency Results
	System cost
	Production Traces
	Ablation Study

	Related Work
	Discussion
	Conclusion
	Appendix
	Additional efficiency results

	nsdi24-birge-lee
	Introduction
	Tango Problem Setting
	Challenges of Today's Internet
	Tango Design Requirements

	Tango Overview
	Unveiling Path Diversity with PathFinder
	Secure, Metrics-Informed Dynamic Routing
	Multi-Path Monitoring
	Secure Telemetry
	On-Demand Reroutes in the Data Plane

	Internet-Scale Measurements
	Operational Deployment
	Path Diversity over the Public Internet
	Performance Diversity across Exposed Paths
	Event Analysis

	Internet-Wide Simulation

	Internet-Scale Route Control
	Dynamic Reroutes
	Data Plane Microbenchmarks

	Related Work
	Conclusion
	Adversarial Model
	Additional Tango Design Details
	Supplementary Internet-Scale Results
	Path Diversity: CDF
	High-Latency Performance Degradation Events
	Performance Diversity: Vultr LA

	nsdi24-yuan
	Introduction
	Motivating Scenarios
	Low-Latency Media
	Connection-Splitting PEP Emulation
	ACK Reduction

	QuACK
	The QuACK Problem
	Packet Identifiers
	Strawman Solutions
	The Power Sum Solution
	Microbenchmarks

	Sidekick Protocol
	PEP Discovery Mechanism
	Configuration Messages
	Sender Behavior
	Detecting Loss
	Path-Aware CUBIC Congestion Control

	Implementation
	Baselines and Applications
	Client Integration
	Proxy Integration

	Evaluation
	Experimental Setup
	Performance Comparison to Baseline
	Configuring the Sidekick Connection

	Fairness Evaluation
	Proxy CPU Overheads
	Link Overheads
	End-to-End Real World Experiments

	Limitations
	Conclusion
	Intuitive Analysis of PACUBIC

	nsdi24-cui
	Introduction
	Related Work
	Background and Motivation
	Preliminaries of SLAM Systems
	Limitations of SLAM

	System Design
	System Overview
	Local Map Construction
	Infrastructure Measurement Extraction
	Vehicle-Infrastructure Alignment
	Global Map Correction

	Testbed and Dataset
	Evaluation
	Evaluation Setup and Metrics
	Experiment Setup
	Evaluation Metrics
	Baselines.

	End-to-end System Evaluation
	Performance of VILAM
	Trajectory Estimation
	Map Quality Evaluation

	System Overhead
	Micro Benchmarks
	Robustness Analysis

	Conclusion

	nsdi24-carver
	Introduction
	System Challenges
	Lasertag Design
	Efficient Optical Path Sharing
	Fast Tracking with Retroreflective Imaging
	Fluorescence-based Optical Mapping
	Predictive Steering for High Mobility

	Prototype Implementation
	Evaluation
	Experimental Setup
	Tethering Efficacy
	Tethering Micro-benchmarks
	Practical Considerations

	Discussion
	Related Work
	Conclusion
	Acknowledgements

	nsdi24-guo
	Introduction
	Config Usage
	Config Use Cases
	Statistics of Mobile Environments

	Agile Development with MobileConfig
	Agile Development Process
	Stale Configs Hinder Agile Development
	Progressive Consistency

	MobileConfig Design
	MobileConfig Architecture
	Client-side Library
	Server-side Components
	Client-server Protocol

	Support for Progressive Consistency
	Config Consistency during App Lifecycle
	Repeatable Reads and Intra-config Consistency

	Config Reliability
	Performance Optimizations
	Optimizing Strongly Typed Parameters
	Optimizing Config Storage
	Optimizing Client-Server Protocol

	Evaluation
	Usage and Adoption
	Impact on App Startup Time
	Consistency Model's Impact on App Startup Time
	Config Storage's Impact on App Startup Time

	Config Data Freshness
	Emergency Push
	Multi-stage Canary Tests
	Client-server Protocol Optimization

	Operational Experiences
	Production Incidents
	Lessons Learned

	Related Work
	Conclusion

	nsdi24-fan
	nsdi24-zhou
	Introduction
	Background and Motivation
	Interactive Real-Time Streaming
	Long Tail Latency in Real-time Streaming
	Limitation of Existing Multipath Transport in Real-time Streaming
	User Characteristics in Real-time Streaming

	Augur Design
	Design Goals
	System Overview
	State Probability Model
	Backup Path Utilization Strategy
	State Manager
	State space formulation.
	Probability distribution derivation

	Multipath Agent
	Application Level Frame Retransmission
	Primary Path Switch Scheduling

	Trace-driven Emulation
	Evaluation Methodology
	Performance

	Large-scale Deployment in the Wild
	Implementation and Deployment
	Experiment Setup
	Performance
	Micro-benchmark
	Parameter Setting
	Cellular Path Utilization

	Discussion
	Related Work
	Conclusion

	nsdi24-zhang
	1 Introduction
	2 Background
	3 Zombie's protocol
	3.1 Precomputation
	3.2 Optimistic approval via asynchronous verification
	3.3 Batching in Zombie

	4 Regular expressions in Zombie
	4.1 Setup and framework
	4.2 Efficient string matching in constraints
	4.3 From regular expressions to constraints
	4.4 A new arithmetization of Boolean logic
	4.5 Preprocessing regular expressions
	4.6 Character classes and a new FA formalism
	4.7 Applying regexp-based policies in ZK

	5 Implementation
	5.1 ZKP implementation
	5.2 Client implementation
	5.3 Middlebox implementation

	6 Evaluation
	6.1 Computational overhead and delay, no batching
	6.2 Effect of batching
	6.3 Circuit benchmarks

	7 Related work
	8 Discussion
	A Details of SpartanBatch
	A.1 Spartan protocol details
	A.2 SpartanBatch and its security proof

	nsdi24-namyar
	Introduction
	Motivation and Overall Approach
	Our model
	Soroush Overview

	Max-Min Fair Resource Allocators
	One-shot Optimizations
	Multi-path Waterfilling
	Combinations and Extensions

	Evaluation
	Benchmarks and Metrics
	WAN Traffic Engineering
	Cluster Scheduling
	Convergence and Sensitivity Analysis
	Other Experiments

	Discussion
	Related Work
	Conclusion
	Max-min fair allocation optimization
	Closed-form max-min fair objective
	SWAN as a sequence of LPs
	Proofs of results for AdaptiveWaterfiller
	Proof of Theorem 3
	Other results

	Equi-depth binner formulation
	Expected Run-time Benefit of GB and EB
	Extended Evaluation
	Tuning benchmarks for performance
	Evaluation on CS
	Evaluation of POP

	nsdi24-shahid
	Introduction
	Background and Motivation
	Proposed System - Cloud LoRa
	CRAN Gateway
	ACCIO : Reinforcement Learning-based Adaptive Compression
	CRAN Cloud Server

	Implementation
	Evaluation
	Real-world Deployment Settings
	Performance in a Rural, Bandwidth-Constrained Deployment
	Joint Multi-Gateway Packet Decoding
	Rapid Deployment of state-of-the-art
	Elastic Scaling to Multiple Channels
	Varying Backhaul Conditions
	Varying LoRa Channel Quality
	Activity Detection of Cloud-LoRa

	Discussions and Future Work
	Conclusions
	Acknowledgements
	LoRa Modulation and Demodulation
	Chirps of different SF are Pseudo-orthogonal.

	Primer on the Discrete Wavelet Transform
	Reward Function Shaping
	Background on Reinforcement Learning
	Supplementary Results

	nsdi24-friess
	Introduction
	Related Work
	Collection of Abused Resources
	Dataset
	Detection of Abused Domains

	Analysis of Abused Resources
	Abused Organisations
	Abused Providers & Resource Types
	The Problem of User-Nameable Resources
	Abuse Duration

	Characterization of Abuse
	Abuse Depends on Hijacked Resource
	Generating Traffic
	Blackhat Search Engine Optimization (SEO)
	Click-Jacking
	Reputation of Abused Domains

	More Page Views Mean More Profit
	Malware Distribution & Flagged Sites
	Stolen (Authentication) Cookies
	Fraudulent Certificates
	Analysis of Certificates on Abused Domains
	CAA Records are not Effective
	Certificate Transparency as Countermeasure

	Characterization of Attacker Infrastructure
	Conclusions
	Appendix
	Cloud Suffixes
	Motivations for Obtaining a Certificate for a Hijacked Domain

	nsdi24-liu
	Introduction
	Background
	Cloud deployment patterns
	Cluster networking
	Best practices for operations and their implementation challenges

	CAPA architecture Overview
	Life cycle of an operation

	Detailed Design
	Rate-Limiting & Concurrency Control
	Failure Domain Containment
	Static routes for WAN interconnects
	Exceptions
	Known Limitations

	Evaluation
	Methodology Discussion
	Success stories
	Retrospective analysis of outages
	Retrospective case studies
	Retrospective and other known safety gaps.

	Quantitative data

	Discussion
	Related Work
	Conclusion

	nsdi24-wang
	Introduction
	Measurement Study and Motivation
	Network User Behavior Study
	Network Incidents and Monitoring Primitives Study
	Motivation and Research Challenges

	System Design
	System Architecture
	Dialogue Engine
	Workflow Engine
	Data Engine

	Evaluation
	Implementation and Deployment
	Case Study
	Case 1: Host Network Issue
	Case 2: Data Center Network Issue
	Case 3: Large Scale Network Failure
	Most Commonly Used Workflows

	Usage Evaluation
	Accuracy Evaluation
	Performance Evaluation

	Experience Learned
	Can we proactively find alerts, engage the network team, and inform users?
	Quality user experience
	Empowering our users
	Limitations and Future Work

	Related Work
	Conclusion

	nsdi24-ma
	Introduction
	Related Work
	Klonet in a Nutshell
	Design and Implementation
	System Overview
	Achieving Easy-to-use
	Achieving Scalability
	Achieving Robustness

	System Performance
	Testbed Evaluation
	Large-scale Simulation

	Use Cases
	Project 1: Playing with algorithms
	Project 2: Intra-domain Routing
	Feedback

	Lessons Learnt
	Discussion
	Conclusion
	Appendices
	Experiment Page
	The Design of User Management Model
	Details of VNE Algorithm
	The User Survey

	nsdi24-li
	Introduction
	Motivation
	A Motivating Example
	Prior Work and Limitations
	Our Goal

	ExChain Overview
	A High Level View
	Technical Challenges
	Scope and Limitations

	Detailed Design
	Affected State Analysis
	Responsible State Analysis
	Hybrid Taint Flow Analysis
	Putting it Together

	Implementation
	Evaluation
	Methodology
	End-to-End Evaluation
	Accuracy vs. Performance Tradeoff

	Discussion
	Other Related Work
	Conclusions
	Acknowledgments

	Blank Page

